scan

May 4, 2015

Mr. James Gruppe, P.E.
NYS Department of Environmental Conservation Division of Water
615 Erie Boulevard West, Suite 204
Syracuse, NY 13204-2400

RE: Town of DeWitt, New York

Dear Mr Gruppe:

Please find enclosed 3 copies of the Town of DeWitt, NY Annual Report for the Town Landfill. Should you have any further questions or comments please contact me at 315-682-0028.

Very truly yours,

Douglas A Miller, PE MILLER ENGINEERS

DEPARTMENT OF ENVIRONMENTAL CONSERVATION REGION 7 DAM

Town of DeWitt Landfill Annual Engineer's Report

DeWitt, New York

www.MillerEngineers.com

Solutions@MillerEngineers.com | 315.682.0028

ENGINEERING YOU CAN BUILD ON

ENGINEERING | ENVIRONMENTAL | CAPITAL IMPROVEMENT | CONSTRUCTION

2014 Annual Post-Closure Monitoring Report Town of Dewitt Landfill

Cont	ents
1. In	ntroduction
2. B	ackground1
3. L	andfill Reconnaissance
3.1	Final Cover and Vegetation1
3.2	Landfill Gas System
3.3	Storm-water Management and Drainage
3.4	Access Road and Fencing
4. P	ost-Closure sampling3
4.1	Surface Water Sampling3
4.2	Groundwater Sampling4
4.3	Gas Vent Sampling4
5. C	onclusion5
Figur	es Figure 1. Site Map
Table	S.
	Table 1a. Surface Water Sampling Results – SW-1 Table 1b. Surface Water Sampling Results – SW-2 Table 1c. Surface Water Sampling Results – SW-3 Table 2a. Groundwater Sampling Results – Shallow Monitoring Wells Table 2a. Groundwater Sampling Results – Deep Monitoring Wells Table 3. Gas Vent Sampling Results
Appe	ndices A Photographic Log

В

Laboratory Reports

1. INTRODUCTION

Miller Engineers has been retained by the Town of Dewitt to observe, assist and document post-closure monitoring activities at the Town of Dewitt Landfill in East Syracuse, New York. This report summarizes post-closure monitoring activities conducted in 2014 and provides the laboratory results of surface water, groundwater and landfill gas samples collected during the year.

2. BACKGROUND

The former Town of Dewitt Landfill is located between Butternut Drive and Burdick Street in East Syracuse, New York and is approximately 57 acres in size. Access to the site is from Fisher Road and is limited by a chain link fence and a locked gate. The site is surrounded by light industrial properties to the north and west and residential properties to the east. The Erie Canal, to the south, has been developed as a recreational area with multi-use trail, boating access and a picnic area.

The site is an inactive municipal landfill that previously accepted residential and industrial waste. The landfill was closed by the Town of Dewitt under the New York State Department of Environmental Conservation (NYSEC) state Superfund Program (site code 734012). Investigation and remediation efforts included a Remedial Investigation/Feasibility Study in 1992, an Interim Remedial Measure (IRM) completed in 1994 (Part 360 landfill cap) and a Record of Decision (ROD) in March 1994. This site was included on the NYSDEC's list of Legacy sites based on the potential for soil vapor intrusion. Based upon additional evaluation by the NYSDOH, the site was removed from the list in April 2009. Currently the site is being monitored under an Operation, Maintenance and Monitoring Plan (OMMP).

3. LANDFILL RECONNAISSANCE

Site visits were performed during June, September, and December 2014 to assess general site conditions at the landfill and to collect environmental samples. Landfill reconnaissance included observations and assessments of the final cover and vegetation, landfill gas venting system, storm water management system and access road and perimeter fence conditions. A summary of the observations is provided below. Appendix A provides a photographic log of typical conditions observed at the landfill during 2014.

3.1 Final Cover and Vegetation

The June site visit revealed lush, green growth of tall grasses and some small woody plants across the landfill. Grass cover appeared uniform and healthy over the entire landfill including all side slopes and the top. A few taller woody plants were observed near the gas vents,

where previous mowing could not reach. During the August visit, the grass was observed to have been mowed and there were no longer any potentially deep-rooted woody plants visible. It is therefore assumed that the cover layer and cap material are in good repair and that no deep rooted plants are compromising the low-permeability cap layer or allowing precipitation to infiltrate the waste layer. There were no observations of stressed vegetation, bare spots or erosion gullies. There were signs of grass matted by wheeled vehicles, likely recreational ATVs, however there were no ruts and the vegetative layer was not compromised and no bare soil was observed.

3.2 Landfill Gas System

There are a total of 24 gas vents that comprise the passive gas venting system at the landfill. All gas vents were observed to be in good repair and operable during the August 2014 visit. All vent screens were free of debris and blockages and appeared to be operating as designed. There were no incidences of significant subsidence, ponded water or stressed vegetation immediately adjacent to any of the gas vents. Previous monitoring reports indicate that the most prolific gas producing vents are located along the east-west trending ridge at the top of the landfill (see Figure 1). Qualitative observations during the August site visit confirmed that vents along the ridge (V-3, V-9, V-10, V-11, V-12, and V-18) produce the most gas. Quantitative measurements of gas flow in these vents were made during the December visit and are discussed in Section 4.

3.3 Storm-water Management and Drainage

A series of radial drainage ditches lined with rip-rap overlying perforated drain pipe are spaced around the landfill to facilitate storm water run-off to the toe of the landfill slopes and to minimize ponding and infiltration into the waste mass. During each of the 2014 site visits the ditches were observed to be in good repair with no signs of erosion, fine sediment accumulation or ponding. The drainage system appears to be functioning as designed.

3.4 Access Road and Fencing

A crushed stone access road surrounds the landfill and is located on the lower side slope. Vehicle traffic accesses the road through a chain link fence gate located on the north side of the landfill at the southerly-most portion of Fisher Road (see Figure 1). In December, the access road was observed to be in good repair with no washouts and no impassable dips or ruts. The road was passable by two-wheel drive pickup truck during each of the 2014 site visits.

The landfill is bounded on the south by an eight-foot tall chain link fence that separates the Erie Canal toe-path from the landfill. The fence was observed to be in good repair with no

openings or breaks in the fence and no damaged posts or rails. A short section of fence is also located at the access gate at Fisher Road and spans the northern landfill boundary between a stand of mature trees and a wetland. The fence and gate are in good repair and adequately prevent automobile and truck traffic from unauthorized entry to the landfill. However, recreational ATV traffic and snowmobile tracks have been observed, at various times of the year, circumventing the fence and accessing the landfill.

In general, the access road and fencing appear to be functioning as designed.

4. POST-CLOSURE SAMPLING

The Operation, Maintenance and Monitoring Plan (OMMP) call for surface water, groundwater and landfill gas monitoring. The sections below describe locations, frequency, methods and results for surface water, groundwater and gas vent sampling. Figure 1 shows the sampling locations. Sample results were tabulated and compared to standards, criteria and guidance (SCG) appropriate for each sampling media and described below.

4.1 Surface Water Sampling

The OMMP requires that surface water samples be collected once every calendar quarter at three designated locations. Surface sample locations SW-1, SW-2 and SW-3 are located at the toe of the landfill slope and on the edge of the surrounding wetland. Surface water samples were collected on June 6, September 25 and December 5, 2014. Location SW-2 was dry during the September sampling round and therefore no sample was collected. First quarter samples were not collected because the sampling contract was not finalized at that time.

Surface water samples were collected by digging a shallow hole in the wetland and allowing the hole to fill with water. Sample containers were filled by submerging them in the standing water. The samples were preserved on ice and shipped directly to the laboratory by the sampling crew. The samples were analyzed for volatile organic compounds (VOCs) using USEPA Method 624 and Priority Pollutant Metals.

Surface water sampling results we compared to SCGs defined in NYSDEC "Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998" and subsequent addendums.

The results of the surface water sampling events indicate that there were no exceedances of SCGs at SW-1 in any round. Three VOCs exceeded SCGs at SW-2 including total 1,2 dichloroethane, toluene and vinyl chloride in the June sampling event and only vinyl chloride in the December event. A sample was not collected during the September site visit because the location was dry. The only exceedance reported for SW-3 in any of the three sampling events

was the VOC toluene in the September sampling event. All other VOCs and metals were non-detectable or below SCGs.

The full list of analytes and results for each surface water location and each sampling event are presented in Tables 1a, 1b and 1c. The full laboratory reports including field observations and quality assurance/quality control data are presented Appendix B.

4.2 Groundwater Sampling

The OMMP requires that groundwater samples be collected once every calendar year at 18 designated locations (see Figure 1). Groundwater samples were collected between June 5 and June 13, 2014. The samples were collected using dedicated bailers to purge each of the wells (except MW-8S) of three volumes of water prior to sample collection. MW-8S was flowing and purging was not required. After purging, field parameters including temperature, pH, turbidity, conductance, oxidation-reduction potential, and dissolved oxygen were measured and recorded on field data sheets. The field data sheets are presented in the laboratory report in Appendix B. The sample containers were filled using bailers and then preserved with ice and shipped directly to the laboratory by the sampling crew. The samples were analyzed for VOCs using USEPA Method 624 and Priority Pollutant Metals.

Groundwater sampling results we compared to SCGs defined in NYSEDC "TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998" and subsequent addendums.

The results of the groundwater sampling are presented in Table 2a and 2b. The results indicate exceedances of SCGs for various metals including antimony, arsenic, chromium, lead, nickel and selenium in monitoring wells MW-1S, MW-4D, and MW-9S, M and D. The VOC 1,2-dichloroethene exceeded SCGs at MW-4S and MW-4D. Trichloroethene exceeded SCGs at MW-4D and MW-4D. No other VOCs exceeded SCGs at any other wells.

The full laboratory report including field observations and quality assurance/quality control data is presented Appendix B.

4.3 Gas Vent Sampling

The OMMP requires that specific gas vents be monitored once per year with the three vents exhibiting the most prolific gas flows being sampled for laboratory analysis. Gas vents V-3, V-9, V-10, V-11, V-12, and V-18 (see Figure 1) were monitored in the field on December 5, 2014 using a GEM 2000 air analyzer for methane, lower explosive limit, carbon dioxide, oxygen, hydrogen sulfide, carbon monoxide and exit velocity. The gas vent field measurements were

recorded on field logs and are presented in table-form in Appendix B. The field results indicated that gas vents V-10, V-11 and V-12 exhibited the highest velocities and gas samples were collected from those locations for laboratory analysis of VOCs using EPA Method TO-15.

Soil vent gas sampling results we compared to SCGs established in NYSDEC "Division of Air Resources (DAR-1) Guidelines for the Control of Toxic Ambient Air Contaminants, 1997."

The results indicate the SCG for benzene was exceeded in samples V-11 and V-12. The SCG for hexane was exceeded in V-10, V-11 and V-12. In addition the SCG for vinyl chloride was exceeded in samples V-10 and V-12.

The laboratory results of the gas vent sampling are presented in Table 3. The full laboratory report including field observations and quality assurance/quality control data is presented Appendix B.

5. CONCLUSION

Based on site visits and the analyses of surface water, groundwater and gas vent samples, the general condition of the landfill is good and all systems appear to be operating as designed. A few exceedances of environmental sampling SCGs have been noted, however these are comparable to previous year's results and, due to relatively low concentrations, isolated occurrences and lack of significant exposure risks, do not pose a significant threat to human health or the environment.

FIGURES

TABLES

Table 1a. Surface Water Sampling Results SW-1

Town of Dewitt Landfill 2014

	1	I	6/6/2014	9/25/2014	12/5/2014	
Analyte	Unit	scg*	2:30 PM	10:00 AM	2:50 PM	Detection
Analyte	Oilit	300				
		0.000	SW-1	SW-1	SW-1	Limit
Antimony	mg/L	0.003	ND	ND	ND	0.0068
Arsenic	mg/L	0.025	ND	ND	ND	0.0056
Beryllium	mg/L		ND	ND	ND	0.0003
Cadmium	mg/L	0.005	ND	ND	ND	0.0005
Chromium	mg/L	0.05	0.0021 J	0.0027 J B	0.0018 J В	0.001
Copper	mg/L	0.2	0.0031 J	0.0071 J	0.0018 J	0.0016
Lead	mg/L	0.025	ND	0.0042 J	0.0032 J	0.003
Mercury	mg/L	0.0007	ND	ND	ND	0.00012
Nickel	mg/L	0.1	0.0044 J	0.0036 J	ND	0.0013
Selenium	mg/L	0.01	ND	ND	ND	0.0087
Silver	mg/L	0.05	ND	ND	ND	0.0017
Thallium	mg/L		ND	ND	ND	0.01
Zinc	mg/L		0.013 B	0.022	0.011 B	0.0015
1,1,1-Trichloroethane	ug/L	5	ND	ND	ND	0.39
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	0.26
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	0.48
1,1-Dichloroethane	ug/L	5	ND	ND	ND	0.59
1,1-Dichloroethene	ug/L	5	ND	ND	ND	0.85
1,2-Dichlorobenzene	ug/L	3	ND	ND	ND	0.44
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	0.6
1,2-Dichloroethene, Total	ug/L	5	ND	ND	ND	3.2
1,2-Dichloropropane	ug/L	5	ND	ND	ND	0.61
1,3-Dichlorobenzene	ug/L	3	ND	ND	ND	0.54
1,4-Dichlorobenzene	ug/L	3	ND	ND	ND	0.51
2-Chloroethyl vinyl ether	ug/L		ND	ND	ND	1.9
Acrolein	ug/L	5	ND	ND	ND	17
Acrylonitrile	ug/L	5	ND	ND	ND	1.9
Benzene	ug/L	1	ND	ND	ND	0.6
Bromoform	ug/L		ND	ND	ND	0.47
Bromomethane	ug/L	5	ND	ND	ND	1.2
Carbon tetrachloride	ug/L	5	ND	ND	ND	0.51
Chlorobenzene	ug/L	5	ND	ND	ND	0.48
Chlorodibromomethane	ug/L		ND	ND	ND	0.41
Chloroethane	ug/L	5	ND	ND	2.5 J	0.87
Chloroform	ug/L	7	ND	ND	ND	0.54
Chloromethane	ug/L	5	ND	ND	ND	0.64
cis-1,3-Dichloropropene	ug/L		ND	ND	ND	0.33
Dichlorobromomethane	ug/L		ND	ND	ND	0.54
Ethylbenzene	ug/L	5	ND	ND	ND	0.46
Methylene Chloride	ug/L	5	ND	ND	ND	0.81
Tetrachloroethene	ug/L	5	ND	ND	ND	0.34
Toluene	ug/L	5	ND	1.7 J	ND	0.45
trans-1,2-Dichloroethene	ug/L	5	ND	ND	ND	0.59
trans-1,3-Dichloropropene	ug/L		ND	ND	ND	0.44
Trichloroethene	ug/L	5	ND	ND	ND	0.6
Vinyl chloride	ug/L	2	ND	ND	ND ND	0.75
Total Dissolved Solids	mg/L		1410	1470 H	930	4
* Standard Criteria or guideline - N		20111				

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (PDF), June 2004

⁻⁻⁻ no standard - Concentration exceeds standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

H - Sample was prepped or analyzed beyond the specified holding time

Table 1b. Surface Water Sampling Results SW-2

Town of Dewitt Landfill 2014

			6/6/2014	12/5/2014	
Analyte	Unit	SCG*			Detection
			SW-2	SW-2	Limit
Antimony	mg/L	0.003	ND	ND	0.0068
Arsenic	mg/L	0.025	0.015	0.010 J	0.0056
Beryllium	mg/L		ND	ND	0.0003
Cadmium	mg/L	0.005	0.00073 J	0.0015 J	0.0005
Chromium	mg/L	0.05	0.0056	0.0018 J B	0.001
Copper	mg/L	0.2	0.0049 J	0.0085 J	0.0016
Lead	mg/L	0.025	0.0075 J	ND	0.003
Mercury	mg/L	0.0007	ND	ND	0.00012
Nickel	mg/L	0.1	0.0083 J	0.011	0.0013
Selenium	mg/L	0.01	ND	ND	0.0087
Silver	mg/L	0.05	ND	ND	0.0017
Thallium	mg/L		ND	ND	0.01
Zinc	mg/L		0.022 B	0.037	0.0015
1,1,1-Trichloroethane	ug/L	5	ND	ND	0.39
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	0.26
1,1,2-Trichloroethane	ug/L	1	ND	ND	0.48
1.1-Dichloroethane	ug/L	5	ND	ND	0.59
1.1-Dichloroethene	ug/L	5	ND	ND	0.85
1,2-Dichlorobenzene	ug/L	3	ND	ND	0.44
1.2-Dichloroethane	ug/L	0.6	ND	ND	0.6
1,2-Dichloroethene, Total	ug/L	5	13.1	ND	3.2
1,2-Dichloropropane	ug/L	5	ND	ND	0.61
1.3-Dichlorobenzene	ug/L	3	ND	ND	0.54
1,4-Dichlorobenzene	ug/L	3	ND	ND	0.51
2-Chloroethyl vinyl ether	ug/L		ND	ND	1.9
Acrolein	ug/L	5	ND	ND	17
Acrylonitrile	ug/L	5	ND	ND	1.9
Benzene	ug/L	1	ND	ND	0.6
Bromoform	ug/L		ND	ND	0.47
Bromomethane	ug/L	5	ND	ND	1.2
Carbon tetrachloride	ug/L	5	ND	ND	0.51
Chlorobenzene	ug/L	5	ND	ND	0.48
Chlorodibromomethane	ug/L		ND	ND	0.41
Chloroethane	ug/L	5	ND	ND	0.87
Chloroform	ug/L	7	ND	ND	0.54
Chloromethane	ug/L	5	ND	ND	0.64
cis-1,3-Dichloropropene	ug/L		ND	ND	0.33
Dichlorobromomethane	ug/L	444	ND	ND	0.54
Ethylbenzene	ug/L	5	ND	ND	0.46
Methylene Chloride	ug/L	5	ND	ND	0.81
Tetrachloroethene	ug/L	5	ND	ND	0.34
Toluene	ug/L	5	5.2 J	ND	0.45
trans-1,2-Dichloroethene	ug/L	5	ND	ND	0.59
trans-1,3-Dichloropropene	ug/L		ND	ND	0.44
Trichloroethene	ug/L	5	ND	ND	0.6
Vinyl chloride	ug/L	2	43	6.41	0.75
Total Dissolved Solids	mg/L		717	723	4

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards -- no standard -- Concentration exceeds standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 1c. Surface Water Sampling Results SW-3

Town of Dewitt Landfill 2014

			6/6/2014	9/25/2014	12/5/2014	
Analyte	Unit	SCG*				Detection
			SW-3	SW-3	SW-3	Limit
Antimony	mg/L	0.003	ND	ND	ND	0.0068
Arsenic	mg/L	0.025	ND	0.0063 J	ND	0.0056
Beryllium	mg/L		0.00035 J	ND	ND	0.0003
Cadmium	mg/L	0.005	ND	ND	ND	0.0005
Chromium	mg/L	0.05	0.0032 J	0.0019 J	ND	0.001
Copper	mg/L	0.2	0.0035 J	0.0029 J B	0.0034 J	0.0016
Lead	mg/L	0.025	0.0043 J	ND	ND	0.003
Mercury	mg/L	0.0007	ND	ND	ND	0.00012
Nickel	mg/L	0.1	0.0053 J	0.0019 J	0.0035 J	0.0013
Selenium	mg/L	0.01	ND	ND	ND	0.0087
Silver	mg/L	0.05	ND	ND	ND	0.0017
Thallium	mg/L	water	ND	ND	ND	0.01
Zinc	mg/L		0.012 B	0.0068 J B	0.013	0.0015
1,1,1-Trichloroethane	ug/L	5	ND	ND	ND	0.39
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	0.26
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	0.48
1,1-Dichloroethane	ug/L	5	ND	ND	ND	0.59
1,1-Dichloroethene	ug/L	5	ND	ND	ND	0.85
1,2-Dichlorobenzene	ug/L	3	ND	ND	ND	0.44
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	0.6
1,2-Dichloroethene, Total	ug/L	5	ND	ND	ND	3.2
1,2-Dichloropropane	ug/L	5	ND	ND	ND	0.61
1,3-Dichlorobenzene	ug/L	3	ND	ND	ND	0.54
1,4-Dichlorobenzene	ug/L	3	ND	ND	ND	0.51
2-Chloroethyl vinyl ether	ug/L		ND	ND	ND	1.9
Acrolein	ug/L	5	ND	ND	ND	17
Acrylonitrile	ug/L	5	ND	ND	ND	1.9
Benzene	ug/L	1	ND	ND	ND	0.6
Bromoform	ug/L	-	ND	ND	ND	0.47
Bromomethane	ug/L	5	ND	ND	ND	1.2
Carbon tetrachloride	ug/L	5	ND	ND	ND	0.51
Chlorobenzene	ug/L	5	ND	ND	ND	0.48
Chlorodibromomethane	ug/L		ND	ND	ND	0.41
Chloroethane	ug/L	5	ND	ND	ND	0.87
Chloroform	ug/L	7	ND	ND	ND	0.54
Chloromethane	ug/L	5	ND	ND	ND	0.64
cis-1,3-Dichloropropene	ug/L		ND	ND	ND	0.33
Dichlorobromomethane	ug/L		ND	ND	ND	0.54
Ethylbenzene	ug/L	5	ND	ND	ND	0.46
Methylene Chloride	ug/L	5	ND	ND	ND	0.81
Tetrachloroethene	ug/L	5	ND	ND	ND	0.34
Toluene	ug/L	5	ND	5.1	ND	0.45
trans-1,2-Dichloroethene	ug/L	5	ND	ND	ND	0.59
trans-1,3-Dichloropropene	ug/L		ND	ND	ND	0.44
Trichloroethene	ug/L	5	ND	ND	ND	0.6
Vinyl chloride	ug/L	2	ND	ND	ND	0.75
Total Dissolved Solids	mg/L		617	680	621	4

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance --- no standard - Concentration exceeds standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 2a. Groundwater Sampling Results Shallow Monitoring Wells

Town of Dewitt Landfill June 2014

Analyte	Unit	scg*	6/9/2014	6/9/2014	6/6/2014	6/9/2014	6/13/2014	6/5/2014	6/9/2014	6/6/2014	6/6/2014	6/9/2014	6/9/2014
			MW-1S	MW-2S	MW-3S	MW-4S	MW-5S	MW-6S	MW-7S	MW-85	MW-9S	MW-10S	MW-125
Antimony	mg/L	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0069 J	ND
Arsenic	mg/L	0.025	ND	ND	ND	0.0060 J	ND	ND	ND	0.0094 J	0.035	ND	ND
Beryllium	mg/L		0.0015 J	0.00065 J	0.0014 J	ND	ND	ND	0.00051 J	ND	ND	ND	ND
Cadmium	mg/L	0.005	ND	ND	ND	ND	ND	0.0013 J	ND	ND	0.00061	ND	ND
Chromium	mg/L	0.05	0.047	0.046	0.011	0.006	ND	0.011	0.039	0.0011	0.0069	0.7	ND
Copper	mg/L	0.2	ND	ND	ND	0.0061 J	ND	0.0025 J	ND	ND	0.014	ND	ND
Lead	mg/L	0.025	0.032	0.017	0.025	0.0043 J	ND	0.012	0.017	ND	0.0064 J	0.011	ND
Mercury	mg/L	0.0007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	mg/L	0.1	0.0030 J	0.0050 J	0.0042 J	0.0064 J	0.0015 J	0.0061 J	0.0019 J	ND	0.015	0.0088 J	ND
Selenium	mg/L	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	mg/L	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	mg/L	***	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	mg/L		0.0095 J B	0.012 B	0.0070 J B	0.019 B	0.0023 J	0.030 B	0.0074 J B	ND	0.064 B	0.037 B	0.016 B
1,1,1-Trichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	ug/L		ND	ND	ND	44	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	ug/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ug/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ug/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ug/L	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ug/L	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorobromomethane	ug/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1.2-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ug/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	ug/L	2	ND	ND	ND	3.3 /	ND	ND	ND	55	ND	ND	ND
Total Dissolved Solids	mg/L		1360	1610	2570	2770	2700	1430	1510	1060	1140	1310	1430

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Umitations (PDF), June 2004

⁻⁻⁻ no standard --- Concentration exceeds Standard J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 2b. Groundwater Sampling Results Deep Monitoring Wells Town of Dewitt Landfill

June 2014

Analyte	Unit	SCG*	6/9/2014	6/9/2014	6/13/2014	6/6/2014	6/6/2014	6/6/2014	6/13/2014
, many so		500	MW-2D	MW-4D	MW-5D	MW-8D	MW-9D	MW-9M	MW-11D
Antimony	mg/L	0.003	ND	ND	ND	ND	ND	ND	ND
Arsenic	mg/L	0.025	ND	0.025	ND	0.019	0.045 J	0.038	ND
Beryllium	mg/L		ND	ND	ND	ND	ND	ND	ND
Cadmium	mg/L	0.005	ND	ND	ND	ND	0.0036 J	ND	ND
Chromium	mg/L	0.05	ND	0.01	0.0014 J	0.0021 J	2,5	0.0012 J	0.012 B
Copper	mg/L	0.2	0.0017 J	0.014	ND	ND	0.029 J	ND	0.16
Lead	mg/L	0.025	ND	0.0067 J	ND	0.0036 J	ND	0.0030 J	ND
Mercury	mg/L	0.0007	ND	ND	ND	ND	ND	ND	ND
Nickel	mg/L	0.1	ND	0.053	ND	0.0020 J	1.6	0.012	0.039
Selenium	mg/L	0.01	ND	ND	ND	0.0095 J	0.049 J	ND	ND
Silver	mg/L	0.05	ND	0.0017 J	ND	ND	ND	ND	ND
Thallium	mg/L		ND	ND	ND	ND	ND	ND	ND
Zinc	mg/L		0.0016 J B	0.13 B	0.0026 J	0.0076 J B	0.085 B	0.0037 J B	0.0064 J B
1,1,1-Trichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	ug/L		ND	70	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	ug/L		ND	ND	ND	ND	ND	ND	ND
Acrolein	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/L	1	ND	ND	ND	ND	ND	ND	ND
Bromoform	ug/L		ND	ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ug/L		ND	ND	ND	ND	ND	ND	ND
Chloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Chloroform	ug/L	7	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ug/L		ND	ND	ND	ND	ND	ND	ND
Dichlorobromomethane	ug/L		ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ug/L		ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ug/L	5	ND	16	ND	ND	ND	ND	ND
Vinyl chloride	ug/L	2	ND	2.3 J	ND	ND	ND	76	ND
Total Dissolved Solids	mg/L		2270	3050	3260	2120	245000	1250	1040

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 2004

⁻⁻⁻ no standard -- Concentration exceeds Standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 3. Gas Vent Sampling Results Town of Dewitt Landfill

December 5, 2014

Analyte	Unit	Stand	lard*	Sample ID			
•		SGC ¹	AGC ²	V-10	V-11	V-12	
1,1,1-Trichloroethane	ppb v/v	3,000	0.13	ND	ND	ND	
,1,2,2-Tetrachloroethane	ug/m3	-	16	ND	ND	ND	
1,1,2-Trichloroethane	ppb v/v		1.4	ND ND	ND ND	ND ND	
I,1-Dichloroethane	ppb v/v	***	1.4	ND	ND	ND	
1,2,4-Trichlorobenzene	ug/m3	***	1.4	ND	ND	ND	
I,2,4-Trimethylbenzene	ppb v/v		290	ND	ND	ND	
L,2-Dibromoethane	ppb v/v		0.0017	ND	ND	ND	
1,2-Dichlorobenzene	ppb v/v	30,000	360	ND	ND	ND	
1,2-Dichloroethane	ug/m3	30,000	360	ND	ND	ND	
L,2-Dichloroethene, Total	ppb v/v		63	ND	ND	ND	
1,2-Dichloropropane	ug/m3	30,000	360	ND	ND	ND	
1,2-Dichlorotetrafluoroethane	ppb v/v	***	17000	ND	38	ND	
1,3,5-Trimethylbenzene	ug/m3		290	ND	180	ND	
1,3-Butadiene	ppb v/v		290	ND	ND	ND	
1,3-Dichlorobenzene	ppb v/v	30,000	360	ND	ND	ND	
1,4-Dichlorobenzene	ppb v/v	***	0.09	ND	ND	ND	
L,4-Dioxane	ug/m3		0.09	ND	ND	ND	
2,2,4-Trimethylpentane	ppb v/v	***	3,300	290	370	350	
2-Chlorotoluene	ppb v/v		620	ND	ND	ND	
3-Chloropropene	ug/m3		0.25	ND	ND	ND	
1-Ethyltoluene	ppb v/v		***	ND	ND	ND	
1-isopropyltoluene	ug/m3		***	ND	ND	ND	
Acetone	ppb v/v	180,000	28,000	ND	ND	ND	
Benzene	ug/m3	1300	0.13	ND	44	47 ND	
Benzyl chloride Bromodichloromethane	ppb v/v ug/m3	1,300	0.13	ND ND	ND ND	ND ND	
Bromoethene(Vinyl Bromide)	ppb v/v	240	0.02 3.00	ND	ND	ND	
Bromoform	ppb v/v	***	0.91	ND	ND	ND	
Bromomethane	ug/m3	3,900	5	ND	ND	ND	
Carbon disulfide	ppb v/v	6,200	700	ND	ND	ND	
Carbon tetrachloride	ug/m3	1,900	0.067	ND	ND	ND	
Chlorobenzene	ppb v/v		110	ND	ND	ND	
Chloroethane	ug/m3		10,000	ND	ND	250	
Chloroform	ppb v/v	150	0.043	ND	ND	ND	
Chloromethane	ug/m3	22,000	90	ND	ND	ND	
is-1,2-Dichloroethene	ppb v/v		63	ND	ND	ND	
cis-1,3-Dichloropropene	ug/m3	200	0.25	ND	ND	ND	
Cumene	ppb v/v	100	400	ND	ND	ND	
Cyclohexane	ug/m3		6,000	880	940	1200	
Dibromochloromethane	ppb v/v	14,000	2.1	ND	ND	ND	
Dichlorodifluoromethane	ug/m3		12,000	530	ND	380	
Ethylbenzene	ppb v/v	54,000	1,000	92	160	67	
Freon 22	ppb v/v			2200	6000	7000	
Freon TF	ppb v/v		0.045	ND ND	ND ND	ND ND	
Hexachlorobutadiene	ug/m3	00.000	0.045	ND	ND	ND	
sopropyl alcohol	ppb v/v ug/m3	98,000	7,000	ND	ND	ND	
m,p-Xylene Methyl Butyl Ketone (2-Hexanone)	ppb v/v	4,000	48	ND	ND ND	ND	
Methyl Ethyl Ketone	ppb v/v	13,000	5,000	ND	ND	ND	
methyl isobutyl ketone	ppb v/v	31,000	3,000	ND	ND	ND	
Methyl methacrylate	ug/m3	41,000	700	ND	ND	ND	
Methyl tert-butyl ether	ppb v/v		3,000	ND	ND	ND	
Methylene Chloride	ppb v/v	14,000	2.1	ND	ND	ND	
Naphthalene	ug/m3	7,900	3	ND	ND	ND	
n-Butane	ppb v/v	238,000	-	3800	9600	9300	
n-Butylbenzene	ppb v/v	000		ND	ND	ND	
n-Heptane	ug/m3	21000	3,900	1500	1700	1600	
n-Hexane	ppb v/v	P.4000	700	960	1200	1200	
n-Propylbenzene	ug/m3	54000	1000	ND	ND	ND	
sec-Butylbenzene	ppb v/v	17.000	1,000	ND ND	ND ND	ND ND	
Styrene tert-Butyl alcohol	ug/m3 ppb v/v	17,000	720	ND	ND	ND	
tert-Butyl alconol	ug/m3		720	ND	ND	ND	
Tetrachloroethene	ppb v/v	1,000	1	ND	ND	ND	
Tetrachioroethene	ug/m3	30,000	350	ND	ND	ND	
Toluene	ppb v/v	37,000	5,000	ND	ND	ND	
trans-1,2-Dichloroethene	ppb v/v	37,000	63	ND	ND	ND	
trans-1,3-Dichloropropene	ppb v/v		0.250	ND	ND	ND	
Trichloroethene	ppb v/v		0.25	ND	ND	ND	
Trichlorofluoromethane	ug/m3	9000	5000	540	87	170	
/inyl chloride	ppb v/v	180,000	0.11	87	ND	91	
	ug/m3	22000	100	ND	ND	ND	
(ylene (total)	U2/m3						

^{*} New York State Department of Environmental Conservation Division of Air resources (DAR-1) Guidelines for the Control of Toxic Ambient Air Contaminants, 1997.

²AGC - Annual Guideline Concentration

¹SGC - Short-term Guideline Concentration

Appendix A Photographic Log

Figure 1 Landfill Gate - Fisher Road

Figure 2 Perimeter Road, South side of landfill, viewing east.

Figure 3 Perimeter Road, west of main gate, viewing SW.

Figure 4 Perimeter Road and Fence - Erie Canal Border

Figure 5 East landfill side slope viewing SSE.

Figure 6 Drainage ditch on side slope.

Figure 7 Gas vents, viewing NW from perimeter road (electrical transmission line towers in background)

Figure 8 Gas vent.

Appendix B Laboratory Reports

- June 2014 Surface water and ground water sampling Test America Analytical Report Job 480-61456-1.
- September 2014 Surface water sampling Test America Analytical Report Job 480-068087-1
- December 2014 Surface water sampling Test America Analytical Report Job 480-72583-1
- December 2014 Gas vent field data measurements
- December 2014 Gas vent sampling Test America Analytical Report Job 200-25814-1

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-61456-1 Client Project/Site: Town of Dewitt

For:

Town of Manlius 301 Brooklea Drive Fayetteville, New York 13066

Attn: Douglas Miller

Authorized for release by: 8/20/2014 11:53:48 AM

Fin Shoffen

Lisa Shaffer, Project Manager II (716)504-9816

lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	12
	56
QC Sample Results	57
	72
Lab Chronicle	80
Certification Summary	88
Method Summary	89
Sample Summary	90
Chain of Custody	91
Field Data Sheets	94
Receipt Checklists	115

	5		ı
9			ř
			ú
	F		

Definitions/Glossary

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Qualifiers GC/MS VOA

	- 1	

Qualifier	Qualifier Description
J	Result is less than the

e RL but greater than or equal to the MDL and the concentration is an approximate value.

ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

Metals		
Qualifier	Qualifier Description	
8	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
F1	MS and/or MSD Recovery exceeds the control limits	•
F2	MS/MSD RPD exceeds control limits	

Glossary

Appreviation	inese commonly used appreviations may or may not be present in this report.								
D	Listed under the "D" column to designate that the result is reported on a dry weight basis								
%R	Percent Recovery								

CFL Contains Free Liquid CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision level concentration MDA Minimum detectable activity

EDL **Estimated Detection Limit** MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin) **Not Calculated**

ND Not detected at the reporting limit (or MDL or EDL if shown)

Practical Quantitation Limit PQL **Quality Control** QC

RER Relative error ratio RL

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin) TEQ

Case Narrative

Client: Town of Manlius
Project/Site: Town of Dewitt

TestAmerica Job ID: 480-61456-1

Job ID: 480-61456-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-61456-1

Comments

No additional comments.

Receipt

The samples were received on 6/7/2014 1:30 AM, 6/10/2014 1:30 AM and 6/14/2014 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.2° C, 2.8° C and 3.7° C.

GC/MS VOA

Method(s) 624: The following volatiles sample(s) was diluted due to foaming at the time of purging during the original sample analysis: MW-9D (480-61456-5), SW-2 (480-61456-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The method blank for batch 187846 contained zinc above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 6010C: The low level continuing calibration verification (CCVL 480-188622/17) recovered above the upper control limit for total beryllium. The sample(s) (LCS 480-187903/2-A), (MB 480-187903/1-A) associated with this CCVL were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

Method(s) 6010C: The method blank for batch 187899 contained total zinc and chromium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 6010C: The recovery of Post Spike, (480-61456-5 PDS), associated with batch 190805, exhibited results outside quality control limits for cadmium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary.

Method(s) 6010C: The method blank for batch 187899 contained dissolved chromium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples MW-9D (480-61456-5) was not performed.

Method(s) 6010C: Due to sample matrix effect on the internal standard (ISTD - yttrium), a dilution was required for the following sample(s): (480-61456-5 MS), (480-61456-5 MSD), (480-61456-5 PDS), (480-61456-5 SD), MW-9D (480-61456-5).

Method(s) 6010C: The Method Blank for batch 190965 contained dissolved chromium, and nickel above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples MW-11D (480-61930-3) was not performed.

Method(s) 7470A: Due to interference with the sample matrix, the standard mercury preparation procedure was inadequate for the following sample: MW-9D (480-61456-5). This was demonstrated when the potassium permanganate reagent was added and the characteristic purple color faded rapidly. This loss of color indicates oxidizing conditions were not maintained. The samplewas prepared and analyzed at a 10x dilution, which maintained the purple color during digestion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample(s) deviated from the standard procedure: MW-3S (480-61456-9), MW-6S (480-61456-1), MW-8D (480-61456-2), MW-9D (480-61456-5), MW-9M (480-61456-6), MW-9S (480-61456-7), SW-1 (480-61456-8). The reporting limits (RLs) have been adjusted proportionately.

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample(s) deviated from the standard procedure:

8

В

4

5

6 --

8

0

E

13

15

Case Narrative

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Job ID: 480-61456-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

MW-10S (480-61536-8), MW-12S (480-61536-6), MW-1S (480-61536-3), MW-2D (480-61536-4), MW-2S (480-61536-5), MW-4D (480-61536-2), MW-4S (480-61536-1), MW-7S (480-61536-7). The reporting limits (RLs) have been adjusted proportionately.

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample(s) deviated from the standard procedure: MW-11D (480-61930-3), MW-5D (480-61930-1), MW-5S (480-61930-2). The reporting limits (RLs) have been adjusted proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-6S

Lab Sample ID: 480-61456-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Areenic	0,015		0.015	0.0056		1	_	6010C	Total/NA
Cadmium	0.0023		0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.011		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.018		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.012		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.014		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.064	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Cadmium	0.0013	J	0.0020	0.00050	mg/L	1		6010C	Dissolved
Chromium	0.0023	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0025	J	0.010	0.0016	mg/L	1		6010C	Dissolved
Nickel	0.0061	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.030	В	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1430		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-8D

Lab Sample ID: 480-61456-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0,019		0.015	0.0056	mg/L	1	_	6010C	Total/NA
Chromium	0.0021	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Lead	0.0036	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.0020	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Selenium	0.0095	J	0.025	0.0087	mg/L	1		6010C	Total/NA
Zinc	0.0076	JB	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	2120		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-8S

Lab Sample ID: 480-61456-3

Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
55		5.0	0.75	ug/L	1	_	624	Total/NA
0.0094	J	0.015	0.0056	mg/L	1		6010C	Total/NA
0.0011	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
1060		10.0	4.0	mg/L	1		SM 2540C	Total/NA
	55 0.0094 0.0011	0.0094 J 0.0011 J	55 5.0 0.0094 J 0.015 0.0011 J 0.0040	55 5.0 0.75 0.0094 J 0.015 0.0056 0.0011 J 0.0040 0.0010	55 5.0 0.75 ug/L 0.0094 J 0.015 0.0056 mg/L 0.0011 J 0.0040 0.0010 mg/L	55 5.0 0.75 ug/L 1 0.0094 J 0.015 0.0056 mg/L 1 0.0011 J 0.0040 0.0010 mg/L 1	55 5.0 0.75 ug/L 1 0.0094 J 0.015 0.0056 mg/L 1 0.0011 J 0.0040 0.0010 mg/L 1	55 5.0 0.75 ug/L 1 624 0.0094 J 0.015 0.0056 mg/L 1 6010C 0.0011 J 0.0040 0.0010 mg/L 1 6010C

Client Sample ID: SW-3

Lab Sample ID: 480-61456-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00035	J	0.0020	0.00030	mg/L	1	_	6010C	Total/NA
Chromium	0.0032	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0035	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0043	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.0053	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.012	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	617		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-9D

Lab Sample ID: 480-61456-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.020		0.015	0.0056	mg/L	1		6010C	Total/NA
Cadmium	0.0013	J	0.0020	0.00050	mg/L	1		601 0 C	Total/NA
Chromium	2.5		0.0040	0.0010	mg/L	1		601 0 C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-6

Lab Sample ID: 480-61456-7

Lab Sample ID: 480-61456-8

Lab Sample ID: 480-61456-9

Lab Sample ID: 480-61456-5

Client	Sample	ID:	MW-9D	(Continued)
--------	--------	-----	-------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.12		0.010	0.0016	mg/L		_	6010C	Total/NA
Lead	0.0052	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	1.6		0.010	0.0013	mg/L	1		6010C	Total/NA
Selenium	0.031		0.025	0.0087	mg/L	1		6010C	Total/NA
Zinc	0.085	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Arsenic	0.045	J	0.075	0.028	mg/L	5		6010C	Dissolved
Cadmium	0.0036	J	0.010	0.0025	mg/L	5		6010C	Dissolved
Chromium	0.0070	JB	0.020	0.0050	mg/L	5		6010C	Dissolved
Соррег	0.029	J	0.050	0.0080	mg/L	5		6010C	Dissolved
Nickel	0.29		0.10	0.013	mg/L	10		6010C	Dissolved
Selenium	0.049	J	0.13	0.044	mg/L	5		6010C	Dissolved
Total Dissolved Solids	245000		2000	800	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-9M

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	76		5.0	0.75	ug/L	1	_	624	Total/NA
Arsenic	0.038		0.015	0.0056	mg/L	1		6010C	Total/NA
Chromium	0.0012	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Lead	0.0030	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.012		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0037	JB	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1250		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-9S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.035		0.015	0.0056	mg/L	1	_	6010C	Total/NA
Cadmium	0.00061	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.0069		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.014		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0064	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.015		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.064	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1140		20.0	8.0	mg/L	1	,	SM 2540C	Total/NA

Client Sample ID: SW-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0021	J	0.0040	0.0010	mg/L	1	_	8010C	Total/NA
Copper	0.0031	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Nickel	0.0044	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.013	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1410		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-3S

glavian .									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.079		0,015	0.0056	mg/L	1		6010C	Total/NA
Beryllium	0.0014	J	0.0020	0.00030	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Town of Manlius Project/Site: Town of Dewitt

Client Sample ID: SW-2

TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-3S (Continued)

Lab Sample ID: 480-61456-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.00052	J	0.0020	0.00050	mg/L	1	_	8010C	Total/NA
Chromium	0.011		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.012		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.025		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.015		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.064	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0022	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0042	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Selenium	0.013	J	0.025	0.0087	mg/L	1		6010C	Dissolved
Zinc	0,0070	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	2570		40.0	16.0	mg/L	1		SM 2540C	Total/NA

Lab Sample ID: 480-61456-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	13	J	40	13	ug/L	4	_	624	Total/NA
Toluene	5.2	J	20	1.8	ug/L	4		624	Total/NA
Vinyl chloride	43		20	3.0	ug/L	4		624	Total/NA
Arsenic	0.015		0.015	0.0056	mg/L	1		6010C	Total/NA
Cadmium	0.00073	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.0056		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0049	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0075	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.0083	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.022	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	717		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: Trip Blank

Lab Sample ID: 480-61456-11

No Detections.

Client Sample ID: MW-4S

Lab	Sam	ple	ID:	480	-61	536-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	44		10	3.2	ug/L	1	_	624	Total/NA
Vinyl chloride	3.3	J	5.0	0.75	ug/L	1		624	Total/NA
Arsenic	0.0060	J	0.015	0.0056	mg/L	1		6010C	Total/NA
Chromium	0.0060		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0061	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0043	J	0.010	0.0030	mg/L	1		8010C	Total/NA
Nickel	0.0064	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.019	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	2770		20.0	8.0	mg/L	1		SM 2540C	Total/NA
					-				

Client Sample ID: MW-4D

Lab Sample ID: 480-61536-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	70		10	3.2	ug/L	1	_	624	Total/NA
Trichloroethene	16		5.0	0.60	ug/L	1		624	Total/NA
Vinyl chloride	2.3	J	5.0	0.75	ug/L	1		624	Total/NA
Arsenic	0.025		0.015	0.0056	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

KI

Client Sample ID: MW-4D (Continued)

Lab Sample ID: 480-61536-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.010		0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Copper	0.014		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0067	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.053		0.010	0.0013	mg/L	1		6010C	Total/NA
Silver	0.0017	J	0.0060	0.0017	mg/L	1		6010C	Total/NA
Zinc	0.13	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	3050		40.0	16.0	mg/L	1		SM 2540C	Total/NA

5

Client Sample ID: MW-1S

Lab Sample ID: 480-61536-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0,015		0.015	0.0058	mg/L	1	_	6010C	Total/NA
Beryllium	0.0015	J	0.0020	0.00030	mg/L	1		6010C	Total/NA
Cadmium	0.00057	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.047		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.083		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.032		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.061		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.13	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0022	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0030	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Selenium	0.0094	J	0.025	0.0087	mg/L	1		6010C	Dissolved
Zinc	0.0095	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1360		20.0	8.0	mg/L	1		SM 2540C	Total/NA

13

Client Sample ID: MW-2D

Client Sample ID: MW-2S

Client Sample ID: MW-12S

Lab Sample ID: 480-61536-4

								3.4.3	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.0017	J	0,010	0.0016	mg/L	1	_	6010C	Total/NA
Zinc	0.0016	JB	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	2270		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Lab Sample ID: 480-61536-5

mone odmpto tot mit do									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Arsenic	0.0083	J	0.015	0.0056	mg/L	1	60	10C	Total/NA
Beryllium	0.00065	J	0.0020	0.00030	mg/L	1	60	10C	Total/NA
Chromium	0.046		0.0040	0.0010	mg/L	1	60	10C	Total/NA
Copper	0.022		0.010	0.0016	mg/L	1	60	10C	Total/NA
Lead	0.017		0.010	0.0030	mg/L	1	60	10C	Total/NA
Nickel	0.039		0.010	0.0013	mg/L	1	60	10C	Total/NA
Zinc	0.10	В	0.010	0.0015	mg/L	1	60	10C	Total/NA
Chromium	0.0021	JB	0.0040	0.0010	mg/L	1	60	10C	Dissolved
Nickel	0.0050	J	0.010	0.0013	mg/L	1	60	10C	Dissolved
Zinc	0.012	8	0.010	0.0015	mg/L	1	60	10C	Dissolved
Total Dissolved Solids	1610		20.0	8.0	mg/L	1	SA	A 2540C	Total/NA

Lab Sample ID: 480-61536-6

This Detection Summary does not include radiochemical test results.

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-7

Lab Sample ID: 480-61536-8

Lab Sample ID: 480-61536-9

Lab Sample ID: 480-61930-1

Lab Sample ID: 480-61930-2

Lab Sample ID: 480-61536-6

	-			
Client	Sample	ID:	MW-12S	(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.0017	J	0.010	0,0016	mg/L	1	_	6010C	Total/NA
Zinc	0.016	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0021	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Zinc	0.0077	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1430		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-7S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0080	J	0.015	0.0056	mg/L	1	_	6010C	Total/NA
Beryllium	0.00051	J	0.0020	0.00030	mg/L	1		6010C	Total/NA
Chromium	0.039		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.035		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.017		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.021		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.061	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0018	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0019	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0074	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1510		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-10S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.0069	J	0.020	0.0068	mg/L	1		6010C	Total/NA
Chromium	0.70		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.032		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.011		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.050		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.30	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0033	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0088	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.037	В	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1310		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: Trip Blank

No	Detections

Client	Sample	ID:	MW-5D
OHOUL	Vallipit	<i>,</i> , , , , , , , , , , , , , , , , , ,	IAIAA -OD

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0014	J	0.0040	0.0010	mg/L	1		601DC	Total/NA
Zinc	0.0026	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	3260		40.0	16.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-5S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	0.0015	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0023	J	0.010	0.0015	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Town of Manlius Project/Site: Town of Dewitt

Client Sample ID: MW-11D

TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-5S (Continued)

Lab Sample ID: 480-61930-2

-	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Total Dissolved Solids	2700		20.0	8.0	mg/L	1	_	SM 2540C	Total/NA

Lab Sample ID: 480-61930-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.10		0.020	0.0068	mg/L	1		6010C	Total/NA
Arsenic	0.040		0.015	0.0056	mg/L	1		6010C	Total/NA
Beryllium	0.0023		0.0020	0.00030	mg/L	1		6010C	Total/NA
Chromium	9.0	•	0.0040	0.0010	mg/L	1		6010C	Total/NA
Соррег	0.16		0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.074		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	1.3	•	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.24		0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.012	В	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0037	JB^	0.010	0.0016	mg/L	1		6010C	Dissolved
Nickel	0.039		0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0064	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1040		20.0	8.0	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

8/20/2014

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-1

Matrix: Water

Client Sample ID: MW-6S

Date Collected: 06/05/14 15:07 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/14/14 23:15	1
1,1,2,2-Tetrachioroethane	ND		5.0	0.26	ug/L			06/14/14 23:15	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/14/14 23:15	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/14/14 23:15	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/14/14 23:15	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/14/14 23:15	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/14/14 23:15	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/14/14 23:15	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/14/14 23:15	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/14/14 23:15	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/14/14 23:15	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/14/14 23:15	1
Acrolein	ND		100	17	ug/L			06/14/14 23:15	1
Acrylonitrile	ND		50	1.9	ug/L			06/14/14 23:15	1
Benzene	ND		5.0	0.60	ug/L			06/14/14 23:15	1
Bromoform	ND		5.0	0.47	ug/L			06/14/14 23:15	1
Bromomethane	ND		5.0	1.2	ug/L			06/14/14 23:15	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/14/14 23:15	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/14/14 23:15	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/14/14 23:15	1
Chloroethane	ND		5.0	0.87	ug/L			06/14/14 23:15	1
Chloroform	ND		5.0	0.54	ug/L			06/14/14 23:15	1
Chloromethane	ND		5.0	0.64	ug/L			06/14/14 23:15	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/14/14 23:15	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/14/14 23:15	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/14/14 23:15	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/14/14 23:15	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/14/14 23:15	1
Toluene	ND		5.0	0.45	ug/L			06/14/14 23:15	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/14/14 23:15	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/14/14 23:15	1
Trichloroethene	ND		5.0	0.60	ug/L			06/14/14 23:15	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/14/14 23:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	-	72 - 130					06/14/14 23:15	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/14/14 23:15	1
Toluene-d8 (Surr)	102		70 - 123					06/14/14 23:15	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:07	1
Arsenic	0.015		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:07	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:07	1
Cadmium	0.0023		0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:07	1
Chromium	0.011		0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:07	1
Copper	0.018		0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:23	1
Lead	0.012		0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:07	1
Nickel	0.014		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:07	1
Selenium	ND		0.025	0.0067	mg/L		06/10/14 15:30	06/13/14 13:07	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-6S

Lab Sample ID: 480-61456-1

Date Collected: 06/05/14 15:07 Date Received: 06/07/14 01:30 Matrix: Water

Method: 6010C - Metals (ICP) (Cont Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:23	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:07	1
Zinc	0.064	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:07	1
Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 16:15	•
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 16:15	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 16:15	1
Cadmium	0.0013	J	0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 16:15	•
Chromium	0.0023	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 16:15	•
Copper	0.0025	J	0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 16:15	
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 16:15	
Nickel	0.0061	J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 16:15	
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 16:15	
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 16:15	
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 16:15	
Zinc	0.030	В	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 16:15	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 14:52	
Method: 7470A - Mercury (CVAA) -									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/18/14 10:40	06/18/14 14:16	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	1430		20.0	8.0	mg/L			06/09/14 22:53	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-2

Matrix: Water

Client Sample ID: MW-8D Date Collected: 06/06/14 11:45

Date Received: 06/07/14 01:30

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/14/14 23:38	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/14/14 23:38	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/14/14 23:38	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/14/14 23:38	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/14/14 23:38	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/14/14 23:38	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/14/14 23:38	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/14/14 23:38	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/14/14 23:38	1
1,3-Dichlorobenzene	ND		5,0	0.54	ug/L			06/14/14 23:38	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/14/14 23:38	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/14/14 23:38	1
Acrolein	ND		100	17	ug/L			06/14/14 23:38	1
Acrylonitrile	ND		50	1.9	ug/L			06/14/14 23:38	1
Benzene	ND		5.0	0.60	ug/L			06/14/14 23:38	1
Bromoform	ND		5.0	0.47	ug/L			06/14/14 23:38	1
Bromomethane	ND		5.0	1.2	ug/L			06/14/14 23:38	1
Carbon tetrachloride	ND		5.0	0,51	ug/L			06/14/14 23:38	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/14/14 23:38	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/14/14 23:38	1
Chloroethane	ND		5.0	0.87	ug/L			06/14/14 23:38	1
Chloroform	ND		5.0	0.54	ug/L			06/14/14 23:38	1
Chloromethane	ND		5.0	0.64	ug/L			06/14/14 23:38	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/14/14 23:38	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/14/14 23:38	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/14/14 23:38	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/14/14 23:38	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/14/14 23:38	1
Toluene	ND		5.0	0.45	ug/L			06/14/14 23:38	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/14/14 23:38	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/14/14 23:38	1
Trichloroethene	ND		5.0	0.60	ug/L			06/14/14 23:38	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/14/14 23:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		72 - 130			-		06/14/14 23:38	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/14/14 23:38	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:10	1
Arsenic	0.019		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:10	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:10	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:10	1
Chromium	0.0021	J	0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:10	1
Copper	ND		0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:36	1
Lead	0.0036	J	0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:10	1
Nickel	0.0020	J	0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:10	1
Selenium	0.0095	J	0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:10	1

70 - 123

100

TestAmerica Buffalo

06/14/14 23:38

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-2

Matrix: Water

Client Sample ID: MW-8D

Date Collected: 06/06/14 11:45 Date Received: 06/07/14 01:30

Method: 6010C - Metals (ICP) (Contin	ued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:36	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:10	1
Zinc	0.0076	JB	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:10	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 14:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2120		20.0	8.0	ma/L			06/09/14 22:55	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-3

Matrix: Water

Client Sample ID: MW-8S

Date Collected: 06/06/14 12:00 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/15/14 00:02	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/15/14 00:02	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/15/14 00:02	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/15/14 00:02	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/15/14 00:02	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/15/14 00:02	1
1,2-Dichloroethane	ND		5,0	0.60	ug/L			06/15/14 00:02	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/15/14 00:02	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/15/14 00:02	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/15/14 00:02	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/15/14 00:02	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/15/14 00:02	1
Acrolein	ND		100	17	ug/L			06/15/14 00:02	1
Acrylonitrile	ND		50	1.9	ug/L			06/15/14 00:02	1
Benzene	ND		5.0	0.60	ug/L			06/15/14 00:02	1
Bromoform	ND		5.0	0.47	ug/L			06/15/14 00:02	1
Bromomethane	ND		5.0	1.2	ug/L			06/15/14 00:02	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/15/14 00:02	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/15/14 00:02	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/15/14 00:02	1
Chloroethane	ND		5.0	0.87	ug/L			06/15/14 00:02	1
Chloroform	ND		5.0	0.54	ug/L			06/15/14 00:02	1
Chloromethane	ND		5.0	0.64	ug/L			06/15/14 00:02	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/15/14 00:02	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/15/14 00:02	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/15/14 00:02	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/15/14 00:02	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/15/14 00:02	1
Toluene	ND		5.0	0.45	ug/L			06/15/14 00:02	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/15/14 00:02	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/15/14 00:02	1
Trichloroethene	ND		5.0	0.60	ug/L			06/15/14 00:02	1
Vinyl chloride	55		5.0	0.75	ug/L			06/15/14 00:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130					06/15/14 00:02	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/15/14 00:02	1
Toluene-d8 (Suπ)	100		70 - 123					06/15/14 00:02	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0,020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:13	1
Arsenic	0.0094	J	0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:13	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:13	1
Cadmium	ND		0,0020	0.00050	mg/L		08/10/14 15:30	06/13/14 13:13	1
Chromium	0.0011	J	0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:13	1
Copper	ND		0.010	0,0016	mg/L		06/10/14 15:30	06/16/14 18:39	1
Lead	ND		0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:13	1
Nickel	ND		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:13	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:13	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-8S

Lab Sample ID: 480-61456-3

Matrix: Water

Date Collected: 06/06/14 12:00 Date Received: 06/07/14 01:30

Method: 6010C - Metals (ICP) (Contin Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:39	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:13	1
Zinc	ND		0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:13	1
Method: 7470A - Mercury (CVAA)	Perult	Qualifler	RI	MDI	I lait		Prepared	Analyzed	Dil Fac

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 14:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1060	-	10.0	4.0	mg/L			06/09/14 22:57	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-4

Matrix: Water

Client Sample ID: SW-3

Date Collected: 06/06/14 12:15 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/15/14 00:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/15/14 00:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/15/14 00:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/15/14 00:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/15/14 00:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/15/14 00:26	1
1,2-Dichloroethane	ND		5,0	0.60	ug/L			06/15/14 00:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/15/14 00:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/15/14 00:26	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/15/14 00:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/15/14 00:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/15/14 00:26	1
Acrolein	ND		100	17	ug/L			06/15/14 00:26	1
Acrylonitrile	ND		50	1,9	ug/L			06/15/14 00:26	1
Benzene	ND		5.0	0.60	ug/L			06/15/14 00:26	1
Bromoform	ND		5.0	0.47	ug/L			06/15/14 00:26	1
Bromomethane	ND		5.0	1.2	ug/L			06/15/14 00:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/15/14 00:26	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/15/14 00:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/15/14 00:26	1
Chloroethane	ND		5.0	0.87	ug/L			06/15/14 00:26	1
Chloroform	ND		5.0	0.54	ug/L			06/15/14 00:26	1
Chloromethane	ND		5.0	0.64	ug/L			06/15/14 00:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/15/14 00:26	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/15/14 00:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/15/14 00:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/15/14 00:26	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/15/14 00:26	1
Toluene	ND		5.0	0.45	ug/L			06/15/14 00:26	1
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/15/14 00:26	•
rans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/15/14 00:26	•
Trichloroethene	ND		5.0	0.60	ug/L			06/15/14 00:26	•
Vinyl chloride	ND		5.0	0.75	ug/L			06/15/14 00:26	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		72 - 130			-		06/15/14 00:26	
4-Bromofluorobenzene (Surr)	94		69 - 121					06/15/14 00:26	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:17	1
Arsenic	ND		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:17	1
Beryllium	0.00035	J	0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:17	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:17	1
Chromium	0.0032	J	0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:17	1
Copper	0.0035	J	0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:42	1
Lead	0.0043	J	0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:17	1
Nickel	0.0053	J	0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:17	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:17	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-4

Matrix: Water

Client Sample ID: SW-3

Date Collected: 06/06/14 12:15 Date Received: 06/07/14 01:30

Method: 6010C - Metals (ICP) (Contin	ued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L	-	06/10/14 15:30	06/16/14 18:42	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:17	1
Zinc	0.012	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:17	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 14:58	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	617		10.0	4.0	mg/L			06/09/14 22:59	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-5

Matrix: Water

Client Sample ID: MW-9D

Date Collected: 06/06/14 12:55 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		20	1.5	ug/L			06/15/14 00:51	-
1,1,2,2-Tetrachioroethane	ND		20	1.0	ug/L			06/15/14 00:51	
1,1,2-Trichloroethane	ND		20	1.9	ug/L			06/15/14 00:51	
1,1-Dichloroethane	ND		20	2.4	ug/L			06/15/14 00:51	4
1,1-Dichloroethene	ND		20	3.4	ug/L			06/15/14 00:51	4
1,2-Dichlorobenzene	ND		20	1.8	ug/L			06/15/14 00:51	4
1,2-Dichloroethane	ND		20	2.4	ug/L			06/15/14 00:51	
1,2-Dichloroethene, Total	ND		40	13	ug/L			06/15/14 00:51	4
1,2-Dichloropropane	ND		20	2.4	ug/L			06/15/14 00:51	4
1,3-Dichlorobenzene	ND		20	2.2	ug/L			06/15/14 00:51	4
1,4-Dichlorobenzene	ND		20	2.0	ug/L			06/15/14 00:51	4
2-Chloroethyl vinyl ether	ND		100	7.4	ug/L			06/15/14 00:51	4
Acrolein	ND		400	70	ug/L			06/15/14 00:51	
Acrylonitrile	ND		200	7.6	ug/L			06/15/14 00:51	
Benzene	ND		20	2.4	ug/L			06/15/14 00:51	
Bromoform	ND		20	1.9	ug/L			06/15/14 00:51	4
Bromomethane	ND		20	4.6	ug/L			06/15/14 00:51	4
Carbon tetrachloride	ND		20	2.0	ug/L			06/15/14 00:51	
Chlorobenzene	ND		20	1.9	ug/L			06/15/14 00:51	
Chlorodibromomethane	ND		20	1.7	ug/L			06/15/14 00:51	
Chloroethane	ND		20	3.5	ug/L			06/15/14 00:51	
Chloroform	ND		20	2.2	ug/L			06/15/14 00:51	4
Chloromethane	ND		20	2.5	ug/L			06/15/14 00:51	
cis-1,3-Dichloropropene	ND		20	1.3	ug/L			06/15/14 00:51	
Dichlorobromomethane	ND	,	20	2.1	ug/L			06/15/14 00:51	
Ethylbenzene	ND		20	1.9	ug/L			06/15/14 00:51	
Methylene Chloride	ND		20	3.3	ug/L			06/15/14 00:51	
Tetrachloroethene	ND		20	1.4	ug/L			06/15/14 00:51	
Toluene	ND		20	1.8	ug/L			06/15/14 00:51	
trans-1,2-Dichloroethene	ND		20	2.4	ug/L			06/15/14 00:51	
trans-1,3-Dichloropropene	ND		20	1.8	ug/L			06/15/14 00:51	
Trichloroethene	ND		20	2.4	ug/L			06/15/14 00:51	
Vinyl chloride	ND		20	3.0	ug/L			06/15/14 00:51	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	109		72 - 130					06/15/14 00:51	4
4-Bromofluorobenzene (Surr)	96		69 - 121					06/15/14 00:51	•
Toluene-d8 (Surr)	102		70 - 123					06/15/14 00:51	

Method: 6010C - Metals (ICP)	Resuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:20	1
Arsenic	0.020		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:20	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:20	1
Cadmium	0.0013	J	0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:20	1
Chromium	2.5		0,0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:20	1
Copper	0.12		0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:45	1
Lead	0.0052	J	0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:20	1
Nickel	1.6		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:20	1
Selenium	0.031		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:20	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-5

Matrix: Water

Client Sample ID: MW-9D

Date Collected: 06/06/14 12:55 Date Received: 06/07/14 01:30

Method: 6010C - Metals (ICP) (Conti Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Silver	ND		0.030	0.0085	mg/L		06/10/14 15:30	06/16/14 18:49	
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:20	
Zinc	0.085	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:20	
Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.10	0.034	mg/L		06/16/14 12:05	06/23/14 11:29	
Arsenic	0.045	J	0.075	0.028	mg/L		06/16/14 12:05	06/23/14 11:29	
Beryllium	ND		0.010	0.0015	mg/L		06/16/14 12:05	06/23/14 11:29	
Cadmium	0.0036	J	0.010	0.0025	mg/L		06/16/14 12:05	06/23/14 11:29	
Chromium	0.0070	JB	0.020	0.0050	mg/L		06/16/14 12:05	06/23/14 11:29	!
Copper	0.029	J	0.050	0.0080	mg/L		06/16/14 12:05	06/23/14 11:29	
ead	ND		0.10	0.030	mg/L		06/16/14 12:05	07/02/14 12:56	1
lickel	0.29		0.10	0.013	mg/L		06/16/14 12:05	07/02/14 12:56	1
Selenium	0.049	J	0.13	0.044	mg/L		06/16/14 12:05	06/23/14 11:29	
Silver	ND		0.030	0.0085	mg/L		06/16/14 12:05	06/23/14 11:29	
Thallium	ND		0.20	0.10	mg/L		06/16/14 12:05	07/02/14 12:56	1
Zinc	ND		0.050	0.0075	mg/L		06/16/14 12:05	06/23/14 11:29	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.0020	0.0012	mg/L		06/13/14 07:51	06/13/14 12:57	
Method: 7470A - Mercury (CVAA) - I	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dii Fa
Mercury	ND		0.0020	0.0012	mg/L		06/18/14 10:40	06/18/14 14:18	
General Chemistry									
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-6

Matrix: Water

Client Sample ID: MW-9M Date Collected: 06/06/14 13:30

Date Received: 06/07/14 01:30

Method: 624 - Volatile Organic Compounds (GC/MS) Dil Fac Prepared Analyte Result Qualifler RI MDL Unit D Analyzed 5.0 1,1,1-Trichloroethane ND 0.39 ug/L 06/15/14 01:14 1,1,2,2-Tetrachloroethane ND 5.0 06/15/14 01:14 0.26 ug/L 1,1,2-Trichloroethane ND 5.0 06/15/14 01:14 0.48 ug/L 1.1-Dichloroethane ND 5.0 0.59 ug/L 06/15/14 01:14 1,1-Dichloroethene ND 5.0 0.85 ug/L 06/15/14 01:14 1,2-Dichlorobenzene ND 5.0 0.44 ug/L 06/15/14 01:14 ND 0.60 ug/L 06/15/14 01:14 1,2-Dichloroethane 5.0 06/15/14 01:14 1,2-Dichloroethene, Total ND 10 3.2 ug/L ND 5.0 0.61 ug/L 06/15/14 01:14 1,2-Dichloropropane ND 5.0 0.54 ug/L 06/15/14 01:14 1.3-Dichlorobenzene 06/15/14 01:14 ND 0.51 ug/L 1,4-Dichlorobenzene 5.0 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 06/15/14 01:14 06/15/14 01:14 Acrolein ND 100 17 ug/L 06/15/14 01:14 ND 50 1.9 ug/L Acrylonitrile ND 06/15/14 01:14 Benzene 5.0 0.60 ug/L Bromoform ND 5.0 0.47 ug/L 06/15/14 01:14 06/15/14 01:14 Bromomethane ND 5.0 1.2 ug/L ND 06/15/14 01:14 Carbon tetrachloride 5.0 0.51 ug/L Chlorobenzene ND 5.0 0.48 ug/L 06/15/14 01:14 ND 06/15/14 01:14 Chlorodibromomethane 5.0 0.41 ug/L 06/15/14 01:14 Chloroethane ND 5.0 0.87 ug/L 06/15/14 01:14 Chloroform ND 5.0 0.54 ug/L ND 5.0 0.64 ug/L 06/15/14 01:14 Chloromethane 06/15/14 01:14 ND 5.0 0.33 ug/L cis-1,3-Dichloropropene 06/15/14 01:14 1 ND 0.54 ug/L Dichlorobromomethane 5.0 Ethylbenzene ND 5.0 0.46 ug/L 06/15/14 01:14 ND 0.81 ug/L 06/15/14 01:14 Methylene Chloride 5.0 Tetrachloroethene ND 5.0 0.34 ug/L 06/15/14 01:14 Toluene ND 5.0 0.45 ug/L 06/15/14 01:14 trans-1,2-Dichloroethene ND 5.0 0.59 ug/L 06/15/14 01:14 ND 5.0 0.44 ug/L 06/15/14 01:14 trans-1,3-Dichloropropene ND 0.60 ug/L 06/15/14 01:14 50 Trichloroethene 06/15/14 01:14 76 5.0 0.75 ug/L Vinyl chloride

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	102		72 - 130		06/15/14 01:14	1
4-Bromofluorobenzene (Surr)	95		69 - 121		06/15/14 01:14	1
Toluene-d8 (Surr)	100		70 - 123		06/15/14 01:14	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:23	1
Arsenic	0.038		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:23	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:23	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:23	1
Chromium	0.0012	J	0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:23	1
Copper	ND		0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:52	1
Lead	0.0030	J	0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:23	1
Nickel	0.012		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:23	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:23	1

TestAmerica Buffalo

8/20/2014

Page 22 of 117

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-9M

Lab Sample ID: 480-61456-6

Matrix: Water

Date Collected: 06/06/14 13:30 Date Received: 06/07/14 01:30

inued)								
Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:52	1
ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:23	1
0.0037	JB	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:23	1
								Dil Fee
	ND ND 0,0037	Result Qualifier ND ND 0.0037 JB	Result Qualifier RL	Result ND Qualifier RL 0.0080 MDL 0.0017 ND 0.020 0.010 0.0037 J B 0.010 0.0015	Result Qualifier RL MDL Unit	Result Qualifier RL MDL Unit D	Result Qualifier RL MDL Unit D Prepared ND 0.0080 0.0017 mg/L 06/10/14 15:30 ND 0.020 0.010 mg/L 06/10/14 15:30 0.0037 JB 0.010 0.0015 mg/L 06/10/14 15:30	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.0080 0.0017 mg/L 06/10/14 15:30 06/16/14 18:52 ND 0.020 0.010 mg/L 06/10/14 15:30 06/13/14 13:23

Analyte	Kesuit	Qualifier	KL	MUL	Unit	U	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 15:05	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissalved Solids	4250		20.0	8.0	me/l			06/00/14 23:03	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-7

Matrix: Water

Client Sample ID: MW-9S

Date Collected: 06/06/14 14:00 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/15/14 01:38	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/15/14 01:38	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/15/14 01:38	1
1,1-Dichloroethane	ND		5.0	0,59	ug/L			06/15/14 01:38	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/15/14 01:38	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/15/14 01:38	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/15/14 01:38	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/15/14 01:38	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/15/14 01:38	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/15/14 01:38	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/15/14 01:38	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/15/14 01:38	1
Acrolein	ND		100	17	ug/L			06/15/14 01:38	1
Acrylonitrile	ND		50	1.9	ug/L			06/15/14 01:38	1
Benzene	ND		5.0	0.60	ug/L			06/15/14 01:38	1
Bromoform	ND		5.0	0.47	u g/ L			06/15/14 01:38	1
Bromomethane	ND		5.0	1.2	ug/L			06/15/14 01:38	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/15/14 01:38	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/15/14 01:38	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/15/14 01:38	1
Chloroethane	ND		5.0	0.87	ug/L			06/15/14 01:38	1
Chloroform	ND		5.0	0.54	ug/L			06/15/14 01:38	1
Chloromethane	ND		5.0	0.64	ug/L			06/15/14 01:38	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/15/14 01:38	1
Dichlorobromomethane	ND	,	5.0	0.54	ug/L			06/15/14 01:38	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/15/14 01:38	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/15/14 01:38	1
Tetrachloroethene	ND	•	5.0	0.34	ug/L			06/15/14 01:38	1
Toluene	ND		5.0	0.45	ug/L			06/15/14 01:38	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/15/14 01:38	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/15/14 01:38	1
Trichloroethene	ND		5.0	0.60	ug/L			06/15/14 01:38	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/15/14 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130					06/15/14 01:38	1
4-Bromofluorobenzene (Surr)	97		69 - 121					06/15/14 01:38	1
Toluene-d8 (Surr)	99		70 - 123					06/15/14 01:38	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0,0068	mg/L		06/10/14 15:30	06/13/14 13:26	1
Arsenic	0.035		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:26	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:26	1
Cadmium	0.00061	J	0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:26	1
Chromium	0.0069		0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:26	1
Copper	0.014		0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:55	1
Lead	0.0064	J	0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:26	1
Nickel	0.015		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:26	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:26	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-7

Matrix: Water

Client Sample ID: MW-9S

Date Collected: 06/06/14 14:00 Date Received: 06/07/14 01:30

Method: 6010C - Metals Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	***************************************	0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:55	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:26	1
Zinc	0.064	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:26	1

Zinc	0.064	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:26	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0,00020	0.00012	mg/L		06/11/14 08:30	06/11/14 15:12	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1140		20.0	8.0	mg/L			06/09/14 23:04	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-8

Matrix: Water

Client Sample ID: SW-1

Date Collected: 06/06/14 14:30 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/15/14 02:01	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/15/14 02:01	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/15/14 02:01	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/15/14 02:01	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/15/14 02:01	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/15/14 02:01	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/15/14 02:01	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/15/14 02:01	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/15/14 02:01	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/15/14 02:01	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/15/14 02:01	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/15/14 02:01	1
Acrolein	ND		100	17	ug/L			06/15/14 02:01	1
Acrylonitrile	ND		50	1.9	ug/L			06/15/14 02:01	1
Benzene	ND		5.0	0.60	ug/L			06/15/14 02:01	1
Bromoform	ND		5.0	0.47	ug/L			06/15/14 02:01	1
Bromomethane	ND		5.0	1.2	ug/L			06/15/14 02:01	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/15/14 02:01	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/15/14 02:01	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/15/14 02:01	1
Chloroethane	ND		5.0	0.87	ug/L			06/15/14 02:01	1
Chloroform	ND		5.0	0.54	ug/L			06/15/14 02:01	1
Chloromethane	ND		5.0	0.64	ug/L			06/15/14 02:01	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/15/14 02:01	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/15/14 02:01	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/15/14 02:01	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/15/14 02:01	1
Tetrachloroethene	ND		5,0	0.34	ug/L			06/15/14 02:01	1
Toluene	ND		5.0	0.45	ug/L			06/15/14 02:01	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/15/14 02:01	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/15/14 02:01	1
Trichloroethene	ND		5.0	0.60	ug/L			06/15/14 02:01	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/15/14 02:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	106		72 - 130			_		06/15/14 02:01	1
4-Bromofluorobenzene (Surr)	97		69 - 121					06/15/14 02:01	1
Toluene-d8 (Surr)	102		70 - 123					06/15/14 02:01	1

Method: 6010C - Metals (ICP) Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:29	1
Arsenic		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:29	1
Beryllium ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:29	1
Cadmium		0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:29	1
Chromium 0.0021	J	0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:29	1
Copper 0.0031	J	0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:59	1
Lead		0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:29	1
Nickel 0.0044	IJ	0,010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:29	1
Selenium		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:29	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-8

06/09/14 23:06

Matrix: Water

Client Sample ID: SW-1

Date Collected: 06/06/14 14:30 Date Received: 06/07/14 01:30

Total Dissolved Solids

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:59	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:29	1
Zinc	0.013	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:29	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 15:14	1
General Chemistry									
Analyta	Populi	Qualifier	DI	MIN	Limit	D	Dranarad	Annhized	Dil Ess

20.0

1410

8.0 mg/L

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-9

Matrix: Water

Client Sample ID: MW-3S

Date Collected: 06/06/14 15:00 Date Received: 06/07/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/15/14 02:25	1
1,1,2,2-Tetrachloroethane	' ND		5.0	0.26	ug/L			06/15/14 02:25	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/15/14 02:25	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/15/14 02:25	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/15/14 02:25	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/15/14 02:25	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/15/14 02:25	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/15/14 02:25	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/15/14 02:25	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/15/14 02:25	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/15/14 02:25	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/15/14 02:25	1
Acrolein	ND		100	17	ug/L			06/15/14 02:25	1
Acrylonitrile	ND		50	1.9	ug/L			06/15/14 02:25	-
Benzene	ND		5.0	0.60	ug/L			06/15/14 02:25	1
Bromoform	ND		5.0	0.47	ug/L			06/15/14 02:25	•
Bromomethane	ND		5.0	1.2	ug/L			06/15/14 02:25	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/15/14 02:25	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/15/14 02:25	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/15/14 02:25	1
Chloroethane	ND		5.0	0.87	ug/L			06/15/14 02:25	1
Chloroform	ND		5.0	0.54	ug/L			06/15/14 02:25	1
Chloromethane	ND		5.0	0.64	ug/L			06/15/14 02:25	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/15/14 02:25	4
Dichlorobromomethane	ND		5.0	0.54	ug/L		r	06/15/14 02:25	4
Ethylbenzene	ND		5.0	0.46	ug/L			06/15/14 02:25	4
Methylene Chloride	ND		5.0	0.81	ug/L			06/15/14 02:25	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/15/14 02:25	1
Toluene	ND		5.0	0.45	ug/L			06/15/14 02:25	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/15/14 02:25	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/15/14 02:25	1
Trichloroethene	ND		5.0	0.60	ug/L			06/15/14 02:25	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/15/14 02:25	1
Surrogate	%Recovery	Quailfier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		72 - 130			_		06/15/14 02:25	1
4-Bromofluorobenzene (Surr)	93		69 - 121					06/15/14 02:25	1
Toluene-d8 (Surr)	98		70 - 123					06/15/14 02:25	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:33	1
Arsenic	0.079		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:33	1
Beryllium	0.0014	J	0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:33	1
Cadmium	0.00052	J	0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:33	1
Chromium	0.011		0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:33	1
Copper	0.012		0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 19:02	1
Lead	0.025		0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:33	1
Nickel	0.015		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:33	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:33	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-9

Matrix: Water

Client	Sample	ID:	MW-3S
--------	--------	-----	-------

Date Collected: 06/06/14 15:00 Date Received: 06/07/14 01:30

Method: 6010C - Metals (ICP) (Cor Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 19:02	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:33	1
Zinc	0.064	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:33	1
Method: 6010C - Metals (ICP) - Dis	solved								
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0066	mg/L		06/16/14 12:05	06/20/14 16:45	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 16:45	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 16:45	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 16:45	1
Chromium	0.0022	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 16:45	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 16:45	1
ead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 16:45	1
Nickel	0.0042	J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 16:45	1
Selenium	0.013	J	0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 16:45	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 16:45	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 16:45	1
Zinc	0.0070	JB	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 16:45	1
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 15:15	1
Method: 7470A - Mercury (CVAA)								1773	
Analyte		Qualifier	RL	.,	Unit	D	Prepared	Analyzed	Dil Fac
Aercury	ND		0.00020	0.00012	mg/L		06/18/14 10:40	06/18/14 14:27	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2570		40.0	16.0	mg/L			06/09/14 23:08	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-10

Matrix: Water

Client Sample ID: SW-2 Date Collected: 06/06/14 15:15

Date Received: 06/07/14 01:30

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
,1,1-Trichioroethane	ND		20	1.5	ug/L			06/15/14 02:48	
,1,2,2-Tetrachloroethane	ND		20	1.0	ug/L			06/15/14 02:48	
1,2-Trichloroethane	ND		20	1.9	ug/L			06/15/14 02:48	
,1-Dichloroethane	ND		20	2.4	ug/L			06/15/14 02:48	
,1-Dichloroethene	ND		20	3.4	ug/L			06/15/14 02:48	
,2-Dichlorobenzene	ND		20	1.8	ug/L			06/15/14 02:48	
,2-Dichloroethane	ND		20	2.4	ug/L			06/15/14 02:48	
,2-Dichloroethene, Total	13	J	40	13	ug/L			06/15/14 02:48	
2-Dichloropropane	ND		20	2.4	ug/L			06/15/14 02:48	
3-Dichlorobenzene	ND		20	2.2	ug/L			06/15/14 02:48	
4-Dichlorobenzene	ND		20	2.0	ug/L			06/15/14 02:48	
-Chloroethyl vinyl ether	ND		100	7.4	ug/L			06/15/14 02:48	
crolein	ND		400	70	ug/L			06/15/14 02:48	
crylonitrile	ND		200	7.6	ug/L			06/15/14 02:48	
enzene	ND		20	2.4	ug/L			06/15/14 02:48	
romoform	ND		20	1.9	ug/L			06/15/14 02:48	
romomethane	ND		20	4.8	ug/L			06/15/14 02:48	
arbon tetrachloride	ND		20	2.0	ug/L			06/15/14 02:48	
hlorobenzene	ND		20	1.9	ug/L			06/15/14 02:48	
hlorodibromomethane	ND		20	1.7	ug/L			06/15/14 02:48	
hloroethane	ND		20	3.5	ug/L			06/15/14 02:48	
hloroform	ND		20	2.2	ug/L			06/15/14 02:48	
hloromethane	ND		20	2.5	ug/L			06/15/14 02:48	
s-1,3-Dichloropropene	ND		20	1.3	ug/L			06/15/14 02:48	
ichlorobromomethane	ND		20	2.1	ug/L			06/15/14 02:48	
thylbenzene	ND		20	1.9	ug/L			06/15/14 02:48	
ethylene Chloride	ND		20	3.3	ug/L			06/15/14 02:48	
etrachloroethene	ND		20	1.4	ug/L			06/15/14 02:48	
oluene	5.2	J	20	1.8	ug/L			06/15/14 02:48	
ans-1,2-Dichloroethene	ND		20	2.4	ug/L			06/15/14 02:48	
ans-1,3-Dichloropropene	ND		20	1.8	ug/L			06/15/14 02:48	
richloroethene	ND		20	2.4	ug/L			06/15/14 02:48	
inyl chloride	43		20	3.0	ug/L			06/15/14 02:48	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII
2-Dichloroethane-d4 (Surr)	102		72 - 130			-		06/15/14 02:48	
-Bromofluorobenzene (Surr)	93		69 - 121					06/15/14 02:48	
oluene-d8 (Surr)	99		70 - 123					06/15/14 02:48	

ones and a second a									
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 13:45	1
Arsenic	0.015		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 13:45	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 13:45	1
Cadmium	0.00073	J	0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 13:45	1
Chromium	0.0056		0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 13:45	1
Copper	0.0049	J	0.010	0.0016	mg/L		06/10/14 15:30	06/16/14 19:14	1
Lead	0.0075	J	0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 13:45	1
Nickel	0.0083	J	0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 13:45	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 13:45	1

TestAmerica Buffalo

8/20/2014

Page 30 of 117

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Z1

Client Sample ID: SW-2

Lab Sample ID: 480-61456-10

E3

Date Collected: 06/06/14 15:15 Date Received: 06/07/14 01:30

Matrix: Water

Method: 6010C - Metals (ICF) (Continued)								
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 19:14	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 13:45	1
Zinc	0.022	В	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 13:45	1

6

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 15:17	1

8

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	717		10.0	4.0	mg/L			06/09/14 23:10	1

9

12

12

14

15

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: Trip Blank

Date Collected: 06/06/14 00:00 Date Received: 06/07/14 01:30

Lab Sample ID: 480-61456-11 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/15/14 03:12	1
1,1,2,2-Tetrachioroethane	ND		5.0	0.26	ug/L			06/15/14 03:12	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/15/14 03:12	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/15/14 03:12	1
1,1-Dichloroethene	ND	,	5.0	0.85	ug/L			06/15/14 03:12	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/15/14 03:12	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/15/14 03:12	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/15/14 03:12	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/15/14 03:12	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/15/14 03:12	-1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/15/14 03:12	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/15/14 03:12	1
Acrolein	ND		100	17	ug/L			06/15/14 03:12	1
Acrylonitrile	ND		50	1.9	ug/L			06/15/14 03:12	- 1
Benzene	ND		5.0	0.60	ug/L			06/15/14 03:12	1
Bromoform	ND		5.0	0.47	ug/L			06/15/14 03:12	1
Bromomethane	ND		5.0	1.2	ug/L			06/15/14 03:12	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/15/14 03:12	- 1
Chlorobenzene	ND		5.0	0.48	ug/L			06/15/14 03:12	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/15/14 03:12	1
Chloroethane	ND		5.0	0.87	ug/L			06/15/14 03:12	1
Chloroform	ND		5.0	0.54	ug/L			06/15/14 03:12	1
Chloromethane	ND		5.0	0.64	ug/L			06/15/14 03:12	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/15/14 03:12	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/15/14 03:12	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/15/14 03:12	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/15/14 03:12	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/15/14 03:12	1
Toluene	ND		5,0	0.45	ug/L			06/15/14 03:12	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/15/14 03:12	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/15/14 03:12	1
Trichloroethene	ND		5.0	0.60	ug/L			06/15/14 03:12	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/15/14 03:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		72 - 130			-		06/15/14 03:12	1
4-Bromofluorobenzene (Surr)	95		69 - 121					06/15/14 03:12	1
Toluene-d8 (Surr)	99		70 - 123					06/15/14 03:12	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-1

Matrix: Water

Client Sample ID: MW-4S

Date Collected: 06/09/14 11:35 Date Received: 06/10/14 01:30

	ND ND ND		5.0	0.39	ug/L			00140144 00 00	
1,1,2-Trichloroethane	ND				UgrL			06/16/14 22:32	1
1,1,2-Trichloroethane			5.0	0.26	ug/L			06/16/14 22:32	1
1,1-Dichloroethane	ND		5.0	0.48	ug/L			06/16/14 22:32	1
1, 1 Biernotocatario			5.0	0.59	ug/L			06/16/14 22:32	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/16/14 22:32	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/16/14 22:32	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/16/14 22 32	1
1,2-Dichloroethene, Total	44		10	3.2	ug/L			06/16/14 22:32	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/16/14 22:32	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/16/14 22:32	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/16/14 22:32	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/16/14 22:32	1
Acrolein	ND		100	17	ug/L			06/16/14 22:32	1
Acrylonitrile	ND		50	1.9	ug/L			06/16/14 22:32	1
Benzene	ND		5.0	0.60	ug/L			06/16/14 22:32	1
Bromoform	ND		5.0	0.47	ug/L			06/16/14 22:32	1
Bromomethane	ND		5.0	1.2	ug/L			06/16/14 22:32	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/16/14 22:32	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/16/14 22:32	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/16/14 22:32	1
Chloroethane	ND		5.0	0.87	ug/L			06/16/14 22:32	1
Chloroform	ND		5.0	0.54	ug/L			06/16/14 22:32	1
Chloromethane	ND		5.0	0.64	ug/L			06/16/14 22:32	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/16/14 22:32	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/16/14 22:32	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/16/14 22:32	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/16/14 22:32	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/16/14 22:32	1
Toluene	ND		5.0	0.45	ug/L			06/16/14 22:32	1
trans-1,2-Dichloroethene	· ND		5.0	0.59	ug/L			06/16/14 22:32	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/16/14 22:32	1
Trichloroethene	ND		5.0	0.60	ug/L			06/16/14 22:32	1
Vinyl chloride	3.3	J	5.0	0.75	ug/L			06/16/14 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	102		72 - 130			-		06/16/14 22:32	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/16/14 22:32	1
Toluene-d8 (Surr)	99		70 - 123					06/16/14 22:32	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:21	1
Arsenic	0.0060	J	0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:21	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:21	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:21	1
Chromium	0.0060		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:21	1
Copper	0.0061	J	0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:21	1
Lead	0.0043	J	0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:21	1
Nickel	0.0064	J	0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:21	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:21	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-1

Matrix: Water

Client Sample ID: MW-4S Date Collected: 06/09/14 11:35

Date Received: 06/10/14 01:30

Method: 6010C - Metals (ICP) (Contin	ued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:21	-
Thallium	ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:21	1
Zinc	0.019	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:21	•
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 12:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2770		20,0	8.0	mg/L			06/10/14 21:10	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-2

Matrix: Water

Client Sample ID: MW-4D Date Collected: 06/09/14 12:05

Toluene-d8 (Surr)

Date Received: 06/10/14 01:30 Method: 624 - Volatile Organic Compounds (GC/MS) Result Qualifier Dil Fac Analyte RL **MDL** Unit Prepared Analyzed 1.1.1-Trichloroethane ND 5.0 0.39 ua/L 06/16/14 22:56 ND 1,1,2,2-Tetrachloroethane 06/16/14 22:56 5.0 0.26 ug/L 1,1,2-Trichloroethane ND 5.0 0.48 ug/L 06/16/14 22:56 ND 06/16/14 22:56 1,1-Dichloroethane 5.0 0.59 ug/L ND 06/16/14 22:56 1.1-Dichlomethene 5.0 0.85 ug/L 1.2-Dichlorobenzene ND 5.0 0.44 ug/L 06/16/14 22:56 1,2-Dichloroethane ND 5.0 06/16/14 22:56 0.60 ug/L 10 06/16/14 22:56 1,2-Dichloroethene, Total 70 3.2 ug/L 1,2-Dichloropropane ND 5.0 0.61 ug/L 06/16/14 22:56 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 06/16/14 22:56 06/16/14 22:56 1,4-Dichlorobenzene ND 5.0 0.51 ug/L 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 06/16/14 22:56 Acrolein ND 100 17 ug/L 06/16/14 22:56 Acrylonitrile ND 50 1.9 ug/L 06/16/14 22:56 ND 0.60 ug/L 06/16/14 22:56 Benzene 5.0 Bromoform ND 5.0 0.47 ug/L 06/16/14 22:56 1.2 ug/L Bromomethane ND 5.0 06/16/14 22:56 06/16/14 22:56 Carbon tetrachloride ND 5.0 0.51 ug/L ug/L 06/16/14 22:56 ND 5.0 0.48 Chlorobenzene Chlorodibromomethane ND 5.0 0.41 ug/L 06/16/14 22:56 ND 06/16/14 22:56 Chloroethane 5.0 0.67 ug/L ND 06/16/14 22:56 Chloroform 5.0 0.54 ug/L 06/16/14 22:56 Chloromethane ND 5.0 0.64 ug/L ND 5.0 0.33 ug/L 06/16/14 22:56 1 cis-1,3-Dichloropropene 06/16/14 22:56 ND 5.0 0.54 ug/L Dichlorobromomethane 06/16/14 22:56 ND 5.0 0.46 ug/L Ethylbenzene Methylene Chloride ND 5.0 0.81 ug/L 06/16/14 22:56 ND 06/16/14 22:56 Tetrachloroethene 5.0 0.34 ug/L ND 06/16/14 22:56 Toluene 5.0 0.45 ug/L trans-1,2-Dichloroethene ND 5.0 0.59 ug/L 06/16/14 22:56 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 06/16/14 22:56 06/16/14 22:56 16 5.0 0.60 ug/L Trichloroethene 06/16/14 22:56 5.0 0.75 ug/L Vinyl chloride 2.3 Dil Fac %Recovery Qualifler Limits Prepared Analyzed 102 72 - 130 06/16/14 22:56 1,2-Dichloroethane-d4 (Surt) 4-Bromofluorobenzene (Surr) 06/16/14 22:56

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:24	1
Arsenic	0.025		0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:24	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:24	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:24	1
Chromium	0.010		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:24	1
Copper	0.014		0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:24	1
Lead	0.0067	J	0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:24	1
Nickel	0.053		0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:24	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:24	1

69 - 121

70 - 123

96

97

TestAmerica Buffalo

06/16/14 22:56

8/20/2014

Page 35 of 117

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-4D

Lab Sample ID: 480-61536-2

Matrix: Water

Date Collected: 06/09/14 12:05 Date Received: 06/10/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.0017	J	0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:24	1
Thallium	ND	•	0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:24	1
Zinc	0.13	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:24	1

Method: 7470A - Mercury (CVAA)									
Analyte	Resuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 12:56	1

General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			40.0	40.0	man/l			06/10/14 21:11	4
Total Dissolved Solids	3050		40.0	16.0	mg/L			00/10/14 21.11	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-3

Matrix: Water

Client Sample ID: MW-1S

Date Collected: 06/09/14 12:45 Date Received: 06/10/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-Trichioroethane	ND		5.0	0.39	ug/L			06/16/14 23:19	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/16/14 23:19	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/16/14 23:19	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/16/14 23:19	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/16/14 23:19	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/16/14 23:19	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/16/14 23:19	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/16/14 23:19	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/16/14 23:19	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/16/14 23:19	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/16/14 23:19	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/16/14 23:19	1
Acrolein	ND		100	17	ug/L			06/16/14 23:19	1
Acrylonitrile	ND		50	1.9	ug/L			06/16/14 23:19	1
Benzene	ND		5.0	0.60	ug/L			06/16/14 23:19	1
Bromoform	ND		5.0	0.47	ug/L			06/16/14 23:19	1
Bromomethane	ND		5.0	1.2	ug/L			06/16/14 23:19	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/16/14 23:19	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/16/14 23:19	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/16/14 23:19	1
Chloroethane	ND		5.0	0.87	ug/L			06/16/14 23:19	1
Chloroform	ND		5.0	0.54	ug/L			06/16/14 23:19	1
Chloromethane	ND		5.0	0.64	ug/L			06/16/14 23:19	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/16/14 23:19	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/16/14 23:19	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/16/14 23:19	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/16/14 23:19	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/16/14 23:19	1
Toluene	ND		5.0	0.45	ug/L			06/16/14 23:19	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/16/14 23:19	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/16/14 23:19	1
Trichloroethene	ND		5.0	0.60	ug/L			06/16/14 23:19	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/16/14 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	104		72 - 130			-		06/16/14 23:19	1
4-Bromofluorobenzene (Surr)	97		69 - 121					06/16/14 23:19	1
Toluene-d8 (Surr)	100		70 - 123					06/16/14 23:19	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0,0068	mg/L		06/10/14 10:30	06/11/14 15:27	1
Arsenic	0.015		0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:27	1
Beryllium	0.0015	J	0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:27	1
Cadmium	0.00057	J	0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:27	1
Chromium	0.047		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:27	1
Copper	0.083		0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:27	1
Lead	0.032		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:27	1
Nickel	0.061		0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:27	1
Selenium	ND		0.025	0,0087	mg/L		06/10/14 10:30	06/11/14 15:27	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-3

Matrix: Water

Client Sample ID: MW-1S Date Collected: 06/09/14 12:45

Date Received: 06/10/14 01:30

Method: 6010C - Metals (ICP) (Cont ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:27	
Thallium	ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:27	1
Zinc	0.13	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:27	
Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 16:58	4
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 16:58	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 16:58	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 16:58	•
Chromium	0.0022	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 16:58	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 16:58	•
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 16:58	1
Nickel	0.0030	J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 16:58	1
Selenium	0.0094	J	0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 16:58	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 16:58	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 16:58	1
Zinc	0.0095	JB	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 16:58	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 12:57	-
Method: 7470A - Mercury (CVAA) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/18/14 10:40	06/18/14 14:25	•
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1360		20.0	8.0	mg/L			06/10/14 21:13	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-4

Matrix: Water

Client Sample ID: MW-2D

Date Collected: 06/09/14 14:00 Date Received: 06/10/14 01:30

Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/16/14 23:43	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/16/14 23:43	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/16/14 23:43	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/16/14 23:43	1
1,1-Dichloroethene	ND		5.0	0.65	ug/L			06/16/14 23:43	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/16/14 23:43	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/16/14 23:43	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/16/14 23:43	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/16/14 23:43	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/16/14 23:43	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/16/14 23:43	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/16/14 23:43	1
Acrolein	ND		100	17	ug/L			06/16/14 23:43	1
Acrylonitrile	ND		50	1.9	ug/L			06/16/14 23:43	1
Benzene	ND		5.0	0.60	ug/L			06/16/14 23:43	4
Bromoform	ND		5.0	0.47	ug/L			06/16/14 23:43	1
Bromomethane	ND		5.0	1.2	ug/L			06/16/14 23:43	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/16/14 23:43	•
Chlorobenzene	ND		5.0	0.48	ug/L			06/16/14 23:43	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/16/14 23:43	
Chloroethane	ND		5.0	0.87	ug/L			06/16/14 23:43	•
Chloroform	ND		5.0	0.54	ug/L			06/16/14 23:43	
Chloromethane	ND		5.0	0.64	ug/L			06/16/14 23:43	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/16/14 23:43	
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/16/14 23:43	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/16/14 23:43	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/16/14 23:43	
Tetrachloroethene	ND		5.0	0.34	ug/L			06/16/14 23:43	1
Toluene	ND		5.0	0.45	ug/L			06/16/14 23:43	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/16/14 23:43	
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/16/14 23:43	1
Trichloroethene	ND		5.0	0.60	ug/L			06/16/14 23:43	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/16/14 23:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		72 - 130			-		06/16/14 23:43	
4-Bromofluorobenzene (Surr)	95		69 - 121					06/16/14 23:43	1
Toluene-d8 (Surr)	100		70 - 123					06/16/14 23:43	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:30	1
Arsenic	ND		0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:30	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:30	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:30	1
Chromium	ND		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:30	1
Copper	0.0017	J	0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:30	1
Lead	ND		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:30	1
Nickel	ND		0.010	0,0013	mg/L		06/10/14 10:30	06/11/14 15:30	1
Selenium	ND		0,025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:30	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-2D

Lab Sample ID: 480-61536-4

Matrix: Water

Date Collected: 06/09/14 14:00 Date Received: 06/10/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:30	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:30	1
Zinc	0.0016	JB	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:30	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 12:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2270		20.0	8.0	mg/L			06/10/14 21:15	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-2S Date Collected: 06/09/14 14:15 Date Received: 06/10/14 01:30

Vinyl chloride

Lab Sample ID: 480-61536-5

Matrix: Water

Analyte	Result	Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/17/14 00:07	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/17/14 00:07	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/17/14 00:07	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/17/14 00:07	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/17/14 00:07	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/17/14 00:07	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/17/14 00:07	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/17/14 00:07	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/17/14 00:07	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/17/14 00:07	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/17/14 00:07	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/17/14 00:07	1
Acrolein	ND		100	17	ug/L			06/17/14 00:07	1
Acrylonitrile	ND		50	1.9	ug/L			06/17/14 00:07	1
Benzene	ND		5.0	0.60	ug/L			06/17/14 00:07	1
Bromoform	ND		5.0	0.47	ug/L			06/17/14 00:07	1
Bromomethane	ND		5.0	1.2	ug/L			06/17/14 00:07	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/17/14 00:07	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/17/14 00:07	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/17/14 00:07	1
Chloroethane	ND		5.0	0.87	ug/L			06/17/14 00:07	1
Chloroform	ND		5.0	0.54	ug/L			06/17/14 00:07	1
Chloromethane	ND		5.0	0.64	ug/L			06/17/14 00:07	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/17/14 00:07	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/17/14 00:07	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/17/14 00:07	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/17/14 00:07	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/17/14 00:07	1
Toluene	ND		5.0	0.45	ug/L			06/17/14 00:07	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/17/14 00:07	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/17/14 00:07	1
Trichloroethene	ND		5.0	0.60	ua/L			06/17/14 00:07	1

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130		-		06/17/14 00:07	1
4-Bromofluorobenzene (Surr)	94		69 - 121				06/17/14 00:07	1
Toluene-d8 (Surr)	97		70 - 123				06/17/14 00:07	1
Method: 6010C - Metals (ICP)	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

5.0

0.75 ug/L

ND

Analyte	Result	Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:52	1
Arsenic	0.0083	J	0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:52	1
Beryllium	0.00065	J	0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:52	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:52	1
Chromium	0.046		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:52	1
Copper	0.022		0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:52	1
Lead	0.017		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:52	1
Nickel	0.039		0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:52	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:52	1

TestAmerica Buffalo

06/17/14 00:07

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-2S

Lab Sample ID: 480-61536-5

Date Collected: 06/09/14 14:15 Date Received: 06/10/14 01:30 Matrix: Water

Method: 6010C - Metals (ICP) (Contin				***		_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0,0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:52	1
Thallium	ND		0.020	0.010	•		06/10/14 10:30	06/11/14 15:52	1
Zinc	0.10	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:52	1
Method: 6010C - Metals (ICP) - Disso									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 17:01	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 17:01	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 17:01	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 17:01	
Chromium	0.0021	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 17:01	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 17:01	
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 17:01	•
Nickel	0.0050	J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 17:01	•
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 17:01	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 17:01	
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 17:01	-
Zinc	0.012	В	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 17:01	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 06:20	06/12/14 13:01	
Method: 7470A - Mercury (CVAA) - D	issolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/18/14 10:40	06/18/14 14:30	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	1610		20.0	8.0	mg/L			06/10/14 21:17	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-12S

Date Collected: 06/09/14 14:50 Date Received: 06/10/14 01:30

1,1,2-Trichloroethane

1,1-Dichloroethane

Bromoform

Bromomethane

Chloromethane

Ethylbenzene

Toluene

cis-1,3-Dichloropropene

Dichlorobromomethane

Methylene Chloride

Tetrachloroethene

Trichlomethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Lab Sample ID: 480-61536-6 **Matrix: Water**

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

06/17/14 00:31

Method: 624 - Volatile Organic Compounds (GC/MS) Dil Fac RL MDL Unit D Prepared Analyzed Analyte ND 5.0 0.39 ug/L 06/17/14 00:31 1.1.1-Trichloroethane ND 5.0 0.26 ug/L 06/17/14 00:31 1,1,2,2-Tetrachioroethane

5.0

5.0

0.48 ug/L

0.59 ug/L

1.2 ug/L

0.64 ug/L

0.33 ug/L

0.54 ug/L

0.46 ug/L

0.81 ug/L

0.34 ug/L

0.45 ug/L

0.59 ug/L

0.44 ug/L

0.60 ug/L

06/17/14 00:31 ND 5.0 0.85 ug/L 1.1-Dichloroethene 06/17/14 00:31 ND 5.0 0.44 ug/L 1.2-Dichlorobenzene 06/17/14 00:31 1,2-Dichloroethane ND 5.0 0.60 ug/L 10 06/17/14 00:31 1,2-Dichloroethene, Total ND 3.2 ug/L 06/17/14 00:31 ND 5.0 0.61 ug/L 1,2-Dichloropropane 06/17/14 00:31 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 1,4-Dichlorobenzene ND 5,0 0.51 ug/L 06/17/14 00:31

ND

06/17/14 00:31 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 06/17/14 00:31 ND 100 17 ug/L Acrolein ND 50 1.9 ug/L 06/17/14 00:31 Acrylonitrile ND 5.0 0.60 ug/L 06/17/14 00:31 Benzene 0.47 ug/L 06/17/14 00:31 ND

0.51 ug/L 06/17/14 00:31 Carbon tetrachloride ND 5.0 0.48 ug/L 06/17/14 00:31 ND 5.0 Chlorobenzene 06/17/14 00:31 Chlorodibromomethane ND 5.0 0.41 ug/L Chloroethane ND 5.0 0.87 ug/L 06/17/14 00:31 06/17/14 00:31 Chloroform ND 5.0 0.54 ug/L

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1

1

1

1

06/17/14 00:31 0.75 ug/L Vinyt chloride Prepared Analyzed Dil Fac %Recovery Qualifier Limits 06/17/14 00:31 102 72 - 130 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 69 - 121 06/17/14 00:31 93 99 70 - 123 06/17/14 00:31 Toluene-d8 (Surr)

•									
Method: 6010C - Metals (ICP)	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:55	1
Arsenic	ND		0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:55	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:55	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:55	1
Chromium	ND		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:55	1
Copper	0.0017	J	0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:55	1
Lead	ND		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:55	1
Nickel	ND		0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:55	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:55	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-6

Matrix: Water

Client Sample ID: MW-12S

Date Collected: 06/09/14 14:50

Method: 6010C - Metals (ICP) (Continued) Analyte Re	sult (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:55	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:55	1
Zinc 0.	016 1	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:55	1
Method: 6010C - Metals (ICP) - Dissolved									
Analyte	sult (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 17:04	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 17:04	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 17:04	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 17:04	1
Chromium 0.0	021 .	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 17:04	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 17:04	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 17:04	- 11
Nickel	ND		0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 17:04	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 17:04	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 17:04	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 17:04	1
Zinc 0.0	077 .	JB	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 17:04	•
Method: 7470A - Mercury (CVAA)									
Analyte	sult (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 13:02	1
Method: 7470A - Mercury (CVAA) - Dissolve									
Analyte Re	sult (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/18/14 10:40	06/18/14 14:34	1
General Chemistry									
Analyte Re	sult (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids 1	430		20.0	8.0	mg/L			06/10/14 21:18	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-7

Matrix: Water

Client Sample ID: MW-7S

Date Collected: 06/09/14 15:50 Date Received: 06/10/14 01:30

Method: 624 - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/17/14 00:55	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/17/14 00:55	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/17/14 00:55	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/17/14 00:55	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/17/14 00:55	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/17/14 00:55	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/17/14 00:55	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/17/14 00:55	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/17/14 00:55	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/17/14 00:55	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/17/14 00:55	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/17/14 00:55	1
Acrolein	ND		100	17	ug/L			06/17/14 00:55	1
Acrylonitrile	ND		50	1.9	ug/L			06/17/14 00:55	1
Benzene	ND		5.0	0.60	ug/L			06/17/14 00:55	1
Bromoform	ND		5.0	0.47	ug/L			06/17/14 00:55	
Bromomethane	ND		5.0	1.2	ug/L			06/17/14 00:55	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/17/14 00:55	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/17/14 00:55	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/17/14 00:55	1
Chloroethane	ND		5.0	0.87	ug/L			06/17/14 00:55	1
Chloroform	ND		5.0	0.54	ug/L			06/17/14 00:55	1
Chloromethane	ND		5.0	0.64	ug/L			06/17/14 00:55	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/17/14 00:55	1
Dichlorobromomethane	ND	, ,	5.0	0.54	ug/L			06/17/14 00:55	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/17/14 00:55	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/17/14 00:55	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/17/14 00:55	1
Toluene	ND		5.0	0.45	ug/L			06/17/14 00:55	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/17/14 00:55	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/17/14 00:55	1
Trichloroethene	ND		5.0	0.60	ug/L			06/17/14 00:55	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/17/14 00:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		72 - 130			_		06/17/14 00:55	1
4-Bromofluorobenzene (Surr)	94		69 - 121					06/17/14 00:55	1
Toluene-d8 (Surr)	98		70 - 123					06/17/14 00:55	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:58	1
Arsenic	0.0080	J	0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:58	1
Beryllium	0.00051	J	0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:58	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:58	1
Chromium	0.039		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:58	1
Copper	0.035		0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:58	1
Lead	0.017		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:58	1
Nickel	0.021		0,010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:58	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:58	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-7

Matrix: Water

Client Sample ID: MW-7S

Date Collected: 06/09/14 15:50 Date Received: 06/10/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:58	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:58	1
Zinc	0.061	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:58	1
Method: 6010C - Metals (ICP) - Dis	solved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 17:07	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 17:07	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 17:07	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 17:07	1
Chromium	0.0018	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 17:07	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 17:07	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 17:07	1
Nickel	0.0019	J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 17:07	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 17:07	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 17:07	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 17:07	1
Zinc	0.0074	JB	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 17:07	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 13:04	1
Method: 7470A - Mercury (CVAA) -	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/18/14 10:40	06/18/14 14:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1510		20.0	8.0	mg/L			06/10/14 21:20	•

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-8

Matrix: Water

Client Sample ID: MW-10S

Date Collected: 06/09/14 16:30 Date Received: 06/10/14 01:30

Method: 624 - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ND 5.0 0.39 ug/L 06/17/14 01:19 1,1,1-Trichloroethane ND 5.0 06/17/14 01:19 1,1,2,2-Tetrachloroethane 0.26 ug/L 06/17/14 01:19 1,1,2-Trichloroethane ND 5.0 0.48 ug/L ND 5.0 0.59 06/17/14 01:19 1,1-Dichloroethane ug/L ND 06/17/14 01:19 5.0 0.85 ug/L 1.1-Dichloroethene 06/17/14 01:19 1,2-Dichlorobenzene ND 5.0 0.44 ug/L 1,2-Dichloroethane ND 5.0 0.60 ug/L 06/17/14 01:19 06/17/14 01:19 1,2-Dichloroethene, Total ND 10 3.2 ug/L 06/17/14 01:19 ND 1,2-Dichloropropane 5.0 0.61 ug/L 06/17/14 01:19 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 0.51 ug/L 1,4-Dichlorobenzene ND 5,0 06/17/14 01:19 06/17/14 01:19 ND 25 1.9 ug/L 2-Chloroethyl vinyl ether 06/17/14 01:19 Acrolein ND 100 17 ug/L ND 50 1.9 06/17/14 01:19 Acrylonitrile ND 5.0 0.60 ug/L 06/17/14 01:19 Benzene 06/17/14 01:19 ND 0.47 ug/L Bromoform 5.0 Bromomethane ND 5.0 1.2 ug/L 06/17/14 01:19 06/17/14 01:19 Carbon tetrachloride ND 5.0 0.51 ug/L 06/17/14 01:19 ND 5.0 0.48 ug/L Chlorobenzene 06/17/14 01:19 Chlorodibromomethane ND 5.0 0.41 ug/L Chloroethane ND 5.0 0.87 ug/L 06/17/14 01:19 06/17/14 01:19 ND 5.0 0.54 ug/L Chloroform 06/17/14 01:19 ND 5.0 0.64 ug/L Chloromethane 06/17/14 01:19 cis-1,3-Dichloropropene ND 5.0 0.33 ug/L ND 06/17/14 01:19 5.0 0.54 ug/L Dichlorobromomethane 06/17/14 01:19 ND 5.0 0.46 ug/L Ethylbenzene 06/17/14 01:19 Methylene Chloride ND 5.0 0.81 ug/L 5.0 0.34 ug/L 06/17/14 01:19 Tetrachloroethene ND ND 0.45 ug/L 06/17/14 01:19 5.0 Toluene 06/17/14 01:19 trans-1,2-Dichloroethene ND 5.0 0.59 ug/L trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 06/17/14 01:19 Trichloroethene ND 5.0 0.60 ug/L 06/17/14 01:19 06/17/14 01:19 ND 5.0 0.75 ug/L Vinyl chloride Dii Fac %Recovery Qualifier Limits Prepared Analyzed 06/17/14 01:19 1,2-Dichloroethane-d4 (Surr) 104 72 - 130 95 69 - 121 06/17/14 01:19 4-Bromofluorobenzene (Surr) 99 70 - 123 06/17/14 01:19 Toluene-d8 (Surr)

Method: 6010C - Metals (ICP)	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0069	J	0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 16:01	1
Arsenic	ND		0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 16:01	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 16:01	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 16:01	1
Chromium	0.70		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 16:01	1
Copper	0.032		0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 16:01	1
Lead	0.011		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 16:01	1
Nickel	0.050		0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 16:01	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 16:01	1

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-10S

Lab Sample ID: 480-61536-8

Date Collected: 06/09/14 16:30

Matrix: Water

Method: 6010C - Metals (ICP) (Continued) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver ND	-	0.0080	0.0017	mg/L		06/10/14 10:30	06/11/14 18:01	1
Thallium ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 16:01	1
Zinc 0.30	В	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 16:01	1
Method: 6010C - Metals (ICP) - Dissolved								
,	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 17:10	1
Arsenic		0.015	0.0056			06/18/14 12:05	06/20/14 17:10	1
Beryllium ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 17:10	1
Cadmium		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 17:10	1
Chromium 0.0033	JB	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 17:10	1
Copper ND		0.010	0.0016	mg/L		06/18/14 12:05	06/20/14 17:10	1
Lead		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 17:10	1
Nickel 0.0088	J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 17:10	1
Selenium ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 17:10	1
Silver		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 17:10	1
Thallium ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 17:10	1
Zinc 0.037	В	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 17:10	1
Method: 7470A - Mercury (CVAA)								
	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 13:06	1
Method: 7470A - Mercury (CVAA) - Dissolved			141				1.1.	DII 6
,	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury ND		0.00020	0.00012	mg/L		06/16/14 10:40	06/18/14 14:19	1
General Chemistry	0	D :	MD	I I milà		Dranarad	Analyzed	Dil Fac
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Lac

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-9

Matrix: Water

Client Sample ID: Trip Blank

Date Collected: 06/09/14 00:00 Date Received: 06/10/14 01:30

Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/17/14 01:43	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/17/14 01:43	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/17/14 01:43	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L	,		06/17/14 01:43	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/17/14 01:43	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/17/14 01:43	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/17/14 01:43	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/17/14 01:43	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/17/14 01:43	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/17/14 01:43	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/17/14 01:43	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/17/14 01:43	1
Acrolein	ND		100	17	ug/L			06/17/14 01:43	1
Acrylonitrile	ND		50	1.9	ug/L			06/17/14 01:43	1
Benzene	ND		5.0	0.60	ug/L			06/17/14 01:43	1
Bromoform	ND		5.0	0.47	ug/L			06/17/14 01:43	1
Bromomethane	ND		5.0	1.2	ug/L			06/17/14 01:43	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/17/14 01:43	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/17/14 01:43	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/17/14 01:43	1
Chloroethane	ND		5.0	0.87	ug/L			06/17/14 01:43	1
Chloroform	ND		5.0	0.54	ug/L			06/17/14 01:43	1
Chloromethane	ND		5.0	0.64	ug/L			06/17/14 01:43	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/17/14 01:43	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/17/14 01:43	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/17/14 01:43	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/17/14 01:43	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/17/14 01:43	1
Toluene	ND		5.0	0.45	ug/L			06/17/14 01:43	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/17/14 01:43	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/17/14 01:43	1
Trichloroethene	ND		5.0	0.60	ug/L			06/17/14 01:43	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/17/14 01:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		72 - 130			-		06/17/14 01:43	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/17/14 01:43	1
Toluene-d8 (Surr)	100		70 - 123					06/17/14 01:43	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61930-1

Matrix: Water

Client Sample ID: MW-5D Date Collected: 06/13/14 12:00

Date Received: 06/14/14 02:00

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/19/14 13:23	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/19/14 13:23	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/19/14 13:23	1
1,1-Dichloroethane	. ND		5.0	0.59	ug/L			06/19/14 13:23	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/19/14 13:23	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/19/14 13:23	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/19/14 13:23	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/19/14 13:23	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/19/14 13:23	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/19/14 13:23	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/19/14 13:23	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/19/14 13:23	1
Acrolein	ND		100	17	ug/L			06/19/14 13:23	1
Acrylonitrile	ND		50	1.9	ug/L			06/19/14 13:23	1
Benzene	ND		5.0	0.60	ug/L			06/19/14 13:23	1
Bromoform	ND		5.0	0.47	ug/L			06/19/14 13:23	1
Bromomethane	ND		5.0	1.2	ug/L			06/19/14 13:23	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/19/14 13:23	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/19/14 13:23	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/19/14 13:23	1
Chloroethane	ND		5.0	0.87	ug/L			06/19/14 13:23	1
Chloroform	ND		5.0	0.54	ug/L			06/19/14 13:23	1
Chloromethane	ND		5.0	0.64	ug/L			06/19/14 13:23	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/19/14 13:23	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/19/14 13:23	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/19/14 13:23	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/19/14 13:23	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/19/14 13:23	1
Toluene	ND		5.0	0.45	ug/L			06/19/14 13:23	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/19/14 13:23	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/19/14 13:23	1
Trichloroethene	ND		5.0	0.60	ug/L			06/19/14 13:23	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/19/14 13:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		72 - 130			_		06/19/14 13:23	1
4-Bromofluorobenzene (Surr)	99		69 - 121					06/19/14 13:23	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/18/14 20:58	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/18/14 20:58	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/18/14 20:58	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/18/14 20:58	1
Chromium	0.0014	J	0.0040	0.0010	mg/L		06/16/14 12:05	06/18/14 20:58	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/18/14 20:58	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/18/14 20:58	1
Nickel	ND		0.010	0.0013	mg/L		06/16/14 12:05	06/18/14 20:58	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/18/14 20:58	1

70 - 123

100

TestAmerica Buffalo

06/19/14 13:23

8/20/2014

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-5D Date Collected: 06/13/14 12:00 Lab Sample ID: 480-61930-1

06/17/14 00:13

Matrix: Water

Date Received: 06/14/14 02:00

Total Dissolved Solids

Method: 6010C - Metals (ICP) (Contin		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017			06/16/14 12:05	06/18/14 20:58	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/18/14 20:58	1
Zinc	0.0026	J	0.010	0.0015	mg/L		06/16/14 12:05	06/18/14 20:58	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	4-	0.00020	0.00012	mg/L		06/19/14 07:05	06/19/14 13:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

40.0

3260

16.0 mg/L

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61930-2

Matrix: Water

Client Sample ID: MW-5S

Date Collected: 06/13/14 12:30 Date Received: 06/14/14 02:00

Analyte	Result Q	lualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/19/14 13:46	1
1,1,2,2-Tetrachioroethane	ND		5.0	0.26	ug/L			06/19/14 13:46	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/19/14 13:46	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/19/14 13:46	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/19/14 13:46	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/19/14 13:46	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/19/14 13:46	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/19/14 13:46	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/19/14 13:46	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/19/14 13:46	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/19/14 13:46	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/19/14 13:46	1
Acrolein	ND		100	17	ug/L			06/19/14 13:46	1
Acrylonitrile	ND		50	1.9	ug/L			06/19/14 13:46	1
Benzene	ND		5.0	0.60	ug/L			06/19/14 13:46	1
Bromoform	ND		5.0	0.47	ug/L			06/19/14 13:46	1
Bromomethane	ND		5.0	1.2	ug/L			06/19/14 13:46	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/19/14 13:46	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/19/14 13:46	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/19/14 13:46	1
Chloroethane	ND		5.0	0.87	ug/L			06/19/14 13:46	1
Chloroform	ND		5.0	0.54	ug/L			06/19/14 13:46	1
Chloromethane	ND		5.0	0.64	ug/L			06/19/14 13:46	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/19/14 13:46	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/19/14 13:46	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/19/14 13:46	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/19/14 13:46	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/19/14 13:46	1
Toluene	ND		5.0	0.45	ug/L			06/19/14 13:46	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/19/14 13:46	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/19/14 13:46	1
Trichloroethene	ND		5.0	0.60	ug/L			06/19/14 13:46	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/19/14 13:46	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dii Fa
1,2-Dichloroethane-d4 (Surr)	102		72 - 130			_		06/19/14 13:46	1
4-Bromofluorobenzene (Surr)	97		69 - 121					06/19/14 13:46	1
Toluene-d8 (Surr)	100		70 - 123					06/19/14 13:46	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/18/14 21:01	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/18/14 21:01	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/18/14 21:01	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/18/14 21:01	1
Chromium	ND		0.0040	0.0010	mg/L		06/16/14 12:05	06/18/14 21:01	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/18/14 21:01	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/18/14 21:01	1
Nickel	0.0015	J	0.010	0.0013	mg/L		06/16/14 12:05	06/18/14 21:01	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/18/14 21:01	1

TestAmerica Buffalo

8/20/2014

Page 52 of 117

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-5S

Lab Sample ID: 480-61930-2

Matrix: Water

Date Collected: 06/13/14 12:30 Date Received: 06/14/14 02:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/18/14 21:01	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/18/14 21:01	1
Zinc	0.0023	J	0.010	0.0015	mg/L		06/16/14 12:05	06/18/14 21:01	1

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0,00012	mg/L		08/19/14 07:05	06/19/14 13:17	1

General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2700		20.0	8.0	mg/L			06/17/14 00:14	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61930-3

Matrix: Water

Client Sample ID: MW-11D

Date Collected: 06/13/14 13:00 Date Received: 06/14/14 02:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/19/14 14:10	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/19/14 14:10	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/19/14 14:10	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/19/14 14:10	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/19/14 14:10	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/19/14 14:10	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/19/14 14:10	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/19/14 14:10	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/19/14 14:10	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/19/14 14:10	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/19/14 14:10	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/19/14 14:10	1
Acrolein	ND		100	17	ug/L			06/19/14 14:10	1
Acrylonitrile	ND		50	1.9	ug/L			06/19/14 14:10	1
Benzene	ND		5.0	0.60	ug/L			06/19/14 14:10	1
Bromoform	ND		5.0	0.47	ug/L			06/19/14 14:10	•
Bromomethane	ND		5.0	1.2	ug/L			06/19/14 14:10	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/19/14 14:10	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/19/14 14:10	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/19/14 14:10	1
Chloroethane	ND		5.0	0.87	ug/L			06/19/14 14:10	1
Chloroform	ND		5.0	0.54	ug/L			06/19/14 14:10	1
Chloromethane	ND		5.0	0.64	ug/L			06/19/14 14:10	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/19/14 14:10	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/19/14 14:10	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/19/14 14:10	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/19/14 14:10	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/19/14 14:10	1
Toluene	ND		5.0	0.45	ug/L			06/19/14 14:10	•
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/19/14 14:10	•
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/19/14 14:10	1
Trichloroethene	ND		5.0	0.60	ug/L			06/19/14 14:10	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/19/14 14:10	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fa
1,2-Dichloroethane-d4 (Surr)	103		72 - 130			_		06/19/14 14:10	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/19/14 14:10	1
Toluene-d8 (Surr)	99		70 - 123					06/19/14 14:10	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.10		0.020	0.0068	mg/L		06/16/14 12:05	06/18/14 21:04	1
Arsenic	0.040		0.015	0.0056	mg/L		06/16/14 12:05	06/18/14 21:04	1
Beryllium	0.0023		0.0020	0.00030	mg/L		06/16/14 12:05	06/18/14 21:04	1 1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/18/14 21:04	1
Chromium	9.0		0.0040	0.0010	mg/L		06/16/14 12:05	06/18/14 21:04	1
Copper	0.16		0.010	0.0016	mg/L		06/16/14 12:05	06/18/14 21:04	1
Lead	0.074		0.010	0.0030	mg/L		06/16/14 12:05	06/18/14 21:04	1
Nickel	1.3		0.010	0.0013	mg/L		06/16/14 12:05	06/18/14 21:04	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/18/14 21:04	1

TestAmerica Buffalo

8/20/2014

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61930-3

Matrix: Water

Client Sample ID: MW-11D

Date Collected: 06/13/14 13:00 Date Received: 06/14/14 02:00

Method: 6010C - Metals (ICP) (Cont Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	rng/L		06/16/14 12:05	06/18/14 21:04	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/18/14 21:04	1
Zinc	0.24		0.010	0.0015	mg/L		06/16/14 12:05	06/18/14 21:04	1
Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0,020	0,0068	rng/L		07/02/14 11:20	07/03/14 14:26	1
Arsenic	ND		0.015	0.0056	mg/L		07/02/14 11:20	07/03/14 14:26	1
Beryllium	ND		0.0020	0.00030	mg/L		07/02/14 11:20	07/03/14 14:26	1
Cadmium	ND		0.0020	0.00050	mg/L		07/02/14 11:20	07/03/14 14:26	1
Chromium	0.012	В	0.0040	0.0010	mg/L		07/02/14 11:20	07/03/14 14:26	1
Copper	0.0037	JB^	0.010	0.0016	mg/L		07/02/14 11:20	07/07/14 15:48	1
Lead	ND		0.010	0.0030	mg/L		07/02/14 11:20	07/03/14 14:26	1
Nickel	0.039		0.010	0.0013	mg/L		07/02/14 11:20	07/03/14 14:26	1
Selenium	ND		0.025	0.0087	mg/L		07/02/14 11:20	07/03/14 14:26	1
Silver	ND		0.0060	0.0017	mg/L		07/02/14 11:20	07/03/14 14:26	1
Thallium	ND		0.020	0.010	mg/L		07/02/14 11:20	07/03/14 14:26	1
Zinc	0.0064	JB	0.010	0.0015	mg/L		07/02/14 11:20	07/07/14 15:48	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	rng/L		06/19/14 07:05	06/19/14 12:47	1
Method: 7470A - Mercury (CVAA) -	Dissolved								
Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/30/14 08:20	06/30/14 12:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1040		20.0	8.0	mg/L			06/17/14 00:15	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		12DCE	BFB	Percent Surrogate Recovery (A	Acceptance Limits)
_ab Sample ID	Client Sample ID	(72-130) 103	(69-121)	102	
80-61456-1	MW-6S			100	
80-61456-2	MW-8D	104	96	100	
80-61456-3	MW-8S	103	96	100	
80-61456-4	SW-3	104	94		
80-61456-5	MW-9D	109	96	102	
80-61456-6	MW-9M	102	95	100	
80-61456-7	MW-9S	103	97	99	
80-61456-8	SW-1	106	97	102	
80-61456-9	MW-3S	102	93	98	
80-61456-10	SW-2	102	93	99	
80-61456-11	Trip Blank	102	95	99	
30-61536-1	MVV-4S	102	96	99	
80-61536-2	MW-4D	102	96	97	
80-61536-3	MVV-1S	104	97	100	
80-61536-4	MW-2D	103	95	100	
80-61536-5	MW-2S	100	94	97	
80-61536-6	MW-12S	102	93	99	
80-61536-7	MW-7S	102	94	98	
80-61536-8	MVV-10S	104	95	99	
80-61536-9	Trip Blank	103	96	100	
80-61930-1	MW-5D	106	99	100	
80-61930-2	MVV-5S	102	97	100	
80-61930-3	MW-11D	103	96	99	
CS 480-187732/5	Lab Control Sample	101	97	101	
CS 480-187904/5	Lab Control Sample	98	97	99	
CS 480-188629/5	Lab Control Sample	97	100	100	
MB 480-187732/7	Method Blank	104	98	100	
IB 480-187904/7	Method Blank	103	100	102	
IB 480-188629/7	Method Blank	102	100	101	
Surronate Legend					

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Job ID: 480-61456-1

Client: Town of Manlius Project/Site: Town of Dewitt

Matrix: Water

Lab Sample ID: MB 480-187732/7

Method: 624 - Volatile Organic Compounds (GC/MS)

Client	Sample	ID:	Meth	od	Blank	
	Pr	ep '	Type:	To	tal/NA	

Analysis Batch: 187732									
, , , , , , , , , , , , , , , , , , , ,	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichioroethane	ND		5.0	0.39	ug/L			06/14/14 12:02	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/14/14 12:02	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/14/14 12:02	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/14/14 12:02	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/14/14 12:02	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/14/14 12:02	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/14/14 12:02	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/14/14 12:02	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/14/14 12:02	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/14/14 12:02	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/14/14 12:02	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/14/14 12:02	1
Acrolein	ND		100	17	ug/L			06/14/14 12:02	1
Acrylonitrile	ND		50	1.9	ug/L			06/14/14 12:02	1
Benzene	ND		5.0	0.60	ug/L			06/14/14 12:02	1
Bromoform	ND		5.0	0.47	ug/L			06/14/14 12:02	1
Bromomethane	ND		5.0	1.2	ug/L			06/14/14 12:02	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/14/14 12:02	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/14/14 12:02	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/14/14 12:02	1
Chloroethane	ND		5.0	0.87	ug/L			06/14/14 12:02	1
Chloroform	ND		5.0	0.54	ug/L			06/14/14 12:02	1
Chloromethane	ND		5.0	0.64	ug/L			06/14/14 12:02	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/14/14 12:02	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/14/14 12:02	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/14/14 12:02	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/14/14 12:02	1
Tetrachioroethene	ND		5.0	0.34	ug/L			06/14/14 12:02	1
Toluene	ND		5.0	0.45	ug/L			06/14/14 12:02	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/14/14 12:02	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/14/14 12:02	1
Trichloroethene	ND		5.0	0.60	ug/L			06/14/14 12:02	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/14/14 12:02	1
	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac

1		MB	MB					
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dii Fac	
l	1,2-Dichloroethene-d4 (Surr)	104		72 - 130		06/14/14 12:02	1	
	4-Bromofluorobenzene (Surr)	98		69 _ 121		06/14/14 12:02	1	
l	Toluene-d8 (Surr)	100		70 ₋ 123		06/14/14 12:02	1	

Lab Sample ID: LCS 480-187732/5

Matrix: Water

Analysis Batch: 187732	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifler	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.9		ug/L		104	52 - 162	
1,1,2,2-Tetrachioroethane	20.0	20.2		ug/L		101	46 - 157	
1,1,2-Trichloroethane	20.0	19.9		ug/L		100	52 _ 150	
1,1-Dichloroethane	20.0	20.4		ug/L		102	59 - 155	

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

8/20/2014

2

Client: Town of Manlius Project/Site: Town of Dewitt

Matrix: Water

Lab Sample ID: LCS 480-187732/5

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matin. Water							. top typo
Analysis Batch: 187732							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	20.0	20.3		ug/L		102	1 _ 234
1,2-Dichlorobenzene	20.0	20.7		ug/L		103	18 _ 190
1,2-Dichloroethane	20.0	19.9		ug/L		99	49 _ 155
1,2-Dichloropropane	20.0	19.5		ug/L		98	1 - 210
1,3-Dichlorobenzene	20.0	20.2		ug/L		101	59 - 156
1,4-Dichlorobenzene	20.0	19.8		ug/L		99	18 - 190
2-Chloroethyl vinyl ether	20.0	18.1	J	ug/L		91	1 _ 305
Benzene	20.0	20.4		ug/L		102	37 - 151
Bromoform	20.0	16.5		ug/L		82	45 _ 169
Bromomethane	20,0	23.2		ug/L		116	1 - 242
Carbon tetrachioride	20.0	22.0		ug/L		110	70 - 140
Chlorobenzene	20.0	20.2		ug/L		101	37 _ 160
Chlorodibromomethane	20.0	16.5		ug/L		93	53 - 149
Chloroethane	20.0	24.4		ug/L		122	14 - 230
Chloroform	20.0	20.2		ug/L		101	51 _ 138
Chloromethane	20.0	22.1		ug/L		111	1 - 273
cis-1,3-Dichloropropene	20.0	19.5		ug/L		97	1 - 227
Dichlorobromomethane	20.0	19.0		ug/L		95	35 _ 155
Ethylbenzene	20.0	21.2		ug/L		106	37 - 162
Methylene Chloride	20.0	17.5		ug/L		88	1 - 221
Tetrachloroethene	20.0	20.8		ug/L		104	64 - 148
Toluene	20.0	20.6		ug/L		103	47 - 150
trans-1,2-Dichloroethene	20.0	20.1		ug/L		101	54 - 156
trans-1,3-Dichloropropene	20.0	20.8		ug/L		104	17 - 183
Trichloroethene	20.0	20.2		ug/L		101	71 - 157

20.0

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 101
 72 - 130

 4-Bromofluorobenzene (Surr)
 97
 69 - 121

 Toluene-d8 (Surr)
 101
 70 - 123

Lab Sample ID: MB 480-187904/7

Matrix: Water

Vinyl chloride

Analysis Batch: 187904

Client Sample	e ID:	Method	Blank
P	rep '	Type: To	tal/NA

1 _ 251

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/16/14 13:07	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/16/14 13:07	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/16/14 13:07	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/16/14 13:07	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/16/14 13:07	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/16/14 13:07	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/16/14 13:07	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/16/14 13:07	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/16/14 13:07	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/16/14 13:07	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/16/14 13:07	1

RI

100

50

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

Limits

72 130

69 - 121

70 - 123

MDL Unit

17 ug/L

1.9 ug/L

0.60 ug/L

0.47 ug/L

1.2 ug/L

0.51 ug/L

0.48 ug/L

0.41 ug/L

0.87 ug/L

0.54 ug/L

0.64 ug/L

0,33 ug/L

0.54 ug/L

0.46 ug/L

0.81 ug/L

0.34 ug/L

0.45 ug/L

0.59 ug/L

0.44 ug/L

0.60 ug/L

0.75 ug/L

D

Prepared

Client: Town of Manlius Project/Site: Town of Dewitt

Analysis Batch: 187904

Matrix: Water

Analyte

Acrolein

Benzene

Acrylonitrile

Bromoform

Bromomethane

Chloroethane

Chloromethane

Ethylbenzene Methylene Chloride

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Surrogate

Toluene-d8 (Surr)

Chloroform

Carbon tetrachloride Chlorobenzene

Chlorodibromomethane

cis-1,3-Dichloropropene

Dichlorobromomethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: LCS 480-187904/5

Lab Sample ID: MB 480-187904/7

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

103

100

102

%Recovery

MB MB

Qualifier

Result

Qualifier

Client Sample ID: Method Blank

Analyzed

06/16/14 13:07

06/16/14 13:07 06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07 06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

Analyzed

06/16/14 13:07

06/16/14 13:07

06/16/14 13:07

Prep Type: Total/NA

9	1	

Dil Fac

1	
1	

Dil Fac

Client Sample ID: Lab Control Sample

Prepared

Matrix: Water							Prep Type:	Total/NA
Analysis Batch: 187904								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Resuit	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	24.5		ug/L		122	52 - 162	
1,1,2,2-Tetrachioroethane	20.0	22.4		ug/L		112	46 - 157	
1,1,2-Trichloroethane	20.0	23.0		ug/L		115	52 - 150	
1,1-Dichloroethane	20.0	23.2		ug/L		116	59 _ 155	
1,1-Dichloroethene	20.0	23.5		ug/L		117	1 - 234	
1,2-Dichlorobenzene	20.0	23.6		ug/L		118	18 - 190	
1,2-Dichloroethane	20.0	22.7	•	ug/L		113	49 - 155	
1,2-Dichloropropane	20.0	22.5		ug/L		113	1 - 210	
1,3-Dichlorobenzene	20.0	23.1		ug/L		115	59 - 156	
1,4-Dichlorobenzene	20.0	22,9		ug/L	•	115	18 - 190	
2-Chloroethyl vinyl ether	20.0	20.3	J	ug/L		101	1 _ 305	
Benzene	20.0	23.4		ug/L		117	37 _ 151	
Bromoform	20.0	21.2		ug/L		106	45 _ 169	
Bromomethane	20.0	20.1		ug/L		100	1 - 242	
Carbon tetrachloride	20.0	25.5		ug/L		127	70 - 140	
Chlorobenzene	20.0	23.4		ug/L		117	37 - 160	

Client: Town of Manlius Project/Site: Town of Dewitt

Analysis Batch: 187904

Matrix: Water

Lab Sample ID: LCS 480-187904/5

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit	D %F	Rec Limits	\$
Chlorodibromomethane	20.0	22.6		ug/L	1	113 53 - 14	49
Chloroethane	20.0	21.5		ug/L	1	108 14 - 23	30
Chloroform	20.0	23.3		ug/L	1	116 51 - 13	38
Chloromethane	20.0	19.4		ug/L		97 1 - 27	73
cis-1,3-Dichloropropene	20.0	22.6		ug/L	1	113 1 - 22	27
Dichlorobromomethane	20.0	22.6		ug/L	1	113 35 - 15	55
Ethylbenzene	20.0	24.5		ug/L	1	122 37 - 16	ô2
Methylene Chloride	20.0	19.7		ug/L		98 1 - 22	21
Tetrachloroethene	20.0	24.2		ug/L	1	121 64 - 14	48
Toluene	20.0	23.1		ug/L	1	116 47 - 15	50
trans-1,2-Dichloroethene	20.0	23.7		ug/L	1	118 54 - 15	56
trans-1,3-Dichloropropene	20.0	24.0		ug/L	1	120 17 - 18	83
Trichloroethene	20.0	23.4		ug/L	1	117 71 - 15	57
Vinyl chloride	20.0	19.2		ug/L		96 1 - 25	51

LCS LCS %Recovery Qualifier Limits Surrogate 72 - 130 1,2-Dichloroethane-d4 (Surr) 98 4-Bromofluorobenzene (Surr) 97 69 - 121 Toluene-d8 (Surr) 99 70 - 123

Lab Sample ID: MB 480-188629/7

Matrix: Water

Analysis Batch: 188629

Client	Sample ID): M	ethod	Blank	
	Prep	Ty	pe: To	tal/NA	

Dil Fac
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-188629/7 Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 188629

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/19/14 12:20	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/19/14 12:20	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/19/14 12:20	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/19/14 12:20	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/19/14 12:20	1
Toluene	ND		5.0	0.45	ug/L			06/19/14 12:20	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/19/14 12:20	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/19/14 12:20	1
Trichloroethene	ND		5.0	0.60	ug/L			06/19/14 12:20	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/19/14 12:20	1

MB MB Dil Fac Analyzed %Recovery Qualifier Limits Prepared 72 - 130 06/19/14 12:20 102 4-Bromofluorobenzene (Surr) 100 69 - 121 06/19/14 12:20 06/19/14 12:20 101 70 _ 123

Lab Sample ID: LCS 480-188629/5

Matrix: Water

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Surrogate

Client	Sample	ID:	Lab	Control	Sample	
			Prec	Type:	Total/NA	

Analysis Batch: 188629							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	20.9		ug/L		105	52 - 162
1,1,2,2-Tetrachioroethane	20.0	19.2		ug/L		96	46 - 157
1,1,2-Trichloroethane	20.0	19.3		ug/L		97	52 _ 150
1,1-Dichloroethane	20.0	20.1	4	ug/L		100	59 - 155
1,1-Dichloroethene	20.0	20.9		ug/L		105	1 - 234
1,2-Dichlorobenzene	20.0	20.4		ug/L		102	18 _ 190
1,2-Dichloroethane	20.0	19.3		ug/L		97	49 _ 155
1,2-Dichloropropane	20.0	19.1		ug/L		95	1 - 210
1,3-Dichlorobenzene	20.0	20.1		ug/L		101	59 - 156
1,4-Dichlorobenzene	20.0	20.4		ug/L		102	18 _ 190
2-Chloroethyl vinyl ether	20.0	17.3	J	ug/L		86	1 - 305
Benzene	20.0	20.3		ug/L		102	37 - 151
Bromoform	20.0	18.7		ug/L		93	45 - 169
Bromomethane	20.0	23.9		ug/L		120	1 _ 242
Carbon tetrachloride	20.0	23.2		ug/L		116	70 - 140
Chlorobenzene	20.0	20.3		ug/L		101	37 - 160
Chlorodibromomethane	20.0	20.1		ug/L		100	53 - 149
Chloroethane	20.0	22.7		ug/L		113	14 - 230
Chloroform	20.0	20.2		ug/L		101	51 - 138
Chloromethane	20.0	19.6		ug/L		98	1 _ 273
cis-1,3-Dichloropropene	20.0	18.7		ug/L		94	1 _ 227
Dichlorobromomethane	20.0	20.0		ug/L		100	35 - 155
Ethylbenzene	20.0	21.1		ug/L		105	37 - 162
Methylene Chloride	20.0	17.8		ug/L		89	1 _ 221
Tetrachloroethene	20.0	21.2		ug/L		106	64 - 148
Toluene	20.0	20.1		ug/L		100	47 - 150
trans-1,2-Dichloroethene	20.0	20.8		ug/L		104	54 - 156

TestAmerica Buffalo

8/20/2014

Page 61 of 117

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-188629/5

Matrix: Water

Analysis Batch: 188629

trans-1,3-Dichloropropene Trichloroethene Vinyl chloride

Client	Sample	ID:	Lab	Contro	I Sample
			Pren	Type:	Total/NA

Spike		LCS	LCS				%Rec.		
	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	20.0	19.4		ug/L		97	17 - 183	 	
	20.0	20.7		ug/L		103	71 - 157		
	20.0	20.9		ug/L		104	1 - 251		

LCS LCS %Recovery Qualifier Limits Surrogate 72 - 130 1,2-Dichloroethane-d4 (Surr) 97 4-Bromofluorobenzene (Surr) 100 69 _ 121 70 - 123 100 Toluene-d8 (Surr)

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-186689/1-A

Matrix: Water

Client	Sample	ID: Me	ethod	Blank	
	-	_	_		

Prep Type: Total/NA

Analysis Batch: 187280								Prep Batch:	186689
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 10:30	06/11/14 15:15	1
Arsenic	ND		0.015	0.0056	mg/L		06/10/14 10:30	06/11/14 15:15	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 10:30	06/11/14 15:15	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 10:30	06/11/14 15:15	1
Chromium	ND		0.0040	0.0010	mg/L		06/10/14 10:30	06/11/14 15:15	1
Copper	ND		0.010	0.0016	mg/L		06/10/14 10:30	06/11/14 15:15	1
Lead	ND		0.010	0.0030	mg/L		06/10/14 10:30	06/11/14 15:15	1
Nickel	ND		0.010	0.0013	mg/L		06/10/14 10:30	06/11/14 15:15	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 10:30	06/11/14 15:15	1
Silver	ND	•	0.0060	0.0017	mg/L		06/10/14 10:30	06/11/14 15:15	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 10:30	06/11/14 15:15	1
Zinc	0.00237	J	0.010	0.0015	mg/L		06/10/14 10:30	06/11/14 15:15	1

Lab Sample ID: LCS 480-186689/2-A

Matrix: Water

Client Sample	ID:	Lab	Control Sample
		Prep	Type: Total/NA

Analysis Batch: 187280							Prep B	atch: 186689
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.200	0.209		mg/L		105	80 - 120	
Arsenic	0.200	0.203		mg/L		101	80 - 120	
Beryllium	0.200	0.204		mg/L		102	80 - 120	
Cadmium	0.200	0.209		mg/L		104	80 - 120	
Chromium	0.200	0.209		mg/L		104	80 - 120	
Copper	0.200	0.216		mg/L		108	80 - 120	
Lead	0,200	0.203	,	mg/L		102	80 - 120	
Nickel	0.200	0.200		mg/L		100	80 - 120	
Selenium	0,200	0.209		mg/L		105	80 - 120	
Silver	0.0500	0.0496		mg/L		99	80 - 120	
Thallium	0.200	0.217		mg/L		108	80 - 120	
Zinc	0.200	0.203		mg/L		101	80 - 120	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-61536-4 MS Client Sample ID: MW-2D **Matrix: Water** Prep Type: Total/NA Analysis Batch: 187280 Prep Batch: 186689

Allalysis Datell. 101200									riep Daten. 100	003
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		0.200	0.212		mg/L		106	75 - 125	_
Arsenic	ND		0.200	0.216		mg/L		108	75 ₋ 125	
Beryllium	ND		0.200	0.194		mg/L		97	75 _ 125	
Cadmium	ND		0.200	0.214		mg/L		107	75 - 125	
Chromium	ND		0.200	0.197		mg/L		99	75 - 125	
Copper	0.0017	J	0.200	0.216		mg/L		107	75 _ 125	
Lead	ND		0.200	0.201		mg/L		101	75 - 125	
Nickel	ND		0.200	0.197		mg/L		99	75 - 125	
Selenium	ND		0.200	0.202		mg/L		101	75 _ 125	
Silver	ND		0.0500	0,0524		mg/L		105	75 _ 125	
Thallium	ND		0.200	0.200		mg/L		100	75 - 125	
Zinc	0.0016	JB	0.200	0.188		mg/L		93	75 - 125	

Lab Sample ID: 480-61536-4 MSD Client Sample ID: MW-2D

0.0016 JB

Matrix: Water									Prep T	Prep Type: Total				
Analysis Batch: 187280									Prep I	Batch: 1	86689			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD			
Analyte	Result	Qualifler	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Antimony	ND		0.200	0.206		mg/L		103	75 - 125	3	20			
Arsenic	ND		0,200	0.210		mg/L		105	75 - 125	3	20			
Beryllium	ND		0.200	0.188		mg/L		94	75 - 125	3	20			
Cadmium	ND		0.200	0.208		mg/L		104	75 _ 125	3	20			
Chromium	ND		0.200	0.192		mg/L		96	75 - 125	3	20			
Copper	0.0017	J	0.200	0.212		mg/L		105	75 - 125	2	20			
Lead	ND		0.200	0.194		mg/L		97	75 - 125	3	20			
Nickel	ND		0.200	0.192		mg/L		96	75 - 125	3	20			
Selenium	ND		0.200	0.200		mg/L		100	75 - 125	1	20			
Silver	ND		0.0500	0.0502		mg/L		100	75 - 125	4	20			
Thallium	ND		0.200	0.197		mg/L		99	75 - 125	1	20			

Client Sample ID: Method Blank Lab Sample ID: MB 480-186831/1-A Prep Type: Total/NA

0.184

mg/L

0.200

Matrix: Water

Zinc

Analysis Batch: 187846								Prep Batch:	186831
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/10/14 15:30	06/13/14 12:52	1
Arsenic	ND		0.015	0.0056	mg/L		06/10/14 15:30	06/13/14 12:52	1
Beryllium	ND		0.0020	0.00030	mg/L		06/10/14 15:30	06/13/14 12:52	1
Cadmium	ND		0.0020	0.00050	mg/L		06/10/14 15:30	06/13/14 12:52	1
Chromium	ND		0.0040	0.0010	mg/L		06/10/14 15:30	06/13/14 12:52	1
Lead	ND		0.010	0.0030	mg/L		06/10/14 15:30	06/13/14 12:52	1
Nickel	ND		0.010	0.0013	mg/L		06/10/14 15:30	06/13/14 12:52	1
Selenium	ND		0.025	0.0087	mg/L		06/10/14 15:30	06/13/14 12:52	1
Thallium	ND		0.020	0.010	mg/L		06/10/14 15:30	06/13/14 12:52	1
Zinc	0.00401	J	0.010	0.0015	mg/L		06/10/14 15:30	06/13/14 12:52	1

TestAmerica Buffalo

75 _ 125

20

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-186831/1-A

Lab Sample ID: LCS 480-186831/2-A

Matrix: Water

Analysis Batch: 188191

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 186831

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	ND		0,010	0.0016	mg/L		06/10/14 15:30	06/16/14 18:17	1
Silver	ND		0.0060	0.0017	mg/L		06/10/14 15:30	06/16/14 18:17	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 186831

Analysis Batch: 187846 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Antimony 0.200 0.216 mg/L 108 80 - 120 0.200 0.218 109 80 - 120 Arsenic mg/L Beryllium 0.200 0.221 mg/L 111 80 - 120 Cadmium 0.200 0,216 mg/L 108 80 _ 120 0,200 80 120 Chromium 0.215 108 ma/L Lead 0.200 0.199 mg/L 100 80 _ 120 Nickel 0.200 0.196 mg/L 80 - 120 0.200 80 _ 120 Selenium 0.219 ma/L 109

0.209

0.210

mg/L

mg/L

Client Sample ID: Lab Control Sample

06/16/14 12:05

105

Lab Sample ID: LCS 480-186831/2-A Matrix: Water

Thallium

Zinc

Analysis Batch: 188191

Prep Type: Total/NA

80 - 120

80 - 120

Prep Batch: 186831

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte Соррег 0,200 0.218 mg/L 109 80 - 120 0.0500 0.0533 107 80 - 120 Silver mg/L

0.200

0.200

Lab Sample ID: MB 480-187903/1-A

Matrix: Water

Zinc

Analysis Batch: 188622

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 187903

MB Dil Fac Qualifier RI MDL Unit D Prepared Analyzed Analyte Result 0.020 06/16/14 12:05 06/18/14 20:02 Antimony ND 0.0068 mg/L ND 06/16/14 12:05 06/18/14 20:02 Arsenic 0.015 0.0056 mg/L Beryllium ND 0.0020 0.00030 mg/L 06/16/14 12:05 06/18/14 20:02 ND 0.0020 0,00050 mg/L 06/16/14 12:05 06/18/14 20:02 Cadmium ND 0.0040 0.0010 mg/L 06/16/14 12:05 06/18/14 20:02 Chromium 06/16/14 12:05 06/18/14 20:02 ND Copper 0.010 0.0016 mg/L 06/18/14 20:02 06/16/14 12:05 Lead ND 0.010 0.0030 mg/L 0,0013 mg/L ND 0.010 06/16/14 12:05 06/18/14 20:02 06/16/14 12:05 06/18/14 20:02 ND 0.025 0.0087 mg/L Selenium 06/16/14 12:05 06/18/14 20:02 Silver ND 0.0060 0,0017 mg/L 06/18/14 20:02 Thallium ND 0.020 0.010 mg/L 06/16/14 12:05

0.010

0,0015 mg/L

ND

TestAmerica Buffalo

06/18/14 20:02

d

Client: Town of Manlius Project/Site: Town of Dewitt

Matrix: Water

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-187903/2-A

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 187903

Analysis Batch: 188622	Spike	LCS	LCS				Prep Batch: 187903 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.200	0.203		mg/L		102	80 - 120
Arsenic	0.200	0.201		mg/L		101	80 - 120
Beryllium	0.200	0,209	٨	mg/L		105	80 - 120
Cadmium	0.200	0.205		mg/L		102	80 - 120
Chromium	0.200	0.208		mg/L		104	80 - 120
Copper	0.200	0.206		mg/L		103	80 - 120
Lead	0.200	0.201		mg/L		100	80 - 120
Nickel	0.200	0.200		mg/L		100	80 - 120
Selenium	0.200	0.204		mg/L		102	80 - 120
Silver	0.0500	0.0511		mg/L		102	80 - 120
Thallium	0.200	0.209		mg/L		104	80 - 120
Zinc	0.200	0.204		mg/L		102	60 - 120

Lab Sample ID: MB 480-187784/1-B

Matrix: Water

Analysis Batch: 189206

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 187899

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 16:06	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 16:06	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 16:06	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 16:06	1
Chromium	0.00194	J	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 16:06	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 16:06	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 16:06	1
Nickel	ND		0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 16:06	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 16:06	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 16:06	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 16:06	1
Zinc	0.00368	J	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 16:06	1
hamo									

Lab Sample ID: LCS 480-187784/2-B

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Batch: 187899

Analysis Batch: 189206							Prep Batc	h: 187899
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.200	0.206		mg/L		103	80 - 120	
Arsenic	0.200	0.208		mg/L		104	80 _ 120	
Beryllium	0.200	0.207		mg/L		103	80 _ 120	
Cadmium	0.200	0.205		mg/L		102	80 - 120	
Chromium	0.200	0,205		mg/L		103	80 - 120	
Copper	0.200	0.207		mg/L		103	80 - 120	
Lead	0.200	0.201		mg/L		100	80 - 120	
Nickel	0.200	0.198		mg/L		99	80 _ 120	
Selenium	0.200	0.209		mg/L		104	80 - 120	
Silver	0.0500	0.0524		mg/L		105	80 - 120	
Thallium	0.200	0.212		mg/L		106	80 _ 120	
Zinc	0.200	0.200		mg/L		100	80 - 120	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-187784/3-B				Clie	nt Sam	nple ID: Lab Control Sample Dup						
Matrix: Water					Prep Type: Dissolved							
Analysis Batch: 189206							Batch: 187899					
	Spike	LCSD	LCSD				%Rec.		RPD			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Antimony	0.200	0.202		mg/L		101	80 - 120	2	20			
Arsenic	0.200	0.203		mg/L		101	80 _ 120	2	20			
Beryllium	0.200	0.205		mg/L		102	80 - 120	1	20			
Cadmium	0.200	0.202		mg/L		101	80 - 120	1	20			
Chromium	0.200	0.202		mg/L		101	80 - 120	2	20			
Copper	0.200	0.204		mg/L		102	80 - 120	1	20			
Lead	0,200	0.198		mg/L		99	80 - 120	2	20			
Nickel	0.200	0.196		mg/L		98	80 - 120	1	20			
Selenium	0.200	0.201		mg/L		101	80 _ 120	4	20			
Silver	0.0500	0.0507		mg/L		101	80 - 120	3	20			
Thallium	0.200	0.210		mg/L		105	80 - 120	1	20			
Zinc	0.200	0.198		mg/L		99	80 - 120	1	20			
*												

Lab Sample ID: 480-6	1456-5 MS
----------------------	-----------

Matrix: Water

Analysis Batch: 190805

Client Sample ID: MW-9D Prep Type: Dissolved Prep Batch: 187899

Allalysis Datell. 130000										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		0.200	0.247		mg/L		124	75 - 125	
Arsenic	0.045	J	0.200	0.289		mg/L		122	75 _ 125	
Beryllium	ND		0.200	0.196		mg/L		98	75 _ 125	
Cadmium	0.0036	J	0.200	0.0147	F1	mg/L		6	75 _ 125	
Chromium	0.0070	JB	0.200	0.201		mg/L		97	75 _ 125	
Copper	0.029	J	0,200	0.291	F1	mg/L		131	75 - 125	
Selenium	0.049	J	0.200	0.325	F1	mg/L		138	75 - 125	
Silver	ND		0.0500	ND	F1	mg/L		0	75 _ 125	
Zinc	ND		0.200	0.205		mg/L		103	75 _ 125	

Lab Sample ID: 480-61456-5 MS

Matrix: Water

Client Sample ID: MW-9D
Prep Type: Dissolved
D D. A. L. 407000

Analysis Batch: 191201									Prep	Batch: 1871	899
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	ND		0.200	0.122	F1	mg/L		61	75 - 125		
Nickel	0.29		0.200	0.545		mg/L		125	75 - 125		
Thallium	ND		0.200	ND	F1	mg/L		0	75 - 125		

Lab Sample ID: 480-61456-5 MSD

Matrix: Water

Analysis Batch: 190805

Client Sa	ample ID: MW-9D
Prep	Type: Dissolved
Dr	on Batch: 187800

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.200	0.241		mg/L		121	75 - 125	2	20
Arsenic	0.045	J	0.200	0,285		mg/L		120	75 - 125	2	20
Beryllium	ND		0.200	0.190		mg/L		95	75 - 125	3	20
Cadmium	0.0036	J	0.200	0.00780	J F1 F2	mg/L		2	75 - 125	61	20
Chromium	0.0070	JB	0.200	0.197		mg/L		95	75 - 125	2	20
Copper	0.029	J	0.200	0.282	F1	mg/L		126	75 - 125	3	20
Selenium	0.049	J	0.200	0.326	F1	mg/L		138	75 - 125	0	20

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-9D

Client Sample ID: Method Blank

Method: 6010C - Metals (ICP) (Continued)

1	Lab Sample ID: 480-61456-5 MSD								(Client Samp	ole ID: M	W-9D
	Matrix: Water									Prep Ty	pe: Diss	olved
	Analysis Batch: 190805									Prep E	Batch: 1	B7899
		Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Silver	ND		0.0500	· ND	F1	mg/L		0	75 _ 125	NC	20
1	Zinc	ND		0,200	0.195		mg/L		98	75 - 125	5	20

Matrix: Water Prep Type: Dissolved Analysis Batch: 191201 Prep Batch: 187899 Sample Sample Spike MSD MSD %Rec. **RPD** %Rec Limits Limit Result Qualifier Added Result Qualifier Unit Analyte 20 0.0951 JF1 F2 75 - 125 25 Lead ND 0.200 mg/L 75 - 125 Nickel 0.29 0.200 0.529 mg/L 117 3 20 75 - 125 Thallium ND 0.200 ND F1 mg/L NC 20

Lab Sample ID: MB 480-190759/1-B Matrix: Water

Lab Sample ID: 480-61456-5 MSD

Analysis Batch: 191380

Prep Type: Dissolved	
Prep Batch: 190965	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/02/14 11:20	07/03/14 13:33	1
Arsenic	ND		0.015	0.0056	mg/L		07/02/14 11:20	07/03/14 13:33	1
Beryllium	ND		0.0020	0.00030	mg/L		07/02/14 11:20	07/03/14 13:33	1
Cadmium	ND		0.0020	0.00050	mg/L		07/02/14 11:20	07/03/14 13:33	1
Chromium	0.00243	J	0.0040	0.0010	mg/L		07/02/14 11:20	07/03/14 13:33	1
Copper	0.00198	J	0.010	0.0016	mg/L		07/02/14 11:20	07/03/14 13:33	1
Lead	ND		0.010	0.0030	mg/L		07/02/14 11:20	07/03/14 13:33	1
Nickel	ND		0.010	0.0013	mg/L		07/02/14 11:20	07/03/14 13:33	1
Selenium	ND		0.025	0.0087	mg/L		07/02/14 11:20	07/03/14 13:33	1
Silver	ND		0.0060	0.0017	mg/L		07/02/14 11:20	07/03/14 13:33	1
Thallium	ND		0.020	0.010	mg/L		07/02/14 11:20	07/03/14 13:33	1
Zinc	0.0116		0.010	0.0015	mg/L		07/02/14 11:20	07/03/14 13:33	1

Lab Sample ID: LCS 480-190759/2-B

Matrix: Water

Analysis Batch: 191380

Client Sample	ID: Lab Control Sample
	Prep Type: Dissolved
	Prep Batch: 190965

Analysis Batch: 191380							riep Dateil. 1909t
,,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.200	0.210		mg/L		105	80 - 120
Arsenic	0.200	0.208		mg/L		104	80 - 120
Beryllium	0.200	0.214		mg/L		107	80 - 120
Cadmium	0.200	0.211		mg/L		105	80 - 120
Chromium	0.200	0.213		mg/L		107	80 - 120
Copper	0.200	0.221		mg/L		111	80 - 120
Lead	0.200	0.201		mg/L		101	80 - 120
Nickel	0.200	0.201		mg/L		100	80 - 120
Selenium	0.200	0,210		mg/L		105	80 _ 120
Silver	0.0500	0.0507		mg/L		101	80 - 120
Thallium	0.200	0.214		mg/L		107	80 _ 120
Zinc	0.200	0.213		mg/L		107	80 - 120

TestAmerica Buffalo

8/20/2014

Page 67 of 117

TestAmerica Job ID: 480-61456-1

Project/Site: Town of Dewitt

Method: 6010C - Metals (ICP)	Continued)
------------------------------	------------

Lab Sample ID: LCSD 480-190759/3-B		Client Sample ID: Lab Control Sample Dup											
Matrix: Water							Prep Ty	pe: Diss	olved				
Analysis Batch: 191380							Prep I	Batch: 1	90965				
	Spike	LCSD	LCSD				%Rec.		RPD				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit				
Antimony	0.200	0.211		mg/L		106	80 - 120	1	20				
Arsenic	0.200	0.207		mg/L		104	80 - 120	0	20				
Beryllium	0.200	0.212		mg/L		106	80 - 120	1	20				
Cadmium	0.200	0.210	+	mg/L		105	80 - 120	0	20				
Chromium	0.200	0.216		mg/L		108	80 - 120	1	20				
Copper	0.200	0.222		mg/L		111	80 - 120	0	20				
Lead	0.200	0.204		mg/L		102	80 - 120	2	20				
Nickel	0.200	0.204		mg/L		102	80 - 120	1	20				
Selenium	0.200	0.209		mg/L		104	80 - 120	1	20				
Silver	0.0500	0.0510		mg/L		102	80 - 120	1	20				
Thallium	0.200	0.218		mg/L		109	80 - 120	2	20				
Zinc	0.200	0.222		mg/L		111	80 - 120	4	20				

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-186941/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 187138								Prep Batch:	186941
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/11/14 08:30	06/11/14 14:44	1

Lab Sample ID: LCS 480-186941/2-A					Client	Sample	ID: Lab Co	ntrol Sample
Matrix: Water							Prep Ty	/pe: Total/NA
Analysis Batch: 187138							Prep B	latch: 186941
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00667	0.00722		mg/L		108	80 _ 120	

Lab Sample ID: 480-61456-6	MS			Client Sample ID: MW-9M
Lab Sample ID. 400-01430-0	1113			•
Matrix: Water				Prep Type: Total/NA
Analysis Batch: 187138				Prep Batch: 186941
	Sample Sample	Snike	MS MS	% Por

	Analysis Batch: 187138									Prep	Batch: 18	36941
1		Sample	Sample	Spike	MS	MS				%Rec.		
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	Mercury	ND		0.00667	0.00705		mg/L		106	75 - 125		

Lab Sample ID: 480-61456-6 MSD								(Client Samp	le ID: M	W-9M
Matrix: Water						Prep T	ype: To	tal/NA			
Analysis Batch: 187138									Prep l	Batch: 1	86941
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00667	0.00732		ma/L		110	75 - 125	4	20

Lab Sample ID: MB 480-187125/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 187375								Prep Batch:	187125
•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/12/14 08:20	06/12/14 12:42	1

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: Lab Control Sample

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 480-187125/2-A

Matrix: Water

Analysis Batch: 187375

Spike LCS LCS %Rec Added Result Qualifier Limits Unit %Rec

Analyte Mercury

0.00667

0.00677

mg/L

101

Prep Type: Total/NA **Prep Batch: 187125**

80 _ 120

Client Sample ID: MW-4S

Lab Sample ID: 480-61536-1 MS

Matrix: Water

Analysis Batch: 187375

Prep Type: Total/NA **Prep Batch: 187125**

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits Mercury ND 0.00667 0.00687 mg/L 103 75 - 125

Lab Sample ID: 480-61536-1 MSD

Matrix: Water

Analysis Batch: 187375

Client Sample ID: MW-4S Prep Type: Total/NA

Prep Batch: 187125

Spike MSD MSD Sample Sample %Rec. RPD Analyte Result Qualifler Added Result Qualifier Unit %Rec Limits Limit 0.00667 mg/L 75 - 125 Mercury 0.00700

Lab Sample ID: MB 480-187498/1-A

Matrix: Water

Analysis Batch: 187677

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 187498

MR MR

Qualifier MDL Unit Dil Fac Analyte Result Mercury ND 0.00020 0.00012 mg/L 06/13/14 07:51 06/13/14 12:51

Lab Sample ID: LCS 480-187498/2-A

Matrix: Water

Analysis Batch: 187677

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 187498

%Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits 80 - 120 Mercury 0.00687 0.00707 mg/L 106

Spike

Added

0.00667

Lab Sample ID: MB 480-188083/1-A

Matrix: Water

Analysis Batch: 188515

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 188083

Dil Fac

Analyte

MB MB

Result Qualifier ND

RL MDL Unit 0.00020 0.00012 mg/L

Unit

mg/L

Analyzed Prepared 06/18/14 10:40 06/18/14 14:04

%Rec

101

Lab Sample ID: LCS 480-188083/2-A

Matrix: Water

Mercury

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 188515

Analysis Batch: 188772

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 188083

%Rec. Limits 80 - 120

Lab Sample ID: MB 480-188503/1-A Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 188503

MR MR

Result Qualifier ND

RL 0.00020

MDL Unit 0.00012 mg/L

LCS LCS

0.00672

Result Qualifier

Prepared 06/19/14 07:05 Analyzed Dil Fac

06/19/14 11:59

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-188503/2-A

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Mercury

Analysis Batch: 188772

Spike Added

0.00667

LCS LCS Result Qualifier

0.00645

mg/L

Unit

%Rec

Prep Type: Total/NA Prep Batch: 188503

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 188511

Limits 80 - 120

Lab Sample ID: MB 480-188511/1-A

Matrix: Water

Analysis Batch: 188772

MB MB

ND

Result Qualifier

RL 0.00020

MDL Unit 0.00012 mg/L

Prepared 06/19/14 07:05

Analyzed 06/19/14 12:52

Client Sample ID: Method Blank

Prep Batch: 188511 Dil Fac

Lab Sample ID: LCS 480-188511/2-A

Lab Sample ID: MB 480-190491/1-A

Matrix: Water

Analysis Batch: 188772

Analyte

Analysis Batch: 190602

Spike Added 0.00667

LCS LCS Result Qualifier 0.00738

Unit mg/L %Rec 111

Limits 80 - 120

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 190491

Prep Type: Total/NA

Prep Type: Total/NA

MB MB

Analyte Mercury

Matrix: Water

Result Qualifier ND

RL 0,00020

MDL Unit 0.00012 mg/L

Prepared 06/30/14 08:20

Analyzed 06/30/14 12:06 Dil Fac

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-186643/1

Matrix: Water

Analysis Batch: 186643

MB MB

Analyte **Total Dissolved Solids** Result Qualifier ND

RL 10.0 **MDL** Unit 4.0 mg/L Prepared

Analyzed 06/09/14 22:43

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-186643/2

Lab Sample ID: MB 480-186892/1

Matrix: Water

Matrix: Water

Analysis Batch: 186643

Analysis Batch: 186892

Analyte

Total Dissolved Solids

502

Spike Added

LCS LCS Result Qualifier 477.0

Unit mg/L D %Rec 95 %Rec. Limits 85 - 115

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

MB MB

Analyte Total Dissolved Solids Result Qualifier ND

RL 10.0 MDL Unit 4.0 mg/L Prepared

Analyzed 06/10/14 21:00

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

3

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 480-186892/2

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 186892

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Total Dissolved Solids
 502
 494.0
 mg/L
 99
 85 - 115

Lab Sample ID: MB 480-188049/1 Client Sample ID: Method Blank
Matrix: Water Prep Type: Total/NA

Analysis Batch: 188049

 MB
 MB

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Dissolved Solids
 ND
 10.0
 4.0
 mg/L
 06/16/14 23:48
 1

Lab Sample ID: LCS 480-188049/2

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 188049

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Total Dissolved Solids
 503
 484.0
 mg/L
 96
 85 - 115

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

GC/MS VOA

Analysis Batch: 187732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-81458-1	MW-6S	Total/NA	Water	624	
480-61456-2	MW-8D	Total/NA	Water	624	
480-61456-3	MVV-8S	Total/NA	Water	624	
480-61456-4	SW-3	Total/NA	Water	624	
480-61456-5	MVV-9D	Total/NA	Water	624	
480-61456-6	MVV-9M	Total/NA	Water	624	
480-81456-7	MVV-9S	Total/NA	Water	624	
480-61456-8	SW-1	Total/NA	Water	624	
480-61456-9	MVV-3S	Total/NA	Water	624	
480-61456-10	SW-2	Total/NA	Water	824	
480-61456-11	Trip Blank	Total/NA	Water	624	
LCS 480-187732/5	Lab Control Sample	Total/NA	Water	624	
MB 480-187732/7	Method Blank	Total/NA	Water	624	
in the state of th					

Analysis Batch: 187904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61536-1	MW-4S	Total/NA	Water	824	
480-61536-2	MW-4D	Total/NA	Water	624	
480-61536-3	MW-1S	Total/NA	Water	624	
480-61536-4	MW-2D	Total/NA	Water	624	
480-61536-5	MW-2S	Total/NA	Water	624	
480-61536-6	MW-12S	Total/NA	Water	624	
480-61536-7	MW-7S	Total/NA	Water	624	
480-61536-8	MW-10S	Total/NA	Water	624	
480-61536-9	Trip Blank	Total/NA	Water	624	
LCS 480-187904/5	Lab Control Sample	Total/NA	Water	624	
MB 480-187904/7	Method Blank	Total/NA	Water	624	

Analysis Batch: 188629

Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
MW-5D	Total/NA	Water	624	
MW-5S	Total/NA	Water	624	
MW-11D	Total/NA	Water	624	
Lab Control Sample	Total/NA	Water	624	
Method Blank	Total/NA	Water	624	
	MW-5D MW-5S MW-11D Lab Control Sample	MW-5D Total/NA MW-5S Total/NA MW-11D Total/NA Lab Control Sample Total/NA	MW-5D Total/NA Water MW-5S Total/NA Water MW-11D Total/NA Water Lab Control Sample Total/NA Water	MW-5D Total/NA Water 624 MW-5S Total/NA Water 624 MW-11D Total/NA Water 624 Lab Control Sample Total/NA Water 624

Metals

Prep Batch: 186689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61536-1	MW-4S	Total/NA	Water	3005A	
480-61536-2	MW-4D	Total/NA	Water	3005A	
480-61536-3	MW-1S	Total/NA	Water	3005A	
480-61536-4	MW-2D	Total/NA	Water	3005A	
480-81536-4 MS	MW-2D	Total/NA	Water	3005A	
480-61536-4 MSD	MW-2D	Total/NA	Water	3005A	
480-61536-5	MW-2S	Total/NA	Water	3005A	
480-61536-8	MW-12S	Total/NA	Water	3005A	
480-61536-7	MW-7S	Total/NA	Water	3005A	
480-61536-8	MW-10S	Total/NA	Water	3005A	

TestAmerica Buffalo

8/20/2014

Page 72 of 117

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

2

.

3

13

17

8

10

12

14

16

Metals (Continued)

Pron F	Ratch:	126620	(Continue	ď١

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-186689/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-186689/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 186831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-61456-1	MW-6S	Total/NA	Water	3005A	
480-61456-2	MW-8D	Total/NA	Water	3005A	
480-61456-3	MW-8S	Total/NA	Water	3005A	
480-61456-4	SW-3	Total/NA	Water	3005A	
480-61456-5	MW-9D	Total/NA	Water	3005A	
480-61456-6	MVV-9M	Total/NA	Water	3005A	
480-61456-7	MW-9S	Total/NA	Water	3005A	
480-61456-8	SW-1	Total/NA	Water	3005A	
480-61456-9	MW-3S	Total/NA	Water	3005A	
480-61456-10	SW-2	Total/NA	Water	3005A	
LCS 480-186831/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-186831/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 186941

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-6S	Total/NA	Water	7 470 A	
480-61456-2	MW-8D	Total/NA	Water	7470A	
480-61456-3	MW-8S	Total/NA	Water	7470A	
480-61456-4	SW-3	Total/NA	Water	7470A	
480-61456-6	MVV-9M	Total/NA	Water	7470A	
480-61456-6 MS	MVV-9M	Total/NA	Water	7470A	
480-61456-6 MSD	MVV-9M	Total/NA	Water	7470A	
480-61456-7	MW-9S	Total/NA	Water	7470A	
480-61456-8	SW-1	Total/NA	Water	7470A	
480-61456-9	MVV-3S	Total/NA	Water	7470A	
480-61456-10	SW-2	Total/NA	Water	7470A	
LCS 480-186941/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-186941/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 187125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61536-1	MVV-48	Total/NA	Water	7470A	
480-61536-1 MS	MVV-4S	Total/NA	Water	7470A	
480-61536-1 MSD	MW-4S	Total/NA	Water	7470A	
480-61536-2	MW-4D	Total/NA	Water	7470A	
480-61536-3	MVV-1S	Total/NA	Water	7470A	
480-61536-4	MW-2D	Total/NA	Water	7470A	
480-61536-5	MW-2S	Total/NA	Water	7470A	
480-61536-6	MW-12S	Total/NA	Water	7470A	
480-61536-7	MW-7S	Total/NA	Water	7470A	
480-61536-8	MVV-10S	Total/NA	Water	7470A	
LCS 480-187125/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-187125/1-A	Method Blank	Total/NA	Water	7470A	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Metals (Continued)

Analyei	e Ratch	187138

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-6S	Total/NA	Water	7470A	186941
480-61456-2	MVV-8D	Total/NA	Water	7470A	186941
480-61456-3	MVV-8S	Total/NA	Water	7470A	186941
480-61456-4	SW-3	Total/NA	Water	7470A	186941
480-61456-6	MVV-9M	Total/NA	Water	7470A	186941
480-61456-6 MS	MVV-9M	Total/NA	Water	7470A	186941
480-61456-6 MSD	MVV-9M	Total/NA	Water	7470A	186941
480-61456-7	MVV-9S	Total/NA	Water	7470A	186941
480-61456-8	SW-1	Total/NA	Water	7470A	186941
480-61456-9	MVV-3S	Total/NA	Water	7470A	186941
480-61456-10	SW-2	Total/NA	Water	7470A	186941
LCS 480-186941/2-A	Lab Control Sample	Total/NA	Water	7470A	186941
MB 480-186941/1-A	Method Blank	Total/NA	Water	7470A	186941

Analysis Batch: 187280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61536-1	MW-4S	Total/NA	Water	6010C	186689
480-61536-2	MW-4D	Total/NA	Water	6010C	186689
480-61536-3	MVV-1S	Total/NA	Water	6010C	186689
480-61536-4	MW-2D	Total/NA	Water	6010C	186689
480-61536-4 MS	MW-2D	Total/NA	Water	6010C	186689
480-61536-4 MSD	MW-2D	Total/NA	Water	6010C	186689
480-61536-5	MW-2S	Total/NA	Water	6010C	186689
480-61536-6	MW-12S	Total/NA	Water	6010C	186689
480-61536-7	MVV-7S	Total/NA	Water	6010C	186689
480-61536-8	MVV-10S	Total/NA	Water	8010C	186689
LCS 480-186689/2-A	Lab Control Sample	Total/NA	Water	8010C	186689
MB 480-186689/1-A	Method Blank	Total/NA	Water	6010C	186689

Analysis Batch: 187375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61536-1	MW-4S	Total/NA	Water	7470A	187125
480-61536-1 MS	MW-4S	Total/NA	Water	7470A	187125
480-61536-1 MSD	MW-4S	Total/NA	Water	7470A	187125
480-61536-2	MW-4D	Total/NA	Water	7470A	187125
480-61536-3	MW-1S	Total/NA	Water	7470A	187125
480-61536-4	MW-2D	Total/NA	Water	7470A	187125
480-61536-5	MW-2S	Total/NA	Water	7470A	187125
480-61536-6	MW-12S	Total/NA	Water	7470A	187125
480-61536-7	MVV-7S	Total/NA	Water	7470A	187125
480-61536-8	MW-10S	Total/NA	Water	7470A	187125
LCS 480-187125/2-A	Lab Control Sample	Total/NA	Water	7470A	187125
MB 480-187125/1-A	Method Blank	Total/NA	Water	7470A	187125

Prep Batch: 187498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-81456-5	MW4-8D	Total/NA	Water	7470A	
LCS 480-187498/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-187498/1-A	Method Blank	Total/NA	Water	7470A	

TestAmerica Buffalo

Page 74 of 117

2

1

6

8

10

112

13

15

18

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Metals (Co	ontinued)
------------	-----------

-				_
Ann	Moio	Ratch	: 18767	7
Alla	14919	Datti	. 10/0/	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-5	MVV-9D	Total/NA	Water	7470A	187498
LCS 480-187498/2-A	Lab Control Sample	Total/NA	Water	7470A	187498
MB 480-187498/1-A	Method Blank	Total/NA	Water	7470A	187498

Filtration Batch: 187784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-6S	Dissolved	Water	FILTRATION	
480-61456-5	MW-9D	Dissolved	Water	FILTRATION	
480-61456-5 MS	MW-9D	Dissolved	Water	FILTRATION	
480-61456-5 MSD	MW-9D	Dissolved	Water	FILTRATION	
480-61456-9	MVV-3S	Dissolved	Water	FILTRATION	
480-61536-3	MW-1S	Dissolved	Water	FILTRATION	
480-61536-5	MW-2S	Dissolved	Water	FILTRATION	
480-61536-6	MW-12S	Dissolved	Water	FILTRATION	
480-61536-7	MW-7S	Dissolved	Water	FILTRATION	
480-61536-8	MW-10S	Dissolved	Water	FILTRATION	
LCS 480-187784/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCSD 480-187784/3-B	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
MB 480-187784/1-B	Method Blank	Dissolved	Water	FILTRATION	

Analysis Batch: 187846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-81458-1	MW-6S	Total/NA	Water	6010C	186831
480-61456-2	MVV-8D	Total/NA	Water	6010C	186831
480-61456-3	MVV-8S	Total/NA	Water	6010C	186831
480-61456-4	SW-3	Total/NA	Water	6010C	186831
480-61456-5	MVV-9D	Total/NA	Water	6010C	186831
480-61456-6	MVV-9M	Total/NA	Water	6010C	186831
480-61456-7	MW-9S	Total/NA	Water	6010C	186831
480-61456-8	SW-1	Total/NA	Water	6010C	186831
480-61456-9	MVV-3S	Total/NA	Water	6010C	186831
480-61456-10	SW-2	Total/NA	Water	6010C	186831
LCS 480-186831/2-A	Lab Control Sample	Total/NA	Water	6010C	186831
MB 480-186831/1-A	Method Blank	Total/NA	Water	6010C	186831

Prep Batch: 187899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-81456-1	MW-6S	Dissolved	Water	3005A	187784
480-61456-5	MW-9D	Dissolved	Water	3005A	187784
480-61456-5 MS	MVV-9D	Dissolved	Water	3005A	187784
480-61456-5 MSD	MVV-9D	Dissolved	Water	3005A	187784
480-61456-9	MW-3S	Dissolved	Water	3005A	187784
480-61536-3	MW-1S	Dissolved	Water	3005A	187784
480-61536-5	MW-2S	Dissolved	Water	3005A	187784
480-61536-6	MW-12S	Dissolved	Water	3005A	187784
480-61536-7	MW-7S	Dissolved	Water	3005A	187784
480-61536-8	MW-10S	Dissolved	Water	3005A	187784
LCS 480-187784/2-B	Lab Control Sample	Dissolved	Water	3005A	187784
LCSD 480-187784/3-B	Lab Control Sample Dup	Dissolved	Water	3005A	187784
MB 480-187784/1-B	Method Blank	Dissolved	Water	3005A	187784

TestAmerica Buffalo

8/20/2014

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Motals	(Continued)

Prep	Batch:	187903
------	--------	--------

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MVV-6D	Total/NA	Water	3005A	
MVV-5S	Total/NA	Water	3005A	
MW-11D	Total/NA	Water	3005A	
Lab Control Sample	Total/NA	Water	3005A	
Method Blank	Total/NA	Water	3005A	
	MW-5D MW-5S MW-11D Lab Control Sample	MW-5D Total/NA MW-5S Total/NA MW-11D Total/NA Lab Control Sample Total/NA	MW-5D Total/NA Water MW-5S Total/NA Water MW-11D Total/NA Water Lab Control Sample Total/NA Water	MW-5D Total/NA Water 3005A MW-5S Total/NA Water 3005A MW-11D Total/NA Water 3005A Lab Control Sample Total/NA Water 3005A

Prep Batch: 188083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-8S	Dissolved	Water	7470A	187784
480-61456-5	MW-9D	Dissolved	Water	7470A	, 187784
480-61456-9	MW-3S	Dissolved	Water	7470A	187784
480-61536-3	MW-1S	Dissolved	Water	7470A	187784
480-61536-5	MW-2S	Dissolved	Water	7470A	187784
480-61536-6	MW-12S	Dissolved	Water	7470A	187784
480-81536-7	MW-7S	Dissolved	Water	7470A	187784
480-61536-8	MW-10S	Dissolved	Water	7470A	187784
LCS 480-188083/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-188083/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 188191

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-6S	Total/NA	Water	6010C	186831
480-61456-2	MW-8D	Total/NA	Water	8010C	186831
480-61456-3	MVV-8S	Total/NA	Water	6010C	186831
480-61456-4	SW-3	Total/NA	Water	6010C	186831
480-61456-5	MW-9D	Total/NA	Water	6010C	186831
480-61456-5	MVV-9D	Total/NA	Water	6010C	186831
480-61456-6	MVV-9M	Total/NA	Water	8010C	186831
480-61456-7	MVV-9S	Total/NA	Water	8010C	186831
480-61456-8	SW-1	Total/NA	Water	6010C	186831
480-61456-9	MVV-3S	Total/NA	Water	8010C	186831
480-61456-10	SW-2	Total/NA	Water	6010C	186831
LCS 480-186831/2-A	Lab Control Sample	Total/NA	Water	8010C	186831
MB 480-186831/1-A	Method Blank	Total/NA	Water	6010C	186831

Prep Batch: 188503

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-3	MW-110	Total/NA	Water	7470A	
LCS 480-188503/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-188503/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 188511

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-1	MW-SD	Total/NA	Water	7470A	
480-61930-2	MW-5S	Total/NA	Water	7470A	
LCS 480-188511/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-188511/1-A	Method Blank	Total/NA	Water	7470A	
MB 480-188511/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 188515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-6S	Dissolved	Water	7470A	188083

TestAmerica Buffalo

8/20/2014

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

R

Metals (Continued)

Analysis	Batch:	188515	(Continued)
-----------------	--------	--------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-5	MW-9D	Dissolved	Water	7470A	188083
480-61456-9	MVV-3S	Dissolved	Water	7470A	188083
480-61536-3	MVV-1S	Dissolved	Water	7470A	188083
480-61536-5	MW-2S	Dissolved	Water	7470A	188083
480-61536-6	MW-12S	Dissolved	Water	7470A	188083
480-61536-7	MW-7S	Dissolved	Water	7470A	188083
480-61536-8	MW-10S	Dissolved	Water	7470A	188083
LCS 480-188083/2-A	Lab Control Sample	Total/NA	Water	7470A	188083
MB 480-188083/1-A	Method Blank	Total/NA	Water	7470A	188083

Analysis Batch: 188622

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-1	MW-5D	Total/NA	Water	6010C	187903
480-61930-2	MW-5S	Total/NA	Water	6010C	187903
480-61930-3	MW-11D	Total/NA	Water	6010C	187903
LCS 480-187903/2-A	Lab Control Sample	Total/NA	Water	6010C	187903
MB 480-187903/1-A	Method Blank	Total/NA	Water	6010C	187903

Analysis Batch: 188772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-81930-1	MW-5D	Total/NA	Water	7470A	188511
480-61930-2	MVV-5S	Total/NA	Water	7470A	188511
480-61930-3	MW-11D	Total/NA	Water	7470A	188503
LCS 480-188503/2-A	Lab Control Sample	Total/NA	Water	7470A	188503
LCS 480-188511/2-A	Lab Control Sample	Total/NA	Water	7470A	188511
MB 480-188503/1-A	Method Blank	Total/NA	Water	7470A	188503
MB 480-188511/1-A	Method Blank	Total/NA	Water	7470A	188511

Analysis Batch: 189206

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-1	MW-6S	Dissolved	Water	6010C	187899
480-61456-9	MW-3S	Dissolved	Water	6010C	187899
480-61536-3	MVV-1S	Dissolved	Water	6010C	187899
480-61536-5	MW-2S	Dissolved	Water	6010C	187899
480-61536-6	MW-12S	Dissolved	Water	6010C	187899
480-61536-7	MW-7S	Dissolved	Water	6010C	187899
480-61536-8	MW-10S	Dissolved	Water	6010C	187899
LCS 480-187784/2-B	Lab Control Sample	Dissolved	Water	6010C	187899
LCSD 480-187784/3-B	Lab Control Sample Dup	Dissolved	Water	6010C	187899
MB 480-187784/1-B	Method Blank	Dissolved	Water	6010C	187899

Filtration Batch: 189533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-3	MW-11D	Dissolved	Water	FILTRATION	

Prep Batch: 190491

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-3	MW-11D	Dissolved	Water	7470A	189533
LCS 480-190491/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-190491/1-A	Method Blank	Total/NA	Water	7470A	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

	(Continu	

Analy	eie.	Batch:	100602
Anary	1515	Datell.	190602

-	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-61930-3	MW-11D	Dissolved	Water	7470A	190491
	LCS 480-190491/2-A	Lab Control Sample	Total/NA	Water	7470A	190491
-	MB 480-190491/1-A	Method Blank	Total/NA	Water	7470A	190491

Filtration Batch: 190759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-3	MW-11D	Dissolved	Water	FILTRATION	
LCS 480-190759/2-B	Lab Control Sample	Dissolved	Water	FILTRATION .	
LCSD 480-190759/3-B	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
MB 480-190759/1-B	Method Blank	Dissolved	Water	FILTRATION	

Analysis Batch: 190805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-5	MW-9D	Dissolved	Water	6010C	187899
480-61456-5 MS	MW-9D	Dissolved	Water	6010C	187899
480-61456-5 MSD	MW-9D	Dissolved	Water	6010C	187899

Prep Batch: 190965

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MW-11D	Dissolved	Water	3005A	190759
Lab Control Sample	Dissolved	Water	3005A	190759
Lab Control Sample Dup	Dissolved	Water	3005A	190759
Method Blank	Dissolved	Water	3005A	190759
	MW-11D Lab Control Sample Lab Control Sample Dup	MW-11D Dissolved Lab Control Sample Dissolved Lab Control Sample Dup Dissolved	MW-11D Dissolved Water Lab Control Sample Dissolved Water Lab Control Sample Dup Dissolved Water	MW-11D Dissolved Water 3005A Lab Control Sample Dip Dissolved Water 3005A Lab Control Sample Dup Dissolved Water 3005A

Analysis Batch: 191201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61458-5	MW-9D	Dissolved	Water	6010C	187899
480-61456-5 MS	MW-9D	Dissolved	Water	6010C	187899
480-61456-5 MSD	MW-9D	Dissolved	Water	6010C	187899

Analysis Batch: 191380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61930-3	MW-11D	Dissolved	Water	8010C	190965
LCS 480-190759/2-B	Lab Control Sample	Dissolved	Water	6010C	190965
LCSD 480-190759/3-B	Lab Control Sample Dup	Dissolved	Water	6010C	190965
MB 480-190759/1-B	Method Blank	Dissolved	Water	6010C	190965

Analysis Batch: 191583

- 1	****					
	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-61930-3	MW-11D	Dissolved	Water	8010C	190965

General Chemistry

Analysis Batch: 186643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61458-1	NFVV-63	Total/NA	Water	SM 2540C	
480-61456-2	MW-8D	Total/NA	Water	SM 2540C	
480-61456-3	MW-8S	Total/NA	Water	SM 2540C	
480-61456-4	SW-3	Total/NA	Water	SM 2540C	
480-61456-5	MW-9D	Total/NA	Water	SM 2540C	

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

179

General Chemistry (Continued)

Analysis	Batch:	186643	(Continued
----------	--------	--------	------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61456-8	MW-9M	Total/NA	Water	SM 2540C	
480-61456-7	MW-9S	Total/NA	Water	SM 2540C	
480-61456-8	SW-1	Total/NA	Water	SM 2540C	
480-61456-9	MW-3S	Total/NA	Water	SM 2540C	
480-61456-10	SW-2	Total/NA	Water	SM 2540C	
LCS 480-186643/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-186643/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 186892

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61536-1	MW-4S	Total/NA	Water	SM 2540C	
480-61536-2	MW-4D	Total/NA	Water	SM 2540C	
480-61536-3	MW-1S	Total/NA	Water	SM 2540C	
480-61536-4	MW-2D	Total/NA	Water	SM 2540C	
480-61536-5	MVV-2S	Total/NA	Water	SM 2540C	
480-61536-6	MW-12S	Total/NA	Water	SM 2540C	
480-61536-7	MW-7S	Total/NA	Water	SM 2540C	
480-61536-8	MW-10S	Total/NA	Water	SM 2540C	
LCS 480-186892/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-186892/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 188049

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MW-5D	Total/NA	Water	SM 2540C	
MW-5S	Total/NA	Water	SM 2540C	
MW-11D	Total/NA	Water	SM 2540C	
Lab Control Sample	Total/NA	Water	SM 2540C	٠
Method Blank	Total/NA	Water	SM 2540C	
	MW-5D MW-5S MW-11D Lab Control Sample	MW-5D Total/NA MW-5S Total/NA MW-11D Total/NA Lab Control Sample Total/NA	MW-5D Total/NA Water MW-5S Total/NA Water MW-11D Total/NA Water Lab Control Sample Total/NA Water	MW-5D Total/NA Water SM 2540C MW-5S Total/NA Water SM 2540C MW-11D Total/NA Water SM 2540C Lab Control Sample Total/NA Water SM 2540C

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-6S Date Collected: 06/05/14 15:07 Date Received: 06/07/14 01:30

Lab Sample ID: 480-61456-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/14/14 23:15	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189206	06/20/14 16:15	SS1	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:07	HJM	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 18:23	HJM	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:16	LRK	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 14:52	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 22:53	KS	TAL BUF

Client Sample ID: MW-8D

Date Collected: 06/06/14 11:45

Date Received: 06/07/14 01:30

Lab Sample ID: 480-61456-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/14/14 23:38	LCH	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:10	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 18:36	HJM	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 14:54	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 22:55	KS	TAL BUF

Client Sample ID: MW-8S Date Collected: 06/06/14 12:00

Date Received: 06/07/14 01:30

Lab Sample ID: 480-61456-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/15/14 00:02	LCH	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:13	HJM	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 18:39	HJM	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 14:56	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 22:57	KS	TAL BUF

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: SW-3

Lab Sample ID: 480-61456-4

Date Collected: 06/06/14 12:15 Date Received: 06/07/14 01:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	624		1	187732	06/15/14 00:26	LCH	TAL BUF	
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF	
Total/NA	Analysis	6010C		1	187846	06/13/14 13:17	HJM	TAL BUF	
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF	
Total/NA	Analysis	6010C		1	188191	06/16/14 18:42	HJM	TAL BUF	
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF	
Total/NA	Analysis	7470A		1	187138	06/11/14 14:58	LRK	TAL BUF	13
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 22:59	KS	TAL BUF	

Lab Sample ID: 480-61456-5

Matrix: Water

Client Sample ID: MW-9D

Date Collected: 06/06/14 12:55

Date Received: 06/07/14 01:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624		4	187732	06/15/14 00:51	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		5	190805	06/23/14 11:29	SS1	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		10	191201	07/02/14 12:56	MTM2	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:20	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 18:45	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		5	188191	06/16/14 18:49	НЈМ	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:18	LRK	TAL BUF
Total/NA	Prep	7470A			187498	06/13/14 07:51	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187677	06/13/14 12:57	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 23:01	KS	TAL BUF

Client Sample ID: MW-9M Date Collected: 06/06/14 13:30 Lab Sample ID: 480-61456-6

Matrix: Water

Date Received: 06/07/14 01:30

ner	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/15/14 01:14	LCH	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:23	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61456-6

Matrix: Water

Client Sample ID: MW-9M Date Collected: 06/06/14 13:30 Date Received: 06/07/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		1	188191	06/16/14 18:52	НЈМ	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 15:05	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 23:03	KS	TAL BUF

Client Sample ID: MW-9S Lab Sample ID: 480-61456-7 Date Collected: 06/06/14 14:00

Date Received: 06/07/14 01:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/15/14 01:38	LCH	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:26	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 18:55	НЈМ	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 15:12	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 23:04	KS	TAL BUF

Lab Sample ID: 480-61456-8 Client Sample ID: SW-1

Date Collected: 06/06/14 14:30 Date Received: 06/07/14 01:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/15/14 02:01	LCH	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:29	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 18:59	НЈМ	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 15:14	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 23:06	KS	TAL BUF

Lab Sample ID: 480-61456-9 Client Sample ID: MW-3S

Page 82 of 117

Matrix: Water Date Collected: 06/06/14 15:00 Date Received: 06/07/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187732	06/15/14 02:25	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189206	06/20/14 16:45	SS1	TAL BUF

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Client Sample ID: MW-3S

Lab Sample ID: 480-61456-9

Matrix: Water

Date Collected: 06/06/14 15:00 Date Received: 06/07/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			166631	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:33	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 19:02	НЈМ	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:27	LRK	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 15:15	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186643	06/09/14 23:08	KS	TAL BUF

Client Sample ID: SW-2

Lab Sample ID: 480-61456-10

Matrix: Water

Date Collected: 06/06/14 15:15 Date Received: 06/07/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		4	187732	06/15/14 02:48	LCH	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187846	06/13/14 13:45	НЈМ	TAL BUF
Total/NA	Prep	3005A			186831	06/10/14 15:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188191	06/16/14 19:14	НЈМ	TAL BUF
Total/NA	Prep	7470A			186941	06/11/14 08:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	187138	06/11/14 15:17	LRK	TAL BUF

186643 06/09/14 23:10 KS

Client Sample ID: Trip Blank

Analysis

SM 2540C

Lab Sample ID: 480-61456-11

TAL BUF

Matrix: Water

Date Collected: 06/06/14 00:00 Date Received: 06/07/14 01:30

Total/NA

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	624		1	187732	06/15/14 03:12	LCH	TAL BUF	•

Client Sample ID: MW-4S Date Collected: 06/09/14 11:35 Lab Sample ID: 480-61536-1

Matrix: Water

Date Received: 06/10/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/16/14 22:32	LCH	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:21	MTM2	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 12:46	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:10	KS	TAL BUF

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-2

Matrix: Water

Client Sample ID: MW-4D Date Collected: 06/09/14 12:05 Date Received: 06/10/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/16/14 22:56	LCH	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:24	MTM2	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 12:56	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:11	KS	TAL BUF

Lab Sample ID: 480-61536-3

Matrix: Water

Date Collected: 06/09/14 12:45 Date Received: 06/10/14 01:30

Client Sample ID: MW-1S

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/16/14 23:19	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189206	06/20/14 16:58	SS1	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:27	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:25	LRK	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 12:57	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:13	KS	TAL BUF

Client Sample ID: MW-2D

Date Collected: 06/09/14 14:00

Date Received: 06/10/14 01:30

_ab	Sample	ID:	480-61536-4	
			Madeine Minter	

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/16/14 23:43	LCH	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:30	MTM2	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 12:59	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:15	KS	TAL BUF

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61536-5

Matrix: Water

Client Sample ID: MW-2S Date Collected: 06/09/14 14:15 Date Received: 06/10/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/17/14 00:07	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189206	06/20/14 17:01	SS1	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:52	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:30	LRK	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 13:01	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:17	KS	TAL BUF

Lab Sample ID: 480-61536-6 Client Sample ID: MW-12S

Date Collected: 06/09/14 14:50 **Matrix: Water** Date Received: 06/10/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/17/14 00:31	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189206	06/20/14 17:04	SS1	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:55	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:34	LRK .	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 13:02	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:18	KS	TAL BUF

Lab Sample ID: 480-61536-7 Client Sample ID: MW-7S Date Collected: 06/09/14 15:50 Matrix: Water Date Received: 06/10/14 01:30

Page 85 of 117

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	187904	06/17/14 00:55	LCH	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF
Dissolved	Prep	3005A			187899	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189206	06/20/14 17:07	SS1	TAL BUF
Total/NA	Prep	3005A			186689	06/10/14 10:30	EHD	TAL BUF
Total/NA	Analysis	6010C		1	187280	06/11/14 15:58	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187784	06/14/14 13:42	ZL	TAL BUF

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

3

Client Sample ID: MW-7S

Lab Sample ID: 480-61536-7

Date Collected: 06/09/14 15:50 Date Received: 06/10/14 01:30 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			188083	06/18/14 10:40	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188515	06/18/14 14:32	LRK	TAL BUF
Total/NA	Prep	7470A			187125	06/12/14 08:20	EHD	TAL BUF
Total/NA	Analysis	7470A		1	187375	06/12/14 13:04	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	186892	06/10/14 21:20	KS	TAL BUF

6

Lab Sample ID: 480-61536-8

Client Sample ID: MW-10S Date Collected: 06/09/14 16:30 Date Received: 06/10/14 01:30

Total/NA

Dissolved

Dissolved

Dissolved

Total/NA

Total/NA

Total/NA

. 400 01000 0

Matrix: Water

Dilution Batch Batch Batch Prepared Method Number Prep Type Run Factor or Analyzed Analyst Lab Type Total/NA LCH TAL BUF Analysis 624 187904 06/17/14 01:19 Dissolved Filtration **FILTRATION** 187784 06/14/14 13:42 TAL BUF Prep 187899 06/16/14 12:05 EHD TAL BUF Dissolved 3005A **SS1** 6010C TAL BUF Dissolved Analysis 1 189206 06/20/14 17:10 Total/NA 3005A 186689 06/10/14 10:30 Prep

187280

187784

188083

188515

187125

187375

186892

06/12/14 08:20

06/12/14 13:06

06/10/14 21:22 KS

13

06/10/14 10:30 EHD TAL BUF
06/11/14 16:01 MTM2 TAL BUF
06/14/14 13:42 ZL TAL BUF
06/18/14 10:40 LRK TAL BUF
06/18/14 14:19 LRK TAL BUF

TAL BUF

TAL BUF

TAL BUF

FHO

LRK

15

Client Sample ID: Trip Blank Date Collected: 06/09/14 00:00

6010C

7470A

7470A

7470A

7470A

SM 2540C

FILTRATION

Analysis

Filtration

Analysis

Analysis

Analysis

Prep

Prep

Lab Sample ID: 480-61536-9

Matrix: Water

Date Received: 06/10/14 01:30

1		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	624		1	187904	06/17/14 01:43	LCH	TAL BUF

Client Sample ID: MW-5D

Lab Sample ID: 480-61930-1

Matrix: Water

Date Collected: 06/13/14 12:00 Date Received: 06/14/14 02:00

Batch	Batch		Dilution	Batch	Prepared		
Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Analysis	624		1	188629	06/19/14 13:23	NMD1	TAL BUF
Prep	3005A			187903	06/16/14 12:05	EHD	TAL BUF
Analysis	6010C		1	188622	06/18/14 20:58	MTM2	TAL BUF
Prep	7470A			188511	06/19/14 07:05	LRK	TAL BUF
Analysis	7470A		1	188772	06/19/14 13:16	LRK	TAL BUF
Analysis	SM 2540C		1	188049	06/17/14 00:13	KS	TAL BUF
	Analysis Prep Analysis Prep Analysis	Type Method Analysis 624 Prep 3005A Analysis 6010C Prep 7470A Analysis 7470A	Type Method Run Analysis 624 Prep 3005A Analysis 6010C Prep 7470A Analysis 7470A	Type Method Run Factor Analysis 624 1 Prep 3005A 3005A Analysis 6010C 1 Prep 7470A 1 Analysis 7470A 1	Type Method Run Factor Number Analysis 624 1 188629 Prep 3005A 187903 Analysis 6010C 1 188622 Prep 7470A 188511 Analysis 7470A 1 188772	Type Method Run Factor Number or Analyzed Analysis 624 1 188629 06/19/14 13:23 Prep 3005A 187903 06/16/14 12:05 Analysis 6010C 1 188622 06/18/14 20:58 Prep 7470A 188511 06/19/14 07:05 Analysis 7470A 1 188772 06/19/14 13:16	Type Method Run Factor Number or Analyzed Analyst Analysis 624 1 188629 06/19/14 13:23 NMD1 Prep 3005A 187903 06/16/14 12:05 EHD Analysis 6010C 1 188622 06/18/14 20:58 MTM2 Prep 7470A 188511 06/19/14 07:05 LRK Analysis 7470A 1 188772 06/19/14 13:16 LRK

TestAmerica Buffalo

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID: 480-61930-2

Matrix: Water

Client Sample ID: MW-5S Date Collected: 06/13/14 12:30 Date Received: 06/14/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	168829	06/19/14 13:46	NMD1	TAL BUF
Total/NA	Prep	3005A			187903	06/16/14 12:05	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188622	06/18/14 21:01	MTM2	TAL BUF
Total/NA	Prep	7470A			188511	06/19/14 07:05	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188772	06/19/14 13:17	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	188049	06/17/14 00:14	KS	TAL BUF

Client Sample ID: MW-11D

Date Collected: 06/13/14 13:00

Date Received: 06/14/14 02:00

Lab Sam	ple ID:	480-6	1930-3
---------	---------	-------	--------

TAL BUF

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	188629	06/19/14 14:10	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			190759	07/01/14 10:09	SS1	TAL BUF
Dissolved	Prep	3005A			190965	07/02/14 11:20	SS1	TAL BUF
Dissolved	Analysis	6010C		1	191380	07/03/14 14:26	JRK	TAL BUF
Dissolved	Filtration	FILTRATION			190759	07/01/14 10:09	SS1	TAL BUF
Dissolved	Prep	3005A			190965	07/02/14 11:20	SS1	TAL BUF
Dissolved	Analysis	6010C		1	191583	07/07/14 15:48	JRK	TAL BUF
Total/NA	Prep	3005A			187903	06/16/14 12:05	EHD	TAL BUF
Total/NA	Analysis	6010C		1	188622	06/18/14 21:04	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			189533	06/24/14 11:37	EHD	TAL BUF
Dissolved	Prep	7470A			190491	06/30/14 08:20	LRK	TAL BUF
Dissolved	Analysis	7470A		1	190602	06/30/14 12:20	LRK	TAL BUF
Total/NA	Prep	7470A			188503	06/19/14 07:05	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188772	06/19/14 12:47	LRK	TAL BUF

Laboratory References:

Total/NA

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

SM 2540C

Analysis

188049 06/17/14 00:15 KS

Certification Summary

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-15
The following analytes	are included in this report, hi	ut contification is not offe	red by the governing s	uthority:	
The following analytes	are included in this report, bu	ut certification is not offe	red by the governing a	uthority:	
The following analytes Analysis Method	are included in this report, bu	ut certification is not offe	red by the governing a		

k)

4

5

9

10

11

12

14

1.5

Method Summary

Client: Town of Manlius Project/Site: Town of Dewitt

TestAmerica Job ID: 480-61456-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

•••

97

5

6

7

8

40

12

13

15

Sample Summary

Client: Town of Manlius Project/Site: Town of Dewitt TestAmerica Job ID: 480-61456-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-61456-1	MW-6S	Water	06/05/14 15:07	06/07/14 01:30
480-61456-2	MW-8D	Water	06/06/14 11:45	06/07/14 01:30
480-61456-3	MW-8S	Water	06/06/14 12:00	06/07/14 01:30
480-61456-4	SW-3	Water	06/06/14 12:15	06/07/14 01:30
480-61456-5	MW-9D	Water	06/06/14 12:55	06/07/14 01:30
480-61456-6	MVV-9M	Water	06/06/14 13:30	06/07/14 01:30
480-61456-7	MW-9S	Water	06/06/14 14:00	06/07/14 01:30
480-61456-8	SW-1	Water	06/06/14 14:30	06/07/14 01:30
480-61456-9	MW-3S	Water	06/06/14 15:00	06/07/14 01:30
480-61456-10	SW-2	Water	06/06/14 15:15	06/07/14 01:30
480-61456-11	Trip Blank	Water	06/06/14 00:00	06/07/14 01:30
480-61536-1	MW-4S	Water	06/09/14 11:35	06/10/14 01:30
480-61536-2	MW-4D	Water	06/09/14 12:05	06/10/14 01:30
480-61536-3	MW-1S	Water	06/09/14 12:45	06/10/14 01:30
480-61536-4	MW-2D	Water	06/09/14 14:00	06/10/14 01:30
480-61536-5	MW-2S	Water	06/09/14 14:15	06/10/14 01:30
480-61536-6	MW-12S	Water	06/09/14 14:50	06/10/14 01:30
480-61536-7	MW-7S	Water	06/09/14 15:50	06/10/14 01:30
480-61536-8	MW-10S	Water	06/09/14 16:30	06/10/14 01:30
480-61536-9	Trip Blank	Water	06/09/14 00:00	06/10/14 01:30
480-61930-1	MW-5D	Water	06/13/14 12:00	06/14/14 02:00
480-61930-2	MW-5S	Water	06/13/14 12:30	08/14/14 02:00
480-61930-3	MW-11D	Water	06/13/14 13:00	06/14/14 02:00

25 Kraft Road Albany, NY 12205

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

	Sampler:		- 1100	(4) (1) (3) (4) (1) (4)	11 11 8 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1	Tracking No(s		DC No: 80-50484-13464.1
Client Information Client Contact	Phone:		_				Pa	ge:
Mr. Michael Moracco Company:			-					age 1 of 3
Town of Dewitt		`	- 480.4	61 456 OL :		±d		
Address: 5400 Butternut Drive	Due Date Requested:		1001	01400 Chall	of Custody		20.3	eservation Codes:
City: East Syracuse	TAT Requested (days):						В	- HCL M - Hexane - NaOH N - None - Zn Acetate O - AsNaO2
State, Zip:								- Nîtric Acid P - Na2O4S - NaHSO4 Q - Na2SO3
NY, 13057 Phone:	PO#:				. 624			- MeOH R - Na2S2SO3 - Amchlor S - H2SO4
315-446-9250(Tel) Email:	Purchase Order not req wo #:	uired			§ 2		経 H	- Ascorbic Acid T - TSP Dodecahydrate lce U - Acetone
Email: mmoracco@townofdewitt.com	WO #.			(E)	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- DI Water V - MCAA - EDTA W - ph 4-5
Project Name: Town of Dewitt	Project #: 48009871			10	The Co			- EDA Z - other (specify)
Site:	ssow#:			Tally a	夏 8		5 or	her:
				TOTE TATES	A S			
		Sample Type	Matrix (wester, secold,	FISIGLE HETA FURLING HETA 8010C, 7470A	TDS D155 medalo		Total Number of contained	
Sample Identification	Sample Date Tim	e G=grab)	O=unstafoli, BT=Tissue, A=Air)	6010	0 0		Too	Special Instructions/Note:
The state of the s		T reserv	ation Code	XX 6				Barrier South
mw-les	6-5-14 150	7 6	Water	X	XXX			
mw-80	6-6-14 1145	6	Water	X	XX			
mw-85	6-6-14 174	0 6	Water	X'	XX			· · · · · · · · · · · · · · · · · · ·
Sw-3	6-6-14 121		Water		XX		1	
mw-90	6-6-14 125	5 5	Water	X	XXX			
mw-9m	6-6-14 133	6 5	Water	8	XX			
mw -95	6-6-14 140	0 6	Water	1	VV			
Sw-1	6-6-14 143	0 6	Water	X	XX			
mw-35	6-6-14 150	0 6	Water		XXX			
5W-2	6-6-4 151	5 6	Water	1	KK			
Trip Blank			Water	X				
Possible Hazard Identification		_		Sample	Disposal (A fee m	ay be assessed if samp	les are retained	longer than 1 month)
Non-Hazard Flammable Skin Irrita. Deliverable Requested: I, II, III, IV, Other (specify)	nt Poison B Unknown	Radiologica	1		tum To Client	Disposal By Lab	Archive	For Months
						Method of Ship	ment	
Empty Kit Relinquished by:	Date:		Company	Time:	recitive /	$\alpha I I$		Company
Relinquished by: Kalon	6-6-14	1800	TA	/		5	10/Time:	
Relinquished by:	Date/Time:		Company	Recei	ved by:	Dar	le/Time:	Company
Relinquished by:	Date/Time:		Company	Recei	red by:	Der	te/Time:	Company
Custody Seals Intact: Custody Seal No.:				Cooler	Temperature(s) °C and	Other Remarks:		1 # 1
Δ Yes Δ No	· .						2-	L#1

Page 91 of 117

25 Kraft Road Albany, NY 12205

Chain of Custody Ba-

			118888	M BOOM MAN					THE LEADER ALE	NYFICHIAEXTAL TESTS
Client Information	Sampler:						Tracking No(s):		COC No: 480-50586-1350	5.1
Sient Contact Ar. Michael Moracco	Phone:							1	Page: Page 1 of 2	
Company:			480-6	1536 Cha	in of Custody				Job#.	•
Town of Dewritt	In the Property of			ap.	ATT	anysis Requeste	ed	1 100		
5400 Butternut Drive	Due Date Requested:								Preservation Co	
ity: East Syracuse	TAT Requested (days):							1	A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
tate, Zip: VY, 13057								2.0	D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
thone: 115-446-9250(Tel)	PO#. Purchase Order not r	required							F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2SO3 S - H2SO4
mail:	WO#			Proping	Sales				I - ice	T - TSP Dodecahydrati U - Acetone
nmoracco@townofdewitt.com roject Name:	Project #:			e E	3			2	J - DI Water K - EDTA	V-MCAA W-ph4-5
own of Dewitt	48009871		2	la Bo	0				L-EDA	Z - other (specify)
itte:	SSOW#:			Literal Di	3			0	Other:	
		Sample		D D	XX					
		Type mple (C≔comp,		FINE FULL PLANE FULL PART FULL CA	Fa			a a		
Sample Identification		ime G=grab)	ation Code		SALE NEW THAT				Special In	structions/Note:
12 and the Art of the column Cardinates of the C		56	Water	V	V			1000	The second second	W. W. Carlotte, and the second
MW-45 MW-40		05 0	Water	D	2					
mw-15	6.9.14 12		Water	V	VV					-
MW-20		00 6	Water	1 Q	V					
mw. 25	6.9.14 14		Water	X	VV					
Mw- 125	-	50 6	Water	V	VV			臺		
MW-75		50 6	Water	X	VV					
MW-105		36 6	Water	X	XX					
Trio Pluk	,		Water	X						
		710	Water	1/2	-61-	1/1			***	
	1	711	Water	19	11	199	+++			
Possible Hazard Identification			1	Sample	Disposal (A fe	ee may be assesse		re retaine		month)
Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknown	Radiologica	1		etum To Client	Disposa.	By Lab	Archiv	re For	Months
Empty Kit Relinquished by:	Date	·	la la	Time:			ethod of Shipment	_		* *
Salinquiches by:	Date/Time:		Company		ived by:	12/	//	10-14		Company
Relinquished by:	Date/Time:	1736	Company	Recei	ived by:		Date/Time		0130	Company
telinquished by:	Date/Time:		Company	Recei	ived by:		Date/Time	e:		Company
Custody Seals Intact: Custody Seal No.:				Coole	er Temperature(s) °	C and Other Remarks:		-	2+41	

Page 92 of 117

Chain of Custode

Albany, NY 12205					1000	111111111							THE LEADER IN SN	YROMMENTAL TESTING
Client Information		Sampler.			-						Tracking	No(s):	COC No: 480-50484-13464	1.2
Client Information Client Contact Mr. Michael Moracco		Phone:		-	-								Page: Page 2 of 3	
Company:					480	-6193	30 Cha	ain (Custody	ie Pogije	ested		Job #:	
Town of Dewitt		Due Date Requests	ad.				ed			15 Keyu	Sieu	I I man	Preservation Code	96.
Address: 5400 Butternut Drive) Am				A-HCL	M - Hexane
City: East Syracuse		TAT Requested (da	ays):						Dissim				B - NaOH C - Zn Acetate D - Nitric Acid	N - None O - AsNaO2 P - Na2O4S
State, Zip: NY, 13057								124	9					Q - Na2SO3 R - Na2S2SO3
Phone: 315-446-9250(Tel)		PO#. Purchase Order	not require	d		NO.		Pollutant List - VOA - 824	4				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate U - Acetone
Email: mmoracco@townofdewitt.com		WO#:						Liet -	470				J - DI Water K - EDTA	V-MCAA W-ph 4-5
Project Name: Town of Dewitt		Project #: 48009871						lutant	7705				L-EDA	Z - other (specify)
Site:		SSOW#:						Ity Pol	1				Other:	
Sample Identification		Sample Date	Sample Time	Sample Type (C=Comp, G=grab)	Matrix (W-water, S-eadd, O-washafoll, BTXTBasse, A-Air)	A TOTAL TO THE CONTROL OF THE CONTRO	6010C, 7470A	624_5ml - Priority	JS40C,				E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid I - Ios J - DI Water K - EDTA L - EDA Other: Special In:	structions/Note:
			200	Preserva	ijo i Gode	XX	D	(C		* F			A COLUMN	
		6.13.14	1200	6	Water		X	V	X				8	
MW-5D MW-5S MW-11D		6.13.14	1730	6	Water		X	V	Ŷ					
m - 110		6-13-14	T	6	Water			X	XX					
111000 1(1)		0.0.1	300		Water									
					(Water)	4								
					Wate C									
				1	Water	F								
	-			10	-Water	P		1		+				
					Water	P		C	MI					
					Water	П								
					Water									
Possible Hazard Identification	-		1			s	ample	Dis	posal (A fee m	ay be ass	essed if s	amples are retai	ned longer than 1	month)
Non-Hazard Flammable Skin Irritant	Pois	on B Unkn	nown -	Radiologica	1		LR	etur	n To Client	Dis	posal By L	ab Arc	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)						S	pecial	Inst	ructions/QC Rec	quirements				
Empty Kit Relinquished by:			Date:			Time	3 :		,	1,	Method o	Shipment		
Refinanished by: Relinquished by:		Date/Time: 0 - 13 - 12 Date/Time:	4, 19	2/80	Company		/	eived	2	44		Date/Time:	1 0W1	Company
Relinquished by:		Date/Time:			Company		Rece	eived	by:		-	Date/Time:		Company
							Cool	er Te	mperature(s) °C and	Other Rem	l l		2.1.	
Custody Seals Intact Δ Yes Δ No		`						J. 10				3-2	141	

8/20/2014

Page 93 of 117

		FIELD OBSERVATION	ONS FIELD ODSGIVERION	
Facility:	Dewitt Landfill		Sample Point ID:	MW-65
Fleid Personn	el:	TAIC	Sample Matrix:	GW
	NFORMATION:			•
SAMPLING I	MPORMATION.	A 111 1 300		
Date/Time		6-5-141 1507		6
Method of Sai	mpling:	Bailer)	Dedicated:	(ASA)
Diameter of W	/ell	2"		
Well Depth (fr	om top of PVC)	27.74		*
	from top of PVC)	4.00		
Longth of wat	er Column	· 3-3,74	Volume Purged 12	Sallow
Puga Volume	: LWC x 0.17 x 3=	12,1074	Additite LaiSan Tra	
Methane Res	ding	NA ,	•	
SAMPLING I	DATA:	\	Turb ORP	DO
Time	Temp.	pH Conduct (std units) (Umhos/cm)	Turb. ORP (NTU) Mv	(mg/l)
1507	11.86	7.16 1868	101 -62,2	3.49
Turbidity 1.0 Turbidity 10.0 VSI pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial #	#: 13 m38 #: 13 m35 !! 13 m3T ! 4AC207 S100 1 to 98, 4%	52 Pxp 7/14 52 Pxp 7/14 52 Pxp 12/17/15 540 12/17/15 Exp 12/19/15 1413 umhos/cm@2 240.0 Mv 6xp	250 Exp 2/31/15 2/31/15	LE EXP
Weather cond	AND OBSERVA	rions: Cut o	on Dissolution	F. Water

Facility:	Dowlet Landfill		Sample Point ID:	MW-80
	Dewitt Landfill	TOV	Sample Matrix:	GW
Field Personnel		TOK	- Salithia tamasa.	
SAMPLING IN	FORMATION:	•		
Date/Time		6-6-141 1145		6
Method of Sam	pling:	Galla	Dedicated	YES
Diameter of We	n · · · .	?"		
Well Depth (fro		61.32	*	
	om top of PVC)	.40		
Length of wate		.40,92		C 11
Puge Volume:	LWC x 0.17 x 3=	31.0692	Volume Purged 3	1. 7 41000
Methane Readi	ng	ALA	•	
SAMPLING D	ATA	\		
Time	Temp.	DH Cond		00
· ·	(°C)	(atd units) (Umho		(mg/l)
1145	11,68	1.7.19 24 Lamothe 20		neler
pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial	13 M 3 5	- ELT 12/15 - ELT 12/15	1/0m@26C EXP 3/15	
Weather cond	to 98.7 %	mpling: Sud	Hy @ 417'	
ORP Serial # DO Calibrated Weather cond		mpling: Sud	•	
ORP Serial # DO Calibrated Weather condi	itions @ time of sai	mpling: کیده IONS:	•	

Facility:	Dewitt Landfill			Sample Po	oint ID:	MW-8
Field Personne		TOK		Sample Ma	atrix:	6512
SAMPLING IN	FORMATION:					
Date/Time		6.6.1411:	200			
Method of Sam	pling:	Bailer			Dedicated:	Yes
Diameter of We		2"				
Well Depth (from	m top of PVC)	29.3		•		
	om top of PVC)		<u>. </u>			·
Length of water	· Column .WC x 0.17 x 3=	· 79.24		Volume Pu	rand *	5
ruge volume: I	.WC X U. I) X 3=	a 1 Am		VOIGINO : C		
Methane Readli	ng	MA				
SAMPLING DA	ATA:					
Time	Temp,	pH	Conduct	Turb.	ORP	DO.
	(°C)	(std units)	(Umhos/cm)	(NTU)	My	(mg/l)
200	12.04	7,48	1636	1.26	-89.2	2.63
Turbidity 0.0 Se	CHECK DATA: rial #: erial #:		See	Phy.	e 2	for Calis
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #:	rial #: rial #: erial #:		See	Pag.	e 2	for Calis
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	rial #: rial #: erial #:		Sel		e '2	for Calis
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	ria) #: rial #: eria) #;				e 2	for Calis
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:	ria) #: rial #: eria) #:				e 2	for Calis
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:	ria) #: rial #: eria) #:			<u>i G</u> .	rtesiá	•
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: Cond Serial #: ORP Serial #	rial #:	mpling:	umhos/cm@25 Mv	<u>i G</u> .		N, wolen
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated (rial #: rial #: erial #:	mpling:	umhos/cm@25 Mv	ig S A	rtesia	N, wolen
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: Cond Serial #: ORP Serial #	rial #: rial #: erial #:	mpling:	umhos/cm@25 Mv Ludle	ig S A	rtesia	N, wolen
Turbidity 0.0 Set Turbidity 1.0 Set Turbidity 1.0 Set Turbidity 10.0 Calibrated 10.0 Cali	rial #: rial #: erial #:	mpling:	umhos/cm@25 Mv Lude Lude Purge	is A	stesia out of	N, wolen
Turbidity 0.0 Set Turbidity 1.0 Set Turbidity 1.0 Set Turbidity 10.0 Set In 10	rial #: rial #: erial #: ons @ time of sa	mpling:	umhos/cm@25 Mv Lude Lude Purge	is A	stesia out of	N, Coden The to

icility:	Dewitt Landfill		2	ample Poi		C -1. 1
eld Personne	d:	TOK	8	Sample Mai	trix:	(31)
AMPLING IN	FORMATION:				٠	7
		66.14, 12.	55_			
ate/Time					Dedicated:	YES
lethod of San	npling:	Band			•	
lameter of W	ell	2.10				
Vell Depth (fn	om top of PVC)	16.98		•		•
Vater Depth (from top of PVC)	93118			- 5	llain
ength of wat	er Column .	H-(a-612		Volume Pu	rged	gallon
uge Volume	LWC x 0.17 x 3⇒					•
Wethane Read	ilng	NA		٠		
SAMPLING	DATA:			Turb.	ORP	DO
Time	Temp.	pH (std units)	Conduct (Umhos/om)	(NTU)	Mv	(mg/l)
1	(°C)	7,93	2139	72.9	-97.0	1.32
1255	1 (/ 5)	1 11 1				
Turbidity 0.0	13.62 IT CHECK DATA Serial #: Serial #:	- See		ا ح	for c	albritons
Turbidity 0.0 Turbidity 1.0 Turbidity 10.	Serial #: Serial #: Serial #:	500		2	For C	albritins
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial	Serial #: Serial #: Serial #: 0 Serial #:	500		· > 1	For C	albritins
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial	Serial #: Serial #: Serial #: 9 Serial #: #:	500		· 2- }	For C	albritons
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial	Serial #: Serial #: Serial #: 0 Serial #:	500	Page		For C	alibrations
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial	Serial #: Serial #: Serial #: 9 Serial #: #:	500			For C	alibrations
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial	Serial #: Serial #: O Serial #: #: #: #:	500	Page		For c	alibrations
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial	Serial #:	5ee	Page		For C	alibrations
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial	Serial #: Serial #: O Serial #: #: #: #:	5ee	Page umhos/cm@25	<u>5 C</u>		
Turbidity 0.0 Turbidity 1.0 Turbidity 10. ph 4.0 Serial ph 7.0 Serial ph 10.0 Serial ORP Serial	Serial #:	See	umhos/cm/025	5 C .	403	4
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial ORP Serial DO Calibrate Weather con	Serial #: Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	sampling:	umhos/cm@25 Mv P: Sur	sec shuy an L	Leo's	4
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial ORP Serial DO Calibrate Weather con	Serial #: Serial #: Serial #: #: #: #: #: #: #: #:	sampling:	umhos/cm@25 Mv P: Sur	sec shuy an L	Leo's	4
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial ORP Serial DO Calibrate Weather con	Serial #: Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	sampling: ATIONS:	Page umhos/cm@28 Mv P: Syr Alwaysh	sec shuy an L	Leo's	4
Turbidity 0.0 Turbidity 1.0 Turbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial ORP Serial DO Calibrate Weather con	Serial #: Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	sampling: ATIONS:	umhos/cm@25 Mv P: Sur	sec shuy an L	Leo's	4
Turbidity 0.0 Turbidity 1.0 Turbidity 1.0 PH 4.0 Serial PH 7.0 Serial PH 10.0 Serial ORP Serial DO Calibrate Weather con COMMENT	#: #: #: #: #: #: #: #: #: #: #: #: #: #	sampling: ATIONS: Ware (Page umhos/cm@28 Mv P. Sur Alumnah otroded roded	so to	vell.	Cap 1 Inside UP
Turbidity 0.0 Turbidity 1.0 Turbidity 1.0 PH 4.0 Serial PH 7.0 Serial PH 10.0 Serial ORP Serial DO Calibrate Weather cor COMMENT	Serial #: Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	sampling: ATIONS: Ware (Page umhos/cm@28 Mv P. Sur Alumnah otroded roded	so to	vell.	Cap 1 Inside UP
Turbidity 0.0 Turbidity 1.0 Turbidity 1.0 PH 4.0 Serial PH 7.0 Serial PH 10.0 Serial ORP Serial DO Calibrate Weather con COMMENT	#: #: #: #: #: #: #: #: #: #: #: #: #: #	sampling: ATIONS: Ware (Page umhos/cm@28 Mv P. Sur Alumnah otroded roded	so to	vell.	Cap \$ Zuside up

Field Observations page 1 of 1 GW/s.xls

	Landfill	•	Sample P	oint ID:	Win
Field Personnel:		1	Sample M	atrix:	100
SAMPLING INFORM	ATION:				٠
Date/Time	6.6.141	1330			
Method of Sampling:	Baller			Dedicated:	YE
Diameter of Well	3	10			
Well Depth (from top of	(PVC) 39	1,03			
Water Depth (from top		,40			•
Length of water Colum					
Puge Volume: LWC x 0		813	Volume P	urged	_ SA
Methane Reading	·	<u> </u>			•
SAMPLING DATA:		7			
Time	Temp. pH		Turb.	ORP	D
1336 11.	(°C) (std un		(NTU)		(m)
INSTRUMENT CHECK	K DATA.			- for (,
Turbidity 1:0 Serial #: _					
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #:			. •		•
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:			. •		•
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:		umhos/cm@2	5 Q		
Turbidity 1:0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:		<u>umhos/cm@2</u> /	5 <u>G</u>		
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:			5 C		•
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:		Mv	5 <u>0</u>	605	
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: CORP Serial # DO Calibrated to Weather conditions @ t	ime of sampling:	Mv 			2 45
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: CORP Serial # DO Calibrated to Weather conditions @ t	ime of sampling:	Mv 	nnd_		2 4
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated to Weather conditions @ t	ime of sampling:	Mv 	nnd_		2 4
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: CORP Serial # DO Calibrated to Weather conditions @ t	ime of sampling:	Mv 	nnd_		
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: CORP Serial # DO Calibrated to Weather conditions @ t	ime of sampling: SERVATIONS:	P. Su	Wonz	a nast	· ·
Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: CORP Serial # DO Calibrated to Weather conditions @ t	ime of sampling: SERVATIONS:	P. Su	Wonz	a nast	ite-Specif

>		FIELD OB	SEKANIO			An. 6	200
cility:	Dewitt Landfill			Sample Point I	D:	1 My	17
eld Person	nel:	TOIL		Sample Matrix:		Gh	
AMPLING	INFORMATION:					•	
ate/Time		6.6.141	400				
ethod of Sa	ampling:	Halley		Ded	icated:	TES	>
iameter of \	Well	. 2"					
fell Depth (f	from top of PVC)	12.39					
later Depth	(from top of PVC)	1.24					
ength of wa	ater Column	-11:15		Volume Purge	. (-	gallon	4
uge Volum	e: LWC x 0.17 x 3=	5:680	05	Volume Purge	g	7	
lethane Rea	ading	NA					
AMPLING	DATA:		*				
Time	Temp.	pH	Conduct	Turb.	ORP	DO	
	(°C)	(std units)	(Umhos/cm)	(NTU)	Mv_	(mg/l	
1400	12.72	7.16	2433	- (48.7	79.3	J. W. 7"	
Furbidity 1.0 Furbidity 10	NT CHECK DATA: O Serial #: O Serial #:	_ See	Page	2 for	calib	redect.	
rurbidity 1.0) Serial #:) Serial #: .0 Serial #: .1 #:	_ See	· ,		calib	restur	
Turbidity 1.0 Turbidity 10 oH 4.0 Seria oH 7.0 Seria) Serial #:) Serial #: .0 Serial #: .1 #: .1 #:	_ See	Page		calib	redeux	
Turbidity 1.0 Turbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Seri) Serial #:) Serial #: .0 Serial #: il #: iial #:	_ See	· ,		calib	redeux	
Turbidity 1.0 Turbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial) Serial #:) Serial #: .0 Serial #: il #: #: #:		umhos/cm@2		calib	restur	
Turbidity 1.0 Turbidity 10.0 H 4.0 Seria H 7.0 Seria H 10.0 Seria Cond Serial ORP Serial i) Serial #:) Serial #: .0 Serial #: il #: #: #:	See	umhos/cm@2	5 <u>C</u> .	calib	restur	
Turbidity 1.0 Turbidity 10.0 H 4.0 Seria H 7.0 Seria H 10.0 Seria Cond Serial DRP Serial I) Serial #:	See	_umhos/cm@2 _ Mv	5 <u>C</u> .	calib	restur	
Turbidity 1.0 Turbidity 10.0 H 4.0 Seria H 7.0 Seria H 10.0 Seria Cond Serial DRP Serial I	Serial #:	See	_umhos/cm@2 _ Mv	5 <u>C</u> .	calib	restur	
Turbidity 1.0 Turbidity 10.0 H 4.0 Seria H 7.0 Seria H 10.0 Seria Cond Serial DRP Serial I	Serial #:	See	_umhos/cm@2 _ Mv	5 <u>C</u> .	calib	restur	
Turbidity 1.0 Turbidity 10.0 H 4.0 Seria H 7.0 Seria H 10.0 Seria Cond Serial DRP Serial I	Serial #:	See	_umhos/cm@2 _ Mv	5 <u>C</u> .	calib	redeux	
Turbidity 1.0 Turbidity 10.0 Turbidity 10.0 DH 4.0 Seria DH 7.0 Seria DH 10.0 Serial DORP Serial TOO Calibrate Weather cor	Serial #:	See	umhos/cm@2	5 <u>c</u>			
Turbidity 1.0 Turbidity 10.0 Turbidity 10.0 DH 4.0 Seria DH 7.0 Seria DH 10.0 Serial DORP Serial TOO Calibrate Weather cor	Serial #:	See	umhos/cm@2	5 <u>c</u>			c
rurbidity 1.0 rurbidity 10.0	Serial #:	See	umhos/cm@2	pplicable EPA,		Site-Specifi	c
rurbidity 1.0 rurbidity 10.0 rurbidi	Serial #:	See ampling: TIONS:	umhos/cm@2	pplicable EPA,	State and	Site-Specifi	c
rurbidity 1.0 rurbidity 10.0 rurbidi	Serial #:	See ampling: TIONS:	umhos/cm@2	pplicable EPA,	State and	Site-Specifi	c
rurbidity 1.0 rurbidity 10.0 rurbidi	Serial #:	See ampling: TIONS:	umhos/cm@2	pplicable EPA,	State and	Site-Specifi	c

acility: Dewitt Landfill		4	Sample Po		
leid Personnel:	· Du		Sample Ma	itrix:	SW
AMPLING INFORMATION					
ate/Time	6.6.14	1430			
lethod of Sampling:	Baller	Grab		Dedicated:	YES
lamèter of Weil					
(ell Depth (from top of PVC)					•
later Depth (from top of PVC ength of water Column					
uge Volume: LWC x 0.17 x 3:	a		Volume Pu	rged	
iethane Reading	,				
AMPLING DATA:		4			
Time Temp,	pH (std unit	Conduct s) (Umhos/cm)	Turb. (NTU)	ORP Mv	(mg/l)
1430 17,52	7.30	2336	28.2	-105.1	2.43
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #:		Peye 2	for ta	Chorwha	
urbidity 1.0 Serial #:			:	llo rwtia	
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #:		umhos/cm@20	:	. Porwtin	
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: ond Serial #:		umhos/cm@20	:	llo nutha	
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: ond Serial #: RP Serial # O Calibrated to		umhos/cm@2l	:		
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Ond Serial #: RP Serial # Calibrated to eather conditions @ time of	sámpling:	umhos/cm@2!	50 May 70	7	
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: ORP Serial # O Calibrated to Veather conditions @ time of	sampling:	umhos/cm@2! Mv P Sull Duy hos	50 my 70	?	OP CIR.R.
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: ond Serial #: O Calibrated to //eather conditions @ time of	sampling:	umhos/cm@21 Mv P Sur Duy holi	50 My 70 Le 0	months	COP CIPUTED
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: Ond Serial #: RP Serial # O Calibrated to	sampling:	umhos/cm@2! Mv P Sull Duy hos	50 My 70 Le 0	months	COP CIPUTED
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Cond Serial #: Cond Serial #: COMMENTS AND OBSERVA	sampling: ATIONS:	umhos/cm@21 Mv P Sur Dug hol issite Side Let Sit	Le Q 4" Ho	months	Fence of Scapled.
Furbidity 1.0 Serial #: Furbidity 10.0 Serial	sampling: ATIONS:	umhos/cm@2! Mv P Sup Duy hol site Site ordance with all ap	Le Q 4" Ho	months	Fence of Scapled.
urbidity 1.0 Serial #: urbidity 10.0 Serial #: urbidity 10.0 Serial #: ut 4.0 Serial #: ut 7.0 Serial #: ut 10.0 Serial #: cond Serial #: ut 10.0 Serial #:	sampling: ATIONS:	umhos/cm@21 Mv P Sur Dug hol issite Side Let Sit	Le Q 4" Ho	months	Fence of Scapled.
urbidity 1.0 Serial #: urbidity 10.0 Serial #: H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: ORP Serial #: OCalibrated to Vesther conditions @ time of the conditions with the conditio	sampling: ATIONS:	umhos/cm@2! Mv P Sup Duy hol site Site ordance with all ap	Le Q 4" Ho	2000 -	Fence of Scapled.
# 7.0 Serial #: # 10.0 Serial #: Cond Serial #: Cond Serial #: CORP Serial # COCalibrated to Veather conditions @ time of COMMENTS AND OBSERV COLUMN # COUNTY TO THE CONTROL OF THE	sampling: ATIONS:	umhos/cm@2! Mv P Sup Duy hol site Site ordance with all ap	Le Q 4" Ho	2000 -	Fence of Scapled.

*		FIELD OBSERVA	Sample Point ID:	Mus-35
acility:	Dewitt Landfill		•	(54)
ield Person	inel;	TDL	Sample Matrix:	
AMPLING	INFORMATION:	1		
ate/Time		66.14 1500	an an an an an	YES
lethod of 9	ampling:	Beller	Dedicated:	
lameter of	. IlaW	3."		
Manual Death	(from top of PVC)	35,59	· ·	•
Aetr Debru	h (from top of PVC)	2.52	_	
Mater Dehti	in (non top or	33.07	Volume Purged /	7 Saller
ength of w	rater Column ne: LWC x 0.17 x⋅3=⋅	47 44	Volume Purged	et tier
-ride komu	III. PALA VALLE			•
Methane Re	ading	_NA		
SAMPLING	C DATA:			DO .
	Temp.	pH Conduc		(mg/l)
Time	(°C)	(std units) (Umhos	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1500	11.90.	7.26 308	4 970 -54,	7.01.
Turbidity 1	.0 Şerial #: .0 Şerial #: 0.0 Serial #:			•
Turbidity 1 Turbidity 1 pH 4.0 Seri	.0 Serial #: 0.0 Serial #: ai #:			
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Se	0.5erial #: 0.0 Serial #: ial #: ial #:	-	ст Ф 25 С	,
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Se	.0 Serial #: 0.0 Serial #: ai #:	-	ст @25 С	•
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Se	io Serial #:	-	ст @25 С	•
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Se	iol #:	umhos/		
Turbidity 1 Turbidity 1 pH 4.0 SeripH 7.0 SeripH 10.0 Serie ORP Serie	iol #:	umhos/	cm@25 C	3
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	io Serial #: io Serial #: io #: io #: al #: al #: conditions @ time of	umhos/		5
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	0. Serial #:	umhos/		3
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	io Serial #: io Serial #: io #: io #: al #: al #: conditions @ time of	umhos/		3
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	io Serial #: io Serial #: io #: io #: al #: al #: conditions @ time of	umhos/		5
Turbidity 1 Turbidity 1 pH 4.0 Ser pH 7.0 Ser pH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	io Serial #: io Serial #: io #: io #: al #: al #: conditions @ time of	umhos/		5
Turbidity 1 Turbidity 1 PH 4.0 Ser PH 7.0 Ser PH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	io Serial #: io Serial #: io #: io #: ai #: ai #: ated to conditions @ time of	umhos/ Mv @ fsampling: /ATIONS:	Sung 70'	
Turbidity 1 Turbidity 1 PH 4.0 Ser PH 7.0 Ser PH 10.0 Ser Cond Seria DO Calibra Weather of	in #:	umhos/	Sung 70'	
Turbidity 1 Turbidity 1 PH 4.0 Ser PH 7.0 Ser PH 10.0 Ser Cond Seria ORP Seria DO Calibra Weather of	in #:	umhos/	th all applicable EPA, State	and Site-Specific
Turbidity 1 Turbidity 1 PH 4.0 Ser PH 7.0 Ser PH 10.0 Ser ORP Seria DO Calibra Weather of COMMEN	in #:	umhos/	Sung 70'	and Site-Specific
Turbidity 1 Turbidity 1 PH 4.0 Ser PH 7.0 Ser PH 10.0 Ser Cond Seria DO Calibra Weather of	in #:	umhos/	th all applicable EPA, State	and Site-Specific
Turbidity 1 Turbidity 1 PH 4.0 Ser PH 7.0 Ser PH 10.0 Ser ORP Seria DO Calibra Weather of COMMEN	in #:	umhos/	th all applicable EPA, State	and Site-Specific

ield Personnel	•	TDY		Sample Ma	atrix:	Sw
AMPLING IN	FORMATION:					, k
ate/Time		6.6141.	515			
fethod of Sam	pling:	Bailer	Gralo		Dedicated:	YES
lameter of We		1				ĥ
	n top of PVC)				•	
	om top of PVC)					*
ength of water	: Column :WC x 0.17 x 3= ·	· · · · · · · · · · · · · · · · · · ·		Volume Pr	urged	
Wethane ReadIr	ng)		÷.			•
SAMPLING DA	ATA:		1			
Time	· Temp.	pH	Conduct	Turb.	ORP '	DQ / mg/l \
1515	74.50	(std units)	(Umhos/cm) - /3/0	(NTU)	-135.4	(mg/l)
		the state of the s	1	L . U . U		
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se	CHECK DATA: rial #: rial #:	See	Puje		for a	charter
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se	CHECK DATA: ria) #: rial #: erial #:	See			for G	clibriter
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se Furb	CHECK DATA: ria) #: rial #: erial #:	See			for C	clibratur
NSTRUMENT Furbidity 0.0 Securibidity 1.0 Securibidity 10.0 Securib	CHECK DATA: ria) #: rial #: erial #:	See		2	For C	chbritus
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se Furb	CHECK DATA: rial #: crial #:	See	Perge	2	For C	clibratus
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se Furb	CHECK DATA: ria) #: rial #:	See	Perge	2	for a	clibratus
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se Furb	CHECK DATA: ria) #: rial #:	See	Page umhos/cm@25	⊋ ic	For a	clibratus
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se Furb	CHECK DATA: rial #: erial #: ons @ time of san	See	Perge	⊋ ic		clibratur
INSTRUMENT Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se Tur	CHECK DATA: rial #: rial #: erial #: ons @ time of san	See	umhos/cm@25	2 Da		chbratus
NSTRUMENT Furbidity 0.0 Securibidity 1.0 Securibidity 10.0 Securibidity 10.0 Securibidity 10.0 Securibidity 10.0 Securibidity 10.0 Securibidity 10.0 Securibidity	CHECK DATA: rial #: erial #: ons @ time of san	See	Page umhos/cm@25	2 Da		chbrahus
NSTRUMENT Furbidity 0.0 Se Furbidity 1.0 Se Furbidity 10.0 Se Furb	CHECK DATA: rial #: rial #: erial #: ons @ time of san	See	umhos/cm@25	2 Da		chbritus
NSTRUMENT Furbidity 0.0 Security 1.0 Security 10.0 Security 10.0 Security 17.0 Securit	check data: rial #: rial #: erial #: cons @ time of san ND OBSERVATION	See Inpling: ONS: H Scaples.	umhos/cm@25 Mv P. S. Dus h wo©0	De L	70'S	
NSTRUMENT Furbidity 0.0 Security 1.0 Security 10.0 Security 10.0 Security 17.0 Securit	CHECK DATA: rial #: rial #: erial #: ons @ time of san	See Inpling: ONS: H Scaples.	umhos/cm@25 Mv P. S. Dus h wo©0	De L	70'S	

Field Personnel: SAMPLING INFO Date/Time Method of Samplir Diameter of Well Well Depth (from to Water Depth (from Length of water Co Puge Volume: LWC Methane Reading SAMPLING DATA Time //35 //L INSTRUMENT CH Turbidity 0.0 Serial	op of PVC) top of PVC) blumn C x 0.17 x 3= A: Temp. (°C)	19.98 19.98 19.98 19.98 19.98 19.6798 MA pH (std units)		Sample M Sample M Volume Pu		MW-45 Gw YES
SAMPLING INFO Date/Time Method of Samplir Diameter of Well Well Depth (from to Water Depth (from Length of water Co Puge Volume: LWO Methane Reading SAMPLING DATA Time //35 / L INSTRUMENT CH	op of PVC) top of PVC) blumn C x 0.17 x 3= A: Temp. (°C)	19.98 19.98 18.98 9.6-798 MA pH (std units)	Conduct	Volume Pt	Dedicated:	YES
Date/Time Method of Samplir Diameter of Well Well Depth (from to Water Depth (from Length of water Co Puge Volume: LWO Methane Reading SAMPLING DATA Time //35 // INSTRUMENT CH Turbidity 0.0 Serial	op of PVC) top of PVC) blumn C x 0.17 x 3= A: Temp. (°C)	19.98 19.98 160 18.98 9.6798 MA	Conduct		•	
Method of Samplir Diameter of Well Well Depth (from to Water Depth (from Length of water Co Puge Volume: LWO Methane Reading SAMPLING DATA Time //35 // INSTRUMENT CH Turbidity 0.0 Serial	op of PVC) top of PVC) blumn C x 0.17 x 3= A: Temp. (°C)	19.98 19.98 160 18.98 9.6798 MA	Conduct		•	
Diameter of Well Well Depth (from to Water Depth (from to Water Depth (from Length of water Co Puge Volume: LWC Methane Reading SAMPLING DATA Time //35 // INSTRUMENT CH	op of PVC) top of PVC) blumn C x 0.17 x 3= A: Temp. (°C)	2" 19.98 1.00 18.98 9.6798 MA pH (std units)	Conduct		•	
Well Depth (from to Water Depth (from to Water Depth (from Length of water Co Puge Volume: LWC Methane Reading SAMPLING DATA Time //35 // LINSTRUMENT CH	top of PVC) clumn C x 0.17 x 3= A: Temp. (°C)	19.98 1.00 18.98 9.6798 M)	Conduct		urged <u>//</u>	Julian
Water Depth (from Length of water Co Puge Volume: LWC Methane Reading SAMPLING DATA Time //35 //L INSTRUMENT CH	top of PVC) clumn C x 0.17 x 3= A: Temp. (°C)	1,60 18.98 9.6-798 MA pH (std units)	Conduct		urged <u>10</u>	Gullan
Length of water Co Puge Volume: LWC Methane Reading SAMPLING DATA Time //35 /L INSTRUMENT CH Turbidity 0.0 Serial	C x 0.17 x 3= A: Temp. (°C)	9.6-798 MA pH (std units)	Conduct		urged <u>10</u>	gullar
Puge Volume: LWC Methane Reading SAMPLING DATA Time //35 / L INSTRUMENT CH Turbidity 0.0 Serial	A: Temp. (°C)	PH (std units)	Conduct		urged <u>10</u>	gullar
Methane Reading SAMPLING DATA Time //35 // INSTRUMENT CH	A: Temp. (°C)	pH (std units)	Conduct		urged <u>10</u>	Gullan
Time //35 INSTRUMENT CH	Temp. (°C) 1,85	(std units)		Turb		
Time //35 // INSTRUMENT CH Turbidity 0.0 Serial	Temp. (°C) 1,85	(std units)		Turb.		
1/35 1/2 INSTRUMENT CH	(°C) 1.85	(std units)		Turb.		
Turbidity 0.0 Serial	1.85	(299		(NTU)	ORP Mv	DO (mg/li)
Turbidity 0.0 Serial	PAIR DAMA		3/14	7.36	-10.7	3.16
Turbidity 0.0 Serial	ECK DATA:	Lanotte	303-0	Turbi	July me	Ser
Turbidity 10.0 Seria ソンゴー pH 4.0 Serial #: _ [3	#: <u>C256 26</u> #: <u>C256 25</u> S56 m3R	E EXP S	1/14 Turb 1/14 1/14	13.47 10		Q # c25491 X8 10/14
pH 7.0 Serial #: 13 pH 10.0 Serial #: 12	mas mat	EN0 19	115			
	Aczon		umhos/cm@25	C. EKP	3/15	•
ORP Serial #	100	0.4	MV EXP			
OO Calibrated to	98.60%	@ 27.44	mm/4 @	2 417'		4
Veather conditions	@ time of samp	pling:	D. SUN	m 70	<u> </u>	
COMMENTS AND	OBSERVATIO	NS:	Lats of	F blan	de Part	culate in
rege has	for B	Sante				
certify that sampling	o procedures y	vere in accorda	nce with all en	Nicebia EDA	State and S	14 C - 15
rotocals.	- F	III accorde	me with an ab	modum CIP	, quate and \$	re-specific
ate: 😉 /	3114	Ву:	MIL		Company:	TA

* ·		FIELD OB	SERVATIO	NS Fleid	Observation	s page 1 of 1 GW	
Facility:	Dewitt Landfill			Sample Poir	nt ID:	mu-41)
Field Personne	ļk ·	TOK.		Sample Mat	rix:	6W	io .
SAMPLING IN	FORMATION:					. :	
Date/Time		6.9.14/ 12	-05_			1	
Method of Sam	ıpling:	Bailer			edicated:	YES	
Diameter of We		7"					
,	m top of PVC)	35.27		*		.	
	rom top of PVC)	v 55					
Length of wate		134,68			10	11	
	LWC x 0.17 x 3=	17.6868		Volume Pur	ged	5911av	
		NA				1	*
Methane Read	ng	1001				4 • .	
SAMPLING D	ATA:						
Time	Temp.	pH	Conduct	Turb.	ORP	DO	1
	(°C)	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)	
12.63	12.87	7,24.	3116	35.6	-53.6	3.59]
Turbidity 0.0 S Turbidity 1.0 S	CHECK DATA: erial #: erial #: Serial #:		Page	11 1	s Ca	lobrates	
Turbidity 0.0 S Turbidity 1.0 S Turbidity, 10.0 S pH 4.0 Serial # pH 7.0 Serial #	erial #: erial #: Serial #:		Page	11 5	s Ca	lorates	
Turbidity 0.0 S Turbidity 1.0 S Turbidity, 10.0 S pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial #	erial #: erial #: Serial #:				s Ca	Idorates	
Turbidity 0.0 S Turbidity 1.0 S Turbidity, 10.0 S pH 4.0 Serial # pH 7.0 Serial #	erial #: erial #: Serial #:		umhos/cm@25		s Ca	Idorate	
Turbidity 0.0 S Turbidity 1.0 S Turbidity, 10.0 S pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial #	erial #: erial #: Serial #:				5 Ca	Idorates	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial #: Cond Serial #:	erial #: erial #: Serial #:		umhos/cm@26		s Ca	Idorate	
Turbidity 0.0 S Turbidity 1.0 S Turbidity, 10.0 S PH 4.0 Serial # PH 7.0 Serial # Cond Serial #: ORP Serial # DO Calibrated	erial #: erial #: Serial #:		umhos/cm@25	<u>5 C</u>	5 Ca	Idorates	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated Weather condi	erial #: erial #: Serial #: #: to tlons @ time of sa	mpling:	umhos/cm@26	<u>5 C</u>	5 Ca	Idorates	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # pH 7.0 Serial # Cond Serial # DO Calibrated Weather condi	erial #: erial #: Serial #:	mpling:	umhos/cm@25	<u>5 C</u>	S Ca	lorden Posp	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # pH 7.0 Serial # Cond Serial # DO Calibrated Weather condi	erial #: erial #: Serial #: #: to tlons @ time of sa	mpling:	umhos/cm@25	<u>5 C</u>	S Ca	- Poso	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # pH 7.0 Serial # Cond Serial # DO Calibrated Weather condi	erial #: erial #: Serial #: #: to tlons @ time of sa	mpling:	umhos/cm@25	<u>5 C</u>	S Ca	- Posp	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # pH 7.0 Serial # Cond Serial # DO Calibrated Weather condi	erial #: erial #: Serial #: #: to tlons @ time of sa	mpling:	umhos/cm@25	<u>5 C</u>	S Ca	- Posp	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S Turbidity 10.0 S PH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial # Cond Serial # ORP Serial # DO Calibrated Weather condi	toAND OBSERVAT	mpling:	umhos/cm@26 MV P. Sur BluelC	Pantice	los	Posp	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial # Cond Serial # DO Calibrated Weather condi	erial #: erial #: Serial #: #: to tlons @ time of sa	mpling:	umhos/cm@26 MV P. Sur BluelC	Pantice	los	Posp	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S Turbidity 10.0 S PH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial # Cond Serial # ORP Serial # DO Calibrated Weather condi	to to AND OBSERVAT	mpling:	umhos/cm@26 Mv Stack ance with all a	Pantice	los	Posp	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial # Cond Serial # DO Calibrated Weather condi	toAND OBSERVAT	mpling:	umhos/cm@26 MV P. Sur BluelC	Pantice	los	Site-Specific	
Turbidity 0.0 S Turbidity 1.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial # Cond Serial # DO Calibrated Weather condition COMMENTS COMMENTS Coertify that se protocals.	to to AND OBSERVAT	mpling:	umhos/cm@26 Mv Stack ance with all a	Pantice	A State and	Site-Specific	

Field Personnel: SAMPLING INFO				Sample Po	int iD:	ML2-1
SAMPLING INF		TOK	•	Sample Me	trix:	Gw
	ORMATION:			•		1
Date/Time		6.9.141	245			į
Mathada at chamat	l	Baller			Dadicated:	YES
Method of Sampl	ing:				Douivatou.	
Diaméter of Well		34				
Well Depth (from		31.08		•		i
Water Depth (from		8.18				
Length of water C Puge Volume: LV		41718		Volume Pu	road 4.	5 gallons
ruge volume; LV	10 X V.1/ X 39			· Ordino F u		
Methane Reading		MA	•	•		4
SAMPLING DAT	TA:					-
Time	Temp.	pH	Conduct	Turb.	ORP	DO
	(°C)	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)
1245	11.30	7.34	1885	1867	72.3	4.08
pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:						<i>i</i> .
			umhos/cm@25	<u>C</u>		•
Cond Serial #: _			Mv			ι
Cond Serial #: ORP Serial #			IMA			♠ **
ORP Serial #		•	IMA			1.4
ORP Serial #			D. 6	۲	7015	
ORP Serial #			. P. 3	Suring	70'5	
ORP Serial #	ns @ time of sar	mpling:		Suring	70'5	
ORP Serial # DO Calibrated to Weather condition	ns @ time of sar	mpling:		Sund	70'5	
ORP Serial # DO Calibrated to Weather condition	ns @ time of sar	mpling:	β. 3	Suring	70'5	
ORP Serial # DO Calibrated to Weather condition	ns @ time of sar	mpling:	- P - 3	Suru	70'5	
ORP Serial # DO Calibrated to Weather condition	ns @ time of sar	mpling: IONS:	β. 3	Sum ₁		
ORP Serial #	ns @ time of sar	mpling: IONS:	β. 3	plicable EP		Bite-Specific
ORP Serial #	ns @ time of sar	mpling: IONS:	β. 3	plicable EP	A, State and	,
ORP Serial #	ns @ time of sar	mpling: IONS:	β. 3	plicable EP		,
ORP Serial #	ns @ time of sar	mpling: IONS:	β. 3	plicable EP	A, State and	,

Facility:	Dewitt Landfill			Sample P	oint ID:	Wro- 30
Field Personne):	TDIK	•	Sample M	atrix:	Gw
SAMPLING IN	FORMATION:					
Date/Time		69,1411	400			
Method of Sam	pling:	Baller			Dedicated:	YED
lameter of We	· II	2"	-,,			
	m top of PVC)	51.99	9			*
	om top of PVC)	11.63				* 1
ength of wate	r Column LWĆ x 0.17 x 3=	20.5	434	Volume Pu	mad 2	1 salbo
***				TOIGING PL	ui Raci	1
fethane Readi	ng	- W				•
AMPLING D		,	1			ţ
Time	Temp.	pH (std units)	(Umhos/cm)	Turb.	ORP	DO
The second of the second				/ INITED !	6/13/	
urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S	erial #:	7.18 See	Pase 1	Al.8	- 145.0 - Callb	
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #	CHECK DATA: rial #: rial #: erial #:	7.18	3655	1 En	- 145.6	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #:	CHECK DATA: rial #: rial #: erial #:	7.18	Parse 1	1 En	- 145.6	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: cond Serial #:	CHECK DATA: rial #: rial #: erial #:	7.18	2655 Parse 1	1 En	- 145.6	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Ond Serial #:	CHECK DATA: rial #: rial #: erial #:	7.18 See	Pase 1	SI8	-145.0	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Ond Serial #:	CHECK DATA: rial #: rial #: erial #:	7.18 See	Parse 1	SI8	- 145.6	3.28
urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: Ond Serial #: RP Serial # O Calibrated to	CHECK DATA: rial #: rial #: erial #:	7.18 See	Pase 1	SI8	-145.0	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Ond Serial #: Calibrated t	CHECK DATA: rial #: rial #: erial #: erial #:	7.18 See	Pase 1	SI8	-145.0	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Ond Serial #: Calibrated t	CHECK DATA: rial #: rial #: erial #: erial #:	7.18 See	Pase 1	SI8	-145.0	3.28
NSTRUMENT urbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #: Ond Serial #: Calibrated t	CHECK DATA: rial #: rial #: erial #: erial #:	7.18 See	Pase 1	SI8	-145.0	3.28
NSTRUMENT grbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: Ond Serial #: Calibrated to Calibrated to CALIBRATE A OMMENTS A	CHECK DATA: rial #: rial #: erial #: erial #:	7.18 See pling:	umhos/cm@25	21.8 C	-145.0	ntions
wyrbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S urbidity 10.0 S H 4.0 Serial #: H 10.0 Serial #: Ond Serial #: Calibrated t eather condition	CHECK DATA: rial #: rial #: erial #: ons @ time of sam	© pling:	pase 1 umhos/cm@25 Mv P. Sun	21.8 C	Callib	ntions
wyrbidity 0.0 Se urbidity 1.0 Se urbidity 10.0 S urbidity 10.0 S H 4.0 Serial #: H 7.0 Serial #: Dond Serial #: Calibrated t eather condition	CHECK DATA: rial #: rial #: erial #: oons @ time of sam ND OBSERVATIO	7.18 See pling:	umhos/cm@25	21.8 C	-145.0	ntions

Facility: Devite Landfall Fleid Personnel: TDLC Sample Point ID: Sample Point ID: Sample Point ID: Sample Matrix: SLW SAMPLING INFORMATION: Date/Time			FIELD OB	SERVATIO	NS Flei	d Observations	page 1 of 1	GWs.ids
Field Personnel: SAMPLING INFORMATION: Date/Time Legat Lyk	Facility:	Dewitt Landfill			Sample Po	int ID:	Muzz	<u>32</u>
Date/Time Method of Sampling: Dedicated: TES			TDIC	•	Sample Ma	atrix:	GW	
Method of Sampling: Diameter of Well Well Depth (from top of PVC) Water Depth (from top of PVC) Langth of water Column Puge Volume: LWC v 0.17 x 3= Methane Reading SAMPLING DATA: Time Temp. pH Conduct Turb. ORP DO (mgl) Well 13.00. 7.30. 3/50 1/437 -134.7 5.80 INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: gH 10.0 Serial #: GOMMENTS AND OBSERVATIONS: Toerlify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocols. Date: Gring Fig. Dedicated: PSC Company: The Company:	SAMPLING IN	NFORMATION:						
Diameter of Well Weil Depth (from top of PVC) Water Depth (from top of PVC) Langth of water Column Puge Volume: LWC v 0.17 x 3	Date/Time	•	6.9.141	415				
Well Depth (from top of PVC) Water Depth (from top of PVC) Langth of water Column Puge Volume: LWC x 0.17 x 3= Methane Reading SAMPLING DATA: Time Temp. (*C) (std units) (Unhos/om) (NTU) Mv (mgl) LH/S (3.0C 7.2C 2/50) INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 1.0 Serial #: Unh 1.0 Serial #: Cond Serial #: DC Calibrated to Weather conditions @ time of sampling: COMMENTS AND OBSERVATIONS: Dete: DETERMINENT Company: The conditions of the conditions	Method of San	npling:	Bailes			Dedicated:	(VES)	
SAMPLING DATA: Time Temp. pH Conduct Turb. ORP 00 (mg/l) 11/15 13.00 7.30 2150 1497 -124.7 5.50 INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: See Page 11 For Coulds satisfy Turbidity 1.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: umhos/cm@25 C ORP Serial # Mv DD Calibrated to	Well Depth (fro Water Depth (f Length of water	om top of PVC) from top of PVC) er Column	11.98	<u> </u>	Volume Pu	Irged <u>/ 2</u>	- Sallon	
Time Temp. (*C) (std units) (Umhos/om) (NTU) Mv (mg/l) 14/6	Methane Read	ing	NA.	· · · · · · · · · · · · · · · · · · ·				•
Time (°C) (std units) (Umhos/cm) (NTU) Mv (mg/l) 14/6 13.00 7.20 2450 1427 -124.7 5.80 INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #:	SAMPLING D	ATA:		1 .	*		1 50	
Turbidity 0.0 Serial #: See Page II For Californian		Temp.					11)
INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #:	1415			-				
Weather conditions @ time of sampling: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals. Date: GEIY By: TWC Company: The	pH 7.0 Serial # pH 10.0 Serial	#:		umhos/cm@25	S C .		•	
Weather conditions @ time of sampling: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals. Date: OKING By: TWC Company: The	ORP Serial #			Mv				
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals. Date: OKING By: TNC Company: The Compa	DO Calibrated	to	. @	·			3	
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals. Date: 6514 By: TNC Company: The	Weather cond	itions @ time of sa	mpling:	Pisunha	70	<u> </u>	!	
protocals. Date: 65114 By: TNC Company: FA	COMMENTS	AND OBSERVAT	IONS:			,		
Protocals. Date: 65114 By: TNC Company: FA			•				· · · · · · · · · · · · · · · · · · ·	1
Date: 6514 By: TNC Company: Th		ampling procedure	s were in accord	lance with all ap	plicable El	A, State and S	ite-Specific	
15		65114	Ву:	TINC	,	Company:	TH	-
							to 18	15

Well Depth (from top of PV Water Depth (from top of PV Length of water Column Puge Volume: LWC x 0.17 Mathane Reading SAMPLING DATA: Time Tem (*0	ON: (c) (c) x 3=	7.014, 11 60107 23.01 8.78 14.25 7.2573 MA	458		ntrix:	MW-125 CZ-3 YES
SAMPLING INFORMATION Date/Time Method of Sampling: Diameter of Well Well Depth (from top of PV Water Depth (from top of PV Length of water Column Puge Volume: LWC x 0.17 Methane Reading SAMPLING DATA:	(c) PVC) x 3=	9-14: 19 33:01 8:78 14:25 7:2573 NA	458	g **	Dedicated:	YES
Date/Time Method of Sampling: Diameter of Well Well Depth (from top of PV Water Depth (from top of F Length of water Column Puge Volume: LWC x 0.17 Methane Reading SAMPLING DATA: Time Tem (**C**) 12.45	(c) PVC) x 3=	33.01. 9.78 14.25 7.2575 MA				
Method of Sampling: Diameter of Well Well Depth (from top of PV Mater Depth (from top of P Length of water Column Puge Volume: LWC x 0.17 Methane Reading SAMPLING DATA: Time Tem (*0	/C) PVC) x 3=	33.01. 9.78 14.25 7.2575 MA				
Diameter of Well Well Depth (from top of PV Water Depth (from top of P Length of water Column Puge Volume: LWC x 0.17 Methane Reading SAMPLING DATA: Time Tem (*0	/C) >VC) x 3=	7.23.01. 8.78 14.25 7.2573 MA				
Ĕ (°C	x 3=	8.78 . 14.23 7.2573 MA		Volume Pu	erged <u>7.</u>	5 Scullan
Well Depth (from top of PV Water Depth (from top of PV Length of water Column Puge Volume: LWC x 0.17 Mathane Reading SAMPLING DATA: Time Tem (*0	x 3=	8.78 . 14.23 7.2573 MA		Volume Pu	erged 7.	5 Sallan
Water Depth (from top of F Length of water Column Puge Volume: LWC x 0.17 Mathane Reading SAMPLING DATA: Time Tem	x 3=	7,2573 MA ,		Volume Pu	arged <u>7.</u>	5 Sallan
Length of water Column Puge Volume: LWC x 0.17 Mathane Reading SAMPLING DATA: Time Tem (*0	x 3=	7. 2-575 MAY :		Volume Pu	erged 7.	5 Scullan
Puge Volume: LWC x 0.17 Methane Reading SAMPLING DATA: Time Tem (*0	x 3= ip.	MAT ,		Volume Pu	orged	S Swillan
SAMPLING DATA: Time Tem (*0	2)	pH				
Time Tem (*0	2)		LCook of			
Time Tem (*0	2)		Condition			
	R	(std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	DO (mg/l)
		7.72	2295	101	-163.6	2.07
Turbidity 10.0 Serial #:			umhos/cm@25	5. C .		
Califi deligi is:						
ORP Serial #	t		_ Mv			A
DO Calibrated to		<u> </u>	-			•
Weather conditions @ time	e of same	ilina:	P. Seza	My 7	٧٢.	•
				V		
COMMENTS AND OBSE	RVATIO	NS:			*	
l certify that sampling proc protocals.	cedures w	vere in accord	dance with all a	pplicable EP	A, State and	Site-Specific
GAIL	1	Ву:	70u		Company	74

acility:	Dewitt Landfill			Sample Po	oint ID:	MW-10	3
leki Personne	•	TOIC		Sample Ma	atrix:	Gw	,iam
• '	", IFORMATION:			•			
ate/Time		6.9.141	1636				
•	andle me	Bailer			Dedicated:	YES	
Method of Sam		2 ~	.,			0	
Diameter of We	m top of PVC)	20.42					
Water Depth (fi	rom top of PVC)	10.84				•	
ength of wate	r Column LWC x 0.17 x 3=	4.987	8	Volume P	urged	5 guller	
Nethane Read							•
AMPLING D		,					-
Time	Temp.	pH (otd units)	Conduct (Umhos/cm)	Turb. (NTU)	ORP Mv	(mg/l)	
	(°C)	(etd units)					-
Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0	r CHECK DATA: erial #: erial #:	-5ee	Pago.	175.3 11 F	1-63.6	13.29 Bratain	
NSTRUMENT Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0 S pH 4.0 Serial # pH 7.0 Serial #	CHECK DATA: erial #: erial #: Serial #:	See	Page	((
NSTRUMENT Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0 S pH 4.0 Serial # pH 7.0 Serial #	CHECK DATA: erial #: erial #: Serial #:	See	1	((
NSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial #:	CHECK DATA: erial #: erial #: Serial #:	See	Page	((
NSTRUMENT Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0	CHECK DATA: erial #: erial #: Serial #:	See	umhos/cm@2	((
NSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0	CHECK DATA: erial #: erial #: Serial #:	502	umhos/cm@2	((
INSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial # Cond Serial #: ORP Serial # DO Calibrated Weather condi	CHECK DATA: erial #: erial #: Serial #:	See	umhos/cm@2	((
NSTRUMENT Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0 S Furbidity 10.0 S FURBINE S	tions @ time of sa	See	umhos/cm@2	((
INSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 S PH 4.0 Serial # PH 7.0 Serial # Cond Serial #: ORP Serial # DO Calibrated Weather condi	tions @ time of sa	See	umhos/cm@2	((
NSTRUMENT Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0	to	See	umhos/cm@24 My P. Sus	11 F	in Cul	Bratain	
INSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0	tions @ time of sa	See	umhos/cm@24 My P. Sus	11 F	in Cul	Bratain	
NSTRUMENT Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0	totions @ time of sal	See mpling:	umhos/cm@24 My P. Sus	11 F	in Cul	d Site-Specific	
INSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0	to	See	umhos/cm@25 _ Mv P. Su. A	11 F	DU'S	d Site-Specific	

Facility:	Dewitt Landfill			Sample Po	1114 16.	mus 5
ield Personne	l: ·	TOIC		Sample Ma	itrix:	GW
SAMPLING IN	FORMATION:					
Date/Time		6-13141 12	rto_			_
Method of Sam	pling:	Baller			Dedicated:	YES
Nater Depth (fr Length of water	m top of PVC) om top of PVC)	75.19	<u> </u>	Volume Pu	arged 22	.5
Methane Readi	ng	M	-			
SAMPLING DA	ATA:	1				
Time	Temp.	pH (std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	(mg/l)
1200	12.64	: 7.24	3853	13.5	-40.2	4.72
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S	CHECK DATA: orial #: CASCA serial #: CASCA serial #: CASCA serial #: CASCA	of call a	114 TOTO	idily to	Turbidish one Samial Ex 10/1	# 0254
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S PH 4.0 Serial #: PH 7.0 Serial #: Cond Serial #:	13 m 3 T 4 AC SOD	52 ELP 532 ELP 5400	114 Tota 114 114 115	G. EXP 10/17	0.0 Savid Ex 10/1	# 0254
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S PH 4.0 Serial #: PH 7.0 Serial #: Cond Serial #: ORP Serial #	erial #: C2 S7 C3 erial #: C2 SC2 Serial #: C2 SC2 Serial #: C2 SC2 13 M 3 R 13 M 3 T 4 AC SC2	EXP 18. EXP 18. EXP 18. EXP 18. 2400	114 Turb 114 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1	G. FXP 10/17	3/15	#C2549
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se PH 4.0 Serial #: PH 7.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated	13 m 3 k 13 m 3 k 13 m 3 k 13 m 3 r 14 C C C C C C C C C C C C C C C C C C C	EXP 18. EXP 18.	114 Turb 114 115 115 115 115 115 115 115 115 115	G. FXP 10/17	3/15	#C2549
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated Weather condit	erial #: C2 S7 C3 erial #: C2 SC2 Serial #: C2 SC2 ** 13 M 3 T	EXP 13: EXP 13: EXP 13: 2400 mpling: TIONS:	114 Turb 114 115 umhos/cm@25 Mv F.XP BP @ 4	G. EXP 10/17	3/15	#C2549
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated Weather condit	erial #: C2 S7 C3 erial #: C2 SC2 Serial	EXP 13: EXP 13: EXP 13: 2400 mpling: TIONS:	114 Turb 114 115 umhos/cm@25 Mv F.XP BP @ 4	G. EXP 10/17	3/15	#C2549

	×	į	ž
ľ	ĺ	L,	i i
ش	ŀ		
		Ŀ	۰

Facility:	Dewitt Landfill			Sample Point	ID:	Mw-
Field Personne	l: .	TOU	•	Sample Matrix	:	6W
SAMPLING IN	FORMATION:	1 42 14.			•	
Date/Time	40	6.13.14 Lest+ 1	1230		•	
Method of Sam	pling:	Bajjer		Dec	licated:	VES
Diameter of We	11 -	. 2"				
Well Depth (from		76.39		•		
Water Depth (fr		2.07	}			•
Length of water Puge Volume: L		12,5256)	Volume Purge	d /3	99 lla
Methane Readir		NA.				
SAMPLING DA	TA.	** ₅ ,				•
. Time	Temp.	pH	Conduct	Turb.	ORP	DO
1230	12.52	(std units)	(Umhos/cm)	(NTU) 2(.9. ~	Mv 30.8	3.96
Tuibluity 0.0 36	rial #:	_		•	,	Calibr
Turbidity 1.0 Sec Turbidity 10.0 Sec	rial #: erial #:				, .	,
Turbidity 1.0 Se Turbidity 10.0 Se pH 4.0 Serial #:	rial #: erial #:				, , ,	·
Turbidity 1.0 Se Turbidity 10.0 Se pH 4.0 Serial #: pH 7.0 Serial #:]	rial #:				,	,
Turbidity 1.0 Ser Turbidity 10.0 Sept 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	rial #:				,	Callain
Turbidity 1.0 Se Turbidity 10.0 Se pH 4.0 Serial #: pH 7.0 Serial #:]	rial #:		.umhos/cm@25		,	·
Turbidity 1.0 Ser Turbidity 10.0 Sept 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	rial #:		umhos/cm@25		,	·
Turbidity 1.0 Ser Turbidity 10.0 Sep pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:	rial #:				,	,
Turbidity 1.0 Ser Turbidity 10.0 Sep pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial #	rial #:				سردن	,
Turbidity 1.0 Ser Turbidity 10.0 Sep pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated to Weather condition	rial #:	epling:	Mv	<u>(C</u>	<i>الحج</i> م	4
Turbidity 1.0 Ser Turbidity 10.0 Ser pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated to Weather condition	ons @ time of sam	epling:	Mv	<u>(C</u>	<u> </u>	
Turbidity 1.0 Ser Turbidity 10.0 Ser pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated to Weather condition	ons @ time of sam	epling:	Mv	<u>(C</u>	nv e ket	
Turbidity 1.0 Ser Turbidity 10.0 Ser pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: ORP Serial # DO Calibrated to Weather condition	ons @ time of sam	epling:	Mv	<u>(C</u>	nugg-1	4

2c

2

Charles Spain

Login Sample Receipt Checklist

Client: Town of Manlius

Job Number: 480-61456-1

Login Number: 61456

List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	TA	
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	False	Lab to filter	
Chlorine Residual checked.	True	Ok	

(×38)	
(× 70	

Login Sample Receipt Checklist

Client: Town of Manlius Job Number: 480-61456-1

Login Number: 61536

List Source: TestAmerica Buffalo

List Number: 1 Creator: Wienke, Robert K

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	VOC received but not listed on the COC. Logged as per volume received
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	False	Lab to filter
Chlorine Residual checked.	True	Ok

Login Sample Receipt Checklist

Client: Town of Manlius

Job Number: 480-61456-1

Login Number: 61930

List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	TA	•
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	True		
Chlorine Residual checked.	True	Ok	

TestAmerica Buffalo

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories. Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-68087-1 Client Project/Site: Town of Dewitt

Sampling Event: Surfacewater - Quarterly (3,6,9,12)

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Fise Shoppe

Authorized for release by: 10/14/2014 2:59:51 PM

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
	16
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Field Data Sheets	23
Receipt Chacklists	26

в		Ε	
		Ŧ	
Б			
۰			
ш			

ı.	σ.		
	2		
			ì
	м		

	y	

		5		
	У			
-			'n	
r		5		
IJ.		3.		

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time

ML

NC

ND PQL

QC

RER

RPD

TEF

TEQ

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error retio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Minimum Level (Dioxin)

Practical Quantitation Limit

Not Calculated

Quality Control

Relative error ratio

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

- 6

Job ID: 480-68087-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-68087-1

Comments

No additional comments.

Receipt

The samples were received on 9/26/2014 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

GC/MS VOA

Method(s) 624: The following sample contained residual chlorine upon receipt: SW-1 (480-68087-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The method blank for batch 480-206410 contained dissolved chromium, copper, and zinc above the method detection limits. These target analyte concentrations were less than the reporting limits (RL); therefore, re-extraction and/or re-analysis of samples SW-1 (480-68087-1), SW-3 (480-68087-2) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample(s) deviated from the standard procedure: SW-3 (480-68087-2). The reporting limits (RLs) have been adjusted proportionately.

Method(s) SM 2540C: The following sample was initially analyzed within analytical holding time, however the sample was over-diluted: SW-1 (480-68087-1). Reanalysis at the proper dilution was performed outside of holding time.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

2

Client Sample ID: SW-1

	Lab	Sampl	e ID:	480-	68087-1
--	-----	-------	-------	------	---------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	1.7	J	5.0	0.45	ug/L	1	_	624	Total/NA
Chromium	0.0012	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0071	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0052	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.0048	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.022		0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0027	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0027	JB	0.010	0.0016	mg/L	1		6010C	Dissolved
Lead	0.0042	J	0.010	0.0030	mg/L	1		6010C	Dissolved
Nickel	0.0036	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.012	В	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1470	Н	10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SW-3

Lab Sample ID: 480-68087-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	5.1		5.0	0.45	ug/L	1		624	Total/NA
Chromium	0.0019	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0048	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Nickel	0.0031	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0093	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Arsenic	0.0063	J	0.015	0.0056	mg/L	1		6010C	Dissolved
Chromium	0.0020	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0029	JB	0.010	0.0016	mg/L	1		6010C	Dissolved
Nickel	0.0019	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0068	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	680		100	40.0	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Lab Sample ID: 480-68087-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 09/25/14 10:00 Date Received: 09/26/14 01:30

Method: 624 - Volatile Organio Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/27/14 02:09	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/27/14 02:09	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/27/14 02:09	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/27/14 02:09	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/27/14 02:09	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/27/14 02:09	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/27/14 02:09	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/27/14 02:09	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/27/14 02:09	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/27/14 02:09	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/27/14 02:09	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/27/14 02:09	1
Acrolein	ND		100	17	ug/L			09/27/14 02:09	1
Acrylonitrile	ND		50	1.9	ug/L			09/27/14 02:09	1
Benzene	ND		5.0	0.60	ug/L			09/27/14 02:09	1
Bromoform	ND		5.0	0.47	ug/L			09/27/14 02:09	1
Bromomethane	ND		5.0	1.2	ug/L			09/27/14 02:09	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/27/14 02:09	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/27/14 02:09	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/27/14 02:09	1
Chloroethane	ND		5.0	0.87	ug/L			09/27/14 02:09	1
Chloroform	ND		5.0	0.54	ug/L			09/27/14 02:09	1
Chloromethane	ND		5.0	0.64	ug/L			09/27/14 02:09	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/27/14 02:09	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			09/27/14 02:09	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/27/14 02:09	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/27/14 02:09	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/27/14 02:09	1
Toluene	1.7	J	5.0	0.45	ug/L			09/27/14 02:09	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/27/14 02:09	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/27/14 02:09	1
Trichloroethene	ND		5.0	0.60	ug/L			09/27/14 02:09	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/27/14 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	109		72 - 130			_		09/27/14 02:09	1
4-Bromofluorobenzene (Surr)	100		69 - 121					09/27/14 02:09	1
Toluene-d8 (Surr)	97		70 - 123					09/27/14 02:09	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		09/26/14 12:05	09/27/14 13:00	1
Arsenic	ND		0.015	0.0056	mg/L		09/26/14 12:05	09/27/14 13:00	1
Beryllium	ND		0.0020	0.00030	mg/L		09/26/14 12:05	09/27/14 13:00	1
Cadmium	ND		0.0020	0.00050	mg/L		09/26/14 12:05	09/27/14 13:00	1
Chromium	0.0012	J	0.0040	0.0010	mg/L		09/26/14 12:05	09/27/14 13:00	1
Copper	0.0071	J	0.010	0.0016	mg/L		09/26/14 12:05	09/27/14 13:00	1
Lead	0.0052	J	0.010	0.0030	mg/L		09/26/14 12:05	09/27/14 13:00	1
Nickel	0.0048	J	0.010	0,0013	mg/L		09/26/14 12:05	09/27/14 13:00	1
Selenium	ND		0.025	0.0087	mg/L		09/26/14 12:05	09/27/14 13:00	1

TestAmerica Buffalo

10/14/2014

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Lab Sample ID: 480-68087-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 09/25/14 10:00 Date Received: 09/26/14 01:30

Method: 6010C - Metals (ICP) (Continued) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		09/26/14 12:05	09/27/14 13:00	1
Thallium	ND		0.020	0.010	mg/L		09/26/14 12:05	09/27/14 13:00	1
Zinc	0.022		0.010	0.0015	mg/L		09/26/14 12:05	09/27/14 13:00	1
Method: 6010C - Metals (ICP) - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/07/14 08:57	10/09/14 01:56	1
Arsenic	ND		0.015	0.0056	mg/L		10/07/14 08:57	10/09/14 01:56	1
Beryllium	ND		0.0020	0.00030	mg/L		10/07/14 08:57	10/09/14 01:56	1
Cadmium	ND		0.0020	0.00050	mg/L		10/07/14 08:57	10/09/14 01:56	1
Chromium	0.0027	JB	0.0040	0.0010	mg/L		10/07/14 08:57	10/09/14 01:56	1
Copper	0.0027	JB	0.010	0.0016	mg/L		10/07/14 08:57	10/09/14 01:56	1
Lead	0.0042	J	0.010	0.0030	mg/L		10/07/14 08:57	10/09/14 01:56	1
Nickel	0.0036	J	0.010	0.0013	mg/L		10/07/14 08:57	10/09/14 01:56	1
Selenium	ND		0.025	0.0087	mg/L		10/07/14 08:57	10/09/14 01:56	1
Silver	ND		0.0060	0.0017	mg/L		10/07/14 08:57	10/09/14 01:56	1
Thallium	ND		0.020	0.010	mg/L		10/07/14 08:57	10/09/14 01:56	1
Zinc	0.012	В	0.010	0.0015	mg/L		10/07/14 06:57	10/09/14 01:56	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/29/14 08:15	09/29/14 12:37	1
Method: 7470A - Mercury (CVAA) - Dissol Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		10/08/14 10:50	10/09/14 13:00	1
General Chemistry						_		Accelerate	DU F
· · · · · · · · · · · · · · · · · · ·		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1470	H	10.0	4.0	mg/L			10/09/14 03:57	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Lab Sample ID: 480-68087-2

Matrix: Surface Water

Client Sample ID: SW-3

Date Collected: 09/25/14 10:30 Date Received: 09/26/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/27/14 02:34	
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/27/14 02:34	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/27/14 02:34	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/27/14 02:34	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/27/14 02:34	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/27/14 02:34	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/27/14 02:34	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/27/14 02:34	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/27/14 02:34	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/27/14 02:34	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/27/14 02:34	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/27/14 02:34	1
Acrolein	ND		100	17	ug/L			09/27/14 02:34	1
Acrylonitrile	ND		50	1.9	ug/L			09/27/14 02:34	1
Benzene	ND		5.0	0.60	ug/L			09/27/14 02:34	1
Bromoform	ND		5.0	0.47	ug/L			09/27/14 02:34	1
Bromomethane	ND		5.0	1.2	ug/L			09/27/14 02:34	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/27/14 02:34	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/27/14 02:34	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/27/14 02:34	1
Chloroethane	ND		5.0	0.87	ug/L			09/27/14 02:34	•
Chloroform	ND		5.0	0.54	ug/L			09/27/14 02:34	
Chloromethane	ND		5.0	0.64	ug/L			09/27/14 02:34	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/27/14 02:34	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			09/27/14 02:34	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/27/14 02:34	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/27/14 02:34	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/27/14 02:34	1
Toluene	5.1		5.0	0.45	ug/L			09/27/14 02:34	
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/27/14 02:34	•
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/27/14 02:34	•
Trichloroethene	ND		5.0	0.60	ug/L			09/27/14 02:34	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/27/14 02:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	108		72 - 130			-		09/27/14 02:34	
4-Bromofluorobenzene (Surr)	99		69 - 121					09/27/14 02:34	1
Toluene-d8 (Surr)	98		70 - 123					09/27/14 02:34	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0,0068	mg/L		09/26/14 12:05	09/27/14 13:11	1
Arsenic	ND		0.015	0.0056	mg/L		09/26/14 12:05	09/27/14 13:11	1
Beryllium	ND		0.0020	0.00030	mg/L		09/26/14 12:05	09/27/14 13:11	1
Cadmium	ND		0.0020	0.00050	mg/L		09/26/14 12:05	09/27/14 13:11	1
Chromium	0.0019	J	0.0040	0.0010	mg/L		09/26/14 12:05	09/27/14 13:11	1
Copper	0.0048	J	0.010	0.0016	mg/L		09/26/14 12:05	09/27/14 13:11	1
Lead	ND		0.010	0.0030	mg/L		09/26/14 12:05	09/27/14 13:11	1
Nickel	0.0031	J	0.010	0.0013	mg/L		09/26/14 12:05	09/27/14 13:11	1
Selenium	ND		0.025	0.0087	mg/L		09/26/14 12:05	09/27/14 13:11	1

TestAmerica Buffalo

10/14/2014

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Lab Sample ID: 480-68087-2

Matrix: Surface Water

Client	Sample	ID:	SW-3
--------	--------	-----	------

Date Collected: 09/25/14 10:30 Date Received: 09/26/14 01:30

Method: 6010C - Metals (ICP) (Continu Analyte		Qualifier	RL .	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Shor	ND	dodillio	0.0060	0.0017	mg/L		09/28/14 12:05	09/27/14 13:11	1
Thallium	ND		0.020	0.010	•		09/26/14 12:05	09/27/14 13:11	1
Zinc	0.0093	J	0.010	0.0015	•		09/26/14 12:05	09/27/14 13:11	1
Method: 6010C - Metals (ICP) - Dissolv	ved								
Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/07/14 08:57	10/09/14 01:53	1
Arsenic	0.0063	J	0.015	0.0056	mg/L		10/07/14 08:57	10/09/14 01:53	1
Beryllium	ND		0.0020	0.00030	mg/L		10/07/14 08:57	10/09/14 01:53	1
Cadmium	ND		0.0020	0.00050	mg/L		10/07/14 08:57	10/09/14 01:53	1
Chromium	0.0020	JB	0.0040	0.0010	mg/L		10/07/14 08:57	10/09/14 01:53	1
Copper	0.0029	JB	0.010	0.0016	mg/L		10/07/14 08:57	10/09/14 01:53	1
Lead	ND		0.010	0.0030	mg/L		10/07/14 08:57	10/09/14 01:53	1
Nickel	0.0019	J	0.010	0.0013	mg/L		10/07/14 08:57	10/09/14 01:53	1
Selenium	ND		0.025	0.0087	mg/L		10/07/14 08:57	10/09/14 01:53	1
Silver	ND		0.0060	0.0017	mg/L		10/07/14 08:57	10/09/14 01:53	1
Thallium	ND		0.020	0.010	mg/L		10/07/14 08:57	10/09/14 01:53	1
Zinc	0.0068	JB	0.010	0.0015	mg/L		10/07/14 08:57	10/09/14 01:53	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Morcury	ND		0.00020	0.00012	mg/L		09/29/14 08:15	09/29/14 12:38	1
Method: 7470A - Mercury (CVAA) - Dis	solved								
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		10/08/14 10:50	10/09/14 13:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	680		100	40.0	mg/L			10/01/14 15:02	1

Surrogate Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Prep Type: Total/NA

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Surface Water

Percent Surrogate Recovery (Acceptance Limits) 12DCE **BFB** TOL (72-130)(69-121) (70-123)Lab Sample ID Client Sample ID 480-68087-1 SW-1 109 100 480-68087-2 SW-3 108 99 98

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA Matrix: Water

		Percent Surrogate Recovery (Acceptance Limits)								
		12DCE	BFB	TOL						
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)						
LCS 480-204708/6	Lab Control Sample	106	102	99						
MB 480-204708/8	Method Blank	100	103	99						

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-204708/8							Client Sa	ample ID: Metho	
Matrix: Water								Prep Type: T	Otalina
Analysis Batch: 204708	MR	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/26/14 22:02	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/26/14 22:02	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/26/14 22:02	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/26/14 22:02	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/26/14 22:02	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/26/14 22:02	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/26/14 22:02	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/26/14 22:02	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/26/14 22:02	1
1,3-Dichlorobenzene	ND	•	5.0	0.54	ug/L			09/26/14 22:02	1
1,4-Dichlorobenzene	ND		5.0	0,51	ug/L			09/26/14 22:02	1
P-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/26/14 22:02	1
Acrolein	ND		100	17	ug/L			09/26/14 22:02	1
Acrylonitrile	ND		50	1.9	ug/L			09/26/14 22:02	1
Benzene	ND		5.0	0.60	ug/L			09/26/14 22:02	1
Bromoform	ND		5.0	0.47	ug/L			09/26/14 22:02	1
Bromomethane	ND		5.0	1.2	ug/L			09/26/14 22:02	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/26/14 22:02	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/26/14 22:02	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/26/14 22:02	1
Chloroethane	ND		5.0	0.87	ug/L			09/26/14 22:02	1
Chloroform	ND		5.0	0.54	ug/L			09/26/14 22:02	1
Chloromethane	ND		5.0	0.64	ug/L			09/26/14 22:02	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/26/14 22:02	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			09/26/14 22:02	. 1
Ethylbenzene	ND		5.0	0.46	ug/L			09/26/14 22:02	. 1
Methylene Chloride	ND		5.0	0.81	ug/L			09/26/14 22:02	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/26/14 22:02	1
Toluene	ND		5.0	0.45	ug/L			09/26/14 22:02	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/26/14 22:02	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/26/14 22:02	1
Trichloroethene	ND		5.0	0.60	ug/L			09/26/14 22:02	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/26/14 22:02	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					09/26/14 22:02	1
4-Bromofluorobenzene (Surr)	103		69 - 121					09/26/14 22:02	1
Toluene-d8 (Surr)	99		70 - 123					09/26/14 22:02	1

Lab Sample ID: Matrix: Water

Analysis Batch: 204708

Client: Town of Dewitt Project/Site: Town of Dewitt

: LCS 480-204708/6	Client Sample ID: Lab Control Sample
	Prep Type: Total/NA

7, e.e Datem 20 v ee	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.9		ug/L		99	52 - 162	
1,1,2,2-Tetrachioroethane	20.0	18.2		ug/L		91	46 - 157	
1,1,2-Trichloroethane	20.0	18.8		ug/L		94	52 - 150	
1,1-Dichloroethane	20.0	21.5		ug/L		108	59 - 155	

TestAmerica Buffalo

TestAmerica Job ID: 480-68087-1

Client: Town of Dewitt Project/Site: Town of Dewitt

Lab Sample ID: LCS 480-204708/6

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Client	Sample	ID:	Lab	Control	Sample
			D	T	

1 - 221 64 - 148

47 _ 150

54 - 156

17 - 183

71 _ 157

1 _ 251

94

103

100

Matrix: Water							Prep Type	: Total/N/
Analysis Batch: 204708	0-11-	1.00	100				N/Pag	
	Spike		LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	26.1		ug/L		131	1 - 234	
1,2-Dichlorobenzene	20.0	19.0		ug/L		95	18 _ 190	
1,2-Dichloroethane	20.0	22.4		ug/L		112	49 - 155	
1,2-Dichloropropane	. 20.0	19.8		ug/L		99	1 - 210	
1,3-Dichlorobenzene	20.0	18.7		ug/L		93	59 _ 156	
1,4-Dichlorobenzene	20.0	18.4		ug/L		92	18 - 190	
2-Chloroethyl vinyl ether	20.0	18.9	J	ug/L		95	1 - 305	
Benzene	20.0	19.6		ug/L		98	37 - 151	
Bromoform	20.0	16.9	,	ug/L		85	45 _ 169	
Bromomethane	20.0	20.7		ug/L		103	1 - 242	
Carbon tetrachloride	20.0	20.0		ug/L		100	70 - 140	
Chlorobenzene	20.0	19.3		ug/L		97	37 _ 160	
Chlorodibromomethane	20.0	18.7		ug/L		94	53 - 149	
Chloroethane	20.0	27.9		ug/L		139	14 - 230	
Chloroform	20.0	21.2		ug/L		106	51 _ 138	
Chloromethane	20.0	15.6		ug/L		78	1 - 273	
cis-1,3-Dichloropropene	20.0	19.6		ug/L		98	1 - 227	
Dichlorobromomethane	20.0	20.1		ug/L	•	100	35 _ 155	
Ethylbenzene	20.0	19.5		ug/L		98	37 - 162	

20,0

20.0

20.0

20.0

20.0

20.0

20.9

18.9

19.2

21.1

20.7

20.1

15.8

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Vinyl chloride 20.0 LCS LCS Limits Surrogate %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 106 72 _ 130 4-Bromofluorobenzene (Surr) 102 69 - 121 99 70 - 123 Toluene-d8 (Surr)

Method: 6010C - Metals (ICP)

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Lab Sample ID: MB 480-204591/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 205131	Prep Batch: 204591

		MR	WR							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Antimony	ND		0.020	0.0068	mg/L		09/26/14 12:05	09/29/14 18:06	1
,	Arsenic	ND		0.015	0.0056	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Beryllium	ND		0.0020	0.00030	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Cadmium	ND		0.0020	0.00050	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Chromium	ND		0.0040	0.0010	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Copper	ND		0.010	0.0016	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Lead	ND		0.010	0.0030	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Nickel	ND		0.010	0.0013	mg/L		09/26/14 12:05	09/29/14 18:06	1
	Selenium	ND		0.025	0.0087	mg/L		09/26/14 12:05	09/29/14 18:06	1

Page 12 of 26

TestAmerica Buffalo

10/14/2014

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-204591/1-A

Matrix: Water

Analysis Batch: 205131

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 204591

	1110	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		09/26/14 12:05	09/29/14 18:06	1
Thallium	ND		0.020	0.010	mg/L		09/26/14 12:05	09/29/14 18:06	1
Zinc	ND		0.010	0.0015	mg/L		09/26/14 12:05	09/29/14 18:06	1
L									

Lab Sample ID: LCS 480-204591/2-A

Matrix: Water

Analysis Ratch: 205131

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 204591

						Prep Date	11. 204591
Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.200	0.197		mg/L		99	80 - 120	
0.201	0.193		mg/L		96	80 - 120	
0.201	0.199		mg/L		99	80 - 120	
0.201	0.193		mg/L		96	80 - 120	
0.201	0.198		mg/L		99	80 - 120	
0.201	0.192		mg/L		96	80 - 120	
0.201	0.195		mg/L		97	80 - 120	
0.201	0.194		mg/L		97	80 - 120	
0.201	0.186		mg/L		93	80 _ 120	
0.0500	0.0506		mg/L		101	80 - 120	
0.200	0.204		mg/L		102	80 - 120	
0.201	0.218		mg/L		109	80 _ 120	
	Added 0.200 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201	Added Result 0.200 0.197 0.201 0.193 0.201 0.199 0.201 0.193 0.201 0.198 0.201 0.192 0.201 0.195 0.201 0.194 0.201 0.186 0.0500 0.0506 0.200 0.204	Added Result Qualifier 0.200 0.197 0.201 0.193 0.201 0.199 0.201 0.193 0.201 0.198 0.201 0.192 0.201 0.195 0.201 0.194 0.201 0.186 0.0500 0.0506 0.200 0.204	Added Result Qualifier Unit 0.200 0.197 mg/L 0.201 0.193 mg/L 0.201 0.199 mg/L 0.201 0.193 mg/L 0.201 0.198 mg/L 0.201 0.192 mg/L 0.201 0.195 mg/L 0.201 0.194 mg/L 0.201 0.186 mg/L 0.0500 0.0506 mg/L 0.200 0.204 mg/L	Added Result Qualifier Unit D 0.200 0.197 mg/L mg/L 0.201 0.193 mg/L mg/L 0.201 0.199 mg/L mg/L 0.201 0.193 mg/L mg/L 0.201 0.198 mg/L mg/L 0.201 0.195 mg/L mg/L 0.201 0.194 mg/L mg/L 0.0500 0.0506 mg/L mg/L 0.200 0.204 mg/L mg/L	Added Result Qualifier Unit D %Rec 0.200 0.197 mg/L 99 0.201 0.193 mg/L 96 0.201 0.199 mg/L 99 0.201 0.193 mg/L 96 0.201 0.198 mg/L 99 0.201 0.192 mg/L 96 0.201 0.195 mg/L 97 0.201 0.194 mg/L 97 0.201 0.186 mg/L 93 0.0500 0.0506 mg/L 101 0.200 0.204 mg/L 102	Spike LCS LCS WRec. Added Result Qualifier Unit D %Rec Limits 0.200 0.197 mg/L 99 80 - 120 0.201 0.193 mg/L 96 80 - 120 0.201 0.199 mg/L 99 80 - 120 0.201 0.198 mg/L 99 80 - 120 0.201 0.192 mg/L 96 80 - 120 0.201 0.195 mg/L 97 80 - 120 0.201 0.194 mg/L 97 80 - 120 0.201 0.186 mg/L 93 80 - 120 0.0500 0.0506 mg/L 101 80 - 120 0.200 0.204 mg/L 102 80 - 120

Lab Sample ID: LCSD 480-204591/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 205131							Prep I	Batch: 2	04591
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.200	0.196		mg/L		98	80 - 120	0	20
Arsenic	0.201	0.191		mg/L		95	80 - 120	1	20
Beryllium	0.201	0.203		mg/L		101	80 _ 120	2	20
Cadmium	0.201	0.193		mg/L		96	80 - 120	0	20
Chromium	0.201	0.198		mg/L		99	80 _ 120	0	20
Copper	0.201	0.193		mg/L		96	80 - 120	1	20
Lead	0.201	0.195		mg/L		97	80 - 120	0	20
Nickel	0.201	0.196		mg/L		98	80 - 120	1	20
Selenium	0.201	0.187		mg/L		93	80 - 120	0	20
Silver	0.0500	0.0492		mg/L		98	80 - 120	3	20
Thallium	0.200	0.208		mg/L		104	80 _ 120	2	20
Zinc	0.201	0.211		mg/L		105	80 - 120	4	20
_									

Lab Sample ID: MB 480-206177/1-B

Matrix: Water

Analysis Batch: 206884

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 206410

	MR	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/07/14 08:57	10/09/14 00:55	1
Arsenic	ND		0.015	0.0056	mg/L		10/07/14 08:57	10/09/14 00:55	1
Beryllium	ND		0.0020	0.00030	mg/L		10/07/14 08:57	10/09/14 00:55	1
Cadmium	ND		0.0020	0.00050	mg/L		10/07/14 08:57	10/09/14 00:55	1
Antimony Arsenic Beryllium	ND ND ND		0.020 0.015 0.0020	0.0068 0.0056 0.00030	mg/L mg/L mg/L		10/07/14 08:57 10/07/14 08:57	10/09/14 00:55 10/09/14 00:55	

TestAmerica Buffalo

10/14/2014

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

80 - 120

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-206177/1-B Client Sample ID: Method Blank **Matrix: Water** Prep Type: Dissolved Analysis Batch: 206884 Prep Batch: 206410

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.00100	J	0.0040	0.0010	mg/L		10/07/14 08:57	10/09/14 00:55	1
Copper	0.00235	J	0.010	0.0016	mg/L		10/07/14 08:57	10/09/14 00:55	1
Lead	ND		0.010	0.0030	mg/L		10/07/14 08:57	10/09/14 00:55	1
Nickel	ND		0.010	0.0013	mg/L		10/07/14 08:57	10/09/14 00:55	1
Selenium	ND		0.025	0.0087	mg/L		10/07/14 08:57	10/09/14 00:55	1
Silver	ND		0.0060	0.0017	mg/L		10/07/14 08:57	10/09/14 00:55	1
Thallium	ND		0.020	0.010	mg/L		10/07/14 08:57	10/09/14 00:55	1
Zinc	0.00984	J	0.010	0.0015	mg/L		10/07/14 08:57	10/09/14 00:55	1
Services									

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-206177/2-B

Matrix: Water Analysis Batch: 206884							Prep Type: Dissolved Prep Batch: 206410
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.200	0.192		mg/L		96	80 - 120
Arsenic	0.201	0.182		mg/L		91	80 - 120
Beryllium	0.201	0.194		mg/L		97	80 - 120
Cadmium	0.201	0.185		mg/L		92	80 - 120
Chromium	0.201	0.185		mg/L		92	80 _ 120
Copper	0.201	0.205		mg/L		102	80 - 120
Lead	0.201	0.184		mg/L		92	80 - 120
Nickel	0.201	0.181		mg/L		90	80 - 120
Selenium	0.201	0.181		mg/L		90	80 _ 120
Silver	0.0500	0.0507		mg/L		101	80 - 120
Thallium	0.200	0.197		mg/L		99	80 - 120

Method: 7470A - Mercury (CVAA)

Client Sample ID: Method Blank Lab Sample ID: MB 480-204841/1-A Prep Type: Total/NA **Matrix: Water**

0.201

0.201

Analysis Batch: 205003

Zinc

MB MB Analyte Result Qualifier **MDL** Unit Analyzed Dil Fac 09/29/14 08:15 Mercury ND 0.00020 0.00012 mg/L 09/29/14 12:06

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-204841/2-A Prep Type: Total/NA Matrix: Water Prep Batch: 204841 Analysis Batch: 205003 LCS LCS %Rec. Spike %Rec Limits Added Result Qualifier Unit Analyte 80 - 120 0.00667 0.00687 103

mg/L Mercury

ND

Lab Sample ID: MB 480-206177/1-D

Matrix: Water

Analyte

Mercury

Analysis Batch: 206912

Client Sample ID: Method Blank **Prep Type: Dissolved** Prep Batch: 206578 MB MB Prepared Dil Fac Analyzed Result Qualifier RL MDL Unit

0.00012 mg/L

10/08/14 10:50

mg/L

TestAmerica Buffalo

10/09/14 12:53

Prep Batch: 204841

0.00020

Lab Sample ID: MB 480-205468/1

Lab Sample ID: MB 480-206744/1

Matrix: Water

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 7470A	- Mercury	(CVAA)	(Continued)

Lab Sample ID: LCS 480-206177/2-D Matrix: Water					Client	Sample		ontrol Sample
Analysis Batch: 206912							Prep	Batch: 206578
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00667	0.00702		mg/L		105	80 - 120	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Analysis Batch: 205468	MB	MB							
Analyte	Resuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			10/01/14 14:45	1

Lab Sample ID: LCS 480-205408/2					Chem	Sample	ID. Lab Conti	or Sample
Matrix: Water							Prep Type	: Total/NA
Analysis Batch: 205468								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	512	491.0		mg/L		96	85 _ 115	

Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 206744									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			10/09/14 03:50	1

Lab Sample ID: LCS 480-206744/2					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 206744							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifler	Unit	D	%Rec	Limits
Total Dissolved Solids	505	487.0		mg/L		96	85 _ 115

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

2

GC/MS VOA

Analysis	Batch:	204708
-----------------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68087-1	SVI-1	Total/NA	Surface Water	624	
480-68087-2	SW-3	Total/NA	Surface Water	624	
LCS 480-204708/6	Lab Control Sample	Total/NA	Water	624	
MB 480-204708/8	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 204591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68087-1	SW-1	Total/NA	Surface Water	3005A	
480-68087-2	SW-3	Total/NA	Surface Water	3005A	
LCS 480-204591/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-204591/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	
MB 480-204591/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 204835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68087-1	SW-1	Total/NA	Surface Water	6010C	204591
480-68087-2	SW-3	Total/NA	Surface Water	6010C	204591

Prep Batch: 204841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68087-1	SW-1	Total/NA	Surface Water	7470A	
480-68087-2	SW-3	Total/NA	Surface Water	7470A	
LCS 480-204841/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-204841/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 205003

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
480-68087-1	SW-1	4	Total/NA	Surface Water	7470A	204841
480-68087-2	SW-3		Total/NA	Surface Water	7470A	204841
LCS 480-204841/2-A	Lab Control Sample		Total/NA	Water	7470A	204841
MB 480-204841/1-A	Method Blank		Total/NA	Water	7470A	204841

Analysis Batch: 205131

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-204591/2-A	Lab Control Sample	Total/NA	Water	6010C	204591
LCSD 480-204591/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	204591
MB 480-204591/1-A	Method Blank	Total/NA	Water	6010C	204591

Filtration Batch: 206177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68087-1	SW-1	Dissolved	Surface Water	FILTRATION	
480-68087-2	SW-3	Dissolved	Surface Water	FILTRATION	
LCS 480-206177/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCS 480-206177/2-D	Lab Control Sample	Dissolved	Water	FILTRATION	
MB 480-206177/1-B	Method Blank	Dissolved	Water	FILTRATION	
MB 480-208177/1-D	Method Blank	Dissolved	Water	FILTRATION	

TestAmerica Buffalo

QC Association Summary

Prep Type

Dissolved

Dissolved

Dissolved

Dissolved

Prep Type

Dissolved

Dissolved

Dissolved

Prep Type

Dissolved

Dissolved

Dissolved

Dissolved

Prep Type

Dissolved

Dissolved

Dissolved

Dissolved

Matrix

Water

Water

Matrix

Water

Water

Matrix

Water

Water

Matrix

Water

Water

Surface Water

Ctient: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID

Lab Control Sample

Method Blank

Client Sample ID

Lab Control Sample

Method Blank

Client Sample ID

Lab Control Sample

Method Blank

Client Sample ID

Lab Control Sample

Method Blank

SW-1

SW-3

SW-1

SW-3

SW-1

SW-3

SW-1

SW-3

Metals (Continued)
Prep Batch: 206410
Lab Sample ID

480-68087-1

480-68087-2

480-68087-1

480-68087-2

LCS 480-206177/2-B

MB 480-206177/1-B

Prep Batch: 206578

Lab Sample ID

LCS 480-206177/2-D

MB 480-206177/1-D

LCS 480-206177/2-B

MB 480-206177/1-B

Lab Sample ID

480-68087-1

480-68087-2

Analysis Batch: 206912

Lab Sample ID

480-68087-1

480-68087-2

Analysis Batch: 206884

TestAmerica Job ID: 480-68087-1

Method

3005A

3005A

3005A

3005A

Method

7470A

7470A

7470A

7470A

Method

6010C

6010C

6010C

6010C

Method

7470A

7470A

7470A

7470A

2

3

5

Prep Batch

206177

206177

206177

206177

Prep Batch

206177

206177

206177

206177

Prep Batch

206410

206410 206410

206410

Prep Batch

206578 206578

206578

206578

7

8

10

11 12

13

14 15

16

General Chemistry

LCS 480-206177/2-D

MB 480-206177/1-D

Analysis E	Batch:	205468
------------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88087-2	SW-3	Total/NA	Surface Water	SM 2540C	
LCS 480-205468/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-205468/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 206744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68087-1	844	· Total/NA	Surface Water	SM 2540C	
LCS 480-206744/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-206744/1	Method Blank	Total/NA	Water	SM 2540C	

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Lab Sample ID: 480-68087-1

Matrix: Surface Water

Client Sample ID: SW-1
Date Collected: 09/25/14 10:00
Date Received: 09/26/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	204708	09/27/14 02:09	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			206177	10/06/14 11:09	SLB	TAL BUF
Dissolved	Prep	3005A			206410	10/07/14 08:57	SLB	TAL BUF
Dissolved	Analysis	6010C		1	206884	10/09/14 01:56	AMH	TAL BUF
Total/NA	Prep	3005A			204591	09/26/14 12:05	SLB	TAL BUF
Total/NA	Analysis	6010C		1	204835	09/27/14 13:00	LMH	TAL BUF
Dissolved	Filtration	FILTRATION			206177	10/06/14 11:09	SLB	TAL BUF
Dissolved	Prep	7470A			206578	10/08/14 10:50	LRK	TAL BUF
Dissolved	Analysis	7470A		1	206912	10/09/14 13:00	LRK	TAL BUF
Total/NA	Prep	7470A			204841	09/29/14 08:15	LRK	TAL BUF
Total/NA	Analysis	7470A		1	205003	09/29/14 12:37	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	206744	10/09/14 03:57	VAJ	TAL BUF

Client Sample ID: SW-3
Date Collected: 09/25/14 10:30

Date Received: 09/26/14 01:30

Lab Sample ID: 480-68087-2

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624	risk/filler/riske*	1	204708	09/27/14 02:34	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			206177	10/06/14 11:09	SLB	TAL BUF
Dissolved	Prep	3005A			206410	10/07/14 08:57	SLB	TAL BUF
Dissolved	Analysis	6010C		1	206884	10/09/14 01:53	AMH	TAL BUF
Total/NA	Prep	3005A			204591	09/26/14 12:05	SLB	TAL BUF
Total/NA	Analysis	6010C		1	204835	09/27/14 13:11	LMH	TAL BUF
Dissolved	Filtration	FILTRATION			206177	10/06/14 11:09	SLB	TAL BUF
Dissolved	Prep	7470A			206578	10/08/14 10:50	LRK	TAL BUF
Dissolved	Analysis	7470A		1	206912	10/09/14 13:02	LRK	TAL BUF
Total/NA	Prep	7470A			204841	09/29/14 08:15	LRK	TAL BUF
Total/NA	Analysis	7470A		1	205003	09/29/14 12:38	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	205468	10/01/14 15:02	KJ1	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

10/14/2014

Page 18 of 26

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-15

The following analytes are included in this report, but certification is not offered by the governing authority:

Analysis Method	Prep Method	Matrix	Analyte
624		Surface Water	1,2-Dichloroethene, Total

7

8

10

11

H

15

113

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
3010C	Metals (ICP)	SW846	TAL BUF
470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

4

10

•

8

T)

12

14

15

16

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-68087-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-68087-1	SW-1	Surface Water	09/25/14 10:00	09/26/14 01:30
480-68087-2	SW-3	Surface Water	09/25/14 10:30	09/26/14 01:30

Page 22 of 2

Chain of Custody Record

THE LEADER OF ENVISIONMENTAL TESTING

Client Information	Sampler:	Kamil	meror	La Si	b PM: naffer, L	isa E						C	arrier T	racking	g No(s)	t		480	C No: 0-54671-	1448	1.1		
Client Contact Michael Moracco	Phone: 413-	230-	4413	EH	Mail:													Pag	e:				
Company:	1 113-	-	0713) IIIS	a.shaffe	ar@te	starne	encai	-			-			_	_		Job	ge 1 of 1				
Town of Dewitt					\bot				Ar	nalys	sis I	Requ	este	d				000					
Address: 5400 Buttemut Drive	Due Date Request	ed:																	servation				
City: East Syracuse	TAT Requested (d	ays):																В-	HCL NaOH Zn Acetate		M - Hexa N - None O - AsNa	3	
State, Zip: NY, 13057								*										D- E-	Nitric Acid NaHSO4	1	P - Na20 Q - Na25	04S 803	
Phone: 315-446-3428(Tel)	P0 #: Purchase Order	not require	nd .			fered		A - 62	60								4	G-	MeOH Amchior		R - Na28	04	
Email:	WO#:	Tiot require	, u		LNO			3	solid									7 H-	Ascorbic A		T - TSP U - Acet	Dodecah	ydrate
mmoracco@townofdewitt.com					98 OF	al la		3	g pe/			1					8	J-1	DI Water EDTA		V-MCA W-ph4	A	
Project Name: Town of Dewitt/ Event Desc: Surfacewater - Quarterly (3,6,9,12) Site:) ele	tant M		llutant	Diasolved Solids	• Filtered							confalners	Ĺ-1	EDA		Z - other		
New York	SSOW#:							ly Po		- FI									9E1				
Sample Identification		Sample	Sample Type (C=comp,	Matrix (W-mater, 8-solid, 0-weste/oil BT=Ticoso,	IN THE PROPERTY.	ROHOMBUN MANASPRIMATION OF SELECT OF	6010C, 7470A	624_5mi - Priority Pollutant List - VOA - 624	2640C_Calcd - Total	7470A - Mercury							Total Number of				-		
Sample Identification	Sample Date	Time	G=grab)	A-Air)		N.		A		_	V 73	72	H. Carl	27 4.13	- 2		F	-	Speci	al Ins	tructio	ns/Not	a:
SW-1	0		1	Water	H	104	U	A	MAN AND A	arve:	-	2.00	* 14.74	1000	-			-	100	مؤ تو المرتب ال	or the second	2 - A - A - A - A - A - A - A - A - A -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	9-25-14	1060	6		+	-					-	-		+	_		蒋						
SW-2				Water	++	-					-	-	+	-	+		1	-	Jot -	Co	1105	1-16)(Y
SW-3	9-25-14	1030	15	Water													- 20						
/																							
					++	+-				+			1	-	-	-	27	1		_			
					+	-							_	п									
			-	1	DEL								_							HIII .			
		100		10	20	_											1. 1			Ш			
			0										-	480	6000	7 Chai			THE HOLE	DI 18 DI		-	-
			62	-) (+	1	,	\vdash			-			480-	\$0U0	Cria	III OI C	Justo	2у				
400				1	4	10	#_				-		1	1	1-		130						
					Ш	1	1									1							
•																	7	্ব					
Possible Hazard Identification	1				s	ample	Dîs	posa	I(A	fee n	nay l	be ass	sesse	d if s	ampi	es are	retai	ned le	onger th	ian 1	month)		
Non-Hazard Flammable Skin Irritant Pois	son B Unka	nown	Radiologica	el le		\Box_{F}	Retun	To	Clien	rt		Dis	posa	ByL	ab		Arc	chive :	For		Mon		
Deliverable Requested: I, II, III, IV, Other (specify)						pecial					quire	ment	3:										
Empty Kit Relinquished by:		Date:			Time	a :	*****	^	_	_		-	Me	thod o	f Shipn	nent							
Reprogrammed by:	Date/Time:		_	Company		Rece	eived b	y: V	10	il		4			Date	Time:		11.	(1		Company	y	
Reflinquished by:	G-25-14 Date/Time:	11.1		Company					NO	uk	UV	V			-	0	1/2	lell	401	.30	Company		
поницианостру.	Date Hille.			Company		Kece	eived b	ny:							Date	/Time:					Company	4	
Relinquished by:	Date/Time:			Company		Rece	eived b	y:							Date	/Time:					Company	1	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			;			Cool	er Ten	nperati	ure(s)	°C and	Othe	er Rema	arks:	-	3,6	本	1		-				-
						100		10	1.								,	N 3	×3.				2: 584

į

		FIELD OB	SERVATIO	NS Fiel	d Observation	s page 1 of 1 GW
Facility: .	Dewitt Landfill			Sample Po	oint ID:	5w.1
Field Person	nel:	TOK		Sample Ma	atrix:	SW
SAMPLING	INFORMATION:					
Date/Time		9.35.4, 1	000			
Method of Sa	mpling:	Bailer	Grab		Dedicated:	YES
Water Depth Length of wa	rom top of PVC) (from top of PVC)			Volume P	urged	•
Methane Rea	ding		_			
SAMPLING	DATA:					
Time	Temp.	pH (std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	DO (mg/l)
1000	13.45	7.18	2425	79.4	-103.5	3.44.
Turbidity 1.0 Turbidity 10.0 pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial Cond Serial ORP Serial #		EXP 12/1 EXP 12/1 EXP 12/1 24/3 240.0	31-15	10/17	3/21/1	3
	ditions @ time of sam		SUNNE	(<i>J</i> • <i>J</i>	
COMMENTS	S AND OBSERVATION	NS:				
•						
						_
I certify that s protocals.	sampling procedures of		ance with all ap	plicable EF	A, State and	,

33

Facility:	Dewitt Landfill		•	Sample F	Point ID:	Jw-
Field Personne	el:	TDK	•	Sample N	flatrix:	ر نرب ذ
SAMPLING IN	NFORMATION:			,		
Date/Time		9 25.14,	1030		•	
Method of Sam		Bailer			Dedicated:	YES
Diameter of Wa	ell					
Well Depth (fro	m top of PVC)					
	rom top of PVC)					•
Length of wate	r Column	•				
Puge Volume:	LWC x 0.17 x 3=			Volume P	urged	
Methane Readi	na					
omane Readil	''9					
SAMPLING DA	ATA:					
Time	Temp.	pH	Conduct	Turb.	ORP	DO
2	(°C) 12.65	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l
1030	12.0)	11,21	1223	: 23.3	-177.1	3 83
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #:	CHECK DATA: rial #: erial #:		Page	22 f	لحم (دا،	Sadia
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #:	rial #: rial #: erial #:		Page	22 f	لحم (دا،	Sodia
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	rial #: rial #: erial #:	-	. 0		For Cal.	Sadica
Turbidity 0.0 Se Turbidity 1.0 Se	rial #: rial #: erial #:	-	. 0		لم درا.	Sodies
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	rial #: rial #: erial #:	-	umhos/cm@25		ردا،	Sadián
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: DRP Serial #	rial #: rial #: erial #:		umhos/cm@25	<u>C</u>		Sadián
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: DRP Serial #	rial #: rial #: erial #:	@ Viling's	umhos/cm@25	<u>C</u>		Sadia
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: DRP Serial #	rial #: rial #: erial #: ons @ time of samp	@ Viling's	umhos/cm@25	<u>C</u>		Sadica
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se PH 4.0 Serial #: PH 7.0 Serial #: PH 10.0 Serial #: PORP Serial #	rial #: rial #: erial #: ons @ time of samp	@ Viling's	umhos/cm@25	<u>C</u>		Sadia
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se PH 4.0 Serial #: PH 7.0 Serial #: PH 10.0 Serial #: PORP Serial #	rial #: rial #: erial #: ons @ time of samp	@ Viling's	umhos/cm@25	<u>C</u>		Sadia
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se Turbidity 10.0 Se PH 4.0 Serial #: PH 7.0 Serial #: PH 10.0 Serial #: PH 10.0 Serial #: PRP Serial # PO Calibrated to Veather condition	rial #: rial #: erial #: erial #: ons @ time of samp	@ lings	umhos/cm@25 Mv	<u>c</u>	5	
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 10.0 Se Turbidity 10.0 Se PH 4.0 Serial #: PH 7.0 Serial #: PH 10.0 Serial #: PH 10.0 Serial #: PRP Serial # PO Calibrated to Veather condition	rial #: rial #: erial #: ons @ time of samp	@ lings	umhos/cm@25 Mv	<u>c</u>	5	
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: pH 20 Calibrated to Veather condition COMMENTS AN	rial #: rial #: erial #: ons @ time of samp ND OBSERVATIO	ere in accordan	umhos/cm@25 Mv	C (C)	, State and Site	-Specific
Turbidity 0.0 Se Turbidity 1.0 Se Turbidity 1.0 Se Turbidity 10.0 S pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: pH 20 Calibrated to Veather condition COMMENTS AN	rial #: rial #: erial #: erial #: ons @ time of samp	@ lings	umhos/cm@25 Mv	C (C)	, State and Site	

FIELD OBSERVATIONS Field Observations page 1 of 1 GW's xls

						Ji- 4
Field Personnel:					trix:	SW
SAMPLING INFO	ORMATION:					
Date/Time		9-25-141				
Method of Sampli	ng:	Bailer			Dedicated:	YES
Diameter of Well						
Well Depth (from	top of PVC)					
Water Depth (fron						•
Length of water C						
Puge Volume: LW	$C \times 0.17 \times 3 =$			Volume Pur	rged	
Methane Reading			-			
SAMPLING DAT	A:	*				
Time						
Time	Temp.	pH	Conduct	Turb.	ORP	DO
NSTRUMENT C Furbidity 0.0 Seria Furbidity 1.0 Seria	(°C) HECK DATA:	(std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	DO (mg/l)
INSTRUMENT C Turbidity 0.0 Seria Turbidity 1.0 Seria Turbidity 10.0 Ser pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:	(°C) HECK DATA: II #:	(std units)	(Umhos/cm)	(NTU)		12
INSTRUMENT C Turbidity 0.0 Seria Turbidity 1.0 Seria Turbidity 10.0 Ser pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:	(°C) HECK DATA: II #:	(std units)	(Umhos/cm)	(NTU)		12
INSTRUMENT C Furbidity 0.0 Serial Furbidity 1.0 Serial Furbidity 10.0 Serial #: DH 4.0 Serial #: DH 7.0 Serial #: Cond Serial #:	(°C) HECK DATA: II #:	(std units)	(Umhos/cm)	(NTU)		12
INSTRUMENT C Turbidity 0.0 Serial Turbidity 1.0 Serial Turbidity 10.0 Serial #: DH 4.0 Serial #: DH 7.0 Serial #: DH 10.0 Serial #: DRP Serial #	(°C) HECK DATA: al #: lal #:	(std units)	umhos/cm@25	(NTU)		12
INSTRUMENT C Turbidity 0.0 Seria Turbidity 1.0 Seria Turbidity 10.0 Serial pH 4.0 Serial #: pH 7.0 Serial #:	(°C) HECK DATA: II #: II #:	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)

Login Sample Receipt Checklist

Client: Town of Dewitt

Job Number: 480-68087-1

Login Number: 68087

List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	testamerica	
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	True		
Chlorine Residual checked.	False	Lab to check rc	

TestAmerica Buffalo

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-72583-1 Client Project/Site: Town of Dewitt

Sampling Event: Surfacewater - Quarterly (3,6,9,12)

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Authorized for release by: 12/23/2014 3:19:38 PM

Fior Shoffer

Lisa Shaffer, Project Manager II (716)504-9816

lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	21
Lab Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Field Data Sheets	30
Receipt Checklists	34

٠.	

	ı

	_	1	

6 BK3		
	l	
	į	

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

И

Qualifiers

GC/MS VOA

TEQ

Toxicity Equivalent Quotient (Dioxin)

Qualifier	Qualities pescription
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

RL but greater than or equal to the MDL and the concentration is an approximate value.
A, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
in the blank and sample.
-

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
D	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

2

Job ID: 480-72583-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-72583-1

Comments

No additional comments.

Receipt

The samples were received on 12/6/2014 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

GC/MS VOA

Method(s) 624: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: SW-2 (480-72583-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-218481/51) contained total zinc outside the control limits. All reported samples SW-1 (480-72583-1) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

Method(s) 6010C: The continuing calibration verifications (CCV 480-219612/25 and CCV 480-219612/36) associated with batch 480-219398 recovered above the upper control limit for dissolved copper. The samples associated with this CCV were below the laboratory reporting limit for the affected analytes; therefore, the data have been reported. The following samples are impacted: SW-1 (480-72583-1), SW-2 (480-72583-2), SW-3 (480-72583-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

k)

4

5

6

9

10

12

10

15

16

Detection Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

n

Client Sample ID: SW-1

Client Sample ID: SW-2

Lab Sample ID: 480-72583-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroethane	2,5	J	5.0	0.87	ug/L	1	_	824	Total/NA
Copper	0.0018	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0032	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Zinc	0.0028	J^B	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0018	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Zinc	0.011	В	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	930		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Lab Sample ID: 480-72583-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	6.4	J	20	3.0	ug/L	4	_	624	Total/NA
Arsenic	0.010	J	0.015	0.0056	mg/L	1		6010C	Total/NA
Cadmium	0.0015	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.0037	JB	0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0085	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0099	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.011		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.037		0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0018	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0022	JA	0.010	0.0016	mg/L	1		6010C	Dissolved
Nickel	0.0030	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0078	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	723		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SW-3

Lab Sample ID: 480-72583-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromlum	0.0023	JB	0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Copper	0.0034	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Lead	0.0050	J	0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.0035	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.013		0.010	0.0015	mg/L	1		6010C	Total/NA
Copper	0.0016	J^	0.010	0.0016	mg/L	1		6010C	Dissolved
Zinc	0.0069	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	621		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-72583-4

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Lab Sample ID: 480-72583-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 12/05/14 14:50 Date Received: 12/06/14 02:00

Wethod: 624 - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/08/14 23:02	
I,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			12/08/14 23:02	
I,1,2-Trichloroethane	ND		5.0	0.48	ug/L			12/08/14 23:02	
1,1-Dichloroethane	ND		5.0	0.59	ug/L			12/08/14 23:02	
I,1-Dichloroethene	ND		5.0	0.85	ug/L			12/08/14 23:02	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			12/08/14 23:02	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			12/08/14 23:02	
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			12/08/14 23:02	
1,2-Dichloropropane	ND		5.0	0.61	ug/L			12/08/14 23:02	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			12/08/14 23:02	
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			12/08/14 23:02	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/08/14 23:02	
Acrolein	ND		100	17	ug/L			12/08/14 23:02	
Acrylonitrile	ND		50	1.9	ug/L			12/08/14 23:02	
Benzene	ND		5.0	0.60	ug/L			12/08/14 23:02	
3romoform	ND		5.0	0.47	ug/L			12/08/14 23:02	
Bromomethane	ND		5.0	1.2	ug/L			12/08/14 23:02	
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/08/14 23:02	
Chlorobenzene	ND		5.0	0.48	ug/L			12/08/14 23:02	
Chlorodibromomethane	ND		5.0	0.41	ug/L			12/08/14 23:02	
Chloroethane	2.5	J	5.0	0.87	ug/L			12/08/14 23:02	
Chloroform	ND		5.0	0.54	ug/L			12/08/14 23:02	
Chloromethane	ND		5.0	0.64	ug/L			12/08/14 23:02	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			12/08/14 23:02	
Dichlorobromomethane	ND		5.0	0.54	ug/L			12/08/14 23:02	
Ethylbenzene	ND		5.0	0.46	ug/L			12/08/14 23:02	
Methylene Chloride	ND		5.0	0.81	ug/L			12/08/14 23:02	
Tetrachloroethene	ND		5.0	0.34	ug/L			12/08/14 23:02	
Toluene	ND		5.0	0.45	ug/L			12/08/14 23:02	
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			12/08/14 23:02	
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			12/08/14 23:02	
Trichloroethene	ND		5.0	0.60	ug/L			12/08/14 23:02	
Vinyl chloride	ND		5.0	0.75	ug/L			12/08/14 23:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fe
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					12/08/14 23:02	
4-Bromofluorobenzene (Surr)	92		69 - 121					12/08/14 23:02	
Toluene-d8 (Surr)	104		70 - 123					12/08/14 23:02	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/08/14 13:45	12/10/14 21:56	1
Arsenic	ND		0.015	0.0056	mg/L		12/08/14 13:45	12/10/14 21:56	1
Beryllium	ND		0.0020	0.00030	mg/L		12/08/14 13:45	12/10/14 21:56	1
Cadmium	ND		0.0020	0.00050	mg/L		12/08/14 13:45	12/10/14 21:56	1
Chromium	ND		0.0040	0.0010	mg/L		12/08/14 13:45	12/10/14 21:56	1
Copper	0.0018	J	0.010	0.0016	mg/L		12/08/14 13:45	12/10/14 21:56	1
Lead	0.0032	J	0.010	0.0030	mg/L		12/08/14 13:45	12/10/14 21:56	1
Nickel	ND		0.010	0,0013	mg/L		12/08/14 13:45	12/10/14 21:56	1
Selenium	ND		0.025	0.0087	mg/L		12/08/14 13:45	12/10/14 21:56	1

TestAmerica Buffalo

12/23/2014

Page 6 of 34

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Lab Sample ID: 480-72583-1

Matrix: Surface Water

Clie	nt Sampl	e ID: SV	N-1
Date	Collected:	12/05/14	14:50

Date Received: 12/06/14 02:00

Method: 6010C - Metals (ICP) (C	continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		12/08/14 13:45	12/10/14 21:56	1
Thallium	ND		0.020	0.010	mg/L		12/08/14 13:45	12/10/14 21:56	1
Zinc	0.0028	J^B	0.010	0.0015	mg/L		12/08/14 13:45	12/10/14 21:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0,020	0.0068	mg/L		12/16/14 11:40	12/17/14 00:01	1
Arsenic	ND		0.015	0.0056	mg/L		12/16/14 11:40	12/17/14 00:01	1
Beryllium	ND		0.0020	0.00030	mg/L		12/16/14 11:40	12/17/14 00:01	1
Cadmium	ND		0.0020	0.00050	mg/L		12/16/14 11:40	12/17/14 00:01	1
Chromium	0.0018	JB	0.0040	0.0010	mg/L		12/16/14 11:40	12/17/14 00:01	1
Copper	ND	۸	0.010	0.0016	mg/L		12/16/14 11:40	12/17/14 00:01	1
Lead	ND		0.010	0.0030	mg/L		12/16/14 11:40	12/17/14 00:01	1
Nicket	ND		0.010	0.0013	mg/L		12/16/14 11:40	12/17/14 00:01	1
Selenium	ND		0.025	0.0087	mg/L		12/16/14 11:40	12/17/14 00:01	1
Silver	ND		0.0060	0.0017	mg/L		12/16/14 11:40	12/17/14 00:01	1
Thallium	ND		0.020	0.010	mg/L		12/16/14 11:40	12/17/14 00:01	1
Zinc	0.011	В	0.010	0.0015	mg/L		12/16/14 11:40	12/17/14 00:01	1

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		12/08/14 09:25	12/08/14 14:44	1

Method: 7470A - Mercury (CVAA)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		12/16/14 08:45	12/16/14 14:40	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	930		10.0	4.0	mg/L			12/10/14 13:23	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Lab Sample ID: 480-72583-2

Matrix: Surface Water

Client Sample ID: SW-2

Date Collected: 12/05/14 14:35 Date Received: 12/06/14 02:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		20	1.5	ug/L			12/10/14 14:40	4
1,1,2,2-Tetrachloroethane	ND		20	1.0	ug/L			12/10/14 14:40	4
1,1,2-Trichloroethane	ND		20	1.9	ug/L			12/10/14 14:40	4
1,1-Dichloroethane	ND		20	2.4	ug/L			12/10/14 14:40	4
1,1-Dichloroethene	ND		20	3.4	ug/L			12/10/14 14:40	4
1,2-Dichlorobenzene	ND		20	1.8	ug/L			12/10/14 14:40	4
1,2-Dichloroethane	ND		20	2.4	ug/L			12/10/14 14:40	4
1,2-Dichloroethene, Total	ND		40	13	ug/L			12/10/14 14:40	4
1,2-Dichloropropane	ND		20	2.4	ug/L			12/10/14 14:40	4
1,3-Dichlorobenzene	ND		20	2.2	ug/L			12/10/14 14:40	4
1,4-Dichlorobenzene	ND		20	2.0	ug/L			12/10/14 14:40	4
2-Chloroethyl vinyl ether	ND		100	7.4	ug/L			12/10/14 14:40	4
Acrolein	ND		400	70	ug/L			12/10/14 14:40	4
Acrylonitrile	ND		200	7.6	ug/L			12/10/14 14:40	4
Benzene	ND		20	2.4	ug/L			12/10/14 14:40	4
Bromoform	ND		20	1.9	ug/L			12/10/14 14:40	4
Bromomethane	ND		20	4.8	ug/L			12/10/14 14:40	4
Carbon tetrachloride	ND		20	2.0	ug/L			12/10/14 14:40	4
Chlorobenzene	ND		20	1.9	ug/L			12/10/14 14:40	4
Chlorodibromomethane	ND		20	1.7	ug/L			12/10/14 14:40	4
Chloroethane	ND		20	3.5	ug/L			12/10/14 14:40	4
Chloroform	ND		20	2.2	ug/L			12/10/14 14:40	4
Chloromethane	ND		20	2.5	ug/L			12/10/14 14:40	4
cis-1,3-Dichloropropene	ND		20	1.3	ug/L			12/10/14 14:40	4
Dichlorobromomethane	ND		20	2.1	ug/L			12/10/14 14:40	4
Ethylbenzene	ND		20	1.9	ug/L			12/10/14 14:40	4
Methylene Chloride	ND		20	3.3	ug/L			12/10/14 14:40	4
Tetrachloroethene	ND		20	1.4	ug/L			12/10/14 14:40	4
Toluene	ND		20	1.8	ug/L			12/10/14 14:40	4
trans-1,2-Dichloroethene	ND		20	2.4	ug/L			12/10/14 14:40	4
trans-1,3-Dichloropropene	ND		20	1.8	ug/L			12/10/14 14:40	4
Trichloroethene	ND		20	2,4	ug/L			12/10/14 14:40	4
Vinyl chloride	6.4	J	20	3.0	ug/L			12/10/14 14:40	4
Surrogate /	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	107		72 - 130			-		12/10/14 14:40	4
4-Bromofluorobenzene (Surr)	90		69 - 121					12/10/14 14:40	4
Toluene-d8 (Surr)	104		70 - 123					12/10/14 14:40	4

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/08/14 13:45	12/10/14 21:59	1
Arsenic	0.010	J	0.015	0.0056	mg/L		12/08/14 13:45	12/10/14 21:59	1
Beryllium	ND		0.0020	0.00030	mg/L		12/08/14 13:45	12/10/14 21:59	1
Cadmium	0.0015	J	0.0020	0.00050	mg/L		12/08/14 13:45	12/10/14 21:59	1
Chromium	0.0037	JB	0.0040	0.0010	mg/L		12/08/14 13:45	12/10/14 21:59	1
Copper	0.0085	J	0.010	0.0016	mg/L		12/08/14 13:45	12/10/14 21:59	1
Lead	0.0099	J	0.010	0.0030	mg/L		12/08/14 13:45	12/10/14 21:59	1
Nickel	0.011		0.010	0.0013	mg/L		12/08/14 13:45	12/10/14 21:59	1
Selenium	ND		0.025	0.0087	mg/L		12/08/14 13:45	12/10/14 21:59	1

TestAmerica Buffalo

12/23/2014

Page 8 of 34

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Client Sample ID: SW-2

Lab Sample ID: 480-72583-2

Date Collected: 12/05/14 14:35 Date Received: 12/06/14 02:00 Matrix: Surface Water

Method: 6010C - Metals (ICP) (Contine Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		12/08/14 13:45	12/10/14 21:59	1
Thallium	ND		0.020	0.010	mg/L		12/08/14 13:45	12/10/14 21:59	1
Zinc	0.037		0.010	0.0015	mg/L		12/08/14 13:45	12/11/14 11:29	1
Method: 6010C - Metals (ICP) - Dissol	ved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/16/14 11:40	12/17/14 00:07	1
Arsenic	ND		0.015	0.0056	mg/L		12/16/14 11:40	12/17/14 00:07	1
Beryllium	ND		0.0020	0.00030	mg/L		12/16/14 11:40	12/17/14 00:07	1
Cadmium	ND		0.0020	0.00050	mg/L		12/16/14 11:40	12/17/14 00:07	1
Chromium	0.0018	JB	0.0040	0.0010	mg/L		12/16/14 11:40	12/17/14 00:07	
Copper	0.0022	J ^	0.010	0.0016	mg/L		12/16/14 11:40	12/17/14 00:07	
Lead	ND		0.010	0.0030	mg/L		12/16/14 11:40	12/17/14 00:07	
Nickel	0.0030	J	0.010	0.0013	mg/L		12/16/14 11:40	12/17/14 00:07	
Selenium	ND		0.025	0.0087	mg/L		12/16/14 11:40	12/17/14 00:07	
Silver	ND		0.0060	0.0017	mg/L		12/16/14 11:40	12/17/14 00:07	
Thallium	ND		0.020	0.010	mg/L		12/16/14 11:40	12/17/14 00:07	
Zinc	0.0078	JB	0.010	0.0015	mg/L		12/16/14 11:40	12/17/14 00:07	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		12/08/14 09:25	12/08/14 14:54	
Method: 7470A - Mercury (CVAA) - Di	ssolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		12/16/14 08:45	12/16/14 14:42	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	723		10.0	4.0	mg/L			12/10/14 13:23	

Client: Town of Dewitt Project/Site: Town of Dewitt

TestAmerica Job ID: 480-72583-1

Client Sample ID: SW-3

Lab Sample ID: 480-72583-3

Date Collected: 12/05/14 14:25 Date Received: 12/06/14 02:00 Matrix: Surface Water

ND N		5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.44	ug/L ug/L ug/L ug/L			12/08/14 23:52 12/08/14 23:52 12/08/14 23:52 12/08/14 23:52 12/08/14 23:52 12/08/14 23:52	1
ND ND ND ND ND ND ND ND		5.0 5.0 5.0 5.0 5.0 10	0.48 0.59 0.85 0.44 0.60	ug/L ug/L ug/L ug/L		. (12/08/14 23:52 12/08/14 23:52 12/08/14 23:52	1 1 1
ND ND ND ND ND ND ND		5.0 5.0 5.0 5.0 10 5.0	0.59 0.85 0.44 0.60	ug/L ug/L ug/L			12/08/14 23:52 12/08/14 23:52	1
ND ND ND ND ND ND		5.0 5.0 5.0 10 5.0	0.85 0.44 0.60	ug/L ug/L			12/08/14 23:52	1
ND ND ND ND ND ND		5.0 5.0 10 5.0	0.44	ug/L				
ND ND ND ND ND		5.0 10 5.0	0.60	•			12/08/14 23:52	
ND ND ND ND		10 5.0		ug/L				1
ND ND ND		5.0	3.2				12/08/14 23:52	1
ND ND ND				ug/L			12/08/14 23:52	1
ND ND		F 0	0.61	ug/L			12/08/14 23:52	1
ND		5.0	0.54	ug/L			12/08/14 23:52	1
		5.0	0.51	ug/L			12/08/14 23:52	1
ND		25	1.9	ug/L			12/08/14 23:52	1
		100	17	ug/L			12/08/14 23:52	1
ND		50	1.9	ug/L			12/08/14 23:52	1
ND		5.0	0.60	ug/L			12/08/14 23:52	1
ND		5.0	0.47	ug/L			12/08/14 23:52	1
ND		5.0	1.2	ug/L			12/08/14 23:52	1
ND		5.0	0.51	ug/L			12/08/14 23:52	1
ND		5.0	0.48	ug/L			12/08/14 23:52	1
ND		5.0	0.41	ug/L			12/08/14 23:52	1
ND		5.0	0.87	ug/L			12/08/14 23:52	1
ND		5.0	0.54	ug/L			12/08/14 23:52	1
ND		5.0	0.64	ug/L			12/08/14 23:52	1
ND		5.0	0.33	ug/L			12/08/14 23:52	1
ND		5.0	0.54	ug/L		v	12/08/14 23:52	1
ND		5.0	0.46	ug/L			12/08/14 23:52	1
ND		5.0	0.81	ug/L			12/08/14 23:52	1
ND		5.0	0.34	ug/L			12/08/14 23:52	1
ND		5.0	0.45	ug/L			12/08/14 23:52	1
ND		5.0	0.59	ug/L			12/08/14 23:52	1
ND		5.0	0.44	ug/L			12/08/14 23:52	1
ND		5.0	0.60	ug/L			12/08/14 23:52	1
ND		5.0	0.75	ug/L			12/08/14 23:52	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
104		72 - 130			_			
04							12/08/14 23:52	1
	ND N	ND N	ND 5.0 **Recovery Qualifier **Limits	ND 5.0 0.48 ND 5.0 0.41 ND 5.0 0.54 ND 5.0 0.54 ND 5.0 0.33 ND 5.0 0.54 ND 5.0 0.46 ND 5.0 0.81 ND 5.0 0.34 ND 5.0 0.45 ND 5.0 0.59 ND 5.0 0.44 ND 5.0 0.60 ND 5.0 0.75 **Recovery Qualifier *Limits	ND 5.0 0.48 ug/L ND 5.0 0.41 ug/L ND 5.0 0.87 ug/L ND 5.0 0.54 ug/L ND 5.0 0.64 ug/L ND 5.0 0.33 ug/L ND 5.0 0.54 ug/L ND 5.0 0.46 ug/L ND 5.0 0.81 ug/L ND 5.0 0.34 ug/L ND 5.0 0.45 ug/L ND 5.0 0.59 ug/L ND 5.0 0.44 ug/L ND 5.0 0.60 ug/L ND 5.0 0.75 ug/L	ND 5.0 0.48 ug/L ND 5.0 0.41 ug/L ND 5.0 0.87 ug/L ND 5.0 0.54 ug/L ND 5.0 0.64 ug/L ND 5.0 0.54 ug/L ND 5.0 0.54 ug/L ND 5.0 0.46 ug/L ND 5.0 0.81 ug/L ND 5.0 0.34 ug/L ND 5.0 0.45 ug/L ND 5.0 0.59 ug/L ND 5.0 0.44 ug/L ND 5.0 0.60 ug/L ND 5.0 0.75 ug/L	ND 5.0 0.48 ug/L ND 5.0 0.41 ug/L ND 5.0 0.87 ug/L ND 5.0 0.54 ug/L ND 5.0 0.64 ug/L ND 5.0 0.33 ug/L ND 5.0 0.54 ug/L ND 5.0 0.81 ug/L ND 5.0 0.34 ug/L ND 5.0 0.45 ug/L ND 5.0 0.59 ug/L ND 5.0 0.60 ug/L ND 5.0 0.75 ug/L	ND 5.0 0.48 ug/L 12/08/14 23:52 ND 5.0 0.41 ug/L 12/08/14 23:52 ND 5.0 0.87 ug/L 12/08/14 23:52 ND 5.0 0.54 ug/L 12/08/14 23:52 ND 5.0 0.64 ug/L 12/08/14 23:52 ND 5.0 0.33 ug/L 12/08/14 23:52 ND 5.0 0.54 ug/L 12/08/14 23:52 ND 5.0 0.46 ug/L 12/08/14 23:52 ND 5.0 0.81 ug/L 12/08/14 23:52 ND 5.0 0.34 ug/L 12/08/14 23:52 ND 5.0 0.45 ug/L 12/08/14 23:52 ND 5.0 0.45 ug/L 12/08/14 23:52 ND 5.0 0.59 ug/L 12/08/14 23:52 ND 5.0 0.60 ug/L 12/08/14 23:52 ND 5.0 0.60 ug/L 12/08/14 23:52 ND 5.0 0.75 ug/L 12/08/14 23:52 ND 5.0 0.75 ug/L 12/08/14 23:52

Readown .									
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony .	ND		0.020	0.0068	mg/L		12/08/14 13:45	12/10/14 22:01	1
Arsenic	ND		0.015	0.0056	mg/L		12/08/14 13:45	12/10/14 22:01	1
Beryllium	ND		0.0020	0.00030	mg/L		12/08/14 13:45	12/10/14 22:01	1
Cadmium	ND		0.0020	0.00050	mg/L		12/08/14 13:45	12/10/14 22:01	1
Chromium	0.0023	JB	0.0040	0.0010	mg/L		12/08/14 13:45	12/10/14 22:01	1
Copper	0.0034	J	0.010	0.0016	mg/L		12/08/14 13:45	12/10/14 22:01	1
Lead	0.0050	J	0.010	0.0030	mg/L		12/08/14 13:45	12/10/14 22:01	1
Nickel	0.0035	J	0.010	0.0013	mg/L		12/08/14 13:45	12/10/14 22:01	1
Selenium	ND		0.025	0.0087	mg/L		12/08/14 13:45	12/10/14 22:01	1

TestAmerica Buffalo

Page 10 of 34

12/23/2014

3

ß

9

12

14

16

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Client Sample ID: SW-3

Lab Sample ID: 480-72583-3

Date Collected: 12/05/14 14:25 Date Received: 12/06/14 02:00 Matrix: Surface Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Silver	ND		0.0060	0.0017	mg/L		12/08/14 13:45	12/10/14 22:01	1
Thallium	ND		0.020	0.010	mg/L		12/08/14 13:45	12/10/14 22:01	1
Zinc	0.013		0.010	0.0015	mg/L		12/08/14 13:45	12/11/14 11:32	1
Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/16/14 11:40	12/17/14 00:09	1
Arsenic	ND		0.015	0.0056	mg/L		12/16/14 11:40	12/17/14 00:09	
Beryllium	ND		0.0020	0.00030	mg/L		12/16/14 11:40	12/17/14 00:09	1
Cadmium	ND		0.0020	0.00050	mg/L		12/16/14 11:40	12/17/14 00:09	•
Chromium	ND		0.0040	0.0010	mg/L		12/16/14 11:40	12/17/14 00:09	1
Copper	0.0016	J^	0.010	0.0016	mg/L		12/16/14 11:40	12/17/14 00:09	
_ead	ND		0.010	0.0030	mg/L		12/16/14 11:40	12/17/14 00:09	
Nickel	ND		0.010	0.0013	mg/L		12/16/14 11:40	12/17/14 00:09	
Selenium	ND		0.025	0.0087	mg/L		12/16/14 11:40	12/17/14 00:09	1
Silver	ND		0.0060	0.0017	mg/L		12/16/14 11:40	12/17/14 00:09	
Thallium	ND		0.020	0.010	mg/L		12/16/14 11:40	12/17/14 00:09	
Zinc	0.0069	JB	0.010	0.0015	mg/L		12/16/14 11:40	12/17/14 00:09	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		12/08/14 09:25	12/08/14 14:56	
Method: 7470A - Mercury (CVAA) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Viercury	ND		0.00020	0.00012	mg/L		12/16/14 08:45	12/16/14 14:44	,
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	621		10.0	4.0	mg/L			12/10/14 16:06	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Sample ID: 480-72583-4

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-72583-4

Matrix: Water

Date Collected: 12/05/14 00:00 Date Received: 12/06/14 02:00

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/09/14 00:17	1
1,1,2,2-Tetrachioroethane	ND		5.0	0.26	ug/L			12/09/14 00:17	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			12/09/14 00:17	1
,1-Dichloroethane	ND		5.0	0.59	ug/L			12/09/14 00:17	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			12/09/14 00:17	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			12/09/14 00:17	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			12/09/14 00:17	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			12/09/14 00:17	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			12/09/14 00:17	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			12/09/14 00:17	1
,4-Dichlorobenzene	ND		5.0	0.51	ug/L			12/09/14 00:17	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/09/14 00:17	1
Acrolein	ND		100	17	ug/L			12/09/14 00:17	1
Acrylonitrile	ND		50	1.9	ug/L			12/09/14 00:17	1
Benzene	ND		5.0	0.60	ug/L			12/09/14 00:17	1
3romoform	ND		5.0	0.47	ug/L			12/09/14 00:17	1
Bromomethane	ND		5.0	1.2	ug/L			12/09/14 00:17	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/09/14 00:17	1
Chlorobenzene	ND		5.0	0.48	ug/L			12/09/14 00:17	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			12/09/14 00:17	1
Chloroethane	ND		5.0	0.87	ug/L			12/09/14 00:17	1
Chloroform	ND		5.0	0.54	ug/L			12/09/14 00:17	1
Chloromethane	ND		5.0	0.64	ug/L			12/09/14 00:17	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			12/09/14 00:17	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			12/09/14 00:17	1
Ethylbenzene	ND		5.0	0.46	ug/L			12/09/14 00:17	1
Wethylene Chloride	ND		5.0	0.81	ug/L			12/09/14 00:17	1
Tetrachloroethene	ND		5.0	0.34	ug/L			12/09/14 00:17	1
Toluene	ND		5.0	0.45	ug/L			12/09/14 00:17	1
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			12/09/14 00:17	1
rans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			12/09/14 00:17	1
Frichloroethene	ND		5.0	0.60	ug/L			12/09/14 00:17	1
/inyl chloride	ND		5.0	0.75	ug/L			12/09/14 00:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130			-		12/09/14 00:17	1
4-Bromofluorobenzene (Surr)	92		69 - 121					12/09/14 00:17	1

12/09/14 00:17

70 - 123

105

Surrogate Summary

Client: Town of Dewitt

Project/Site: Town of Dewitt

TestAmerica Job ID: 480-72583-1

101

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Surface Water

Prep Type: Total/NA

				Percent Surroga	ate Recovery (Acceptance Limits)	
		12DCE	BFB	TOL		
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)		
480-72583-1	SW-1	104	92	104		
480-72583-2	SW-2	107	90	104		
480-72583-3	SW-3	104	91	105		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Surrog	ate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
_ab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-72583-4	TRIP BLANK	103	92	105	
LCS 480-217821/5	Lab Control Sample	103	95	107	
LCS 480-218234/44	Lab Control Sample	104	94	105	
MB 480-217821/7	Method Blank	106	94	106	
MB 480-218234/7	Method Blank	107	92	105	
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt

Analysis Batch: 217821

Matrix: Water

Lab Sample ID: MB 480-217821/7

TestAmerica Job ID: 480-72583-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/08/14 12:14	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			12/08/14 12:14	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			12/08/14 12:14	. 1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			12/08/14 12:14	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			12/08/14 12:14	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			12/08/14 12:14	1
1,2-Dichloroethane	ND		5.0	0,60	ug/L			12/08/14 12:14	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			12/08/14 12:14	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			12/08/14 12:14	1
1,3-Dichlorobenzene	ND	4	5.0	0.54	ug/L			12/08/14 12:14	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			12/08/14 12:14	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/08/14 12:14	1
Acrolein	ND		100	17	ug/L			12/08/14 12:14	1
Acrylonitrile	ND		50	1.9	ug/L			12/08/14 12:14	1
Benzene	ND		5.0	0.60	ug/L			12/08/14 12:14	1
Bromoform	ND		5.0	0.47	ug/L			12/08/14 12:14	1
Bromomethane	ND		5.0	1.2	ug/L			12/08/14 12:14	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/08/14 12:14	1
Chlorobenzene	ND		5.0	0.48	ug/L			12/08/14 12:14	1
Chlorodibromomethane	ND		5,0	0.41	ug/L			12/08/14 12:14	1
Chloroethane	ND		5.0	0.87	ug/L			12/08/14 12:14	1
Chloroform	ND		5.0	0.54	ug/L			12/08/14 12:14	1
Chloromethane	ND		5.0	0.64	ug/L			12/08/14 12:14	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			12/08/14 12:14	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			12/08/14 12:14	1
Ethylbenzene	ND		5.0	0.46	ug/L			12/08/14 12:14	1
Methylene Chloride	ND		5.0	0.81	ug/L			12/08/14 12:14	1
Tetrachloroethene	ND		5.0	0.34	ug/L			12/08/14 12:14	1
Toluene	ND		5.0	0.45	ug/L			12/08/14 12:14	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			12/08/14 12:14	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			12/08/14 12:14	1
Trichloroethene	ND		5.0	0.60	ug/L			12/08/14 12:14	1
Vinyl chloride	ND		5.0	0.75	ug/L			12/08/14 12:14	1
	MR	MR							

Ī	Surrogate	70Recovery	Quanner	Limits	riepareu	Alleryzeu	
1	1,2-Dichloroethane-d4 (Surr)	106		72 - 130		12/08/14 12:14	
	4-Bromofluorobenzene (Surr)	94		69 - 121		12/08/14 12:14	
Organization	Toluene-d8 (Surr)	106		70 - 123		12/08/14 12:14	

Lab Sample ID: LCS 480-217821/5

Matrix: Water

Analysis Batch: 217821

Client	Sample	ID:	Lab	Control Sample	
			Pres	Type: Total/NA	

Allatysis Batcii. 217021	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.0		ug/L		90	52 - 162	
/1,1,2,2-Tetrachloroethane	20.0	18.9		ug/L		95	46 - 157	
1,1,2-Trichloroethane	20.0	18.0		ug/L		90	52 - 150	
1,1-Dichloroethane	20.0	16.7		ug/L		83	59 - 155	

Client: Town of Dewitt Project/Site: Town of Dewitt

Lab Sample ID: LCS 480-217821/5

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Matrix: Water							Prep Type: Total/N
Analysis Batch: 217821							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	15.9		ug/L		79	1 - 234	
1,2-Dichlorobenzene	20.0	20.0		ug/L		100	18 _ 190	
1,2-Dichloroethane	20.0	16.8		ug/L		84	49 - 155	
1,2-Dichloropropane	20.0	16.5		ug/L		83	1 - 210	
1,3-Dichlorobenzene	20.0	20.0		ug/L		100	59 - 156	
1,4-Dichlorobenzene	20.0	20.1		ug/L		100	18 - 190	
2-Chloroethyl vinyl ether	20.0	15.8	J	ug/L		79	1 _ 305	
Benzene	20.0	16.4		ug/L		82	37 - 151	
Bromoform	20.0	18.3		ug/L		91	45 - 169	
Bromomethane	20.0	21.3		ug/L		107	1 - 242	
Carbon tetrachloride	20.0	18.5		ug/L		92	70 - 140	
Chlorobenzene	20.0	19.2		ug/L		96	37 _ 160	
Chlorodibromomethane	20.0	19.8		ug/L		99	53 - 149	
Chloroethane	20.0	24.7		ug/L		124	14 _ 230	
Chloroform	20.0	17.0		ug/L		85	51 - 138	
Chloromethane	20.0	16.3		ug/L		82	1 _ 273	
cis-1,3-Dichloropropene	20.0	17.5		ug/L		88	1 - 227	
Dichlorobromomethane	20.0	17.2		ug/L		86	35 - 155	
Ethylbenzene	20.0	19.4		ug/L		97	37 - 162	
Methylene Chloride	20.0	15.6		ug/L		78	1 - 221	
Tetrachloroethene	20.0	18.6		ug/L		93	64 - 148	
Toluene	20.0	18.8		ug/L		94	47 - 150	
trans-1,2-Dichloroethene	20.0	17.2		ug/L		86	54 - 156	
trans-1,3-Dichloropropene	20.0	21.1		ug/L		105	17 - 183	
Trichloroethene	20.0	17.0		ug/L		85	71 _ 157	
Vinyl chloride	20.0	16.9		ug/L		85	1 - 251	

LCS LCS Limits Surrogate %Recovery Qualifier 72 - 130 1,2-Dichloroethane-d4 (Surr) 103 69 - 121 95 4-Bromofluorobenzene (Surr) 70 - 123 107 Toluene-d8 (Surr)

Lab Sample ID: MB 480-218234/7

Matrix: Water

Analysis Batch: 218234

Client	Sample	ID:	Meth	od	Blank	
	Pro	ep T	Type:	To	tal/NA	

Allalysis Datell. 210254	IB MB							
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Anatyzed	Dil Fac
1,1,1-Trichloroethane	ID	5.0	0.39	ug/L			12/10/14 11:45	1
1,1,2,2-Tetrachloroethane	ID	5.0	0.26	ug/L			12/10/14 11:45	1
1,1,2-Trichloroethane	ID	5.0	0.48	ug/L			12/10/14 11:45	1
1,1-Dichloroethane	ID.	5.0	0.59	ug/L			12/10/14 11:45	1
1,1-Dichloroethene	ND.	5.0	0.85	ug/L			12/10/14 11:45	1
1,2-Dichlorobenzene	ID.	5.0	0.44	ug/L			12/10/14 11:45	1
1,2-Dichloroethane	ID	5.0	0.60	ug/L			12/10/14 11:45	1
1,2-Dichloroethene, Total	ID	10	3.2	ug/L			12/10/14 11:45	1
1,2-Dichloropropane	ND.	5.0	0.61	ug/L			12/10/14 11:45	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			12/10/14 11:45	1
1,4-Dichlorobenzene	(D	5.0	0.51	ug/L			12/10/14 11:45	1

Client: Town of Dewitt Project/Site: Town of Dewitt

Analysis Batch: 218234

Chloroform

TestAmerica Job ID: 480-72583-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

ND

Lab Sample ID: MB 480-218234/7 **Matrix: Water**

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/10/14 11:45	1
Acrolein	ND		100	17	ug/L			12/10/14 11:45	1
Acrylonitrile	ND		50	1.9	ug/L			12/10/14 11:45	1
Benzene	ND		5.0	0.60	ug/L			12/10/14 11:45	1
Bromoform	ND		5.0	0.47	ug/L			12/10/14 11:45	1
Bromomethane	ND		5.0	1.2	ug/L			12/10/14 11:45	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/10/14 11:45	1
Chlorobenzene	ND		5.0	0.48	ug/L			12/10/14 11:45	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			12/10/14 11:45	1
Chloroethane	ND		5.0	0.87	ug/L			12/10/14 11:45	1

12/10/14 11:45 5.0 0.54 ug/L 12/10/14 11:45 0.64 ug/L

Chloromethane ND 5.0 cis-1,3-Dichloropropene ND 5.0 0.33 ug/L 12/10/14 11:45 Dichlorobromomethane ND 5.0 0.54 ug/L 12/10/14 11:45 0.46 ug/L 12/10/14 11:45 Ethylbenzene ND 5.0

Methylene Chloride ND 5.0 0.81 ug/L 12/10/14 11:45 Tetrachloroethene 0.34 ug/L 12/10/14 11:45 ND 5.0 12/10/14 11:45 ND 5.0 0.45 ug/L Toluene 12/10/14 11:45 trans-1,2-Dichloroethene ND 5.0 0.59 ug/L

trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 12/10/14 11:45 12/10/14 11:45 ND 5.0 0.60 ug/L Trichloroethene 12/10/14 11:45 0.75 ug/L Vinyl chloride ND 5.0

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed DII Fac 1,2-Dichloroethane-d4 (Surr) 72 - 130 12/10/14 11:45 107 69 - 121 12/10/14 11:45 4-Bromofluorobenzene (Surr) 92 105 70 - 123 12/10/14 11:45 Toluene-d8 (Surr)

Lab Sample ID: LCS 480-218234/44

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 218234								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.1		ug/L		91	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.7		ug/L		89	46 _ 157	
1,1,2-Trichloroethane	20.0	17.0		ug/L		85	52 - 150	
1,1-Dichloroethane	20.0	16.4		ug/L		82	59 _ 155	
1,1-Dichloroethene	20.0	15.2		ug/L		76	1 - 234	
1,2-Dichlorobenzene	20.0	19.6		ug/L		98	18 - 190	
1,2-Dichloroethane	20.0	16.9		ug/L		84	49 _ 155	
1,2-Dichloropropane	20.0	15.3		ug/L		77	1 - 210	
1,3-Dichlorobenzene	20.0	19.5		ug/L		97	59 _ 156	
1,4-Dichlorobenzene	20.0	19.5		ug/L		97	18 - 190	
2-Chloroethyl vinyl ether	20.0	14.3	J	ug/L		71	1 _ 305	
Benzene	20.0	15.7		ug/L		79	37 _ 151	
Bromoform	20.0	15.5		ug/L		78	45 _ 169	
Bromomethane	20.0	21.4		ug/L		107	1 - 242	
Carbon tetrachloride	20.0	17.6		ug/L		88	70 _ 140	

TestAmerica Job ID: 480-72583-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-218234/44 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 218234

Client: Town of Dewitt

Project/Site: Town of Dewitt

Allalysis Datell. 210204			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorobenzene			20.0	18.2		ug/L		91	37 _ 160	
Chlorodibromomethane			20.0	17.7		ug/l.		88	53 - 149	
Chloroethane			20.0	23.0		ug/L		115	14 - 230	
Chloroform			20.0	16.9		ug/L		85	51 _ 138	
Chloromethane			20.0	15.2		ug/L		76	1 - 273	
cis-1,3-Dichloropropene			20.0	15.8		ug/L		79	1 - 227	
Dichlorobromomethane			20.0	16.4		ug/L		82	35 _ 155	
Ethylbenzene			20.0	18.7		ug/L		93	37 _ 162	
Methylene Chloride			20.0	15.4		ug/L		77	1 - 221	
Tetrachloroethene			20.0	18.0		ug/L		90	64 - 148	
Toluene			20.0	18.1		ug/L		90	47 - 150	
trans-1,2-Dichloroethene			20.0	16.8		ug/L		84	54 _ 156	
trans-1,3-Dichloropropene			20.0	19.0		ug/L		95	17 - 183	
Trichloroethene			20.0	16.8		ug/L		84	71 - 157	
Vinyl chloride			20.0	15.1		ug/L		75	1 _ 251	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
			70 400							

72 - 130 1,2-Dichloroethane-d4 (Surr) 104 4-Bromofluorobenzene (Surr) 94 69 - 121 Toluene-d8 (Surr) 105 70 - 123

Method: 6010C - Metals (ICP)

Arsenic

Client Sample ID: Method Blank Lab Sample ID: MB 480-217851/1-A Prep Type: Total/NA Matrix: Water

Analysis Batch: 218481							Prep Batch:	217851
M	в мв							
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	D	0.020	0.0068	mg/L		12/08/14 13:45	12/10/14 20:37	1
Arsenic	D	0.015	0.0056	mg/L		12/08/14 13:45	12/10/14 20:37	1
Beryllium	D	0.0020	0.00030	mg/L		12/08/14 13:45	12/10/14 20:37	1
Cadmium	D	0.0020	0.00050	mg/L		12/08/14 13:45	12/10/14 20:37	1
Chromium 0.0012	4 J	0.0040	0.0010	mg/L		12/08/14 13:45	12/10/14 20:37	1
Copper	D	0.010	0.0016	mg/L		12/08/14 13:45	12/10/14 20:37	1
Lead	D	0.010	0.0030	mg/L		12/08/14 13:45	12/10/14 20:37	1
Nickel	D	0.010	0.0013	mg/L		12/08/14 13:45	12/10/14 20:37	1
Selenium	D	0.025	0.0087	mg/L		12/08/14 13:45	12/10/14 20:37	1
Silver	D	0.0060	0.0017	mg/L		12/08/14 13:45	12/10/14 20:37	1
Thallium	D	0.020	0.010	mg/L		12/08/14 13:45	12/10/14 20:37	1
Zinc 0.0026	9 J	0.010	0.0015	mg/L		12/08/14 13:45	12/10/14 20:37	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-217851/2-A Prep Type: Total/NA Matrix: Water Analysis Batch: 218481 Prep Batch: 217851 LCS LCS %Rec. Spike Result Qualifier Unit %Rec Limits Analyte Added 105 80 - 120 0.200 0.210 mg/L Antimony 80 - 120 101

0.203

mg/L

TestAmerica Buffalo

12/23/2014

0.200

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-217851/2-A					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 218481							Prep Batch: 217851
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Beryllium	0.200	0.206		mg/L		103	80 - 120
Cadmium	0.200	0.206		mg/L		103	80 - 120
Chromium	0.200	0.204		mg/L		102	80 - 120
Copper	0.200	0.215		mg/L		108	80 - 120
Lead	0.200	0.202		mg/L		101	80 - 120
Nickel	0.200	0.201		mg/L		101	80 - 120
Selenium	0.200	0.210		mg/L		105	80 - 120
Silver	0.0500	0.0510		mg/L		102	80 - 120
Thallium	0.200	0.210		mg/L		105	80 _ 120
Zinc	0.200	0.210		ma/L		105	80 - 120

Client Sample ID: Method Blank Prep Type: Dissolved

Matrix: Water Analysis Batch: 219612

Lab Sample ID: MB 480-218280/1-D

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	· ND		0.020	0.0068	mg/L			12/16/14 23:16	1
Arsenic	ND		0.015	0.0056	mg/L			12/16/14 23:16	1
Beryllium	ND		0.0020	0.00030	mg/L			12/16/14 23:16	1
Cadmium	ND		0.0020	0.00050	mg/L			12/16/14 23:16	1
Chromium	0.00100	J	0.0040	0.0010	mg/L			12/16/14 23:16	1
Lead	ND		0.010	0.0030	mg/L			12/16/14 23:16	1
Nickel	ND		0.010	0.0013	mg/L			12/16/14 23:16	1
Selenium	ND		0.025	0.0087	mg/L			12/16/14 23:16	1
Silver	ND		0.0060	0.0017	mg/L			12/16/14 23:16	1
Thallium	ND		0.020	0.010	mg/L			12/16/14 23:16	1
Zinc	0.00943	J	0.010	0.0015	mg/L			12/16/14 23:16	1

Lab Sample ID: LCS 480-218280/2-D Client Sample ID: Lab Control Sample **Prep Type: Dissolved** Matrix: Water

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.200	0.213		mg/L		106	80 - 120
0.200	0.217		mg/L		108	80 - 120
0.200	0.199		mg/L		99	80 _ 120
0,200	0.206		mg/L		103	80 - 120
0.200	0.215		mg/L		108	80 - 120
0.200	0.200		mg/L		100	80 _ 120
0.200	0.213		mg/L		107	80 - 120
0.200	0.213		mg/L		106	80 - 120
0.0500	0.0554		mg/L		111	80 - 120
0,200	0.210		mg/L		105	80 - 120
0.200	0.215		mg/L		107	80 - 120
	Added 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	Added Result 0.200 0.213 0.200 0.217 0.200 0.199 0.200 0.206 0.200 0.215 0.200 0.200 0.200 0.213 0.200 0.213 0.0500 0.0554 0.200 0.210	Added Result Qualifier 0.200 0.213 0.200 0.217 0.200 0.199 0.200 0.206 0.200 0.215 0.200 0.200 0.200 0.213 0.200 0.213 0.200 0.213 0.0500 0.0554 0.200 0.210	Added Result Qualifier Unit 0.200 0.213 mg/L 0.200 0.217 mg/L 0.200 0.199 mg/L 0.200 0.206 mg/L 0.200 0.215 mg/L 0.200 0.200 mg/L 0.200 0.213 mg/L 0.200 0.213 mg/L 0.0500 0.0554 mg/L 0.200 0.210 mg/L	Added Result Qualifier Unit D 0.200 0.213 mg/L mg/L 0.200 0.217 mg/L mg/L 0.200 0.199 mg/L mg/L 0.200 0.206 mg/L mg/L 0.200 0.215 mg/L mg/L 0.200 0.213 mg/L 0.200 0.213 mg/L 0.0500 0.0554 mg/L 0.200 0.210 mg/L	Added Result Qualifier Unit D %Rec 0.200 0.213 mg/L 108 0.200 0.217 mg/L 108 0.200 0.199 mg/L 99 0.200 0.206 mg/L 103 0.200 0.215 mg/L 108 0.200 0.200 mg/L 100 0.200 0.213 mg/L 107 0.200 0.213 mg/L 106 0.0500 0.0554 mg/L 111 0.200 0.210 mg/L 105

Client Sample ID: Method Blank

Analyzed

12/18/14 13:37

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Prep Type: Dissolved

Prep Type: Dissolved

Prep Type: Total/NA

Prep Batch: 217754

Prep Type: Total/NA

Prep Batch: 217754

Client Sample ID: SW-1

Client Sample ID: SW-1

Prep Type: Total/NA Prep Batch: 217754

Prep Type: Total/NA Prep Batch: 217754

Dil Fac

Dil Fac

Client Sample ID: Method Blank

RPD

Limit

Prep Type: Dissolved Prep Batch: 219301

Analyzed Dil Fac

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-218280/1-D

Matrix: Water

Analysis Batch: 220047

Analyte

Copper Lab Sample ID: LCS 480-218280/2-D

Matrix: Water Analysis Batch: 220047

Analyte

Copper

Method: 7470A - Mercury (CVAA)

Spike Added 0.200

MR MR

Qualifier

Result

ND

0,196

RL

0.00020

Spike

Added

0,00667

Spike

Added

0.00667

Spike

Added

0.00667

RL

0.010

Result Qualifier

MDL Unit

0.00012 mg/L

LCS LCS

MS MS

Result Qualifier

MSD MSD

Result

0.00683

Qualifier

0,00675

0.00693

Result Qualifier

Unit

mg/L

Unit

Unit

MDL Unit

ma/L

0.0016

LCS LCS

Unit mg/L

%Rec

Prepared

12/08/14 09:25

%Rec

%Rec

%Rec

104

101

Client Sample ID: Method Blank

Analyzed

12/08/14 14:40

Client Sample ID: Lab Control Sample

Limits

%Rec.

Limits

80 - 120

80 _ 120

Lab Sample ID: MB 480-217754/1-A **Matrix: Water**

Analysis Batch: 217955

Analyte

MB MB Result Qualifier Mercury ND

Lab Sample ID: LCS 480-217754/2-A Matrix: Water

Analysis Batch: 217955 Analyte

Mercury

Mercury

Mercury

Lab Sample ID: 480-72583-1 MS **Matrix: Surface Water**

Analysis Batch: 217955 Analyte

Lab Sample ID: 480-72583-1 MSD **Matrix: Surface Water**

Analysis Batch: 217955 Analyte

Lab Sample ID: MB 480-218280/1-C

Matrix: Water Analysis Batch: 219528

Analyte Result Mercury ND

MB MB Qualifier

Sample Sample

Qualifier

Sample Qualifier

Result

Result

ND

0.00020

MDL Unit 0.00012 mg/L

Prepared 12/16/14 08:45

12/16/14 14:34

Client Sample ID: Lab Control Sample

Limits

80 - 120

%Rec

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 480-218280/2-C Matrix: Water

Analysis Batch: 219528

Prep Type: Dissolved Prep Batch: 219301 LCS LCS Spike

Unit

mg/L

Analyte Mercury

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-218358/1

Matrix: Water

Analysis Batch: 218358

Analyte Resuit **Total Dissolved Solids** ND

Qualifier

MB MB

Qualifier

Result

ND

RL 10.0

Spike

Added

504

Spike

Added

500

RI

10.0

Added

0.00667

MDL Unit 4.0 mg/L

Qualifier

MDL Unit

4.0 mg/L

LCS LCS

548.0

Result Qualifier

LCS LCS

Result

485.0

Result Qualifier

0.00647

Unit

mg/L

Unit

mg/L

Prepared

Analyzed 12/10/14 13:23

Dil Fac

Dil Fac

Lab Sample ID: LCS 480-218358/2

Matrix: Water

Analysis Batch: 218358

Analyte

Total Dissolved Solids

Lab Sample ID: MB 480-218420/1

Matrix: Water

Analysis Batch: 218420

Analyte

Total Dissolved Solids

Lab Sample ID: LCS 480-218420/2 Matrix: Water

Analysis Batch: 218420

Analyte **Total Dissolved Solids** Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. Limits %Rec 85 - 115

Prepared

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyzed

12/10/14 18:06

%Rec. %Rec Limits

110

85 _ 115

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

2

GC/MS VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Total/NA	Surface Water	624	
480-72583-3	SW-3	Total/NA	Surface Water	624	
480-72583-4	TRIP BLANK	Total/NA	Water	624	
LCS 480-217821/5	Lab Control Sample	Total/NA	Water	624	
MB 480-217821/7	Method Blank	Total/NA	Water	624	

Analysis Batch: 218234

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-2	SW-2	Total/NA	Surface Water	624	
LCS 480-218234/44	Lab Control Sample	Total/NA	Water	624	
MB 480-218234/7	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 217754

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SW-1	Total/NA	Surface Water	7470A	
SW-1	Total/NA	Surface Water	7470A	
SW-1	Total/NA	Surface Water	7470A	
SW-2	Total/NA	Surface Water	7470A	
SW-3	Total/NA	Surface Water	7470A	
Lab Control Sample	Total/NA	Water	7470A	
Method Blank	Total/NA	Water	7470A	
	SW-1 SW-1 SW-1 SW-2 SW-3 Lab Control Sample	SW-1 Total/NA SW-1 Total/NA SW-1 Total/NA SW-2 Total/NA SW-3 Total/NA Lab Control Sample Total/NA	SW-1 SW-1 Total/NA Surface Water SW-1 Total/NA Surface Water SW-1 Total/NA Surface Water SW-2 Total/NA Surface Water SW-3 Total/NA Surface Water Total/NA Surface Water SW-3 Total/NA Vater	\$W-1 Total/NA Surface Water 7470A SW-1 Total/NA Surface Water 7470A SW-1 Total/NA Surface Water 7470A SW-2 Total/NA Surface Water 7470A SW-3 Total/NA Surface Water 7470A Lab Control Sample Total/NA Water 7470A

Prep Batch: 217851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Total/NA	Surface Water	3005A	
480-72583-2	SW-2	Total/NA	Surface Water	3005A	
480-72583-3	SW-3	Total/NA	Surface Water	3005A	
LCS 480-217851/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-217851/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 217955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Total/NA	Surface Water	7470A	217754
480-72583-1 MS	SW-1	Total/NA	Surface Water	7470A	217754
480-72583-1 MSD	SW-1	Total/NA	Surface Water	7470A	217754
480-72583-2	SW-2	Total/NA	Surface Water	7470A	217754
480-72583-3	SW-3	Total/NA	Surface Water	7470A	217754
LCS 480-217754/2-A	Lab Control Sample	Total/NA	Water	7470A	217754
MB 480-217754/1-A	Method Blank	Total/NA	Water	7470A	217754

Filtration Batch: 218280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	5W-1	Dissolved	Surface Water	FILTRATION	
480-72583-2	SW-2	Dissolved	Surface Water	FILTRATION	
480-72583-3	SW-3	Dissolved	Surface Water	FILTRATION	
LCS 480-218280/2-C	Lab Control Sample	Dissolved	Water	FILTRATION	
MB 480-218280/1-C	Method Blank	Dissolved	Water	FILTRATION	

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

etals (Continued)	3
nalysis Batch: 218481	14

Analysis Batch: 21848	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Total/NA	Surface Water	6010C	217851
480-72583-2	SW-2	Total/NA	Surface Water	6010C	217851
480-72583-3	SW-3	Total/NA	Surface Water	6010C	217851
LCS 480-217851/2-A	Lab Control Sample	Total/NA	Water	6010C	217851
MB 480-217851/1-A	Method Blank	Total/NA	Water	6010C	217851
Analysis Batch: 21873	3				
Lab Sample ID	Client Sample 1D	Prep Type	Matrix	Method	Prep Batch
480-72583-2	SW-2	Total/NA	Surface Water	6010C	217851
480-72583-3	SW-3	Total/NA	Surface Water	6010C	217851
Prep Batch: 219301					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Dissolved	Surface Water	7470A	218280
480-72583-2	SW-2	Dissolved	Surface Water	7470A	218280
480-72583-3	SW-3	Dissolved	Surface Water	7470A	218280
LCS 480-218280/2-C	Lab Control Sample	Dissolved	Water	7470A	218280
MB 480-218280/1-C	Method Blank	Dissolved	Water	7470A	218280
Prep Batch: 219398					

Prep Batch: 219398	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Dissolved	Surface Water	3005A	218280
480-72583-2	SW-2	Dissolved	Surface Water	3005A	218280
480-72583-3	SW-3	Dissolved	Surface Water	3005A	218280

Analysis Batch: 219528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-72583-1	SW-1	Dissolved	Surface Water	7470A	219301
480-72583-2	SW-2	Dissolved	Surface Water	7470A	219301
480-72583-3	SW-3	Dissolved	Surface Water	7470A	219301
LCS 480-218280/2-C	Lab Control Sample	Dissolved	Water	7470A	219301
MB 480-218280/1-C	Method Blank	Dissolved	Water	7470A	219301

Analysis Batch: 219612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Dissolved	Surface Water	6010C	219398
480-72583-2	SW-2	Dissolved	Surface Water	6010C	219398
480-72583-3	SW-3	Dissolved	Surface Water	6010C	219398
LCS 480-218280/2-D	Lab Control Sample	Dissolved	Water	8010C	
MB 480-218280/1-D	Method Blank	Dissolved	Water	6010C	

Analysis Batch: 220047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-218280/2-D	Lab Control Sample	Dissolved	Water	6010C	
MB 480-218280/1-D	Method Blank	Dissolved	Water	6010C	

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

General Chemistry

Analysis Batch: 218358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-1	SW-1	Total/NA	Surface Water	SM 2540C	
480-72583-2	SW-2	Total/NA	Surface Water	SM 2540C	
LCS 480-218358/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-218358/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 218420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-72583-3	SW-3	Total/NA	Surface Water	SM 2540C	
LCS 480-218420/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-218420/1	Method Blank	Total/NA	Water	SM 2540C	,

Page 23 of 34

3.0

3

De la

6

1

9

11

12

14

15

N.A.

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Client Sample ID: SW-1 Lab Sample ID: 480-72583-1

Matrix: Surface Water

Date Collected: 12/05/14 14:50 Date Received: 12/06/14 02:00

•	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	217821	12/08/14 23:02	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			218280	12/10/14 09:31	LED	TAL BUF
Dissolved	Prep	3005A			219398	12/16/14 11:40	EJT	TAL BUF
Dissolved	Analysis	6010C		1	219612	12/17/14 00:01	AMH	TAL BUF
Total/NA	Prep	3005A			217851	12/08/14 13:45	TAS	TAL BUF
Total/NA	Analysis	6010C		1	218481	12/10/14 21:56	TRB	TAL BUF
Dissolved	Filtration	FILTRATION			218280	12/10/14 09:31	LED	TAL BUF
Dissolved	Prep	7470A			219301	12/16/14 08:45	LRK	TAL BUF
Dissolved	Analysis	7470A		1	219528	12/16/14 14:40	LRK	TAL BUF
Total/NA	Prep	7470A			217754	12/08/14 09:25	LRK	TAL BUF
Total/NA	Analysis	7470A		1	217955	12/08/14 14:44	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	218358	12/10/14 13:23	RP	TAL BUF

Client Sample ID: SW-2 Date Collected: 12/05/14 14:35 Lab Sample ID: 480-72583-2

Matrix: Surface Water

Date Received: 12/06/14 02:00

natrix. Guriaco Trater

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		4	218234	12/10/14 14:40	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			218280	12/10/14 09:31	LED	TAL BUF
Dissolved	Prep	3005A			219398	12/16/14 11:40	EJT	TAL BUF
Dissolved	Analysis	6010C		1	219612	12/17/14 00:07	AMH	TAL BUF
Total/NA	Prep	3005A			217851	12/08/14 13:45	TAS	TAL BUF
Total/NA	Analysis	6010C		1	218481	12/10/14 21:59	TRB	TAL BUF
Total/NA	Prep	3005A			217851	12/08/14 13:45	TAS	TAL BUF
Total/NA	Analysis	6010C		1	218733	12/11/14 11:29	TRB	TAL BUF
Dissolved	Filtration	FILTRATION			218280	12/10/14 09:31	LED	TAL BUF
Dissolved	Prep	7470A			219301	12/16/14 08:45	LRK	TAL BUF
Dissolved	Analysis	7470A		1	219528	12/16/14 14:42	LRK	TAL BUF
Total/NA	Prep	7470A			217754	12/08/14 09:25	LRK	TAL BUF
Total/NA	Analysis	7470A		1	217955	12/08/14 14:54	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	218358	12/10/14 13:23	RP	TAL BUF

Client Sample ID: SW-3 Date Collected: 12/05/14 14:25 Date Received: 12/06/14 02:00 Lab Sample ID: 480-72583-3

Matrix: Surface Water

**	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	217821	12/08/14 23:52	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			218280	12/10/14 09:31	LED	TAL BUF
Dissolved	Prep	3005A			219398	12/16/14 11:40	EJT	TAL BUF
Dissolved	Analysis	6010C		1	219612	12/17/14 00:09	AMH	TAL BUF
Total/NA	Prep	3005A			217851	12/08/14 13:45	TAS	TAL BUF

TestAmerica Buffalo

12/23/2014

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Client Sample ID: SW-3

Lab Sample ID: 480-72583-3

Matrix: Surface Water

Date Collected: 12/05/14 14:25 Date Received: 12/06/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		1	218481	12/10/14 22:01	TRB	TAL BUF
Total/NA	Prep	3005A			217851	12/08/14 13:45	TAS	TAL BUF
Total/NA	Analysis	6010C		1	218733	12/11/14 11:32	TRB	TAL BUF
Dissolved	Filtration	FILTRATION			218280	12/10/14 09:31	LED	TAL BUF
Dissolved	Prep	7470A			219301	12/16/14 08:45	LRK	TAL BUF
Dissolved	Analysis	7470A		1	219528	12/16/14 14:44	LRK	TAL BUF
Total/NA	Prep	7470A			217754	12/08/14 09:25	LRK	TAL BUF
Total/NA	Analysis	7470A		1	217955	12/08/14 14:56	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	218420	12/10/14 18:06	JMB	TAL BUF

Lab Sample ID: 480-72583-4

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 12/05/14 00:00

Date Received: 12/06/14 02:00

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst Lab **Prep Type** Type TAL BUF 217821 12/09/14 00:17 NMD1 Total/NA Analysis 824

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

12/23/2014

Page 25 of 34

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Arkansas DEQ	State Program	6	88-0686	07-06-15	
California	State Program	9	1169CA	09-30-15	
Connecticut	State Program	1	PH-0568	09-30-16	t
Florida	NELAP	4	E87672	06-30-15	
Georgia	State Program	4	N/A	03-31-15	
Georgia	State Program	4	956	03-31-15	
Illinois	NELAP	5	200003	09-30-15	
lowa	State Program	7	374	03-01-15	
Kansas	NELAP	7	E-10187	01-31-15 *	
Kentucky (DW)	State Program	4	90029	12-31-14 *	
Kentucky (UST)	State Program	4	30	03-31-15	
Kentucky (WW)	State Program	4	90029	12-31-15	
Louisiana	NELAP	6	02031	06-30-15	
Maine	State Program	1	NY00044	12-04-16	
Maryland	State Program	3	294	03-31-15	
Massachusetts	State Program	1	M-NY044	06-30-15	
Michigan	State Program	5	9937	03-31-15	
Minnesota	NELAP	5	036-999-337	12-31-14 *	
New Hampshire	NELAP	1	2337	11-17-15	
New Jersey	NELAP	2	NY455	06-30-15	
New York	NELAP	2	10026	03-31-15	
North Dakota	State Program	8	R-176	03-31-15	
Oklahoma	State Program	6	9421	08-31-15	
Oregon	NELAP	10	NY200003	06-09-15	
Pennsylvania	NELAP	3	68-00281	07-31-15	
Rhode Island	State Program	1	LAO00328	12-30-14 *	
Tennessee	State Program	4	TN02970	03-31-15	
Texas	NELAP	6	T104704412-11-2	07-31-15	
USDA	Federal		P330-11-00386	11-26-17	
Virginia	NELAP	3	460185	09-14-15	
Washington	State Program	10	C784	02-10-15	
West Virginia DEP	State Program	3	252	12-31-14 *	
Wisconsin	State Program	5	998310390	08-31-15	

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

Method	Method Description	Protocol	Laboratory
824	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

7.1

5

9

10

11

12

14

15

Sample Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-72583-1

2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-72583-1	5W-1	Surface Water	12/05/14 14:50	12/06/14 02:00
480-72583-2	SW-2	Surface Water	12/05/14 14:35	12/06/14 02:00
480-72583-3	SW-3	Surface Water	12/05/14 14:25	12/06/14 02:00
480-72583-4	TRIP BLANK	Water	12/05/14 00:00	12/06/14 02:00

5

6

7

10

Chain of Custody Record

Albany, NY 12205 Carrier Tracking No(s): Sampler. Shaffer, Lisa E 480-59389-14484.1 Client Information E-Mail: hone: lisa.shaffer@testamericainc.com Page 1 of 1 **Analysis Requested** Preservation Codes: Due Date Requested:

Client Contact. Michael Moracco Town of Dewitt 5400 Buttemut Drive A-HCL TAT Requested (days): B - NaOH N - None East Syracuse C - Zn Acetate O - AsNaO2 P-Ne204S D - Nitric Acid State, Zip: E-NaHSO4 O - Na2SO3 NY, 13057 F - MeOH R - Na2S2SO3 Phone: G - Amchior S-H2SO4 315-446-3428(Tel) Purchase Order not required H - Ascorbic Acid T - TSP Dodecahvdrate I - Ice U - Acetone Total Number of confeiners J - DI Water V-MCAA mmoracco@townofdewitt.com 2640C_Cated - Total Dissolved W-ph 4-5 K-EDTA L - FDA Z - other (specify) Town of Dewitt/ Event Desc: Surfacewater - Quarterly (3,6,9,12) 48009871 New York 8010C, 7470A Matrix Туре (C=Comp. Sample Identification Sample Date Time G=grab) Special Instructions/Note: 12.5.14 1450 SW-1 SW-2 Water SW-3 12-5.14 6 Water waler BILIK NIC Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Imitant Poison B Unknown Radiological Return To Client Disposal By Lab Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Time: Date/Time? 106/14 0200 1540 Date/Time: Date/Time: Relinquished by: Received by Cooler Temperature(s) °C and Other Remarks: Custody Seals Intact Custody Seal No .: A Yes A No

acility:	Dewitt Landfill			Sample Po	oint ID:	5W-2
ield Personr		TOIC	•	Sample Ma	atrix:	SW
	INFORMATION:			,		
AMPLING						•
ate/Time	15	2.5.14 / 1	435			
lethod of Sa	mpling:	Bailer			Dedicated:	YES
iameter of V	Vell					
Vell Depth (fi	rom top of PVC)			•		
	(from top of PVC)					•
ength of wa						
_	: LWC x 0.17 x 3=			Volume Pu	urged	
		-				
lethane Rea	ding		-			
AMPLING	DATA:					
Time		T pH	Conduct	Turb.	ORP	DO
THIE	Temp.	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l
435	1.74	7.44	1425	91	-151.4	5.77
rbidity 0.0	IT CHECK DATA: Serial #: Serial #:					
urbidity 0.0 urbidity 1.0 urbidity 10.0 H 4.0 Serial i H 7.0 Serial i	Serial #: Serial #: Serial #: Serial #:				e 25	
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial	Serial #: Serial #: Serial #: Serial #: Serial #:		See	pas		
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial	Serial #: Serial #: Serial #: Serial #:			pas		
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial	Serial #: Serial #: Serial #: Serial #: Serial #:		See	pas		•
urbidity 0.0 : urbidity 1.0 : urbidity 10.0 H 4.0 Serial : H 7.0 Serial H 10.0 Serial ond Serial #	Serial #: Serial #: Serial #: Serial #: Serial #: Serial #:		See umhos/cm@25	pas		
urbidity 0.0 : urbidity 1.0 : urbidity 10.0 H 4.0 Serial : H 7.0 Serial : H 10.0 Serial # RP Serial #	Serial #: Serial #: Serial #: Serial #: Serial #: Serial #:		See umhos/cm@25	pas		•
urbidity 0.0 : urbidity 1.0 : urbidity 10.0 H 4.0 Serial : H 7.0 Serial : H 10.0 Serial # RP Serial # O Calibrated Feather cond	Serial #: Serial #: Serial #: Serial #: I serial #: I to I to	epling:	See umhos/cm@25	pas		•
urbidity 0.0: urbidity 1.0: urbidity 10.0 H 4.0 Serial: H 7.0 Serial: H 10.0 Serial: Ond Serial: CRP Serial: Calibrated Seather conditionals	Serial #:	epling:	See umhos/cm@25	pas		•
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial # O Calibrated /eather cond	Serial #: Serial #: Serial #: Serial #: I serial #: I to I to	epling:	See umhos/cm@25	pas		•
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial # O Calibrated /eather cond	Serial #: Serial #: Serial #: Serial #: I serial #: I to I to	epling:	See umhos/cm@25	pas		•
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial # O Calibrated /eather cond	Serial #: Serial #: Serial #: Serial #: I serial #: I to I to	epling:	See umhos/cm@25	pas		•
urbidity 0.0 i urbidity 1.0 i urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial # O Calibrated /eather cond	Serial #: Serial #: Serial #: Serial #: I serial #: I to I to	epling:	See umhos/cm@25	pas		•
urbidity 0.0 : urbidity 1.0 : urbidity 1.0 : urbidity 10.0 H 4.0 Serial : H 7.0 Serial : H 10.0 Serial : ond Serial # RP Serial # O Calibrated /eather cond	IT CHECK DATA: Serial #: Serial #: Serial #: I Serial #: I to Iitions @ time of sam AND OBSERVATIO	apling:	See umhos/cm@25 Mv	pag	e 25	
urbidity 0.0 : urbidity 1.0 : urbidity 1.0 : urbidity 10.0 H 4.0 Serial : H 7.0 Serial : H 10.0 Serial : ond Serial # RP Serial # O Calibrated /eather cond	Serial #: Serial #: Serial #: Serial #: I serial #: I to I to	apling:	See umhos/cm@25 Mv	pag	e 25	
urbidity 0.0 urbidity 1.0 urbidity 10.0 H 4.0 Serial H 7.0 Serial H 10.0 Serial # RP Serial # O Calibrated /eather cond	IT CHECK DATA: Serial #: Serial #: Serial #: I Serial #: I to Iitions @ time of sam AND OBSERVATIO	apling:	See umhos/cm@25 Mv	pag	e 25	

Landfill: Dow H

1

Job # : 480 - 72583

Date: 12-5-14

Initials: TDK

Time	Location	%CH4	%CG(LEL)	%CO2	%02	H2S(ppm)	CO(ppm)	ATM. Pres("Hg)	V- ft/mir
215	Initial Ambient Cond	0.00	0.00	0.00	20.90	0.0000	0.0000	29.85	
	V-3	58.30	>>> LEL	30.30	0.0	0.0001	0.0000	29.74	35
	V-18	63.20	>>> LEL	33.60	0.0	0.0000	0.0000	29.74	25
	V-12	53.90	>>> LEL	33.00	0.2	0.0001	0.0000	29.74	52
	V-11	52.80	>>> LEL	32.70	0.1	0.0001	0.0000	29.74	72
	V-10	51.50	>>> LEL	31.60	0.2	0.0001	0.0000	29.74	59
	V-9	49.40	>>> LEL	32.10	0.1	0.0000	0.0000	29.74	50
	Upwind near MW-2	0.00	0.00	0.10	22.1	0.0000	0.0000	29.74	NM *
	Down wind SE corner	0.00	0.00	0.00	22.1	0.0000	0.0000	29.74	NM *
	Down wind NE corner	0.00	0.00	0.10	22.0	0.0000	0.0000	29.74	NM *
									i.
							•		
1415	Ambient @ Completion	0.00	0.00	0.00	20.8	0.0000	0.0000	29.77	NM *

Login Sample Receipt Checklist

Client: Town of Dewitt

Job Number: 480-72583-1

Login Number: 72583

and the second second second

List Number: 1

List Source: TestAmerica Buffalo

Creator: Kolb, Chris M

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	TESTAMERICA	,
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	True		
Chlorine Residual checked.	False	LAB TO CHECK RC	

Landfill: Dow H

Job # : 480 - 72583 Date: 12-5-14 Initials : TDK

Time	Location	%CH4	%CG(LEL)	%CO2	% 02	H2S(ppm)	CO(ppm)	ATM. Pres("Hg)	V- ft/mii
215	Initial Ambient Cond	0.00	0.00	0.00	20.90	0.0000	0.0000	29.85	
	V-3	58.30	>>> LEL	30.30	0.0	0.0001	0.0000	29.74	35
·	V-18	63.20	>>> LEL	33.60	0.0	0.0000	0.0000	29.74	25
	V-12	53.90	>>> LEL	33.00	0.2	0.0001	0.0000	29.74	52
	V-11	52.80	>>> LEL	32.70	0.1	0.0001	0.0000	29.74	72
	V-10	51.50	>>> LEL	31.60	0.2	0.0001	0.0000	29.74	59
	V-9	49.40	>>> LEL	32.10	0.1	0.0000	0.0000	29.74	50
	Upwind near MW-2	0.00	0.00	0.10	22.1	0.0000	0.0000	29.74	NM *
	Down wind SE corner	0.00	0.00	0.00	22.1	0.0000	0.0000	29.74	NM *
	Down wind NE corner	0.00	0.00	0.10	22.0	0.0000	0.0000	29.74	NM *
\dashv			<u> </u>						
\exists						· · · · · · · · · · · · · · · · · · ·			
\dashv							· .		
-									
					7				
					:				
						, .			
				 					
	•								
415	Ambient @ Completion	0.00	0.00	0.00	20.8	0.0000	0.0000	29.77	NM *
							l		

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive Suite 11 South Burlington, VT 05403 Tel: (802)660-1990

TestAmerica Job ID: 200-25814-1 Client Project/Site: Town of Dewitt

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Authorized for release by: 12/12/2014 2:20:10 PM

Fion Shopper

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions/Glossary	18
QC Association Summary	19
QC Sample Results	20
Chain of Custody	27
Receipt Checklists	29
Certification Summary	31
Definitions/Glossary	32
Detection Summary	33
QC Association Summary	35
Certification Summary	36
Method Summary	37

		à
Ŀ.		
		,

	٠.	
		4

F	
33	
ŭ	

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

3

Job ID: 200-25814-1

Laboratory: TestAmerica Burlington

Narrative

Job Narrative 200-25814-1

Comments

No additional comments.

Receipt

The samples were received on 12/9/2014 8:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 21.0° C.

Air Toxics

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): Sample collection times were blank on the client labels and on the finish times on the COC. Used beginning collection times from the COC for log-in.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

5

6

-7

9

10

Œ

12

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Method	Method Description	Protocol	Laboratory
TO-15	Volatile Organic Compounds in Ambient Air	EPA	TAL BUR

Page 4 of 37

1/2

Protocol References:

EPA = US Environmental Protection Agency

4

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

7

10

12

Sample Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

nosi

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
200-25814-1	V-10	Air	12/05/14 13:50	12/09/14 08:00
200-25814-2	V-11	Air	12/05/14 13:55	12/09/14 08:00
200-25814-3	V-12	Air	12/05/14 13:58	12/09/14 08:00

5

6

7

•

10

11

12

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-1

Matrix: Air

Client Sample ID: V-10

Date Collected: 12/05/14 13:50 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		33	33	ppb v/v			12/10/14 21:07	164
1,1,2,2-Tetrachloroethane	ND		33	33	ppb v/v			12/10/14 21:07	164
1,1,2-Trichloroethane	ND		33	33	ppb v/v			12/10/14 21:07	164
,1-Dichloroethane	ND		33	33	ppb v/v			12/10/14 21:07	164
1,1-Dichloroethene	ND		33	33	ppb v/v			12/10/14 21:07	164
1,2,4-Trichlorobenzene	ND		82	82	ppb v/v			12/10/14 21:07	164
1,2,4-Trimethylbenzene	ND		33	33	ppb v/v			12/10/14 21:07	164
,2-Dibromoethane	ND		33	33	ppb v/v			12/10/14 21:07	164
,2-Dichlorobenzene	ND		33	33	ppb v/v			12/10/14 21:07	164
,2-Dichloroethane	ND		33	33	ppb v/v			12/10/14 21:07	164
,2-Dichloroethene, Total	ND		33	33	ppb v/v			12/10/14 21:07	164
,2-Dichloropropane	ND		33	33	ppb v/v			12/10/14 21:07	164
1,2-Dichlorotetrafluoroethane	ND		33	33	ppb v/v			12/10/14 21:07	164
1,3,5-Trimethylbenzene	ND		33	33	ppb v/v			12/10/14 21:07	164
.3-Butadiene	ND		33	33	ppb v/v			12/10/14 21:07	164
1,3-Dichlorobenzene	ND		33		ppb v/v			12/10/14 21:07	164
,4-Dichlorobenzene	ND		33		ppb v/v			12/10/14 21:07	16
,4-Dioxane	ND		820		ppb v/v			12/10/14 21:07	16
2,2,4-Trimethylpentane	290		33		ppb v/v			12/10/14 21:07	164
-Chlorotoluene	ND		33		ppb v/v			12/10/14 21:07	16-
-Chloropropene	ND		82		ppb v/v			12/10/14 21:07	16
-Ethyltoluene	ND		33	33	ppb v/v			12/10/14 21:07	16
l-isopropyltoluene	ND		33	33	ppb v/v			12/10/14 21:07	164
Acetone	ND		820	820	ppb v/v			12/10/14 21:07	16
Benzene	ND		33	33	ppb v/v			12/10/14 21:07	16
Benzyl chloride	ND		33	33	ppb v/v			12/10/14 21:07	164
Bromodichloromethane	ND		33	33	ppb v/v			12/10/14 21:07	16-
Bromoethene(Vinyl Bromide)	ND		33	33	ppb v/v			12/10/14 21:07	16
Bromoform	ND		33	33	ppb v/v			12/10/14 21:07	164
3romomethane	ND		33	33	ppb v/v			12/10/14 21:07	16
Carbon disulfide	ND		82		ppb v/v			12/10/14 21:07	16-
Carbon tetrachloride	ND		33		ppb v/v			12/10/14 21:07	16-
Chlorobenzene	ND		33		ppb v/v			12/10/14 21:07	16-
Chloroethane	ND		82		ppb v/v			12/10/14 21:07	16-
Chloroform	ND		33		ppb v/v			12/10/14 21:07	164
Chloromethane	ND		82		ppb v/v			12/10/14 21:07	16
cis-1,2-Dichloroethene	ND		33		ppb v/v			12/10/14 21:07	164
cis-1,3-Dichloropropene	ND		33		ppb v/v			12/10/14 21:07	164
Cumene	ND		33		ppb v/v			12/10/14 21:07	164
Cyclohexane	260		33	33	ppb v/v			12/10/14 21:07	16-
Dibromochloromethane	ND		33		ppb v/v			12/10/14 21:07	16
Dichlorodifluoromethane	110		82		ppb v/v			12/10/14 21:07	16
Ethylbenzene	92		33		ppb v/v			12/10/14 21:07	16-
Freon 22	2200		82		ppb v/v			12/10/14 21:07	16
Freon TF	ND.		33		ppb v/v			12/10/14 21:07	16
Hexachlorobutadiene	ND		33		ppb v/v			12/10/14 21:07	164
Isopropyl alcohol	ND		820		ppb v/v			12/10/14 21:07	164
m,p-Xylene	ND		82		ppb v/v			12/10/14 21:07	16

TestAmerica Burlington

12/12/2014

Page 6 of 37

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-1

Matrix: Air

Client Sample ID: V-10

Date Collected: 12/05/14 13:50 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic (^{Analyte}	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl Butyl Ketone (2-Hexanone)	ND	82	82	ppb v/v			12/10/14 21:07	164
Methyl Ethyl Ketone	ND	82	82	ppb v/v			12/10/14 21:07	164
methyl isobutyl ketone	ND	82	82	ppb v/v			12/10/14 21:07	164
Methyl methacrylate	ND	82	82	ppb v/v			12/10/14 21:07	164
Methyl tert-butyl ether	ND	33	33	ppb v/v			12/10/14 21:07	164
Methylene Chloride	ND	82	82	ppb v/v			12/10/14 21:07	164
Naphthalene	ND	82	82	ppb v/v			12/10/14 21:07	164
n-Butane	3800	82	82	ppb v/v			12/10/14 21:07	164
n-Butylbenzene	ND	33	33	ppb v/v			12/10/14 21:07	164
n-Heptane	360	33	33	ppb v/v			12/10/14 21:07	164
n-Hexane	960	33	33	ppb v/v			12/10/14 21:07	164
n-Propylbenzene	ND	33	33	ppb v/v			12/10/14 21:07	164
sec-Butylbenzene	ND	33	33	ppb v/v			12/10/14 21:07	164
Styrene	ND	33	33	ppb v/v			12/10/14 21:07	164
ert-Butyl alcohol	ND	820	820	• •			12/10/14 21:07	164
ert-Butylbenzene	ND	33	33	ppb v/v			12/10/14 21:07	164
Tetrachloroethene	ND	33	33	ppb v/v			12/10/14 21:07	164
Tetrahydrofuran	ND	820	820				12/10/14 21:07	164
foluene	ND	33	33				12/10/14 21:07	164
rans-1,2-Dichloroethene	ND	33	33				12/10/14 21:07	164
rans-1,3-Dichloropropene	ND	33	33				12/10/14 21:07	164
richloroethene	ND	33	33				12/10/14 21:07	164
richlorofluoromethane	95	33		ppb v/v			12/10/14 21:07	164
/inyl chloride	87	33	33				12/10/14 21:07	164
(ylene (total)	ND	33	33	ppb v/v			12/10/14 21:07	164
(ylene, o-	ND	33	33				12/10/14 21:07	164
Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND TOSAIL	180	180	ug/m3	<u> </u>		12/10/14 21:07	164
1,1,2,2-Tetrachloroethane	ND	230	230	ug/m3			12/10/14 21:07	164
1,1,2-Trichloroethane	ND	180	180	ug/m3			12/10/14 21:07	164
1,1-Dichloroethane	ND	130	130	ug/m3			12/10/14 21:07	164
1,1-Dichloroethene	ND	130	130	ug/m3			12/10/14 21:07	164
1,2,4-Trichlorobenzene	ND	610	610	ug/m3			12/10/14 21:07	164
1,2,4-Trimethylbenzene	ND	160	160	ug/m3			12/10/14 21:07	164
1.2-Dibromoethane	ND	250	250	ug/m3			12/10/14 21:07	164
1.2-Dichlorobenzene	ND	200		ug/m3			12/10/14 21:07	164
1,2-Dichloroethane	ND	130		ug/m3			12/10/14 21:07	16-
1,2-Dichloroethene, Total	ND	130		ug/m3			12/10/14 21:07	164
1,2-Dichloropropane	ND	150		ug/m3			12/10/14 21:07	16-
1,2-Dichlorotetrafluoroethane	ND	230		ug/m3			12/10/14 21:07	16-
1,3,5-Trimethylbenzene	ND	160		ug/m3			12/10/14 21:07	16-
1,3-Butadiene	ND	73		ug/m3			12/10/14 21:07	16-
1.3-Dichlorobenzene	ND	200		ug/m3			12/10/14 21:07	16-
I,4-Dichlorobenzene	ND	200		ug/m3			12/10/14 21:07	16-
1,4-Dioxane	ND	3000		ug/m3			12/10/14 21:07	16
	1400	150		ug/m3			12/10/14 21:07	16
2,2,4-Trimethylpentane 2-Chlorotoluene	ND	170		ug/m3			12/10/14 21:07	16
2-Chlorototuene 3-Chloropropene	ND	260		ug/m3			12/10/14 21:07	16

TestAmerica Burlington

Client: Town of Dewitt

Project/Site: Town of Dewitt

TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-1

Matrix: Air

Client Sample ID: V-10

Date Collected: 12/05/14 13:50 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

nalyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Ethyltoluene	ND		160	160	ug/m3			12/10/14 21:07	16
Isopropyltoluene	ND		180	180	ug/m3			12/10/14 21:07	16
cetone	ND		1900	1900	ug/m3			12/10/14 21:07	16
enzene	ND		100	100	ug/m3			12/10/14 21:07	16
enzyl chloride	ND		170	170	ug/m3			12/10/14 21:07	16
romodichloromethane	ND		220	220	ug/m3			12/10/14 21:07	16
romoethene(Vinyl Bromide)	ND		140	140	ug/m3			12/10/14 21:07	16
romoform	ND		340	340	ug/m3			12/10/14 21:07	10
romomethane	ND		130	130	ug/m3			12/10/14 21:07	16
arbon disulfide	ND		260	260	ug/m3			12/10/14 21:07	10
arbon tetrachloride	ND		210	210	ug/m3			12/10/14 21:07	16
hiorobenzene	ND		150	150	ug/m3			12/10/14 21:07	10
hloroethane	ND		220	220	ug/m3			12/10/14 21:07	10
hloroform	ND		160	160	ug/m3			12/10/14 21:07	10
hloromethane	ND		170	170	ug/m3			12/10/14 21:07	16
s-1.2-Dichloroethene	ND		130	130	ug/m3			12/10/14 21:07	16
	ND ND		150	150	ug/m3			12/10/14 21:07	10
s-1,3-Dichloropropene umene	ND		160	160	ug/m3			12/10/14 21:07	10
			110	110	ug/m3			12/10/14 21:07	10
yclohexane ibromochloromethane	880 ND		280	280	ug/m3			12/10/14 21:07	10
			410	410	ug/m3			12/10/14 21:07	1
ichlorodifluoromethane	530		140	140	ug/m3			12/10/14 21:07	1
thylbenzene	400		290	290	ug/m3			12/10/14 21:07	1
reon 22	7900 ND		250	250	•			12/10/14 21:07	1
reon TF	ND				ug/m3			12/10/14 21:07	1
exachlorobutadiene	ND		350	350	ug/m3			12/10/14 21:07	1
opropyl alcohol	ND		2000	2000	ug/m3				1
,p-Xylene	ND		360	360	ug/m3			12/10/14 21:07	
lethyl Butyl Ketone (2-Hexanone)	ND		340	340	ug/m3			12/10/14 21:07	1
lethyl Ethyl Ketone	ND		240	240	ug/m3			12/10/14 21:07	1
ethyl isobutyl ketone	ND		340					12/10/14 21:07	1
lethyl methacrylate	ND		340		ug/m3			12/10/14 21:07	1
lethyl tert-butyl ether	ND		120	120	ug/m3			12/10/14 21:07	1
lethylene Chloride	ND		280	280	ug/m3			12/10/14 21:07	1
aphthalene	ND		430	430	ug/m3			12/10/14 21:07	11
-Butane	9100		190	190	ug/m3			12/10/14 21:07	10
-Butylbenzene	ND		180		ug/m3			12/10/14 21:07	10
-Heptane	1500		130		ug/m3			12/10/14 21:07	10
-Hexane	3400		120		ug/m3			12/10/14 21:07	10
-Propylbenzene	ND		160		ug/m3			12/10/14 21:07	10
ec-Butylbenzene	ND		180		ug/m3			12/10/14 21:07	1
tyrene	ND		140		ug/m3			12/10/14 21:07	1
ert-Butyl alcohol	ND		2500		ug/m3			12/10/14 21:07	11
ert-Butylbenzene	ND		180		ug/m3			12/10/14 21:07	1
etrachioroethene	ND		220	220	ug/m3			12/10/14 21:07	1
etrahydrofuran	ND		2400		ug/m3			12/10/14 21:07	1
oluene	ND		120	120	ug/m3			12/10/14 21:07	10
ans-1,2-Dichloroethene	ND		130	130	ug/m3			12/10/14 21:07	10

TestAmerica Burlington

Client: Town of Dewitt

Xylene, o-

Project/Site: Town of Dewitt

Client Sample ID: V-10

Date Collected: 12/05/14 13:50

Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L.

TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-1

Matrix: Air

12/10/14 21:07

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		180	180	ug/m3			12/10/14 21:07	164
Trichlorofluoromethane	540		180	180	ug/m3			12/10/14 21:07	164
Vinyl chloride	220		84	84	ug/m3			12/10/14 21:07	164
Xylene (total)	ND		140	140	ug/m3			12/10/14 21:07	164

140

ND

140 ug/m3

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-2

Matrix: Air

Client Sample ID: V-11

Date Collected: 12/05/14 13:55 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	35	35	ppb v/v			12/10/14 22:00	175
1,1,2,2-Tetrachloroethane	ND	35		ppb v/v			12/10/14 22:00	175
1,1,2-Trichloroethane	ND	35		ppb v/v			12/10/14 22:00	175
1,1-Dichloroethane	ND	35	35	ppb y/y			12/10/14 22:00	175
1,1-Dichloroethene	ND	35		ppb v/v			12/10/14 22:00	175
1,2,4-Trichlorobenzene	ND	88		ppb v/v			12/10/14 22:00	175
1,2,4-Trimethylbenzene	ND	35		ppb v/v			12/10/14 22:00	175
1.2-Dibromoethane	ND	35		ppb v/v			12/10/14 22:00	175
1.2-Dichlorobenzene	ND	35		ppb v/v			12/10/14 22:00	175
1.2-Dichloroethane	ND	35		ppb v/v			12/10/14 22:00	175
1,2-Dichloroethene, Total	ND	35		ppb v/v			12/10/14 22:00	175
1,2-Dichloropropane	ND	35		ppb v/v			12/10/14 22:00	175
1,2-Dichlorotetrafluoroethane	38	35		ppb v/v			12/10/14 22:00	175
1,3,5-Trimethylbenzene	36	35		ppb v/v			12/10/14 22:00	175
1,3-Butadiene	ND	35		ppb v/v			12/10/14 22:00	175
1,3-Dichloroberizene	ND	35		ppb v/v			12/10/14 22:00	175
1.4-Dichlorobenzene	ND	35	35	ppb v/v			12/10/14 22:00	175
1,4-Dioxane	ND	880		ppb v/v			12/10/14 22:00	175
		35		ppb v/v			12/10/14 22:00	175
2,2,4-Trimethylpentane	370 ND			* *			12/10/14 22:00	175
2-Chlorotoluene	ND	35		ppb v/v			12/10/14 22:00	175
3-Chloroproperie	ND ND	88		ppb v/v				
4-Ethyltoluene	ND	35		ppb v/v			12/10/14 22:00	175
4-Isopropyltoluene	ND	35		ppb v/v			12/10/14 22:00	175
Acetone	ND	880	880	* *			12/10/14 22:00	175
Benzene	44	35		ppb v/v			12/10/14 22:00	175
Benzyl chloride	ND	35		ppb v/v			12/10/14 22:00	175
Bromodichloromethane	ND	35		ppb v/v			12/10/14 22:00	175
Bromoethene(Vinyl Bromide)	ND	35	35				12/10/14 22:00	175
Bromoform	ND	35		ppb v/v			12/10/14 22:00	175
Bromomethane	ND	35		ppb v/v			12/10/14 22:00	175
Carbon disulfide	ND	88		ppb v/v			12/10/14 22:00	175
Carbon tetrachloride	ND	35		ppb v/v			12/10/14 22:00	175
Chlorobenzene	ND .	35		ppb v/v			12/10/14 22:00	175
Chloroethane	ND	88	88	ppb v/v			12/10/14 22:00	175
Chloroform	ND	35		ppb v/v			12/10/14 22:00	175
Chloromethane	ND	88		ppb v/v			12/10/14 22:00	175
cis-1,2-Dichloroethene	ND	35		ppb v/v			12/10/14 22:00	175
cis-1,3-Dichloropropene	ND	35		ppb v/v			12/10/14 22:00	175
Cumene	ND	35		ppb v/v			12/10/14 22:00	175
Cyclohexane	270	35		ppb v/v			12/10/14 22:00	175
Dibromochloromethane	ND	35		ppb v/v			12/10/14 22:00	175
Dichlorodifluoromethane	ND	88		ppb v/v			12/10/14 22:00	175
Ethylbenzene	160	35		ppb v/v			12/10/14 22:00	175
Freon 22	1700	88		ppb v/v			12/10/14 22:00	175
Freon TF	ND	35		ppb v/v			12/10/14 22:00	175
Hexachlorobutadiene	ND	35		ppb v/v			12/10/14 22:00	175
Isopropyl alcohol	ND	880	880	ppb v/v			12/10/14 22:00	175
m,p-Xylene	ND	88	88	ppb v/v			12/10/14 22:00	175

TestAmerica Burlington

12/12/2014

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-2

Matrix: Air

Client Sample ID: V-11

Date Collected: 12/05/14 13:55 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
Methyl Butyl Ketone (2-Hexanone)	ND		88	88	ppb v/v			12/10/14 22:00	- 1
Methyl Ethyl Ketone	ND		88	88	ppb v/v			12/10/14 22:00	1
methyl isobutyl ketone	ND		88	88	ppb v/v			12/10/14 22:00	1
Methyl methacrylate	ND	,	88	88	ppb v/v			12/10/14 22:00	1
Wethyl tert-butyl ether	ND		35	35	ppb v/v			12/10/14 22:00	1
Methylene Chloride	ND		88	88	ppb v/v			12/10/14 22:00	1
Naphthalene	ND		88	88	ppb v/v			12/10/14 22:00	1
n-Butane	4000		88	88	ppb v/v			12/10/14 22:00	1
n-Butylbenzene	ND		35	35	ppb v/v			12/10/14 22:00	1
n-Heptane	420		35	35	ppb v/v			12/10/14 22:00	1
n-Hexane	1200		35		ppb v/v			12/10/14 22:00	1
a-Propylbenzene	ND		35		ppb v/v			12/10/14 22:00	1
ec-Butylbenzene	ND	•	35		ppb v/v			12/10/14 22:00	1
Styrene	ND		35	35	ppb v/v			12/10/14 22:00	1
ert-Butyl alcohol	ND		880	880				12/10/14 22:00	1
ert-Butyl alconor ert-Butylbenzene	ND		35	35				12/10/14 22:00	1
	ND		35	35				12/10/14 22:00	1
etrachloroethene			880	880	• •			12/10/14 22:00	
etrahydrofuran	ND		35	35				12/10/14 22:00	
oluene	ND							12/10/14 22:00	
rans-1,2-Dichloroethene	ND		35	35				12/10/14 22:00	
rans-1,3-Dichloropropene	ND		35	35				12/10/14 22:00	
richloroethene	ND		35	35	ppb v/v				
richlorofluoromethane	87		35		ppb v/v			12/10/14 22:00	
/inyl chloride	ND		35		• •			12/10/14 22:00	
(ylene (total)	ND		35		ppb v/v			12/10/14 22:00	
(ylene, o-	ND		35	35	ppb v/v			12/10/14 22:00	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dill
,1,1-Trichloroethane	ND		190	190	ug/m3			12/10/14 22:00	4
,1,2,2-Tetrachloroethane	ND		240	240	ug/m3			12/10/14 22:00	
,1,2-Trichloroethane	ND		190	190	ug/m3			12/10/14 22:00	,
,1-Dichloroethane	ND		140	140	ug/m3			12/10/14 22:00	
,1-Dichloroethene	ND		140	140	ug/m3			12/10/14 22:00	
1,2,4-Trichlorobenzene	ND		650	650	ug/m3			12/10/14 22:00	•
,2,4-Trimethylbenzene	ND		170	170	ug/m3			12/10/14 22:00	
,2-Dibromoethane	ND		270	270	ug/m3			12/10/14 22:00	
,2-Dichlorobenzene	ND		210	210	ug/m3			12/10/14 22:00	
,2-Dichloroethane	ND		140	140	ug/m3			12/10/14 22:00	
1,2-Dichloroethene, Total	ND		140	140	ug/m3			12/10/14 22:00	
,2-Dichloropropane	ND		160	160	ug/m3			12/10/14 22:00	
,2-Dichlorotetrafluoroethane	270		240	240	ug/m3			12/10/14 22:00	
,3,5-Trimethylbenzene	180		170	170	ug/m3			12/10/14 22:00	
,3-Butadiene	ND		77	77	ug/m3			12/10/14 22:00	
,3-Dichlorobenzene	ND		210		ug/m3			12/10/14 22:00	
,4-Dichlorobenzene	ND		210		ug/m3			12/10/14 22:00	
	ND		3200		ug/m3			12/10/14 22:00	
1,4-Dioxane			160		ug/m3			12/10/14 22:00	
2,2,4-Trimethylpentane	1700 ND		180		ug/m3			12/10/14 22:00	
2-Chlorotoluene	ND ND		270		ug/m3			12/10/14 22:00	

TestAmerica Burlington

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-2

Matrix: Air

Client Sample ID: V-11
Date Collected: 12/05/14 13:55

Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
-Ethyltoluene	ND		170	170	ug/m3			12/10/14 22:00	17
l-Isopropyltoluene	ND		190	190	ug/m3			12/10/14 22:00	17
Acetone	ND		2100	2100	ug/m3			12/10/14 22:00	17
Benzene	140		110	110	ug/m3			12/10/14 22:00	17
Benzyl chloride	ND		180	180	ug/m3			12/10/14 22:00	17
Bromodichloromethane	ND		230	230	ug/m3			12/10/14 22:00	17
Bromoethene(Vinyl Bromide)	ND		150	150	ug/m3			12/10/14 22:00	17
Bromoform	ND		360	360	ug/m3			12/10/14 22:00	17
Bromomethane	ND		140	140	ug/m3			12/10/14 22:00	17
Carbon disulfide	ND		270	270	ug/m3			12/10/14 22:00	17
Carbon tetrachloride	ND		220	220	ug/m3			12/10/14 22:00	17
Chlorobenzene	ND		160	160	ug/m3			12/10/14 22:00	17
Chloroethane	ND		230	230	ug/m3			12/10/14 22:00	17
Chloroform	ND		170	170	ug/m3			12/10/14 22:00	17
Chloromethane	ND		180	180	ug/m3			12/10/14 22:00	17
cis-1,2-Dichloroethene	ND		140	140				12/10/14 22:00	17
	ND		160		ug/m3			12/10/14 22:00	17
cis-1,3-Dichloropropene			170		_			12/10/14 22:00	17
Cumene	ND			170				12/10/14 22:00	17
Cyclohexane	940		120	120	ug/m3				17
Dibromochloromethane	ND		300	300	ug/m3			12/10/14 22:00	
Dichlorodifluoromethane	ND		430	430	ug/m3			12/10/14 22:00	17
Ethylbenzene	680		150	150	ug/m3			12/10/14 22:00	17
reon 22	6000		310	310	_			12/10/14 22:00	17
Freon TF	ND		270	270	ug/m3			12/10/14 22:00	17
lexachlorobutadiene	ND		370	370	ug/m3			12/10/14 22:00	17
sopropyl alcohol	ND		2200	2200	ug/m3			12/10/14 22:00	17
n,p-Xylene	ND		380	380	ug/m3			12/10/14 22:00	17
Methyl Butyl Ketone (2-Hexanone)	ND		360	360	ug/m3			12/10/14 22:00	17
Methyl Ethyl Ketone	ND		260	260	ug/m3			12/10/14 22:00	17
nethyl isobutyl ketone	ND		360	360	ug/m3			12/10/14 22:00	17
Methyl methacrylate	ND		360	360	ug/m3			12/10/14 22:00	17
Methyl tert-butyl ether	ND		130	130	ug/m3			12/10/14 22:00	17
Methylene Chloride	ND		300	300	ug/m3			12/10/14 22:00	17
Naphthalene	ND		460	460	ug/m3			12/10/14 22:00	17
n-Butane	9600		210	210	ug/m3			12/10/14 22:00	17
n-Butylbenzene	ND		190	190	ug/m3			12/10/14 22:00	17
n-Heptane	1700		140	140	ug/m3			12/10/14 22:00	17
n-Hexane	4200		120	120	ug/m3			12/10/14 22:00	17
n-Propylbenzene	ND		170	170	ug/m3			12/10/14 22:00	17
ec-Butylbenzene	ND		190	190	ug/m3			12/10/14 22:00	17
Styrene	ND		150	150	ug/m3			12/10/14 22:00	17
ert-Butyl alcohol	ND		2700	2700	ug/m3			12/10/14 22:00	17
ert-Butylbenzene	ND		190	190	ug/m3			12/10/14 22:00	17
Tetrachloroethene	ND		240	240	ug/m3			12/10/14 22:00	17
Tetrahydrofuran	ND		2600	2600	ug/m3			12/10/14 22:00	17
Toluene	ND		130	130	ug/m3			12/10/14 22:00	17
trans-1,2-Dichloroethene	ND		140		ug/m3			12/10/14 22:00	17
trans-1,3-Dichloropropene	ND		160		ug/m3			12/10/14 22:00	17

TestAmerica Burlington

Client: Town of Dewitt

Project/Site: Town of Dewitt

TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-2

Matrix: Air

Client Sample ID: V-11
Date Collected: 12/05/14 13:55

Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		190	190	ug/m3			12/10/14 22:00	175
Trichlorofluoromethane	490		200	200	ug/m3			12/10/14 22:00	175
/inyl chloride	ND		89	89	ug/m3			12/10/14 22:00	175
(ylene (total)	ND		150	150	ug/m3			12/10/14 22:00	175
Kylene, o-	ND		150	150	ug/m3			12/10/14 22:00	175

5

6

16

11

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-3

Matrix: Air

Client Sample ID: V-12

Date Collected: 12/05/14 13:58 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Analyte	Result Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	31		ppb v/v			12/10/14 22:52	156
1,1,2,2-Tetrachloroethane	ND	31		ppb v/v			12/10/14 22:52	156
1,1,2-Trichloroethane	ND	31		ppb v/v			12/10/14 22:52	156
1,1-Dichloroethane	ND	31		ppb v/v			12/10/14 22:52	156
1,1-Dichloroethene	ND	31		ppb v/v			12/10/14 22:52	156
1,2,4-Trichlorobenzene	ND	78		ppb v/v			12/10/14 22:52	156
1,2,4-Trimethylbenzene	ND	31		ppb v/v			12/10/14 22:52	156
1,2-Dibromoethane	ND	31		ppb v/v			12/10/14 22:52	156
1,2-Dichlorobenzene	ND	31		ppb v/v			12/10/14 22:52	156
1,2-Dichloroethane	ND	31	31				12/10/14 22:52	156
	ND	31	31				12/10/14 22:52	156
1,2-Dichloroethene, Total	ND	31		ppb v/v			12/10/14 22:52	156
1,2-Dichloropropane							12/10/14 22:52	156
1,2-Dichlorotetrafluoroethane	ND	31	31					
1,3,5-Trimethylbenzene	ND	31		ppb v/v			12/10/14 22:52	156
1,3-Butadiene	ND	31		ppb v/v			12/10/14 22:52	156
1,3-Dichlorobenzene	ND	31		ppb v/v			12/10/14 22:52	156
1,4-Dichlorobenzene	ND	31		ppb v/v			12/10/14 22:52	156
1,4-Dioxane	ND	780		ppb v/v			12/10/14 22:52	156
2,2,4-Trimethylpentane	350	31		ppb v/v			12/10/14 22:52	156
2-Chlorotoluene	ND	31		ppb v/v			12/10/14 22:52	156
3-Chloropropene	ND	78	78	ppb v/v			12/10/14 22:52	156
4-Ethyltoluene	ND	31	31	ppb v/v			12/10/14 22:52	156
4-Isopropyltoluene	ND	31	31	ppb v/v			12/10/14 22:52	156
Acetone	ND	780	780	ppb v/v			12/10/14 22:52	156
Benzene	47	31	31	ppb v/v			12/10/14 22:52	156
Benzyl chloride	ND	31	31	ppb v/v			12/10/14 22:52	156
Bromodichloromethane	ND	31	31	ppb v/v			12/10/14 22:52	156
Bromoethene(Vinyl Bromide)	ND	31	31	ppb v/v			12/10/14 22:52	156
Bromoform	ND	31	31	ppb v/v			12/10/14 22:52	156
Bromomethane	ND	31	31	ppb v/v			12/10/14 22:52	156
Carbon disulfide	ND	78	78	ppb v/v			12/10/14 22:52	156
Carbon tetrachloride	ND	31	31	ppb v/v			12/10/14 22:52	156
Chlorobenzene	ND	31	31	ppb v/v			12/10/14 22:52	156
Chloroethane	96	78	78	ppb v/v			12/10/14 22:52	156
Chloroform	ND	31	31	ppb v/v			12/10/14 22:52	156
Chloromethane	ND	78	78	ppb v/v			12/10/14 22:52	156
cis-1,2-Dichloroethene	ND	31	31	ppb v/v			12/10/14 22:52	156
cis-1,3-Dichloropropene	ND	31	31	ppb v/v			12/10/14 22:52	156
Cumene	ND	31	31	ppb v/v			12/10/14 22:52	156
Cyclohexane	350	31	31	ppb v/v			12/10/14 22:52	156
Dibromochloromethane	ND	31		ppb v/v			12/10/14 22:52	156
Dichlorodifluoromethane	78	78		ppb v/v			12/10/14 22:52	156
Ethylbenzene	67	31	,	ppb v/v			12/10/14 22:52	156
Freon 22	2000	78		ppb v/v			12/10/14 22:52	156
Freon TF	ND ND	31		ppb v/v			12/10/14 22:52	156
Hexachlorobutadiene	ND	31		ppb v/v			12/10/14 22:52	156
	ND	780		ppb v/v			12/10/14 22:52	156
Isopropyl alcohol m,p-Xylene	ND	78		ppb v/v			12/10/14 22:52	156

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-3

Matrix: Air

Client Sample ID: V-12

Date Collected: 12/05/14 13:58 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl Butyl Ketone (2-Hexanone)	ND	78	78	ppb v/v			12/10/14 22:52	15
Methyl Ethyl Ketone	ND	78	78	ppb v/v			12/10/14 22:52	15
methyl isobutyl ketone	ND	78	78	ppb v/v			12/10/14 22:52	15
Methyl methacrylate	ND .	78	78	ppb v/v			12/10/14 22:52	15
Methyl tert-butyl ether	ND	31	31	ppb v/v			12/10/14 22:52	150
Methylene Chloride	ND	78	78	ppb v/v			12/10/14 22:52	150
Naphthalene	ND	78	78				12/10/14 22:52	150
n-Butane	3900	78	78				12/10/14 22:52	150
n-Butylbenzene	ND	31		ppb v/v			12/10/14 22:52	15
n-Heptane	400	31		ppb v/v			12/10/14 22:52	15
n-Hexane	1200	31		ppb v/v			12/10/14 22:52	150
n-Propylbenzene	ND	31	31				12/10/14 22:52	150
sec-Butylbenzene	ND .	31	31				12/10/14 22:52	150
Styrene	ND	31		ppb v/v			12/10/14 22:52	150
	ND	780		ppb v/v			12/10/14 22:52	150
ert-Butyl alcohol	ND	31	31	* *			12/10/14 22:52	150
ert-Butylbenzene	ND	31	31				12/10/14 22:52	150
Tetrachloroethene	ND	780	780	* *			12/10/14 22:52	15
Tetrahydrofuran	ND ND	31					12/10/14 22:52	15
Toluene			31				12/10/14 22:52	15
rans-1,2-Dichloroethene	ND	31		ppb v/v			12/10/14 22:52	15
rans-1,3-Dichloropropene	ND	31	31				12/10/14 22:52	15
Trichloroethene	ND	31		ppb v/v				
Trichlorofluoromethane	170	31	31				12/10/14 22:52	15
/inyl chloride	36	31		ppb v/v			12/10/14 22:52	15
(ylene (total)	ND	31	31	•			12/10/14 22:52	15
(ylene, o-	ND	31	31	ppb v/v			12/10/14 22:52	15
Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND	170	170	ug/m3			12/10/14 22:52	15
I,1,2,2-Tetrachioroethane	ND	210	210	ug/m3			12/10/14 22:52	150
1,1,2-Trichloroethane	ND	170	170	ug/m3			12/10/14 22:52	150
1,1-Dichloroethane	ND	130	130	ug/m3			12/10/14 22:52	15
1,1-Dichloroethene	ND	120	120	ug/m3			12/10/14 22:52	15
1,2,4-Trichlorobenzene	ND	580	580	ug/m3			12/10/14 22:52	150
1,2,4-Trimethylbenzene	ND	150	150	ug/m3			12/10/14 22:52	15
1,2-Dibromoethane	ND	240	240	ug/m3			12/10/14 22:52	15
1,2-Dichlorobenzene	ND	190	190	ug/m3			12/10/14 22:52	15
1,2-Dichloroethane	ND	130	130	ug/m3			12/10/14 22:52	15
1,2-Dichloroethene, Total	ND	120	120	ug/m3			12/10/14 22:52	15
1,2-Dichloropropane	ND	140	140	ug/m3			12/10/14 22:52	15
1,2-Dichlorotetrafluoroethane	ND	220	220	ug/m3	•		12/10/14 22:52	15
1,3,5-Trimethylbenzene	ND	150	150	ug/m3			12/10/14 22:52	15
1,3-Butadiene	ND	69	69	ug/m3			12/10/14 22:52	15
1,3-Dichlorobenzene	ND	190	,	ug/m3			12/10/14 22:52	15
1,4-Dichlorobenzene	ND	190		ug/m3			12/10/14 22:52	15
1,4-Dioxane	ND	2800		ug/m3			12/10/14 22:52	15
	1600	150		ug/m3			12/10/14 22:52	15
2,2,4-Trimethylpentane	ND	160		ug/m3			12/10/14 22:52	15
2-Chlorotoluene 3-Chloropropene	ND	240		ug/m3			12/10/14 22:52	15

TestAmerica Burlington

12/12/2014

Page 15 of 37

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-3

Matrix: Air

Client Sample ID: V-12

Date Collected: 12/05/14 13:58 Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
I-Ethyltoluene	ND		150	150	ug/m3		•	12/10/14 22:52	156
I-Isopropyltoluene	ND		170	170	ug/m3			12/10/14 22:52	156
Acetone	ND		1900	1900	ug/m3			12/10/14 22:52	156
Benzene	150		100	100	ug/m3			12/10/14 22:52	156
Benzyl chloride	ND		160	160	ug/m3			12/10/14 22:52	156
Bromodichloromethane	ND		210	210	ug/m3			12/10/14 22:52	156
Bromoethene(Vinyl Bromide)	ND		140	140	ug/m3			12/10/14 22:52	156
Bromoform	ND		320	320	ug/m3			12/10/14 22:52	150
Bromomethane	ND		120	120	ug/m3			12/10/14 22:52	156
Carbon disulfide	ND		240	240	ug/m3			12/10/14 22:52	150
Carbon tetrachloride	ND		200	200	ug/m3			12/10/14 22:52	150
Chlorobenzene	ND		140	140	ug/m3			12/10/14 22:52	150
Chloroethane	250		210	210	ug/m3			12/10/14 22:52	150
Chloroform	ND		150	150	ug/m3			12/10/14 22:52	15
Chloromethane	ND		160	160	ug/m3			12/10/14 22:52	15
cis-1,2-Dichloroethene	ND		120	120	ug/m3			12/10/14 22:52	150
cis-1,3-Dichloropropene	ND		140	140	ug/m3			12/10/14 22:52	150
Cumene	ND		150	150				12/10/14 22:52	15
Cyclohexane	1200		110	110	ug/m3			12/10/14 22:52	150
Dibromochloromethane	ND		270	270	ug/m3			12/10/14 22:52	15
Dichlorodifluoromethane	380		390	390	ug/m3			12/10/14 22:52	15
Ethylbenzene	290		140	140	ug/m3			12/10/14 22:52	15
Freon 22	7000		280	280	ug/m3			12/10/14 22:52	15
Freon TF	ND		240	240	ug/m3			12/10/14 22:52	15
Hexachlorobutadiene	ND		330	330	ug/m3			12/10/14 22:52	15
sopropyl alcohol	ND		1900	1900	ug/m3			12/10/14 22:52	15
n,p-Xylene	ND		340	340	ug/m3			12/10/14 22:52	15
Methyl Butyl Ketone (2-Hexanone)	ND		320	320	ug/m3			12/10/14 22:52	15
Methyl Ethyl Ketone	ND		230	230	ug/m3			12/10/14 22:52	15
methyl isobutyl ketone	ND		320	320	ug/m3			12/10/14 22:52	15
Methyl methacrylate	ND		320		ug/m3			12/10/14 22:52	15
Methyl tert-butyl ether	ND		110	110	ug/m3			12/10/14 22:52	15
Methylene Chloride	ND		270	270	ug/m3			12/10/14 22:52	15
Naphthalene	ND		410	410	ug/m3			12/10/14 22:52	15
n-Butane	9300		190	190	ug/m3			12/10/14 22:52	15
n-Butylbenzene	ND		170		ug/m3			12/10/14 22:52	15
n-Heptane	1600		130		ug/m3			12/10/14 22:52	15
n-Hexane	4100		110		ug/m3			12/10/14 22:52	15
n-Propylbenzene	ND		150		ug/m3			12/10/14 22:52	15
sec-Butylbenzene	ND		170		ug/m3			12/10/14 22:52	15
Styrene	ND		130		ug/m3			12/10/14 22:52	15
styrene tert-Butyl alcohol	ND		2400		ug/m3			12/10/14 22:52	15
tert-Butylbenzene	ND		170		ug/m3			12/10/14 22:52	15
Tetrachloroethene	ND		210		ug/m3			12/10/14 22:52	15
	ND		2300		ug/m3			12/10/14 22:52	15
Tetrahydrofuran	ND		120		ug/m3			12/10/14 22:52	15
Toluene	ND		120		ug/m3			12/10/14 22:52	15
trans-1,2-Dichloroethene	ND		140		ug/m3			12/10/14 22:52	15

Client: Town of Dewitt

Project/Site: Town of Dewitt

TestAmerica Job ID: 200-25814-1

Lab Sample ID: 200-25814-3

Matrix: Air

Client Sample ID: V-12 Date Collected: 12/05/14 13:58

Date Received: 12/09/14 08:00

Sample Container: Summa Canister 6L.

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		170	170	ug/m3			12/10/14 22:52	156
Trichlorofluoromethane	960		180	180	ug/m3			12/10/14 22:52	156
Vinyl chloride	91		80	80	ug/m3			12/10/14 22:52	156
Xylene (total)	ND		140	140	ug/m3			12/10/14 22:52	156
Xylene, o-	ND		140	140	ug/m3			12/10/14 22:52	156

5

6

7

3

10

162

TE

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Z

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
n	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

2

Air - GC/MS VOA

Analysis Batch: 81882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-25814-1	V-10	Total/NA	Air	TO-15	
200-25814-2	V-11	Total/NA	Air	TO-15	
200-25814-3	V-12	Total/NA	Air	TO-15	
LCS 200-81882/3	Lab Control Sample	Total/NA	Air	TO-15	
MB 200-81882/4	Method Blank	Total/NA	Air	TO-15	

4

5

5

8

11

12

l K

Client: Town of Dewitt Project/Site: Town of Dewitt

Analysis Batch: 81882

Matrix: Air

Lab Sample ID: MB 200-81882/4

TestAmerica Job ID: 200-25814-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Client Sample ID: Method Blank

Prep Type: Total/NA

		1

Analyzed	Dil Fac	
12/10/14 12:24	1	D
12/10/14 12:24	1	E9

		ŀ

	MR	MR							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,1,2,2-Tetrachloroethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,1,2-Trichloroethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,1-Dichloroethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,1-Dichloroethene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2,4-Trichlorobenzene	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
1,2,4-Trimethylbenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2-Dibromoethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2-Dichlorobenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2-Dichloroethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2-Dichloroethene, Total	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2-Dichloropropane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,2-Dichlorotetrafluoroethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,3,5-Trimethylbenzene	· ND		0,20	0,20	ppb v/v			12/10/14 12:24	1
1,3-Butadiene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,3-Dichlorobenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,4-Dichlorobenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
1,4-Dioxane	ND		5.0	5.0	ppb v/v			12/10/14 12:24	1
2,2,4-Trimethylpentane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
2-Chlorotoluene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
3-Chloropropene	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
4-Ethyltoluene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
4-isopropyltoluene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Acetone	ND		5.0	5.0	ppb v/v			12/10/14 12:24	1
Benzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Benzyl chloride	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Bromodichloromethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Bromoethene(Vinyl Bromide)	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Bromoform	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Bromomethane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Carbon disulfide	ND.		0.50	0,50	ppb v/v			12/10/14 12:24	1
Carbon tetrachloride	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Chlorobenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Chloroethane	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
Chloroform	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Chloromethane	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
cis-1,2-Dichloroethene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
cis-1,3-Dichloropropene	ND		0,20	0.20	ppb v/v			12/10/14 12:24	1
Cumene	ND		0.20	0,20	ppb v/v			12/10/14 12:24	1
Cyclohexane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Dibromochloromethane	ND		0.20		ppb v/v			12/10/14 12:24	1
Dichlorodifluoromethane	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
Ethylbenzene	ND		0.20		ppb v/v			12/10/14 12:24	1
Freon 22	ND		0.50		ppb v/v			12/10/14 12:24	1
Freon TF	ND		0.20		ppb v/v			12/10/14 12:24	1
Hexachlorobutadiene	ND		0.20		ppb v/v			12/10/14 12:24	1
Isopropyl alcohol	ND		5.0		ppb v/v			12/10/14 12:24	1
m,p-Xylene	ND		0.50		ppb v/v			12/10/14 12:24	1

Client: Town of Dewitt Project/Site: Town of Dewitt

2,2,4-Trimethylpentane

2-Chlorotoluene

Lab Sample ID: MB 200-81882/4

TestAmerica Job ID: 200-25814-1

Client Sample ID: Method Blank

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Matrix: Air Analysis Batch: 81882								Prep Type: 1	Total/NA
Allalysis Datell. 01002	МВ	MB							
Analyte	Result	Qualifler	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl Butyl Ketone (2-Hexanone)	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
Methyl Ethyl Ketone	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
methyl isobutyl ketone	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
Methyl methacrylate	ND	•	0.50	0.50	ppb v/v			12/10/14 12:24	1
Methyl tert-butyl ether	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Methylene Chloride	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
Naphthalene	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
n-Butane	ND		0.50	0.50	ppb v/v			12/10/14 12:24	1
n-Butylbenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
n-Heptane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
n-Hexane	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
n-Propylbenzene	ND		0.20	0,20	ppb v/v			12/10/14 12:24	1
sec-Butylbenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Styrene	ND		0.20		ppb v/v			12/10/14 12:24	1
tert-Butyl alcohol	ND		5.0	5.0	ppb v/v			12/10/14 12:24	1
tert-Butylbenzene	ND		0.20	0.20	ppb v/v			12/10/14 12:24	1
Tetrachloroethene	ND		0.20		ppb v/v			12/10/14 12:24	1
Tetrahydrofuran	ND		5.0		ppb v/v			12/10/14 12:24	1
Toluene	ND		0,20		ppb v/v			12/10/14 12:24	1
trans-1,2-Dichloroethene	ND		0.20		ppb v/v			12/10/14 12:24	1
trans-1,3-Dichloropropene	ND		0.20		ppb v/v			12/10/14 12:24	1
Trichloroethene	ND		0.20		ppb v/v			12/10/14 12:24	1
Trichlorofluoromethane	ND		0.20		ppb v/v			12/10/14 12:24	1
Vinyl chloride	ND		0.20		ppb v/v			12/10/14 12:24	1
Xylene (total)	ND		0,20		ppb v/v			12/10/14 12:24	1
Xylene, o-	ND		0.20		ppb v/v			12/10/14 12:24	1
7,1,10,110,10	MB	мв			PP				
Analyte	Result		RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.1	1.1	ug/m3			12/10/14 12:24	1
1,1,2,2-Tetrachloroethane	ND		1.4	1.4				12/10/14 12:24	1
1,1,2-Trichloroethane	ND		1.1	1,1	ug/m3			12/10/14 12:24	1
1,1-Dichloroethane	ND		0.81	0.81				12/10/14 12:24	1
1,1-Dichloroethene	ND		0.79	0.79	ug/m3			12/10/14 12:24	1
1,2,4-Trichlorobenzene	ND		3.7	3.7	-			12/10/14 12:24	1
1,2,4-Trimethylbenzene	ND		0.98		ug/m3			12/10/14 12:24	1
1,2-Dibromoethane	ND		1.5		ug/m3			12/10/14 12:24	1
1,2-Dichlorobenzene	ND		1.2		ug/m3			12/10/14 12:24	1
1,2-Dichloroethane	ND		0.81		ug/m3			12/10/14 12:24	1
1,2-Dichloroethene, Total	ND		0.79		ug/m3			12/10/14 12:24	1
1,2-Dichloropropane	ND		0.92		ug/m3			12/10/14 12:24	1
1,2-Dichlorotetrafluoroethane	ND.		1.4		ug/m3			12/10/14 12:24	1
1,3,5-Trimethylbenzene	ND		0.98		ug/m3			12/10/14 12:24	1
1,3-Butadiene	ND		0.44		ug/m3			12/10/14 12:24	1
1,3-Dichlorobenzene	ND		1.2		ug/m3			12/10/14 12:24	1
1,4-Dichlorobenzene	ND		1,2		ug/m3			12/10/14 12:24	1
1,4-Dioxane	ND		18		ug/m3			12/10/14 12:24	1
i, cionalio	.40		,,,	,,,					·

TestAmerica Burlington

12/10/14 12:24

12/10/14 12:24

0.93

1.0

0.93 ug/m3

1.0 ug/m3

ND

ND

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Ľ

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-81882/4

Matrix: Air

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 81882	Anal	vsis	Batch:	81882
-----------------------	------	------	--------	-------

Analysis Batch: 81882	MB	MB							
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
3-Chloropropene	ND		1.6	1.6	ug/m3			12/10/14 12:24	1
4-Ethyltoluene	ND		0.98	0.98	ug/m3			12/10/14 12:24	1
4-isopropyltoluene	ND		1.1	1,1	ug/m3			12/10/14 12:24	1
Acetone	ND		12		ug/m3			12/10/14 12:24	1
Benzene	ND		0.64		ug/m3			12/10/14 12:24	1
Benzyl chloride	ND		1.0	1.0	ug/m3			12/10/14 12:24	1
Bromodichloromethane	ND		1.3		ug/m3			12/10/14 12:24	1
Bromoethene(Vinyl Bromide)	ND		0.87		ug/m3			12/10/14 12:24	1
Bromoform	ND		2.1		ug/m3			12/10/14 12:24	1
Bromomethane	ND		0.78	0.78	ug/m3			12/10/14 12:24	1
Carbon disulfide	ND		1.6	1.6	ug/m3			12/10/14 12:24	1
Carbon tetrachloride	ND		1.3	1.3	ug/m3			12/10/14 12:24	1
Chlorobenzene	ND		0,92	0.92	ug/m3			12/10/14 12:24	1
Chloroethane	ND		1,3	1.3	ug/m3			12/10/14 12:24	1
Chloroform	ND		0.98	0.98	ug/m3			12/10/14 12:24	1
Chloromethane	ND		1.0	1.0	ug/m3			12/10/14 12:24	1
	ND		0.79		-			12/10/14 12:24	1
cis-1,2-Dichloroethene				0.79	ug/m3				
cis-1,3-Dichloropropene	ND		0.91	0.91	ug/m3			12/10/14 12:24	1
Cumene	ND		0.98	0.98	ug/m3			12/10/14 12:24	. 1
Cyclohexane	ND		0.69	0.69	ug/m3			12/10/14 12:24	1
Dibromochloromethane	ND		1.7	1.7	ug/m3			12/10/14 12:24	1
Dichlorodifluoromethane	ND		2.5	2.5	ug/m3			12/10/14 12:24	1
Ethylbenzene	ND		0.87	0.87	-			12/10/14 12:24	1
Freon 22	ND		1.8	1.8	ug/m3			12/10/14 12:24	1
Freon TF	ND		1.5	1.5	ug/m3			12/10/14 12:24	1
Hexachlorobutadiene	ND		2.1	2.1	ug/m3			12/10/14 12:24	1
Isopropyl alcohol	ND		12	12	ug/m3			12/10/14 12:24	1
m,p-Xylene	ND		2.2	2.2	ug/m3			12/10/14 12:24	1
Methyl Butyl Ketone (2-Hexanone)	ND		2.0	2.0	ug/m3			12/10/14 12:24	1
Methyl Ethyl Ketone	ND		1.5	1.5	ug/m3			12/10/14 12:24	1
methyl isobutyl ketone	ND		2.0	2.0	ug/m3			12/10/14 12:24	1
Methyl methacrylate	ND		2.0	2.0	ug/m3			12/10/14 12:24	1
Methyl tert-butyl ether	ND		0.72	0.72	ug/m3			12/10/14 12:24	1
Methylene Chloride	ND		1.7	1.7	ug/m3			12/10/14 12:24	1
Naphthalene	ND		2.6	2.6	ug/m3		•	12/10/14 12:24	1
n-Butane	ND		1.2	1.2	ug/m3			12/10/14 12:24	1
n-Butylbenzene	ND		1.1	1.1	ug/m3			12/10/14 12:24	1
n-Heptane	ND		0.82	0.82	ug/m3			12/10/14 12:24	1
n-Hexane	ND		0.70	0.70	ug/m3			12/10/14 12:24	1
n-Propylbenzene	ND		0.98	0.98	ug/m3			12/10/14 12:24	1
sec-Butylbenzene	ND		1.1	1.1	ug/m3		. ,	12/10/14 12:24	1
Styrene	ND		0.85	0.85	ug/m3			12/10/14 12:24	1
tert-Butyl alcohol	ND		15	15	ug/m3			12/10/14 12:24	1
tert-Butylbenzene	ND		1.1	1.1	ug/m3			12/10/14 12:24	1
Tetrachloroethene	ND		1.4	1.4	ug/m3			12/10/14 12:24	1
Tetrahydrofuran	ND		15	15	ug/m3			12/10/14 12:24	1
Toluene	ND		0.75	0.75	ug/m3			12/10/14 12:24	1
trans-1,2-Dichloroethene	ND		0.79		ug/m3			12/10/14 12:24	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

B

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 81882

Matrix: Air

Lab Sample ID: MB 200-81882/4

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.91	0.91	ug/m3			12/10/14 12:24	1
Trichloroethene	ND		1.1	1.1	ug/m3			12/10/14 12:24	1
Trichlorofluoromethane	ND		1.1	1.1	ug/m3			12/10/14 12:24	1
Vinyl chloride	ND		0.51	0.51	ug/m3			12/10/14 12:24	1
Xylene (total)	ND		0.87	0.87	ug/m3			12/10/14 12:24	1
Xylene, o-	ND		0.87	0.87	ug/m3			12/10/14 12:24	1
-									

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Air
Analysis Batch: 81882

Lab Sample ID: LCS 200-81882/3

Analysis Batch: 81882	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	10.0	10.5		ppb v/v		105	70 - 130	
1,1,2,2-Tetrachloroethane	10.0	9.57		ppb v/v		96	70 - 130	
1,1,2-Trichloroethane	10.0	9.55		ppb v/v		95	70 - 130	
1,1-Dichloroethane	10.0	10.0		ppb v/v		100	70 - 130	
1,1-Dichloroethene	10.0	9.40		ppb v/v		94	70 - 130	
1,2,4-Trichlorobenzene	10.0	9.08		ppb v/v		91	70 - 130	
1,2,4-Trimethylbenzene	10.0	10.1		ppb v/v		101	70 - 130	
1,2-Dibromoethane	10.0	9.86		ppb v/v		99	70 - 130	
1,2-Dichlorobenzene	10.0	10.0		ppb v/v		100	70 _ 130	
1,2-Dichloroethane	10.0	10.8		ppb v/v		108	70 - 130	
1,2-Dichloropropane	10.0	9.31		ppb v/v		93	70 - 130	
1,2-Dichlorotetrafluoroethane	10.0	11.7		ppb v/v		117	70 - 130	
1,3,5-Trimethylbenzene	10.0	10.1		ppb v/v		101	70 - 130	
1,3-Butadiene	10.0	9.34		ppb v/v		93	70 - 130	
1,3-Dichlorobenzene	10.0	9.91		ppb v/v		99	70 - 130	
1,4-Dichlorobenzene	10.0	9.96		ppb v/v		100	70 - 130	
1,4-Dioxane	10.0	9.05		ppb v/v		91	70 _ 130	
2,2,4-Trimethylpentane	10.0	9.37		ppb v/v		94	70 - 130	
2-Chlorotoluene	10.0	9.76		ppb v/v		98	70 - 130	
3-Chloropropene	10.0	8.47		ppb v/v		85	70 - 130	
4-Ethyltoluene	10.0	10.1		ppb v/v		101	70 - 130	
4-isopropyltoluene	10.0	10.0		ppb v/v		100	70 - 130	
Acetone	10.0	9.73		ppb v/v		97	70 - 130	
Benzene	10.0	9.27		ppb v/v		93	70 - 130	
Benzyl chloride	10.0	7.33		ppb v/v		73	70 - 130	
Bromodichloromethane	10.0	10.4		ppb v/v		104	70 _ 130	
Bromoethene(Vinyl Bromide)	10.0	9.31		ppb v/v		93	70 - 130	
Bromoform	10.0	9.68		ppb v/v		97	70 _ 130	
Bromomethane	10.0	9.62		ppb v/v		96	70 - 130	
Carbon disulfide	10.0	10.2		ppb v/v		102	70 - 130	
Carbon tetrachloride	10.0	10.8		ppb v/v		108	70 _ 130	
Chlorobenzene	10.0	9.58		ppb v/v		96	70 - 130	
Chloroethane	10.0	9.14		ppb v/v		91	70 - 130	
Chloroform	10.0	10.2		ppb v/v		102	70 _ 130	
Chloromethane	10.0	9.26		ppb v/v		93	70 _ 130	
cis-1,2-Dichloroethene	10.0	9.42		ppb v/v		94	70 - 130	

TestAmerica Job ID: 200-25814-1

Client: Town of Dewitt Project/Site: Town of Dewitt

Trichlorofluoromethane

Vinyl chloride

Xylene, o-

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-81882/3 Client Sample ID: Lab Control Sample Matrix: Air Prep Type: Total/NA Analysis Batch: 81882 Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits cis-1,3-Dichloropropene 10,0 10.2 ppb v/v 102 70 - 130 Cumene 10.0 9.71 ppb v/v 97 70 - 130 70 - 130 10.0 9.85 ppb v/v 99 Cyclohexane Dibromochloromethane 10.0 9.93 ppb v/v 99 70 - 130 Dichlorodifluoromethane 10.0 11.2 ppb v/v 112 70 - 130 9.80 ppb v/v 98 70 - 130 10.0 Ethylbenzene 70 - 130 Freon 22 10.0 11.1 ppb v/v 111 10,0 9.77 ppb v/v 98 70 - 130 Freon TF ppb v/v 10.0 8.95 90 70 - 130 Hexachlorobutadiene 70 _ 130 87 8.74 ppb v/v Isopropyl alcohol 10.0 70 - 130 m,p-Xylene 20.0 19.0 ppb v/v 95 70 - 130 10.0 9.61 ppb v/v Methyl Butyl Ketone (2-Hexanone) 87 70 _ 130 Methyl Ethyl Ketone 10.0 8.68 ppb v/v methyl isobutyl ketone 10.0 9.79 ppb v/v 98 70 - 130 70 - 130 10.0 9.59 ppb v/v 96 Methyl methacrylate 70 - 130 10.2 ppb v/v 102 Methyl tert-butyl ether 10.0 10.0 9,68 ppb v/v 97 70 _ 130 Methylene Chloride 10.0 9.11 ppb v/v 91 70 - 130 Naphthalene 10.0 9.58 96 70 - 130 ppb v/v n-Butane 103 70 - 130 10.0 10.2 ppb v/v n-Butylbenzene 10.0 9.20 ppb v/v 92 70 - 130 n-Heptane 9.69 97 70 _ 130 10.0 ppb v/v n-Hexane ppb v/v 98 70 _ 130 9.83 n-Propylbenzene 10.0 10.0 9.94 ppb v/v 99 70 - 130 sec-Butylbenzene 70 - 130 10.0 9.90 ppb v/v Styrene ppb v/v 98 70 _ 130 9.78 10.0 tert-Butyl alcohol 70 - 130 101 10.0 10.1 ppb v/v tert-Butylbenzene 98 70 - 130 10.0 9.78 ppb v/v Tetrachloroethene 9.29 ppb v/v 93 70 - 130 Tetrahydrofuran 10.0 70 _ 130 95 Toluene 10.0 9.53 ppb v/v trans-1 2-Dichlomethene 10.0 10.5 ppb v/v 105 70 - 130 102 70 - 130 trans-1,3-Dichloropropene 10.0 10.2 ppb v/v 70 - 130 10.0 9.96 ppb v/v 100 Trichloroethene

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	55	57.2		ug/m3		105	70 - 130	
1,1,2,2-Tetrachloroethane	69	65.7		ug/m3		96	70 - 130	
1,1,2-Trichloroethane	55	52,1		ug/m3		95	70 - 130	
1,1-Dichloroethane	40	40.5		ug/m3		100	70 - 130	
1,1-Dichloroethene	40	37.3		ug/m3		94	70 - 130	
1,2,4-Trichlorobenzene	74	67.4		ug/m3		91	70 _ 130	
1,2,4-Trimethylbenzene	49	49.8		ug/m3		101	70 - 130	
1,2-Dibromoethane	77	75.8		ug/m3		99	70 - 130	
1,2-Dichlorobenzene	60	60.3		ug/m3		100	70 - 130	

10.0

10.0

10.0

10.3

9.63

9.45

ppb v/v

ppb v/v

ppb v/v

TestAmerica Burlington

103

96

95

70 - 130

70 - 130

70 - 130

TestAmerica Job ID: 200-25814-1

Client: Town of Dewitt Project/Site: Town of Dewitt

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Client	Sample	ID:	Lab	Contro	Sample
			Pren	Type:	Total/NA

Lab Sample ID: LCS 200-81882/3 Matrix: Air Analysis Batch: 81882 LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits 1,2-Dichloroethane 40 43.8 ug/m3 108 70 - 130 1,2-Dichloropropane 46 43.0 ug/m3 93 70 - 130 1,2-Dichlorotetrafluoroethane 70 82.0 70 - 130 ug/m3 117 1,3,5-Trimethylbenzene 49 49.5 ug/m3 101 70 _ 130 1 3-Butadiana 20.7 70 130

1,3-Butadiene	22	20.7	ug/m3	93	70 - 130	
1,3-Dichlorobenzene	60	59.6	ug/m3	99	70 - 130	
1,4-Dichlorobenzene	60	59.9	ug/m3	100	70 - 130	
1,4-Dioxane	36	32,6	ug/m3	91	70 - 130	
2,2,4-Trimethylpentane	47	43.8	ug/m3	94	70 _ 130	
2-Chlorotoluene	52	50.5	ug/m3	98	70 _ 130	
3-Chloropropene	31	26.5	ug/m3	85	70 - 130	
4-Ethyltoluene	49	49.8	ug/m3	101	70 - 130	
4-Isopropyltoluene	55	55.1	ug/m3	100	70 - 130	
Acetone	24	23.1	ug/m3	97	70 - 130	
Benzene	32	29.6	ug/m3	93	70 - 130	
Benzyl chloride	52	38.0	ug/m3	73	70 - 130	
Bromodichloromethane	67	69.6	ug/m3	104	70 - 130	
Bromoethene(Vinyl Bromide)	44	40.7	ug/m3	93	70 - 130	
Bromoform	100	100	ug/m3	97	70 - 130	
Bromomethane	39	37.4	ug/m3	96	70 - 130	
Carbon disulfide	31	31.9	ug/m3	102	70 - 130	
Carbon tetrachloride	63	68.0	ug/m3	108	70 - 130	
Chlorobenzene	46	44.1	ug/m3	96	70 - 130	
Chloroethane	26	24.1	ug/m3	91	70 - 130	
Chloroform	49	49,6	ug/m3	102	70 - 130	
Chloromethane	21	19,1	ug/m3	93	70 - 130	
cis-1,2-Dichloroethene	40	37,3	ug/m3	94	70 - 130	
cis-1,3-Dichloropropene	45	46.1	ug/m3	102	70 - 130	
Cumene	49	47.7	ug/m3	97	70 - 130	
Cyclohexane	34	33.9	ug/m3	99	70 - 130	
Dibromochloromethane	85	84.6	ug/m3	99	70 _ 130	
Dichlorodifluoromethane	49	55.3	ug/m3	112	70 - 130	
Ethylbenzene	43	42.6	ug/m3	98	70 - 130	
Freon 22	35	39.1	ug/m3	111	70 - 130	
Freon TF	77	74.9	ug/m3	98	70 _ 130	
Hexachlorobutadiene	110	95.5	ug/m3	90	70 - 130	
Isopropyl alcohol	25	21.5	ug/m3	87	70 - 130	. ,
m,p-Xylene	87	82.5	ug/m3	95	70 - 130	
Methyl Butyl Ketone	41	39.4	ug/m3	96	70 _ 130	
(2-Hexanone)						
Methyl Ethyl Ketone	29	25.6	ug/m3	87	70 - 130	
methyl isobutyl ketone	41	40.1	ug/m3	98	70 _ 130	
Methyl methacrylate	41	39.3	ug/m3	96	70 _ 130	
Methyl tert-butyl ether	36	36.9	ug/m3	102	70 - 130	
Methylene Chloride	35	33.6	ug/m3	97	70 - 130	
Naphthalene	52	47.8	ug/m3	91	70 - 130	
n-Butane	24	22.8	ug/m3	96	70 _ 130	
n-Butylbenzene	55	56.3	ug/m3	103	70 _ 130	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-81882/3

Matrix: Air

Prep Type: Total/NA

Analysis Batch: 81882							
•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
n-Heptane	41	37.7		ug/m3		92	70 - 130
n-Hexane	35	34.2		ug/m3	-	97	70 - 130
n-Propylbenzene	49	48.3		ug/m3		98	70 - 130
sec-Butylbenzene	55	54.6		ug/m3		99	70 _ 130
Styrene	43	42.2		ug/m3		99	70 - 130
tert-Butyl alcohol	30	29.7		ug/m3		98	70 - 130
tert-Butylbenzene	55	55.2		ug/m3		101	70 - 130
Tetrachloroethene	68	66.3		ug/m3		98	70 - 130
Tetrahydrofuran	29	27.4		ug/m3		93	70 _ 130
Toluene	38	35.9		ug/m3		95	70 - 130
trans-1,2-Dichloroethene	40	41.5		ug/m3		105	70 - 130
trans-1,3-Dichloropropene	45	46.2		ug/m3		102	70 - 130
Trichloroethene	54	53.5		ug/m3		100	70 - 130
Trichlorofluoromethane	56	58.0		ug/m3		103	70 - 130
Vinyl chloride	26	24.6		ug/m3		96	70 - 130
Xviene. o-	43	41.1		ua/m3		95	70 _ 130

10

11

TestAmerica Burlington

30 Community Drive

Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Man	ager R	WAY.	VANOS	otto	Samples Col	lected By:						of		coc	·c		
Company: Town of Dewitt	Phone:		1.								_		0.		000	3		
Address: 5400 Butternut Dr.	Email:											-		10	. 1			· _
City/State/Zip EAST SYTALDE NY S	457												=					
Phone: 315-446-9250 FAX:	Site Contact												di					
	TA Contact:	Im	KNO	Imeyer		ì							88	1,1				
Project Name: Dewith LF		Analysis	Turnarou	ind Time									otes				-	-
Sile:	S	tandard (Sp	pecify)										5				_	
PO# +		Rush (Spec											specify in notes section)	eta". 2				
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15	MA-APH	EPA 3C	EPA 25C	ASTM D-1946	Other (Please sp	Sample Type	Indoor Air	Ambient Air	Soil Ges	Landfill Gas
11-10	12-5-14	1350	_	-29.9	1,2	_	2505	V										
1/-11	12-5	1355		-30,0				0	-				-					-
0 11	12-5-14				1-1	-	3274	13					_					
V-17	12-5-14	1358		-30.1	1-1	-	5061	X										
		40	11											121				
		14	-															
		1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	-5	-14.													_
				Temperature	(Fahrenheit)												
		Interior		Ambient										****** 1811		11111		
	Start								11									
	Stop		,					1	11		HHH							
				Pressure (in	ches of Hg)			-	- 1									
		Interior		Ambient				1	2	00-25	5814	Chain	of Cu	stody				
	Start							1									_	
	Stop		-					1									•	
Special Instructions/QC Requirements & Comment	5:																	,
Samples Shipped by: Samples Relinquished by:	Date/Time:	3-14	18:	w	ton		19/14	08	00			TA	Bu	(R				-
•	Date/Time:				Received													
Relinquished by:	Date/Time:				Received	by:												

BILL 3rd PARTY

ALBANY NY 12205 US TO SAMPLE RECEIVING

TESTAMERICA - BURLINGTON 30 COMMUNITY DRIVE, SUITE 11

BURLINGTON VT 05403
(802) 660-1990
REF; DEWITT LF

(US)

TRK# 4108 5809 9781

05403

9622 0417 \$ (090 907 2880) 2 00 4108 5809 9781

Login Sample Receipt Checklist

Client: Town of Dewitt

Job Number: 200-25814-1

Login Number: 25814

List Source: TestAmerica Burlington

List Number: 1

Creator: Goodrich, Kenneth L

Greator. Goodrich, Neimeth L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	961502, 961501
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	AMBIENT
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: Town of Dewitt Job Number: 200-25814-1

Login Number: 25814 List Source: TestAmerica Burlington

List Number: 2

Creator: Goodrich, Kenneth L

Question Answer Comment

Radioactivity either was not measured or, if measured, is at or below background

The cooler's custody seal, if present, is intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the sample IDs on the containers and

the COC.

Samples are received within Holding Time.

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.

If necessary, staff have been informed of any short hold time or quick TAT needs

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Sampling Company provided.

Samples received within 48 hours of sampling.

Samples requiring field filtration have been filtered in the field.

Chlorine Residual checked.

Ш

-

ú

8

9

10

Ú.

12

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Connecticut	State Program	1	PH-0751	09-30-15	
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15	
Florida	NELAP	4	E87467	06-30-15	
L-A-B	DoD ELAP		L2336	02-26-17	
Maine	State Program	1	VT00008	04-17-15	
Minnesota	NELAP	5	050-999-436	12-31-15	
New Hampshire	NELAP	1	2006	12-18-14 *	
New Jersey	NELAP	2	VT972	06-30-15	
New York	NELAP	2	10391	03-31-15	
Pennsylvania	NELAP	3	68-00489	04-30-15	
Rhode Island	State Program	1	LAO00298	12-30-14 *	1,
US Fish & Wildlife	Federal		LE-058448-0	02-28-15	
USDA	Federal		P330-11-00093	10-28-16	
Vermont	State Program	1	VT-4000	12-31-14 *	
Virginia	NELAP	3	460209	12-14-14 *	

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-15

3

5

6

M

9

10

Œ.

12

^{*} Certification renewal pending - certification considered valid.

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

2

Gloesery

Abbreviation	These commonly used abbreviations may or may not be present in this report.
D	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Detection Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

2

Client Sample ID: V-10

Lab Sample ID: 200-25814-1

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	290		33	33	ppb v/v	164	_	TO-15	Total/NA
Cyclohexane	260		33	33	ppb v/v	164		TO-15	Total/NA
Dichlorodifluoromethane	110		82	82	ppb v/v	164		TO-15	Total/NA
Ethylbenzene	92		33	33	ppb v/v	164		TO-15	Total/NA
Freon 22	2200		82	82	ppb v/v	164		TO-15	Total/NA
n-Butane	3800		82	82	ppb v/v	164		TO-15	Total/NA
n-Heptane	360		33	33	ppb v/v	164		TO-15	Total/NA
n-Hexane	960		33	33	ppb v/v	164		TO-15	Total/NA
Trichlorofluoromethane	95		33	33	ppb v/v	164		TO-15	Total/NA
Vinyl chloride	87		33	33	ppb v/v	164		TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	1400		150	150	ug/m3	164	_	TO-15	Total/NA
Cyclohexane	880		110	110	ug/m3	164		TO-15	Total/NA
Dichlorodifluoromethane	530		410	410	ug/m3	164		TO-15	Total/NA
Ethylbenzene	400		140	140	ug/m3	164		TO-15	Total/NA
Freon 22	7900		290	290	ug/m3	164		TO-15	Total/NA
n-Butane	9100		190	190	ug/m3	164		TO-15	Total/NA
n-Heptane	1500		130	130	ug/m3	164		TO-15	Total/NA
n-Hexane	3400		120	120	ug/m3	164		TO-15	Total/NA
Trichlorofluoromethane	540		180	180	ug/m3	164		TO-15	Total/NA
Vinyl chloride	220		84	84	ug/m3	164		TO-15	Total/NA

Client Sample ID: V-11

Lab Sample ID: 200-25814-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichlorotetrafluoroethane	38		35	35	ppb v/v	175	_	TO-15	Total/NA
1,3,5-Trimethylbenzene	36		35	35	ppb v/v	175		TO-15	Total/NA
2,2,4-Trimethylpentane	370		35	35	ppb v/v	175		TO-15	Total/NA
Benzene	44		35	35	ppb v/v	175		TO-15	Total/NA
Cyclohexane	270		35	35	ppb v/v	175		TO-15	Total/NA
Ethylbenzene	160		35	35	ppb v/v	175		TO-15	Total/NA
Freon 22	1700		88	88	ppb v/v	175		TO-15	Total/NA
n-Butane	4000		88	88	ppb v/v	175		TO-15	Total/NA
n-Heptane	420		35	35	ppb v/v	175		TO-15	Total/NA
n-Hexane	1200		35	35	ppb v/v	175		TO-15	Total/NA
Trichlorofluoromethane	87		35	35	ppb v/v	175		TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichlorotetrafluoroethane	270		240	240	ug/m3	175	_	TO-15	Total/NA
1,3,5-Trimethylbenzene	180		170	170	ug/m3	175		TO-15	Total/NA
2,2,4-Trimethylpentane	1700		160	160	ug/m3	175		TO-15	Total/NA
Benzene	140		110	110	ug/m3	175		TO-15	Total/NA
Cyclohexane	940		120	120	ug/m3	175		TO-15	Total/NA
Ethylbenzene	680		150	150	ug/m3	175		TO-15	Total/NA
Freon 22	6000		310	310	ug/m3	175		TO-15	Total/NA
n-Butane	9600		210	210	ug/m3	175		TO-15	Total/NA
n-Heptane	1700		140	140	ug/m3	175		TO-15	Total/NA
n-Hexane	4200		120	120	ug/m3	175		TO-15	Total/NA
Trichlorofluoromethane	490		200	200	ug/m3	175		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

2

Client Sample ID: V-12

Lab Sample ID: 200-25814-3

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	350		31	31	ppb v/v	156	_ ;	TO-15	Total/NA
Benzene	47		31	31	ppb v/v	156	•	TO-15	Total/NA
Chloroethane	96		78	78	ppb v/v	156	1	TO-15	Total/NA
Cyclohexane	350		31	31	ppb v/v	156	•	TO-15	Total/NA
Dichlorodifluoromethane	78		78	78	ppb v/v	156		TO-15	Total/NA
Ethylbenzene	67		31	31	ppb v/v	156	1	TO-15	Total/NA
Freon 22	2000		78	78	ppb v/v	156		TO-15	Total/NA
n-Butane	3900		78	78	ppb v/v	156		TO-15	Total/NA
n-Heptane	400		31	31	ppb v/v	156		TO-15	Total/NA
n-Hexane	1200		31	31	ppb v/v	156		TO-15	Total/NA
Trichlorofluoromethane	170		31	31	ppb v/v	156		TO-15	Total/NA
Vinyl chloride	36		31	31	ppb v/v	156	•	TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	1600		150	150	ug/m3	156	_ :	TO-15	Total/NA
Benzene	150		100	100	ug/m3	156		TO-15	Total/NA
Chloroethane	250		210	210	ug/m3	156	•	TO-15	Total/NA
Cyclohexane	1200		110	110	ug/m3	156	•	TO-15	Total/NA
Dichlorodifluoromethane	380		390	390	ug/m3	156		TO-15	Total/NA
Ethylbenzene	290		140	140	ug/m3	156	1	TO-15	Total/NA
Freon 22	7000		280	280	ug/m3	156		TO-15	Total/NA
n-Butane	9300		190	190	ug/m3	156	•	TO-15	Total/NA
n-Heptane	1600		130	130	ug/m3	156	1	TO-15	Total/NA
n-Hexane	4100		110	110	ug/m3	156	1	TO-15	Total/NA
Trichlorofluoromethane	960		180	180	ug/m3	156		TO-15	Total/NA
Vinyl chloride	91		80	80	ug/m3	156	1	TO-15	Total/NA

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

2

Air - GC/MS VOA

Analysis Batch: 81882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-25814-1	V-10	Total/NA	Air	TO-15	
200-25814-2	V-11	Total/NA	Air	TO-15	
200-25814-3	V-12	Total/NA	Air	TO-15	
LCS 200-81882/3	Lab Control Sample	Total/NA	Air	TO-15	
MB 200-81882/4	Method Blank	Total/NA	Air	TO-15	

971

15

7

8

9 4 h

10

12

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Connecticut	State Program	1	PH-0751	09-30-15	
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15	
Florida	NELAP	4	E87467	06-30-15	
L-A-B	DoD ELAP		L2336	02-26-17	
Maine	State Program	1	VT00008	04-17-15	
Minnesota	NELAP	5	050-999-436	12-31-15	
New Hampshire	NELAP	1	2006	12-18-14 *	
New Jersey	NELAP	2	VT972	06-30-15	
New York	NELAP	2	10391	03-31-15	
Pennsylvania	NELAP	3	68-00489	04-30-15	
Rhode Island	State Program	1	LAO00298	12-30-14 *	
US Fish & Wildlife	Federal		LE-058448-0	02-28-15	
USDA	Federal		P330-11-00093	10-28-16	
Vermont	State Program	1	VT-4000	12-31-14 *	
Virginia	NELAP	3	460209	12-14-14 *	

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-15

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-25814-1

 Method Description
 Protocol

 Volatile Organic Compounds in Ambient Air
 EPA

otocol Laboratory
TAL BUR

Protocol References:

TO-15

EPA = US Environmental Protection Agency

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

13

73

8

10

12