Town of DeWitt Landfill Annual Engineer's Report

DeWitt, New York

www.MillerEngineers.com

Solutions@MillerEngineers.com | 315.682.0028

ENGINEERING YOU CAN BUILD ON

ENGINEERING | ENVIRONMENTAL | CAPITAL IMPROVEMENT | CONSTRUCTION

2015 Annual Post-Closure Monitoring Report Town of Dewitt Landfill Fisher Road East Syracuse, NY Onondaga County, New York

Prepared for Town of Dewitt

RECEIVED NYS DEC APR 14 2016

SPILL PREVENTION & RESPONSE
REGION 7 - SYRACUSE

By Miller Engineers Manlius, NY March 2016

2015 Annual Post-Closure Monitoring Report Town of Dewitt Landfill

Conte	nts
1. Inti	roduction1
2. Bac	ckground1
3. Lar	ndfill Reconnaissance1
3.1	Final Cover and Vegetation
3.2	Landfill Gas System
3.3	Storm-water Management and Drainage2
3.4	Access Road and Fencing2
4. Pos	st-Closure sampling3
4.1	Surface Water Sampling
4.2	Groundwater Sampling4
4.3	Gas Vent Sampling4
5. Co	nclusion5
6. Re	commendations5
Figures	s Figure 1. Site Map
	Table 1a. Surface Water Sampling Results – SW-1 Table 1b. Surface Water Sampling Results – SW-2 Table 1c. Surface Water Sampling Results – SW-3 Table 2a. Groundwater Sampling Results – Shallow Monitoring Wells Table 2a. Groundwater Sampling Results – Deep Monitoring Wells Table 3. Gas Vent Sampling Results
Append	dices
	A Photographic Log B Laboratory Reports

1. INTRODUCTION

Miller Engineers has been retained by the Town of Dewitt to observe, assist and document post-closure monitoring activities at the Town of Dewitt Landfill in East Syracuse, New York. This report summarizes post-closure monitoring activities conducted in 2015 and provides the laboratory results of surface water, groundwater and landfill gas samples collected during the year.

2. BACKGROUND

The former Town of Dewitt Landfill is located between Butternut Drive and Burdick Street in East Syracuse, New York and is approximately 57 acres in size. Access to the site is from Fisher Road and is limited by a chain link fence and a locked gate. The site is surrounded by light industrial properties to the north and west and residential properties to the east. The Erie Canal, to the south, has been developed as a recreational area with multi-use trail, boating access and a picnic area.

The site is an inactive municipal landfill that previously accepted residential and industrial waste. The landfill was closed by the Town of Dewitt under the New York State Department of Environmental Conservation (NYSEC) state Superfund Program (site code 734012). Investigation and remediation efforts included a Remedial Investigation/Feasibility Study in 1992, an Interim Remedial Measure (IRM) completed in 1994 (Part 360 landfill cap) and a Record of Decision (ROD) in March 1994. This site was included on the NYSDEC's list of Legacy sites based on the potential for soil vapor intrusion. Based upon additional evaluation by the NYSDOH, the site was removed from the list in April 2009. Currently the site is being monitored under an Operation, Maintenance and Monitoring Plan (OMMP).

3. LANDFILL RECONNAISSANCE

Site visits were performed during June, July, September and December 2015 to assess general site conditions at the landfill and to collect environmental samples. Landfill reconnaissance included observations and assessments of the final cover and vegetation, landfill gas venting system, storm water management system and access road and perimeter fence conditions. A summary of the observations is provided below. Appendix A provides a photographic log of typical conditions observed at the landfill during 2015.

3.1 Final Cover and Vegetation

The July site visit revealed recently mowed healthy green growth of tall grasses and wildflowers across the landfill. Grass cover appeared uniform and healthy over the entire landfill including all side slopes and the top. A few taller plants were observed near the gas vents, where

previous mowing could not reach. Based on these observations, it appears that the cover layer and cap material are in good repair and that no deep rooted plants are compromising the low-permeability cap layer or allowing precipitation to infiltrate the waste layer. There were no observations of stressed vegetation, bare spots or erosion gullies on the open areas.

3.2 Landfill Gas System

There are a total of 24 gas vents that comprise the passive gas venting system at the landfill. All gas vents were observed to be in good repair and operable during the July 2015 visit. All vent screens were free of debris and blockages and appeared to be operating as designed. There were two incidences of ponded water and slightly stressed vegetation immediately adjacent to two gas vents on the top of the landfill. These occurrences are likely attributable to recent heavy rains and slight subsidence around the gas vent due to landfill waste decomposition.

Previous monitoring reports indicate that the most prolific gas producing vents are located along the east-west trending ridge at the top of the landfill (see Figure 1). Qualitative observations during the July site visit confirmed that vents along the ridge (V-3, V-9, V-10, V-11, V-12, and V-18) produce the most gas. Gas flow measurements in these vents were made during the July visit and are discussed in Section 4.

3.3 Storm-water Management and Drainage

A series of radial drainage ditches lined with rip-rap overlying perforated drain pipe are spaced around the landfill to facilitate storm water run-off and to minimize ponding and infiltration into the waste mass. During each of the 2015 site visits the ditches were observed to be in good repair with no signs of erosion, fine sediment accumulation or ponding, however, the growth of small trees and tall plants within the diches may compromise drainage efficiency and threaten the integrity of the cap if allowed to grow and the roots to spread. At this time the drainage system appears to be functioning as designed.

3.4 Access Road and Fencing

A crushed stone access road surrounds the landfill and is located on the lower side slope. Vehicle traffic accesses the road through a chain link fence gate located on the north side of the landfill at the southerly-most portion of Fisher Road (see Figure 1). In December, the access road was observed to be in good repair with no washouts and no impassable dips or ruts. Crushed stone had been recently installed on the outside of the Fisher Road landfill gate. The road was passable by two-wheel drive pickup truck during each of the 2015 site visits.

The landfill is bounded on the south by an eight-foot tall chain link fence that separates the Erie Canal toe-path from the landfill. The fence was observed to be in good repair with no

openings or breaks in the fence and no damaged posts or rails. A short section of fence is also located at the access gate at Fisher Road and spans the northern landfill boundary between a stand of mature trees and a wetland. The fence and gate are in good repair and adequately prevent automobile and truck traffic from unauthorized entry to the landfill. However, recreational ATV traffic and snowmobile tracks have been observed, at various times of the year, circumventing the fence and accessing the landfill.

In general, the access road and fencing appear to be functioning as designed.

4. POST-CLOSURE SAMPLING

The Operation, Maintenance and Monitoring Plan (OMMP) call for surface water, groundwater and landfill gas monitoring. The sections below describe locations, frequency, methods and results for surface water, groundwater and gas vent sampling. Figure 1 shows the sampling locations. Sample results were tabulated and compared to standards, criteria and guidance (SCG) appropriate for each sampling media and described below.

4.1 Surface Water Sampling

The OMMP requires that surface water samples be collected once every calendar quarter at three designated locations. Surface sample locations SW-1, SW-2 and SW-3 are located at the toe of the landfill slope and on the edge of the surrounding wetland. Surface water samples were collected on June 15, September 8 and December 15, 2015. Locations SW-2 and SW-3 were dry during the September sampling round and therefore no sample was collected.

Surface water samples were collected by digging a shallow hole in the wetland and allowing the hole to fill with water. Sample containers were filled by submerging them in the standing water. The samples were preserved on ice and shipped directly to the laboratory by the sampling crew. The samples were analyzed for volatile organic compounds (VOCs) using USEPA Method 624 and Priority Pollutant Metals.

Surface water sampling results we compared to SCGs defined in NYSDEC "Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998" and subsequent addendums.

The results of the surface water sampling events indicate that there was only one exceedance of SCGs in any of the surface water locations in any of the three sampling rounds. Chloroethane was detected above its SCG at location SW-1 during the September sampling event. All other VOCs and metals were non-detectable or below SCGs.

The full list of analytes and results for each surface water location and each sampling event are presented in Tables 1a, 1b and 1c. The full laboratory reports including field observations and quality assurance/quality control data are presented Appendix B.

4.2 Groundwater Sampling

The OMMP requires that groundwater samples be collected once every calendar year at 18 designated locations (see Figure 1). Groundwater samples were collected between July 27 and July 28, 2015 from each of the monitoring wells with the exception of MW-9D, which was dry. The samples were collected using dedicated bailers to purge each of the wells of three volumes of water prior to sample collection. After purging, field parameters including temperature, pH, turbidity, conductance, oxidation-reduction potential, and dissolved oxygen were measured and recorded on field data sheets. The field data sheets are presented in the laboratory report in Appendix B. The sample containers were filled using bailers and then preserved with ice and shipped directly to the laboratory by the sampling crew. The samples were analyzed for VOCs using USEPA Method 624 and Priority Pollutant Metals.

Groundwater sampling results we compared to SCGs defined in NYSEDC "TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998" and subsequent addendums.

The results of the groundwater sampling are presented in Table 2a and 2b. The results indicate exceedances of SCGs for various metals including antimony, arsenic and chromium in monitoring wells MW-1S, MW-3S, MW-9S, MW-9M and MW-11D. The VOC 1,2-dichloroethene exceeded SCGs at MW-4D. Trichloroethene exceeded SCGs at MW-4D. Also, vinyl chloride exceeded SCGs at MW-4S, MW-4D, MW-8S and MW-9M. No other VOCs exceeded SCGs at any other wells.

The full laboratory report including field observations and quality assurance/quality control data is presented Appendix B.

4.3 Gas Vent Sampling

The OMMP requires that specific gas vents be monitored once per year with the three vents exhibiting the most prolific gas flows being sampled for laboratory analysis. Gas vents V-3, V-9, V-10, V-11, V-12, and V-18 (see Figure 1) were monitored in the field on July 28, 2015 using a GEM 2000 air analyzer for methane, lower explosive limit, carbon dioxide, oxygen, hydrogen sulfide, carbon monoxide and exit velocity. The gas vent field measurements were recorded on field logs and are presented in Appendix B. The field results indicated that gas vents V-3, V-9 and V-10 exhibited the highest velocities and gas samples were collected from those locations for laboratory analysis of VOCs using EPA Method TO-15.

Soil vent gas sampling results we compared to SCGs established in NYSDEC "Division of Air Resources (DAR-1) Guidelines for the Control of Toxic Ambient Air Contaminants, 1997."

The results indicate the SCG for benzene was exceeded in sample V-3. The SCG for m, p-xylene was also exceeded in sample V-3. The SCG for hexane was exceeded in V-3 and V-10. In addition the SCG for vinyl chloride was exceeded in samples V-10.

The laboratory results of the gas vent sampling are presented in Table 3. The full laboratory report including field observations and quality assurance/quality control data is presented Appendix B.

5. CONCLUSION

Based on site visits and the analyses of surface water, groundwater and gas vent samples, the general condition of the landfill is good and all systems appear to be operating as designed. A few exceedances of environmental sampling SCGs have been noted, however these are comparable to previous year's results and, due to relatively low concentrations, isolated occurrences and lack of significant exposure risks, do not pose a significant threat to human health or the environment.

6. RECOMMENDATIONS

- Continue road maintenance and grass mowing as specified in the Operation, Maintenance and Monitoring Plan (OMMP).
- Continue surface water, groundwater and vent gas monitoring as specified in the OMMP.
- Hand cut and remove small trees and tall plants in drainage ditches where rip-rap stones prevent mower access.
- Fill topographic low spots near gas vents with top soil. Seed with wild grass mix to minimize rainwater accumulation and ponding.

FIGURES

TABLES

Table 1a. Surface Water Sampling Results SW-1

Town of Dewitt Landfill 2015

Analyte	Unit	SCG*	6/15/2015	9/8/2015	12/15/2015	Method Detection
Allalyte	Oilit	300	CW 1	CIA/ 1	SW-1	Limit
		0.003	SW-1	SW-1		
Antimony	mg/L	0.003	ND	ND	ND	0.0068
Arsenic	mg/L	0.025	ND	ND	ND	0.0056
Beryllium	mg/L		ND	ND	ND	0.0003
Cadmium	mg/L	0.005	ND	ND	ND	0.0005
Chromium	mg/L	0.05	ND	0.0011 J	ND	0.001
Copper	mg/L	0.2	ND	ND	ND	0.0016
Lead	mg/L	0.025	ND	ND	ND	0.003
Mercury	mg/L	0.0007	ND	ND	ND	0.00012
Nickel	mg/L	0.1	ND	ND	ND	0.0013
Selenium	mg/L	0.01	ND	ND	ND	0.0087
Silver	mg/L	0.05	ND	ND	ND	0.0017
Thallium	mg/L		ND	ND	ND	0.01
Zinc	mg/L	***	0.0033 J	0.0055 J B	0.0020 J B	0.0015
1,1,1-Trichloroethane	ug/L	5	ND	ND	ND	0.39
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	0.26
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	0.48
1,1-Dichloroethane	ug/L	5	ND	ND	ND	0.59
1,1-Dichloroethene	ug/L	5	ND	ND	ND	0.85
1,2-Dichlorobenzene	ug/L	3	ND	ND	ND	0.44
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	0.6
1,2-Dichloroethene, Total	ug/L	5	ND	ND	ND	3.2
1,2-Dichloropropane	ug/L	5	ND	ND	ND	0.61
1,3-Dichlorobenzene	ug/L	3	ND	ND	ND	0.54
1.4-Dichlorobenzene	ug/L	3	ND	0.64 J	ND	0.51
2-Chloroethyl vinyl ether	ug/L		ND	ND	ND	1.9
Acrolein	ug/L	5	ND	ND	ND	17
Acrylonitrile	ug/L	5	ND	ND	ND	1.9
Benzene	ug/L	1	ND	ND	ND	0.6
Bromoform	ug/L		ND	ND	ND	0.47
Bromomethane	ug/L	5	ND	ND	ND	1.2
Carbon tetrachloride	ug/L	5	ND	ND	ND	0.51
Chlorobenzene	ug/L	5	ND	2.1 J	ND	0.48
Chlorodibromomethane	ug/L		ND	ND	ND	0.41
Chloroethane	ug/L	5	ND	5.5	ND	0.41
Chloroform	ug/L	7	ND	ND	ND	0.54
Chloromethane	ug/L	5	ND	ND	ND	0.64
cis-1,3-Dichloropropene	ug/L		ND	ND	ND	0.33
Dichlorobromomethane	ug/L		ND	ND	ND	0.54
Ethylbenzene	ug/L	5	ND	ND	ND	0.46
Methylene Chloride	ug/L	5	ND	ND	ND	0.81
Tetrachloroethene	ug/L	5	ND	ND	ND	0.34
Toluene	ug/L	5	ND	ND	ND	0.45
		5	ND	ND	ND	0.59
trans-1,2-Dichloroethene	ug/L	3	ND	ND	ND	0.44
trans-1,3-Dichloropropene	ug/L		-	ND	ND	0.6
Trichloroethene	ug/L	5	ND		ND ND	0.75
Vinyl chloride Total Dissolved Solids	ug/L mg/L	2	ND 434	ND 1150	495	4

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (PDF), June 2004

⁻⁻⁻ no standard -- Concentration exceeds standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

H - Sample was prepped or analyzed beyond the specified holding time

Table 1b. Surface Water Sampling Results SW-2

Town of Dewitt Landfill 2015

			6/15/2015	12/15/2015	Method
Analyte	Unit	SCG*	, ,		Detection
Allaryte		""	SW-2	SW-2	Limit
Antimony	mg/L	0.003	ND	ND	0.0068
Antimony		0.003	ND ND	ND	0.0056
Arsenic	mg/L		ND ND	ND ND	0.0038
Beryllium	mg/L	0.005	ND ND	ND ND	0.0003
Cadmium	mg/L			ND ND	0.0003
Chromium	mg/L	0.05	ND		
Copper	mg/L	0.2	ND	ND	0.0016
Lead	mg/L	0.025	ND	ND	0.003
Mercury	mg/L	0.0007	ND	ND	0.00012
Nickel	mg/L	0.1	0.0016 J	0.0024 J	0.0013
Selenium	mg/L	0.01	ND	ND	0.0087
Silver	mg/L	0.05	ND	ND	0.0017
Thallium	mg/L		ND	ND	0.01
Zinc	mg/L		0.0021 J	0.0019 J B	0.0015
1,1,1-Trichloroethane	ug/L	5	ND	ND	0.39
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	0.26
1,1,2-Trichloroethane	ug/L	1	ND	ND	0.48
1,1-Dichloroethane	ug/L	5	ND	ND	0.59
1,1-Dichloroethene	ug/L	5	ND	ND	0.85
1,2-Dichlorobenzene	ug/L	3	ND	ND	0.44
1.2-Dichloroethane	ug/L	0.6	ND	ND	0.6
1,2-Dichloroethene, Total	ug/L	5	ND	ND	3.2
1,2-Dichloropropane	ug/L	5	ND	ND	0.61
1.3-Dichlorobenzene	ug/L	3	ND	ND	0.54
1,4-Dichlorobenzene	ug/L	3	ND	ND	0.51
2-Chloroethyl vinyl ether	ug/L		ND	ND	1.9
Acrolein	ug/L	5	ND	ND	17
Acrylonitrile	ug/L	5	ND	ND	1.9
Benzene	ug/L	1	ND	ND	0.6
Bromoform	ug/L	<u> </u>	ND	ND	0.47
Bromomethane	ug/L	5	ND	ND	1.2
Carbon tetrachloride	ug/L	5	ND	ND	0.51
Chlorobenzene	ug/L	5	ND	ND	0.48
Chlorodibromomethane	ug/L		ND	ND ND	0.41
Chloroethane	ug/L	5	ND	ND	0.87
Chloroform	ug/L	7	ND	ND ND	0.54
Chloromethane	ug/L	5	ND	ND ND	0.64
cis-1,3-Dichloropropene	ug/L ug/L		ND	ND ND	0.33
Dichlorobromomethane	ug/L		ND	ND	0.54
Ethylbenzene	ug/L ug/L	5	ND	ND ND	0.46
Methylene Chloride	ug/L ug/L	5	ND	ND	0.40
Tetrachloroethene	ug/L	5	ND	ND	0.34
Toluene	ug/L	5	ND	0.84 J	0.45
	ug/L ug/L	5	ND ND	ND ND	0.43
trans-1,2-Dichloroethene	1		ND	ND	0.44
trans-1,3-Dichloropropene	ug/L	5	ND ND	ND ND	0.6
Trichloroethene	ug/L	L	1.1.4		0.75
Vinyl chloride	ug/L	2	ND 585	ND 426	0.75
Total Dissolved Solids * Standard, Criteria or guideline -	mg/L				

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards --- no standard - Concentration exceeds standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 1c. Surface Water Sampling Results SW-3

Town of Dewitt Landfill 2015

			6/15/2015	12/15/2015	Method
Analyte	Unit	scg*	-,,	,,	Detection
Analyte	"""	300	SW-3	SW-3	Limit
Antimony	mg/L	0.003	ND	ND	0.0068
Arsenic	mg/L	0.003	ND	ND	0.0056
	mg/L		ND	ND	0.0030
Beryllium Cadmium	mg/L	0.005	ND	ND	0.0005
Chromium	mg/L	0.005	ND ND	ND ND	0.0003
L		0.03	ND ND	ND ND	0.001
Copper	mg/L	0.025		ND ND	0.0018
Lead	mg/L	0.0007	ND ND	ND ND	0.00012
Mercury	mg/L	0.0007	ND ND	ND	0.00012
Nickel	mg/L				0.0013
Selenium	mg/L	0.01	ND	ND	
Silver	mg/L	0.05	ND	ND	0.0017
Thallium	mg/L		ND	ND	0.01
Zinc	mg/L		0.0027 J	0.0031 J B	0.0015
1,1,1-Trichloroethane	ug/L	5	ND	ND	0.39
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	0.26
1,1,2-Trichloroethane	ug/L	1	ND	ND	0.48
1,1-Dichloroethane	ug/L	5	ND	ND	0.59
1,1-Dichloroethene	ug/L	5	ND	ND	0.85
1,2-Dichlorobenzene	ug/L	3	ND	ND	0.44
1,2-Dichloroethane	ug/L	0.6	ND	ND	0.6
1,2-Dichloroethene, Total	ug/L	5	ND	ND	3.2
1,2-Dichloropropane	ug/L	5	ND	ND	0.61
1,3-Dichlorobenzene	ug/L	3	ND	ND	0.54
1,4-Dichlorobenzene	ug/L	3	ND_	ND	0.51
2-Chloroethyl vinyl ether	ug/L		ND	ND	1.9
Acrolein	ug/L	5	ND	ND	17
Acrylonitrile	ug/L	5	ND	ND	1.9
Benzene	ug/L	1	ND	ND	0.6
Bromoform	ug/L		ND	ND	0.47
Bromomethane	ug/L	5	ND	ND	1.2
Carbon tetrachloride	ug/L	5	ND	ND	0.51
Chlorobenzene	ug/L	5	ND	ND	0.48
Chlorodibromomethane	ug/L		ND	ND	0.41
Chloroethane	ug/L	5	ND	ND	0.87
Chloroform	ug/L	7	ND	ND	0.54
Chloromethane	ug/L	5	ND	ND	0.64
cis-1,3-Dichloropropene	ug/L		ND	ND	0.33
Dichlorobromomethane	ug/L		ND	ND	0.54
Ethylbenzene	ug/L	5	ND	ND	0.46
Methylene Chloride	ug/L	5	ND	ND	0.81
Tetrachloroethene	ug/L	5	ND	ND	0.34
Toluene	ug/L	5	ND	ND	0.45
trans-1,2-Dichloroethene	ug/L	5	ND	ND	0.59
trans-1,3-Dichloropropene	ug/L		ND	ND	0.44
Trichloroethene	ug/L	5	ND	ND	0.6
Vinyl chloride	ug/L	2	ND	ND	0.75
Total Dissolved Solids	mg/L		475	454	4
* Standard, Criteria or guideline -					

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and

⁻⁻⁻ no standard

⁻ Concentration exceeds standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 2a. **Groundwater Sampling Results Shallow Monitoring Wells** Town of Dewitt Landfill

July 2015

Analyte	Unit	scg*	7/28/2015	7/28/2015	7/27/2015	7/27/2015	7/28/2015	7/26/2015	7/28/2015	7/27/2015	7/28/2015	7/28/2015	7/28/2015
			MW-15	MW-2S	MW-35	MW-45	MW-5S	MW-65	MW-7S	MW-8S	MW-9S	MW-105	MW-125
Antimony	mg/L	0.003	ND	0.0087.1	ND	ND							
Arsenic	mg/L	0.025	ND	ND	0.1	ND	ND	0.014 }	ND	0.016	ND	ND	ND
Beryllium	mg/L	***	0.0011	ND	0.0016	ND							
Cadmium	mg/L	0.005	ND	ND	ND	ND	ND	0.00052	ND	ND	ND	ND	ND
Chromium	mg/L	0.05	0.053	ND	0.0013	ND	ND	0.0012 J	0.0029 J	0.0014 J	ND	0.014	ND
Copper	mg/L	0.2	ND ·	ND	ND	ND	ND	0.0041	0.0018 J	ND	ND	ND	ND
Lead	mg/L	0.025	0.011	ND	0.02	ND							
Mercury	mg/L	0.0007	0.000133	ND									
Nickel	mg/L	0.1	0.0020 J	ND	0.0043	0.0015 J	0.00143	0.0034 J	0.00161	0.0020 J	0.0022 J	0.0025 J	ND
Selenium	mg/L	0.01	ND										
Silver	mg/L	0.05	ND										
Thallium	mg/L		ND										
Zinc	mg/L		0.12	ND	0.089	0.0018	0.0062	0.0070 J	0.0041	0.0043 J	0.0062 J	0.018	0.0061
1,1,1-Trichloroethane	ug/L	5	ND										
1.1.2.2-Tetrachloroethane	ug/L	5	ND										
1.1.2-Trichloroethane	ug/L	1	ND										
1.1-Dichloroethane	ug/L	5	ND										
1.1-Dichloroethene	ug/L	5	ND										
1.2-Dichlorobenzene	ug/L	3	ND										
-,	4	0.6	ND	ND	ND	53	ND						
1,2-Dichloroethane	ug/L	0.6	ND										
1,2-Dichloroethene, Total	ug/L	5	ND										
1,2-Dichloropropane	ug/L	3	ND										
1,3-Dichlorobenzene	ug/L	3	ND										
1,4-Dichlorobenzene	ug/L			ND									
2-Chloroethyl vinyl ether	ug/L		ND				ND						
Acrolein	ug/L	5	ND	ND	ND	ND			ND	ND	ND	ND	ND
Acrylonitrile	ug/L	5	ND										
Benzene	ug/L	1	ND	ND	0.0016 J	ND	ND	ND			ND	ND	ND
Bromoform	ug/L		ND	ND ND	ND	ND	ND						
Bromomethane	ug/L	5	ND			ND	ND						
Carbon tetrachloride	ug/L	5	ND	-	ND								
Chlorobenzene	ug/L	5	ND										
Chlorodibromomethane	ug/L		ND										
Chloroethane	ug/L	5	ND										
Chloroform	ug/L	7	ND	ND	ND	ND	ND	0.81	ND	ND	ND	ND	ND
Chloromethane	ug/L	5	ND										
cis-1,3-Dichloropropene	ug/L		ND										
Dichlorobromomethane	ug/L		ND										
Ethylbenzene	ug/L	5	ND										
Methylene Chloride	ug/L	5	ND										
Tetrachloroethene	ug/L	5	ND										
Toluene	ug/L	5	ND										
trans-1,2-Dichloroethene	ug/L	5	ND										
trans-1,3-Dichloropropene	ug/L		ND										
Trichloroethene	ug/L	5	ND										
Vinyl chloride	ug/L	2	ND	ND	ND	2.3 J	ND	ND	ND	40	ND	ND	ND
Total Dissolved Solids	mg/L	***	1170	1530	1970	2940	2440	1330	1150	1030	1060	1210	1190

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (PDF), June 2004

- Concentration exceeds Standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 2b. Groundwater Sampling Results Deep Monitoring Wells Town of Dewitt Landfill

July 2015

Analyte	Unit	SCG*	7/28/2015	7/27/2015	7/28/2015	7/27/2015	7/28/2015	7/28/2015
			MW-2D	MW-4D	MW-5D	MW-8D	MW-9M	MW-11D
Antimony	mg/L	0.003	ND	ND	ND	ND	ND	ND
Arsenic	mg/L	0.025	ND	ND		0.013 J	0.031	0.016
Beryllium	mg/L	w-m-40	ND	ND	ND	ND	ND	ND
Cadmium	mg/L	0.005	ND '	ND	ND	ND	ND	.00090 J
Chromium	mg/L	0.05	ND	ND	ND	ND	ND	1.8
Copper	mg/L	0.2	ND	ND	ND	ND	ND	ND
Lead	mg/L	0.025	ND	ND	ND	ND	ND	0.023
Mercury	mg/L	0.0007	ND	ND	ND	ND	ND	ND
Nickel	mg/L	0.1	ND	ND	ND	ND	0.0085 J	0.0027 J
Selenium	mg/L	0.01	ND	ND	ND	ND	ND	ND
Silver	mg/L	0.05	ND	ND	ND	ND	ND	ND
Thallium	mg/L		ND	ND	ND	ND	ND	ND
Zinc	mg/L		0.0028 J	0.0020 J	0.0061 J	0.0054 J	0.0026 J	0.0042
1,1,1-Trichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND
1.1-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	ug/L		ND	130	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	5	ND	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ug/L	3	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	ug/L		ND	ND	ND	ND	ND	ND
Acrolein	ug/L	5	ND	ND	ND	ND	ND	ND
Acrylonitrile	ug/L	5	ND	ND	ND	ND	ND	ND
Benzene	ug/L	1	ND	ND	ND	ND	ND	ND
Bromoform	ug/L		ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	5	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ug/L	5	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/L	5	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ug/L		ND	ND	ND	ND	ND	ND
Chloroethane	ug/L	5	ND	ND	ND	ND	ND	ND
Chloroform	ug/L	7	ND	ND	ND	ND	ND	ND
Chloromethane	ug/L	5	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ug/L		ND	ND	ND	ND	ND	ND
Dichlorobromomethane	ug/L		ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/L	5	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	ND	ND	ND	ND	ND	ND
Toluene	ug/L	5	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ug/L		ND	ND	ND	ND	ND	ND
Trichloroethene	ug/L	5	ND	24	ND	ND	ND	ND
Vinyl chloride	ug/L	2	ND	3.7 J	ND	ND	66	ND
Total Dissolved Solids	mg/L		2220	2470	3040	2160	1190	904

^{*} Standard, Criteria or guideline - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 2004

⁻⁻⁻ no standard - Concentration exceeds Standard

J - Result is less than the RL but >= MDL and the concentration is an approximate value.

B -Compound was found in the blank and sample

Table 3. Gas Vent Sampling Results Town of Dewitt Landfill July 28, 2015

Analyte	Unit	Stand	lard*		Sample ID			
		SGC ¹	AGC ²	V-3	V-9	V-10		
l,1,1-Trichloroethane	ppb v/v	3,000	0.13	ND	ND	ND		
I,1,2,2-Tetrachloroethane	ug/m3		16	ND	ND	ND		
L,1,2-Trichloroethane	ppb v/v	***	1.4	ND	ND	ND		
1,1-Dichloroethane	ppb v/v		1.4	ND	ND	ND		
1,1-Dichloroethene	ppb v/v		1.4	ND	ND	ND		
L,2,4-Trichlorobenzene	ug/m3		200	ND	ND	ND		
L,2,4-Trimethylbenzene	ppb v/v		290	ND	ND	ND		
1,2-Dibromoethane	ppb v/v		0.0017	ND	ND	ND		
1,2-Dichlorobenzene	ppb v/v	30,000	360	ND	ND	ND		
1,2-Dichloroethane	ug/m3	30,000	360	ND	ND	ND		
L,2-Dichloroethene, Total	ppb v/v	***	63	ND	ND	ND		
1,2-Dichloropropane	ug/m3	30,000	360	ND	ND	ND		
1,2-Dichlorotetrafluoroethane	ppb v/v	unioni .	17000	ND	ND	ND		
1,3,5-Trimethylbenzene	ug/m3		290	ND	ND	ND		
1,3-Butadiene	ppb v/v		290	ND	ND	ND		
1,3-Dichlorobenzene	ppb v/v	30,000	360	ND	ND	ND		
1,4-Dichlorobenzene	ppb v/v		0.09	ND	ND	ND		
1,4-Dioxane	ug/m3		0.09	ND	ND	ND		
2,2,4-Trimethylpentane	ppb v/v		3,300	350	200	260		
2-Chloratoluene	ppb v/v		620	ND	ND	ND		
3-Chloropropene	ug/m3		0.25	ND	ND	ND		
I-Ethyltoluene	ppb v/v		tenn	ND	ND	ND		
1-Isopropyltoluene	ug/m3		0.00	ND	ND	ND		
Acetone	ppb v/v	180,000	28,000	ND	ND	ND		
Benzene	ug/m3	1300	0.13	350	ND	ND		
Benzyl chloride	ppb v/v	1,300	0.13	ND	ND	ND		
Bromodichloromethane	ug/m3	240	0.02	ND	ND	ND		
Bromoethene(Vinyl Bromide)	ppb v/v		3.00	ND	ND	ND		
Bromoform	ppb v/v		0.91	ND	ND	ND		
Bromomethane	ug/m3	3,900	5	ND	ND	ND		
Carbon disulfide	ppb v/v	6,200	700	ND	ND	ND		
Carbon tetrachloride	ug/m3	1,900	0.067	ND	ND	ND		
Chlorobenzene	ppb v/v	1,300	110	ND	ND	ND		
		***	10,000	ND	ND	ND		
Chloroethane	ug/m3		0.043			ND		
Chloroform	ppb v/v	150		ND	ND			
Chloromethane	ug/m3	22,000	90	ND	ND	ND		
cis-1,2-Dichloroethene	ppb v/v		63	ND	ND	ND		
cis-1,3-Dichloropropene	ug/m3		0.25	ND	ND	ND		
Cumene	ppb v/v	nire	400	ND	ND	ND		
Cyclohexane	ug/m3	000	6,000	340	960	850		
Dibromochloromethane	ppb v/v	14,000	2.1	ND	ND	ND		
Dichlorodifluoromethane	ug/m3		12,000	2700	ND	ND		
Ethylbenzene	ppb v/v	54,000	1,000	190	ND	200		
Freon 22	ppb v/v		***	3000	7800	7300		
Freon TF	ppb v/v	-	***	ND	NĐ	ND		
Hexachlorobutadiene	ug/m3	-	0.045	ND	ND	ND		
Isopropyi alcohol	ppb v/v	98,000	7,000	ND	ND	ND		
m,p-Xylene	ug/m3	4,300	100	970	ND	ND		
Methyl Butyl Ketone (2-Hexanone)	ppb v/v	4,000	48	ND	ND	ND		
Methyl Ethyl Ketone	ppb v/v	13,000	5,000	ND	ND	ND		
methyl isobutyl ketone	ppb v/v	31,000	3,000	ND	ND	ND		
Methyl methacrylate	ug/m3	41,000	700	ND	ND	ND		
Methyl tert-butyl ether	ppb v/v	-	3,000	ND	ND	ND		
Methylene Chloride	ppb v/v	14,000	2.1	ND	ND	ND		
Naphthalene	ug/m3	7,900	3	ND	ND	ND		
n-Butane	ppb v/v	238,000		5300	10000	1100		
n-Butylbenzene	ppb v/v			ND	ND	ND		
n-Heptane	ug/m3	21000	3,900	590	880	170		
n-Hexane	ppb v/v		700	1100	650	970		
n-Propylbenzene	ug/m3	54000	1000	ND	ND	ND		
sec-Butylbenzene	ppb v/v			ND	ND	ND		
Styrene Styrene	ug/m3	17,000	1,000	ND	ND	ND		
tert-Butyl alcohol	ppb v/v	***	720	ND	ND	ND		
tert-Butylbenzene	ug/m3		-	ND	ND	ND		
		1,000	1	ND	ND	ND		
Tetrachloroethene	ppb v/v	-				ND		
Tetrahydrofuran	ug/m3	30,000	350	ND	ND			
Toluene	ppb v/v	37,000	5,000	ND	ND	ND		
trans-1,2-Dichloroethene	ppb v/v		63	ND	ND	ND		
trans-1,3-Dichloropropene	ppb v/v		0.250	ND	ND	ND		
Trichloroethene	ppb v/v	-	0.25	ND	ND	ND		
Trichlorofluoromethane	ug/m3	9000	5000	ND	64	82		
Vinyl chloride	ppb v/v	180,000	0.11	ND	ND	300		
Xylene (total)	ug/m3	22000	100	ND	ND	ND		
				ND	ND	ND		

^{*}New York State Department of Environmental Conservation Division of Air resources (DAR-1) Guidelines for the Control of Toxic Ambient Air Contaminants, 1997.

*SGC - Short-term Guideline Concentration

²AGC - Annual Guideline Concentration

APPENDICES

Appendix A
Photographic Log

Photographic Log

Figure 1. Access road viewing North from Fisher Road gate – July 2015.

Figure 2. Access road viewing west on north side slope – July 2015.

Figure 3. Top of landfill, viewing east. Brown grass is from recent mowing. July 2015.

Figure 4. Top of landfill viewing ESE at Erie Canal Towpath. July 2015.

Figure 5. Top of landfill viewing WSW at Cedar Bay on Erie Canal. July 2015.

Figure 6. Bare patch (2 ft. x 8 in.) near as vent.

Figure 7. Ponded water near gas vent on top of landfill. July 2015.

Figure 8. Small trees and tall plants grwoing through rip-rap in drainage ditch near SW corner of landfill. July 2015

Figure 9. Small trees and tall plants grwoing through rip-rap in drainage ditch near SW corner of landfill. July 2015

Appendix B Laboratory Reports

- June 2015 Surface water Test America Analytical Report Job 480-82257-1.
- July 2015 Gas vent sampling Test America Analytical Report Job 200-29061-1
- July 2015 Gas Vent field measurement data sheet.
- July 2015 Groundwater Sampling Test America Analytical Report Job 480-84773-1
- September 2015 Surface water sampling Test America Analytical Report Job 480-86856-1
- December 2015 Surface Water Sampling Test America Analytical Report Job 480-92740-1

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-82257-1 Client Project/Site: Town of Dewitt

Sampling Event: Surfacewater - Quarterly (3,6,9,12)

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Ane Punge

Authorized for release by: 6/29/2015 11:57:10 AM

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 480-82257-1

Client: Town of Dewitt Project/Site: Town of Dewitt

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	23
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Field Data Sheets	29
Receipt Checklists	32

	ú				
				a	
			Ŀ	2	
			U	S.	
	1				

					л
		į	þ		
					-

		٩,		
		1		

Definitions/Glossary

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Client: Town of Dewitt Project/Site: Town of Dewitt

Qualifier Description

Qualifier Description

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Qualifiers GC/MS VOA Qualifier

Metals Qualifier

RPD TEF

TEQ

TestAmerica Job ID: 480-82257-1

Compound was found in the blank and sample. В Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid Contains no Free Liquid CNF Duplicate error ratio (normalized absolute difference) DER Dil Fac **Dilution Factor** Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN DLC Decision level concentration MDA Minimum detectable activity **Estimated Detection Limit EDL** MDC Minimum detectable concentration MDL **Method Detection Limit** Minimum Level (Dioxin) ML NC Not Calculated Not detected at the reporting limit (or MDL or EDL if shown) ND PQL **Practical Quantitation Limit Quality Control** RER Relative error ratio Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

H

Job ID: 480-82257-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-82257-1

Comments

No additional comments.

Receipt

The samples were received on 6/16/2015 2:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.8° C.

GC/MS VOA

Method(s) 624: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: SW-2 (480-82257-2). Elevated reporting limits (RLs) are provided.

Method(s) 624: The preservative used in the sample containers provided is not compatible with the Method 624 analytes requested. The following samples were received preserved with hydrochloric acid: SW-1 (480-82257-1), SW-2 (480-82257-2), SW-3 (480-82257-3) and TRIP BLANK (480-82257-4). The requested target analyte list contains 2-chloroethyl vinyl ether which is an acid-labile compound that degrades in an acidic medium.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Buffalo 6/29/2015

Detection Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Client Sample ID: SW-1	Lab Sample ID: 480-82257-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.0088	J	0.010	0.0016	mg/L	1	_	6010C	Total/NA
Zinc	0.011	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0014	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0023	J ·	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0033	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	434		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SW-2	Lab Sample ID: 480-82257-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	0.0016	J	0.010	0.0013	mg/L	1	_	6010C	Total/NA
Zinc	0.0037	JB	0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0013	JB	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0027	J	0.010	0.0013	mg/L	1	٠,	6010C	Dissolved
Zinc	0.0021	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	585		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SW-3 Lab Sample ID: 480-82257-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0012	JB	0.0040	0.0010	mg/L	1	_	6010C	Dissolved
Zinc	0.0027	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	475		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: TRIP BLANK Lab Sample ID: 480-82257-4

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Lab Sample ID: 480-82257-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 06/15/15 15:35 Date Received: 06/16/15 02:55

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/19/15 09:10	
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/19/15 09:10	
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/19/15 09:10	
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/19/15 09:10	
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/19/15 09:10	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/19/15 09:10	
1,2-Dichloroethane	ND	T.	5.0	0.60	ug/L			06/19/15 09:10	
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/19/15 09:10	
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/19/15 09:10	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/19/15 09:10	
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/19/15 09:10	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/19/15 09:10	
Acrolein	ND		100	17	ug/L			06/19/15 09:10	
Acrylonitrile	ND		50	1.9	ug/L			06/19/15 09:10	
Benzene	ND		5.0	0.60	ug/L			06/19/15 09:10	
Bromoform	ND		5.0	0.47	ug/L			06/19/15 09:10	
Bromomethane	ND		5.0	1.2	ug/L			06/19/15 09:10	
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/19/15 09:10	
Chlorobenzene	ND	•	5.0	0.48	ug/L			06/19/15 09:10	
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/19/15 09:10	
Chloroethane	ND		5.0	0.87	ug/L			06/19/15 09:10	
Chloroform	ND		5.0	0.54	ug/L			06/19/15 09:10	
Chloromethane	ND		5.0	0.64	ug/L			06/19/15 09:10	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/19/15 09:10	
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/19/15 09:10	
Ethylbenzene	ND		5.0	0.46	ug/L			06/19/15 09:10	
Methylene Chloride	ND		5.0	0.81	ug/L			06/19/15 09:10	
Tetrachloroethene	ND	4	5.0	0.34	ug/L			06/19/15 09:10	
Toluene	ND		5.0	0.45	ug/L			06/19/15 09:10	
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/19/15 09:10	
trans-1,3-Dichloropropene	ND '		5.0	0.44	ug/L			06/19/15 09:10	
Trichloroethene	ND		5.0	0.60	ug/L			06/19/15 09:10	
Vinyl chloride	ND		5.0	0.75	ug/L			06/19/15 09:10	
Surrogate	•	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					06/19/15 09:10	
4-Bromofluorobenzene (Surr)	97		69 - 121					06/19/15 09:10	
Toluene-d8 (Surr)	98		70 - 123					06/19/15 09:10	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/17/15 08:00	06/17/15 21:35	1
Arsenic	ND		0.015	0.0056	mg/L		06/17/15 08:00	06/17/15 21:35	1
Bervllium	ND		0.0020	0.00030	mg/L		06/17/15 08:00	06/17/15 21:35	1
Cadmium	ND		0.0020	0.00050	mg/L		06/17/15 08:00	06/17/15 21:35	1
Chromium	ND		0.0040	0.0010	mg/L		06/17/15 08:00	06/17/15 21:35	1
Copper	0.0088	J	0.010	0.0016	mg/L		06/17/15 08:00	06/17/15 21:35	1
Lead	ND		0.010	0.0030	mg/L		06/17/15 08:00	06/17/15 21:35	1
Nickel	ND		0.010	0.0013	mg/L		06/17/15 08:00	06/17/15 21:35	1
Selenium	ND		0.025	0.0087	mg/L		06/17/15 08:00	06/17/15 21:35	1

TestAmerica Buffalo

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Client Sample ID: SW-1

Lab Sample ID: 480-82257-1

Date Collected: 06/15/15 15:35 Date Received: 06/16/15 02:55 Matrix: Surface Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/17/15 08:00	06/17/15 21:35	1
Thallium	ND		0.020	0.010	mg/L		06/17/15 08:00	06/17/15 21:35	1
Zinc	0.011	В	0.010	0.0015	mg/L		06/17/15 08:00	06/17/15 21:35	1
Method: 6010C - Metals (IC	CP) - Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/18/15 10:26	06/18/15 20:41	1
Arsenic	ND		0.015	0.0056	mg/L		06/18/15 10:26	06/18/15 20:41	1
Beryllium	ND		0.0020	0.00030	mg/L		06/18/15 10:26	06/18/15 20:41	1
Cadmium	ND		0.0020	0.00050	mg/L		06/18/15 10:26	06/18/15 20:41	1
Chromium	0.0014	JB	0.0040	0.0010	mg/L		06/18/15 10:26	06/18/15 20:41	1
Copper	ND		0.010	0.0016	mg/L		06/18/15 10:26	06/18/15 20:41	1
Lead	ND	* *	0.010	0.0030	mg/L		06/18/15 10:26	06/18/15 20:41	1
Nickel	0.0023	J	0.010	0.0013	mg/L		06/18/15 10:26	06/18/15 20:41	1
Selenium	ND		0.025	0.0087	mg/L		06/18/15 10:26	06/18/15 20:41	1
Silver	ND		0.0060	0.0017	mg/L		06/18/15 10:26	06/18/15 20:41	1
Thallium	ND		0.020	0.010	mg/L		06/18/15 10:26	06/18/15 20:41	1
Zinc	0.0033	J	0.010	0.0015	mg/L		06/18/15 10:26	06/18/15 20:41	1
Method: 7470A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/19/15 08:50	06/19/15 12:41	1
Method: 7470A - Mercury	(CVAA) - Disso	lved							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/24/15 09:05	06/24/15 13:35	1
General Chemistry									
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Lab Sample ID: 480-82257-2

Matrix: Surface Water

Client Sample ID: SW-2

Date Collected: 06/15/15 15:55 Date Received: 06/16/15 02:55

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		20	1.5	ug/L			06/19/15 09:39	4
1,1,2,2-Tetrachloroethane	ND		20	1.0	ug/L			06/19/15 09:39	4
1,1,2-Trichloroethane	ND		20	1.9	ug/L			06/19/15 09:39	4
1,1-Dichloroethane	ND		20	2.4	ug/L			06/19/15 09:39	4
1,1-Dichloroethene	ND		20	3.4	ug/L			06/19/15 09:39	4
1,2-Dichlorobenzene	ND		20	1.8	ug/L			06/19/15 09:39	4
1,2-Dichloroethane	ND		20	2.4	ug/L			06/19/15 09:39	4
1,2-Dichloroethene, Total	ND		40	13	ug/L			06/19/15 09:39	4
1,2-Dichloropropane	ND		20	2.4	ug/L			06/19/15 09:39	4
1,3-Dichlorobenzene	ND		20	2.2	ug/L			06/19/15 09:39	4
1,4-Dichlorobenzene	ND		20	2.0	ug/L			06/19/15 09:39	4
2-Chloroethyl vinyl ether	ND		100	7.4	ug/L			06/19/15 09:39	4
Acrolein	ND		400	70	ug/L			06/19/15 09:39	4
Acrylonitrile	ND		200	7.6	ug/L			06/19/15 09:39	4
Benzene	ND		20	2.4	ug/L			06/19/15 09:39	4
Bromoform	ND		20		ug/L			06/19/15 09:39	4
Bromomethane	ND		20		ug/L			06/19/15 09:39	4
Carbon tetrachloride	ND		20	2.0	ug/L			06/19/15 09:39	4
Chlorobenzene	ND		20	1.9	ug/L			06/19/15 09:39	4
Chlorodibromomethane	ND		20	1.7	ug/L			06/19/15 09:39	4
Chloroethane	ND		20	3.5	ug/L			06/19/15 09:39	4
Chloroform	ND		20	2.2	ug/L			06/19/15 09:39	4
Chloromethane	ND		20		ug/L			06/19/15 09:39	4
cis-1,3-Dichloropropene	ND		20	1.3	ug/L			06/19/15 09:39	4
Dichlorobromomethane	ND		20		ug/L			06/19/15 09:39	4
Ethylbenzene	ND		20	1.9	ug/L			06/19/15 09:39	4
Methylene Chloride	ND		20		ug/L			06/19/15 09:39	4
Tetrachloroethene	ND		20	1.4	ug/L			06/19/15 09:39	4
Toluene	ND		20	1.8	ug/L			06/19/15 09:39	4
trans-1,2-Dichloroethene	ND		20		ug/L			06/19/15 09:39	4
trans-1,3-Dichloropropene	ND		20		ug/L			06/19/15 09:39	4
Trichloroethene	ND		20		ug/L			06/19/15 09:39	4
Vinyl chloride	ND		20		ug/L			06/19/15 09:39	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					06/19/15 09:39	4
4-Bromofluorobenzene (Surr)	96		69 - 121					06/19/15 09:39	4
Toluene-d8 (Surr)	97		70-123					06/19/15 09:39	4

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/17/15 08:00	06/17/15 21:38	1
Arsenic	ND		0.015	0.0056	mg/L		06/17/15 08:00	06/17/15 21:38	1
Beryllium	ND		0.0020	0.00030	mg/L		06/17/15 08:00	06/17/15 21:38	. 1
Cadmium	ND		0.0020	0.00050	mg/L		06/17/15 08:00	06/17/15 21:38	1
Chromium	ND		0.0040	0.0010	mg/L		06/17/15 08:00	06/17/15 21:38	1
Copper	ND		0.010	0.0016	mg/L		06/17/15 08:00	06/17/15 21:38	1
Lead	ND		0.010	0.0030	mg/L		06/17/15 08:00	06/17/15 21:38	1
Nickel	0.0016	J	0.010	0.0013	mg/L		06/17/15 08:00	06/17/15 21:38	1
Selenium	ND		0.025	0.0087	mg/L		06/17/15 08:00	06/17/15 21:38	1

TestAmerica Buffalo

Page 8 of 32

6/29/2015

3

5

6

8

10

12

13 14

E

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Client Sample ID: SW-2

Lab Sample ID: 480-82257-2

Date Collected: 06/15/15 15:55 Date Received: 06/16/15 02:55 Matrix: Surface Water

Method: 6010C - Metals (ICP) (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/17/15 08:00	06/17/15 21:38	1
Thallium	ND		0.020	0.010	mg/L		06/17/15 08:00	06/17/15 21:38	1
Zinc	0.0037	JB	0.010	0.0015	mg/L		06/17/15 08:00	06/17/15 21:38	•
Method: 6010C - Metals (ICP) -									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.020	0.0068	mg/L		06/18/15 10:26	06/18/15 20:55	
Arsenic	ND		0.015	0.0056	mg/L		06/18/15 10:26	06/18/15 20:55	
Beryllium	ND		0.0020	0.00030	mg/L		06/18/15 10:26	06/18/15 20:55	•
Cadmium	ND		0.0020	0.00050	mg/L		06/18/15 10:26	06/18/15 20:55	1
Chromium	0.0013	JB	0.0040	0.0010	mg/L		06/18/15 10:26	06/18/15 20:55	1
Copper	ND		0.010	0.0016	mg/L		06/18/15 10:26	06/18/15 20:55	•
Lead	ND		0.010	0.0030	mg/L		06/18/15 10:26	06/18/15 20:55	•
Nickel	0.0027	J	0.010	0.0013	mg/L		06/18/15 10:26	06/18/15 20:55	1
Selenium	ND		0.025	0.0087	mg/L		06/18/15 10:26	06/18/15 20:55	•
Silver	ND		0.0060	0.0017	mg/L		06/18/15 10:26	06/18/15 20:55	1
Thallium	ND		0.020	0.010	mg/L		06/18/15 10:26	06/18/15 20:55	
Zinc	0.0021	J	0.010	0.0015	mg/L		06/18/15 10:26	06/18/15 20:55	
Method: 7470A - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/19/15 08:50	06/19/15 12:43	
Method: 7470A - Mercury (CVA				***	1114		Description	Amelyand	Dil Fac
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	DII Fa
Mercury	ND		0.00020	0.00012	mg/L		06/24/15 09:05	06/24/15 13:36	
General Chemistry	Barrett.	Our lifter	D.	ME	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	1	Qualifier	RL				repared	06/22/15 15:49	Dira
Total Dissolved Solids	585		10.0	4.0	mg/L			00/22/15 15:49	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Lab Sample ID: 480-82257-3

Matrix: Surface Water

Client Sample ID: SW-3 Date Collected: 06/15/15 16:15

Date Received: 06/16/15 02:55

Analyte	Result Qualifier	RL	MDL	- 1111	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			06/19/15 10:07	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			06/19/15 10:07	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			06/19/15 10:07	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			06/19/15 10:07	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			06/19/15 10:07	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			06/19/15 10:07	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			06/19/15 10:07	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			06/19/15 10:07	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			06/19/15 10:07	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			06/19/15 10:07	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			06/19/15 10:07	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			06/19/15 10:07	1
Acrolein	ND	100	17	ug/L			06/19/15 10:07	1
Acrylonitrile	ND	50	1.9	ug/L			06/19/15 10:07	1
Benzene	ND	5.0	0.60	ug/L			06/19/15 10:07	1
Bromoform	ND	5.0	0.47	ug/L			06/19/15 10:07	1
Bromomethane	ND	5.0	1.2	ug/L			06/19/15 10:07	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			06/19/15 10:07	1
Chlorobenzene	ND	5.0	0.48	ug/L			06/19/15 10:07	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			06/19/15 10:07	1
Chloroethane	ND	5.0	0.87	ug/L			06/19/15 10:07	1
Chloroform	ND	5.0	0.54	ug/L			06/19/15 10:07	1
Chloromethane	ND	5.0	0.64	ug/L			06/19/15 10:07	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			06/19/15 10:07	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			06/19/15 10:07	1
Ethylbenzene	ND	5.0	0.46	ug/L			06/19/15 10:07	1
Methylene Chloride	ND	5.0	0.81	ug/L			06/19/15 10:07	1
Tetrachloroethene	ND	5.0	0.34	ug/L			06/19/15 10:07	1
Toluene	ND	5.0	0.45	ug/L			06/19/15 10:07	1
trans-1,2-Dichloroethene	ND	5.0		ug/L			06/19/15 10:07	1
trans-1,3-Dichloropropene	ND	5.0		ug/L			06/19/15 10:07	1
Trichloroethene	ND	5.0	0.60	ug/L			06/19/15 10:07	1
Vinyl chloride	ND	5.0	0.75	ug/L			06/19/15 10:07	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	****	72 - 130	06/19/15 10:07	1
4-Bromofluorobenzene (Surr)	97		69 - 121	06/19/15 10:07	1
Toluene-d8 (Surr)	97		70 - 123	06/19/15 10:07	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/17/15 08:00	06/17/15 21:49	1
Arsenic	ND		0.015	0.0056	mg/L		06/17/15 08:00	06/17/15 21:49	1
Beryllium	ND		0.0020	0.00030	mg/L		06/17/15 08:00	06/17/15 21:49	1
Cadmium	ND	•	0.0020	0.00050	mg/L		06/17/15 08:00	06/17/15 21:49	1
Chromium	ND		0.0040	0.0010	mg/L		06/17/15 08:00	06/17/15 21:49	1
Copper	ND		0.010	0.0016	mg/L		06/17/15 08:00	06/17/15 21:49	1
Lead	ND		0.010	0.0030	mg/L	*	06/17/15 08:00	06/17/15 21:49	1
Nickel	ND		0.010	0.0013	mg/L		06/17/15 08:00	06/17/15 21:49	1
Selenium	ND		0.025	0.0087	mg/L		06/17/15 08:00	06/17/15 21:49	1

TestAmerica Buffalo

Page 10 of 32

6/29/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Client Sample ID: SW-3
Date Collected: 06/15/15 16:15
Date Received: 06/16/15 02:55

Lab Sample ID: 480-82257-3

Matrix: Surface Water

Method: 6010C - Metals (ICP) Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	-	0.0060	0.0017	mg/L		06/17/15 08:00	06/17/15 21:49	1
Thallium	ND		0.020	0.010	mg/L		06/17/15 08:00	06/17/15 21:49	1
Zinc	ND		0.010	0.0015	mg/L		06/17/15 08:00	06/17/15 21:49	1
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/18/15 10:26	06/18/15 20:58	1
Arsenic	ND		0.015	0.0056	mg/L		06/18/15 10:26	06/18/15 20:58	1
Beryllium	ND		0.0020	0.00030	mg/L		06/18/15 10:26	06/18/15 20:58	1
Cadmium	ND		0.0020	0.00050	mg/L		06/18/15 10:26	06/18/15 20:58	1
Chromium	0.0012	JB	0.0040	0.0010	mg/L		06/18/15 10:26	06/18/15 20:58	1
Copper	ND		0.010	0.0016	mg/L		06/18/15 10:26	06/18/15 20:58	1
_ead	ND		0.010	0.0030	mg/L		06/18/15 10:26	06/18/15 20:58	1
Nickel	ND		0.010	0.0013	mg/L		06/18/15 10:26	06/18/15 20:58	1
Selenium	ND		0.025	0.0087	mg/L		06/18/15 10:26	06/18/15 20:58	1
Silver	ND		0.0060	0.0017	mg/L		06/18/15 10:26	06/18/15 20:58	1
Thallium	ND		0.020	0.010	mg/L		06/18/15 10:26	06/18/15 20:58	1
Zinc	0.0027	J	0.010	0.0015	mg/L		06/18/15 10:26	06/18/15 20:58	•
Method: 7470A - Mercury (CV	AA)								
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/22/15 09:30	06/23/15 10:59	1
Method: 7470A - Mercury (CV									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/24/15 09:05	06/24/15 13:38	
General Chemistry					10		_		
Analyte	Result	Qualifler	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	475		10.0	4.0	mg/L			06/22/15 15:49	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Lab Sample ID: 480-82257-4

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 06/15/15 00:00 Date Received: 06/16/15 02:55

Method: 624 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			06/19/15 10:36	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			06/19/15 10:36	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			06/19/15 10:36	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			06/19/15 10:36	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			06/19/15 10:36	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			06/19/15 10:36	1
1,2-Dichloroethane	ND.	5.0	0.60	ug/L			06/19/15 10:36	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			06/19/15 10:36	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			06/19/15 10:36	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			06/19/15 10:36	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			06/19/15 10:36	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			06/19/15 10:36	1
Acrolein	ND	100	17	ug/L			06/19/15 10:36	1
Acrylonitrile	ND	50	1.9	ug/L			06/19/15 10:36	1
Benzene	ND	5.0	0.60	ug/L			06/19/15 10:36	1
Bromoform	ND	5.0	0.47	ug/L			06/19/15 10:36	1
Bromomethane	ND	5.0	1.2	ug/L			06/19/15 10:36	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			06/19/15 10:36	1
Chlorobenzene	ND	5.0	0.48	ug/L			06/19/15 10:36	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			06/19/15 10:36	1
Chloroethane	ND	5.0	0.87	ug/L			06/19/15 10:36	1
Chloroform	ND	5.0	0.54	ug/L			06/19/15 10:36	1
Chloromethane	ND	5.0	0.64	ug/L			06/19/15 10:36	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			06/19/15 10:36	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			06/19/15 10:36	1
Ethylbenzene	ND	5.0	0.46	ug/L			06/19/15 10:36	1
Methylene Chloride	ND	5.0	0.81	ug/L			06/19/15 10:36	1
Tetrachloroethene	ND	5.0	0.34	ug/L			06/19/15 10:36	1
Toluene	ND	5.0	0.45	ug/L			06/19/15 10:36	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			06/19/15 10:36	1
trans-1,3-Dichloropropene	ND	5.0	0.44				06/19/15 10:36	1
Trichloroethene	ND	5.0		ug/L			06/19/15 10:36	1
Vinyl chloride	ND	5.0		ug/L			06/19/15 10:36	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	72 - 130					06/19/15 10:36	1
4-Bromofluorobenzene (Surr)	97	69 - 121					06/19/15 10:36	1
Toluene-d8 (Surr)	99	70 - 123					06/19/15 10:36	1

Surrogate Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Surface Water Prep Type: Total/NA

			Pe	ercent Surroga	te Recovery (Acceptance Limits
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
180-82257-1	SW-1	100	97	98	
80-82257-2	SW-2	100	96	97	
480-82257-3	SW-3	101	97	97	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

nake			Pe	rcent Surro	gate Recovery (Acceptance Limits)
Lab Sample ID	Cilent Sample ID	12DCE (72-130)	BFB (69-121)	TOL (70-123)	
480-82257-4	TRIP BLANK	103	97	99	
LCS 480-248940/4	Lab Control Sample	110	99	97	
MB 480-248940/6	Method Blank	109	97	99	
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Client: Town of Dewitt Project/Site: Town of Dewitt

TestAmerica Job ID: 480-82257-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-248940/6

Matrix: Water

Analysis Batch: 248940

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB RL **MDL** Unit Result Qualifier **Prepared** Analyzed Dil Fac ND 5.0 0.39 ug/L 06/18/15 23:06

1,1,1-Trichloroethane 1.1.2.2-Tetrachloroethane ND 5.0 0.26 ug/L 06/18/15 23:06 1.1.2-Trichloroethane ND 5.0 0.48 ug/L 06/18/15 23:06 ND 1,1-Dichloroethane 5.0 0.59 ug/L 06/18/15 23:06 1,1-Dichloroethene ND 5.0 0.85 ug/L 06/18/15 23:06 1,2-Dichlorobenzene ND 5.0 0.44 ug/L 06/18/15 23:06 ND 1.2-Dichlomethane 5.0 ug/L 0.60 06/18/15 23:06 ND 1,2-Dichloroethene, Total 10 ug/L 3.2 06/18/15 23:06 1,2-Dichloropropane ND 5.0 0.61 ug/L 06/18/15 23:06 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 06/18/15 23:06 1,4-Dichlorobenzene ND 5.0 0.51 ug/L 06/18/15 23:06 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 06/18/15 23:06 ND Acrolein 100 17 ug/L 06/18/15 23:06 Acrylonitrile ND 50 1.9 ug/L 06/18/15 23:06 Benzene ND 5.0 0.60 06/18/15 23:06 ug/L Bromoform ND 5.0 0.47 ug/L 06/18/15 23:06 ND 06/18/15 23:06 **Romomethane** 5.0 1.2 ug/L ND 5.0 0.51 ug/L 06/18/15 23:06 Carbon tetrachloride Chlorobenzene ND 5.0 0.48 ug/L 06/18/15 23:06 Chlorodibromomethane ND 5.0 0.41 ug/L 06/18/15 23:06 Chloroethane ND 5.0 0.87 ug/L 06/18/15 23:06 ND 5.0 06/18/15 23:06 Chloroform 0.54 ug/L ND 5.0 06/18/15 23:06 Chloromethane 0.64 ug/L cis-1,3-Dichloropropene ND 5.0 0.33 ug/L 06/18/15 23:06 ND 5.0 06/18/15 23:06 Dichlorobromomethane 0.54 ug/L Ethylbenzene ND 5.0 0.46 ug/L 06/18/15 23:06 ND 5.0 06/18/15 23:06 0.81 ug/L Methylene Chloride ND 06/18/15 23:06 Tetrachloroethene 5.0 0.34 ug/L Toluene ND 5.0 0.45 ug/L 06/18/15 23:06

ND 5.0 0.59 ug/L 06/18/15 23:06 trans-1,2-Dichloroethene 06/18/15 23:06 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L ND 5.0 06/18/15 23:06 Trichloroethene 0.60 ug/L 06/18/15 23:06 ND 5.0 0.75 ug/L Vinyl chloride MB MB

%Recovery Qualifier Limits Prepared Analyzed Dil Fac 72-130 1,2-Dichloroethane-d4 (Surr) 109 06/18/15 23:06 4-Bromofluorobenzene (Surr) 97 69 - 121 06/18/15 23:06 Toluene-d8 (Surr) 99 70-123 06/18/15 23:06

Lab Sample ID: LCS 480-248940/4

Matrix: Water

Analysis Batch: 248940

Client Sample ID: Lab Control Sample Prep Type: Total/NA

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	17.6		ug/L		88	52 - 162	
1,1,2,2-Tetrachloroethaпе	20.0	16.5		ug/L		82	46 - 157	
1,1,2-Trichloroethane	20.0	17.9		ug/L		89	52 - 150	
1,1-Dichloroethaпe	20.0	17.9		ug/L		89	59 - 155	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-248940/4 Matrix: Water

Analysis Batch: 248940

Analysis Batch: 246940	Spike	LCS	CC			%Rec.	
Analyte	Added			nit C	%Rec	Limits	
1,1-Dichloroethene	20.0	16.2		g/L	81	1 - 234	
1,2-Dichlorobenzene	20.0	16.7		g/L	84	18 - 190	
1,2-Dichloroethane	20.0	20.9		g/L	105	49 - 155	
	20.0	18.7		g/L	94	1-210	
1,2-Dichloropropane	20.0	16.4		g/L	82	59 - 156	
1,3-Dichlorobenzene	20.0	16.3		g/L	82	18 - 190	
1,4-Dichlorobenzene	20.0	17.4		•	87	1 - 305	
2-Chloroethyl vinyl ether				g/L	91	37 - 151	
Benzene	20.0	18.3		g/L	99	45 - 169	
Bromoform	20.0	19.8		g/L			
Bromomethane	20.0	18.0		g/L	90	1 - 242	
Carbon tetrachloride	20.0	19.3		g/L	96	70 - 140	
Chlorobenzene	20.0	17.4		g/L	87	37 - 160	
Chlorodibromomethane	20.0	19.6	u	g/L	98	53 - 149	
Chloroethane	20.0	18.1	u	g/L	91	14 - 230	
Chloroform	20.0	18.9	u	g/L	95	51 - 138	
Chloromethane	20.0	19.2	u	g/L	96	1 - 273	
cis-1,3-Dichloropropene	20.0	18.3	u	g/L	92	1 - 227	
Dichlorobromomethane	20.0	20.4	u	g/L	102	35 - 155	
Ethylbenzene	20.0	17.0	u	g/L	85	37 - 162	
Methylene Chloride	20.0	18.6	u	g/L	93	1 - 221	
Tetrachloroethene	20.0	16.1	u	g/L	80	64 - 148	
Toluene	20.0	17.1	u	g/L	86	47 - 150	
trans-1,2-Dichloroethene	20.0	18.1	U	g/L	91	54 - 156	
trans-1,3-Dichloropropene	20.0	15.8	U	g/L	79	17 - 183	
Trichloroethene	20.0	18.2	U	g/L	91	71 - 157	
Vinyl chloride	20.0	17.4	U	g/L	87	1 - 251	
100	100						

100 100

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	110		72 - 130
4-Bromofluorobenzene (Surr)	99		69 - 121
Toluene-d8 (Surr)	97		70 - 123

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-248357/1-A

Matrix: Water

Analysis Batch: 248769

Client	Sample	ID:	Meth	od	Blank
	Pre	ep 1	Гуре:	To	tal/NA

Prep Batch: 248357

MB MB							
ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND O	0.020	0.0068	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.015	0.0056	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.0020	0.00030	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.0020	0.00050	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.0040	0.0010	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.010	0.0016	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.010	0.0030	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.010	0.0013	mg/L		06/17/15 08:00	06/17/15 20:51	1
ND	0.025	0.0087	mg/L		06/17/15 08:00	06/17/15 20:51	1
	MB UIT Qualifier ND	ult Qualifier RL ND 0.020 ND 0.015 ND 0.0020 ND 0.0020 ND 0.0040 ND 0.010 ND 0.010 ND 0.010 ND 0.010	ult Qualifier RL MDL ND 0.020 0.0068 ND 0.015 0.0056 ND 0.0020 0.00030 ND 0.0020 0.00050 ND 0.0040 0.0010 ND 0.010 0.0016 ND 0.010 0.0030 ND 0.010 0.0013	ult Qualifier RL MDL Unit ND 0.020 0.0068 mg/L ND 0.015 0.0056 mg/L ND 0.0020 0.00030 mg/L ND 0.0020 0.00050 mg/L ND 0.0040 0.0010 mg/L ND 0.010 0.0016 mg/L ND 0.010 0.0030 mg/L ND 0.010 0.0013 mg/L ND 0.010 0.0013 mg/L	ult Qualifier RL MDL Unit D ND 0.020 0.0068 mg/L ND 0.015 0.0056 mg/L ND 0.0020 0.00030 mg/L ND 0.0020 0.00050 mg/L ND 0.0040 0.0010 mg/L ND 0.010 0.0016 mg/L ND 0.010 0.0030 mg/L ND 0.010 0.0013 mg/L	ult Qualifier RL MDL Unit D Prepared ND 0.020 0.0068 mg/L 06/17/15 08:00 ND 0.015 0.0056 mg/L 06/17/15 08:00 ND 0.0020 0.00030 mg/L 06/17/15 08:00 ND 0.0040 0.0010 mg/L 06/17/15 08:00 ND 0.010 0.0016 mg/L 06/17/15 08:00 ND 0.010 0.0030 mg/L 06/17/15 08:00 ND 0.010 0.0030 mg/L 06/17/15 08:00 ND 0.010 0.0013 mg/L 06/17/15 08:00	ult Qualifier RL MDL Unit D Prepared 06/17/15 08:00 Analyzed 06/17/15 20:51 ND 0.020 0.0068 mg/L 06/17/15 08:00 06/17/15 20:51 ND 0.0020 0.00030 mg/L 06/17/15 08:00 06/17/15 20:51 ND 0.0020 0.00050 mg/L 06/17/15 08:00 06/17/15 20:51 ND 0.0040 0.0010 mg/L 06/17/15 08:00 06/17/15 20:51 ND 0.010 0.0016 mg/L 06/17/15 08:00 06/17/15 20:51 ND 0.010 0.0030 mg/L 06/17/15 08:00 06/17/15 20:51 ND 0.010 0.0031 mg/L 06/17/15 08:00 06/17/15 20:51

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-248357/1-A Matrix: Water

Analysis Batch: 248769 MP MP Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 248357

	MD	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		06/17/15 08:00	06/17/15 20:51	1
Thallium	ND		0.020	0.010	mg/L		06/17/15 08:00	06/17/15 20:51	1
Zinc	0.00252	J	0.010	0.0015	mg/L		06/17/15 08:00	06/17/15 20:51	1

Lab Sample ID: LCS 480-248357/2-A

Matrix: Water

Analysis Ratch: 248769

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 248357

Analysis Batch. 240703	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.200	0.189		mg/L		95	80 - 120
Arsenic	0.200	0.194		mg/L		97	80 - 120
Beryllium	0.200	0.195		mg/L		98	80 - 120
Cadmium	0.200	0.192		mg/L		96	80 - 120
Chromium	0.200	0.198		mg/L		99	80 - 120
Copper	0.200	0.194		mg/L		97	80 - 120
Lead	0.200	0.189		mg/L		95	80 - 120
Nickel	0.200	0.191		mg/L		95	80 - 120
Selenium	0.200	0.196		mg/L		98	80 - 120
Silver	0.0500	0.0478		mg/L		96	80 - 120
Thallium	0.200	0.189		mg/L		95	80 - 120
Zinc	0.200	0.189		mg/L		94	80 - 120

Lab Sample ID: MB 480-248507/1-B

Matrix: Water

Analysis Batch: 249031

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 248778

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	4 1 1 1 1 1 1	0.020	0.0068	mg/L		06/18/15 10:26	06/18/15 20:35	1
Arsenic	ND		0.015	0.0056	mg/L		06/18/15 10:26	06/18/15 20:35	1
Beryllium	ND		0.0020	0.00030	mg/L		06/18/15 10:26	06/18/15 20:35	1
Cadmium	ND		0.0020	0.00050	mg/L		06/18/15 10:26	06/18/15 20:35	1
Chromium	0.00134	J	0.0040	0.0010	mg/L		06/18/15 10:26	06/18/15 20:35	1
Copper	ND		0.010	0.0016	mg/L		06/18/15 10:26	06/18/15 20:35	1
Lead	ND		0.010	0.0030	mg/L		06/18/15 10:26	06/18/15 20:35	1
Nickel	ND		0.010	0.0013	mg/L		06/18/15 10:26	06/18/15 20:35	1
Selenium	ND		0.025	0.0087	mg/L		06/18/15 10:26	06/18/15 20:35	1
Silver	ND		0.0060	0.0017	mg/L		06/18/15 10:26	06/18/15 20:35	1
Thallium	ND		0.020	0.010	mg/L		06/18/15 10:26	06/18/15 20:35	1
Zinc	ND		0.010	0.0015	mg/L		06/18/15 10:26	06/18/15 20:35	1

Lab Sample ID: LCS 480-248507/2-B

Matrix: Water

Analysis Ratch: 249031

Client Sample ID: Lab Control Sample **Prep Type: Dissolved**

Prep Batch: 248778

Allalysis Batch. 243031	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.200	0.184		mg/L		92	80 - 120
Arsenic	0.200	0.189		mg/L		94	80 - 120
Beryllium	0.200	0.190		mg/L		95	80 - 120
Cadmium	0.200	0.186		mg/L		93	80 - 120

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-248507/2-B Matrix: Water Analysis Batch: 249031				Clie	nt Sar		: Lab Control Sample Prep Type: Dissolved Prep Batch: 248778
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chromium	0.200	0.192		mg/L		96	80 - 120
Copper	0.200	0.188		mg/L		94	80 - 120
Lead	0.200	0.185		mg/L		92	80 - 120
Nickel	0.200	0.185		mg/L		92	80 - 120
Selenium	0.200	0.189		mg/L		95	80 - 120
Silver	0.0500	0.0475		mg/L		95	80 - 120
Thallium	0.200	0.187		mg/L		93	80 - 120
Zinc	0.200	0.181		mg/L		91	80 - 120

Lab Sample ID: 480-82257-1 MS

Matrix: Surface Water

Analysis Batch: 249031

Sample Sample Spike MS MS

Analysis Batch: Qualifier Added Result Qualifier Unit D %Rec Limits

Client Sample ID: SW-1

Prep Type: Dissolved

Prep Batch: 248778

%Rec.

Sample	Sample	Spike	MS	MS				%Rec.	
•		Added			Unit	D	%Rec	Limits	
ND		0.200	0.180		mg/L		90	75 - 125	
ND		0.200	0.183		mg/L		91	75 - 125	
ND		0.200	0.183		mg/L		91	75 - 125	
ND		0.200	0.181		mg/L		91	75 - 125	
0.0014	JB	0.200	0.183		mg/L		91	75 - 125	
ND		0.200	0.182		mg/L		91	75 - 125	
ND		0.200	0.180		mg/L		90	75 - 125	
0.0023	J	0.200	0.180		mg/L		89	75 - 125	
ND		0.200	0.182		mg/L		91	75 - 125	
ND		0.0500	0.0459		mg/L		92	75 - 125	
ND		0.200	0.179		mg/L		89	75 - 125	
0.0033	J	0.200	0.176		mg/L		86	75 - 125	
	Result ND ND ND ND 0.0014 ND	ND ND 0.0014 JB ND ND 0.0023 J ND	Result Qualifier Added ND 0.200 ND 0.0500 ND 0.200	Result Qualifier Added Result ND 0.200 0.180 ND 0.200 0.183 ND 0.200 0.183 ND 0.200 0.181 0.0014 JB 0.200 0.183 ND 0.200 0.182 ND 0.200 0.180 0.0023 J 0.200 0.180 ND 0.200 0.182 ND 0.0500 0.0459 ND 0.200 0.179	Result Qualifier Added Result Qualifier ND 0.200 0.180 ND 0.200 0.183 ND 0.200 0.181 0.0014 J B 0.200 0.183 ND 0.200 0.182 ND 0.200 0.180 0.0023 J 0.200 0.180 ND 0.200 0.182 ND 0.200 0.182 ND 0.0500 0.0459 ND 0.200 0.179	Result Qualifier Added Result Qualifier Unit ND 0.200 0.180 mg/L ND 0.200 0.183 mg/L ND 0.200 0.183 mg/L ND 0.200 0.181 mg/L ND 0.200 0.183 mg/L ND 0.200 0.182 mg/L ND 0.200 0.180 mg/L ND 0.200 0.180 mg/L ND 0.200 0.182 mg/L ND 0.0500 0.0459 mg/L ND 0.200 0.179 mg/L	Result Qualifier Added Nesult Qualifier Qualifier Unit Unit Mg/L Unit	Result Qualifier Added Result Qualifier Unit D %Rec ND 0.200 0.180 mg/L 90 ND 0.200 0.183 mg/L 91 ND 0.200 0.181 mg/L 91 0.0014 J B 0.200 0.183 mg/L 91 ND 0.200 0.183 mg/L 91 ND 0.200 0.182 mg/L 90 0.0023 J 0.200 0.180 mg/L 89 ND 0.200 0.182 mg/L 91 ND 0.200 0.182 mg/L 91 ND 0.0500 0.0459 mg/L 92 ND 0.0500 0.0459 mg/L 89 ND 0.200 0.179 mg/L 89	Result Qualifier Added Added No.200 Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

Lab Sample ID: 480-82257-1 MSD

Matrix: Surface Water

Analysis Batch: 249031

Sample Sample Spike MSD MSD

Sample Sample Spike MSD MSD

Sample Sample Sample Spike MSD MSD

Sample Sample Spike MSD MSD

Sample Sample Sample Spike MSD MSD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.200	0.189		mg/L		95	75 - 125	5	20
Arsenic	ND		0.200	0.195		mg/L		98	75 - 125	7	20
Beryllium	ND		0.200	0.193		mg/L		97	75 - 125	6	20
Cadmium	ND		0.200	0.192		mg/L		96	75 - 125	6	20
Chromium	0.0014	JB	0.200	0.193		mg/L		96	75 - 125	5	20
Copper	ND		0.200	0.192		mg/L		96	75 - 125	6	20
Lead	ND		0.200	0.189		mg/L		95	75 - 125	5	20
Nickel	0.0023	J	0.200	0.190		mg/L		94	75 - 125	6	20
Selenium	ND		0.200	0.194		mg/L		97	75 - 125	6	20
Silver	ND ND		0.0500	0.0488		mg/L		98	75 - 125	6	20
Thallium	ND		0.200	0.189		mg/L		95	75 - 125	6	20
Zinc	0.0033	J	0.200	0.182		mg/L		89	75 - 125	3	20

RL

RL

RL

0.00020

0.00020

0.00020

Spike

Added

0.00667

Spike

Added

0.00667

Spike

Added

0.00667

MB MB

MB MB

Result Qualifier

ND

Result Qualifier

MDL Unit

0.00012 mg/L

LCS LCS

0.00687

Result Qualifier

MDL Unit

0.00012 mg/L

LCS LCS

0.00608

Result Qualifler

MDL Unit

0.00012 mg/L

LCS LCS

0.00633

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

ma/L

Client Sample ID: Method Blank

06/19/15 08:50 06/19/15 12:01

Client Sample ID: Lab Control Sample

%Rec.

Limits

80.120

Client Sample ID: Method Blank

06/22/15 09:30 06/23/15 10:56

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

06/24/15 09:05 06/24/15 12:56

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Prepared

D %Rec

Prepared

%Rec

Prepared

%Rec

95

91

103

Prep Type: Total/NA

Prep Batch: 249014

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 249333

Prep Type: Total/NA

Prep Batch: 249333

Prep Type: Dissolved

Prep Type: Dissolved

Prep Batch: 249792

Prep Type: Total/NA

Analyzed

Prep Batch: 249792

Dil Fac

Analyzed

Prep Batch: 249014

Analyzed

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-249014/1-A Matrix: Water

Analysis Batch: 249124

Analyte

Mercury

MR MR Result Qualifier

Lab Sample ID: LCS 480-249014/2-A Matrix: Water

Analysis Batch: 249124

Analyte

Mercury

Lab Sample ID: MB 480-249333/1-A

Matrix: Water Analysis Batch: 249647

Analyte Mercury

Lab Sample ID: LCS 480-249333/2-A

Matrix: Water Analysis Batch: 249647

Analyte Mercury

Lab Sample ID: MB 480-248507/1-D

Matrix: Water Analysis Batch: 249971

Analyte

Lab Sample ID: LCS 480-248507/2-D

Matrix: Water Analysis Batch: 249971

Analyte Mercury

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-249463/1 Matrix: Water

Analysis Batch: 249463

Analyte

Total Dissolved Solids

Result Qualifier ND

MB MB

10.0

RL

MDL Unit 4.0 mg/L

Prepared

Analyzed 06/22/15 15:49

Dil Fac

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 480-249463/2 Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 249463

Total Dissolved Solids

Analyte

LCS LCS %Rec. Spike Added Result Qualifier Unit D %Rec Limits 99 85 - 115 502 495.0 mg/L

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

-		_			-
	400	_	5. 4	-	-
12.0		62	3.0	ar n	<i>a</i>
15.75	/	-	- 787	W. J.	86

Analysis Batch: 248940	Ana	Ivsis	Batch:	248940
------------------------	-----	-------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Total/NA	Surface Water	624	
480-82257-2	SW-2	Total/NA	Surface Water	624	
480-82257-3	SW-3	Total/NA	Surface Water	624	
480-82257-4	TRIP BLANK	Total/NA	Water	624	
LCS 480-248940/4	Lab Control Sample	Total/NA	Water	624	
MB 480-248940/6	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 248357

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Total/NA	Surface Water	3005A	
480-82257-2	SW-2	Total/NA	Surface Water	3005A	
480-82257-3	SW-3	Total/NA	Surface Water	3005A	
LCS 480-248357/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-248357/1-A	Method Blank	Total/NA	Water	3005A	

Filtration Batch: 248507

Method Prep Bato	Method	Prep Type	Client Sample ID	Lab Sample ID
ILTRATION	FILTRATION	Dissolved	SW-1	480-82257-1
ILTRATION	FILTRATION	Dissolved	SW-1	480-82257-1 MS
ILTRATION	FILTRATION	Dissolved	SW-1	480-82257-1 MSD
ILTRATION	FILTRATION	Dissolved	SW-2	480-82257-2
ILTRATION	FILTRATION	Dissolved	SW-3	480-82257-3
ILTRATION	FILTRATION	Dissolved	Lab Control Sample	LCS 480-248507/2-B
ILTRATION	FILTRATION	Dissolved	Lab Control Sample	LCS 480-248507/2-D
ILTRATION	FILTRATION	Dissolved	Method Blank	MB 480-248507/1-B
ILTRATION	FILTRATION	Dissolved	Method Blank	MB 480-248507/1-D
	F F F	Dissolved Dissolved Dissolved Dissolved	SW-3 Lab Control Sample Lab Control Sample Method Blank	480-82257-3 LCS 480-248507/2-B LCS 480-248507/2-D MB 480-248507/1-B

Analysis Batch: 248769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Total/NA	Surface Water	6010C	248357
480-82257-2	SW-2	Total/NA	Surface Water	6010C	248357
480-82257-3	SW-3	Total/NA	Surface Water	6010C	248357
LCS 480-248357/2-A	Lab Control Sample	Total/NA	Water	6010C	248357
MB 480-248357/1-A	Method Blank	Total/NA	Water	6010C	248357

Prep Batch: 248778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Dissolved	Surface Water	3005A	248507
480-82257-1 MS	SW-1	Dissolved	Surface Water	3005A	248507
480-82257-1 MSD	SW-1	Dissolved	Surface Water	3005A	248507
480-82257-2	SW-2	Dissolved	Surface Water	3005A	248507
480-82257-3	SW-3	Dissolved	Surface Water	3005A	248507
LCS 480-248507/2-B	Lab Control Sample	Dissolved	Water	3005A	248507
MB 480-248507/1-B	Method Blank	Dissolved	Water	3005A	248507

Prep Batch: 249014

Tiep Daton. 240014					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Total/NA	Surface Water	7470A	

TestAmerica Buffalo

6/29/2015

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Metals (Continued)

Prep	Batch:	249014	(Continued)
1 100	Duton.		(O O I I I I I I I I I I I I I I I I I

	Lab Sample iD	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1	480-82257-2	SW-2	Total/NA	Surface Water	7470A	
-	LCS 480-249014/2-A	Lab Control Sample	Total/NA	Water	7470A	
-	MB 480-249014/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 249031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Dissolved	Surface Water	6010C	248778
480-82257-1 MS	SW-1	Dissolved	Surface Water	6010C	248778
480-82257-1 MSD	SW-1	Dissolved	Surface Water	6010C	248778
480-82257-2	SW-2	Dissolved	Surface Water	6010C	248778
480-82257-3	SW-3	Dissolved	Surface Water	6010C	248778
LCS 480-248507/2-B	Lab Control Sample	Dissolved	Water	6010C	248778
MB 480-248507/1-B	Method Blank	Dissolved	Water	6010C	248778

Analysis Batch: 249124

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Total/NA	Surface Water	7470A	249014
480-82257-2	SW-2	Total/NA	Surface Water	7470A	249014
LCS 480-249014/2-A	Lab Control Sample	Total/NA	Water	7470A	249014
MB 480-249014/1-A	Method Blank	Total/NA	Water	7470A	249014

Prep Batch: 249333

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-3	SW-3	Total/NA	Surface Water	7470A	
LCS 480-249333/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-249333/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 249647

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-	82257-3	SW-3	Total/NA	Surface Water	7470A	249333
LCS	480-249333/2-A	Lab Control Sample	Total/NA	Water	7470A	249333
MB 4	180-249333/1-A	Method Blank	Total/NA	Water	7470A	249333

Prep Batch: 249792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Dissolved	Surface Water	7470A	248507
480-82257-2	SW-2	Dissolved	Surface Water	7470A	248507
480-82257-3	SW-3	Dissolved	Surface Water	7470A	248507
LCS 480-248507/2-D	Lab Control Sample	Dissolved	Water	7470A	248507
MB 480-248507/1-D	Method Blank	Dissolved	Water	7470A	248507

Analysis Batch: 249971

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82257-1	SW-1	Dissolved	Surface Water	7470A	249792
480-82257-2	SW-2	Dissolved	Surface Water	7470A	249792
480-82257-3	SW-3	Dissolved	Surface Water	7470A	249792
LCS 480-248507/2-D	Lab Control Sample	Dissolved	Water	7470A	249792
MB 480-248507/1-D	Method Blank	Dissolved	Water	7470A	249792

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID

Lab Control Sample

Method Blank

SW-1

SW-2

SW-3

General Chemistry Analysis Batch: 249463

Lab Sample ID

480-82257-1

480-82257-2

480-82257-3

LCS 480-249463/2

MB 480-249463/1

TestAmerica Job ID: 480-82257-1

Method

SM 2540C

SM 2540C

SM 2540C

SM 2540C

SM 2540C

Matrix

Water

Water

Surface Water

Surface Water

Surface Water

Prep Batch

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Lab Sample ID: 480-82257-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 06/15/15 15:35 Date Received: 06/16/15 02:55

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	248940	06/19/15 09:10	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			248507	06/17/15 08:57	TAS	TAL BUF
Dissolved	Prep	3005A			248778	06/18/15 10:26	KJ1	TAL BUF
Dissolved	Analysis	6010C		1	249031	06/18/15 20:41	AMH	TAL BUF
Total/NA	Prep	3005A			248357	06/17/15 08:00	CMM	TAL BUF
Total/NA	Analysis	6010C		1	248769	06/17/15 21:35	SLB	TAL BUF
Dissolved	Filtration	FILTRATION			248507	06/17/15 08:57	TAS	TAL BUF
Dissolved	Prep	7470A			249792	06/24/15 09:05	LRK	TAL BUF
Dissolved	Analysis	7470A		1	249971	06/24/15 13:35	LRK	TAL BUF
Total/NA	Prep	7470A			249014	06/19/15 08:50	LRK	TAL BUF
Total/NA	Analysis	7470A		1	249124	06/19/15 12:41	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	249463	06/22/15 15:49	EGS	TAL BUF

Client Sample ID: SW-2

Date Collected: 06/15/15 15:55 Date Received: 06/16/15 02:55 Lab Sample ID: 480-82257-2

Matrix: Surface Water

Deep Tues	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type Total/NA	Type Analysis	624	Null	4	248940	06/19/15 09:39	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			248507	06/17/15 08:57	TAS	TAL BUF
Dissolved	Prep	3005A			248778	06/18/15 10:26	KJ1	TAL BUF
Dissolved	Analysis	6010C		1	249031	06/18/15 20:55	AMH	TAL BUF
Total/NA	Prep	3005A			248357	06/17/15 08:00	CMM	TAL BUF
Total/NA	Analysis	6010C		1	248769	06/17/15 21:38	SLB	TAL BUF
Dissolved	Filtration	FILTRATION			248507	06/17/15 08:57	TAS	TAL BUF
Dissolved	Prep	7470A			249792	06/24/15 09:05	LRK	TAL BUF
Dissolved	Analysis	7470A		1	249971	06/24/15 13:36	LRK	TAL BUF
Total/NA	Prep	7470A			249014	06/19/15 08:50	LRK	TAL BUF
Total/NA	Analysis	7470A		1	249124	06/19/15 12:43	LRK	TAL BUR
Total/NA	Analysis	SM 2540C		1	249463	06/22/15 15:49	EGS	TAL BUI

Client Sample ID: SW-3
Date Collected: 06/15/15 16:15

Date Received: 06/16/15 02:55

Lab Sample ID: 480-82257-3

Matrix: Surface Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624			248940	06/19/15 10:07	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			248507	06/17/15 08:57	TAS	TAL BUF
Dissolved	Prep	3005A			248778	06/18/15 10:26	KJ1	TAL BUF
Dissolved	Analysis	6010C		1	249031	06/18/15 20:58	AMH	TAL BUF
Total/NA	Prep	3005A			248357	06/17/15 08:00	CMM	TAL BUF
Total/NA	Analysis	6010C		1	248769	06/17/15 21:49	SLB	TAL BUF
Dissolved	Filtration	FILTRATION			248507	06/17/15 08:57	TAS	TAL BUF

TestAmerica Buffalo

Page 23 of 32

6/29/2015

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Lab Sample ID: 480-82257-3

Matrix: Surface Water

Client Sample ID: SW-3
Date Collected: 06/15/15 16:15
Date Received: 06/16/15 02:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			249792	06/24/15 09:05	LRK	TAL BUF
Dissolved	Analysis	7470A		1	249971	06/24/15 13:38	LRK	TAL BUF
Total/NA	Prep	7470A			249333	06/22/15 09:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	249647	06/23/15 10:59	LRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	249463	06/22/15 15:49	EGS	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 06/15/15 00:00

Date Received: 06/16/15 02:55

Lab Sample ID: 480-82257-4

Matrix: Water

10

Batch Dilution Batch Prepared Batch Method Run **Factor** Number or Analyzed Analyst Lab **Prep Type** Type TAL BUF 248940 06/19/15 10:36 NMD1 624 Total/NA Analysis

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analyte	s are included in this repo	rt, but certification is not	offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	е	
624		Surface Water	1,2-Di	chloroethene, Total	
624		Water	1,2-Di	chloroethene, Total	

u

4

5

6

0

10

11

13

14

T:

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-82257-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

ij

23

4

5

(3)

7

8

9

100

12

13

15

115

Sample Summary

Matrix

Water

Surface Water

Surface Water

Surface Water

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID

SW-1

SW-2

SW-3

TRIP BLANK

Lab Sample ID

480-82257-1

480-82257-2

480-82257-3

480-82257-4

TestAmerica Job ID: 480-82257-1

Collected

06/15/15 15:35 06/16/15 02:55

06/15/15 15:55 06/16/15 02:55

06/15/15 16:15 06/16/15 02:55

06/15/15 00:00 06/16/15 02:55

Received

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER OF SEMINORISENTAL TESTER

Client Information	Sampler: Lab PM: Shaffer, Lis							Carrier	Carrier Tracking No(s):		COC No: 480-68741-14484.1		
Client Contact Michael Moracco	Phone:			E-Mail	: haffer@	testame	ericaino	.com				Page: Page 1 of 1	
Company:				1		Analysis Requested						Job #:	
Town of Dewitt Address:	Due Date Requests	sd:				T		Analysis	Request	eu	1 8	Preservation Co	des:
5400 Butternut Drive												A - HCL	M - Hexane
City: East Syracuse	TAT Requested (da	rys):			4							B - NaOH C - Zn Acetate	N - None O - AsNeO2
State, Zip: NY, 13057							_					D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone:	PO#:					Dela	- 62					F - MeOH G - Amchior	R - Na2S2SO3 S - H2SO4
315-446-3428(Tel) Emait	Purchase Order W0#:	not require	2		eNo.	=	9	andioe				H - Ascorbic Acid	T - TSP Dodecahydrata U - Acetone
mmoracco@townofdewitt.com	0.5-4					et at a	i i	0				J - DI Water K - EDTA	V-MCAA W-ph 4-6
Project Name: Town of Dewitt/ Event Desc: Surfacewater - Quarterly (3,6,9,12)	Project #: 48009871					ant &	utant	Itared			Clustood	L-EDA	Z - other (specify)
Site: New York	SSOW#:					6010C - Priority Pollutant Metals - Filtered 8010C, 7470A	624_6ml - Priority Poliutant List - VOA - 624	B .			200	K-EDTA L-EDA Other:	
			Sample	latrix	Bala	riority 170A	Prior	7470A - Mercury				a du	
		Sample	Type (C=comp, o-	brooks,	Hariotet ette	6010C - Prior 8010C, 7470A	5	7470A - Mero				Special I	
Sample Identification	Sample Date	Time	G=grab) BT-T	some, Andir)		8 8					180-82257	Special I	nstructions/Note:
			Preservation	a dollar . Cala are an	XX	D _a .	A K	N A	3		8	X	
SW-1	6-15-15	1535	0	Vater		XX	X	(1)					
SW-2	6-15-15	1555	G- 1	Vater		XX	XV	14					
SW-3	6-15-15	1615	6	Vater		XX	X	(1)					
Trip Blank			1- 10	200			X				1	60	
												<u> </u>	
											1 2		
				1/	H		\Box						
				H C		+		++	111				
		0	1									- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		10-	151	11		+	+-						
			1, 7	12		+		++-	++	$+\Gamma$			
										155			
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Pois	no 8 Links	own 🗆	Radiological		San	Retur	n To C	A ree may	Dispos	al By Lah		ined longer than the	Months
Deliverable Requested: I, II, III, IV, Other (specify)	511 5		loc/o/eg/oci					/QC Requir	rements:				
Empty Kit Relinquished by:		Date:	-		Time:		11	,	1	Method of Ship	ment		
Refinquished by:	Date/Time:	/	Con	pany		Received	4/1/	/		Dat	6 Jus 1	J 0255	Company
Refinquished by:	0-15-1 Date/Time:		1800 T	pany	ALB	Registed	by:	1			a/Time:	Cas	Company
Relinquished by:	Date/Time:		Соп	pany		Received	by:			Dat	e/Time:		Company
Custody Seals Intact: Custody Seal No.:						Cooler Te	mpecut	e(s) °C and O	ther Remarks:			A :	1 - 1
Δ Yes Δ No							.,					0.1	#-/

Facility:	D 1 1 1 1 1 1 1 - 1				las ID.	SW-1
	- Dewitt Landfill			Sample Po	oint ID:	500 1
Field Perso	onnel:	TOL		Sample Ma	atrix:	<u>50</u>
SAMPLIN	G INFORMATION:				•	
Date/Time	(0-15-15,	1535			,
Method of	Sampling:	Bailer	Grab		Dedicated:	YES
Water Dept Length of v Puge Volui	(from top of PVC) th (from top of PVC) water Column me: LWC x 0.17 x 3=			Volume Pt	irged	• •
Methane R			-		**	
SAMPLIN	G DATA:	Hq	Conduct '	Turb.	ORP	DO
	(°C)	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)
1535	20.50	7.52	781	6.41	40.8	5.33 /
Tuebidity 1	.0'Serial #: <u>C 5 7</u> 기 이 아이 .0 Serial #: <u>C 년 4 명 기</u>	5 PLP IV	10			
Turbidity 1 Turbidity 1 VST pH 4.0 Ser pH 7.0 Ser	.0 Serial #: C409 87 0.0 Serial #: C4712 C 550 ial #: 13 m 3 R ial #: 13 m 3 T	EXP IN	12/15			
Turbidity 1 Turbidity 1 VST pH 4.0 Ser pH 7.0 Ser	0.0 Serial #: C409 87 0.0 Serial #: C4712 C 101 #: 13 m 3 R 101 #: 13 m 3 T	EXP IN	/16	ولاع عاة	8/15	
Turbidity 1 Turbidity 1 VST pH 4.0 Ser pH 7.0 Ser pH 10.0 Se	0.0 Serial #: C40987 0.0 Serial #: C4712 9 5573 m 3 R ial #: 13 m 3 5 rial #: 13 m 3 7	EXP IN	12/15	12.42		
Turbidity 1 Turbidity 1 YS L pH 4.0 Ser pH 7.0 Ser pH 10.0 Se Cond Seria	1.0 Serial #: C40487 0.0 Serial #: C4712 C 5573 m 3 R ial #: 13 m 3 F irial #: 13 m 3 F irial #: 14 A 1005 4:	EXP IV	12/15 umhos/cm@2	12/17		
Turbidity 1 Turbidity 1 VS L pH 4.0 Ser pH 7.0 Ser pH 10.0 Se Cond Seria ORP Seria	0.0 Serial #: C40987 0.0 Serial #: C4712 9 5573 m 3 R ial #: 13 m 3 5 rial #: 13 m 3 7	EXP 17 EXP 1,000 240 4117	12/15	12.42		
Turbidity 1 Turbidity 1 YS L pH 4.0 Ser pH 7.0 Ser pH 10.0 Se Cond Seria ORP Seria DO Calibra Weather c	1.0 Serial #: C40487 0.0 Serial #: C4012 5513 m 3 R ial #: 13 m 3 S irial #: 13 m 3 T al #: 14 A 1005 4: 14 S100 ated to 96.5% onditions @ time of sain	ELP 17 ELP 1,000 740 MING:	umhos/cm@2	12/17		
Turbidity 1 Turbidity 1 YS L pH 4.0 Ser pH 7.0 Ser pH 10.0 Se Cond Seria ORP Seria DO Calibra Weather c	1.0 Serial #: C409 87 0.0 Serial #: C4712 9 5573 m 3 R ial #: 13 m 3 5 rial #: 13 m 3 7 rial #: 14 A 1005 45 ated to 96.5%	ELP 17 ELP 1,000 740 MING:	umhos/cm@2	12/17		
Turbidity 1 Turbidity 1 YS L pH 4.0 Ser pH 7.0 Ser pH 10.0 Se Cond Seria ORP Seria DO Calibra Weather c	1.0 Serial #: C40487 0.0 Serial #: C4012 5513 m 3 R ial #: 13 m 3 S irial #: 13 m 3 T al #: 14 A 1005 4: 14 S100 ated to 96.5% onditions @ time of sain	ELP 17 ELP 1,000 740 MING:	umhos/cm@2	12/17		
Turbidity 1 Turbidity 1 YS L pH 4.0 Ser pH 7.0 Ser pH 10.0 Se Cond Seria ORP Seria DO Calibra Weather c	1.0 Serial #: C40487 0.0 Serial #: C4012 5513 m 3 R ial #: 13 m 3 S irial #: 13 m 3 T al #: 14 A 1005 4: 14 S100 ated to 96.5% onditions @ time of sain	ELP 17 ELP (1,000 740 MING:	umhos/cm@2	12/17		
Turbidity 1 Turbidity 1 YS L pH 4.0 Sen pH 7.0 Sen pH 10.0 Se Cond Seria DO Calibra Weather c COMMEN	1.0 Serial #: CYU 9 87 1.0 Serial #: CYU 9 87 1.0 Serial #: CYU 12 1.3 M 3 R 1.4 M 3 R 1.4 M 3 M 3 R 1.4 M 3 M 3 M 1.4	EXP 17 EXP 17 EXP 19 EXP 19 19 19 19 19 19 19 19 19 19 19 19 19	umhos/cm@25 WV EXP BP = 5 SUNN	12/17 29.12 80		Site-Specific
Turbidity 1 YS L pH 4.0 Sen pH 7.0 Sen pH 10.0 Se Cond Seria DO Calibra Weather c COMMEN	1.0 Serial #: CYUY 97 1.0 Serial #: CYUY 97 1.0 Serial #: CYUY 97 1.1	EXP 17 EXP 17 EXP 19 EXP 19 19 19 19 19 19 19 19 19 19 19 19 19	umhos/cm@25 WV EXP BP = 5 SUNN	12/17 29.12 80		Site-Specific

acility:	Dewitt Landfill			Sample Po	int ID:	Sw-2
ield Personr	nel:	TOK	•	Sample Ma	itrix:	SW
AMPLING	NFORMATION:					•
ate/Time	6-	15-15 11.	555			•
lethod of Sa	mpling:	Baffer	Grab.		Dedicated:	YES
Vater Depth (ength of wat ruge Volume:	rom top of PVC) (from top of PVC) ter Column : EWC x 0.17 x 3=		**	Volume Pu	irged	
lethane Read	_		-		••	
AMPLING I	Temp.	pH	Conduct	Turb.	ORP	DO
1555	(°C)	(std units)	(Umhos/cm)	(NTU)	-130.9	(mg/l)
urbidity 0.0 9	Serial #:	- See	e Page	. 28°	for (alibrotur
urbidity 0.0 9 urbidity 1.0 9 urbidity 10.0 H 4.0 Serial 9 H 7.0 Serial 9	Serial #: Serial #: I Serial #: #:	See	e Page	. 28°	for (alibrotar
urbidity 0.0 s urbidity 1.0 s urbidity 10.0 H 4.0 Serial i H 7.0 Serial i H 10.0 Serial	Serial #: Serial #: Serial #: #: #:	<u>-</u> See	Page		for (alibrotar
urbidity 0.0 s urbidity 1.0 s urbidity 10.0 H 4.0 Serial s	Serial #: Serial #: Serial #: #: #:	<u>-</u> See			for (alibrofor
furbidity 0.0 s furbidity 1.0 s furbidity 10.0 H 4.0 Serial H 7.0 Serial H 10.0 Serial Cond Serial #	Serial #: Serial #: Serial #: #: #:	<u>-</u> See	umhos/cm@25	i c	for (alibrotur
urbidity 0.0 s urbidity 1.0 s urbidity 10.0 H 4.0 Serial s H 7.0 Serial H 10.0 Serial Cond Serial #	Serial #: Serial #: Serial #: Serial #: #: #:	<u></u>	umhos/cm@25		for (alibrotur
urbidity 0.0 s urbidity 1.0 s urbidity 10.0 H 4.0 Serial s H 7.0 Serial s H 10.0 Serial # PRP Serial #	Serial #: Serial #: Serial #: Serial #: #: #: #:	See	_umhos/cm@25	i c	for (alibrotur
urbidity 0.0 surbidity 1.0 surbidity 10.0 H 4.0 Serial # 10.0 Serial # PRP Serial #	Serial #: Serial #: Serial #: Serial #: #: #: #: #: #: #: I #: AND OBSERVATION	See	umhos/cm@25	SUS.		
urbidity 0.0 surbidity 1.0 surbidity 10.0 H 4.0 Serial H 7.0 Serial # 10.0 Serial # 10	Serial #: Serial #: Serial #: #: #: #: #: #: I to	See	umhos/cm@25	SUS.		

Field Personnel: Discontinuous	Facility:	Dewitt Landfill			Sample P	oint ID:	5w-3
Method of Sampling: Bailer Grab Dedicated: YES	Field Person	nel:	TDK		Sample N	latrix:	
Method of Sampling: Bailer Grab Dedicated: YES	SAMPLING	INFORMATION:			•		
Method of Sampling: Diameter of Well Well Depth (from top of PVC) Weter Depth (from top of PVC) Length of water Column Puge Volume: LWC x 0.17 x 3= Methane Reading SAMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) (NTU) Mv (mg/l) // // // // // // // // // // // // //	Date/Time	6	-15-15,1	615			>
Well Depth (from top of PVC) Water Depth (from top of PVC) Length of water Column Puge Volume: LWC x 0.17 x 3= Methane Reading SAMPLING DATA: Time Temp. (°C) (std units) (lUmhos/cm) (NTU) Mv (mg/l) INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: Turbidity 10.0 Serial #: Turbidity 10.0 Serial #: DH 4.0 Serial #: DH 10.0 Serial #: Cond Serial #: Umhos/cm@25 C Weather conditions @ time of sampling: SUMM 90 Calibrated to @ Veather conditions @ time of sampling: SUMM 90 Calibrated to @ Veather conditions @ time of sampling: SUMM 90 Calibrated to @ Veather conditions @ time of sampling: SUMM 90 Calibrated to @ Veather conditions @ time of sampling: SUMM 90 Calibrated to @ Veather conditions @ time of sampling: SUMM 90 Calibrated to @ Veather conditions @ time of sampling: SUMM 90 Calibrated to	Method of Sa	ampling:	Bailer	Grab		Dedicated:	YES
Time Temp. (°C) (std units) (Umhos/cm) (NTU) Mv (mg/l) // // / 18.55 7.39 845 5.82 -177.7 3.14 INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: DH 4.0 Serial #: DH 10.0 Serial #: DH 10.0 Serial #: Cond Serial #: Umhos/cm@25 C ORP Serial # Mv OO Calibrated to	Well Depth (f Water Depth Length of wa Puge Volume Methane Rea	from top of PVC) (from top of PVC) ter Column b: LWC x 0.17 x 3=			Volume P	urged	· .
18.93 7.39 845 5.82 -177.7 3.14 INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #:		Temp.	pH	Conduct	Turb.	ORP	DO
INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: See Page 26 Collis of			(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)
ORP Serial # Mv OO Calibrated to @	INSTRUMEN Turbidity 0.0	IT CHECK DATA: Serial #:					
OO Calibrated to@	INSTRUMEN Turbidity 0.0 : Turbidity 1.0 : Turbidity 10.0 pH 4.0 Serial i pH 7.0 Serial i pH 10.0 Serial	Serial #: Serial #: Serial #: Serial #: Serial #: !:	- Se	re pas	pe 29		
Veather conditions @ time of sampling: Suny 80'S	INSTRUMEN Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 pH 4.0 Serial 6 pH 7.0 Serial 6 pH 10.0 Serial	Serial #: Serial #: Serial #: Serial #: Serial #: #:	_ Se	re pas	pe 29		
	INSTRUMEN Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 pH 4.0 Serial 6 pH 7.0 Serial 6 pH 10.0 Serial 6 pH 10.0 Serial 6 pH 10.0 Serial 6	Serial #: Serial #: Serial #: Serial #: Serial #: Serial #:	Se	Le Pas	pe 29		
COMMENTS AND OBSERVATIONS:	INSTRUMEN Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 pH 4.0 Serial 6 pH 7.0 Serial 6 pH 10.0 Serial 6 pH 10.0 Serial #	Serial #: Serial #: Serial #: Serial #: Serial #: Is to	_ Se	umhos/cm@25	je 29	s for	
	INSTRUMEN Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 pH 4.0 Serial ipH 7.0 Serial ipH 10.0 Serial #: ORP Serial # OO Calibrated Veather cond	Serial #: Serial #: Serial #: Serial #: I: I: I: I: Itions @ time of sam	Se Se pling:	umhos/cm@25	je 29	s for	
	INSTRUMEN Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 PH 4.0 Serial i pH 7.0 Serial i pH 10.0 Serial #: ORP Serial # DO Calibrated Weather cond	Serial #: Serial #: Serial #: Serial #: I: I: I: I: Itions @ time of sam	Se Se pling:	umhos/cm@25	je 29	s for	
	INSTRUMEN Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 PH 4.0 Serial i pH 7.0 Serial i pH 10.0 Serial #: ORP Serial # DO Calibrated Weather cond	Serial #: Serial #: Serial #: Serial #: I: I: I: I: Itions @ time of sam	Se Se pling:	umhos/cm@25	je 29	s for	

30

Login Sample Receipt Checklist

Client: Town of Dewitt Job Number: 480-82257-1

Login Number: 82257 List Number: 1

Creator: Williams, Christopher S

List Source: TestAmerica Buffalo

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	•
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	False	LAB TO CHECK RC

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive Suite 11 South Burlington, VT 05403 Tel: (802)660-1990

TestAmerica Job ID: 200-29061-1 Client Project/Site: Town of Dewitt

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Authorized for release by: 8/3/2015 3:31:51 PM

Fin Shoffen

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	19
QC Association Summary	26
Lab Chronicle	27
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	33
Clear Carister Certification	34
Pre-Ship Certification	34
Clean Canister Data	36

	e	

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

2

			-	
APPROX.		A .C.	alle an	
2001				₩.
THE R.	10.0		400	9

Abbreviation	These commonly used abbreviations may or may not be present in this report.
D D	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Job ID: 200-29061-1

Laboratory: TestAmerica Burlington

Narrative

Job Narrative 200-29061-1

Comments

No additional comments.

Receipt

The samples were received on 7/29/2015 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice.

Air Toxics

Method(s) TO-15: The continuing calibration verification (CCV) associated with batch 92119 recovered above the upper control limit for Bromoform. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

Detection Summary

RL

87

87

87

220

87

220

220

220

87

87

RL

410

280

300

1100

380

770

940

520

360

310

RL Unit

ppb v/v

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

310 ug/m3

190 ug/m3

87 ppb v/v

87

220

87

220

220

220

87

RL Unit

410

280

300

1100

380

770

940

520

360

Result Qualifier

350

110

340

540

190

3000

220

590

1100

Result

1700

350

1200

2700

830

970

11000

13000

2400

3900

300

Qualifier

5300

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID: V-3

2,2,4-Trimethylpentane

Dichlorodifluoromethane

2,2,4-Trimethylpentane

Dichlorodifluoromethane

Client Sample ID: V-10

Analyte

Benzene

Freon 22

n-Butane

n-Heptane

n-Hexane Analyte

Benzene

Cyclohexane

Ethylbenzene

Freon 22

n-Butane

n-Heptane

n-Hexane

m,p-Xylene

m,p-Xylene

Cyclohexane

Ethylbenzene

TestAmerica Job ID: 200-29061-1

Lab Sample ID: 200-29061-1

Dil Fac D Method

435

435

435

435

435

435

435

435

435

435

Dil Fac D

435

435

435

435

435

435

435

435

435

435

365

TO-15

Lab Sample ID: 200-29061-3

TO-15

Method

TO-15

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA Total/NA

Prep Type Total/NA

Lab Sample ID: 200-29061-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	260		73	73	ppb v/v	365	_	TO-15	Total/NA
Cyclohexane	250		73	73	ppb v/v	365		TO-15	Total/NA
Ethylbenzene	200		73	73	ppb v/v	365		TO-15	Total/NA
Freon 22	2100	•	180	180	ppb v/v	365		TO-15	Total/NA
n-Butane	4700		180	180	ppb v/v	365		TO-15	Total/NA
n-Heptane	410		73	73	ppb v/v	365		TO-15	Total/NA
n-Hexane	970		73	73	ppb v/v	365		TO-15	Total/NA
Trichlorofluoromethane	82		73	73	ppb v/v	365		TO-15	Total/NA
Vinyl chloride	120		73	73	ppb v/v	365		TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	1200		340	340	ug/m3	365	_	TO-15	Total/NA
Cyclohexane	850		250	250	ug/m3	365		TO-15	Total/NA
Ethylbenzene	880		320	320	ug/m3	365		TO-15	Total/NA
Freon 22	7300		650	650	ug/m3	365		TO-15	Total/NA
n-Butane	11000		430	430	ug/m3	365		TO-15	Total/NA
n-Heptane	1700		300	300	ug/m3	365		TO-15	Total/NA
n-Hexane	3400		260	260	ug/m3	365		TO-15	Total/NA
Trichlorofluoromethane	460		410	410	ug/m3	365		TO-15	Total/NA

Client Sample ID: V-9

Vinyl chloride

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D Meth	od	Prep Type
2,2,4-Trimethylpentane	200		63		ppb v/v	313	TO-1	5	Total/NA
Cyclohexane	280		63	63	ppb v/v	313	TO-1	5	Total/NA

190

This Detection Summary does not include radiochemical test results.

TestAmerica Burlington

Total/NA

Detection Summary

Client: Town of Dewitt Project/Site: Town of Dewitt

Trichlorofluoromethane

TestAmerica Job ID: 200-29061-1

Lab Sample ID: 200-29061-3

313

TO-15

Client Sample ID: V-9 (Continued)

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Freon 22	2200		160	160	ppb v/v	313	_	TO-15	Total/NA
n-Butane	4300		160	160	ppb v/v	313		TO-15	Total/NA
n-Heptane	210		63	63	ppb v/v	313		TO-15	Total/NA
n-Hexane	650		63	63	ppb v/v	313		TO-15	Total/NA
Trichlorofluoromethane	64		63	63	ppb v/v	313		TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
2,2,4-Trimethylpentane	940		290	290	ug/m3	313	_	TO-15	Total/NA
Cyclohexane	960		220	220	ug/m3	313		TO-15	Total/NA
Freon 22	7800		550	550	ug/m3	313		TO-15	Total/NA
n-Butane	10000		370	370	ug/m3	313		TO-15	Total/NA
n-Heptane	880		260	260	ug/m3	313		TO-15	Total/NA
n-Hexane	2300		220	220	ug/m3	313		TO-15	Total/NA

350

350 ug/m3

360

Total/NA

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Lab Sample ID: 200-29061-1

Matrix: Air

Client Sample ID: V-3

Date Collected: 07/28/15 10:50 Date Received: 07/29/15 10:30

Sample Container: Summa Canister 6L

nalyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Trichloroethane	ND		87	87	ppb v/v			07/31/15 23:03	43
1,2,2-Tetrachloroethane	ND		87	87	ppb v/v			07/31/15 23:03	43
1,2-Trichloroethane	ND		87	87	ppb v/v			07/31/15 23:03	43
1-Dichloroethane	ND		87	87	ppb v/v			07/31/15 23:03	43
1-Dichloroethene	ND		87	87	ppb v/v			07/31/15 23:03	43
2,4-Trichlorobenzene	ND		220	220	ppb v/v			07/31/15 23:03	43
2,4-Trimethylbenzene	ND		87	87	ppb v/v			07/31/15 23:03	43
2-Dibromoethane	ND		87	87	ppb v/v			07/31/15 23:03	43
2-Dichlorobenzene	ND		87	87	ppb v/v			07/31/15 23:03	4:
2-Dichloroethane	ND		87	87	ppb v/v			07/31/15 23:03	4
2-Dichloroethene, Total	ND		170	170	ppb v/v			07/31/15 23:03	43
2-Dichloropropane	ND		87	87	ppb v/v			07/31/15 23:03	43
2-Dichlorotetrafluoroethane	ND		87		ppb v/v			07/31/15 23:03	4:
3,5-Trimethylbenzene	ND		87		ppb v/v			07/31/15 23:03	4
3-Butadiene	ND		87		ppb v/v			07/31/15 23:03	4
3-Dichlorobenzene	ND		87		ppb v/v			07/31/15 23:03	4:
4-Dichlorobenzene	ND		87		ppb v/v			07/31/15 23:03	4
4-Dioxane	ND		2200		ppb v/v			07/31/15 23:03	4
2.4-Trimethylpentane	350		87		ppb v/v			07/31/15 23:03	4
Chlorotoluene	ND		87					07/31/15 23:03	4
Chloropropene	ND		220		ppb v/v			07/31/15 23:03	4
Ethyltoluene	ND		87		ppb v/v			07/31/15 23:03	4
Isopropyltoluene	ND		87		ppb v/v			07/31/15 23:03	4
cetone	ND		2200		ppb v/v			07/31/15 23:03	4
	110		87		ppb v/v			07/31/15 23:03	4
enzene enzyl chloride	ND		87		ppb v/v			07/31/15 23:03	4
•	ND		87		ppb v/v			07/31/15 23:03	4
romodichloromethane	ND		87	87				07/31/15 23:03	4
romoethene(Vinyl Bromide)	ND		87		ppb v/v			07/31/15 23:03	4
romoform	ND		87		ppb v/v			07/31/15 23:03	4
romomethane			220		ppb v/v			07/31/15 23:03	4
arbon disulfide	ND		87		ppb v/v			07/31/15 23:03	4
arbon tetrachloride	ND ND		87		ppb v/v			07/31/15 23:03	4
hlorobenzene	ND		220		ppb v/v			07/31/15 23:03	4
hloroethane	ND		87		ppb v/v			07/31/15 23:03	4
hloroform	ND		220		ppb v/v			07/31/15 23:03	4
hloromethane	ND		87		ppb v/v			07/31/15 23:03	4
s-1,2-Dichloroethene	ND		87		ppb v/v			07/31/15 23:03	4
s-1,3-Dichloropropene	ND		87		ppb v/v			07/31/15 23:03	4
umene			87		ppb v/v			07/31/15 23:03	4
yclohexane	340 ND		87		ppb v/v			07/31/15 23:03	4
ibromochloromethane	ND 540				ppb v/v			07/31/15 23:03	4
ichlorodifluoromethane	540		220					07/31/15 23:03	4
thylbenzene	190		87		ppb v/v			07/31/15 23:03	4
reon 22	3000		220		ppb v/v				4
reon TF	ND		87		ppb v/v			07/31/15 23:03	
exachlorobutadiene	ND		87		ppb v/v			07/31/15 23:03	4
sopropyl alcohol	ND		2200	2200	ppb v/v			07/31/15 23:03	4

220

220

220

220

87

220

220

220

87

87

87

87

87

RL Unit

87

87 ppb v/v

87 ppb v/v

87 ppb v/v

87 ppb v/v

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-3

Lab Sample ID: 200-29061-1

Date Collected: 07/28/15 10:50 Date Received: 07/29/15 10:30

Methyl Butyl Ketone (2-Hexanone)

Methyl Ethyl Ketone

Methyl methacrylate

Methylene Chloride

Naphthalene

n-Butylbenzene

n-Propylbenzene

sec-Butylbenzene

n-Butane

n-Heptane

n-Hexane

Methyl tert-butyl ether

methyl isobutyl ketone

Matrix: Air

435

435

435

435

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

590

1100

ND

ND

5300

Dil Fac Prepared Analyzed 220 ppb v/v 07/31/15 23:03 435 435 220 ppb v/v 07/31/15 23:03 220 ppb v/v 07/31/15 23:03 435 220 ppb v/v 07/31/15 23:03 435 ppb v/v 07/31/15 23:03 435 220 ppb v/v 07/31/15 23:03 435 435 220 ppb v/v 07/31/15 23:03 220 ppb v/v 07/31/15 23:03 435 87 ppb v/v 07/31/15 23:03 435

07/31/15 23:03

07/31/15 23:03

07/31/15 23:03

07/31/15 23:03

Styrene	ND		87	87	ppb v/v			07/31/15 23:03	435
tert-Butyl alcohol	ND		2200	2200	ppb v/v			07/31/15 23:03	435
tert-Butylbenzene	ND		87	87	ppb v/v			07/31/15 23:03	435
Tetrachloroethene	ND		87	87	ppb v/v			07/31/15 23:03	435
Tetrahydrofuran	ND		2200	2200	ppb v/v			07/31/15 23:03	435
Toluene	ND		87	87	ppb v/v			07/31/15 23:03	435
trans-1,2-Dichloroethene	ND		87	87	ppb v/v			07/31/15 23:03	435
trans-1,3-Dichloropropene	ND		87	87	ppb v/v			07/31/15 23:03	435
Trichloroethene	ND		87	87	ppb v/v			07/31/15 23:03	435
Trichlorofluoromethane	ND		87	87	ppb v/v			07/31/15 23:03	435
Vinyl chloride	ND		87	87	ppb v/v			07/31/15 23:03	435
Xylene (total)	ND		300	300	ppb v/v			07/31/15 23:03	435
Xylene, o-	ND		87	87	ppb v/v			07/31/15 23:03	435
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		470	470	ug/m3			07/31/15 23:03	435
1,1,2,2-Tetrachloroethane	ND		600	600	ug/m3			07/31/15 23:03	435
1,1,2-Trichloroethane	ND		470	470	ug/m3			07/31/15 23:03	435
1,1-Dichloroethane	ND		350	350	ug/m3		•	07/31/15 23:03	435
1,1-Dichloroethene	ND		340	340	ug/m3			07/31/15 23:03	435
1,2,4-Trichlorobenzene	ND		1600	1600	ug/m3			07/31/15 23:03	435
1,2,4-Trimethylbenzene	ND		430	430	ug/m3			07/31/15 23:03	435
1,2-Dibromoethane	ND		670	670	ug/m3			07/31/15 23:03	435
1,2-Dichlorobenzene	ND		520	520	ug/m3			07/31/15 23:03	435
1,2-Dichloroethane	ND		350	350	ug/m3			07/31/15 23:03	435
1,2-Dichloroethene, Total	ND		690	690	ug/m3			07/31/15 23:03	435
1,2-Dichloropropane	ND		400	400	ug/m3			07/31/15 23:03	435
1,2-Dichlorotetrafluoroethane	ND		610	610	ug/m3			07/31/15 23:03	435
1,3,5-Trimethylbenzene	ND		430	430	ug/m3			07/31/15 23:03	435
1,3-Butadiene	ND		190	190	ug/m3			07/31/15 23:03	435
1,3-Dichlorobenzene	ND		520	520	ug/m3			07/31/15 23:03	435
1,4-Dichlorobenzene	ND		520	520	ug/m3			07/31/15 23:03	435
1,4-Dioxane	ND		7800	7800	ug/m3			07/31/15 23:03	435
2,2,4-Trimethylpentane	1700		410	410	ug/m3			07/31/15 23:03	435
2-Chlorotoluene	ND		450	450	ug/m3			07/31/15 23:03	435
3-Chloropropene	ND		680	000	ug/m3			07/31/15 23:03	435

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-3

Lab Sample ID: 200-29061-1

Date Collected: 07/28/15 10:50 Date Received: 07/29/15 10:30

Matrix: Air

Sample Container: Summa Canister 6L

				HA.
				5
D	Prepared	Analyzed	Dil Fac	

Analyte	Result Qualifier	RL	RL	Unit	D Prepared	Analyzed	Dil Fac
4-Ethyltoluene	ND	430	430	ug/m3		07/31/15 23:03	435
4-isopropyltoluene	ND	480	480	ug/m3		07/31/15 23:03	435
Acetone	ND	5200	5200	ug/m3		07/31/15 23:03	435
Benzene	350	280	280	ug/m3		07/31/15 23:03	435
Benzyl chloride	ND	450	450	ug/m3		07/31/15 23:03	435
Bromodichloromethane	ND	580	580	ug/m3		07/31/15 23:03	435
Bromoethene(Vinyl Bromide)	ND	380	380	ug/m3		07/31/15 23:03	435
Bromoform	ND	900	900	ug/m3		07/31/15 23:03	435
Bromomethane	ND	340	340	ug/m3		07/31/15 23:03	435
Carbon disulfide	ND	680	680	ug/m3		07/31/15 23:03	435
Carbon tetrachloride	ND	550	550	ug/m3		07/31/15 23:03	435
Chlorobenzene	ND	400	400	ug/m3		07/31/15 23:03	435
Chloroethane	ND	570	570	ug/m3		07/31/15 23:03	435
Chloroform	ND	420	420	ug/m3		07/31/15 23:03	435
Chloromethane	ND	450	450	ug/m3		07/31/15 23:03	435
cis-1,2-Dichloroethene	ND	340	340	ug/m3		07/31/15 23:03	435
cis-1,3-Dichloropropene	ND	390	390	ug/m3		07/31/15 23:03	435
Cumene	ND	430	430	ug/m3		07/31/15 23:03	435
Cyclohexane	1200	300	300	ug/m3		07/31/15 23:03	435
Dibromochloromethane	ND	740	740	ug/m3		07/31/15 23:03	435
Dichlorodifluoromethane	2700	1100	1100	ug/m3		07/31/15 23:03	435
Ethylbenzene	830	380	380	ug/m3		07/31/15 23:03	435
Freon 22	11000	770	770	ug/m3		07/31/15 23:03	435
Freon TF	ND	670	670	ug/m3		07/31/15 23:03	435
Hexachlorobutadiene	ND	930	930	ug/m3		07/31/15 23:03	435
isopropyl alcohol	ND	5300	5300	ug/m3		07/31/15 23:03	435
m,p-Xylene	970	940	940	ug/m3		07/31/15 23:03	435
Methyl Butyl Ketone (2-Hexanone)	ND	890	890	ug/m3		07/31/15 23:03	435
Methyl Ethyl Ketone	ND	640	640	_		07/31/15 23:03	435
methyl isobutyl ketone	ND	890	890	ug/m3		07/31/15 23:03	435
Methyl methacrylate	ND	890	890			07/31/15 23:03	435
Methyl tert-butyl ether	ND	310	310			07/31/15 23:03	435
Methylene Chloride	ND	760		ug/m3		07/31/15 23:03	435
Naphthalene	ND	1100		ug/m3		07/31/15 23:03	435
n-Butane	13000	520	520	ug/m3		07/31/15 23:03	435
n-Butylbenzene	ND	480	480	ug/m3		07/31/15 23:03	435
n-Heptane	2400	360	360	ug/m3		07/31/15 23:03	435
n-Hexane	3900	310		ug/m3		07/31/15 23:03	435
n-Propylbenzene	ND	430	430	ug/m3		07/31/15 23:03	435
sec-Butylbenzene	ND	480	480	ug/m3		07/31/15 23:03	435
Styrene	ND	370	370	ug/m3		07/31/15 23:03	435
tert-Butyl alcohol	ND	6600	6600	ug/m3		07/31/15 23:03	439
tert-Butylbenzene	ND	480		ug/m3		07/31/15 23:03	435
Tetrachloroethene	ND	590	590	ug/m3		07/31/15 23:03	43
Tetrahydrofuran	ND	6400		ug/m3		07/31/15 23:03	43
Toluene	ND	330		ug/m3		07/31/15 23:03	435
trans-1,2-Dichloroethene	ND	340		ug/m3		07/31/15 23:03	435
trans-1,3-Dichloropropene	ND	390		ug/m3		07/31/15 23:03	435

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-3

Lab Sample ID: 200-29061-1

Date Collected: 07/28/15 10:50 Date Received: 07/29/15 10:30

Matrix: Air

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		470	470	ug/m3			07/31/15 23:03	435
Trichlorofluoromethane	ND		490	490	ug/m3			07/31/15 23:03	435
Vinyl chloride	ND		220	220	ug/m3			07/31/15 23:03	435
Xylene (total)	ND		1300	1300	ug/m3			07/31/15 23:03	435
Xylene, o-	ND		380	380	ug/m3			07/31/15 23:03	435

Client: Town of Dewitt Project/Site: Town of Dewitt

TestAmerica Job ID: 200-29061-1

Client Sample ID: V-10

Lab Sample ID: 200-29061-2

Date Collected: 07/28/15 10:59 Date Received: 07/29/15 10:30

Matrix: Air

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Org Analyte	Result Qua			Unit	D	Prepared	Analyzed	Dil Fac
1.1.1-Trichloroethane	ND ND	73		ppb v/v		Prepared	07/31/15 23:52	
, ,	ND	73						365
1,1,2,2-Tetrachloroethane	ND	73		ppb v/v			07/31/15 23:52	365
1,1,2-Trichloroethane				ppb v/v			07/31/15 23:52	365
1,1-Dichloroethane	ND	73 73		ppb v/v			07/31/15 23:52	365
1,1-Dichloroethene	ND			ppb v/v			07/31/15 23:52	365
1,2,4-Trichlorobenzene	ND	180		ppb v/v			07/31/15 23:52	365
1,2,4-Trimethylbenzene	ND	73		ppb v/v			07/31/15 23:52	365
1,2-Dibromoethane	ND	73		ppb v/v			07/31/15 23:52	365
1,2-Dichlorobenzene	ND	73		ppb v/v			07/31/15 23:52	365
1,2-Dichloroethane	ND	73		ppb v/v			07/31/15 23:52	365
1,2-Dichloroethene, Total	ND	150		ppb v/v			07/31/15 23:52	365
1,2-Dichloropropane	ND	73		ppb v/v			07/31/15 23:52	365
1,2-Dichlorotetrafluoroethane	ND	73		ppb v/v			07/31/15 23:52	365
1,3,5-Trimethylbenzene	ND	73		ppb v/v			07/31/15 23:52	365
1,3-Butadiene	ND	73		ppb v/v			07/31/15 23:52	365
1,3-Dichlorobenzene	ND	73		ppb v/v			07/31/15 23:52	365
1,4-Dichlorobenzene	ND	73		ppb v/v			07/31/15 23:52	365
1,4-Dioxane	ND	1800		ppb v/v			07/31/15 23:52	365
2,2,4-Trimethylpentane	260	73	73	ppb v/v			07/31/15 23:52	365
2-Chlorotoluene	ND	73	73	ppb v/v			07/31/15 23:52	365
3-Chloropropene	ND	180	180	ppb v/v			07/31/15 23:52	365
4-Ethyltoluene	ND	73	73	ppb v/v			07/31/15 23:52	365
4-Isopropyltoluene	ND	73	73	ppb v/v			07/31/15 23:52	365
Acetone	ND	1800	1800	ppb v/v			07/31/15 23:52	365
Benzene	ND	73	73	ppb v/v			07/31/15 23:52	365
Benzyl chloride	ND	73	73	ppb v/v			07/31/15 23:52	365
Bromodichloromethane	ND	73	73	ppb v/v			07/31/15 23:52	365
Bromoethene(Vinyl Bromide)	ND	73	73	ppb v/v			07/31/15 23:52	365
Bromoform	ND	73	73	ppb v/v			07/31/15 23:52	365
Bromomethane	ND	73	73	ppb v/v			07/31/15 23:52	365
Carbon disulfide	ND	180	180	ppb v/v			07/31/15 23:52	365
Carbon tetrachloride	ND	73	73	ppb v/v			07/31/15 23:52	365
Chlorobenzene	ND	73	73	ppb v/v			07/31/15 23:52	365
Chloroethane	ND	180	180	ppb v/v			07/31/15 23:52	365
Chloroform	ND	73		ppb v/v			07/31/15 23:52	365
Chloromethane	ND	180		ppb v/v			07/31/15 23:52	365
cis-1,2-Dichloroethene	ND .	73	73	ppb v/v			07/31/15 23:52	365
cis-1,3-Dichloropropene	ND	73		ppb v/v			07/31/15 23:52	365
Cumene	ND	73		ppb v/v			07/31/15 23:52	365
Cyclohexane	250	73		ppb v/v			07/31/15 23:52	365
Dibromochloromethane	ND	73		ppb v/v			07/31/15 23:52	365
Dichlorodifluoromethane	ND	180		ppb v/v			07/31/15 23:52	365
Ethylbenzene	200	73		ppb v/v			07/31/15 23:52	36
Freon 22	2100	180		ppb v/v			07/31/15 23:52	36
Freon TF	ND	73		ppb v/v			07/31/15 23:52	365
Hexachlorobutadiene	. ND	73		ppb v/v			07/31/15 23:52	365
	ND	1800		ppb v/v			07/31/15 23:52	365
Isopropyl alcohol m,p-Xylene	ND	180		ppb v/v			07/31/15 23:52	365

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-10

Lab Sample ID: 200-29061-2

Date Collected: 07/28/15 10:59 Date Received: 07/29/15 10:30 Matrix: Air

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl Butyl Ketone (2-Hexanone)	ND		180	180	ppb v/v			07/31/15 23:52	365
Methyl Ethyl Ketone	ND		180	180	ppb v/v			07/31/15 23:52	365
methyl isobutyl ketone	ND		180	180	ppb v/v			07/31/15 23:52	365
Methyl methacrylate	ND		180	180	ppb v/v			07/31/15 23:52	365
Methyl tert-butyl ether	ND		73	73	ppb v/v			07/31/15 23:52	365
Methylene Chloride	ND		180	180	ppb v/v			07/31/15 23:52	365
Naphthalene	ND		180	180	ppb v/v	*		07/31/15 23:52	365
n-Butane	4700		180	180	ppb v/v			07/31/15 23:52	365
n-Butylbenzene	ND		73	73	ppb v/v			07/31/15 23:52	365
n-Heptane	410		73	73	ppb v/v			07/31/15 23:52	365
n-Hexane	970		73	73	ppb v/v			07/31/15 23:52	365
n-Propylbenzene	ND		73	73	ppb v/v			07/31/15 23:52	365
sec-Butylbenzene	ND		73	73	ppb v/v			07/31/15 23:52	365
Styrene	ND		73	73	ppb v/v			07/31/15 23:52	365
tert-Butyl alcohol	ND		1800	1800	ppb v/v			07/31/15 23:52	365
tert-Butylbenzene	ND		73	73	ppb v/v			07/31/15 23:52	365
Tetrachloroethene	ND		73	73	ppb v/v			07/31/15 23:52	365
Tetrahydrofuran	ND		1800	1800	ppb v/v			07/31/15 23:52	365
Toluene	ND		73	73	ppb v/v			07/31/15 23:52	365
trans-1,2-Dichloroethene	ND		73	73	ppb v/v			07/31/15 23:52	365
trans-1,3-Dichloropropene	ND		73	73	ppb v/v			07/31/15 23:52	365
Trichloroethene	ND		73	73	ppb v/v			07/31/15 23:52	365
Trichlorofluoromethane	82		73	73	ppb v/v			07/31/15 23:52	365
Vinyl chloride	120		73	73	ppb v/v			07/31/15 23:52	365
Xylene (total)	ND		260	260	ppb v/v			07/31/15 23:52	365
Xylene, o-	ND		73	73	ppb v/v			07/31/15 23:52	365
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		400	400	ug/m3			07/31/15 23:52	365
1,1,2,2-Tetrachloroethane	ND		500	500	ug/m3			07/31/15 23:52	365
1,1,2-Trichloroethane	ND		400	400	ug/m3			07/31/15 23:52	365

1, 1,2,2-1 cu aci noro cu iano	140	000	000	agriio		
1,1,2-Trichloroethane	ND	400	400	ug/m3	07/31/15 23:52	365
1,1-Dichloroethane	ND	300	300	ug/m3	07/31/15 23:52	365
1,1-Dichloroethene	ND	290	290	ug/m3	07/31/15 23:52	365
1,2,4-Trichlorobenzene	ND	1400	1400	ug/m3	07/31/15 23:52	365
1,2,4-Trimethylbenzene	ND	360	360	ug/m3	07/31/15 23:52	365
1,2-Dibromoethane	ND	560	560	ug/m3	07/31/15 23:52	365
1,2-Dichlorobenzene	ND	440	440	ug/m3	07/31/15 23:52	365
1,2-Dichloroethane	ND	300	300	ug/m3	07/31/15 23:52	365
1,2-Dichloroethene, Total	ND	580	580	ug/m3	07/31/15 23:52	365
1,2-Dichloropropane	ND	340	340	ug/m3	07/31/15 23:52	365
1,2-Dichlorotetrafluoroethane	ND	510	510	ug/m3	07/31/15 23:52	365
1,3,5-Trimethylbenzene	ND	360	360	ug/m3	07/31/15 23:52	365
1,3-Butadiene	ND	160	160	ug/m3	07/31/15 23:52	365
1,3-Dichlorobenzene	ND	440	440	ug/m3	07/31/15 23:52	365
1,4-Dichlorobenzene	ND	440	440	ug/m3	07/31/15 23:52	365
1,4-Dioxane	ND	6600	6600	ug/m3	07/31/15 23:52	365
2,2,4-Trimethylpentane	1200	340	340	ug/m3	07/31/15 23:52	365
2-Chlorotoluene	ND	380	380	ug/m3	07/31/15 23:52	365
3-Chloropropene	ND	570	570	ug/m3	07/31/15 23:52	365

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-10

Date Collected: 07/28/15 10:59

Lab Samp

Lab Sample ID: 200-29061-2 Matrix: Air

Date Received: 07/29/15 10:30

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orgai Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
4-Ethyltoluene	ND	360		ug/m3			07/31/15 23:52	36
4-Isopropyltoluene	ND	400	400	ug/m3			07/31/15 23:52	365
Acetone	ND	4300	4300	ug/m3			07/31/15 23:52	365
Benzene	ND	230	230	ug/m3			07/31/15 23:52	365
Benzyl chloride	ND	380	380	ug/m3			07/31/15 23:52	365
Bromodichloromethane	ND	490	490	ug/m3			07/31/15 23:52	365
Bromoethene(Vinyl Bromide)	ND	320	320	ug/m3			07/31/15 23:52	365
Bromoform	ND	750	750	ug/m3			07/31/15 23:52	365
Bromomethane	ND	280	280	ug/m3			07/31/15 23:52	365
Carbon disulfide	ND	570	570	ug/m3			07/31/15 23:52	365
Carbon tetrachloride	ND	460	460	ug/m3			07/31/15 23:52	365
Chlorobenzene	ND	340	340	ug/m3			07/31/15 23:52	365
Chloroethane	ND	480	480	ug/m3			07/31/15 23:52	365
Chloroform	ND	360	360	ug/m3			07/31/15 23:52	365
Chloromethane	ND	380		ug/m3			07/31/15 23:52	365
cis-1,2-Dichloroethene	ND	290	290				07/31/15 23:52	365
cis-1,3-Dichloropropene	ND	330					07/31/15 23:52	365
Cumene	ND	360		ug/m3			07/31/15 23:52	36
Cyclohexane	850	250		ug/m3			07/31/15 23:52	365
Dibromochloromethane	ND	620		_			07/31/15 23:52	36
Dichlorodifluoromethane	ND	900		ug/m3			07/31/15 23:52	36
	880	320		ug/m3			07/31/15 23:52	365
Ethylbenzene	7300	650		ug/m3			07/31/15 23:52	36
Freon 22 Freon TF	ND	560		ug/m3			07/31/15 23:52	36
	ND	780		ug/m3			07/31/15 23:52	365
Hexachlorobutadiene	ND	4500		ug/m3			07/31/15 23:52	36
Isopropyl alcohol		790	790				07/31/15 23:52	36
m,p-Xylene	ND						07/31/15 23:52	36
Methyl Butyl Ketone (2-Hexanone)	ND	750	750	_				36
Methyl Ethyl Ketone	ND	540		ug/m3			07/31/15 23:52	365
methyl isobutyl ketone	ND	750		ug/m3			07/31/15 23:52	
Methyl methacrylate	ND	750		ug/m3			07/31/15 23:52	365
Methyl tert-butyl ether	ND	260		_			07/31/15 23:52	365
Methylene Chloride	ND	630	630	_			07/31/15 23:52	365
Naphthalene	ND	960	960	_			07/31/15 23:52	365
n-Butane	11000	430	430	-			07/31/15 23:52	365
n-Butylbenzene	ND	400	400	-0			07/31/15 23:52	365
n-Heptane	1700	300		ug/m3			07/31/15 23:52	36
n-Hexane	3400	260		ug/m3			07/31/15 23:52	365
n-Propylbenzene	ND	360		ug/m3			07/31/15 23:52	369
sec-Butylbenzene	ND	400		ug/m3			07/31/15 23:52	365
Styrene	ND	310		ug/m3			07/31/15 23:52	365
tert-Butyl alcohol	ND	5500		ug/m3			07/31/15 23:52	36
tert-Butylbenzene	ND	400		ug/m3			07/31/15 23:52	36
Tetrachloroethene	ND	500		ug/m3			07/31/15 23:52	36
Tetrahydrofuran	ND	5400		ug/m3			07/31/15 23:52	36
Toluene	ND	280		ug/m3			07/31/15 23:52	36
trans-1,2-Dichloroethene	ND	290		ug/m3			07/31/15 23:52	36
trans-1,3-Dichloropropene	ND	330	330	ug/m3			07/31/15 23:52	36

Client: Town of Dewitt

TestAmerica Job ID: 200-29061-1

Project/Site: Town of Dewitt

Lab Sample ID: 200-29061-2

Matrix: Air

Client Sample ID: V-10 Date Collected: 07/28/15 10:59

Date Received: 07/29/15 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		390	390	ug/m3			07/31/15 23:52	365
Trichlorofluoromethane	460		410	410	ug/m3			07/31/15 23:52	365
Vinyl chloride	300		190	190	ug/m3			07/31/15 23:52	365
Xylene (total)	ND		1100	1100	ug/m3			07/31/15 23:52	365
Xylene, o-	ND		320	320	ug/m3			07/31/15 23:52	365

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Lab Sample ID: 200-29061-3

Matrix: Air

Client Sample ID: V-9

Date Collected: 07/28/15 11:04 Date Received: 07/29/15 10:30

Sample Container: Summa Canister 6L

lethod: TO-15 - Volatile Org	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	ND	63	63	ppb v/v			08/01/15 00:41	313
1,2,2-Tetrachloroethane	ND	63	63	ppb v/v			08/01/15 00:41	313
1,2-Trichloroethane	ND	63	63	ppb v/v			08/01/15 00:41	313
1-Dichloroethane	ND	63	63	ppb v/v			08/01/15 00:41	313
1-Dichloroethene	ND	63	63	ppb v/v			08/01/15 00:41	313
2,4-Trichlorobenzene	ND	160	160	ppb v/v			08/01/15 00:41	31
2,4-Trimethylbenzene	ND	63	63	ppb v/v			08/01/15 00:41	31
2-Dibromoethane	ND	63	63	ppb v/v			08/01/15 00:41	31
2-Dichlorobenzene	ND	63	63	ppb v/v			08/01/15 00:41	31
2-Dichloroethane	ND	63	63	ppb v/v			08/01/15 00:41	31
2-Dichloroethene, Total	ND	130	130	ppb v/v			08/01/15 00:41	31
2-Dichloropropane	ND	63	63	ppb v/v			08/01/15 00:41	31
2-Dichlorotetrafluoroethane	ND	63	63				08/01/15 00:41	31
3,5-Trimethylbenzene	ND	63		ppb v/v			08/01/15 00:41	31
3-Butadiene	ND	63	63	• •			08/01/15 00:41	31
3-Dichlorobenzene	ND	63	63	ppb v/v			08/01/15 00:41	3
4-Dichlorobenzene	ND	63		ppb v/v			08/01/15 00:41	3
	ND	1600		ppb v/v			08/01/15 00:41	3
4-Dioxane		63		ppb v/v			08/01/15 00:41	3
2,4-Trimethylpentane	200 ND	63	63	ppb v/v			08/01/15 00:41	3
Chlorotoluene	ND	160	160	ppb v/v			08/01/15 00:41	3
Chloropropene	ND	63		ppb v/v			08/01/15 00:41	3
Ethyltoluene	ND	63		ppb v/v			08/01/15 00:41	3
Isopropyltoluene		1600		ppb v/v			08/01/15 00:41	3
cetone	ND	63		ppb v/v			08/01/15 00:41	3
enzene	ND	63	63				08/01/15 00:41	3
enzyl chloride	ND						08/01/15 00:41	3
romodichloromethane	ND	63	63	ppb v/v			08/01/15 00:41	3
romoethene(Vinyl Bromide)	ND	63		ppb v/v				3
romoform	ND	63	63				08/01/15 00:41	
romomethane	ND	63		ppb v/v			08/01/15 00:41	3
arbon disulfide	ND	160		ppb v/v			08/01/15 00:41	3
arbon tetrachloride	ND	63	63	• •			08/01/15 00:41	3
hlorobenzene	ND	63		ppb v/v			08/01/15 00:41	3
hloroethane	ND	160		ppb v/v			08/01/15 00:41	3
hloroform	ND	63		ppb v/v			08/01/15 00:41	3
hloromethane	ND	160		ppb v/v			08/01/15 00:41	3
s-1,2-Dichloroethene	ND	63		ppb v/v			08/01/15 00:41	3
s-1,3-Dichloropropene	ND	63		ppb v/v			08/01/15 00:41	3
umene	ND	63		ppb v/v			08/01/15 00:41	3
yclohexane	280	63		ppb v/v			08/01/15 00:41	3
ibromochloromethane	ND	63		ppb v/v			08/01/15 00:41	3
ichlorodifluoromethane	ND	160		ppb v/v			08/01/15 00:41	3
thylbenzene	ND	63		ppb v/v			08/01/15 00:41	3
reon 22	2200	160		ppb v/v			08/01/15 00:41	3
reon TF	ND	63	63	ppb v/v			08/01/15 00:41	3
exachlorobutadiene	ND	63	63	ppb v/v			08/01/15 00:41	3
sopropyl alcohol	ND	1600	1600	ppb v/v			08/01/15 00:41	3
n,p-Xylene	ND	160	160	ppb v/v			08/01/15 00:41	3

Client Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-9

Lab Sample ID: 200-29061-3

Date Collected: 07/28/15 11:04 Date Received: 07/29/15 10:30

Matrix: Air

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl Butyl Ketone (2-Hexanone)	ND	160	160	ppb v/v			08/01/15 00:41	313
Methyl Ethyl Ketone	ND	160	160	ppb v/v			08/01/15 00:41	313
methyl isobutyl ketone	ND	160	160	ppb v/v			08/01/15 00:41	313
Methyl methacrylate	ND	160	160	ppb v/v			08/01/15 00:41	313
Methyl tert-butyl ether	ND	63	63	ppb v/v			08/01/15 00:41	313
Methylene Chloride	ND	160	160	ppb v/v			08/01/15 00:41	313
Naphthalene	ND	160	160	ppb v/v			08/01/15 00:41	313
n-Butane	4300	160	160	ppb v/v			08/01/15 00:41	313
n-Butylbenzene	ND	63	63	ppb v/v			08/01/15 00:41	313
n-Heptane	210	63	63	ppb v/v			08/01/15 00:41	313
n-Hexane	650	63	63	ppb v/v			08/01/15 00:41	313
n-Propylbenzene	ND	63	63	ppb v/v			08/01/15 00:41	313
sec-Butylbenzene	ND	63	63	ppb v/v			08/01/15 00:41	313
Styrene	ND	63	63	ppb v/v			08/01/15 00:41	313
tert-Butyl alcohol	ND	1600	1600	ppb v/v			08/01/15 00:41	313
tert-Butylbenzene	ND	63	63	ppb v/v			08/01/15 00:41	313
Tetrachloroethene	ND	63	63	ppb v/v			08/01/15 00:41	313
Tetrahydrofuran	ND	1600	1600	ppb v/v			08/01/15 00:41	313
Toluene	ND	63	63	ppb v/v			08/01/15 00:41	313
trans-1,2-Dichloroethene	ND	63	63	ppb v/v			08/01/15 00:41	313
trans-1,3-Dichloropropene	ND	63	63	ppb v/v			08/01/15 00:41	313
Trichloroethene	ND	63	63	ppb v/v			08/01/15 00:41	313
Trichlorofluoromethane	64	63	63	ppb v/v			08/01/15 00:41	313
Vinyl chloride	ND	63	63	ppb v/v			08/01/15 00:41	313
Xylene (total)	ND	220	220	ppb v/v			08/01/15 00:41	313
Xviene o-	ND	63	63	ppb v/v			08/01/15 00:41	313

Xylene, o-	ND		63	63	ppb v/v			08/01/15 00:41	313
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		340	340	ug/m3			08/01/15 00:41	313
1,1,2,2-Tetrachloroethane	ND		430	430	ug/m3			08/01/15 00:41	313
1,1,2-Trichloroethane	ND		340	340	ug/m3			08/01/15 00:41	313
1,1-Dichloroethane	ND		250	250	ug/m3			08/01/15 00:41	313
1,1-Dichloroethene	ND		250	250	ug/m3			08/01/15 00:41	313
1,2,4-Trichlorobenzene	ND		1200	1200	ug/m3			08/01/15 00:41	313
1,2,4-Trimethylbenzene	ND		310	310	ug/m3			08/01/15 00:41	313
1,2-Dibromoethane	ND		480	480	ug/m3			08/01/15 00:41	313
1,2-Dichlorobenzene	ND		380	380	ug/m3			08/01/15 00:41	313
1,2-Dichloroethane	ND		250	250	ug/m3			08/01/15 00:41	313
1,2-Dichloroethene, Total	ND		500	500	ug/m3			08/01/15 00:41	313
1,2-Dichloropropane	ND		290	290	ug/m3			08/01/15 00:41	313
1,2-Dichlorotetrafluoroethane	ND		440	440	ug/m3			08/01/15 00:41	313
1,3,5-Trimethylbenzene	ND		310	310	ug/m3			08/01/15 00:41	313
1,3-Butadiene	ND		140	140	ug/m3			08/01/15 00:41	313
1,3-Dichlorobenzene	ND		380	380	ug/m3			08/01/15 00:41	313
1,4-Dichlorobenzene	ND		380	380	ug/m3			08/01/15 00:41	313
1,4-Dioxane	ND		5600	5600	ug/m3			08/01/15 00:41	313
2,2,4-Trimethylpentane	940		290	290	ug/m3			08/01/15 00:41	313
2-Chlorotoluene	ND		320	320	ug/m3			08/01/15 00:41	313
3-Chloropropene	ND		490	490	ug/m3			08/01/15 00:41	313

Client Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Client Sample ID: V-9

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Lab Sample ID: 200-29061-3

Matrix: Air

Date Collected: 07/28/15 11:04 Date Received: 07/29/15 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
I-Ethyltoluene	ND		310	310	ug/m3			08/01/15 00:41	313
l-Isopropyltoluene	ND		340	340	ug/m3			08/01/15 00:41	313
cetone	ND		3700	3700	ug/m3			08/01/15 00:41	313
Benzene	ND		200	200	ug/m3			08/01/15 00:41	313
Benzyl chloride	ND		320	320	ug/m3			08/01/15 00:41	313
Bromodichloromethane	ND		420	420	ug/m3			08/01/15 00:41	313
Promoethene(Vinyl Bromide)	ND		270	270	ug/m3			08/01/15 00:41	313
Iromoform	ND		650	650	ug/m3			08/01/15 00:41	313
Bromomethane	ND		240	240	ug/m3			08/01/15 00:41	313
Carbon disulfide	ND		490	490	ug/m3			08/01/15 00:41	313
Carbon tetrachloride	ND		390	390	ug/m3			08/01/15 00:41	313
Chlorobenzene	ND		290	290	ug/m3			08/01/15 00:41	313
Chloroethane	ND		410	410	ug/m3			08/01/15 00:41	313
Chloroform	ND		310	310	ug/m3			08/01/15 00:41	313
Chloromethane	ND		320	320	ug/m3			08/01/15 00:41	313
sis-1,2-Dichloroethene	ND		250	250	ug/m3			08/01/15 00:41	313
is-1,3-Dichloropropene	ND		280	280	ug/m3			08/01/15 00:41	313
Cumene	ND		310	310	ug/m3			08/01/15 00:41	313
Cyclohexane	960		220	220	ug/m3			08/01/15 00:41	313
Dibromochloromethane	ND		530	530	ug/m3			08/01/15 00:41	313
Dichlorodifluoromethane	ND		770	770	ug/m3			08/01/15 00:41	313
thylbenzene	ND		270	270	ug/m3			08/01/15 00:41	313
reon 22	7800		550	550	ug/m3			08/01/15 00:41	313
reon TF	ND		480	480	ug/m3			08/01/15 00:41	313
lexachlorobutadiene	ND		670	670	ug/m3			08/01/15 00:41	313
sopropyl alcohol	ND		3800	3800	ug/m3			08/01/15 00:41	313
n,p-Xylene	ND		680	680	ug/m3			08/01/15 00:41	313
fethyl Butyl Ketone (2-Hexanone)	ND		640	640	ug/m3			08/01/15 00:41	313
Methyl Ethyl Ketone	ND		460	460	ug/m3			08/01/15 00:41	313
nethyl isobutyl ketone	ND		640	640	ug/m3			08/01/15 00:41	313
Methyl methacrylate	ND		640	640	ug/m3			08/01/15 00:41	313
Methyl tert-butyl ether	ND		230	230	ug/m3			08/01/15 00:41	313
Methylene Chloride	ND		540	540	_			08/01/15 00:41	313
Naphthalene	ND		820	820	ug/m3			08/01/15 00:41	313
n-Butane	10000		370	370	ug/m3			08/01/15 00:41	313
n-Butylbenzene	ND		340	340	ug/m3			08/01/15 00:41	313
n-Heptane	880		260	260	ug/m3			08/01/15 00:41	313
n-Hexane	2300		220		ug/m3			08/01/15 00:41	313
n-Propylbenzene	ND		310		ug/m3			08/01/15 00:41	313
sec-Butylbenzene	ND		340	340	ug/m3			08/01/15 00:41	313
Styrene	ND		270	270	ug/m3			08/01/15 00:41	313
ert-Butyl alcohol	ND		4700	4700	ug/m3			08/01/15 00:41	313
ert-Butylbenzene	ND		340	340	ug/m3			08/01/15 00:41	313
Tetrachloroethene	ND		420		ug/m3			08/01/15 00:41	313
Tetrahydrofuran	ND		4600		ug/m3			08/01/15 00:41	313
Toluene	ND.		240		ug/m3			08/01/15 00:41	313
								00104117 ::	

TestAmerica Burlington

08/01/15 00:41

08/01/15 00:41

250

280

ND

ND

250 ug/m3

280 ug/m3

313

313

Client Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Lab Sample ID: 200-29061-3

Matrix: Air

Client Sample ID: V-9
Date Collected: 07/28/15 11:04

Date Received: 07/29/15 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		340	340	ug/m3			08/01/15 00:41	313
Trichlorofluoromethane	360		350	350	ug/m3			08/01/15 00:41	313
Vinyl chloride	ND		160	160	ug/m3			08/01/15 00:41	313
Xylene (total)	ND		950	950	ug/m3			08/01/15 00:41	313
Xylene, o-	ND		270	270	ug/m3			08/01/15 00:41	313

5

6

7

ě.

9

12

13

DE:

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 200-92119/5

Matrix: Air

Analysis Batch: 92119

Chefit Sample ID. Method Blank
Prep Type: Total/NA

-	MB MB							
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	DII
1,1,1-Trichloroethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,1,2,2-Tetrachloroethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,1,2-Trichloroethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,1-Dichloroethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,1-Dichloroethene	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,2,4-Trichlorobenzene	ND	0.50	0.50	ppb v/v			07/31/15 13:47	
1,2,4-Trimethylbenzene	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,2-Dibromoethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,2-Dichlorobenzene	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,2-Dichloroethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,2-Dichloroethene, Total	ND	0.40	0.40	ppb v/v			07/31/15 13:47	
1,2-Dichloropropane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,2-Dichlorotetrafluoroethane	ND	0.20	0.20	ppb v/v			07/31/15 13:47	
1,3,5-Trimethylbenzene	ND	0.20		ppb v/v			07/31/15 13:47	
1,3-Butadiene	ND	0.20		ppb v/v			07/31/15 13:47	
1,3-Dichlorobenzene	ND	0.20		ppb v/v			07/31/15 13:47	
1,4-Dichlorobenzene	ND	0.20		ppb v/v			07/31/15 13:47	
1,4-Dioxane	ND	5.0		ppb v/v			07/31/15 13:47	
2,2,4-Trimethylpentane	ND	0.20		ppb v/v			07/31/15 13:47	
2-Chlorotoluene	ND	0.20		ppb v/v			07/31/15 13:47	
3-Chloropropene	ND	0.50		ppb v/v			07/31/15 13:47	
4-Ethyltoluene	ND	0.20		ppb v/v			07/31/15 13:47	
4-Isopropyltoluene	ND	0.20		ppb v/v			07/31/15 13:47	
	ND	5.0		ppb v/v			07/31/15 13:47	
Acetone	ND	0.20		ppb v/v			07/31/15 13:47	
Benzene Benzel ebleride	ND	0.20		ppb v/v			07/31/15 13:47	
Benzyl chloride	ND	0.20		ppb v/v			07/31/15 13:47	
Bromodichloromethane	ND	0.20		ppb v/v			07/31/15 13:47	
Bromoethene(Vinyl Bromide)	ND	0.20		ppb v/v			07/31/15 13:47	
Bromoform	ND	0.20		ppb v/v			07/31/15 13:47	
Bromomethane				ppb v/v			07/31/15 13:47	
Carbon disulfide	ND	0.50					07/31/15 13:47	
Carbon tetrachloride	ND	0.20		ppb v/v			07/31/15 13:47	
Chlorobenzene	ND ND	0.20		ppb v/v			07/31/15 13:47	
Chloroethane	ND						07/31/15 13:47	
Chloroform	ND	0.20 0.50		ppb v/v			07/31/15 13:47	
Chloromethane	ND ND	0.50					07/31/15 13:47	
cis-1,2-Dichloroethene	ND ND	0.20		ppb v/v			07/31/15 13:47	
cis-1,3-Dichloropropene	ND ND	0.20		ppb v/v			07/31/15 13:47	
Curtehouses	ND ND	0.20		ppb v/v			07/31/15 13:47	
Cyclohexane	ND						07/31/15 13:47	
Dibromochloromethane	ND	0.20		ppb v/v			07/31/15 13:47	
Dichlorodifluoromethane	ND	0.50		ppb v/v			07/31/15 13:47	
Ethylbenzene	ND	0.20		ppb v/v				
Freon 22	ND	0.50		ppb v/v			07/31/15 13:47	
Freon TF	ND	0.20		ppb v/v			07/31/15 13:47	
Hexachlorobutadiene	ND	0.20		ppb v/v			07/31/15 13:47	
Isopropyl alcohol	ND	5.0		ppb v/v			07/31/15 13:47	
m,p-Xylene	ND	0.50	0.50	ppb v/v			07/31/15 13:47	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-92119/5

Matrix: Air

Analysis Batch: 92119

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl Butyl Ketone (2-Hexanone)	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
Methyl Ethyl Ketone	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
methyl isobutyl ketone	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
Methyl methacrylate	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
Methyl tert-butyl ether	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Methylene Chloride	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
Naphthalene	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
n-Butane	ND		0.50	0.50	ppb v/v			07/31/15 13:47	1
n-Butylbenzene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
n-Heptane	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
n-Hexane	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
n-Propylbenzene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
sec-Butylbenzene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Styrene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
tert-Butyl alcohol	ND		5.0	5.0	ppb v/v			07/31/15 13:47	1
tert-Butylbenzene	ND		0.20	0.20	ppb v/v		-	07/31/15 13:47	1
Tetrachloroethene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Tetrahydrofuran	ND		5.0	5.0	ppb v/v			07/31/15 13:47	1
Toluene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
trans-1,2-Dichloroethene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
trans-1,3-Dichloropropene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Trichloroethene	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Trichlorofluoromethane	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Vinyl chloride	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
Xylene (total)	ND		0.70	0.70	ppb v/v			07/31/15 13:47	1
Xylene, o-	ND		0.20	0.20	ppb v/v			07/31/15 13:47	1
	MB	MB							

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
1,1,2,2-Tetrachloroethane	ND		1.4	1.4	ug/m3			07/31/15 13:47	1
1,1,2-Trichloroethane	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
1,1-Dichloroethane	ND		0.81	0.81	ug/m3			07/31/15 13:47	1
1,1-Dichloroethene	ND		0.79	0.79	ug/m3			07/31/15 13:47	1
1,2,4-Trichlorobenzene	ND		3.7	3.7	ug/m3			07/31/15 13:47	1
1,2,4-Trimethylbenzene	ND		0.98	0.98	ug/m3			07/31/15 13:47	1
1,2-Dibromoethane	ND		1.5	1.5	ug/m3			07/31/15 13:47	1
1,2-Dichlorobenzene	ND		1.2	1.2	ug/m3			07/31/15 13:47	1
1,2-Dichloroethane	ND		0.81	0.81	ug/m3			07/31/15 13:47	1
1,2-Dichloroethene, Total	ND		1.6	1.6	ug/m3			07/31/15 13:47	1
1,2-Dichloropropane	ND		0.92	0.92	ug/m3			07/31/15 13:47	1
1,2-Dichlorotetrafluoroethane	ND		1.4	1.4	ug/m3			07/31/15 13:47	1
1,3,5-Trimethylbenzene	ND		0.98	0.98	ug/m3			07/31/15 13:47	1
1,3-Butadiene	ND		0.44	0.44	ug/m3			07/31/15 13:47	1
1,3-Dichlorobenzene	ND		1.2	1.2	ug/m3			07/31/15 13:47	1
1.4-Dichlorobenzene	ND		1.2	1.2	ug/m3			07/31/15 13:47	1
1,4-Dioxane	ND		18	18	ug/m3			07/31/15 13:47	1
2,2,4-Trimethylpentane	ND		0.93	0.93	ug/m3			07/31/15 13:47	1
2-Chlorotoluene	ND		1.0	1.0	ug/m3			07/31/15 13:47	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-92119/5

Matrix: Air

Analysis Batch: 92119

Client Sample ID: Method Blank

Prep Type: Total/NA

	Dil Fac	175
7	1	ВO
_		

Allarysis Datoll. 72 117	MB	МВ							
Analyte	Result	Qualifler	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
3-Chloropropene	ND		1.6	1.6	ug/m3			07/31/15 13:47	1
4-Ethyltoluene	ND		0.98	0.98	ug/m3			07/31/15 13:47	1
4-Isopropyltoluene	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
Acetone	ND		12	12	ug/m3			07/31/15 13:47	1
Benzene	ND		0.64	0.64	ug/m3			07/31/15 13:47	1
Benzyl chloride	ND		1.0	1.0	ug/m3			07/31/15 13:47	1
Bromodichloromethane	ND		1.3	1.3	ug/m3			07/31/15 13:47	1
Bromoethene(Vinyl Bromide)	ND		0.87	0.87	ug/m3			07/31/15 13:47	1
Bromoform	ND		2.1	2.1	ug/m3			07/31/15 13:47	1
Bromomethane	ND		0.78	0.78	ug/m3			07/31/15 13:47	1
Carbon disulfide	ND		1.6	1.6	ug/m3			07/31/15 13:47	1
Carbon tetrachloride	ND		1.3	1.3	ug/m3			07/31/15 13:47	1
Chlorobenzene	ND		0.92	0.92	ug/m3			07/31/15 13:47	1
Chloroethane	ND		1.3	1.3	ug/m3			07/31/15 13:47	1
Chloroform	ND		0.98	0.98	ug/m3			07/31/15 13:47	1
Chloromethane	ND		1.0	1.0	ug/m3			07/31/15 13:47	1
cis-1,2-Dichloroethene	ND		0.79	0.79	ug/m3			07/31/15 13:47	1
cis-1,3-Dichloropropene	ND		0.91	0.91	ug/m3			07/31/15 13:47	1
Cumene	ND		0.98	0.98	ug/m3			07/31/15 13:47	1
Cyclohexane	ND		0.69	0.69	ug/m3			07/31/15 13:47	1
Dibromochloromethane	ND		1.7	1.7	ug/m3			07/31/15 13:47	1
Dichlorodifluoromethane	ND		2.5	2.5	ug/m3			07/31/15 13:47	1
Ethylbenzene	ND		0.87	0.87	ug/m3			07/31/15 13:47	1
Freon 22	ND		1.8		ug/m3			07/31/15 13:47	1
Freon TF	ND		1.5	1.5	ug/m3			07/31/15 13:47	1
Hexachlorobutadiene	ND		2.1	2.1	ug/m3	*		07/31/15 13:47	1
Isopropyl alcohol	ND		12	12	ug/m3			07/31/15 13:47	1
m,p-Xylene	ND		2.2	2.2	ug/m3			07/31/15 13:47	1
Methyl Butyl Ketone (2-Hexanone)	ND		2.0	2.0	ug/m3			07/31/15 13:47	1
Methyl Ethyl Ketone	ND		1.5	1.5	ug/m3			07/31/15 13:47	1
methyl isobutyl ketone	ND		2.0	2.0	ug/m3			07/31/15 13:47	1
Methyl methacrylate	ND		2.0		ug/m3			07/31/15 13:47	1
Methyl tert-butyl ether	ND		0.72		ug/m3			07/31/15 13:47	1
Methylene Chloride	ND		1.7	1.7	ug/m3			07/31/15 13:47	1
Naphthalene	ND		2.6	2.6	ug/m3			07/31/15 13:47	1
n-Butane	ND		1.2	1.2	ug/m3			07/31/15 13:47	1
n-Butylbenzene	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
n-Heptane	ND		0.82	0.82	ug/m3			07/31/15 13:47	1
n-Hexane	ND		0.70	0.70	ug/m3			07/31/15 13:47	1
n-Propylbenzene	ND		0.98	0.98	ug/m3			07/31/15 13:47	1
sec-Butylbenzene	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
Styrene	ND		0.85	0.85	ug/m3			07/31/15 13:47	1
tert-Butyl alcohol	ND		15	15	ug/m3			07/31/15 13:47	1
tert-Butylbenzene	ND		1.1	1,1	ug/m3			07/31/15 13:47	1
Tetrachloroethene	ND		1.4	1.4	ug/m3			07/31/15 13:47	1
Tetrahydrofuran	ND		15		ug/m3			07/31/15 13:47	1
Toluene	ND		0.75	0.75	ug/m3			07/31/15 13:47	1
trans-1,2-Dichloroethene	ND		0.79		ug/m3			07/31/15 13:47	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-92119/5

Matrix: Air

Analysis Batch: 92119

Chloromethane

cis-1,2-Dichloroethene

Chloroethane

Chloroform

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.91	0.91	ug/m3			07/31/15 13:47	1
Trichloroethene	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
Trichlorofluoromethane	ND		1.1	1.1	ug/m3			07/31/15 13:47	1
Vinyl chloride	ND		0.51	0.51	ug/m3			07/31/15 13:47	1
Xylene (total)	ND		3.0	3.0	ug/m3			07/31/15 13:47	1
Xylene, o-	ND		0.87	0.87	ug/m3			07/31/15 13:47	1

Lab Sample ID: LCS 200-92119/4 Matrix: Air				Clien	t Sai	mple ID	: Lab Contro Prep Type:	
Analysis Batch: 92119								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	10.0	10.2		ppb v/v		102	70 - 130	
1,1,2,2-Tetrachloroethane	10.0	10.0		ppb v/v		100	70 - 130	
1,1,2-Trichloroethane	10.0	9.98		ppb v/v		100	70 - 130	
1,1-Dichloroethane	10.0	9.71		ppb v/v		97	70 - 130	
1,1-Dichloroethene	10.0	11.0		ppb v/v		110	70 - 130	
1,2,4-Trichlorobenzene	10.0	9.38		ppb v/v		94	70 - 130	
1,2,4-Trimethylbenzene	10.0	10.2		ppb v/v		102	70 - 130	
1,2-Dibromoethane	10.0	10.3		ppb v/v		103	70 - 130	
1,2-Dichlorobenzene	10.0	9.94		ppb v/v		99	70 - 130	
1,2-Dichloroethane	10.0	9.83		ppb v/v		98	70 - 130	
1,2-Dichloropropane	10.0	9.25		ppb v/v		93	70 - 130	
1.2-Dichlorotetrafluoroethane	10.0	12.6		ppb v/v		126	70 - 130	
1,3,5-Trimethylbenzene	10.0	10.1		ppb v/v		101	70 - 130	
1,3-Butadiene	10.0	11.7		ppb v/v		117	70 - 130	
1.3-Dichlorobenzene	10.0	9.94		ppb v/v		99	70 - 130	
1.4-Dichlorobenzene	10.0	9.88		ppb v/v		99	70 - 130	
1,4-Dioxane	10.0	9.40		ppb v/v		94	70 - 130	
2,2,4-Trimethylpentane	10.0	9.41		ppb v/v		94	70 - 130	
2-Chlorotoluene	10.0	9.99		ppb v/v		100	70 - 130	
3-Chloroproperie	10.0	8.16		ppb v/v		82	70 - 130	
4-Ethyltoluene	10.0	10.4		ppb v/v		104	70 - 130	
4-Isopropyltoluene	10.0	10.2		ppb v/v		103	70 - 130	
Acetone	10.0	10.3		ppb v/v		103	70 - 130	
Benzene	10.0	9.59		ppb v/v		96	70 - 130	
Benzyl chloride	10.0	9.77		ppb v/v		98	70 - 130	
Bromodichloromethane	10.0	10.2		ppb v/v		102	70 - 130	
Bromoethene(Vinyl Bromide)	10.0	11.4		ppb v/v		114	70 - 130	
Bromoform	10.0	11.9		ppb v/v		119	70 - 130	
Bromomethane	10.0	11.5		ppb v/v		115	70 - 130	
Carbon disulfide	10.0	11.4		ppb v/v		114	70 - 130	
Carbon tetrachloride	10.0	10.7		ppb v/v		107	70 - 130	
Chlorobenzene	10.0	9.94		ppb v/v		99	70 - 130	

TestAmerica Burlington

10.0

10.0

10.0

10.0

11.9

10.2

11.8

9.69

ppb v/v

ppb v/v

ppb v/v

ppb v/v

119

102

118

97

70 - 130

70 - 130

70 - 130

70 - 130

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-92119/4

Matrix: Air Analysis Batch: 92119 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 92119								
Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
cis-1,3-Dichloropropene	10.0	9.92	Quanner	ppb v/v		99	70 - 130	
Cumene	10.0	10.2		ppb v/v		102	70 - 130	
	10.0	10.2				101	70 - 130	
Cyclohexane Dibromochloromethane	10.0	10.1		ppb v/v			70 - 130	
				ppb v/v		107		
Dichlorodifluoromethane	10.0	10.1		ppb v/v		101	70 - 130	
Ethylbenzene	10.0	10.0		ppb v/v		100	70 - 130	
Freon 22	10.0	9.52		ppb v/v		95	70 - 130	
Freon TF	10.0	11.2		ppb v/v		112	70 - 130	
Hexachlorobutadiene	10.0	9.03		ppb v/v		90	70 - 130	
sopropyl alcohol	10.0	8.07		ppb v/v		81	70 - 130	
m,p-Xylene	20.0	20.1		ppb v/v		100	70 - 130	
Methyl Butyl Ketone	10.0	10.1		ppb v/v		101	70 - 130	
(2-Hexanone)	40.0	0.00		anh ide		00	70 420	
Methyl Ethyl Ketone	10.0	9.86		ppb v/v		99	70 - 130	
methyl isobutyl ketone	10.0	9.54		ppb v/v		95	70 - 130	
Methyl methacrylate	10.0	10.3		ppb v/v		103	70 - 130	
Methyl tert-butyl ether	10.0	10.3		ppb v/v		103	70 - 130	
Methylene Chloride	10.0	9.36		ppb v/v		94	70 - 130	
Naphthalene	10.0	9.51		ppb v/v		95	70 - 130	
n-Butane	10.0	12.0		ppb v/v		120	70 - 130	
n-Butylbenzene	10.0	10.1		ppb v/v		101	70 - 130	
n-Heptane	10.0	9.17		ppb v/v		92	70 - 130	
n-Hexane	10.0	10.3		ppb v/v		103	70 - 130	
n-Propylbenzene	10.0	10.1		ppb v/v		101	70 - 130	
sec-Butylbenzene	10.0	10.2		ppb v/v		102	70 - 130	
Styrene	10.0	10.3		ppb v/v		103	70 - 130	
tert-Butyl alcohol	10.0	9.12		ppb v/v		91	70 - 130	
ert-Butylbenzene	10.0	10.2		ppb v/v		102	70 - 130	
Tetrachloroethene	10.0	10.1		ppb v/v		101	70 - 130	
Tetrahydrofuran	10.0	9.71		ppb v/v		97	70 - 130	
Toluene	10.0	9.94		ppb v/v		99	70 - 130	
trans-1,2-Dichloroethene	10.0	10.4		ppb v/v		104	70 - 130	
trans-1,3-Dichloropropene	10.0	10.0		ppb v/v		100	70 - 130	
Trichloroethene	10.0	9.99		ppb v/v		100	70 - 130	
Trichlorofluoromethane	10.0	10.9		ppb v/v		109	70 - 130	
Vinyl chloride	10.0	11.7		ppb v/v		117	70 - 130	
Xylene, o-	10.0	10.0		ppb v/v		100	70 - 130	
	Spike		LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	55	55.6		ug/m3		102	70 - 130	_
1,1,2,2-Tetrachloroethane	69	68.9		ug/m3		100	70 - 130	
1,1,2-Trichloroethane	55	54.4		ug/m3		100	70 - 130	
1,1-Dichloroethane	40	39.3		ug/m3		97	70 - 130	
1,1-Dichloroethene	40	43.6		ug/m3		110	70 - 130	
1,2,4-Trichlorobenzene	74	69.6		ug/m3		94	70 - 130	
1,2,4-Trimethylbenzene	49	50.2		ug/m3		102	70 - 130	
1,2-Dibromoethane	77	78.8		ug/m3		103	70 - 130	
1,2-Dicromoetnane 1,2-Dichlorobenzene	60	59.8		ug/m3		99	70 - 130	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-92119/4

Matrix: Air

Client Sample ID: Lab Control Sample

D	T	T-A-IINIA	
Prep	Type:	Total/NA	

Matrix: Air							Prep Type:	i otal/N/
Analysis Batch: 92119	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	40	39.8	Qualifor	ug/m3		98	70 - 130	
1,2-Dichloropropane	46	42.7		ug/m3		93	70 - 130	
1.2-Dichlorotetrafluoroethane	70	87.8		ug/m3		126	70 - 130	
1,3,5-Trimethylbenzene	49	49.7		ug/m3		101	70 - 130	
1,3-Butadiene	22	25.8		ug/m3		117	70 - 130	
1,3-Dichlorobenzene	60	59.7		ug/m3		99	70 - 130	
1,4-Dichlorobenzene	60	59.4		ug/m3		99	70 - 130	
1,4-Dioxane	36	33.9		ug/m3		94	70 - 130	
2,2,4-Trimethylpentane	47	44.0		ug/m3		94	70 - 130	
•	52	51.7		ug/m3		100	70 - 130	
2-Chlorotoluene	31	25.6		ug/m3		82	70 - 130	
3-Chloropropene	49	51.2		ug/m3		104	70 - 130	
4-Ethyltoluene				-		103	70 - 130	
4-isopropyltoluene	55	56.3		ug/m3		103		
Acetone	24	24.6		ug/m3			70 - 130	
Benzene	32	30.6		ug/m3		96	70 - 130	
Benzyl chloride	52	50.6		ug/m3		98	70 - 130	
Bromodichloromethane	67	68.1		ug/m3		102	70 - 130	
Bromoethene(Vinyl Bromide)	44	49.7		ug/m3		114	70 - 130	
Bromoform	100	123		ug/m3		119	70 - 130	
Bromomethane	39	44.8		ug/m3		115	70 - 130	
Carbon disulfide	31	35.4		ug/m3		114	70 - 130	
Carbon tetrachloride	63	67.4		ug/m3		107	70 - 130	
Chlorobenzene	46	45.7		ug/m3		99	70 - 130	
Chloroethane	26	31.4		ug/m3		119	70 - 130	
Chloroform	49	49.9		ug/m3		102	70 - 130	
Chloromethane	21	24.5		ug/m3		118	70 - 130	
cis-1,2-Dichloroethene	40	38.4		ug/m3		97	70 - 130	
cis-1,3-Dichloropropene	45	45.0		ug/m3		99	70 - 130	
Cumene	49	50.2		ug/m3		102	70 - 130	
Cyclohexane	34	34.8		ug/m3		101	70 - 130	
Dibromochloromethane	85	91.2		ug/m3		107	70 - 130	
Dichlorodifluoromethane	49	50.0		ug/m3		101	70 - 130	
Ethylbenzene	43	43.6		ug/m3		100	70 - 130	
Freon 22	35	33.7		ug/m3		95	70 - 130	
Freon TF	77	85.7		ug/m3		112	70 - 130	
Hexachlorobutadiene	110	96.3		ug/m3		90	70 - 130	
Isopropyl alcohol	25	19.8		ug/m3		81	70 - 130	
m,p-Xylene	87	87.1		ug/m3		100	70 - 130	
Methyl Butyl Ketone	41	41.5		ug/m3		101	70 - 130	
(2-Hexanone)		00.4				00	70 420	
Methyl Ethyl Ketone	29	29.1		ug/m3		99	70 - 130	
methyl isobutyl ketone	41	39.1		ug/m3		95	70 - 130	
Methyl methacrylate	41	42.2		ug/m3		103	70 - 130	
Methyl tert-butyl ether	36	37.1		ug/m3		103	70 - 130	
Methylene Chloride	35	32.5		ug/m3		94	70 - 130	
Naphthalene	52	49.8		ug/m3		95	70 - 130	
n-Butane	24	28.6		ug/m3		120	70 - 130	
n-Butylbenzene	55	55.4		ug/m3		101	70 - 130	

TestAmerica Burlington

Page 24 of 49

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

100 11

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-92119/4

Client 9

Matrix: Air

Analysis Batch: 92119

Client	Sample	ID:	Lab	Contro	I Sample
			Prep	Type:	Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
n-Heptane	41	37.6		ug/m3		92	70 - 130	
n-Hexane	35	36.3		ug/m3		103	70 - 130	
n-Propylbenzene	49	49.4		ug/m3		101	70 - 130	
sec-Butylbenzene	55	55.8		ug/m3		102	70 - 130	
Styrene	43	43.9		ug/m3		103	70 - 130	
tert-Butyl alcohol	30	27.7		ug/m3		91	70 - 130	
tert-Butylbenzene	55	55.9		ug/m3		102	70 - 130	
Tetrachloroethene	68	68.4		ug/m3		101	70 - 130	
Tetrahydrofuran	29	28.6		ug/m3		97	70 - 130	
Toluene	38	37.5		ug/m3		99	70 - 130	
trans-1,2-Dichloroethene	40	41.1		ug/m3		104	70 - 130	
trans-1,3-Dichloropropene	45	45.4		ug/m3		100	70 - 130	
Trichloroethene	54	53.7		ug/m3		100	70 - 130	
Trichlorofluoromethane	56	61.2		ug/m3		109	70 - 130	
Vinyl chloride	26	29.9		ug/m3		117	70 - 130	
Xylene, o-	43	43.6		ug/m3		100	70 - 130	

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Air - GC/MS VOA

Analysis Batch: 92119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-29061-1	V-3	Total/NA	Air	TO-15	
200-29061-2	V-10	Total/NA	Air	TO-15	
200-29061-3	V-9	Total/NA	Air	TO-15	
LCS 200-92119/4	Lab Control Sample	Total/NA	Air	TO-15	
MB 200-92119/5	Method Blank	Total/NA	Air	TO-15	

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Lab Sample ID: 200-29061-1

Matrix: Air

Client Sample ID: V-3
Date Collected: 07/28/15 10:50

Date Received: 07/29/15 10:30

Date Received: 07/29/15 10:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		435	92119	07/31/15 23:03	PAD	TAL BUR

Client Sample ID: V-10 Lab Sample ID: 200-29061-2

Date Collected: 07/28/15 10:59

Matrix: Air
Date Received: 07/29/15 10:30

Dilution **Prepared** Batch Batch **Batch** Method Factor Number or Analyzed Analyst **Prep Type** Type Run TO-15 365 92119 07/31/15 23:52 PAD TAL BUR Total/NA Analysis

Client Sample ID: V-9 Lab Sample ID: 200-29061-3

Date Collected: 07/28/15 11:04 Matrix: Air

Page 27 of 49

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Total/NA Analysis TO-15 313 92119 08/01/15 00:41 PAD TAL BUR

Laboratory References:
TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Connecticut	State Program	1	PH-0751	09-30-15	
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-16	
Florida	NELAP	4	E87467	06-30-16	
L-A-B	DoD ELAP		L2336	02-26-17	
Maine	State Program	1	VT00008	04-17-17	
Minnesota	NELAP	5	050-999-436	12-31-15	
New Hampshire	NELAP	1	2006	12-18-15	
New Jersey	NELAP	2	VT972	09-30-15	
New York	NELAP	2	10391	03-31-16	
Pennsylvania	NELAP	3	68-00489	04-30-16	
Rhode Island	State Program	1	LAO00298	12-30-15	
US Fish & Wildlife	Federal		LE-058448-0	02-28-16	
USDA	Federal		P330-11-00093	10-28-16	
Vermont	State Program	1	VT-4000	12-31-15	
Virginia	NELAP	3	460209	12-14-15	

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 200-29061-1

Laboratory

3

Method Description
TO-15 Volatile Organic Compounds in Ambient Air

EPA TAL BUR

Protocol

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

5

7

8

10

11

13

Sample Summary

Matrix

Air

Аіг

Аіг

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID

V-3

V-10

V-9

Lab Sample ID

200-29061-1

200-29061-2

200-29061-3

TestAmerica Job ID: 200-29061-1

Collected

07/28/15 10:50 07/29/15 10:30

07/28/15 10:59 07/29/15 10:30

07/28/15 11:04 07/29/15 10:30

	ï	

Received

	_		
	-		

TestAmerica Burlington

phone 802-660-1990 fax 802-660-1919

30 Community Drive Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Man	ager:				Samples Coll	lected By:						of		coc	s			
Company:	Phone:																		
Address:	Email:																		
City/State/Zip Phone: FAX:]							(u						2
Phone:	Site Contac												section)						SE SE
FAX:	TA Contact:					1							90	×					88
Project Name: DeWitt LF		Analysis	Turnarou	nd Time									note						note
Site:	Si	andard (Sp	ecify)										른						5
Site: PO#		lush (Speci											specify in notes						pectf
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15	MA-APH	EPA 3C	EPA 25C	ASTM D-1946	Other (Please s	Sample Min-	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
V-3	7-28-15	1050	1050	-29.9	0		destructions of the second	X				NAC 2011 1100					VIVEN DA PROCEEDS	V	
V-10	7-28-15	-	1054	-29.5	-2.8			V											
V-9	7-28-14	1104	1104	-255	0			V										义	
V)-2813	.,,,,			4	1/												_	
				100	8-1	5								1000				-	
					e (Fahrenhei	1)													
		Interior		Ambient															
	Start								!										
	Stop								_ : '										
	Pressure (inches of Hg)						-												
	Start	Interior	*****	Ambient				1	1 7	200-2	9061	Chain	OI CL	letody					1
	Stop							1											
Special Instructions/QC Requirements & Comme										_	_						-	_	
Samples Shipped by: Samples Relinquished by:	Date/Time:	8-15		100	Samples		7/29/	5	1	103	0	7	A	BT	V				
Camples Reiniquistics by.																			
Relinquished by:	Date/Time:				Received	by:						-							
Ab (ke/only Shipper-Name)			and the second	i ot ariand		forestelli mer				# E IR			de terres en ope						

Login Sample Receipt Checklist

Client: Town of Dewitt Job Number: 200-29061-1

Login Number: 29061 List Source: TestAmerica Burlington

List Number: 1

Creator: Goodrich, Kenneth L

Creator: Goodrich, Kenneth L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Lab does not accept radioactive samples.</td>	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	N/A	Thermal preservation not required.
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

 	•

200-27595-A-9

Pre-Shipment Clean Canister Certification Repo

4100 led: 4/18/2015 12:00 AM Loc: 200 27595 #9

Batch | Individual **Certification Type:** Canister Cleaning & Pre-Shipment Leak Test Cleaning Date Technician **Canister Size** System ID # Cycles m neen 11811 6L 1L 3L Leak Test Final Reading Adjusted initial² Initial Reading Initial1 Final Gauge ID: (3)4 Gauge ID: ("Hg) Difference³ Port Can ID Date: 4/20 Date: 5906 7919 Time: 195 Time: 1400 2 Tech: BDL Tech: 412 BP: 19.4 ("Hg) BP: ("Hg) Temp 23 Temp: (°C) 5 Acceptance Criteria: 6 (1) The difference must be less than or equal to + 0.5 (1) Pressure leadings must be at least 24 hours apart. 8 If time frame was not met, the PM must authorize shipment of canister: 9 PM Authorization: 10

Signature

³To calculate Difference, subtract the Adjusted initial Pressure from the Final Pressure (See Acceptance Criteria)

		Cle	an Canister Certifica	tion Analysis 8	Auth	orizatio	on of I	Relea	se to Invent	tory	
	Test Method: □T	O15 Routine 🗆 TO	15 LL NJDEP-LL 1	rO15		Inv	entor	y Leve	ol	Secondary	Review
	Can ID	Date	Sequence	Analyst	1	2	3	4	Limited	Review Date	Reviewer
MO	3187	4/22/15	13228	PAO						4/22/15	ANU
1815	4100	111111111111111111111111111111111111111									,

Inventory Level 1: Individual Canister Certification Only. Certified clean to RLs listed in laboratory SOP for LLTO15.

Inventory Level 2: Individual or Batch Certification. Certified clean to 0.04 ppbv.

Inventory Level 3: Individual or Batch Certification. Certified clean to 0.20 ppbv.

Inventory Level 4: Individual or Batch Certification. Certified clean following procedures and RLs listed in leboratory SOP NJDEP-LLTO15.

Inventory Level Limited Use: Canisters may only be used for certain projects.

Comments:			

BR-FAI023:10.19.09:7 TestAmerica

Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch.

² To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the Initial pressure reading.

Loc: 200 27614

Pre-Shipment Clean Canister Certification Report

Bottle: Summa Canister 6) Sampled: 4/20/2015 12:00 AM 200-782327

	#7

Cert	ification Ty	/pe:	Batch	□ Individual						
				Canister	Cleaning & P	re-Shipment Leak 1	l'est			
	Sys	tem ID		# Cycles		Cleaning Date	Technician	C	anister Siz	20
	TOP			15		4/20/15	BDL	(6L)	1L	3L
						Leak Test				40
		Initial ¹	Final	Adjusted initial ²		Initial Re	ading	Final F	Reading	R
Port	Can ID	("Hg)	("Hg)	("Hg)	Difference ³	Gauge ID: C14	Gau	ige ID: 6H	IG	14
1	5017	个	-2917	-19.1	0	Date. 11 2.12	5 Dat	e:51916	15/13	18
2	2745		798	1	-O.1	Time: 1545	Tim	e: 1.330	194)
3	2725		298		-OÀ	Tech: BDL	Tec	h: Ms	Ims	2
4	4296		-2919		1-02	BP: 29.3	("Hg) BP:	7918	1797	("Hg
5	5644		F1919		10.0	Temp 23	(℃) Ten	np: \mathcal{V}	127	J)
6	2911		799		10.2	³ Acceptance Criteri	a:			
7	3549	-29.7	-199		-02	(1) The difference r	nust be less than or	equal to + 0.5		
8,	4286		-29.5		50.2	(2) Pressure readin	gs must be at least 2	24 hours apart.		
4	3538		-794	-29/6	8	If time frame was n	ot met, the PM mus	t authorize shipr	nent of can	ister:
10	3544		-195	j	102	PM Authorization:				
11	4570		-19:8		1.0					
12	2700		798		-011	Signature		D	ate	

³To calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria)

st Method:	TO15 Routine TO	15 LL NJDEP-LL	TO15		Inv	entor	y Leve	ol .	Secondary	Review
Can ID	, Date	Sequence	Analyst	1	2	_3	4	Limited	Review Date	Reviewer
3549	4/24/15	13227	Who		V				4/22/15	ANI
								·		
			-							

Inventory Level 1: Individual Canister Certification Only. Certified clean to RLs listed in laboratory SOP for LLTO15.

Inventory Level 2: Individual or Batch Certification. Certified clean to 0.04 ppbv.

Inventory Level 3: Individual or Batch Certification. Certified clean to 0.20 ppbv.

Inventory Level 4: Individual or Batch Certification. Certified clean following procedures and RLs listed in laboratory SOP NJDEP-LLTO15.

Inventory Level Limited Use: Canisters may only be used for certain projects.

Comments:	Koutine			 _
			 	 _
				 _

BR-FAI023:10.19.09:7 **TestAmerica**

Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch.

²To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure reading.

Lab Name: TestAmerica Burlington	Job No.: 200-27595-1
SDG No.:	
Client Sample ID: 4100	Lab Sample ID: 200-27595-9
Matrix: Air	Lab File ID: 13228_15.D
Analysis Method: TO-15	Date Collected: 04/18/2015 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 04/21/2015 20:57
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 87113	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.10
75-45-6	Freon 22	0.10	Ü	0.10	0.10
76-14-2	1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.040
74-87-3	Chloromethane	0.10	U	0.10	0.10
106-97-8	n-Butane	0.10	U	0.10	0.10
75-01-4	Vinyl chloride	0.040	U	0.040	0.040
106-99-0	1,3-Butadiene	0.040	U	0.040	0.040
74-83-9	Bromomethane	0.040	U	0.040	0.040
75-00-3	Chloroethane	0.10	U	0.10	0.10
593-60-2	Bromoethene (Vinyl Bromide)	0.040	U	0.040	0.040
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.040
64-17-5	Ethanol	1.0	U	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.040
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.040
67-64-1	Acetone	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.10
107-05-1	3-Chloropropene	0.10	U	0.10	0.10
75-09-2	Methylene Chloride	0.10	U	0.10	0.10
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.040
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.040
110-54-3	n-Hexane	0.040	U	0.040	0.040
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.040
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
141-78-6	Ethyl acetate	1.0	U	1.0	1.0
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.10
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.040
540-59-0	1,2-Dichloroethene, Total	0.040	U	0.040	0.040
67-66-3	Chloroform	0.040	U	0.040	0.040
109-99-9	Tetrahydrofuran	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.040
110-82-7	Cyclohexane	0.040	U	0.040	0.040
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.040
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.040

FORM I TO-15

Lab Name: TestAmerica Burlington	Job No.: 200-27595-1
SDG No.:	
Client Sample ID: 4100	Lab Sample ID: 200-27595-9
Matrix: Air	Lab File ID: 13228_15.D
Analysis Method: TO-15	Date Collected: 04/18/2015 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 04/21/2015 20:57
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 87113	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.040	U	0.040	0.040
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.040
79-01-6	Trichloroethene	0.040	U	0.040	0.040
80-62-6	Methyl methacrylate	0.10	U	0.10	0.10
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.040
123-91-1	1,4-Dioxane	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	0.040	U	0.040	0.040
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.040
108-10-1	methyl isobutyl ketone	0.10	U	0.10	0.10
108-88-3	Toluene	0.040	U	0.040	0.040
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.040
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.040
127-18-4	Tetrachloroethene	0.040	U	0.040	0.040
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U	0.10	0.10
124-48-1	Dibromochloromethane	0.040	U	0.040	0.040
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.040
108-90-7	Chlorobenzene	0.040	U	0.040	0.040
100-41-4	Ethylbenzene	0.040	U	0.040	0.040
179601-23-1	m,p-Xylene	0.10	U	0.10	0.10
95-47-6	Xylene, o-	0.040	U	0.040	0.040
1330-20-7	Xylene (total)	0.040	U	0.040	0.040
100-42-5	Styrene	0.040	U	0.040	0.040
75-25-2	Bromoform	0.040	U	0.040	0.040
98-82-8	Cumene	0.040	U	0.040	0.040
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.040
103-65-1	n-Propylbenzene	0.040	U	0.040	0.040
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.040
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.040
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.040
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.040
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.040
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.040
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.040
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.040
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.040

FORM I TO-15

Lab Name: TestAmerica Burlington	Job No.: 200-27595-1					
SDG No.:						
Client Sample ID: 4100	Lab Sample ID: 200-27595-9					
Matrix: Air	Lab File ID: 13228_15.D					
Analysis Method: TO-15	Date Collected: 04/18/2015 00:00					
Sample wt/vol: 1000(mL)	Date Analyzed: 04/21/2015 20:57					
Soil Aliquot Vol:	Dilution Factor: 0.2					
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 87113	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	1,2-Dichlorobenzene	0.040	Ü	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	Ū	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U	0.10	0.10

TestAmerica Burlington **Target Compound Quantitation Report**

Data File: \\BTV-LIMS1\ChromData\CHC.i\20150421-13228.b\13228_15.D Lims ID: 200-27595-A-9 Lab Sample ID: 200-27595-9

Client ID: 4100 Client Sample Type:

21-Apr-2015 20:57:30 ALS Bottle#: 15 15 Inject. Date: Worklist Smp#:

0.2000 Purge Vol: 200.000 mL Dil. Factor:

200-0013228-015 Sample Info:

Misc. Info.: 27595-09

CHC.i Instrument ID: Operator ID: pad

\\BTV-LIMS1\ChromData\CHC.i\20150421-13228.b\TO15_MasterMethod_(v1)_CHC.i.m Method:

Limit Group: AI TO15 ICAL

14-Apr-2015 19:21:30 22-Apr-2015 11:15:32 Calib Date: Last Update: Deconvolution ID Integrator: RTE ID Type: Quant Method: Internal Standard Quant By: **Initial Calibration**

\\BTV-LIMS1\ChromData\CHC.i\20150414-13112.b\13112_10.D Last ICal File:

Det: MS SCAN Column 1: RTX-624 (0.32 mm)

XAWRK014 Process Host:

Circt Lovel Boulower: doiglon 22 Apr 2015 10:00:40

First Level Reviewer: daiglep			Da	ate:		22-Apr-20	15 10:00:49	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
1 Propene	41	2.985	2.985	0.000	78	7468	0.3709	
2 Dichlorodifluoromethane	85		3.055				ND	
3 Chlorodifluoromethane	51		3.113				ND	
4 1,2-Dichloro-1,1,2,2-tetra	85		3.327				ND	
5 Chloromethane	50		3.466				ND	
6 Butane	43		3.674				ND	
7 Vinyl chloride	62		3.722				ND	
8 Butadiene	54		3.796				ND	
10 Bromomethane	94		4.501				ND	
11 Chloroethane	64		4.752				ND	
13 Vinyl bromide	106		5.147				ND	
14 Trichlorofluoromethane	101		5.253				ND	
17 Ethanol	45	5.888	5.883	0.005	97	47179	3.97	
20 1,1,2-Trichloro-1,2,2-trif	101		6.374				ND	
21 1,1-Dichloroethene	96		6.406				ND	
22 Acetone	43	6.684	6.668	0.016	85	26244	0.5592	
23 Carbon disulfide	76		6.790				ND	
24 Isopropyl alcohol	45		6.993				ND	
25 3-Chloro-1-propene	41		7.228				ND	
27 Methylene Chloride	49		7.532				ND	
28 2-Methyl-2-propanol	59		7.783				ND	
29 Methyl tert-butyl ether	73		7.938				ND	
31 trans-1,2-Dichloroethene	61		7.975				ND	
33 Hexane	57		8.370				ND	
34 1,1-Dichloroethane	63		8.872				ND	
35 Vinyl acetate	43		8.963				ND	
37 cis-1,2-Dichloroethene	96		10.009				ND	
* 40 Chlorobromomethane	128	10.473	10.478	-0.005	70	486295	10.0	
38 2-Butanone (MEK)	72		10.067				ND	
39 Ethyl acetate	88		10.115				ND	
S 30 1,2-Dichloroethene, Total	61		10.200				ND	

or-2015 11:15:46 Chrom Revision: 2.2 09-Apr-2015 10:05:40 \\BTV-LIMS1\ChromData\CHC.i\20150421-13228.b\13228_15.D

		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flag
41 Tetrahydrofuran	42		10.484				ND	
41 Tetrahydrofuran	83							
42 Chloroform			10.622				ND	
43 Cyclohexane	84		10.852				ND	
44 1,1,1-Trichloroethane	97		10.884				ND	
45 Carbon tetrachloride	117		11.135				ND	
46 Isooctane	57		11.583				ND	
47 Benzene	78		11.615				ND	
48 1,2-Dichloroethane	62		11.812				ND	
49 n-Heptane	43		11.989				ND	
50 1,4-Difluorobenzene	114	12.480	12.485	-0.005	93	2333777	10.0	
53 Trichloroethene	95		12.949				ND	
54 1,2-Dichloropropane	63		13.520				ND	
55 Methyl methacrylate	69		13.707				ND	
56 1,4-Dioxane	88		13.760				ND	
57 Dibromomethane	174		13.787				ND	
58 Dichlorobromomethane	83		14.097				ND	
60 cis-1,3-Dichloropropene	75		15.041				ND	
61 4-Methyl-2-pentanone (MIBK	43		15.340				ND	
65 Toluene	92		15.628				ND	
66 trans-1,3-Dichloropropene	75		16.242				ND	
67 1,1,2-Trichloroethane	83		16.616				ND	
68 Tetrachloroethene	166		16.712				ND	
69 2-Hexanone	43		17.069				ND	
71 Chlorodibromomethane	129		17.379				ND	
72 Ethylene Dibromide	107		17.640				ND	
74 Chlorobenzene-d5	117	18.537	18.537	0.000	85	2250320	10.0	
75 Chlorobenzene	112	10.007	18.601	0.000	00		ND	
76 Ethylbenzene	91		18.750				ND	
78 m-Xylene & p-Xylene	106		19.001				ND	
79 o-Xylene	106		19.839				ND	
	104		19.893				ND	
80 Styrene	104		20.100				ND	
31 Sylenes, Total							ND	
81 Bromoform	173		20.314					
82 Isopropylbenzene	105		20.522				ND	
84 1,1,2,2-Tetrachloroethane	83		21.179				ND	
85 N-Propylbenzene	91		21.237				ND	
88 4-Ethyltoluene	105		21.430				ND	
89 2-Chlorotoluene	91		21.435				ND	
90 1,3,5-Trimethylbenzene	105		21.536				ND	
92 tert-Butylbenzene	119		22.022				ND	
93 1,2,4-Trimethylbenzene	105		22.113				ND	
94 sec-Butylbenzene	105		22.342				ND	
83 4-Bromofluorobenzene	95		22.399				ND	
95 4-Isopropyltoluene	119		22.545				ND	
96 1,3-Dichlorobenzene	146		22.572				ND	
97 1,4-Dichlorobenzene	146		22.710				ND	
98 Benzyl chloride	91		22.908				ND	
100 n-Butylbenzene	91		23.111				ND	
101 1,2-Dichlorobenzene	146		23.239				ND	
103 1,2,4-Trichlorobenzene	180		25.715				ND	
104 Hexachlorobutadiene	225						ND	
TOW MEXACTIONODINACIENE	223		25.897				NU	

Report Date: 22-Apr-2015 11:15:46

Chrom Revision: 2.2 09-Apr-2015 10:05:40

Reagents:

ATTO15CISs_00007

Amount Added: 20.00

Units: mL

Run Reagent

1

3

4

6

74

8

10

12

13

14

15

Report Date: 22-Apr-2015 11:15:46

Chrom Revision: 2.2 09-Apr-2015 10:05:40

Data File: Injection Date: TestAmerica Burlington \\BTV-LIMS1\ChromData\CHC.i\20150421-13228.b\13228_15.D

21-Apr-2015 20:57:30

Instrument ID:

CHC.i

Operator ID:

pad

Lims ID:

200-27595-A-9

Lab Sample ID:

200-27595-9

Worklist Smp#:

15

Client ID: Purge Vol: 4100

200.000 mL

Dil. Factor:

0.2000

ALS Bottle#:

15

Method:

TO15_MasterMethod_(v1)_CHC.i

Limit Group:

AI_TO15_ICAL

Lab Name: TestAmerica Burlington SDG No.: Client Sample ID: 3549 Matrix: Air Analysis Method: TO-15 Sample wt/vol: 1000(mL)	Job No.: 200-27614-1					
SDG No.:						
Client Sample ID: 3549	Lab Sample ID: 200-27614-7					
Matrix: Air	Lab File ID: 13227_013.d					
Analysis Method: TO-15	Date Collected: 04/20/2015 00:00					
Sample wt/vol: 1000(mL)	Date Analyzed: 04/21/2015 22:03					
Soil Aliquot Vol:	Dilution Factor: 0.2					
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 87112	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	Ū	0.10	0.10
75-45-6	Freon 22	0.10	U	0.10	0.10
76-14-2	1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.040
74-87-3	Chloromethane	0.10	Ü	0.10	0.10
106-97-8	n-Butane	0.10	U	0.10	0.10
75-01-4	Vinyl chloride	0.040	U	0.040	0.040
106-99-0	1,3-Butadiene	0.040	U	0.040	0.040
74-83-9	Bromomethane	0.040	U	0.040	0.040
75-00-3	Chloroethane	0.10	U	0.10	0.10
593-60-2	Bromoethene (Vinyl Bromide)	0.040	U	0.040	0.040
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.040
64-17-5	Ethanol	1.0	U	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.040
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.040
67-64-1	Acetone	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.10
107-05-1	3-Chloropropene	0.10	U	0.10	0.10
75-09-2	Methylene Chloride	0.10	U	0.10	0.10
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.040
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.040
110-54-3	n-Hexane	0.040	U	0.040	0.040
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.040
108-05-4	Vinyl acetate	1.0	Ü	1.0	1.0
141-78-6	Ethyl acetate	1.0	U	1.0	1.0
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.10
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.040
540-59-0	1,2-Dichloroethene, Total	0.040	U	0.040	0.040
67-66-3	Chloroform	0.040	U	0.040	0.040
109-99-9	Tetrahydrofuran	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.040
110-82-7	Cyclohexane	0.040	U	0.040	0.040
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.040
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.040

FORM I TO-15

Job No.: 200-27614-1 Lab Name: TestAmerica Burlington SDG No.: Lab Sample ID: 200-27614-7 Client Sample ID: 3549 Lab File ID: 13227 013.d Matrix: Air Date Collected: 04/20/2015 00:00 Analysis Method: TO-15 Date Analyzed: 04/21/2015 22:03 Sample wt/vol: 1000(mL) Dilution Factor: 0.2 Soil Aliquot Vol: GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 87112 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.040	U	0.040	0.040
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.040
79-01-6	Trichloroethene	0.040	U	0.040	0.040
80-62-6	Methyl methacrylate	0.10	U	0.10	0.10
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.040
123-91-1	1,4-Dioxane	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	0.040	U	0.040	0.040
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.040
108-10-1	methyl isobutyl ketone	0.10	U	0.10	0.10
108-88-3	Toluene	0.040	U	0.040	0.040
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.040
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.040
127-18-4	Tetrachloroethene	0.040	U	0.040	0.040
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U	0.10	0.10
124-48-1	Dibromochloromethane	0.040	U	0.040	0.040
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.040
108-90-7	Chlorobenzene	0.040	U	0.040	0.040
100-41-4	Ethylbenzene	0.040	U	0.040	0.040
179601-23-1	m,p-Xylene	0.10	U	0.10	0.10
95-47-6	Xylene, o-	0.040	U	0.040	0.040
1330-20-7	Xylene (total)	0.040	U	0.040	0.040
100-42-5	Styrene	0.040	U	0.040	0.040
75-25-2	Bromoform	0.040	U	0.040	0.040
98-82-8	Cumene	0.040	U	0.040	0.040
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.040
103-65-1	n-Propylbenzene	0.040	U	0.040	0.040
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.040
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.04
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.04
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.04
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.04
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.04
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.04
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.040
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.040

Lab Name: TestAmerica Burlington	Job No.: 200-27614-1					
SDG No.:						
Client Sample ID: 3549	Lab Sample ID: 200-27614-7					
Matrix: Air	Lab File ID: 13227_013.d					
Analysis Method: TO-15	Date Collected: 04/20/2015 00:00					
Sample wt/vol: 1000(mL)	Date Analyzed: 04/21/2015 22:03					
Soil Aliquot Vol:	Dilution Factor: 0.2					
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)					
% Moisture:	Level: (low/med) Low					
Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm						

CAS NO. COMPOUND NAME		RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	95-50-1 1,2-Dichlorobenzene		U	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U	0.10	0.10

Data File:

\\BTV-LIMS1\ChromData\CHW.i\20150421-13227.b\13227 013.d

Lims ID:

200-27614-A-7

Lab Sample ID:

200-27614-7

Client ID:

3549

Sample Type:

Client

Inject. Date:

21-Apr-2015 22:03:30 200.000 mL

ALS Bottle#: Dil. Factor:

10

Worklist Smp#:

13

Purge Vol: Sample Info:

200-0013227-013

Misc. Info.:

27614-07

BPL Operator ID:

\\BTV-LIMS1\ChromData\CHW.i\20150421-13227.b\TO15_LLNJ_TO3_W_(v1).m

Instrument ID:

CHW.i

0.2000

Method: Limit Group:

AI_TO15_ICAL

22-Apr-2015 11:01:26

Calib Date:

04-Mar-2015 09:39:30

Last Update: Integrator:

RTE

Internal Standard

ID Type: Quant By: Deconvolution ID Initial Calibration

Quant Method: Last ICal File:

\\BTV-LIMS1\ChromData\CHW.i\20150303-12382.b\12382_015.d

Column 1:

RTX-624 (0.32 mm)

Det: MS SCAN

Process Host:

XAWRK025

First Level Reviewer: desjardinsb			D	ate:		22-Apr-2015 11:01:59		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
1 Propene	41		4.360				ND	
2 Dichlorodifluoromethane	85		4.456				ND	
3 Chlorodifluoromethane	51		4.526				ND	
4 1,2-Dichloro-1,1,2,2-tetra	85		4.804				ND	
5 Chloromethane	50		4.996				ND	
6 Butane	43		5.259				ND	
7 Vinyl chloride	62		5.317				ND	
8 Butadiene	54		5.414				ND	
10 Bromomethane	94		6.270				ND	
11 Chloroethane	64		6.553				ND	
13 Vinyl bromide	106		7.035				ND	
14 Trichlorofluoromethane	101		7.147				ND	
17 Ethanol	45		7.778				ND	
20 1,1,2-Trichloro-1,2,2-trif	101		8.393				ND	
21 1,1-Dichloroethene	96		8.463				ND	
22 Acetone	43		8.693				ND	
23 Carbon disulfide	76		8.955				ND	
24 Isopropyl alcohol	45	9.014	9.009	0.005	47	1916	0.1482	
25 3-Chloro-1-propene	41		9.346				ND	
27 Methylene Chloride	49		9.683				ND	
28 2-Methyl-2-propanol	59		9.881				ND	
29 Methyl tert-butyl ether	73		10.116				ND	
31 trans-1,2-Dichloroetherie	61		10.180				ND	
30 1,2-Dichloroethene, Total	61		10.200				ND	
33 Hexane	57		10.598				ND	
34 1,1-Dichloroethane	63		11.143				ND	
35 Vinyl acetate	43		11.181				ND	
37 cis-1,2-Dichloroethene	96		12.315				ND	
38 2-Butanone (MEK)	72		12.331				ND	
39 Ethyl acetate	88		12.358				ND	
40 Chlorobromomethane	128	12.786	12.802	-0.016	63	169530	10.0	

		RT	Adj RT	DIt RT			OnCol Amt
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v Flag
44 Totale udusti usas	40		10.007				ND
41 Tetrahydrofuran	42		12.807				ND
42 Chloroform	83		12.909				ND
43 Cyclohexane	84		13.208				ND
44 1,1,1-Trichloroethane	97		13.219				ND
45 Carbon tetrachloride	117		13.470				ND
46 Isooctane	57		13.866				ND
47 Benzene	78		13.925				ND
48 1,2-Dichloroethane	62		14.086				ND
49 n-Heptane	43		14.214				ND
50 1,4-Difluorobenzene	114	14.674	14.685	-0.011	91	820767	10.0
53 Trichloroethene	95		15.150				ND
54 1,2-Dichloropropane	63		15.669				ND
55 Methyl methacrylate	69		15.755				ND
56 1,4-Dioxane	88		15.851				ND
57 Dibromomethane	174		15.915				ND
58 Dichlorobromomethane	83		16.161				ND
60 cis-1,3-Dichloropropene	75		17.023				ND
61 4-Methyl-2-pentanone (MIBK	43		17.253				ND
65 Toluene	92		17.595				ND
66 trans-1,3-Dichloropropene	75		18.130				ND
67 1,1,2-Trichloroethane	83		18.494				ND
68 Tetrachloroethene	166		18.638				ND
69 2-Hexanone	43		18.884				ND
71 Chlorodibromomethane	129		19.253				ND
72 Ethylene Dibromide	107		19.537				ND
S 73 Xylenes, Total	106		20.100				ND
74 Chlorobenzene-d5	117	20.377	20.382	-0.005	82	737815	10.0
75 Chlorobenzene	112		20.441				ND
76 Ethylbenzene	91		20.553				ND
78 m-Xylene & p-Xylene	106		20.767				ND
79 o-Xylene	106		21.490				ND
80 Styrene	104		21.527				ND
81 Bromoform	173		21.912				ND
82 Isopropylbenzene	105		22.057				ND
	95	22.404	22.394	0.010	92	471059	NC
\$ 83 4-Bromofluorobenzene 84 1,1,2,2-Tetrachloroethane	83	22.404	22.618	0.010	52	471000	ND
85 N-Propylbenzene	91		22.693				ND
88 4-Ethyltoluene	105		22.859				ND
89 2-Chlorotoluene	91		22.897				ND
	105		22.950				ND
90 1,3,5-Trimethylbenzene	119		23.426				ND
92 tert-Butylbenzene	105		23.517				ND
93 1,2,4-Trimethylbenzene	105		23.758				ND
94 sec-Butylbenzene							ND
95 4-Isopropyltoluene	119		23.956				
96 1,3-Dichlorobenzene	146		24.031				ND
97 1,4-Dichlorobenzene	146		24.175				ND
98 Benzyl chloride	91		24.378				ND
100 n-Butylbenzene	91		24.592				ND
101 1,2-Dichlorobenzene	146		24.780				ND
103 1,2,4-Trichlorobenzene	180		27.658				ND
104 Hexachlorobutadiene	225		27.861				ND
105 Naphthalene	128		28.236				ND

Report Date: 22-Apr-2015 11:01:59

QC Flag Legend Processing Flags NC - Not Calibrated

Reagents:

ATTO15WISs_00003

Chrom Revision: 2.2 09-Apr-2015 10:05:40

Units: mL

Amount Added: 20.00

Run Reagent

Report Date: 22-Apr-2015 11:01:59

Chrom Revision: 2.2 09-Apr-2015 10:05:40

Data File: Injection Date: 21-Apr-2015 22:03:30

TestAmerica Burlington \\BTV-LIMS1\ChromData\CHW.i\20150421-13227.b\13227_013.d CHW.i

Lims ID: 200-27614-A-7 Instrument ID: Lab Sample ID:

Operator ID: Worklist Smp#: 13

BPL

Client ID: 3549

200.000 mL

Dil. Factor:

0.2000

ALS Bottle#:

10

Purge Vol: Method:

TO15_LLNJ_TO3_W_(v1)

Limit Group:

AI_TO15_ICAL

200-27614-7

Landfill: Dewitt

Date: 7-28-/5.
Initials: TOK

					7	·		·	•
Time	Location	%СН4	%CG(LEL)	%CO2	%02	H2S(ppm)	CO(ppm)	ATM. Pres("Hg)	
0970	Initial Ambient Cond	O	0	Ø	21,0.	. 0	ථ	29.61	V.
10:25	V-9	53.2	7	33.3	60,	003	0010	29.56 7 Fyma	FUNEN
								-99-51	614.
10:31	V-10	5B.7	>	31.4	00,1	005	0008	79.56	61
					1.6	007	407.10	00 17	-
10:35	V-11	60.2	7	32.8	00.1	00 1	15010	29.56	6
10139	V-12	56,9	>	32.4	60.1	0008	0009	29.56	6
0,01		3 0, 1							
16:45	V-18	55.2	7	32.7	1.4	0001	19000	29.56	3_
10:50	V-3.	54.9	>	30.4	,00.1	0003	0010	29.56	31
									1
	# collect ga	5 52	mples	from	V-9				1
					V-10				1
					V-3				Į
									{
p									1
11:10	Upwind (mw-2)	3	6	0	26.3	0	0	29.59	Mm.
				0	2 2 2			29.59	n.m.
11:16	Dawnwing	. 0	0	0	20.2	0	0	61.91	3
	(near Twi-9)				-				1
									1
]
									1
<u>ਵਜ਼ਾਂ</u>									4
						<u> </u>			-
									1
							-	<u> </u>	1
				-	 		-		1
				 	 		1]
	Ambient @ Completion	1 0	0	0	20.8	0	0	29.61	1
1100									

Ground Conditions: SUNNY 80'S

Montoring Equipment Fen Days Velocial 9565

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-84773-1 Client Project/Site: Town of Dewitt Sampling Event: Groundwater - Annual (3)

For: Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Authorized for release by: 8/12/2015 4:47:21 PM

Fion Shopping

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
Surrogate Summary	44
QC Sample Results	45
QC Association Summary	53
Lab Chronicle	58
Certification Summary	64
Method Summary	65
Sample Summary	66
Chain of Custody	67
Field Data Sheets	69
Receipt Checklists	88

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

2

GC/MS VOA

Qualifier

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

7

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit

ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Job ID: 480-84773-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-84773-1

Comments

No additional comments.

Receipt

The samples were received on 7/30/2015 1:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.3° C and 0.5° C.

GC/MS VOA

Method(s) 624: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4D (480-84773-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: MW-6S (480-84773-1), MW-4S (480-84773-7). The reporting limits (RLs) have been adjusted proportionately.

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following samples deviated from the standard procedure: MW-8D (480-84773-2), MW-8S (480-84773-3), MW-9M (480-84773-4), MW-3S (480-84773-6) and MW-4D (480-84773-8), MW-9S (480-84773-5), MW-1S (480-84773-9), MW-2D (480-84773-10), MW-2S (480-84773-11), MW-12S (480-84773-12), MW-7S (480-84773-13), MW-5D (480-84773-16). The reporting limits (RLs) have been adjusted proportionately.

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following samples deviated from the standard procedure: MW-10S (480-84773-14) and (480-84773-A-14 DU). The reporting limits (RLs) have been adjusted proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Buffalo 8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-3

Lab Sample ID: 480-84773-4

Lab Sample ID: 480-84773-5

Lab Sample ID: 480-84773-6

Lab Sample ID: 480-84773-1

Client Sample	ID:	MW-6S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.81	J	5.0	0.54	ug/L	1		624	Total/NA
Arsenic	0.014	J	0.015	0.0056	mg/L	1		6010C	Total/NA
Cadmium	0.00052	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.0012	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0041	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Nickel	0.0034	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0070	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1330		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-8D

Client Sample ID: MW-8D						Lab S	Sa	mple ID: 4	80-84773-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.013	J	0.015	0.0056	mg/L		_	6010C	Total/NA
Zinc	0.0054	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	2160		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-8S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	40		5.0	0.75	ug/L	1	-	624	Total/NA
Arsenic	0.016		0.015	0.0056	mg/L	1		6010C	Total/NA
Chromium	0.0014	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Nickel	0.0020	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0043	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1030		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-9M

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	66		5.0	0.75	ug/L	1	_	624	Total/NA
Arsenic	0.031		0.015	0.0056	mg/L	1		6010C	Total/NA
Nickel	0.0085	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0026	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1190		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-9S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.0087	J	0.020	0.0068	mg/L	1	_	6010C	Total/NA
Nickel	0.0022	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0062	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	1060		20.0	8.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-3S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.10		0.015	0.0056	mg/L		_	6010C	Total/NA
Beryllium	0.0016	J	0.0020	0.00030	mg/L	1		6010C	Total/NA
Cadmium	0.0013	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.026		0.0040	0.0010	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-3S	ent Sample ID: MW-3S (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.019		0.010	0.0016	mg/L	1	_	6010C	Total/NA
Lead	0.020		0.010	0.0030	mg/L	1		6010C	Total/NA
Nickel	0.034		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.089		0.010	0.0015	mg/L	1		6010C	Total/NA
Nickel	0.0043	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0052	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	1970		20.0	8.0	mg/L	1		SM 2540C	Total/NA
lient Sample ID: MW-4S									80-84773-
Analyte	Result	Qualifier	RL	MDL		Dil Fac		Method	Prep Type
1,2-Dichloroethene, Total	53		10	3.2	ug/L	1	_	624	Total/NA
Vinyl chloride	2.3	J	5.0	0.75	ug/L	1		624	Total/NA
Nickel	0.0015	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.0018	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	2940		40.0	16.0	mg/L	1		SM 2540C	Total/NA
lient Sample ID: MW-4D	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	um-uugu ka 1966 iga kan maanamaa ka k				Lab S	Sar	nple ID: 4	80-84773-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	24		5.0	0.60	ug/L	1		624	Total/NA
Vinyl chloride	3.7	J	5.0	0.75	ug/L	1		624	Total/NA
1,2-Dichloroethene, Total - DL	130		20	6.4	ug/L	2		624	Total/NA
Zinc	0.0020	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Total Dissolved Solids	2470		40.0	16.0	mg/L	1		SM 2540C	Total/NA
Client Sample ID: MW-1S	ent Sample ID: MW-1S								
Analyte	Result	Qualifier	RL		Unit	Dil Fac			Prep Type
Arsenic	0.013	J	0.015	0.0056	mg/L	1	_	6010C	Total/NA
Beryllium	0.0011	J	0.0020	0.00030	mg/L	1		6010C	Total/NA
Cadmium	0.0012	J	0.0020	0.00050	mg/L	1		6010C	Total/NA
Chromium	0.053		0.0040	0.0010	mg/L	1		6010C	Total/NA

Allalyte	Itobuit	ateminio.						
Arsenic	0.013	J	0.015	0.0056	mg/L	1	6010C	Total/NA
Beryllium	0.0011	J	0.0020	0.00030	mg/L	1	6010C	Total/NA
Cadmium	0.0012	J	0.0020	0.00050	mg/L	1	6010C	Total/NA
Chromium	0.053		0.0040	0.0010	mg/L	1	6010C	Total/NA
Copper	0.064		0.010	0.0016	mg/L	1	6010C	Total/NA
Lead	0.011		0.010	0.0030	mg/L	1	6010C	Total/NA
Nickel	0.053		0.010	0.0013	mg/L	1	6010C	Total/NA
Zinc	0.12		0.010	0.0015	mg/L	1	6010C	Total/NA
Nickel	0.0020	J	0.010	0.0013	mg/L	1	6010C	Dissolved
Zinc	0.0048	J	0.010	0.0015	mg/L	1	6010C	Dissolved
Mercury	0.00013	J	0.00020	0.00012	mg/L	1	7470A	Total/NA
Total Dissolved Solids	1170		20.0	8.0	mg/L	1	SM 2540C	Total/NA
-								

Total Dissolved Solids	1170		20.0	8.0	mg/L	1		SM 2540C	Total/NA
Client Sample ID: MW-2D						Lab S	an	ple ID: 48	0-84773-10
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	0.0028	J	0.010	0.0015	mg/L	1	-	6010C	Total/NA
Total Dissolved Solids	2220		20.0	8.0	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-2S

TestAmerica Buffalo

Lab Sample ID: 480-84773-11

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-2S (C	ontinue	ed)				Lab Sa	ım	ple ID: 48	0-84773-11		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Total Dissolved Solids	1530		20.0	8.0	mg/L	1	_	SM 2540C	Total/NA		
Client Sample ID: MW-12S				WEST 448 BEVOLUE OF STREET	TOTAL & FEEL AND SERVICE SERVI	Lab Sa	ım	ple ID: 48	0-84773-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Zinc	0.0061	J	0.010	0.0015	mg/L	1		6010C	Total/NA		
Total Dissolved Solids	1190		20.0	8.0	mg/L	1		SM 2540C	Total/NA		
Client Sample ID: MW-7S						Lab Sa	am	ple ID: 48	0-84773-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Chromium	0.0029		0.0040	0.0010		1	_	6010C	Total/NA		
Copper	0.0018	_	0.010	0.0016	_	1		6010C	Total/NA		
Nickel	0.0016	_	0.010	0.0013	•	1		6010C	Total/NA		
Zinc	0.0041		0.010	0.0015	-	1		6010C	Total/NA		
Total Dissolved Solids	1150		20.0		mg/L	1		SM 2540C	Total/NA		
lient Sample ID: MW-10S							Lab Sample ID: 480-8477				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Chromium	0.014		0.0040	0.0010	mg/L	1	-	6010C	Total/NA		
Nickel	0.0025	J	0.010	0.0013	_	1		6010C	Total/NA		
Zinc	0.018		0.010	0.0015	mg/L	1		6010C	Total/NA		
Total Dissolved Solids	1210		20.0	8.0	mg/L	1		SM 2540C	Total/NA		
Client Sample ID: MW-5D						Lab Sa	am	ple ID: 48	0-84773-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Arsenic	0.0065	J	0.015	0.0056	mg/L	1	_	6010C	Total/NA		
Chromium	0.0031	J	0.0040	0.0010	mg/L	1		6010C	Total/NA		
Nickel	0.0030	J	0.010	0.0013	mg/L	1		6010C	Total/NA		
Zinc	0.011		0.010	0.0015	mg/L	1		6010C	Total/NA		
Zinc	0.0061	J	0.010	0.0015	mg/L	1		6010C	Dissolved		
Total Dissolved Solids	3040		40.0	16.0	mg/L	1		SM 2540C	Total/NA		
Client Sample ID: MW-5S						Lab Sa	am	ple ID: 48	0-84773-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Nickel	0.0014	J	0.010	0.0013	mg/L	1	_	6010C	Total/NA		
Zinc	0.0062	J	0.010	0.0015	mg/L	1		6010C	Total/NA		
Total Dissolved Solids	2440		40.0	16.0	mg/L	1		SM 2540C	Total/NA		
Client Sample ID: MW-11D						Lab Sa	am	ple ID: 48	0-84773-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Arsenic	0.016		0.015	0.0056	ma/L	1	_	6010C	Total/NA		

This Detection Summary does not include radiochemical test results.

0.00090 J

0.052

1.8

0.0012 J

Beryllium

Cadmium

Chromium

Copper

TestAmerica Buffalo

6010C

6010C

6010C

6010C

Total/NA

Total/NA

Total/NA

Total/NA

0.0020

0.0020

0.0040

0.010

0.00030 mg/L

0.00050 mg/L

0.0010 mg/L

0.0016 mg/L

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

2

Client Sample ID: MW-11D (Continued)

Lab Sample ID: 480-84773-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	0.023		0.010	0.0030	mg/L		_	6010C	Total/NA
Nickel	0.24		0.010	0.0013	mg/L	1		6010C	Total/NA
Zinc	0.14		0.010	0.0015	mg/L	1		6010C	Total/NA
Chromium	0.0023	J	0.0040	0.0010	mg/L	1		6010C	Dissolved
Nickel	0.0027	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Zinc	0.0042	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Total Dissolved Solids	904		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Lab Sample ID: 480-84773-18

Client Sample ID: TRIP BLANK

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-1

Matrix: Ground Water

Client Sample ID: MW-6S

Date Collected: 07/26/15 11:00 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0		ug/L		•	07/31/15 01:16	
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			07/31/15 01:16	
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 01:16	
1.1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 01:16	
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 01:16	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 01:16	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 01:16	
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 01:16	
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 01:16	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 01:16	
I.4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 01:16	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 01:16	
Acrolein	ND		100	17	ug/L			07/31/15 01:16	
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 01:16	
Benzene	ND		5.0	0.60	ug/L			07/31/15 01:16	
Bromoform	ND		5.0	0.47	ug/L			07/31/15 01:16	
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 01:16	
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 01:16	
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 01:16	
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 01:16	
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 01:16	
Chloroform	0.81	J	5.0	0.54	ug/L			07/31/15 01:16	
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 01:16	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 01:16	
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 01:16	
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 01:16	
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 01:16	
Tetrachloroethene	ND		5.0	0.34	ug/L			07/31/15 01:16	
Toluene	ND		5.0	0.45	ug/L			07/31/15 01:16	
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 01:16	
rans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			07/31/15 01:16	
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 01:16	
Vinyl chloride	ND		5.0	0.75	ug/L			07/31/15 01:16	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fe
1,2-Dichloroethane-d4 (Surr)	98		72 - 130					07/31/15 01:16	
4-Bromofluorobenzene (Surr)	96		69 - 121					07/31/15 01:16	
Toluene-d8 (Surr)	99		70 - 123					07/31/15 01:16	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 16:36	1
Arsenic	0.014	J	0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 16:36	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 16:36	1
Cadmium	0.00052	J	0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 16:36	1
Chromium	0.0012	J	0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 16:36	1
Copper	0.0041	J	0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 16:36	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 16:36	1
Nickel	0.0034	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 16:36	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 16:36	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-6S

Lab Sample ID: 480-84773-1

Matrix: Ground Water

Date Collected: 07/26/15 11:00 Date Received: 07/30/15 01:40

Method: 6010C - Metals (ICP) (Cor Analyte) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017			07/31/15 07:35	07/31/15 16:36	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 16:36	1
Zinc	0.0070	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 16:36	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:36	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1330		20.0	8.0	mg/L			07/30/15 11:16	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-2

Matrix: Ground Water

Client Sample ID: MW-8D

Date Collected: 07/27/15 17:00 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte	Result Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			07/31/15 01:38	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 01:38	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 01:38	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 01:38	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 01:38	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 01:38	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 01:38	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 01:38	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 01:38	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			07/31/15 01:38	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 01:38	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 01:38	1
Acrolein	ND	100	17	ug/L			07/31/15 01:38	1
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 01:38	1
Benzene	ND	5.0	0.60	ug/L			07/31/15 01:38	1
Bromoform	ND	5.0	0.47	ug/L			07/31/15 01:38	1
Bromomethane	ND	5.0	1.2	ug/L			07/31/15 01:38	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 01:38	1
Chlorobenzene	ND	5.0	0.48	ug/L			07/31/15 01:38	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 01:38	1
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 01:38	1
Chloroform	ND	5.0	0.54	ug/L			07/31/15 01:38	1
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 01:38	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 01:38	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 01:38	1
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 01:38	1
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 01:38	1
Tetrachloroethene	ND	5.0	0.34	ug/L			07/31/15 01:38	1
Toluene	ND	5.0	0.45	ug/L			07/31/15 01:38	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 01:38	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L		•	07/31/15 01:38	1
Trichloroethene	ND	5.0	0.60	ug/L			07/31/15 01:38	1
Vinyl chloride	ND	5.0	0.75	ug/L			07/31/15 01:38	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	72 - 130					07/31/15 01:38	1
4-Bromofluorobenzene (Surr)	96	69 - 121					07/31/15 01:38	1
Toluene-d8 (Surr)	101	70-123					07/31/15 01:38	1

Method: 6010C - Metals (ICP) Analyte Res	ılt Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ID	0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 16:39	1
	13 J	0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 16:39	1
	ID	0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 16:39	1
	ID	0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 16:39	1
Chromium	ID	0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 16:39	1
	ID	0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 16:39	1
	ID	0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 16:39	1
	ID	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 16:39	1
	ID	0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 16:39	1

TestAmerica Buffalo

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-2

Matrix: Ground Water

Client Sample ID: MW-8D Date Collected: 07/27/15 17:00

Date Received: 07/30/15 01:40

Method: 6010C - Metals (ICP) (Cor		Qualifier	RL	MDL	I Imile	D	Prepared	Analyzed	Dil Fac
Analyte		Quaimer					07/31/15 07:35	07/31/15 16:39	DII Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07.35		•
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 16:39	1
Zinc	0.0054	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 16:39	1
Method: 7470A - Mercury (CVAA)									D.1. E.
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2160		20.0	8.0	mg/L			08/02/15 20:15	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-3

Matrix: Ground Water

Client Sample ID: MW-8S

Date Collected: 07/27/15 16:00 Date Received: 07/30/15 01:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 02:01	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 02:01	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 02:01	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 02:01	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 02:01	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 02:01	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L	•		07/31/15 02:01	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 02:01	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 02:01	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L	•		07/31/15 02:01	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 02:01	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 02:01	1
Acrolein	ND		100	17	ug/L			07/31/15 02:01	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 02:01	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 02:01	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 02:01	1
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 02:01	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 02:01	1
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 02:01	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 02:01	1
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 02:01	1
Chloroform	ND		5.0	0.54	ug/L			07/31/15 02:01	1
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 02:01	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 02:01	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 02:01	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 02:01	1
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 02:01	1
Tetrachloroethene	ND		5.0	0.34	ug/L			07/31/15 02:01	1
Toluene	ND		5.0	0.45	ug/L			07/31/15 02:01	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 02:01	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			07/31/15 02:01	1
Trichloroethene	ND		5.0		ug/L			07/31/15 02:01	1
Vinyl chloride	40		5.0	0.75	ug/L			07/31/15 02:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	99		72 - 130					07/31/15 02:01	1
4-Bromofluorobenzene (Surr)	98		69 - 121					07/31/15 02:01	1
Toluene-d8 (Surr)	100		70 - 123					07/31/15 02:01	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	NĎ		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 16:56	1
Arsenic	0.016		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 16:56	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 16:56	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 16:56	1
Chromium	0.0014	J	0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 16:56	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 16:56	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 16:56	1
Nickel	0.0020	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 16:56	1
Selenium	ND	-	0.025	0.0087	•		07/31/15 07:35	07/31/15 16:56	1

Client: Town of Dewitt Project/Site: Town of Dewitt

Total Dissolved Solids

TestAmerica Job ID: 480-84773-1

10

Client Sample ID: MW-8S

Lab Sample ID: 480-84773-3

3

Date Collected: 07/27/15 16:00 Date Received: 07/30/15 01:40 Matrix: Ground Water

08/02/15 20:15

5

Method: 6010C - Metals (ICP) (Con Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 16:56	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 16:56	1
Zinc	0.0043	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 16:56	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	4,444	0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:51	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

20.0

1030

8.0 mg/L

10

12

13 14

T.

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-4

Matrix: Ground Water

Client Sample ID: MW-9M

Date Collected: 07/28/15 08:15 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte	Result Qualifie		MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			07/31/15 02:24	
I,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 02:24	
,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 02:24	
,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 02:24	
,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 02:24	
,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 02:24	
,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 02:24	,
,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 02:24	
,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 02:24	
I,3-Dichlorobenzene	ND	5.0	0.54	ug/L			07/31/15 02:24	
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 02:24	
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 02:24	
Acrolein	ND	100	17	ug/L			07/31/15 02:24	
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 02:24	
Benzene	ND	5.0	0.60	ug/L			07/31/15 02:24	
Bromoform	ND	5.0	0.47	ug/L			07/31/15 02:24	
Bromomethane	ND	5.0	1.2	ug/L			07/31/15 02:24	
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 02:24	
Chlorobenzene	ND	5.0	0.48	ug/L			07/31/15 02:24	
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 02:24	
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 02:24	
Chloroform	ND	5.0	0.54	ug/L			07/31/15 02:24	
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 02:24	
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 02:24	
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 02:24	
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 02:24	
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 02:24	
Tetrachloroethene	ND	5.0	0.34	ug/L	,		07/31/15 02:24	
Toluene	ND	5.0	0.45	ug/L			07/31/15 02:24	
rans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 02:24	
rans-1,3-Dichloropropene	ND.	5.0	0.44	ug/L			07/31/15 02:24	
Trichloroethene	ND	5.0	0.60	ug/L			07/31/15 02:24	
Vinyl chloride	66	5.0		ug/L			07/31/15 02:24	
Surrogate	%Recovery Qualific	er Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	98	72 - 130					07/31/15 02:24	
4-Bromofluorobenzene (Surr)	98	69 - 121					07/31/15 02:24	
Toluene-d8 (Surr)	99	70 - 123					07/31/15 02:24	

Method: 6010C - Metals (ICP)	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 16:59	1
Arsenic	0.031		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 16:59	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 16:59	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 16:59	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 16:59	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 16:59	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 16:59	1
Nickel	0.0085	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 16:59	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 16:59	1

Client: Town of Dewitt Project/Site: Town of Dewitt

Total Dissolved Solids

TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-9M

Date Collected: 07/28/15 08:15 Date Received: 07/30/15 01:40

Lab Sample ID: 480-84773-4

Matrix: Ground Water

08/02/15 20:15

Method: 6010C - Metals (ICP) (Cor Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 16:59	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 16:59	1
Zinc	0.0026	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 16:59	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac

20.0

1190

8.0 mg/L

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-5

Matrix: Ground Water

Client Sample ID: MW-9S

Date Collected: 07/28/15 08:40 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			07/31/15 02:47	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 02:47	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 02:47	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 02:47	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 02:47	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 02:47	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 02:47	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 02:47	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 02:47	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L		•	07/31/15 02:47	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 02:47	4
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 02:47	1
Acrolein	ND	100	17	ug/L			07/31/15 02:47	1
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 02:47	1
Benzene	ND	5.0	0.60	ug/L			07/31/15 02:47	1
Bromoform	ND	5.0	0.47	ug/L			07/31/15 02:47	1
Bromomethane	ND	5.0	1.2	ug/L			07/31/15 02:47	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 02:47	1
Chlorobenzene	ND	5.0	0.48	ug/L			07/31/15 02:47	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 02:47	4
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 02:47	1
Chloroform	ND	5.0	0.54	ug/L			07/31/15 02:47	•
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 02:47	•
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 02:47	4
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 02:47	
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 02:47	
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 02:47	•
Tetrachloroethene	ND	5.0	0.34	ug/L			07/31/15 02:47	•
Toluene	ND	5.0	0.45	ug/L			07/31/15 02:47	
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 02:47	
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			07/31/15 02:47	
Trichloroethene	ND	5.0	0.60	ug/L			07/31/15 02:47	
Vinyl chloride	ND	5.0	0.75	ug/L			07/31/15 02:47	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99	72 - 130					07/31/15 02:47	
4-Bromofluorobenzene (Surr)	97	69 - 121					07/31/15 02:47	
Toluene-d8 (Surr)	98	70 - 123					07/31/15 02:47	

Method: 6010C - Metals (ICP) Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony 0.00	87 J	0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:03	1
•	ND	0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:03	1
Beryllium	1D	0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:03	1
	ND.	0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:03	1
Chromium	1D	0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:03	1
Copper	4D	0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:03	1
	ND	0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:03	1
	22 J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:03	1
	ND.	0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:03	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-9S

Date Collected: 07/28/15 08:40

Lab Samp

Lab Sample ID: 480-84773-5 Matrix: Ground Water

Date Received: 07/30/15 01:40

Method: 6010C - Metals	(ICP) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:03	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:03	1

Thallium ND 0.020 0.010 mg/L 07/31/15 07:35 07/31/15 17:03

Zinc 0.0062 J 0.010 0.0015 mg/L 07/31/15 07:35 07/31/15 17:03

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:54	1	

General Chemistry									
Analyte	Result Qu	ualifler RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	1060	20.0	8.0	mg/L			08/03/15 16:46	1	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-6

Matrix: Ground Water

Client Sample ID: MW-3S

Date Collected: 07/27/15 14:35 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			07/31/15 03:09	-
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 03:09	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 03:09	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 03:09	•
1,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 03:09	4
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 03:09	•
1,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 03:09	
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 03:09	•
1,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 03:09	•
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			07/31/15 03:09	•
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 03:09	•
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 03:09	•
Acrolein	ND	100	17	ug/L			07/31/15 03:09	•
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 03:09	1
Benzene	ND	5.0	0.60	ug/L			07/31/15 03:09	
Bromoform	ND	5.0	0.47	ug/L			07/31/15 03:09	
Bromomethane	ND	5.0	1.2	ug/L			07/31/15 03:09	•
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 03:09	•
Chlorobenzene	ND	5.0	0.48	ug/L			07/31/15 03:09	•
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 03:09	•
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 03:09	
Chloroform	ND	5.0	0.54	ug/L			07/31/15 03:09	
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 03:09	
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 03:09	
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 03:09	
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 03:09	
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 03:09	
Tetrachloroethene	ND	5.0	0.34	ug/L	•		07/31/15 03:09	
Toluene	ND	5.0	0.45	ug/L			07/31/15 03:09	
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 03:09	
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L	•		07/31/15 03:09	
Trichloroethene	ND	5.0	0.60	ug/L			07/31/15 03:09	
Vinyl chloride	ND	5.0	0.75	ug/L			07/31/15 03:09	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dii Fa
1,2-Dichloroethane-d4 (Surr)	99	72 - 130					07/31/15 03:09	
4-Bromofluorobenzene (Surr)	95	69 - 121					07/31/15 03:09	
Toluene-d8 (Surr)	99	70 - 123					07/31/15 03:09	

Method: 6010C - Metals (ICP) Analyte Resul	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:15	1
Arsenic 0.10	1	0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:15	1
Beryllium 0.0016	J	0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:15	1
Cadmium 0.0013		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:15	1
Chromium 0.026		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:15	1
Copper 0.019		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:15	1
Lead 0.020		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:15	1
Nickel 0.034		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:15	1
Selenium NE		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:15	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-3S

Lab Sample ID: 480-84773-6

Matrix: Ground Water

Olic	iit Sailipi	CID. III	11-00
Date	Collected:	07/27/15	14:35
Date	Received:	07/30/15	01:40

Analyte Silver Thallium Zinc Method: 6010C - Metals (ICP) - D Analyte Antimony Arsenic Beryllium Cadmium Chromium Copper Lead		Qualifier	0.0060 0.020 0.010 RL 0.020 0.015	0.0017 0.010 0.0015 MDL 0.0068	mg/L	D	07/31/15 07:35 07/31/15 07:35 07/31/15 07:35 Prepared	07/31/15 17:15 07/31/15 17:15 07/31/15 17:15 Analyzed	1 1 1 Dil Fac
Zinc Method: 6010C - Metals (ICP) - D Analyte Antimony Arsenic Beryllium Cadmium Chromium Copper	0.089 Dissolved Result ND ND ND ND ND ND	Qualifier	0.010 RL 0.020	0.0015	mg/L	D	07/31/15 07:35	07/31/15 17:15	1
Method: 6010C - Metals (ICP) - D Analyte Antimony Arsenic Beryllium Cadmium Chromium Copper	Dissolved Result ND ND ND ND	Qualifier	RL 0.020	MDL		D			
Analyte Antimony Arsenic Beryllium Cadmium Chromium Copper	Result ND ND ND ND	Qualifier	0.020		Unit	D	Prepared	Anghrad	Dil Foo
Antimony Arsenic Beryllium Cadmium Chromium Copper	ND ND ND ND	Qualifier	0.020		Unit	D	Prepared	Angherod	Dil Eas
Arsenic Beryllium Cadmium Chromium Copper	ND ND ND			0.0060					טוו רמכ
Beryllium Cadmium Chromium Copper	ND ND		0.015	0.0008	mg/L		08/03/15 08:00	08/04/15 02:16	1
Cadmium Chromium Copper	ND		0.013	0.0056	mg/L		08/03/15 08:00	08/04/15 02:16	1
Chromium Copper			0.0020	0.00030	mg/L		08/03/15 08:00	08/04/15 02:16	1
Copper	ND		0.0020	0.00050	mg/L		08/03/15 08:00	08/04/15 02:16	1
			0.0040	0.0010	mg/L		08/03/15 08:00	08/04/15 02:16	1
Lead	ND		0.010	0.0016	mg/L		08/03/15 08:00	08/04/15 02:16	1
	ND	•	0.010	0.0030	mg/L		08/03/15 08:00	08/04/15 02:16	1
Nickel	0.0043	J	0.010	0.0013	mg/L		08/03/15 08:00	08/04/15 02:16	1
Selenium	ND		0.025	0.0087	mg/L		08/03/15 08:00	08/04/15 02:16	1
Silver	ND		0.0060	0.0017	mg/L		08/03/15 08:00	08/04/15 02:16	1
Thallium	ND		0.020	0.010	mg/L		08/03/15 08:00	08/04/15 02:16	1
Zinc	0.0052	J	0.010	0.0015	mg/L		08/03/15 08:00	08/04/15 02:16	1
Method: 7470A - Mercury (CVAA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:56	1
Method: 7470A - Mercury (CVAA					11. 14		Downson	Amelianed	Dil Fa
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/06/15 10:40	08/07/15 08:01	
General Chemistry						_	D	Amahamad	Dil E-
Analyte	Result 1970	Qualifier	RL 20.0	MDL 8.0	Unit	D	Prepared	Analyzed	Dil Fac

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-7

Matrix: Ground Water

Client Sample ID: MW-4S

Date Collected: 07/27/15 12:45 Date Received: 07/30/15 01:40

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 03:32	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 03:32	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 03:32	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 03:32	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 03:32	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 03:32	1
1,2-Dichloroethane	ND.		5.0	0.60	ug/L			07/31/15 03:32	. 1
1,2-Dichloroethene, Total	53		10	3.2	ug/L			07/31/15 03:32	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 03:32	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 03:32	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 03:32	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 03:32	1
Acrolein	ND		100	17	ug/L			07/31/15 03:32	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 03:32	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 03:32	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 03:32	1
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 03:32	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 03:32	1
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 03:32	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 03:32	1
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 03:32	1
Chloroform	ND		5.0	0.54	ug/L			07/31/15 03:32	1
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 03:32	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 03:32	. 1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 03:32	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 03:32	1
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 03:32	1
Tetrachloroethene	ND	•	5.0	0.34	ug/L			07/31/15 03:32	1
Toluene	ND		5.0	0.45	ug/L			07/31/15 03:32	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 03:32	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L		•	07/31/15 03:32	1
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 03:32	1
Vinyl chloride	2.3	J	5.0	0.75	ug/L			07/31/15 03:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 130					07/31/15 03:32	1
4-Bromofluorobenzene (Surr)	97		69 - 121					07/31/15 03:32	1
Toluene-d8 (Surr)	100		70-123					07/31/15 03:32	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	47 -	0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:19	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:19	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:19	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:19	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:19	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:19	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:19	1
Nickel	0.0015	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:19	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:19	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-4S

Lab Sample ID: 480-84773-7

Matrix: Ground Water

onone oumpio ioi mitt io	
Date Collected: 07/27/15 12:45	
Date Received: 07/30/15 01:40	

Method: 6010C - Metals (ICP) (Cor Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:19	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:19	1
Zinc	0.0018	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:19	1
Method: 7470A - Mercury (CVAA)	Danula	Oveligies	RL	MDL	I lmi4	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier							DIIFAC
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 12:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total Dissolved Solids	2940		40.0	16.0	mg/L			07/31/15 13:56	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-8

Matrix: Ground Water

Client Sample ID: MW-4D

Date Collected: 07/27/15 12:20 Date Received: 07/30/15 01:40

Method: 624 - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 03:55	,
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 03:55	
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 03:55	
,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 03:55	
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 03:55	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 03:55	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 03:55	
,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 03:55	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 03:55	
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 03:55	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 03:55	
Acrolein	ND		100	17	ug/L			07/31/15 03:55	
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 03:55	
Benzene	ND		5.0	0.60	ug/L			07/31/15 03:55	
Bromoform	ND		5.0	0.47	ug/L			07/31/15 03:55	
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 03:55	
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 03:55	
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 03:55	
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 03:55	
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 03:55	
Chloroform	ND		5.0		ug/L			07/31/15 03:55	
Chloromethane	ND		5.0		ug/L			07/31/15 03:55	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 03:55	
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 03:55	
Ethylbenzene	ND		5.0		ug/L			07/31/15 03:55	
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 03:55	
Tetrachloroethene	ND		5.0		ug/L			07/31/15 03:55	
Foluene	ND		5.0		ug/L			07/31/15 03:55	
rans-1,2-Dichloroethene	ND		5.0		ug/L			07/31/15 03:55	
rans-1,3-Dichloropropene	ND		5.0		ug/L			07/31/15 03:55	
Trichloroethene	24		5.0		ug/L			07/31/15 03:55	
Vinyl chloride	3.7	d.	5.0		ug/L			07/31/15 03:55	
Vinyi chionde	5.1	•	0.0	00	-8				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	98		72 - 130					07/31/15 03:55	
4-Bromofluorobenzene (Surr)	94		69 - 121					07/31/15 03:55	
Toluene-d8 (Surr)	99		70 - 123					07/31/15 03:55	
Method: 624 - Volatile Orgar	nic Compoun	ds (GC/MS) - DL						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichloroethene, Total	130		20	6.4	ug/L			08/04/15 11:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					08/04/15 11:27	
4-Bromofluorobenzene (Surr)	102		69 - 121					08/04/15 11:27	
Toluene-d8 (Surr)	99		70 - 123					08/04/15 11:27	
Method: 6010C - Metals (ICF	P)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	DII F
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:22	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-4D

Lab Sample ID: 480-84773-8

Date Collected: 07/27/15 12:20 Date Received: 07/30/15 01:40 Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:22	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:22	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:22	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:22	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:22	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:22	1
Nickel	ND		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:22	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:22	1
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:22	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:22	1
Zinc	0.0020	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:22	1
Method: 7470A - Mercury (CVA)	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2470		40.0	16.0	mg/L			08/02/15 20:15	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-9

Matrix: Ground Water

Client Sample ID: MW-1S Date Collected: 07/28/15 13:00 Date Received: 07/30/15 01:40

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 04:18	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 04:18	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 04:18	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 04:18	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 04:18	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 04:18	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 04:18	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 04:18	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 04:18	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L		•	07/31/15 04:18	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 04:18	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 04:18	1
Acrolein	ND		100	17	ug/L			07/31/15 04:18	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 04:18	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 04:18	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 04:18	1
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 04:18	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 04:18	1
Chlorobenzene	ND		5.0	0.48	ug/L		•	07/31/15 04:18	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 04:18	1
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 04:18	1
Chloroform	ND		5.0	0.54	ug/L			07/31/15 04:18	1
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 04:18	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 04:18	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 04:18	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 04:18	1
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 04:18	1
Tetrachioroethene	ND	* * 4	5.0	0.34	ug/L			07/31/15 04:18	1
Toluene	ND		5.0	0.45	ug/L			07/31/15 04:18	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 04:18	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			07/31/15 04:18	1
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 04:18	1
Vinyl chloride	ND		5.0	0.75	ug/L			07/31/15 04:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 130					07/31/15 04:18	1
4-Bromofluorobenzene (Surr)	95		69 - 121					07/31/15 04:18	1
Toluene-d8 (Surr)	99		70 - 123					07/31/15 04:18	1

Method: 6010C - Metals (ICP) Analyte R	sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:26	1
	013	J	0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:26	1
1 1 2	011	J	0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:26	1
	012	J	0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:26	1
	053		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:26	1
	064		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:26	1
	011		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:26	1
	.053		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:26	1
Selenium	ND)	0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:26	1

TestAmerica Buffalo

Page 25 of 88

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-1S

Lab Sample ID: 480-84773-9

Date Collected: 07/28/15 13:00 Date Received: 07/30/15 01:40 **Matrix: Ground Water**

Method: 6010C - Metals (ICP) (Con ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:26	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:26	1
Zinc	0.12		0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:26	1
Method: 6010C - Metals (ICP) - Dis	solved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Antimony	ND		0.020	0.0068	mg/L		08/03/15 08:00	08/04/15 02:29	1
Arsenic	ND		0.015	0.0056	mg/L		08/03/15 08:00	08/04/15 02:29	1
Beryllium	ND		0.0020	0.00030	mg/L		08/03/15 08:00	08/04/15 02:29	1
Cadmium	ND		0.0020	0.00050	mg/L		08/03/15 08:00	08/04/15 02:29	1
Chromium	ND		0.0040	0.0010	mg/L		08/03/15 08:00	08/04/15 02:29	1
Copper	ND		0.010	0.0016	mg/L		08/03/15 08:00	08/04/15 02:29	1
Lead	ND		0.010	0.0030	mg/L		08/03/15 08:00	08/04/15 02:29	1
Nickel	0.0020	J	0.010	0.0013	mg/L		08/03/15 08:00	08/04/15 02:29	1
Selenium	ND		0.025	0.0087	mg/L		08/03/15 08:00	08/04/15 02:29	1
Silver	ND		0.0060	0.0017	mg/L		08/03/15 08:00	08/04/15 02:29	1
Thallium	ND		0.020	0.010	mg/L		08/03/15 08:00	08/04/15 02:29	1
Zinc	0.0048	J	0.010	0.0015	mg/L		08/03/15 08:00	08/04/15 02:29	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00013	J	0.00020	0.00012	mg/L.		08/07/15 08:30	08/07/15 13:01	1
Method: 7470A - Mercury (CVAA) -	Disso	lved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020	0.00012	mg/L		08/06/15 10:40	08/07/15 08:03	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1170		20.0	8.0	mg/L			08/03/15 16:46	1

Client: Town of Dewitt Project/Site: Town of Dewitt

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-10

Matrix: Ground Water

Client Sample ID: MW-2D Date Collected: 07/28/15 17:00 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			07/31/15 04:41	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 04:41	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 04:41	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 04:41	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 04:41	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 04:41	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 04:41	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 04:41	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 04:41	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			07/31/15 04:41	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 04:41	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 04:41	1
Acrolein	ND	100	17	ug/L			07/31/15 04:41	1
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 04:41	1
Benzene	ND	5.0	0.60	ug/L.			07/31/15 04:41	1
Bromoform	ND	5.0	0.47	ug/L			07/31/15 04:41	1
Bromomethane	ND	5.0	1.2	ug/L			07/31/15 04:41	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 04:41	1
Chlorobenzene	ND	5.0	0.48	ug/L		•	07/31/15 04:41	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 04:41	1
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 04:41	1
Chloroform	ND	5.0	0.54	ug/L			07/31/15 04:41	1
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 04:41	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 04:41	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 04:41	1
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 04:41	1
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 04:41	1
Tetrachloroethene	ND	5.0	0.34	ug/L			07/31/15 04:41	1
Toluene	ND	5.0	0.45	ug/L			07/31/15 04:41	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 04:41	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			07/31/15 04:41	1
Trichloroethene	ND	5.0	0.60	ug/L			07/31/15 04:41	1
Vinyl chloride	ND	5.0	0.75	ug/L			07/31/15 04:41	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	72 - 130					07/31/15 04:41	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	-	0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:29	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:29	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:29	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:29	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:29	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:29	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:29	1
Nickel	ND		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:29	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:29	1

69 - 121

70-123

97

100

TestAmerica Buffalo

07/31/15 04:41

07/31/15 04:41

Client: Town of Dewitt Project/Site: Town of Dewitt

Analyte

Total Dissolved Solids

TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-10

Prepared

3

Client Sample ID: MW-2D Date Collected: 07/28/15 17:00 Date Received: 07/30/15 01:40

Matrix: Ground Water

Analyzed

08/03/15 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Silver	ND	-	0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:29	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:29	1
Zinc	0.0028	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:29	1

6

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:03	1
General Chemistry									

RL

20.0

MDL Unit

8.0 mg/L

Result Qualifier

2220

9

Dil Fac

510

12

14 15

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-11

Matrix: Ground Water

Client Sample ID: MW-2S

Date Collected: 07/28/15 17:50 Date Received: 07/30/15 01:40

Wethod: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L	-		07/31/15 05:04	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 05:04	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 05:04	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 05:04	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 05:04	1
,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 05:04	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 05:04	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 05:04	1
,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 05:04	1
,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 05:04	1
,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 05:04	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 05:04	1
Acrolein	ND		100	17	ug/L			07/31/15 05:04	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 05:04	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 05:04	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 05:04	1
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 05:04	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 05:04	1
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 05:04	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 05:04	1
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 05:04	1
Chloroform	ND		5.0	0.54	ug/L			07/31/15 05:04	1
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 05:04	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 05:04	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 05:04	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 05:04	1
Wethylene Chloride	ND		5.0	0.81	ug/L			07/31/15 05:04	1
Tetrachloroethene	ND		5.0	0.34	ug/L			07/31/15 05:04	1
Toluene	ND		5.0	0.45	ug/L			07/31/15 05:04	1
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 05:04	1
rans-1,3-Dichloropropene	ND	•	5.0	0.44	ug/L		•	07/31/15 05:04	1
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 05:04	
√inyl chloride	ND		5.0		ug/L			07/31/15 05:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		72 - 130					07/31/15 05:04	1
4-Bromofluorobenzene (Surr)	95		69 - 121					07/31/15 05:04	1
Toluene-d8 (Surr)	101		70 - 123					07/31/15 05:04	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:32	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:32	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:32	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:32	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:32	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:32	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:32	1
Nickel	ND		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:32	1
Selerium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:32	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-2S

Lab Sample ID: 480-84773-11

Date Collected: 07/28/15 17:50 Date Received: 07/30/15 01:40 **Matrix: Ground Water**

Method: 6010C - Metals (ICP) (Continued)

Method: 6010C - Metals (ICP) (Con Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:32	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:32	1
Zinc	ND		0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:32	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:05	1
Comment Observatory									

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	1530		20.0	8.0	mg/L			08/03/15 16:46	1	

Client: Town of Dewitt Project/Site: Town of Dewitt

Toluene-d8 (Surr)

TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-12

Matrix: Ground Water

Client Sample ID: MW-12S
Date Collected: 07/28/15 16:30
Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 05:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 05:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 05:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 05:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 05:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 05:26	1
1,2-Dichloroethane	ND	* *	5.0	0.60	ug/L			07/31/15 05:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 05:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 05:26	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 05:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 05:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 05:26	1
Acrolein	ND		100	17	ug/L			07/31/15 05:26	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 05:26	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 05:26	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 05:26	1
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 05:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 05:26	1
Chlorobenzene	ND	•	5.0	0.48	ug/L			07/31/15 05:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 05:26	1
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 05:26	1
Chloroform	ND		5.0	0.54	ug/L			07/31/15 05:26	1
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 05:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 05:26	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 05:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 05:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 05:26	1
Tetrachloroethene	ND	•	5.0	0.34	ug/L			07/31/15 05:26	1
Toluene	ND		5.0	0.45	ug/L			07/31/15 05:26	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 05:26	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			07/31/15 05:26	1
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 05:26	1
Vinyl chloride	ND		5.0	0.75	ug/L			07/31/15 05:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					07/31/15 05:26	1
4-Bromofluorobenzene (Surr)	94		69 - 121					07/31/15 05:26	1
	00		70 422					07/21/15 05:26	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:35	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:35	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:35	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:35	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:35	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:35	1
Lead	ND	,	0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:35	1
Nickel	ND		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:35	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:35	1

70-123

98

TestAmerica Buffalo

07/31/15 05:26

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-12S

Lab Sample ID: 480-84773-12

Matrix: Ground Water

Date Collected: 07/28/15 16:30 Date Received: 07/30/15 01:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:35	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:35	1
Zinc	0.0061	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:35	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:10	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1190		20.0	8.0	mg/L			08/03/15 16:46	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-7S

Date Collected: 07/28/15 14:40 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-13

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 05:49	
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 05:49	
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 05:49	
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 05:49	
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 05:49	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 05:49	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 05:49	
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 05:49	
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 05:49	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L	•		07/31/15 05:49	
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 05:49	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 05:49	
Acrolein	ND		100	17	ug/L			07/31/15 05:49	
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 05:49	
Benzene	ND		5.0	0.60	ug/L			07/31/15 05:49	
Bromoform	ND		5.0	0.47	ug/L			07/31/15 05:49	
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 05:49	
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 05:49	
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 05:49	
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 05:49	
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 05:49	
Chloroform	ND		5.0	0.54	ug/L			07/31/15 05:49	
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 05:49	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 05:49	
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 05:49	
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 05:49	
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 05:49	
Tetrachloroethene	ND		5.0	0.34	ug/L		·	07/31/15 05:49	
Toluene	ND		5.0	0.45	ug/L			07/31/15 05:49	
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 05:49	
trans-1,3-Dichloropropene	ND	•	5.0	0.44	ug/L			07/31/15 05:49	,
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 05:49	
Vinyl chloride	ND		5.0	0.75	ug/L			07/31/15 05:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	97		72 - 130					07/31/15 05:49	
4-Bromofluorobenzene (Surr)	93		69 - 121					07/31/15 05:49	
Toluene-d8 (Surr)	98		70 - 123					07/31/15 05:49	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:39	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:39	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:39	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:39	1
Chromium	0.0029	J	0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:39	1
Copper	0.0018	J	0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:39	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:39	1
Nickel	0.0016	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:39	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:39	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-7S

Lab Sample ID: 480-84773-13

Date Collected: 07/28/15 14:40 Date Received: 07/30/15 01:40 **Matrix: Ground Water**

Method: 6010C - Metals (ICP) (Cor Analyte) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:39	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:39	1
Zinc	0.0041	J	0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:39	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1150	***************************************	20.0	8.0	mg/L			08/03/15 16:46	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-14

Matrix: Ground Water

Client Sample ID: MW-10S

Date Collected: 07/28/15 15:20 Date Received: 07/30/15 01:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 07:20	1
,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 07:20	1
,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 07:20	1
,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 07:20	1
,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 07:20	1
,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 07:20	1
,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 07:20	1
,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 07:20	1
,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 07:20	1
,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 07:20	1
,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 07:20	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 07:20	1
Acrolein	ND		100	17	ug/L			07/31/15 07:20	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 07:20	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 07:20	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 07:20	1
Bromomethane	ND		5.0		ug/L			07/31/15 07:20	1
Carbon tetrachloride	ND		5.0		ug/L			07/31/15 07:20	1
Chlorobenzene	ND		5.0		ug/L			07/31/15 07:20	1
Chlorodibromomethane	ND		5.0		ug/L			07/31/15 07:20	1
Chloroethane	ND		5.0		ug/L			07/31/15 07:20	1
Chloroform	ND		5.0	0.54	ug/L			07/31/15 07:20	1
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 07:20	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			07/31/15 07:20	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 07:20	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 07:20	1
Methylene Chloride	ND		5.0		ug/L			07/31/15 07:20	1
Tetrachloroethene	ND		5.0		ug/L			07/31/15 07:20	1
Foluene	ND		5.0		ug/L			07/31/15 07:20	1
rans-1,2-Dichloroethene	ND		5.0		ug/L			07/31/15 07:20	1
rans-1,3-Dichloropropene	ND		5.0		ug/L			07/31/15 07:20	1
Frichloroethene	ND		5.0		ug/L			07/31/15 07:20	1
/inyl chloride	ND		5.0		ug/L			07/31/15 07:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 130					07/31/15 07:20	1
4-Bromofluorobenzene (Surr)	94		69 - 121					07/31/15 07:20	1
Toluene-d8 (Sum)	100		70 - 123					07/31/15 07:20	1

Method: 6010C - Metals (ICP)	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:42	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:42	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:42	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:42	1
Chromium	0.014		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:42	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:42	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:42	1
Nickel	0.0025	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:42	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:42	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-10S

Lab Sample ID: 480-84773-14

Date Collected: 07/28/15 15:20 Date Received: 07/30/15 01:40 **Matrix: Ground Water**

Method: 6010C - Metals (ICP) (Cor		•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:42	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:42	1
Zinc	0.018		0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:42	1
Method: 7470A - Mercury (CVAA)	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:13	1
General Chemistry									
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total Dissolved Solids	1210		20.0	8.0	mg/L			08/03/15 16:46	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-15

Matrix: Ground Water

Client Sample ID: MW-5D

Date Collected: 07/28/15 10:00 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 07:43	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 07:43	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 07:43	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/31/15 07:43	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 07:43	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 07:43	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/31/15 07:43	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/31/15 07:43	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 07:43	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/31/15 07:43	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 07:43	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 07:43	1
Acrolein	ND		100	17	ug/L			07/31/15 07:43	1
Acrylonitrile	ND		50		ug/L			07/31/15 07:43	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 07:43	1
Bromoform	ND		5.0		ug/L			07/31/15 07:43	
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 07:43	
Carbon tetrachloride	ND		5.0		ug/L			07/31/15 07:43	1
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 07:43	1
Chlorodibromomethane	ND		5.0		ug/L			07/31/15 07:43	
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 07:43	
Chloroform	ND		5.0	0.54	ug/L			07/31/15 07:43	
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 07:43	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 07:43	
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 07:43	4
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 07:43	1
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 07:43	
Tetrachloroethene	ND		5.0	0.34	ug/L			07/31/15 07:43	
Toluene	ND		5.0	0.45	ug/L			07/31/15 07:43	4
trans-1,2-Dichloroethene	ND		5.0		ug/L			07/31/15 07:43	
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			07/31/15 07:43	
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 07:43	
Vinyl chloride	ND		5.0	0.75	ug/L			07/31/15 07:43	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		72 - 130			,		07/31/15 07:43	
4-Bromofluorobenzene (Surr)	93		69 - 121					07/31/15 07:43	1
Toluene-d8 (Surr)	97		70 - 123					07/31/15 07:43	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:55	1
Arsenic	0.0065	J	0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:55	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:55	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:55	1
Chromium	0.0031	J	0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:55	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:55	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:55	1
Nickel	0.0030	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:55	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:55	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-5D

Lab Sample ID: 480-84773-15

Date Collected: 07/28/15 10:00 Date Received: 07/30/15 01:40

Matrix: Ground Water

Method: 6010C - Metals (ICF ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 17:55	1
Γhallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 17:55	1
Zinc	0.011		0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 17:55	1
Method: 6010C - Metals (ICF									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		08/03/15 08:00	08/04/15 02:33	1
Arsenic	ND		0.015	0.0056	mg/L		08/03/15 08:00	08/04/15 02:33	1
Beryllium	ND		0.0020	0.00030	mg/L		08/03/15 08:00	08/04/15 02:33	1
Cadmium	ND		0.0020	0.00050	mg/L		08/03/15 08:00	08/04/15 02:33	1
Chromium	ND		0.0040	0.0010	mg/L		08/03/15 08:00	08/04/15 02:33	1
Copper	ND		0.010	0.0016	mg/L		08/03/15 08:00	08/04/15 02:33	1
ead	ND	•	0.010	0.0030	mg/L		08/03/15 08:00	08/04/15 02:33	1
Nickel	ND		0.010	0.0013	mg/L		08/03/15 08:00	08/04/15 02:33	1
Selenium	ND		0.025	0.0087	mg/L		08/03/15 08:00	08/04/15 02:33	1
Silver	ND		0.0060	0.0017	mg/L		08/03/15 08:00	08/04/15 02:33	1
Thallium	ND		0.020	0.010	mg/L		08/03/15 08:00	08/04/15 02:33	1
Zinc	0.0061	J	0.010	0.0015	mg/L		08/03/15 08:00	08/04/15 02:33	1
Method: 7470A - Mercury (C	(AAV								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:15	1
Method: 7470A - Mercury (C									
Analyte		Qualifier	RL	5050	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	4-100-1-1-1-1	0.00020	0.00012	mg/L		08/06/15 10:40	08/07/15 08:05	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	3040		40.0	16.0	mg/L			08/03/15 16:46	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-5S

Date Collected: 07/28/15 09:15 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-16

Matrix: Ground Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/31/15 08:06	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/31/15 08:06	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/31/15 08:06	1
1,1-Dichloroethane	ND		5.0	0.59	-			07/31/15 08:06	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/31/15 08:06	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/31/15 08:06	1
1,2-Dichloroethane	ND		5.0	0.60	•			07/31/15 08:06	1
1,2-Dichloroethene, Total	ND		10		ug/L			07/31/15 08:06	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/31/15 08:06	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L	•	•	07/31/15 08:06	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/31/15 08:06	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/31/15 08:06	1
Acrolein	ND		100	17	ug/L			07/31/15 08:06	1
Acrylonitrile	ND		50	1.9	ug/L			07/31/15 08:06	1
Benzene	ND		5.0	0.60	ug/L			07/31/15 08:06	1
Bromoform	ND		5.0	0.47	ug/L			07/31/15 08:06	•
Bromomethane	ND		5.0	1.2	ug/L			07/31/15 08:06	•
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/31/15 08:06	1
Chlorobenzene	ND		5.0	0.48	ug/L			07/31/15 08:06	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/31/15 08:06	1
Chloroethane	ND		5.0	0.87	ug/L			07/31/15 08:06	
Chloroform	ND		5.0	0.54	ug/L			07/31/15 08:06	•
Chloromethane	ND		5.0	0.64	ug/L			07/31/15 08:06	•
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/31/15 08:06	•
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/31/15 08:06	•
Ethylbenzene	ND		5.0	0.46	ug/L			07/31/15 08:06	
Methylene Chloride	ND		5.0	0.81	ug/L			07/31/15 08:06	•
Tetrachloroethene	ND		5.0	0.34	ug/L			07/31/15 08:06	•
Toluene	ND		5.0	0.45	ug/L			07/31/15 08:06	•
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/31/15 08:06	
trans-1,3-Dichloropropene	ND	•	5.0	0.44	ug/L	•		07/31/15 08:06	
Trichloroethene	ND		5.0	0.60	ug/L			07/31/15 08:06	
Vinyl chloride	ND		5.0	0.75	· ug/L			07/31/15 08:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		72 - 130					07/31/15 08:06	
4-Bromofluorobenzene (Surr)	95		69 - 121					07/31/15 08:06	
Toluene-d8 (Surr)	100		70-123					07/31/15 08:06	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 17:58	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 17:58	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 17:58	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 17:58	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 17:58	1
Соррег	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 17:58	1
Lead	ND	•	0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 17:58	. 1
Nickel	0.0014	J	0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 17:58	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 17:58	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-5S

Lab Sample ID: 480-84773-16

Matrix: Ground Water

Date Collected: 07/28/15 09:15 Date Received: 07/30/15 01:40

Method: 6010C - Metals (ICP) (Continued)

D	Prepared	Analyzed	Dil Fac	

Result Qualifier RL **MDL** Unit Silver ND 0.0060 0.0017 mg/L 07/31/15 07:35 07/31/15 17:58 Thallium ND 0.020 0.010 mg/L 07/31/15 07:35 07/31/15 17:58 0.0062 J 0.010 0.0015 mg/L 07/31/15 07:35 07/31/15 17:58 Zinc

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:17	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2440		40.0	16.0	ma/L			08/03/15 16:46	1

Page 40 of 88

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-11D

Date Collected: 07/28/15 12:30

Lab Sample ID: 480-84773-17

Matrix: Ground Water

Date Received: 07/30/15 01:40

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	DII Fa
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			07/31/15 08:29	
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 08:29	
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 08:29	
1,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 08:29	
1,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 08:29	
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 08:29	
1,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 08:29	
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 08:29	
1,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 08:29	
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			07/31/15 08:29	
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 08:29	
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 08:29	
Acrolein	ND	100	17	ug/L			07/31/15 08:29	
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 08:29	
Benzene	ND	5.0	0.60	ug/L			07/31/15 08:29	
Bromoform	ND	5.0	0.47	ug/L			07/31/15 08:29	
Bromomethane	ND	5.0	1.2	ug/L			07/31/15 08:29	
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 08:29	
Chlorobenzene	ND	5.0	0.48	ug/L			07/31/15 08:29	
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 08:29	
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 08:29	
Chloroform	ND	5.0	0.54	ug/L			07/31/15 08:29	
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 08:29	
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 08:29	
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 08:29	
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 08:29	
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 08:29	
Tetrachloroethene	ND	5.0	0.34	ug/L			07/31/15 08:29	
Toluene	ND	5.0	0.45	ug/L			07/31/15 08:29	
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 08:29	
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			07/31/15 08:29	
Trichloroethene	ND	5.0	0.60	ug/L			07/31/15 08:29	
Vinyl chloride	ND	5.0	0.75	ug/L			07/31/15 08:29	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	99	72 - 130					07/31/15 08:29	
4-Bromofluorobenzene (Surr)	94	69 - 121					07/31/15 08:29	
Toluene-d8 (Surr)	98	70-123					07/31/15 08:29	

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 18:02	1
0.016		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 18:02	1
0.0012	J	0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 18:02	1
0.00090	J	0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 18:02	1
1.8		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 18:02	1
0.052		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 18:02	1
0.023	•	0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 18:02	1
0.24		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 18:02	1
ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 18:02	1
	ND 0.016 0.0012 0.00090 1.8 0.052 0.023	0.016 0.0012 J 0.00090 J 1.8 0.052 0.023 0.24	ND 0.020 0.016 0.015 0.0012 J 0.0020 0.00090 J 0.0020 1.8 0.0040 0.052 0.010 0.023 0.010 0.24 0.010	ND 0.020 0.0068 0.016 0.015 0.0056 0.0012 J 0.0020 0.00030 0.00090 J 0.0020 0.00050 1.8 0.0040 0.0010 0.052 0.010 0.0016 0.023 0.010 0.0030 0.24 0.010 0.0013	ND 0.020 0.0068 mg/L 0.016 0.015 0.0056 mg/L 0.0012 J 0.0020 0.00030 mg/L 0.00090 J 0.0020 0.00050 mg/L 1.8 0.0040 0.0010 mg/L 0.052 0.010 0.0016 mg/L 0.023 0.010 0.0030 mg/L 0.24 0.010 0.0013 mg/L	ND 0.020 0.0068 mg/L 0.016 0.015 0.0056 mg/L 0.0012 J 0.0020 0.00030 mg/L 0.00090 J 0.0020 0.00050 mg/L 1.8 0.0040 0.0010 mg/L 0.052 0.010 0.0016 mg/L 0.023 0.010 0.0030 mg/L 0.24 0.010 0.0013 mg/L	ND 0.020 0.0068 mg/L 07/31/15 07:35 0.016 0.015 0.0056 mg/L 07/31/15 07:35 0.0012 J 0.0020 0.00030 mg/L 07/31/15 07:35 0.00090 J 0.0020 0.00050 mg/L 07/31/15 07:35 1.8 0.0040 0.0010 mg/L 07/31/15 07:35 0.052 0.010 0.0016 mg/L 07/31/15 07:35 0.023 0.010 0.0030 mg/L 07/31/15 07:35 0.24 0.010 0.0013 mg/L 07/31/15 07:35	ND 0.020 0.0068 mg/L 07/31/15 07:35 07/31/15 18:02 0.016 0.015 0.0056 mg/L 07/31/15 07:35 07/31/15 18:02 0.0012 J 0.0020 0.00030 mg/L 07/31/15 07:35 07/31/15 18:02 0.00090 J 0.0020 0.00050 mg/L 07/31/15 07:35 07/31/15 18:02 1.8 0.0040 0.0010 mg/L 07/31/15 07:35 07/31/15 18:02 0.052 0.010 0.0016 mg/L 07/31/15 07:35 07/31/15 18:02 0.023 0.010 0.0030 mg/L 07/31/15 07:35 07/31/15 18:02 0.24 0.010 0.0013 mg/L 07/31/15 07:35 07/31/15 18:02

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-11D

Lab Sample ID: 480-84773-17

Date Collected: 07/28/15 12:30 Date Received: 07/30/15 01:40 **Matrix: Ground Water**

Method: 6010C - Metals (IC Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 18:02	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 18:02	1
Zinc	0.14		0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 18:02	1
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Antimony	ND		0.020	0.0068	mg/L		08/03/15 08:00	08/04/15 02:36	1
Arsenic	ND		0.015	0.0056	mg/L		08/03/15 08:00	08/04/15 02:36	1
Beryllium	ND		0.0020	0.00030	mg/L		08/03/15 08:00	08/04/15 02:36	1
Cadmium	ND		0.0020	0.00050	mg/L		08/03/15 08:00	08/04/15 02:36	1
Chromium	0.0023	J	0.0040	0.0010	mg/L		08/03/15 08:00	08/04/15 02:36	1
Copper	ND		0.010	0.0016	mg/L		08/03/15 08:00	08/04/15 02:36	1
ead	ND	•	0.010	0.0030	mg/L		08/03/15 08:00	08/04/15 02:36	1
Nickel	0.0027	J	0.010	0.0013	mg/L		08/03/15 08:00	08/04/15 02:36	1
Selenium	ND		0.025	0.0087	mg/L		08/03/15 08:00	08/04/15 02:36	1
Silver	ND		0.0060	0.0017	mg/L		08/03/15 08:00	08/04/15 02:36	1
Thallium	ND		0.020	0.010	mg/L		08/03/15 08:00	08/04/15 02:36	1
Zinc	0.0042	J	0.010	0.0015	mg/L		08/03/15 08:00	08/04/15 02:36	•
Method: 7470A - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/07/15 08:30	08/07/15 13:19	1
Method: 7470A - Mercury (CVAA) - Disso	ived							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/06/15 10:40	08/07/15 08:07	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	904		10.0	4.0	mg/L			08/03/15 16:46	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-18

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 07/28/15 00:00 Date Received: 07/30/15 01:40

Method: 624 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	NĎ	5.0	0.39	ug/L			07/31/15 08:51	-
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			07/31/15 08:51	
I,1,2-Trichloroethane	ND	5.0	0.48	ug/L			07/31/15 08:51	
I,1-Dichloroethane	ND	5.0	0.59	ug/L			07/31/15 08:51	
,1-Dichloroethene	ND	5.0	0.85	ug/L			07/31/15 08:51	•
,2-Dichlorobenzene	ND	5.0	0.44	ug/L			07/31/15 08:51	
,2-Dichloroethane	ND	5.0	0.60	ug/L			07/31/15 08:51	
,2-Dichloroethene, Total	ND	10	3.2	ug/L			07/31/15 08:51	
1,2-Dichloropropane	ND	5.0	0.61	ug/L			07/31/15 08:51	
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			07/31/15 08:51	
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			07/31/15 08:51	
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			07/31/15 08:51	
Acrolein	ND	100	17	ug/L			07/31/15 08:51	
Acrylonitrile	ND	50	1.9	ug/L			07/31/15 08:51	
Benzene	ND	5.0	0.60	ug/L			07/31/15 08:51	
Bromoform	ND	5.0	0.47	ug/L			07/31/15 08:51	
romomethane	ND	5.0	1.2	ug/L			07/31/15 08:51	
Carbon tetrachloride	ND	5.0	0.51	ug/L			07/31/15 08:51	
hlorobenzene	ND	5.0	0.48	ug/L			07/31/15 08:51	
Chlorodibromomethane	ND	5.0	0.41	ug/L			07/31/15 08:51	
Chloroethane	ND	5.0	0.87	ug/L			07/31/15 08:51	
Chloroform	ND	5.0	0.54	ug/L			07/31/15 08:51	
Chloromethane	ND	5.0	0.64	ug/L			07/31/15 08:51	
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			07/31/15 08:51	
Dichlorobromomethane	ND	5.0	0.54	ug/L			07/31/15 08:51	
Ethylbenzene	ND	5.0	0.46	ug/L			07/31/15 08:51	
Methylene Chloride	ND	5.0	0.81	ug/L			07/31/15 08:51	
Tetrachloroethene	ND	5.0	0.34	ug/L			07/31/15 08:51	
Toluene	ND	5.0	0.45	ug/L			07/31/15 08:51	
rans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			07/31/15 08:51	
rans-1,3-Dichloropropene	ND	5.0		ug/L			07/31/15 08:51	
Frichloroethene	ND	5.0	0.60	ug/L			07/31/15 08:51	
Vinyl chloride	ND	5.0		ug/L			07/31/15 08:51	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fe
1,2-Dichloroethane-d4 (Surr)	99	72 - 130					07/31/15 08:51	
4-Bromofluorobenzene (Surr)	94	69 - 121					07/31/15 08:51	
Toluene-d8 (Surr)	100	70 - 123					07/31/15 08:51	

Surrogate Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix:** Ground Water

			Pe	rcent Surrogat	te Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-84773-1	MW-6S	98	96	99	
480-84773-2	MW-8D	100	96	101	
480-84773-3	MW-8S	99	98	100	
480-84773-4	MW-9M	98	98	99	•
480-84773-5	MW-9S	99	97	98	
480-84773-6	MW-3S	99	95	99	
480-84773-7	MW-4S	97	97	100	
480-84773-8	MW-4D	98	94	99	
480-84773-8 - DL	MW-4D	104	102	99	
480-84773-9	MW-1S	97	95	99	
480-84773-10	MW-2D	97	97	100	
480-84773-11	MW-2S	96	95	101	
480-84773-12	MW-12S	100	94	98	
480-84773-13	MW-7S	97	93	98	
480-84773-14	MW-10S	97	94	100	
480-84773-15	MW-5D	99	93	97	
480-84773-16	MW-5S	99	95	100	
480-84773-17	MW-11D	99	94	98	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

			Pe	rcent Surrog	ate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-84773-18	TRIP BLANK	99	94	100	
LCS 480-256319/6	Lab Control Sample	93	98	99	
LCS 480-256811/12	Lab Control Sample	98	100	98	
MB 480-256319/8	Method Blank	96	97	99	
MB 480-256811/14	Method Blank	102	99	97	
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

Page 44 of 88

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-256319/8

Matrix: Water

Analysis Batch: 256319

Client Sample ID: Method Blank

Prep Type: Total/NA

Anarysis Daton. 200010	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			07/30/15 21:57	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			07/30/15 21:57	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			07/30/15 21:57	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			07/30/15 21:57	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			07/30/15 21:57	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			07/30/15 21:57	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			07/30/15 21:57	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			07/30/15 21:57	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			07/30/15 21:57	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			07/30/15 21:57	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			07/30/15 21:57	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			07/30/15 21:57	1
Acrolein	ND		100	17	ug/L			07/30/15 21:57	1
Acrylonitrile	ND		50	1.9	ug/L			07/30/15 21:57	1
Benzene	ND		5.0	0.60	ug/L			07/30/15 21:57	1
Bromoform	ND		5.0	0.47	ug/L			07/30/15 21:57	1
Bromomethane	ND		5.0	1.2	ug/L			07/30/15 21:57	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			07/30/15 21:57	1
Chlorobenzene	ND		5.0	0.48	ug/L			07/30/15 21:57	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			07/30/15 21:57	1
Chloroethane	ND		5.0	0.87	ug/L			07/30/15 21:57	1
Chloroform	ND		5.0	0.54	ug/L			07/30/15 21:57	1
Chloromethane	ND		5.0	0.64	ug/L			07/30/15 21:57	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			07/30/15 21:57	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			07/30/15 21:57	1
Ethylbenzene	ND		5.0	0.46	ug/L			07/30/15 21:57	1
Methylene Chloride	ND		5.0	0.81	ug/L			07/30/15 21:57	1
Tetrachloroethene	ND		5.0	0.34	ug/L			07/30/15 21:57	1
Toluene	ND		5.0	0.45	ug/L			07/30/15 21:57	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			07/30/15 21:57	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			07/30/15 21:57	1
Trichloroethene	ND		5.0	0.60	ug/L			07/30/15 21:57	1
Vinyl chloride	ND		5.0	0.75	ug/L			07/30/15 21:57	1

MB MB %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 96 72 - 130 69 - 121 97 4-Bromofluorobenzene (Surr) 70-123 Toluene-d8 (Surr) 99

Lab Sample ID: LCS 480-256319/6

Matrix: Water

Prepared Analyzed DII Fac 07/30/15 21:57 07/30/15 21:57 07/30/15 21:57

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 256319	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.7		ug/L		98	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	19.7		ug/L		98	46 - 157	
1,1,2-Trichloroethane	20.0	19.9		ug/L		99	52 - 150	
1,1-Dichloroethane	20.0	19.6		ug/L		98	59 - 155	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-256319/6

Matrix: Water

Analysis Batch: 256319

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	19.8		ug/L		99	1 - 234	
1,2-Dichlorobenzene	20.0	20.0		ug/L		100	18 - 190	
1,2-Dichloroethane	20.0	19.2		ug/L		96	49 - 155	
1,2-Dichloropropane	20.0	20.2		ug/L		101	1 - 210	
1,3-Dichlorobenzene	20.0	19.8		ug/L		99	59 - 156	
1,4-Dichlorobenzene	20.0	19.4		ug/L		97	18 - 190	
2-Chloroethyl vinyl ether	20.0	20.3	J	ug/L		102	1 - 305	
Benzene	20.0	19.7		ug/L		99	37 - 151	
Bromoform	20.0	17.1		ug/L		85	45 - 169	
Bromomethane	20.0	19.0		ug/L		95	1 - 242	
Carbon tetrachloride	20.0	19.2		ug/L		96	70 - 140	
Chlorobenzene	20.0	19.8		ug/L		99	37 - 160	
Chlorodibromomethane	20.0	18.1		ug/L		90	53 - 149	
Chloroethane	20.0	19.3		ug/L		96	14 - 230	
Chloroform	20.0	19.1		ug/L		95	51 - 138	
Chloromethane	20.0	18.2		ug/L		91	1 - 273	
cis-1,3-Dichloropropene	20.0	20.6		ug/L		103	1 - 227	
Dichlorobromomethane	20.0	18.3		ug/L		92	35 - 155	
Ethylbenzene	20.0	19.6		ug/L		98	37 - 162	
Methylene Chloride	20.0	20.5		ug/L		103	1 - 221	
Tetrachloroethene	20.0	19.0		ug/L		95	64 - 148	
Toluene	20.0	19.9		ug/L		99	47 - 150	
trans-1,2-Dichloroethene	20.0	20.6		ug/L		103	54 - 156	
trans-1,3-Dichloropropene	20.0	19.1		ug/L		96	17 - 183	
Trichloroethene	20.0	19.9		ug/L		100	71 - 157	
Vinyl chloride	20.0	17.2		ug/L		86	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		72 - 130
4-Bromofluorobenzene (Surr)	98		69 - 121
Toluene-d8 (Surr)	99		70-123

Lab Sample ID: MB 480-256811/14

Matrix: Water

Analysis Batch: 256811

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			08/04/15 10:22	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			08/04/15 10:22	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			08/04/15 10:22	1
1.1-Dichloroethane	ND		5.0	0.59	ug/L			08/04/15 10:22	1
1.1-Dichloroethene	ND		5.0	0.85	ug/L			08/04/15 10:22	1
1.2-Dichlorobenzene	ND		5.0	0.44	ug/L			08/04/15 10:22	1
1.2-Dichloroethane	ND		5.0	0.60	ug/L			08/04/15 10:22	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			08/04/15 10:22	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			08/04/15 10:22	1
1.3-Dichlorobenzene	ND		5.0	0.54	ug/L			08/04/15 10:22	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			08/04/15 10:22	1

TestAmerica Buffalo

Page 46 of 88

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-256811/14

Matrix: Water

Analysis Batch: 256811

Client Sample ID: Method Blank Prep Type: Total/NA

Tindiyolo Battin Book :									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			08/04/15 10:22	1
Acrolein	ND		100	17	ug/L			08/04/15 10:22	1
Acrylonitrile	ND		50	1.9	ug/L			08/04/15 10:22	1
Benzene	ND		5.0	0.60	ug/L			08/04/15 10:22	1
Bromoform	ND		5.0	0.47	ug/L			08/04/15 10:22	1
Bromomethane	ND		5.0	1.2	ug/L			08/04/15 10:22	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			08/04/15 10:22	1
Chlorobenzerie	ND		5.0	0.48	ug/L			08/04/15 10:22	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			08/04/15 10:22	1
Chloroethane	ND		5.0	0.87	ug/L			08/04/15 10:22	1
Chloroform	ND		5.0	0.54	ug/L			08/04/15 10:22	1
Chloromethane	ND		5.0	0.64	ug/L			08/04/15 10:22	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			08/04/15 10:22	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			08/04/15 10:22	1
Ethylbenzene	ND		5.0	0.46	ug/L			08/04/15 10:22	1
Methylene Chloride	ND		5.0	0.81	ug/L			08/04/15 10:22	1
Tetrachloroethene	ND		5.0	0.34	ug/L			08/04/15 10:22	1
Toluene	ND		5.0	0.45	ug/L			08/04/15 10:22	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			08/04/15 10:22	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			08/04/15 10:22	1
Trichloroethene	ND		5.0	0.60	ug/L			08/04/15 10:22	1
Vinyl chloride	ND		5.0	0.75	ug/L			08/04/15 10:22	1

MD MD

ł		IND	IND					
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
	1,2-Dichloroethane-d4 (Surr)	102		72 - 130		08/04/15 10:22	1	
ļ	4-Bromofluorobenzene (Surr)	99		69 _ 121		08/04/15 10:22	1	
-	Toluene-d8 (Surr)	97		70 - 123		08/04/15 10:22	1	

Lab Sample ID: LCS 480-256811/12

Matrix: Water

Analysis Batch: 256811

Client Sample	ID: Lab Control Sample	
	Prep Type: Total/NA	

Analysis Batch. 200011							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	20.8		ug/L		104	52 - 162
1,1,2,2-Tetrachloroethane	20.0	21.0		ug/L		105	46 - 157
1,1,2-Trichloroethane	20.0	20.6		ug/L		103	52 - 150
1,1-Dichloroethane	20.0	19.9		ug/L		99	59 - 155
1,1-Dichloroethene	20.0	20.5		ug/L		102	1 - 234
1,2-Dichlorobenzene	20.0	20.7		ug/L		104	18 - 190
1,2-Dichloroethane	20.0	19.9		ug/L		100	49 - 155
1,2-Dichloropropane	20.0	21.5		ug/L		107	1_210
1,3-Dichlorobenzene	20.0	21.1		ug/L		106	59 - 156
1,4-Dichlorobenzene	20.0	21.3		ug/L		106	18 - 190
2-Chloroethyl vinyl ether	20.0	22.6	J	ug/L		113	1 - 305
Benzene	20.0	20.8		ug/L		104	37 - 151
Bromoform	20.0	22.7		ug/L		113	45 - 169
Bromomethane	20.0	20.8		ug/L		104	1 - 242
Carbon tetrachloride	20.0	21.6		ug/L		108	70 - 140

Client: Town of Dewitt Project/Site: Town of Dewitt

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-256811/12

Matrix: Water

Client	Sample	ID:	Lab	Control	Sample
			Prep	Type: 1	otal/NA

Analysis Batch: 256811		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorobenzene		20.0	20.9		ug/L		105	37 - 160	
Chlorodibromomethane		20.0	20.7		ug/L		104	53 - 149	
Chloroethane		20.0	20.6		ug/L		103	14 - 230	
Chloroform		20.0	20.3		ug/L		101	51 - 138	
Chloromethane		20.0	20.8		ug/L		104	1 - 273	
cis-1,3-Dichloropropene		20.0	22.1		ug/L		111	1 - 227	
Dichlorobromomethane	•	20.0	21.1		ug/L		106	35 - 155	
Ethylbenzene		20.0	20.9		ug/L		105	37 - 162	
Methylene Chloride		20.0	19.6		ug/L		98	1 - 221	
Tetrachloroethene		20.0	20.7		ug/L		104	64 - 148	
Toluene		20.0	20.6		ug/L		103	47 - 150	
trans-1,2-Dichloroethene		20.0	20.8		ug/L		104	54 - 156	
trans-1,3-Dichloropropene		20.0	21.9		ug/L		109	17 - 183	
Trichloroethene		20.0	20.8		ug/L		104	71 - 157	
Vinyl chloride		20.0	20.0		ug/L		100	1 - 251	
	LCS LCS								
0	O/December Ovelifies	I impiem							

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		72 - 130
4-Bromofluorobenzene (Surr)	100		69 - 121
Toluene-d8 (Surr)	98		70 - 123

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-256279/1-A

Matrix: Water

Analysis Batch: 256636

Client	Sample	ID:	Metho	bc	Blank
	Pro	ep 1	vpe:	Tot	al/NA

Prep Batch: 256279

Allalysis Batoli. 200000	MB	MB						•	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		07/31/15 07:35	07/31/15 16:20	1
Arsenic	ND		0.015	0.0056	mg/L		07/31/15 07:35	07/31/15 16:20	1
Beryllium	ND		0.0020	0.00030	mg/L		07/31/15 07:35	07/31/15 16:20	1
Cadmium	ND		0.0020	0.00050	mg/L		07/31/15 07:35	07/31/15 16:20	1
Chromium	ND		0.0040	0.0010	mg/L		07/31/15 07:35	07/31/15 16:20	1
Copper	ND		0.010	0.0016	mg/L		07/31/15 07:35	07/31/15 16:20	1
Lead	ND		0.010	0.0030	mg/L		07/31/15 07:35	07/31/15 16:20	1
Nickel	ND		0.010	0.0013	mg/L		07/31/15 07:35	07/31/15 16:20	1
Selenium	ND		0.025	0.0087	mg/L		07/31/15 07:35	07/31/15 16:20	1
Silver	ND		0.0060	0.0017	mg/L		07/31/15 07:35	07/31/15 16:20	1
Thallium	ND		0.020	0.010	mg/L		07/31/15 07:35	07/31/15 16:20	1
Zinc	ND		0.010	0.0015	mg/L		07/31/15 07:35	07/31/15 16:20	1

Lab Sample ID: LCS 480-256279/2-A

Matrix: Water

Antimony

Arsenic

Analysis Batch: 256636

		Client	Sar	nple ID	: Lab Control Sample
					Prep Type: Total/NA
	100				Prep Batch: 256279
LCS	LCS				%Rec.
Result	Qualifier	Unit	D	%Rec	Limits
0.204		mg/L		102	80 - 120
0.205		mg/L		103	80 - 120

TestAmerica Buffalo

Page 48 of 88

Spike

Added

0.200

0.200

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-256279/2-A Matrix: Water Analysis Batch: 256636				Clie	nt Sa	mple ID	Prep Type: Total/NA Prep Batch: 256279
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Beryllium	0.200	0.206		mg/L		103	80 - 120
Cadmium	0.200	0.207		mg/L		104	80 - 120
Chromium	0.200	0.211		mg/L		105	80 - 120
Copper	0.200	0.202		mg/L		101	80 - 120
Lead	0.200	0.203		mg/L		102	80 - 120
Nickel	0.200	0.201		mg/L		100	80 - 120
Selenium	0.200	0.212		mg/L		106	80 - 120
Silver	0.0500	0.0502		mg/L		100	80 - 120
Thallium	0.200	0.207		mg/L		103	80 - 120
Zinc	0.200	0.206		mg/L		103	80 - 120

Lab Sample ID: 480-84773-2 MS

Matrix: Ground Water

Analysis Batch: 256636

Sample Sample Spike MS MS

Client Sample ID: MW-8D

Prep Type: Total/NA

Prep Batch: 256279

%Rec.

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifler	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND	7-to-	0.200	0.211		mg/L		105	75 - 125	
Arsenic	0.013	J	0.200	0.230		mg/L		108	75 - 125	
Beryllium	ND		0.200	0.206		mg/L		103	75 - 125	
Cadmium	ND		0.200	0.216		mg/L	•	108	75 - 125	
Chromium	ND		0.200	0.208		mg/L		104	75 - 125	
Copper	ND		0.200	0.201		mg/L		100	75 - 125	
Lead	ND		0.200	0.206		mg/L		103	75 - 125	
Nickel	ND		0.200	0.204		mg/L		102	75 - 125	
Selenium	ND		0.200	0.212		mg/L		106	75 - 125	
Silver	ND		0.0500	0.0523		mg/L		105	75 - 125	
Thallium	ND		0.200	0.205		mg/L		103	75 - 125	
Zinc	0.0054	J	0.200	0.202		mg/L		98	75 - 125	

Lab Sample ID: 480-84773-2 MSD

Matrix: Ground Water

Analysis Batch: 256636

Client Sample ID: MW-8D

Prep Type: Total/NA

Prep Batch: 256279

Alialysis Daluli. 200000									1 TOP DE		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.200	0.215		mg/L		107	75 - 125	2	20
Arsenic	0.013	J	0.200	0.236		mg/L		111	75 - 125	2	20
Beryllium	ND		0.200	0.210		mg/L		105	75 - 125	2	20
Cadmium	ND		0.200	0.221		mg/L		110	75 - 125	2	20
Chromium	ND		0.200	0.212		mg/L		106	75 - 125	2	20
Copper	ND		0.200	0.206		mg/L		103	75 - 125	3	20
Lead	ND		0.200	0.208		mg/L		104	75 - 125	1	20
Nickel	ND		0.200	0.209		mg/L		104	75 - 125	2	20
Selenium	· ND		0.200	0.216		mg/L		108	75 - 125	2	20
Silver	ND		0.0500	0.0536		mg/L		107	75 - 125	3	20
Thallium	ND		0.200	0.211		mg/L		105	75 - 125	2	20
Zinc	0.0054	J	0.200	0.218		mg/L		106	75 - 125	7	20

TestAmerica Buffalo

Page 49 of 88

8/12/2015

2

3

5

7

9

Ö

13

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-256441/1-C

Matrix: Water

Analysis Batch: 256841

Client Sample ID: Method Blank Prep Type: Dissolved

Prep Batch: 256501

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		08/03/15 08:00	08/04/15 01:36	1
Arsenic	ND		0.015	0.0056	mg/L		08/03/15 08:00	08/04/15 01:36	1
Beryllium	ND		0.0020	0.00030	mg/L		08/03/15 08:00	08/04/15 01:36	1
Cadmium	ND		0.0020	0.00050	mg/L		08/03/15 08:00	08/04/15 01:36	1
Chromium	ND		0.0040	0.0010	mg/L		08/03/15 08:00	08/04/15 01:36	1
Copper	ND		0.010	0.0016	mg/L		08/03/15 08:00	08/04/15 01:36	1
Lead	ND		0.010	0.0030	mg/L		08/03/15 08:00	08/04/15 01:36	1
Nickel	ND		0.010	0.0013	mg/L		08/03/15 08:00	08/04/15 01:36	1
Selenium	ND		0.025	0.0087	mg/L		08/03/15 08:00	08/04/15 01:36	1
Silver	ND		0.0060	0.0017	mg/L		08/03/15 08:00	08/04/15 01:36	1
Thallium	ND		0.020	0.010	mg/L		08/03/15 08:00	08/04/15 01:36	1
Zinc	ND		0.010	0.0015	mg/L		08/03/15 08:00	08/04/15 01:36	1

Lab Sample ID: LCS 480-256441/2-C

Matrix: Water

Analysis Batch: 256841

Client Sample ID: Lab Control Sample **Prep Type: Dissolved**

Prep Batch: 256501

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.200	0.196		mg/L		98	80 - 120	
Arsenic	0.200	0.200		mg/L		100	80 - 120	
Beryllium	0.200	0.195		mg/L		98	80 - 120	
Cadmium	0.200	0.199		mg/L		99	80 - 120	
Chromium	0.200	0.204		mg/L		102	80 - 120	
Copper	0.200	0.194		mg/L		97	80 - 120	
Lead	0.200	0.196		mg/L		98	80 - 120	
Nickel	0.200	0.193		mg/L		97	80 - 120	
Selenium	0.200	0.204		mg/L		102	80 - 120	
Silver	0.0500	0.0481		mg/L		96	80 - 120	
Thallium	0.200	0.201		mg/L		101	80 - 120	
Zinc	0.200	0.198		mg/L		99	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-257529/1-A

Matrix: Water

Analyte

Mercury

Analysis Batch: 257648

MB MB

Result Qualifier

RL 0.00020

MDL Unit 0.00012 mg/L

LCS LCS

0.00658

Result Qualifier

Unit

mg/L

Analyzed 08/07/15 08:30 08/07/15 12:33

Client Sample ID: Method Blank

Lab Sample ID: LCS 480-257529/2-A

Matrix: Water

Analysis Batch: 257648

Analyte Mercury Client Sample ID: Lab Control Sample

%Rec

99

D

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 257529

Prep Batch: 257529

%Rec.

Limits

80 - 120

TestAmerica Buffalo

Spike

Added

0.00667

Spike

Added

0.00667

MS MS

0.00683

Result Qualifier

Unit

mg/L

Matrix: Ground Water

Mercury

Analysis Batch: 257648

Lab Sample ID: 480-84773-B-1-C MS

Method: 7470A - Mercury (CVAA) (Continued)

Sample Sample

-0.0000617

Result Qualifier

Prep Type: Total/NA Prep Batch: 257529

Client Sample ID: 480-84773-B-1-C MS

%Rec.

Limits

80 - 120

D %Rec

-	6
)	77
	8
1	0
)	
	E10
,	
-	MG
	13
	12
}	P75
	1
	16

Lab Sample ID: 480-84773-B Matrix: Ground Water									Cile	nt S	amp	DIE ID: 4	180-84773-E Prep Type		
Analysis Batch: 257648													Prep Bato		
Analysis Batch. 257646	Sample	Sam	nnle	Spike		MSD	MSI)					%Rec.	11. 20	RPI
Analyte	Result		•	Added		Result			Unit		D	%Rec		RPD	Limi
Mercury	-0.0000617			0.00667		0.00678			mg/L		_	102	80 - 120	1	20
Lab Sample ID: MB 480-2564	441/1-D										Clie	nt Sam	ple ID: Met	nod E	Blank
Matrix: Water													Prep Type:	Disso	olved
Analysis Batch: 257619		MD	мв										Prep Bato	n: 25	732
Analyte			Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed		Dil Fa
Mercury		ND		0.0	0020	0.0	0012	mg/L				6/15 10:40			-
	14440 D								CI	:4	C	anla ID	Lab Cante	-1 0-	male
Lab Sample ID: LCS 480-256	441/2-D								CI	lent	San		: Lab Contr Prep Type:		
Matrix: Water													Prep Bato		
Analysis Batch: 257619				Spike		LCS	LCS						%Rec.	11. 2.	7 320
Analyte				Added		Result	-		Unit		D	%Rec	Limits		
arrary co				0.00667		0.00622			mg/L		_	93	80 - 120		
lethod: SM 2540C - Soli		I D	issolve	ed (TD:	S)						Clie	nt Sam	ple ID: Met		
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water		ID	issolve	ed (TD:	S)						Clie	nt Sam	ple ID: Met Prep Type		
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water	229/1	adaga wasan da saba	issolve Mb	ed (TD:	S)					I	Clie	nt Sam			
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229	229/1	мв		ed (TD:	S)		MDL	Unit		D		nt Sam		: Tota	
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte	229/1	мв	МВ	ed (TD:				Unit mg/L					Prep Type	: Tota	al/NA
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256	229/1 Res	MB sult	МВ	ed (TD:	RL				CI	D	Pr	repared	Analyzed 07/30/15 11	Tota	al/NA
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water	229/1 Res	MB sult	МВ	ed (TD:	RL				CI	D	Pr	repared	Analyzed 07/30/15 11	Tota	al/NA
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water	229/1 Res	MB sult	МВ	ed (TD:	RL			mg/L	CI	D	Pr	repared	Analyzed 07/30/15 11	Tota	oil Fac
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water Analysis Batch: 256229	229/1 Res	MB sult	МВ	Spike Added	RL	LCS Result	4.0	mg/L	CI	D	Pr	repared nple ID %Rec	Analyzed 07/30/15 11 Lab Contr Prep Type %Rec. Limits	Tota	oil Fac
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Fotal Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water Analysis Batch: 256229 Analyte	229/1 Res	MB sult	МВ	Spike	RL	LCS	4.0	mg/L		D	Pi	repared nple ID	Analyzed 07/30/15 11 Lab Contr Prep Type %Rec.	Tota	oil Fac
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: MB 480-2564	Res	MB sult	МВ	Spike Added	RL	LCS Result	4.0	mg/L	Unit	D ient	San	repared nple ID **Rec 103	Analyzed 07/30/15 11 Lab Contr Prep Type %Rec. Limits 85 - 115 ple ID: Met	ol Sa	oil Fample
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: MB 480-2564 Matrix: Water	Res	MB sult	МВ	Spike Added	RL	LCS Result	4.0	mg/L	Unit	D ient	San	repared nple ID **Rec 103	Analyzed 07/30/15 11 Lab Contr Prep Type %Rec. Limits 85 - 115	ol Sa	oil Fac mple al/NA
lethod: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: MB 480-2564 Matrix: Water	Res 6229/2 480/1	MB suit ND	МВ	Spike Added	RL	LCS Result	4.0	mg/L	Unit	D ient	Sar	repared nple ID **Rec 103	Analyzed 07/30/15 11 Lab Contr Prep Type %Rec. Limits 85 - 115 ple ID: Met	ol Sa	oil Fac
Mercury Method: SM 2540C - Soli Lab Sample ID: MB 480-2562 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-256 Matrix: Water Analysis Batch: 256229 Analyte Total Dissolved Solids Lab Sample ID: MB 480-2564 Matrix: Water Analysis Batch: 256480 Analyte Analysis Batch: 256480 Analyte	Res 6229/2 480/1	MB suit ND	MB Qualifier	Spike Added	RL	LCS Result 517.0	LCS Qua	mg/L	Unit	D ient	Sar D Clie	repared nple ID **Rec 103	Analyzed 07/30/15 11 Lab Contr Prep Type %Rec. Limits 85 - 115 ple ID: Met	: Total	oil Fac

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 480-256480/2

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 256480

Spike LCS LCS %Rec. Unit

Limits

Analyte Total Dissolved Solids Added 502 Result Qualifier 519.0

103 ma/L

85 - 115

Lab Sample ID: MB 480-256624/1

Matrix: Water

Analysis Batch: 256624

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Limits

85 - 115

Client Sample ID: Method Blank

Total Dissolved Solids

MR MR Result Qualifier

ND

MDL Unit 10.0 4.0 mg/L

RL

Prepared

Analyzed 08/02/15 20:15 **Dil Fac**

Lab Sample ID: LCS 480-256624/2

Matrix: Water

Analyte

Analysis Batch: 256624

Spike Added

502

LCS LCS Result Qualifier

481.0

%Rec

96

Prep Type: Total/NA %Rec.

Lab Sample ID: MB 480-256786/1

Matrix: Water

Total Dissolved Solids

Analysis Batch: 256786

MB MB

Result Qualifier

ND

RL

10.0

MDL Unit 4.0 mg/L Prepared

Analyzed

08/03/15 16:46

Prep Type: Total/NA

Dil Fac

Lab Sample ID: LCS 480-256786/2

Matrix: Water

Total Dissolved Solids

Total Dissolved Solids

Total Dissolved Solids

Analysis Batch: 256786

Spike Added 502

LCS LCS Result Qualifier 496.0

Unit mg/L

Unit

mg/L

%Rec

%Rec. Limits 85 - 115

Client Sample ID: Lab Control Sample

Client Sample ID: MW-10S Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: 480-84773-14 DU **Matrix: Ground Water**

Analysis Batch: 256786

Sample Sample Result Qualifier 1210

DU DU Result Qualifier

1218

Unit mg/L

RPD RPD

Limit

20

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

GC/MS VOA

Analysis	Batch:	256319
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-1	MW-6S	Total/NA	Ground Water	624	
480-84773-2	MW-8D	Total/NA	Ground Water	624	
480-84773-3	MW-8S	Total/NA	Ground Water	624	
180-84773-4	MW-9M	Total/NA	Ground Water	624	
480-84773-5	MW-9S	Total/NA	Ground Water	624	
480-84773-6	MW-3S	Total/NA	Ground Water	624	
480-84773-7	MW-4S	Total/NA	Ground Water	624	
480-84773-8	MW-4D	Total/NA	Ground Water	624	
480-84773-9	MW-1S	Total/NA	Ground Water	624	
180-84773-10	MW-2D	Total/NA	Ground Water	624	
480-84773-11	MW-2S	Total/NA	Ground Water	624	
180-84773-12	MW-12S	Total/NA	Ground Water	624	
480-84773-13	MW-7S	Total/NA	Ground Water	624	
480-84773-14	MW-10S	Total/NA	Ground Water	624	
180-84773-15	MW-5D	Total/NA	Ground Water	624	
480-84773-16	MW-5S	Tota!/NA	Ground Water	624	
480-84773-17	MW-11D	Total/NA	Ground Water	624	
480-84773-18	TRIP BLANK	Total/NA	Water	624	
LCS 480-256319/6	Lab Control Sample	Total/NA	Water	624	
MB 480-256319/8	Method Blank	Total/NA	Water	624	

Analysis Batch: 256811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-8 - DL	MW-4D	Total/NA	Ground Water	624	
LCS 480-256811/12	Lab Control Sample	Total/NA	Water	624	
MB 480-256811/14	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 256279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-84773-1	MW-6S	Total/NA	Ground Water	3005A	
480-84773-2	MW-8D	Total/NA	Ground Water	3005A	
480-84773-2 MS	MW-8D	Total/NA	Ground Water	3005A	
480-84773-2 MSD	MW-8D	Total/NA	Ground Water	3005A	
480-84773-3	MW-8S	Total/NA	Ground Water	3005A	
480-84773-4	MW-9M	Total/NA	Ground Water	3005A	
480-84773-5	MW-9S	Total/NA	Ground Water	3005A	
480-84773-6	MW-3S	Total/NA	Ground Water	3005A	
180-84773-7	MW-4S	Total/NA	Ground Water	3005A	
480-84773-8	MW-4D	Total/NA	Ground Water	3005A	
480-84773-9	MW-1S	Total/NA	Ground Water	3005A	
480-84773-10	MW-2D	Total/NA	Ground Water	3005A	
480-84773-11	MW-2S	Total/NA	Ground Water	3005A	
480-84773-12	MW-12S	Total/NA	Ground Water	3005A	
480-84773-13	MW-7S	Total/NA	Ground Water	3005A	
480-84773-14	MW-10S	Total/NA	Ground Water	3005A	
480-84773-15	MW-5D	Total/NA	Ground Water	3005A	
480-84773-16	MW-5S	Total/NA	Ground Water	3005A	
480-84773-17	MW-11D	Total/NA	Ground Water	3005A	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Metals (Continued)

Prep Batch:	256279	(Continued)
-------------	--------	-------------

-	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
-	LCS 480-256279/2-A	Lab Control Sample	Total/NA	Water	3005A	
ı	MB 480-256279/1-A	Method Blank	Total/NA	Water	3005A	

Filtration Batch: 256441

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-6	MW-3S	Dissolved	Ground Water	FILTRATION	
480-84773-9	MW-1S	Dissolved	Ground Water	FILTRATION	
480-84773-15	MW-5D	Dissolved	Ground Water	FILTRATION	
480-84773-17	MW-11D	Dissolved	Ground Water	FILTRATION	
LCS 480-256441/2-C	Lab Control Sample	Dissolved	Water	FILTRATION	
LCS 480-256441/2-D	Lab Control Sample	Dissolved	Water	FILTRATION	
MB 480-256441/1-C	Method Blank	Dissolved	Water	FILTRATION	
MB 480-256441/1-D	Method Blank	Dissolved	Water	FILTRATION	

Prep Batch: 256501

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MW-3S	Dissolved	Ground Water	3005A	256441
MW-1S	Dissolved	Ground Water	3005A	256441
MW-5D	Dissolved	Ground Water	3005A	256441
MW-11D	Dissolved	Ground Water	3005A	256441
Lab Control Sample	Dissolved	Water	3005A	256441
Method Blank	Dissolved	Water .	3005A	256441
	MW-3S MW-1S MW-5D MW-11D Lab Control Sample	MW-3S Dissolved MW-1S Dissolved MW-5D Dissolved MW-11D Dissolved Lab Control Sample Dissolved	MW-3S Dissolved Ground Water MW-1S Dissolved Ground Water MW-5D Dissolved Ground Water MW-11D Dissolved Ground Water Lab Control Sample Dissolved Water	MW-3S Dissolved Ground Water 3005A MW-1S Dissolved Ground Water 3005A MW-5D Dissolved Ground Water 3005A MW-11D Dissolved Ground Water 3005A Lab Control Sample Dissolved Water 3005A

Analysis Batch: 256636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-1	MW-6S	Total/NA	Ground Water	6010C	256279
480-84773-2	MW-8D	Total/NA	Ground Water	6010C	256279
480-84773-2 MS	MW-8D	Total/NA	Ground Water	6010C	256279
480-84773-2 MSD	MW-8D	Total/NA	Ground Water	6010C	256279
180-84773-3	MW-8S	Total/NA	Ground Water	6010C	256279
480-84773-4	MW-9M	Total/NA	Ground Water	6010C	256279
480-84773-5	MW-9S	Total/NA	Ground Water	6010C	256279
480-84773-6	MW-3S	Total/NA	Ground Water	6010C	256279
180-84773-7	MW-4S	Total/NA	Ground Water	6010C	256279
180-84773-8	MW-4D	Total/NA	Ground Water	6010C	256279
180-84773-9	MW-1S	Total/NA	Ground Water	6010C	256279
180-84773-10	MW-2D	Total/NA	Ground Water	6010C	256279
180-84773-11	MW-2S	Total/NA	Ground Water	6010C	256279
480-84773-12	MW-12S	Total/NA	Ground Water	6010C	256279
180-84773-13	MW-7S	Total/NA	Ground Water	6010C	256279
180-84773-14	MW-10S	Total/NA	Ground Water	6010C	256279
180-84773-15	MW-5D	Total/NA	Ground Water	6010C	256279
480-84773-16	MW-5S	Total/NA	Ground Water	6010C	256279
480-84773-17	MW-11D	Total/NA	Ground Water	6010C	256279
CS 480-256279/2-A	Lab Control Sample	Total/NA	Water	6010C	256279
MB 480-256279/1-A	Method Blank	Total/NA	Water	6010C	256279

Analysis Batch: 256841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-6	MW-3S	Dissolved	Ground Water	6010C	256501
480-84773-9	MW-1S	Dissolved	Ground Water	6010C	256501

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

## . A . B	10 11	11 %
metais	(Continu	iea)

Analysis	Batch:	256841	(Continued)
MIIdIYSIS	Dattil.	20004 I	(Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-15	MW-5D	Dissolved	Ground Water	6010C	256501
480-84773-17	MW-11D	Dissolved	Ground Water	6010C	256501
LCS 480-256441/2-C	Lab Control Sample	Dissolved	Water	6010C	256501
MB 480-256441/1-C	Method Blank	Dissolved	Water	6010C	256501

Prep Batch: 257328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-6	MW-3S	Dissolved	Ground Water	7470A	256441
480-84773-9	MW-1S	Dissolved	Ground Water	7470A	256441
480-84773-15	MW-5D	Dissolved	Ground Water	7470A	256441
480-84773-17	MW-11D	Dissolved	Ground Water	7470A	256441
LCS 480-256441/2-D	Lab Control Sample	Dissolved	Water	7470A	256441
MB 480-256441/1-D	Method Blank	Dissolved	Water	7470A	256441

Prep Batch: 257529

16h Batch. 23/323					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-1	MW-6S	Total/NA	Ground Water	7470A	
480-84773-2	MW-8D	Total/NA	Ground Water	7470A	
480-84773-3	MW-8S	Total/NA	Ground Water	7470A	
480-84773-4	MW-9M	Total/NA	Ground Water	7470A	
480-84773-5	MW-9S	Total/NA	Ground Water	7470A	
480-84773-6	MW-3S	Total/NA	Ground Water	7470A	
480-84773-7	MW-4S	Total/NA	Ground Water	7470A	
480-84773-8	MW-4D	Total/NA	Ground Water	7470A	
480-84773-9	MW-1S	Total/NA	Ground Water	7470A	
480-84773-10	MW-2D	Total/NA	Ground Water	7470A	
480-84773-11	MW-2S	Total/NA	Ground Water	7470A	
480-84773-12	MW-12S	Total/NA	Ground Water	7470A	
480-84773-13	MW-7S	Total/NA	Ground Water	7470A	
480-84773-14	MW-10S	Total/NA	Ground Water	7470A	
480-84773-15	MW-5D	Total/NA	Ground Water	7470A	
480-84773-16	MW-5S	Total/NA	Ground Water	7470A	
480-84773-17	MW-11D	Total/NA	Ground Water	7470A	
480-84773-B-1-C MS	480-84773-B-1-C MS	Total/NA	Ground Water	7470A	
480-84773-B-1-D MSD	480-84773-B-1-D MSD	Total/NA	Ground Water	7470A	
LCS 480-257529/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 257619

Method Blank

MB 480-257529/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-6	MW-3S	Dissolved	Ground Water	7470A	257328
480-84773-9	MW-1S	Dissolved	Ground Water	7470A	257328
480-84773-15	MW-5D	Dissolved	Ground Water	7470A	257328
480-84773-17	MW-11D	Dissolved	Ground Water	7470A	257328
LCS 480-256441/2-D	Lab Control Sample	Dissolved	Water	7470A	257328
MB 480-256441/1-D	Method Blank	Dissolved	Water	7470A	257328

Total/NA

Analysis Batch: 257648

Lab S	ample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-8	4773-1	MW-6S	Total/NA	Ground Water	7470A	257529
480-8	4773-2	MW-8D	Total/NA	Ground Water	7470A	257529

TestAmerica Buffalo

7470A

Water

Page 55 of 88

0

6

7

9

10

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Metals (Continued)

Analysis Batch: 257648 (Continued)

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-3	MVV-8S	Total/NA	Ground Water	7470A	257529
480-84773-4	MW-9M	Total/NA	Ground Water	7470A	257529
480-84773-5	MW-9S	Total/NA	Ground Water	7470A	257529
480-84773-6	MW-3S	Total/NA	Ground Water	7470A	257529
480-84773-7	MW-4S	Total/NA	Ground Water	7470A	257529
480-84773-8	MW-4D	Total/NA	Ground Water	7470A	257529
480-84773-9	MW-1S	Total/NA	Ground Water	7470A	257529
480-84773-10	MW-2D	Total/NA	Ground Water	7470A	257529
480-84773-11	MW-2S	Total/NA	Ground Water	7470A	257529
480-84773-12	MW-12S	Total/NA	Ground Water	7470A	257529
480-84773-13	MW-7S	Total/NA	Ground Water	7470A	257529
480-84773-14	MW-10S	Total/NA	Ground Water	7470A	257529
480-84773-15	MW-5D	Total/NA	Ground Water	7470A	257529
480-84773-16	MW-5S	Total/NA	Ground Water	7470A	257529
480-84773-17	MW-11D	Total/NA	Ground Water	7470A	257529
480-84773-B-1-C MS	480-84773-B-1-C MS	Total/NA	Ground Water	7470A	257529
480-84773-B-1-D MSD	480-84773-B-1-D MSD	Total/NA	Ground Water	7470A	257529
LCS 480-257529/2-A	Lab Control Sample	Total/NA	Water	7470A	257529
MB 480-257529/1-A	Method Blank	Total/NA	Water	7470A	257529

General Chemistry

Analysis Batch: 256229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-1	MW-6S	Total/NA	Ground Water	SM 2540C	
LCS 480-256229/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-256229/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 256480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-7	MW-4S	Total/NA	Ground Water	SM 2540C	
LCS 480-256480/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-256480/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 256624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-2	MW-8D	Total/NA	Ground Water	SM 2540C	
480-84773-3	MW-8S	Total/NA	Ground Water	SM 2540C	
480-84773-4	MW-9M	Total/NA	Ground Water	SM 2540C	
480-84773-6	MW-3S	Total/NA	Ground Water	SM 2540C	
480-84773-8	MW-4D	Total/NA	Ground Water	SM 2540C	
LCS 480-256624/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-256624/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 256786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-5	MW-9S	Total/NA	Ground Water	SM 2540C	
480-84773-9	MW-1S	Total/NA	Ground Water	SM 2540C	
480-84773-10	MW-2D	Total/NA	Ground Water	SM 2540C	
480-84773-11	MW-2S	Total/NA	Ground Water	SM 2540C	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

General Chemistry (Continued)

Analysis Batch: 256786 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84773-12	MW-12S	Total/NA	Ground Water	SM 2540C	
480-84773-13	MW-7S	Total/NA	Ground Water	SM 2540C	
480-84773-14	MW-10S	Total/NA	Ground Water	SM 2540C	
480-84773-14 DU	MW-10S	Total/NA	Ground Water	SM 2540C	
480-84773-15	MW-5D	Total/NA	Ground Water	SM 2540C	
480-84773-16	MW-5S	Total/NA	Ground Water	SM 2540C	
480-84773-17	MW-11D	Total/NA	Ground Water	SM 2540C	
LCS 480-256786/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-256786/1	Method Blank	Total/NA	Water	SM 2540C	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Client Sample ID: MW-6S

Date Collected: 07/26/15 11:00 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-1

Matrix: Ground Water

Batch		Batch		Dilution	Batch	n Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 01:16	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 16:36	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 12:36	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256229	07/30/15 11:16	EGS	TAL BUF

Client Sample ID: MW-8D

Date Collected: 07/27/15 17:00 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 01:38	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 16:39	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 12:49	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256624	08/02/15 20:15	ELR	TAL BUF

Client Sample ID: MW-8S

Date Collected: 07/27/15 16:00 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-3

Matrix: Ground Water

ne-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 02:01	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 16:56	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 12:51	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256624	08/02/15 20:15	ELR	TAL BUF

Client Sample ID: MW-9M

Date Collected: 07/28/15 08:15

Date Received: 07/30/15 01:40

Lab Sample ID: 480-84773-4 Matrix: Ground Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 02:24	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 16:59	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 12:52	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256624	08/02/15 20:15	ELR	TAL BUF

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-5

Matrix: Ground Water

Client Sample ID: MW-9S Date Collected: 07/28/15 08:40 Date Received: 07/30/15 01:40

Prep Type Total/NA	Type Analysis	Batch Method 624	Run	Dilution Factor	Batch Number 256319	Prepared or Analyzed 07/31/15 02:47	Analyst NMD1	Lab TAL BUF
Total/NA Total/NA	Prep Analysis	3005A 6010C		1		07/31/15 07:35 07/31/15 17:03	CMM TRB	TAL BUF
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	257529 257648		JRK JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF

Client Sample ID: MW-3S

Date Collected: 07/27/15 14:35 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-6

Matrix: Ground Water

10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 03:09	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF
Dissolved	Prep	3005A			256501	08/03/15 08:00	CMM	TAL BUF
Dissolved	Analysis	6010C		1	256841	08/04/15 02:16	AMH	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:15	TRB	TAL BUF
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF
Dissolved	Prep	7470A			257328	08/06/15 10:40	TAS	TAL BUF
Dissolved	Analysis	7470A		1	257619	08/07/15 08:01	JRK	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 12:56	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256624	08/02/15 20:15	ELR	TAL BUF

Client Sample ID: MW-4S

Date Collected: 07/27/15 12:45 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-7

Matrix: Ground Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 03:32	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:19	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 12:58	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256480	07/31/15 13:56	MGH	TAL BUF

Client Sample ID: MW-4D

Date Collected: 07/27/15 12:20

Date Received: 07/30/15 01:40

Lab Sample ID: 480-84773-8

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624	DL	2	256811	08/04/15 11:27	LCH	TAL BUF

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 03:55	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:22	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 13:00	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256624	08/02/15 20:15	ELR	TAL BUF

Client Sample ID: MW-1S

Date Collected: 07/28/15 13:00 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-9

Matrix: Ground Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	624		1	256319	07/31/15 04:18	NMD1	TAL BUF	
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF	
Dissolved	Prep	3005A			256501	08/03/15 08:00	CMM	TAL BUF	
Dissolved	Analysis	6010C		1	256841	08/04/15 02:29	AMH	TAL BUF	
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF	
Total/NA	Analysis	6010C		1	256636	07/31/15 17:26	TRB	TAL BUF	
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF	
Dissolved	Prep	7470A			257328	08/06/15 10:40	TAS	TAL BUF	
Dissolved	Analysis	7470A		1	257619	08/07/15 08:03	JRK	TAL BUF	
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF	
Total/NA	Analysis	7470A		1	257648	08/07/15 13:01	JRK	TAL BUF	
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF	

Client Sample ID: MW-2D

Date Collected: 07/28/15 17:00 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-10

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 04:41	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:29	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 13:03	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF

Client Sample ID: MW-2S

Date Collected: 07/28/15 17:50

Date Received: 07/30/15 01:40

Lab Sample ID: 480-84773-11 Matrix: Ground Water

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Analysis	624		1	256319	07/31/15 05:04	NMD1	TAL BUF
Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Analysis	6010C		1	256636	07/31/15 17:32	TRB	TAL BUF
Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Analysis	7470A		1	257648	08/07/15 13:05	JRK	TAL BUF
	Type Analysis Prep Analysis Prep	Type Method Analysis 624 Prep 3005A Analysis 6010C Prep 7470A	Type Method Run Analysis 624 Prep 3005A Analysis 6010C Prep 7470A	Type Method Run Factor Analysis 624 1 Prep 3005A 3005A Analysis 6010C 1 Prep 7470A	Type Method Run Factor Number Analysis 624 1 256319 Prep 3005A 256279 Analysis 6010C 1 256636 Prep 7470A 257529	Type Method Run Factor Number or Analyzed Analysis 624 1 256319 07/31/15 05:04 Prep 3005A 256279 07/31/15 07:35 Analysis 6010C 1 256636 07/31/15 17:32 Prep 7470A 257529 08/07/15 08:30	Type Method Run Factor Number or Analyzed Analyst Analysis 624 1 256319 07/31/15 05:04 NMD1 Prep 3005A 256279 07/31/15 07:35 CMM Analysis 6010C 1 256636 07/31/15 17:32 TRB Prep 7470A 257529 08/07/15 08:30 JRK

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID: MW-2S

Date Collected: 07/28/15 17:50

TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-11

Matrix: Ground Water

Date Received: 07/30/15 01:40 Batch Prepared Dilution Batch Batch Factor Number or Analyzed Method Run Prep Type Type 256786 08/03/15 16:46 EKB

Lab Sample ID: 480-84773-12

Analyst

Lab

TAL BUF

Matrix: Ground Water

Client Sample ID: MW-12S Date Collected: 07/28/15 16:30

Total/NA

Analysis SM 2540C

Date Received: 07/30/15 01:40

Date Received: 07/30/15 01:40

Date Received: 07/30/15 01:40

Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 05:26	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:35	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 13:10	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF

Lab Sample ID: 480-84773-13 Client Sample ID: MW-7S Date Collected: 07/28/15 14:40

Matrix: Ground Water

Ratch	Ratch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Analysis	624		1	256319	07/31/15 05:49	NMD1	TAL BUF
Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Analysis	6010C		1	256636	07/31/15 17:39	TRB	TAL BUF
Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Analysis	7470A		1	257648	08/07/15 13:12	JRK	TAL BUF
Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF
	Analysis Prep Analysis Prep Analysis	Type Method Analysis 624 Prep 3005A Analysis 6010C Prep 7470A Analysis 7470A	Type Method Run Analysis 624 Prep 3005A Analysis 6010C Prep 7470A Analysis 7470A	Type Method Run Factor Analysis 624 1 Prep 3005A 3005A Analysis 6010C 1 Prep 7470A 1 Analysis 7470A 1	Type Method Run Factor Number Analysis 624 1 256319 Prep 3005A 256279 Analysis 6010C 1 256636 Prep 7470A 257529 Analysis 7470A 1 257648	Type Method Run Factor Number or Analyzed Analysis 624 1 256319 07/31/15 05:49 Prep 3005A 256279 07/31/15 07:35 Analysis 6010C 1 256636 07/31/15 17:39 Prep 7470A 257529 08/07/15 08:30 Analysis 7470A 1 257648 08/07/15 13:12	Type Method Run Factor Number or Analyzed Analyst Analysis 624 1 256319 07/31/15 05:49 NMD1 Prep 3005A 256279 07/31/15 07:35 CMM Analysis 6010C 1 256636 07/31/15 17:39 TRB Prep 7470A 257529 08/07/15 08:30 JRK Analysis 7470A 1 257648 08/07/15 13:12 JRK

Lab Sample ID: 480-84773-14 Client Sample ID: MW-10S **Matrix: Ground Water** Date Collected: 07/28/15 15:20

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	256319	07/31/15 07:20	NMD1	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:42	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 13:13	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF

8/12/2015

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-15

Matrix: Ground Water

Client Sample ID: MW-5D Date Collected: 07/28/15 10:00 Date Received: 07/30/15 01:40

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	624	-	1	256319	07/31/15 07:43	NMD1	TAL BUF	
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF	
Dissolved	Prep	3005A			256501	08/03/15 08:00	CMM	TAL BUF	
Dissolved	Analysis	6010C		1	256841	08/04/15 02:33	AMH	TAL BUF	
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF	
Γotal/NA	Analysis	6010C		1	256636	07/31/15 17:55	TRB	TAL BUF	
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF	
Dissolved	Prep	7470A			257328	08/06/15 10:40	TAS	TAL BUF	
Dissolved	Analysis	7470A		1	257619	08/07/15 08:05	JRK	TAL BUF	
Γotal/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF	
Total/NA	Analysis	7470A		1	257648	08/07/15 13:15	JRK	TAL BUF	
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF	

Client Sample ID: MW-5S Date Collected: 07/28/15 09:15 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-16

Matrix: Ground Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624	- Itali	1 1 -		07/31/15 08:06		TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	СММ	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 17:58	TRB	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 13:17	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF

Client Sample ID: MW-11D Date Collected: 07/28/15 12:30 Date Received: 07/30/15 01:40 Lab Sample ID: 480-84773-17

Matrix: Ground Water

Dan Toma	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type	Туре		Kuii	- Factor	256319	07/31/15 08:29	NMD1	TAL BUF
Total/NA	Analysis	624		1	250319	07/31/15 06.29	MINIDI	TAL BUF
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF
Dissolved	Prep	3005A			256501	08/03/15 08:00	CMM	TAL BUF
Dissolved	Analysis	6010C		1	256841	08/04/15 02:36	AMH	TAL BUF
Total/NA	Prep	3005A			256279	07/31/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	256636	07/31/15 18:02	TRB	TAL BUF
Dissolved	Filtration	FILTRATION			256441	07/31/15 10:05	CMM	TAL BUF
Dissolved	Prep	7470A			257328	08/06/15 10:40	TAS	TAL BUF
Dissolved	Analysis	7470A		1	257619	08/07/15 08:07	JRK	TAL BUF
Total/NA	Prep	7470A			257529	08/07/15 08:30	JRK	TAL BUF
Total/NA	Analysis	7470A		1	257648	08/07/15 13:19	JRK	TAL BUF
Total/NA	Analysis	SM 2540C		1	256786	08/03/15 16:46	EKB	TAL BUF
	-							

TestAmerica Buffalo

8/12/2015

Page 62 of 88

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID: 480-84773-18

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 07/28/15 00:00

Date Received: 07/30/15 01:40

Batch Dilution Batch Prepared Batch Туре Method Run Factor Number or Analyzed Analyst Lab **Prep Type** 256319 07/31/15 08:51 NMD1 TAL BUF Total/NA Analysis 624

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Laboratory: TestAmerica Buffalo
The certifications listed below are applicable to this report.

- 1	Authority	Program	EPA Region	Certification ID	Expiration Date
	New York	NELAP	2	10026	03-31-16

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Ľ3

E

5

6

7

8

9

10

12

13

Sample Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-84773-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-84773-1	MW-6S	Ground Water	07/26/15 11:00	07/30/15 01:40
480-84773-2	MW-8D	Ground Water	07/27/15 17:00	07/30/15 01:40
480-84773-3	MW-8S	Ground Water	07/27/15 16:00	07/30/15 01:40
480-84773-4	MW-9M	Ground Water	07/28/15 08:15	07/30/15 01:40
480-84773-5	MW-9S	Ground Water	07/28/15 08:40	07/30/15 01:40
480-84773-6	MW-3S	Ground Water	07/27/15 14:35	07/30/15 01:40
480-84773-7	MW-4S	Ground Water	07/27/15 12:45	07/30/15 01:40
480-84773-8	MW-4D	Ground Water	07/27/15 12:20	07/30/15 01:40
480-84773-9	MW-1S	Ground Water	07/28/15 13:00	07/30/15 01:40
480-84773-10	MW-2D	Ground Water	07/28/15 17:00	07/30/15 01:40
480-84773-11	MW-2S	Ground Water	07/28/15 17:50	07/30/15 01:40
480-84773-12	MW-12S	Ground Water	07/28/15 16:30	07/30/15 01:40
480-84773-13	MW-7S	Ground Water	07/28/15 14:40	07/30/15 01:40
480-84773-14	MW-10S	Ground Water	07/28/15 15:20	07/30/15 01:40
480-84773-15	MW-5D	Ground Water	07/28/15 10:00	07/30/15 01:40
480-84773-16	MW-5S	Ground Water	07/28/15 09:15	07/30/15 01:40
480-84773-17	MW-11D	Ground Water	07/28/15 12:30	07/30/15 01:40
480-84773-18	TRIP BLANK	Water	07/28/15 00:00	07/30/15 01:40

3

A

5

6

8

9

11

72

14

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 **Chain of Custody Record**

CHRITERT LETHRANGISMEN IN FROME THE

Client Information	Sampler:	40	200	Lab P Shaf	M: fer, Lisa E				Carrie	Tracking No(s)	:	COC No: 480-69659-176	65.1
Client Contact: Michael Moracco	Phoge 3- 2	30-8	415	E-Mai	l: shaffer@te	stame	ricainc.	com				Page: Page 1 of 2	
Company: Town of Dewitt									s Request	od		Job #.	
Address:	Due Date Requests	ed:			4.3			Allalysi	S Request	.eu	1	Preservation Co	des:
5400 Buttemut Drive City:	TAT Requested (da	ivs):										A - HCL B - NaOH	M - Hexane N - None
East Syracuse											0	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
State, Zip: NY, 13057									=			E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2SO3
Phone: 315-446-3428(Tel)	Po#: Purchase Order	not require	d			١.						G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Emait: mmoracco@townofdewitt.com	WO#.				0 E		Solds				6	i - ice J - Di Water	U - Acetone V - MCAA
Project Name: Town of Dewitt/ Event Desc: Groundwater - Annual (3)	Project #: 48009871				0.00		Dissolved	Meroury			Custody	K-EDTA	W-ph 4-5 Z-other (specify)
Site: New York	SSOW#:					8		W 20			ain of Cu	Other.	
		Sample	Sample Type (C=comp,	Matrix (Wanter, Smooth,	APTENTITION OF TAXABLE TAXABLE TAXABLE	624_5ml - Volatilise	2540C_Calcd - Total	7470A - Dissolved			9-84773 Ch		
Sample Identification	Sample Date	Time		BT=Tissue, A=Air)	X X n	A	N N	NE 3			E 84	Special	nstructions/Note:
MW-6S	7-26-15	1100	6	Water	T v	V	V			r T			The state of the s
MW-8D	7-27-15	1700	6	Water	1	V	V						-
MW-8S	7-27-15	1600	6	Water	1 V	TOK	V	11				and a second	
MW-9D	,,,,,	1000		Water		1						Not S	males you
MW-9M	7-28-15	0815	G	Water	y	V	X					Š.	
MW-9S	7-23-15	0840	6	Water	1 3	V	V						
MW-3S	7-22-15	1435	6	Water	ý	X	25	XX			7		
MW-4S	7-27-15	1245	6	Water	Ú	V	V	44					
MW-4D	7-27-15	1220	6	Water	X	X	X						
MW-1S	7-28-15	1300	6	Water	X	X	XX	X			THE STATE OF THE S		
MW-2D	7-28-15	1700	6	Water	X	X	X	1					
Possible Hazard Identification Non-Hazard Flammable Skin Imitant	D		Radiological				posal (ay be asses:	sed if sampl	es are retai	ined longer than chive For	
Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unkn	own	Radiological						uirements:	al By Lab	An	chive For	Months
Empty Kit Relinquished by:		Date:			Time:	_				Method of Ships	nent		
Relinguished by: 1 - 00	Date/Time:		n	Company	Re	ceiyet	7/4=	12 /	1	Date	/Time:	C 44	Company
Relinquished by:	7 - 3-9 - 1 Date/Time:	5,0	800	ALB A Company	Re	ceive	11/1	191	114		7-29-11 e/Time:	70800	Company
Relinquished by:	7-29-1	17 19	in	Company	Re						Juy/I	0140	Company
<u> </u>	- Tarre				- "	//	-,-						1
Custody Seals Intact: Custody Seal No.: A Yes A No		4			g.	oler Te	mperatum	e(s) °C and	Other Remarks		0:3	3,0.5	#/

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 **Chain of Custody Record**

<u>TestAmerica</u>

HE LEADER IN EMPRENMENTAL TESTING

The Counties Count	Client Information	Sampler:				ib PM: haffer, L	Carrier Tracking No(s):			COC No: 480-6965	9-1766	5.2								
Analysis Requested	Client Contact	Phone:			E.	Mail:											Page:		_	
Town of Device Control Properties Control Pro					lis	sa.shaffe	er@tes	tame	ncair	1C.CO	m							2		
Stock	Town of Dewitt									Ar	nalysis	Rec	ueste	d						
Tall Symposium Tall Requested (days):	Address: 5400 Butternut Drive	Due Date Request	ed:															on Cod		
Part	City:	TAT Requested (da	iys):														B - NaOH		N - None	
Part	State, Zip:															100	D - Nitric A	id	P - Na2O49	3
Stample Sample Date:	NY, 13057	100 #																4		
Contract	315-446-3428(Tel)		not require	d		3			8							23403	H - Ascorbi			decahydrate
Sample Identification Sample Date Time Type	Emait mmoracco@townoidewitt.com	WO#:				N V	3		Solle								I - loe		U - Acetone	
Sample Identification Sample Date Time Type	Project Name:	Project #:					3		olved		2					Ueu	K-EDTA		W-ph 4-5	nacifu)
MW-2S 7-28-15 (75.0 G Water 7-28-15 (15.0 G Water 7-28-15 (15.0 G Water 7-28-15 (15.0 G Water 1									Dies	etale	noue						Other		Z - Other (sp	Jecaly)
MW-2S 7-28-15 (75.0 G Water 7-28-15 (15.0 G Water 7-28-15 (15.0 G Water 7-28-15 (15.0 G Water 1	New York	350114.				Line Service		lles	Total		B					0	Other:			
MW-2S 7-28-15 (75.0 G Water 7-28-15 (15.0 G Water 7-28-15 (15.0 G Water 7-28-15 (15.0 G Water 1	Sample Identification	Sample Date		Type (C=comp,	(vi-	leiti Fillered	010C, 7470A	24_6ml - Volat	640C_Calcd -	010C - Dissolv	470A - Dissolv					OtaliNumbar		-i-1 l-	441	01-4
MW-2S 7-28-15 175 0 G Water Water 1-28-15 16-30 G Water 1-28-15 16-30 G Water 1-28-15 15-30 G Water 1-28-15		Salitple Date		Preservation	Code			A	22	N							Spe	ciai in	ucuons	/Note:
MW-12S 7 - 28-15 1440 6 Water 14	MW-2S	7-28-15	1750	(7	Water		V	X	V	C LANGE	Sharely Service	(a) (a)		-4 000	Copy, all posterior				THE STATE OF THE PARTY OF	
MW-TOS 7-28-15 1440 5 Water Water 7-28-15 1520 5 Water NW-SD 7-28-15 1600 6 Water NW-SS NW-11D 7-28-15 1600 6 Water NW-SS NW-11D 7-28-15 1600 6 Water NW-SS NW-	MW-12S	-			Water	-11	V	V	V											
MW-10S 7-28-15 1500 G Water	MW-7S				Water		V	V	X											
MW-SS 7-28-15 0415 is Water	MW-10S				Water		V	V	X											
MW-SS 7-28-15 0415 G Water W	MW-5D				Water		V	v	X	X	X									
MW-11D 7-78-15 13-30 5 Water X X X X X X X X X X X X X X X X X X X	MW-5S	7-28-15	0415	6	Water		X	Ŷ	X							7				
Possible Hazard Identification Non-Hazard Flammable Skin Inritant Poison B Unknown Radiological Requested: I, II, III, IV, Other (specify) Empty Kit Relinquished by: Empty Kit Relinquished by: Company Date/Time: 7-29-IX D S TO Date/Time: 1-29-IX D S TO Dete/Time: Company Receive D T The Dete/Time: Company Company Company Receive D T The Company C	MW-11D			6	Water		Ý	V	X	X	X									
Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months	Trip Blank							V		-								-		
Possible Hazard Identification Non-Hazard Flammable Skin Initiant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For Months				N K	-															
Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For Months Deliverable Requested: I, II, III, IV, Other (specify) Empty Kit Relinquished by: Date: Time: Method of Shipment: Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Relinquished by: Company Relinquished by: Company Company Received by: Date/Time: Company Received by: Date/Time: Company Received by: Date/Time: Company Compa				TUC		1														
Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For Months Deliverable Requested: I, II, III, IV, Other (specify) Empty Kit Relinquished by: Date: Time: Method of Shipment: Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Received by: Date/Time: Company Received by: Company				7-2	2	-11	K													7.44
Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Relinquished by: Date/Time: Company Received by: Received by: Date/Time: Date/Time: Company Received by: Date/Time: Company Com	Possible Hazard Identification					S	ample	Dis	posa	(A	fee may	be a	ssesse	d if sa	mples ar	e retain	ed longer	than 1	month)	
Empty Kit Relinquished by: Date/Time: D		on B Unkn	ownF	Radiological							t		isposal	By Lai	, [Arch	ive For		Months	
Relinquished by: Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Received by Date/Time: Company Custody Seals Intact: Custody Seals Intact: Custody Seals No.: Cools Temperature(s) °C and Other Remarks: Cools Temperature(s) °C and Other Rema	Deliverable Requested: I, II, III, IV, Other (specify)					s	pecial	Instr	uction	ns/Q	C Requi	remer	its:							
Custody Seals Intact: Δ Yes Δ No Company Comp	Empty Kit Relinquished by:						3 :						Me	thod of	Shipment				-	
Custody Seals Intact: Δ Yes Δ No Company Comp	Relinguished by:	Date/Time:	Y DA	TO CO	npany A	hour	Reo	7	T	4	1116	4			Date/Time:	9-15	ASA	1	Compagy	_
Custody Seals Intact: Δ Yes Δ No Company Comp	Refinquished by:	Date/Time:	- 1R	Cor	праву	1	Reco	eived t	11	41	1		~		Date/Time:	110			Company	
Δ Yes Δ No	Relinquished by:	Date/Time:	1 /7	Cor	npany	2.	Reco	eiver	AL	M					Date/Time:	1	() 140)		<i>D</i>
Δ Yes Δ No	Custody Seals Intact: Custody Seal No.:	<u> </u>					Conf	Ten	nperah	ure(s)	°C and O	her Ro	merks							y ,
									,	(-/									7	1

Landfill: Dewitt

Jōb#: 7-28-/5-4 Initials: TDK

Time ·	Location	%CH4	%CG(LEL)	%CO2	%02	H2S(ppm)	CO(ppm)	ATM. Pres("Hg)	1
7970	Initial Ambient Cond	0	0	0	21.0.	8	ರ	29.61	V
0:25	V-9	53.2	7	33.3	00,	003	0010	29.56 7 F/mm	FI
0:31	V-10	58.7	> .	31.4	00,1	005	0008	79.56	61
0:35	V-11	60.2	7	32.8	00.1	007	0010	29.56	6
0139	V-12	56,9	>	32.4	00.1	0008	0009	29.5%	6
16:45	V-18	55.2	7	32.7	1.4	Gool	0009:	29.56	3
0:50	V-3.	54.9	>	30.4	,00.1	0003	0010	29.56	3
	* collect ga	5 5a	mples	From	V-9 V-10 V-3				
01:10	Nowind (mu-2)	· 	0	0	20.3	0	0	29.59	1
11:16	News MIN & (Mear PW - 9)	. 0	0	0	20.2	C	0	29.59	1
-									
100	Ambient @ Completion	n 0	0	0_	20.8	0	. 0	29.61	

	*	FIELD OF	SERVATIC)N3 .	O D SOI T A WOOL	
Facility:	Dewitt Landfill			Sample Poi	nt ID:	MW-65
Field Personne	d:	TAK	•	Sample Mai	trix:	Gw.
SAMPLING IN	IFORMATION:					
Date/Time	7.	-27-151	1100			0-
Method of Sam	pling:	Baller			Dedicated:	YES
Length of water	m top of PVC) rom top of PVC)	27.7L 4:01 23.70		Volume Pur	ged 12	عدااسم
Methane Read	•	AN		•		1
SAMPLING D	ATA:					
· Time	Temp.	pH \ (std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	(mg/l)
1100	11.48	7.11	1982	16.7	-113.3	4.03
Turbidity 1.0 St Turbidity 10.0 St	13 M3 R	DEXP	1/16 1/16 17/15 umhos/cm@25		p 6/75	
ORP Serial #	5100	240	MV EXP	13/17		
	to <u>G(,,5%)</u> lons @ time of same		วีบทห ส	8013 8P	30.03	4.
I certify that sa protocals. Date:	mpling procedures v フィンフィン		ance with all ap		, State and S	

	FIELD OBSERVA	ATIONS Field Observation	ns page 1 of 1 GWs.xls
Facility: Dewitt Landfill		Sample Point ID:	mw-40
Field Personnel:	TOIL	Sample Matrix:	6W
SAMPLING INFORMATION:			•
Date/Time 7	27-15, 120		
Method of Sampling:	Bailer	Dedicated:	ES
Diameter of Well Well Depth (from top of PVC) Water Depth (from top of PVC) Length of water Column	35.27	-	5 a h
Puge Volume: LWC x 0.17 x 3=	17.4557	Volume Purged 17.	3 Gallars
Methane Reading	NA	•	
SAMPLING DATA:			
Time Temp.	pH Conduct (std units) (Umhos/o		(mg/l)
1220 12.19	7.17 3240		3.58
Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #;	_ See _ _	Page 31 Fish	Calibrations
Cond Serial #:	umhos/cm	n@25 C	
ORP Serial #	_ • Mv		
DO Calibrated to	<u>@</u>	•	4
Weather conditions @ time of san		my 8015	
COMMENTS AND OBSERVATION	ons:		
I certify that sampling procedures protocals.	were in accordance with a	ili applicable EPA, State and	Site-Specific
Date: 7 127/15	By: TO	Company:	TA

3/1

		FIELD OBS	ERVATION	S Field Observation	ons page 1 of 1 GWs.xls
Facility:	Dewitt Landfill		, ,	ample Point ID:	M.W-45
Field Person		TOK	· s	ample Matrix:	GW_
					•
SAMPLING	INFORMATION:	7-27-15, 17	45		\sim
Date/Time		130111		Dedicated	. VES
Method of S	ampling:	Bailer		Dedicated	. , 0
Diameter of	Well	15.43	,		
Well Depth	(from top of PVC)	1005		•	
Water Depti	(from top of PVC)	8.58		Volume Purged 9	5 Sullag
Puge Volum	ne: LWC x 0.17 x 3=	9.3221		Volume Purged	
		NAA			
Methane Re	ading				
SAMPLING		I pH	Conduct	Turb. ORP	
Time	Temp.	(std units)	(Umhos/cm)	(NTU) Mv	(mg/l)
0 11 12 B	£ 11.22	7.16	13351	66.6 -82.	7 7 7 7
Turbidity 1	.0 Serial #: .0 Serial #: 0.0 Serial #:				calibratus
pH 7.0 Ser	ial #:				
pH 10.0 Se	erial #:		umhos/cm@25	* C	
Cond Seri	al #:				
ORP Serie	al#		_ Mv		
DO Calibr	ated to				·
	conditions @ time of		Sun	Ny 8015	
COMME	NTS AND OBSERV	ATIONS:			•
			Single N		•
				,	
			e .dbt ,		
I certify t	that sampling proced	ures were in acco	rdance with all	applicable EPA, State	and Site-Specific
protocal	B ,		TOIL		pany: TA
Date:	7 1221 15	Ву:	1:010		,

FIELD OBSERVATIONS Field Observations page 1 of 1 GWs.xls Sample Point ID: Facility: **Dewitt Landfill** TOK Sample Matrix: Field Personnel: SAMPLING INFORMATION: Date/Time Bailer Dedicated: Method of Sampling: Diameter of Well Well Depth (from top of PVC) Water Depth (from top of PVC) 33.016 Length of water Column Volume Purged Puge Volume: LWC x 0.17 x 3= Methane Reading **SAMPLING DATA:** ORP DO Conduct Turb. Temp. pH (Umhos/cm) (NTU) My mg/l) (std units) 2937 7,18 638 AU -105.1 1441 INSTRUMENT CHECK DATA: Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: umhos/cm@25 C Cond Serial #: **ORP Serial #** DO Calibrated to __ Weather conditions @ time of sampling: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals. 7 17115 Company: TA Date:

TDIC Sam	•	n-85 TW
	ple Matrix:	$\tau \omega$
44		•
27-18, 1600		
Bailer	Dedicated:	YES
2-		
29.24		•
0		,
Vol	ume Purged	
NA		•
		DO
pri outland	NTU) Mv	(mg/l)
	3 -117,6	.98
	\	A
umhos/cm@25.C		•
Mv.	*	
		*
	- N	8.
ampling: SUNNY 8	00	
Astesian	wall -	NO PUME
HONS.		1 0
	Ballot 29,24 29,24 Vol NA PH Conduct (Umhos/cm) (U	Dedicated: 27 29.24 29.24 Volume Purged NA PH Conduct Turb. ORP (std units) (Umhos/cm) (NTU) Mv 7.41 977/6 33 -/17,6 See Page 31 for Ca

RMATION: The property of PVC	-27-151 Saile? 61.32 .47 .60.85	706	Sample Poli		MW-80
g: p of PVC) top of PVC) lumn	-27-151 Sailor 61.32 -47 -40.85	706			(FES)
g: p of PVC) top of PVC) lumn	61.32 61.32 47 60.85	706	. 1	Dedicated:	TES
g: p of PVC) top of PVC) lumn	61.32 61.32 47 60.85	706	. 1	Dedicated:	(TES)
p of PVC) top of PVC) lumn	61.32		. 1	Dedicated:	YES
top of PVC) lumn	61.32		, 1		
top of PVC) lumn	.47				•
top of PVC) lumn	.60.85		•		
lumn	10.87				
x 0.17 x 3=				.31	C. Hina
	31.03	3.5	Volume Pu	rged 31	Jella
	444_				
\: <u> </u>		Conduct	Turb	ORP	V DO
			(NTU)	Mv	(mg/l)
	746		1,45	-103.1	4.58
		• .		15 40	·
		umhos/cm@2	5 C		i elicies
		Mv			
					17
	. @		•	•	-
s @ time of sa		SUN	m	80,2	•
	Temp. (°C) 236 IECK DATA: #:	Temp. pH (std units) 2 - 3 6 7 - 4 C BECK DATA: #:	Temp. pH Conduct (Umhos/cm) 2-36 7-46 7455 DECK DATA: #: See Page #: umhos/cm@2	Temp. pH Conduct Turb. (NTU) (°C) (std units) (Umhos/cm) (NTU) 2-36 7-46 745 1.05 HECK DATA: #: See Page 37 for all #: #: umhos/cm@25 C	Temp. pH Conduct Turb. ORP (°C) (std units) (Umhos/cm) (NTU) Mv 2.36 7.46 7.45 1.65 1.65 -103.1 HECK DATA: #: See Page 31. For itell #: al #:

36

7.

. ..

NAMES OF THE PROPERTY OF THE PARTY OF THE PA

Facility:	Dewitt Landfili			Sample Po	int ID:	MW- 95
Field Personne	d:	TPIC	•	Sample Ma	ntrix:	Gw '
SAMPLING IN	IFORMATION:	•				
Date/Time	7	-28-151	1840			
Method of Sam	pling:	Baller			Dedicated:	VES
	m top of PVC)	12.3	<u> </u>			
ength of wate		11.02 5.62		Volume Pu	rged 5	75 gullon
dethane Readi	ng ·	4.0				,
SAMPLING DA	ATA:					
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	ORP My	DO (mg/l)
0840	12,26	7/13	14.59	4,00	-122.4	13.04
urbidity 10.0 S y 5 T 550 H 4.0 Serial #: H 7.0 Serial #: H 10.0 Serial #	13m3R 13m35 13m35 14A100545	ELP 12/15	umhos/cm@25		8/15	•
RP Serial #	5100	240	MV EXP	17/17	•	
O Calibrated	10 45 70	@ 417	151 7	-1 V		4,
Veather conditi	ons @ time of sam	pling:	Survey	थुछ"	•	<u></u>
OMMENTS A	ND OBSERVATIO	NS:				
						· · · · · · · · · · · · · · · · · · ·

Facility: Dewitt						m
	Landilli			Sample Po	oint ID:	MW-9.
Field Personnel:		TOU		Sample Ma	atrix:	6W.
SAMPLING INFORM		. ,				P 2
Date/Time	7.	-28-15,				
Method of Sampling:	•	Baller			Dedicated:	YES
Diameter of Well		3		1		
Well Depth (from top o	f PVC)	55110				
Water Depth (from top	-			•		•
Length of water Colum	ın	-				
Puge Volume: LWC x ().17 x 3=			Volume Pu	urged	
Methane Reading		* .				
SAMPLING DATA:						
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	(mg/l)
	(30)	(sto units)	(Omnos/cm)	(MIO)	IAIA	(mg/r /
Turbidity 0.0 Serial #: _ Turbidity 1.0 Serial #: _		_ \	well	Q		
Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:		anad	umhos/cm@25	2	5	cmpl
Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #:			umhos/cm@25	2	5	cmpl
Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: Cond Serial #: CORP Serial #				2	5	cmpl
INSTRUMENT CHEC Turbidity 0.0 Serial #: Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #: ORP Serial # DO Calibrated to Weather conditions @				2	5	cmpl

Facility:	Dewitt Landfill			Sample Point ID:	MW-GM
Field Personn		TOK	•	Sample Matrix:	GW.
	NFORMATION:				
SAMPLING		28-15,0	and		•
Date/Time	10	20.17 ()	813		
Method of Sar	mpling:	Bailer		Dedicated:	YES)
Diameter of W	· fell	. 8		•	
	om top of PVC)	38.57			•
	from top of PVC)	36.59	4	•	
ength of wat	er Column : LWC x 0.17 x 3=	18.6600		Volume Purged 15	Salla
ruge volume:	LWC X 0.17 X 3-				
Methane Read	ilng	NX			
SAMPLING D	DATA:				
Time	Temp.	pH	Conduct	Turb. ORP	DO
201/	(°C)	(std units)	(Umhos/cm)	(NTU) MV	(mg/i) 4つん
0815	171,44	7.03	2015	1130 1-10411	<u> </u>
Furbidity 0.0 \$ Furbidity 1.0 \$ Furbidity 10.0	Serial #: Serial #: Serial #:	_ See _	page	37 For (alismitus.
Furbidity 1.0 \$ Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial #	Serial #: Serial #: #:		page	37 For (alisnytwi
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial	Serial #: Serial #: #: #:				alisnytwi
Furbidity 1.0 \$ Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial #	Serial #: Serial #: #: #:		umhos/cm@25		alisnytwi
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial	Serial #: Serial #: #: #:				alisnytwi
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial # Cond Serial #	Serial #: Serial #: #: #:		umhos/cm@25 Mv	i.c.	alisnothi
Turbidity 1.0 S Turbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f	Serial #:	<u>@</u>	umhos/cm@25 Mv	i.c.	alisnotwi
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f DO Calibrated Weather cond	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	@ mpling:	umhos/cm@25	i.c.	alisnothi
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f DO Calibrated Weather cond	Serial #:	@ mpling:	umhos/cm@25 Mv	i.c.	alisnitui
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f DO Calibrated Weather cond	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	@ mpling:	umhos/cm@25 Mv	i.c.	alisnitwi
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f DO Calibrated Weather cond	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	@ mpling:	umhos/cm@25 Mv	i.c.	alisnother
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f DO Calibrated Weather cond	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	@ mpling:	umhos/cm@25 Mv	i.c.	alisnother
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial # DORP Serial # DO Calibrated Weather cond	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	mpling:	umhos/cm@25	C 80'3	
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial # DORP Serial # DO Calibrated Weather cond	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	mpling:	umhos/cm@25	i.c.	
Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial f pH 7.0 Serial f pH 10.0 Serial f pH 10.0 Serial f Cond Serial f ORP Serial f DO Calibrated Weather cond COMMENTS	Serial #: Serial #: #: #: #: #: #: #: #: #: #: #: #: #: #	mpling:	umhos/cm@25	C 80'3	d Site-Specific

acility:			SERVATIO			MINI- C	D
	Dewitt Landfill			Sample Poir	nt ID:	MW-5	
ield Personne	ol:	TOK		Sample Mat	rix:	GW	
AMPLING II	NFORMATION:					•	
ate/Time	7	28-15,	1000			VEG.	
lethod of San	npling:	Bailer			Dedicated:		
Diameter of W	/ell	W 5.1	-				
Well Depth (fr	om top of PVC) from top of PVC)	1.	78	•		•	
water beptin (Length of wat	er Column	43.4			. 22	c. llow	
Puge Volume:	: LWC x 0.17 x 3=	72.1	341	Volume Pu	rged _CE	Gallon	
Methane Read	ding	NR	•				
SAMPLING I		-44	Conduct	Turb.	ORP	DO	
Time	Temp.	pH (std units)	(Umhos/cm)	(NTU)	Mv	(mg/l	
	1 01		1 - // - 1	In L/ 1.	-103.7	4.64	11
urbidity 0.0 urbidity 1.0	13.68 IT CHECK DATA: Serial #: Serial #:	_ 5.	02 Pe	5e			libi
INSTRUMEN Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 pH 4.0 Serial pH 7.0 Serial	13.68 IT CHECK DATA: Serial #: Serial #: Serial #: #:	_ 5					libi
INSTRUMEN Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial	13.68 IT CHECK DATA: Serial #: Serial #: Serial #: #: #: #:	_ 5		se :			libi
Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial	13.68 it check data: Serial #: Serial #: Serial #: #: #: #:	_ 5	ee Pe	se :			libi
NSTRUMEN Furbidity 0.0 Furbidity 1.0 Furbidity 10.0 PH 4.0 Serial PH 7.0 Serial PH 10.0 Serial PH 10.0 Serial	13.68 it check data: Serial #: Serial #: Serial #: #: #: #:	5	ee Pe	se :			libi
INSTRUMEN Turbidity 0.0 Turbidity 1.0 Turbidity 10.0 PH 4.0 Serial PH 7.0 Serial PH 10.0 Serial Cond Serial # ORP Serial #	13.68 IT CHECK DATA: Serial #: Serial #: Serial #: If the control is a	5	umhos/cm@2 Mv	Se So	37 F		

Facility:	Dewitt Landfill	· · · · · · · · · · · · · · · · · · ·	6	Sample Point ID:	mu-55
ield Perso	nnel:	TOIL		Sample Matrix:	(JW)
SAMPLING	SINFORMATION:				•
Date/Time		7.28.15, 0	0915		
Method of S	Bampling:	Baller		Dedicat	ed: YES
Diameter of	Well	7			
	(from top of PVC)	26.5	٤	•	
	h (from top of PVC)	- プリ)			•
•	rater Column	· 24.4			5
Puge Volum	ne: LWC x 0.17 x 3=	12.45	197	Volume Purged _	1.4.0
Methane Re	pading	NA			
SAMPLING	DATA:				
Time	Temp.	рН	Conduct	Turb. OF	
	(°C)	(std units)	(Umhos/cm)	2,94 591	
0915	12,39	7,11	310~	12,47 -97	·) 14-22
		_ See	page	37 km	. Enjoychandins
Turbidity 1.	0 Serial #: 0 Serial #:).0 Serial #:	_ See =	Page	37 km (Calibrations.
Furbidity 1. Furbidity 10 pH 4.0 Seria	0 Serial #:).0 Serial #: al #:	_ See _ _	Page	37 For (Calibrations.
Furbidity 1. Furbidity 10 oH 4.0 Seria oH 7.0 Seria	0 Serial #:).0 Serial #: al #: al #:	_ See = =	Page	37 Rom (Calibrations.
Furbidity 1. Furbidity 10 oH 4.0 Seria oH 7.0 Seria	0 Serial #:).0 Serial #: al #: al #:	_ See = =	Perse	37 For (Calibrations.
Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Seri	0 Serial #: 0.0 Serial #: al #: ial #:	_ See _ _ _	umhos/cm@2		Calibrations.
Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Serial	0 Serial #:).0 Serial #: al #: ial #: i#:	_ See _ _ _	· .		Calibrations.
Furbidity 1. Furbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Serial Cond Serial	0 Serial #:).0 Serial #: al #: al #: ial #: i #:	_ See	umhos/cm@2	5 C	Calibrations.
Turbidity 1.1 Turbidity 10 pH 4.0 Serial pH 7.0 Serial Cond Serial ORP Serial	0 Serial #:).0 Serial #: al #: al #: ial #: i #:		umhos/cm@2		calibrations.
Turbidity 1.1 Turbidity 10 pH 4.0 Serial pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0.0 Serial #: al #: ial #: i#: #	mpling:	umhos/cm@2	5 C	calibrations.
Turbidity 1.1 Turbidity 10 pH 4.0 Serial pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 1.0 Serial #: al #: ial #: i#: # ted to nditions @ time of san	mpling:	umhos/cm@2	5 C	calibrations.
Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 1.0 Serial #: al #: ial #: i#: # ted to nditions @ time of san	mpling:	umhos/cm@2	5 C	calibrations.
Turbidity 1.1 Turbidity 10 pH 4.0 Serial pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 1.0 Serial #: al #: ial #: i#: # ted to nditions @ time of san	mpling:	umhos/cm@2	5 C	calibrations.
Turbidity 1. Turbidity 10 pH 4.0 Serial pH 7.0 Serial Cond Serial DO Calibrat Weather co	O Serial #:	mpling:	umhos/cm@2	5C 80''S	
Turbidity 1. Turbidity 10 DH 4.0 Serial DH 10.0 Serial DRP Serial DO Calibrat Weather co	0 Serial #: 1.0 Serial #: al #: ial #: i#: # ted to nditions @ time of san	mpling:	umhos/cm@2	5C 80''S	

				NS Field Observation	MW-11)
acility:	Dewitt Landfill		b	Sample Point ID:	larial
ield Personne		TOIL		Sample Matrix:	0 00 1
AMPLING IN	FORMATION:		220		
ate/Time	. 7-2	8-15 , 1	230		
lethod of Sam	pling:	Bailer		Dedicated	YES
Diameter of We	all	2"			
Vell Depth (fro	m top of PVC)	39.45			•
Vater Depth (fi	rom top of PVC)	11-43		1	- U
ength of wate	LWC x 0.17 x 3=	5.82	93	Volume Purged	gallons.
Methane Read		ANA			
SAMPLING D					
Time	Temp.	pH \	(Umhos/cm)	Turb. ORP	(mg/l)
		1 (Std Units)	(Umnos/Cm)		
Furbidity 0.0 S	erial #:	(std units) 7.80 See	1682.	3300 -17.9 37 For	
INSTRUMENT Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 pH 4.0 Serial # pH 7.0 Serial #	CHECK DATA: ierial #: ierial #: Serial #:	7.80	1682.	3300 -17.9	
NSTRUMENTurbidity 0.0 9 Furbidity 1.0 9 Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial	CHECK DATA: serial #: serial #: Serial #:	7.80	1682.	3300 -37.9 37 For	
NSTRUMEN Furbidity 0.0 S Furbidity 1.0 S Furbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial #:	CHECK DATA: serial #: serial #: Serial #:	7.80	puse	3300 -37.9 37 For	
NSTRUMEN Turbidity 0.0 S Turbidity 1.0 S Turbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial #: ORP Serial #	CHECK DATA: serial #: serial #: Serial #:	5ee	puge	3300 -37.9 37 For	
Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial #: ORP Serial #	CHECK DATA: ierial #: ierial #: Serial #:	See	puge	3300 -37.9 37 For	
Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial # ORP Serial # DO Calibrated Weather cond	CHECK DATA: ierial #: ierial #: Serial #: iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	See See	umhos/cm@2 Mv	3300 -37.9 37 For	Calibratu
INSTRUMEN Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 pH 4.0 Serial # pH 7.0 Serial # pH 10.0 Serial #: ORP Serial # DO Calibrated Weather cond	T CHECK DATA: ierial #: ierial #: Serial #: to to tions @ time of sam	See See	umhos/cm@2 Mv	3300 -37.9 37 For	
Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial # ORP Serial # DO Calibrated Weather cond	T CHECK DATA: ierial #: ierial #: Serial #: to to tions @ time of sam	See See	umhos/cm@2 Mv	3300 -37.9 37 For	Calibratu
Turbidity 0.0 9 Turbidity 1.0 9 Turbidity 10.0 PH 4.0 Serial # PH 7.0 Serial # PH 10.0 Serial # ORP Serial # DO Calibrated Weather cond	T CHECK DATA: ierial #: ierial #: Serial #: to to tions @ time of sam	See See	umhos/cm@2 Mv	3300 -37.9 37 For	Calibratui

42.

	FIELD OBSERVAT	TIONS Field Observation	ns page 1 of T GVV's.xis
Facility: Dewitt Landfill		Sample Point ID:	MW-15
Field Personnel:	TOK	Sample Matrix:	(TW
SAMPLING INFORMATION:			
Date/Time	7-28-15, 1300		
Method of Sampling:	Baller	Dedicated:	YES
Diameter of Well Well Depth (from top of PVC) Water Depth (from top of PVC) Length of water Column	. 7.48	Volume Purged 4	
Puge Volume: LWC × 0.17 × 3=	NA AV	Aoining Laiden	-
Methane Reading	1041		
SAMPLING DATA: Time Temp. (°C) 13 (9C) 12.2 4	pH Conduct (std units) (Umhos/cr		DO (mg/l)
Turbidity 1.0 Serial #: Turbidity 10.0 Serial #: pH 4.0 Serial #: pH 7.0 Serial #: pH 10.0 Serial #:			
Cond Serial #:	umhos/cm@	<u> </u>	•
ORP Serial #	Mv		
DO Calibrated to	@	•	• .
Weather conditions @ time of s	sampling: Sun	m 8015	•
COMMENTS AND OBSERVA		it Sample For	- dissolved metal
		·	
l certify that sampling procedu protocals.	res were in accordance with a	Il applicable EPA, State and	Site-Specific
Date: 7 08/15	By: TOIL	Company	- TA
•			43

Emailie-	Dewitt L	endfill .			Sample Po	int ID:	MW-7-
Facility:	Dewill C	andini.		•			ou .
Field Person	nnel:		TDK		Sample Ma	atrix:	- 000
SAMPLING	INFORMA		,				
Date/Time		7-	28-15, 1	440			•
			(Co			Dedicated:	VER
Method of S	ampling:		Bailey			pedicated.	
Diameter of	Well		7				
Well Depth	(from top of	PVC)	22.38				_
	h (from top o		13-78				
	rater Column		. 8.40			11	5 , 11.
-	ne: LWC x 0.		4.380	-	Volume P	urged	5 Sallon
			RM		•		
Methane Re	ading		1011				
SAMPLING	DATA:						
Time	T	ėmp.	рН	Conduct	Turb.	ORP Mv	(mg/l)
11111	16	°C)	(std units)	(Umhos/cm)	(NTU)	- 100	3.77
1440) 174	23	7.53	1967	140)	3.3	3.//
Turbidity 0. Turbidity 1.	0 Serial #: 0 Serial #: 0.0 Serial #: _		_ Se _	e pas	د ، 37	for	Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria	0 Serial #: 0 Serial #:).0 Serial #: _ al #:		Se 	e pag	د 37	for	Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Ser	0 Serial #: 0 Serial #:).0 Serial #: _ al #: ial #: ial #:		_ Se	e pag		for	Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Ser	0 Serial #: 0 Serial #: 0.0 Serial #: _ al #: ial #: ial #:		Se			for	Calibratur
Turbidity 0. Turbidity 1. Turbidity 1. pH 4.0 Seria pH 7.0 Seria pH 10.0 Ser Cond Serial	0 Serial #: 0 Serial #: 0.0 Serial #: _ al #: ial #: ! #;			umhos/cm@25		for	Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Serial ORP Serial	0 Serial #: 0 Serial #: 0.0 Serial #: _ al #: ial #: ial #: i #: #			umhos/cm@25			Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Serial ORP Serial	0 Serial #: 0 Serial #: 0.0 Serial #: _ al #: ial #: ! #;			umhos/cm@25			Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: _ al #: ial #: ial #: i #: #	ime of sam	e pling:	umhos/cm@25			Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: al #: ial #: ial #: if #: ted to nditions @ ti	ime of sam	e pling:	umhos/cm@25			Calibratur
Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Seria pH 10.0 Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: al #: ial #: ial #: if #: ted to nditions @ ti	ime of sam	e pling:	umhos/cm@25			Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: al #: ial #: ial #: if #: ted to nditions @ ti	ime of sam	e pling:	umhos/cm@25			Calibratur
Turbidity 0. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Serial Cond Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: al #: ial #: ial #: if #: ted to nditions @ ti	ime of sam	e pling:	umhos/cm@25			Calibratur
Turbidity 0. Turbidity 1. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Serial ORP Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: al #: ial #:	ime of sam	e pling:	umhos/cm@25	SC 80) ¹ S	
Turbidity 0. Turbidity 1. Turbidity 1. Turbidity 10 pH 4.0 Seria pH 7.0 Serial Cond Serial DO Calibrat Weather co	0 Serial #: 0 Serial #: 0.0 Serial #: al #: ial #:	ime of sam	e pling:	umhos/cm@25	SC 80) ¹ S	

Page 84 of 88

8/12/2015

						101
scility:	Dewitt Landfill			Sample Point	ID:	mw-125
eld Persor	nnel:	TOK		Sample Matrix	c:	GW.
AMPLING	INFORMATION:	000				
ate/Time		1-28-15,	1630			
lethod of S	ampling:	Bailer		De	diçated:	YES
	from top of PVC)	33.01				•
•	(from top of PVC) ater Column	13.90			7	- II
	e: LWC x 0.17 x 3=	7.08	3	Volume Purge	d	941100
Nethane Re	ading	<u>nA</u>				
SAMPLING						
Time	Temp.	pH (std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	DO (mg/l)
1635	19.39	7.85	010-	200	-150.1	11 441
Furbidity 0.0	NT CHECK DATA: D Serial #: D Serial #:	_ S	12150.	se 37		Calibro
Furbidity 0.0	O Serial #:	_ S				-beendit
Furbidity 0.0 Furbidity 1.0 Furbidity 10 DH 4.0 Seria DH 7.0 Seria	INT CHECK DATA: D Serial #: D Serial #: O Serial #: II #: II #: Ial #:	_ S		se 37		-beendit
Furbidity 0.0 Furbidity 1.0 Furbidity 10 OH 4.0 Seria OH 7.0 Seria OH 10.0 Seri	INT CHECK DATA: D Serial #: D Serial #: N #: N #: N #: N #: #: #:	_ S	ze pu	se 37		-beendit
Furbidity 0.0 Furbidity 1.0 Furbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial	INT CHECK DATA: D Serial #:	_ S	umhos/cm@2	ςe 37	for	-beendit
Furbidity 0.0 Furbidity 1.0 Furbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial Cond Serial ORP Serial	INT CHECK DATA: D Serial #:	S	umhos/cm@2	se 37	for	-beendit
Furbidity 0.1 Furbidity 1.0 Furbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial Cond Serial ORP Serial OO Calibrat Weather con	INT CHECK DATA: D Serial #: D Serial #: O Serial #: II #: Ial #: #: #: # ded to	Mpling:	umhos/cm@2	ςe 37	for	-beendit
Furbidity 0.1 Furbidity 1.0 Furbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial Cond Serial ORP Serial OO Calibrat Weather con	int CHECK DATA: D Serial #: D	Mpling:	umhos/cm@2	ςe 37	for	-beendit
Furbidity 0.1 Furbidity 1.0 Furbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial Cond Serial ORP Serial OO Calibrat Weather con	int CHECK DATA: D Serial #: D	Mpling:	umhos/cm@2	ςe 37	for	-beendit
Furbidity 0.1 Furbidity 1.0 Furbidity 10 oH 4.0 Seria oH 7.0 Seria oH 10.0 Serial Cond Serial ORP Serial OO Calibrat Weather con	int CHECK DATA: D Serial #: D	Mpling:	umhos/cm@2	ςe 37	for	-beendit
Furbidity 0.1 Furbidity 1.1 Furbidity 10 OH 4.0 Seria OH 10.0 Serial ORP Serial 1 OO Calibrat Weather coi	int CHECK DATA: D Serial #: D	mpling:	umhos/cm@2 Mv	5c 37	for	Calibred
Furbidity 0.1 Furbidity 1.0 Furbidity 1.0 Furbidity 10 OH 4.0 Serial OH 10.0 Serial Cond Serial OC Calibrat Weather con COMMENT	int CHECK DATA: D Serial #: D	mpling:	umhos/cm@2 Mv	SP 37	for	Calibred

Facility:	Dewitt Landfill			Sample Poi	int ID:	MW-2-2
ield Person		JOK	•	Sample Ma		(ou)
	INFORMATION:			, , , , ,		
SAMPLING	INFORMATION:	N. W.	17/77			•
Date/Time		1-28-151	1750			
Method of Sa	ampling:	Bailer	-		Dedicated:	YES
Diameter of 1	Well	8				
	from top of PVC)	35.5		•		•
	(from top of PVC)	12.0	52			
	nter Column		52 52	Volume Dec	mad 12	Sallons
Puge Volum	e: LWC x 0.17 x 3=		J 2~	volume Pu	Rad T	76.110
Methane Rea	ding	NA.	-			
SAMPLING	DATA:					
Time	Temp.	pH (std units)	(Umhos/cm)	Turb. (NTU)	ORP Mv	(mg/l)
1756	19,01	7.38	2275	6.44	-144.1	5.24
Furbidity 0.0 Furbidity 1.0	NT CHECK DATA: Serial #: Serial #: 0 Serial #:	. S.				7 Caliba
Furbidity 0.0 Furbidity 1.0	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #:	. S.				
Furbidity 0.0 Furbidity 1.0 Furbidity 10. pH 4.0 Serial pH 7.0 Serial	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #:	. S.		age 3		
Furbidity 0.0 Furbidity 1.0 Furbidity 10. DH 4.0 Serial DH 7.0 Serial DH 10.0 Serial	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #:	. S.	ee p	age 3		
Furbidity 0.0 Furbidity 1.0 Furbidity 10. pH 4.0 Serial pH 7.0 Serial pH 10.0 Serial Cond Serial	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: #: #: #:	S.	ee P	age 3		
Furbidity 0.0 Furbidity 1.0 Furbidity 10. DH 4.0 Serial DH 7.0 Serial DH 10.0 Serial Cond Serial	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: #: #: #: #: #: #: #:	S.	ee P umhos/cm@2 Mv	sc 3	17 F3	
Furbidity 0.0 Furbidity 1.0 Furbidity 10. DH 4.0 Serial DH 7.0 Serial DH 10.0 Serial Cond Serial # DORP Serial # DOC Calibrate Weather con-	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: d to	S.	ee P	age 3	17 F3	
Furbidity 0.0 Furbidity 1.0 Furbidity 10. DH 4.0 Serial DH 7.0 Serial DH 10.0 Serial Cond Serial # DORP Serial # DOC Calibrate Weather con-	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: #: #: #: #: #: #: #:	S.	ee P umhos/cm@2 Mv	sc 3	17 F3	
Furbidity 0.0 Furbidity 1.0 Furbidity 10. OH 4.0 Serial OH 7.0 Serial OH 10.0 Serial Cond Serial # OORP Serial # OO Calibrate	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: d to	S.	ee P umhos/cm@2 Mv	sc 3	17 F3	
Furbidity 0.0 Furbidity 1.0 Furbidity 10. DH 4.0 Serial DH 7.0 Serial DH 10.0 Serial Cond Serial # DORP Serial # DOC Calibrate Weather con-	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: d to	S.	ee P umhos/cm@2 Mv	sc 3	17 F3	
Furbidity 0.0 Furbidity 1.0 Furbidity 10. DH 4.0 Serial DH 7.0 Serial DH 10.0 Serial Cond Serial # DORP Serial # DOC Calibrate Weather con-	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: d to	S.	ee P umhos/cm@2 Mv	sc 3	17 F3	
Furbidity 0.0 Furbidity 1.0 Furbidity 10. Fu	NT CHECK DATA: Serial #: Serial #: 0 Serial #: #: #: #: #: #: d to	mpling:	umhos/cm@2 Mv	5c 80"	17 F3	7 Callba
Furbidity 0.0 Furbidity 1.0 Furbidity 10. OH 4.0 Serial OH 7.0 Serial OH 10.0 Serial ORP Serial # OO Calibrate Weather con COMMENTS	Serial #: Serial #: O Serial #: #: #: al #: #: d to ditions @ time of sai	mpling:	umhos/cm@2 Mv	5c 80"	17 F3	7 Callba

Login Sample Receipt Checklist

Job Number: 480-84773-1 Client: Town of Dewitt

Login Number: 84773 List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	TOWN OF DEWITT	
Samples received within 48 hours of sampling.	False		
Samples requiring field filtration have been filtered in the field.	True		
Chlorine Residual checked.	False	LAB TO CHECK RC	

List Source: TestAmerica Buffalo

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86856-1 Client Project/Site: Town of Dewitt

Sampling Event: Surfacewater - Quarterly (3,6,9,12)

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Some Putzue

Authorized for release by: 9/17/2015 5:27:47 PM

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Field Data Sheets	20
Receipt Checklists	23

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Qualifiers

GC/MS VOA

0	alifier	
W.	laimer	
-		

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

(Qui	ali	fie	11

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Compound was found in the blank and sample.

Glossary

-	-	-	-		-

These commonly used abbreviations may or may not be present in this report. Abbreviation Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CNF Contains no Free Liquid

Duplicate error ratio (normalized absolute difference) DER

Dil Fac

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** Minimum detectable concentration MDC Method Detection Limit MDL ML Minimum Level (Dioxin) NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

Practical Quantitation Limit PQL

Quality Control QC RER Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Job ID: 480-86856-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86856-1

Comments

No additional comments.

Receipt

The samples were received on 9/9/2015 2:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.2° C.

GC/MS VOA

Method(s) 624: The preservative used in the sample containers provided is not compatible with the Method 624 analytes requested. The following samples were received preserved with hydrochloric acid: SW-1 (480-86856-1) and TRIP BLANK (480-86856-2). The requested target analyte list contains 2-chloroethyl vinyl ether, which is an acid-labile compound that degrades in an acidic medium.

Method(s) 624: The following sample contained residual chlorine upon receipt: SW-1 (480-86856-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: SW-1 (480-86856-1). The reporting limits (RLs) have been adjusted proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

8

9

10

K

1;

Detection Summary

RL

5.0

5.0

5.0

0.0040

0.010

20.0

MDL Unit

0.51 ug/L

0.48 ug/L

0.87 ug/L

0.0010 mg/L

0.0015 mg/L

8.0 mg/L

Result Qualifier

0.64 J

2.1 J

5.5

0.0011 J

1150

0.0055 JB

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID: SW-1

Client Sample ID: TRIP BLANK

Analyte

1,4-Dichlorobenzene

Total Dissolved Solids

No Detections.

Chlorobenzene

Chloroethane

Chromium

Zinc

TestAmerica Job ID: 480-86856-1

Lab Sample ID: 480-86856-1

Dil Fac D Method

1

624

624

624

6010C

6010C

SM 2540C

Lab Sample ID: 480-86856-2

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Lab Sample ID: 480-86856-1

Matrix: Surface Water

Client Sample ID: SW-1

Toluene-d8 (Surr)

Date Collected: 09/08/15 10:00 Date Received: 09/09/15 02:30

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/09/15 12:49	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	•			09/09/15 12:49	1
1,1,2-Trichloroethane	ND		5.0	0.48	•			09/09/15 12:49	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/09/15 12:49	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/09/15 12:49	1
1,2-Dichlorobenzene	ND		5.0	0.44	_			09/09/15 12:49	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/09/15 12:49	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/09/15 12:49	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/09/15 12:49	1
1,3-Dichlorobenzene	ND		5.0	0.54	•			09/09/15 12:49	1
1,4-Dichlorobenzene	0.64	J	5.0	0.51	ug/L			09/09/15 12:49	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/09/15 12:49	
Acrolein	ND		100	17	ug/L			09/09/15 12:49	
Acrylonitrile	ND		50		ug/L			09/09/15 12:49	
Benzene	ND		5.0	0.60				09/09/15 12:49	
Bromoform	ND		5.0	0.47	_			09/09/15 12:49	
Bromomethane	ND		5.0		ug/L			09/09/15 12:49	
Carbon tetrachloride	ND		5.0	0.51	•			09/09/15 12:49	
Chlorobenzene	2.1	J	5.0	0.48	ug/L			09/09/15 12:49	
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/09/15 12:49	
Chloroethane	5.5		5.0	0.87	ug/L			09/09/15 12:49	
Chloroform	ND		5.0		ug/L			09/09/15 12:49	
Chloromethane	ND		5.0		ug/L			09/09/15 12:49	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/09/15 12:49	
Dichlorobromomethane	ND		5.0		ug/L			09/09/15 12:49	
Ethylbenzene	ND		5.0	0.46	ug/L			09/09/15 12:49	
Methylene Chloride	ND		5.0	0.81	ug/L			09/09/15 12:49	
Tetrachloroethene	ND		5.0	0.34	ug/L			09/09/15 12:49	
Toluene	ND		5.0		ug/L			09/09/15 12:49	
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/09/15 12:49	
trans-1,3-Dichloropropene	ND	* * *	5.0	0.44	ug/L			09/09/15 12:49	
Trichloroethene	ND		5.0		ug/L			09/09/15 12:49	•
Vinyl chloride	ND		5.0	0.75	ug/L			09/09/15 12:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		72 - 130					09/09/15 12:49	
4-Bromofluorobenzene (Surr)	94		69 - 121					09/09/15 12:49	
			70 400					00/00/45 42:40	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		09/10/15 07:30	09/10/15 17:16	1
Arsenic	ND		0.015	0.0056	mg/L		09/10/15 07:30	09/10/15 17:16	1
Bervllium	ND		0.0020	0.00030	mg/L		09/10/15 07:30	09/10/15 17:16	1
Cadmium	ND		0.0020	0.00050	mg/L		09/10/15 07:30	09/10/15 17:16	1
	0.0011	J	0.0040	0.0010	mg/L		09/10/15 07:30	09/10/15 17:16	1
Copper	ND		0.010	0.0016	mg/L		09/10/15 07:30	09/10/15 17:16	1
Lead	ND		0.010	0.0030	mg/L		09/10/15 07:30	09/10/15 17:16	1
Nickel	ND		0.010	0.0013	mg/L		09/10/15 07:30	09/10/15 17:16	1
Selenium	ND		0.025	0.0087	mg/L		09/10/15 07:30	09/10/15 17:16	1

70-123

TestAmerica Buffalo

09/09/15 12:49

Client Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Client Sample ID: SW-1

Lab Sample ID: 480-86856-1

Date Collected: 09/08/15 10:00 Date Received: 09/09/15 02:30

Matrix: Surface Water

Method: 6010C - Metals (ICP) (Cor) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		09/10/15 07:30	09/10/15 17:16	1
Thallium	ND		0.020	0.010	mg/L		09/10/15 07:30	09/10/15 17:16	1
Zinc	0.0055	JB	0.010	0.0015	mg/L		09/10/15 07:30	09/10/15 17:16	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00012 mg/L 09/10/15 08:55 09/10/15 13:41 0.00020 ND Mercury

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	1150		20.0	8.0	mg/L			09/09/15 16:46	1	

Page 7 of 23

Client Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt

TestAmerica Job ID: 480-86856-1

Client Sample ID: TRIP BLANK

Lab Sample Collected: 09/08/15 00:00

Date Received: 09/09/15 02:30

Lab Sample ID: 480-86856-2

Matrix: Water

Method: 624 - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/09/15 13:15	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/09/15 13:15	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/09/15 13:15	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/09/15 13:15	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/09/15 13:15	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/09/15 13:15	1
1,2-Dichloroethane	ND	•	5.0	0.60	ug/L			09/09/15 13:15	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/09/15 13:15	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/09/15 13:15	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/09/15 13:15	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/09/15 13:15	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/09/15 13:15	1
Acrolein	ND		100	17	ug/L			09/09/15 13:15	1
Acrylonitrile	ND		50	1.9	ug/L			09/09/15 13:15	1
Benzene	ND		5.0	0.60	ug/L			09/09/15 13:15	1
Bromoform	ND		5.0	0.47	ug/L			09/09/15 13:15	1
Bromomethane	ND		5.0	1.2	ug/L			09/09/15 13:15	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/09/15 13:15	1
Chlorobenzene	ND	•	5.0	0.48	ug/L			09/09/15 13:15	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/09/15 13:15	1
Chloroethane	ND		5.0	0.87	ug/L			09/09/15 13:15	1
Chloroform	ND		5.0	0.54	ug/L			09/09/15 13:15	1
Chloromethane	ND		5.0	0.64	ug/L			09/09/15 13:15	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/09/15 13:15	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			09/09/15 13:15	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/09/15 13:15	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/09/15 13:15	1
Tetrachloroethene	ND	* *	5.0	0.34	ug/L			09/09/15 13:15	1
Toluene	ND		5.0	0.45	ug/L			09/09/15 13:15	1
trans-1,2-Dichloroethene	ND		5.0	0.59	-			09/09/15 13:15	1
trans-1,3-Dichloropropene	ND		5.0	0.44				09/09/15 13:15	1
Trichloroethene	ND		5.0	0.60	-			09/09/15 13:15	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/09/15 13:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					09/09/15 13:15	1
4-Bromofluorobenzene (Surr)	95		69 - 121					09/09/15 13:15	1
Toluene-d8 (Surr)	88		70 - 123					09/09/15 13:15	1

Prep Type: Total/NA

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Surface Water

BFB 12DCE TOL Client Sample ID (72-130)(69-121) (70-123)

Surrogate Legend

Lab Sample ID 480-86856-1

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

-			Percent Surrogate Recovery (Acceptance Limit					
Lab Sample ID	Client Sample ID	12DCE (72-130)	BFB (69-121)	TOL (70-123)				
480-86856-2	TRIP BLANK	100	95	88				
LCS 480-262533/5	Lab Control Sample	96	97	88				
MB 480-262533/7	Method Blank	100	97	90				

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-262533/7

Matrix: Water

Analysis Batch: 262533

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 202555	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/09/15 11:19	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/09/15 11:19	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/09/15 11:19	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/09/15 11:19	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/09/15 11:19	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/09/15 11:19	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/09/15 11:19	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/09/15 11:19	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/09/15 11:19	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/09/15 11:19	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/09/15 11:19	1
2-Chloroethyl vinyl ether	ND		25	1.9	u g /L			09/09/15 11:19	1
Acrolein	ND		100	17	ug/L			09/09/15 11:19	1
Acrylonitrile	ND		50	1.9	ug/L			09/09/15 11:19	1
Benzene	ND		5.0	0.60	ug/L			09/09/15 11:19	1
Bromoform	ND		5.0	0.47	ug/L			09/09/15 11:19	1
Bromomethane	ND		5.0	1.2	ug/L			09/09/15 11:19	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/09/15 11:19	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/09/15 11:19	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/09/15 11:19	1
Chloroethane	ND		5.0	0.87	ug/L			09/09/15 11:19	1
Chloroform	ND		5.0	0.54	ug/L			09/09/15 11:19	1
Chloromethane	ND		5.0	0.64	ug/L			09/09/15 11:19	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/09/15 11:19	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			09/09/15 11:19	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/09/15 11:19	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/09/15 11:19	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/09/15 11:19	1
Toluene	ND		5.0	0.45	ug/L			09/09/15 11:19	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/09/15 11:19	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/09/15 11:19	1
Trichloroethene	ND		5.0	0.60	ug/L			09/09/15 11:19	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/09/15 11:19	1

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
4-Bromofluorobenzene (Surr)	97		69 - 121
Toluene-d8 (Surr)	90		70-123

MB MB

Prepared	Analyzed	Dil Fac
	09/09/15 11:19	1
	09/09/15 11:19	1
	09/09/15 11:19	1

Lab Sample ID: LCS 480-262533/5

Matrix: Water

Analysis Batch: 262533

Client Sample ID: Lab Control Sam	bie
Prep Type: Total	NA

Allalyolo Datolli 20200	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.9		ug/L		105	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.2		ug/L		101	46 - 157	
1.1.2-Trichloroethane	20.0	19.5		ug/L		97	52 - 150	
1,1-Dichloroethane	20.0	18.6		ug/L		93	59 - 155	

TestAmerica Buffalo

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-262533/5

Matrix: Water

Analysis Batch: 262533

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Daton. 202000	Spike	LCS LC	S		%Rec.	
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	
1,1-Dichloroethene	20.0	18.2	ug/L	91	1 - 234	
1,2-Dichlorobenzene	20.0	19.3	ug/L	97	18 - 190	
1,2-Dichloroethane	20.0	20.5	ug/L	103	49 - 155	
1,2-Dichloropropane	20.0	21.1	ug/L	105	1 - 210	
1,3-Dichlorobenzene	20.0	19.5	ug/L	97	59 - 156	
1,4-Dichlorobenzene	20.0	19.9	ug/L	99	18 - 190	
2-Chloroethyl vinyl ether	20.0	24.1 J	ug/L	121	1 - 305	
Benzene	20.0	19.7	ug/L	99	37 - 151	
Bromoform	20.0	22.4	ug/L	112	45 - 169	
Bromomethane	20.0	17.0	ug/L	85	1 - 242	
Carbon tetrachloride	20.0	22.1	ug/L	111	70 - 140	
Chlorobenzene	20.0	19.8	ug/L	99	37 - 160	
Chlorodibromomethane	20.0	20.7	ug/L	103	53 - 149	
Chloroethane	20.0	19.7	ug/L	98	14 - 230	
Chloroform	20.0	19.6	ug/L	98	51 - 138	
Chloromethane	20.0	18.7	ug/L	94	1 - 273	
cis-1,3-Dichloropropene	20.0	23.0	ug/L	115	1-227	
Dichlorobromomethane	20.0	21.4	ug/L	107	35 - 155	
Ethylbenzene	20.0	20.0	ug/L	100	37 - 162	
Methylene Chloride	20.0	18.2	ug/L	91	1 - 221	
Tetrachloroethene	20.0	18.5	ug/L	92	64 - 148	
Toluene	20.0	19.1	ug/L	96	47 - 150	
trans-1,2-Dichloroethene	20.0	18.6	ug/L	93	54 - 156	
trans-1,3-Dichloropropene	20.0	22.6	ug/L	113	17 - 183	•
Trichloroethene	20.0	20.4	ug/L	102	71 - 157	
Vinyl chloride	20.0	19.4	ug/L	97	1 - 251	
100	100					

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 96
 72 - 130

 4-Bromofluorobenzene (Surr)
 97
 69 - 121

 Toluene-d8 (Surr)
 88
 70 - 123

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-262656/1-A

Matrix: Water

Analysis Batch: 263020

Client	Sample I	D: I	Vieth	od	Blank	(
	Dro	n T	vno.	To	tal/NA	

Prep Batch: 262656

ME	MB							
Analyte Resul	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony		0.020	0.0068	mg/L		09/10/15 07:30	09/10/15 16:25	1
Arsenic)	0.015	0.0056	mg/L		09/10/15 07:30	09/10/15 16:25	1
Beryllium NE)	0.0020	0.00030	mg/L		09/10/15 07:30	09/10/15 16:25	1
Cadmium NE	1	0.0020	0.00050	mg/L		09/10/15 07:30	09/10/15 16:25	1
Chromium NE)	0.0040	0.0010	mg/L		09/10/15 07:30	09/10/15 16:25	1
Copper NE)	0.010	0.0016	mg/L		09/10/15 07:30	09/10/15 16:25	1
Lead NC)	0.010	0.0030	mg/L		09/10/15 07:30	09/10/15 16:25	1
Nickel NE)	0.010	0.0013	mg/L		09/10/15 07:30	09/10/15 16:25	. 1
Selenium NE		0.025	0.0087	mg/L		09/10/15 07:30	09/10/15 16:25	1

TestAmerica Buffalo

Page 11 of 23

9/17/2015

3

5

8

10

13 14

16

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-262656/1-A

Matrix: Water

Analysis Batch: 263020

Client	Sample	ID:	Meth	od	Blank	
	Pro	en 1	vpe:	To	tal/NA	

Prep Batch: 262656

1		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	- 1	Prepared	Analyzed	Dil Fac
	Silver	ND		0.0060	0.0017	mg/L	-	09/10/15 07:30	09/10/15 16:25	1
	Thallium	ND		0.020	0.010	mg/L		09/10/15 07:30	09/10/15 16:25	1
	Zinc	0.00217	J	0.010	0.0015	mg/L		09/10/15 07:30	09/10/15 16:25	1

Lab Sample ID: LCS 480-262656/2-A

Matrix: Water

Analysis Batch: 263020

Client	Sample	ID:	Lab	Control	Sampl	e
			D	Towns 1	P-4-1/M	

Prep Type: Total/NA

Prep Batch: 262656

Analysis Batch: 263020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.200	0.197		mg/L		98	80 - 120
Arsenic	0.200	0.200		mg/L		100	80 - 120
Beryllium	0.200	0.203		mg/L		102	80 - 120
Cadmium	0.200	0.201		mg/L		100	80 - 120
Chromium	0.200	0.208		mg/L		104	80 - 120
Copper	0.200	0.203		mg/L		101	80 - 120
Lead	0.200	0.203		mg/L		101	80 - 120
Nickel	0.200	0.196		mg/L		98	80 - 120
Selenium	0.200	0.196		mg/L		98	80 - 120
Silver	0.0500	0.0442		mg/L		88	80 - 120
Thallium	0.200	0.198		mg/L		99	80 - 120
Zinc	0.200	0.200		mg/L		100	80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-262769/1-A

Matrix: Water

Analyte

Analysis Batch: 262926

Client	Sample	D: Method	Blank
	_		

Prep Type: Total/NA Prep Batch: 262769

Dil Fac **Analyzed** Prepared 09/10/15 08:55 09/10/15 13:09

0.00020 0.00012 mg/L ND Mercury Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-262769/2-A Matrix: Water Prep Type: Total/NA Prep Batch: 262769 Analysis Batch: 262926

RL

MDL Unit

LCS LCS %Rec. Spike D %Rec Limits Result Qualifier Unit Added Analyte 0.00668 100 80 - 120 0.00667 mg/L Mercury

MB MB

Result Qualifier

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-262694/1

Matrix: Water

Analysis Batch: 262694

1	Client	Sample	ID:	Meth	od	Blank	
		Pro	ep T	vpe:	To	tal/NA	

MB MB **MDL** Unit Prepared Analyzed **Dil Fac** Result Qualifier RL **Analyte** ND 10.0 4.0 mg/L 09/09/15 16:46 **Total Dissolved Solids**

TestAmerica Buffalo

QC Sample Results

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 480-262694/2

Matrix: Water

Analysis Batch: 262694

Analyte **Total Dissolved Solids**

Spike Added

501

LCS LCS 519.0

Result Qualifier Unit

mg/L

D %Rec 104

Limits 85 - 115

%Rec.

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

GC/MS VOA

Analysi	is Batch:	262533
----------------	-----------	--------

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86856-1	SW-1	Total/NA	Surface Water	624	
480-86856-2	TRIP BLANK	Total/NA	Water	624	
LCS 480-262533/5	Lab Control Sample	Total/NA	Water	624	
MB 480-262533/7	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 262656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86856-1	SW-1	Total/NA	Surface Water	3005A	
LCS 480-262656/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-262656/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 262769

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86856-1	SW-1	Total/NA	Surface Water	7470A	
LCS 480-262769/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-262769/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 262926

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86856-1	SW-1	Total/NA	Surface Water	7470A	262769
LCS 480-262769/2-A	Lab Control Sample	Total/NA	Water	7470A	262769
MB 480-262769/1-A	Method Blank	Total/NA	Water	7470A	262769

Analysis Batch: 263020

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86856-1	SW-1	Total/NA	Surface Water	6010C	262656
LCS 480-262656/2-A	Lab Control Sample	Total/NA	Water	6010C	262656
MB 480-262656/1-A	Method Blank	Total/NA	Water	6010C	262656

General Chemistry

Analysis Batch: 262694

ſ	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-86856-1	SW-1	Total/NA	Surface Water	SM 2540C	
-	LCS 480-262694/2	Lab Control Sample	Total/NA	Water	SM 2540C	
	MB 480-262694/1	Method Blank	Total/NA	Water	SM 2540C	

TestAmerica Buffalo

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Lab Sample ID: 480-86856-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 09/08/15 10:00 Date Received: 09/09/15 02:30

Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Analysis	624		1	262533	09/09/15 12:49	JWG	TAL BUF
Prep	3005A			262656	09/10/15 07:30	KJ1	TAL BUF
Analysis	6010C		1	263020	09/10/15 17:16	AMH	TAL BUF
Prep	7470A			262769	09/10/15 08:55	TAS	TAL BUF
Analysis	7470A		1	262926	09/10/15 13:41	TAS	TAL BUF
Analysis	SM 2540C		1	262694	09/09/15 16:46	MGH	TAL BUF
	Analysis Prep Analysis Prep Analysis	Type Method Analysis 624 Prep 3005A Analysis 6010C Prep 7470A Analysis 7470A	Type Method Run Analysis 624 Prep 3005A Analysis 6010C Prep 7470A Analysis 7470A	Type Method Run Factor Analysis 624 1 Prep 3005A 3005A Analysis 6010C 1 Prep 7470A 1 Analysis 7470A 1	Type Method Run Factor Number Analysis 624 1 262533 Prep 3005A 262656 Analysis 6010C 1 263020 Prep 7470A 262769 Analysis 7470A 1 262926	Type Method Run Factor Number or Analyzed Analysis 624 1 262533 09/09/15 12:49 Prep 3005A 262656 09/10/15 07:30 Analysis 6010C 1 263020 09/10/15 17:16 Prep 7470A 262769 09/10/15 08:55 Analysis 7470A 1 262926 09/10/15 13:41	Type Method Run Factor Number or Analyzed Analyst Analysis 624 1 262533 09/09/15 12:49 JWG Prep 3005A 262656 09/10/15 07:30 KJ1 Analysis 6010C 1 263020 09/10/15 17:16 AMH Prep 7470A 262769 09/10/15 08:55 TAS Analysis 7470A 1 262926 09/10/15 13:41 TAS

Client Sample ID: TRIP BLANK

Date Collected: 09/08/15 00:00

Date Received: 09/09/15 02:30

Lab Sample ID: 480-86856-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst		
Total/NA	Analysis	624		1	262533	09/09/15 13:15	JWG	TAL BUF	

Page 15 of 23

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Expiration Date

Laboratory: TestAmerica Buffalo
Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration
New York	NELAP		2	10026	03-31-16
The following analytes	are included in this repo	rt, but certification is not o	offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	8	
624		Surface Water	1,2-Dk	chloroethene, Total	
624		Water	1,2-Dic	chloroethene, Total	

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

7

9

12

1.4

Œ

Sample Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-86856-1

interior 300 1D. 400-30030-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-86856-1	SW-1	Surface Water	09/08/15 10:00	09/09/15 02:30
480-86856-2	TRIP BLANK	Water	09/08/15 00:00	09/09/15 02:30

E

6

8

10

12

13

15

18

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

<u>TestAmerica</u>

HE LEADER IN SHITTEN SETTING

Client Information	Sampler.				Lab PM: Shaffer, Lisa E				Can	Carrier Tracking No(s):			COC No: 480-71691-14484.1		
Client Contact Michael Moracco				E-Ma		rffer@testamericainc.com							Page: Page 1 of 1		
Company:				list.	Jane	geodan	icricali							Job#:	
Town of Dewitt	To				100			Ana	llysis	Reque	sted				
Address: 5400 Butternut Drive	Due Date Requeste	ed:									1 1	il		Preservation Co	
City: East Syracuse State, Zip: NY, 13057 Phone:	TAT Requested (days):												B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None O - AsNaO2 P - Na2O4S	
State, Jup: NY, 13057						_	3			=		=		E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2SO3
Phone: 315-446-3428(Tel)	PO#: Purchase Order	not require	d		No)	Iltere	9. AO	8						G - Amchior H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email: mmoracco@townofdewitt.com	WO#:				N (S	-	bt - V	d Boll				■	d de	I - los J - DI Water	U - Acetone V - MCAA
Project Name: Town of Dewitt/ Event Desc: Surfacewater - Quarterly (3,6,9,12)					le (Yee	Pollutant Metals - Filtered	Pollutent List - VOA - 624	- Total Dissolved Bolids	peud				ntalner	K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
Site: New York	SSOW#:				Shmp	Pollut	Ity Poli	Total	E			= 5	or do	Other:	
		Sample	Sample Type (C=comp,	Matrix (W-could, 8-cold,	ald Fillered	6010C - Priority 6010C 7470A	4_6ml - Priority	2640C_Calcd -	7470A - Mercury - Filtered			480-86856 Chain	Total Number of containers		
Sample Identification	Sample Date	Time	G=grab) sr	Code		8 8	. A.		2 6	E.F.		8		Special I	nstructions/Note:
SW-1	9-8-15	1000	6	Water		X	12	L	100 000	Section 1	1 1	1 - L			
SW-2				Weter	+-					+	+	+++	12.5	- 4 M	
SW3				Water	+		4	-		-	-	+++		400	1-14
Trip Blank			6	Nake	1		X								
			1	Da									0.0		
			-	00	#								10		
		(1-8	-1	1				-						
						(2 2		1/0-			200 200 200 -	1 1		d loomen #	4
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Pois	on B Links	own D	Radiological		Sa	Retu	ım To	ii (A 16 Client	e may	Disn	osal By L	ampies are		ed longer than ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Olikir		giou						Require		2, 2, 2				
Empty Kit Relinquished by:		Date:			Time:	_	//	. 1			Method o	f Shipment	,		
Retinguished by: Kallou	5-8-15	/	1900 =	mpany		Receive		Ü				Date Time	15	V539	Company
Relinquished by:	Date/Time:		Co	ompany		Receive	d by.					Date Time:			Company
Relinquished by:	Date/Time:		Cc	ompany		Receive	d by:					Date/Time:			Company
Custody Seals Intact Custody Seal No.: Δ Yes Δ No	•			-		Coolar 1	emperat	ture(s) °	C and Oth	ner Remar	ics:		(2.5	#1

		FIELD OBS	SERVATIO	NS Field	Observations	page 1 of 1 GW's.xls		
Facility:	Dewitt Landfill			Sample Poli	nt ID:	SW-1		
Field Persor	nnel:	TAK	· · · · · · · · · · · · · · · · · · ·	Sample Matrix: 5W				
SAMPLING	INFORMATION:					•		
Date/Time	•	\	000					
Method of S	iampling:	Bailer	2 Lesp		Dedicated:	YES		
Water Depti	(from top of PVC) h (from top of PVC) rater Column ne: LWC x 0.17 x 3=	NA.		Volume Pu	rged	· A.		
SAMPLING			Conduct	Turb.	ORP	DO		
Time	Temp.	pH (std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)		
1000	14.60	10.54	1712	4.85	-54.4	3.71		
Turbidity 1 Turbidity 1 / S II pH 4.0 Serie pH 7.0 Serie Cond Serie ORP Seria DO Calibra Weather c	13 13 13 13 13 13 13 13	3 E48 3 1000 340 240 4mpling:	SUNNY	12/1- Hut Sampl	- 80 ⁴	Swampy		
I certify the protocals	nat sampling procedu	res were in accor	rdance with all		PA, State and	4- 4		

cility: Dewitt Landfil		•	Sample Poi	nt ID:	SW-2
ald Personnel:	TOK		Sample Mat	rix:	SVV
MPLING INFORMATION):				•
ite/Time	9-8-151				
thod of Sampling:	Bailer			Dedicated:	YES
améter of Well ell Depth (from top of PVC)		· · · · · · · · · · · · · · · · · · ·			•
ater Depth (from top of PV6 ingth of water Column ige Volume: LWC x 0.17 x 3	C)		Volume Pu	rged	·
ethane Reading		-			
AMPLING DATA:	Hq	Conduct	Turb.	ORP	DO
Time Temp.	(std units)	(Umhos/cm)	(NTU)	Mv	(mg/l)
rbidity 1.0 Serial #: rbidity 10.0 Serial #: 1 4.0 Serial #: 1 7.0 Serial #: 1 10.0 Serial #:)ry.		γ	
ond Serial #:		umhos/cm@2	5 C		
RP Serial #	•	_ Mv			
O Calibrated to		<u> </u>			·
	-		1 0		1
		100.5	Locus	m we	o ory
	RVATIONS:	(11	_ 1 .		
	evations:	Coll	erte.	4	
Veather conditions @ time COMMENTS AND OBSER	RVATIONS:	Coll	eretr.	4	
	b Were			PA, State and	Site-Specific

Login Sample Receipt Checklist

Client: Town of Dewitt Job Number: 480-86856-1

Login Number: 86856

List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	TA	
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	N/A		
Chlorine Residual checked.	False	LAB TO CHECK RC	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-92740-1 Client Project/Site: Town of Dewitt

Sampling Event: Surfacewater - Quarterly (3,6,9,12)

For:

Town of Dewitt 5400 Butternut Drive East Syracuse, New York 13057

Attn: Michael Moracco

Men John

Authorized for release by: 12/23/2015 1:42:55 PM

Orlette Johnson, Senior Project Manager (484)685-0864 orlette.johnson@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	3
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	22
Lab Chronicle	25
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

4

5 6

7 8

10

13 14

Definitions/Glossary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

3

Qualifiers GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Compound was found in the blank and sample. В

Glossary

		,	
-			

Abbreviation	These commonly used abbreviations may or may not be present in this report.
T T	Listed under the "D" column to designate that the result is reported on a dry weight basis
0/. D	Percent Perceyery

CFL Contains Free Liquid Contains no Free Liquid CNF DER

Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DL, RA, RE, IN Decision level concentration DLC Minimum detectable activity MDA **Estimated Detection Limit EDL** MDC Minimum detectable concentration **Method Detection Limit** MDL ML Minimum Level (Dioxin)

Not Calculated NC

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL **Practical Quantitation Limit Quality Control** QC

RER Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

4

5

6

8

10

12

13 14

Œ

Job ID: 480-92740-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-92740-1

Receipt

The samples were received on 12/16/2015 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

GC/MS VOA

Method(s) 624: The preservative used in the sample containers provided is not compatible with the Method 624 analytes requested. The following samples were received preserved with hydrochloric acid: SW-1 (480-92740-1), SW-2 (480-92740-2), SW-3 (480-92740-3) and TRIP BLANK (480-92740-4). The requested target analyte list contains 2-chloroethyl vinyl ether acrolein, which is an acid-labile compound that degrades in an acidic medium.

Method(s) 624: The following samples contained residual chlorine upon receipt: SW-2 (480-92740-2) and SW-3 (480-92740-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

RL

0.010

0.010

0.010

10.0

RL

5.0

0.010

0.010

0.010

0.010

10.0

RL

0.010

0.010

10.0

MDL Unit

0.0016 mg/L

0.0015 mg/L

0.0015 mg/L

4.0 mg/L

MDL Unit

0.45 ug/L

0.0013 mg/L

0.0015 mg/L

0.0013 mg/L

0.0015 mg/L

4.0 mg/L

MDL Unit

0.0015 mg/L

0.0015 mg/L

4.0 mg/L

Result Qualifier

Result Qualifier

0.84 J

0.0022 J

0.0034 J

0.0024 J

426

0.0041 J

454

0.0031 JB

0.0019 JB

Result Qualifier

0.0023 J

0.0020 JB

495

0.014

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID: SW-1

Client Sample ID: SW-2

Client Sample ID: SW-3

Client Sample ID: TRIP BLANK

Analyte

Copper

Analyte

Toluene

Nickel

Nickel

Analyte

Zinc

Zinc

Zinc

Zinc

Total Dissolved Solids

Total Dissolved Solids

Total Dissolved Solids

Zinc

Zinc

TestAmerica Job ID: 480-92740-1

Lab Sample ID: 480-92740-1

Lab Sample ID: 480-92740-2

Dil Fac D Method

Dil Fac D Method

Dil Fac D Method

624

6010C

6010C

6010C

6010C

6010C

6010C

SM 2540C

SM 2540C

Lab Sample ID: 480-92740-3

Lab Sample ID: 480-92740-4

1

6010C

6010C

6010C

SM 2540C

Prep Type

Total/NA

Total/NA

Dissolved

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Dissolved

Dissolved

Total/NA

Prep Type

Total/NA

Dissolved

Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Lab Sample ID: 480-92740-1

Matrix: Surface Water

Client Sample ID: SW-1

Date Collected: 12/15/15 15:30 Date Received: 12/16/15 01:30

Method: 624 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			12/17/15 11:41	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			12/17/15 11:41	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			12/17/15 11:41	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			12/17/15 11:41	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			12/17/15 11:41	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			12/17/15 11:41	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			12/17/15 11:41	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			12/17/15 11:41	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			12/17/15 11:41	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			12/17/15 11:41	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			12/17/15 11:41	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			12/17/15 11:41	1
Acrolein	ND	100	17	ug/L			12/17/15 11:41	1
Acrylonitrile	ND	50	1.9	ug/L			12/17/15 11:41	1
Benzene	ND	5.0	0.60	ug/L			12/17/15 11:41	1
Bromoform	ND	5.0	0.47	ug/L			12/17/15 11:41	1
Bromomethane	ND	5.0	1.2	ug/L			12/17/15 11:41	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			12/17/15 11:41	1
Chlorobenzene	ND	5.0	0.48	ug/L			12/17/15 11:41	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			12/17/15 11:41	1
Chloroethane	ND	5.0	0.87	ug/L			12/17/15 11:41	1
Chloroform	ND	5.0	0.54	ug/L			12/17/15 11:41	1
Chloromethane	ND	5.0	0.64	ug/L			12/17/15 11:41	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			12/17/15 11:41	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			12/17/15 11:41	1
Ethylbenzene	ND	5.0	0.46	ug/L			12/17/15 11:41	1
Methylene Chloride	ND	5.0	0.81	ug/L			12/17/15 11:41	1
Tetrachloroethene	ND	5.0	0.34	ug/L			12/17/15 11:41	1
Toluene	ND	5.0	0.45	ug/L			12/17/15 11:41	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			12/17/15 11:41	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			12/17/15 11:41	1
Trichloroethene	ND	5.0	0.60	ug/L			12/17/15 11:41	1
Vinyl chloride	ND	5.0	0.75	ug/L			12/17/15 11:41	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	72 - 130					12/17/15 11:41	1
4-Bromofluorobenzene (Surr)	92	69 - 121					12/17/15 11:41	1
Toluene-d8 (Surr)	95	70 - 123					12/17/15 11:41	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/17/15 07:35	12/17/15 13:12	1
Arsenic	ND		0.015	0.0056	mg/L		12/17/15 07:35	12/17/15 13:12	1
Beryllium	ND		0.0020	0.00030	mg/L		12/17/15 07:35	12/17/15 13:12	1
Cadmium	ND		0.0020	0.00050	mg/L		12/17/15 07:35	12/17/15 13:12	1
Chromium	ND		0.0040	0.0010	mg/L		12/17/15 07:35	12/17/15 13:12	1
Copper	0.0023	J	0.010	0.0016	mg/L		12/17/15 07:35	12/17/15 13:12	1
Lead	ND		0.010	0.0030	mg/L		12/17/15 07:35	12/17/15 13:12	1
Nickel	ND		0.010	0.0013	mg/L		12/17/15 07:35	12/17/15 13:12	1
Selenium	ND		0.025	0.0087	mg/L		12/17/15 07:35	12/17/15 13:12	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Client Sample ID: SW-1

Lab Sample ID: 480-92740-1

Matrix: Surface Water

Date Collected: 12/15/15 15:30 Date Received: 12/16/15 01:30

Method: 6010C - Metals (ICP) (Contin Analyte Ro		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		12/17/15 07:35	12/17/15 13:12	1
Thallium	ND		0.020	0.010	mg/L		12/17/15 07:35	12/17/15 13:12	1
Zinc 0	.014		0.010	0.0015	mg/L		12/17/15 07:35	12/17/15 13:12	1
Method: 6010C - Metals (ICP) - Disso	lved								
Analyte	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/18/15 07:10	12/18/15 17:03	1
Arsenic	ND		0.015	0.0056	mg/L		12/18/15 07:10	12/18/15 17:03	1
Beryllium	ND		0.0020	0.00030	mg/L		12/18/15 07:10	12/18/15 17:03	1
Cadmium	ND		0.0020	0.00050	mg/L		12/18/15 07:10	12/18/15 17:03	1
Chromium	ND		0.0040	0.0010	mg/L		12/18/15 07:10	12/18/15 17:03	1
Copper	ND		0.010	0.0016	mg/L		12/18/15 07:10	12/18/15 17:03	1
Lead	ND		0.010	0.0030	mg/L		12/18/15 07:10	12/18/15 17:03	1
Nickel	ND		0.010	0.0013	mg/L		12/18/15 07:10	12/18/15 17:03	1
Selenium	ND		0.025	0.0087	mg/L		12/18/15 07:10	12/18/15 17:03	1
Silver	ND		0.0060	0.0017	mg/L		12/18/15 07:10	12/18/15 17:03	1
Thallium	ND		0.020	0.010	mg/L		12/18/15 07:10	12/18/15 17:03	1
Zinc 0.	0020	JB	0.010	0.0015	mg/L		12/18/15 07:10	12/18/15 17:03	1
Method: 7470A - Mercury (CVAA)									
	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020	0.00012	mg/L		12/17/15 09:20	12/17/15 14:36	1
Method: 7470A - Mercury (CVAA) - D	issol	ved							
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		12/18/15 08:50	12/18/15 14:07	1
General Chemistry			_	ane.		_			DUE
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	495		10.0	4.0	mg/L			12/18/15 06:46	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Lab Sample ID: 480-92740-2

Matrix: Surface Water

Client Sample ID: SW-2

Date Collected: 12/15/15 15:00 Date Received: 12/16/15 01:30

Method: 624 - Volatile Orga Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND	5.0	0.39	ug/L			12/19/15 17:13	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			12/19/15 17:13	1
I,1,2-Trichloroethane	ND	5.0	0.48	ug/L			12/19/15 17:13	1
I,1-Dichloroethane	ND	5.0	0.59	ug/L			12/19/15 17:13	1
I,1-Dichloroethene	ND	5.0	0.85	ug/L			12/19/15 17:13	1
I,2-Dichlorobenzene	ND	5.0	0.44	ug/L			12/19/15 17:13	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			12/19/15 17:13	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			12/19/15 17:13	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			12/19/15 17:13	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			12/19/15 17:13	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			12/19/15 17:13	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			12/19/15 17:13	1
Acrolein	ND	100	17	ug/L			12/19/15 17:13	1
Acrylonitrile	ND	50	1.9	ug/L			12/19/15 17:13	1
Benzene	ND	5.0	0.60	ug/L			12/19/15 17:13	1
Bromoform	ND	5.0	0.47	ug/L			12/19/15 17:13	
Bromomethane	ND	5.0	1.2	ug/L			12/19/15 17:13	
Carbon tetrachloride	ND	5.0	0.51	ug/L			12/19/15 17:13	•
Chlorobenzene	ND	5.0	0.48	ug/L			12/19/15 17:13	
Chlorodibromomethane	ND	5.0	0.41	ug/L			12/19/15 17:13	
Chloroethane	ND	5.0	0.87	ug/L			12/19/15 17:13	
Chloroform	ND	5.0	0.54	ug/L			12/19/15 17:13	
Chloromethane	ND	5.0	0.64	ug/L			12/19/15 17:13	
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			12/19/15 17:13	
Dichlorobromomethane	ND	5.0	0.54	ug/L			12/19/15 17:13	
Ethylbenzene	ND	5.0	0.46	ug/L			12/19/15 17:13	
Methylene Chloride	ND	5.0	0.81	ug/L			12/19/15 17:13	
Tetrachloroethene	ND	5.0	0.34	ug/L			12/19/15 17:13	
Toluene	0.84 J	5.0	0.45	ug/L			12/19/15 17:13	
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			12/19/15 17:13	
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			12/19/15 17:13	
Trichloroethene	ND	5.0	0.60	ug/L			12/19/15 17:13	
Vinyl chloride	ND	5.0	0.75	ug/L			12/19/15 17:13	•
Surrogate	%Recovery Qualifie					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96	72 - 130					12/19/15 17:13	
4-Bromofluorobenzene (Surr)	96	69 - 121					12/19/15 17:13	
Toluene-d8 (Surr)	96	70 - 123					12/19/15 17:13	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/17/15 07:35	12/17/15 13:15	1
Arsenic	ND		0.015	0.0056	mg/L		12/17/15 07:35	12/17/15 13:15	1
Beryllium	ND		0.0020	0.00030	mg/L		12/17/15 07:35	12/17/15 13:15	1
Cadmium	ND	,	0.0020	0.00050	mg/L		12/17/15 07:35	12/17/15 13:15	1
Chromium	ND		0.0040	0.0010	mg/L		12/17/15 07:35	12/17/15 13:15	1
Copper	ND		0.010	0.0016	mg/L		12/17/15 07:35	12/17/15 13:15	1
Lead	ND		0.010	0.0030	mg/L		12/17/15 07:35	12/17/15 13:15	1
Nickel	0.0022	J	0.010	0.0013	mg/L		12/17/15 07:35	12/17/15 13:15	1
Selenium	ND		0.025	0.0087	mg/L		12/17/15 07:35	12/17/15 13:15	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Client Sample ID: SW-2 Date Collected: 12/15/15 15:00 Lab Sample ID: 480-92740-2

Matrix: Surface Water

Date Received: 12/16/15 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		12/17/15 07:35	12/17/15 13:15	1
Thallium	ND		0.020	0.010	mg/L		12/17/15 07:35	12/17/15 13:15	1
Zinc	0.0034	J	0.010	0.0015	mg/L		12/17/15 07:35	12/17/15 13:15	•
Method: 6010C - Metals (ICP) - Diss									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/18/15 07:10	12/18/15 17:29	4
Arsenic	ND		0.015	0.0056	mg/L		12/18/15 07:10	12/18/15 17:29	
Beryllium	ND		0.0020	0.00030	mg/L		12/18/15 07:10	12/18/15 17:29	•
Cadmium	ND		0.0020	0.00050	mg/L		12/18/15 07:10	12/18/15 17:29	•
Chromium	ND		0.0040	0.0010	mg/L		12/18/15 07:10	12/18/15 17:29	•
Соррег	ND		0.010	0.0016	mg/L		12/18/15 07:10	12/18/15 17:29	•
Lead	ND		0.010	0.0030	mg/L		12/18/15 07:10	12/18/15 17:29	
Nickel	0.0024	J	0.010	0.0013	mg/L		12/18/15 07:10	12/18/15 17:29	1
Selenium	ND		0.025	0.0087	mg/L		12/18/15 07:10	12/18/15 17:29	1
Silver	ND		0.0060	0.0017	mg/L		12/18/15 07:10	12/18/15 17:29	
Thallium	ND		0.020	0.010	mg/L		12/18/15 07:10	12/18/15 17:29	
Zinc	0.0019	JB	0.010	0.0015	mg/L		12/18/15 07:10	12/18/15 17:29	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		12/17/15 09:20	12/17/15 14:43	
Method: 7470A - Mercury (CVAA) -									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		12/18/15 08:50	12/18/15 14:08	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	426		10.0	4.0	mg/L			12/18/15 06:46	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Client Sample ID: SW-3

Lab Sample ID: 480-92740-3

Date Collected: 12/15/15 16:00 Date Received: 12/16/15 01:30 **Matrix: Surface Water**

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/17/15 12:37	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			12/17/15 12:37	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			12/17/15 12:37	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			12/17/15 12:37	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			12/17/15 12:37	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			12/17/15 12:37	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			12/17/15 12:37	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			12/17/15 12:37	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			12/17/15 12:37	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			12/17/15 12:37	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			12/17/15 12:37	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/17/15 12:37	1
Acrolein	ND		100	17	ug/L			12/17/15 12:37	1
Acrylonitrile	ND		50	1.9	ug/L			12/17/15 12:37	1
Benzene	ND		5.0	0.60	ug/L			12/17/15 12:37	1
Bromoform	ND		5.0	0.47	ug/L			12/17/15 12:37	1
Bromomethane	ND		5.0	1.2	ug/L			12/17/15 12:37	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/17/15 12:37	1
Chlorobenzene	ND	,	5.0	0.48	ug/L			12/17/15 12:37	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			12/17/15 12:37	1
Chloroethane	ND		5.0	0.87	ug/L			12/17/15 12:37	1
Chloroform	ND		5.0	0.54	ug/L			12/17/15 12:37	1
Chloromethane	ND		5.0	0.64	ug/L			12/17/15 12:37	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			12/17/15 12:37	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			12/17/15 12:37	1
Ethylbenzene	ND		5.0	0.46	ug/L			12/17/15 12:37	1
Methylene Chloride	ND		5.0	0.81	ug/L			12/17/15 12:37	1
Tetrachloroethene	ND		5.0	0.34	ug/L			12/17/15 12:37	1
Toluene	ND		5.0	0.45	ug/L			12/17/15 12:37	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			12/17/15 12:37	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L		•	12/17/15 12:37	- 1
Trichloroethene	ND		5.0	0.60	ug/L			12/17/15 12:37	1
Vinyl chloride	ND		5.0	0.75	ug/L			12/17/15 12:37	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		72-130					12/17/15 12:37	1
4-Bromofluorobenzene (Surr)	92		69 - 121					12/17/15 12:37	1
Toluene-d8 (Surr)	95		70 - 123					12/17/15 12:37	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	***	0.020	0.0068	mg/L		12/17/15 07:35	12/17/15 13:18	1
Arsenic	ND		0.015	0.0056	mg/L		12/17/15 07:35	12/17/15 13:18	1
Beryllium	ND		0.0020	0.00030	mg/L		12/17/15 07:35	12/17/15 13:18	1
Cadmium	ND		0.0020	0.00050	mg/L		12/17/15 07:35	12/17/15 13:18	1
Chromium	ND		0.0040	0.0010	mg/L		12/17/15 07:35	12/17/15 13:18	1
Copper	ND		0.010	0.0016	mg/L		12/17/15 07:35	12/17/15 13:18	1
Lead	ND	•	0.010	0.0030	mg/L		12/17/15 07:35	12/17/15 13:18	1
Nickel	ND		0.010	0.0013	mg/L		12/17/15 07:35	12/17/15 13:18	1
Selenium	ND		0.025	0.0087	mg/L		12/17/15 07:35	12/17/15 13:18	1

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Client Sample ID: SW-3

Lab Sample ID: 480-92740-3

Date Collected: 12/15/15 16:00 Date Received: 12/16/15 01:30 Matrix: Surface Water

Method: 6010C - Metals (IC Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060	0.0017	mg/L		12/17/15 07:35	12/17/15 13:18	1
Thallium	ND		0.020	0.010	mg/L		12/17/15 07:35	12/17/15 13:18	1
Zinc	0.0041	J	0.010	0.0015	mg/L		12/17/15 07:35	12/17/15 13:18	1
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		12/18/15 07:10	12/18/15 17:32	1
Arsenic	ND		0.015	0.0056	mg/L		12/18/15 07:10	12/18/15 17:32	1
Beryllium	ND		0.0020	0.00030	mg/L		12/18/15 07:10	12/18/15 17:32	1
Cadmium	ND		0.0020	0.00050	mg/L		12/18/15 07:10	12/18/15 17:32	1
Chromium	ND		0.0040	0.0010	mg/L		12/18/15 07:10	12/18/15 17:32	1
Copper	ND		0.010	0.0016	mg/L		12/18/15 07:10	12/18/15 17:32	1
Lead	ND		0.010	0.0030	mg/L		12/18/15 07:10	12/18/15 17:32	1
Nickel	ND		0.010	0.0013	mg/L		12/18/15 07:10	12/18/15 17:32	1
Selenium	ND		0.025	0.0087	mg/L		12/18/15 07:10	12/18/15 17:32	1
Silver	ND		0.0060	0.0017	mg/L		12/18/15 07:10	12/18/15 17:32	1
Thallium	ND		0.020	0.010	mg/L		12/18/15 07:10	12/18/15 17:32	1
Zinc	0.0031	JB	0.010	0.0015	mg/L		12/18/15 07:10	12/18/15 17:32	1
Method: 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		12/17/15 09:20	12/17/15 14:45	1
Method: 7470A - Mercury (1.2			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		12/18/15 08:50	12/18/15 14:15	1
General Chemistry						_		A	DU Fa
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	454		10.0	4.0	mg/L			12/18/15 06:46	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Lab Sample ID: 480-92740-4

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 12/15/15 00:00 Date Received: 12/16/15 01:30

Method: 624 - Volatile Orgai Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			12/17/15 13:05	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			12/17/15 13:05	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			12/17/15 13:05	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			12/17/15 13:05	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			12/17/15 13:05	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			12/17/15 13:05	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			12/17/15 13:05	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			12/17/15 13:05	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			12/17/15 13:05	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			12/17/15 13:05	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			12/17/15 13:05	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			12/17/15 13:05	1
Acrolein	ND	100	17	ug/L			12/17/15 13:05	1
Acrylonitrile	ND	50	1.9	ug/L			12/17/15 13:05	1
Benzene	ND	5.0	0.60	ug/L			12/17/15 13:05	1
Bromoform	ND	5.0	0.47	ug/L			12/17/15 13:05	1
Bromomethane	ND	5.0	1.2	ug/L			12/17/15 13:05	1
Carbon tetrachloride	ND	5.0		ug/L			12/17/15 13:05	1
Chlorobenzene	ND	5.0	0.48	ug/L			12/17/15 13:05	1
Chlorodibromomethane	ND	5.0		ug/L			12/17/15 13:05	1
Chloroethane	ND	5.0	0.87	ug/L			12/17/15 13:05	1
Chloroform	ND	5.0	0.54	ug/L			12/17/15 13:05	1
Chloromethane	ND	5.0		ug/L			12/17/15 13:05	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			12/17/15 13:05	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			12/17/15 13:05	1
Ethylbenzene	ND	5.0	0.46	ug/L			12/17/15 13:05	1
Methylene Chloride	ND	5.0	0.81	ug/L			12/17/15 13:05	1
Tetrachloroethene	. ND	5.0	0.34	ug/L			12/17/15 13:05	. 1
Toluene	ND	5.0	0.45	ug/L			12/17/15 13:05	1
rans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			12/17/15 13:05	1
rans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			12/17/15 13:05	. 1
Trichloroethene	ND	5.0	0.60	ug/L			12/17/15 13:05	1
Vinyl chloride	ND	5.0	0.75	ug/L			12/17/15 13:05	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102	72 - 130					12/17/15 13:05	1
4-Bromofluorobenzene (Surr)	92	69 - 121					12/17/15 13:05	1
Toluene-d8 (Surr)	96	70 - 123					12/17/15 13:05	1

Surrogate Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Surface Water Prep Type: Total/NA

			Pe	rcent Surro	gate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-92740-1	SW-1	100	92	95	
480-92740-2	SW-2	96	96	96	
480-92740-3	SW-3	101	92	95	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA Matrix: Water

			Pe	rcent Surro	gate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-92740-4	TRIP BLANK	102	92	96	
LCS 480-280164/5	Lab Control Sample	92	95	96	
LCS 480-280428/6	Lab Control Sample	89	94	100	
MB 480-280164/7	Method Blank	103	94	94	
MB 480-280428/8	Method Blank	98	94	97	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-280164/7

Matrix: Water

Analysis Batch: 280164

Client Sample ID: Method Blank

Prep Type: Total/NA

• • • • • • • • • • • • • • • • • • • •	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/16/15 22:10	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			12/16/15 22:10	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			12/16/15 22:10	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			12/16/15 22:10	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			12/16/15 22:10	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			12/16/15 22:10	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			12/16/15 22:10	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			12/16/15 22:10	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			12/16/15 22:10	1
1,3-Dichlorobenzene	ND	*	5.0	0.54	ug/L			12/16/15 22:10	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			12/16/15 22:10	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/16/15 22:10	1
Acrolein	ND		100	17	ug/L			12/16/15 22:10	1
Acrylonitrile	ND		50	1.9	ug/L			12/16/15 22:10	1
Benzene	ND		5.0	0.60	ug/L			12/16/15 22:10	1
Bromoform	ND		5.0	0.47	ug/L			12/16/15 22:10	1
Bromomethane	ND		5.0	1.2	ug/L			12/16/15 22:10	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/16/15 22:10	1
Chlorobenzene	ND		5.0	0.48	ug/L			12/16/15 22:10	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			12/16/15 22:10	1
Chloroethane	ND		5.0	0.87	ug/L			12/16/15 22:10	1
Chloroform	ND		5.0	0.54	ug/L		*	12/16/15 22:10	1
Chloromethane	ND		5.0	0.64	ug/L			12/16/15 22:10	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			12/16/15 22:10	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			12/16/15 22:10	1
Ethylbenzene	ND		5.0	0.46	ug/L			12/16/15 22:10	1
Methylene Chloride	ND		5.0	0.81	ug/L			12/16/15 22:10	1
Tetrachloroethene	ND		5.0	0.34	ug/L			12/16/15 22:10	1
Toluene	ND		5.0	0.45	ug/L			12/16/15 22:10	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			12/16/15 22:10	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			12/16/15 22:10	1
Trichloroethene	ND		5.0		ug/L			12/16/15 22:10	1
Vinyl chloride	ND		5.0	0.75	ug/L			12/16/15 22:10	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130		12/16/15 22:10	1
4-Bromofluorobenzene (Surr)	94		69 - 121		12/16/15 22:10	1
Toluene-d8 (Surr)	94		70 - 123		12/16/15 22:10	1

Lab Sample ID: LCS 480-280164/5

Matrix: Water

Analysis Batch: 280164

Client	Sample	ID:	Lab	Control	Sample
			Prep	Type: 1	Total/NA

,, o.o	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	17.8		ug/L		89	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.9		ug/L		90	46 - 157	
1,1,2-Trichloroethane	20.0	19.5		ug/L		98	52 - 150	
1,1-Dichloroethane	20.0	17.7		ug/L		88	59 - 155	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-280164/5

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 280164

Analysis Datell. 200 104	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	18.0		ug/L		90	1-234	
1,2-Dichlorobenzene	20.0	18.7		ug/L		93	18 - 190	
1,2-Dichloroethane	20.0	16.7		ug/L		83	49 - 155	
1,2-Dichloropropane	20.0	19.7		ug/L		99	1-210	
1,3-Dichlorobenzene	20.0	19.1		ug/L		96	59 - 156	
1,4-Dichlorobenzene	20.0	18.9		ug/L		95	18 - 190	
2-Chloroethyl vinyl ether	20.0	19.1	J	ug/L		96	1 - 305	
Benzene	20.0	19.1		ug/L		95	37 - 151	
Bromoform	20.0	16.8		ug/L		84	45 - 169	
Bromomethane	20.0	25.8		ug/L		129	1 - 242	
Carbon tetrachloride	20.0	17.6		ug/L		88	70 - 140	
Chlorobenzene	20.0	18.9		ug/L		95	37 - 160	
Chlorodibromomethane	20.0	17.7		ug/L		88	53 - 149	
Chloroethane	20.0	25.5		ug/L		127	14 - 230	
Chloroform	20.0	18.5		ug/L		93	51 - 138	
Chloromethane	20.0	20.5		ug/L		103	1 - 273	
cis-1,3-Dichloropropene	20.0	19.3		ug/L		96	1 - 227	
Dichlorobromomethane	20.0	18.6		ug/L		93	35 - 155	
Ethylbenzene	20.0	18.4		ug/L		92	37 - 162	
Methylene Chloride	20.0	19.3		ug/L		96	1 - 221	
Tetrachloroethene	20.0	17.8		ug/L		89	64 - 148	
Toluene	20.0	18.5		ug/L		93	47 - 150	
trans-1,2-Dichloroethene	20.0	19.3		ug/L		96	54 - 156	
trans-1,3-Dichloropropene	20.0	17.6		ug/L		88	17 - 183	
Trichloroethene	20.0	18.6		ug/L		93	71 - 157	
Vinyl chloride	20.0	19.2		ug/L		96	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
4-Bromofluorobenzene (Surr)	95		69 - 121
Toluene-d8 (Surr)	96		70-123

Lab Sample ID: MB 480-280428/8

Matrix: Water

Analysis Batch: 280428

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton. 200420	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/18/15 22:23	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			12/18/15 22:23	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			12/18/15 22:23	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			12/18/15 22:23	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			12/18/15 22:23	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			12/18/15 22:23	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			12/18/15 22:23	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			12/18/15 22:23	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			12/18/15 22:23	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			12/18/15 22:23	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			12/18/15 22:23	1

TestAmerica Buffalo

Page 15 of 31

12/23/2015

Client: Town of Dewitt Project/Site: Town of Dewitt

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-280428/8

Matrix: Water

Analysis Batch: 280428

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			12/18/15 22:23	1
Acrolein	ND		100	17	ug/L			12/18/15 22:23	1
Acrylonitrile	ND		50	1.9	ug/L			12/18/15 22:23	1
Benzene	ND		5.0	0.60	ug/L			12/18/15 22:23	1
Bromoform	ND		5.0	0.47	ug/L			12/18/15 22:23	1
Bromomethane	ND		5.0	1.2	ug/L			12/18/15 22:23	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			12/18/15 22:23	1
Chlorobenzene	ND		5.0	0.48	ug/L			12/18/15 22:23	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			12/18/15 22:23	1
Chloroethane	ND		5.0	0.87	ug/L			12/18/15 22:23	1
Chloroform	ND		5.0	0.54	ug/L			12/18/15 22:23	1
Chioromethane	ND		5.0	0.64	ug/L			12/18/15 22:23	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			12/18/15 22:23	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			12/18/15 22:23	1
Ethylbenzene	ND		5.0	0.46	ug/L			12/18/15 22:23	1
Methylene Chloride	ND		5.0	0.81	ug/L			12/18/15 22:23	1
Tetrachloroethene	ND		5.0	0.34	ug/L			12/18/15 22:23	1
Toluene	ND		5.0	0.45	ug/L			12/18/15 22:23	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			12/18/15 22:23	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			12/18/15 22:23	1
Trichloroethene	ND		5.0	0.60	ug/L			12/18/15 22:23	1
Vinyl chloride	ND		5.0	0.75	ug/L			12/18/15 22:23	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		72 - 130		12/18/15 22:23	1
4-Bromofluorobenzene (Surr)	94		69 - 121		12/18/15 22:23	1
Toluene-d8 (Surr)	97		70 - 123		12/18/15 22:23	1

Lab Sample ID: LCS 480-280428/6

Matrix: Water

Analysis Batch: 280428

Client	Sample	ID:	Lab	Control	Sample
			Prep	Type: 1	Total/NA

Analysis Batch. 200420	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.9		ug/L		95	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	16.9		ug/L		84	46 - 157	
1,1,2-Trichloroethane	20.0	17.8		ug/L		89	52 - 150	
1,1-Dichloroethane	20.0	18.8		ug/L		94	59 - 155	
1,1-Dichloroethene	20.0	20.1		ug/L		101	1 - 234	
1,2-Dichlorobenzene	20.0	18.0		ug/L		90	18 - 190	
1,2-Dichloroethane	20.0	16.8		ug/L		84	49 - 155	
1,2-Dichloropropane	20.0	18.0		ug/L		90	1 - 210	
1,3-Dichlorobenzene	20.0	18.7		ug/L		94	59 - 156	
1,4-Dichlorobenzene	20.0	18.5		ug/L		92	18 - 190	,
2-Chloroethyl vinyl ether	20.0	15.2	J	ug/L		76	1 - 305	
Benzene	20.0	19.4		ug/L		97	37 - 151	
Bromoform	20.0	15.0	8 8	ug/L	*	75	45 - 169	
Bromomethane	20.0	25.9		ug/L		129	1 - 242	
Carbon tetrachloride	20.0	18.0		ug/L		90	70 - 140	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-280428/6

Matrix: Water

Analysis Batch: 280428

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorobenzene	20.0	18.8		ug/L		94	37 - 160	
Chlorodibromomethane	20.0	16.8		ug/L		84	53 - 149	
Chloroethane	20.0	26.8		ug/L		134	14 - 230	
Chloroform	20.0	19.0		ug/L		95	51 - 138	
Chloromethane	20.0	19.6		ug/L		98	1 - 273	
cis-1,3-Dichloropropene	20.0	17.3		ug/L		87	1 - 227	
Dichlorobromomethane	20.0	17.5		ug/L		87	35 - 155	
Ethylbenzene	20.0	18.7		ug/L		94	37 - 162	
Methylene Chloride	20.0	18.5		ug/L		93	1 - 221	
Tetrachloroethene	20.0	19.6		ug/L		98	64 - 148	
Toluene	20.0	18.9		ug/L		95	47 - 150	
trans-1,2-Dichloroethene	20.0	20.5		ug/L		102	54 - 156	
trans-1,3-Dichloropropene	20.0	16.8		ug/L		84	17 - 183	
Trichloroethene	20.0	19.0		ug/L		95	71 - 157	
Vinyl chloride	20.0	19.7		ug/L		99	1 - 251	

LCS LCS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 89 72 - 130 94 69 - 121 4-Bromofluorobenzene (Surr) 100 70 - 123 Toluene-d8 (Surr)

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-280142/1-A

Matrix: Water

Analysis Batch: 280488

Client Sample ID: Method Blank
Prep Type: Total/NA
Pren Batch: 280142

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Analyte** 12/17/15 07:35 12/17/15 12:28 ND 0.020 0.0068 mg/L Antimony 12/17/15 07:35 12/17/15 12:28 ND 0.015 0.0056 mg/L 1 Arsenic ND 0.0020 0.00030 mg/L 12/17/15 07:35 12/17/15 12:28 Beryllium ND 0.0020 0.00050 mg/L 12/17/15 07:35 12/17/15 12:28 Cadmium 12/17/15 07:35 12/17/15 12:28 ND 0.0040 0.0010 mg/L Chromium 12/17/15 07:35 12/17/15 12:28 ND 0.010 0.0016 mg/L Copper 12/17/15 07:35 12/17/15 12:28 1 Lead ND 0.010 0.0030 mg/L 12/17/15 07:35 12/17/15 12:28 Nickel ND 0.010 0.0013 mg/L 12/17/15 07:35 12/17/15 12:28 ND 0.025 0.0087 mg/L Selenium ND 0.0060 0.0017 mg/L 12/17/15 07:35 12/17/15 12:28 Silver ND 0.020 0.010 mg/L 12/17/15 07:35 12/17/15 12:28 Thallium 12/17/15 07:35 12/17/15 12:28 ND 0.010 0.0015 mg/L Zinc

Lab Sample ID: LCS 480-280142/2-A

Matrix: Water

Analysis Batch: 280488

Clier	nt Sar	mple ID	: Lab Control Sample
			Prep Type: Total/NA
			Prep Batch: 280142
			%Rec.
Unit	D	%Rec	Limits

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.200	0.192		mg/L		96	80 - 120	
Arsenic	0.200	0.197		mg/L		99	80 - 120	

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-280142/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Prep Batch: 280142 Analysis Batch: 280488 LCS LCS Spike %Rec. Added Result Qualifier %Rec Limits Analyte Unit D 0.200 0.197 99 80 - 120 mg/L Beryllium 0.200 80 - 120 Cadmium 0.196 mg/L 98 Chromium 0.200 0.200 mg/L 100 80 - 120 0.200 0.194 mg/L 97 80 - 120 Copper 0.200 0.200 mg/L 100 80 - 120 Lead 0.200 0.190 95 80 - 120 Nickel mg/L Selenium 0.200 0.199 mg/L 99 80 - 120 Silver 0.0500 0.0479 mg/L 96 80 - 120 0.200 0.198 mg/L 99 80 - 120 Thallium 97 80 - 120 Zinc 0.200 0.194 mg/L

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 480-280142/3-A Matrix: Water Prep Type: Total/NA Prep Batch: 280142 Analysis Batch: 280488 Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit %Rec Limits **RPD** Limit **Analyte** 0.200 0.192 mg/L 96 80 - 120 Ö 20 Antimony 0.200 0.197 mg/L 98 80 - 120 0 20 Arsenic 0.200 0.198 99 80 - 120 20 mg/L 0 Beryllium 80 - 120 20 Cadmium 0.200 0.197 mg/L 99 0 0.200 0.201 101 80 - 120 20 Chromium mg/L 80 - 120 20 0.200 0.197 mg/L 98 Copper 0.200 0.199 mg/L 100 80 - 120 20 Lead 0.200 95 80 - 120 20 Nickel 0.191 mg/L Selenium 0.200 0.197 mg/L 98 80 - 120 20 0.0479 96 80 - 120 20 Silver 0.0500 mg/L 0.200 0.200 mg/L 100 80 - 120 20 Thallium 20 0.196 98 80 - 120 0.200 mg/L

Lab Sample ID: MB 480-280079/1-C

Matrix: Water

Zinc

Analysis Batch: 280641

		Prep Batch: 280099							
D	Prepared	Analyzed	Dil Fac						
	12/18/15 07:10	12/18/15 16:57	1						
	12/18/15 07:10	12/18/15 16:57	1						
	12/18/15 07:10	12/18/15 16:57	1						
	12/18/15 07:10	12/18/15 16:57	1						

Client Sample ID: Method Blank

Prep Type: Dissolved

1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Antimony	ND		0.020	0.0068	mg/L		12/18/15 07:10	12/18/15 16:57	1
-	Arsenic	ND		0.015	0.0056	mg/L		12/18/15 07:10	12/18/15 16:57	1
-	Beryllium	ND		0.0020	0.00030	mg/L		12/18/15 07:10	12/18/15 16:57	1
-	Cadmium	ND		0.0020	0.00050	mg/L		12/18/15 07:10	12/18/15 16:57	1
-	Chromium	ND		0.0040	0.0010	mg/L		12/18/15 07:10	12/18/15 16:57	1
-	Copper	ND		0.010	0.0016	mg/L		12/18/15 07:10	12/18/15 16:57	1
	Lead	ND		0.010	0.0030	mg/L		12/18/15 07:10	12/18/15 16:57	1
	Nickel	ND		0.010	0.0013	mg/L		12/18/15 07:10	12/18/15 16:57	1
	Selenium	ND		0.025	0.0087	mg/L		12/18/15 07:10	12/18/15 16:57	1
	Silver	ND	**	0.0060	0.0017	mg/L		12/18/15 07:10	12/18/15 16:57	1
	Thallium	ND		0.020	0.010	mg/L		12/18/15 07:10	12/18/15 16:57	1
and and and and	Zinc	0.00172	J	0.010	0.0015	mg/L		12/18/15 07:10	12/18/15 16:57	1
1										

MB MB

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-280079/2-C				Client Sample ID: Lab Control Sample						
Matrix: Water Analysis Batch: 280641	Smika	1.00	LCS			Prep Type: Disso Prep Batch: 28				
Analyte	Spike Added		Qualifier	Unit	D	%Rec	%Rec. Limits			
Antimony	0.200	0.196	Quanner	mg/L	_ =	98	80 - 120			
Arsenic	0.200	0.198		mg/L		99	80 - 120			
Beryllium	0.200	0.201		mg/L		100	80 - 120			
Cadmium	0.200	0.201		mg/L		100	80 - 120			
Chromium	0.200	0.210		mg/L		105	80 - 120			
Copper	0.200	0.213		mg/L		107	80 - 120			
Lead	0.200	0.203		mg/L		102	80 - 120			
Nickel	0.200	0.197		mg/L		99	80 - 120			
Selenium	0.200	0.200		mg/L		100	80 - 120			
Silver	0.0500	0.0495		mg/L		99	80 - 120			
Thallium	0.200	0.201		mg/L		101	80 - 120			
Zinc	0.200	0.206		mg/L		103	80 - 120			

Lab Sample ID: 480-92740-1 MS

Matrix: Surface Water Analysis Batch: 280641 Client Sample ID: SW-1 Prep Type: Dissolved Prep Batch: 280099

,a. y e.e	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		0.200	0.201		mg/L		101	75 - 125	
Arsenic	ND		0.200	0.209		mg/L		105	75 - 125	
Beryllium	ND		0.200	0.202		mg/L		101	75 - 125	
Cadmium	ND		0.200	0.207		mg/L		104	75 - 125	
Chromium	ND		0.200	0.211		mg/L		105	75 - 125	
Copper	ND		0.200	0.207		mg/L		103	75 - 125	
Lead	ND	* *	0.200	0.210		mg/L		105	75 - 125	
Nickel	ND		0.200	0.201		mg/L		100	75 - 125	
Selenium	ND		0.200	0.203		mg/L		101	75 - 125	
Silver	ND		0.0500	0.0506		mg/L		101	75 - 125	
Thallium	ND		0.200	0.205		mg/L		102	75 - 125	
Zinc	0.0020	JB	0.200	0.200		mg/L		99	75 - 125	

Lab Sample ID: 480-92740-1 MSD

Matrix: Surface Water

Client Sample ID: SW-1 Prep Type: Dissolved Prep Batch: 280099

Sample	Sample	Spike	MSD	MSD				%Rec.	11011. 20	RPD
		Added			Unit	D	%Rec	Limits	RPD	Limit
ND		0.200	0.201		mg/L		100	75 - 125	0	20
ND		0.200	0.208		mg/L		104	75 - 125	1	20
ND		0.200	0.203		mg/L		102	75 - 125	0	20
ND		0.200	0.207		mg/L		104	75 - 125	0	20
ND		0.200	0.210		mg/L		105	75 - 125	0	20
ND		0.200	0.207		mg/L		104	75 - 125	0	20
ND		0.200	0.210		mg/L		105	75 - 125	0	20
ND		0.200	0.202		mg/L		101	75 - 125	1	20
ND		0.200	0.204		mg/L		102	75 - 125	1	20
ND		0.0500	0.0514		mg/L		103	75 - 125	2	20
ND		0.200	0.207		mg/L		103	75 - 125	1	20
0.0020	JB	0.200	0.201		mg/L		100	75 - 125	0	20
	Result ND	ND	Result Qualifier Added ND 0.200 ND 0.0500 ND 0.0500 ND 0.200	Result Qualifier Added Result ND 0.200 0.201 ND 0.200 0.208 ND 0.200 0.203 ND 0.200 0.207 ND 0.200 0.210 ND 0.200 0.207 ND 0.200 0.210 ND 0.200 0.201 ND 0.200 0.202 ND 0.200 0.204 ND 0.0500 0.0514 ND 0.200 0.207	Result Qualifier Added Result Qualifier ND 0.200 0.201 0.208 ND 0.200 0.203 ND 0.200 0.207 ND 0.200 0.210 ND 0.200 0.207 ND 0.200 0.210 ND 0.200 0.210 ND 0.200 0.202 ND 0.200 0.202 ND 0.0500 0.0514 ND 0.200 0.207	Result Qualifier Added Result Qualifier Unit ND 0.200 0.201 mg/L ND 0.200 0.208 mg/L ND 0.200 0.203 mg/L ND 0.200 0.207 mg/L ND 0.200 0.210 mg/L ND 0.200 0.207 mg/L ND 0.200 0.210 mg/L ND 0.200 0.202 mg/L ND 0.200 0.204 mg/L ND 0.0500 0.0514 mg/L ND 0.200 0.207 mg/L	Result Qualifier Added Result Qualifier Unit D ND 0.200 0.201 mg/L mg/L ND 0.200 0.203 mg/L ND 0.200 0.207 mg/L ND 0.200 0.210 mg/L ND 0.200 0.207 mg/L ND 0.200 0.210 mg/L ND 0.200 0.210 mg/L ND 0.200 0.202 mg/L ND 0.0500 0.0514 mg/L ND 0.0500 0.0514 mg/L ND 0.200 0.207 mg/L	Result Qualifier Added Result Qualifier Unit D %Rec ND 0.200 0.201 mg/L 100 ND 0.200 0.208 mg/L 104 ND 0.200 0.203 mg/L 102 ND 0.200 0.207 mg/L 104 ND 0.200 0.210 mg/L 105 ND 0.200 0.207 mg/L 105 ND 0.200 0.210 mg/L 105 ND 0.200 0.202 mg/L 101 ND 0.200 0.202 mg/L 102 ND 0.0500 0.0514 mg/L 103 ND 0.0500 0.0514 mg/L 103 ND 0.200 0.207 mg/L 103	Sample Result Qualifier Added Added Result Qualifier Qualifier Unit D %Rec. Limits ND 0.200 0.201 mg/L 100 75 - 125 ND 0.200 0.208 mg/L 104 75 - 125 ND 0.200 0.203 mg/L 102 75 - 125 ND 0.200 0.207 mg/L 104 75 - 125 ND 0.200 0.210 mg/L 105 75 - 125 ND 0.200 0.207 mg/L 104 75 - 125 ND 0.200 0.207 mg/L 104 75 - 125 ND 0.200 0.210 mg/L 105 75 - 125 ND 0.200 0.201 mg/L 101 75 - 125 ND 0.200 0.202 mg/L 101 75 - 125 ND 0.0500 0.0514 mg/L 102 75 - 125 ND 0.0500 0.0514 mg/L <td< td=""><td>Result ND Qualifier Added Added No.2001 Result May be a considered on the process. Unit May be a considered on the process. D %Rec May be a considered on the process. Limits MPD RPD ND 0.200 0.208 mg/L 100 75 - 125 0 ND 0.200 0.203 mg/L 102 75 - 125 0 ND 0.200 0.207 mg/L 104 75 - 125 0 ND 0.200 0.210 mg/L 105 75 - 125 0 ND 0.200 0.207 mg/L 104 75 - 125 0 ND 0.200 0.207 mg/L 104 75 - 125 0 ND 0.200 0.210 mg/L 105 75 - 125 0 ND 0.200 0.202 mg/L 101 75 - 125 1 ND 0.200 0.202 mg/L 101 75 - 125 1 ND 0.0500 0.0500 0.0514 mg/L 103</td></td<>	Result ND Qualifier Added Added No.2001 Result May be a considered on the process. Unit May be a considered on the process. D %Rec May be a considered on the process. Limits MPD RPD ND 0.200 0.208 mg/L 100 75 - 125 0 ND 0.200 0.203 mg/L 102 75 - 125 0 ND 0.200 0.207 mg/L 104 75 - 125 0 ND 0.200 0.210 mg/L 105 75 - 125 0 ND 0.200 0.207 mg/L 104 75 - 125 0 ND 0.200 0.207 mg/L 104 75 - 125 0 ND 0.200 0.210 mg/L 105 75 - 125 0 ND 0.200 0.202 mg/L 101 75 - 125 1 ND 0.200 0.202 mg/L 101 75 - 125 1 ND 0.0500 0.0500 0.0514 mg/L 103

TestAmerica Buffalo

12/23/2015

RL

Client Sample ID: Method Blank

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-280212/1-A

Matrix: Water

Analysis Batch: 280373

MB MB

Analyte NO Mercury

Result Qualifier 0.00020

MDL Unit 0.00012 mg/L

Prepared 12/17/15 09:20 12/17/15 14:11

Analyzed

Dil Fac

Prep Type: Total/NA

Prep Batch: 280212

Prep Type: Total/NA

Prep Batch: 280212

Lab Sample ID: LCS 480-280212/2-A

Matrix: Water

Analysis Batch: 280373

Analyte Mercury

Spike Added 0.00667

Spike

Added

0.00667

Result Qualifier 0.00657

LCS LCS

LCSD LCSD

0.00667

Result Qualifier

ma/L

Unit

mg/L

%Rec

%Rec

100

%Rec. Limits

80 - 120

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

80 - 120

Lab Sample ID: LCSD 480-280212/3-A

Matrix: Water Analysis Batch: 280373

Analyte

Mercury

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 280212

%Rec. **RPD** Limits RPD Limit

2

20

Lab Sample ID: MB 480-280079/1-E

Matrix: Water

Analysis Batch: 280578

MB MB

Result Qualifier Analyte Mercury

RL MDL Unit 0.00020 0.00012 mg/L

Prepared 12/18/15 08:50 12/18/15 14:02

Analyzed Dil Fac

Prep Type: Dissolved

Prep Batch: 280453

Client Sample ID: Lab Control Sample **Prep Type: Dissolved**

Prep Batch: 280453

Lab Sample ID: LCS 480-280079/2-E Matrix: Water

Analysis Batch: 280578

Analyte Mercury

Spike Added 0.00667

LCS LCS Result Qualifier 0.00703

Unit mg/L

D %Rec 105

%Rec. Limits 80 - 120

Client Sample ID: SW-2 **Prep Type: Dissolved**

Prep Batch: 280453

Client Sample ID: SW-2

Prep Type: Dissolved

Lab Sample ID: 480-92740-2 MS **Matrix: Surface Water**

Analysis Batch: 280578

Analyte Mercury Sample Sample Result Qualifier ND

Spike Added 0.00667

0.00667

MS MS Result Qualifier 0.00690

Unit mg/L

Unit

mg/L

%Rec

%Rec. Limits 80 - 120

Lab Sample ID: 480-92740-2 MSD

Matrix: Surface Water

Analysis Batch: 280578 Sample Sample Result Qualifier Analyte Mercury ND

MSD MSD Spike Added

Result Qualifier 0.00705

%Rec 106

Prep Batch: 280453 %Rec. Limits 80 - 120

RPD RPD Limit

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-280443/1 **Matrix: Water**

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 280443

Analyte

MB MB RL Result Qualifier **MDL** Unit Prepared **Analyzed** Dil Fac 10.0 12/18/15 06:46 ND 4.0 mg/L **Total Dissolved Solids**

Lab Sample ID: LCS 480-280443/2 **Matrix: Water**

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 280443

%Rec. Spike LCS LCS Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 502 491.0 mg/L 98 85 - 115

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

GC/MS VOA

Analysis Batch:	280164
------------------------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Total/NA	Surface Water	624	
480-92740-3	SW-3	Total/NA	Surface Water	624	
480-92740-4	TRIP BLANK	Total/NA	Water	624	
LCS 480-280164/5	Lab Control Sample	Total/NA	Water	624	
MB 480-280164/7	Method Blank	Total/NA	Water	624	

Analysis Batch: 280428

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SW-2	Total/NA	Surface Water	624	
Lab Control Sample	Total/NA	Water	624	
Method Blank	Total/NA	Water	624	
	SW-2 Lab Control Sample	SW-2 Total/NA Lab Control Sample Total/NA	SW-2 Total/NA Surface Water Lab Control Sample Total/NA Water	SW-2 Total/NA Surface Water 624 Lab Control Sample Total/NA Water 624

Metals

Filtration Batch: 280079

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Dissolved	Surface Water	FILTRATION	
480-92740-1 MS	SW-1	Dissolved	Surface Water	FILTRATION	
480-92740-1 MSD	SW-1	Dissolved	Surface Water	FILTRATION	
480-92740-2	SW-2	Dissolved	Surface Water	FILTRATION	
480-92740-2 MS	SW-2	Dissolved	Surface Water	FILTRATION	
480-92740-2 MSD	SW-2	Dissolved	Surface Water	FILTRATION	
480-92740-3	SW-3	Dissolved	Surface Water	FILTRATION	
LCS 480-280079/2-C	Lab Control Sample	Dissolved	Water	FILTRATION	
LCS 480-280079/2-E	Lab Control Sample	Dissolved	Water	FILTRATION	
MB 480-280079/1-C	Method Blank	Dissolved	Water	FILTRATION	
MB 480-280079/1-E	Method Blank	Dissolved	Water	FILTRATION	

Prep Batch: 280099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Dissolved	Surface Water	3005A	280079
480-92740-1 MS	SW-1	Dissolved	Surface Water	3005A	280079
480-92740-1 MSD	SW-1	Dissolved	Surface Water	3005A	280079
480-92740-2	SW-2	Dissolved	Surface Water	3005A	280079
480-92740-3	SW-3	Dissolved	Surface Water	3005A	280079
LCS 480-280079/2-C	Lab Control Sample	Dissolved	Water	3005A	280079
MB 480-280079/1-C	Method Blank	Dissolved	Water	3005A	280079

Prep Batch: 280142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Total/NA	Surface Water	3005A	
480-92740-2	SW-2	Total/NA	Surface Water	3005A	
480-92740-3	SW-3	Total/NA	Surface Water	3005A	
LCS 480-280142/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-280142/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	
MB 480-280142/1-A	Method Blank	Total/NA	Water	3005A	

Pren Batch: 280212

Prep Batch: 280212					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Total/NA	Surface Water	7470A	

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Metals (Continued)

Prep	Batch:	280212	(Continued)
------	--------	--------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-2	SW-2	Total/NA	Surface Water	7470A	
480-92740-3	SW-3	Total/NA	Surface Water	7470A	
LCS 480-280212/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 480-280212/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
MB 480-280212/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 280373

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SW-1	Total/NA	Surface Water	7470A	280212
SW-2	Total/NA	Surface Water	7470A	280212
SW-3	Total/NA	Surface Water	7470A	280212
Lab Control Sample	Total/NA	Water	7470A	280212
Lab Control Sample Dup	Total/NA	Water	7470A	280212
Method Blank	Total/NA	Water	7470A	280212
	SW-1 SW-2 SW-3 Lab Control Sample Lab Control Sample Dup	SW-1 Total/NA SW-2 Total/NA SW-3 Total/NA Lab Control Sample Total/NA Lab Control Sample Dup Total/NA	SW-1 Total/NA Surface Water SW-2 Total/NA Surface Water SW-3 Total/NA Surface Water Lab Control Sample Total/NA Water Lab Control Sample Dup Total/NA Water	SW-1 Total/NA Surface Water 7470A SW-2 Total/NA Surface Water 7470A SW-3 Total/NA Surface Water 7470A Lab Control Sample Total/NA Water 7470A Lab Control Sample Dup Total/NA Water 7470A

Prep Batch: 280453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Dissolved	Surface Water	7470A	280079
480-92740-2	SW-2	Dissolved	Surface Water	7470A	280079
480-92740-2 MS	SW-2	Dissolved	Surface Water	7470A	280079
480-92740-2 MSD	SW-2	Dissolved	Surface Water	7470A	280079
480-92740-3	SW-3	Dissolved	Surface Water	7470A	280079
LCS 480-280079/2-E	Lab Control Sample	Dissolved	Water	7470A	280079
MB 480-280079/1-E	Method Blank	Dissolved	Water	7470A	280079

Analysis Batch: 280488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Total/NA	Surface Water	6010C	280142
480-92740-2	SW-2	Total/NA	Surface Water	6010C	280142
480-92740-3	SW-3	Total/NA	Surface Water	6010C	280142
LCS 480-280142/2-A	Lab Control Sample	Total/NA	Water	6010C	280142
LCSD 480-280142/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	280142
MB 480-280142/1-A	Method Blank	Total/NA	Water	6010C	280142

Analysis Batch: 280578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Dissolved	Surface Water	7470A	280453
480-92740-2	SW-2	Dissolved	Surface Water	7470A	280453
480-92740-2 MS	SW-2	Dissolved	Surface Water	7470A	280453
480-92740-2 MSD	SW-2	Dissolved	Surface Water	7470A	280453
480-92740-3	SW-3	Dissolved	Surface Water	7470A	280453
LCS 480-280079/2-E	Lab Control Sample	Dissolved	Water	7470A	280453
MB 480-280079/1-E	Method Blank	Dissolved	Water	7470A	280453

Analysis Batch: 280641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Dissolved	Surface Water	6010C	280099
480-92740-1 MS	SW-1	Dissolved	Surface Water	6010C	280099
480-92740-1 MSD	SW-1	Dissolved	Surface Water	6010C	280099
480-92740-2	SW-2	Dissolved	Surface Water	6010C	280099
480-92740-3	SW-3	Dissolved	Surface Water	6010C	280099

TestAmerica Buffalo

M

6

9

10

13

14

QC Association Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Metals (Continued)

Analysis Batch: 280641 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-280079/2-C	Lab Control Sample	Dissolved	Water	6010C	280099
MB 480-280079/1-C	Method Blank	Dissolved	Water	6010C	280099

General Chemistry

Analysis Batch: 280443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92740-1	SW-1	Total/NA	Surface Water	SM 2540C	
480-92740-2	SW-2	Total/NA	Surface Water	SM 2540C	
480-92740-3	SW-3	Total/NA	Surface Water	SM 2540C	
LCS 480-280443/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-280443/1	Method Blank	Total/NA	Water	SM 2540C	

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Lab Sample ID: 480-92740-1

Matrix: Surface Water

Client Sample ID: SW-1 Date Collected: 12/15/15 15:30

Date Received: 12/16/15 01:30

David Trans	Batch	Batch	Dun	Dilution	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type	Туре	Method	Run	Factor			Analyst	
Total/NA	Analysis	624		1	280164	12/17/15 11:41	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			280079	12/16/15 13:45	KJ1	TAL BUF
Dissolved	Prep	3005A			280099	12/18/15 07:10	CMM	TAL BUF
Dissolved	Analysis	6010C		1	280641	12/18/15 17:03	SLB	TAL BUF
Total/NA	Prep	3005A			280142	12/17/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	280488	12/17/15 13:12	AMH	TAL BUF
Dissolved	Filtration	FILTRATION			280079	12/16/15 13:45	KJ1	TAL BUF
Dissolved	Prep	7470A			280453	12/18/15 08:50	TAS	TAL BUF
Dissolved	Analysis	7470A		1	280578	12/18/15 14:07	TAS	TAL BUF
Total/NA	Prep	7470A			280212	12/17/15 09:20	TAS	TAL BUF
Total/NA	Analysis	7470A		1	280373	12/17/15 14:36	TAS	TAL BUF
Total/NA	Analysis	SM 2540C		1	280443	12/18/15 06:46	CDC	TAL BUF

Client Sample ID: SW-2

Date Collected: 12/15/15 15:00 Date Received: 12/16/15 01:30 Lab Sample ID: 480-92740-2

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	280428	12/19/15 17:13	JWG	TAL BUF
Dissolved	Filtration	FILTRATION			280079	12/16/15 13:45	KJ1	TAL BUF
Dissolved	Prep	3005A			280099	12/18/15 07:10	CMM	TAL BUF
Dissolved	Analysis	6010C		1	280641	12/18/15 17:29	SLB	TAL BUF
Total/NA	Prep	3005A			280142	12/17/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	280488	12/17/15 13:15	AMH	TAL BUF
Dissolved	Filtration	FILTRATION			280079	12/16/15 13:45	KJ1	TAL BUF
Dissolved	Prep	7470A			280453	12/18/15 08:50	TAS	TAL BUF
Dissolved	Analysis	7470A		1	280578	12/18/15 14:08	TAS	TAL BUF
Total/NA	Prep	7470A			280212	12/17/15 09:20	TAS	TAL BUF
Total/NA	Analysis	7470A		1	280373	12/17/15 14:43	TAS	TAL BUF
Total/NA	Analysis	SM 2540C		1	280443	12/18/15 06:46	CDC	TAL BUF

Client Sample ID: SW-3

Date Collected: 12/15/15 16:00

Date Received: 12/16/15 01:30

Lab	Sampl	e ID:	480-92	740-3
		. 4 - 1	0	181-4

Matrix: Surface Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	280164	12/17/15 12:37	NMD1	TAL BUF
Dissolved	Filtration	FILTRATION			280079	12/16/15 13:45	KJ1	TAL BUF
Dissolved	Prep	3005A			280099	12/18/15 07:10	CMM	TAL BUF
Dissolved	Analysis	6010C		1	280641	12/18/15 17:32	SLB	TAL BUF
Total/NA	Prep	3005A			280142	12/17/15 07:35	CMM	TAL BUF
Total/NA	Analysis	6010C		1	280488	12/17/15 13:18	AMH	TAL BUF
Dissolved	Filtration	FILTRATION			280079	12/16/15 13:45	KJ1	TAL BUF

Lab Chronicle

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Lab Sample ID: 480-92740-3

Matrix: Surface Water

Client Sample ID: SW-3 Date Collected: 12/15/15 16:00

Date Received: 12/16/15 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			280453	12/18/15 08:50	TAS	TAL BUF
Dissolved	Analysis	7470A		1	280578	12/18/15 14:15	TAS	TAL BUF
Total/NA	Prep	7470A			280212	12/17/15 09:20	TAS	TAL BUF
Total/NA	Analysis	7470A		1	280373	12/17/15 14:45	TAS	TAL BUF
Total/NA	Analysis	SM 2540C		1	280443	12/18/15 06:46	CDC	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 12/15/15 00:00

Lab Sample ID: 480-92740-4 Matrix: Water

10

Date Received: 12/16/15 01:30

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
-	Total/NA	Analysis	624		1	280164	12/17/15 13:05	NMD1	TAL BUF

Page 26 of 31

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program	E	EPA Region	Certification ID	Expiration Da		
New York	NELAP	2	2	10026	03-31-16		
The following analyte:	are included in this report	, but certification is not off	fered by the go	overning authority:			
The following analyte: Analysis Method	s are included in this report. Prep Method	, but certification is not off Matrix	fered by the go Analyte				
			Analyt				

3

4

5

6

7

8

10

11

12

44

H.

Method Summary

Client: Town of Dewitt Project/Site: Town of Dewitt TestAmerica Job ID: 480-92740-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SV/846	TAL BUF
7470A	Mercury (CVAA)	SV/846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

0

6

7

8

-

12

13

114

LL:

Sample Summary

Matrix

Water

Surface Water

Surface Water

Surface Water

Client: Town of Dewitt Project/Site: Town of Dewitt

Client Sample ID

SW-1

SW-2

SW-3

TRIP BLANK

Lab Sample ID

480-92740-1

480-92740-2

480-92740-3

480-92740-4

TestAmerica Job ID: 480-92740-1

Collected

12/15/15 15:30 12/16/15 01:30

12/15/15 15:00 12/16/15 01:30

12/15/15 16:00 12/16/15 01:30

12/15/15 00:00 12/16/15 01:30

3

		ó			
			,		
	,		ŝ		

Received

100	0	93	ï	16	
		-			

l,	ä	ľ			
				ă	

	B	
	×	н
		а.

Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER BY EVERONMENTAL TESTING

Client Information	Sampler:	low	1mger -8415	Joh	PM: nnson, O	rlette S			COC No: 480-74702-14484.1							
Client Contact	Phone:	00.	DIST	E-M										Page:		
Michael Moracco	1 4(3	136	-24(7	orle	ette.john:	son@te	estame	encaine	c.com					Page 1 of 1		
Company: Town of Dewitt								Ar	alysis F	Reque	sted			JOD #		
Address: 5400 Butternut Drive	Due Date Request	ed:			5					1			979 487	Preservation Co	odes: M - Hexane	
City: East Syracuse	TAT Requested (d	ays):												B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip: NY, 13057							2							D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2SO3	
Phone: 315-446-3428(Tel)	Po#. Purchase Orde	not require	d		0	- Filtered	OA - 824	ds						G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrai	be.
Email: mmoracco@townofdewitt.com	WO #:				No.	tale - F	lat - v	ed Solids				Custody	9	I - loe J - DI Water K - EDTA	U - Acetone V - MCAA W - ph 4-5	
Project Name: Town of Dewitt/ Event Desc: Surfacewater - Quarterly (3,6,9,12)	Project #: 48009871				16 (Ye	Pollutant Metals	Pollutant List - VOA	Dissolved	Filtered			of Cu	ntaine	J - DI Water K - EDTA L - EDA Other:	Z - other (specify)	
Site: New York	SSOW#:				Semi		ity Pol	- Total C				rie l	0	Other:		
		Sample	Sample Type (C=comp,	Matrix (W-mater, 9-solid, O-mastrioli,	old Filtered		624 5ml - Priority	C_Calcd	7470A - Meroury			480-92740 C	Total Number			
Sample Identification	Sample Date	Time	G=grab) s	BT=Tissue, A=Ai		5 2 92 83				- 1 2 1		4 ² 4 ²	L ^o	Special I	nstructions/Note:	
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-Preserval	Child by wide	Y	N D	Α,	N	N.	347			X	<u>ar</u>		_
SW-1	12-15-15	1.530	6	Water	11	XX	$\forall X$	X					1/2			
SW-2	12-15-15	1500	6	Water	11	X.	XX	X	K				100			
SW-3	12-15-15	1600	6	Water		X	XX	X	L				10 pm			
Trip Blank			G	LAB			X						5	_ >		
					11		_					11		an	<u></u>	_
					#	n			\rightarrow	+	+++			Alban	480501	
					(++)	//	1		+	-		+		_ ~		-
					+	-	F			+		1	500			,
		l	1	65	1	1	=				+			<u> </u>		-
						-										
Possible Hazard Identification					Sa				fee may b	e asse	ssed if sam	ples are	retaine	ed longer than 1	l month)	
Non-Hazard Flammable Skin Irritant Pois Deliverable Requested: I, II, III, IV, Other (specify)	son B Unkr	own	Radiological		Sp		_	Clien	t C Require	Disp ments:	osal By Lab		Archi	ive For	Months	_
Empty Kit Relinquished by:		Date:			Time:		M			_	Method of St	nipment.				_
Relinquished by:	Date/Time:		I	Company	1	Recei	d ship	1111			lc lc	ate/Time:			Company	_
1:2 mollmen	17-15-1	5	1700	TA AL	-B	1	114	M				12-16	115	Orbo	Company	
Relinquished by:	Date/Time:			Company		Serve	d by:				T.	Sate/Time:			Company	
Relinquished by:	Date/Time:			Company		Receive	ed by:				E	Date/Time:			Company	
Custody Seals Intact: Custody Seal No.:	-1					Cooler	Temper	reture(s)	°C and Othe	er Remar	fesc			1.7	#1	

Page 30 of 31

Login Sample Receipt Checklist

Client: Town of Dewitt Job Number: 480-92740-1

Login Number: 92740

List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	TAL	
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	True		
Chlorine Residual checked.	False	LAB TO CHECK RC	