
Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

Town of DeWitt Onondaga County, New York

December 1994

New York State Department of Environmental Conservation

TO:

Earl Barcomb, Director, Bureau of Hazardous Site Control

FROM: SUBJECT: Craig Jackson THRU: Edward R. Belmore, Director, BWRA Dewitt Landfill, Onondaga County (Site No 7-34-012)

Reclassification From Class 2 to Class 4

DATE:

MAR | 4 1995

The Town of Dewitt has completed remedial construction at the Dewitt Landfill inactive hazardous waste site (7-34-012). Remedial work at the site was performed in accordance with the approved contract documents and is now considered complete. A March 1994 Record of Decision recognizes the IRM and requires no further action beyond O&M. At this time, it is proposed to reclassify the site to a class 4, site properly closed, continued management required. The necessary management consists of maintenance on / the cap and stormwater controls, landfill gas monitoring, and periodic groundwater and surface water sampling.

This proposal is based on the facts that: 1) the waste is contained and future leachate generation is minimized with completion of the cap, and 2) groundwater and surface water contamination is presently minimal and is expected to attenuate further through natural degradation.

Attached is the Record of Decision, an updated registry of inactive hazardous waste disposal sites form, and a registry site classification form as justification for the proposed reclassification. O'Brien and Gere is presently finalizing the Operations and Maintenance workplan for the site. When it is completed, the Bureau of Construction Services will be providing a copy for your bureau.

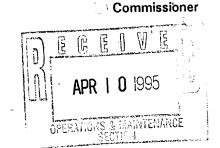
If you have any further questions, please contact Jeff Konsella at 7-5636.

Attachments

cc: w/o att.: C. Branagh, Reg. 7

H. Hamel, DOH Syracuse

C. Jackson bcc:


J. Konsella

G. Harris

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010

MAR 3 1 1995

Town of Dewitt 5400 Butternut Road Dewitt, New York 13214

Dear Sir/Madam:

As mandated by Section 27-1305 of the Environmental Conservation Law (ECL), the New York State Department of Environmental Conservation (NYSDEC) must maintain a Registry of all inactive disposal sites suspected or known to contain hazardous waste. The ECL also mandates that this Department notify the owner of all or any part of each site or area included in the Registry of Inactive Hazardous Waste Disposal Sites as to changes in site classification.

Our records indicate that you are the owner or part owner of the site listed below. Therefore, this letter constitutes notification of change in the classification of such site in the Registry of Inactive Hazardous Waste Disposal Sites in New York State.

DEC Site No.: 734012

Site Name: Dewitt Town Landfill

Site Address: Fisher Road, Dewitt, New York 13214

Classification Change from 2 to 4

The reason for the change is as follows:

Landfill has been capped. Operation and Maintenance (O&M) is necessary to maintain cap and ensure its effectiveness. Some groundwater and surface water indicated slight exceedances of standards, however, they are expected to attenuate since the cap has been completed. Record of Decision signed - No further action beyond capping and O&M.

Enclosed is a copy of the New York State Department of Environmental Conservation, Division of Hazardous Waste Remediation, Inactive Hazardous Waste Disposal Site Report form as it appears in the Registry and Annual Report, and an explanation of the site classifications. The Law allows the owner and/or operator of a site listed in the Registry to petition the Commissioner of the New York State Department of Environmental Conservation for deletion of such site, of the New York State Department of Environmental Conservation regarding such site, by modification of site classification, or modification of any information regarding such site, by submitting a written statement setting forth the grounds of the petition. Such petition may be addressed to:

Michael Zagata Commissioner New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-0001

For additional information, please contact me at (518) 457-0747.

Sincerely,

Robert L. Marino

Chief

Site Control Section

Bureau of Hazardous Site Control

Division of Hazardous Waste Remediation

Marino

Enclosures

bcc:

w/o Enc.

E. Barcomb

R. Marino

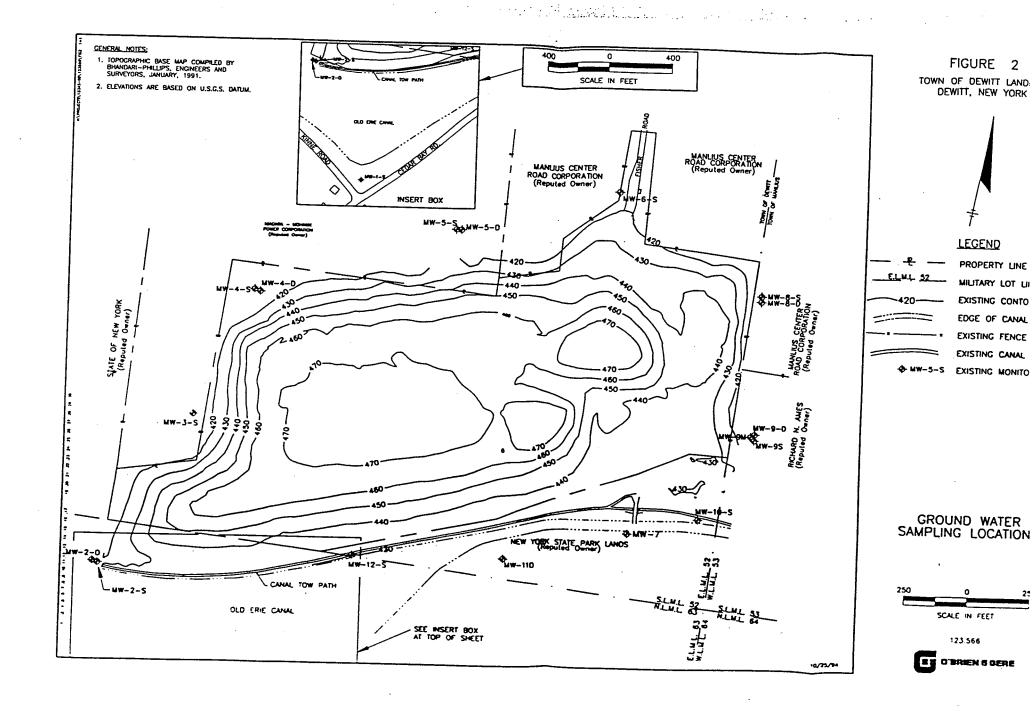
T. Reamon

A. Sylvester

w/Enc. (Copy of Site Report form only)

R. Dana

G. Anders Carlson, NYSDOH


L. Concra

T. Fucillo

C. Branagh, R/7

E. Belmore

AS/srh

THE SHAPE OF THE S

New York State Department of Environmental Conservation

MEMORANDUM

TO:

Gerry Rider, Section Chief, O,M & Support Section, BHWR

FROM:

James Van Hoesen, Section Chief, Central Field Services Section, BHWR

SUBJECT:

Site # 7-34-012, DeWitt Landfill, Onondaga County

DATE:

SEP 0 7 1995

The Town of DeWitt has satisfactorily completed the landfill capping and submitted an acceptable Operation & Maintenance (O&M) Plan for the DeWitt Landfill. This plan has been previously approved by your section. At this time, I am transferring the responsibility for the project to you.

If you have any questions, please call Jim Drumm at 7-7878.

cc:

- J. Strang
- C. Rossi, NYSDEC Region 7
- C. Branagh, NYSDEC Region 7
- H. Hamel, NYSDOH
- G. Litwin, NYSDOH
- C. Jackson

BUREAU CH DIVISION OF HAZARDOUS DIVISION OF HAZARDOUS WASTE REMEDIATION

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Environmental Remediation

Inactive Hazardous Waste Site Operations and Maintenance Review Report

Form Date 96.10,01 Class: 04 Number: 7-34-012 Site Name: Dewitt Town Landfill Y Responsible Party □ Federal Superfund ☐ Municipal ☐ State Superfund O&M Funding Source: Annual Cost: \$ ☐ Estimated O&M Start : 12/93 or 12/94 End: O&M Information: Interim Remedial Measures/Operable Units in O&M Phase: □ Tank Removal □ Drum Removal □ Soil Removal Y Fence/Security □ Containment Structure Y Cap/Cover ☐ Groundwater Recovery/Treatment □ Vapor Extraction/Treatment □ Leachate Collection/Treatment □ Potable Water Supply/System ☐ Treatment/Filtration Plant/System ☐ Air Sparging/Stripper System □ Other: Institutional Controls: Y Deed Restriction □ Department of Health Sampling □ Discharge Permit ☐ Other: Storm Water permit O&M Review Information: Reports First Quarter 1996 Landfill Monitoring Report, Second Quarter 1996 Landfill Monitoring Report: Inspection: October 24, 1996 Sampling: none Other: Conclusions: Remedy Effective? ☐ No: ☐ Yes Since only 2 quarters of data are available for evaluation, it is not known yet if the remedy is being effective. The approved O&M Manual asks for trend analysis in the annual report due Jan. 1996. At this time Air levels at The vents do not meet the Air Guides for vinyl chloride and benzene. Groundwater analysis shows exceedences for many Metals and VOCs. A leachate-like substance at the SW corner of the landfill was noted in the 1st quarter report. X No: Leachate was possibly seen 3/28/96 ROD Compliance? ☐ Yes Consent Order Compliance? ☐ Yes ☐ No: Other: Recommendations: Have communicated with consultant to ensure proper air sampling. The annual report will be submitted in February 1996. Reclassify the Site? X No ☐ Yes → Class: ROD/Consent Order Modifications? X No ☐ Yes (per above) Comments: The inspection done by the department on October 24, 1996 confirmed the existence of leachate which the consultant noted in their inspection. Previous inspections indicated lack of vegetation along the southern perimeter. This inspection showed evidence of seeding and placement of straw. There was still an area along the fence with no or sparse vegetation, indicating the possibility of gasses escaping from under the cap. Odors were present but could be due to the vents. All other maintenance items seem to be in order. Project Manager Reviewer: Signature / Signature Region/7 (315) 426-7551 Charles J. Branagh (315) 426- 7551 Christine T. Rossi Region 7 Region or Bureau Telephone

Region or Bureau

Name

Telephone

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Environmental Remediation

Inactive Hazardous Waste Site Operations and Maintenance Review Report

				Form Date 96.10.0
Site Name: DewittTown La	andfill	Class:	4	Number: 7-34-012
0&M Funding Source:	Y State Superfund	☐ Federal Superfund	Y Municip	al Responsible Party
O&M Information: O&N	M Start: 12/94:	End:	Annual Co	ost: \$
	☐ So ☐ Co ery/Treatment ☐ Le r System ☐ Tr Y Deed Restriction 1: Quarterly 1997 Reports	oil Removal containment Structure eachate Collection/Treatment eatment/Filtration Plant/Syster Discharge Permit and 1996 Annual Report (sub	Y Fenc	k Removal ce/Security or Extraction/Treatment able Water Supply/System epartment of Health Sampling
nspection: Sampling: Other:				
Conclusions: Remedy Effective? Y \				
ROD Compliance? Y \				
Recommendations: C	Change Annual Review	date to April- (Next Annual renine if sheen seen has compor	view will be d	one in April 98) ndfill.
ROD/Consent Order Mod	lifications? N No □	Yes (per above) Reclassify	y the Site?	N No □ Yes → Class:
Project Manager:		Reviewer:	0	

NEWYORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation Operation Maintenance and Monitoring Review Report

Period covered by -- 2003

e / Spill Number: 7340)12		Site Name: [Dewitt Town Landfill	Class	s: 04	
Program Lead: Hazardous	Waste Progra	ım		OM&M Funding Source:	Reponsible Party		
Start Date: 01/01/2	2001	ACT					
Annual IC/EC Certificatio	n:					-	
DEC Inspection Date:	02/23/2003	La	ast Date of DEC	Inspection	•	* :	
Report Used for Evaluation	: 1st Qtr 200	02, 2001 Annual					
ROD Compliance? YES			Consei	nt order/Decree Compli	ance? NO		
LongTerm Monitoring(effec	tiveness of r	remedy): Yes	Frequency	y: Quarterly	Act. Date: 02/27/20)03	
Treatment System(Monitorin	ng performa	nce of remedy):	es Frequenç	y: Annually	Pln. Date: //	#we	lls: 18
PROBLEM STATUS: 99)B			·	None		
Evaluation :				· · · · · · · · · · · · · · · · · · ·			**
The Remedy is performing pro	perly and eff	fectiveness will be e	valuated				
DEC needs to respond to outst these subjects does not exist in have gone from quarterly to ar turbidity. The three surface w	n Central Off nnual. Some	ice files. GW sampl locations exceed Sta	ling has changed andards & guida	from the schedule presente nce for arsenic, chromium,	d in the 1994 OM&M	1 Manual, and	d appears to
ROD/Consent Order Modifica	tions?	NO					
reclassification recommer	nded :	None					
ataminent of concern	OU	Contaminent	of concern	Media/Receptor			
	01	TETRACHLORO	DETHYLENE				
	01	EMISSION CON	TROL				
	01	PAINT SLUDGE	ES & SOLIDS				
	01	TOLUENE					
	01	2-BUTANONE (A.K.A.		- 1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		
Remedies	OU	Remedies	5	.Size of Treatment		Date in Place	Remedy Effective
	01	No Action				/ /	Yes
	01	Soil Cover Cap		Large (>50 gpm or >30 a	acres)	03/01/1994	Yes
	01	Plume MAnagem	nent Monitoring	Large (>50 gpm or >30 a	acres)	03/01/1992	Yes

Nevt Review 0	4/01/2004		Priority: 0		
ct Manager Rossi		Reviewer: James Burke (R7)			
Signature	Date		Signature	,	Date
Name	Region or Bureau	Telephone	Name	Region or Bureau	Telephone

Report: Ommrpt1b.frx

OM Certified
All Data Entered

NYS DEC - Division of Environmental Remediation Site Remediation Project Report

Prog Code:

DER Code: Site Name:

Region: County:

Class:

734012

001348

Dewitt Town Landfill

7 Onondaga 04

Address: Fisher Road

City: Dewitt

Zip:13214

OU IRM

01

OU Desc:

Program:

REMEDIAL PROGRAM

HW

Project Type:

Fund: Start Date:

End Date:

Manager:

Current Status:

Site Characterization

01/01/1986 ACT R

01/01/1987 ACT

Rem. Investigation

Т 09/01/1991 ACT 03/01/1994 ANF

KONSELLA

Site is next to the Erie Canal and recreational areas. Potential threats exist to the Canal and for human exposure to leachate outbreaks. One leachate seep has flowed accross a bike/hiking trail under high flows. A col- lection manhole was installed on June 30, 1991 to control this seep. The Town awarded a \$6.8 million contract in '92 to Tug Hill Const. for the IRM capping work. Work was completed in Jul. '94. A ROD was completed Mar. '94selecting a no further action beyond IRM capping. The site was reclassed to Class 4 in March, 1995.

OM&M

R 01/01/2001 ACT 01/01/2005 PLN

CUIPYLO

Groundwater sampling appears to have been changed from quarterly to annual. Some locations continue to exceed standards for arsenic, chromium, lead, zinc, vinyl chloride, cis-1,2-DCE, and turbidity. The 3 SW points are still sampled quarterly. The site's air sampling program is currently under review for protocols and frequency. Although the periodic reports are short on discussion, it appears air monitoring has been suspended pending a decision from DEC.

Reclass Pkg.

11

11

OU IRM 01 Α

OU Desc: IRM CAPPING

Program:

HW

Project Type:

Fund: Start Date:

End Date:

Manager:

Current Status:

Rem. Design

04/01/1991 ACT

03/01/1992 ACT

KONSELLA

Reclass package will be tracked on RA sheet for OU 1. This is a closed municipal landfill owned and operated by the Town of Dewitt. The EQBA consent order requires 360 capping be constructed as an IRM. Construction began the end of Sept. Construction is complete.

Rem. Action

08/01/1992 ACT

12/01/1993 ACT

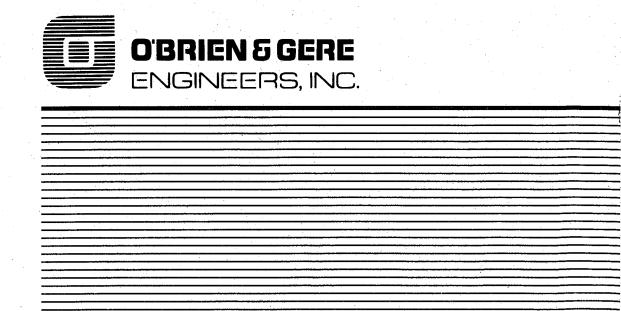
DRUMM

Reclass package will be tracked on RA sheet for OU 1. This is a closed municipal landfill owned and operated by the Town of Dewitt. The EQBA consent order requires 360 capping be constructed as an IRM. Construction began the end of Sept. Construction is complete.

OM&M

ROSSI

Reclass package will be tracked on RA sheet for OU 1. This is a closed municipal landfill owned and operated by the Town of Dewitt. The EQBA consent order requires 360 capping be constructed as an IRM. Construction began the end of Sept. Construction is complete.


***** End of Site *****

1

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

Town of DeWitt Onondaga County, New York

December 1994

Final Report

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

Town of DeWitt Onondaga County, New York

Town Board

James D. Fisher, Supervisor

Kenneth C. Andrews
Kelly Dellas
Joseph Simonetta
Elaine Lytel
Joan W. Schroder
James L. Guyette

Marion L. Dean, Town Clerk Richard T. Robb, Landfill Officer Donald A. Greenwood, Town Attorney December 1994

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS HE IS ACTING-UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

1 lichard Stolceski

Michael S. Kolceski, P.E. Vice President

Contents

1.	Introduction	1
	1.1. General	1
	1.2. Project description	1
2.	Environmental monitoring activities	5
	2.1. Ground water monitoring	5
	2.1.1. Location and type	5
	2.1.2. Sampling and sample preservation methodology .	6
	2.1.3. Historical analytical data	8
	2.2. Surface water monitoring	8
	2.2.1. Location and type	8
	2.2.2. Sampling and sample preservation methodology .	9
	2.2.3. Historical analytical data	10
	2.3. Air Monitoring	10
	2.3.1. Location and type	10
	2.3.2. Sampling and sample preservation methodology .	11
	2.4. Recordkeeping and reporting	11
3.	Environmental control systems	13
	3.1. Low permeability cover system	13
	3.1.1. Description	13
	3.1.2. Inspection and maintenance	13
	3.1.3. Recordkeeping	14
	3.2. Gas venting system	14
	3.2.1. Description	14
	3.2.2. Inspection and maintenance	15
	3.2.3. Recordkeeping	15
	3.3. Surface water drainage system	15
	3.3.1. Description	15
	3.3.2. Maintenance requirements	16
	233 Recordkeeping	16

4.	Miscellaneous site maintenance	17
	 4.1. Site fencing and security 4.2. Access road 4.3. Service road 4.4. Penetrations of the flexible membrane cover 	17 17 18 18
5.	Resource requirements	19
	5.1. Personnel 5.2. Equipment	19 19
6.	Contingency plan	21
	 6.1. Major erosion problems 6.2. Significant differential settlement 6.3. Fire 6.4. Leachate outbreaks 	21 21 22 22
7.	Planned uses	23
8.	Contacts	25
9.	Stormwater pollution prevention plan	27
	9.1. Description of potential pollutant sources 9.1.1. Drainage 9.1.2. Inventory of exposed materials 9.1.3. Spills and leaks 9.1.4. Sampling data 9.1.5. Risk identification and potential sources 9.2. Measures and controls 9.2.1. Description 9.2.2. Preventive maintenance and inspection 9.2.3. Non-storm water discharges 9.2.4. Sediment and erosion control 9.2.5. Management of runoff	27 27 27 28 28 28 29 29 29 29 29
	9.3. Comprehensive site compliance evaluation	30

Appendixes

- A. 1990 Consent Order
- B. Quality assurance/quality control plan (for construction repairs) (separately bound)
- C. Health and safety plan (separately bound)
- D. Contract specifications (separately bound)
- E. Record drawings (separately bound)
- F. Citizen participation plan
- G. Record of Decision
- H. Ground water sampling field log
- I. Surface water sampling field log
- J. Inspection checklist
- K. Notice of intent for Storm Water Discharges
- L. Historical Ground Water Analytical Data
- M. Historical Surface Water Analytical Data
- N. Air Sampling Field Log

Figures

- 1. Location plan
- 2. Ground water sampling locations
- 3. Surface water sampling locations
- 4. Drainage area plan

1. Introduction

1.1. General

This document has been prepared in accordance with 6 NYCRR Part 360-2.15(k)(7) for the Town of DeWitt Landfill. The document provides information needed to effectively monitor and maintain the facility for the post-closure period. Information on the environmental monitoring program for the site, environmental controls for the landfill, maintenance activities for the site, post-closure resource requirements, a contingency plan, contact personnel, and planned land uses throughout the post-closure period is presented.

1.2. Project description

The landfill is located in the Town of DeWitt, New York approximately 4 miles east of the center of the City of Syracuse. The landfill is bordered on the south by the Old Erie Canal and Cedar Bay Park. A light industrial area is located 0.5 miles north and residential areas are located within 0.5 miles northeast, south and west of the landfill. The landfill itself is approximately 56 acres in size. The landfill is shown on the Location Plan included as Figure 1. The landfill received municipal and industrial waste from the 1950s until June 26, 1987. Construction and demolition (C&D) material was accepted at the landfill until May 4, 1990.

In 1983, an Administrative Order on Consent (Consent Order) was executed between the Town of DeWitt and the New York State Department of Environmental Conservation (NYSDEC). As part of the Consent Order, a landfill Closure Plan was prepared by O'Brien

& Gere Engineers, Inc. (O'Brien & Gere Engineers), on behalf of the Town of DeWitt and submitted to NYSDEC in 1984.

In 1985, based on review of the Closure Plan, NYSDEC requested that a Phase II Investigation be completed at the landfill. Based on the results of the Phase II Investigation, the landfill was reclassified by the NYSDEC from "Class 2a" to "Class 2" in April 1990. Because of this Class 2 designation, a second Consent Order was executed on October 17, 1990 between the Town of DeWitt and NYSDEC. The 1990 consent order is included herein as Appendix A.

In accordance with Article VI(a) of the 1990 Consent Order, an Interim Remedial Program (IRP) Engineering Report, dated March 1991, was prepared and submitted to NYSDEC. This Report was revised in October 1991. The Report addressed vector migration and control, gas migration and control, and those applicable items identified in 6 NYCRR 360-2.15(i). Companion documents to the IRP Engineering Report, which constitute the complete submittals as specified in the 1990 Consent Order included: Certified Engineering Plans and Specifications, a Quality Assurance/Quality Control (QA/QC) Plan for the construction activities and a Health and Safety Plan. Copies of the QA/QC Plan and Health and Safety Plan are included as Appendixes B and C, respectively. Documents were prepared by O'Brien & Gere Engineers, on behalf of the Town of DeWitt, for the construction of the Interim Closure of the landfill dated June 1992. A copy of the contract specifications is included as Appendix D. The Contract went to bid and construction of the Interim Closure began in September 1992. Construction was completed in 1994. Copies of the Record Drawings are included herein as Appendix D. The Interim Closure consists of the construction of an impermeable landfill cover, passive gas collection system, seeding, fencing, surface water control and collection system, earthwork and other related appurtenances.

In accordance with the 1990 Consent Order, a Remedial Investigation/Feasibility Study (RI/FS) Scoping Document dated May, 1991 was prepared and submitted to NYSDEC. This document was prepared by O'Brien & Gere Engineers, on behalf of the Town of DeWitt, and included a compilation of site history and existing data and identified likely remedial alternatives for the landfill. The Scoping Document was approved by NYSDEC on June 13, 1991. Subsequently, a Work Plan dated June, 1991, specifying the

investigation and tasks for the RI/FS, was prepared by O'Brien & Gere Engineers on behalf of the Town of DeWitt. The RI/FS Work Plan was approved by NYSDEC on September 11, 1991. Included in the RI/FS Work Plan was a Citizen Participation Plan. A copy of the Citizen Participation Plan is included herein as Appendix F. An RI Report dated March, 1993, detailing the results of the RI, was submitted to NYSDEC on April 21, 1993. An FS Report summarizing the RI and presenting the results of the FS, dated January, 1994 was submitted to the NYSDEC and approved on January 18, 1994. The preferred remedial alternative given in the FS Report was ground water and surface water monitoring, deed restrictions, fencing and capping of the landfill with a multi-media cap. An outline for a leachate management system was also given should leachate be encountered in the future.

A Record of Decision was issued in March 1994 by the New York State Department of Environmental Conservation which agrees with the preferred remedial alternative given in the FS Report. A copy of the Record of Decision is included herein as Appendix G.

2. Environmental monitoring activities

The Town of DeWitt will conduct environmental monitoring at the site for the 30-year post-closure period. The environmental monitoring program for the landfill will observe the impacts of the landfill on ground water, surface water and air at the site. This will provide a method of monitoring the performance of the landfill final closure system. A description of the type, location, sampling and sample preservation methodology and recordkeeping and reporting requirements for environmental monitoring activities is presented in the following sections.

The laboratory conducting analysis of the samples must have a QA/QC plan available for review. The QA/QC plan should detail the laboratory's analytical protocols, laboratory QC samples, reporting and deliverables, special analytical protocols, laboratory audits, data audits, etc.

2.1. Ground water monitoring

2.1.1. Location and type

Ground water sampling will be conducted on a quarterly basis at monitoring wells MW-1-S, MW-2-S, MW-2-D, MW-3-S, MW-4-S, MW-4-D, MW-5-S, MW-5-D, MW-6-S, MW-7, MW-8-S, MW-8-D, MW-9-S, MW-9-M, MW-9-D, MW-10-S, MW-11-D and MW-12-S as shown in Figure 2. The samples will be tested for volatile organics in accordance with the U.S. EPA analytical Methods 601 and 602 and priority pollutant metals in accordance with Methods 180 and 102.

2.1.2. Sampling and sample preservation methodology

The following procedure will be used to obtain representative ground water samples from monitoring wells.

On the Ground Water Sampling Field Log (included herein as Appendix H), identify the ground water monitoring well number and denote its field location in the spaces provided. At this time, the sampler should put on a new pair of disposable latex rubber or vinyl gloves. Cut a slit in the center of a plastic sheet, and slip it over the well creating a clean surface onto which the sampling equipment can be positioned.

Using an electric well probe, measure the depth to water table and depth to the bottom of the well. Both measurements must be taken from a common surveyed datum such as the top of riser pipe. Record this information on the Ground Water Sampling Field Log in the spaces provided. These measurements must be taken prior to sampling as they are used to calculate the volume of ground water within the well. The well probe should be cleaned with methanol and rinsed with distilled water prior to use on-site, before insertion into each ground water monitoring well on-site, and after use at the site. Compute the volume of water in the well using the formula provided on the Ground Water Sampling Field Log and record this information in the spaces provided.

Attach an appropriate length of clean polypropylene rope to a clean or dedicated bailer to reach the bottom of the well. Lower the bailer slowly into the well making certain to submerge it only far enough to fill it one-half full. The purpose of this is to recover any oil-film or free-product, if present, on the water table. Pull the bailer out of the well making sure to keep the rope or cable on the plastic sheet. Empty the recovered ground water from the bailer into a clean glass container to observe its appearance. Record the physical appearance of the ground water (color, odor, turbidity, presence of an oil film or free-product) on the Ground Water Sampling Field Log. If a floating product is observed, estimate its thickness and note this on the Ground Water Sampling Field Log in the notes section.

Initiate the bailing process by lowering the bailer to the bottom of the well, making certain to keep the rope or cable on the plastic sheet. All ground water should be poured from the bailer into a container of known volume in order to measure the volume withdrawn from the well.

Continue bailing the well from the top of the water column until a minimum of three (3) well volumes of ground water in the well have been removed, or until the well is bailed dry. If the well is bailed dry, allow sufficient time for the well to recover before sample collection. Record this information on the Ground Water Sampling Field Log. Purged ground water should be dispersed on the ground a minimum of 10' from the well but not directly into any water body and in a location to prevent the water from running back into the well.

Once the ground water monitoring well has been purged (evacuated), ground water samples may be collected. Remove the sample bottles from their transport containers, and prepare the bottles for receiving samples. Sample bottles should be kept cool (approximately 4°C) with their caps on until they are ready to receive samples. Arrange the sampling containers to allow for convenient filling. Always sample for volatile organics first. The samples collected shall be unfiltered.

To minimize agitation of the water in the well, initiate sampling by lowering the bailer or other appropriate sampling device slowly into the well, making certain to submerge it only far enough to fill it completely.

If the sample bottle cannot be filled quickly, keep them cool with the caps on until they are filled. Return each sample bottle to its proper transport container. Samples must not be allowed to freeze.

Record the physical appearance of the ground water observed during sampling on the Ground Water Sampling Field Log in the spaces provided.

After the last sample container has been filled, note the date and time. Place a sample of well water into a clean glass container or the appropriate instrument and measure the pH, specific conductivity and temperature of the ground water following the procedures outlined in the equipment operation manuals. Record these data on the Ground Water Sampling Field Log.

Sample containers should then be labeled (job number, sample location, sample identification, date, time, samplers initials, and if

appropriate, identification of the analyses required) and stored at approximately 4°C in an insulated cooler with ice. Chain-of-Custody documentation will also be initiated and will accompany the samples from the point of collection to laboratory delivery. The sampler must verify that data placed on the Ground Water Sampling Field Log. sample labels and tags are accurately coordinated with data entered on the Chain-of-Custody form. If required by the Chain-of-Custody procedures, the individual sample containers and the sample transport container will be sealed with evidence tape or Chain-of-Custody seals.

Put dedicated sampling equipment back in place (if used). If nondedicated bailers are used the bailer should be decontaminated by cleaning with methanol and rinsing with distilled water. Replace the well cap and lock the well protection assembly before leaving the well location. Place used polypropylene rope, gloves, and plastic sheet into a plastic bag for disposal.

2.1.3. Historical analytical data

Included herein as Appendix L are a summary and tables of the ground water analysis from the Remedial Investigation Report for the Town of DeWitt Landfill.

2.2. Surface water monitoring

2.2.1. Location and type

Surface water sampling will be conducted on a quarterly basis at the three locations shown in Figure 3. All samples will be tested for volatile organics in accordance with the U.S. EPA analytical methods 601 and 602 and priority pollutant metals in accordance with Methods 180 and 102.

2.2.2. Sampling and sample preservation methodology

The following procedures will be used to obtain representative surface water samples.

On the Surface Water Sampling Log (included herein as Appendix I) identify the surface water sampling location and denote its field location in the spaces provided.

Remove the sample bottles from their transport containers, and obtain the surface water sample. The sampler should stand downstream of the sample location if a current in the sampling stream is noted. Sample bottles should be kept cool (approximately 4°C) with their caps on until they are ready to receive samples. Arrange the sampling containers to allow for convenient filling. Always sample for volatile organics first.

Return each sample bottle to its proper transport container with ice. Samples must not be allowed to freeze.

Record the physical appearance of the surface water observed during sampling on the Surface Water Sampling Field Log in the spaces provided.

After the last sample container has been filled, note the date and time. Place a sample of water into a clean glass container or the appropriate instrument and measure the pH, specific conductivity, turbidity, Eh, dissolved oxygen and temperature of the surface water following the procedures outlined in the equipment operation manuals. Record these data on the Surface Water Sampling Field Log.

Sample containers should then be labeled (job number, sample location, sample identification, date, time, samplers initials, and if appropriate identification of the analyses required) and stored at approximately 4°C in an insulated cooler with ice. Chain-of-Custody documentation will also be initiated, and will accompany the samples from the point of collection to laboratory delivery. The sampler must verify that data placed on Surface Water Sampling Field Log, sample labels and tags are accurately coordinated with data entered on the Chain-of-Custody form. If required by the Chain-of-Custody procedures, the individual sample containers and the sample transport container will be sealed with evidence tape or Chain-of-Custody seals.

2.2.3. Historical analytical data

Included herein as Appendix M are a summary and tables of the surface water analysis from the Remedial Investigation Report for the Town of DeWitt Landfill.

2.3. Air Monitoring

2.3.1. Location and type

Air monitoring will be conducted on a quarterly basis. Ambient air samples for volatile organic compounds (VOCs) and combustible gases will be collected at three downwind perimeter locations and two upwind locations to evaluate off-site VOC and combustible gas contributions. The VOC results will be compared to New York State's Ambient Air Quality Standard (NYS' AAQS) for Hydrocarbons (non-methane) of 0.24 parts per million in air (ppm) (6 NYCRR Part 257-6) and the combustible gas results will be compared to 6 NYCRR Part 360 requirements of 25 percent.

If the results of the ambient air monitoring show the difference between the average upwind and average downwind concentrations exceed applicable standards the sampling will again be performed to determine if the emissions are continuous or intermittent. If the results of the second sampling indicate the ambient air standards are being exceeded a sampling program of the individual vents will be performed. The gas vent samples will be collected in the center of the vent riser from a hole in the riser located two riser diameters below the vent's outlet. Vent sampling shall be conducted to obtain samples which are proportional to the vent's volumetric flow rate. It will be necessary to drill a hole in the vent riser to collect the sample. The VOC and/or combustible gas results will be compared to NYSDEC Air Guide 1 values. The results will be used to develop a landfill gas control system in accordance with 6 NYCRR Part 360-15.

2.3.2. Sampling and sample preservation methodology

The sampler will fill out the air sampling field log included herein as Appendix N. Appropriate instrumentation will be used to record wind direction, wind speed, temperature and barometric pressure. The sample location and canister height will also be noted. Sampling will take place when wind speeds are below 10 MPH, falling barometric pressure and dry or frozen soil conditions exist.

The ambient air VOC samples will be collected in accordance with the United States Environmental Protection Agency (US EPA) Method TO-14 consisting of a whole air sample at each sample location collected inside a stainless steel canister. The canisters will be decontaminated and certified by the supplier prior to sampling. Samples will be collected over a three hour sampling duration from 6:00 am and 9:00 am, as specified in 6 NYCRR Part 257-6 and analyzed for VOC by a gas chromatograph at Enseco-Quantarra Laboratories in West Sacramento, California or other approved laboratory.

Combustible gases will be monitored using a combustible gas meter. Combustible gas monitoring will be conducted in accordance with the National Institute for Occupational Safety and Health's (NIOSH's) Portable Electrochemical Sensor Methods.

If required, gas vent exhaust air samples will be collected for VOC and/or combustible gases. These samples will be sampled and analyzed using the ambient air sampling procedures identified in the above paragraphs.

2.4. Recordkeeping and reporting

Monitoring activities will be performed for a period of thirty years following closure. The Town may request a five year review of the sampling program if the annual report indicates a change is warranted.

An annual report will be prepared to summarize and evaluate results of monitoring activities. The report should note any trends in the monitoring results and indicate the corresponding effectiveness of the landfill closure.

The annual report should be submitted within sixty (60) days of the end of the reporting period. Copies of the annual reports will be kept on file in the Department of Development and Operations and also submitted to the following:

Charlie Branagh/Attn: Chris Rossi Regional Hazardous Waste Engineer New York State Department of Environmental Conservation 615 Erie Boulevard West Syracuse, NY 13204-2400

Gerald J. Rider, Jr.
Chief, Operation, Maintenance and Support Section
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, NY 12233-7010

3. Environmental control systems

Environmental control systems are engineered processes installed at the landfill site as part of closure activities. These processes consist of the final cover system. The final cover system includes a low permeability cover system, a gas collection and venting system and a surface water drainage system. No ground water or leachate collection system is included at the landfill.

3.1. Low permeability cover system

3.1.1. Description

The low permeability cover system consists of the following components:

- Subgrade at minimum slope of 4% and maximum slope of 33%.
- A 40 mil Linearly Low Density Polyethylene (LLDPE) flexible membrane cover (smooth and textured).
- A 24-inch soil barrier protection layer of silty sand (SM), clayey sand (SC) and a combination of SM-SC soil.
- 6-inches of topsoil supporting a vegetative cover.

3.1.2. Inspection and maintenance

Routine inspection of the closed landfill and immediately adjacent areas will be performed monthly during the first year following closure and quarterly thereafter. The inspector will observe the condition of the barrier protection and/or topsoil layer and the vegetative cover. Should areas of minor settlement, erosion, or slope

instability be noted, regrading will be conducted to promote drainage and minimize the percolation of water into the landfill.

No deep rooting shrubs, brush, or trees will be allowed to establish on the cover. Periodic mowing of the vegetative cover will be done to help prevent this from occurring. If visual observation indicates that deep rooting vegetation has established on the cover, a program to control this vegetation will be implemented. The routine cover inspection should also note any problems with thinning of vegetation. Areas which appear to be thinning out over time will require overseeding to keep the vegetative cover as dense and uniform as possible.

The inspector will also look for signs of burrowing animals. If such animals are detected they will be removed from the site.

Evidence of major problems, such as defective gas venting causing flexible membrane cover expansion, will be noted and remedied as the need dictates.

3.1.3. Recordkeeping

The inspector of the cover system will fill out the inspection checklist included in Appendix J upon completion of the inspection. The inspection checklist will be kept on file at the Town and copies of the checklist for each quarter should be included in the Annual Report (see Section 2.4).

3.2. Gas venting system

3.2.1. Description

The gas venting system consists of the following components.

- Composite geonet underlaying the flexible membrane cover.
- Gas collection sumps.

Gas discharge vents

3.2.2. Inspection and maintenance

Routine inspection of the gas discharge vents will be performed monthly during the first year following closure and quarterly thereafter. The inspector will observe the vents for obstruction of the outlet, overall condition of the vent and position of the vent.

Should the outlet of the vent be obstructed the obstruction will be removed. If the vent is leaning severely the condition of the connection to the flexible membrane cover shall be determined to verify its integrity has been maintained. Any problems or deficiencies shall be corrected as necessary.

3.2.3. Recordkeeping

The inspector of the gas discharge vents will fill out the Inspection Checklist included in Appendix J upon completion of the inspection. The inspection checklist will be kept on file at the Town.

3.3. Surface water drainage system

3.3.1. Description

The surface water drainage system consists of the following components:

- Composite geonet overlaying the flexible membrane cover
- Grass and rip-rap lined collection ditches
- Unlined, rip-rap and erosion control mat lined sideslope diversion swales
- Rip-rap lined downchutes

• Storm sewer system, including Service Road culverts.

3.3.2. Maintenance requirements

Routine inspection of the surface water drainage system (excepting the geonet) will be performed monthly during the first year following closure and quarterly thereafter. The inspector will observe the condition of the various ditches, swales and downchutes. Should erosion be noted it will be repaired as necessary. The storm sewer system will be inspected for blockage of inlets and outlets and, if blockages are noted they will be removed. Storm sewer cleaning of debris will be scheduled as necessary.

3.3.3. Recordkeeping

The inspector of the surface water drainage system will fill out the Inspection Checklist included in Appendix J upon completion of the inspection. The inspection checklist will be kept on file at the Town and copies of the checklist for each quarter should be included in the annual report. (See Section 2.4)

4. Miscellaneous site maintenance

4.1. Site fencing and security

Access to the DeWitt Landfill is controlled by two gates on Fisher Road, one approximately 0.5 miles north of the site and the other at the northern perimeter of the site. An eight-feet high chain link fence runs along the southern perimeter of the site and has a gate near the eastern end. The integrity of the fence and gates shall be inspected visually at the same frequency as inspection of the landfill cover. The structural integrity of the fencing system shall be verified and breaches or weaknesses shall be repaired.

The site shall be posted with "No Trespassing" signs and the gate shall be secured with a lock. The Commissioner of the Department of Development and Operations shall retain the key for access to the site.

4.2. Access road

The access road is Fisher Road and ends at the gate to the landfill site. During routine inspections, the inspector will inspect the access road and look for rutting, potholes, or settlement. Should these conditions be observed they will be corrected by filling and regrading. During the winter, the road will be plowed as needed to facilitate access for inspections and routine sampling of ground water monitoring wells. Snow banks resulting from plowing will be arranged to promote off-site drainage when thawing occurs.

4.3. Service road

The service road includes all roads beyond the south gate at the end of Fisher Road. The landfill perimeter service road permits ready access to the various locations of the site. It is a crushed stone roadway and will be inspected for problems or deficiencies during landfill cover inspections. Repairs to the service road will be made as appropriate to allow ease of access.

4.4. Penetrations of the flexible membrane cover

Due to the potential for flexible membrane cover punctures that may be caused by placement of poles, posts, stakes, etc., such activity shall be strictly prohibited.

5. Resource requirements

5.1. Personnel

The Commissioner of Development and Operations of the town of DeWitt will be responsible for maintenance and inspection activities related to the landfill closure. The Town currently has and will maintain a sufficient manpower level to undertake these activities. It is estimated inspection activities will require one to two people on a quarterly basis for a one day period. Maintenance activities such as mowing of the cover, repair of erosion problems, etc. is not expected to require crews of more than three or four people on an as needed basis.

The Town of DeWitt will contract monitoring activities to a qualified company. The company which is responsible for monitoring will be expected to maintain sufficient manpower. It is estimated sampling activities will require one to two people on a quarterly basis for a one day period.

All personnel who will be on the site will be expected to have completed appropriate hazardous waste safety training, as required under OSHA and State regulations.

5.2. Equipment

Equipment requirements for normal maintenance activities will be minimal. In general the only equipment required will be tractors with lawn mowers, small trucks and hand-held brush cutters. Equipment for these activities are currently owned by the Town of DeWitt.

AIR MONTTORING

6. Contingency plan

The following sections outline the Contingency Plan for possible problems which may occur at the DeWitt Landfill. In any of the situations discussed below the New York State Department of Environmental Conservation will immediately be notified of the problem and efforts to correct it. All necessary repairs should be performed using the Contract Documents as guidance.

6.1. Major erosion problems

Should major erosion problems occur, the integrity of the landfill cover system including the flexible membrane cover composite geonet and gas vents will be inspected and repaired as necessary. The barrier protection layer, topsoil and vegetative cover will be reestablished. The Town of DeWitt Highway Department has the personnel and equipment necessary to undertake all work except repair of the flexible membrane cover and composite geonet. The repair of these components will be done by a qualified private contractor.

6.2. Significant differential settlement

Should significant differential settlement occur, the cover system in the effected area shall be removed and clean fill placed to restore the area to original grade. The cover system will then be reinstalled by a qualified private contractor. If required, the cover components will be repaired to provide the required function (i.e, drainage, gas venting, and imperviousness).

6.3. Fire

Should a fire occur, the DeWitt Fire Department shall be immediately notified to contain and extinguish the fire. The cause of the fire shall be determined and appropriate measures will be taken to prevent fire reoccurrence. The flexible membrane cover will be exposed along the edges of the burned area to a point where the integrity of the cover system has not been compromised. The cover system will then be restored to its original condition by a qualified contractor.

6.4. Leachate outbreaks

If a leachate outbreak is noted during any inspections or sampling, the outbreak will be noted on a site diagram, an estimate will be recorded of its flow, the seep or outbreak will be sampled if sufficient flow exists, and the seep or outbreak location will be checked periodically (at least once a week) for persistence. If that outbreak should persist, the NYSDEC must be notified, and the Town must promptly submit a plan to address the outbreak. Sample analysis must be reported to the NYSDEC promptly and be included in the appropriate quarterly and annual reports.

7. Planned uses

At this time, no uses beyond that of an inactive landfill site are planned. If in the future a use for the site is proposed, the New York State Department of Environmental Conservation will be notified. Any uses which are proposed will comply with all necessary regulations and not compromise the integrity of the cover system.

8. Contacts

In the event of an emergency at the Site, the Town of DeWitt should be contacted. The current contact names, addresses and phone numbers are:

Mr. Richard Robb, Commissioner Department of Development and Operations Town of DeWitt 5400 Butternut Drive DeWitt, New York 13214 (315) 446-3768

Mr. James Conlon Department of Development and Operations Town of DeWitt 5400 Butternut Drive DeWitt, New York 13214 (315) 446-3768

Mr. Edwin Marsh, Superintendent Town of DeWitt Highway Department 5933 Butternut Drive East Syracuse, New York 13057 (315) 437-8331

Final: December 21, 1994 DeWittO&M

9. Stormwater pollution prevention plan

The Clean Water Act provides that storm sewer discharges associated with industrial activity from a point source to waters of the United States must be authorized by a National Pollutant Discharge Elimination System permit. In New York State, this is accomplished through the State Pollution Discharge Elimination System program. In accordance with the New York State Department of Environmental Conservation SPDES General Permit for Storm Water, discharges associated with industrial activity except construction activity (permit No. GP-93-05) A Notice of Intent (NOI) has been filed. A copy of the NOI is included as Appendix K. This section has been prepared to comply with the Storm Water Pollution Prevention Plan requirement of the permit.

9.1. Description of potential pollutant sources

9.1.1. Drainage

Included as Figure 4 is the Drainage Area Plan. The Plan shows the drainage areas, storm water discharge points, and surface water bodies for the landfill. The record drawings included as Appendix E show the structural storm water facilities for the landfill.

As the landfill has been capped with a low permeability cover there is a very low potential for storm water discharges to contain significant amounts of pollutants. The most likely source of pollution is erosion and sedimentation which is controlled by measures discussed below.

9.1.2. Inventory of exposed materials

In the three years prior to application for the SPDES permit, the site was an inactive landfill receiving construction and demolition debris

and undergoing the closure process. Prior to closure, a soil cover was placed over the landfill which limited the likelihood of stormwater contact with landfill waste other than construction and demolition debris. It is therefore unlikely any significant pollution resulted from storm water exposure.

9.1.3. Spills and leaks

The landfill experienced a leachate outbreak which was controlled by the installation of a leachate collection manhole. This prevented the discharge of contaminated storm water runoff to waters of the United States.

9.1.4. Sampling data

Surface water samples were taken for the Remedial Investigation performed for the landfill closure. Three of the surface water samples were obtained from the landfill runoff. The samples were tested for TCL metals in accordance with the 1991 NYS ASP and volatile organic compounds (VOC) using NYS Drinking Water Method 524.2. The results of the VOC analyses indicated concentrations of VOCs in two of the samples at levels lower than listed state standards for class C and D surface waters. The semi-volatile analyses showed one sample had a 5 part per billion level of 4-chlorophenyl-phenylether which is above the contract required detection limit. The inorganic analyses found concentrations of antimony, barium, calcium, iron, lead, magnesium, manganese, potassium, sodium and zinc. Only the iron was above the state listed standards for Class D streams.

9.1.5. Risk identification and potential sources

The site is a capped landfill. The cover system will prevent any exposure of storm water to potential pollutants.

9.2. Measures and controls

9.2.1. Description

Storm water controls for the landfill are described in Section 3.3.1 of this report.

9.2.2. Preventive maintenance and inspection

Maintenance and inspection of storm water controls will be done as described in Section 3.3.2 of this report. Records of maintenance and inspection activities will be kept as described in Section 3.3.3 of this report.

9.2.3. Non-storm water discharges

As the landfill is closed, there will be no operations or processes which will generate non-storm water discharges.

9.2.4. Sediment and erosion control

The landfill cover system is designed to prevent erosion. Components of the design for this purpose include the vegetative cover, slopes no steeper than 3H:1V and the system of swales and downchutes to limit the length of overland flow of storm water runoff.

9.2.5. Management of runoff

The storm water management practices for the landfill are considered appropriate as they eliminate the exposure of storm water to potential pollutants and control the potential for erosion.

DeWittO&M

9.3. Comprehensive site compliance evaluation

The site will be inspected and records of inspection and maintenance activities will be kept as described in Sections 3.1 and 3.3 of this report.

Appendices

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX A 1990 CONSENT ORDER

STATE OF NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION

-----X

In the Matter of Alleged Violations of Environmental Conservation Law Articles 17 and 27 and Title VI of the Official Compilation of Codes, Rules and Regulations of the State of New York Parts 360, 701 and 703, by

CONSENT

CASE NO. R7-420-89-07

TOWN OF DEWITT
ONONDAGA COUNTY, NEW YORK
Respondent.

----X

- 1. The Department of Environmental Conservation of the State of New York (the Department) is responsible for the administration and enforcement of ECL Articles 17 and 27 and Title 6 of NYCRR Parts 360, 701 and 703 promulgated pursuant thereto.
- 2. TOWN OF DEWITT (Respondent) is a municipal corporation located in Onondaga County, New York and is organized and existing under the laws of the State of New York.
- 3. Respondent operated a solid waste management facility which is a landfill (the Landfill) located on Fisher Road in the Town of Dewitt, Onondaga County, New York.
- 4. The Department alleges Respondent has committed the following violations at the Landfill site:

- A. Operated the Landfill since prior to 1973 without a permit to do so in violation of former 6 NYCRR Part 360;
- B. Failed to conform to the requirements set forth in former 6 NYCRR 360.8 and present 6 NYCRR 360-1.14 and 360-2.17. Specifically from October 1983 to present inspections have disclosed, among others, sixteen (16) separate failures by Respondent to comply with the requirements for approved waste disposal, one hundred eighty-four comply with (184)separate failures to requirements for maintenance of cover, one hundred eighty-nine (189) separate failures to comply with grading requirements, and fifty-three (53) separate failures to comply with requirements for prevention of surface water pollution;
- C. Without benefit of a SPDES or other permit, allowed leachate from the Landfill to drain and discharge into surface waters and continued to do so since on or about May 31, 1984;
- D. Constructed, without benefit of SPDES or other permit, a trench which permitted the drainage and discharge of leachate from the Landfill into the old Erie Canal, surface waters with a classification of "C" and continued to do so since on or about May 14, 1984;

- E. Failed to comply with a prior signed Consent Order whereby Respondent, by not ceasing operations at Landfill by April 1, 1987, as required by that ORDER; and
- F. Has continued to accept construction and demolition debris at the Landfill without permit from prior to July 1988.
- 5. Respondent alleges it unknowingly accepted the hazardous wastes deposited at the Landfill.
- 6. The Department has determined that the Landfill is an inactive hazardous waste disposal site as defined at ECL 27-1301(2). The Landfill has been listed in the Registry of Inactive Hazardous Waste Disposal Sites as Site Number 7-34-012. The Department has classified the Landfill as a Classification "2" pursuant to ECL 27-1305(4)(b).
- 7. Pursuant to ECL 27-1313(3)(a), whenever the Commissioner of Environmental Conservation (the Commissioner) "finds that hazardous wastes at an inactive hazardous waste disposal site constitute a significant threat to the environment, he may order the owner of such site and/or any person responsible for the disposal of hazardous waste at such site (i) to develop an inactive hazardous waste disposal site remedial program, subject to the approval of the Department, at such site, and (ii) to

implement such program within reasonable time limits specified in the order."

- The Department and Respondent agree that the goals of this ORDER shall be (a) the total cessation of further development acceptance and the solid waste implementation of Interim Remedial Programs (IRPs) including intermediate cover, seeding, surface leachate control and proper disposal of leachate in the 1990 construction season; and closure of the Landfill under the provisions of Part 360 during the 1991 construction season, and (b) an evaluation of the effects and impacts of such IRPs and the development and implementation of a Remedial Program for the Landfill by include Remedial shall Respondent which program Investigation/Feasibility Study (with the possibility that the Part 360 closure shall serve as the selected remedial alternative).
- 9. The Department and Respondent entered into an administrative CONSENT ORDER dated September 13, 1983 (Case No. 7-0499), for the closure and covering of the Landfill and that the ORDER had included therein a civil penalty of TEN THOUSAND DOLLARS (\$10,000.00) suspended provided Respondent complied with the terms of the ORDER.
- 10. Respondent has entered into this ORDER as a precondition to eligibility for financial assistance

pursuant to ECL Article 52, Title 3 ("EQBA") and ECL 27-1313(5)(g).

- Respondent has placed its insurer on notice of the Department's determination that the Landfill constitutes a threat environment and of significant to the the Department's claim, pursuant to ECL Article 27, Title 13, against Respondent. Respondent has agreed to exercise all reasonable efforts as required to obtain indemnification or a commitment to indemnify from its insurance carriers. Further, Respondent has agreed to assist the Department in identifying all other responsible parties. The Department will provide all legally available information it has to the Respondent with regard to other potentially responsible Moreover, Respondent has agreed, subject to consultation with the Department, to compel all other responsible parties to bear the cost of the development and implementation of an inactive hazardous waste disposal site remedial program at the Landfill, if it is reasonable to do so.
- 12. The Respondent, to promote the best interests of the parties, has affirmatively waived the right to a hearing on this matter as provided by law and consents to the issuing and entering of this Order and agrees to be bound by the provisions, terms and conditions contained herein.

NOW, having considered this matter and being duly advise, IT IS ORDERED THAT:

- I. In payment for the violations specified in this ORDER, Respondent shall pay a civil penalty in the amount of THIRTY FIVE THOUSAND DOLLARS (\$35,000.00), which amount includes the TEN THOUSAND DOLLAR (\$10,000.00) penalty referenced in paragraph 9 of this ORDER which is now due and payable. This penalty shall be paid to the Department of Environmental Conservation at the Office of Regional Director, 615 Erie Boulevard West, Syracuse, New York 13204-2400, upon the return of this Order, signed by the Commissioner or his designee.
- II. All activities and submittals required by this ORDER shall address both on-site and off-site contamination. Respondent shall not be so required to address off-site contamination which is not attributable to the Landfill, provided however, Respondent assumes the burden to show that any non-addressed off-site contamination is not attributable to the Landfill.
- III. Respondent shall not accept any further solid waste at the Landfill.

Respondent shall retain professional consultants, IV. contractors and laboratories acceptable to the Department and which are retained in accordance with New York State regards competitive procurement Finance Law as to procedures, to perform the technical, engineering and analytical obligations required by this ORDER for which costs would be eligible for reimbursement under the EQBA. The experience, capabilities and qualifications of the firms or individuals selected by Respondent shall be submitted within sixty (60) calendar days after the effective date of this ORDER to the Department for review prior to initiation of any activities for which the Respondent and their consultants shall be responsible, provided however, with regards to the 1990 Interim Remedial Plan, Respondent shall have fifteen days within which to submit for review by the Department the experience, capabilities and qualifications of the firms or individuals selected by Respondent as professional consultants, contractors and laboratories acceptable to the Department to perform the technical, engineering and analytical obligations required for the 1990 Interim Remedial Plan pursuant to this ORDER.

V. Any change of use or physical alteration of the Landfill, except for the 1990 IRP, sought to be undertaken must first be approved in writing by the Division of

Hazardous Waste Remediation, which approval shall be granted if the Division determines that the proposed change will not interfere with any proposed, ongoing or completed inactive hazardous waste disposal site remedial program at the Landfill. Any use of the Landfill will be subject to all applicable local, State, and Federal laws, rules and regulations.

- VI.(a) Within thirty (30) calendar days of the effective date of this ORDER, Respondent shall submit to the Department a Work Plan for an Interim Remedial Program for work to be completed by December 31, 1990 (IRP Work Plan) which shall include:
- 1. A Health and Safety Plan for the protection of persons at or in the vicinity of the Landfill during the performance of the IRP that shall be prepared in accordance with 29 C.F.R. 1910 by a certified health and safety professional;
- 2. Plans for an intermediate cover which meets the requirements of 6 NYCRR 360-2.19(d), seeding and surface leachate control together with plans for proper treatment and/or proper disposal.
- (b) Within one hundred thirty five (135) calendar days after the execution of this ORDER, Respondent shall submit to the Department a Work Plan for an Interim Remedial

Program (IRP Work Plan) for work to be completed by December 31, 1991. The IRP Work Plan for 1991 shall include, but not be limited to the following:

- 1. certified engineering plans and specifications for installation of the interim leachate collection system meeting the requirements of 6 NYCRR 360-2.15(g) and conditional final cover system meeting the requirements of 6 NYCRR 360-2.15(b);
 - 2. the engineering report addressing for the duration of the IRP's vector migration and control, gas migration and control and those matters identified at 6 NYCRR 360-2.15(i);
 - 3. an anticipated schedule to install the interim perimeter leachate collection system and the conditional final cover system before the end of the 1991 construction season;
 - 4. a sampling and analysis plan that includes a quality assurance project plan describing the quality assurance and quality control protocols necessary to assure the construction and certification requirements of 6 NYCRR 360-2.13(p), (q), (r) and (s) relating to the construction of the conditional final cover system; and (if the system includes the construction and operation of a leachate storage facility) the construction and certification

requirements of 6 NYCRR SubPart 360-6, relating to the construction of the interim perimeter leachate collection system; and

5. a health and safety plan for the protection of persons at and in the vicinity of the Landfill during the performance of the IRP that shall be prepared in accordance with 29 C.F.R. 1910 by a certified health and safety professional.

The Department shall notify Respondent in writing of its approval or disapproval of the IRP Work Plans. If the Department disapproves of an IRP Work Plan, within thirty (30) calendar days for the 1990 IRP Work Plan and sixty (60) days for the 1991 IRP Work Plan after receipt of notice of disapproval, Respondent shall resubmit the Work Plan after having revised it in accordance with the Department's specific comments.

- (a) If the Department disapproves the revision for the 1990 IRP Work Plan, the Respondent shall be in violation of this ORDER. Respondent shall implement the IRP Work Plan for 1990 approved by the Department which shall be attached hereto as Appendix A of this ORDER and incorporated herein, in accordance with the time schedule contained herein.
- (b) If the Department disapproves the revision of the 1991 IRP Work Plan, Respondent may avail itself of the

Dispute Resolution provisions of paragraph XXV below. The final approved 1991 IRP Work Plan shall be attached as Appendix A/1 of this ORDER and incorporated herein, in accordance with the time schedule contained herein.

Respondent shall perform the IRP without prejudice to the Department's right to require further remedial activities pursuant to the Remedial Program approved by the Department. The Department's determinations shall not be arbitrary and capricious.

- VII. Within ninety (90) calendar days after the effective date of this ORDER, Respondent shall submit to the Department its scoping effort completed in accordance with the EPA's "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA", dated October 1988, and all data within its possession or control regarding environmental conditions on-Site and off-Site, and other information described below, to the extent such data has not previously been provided to the Department. The data and other information shall include:
- 1. A brief history and description of the Landfill, including the types, quantities, physical state, location and dates of disposal of hazardous waste including methods of disposal and spillage of such wastes;

- 2. A concise summary of information held by Respondent with respect to all persons responsible for such disposal of hazardous wastes. Person responsible or responsible party means any or all of the following:
- (a) the current owner and operator of the Landfill:
- (b) the owner and operator of the Landfill at the time or subsequent to the time any hazardous waste disposal occurred;
- (c) any person who generated any hazardous waste that was disposed of at the Landfill;
- (d) any person who transported hazardous waste to the Landfill:
- (e) any person who disposed of any hazardous waste at the Landfill;
- (f) any person who by contract, agreement or otherwise arranged for the transportation of any hazardous waste to the Landfill or the disposal of any hazardous waste at the Landfill;
- (g) any other person determined to be responsible according to applicable principles of statutory or common law liability.

Such information shall include, but not be limited to names, addresses, dates of disposal and any other

proof linking each such person responsible with hazardous wastes identified.

- 3. A comprehensive list and copies of all relevant reports with titles, authors and subject matter, as well as a description of the results of all previous investigations of the Landfill and areas in the vicinity of the Landfill, including copies of all available topographic and property surveys, engineering studies and aerial photographs.
- 4. An application with supporting cost estimates on a form acceptable to the Department, for State assistance pursuant to the EQBA together with a resolution acceptable to the Department which designates, by title, a Town Official authorized to act on behalf of the TOWN in all matters related to State assistance pursuant to the EQBA.

VIII. Within thirty (30) calendar days after Respondent's receipt of the site-specific State Assistance Contract (SAC), Respondent shall sign and deliver the SAC to the Department.

IX. Within one hundred thirty five (135) calendar days after the effective date of this ORDER, Respondent shall submit to the Department a Work Plan for a Remedial Investigation/ Feasibility Study (RI/FS). The Work Plan also shall address all elements of a RI/FS as set forth in the Comprehensive Environmental Response, Compensation and

Liability Act of 1980 (CERCLA), 42 U.S.C. 9601 et seq., as amended, the National Contingency Plan (NCP) then in effect, the USEPA draft guidance document entitled "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA" dated October 1988, and any subsequent revisions thereto, and appropriate technical and administrative guidelines. In addition the Work Plan shall include:

- 1. A Work Plan which shall consist of a chronological description of the anticipated RI/FS activities together with an anticipated schedule for the performance of these activities.
- 2. A sampling and Analysis Plan which shall include:
- (a) A Quality Assurance Project Plan that describes the quality assurance and quality control (QA/QC) protocols necessary to achieve the initial data quality objectives.
- (b) A Field Sampling Plan that defines the sampling and data gathering methods in a manner consistent with the "Compendium of Superfund Field Operations Method" (EPA/540/P-87/001, OSWER Directive 9355.0-14, December 1987) as supplemented by the Department.

- 3. A Health and Safety Plan for the protection of persons at and in the vicinity of the Landfill during the performance of the RI/FS which shall be prepared in accordance with 29 C.F.R. 1910 by a certified health and safety professional.
- 4. A Citizen Participation Plan which is prepared and implemented in a manner consistent with the Department's publication "New York State Inactive Hazardous Waste Site Citizen Participation Plan", dated August 30, 1988.
- X. The Department shall notify Respondent in writing of its approval or disapproval of the RI/FS Work Plan or revised RI/FS Work Plan as the case may be and once approved by the Department, such Approved RI/FS Work Plan shall be attached hereto as Appendix B and incorporated into this ORDER.

If the Department disapproves of the RI/FS Work Plan, within sixty (60) days after receipt of notice of disapproval, Respondent shall resubmit the Work Plan after having revised it in accordance with the Department's specific comments.

If the Department disapproves the revision for the RI/FS Work Plan, the Respondent may avail itself of the Dispute Resolution provisions of paragraph XXV below. The final approved RI/FS Work Plan shall be attached as Appendix B of

this ORDER and incorporated herein, in accordance with the time schedule contained herein.

Respondent shall perform the RI/FS Work Plan without prejudice to the Department's right to require further remedial activities pursuant to the Remedial Program approved by the Department. The Department's determinations shall not be arbitrary and capricious.

In accordance with the time schedule contained in the Approved Work Plan, Respondent shall perform the Remedial Investigation and submit the status reports and other deliverables (as defined in the Work Plan) and the Remedial Investigation Report (Report). During the Remedial Investigation field activities, Respondent shall have onsite, full time, a representative qualified to inspect the work. The report shall include a copy of all data generated and all other information obtained during the Remedial Investigation, provide all of the assessments and evaluations set forth in CERCLA, the NCP then in effect, and in the guidance documents referred to above and identify any additional data that must be collected. The Report shall be prepared and certified by an engineer licensed to practice in the State of New York. This licensed engineer must be an individual or member of a firm which is authorized to offer engineering services in accordance with Article 145 of the

New York State Education Law. The engineer shall certify that all activities that comprised the Remedial Investigation were performed in accordance with the approved Work Plan.

XII. After the receipt of the Report, the Department shall determine if the Remedial Investigation was conducted and the Report prepared in accordance with the Approved Work Plan and this ORDER, and shall notify Respondent in writing of its approval or disapproval of the Report.

If the Department disapproves the Report, Department shall notify Respondent in writing of Department's specific objections. Respondent shall revise the Report and/or reperform or supplement the Remedial Investigation in accordance with the Department's comments and shall submit a Revised Report. The period of time within which the Report must be revised or the Remedial Investigation reperformed or supplemented shall be specified by the Department in its notice of disapproval and shall afford the Respondent time to revise the Report or to reperform supplement the investigation. or Any determination by the Department shall not be arbitrary and capricious.

After receipt of the Revised Report, the Department shall notify the Respondent in writing of its specific approval or disapproval of the Revised Report.

If the Department disapproves of the Revised Report, the Respondent shall be in violation of this ORDER unless the Respondent shall avail itself of the Dispute Resolution provisions in paragraph XXV below.

The Report or Revised Report, whichever the Department approves (the Approved Report) shall be attached hereto as Appendix C and incorporated into this ORDER.

XIII. The Department reserves the right to require a modification and/or an amplification and expansion of the Remedial Investigation or Report by Respondent if the Department determines, as a result of reviewing data generated by the Remedial Investigation or as a result of reviewing any other data or facts, which shall be made available to the Respondent, that further work is necessary.

XIV. Within ninety (90) calendar days after receipt of the Department's approval of the Report, Respondent shall submit a Feasibility Study evaluating on-site and off-site remedial actions as may be necessary to eliminate, to the maximum extent practicable, all health and environmental hazards and potential hazards attributable to the Landfill and shall take into account the Interim Remedial Programs.

The Feasibility Study shall be prepared and certified by an engineer licensed to practice by the State of New York, and approved by the Department. This engineer must be an individual or member of a firm which is authorized to offer engineering services in accordance with Article 145 of the New York State Education Law.

The Feasibility Study shall be performed in a manner that is consistent with CERCLA, the NCP then in effect, the USEPA draft guidance document mentioned above in paragraph IX and appropriate technical and administrative guidelines.

XV. The Department shall notify Respondent in writing of its approval or disapproval of the Feasibility Study. If the Department disapproves of the Feasibility Study, within thirty (30) calendar days after receipt of notice of disapproval, Respondent shall resubmit the Feasibility Study after having revised it in accordance with the Department's specific comments.

The final approved Feasibility Study or the Revised Feasibility Study, whichever the Department approves shall be attached as Appendix D of this ORDER and incorporated herein, in accordance with the time schedule contained herein.

XVI. Within sixty days after the Department's approval of the Feasibility Study or the Revised Feasibility Study,

the Department and Respondent shall solicit public comment on the 1991 IRP and the RI/FS and the recommended remedial program in accordance with CERCLA, the NCP, the Approved Citizen Participation Plan, and any other applicable law, and any relevant Department policy and guidance documents in effect at the time the public comment period is initiated.

XVII. (1) After receipt of the Feasibility Study, after intra and inter government review and public comment period, the consultants retained for the studies and investigations called for by this ORDER shall be available for no less than one informational meeting as scheduled by the Department with regard to the studies and investigations. The consultants shall be prepared to present their findings and recommendations and respond to questions in that public meeting or meetings.

(2) After the close of the public comment period, the Department shall select a final remedial program for this Landfill in a Record of Decision (ROD). The ROD shall become attached hereto as Appendix F and thereby become a part of this ORDER.

XVIII. Unless the ROD recommends the "no action" alternative, Respondent shall submit a Remedial Design within ninety (90) days after the ROD is signed. The Respondent may apply for an extension of this deadline in

the event that the implementation of the ROD is enjoined by a court of competent jurisdiction. The Remedial Design shall be prepared and certified by an engineer licensed to practice in New York and approved by the Department. The engineer must be an individual or member of a firm which is authorized to offer engineering services in accordance with Article 145 of the New York State Education Law.

The Remedial Design shall include the following:

- 1. A detailed description of the means by which each essential element of the Remedial Program will be performed, to include but not be limited to:
- (a) the collection, destruction, treatment and/or disposal of hazardous wastes, and their constituents and degradation products, and any soil or other materials contaminated thereby;
- (b) the collection, destruction, treatment and/or disposal of contaminated groundwater, leachate and air;
- (c) the physical security of and the posting of signs at the Landfill;,
- (d) the health and safety of persons living and/or working at or in the vicinity of the Landfill;,
- (e) the QA/QC procedures and protocols to be applied during implementation of the Remedial Program;,

- (f) the Monitoring Program which adequately assesses the environmental conditions both on-site and off-site during implementation of the Remedial Program;, and
- (g) all matters contained in 6 NYCRR Part 360 pertaining to the closure and post-closure monitoring and maintenance of a landfill;
- 2. "Biddable Quality" documents for the Remedial Program, including plans and specifications prepared and certified by a qualified engineer as defined above in the last sentence of paragraph XVIII. These plans shall satisfy all applicable local, State and Federal laws, rules and regulations;
- 3. A time schedule for the Remedial Program and provisions for periodic work-in-progress reports during the Remedial Program;
- 4. The parameters, conditions, procedures and protocols to determine the effectiveness of the Remedial Program, including a schedule for periodic sampling of groundwater monitoring wells on-site and off-site;
- 5. A description of operation, maintenance and monitoring (O&M) activities to be undertaken following completion of the Remedial Program, including the number of years during which such activities will be performed;

- 6. A Contingency Plan is to be implemented in the event that any element of the Remedial Program fails to operate in accordance with the Remedial Design or otherwise fails to protect human health or the environment; and
- 7. A Health and Safety Plan for the protection of persons at and in the vicinity of the Landfill both during construction and after completion of the Remedial Program. The Plan shall be prepared in accordance with 29 C.F.R. § 1910 by a certified health and safety professional.
- XIX. After receipt of the Remedial Design, the Department shall notify Respondent in writing of its approval or disapproval of the Remedial Design.

If the Department disapproves of the Remedial Design, the Department shall notify Respondent in writing of the Department's specific objections. Within forty-five (45) calendar days after receipt of notice of disapproval, Respondent shall revise the Remedial Design in accordance with the Department's comments and submit a Revised Remedial Design.

After receipt of the Revised Remedial Design, the Department shall notify Respondent in writing of its approval or disapproval of the Revised Remedial Design.

If the Department disapproves of the Revised Remedial Design, the Respondent shall be in violation of

this ORDER unless Respondent avails itself of the Dispute Resolution provisions in paragraph XXV below.

The Remedial Design or the Revised Remedial Design, whichever the Department approves (Approved Remedial Design) shall be attached hereto as Appendix F and incorporated into this ORDER.

XX. Respondent shall implement the Remedial Program in accordance with the Approved Remedial Design. Respondent must obtain written approval from the Department prior to deviating from the Approved Remedial Design in any way. During implementation of the Remedial Program, Respondent shall have on-site, full time, a representative qualified to inspect the work.

Within sixty (60) calendar days after completion of the Remedial Program, Respondent shall submit as-built drawings, a Final Engineering Report, and a Final O&M. These reports shall reflect all changes made during construction and shall include a certification that the Remedial Program was completed in accordance with the Approved Remedial Design. The Reports shall be prepared by and the certification made by an engineer pursuant to the specifications set forth in the last sentence of paragraph XI above.

XXI. After receipt of the as-built drawings, Final Engineering Report and certifications, the Department shall notify Respondent in writing whether it is satisfied that all construction activities have been performed in compliance with the Approved Remedial Design.

If the Department concludes that any element of the Remedial Program fails to operate in accordance with the Approved Remedial Design or otherwise fails to protect human health and environment, the Department may take any action or pursue whatever rights it has pursuant to any provision of statutory or common law, subject to whatever rights or defenses which Respondent may have as regards the Remedial Program.

- XXII. The Department may require the Respondent to modify the Remedial Design and Construction if the Department determines that such modification is necessary due to:
- 1. environmental conditions on-site or off-site which are related to the presence of hazardous wastes at the Landfill and which were unknown to the Department at the time of effective date of this ORDER, or
- 2. information received, in whole or in part, after the effective date of this ORDER, where such unknown environmental conditions or information indicates that the

Remedial Program is not protective of human health or the environment.

The Department shall make available to the Respondent the information relied upon in making such a determination.

XXIII. Respondent shall operate, maintain, and monitor all elements of the Remedial Program for the period of years set forth in the Approved Remedial Design, implement the Contingency Plan contained in the Approved Remedial Design in the event any element of the Remedial Program fails after completion or otherwise fails to protect human health or the environment, and implement the Health and Safety Plan contained in the Approved Remedial Design after completion.

Within sixty (60) calendar days after the effective date of this ORDER and every six months thereafter Respondent shall provide a written report to the Department of the efforts it has made to obtain indemnification from its insurers and to assist the Department in compelling other responsible parties to bear the costs associated with the development and implementation of an inactive hazardous waste disposal site remedial program at the Landfill.

XXV. Within fifteen (15) calendar days after receipt of the Department's written notification, Respondent shall notify the Department of any portions of the Department's notification with which it does not agree. If within the following fifteen (15) calendar days (or such longer time as the parties may agree) the parties cannot resolve their differences, the Department staff's position shall become binding unless the Respondent shall request that the dispute shall be settled in accordance with the following procedures:

(a) At the request of either party, based on a dispute concerning the terms of a submittal required under this ORDER, the Commissioner may appoint an Administrative Law Judge (ALJ) to resolve the matter.

If the ALJ deems it necessary to convene a hearing, the taking of evidence shall be concluded as soon as practicable after the ALJ's appointment. In the proceedings hereunder:

- 1. The parties shall be the Department and the Respondent.
- 2. Written notice shall be provided to the other party by the party requesting resolution of the dispute.
- 3. The Respondent shall have the burden of proving that the Department's determination is arbitrary and capricious.
- 4. The ALJ shall have all powers conferred by 6 NYCRR 622.12 and in addition, shall have the power to impose

penalties against Respondent if deadlines or milestone dates are missed as a result of the utilization of the Alternative Dispute Resolution.

- 5. All proceedings conducted hereunder shall be stenographically recorded. The Respondent shall arrange for an expedited stenographic transcript to be made within ten (10) working days after the conclusion of the proceeding, and for the original and two copies of the transcript to be delivered to the ALJ at the expense of the Respondent.
- 6. The ALJ shall prepare as soon as practicable, a written summary of the documentation and testimony received during the proceeding, and a recommended decision. The summary and a recommended decision shall be sent by certified mail, return receipt requested, and another copy by express mail or FAX to the Respondent and the Department staff.
- 7. The ALJ's recommended decision shall become the final determination of the Commissioner unless, within ten (10) working days from the receipt of the recommended decision, either the Respondent or the Department objects in writing. Any objections shall be submitted in writing to the ALJ with a copy sent by Express Mail, FAX, or hand-delivery to the other party, which shall serve and file in the same manner its response, if any, within five (5)

working days of receipt of the objections. Upon receipt of the objections and any response, the ALJ shall refer the matter to the Commissioner for final determination.

- 8. The final determination, if any, by the Commissioner shall be made as soon as practicable after receipt by him of the recommended decision of the ALJ.
- 9. With respect to the final determination of the Commissioner, Respondent shall have those rights granted pursuant to Article 78 of the New York Civil Practice Law and Rules. The period for petitioning thereunder shall be limited to forty-five (45) days.
- XXVI. The Department shall have the right to obtain split samples, duplicate samples, or both of all substances and materials sampled by Respondent and the Department shall also have the right to take its own samples.

XXVII. Respondent shall provide notice to the Project Manager at least ten (10) working days in advance of all field activities to be conducted pursuant to this ORDER.

XXVIII. Respondent shall obtain whatever permits, easements, rights-of-way, rights-of-entry, approvals or authorizations as are necessary to perform Respondent's obligations under this ORDER.

XXIX. Respondent shall permit any duly designated employee, consultant, contractor or agent of the Department

or any State Agency to enter upon the Landfill or areas in the vicinity of the Landfill which may be under the control of Respondent for purposes of inspection, sampling and testing and to assure Respondent's compliance with this ORDER. During implementation of the Remedial Program, Respondent shall provide the Department with access to and use of suitable office space at the Landfill, including access to a telephone, and shall permit the Department full access to all records, and job meetings relating to compliance with this ORDER.

XXX. Respondent shall not be in default of compliance with this ORDER if Respondent or its consultant, contractor or agent cannot comply with the terms of this ORDER because of an act of God, war, strike, or other condition as to which conduct on the part of Respondent or its consultant, contractor or agent was not the proximate cause; provided, however, that the Respondent, as soon as reasonably is able but in any event in no more than twenty four hours, notifies the Department in writing when it obtains knowledge of any such condition and requests an appropriate extension or modification of the provisions thereof.

XXXI. The failure of the Respondent to comply with any term of this ORDER shall be a violation of this ORDER and

the ECL if such be determined after a hearing, as may be required by law.

XXXII. Nothing contained in this ORDER shall be construed as barring, diminishing, adjudicating or in any way affecting any of the Department's rights, including but not limited to the following:

- 1. the Department's right to bring any action or proceeding against anyone other than Respondent, its officials, employees, servants, agents, successors and assigns;
- 2. the Department's right to enforce this ORDER against the Respondent, its officials, employees, servants, agents, successors and assigns in the event that Respondent shall fail to satisfy any of the terms hereof;
- 3. the Department's right to bring any action or proceeding against Respondent, its officials, employees, servants, agents, successors and assigns with respect to claims for natural resources damages as a result of the release or threatened release of hazardous wastes or constituents at or from the Landfill or to areas in the vicinity of the Landfill, and;
- 4. the Department's right to bring any action or proceeding against Respondent, its employees, servants, agents, successors and assigns with respect to hazardous

wastes that are present at the Landfill or that have migrated from the Landfill and present a significant threat to human health or the environment.

XXXIII. This ORDER shall not be construed to prohibit the Commissioner or his duly authorized representative from exercising any summary abatement powers.

XXXIV. Respondent shall indemnify and hold the Department, the State of New York, and their representatives and employees harmless for all claims, suits, actions, damages and costs of every name and description arising out of or resulting from the fulfillment or attempted fulfillment of this ORDER by Respondent, its officers, employees, agents, servants, successors and assigns.

XXXV. The effective date of this ORDER shall be the date it is signed by the Commissioner. The Department will notify the Respondent's attorney within five (5) business days of the ORDERS effective date. The Respondent will be provided with a fully executed copy of the ORDER.

XXXVI. No change in this ORDER shall be made or become effective except as specifically set forth by a further written ORDER of the Department, being made either upon written application to the Department by the Respondent setting forth the grounds for the relief sought or upon the Department's own findings after an opportunity for the

Respondent to be heard or pursuant to the summary abatement powers of the Department.

XXXVII. In the event Respondent proposes to convey the whole or any part of its ownership interest in the Landfill, Respondent shall, not fewer than sixty (60) calendar days prior to the proposed conveyance, notify the Department in writing of the identity of the transferee and of the nature and date of the proposed conveyance and shall notify the transferee in writing, with a copy to the Department, of the applicability of this ORDER.

XXXVIII. All communications and correspondence from Respondent shall be addressed to the following Department persons and offices:

Richard J. Brickwedde, Esq. Regional Attorney N.Y.S.D.E.C. - Region 7 615 Erie Blvd. West Syracuse, NY 13204-2400

and

Frank Bifera, Esq.
Director Albany Field Unit
N.Y.S.D.E.C.
50 Wolf Road, Room 415
Albany, NY 12233-7010

With a copy to:

Ed Belmore
Bureau Chief Western Remedial Action
N.Y.S.D.E.C.
50 Wolf Road Room 222
Albany, NY 12233-7010

XXXIX. All Work Plans, Reports and other technical documents required to be submitted under this ORDER shall be sent to the following:

1. One copy to:

Richard J. Brickwedde, Esq. Regional Attorney N.Y.S.D.E.C. - Region 7 615 Erie Blvd. West Syracuse, NY 13204-2400

2. One copy to:

David L. Markell, Esq.
Director
Division of Environmental Enforcement
N.Y.S.D.E.C.
50 Wolf Road Room 609
Albany, NY 12233-5500

3. Six copies to:

Michael J. O'Toole, Jr., P.E. Director Division of Hazardous Waste Remediation N.Y.S.D.E.C. 50 Wolf Road Room 212 Albany, NY 12233-7010

4. Two copies to:

Ron Tramontano, P.E.
Director
Bureau of Environmental Exposure Investigation
N.Y.S.D.O.H.
2 University Place
Albany, NY 12203

5. One copy to:

Frank Bifera, Esq.
Director Albany Field Unit
N.Y.S.D.E.C.
50 Wolf Road Room 415
Albany, NY 12233-7010

6. One copy each to:

Larry Gross, P.E.
Regional Solid Waste Engineer - Region 7
N.Y.S.D.E.C.
615 Erie Blvd. West
Syracuse, NY 13204-2400

and

Charles Branagh, P.E.
Regional Hazardous Waste Engineer - Region 7
N.Y.S.D.E.C.
615 Erie Blvd. West
Syracuse, NY 13204-2400

- XL. Communication from the Department to Respondent shall be made as follows:
 - 1. Supervisor
 Town of Dewitt
 6565 Kinne Road
 Dewitt, NY 13214
 - 2. Director of Planning and Operations Town of Dewitt 6565 Kinne Road Dewitt, NY 13214
 - 3. Town Clerk Town of Dewitt 6565 Kinne Road Dewitt, NY 13214

- 4. Neil M. Gingold, Esq.
 PINSKY and SKANDALIS
 State Tower Bldg. Suite 1020
 109 South Warren Street
 Syracuse, NY 13202-1872
- 5. Mike Kolceski, P.E.
 OBRIEN & GERE ENGINEERS, INC.
 1304 Buckley Road
 Syracuse, NY 13221

XLI. Respondent, its officials, agents, servants, employees, successors and assigns shall be bound by this ORDER.

XLII. The terms hereof shall constitute the complete and entire ORDER between Respondent and the Department concerning the Landfill. No term, condition, understanding, or agreement purporting to modify or vary the terms hereof shall be binding unless made in writing and subscribed by the party to be bound. No informal advice, guidance, suggestion or comment on any report, proposal, plan, specification, schedule or any other submittal, shall be construed as relieving Respondent of its obligations to obtain such formal approvals as may be required by this ORDER.

DATED: SYRACUSE, NEW YORK
Sept 24, 1990

THOMAS C. JORLING, COMMISSIONER New York State Department of Environmental Conservation

CONSENT BY RESPONDENT

Respondent hereby consents to the issuing and entering of the foregoing ORDER without further notice and waives the right to a hearing herein and agrees to be bound by the provisions, terms, and conditions contained herein.

MUNICIPAL ACKNOWLEDGEMENT STATE OF NEW YORK)

COUNTY OF WOUDAGA

on the Man day of AUGUST personally came Bungon Lowith

1990, before me

who, being by me duly sworn did depose and say that he resides in the TOWN OF DEWITT described herein; that he is the TOWN OF DEWITT, the municipal corporation described herein, and which executed the above instrument; and that he signed his name hereto as authorized by said municipal corporation.

ss.:

NOTARY PUBLIC

FIEL A. GINGOLD

The Funite in the State of York

Livery in Ones. So, the State 17513

The Commission Batter A. A. B. 1991

APPENDIX B

QUALITY ASSURANCE/QUALITY CONTROL PLAN (FOR CONSTRUCTION REPAIRS) (SEPARATELY BOUND)

APPENDIX C

HEALTH AND SAFETY PLAN (SEPARATELY BOUND)

APPENDIX D

CONTRACT SPECIFICATIONS (SEPARATELY BOUND)

APPENDIX E

RECORD DRAWINGS (SEPARATELY BOUND)

APPENDIX F CITIZEN PARTICIPATION PLAN

CITIZENS PARTICIPATION PLAN

REMEDIAL INVESTIGATION / FEASIBILITY STUDY TOWN OF DEWITT LANDFILL

TOWN OF DEWITT DEWITT, NEW YORK

JUNE 1991

O'BRIEN & GERE ENGINEERS, INC. 5000 BRITTONFIELD PARKWAY SYRACUSE, NEW YORK 13221

TABLE OF CONTENTS

1

LJ

	Page
SECTION 1 - INTRODUCTION TO PLAN	1
SECTION 2 - BASIC SITE INFORMATION	2
 2.01 General 2.02 Location and Setting 2.03 Landfill History 2.04 Problems Identified at the Site 	2 2 2 3
SECTION 3 - PROJECT DESCRIPTION	4
 3.01 Project Objectives 3.02 Project History 3.03 Key Decision Points 3.04 Remedial Program Description 	4 4 4 5
SECTION 4 - INTERESTED/AFFECTED PARTIES	6
SECTION 5 - DEPARTMENT CONTACTS	7
SECTION 6 - DOCUMENT REPOSITORIES	8
SECTION 7 - CITIZEN PARTICIPATION ACTIVITIES	9
7.01 Project Plans7.02 Remedial Investigation Report7.03 Feasibility Study Report	9 9 9
SECTION 8 - GLOSSARY OF KEY TERMS AND MAJOR PROGRAM ELEMENTS	12
FIGURES	
C-1 Site Location MapC-2 Remedial Investigation Program Flow Diagram	

APPENDICES

- Α
- Interested/Affected Parties Contact List Identification of Department Contacts В

SECTION 1 - INTRODUCTION TO PLAN

The New York State Department of Environmental Conservation (NYSDEC) is committed to a citizens participation program as a part of its responsibilities for the inactive hazardous waste site remedial program. Citizen participation promotes public understanding of the Department's responsibilities, planning activities, and remedial activities at inactive hazardous waste disposal sites. It provides an opportunity for the Department to learn from the public information that will enable the Department to develop a comprehensive remedial program which is protective of both public health and the environment.

SECTION 2 - BASIC SITE INFORMATION

2.01 General

A Remedial Investigation/Feasibility Study is being conducted at the Dewitt landfill in accordance with an Administrative Order on Consent (#R7-420-89-07) between the Town of Dewitt and NYSDEC dated October 17, 1990.

2.02 Location and Setting

The Town of Dewitt Landfill is located on Fisher Road approximately four miles east of the center of Syracuse, New York (Figure C-1). Presently, the site is on the order of 45 acres in size. The landfill is located in the Erie - Ontario Lowlands which is characterized as a broad featureless plain with numerous swamps and mucklands. The geology of the landfill is comprised of artificial fill overlying sand and silt deposits, which in turn overlie glacial till. Surface water in this area drains to intermittent streams and the old Erie Canal.

2.03 Landfill History

The landfill began operation in the 1950's and accepted waste from the Town of Dewitt residents and industries. Municipal refuse was accepted at the landfill until June 26, 1987 and construction and demolition materials were accepted at the landfill until May 4, 1990.

2.04 Problems Identified at the Site

Following review of the 1985 draft Plan of Closure, NYSDEC expressed concern regarding the hazardous wastes disposed of at the landfill. The Town subsequently submitted a Phase II Investigation Report to NYSDEC dated April 1987.

The Phase II Investigation concluded the following:

- Two generations of fill were deposited on the natural soils;
- Both OBG-1 and OBG-6 were installed in older fill material;
- Shallow ground water flow was to the north in 1987;
- Shallow ground water moved at an average rate of 0.1 ft/day;
- Downgradient wells show limited impact by xylene and phenol;
- A variety of priority pollutants were detected in OBG-1; and
- Benzene and xylene were detected in OBG-6.

SECTION 3 - PROJECT DESCRIPTION

3.01 Project Objectives

The purpose of the RI/FS is to identify and characterize the nature, extent, and potential exposures to specific compounds present at the landfill and to evaluate potential remedial actions for restoring site conditions to acceptable levels to protect human health and the environment.

3.02 Project History

A preliminary Phase I Site Investigation was completed by Dunn Geoscience in 1979 on behalf of NYSDEC. In November 1985, a draft Plan of Closure was completed by O'Brien & Gere Engineers, Inc. (OBG) and submitted for NYSDEC review. To supplement the Closure Plan, a Phase II Investigation Work and Phase II Investigation Report were prepared by OBG and submitted to NYSDEC in April 1987. Pursuant to the 1990 Consent Order, an Interim Remedial Plan and RI/FS Scoping Document were prepared by OBG and submitted to NYSDEC in December 1990 and January 1991, respectively.

3.03 Key Decision Points

Five key decision points for the Dewitt Landfill RI/FS are:

- RI/FS Work Plan approval by NYSDEC
- Completion and Submittal of the RI Report
- RI Report approval by NYSDEC
- Completion and Submittal of the FS Report, and

FS Report approval by NYSDEC

3.04 Remedial Program Description

The RI field program includes: a natural resource assessment; monitoring well, piezometer, and surface water gauge installations; and air, surface water, sediment, and ground water sampling. Data collected from these tasks will be used to complete a risk assessment. A flow diagram for the program is included as Figure C-2.

SECTION 4 - INTERESTED/AFFECTED PARTIES

A contact list, included as Appendix A of this plan, includes the names, addresses, and telephone numbers of people and organizations which may be affected and/or interested in the Town of Dewitt RI/FS.

SECTION 5 - DEPARTMENT CONTACTS

A list of names, addresses, and telephone numbers of contact persons within the NYSDEC, NYSDOH and the Town of Dewitt are included as Appendix B of this plan.

SECTION 6 - DOCUMENT REPOSITORIES

People and organizations interested in reviewing pertinent RI/FS documents may find this information at the following locations:

NYSDEC 50 Wolf Road Albany, New York 12233 (518)-457-3733

NYSDEC 615 Erie Blvd. West Syracuse, New York 13204 (315)-426-7531

Dewitt Community Library Shoppingtown Dewitt, New York (315)-446-3578

SECTION 7 - CITIZEN PARTICIPATION ACTIVITIES

The activities identified in this plan have been developed to address the Town of Dewitt and NYSDEC's goal to keep the public informed and involved in RI/FS activities as well as meeting regulatory citizen participation requirements and policy. The activities discussed below may be adjusted based upon the project scope, length, public interest or other factors.

7.01 Project Plans

A copy of the approved RI/FS Work Plan will be available for public review at the document repositories listed in Section 6. Included with this document will be the site Health and Safety Plan (HASP), the Quality Assurance Program Plan (QAPP) and the Citizen Participation Plan (CPP).

7.02 Remedial Investigation Report

A copy of the approved Remedial Investigation Report will be available for public review at the document repositories listed in Section 6.

7.03 Feasibility Study Report

The following activities will take place once the Feasibility Study Report is final:

a copy of the Feasibility Study Report will be placed in the repositories listed in Section 6 for public review.

- NYSDEC will publish a legal notice in a local paper that provides a brief analysis of the proposed remedial program, reasons for selecting the proposed program over other alternatives, and describes construction and operational requirements of the program.
- NYSDEC will mail public notice to individuals included on the contact list that briefly describes the site, provides an overview of work completed, summarizes findings, provides a brief analysis of the proposed remedial program schedule for future work, summarizes reasons for selecting the chosen alternative, requests information and comments, identifies the local repository, names the NYSDEC contacts, and announces date/time/place of a public meeting and 30-day comment period.
- the public meeting will be held.
- NYSDEC will prepare a meeting summary and place a copy in repositories.
- there will be a 30-day comment period.
- NYSDEC will publish a legal notice with a brief analysis of the selected remedial program, including any changes and responses to significant comments, criticisms and new data.
- NYSDEC will prepare and place a Responsiveness Summary in the repositories.
- Following the public meeting, if the remedial program selected differs significantly from that presented in the FS report, NYSDEC will

publish a legal notice to provide an explanation of significant changes and reasons for changes.

NYSDEC will prepare a Record of Decision (ROD) which will document the decision process used to determine the remedial actions deemed appropriate for the site. At that time, the Citizen Participation Plan will be updated to address the specific citizen participation activities to be initiated during the design and construction of the selected remedial action.

SECTION 8 - GLOSSARY OF KEY TERMS AND MAJOR PROGRAM ELEMENTS

The following glossary defines the major elements of the Town of Dewitt Landfill RI/FS and technical terms used in this document.

<u>Availability Session</u> - Scheduled gathering of the Department staff and the public in a setting less formal than a public meeting. Encourages "one-to-one" discussions in which the public meets with Department staff on an individual or small group basis to discuss particular questions or concerns.

<u>Citizen Participation</u> - A process to inform and involve the interested/affected public in the decision-marking process during identification, assessment and remediation of inactive hazardous waste sites. This process helps to assure that the best decisions are made from environmental, human health, economic, social and political perspectives.

<u>Citizen Participation Plan</u> - A document that describes the site-specific citizen participation activities that will take place to complement the "technical" (remedial) activities. It also provides site background and rationale for the selected citizen participation program for the site. A plan may be updated or altered as public interest or the technical aspects of the program change.

<u>Citizen Participation Specialist</u> - A department staff member within the Office of Public Affairs who provides guidance, evaluation and assistance to help the Project Manager carry out his/her site-specific Citizen Participation program.

<u>Contact List</u> - Names, addresses and/or telephone numbers of individuals, groups, organizations and media interested and/or affected by a particular hazardous waste site. Compiled and updated by the Department. Interest in the site, stage of remediation and other factors guide how comprehensive the list becomes. Used to assist the Department to inform and involve the interested/affected public.

<u>Document Repository</u> - Typically a regional DEC office and/or public building, such as a library, near a particular site, at which documents related to remedial and citizen participation activities at the site are available for public review. Provides access to documents at times and a location convenient to the public. Environmental Management Councils (EMCs), Conservation Advisory Committees (CACs) as well as active local groups often can serve as supplemental document repositories.

<u>Information Sheet</u> - A written discussion of a site's remedial process, or some part of it, prepared by the Department for the public in easily understandable language.

May be prepared for the "general" public or a particular segment. Uses may include, for example: discussion of an element of the remedial program, opportunities for public involvement, availability of a report or other information, or announcement of a public meeting. May be mailed to all or part of the interested public, distributed at meetings and availability sessions or sent on an"as requested" basis.

<u>Project Manager</u> - A Department staff member within the Division of Hazardous Waste Remediation (usually an engineer, geologist or hydrogeologist) responsible for the day-to-day administration of activities, and ultimate disposition of, one or more hazardous waste sites. The Project Manager works with the Office of Public Affairs as well as fiscal and legal staff to accomplish site-related goals and objectives.

<u>Public</u> - The universe of individuals, groups and organizations: a) affected (or potentially affected) by an inactive hazardous waste site and/or its remedial program; b) interested in the site and/or its remediation; c) having information about the site and its history.

<u>Public Meeting</u> - A scheduled gathering of the Department staff and the public to give and receive information, ask questions and discuss concerns. May take one of the following forms: large-group meeting called by the Department; participation by the Department at a meeting sponsored by another organization such as a town board or Department of Health; working group or workshop; tour of the hazardous waste site.

<u>Public Notice</u> - A written or verbal informational technique for telling people about an important part of a site's remedial program coming up soon (examples: announcement that the report for the RI/FS is a publicly available; a public meeting has been scheduled).

The public notice may be formal and meet legal requirements (for example: what it must say, such as announcing beginning of a public comment period; where, when and how it is published).

<u>Publish</u> - For purposes of 6NYCRR Part 375.7, at a minimum requires publication of a legal notice in a local newspaper of general circulation.

Another kind of public notice may be more informal and may not be legally required (examples: paid newspaper advertisement; telephone calls to key citizen leaders; targeted mailings).

Responsiveness Summary - A formal or informal written or verbal summary and response by the Department to public questions and comments. Prepared during or after important elements in a site's remedial program. The responsiveness summary may list and respond to each question, or summarize and respond to questions in categories.

Toll-Free "800" Telephone Information Number - Provides cost-free access to the Department by members of the public who have questions, concerns or information about a particular hazardous waste site. Calls are taken and recorded 24 hours a day and a Department staff member contacts the caller as soon as possible (usually the same day).

Definitions of Significant Elements and Terms of the RI/FS

NOTE: The first eight definitions represent major elements of the remedial process. They are presented in the order in which they occur, rather than in alphabetical order, to provide a context to aid in their definition.

Site Placed on Registry of Inactive Hazardous Waste Sites - Each inactive site known or suspected of containing hazardous waste must be included in the Registry. Therefore, all sites which state or county environmental or public health agencies identify as known or suspected to have received hazardous waste should be listed in the Registry as they are identified. Whenever possible, the Department carries out an initial evaluation at the site before listing.

<u>Phase I Site Investigation</u> - Preliminary characterizations of hazardous substances present at a site; estimates pathways by which pollutants might be migrating away from the original site of disposal; identifies population or resources which might be affected by pollutants from a site; observes how the disposal area was used or operated; and gathers information regarding who might be responsible for wastes at a site. Involves a search of records from all agencies known to be involved with a site, interviews with site owners, employees and local residents to gather pertinent information about a site. Information gathered is summarized in a Phase I report.

After a Phase I investigation, DEC may choose to initiate an emergency response; to nominate the site for the National Priorities List; or, where additional information is needed to determine site significance, to conduct further (Phase II) investigation.

<u>Phase II Site Investigation</u> - Ordered by DEC when additional information is still needed after completion of Phase I to properly classify the site. A Phase II investigation is not sufficiently detailed to determine the full extent of the contamination, to evaluate remedial alternatives, or to prepare a conceptual design for construction. Information gathered is summarized in a Phase II report and is used to arrive at a final hazard ranking score and to classify the site.

Remedial Investigation (RI) - A process to determine the nature and extent of contamination by collecting data and analyzing the site. It includes sampling and monitoring, as necessary, and includes the gathering of sufficient information to determine the necessity for, and proposed extent of, a remedial program for the site.

Feasibility Study (FS) - A process for developing, evaluating and selecting remedial actions, using data gathered during the remedial investigation to: define the objectives of the remedial program for the site and broadly develop remedial action

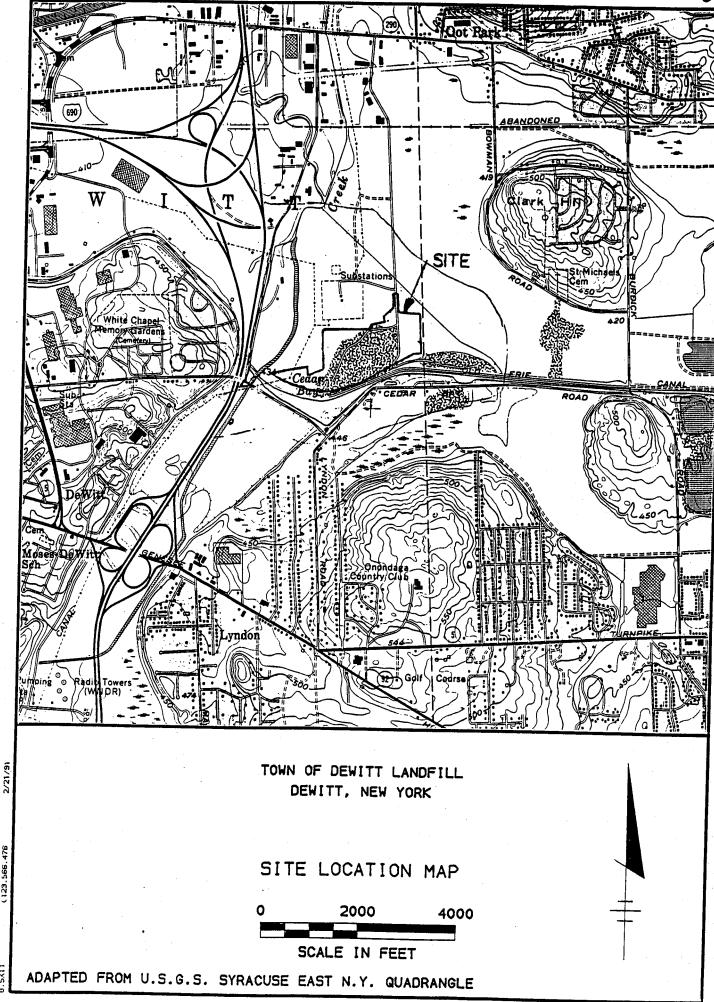
alternatives; perform an initial screening of these alternatives; and perform a detailed analysis of a limited number of alternatives which remain after the initial screening stage.

Remedial Design - Once a remedial action has been selected, technical drawings and specifications for remedial construction at a site are developed, as specified in the final RI/FS report. Design documents are used to bid and construct the chosen remedial actions. Remedial design is prepared by consulting engineers with experience in inactive hazardous waste disposal site remedial actions.

<u>Construction</u> - the Town of Dewitt selects contractors and supervises construction work to carry out the designed remedial alternative. Construction may be as straightforward as excavation of contaminated soil with disposal at a permitted hazardous waste facility. On the other hand, it may involve drum sampling and identification, complete encapsulation, leachate collection, storage and treatment, ground water management, or other technologies. Construction costs may vary from several thousand dollars to many millions of dollars, depending on the size of the site, the soil, ground water and other conditions, and the nature of the wastes.

Monitoring/Maintenance - Denotes post-closure activities to ensure continued effectiveness of the remedial actions. Typical monitoring/maintenance activities include quarterly inspection by an engineering technician; measurement of level of water in monitoring wells; or collection of ground water and surface water samples and analysis for factors showing the condition of water, presence of toxic substances, or other indicators of possible pollution from the site. Monitoring/maintenance may be required indefinitely at many sites.

<u>Consent Order</u> - A legal and enforceable negotiated agreement between the Department and responsible parties where responsible parties agree to undertake investigation and cleanup or pay for the costs of investigation and cleanup work at a site. The order includes a description of the remedial actions to be undertaken at the site and a schedule for implementation.


<u>Contract</u> - A legal document signed by a contractor and the Department to carry out specific site remediation activities.

<u>Contractor</u> - A person or firm hired to furnish materials or perform services, especially in construction projects.

<u>Delisting</u> - Removal of a site from the site Registry based on study which shows the site does not contain hazardous wastes.

Potentially Responsible Party Lead Site - An inactive hazardous waste site at which those legally liable for the site have accepted responsibility for investigating problems at the site, and for developing and implementing the site's remedial program. PRP's include: those who owned the site during the time wastes were placed, current owners, past and present operators of the site, and those who generated the wastes

FIGURES - CITIZENS PARTICIPATION PLAN

SE O'BRIEN N DERE

DEVELOPMENT OF PROJECT PLANS

- FIELD SAMPLING
- QUALITY ASSURANCE
- HEALTH & SAFETY
- CITIZENS PARTICIPATION

GROUND WATER USER SURVEY

GROUND WATER AND
SURFACE WATER
FIELD INVESTIGATIONS

SAMPLING & ANALYSIS OF AIR, SURFACE WATER, SEDIMENT, AND GROUND WATER

VALIDATION OF ANALYTICAL DATA

RISK ASSESSMENT

1

DATA EVALUATION & RI REPORT PREPARATION

0123,566.47

2/20/91

CULTICAD

APPENDIX - CITIZENS PARTICIPATION PLAN

APPENDIX A INTERESTED/AFFECTED PARTIES CONTACT LIST

•			
Town of Dewitt Of	icials:		
Burton Lowitz, Tow Dewitt, N.Y. 13214 (315) 446-3826		ernut Drive, P.O.Box 159,	
James Fisher, Deput Dewitt, N.Y. 13214 (315) 446-3826		ternut Drive, P.O.Box 159,	
Richard T. Robb, P.O.Box 159, Dewit (315) 446-3826		opment & Operations, 5400	Buttern
Elayne S. O'Brien, Dewitt, N.Y. 13214 (315) 446-3826	Councilor, 5400 Buttern 0159	ut Drive, P.O.Box 159,	
Marion L. Dean, To Dewitt, N.Y. 13214- (315) 446-3826		nut Drive, P.O.Box 159,	
John K. Gallagher, Dewitt, N.Y. 13214- (315) 446-3826	Attorney, 5400 Butterm 0159	it Drive, P.O.Box 159,	
Jack Schultz, Town Dewitt, N.Y. 13214- (315) 446-3826	Justice, 5400 Butternut 0159	Drive, P.O.Box 159,	
James DeLapp, Chi Dewitt, N.Y. 13214- (315) 446-3826		rnut Drive, P.O.Box 159,	
County:			
Nicholas J. Pirro, 6 Syracuse, N.Y. 1320 (315) 435-6516		utive, Civic Center, 411 Mo	ntgome

Elaine Lytel, Onondaga County Clerk, 200 Court House, 401 Montgomery St., Syracuse, N.Y. 13202 (315) 435-2226

James R. Miller, M.D., MPH, Onondaga County Health Department Commissioner, Civic Center, 411 Montgomery St., Syracuse, N.Y. 13202 (315) 435-3252

Gary P. Maclachlan, Commissioner of Parks and Recreation Department, P.O.Box 146, Liverpool, N.Y. 13088 (315) 451-7275

State:

Nancy L. Hoffman, New York State Senate, 541 State Office Building, Syracuse, N.Y. 13202 (315) 428-4107

Tarky Lombardi Jr., New York State Senate, 804 State Office Building, Syracuse, N.Y. 13202 (315) 428-4265

Michael Bragman, New York State Assembly, 305 S. Main St., North Syracuse, N.Y. 13212 (315) 452-1044

Melvin Zimmer, New York State Assembly, 840 State Office Building, Syracuse, N.Y. 13202 (315) 428-9651

Federal:

Daniel P. Moynihan, United States Senate, Russell Senate Office Building, Room 464, Washington, D.C. 20510 (202) 224-4451

Alfonse D'Amato, United States Senate, Russell Senate Office Building, Room 520, Washington, D.C. 20510 (202) 224-6542

Media:

News Editor, WSTM-TV Channel 3, Television Center 1030 James St., Syracuse, N.Y. 13203

News Editor, WTVH-TV Channel 5, 980 James St., Syracuse, N.Y. 13203

News Editor, WIXT-TV Channel 9, 5904 Bridge St., E. Syracuse, N.Y. 13057

News Editor, WCNYTV Channel 24, 506 Old Livrpl. Rd., Liverpool, N.Y. 13088

News Editor, WSYT Channel 68, 1000 James St., Syracuse, N.Y. 13203

News Editor, W60BC TV Fabius, Pompey Center Rd., Fabius, N.Y. 13063

News Editor, W30AJ TV Syracuse Inc. Chan. 30, 109 S. Warren St., Syracuse, N.Y. 13202

Economic Organizations:

Daniel E. Bova, Director of Economic Development, Civic Center, 411 Montgomery St., Syracuse, N.Y. 13202 (315) 435-3558

Environmental Organizations:

David W. Stoner, Environmental Management Council Chairman, Civic Center, 411 Montgomery St., Syracuse, N.Y. 13202 (315) 435-2640

Robert D. Hennigan, Water Quality Management Agency Chairman, Civic Center, 411 Montgomery St., Syracuse, N.Y. 13202 (315) 435-2640

APPENDIX B IDENTIFICATION OF DEPARTMENT CONTACTS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Toll Free Telephone Number: (800)-342-9296

Project Manager: Jeffrey Konsella, Environmental Engineer

NYSDEC

Bureau of Western Remedial Action

Division of Hazardous Waste Remediation

50 Wolf Road

Albany, New York 12233

(518)-457-3373

Regional Office Contacts: Larry Gross, P.E.

Regional Solid Waste Engineer

NYSDEC

615 Erie Blvd. West

Syracuse, New York 13204

(315)-426-7531

Charles Branagh, P.E.

Regional Hazardous Waste Engineer

NYSDEC

615 Erie Blvd. West

Syracuse, New York 13204

(315)-426-7531

Citizen Participation Specialists: Sue Miller and Kate Lacey

NYSDEC

615 Erie Blvd. West

Syracuse, New York 13204

(315)-426-7531

NEW YORK STATE DEPARTMENT OF HEALTH

Toll Free Number: (800)-458-1158

Office: NYSDOH

Albany Regional Office

State Campus

Albany, New York 12237

(518)-458-6310

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX G
RECORD OF DECISION

"Dewitt Landfill" Inactive Hazardous Waste Site Town of Dewitt, Onondaga County, New York Site No. 7-34-012

Statement of Purpose and Basis

The Record of Decision (ROD) presents the selected remedial action for the Dewitt Landfill inactive hazardous waste disposal site which was chosen in accordance with the New York State Environmental Conservation Law (ECL). The remedial program selected is not inconsistent with the National Oil and Hazardous Substances Pollution Contingency Plan of March 8, 1990 (40CFR300).

This decision is based upon the Administrative Record of the New York State Department of Environmental Conservation (NYSDEC) for the Dewitt Landfill Inactive Hazardous Waste Site and upon public input to the Proposed Remedial Action Plan (PRAP) presented by the NYSDEC. A bibliography of the documents included as a part of the Administrative Record is included in Appendix B of the ROD.

Assessment of the Site

Actual or threatened release of hazardous waste constituents from this site have been addressed by remedial construction activities completed as an Interim Remedial Measure (IRM). Prior to completion of the IRM, actual or threatened releases of hazardous waste presented potential threat to public health and the environment.

Description of Selected Remedy

Based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Dewitt Landfill and the criteria identified for evaluation of alternatives the NYSDEC has selected continuous maintenance of the landfill cap and periodic sampling of surface water and groundwater. The components of the remedy are as follows:

- Completion of the Interim Remedial Measures (capping, storm water control measures, site fencing). At this time, most of the work has been completed.
- Development and implementation of long term land use restrictions at the site to protect the installed cap and eliminate disturbance to the cap and its contours.
- Provide for periodic maintenance and repairs to the cap as necessary.

Provide for the comprehensive monitoring of groundwater and surface water to evaluate the effectiveness of the cap, and the need for future active leachate collection as necessary.

New York State Department of Health Acceptance

The New York State Department of Health concurs with the remedy selected for this site as being protective of human health.

Declaration

The selected remedy is protective of human health and the environment, complies with State and Federal requirements that are legally applicable or relevant and appropriate to the remedial action to the extent practicable, and is cost effective. This remedy utilizes permanent solutions and alternative treatment or resource recovery technologies, to the maximum extent practicable, and satisfies the statutory preference for remedies that reduce toxicity, mobility, or volume as a principal element.

March 15, 1994

Date

Ann Hill DeBarbieri
Deputy Commissioner

TABLE OF CONTENTS

SECT	ION	PAG
1:	Site Description	
2:	Site History	
	2.1 Operational/Disposal History	
3:	Current Status	2
	3.1 Summary of Remedial Investigation	2 4 5 5
4:	Enforcement Status	5
5:	Summary of Remediation Goals	6
6:	Summary of the Evaluation of Alternative	6
	6.1 Description of Remedial Alternatives	6 7
7:	Summary of the Selected Alternative	9
8:	Highlights of Community Participation	10
Figures	Figure 1: Site Location Map	11
<u>Tables</u>	- Table 1: Compounds Detected in Groundwater	12 13 14 15
Append	dix - Appendix A: Responsiveness Summary	Al Bl

Record of Decision

"Dewitt Town Landfill" Town of Dewitt, Onondaga County, New York Site No. 7-34-012 March 1993

SECTION 1: SITE DESCRIPTION

The Dewitt Landfill is located in the Town of Dewitt in Onondaga County off Fisher Road and is adjacent to the Old Erie Canal. The site is approximately 57 acres in size and the area immediately surrounding the landfill is undeveloped. A light industrial area is located 0.5 miles north of the landfill and residential areas are located within 0.5 miles to the northeast, south, and west. The site is bordered to the north, east, and west by wetlands and to the south by the Old Erie Canal. A small portion of the eastern side of the landfill is located within the Town of Manlius. Figure 1 shows the site location.

SECTION 2: SITE HISTORY

2.1: Operational/Disposal History

The Town of Dewitt landfill was in operation from the mid 1950's until 1990. Community Right-to-Know reports document specific hazardous wastes taken to the Dewitt Landfill. Among these wastes were spent solvents, paint sludges and solids, and emission control "bag house" dust.

2.2: Remedial History

A preliminary site investigation of the Landfill (called a Phase 2) was completed in 1987 by the Town, in cooperation with the NYSDEC. Groundwater sampling conducted as part of this investigation revealed the presence of contaminants including benzene, ethyl-benzene, xylene, toluene, and vinyl chloride. Leachate outbreaks were also identified, including one along the canal tow-path. This persistant leachate seep was subsequently addressed by the Town in 1991 through the installation of a sump at the seep location.

In October 1990, the Town entered into a consent order with the Department that required a Remedial Investigation and Feasibility Study, as well as a complete remedial program be completed at the site. The consent order also required the landfill to be capped as an interim remedial measure (see section 4).

The Town has signed a State Assistance Contract with New York State which has provided for State funding of 75% of all eligible costs of the remedial program under the 1986 Environmental Quality Bond Act (EQBA) Title 3 program.

SECTION 3: CURRENT STATUS

The Town of Dewitt, in cooperation with the NYSDEC under the Title 3 program, initiated a Remedial Investigation/Feasibility Study (RI/FS) in September 1991 to address the contamination at the site. The final Remedial Investigation Report was approved on November 30, 1993. Construction of the IRM (cap) began in August of 1992 and is scheduled to be complete on or before July 1, 1994.

3.1: Summary of the Remedial Investigation

The purpose of the RI was to define the nature and extent of any contamination resulting from previous activities at the site.

A report entitled "Town of Dewitt Landfill Remedial Investigation" has been prepared describing the field activities and the findings of the RI in detail.

The RI activities consisted of the following:

- o Perimeter soil vapor survey
- o Monitoring well installations
- o Piezometer installations
- o Air sampling
- o Surface water, soil, and sediment sampling
- o Groundwater sampling
- o Hydrogeologic evaluation

The analytical data obtained from the RI was compared to Applicable Standards, Criteria, and Guidance (SCGs) in determining remedial alternatives. Groundwater, drinking water and surface water SCGs identified for the Dewitt landfill site were based on NYSDEC Ambient Water Quality Standards and Guidance Values and Part V of NYS Sanitary Code. For the evaluation and interpretation of soil and sediment analytical results, NYSDEC soil cleanup guidelines for the protection of groundwater, background conditions, and risk-based remediation criteria were used to develop remediation goals for soil.

Based upon the results of the remedial investigation in comparison with the SCGs and potential public health and environmental exposure routes, no areas or media of the site are in need of further remediation beyond capping.

Groundwater sampling was performed using the 18 groundwater monitoring wells around the landfill perimeter. Table 1 indicates compounds detected in groundwater samples and their detected concentration ranges. Results from the two rounds of sampling indicate two samples with detectable concentrations of organics. However, none of the overburden wells contained organic contaminants in excess of Class "GA" groundwater standards or drinking water standards. The sampling also indicated several organic compounds in two downgradient bedrock wells at concentrations up to 22 ppb. However, only two of five bedrock groundwater wells contained concentrations of volatile organics above Class "GA" groundwater standards or drinking water standards. Although several volatile organic compounds were detected in groundwater, there is presently no use of groundwater for drinking water purposes in the vicinity of the site. Moreover, the levels of these organic compounds are very low.

No semi-volatile organic compounds were detected in groundwater samples. No pesticides/PCBs were detected in groundwater samples.

Several groundwater samples indicated concentrations of various inorganic compounds in both the overburden and bedrock wells. Concentrations of total barium, chromium, iron, lead, magnesium, manganese, sodium, and zinc in some wells were above NYS Class "GA" standards. With the exception of lead, however, the highest concentrations of these metals were found in upgradient wells. This indicates that most inorganics detected are also naturally occurring in the area. It is not unusual for naturally occurring inorganics to be detected at levels above Class "GA" standards.

The RI/FS has identified limited areas of surface water and sediment adjacent to the landfill which contain detectable concentrations of organics and metals. Table 2 indicates compounds detected in surface water samples and their detected concentration ranges. Table 3 indicates compounds detected in sediment samples and their detected concentration ranges.

Surface water samples taken within the wetland at various locations detected several volatile organic compounds at concentrations up to 3.1 ppb. With the exception of a chloroethane detection in one sample of 28 ppb, all organics detected in the surface water samples were below Ambient Water Quality Standards and Guidance Values for Class "C" and Class "D" surface waters.

One semi-volatile organic con: ! was detected at 5 ppb. No pesticides or PCBs were detected in the surface water samples.

Surface water samples also contained several inorganic compounds. Concentrations of Iron and zinc in some samples exceeded Class "C" and "D" standards. Cadmium was detected in one sample at a level slightly higher than the class "C" standard.

Sediment samples collected contained various volatile organic compounds (such as carbon disulfide, and methylene chloride) at concentrations up to 45 ppb. However, the volatile organics were detected at numerous locations upgradient from the landfill. This suggests that there are sources for these compounds other than the landfill.

)

Sediment samples also detected several semi-volatile compounds (such as various phthalates) at concentrations up to 3.4 ppm. However, the random occurrence of several semi-volatile organic compounds suggests that there are multiple sources which could include runoff from roadways, car exhaust, etc. One sediment sample contained pesticides (4,4'-DDD and 4,4'-DDT) at concentrations up to 32 ppb.

A sediment sample taken in the vicinity of a leachate seep contained concentrations of several inorganic compounds above background levels. These metals include antimony, arsenic, barium, iron, manganese, mercury, nickel, and sodium.

Soil samples were taken at 17 locations around the landfill perimeter. Table 4 indicates various compounds detected in surface soils and the range of concentrations.

Semivolatile organic compounds were detected in several soil samples at concentrations up to 14 ppm. However the majority of semivolatile compounds detected were below 1 ppm. Most semivolatiles detected were polynuclear aromatic hydocarbons (PAHs) such as phthalates. However, semivolatile compounds were also detected in the background soil sample.

One surface soil sample contained the pesticide beta BHC at a concentration of 30 ppb. Two samples contained concentrations of PCB Aroclor 1260 at 0.44 ppm and 0.55 ppm.

Surface soil sample concentrations were compared to the background soil concentrations for inorganic analysis. Several inorganics (such as antimony, calcium, and magnesium) were detected above background concentrations in most soil samples. However, most inorganics detected are in the general concentration range of background.

3.2 Interim Remedial Measures:

An IRM was conducted at the site as required by the consent order. An IRM is implemented when a source of contamination or exposure pathway can be effectively addressed before completion of the RI/FS. In this instance, it was recognized that the construction of a landfill cap would cause a significant reduction in the amount of precipitation entering the landfill waste mound, thereby substantially reducing the amount of leachate being generated by the waste. In addition, Solid Waste Management Facilities Regulations of 6NYCRR Part 360 require all closed landfills to be properly capped. In this instance, the IRM was designed in accordance with 6NYCRR Part 360 regulations.

Construction of the landfill cap IRM began in August 1992, and is scheduled to be completed by July 1, 1994. Capital costs for cap construction are \$6,800,000.

Since the landfill is situated in a regulated wetland, a permit was obtained from the U.S. Army Corps of Engineers for construction activities required in the IRM. Permit #92-988-50 under authority of Section 10 of the Rivers and Harbors Act of 1899 and Section 404 of the Clean Water Act was granted to the Town. The permit allowed the filling of 0.94 acres of wetland as part of the construction of the landfill cap.

3.3 Summary of Human Exposure Pathways:

A baseline human health risk assessment was performed as a part of the RI. This health risk assessment included an exposure pathway analysis to identify media of concern and assess the potential for human exposure based on these pathways. Potential risks were evaluated for four possible exposure scenarios: children playing in the adjacent park, children using the towpath, adults using the towpath, and workers on the landfill site. As concentrations of landfill related contaminants in accessible media were generally very low, the site was not found to pose any unacceptable health risks to the public in its vicinity.

3.4 Summary of Environmental Exposure Pathways:

A NYSDEC Division of Fish and Wildlife "Impact analysis" was performed at the site, with the following conclusions:

- o Potential ecological receptors for the site include a variety of mammalian, avian, reptilian, and amphibious wildlife species, protected plants, and regulated wetlands.
- Exposure to wildlife receptors could potentially occur via contact or ingestion of contaminated surface soils, surface water, or biota.
- o Impacts to the ecological receptors are the result of physical, chemical, and biological stresses on the ecosystem.
- The wetland system, of which the landfill is a part, is situated in an urban area, and has been stressed by road construction, habitat loss, increased human activity, and chemical inputs from the landfill as well as other adjacent commercial activities.

The overall conclusion of the fish and wildlife impact analysis is that landfill related contaminants have minimal effect on surrounding resources.

SECTION 4: ENFORCEMENT STATUS

The NYSDEC and the Town of Dewitt entered into a Consent Order on September 17, 1990. The Order obligates the Town to implement a full remedial program at the landfill and allows reimbursement to the Town of up to 75 percent of the eligible cost of the remediation.

Orders on Consent

<u>Date</u> 10/17/93

<u>Index</u> R7-420-89-07 Subject Remedial Prog.

The Consent Order required the completion of an RI/FS as well as an IRM (cap) and any necessary Remedial Design and Construction which was identified from the RI/FS findings.

SECTION 5: SUMMARY OF THE REMEDIATION GOALS

Goals for the remedial program have been established through the remedy selection process stated in 6NYCRR 375-1.10. These goals are established under the guideline of meeting all standards, criteria, and guidance (SCGs) and protecting human health and the environment.

At a minimum, the remedy selected should eliminate or mitigate all significant threats to public health and to the environment presented by the hazardous waste at the site, through the proper application of scientific and engineering principles.

The goals selected for this site are:

- Reduce, control, or eliminate the contamination present within the soils/waste on site (generation of leachate within the fill mass).
- Eliminate the threat to surface waters by eliminating any future surface leachate outbreaks from the site.
- Eliminate the potential for direct human or animal contact with the contaminated soils on site.
- Prevent, to the extent practicable migration of contaminants in the landfill to groundwater.
- Provide for attainment of SCGs for groundwater quality at the limits of the area of concern (AOC).

SECTION 6: SUMMARY OF THE EVALUATION OF THE ALTERNATIVE

Potential remedial alternatives for the Dewitt landfill site were identified, screened and evaluated in a three-phase Feasibility Study. This evaluation is presented in the report entitled Town of Dewitt Landfill Feasibility Study, January 1994. A summary of the detailed analysis follows.

6.1: Description of Alternative

The potential remedies are intended to address the contaminated soils, sediments, surface water and groundwater at the site. Because of remedial construction activities nearing completion, only one remedial alternative is discussed.

No Further Action Beyond IRM

Landfill Capping. Access Restrictions, Ground Water and Surface Water Monitoring

Present Worth:

\$ 3,650,000

Capital Cost:

\$ 0

Annual O&M:

\$ 222,336 (years 1-5)

\$ 208,356 (years 6-30)

Time to Implement

6 Months

The No Further Action Alternative recognizes the remediation of the site completed under the IRM. It requires continued monitoring to evaluate the effectiveness of the remediation completed under the IRM. Several minor (low-flow) leachate seeps which existed prior to the cap construction are expected to be eliminated or reduced. These seeps were the primary mechanism for contaminant transport to surface water, sediment, and groundwater. With the cap effectively eliminating/reducing the infiltration of precipitation, and thus leachate generation, future leachate generation is expected to be minimal. Due to the nature of the site, with wetland surface water at the same level as the edge of the cap, conventional perimeter leachate collection is not suitable for this site. Such a collection system would have a detrimental effect on the wetland by collecting the wetland surface water as well. If concentrations of landfill constituents in the surface water and groundwater increase after completion of the IRM, and if leachate outbreaks are identified as the likely cause, further remedial measures will be evaluated to address the environmental media being impacted. Operation and maintenance (O&M) activities for the alternative include groundwater and surface water monitoring, maintenance of a SPDES storm water discharge permit, periodic mowing of the cap vegetation, periodic inspection, and repairs to the cap as necessary. An O&M workplan will be developed by the Town which will include the specific criteria the Town will use in evaluating whether the IRM remains effective in the future. O&M activities will also include evaluation and implementation of appropriate remedial measures (subject to NYSDEC approval) to address any future leachate impacts identified. Annual O&M costs are estimated by the Town and may be revised based on the O&M workplan.

6.2 Evaluation of Remedial Alternative

The criteria used to evaluate the potential remedial alternatives are defined in the regulation that directs the remediation of inactive hazardous waste sites in New York State (6NYCRR Part 375). For each of the criteria, a brief description is provided followed by an evaluation of the alternative against that criterion. A detailed discussion of the evaluation criteria and comparative analysis is contained in the Feasibility Study.

The first two evaluation criteria are termed threshold criteria and must be satisfied in order for an alternative to be considered for selection.

1. <u>Compliance with New York State Standards, Criteria, and Guidance (SCGs)</u>. Compliance with SCGs addresses whether or not a remedy will meet applicable environmental laws, regulations, standards, and guidance.

The No Further Action Alternative will result in compliance with chemical specific SCGs. The IRM will result in a substantial decrease in leachate generation, which will reduce or eliminate chemical impacts on surface water, sediment, and groundwater. The concentrations of landfill constituents in the groundwater and surface water are very limited. Existing groundwater and surface water which has been impacted by leachate constituents should biodegrade/attenuate to reach applicable chemical specific SCGs after the cap has been constructed. This alternative will be in compliance with location specific SCGs for activities in wetlands under Section 404, and storm water discharge under a SPDES permit. It will also be in compliance with NYCRR Part 360 Solid Waste Management Facilities criteria for the construction of the cap.

2. Protection of Human Health and the Environment. This criterion is an overall evaluation of the health and environmental impacts to assess whether an alternative is protective.

The No Further Action alternative eliminates potential for casual human contact with the waste and the potential for future migration of landfill constituents to the surface water, sediments, and groundwater through the installation of a cap. Fencing and deed restrictions will also minimize potential for future human exposure to landfill constituents. If persistent leachate outbreaks are identified after completion of the cap, remedial actions will be evaluated to ensure protection of human health and the environment.

The next five "primary balancing criteria" are used to compare the positive and negative aspects of the remedial strategy.

3. <u>Short-term Effectiveness</u>. The potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and implementation are evaluated. The length of time needed to achieve the remedial objectives is also estimated.

The No Further Action alternative produces no additional concerns for the protection of workers during construction beyond completion of the IRM. Protection of workers during the IRM was accomplished through appropriate monitoring activities and through the use of appropriate protective equipment. Protection of the nearest communities from dusts or other airborne emissions during the IRM was provided through monitoring and suppression methods. Dust and airborne emissions will not be a concern when the IRM is completed, provided a good vegetative cover is maintained.

4. Long-term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness of the alternative after implementation of the response actions. If wastes or treated residuals remain on site after the selected remedy has been implemented, the following items are evaluated: 1) the magnitude of the remaining risks, 2) the adequacy of the controls intended to limit the risk, and 3) the reliability of these controls.

The No Further Action alternative will provide for long term effectiveness and permanence. While the waste would remain, capping the landfill eliminates potential for casual human contact and specifically reduces potential for migration of landfill material constituents to the surface water, sediment, and groundwater. Fencing and deed restrictions will limit access to the site and prohibit activities which would disturb the cap. Ground water and surface water monitoring will provide an adequate and reliable means to evaluate the long term effectiveness and permanence of this alternative. The O&M workplan will provide a mechanism for evaluation of long term cap effectiveness, and will provide for additional steps as necessary to address future problems.

5. Reduction of Toxicity, Mobility or Volume. Preference is given to an alternative which permanently and significantly reduces the toxicity, mobility or volume of the wastes at the site.

The No Further Action alternative will reduce the volume and mobility of leachate with the completion of the IRM. Leachate is the primary mechanism for landfill contaminants to impact surrounding surface water, sediment, and groundwater. Natural degradation processes in the bedrock aquifer are expected to continue to reduce the already low concentrations, and hence the toxicity, of landfill constituents.

However, if leachate outbreaks persist, the O&M plan will provide a means to further reduce the volume and mobility of leachate.

6. Implementability. The technical and administrative feasibility of implementing the alternative is evaluated. Technically, this includes the difficulties associated with the construction, the reliability of the technology, and the ability to monitor the effectiveness of the remedy. Administratively, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc..

The No Further Action alternative requires no additional construction activities. Construction of the IRM cap will be complete by July 1, 1994. The groundwater and surface water monitoring programs and deed restrictions in this alternative are readily implementable. The cap will be reliably maintained without difficulty. If future significant leachate outbreaks are identified, they would be readily addressed through operation and maintenance.

7. Cost. Capital and operation and maintenance costs are estimated for the No Further Action alternative and presented on a present worth basis. The costs for this alternative are presented in Section 7.1.

This final criterion is considered a modifying criterion and is taken into account after evaluating those above. It is focused upon after public comments on the Proposed Remedial Action Plan have been received.

8. <u>Community Acceptance</u> - Concerns of the community regarding the RI/FS reports and the Proposed Remedial Action Plan were evaluated. No major public concerns have been expressed regarding the selection of the site remedy as presented in the Proposed Remedial Action Plan. A "Responsiveness Summary" that describes public comments received and the Department responses is included as appendix B.

SECTION 7: SUMMARY OF THE SELECTED ALTERNATIVE

Based upon the results of the RI/FS, and the evaluation presented in Section 7, the NYSDEC is proposing No Further Action Beyond the IRM as the remedy for this site.

This selection is based upon the review of the site data and evaluation of the alternative and its ability to meet the above discussed criteria.

The No Further Action alternative will result in compliance with SCGs. This alternative will be protective of human health and the environment. Access to the site will be restricted and deed restrictions will minimize activity which may be harmful to the integrity of the cap. This alternative provides for continuous monitoring and evaluation of leachate seeps. This alternative will also provide for evaluation and implementation of future additional steps, such as cap repair or the construction of leachate

)

.)

collection sumps, if future conditions warrant further action. Prior to the IRM capping, leachate seeps were of minor flow and were usually intermittent. Leachate seeps are expected to be eliminated after the cap has been completed. However, if necessary, additional remedial actions to address any continued leachate impacts will be evaluated and implemented. The No Further Action alternative will provide for short term effectiveness since construction beyond the cap is not necessary at this time. This alternative will provide for long term effectiveness and permanence by the operation and maintenance activities for the cap. Long term groundwater and surface water monitoring will provide an adaquate and reliable means to evaluate effectiveness. The O&M workplan will provide a means to evaluate and implement further necessary steps to be taken if warrented. This alternative will reduce the toxicity, volume, and mobility of landfill leachate from the site. This alternative will be easily implemented.

The estimated present worth cost to implement the remedy is \$3,650,000. This amount is the cost for operation and maintenance cost for 30 years. The average annual operation and maintenance cost is \$210,686.

SECTION 8: HIGHLIGHTS OF COMMUNITY PARTICIPATION

Document repositories were established at the following locations for public review of project related material:

East Syracuse Public Library 4990 James Street East Syracuse, NY 13057 (315 437-4841 Dewitt Town Hall 5400 Butternut Drive Dewitt NY (315) 446-3768

NYSDEC Mr. Charles Branagh 615 Erie Boulevard West Syracuse, NY (315) 426-7400 NYSDEC
Jeffrey A. Konsella - Project Manager
50 Wolf Road
Albany NY 12233-7010
(518) 457-5636

The following citizen participation activities were conducted:

- Fact Sheet April 1992: Descibed RI field activities to be performed and identified document repositories.
- Public Meeting August 11, 1992: Presented the IRM Cap design, as well as RI/FS process.
- Fact Sheet January 1994: Announced availability of PRAP, and public comment period.
- Public Meeting-February 1, 1994: Presented results of the RI/FS and presented the PRAP for public comment.

Written Ouestions received:

- Q: What is the odor emanating from the landfill which is noticeable when one is on the canal tow-path?
- A: The odors detected are those from landfill material decomposition. The decomposition gases are typically hydrogen sulfide, methane, and carbon dioxide. The odor you noticed was most likely hydrogen sulfide, which one is able to notice even in very low concentrations. Hydrogen sulfide typically comprises less than 1% of landfill gas.
- Q: What are the chemical composition and quantity of the landfill gases, and what are the long and short term effects of the gases on human health?
- A: During RI fieldwork, ambient air samples were taken downwind of the landfill. These samples indicated trace compounds of some volatile organics, but all detections were several orders of magnitude below OSHA standards. The majority of landfill gas is typically methane and carbon dioxide, products of waste decomposition.

The Operation and Maintenance workplan currently being developed will require analysis of the gases being vented from the landfill. Sampling of the gas will occur at the individual vent locations, as well as at the perimeter of the landfill. If the results of this sampling indicates the need for treatment of the gas, individual vent risers can equipped (with carbon filtration) to eliminate any potential harmful gas.

An estimate has not been performed to determine the quantity of gas that will be released from the landfill. A general estimate for methane gas production within a landfill is 125 ft³ per yd³ of refuse per year. It is generally held that the majority of gas production occurs 5+ years after waste deposition ends. Landfill gas production generally peaks around 10-12 years after waste deposition ends.

- Q: If landfill gases are combustible, what is the feasibility of collecting and burning the gas for some purpose such as power generation?
- A: Landfill gases typically contain methane, which is a combustible gas. However, use of gases for electricity generation are subject to cost effectiveness considerations. Discussion of possible gas usage was raised to the Town, and the Town chose not to pursue such usage.
- Q: The Remedial Action Plan should Include sampling and chemical analysis of the landfill gases, with regular updates available to the public.
- A: The Proposed Remedial Action Plan includes the development of an Operation and Maintenance workplan, which will address sampling of the landfill gas. Results of the sampling will be available through the Town of Dewitt.

Dewitt Landfill Administrative Record

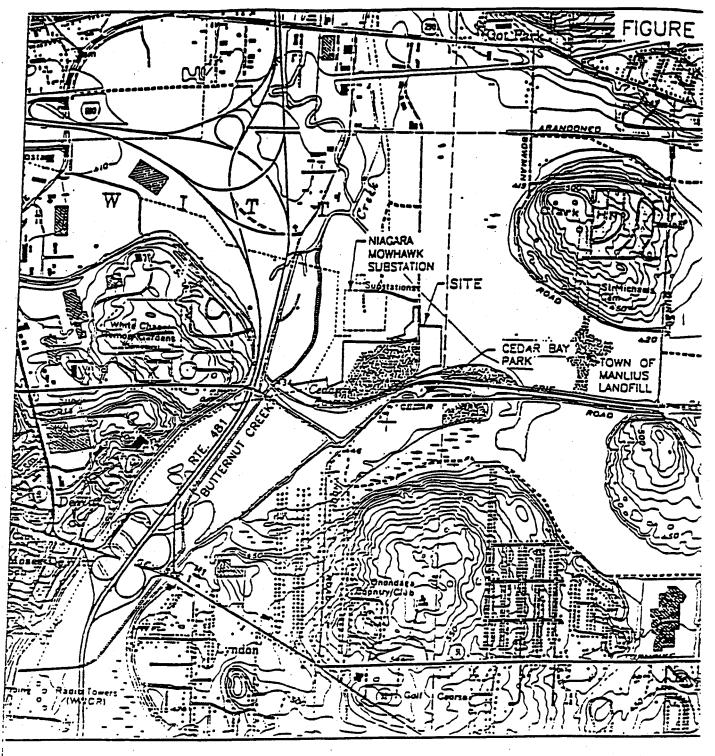
RI/FS

RI/FS Scoping Document, O'Brien & Gere Engineers, May 1991 RI/FS Work Plan, O'Brien & Gere Engineers, June 1991 Preliminary Hydrogeologic Evaluation, September 1992 Final RI Report, November 1993 Final FS Report, December 1993

Earlier Investigations

Town of Dewitt Sanitary Landfill Engineering Plan, O'Brien & Gere Engineers, November 1972 Plan of Closure, O'Brien & Gere Engineers, 1984 Phase II Investigation Workplan, O'Brien & Gere Engineers, 1986 Phase II Investigation Report, O'Brien & Gere Engineers, 1987

Interim Remedial Program


1991 Interim Remedial Program (IRP) Engineering Report, O'Brien & Gere Engineers, October 1991 IRP Health & Safety Plan, O'Brien & Gere Engineers, March 1992 1991 IRP Quality Assurance/Quality Control Plan, O'Brien & Gere Engineers, March 1992 Interim Closure Contract Documents, O'Brien & Gere Engineers, 1992 Interim Closure Contract Drawings, O'Brien & Gere Engineers, 1992

Legal Documents

Order On Consent, Index # R7-420-89-07
State Assistance Contract - 1986 Environmental Quality Bond Act Title 3 Inactive Hazardous Waste Disposal Sites Remediation Program

Other

Town of Dewitt Project Management Plan, Revised January 1993 Citizen Participation Plan, Appendix C of RI/FS Workplan, O'Brien & Gere Engineers, June 1991 Public Hearing Transcript from PRAP meeting of February 1, 1994

TOWN OF DEWITH LANDFILL DEWITH, NEW YORK

SITE LOCATION MAP

ADAPTED FROM U.S.G.S. SYRACUSE EAST N.Y. QUADRANGLE

Chemicals Detected in Ground Water Samples
Town of Dewitt Landfill

Dewitt, New York

TABLE 1

	Bac	kground/Off-Site	On-Site/Impacted		
Compound	Frequency of Detection	Detected Concentration Range (µg/kg)	Frequency of Detection	Detected Concentra Range (µg/kg)	
	0/6		1/29	1.	
1,2,3-Trichlorobenzene	0/6		1/29	19 -	
1,2-Dichloroethene	0/6		2/29	1.2 -	
1,2-Dichloroethene (total)	0/6	12.200 101.000	27/29	571 - 96.8	
Aluminum	6/6	13,300 - 104,000	15/29	48.5 - 6	
Antimony	5/6	36.6 - 354	15/29	6.1 - 31	
Arsenic	0/6		29/29	14.6 - 2.1	
Barium	6/6	362 - 4,100	4/29	1.3 - 7	
Beryllium	2/6	3.5 - 4.7	29/29	224.000 - 6.700.00	
Calcium	6/6	266,000 - 1,830,000		0.7 - 0	
Chloroform	0/6		1/29	15.1 - 7	
hromium	6/6	44.4 - 547	18/29	12 - 89	
coalt	6/6	8.8 - 111	14/29	7 - 42	
Copper	6/6	67.7 - 333	19/29		
on	6/6	29,600 - 196,000	29/29	624 - 171.00	
ead	3/6	16.3 - 56	20/29	5.8 - 87	
lagnesium	6/6	78,000 - 1,090,000	29/29	36.100 - 1,370.00	
anganese	6/6	672 - 5,940	29/2 9	50.6 - 5.55	
ercury	2/6	0.24 - 0.76	2/29	0.26 - 0.5	
ethylene chloride	C/6		1/29	4-	
aphthalene	0/5		1/29	14 - 1	
ckel	5/6	47.2 - 335	19/29	27.5 - 5,71	
etassium	6/6	5.350 - 17,400	29/29	2,780 - 1,520.00	
xdium	€/5	54,000 - 214,000	29/2 9	23,700 - 51,400.00	
ichlorcethene	0/6	·	4/29	0.6 - 1	
ic.norcemene inadium	e/8	25.9 - 152	17/ 29	17.1 - 20.	
nyl chloride	C/E	,	2/29	1.0 - 1.1	
nyi chioride no	6/6	133 - 857	19/29	32.9 - 550	

TABLE 2

Chemicals Detected in Surface Water Samples
Town of Dewitt Landfill
Dewitt, New York

	Baci	rground/Olf-Sile	On-Site/Impacted		
Compound	Frequency of	Detected Concentration	Frequency of	Detected Concentration Range (µg/kg)	
	Detection	Range (µg/kg)	Detection	Hange (bykg)	
1.1-Dichloroethane	97		2/16	0.5 - 1.E	
1,2-Dichloroethene (total)	0.7		3/16	0.7 - 2.7	
Aluminum	5/7	333 - 610	12/16	128 - 17,420	
Antimony	3/7	42.5 - 60.6	5/16	53.2 - 244	
Barium	7/7	45.2 - 98.2	16/16	46.3 - 694	
Benzen e	0/7		2/16	1.0 - 1.4	
Cadmium	1/7	7.5 - 7.5	0/16	0	
Calcium	7/7	95.000 - 248.000	16/16	80,300 - 251,000	
Carbon disulfide	0/7		1/16	20 - 20	
Chloropenzene.	- 0/7		2/16	0.7 - 0.8	
chloroethane	0/7		2/16	3.1 - 28	
hromium	0/7	ì	1/16	161 - 161	
Sopper	1/7	13.8 - 13.8	1/16	7.4 - 7.4	
iethylphthalate	0/7	172 - 795	1/16	5.0 - 5.0	
!hylbenzene	0/7	-	1/16	3.0 - 3.0	
on	7/7	172 - 795	16/16	154 - 177,000	
ead	5/7	2.6 - 3.3	7/16	2.4 - 10.8	
agnesium	7/7	22,100 - 43,600	16/16	16,100 - 44,400	
anganese	6/7	26.5 - 50.9	16/16	10.7 - 1,910	
ercury	1/7	0.87 - 0.87	1/16	0.28 - 0.23	
ctassium	7/7	1,500 - 3,520	12/16	2.290 - 7,480	
odium	7/7	19,400 - 242,000	16/16	18,700 - 143,000	
nyl chlorida	0/7		1/16	1.5 - 1.5	
ienes (total)	0.77		3/16	0.7 - 13.0	
ne	6/7	15.3 - 44.0	16/16	! 5.3 - 68.5	

TABLE 3

Chemicals Detected in Sediment Samples Town of Dewitt Landfill Dewitt, New York

	Bac	kground/Off-Site	On-Site/Impacted		
Compound	Frequency of	Detected Concentration	Frequency of	Detected Concentration	
	Detection	Range (ug/kg)	Detection	Range (vg/kg)	
		•	1/13	32 - 32	
4,4°-DDD	0/6		1/13	19 - 19	
4,4'-DDT	0/6			50 - 86	
Acenapthene	0/6		3/13	1	
Acenapthylene	1/6	76 - 76	1/13	210 - 210	
Aluminum	4/6	7,480 - 12,600	10/13	2,190 - 15,800	
Anthracene	1/6	120 - 120	4/13	56 - 360	
Antimony	0/6		2/13	22.7 - 22.7	
Arsenic	4/6	2.9 - 6.9	10/13	1.6 - 8.5	
3arium	4/6	33.0 - 729	10/13	21.6 - 211	
Benzo(a)anthracene	4/6	190 - 550	9/13	120 - 1,200	
Benzo(a)pyrene	1/6	510 - 510	3/13	680 - 2.500	
Benzo(b)fluoranthene	. 4/6	330 → 600	4/13	120 - 2,200	
Benzo(g,h,i)perylene	1/6	360 - 360	1/13	1,600 - 1,600	
Benzo(k)fluoranthene	4/6	250 - 480	4/13	110 - 1,600	
Calcium	4/6	64,300 - 96,100	10/13	27,500 - 145,000	
Carbazole	0/6		1/13	52 - 52	
arbazole Carpon disulfide	1/6	40 - 40	3/13	6.0 - 45	
	4/6	14.1 - 15.3	10/13	2.7 - 34.7	
hromium	5/6	95 - 560	10/13	140 - 1,900	
hrysene	4/6	5.7 - 9.1	6/13	7.8 - 13.5	
obait	4/6	12.5 - 13.2	10/13	2.4 - 40.7	
opper	0/6	125-162	1/13	190 - 190	
i-n-butylphthalate	0/6		1/13	41 - 41	
i-n-octylphthalate			1/13	43 - 43	
ibenzoluran	0/6	170 - 1,200	13/13	64 - 3,400	
uoranthene	6/6	410 - 410	2/13	530 - 1,800	
deno(1,2,3-cd)pyrane	1/5	The state of the s	10/13	4,950 - 25,600	
on	4/6	12,300 - 20,400	10/13	7.4 - 247	
ad	4/6	10.3 - 55.6		4,660 - 53,600	
agnesium	4/6	20,100 - 34,600	10/13	132 - 388	
angznese	4/6	217 - 252	10/13	0.55 - 0.55	
ercury	2/6	0.2 - 0.2	2/13	6.0 - 10	
ethylene chloride	0/5	•	2/13		
ckel	4/5	18 - 32.2	8/13	:4.1 - 37.5	
enanthrene	SiE	70 - 490	9/13	140 - 1,:00	
eno!	0/6		1/13	88 - 88	
tassium	4/6	1.660 - 2.090	. 10/13	516 - 3.230	
rene	6:E	120 - 700	12/13	42 - 2.500	
dium	: 2iê	336 - 336	4/13	272 - 561	
nagium	4/5	15 - 19.2	10/13	5.5 - 36. :	
inacioni ic	4/5	61.2 - 74.4	10/13	:5.4 - 155	
(2-Einylnexyi)chthaiate	; C/5	÷.	2/13	250 - 630	

Chemicals Detected in Surface Soil Samples Town of Dewitt Landfill Dewitt, New York

		ground/Oll-Site		ite/Impacted	
Compound	Frequency of	Detected Concentration	Frequency of	Detected Concentration	
	Detection	Range (µg/kg)	Detection	Range (µg/kg)	
1.2.4-Trichlorobenzene	O/1		1/19	290	
	0/1		1/19	160	
1,4-Dichlorobenzene	0/1	1	1/19	1,300	
2,4-Dimethylphenol	Ori		1/19	320	
2,4-Dinitrotoluene	1		1/19	400	
2-Chiorophenol	0/1	İ	3/19	17 - 800	
2-Methylnaphthalene	0/1		1/19	520	
4-Chloro-3-methylphenol	0/1		4/19	29 - 150	
4-Methylphenol	0/1				
4-Nitrophenol	0/1	1	1/19	600	
Acenapthene	on		1/19	24 - 1,300	
Acenapthylene	0/1		1/19	200	
Muminum	1/1	20,600	19/19	3,690 - 23,300	
Inthracene	1/1	9	8/19	14 - 1,700	
Intimony	0/1		18/19	9.9 - 103	
rsenic	1/1	8.2	18/19	2.3 - 45.9	
larium .	1/1 -	. 222	19/19 •	17 - 1,130	
enzo(a)anthracene	1/1	55	9/19	58 - 3,700	
enzo(a)pyrene	0/1		2/19	230 - 970	
enzo(b)fluoranthane	1/1	57	7/19	60 - 2,500	
enzo(g.h.i)perylene	0/1		1/19	130	
enzo(k)fluoranthene	1/1	57	7/19	54 - 2,400	
enzois asid	1/1	240	0/19		
erylliu <i>m</i>	1/1	1.1	9/19	0.38 - 2.0	
alcium	1/1	25,200	19/19	9.990 - 153.000	
arbazole	0/1		3/19	96 - 740	
roon disulfide	C/1		1/19	11 '	
romium !	:/1	24.5	:3/19	10.6 - 31.3	
rysene	1/1	75	9/19	64 - 4.100	
bali	1/1	11.1	15/19	2.4 - 34.€	
	• ••	22.5	19/19	5.7 - 42.5	
-n-pulyiphtha:a:a	• •	271	19/19	66 - 3.400	
:	•••		4/19	32 - 1,400	
icraninan a	•••	**:	17/19	35 - 6.100	
	•••		2/19	150 - 1,300	
orana	•	•	• • • •	160	
eno(1.2.3-co;::yrene			:9:13	5.010 - 55.600	
•		• • •	• = • =	9.6 - 45.E	
		• •		4 400 - 54.800	
		• - • •		93.6 - 9.085	
nganesė		: -	2 : 2 2 : 4 : 5 :	1 :3 - C.48	
"Cu")	•		: :		
viriost - T - Pritty = T Ca				, , , , , , , , , , , , , , , , , , ,	
ביים: פיירי			<u> </u>	4 * 4.444	
::	• •	•	· • · · •	£ 5 - 45 €	
	•				
~27:5*576	• •	***	• • • •	EE - 10.001	
	: •		• • • •	423	
	• •	* - · ·	- 5 11 5	615 - 6.791	
! ~ ‡	• • •	.		23 - 3.933	
	• . •	62 ·	å'1 §	124 - 981	
adiem	: 101	32	14/19	14.5 - 39.7	
	9/1	112	19/19	18 - 566	
2-Elhyinexyi)ohinalate	0/1		15/19	82 - 2.900	

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX H GROUND WATER SAMPLING FIELD LOG

GROUND WATER SAMPLING FIELD LOG

Sam	Die Location	wei	1 No
Samı	oled By	Date	Time
	ther		Pump
A.	WATER TABLE:		
	Well depth: (below top of casing)ft.	Well elevation: (top of casing)_	ft.
	Depth to water table: (below top of casing)ft	Water table elevation:	ft.
	Length of water column (LWC)	ft.	
	Volume of water in well:		
	4" diameter wells = 0.65	3 x (LWC) = 3 x (LWC) = 9 x (LWC) =	gallons
B.	PHYSICAL APPEARANCE:		
	Color Odd	orTurbi	dity
	Was an oil film or layer apparent?		
C.	PREPARATION OF WELL FOR SAM	MPLING:	
	Amount of water removed before samp	ling	gallons
••	Did well go dry?		
D.	PHYSICAL APPEARANCE DURING	SAMPLING:	
	Color	Odor	Turbidity
	Was an oil film or layer apparent?		
E.	CONDUCTIVITY	· ·	
F.	pH		
G.	TEMPERATURE		

GROUND WATER SAMPLING FIELD LOG

•				 			-		
	 -			 ·		 			
	 -		•		•				
-									

surface2.jmm

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX I SURFACE WATER SAMPLING FIELD LOG

SURFACE WATER SAMPLING FIELD LOG

Samp	ole Location		
Sam	oled By		DateTime
Wea	ther		<u> </u>
Α.	PHYSICAL APPEARANCE:		
	Color	Odor	Turbidity
	Was an oil film or layer apparen	t?	
В.	CONDUCTIVITY		· ·
C.	pH		
D.	TEMPERATURE		
E.	DISOLVED OXYGEN		
F.	SAMPLING NOTES:		
		•	
-			

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX J INSPECTION CHECKLIST

TOWN OF DEWITT LANDFILL INSPECTION AND MAINTENANCE CHECKLIST

\mathbf{r}	•	п	71	г.
IJ.	А	J	U	Ľ.

INSPECTOR:

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover			
2. Gas Discharge Vents	·		
3. Swales, Ditches and Downchutes			
4. Storm Sewer System, including culverts			
5. Fence and Gates	·		
6. Access Road			
7. Perimeter Service Road			

chart.mjp/st:3m

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX K

NOTICE OF INTENT FOR STORM WATER DISCHARGES

Form Approved.

OMB No. 2040-0086 Approval expires: 8-31-95

NPDES FORM

United States Environmental Protection Agency Washington, DC 20460

Notice of Intent (NOI) for Storm Water Discharges Associated with Industrial Activity Under the NPDES General Permit

Submission of this Notice of Intent constitutes notice that the party identified in Section I of this form intends to be authorized by a NPDES permit issued for storm water discharges associated with industrial activity in the State identified in Section II of this form. Becoming a permittee obligates such discharger to comply with the terms and conditions of the permit. ALL NECESSARY INFORMATION MUST BE PROVIDED ON THIS FORM.

I. Facility	Operator Information
Name:	T,O,W,N,O,F,D,E,W,I,T,T,
Address:	Status of Owner/Operator:
City:	D, E, W, I, T, T, State: N,Y ZIP Code: 1,3,2,1,4,,0,1,5,9
II. Facility	Site Location Information
Name:	T, O, W, N, O, F, D, E, W, I, T, T, L, A, N, D, F, I, L, L, I,
Address:	[F, I, S, H, E, R, R, O, A, D, R, O, A, D, R, D,
City:	[D, E, W, I, T, T, , , , , , , , , , , , , , ,] State: [N,Y] ZIP Code: [1,3,2,1,4,-,0,1,5,9]
Latitude:	4,3 0,2 3,3 Longitude: 0,7 6 0,2 4 6 Quarter: Section: Township: Range:
III. Site Act	ivity Information
MS4 Opera	afor Name:
Receiving \	Water Body: U, N, N, A, M, E, D, , W, E, T, L, A, N, D
If You are I Enter Storr	Filing as a Co-permittee, n Water General Permit Number: Are There Existing Quantitative Data? (Y or N) Y Is the Facility Required to Submit Monitoring Data? (1, 2, or 3)
SIC or Des Activity Co	
If This Faci Application	ility is a Member of a Group , Enter Group Application Number:
	e Other Existing NPDES Inter Permit Numbers:
IV. Additio	nal Information Required for Construction Activities Only
Project Start Date:	
	Estimated Area to be Disturbed (in Acres): in Compliance with State and/or Local Sediment and Erosion Plans? (Y or N)
system des	ation: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a signed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who e system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for blattons.
Print Name	11 1 2 9 4
J, A, M	[, E, S, D, , F, I, S, H, E, R, S, U, P, E, R, V, I, S, O, R, , , ,]
Signature:	James E. Fisher

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX L

HISTORICAL GROUND WATER ANALYTICAL DATA

associated with the landfill. A summary of the pesticides/PCBs analyses is included in Table 18.

Inorganic Analyses

Sample SED-4, collected in the vicinity of the seep at the southwest corner of the landfill, contained concentrations of antimony, arsenic, barium, iron, manganese, mercury, nickel, and sodium above site backgrounds which suggests that the landfill leachate is contributing these constituents to the wetlands in this area.

Magnesium, manganese, sodium, and zinc were detected in SED-3 at concentrations above site background concentrations. However, these compounds are found at similar concentrations at other locations within the canal, and therefore they are not considered to represent site constituents. Above background concentrations of magnesium and manganese were also detected in SED-8 and SED-16. A summary of the sediment inorganics analyses is included in Table 19.

4.08 Ground Water Analyses

Samples from the December ground water sampling event were analyzed for TCL/TAL parameters in accordance with the 1989 NYS ASP. Both total and dissolved TCL metals analyses were completed. Due to insufficient water MW-9D was only analyzed for TCL volatile organics. In agreement with the NYSDEC April ground water samples were analyzed for total and dissolved TCL metals and for volatile organics using NYS Drinking Water Method 524.2. Mw-9D was only analyzed for volatile organics and total TCL metals. The analyses were in accordance with the 1991 NYS ASP.

Volatile Organic Compound (VOC) Analyses

Results from the two sampling events indicated that downgradient shallow well MW-4S contained vinyl chloride (1.1 ppb) during the April sampling and MW-6S contained methylene chloride (4 ppb) during the December sampling. Bedrock monitoring well MW-4D contained total 1,2-dichloroethene (19 ppb and 22 ppb), trichloroethene (12 ppb and 16 ppb), 1,2,3-trichlorobenzene (1 ppb), and naphthalene (14 ppb). During the April 1992 sampling event, downgradient monitoring well MW-5D contained total 1,2-dichloroethene (1.2 ppb), trichloroethene (1.2 ppb), and vinyl chloride (1 ppb).

The 1,2-dichloroethene and trichloroethene concentrations detected in MW-4D are above the New York State Class GA standard of 5 ppb for these compounds. A summary of the ground water VOC analyses is included in Table 20.

Semivolatile Analyses

Semivolatile compounds were not detected in the monitoring wells above the CRDLs during the December 1991 sampling event. Additional analyses were not completed during the April 1992 sampling event as per the agreement with NYSDEC. A summary of the semivolatile analyses is included in Table 21.

Pesticide/PCBs Analyses

Pesticides and PCBs were not detected in the monitoring wells above the CRDLs during the December 1991 sampling event. Additional analyses were not completed during the April 1992 sampling event as per the agreement with NYSDEC. A summary of the pesticide and PCBs analyses is included in Table 22.

Inorganic Analyses

A summary of the results of the inorganic analyses is presented in Table 23.

Barium (total) was detected above the NYS Class GA standard of 1,000 ppb in upgradient wells MW-1S (1150 ppb), MW-7S (2050 ppb), and MW-11D (2520 ppb and 4100 ppb) and downgradient well MW-10S (1170 ppb and 2120 ppb). All the corresponding filtered samples were below the NYS Class GA standard. These data indicated higher barium concentrations in the ground water upgradient of the landfill. Barium is a naturally occurring element.

Chromium (total) was detected above the NYS Class GA standard of 50 ppb in the unfiltered samples from 10 of the monitoring wells. Total chromium was detected in upgradient wells MW-1S, MW-7S, and MW-11D at concentrations up to 547 ppb. The only downgradient well which contained total chromium above 547 ppb was MW-9D with a concentration of 758 ppb. The corresponding dissolved chromium concentrations were below the detection limits in all cases.

Iron (total) was detected above the NYS Class GA standard of 300 ppb in all monitoring wells. Upgradient wells MW-1S, MW-7S, and MW-11D contained total iron at concentrations up to 196,000 ppb. Total iron concentrations in the downgradient wells were lower and ranged from 624 ppb to 171,000 ppb. These data indicate higher iron concentrations in the ground water upgradient of the landfill. The corresponding dissolved iron concentrations were considerably lower than the total iron, but were higher than the Class GA standard in most cases.

Lead (total) was detected above the Class GA standard of 25 ppb in upgradient well MW-1S at a concentrations of 56 ppb. Downgradient wells which contained total lead above background were MW-2S (66 ppb), MW-9D (67 ppb), and MW-12S (82.4 ppb and 87.3 ppb). The dissolved lead concentrations were below the Class GA standard in all cases.

Magnesium (total) was detected above the NYS Class GA standard of 35,000 ppb in all monitoring wells. Magnesium was detected in upgradient well MW-11D at a concentration of 1,090,000 ppb. Total magnesium concentrations in the downgradient wells were lower and ranged from 36,100 ppb to 391,000 ppb, with the exception of MW-9D which contained 1,370,000 ppb total magnesium. The corresponding dissolved magnesium concentrations were considerably lower than the total magnesium, but were higher than the Class GA standard in most cases.

Manganese (total) was detected above the NYS Class GA standard of 300 ppb in most of the monitoring wells. Manganese was detected in the upgradient wells at concentrations up to 5,940 ppb. Total manganese concentrations in the downgradient wells were lower in all cases. The corresponding dissolved manganese concentrations were below the Class GA standards with the exception of MW-12S, which has a concentration of 821 ppb and 801 ppb.

Total and dissolved sodium was detected in ground water above the NYS Class GA standard of 20,000 ppb in all monitoring wells. Total sodium was detected in the upgradient wells at concentrations up to 214,000 ppb in MW-7S. Sodium concentrations were lower in monitoring wells downgradient from the landfill, with the exception of MW-9D which contained 51,400,000 ppb of total sodium. The sodium levels for the shallow wells at this

location, MW-9S and MW-9M, are significantly lower. Therefore, the sodium levels are likely associated with the bedrock and not the landfill.

Zinc (total) was detected above the NYS Class GA standard of 300 ppb in nine monitoring wells. Highest zinc concentrations were detected in the upgradient wells, with the highest concentration in MW-1S (867 ppb). Dissolved zinc concentrations were all below the NYS Class GA standard, and in most cases were below the detection limit.

To summarize ground water metals analyses, the analyses for total barium, chromium, iron, lead, magnesium, manganese, sodium and zinc indicated concentrations in some wells which were above NYS Class GA standards. In all cases except total lead the highest concentrations were found in upgradient wells. A comparison of the filtered and unfiltered samples found the corresponding filtered samples were either below detection limits or below the standards in all cases except for sodium, iron and magnesium. The silt content of the unfiltered samples was probably responsible for most of the higher concentrations detected in those samples.

TETELLECECCCCCCCC

	CLIENT ID	MW-1S		MW-1S		MW-2S	MV	V-2S	1	MW-2D	M	IW-2D	N	1W-3S	N	/W-3S	j	MW-4S	M	W-4S	N	/W-4D	M	W-4D	K	1W-5S	М	W-5S	;
COMPOUND	Date Collected	12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92	2
Acetone		19.0	UJ	NA		10.0	UJ	NA		17.0	UJ	NA		10.0	ÜĴ	NA		10.0	υJ	NA		10.0	บา	NA		10.0	UJ	NA	▔
Benzene		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	5 · U
Bromobenzene		NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	5 U
Bromochlorometh	nane	NA.		0.5	Ü	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA			5 U
Bromodichlorome	ethane	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U		5 U
Bromoform		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		5.0	_		. U
Bromomethane	•	10.0	U	0.5	U	10.0	U	0.5	U	10.0	U	0.5	U	10.0	U	0.5	Ü	10.0	U	0.5	U	10.0	U	0.5	Ū	10.0	_		; U
2-Butanone		10.0	U	NA		10.0	U.	NA		10.0	U	NA		10.0	U	NA		10.0	UJ	NA		10.0	UJ	NA		10.0	ΠΊ	NA	
sec-Butylbenzen	е	NA		0.5	U	NA		0.5	U	NA		0.5	U:	NA		0.5	U	NA		0.5	IJ	NA	-	0.5	ш	NA.	-		5 U
tert-Butylbenzene	е	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		NA		0.5	-	NA			Ü
Carbon disulfide		5.0	U	NA		5.0	U	·NA		5.0	U	NA		5.0	U	NA	-	5.0	U	NA	•	5.0	u	NA	•	5.0	11	NA	
Carbon Tetrachio	ride	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	u	5.0	Ū	0.5	u	5.0	-	0.5	п	5.0	-	0.5	11	5.0			5 U
Chlorobenzene		5.0	U	0.5	U	5.0	u	0.5	U	5.0	U	0.5	U	5.0	Ū	0.5		5.0	_	0.5	_	5.0	-	0.5	_	5.0			, U
Chloroethane		10.0	U	0.5	U	10.0	U	0.5	U	10.0	U	0.5	U	10.0	U	0.5			-			10.0	-	0.5		10.0			, U.
Chloroform		5.0	U	0.5	U	5.0	U	0.5	U	5.0	υ	0.5	Ü	5.0	U	0.5		5.0	_	0.5		5.0	-	0.5		5.0			, U.
Chloromethane	•	10.0	Ü	0.5	U	10.0	U	0.5	U	10.0	U	0.5	U	10.0	U	0.5	IJ	10.0	Ü	0.5	-	10.0	_	0.5	_	10.0	-		, U.
2-Chlorotoluene		NA		0.5	U	NA		0.5	U	NA			Ū	NA		0.5		NA	•	0.5		NA	•	0.5		NA	•		, U.
4-Chlorotoluene		NA		0.5	U	NA		0.5	U	NA.		0.5	Ū	. NA		0.5		NA		0.5		NA.		0.5	_	NA			, U
Dibromochlorome	ethane	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		5.0	·u	0.5		5.0	U	0.5	-	5.0	11	0.5			u .		, U
1,2-Dibromo-3-c	hloropropane	NA		0.5	R	NA			R	NA			R	NA	-	0.5		NA	-	0.5		NA	. •	0.5		NA	•		, U
1,2-Dibromoetha	ne	NA		0.5	U	NA			U	NA			Ü	. NA		0.5		NA		0.5	-	NA		0.5		NA NA			
Dibromomethane		NA		0.5		NA			Ū	NA			Ü	NA		0.5		NA NA		0.5		NA.		0.5		NA NA			; U

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-8S collected 12/18/91 BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

COMPOUND	CLIENT ID Date Collected	MW-1S 12/91	MW-1S 4/92		MW-2S 12/91		-2S 4/92	М	W-2D 12/91	. M	W-2D 4/92	R	/W-3S 12/91		4/92	K	1W-4S	MW	-4S /92	MW-		MW-	4D 92		W-5S 12/91	. (MW-5S 4/92	
1,2-Dichlorober	nzene	NA	0.5	U	. NA		0.5	U	NA		0.5	U	NA		0.5	υ	NA	-	0.5	U	AN).5	II	NA			Ū
1,3-Dichlorober	nzene	NA	0.5	U	NA		0.5	U	NA		0.5	U	. NA		0.5	U	NA		0.5		A).5		NA			Ü
1,4-Dichlorober	nzene	. NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		AN).5		NA:			Ü
Dichlorodifluore	omethane	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	UJ	NA				NA.			υJ	NA		0.5	
1,1-Dichloroeth	ane	5.0 U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		5.0		0.5		5.0).5		5.0		0.5	
4-Methyl-2-per	ntanone	10.0 U	NA NA		10.0	U	NA		10.0	U	NA.		10.0	U	NA		10.0	_	NA).0		A.V	•	10.0	-	NA	
Methyl-tert-but	ylether	NA	0.5	U	· NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		NA	-).5	11	NA		0.5	
Isopropyl ether		NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		NA		0.5		JA).5	_	NA		0.5	
1,3,5-Trimethyl	benzen e	NA	0.5	U	NA		0.5	U	NA		0.5	U	, NA		0.5	Ū	NA		0.5		۱A).5		NA		0.5	
1,2,4-Trimethyli	benzene	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		۱A).5		NA		0.5	
n-Butylbenzene	•	NA	0.5	U	NA		0.5	U	, NA		0.5	U	NA		0.5	_	NA		0.5		NA.).5	-	NA NA		0.5 0.5	
1,2-Dichloroeth	ane	5.0 U	0.5	U	5.0	U	0.5	U	5.0	υ	0.5	U	5.0	U	0.5		5.0		0.5		5.0		.5		5.0			_
1,1-Dichloroeth	••••	5.0 U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		5.0	_	0.5	- '	i.O .	- ').5	_	5.0	_	0.5 0.5	
1,2-Dichloroeth	ene (total)	5.0 U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	Ū	5.0	-	0.5		.0		2.0	Ü	5.0	-	0.5	
1,2-Dichloropro	pane	5.0 U	0.5	U	5.0	U .	0.5	U	5.0	U	0.5	U	5.0	Ū	0.5		5.0	-	0.5		.O		5		5.0	_	0.5 0.5	_
1,3-Dichloropro	pane	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	Ū	NA	-	0.5		IA		.5	_	NA	U		-
2,2-Dichloropro	pane	NA	0.5	U	. NA		0.5	U	NA		0.5	U	NA		0.5		NA		0.5	-	IA.		.5		NA		0.5	
1,1-Dichloropro	pene	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		NA		0.5	- •	IA		.5	_	NA		0.5 0.5	
Ethylbenzene		5.0 U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		5.0		0.5		i.O		.5	_	5.0			_
Hexachlorobuta	diene	NA	0.5	U	NA		0.5	U	NA		0.5		NA	-	0.5	-	NA	-	D.5	-	IA		.5	_	NA	U	0.5	_
2-Hexanone		10.0 U	NA		10.0	U	NA		10.0	U	NA	-	10.0	υ	NA	-	10.0		NA	- •	.0		i,5 IA	J	10.0		0.5	U
Isopropylbenzer	ne	NA	0.5	U	NA		0.5	U ·	NA		0.5	U ,	NA	-	0.5	U	NA		0.5		iA	•	.5	U	NA	U	NA 0.5	U

NOTES:

All values reported in $\mu g/L$.

U - Not detected -

J - Estimated value

R - Rejected by data validator

NA - Not analyzed 4

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91 BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

COMPOUND .	CLIENT ID Date Collected	MW-1S 12/91		MW-1S 4/92	١	MW-2S 12/91	· M	IW-2S 4/92	`	MW-2D 12/91		MW-2D 4/92		MW-3S 12/91		MW-3S 4/92		MW-4S 12/91	M	W-4S 4/92		MW-4D 12/91	•	4/92	М	W-5S 12/91	K	AW-5S 4/92	
Methylene chlorid	le	19.0	U	0.5	Ū	5.0	Ü	0.5	U	5.0	U	0.5	u	5.0	IJ	0.5	11	5.0	īī	1.7	11	5.0	11	0.5	11	5.0		0.5	
n-Propylbenzene		NA		0.5		NA	_	0.5	_	NA	•	0.5		NA	Ŭ	0.5		NA	Ü	0.5		NA	Ü	0.5		NA	U		
Styrene		5.0	U	0.5		5.0	u		Ū	5.0	u	0.5		5.0	11	0.5	-	5.0	ii.	0.5		5.0		0.5		5.0		0.5	
1.1.1.2-Tetrachlo	roethane	NA	-	0.5		NA			U	NA	•	0.5		NA	Ŭ	0.5		NA	U	0.5		NA	U	0.5		NA	U	0.5	
1.1.2.2-Tetrachlo		5.0	11	0.5		5.0	ni.	0.5	-	5.0		0.5		5.0		0.5		5.0		0.5		5.0		0.5		5.0		0.5	
Tetrachloroethene		5.0		0.5	_	5.0		0.5		5.0		0.5		5.0		0.5		5.0		0.5			-		_		-	0.5	
Toluene		5.0		0.5		5.0	_		U	5.0		0.5		5.0	_	0.5		-	_			5.0	-	0.5		5.0	-	0.5	
Total Xylenes		5.0		0.5	-	5.0		0.5	_	5.0		0.5		5.0	-	0.5		5.0		0.5		5.0		0.5		5.0	_	0.5	
1.1.1-Trichloroeth	nane	5.0	-	0.5	-	5.0			U	5.0	-	0.5		5.0			_	5.0	_	0.5		5.0	-	0.5	-	5.0		0.5	
1,1,2-Trichloroeth		5.0	-	0.5		5.0	-	0.5	-	5.0	-				_	0.5		5.0	_	0.5		5.0	_	0.5	_	5.0		0.5	
Trichloroethene	iane	5.0		0.5	_	5.0	_		U		U	0.5		5.0		0.5	_	5.0	-	0.5		5.0	_	0.5	U	5.0		0.5	
Trichlorofluorome	thana	NA	U	0.5		NA	U		U		U	0.5		5.0	U	0.5		5.0	U	0.5		12.0	,	16.0		5.0	U	0.5	
1,2,3-Trichloropro		NA NA		0.5		NA NA			.7	NA		0.5		NA		0.5		NA		0.5		NA		0.5	_	NA		0.5	
Vinyl chloride	opane	10.0						0.5	U	NA		0.5		NÀ		0.5		NA		0.5		NA		0.5	-	NA		0.5	U
			U	0.5		10.0	U		U	10.0	U	0.5		10.0	U	0.5			U	1.1		10.0	U	0.5		10.0	U	0.5	UJ
p-Isopropyltoluen 1.2.4-Trichlorobe		NA NA		0.5	-	NA		0.5	U	NA		0.5		NA		0.5		NA		0.5	-	NA	•	0.5		NA		0.5	U
1,2,4=Trichlorobe				0.5		NA NA			UJ			0.5				0.5		NA		0.5		NA		0.5	U	NA		0.5	U
		NA		0.5					UJ			0.5				0.5		NA		0.5	U	NA		1.0	J	NA		0.5	U
cis-1,3-Dichlorop	• •	5.0	_	0.5		5.0	_		U	5.0	_	0.5		5.0	-	0.5	-	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U
trans-1,3-Dichlor	opropylene .	5.0	U	0.5		5.0	U		U	5.0	U	0.5		5.0	U	0.5		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U
Naphthalane		NA.		0.5	UJ			0.5	UJ			0.5	UJ	NA		0.5	U	NA	٠	0.5	U.	NA		14.0	J	NA		0.5	U
Vinyl acetate		10.0	UJ	•		10.0	UJ			10.0	IJ	NA		10.0	UJ	J NA		10.0	U	NA		10:0	U	NA		10.0	U	NA	

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

CECCCCCCCC

TABLE 20
GROUND WATER VOLATILE ORGANIC COMPOUND ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

COMPOUND D	CLIENT ID ate Collected	MW-5D 12/91	М	W-5D		MW-6S	M	IW-6S	MW		М	W-7S	1	MW-8S	M	28-WN		W-8D	N	W-8D	N	/W-9S	N	IW-9S	M	W-9M	M	W-9M	
	ate Collected			4/92		12/91		4/92		/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92	•	12/91		4/92	
Acetone		10.0	UJ ·	NA				· NA		2.0 l	IJ	NA		10.0	IJ	NA		10.0	UJ	NA		10.0	IJ	NA		10.0	UJ	NA	
Benzene		5.0	U	0.5		5.0	U	0.5	U	5.0 l	J	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U
Bromobenzene		NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U
Bromochloromethan	-	NA		0.5	U.	NA		0.5	U	ŅΑ		0.5	U	. NA		0.5	U.	NA		0.5	U	NA		0.5	U ·	NA		0.5	
Bromodichlorometha	ine	5.0	U	0.5	U	5.0	U	0.5	U	5.0 l	J	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	
Bromoform		5.0	U -	0.5	U	5.0	บ	0.5	U	5.0 t	J	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U		U -	5.0	_	0.5	
Bromomethane		10.0	U	0.5	U	10.0	U	0.5	U 1	0.0	J	0.5	U	10.0	U	0.5	U	10.0	U	0.5	Ü.	10.0	u		Ū	10.0	-	0.5	
2-Butanone		10.0	UJ	NA		10.0	U	NA	. 1	ا 0.0	J	NA		10.0	UJ	NA		10.0	UJ	NA	_		Ū	NA	•	10.0	_	NA	Ŭ
sec-Butylbenzene		NA		0.5	U	NA		0.5	U	NA		0.5	Ù	NA		0.5	u	NA		0.5	ш	NA	•	0.5	11	NA	Ū	0.5	
tert-Butylbenzene		. NA		0.5	U	NA		0.5	U	NA		0.5	Ü	NA		0.5	_	NA		0.5	_	NA		0.5	_	NA		0.5	
Carbon disulfide		5.0	U	NA		5.0	U	NA		5.0 l	J	NA.		5.0	U	NA	•	5.0	11	NA	Ū		U	NA	U	5.0		NA	U
Carbon Tetrachloride	9	5.0	U	0.5	υ	5.0	UJ	0.5	U	5.0 L	j	0.5	u	5.0	11	0.5	11	5.0		0.5			U	0.5		5.0	_		
Chlorobenzene		5.0	U	0.5	· U	5.0	U	0.5	Ū	5.0 L	- J	0.5	-			0.5		5.0	-	0.5	_		U	0.5	_			0.5	
Chloroethane		10.0	U	0.5	UJ	10.0	Ū	0.5		0.0 L		0.5	-		U	0.5		10.0	_	0.5			U.			5.0	-		U
Chloroform		5.0	U	0.5	•		Ū	0.5		5.0 L	-	0.5	-		Ü	0.5		5.0	_	0.5	•			0.5		10.0	-		
Chloromethane		10.0	Ū	0.5		10.0	_	0.5	-	0.0 L	-	0.5	_	10.0	-	0.5		10.0	_		_		U	0.5	_	5.0			-
2-Chlorotoluene		NA	_	0.5		NA:	•			NA	•	0.5		NA	Ü	0.5			U	0.5		10.0	U	0.5	•	10.0	U	0.5	
4-Chlorotoluene		NA.		0.5	_	NA	_	0.5		NA		0.5	-	NA NA		0.5	_	NA		0.5		NA		0.5	_	NA			
Dibromochlorometha	ne	5.0	11	0.5	_	5.0	11	0.5	_	5.0 L								NA		0.5		NA		0.5	_	NA		0.5	U
1,2-Dibromo-3-chlo		NA	•	0.5	_	NA	•	0.5	_	D.O.C	,	0.5			U	0.5		5.0	U	0.5		5.0	U	0.5		5.0	U	0.5	U
1.2-Dibromoethane	- spropurio	NA.		0.5		NA NA						0.5		NA		0.5		NA		0.5		NA			R	NA		0.5	R
Dibromomethane	•	NA NA			_			0.5	-	NA		0.5	-	NA		0.5		NA		0.5	-	NA	-	0.5	_	NA		0.5	U
o.b. omometiane		IAW		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91 BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

ILTERECECECECECECE

															. *													
•	CLIENT ID	MW-5D	M۱	W-5D	İ	MW-6S	MW-6S	1	MW-75	1	MW-78	' I	MW-8S	I	MW-85		W-8D	M	W-8D	٨	/W-9S	М	1W-9S	M	W-9M	M	W-9M	
COMPOUND	Date Collected	12/91		4/92		12/91	4/92		12/91	· .	4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92	
1,2-Dichlorober	nzene	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0:5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U
1,3-Dichlorober	nzene	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0.5	U	. NA		0.5	U	NA		0.5	U	NA		0.5	IJ
1,4-Dichlorober	nzene	NA		0.5	U	NA.	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U
Dichlorodifluoro	methane	NA		0.5	R	NA	0.5	R	·NA		0.5	U	NA		0.5	UJ	NA		0.5	UJ	NA		0.5	U	NA		0.5	U
1,1-Dichloroeth	ane	5.0	U	0.5	U	5.0	U 0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	บ	0.5	U	5.0	U	0.5	U
4-Methyl-2-per	ntanone	10.0	U	NA		10.0	U NA		10.0	υ	NA		10.0	U	NA		10.0	U	NA		10.0	U	NA		10.0	U	NA	
Methyl-tert-but	ylether	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA	•	0.5	U	NA		0.5	U	NA		0.5	U
Isopropyl ether		.NA		0.5	U	NA	0.5	U	. NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U
1,3,5-Trimethyl	benzene	NA		0.5	ับ	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U
1,2,4-Trimethyl	benzene	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA	•	0.5	U	NA		0.5	
n-Butylbenzene	•	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA.		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	
1,2-Dichloroeth	ane	• 5.0	U	0.5	U	5.0	U 0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	Ū	5.0	U	0.5	U	5.0	U	0.5	
1,1-Dichloroeth	ene	5.0	U	0.5	U	5.0	U 0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	
1,2-Dichloroeth	ene (total)	5.0	U	1.2		5.0	U 0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	
1,2-Dichloropro	pane	5.0	U	0.5	U	5.0	U 0.5	U	5.0	U	. 0.5	U	5.0	U	0.5	Ü	5.0	U	0.5	U	5.0	U	0.5	U .	5.0	U	0.5	
1,3-Dichloropro	рапе	NA		0.5	U	NA	0.5	U	·NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	
2,2-Dichloropro	pane	NA	•	0.5	U	NA	0.5	U	NA		0.5	U	· NA		0.5	U	-NA		0.5	U	NA		0.5	U	NA		0.5	
1,1-Dichloropro	pene	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	
Ethylbenzene		5.0	U	0.5	U	5.0	U 0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	Ú	0.5	U	5.0	U	0.5	U	5.0	U	0.5	
Hexachlorobuta	diene	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5		NA	-	0.5	
2-Hexanone		10.0	·U	NA		10.0	U NA		10.0	U	NA		10.0	U	NA		10.0	U	NA		10.0	U	NA		10.0	U	NA	-
Isopropylbenzei	ne	NA		0.5	U	NA	0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA			U	NA	_	0.5	u

NOTES:

All values reported in µg/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

	CLIENT ID	MW-5D	M	W-5D	ı	MW-6S	-1	AW-6S	M	W-7S		MW-7S		MW-85	1	MW-8S		W-8D	-	MW-8D	1	MW-95	1	MW-9S	P	Me-WN	ŀ	Me-WN		
COMPOUND	Date Collected	12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92		_
Methylene chlori	de	5.0	U	0.5	U	4.0	J	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	υ	0.5	U	5.0	U	1.3	U	-
n-Propylbenzen		NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	
Styrene		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		
1,1,1,2-Tetrachl	oroethane	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	υ	NA		0.5	U	NA		0.5	U	NA		0.5		
1,1,2,2-Tetrachl	oroethane	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5		
Tetrachloroethe	ne .	5.0	U	0.5	U.	5.0	U	0.5	U	5.0	Ų	0.5	U	5.0	U	0.5	U	5.0	U	0.5	Ü	5.0	U	0.5	U	5.0	U	0.5		
Toluene		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	
Total Xylenes	•	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	
1,1,1-Trichloroe	thane	5.0	U	0.5	U	5.0	UJ	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	√5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	
1,1,2-Trichloroe	thane	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	Ų	0.5	U	5.0	U	0.5	U	5.0	U	0.5	υ	
Trichloroethene		5.0	U	1.2		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	Ċ
Trichlorofluorom	iethane	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	υ	· NA		0.5	U	NA		0.5	U	
1,2,3-Trichlorop	ropane	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	
Vinyl chloride		10.0	U	1.0	J	10.0	U	0.5	UJ	10.0	U	0.5	U	10.0	U	0.5	U.	J 10.0	U	0.5	UJ	10.0	U	0.5	U	10.0	U	0.5	U	
p-Isopropyltoluc	ene	NA.		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	υ	NA		0.5	U	
1,2,4-Trichlorob	enzene	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	บ	NA		0.5	U	NA		0.5	U	
1,2,3-Trichlorob	enzene	NA		0.5	U	NA		0.5	U	NA		0.5	U.	J NA		0.5	U	NA		0.5	·U	NA		0.5	U.	I NA		0.5	UJ	ı
cis-1,3-Dichlore	propylene	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	
trans-1,3-Dichle	oropropylene	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	υ	5.0	U	0.5	U	5.0	U	0.5	٠Ū٠	
Naphthalane		NA		0.5	U	NA		0.5	U	NA		0.5	U.	J NA		0.5	U	NA		0.5	U	· NA		0.5	U.	I NA		0.5	UJ	j
Vinyl acetate		10.0	U	NA		10.0	U	NA		10.0	Ų	J NA		10.0	U	NA		10.0	U	NA		10.0	U	J NA		10.0	UJ	I NA		

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91 BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

TABLE 20 GROUND WATER VOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

COMPOUND	CLIENT ID Date Collected	MW-9D 12/91		MW-9D 4/92	M۱	W-10S 12/91	W	-10S /92	MW-	-11D 2/91	MV	V-11D 4/92		-12S 12/91	M۱	N-12S 4/92	В	LDUP4 12/91	В	LDUP 4/92		TBLK2 12/91	1	TBLK3 12/91	1	BLK1 4/92	T	BLK2 4/92	E	QBLK 12/91	
Acetone		10.0	UJ	NA		19.0	UJ	NA		10.0	UJ	NA		11.0	UJ	NA		10.0	UJ	NA		15.0	υJ	11.0	UJ	NA		NA			UJ
Benzene		5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	υ	5.0	U	0.5	U	0.5	u		U
Bromobenzene		NA		0.5	U	NA		0.5	υ	NA		0.5	U	NA		0.5	υ	NA		0.5		NA	_	NA	_	0.5		0.5		NA	_
Bromochlorometi	nane	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA	•	0.5		NA		NA		0.5	U .	0.5		NA	
Bromodichlorome	ethane	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	.0.5	U	5.0	U.	0.5		5.0	Ð	5.0	IJ	0.5		0.5			U
Bromoform		5.0	U	0.5	U	5.0	U	0.5	U	5.0	υ	0.5	U	5.0	U	0.5	U	5.0	U	0.5		5.0		5.0		0.5		0.5			U
Bromomethane		10.0	U	0.5	U	10.0	U	0.5	U.	10.0	U	0.5	U	10.0	U		U	10.0		0.5		10.0		10.0		0.5		0.5		10.0	
2-Butanone		10.0	UJ	NA		10.0	U	NA		10.0	U	NA		10.0	U	NA	_	10.0		NA	_		Ü	10.0		NA	J	NA	v	10.0	
sec-Butylbenzen	e	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA	•	0.5	u	NA		NA	٠.	0.5		0.5		NA	
tert-Butylbenzen	e	NA		0.5	U.	NA		0.5	U	NA		0.5	U	NA		0.5	-	NA		0.5		NA	•	NA		0.5	U	0.5			
Carbon disulfide		5.0	U	NA		5.0	U	NA		5.0	U	NA		5.0	υ	NA	_	5.0	u	NA	•	5.0	11	5.0	11	NA	Ü	NA	U	NA	
Carbon Tetrachic	ride	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	-	0.5	u	5.0	_	0.5	11	5.0	_	5.0	-	0.5					U
Chlorobenzene		5.0	U	0.5	U	5.0	U.	0.5	U	5.0	U		U	5.0		0.5		5.0		0.5		5.0	_	5.0		0.5		0.5	_		UJ
Chloroethane		10.0	U	0.5	U`	10.0	U.	0.5	U	10.0	U		Ü.		ŭ .		U	10.0		0.5		10.0	_	10.0		0.5		0.5			U
Chloroform		5.0	U	0.7		5.0	U	0.5			U		U	5.0	-	0.5	-	5.0	_	0.5		5.0	_	5.0	-	0.5			IJ	10.0	-
Chloromethane		10.0	U	0.5	U	10.0	U	0.5	U	10.0	U		U		Ū	0.5		10.0	-	0.5		10.0	-	10.0	-	0.5	-		U	5.0	_
2-Chlorotoluene		NA		0.5	U ·	NA		0.5	U	NA			Ü	NA	•	0.5		NA	Ο,	0.5	U	NA	U	NA	U	_	_		UJ	10.0	
4-Chiorotoluene		NA		0.5	U	NA		0.5		NA			U	NA		0.5	_	NA		0.5	-	NA		NA NA		0.5	-	0.5		NA	
Dibromochlorome	ethane	5.0	U	0.5	U	5.0	U	0.5			U		Ü		u -	0.5		5.0	1.1	0.5		5.0				0.5	-	0.5		NA	
1,2-Dibromo-3-c	hloropropane	NA ·			R	NA	-	0.5	_	NA	· .		Ř	NA	•		R	NA	U				υ.	5.0	U	0.5		0.5	_	5.0	
1,2-Dibromoetha		NA			U	NA		0.5		NA			Ü	NA			U	NA NA			R	NA		NA		0.5	R		R	NA	
Dibromomethane		NA		0.5	-	NA		0.5		NA			Ü	NA			Ü	NA		0.5 0.5	U	NA NA		NA NA		0.5 0.5	U	0.5 0.5	_	NA NA	

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

rrrrrrrcccccccccc

TABLE 20 GROUND WATER VOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

CLIENT ID COMPOUND Date Collected	MW-9D 12/91	MW-9D 4/92		V-10S 12/91	W-109	-	MW-11D 12/91	MW	/-11D 4/92		-12S 12/91	M	W-12S 4/92		3LDUP4 12/91	BLD 4	UP '92	. 1	ΓBLK2 12/91		.K3 :/91		LK1 4/92	1	TBLK2 4/92		EQBLK 12/91	
1,2-Dichlorobenzene	NA	0.5	U	NA	, O.	5 U	NA		0.5	Ü	NA	-	0.5	U	NA		0.5	U	. NA	-	NA		0.5	U	0.5	U	N/	
1,3-Dichlorobenzene	NA.	0.5	U	NA	0.	5 U	NA		0.5	U	·NA		0.5	U	- NA		0.5 .	U	NA		NA		0.5	U	0.5	U	NA	4
1,4-Dichlorobenzene	NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA.		0.5	U	NA		NA		0.5	U	0.5	U	NA	4
Dichlorodifluoromethane	NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	UJ	NA		NA		0.5	U	0.5	UJ	N.A	4
1,1-Dichloroethane	5.0	U . 0.5	U	5.0	U O.	5 U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	U	0.5	U	0.5	U	5.0	ט ס
4-Methyl-2-pentanone	10.0	U NA		10.0	U N	4	10.0	U	NA		10.0	U	NA		10.0	U	NA		10.0	U :	0.0	U	NA		NA		10.0	υ
Methyl-tert-butylether	NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NÀ		0.5	U	NA		NA		0.5	U	0.5	U.	NA	4
Isopropyl ether	NA.	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5	U	0.5	U	NA	4
1,3,5-Trimethylbenzene	NA	0.5	U	NA.	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5	U	0.5	U	NA	A
1,2,4-Trimethylbenzene	NA	0.5	υ	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA	•	ΝA		0.5	U	0.5	Ū	NA	4
n-Butylbenzene	- NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5	U	0.5	U	NA	À .
1,2-Dichloroethane	5.0	U 0.5	U	5.0	U 0.	5 U	5.0	U	0.5	U	5.0	υ	0.5	U	· 5.0	U	0.5	U	5.0	U	5.0	U	0.5	Ū		U		U
1,1-Dichloroethene	5.0	U 0.5	U	5.0	U 0.	5 U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	Ü	0.5	U		Ū		U
1,2-Dichloroethene (total)	5.0	U 0.5	U	5.0	U O.	5 U	5.0	U	0.5	U	5.0	U	0.5	Ų	5.0	U.	0.5	U	5.0	U	5.0	U	0.5	U		Ū		U
1,2-Dichloropropane	5.0	U 0.5	υ	5.0	U 0.	5 U	5.0	U	0.5	υ	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	Ū	0.5	Ū		Ū		ט ט
1,3-Dichloropropane	NA	0.5	U	NA.	0.	5 U	· NA		0.5	U:	NA		0.5	U	NA		0.5	U	NA		NA		0.5			Ū	NA.	
2,2-Dichloropropane	NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5	*.	0.5		NA NA	
1,1-Dichloropropene	NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5			Ū	N/	
Ethylbenzene	5.0	U 0.5	U	5.0	U 0.	5 U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	U	0.5			Ū	• • • •	ט נ
Hexachlorobutadiene	NA	0.5	U	NA	0.	5 U	NA		0.5	U	NA		0.5	U	NA			Ū	NA		NA	-	0.5	-		U	NA	
2-Hexanone	10.0	U NA		10.0	U N	Α .	10.0	U.	NA		10.0	U	NA		10.0		NA		10.0	υ .	0.0	U	NA		NA	_		טיס
Isopropylbenzene	NA	0.5	U	NA	0.	5 U	. NA		0.5	U	NA		0.5	U	NA			U	NA	-	NA	_	0.5			U	NA	

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91 BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

TABLE 20 GROUND WATER VOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

· .	CLIENT ID	MW-9D	MW-9D	MW-105	. v	V-10S	MW-11D	M	W-11D	M۱	W-12S	М	W-12S	BI	LDUP4	BLD	UP		TBLK2		TBLK3	T	3LK1	1	BLK2	!	EQBLK	
COMPOUND	Date Collected	12/91	4/92	12/91		/92	12/91		4/92		12/91		4/92		12/91	4	/92		12/91		12/91		4/92		4/92	!	12/91	
Methylene chloric	de	5.0 U	0.7	U 5.0	Ü	0.5	U 5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	Ü	2.6	Ü	0.5	U	5.0	U
n-Propylbenzene	•	NA.	0.5	U NA	١.	0.5	U NA	e.	0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5	U	0.5	U	NA	
Styrene		5.0 U	0.5	U 5.0	U	0.5	U 5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	U	0.5	U	0.5	U	5.0	U
1,1,1,2-Tetrachic	oroethane	NA	0.5	U NA		0.5	U NA		0.5	U	NA		0.5	U	NA		0.5	U	NA		NA		0.5	·U	0.5	i U	NA	
1,1,2,2-Tetrachic	oroethane	5.0 U	0.5	U 5.0	U	0.5	U 5.0	U	0.5	υ	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	U	0.5	U	0.5	Ü	5.0	U
Tetrachloroethen	18	5.0 U	0.5	U 5.0	U	0.5	U 5.0	U	0.5	U.	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U	5.0	U	0.5	U	0.5	U	5.0	
Toluene	-	5.0 U	0.5	U 5.0	U	0.5	U 5.0	U	0.5	U	5.0	U	0.5	U.	5.0	U	0.5	U	5.0	U	5.0	U	0.5			ับ	5.0	
Total Xylenes		5.0 U	0.5	U 5.0	U	0.5	U 5.0	U.	0.5	U	5.0	U	0.5	U	5.0	υ	0.5	U	5.0		5.0		0.5			Ü	5.0	
1,1,1-Trichloroet	hane	5.0 U	0.5	U 5.0	U	0.5	U 5.0	U	0.5	U	5.0	U.	0.5	U	5.0		0.5		5.0		5.0		0.5			Ü	5.0	
1,1,2-Trichloroet	hane	5.0 U	0.5	U 5.0	υ	0.5	U 5.0	U	0.5	U	5.0	U	0.5	U	5.0		0.5		5.0	_	5.0		0.5			Ü	5.0	
Trichloroethene		5.0 U	0.5	U 5.0	U	0.6	5.0	Ū	0.5	U	5.0	U	0.5		5.0		0.5		5.0	-	5.0	-	0.5	_		Ü	5.0	
Trichlorofluorome	ethane	NA	0.5	U NA	١	0.5	U NA		0.5	U	NA		0.5		NA		0.5		NA	•	NA	•	0.5			Ü	NA	٠
1,2,3-Trichloropr	opane	NA	0.5	U NA		0.5	U NA		0.5	U	NA		0.5		NA		0.5		NA		NA		0.5			U	NA NA	
Vinyl chloride		10.0 U	0.5	U 10.0	U	0.5	U 10.0	U	0.5	U	10.0	U	0.5	U	10.0		0.5		10.0	u	10.0	11	0.5			UJ		11
p-isopropyltolue	ne ·	.NA	0.5	U NA		0.5	U NA		0.5	U	NA		0.5		NA			U	NA	•	'NA	-	0.5	_		U	NA	•
1,2,4-Trichlorobe	enzene	NA	0.5	U NA		0.5	U NA		0.5	U	NA		0.5		NA			U	NA		NA		0.5			Ü	NA NA	
1,2,3-Trichlorobe	enzene	NA	0.5	UJ NA		0.5	UJ NA		0.5	UJ	NA			UJ	NA		0.5	_	NA		NA		0.5			U	NA.	
cis-1,3-Dichloro	propylene	5.0 U	0.5	U 5.0	υ	0.5	U 5.0	U	0.5	U	5.0	U	0.5	U	5.0		0.5		5.0	u	5.0	U	0.5			Ü	5.0	11
trans-1,3-Dichlo	ropropylene	5.0 U	0.5	U 5.0	U	0.5	U 5.0	U	0.5	U	5.0		0.5		5.0		0.5		5.0		5.0	_	0.5			Ü	5.0 5.0	
Naphthalane		NA	0.5	UJ NA		0.5	UJ NA		0.5	UJ	NA		0.5		NA		0.5		NA	_	NA	-		UJ	•		NA	U
Vinyl acetate		10.0 U	NA NA	10.0	U		10.0		NA			UJ					NA	_		U ·	10.0	U	NA	00	NA		10.0	Ü

NOTES:

All values reported in μ g/L.

U - Not detected

J – Estimated value
R – Rejected by data validator

NA - Not analyzed

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

BLDUP-GW: Blind duplicate sample of MW-8S collected 4/21/92.

TBLK2: Trip blank shipped with samples collected 12/16/91 and 12/17/91

TBLK3: Trip blank shipped with samples collected 12/17/91 (MW-9D only) and 12/18/91

TABLE 21
GROUND WATER SEMIVOLATILE ORGANIC COMPOUND ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

CLIENT ID	MW-1	MW-2D	MW-2S	MW-3	MW-4D	MW-4S	MW-5D	MW-5S	MW-6S	MW-7	MW-8D	MW-8S	MW-9M
COMPOUND Date Collected	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91
Phenol	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U	10 R	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroethyl)ether	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2-Chlorophenol	10 L	J 10 U	10 U	· 10 U	10 U	10 U	10 U	10 R		10 U	10 U	10 U	
1,3-Dichlorobenzene	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
1,4-Dichlorobenzene	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	
Benzyl Alcohol	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U	10 U	_	10 U	10 U	10 U	•
1,2-Dichlorobenzene	- 10 L	J 10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U	
2-Methylphenol	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U	10 R		10 U	10 U	10 U	
bis(2-Chloroisopropyl)ether	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U		•	10 U	10 U	10 U	•
4-Methylphenol	10 L	JJ 10 U	- 10 UJ	10 U	10 U		10 U			10 U.		-10 U	
N-Nitroso-di-n-propylamine	10 L	JJ 10 U	10 UJ	10 U	10 U	10 U	10 U			10 U		10 U	
Hexachloroethane	10 L	J 10 U	10 U	10 U	10 U	10 U	10 U			10 U		10 U	
Nitrobenzene	10 L	J 10 U	10 U	10 U	10 U		10 U			10 U	10 U	10 U	
Isophorone	10 L	J 10 U	10 U	10 U	10 U		10 U			10 U	10 U	10 U	
2-Nitrophenol	10 L	J 10 U	10 U	10 U	10 U		10 U			10 U	10 U	10 U	
2,4-Dimethylphenol	10 U	J 10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U	•
Benzoic acid	50 U	50 U	50 U	- 50 U	50 U	50 U	50 U		50 U	50 U	50 U	50 U	
bis(2-Chloroethoxy)methane	10 L	10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U	•
2,4-Dichlorophenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	· 10 U	10 U
1,2,4-Trichlorobenzene	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U			10 U	10 U		
Naphthalene	10 U	10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U	10 U
4-Chloroaniline	10 U	J 10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	, 10 U	10 U
Hexachlorobutadiene	10 U	10 U	10 U	10 U	10 U	-	10 U	•		10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	- 10 U	l 10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U 10 U	10 U
2-Methylnaphthalene	10 U	່ 10 ປ	10 U	10 U	10 U		10 U			10 U	10 U	_	10 U
Hexachlorocyclopentadiene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	50 U	50 U	50 U	50 U	50 U	50 U	50 U		50 U	50 U	· · · · -	10 U	10 U
2-Chloronaphthalene	.10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U
2-Nitroaniline	50 U	50 U	50 U	50 U	50 U	50 Ù	50 U	50 U	50 U	50 U	10 U	10 U	
Dimethyl phthalate	10 U	10 U	10 U	10 U	10 U	10 U	-10 U	10 U	10 U		50 U	50 U	
Acenaphthylene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

TABLE 21
GROUND WATER SEMIVOLATILE ORGANIC COMPOUND ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

CLIENT ID	MW-1	MW-2D	MW-2S	MW-3	MW-4D	MW-4S	MW-5D	MW-5S	MW-6S	MW-7	MW-8D	MW-8S	MW-9M
COMPOUND Date Collected	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91	12/91
3-Nitroaniline	50 L	J 50 L	J 50 U	50 U	50	U 50	U 50	U 50 L	J 50 U	50 U	50 U	50 U	50 U
Acenaphthene	10 L	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10 L	J 10 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	50 L	J 50 L	J 50 U	50 U	50	U 50	U 50	U 50 F	8 50 U	50 U	50 U	50 U	50 U
4-Nitrophenol	50 L	J 50 L	J 50 U	50 U	50	U 50	U 50	U 50 P	8 50 U	50 U	50 U	50 U	50 U
Dibenzofuran	10 L	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10. U	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrotoluene	10 L	j 10 L	J 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Diethylphthalate	10 L	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10 L	J 10 U	10 U	: 10 U	10 U	10 U
4-Chlorophenyl-phenylether	10, t	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Fluorene	10 l	J 10 L	J 10 U	10 U	10	U · 10	U 10	U 10 L	J 10 U	10 U	10 U	10 U	10 U
4-Nitroaniline	50 L	J 50 L	J 50 U	50 U	50	U 50	U 50	U . 50 L	J 50 U	50 U	50 U	50 U	50 U
4,6-Dintro-2-methylphenol	50 l	J 50 L	J 50 U	50 U	50	U 50	U 50	U 50 F	3 50 U	50 U	50 U	50 U	50 U
N-Nitrosodiphenylamine	10 L	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10 L	J 10 U	10 U	10 U	10 U	10 U
4-Bromophenyl-phenylether	10 · L	J. 10 L	J 10 U	10 U	10	U 10	U 10	U 10 L	J 10 U	10 U	10 U	10 U	10 U
Hexachiorobenzene	10 L	J 10 L) 10 U	. 10 U	10	U 10	U . 10	U 10 L	J 10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	50 L	3 50 L	J 50 U	50 U	50	U 50	U 50	U 50 F	50 U	50 U	50 U	50 U	50 U
Phenanthrene	10 L	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10 L	J 10 U	10 U	10 U	10 U	10 U
Anthracene	10 L	J . 10 L	J 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate	10 L	J 10 L	J 10 U	10 U	10	U 10	U 24	U . 26 U	41 U	10 U	25 U	22 U	. 10 U
Fluoranthene	10 L	J 10 U	J 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Pyrene	10 t	J 10 U) 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Butylbenzylphthalate	10 L	J 10 U	J 10 U	10 U	10	R 10	R 10	R 10 R	10 R	10 U	10 U	J 10 U.	
3,3'-Dichlorobenzidine	20 L	J 20 L	J 20 U	20 U	20	U 20	U 20	U 20 U	J 20 U	20 U	20 U	20 U	20 U
Benzo(a)anthracene	10 L			10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	. 10 U	10 U
Chrysene	10 L		J 10 U	10 U	10	U 10	U 10	U - 10 U	J 10 U	10 U	10 U	10 U	10 U
bis(2–Ethylhexyl)phthalate	- 10 L	J 10 U	J 10 U	10 U	10	R 20	R 38	R 10 F	14 R	10 U	. 11 U	27 U	10 U
Di-n-octylphthalate	10 L	J 10 L	J 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10. U	10 U
Benzo(b)fluroanthene	10 L	J 10 L	J 10 U	10 U	10	U*p1598X10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	10 L	J 10 U	J 10 U	10 U	10	U 10	U 10	U 10 U	J 10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	10 L	J 10 U	J 10 U	10 U	10	U 10	U 10	U - 10 U	J 10 U	· 10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	10 L	J 10 U	J 10 U	10° U	10	U 10	U 10	U 10 U	J 10 U	10 U		10 U	10 U
Dibenzo(a,h)anthracene	10 L	10 U	10 U	10 U	10	U 10	U 10	U 10 U	10 U	10 U		10 U	10 U
Benzo(g,h,i)perylene	10 L	10 U	10 U	10 U	10	U 10	U 10	U 10 U		10 U		10 U	10 U
								•		_		•	

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

TABLE 21
GROUND WATER SEMIVOLATILE ORGANIC COMPOUND ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

CLIENT ID	MW-9S	MW-10	MW-110	MW-12S	BLDUP4	EQBLK3	
COMPOUND Date Collected	12/91	12/91	12/91	12/91	12/91	12/91	
Phenol	10 L	J 10	U 10	U 10	U 10	U 10	U
bis(2-Chloroethyl)ether	10 t	J 10	U 10	U 10	U 10	U 10	U
2-Chlorophenol	10 L	J 10	U 10	U 10	U 10	U 10	U
1,3-Dichlorobenzene	10 L	J 10	U 10	U 10	U 10	U 10	U
1,4-Dichlorobenzene	10 L	J 10	U 10	U 10	U 10	U 10	U
Benzyl Alcohol	10 t	J 10	U 10	U 10	U 10	U 10	U
1,2-Dichlorobenzene	10 L	J 10	U 10	U 10	U 10	U 10	U
2-Methylphenol	10 L	J 10	U 10	U 10	U 10	U 10	U
bis(2-Chloroisopropyl)ether	10 L	J 10	U 10	U 10	U 10	U 10	U
4-Methylphenol	10 L	J 10	U 10	U 10	UJ 10	U 10	U .
N-Nitroso-di-n-propylamine	10 L	J 10	U 10	U 10	UJ 10	U 10	U
Hexachloroethane	10 L	J 10	U 10	U 10	U 10	U 10	U
Nitrobenzene	10 L	J 10	U : 10	U 10	U 10	U 10	U
Isophorone	. 10 L	J 10	U 10	U 10	U 10	U 10	U
2-Nitrophenol	10 L	J 10	U 10	U 10	U 10	U 10	U
2,4-Dimethylphenol	10 L	J 10	U 10	U 10	U 10	U 10	U
Benzoic acid	50 L	J 50	U 50	U 50	U 50	U 50	U
bis(2-Chloroethoxy)methane	10 L	J 10	U 10	U 10	U 10	U 10	U
2,4-Dichlorophenol	10 L	J . 10	U 10	U 10	U 10	U 10	U
1,2,4-Trichlorobenzene	10 L	J 10	U 10	U 10	U 10	U 10	Ü
Naphthalene	10 L	J 10	U 10	U 10	U 10	U 10	U
4-Chloroaniline	10 L	J 10	U 10	U 10	U 10	U 10	U
Hexachlorobutadiene	10 L	J 10	U 10	U 10	U 10	U 10	U
4-Chloro-3-methylphenol	10 L	J 10	U 10	U 10	U 10	U 10	U
2-Methylnaphthalene	10 L	J 10	U 10	U 10	U 10	U 10	U
Hexachlorocyclopentadiene	10 L	J 10	U 10	U 10	U 10	U 10	U
2,4,6-Trichlorophenol	10 L	J 10	U 10	U 10	U 10	U 10	U .
2,4,5-Trichlorophenol	50 L	50	U 50	U 50	U 50	U 50	U
2-Chloronaphthalene	10 L	10	U 10	U 10	U 10	U 10	U
2-Nitroaniline	- 50 L	50	U 50	U 50	U 50	U 50	U
Dimethyl phthalate	10 U	10	U 10	U 10	U 10	U 10	U ·
Acenaphthylene	10 U	10	U 10	U 10	U 10	U 10	U
2,6-Dinitrotoluene	10 U	10	U 10	U 10	U 10	U 10	U .
						· ·	

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

TABLE 21
GROUND WATER SEMIVOLATILE ORGANIC COMPOUND ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

	CLIENT ID	MW-9S		MW-10		MW-11D		MW-12S		BLDUP4		EQBLK3		
COMPOUND	Date Collected	12/91		12/91		12/91		12/91		12/91		12/91		
3-Nitroaniline		50	U	50	U	50	U	50	U	50	U	50	U	
Acenaphthene		10	U	10	U	10	U	10	U	10	U	10	U	
2,4-Dinitrophe	inol	50	U	50	Ų	50	U	50	U	50	U	50	U	
4-Nitrophenol		50	U	50	U	50	U	50	U	50	U	50	U	
Dibenzofuran		10	U	10	U	10	U	10	U	10	U	10	U	
2,4-Dinitrotolu	ene	10.	U	10	U	10	U	10	U	10	U	10	U	
Diethylphthala		10	U	10	U	10	U	10	U	. 10	U	10	U.	
4-Chlorophen	yl-phenylether	. 10	U	10	U	10	U	10	U	10	U	10	υ	
Fluorene		- 10	U	10	U	10	U	10	U	10	U	10	υ	
4-Nitroaniline		.50	U	50	U	50	U	50	U	50	U	50	U	
4,6-Dintro-2-1	methylphenol	50	U	50	U	50	U	50	U	50	U	50	U	
N-Nitrosodiph		10	U	10	U	10	υ	10	U	10	U	10	U	
4-Bromopheny	yl-phenylether	10	U	10	U	10	U	10	U	10	U	10	U	
Hexachlorober		10	U	10	U	10	U	10	U	10	U	10	U	
Pentachloroph	enol	50	U	50	U	50	U	50	U	50	U	50	U	
Phenanthrene		10	U	10	U	10	U	10	U	10	U	10	U	
Anthracene		10	U	10	U	10	U	10	U	10	U	10	U	
Di-n-butylphth	nalate	10	U	10	Ų	10	U	10	U	10	U	12	U	
Fluoranthene	•	. 10	U	10	U	10	U	10	U	10	U	10	υ	
Pyrene		10	U	10	U	10	U	10	U	10	U	10	U	
Butylbenzylpht		10	U	10	U	10	U	10	U	10	R	2	J	
3,3'-Dichlorob		20	U	20	U	20	U	20	U	20	U.	20	U	
Benzo(a)anthra	icene	. 10	U	10	U	10	U	10	U	10	U	10	U	
Chrysene		10	U	10	U	10	U	10	U	10	U	10	U	
bis(2-Ethylhex	•	10	U	. 10	U	10	U	10	U	10	R	14	U	
Di-n-octylphth	•	10	U	10	U	10	U	10	U	10	U	10	U	
Benzo(b)fluroa		10	U	10	U	10	U	10	U	10	U	10	U	•
Benzo(k)fluorar		10	U	10	U	10	U	10	U	10	U	10	U	
Benzo(a)pyrene		10	U	10	U	10	U	. 10	U	10	U٠	10	U	
Indeno(1,2,3-c		10	U	10	U	10	U	10	U	10	U	10	U	
Dibenzo(a,h)an		10	U	10	U	10	U	10	U	10	U	10	U	
Benzo(g,h,i)per	rylen e	10	U	10	U	10	U	10	U	10	U	10.	U	

NOTES:

All values reported in µg/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

TABLE 22
GROUND WATER PCB/PESTICIDES ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

	CLIENT ID	MW-1		MW-2D	ı	MW-2S		MW-3		MW-4D		MW-4S		MW-5D	1	MW-5S		MW-6S		MW-7	ı.	d8-WN		MW-8S	
COMPOUND	Date Collected	12/91		12/91		12/91		12/91		12/91		12/91		12/91		12/91		12/91		12/91		12/91	•	12/91	
alpha-BHC		0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	Ü	0.050	III	0.050	II	0.050	11	0.050	╦
beta-BHC		0.050	U	0.050	U	0.050	U	0.050	Ü	0.050	U	0.050	U	0.050		0.050	_	0.050		0.050		0.050	_	0.050	
delta-BHC		0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	Ū	0.050		0.050	_	0.050	_	0.050	_	0.050	_
gamma-BHC		0.050	Ü	0.050	U	0.050	U	0.050	U	0.050	U	0.050		0.050	_	0.050	_	0.050	-	0.050	-	0.050	-	0.050	-
Heptachlor		0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	-	0.050	-	0.050	-	0.050	_	0.050		0.050	_	0.050	
Aldrin		0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	Ū	0.050	_	0.050	_	0.050		0.050	-	0.050		0.050	_
Heptachlor epox	ide	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	_	0.050	-	0.050		0.050		0.050		0.050	-	0.050	-
Endosulfan I		0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	Ū	0.050	-	0.050	-	0.050	-	0.050	Τ.	0.050		0.050	-
Dieldrin	•	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	_	0.10	-	0.10	_	0.10		0.10		0.030	_	0.050	_
4,4'-DDE		0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	Ū	0.10	-	0.10	-	0.10	_	0.10	-	0.10	_		
Endrin		0.10	U	0.10	U	0.10	U	0.10	U	0.10	Ū	0.10		0.10		0.10	_	0.10	_	0.10	-	0.10	_	0.10	
Endosulfan II		0.10	U	0.10	U.	0.10	U	0.10	U	0.10	_	0.10	_	0.10	-	0.10	_	0.10	_	0.10	_	0.10	_	0.10	
4,4'-DDD		0.10	U	0.10	U	0.10	U.	0.10		0.10	-	0.10		0.10	_	0.10	_	0.10	-	0.10			_	0.10	
Endosulfan sulfa	ite	0.10	U	0.10	U	0.10	U	0.10	Ū	0.10	_	0.10	_	0.10	_	0.10	_	0.10	_	0.10	-	0.10	-	0.10	_
4,4'-DDT		0.10	U	0.10	U	0.10	Ū	0.10	-	0.10	-	0.10		0.10	-	0.10	_	0.10		0.10	_	0.10	-	0.10	_
Methoxychlor		0.50	U	0.50	U	0.50	Ū	0.50	-	0.50	_	0.50		0.50	_	0.10	_	0.10	_		_	0.10		0.10	_
Endrin ketone		0.10	U	0.10	U	0.10	Ū	0.10	-	0.10	-	0.10	_	0.10		0.10	_	0.10	_	0.50	_	0.50	_	0.50	_
alpha-Chlordane	€	0.50	U	0.50	U	0.50	Ū	0.50		0.50	_	0.50	_	0.50	-	0.10		0.10	_	0.10	-	0.10	-	0.10	_
gamma-Chlorda	ne	0.50	U	0.50		0.50	Ū	0.50		0.50		0.50	-	0.50	_	0.50	_	0.50	-	0.50		0.50	_	0.50	
Toxaphene		1.0	U	1.0	U	1.0	U	1.0		1.0		1.0	_	1.0	-	1.0	-	1.0	_	0.50	_	0.50	_	0.50	-
Aroclor-1016		0.50	U	0.50		0.50 l	U	0.50	-	0.50	-	0.50	-	0.50		0.50		0.50	_	1.0	_	1.0	_	1.0	_
Aroclor-1221		0.50	U	0.50	U	0.50 l	Ū	0.50	_	0.50	_	0.50	-	0.50	_	0.50		0.50 0.50		0.50		0.50		0.50	
Aroclor-1232		0.50	U	0.50	U	0.50 L	Ü	0.50	_	0.50	_	0.50	-	0.50		0.50	_		_	0.50	_	0.50	_	0.50	_
Aroclor-1242	* * *	0.50	U	0.50		0.50 L	-	0.50		0.50	-	0.50		0.50	_	0.50		0.50	_	0.50	-	0.50	-	0.50	_
Arocior-1248		0.50	U	0.50	Ū	0.50 l		0.50	-	0.50	-	0.50	_	0.50	-	0.50	_	0.50	-	0.50	-	0.50		0.50	_
Aroclor-1254		1.0	U	1.0	Ü	1.0 (1.0		1.0	-	1.0	_	1.0	-		-	0.50	_	0.50	-	0.50	-	0.50	_
Aroclor-1260		1.0	Ū	1.0	_	1.0 (-	1.0	_	1.0	-	1.0	-				U	1.0	-	1.0		1.0	_	1.0	_
			_		-		_	1.0	•	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U

NOTES:

All units reported in μ g/L.

U - Not detected

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

TABLE 22
GROUND WATER PCB/PESTICIDES ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

CLIENT	ID MW-9M		MW-9S	٨	/W-10S	M	/W-11D	N	/W-12S	E	BLDUP4	EC	BLK3		•
COMPOUND Date Collect	ed 12/91		12/91		12/91		12/91		12/91		12/91		12/91		
alpha-BHC	0.050	U	0.050	U	0.050	υ	0.050	U	0.050	U	0.050	U	0.050	U	
beta-BHC	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	
delta-BHC	0.050	U	0.050	U	0.050	U	0.050	U	0.050	Ü	0.050	U	0.050	U	
gamma-BHC	0.050	U	0.050	Ü	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	
Heptachior	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	
Aldrin	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	
Heptachlor epoxide	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	Ü	
Endosulfan I	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	
Dieldrin	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	Ū	
4,4'-DDE	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	
Endrin	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10		
Endosulfan II	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	
4,4'-DDD	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	
Endosulfan sulfate	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	Ü	
4,4'-DDT	0.10	υ	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10		
Methoxychlor	0.50	U	0.50	U	0.50	Ü	0.50	U	0.50	U	0.50	U	0.50		
Endrin ketone	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10		
alpha-Chlordane	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50		
gamma-Chlordane	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50		
Toxaphene	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0		1.0		
Aroclor-1016	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	Ü	
Aroclor-1221	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50		
Aroclor-1232	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50		
Aroclor-1242	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	Ü	0.50	-	
Aroclor-1248	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	Ü	0.50		
Aroclor-1254	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0		1.0		
Aroclor-1260	1.0	U	1.0	U	1.0	U	1.0	U	1.0		1.0		1.0		

NOTES:

All units reported in μ g/L.

U - Not detected

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

L CEEEEEEEEEE

	NYS CLASS GA	CLIENT ID	TMW-2S	TMW-2S	DMW-	28	DMW-2S		TMW-3S		TMW-3S		DMW-3S	:	DMW-3S	
ANALYTE	STANDARDS	Date Collected	12/91	4/92	12/	91	4/92		12/91		4/92		12/91		4/92	
Aluminum	NE		67100	78200	34	.1 U	36.3	U	8280		6630	-	34.1	U	36.3	U
Antimony			126 J	362	J 42	.2 U	35.7	UJ	51.3	J	35.7	U	42.2	U	35.7	U
Arsenic	25		11.0 J	11.5	5	.0 UJ	5.0	U	13.9	J	7.4	J.	5.0	UJ	5.0	U
Barium	1,000		558	407	1	0	33.6		76.9		33.0		7.6	U	9.1	U
Beryllium			2.5 U	3.3	U 2	.5 U	1.3	U	3.0		1.3	U	2.5	U	1.3	U
Cadmium	10		4.1 UJ	3.8	UJ 4	.1. UJ	3.8	UJ	4.1	UJ	3.8	UJ	4.1	UJ	3.8	UJ
Calcium	NE		974000	985000	3610	00	397000		604000		507000		550000		496000	
Chromium	50		143	157	J 9	.1 U	3.9	U	9.1	U	11.0	U	9.1	U	3.9	U
Cobalt	NE		68.3	55.2	10	.4 U	6.9	U	10.4	U	6.9	U	10.4	U	6.9	
Copper	200		154	165	J 5	.0 UJ	3.9	U	13.1		4.6	U	5.0	UJ	3.9	
Iron	300		129000	127000	99	91	1460		18300		9400	- ,	953		963	
Lead	25		66.0 J	50.9	J 3	.0 U	7.3	J	26.3	J	8.0	J	3.0	U		IJ
Magnesium	35,000		380000	391000	524	00	50700		108000		70300		50700		47700	
Manganese	300		3100 J	2810	J 1	9 J	63.8	J	502	J	253	J	141	J	123	
Mercury	2		0.20 U	0.20	U 0.2	20 U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	
Nickel	NE		214	173	21	.5 UJ	30.6	U	27.8	J	30.6	U	21.5	UJ	30.6	
Potassium	NE	•	14200	14800	389	90	3360		4310		3810		3650		2440	
Selenium	10		25.0 UJ	5.0	R 25	.0 U	5.0	R	25.0	UJ	5.0	R	25.0	U	5.0	
Silver	50		5.7 UJ	9.9	U 5	.7 U	9.9	U	9.8	UJ	9.9		5.7			
Sodium	20,000		28500 J	28100	J 2450	00 J	24100	J	37200	J	37200		40100		40700	
Thallium			5.0 U	50.0	UJ 5	.0 U	5.0	UJ	5.0	U		UJ	5.0			ÜJ
Vanadium	NE		129	128	7	.9 U	4.8	U	17.1		7.5	U	8.9		4.8	
Zinc	300		378 J	406	J 5	.3 U	9.4	j	55.5	U	27.9		5.3	U	4.5	
Cyanide	100		10.0 U						10.0							_

NOTES:

All values reported in µg/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-8S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

TRRECECECECEC

	NYS CLASS GA	CLIENT ID	TMW-4D		. TMW-4D		DMW-4D		DMW-4D		TMW-4S		TMW-4S		DMW-4S		DMW-4S	j
ANALYTE	STANDARDS	Date Collected	12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92	:
Aluminum	NE		571		2480		34.1	U	36.3	U	11100		4970		34.1	U	36.3	U
Antimony			42.2	UJ	35.7	U	42.2	UJ	36.6	J	42.2	UJ	35.7	U	42.6	J	43.4	
Arsenic	25		5.0	UJ	5.0	U	5.0	UJ	5.0	U	11.0	J	5.0		5.0		5.0	
Barium	1,000		18.5		28.9		13.5		11.0		159		66.1			ŪJ		Ū
Beryllium			2.5	UJ	1.3	U	2.5	UJ	1.3	U		UJ	1.3	U		UJ		Ū
Cadmium	10		4.1	UJ	3.8	UJ	4.1	UJ	3.8	UJ		UJ		UJ		UJ		UJ
Calcium	NE		569000		540000		559000		568000		674000		537000		552000		575000	
Chromium -	50		9.1	UJ	22.0	U	9.1	UJ	3.9	U	30.2		8.2			IJ		U
Cobalt	NE		10.4	UJ	6.9	U	10.4	UJ	6.9		10.4	UJ	6.9		10.4			Ū
Copper	200		5.0	UJ	11.4	U	5.0	UJ	3.9		51.8		12.3			UJ		Ü
Iron	300		2070		5160		1250		1170		24100		9390		1140		1140	
Lead	25		15.0	U		UJ	15.0			UJ	7.6	J		UJ	15.0			UJ
Magnesium	35,000		53300		63700		50300		52700		101000	•	65600		47200		53300	
Manganese	300		110	J	176		93.4		94.3		694	.1	310		83.4		88.0	
Mercury	2		0.20		0.20		0.20		0.20		0.20		0.20		0.20		0.20	
Nickel	NE		21.5	U	31.4		21.5	-	30.6		31.1	•	30.6		21.5		30.6	
Potassium	NE.		3910		5020		3640	_	4730		6940		4610		5790		4500	
Selenium	10		25.0	UJ	5.0	R	25.0	U	5.0		25.0	U.I	5.0		25.0		5.0	
Silver	50		5.7			UJ		UJ		UJ	5.7			IJ		ÜJ		ÜJ
Sodium	20,000		23700		30900		22500		29600		24100		24800		25800		30300	
Thallium			5.0	U .		UJ	5.0	U.		UJ	5.0			UJ	5.0			IJ
Vanadium	NE		7.9		6.3		7.9		4.8		22.0	•	9.6		7.9		4.8	
Zinc	300		5.4		32.9		5.3		5.4		60.4	.1	39.4	-	5.3		13.3	
Cyanide	100		10.0	-		-	3.0	•	J. 1	•	10.0		00.7	5	5.5	U	13.3	J

NOTES:

All values reported in $\mu q/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-8S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

TABLE 23
GROUND WATER INORGANIC ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

ANALYTE	NYS CLASS GA STANDARDS	CLIENT ID Date Collected	TMW-5D 12/91		TMW-5D 4/92		DMW-5D 12/91		DMW5D 4/92		TMW-5S 12/91		TMW-5S		DMW-5S		DMW-5S 4/92	
Aluminum	NE		3100		1310		34.1	U	36.3	U	27300		16600		34.1		36.3	
Antimony			42.2	UJ	35.7	U	42.2	UJ	35.7	U	48.5	J	64.9		42.2		35.7	
Arsenic	25		11.7	J	5.0	U	10.0	J	5.0	U	8.6		5.0		6.3			Ü
Barium	1,000		23.4		26.2		11.1		15.8		531		230		19.7		17.9	
Beryllium			2.5	UJ	1.3	U	2.5	UJ		U		UJ		U		UJ		U
Cadmium	10		4.1	UJ	3.8	UJ		IJ		ŪJ		UJ		ÜJ		UJ		UJ
Calcium	NE		558000	*	554000		558000		600000		714000		593000		397000		522000	
Chromium	50		9.1	UJ	13.1	U		UJ	3.9		47.1		35.2			UJ	3.9	
Cobalt	NE		10.4	UJ	6.9		10.4		6.9		15.1		12.4		10.4		6.9	
Copper	200		5.0	UJ	3.9			UJ	3.9		43.0		32.6			UJ		
Iron	300		6110		3030		1170		614		51800		25700		1050		3.9	
Lead	25		3.0	U		UJ	15.0	ш		UJ	33.6		9.1				1350	
Magnesium	35,000		70600	_	47000	-	64800	•	46000		180000				15.0			UJ
Manganese	300		357		182	.1	177		119		1030		94600		35200		44900	
Mercury	2		0.20		0.20		0.20		0.20		0.20		488		97.3		116	
Nickel	NE		21.5		30.6		21.5		30.6			U	0.20	U	0.20		0.20	
Potassium	NE NE		30400	•	7730		32100	U	9800		75.9		33.3		21.5	U	30.6	
Selenium	10		25.0	11.1	5.0		5.0	11	5.0		8350		8380		4440		4920	
Silver	50		5.7		9.9		5.7				25.0		5.0		25.0		5.0	
Sodium	20,000		28600	- 00	87400		289000	Ų3		IJ		UJ		IJ		UJ		UJ
Thallium	,		5.0	11	5.0				101000		47200		44500		36200		53700	J
Vanadium	NE		7.9		5.0 4.8		5.0			UJ	5.0	U		UJ	5.0			UJ
Zinc	300		19.7	-			7.9		4.8		36.4	_	26.6		7.9		4.8	U
Cyanide	100		10.0		23.8	U	5.3	U	4.5	U	130 10.0		79.1	J	6.8	U	4.5	U

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-8S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

rrrrrrrrcccc

	NYS CLASS GA	CLIENT ID	TMW-8S		TMW-6S		DMW-6S		DMW-6S		TMW-7S		TMW-7S		DMW-7S		DMW-7S	
ANALYTE	STANDARDS	Date Collected	12/91		4/92		12/91		4/92		12/91		4/92		12/91		4/92	
Aluminum	NE	•	32200		20800		56.8	U	36.3	U	66900		13300		34.1	U	36.3	
Antimony			68.2	J	104	J	42.2	ŲJ	35.7	U	140	J	36.6		42.2		35.7	
Arsenic	25		12.1	J	5.0	U	7.7	J	5.0	U		UJ	5.0			ŨJ	5.0	
Barium	1,000	•	736		352		50.5		46.1		2050		362		50.7	00	46.3	
Beryllium			2.5	UJ	1.3		2.5	UJ	1.3	U	3.5		1.3		2.5	11	1.3	
Cadmium	10	;	4.1	UJ	3.8	UJ		UJ	3.8			UJ		ÜJ		UJ		UJ
Calcium	NE	•	634000		468000		319000		347000		869000		266000		115000		125000	
Chromium	50		129	J	58.9			UJ	3.9		134		44.4		9.1		3.9	
Cobalt	NE		18.5		12.0		10.4		6.9		79.9		8.8		10.4			
Copper	200		172	J.	122			UJ	3.9		317		67.7				6.9	
Iron	300		55400		33700		1020		1640	J	161000		29600 ⁻		5.0 13.7		3.9	
Lead	25		46.8		43.5		3.0			UJ	70.6		16.3			_	50.5	
Magnesium	35,000		196000	-	112000		37700		38300		422000		78000		3.0			UJ
Manganese	300		1510	.1	851		256		195		3600				22400		22700	
Mercury	2	•	0.20	-	0.20		0.20		0.20		0.20		672		1.7		1.4	
Nickel	NE		111		80.7	•	21.5		30.6				0.20		0.20		0.20	
Potassium	NE		9210	•	7120		2730	V			182		30.6	U.	21.5		30.6	
Selenium	10		5.0	111	5.0		25.0		2930		11600		5680	_	1640		2340	
Silver	50		5.7			UJ		UJ	5.0		25.0		5.0		5.0		5.0	
Sodium	20,000		35400	OJ	32700	,		OJ		UJ		UJ	9.9		5.7	U	9.9	U
Thallium	20,000		5.0	11			36500		38600		214000		68000		216000		63900	
Vanadium	NE		48.8	U		UJ	5.0			UJ	5.0	U	5.0	UJ	5.0		5.0	
Zinc	300				34.5		7.9		4.8		129	_	26.9		7.9		4.8	U
Cyanide	100		342		227	J	5.3	U	4.5	U			133	J	5.3	U	8.6	
O y a moo	100		10.0	U	•						10.0	U						

NOTES:

All values reported in µg/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

TABLE 23
GROUND WATER INORGANIC ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

ANALYTE	NYS CLASS GA STANDARDS	CLIENT ID Date Collected	TMW-8D 12/91	TMW-80 4/93		DMW-8D 12/91		DMW-8D 4/92		TMW-8S 12/91		TMW-8S		DMW-8S 12/91		DMW-8S 4/92	
Aluminum	NE		1090	1930)	34.1	U.	36.3	U	3410		36.3		34.1		36.3	
Antimony			42.2	UJ 35.7	U	42.2	UJ	59.6		42.2		35.7		42.2	_	35.7	_
Arsenic	25		5.0	UJ ' 9.3	31	8.3		6.1		6.1		5.0		5.8			Ü
Barium	1,000		18.5	14.6		17.2		9.6		86.2		44.6		53.0		45.4	
Beryllium			2.5		U		UJ	1.3		2.5			U	2.5		1.3	
Cadmium	. 10		4.1		UJ		UJ		ÜJ	4.1			UJ	4.1			n n
Calcium	NE		511000	588000		472000		514000		233000		224000		202000		211000	
Chromium	50		9.1	UJ 13.1			UJ	3.9		9.1		3.9		9.1			
Cobalt	NE		10.4		U	10.4		6.9		10.4		6.9				3.9	
Copper	200		5.0		Ū		UJ	3.9		5.0		3.9		10.4		6.9	
Iron	300		1960	3650		325		530		7400	U	624		5.0	,	8.7	
Lead	25		3.0		UJ	3.0	н		UJ.	3.0	11			2060		1460	
Magnesium	35,000		47200	55200		45500		47300		48000	U		UJ	3.0			UJ
Manganese	300		248			229		225				36100		36500		36200	
Mercury	2		0.20			0.20		0.20		179		50.6		59.7		45.4	
Nickel	NE			U 30.6		21.5		30.6		0.20		0.20		0.20		0.20	
Potassium	NE		4240	4880	_	1450	U	4100	U	21.5	U	30.6		21.5		30.6	
Selenium	10		25.0		R	25.0			ь.	2780		1190		1450		1190	•
Silver	50	* .			UJ		UJ	5.0		5.0		5.0		25.0		5.0	
Sodium	20,000		33000	35300			UJ		UJ	5.7			UJ		UJ		UJ
Thallium			5.0		UJ	33000		34700		59100		55100		58000		57700	
Vanadium	NE				U	5.0		5.0		5.0		5.0		5.0			UJ
Zinc	300		17.7			7.9		4.8		7.9		4.8		7.9		4.8	
Cyanide	100				U	5.3	U	4.5	U .	22.7		4.5	U	5.3	U	4.5	U
0,200	100		10.0	U						10.0	U						

NOTES:

CCCCCCCCC

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

TETELLECTELECTE

ANALYTE	NYS CLASS GA STANDARDS	CLIENT ID Date Collected	TMW-9D 4/92		TMW-9M 12/91		TMW-9M 4/92		DMW-9M 12/91		DMW-9M 4/92	-	TMW-9S 12/91		TMW-9S 4/92		DMW-9S	
Aluminum	NE			U	11800		72300		51.0		36.3		24300		46300		12/91	
Antimony			636	-	42.2		308		42.2		35.7		66.3		207		61.0	
Arsenic	25		50.0		19.0		31.5	•	17.0		10.0		6.7		5.0		42.2	2 U.
Barium	1,000		219		112		537		47.8		38.3		421	J	457		103	
Beryllium	•		1.3			U.	3.6		2.5		1.3		2.5	11		U		, J
Cadmium	10			UJ		ÜJ		ÜJ	4.1			UJ	4.1			UJ		U.
Calcium	NE		6700000		303000		757000		257000		180000		398000	00	507000		216000	
Chromium	50		758		28.9		187				3.9		52.1		94.9			U
Cobalt	NE		66.0	-	10.4		44.4		10.4		6.9		37.6		47.6		9. i 1 <u>0.4</u>	
Copper	200		420	J	12.2	•	114		5.0		3.9		245		305			U
Iron	300		13300		20200		109000		1570		498		72300		92500		3720	
Lead	25		67.0		5.8		34.2		3.0		4.4	.1	56.9		41.4			,) U
Magnesium	35,000		1370000		72900		308000		34800		28900		141000	•	196000		36600	
Manganese	300		5550	J	573		2930		53.8		43.9		1200	.1	1340		350	
Mercury	2		0.20	U	0.20		0.20		0.20		0.20		0.20		0.20		0.20	
Nickel	NE		5710		62.6		165		21.5	_	30.6		127		96.7		21.5	
Potassium	NE		1520000		9620		16700		7270		4190		6010		12900		3280	
Selenium	10		100	R	25.0		5.0		25.0		5.0	B.	25.0		5.0		25.0	
Silver	50		9.9	U	5.7	UJ	9.9		5.7	Ü	9.9		5.7		9.9			U
Sodium	20,000		51400000	J	99800	J	96900		110000		91400	_	85400		64200		96200	
Thallium			50.0	UJ	5.0		50.0		5.0			UJ	5.0		50.0			Ü
Vanadium	. NE		91.0		24.7		101		7.9		4.8		56.9	Ţ	85.0			U
Zinc	300		63.0	J	48.0	U	300	J	5.3		4.5		342	J	504			U
Cyanide	100				10.0					-			10.0		554	J	0.5	U

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

TETELECECECECEC

	NYS CLASS GA	CLIENT ID	DMW-9S		TMW-10S		TMW-10S		DMW-10S		DMW-10S		TMW-11D		TMW-11D		DMW-11D	
ANALYTE	STANDARDS	Date Collected	4/92		12/91		4/92		12/91		4/92		12/91		4/92		12/91	
Aluminum	NE		36.3	U	37400		39500		76.7		36.3	U	103000		104000		49.6	
Antimony			35.7	IJ	53.2	J	201	J	42.2	U	35.7	UJ	171		354	J	42.2	
Arsenic	25		5.0	U	5.0	UJ	5.0	Ü	5.0	UJ	5.0	U	5.0	UJ	5.0			UJ
Barium	1,000		75.9		2120		1770		63.7		35.6		4100		2520		56.5	
Beryllium			1.3	U	3.5		2.5	U	2.5	U	1.3		4.7		3.6		2.5	
Cadmium	10		3.8	UJ	4.1	UJ	3.8	UJ	4.1	U		UJ		UJ		UJ		ÜJ
Calcium	NE		208000		522000		510000		172000		98500		1830000		951000		149000	
Chromium	50		3.9	U	190		449	J	9.1	U	3.9		292		547		9.1	
Cobalt	NE		6.9	U	39.9		27.4		10.4	U	6.9		111		63.4		10.4	
Copper	200		3.9	U	164		168	J	5.0		3.9		200		191	.1	5.0	
Iron	300		5020		85900		78100		16.3		50.7		196000		159000	•	13.3	
Lead	25	•	3.7	J	30.7	J	37.8	J	3.0		3.7	-	3.0			UJ	3.0	
Magnesium	35,000		36400		258000		225000		31100		18300		1090000		563000		35300	
Manganese	300		255	J	1800	J	1460	J	333		15.6		5940		3040		144	
Mercury	. 2		0.20	U	0.20	U	0.26		0.20	U	0.20		0.20	_	0.24	•	0.20	
Nickel	NE		30.6	U	190		173		21.5		30.6		335		326		21.5	
Potassium	NE		2110		9170		9210		3380		1660	•	14900		13300		3960	
Selenium	10		5.0	R	25.0	UJ	5.0	R	5.0	U	5.0	R	25.0		5.0		5.0	
Silver	50		9.9	U	5.7	UJ	9.9		5.7		9.9			UJ	9.9		5.7	
Sodium	20,000		65000		36800		116000		37900		113000	•	85000		73500		80500	
Thallium			5.0	UJ	5.0		50.0		5.0			UJ	5.0		50.0		5.0	
Vanadium	NE		4.8	U	76.1	. =	71.7		7.9		4.8		162		125	00	7.9	
Zinc	300		30.6		292	J	451	J	15.5		6.3	•	776		602		7.9 5.3	
Cyanide	100				10.0			-		J	0.0		10.0		002	J	5.3	U

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

	NYS CLASS GA	CLIENT ID	DMW-11D		TMW-128	;	TMW-12S		DMW-128		DMW-12S		BLDUP4	-	DBLDUP4		TBLDUP	ı
ANALYTE	STANDARDS	Date Collected	4/92		12/91		4/92		12/91		4/92		12/91		12/91		4/92	
Aluminum	NE		36.3	U	96800		89200		54.0		36.3	U	48500		34.1	U	105	
Antimony			52.3	J	106	J	385	J	42.2	U	35.7	UJ	80.8		42.2		35,7	
Arsenic	25		5.0	U	20.7	J	20.0			UJ	5.0		8.4		5.0		5.0	
Barium	1,000		43.6		1010		891		213		195		1130		50.5	00	46.1	
Beryllium			1.3	U	7.6		5.2	·U	2.5		1.3		3.3		2.5	UJ	1.3	
Cadmium	10		3.8	UJ	4.1	UJ	3.8			UJ		ÜJ		UJ		UJ UJ		
Calcium	NE		108000		690000		580000		202000		182000	00	870000					UJ
Chromium	50		3.9		218		178	.1	9.1		3.9	11	304		294000		212000	
Cobait	NE		6.9		89.8		71.2		10.4		6.9				9.1		3.9	
Copper	200		5.3	_	199		200		5.0		3.9		54.6		10.4		6.9	
Iron	300		51.9	U	171000		148000	Ŭ.	331	U			543		5.0	UJ	3.9	
Lead	25			ÜJ	87.3		82.4		3.0		1060		96600		852		1160	
Magnesium	35,000		22200		269000		212000	J	34600	U	3.1	J	229	J	3.0	U		UJ
Manganese			15.2		3720		3120				32400		294000		34200		36500	
Mercury	2		0.20		0.20			J	821		801		2840		243		50.9	
Nickel	NE		30.6		277	U	0.58		0.20		0.20		0.20		0.20	U	0.20	U
Potassium	NE		2020	U			201		21.5	UJ	30.6	U	326	J	22.2		30.6	U
Selenium	10			_	9760		8140	_	3470		2810		9170		5080		1190	U
Silver	50		5.0		25.0		5.0		5.0		5.0		25.0	U	25.0	U	5.0	R
Sodium	20,000		9.9	U	5.7		9.9		5.7	U	9.9	U	5.7	UJ	5.7	UJ	9.9	
Thallium	20,000		70700		89200		111000		87400		108000		34200	J	34100		56700	
Vanadium	NE		5.0	UJ	5.0	U	50.0	UJ	5.0		5.0	UJ	5.0	U	5.0	U	5.0	
Zinc			5.5		202		176		7.9	U	4.8	U	89.9		7.9		4.8	
	300		4.5	U	578	-	580	J.	5.3	U	8.0		900	J	5.3		4.5	
Cyanide	100				10.0	U							10.0			-	7.0	3

NOTES:

All values reported in µg/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

TREERCECECECECE

TABLE 23
GROUND WATER INORGANIC ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

,	NYS CLASS GA	CLIENT ID	DBLDUP		EQBLK3		EQBLK1	
ANALYTE	STANDARDS	Date Collected	4/92		12/91		4/92	
Aluminum	NE		36.3	U	34.1	U	52.6	U
Antimony			35.7	UJ	42.2	UJ	35.7	U
Arsenic	25		5.0	U	5.0	UJ	5.0	U
Barium	1,000		47.5		7.6	U	9.1	U
Beryllium			1.3	U	2.5	U	1.3	U
Cadmium	10		3.8	UJ	4.1	U	3.8	UJ
Calcium	NE		216000		615	U	519	U
Chromium	50	·	3.9	U	9.1	U	3.9	Ü
Cobalt	NE		6.9	U	10.4	U	6.9	Ü
Copper	200		3.9	U	5.0	U	3.9	Ü
iron	300		1630	J	17.5	Ú	45.6	Ū
Lead	25		3.0	UJ	3.0	U	3.0	UJ
Magnesium	35,000		38500		518	U	446	U
Manganese	300		47.7	j	1.7	Ü	1.3	Ü
Mercury	2		0.20	U	0.20	Ü	0.20	Ŭ
Nickel	NE		30.6	U	21.5	Ū		Ū
Potassium	NE	•	1930		1450	U	1190	Ū
Selenium	10		5.0	R	5.0	UJ	5.0	Ř
Silver	50		9.9	UJ	5.7	UJ	9.9	UJ
Sodium	20,000		63200	J	669	U	482	
Thallium			5.0	UJ	5.0	Ü	5.0	
Vanadium	NE		4.8	U	7.9	Ü	4.8	
Zinc	300		4.5	Ū		Ū	5.8	•
Cyanide	100			-		Ü	5.0	
						-		

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

BLDUP4: Blind field duplicate sample of MW-6S collected 12/18/91

DBLDUP4: Blind field duplicate sample of MW-6S (dissolved) collected 12/18/91

EQBLK3: Equipment blank sample collected 12/18/91

BLDUP: Blind field duplicate sample collected from MW-8D 4/21/92.

EQBLK1: Equipment blank sample collected 4/21/92.

TMW - Total analysis

Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX M

HISTORICAL SURFACE WATER ANALYTICAL DATA

In additional to the constituents listed above, soil samples collected in the wetlands east, north, and west of the landfill, primarily SS-2 and SS-17, contained arsenic (38.1 ppm to 45.9 ppm), barium (1130 ppm), iron (30,800 ppm to 55,600 ppm), manganese (9,080 ppm), nickel (35.3 ppm to 46.5 ppm), and zinc (120 ppm to 566 ppm) which were above the typical and site background values. Typical background range for these constituents are: arsenic (3 ppm to 12 ppm); barium (15 ppm to 600 ppm); iron (17,500 ppm to 25,000 ppm); manganese (50 ppm to 5,000 ppm); nickel (0.5 ppm to 25 ppm); and zinc (37 ppm to 60 ppm).

4.06 Surface Water Analyses

A COLUMN TO A COLU

Seven surface water samples were collected on December 12, 1991 and were analyzed for TCL/TAL parameters in accordance with the 1989 NYS ASP. An additional surface water sampling event took place on April 28-29, 1992. SW-1, SW-4 and SW-6 through SW-19 were analyzed for TCL metals in accordance with the 1991 NYS ASP. In addition, at the request of the NYSDEC, samples SW-12, SW-13 and SW-14 were analyzed for volatile organic compounds using NYS Drinking Water method 524.2. SW-14 was also analyzed for TCL semivolatiles and pesticides/PCBs in accordance with the NYS ASP.

Volatile Organic Compound (VOC) Analyses

The results from the December 1991 sampling event indicated that VOCs were detected only in SW-4, which was collected in the wetlands in close proximity to leachate Sump-2 on the SW side of the landfill (Figure 5). SW-4 contained low concentrations of benzene (1 ppb), carbon disulfide (2 ppb), chlorobenzene (0.8 ppb), total 1,2-dichloroethene

(1 ppb), and ethylbenzene (3 ppb). All of these detected concentrations levels are lower than listed state standards for class C and D surface waters. To further evaluate the surface water in this area, SW-4 was resampled and two additional samples (SW-12 and SW-13) were collected during the April 1992 sampling event. At the request of the NYSDEC, SW-14 was collected from the intermittent stream northeast of the landfill during the April 1992 sampling event.

Concentrations of VOCs detected in the April sampling event were also lower than listed state standards for class C and D surface waters. Results from the resampling of SW-4 indicated concentrations of benzene (1.4 ppb), chlorobenzene (0.7 ppb), chloroethane (28 ppb), 1,1-dichloroethane (1.6 ppb), total 1,2-dichloroethene (2.7 ppb), total xylenes (1.6 ppb), and vinyl chloride (1.6 ppb). SW-12 was collected about 270 ft west of SW-4 and exhibited low concentrations of chloroethane (3.1 ppb), total 1,2-dichloroethene (0.7 ppb), and total xylenes (0.7 ppb). Sample SW-13 was collected about 300 ft west of SW-12 and did not contain VOCs. Sample SW-14 contained 1,1-dichloroethane (0.5 ppb). A summary of results of the surface water VOC analyses is included in Table 12.

Semivolatile Analyses

With the exception of 4-Chlorophenyl-phenylether (5 ppb) at SW-4, semivolatiles were not detected above the CRDLs (Contract Required Detection Limits) in the seven samples collected in December 1991. Semi-volatile analysis was completed on SW-14 at the request of the NYSDEC. No semivolatiles were detected in this sample. Semivolatile analyses were not completed on the other samples during the April 1992 sampling event. Surface water analytical results for semivolatiles are summarized on Table 13.

Pesticides/PCBs Analyses

Pesticides and PCBs were not detected above the CRDLs in the seven samples collected in December 1991 or in SW-14, which was collected in April 1992 at the request of the NYSDEC. A summary of results of the surface water pesticides/PCBs analyses is included in Table 14.

Inorganics Analyses

During the December sampling event the only inorganics that exceeded the state standard were iron, zinc and cadmium. The state standard for iron for class C and D surface water is 300 ppb. Samples SW-2, SW-3 and SW-5 contained less than 300 ppb. Iron continued to be present at concentrations greater than 300 ppb during the April sampling event except for sample SW-13 (207 ppb). These data suggest the landfill materials may be contributing the source of the iron. However, iron may be naturally occurring as it occurs in the ground water and surface soils in the area. The zinc standard of 30 ppb for Class C streams was exceeded in the December 1991 sampling event in one sample, SW-1, at an approximated concentration of 44 ppb. The zinc concentration in SW-1 in April 1992 was 23.6 ppb which is less than the Class C surface water standard. This variation may be due to temporal changes or the amount of suspended sediment in the sample.

The standards for cadmium, chromium, copper, lead and, nickle vary with hardness. The hardness was calculated using Method 2340 as described in the Standard Methods for the Examination of water and wastewater dated 1989. The analytical results for each compound were below the calculated standards with the exception of cadmium. Cadmium was not detected at SW-1, SW-2, SW-3, SW-5, SW-6, SW-15 and SW-6, but the detection

limit was slightly above the standard. Cadmium was detected at SW-8 at a concentration of 7.5 ppb which is slightly above the calculated Class C standard of 5 ppb. The elevated concentration could be due to the high turbidity of the sample.

The state standard for dissolved aluminum for class C surface waters is 100 ppb. Samples SW-1, SW-6, SW-8, SW-15 and SW-16 contained concentrations of total aluminum greater than 100 ppb during the April sampling. The elevated aluminum could be due to the high turbidity and silt content of the samples. The samples were not analyzed for dissolved aluminum.

Although all the concentrations are lower than the listed state standards except for iron, a review of the inorganic analyses of SW-7 indicates that concentrations of aluminum, barium, calcium, copper, iron, lead, magnesium, manganese, mercury, and sodium were above background concentrations. However, the concentrations of these constituents were notably lower both upstream and downstream of SW-7. This may be due to the proximity of this location to Fisher Road where it could be influenced by run off.

Sample SW-4, collected in the vicinity of the seep at the southwest corner of the landfill, contained concentrations of antimony, barium, calcium, iron, lead, magnesium, manganese, potassium, sodium and zinc which suggest the landfill leachate is contributing these constituents to the wetlands in this area. Only the iron is above state listed standards for Class D streams. A summary of results of the surface water inorganics analyses is included in Table 15.

TABLE 12 SURFACE WATER VOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

CECCCCC

CLIE COMPOUND Date Coll		SW-1 12/91		SW-2 12/91		SW-3 12/91		SW-4 2/91		SW-4 4/92		SW-5 12/91		SW-6 12/91		SW-7 12/91		SW-12 4/92	SW-	13 /92	SW-14 4/92	В	LDUP3 12/91	8	3LDUP 4/92	•	TBLK1 12/91		TBLK4 4/29/92	EQBLK 12/91	
Acetone		10.0	UJ	10.0	UJ	10.0	UJ	10.0	UJ	NA		10.0	IJ	10.0	UJ	10.0	UJ	NA	-	NA	NA		10.0	11.1	NA		10.0	111	NA	10.0	
Benzene		5.0	U	5.0	U	5.0	U	1.0	J	1.4		5.0	U	5.0	u.	5.0	u			0.5 U		11	5.0	11	0.5		5.0				
Bromobenzene		NA		NA		NA		NA		0.5	U	NA		NA		NA			_	0.5 U			NA.	٠.	0.5	-	NA	U	0.5 l		U
Bromochloromethane		NA		NA		NA		NA		0.5	U	NA		NA		NA		0.5		0.5 U			NA		0.5	-	NA NA				
Bromodichloromethane		5.0	U	5.0	Ü	5.0	U	5.0	U	0.5	υ	5.0	U	5.0	u	5.0	11	0.5	_	0.5 U		_	5.0		0.5				0.5 l	J NA	
Bromoform		5.0	U	5.0	U	5.0	U	5.0	U	0.5	U	5.0	Ū	5:0	_	5.0	-	0.5		0.5 U		_	5.0 5.0	_			5.0	-	0.5 t		_
Bromomethane		10.0	Ü	10.0	U	10.0	U	10.0	U	0.5	UJ	10.0		10.0	-	10.0				0.5 U		-		_	0.5	-	5.0		0.5 (5.0	_
2-Butanone		10.0	U	10.0	U	10.0	U	10.0	U	NA		10.0	_	10.0	-	10.0	_	NA	•	NA	NA	U	10.0		0.5	U	10.0		0.5 L		_
sec-Butylbenzene		NA		NA		NA		NA	-	0.5	u	NA	Ĭ	NA	•	NA	U	0.5).5 U			10.0	U.	NA		10.0	U	NA	10.0	U
tert-Butylbenzene		NA		- NA		NA		NA		0.5		NA		NA		-NA		0.5	-			_	NA		0.5	-	NA		0.5 ⋅ L		
Carbon disulfide		5.0	U	5.0	u	5.0	u	2.0	.1	NA	_	5.0	11	5.0	ับ	5.0		NA).5 U		U	NA		0.5	U	NA		0.5 L) NA	
Carbon Tetrachloride		5.0	Ū	5.0	_	5.0	-	5.0	Ü	0.5	11	5.0	-	5.0	_		-			VA.	NA		5.0	_	NA		5.0	_	NA	5.0	U
Chlorobenzene		5.0	_	5.0	_	5.0	-		j	0.7	U	5.0	-	5.0		5.0		0.5	_).5 U		_	5.0	_	0.5		5.0	U	0.5 L	5.0	U
Chloroethane		10.0	-	10.0	-	10.0	U	10.0	U	28.0		10.0	-		-	5.0		0.5).5 U		-	5.0	-	0.5	U	5.0	U	0.5 L	5.0	U
Chloroform		5.0	_	5.0	-	5.0	u	5.0	Ü	0.5	_		-	10.0		10.0	_	3.1	T).5 U		_	10.0	-	0.5	U	10.0	U	0.5 L	10.0	U
Chloromethane		10.0		10.0	-	10.0	_	10.0	_	0.5	_	5.0		5.0	_	5.0		•.•).5 U		_	5.0	-	0.5	U	5.0	U	0.5 t	5.0	U
2-Chlorotoluene		NA	•	NA	•	NA	Ü	NA	U	0.5	-	10.0	U	10.0	U	10.0	U	0.5).5 U			10.0	U	0.5	IJ	10.0	U	0.5 L	10.0	U
4-Chlorotoluene		NA		NA		NA NA		NA		0.5	-	NA		NA		NA		0.5).5 U	•	_	NA		0.5	บ	NA		0.5 L	NA.	
Dibromochloromethane		5.0	11	5.0	11	5.0					_	NA		NA		NA		0.5).5 U		U	NA		0.5	U	NA		0.5 L	' NA	
1,2-Dibromo-3-chloropro	nana	NA	•	NA	U	NA	U	5.0	U	0.5		5.0	U .	5.0	·U	5.0	U.	0.5).5 U	0.5	U	5.0	U	0.5	U	5.0	U	0.5 L	5.0	U
1,2-Dibromoethane	pane	NA		NA				NA		0.5	_	NA		NA		NA		0.5	U).5 U	0.5	U	NA		0.5	U	NA		0.5 L	NA.	
Dibromomethane		NA				NA		NA		0.5	_	NA		NA		NA		0.5	U).5 U	0.5	U	NA		0.5	U	NA		0.5 U	NA	
1,2-Dichlorobenzene				NA		NA		NA		0.5	_	NA		NA		NA		0.5	U).5 U	0.5	U	NA		0.5	U	NA		0.5 U	NA	
· 'T - Picturionalisalia		NA		NA	•	NA		NA		0.5	U	NĀ		NA		NA		0.5	U ().5 U	0.5	U	NA		0.5	U	NA		0.5 U	NA	

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not Analyzed

BLDUP3: Blind field duplicate sample of SW-2 collected 12/12/91

BLDUPSW: Blind duplicate sample of SW-14 collected 4/29/92.

TBLK1: Trip blank shipped with samples collected 12/11/91 and 12/12/91.

EQBLK2: Equipment blank sample collected 12/12/91

TABLE 12 SURFACE WATER VOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

E E E E E E E E E E E E E

	CLIENT ID	SW-1		SW-2		SW-3	S	W-4	•	SW-4		SW-5		SW-6		SW-7	S	W-12	SV	V-13		SW-14	В	LDUP3 .	BL	DUP		TBLK1		TBLK4	E	QBLK	
COMPOUND	Date Collected	12/91		12/91		12/91		2/91		4/92		12/91		12/91		12/91		4/92		4/92		4/92		12/91	-	4/92		12/91		4/29/92	2	12/91	
1,3-Dichlorobe	enzene	NA		NA		NA		NA		0.5	U	NA		NA		ŅA		0.5	U	0.5	U	0.5	Ü	·NA		0.5	U	NA		0.5	U	NA	
1,4-Dichlorobe	enzene	NA		NA		NA		NA		0.5	U	NA	•	NA		NA		0.5	U	0.5	U	0.5	U	NA 1		0.5	U	NA		0.5	U	NA	
Dichlorodifluore	romethane	NA		NA		NA		NA		0.5	ŲJ	NA		NA		NA		0.5	R	0.5	R	0.5	R	NA		0.5	R	NA		0.5	R	NA	
1,1-Dichloroeth	hane	5.0	U	5.0	U ·	5.0	U	5.0	U	1.6		5.0	U	5.0	U	5.0	U	0.5	U	0.5	Ų	0.5		5.0	U	0.5		5.0	U	0.5	U	5.0	Ų
Methyl-tert-bu	utylether	NA		NA		NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NA -		0.5	U	NA		0.5	U	NA	
Isopropyl ether	r	NA		NA		NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NA		0.5	U	NA		0.5	U	NA	
1,3,5-Trimethy		NA		NA		, NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NA		0.5	U	NA		0.5	U	NA	
1,2,4-Trimethy	ylbenzene	NA		NA `		NA		NA		0.5	U	NA		NA		NA.		0.5	U	0.5	U	0.5	U	NA		0.5	U	NA		0.5	U	NA	
n-Butylbenzen	10	NA		ŃΑ		NA		NA		, 0.5	U	NA		NA.		ŇA		0.5	U	0.5	U	0.5	U	NA		0.5	U ·	NA		0.5	บ	NA	
1,2-Dichloroeti	thane .	5.0	U	5.0	U	5.0	U	5.0	U	0.5	U ·	5.0	υ	5.0	U	5.0	U	0.5	U	0.5	U	0.5	U	5:0	U '	0.5	ับ	5.0	υ	0.5	U	5.0	U.
1,1-Dichloroetl	thene	5.0	U	5.0	υ	5.0	U	5.0	U	0.5	U	5.0	Ų	5.0	U	5.0	U	0.5	U	0.5	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U
1,2-Dichloroetl	thene (total)	5.0	U	5.0	U	5.0	U	1.0	J	2.7		5.0	U	5.0	U	5.0	U	0.7	·	0.5	U	0.5	Ų	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U
1,2-Dichloropr	ropane	5.0	U	5.0	U	5.0	U	5.0	U	0.5	U	5.0	U	5.0	U	5.0	U	0.5	U	0.5	U	0.5	U	5.0	U	0.5	U	5.0	U	0.5	U	5.0	U
1,3-Dichloropre	ropane	NA	•	NA		NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NА		0.5	· U	NA		0.5	U	NA	
2,2-Dichloropr	ropane	NA		NA		NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NA		. 0.5	U	NA		0.5	U	NA	,
1,1-Dichloropr	ropene	NA		NA		NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NA		0.5	U	NA		0.5	U	NA	,
Ethylbenzene		5.0	U	5.0	U	5.0	U	3.0	J	0.5	Ü	5.0	υ	5.0	U	5.0	U	0.5	U	0.5	U	0.5	U	5.0	Ü	0.5	U	5.0	U	0.5	U	5.0	U
Hexachlorobut	tadiene	NA		NA		NA		NA		0.5	U	NA		NA		NA		0.5	U	0.5	U	0.5	U	NA		0.5	U	NA		0.5	U	NA	į
2-Hexanone		10.0	U	10.0	U	10.0	U	10.0	U	NA		10.0	U	10.0	U	10.0	U	NA		NA		NA		10.0	U	NA		10.0	U	NA		10.0	U
· Isopropylbenze	ene	NA		NA		NA		. NA		0.5	U	NA		· NA		NA		0.5	U	0.5	U	0.5	U	. NA		0.5	U	NA		0.5	U	. NA	į
4-Methyl-2-pe	entanone	10.0	U	10.0	U	. 10.0	U	10.0	U	NA		10.0	· U	10.0	U	10.0	U	. NA		NA		NA		10.0	U	NA		10.0	U	NA		10.0	· U
Methylene chlo	oride	5.0	U	5.0	Ū	5.0	U	5.0	U	0.7	U	· 5.0	U	5.0	U	5.0	U	1.8	U	0.5	U	0.5	U	5.0	Ų	0.5	U	5.0	U	1.3	U	5.0	U
n-Propylbenze	ene	NA		NA		NA		NA		0.5	U	NA		· NA		NA		0.5	U	0.5	U	0.5	U	NA		0.5	U	NA		0.5	U	NA	

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not Analyzed

BLDUP3: Blind field duplicate sample of SW-2 collected 12/12/91

BLDUPSW: Blind duplicate sample of SW-14 collected 4/29/92.

TBLK1: Trip blank shipped with samples collected 12/11/91 and 12/12/91.

EQBLK2: Equipment blank sample collected 12/12/91

TABLE 12 SURFACE WATER VOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

CLIENT ID	SW-1	SW-2	SW-3	SW-4	SW-4	SW-5	SW-6	SW7	SW-12	SW-13	SW-14	BLDUP3	BLDUP	TBLK1	TBLK4 EQBLK
COMPOUND Date Collected	12/91	12/91	12/91	2/91	4/92	12/91	12/91	12/91	4/92	4/92	4/92	12/91	4/92	12/91	4/29/92 12/91
Styrene	5.0 U	5.0 U	5.0 l	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 L	J 0.5 l	J 0.5 U	0.5 l	J 5.0 1	U 0.5 U	5.0 U	0.5 U 5.0 U
1,1,1,2-Tetrachloroethane	NA.	NA	NA	NA	0,5 U	NA	. NA	NA	0.5 t	U 0.5 U	0.5 l	J NA	0.5 U	NA	0.5 U NA
1,1,2,2-Tetrachloroethane	5.0 U	5.0 U	.5.0 l	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 l	J 0.5 (J 0.5 U	0.5 (ا 5.0	U 0.5 U	5.0 U	
Tetrachloroethene	5.0 U	5.0 U	5.0 t	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 L	ا 0.5 ز	U 0.5 U	0.5 (5.0 (U 0.5 U	5.0 U	0.5 U 5.0 U
Toluene	5.0 U	5.0 U	5.0 t	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 t	J 0.5 (U 0.5 U	0.5 1	J 5.0 (U 0.5 U	5.0 U	0.5 U 5.0 U
Total Xylenes	5.0 U	5.0 U	5.0	J 13.0	1.6 J	5.0 U	5.0 U	5.0 t	J 0.7 J	J 0.5 U	0.5 1	J. 5.0 I	U 0.5 U	5.0 U	
1,1,1-Trichloroethane	5.0 U	5.0 U	5.0 l	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 l	J 0.5 l	U 0.5 U	0.5	J 5.0 I	U 0.5 U	5.0 U	
1,1,2-Trichloroethane	5.0 U	5.0 U	5.0 l	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 l	J 0.5 L	U 0.5 U	0.5	J 5.0 (U 0.5 U		
Trichloroethene	5.0 U	5.0 U	5.0 l	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 L	J 0.5 t	U 0.5 U	0.5	J 5.0 (U 0.5 U		
Trichlorofluoromethane	NA	NA	NA	NA	0.5 U	NA	NA	NA	0.5	U 0.5 U		-	0.5 U	_	0.5 U NA
1,2,3-Trichloropropane	NA	NA	NA	NA	0.5 U	NA ·	NA	NA	0.5 l	U 0.5 U			0.5 U		0.5 U NA
Vinyl chloride	10.0 U	10.0 U	10.0	J 10.0 U	1.6 J	10.0 U	10.0 U	10.0 l	J 0.5 t	U 0.5 U					
p-Isopropyltoluene	NA	NA	NA.	NA	0,5 U	NA	NA	NA	0.5 (0.5 U		0.5 U NA
1,2,4-Trichlorobenzene	NA	NA	NA	NA	0.5 U	NA	NA	NA	0.5 (J 0.5 U			0.5 U		0.5 U NA
1,2,3-Trichlorobenzene	NA	NA	NA	NA	0.5 U	NA	NA	NA	0.5 l				0.5 U		0.5 U NA
cis-1,3-Dichloropropylene	5.0 U	5.0 U	5.0 L	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 L		J 0.5 U					
trans-1,3-Dichloropropylene	5.0 U	5.0 U	5.0 l	J 5.0 U	0.5 U	5.0 U	5.0 U	5.0 l	J 0.5 L					5.0 U	
Naphthalane	NA.	NA	NA	NA	0.5 U	NA	NA	NA	0.5				0.5 U	NA NA	0.5 U NA
Vinyl acetate	10.0 U	10.0 U	10.0 U	J 10.0 U	NA	10.0 U	10.0 U	10.0 L		NA NA	NA NA	10.0		10.0 U	
											7.77		- ''''	.5.5	10.0 0

NOTES:

All values reported in $\mu g/L$.

U - Not detected

J - Estimated value

R - Rejected by data validator

NA - Not Analyzed

BLDUP3: Blind field duplicate sample of SW-2 collected 12/12/91 BLDUPSW: Blind duplicate sample of SW-14 collected 4/29/92.

TBLK1: Trip blank shipped with samples collected 12/11/91 and 12/12/91.

EQBLK2: Equipment blank sample collected 12/12/91

LECECECECECCEC

TABLE 13
SURFACE WATER SEMIVOLATILE ORGANIC COMPOUND ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

	CLIENT ID	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7	SW-14	SW-14RE	BLDUP3	BLDUP-SW	EQBLK3
COMPOUND	Date Collected	12/91	12/91	12/91	12/91	12/91	12/91	12/91	4/92	4/92	12/91	4/92	12/91
Phenol	· · · · · ·	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	J 10	U 10	U 10 U
bis(2-Chloroethyl)eth	er	· 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	J 10	U 10	U 10 U
2-Chlorophenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	J 10	U 10	U 10 U
1,3-Dichlorobenzene		10 U	10 U	10 U	10 U	10 U	10 U	10 U	, 10 U	J 10 U	J 10	U 10	U 10 U
1,4-Dichlorobenzene	4	10 U	10 U	10 U	10 'U	10 U	10 Ü	10 U	10 U	J 10 l	J 10	U . 10	U 10 U
Benzyl Alcohol		10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA	10	U NA	10 U
1,2-Dichlorobenzene		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	J 10	U 10	U 10 U
2-Methylphenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L) 10 U	J 10	U 10	U 10 U
2,2'-oxybis(1-Chlorop	propane)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 t	J 10	U 10	U 10 U
4-Methylphenoi		10 U	10- U	10 U	10 U	10 U	10 U	10 U	10 L	J. 10 U	J 10	U 10	U 10 U
N-Nitroso-di-n-prop	ylamine	10 U	10 U	ĵo∵U	10 U	10 U	10 U	10 U	10 L	J. 10 U	J 10	U 10	U 10 U
Hexachloroethane		10 U	10 U	10 U	10 U	10 U	10 U.	10 U	10 L	J 10 I	J - 10	U 10	U 10 U
Nitrobenzene		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L	J 10 (J 10	U 10	U 10 U
Isophorone		- 10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	10 L	J 10 (J 10	U 10	U 10 U
2-Nitrophenol	•	10 U	10 U	10 U	10 U	10 U	10 ⊍	10 U	10 L	J 10 I	J 10	U 10	U 10 U
2.4-Dimethylphenol	•	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	10 L	J 10 (J 10	U 10	U 10 U
bis(2-Chloroethoxy)m	rethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U	10 L	J 10 I	J 50	U 10	U 50 U
2,4-Dichlorophenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 L	J 10 I	J 10	U 10	U 10 U
1,2,4-Trichlorobenze	ne	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10. L	J 10 I	J 10	U 10	U 10 U
Naphthalene		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L	J 10 (J 10	U 10	U 10 U
4-Chloroaniline		10 U	10 U	[*] 10 U	10 U	10 U	10 U	10 U	10 L	<i>)</i> 10 (J 10	U 10	U 10 U
Hexachlorobutadiene		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L	J 10 I	J 10	U 10	U 10 U
4-Chloro-3-methylph	henoi	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 L	J 10 i	J 10	U 10	U 10 U
2-Methylnaphthalene	•	10 U	10 U	10 U	10 U	10 Ú	10 U	10 U	10 L	J 10 1	J 10	U 10	
Hexachlorocyclopenta	adiene	- 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L	J 10 (סו' ע	U 10	U 10 U
2,4,6-Trichloropheno	d	10 U	10 U	10 U	10 · U	10 U	10 U	10 U	10 L	J 10 (J 10	U 10	
2,4,5-Trichloropheno	d	10 U	10 U	10 U	´ 10 U	10 U	10 U	10 U	25 L	J 25 (U 10	U 25	U 10 U
2-Chloronaphthalene	,	50 U	50 U	50 U	50 U	50 U	50 U	50 U	10 L	J 10 I	U 50	U 10	U 50 U
2-Nitroaniline		10 U	10 U	10 U	10 U	10 U	10 U	10 U	25 L	J 25 I	U 10	U 25	U 10 U
Dimethyl phthalate		50 U	50 U	50 U	50 U	50 U	- 50 U	50 U	10 L	J 10 i	U 50	U 10	
Acenaphthylene		10 U	10 U	10 U	10 U	10 U	10. U	10 U	10 L	J 10 (U 10	U 10	U 10 U
2,6-Dinitrotoluene	•	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L	J 10 I	U 10		

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

BLDUP3: Blind field duplicate sample of SW-2 collected 12/12/91

BLDUP-SW: Blind field duplicate sample of SW-14. EQBLK2: Equipment blank sample collected 12/12/91

TABLE 13 SURFACE WATER SEMIVOLATILE ORGANIC COMPOUND ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

recerececece

COMPOUND	CLIENT ID	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7	SW-14	SW-14RE	BLDUP3	BLDUP-SW	EQBLK3	
COMPOUND	Date Collected	12/91	12/91	12/91	12/91	12/91	12/91	12/91	4/92	4/92	12/91	4/92	12/91	
3-Nitroaniline	•	10 U	25 (J 25	U 10	U 25	U 10	U						
Acenaphthene		50 U	10 l	j 10	U 50-	U 10	U 50	U						
2,4-Dinitrophenol		10 U	25 l	J 25	U 10	U 25	U 10	U						
4-Nitrophenol		50 U	50 U	50 U.	50 U	50 U	50 U	50 U	25 l	J 25	U 50	U 25	U 50	U
Dibenzofuran		50 U	10 U	J 10	U 50	U 10	U 50	U -						
2,4-Dinitrotoluene		10 U	10 l	J 10	U 10	U 10	U 10	U						
Diethylphthalate		10 U	10 (J 10	U 10	U 1	J 10	U						
4-Chlorophenyl-pheny	ylether	,10 U	10 Ü	10 U	5 J	10 U	10 U	10 U	10 l	J 10	U 10	U 10	U 10	U
Fluorene		10 U	10 l	J 10	U 10	U 10	U 10	U						
4-Nitroaniline		10 U	25 (J 25	U 10	U 25	U 10	U						
4,6-Dintro-2-methylph	nenol	50 U	25 (J 25	U 50	U 25	U 50	U						
N-Nitrosodiphenylami	ne .	50 U	10 (J 10	U , 50	U 10	U 50	U						
4-Bromophenyl-pheny	ylether	10 U	10 (J 10	U 10	U 10	U 10	U						
Hexachlorobenzene		10 U	10	J 10	U 10	U 10	U 10	U						
Pentachlorophenol		10 U	25	J 25	U 10	U 25	U 10	U						
Phenanthrene		50 U	10	J 10	U 50	U 10	U 50	Ū						
Anthracene		10 U	10	J 10	U 10									
Carbazole		10 U	10	J 10				-						
Di-n-butylphthalate		10 U	10											
Fluoranthene		10 U	10 (J 10	U 10			-						
Pyrene		10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	. 10	J 10	U 10	U 10		_
Butylbenzylphthalate		10 R	10 (J 10	U 10	R 10								
3,3'-Dichlorobenzidine	9	20 U	20_U	20 U	20 U	20 UJ	20 U	20 U	10 (J 10				
Benzo(a)anthracene		10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 (J 10	•			
Chrysene	•	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10			U 10		
bis(2-Ethylhexyl)phtha	late	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U				UJ 10		_
Di-n-octylphthalate		10 U	10											
Benzo(b)fluroanthene		10 U	10	JJ 10										
Benzo(k)fluoranthene		10 U	10			-								
Benzo(a)pyrene		10 U						-						
Indeno(1,2,3-cd)pyren	е	10 U	10											
Dibenzo(a,h)anthracen	18	10 U	10					-						
Benzo(g,h,i)perylene		10 U	10					_						

NOTES:

All values reported in μ g/L.

U - Not detected

J - Estimated value

BLDUP3: Blind field duplicate sample of SW-2 collected 12/12/91

BLDUP-SW: Blind field duplicate sample of SW-14, EQBLK2: Equipment blank sample collected 12/12/91

TABLE 14
SURFACE WATER PCB/PESTICIDES ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

reterrereterre

•	CLIENT ID	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7	SW-14	BLDUP3	EQBLK2	BLDUP-SW
COMPOUND	Date Collected	12/91	12/91	12/91	12/91	12/91	12/91	12/91	4/92	12/91	12/91	4/92
alpha-BHC		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
beta-BHC		. 0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
delta-BHC		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
gamma-BHC		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
-leptachlor		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
Aldrin		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
leptachlor epoxide		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	び 0.050 U
Endosulfan I		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050	U 0.050 U
Dieldrin		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
1,4'-DDE		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
ndrin		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
ndosulfan II		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
1,4'-DDD		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
Endosulfan sulfate		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
1,4'-DDT		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U ⋅ 0.10 U
Methoxychlor		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50	U 0.50 U
Endrin ketone		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10	U 0.10 U
alpha-Chlordane		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.050 U	0.50 U	0.50	U 0.050 U
jamma-Chlordane		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.050 U	0.50 U	0.50	U 0.050 U
oxaphene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0	U 5.0 U
Aroclor-1016		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50	U 1.0 U
Aroclor-1221		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	2.0 U	0.50 U	0.50	U 2.0 U
roclor-1232		0.50 U	0.50 U	. 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50	U 1.0 U
roclor-1242		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50	U 1.0 U
Aroclor-1248		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50	U 1.0 U
Aroclor-1254		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	. 1.0 U	1.0 U	1.0 U	1.0 U	1.0	U 1.0 U
Aroclor-1260		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	U 1.0 U

NOTES:

All values reported in μ g/L.

U - Not detected

BLDUP-SW: Blind field duplicate sample of SW-14.

BLDUP3: Blind field duplicate sample of SW-2 collected 12/12/91

EQBLK2: Equipment blank sample collected 12/12/91 with above surface water samples

DRT:cmb/DEW566.9

CECEEEEEEEEEEE

TABLE 15 SURFACE WATER INORGANIC ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

	CLASS C	CLASS D	CLIENT ID	SW-1		Class C	SW-1		Class C	SW-2		Class C	SW-3		Class C	
	STANDARDS	STANDARDS	Date Collected	12/91		Standard	4/92		Standard	12/91		Standard	12/91		Standa	ra
ANALYTE		•••														
Aluminum	100	NA		195	U		610			66.7			66.7			
Antimony	NA	NA		46.2			39.6			42.2			42.2			
Arsenic	190	360		5.0	U		5.6	U		5.0	U		5.0	U		
Barium	NA	NA		70.8			45.2			78.8			74.2			
Beryllium	1100***	NA		2.5		_	1.4		_	2.5		_	2.5			
Cadmium	•			4.1	U	3	4.2	U	. 5	4.1	U	• 4	4.1	U		4
Calcium	NA	NA		126000			212000			156000			147000			
Chromium	•	. •.		9.1		664	4.3		1008	9.1		795	9.1			757
Cobalt	. 5	NA		10.4	U		7.7	U		10.4			10.4	U		
Copper	•	•		13.8		40	13.0	U	62	5.0	U	48	5.0	U		46
Iron	300	300		358			639			162			154			
Lead	•	•		3.3		20	2.6		37	3.0	U	26	3.0	·U		24
Magnesium	NA	NA		24400			39300			31000			29200			
Manganese	NA	NA	•	26.5			38.2			21.5			23.9			
Mercury	NA	NA NA	•	0.87			0.20	U		0.20	U		0.20	U		
Nickel	•			21.5	U	282	34.0	U	415	21.5	U	333	21.5	U		318
Potassium	. NA	NA		2400		-	2160		•	1450	U		1460	U		
Selenium	1.0	, NA		5.0	U		4.4	UJ		5.0	U		5.0	U		
Silver (total)	• •	•		5.7	U		11.0	UJ		5.7	U	•	5.7	U		
Sodium	NA	NA		242000			75300			78000			123000			
Thallium	8	20		5.0	U		5.6	U		5.0	U		5.0	U		
Vanadium	14	190		7.9	U		5.3	U		7.9	U		7.9	U		
Zinc	30			44.0	J		23.6			5.3	J		9.9	J		
Cyanide	5.2	. 22		10.0	UJ					10.0	UJ		10.0	UJ		
Hardness pp	om			415			691		•	517		,	487			
Hardness Ca	alculation:			NOTES:	All	values repor	ted in µg/L		EQBLK2: Equ	ipment blan	k sa	mple collected 1	2/12/91			
2.497 * Ca n	ng/L + 4.118 * M	g mg/L		, i		- Not detecte			* calculation of	of standard l	base	d on hardness,				
		-			J –	Estimated v	alue		individual s	tandard app	eare	in column next	to sample			
					R-	Rejected by	data valid	ator	** no standar	d for total si	lver,	standard for ion	ic silver onl	y is 0	 . .1	
			•						*** standard							
					BL	DLUP-SW: 8	Blind field	duplic	cate of SW-10 c	collected 4/2	8/92	. .				
					BL	DUP3: Blind	field dupli	cate	of SW-2 collect	ed 12/1 2/91						

TABLE 15 SURFACE WATER INORGANIC ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

															•
	CLASS C	CLASS D	CLIENT ID	SW-4		Class D	SW-4		Class D	SW-5		Class C	·SW-6		Class C
	STANDARDS	STANDARDS	Date Collected	12/91		Standard	4/92		Standard	12/91		Standard	12/91	·	Standard
ANALYTE												•			
Aluminum	100	NA		1230			445		•	87.8			387		
Antimony	NA NA	NA		107	J		244			42.2	U	•	42.2	U	
Arsenic	190	360		5.0	U		5.6	U		5.0	U		5.0	U	
Barium	NA	NA		694			475			98.2			98.2		
Beryllium	1100***	NA		2.5	U		1.4	U		2.5	U		2.5	U	
Cadmium	•	•		4.1	UJ	38	4.2	U	37	4.1	U	3	4.1	U	3
Calcium	NA	NA		235000			238000			95000			98300		
Chromium		•	•	9.1	U	8955	8.5	U	8786	9.1	U	548	9.1	์ บ ์	561
Cobalt	5	NA		10.4	U		7.7	U		10.4	U		10.4	U	•
Copper	•	•		5.0	UJ	117	8.3	U	114	5.0	U	33	5.0	Ü	33
Iron	300	300		177000			73500			172			570		
Lead	•			6.0		1043	2.4		1013	3.0	U	1,4	3.0	U	15
Magnesium	. NA	NA		37400			31400			22100			22400		
Manganese	NA	NA		1740	J		1740			14.0	U		31.5		
Mercury	NA	NA NA		0.20	U		0.20	U		0.20	U		0.20	U	
Nickel	•	•		21.5	Ū	8451	34.0	U	8304	21.5	U	236	21.5	U	241
Potassium	NA	NA		9100	U		7480			1500			2940		
Selenium	1.0	NA		5.0	U		4.4	UJ		5.0	U	•	5.0	U	
Silver (total)	**	•	•	5.7	·UJ	127	13.6	R	122	5.7	U		5.7	U	
Sodium	. NA	NA		143000	J		110000			19400			21800		
Thallium	8	20		5.0	U		5.6	U		5.0	U		5.0	U	
Vanadium	14	190		7.9	U		6.2	U		7.9	U	•	7.9	U	
Zinc	30	•		68.5	J	1694	28.4		1661	5.3	U		9.6	J	
Cyanide	5.2	22		10.0	UJ		•			10.0	UJ	J	10.0	UJ	
Hardness pp	m			741			724			328	•	•	338		
Hardness Ca				NOTES:	_	All values re	_				Gui	pment blank sam			/12/91
	g/L + 4.118 * M	la ma/L				U - Not dete					•	f standard based			
						J - Estimate	d value					andard appears is		•	sámple
						R - Rejecte		alida	ator			l for total silver, st			•
							•					or hardness >75p			
						BLDLUP-S	W: Blind fie	eld d	uplicate of SW-			-	•		
				1					ate of SW-2 co						

TABLE 15
SURFACE WATER INORGANIC ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

	CLASS C STANDARDS	CLASS D STANDARDS	CLIENT ID Date Collected	SW-6 4/92		Class C Standard	SW-7 12/91		Class D Standard	SW-7 4/92		Class D Standard	SW-8 4/92		Class C Standard
ANALYTE	•												<u> </u>		
Aluminum	100	NA		502	i		17420			1130			433		
Antimony	NA	NA		39.6	U		42.2	U		39.6	U		60.6		
Arsenic	190	360		5.6	U		5.0	U		5.6	U		5.6	U	
Barium	NA	NA		70.7			142		•	69.5			45.2		
Beryllium	1100***	NA		1.4	U		2.5	U		1.4	U		1.4	ับ	
Cadmium		•,		4.2	U	2	4.1	UJ	42	4.2	U	29	7.5		5
Calcium	NA	NA		80300			251000			183000			218000		_
Chromium	•			4.3	U	461	9.1	U	9632	161		7513	4.3	U	1019
Cobalt	5	NA		7.7	U		10.4	U		7.7	U		7.7		
Copper	•	•		13.0	U	27	7.4		127	8.7		96	14.9		62
Iron	300	300		348			6750			1700			795	•	
Lead	•	•		2.6		11	10.8		1167	2.6		795	2.7		38
Magnesium	NA	NA		16100			44400			34200			37800		, ,00
Manganese	NA	. NA		203			1910	J		236			39.4		
Mercury	NA	NA		0.20	U		0.28			0.20	U		0.20	U	
Nickel		•	•	34.0	U	201	21.5	U	9043	34.0		7181	34.0		419
Potassium	NA	NA		2290			5070			3100			3280	•	
Selenium	1.0	NA		4.4	UJ		5.0	U	-	4.4	UJ		4.4	UJ	
Silver (total)	**;	•		11.0	UJ			UJ	148	11.0			11.0		
Sodium	NA	NA		20700			90300	J	•	60000			65400		
Thallium	8	20		5.6	U		5.0	U		5.6	U		5.6	U	
Vanadium	14	190		5.3	U		7.9	U		5.3	U		7.0		
Zinc	30	•		37.1			22.2		1824	35.0		1418	21.8	•	•
Cyanide	5.2	22					10.0	UJ							
Hardness pp	m .			266			810			598			700		
Hardness Ca	lculation:			NOTES:		All values rep	orted in µg	/L.		EQBLK2:	Equ	ipment blank	sample col	lected 1	2/12/91
2.497 * Ca m	ng/L + 4.118 * M (g mg/L				U - Not detec	ted					of standard ba			
	•					J – Estimated	value			individ	ual s	tandard appea	rs in colun	nn next	to sample
						R - Rejected	by data val	idato	r					for ion	ic silver is 0.1
						BLDI HP_SW	· Blind field	l dun	licate of SW-			for hardness >	, obbu		•
•						BLDUP3: Blir						.0182.	•		

TABLE 15
SURFACE WATER INORGANIC ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

	CLASS C	CLASS D	CLIENT ID	SW-9		Class C	SW-10		Class C	SW-11		Class C	SW-12		Class D
	STANDARDS	STANDARDS	Date Collected	.4/92		Standard	4/92		Standard	4/92		Standard	4/92		Standard
ANALYTE															
Aluminum	100	NA	•	502			498			333			871		
Antimony	NA	NA		42.6			39.6	U		39.6	U		59.8		
Arsenic	190	360		5.6	U		5.6	U		5.6	U		5.6	U	
Barium	NA	NA		48.6			52.1			45.2		•	154		
Beryllium	1100***	NA		1.4	U		1.4	U		1.4	U		1.4	U	
Cadmium	•	•		4.2	U	5	4.2	U	6	4.2	U	6	4.2	U	29
Calcium	NA	NA	÷'	221000			248000			247000			182000		
Chromium	•			4.3	U	1035	7.9	U	1135	4.5	U	1132	4.3	U	7358
Cobalt	5	NA		7.7	U		7.7	U		7.7	U		· 7.7	U	
Copper	•	•		. 13.9	U	63	14.0	U	7.0	18.6	U	70	17.7	U	93
Iron	300	300		491			562			697			9770		
Lead	•	•		2.7		39	2.2	U	45	3.2		44	9.3		770
Magnesium	NA	NA		39400			43600			43500			31100		
Manganese	NA	· NA		39.4			50.9			50.9			409		
Mercury	NA NA	NA NA		0.20	U		0.20	U		0.20	U		0.20	U	•
Nickel	*	•		34.0	U	426	34.0	U	464	34.0	U	462	34.0	U	7043
Potassium	· NA	NA		2620			3520			3080			3760		
Selenium	1.0	. NA		4.4	UJ		4.4	UJ	l	4.4	UJ	1	4.4	U.	J .
Silver (total)	* *	• 1	•	11.0	UJ		11.0	UJ) .	11.0	UJ	,	11.0	U.	J . 84
Sodium	NA	NA		67400			65800			65800			106000		
Thallium	8	20		5.6	U		5.6	U		5.6	U		5.6	U	
Vanadium	. 14	190		5.3	Ų		6.2	U		8.2	U		5.3	U	·
Zinc	30	•		15.3			24.5			28.7			33.8		1388
Cyanide	5.2	22										•			
-					٠.		•								
Hardness pp	m			714			799			796			583	1	
Hardness Ca	llculation:			NOTES:		All values re	eported in ,	/g/L.		EQBLK2	Equ	ipment blank	sample co	llect	ed 12/12/91
2.497 * Ca m	ng/L + 4.118 * M	g mg/L	•			U - Not dete	ected		•	* calcula	tion	of standard b	ased on ha	rdne	88,
						J - Estimate	ed value			individ	ual	standard appe	ars in colu	mn r	next to sample
						R - Rejecte	d by data v	alida	ator	** no sta	nda	rd for total silv	er, standar	d for	rionic silver is 0.1
			•	1 .		- ·	-					for hardness	-		
						BLDLUP-S	W: Blind fie	eld d	uplicate of SW	/-10 collec	ted 4	1/28/92.			
						BLDUP3: B	lind field d	uplic	ate of SW-2 c	ollected 12	/12/9	91			

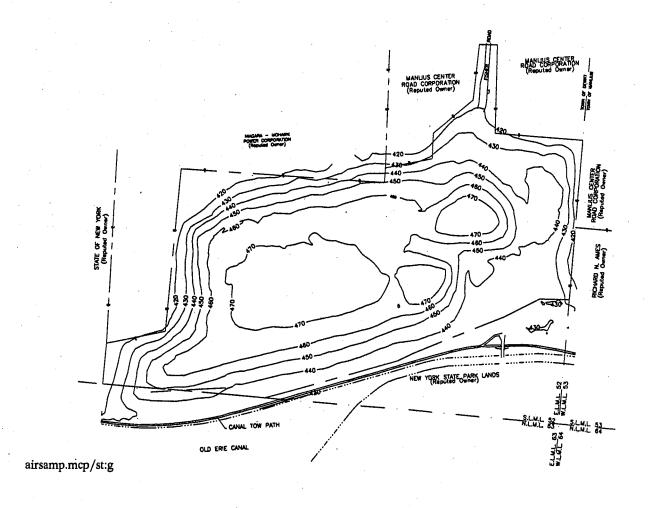
TABLE 15
SURFACE WATER INORGANIC ANALYSES
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

	CLASS C STANDARDS	CLASS D STANDARDS	CLIENT ID Date Collected	SW-13 4/92		Class D Standard	SW-14 4/92		Class D Standard	SW-15 4/92		Class C Standard	SW-16 4/92		Class C Standard
ANALYTE				•			1								
Aluminum	100	· NA		128		•	40.3			340			653		
Antimony	NA	NA		39.6			39.6			53.2			39.6	U	
Arsenic	190	360		5.6	U		5.6	U		5.6	U		5.6	U	
Barium	NA	NA		79.1			67.1			75.3			46.3		
Beryllium	1100***	NA	9	1.4			1.4	-		1:4	U		1.4	U	
Cadmium		•	• .	4.2	U	24	4.2	U	30	4.2	U	3	4.2	U	
Calcium	NA	NA		149000			191000			87400			213000		
Chromium	•	•		4.3		6393	4.3	U	7636	9.0	U	491	4.3	U	100
Cobalt	5	NA		7.7		***	7.7	U		7.7	U		~ 7.7	U	
Copper	•	•		4.3	U	79	4.3	U	97	16.7	U	29	9.4	U	6
Iron	300	. 300		207			320			557		•	702		
Lead	•	•	•	2.2	U	619	2.2	U	815	2.2	U	12			3
Magnesium	NA	NA		28800			32300			16600			38100		_
Manganese	NA	NA		10.7			183			18.6			47.2		•
Mercury	, NA	. NA		0.20	U		0.20	U		0.20	!U		0.20	U	
Nickel	•	•		34.0		6181	34.0	U	7290	34.0	U	213	34.0	U	414
Potassium	NA	NA		1320	U	,	4040			3520			2700		
Selenium	1.0	NA		4.4	UJ		4.4	UJ		4.4	UJ			UJ	ů.
Silver (total)	• •	*		11.0	IJ	63	11.0	UJ	91	11.0	UJ		11.0		
Sodium	NA	NA		96800			55700			18700			66500		
Thallium	8	20		5.6	U		5.6	U		5.6	U		5.6	U.	
Vanadium	14	190		5.3	U		5.3	U		9.7	U		5.4		
Zinc	30	•		10.0		1204	12.9		1441	15.7			27.3	_	
Cyanide	5.2	22							•						
Hardness ppi	m			491			610			287		•	689		
Hardness Ca	lculation:			NOTES:		All values rep		a/L.			auin	ment blank sa		otod	10/10/01
2.497 * Ca m	g/L + 4.118 * Mg	g mg/L				U - Not detec						standard base			12/12/91
	•			j		J - Estimated	i value					ndard appear			to sample
						R - Rejected	by data va	lidat	or						nic silver is 0.1
						-	-					r hardness >7		- IUI	iic siivet is U. I
						BLDLUP-SW	: Blind fiel	d du	plicate of SW-	10 collected	d 4/2	8/92.	• •		
		•		L					le of SW-2 coll			•			. •

TABLE 15 SURFACE WATER INORGANIC ANALYSES TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

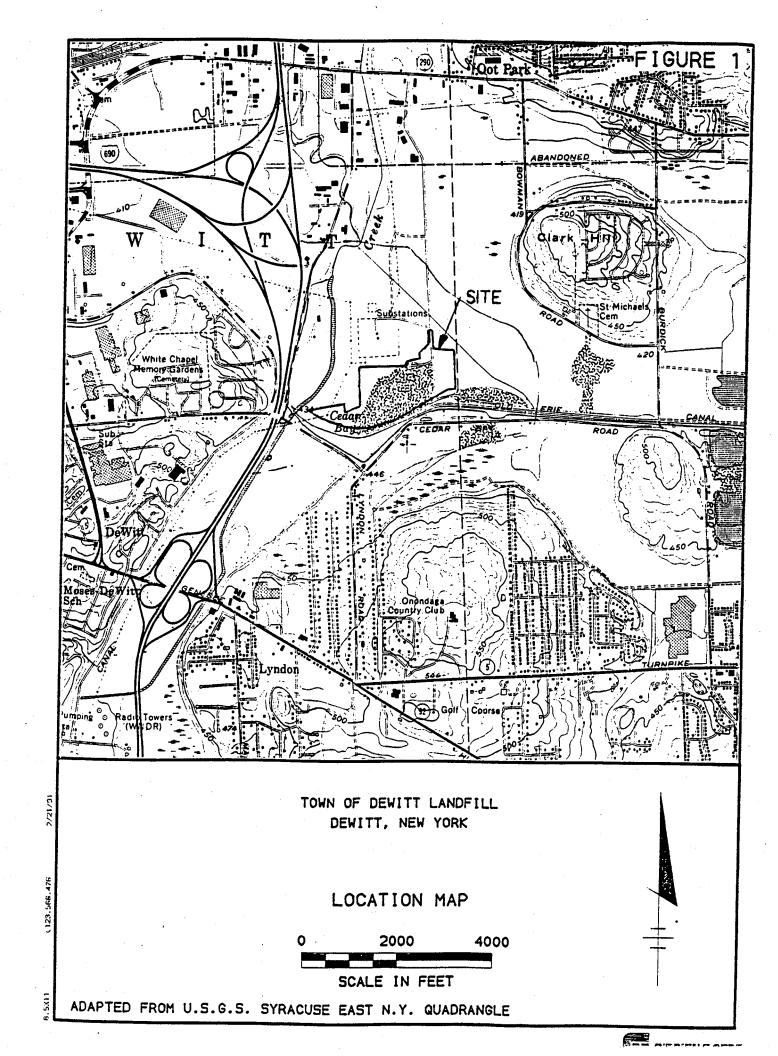
CECEEEEEEEEEE

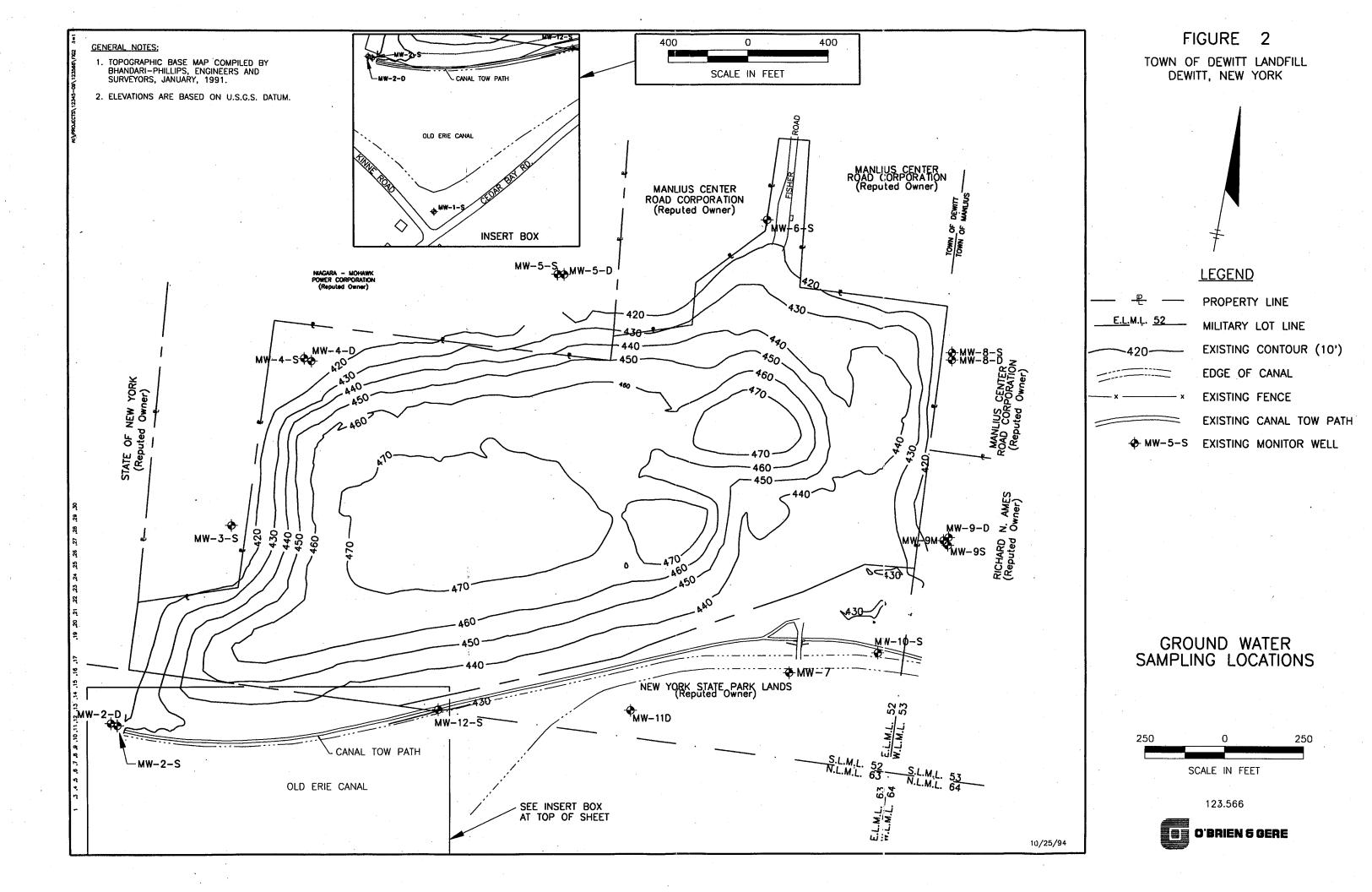
	CLASS C	CLASS D	CLIENT ID			Class D	SW-18		Class D	SW-19		Class D	BLDUP3		BLDUP		EQBLK2	
	STANDARDS	STANDARDS	Date Collected	4/92		Standard	4/92		Standard	4/92		Standard	12/91		4/92		12/91	
<u>ANALYTE</u>																		
Aluminum	100	NA		403			146			173			105		416		34.1	
Antimony	. NA	NĄ		39.6			39.6			57.0			42.2		39.6		42.2	
Arsenic	190	360		5.6	U		5.6	U		5.6	U		5.0	U	5.6	U	5.0	
Barium	NA	NA		77.6			63.7			61.4			78.8		48.9		7.6	
Beryllium	1100***	NA	•	1.4							_		2.5		1.4	U	2.5	U
Cadmium				4.2	U	18	4.2	U	28	4.2	U	30	4.1	U	4.2	U	- 4.1	U
Calcium	NA	ŅA		117000			176000			189000			159000		256000		615	U
Chromium	•	•		6.8	U	5171	4.5	U	7171	8.5	U	7533	9.1	U	4.3	U	9.1	U -
Cobalt	5	NA		7.7	U		7.7	U		7.7	U		10.4	U	7.7	U	10.4	U
Copper	• '	•		16.7	U	62	10.3	U	91	7.5	U	96	5.0	U	4.3	U	5.0	U
Iron	300	300		580			733			731			171		555		13.3	U
Lead	•			2.2	U	446	2.2	U	740	2.2	U	798	3.0	U	3.0		3.0	U
Magnesium	NA	NA	•	21200			30500			31100		-	31900		44900		518	U
Manganese	NA	. NA		133			340			247			21.3		52.0		1.7	IJ
Mercury	NA	NA		0.20	U		0.20	U		0.20	U		0.20	U	0.20	U	0.20	U
Nickel		•	•	34.0	U	5077	34.0	U	6877	34.0	Ū	7199	21.5	U	34.0	U	21.5	U
Potassium	NA	NA		3560			5080			3250			2400		2660		1450	U
Selenium	1.0	NA	•	4.4	UJ	1	4.4	UJ		4.4	ŲJ		5.0	U	4.4	UJ	5.0	
Silver (total)	, ••	•		11.0	UJ	40	11.0	UJ	80	11.0	UJ	. 88	5.7	U	11.0	UJ	5.7	
Sodium	NA	NA	•	30300			56700			52000			78600	•	69900		669	Ū
Thallium	8	20		5.6	U		5.6	U		5.6	U		5.0	U	5.6	U	5.0	
Vanadium	. 14	190		6.6	U		7.0	U		8.6	U		7.9	U	5.3	U	7.9	
Zinc	30	•		15.8		971	15.7		1352	15.7		1421	7.3		12.9		5.3	
Cyanide	5.2	22								•			10.0	UJ		•	10.0	
										-	·.							
Hardness pp				379			565			600								
Hardness Ca				NOTES:		All values rep		/L.		EQBLK2	: Equ	ipment blank	sample collec	ted 1	2/12/91			
2.497 * Ca n	ng/L + 4.118 * M	g mg/L				U - Not dete						of standard ba						
						J - Estimated						tandard appea			•			
			•	1		R - Rejected	by data val	idato	or .			d for total silve	-	r ioni	ic silver is	0.1	, .	
				1 .								for hardness >	75ppm					
								•	olicate of SW-									
		•	•	L		BLDUP3: Bli	nd field dup	licat	e of SW-2 col	lected 12/1	2/91							


Town of DeWitt Landfill Monitoring and Maintenance Operations Manual

APPENDIX N AIR SAMPLING FIELD LOG

AIR SAMPLING FIELD LOG


SAMPLED BY	DATE	TIME
WIND DIRECTIC	WIND SPEED	
TEMPERATURE	BAROMETRIC PRESSURE	
LOCATION	ANISTER HEIGHT	
1		
2		
3		•
4		
5		•


INDICATE LOCATION OF SAMPLE AND WIND DIRECTION ON SKETCH BELOW:

Figures

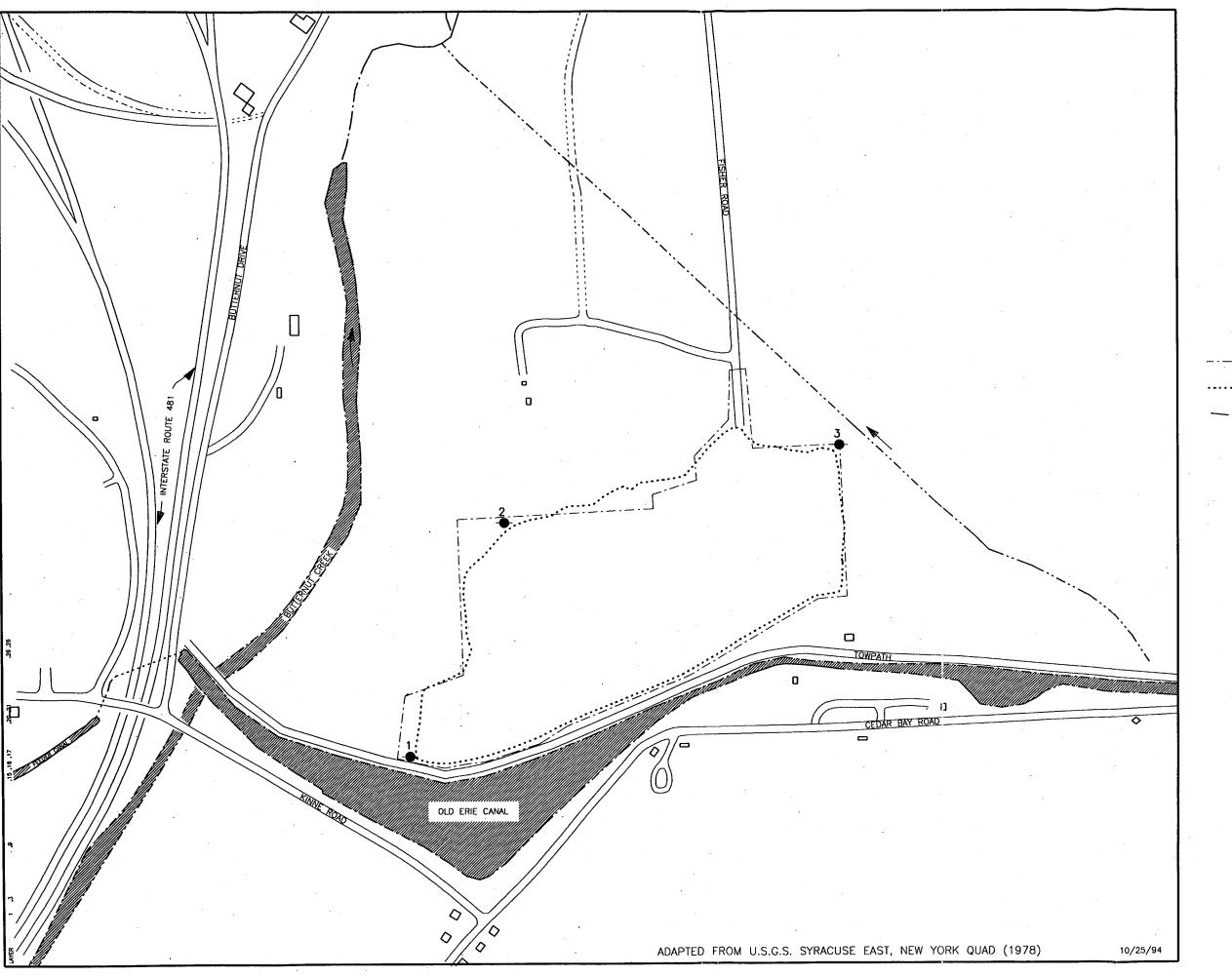
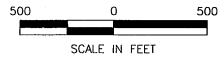


FIGURE 3

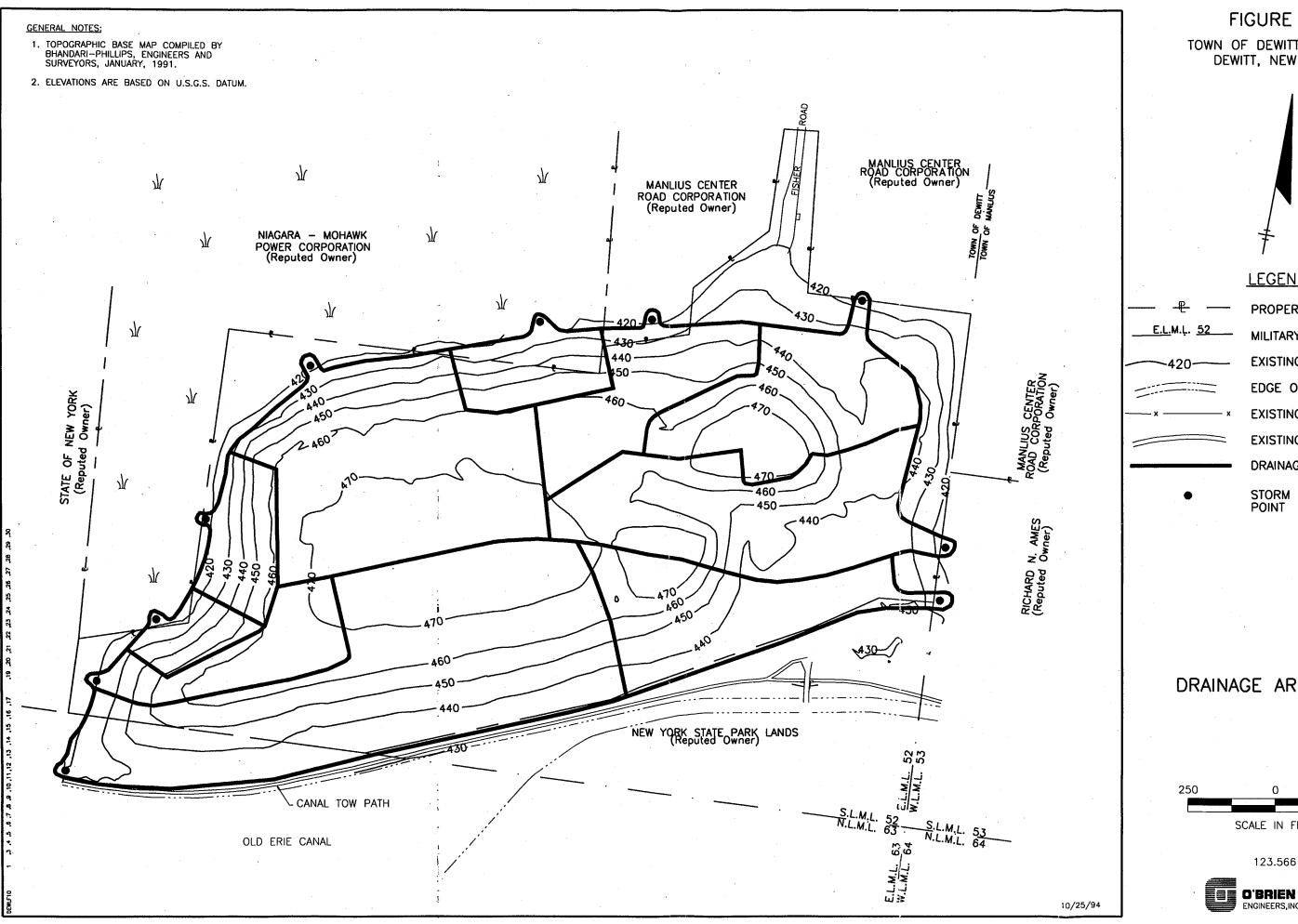
TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

LEGEND


APPROXIMATE SURFACE WATER SAMPLE LOCATION

PROPERTY BOUNDARY

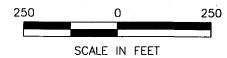
..... APPROXIMATE FILL LIMITS


__ _ _ INTERMITTENT STREAM

SURFACE WATER SAMPLING LOCATIONS

123.566

FIGURE 4


TOWN OF DEWITT LANDFILL DEWITT, NEW YORK

LEGEND

PROPERTY LINE MILITARY LOT LINE EXISTING CONTOUR (10') EDGE OF CANAL EXISTING FENCE EXISTING CANAL TOW PATH DRAINAGE AREA BOUNDARY STORM WATER DISCHARGE

DRAINAGE AREA PLAN

Monitoring well boring and completion logs

CLIENT	Γ:	Town of	NGINEERS, Dewitt Dewitt Lan			TEST BORING LOG SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"		S of Landfill Nea ATER ELEV. 41	
FILE NO	D.: G COI AN:	123.566. MPANY: Mike Hurk	576 Parratt-Wolf	· .		GROUT - Type I Portland (SAND PACK - "0" Grade I PELLETS - Bentonite Chip SCREEN - 2" I.D. 10-slot RISER - 2" I.D. stainless s	Cement – Bento Morie Sand s stainless steel		
DEPTH BELOW GRADE	·	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED	IELC
0	1	0-1.5'	4-9-10	6"		Dry, brown SILT, some coarse sand, trace of	0.5'		
						root hairs Dry, hard GRAVEL, some silt, little clay (fill)	1'		
5	2	5-6.5'	20-0	0"		Black, wet, fine to coarse SAND, oil film apparent	5'		
10	3	10-11.5'	10-3-4	5″	7	Same as above with fine to coarse gravel		===	
				·					
15	4	15-16.5'	50/.1	1″	50+	Same as above with few wood chunks		===	
20		20-21.5'	40 4 40			Wet, brown red peat, some wood fibers, trace silt	17'	 	
20			10-4-13	8″		Wet, tan brown SILT and CLAY, some coarse sand fine gravel, trace of fine sand, iron oxide stain	, 20.5'	===	
	6	22.5- 23.8'	39-34-50/3	12"		Dry, very dense, brown red SILT and CLAY, some fine to coarse sand (till)	23.5'		
25									
30									
·									

O'BRII	EN &	GERE EI	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF 2		V-2S
CLIENT	:	Town of	Dewitt			SAMPLER Split Spoon 2" HAMMER: 140 lbs.	START DATE	: 11/5/91	1630
PROJEC	CT LO	CATION:	Dewitt Lan	dfill		FALL: 30" LEGEND:	END DATE:		
FILE NO		123.566.				GROUT - Type I Portla SAND PACK - "0" Grad		ntonite slurry	
BORING FOREM OBG GE	AN:	Mark Haw	Atlantic Testi kins David J. Carı	_		PELLETS - Bentonite C SCREEN - 2" I.D. 10-s RISER - 2" I.D. stainlet	lot stainless stee	əl	
DEPTH						THOUSE I.D. Games	STRATUM		FIELD TESTING
BELOW GRADE		DEPTH (FEET)	BLOWS /6"	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	GENERAL DESCRIPT	EQUIPMENT INSTALLED	HNU (ppm)
0	1	0-2	5-5-	2'/1'	15	2" SOD, then moist, medium brown, fine to			0
1			10-15			coarse SAND and fine to coarse GRAVEL (fill)			·
2	2	2-4	12-12-	2'/0.5'	20	Same as above (fill)			0
3			8-5						
4	3	4-6	5-2-5-8		7	Same as above (fill)			0
5									
6	4	6-8	19-25-	·	48	Gray, argillaceous DOLOSTONE GRAVEL with			0
7			23-17			little fine to coarse sand (fill)			
8	5	8-10	19-22- 18-14	2'/1.5'	40	Same as above (fill)			0
9						,			
10	6	10-12	23-18-	2'/0.75'	44	Same as above (fill)			0
11			26-52						
10	_	10.11	00.40	0141					
12	7	12-14	23-12- 12-21	2'/1'	24	Same as above (fill)			0
13									
14	8	14-16	40-15-	2'/0.25'	26	Same as above (fill)			0
15			11-8						
16	9	16-18	5-3-4-3	2'/0.1'	7	Wet, medium to coarse, angular GRAVEL (fill)			
17				, == •					
	10	10.00		01/01					
18	10	18-20	5-5-7-7	2'/2'		Moist, dark brown to black PEAT with silt, trace very fine sand to 19.5', grading to greenish			0
19	-					gray SILT and very fine SAND with little clay, very cohesive, natural materials			
	\neg					,			

O'BRI	EN&	GERE EN	IGINEERS, I	NC.		TEST BORING LOG	PAGE 2 OF 2		V-2S	
CLIENT		Town of I	Dewitt Dewitt Lan	dfill		SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"	START DATE	: 11/5/91	1630	
BORING FOREM OBG GE	G CON		Atlantic Test	-	<u> </u>	GROUT - Type I Portlan SAND PACK - "0" Grad PELLETS - Bentonite C SCREEN - 2" I.D. 10-si	e Morie Sand hips ot stainless stee	oli .		
DEPTH BELOW GRADE		DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N"	RISER - 2" 1.D. stainles SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL	EQUIPMENT	FIELD 1	ни
20	11	20-22	3-3-4-4	2'/2'	7	Saturated as above to 21.4', grading to fine	DESCRIPT	INSTALLED		(ppn
21						SAND with little medium brown, medium sand, little silt				
22	12	22-24	2-2-4-7	2'/0.1'	6	Pushed rock in bottom of spoon, wash from top of auger				0
24	13	24-26	4-4-6-8	2'/2'		Saturated, gray-brown, fine to coarse SAND to 25.5', grading to greenish brown SILT with				0
25						little clay (horizontally laminated)	İ			
26	14	26-28	5-6-10-9	2'/2'	16	Saturated as above, ~1' fine to coarse SAND, grading to 1' SILT with little clay and				. 0
27						trace fine sand		===		
28	15	28-30	5-6-8-10	2'/1.2'		Saturated, light brown to gray SILT with some clay, little to trace fine sand,		224 242 552		0
29						cohesive, horizontally laminated		===		
30	16	30-32	6-5-6-7	2'/2'		Saturated, gray-brown SILT and CLAY, some		===		0
31						fine sand, cohesive, horizontally laminated, some black organic spots		===		
32	17	32-34	5-7- 17-29	2'/2'		Saturated, gray-brown, fine to medium SAND with silt, trace clay, horizontally laminated		===		0
33										
34	18	34-36	19-38/100	2'/0.25'		Refusal at 35.5', roller bit to 36.5', try and drive spoon, large black and gray,	·	===	٠	0
35						angular pieces of argillaceous LIMESTONE		***		
36								===	,	
37	19	37-37.5				Saturated, green–gray, highly weathered SHALE				
38										
39									Ì	
40			-					,		

O'BRIE	EN &	GERE EN	IGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF 3	BORING MV	V-2D
CLIENT: PROJEC	,	Town of I	Dewitt Dewitt Lan	dfill		SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30" LEGEND:	START DATE	: 11/14/91	
FILE NO BORING FOREMA OBG GE	COM	Mark Hawl	Atlantic Test	ing Labs		GROUT - Type I Portlau SAND PACK - "0" Grace PELLETS - Bentonite C SCREEN - 2" I.D. 10-si RISER - 2" I.D. stainles	le Morie Sand hips ot stainless ste	el	
DEPTH BELOW GRADE	26	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	*N*	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED	1
0	1	0-2	5-5-	2'/1'		2" SOD, then moist, medium brown, fine to	DESCRIPT	INSTALLED	(ppm)
1			10-15			coarse SAND and fine to coarse GRAVEL (fill)			
2	2	2-4	12-12- 8-5	2'/0.5'	20	Same as above (fill)			0
3									
4	3	4-6	5-2-5-8		7	Same as above (fill)			0
5									
6	4	6-8	19-25-	· ·	48	Gray, argillaceous DOLOSTONE GRAVEL with			.0
7			23-17		,,,	little fine to coarse sand (fill)			.0
8	5	8-10	19-22-	2'/1.5'	40	Same as above (fill)			0
<u>-</u>			18-14	271.0		Same as above (iii)			
9									
10	6	10-12	23-18-	2'/0.75'	44	Same as above (fill)			0
			26-52			Came as above (iii)			
11			-			•			
12	7	12-14	23-12-	2'/1'	24	Same as above (fill)			0
			12-21			(,			
13									
14	8	14-16	40-15-	2'/0.25'	26	Same as above (fill)			. 0
			11-8						
15									
16	9	16-18	5-3-4-3	2'/0.1'	7	Wet, medium to coarse, angular GRAVEL (fill)			0
17									
18	10	18-20	5-5-7-7	2'/2'	12	Moist, dark brown to black PEAT with silt, trace			0
						very fine sand to 19.5', grading to greenish			•
19						gray SILT and very fine SAND with little clay,			
						very cohesive, natural materials			

-

O'BRIE	EN &	GERE EN	GINEERS, I	NC.		TEST BORING LOG	PAGE 2 OF		V-2D
CLIENT:		Town of E	Dewitt Dewitt Lan	dfill		SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"	START DATE	E: 11/14/91	
						LEGEND:			
FILE NO BORING FOREMA OBG GE	COM	Mark Hawk	Atlantic Testi	ing Labs		GROUT - Type I Portla SAND PACK - "0" Grav PELLETS - Bentonite C SCREEN - 2" I.D. 10-8 RISER - 2" I.D. stainlet	de Morie Sand Chips lot stainless ste	el	
DEPTH BELOW:		DEPTH	BLOWS	PENETR	"N"	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL	EQUIPMENT	FIELD TESTIN
GRADE		(FEET)	/6"	RECOVERY		57411 EE 5255111 11514	DESCRIPT	INSTALLED	(ppm)
20	11	20-22	3-3-4-4	2'/2'	7	Saturated as above to 21.4', grading to fine			0
21						SAND with little medium brown, medium sand, little silt			
	10			=:					
22	12	22-24	2-2-4-7	2'/0.1'	6	Pushed rock in bottom of spoon, wash from			0
23						top of auger			
24	13	04.00	1 1 0 0	01/01					
	13	24-26	4-4-6-8	2'/2'	10	Saturated, gray-brown, fine to coarse SAND to 25.5', grading to greenish brown SILT with			0
25						little clay (horizontally laminated)			
26	14	26-28	5-6-10-9	2'/2'	10				
20	-14	20-20	5-6-10-9	212	16	Saturated as above, ~1' fine to coarse SAND, grading to 1' SILT with little clay and			. 0
27						trace fine sand			
20	45	00.00	F 0 0 40	01/1 01					
28	15	28-30	5-6-8-10	2'/1.2'	14	Saturated, light brown to gray SILT with some clay, little to trace fine sand,			0
29						cohesive, horizontally laminated			
20	10	00.00	050-	21.21					
30	16	30-32	6-5-6-7	2'/2'	11	Saturated, gray-brown SILT and CLAY, some			0
31		·				fine sand, cohesive, horizontally laminated, some black organic spots			
						•			
32	17	32-34	5-7-	2'/2'		Saturated, gray-brown, fine to medium SAND			0
33			17-29			with silt, trace clay, horizontally laminated			
34	18	34-36	19-38/100	2'/0.25'		Refusal at 35.5', roller bit to 36.5', try			0
35						and drive spoon, large black and gray,	,		
						angular pieces of argillaceous LIMESTONE			
36									
37		37-42				Gray-green, argillaceous LIMESTONE grading	RUN 1		
38						to calcareous SHALE, trace gypsum			
						RQD = 0%			
39									
	\dashv								
	L		L				1		

O'BRII	EN &	GERE E	NGINEERS,	INC.			TEST BO	RING LOG	PAGE 3	OF 3	ORING MV	V-2D	
CLIENT	:	Town of	Dewitt			1	Split Spoo	n 2 "	LOCATI	ON:			
PRO IE	TIO	CATION	Dewitt Lan	dfill		HAMMER:			START I		11/14/91		
FINOSE) LO	CATION:	Dewitt Lan	ami		FALL: LEGEND:	30"		END DA	TE:			
FILE NO). <u>:</u>	123.566.	576			_		GROUT - Type I Po			e slurry		
BORING			Atlantic Testi	ing Labs				SAND PACK - "0" PELLETS - Benton					
FOREM OBG GE		Mark Hawl	kins Paul Gottler				******	SCREEN - 2" I.D. 1	10-slot stainless st				
	- OLO	3101.	Paul Gottler		<u> </u>		<u></u>	RISER - 2" I.D. sta	inless steel to grad STRATU			FIELD .	TESTING
DEPTH BELOW		DEDT:					_		CHANG	E			_
GRADE	NO.	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE		SAMPLED	ESCRIPTION	GENERA DESCRI	1	EQUIPMENT INSTALLED		HNU (ppm)
40									DESCI.	•	INGTALLED		(ppiii)
41				ļ <u>.</u>									
42		42-47				Same as a	bove		RUN	2			
						RQD = 0%)				===		
43								·					
44													
						•							
45											===]
46				· · · · · · · · · · · · · · · · · · ·									
											===		
47		47-52				Same as al			RUN	3	===		
48						RQD = 0%					===		
											===		.
49													
50											===		
													
51													
52	\dashv												
					-			·		ļ			
53	\Box												
54											-		
											ĺ		
55											ļ		
56													
30													
57													
58								,					
38	-												
59											•		
60													
21	\dashv												

. 1

O'BRIE	EN &	GERE EI	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF LOCATION:	BORING MW-	-38
CLIENT:		Town of CATION:	Dewitt Dewitt Land	dfill		SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"	START DATE	E: 11/21/91 11/21/91	
FILE NO		123.566.	576			GROUT - Type I Porti		entonite slurry	7
BORING FOREMA DBG GE	AN:	Mark Haw	Atlantic Testi kins David J. Carr	_	,	PELLETS - Bentonite SCREEN - 2" I.D. 10- RISER - 2" I.D. stainle	-slot stainless ste		
DEPTH		DEPTH	BLOWS	PENETR	"N"	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL	EQUIPMENT	IELD TESTIN
GRADE 0	NO.	(FEET) 0-2	/8" WOH-1-2-1	RECOVERY 2'/~0'	VALUE 3	Wet, black-dark brown PEAT with silt,	DESCRIPT	INSTALLED	(ppm
1				27.50	3	little to trace fine to very fine sand			0
2	2	2-4	1-1-1-1	2'/0.25'	2	Same as above			0
3									
<u>4</u> 5	3	4-6	1-1-1-1	2'/0.5'	2	Gray CLAY at ~5.8', grading to wet, black PEAT as above			0
- 5							•	===	
7	4	6-8	2-3-5-6	2'/1'	8	Wet, gray CLAY to 7.8' Green, saprolitic SHALE (mudstone) to 8'		===	.0
/								===	
8	5	8-10	6-7- 10-20	2'/1'	17	Same as above		===	0
- 9	\dashv							===	
10	6	10-12	2-4- 10-23	2'/1'	14	Same as above			0
11								===	
12	7	12-14	21-16- 14-17	2'/1.5'	30	Same as above			0
13	_								
14	8	14-16	88-100/3"	2'/0.75'		Medium gray, weathered LIMESTONE, rock more competent at 14'		===	0
15									
17									
18									
19									
20									

O'BRIE	EN &	GERE E	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF 1	
CLIENT	:	Town of	Dewitt			SAMPLER Split Spoon 2"	LOCATION: 250' +/- 5' E of el	ectric pole
						HAMMER: 140 lbs.	START DATE 11/9/91	
PROJEC	T LO	CATION:	Dewitt Lan	dfill		FALL: 30"	END DATE: 11/9/91	
-0 - 10		100 500	F70			LEGEND:		•
FILE NO).:	123.566.	576			GROUT - Type I Portland C	•	
BORING	COM	IPANY:	Atlantic Testi	ng Labs		SAND PACK - "0" Grade M PELLETS - Bentonite Chips		
		Mark Hawl				===== SCREEN - 2" I.D. 10-slot st		
OBG GE	OLO	3181:	Paul Gottler			RISER – 2" I.D. stainless ste	eel to ~2' above grade	FIELD TESTI
DEPTH								LIED LEST
BELOW GRADE	No	DEPTH	BLOWS	PENETR	"N"	SAMPLE DESCRIPTION	EQUIPMENT	HNU
O O	1 1	(FEET) 0-2	/6" WOH-1-1	2'/0.4'	VALUE 1	Saturated brown ton Ct AV with any officer of	INSTALLED	(ppm
			11011-1-1	270.4		Saturated, brown-tan CLAY with some silt and roots to 1.5'		0
1						Saturated, dark brown-black organic rich SILT		
						with little clay, trace very fine sand		<u> </u>
2	2	2-4	WOH-1-2	2'/0.9'	2	Same as above to 3'		1
						Saturated, gold and gray SILT and CLAY, lamin-		
3						ated, organic rich (black spots)		
	_		0.1.1	0144				
4	3	4-6	2-1-1-1	2'/1.4'	2	Saturated, as above to 5.2'; Saturated, gray-		1
5						ight brown, very fine SAND with little silt		
					·	and clay to 5.3'; Saturated, gray-light brown		
6	4	6-8	2-3-4-3	2'/1.9'	7	CLAY and SILT to 5.7'; Saturated, fine SAND and SILT as above to 5.9'; Saturated CLAY and		
			20.0	271.0		SILT as above		1
7						3.3'- Saturated, gray-brown, fine SAND with		
						some silt and clay to 7.8' (laminated, some		
8	5	8-10	5-6-9-11	2'/2'	15	clay and silt horizons), grades to saturated,		1 1
						gray, red and white, fine to coarse SAND with	===	ļ ·
9						ittle fine, round gravel	===	
10	6	10-12	3-4-5-5	2'/2'	9	Saturated as above to 9'; Saturated, gray-brown	===	
-10	-	10-12	3-4-5-5	212		SILT with little clay (laminated), grades to gray-brown CLAY with some silt		0
11						12' (with 6 lamin./0.1'), lamination of very		
						ine, brown SAND, lamination of silt at top.	222	
12	7	12-14	9-10-	2'/2'	21	race fine gravel at bottom at bottom of spoon	===	0
			11-11			Saturated as above with 2 lamin./0.1' (maroon	===	
13						colored clay horizons) to 13.9'		
1,1		14 10	0000	01/01		Saturated, gray, fine SAND with little silt	===	
14	8	14-16	2-2-3-2	2'/2'	5	and clay	===	0
15						Saturated, gray SILT with red clay laminations o 14.7'; Saturated, red-maroon CLAY with some	===	
						o 14.7; Saturated, red-maroon CLAY with some wilt to 15.8'; Saturated, red-brown, fine SAND	222	
16	9	16-18	2-50-	2'/1.2'		and SILT with some clay	===	
			50/0.2'			Saturated as above to 16.2'; Saturated, gray	===	•
17						and maroon CLAY with some silt to 16.7'	===	
						Saturated, gray DOLOSTONE with some gypsum		
18	_	•						
19								
17								
						į		
				1				<u> </u>

O'BRII	EN &	GERE EI	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF	2	N-4D
CLIENT		Town of	Dewitt Dewitt Lan	dfill	٠	SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"	START DATE	250' +/ 5' E E: 10/24/91	of electric pole
	CON	123.566. IPANY: Mark Haw	Atlantic Testi	ing Labs		GROUT - Type I Portian SAND PACK - "0" Grad PELLETS - Bentonite Cl SCREEN - 2" I.D. 10-sk	e Morie Sand lips It stainless steel		
EPTH ELOW RADE		DEPTH (FEET)	BLOWS	PENETRA	*N*	RISER - 2" I.D. stainless SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL	EQUIPMENT	FIELD TEST
0	1	0-2	WOH-1-1	RECOVERY 2'/0.4'	VALUE 1	Saturated, brown-tan CLAY with little silt and	DESCRIPT	INSTALLED	(ppi
						roots to 1.5'			"
1			· · · · · · · · · · · · · · · · · · ·			Saturated, dark brown-black organic rich SILT			
2	2	2-4	WOH-1-2	2'/0.9'	2	with some clay, trace very fine sand			
			11011 1-2	270.3		Same as above to 3' Saturated, gold and gray SILT and CLAY, lamin-			
3						ated, organic rich (black spots)	ŀ		
	•	<u>.</u>							
4	3	4-6	2-1-1-1	2'/1.4'	2	Saturated, as above to 5.2'; Saturated, gray-			1
5						light brown, very fine SAND with little silt and clay to 5.3'; Saturated, gray-light brown			
						CLAY and SILT to 5.7'; Saturated, fine SAND	:		
6	4	6-8	2-3-4-3	2'/1.9'	7	and SILT as above to 5.9'; Saturated CLAY and			1 1
7						SILT as above			
						6.3' - Saturated, gray-brown, fine SAND with			
8	5	8-10	5-6-9-11	2'/2'	15	some silt and clay to 7.8'(laminated, some clay and silt horizons), grades to saturated, gray,			1
						red and white, fine to coarse SAND with little			•
9						fine, round gravel	!		
10	6	10-12	3-4-5-5	2'/2'		Saturated as above to 9'; Saturated, gray-brown			
			0 4 0 0	2/2		SILT with little clay (laminated), grades to gray-brown CLAY with some silt			0
11						12' (with 6 lamin./0.1'), lamination of very			
10	-	40.44				fine, brown SAND, lamination of silt at top,			ĺ
12	7	12-14	9-10- 11-11	2'/2'		trace fine gravel at bottom of spoon			0
13		-	11-11			Saturated as above with 2 lamin./0.1' (maroon colored clay horizons) to 13.9'			
						Saturated, gray, fine SAND with little silt			
14	8	14-16	2-2-3-2	2'/2'	5	and clay			0
15						Saturated, gray SILT with red clay laminations	1 .		
						to 14.7'; Saturated, red-maroon CLAY with some silt to 15.8'; Saturated, red-brown, fine SAND			
16	9	16-18	2-50-	2'/1.2'		and SILT with some clay			0
	-		50/0.2'			Saturated as above to 16.2'; Saturated, gray			"
17						and maroon CLAY with some silt to 16.7'			
18	\dashv					Saturated, gray DOLOSTONE with some gypsum			
									
19		19-24				Gray, argillaceous LIMESTONE and calcareous	RUN 1		
					,	SHALE, trace gypsum			
		i				RQD = 29%	1		

O'BRIE	EN &	GERE EN	NGINEERS,	INC.			TEST BORING LOG	PAGE 2 OF 2	BORING MV 250' +/- 5' E c	
CLIENT	:	Town of	Dewitt			SAMPLER:	Split Spoon 2"	LOUATION.	200 H-0 E	otootito pole
						HAMMER:		START DATE	: 10/24/91	0840
PROJEC	CT LC	CATION:	Dewitt Lan	dfill		FALL:	30*	END DATE:		
	•					LEGEND:				
FILE NO). <u>:</u>	123.566.	576			_	GROUT Type I Por	tiand Cement - Bentor	nite slurry	
	AN:	Mark Hawl		ing Labs			PELLETS - Bentonite	Chips		
OBG GE	OLO.	GIST:	Paul Gottler				RISER - 2" I.D. stain	less steel to ~2' above		
DEPTH								STRATUM		FIELD TESTIN
BELOW	İ	DEPTH	BLOWS	PENETR/	*N*		SAMPLE DESCRIPTION	CHANGE GENERAL	EQUIPMENT	l HNU
GRADE	NO.	(FEET)	/8"	RECOVERY			. DESCRIPTION	DESCRIPT	INSTALLED	(ppm
20		<u> </u>						DECOMM 1	INGIALLE	/(ppiii
				·						
21				 		1				l
				 		1				·
22			-	 		1				İ
				 						
23						!				
23		<u> </u>		 					===	
24		24 00				<u> </u>			===	
24		24-29		 		Same as abo		RUN 2		
- 05						RQD = 55%			===	j
25			<u>.</u>						===	
				<u> </u>					===	
26									===	
27										
								ŀ		
28										
									===	,
29		29-33.1				Same as abo	OVE	RUN 3	===	
						RQD = 60%		110110	200	
30										
										
31							•		===	
	\dashv									İ
32					——				===	
							•		===	
33									===	
-33			······································	-			•			
34										
34	\dashv									
25										
35										1
36]					
37										
38										
								[ĺ	
39	$\neg \dagger$								Ì	
	_								.	
40	\dashv			-					İ	
	-+]	
-+										1
	\dashv							i		
- 1	- 1	. [ł	1					1	1

i

O'BRIE	EN &	GERE E	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF	BORING MV 2	V-5S
ÇLIENT	:	Town of	Dewitt			SAMPLER Split Spoon 2" / HX Corer HAMMER: 140 lbs.	LOCATION:	proximal woo	st southern d electric pole 0800
∕ROJE(CT LC	CATION:	Dewitt Lan	dfill		FALL: 30" LEGEND:	END DATE:		
ILE NO).:	123.566.	576	· ····		GROUT - Type I Portland C		nite slurry	
	AN:	MPANY: Mark Haw GIST:	Atlantic Testi kins Paul Gottler	ing Labs		SAND PACK - "0" Grade N PELLETS - Bentonite Chip SCREEN - 2" I.D. 10-slot s	s tainless steel		
EPTH ELOW		DEPTH	BLOWS	PENETR/	'N'	RISER - 2" I.D. stainless st	STRATUM CHANGE GENERAL	EQUIPMENT	FIELD TESTI
RADE		(FEET)	/6"	RECOVERY			DESCRIPT	INSTALLED	(ppi
0	1	0-2	WOH-1-	2'/0.5'	3	Moist, black-dark brown organic, rich SILT			0
1			2-3			and CLAY to ~1.1', grades to brown SILT and CLAY with some roots			
2	2	2-4	2-4-5-5	2'/1.8'	9	As above to 2.4'; Damp, gray and gold, very fine SAND and SILT with little clay, faintly			0
3						laminated, occasional roots to 3.8'; Moist,			
4	3	4-6	6-7-12-8	2'/1.9'	19	gray CLAY horizon to 3.9'; very fine sand and			
	- ۲	4-0	0-7-12-0	271.9	19	silt as above Saturated as above from 4.1'; Saturated, brown			0
5						and gold CLAY with some silt to 4.4'; Sat-			
						urated, gray and gold, fine to medium SAND			
6	4	6-8	6-6-9-7	2'/1.7'		with some silt and clay to 5.2'; Saturated,			.0
7			ļ			gray-brown GRAVEL with some sand, silt and clay			ļ
						(ice rafted, looks like till from MW-9) to 5.5';			
8	5	8-10	5-3-	2'/1.6'	17	Saturated, gold-brown, fine to medium SAND with some silt and clay			0
			14-20			Saturated as above, grades to light brown SILT			"
9						with little clay, grades to brown CLAY with			
10	6	10.10	0 4 7 44			some silt to 7.8'; Saturated as above with			
-10	0	10-12	3-4-7-14	2'/1.7'		little medium, faceted and striated gravel			0
11						(A-axis vertical) Saturated, gold-tan, medium to fine SAND with			
						some silt and clay to 9'; Saturated, gray–gray			
12	7	12-14	45-18-	2'/		brown SILT and CLAY to 9.1'; Saturated, brown,			0
			28-35			medium SAND to 9.2'; Saturated gray-brown			
13		·				SILT and CLAY as above to 9.3'; Saturated,			
						brown, medium SAND as above to 9.4'; Satur-			
						ated, brown-gray brown SILT and CLAY to 9.7'; Saturated, brown, medium SAND as above to 10'			
		 				Saturated, brown, medium SAND as above to 10 Saturated, brown, medium SAND with little clay			
						to 11.5; Saturated, brown and gray, round to			
						angular GRAVEL (faceting visible)			
						Saturated as above, mostly gray-brown DOLO-			
						STONE fragments, occasional black, faceted			
						pebbles, ~80% GRAVEL, 10% SAND, 5% silt			İ
						and clay			
									1

.

O'BRIEN & GERE ENGINEERS, INC.						TEST BORING LOG	PAGE 2 OF	REPORT OF BORING MW-5S PAGE 2 OF 2 LOCATION: 71' SW of most southern			
CLIENT: Town of Dewitt						SAMPLER Split Spoon 2" / HX Corer HAMMER: 140 lbs.	proximal wood electric pole START DATE: 10/25/91 0800				
PROJECT LOCATION: Dewitt Landfill						FALL: 30" LEGEND:	END DATE:				
FILE NO). <u>:</u>	123.566.	576			GROUT – Type I Portland SAND PACK – "0" Grade		nite Slurry			
FOREM	AN:	APANY: Mark Hawl		ing Labs		PELLETS - Bentonite Chi	os stainless steel				
OBG GEOLOGIST: Paul Gottler						RISER - 2" I.D. stainless of	STRATUM	e grade	FIELD TESTI		
DEPTH BELOW BRADE		DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	CHANGE GENERAL DESCRIPT	EQUIPMENT	HN (ppr		
14	8	14-16	8-22-	2'/1.5'	47	Saturated, brown, gray and green, angular to			0		
15	-		25-20	<u> </u>		round, fine to medium GRAVEL, little silt and clay, mostly gray limestone gravel		===			
					<u> </u>	ciay, mostly gray illiestorie graver		===			
16	9	16-18	16-15-	2'/1.7'	26	Saturated as above with gray calcitic precip-		===	0		
17			11-18			itation zones with precipitation visible in fractures		222			
						Hactures		222			
18	10	18-20	15-10-	2'/1.8'	21	Saturated as above, round and angular GRAVEL,		===	0		
19			11-11			zones of well sorted coarse to medium SAND at					
- 17				· .		bottom of spoon		===			
20	11	20-22	5-14-	2'/1.5'	29	Saturated, gray-gray brown GRAVEL with sand,			.0		
21			15-10			some silt, little clay, massive, matrix-sup-		===			
						ported, overcompact to a certain degree (not overly)		===			
22	12	22-24	14-12-	2'/1.4'	22	Saturated as above, ~50% round to angular		===	0		
23		·	10-8			GRAVEL, 20% sand, 20% silt, 10% clay, A-axis		===			
						horizontal		===			
24									0		
25											
Δ)											
26							İ				
. 07											
27	-		·		•	•					
28						•			-		
	\Box										
29											
30											
31					·	•					
32	\neg										
33											
	\dashv								·		

'BRIE	EN &	GERE EI	NGINEERS,	INC.		PAGE 1				
LIENT:	:	Town of	Dewitt			SAMPLER Split Spoon 2" / HX Corer HAMMER: 140 lbs. START I		est southern ad electric pole 0800		
ROJECT LOCATION: Dewitt Landfill							END DATE:			
LE NO).: 	123.566.	576			GROUT - Type I Portland Cement - B	entonite slurry			
DREM/	AN:	IPANY: Mark Haw	Atlantic Testi kins	ng Labs		PELLETS - Bentonite Chips SCREEN - 2" I.D. 10-slot stainless st	oel .			
BG GE	OLO	GIST:	Paul Gottler			RISER – 2" I.D. stainless steel to ~2'		FIELD TEST		
EPTH ELOW RADE	NO.	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	'N'	CHANGI SAMPLE DESCRIPTION GENERA DESCRI	EQUIPMENT	н		
0	1	0-2	WOH-1-	2'/0.5'	3	Moist, black-dark brown organic, rich SILT	INSTALLED	(pr		
			2-3			and CLAY to ~1.1', grades to brown SiLT and				
1	<u> </u>					CLAY with some roots				
2	2	2-4	2-4-5-5	2'/1.8'	9	As shows to 0.4% Down array and sold years				
	-		1 7-3-3	271.0		As above to 2.4'; Damp, gray and gold, very ine SAND and SILT with little clay, faintly				
3						aminated, occasional roots to 3.8'; Moist,				
	_					ray CLAY horizon to 3.9'; very fine sand and				
4	3	4-6	6-7-12-8	2'/1.9'	19	ilt as above		(
5						Saturated as above from 4.1'; Saturated, brown and gold CLAY with some silt to 4.4'; Sat-				
						rated, gray and gold, fine to medium SAND				
6	4	6-8	6-6-9-7	2'/1.7'	15	with some silt and clay to 5.2'; Saturated,				
-						ray-brown GRAVEL with some sand, silt and clay				
7		·	<u> </u>			ice rafted, looks like till from MW-9) to 5.5';				
8	5	8-10	5-3-	2'/1.6'	17	Saturated, gold-brown, fine to medium SAND with come silt and clay				
			14-20			Saturated as above, grades to light brown SILT		`		
9						vith little clay, grades to brown CLAY with				
10		10.10	0 4 7 44	0144 =1		ome silt to 7.8'; Saturated as above with	·			
10	6	10-12	3-4-7-14	2'/1.7'	- 11	ittle medium, faceted and striated gravel		(
11						A-axis vertical) Saturated, gold-tan, medium to fine SAND with				
						ome silt and clay to 9'; Saturated, gray-gray				
12	7	12-14	45-18-	2'/	46	rown SILT and CLAY to 9.1'; Saturated, brown,		(
13			28-35			nedium SAND to 9.2'; Saturated gray-brown				
-13					 	SILT and CLAY as above to 9.3'; Saturated, srown, medium SAND as above to 9.4'; Satur-				
						ited, brown-gray brown SILT and CLAY to 9.7';		.		
						Saturated, brown, medium SAND as above to 10'				
						Saturated, brown, medium SAND with little clay				
						o 11.5; Saturated, brown and gray, round to				
						ingular GRAVEL (faceting visible) Saturated as above, mostly gray-brown DOLO-				
						STONE fragments, occasional black, faceted				
						ebbles, ~80% GRAVEL, 10% SAND, 5% silt				
		•				nd clay				
		,								

.

O'BRIE	EN &	GERE EN	IGINEERS,	INC.		TEST BORING LOG	PAGE 2 OF 3					
CLIENT: Town of Dewitt						SAMPLER Split Spoon 2" / HX Corer HAMMER: 140 lbs.		LOCATION: 71' SW of most southern proximal wood electric pole START DATE: 10/25/91 0800				
						FALL: 30" LEGEND:	END DATE:					
	G CON	123.566. IPANY: Mark Hawl	Atlantic Test	ing Labs		GROUT - Type I Portland SAND PACK - "0" Grade PELLETS - Bentonite Ch ======== SCREEN - 2" I.D. deligions	Morie Sand ips t stainless steel	-				
***		<u> </u>	Tuur Gottler		l	RISER – 2" 1.D. stainless	STRATUM	a Grarde	FIELD TESTI			
DEPTH BELOW GRADE	NO.	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED	HN (pp			
14	8	14-16	8-22-	2'/1.5'	47	Saturated, brown, gray and green, angular to			0			
15			25-20			round, fine to medium GRAVEL, little silt and clay, mostly gray limestone gravel			·			
16	9	16-18	16-15- 11-18	2'/1.7'	26	Saturated as above with gray calcitic precip— itation zones with precipitation visible in			0			
17						fractures						
18	10	18-20	15-10- 11-11	2'/1.8'	21	Saturated as above, round and angular GRAVEL zones of well sorted coarse to medium SAND at	,		0			
19						bottom of spoon						
20	11	20-22	5-14- 15-10	2'/1.5'	29	Saturated, gray-gray brown GRAVEL with sand, some silt, little clay, massive, matrix-sup-			.0			
21						ported, overcompact to a certain degree (not overly)						
22	12	22-24	14-12- 10-8	2'/1.4'	22	Saturated as above, ~50% round to angular GRAVEL, 20% sand, 20% silt, 10% clay, A-axis			0			
23						horizontal						
24	13	24-26	18- 50/0.2'	0.7'/0.7'		Saturated as above, green, gray and red MUD to 24.5'			0			
25						Saturated, gray, weathered, argillaceous LIMESTONE/DOLOSTONE						
26		26.5-28				RQD = 0%	RUN 1					
27						Core description as above, green gray in color						
28		28-33				RQD = 16% Core as above	RUN 2		-			
29												
30												
31												
32												
33		33-38				RQD = 17.5%	RUN 3					
$_{-}$												

200000000000000000000000000000000000000	ana ana ana		occionos recomensos en cir	*****									
O'BRI	EN &	GERE E	NGINEERS,	INC.			TEST BO	RING LOG		PAGE 3 OF 3			
CLIENT	:	Town of	Dewitt			1	Split Spoo	n 2"		LOCATION:	proximal woo	d electri	
PROJE	CT LC	CATION:	Dewitt Lan	dfill		HAMMER: FALL:	140 lbs. 30″		·	START DATE:	10/25/91	0800	
FILE NO). <u>:</u>	123.566.	576			LEGEND:		GROUT Type I P			nite slurry		
BORING		ADANIV.	A41 41 - T 1	· • •				SAND PACK - "0"					
		Mark Hawi	Atlantic Test	ing Lads				PELLETS - Benton SCREEN - 2" I.D.					
OBG GI			Paul Gottler					RISER - 2" I.D. sta			grade		
										STRATUM	<u> </u>	FIELD	TESTING
DEPTH BELOW		DEPTH	BLOWS	BENETO		•	04145455			CHANGE			1
GRADE		(FEET)	/8"	PENETR/ RECOVERY	"N"	ļ	SAMPLEL	ESCRIPTION		GENERAL DESCRIPT	EQUIPMENT		HNU
34					******					DC0011111			(ppm)
			<u> </u>			1					===		
35											===		
											===		}
36				<u> </u>							===		1
37				 							===		
											===		
38		38-43				RQD = 539				RUN 4			
							,			110114			
39													
10				<u> </u>							===		
40			ļ								===		
41											===		
- 					-						===		
42											===		
											===		.
43													. '
44													
45													
													}
46													
47													
48		· · · · · · · · · · · · · · · · · · ·											
		<u> </u>											
49													
			!										
50													
								•					
		•											
													
											·		
·													
									.				

O'BRI	EN 8	GERE E	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF	1	V-6S
CLIENT	r:	Town of	Dewitt			SAMPLER Split Spoon 2"	LOCATION:		
						HAMMER: 140 lbs.	START DAT	E: 11/25/91	1200
AOJE	CTLC	CATION:	Dewitt Lan	dfill		FALL: 30"	END DATE:		
FILE NO	٠.	123.566.	576			LEGEND:			
TILL IN		123.300.	.576			GROUT - Type i Portland (SAND PACK - "0" Grade i		nite slurry	
		MPANY:	Atlantic Test	ing Labs		PELLETS - Bentonite Chip	18		
OBG GI		Mark Haw GIST:	kins Paul Gottler			SCREEN - 2" I.D. 10-slot RISER - 2" I.D. stainless s		arada	
	Π		1		<u> </u>	THOUSE STATE OF TH	STRATUM	Arage	FIELD TESTI
DEPTH BELOW	1	DEPTH	BLOWS	PENETR/	-N-	041/74 5 D5000177001	CHANGE		
GRADE	1	(FEET)	/6"	RECOVERY		SAMPLE DESCRIPTION	GENERAL	EQUIPMENT	
0	1	0-2	3-3-4-4	2'/1.6'	7	Damp, black-dark brown PEAT with little	DESCRIPT	INGIALLED	(ppn
						silt and clay to 0.8'			
1	<u> </u>					Damp to moist, orange-brown SAND and SILT	İ		
	_			61111		to 2.2'			
2	2	2-4	4-5-7-9	2'/1'	12	Saturated, gold-gray, fine SAND and SILT			0
3	-	<u> </u>	 						
	-								
4	3	4-6	2-2-4-6	2'/1.8'	6	Saturated as above with medium sand horizon			0
	ļ					(also green, medium to fine sand) to 5.5'			١
5						Saturated, brown-dark brown, coarse SAND and			
						fine, rounded to subrounded GRAVEL	i.		
6									.
7									
			<u> </u>						
8	4	8-10	7-11-	2'/2'	21	Coherents described as a least second of the			
	_	0-10	10-8	212		Saturated as above, graded coarse to medium SAND and well rounded GRAVEL layers			0
9						SAND and wen rounded GRAVEL layers			
10	5	10-12	2-2-2-3	2'/1.6'	. 4	Saturated as above			0
11									
12	6	12-14	2-3-4-5	2'/2'	7	Coturated on about to 40 Ti	İ		
		· - · T	2-0-4-3	212		Saturated as above to 13.7' Saturated, gray-red gray CLAY and SILT			0
13								==	
								==]
. 14	7	14-16	1-3-6-7	2'/1.9'	9	Saturated as above			. 0
								==	
15								==	
16	8	16-18	5-7-6-8	2'/2'		Cotumeted as about 10th to 10th		==	
	-	10-10	U-1-U-0	212		Saturated as above with brown, medium SAND horizon 17.1–17.5', each zone coarsens down–		==	0
17	$\neg \uparrow$					ward, sharp contact at 17.5'; Saturated, gray-			
						red gray CLAY and SILT			ŀ
18	9	18-20	7-20-	2'/1.6'		Saturated, brown-red brown, very fine SAND and			0
			17-19			SILT (laminated) to 19'; Saturated, gray, white,	1	==	
19						dark gray, faceted, subround GRAVEL with some		==	
20	10	20-22	10.20	2,14 0,		sand, silt and clay			
20	-10	20-22	10-30- 21-35	2'/1.6'		Saturated as above to 21.7'		==	0
21			21-33			Saturated, green–gray green, weathered, cal– careous SHALE		==	
						UNIOUND STALE			

O'BRI	EN 8	GERE E	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF	BORING M	W-7S	
CLIENT	Γ:	Town of	Dewitt			SAMPLER Split Spoon 2" HAMMER: 140 lbs.	LOCATION:	_		
PROJE	CT L	CATION:	Dewitt Lan	ndfill		FALL: 30"	START DATE			
						LEGEND:	END DATE:	12/29/86	·	
	G CO	123.566 MPANY: Mark & Je	Parratt-Wolf			GROUT - Type I Portland SAND PACK - "0" Grade PELLETS - Bentonite Chi ======= SCREEN - 2" I.D. 10-slot	Morie Sand ps stainless steel	nite slurry		
	Ī	T	T doi Gottlei	T		RISER – 2" I.D. stainless			·,	
DEPTH BELOW GRADE	1	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL DESCRIPT	EQUIPMENT		HNU
0	ļ	0-4.5'				GRAVEL, some gray-brown, damp silt and	DESCRIPT	INSTALLED		(ppm)
						sand, trace of clay				
5	1	4.5-6'	8-13-14	1.5'/1'	27	As above				
10	2	9.5-11'	20-21-17	1.5'/1'	00					
				1.571	30	As above Saturated at 12.5'				
15	3	14.5-16	20-10-10	1.5'/1'	20	Light brown modium to account the control of the co				
						Light brown, medium to coarse SAND, some silt and fine gravel, wet				
20	4	19.5-21	9-9-9	1.5'/1'	18	As above with trace medium gravel				
						and the state of t				
25	5	24.5-26	33-40-44	1.5'/1.5'	84	Reddish brown, slightly silty clay, stiff, dry	24'			
	:					Bottom of hole @ 26'	-			
						2' into confining layer)		-		
30								11.0		
		———					<u> </u>		İ	ļ

O'BRIE			NGINEERS,	INC.				PRING LOG	PAGE 1 OF 2 LOCATION:			
		Town of CATION:		dfill		SAMPLER HAMMER: FALL:	•	n 2"	START DATE:	canal cente 10/30/91	er building 0830	;
						LEGEND:			10.00 0.00			
FILE NO	<u>):</u>	123.566.	576] [GROUT - Type I Portland	Cement – benton	ite elurry		
BORING		IPANY: Paul Davis	Atlantic Testi	ng Labs				SAND PACK - "0" Grade I PELLETS - Bentonite Chip	98			
OBG GE			Paul Gottler					SCREEN - 2" I.D. 10-slot RISER - 2" I.D. Stainless s		rade		
DEPTH						· · · · · ·			STRATUM		FIELD	TESTIN
BELOW GRADE	ı	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N"		SAMPLE D	ESCRIPTION	CHANGE GENERAL	EQUIPMEN		HNU
0	1	0-2	1-1-1-3	2'/2'	2	Saturated.	black-dark	brown PEAT with some	DESCRIPT	INSTALLE) 	(ppm
						1		Saturated, gray and				
1						4		nd SILT, some clay to				1
	_					1.7'; Satura	ted, brown-	-light brown, medium				
2	2	2-4	3-1-1-3	2'/1.7'	2	SAND (lami	•					0.2
3								old, very fine SAND and	f			
						1		ted) to 2.4'; Saturated,				
4	3	4-6	4-4-6-6	2'/1.4'	10	1		nedium SAND with little turated, gray SILT	ľ			0.1
						1		Saturated, gray, med-				0.1
5						1		3.6'; Saturated, gray				
						CLAY with 6	some silt to	3.8'; Saturated, gray,				
6	4	6-8	5-7-8-11	2'/2'	15	fine to coars	se SAND an	nd GRAVEL, trace silt and				0
7						clay						
								unded to subrounded				ŀ
8	5	8-10	7-7-	2'/2'	18	little clay, tr		, white and red sand,				0
			11-14					ay, white and red,				"
9								th little subrounded to] .
		10.10				rounded gra	vel, little si	lt, trace clay, 50%				
10	6	10-12	5-7-9-9	2'/1.9'	16	coarse sand	, 20% med	ium sand, 10% gravel	1			0
11						(rest mud)						
		·						axis horizontal) to 9.7'; SAND, with little silt,	1			
12	7	12-14	11-10-	2'/2'				ated SAND and GRAVEL				
			10-15			-		s above to 10.1'				0
13]							ld, fine SAND and SILT,				1
		14 10		8 1155				ed (~5/0.1') to 10.8';				
14	_8_	14-16	9-9- 11-14	2'/2'				RAVEL as above with				0
15			11-14			gravel lense		a alambana :				
								n clay lenses at 12.2' and ~0.1' thick				
								and red, well sorted,				
								D, trace gravel, silt and				1
								gray and gold SILT,				
								AY to 15.3', round gra-				
								one from 15.1-15.2';				
						_	=	th little gravel to				
								prown, medium to coarse				
						little fine gra		• •				1
		J		 l.		9,4		<u></u>	<u> </u>		84	

CLIENT	:	Town of	·			SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30" LEGEND:	PAGE 2 OF LOCATION: START DATE END DATE:	900' N of NE	
BORING FOREM OBG GE	CON	Paul Davis	Atlantic Testi	ng Labs		GROUT - Type I Portland Ce SAND PACK - "0" Grade Mo PELLETS - Bentonite Chips SCREEN - 2" I.D. 10-slot sta RISER - 2" I.D. stainless stee	rie Sand inless steel		
DEPTH			ľ				STRATUM		FIELD TESTIN
BELOW GRADE		DEPTH (FEET)	BLOWS /6"	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	GENERAL DESCRIPT	EQUIPMENT INSTALLED	HNU (ppm)
16	9	16-18	5-6-6-5	2'/2'	12	Saturated, gray, white, black, red coarse to			0
17					·	fine SAND and GRAVEL as above, trace silt and clay (gray clay lamination at 17.8')		===	
						oray (gray cray rainination at 17.5)	Ì	===	
18	10	18-20	11-19-	2'/2'	44	Saturated, gray, white, black and little red,		===	0
19			25-21			coarse to medium SAND with little well rounded		===	
17						to subrounded gravel, little silt, clay and fine sand, laminations present			
20	11	20-22	9-11-	2'/2'	30	Saturated as above to 20.3'; Saturated, gray		===	0
- 01			19-23			and gold SILT, very fine SAND and CLAY as above		===	
21						to 20.8'; Saturated, gray-brown SAND and GRAVEL,			
22	12	22-24	12-35-	2'/2'		trace silt and clay to 21.2'; Saturated, gray SILT with floating, fine gravel (IBRD) to		===	.0
			19-22			20.5'; Saturated, gray-gold, angular GRAVEL		===	
23						with some coarse to fine sand, little silt,			,
24	13	24-26	51-60-	2'/1'		trace clay and red sand (till) Saturated as above with mostly very fine,		***	
			48-33			angular to round GRAVEL (40%), coarse to fine		===	
25						sand (30%), silt (15%), clay (15%), A-axis		===	. •
26						horizontal to 23.5'; Saturated GRAVEL with some		===	
						sand, little silt, trace clay Saturated as above, 90% GRAVEL, 7% sand, 3%		===	
27						mud, trace red sand			
28					-	ļ			
	\dashv								
29							٠		
	\Box								
30	\dashv								
31	\dashv						•		:
32									
33									
34									
25									
35									
36	-								

)'BRIE	<u>EN &</u>	GERE E	IGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF 3		
LIENT	:	Town of	Dewitt			SAMPLER Split Spoon 2"	LOOM!	canal center l	
						HAMMER: 140 lbs.	START DATE		0830
ROJEC	T LO	CATION:	Dewitt Lan	dfill		FALL: 30°	END DATE:		
-						LEGEND:			
ILE NO).:	123.566.	576			GROUT - Type I Portland		nite slurry	
ORING	CON	APANY:	Atlantic Testi	ng Labs		SAND PACK "0" Grade I			
		Paul Davis				====== SCREEN - 2" I.D. 10-slot			
BG GE	OLO	GIST:	Paul Gottler			RISER - 2" I.D. Stainless	steel ~2' above g	rade	
EPTH	ļ	•			1		STRATUM		FIELD TESTIN
ELOW		DEPTH	BLOWS	PENETR	*N*	SAMPLE DESCRIPTION	CHANGE GENERAL	EQUIPMENT	i HNU
RADE	NO.	(FEET)	/6"	RECOVERY			DESCRIPT	INSTALLED	(ppm)
0	1	0-2	1-1-1-3	2'/2'	2	Saturated, black-dark brown PEAT with some			0
					•	silt, trace clay to 0.7'; Saturated, gray and			
1						gold, very fine SAND and SILT, some clay to			
					_	1.7'; Saturated, brown-light brown, medium			
2	2	2-4	3-1-1-3	2'/1.7'	2	SAND (laminated) to 1.9'			0.2
						Saturated, gray and gold, very fine SAND and			
3						SILT as above (laminated) to 2.4'; Saturated,			
		•				gray and light brown, medium SAND with little			ĺ
4	3	4-6	4-4-6-6	2'/1.4'	10	silt and clay to 2.9'; Saturated, gray SILT			0.1
						with some clay to 3.2'; Saturated, gray, med-			
5						ium SAND as above to 3.6'; Saturated, gray			
						CLAY with some silt to 3.8'; Saturated, gray,			ļ
6	4	6-8	5-7-8-11	2'/2'	15	fine to coarse SAND and GRAVEL, trace silt and			0
						clay			
7					~	Saturated as above, rounded to subrounded			
_		0.40				GRAVEL, all fine, gray, white and red sand,			
8	5	8-10	7-7-	2'/2'	18	little clay, trace silt			0
9			11-14			Saturated as above, gray, white and red,			
-						fine to coarse SAND with little subrounded to			
10	6	10-12	5-7-9-9	2'/1.9'	. 16	rounded gravel, little silt, trace clay, 50%	Ī		_
-10	-	10-12	5-7-9-9	271.9	· 16	coarse sand, 20% medium sand, 10% gravel			0
11		· · · · · · · · · · · · · · · · · · ·				(rest mud)	ļ		
						Saturated as above (A-axis horizontal) to 9.7';			
12	7	12-14	11-10-	2'/2'	20	Saturated, brown, fine SAND, with little silt,			
 -		12-14	10-15	212		trace clay to 9.9'; Saturated SAND and GRAVEL	ļ		0
13	-					with little silt and clay as above to 10.1'			
						Saturated, gray and gold, fine SAND and SILT, with some clay laminated (~5/0.1') to 10.8';			1
14	8	14-16	9-9-	2'/2'		Saturated SAND and GRAVEL as above with	`		
			11-14			Gravel lenses			0
15						Saturated as above with clay lenses at 12.2'			
						and 13.7', lenses gray and ~0.1' thick			ļ
	\neg					Saturated, gray, white and red, well sorted,			
						medium to coarse SAND, trace gravel, silt and			
						clay to 14.9'; Saturated, gray and gold SiLT,			
						very fine SAND and CLAY to 15.3', round gra-			
		•				vel, sand, silt and clay zone from 15.1-15.2';			
						Saturated, gray SILT with little gravel to			
						15.5'; Saturated, gray-brown, medium to coarse			
						SAND to 15.7'; Saturated, gray SILT with			1
							1		

O'BRII	EN &	GERE EI	NGINEERS,	INC.			TEST BORING LOG	PAGE 2 OF	-	
CLIENT	•	Town of	Dewitt			SAMDI ED	Split Spoon 2"	LOCATION:		
,						HAMMER:		START DATE	canal center	0830
. AOJE(CT LO	CATION:	Dewitt Lan	dfill		FALL:	30*	END DATE:		
FILE NO). <u>:</u>	123.566.	576	···		LEGEND:	GROUT - Type I Portland C	ement – benton	ite slurry	•
BORING FOREM		IPANY: Paul Davis	Atlantic Test	ing Labs			SAND PACK - "0" Grade M PELLETS - Bentonite Chips ======= SCREEN - 2" I.D. 10-slot st	•		
OBG GE	OLO	GIST:	Paul Gottler				RISER - 2" 1.D. stainless ste		ade	
DEPTH	1				·			STRATUM		FIELD TESTIN
BELOW		DEPTH	BLOWS	PENETR	"N"		SAMPLE DESCRIPTION	CHANGE GENERAL	FOLUDATA	
GRADE	NO.	(FEET)	/8"	RECOVERY				DESCRIPT	EQUIPMENT	
16	9	16-18	5-6-6-5	2'/2'	12		gray, white, black, red coarse to	100011111	INOTALLED	(ppm 0
						4	and GRAVEL as above, trace silt and			"
17						1	lay famination at 17.8')			
						1	,,			
18	10	18-20	11-19-	2'/2'	44	Saturated.	gray, white, black and little red			0
			25-21			1	edium SAND with little well rounded			
19						1	led gravel, little silt, clay and			
						1	aminations present			
20	11	20-22	9-11-	2'/2'		ł	s above to 20.3'; Saturated, gray	ĺ		0
			19-23			1	LT, very fine SAND and CLAY as above			
21						1	urated, gray-brown SAND and GRAVEL			
						1	d clay to 21.2'; Saturated, gray			
22	12	22-24	12-35-	2'/2'		j	pating, fine gravel (IBRD) to			0
			19-22			1	ated, gray-gold, angular GRAVEL			' "
23							oarse to fine sand, little silt,			
							nd red sand (till)			ŀ
24	13	24-26	51-60-	2'/1'			s above with mostly very fine,			į
			48-33			angular to re	ound GRAVEL (40%), coarse to fine			
25						sand (30%),	silt (15%), clay (15%), A-axis			
						horizontal to	23.5'; Saturated GRAVEL with some			
26	14	26-28	33-36-	2'/1.1'	75	sand, little s	ilt, trace clay			
			39-62			Saturated as	above, 90% GRAVEL, 7% sand, 3%			
27						mud, trace r				
		20.11				Saturated at	above (1 subround pebble, all			
28	15	28-41				other gravel				
							own LIMESTONE boulders with red	İ		
29	-+	20 00					sand matrix			
30		28-33				RQD = 70%		RUN 1		
30	\dashv									
31	\dashv			<u> </u>						
- 51										
32		· .								
33	\dashv	33-38				Dod musta'	CORRIE			
						Red quartzit RQD = 48%	* CODDLE	RUN 2		
34	\dashv					114D = 48%				
	一十							,		
35	\dashv									
	$\neg +$									1
36	$\neg \dagger$									

			IGINEERS,	INC.			TEST BORING LOG	PAGE 3 OF LOCATION:	3 900' N of N	E corner	
CLIENT	:	Town of	Dewitt			SAMPLER HAMMER:	Split Spoon 2"	START DATE	canal cente		1
40JE0	OT LO	CATION:	Dewitt Lan	dfill		FALL:	30"	END DATE:	E: 10/30/91	0830	
						LEGEND:		, , , , , , , , , , , , , , , , , , , ,			
FILE NO).:	123.566.	576]	GROUT - Type I Portiand		nite slurry		
FOREM	AN:	IPANY: Paul Davis	Atlantic Test	ing Labs			SAND PACK "0" Grade PELLETS - Bentonite Ch ======= SCREEN 2" I.D. 10-slo	ips			
OBG GE	OLO	GIST:	Paul Gottler	т		ļ	RISER – 2" I.D. stainless		grade		
DEPTH								STRATUM		FIELD	TESTING
BELOW		DEPTH	BLOWS	PENETR	"N"		SAMPLE DESCRIPTION	GENERAL	EQUIPMEN	п	HNU
GRADE 37	NO.	(FEET)	/6"	RECOVERY	VALUE	 	-	DESCRIPT	INSTALLE	<u> </u>	(ppm)
31				 		1					
38		38-43		 	 	RQD = 419	4	RUN 3	-		
						1	•	110110			
39											
40						1	·				
41	16	41			ļ 						
1	-10	71	<u> </u>			Gray=greei	n, argillaceous LIMESTONE				
42			<u> </u>			1		į			}
									2000	888	
43		43-48				4	en gray calcareous SHALE – agril-	RUN 4			
44						7	MESTONE, highly weathered alter-				İ
					<u></u>	1	s of shale rich layers and lime-				
45						RQD = 429	ayers, trace gypsum 6				
46						·					
47											
47			·		•	-					
48		48-53				As above		RUN 5			
						RQD = 37%	6	HONS			
49											
									==		
50		·				٠			==		
51											
- -											
52											
									==		
53		53-58				As above		RUN 6] ==		
54						RQD = 41%	i				
	\dashv			 			•		==		
55		•				. •					
							·				
56	[ļ
57							•		==		
, 3/											
58				ļ		ļ				81	1

O'BRIE	N &	GERE E	NGINEERS,	INC.		TEST BORING LOG	PAGE		V-9S
CLIENT:		Town of	Dewitt Dewitt Lan	dfill		SAMPLER Split Spoon 2"/HX Core HAMMER: 140 lbs. FALL: 30"		DATE: 10/22/91	1300
** = \\o		100 500				LEGEND:			****
ILE NO	<u>::</u>	123.566.	576				ype I Portland Cement I		
		IPANY: Mark Haw	Atlantic Test	ing Labs		PELLETS -	(– "0" Grade Morie Sand Bentonite Chips		
BG GE	OLO	GIST:	Paul Gottler				2″ I.D. 10-slot stainless s: I.D. stainless steel ∼2′ at		
						Inocht-2	STRATI		FIELD TEST
EPTH		DEPTH	BLOWS	DEMETO			CHANG	_	
RADE	NO.	(FEET)	/6"	PENETR/ RECOVERY	VALUE	SAMPLE DESCRIPTION	į.		1 1
0	1	0-2	1-1-4-5	2'/1.2'		Damp, brown, SILT and CLAY to 0.2	DESCRI 2': Seturated	IPT INSTALLED	(pp
						brown, SILT and CLAY to 0.5'; Dam			
1						organic rich SILT and CLAY, roots,			
						to 0.8'; Saturated, gary-gray brown			
2	2	2-4	7-12-	2'/1'	34	GRAVEL with little clay to 1.4'; Satu			
			22-23			orange-gold, medium SAND			
3						Saturated, gray, fine to medium, sub	prounded		
						to angular GRAVEL, 70%, (mostly a			
4	3	4-6	18-36-	2'/1.1'		cets observed in fine gravel at top of	- I		
			31-35			with sand, 20%, silt, 5%, and clay, 5			
5						tom of spoon monomineralic, gray-l		===	
						LIMESTONE, trace red sand		===	
6	4	6-8	21-21-	2'/1.1'	45	Saturated, gray-brown GRAVEL and	SAND with	===	-0
			24-22			minor silt and clay as above with dar	k gray,	===	
7						faceted and striated, fine gravel		===	
-		0.10				Saturated as above with some well re	ounded,		ļ
8	5	8-10	14-15-	2'/1.7'		fine GRAVEL		===	0
9			17-15			Saturated as above, trace red sand		222	
								===	
10						•		===	
	\dashv								
11		·							
12									
								. [
13						•			
14							1		
15									
16									
17	_]	ŀ
18	_	•							İ
- 10						•		.	
19	\dashv								

O'BRI	EN &	GERE EI	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF	BORING MV	W-9M
CLIENT		Town of	_			SAMPLER Split Spoon 2*/HX Corer HAMMER: 140 lbs.	START DAT	E: 10/22/91	1300
∠HOJE	CT LC	CATION:	Dewitt Lan	dfill		FALL: 30" LEGEND:	END DATE:		
	3 COI	123.566. MPANY: Mark Haw	Atlantic Testi	ng Labs		GROUT - Type I Portland C SAND PACK - "0" Grade N PELLETS - Bentonite Chip SCREEN - 2" I.D. 10-slot s	lorie Sand 8	nite slurry	
OBG GI			Paul Gottler		·	RISER - 2" I.D. stainless st		grade	
DEPTH BELOW GRADE		DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED	'
0	1	0-2	1-1-4-5	2'/1.2'	5	Damp, brown, SILT and CLAY to 0.2'; Saturated,	DESCRIPT	INSTALLED	(ppm)
	ļ					brown, SILT and CLAY to 0.5'; Damp, black,			
1	-					organic rich SILT and CLAY, roots, swampy odor			
2	2	2-4	7-12-	2'/1'	34	to 0.8'; Saturated, gary-gray brown SAND and GRAVEL with little clay to 1.4'; Saturated,			
			22-23			orange-gold, medium SAND			0
3						Saturated, gray, fine to medium, subrounded			
	-	4.0	10.00	0144 41		to angular GRAVEL, 70%, (mostly angular fa-			
4	3	4-6	18-36- 31-35	2'/1.1'		cets observed in fine gravel at top of spoon)	,		0
5			UT -00			with sand, 20%, silt, 5%, and clay, 5%, bot— tom of spoon monomineralic, gray—light brown			
						LIMESTONE, trace red sand			
6	4	6-8	21-21-	2'/1.1'		Saturated, gray-brown GRAVEL and SAND with			0
7	<u> </u>		24-22			minor silt and clay as above with dark gray,			
	-					faceted and striated, fine gravel Saturated as above with some well rounded,			
8	5	8-10	14-15-	2'/1.7'		fine GRAVEL			0
			17-15			Saturated as above, trace red sand			
9	$\vdash \dashv$								
10	6	10-12	12-10-	2'/1'	- 20	Saturated as above			
			10-9			carriared as above			0
11									
10		10.11	0.00	014					
12	7	12-14	6-20- 32-25	2'/1.4'		Saturated as above to 13'; Saturated, brown,			0
13			32-23			medium SAND to 13.3'; Saturated, gray-brown GRAVEL and SAND with little silt and clay			
						to 13.7'; Saturated, brown, medium SAND, trace			
14	8	14-16	22-26-	2'/2'	58	clay and fine GRAVEL			. 0
15		- 1.	32-34			Saturated, red brown, very fine SAND and SILT,			
13						trace clay and fine gravel, very faintly lam- inated (gravel floating)			
16	9	16-18	18-22-	2'/1.9'		Same as above to 16.3'; Saturated, brown-gray,			0
			18-25			very fine SAND and SILT, trace clay to 16.5;			"
17						Saturated, brown, fine to medium SAND, trace			
18	10	18-20	20-21-	2'/1.7'		clay to 16.6'; Saturated, brown, very fine			
	-	20	34-35	-/1./		SAND and SILT, trace clay to 17.8' Saturated, red–red brown, medium SAND, trace			0
19						silt, clay and fine gravel (floating) to 18.8';			
]					Saturated, red, medium SAND, trace silt and			
						clay to 19.6'; Saturated, gray CLAY horizon			
						to 19.7'; Saturated, gray, very fine SAND and			
		· · · · · · · · · · · · ·				SILT, trace clay, laminated			1.

i

O'BRII	EN &	GERE EN	IGINEERS,	INC.		TEST BORING LOG	PAGE 2 OF		/-9M
ÇLIENT AOJE(Town of	Dewitt Dewitt Lan	dfill	•	SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"	START DATE	E: 10/22/91	1300
						LEGEND:			
BORING FOREM	CON AN:	Mark Hawl	Atlantic Testi	ng Labs		GROUT - Type I Portland (SAND PACK - "0" Grade N PELLETS - Bentonite Chip SCREEN - 2" I.D. 10-slot of	lorie Sand s tainless steel		
			T aut Gottler		T	RISER 2" I.D. stainless st	STRATUM		FIELD TESTIN
DEPTH BELOW GRADE	NO.	DEPTH (FEET)	BLOWS /8"	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED	HNU (ppm
20	11	20-22	12-12-	2'/2'	27	Saturated, red SILT with little red clay			0
01			15-8			to 20.7'; Saturated, red CLAY with some silt			
21						to 20.9'; Saturated, red, very fine SAND,			
22	12	22-24	1-7-	2'/2'	24	grading to SILT, trace clay to 21.4'; Sat-			
	1-6	-c-c+	17-24	212	24	urated, red, fine SAND coarsening to medium			0
23			.,		<u></u>	SAND, trace silt and clay As above to 22.5'; Grades to red, fine SAND			
						and back to medium SAND to 23.4'; Saturated,			
24	13	24-26	7-7-5-8	2'/2'	12	red, very fine SAND and SILT, trace clay to			0
						23.8'; Saturated, red-brown red, medium SAND,			
25						trace silt and clay			
- 64						Grades to fine SAND, faintly laminated, breaks			
26	14	26-28	10-12-	2'/2'	24	along planes, increasing dark sand grains			.0
27			12-10	-		Saturated, gray and black, coarse to medium		===	
	_					SAND (graded medium at top, coarse at bot-			
28	15	28-30	11-16-	2'/2'		tom), trace fine gravel to 27'; Saturated, red brown, very fine to fine SAND, laminated			
			17-20			with trace clay	-		0
29			-			Saturated as above to 28.6'; Saturated, red			
						SILT and CLAY to 29.3'; Saturated, red brown,			
30	16	30-32	6-14-	2'/1.7'	. 27	fine SAND as above to 29.8'; Saturated, gray,			0
			13-25			white and black, medium SAND as above		===	
31						Saturated as above to 30.6'; Saturated(?), red-		===	
32	17	32-34	15-18-	27/4 07		maroon CLAY with some silt, trace finely lam-			
- 52	''	02-04	22-22	2'/1.9'		inated, subrounded, faceted GRAVEL, A-axis hor-		===	0
33	\dashv					izontal to 31.2'; Saturated, gray, white, black, medium SAND to 31.3'; Saturated CLAY with little		===	
						silt and trace gravel as above to 31.7'; Sat-			
34	18	34-36	7-19-	2'/		urated SAND as above to 31.8'; Saturated CLAY		===	. 1
	[50/0.2'			and SILT as above	,	===	
35						Saturated, red-maroon CLAY and SILT, trace		===	
26						fine gravel to 32.4'; Saturated, red brown,			
36						fine SAND, some silt, trace clay and gravel			
37	_		-			(deformed laminations) to 33.5'; Saturated,			
						red-brown red SILT and CLAY as above to 33.8'; Saturated, brown-red brown SAND with little			
38	$\neg \neg$					medium to fine, subrounded, faceted and stri-			
						ated gravel			,
39						Saturated as above to 34.5'; Saturated(?)			
						(bedrock), green-gray, argillaceous LIMESTONE			
40						with some white gypsum seams, rock very			
41						weathered			
41	1						i	1 1	l l

O'BRII	EN &	GERE E	NGINEERS,	inc.		TEST BORING LOG	PAGE 1 OF 3		V-9D	
CLIENT	:	Town of	Dewitt			SAMPLER Split Spoon 2"/HX Corer	START DATE	10/00/01	4000	
PROJEC	CT LC	CATION:	Dewitt Lan	dfill		FALL: 30"	END DATE:	10/22/91	1300	_
FILE NO	D.:	123.566.	576			GROUT - Type I Portland C	Sement – benton	ite slurry		
BORING		IPANY: Mark Hawi	Atlantic Testi kins	ing Labs		SAND PACK - "0" Grade N PELLETS - Bentonite Chip SCREEN - 2" I.D. 10-elot e	•			
OBG GE	OLO	GIST:	Paul Gottler	T	F	RISER – 2" I.D. stainless st	eel ~2' above g	rade		
DEPTH BELOW	1	DEPTH	BLOWS	PENETR	-N-	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL	EQUIPMENT	FIELD TESTI	
GRADE 0	NO.	(FEET) 0-2	1-1-4-5	RECOVERY 2'/1.2'	VALUE 5	Damp, brown, SILT and CLAY to 0.2'; Saturated,	DESCRIPT	INSTALLED	(ppi	<u> </u>
<u> </u>	'		1-1-4-5	271.2	-3-	brown, SILT and CLAY to 0.2'; Saturated, brown, SILT and CLAY to 0.5'; Damp, black,			0	,
1						organic rich SILT and CLAY, roots, swampy odor				
						to 0.8'; Saturated, gary-gray brown SAND and				
2	2	2-4	7-12-	2'/1'	34	GRAVEL with little clay to 1.4'; Saturated,			0	Į
3	-		22-23	ļ. ———		orange-gold, medium SAND Saturated, gray, fine to medium, subrounded				
						to angular GRAVEL, 70%, (mostly angular fa-			•	
4	3	4-6	18-36-	2'/1.1'	67	cets observed in fine gravel at top of spoon)			0)
			31-35			with sand, 20%, silt, 5%, and clay, 5%, bot-				
5	_					tom of spoon monomineralic, gray-light brown				
6	4	6-8	21-21-	2'/1.1'	45	LIMESTONE, trace red sand Saturated, gray-brown GRAVEL and SAND with				
			24-22		-10	minor silt and clay as above with dark gray,			0	
7						faceted and striated, fine gravel				
		2.42				Saturated as above with some well rounded,				
8	5	8-10	14-15- 17-15	2'/1.7'	32	fine GRAVEL			0	
9	-		17-15			Saturated as above, trace red sand				
		•				,				
10	6	10-12	12-10-	2'/1'	· 20	Saturated as above			0	
11			10-9							
- 11									İ	
12	7	12-14	6-20-	2'/1.4'	52	Saturated as above to 13'; Saturated, brown,			0	i
			32-25			medium SAND to 13.3'; Saturated, gray-brown			"	
13						GRAVEL and SAND with little silt and clay				
14	8	14-16	22-26-	2'/2'		to 13.7'; Saturated, brown, medium SAND, trace				
47	-	17-10	32-34	214	58	clay and fine GRAVEL Saturated, red brown, very fine SAND and SILT,			0	
15						trace clay and fine gravel, very faintly lam-				
						inated (gravel floating)				
16	9	16-18	18-22-	2'/1.9'		Same as above to 16.3'; Saturated, brown-gray,			0	
17			18-25			very fine SAND and SILT, trace clay to 16.5;				
						Saturated, brown, fine to medium SAND, trace clay to 18.6'; Saturated, brown, very fine				
18	10	18-20	20-21-	2'/1.7'		SAND and SILT, trace clay to 17.8'			0	
- ,,			34-35			Saturated, red-red brown, medium SAND, trace				ı
19						silt, clay and fine gravel (floating) to 18.8';				
						Saturated, red, medium SAND, trace silt and clay to 19.6'; Saturated, gray CLAY horizon				
						to 19.7'; Saturated, gray, very fine SAND and				
						SILT, trace clay, laminated				

O'BRII	EN &	GERE EN	VGINEERS,	INC.		TEST BORING LOG	PAGE 2 OF	3	V-9D
CLIENT	r:	Town of	Dewitt			SAMPLER Split Spoon 2"	LOCATION:		
		HAMMER: 140 lbs.	START DAT	E: 10/22/91	1300				
rroje(CTLC	CATION:	Dewitt Lan	dfill		FALL: 30"	END DATE:		
						LEGEND:	<u></u>		-
FILE NO) .:	123.566.	576			GROUT - Type I Portland	Cement - bento	nite slurry	
		MPANY: Mark Hawi	Atlantic Testi	ng Labs		SAND PACK - "0" Grade I PELLETS - Bentonite Chip	Morie Sand os	•	
OBG G			Paul Gottler			SCREEN - 2" I.D. 10-slot RISER - 2" I.D. stainless s		grada	
			I				STRATUM	grade	FIELD TESTIN
DEPTH							CHANGE		
BELOW		DEPTH	BLOWS	PENETR	"N"	SAMPLE DESCRIPTION	GENERAL	EQUIPMENT	HNU
GRADE	-	(FEET)	/6"	RECOVERY	VALUE		DESCRIPT	INSTALLED	(ppm
20	11	20-22	12-12-	2'/2'	27	Saturated, red SILT with little red clay			0
	Ļ		15-8			to 20.7'; Saturated, red CLAY with some silt			
21						to 20.9'; Saturated, red, very fine SAND,			
	<u> </u>					grading to SILT, trace clay to 21.4'; Sat-			
22	12	22-24	1-7-	2'/2'	24	urated, red, fine SAND coarsening to medium	1		0
			17-24			SAND, trace silt and clay	1		
23						As above to 22.5'; Grades to red, fine SAND			
	l					and back to medium SAND to 23.4'; Saturated,	1		
24	13	24-26	7-7-5-8	2'/2'	12	red, very fine SAND and SILT, trace clay to			0
·						23.8'; Saturated, red-brown red, medium SAND,			"
25						trace silt and clay	1 .		1
						Grades to fine SAND, faintly laminated, breaks			
26	14	26-28	10-12-	2'/2'	24		1		
	· ·	20 20	12-10	272		along planes, increasing dark sand grains			0
27			12-10			Saturated, gray and black, coarse to medium			
	-					SAND (graded medium at top, coarse at bot-	İ		İ
28	15	28-30	11-16-	01/01		tom), trace fine gravel to 27'; Saturated,			
20	15	20-30		2'/2'	33	red brown, very fine to fine SAND, laminated			0
20	-		17-20			with trace clay	1		
29						Saturated as above to 28.6'; Saturated, red			j .
20	10	00.00	0.14	0144		SILT and CLAY to 29.3'; Saturated, red brown,			
30	16	30-32	6-14-	2'/1.7'		fine SAND as above to 29.8'; Saturated, gray,			0
			13-25			white and black, medium SAND as above	1		
31						Saturated as above to 30.6'; Saturated(?), red-			ŀ
						maroon CLAY with some silt, trace finely lam-			
32	17	32-34	15-18-	2'/1.9'	40	inated, subrounded, faceted GRAVEL, A-axis hor-	·		0
	<u> </u>		22-22			izontal to 31.2'; Saturated, gray, white, black,			
33]					medium SAND to 31.3'; Saturated CLAY with little			
						silt and trace gravel as above to 31.7'; Sat-			
34	18	34-36	7-19-	2'/		urated SAND as above to 31.8'; Saturated CLAY			· 1
			50/0.2'			and SILT as above			•
35						Saturated, red-maroon CLAY and SILT, trace			
				·		fine gravel to 32.4'; Saturated, red brown,			
36						fine SAND, some silt, trace clay and gravel			
						(deformed laminations) to 33.5'; Saturated,	1		
37						red-brown red SILT and CLAY as above to 33.8';			
		37.5-42.5				Saturated, brown-red brown SAND with little			
38	$\neg \neg$		· · · · · · · · · · · · · · · · · · ·			medium to fine, subrounded, faceted and stri-		201.0	
						ated gravel	1		
39						· · · · · · · · · · · · · · · · · · ·	,		
						Saturated as above to 34.5'; Saturated(?)			
40	\dashv					(bedrock), green-gray, argillaceous LIMESTONE			
						with some white gypsum seams, rock very			
						weathered Gray-green, calcareous SHALE with some gypsum			
41							RUN 1		

O'BRIE	EN &	GERE EN	IGINEERS,	INC.		TEST BORING LOG	PAGE 3 OF 3	BORING MV	V-9D
CLIENT	:	Town of I	Dewitt			SAMPLER Split Spoon 2"	LOCATION:		
						HAMMER: 140 lbs.	START DATE	: 10/22/91	1300
PROJEC	T LC	CATION:	Dewitt Lan	dfill		FALL: 30"	END DATE:		
						LEGEND:			
FILE NO).: 	123.566.5	576	······································			ortland Cement - Bentor	nite slurry	
BORING	CO	MPANY:	Atlantic Test	ing Labs		SAND PACK - "0" PELLETS - Benton	Grade Morie Sand		
		Mark Hawk	ins	•		SCREEN - 2" I.D.			
OBG GE	OLO	GIST:	Paul Gottler			RISER - 2" I.D. sta	inless steel to ~2' above	grade	
DEPTH :							STRATUM CHANGE		FIELD TESTING
BELOW		DEPTH	BLOWS	PENETR	'N'	SAMPLE DESCRIPTION	GENERAL	EQUIPMENT	l HNU
GRADE	NO.	(FEET)	/6"	RECOVERY	VALUE		DESCRIPT	INSTALLED	(ppm)
42								===	
42		42.5-47.5		<u> </u>		RQD = 55%	RUN 2	222	
43									
44							Ì	===	
-14								222	
45								===	
								===	
46									
47								===	
		47.5-52				RQD = 47%	RUN 3	===	
48								===	
								===	1
49			-·					===	
50								===	
30								===	1 .
51								===	
	-							222	
52								===	
									ļ
53									Ì
									l
54									
							^	·	
55						•			
56							.	.	
30	-								
57		· · · · · · · · · · · · · · · · · · ·					.		
				· · · · · · · · · · · · · · · · · · ·					
58	+								
	\neg								
59									
									٠.
60	\Box					•		İ	
	_							}	
- 									
		· ·							
			,						

O'BRII	EN 8	GERE E	NGINEERS,	INC.		TEST BORING LOG	PAGE 1 OF		
CLIENT		Town of				SAMPLER Split Spoon 2" HAMMER: 140 lbs.	START DATE	54' SW from 8 of canal cente 11/13/91	
PROJE	ST LC	CATION:	Dewitt Lan	dfill		FALL: 30" LEGEND:	END DATE:		
FILE NO		123.566				GROUT - Type I Portlan		nite slurry	
BORING FOREM OBG GE	AN:	Mark Haw	Atlantic Test kins Paul Gottler	ing Labs		PELLETS - Bentonite Ct SCREEN - 2" I.D. 10-stc RISER - 2" I.D. stainless	t stainless steel		
DEPTH							STRATUM		FIELD TESTING
BELOW GRADE	ı	DEPTH (FEET)	BLOWS /6"	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	GENERAL DESCRIPT	EQUIPMENT INSTALLED	HNU (ppm)
0			 						
1									
3						·			
4					,				
5	1	5-7	15-12-	2'/1.1'	00				-
		<u> </u>	14-32	. 211,1	26	Dry, gray and light brown, coarse to fine, angular to rounded GRAVEL, mostly limestone,			1
6						some brown-light brown, fine to coarse SAND			
7		· · · · · · · · · · · · · · · · · · ·				(fill)			
8									1
9									
10	2	10-12	8-12-6-6	2'/1.6'	18	Moist, brown and gray GRAVEL and SAND.			
						some silt, little clay, much coarse sand and		===	1
11						fine gravel material to 11.8' (fill)		===	
12	3	12-14	6-6-5-9	2'1.6'	11	Moist, brown, coarse SAND and fine GRAVEL,		===	0
13	_					faintly laminated, graded to 12.8'		===	
13	_		Ì			Saturated as above with silt and clay in matrix to 14'		===	
14	4	14-16		2'/0.2'		Saturated as above, rounded to angular		275	0
15	\dashv	·		·		GRAVEL		===	
		10.15						===	
16	5	16-18	6-6- 12-12	2'/0.6'		Saturated, light brown-gray, fine GRAVEL and			0
17						coarse SAND with silt and clay in matrix		===	
18	6	18-20	8-18-	2'/1.1'	41	Saturated as shows with account	}	===	
			23-8	271.1		Saturated as above with coarse gravel to 19.8'			0
19						Saturated, red-brown SILT, CLAY and GRAVEL			
20						with little sand to 20'			0
21									
21		l							

O'BRIE	EN &	GERE EN	GINEERS,	INC.		TEST BORING LOG	PAGE 2 OF		
CLIENT	•	Town of E)ewitt			SAMPLER Split Spoon 2*	LOCATION:	•	
	•		,			HAMMER: 140 lbs.	START DATE	on Cedar Bay Ro	1. 20
PROJEC	CT LC	CATION:	Dewitt Lan	ndfill		FALL: 30"	END DATE:	=. 11/4/91 13 11/5/91 13	
						LEGEND:			•
FILE NO).:	123.566.5	76			GROUT - Type I Portland	i Cement – bent	onite elurry	
		4DANIV.	A 44 41 884 4			SAND PACK - "0" Grade	Morie Sand		
BORING FOREM		ирапт: - Mark Hawki	Atlantic Test	ling Labs		PELLETS - Bentonite Ch	·F -		
OBG GE			Paul Gottler			RISER - 2" I.D. 10-slo		we arede	
							STRATUM		ELD TESTIN
DEPTH BELOW		DEPTH	DI OWO	DE1.			CHANGE		
GRADE	NO.	(FEET)	BLOWS	PENETR/ RECOVERY	"N"	SAMPLE DESCRIPTION	GENERAL	EQUIPMENT	HNU
22		(, ,,,	- 70	HECOVERY	VALUE		DESCRIPT	INSTALLED	(ppm)
	\vdash			 					
23	_			 					
		<u> </u>	 		 				
24	12	24-26	13-5-	2'/1.6'	25				
	-		20-11	-/:.5	2.0				
25				 				2000	
	_	· ·	 	 	_				
26	13	26-28	23-15-	2'/0'	27	No recovery			
			12-12	1	,	110 100001 y	•		
27	T			<u> </u>		Dry, green with brown horizons, weathered cal-	1		
			 	 		careous(?) SHALE			
28	14	28-30	10-12-	2'/1.6'	21	Damp as above with orange-red FeO precipitate			
			9-6			horizons, vertical and horizontal to 29,7'			1
29				 		Saturated, green and brown SHALE to 30'	· ·	===	İ
				 		, and all the state of the stat			
30	15	30-32	25-30-	2'/1.4'	55	Damp as above			
			25-51			wallip ad abuto			
31									1
								===	
32	16	32-34	67/0.5'	0.5'/0.5'		Saturated, green and brown SHALE as above			
				3.3.5.0		arou, groon and promit of IALL as above			
33	17	33-33.5	61/0.5'	0.5'/0.5'		Saturated as above with FeO precipitate in vert-		===	
						ical fracture		===	
34						The state of the s		===	ļ
			 	1					1
35	18	35-35.4	71/0.4'	0.4'/0.4'		Saturated as above (limestone layer at 35.8'		### 	
						during auger)		===	1
36	19	36-36.3	61/0.3'	0.3'/0.3'		Saturated as above (limestone layer at 36.3'			
						during auger)			1
37									
38									1
	_								
39]	
							-		1
40		•							
						•			
							1 .		
]	
			·					.	
	\neg								1

O'BRI	EN 8	GERE E	NGINEERS	INC.		TEST BORING LOG	PAGE 1 OF		
	CT LC		Dewitt Lar	ndfill		SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30" LEGEND:	START DATE		1230
	G COI	123.566 MPANY: Mark Hav	Atlantic Tes	ting Labs	· · · · · ·	GROUT - Type I Portland (SAND PACK - "0" Grade N PELLETS - Bentonite Chip SCREEN - 2" I.D. 10-slot s	forie Sand s tainless steel	nite slurry	· .
DEPTH BELOW GRADE		DEPTH	Paul Gottler BLOWS	PENETR/ RECOVERY	"N"	RISER - 2" I.D. stainless st	STRATUM CHANGE GENERAL	EQUIPMENT	FIELD TESTIN
0		(==:/		HEOCVERT	VALUE		DESCRIPT	INSTALLED	(ppm
1	 -		 		· ·		·		
						•			
2							!		
3									
4	<u> </u>								
5	1	5-7	12-10-	2'/1.9'	19	Dry, gray brown, rounded to subrounded, coarse			2
6			9-7			to fine limestone GRAVEL with little sand, silt and clay (fill)			
7									
7			 						
8									
9									
							<u> </u>		
10	2	10-12	4-4-2-7	2'/1.6'		Damp as above with green shale to 10.5'			1
11				-		Saturated as above to 12'			
12	3	10 14	7.5.5.0						
12	-	12-14	7-5-5-3	2'/1.4'	10	Saturated as above, angular to rounded GRAVEL			0
13								-	
14	4	14-16	6-6-5-7	2'/1.2'	11	Saturated as above, angular to sounded ODAVEL to		===	
						Saturated as above, angular to rounded GRAVEL to 14.5'; Saturated, red-brown CLAY and SILT with		222 222	0
15	-					some gravel to 15,5'; Saturated, gray-dark gray			
16	5	16-18	5-4-3-3	2'/1.6'		SILT with little clay, asphalt sheen to 16' Saturated as above to 17.8'		222	0
17	_					Saturated(?), orange-brown PEAT to 18'		223	
							, i	===	
18	6	18-20	6-6-8-8	2'/0'	14	No recovery (as above)		===	0
19									
20	7	20, 20	6770	0//- 5:					
20	<u>'</u>	20-22	6-7-7-8	2'/1.6'		Saturated as above to 21' Saturated, green CLAY with some silt, occasional		===	0
21						chells to 22'		===	
22	8	22-24	4-4-	2'/	17	Saturated as above to 23'		===	1
			13-21				•	===	0
23					-1			I I	

Quarterly landfill inspection reports

DATE: 4/2/99

INSPECTOR: MJ PETNIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	1	Woodchuck Holes Need TO BE Filted & SEEDED FROM 1998	Fill & SEED WOODELuck Holes.
2. Gas Discharge Vents	1	Vent V-19 Still Tiltes Approx 10°	Town Highway Dept to Repair
3. Swales, Ditches and Downchutes	V	οK	
Storm Sewer System, including culverts	/	οK	
5. Fence and Gates	V	οK	
6. Access Road	1	oK	
7. Perimeter Service Road	/	οK	

[`]art.mjp/st:3m

DATE: 6/22/99

INSPECTOR: Mike Petre

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	1	VEGETATIVE COVERNING GOOD CONDITIONS SOME WOUD CHACK Holes Found.	TRAPPET CAllor IN TO REMOVE WOODCHACKS FROM SITE AND FILL Holos.
2. Gas Discharge Vents	/	Tour Kupmero Vent V-19	
3. Swales, Ditches and Downchutes	/	οΚ	
4. Storm Sewer System, including culverts		oK	
5. Fence and Gates	/	OK	
5. Access Road		οK	
7. Perimeter Service Road		ok	

ATT. Mip/st:3m NOTE: Dut to very Dry Co-0, HON'S AND NO SUBStantal RAIN IN Forcest, we wont anable to Get surface water samples from SU-2 E, SU-3 During this Round of sampling As Both locations were Dry.

DATE: 9/21/99

INSPECTOR: Milchael PETANT

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	18 Wardchucks Traped TO PATE OUT OF IS DENS SEVERAL Field RAT Holes (30-40) FOUND ON WAST SIDE OF SITE,	Put Rat Poison in All Rat Holes
2. Gas Discharge Vents			
	/	0 K	
3. Swales, Ditches and Downchutes			
		OK	
4. Storm Sewer System, including culverts			
		OK.	
5. Fence and Gates		ok	
6. Access Road			
		OK.	
7. Perimeter Service Road		V	
		ok	

[`]art.mjp/st:3m

DATE:

11/20/99

INSPECTOR: M 5 PETRIL

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and		I" SNOW COUM	Totalon Needed
Vegetative Cover		oK	
2. Gas Discharge Vents			
		OK	·
3. Swales, Ditches and Downchutes			
		OK	
Storm Sewer System, including culverts			
		OK	
5. Fence and Gates			
	• •	OK	
6. Access Road			
	V	0 K	
7. Perimeter Service Road		ok	
		0 (

[`]art.mjp/st:3m

DATE: 3/26/98

INSPECTOR:

MJ PETRE

Landfill Component	Checked	Comments	Maintenance Action Needed	
Barrier Protection Layer Topsoil Layer and Vegetative Cover		Four wheel Drive vehicle got on the LF. By Going Aromo the North & South Gates -TIRE Tracks Throughou The CANOFIL.	א אונייייייייייייייייייייייייייייייייייי	
2. Gas Discharge Vents		V-19 TILTED 10°	I MENT WILL TOWN HIShum Employers TO DISSCUSS REMAN Which I was TOLD WILL BE DONE WITHIN 2 WECKS.	
3. Swales, Ditches and Downchutes		OK		
Storm Sewer System, including culverts		0 K		
5. Fence and Gates	./	οK		
6. Access Road	S	0 K		
7. Perimeter Service Road		οŁ		

rt.mjp/st:3m

& OF SNOW COVER IN SOME AREAS

DATE: 6/11/98

INSPECTOR: MJ PETRIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	10 Woodcluck Holes Fond WITHIN LIMITS OF LANDFIL	contact trapper to Remove woodclucks
2. Gas Discharge Vents	/	vert V-PA SHII Tilko Apport 10°	Tous Hishway Garage SAD May Will REPARA Ne Vent.
3. Swales, Ditches and Downchutes	V	oK.	
Storm Sewer System, including culverts	V	oK	
5. Fence and Gates		oK	
6. Access Road	/	ok	
7. Perimeter Service Road	/	oκ	

DATE: 10/8/98

INSPECTOR:

MJ PETRIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover		Woodchuck Holes Need to Be Filled From LAST QUARTER	Fill Woodchuck Hole-s
2. Gas Discharge Vents	/	Vent V-19 Shill Tilton Approx 10°	Have Town Hishung Dept Repara Vert.
3. Swales, Ditches and Downchutes		o Ic	
Storm Sewer System, including culverts	/	o K	
5. Fence and Gates	/	οK	
6. Access Road	/	ok	
7. Perimeter Service Road		ok	

.mjp/st:3m

DATE: 12/9/98

INSPECTOR: MIKE PETRIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover		WOODCHUCK Holes NEED TO BE Filled & SEEDED FROM 200 Qt.	Fill woodlack thes
2. Gas Discharge Vents	/	VENT V-19 Still Tilter Approx 10°	Town Hishway Dept to REPAIR.
3. Swales, Ditches and Downchutes	/	oK	
4. Storm Sewer System, including culverts	/	οK	
5. Fence and Gates	/	OK	
6. Access Road		oK	
7. Perimeter Service Road		ok	

mjp/st:3m

Appendix J

TOWN OF DEWITT LANDFILL INSPECTION AND MAINTENANCE CHECKLIST

DATE: 12/12/96

INSPECTOR:

MIKE PETE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	1	OK	
2. Gas Discharge Vents		OK	
3. Swales, Ditches and Downchutes	/	o K	
Storm Sewer System, including culverts	✓ .	OK	
5. Fence and Gates	1	OK	NOTE GATE FENCE HAS BEEN REPARED
6. Access Road	<u> </u>	ok	
7. Perimeter Service Road		OK	

hart.mjp/st:3m

Appendix J

CHECKLIST

DATE: 11/25/96

INSPECTOR: MIKE PETIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	CISH SNOW COUEN (1" ±) OVEN SITE	
2. Gas Discharge Vents	1	OK	
3. Swales, Ditches and Downchutes	/	οK	
4. Storm Sewer System, including culverts		οK	
5. Fence and Gates		North GATE- Broke By VANDAIS	TOWN IS IN PROCES OF REPAIRING
6. Access Road	/	OK	
7. Perimeter Service Road	/	οK	

chart.mjp/st:3m

· C.C. SMF

Appendix J

TOWN OF DEWITT LANDFILL INSPECTION AND MAINTENANCE CHECKLIST

DATE: 10/30/96

INSPECTOR:

. M 5 PETRE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	Trapen Removed ONF MORE WOOD Chuck From SITE SINCE (AST REPORT.	All woode the K Holes Have BEEN FillED AND SEEDED NO EVIDENCE OF DISTURBNICE TO THE GEOMETRIANE COURT.
2. Gas Discharge Vents		VENT # 13 HAS BEEN REPAIRED BY TOUN.	
3. Swales, Ditches and Downchutes	\	ok	
4. Storm Sewer System, including culverts	/	o K	
5. Fence and Gates	\	OK	
6. Access Road	/	OK.	
7. Perimeter Service Road	1	OK	

chart.mjp/st:3m

DATE:

INSPECTOR:

Mike Petrie

Landfill Component	Checked	Comments	Maintenance Action Needed	
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	Grass Appends to BE GETTING thicker Blows the South Fin AFTER LAST MOWN	3 ANSOIS HAVE WORDCHUCK Holes-Norm centre of LANDITI AT VENT 13 (3 Holes) CE AND ONE HOLE BETWEEN VENT Trafth Removed 3 Need to REPAIR Vent.	41
2. Gas Discharge Vents	✓	TOP OF VENT 13 15 Broke off.	Need to REPAIR Vento	- NI // NCCD do
3. Swales, Ditches and Downchutes		o1C		Get Tingen RAC. To Get Remnwin Woodchucks. T. Fill Holes,
4. Storm Sewer System, including culverts	/	o IC		
5. Fence and Gates	. 🗸	οK		
6. Access Road	/	OK		
7. Perimeter Service Road		OK		

hart.mjp/st:3m

DATE: 8/29/96

INSPECTOR:

Mike Petre

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover		Grass 18 space 1 to 3 feet were Along south Gold very one condition	
2. Gas Discharge Vents	/	oK	
3. Swales, Ditches and Downchutes	1	OK	
Storm Sewer System, including culverts	/	OK	
5. Fence and Gates	V	oK	FENCE At SOUTL GAST HASE BEEN REPARED
6. Access Road		OK	
7. Perimeter Service Road		016	

hart.mjp/st:3m

RECENTLY MOWED

DATE: 7/22/96

INSPECTOR: Mike Petric

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover		RESEEDED AREAS HAVE BEGAN TO Grow - Small SPANCE AREA NEAN SOUTH GATE NUCLOS RE-SEE	GIASS APONDS to BE Growing plong south Fine
2. Gas Discharge Vents	/	oK	Small Holt @ Base of N-6 Has Been Filled
3. Swales, Ditches and Downchutes	\frac{1}{2}	oK	
4. Storm Sewer System, including culverts	1.	OK	
5. Fence and Gates		South Gater Previous work needs Downy - sec OCT 95 MEMO	ALSO NCCD NO TYENSPASSING SIGN ON EAST END OF NOTE FUNCE
6. Access Road	V	οK	
7. Perimeter Service Road	✓	OK	

chart.mjp/st:3m Next MOWING week OF 7/29/96

DATE: 6/27/96

INSPECTOR:

MJ PEFAL

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	V	Topsoiler Staice AREAS with 2" Topsoil Topsoiled plong Sout FENCE - C!" Entracle	Grass Fins Deed cut in cost two weeks
2. Gas Discharge Vents	<u>/</u>	Snall Hole Al SA	1
3. Swales, Ditches and Downchutes	/	RIP-RAP HAS BUEN ADDED TO All GRADUD Swales	
Storm Sewer System, including culverts	V	ADDED ADITIONS (15" Culorent to DOWNSLATE At Culorent #3	
5. Fence and Gates	J	South Gate Frevious work Needs Deings (Sec oct 95)	
6. Access Road	~	01	
7. Perimeter Service Road		04	

hart.mjp/st:3m

DATE: 3/28/96

INSPECTOR:

. MJ PETRIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	NO OBVIOUS Problems	
2. Gas Discharge Vents	1	Very MINOR Hold IN SOLL At BASE OF V-6	ONE Shoul Full OF Tolsoil.
3. Swales, Ditches and Downchutes		SOME ROADSIDE DITCLUS NEED RUPAIN - NO FINGLEM WITH POWN Chutes.	RUTAIR UPSTOOM INLET to culver to 1,4 \$ 7 with MED RIP-RAP DUE to EROISINA.
Storm Sewer System, including culverts	/	HAY BALES NEED TO BE REMOVED Around CB'S Along Sould SIDE OF SITE	
5. Fence and Gates	n/s / s/ s +	- Provious work News Poin	(Sec Oct 95)
6. Access Road			
7. Perimeter Service Road			·

iart.mjp/st:3m

ODORS - Strong in 150 later AREAS (CANDOM & INTREQUENT)

CORCHOTE - MUON Show At Southwest Corner But may the Organic CAUSES.

- WORK Not DONE From 9/26/95 sike inspection - worken to Brook.

DATE: 3/27/97

INSPECTOR:

MJPERIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover		OK	
2. Gas Discharge Vents	1	ok	
3. Swales, Ditches and Downchutes		ok	
Storm Sewer System, including culverts	1	ok	
5. Fence and Gates	<i>J</i>	OK	
6. Access Road		οK	
7. Perimeter Service Road	1	oK	

chart.mjp/st:3m

INSPECTION AND MAINTENANCE **CHECKLIST**

DATE: 6/12/97

INSPECTOR:

· Mike Petie

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	1	WOOD CHUCK HOLE FOUR A+ VENTYIS GRASS COVER THICK THOMOUT SIFE EXED ALUNG SOUTH FENCE BUT MUCH BEHER THOM LOST YEAR	P AFTER LAWN IS MONED (UITLW I VEFIC) RECHECK. FOR MOIC
2. Gas Discharge Vents	V.	V 19 WAS LEANING E+ A 18° ANGIC -MAY BE CLACKED APPLOX 1'BOLON GLADE	DIG DOWN to Whice VENT IS CORCKED AND REPAIR WITH PUC COLLAR
3. Swales, Ditches and Downchutes	/	oic	
Storm Sewer System, including culverts	/	οK	
5. Fence and Gates	/	oK	
6. Access Road	V	OK	
7. Perimeter Service Road	V	ok	

DIAMETER PROP UNDER THE VENT The 15 A 2 to 6' sparsely regitated. Propactly Due to the EXHAUST

DATE:

9/17/97

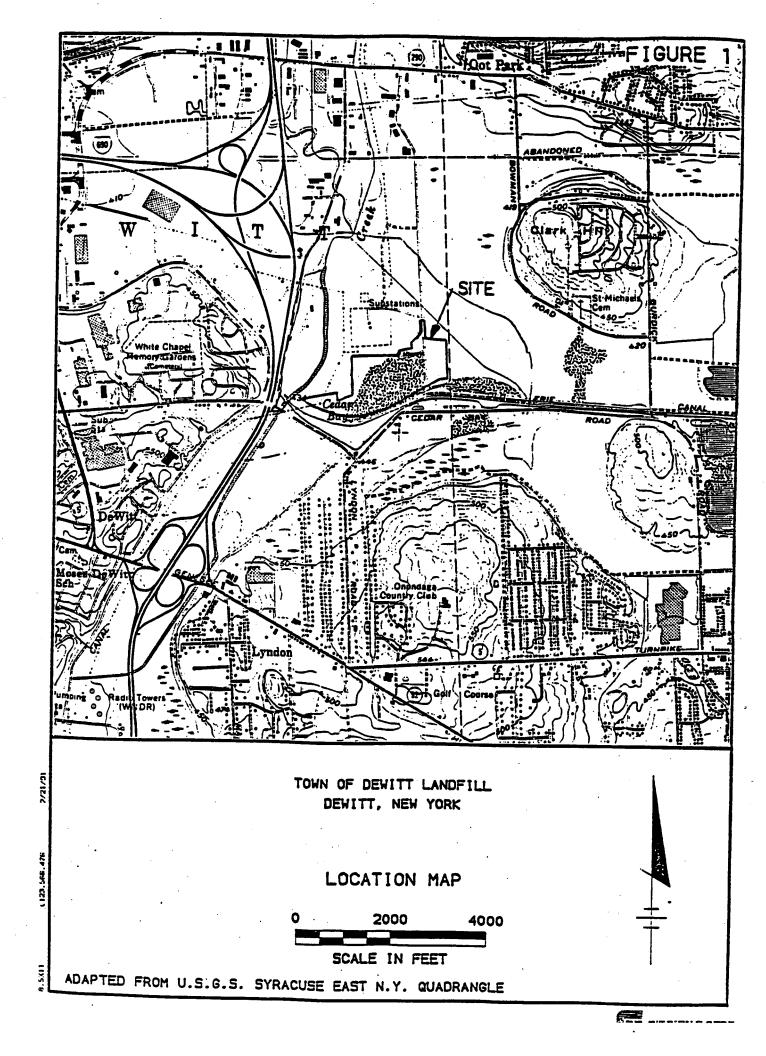
INSPECTOR:

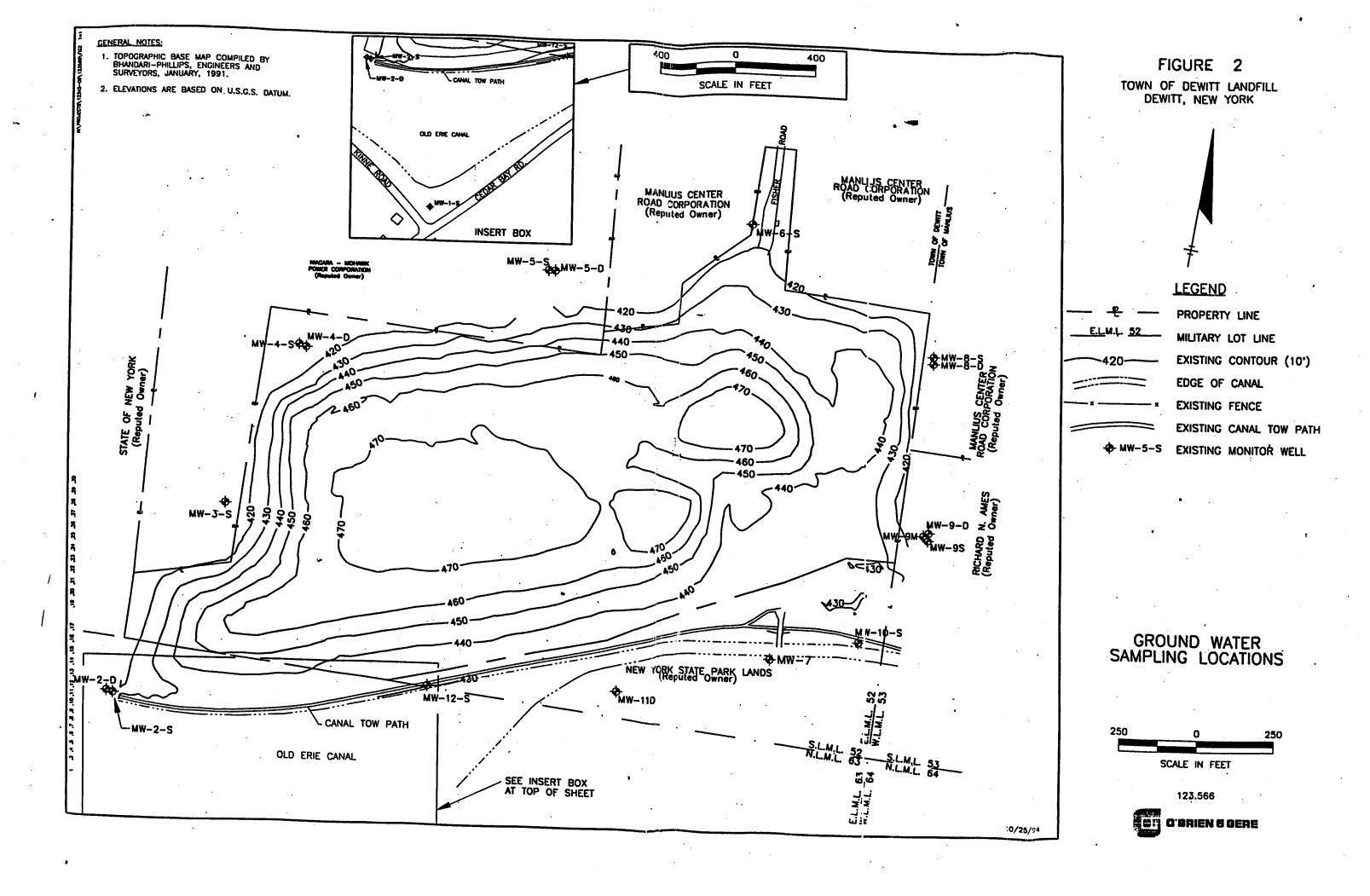
MIKE PETRIE

Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover	/	UNE NEW HOUDCLUC HOLE FOUND ON SENTE SIDE OF SITE GARS COVER GENERAL GOOD - SPACE ALONG SOUTH FENCE AS INDICAL	CAll Trappen to Remose woovechuck. New FII
2. Gas Discharge Vents	✓	V-19 Has NC+ Been REPARENCE YE+,	PIG DOWN to Whole Vert IS CRACKED AND REPAR WITH PVC COLLAR.
3. Swales, Ditches and Downchutes	1	ok	·
Storm Sewer System, including culverts	V	οK	
5. Fence and Gates	. 1	σK	
6. Access Road		٥ اد	
7. Perimeter Service Road	V	ok	

njp/st:3m IN ADO, TON TO THE ABOVE, Thene is A 2' to 6'
Dinmeter Aven under EACH VENT that is very sparsely
VEG itateo. Broadly Do to the EX Houst Vapous From The
wett. VENTS.

DATE: 12/4/97


INSPECTOR: MIKE PETNE


Landfill Component	Checked	Comments	Maintenance Action Needed
Barrier Protection Layer Topsoil Layer and Vegetative Cover		Two New Wordchark Holes on South Side OF SITE, Grass Covon Generall	NOCOCHUCKS ARE HIBERNATING At this TIME - CAll TRAPPIN
2. Gas Discharge Vents	1	V-19 Tilter 10°	DIS DOWN to where vert is Cracker AND REPAIR WITH PVC COILAR
3. Swales, Ditches and Downchutes	V	OK	
Storm Sewer System, including culverts	/	O K	
5. Fence and Gates	. 🗸	OK	
6. Access Road		O K	
7. Perimeter Service Road	/	014	·

imp/st:3m IN ADDITION TO THE ABOVE, There is A 2' to6' DIAMETER AREA UNDER EARL VENT That is very SPARSELY VEGITATED. Programily Do to

Appendix G

Location plans

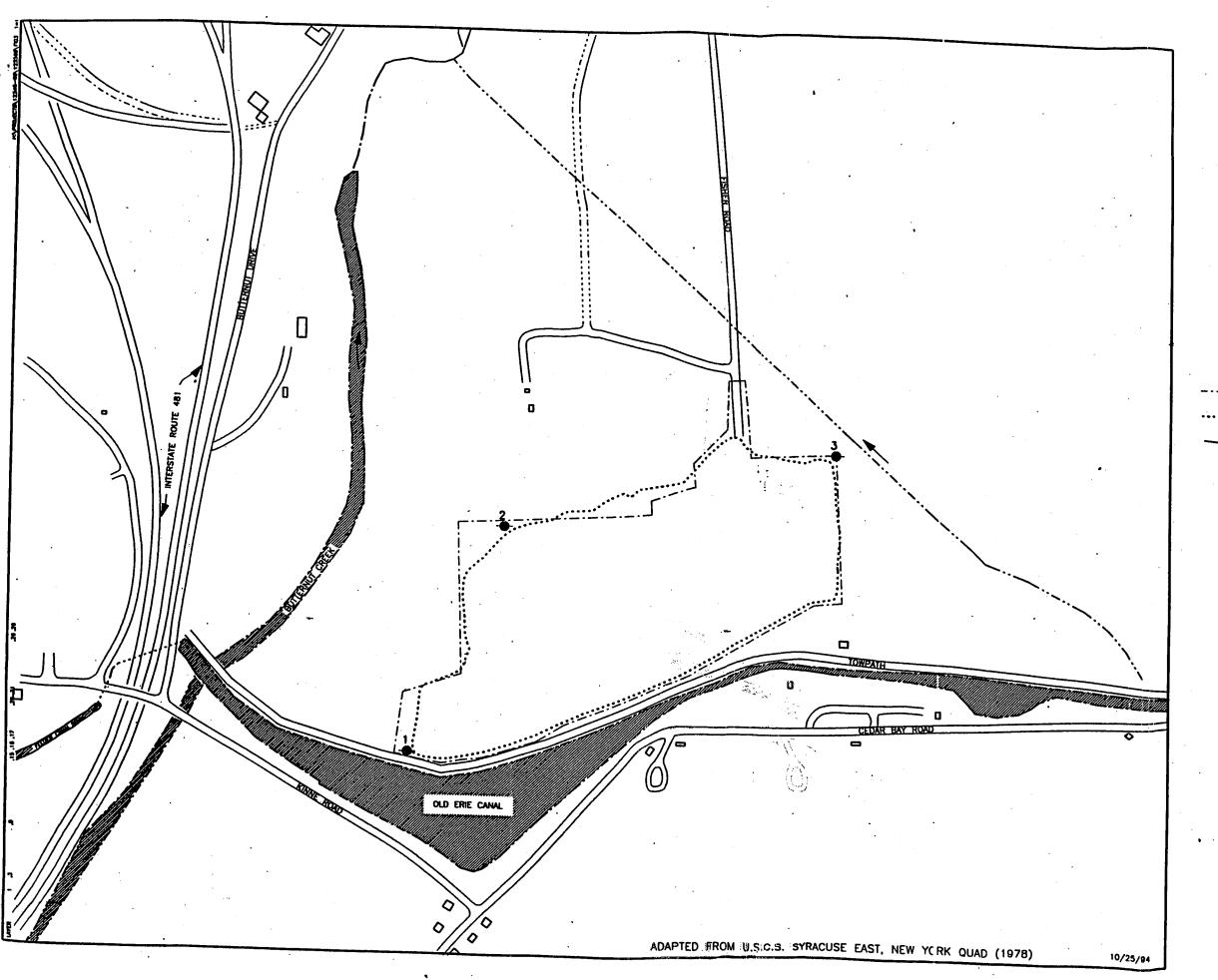
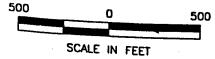


FIGURE 3
TOWN OF DEWITT LANDFILL
DEWITT, NEW YORK

LEGEND


APPROXIMATE SURFACE WATER SAMPLE LOCATION

PROPERTY BOUNDARY

..... APPROXIMATE FILL LIMITS

- - INTERMITTENT STREAM

SURFACE WATER SAMPLING LOCATIONS

123.566

