

Transmitted Via Federal Express

March 29, 2002

Mr. Thomas Reamon, P.E. Bureau of Hazardous Site Control New York State Department of Environmental Conservation 625 Broadway, 11th Floor Albany, NY 12233-7014

/: 2002

Re: McKesson Corporation Bear Street Facility Syracuse, New York Site No. 07-34-020 BBL Project #: 0260.26003 #2

Dear Mr. Reamon:

This Biannual Process Control Monitoring Report (Biannual Report) for the McKesson Envirosystems, Bear Street facility (the site), located at 400 Bear Street in Syracuse, New York has been prepared by Blasland, Bouck & Lee, Inc. (BBL), on behalf of McKesson Corporation (McKesson), to present a description of the operation and maintenance (O&M) activities conducted and the monitoring results obtained during the period from July 2001 through December 2001. This report has been prepared in accordance with the requirements of the New York State Department of Environmental Conservation-(NYSDEC-) approved Site Operation and Maintenance Plan (BBL, Revised August 1999) and a December 29, 1999 letter from David J. Ulm of BBL to Michael J. Ryan, P.E. of the NYSDEC, presenting the long-term process control monitoring program as an addendum to the O&M Plan. The Site Operation and Maintenance Plan and the addendum are collectively referred to herein as the O&M Plan.

The site is divided into two operable units: Operable Unit No. 1 (OU No. 1) - Unsaturated Soil and Operable Unit No. 2 (OU No. 2) - Saturated Soils and Groundwater. As a part of the NYSDEC-selected remedy for both of these operable units, there has been and continues to be ongoing O&M activities. Since completing the OU No. 1 remedial activities in 1994/1995 and commencing the OU No. 2 in-situ anaerobic bioremediation treatment activities in July 1998, the details regarding the O&M activities and the results of the process control monitoring program have been provided to the NYSDEC in biannual reports. A site description and history, along with a description of the remedial actions completed and the ongoing O&M activities being conducted were detailed in the previous biannual reports, including the *Biannual Report* covering the period from July 2000 through December 2000 (BBL, August 2001). That information has not changed and is not repeated herein.

During this reporting period (July 2001 through December 2001), no substantial system repairs were required and no unusual observations were made regarding system operations. The Area 3 in-situ anaerobic bioremediation treatment system has operated satisfactorily without interruption and

approximately 484,100 gallons of water were pumped from the withdrawal trench and introduced into the infiltration trenches as detailed herein.

The process control monitoring activities that were conducted included hydraulic, biological, and chemicals of concern (COC) monitoring using existing monitoring wells and piezometers. The monitoring locations are shown on Figure 1. In addition, non-aqueous phase liquid (NAPL) assessment activities were conducted to determine the presence and thickness of NAPL (if any) in existing monitoring wells and piezometers. Table 1 provides a listing of the existing monitoring wells and piezometers. Table 1 provides a listing of the existing monitoring wells and piezometers. Table 1 provides a listing of the existing monitoring wells and piezometers that are used to conduct the long-term process control monitoring program, and a schedule for implementing this program. As identified in this table, the hydraulic, biological and COC monitoring activities of the long-term process control monitoring program are being conducted on a biannual basis during the first and third quarters of each year (i.e., during March and September). The September 2001 monitoring event is detailed herein. Additionally, as recommended in the most recent *Biannual Report* (dated August 9, 2001 and covering the period from January 2001 through June 2001), an additional discrete Revised Anaerobic Mineral Media (RAMM) injection event was conducted during the last week of August 2001. Prior to conducting these activities, the NYSDEC (Ms. Cynthia Whitfield) was notified.

A description of the August 2001 discrete RAMM injection event is presented below, followed by the results of the process control monitoring activities conducted between July 2001 and December 2001 and the recommendations for continued implementation of the in-situ anaerobic bioremediation treatment activities.

I. August 2001 Discrete RAMM Injection Activities

Based on the results of the process control monitoring activities, completion of discrete RAMM injection event in each of the three areas and immediately downgradient of Area 1 was recommended in the most recent *Biannual Report* to further stimulate the anaerobic biodegradation of COCs. In addition to RAMM, Suga-LikTM was injected at discrete locations within Area 1 and immediately downgradient of this Area, near monitoring well MW-33 (see Figure 1). Suga-LikTM was added to provide the indigenous bacteria a readily degradable carbon source for growth and energy to stimulate the anaerobic bacteria in and downgradient of Area 1 where relatively low concentration of COCs may be limiting bacterial growth. The amount of Suga-LikTM added to the RAMM recipe was proportional to the levels of COCs (aniline and methylene chloride) detected, at the dilution ratio of 1,000:1. At this proportion, the concentration of Suga-LikTM provided in the amended water was approximately 360 parts per million (ppm). These RAMM (or RAMM/Suga-LikTM) injection activities were conducted from August 27 through August 30, 2001, in accordance with the procedures presented in the NYSDEC-approved *O&M Plan.* Ms. Cynthia Whitfield of the NYSDEC was present at the site on August 28, 2001 to observe the injection activities.

During this discrete RAMM injection event, approximately 10 gallons of RAMM (or RAMM/Suga-LikTM) were injected into the shallow hydrogeologic unit at 61 discrete locations. Ten injection points were established in Area 1 and ten immediately downgradient of Area 1, near monitoring well MW-33. Twelve injection points were established in Area 2 and 29 in Area 3. These locations were concentrated in the areas where relatively higher concentrations of COCs have been detected. The approximate injection locations are shown on Figure 2. Water level readings were also collected in relevant monitoring wells prior to and following each day of RAMM (or RAMM/Suga-LikTM) injection.

BLASLAND, BOUCK & LEE, INC. engineers & scientists RAMM (or RAMM/Suga-LikTM) was injected into the shallow hydrogeologic unit at each injection point using a drilling rod with a three-foot screen on the bottom. The rod was pushed into the shallow hydrogeologic unit to a depth that was above the silt and clay layer which separates the shallow and deep hydrogeologic units (approximately 18 feet below ground surface [bgs]). The rod was then withdrawn to a depth of approximately 16 feet bgs and RAMM (or RAMM/Suga-LikTM) was injected into the formation using compressed air. After approximately 10 gallons of RAMM (or RAMM/Suga-LikTM) had been injected, the rod was removed and the RAMM (or RAMM/Suga-LikTM) remaining in the casing was allowed to gravity flow into the shallow hydrogeologic unit. Upon completing the injection at each location, loose material was cleaned from the rod prior to penetrating the subsurface at another location and returned to the hole. Each borehole was then backfilled with granular bentonite.

II. Hydraulic Process Control Monitoring

As part of the hydraulic process control monitoring activities conducted during July 2001 through December 2001, groundwater-level measurements were obtained on September 24, 2001 at existing monitoring wells and piezometers that are screened entirely within the sand layer of the shallow hydrogeologic unit and located sidegradient, downgradient, and upgradient of and within each of the three areas. Groundwater-level measurements were also obtained from selected monitoring wells (MW-6D located upgradient of Area 3 and MW-8D located within Area 3) screened entirely within the deep hydrogeologic unit. Additionally, a water-level measurement was obtained from a staff gauge located in the Barge Canal adjacent to the site.

The results of the water-level measurements from the September 2001 hydraulic monitoring event are summarized in Table 2, and shown on the potentiometric surface map provided as Figure 3. The results and corresponding conclusions are also summarized below.

- A closed-loop hydraulic cell continues to be maintained in Area 3, as shown on the potentiometric surface map provided on Figure 3.
- The groundwater withdrawal rate in Area 3 ranged from approximately 1.29 gallons per minute (gpm) to 3.40 gpm. These rates continue to induce a higher hydraulic gradient across the area of relatively higher concentrations of COCs within Area 3 (relative to baseline conditions), while maintaining hydraulic containment in Area 3.
- The introduction of approximately 75 percent of the recovered groundwater to the secondary infiltration trench "B" and the remaining 25 percent to the secondary infiltration trench "A" continues to induce a hydraulic gradient in Area 3 from perimeter monitoring well MW-23S toward the withdrawal trench and hydraulically influencing monitoring wells MW-25S and MW-17R. COCs have historically been detected in groundwater samples collected from these wells at concentrations in excess of Groundwater Quality Standards (see Figure 13). COCs at concentrations in excess of Groundwater Quality Standards (see Figure 13). COCs at concentrations in excess of Groundwater Quality 1999 sampling event. Benzene has been detected in groundwater samples collected from monitoring well MW-17R at concentrations slightly in excess of the Groundwater Quality Standard during each of the biannual sampling events conducted since March 2000; however, monitoring well MW-17R is located within the capture zone of the withdrawal trench.

- No discernable, long-term hydraulic effects were identified within or in the vicinity of Areas 1 and 2 as a result of introducing approximately 100 gallons of RAMM into these areas on a monthly basis using the standpipes located within the infiltration trenches.
- The groundwater elevations measured at selected monitoring wells screened entirely within the deep hydrogeologic unit indicate that the operation of the Area 3 system is continuing to have no discernable effect on the hydraulic head of this unit.

Water level readings were also collected in relevant monitoring wells prior to and following each day of RAMM (or RAMM/Suga-Lik[™]) injection conducted from August 27 through August 30, 2001. These data suggest that no long-term changes to groundwater flow directions resulted from these discrete RAMM (or RAMM/Suga-Lik[™]) injection activities.

Also during the hydraulic process control monitoring, weekly conductivity measurements were obtained from influent groundwater samples recovered from the withdrawal trench in Area 3. These measurements were obtained from the sampling port located before the equalization tank and inside the building. The conductivity of groundwater pumped from the withdrawal trench ranged from approximately 1.45 millisiemens per centimeter (mS/cm) to approximately 2.37 mS/cm, which is within the range of the conductivity levels measured prior to system operation (1 mS/cm to 4 mS/cm). These measurements are well below the measured conductivity of the deep unit, which is greater than the calibration range of the field instrument (10 mS/cm). These data indicate that operation of the Area 3 treatment system has not caused the freshwater/saltwater interface to upcone to the base of the withdrawal trench.

III. Biological Process Control Monitoring

As detailed in Table 1, the biological process control monitoring includes collecting groundwater samples for laboratory analysis of phospholipid fatty acids (PLFA) and poly-b-hydroxy alkanoate (PHA), common biological indicators in both oxidized and reduced states (e.g., electron acceptors: nitrate, manganese, iron, sulfate, and carbon dioxide), and permanent gases (nitrogen, carbon dioxide, and methane). In addition, the following groundwater quality parameters were measured in the field during the biological sampling events: pH, temperature, conductivity, dissolved oxygen, and oxidation/reduction potential (ORP).

The results of the September 2001 biological process control monitoring activities are presented in Table 3 and shown on Figures 4 through 12. These biological process control monitoring results are summarized below.

• The biomass (PLFA) levels slightly increased within most Area 1 monitoring locations during the September 2001 sampling event (see Figure 4). Additionally, the anaerobic community increased since the last sampling event, although the select PLFA data suggest that aerobic bacteria are still more prevalent than anaerobic bacteria. The PLFA data used to monitor environmental stress and turnover rate indicate that the microbial community within Area 1 is undergoing limited stress and continues to have high turnover rates (see Figures 5 and 6). However, the PLFA to PHA ratio was above 0.2 at all Area 1 monitoring locations during the September 2001 sampling event. Collectively, these data indicate that the microbial community underwent a growth phase which became unbalanced and now may be entering or is in a decay phase. This suggests that the addition of Suga-Lik[™] influenced the growth of the microbial community and once depleted, caused an unbalanced condition and decay of the microbial community. Furthermore, the low concentrations of

COCs (i.e., low levels of electron donors) present within the Area 1 may be limiting biological activity within this Area.

- At Area 2 TW-02R monitoring location the biomass (PLFA) level increased more than three times since the last sampling event (see Figure 7). Additionally, the anaerobic bacteria comprise a significant portion of microbial community in the TW-02R monitoring location and within other Area 2 monitoring wells. The PLFA and PHA results, combined with the common biological indicators results, suggest that sufficient amounts of nutrients continue to be available to maintain cell division and balanced growth within the microbial community. As shown on Figures 8 and 9, the PLFA data used to monitor environmental stress and turnover rate suggest that the microbial community within Area 2 is undergoing limited stress and continues to have high turnover rates.
- The September 2001 sampling results for Area 3 indicate an increase in PLFA levels since the last sampling event conducted in March 2001 (see Figure 10), with the exception of monitoring location MW-8S. At this location, the PLFA biomass level decreased since the last sampling events and the PLFA/PHA ratio (above 0.2) indicates that microbial community may have entered an unbalanced growth. The select PLFA results, however, obtained from Area 3 monitoring locations continue to indicate that the anaerobic community is more prevalent than the aerobic community within Area 3, including monitoring location MW-8S. As shown on Figures 11 and 12, the PLFA data used to monitor environmental stress and turnover rate suggest that the microbial community in Area 3, with the exception of MW-8S location, is undergoing limited stress and continues to have high turnover.
- Dissolved gases results, together with ORP data, indicate that conditions in the saturated soils/groundwater of the shallow hydrogeologic unit within each area are reduced, thus conducive to anaerobic bioremediation processes.
- Common biological indicators were measured in groundwater samples collected from the four "sentinel" monitoring wells (MW-29, MW-30, MW-33, and MW-36) (see Table 3 and Figure 1). These results are consistent with previous sampling events and indicate no appreciable increase in RAMM constituents downgradient of each area.

IV. COC Process Control and Biannual Groundwater Monitoring Program

The COC process control biannual groundwater monitoring activities were conducted on September 24, 2001 through September 28, 2001, in accordance with the long-term process control monitoring program presented in the *O&M Plan*. Table 1 provides a listing of the existing monitoring wells and piezometers that are used to conduct the long-term process control monitoring program, and a schedule for implementing this program. As identified in this table, the hydraulic, biological and COC monitoring activities of the long-term process control monitoring program are being conducted on a biannual basis.

A summary of the COC groundwater monitoring data is presented in Table 4 and shown on Figure 13. A copy of the validated analytical laboratory reports associated with the September 2001 groundwater sampling is provided under separate cover. A summary of the results is provided below.

• The concentrations of COCs detected in the groundwater samples collected from all of the monitoring wells within Area 1 declined or remained relatively the same during implementation of the in-situ anaerobic bioremediation treatment program (see Figure 13).

- Consistent with the previous sampling events, benzene, aniline, and N,N-dimethylaniline were detected above their respective Groundwater Quality Standards in the groundwater sample collected from monitoring well MW-33, located downgradient of Area 1. The concentration of aniline was higher than the previously detected concentrations at this location, whereas the concentrations of benzene and N,N-dimethylaniline remained relatively the same or decreased since the previous sampling events (see Figure 13).
- A comparison of the September 2001 COC data to the data collected during the previous sampling events indicate that COC concentrations within Area 2 have decreased or remained relatively the same during implementation of the in-situ anaerobic treatment program. For example, the concentrations of N,N-dimethylaniline and methylene chloride in monitoring well TW-02R have decreased approximately two orders of magnitude since beginning the anaerobic bioremediation treatment program.
- Acetone and aniline were detected above their respective Groundwater Quality Standard in the groundwater sample collected during the September 2001 sampling event from monitoring well MW-36, located downgradient of Area 2. Aniline was detected at concentrations exceeding Groundwater Quality Standard during the previous sampling events at this location (see Figure 13). Acetone is a common laboratory contaminant.
- Benzene and toluene were detected in the September 2001 groundwater sample collected from monitoring well MW-3S at concentrations (less than 10 parts per billion [ppb]) which slightly exceed their respective Groundwater Quality Standard. Aniline was also detected in that sample at 690 ppb. Because of this detection of aniline, MW-3S was resampled for aniline on November 8, 2001. A significantly lower concentration of aniline (69 ppb) was detected in the groundwater sample collected during November 2001.
- The concentrations of COCs detected in Area 3 monitoring wells are similar to or less than those previously detected in groundwater samples collected from the Area 3 monitoring wells. At monitoring location MW-8S, which historically exhibits the highest concentrations of COCs, the concentrations of aniline, N,N-dimethylaniline, and methylene chloride have decreased approximately 77%, 76%, and 56%, respectively, since the last sampling event conducted in March 2001.
- Aniline was detected in the samples obtained from monitoring wells MW-29 and MW-30, located between the Area 3 withdrawal trench and site boundary at concentrations slightly exceeding the Groundwater Quality Standard (5 ppb). The concentrations of aniline detected in these wells (7 ppb and 8 ppb) have decreased or remained the same since the previous sampling events (see Figure 13). Benzene was also detected at monitoring well MW-30 at a concentration (2 ppb) which slightly exceeds the Groundwater Quality Standard of 1 ppb.
- The results of the September 2001 biannual groundwater sampling and analysis program indicate that COCs at concentrations in excess of the Groundwater Quality Standards have not migrated beyond the site boundary. No COCs were detected in the downgradient perimeter monitoring locations, with the exception of the slight detection of benzene (5ppb) in the groundwater sample collected from monitoring well MW-17R. Although monitoring well MW-17R is sampled as a perimeter groundwater monitoring location, this well is located on-site and within the capture zone of the Area 3 withdrawal trench (see Figure 3).

• NAPL was not identified in any of the monitoring wells or piezometers used during the process control monitoring program.

V. Conclusions and Recommendations

Based on the process control monitoring data obtained to date and the results summarized above, the insitu anaerobic bioremediation treatment process is meeting the remedial goals for OU No. 2 presented in the Record of Decision (ROD). Accordingly, the in-situ anaerobic bioremediation treatment activities will continue consistent with the operation procedures followed since commencement in mid-December 1998. However, to further stimulate the bioremediation rate within the areas where relatively low concentrations of COCs may be limiting microbial activity, the addition of Suga-Lik[™] (Blackstrap Molasses) has been/will continue to be introduced into these areas, as detailed below. Additionally, to better assess the availability of the macronutrients within Area 3, supplemental analyses will be conducted. These analyses will include ammonium, potassium, and ortho-phosphate, as detailed below.

As previously detailed in this *Biannual Report*, certain COCs were detected in excess of Groundwater Quality Standards in the groundwater samples collected from monitoring wells MW-33 and MW-36 (located downgradient of Area 1 and Area 2, respectively). Furthermore, the concentrations of aniline detected in these groundwater samples increased since the last sampling event conducted in March 2001. The COC concentrations detected at monitoring wells MW-33 and MW-36, and at other Area 1 monitoring locations, however, are relatively low and may not provide a source of carbon sufficient to sustain microbial activity. Therefore, to further stimulate growth of indigenous bacteria in areas where low COC concentrations may be limiting bacterial growth, the additional activities listed below have been/will be conducted.

- Suga-Lik[™] was added with RAMM into the two Area 1 infiltration trenches during February 2002. RAMM is introduced into the Area 1 infiltration trenches on a monthly basis by manually filling each of the standpipes located in these trenches. Suga-Lik[™] was added during the February 2002 monthly RAMM introduction event to provide an easily metabolized carbon source that will further stimulate (enhance) the growth of the indigenous bacteria. The addition of RAMM/ Suga-Lik[™] will continue on a monthly basis. Suga-Lik[™] will provide electron donors, while RAMM will provide nutrients and electron acceptors.
- Beginning in March 2002, RAMM/Suga-Lik[™] will be introduced on a monthly basis into piezometers PZ-G, PZ-Q, PZ-R, and PZ-S located within and downgradient of Area 1. RAMM/Suga-Lik[™] will be introduced into the shallow hydrogeologic unit within and downgradient of Area 1 using these piezometers to provide a better distribution of a readily degradable carbon source that otherwise may not reach the targeted areas if distributed through the infiltration trenches only.
- Beginning in March 2002, RAMM/Suga-Lik[™] will also be introduced on a monthly basis into piezometer PZ-W located downgradient of Area 2, near monitoring well MW-36.

Approximately 10 gallons of RAMM/Suga-LikTM has been/will be introduced into each of the aforementioned piezometers and approximately 100 gallons (total) into the Area 1 infiltration trenches. The amount of Suga-LikTM added to the RAMM recipe has been/will be proportional to the levels of COCs detected, at the dilution ratio of 1,000:1.

BLASLAND, BOUCK & LEE, INC. engineers & scientists The biological process control monitoring results for September 2001 indicate that the PLFA biomass level at monitoring well MW-8S has decreased since the last sampling events and that the microbial community may have entered an unbalanced growth. To better evaluate the availability of macronutrients that are necessary for biological growth, the groundwater samples collected from Area 3 monitoring locations during the March 2002 sampling event will additionally be analyzed for ammonium, potassium, and ortho-phosphate.

As presented in Section IV this *Biannual Report*, aniline was detected in the groundwater sample collected from monitoring well MW-3S during the September 2001 sampling event at 690 ppb and during the November 8, 2001 resampling at a significantly lower concentration of 69 ppb. MW-3S is located between Areas 1 and 3 and will be sampled during the next COC monitoring event.

As recently discussed with the NYSDEC (Ms. Cynthia Whitfield and Mr. Carl Cuipylo), the next biannual monitoring event is tentatively scheduled for mid April 2002, depending on the status of the road construction activities along Van Rensselaer Street where the vehicular access gates to the site are located. BBL will continue to coordinate the schedule with the NYSDEC. The hydraulic, biological, and COC process control monitoring activities to be conducted are summarized in Table 1. A summary of the O&M activities and the results of the process control monitoring activities will continue to be presented to the NYSDEC on a biannual basis.

As presented in the ROD, one of the components of the selected remedy for the site is reclassification from a Class 2 Inactive Hazardous Waste Disposal Site to a Class 4 Site. Class 4 is defined by the NYSDEC as a site that has been properly closed but that requires continued operation, maintenance, and/or monitoring. Based on information obtained on March 1, 2002 from the NYSDEC, the McKesson Envirosystems site is still listed by the NYSDEC as a Class 2 Site.

As presented in the NYSDEC's July 9, 1998 letter to BBL, site reclassification was to be initiated upon NYSDEC's approval of the *RD/RA Documentation Report*. That report was approved by the NYSDEC in a February 22, 2000 letter to McKesson. BBL had previously understood that the reclassification process was initiated during the spring of 2000, based on telephone conversations with the NYSDEC, as documented in the appropriate biannual reports. BBL now understands that the NYSDEC is reviewing the reclassification, based on our March 2002 telephone conversations with NYSDEC (Mr. Carl Cuipylo, Mr. Kevin Delaney, and Ms. Cynthia Whitfield). We will follow up with the NYSDEC in the near future regarding the status of the reclassification.

If you have any questions or require additional information, please do not hesitate to contact me at (315) 446-2570, ext. 210.

Sincerely,

BLASLAND, BOUCK & LEE, INC.

LIM MLB David J. Ulm

Senior Vice President

MS/mbg

BLASLAND, BOUCK & LEE, INC. engineers & scientists

- cc: Mr. Reginald Parker, P.E., New York State Department of Environmental Conservation Ms. Henriette Hamel, R.S., New York State Department of Health
 - Ms. Jean A. Mescher, McKesson Corporation.
 - Ms. Susan Anton-Switka, Bristol-Myers Squibb Co.
 - Mr. Christopher R. Young, P.G., de maximis, inc.

Tables

LONG-TERM HYDRAULIC, BIOLOGICAL AND COC PROCESS CONTROL MONITORING SCHEDULE

MCKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring Location	Sampling	
	FirstQuarter	Third Quarter
Upgradient		
MW-1	B1, B2, C	B1, B2, C
MW-3S	B1, B2, C	B1, B2, C
MW-3D	н	н
Area 1		
TW-01	B1, B2, C	B1, B2, C
MW-6D	н	н
MW-9S	B1, B2, C	B1, B2, C
MW-9D	н	н
MW-31	B1, B2, C	B1, B2, C
MW-32	B1, B2, C	B1, B2, C
MW-33	B2, C	B2, C
PZ-F	Н	н
PZ-G	н	н
PZ-HR	н	н
PZ-P	Н	н
PZ-Q	н	н
PZ-R	н	н
PZ-S	н	н
Area 2		
TW-02R	B1, B2, C	B1, B2, C
PZ-9D	н	Н
MW-34	B1, B2, C	B1, B2, C
MW-35	B 1, B2, C	B1, B2, C
MW-36	B2, C	B2 , C
PZ-I	н	н
PZ-J	н	н
PZ-T	н	н
PZ-U	н	н
PZ-V	н	н
PZ-W	H	Н

LONG-TERM HYDRAULIC, BIOLOGICAL AND COC PROCESS CONTROL MONITORING SCHEDULE

MCKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

	Sampling	Schedule
Monitoring Excation	First Quarter	ACCENTION OF A DESCRIPTION OF A DESCRIPT
Area 3	The second se	
MW-8S	B1, B2, C	B1, B2, C
MW-8D	н	Н
MW-27	B1, B2, C	B1, B2, C
MW-28	B1, B2, C	B1, B2, C
MW-29	B2 , C	B2, C
MW-30	B2, C	B2 , C
PZ-A	н	Н
PZ-B	н	Н
PZ-C	Н	Н
PZ-D	Н	Н
PZ-E	Н	Н
РZ-К	Н	Н
PZ-L	Н	Н
РZ-М	Н	Н
PZ-N	Н	Н
PZ-O	Н	Н
MW-11S	Н	н
MW-11D	H	Н
Downgradient Perimeter Monitorin	g Locations	
MW-17R	C	C**
MW-18	С, Н	С, Н
MW-19	С, Н	С, Н
MW-23I	С, Н	С, Н
MW-23S	С, Н	С, Н
MW-24SR	Н	С, Н
MW-24DR	н	С, Н
MW-25S	С, Н	С, Н
MW-25D	С, Н	Н
PZ-4S	С	
PZ-4D	С, Н	Н
PZ-5S		<u> </u>
PZ-5D	H	С, Н

LONG-TERM HYDRAULIC, BIOLOGICAL AND COC PROCESS CONTROL MONITORING SCHEDULE

MCKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Notes:

- 1. H = Hydraulic Monitoring (Groundwater Level Measurements).
- 2. B1 = Biological Monitoring for Poly-b-hydroxy alkanoate (PHA) and Phospholipid Fatty Acid (PLFA).
- 3. B2 = Biological Monitoring for Common Biological Indicators and permanent gases including nitrate, total/dissolved iron, total/dissolved manganese, sulfate/sulfide, nitrogen, carbon dioxide, and methane.
- 4. C = Monitoring for the Chemicals of Concern (COCs).
- 5. The hydraulic monitoring identified in this table was conducted on a quarterly basis for the first year of the long-term process control monitoring program, and has been/will be conducted on a semi-annual basis thereafter. The hydraulic monitoring also includes measuring the conductivity of groundwater recovered from Area 3 from a sampling port located before the equalization tank.
- 6. Field groundwater parameters including pH, temperature, conductivity, dissolved oxygen, and oxidation/reduction potential (ORP) are measured during each biological sampling event.
- 7. Each of the monitoring wells and piezometers used for hydraulic, biological and COC monitoring during the semi-annual monitoring event are checked for the presence of NAPL.
- 8. Based on the results obtained, the scope and/or the frequency for the hydraulic, biological, and/or COC components of the long-term process control monitoring program, as detailed herein, may be modified. Any modifications would be made in consultation with the NYSDEC.
- 9. This table is based on the NYSDEC-approved *O&M Plan* (BBL, Revised August 1999), including the NYSDEC-approved December 29, 1999 Addendum.
- 10. Piezometers PZ-8S/PZ-8D were identified in the O&M Plan to be sampled during the long-term process control monitoring program; however, as presented in the August 2000 Biannual Process Control Monitoring Report, these piezometers were damaged and no longer needed for the process control monitoring program. These piezometers were abandoned in August 2000.
- 11. ** = As presented in the August 2000 Biannual Process Control Monitoring Report, monitoring well MW-17R was identified in the O&M Plan to be sampled only during the first biannual monitoring event; however, because benzene has been detected at concentrations slightly exceeding the NYSDEC Groundwater Quality Standard since the March 2000 sampling event, this well has also been sampled during the second biannual monitoring event conducted during 2000 and 2001 (i.e., September 2000 and September 2001).

SUMMARY OF SELECT GROUNDWATER LEVEL MEASUREMENTS

MCKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

10000	ardin <u>i</u> ce	36/10/98	6/22/98	7/6/98	7/20/98	1/27/98	8-1985	8/10/98	8/10/98	8/11/98 (morning)	8/11/98	2212/08	8122978	10/16/98	11/17/98	12/16/98	12/22/98	-1699		21252	6/3/99	/13/99	31,200	Cinto /		S BAR KIDA	<u></u>	9200
Location 2		Stane			Week1	Week 2		11 (Week 4	Week 4.		Weekd	WGOLA	Week 13	Week 18	Week 22	Week 23	Weilers		No.1 42	Weekan	Week 52				and the second		
Canal	393.39*	362.91	363.37	363.72	363.08	363.08	362.94		362.78	362.94			362.84	363.27		363.14	362.21	363.11			363.22	362.78	363.73	363.75	362.75^	_363.24	363.01	362.96
Collection Sump	372.81	364.33	363.08	363.68	362.50	361.31	<u>361.83</u>	361.89	362.14	361.00	361.71	361.95	362.31	362.01	361.48	361.75	363.09	361.93	361.73	363.17	362.45	361.87	362.99	361.48	361.69	361.66	361.59	362.04
MW-3S	376.54	365.93	366.26	367.82	366.20			365.29							365.25	365.67	366.81	365.67	365.25		365.26		357.10					
MW-3D	375.56	365.63	365.87	366.16			364.97	364.85						365.08	365.00	365.04	2(5.2)	365.04	364.91	365.41	364.92	364.57	355.64	365.57	364.81	355.16	365.40	364.54
MW-6D	377.07	365.75	366.01	366.29			264.00		264.67	264.70	264.00	2(4.07	264.07	365.25	365.15	365.23	365.36	365.23	365.06	365.62	365.12	364.79	365.85	365.77	364.97	365.34	365.64	364.75
MW-8D	374.68	365.51	365.74	366.05			364.80 365.14	365.10	364.67	364.79	364.88	364.87	364.87	364.93 365.25	364.83 365.16	364.86	365.36	364.88 365.26	364.74 365.08	365.22 365.65	364.77	364.35	365.42	365.36 365.80	364.62 365.01	364.94 365.36	365.18 365.68	364.34
MW-9D	376.76***	365.78	365.67	365.29			364.62	364.49	364.50	364.62		364.69	364.67	364.77	364.68	365.22 364.73	303.30	364.73	364.57	365.02	365.17 364.60	364.83	365.88 365.24	365.18	364.46	364.81	364.96	364.18
MW-11D MW-11S	373.68 373.50	365.46 364.88	364.62	365.11	364.12	363.70	363.58	363.52	363.58	363.73		363.69	363.74	363.74	363.69	363.69	364.27	363.79	363.61	364.50	363.88	363.39	364.72	364.35	363.55	363.86	364.48	363.33
MW-18	372.57	362.64	504.02	505.11	30	202170	200.00			000110					361.90	361.93	362.05	362.05	361.84	362.18	361.79	361.38	362.43	361.77	361.71	362.08	362.17	361.50
MW-19	376.00	362.42													361.78	361.84	361.98	361.87	361.89	362.15	361.80	361.46	362.58	361.88	361.90	362.25	362.44	361.82
MW-231	372.77	365.04	365.34	365.72			364.34		364.45	364.16			364.43	364.43	364.34	364.36		364.47	364.26	364.69	364.28	363.83	364.99	364.93	364.25	364.58	364.73	363.99
MW-23S	372.61	363.99	363.43	364.04	362.92	362.50	362.41		362.40	362.66		362.54	362.67	362.68	362.56	362.52	363.35	362.66	362.46	363.64	362.94	362.42	363.85	363.17	362.64	362.87	363.59	362.36
MW-24DR	375.14	365.41													364.63	364.67	364.81	364.69	364.54	364.96	364.49	364.09	365.19	364.60	364.39	364.77	364.91	364.16
MW-24SR	375.55	365.15	365.32	365.66	364.91	364.45	364.27		364.20				364.36	364.47	364.37	364.44	364.66	364.50	364.33	364.87	364.41	363.95	365.12	365.55	364.30	364.60	364.86	364.05
MW-25D	373.67	365.43													364.74	364.76		364.77	364.64	365.07	364.64	364.20	365.28	365.20	364.51	364.84	364.97	364.22
MW-25S	373.39	363.91	363.64	364.14		362.95	362.75		362.75			362.89	362.96	363.01	362.89	362.87	363.48	362.96	362.79	363.89	363.20	364.75	364.12	363.69	362.94	363.23	364.14	362.61
PZ-4D	376.11	365.46	_ 365.73	366.01	365.21	364.83	364.63		364.54	364.67	364.75	364.74	364.70	364.80	364.69	364.73	364.87	364.72	364.55	365.02	364.60	364.22	365.28	365.21	364.49	364.82	365.03	364.22
PZ-5D	375.58	365.66	365.91	366.18	365.36	365.07	364.84	266.12	364.76	364.88	364.94	364.93	364.91	364.99	364.89	364.93	365.09	364.94	364.78	365.28	364.86	364.47	365.57	365.48	364.71	365.10	365.36	364.46
PZ-8D	375.83	365.90	366.11	366.35			365.25	365.13	365.83					365.35	365.27	365.33	365.48	365.33	365.19	365.78	365.08	365.00	2(5.70	265 72	264.97	265.16	265.55	264.60
PZ-9D	377.29	365.73	2(2(0)	364.28	363.13	362.58	365.47 362.56	365.28 362.62	362.76	363.39	362.82	362.64	363.02	365.12 362.75	365.03 362.56	365.08 362.60	365.24 364.04	362.72	364.94 362.56	365.50 363.81	365.04 363.12	364.68 362.61	365.70 363.95	365.72 363.15	364.87 362.75	365.16 362.91	365.55 363.56	364.60 362.58
PZ-A	373.94 373.92	364.49	363.69 363.60	364.28	363.02	362.58	362.50	363.26	362.70	363.00	362.82	362.04	363.02	362.67	362.50	362.50	364.04	362.62	363.45	363.91	363.12	362.67	364.08	363.32	362.79	362.91	363.94	362.55
PZ-B PZ-C	373.92	365.69	366.29	367.02	365.93	365.97	365.47	365.38	365.30	365.54	365.99	365.53	365.54	365.56	365.52	365.52	365.97	365.18	365.02	365.79	365.10	364.75	366.04	366.04	365.03	365.35	366.39	364.54
PZ-D	375.12	365.78	366.25	366.99	365.99	365.91	365.53	365.37	365.30	365.53	366.06	365.58	365.67	365.59	365.55	365.53	366.06	365.25	365.12	365.79	365.18	364.89	366.09	366.10	365.10	365.46	366.36	364.65
PZ-E	374.12	364.75	364.25	364.86	363.73	364.00	363.41	363.61	363.54	364.22	364.67	364.67	364.08	363.57	363.67	363.53	366.41	363.57	363.52	364.93	364.20	363.81	365.16	365.03	363.92	364.40	365.90	363.49
PZ-F	377.06	366.17					365.56	365.50						365.37	365.27	365.52	365.73	365.62	365.27	366.36	365.53	365.11	366.89	366.72	365. 2 7	365.70	367.06	364.93
PZ-G	377.16	366.21					365.66	365.60						365.46	365.36	365.60	365.76	365.71	365.44	366.44	365.61	365.17	366.89	366.80	365.36	365.75	367.11	364.93
PZ-HR	376.99	366.16					365.54							365.44	365.34	365.54	365.84	365.60	365.39	366.34	365.55	365.11	366.80	366.68	365.33	365.66	367.02	364.91
PZ-I	375.15	366.56					365.86	365.64						365.88	365.57	365.90	366.59	366.05	365.76	366.93	365.79	365.23	367.30	367.23	365.55	366.08	367.81	364.91
PZ-J	374.89	366.15			L		365.53	365.40						365.53	365.39	365.55	365.93	365.59	365.47	366.21	365.53	365.14	366.55	366.50	365.32	365.64	366.69	364.96
PZ-K	373.19	364.53	363.78	364.35	363.27	362.69	362.69	362.71	362.75	362.92	362.80	362.78	362.98	362.82	362.66	362.66	363.70	362.78	362.58	363.87	363.13	362.59	363.97	363.19	362.69	362.86	363.53	362.49
PZ-L	374.62	364.25	363.59	364.18	363.04	362.42	362.48	362.44	2(2.00	362.88	362.63	362.57	362.84	362.65	362.40	362.51	363.59	362.65	362.45	363.69	363.00	362.47	363.84	363.03	362.61	362.68	363.42	362.47
PZ-M	374.35	364.70	364.09	364.64	363.52	362.96 365.91	362.96 365.53	362.96 365.39	363.09 365.33	363.29 365.55	363.15 365.97	363.05 365.58	363.30 365.59	363.12 365.59	362.93 365.55	363.01 365.56	364.07	363.13 365.31	362.94 365.12	364.06 365.87	363.40 365.19	362.90 364.87	364.22 366.17	363.54 366.12	363.05 NM	363.24 365.35	363.86 366.43	362.90 364.47
PZ-N	376.94**	365.79	366.37	367.06 364.29	363.21	362.84	362.72	362.87	362.78	363.05	362.97	362.80	363.03	362.81	362.74	362.75	363.74	362.87	362.68	364.01	363.19	362.73	364.22	363.57	362.86	363.06	364.22	362.64
PZ-O	375.36	364.29 366.25	303.08	304.29	303.21	302.04	365.65	365.60	302.78	303.03	302.97	302.00	303.03	365.52	365.39	365.61	365.74	365.73	365.44	366.43	365.59	365.18	366.85	366.73	365.34	365.77	367.02	364.93
PZ-P PZ-0	377.61	366.23			1		365.64	365.57						365.45	365.35	365.59	365.70	365.71	365.42	366.44	365.60	365.16	366.93	366.78	365.26	365.76	367.21	364.89
PZ-Q PZ-R	377.01	366.23	<u> </u>	366.94	<u> </u>	<u> </u>	365.65	365.57						365.50	365.38	365.61	365.81	365.67	365.47	366.46	365.61	365.20	366.89	366.81	365.37	365.72	367.21	364.93
PZ-S	378.13	366.19		500.74	<u> </u>		365.57	365.52						365.43	365.35	365.57	365.94	365.65	365.40	366.39	365.56	365.15	366.84	366.73	365.32	365.71	367.12	364.90
PZ-T	376.25	366.14	<u> </u>				365.54	365.43						365.52	365.38	365.58	365.96	365.64	365.47	366.34	365.53	365.10	366.71	366.65	365.29	375.70	366.90	364.90
PZ-U	375.35	365.99	<u> </u>	366.81	1 -		365.50	365.33						365.37	365.30	365.49	365.91	365.55	365.40	366.17	365.46	365.08	366.55	366.49	365.22	365.60	366.75	364.85
PZ-V	375.78	366.07					365.48	365.35						365.43	365.29	365.47	365.90	365.52	365.37	366.20	365.44	365.06	366.54	366.50	365.25	365.58	366.76	364.83
PZ-W	375.78	366.07					365.46	365.31						365.41	365.28	365.44	365.78	365.53	365.33	366.15	365.41	365.02	366.49	366.41	365.20	365.59	366.63	364.85

<u>Notes:</u>

•

1. Weeks 1, 2, 3, 4, 13, 18, 22, 23, 25, 26, 39, 46, and 52 are weeks after the initial introduction of RAMM into the three impacted areas.

2. 8/10, 8/11, and 8/12/98 water level measurements were taken during the initial discrete RAMM injection event.

3. AMSL = Above Mean Sea Level (NGVD of 1929)

4. The ground-water level in PZ-8D was not measured on 3/27/00 and 6/1/00 because this piezometer was damaged. This piezometer was decommissioned on August 30, 2000.

5. ^ = The canal water-level measurement for the third quarter of the first year of the long-term process control monitoring program was obtained on September 29, 2000.

6. *= The reference elevation for canal gauging point was 363.06 feet AMSL prior to 11/16/00. The canal gauging point was re-marked and re-surveyed 11/16/00. The new reference elevation is 393.39 feet AMSL.

7. NM = The groundwater level in PZ-N was not measured on 9/18/00 because this piezometer was damaged. This piezometer was repaired and subsequently resurveyed on 11/16/00. The new reference elevation for PZ-N is 376.94 feet AMSL.

8. ** = The reference elevation for PZ-N was 376.02 feet AMSL prior to 11/16/00 and, as noted above, the new reference elevation is 376.94 feet AMSL.

9. *** = Monitoring well MW-9D inner PVC pipe was reduced (cut) by 1½ inches on 9/19/01. The reference elevation prior to 9/19/01 was 376.88 feet AMSL. The new reference elevation for MW-9D is 376.76 feet AMSL.

BIOLOGICAL MONITORING DATA 9/24 - 9/26/2001

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

							Sec. 1		Biolog	ical Paramet	ers	an a							
Monitoring	PLFA	рна 🦿	Turnøver	Environmental	Nitrate	Nítrogen	Total	Dissolved	Total	Dissolved	Sulfate	Sulfide	Carbon	Methane	pН	D.O.,	Temp.	ORP	Cond.
Location	Sec. 20	Sec. Same	Rate	Stress			Fe	Fe	Ma	Mn			Dioxide			. N. A	1.0		1
	(Pmol/mL)	(Pmol/mL)		1.00	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	(C) ·	(mV)	(mS/cm)
AREA 1	<u>a. 1 </u>		: ://: T	11.42.25			6 H. H.			0. (* 1947) 1			<u> </u>	· · · ·	25023X <u>1</u> .7			1	<u></u>
MW-1	5	0.30	0.83	014	0.06	20.0	NA	NA	NA	NA	137.0	<1.0	82	016	7.09	NA	16 45	-105	1 72
TW-01	2	1.04	0.26	0.00	<0.05	22.0	1.5	NA	0 77	NA	448.0	2.9	160	3.10	6 76	NA	13.06	-240	2 4 1
MW-31		0.92	0.00	0.00	<0.05	9.0	4.6	NA	1.40	NA	48.6	1.1	270	12 00	671	NA	13 90	-111	2.88
MW-32	5	2.60	0.36	0.00	<0.05	20.0	5.5	NA	1 80	NA	352.0	3.0	240	4.60	6.60	NA	13 54	-224	3 16
MW-9S	4	1.64	0.72	0.00	<0.05	14.0	13.0	NA	1.80	NA	8.39	<1.0	210	7.40	6.85	NA	14.11	-148	1 89
MW-33					<0.05	9.0	0.84	NA	0.71	NA	59.5	10.7	380	15.00	6.47	NA	13.95	-289	5.84
AREA 2	(· · · · · · · · · · · · · · · · · · ·	(<u>)</u>		anti i della					(H.). 1977						
TW-02R	168	0 83	0.10	0 02	<0.05	±7.0	10.0	NA	8.60	NA	12.9	80	200	2.40	6.43	NA	12.97	-199	5 4 9
MW-34	2	< 0.05	0.04	0 00	0.06	11.0	40	NA	1 10	NA	22 9	14	260	5 20	6.68	NA	13.07	-160	2.08
MW-35	7	<0.05	0 30	0.00	0.06	170	8.5	NA	0.83	NA	73.5	<1.0	290	1.40	6.57	NA	16.61	-78	1 270
MW-36					<0 05	110	<0 1	NA	2.90	NA	63.9	77	290	8 10	6.57	NA	14 25	2.5	412
AREA 3		2014-120				and the second	44 <u>-</u> 17 - 18	State of the second	Sec. Call				Section 1			a da antaria da antari			
MW-3S	6	1.20	0 13	0 12	<0.05	150	NA	NA	NA	NA	11.5	2.6	130	97	6 74	NA	13 57	-232	0.78
MW-8S	П	8.67	0.34	0.00	<0.05	8 2	39.0	NA	1.70	NA	11.5	3.4	650	7 00	6.25	NA	14.10	-254	3.94
MW-27	87	2.61	0.09	0.04	<0.05	13	34.0	NA	0.96	NA	18.2	2.7	290	6 90	6.56	NA	15 34	-158	2 65
MW-28	12	1 56	2 40	0.08	< 0.05	71	45.0	NA	2.30	NA	15.9	1.3	520	11.0	6.43	NA	14.03	-149	3 68
MW-29					<0.05	18.0	0 75	NA	0.096	NA	63.9	12.8	99	7.10	701	NA	12.82	-307	2.33
MW-30					<0.05	20.0	<01	NA	0 092	NA	66 5	114	140	4.90	6 92	NA	12 18	-277	2 50

Notes:

- 1. Pmol/mL = Picomoles per milliliter
- 2. mg/L = Milligrams per liter
- 3. C = Degrees Celcius
- 4. mV = Millivolts
- 5. mS/cm = Millisiemens per centimeter
- 6. -- = Not measured
- 7. < = Parameter was not detected at the listed limit.
- 8 Fe = from
- 9 Mn = Manganese
- 10 D.O. = Dissolved oxygen
- 11 Temp. = Temperature
- 12. ORP = Oxidation/reduction potential
- 13. Cond. = Conductivity
- 14. PLFA = Phospholipid fatty acids
- 15. Turnover Rate = The summation of cy17.0/16:1w7c plus cy19.0/18.1w7c.

16. Environmental Stress = The summation of 16:1w7t/16.1w7c plus 18:1w7t/18:1w7c.

17. NA - Due to laboratory error or equipment malfunction, these parameters were not measured.

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring + 45			.(ft.AMSL)			100 a	Ethyl-			Trichloro-	-	N.N-dimethyl	
Well MW-1	Date	Top 370.30	Bottom 355.30	Acetone <100	Senzener:	Toluene <1	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	Xylene*	Methanol*, <1,000	ethene <1	Apiline.	** aniline <10	Chloride <
M W-1	1/89	370.30	333.30	<100	<1	<1			<1,000	<1	<11	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91	1		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92	1		<100	<	<1	<1	<3	<1,000	<1	<10	<10	<1
	8/95	1		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	9/98	1		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99	1		0.7 JN	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00	1		<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00]		8 J	<10 J	3 J	<10 J	5 J	<1,000	<10 J	<10 J	<10	<10 J
	3/01]		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	10
	9/01			<10	<10	<10	<10	<10	<1,000 J	<10	<10	<10	<10
MW-2S	3/88	368.10	353.10	<1,000	1,900			2,800	<1,000	<10	<10	<10	<10
	1/89			<1,000	2,000,655	65	330	1,200	<1,000	<10	<11	<11	<10
	11/89			<1,000	1,800	<100	360	810	38,000	<100	<100	<100	<100
MW-3S		365.10	350.10	<100	<1	<1	<1	<1		50	<10	<10	110
9	1/89	-		<10,000	<100	120	<100	<100	<1,000	1,100	<11		4,700
	11/89	-		<10,000	<100	<100	<100	<100	<1,000	100	<52		2.700
	11/91	4		2,900	10	10.5	4	31	<1,000	<10	790	170	<10
	8/95	-		<1,000	<5	<5	<5	<5	<1,000	<5	15	2 J	<10
	9/98	4		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99	4		<10	<u>1J</u>	0.7 J	<10	<10	<1,000	<10	91	<10	<10
	3/00	4		<10 J <10 J	<10 1 J	<10	<10 <10 J	<10 <10 J	<1,000 J	<10 <10 J	<10	<10	<10
	3/01	4		<10 J	<1J <10	<u> </u>	<10 J	<10 J	<1,000		2 J <10	<u>1J</u>	<10 J
	9/01	4		<10		<u><10</u>	1J	2 J	<1,000 <1.000 J	<10 <10	690 D (69)*(<10 4 J	<10 <10
MW-3D	8/95	343.80	339.00	<1,000	<25 D	<25 D	<25 D	<25 D	<1,000 J	<25 D	1 J	4J 5J	200 Desc
MW-3D MW-4S	3/88	365.50	350.50	<100	$\frac{1}{1}$ <1	<1	<1	<1	<1,000	<1	<10	<10	<1
11111-10	1/89	1 505.50	550.50	<100	<1	<1	<1	<1	<1,000	<1	<10	19	280
	11/89	1		<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-5***	3/88	363.30	348.30	<100	<1	<1	<1	<1	<1,000	<1		130	
1	1/89	1		<100	<1	<1	<1	<1	<1,000	<1	34	<11	<1
1	11/89	1		<100	<1	<1	<1	<1	<1,000		17		<1
MW-6**	1/89	365.50	355.90	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
(Replaced by MW-6S)	11/89	1		<10	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	8/95	1		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
MW-7**	1/89	367.00	357.40	<100	</td <td><1</td> <td><1</td> <td>2</td> <td><1,000</td> <td><1</td> <td><11</td> <td><11</td> <td>100-</td>	<1	<1	2	<1,000	<1	<11	<11	100-
	11/89	1]	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1

Ň

8

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring Well	Sampling Date	Screen Elev	((t. AMSL) Bottom	Acetone	Pennond		Ethvi- * benzene *	Xviene***	Methanol	Trichloro- ethene		N.N-dimethy	
MW-8**	1/89	364.70	355.10	<1.000.000	<10.000	<10.000	<10.000	<10.000	430.000	<10,000	2,900		3-2110-000
(Replaced by MW-8S)	11/89	504.70	555.10	470:000	<10,000	<10,000	<10,000	<10,000	300,000	<10,000	8.500	2014S2-000	2 Storig Provide Incombusition of the science of the second second second second second second second second second second second second second second second second second second se
(Replaced by WW-83)	11/91			<1.000.000	<10,000	<10,000	<10,000	<30.000	150,000	<10,000	8.000	Michael Michael School And And	51-600.000
	8/95			<1,000	<250,000D	<250,000D	<250,000D	<250,000D	22,000	60,000 JD	<25,000D	A COMPANY	77200.000 D
	9/98	1		<10,000 J	<10,000	<10,000	<10.000	<10,000	7,900	3,300 J	í de la companya de la	an ministration	s action der territer annander annander
	2/99	1		<20,000	<20,000	<20,000	<20,000	<20,000	16,000JN	11.000 J	- sugniture 2	S A SULLEY	S6502000 DB
	7/99	1		10 J		19352411 12 10	58.1	220.1	17.000	11.000.5	એ પ્રતાણ	000000000000000000000000000000000000000	The second
	3/00			<100,000	<100,000	<100,000	<100,000	<100,000	30,000 J	<100,000	Strain .	220000 DM	31,300,000
	9/00			<50,000 J	<50,000 J	<50,000 J	<50,000 J	<50,000 J	14,000 J	9,200 J	Section at a	5.0552000	440.000 B.J.
	3/01			<50,000	<50,000	<50,000	<50,000	<50,000	53,000	E1,000 J	2000 0 Mars		0.000,000
	9/01			<400	<400	430		680	8,900 J	18,000 JD	21,000**	29:0000	2440,000 BD
MW-9**	1/89	365.60	356.00	1,600	NA	64		2000	<1,000	<10	660	1,200	1,500
(Replaced by MW-9S)	11/89			<1,000	48		60	60	<1,000	<10	670		<10
	11/91			<100	<10	9 ***		30	<1,000	</td <td>95</td> <td>18</td> <td><1</td>	95	18	<1
	8/95			<1,000	it JD		69 D		<1,000	<50	50	28	110 D 🗐
	7/99			<10	4 J	2 J	9 J 👘	1807-04	<1,000	<10	<10	5 J	<10
	3/00			<10	2.1	<u>2 J</u>	11	21	<1,000 J	<10	2 J	9 J	<10
	9/00	4		<10 J	21 J	<u>2 J</u>	6 J		<1,000	<10 J	1J	6 J	<10 J
1	3/01	4		<10	1 J	<u>3J</u>		777 618 618 618 618 618 618 618 618 618 618	<1,000	<10	2 J	11	<10
	9/01			<10	10	3 J	7 J		<1,000 J	<10	<10	10	<10
MW-10	1/89 11/89	355.50	345.90	<1,000,000	<10,000	<10,000	<10,000	<10,000	210,000 <1,000	<10,000	720	9,400	520.000 28.000
(Replaced by MW-9D)	11/89	-		<100,000	<1,000 <1	<1,000 3	<1,000	<1,000	<1,000	<1,000	230	<10	41
	8/95	-		<1.000	<25 UD	<25 UD	<25 UD	<25 UD	<1,000	<25 UD	<5	<10	350 D
	1/89	355.10	345.50	<100	<1	<1	<1	<1	8,400	<1	<12	<10	1
(Replaced MW-6D)	11/89	555.10	545.50	<100	<1	<1	<1	<1	<1,000	<1	×12	<12	<1
(Replaced M + OD)	8/95	-		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	12/94	359.90	354.90	<380	<10	<10	<10	<10	880	<10	<\$	<10	<10
	8/95		35	<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<26
	10/95	1		NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
MW-11D	12/94	349.80	344.80	<310	<5	<	<5	<5	2,100	<5	<5	<10	<5
	8/95	1		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	10/95			NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
MW-12D**	1/89	354.80	345.20	<100,000	<1,000	<1,000	<1,000	<1,000	12,000	<1,000	69/-	00122490	120,000
(Replaced MW-8D)	11/89	1		69,000	<1,000	<1,000	<1,000	<1,000	39,000	<1,000	<1,000	4.900	360,000
	11/91	1		<1,000,000	<10,000	<10,000	<10,000	<30,000	<10,000	<10,000	750		220,000
	8/95	4		<1,000	450 JD	430 JD		1,250 JD	<1,000	<1,300 D			<13,000 D
	8/96	<u> </u>		13	<10	<10	<10	<10	<1,000	2 J	<5	<10	40
MW-138	11/89	368.70	359.10	<100	3.00	<1	<1	<1	<1,000	<1	<52	<52	<1
	11/90	4		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91	4		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92	1 200 000	10.10	<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
MW-14D***	1/89	359.00	349.40	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
	11/89	170.00	1/0.25	<100	<1 ·	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-155	1/89	370.00	360.25	<100	<1	<1	<1	<1	<1,000	<1	<11 <52	<11 <52	
L	11/89		<u> </u>	<100	<1		1 <1		<1,000	<1	<52	<52	<1

Ĩ

8

3

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

	Sampling Date	Screen Elex	(fc. AMSL) Bottom	Acetone	Benzene	Toluena	Ethyl- benzene	Xviene*	Methanol		Aplline	N,N-dimethyl	Methylene Chioride
MW-16D***	1/89	350.80	341.20	<100	<1	<1	<1	<1	<1.000	<1	<11	<11	<1
	11/89	1		<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-17***	11/90	365.70	356.10	<100	<1	<1	<1	<3	<1.000	<1	<10	<10	<
(Replaced by MW-17R)	11/91	1		<100	<1	<1	<1	<3	<1.000	<1	<10	<10	<1
	11/92	1		<100	<1	<1	<1	<3	<1.000	<1	<10	<10	<1
	8/95	1		<1,000	<5	<5	<5	<5	<1.000	<5	<5	<10	<11
	10/95	1		NA	<5	<5	<5	<5	NA	2 J	NA	NA	<5
	8/96			11	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97	1		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	1 J	<10	<10	<10	<1,000	<10	<10	<10	<10 J
	3/00			<10	8 J	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00			<10 J	15 JA	<10 J	<10 J	<10 J	<1,000 J	<10 J	24 J	4 J	1 J
	3/01			<10	8 1	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	5 J	<10	<10	<10	<1,000	<10	<10	<10	<10
MW-18	11/89	325.15	316.15	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<]	<3	<1,000	<1	<10	<10	<1
	12/94			<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95]		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96]		<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98^			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00]		<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
MW-19	11/89	318.45	309.45	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<
	12/94	4		<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95	1		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<12
	10/95	4		NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
1	2/96	1		<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96	4	1	<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97	1		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97	1		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98^	1		<10	<10	<10	<10	<10	<1,000	<10	<5	5 J	<11
1	2/99	4		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99	4		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000	<10 J	<10	<10	<10 J
	3/00	4		<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00	4		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	< <u>10 J</u>	<10	<10 J
	3/01	4		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
L	9/01	1		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10

F

1

1 📕

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring: Well	Sampling Date	Screen Elev Top	. (ft. AMSL) Bottom	Acetone	Benzene	Toluene	Ethyl-	Xylene*	Methanol	Trichloro- ethene	Aniline	N,N-dimethyl- aniline	Methylene Chloride
MW-20***	11/89	329.85	320.85	<100	<1	<1	<]	<1	<1.000	<1	<10	<10	<1
1.1.0 20	11/90	529.00	320.05	<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
1	11/91			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
MW-21***	11/89	323.65	314.65	<100	<5	<1	<1	<1	<1.000	<1	<10	<10	<1
MW-22	11/89	368.55	359.55	<100	<1	<1	<1	<1	<1.000	<1	<10	<10	<1
MW-23S	12/94	364.10	354.10	<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1.000	<5	<5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96	1		<10	<10	<10	<10	<10	<1.000	<10	÷ 1.	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	11	<10	<10
	8/97	1		12	<10	<10	<10	<10	<1,000	<10	92	<10	<10
	9/98^			<10	<10	<10	<10	<10	<1,000	<10	56	7 JG-20	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	10	<10 J
	6/99	1		<10 J	<10	<10	<10	<10	<1,000 J	<10	<10 J	2 J	<10 J
	7/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00			<10	<10	<10_	<10	<10	<1,000 J	<10	<5	2 J	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	2 J	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
MW-231	12/94	341.20	336.20	<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95]		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96	4		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10		<10	<10	<1,000	<10	<5	<11	<10
		4		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10 J
	7/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00	-		<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
1	9/00	4		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
	3/01	4		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<u>4 J</u>	<10	<10	<10	2 J	<1,000	<10	<10	<10	<10
MW-24S***	12/94	358.40	352.40	<10	<5	<5	<5	<5	<1,000	<5	<5	<10	<5
(Replaced by MW-24SR)	8/95	4		<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96	-		<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97	4		<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98^	ł		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	6/99	4		<10 J	<10	<10	<10	<10	<1,000 J	<10	<10 J	<10 J	<10 J
	7/99	4		<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00	{		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
L	9/01	l		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10

.

Ņ,

,

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS
BEAR STREET FACILITY
SYRACUSE, NEW YORK

Monitoring	Sampling	Screen Elev.	(ft. AMSL)		1.1.1.1.1.1.1.1.1		Ethyl-			Trichloro-		N.N-dimethyl	Methylene
Well	Date	Top	Bottom	Acetone	Benzene	Toluene	benzene	Xylene*	Methanol	ethene	Aniline	aniline	Chloride
MW-24D***	12/94	334.40	341.20	<10	<5	<5	<5	<5	<1,000	<5	<5	<10	<5
(Replaced by MW-24DR)	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98^			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	7/99			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000	<10 J	<10	<10	<10 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
	9/01			<10	<u><10</u>	<10	<10	<10	<1,000	<10	<10	<10	<10
MW-25S	8/95	361.20	356.20	<1,000	<5	<5	<5	<5	<1,000	<5	<5	0.7 J	<10
	10/95			NA	<5	<5	<5	<5	NA	<5	<5	<10	<5
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97	4		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99	-		<10	<10	<10	<10	<10	<1,000	<10	130	<10	<10 J
	6/99			<10 J	<10	<10	<10	<10	<1,000 J	<10	110 J		<10 J
	7/99			<10 J	<10	<10	<10	<10	<1.000	<10	5 J	<10	<10
	3/00	-		<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01	210.22		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
MW-25D	8/95	349.55	344.55	<1,000	<5	<5	<5	<5	<1,000	<5	<5	1J	<5
	10/95			NA	<5	<5	<5	<5	NA	3 J	<5	<10	<5
	<u>8/96</u> 8/97			15	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<5	<11	<10
	3/00	-		<10 <10	<10 <10	<10	<10 <10	<10	<1,000	<10	<10	<10	<10 J
	3/00			<10	<10	<10	<10 -	<10	<1,000 J	<10	<5	<10	<10
	12/96	365.00	355.30	<10	<10	<10	<10	<10	<1,000 <1,000	<10	5 J	<10	<10
	9/98	363.00		23	<10		<10	· · · · · · · · · · · · · · · · · · ·	<1,000	<10 <10	<5 340 D.I	<10	<10
IVI W -2 /	7/99	502.50	354.50	<10 J	4.1	<u>4J</u> 2J	3 J	3 J 8 J			20.002010.00000000000000000000000000000	<10	<10
	3/00	-		<10 J	4J 6J	<u>2 J</u> <10	-8J		<1,000 <1,000 J	<10 <10	740.D	<10	<10
	9/00			<10 J	03 4J	<10 <10 J		2J 1J	- /	<10 <10 J	16 J	2 J	<10
	3/01	-		<10 J	5132	<10 J	<u>3J</u> 5J	2 J	<1,000 J <1,000	<10 J		2J	1 J <10
	9/01			<10	535 535 ⁴ ***	<10	2 J	<10	<1,000 J	<10	260 D= 	<u>2</u> <10	<10
MW-28	9/98^	363.60	355.60	<5,000 J	<5,000	<5,000	<5,000	<5,000	2,200	<5,000	546 D	<u><10</u> 54	64.000 J
1111-20	7/99	505.00	555.00	<500 J	<500	<500	<500	<500	<1,000	<500	1.100 D	40	39.000 D
	3/00			<10,000	<10.000	<10,000	<10,000	<10,000	<1,000 J	<10,000	1.300 D		39.000 D
	9/00	1		<1.000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	\$4000		\$8,100 BJ
	3/01	1		<400	<400	<400	<400	<400	<1,000 /	<400	-2-2000		5.900 B
	9/01	1		<400	<400	<400	<400	<400	<1.000 J	<400		<10	4.700 8
MW-29	9/98	362.90	345.90	<10	<10	<10	<10	2 J	<1,000	<10	<10		<10
	2/99	1		7 J	<10	<10	<10	1.1	<1.000	<10	5 J	4 J	<10
	7/99	1		<10	<10	<10	<10	<10	<1,000	<10	2 J	4 J	<10
	3/00	1		<10	<10	<10	<10	<10	<1,000 J	<10		61	<10
	9/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J		4 J	<10 J
	3/01	1		<10	<10	<10	<10	<10	<1.000	<10		4 J	<10
	9/01	1		<10	<10	<10	<10	<10	<1,000	<10			<10

1

蟗

-

厚

5

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring	Sampling	Screen Elev	.(ft: AMSL)				Ethyl-	Server - Miller	1	Trichloro-	240	N.N-dimethyl	Methviene
Well	Date	Top	Bottom	Acetone -	Benzene	Toluene	benzene		Methanol		Aniline	aniline	Chloride
MW-30	9/98	363.50	355.50	<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	2/99			7 J	<10	<10	<10	<10	<1,000	<10	<10	2 J	<10
	7/99	-		<10	0.7 J	<10	<10	<10	<1,000	0.5 J	<10	1 J	<10
	3/00	-		<10	<10	<10	<10	<10	<1,000 J	<10	18	2 J	4 J
	9/00	-		<10 J	<1,000 J	<10 J	9 J	2 J	2 J				
	3/01 9/01	-		<10 4 J	<10	<10 <10	<10 <10	<10 <10	<1,000 <1,000 J	<10 <10	80 81	2 J	<10 <10
	9/98	363.70	355.40	4 J <10	12	<10	<10	<10	<1.000 J	<10	8 J 34	<u>1J</u> 4J	<10
1410-51	7/99	1 202.70	555.40	<10	16	<10	<10	<10	<1,000	<10	230 D	4J 3J	<10
	3/00	1		<10	16	<10	<10	<10	<1,000 J	<10	3 J	<u> </u>	<10
	9/00	1		<10 J	12 J	<10 J	<10 J	<10 J	<1,000	<10 J	10		<10 J
	3/01	1		21	11	<10	<10	<10	<1,000	<10	<10	5 J	<10
	9/01			<10	-14	<10	<10	<10	<1,000 J	<10	91 D	3 J	<10
MW-32	9/98	364.00	356.00	<10	16	2 J	5 J	3 J	<1,000	<10	6,300 D	4 J	<10
	7/99			3 J	14	2 J	4 J	<10	<1,000	56	<10	3 J	<10
	3/00	_		<10	5 J 👘	<10	<10	<10	<1,000 J	<10	800 D	<10	<10
	9/00	-		<10 J	12 J	<10 J	<10 J	<10 J	<1,000	<10 J	4,500 D	<10	<10 J
	3/01	4		<10	5 J	<10	<10	<10	<1,000	<10	1,900 D	<u>2 J</u>	<10
MW-33	9/01	244.10	25(10	<10	10	<10	<10	<10	<1,000 J	<10	-1,100 D	<u>2 J</u>	<10
IVI W-33	9/98 2/99	344.10	356.10	<10 <10	<10 <10	<10 <10	<10 <10	<10	<1,000	<10	9 J	6 J 6 J	<10
	7/99	4		5 J	2 J	0.7 J	<10	<10 <10	<1,000 <1,000	<10	120 150		<10 <23
	3/00	1		<10 J	<10	<u> </u>	<10	<10	<1,000 J	<10	51		11
	9/00	1		45 J	4.1	<u> </u>	<10 J	<10 J	<1,000 J	<10 J	540 D	23	330 DJ
	3/01	1		17 J	<20	<20	<20	<20	<1,000	<20	1,300 D	-16	370 B
	9/01	1		21	5 J	<10	<10	<10	<1,000 J	<10		12	<18
MW-34	9/98	362.70	354.70	<10	<10	<10	<10	<10	<1,000	<10	83	<10	<10
	7/99			2 J	0.9 J	1 J	<10	<10	<1,000	<10	380 D	2 J	<10
	3/00	1		<10 J	1 J	2 J	<10	<10	<1,000 J	<10	200 D	3 J	<10
	9/00	4		<10 J	<1,000	<10 J	320 D	4 J	<10 J				
	3/01	4		<10	<10	<u>2</u> J	<10	2 J	<1,000	<10	700 D	5 J	<10
X/112.2.5	9/01	2(2.00		7 J	2 J	2 J	<10	2 J	<1,000 J	<10	76	<u> </u>	<10
MW-35	9/98 7/99	363.00	355.00	<10	<10	<10	<10	<10	<1,000	<10	<u>6</u> J	5 J	<10
	3/00	-		<10 <10 J	0.7 J <10	<10 <10	<10	<10	<1,000 <1,000 J	<10	3 J <10	4 J	<10 <10
	9/00	1		<10 J	<10 <10 J	<10 <10 J	<10 <10 J	<10 <10 J	<1,000 3	<10 <10 J	<10	2 J 3 J	<10 <10 J
	3/01	1		<10 J	<10	<10 3	<10 J	<10 3	<1,000	<10 J	<10	<10	<10 J
1	9/01	1		<10	<10	<10	<10	<10	<1,000 J	<10	<10	2 J	<10
	9/98	363.60	355.60	<10	<10	<10	<10	<10	<1,000 J	<10		6.	<10
	2/99	1		<10	<10	<10	<10	<10	<1,000	<10	860 D	4 J	<10
	7/99]		8 J	0.8 J	<10	<10	<10	<1,000	<10	250	<10	<10
	3/00			<10 J	<10	<10	<10	<10	<1,000 J	<10	60 3	7 J	<10
1	9/00			5 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	8 J -	6 J -	2 J
	3/01	4	1	<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			54	<10	<10	<10	<10	<1,000 J	<10	350 D.4/	5 J	<10

P

.

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring	Sampling	Screen Elev				-	Ethyl-			Trichloro-		N.N-dimethyl	
Well TW-01	Date 12/96		Bottom 355.40	Acetone		Toluene	benzene	Xylene*	Methanol	ethene		anlline	Chloride
1 W-01	9/98	365.10	333.40	<10	82 15	<u> </u>	6 J 4 J	4 J <10	<1,000 <1,000	<10 <10	4.400 DEJ?	<u>- 13</u>	4 J <10
	2/99	-		<10	24	2 J	4 J 2 J	2 J	<1,000	<10	9,000 D	4 J 5 J	<10
	7/99	-		<10	16	1J	2 J 3 J	<10	<1,000	<10	4,400 D	5J 4J	<10
	3/00	-		<10	16	<10	<10	<10	<1,000 J	<10	280 D	4J	<10
	9/00	1		<10 J	11.1	<10 J	<10 J	<10 J	<1,000 9	<10 J		2 J	<10 J
	3/01	1		<10	5.J	<10	<10	<10 5	<1,000	<10 3	<10	<u> </u>	<105
	9/01	1		<10	10	<10	<10	<10	<1,000 J	<10	<10	2 J	<10
TW-02***	12/96	363.30	353.30	53	10		16		<1,000 \$	585 D			42.449 D
(Replaced by TW-02R)	9/98	1		<500 J	<500 J	<500 J		•* 140 J	5,000	300 J			86.000 D.
	2/99	1		<1.000	<1.000	190 J		150 J	14.000JN	<1.000	83,000 D	7,900	
	7/99	1		630	37		310.00	A.9484670070332 (May be crossed)	<1,000	55	100.000 D		9,700 D
	3/00	1		<1,000 J	<1,000	160 J		240 J	<1,000 J	<1,000	64.000 D		
	9/00]		190 J	28 J	95 J		160 J	<1,000	6 J	79,000	<10,000	390 J
[3/01]		-81		68		130	<1,000	<10	67,000 D	650 J	
	9/01			57	25	70	31	140	<1,000 J	<20	63,000 D	32	48 B
PZ-4D	11/89	350.80	345.90	<100	<1	<1	<1	<]	<1,000	<1	<10	<10	<1
	11/90	_		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	<u>1</u> 1/91			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	0.8 J	<5
	10/95			NA	<5	<5	<5	<5	NA	<5	<5	<10	<5
	8/96	-		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97	1		<10	<10	<10	<10	<10	<1,000	<10	<6	<12	<10
	2/99	4		<10	<10	<10	<10	<u><1</u> 0	<1,000	<10	<10	<10	<10 J
	3/00	-		<10	<10	<10	<10	<10	<1, <u>0</u> 00 J	<10	<5	<10	<10
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
PZ-4S	11/89	362.79	357.88	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90	-		<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/91	4		<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/92 8/95	4		<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	10/95	1		<1,000 NA	<5 <5	<5 <5	<5 <5	<u><5</u> <5	<1,000	<5 <5	<5 NA	<10 NA	<18
	8/96	1		<10	<10	<10	<10	<10	<u>NA</u> <1,000	<5	<u>NA</u> <5	<u>NA</u> <10	<5 <10
	8/97	4		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99	1		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	6/99	1		<10 J	<10	<10	<10	<10	<1.000 J	<10	<10 J	<10 J	<10 J
	3/00	1		<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10 J	<10 J
Į į	3/01	1		<10	<10	<10	<10	<10	<1,000 J	<10	<10	3 J	<10
PZ-5D	11/89	353.50	348.60	<100	<1	<1	<10	<1	<1,000	<1	<10	<10	<10
	12/94	1		<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	2/96	1		<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97	1		<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98^	1		<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<12
	7/99]		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000	<10 J	<10	<10	<10 J
1	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10

1

SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA

McKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK

Monitoring Well			(ft. AMSL) Bottom		Benzened	Toluene	Ethyl-	Xylene*	Methanol	Trichloro- ethene	Anilline	N.N-dimethyl	Methylene Chloride
PZ-5S	11/89	361.42	356.52	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
	12/94			<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97	1		5 J	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98^			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<12
	6/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10 J	<10 J	<10 J
	7/99			<10 J	<10 J	<10 J	<10 J	<10 J.	<u><1,000 J</u>	<1 <u>0</u> J	<10	<10	<10 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<1 <u>0</u> J	<10 J	<10	<u><10 J</u>
	9/01			7 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
PZ-8S ****	9/98	362.60	357.70	<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
PZ-11D**	11/89	352.09	347.19	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
PZ-11S**	11/89	359.09	354.19	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
PZ-12D**	11/89	350.00	345.10	<100	<1	<1	<]	<1	<1,000	<1	<53	<53	<1
	11/90			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<1	3	<1	<10	<10	<1
	11/92			<100	<1	<]	<1	<1	<1,000	<1	<10	<10	<1
PZ-12S**	11/89	360.00	355.10	<100	<1	<1	<1	<]	<1,000	<]	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91]		<100	<1	<1	<1	<3	6	<1	<10	<10	5
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
PZ-13D***	11/89	349.40	344.40	<100	<1	<]	<1	<1	<1,000	<1	<11	<11	<1
PZ-13S***	11/89	359.50	354.50	<100	<1	2	<1	2	<1,000	<1	<11	<11	<1
YSIDEC Ground-Water Standard	ls (Part 700)			50	1	~# <u>5</u> ~	5	5	NA	5-1-1-	5	~ 5	53.0

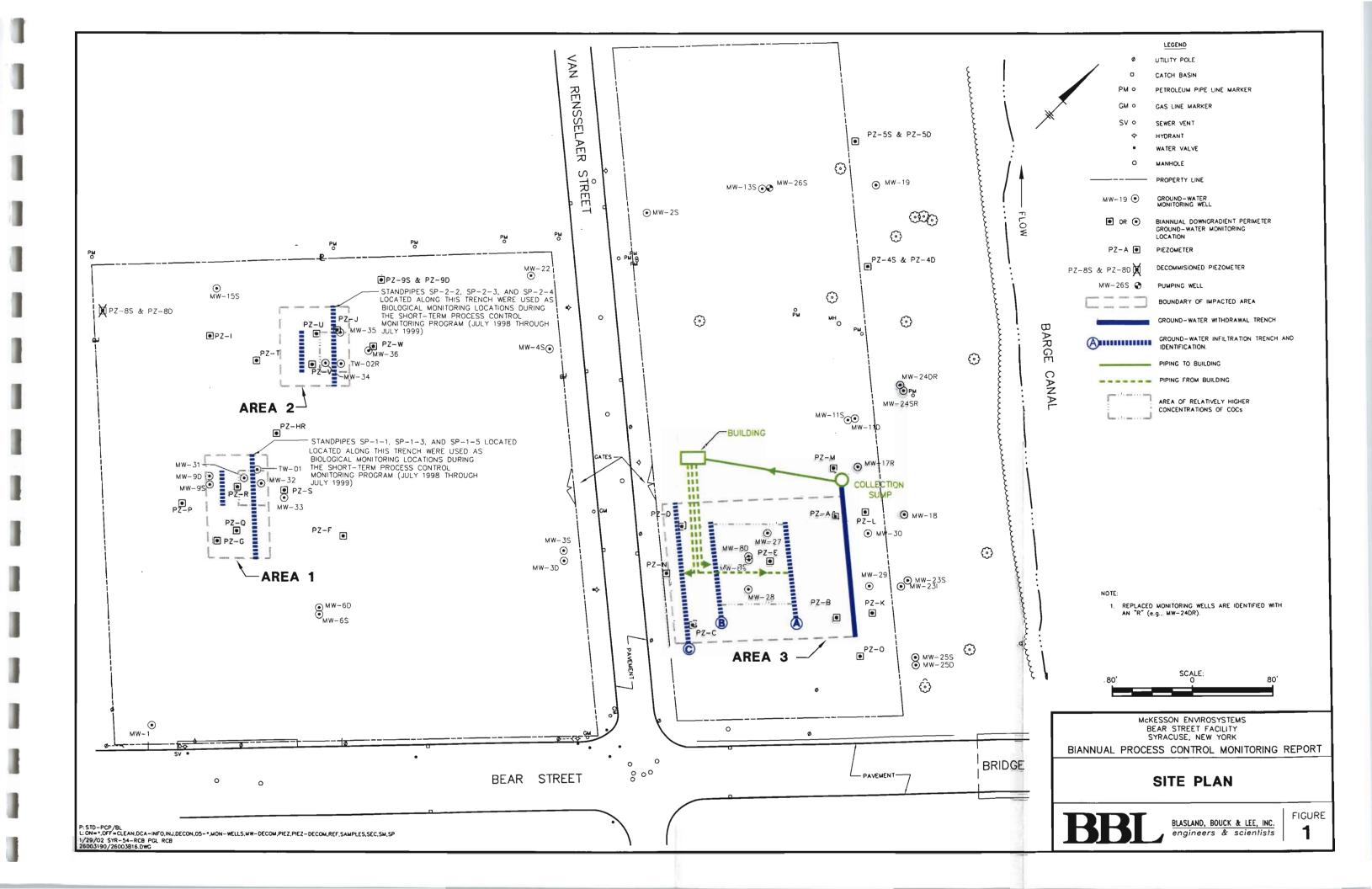
Notes:

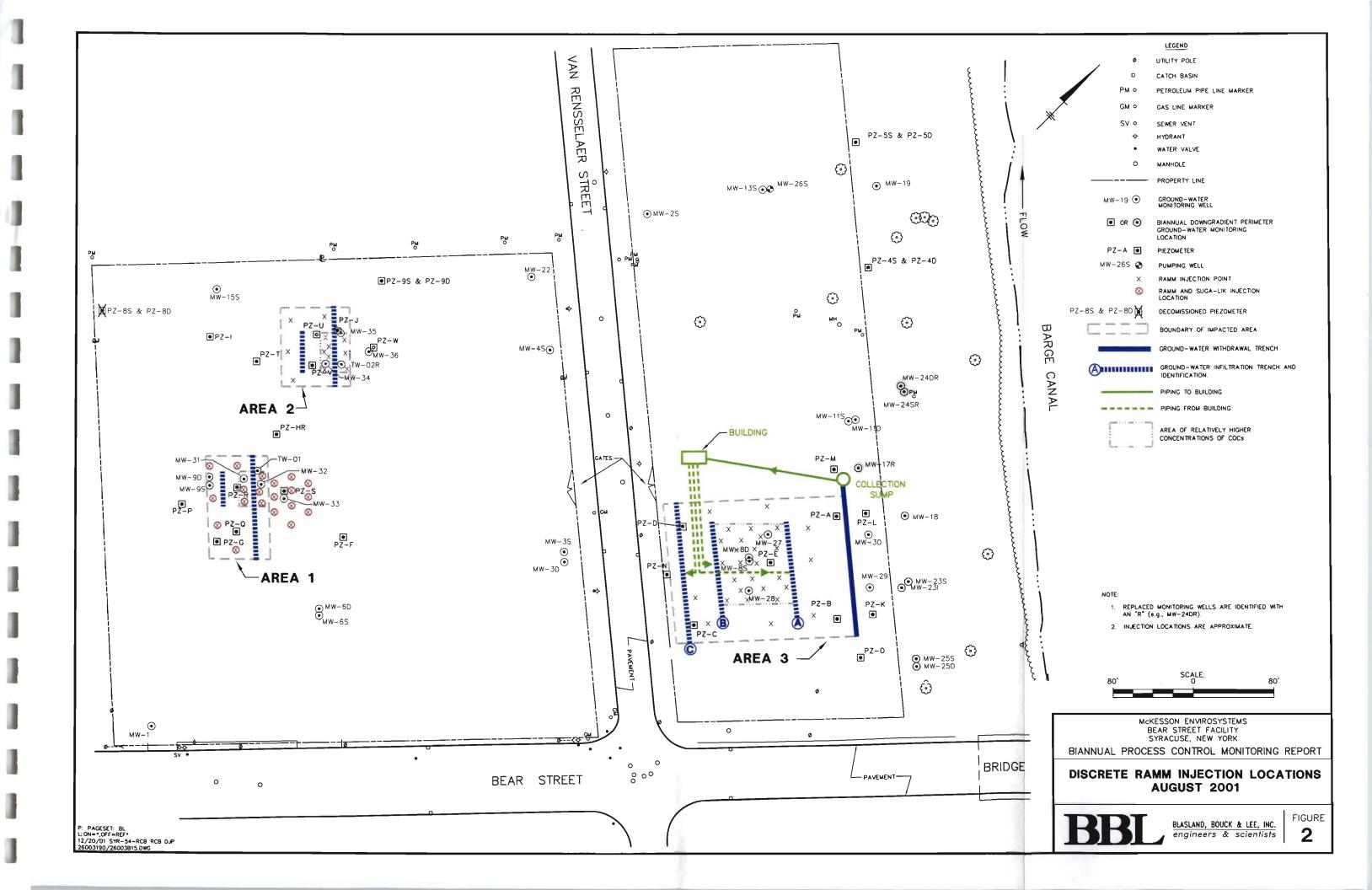
1. Concentrations are reported as ug/L (parts per billion).

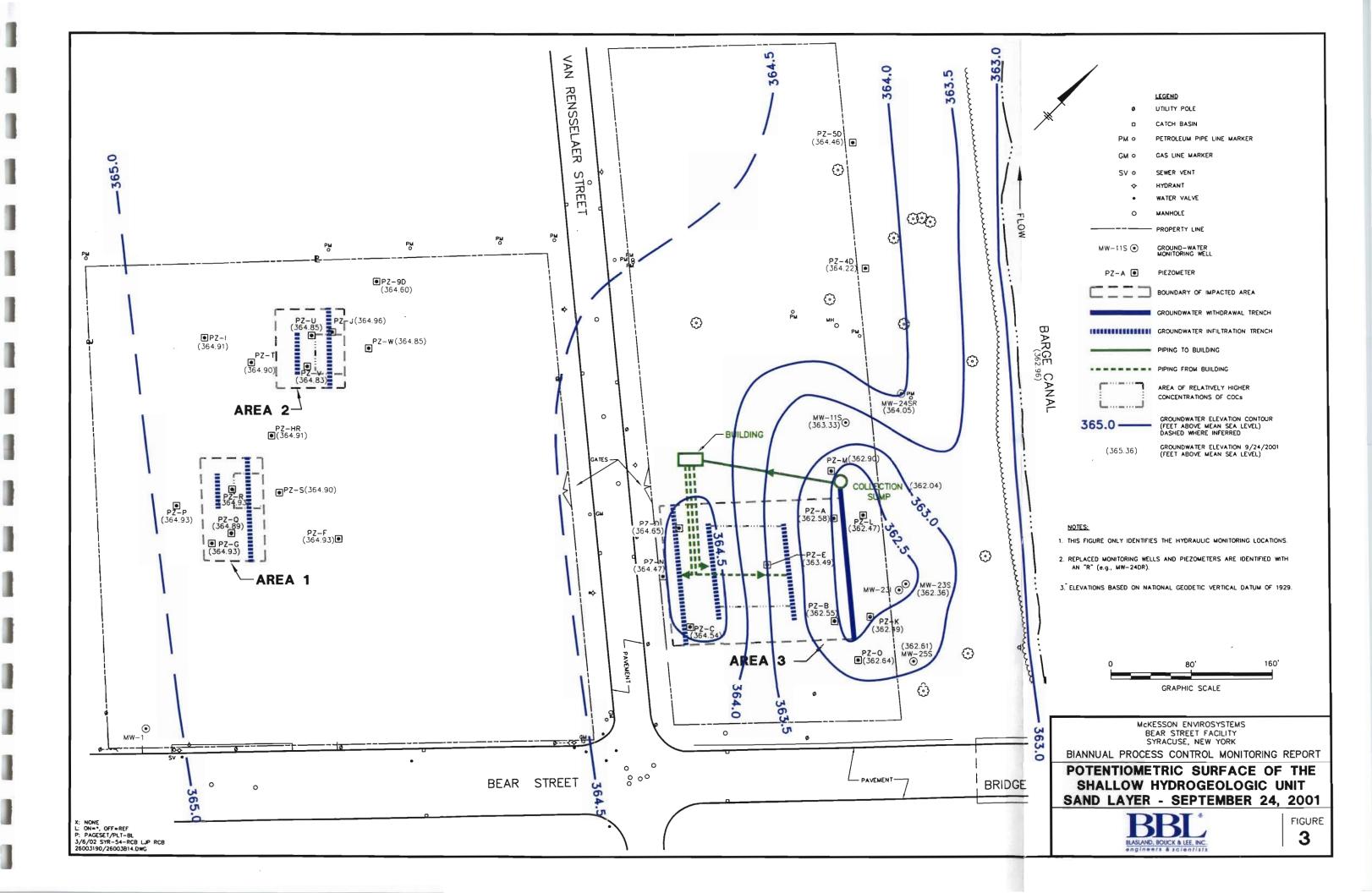
2. • = Data presented is total xylenes (m- and p- xylenes and o-xylenes). For the 1995 data, the listed quantitation limit applies to the analyses conducted for m- and p- xylenes and o-xylenes.

3. ** = Wells/piezometers MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12D, PZ-11D, PZ-11S, PZ-12D, and PZ-12S were abandoned during OU No. 1 soil remediation activities (1994).

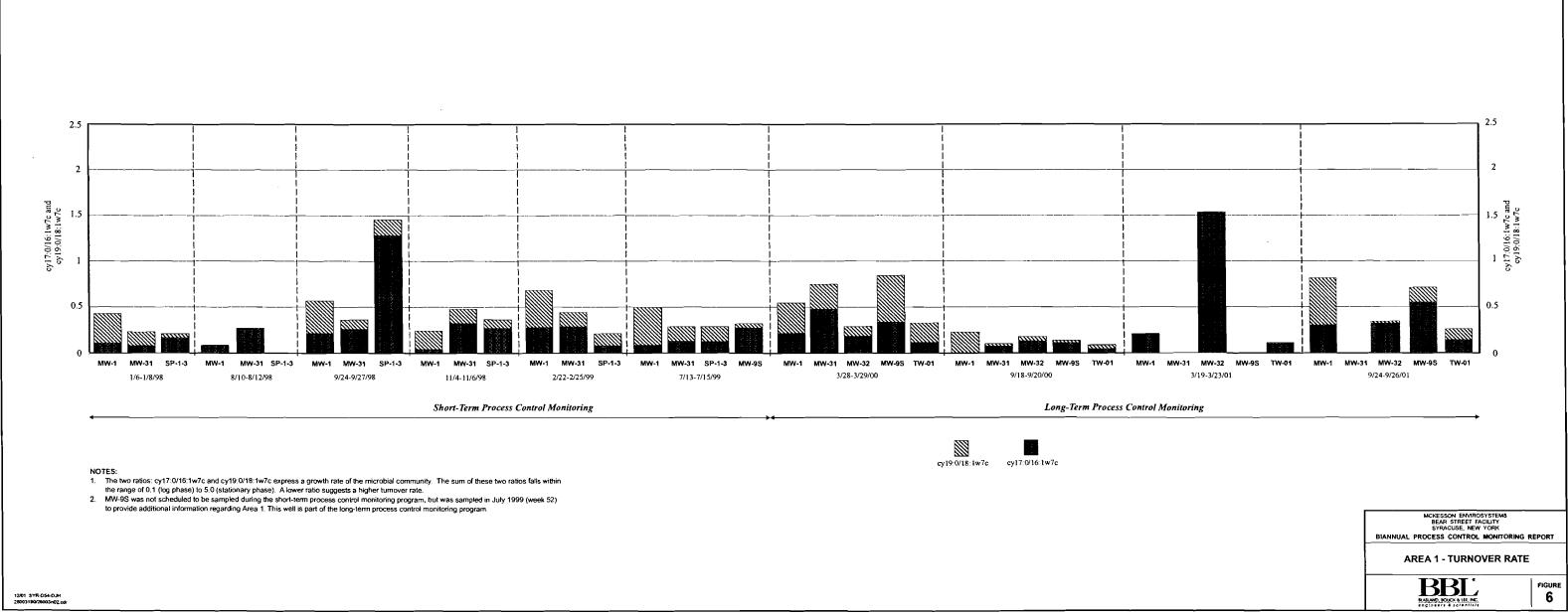
4. *** = Wells/piezometers MW-5, MW-14D, MW-16D, MW-17, MW-20, MW-21, MW-24S, MW-24D, TW-02, PZ-13S, and PZ-13D were abandoned 11/97 - 1/98.

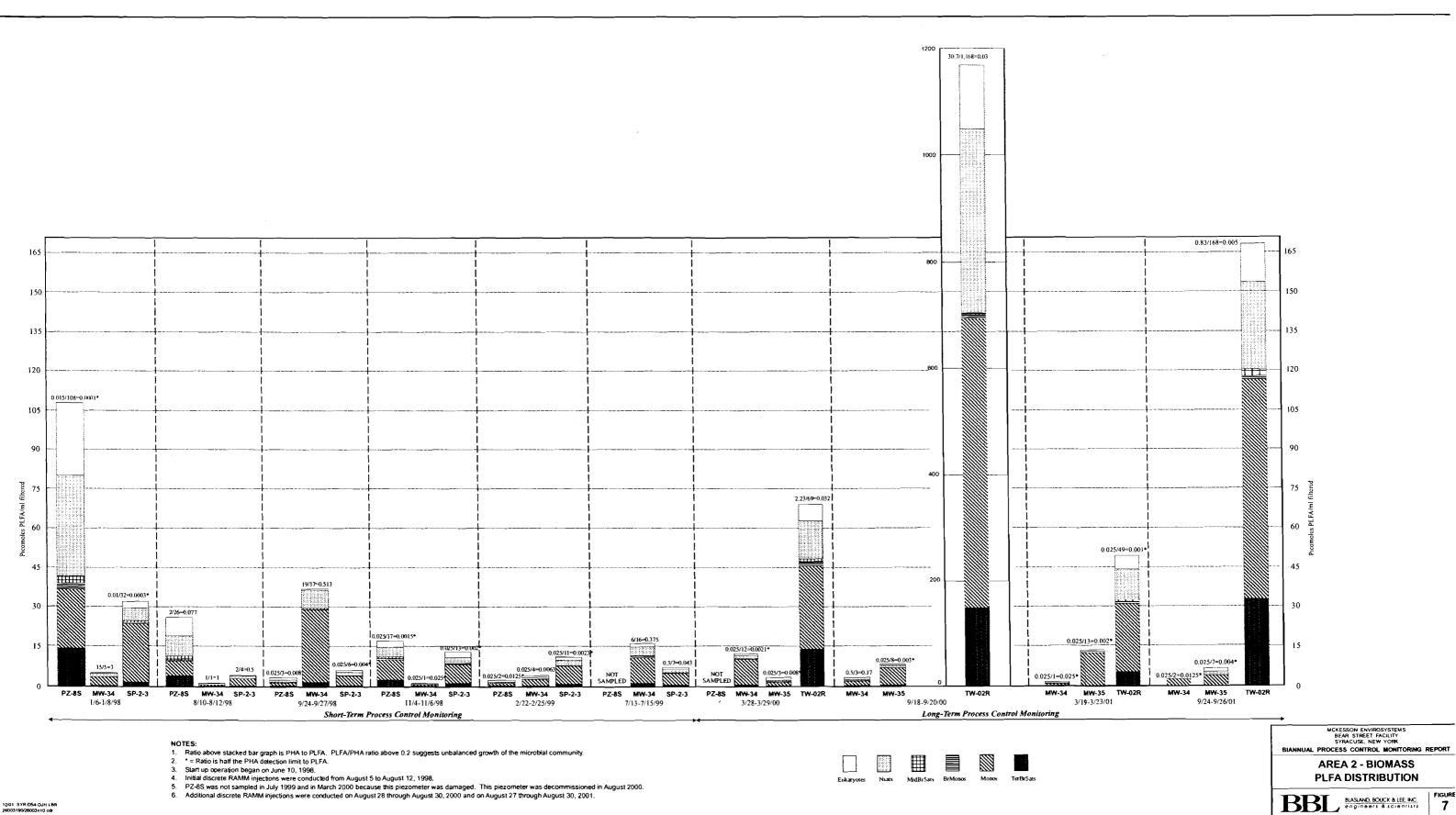

5. **** = Piezometer PZ-8S was decomissioned 8/2000.

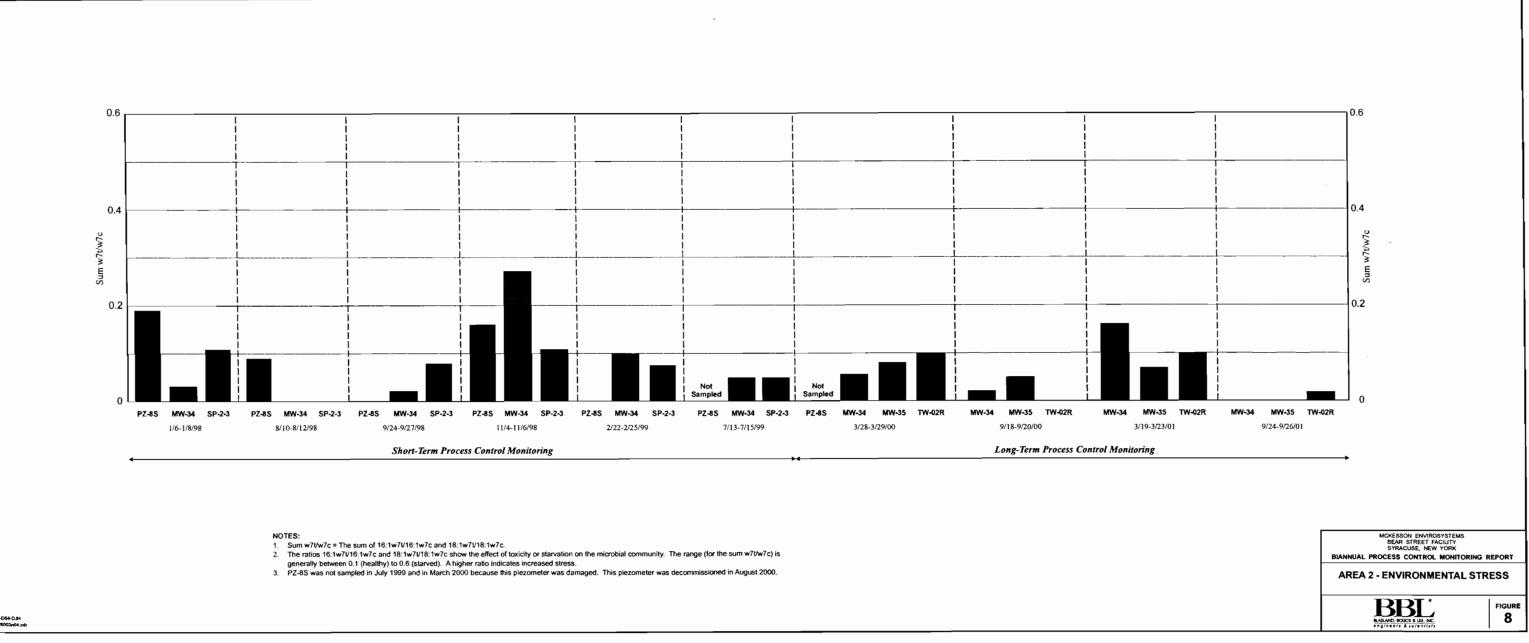

 ^ = MW-18, MW-23I, MW-23I, MW-23S, MW24DR, MW-24SR, MW-28, PZ-5S, and PZ-5D wells/piezometers were resampled for aniline on 12/8/98 and 12/9/98, because the 9/98 results were rejected due to laboratory error.


- 7. <= Compound was not detected at the listed quantitation limit
- 8. D = Indicates the presence of a compound in a secondary dilution analysis.
- 9. J = The compound was positively identified; however, the numerical value is an estimated concentration only.
- 10. E = The compound was quantitated above the calibration range.
- 11. JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- 12. B = The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- 13. NA = Not available.
- 14. Compounds detected are indicated by bold-faced type.
- 15. Detections exceeding NYSDEC Groundwater Standards (Part 700) are indicated by shading.
- 16. Replacement wells for MW-6, MW-8, MW-9, MW-10, MW-11, and MW-12D were installed 8/95.
- 17. Replacement wells for MW-17, MW-24S, MW-24D, and TW-02 were installed 11/97 12/97.
- 18. The laboratory analytical results for the duplicate sample collected from monitoring well MW-23S during the 7/99 sampling event, indicated the presence of methanol at 5.1 mg/l. Because methanol was not detected in the original sample, the duplicate results were determined, based on the results of the data validation process, to be unacceptable. Furthermore, methanol has not been previously detected in groundwater samples collected from this monitoring well. Accordingly, the detection of methanol appears to be the result of a laboratory error and not representative of actual ground-water quality in the vicinity of monitoring well MW-23S.
- ^^ = Because aniline was detected at monitoring well MW-3S at a concentration of 690 ug/l during the September 2001 sampling event, this well was resampled for aniline on November 8, 2001. Aniline was detected in MW-3S during the November 8, 2001 resampling event at a concentration of 69 ug/l.


Figures



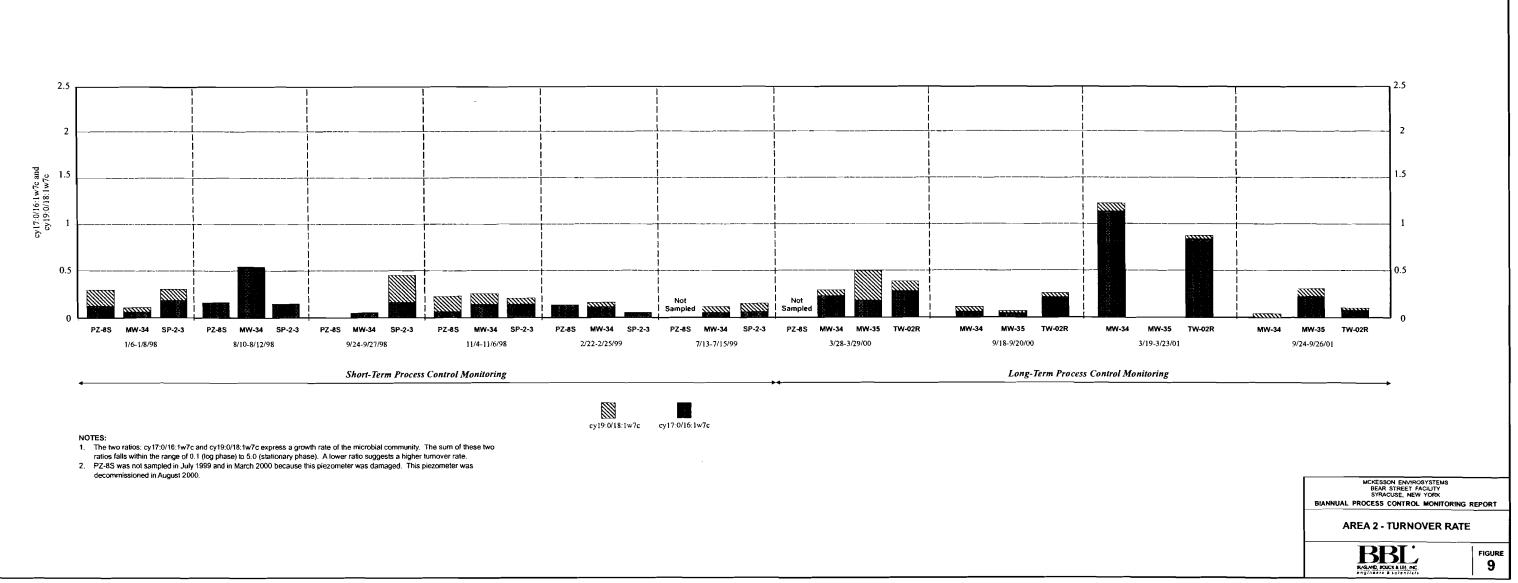




· ·

• • • • • • • • • • • •

• .

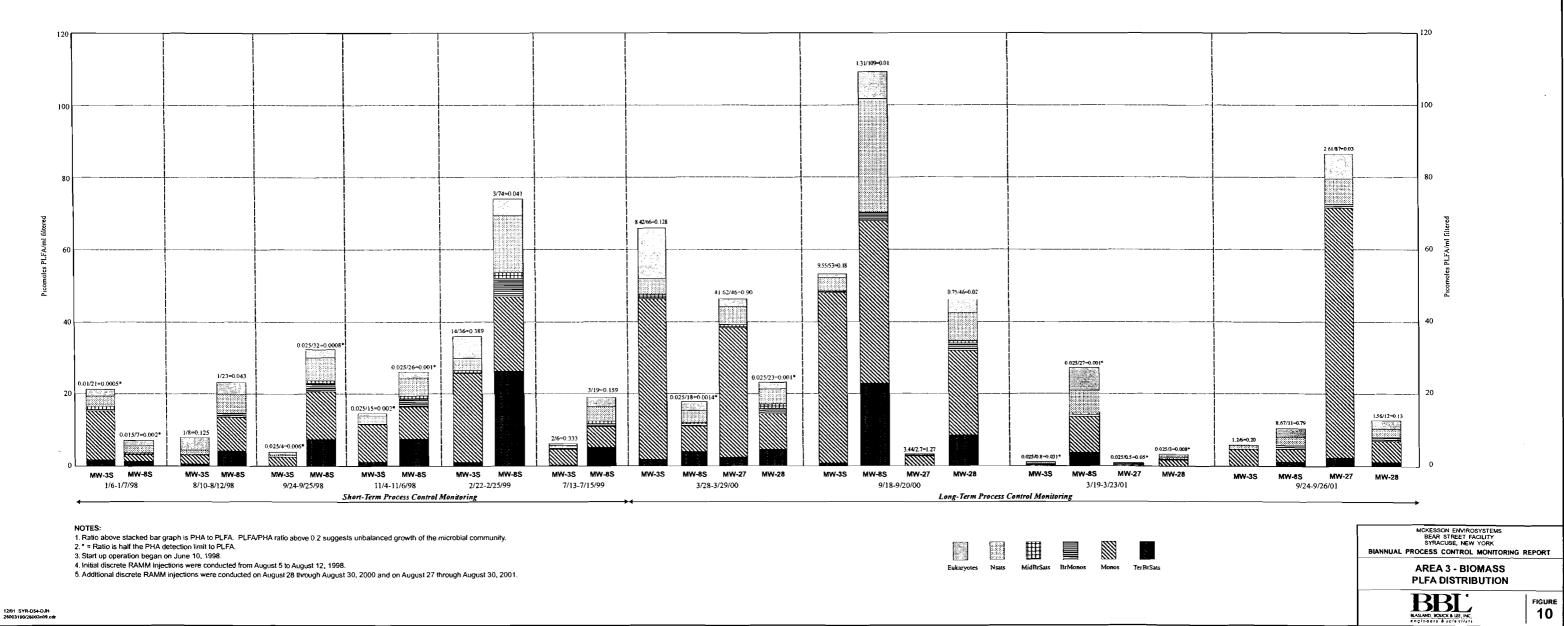

and the second second

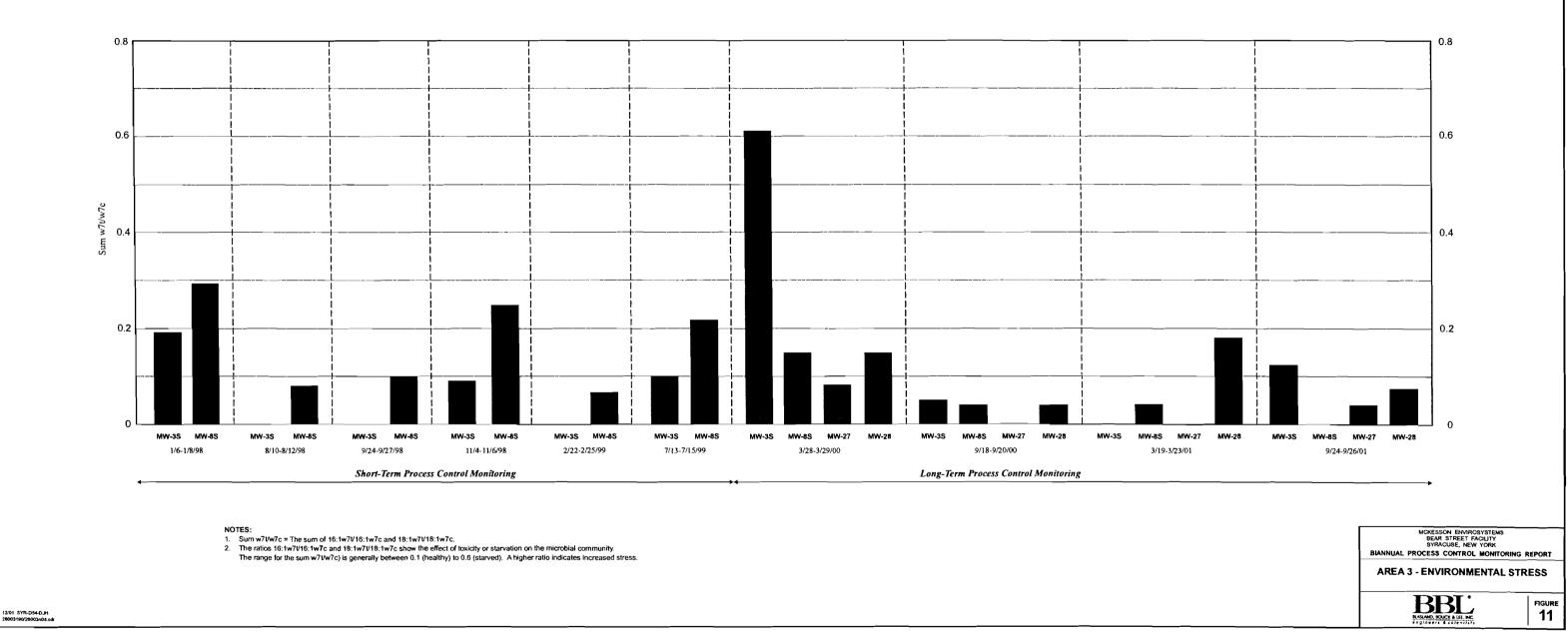
. . . .

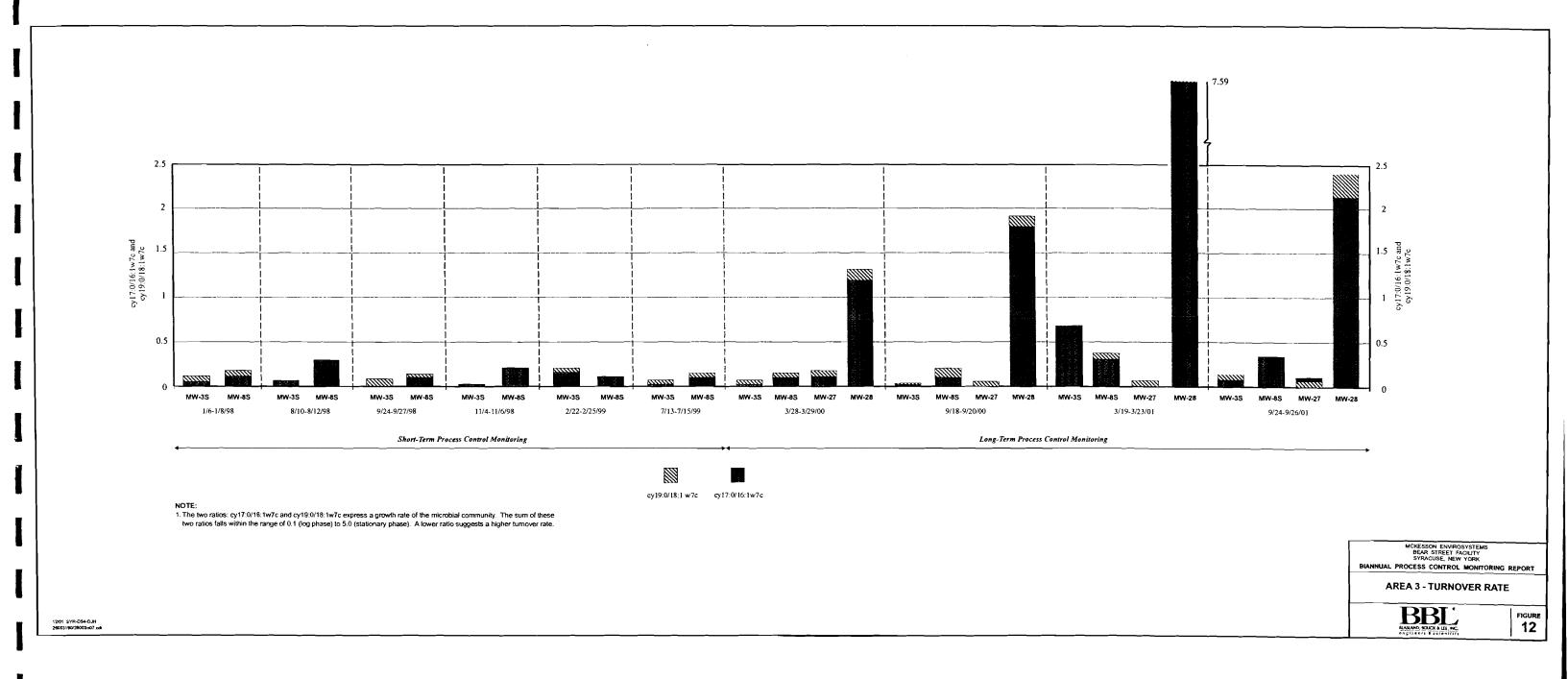
· .

e e la real

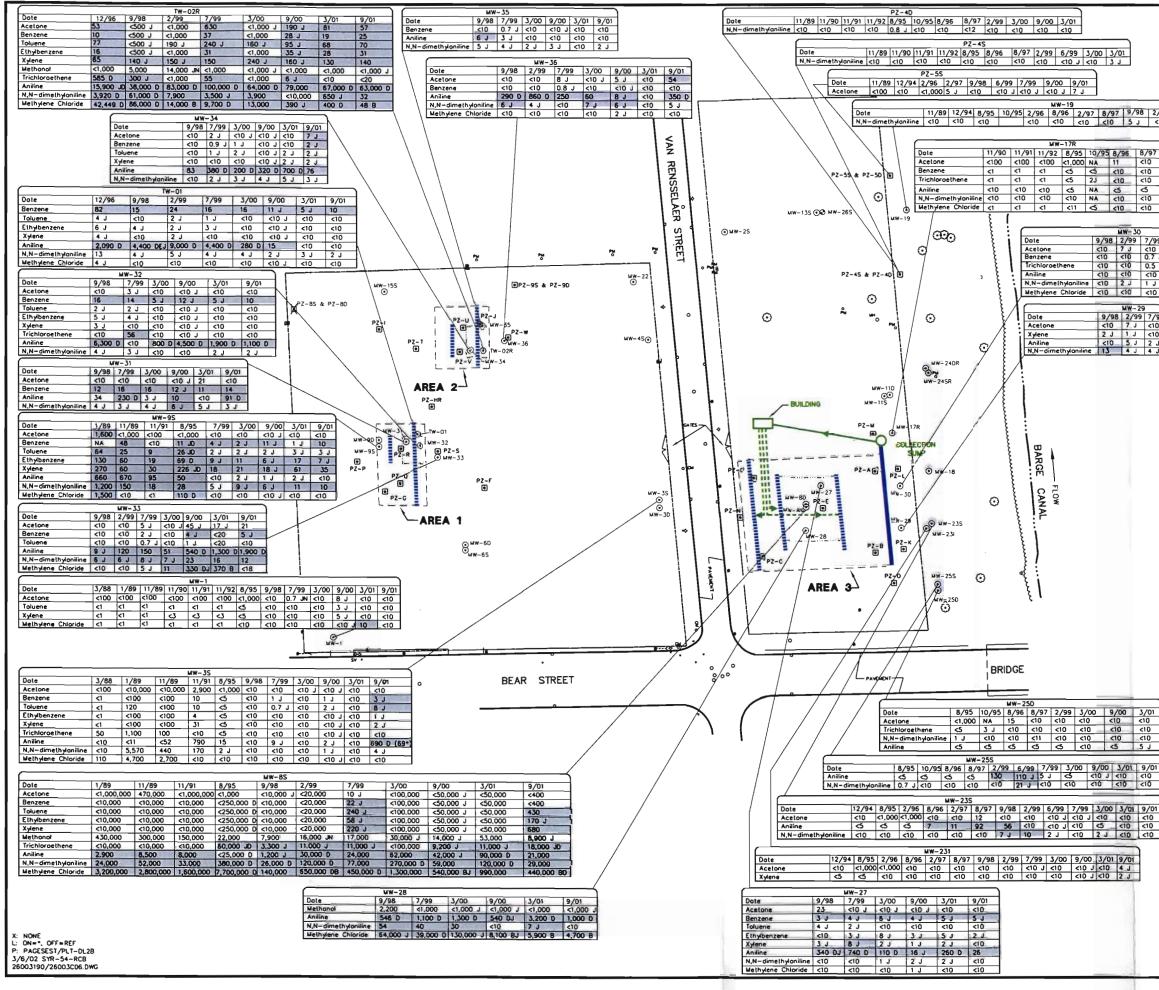
12/01 SYR-D54-DJH 25003190/25003m04.cdr


...


. . ..


14 A. 14 A.

2


12/01 \$YR-D54-DJH 28003190/26003n06.cdr

•

												LE	GEND			
	9/9		00 [2		/00 10	/00	11/0	. [0	/01			UTIL	ITY PC	ЦĔ		
+	-	98 2/9 J <1			/00 9	<10	3/0		10		•	CAT	сн ва	SIN		
						_				'P⊌	•	PET	ROLEU	M PIPE	LINE	MARKE
	1)	GM		GAS	LINE	MARKE	R	
/9	6	8/97	2/99	3/00				9/01		SV	۰	SE₩	ER VE	NT		
10	-	<10	<10	<10 8 J	<10 J		_	<10 5 J			٠	HYC	RANT			
10		<10	<10	<10	<10 J			<10	1		•	WA1	ER VA	LVE		
5		ଣ	<10	6	24 J			<10	1		0		NHOLE			
10		<10	<10	<10	4 J	<1	-	<10			_		PERT			
10	T		<10 J	<10	1 <u>J</u>	<1	0	<10	1	MW-19	◙	MO	NITORI	NG WEI	.L	
MW	r-3						_			PZ-A	۲	PIE	ZOMET	ER		
	/99		3/00	9/0	0 3/0	1 9	/01			-	~	RIA		DOWN		ENT PE
7		<10	<10	<10 .	J <10	4	J			() (*	Θ	GRC	UND-	WATER	MONI	ORING
< <		0.7 J	-	<10 .			J 10					LOC	ATION			
<		<10	18	9 J			8 J			WW-265	80	PU	MPING	WELL		
2		1 J	2 J	2 J	2 J		J	5	Z-8	S & PZ-8	⊳∭ní	DEC	COMISS		PIEZO	METERS
<	0	<10	4 J	2 J	<10		10		E		÷,	BO	UNDAR	Y OF		TED AR
	(W-							1				GR	OUND-	WATER	WITH	
	2/9 7 J	9 7/99	3 3/00) 9/0 <10			9/01 <10	-				GR	OUND-	WATER	INFIL	TRATIO
	1 J	<10	<10		J <10		<10				_			0 BUIL		
	5 J		450	D 24	J 30	7	7 3					PIP	PING FI	ROM 8	JILDIN	3
-	4 J	4 J	6 J	4 1	4.	1	2 3			:	-	AR	EA OF	RELAT	IVELY	HIGHER
										i	له	00	NCENT	RATION	5 0+	COCS
										1	<u>ا</u>	SAMP	12 101	ENTIFIC	ATION	
										_	1		- 16			
							ł	Dote			9	MW-	7/99	3/00	9/00	3/01
							1	Benze		_	<1	10	0.7 J	<10	<10 J	<10
								Anilin		thylaniline	_ <u> </u>	J	3 J 4 J	<5 2 J	<10 3 J	<10
								N,N-	UNTIE	(in yioi iiiiii)e	7	<u>, </u>	4.5	2.5	55	
				N	DTES:						~	— C(ONCEN	TRATIO	N (ppl))
				_				PINC		S ARE ID						
				1. RC	/ "R" (e.g.,	MW-	-240R	πειι).	.3 ARC 10			will a			
AN "R" (e.g., MW-240R). 2. TRENCH LOCATIONS ARE APPROXIMATE.																
										APPROX						
				4. FIC W	GURE C	NNLY HFIM	SHO	MS CO	REA	ONCENTR	ATIO HE C	HEMI	AT MON	II TORINI ROCESS	G LOCA	TIONS
	WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROCESS CONTROL MONITORING LOCATIONS.															
5. ONLY DETECTED COC'S ARE PRESENTED ON THIS FIGU																
	 <= COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT. 															
															Line 1.	
				́Тн	E ASSO	CIAT	ED N	IUMER	ICAL	VALUE I	SAI	N ES	TIMATE	D		
				~~~												
										ED ON D WHOSE (					1515.	
				EX	CEED 1	HE C		RATIO	N R/	ANGE OF	THE	INS	TRUME	S NTS.		
			1	0. NA	= NO	T AV		BLE.								
			1	1. B	B = THE COMPOUND HAS BEEN FOUND IN THE SAMPLE AS WELL AS IN IT'S ASSOCIATED BLANK; IT'S PRESENCE IN THE SAMPLE MAY BE SUSPEC											
			115 ASSOLIATED BLANK, 115 PRESENCE IN THE SAMPLE WAY BE SUB- 12. N = THIS ANALYSIS INDICATES THE PRESENCE OF A COMPOUND FOR W THERE IS PRESUMPTIVE EVIDENCE TO MAKE AN TENTATIVE IDENTIFICATI									OR WH				
			1							ENCE TO EC GROUN					UENTIF	ICA IION
				\$T	ANDAR	DS A	REIN	DICA	ED	BY SHAD	ING.					
	-		1.	FO	R MW-	18, N	(₩-1	9. MW	/-23	9/98 SA S, MW-2	31, 1	ww-1	245R, 1			
00		3/01		PZ	-55 A	ND P	Z-5	D WER	8E (	OBTAINED	IN	12/9	8. BEC	AUSE		
D	-	<10		KE.	50115	WERE	RE	えいじ	ט טע	E TO LA	ROK	ATOR	TERR	UR.		

AMPLE AS WELL AS IN SAMPLE MAY BE SUSPECT. A COMPOUND FOR WHICH ENTATIVE IDENTIFICATION OUALITY . MW-24DR, MW-28, BECAUSE THE 9/98 ERROR. 15. • - MW-JS WAS RESAMPLED ON 11/8/01 DUE TO ANILINE DETECTION DURING 9/2001 SAMPLING EVENT AT A CONCENTRATION OF 690 PPB. ANILINE WAS DETECTED ON 11/8/01 AT A CONCENTRATION OF 69 PPB. 120' 0 120' GRAPHIC SCALE MCKESSON ENVIROSYSTEMS BEAR STREET FACILITY SYRACUSE, NEW YORK BIANNUAL PROCESS CONTROL MONITORING REPORT SUMMARY OF HISTORIC GROUNDWATER MONITORING DATA BBI FIGURE 13 BLASLAND, BOUCK & LEE, INC

LEGEND POLE BASIN LEUM PIPE LINE MARKER INE MARKER VENT NT VALVE DLE RTY LINE D-WATER **METER** UAL DOWNGRADIENT PERIMETER ID-WATER MONITORING NG WELL AISSIONED PIEZOMETERS ARY OF IMPACTED AREA D-WATER WITHDRAWAL TRENCH D-WATER INFILTRATION TRENCH TO BUILDING FROM BUILDING OF RELATIVELY HIGHER

MW=35										
Dote	9/98	7/99	3/00	9/00	3/01	9/01				
Benzene	<10	0.7 J	<10	<10 J	<10	<10				
Aniline	6 J	31	3	<10	<10	<10				
N,N-dimethylaniline	5 J	4 J	2 J	3 J	<10	2 J				
/										