

Mr. Payson Long Remedial Bureau E Section D Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York 12233-7013

Subject: McKesson Envirosystems Bear Street Site Syracuse, New York Site No. 07-34-020

Dear Mr. Long:

ARCADIS prepared this Site Management Periodic Review Report (PRR) for the McKesson Envirosystems Bear Street Site, located at 400 Bear Street West in Syracuse, New York (site), on behalf of McKesson Corporation to fulfill the requirements set forth by Section 6.3(b) of DER-10 Technical Guidance for Site Investigation and Remediation (DER-10; New York State Department of Environmental Conservation [NYSDEC] 2010a). The PRR describes the operation and maintenance (O&M) activities conducted at the site and the monitoring results obtained from July through December 2011. This report also fulfills the requirements of the NYSDEC-approved Site Operation and Maintenance Plan (Site O&M Plan) (Blasland, Bouck & Lee, Inc. [BBL], 1999a) and of the December 29, 1999 letter from Mr. David Ulm (BBL) to Mr. Michael Ryan, P.E. (NYSDEC), which presented the long-term process control monitoring program as an addendum to the Site O&M Plan (BBL 1999b). The long-term process control monitoring program was modified by ARCADIS' September 3, 2010 modification proposal letter (ARCADIS 2010a) and the NYSDEC's modification proposal response letter dated September 23, 2010 (NYSDEC 2010b). The Site O&M Plan (BBL 1999a), the 1999 addendum (BBL 1999b), and the 2010 modifications (ARCADIS 2010a and NYSDEC 2010b) are collectively referred to herein as the Site O&M Plan.

The information provided in this PRR has been organized into the following sections:

ARCADIS of New York, Inc. 6723 Towpath Road P O Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 449 0017 www.arcadis-us.com

ENVIRONMENTAL

Date: April 4, 2012

Contact: David J. Ulm

Phone: 315.671.9210

Email: david.ulm@arcadis-us.com

Our ref: B0026003.00190

Mr. Payson Long NYSDEC April 4, 2012

- *Site Remediation Background.* Provides a brief description and history of the remediation activities and Site O&M Plan modifications at the site.
- In-situ Aerobic Bioremediation Treatment Program Activities. Describes the in-situ aerobic bioremediation treatment program activities conducted at the site from July through December 2011.
- *Hydraulic Process Control Monitoring.* Describes the results of the hydraulic process control monitoring activities conducted at the site from July through December 2011.
- Chemical of Concern Process Control and Biannual Groundwater Monitoring Program. Describes the October 2011 results of the constituents of concern (COC) process control and Biannual Groundwater Monitoring Program, and summarizes the COC data obtained at the site from 1988 through December 2011.
- *Conclusions*. Provides conclusions based on the results of the process control monitoring activities.
- *Recommendations*. Provides recommendations for the *in-situ* aerobic bioremediation treatment program and monitoring activities.

Site Remediation Background

The 8.6-acre site is divided into three areas (Areas 1, 2, and 3), as shown on Figure 1, and consists of two parcels (029-300-380 and 029-300-390). Additionally, the site is divided vertically into two operable units (OUs): OU1 – Unsaturated Soil, and OU2 – Saturated Soil and Groundwater. The NYSDEC-selected remedy for both OUs includes ongoing O&M activities. A Record of Decision (ROD) for OU1 was signed in March 1994 (NYSDEC 1994), which called for *in-situ* aerobic bioremediation of the unsaturated soils comprising OU1. A ROD for OU2 was signed in March 1997 (NYSDEC 1997) and called for anaerobic bioremediation of groundwater and saturated soils. Biannual reports detailing both the O&M activities and the results of the process control monitoring program have been submitted to the NYSDEC since OU1 remedial activities were completed in 1994/1995 and OU2 *in-situ* anaerobic bioremediation treatment activities commenced in July 1998. The site continues to be used for commercial/industrial purposes.

Mr. Payson Long NYSDEC April 4, 2012

The OU1 bioremediation remedy successfully treated an estimated 20,000 cubic yards of contaminated soil to the technology-based cleanup levels. The treated area was subsequently covered with a minimum of 12 inches of clean soil and reseeded to prevent human exposure to remaining surficial soil contamination. Deed restrictions, an institutional control, are required to prevent future use of and potential human exposure to site groundwater. As per DER-33 (NYSDEC 2010c), a deed restriction is required (rather than an environmental easement or environmental notice) because the site is a Class 2 Site and the ROD was issued prior to October 7, 2003.

The initial components of the remedy implemented for OU2 are identified below.

- An infiltration trench and a withdrawal trench were installed upgradient and downgradient, respectively, of Area 3 as a means to introduce Revised Anaerobic Mineral Media- (RAMM-) amended groundwater into the shallow hydrogeologic unit while maintaining hydraulic control. The introduction of RAMM supplied macronutrients and micronutrients to enhance naturally occurring anaerobic biodegradation of the COCs.
- Two additional infiltration trenches were installed within Area 3 to increase the distribution of RAMM-amended groundwater within this area and to act as overflow devices if the amended groundwater in the aforementioned infiltration trench exceeds maximum capacity.
- Groundwater was pumped from the withdrawal trench, amended with RAMM, and distributed into the shallow hydrogeologic unit via the infiltration trenches described above.
- Two infiltration trenches were installed in both Areas 1 and 2. RAMM-amended groundwater was periodically introduced into these trenches by manually filling standpipes screened within the filter pack of the trenches (i.e., within the shallow hydrogeologic unit). Groundwater used for the RAMM amendment was pumped from pumping well MW-26S because COCs were not detected in any of the groundwater samples from this well, the adjacent monitoring well MW-13S, or the previously existing adjacent monitoring well MW-14D that was abandoned during the OU2 remediation activities.

Figure 1 shows the locations of the withdrawal trench and the infiltration trenches. The trenches in Area 3 have been designated as main infiltration trench "C", secondary infiltration trench "B", and secondary infiltration trench "A". In addition to the aforementioned components, the remedy for OU2 initially included the following:

- Conducting a process control monitoring program to monitor the effectiveness of the *in-situ* anaerobic bioremediation treatment systems; and
- Introducing RAMM into the shallow hydrogeologic unit within each of the three areas, at discrete locations throughout each area, using a truck-mounted vertical injection mast. Two discrete RAMM injection events were conducted: an initial event from August 5 to August 12, 1998, and a second event from August 28 to August 30, 2000.

A process control monitoring program was implemented to monitor the effectiveness of the *in-situ* anaerobic bioremediation treatment systems. The process control monitoring program included hydraulic, biological, and COC monitoring. Ongoing O&M activities are performed as part of the NYSDEC-selected remedies for both of these OUs. These O&M activities, in general, include the following:

- Conducting biannual groundwater monitoring in association with the NYSDECselected remedy for OU 2;
- Operating and maintaining the *in-situ* anaerobic bioremediation systems installed as part of the NYSDEC-selected remedy for OU2; and
- Conducting process control monitoring in association with the remedy for OU2.

The data obtained during the process control monitoring program have been periodically reviewed. In 2004, the periodic review of the data obtained as part of the monitoring program suggested that concentrations of aniline and N,N-dimethylaniline in the vicinity of MW-8S and TW-02R were not being reduced as successfully as other areas of the site. A selected excavation program was designed and implemented for the removal of 65 cubic yards of saturated soil in the vicinity of MW-8S and approximately 6 cubic yards of saturated soil around TW-02R. The backfill placed in the Area 3 excavation was amended with RAMM to facilitate the anaerobic degradation of COCs in groundwater that entered that area of the site. In addition, three well points were installed around monitoring wells MW-27, MW-28, and MW-33

Mr. Payson Long NYSDEC April 4, 2012

to allow for additional RAMM amendments to be made to these areas of relatively higher COC concentrations.

After evaluating the biological data (i.e., microbiological analytes, indicator compounds, and permanent gases) obtained during the first six years of monitoring it was concluded that the biological data consistently verified that the saturated soils/groundwater of the shallow hydrogeologic unit within each area are conducive to anaerobic bioremediation, and that there are sufficient carbon electron acceptors and nutrients to sustain microbial activity in each of the three areas. Therefore, the biological portion of the monitoring program was eliminated following the first sampling event in 2005.

In 2006, the periodic review of the COC data suggested that the *in situ* anaerobic treatment program was effectively reducing the concentrations of volatile organic COCs, but concentrations of semi-volatile organic COCs (aniline and N,N-dimethylaniline) were not being reduced in a timely manner. The OU2 *in-situ* anaerobic bioremediation treatment program was modified to an *in-situ* aerobic bioremediation treatment program in August 2006. From August 2006 to October 2008, the *in-situ* aerobic bioremediation treatment program consisted of amending the groundwater with an oxygen source (dilute hydrogen peroxide) and macronutrients. The *in-situ* aerobic bioremediation treatment program was modified in October 2008 to provide a new and continuous source of oxygen to Areas 2 and 3; however, dilute hydrogen peroxide continues to be added to Area 1. The modifications included the following:

- Construction of an oxygen gas diffusion system in both Areas 2 and 3 (Figures 2 and 3, respectively); and
- Installation of an aerator stone in the equalization tank of Area 3's treatment system to add oxygen gas to the groundwater before it is pumped into the infiltration trenches.

In October 2008, macronutrient amendments were discontinued in Areas 1, 2, and 3.

In 2010, the periodic review of the data obtained as part of the monitoring program suggested that concentrations of aniline in the area between TW-02RR and MW-36 were not being reduced as successfully as other areas of the site. A selected excavation program was designed and implemented for the removal of 117.39 tons of saturated soil from Area 2. The backfill placed in the Area 2 excavation was

Mr. Payson Long NYSDEC April 4, 2012

amended with ORC[®] to facilitate the aerobic degradation of COCs in groundwater that entered that area of the site. In addition, a system of five standpipes was installed within the excavation area to allow for additional ORC[®] amendments to be made.

Based on historical groundwater monitoring and analytical data trends, the following modifications were made to the long-term process control monitoring program beginning in October 2010:

- Eliminating methanol analyses in select wells/piezometers;
- Removing select wells from the COC monitoring program;
- Removing select deep wells/piezometers form the hydraulic monitoring program; and
- Abandoning select wells/piezometers.

In addition, the NYSDEC added MW-4S to the COC monitoring program as a downgradient sentinel well for Area 2. Groundwater samples collected at MW-4S will be analyzed for all site COCs, excluding methanol. Due to no detections of COCs at this location at concentrations above the NYSDEC Groundwater Quality Standards during the October 2010 sampling event, the low hydraulic gradient in the vicinity of this well, and its relatively remote location at the site (Figure 1), MW-4S is included in the sampling program every third biannual sampling event. The next samples will be collected from this well in the spring of 2012.

The most recent modification made to the *in situ* aerobic bioremediation treatment program includes the monthly injection of ORC[®]-amended groundwater into the five standpipes within Area 2. These monthly injections began in June 2011.

In-Situ Aerobic Bioremediation Treatment Program Activities

The NYSDEC verbally approved the *in-situ* aerobic bioremediation treatment program in July 2006 as an alternate approach to lowering concentrations of aniline and other COCs (i.e., benzene, toluene, ethylbenzene, and xylene [BTEX], acetone, methanol, N,N-dimethylaniline, methylene chloride, trichloroethene) at the three areas. This treatment program consists of introducing an oxygen source and

macronutrients into Areas 1, 2, and 3. The oxygen source for all three areas between August 10, 2006 (beginning of the *in-situ* aerobic bioremediation treatment program) and October 27, 2008 (modifications to the *in-situ* aerobic bioremediation treatment program) was dilute hydrogen peroxide at a concentration of 200 parts per million (ppm). The macronutrients were added at an approximate carbon:nitrogen:phosphorus ratio of 50:25:10 in the form of Miracle-Gro[®].

In October 2008, the *in-situ* aerobic bioremediation treatment program was modified to include an oxygen infusion system to provide a continuous source of oxygen gas to the groundwater in Areas 2 and 3 via iSOC[®] units. An oxygen diffuser (i.e., Oxygen Edge Unit) was also installed in the Area 3 equalization tank in January 2009. Dilute hydrogen peroxide amendments continue to be added to groundwater in Area 1, but macronutrient amendments were discontinued.

The following activities were conducted as part of the treatment program during this reporting period (see Figures 1, 2 and 3 for referenced locations):

- Added dilute hydrogen peroxide-amended groundwater into the infiltration trenches in Area 1 (monthly).
- Added dilute hydrogen peroxide-amended groundwater into piezometers in Area 1 (PZ-S, PZ-G, PZ-Q, and PZ-R) and to well points in Area 1 (WP-4 and WP-5) (monthly).
- Added oxygen gas to groundwater via infusion wells in Area 2 (IW-1, IW-2, IW-3, IW-4, and IW-5).
- Added ORC[®]-amended groundwater into the five standpipes in Area 2 (monthly).
- Added oxygen gas to groundwater via infusion wells in Area 3 (IW-6, IW-7, IW-8, IW-9, IW-10, IW-11, IW-12, and IW-13).
- Added oxygen gas to groundwater in the Area 3 equalization tank.
- Measured dissolved oxygen (DO) levels in the field each month in Area 1 (MW-33), Area 2 (MW-36R and TW-02RRR), and Area 3 (MW-27, MW-28, and MW-8SR).

Mr. Payson Long NYSDEC April 4, 2012

Dilute hydrogen peroxide was added to the groundwater in Area 1 at a concentration of 200 ppm. Oxygen gas was continuously added to the Area 2 and 3 infusion wells, resulting in a groundwater concentration of at least 40 ppm at the infusion wells. Oxygen gas was continuously added to the Area 3 equalization tank at a concentration of approximately 25 ppm.

The Area 3 *in-situ* aerobic bioremediation treatment system operated satisfactorily during this reporting period. The hydraulic process control system functioned properly during the current reporting period (July through December 2011) and no substantial system repairs were required. Approximately 861,965 gallons of water were pumped from the withdrawal trench and introduced into the Area 3 infiltration trenches, as detailed in this report.

The fencing around the site, which serves as an engineering control, is intact.

Hydraulic Process Control Monitoring

The hydraulic process control monitoring program was established in each of the three impacted areas to:

- Confirm that containment has been established in each area.
- Verify that the groundwater withdrawal rates in Area 3 do not cause the freshwater/saltwater interface to upcone to the bottom of the withdrawal trench.
- Verify that saturated soil/groundwater conditions within the shallow hydrogeologic unit are conducive to microbial degradation of the COCs by aerobic microbial populations.
- Optimize the system operation performance in Area 3.

As part of the hydraulic process control monitoring, groundwater level measurements were obtained at monitoring wells and piezometers that are screened entirely within the sand layer of the shallow hydrogeologic unit and located in and around each of the three areas. Additionally, the Barge Canal surface-water elevation was obtained from measurements made from a reference point on the Bear Street Bridge, which passes over the canal. The hydraulic process control monitoring was conducted on October 24, 2011. The monitoring locations are listed on Table 1 and shown on Figure 1. Mr. Payson Long (NYSDEC) was notified of the October 2011 hydraulic

and COC monitoring event in a letter dated September 30, 2011 from Mr. David Ulm (ARCADIS).

Table 2 summarizes the groundwater level measurements obtained during the October 24, 2011 hydraulic process control monitoring event, as well as those obtained since October 2006 (just after initiating the *in-situ* aerobic bioremediation treatment program). Attachment A - Table 2 summarizes the historical groundwater level measurements obtained from June 1998 (immediately prior to commencing the *in-situ* anaerobic bioremediation treatment activities) through June 2006 (prior to initiating the *in-situ* aerobic bioremediation treatment program). Figure 4 depicts the potentiometric surface of the site's shallow hydrogeologic unit using the October 2011 data set. Site-wide groundwater elevations for this round of sampling were consistent with elevations measured since startup of the treatment system. The results and corresponding conclusions of the hydraulic process control monitoring are summarized below.

- A closed-loop hydraulic cell continues to be maintained in Area 3, as shown on Figure 4. This groundwater containment is an engineering control for the site.
- The groundwater withdrawal rate in Area 3 ranged from approximately 0.40 to 5.12 gallons per minute from July through December 2011.
- The withdrawal of groundwater continues to induce a hydraulic gradient in Area 3 from perimeter monitoring wells MW-23S, MW-25S, and MW-24SR toward the withdrawal trench.
- In Area 3, approximately 25 percent of the recovered groundwater continued to be introduced to the secondary infiltration trench "B;" and the remaining 75 percent continued to be introduced to the primary infiltration trench "C" from July through December 2011.
- The hydraulic data that were obtained to date, throughout the operating history of the treatment system in Area 3, have consistently indicated no discernable effect on the hydraulic gradient of the deep hydrogeologic unit.

The weekly conductivity measurements of groundwater pumped from the withdrawal trench in Area 3 ranged from approximately 1.9 to 2.3 milliSiemens per centimeter (mS/cm), which is consistent with the range of conductivity levels measured prior to system operation (1 to 4 mS/cm). These measurements are well below the measured

Mr. Payson Long NYSDEC April 4, 2012

conductivity of the deep unit, which is greater than the calibration range of the field instrument (10 mS/cm). These data indicate that operation of the Area 3 treatment system has not caused the freshwater/saltwater interface to upcone to the base of the withdrawal trench. This lack of upconing also indicates that the hydraulic gradient of the deep hydrogeologic unit has not been significantly impacted by withdrawal of groundwater in Area 3.

Chemical of Concern Process Control and Biannual Groundwater Monitoring Program

The groundwater COCs for the site are acetone, BTEX, methanol, trichloroethene, aniline, N,N-dimethylaniline, and methylene chloride. The COC process control and Biannual Groundwater Monitoring Program activities were conducted from October 25 through October 27, 2011, in accordance with the Site O&M Plan (BBL 1999a). Groundwater samples were collected from October 25 through October 27, 2011 and again at TW-02RRR and MW-36R on December 15, 2011 to confirm the aniline concentrations detected during the October 2011 sampling event. Groundwater samples were analyzed by TestAmerica Laboratories, Inc. in Edison, New Jersey (Nationally Accredited Environmental Laboratory ID #12028) via Methods 8290B, 8270C, and 8015B. In addition, the following groundwater quality parameters were measured in the field during the October and December 2011 sampling events: temperature, conductivity, DO, and oxidation/reduction potential. Table 2 lists the existing monitoring wells and piezometers used to conduct the long-term process control monitoring program and provides a schedule for implementing this program. The monitoring locations are shown on Figure 1.

As stated in the NYSDEC's 1997 Record of Decision (OU2 ROD; NYSDEC 1997) for the saturated soils at the site, two of the remediation goals for the site are to:

- 1. "reduce, control, or eliminate the concentrations of COCs present within the saturated soils at the [Site]."
- 2. "attain the NYSDEC Class GA Groundwater Quality Standards, to the extent practicable, for the COCs present in onsite groundwater."

In accordance with the requirements of the NYSDEC-approved monitoring program, laboratory analytical results for the October and December 2011 samples were validated. The validated COC groundwater analytical results are summarized in Table 3 and shown on Figures 5 and 6. These figures and table also summarize the

Mr. Payson Long NYSDEC April 4, 2012

COC groundwater analytical results obtained during the biannual monitoring events conducted from March 2009 through December 2011, which collectively represent the results obtained since the start of the modified *in-situ* aerobic bioremediation treatment activities. The COC groundwater analytical results obtained prior to March 2009 are summarized in Attachment A - Table 2 and presented on Attachment A - Figures 1 through 7. Copies of the validated analytical laboratory reports associated with the October 2011 sampling event are presented in Attachment B. This report summarizes the COC analytical results and DO measurements for the downgradient perimeter monitoring locations and for each of the three areas.

All COC groundwater analytical results are compared to the NYSDEC Groundwater Quality Standards, as presented in Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) (NYSDEC 1998).

During the October 2011 sampling event, the presence or absence of non-aqueous phase liquid (NAPL) was assessed in existing monitoring wells and piezometers based on observations made during the process control monitoring event. NAPL was not identified in any of the monitoring wells or piezometers used during the process control monitoring program.

DO levels continued to be measured monthly at monitoring locations MW-8SR, MW-27, MW-28, MW-33, MW-36R, and TW-02RRR during this reporting period. Table 4 summarizes these DO measurements.

Additionally, the Mann-Kendall Test for Trends was run for the COC data obtained during the aerobic treatment between August 2006 and December 2011 at the monitoring locations sampled as part of the COC process control and Biannual Groundwater Monitoring Program activities. The Mann-Kendall Test for Trends was also run for the DO data obtained between August 2006 and December 2011 for monitoring locations MW-8SR, MW-27, MW-28, MW-33, MW-36R, and TW-02RRR.

The COC analytical results, DO measurements, and Mann-Kendall Test for Trends results, along with the downgradient perimeter monitoring locations for each area, are summarized below.

 Sentinel Wells. COCs were not detected at sentinel well MW-3S above their respective NYSDEC Groundwater Quality Standard (Table 3 and Figure 5). COCs have not exceeded standards in sentinel wells since June 2005 (aniline in MW-3S).

Mr. Payson Long NYSDEC April 4, 2012

- Area 1:
 - COC concentrations detected in groundwater samples collected from Area 1 monitoring wells during October 2011 were generally low, ranging from nondetect to concentrations just slightly greater than their respective NYSDEC Groundwater Quality Standard (Table 3 and Figure 5). The majority of COC concentrations detected during October 2011 at Area 1 monitoring wells were approximately equal to or below concentrations detected during the April 2011 sampling event.
 - At TW-01, N,N-dimethylaniline (1.6 ppb) was detected at a concentration slightly greater than the NYSDEC Groundwater Quality Standard (1 ppb) during the October 2011 sampling event. All other COCs (9 out of 10) were not detected.
 - At MW-9S, benzene (1.2 ppb), xylenes (estimated 41 ppb), and N,N-dimethylaniline (7.6 ppb) were detected above their respective NYSDEC Groundwater Quality Standards (1 ppb, 5 ppb, and 1 ppb, respectively) in October 2011. All other COCs either were not detected (5 of 10) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (2 of 10).
 - At MW-31, benzene (5.7 ppb) and N,N-dimethylaniline (3.5 ppb) were detected at concentrations above their respective NYSDEC Groundwater Quality Standards (both 1 ppb) in October 2011. All other COCs either were not detected (6 of 10) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (2 of 10).
 - At MW-32, N,N-dimethylaniline (1.5 ppb) was detected at a concentration slightly greater than the NYSDEC Groundwater Quality Standard (1 ppb) during the October 2011 sampling event. All other COCs were either not detected (8 of 10) or were detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (1 of 10).
 - N,N-dimethylaniline (1.9 ppb) was detected at MW-33 at concentrations slightly above its NYSDEC Groundwater Quality Standard (1 ppb) in October 2011. Results of the Mann-Kendall Test for Trends show a decreasing trend in N,N-dimethylaniline concentrations at MW-33. The aniline concentrations detected at MW-33 have remained below the NYSDEC Groundwater Quality

Mr. Payson Long NYSDEC April 4, 2012

Standard (5 ppb) for the last eight sampling events. Aniline was detected in MW-33 at a concentration of 940 ppb at the beginning of the aerobic bioremediation treatment in 2006, and has not been detected at MW-33 since November 2007. All other COCs either were not detected (6 of 9) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (2 of 9).

- DO levels measured at MW-33 from July through December 2011 ranged from 0.36 to 0.49 ppm (Table 4). Aerobic conditions in groundwater are generally indicated when DO levels are greater than 2 ppm. Overall, DO levels detected at MW-33 are trending upward.
- Area 2:
 - COC concentrations detected in groundwater samples collected from Area 2 monitoring wells were generally low; most COC concentrations detected during October 2011 at Area 2 monitoring wells were approximately equal to or below concentrations detected during the April 2011 sampling event (Table 3 and Figure 5).
 - The aniline concentration detected in the groundwater sample collected at TW-02RR was higher during this reporting period (1,300 ppb in October 2011 and 1,400 ppb in December 2011) than the concentration detected during the previous sampling period (1.9 ppb in April 2011). Along with aniline, benzene (1.2 ppb) and N,N-dimethylaniline (5.5 ppb) were detected at concentrations above their NYSDEC Groundwater Quality Standards (5 ppb, 1 ppb, 1 ppb, respectively) at this location during the October 2011 sampling event. Overall, the aniline and benzene concentrations detected at this location are trending downward. All other COCs either were not detected (4 of 10) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (3 of 10), including total xylenes which exceeded its NYSDEC Groundwater Quality Standard in April 2011.
 - At MW-34, benzene and N,N-dimethylaniline (1.2 ppb and 2.5 ppb, respectively) were detected at concentrations above their respective NYSDEC Groundwater Quality Standard (1 ppb for each) in October 2011. The acetone concentration (350 ppb) anomalously exceeded the NYSDEC Groundwater Quality Standard of 50 ppb. All other COCs either were not detected (5 of 10) or detected below their respective NYSDEC Groundwater

Mr. Payson Long NYSDEC April 4, 2012

Quality Standards (2 of 10) during this reporting period, including aniline which exceeded its NYSDEC Groundwater Quality Standard in April 2011.

- No COCs were detected at MW-35 (10 of 10). No COCs have been detected or exceeded the NYSDEC Groundwater Quality Standards in this well since November 2004.
- The aniline concentrations detected in groundwater samples collected at MW-36R during the October and December 2011 sampling events (92 ppb and 120 ppb, respectively) exceeded the NYSDEC Groundwater Quality Standard (5 ppb). Benzene (1.8 ppb) and N,N-dimethylaniline (3.6 ppb) were detected at concentrations slightly greater than the NYSDEC Groundwater Quality Standard (1 ppb for each) during the October 2011 sampling event. All other COCs either were not detected (4 of 9) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (2 of 9).
- DO levels measured in Area 2 (MW-36R and TW-02RRR) between July and December 2011 are summarized in Table 4. The DO levels were 0.20 and 1.57 ppm at MW-36R and ranged from 0.21 to 0.55 ppm at TW-02RRR. The results of the Mann-Kendall Test for Trends show that DO concentrations are increasing at MW-36R. Aerobic conditions in groundwater are generally indicated when DO levels are greater than 2 ppm.
- Area 3:
 - COC concentrations detected in groundwater samples collected from Area 3 monitoring wells during the October 2011 sampling event were generally consistent with or lower than the concentrations detected in the previous sampling event conducted in April 2011 (Table 3 and Figure 6).
 - Monitoring well MW-8SR is located in the center of Area 3, an area that has been identified in the past as containing relatively higher concentrations of COCs (Attachment A). Xylenes benzene, and N,N-dimethylaniline concentrations (14 ppb, 1.9 ppb and 2.6 ppb, respectively) slightly exceeded their respective NYSDEC Groundwater Quality Standards (1 ppb, 1 ppb, and 5 ppb, respectively). All other COCs either were not detected (4 of 9) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (2 of 9), including aniline and ethylbenzene, which had exceeded their respective NYSDEC Groundwater Quality Standards in April

Mr. Payson Long NYSDEC April 4, 2012

2011. The results of the Mann-Kendall Test for Trends show that aniline, benzene, ethylbenzene, and total xylenes concentrations in the groundwater sample collected from MW-8SR are trending downward.

- The aniline concentration detected at MW-27 was lower during this reporting period (36 ppb in October 2011) than the concentration detected during the previous sampling period (1,000 ppb in April 2011). Benzene (2.1 ppb) and N,N-dimethylaniline (2.7 ppb) slightly exceeded their respective NYSDEC Groundwater Quality Standards (1 ppb for each) in October 2011. The results of the Mann-Kendall Test for Trends show that aniline, benzene, ethylbenzene, toluene, and total xylenes concentrations in the groundwater sample collected from MW-27 are trending downward. All other COCs either were not detected (3 of 9) or detected below their respective NYSDEC Groundwater Quality Standard in October 2011 (3 of 9), including ethylbenzene, toluene, and total xylenes which exceeded their NYSDEC Groundwater Quality standard in April 2011.
- Monitoring well MW-28 has historically exhibited relatively higher concentrations of aniline (Attachment A). In October 2011, aniline was not detected above the NYSDEC Groundwater Quality Standard of 5 ppb. With the exception of benzene, all other COCs (8 of 10) were not detected.
 Benzene was detected at a concentration (1.8 ppb) above its NYSDEC Groundwater Quality Standard (1 ppb), but toluene was detected at a concentration (0.38J ppb) below its NYSDEC Groundwater Quality Standard (5 ppb) at MW-28. Aniline concentrations have not exceeded the NYSDEC Groundwater Quality Standard since April 2010. The results of the Mann-Kendall Test for Trends show that benzene concentrations in the groundwater samples collected from MW-28 are trending downward.
- COCs either were not detected or detected below their respective NYSDEC Groundwater Quality Standard at MW-29 in October 2011. No COCs have exceeded the NYSDEC Groundwater Quality Standards in this well since May 2003.
- COCs either were not detected or detected below their respective NYSDEC Groundwater Quality Standard at MW-17R and MW-30 during the October 2011 sampling event.

- DO levels measured at MW-8SR, MW-27, and MW-28 between July and December 2011 are summarized in Table 4. The DO levels at MW-8SR ranged from 0.25 to 0.66ppm. The DO levels at MW-27 ranged from 0.36 to 0.79 ppm. The DO levels at MW-28 ranged from 0.42 to 0.85 ppm. Aerobic conditions in groundwater are generally indicated when DO levels are greater than 2 ppm. Overall, DO levels detected at MW-27 and MW-28 are trending upward.
- Downgradient perimeter monitoring locations. There were no detections of COCs above the NYSDEC Groundwater Quality Standards at the four downgradient perimeter monitoring locations (MW-17R, MW-18, MW-23I and MW-23S) during the October 2011 sampling event (Table 3 and Figure 6).

Conclusions

The process control monitoring data presented in this report will continue to be used to monitor the effectiveness of the *in-situ* aerobic bioremediation treatment activities. The following conclusions are based on the process control monitoring data obtained to date.

- A closed-loop hydraulic cell continues to be maintained in Area 3.
- Operation of the Area 3 treatment system has not caused the freshwater/saltwater interface to upcone to the base of the withdrawal trench.
- COCs were not detected at concentrations above the NYSDEC Groundwater Quality Standards at any perimeter sampling locations in October 2011. These results provide another line of evidence that the groundwater in Area 3 is contained in the Area 3 treatment system. The closed-loop hydraulic cell in Area 3 supports this conclusion. The OU2 remediation goal of "mitigate the potential for migration beyond the site boundary of groundwater that contains concentrations of COCs in excess of their respective NYSDEC Class GA Groundwater Quality Standard" continues to be achieved.
- COC concentrations detected in the groundwater samples collected from Area 1 demonstrate a decrease since the *in-situ* bioremediation treatment activities began in July 1998. COC concentrations have continued to remain low since the *in-situ* aerobic bioremediation treatment program began in August 2006. In October 2011,

Mr. Payson Long NYSDEC April 4, 2012

the COCs in this area were mostly non-detect or below their respective NYSDEC Groundwater Quality Standards, including aniline in groundwater at MW-33. These COC concentrations indicate that, for many years, Area 1 has met the NYSDEC Class GA Groundwater Quality Standards for toluene, trichloroethene, methylene chloride, and acetone, which is an objective of the OU2 ROD (NYSDEC 1997). More recently, Area 1 has met the NYSDEC Class GA Groundwater Quality Standard for aniline in groundwater, and COC concentrations within saturated soils have been reduced, controlled, or eliminated, in accordance with the OU2 ROD (NYSDEC 1997) objectives. A few COCs (e.g., N,N-dimethylaniline, benzene, ethylbenzene, and xylene) continue to be present at concentrations greater than their respective NYSDEC Groundwater Quality Standards.

- In the downgradient edge of Area 1, aniline was not detected in the groundwater sample from MW-33 during the October 2011 sampling event. Aniline concentrations previously detected in MW-33 were below the NYSDEC Groundwater Quality Standard for the seven sampling events conducted since November 2007, suggesting that the *in-situ* aerobic bioremediation treatment program facilitated the reduction of aniline.
- Based on the DO levels measured in Area 1 for July through December 2011, it does not appear that aerobic conditions (i.e., DO levels greater than 2 ppm) have been established beyond the points of injection.
- Overall, the COC groundwater concentrations within Area 2 have decreased during the last eleven sampling events since June 2006. The concentrations continue to be relatively low, excluding aniline detected at monitoring location TW-02RR and MW-36 in October and December 2011. In addition, N,N-dimethylaniline concentrations remain relatively low at MW-34, and aniline was not detected above NYSDEC Groundwater Quality Standards at this location during October 2011 sampling event. Overall, the results indicate that the in-situ aerobic bioremediation treatment program is facilitating the reduction of aniline in Area 2. COC concentrations within saturated soils have been reduced, controlled, or eliminated. To the extent practicable, for many years Area 2 has met the NYSDEC Class GA Groundwater Quality Standards for acetone, toluene, ethylbenzene, methylene chloride, and trichloroethene, in accordance with ROD objectives (NYSDEC 1997).
- The continuous supply of oxygen to groundwater in Area 2 appears to have reduced the rebound effect in the COC concentrations previously observed when

Mr. Payson Long NYSDEC April 4, 2012

oxygen was used up after introducing periodic injections of hydrogen peroxide to the groundwater. Based on the DO levels measured in Area 2, it appears that aerobic conditions (i.e., DO levels greater than 2 ppm) have not been established beyond the points of injection. The aniline and DO concentrations for the second half of 2011 suggest that the oxygen is being used for the biodegradation processes soon after it is introduced to groundwater, resulting in little surplus of oxygen to increase the groundwater DO levels.

- The aniline concentration at MW-8SR in Area 3 decreased approximately 100 percent between the end of the anaerobic bioremediation treatment program in June 2006 and the October 2011 sampling event. These results indicate that the *in-situ* aerobic bioremediation treatment program is facilitating the reduction of aniline in Area 3. Similar to the results in Area 2, the continuous supply of oxygen to groundwater in Area 3 appears to have reduced the rebound effect of COC concentrations. Since June 2006, the average concentrations of aniline detected in Area 3 (MW-8SR, MW-27, and MW-28) have fluctuated, but overall have declined by several orders of magnitude. COC concentrations within saturated soils have been reduced, controlled, or eliminated. For many years Area 3 has met the NYSDEC Class GA Groundwater Quality Standards for acetone, methylene chloride, and trichloroethene, in accordance with the ROD (NYSDEC 1997).
- Based on the DO levels measured in Area 3 in July through December 2011, it appears that aerobic conditions were not achieved; however, DO levels have increased since initiating the *in-situ* aerobic bioremediation treatment. Aerobic conditions in groundwater are generally indicated when DO levels are greater than 2 ppm. The aniline concentrations within Area 3 (i.e., MW-8SR, MW-27, and MW-28) decreased overall between June 2006 and December 2011, suggesting that the *in-situ* aerobic bioremediation treatment program facilitated the reduction of aniline. The aniline and DO concentrations suggest that oxygen is being used for the biodegradation processes soon after it is introduced to groundwater, resulting in little surplus of oxygen to increase the groundwater DO levels.
- In conclusion, the OU2 remedy continues to be protective of public health and the environment, and is compliant with the 1997 NYSDEC Record of Decision for OU2.

Mr. Payson Long NYSDEC April 4, 2012

Recommendations

The *in-situ* aerobic bioremediation program generally has reduced concentrations of aniline, N,N-dimethylaniline, and other COCs at the site. ARCADIS recommends that an oxygen source continue to be introduced into Areas 2 and 3. In addition, aniline concentrations are consistently non-detect in Area 1, with N,N-dimethylaniline and benzene concentration consistently less than 10 ppb. In Area 1 concentrations are now at levels that are likely to continue degrading through natural processes. ARCADIS recommends that the dilute hydrogen peroxide amendments be continued in Area 1, as well as continuing the biannual monitoring to evaluate the effectiveness of the natural attenuation processes in the decrease of site COCs to below NYSDEC Groundwater Quality Standards.

Analytical results from the current *in-situ* aerobic bioremediation program indicate that a constant source of oxygen has supported the continued reduction of aniline concentrations in Areas 2 and 3 (i.e., TW-02RRR, MW-27, and MW-8SR). The removal of targeted soils, ORC[®] soil amendment, and the ORC[®]-amended groundwater introduced to the system of standpipes in Area 2 are anticipated to further enhance the degradation of site COCs. ARCADIS recommends maintaining the oxygen infusion system installed in Areas 2 and 3, the ORC®-amended groundwater injections to Area 2 standpipes (through February 2012); the oxygen diffuser in the Area 3 equalization tank; and the hydraulic modifications to the Area 3 system. The constant source of oxygen appears to have reduced the rebound effect on the aniline concentrations and result in a faster treatment time than was observed with the dilute hydrogen peroxide amendments. Further recommendations for the oxygen infusion systems in Area 2 and 3, supplemental oxygen amendments in Area 3 (i.e., ORC[®]-amended groundwater injections), and the hydraulics of the Area 3 system will be made based on results of the next biannual hydraulic monitoring and sampling event and DO level readings.

The Biannual Groundwater Monitoring Program activities will continue at the site (Table 1). The first biannual sampling event of 2012 is tentatively scheduled to be conducted during the week of April 9. ARCADIS recommends continuing to measure DO levels on site monthly at MW-36R and TW-02RRR in Area 2, and MW-27, MW-28, and MW-8SR in Area 3, and discontinue monitoring at MW-33 in Area 1.

The *in-situ* aerobic biodegradation treatment activities will continue to be conducted in accordance with the site-specific Health and Safety Plan (ARCADIS 2010b).

Mr. Payson Long NYSDEC April 4, 2012

As discussed in this PRR and summarized in Table 1, the monitoring activities conducted at the site are included in the Biannual Groundwater Monitoring Program and the revised Process Control Monitoring Program. The activities included in the Biannual Groundwater Monitoring Program will continue, and will include biannual collection of chemical and hydraulic data from downgradient perimeter wells/piezometers to ascertain whether groundwater that contains COC concentrations in excess of their respective NYSDEC Groundwater Quality Standards is migrating beyond the site boundary.

If you have any questions or require additional information, please do not hesitate to contact me at 315.671.9210.

Sincerely,

ARCADIS of New York, Inc.

and ulmpoop

David J. Ulm Senior Vice President

CS/lar

Copies:

Ms. Susan Edwards, NYSDEC (w/out Attachment B) Mr. Harry Warner, NYSDEC (w/out Attachment B) Mr. Richard Jones, NYSDOH (w/out Attachment B) Ms. Jean Mescher, McKesson Corporation (w/out Attachment B) Mr. Douglas Morrison, Bristol-Myers Squibb Company (w/out Attachment B) Mr. Christopher Young, P.G., de maximis, inc. (w/out Attachment B)

References:

- ARCADIS. 2010a. Modification proposal letter. September 3, 2010.
- ARCADIS. 2010b. Health and Safety Plan. October 2010.
- Blasland, Bouck & Lee, Inc. 1999a. Site Operation and Maintenance Plan. August 1999.
- Blasland, Bouck & Lee, Inc. 1999b. Site Operation and Maintenance Plan Addendum letter. December 29, 1999.
- New York State Department of Environmental Conservation. 1994. Record of Decision OU1. March 18, 1994.
- New York State Department of Environmental Conservation. 1997. Record of Decision OU2. March 19, 1997.
- New York State Department of Environmental Conservation. 1998. Technical Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998. <u>http://www.dec.ny.gov/docs/water_pdf/togs111.pdf</u>
- New York State Department of Environmental Conservation. 2010a. DER-10: Technical Guidance for Site Investigation and Remediation. May 3, 2010. <u>http://www.dec.ny.gov/docs/remediation_hudson_pdf/der10.pdf</u>
- New York State Department of Environmental Conservation. 2010b. Modification proposal response letter. September 23, 2010.
- New York State Department of Environmental Conservation. 2010c. DER-33: Institutional Controls: A Guide to Drafting and Recording Institutional Controls. December 3, 2010. <u>http://www.dec.ny.gov/docs/remediation_hudson_pdf/der33.pdf</u>

Blind Courtesy Copies:

Keith A. White, ARCADIS (w/out Attachment B) Dawn E. Penniman, P.E., ARCADIS (w/out Attachment B) Christie W. Sobol, ARCADIS (w/out Attachment B) Timothy J. Henson, ARCADIS (w/out Attachment B) Amanda Kohler, ARCADIS (w/out Attachment B) Nathan Smith, ARCADIS (w/out Attachment B)

Tables

Table 1. Revised Long-Term Hydraulic and COC Process Control Monitoring Schedule, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

		Annual Sampling Schedule	
Monitoring Location	Shallow/Deep Well ²	First Sampling Event	Second Sampling Event
Sentinel Wells	• •		
MW-3S ¹		C	C
MW-4S ¹		C ³	NM
Area 1		0	
TW-01 MW-9S		C	<u> </u>
MW/-31		с С	с С
MW-31		с С	С С
MM/ 22 ¹		0	0
	Shallow		й н
	Shallow		
	Shallow		
	Shallow		
PZ-P	Shallow	n	n
P2-Q	Shallow	н	п
PZ-R	Shallow	н	н
PZ-S	Shallow	Н	Н
		C	C
TW-02RRR		<u> </u>	<u> </u>
MVV-34		<u> </u>	<u> </u>
MVV-35		<u> </u>	<u> </u>
MW-36R	 Shallow	C	<u> </u>
P2-1	Shallow	н	н
PZ-J	Shallow	н	н
PZ-T	Shallow	н	н
PZ-U	Shallow	н	н
PZ-V	Shallow	Н	Н
Area 3			
MW-8SR	 Challow	C	<u> </u>
MW-11S	Shallow	Н	Н
MW-27'		С	С
MW-28		С	С
MW-29'		С	С
MW-30'		С	С
PZ-A	Snallow	Н	Н
PZ-B	Shallow	Н	Н
PZ-C	Shallow	н	н
PZ-D	Shallow	н	н
PZ-E	Shallow	н	н
PZ-K	Shallow	Н	Н
PZ-L	Shallow	Н	Н
PZ-M	Shallow	Н	Н
PZ-N	Shallow	Н	Н
PZ-O	Shallow	Н	Н
Collection Sump	Shallow	Н	Н
Downgradient Perimeter Monitoring Locat	ions	0	0
MW-1/R			
MW-18	Deep	<u>с</u>	C C
MVV-231	Chellow	C	C
MW-23S	Snallow	C, H	C, H
PZ-4S'	 Chellow	C	NM
PZ-4D'	Snallow	C, H	н
Barge Canal		Н	Н

See notes on page 2.

Table 1. Revised Long-Term Hydraulic and COC Process Control Monitoring Schedule, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

Notes:

- ¹ Methanol not analyzed for in constituent of concern (COC) monitoring.
- ² As per potentiometric surface mapping.
- ³ MW-4S is included in the sampling program every third biannual sampling event. The next samples will be collected during the first sampling event of 2012.
- 1. The hydraulic monitoring identified in this table will be conducted semiannually. The hydraulic monitoring also includes measuring the conductivity of groundwater recovered from Area 3 from a sampling port located before the equalization tank.
- 2. Field groundwater parameters including pH, temperature, conductivity, dissolved oxygen and oxidation reduction potential are measured during each COC sampling event.
- 3. Each of the monitoring wells and piezometers used for hydraulic and COC monitoring during the semiannual monitoring event are checked for the presence (if any) of nonaqueous phase liquid
- 4. Based on the results obtained, the scope and/or frequency for the hydraulic and/or COC components of the long-term process control monitoring program, as detailed herein, may be modified. Any modifications will be made in consultation with the NYSDEC.
- This table is based on the NYSDEC-approved Operation and Maintenance Plan (Blasland, Bouck & Lee 1999), including the NYSDEC-approved December 29, 1999 addendum with the modifications detailed in the October 2004 Biannual Process Control Monitoring Report and September 3, 2010 modification proposal letter to the NYSDEC.
 - H = Hydraulic monitoring (groundwater level measurements).
 - C = Monitoring for COCs.
 - NM = Not monitored.
 - -- = Not used for potentiometric surface mapping.

	Reference											
	Elevation											
Location	(feet AMSL)	10/30/06	6/6/07	11/12/07	3/24/08	8/25/08	3/23/09	9/14/09	4/26/10	10/11/10	4/4/11	10/24/11
Canal	393.39	364.29	362.99	362.06	364.34	363.21	363.54	362.89	362.97	363.49	362.07	363.71
Collection Sump	372.81	363.18	362.26	361.86	363.81	362.14	362.20	362.18	362.18	360.72	359.90	361.33
MW-3S ¹	376.54	369.08		367.60	367.93	365.19	367.32	365.50	365.67	367.95	369.21	
MW-11S	373.50	366.11	364.27	363.88	365.69	363.86	364.88	363.89	364.42	364.30	365.00	364.18
MW-18 ¹	372.57	363.82	362.63	362.32	363.51	362.26	363.16	362.22	362.67	362.87	363.82	
MW-231 ¹	372.77	366.43	365.02	364.74	366.12	364.64	365.69	364.67	365.19	365.38	366.57	
MW-23S	372.61	365.28	362.98	362.56	364.81	362.62	363.50	362.63	362.99	362.71	364.57	362.66
MW-24SR	375.55	366.49	365.21	364.83	366.26	364.73	365.81	364.79	365.32	365.81	366.60	365.63
MW-25S	373.39	365.26	363.32	362.87	364.84	362.88	363.97	362.89	363.34	363.30	364.10	363.17
PZ-4D	376.11	366.64	365.29	364.98	366.39	364.90	365.96	364.94	365.49	366.02	366.74	365.78
PZ-5D	375.58	366.87	365.49	365.19	366.69	365.09	366.21	365.14	365.01	366.09	366.99	366.02
PZ-A	373.94	365.62	363.11	362.72	364.83	362.96	363.56	362.95	362.28	362.35	362.68	362.53
PZ-B	373.92	365.85	363.12	362.62	365.03	362.87	363.64	362.83	362.96	362.22	363.24	362.47
PZ-C	374.85	367.14	365.85	365.30	367.15	365.16	366.71	365.23	366.37	367.11	367.88	366.6
PZ-D	375.12	367.68	365.98	365.40	367.29	365.28	366.81	365.40	366.57	367.17	368.20	366.87
PZ-E	374.12	368.13	365.16	364.07	366.58	364.14	366.82	364.20	364.25	364.16	364.83	364.18
PZ-F	377.06	368.32	366.18	365.76	367.99	365.50	367.41	365.69	366.72	367.10	368.10 ³	367.04
PZ-G	377.16	368.64	366.28	365.82	368.14	365.94	367.29	367.22	367.32	367.36	368.12	367.17
PZ-HR	376.99	368.31	366.23	365.74	368.00	365.48	367.41	365.63	366.65	367.15	368.00 ³	367.04
PZ-I	375.15	369.00	366.49	365.92	368.55	365.50	367.97	365.71	367.04	367.49	368.60	367.47
PZ-J	374.89	367.96	366.16	365.82	367.69	365.55	367.20	365.70	366.55	367.05	367.81	366.94
PZ-K	373.19	365.58	363.36	362.91	364.96	363.08	363.80	363.04	363.33	363.34	361.94	362.97
PZ-L	374.62	365.23	362.94	362.63	364.64	362.79	363.39	362.80	363.80	362.36	362.52	362.54
PZ-M	374.35	365.60	363.54	363.11	365.13	363.30	364.00	363.31	363.62	363.04	363.47	363.22
PZ-N	376.94 ²	367.51	365.76	365.26	367.05	365.09	366.63	365.17	366.22	367.01	367.79	366.62
PZ-O	375.36	365.42	363.22	362.82	365.01	362.91	363.94	362.93	363.35	362.90	363.57	362.94
PZ-P	376.89	368.30	366.31	365.83	368.06	365.58	367.51	365.75	366.76	367.26	368.08	367.15
PZ-Q	377.61	368.61	366.33	365.83	368.23	365.57	367.61	365.77	366.78	367.26	368.13	367.21
PZ-R	377.05	368.51	366.19	365.79	368.20	365.55	367.57	365.73	366.74	367.24	368.10	367.15
PZ-S	378.13	372.48	366.51	365.81	368.21	365.55	367.60	365.74	366.76	367.13	369.67 ³	367.48
PZ-T	376.25	368.04	366.24	365.84	367.89	365.52	367.37	365.66	366.63	367.12	367.94	367.00
PZ-U	375.35	367.99	366.07	365.80	367.75	365.52	367.25	365.66	366.52	367.05	367.83	366.92
PZ-V	375.78	367.97	366.17	365.78	367.78	365.48	367.24	365.64	366.52	367.04	367.81	366.93

Table 2. Summary of Groundwater Level Measurements, Aerobic Bioremediation Treatment Program, October 2006 through October 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

Notes:

¹Well not used in potenteniometric surface of the shallow hydrogeologic unit sand layer.

²The reference elevation for PZ-N was 376.02 feet AMSL prior to November 16, 2000. The new reference elevation is 376.94 feet AMSL.

³Groundwater Elevations at PZ-HR, PZ-S and PZ-F (Area 1) were not used for contouring due to standing water at these locations.

AMSL = above mean sea level (National Geodetic Vertical Datum of 1929).

	Sampling	Scree (feet	en Elev. AMSL)							Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	Ethyl-benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Quality	Standards (TO	GS 1.1.1)		50	1	5	5	5	NS	5	5	1	5
MW-3S	3/09	365.1	350.1	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09			<10	0.17 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	10/10			<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.2	<1.0	<1.0
	4/11			<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.3 J	<1.1 J	<1.0
	10/11			<10	<1.0	0.35 J	<1.0	<3.0	NA	<1.0	<5.0	<1.0	<1.0
MW-4S	10/10	365.5	350.5	<10 [<10]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<3.0 [<3.0]	<500 J [<500 J]	<1.0 [<1.0]	<5.0 [<5.0]	<1.0 [<1.0]	<1.0 [<1.0]
MW-8SR ^B	3/09	362.7	352.7	6.5 J [5.8 J]	6.8 [6.8]	10 [10]	66 [63]	140 [140]	<500 [<500]	<1.0 [<1.0]	2,200 [1,800]	<12 [<12]	<1.0 [<1.0]
	6/09			NA	NA	NA	NA	NA	NA	NA	7,000	<50	NA
	9/09			<10 [8.3 J]	8.5 J [7.9]	6.8 J [6.5]	44 J [38]	81 J [71]	<500 [<500]	<1.0 J [<1.0]	4,000 [3,400]	<20 [<20]	<1.0 [<1.0]
	4/10			<10 [<10]	4.2 [3.5]	4.6 [3.7]	23 J [18]	41 [33]	<500 [<500]	<1.0 [<1.0]	370 J [720 J]	1.0 J [<5.0]	<1.0 [<1.0]
	10/10			<10	2.7	2.0	16	31	NA	<1.0	220	1.6	<1.0
	4/11			5.9 J [4.3 J]	3.2 [3.2]	2.8 [2.6]	10 [8.8]	32 [31]	NA	<1.0 [<1.0]	57 J [64]	1.5 [1.6]	<1.0 [<1.0]
	10/11			<10 [<10]	1.9 [2.0]	1.3 [1.3]	2.0 [2.1]	14 [15]	NA	<1.0 [<1.0]	<5.0 [<5.0]	2.6 [<1.0]	<1.0 [<1.0]
MW-9°	3/09	365.6	356	<10	1.2	2.5	27	65	<500	<1.0	<5.0	4.2	<1.0
(Replaced by MW-9S)	9/09			<10	1.7	2.2	20	70	730	<1.0	<5.0	4.1	<1.0
	4/10			<10	0.86 J	2.1	26	69	<500	<1.0	<5.0	6.5	<1.0
	10/10			<10	1.3	1.9	11	45	<500 J	<1.0	<5.1	7.5	<1.0
	4/11			<10	0.91 J	2.6	29	89	<500	<1.0	<5.3	5.4	<1.0
	10/11			<10	1.2	1.8	4.2	41 J	<500	<1.0	<5.0	7.6	<1.0
MW-17 ⁵	3/09	365.7	356.1	<10	2.3	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
(Replaced by MW-17R)	9/09			<10 J	0.86 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10			<10	0.22 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	10/10			<10	1.3	<1.0	<1.0	<3.0	<500 J	<1.0	<5.6	<1.1	<1.0
	4/11			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.3 J	<1.1 J	<1.0
	10/11			<10	<1.0	0.19 J	<1.0	<3.0 J	<500	<1.0	<5.0	<1.0	<1.0
MW-18	3/09	325.15	316.15	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09			<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	33
	6/10			<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	NA	NA	<1.0
	10/10			<10	<1.0	<1.0	<1.0	<3.0	<500 J	<1.0	<5.1	<1.0	<1.0
	4/11			<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.3	<1.1	<1.0
104/ 000	10/11	004.4	0544	<10	<1.0	0.23 J	<1.0	<3.0 J	<300	<1.0	<3.0	<1.0	<1.0
WIVV-235	3/09	364.1	354.1	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09	-		<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10	-		210	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	10/10	-		3.7 J	<1.0	<1.0	<1.0	<3.0	<500 J	<1.0	<5.0	<1.0	<1.0
	4/11			<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.3	<1.1	<1.0
NUM 001	10/11	0/10	0000.0	<10	<1.0	0.31 J	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
IVIVV-231	3/09	341.2	336.2	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09	4		<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10	4		<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	8.4
	6/10	4		<10	<1.0	<1.0	<1.0	<3.0	INA E00 I	<1.0	INA IE O	NA :1.0	<1.0
	10/10	1		<10	<1.0	<1.0	<1.0	<3.0	<500 J	<1.0	<5.0	<1.0	<1.0
	4/11	1		<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.3	<1.1	<1.0
	10/11	1		<10	<1.0	0.29 J	<1.0	<3.0	<500	<1.0	<0.0	<1.0	<1.0

Table 3. Summary of Groundwater Monitoring Data, Aerobic Bioremediation Treatment Program, March 2009 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

See notes on Page 4.

	Sampling	Scree (feet	en Elev. AMSL)							Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	Ethyl-benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Quality	Standards (TO	GS 1.1.1)		50	1	5	5	5	NS	5	5	1	5
MW-27	3/09	362.5	354.5	14 J	8.7	9.4	36	88	<500	<1.0	8,200 J	<50 J	<1.0
	6/09			NA	NA	NA	NA	NA	NA	NA	7,400	<50	NA
	9/09			10	6.2	6.9	5.9	23	<500	<1.0	2,100	<10	<1.0
	4/10			<10	4.5	2.4	6.1	10	<500	<1.0	1,300	<10	<1.0
	10/10			<10	2.7	1.3	1.4	3.4	NA	<1.0	220	2.5	<1.0
	4/11			3.9 J	3.1	5.7	5.1	9.1	NA	<1.0	1,000	<11	<1.0
	10/11			<10	2.1	1.3	2.2	3.1	NA	<1.0	36	2.7	<1.0
MW-28	3/09	363.6	355.6	<10	3.5	0.3 J	0.8 J	1.1 J	851	<1.0	18	<0.5	<1.0
	9/09			<10	3.1	0.25 J	0.32 J	0.48 J	<500	<1.0	6.7	<1.0	<1.0
	4/10			<10	2.8	0.23 J	0.60 J	0.46 J	<500	<1.0	<5.0	0.49 J	<1.0
	10/10			<10	1.8	<1.0	<1.0	<3.0	<500 J	<1.0	2.4 J	0.60 J	<1.0
	4/11			4.3 J	2.3	0.11 J	<1.0	<3.0	<500	<1.0	3.9 J	0.75 J	<1.0 B
	10/11			<10	1.8	0.38 J	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
MW-29	3/09	362.9	345.9	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09			<10	<1.0	0.16 J	<1.0	<3.0	<500	<1.0	<5.0	0.29 J	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	10/10			<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.2	<1.0	<1.0
	4/11			<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.3 J	<1.1 J	<1.0
	10/11			<10	<1.0	0.22 J	<1.0	<3.0 J	NA	<1.0	<5.0	0.22 J	<1.0
MW-30	3/09	363.5	355.5	<10	0.8 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09			<10	0.78 J	0.17 J	<1.0	<3.0	<500	<1.0	21	<1.0	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	10/10			<10 J	0.14 J	<1.0	<1.0	<3.0	NA	<1.0	<5.1	<1.0	37
	4/11			<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.3 J	<1.1 J	<1.0
	10/11			<10	<1.0	0.18 J	<1.0	<3.0 J	NA	<1.0	<5.0	<1.0	<1.0
MW-31	3/09	363.7	355.4	9.4 J	8.3	0.6 J	< 1.0	0.8 J	<500	<1.0	<5.0	2.3	<1.0
	9/09			<10	10	0.49 J	<1.0	2.0 J	730	<1.0	<5.0	2.5	<1.0
	4/10			<10	4.8	0.40 J	<1.0	1.3 J	<500	<1.0	<5.0	2.3	<1.0
	10/10			<10	6.9	0.50 J	<1.0	1.5 J	<500 J	<1.0	<5.3	3.5	<1.0
	4/11			<10	8.3	0.77 J	<1.0	2.5 J	<500	<1.0	<5.3	2.3	<1.0
	10/11			<10	5.7	0.62 J	<1.0	1.5 J	<500	<1.0	<5.0	3.5	<1.0
MW-32	3/09	364	356	<10	0.5 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09			<10	<1.0	<1.0	<1.0	<3.0	1,200	<1.0	<5.0	1.1	<1.0
	4/10			<10	0.23 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	0.89 J	<1.0
	10/10			<10	<1.0	<1.0	<1.0	<3.0	<500 J	<1.0	<5.2	0.87 J	<1.0
	4/11			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.3	<1.1	<1.0
	10/11			<10	<1.0	0.19 J	<1.0	<3.0 J	<500	<1.0	<5.0	1.5	<1.0

Table 3. Summary of Groundwater Monitoring Data, Aerobic Bioremediation Treatment Program, March 2009 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

See notes on Page 4.

	Sampling	Scree (feet	en Elev. AMSL)							Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	Ethyl-benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Quality	Standards (TO	GS 1.1.1)		50	1	5	5	5	NS	5	5	1	5
MW-33	3/09	344.1	356.1	<10	3.2	<1.0	<1.0	<3.0	<500	<1.0	<5.0	2.4	<1.0
	9/09			<10	2.6	0.20 J	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10			<10	1.6	<1.0	<1.0	<3.0	<500	<1.0	<5.0	2.0	<1.0
	10/10			<10	1.7	<1.0	<1.0	<3.0	NA	<1.0	<5.1	2.7	<1.0
	4/11			<10	0.79 J	<1.0	<1.0	<3.0	NA	<1.0	<5.3	1.9	<1.0
	10/11			<10	0.58 J	0.12 J	<1.0	<3.0	NA	<1.0	<5.3	1.9	<1.0
MW-34	3/09	362.7	354.7	14	1.4	0.7 J	<1.0	1.5 J	<500	<1.0	12	2.0	<1.0
	9/09			24	<1.0	0.64 J	<1.0	1.7 J	1,000	<1.0	<5.0	2.5	<1.0
	4/10			50 J	0.82 J	0.42 J	<1.0	1.4 J	<500	<1.0	<5.0	2.4	<1.0
	10/10			20	1.0	0.44 J	<1.0	1.3 J	<500 J	<1.0	1.8 J	2.9	<1.0
	4/11			16	1.7	0.74 J	<1.0	2.0 J	<500	<1.0	10	2.7	<1.0
	10/11			350	1.2	0.71 J	<1.0	0.90 J	<500	<1.0	<5.6	2.5	<1.0
MW-35	3/09	363	355	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09			6.5 J	<1.0	0.16 J	<1.0	<3.0	1,100	<1.0	<5.0	<1.0	<1.0
	4/10			<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	10/10			<10	<1.0	<1.0	<1.0	<3.0	<500 J	<1.0	<5.0	<1.0	<1.0
	4/11			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.6	<1.1	<1.0
	10/11			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.1	<1.0	<1.0
MW-36 ^E	3/09	363.6	355.6	28	2.4	0.8 J	<1.0	2.8 J	<500	<1.0	150	2.8	<1.0
(Replaced by MW-36R)	6/09			NA	NA	NA	NA	NA	NA	NA	460	<5.0	NA
	9/09			21	3.1	0.96 J	<1.0	3.2	<500	<1.0	390	3.1	<1.0
	4/10			<10 J	3.3	1.1	0.26 J	5.4	<500	<1.0	77	2.6	<1.0
	10/10			12	3.9	1.2	0.28 J	4.8	<500 J	<1.0	620	<5.0	<1.0
	4/11			<10	4.3	0.95 J	<1.0	4.4	NA	<1.0	310	4.0	<1.0
	10/11			<10	1.8	0.66 J	<1.0	1.4 J	NA	<1.0	92	3.6	<1.0
	12/11			NA	NA	NA	NA	NA	NA	NA	120	NA	NA
TW-01	3/09	365.1	355.4	<10	1.9	<1.0	<1.0	0.6 J	22,300	<1.0	<5.0	<0.5	<1.0
	9/09			2.9 J	<1.0	0.11 J	<1.0	<3.0	970	<1.0	<5.0	1.1	<1.0
	4/10			<10	0.32 J	<1.0	<1.0	<3.0	<500	<1.0	<5.0	1.0	<1.0
	10/10			<10	<1.0	<1.0	<1.0	<3.0	<500 J	<1.0	<5.3	1.3	<1.0
	4/11			<10	0.21 J	<1.0	<1.0	<3.0	<500	<1.0	<5.3	<1.1	<1.0
	10/11			<10	<1.0	<1.0	<1.0	<3.0 J	<500	<1.0	<5.6	1.6	<1.0
TW-02RR ^{BE}	3/09	363.3	353.3	<10 [<10]	5.0 [4.6]	1.0 [1.0 J]	1.5 [1.6]	4.2 [4.1]	<500 [<500]	<1.0 [<1.0]	2,000 [1,600]	<10 [<10]	<1.0 [<1.0]
(Replaced by TW-02RRR)	6/09			NA	NA	NA	NA	NA	NA	NA	2,800	<20	NA
	9/09			<10 [<10]	4.3 [4.2]	0.79 J [0.81 J]	1.2 [1.3]	3.5 [3.6]	1,000 [1,200]	<1.0 [<1.0]	1,600 [1,500]	<10 [<10]	<1.0 [<1.0]
	4/10			9.5 J [12 J]	4.1 [4.0]	0.78 J [0.75 J]	1.2 [1.2]	4.2 [4.0]	<500 [<500]	<1.0 [<1.0]	2,800 J [3,100 J]	<20 J [<20 J]	<1.0 [<1.0]
	10/10	-		<10 [<10]	3.3 [3.0]	0.82 J [0.76 J]	1.0 [0.91 J]	3.6 [3.6]	<500 J [<500 J]	<1.0 [<1.0]	760 [810]	<5.0 [2.2 J]	<1.0 [<1.0]
	4/11			<10 [<10]	2.1 [2.0]	0.74 J [0.75 J]	1.2 [1.3]	5.2 [5.3]	<500 [<500]	<1.0 [<1.0]	1.9 J [2.1 J]	5.4 [3.3]	<1.0 [<1.0]
	12/11	-		×10 [<10] NA	1.2 [1.1] NA	0.55 J [0.48 J] NA	0.07 J [0.09 J] NA	1.5 J [1.4 J] NA	<500 [<500] NA	<1.0 [<1.0] NA	1,300 D [1,300 D]	5.5 [0.2] NA	×1.0 [<1.0] NA
P7-4D	3/09	350.8	345.9	<10	<1.0	<10	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	4/10	000.0	040.0	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	5.3 J
	6/10	1	1	<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	NA	NA	<1.0
	4/11	1		<10	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.3	<1.1	<1.0
PZ-4S	3/09	362.79	357.88	<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	17
1	6/10	1		<10 J	<1.0	<1.0	<1.0	<3.0	NA	<1.0	NA	NA	<1.0
	4/11	1	1	<10 J	<1.0	<1.0	<1.0	<3.0	NA	<1.0	<5.3	<1.1	<1.0

Table 3. Summary of Groundwater Monitoring Data, Aerobic Bioremediation Treatment Program, March 2009 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

See notes on Page 4.

Table 3. Summary of Groundwater Monitoring Data, Aerobic Bioremediation Treatment Program, March 2009 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

General Notes:

- 1. Concentrations are presented in micrograms per liter, which is equivalent to parts per billion.
- 2. Compounds detected are indicated by bold-faced type.
- 3. Detections exceeding New York State Department of Environmental Conservation (NYSDEC) Groundwater Standards (TOGS 1.1.1; NYSDEC, 1998) are indicated by shading.
- 4. Duplicate sample results are presented in brackets (e.g., [14]).
- 5. Replacement wells for MW-8 and MW-9 were installed 8/95.
- 6. Replacement wells for MW-17and TW-02 were installed 11/97 12/97.
- 7. The sampling events in 9/06 and 8/07 were interim sampling events to gauge the effects of the in-situ aerobic biodegradation treatment activities.
- 8. The laboratory analytical results for the duplicate sample collected from monitoring well MW-27 during the 8/07 sampling event indicated the presence of aniline at 4,300 micrograms per liter. Because aniline was not detected in the original sample, MW-27, DUP-1, and TW-02RR were all reanalyzed outside of hold time due to the difference in concentration between the parent sample and the field duplicate. The duplicate result for aniline was positively identified; however, the associated numerical value is an estimated concentration only. The concentration for TW-02RR was significantly lower than the original result. Therefore, the original result for TW-02RR was qualified as estimated.
- 9. The sampling event in 6/10 was an interim sampling event to check for the presence of methylene chloride.

Superscript Notes:

^A= Data presented is total xylenes (m- and p-xylenes and o-xylenes).

- ^B = Wells MW-8S and TW-02R were abandoned in 8/04 and replacement wells MW-8SR and TW-02RR were installed in 8/04.
- ^c = Well MW-9 was abandoned during OU1 soil remediation activities (1994).
- ^D = Wells/piezometers MW-17 was abandoned 11/97 1/98.
- ^E = Wells/piezometers MW-36, PZ-5S, PZ-W, and TW-02RR were abandoned 11/10. Replacement wells TW-02RRR (replaced TW-02RR) and MW-36R (replaced MW-36 and PZ-W) were installed in 11/10.

Abbreviations:

AMSL = Above mean sea level (NGVD of 1929).

NA = Compound was not analyzed for in the sample.

NI = No screen.

NS = Standard not available.

TOGS = Technical & Operational Guidance Series

Analytical Qualifiers:

B = The compound was found in associated method blank.

- J = The compound was positively identified; however, the numerical value is an estimated concentration only.
- < = Compound was not detected at the listed quantitation limit.

R = The sample results were rejected.

Data	Dissolved Oxygen (ppm)						
Date	MW-33 (Area 1)	MW-36R (Area 2)	TW-02RRR (Area 2)	MW-27 (Area 3)	MW-28 (Area 3)	MW-8SR (Area 3)	
8/21/06	N/R	N/R	N/R	N/R	3.35	N/R	
8/28/06	0.28	N/R	N/R	0.88	2.18	N/R	
9/1/06	0.53	N/R	N/R	0.41	0.40	N/R	
9/8/06	0.22	N/R	N/R	0.42	0.53	N/R	
9/21/06	0.17	N/R	N/R	0.21	0.37	N/R	
9/29/06	0.28	N/R	N/R	0.37	0.40	N/R	
10/6/06	0.16	N/R	N/R	0.43	0.29	N/R	
10/13/06	0.21	N/R	N/R	0.33	0.31	N/R	
10/28/06	0.17	N/R	N/R	0.24	0.29	N/R	
11/10/06	0.37	N/R	N/R	0.33	0.38	N/R	
11/16/06	0.27	N/R	N/R	0.23	0.21	N/R	
11/22/06	0.41	N/R	N/R	0.37	0.42	N/R	
12/4/06	0.29	N/R	N/R	0.23	0.32	N/R	
12/7/06	0.24	N/R	N/R	0.22	0.29	N/R	
12/14/06	0.57	N/R	N/R	0.27	0.32	N/R	
1/7/07	0.30	N/R	N/R	0.27	0.21	N/R	
1/12/07	0.24	N/R	N/R	0.27	0.30	N/R	
1/19/07	0.23	N/R	N/R	0.20	0.37	N/R	
1/26/07	0.26	N/R	N/R	0.61	0.57	N/R	
2/9/07	0.24	N/R	N/R	0.28	0.44	N/R	
2/22/07	0.33	N/R	N/R	0.44	0.30	N/R	
3/2/07	0.62	N/R	N/R	0.20	0.36	N/R	
3/16/07	0.29	N/R	N/R	0.37	0.55	N/R	
3/23/07	0.25	N/R	N/R	0.22	0.46	N/R	
3/30/07	0.47	N/R	N/R	0.45	0.79	N/R	
4/5/07	0.31	N/R	N/R	0.59	0.91	N/R	
4/19/07	0.32	N/R	N/R	0.27	0.73	N/R	
4/26/07	0.26	N/R	N/R	0.49	0.48	N/R	
5/11/07	0.50	N/R	N/R	0.43	0.58	N/R	
5/25/07	0.22	N/R	N/R	0.53	0.81	N/R	
6/1/07	0.30	N/R	N/R	0.32	0.70	N/R	
6/29/07	0.48	0.90	N/R	1.87	2.76	N/R	
7/3/07	0.21	0.48	N/R	0.43	0.66	N/R	
7/13/07	0.38	0.38	N/R	0.68	1.18	N/R	
7/19/07	0.36	0.22	N/R	0.52	0.98	N/R	
7/27/07	0.24	0.32	N/R	0.50	0.86	N/R	
8/3/07	0.47	0.47	N/R	0.57	0.79	N/R	
8/9/07	0.63	0.31	N/R	0.42	0.70	N/R	
8/16/07	0.37	0.31	IN/R	0.40	0.85	IN/R	
8/24/07	0.38	0.33	IN/R	0.50	0.88	IN/R	
0/31/07	0.54	0.40	IN/R	0.32	0.77	IN/R N/D	
9/1/07	0.47	0.40		0.35	0.52	IN/R N/D	
9/14/07	0.40	0.30	N/R	0.39	0.03	N/R	
9/21/07	0.30	0.31	N/R	0.54	0.40	N/R	
10/5/07	0.20	0.43	N/R	0.57	0.71	N/R	
10/12/07	0.30	0.41	N/P	0.41	1 02	N/P	
10/19/07	0.44	0.52	N/R	0.50	1.00	N/R	
10/26/07	0.44	0.52	N/R	0.33	1.02	N/R	
11/2/07	0.38	0.48	N/R	0.44	0.90	N/R	
11/2/07	0.30	0.40	N/R	0.68	1.04	N/R	
11/16/07	0.43	0.43	N/R	0.00	0.38	N/R	
11/21/07	0.50	0.04	N/R	0.33	1 24	N/R	
11/30/07	0.42	0.51	N/R	0.84	1.24	N/R	
12/7/07	0.44	0.41	N/R	0.54	0.66	N/R	
12/14/07	0.49	0.55	N/R	0.55	1.02	N/R	
12/20/07	0.45	0.44	N/R	0.89	0.90	N/R	
12/28/07	0.42	0.46	N/R	0.56	1,10	N/R	
1/4/2008	0.46	0.39	N/R	0.77	0.89	N/R	
1/11/2008	0.48	0.36	N/R	0.64	0.91	N/R	
1/18/2008	0.45	0.44	N/R	0.74	1.02	N/R	
1/25/2008	0.42	0.33	N/R	0,96	0.92	N/R	
2/1/2008	0.43	0.38	N/R	0.89	1.00	N/R	

Table 4. Summary of Dissolved Oxygen Measurements, August 2006 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

See notes on page 3.

Dete	Dissolved Oxygen (ppm)						
Date	MW-33 (Area 1)	MW-36R (Area 2)	TW-02RRR (Area 2)	MW-27 (Area 3)	MW-28 (Area 3)	MW-8SR (Area 3)	
2/8/2008	0.42	0.61	N/R	0.63	0.77	N/R	
2/15/2008	0.46	0.54	N/R	0.86	0.99	N/R	
2/22/2008	0.53	0.51	N/R	0.84	0.71	N/R	
2/29/2008	0.44	0.45	N/R	0.73	0.92	N/R	
3/1/2008	0.61	0.45	N/R	0.74	1.01	N/R	
3/14/2008	0.65	0.34	N/R	0.63	0.81	N/R	
3/28/2008	0.62	0.33	N/R	0.00	0.87	N/R	
4/4/2008	0.66	0.44	N/R	0.68	0.98	N/R	
4/9/2008	0.77	0.35	N/R	0.54	0.79	N/R	
4/20/2008	0.68	0.44	N/R	0.64	0.77	N/R	
4/25/2008	0.48	0.61	N/R	0.43	0.76	N/R	
5/2/2008	0.44	0.48	N/R	0.66	0.79	N/R	
5/9/2008	0.46	0.41	N/R	0.67	0.81	N/R	
5/10/2008	0.49	0.44	N/R	0.79	0.97	N/R	
5/30/2008	0.30	0.34	N/R	0.40	0.55	N/R	
6/6/2008	0.31	0.33	N/R	0.40	0.67	N/R	
6/13/2008	0.38	0.37	N/R	0.48	0.58	N/R	
6/20/2008	0.41	0.70	N/R	0.40	0.58	N/R	
6/27/2008	0.68	0.90	N/R	0.69	1.02	N/R	
7/2/2008	0.97	0.88	N/R	1.03	1.18	N/R	
7/10/2008	1.07	0.86	N/R	1.24	1.40	N/R	
7/10/2000	2.00	1.09	N/R	2.03	2.31	N/R	
8/1/2008	1.34	1.73	N/R	1.90	1 48	N/R	
8/8/2008	1.20	1.38	N/R	1.43	1.71	N/R	
8/15/2008	1.29	1.53	N/R	1.68	1.94	N/R	
8/22/2008	1.06	1.05	N/R	1.07	1.40	N/R	
8/29/2008	1.18	0.98	N/R	1.04	1.32	N/R	
9/5/2008	0.90	0.78	N/R	1.02	1.17	N/R	
9/12/2008	0.85	0.83	N/R	0.87	1.00	N/R	
9/19/2008	0.91	1.03	N/R	0.97	1.07	IN/R	
10/3/2008	0.74	0.54	N/R	0.74	0.90	N/R	
10/10/2008	0.71	0.58	N/R	0.77	1.03	N/R	
10/17/2008	0.69	0.62	N/R	0.70	0.98	N/R	
10/23/2008	0.66	0.89	N/R	0.91	0.71	N/R	
10/31/2008	0.47	0.50	N/R	0.62	0.68	N/R	
11/7/2008	0.42	0.58	0.43	0.53	0.53	0.60	
11/14/2008	0.55	0.66	1.15	0.74	0.63	0.70	
11/25/2008	0.90	0.81	0.90	0.80	1.20	0.88	
12/4/2008	0.74	0.78	0.76	0.94	1.02	0.92	
12/12/2008	0.77	0.79	0.79	0.96	1.09	0.88	
12/18/2008	0.80	0.83	0.80	0.84	1.03	0.86	
12/22/2008	0.78	0.82	0.79	0.91	1.09	0.87	
12/29/2008	0.83	0.80	0.86	0.84	0.98	0.93	
1/9/2009	1.01	0.97	0.96	1.00	1.33	1.02	
1/23/2009	1.12	0.90	0.94	1.90	1.20	1.01	
1/30/2009	1,16	0.88	0.91	0.99	1.19	0.98	
2/6/2009	1.07	1.28	1.30	1.67	3.30	2.34	
2/13/2009	1.08	1.03	0.97	1.07	2.04	1.23	
2/20/2009	1.08	1.10	0.96	1.34	2.38	1.29	
2/26/2009	0.80	0.97	0.86	1.20	1.44	1.12	
3/6/2009	0.73	0.96	0.93	0.97	1.20	1.01	
3/20/2009	0.83	1.20	1.05	1.10	1.00	1.10	
3/27/2009	0.50	0.56	0.55	0.80	0.95	0.76	
4/2/2009	0.55	0.55	0.94	0.53	0.82	0.60	
4/7/2009	0.68	0.71	0.87	0.77	0.91	0.78	
4/19/2009	0.77	0.68	0.93	0.81	0.98	0.77	
4/24/2009	0.43	0.48	0.39	0.60	0.73	0.74	
5/1/2009	0.43	0.46	0.43	0.81	0.87	1.02	
5/8/2009	0.40	0.54	0.43	0.58	1.03	0.55	
5/15/2009	0.41	0.38	0.34	0.60	0.88	0.51	
5/29/2009	0.43	0.44	0.40	0.58	0.70	0.55	
6/5/2009	0.38	0.58	0.62	0.34	0.60	0.48	
6/12/2009	0.28	0.40	0.31	0.60	0.44	0.44	

Table 4. Summary of Dissolved Oxygen Measurements, August 2006 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

See notes on page 3.

Dette			Dissolved Ox	ygen (ppm)		
Date	MW-33 (Area 1)	MW-36R (Area 2)	TW-02RRR (Area 2)	MW-27 (Area 3)	MW-28 (Area 3)	MW-8SR (Area 3)
6/26/2009	0.34	0.43	0.34	0.52	0.45	0.42
6/29/2009	0.33	0.42	0.57	0.50	0.83	0.60
7/7/2009	0.31	0.44	0.48	0.55	0.81	0.64
7/16/2009	0.30	0.37	0.27	0.37	0.73	0.43
7/24/2009	0.30	0.30	0.22	0.44	0.53	0.37
7/29/2009	0.33	0.36	0.28	0.41	0.55	0.41
8/7/2009	0.30	0.46	0.35	0.36	0.92	0.39
8/12/2009	0.31	0.41	0.28	0.42	0.41	0.34
8/20/2009	0.33	0.32	0.27	0.44	0.53	0.40
8/28/2009	0.25	0.31	0.34	0.52	0.77	0.47
9/3/2009	0.31	0.37	0.35	0.48	0.68	0.44
9/25/2009	0.45	0.58	0.35	0.52	0.73	0.50
10/2/2009	0.44	0.55	0.33	0.54	0.78	0.51
10/9/2009	0.41	0.53	0.32	0.58	0.95	0.77
10/15/2009	0.48	0.55	0.37	0.61	0.71	0.58
10/23/2009	0.43	0.51	0.54	0.80	0.74	0.61
11/17/2009	0.48	0.55	0.56	0.78	0.84	0.68
12/4/2009	0.42	0.53	0.48	0.76	0.88	0.71
1/20/2010	0.62	0.59	0.55	0.81	0.90	0.67
2/26/2010	0.57	0.51	0.47	0.77	0.91	0.74
3/12/2010	0.85	0.90	0.74	1.11	0.91	1.02
4/9/2010	0.78	0.94	0.68	0.98	0.87	0.86
5/7/2010	0.84	0.91	0.73	0.84	1.97	0.96
6/22/2010	0.52	0.47	0.60	0.47	0.82	0.58
7/8/2010	0.78	0.56	0.71	0.87	1.67	0.55
8/26/2010	0.64	0.40	0.35	0.67	1.70	0.98
9/23/2010	0.33	0.46	0.30	0.50	0.98	0.40
10/19/2010	0.30	0.37	0.46	0.48	0.85	0.48
11/23/2010	0.38	N/R	0.58	0.61	0.88	0.56
12/20/2010	0.41	N/R	0.48	0.54	0.81	0.40
1/12/2011	0.36	N/R	0.44	0.68	1.13	0.61
2/172011	0.58	N/R	0.36	0.55	1.30	0.75
3/2/2011	0.61	N/R	0.42	0.68	1.28	0.71
4/29/2011	0.34	N/R	0.35	0.76	1.31	0.77
5/20/2011	0.50	0.51	0.47	0.94	1.26	0.76
6/24/2011	0.40	0.35	0.25	0.15	0.36	0.12
7/13/2011	0.36	0.20	0.21	0.56	0.57	0.25
8/2/2011	0.37	0.22	0.26	0.36	0.47	0.25
9/19/2011	0.38	0.33	0.34	0.40	0.42	0.51
10/14/2011	0.36	0.36	0.55	0.42	0.52	0.66
11/7/2011	0.49	1.57	0.42	0.47	0.61	0.62
12/14/2011	0.42	0.43	0.47	0.79	0.85	0.52

Table 4. Summary of Dissolved Oxygen Measurements, August 2006 through December 2011, Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

Notes:

1. No readings were taken at MW-36 between 8/21/2006 and 6/1/2007 and 11/23/2010 and 4/29/2011.

2. DO readings were taken at TW-02RR and MW-8SR beginning 11/7/2008, just after the installation of the oxygen infusion system in Areas 2 and 3.

3. TW-02RR was replaced by TW-02RRR and MW-36 was replaced by MW-36R in 11/2010.

Abbreviations:

DO = dissolved oxygen.

N/R = no reading was taken.

ppm = parts per million.

Figures

ø	UTILITY	POLE
	0 112111	

- CATCH BASIN
- PM PETROLEUM PIPE LINE MARKER
- GM O GAS LINE MARKER
- sv SEWER VENT
- ♦ HYDRANT
- WATER VALVE
- MANHOLE
- ---- PROPERTY LINE
- MW-19
 GROUNDWATER MONITORING WELL
- OR BIANNUAL DOWNGRADIENT PERIMETER GROUNDWATER MONITORING LOCATION
- PZ-A 🖸 🛛 PIEZOMETER
- MW-26S 🚱 PUMPING WELL

PZ-W (X) REMOVED/DECOMMISSIONED WELL/PIEZOMETER

- WP-8 ▲ WELL POINT
- IW-3 OXYGEN INFUSION WELL
- ____ APPROXIMATE BOUNDARY OF AREA
- GROUNDWATER WITHDRAWAL TRENCH
- GROUNDWATER INFILTRATION TRENCH AND IDENTIFICATION
- PIPING TO BUILDING
- ---- PIPING FROM BUILDING
- TREE LINE

NOTES:

- 1. REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).
- 2. LOCATIONS ARE APPROXIMATE.

200' 100'

GRAPHIC SCALE

McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK **PERIODIC REVIEW REPORT SITE PLAN**

ARCADIS

FIGURE

1

	LEGEND:
	PROPERTY LINE
PM	PETROLUEM PIPE LINE MARKER
MW-19 🛞	GROUNDWATER MONITORING WELL
PZ-A 🖲	PIEZOMETER
TW-02R (🛞)	REMOVED/DECOMMISSIONED GROUNDWATER MONITORING WELL/PIEZOMETER
IW−3 📘	OXYGEN INFUSION WELL
SP-2-7 Ф	STANDPIPE LOCATION
	APPROXIMATE BOUNDARY OF AREA
555555555555555555555555555555555555555	GROUNDWATER INFILTRATION TRENCH
	PVC CONDUIT CARRYING POLYURETHANE TUBES
	AREA OF HISTORICALLY RELATIVELY HIGHER CONCENTRATION OF COCS
NOTE	S:
1. RE IDE	PLACED MONITORING WELLS ARE ENTIFIED WITH AN "R" (e.g., MW-24DR).
2. LO	CATIONS ARE APPROXIMATE.
	0 30' 60'

GRAPHIC SCALE

McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK **PERIODIC REVIEW REPORT**

OXYGEN INFUSION SYSTEM LAYOUT AREA 2

FIGURE

2

OXYGEN INFUSION SYSTEM LAYOUT AREA 3

(FRZ) PAG DB: R. BASSETT, W. JONES, P. LISTER. PMTM: D. PENNIMAN TR: C. SOBOL LYR: ON=";OFF=REF, 80DWG!PRR26003W04.DWG LAYOUT: 4 SAVED: 28/2012.3:20 PM ACADVER: 18.15 (LMS TECH) /IM-DV

	LEGEND: UTILITY POLE
	CATCH BASIN
	PETROLEUM PIPE LINE MARKER
	GAS LINE MARKER
	SEWER VENT
	WATER VALVE
	MANHOLE
\sim	TREE LINE
· —	EDGE OF BARGE CANAL
	PROPERTY LINE
۲	GROUNDWATER MONITORING WELL
۲	BIANNUAL DOWNGRADIENT PERIMETER GROUNDWATER MONITORING LOCATION
. 🔿	PIEZOMETER
]	APPROXIMATE BOUNDARY OF AREA
	GROUNDWATER WITHDRAWAL TRENCH
	GROUNDWATER INFILTRATION TRENCH AND IDENTIFICATION
	PIPING TO BUILDING
	PIPING FROM BUILDING
3)	GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL)
	GROUNDWATER ELEVATION CONTOUR (FEET AMSL) DASHED WHERE INFERRED
$\mathbf{)}$	CLOSED DEPRESSION
•	

 ONLY THE HYDRAULIC MONITORING LOCATIONS USED TO DRAW THIS MAP ARE SHOWN.
 REPLACED MONITORING WELLS AND PIEZOMETERS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).

ELEVATIONS REFERENCED TO THE NATIONAL GEODETIC VERTICAL DATUM OF 1929.
 THE BARGE CANAL ELEVATION WAS MEASURED FROM A MARKED POINT ON THE BEAR STREET BRIDGE.
 CONTOUR INTERVAL = 0.5 FOOT.

0	100'	200'
GI	RAPHIC SCALE	
McKESS FORMER SYRA PERIODI	SON ENVIROSYS BEAR STREET F ACUSE, NEW YC C REVIEW R	STEMS FACILITY PRK EPORT
POTENTIOME SHALLOW HY SAND LAYE	TRIC SURF YDROGEO R- OCTOB	ACE OF THE LOGIC UNIT ER 24, 2011
AR	CADIS	FIGURE 4

L H H

E C

ž

Ä

SOBOL

TR: C. 27 PM

PM/TM: D. PENNIMAN 5 SAVED: 1/9/2012 2

LISTER

IONES, P

ž

ż

ä

VD-MI/VNE

GROUP:

ž

Ж

SYRACL

4.3 1.8 <1.0 <1.0 <1.0 <1.0 0.95 J 0.66 <1.0 <1.0	NA NA NA J NA		
4.4 1.4 310 92	J NA 120		
NA NA	NA		
0/12/2010 4/4/20 10 <10 1.0 <1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 3.0 <3.0	011 10/25/2011 d0 d.0 d.0 d.0 d.0 d.0 d.0 d.0	LEGEND:	MARKER
5.3 <5.3 .3 <1.1	<5.6 1.6	sv • SEWER VENT	
		♦ HYDRANT	
		WATER VALVE	
		○ MANHOLE	
		PROPERTY LINE	
		TW-02RRR	RING WELL
0/12/2010 4/4/20	011 10/25/2011	PZ−A	
1.0 <1.0 1.0 <1.0	4.0 4.0 4.0	TW-02R REMOVED/DECOMMISSIC	NED RING
1.0 <1.0 1.0 <1.0 1.0 <1.0	0.19 J <1.0	WELL/PIEZOMETER	
3.0 <3.0 5.2 <5.3 .87 J <1.1	<3.0 J <5.0 1.5	C C C C C C C C C C C C C C C C C C C	RY OF AREA
500 J <500	<500		ATION TRENCH
0/12/2010 4/6/2/ 10 <10 1.0 <1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 5.2 <5.3 1.0 <1.1 A NA	D11 10/27/2011 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NA	AREA OF HISTORICALL	(RELATIVELY N OF COCS
0/12/2010 4/5/2 10 <10 7 0.79 J 1.0 <1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 3.0 <3.0 5.1 <5.3 .7 1.9 A NA	011 10/26/2011 <10 0.58 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		
		0 100' 20	20'
		STALLING SUALL	
TICATION		McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK PERIODIC REVIEW REPORT	
	GROUNI FC AR	DWATER MONITORING DATA S DR MARCH 2009 - DECEMBER REAS 1 & 2 (AEROBIC TREATM	SUMMARY 2011 ENT)
		ARCADIS	FIGURE

LYR: ON=*;OFF=REF, (FRZ) 18.1S (LMS TECH) PAGESE PM/TM: D. PENNIMAN TR: C. SOBOL SAVED: 2/8/2012 4:10 PM ACADVER: DB: N. SMITHGALL, R. BASSETT, P. LISTER 90/DWG/PPR/26003C02 DWG 1 AYOUT: 6 VIM-DV **BROUP:ENV** <u>S</u> USE, NY SYRACUS SYRACL Ě

ND:			
UTILI	TY POLE	MW-19 🛞	GROUNDWATER MONITORING WELL
CATO	CH BASIN	PZ-A 🖲	PIEZOMETER
PETR	OLEUM PIPE LINE MARKE	R 💿 or 🐵	BIANNUAL DOWNGRADIENT PERIMETER
GAS	LINE MARKER		GROUNDWATER MONITORING LOCATION
HYDF	RANT	MW-265 🤀	PUMPING WELL
WATE	ER VALVE	MW-85 ()()	REMOVED/DECOMMISSIONED GROUNDWATER MONITORING
MAN	HOLE		WELL/FIEZOMETER
PROF	PERTY		APPROXIMATE BOUNDARY OF AREA
LINE	EDGE OF WATER		GROUNDWATER WITHDRAWAL TRENCH
EDGE	OF TREELINE	A	GROUNDWATER INFILTRATION TRENCH AND IDENTIFICATION
TREE			PIPING TO BUILDING
			PIPING FROM BUILDING
ΝΟΤ	ES:		AREA OF HISTORICALLY RELATIVELY HIGHER CONCENTRATION OF COCs
1.	REPLACED MONITORING MW-24DR).	WELLS ARE IDEN	TIFIED WITH AN "R" (e.g.,
2.	TRENCH LOCATIONS ARE	APPROXIMATE.	
3.	MONITORING LOCATIONS	ARE APPROXIMA	NTE.
4.	FIGURE ONLY SHOWS CC WITHIN THE IMPACTED A MONITORING LOCATIONS.	C CONCENTRATI REAS AND THE	ONS AT MONITORING LOCATIONS CHEMICAL PROCESS CONTROL

- ONLY COC CONCENTRATIONS DETECTED OR HAVE BEEN DETECTED ARE PRESENTED ON THIS FIGURE (SEE ATTACHMENT A FIGURES 2 AND 4). 5.
- < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT. 6.
- NA = COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE. 7.
- J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY. 8.
- R = THE SAMPLE RESULT WAS REJECTED.9.
- 10. B = COMPOUND WAS FOUND IN ASSOCIATED METHOD BLANK.
- THE 9/06, 8/07 AND 6/09 SAMPLING EVENTS WERE INTERIM SAMPLING 11. EVENTS, ANALYZING FOR ANILINE & N.N-DIMETHYLANILINE ONLY. THE 6/10 SAMPLING EVENT WAS AN INTERIM SAMPLING EVENT ANALYZING FOR VOLATILE ORGANIC COMPOUNDS ONLY.
- SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL GUIDANCE SERIES 1.1.1). 12.
- 13. NS STANDARD NOT AVAILABLE.

N, M

				F	SAMP	LE ID	ENTIFI	CATIC	N					
te Inzene Injbenze thylene uene	ne Chioride	Jun−06 <5.0 <1.0 <4.0 <3.0 0.50 J	Jun-07 <5.0 <1.0 <4.0 <3.0 <5.0	PZ-# Mar-08 <5.0 <1.0 <4.0 <3.0 <5.0	Mar-09 <10 <1.0 <1.0 <1.0 <1.0 <1.0	Apr-10 <10 <1.0 <1.0 5.3 J <1.0	Jun-10 <10 <1.0 <1.0 <1.0 <1.0	Apr-11 40 40 40 40 40 40 40 40 40 40 40 40 40		NYSE Acetone Benzene Ethylbenze Methylene Toluene	ne Chloride	50 1 5 5 5		
ines (t ine ine ine ine ine ine ine ine ine ine	utrestition Statu Statu													
SNS ST/	O 100' 200' GRAPHIC SCALE													
				Ma FOR PER	KES MER SYR	SON BEA ACU IC F	ENV R ST SE, N REVI	IROS REE IEW EW	YSTEM T FACIL YORK REPC	IS .ITY)RT				
	GROUNDWATER MONITORING DATA SUMMARY FOR MARCH 2009 - OCTOBER 2011 AREA 3 (AEROBIC TREATMENT)													
			Ć		AR	RC	A	DI	S		F	iguri 6	Ξ	

ARCADIS

Attachment A

Table 1. Summary of Historical Groundwater Monitoring Data

Table 2. Summary of Historical Groundwater Level Measurements

Figures 1 – 7. Groundwater Monitoring Data Summaries

Table 1. Summary of Historical Groundwater Level Measurements, June 1998 through June 2006,

2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Reference	6/10/98	6/22/98	7/6/98	7/20/98	7/27/98	8/5/98	8/10/98	8/10/98	8/11/98	8/11/98	8/12/98	8/12/98	10/16/98	11/17/98
	Elevation	e						(morning)	(afternoon)	(morning)	(afternoon)	(morning)	(afternoon)		
Location	(feet AMSL)	Static			Week 1	Week 2	Week 3	Week 4	Week 4	Week 4	Week 4	Week 4	Week 4	Week 13	Week 18
Canal	393.39*	362.91	363.37	363.72	363.08	363.08	362.94		362.78	362.94			362.84	363.27	
Collection Sump	372.81	364.33	363.08	363.68	362.50	361.31	361.83	361.89	362.14	361.00	361.71	361.95	362.31	362.01	361.48
MW-3S	376.54	365.93	366.26	367.82	366.20			365.29							365.25
MW-3D	375.56	365.63	365.87	366.16			364.97	364.85						365.08	365.00
MW-6D	377.07	365.75	366.01	366.29										365.25	365.15
MW-8D	374.68	365.51	365.74	366.05			364.80		364.67	364.79	364.88	364.87	364.87	364.93	364.83
MW-9D	376.76**	365.78					365.14	365.10						365.25	365.16
MW-11D	373.68	365.46	365.67	365.29			364.62	364.49	364.50	364.62		364.69	364.67	364.77	364.68
MW-11S	373.50	364.88	364.62	365.11	364.12	363.70	363.58	363.52	363.58	363.73		363.69	363.74	363.74	363.69
MW-18	372.57	362.64													361.90
MW-19	376.00	362.42													361.78
MW-23I	372.77	365.04	365.34	365.72			364.34		364.45	364.16			364.43	364.43	364.34
MW-23S	372.61	363.99	363.43	364.04	362.92	362.50	362.41		362.40	362.66		362.54	362.67	362.68	362.56
MW-24DR	375.14	365.41													364.63
MW-24SR	375.55	365.15	365.32	365.66	364.91	364.45	364.27		364.20				364.36	364.47	364.37
MW-25D	373.67	365.43													364.74
MW-25S	373.39	363.91	363.64	364.14	363.21	362.95	362.75		362.75			362.89	362.96	363.01	362.89
PZ-4D	376.11	365.46	365.73	366.01	365.21	364.83	364.63		364.54	364.67	364.75	364.74	364.70	364.80	364.69
PZ-5D	375.58	365.66	365.91	366.18	365.36	365.07	364.84		364.76	364.88	364.94	364.93	364.91	364.99	364.89
PZ-8D	375.83	365.90	366.11	366.35			365.25	365.13	365.83					365.35	365.27
PZ-9D	377.29	365.73					365.47	365.28						365.12	365.03
PZ-A	373.94	364.49	363.69	364.28	363.13	362.58	362.56	362.62	362.76	363.39	362.82	362.64	363.02	362.75	362.56
PZ-B	373.92	364.49	363.60	364.21	363.02	362.62	362.50	363.26	362.71	363.00	362.97	362.59	363.01	362.67	362.54
PZ-C	374.85	365.69	366.29	367.02	365.93	365.97	365.47	365.38	365.30	365.54	365.99	365.53	365.54	365.56	365.52
PZ-D	375.12	365.78	366.25	366.99	365.99	365.91	365.53	365.37	365.30	365.53	366.06	365.58	365.67	365.59	365.55
PZ-E	374.12	364.75	364.25	364.86	363.73	364.00	363.41	363.61	363.54	364.22	364.67	364.67	364.08	363.57	363.67
PZ-F	377.06	366.17					365.56	365.50						365.37	365.27
PZ-G	377.16	366.21					365.66	365.60						365.46	365.36
PZ-HR	376.99	366.16					365.54							365.44	365.34
PZ-I	375.15	366.56					365.86	365.64						365.88	365.57
PZ-J	374.89	366.15					365.53	365.40						365.53	365.39
PZ-K	373.19	364.53	363.78	364.35	363.27	362.69	362.69	362.71	362.75	362.92	362.80	362.78	362.98	362.82	362.66
PZ-L	374.62	364.25	363.59	364.18	363.04	362.42	362.48	362.44		362.88	362.63	362.57	362.84	362.65	362.40
PZ-M	374.35	364.70	364.09	364.64	363.52	362.96	362.96	362.96	363.09	363.29	363.15	363.05	363.30	363.12	362.93
PZ-N	376.94***	365.79	366.37	367.06	365.99	365.91	365.53	365.39	365.33	365.55	365.97	365.58	365.59	365.59	365.55
PZ-O	375.36	364.29	363.68	364.29	363.21	362.84	362.72	362.87	362.78	363.05	362.97	362.80	363.03	362.81	362.74
PZ-P	376.89	366.25					365.65	365.60						365.52	365.39
PZ-Q	377.61	366.23		1			365.64	365.57						365.45	365.35
PZ-R	377.05	366.23		366.94			365.65	365.57						365.50	365.38
PZ-S	378.13	366.19					365.57	365.52						365.43	365.35
PZ-T	376.25	366.14		1	1		365.54	365.43	1		1		1	365.52	365.38
PZ-U	375 35	365 99		366 81	1		365 50	365.33	1		1		1	365.37	365.30
PZ-V	375.78	366.07			1		365.48	365.35	1		1		1	365.43	365.29
PZ-W	375.78	366.07					365.46	365.31						365.41	365.28

Table 1. Summary of Historical Groundwater Level Measurements, June 1998 through June 2006,

2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Reference	12/16/98	12/22/98	1/6/99	1/13/99	4/14/99	6/3/99	7/13/99	3/27/00	6/1/00	9/18/00	11/14/00	3/19/01	9/24/01
	Elevation													
Location	(feet AMSL)	Week 22	Week 23	Week 25	Week 26	Week 39	Week 46	Week 52						
Canal	393.39*	363.14	362.21	363.11			363.22	362.78	363.73	363.75	362.75^	363.24	363.01	362.96
Collection Sump	372.81	361.75	363.09	361.93	361.73	363.17	362.45	361.87	362.99	361.48	361.69	361.66	361.59	362.04
MW-3S	376.54	365.67	366.81	365.67	365.25		365.26		357.10					
MW-3D	375.56	365.04		365.04	364.91	365.41	364.92	364.57	355.64	365.57	364.81	355.16	365.40	364.54
MW-6D	377.07	365.23	365.36	365.23	365.06	365.62	365.12	364.79	365.85	365.77	364.97	365.34	365.64	364.75
MW-8D	374.68	364.86		364.88	364.74	365.22	364.77	364.35	365.42	365.36	364.62	364.94	365.18	364.34
MW-9D	376.76**	365.22	365.36	365.26	365.08	365.65	365.17	364.83	365.88	365.80	365.01	365.36	365.68	364.76
MW-11D	373.68	364.73	004.07	364.73	364.57	365.02	364.60	364.18	365.24	365.18	364.46	364.81	364.96	364.18
MW-11S	373.50	363.69	364.27	363.79	363.61	364.50	363.88	363.39	364.72	364.35	363.55	363.86	364.48	363.33
MW-18	372.57	361.93	362.05	362.05	361.84	362.18	361.79	361.38	362.43	361.77	361.71	362.08	362.17	361.50
MW-19	376.00	361.84	361.98	361.87	361.89	362.15	361.80	361.46	362.58	361.88	361.90	362.25	362.44	361.82
MW-23I	372.77	364.36		364.47	364.26	364.69	364.28	363.83	364.99	364.93	364.25	364.58	364.73	363.99
MW-23S	372.61	362.52	363.35	362.66	362.46	363.64	362.94	362.42	363.85	363.17	362.64	362.87	363.59	362.36
MW-24DR	375.14	364.67	364.81	364.69	364.54	364.96	364.49	364.09	365.19	364.60	364.39	364.77	364.91	364.16
MW-24SR	375.55	364.44	364.66	364.50	364.33	364.87	364.41	363.95	365.12	365.55	364.30	364.60	364.86	364.05
MW-25D	373.67	364.76		364.77	364.64	365.07	364.64	364.20	365.28	365.20	364.51	364.84	364.97	364.22
MW-25S	373.39	362.87	363.48	362.96	362.79	363.89	363.20	364.75	364.12	363.69	362.94	363.23	364.14	362.61
PZ-4D	376.11	364.73	364.87	364.72	364.55	365.02	364.60	364.22	365.28	365.21	364.49	364.82	365.03	364.22
PZ-5D	375.58	364.93	365.09	364.94	364.78	365.28	364.86	364.47	365.57	365.48	364.71	365.10	365.36	364.46
PZ-8D	375.83	365.33	365.48	365.33	365.19	365.78	365.08	365.00						
PZ-9D	377.29	365.08	365.24		364.94	365.50	365.04	364.68	365.70	365.72	364.87	365.16	365.55	364.60
PZ-A	373.94	362.60	364.04	362.72	362.56	363.81	363.12	362.61	363.95	363.15	362.75	362.91	363.56	362.58
PZ-B	373.92	362.51	364.27	362.62	363.45	363.91	363.19	362.67	364.08	363.32	362.79	362.94	363.94	362.55
PZ-C	374.85	365.52	365.97	365.18	365.02	365.79	365.10	364.75	366.04	366.04	365.03	365.35	366.39	364.54
PZ-D	375.12	365.53	366.06	365.25	365.12	365.79	365.18	364.89	366.09	366.10	365.10	365.46	366.36	364.65
PZ-E	374.12	363.53	366.41	363.57	363.52	364.93	364.20	363.81	365.16	365.03	363.92	364.40	365.90	363.49
PZ-F	377.06	365.52	365.73	365.62	365.27	366.36	365.53	365.11	366.89	366.72	365.27	365.70	367.06	364.93
PZ-G	377.16	365.60	365.76	365.71	365.44	366.44	365.61	365.17	366.89	366.80	365.36	365.75	367.11	364.93
PZ-HR	376.99	365.54	365.84	365.60	365.39	366.34	365.55	365.11	366.80	366.68	365.33	365.66	367.02	364.91
PZ-I	375.15	365.90	366.59	366.05	365.76	366.93	365.79	365.23	367.30	367.23	365.55	366.08	367.81	364.91
PZ-J	374.89	365.55	365.93	365.59	365.47	366.21	365.53	365.14	366.55	366.50	365.32	365.64	366.69	364.96
PZ-K	373.19	362.66	363.70	362.78	362.58	363.87	363.13	362.59	363.97	363.19	362.69	362.86	363.53	362.49
PZ-L	374.62	362.51	363.59	362.65	362.45	363.69	363.00	362.47	363.84	363.03	362.61	362.68	363.42	362.47
PZ-M	374.35	363.01	364.07	363.13	362.94	364.06	363.40	362.90	364.22	363.54	363.05	363.24	363.86	362.90
PZ-N	376.94***	365.56	366.09	365.31	365.12	365.87	365.19	364.87	366.17	366.12	NM	365.35	366.43	364.47
PZ-O	375.36	362.75	363.74	362.87	362.68	364.01	363.25	362.73	364.22	363.57	362.86	363.06	364.22	362.64
PZ-P	376.89	365.61	365.78	365.73	365.44	366.43	365.59	365.18	366.85	366.73	365.34	365.77	367.02	364.93
PZ-Q	377.61	365.59	365.70	365.71	365.42	366.44	365.60	365.16	366.93	366.78	365.26	365.76	367.21	364.89
PZ-R	377.05	365.61	365.81	365.67	365.47	366.46	365.61	365.20	366.89	366.81	365.37	365.72	367.21	364.93
PZ-S	378.13	365.57	365.94	365.65	365.40	366.39	365.56	365.15	366.84	366.73	365.32	365.71	367.12	364.90
PZ-T	376.25	365.58	365.96	365.64	365.47	366.34	365.53	365.10	366.71	366.65	365.29	375.70	366.90	364.90
PZ-U	375.35	365.49	365.91	365.55	365.40	366.17	365.46	365.08	366.55	366.49	365.22	365.60	366.75	364.85
PZ-V	375.78	365.47	365.90	365.52	365.37	366.20	365.44	365.06	366.54	366.50	365.25	365.58	366.76	364.83
PZ-W	375.78	365.44	365.78	365.53	365.33	366.15	365.41	365.02	366.49	366.41	365.20	365.59	366.63	364.85

Table 1. Summary of Historical Groundwater Level Measurements, June 1998 through June 2006,2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Reference	4/15/02	6/3/02	6/18/02	10/7/02	1/20/03	5/5/03	10/27/03	6/14/04	11/1/04	6/6/05	10/31/05	6/5/06
	Elevation												
Location	(feet AMSL)												
Canal	393.39*	364.59	363.64	364.17	362.19	~	363.34	363.34	363.39	363.39	364.39^^^	363.84	363.69
Collection Sump	372.81	362.27	361.50	361.42	362.05	361.90	361.91	361.86	362.11	362.00	361.49	362.96	361.70
MW-3S	376.54	367.70	366.26	367.50	364.26	366.27	366.38	366.98	366.65	365.54	365.82	368.11	368.19
MW-3D	375.56	364.16	364.55	365.10	363.92	365.10	365.53	365.05	365.59	365.27	365.36	366.25	366.07
MW-6D	377.07	364.22	364.62	365.21	364.07	365.31	365.75	365.24	365.80	365.46	365.59	366.45	366.29
MW-8D	374.68	364.13	364.51	365.01	363.82	~	365.30	364.83	365.39				
MW-9D	376.76**	364.05	364.47	365.10	364.00	365.31	365.79	365.26	365.85	365.51	365.64	366.47	366.34
MW-11D	373.68	364.07	364.44	364.92	363.73	364.81	365.17	364.75	365.26	364.93	364.00	365.94	365.78
MW-11S	373.50	363.57	363.89	364.33	363.09	364.15	364.38	363.89	364.34	363.98	364.12	365.06	365.04
MW-18	372.57	361.65	362.09	362.50	361.37	362.26	362.69	362.26	362.62	362.29	362.37	363.17	363.07
MW-19	376.00	361.83	362.11	362.57	361.51	362.52	361.91	362.46	362.89	362.59	362.69	363.50	363.38
MW-23I	372.77	363.99	364.34	364.80	363.62	364.60	365.01	364.56	364.99	364.67	364.77	365.66	365.47
MW-23S	372.61	363.97	363.38	363.68	362.50	362.26	363.31	362.81	363.04	362.77	362.80	364.05	363.80
MW-24DR	375.14	364.06	364.43	364.90	363.71	364.75	365.13	364.69	365.19	364.86	364.94	365.90	365.74
MW-24SR	375.55	364.00	364.40	364.86	363.64	364.69	365.03	364.62	365.12	364.78	364.88	365.81	365.66
MW-25D	373.67	364.19	364.57	365.02	363.82	364.82	365.24	364.74	365.26	364.93	365.00	364.49	365.77
MW-25S	373.39	364.39	363.83	364.21	362.74	363.61	363.67	363.19	363.49	363.08	363.14	365.63	364.13
PZ-4D	376.11	364.06	364.43	364.94	363.73	364.81	365.23	364.78	365.28	364.96	365.07	365.96	365.85
PZ-5D	375.58	364.12	364.47	365.03	363.81	365.05	365.49	365.02	365.53	365.20	365.29	365.19	365.98
PZ-8D	375.83												
PZ-9D	377.29	363.75	364.14	364.79	363.71	365.08	365.64	365.09	365.68	365.35	365.48	366.33	366.19
PZ-A	373.94	363.92	363.05	363.22	362.59	~	363.40	363.57	363.18	362.89	362.96	364.20	364.14
PZ-B	373.92	364.44	363.24	363.40	362.65	363.39	363.47	363.89	363.21	362.92	362.92	364.32	364.32
PZ-C	374.85	365.68	365.38	366.26	364.19	365.65	365.76	365.44	366.07	365.50	365.65	366.65	366.45
PZ-D	375.12	365.58	365.41	366.21	364.21	365.65	365.84	365.53	366.11	365.62	365.75	366.75	366.57
PZ-E	374.12	366.51	364.63	364.77	363.47	364.94	365.00	366.92	364.58	364.07	364.47	365.25	366.51
PZ-F	377.06	365.50	365.51	366.29	364.29	366.25	366.41	365.46	366.65	365.75	366.13	367.59	367.16
PZ-G	377.16	365.39	365.53	366.22	364.36	366.35	366.46	365.43	366.68	365.81	366.14	367.76	366.97
PZ-HR	376.99	365.39	365.46	366.19	364.24	366.22	366.41	365.50	366.62	365.81	366.12	367.56	367.14
PZ-I	375.15	366.29	366.16	367.05	364.22	366.58	366.90	365.97	367.01	365.26	366.41	368.02	367.82
PZ-J	374.89	365.10	365.18	365.89	364.21	365.96	366.73	365.61	366.45	365.86	366.07	367.29	367.04
PZ-K	373.19	363.82	363.19	363.48	362.56	363.25	363.36	363.12	363.13	362.84	362.97	364.21	364.01
PZ-L	374.62	363.44	362.96	363.26	362.53	363.42	363.25	363.06	363.04	362.79	362.91	364.02	363.89
PZ-M	374.35	363.93	363.37	363.62	362.82	363.60	363.77	363.66	363.61	363.31	363.45	364.53	364.40
PZ-N	376.94***	366.60	365.29	366.13	364.09	365.54	365.74	364.48	365.95	365.47	365.53	366.56	366.41
PZ-O	375.36	364.47	363.63	363.98	362.75	363.61	363.53	363.36	363.43	363.04	363.13	364.36	364.26
PZ-P	376.89	365.31	365.48	366.19	364.25	366.25	366.45	365.53	366.65	365.87	366.20	367.63	367.19
PZ-Q	377.61	366.11	365.70	366.41	364.41	366.40	366.55	365.38	366.77	365.85	366.21	367.80	367.16
PZ-R	377.05	365.40	365.58	366.31	364.31	366.34	366.46	365.31	366.72	365.85	366.17	367.73	367.15
PZ-S	378.13	365.27	365.53	366.29	364.31	366.29	366.42	365.42	367.18	367.10	366.31	367.83	367.20
PZ-T	376.25	365.34	365.37	366.10	364.20	366.16	366.38	365.74	366.54	365.85	366.13	367.48	367.15
PZ-U	375.35	365.18	365.23	365.96	364.18	366.00	365.83	365.66	366.43	365.82	366.05	367.33	367.07
PZ-V	375.78	365.30	365.24	365.97	364.15	365.98	366.71	365.84	366.44	365.76	365.99	367.33	367.06
PZ-W	375.78	365.05	365.12	365.86	364.09	365.88	366.18	365.49	366.36	365.72	365.98	367.21	366.94

Table 1. Summary of Historical Groundwater Level Measurements, June 1998 through June 2006,

2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

Notes:

- 1. Weeks 1, 2, 3, 4, 13, 18, 22, 23, 25, 26, 39, 46 and 52 are weeks after the initial introduction of Revised Anaerobic Mineral Media (RAMM) into the three impacted areas.
- 2. 8/10, 8/11, and 8/12/98 water level measurements were taken during the initial discrete RAMM injection event.
- 3. AMSL = above mean sea level (NGVD of 1929)
- 4. The groundwater level in PZ-8D was not measured on 3/27/00 and 6/1/00 because this piezometer was damaged and subsequently decommissioned on August 30, 2000.
- 5. ^ = The canal water-level measurement for the third quarter of the first year of the long-term process control monitoring program was obtained on September 29, 2000.
- 6. * = The reference elevation for canal gauging point was 363.06 feet AMSL prior to 11/16/00. The canal gauging point was re-marked and re-surveyed 11/16/00. The new reference elevation is 393.39 feet AMSL.
- 7. NM = The groundwater level in PZ-N was not measured on 9/18/00 because this piezometer was damaged. This piezometer was repaired and subsequently resurveyed on 11/16/00. The new reference elevation for PZ-N is 376.94 feet AMSL.
- 8. 376.76** = The reference elevation for MW-9D as of 9/19/01.
- 9. *** = The reference elevation for PZ-N was 376.02 feet AMSL prior to 11/16/00 and, as noted above, the new reference elevation is 376.94 feet AMSL.
- 10. ^ = Due to frigid weather conditions, the groundwater level in PZ-A and MW-8D could not be measured on 1/20/03, because the locks were frozen. The canal water level for the 1/03 resampling event could not be measured due to strong winds and ice on the water surface.
- 11. Monitoring location MW-8D was decommissioned on August 3, 2004.
- 12. The canal water level measurement for the 2005 second quarter long-term process control monitoring program was obtained on November 1, 2005.
- 13. M = The water level measurement of the canal collected during the first 2005 monitoring was not measured from the correct measuring point. The spring 2005 measurement was taken approximately 3 feet higher than the surveyed measuring point. This value reflects the corrected canal water level for the spring 2005 monitoring event.

	Sampling	Scree (ft. A	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater G	Quality Standard	ls (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-1 ^ĸ	3/88	370.3	355.3	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	1/89			<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	9/98			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99			0.7 JN	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00			8 J	<10 J	3 J	<10 J	5.0 J	<1,000	<10 J	<10 J	<10	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	10
	9/01			<10	<10	<10	<10	<10	<1,000 J	<10	<10	<10	<10
	4/02			<12	<5.0	<5.0	<5.0	<10	990 J	<5	<5	<5	<5
	10/02			<25	<10	<10	<10	<20	<1,000	<10	<5	R	<10
	5/03			<12	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	10/03			<12	<5	<5	<5	<10	<1,000	<5	2 J	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	11/04								<1,000		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	0.2 J	<1.0	<3.0
	11/05			<1.3 J	<0.3	<0.4	<0.5	<0.5	<1,000	<0.4	<1.0	<1.0 J	<0.5
	6/06			<5.0 J	<1.0 J	<5.0 J	<4.0 J	<5.0 J	<1,000 J	<1.0 J	<1.0 J	<1.0 J	<3.0 J
	11/06			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0	<3.0
	6/07			<5	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500 J	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			7.4	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.6	<0.6	<3.0
MW-2S	3/88	368.1	353.1	<1,000	1,900	110	610	2,800	<1,000	<10	<10	<10	<10
	1/89			<1,000	2,000	65	330	1,200	<1,000	<10	<11	<11	<10
	11/89			<1,000	1,800	<100	360	810	38,000	<100	<100	<100	<100
MW-3S	3/88	365.1	350.1	<100	<1	<1	<1	<1	<1,000	50	<10	<10	110
	1/89			<10,000	<100	120	<100	<100	<1,000	1,100	<11	5,570	4,700
	11/89			<10,000	<100	<100	<100	<100	<1,000	100	<52	440	2,700
	11/91			2,900	10	10	4.0	31	<1,000	<10	790	170	<10
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5.0	15	2.0 J	<10
	9/98	1		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99	1		<10	1 J	0.7 J	<10	<10	<1,000	<10	9 J	<10	<10
	3/00	1		<10 J	<10	<10	<10	<10	<1,000 J	<10	<10	<10	<10
	9/00	1		<10 J	1 J	2 J	<10 J	<10 J	<1,000	<10 J	2 J	1 J	<10 J
	3/01	1		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01	1		<10	3 J	8 J	1 J	2 J	<1,000 J	<10	690 D (69) ^B	4 J	<10
	4/02	1		<12	<5	<5	<5	<10	370 J	<5.0	1.7 J	<5	<5

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N.N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ls (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-3S	10/02		1	<25	<10	<10	<10	<20	<1,000	<10	<5	R	<10
(cont'd)	5/03			<12	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	10/03			<12	<5	<5	<5	<10	<1,000	<5	4 J	<5	<5
	6/04			6.0 J	<10	<10	<10	<20	<1,000	<10	0.8 J	<6	<10
	11/04			<25	<10	<10	<10	<20	150 J	<10	4 J	<5.0	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	15	<1.0	<3.0
	11/05			<1.3 J	<0.3	<0.4	<0.5	<0.4	<1,000	<0.4	<1.0	<1.0 J	<0.5
	6/06			<5.0	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/06			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500 J	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.6	<0.6	<3.0
MW-3D	8/95	343.8	339	<1,000	<25 D	<25 D	<25 D	<25 D	<1,000	<25 D	1 J	5 J	200 D
MW-4S	3/88	365.5	350.5	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	1/89			<100	<1	<1	<1	<1	<1,000	<1	<11	19	280
	11/89			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-5 ^C	3/88	363.3	348.3	<100	<1	<1	<1	<1	<1,000	<1	230	130	<1
	1/89			<100	<1	<1	<1	<1	<1,000	<1	34	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	<1	17	<10	<1
MW-6 ^D	1/89	365.5	355.9	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
(Replaced by MW-6S)	11/89			<10	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
MW-7 ^D	1/89	367	357.4	<100	<1	<1	<1	2	<1,000	<1	<11	<11	100
	11/89			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-8 ^D	1/89	364.7	355.1	<1,000,000	<10,000	<10,000	<10,000	<10,000	430,000	<10,000	2,900	24,000	3,200,000
(Replaced by MW-8S) ^E	11/89			470,000	<10,000	<10,000	<10,000	<10,000	300,000	<10,000	8,500	52,000	2,800,000
	11/91			<1,000,000	<10,000	<10,000	<10,000	<30,000	150,000	<10,000	8,000	33,000	1,600,000
	8/95			<1,000	<250,000D	<250,000D	<250,000D	<250,000D	22,000	60,000 JD	<25,000D	380,000 D	7,700,000 D
	9/98			<10,000 J	<10,000	<10,000	<10,000	<10,000	7,900	3,300 J	1,200 J	26,000 D	140,000
	2/99			<20,000	<20,000	<20,000	<20,000	<20,000	16,000JN	11,000 J	30,000 D	120,000 D	650,000 DB
	7/99			10 J	22 J	240 J	58 J	220 J	17,000	11,000 J	24,000	77,000	450,000 D
	3/00			<100,000	<100,000	<100,000	<100,000	<100,000	30,000 J	<100,000	62,000	270,000 D	1,300,000
	9/00			<50,000 J	<50,000 J	<50,000 J	<50,000 J	<50,000 J	14,000 J	9,200 J	42,000 J	59,000	540,000 BJ
	3/01			<50,000	<50,000	<50,000	<50,000	<50,000	53,000	11,000 J	90,000 D	120,000 D	990,000
	9/01			<400	<400	430	170 J	680	8,900 J	18,000 JD	21,000	29,000	440,000 BD
	4/02]		2,100	50 J	410	100 J	400	<1,000	9,600 J	793,000 D	773,000 D	660,000 D
	10/02]		120 J	23	310	73	267	<1,000	3,100	80,000	21,000 J	320,000
	5/03			<12	20 J	600 D	81	300	<1,000	6,700 D	79,000 D	29 J	910,000 D
	10/03			21	25	330 D	93	360	1,200 J	3,100 D	67,000 D	24,000 D	400,000 D
	6/04	1	1	<25	40	330 EJ	110	400	<1.000	5.900 D	56.000	51.000	1.200.000 D

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

		Scree	en Elev.										
	Sampling	(ft. /	AWSL)			-	Ethyl-	X 1		Trichloro-		N,N-Dimethyl-	Methylene
Nonitoring well	Date	Top	Bottom	Acetone	Benzene	Toluene	benzene	Xylene	Methanol	etnene	Aniline	aniline	Chioride
NYSDEC Groundwater G	uality Standard	is (Part 70	0)	50	1	0	5		1.000	5	0 25 000 D	5 200 D	C 000 D
	11/04	362.7	352.7	<1,200	<500	100 DJ	<500	164 DJ	<1,000	<500	35,000 D	5,300 D	10,000 D
(cont a)	6/05	-		81 J	13	100	53	180	<1,000	<1.0	30,000	<200	<3.0
	11/05	-		15 J	13	130	50	260	<1,000	<1.0	32,000	<260 J	<3.0
	6/06	-		48	15	120	79	260	<1,000	<1.0	23,000	<200	<3.0
	9/06	-		NA	NA	NA	NA	NA	NA	NA	52,000 [51,000]	<520 [<520]	NA
	11/06	-		28	16	100	84	270	<500	<1.0	28,000	<200	<3.0
	6/07	-		58	14	110	83	250	<500	<2.0	2,700	<22	<6.0
	8/07	-		NA	NA	NA	NA	NA	NA	NA	17,000	<100	NA
	11/07	-		<5.0 J	12	22	73	210	<500	<1.0	22,000 J	<100 J	<3.0
	3/08	_		<10 [9.6 J]	5.5 [5.7]	22 [22]	70 [68]	160 [160]	<500 [<500]	<2.0 [<2.0]	5,800 [5,200]	<25 [<50]	<6.0 [<6.0]
D	8/08			8.2 J [<10]	11 [11]	24 [22]	70 [70]	190 [190]	<500 [<500]	<2.0 [<2.0]	32,000 [25,000]	<250 [<250]	<6.0 [<6.0]
MW-9 ⁰	1/89	365.6	356	1,600	NA	64	130	270	<1,000	<10	660	1,200	1,500
(Replaced by MW-9S)	11/89	1		<1,000	48	25	60	60	<1,000	<10	670	150	<10
	11/91	1		<100	<10	9	19	30	<1,000	<1.0	95	18	<1
	8/95			<1,000	11 JD	26 JD	69 D	226 JD	<1,000	<50	50	28	110 D
	7/99			<10	4 J	2 J	9 J	18	<1,000	<10	<10	5.0 J	<10
	3/00			<10	2 J	2 J	11	21	<1,000 J	<10	2.0 J	9.0 J	<10
	9/00			<10 J	11 J	2 J	6.0 J	18 J	<1,000	<10 J	1.0 J	6.0 J	<10 J
	3/01			<10	1 J	3 J	17	61	<1,000	<10	2.0 J	11	<10
	9/01			<10	10	3 J	7.0 J	35	<1,000 J	<10	<10	10	<10
	4/02			<23	10	2 J	6	17 J	370 J	<5	9	43	<5
	10/02			16 J	38	40	2 J	15 J	<1,000	<10	<5.0	2.0 J	<10
	5/03			<12	11	<5	7	18	<1,000	<5.0	0.9 J	3.0 J	<5
	10/03			<12	2 J	<5	5	19	<1,000	<5.0	1.0 J	<5.0	<5
	6/04			14 J	6 J	2.0 J	8 J	19 J	<1,000	<10	<5.0	<5.0	<10
	11/04	1		<25	4 J	2 J	9 J	30 J	<1,000	<10	<5.0	<5.0	<10
	6/05	1		44 J	1.9	3.2 J	24	64	<1,000	<1.0	2.6	1.9	<3.0
	11/05			<1.3 J	3.5	3.8	11	33	<1,000	<0.4	1.4	6.1 J	<0.5
	6/06			<5.0 J	1.1 J	2.3 J	25 J	60 J	<1,000 J	<1.0 J	<1.1 J	3.8 J	<3.0 J
	11/06			<5.0	1.4	3.5 J	23	63	<500	<1.0	0.5 J	3.3 J	<3.0
	6/07			<5.0	1.4	3.3 J	42	110	<500	<1.0	<5.0	4.1	<3.0
	11/07			<5.0	0.9 J	2.0 J	11	58	<500 J	<1.0	1.7 J	8.6	<3.0
	3/08			<5.0 J	1.1	3.0 J	37	73	<500	1.2	0.7 J	6.8	<3.0
	8/08			24	3.7	3.3 J	21	72	<500	<1.0	<5.5	5.1	<3.0
MW-10 ^D	1/89	355.5	345.9	<1.000.000	<10.000	<10.000	<10.000	<10.000	210.000	<10.000	720	9.400	520.000
(Replaced by MW-9D)	11/89	1		<100.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	900	2,400	28.000
	11/91	1		<100	<1	3.0	2.0	<3.0	<1.000	<1	230	<10	41
	8/95	1		<1.000	<25 UD	<25 UD	<25 UD	<25 UD	<1.000	<25 UD	<5.0	<10	350 D
MW-11 ^D	1/89	355.1	345.5	<100	<pre><2000</pre>	<pre><20 0D</pre>	<1	<pre><2002</pre>	8,400	<1	<12	<12	1
(Replaced MW-6D)	11/89	000.1	040.0	<100	<u>دا</u>	<u>دا</u>	<1	£1	<1 000	<u>دا</u>	230	<52	
	8/95	-		<1.000	<5	<5	<5	<5	<1,000	<5		<10	<10
1	0,00	1	1	~1,000	~~	~~	~~	~~	~1,000	~~	~~	210	210

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft.	en Elev. AMSL)				Ethyl-			Trichloro-		N.N-Dimethyl-	Methvlene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ds (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-11S	12/94	359.9	354.9	<380	<10	<10	<10	<10	880	<10	<5	<10	<10
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<26
	10/95			NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
MW-11D	12/94	349.8	344.8	<310	<5	<5	<5	<5	2,100	<5	<5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	10/95			NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
MW-12D ^D	1/89	354.8	345.2	<100,000	<1,000	<1,000	<1,000	<1,000	12,000	<1,000	67	410	120,000
(Replaced MW-8D) ^E	11/89			69,000	<1,000	<1,000	<1,000	<1,000	39,000	<1,000	<1,000	4,900	360,000
	11/91			<1,000,000	<10,000	<10,000	<10,000	<30,000	<10,000	<10,000	750	5,800	220,000
	8/95			<1,000	450 JD	430 JD	430 JD	1,250 JD	<1,000	<1,300 D	30 D	230 D	<13,000 D
	8/96			13	<10	<10	<10	<10	<1,000	2.0 J	<5	<10	40
MW-13S	11/89	368.7	359.1	<100	3	<1	<1	<1	<1,000	<1.0	<52	<52	<1.0
	11/90			<100	<1	<1	<1	<3	<1,000	<1.0	<10	<10	<1.0
	11/91			<100	<1	<1	<1	<3	<1,000	<1.0	<10	<10	<1.0
	11/92			<100	<1	<1	<1	<3	<1,000	<1.0	<10	<10	<1.0
MW-14D ^C	1/89	359	349.4	<100	<1	<1	<1	<1	<1,000	<1.0	<11	<11	<1.0
	11/89			<100	<1	<1	<1	<1	<1,000	<1.0	<10	<10	<1.0
MW-15S	1/89	370	360.25	<100	<1	<1	<1	<1	<1,000	<1.0	<11	<11	<1.0
	11/89			<100	<1	<1	<1	<1	<1,000	<1.0	<52	<52	<1.0
MW-16D ^C	1/89	350.8	341.2	<100	<1	<1	<1	<1	<1,000	<1.0	<11	<11	<1.0
	11/89			<100	<1	<1	<1	<1	<1,000	<1.0	<10	<10	<1.0
MW-17 ^C	11/90	365.7	356.1	<100	<1	<1	<1	<3	<1,000	<1.0	<10	<10	<1.0
(Replaced by MW-17R)	11/91			<100	<1	<1	<1	<3	<1,000	<1.0	<10	<10	<1.0
	11/92			<100	<1	<1	<1	<3	<1,000	<1.0	<10	<10	<1.0
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<11
	10/95			NA	<5	<5	<5	<5	NA	2 J	NA	NA	<5
	8/96			11	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	1 J	<10	<10	<10	<1,000	<10	<10	<10	<10 J
	3/00			<10	8 J	<10	<10	<10	<1,000 J	<10	<5.0	<10	<10
	9/00			<10 J	15 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	24 J	4 J	1 J
	3/01			<10	8 J	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	5 J	<10	<10	<10	<1,000	<10	<10	<10	<10
	4/02			<10	6	<5	<5	<10	620 J	<5	150 (<5) ^F	110 (<5) ^F	<5
	10/02			<25 J	14	<10	<10	<20	<1,000	<10	<5 ^G	<5 ^G	<10
	5/03			<12	8	<5	<5	<5	<1,000	<5	<5	<5	<5
	11/03	1	1	<12	7	<5	<5	<10	<1,000	<5	<5	<5	<5

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

		Scree	en Elev.										
	Sampling	(ft. /	AMSL)				Ethyl-	X I. A		Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene^	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater G	luality Standard	is (Part 70	00)	50	1	5	5	5	NS	5	5	1	5
MVV-17-	6/04	-		<25	5 J	<10	<10	<20	<1,000	<10	<5	<5	<10
(cont'd)	11/04	_							200 J		<5	<5	
	6/05	_		<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05	-		<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06			<5.0	0.8 J	<5.0	<4.0	<5.0	<1,000	<1.0	<1.1	<1.1	<3.0
	11/06	_		R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07	_		<5.0	0.7 J	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07	_		<5.0	<1.0	<5.0	<4.0	<5.0	<500 J	<1.0	<5.0	<0.5	<3.0
	3/08	_		<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			2.3 J	1.8	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
MW-18	11/89	325.15	316.15	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	12/94			<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98			<10	<10	<10	<10	<10	<1,000	<10	<5 ^H	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00			<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	4/02			<10	<10	<10	<10	<20	720 J	<10	280 D (<5) ^F	200 D (<5) ^F	<10
	10/02			6 J	<10	<10	<10	<20	<1,000	<10	<5 ^G	<5 ^G	<10
	5/03			<12	<5	<5	<5	<5	280 J	<5	<5	<5	<5
	10/03			<12	<5	<5	<5	<10	<1,000	<5	0.7 J	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	R	R	<10
	11/04								<1,000		<5	<5	
	6/05		1	<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05]		<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.1	<1.1 J	<3.0
	6/06	1	1	<5.0	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/06		1	R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07	1		<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3
	11/07	1		<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	3/08	1		<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethvl-			Trichloro-		N.N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater C	Quality Standard	ls (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-18	8/08	Ľ	1	5.5	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.6	<0.6	<3.0
MW-19 ^K	11/89	318.45	309.45	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	12/94			<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<12
	10/95			NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98			<10	<10	<10	<10	<10	<1.000	<10	<5 ^H	5 J	<11
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7/99			<10 J	<1.000	<10 J	<10	<10	<10 J				
	3/00			<10	<10	<10	<10	<10	<1.000 J	<10	<5	<10	<10
	9/00			<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	4/02			<10	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	10/02			<25 J	<10	<10	<10	<20 J	<1.000	<10	<5 ^G	<5 ^G	<10
	5/03			<12	<5	<5	<5	<5	<1.000	<5	<5	<5	<5
	10/03			<11	<5	<5	<5	<10	<1.000	<5	51 J	16 J	<5
	6/04			<25	<10	<10	<10	<20	<1.000	<10	<5	<5	<10
	11/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1.000	<1.0	<1.1	<1.1	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06	1		<5.0	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/06	1		R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.5	<1.1	<3.0
	11/07			<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08	1		<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.6	<0.6	<3.0
	3/09	_		<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09	_		<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
IVIVV-20	11/89	329.85	320.85	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90	-		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91	-		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
MW-21 ^C	11/92	323 65	314 65	<100	<5	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-22 ^L	11/89	368 55	359.55	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	10/10	500.55	555.55	<10	<1.0	<1.0	<1.0	<3.0	<500.1	<1.0	<5.0	<10	<10
MW-23S	12/94	364.1	354.1	<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene^	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater G	Juality Standard	s (Part 70	0)	50	1	5	5	5	NS 1000	5	5	1	-10
10100-235	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<0	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	11	<10	<10
	2/37			12	<10	<10	<10	<10	<1,000	<10	02	<10	<10
	0/97			<10	<10	<10	<10	<10	<1,000	<10	56 ^H	71	<10
	3/90			<10	<10	<10	<10	<10	<1,000	<10	<10	10	<10
	6/00			<10	<10	<10	<10	<10	<1,000	<10	<10	21	<10 J
	7/99	-		<10 J	<10	<10	<10	<10	<1,000 J	<10	<10 5	2J <10	<10 J
	3/00			<10 0	<10	<10	<10	<10	<1,000	<10	<10	21	<10
	9/00			<10	<10	<10	<10	<10	<1,000 J	<10	<10	2.5	<10
	3/00			<10 0	<103	<10.5	<10.0	<10.5	<1,000 3	<103	<10 5	<10	<103
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	10/02			<25	<10	<10	<10	<20 1	<1,000	<10	<5 ^G	<5 ^G	<10
	5/03			<62	<10	<10	<10	<200	380 1	<10	<5	~5	<10
	10/02			<02	<25	~25	~25	<10	<1.000	<25	60	<5	<25
	6/04	-		<12	<10	<10	<10	<20	<1,000	<10	-5	<5	<10
	11/04			~25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<50 J	<1.0	~5.0	<1.0	~5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0.1	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/06			<5.0.1	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.00	<3.0
	11/06			<3.03 R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.2	<1.2	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.6	<0.6	<3.0
MW-23I	12/94	341.2	336.2	<10	<5.0	<5	<5.0	<5.0	<200	<5.0	<5.0	<10	<5
	8/95	0	000.2	<1 000	<5	<5	<5	<5	<1.000	<5	<5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<11	<10
	9/98			<10	<10	<10	<10	<10	<1.000	<10	<5 ^H	<10	<10
	2/99			<10	<10	<10	<10	<10	<1.000	<10	<10	<10	<10 J
	7/99			<10 J	<10	<10	<10	<10	<1.000	<10	<10	<10	<10
	3/00	1		<10	<10	<10	<10	<10	<1.000 J	<10	<5	<10	<10
	9/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<1.000 J	<10 J	<10 J	<10	<10 J
	3/01	1		<10	<10	<10	<10	<10	<1.000	<10	<10	<10	<10
	9/01	1		4 J	<10	<10	<10	2 J	<1.000	<10	<10	<10	<10
	4/02	1		<10	<5	<5	<5	<10	<1,000	<5	<5	<5	2 J
	10/02	1		<25 J	<10	<10	<10	<20 J	<1.000	<10	<5 ^G	<5 ^G	<10
	5/03			<12	<5	<5	<5	<5	<1.000	<5	-5	<5	<5

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ds (Part 70	00)	50	1	5	5	5	NS	5	5	1	5
MW-23I	10/03			<12	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
(cont'd)	6/04			<25	<10	<10	<10	<20	<1,000	<10	1 J	<5	<10
	11/04								<1,000		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06			<5.0 J	<1.0	0.6 J	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
MW-24S ^{CL}	12/94	358.4	352.4	<10	<5	<5	<5	<5	<1,000	<5	<5	<10	<5
(Replaced by MW-24SR)	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98			<10	<10	<10	<10	<10	<1,000	<10	<5 ^H	<10	<10
	6/99			<10 J	<10	<10	<10	<10	<1,000 J	<10	<10 J	<10 J	<10 J
	7/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00			<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	6/02 ^F			NA	NA	NA	NA	NA	NA	NA	ND	ND	NA
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	<10	<5	<5`	<10
	10/03			<12	<5	<5	<5	<10	<1,000	<5	16	<6	<5
	6/04 ³			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	11/04								<1,000		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.7	<0.6	<3.0
C	9/09			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
MW-24D ^{CL}	12/94	334.4	341.2	<10	<5	<5	<5	<5	<1,000	<5	<5	<10	<5
(Replaced by MW-24DR)	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<10
	2/96	_	1	<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97	_	1	<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98	_	1	<10	<10	<10	<10	<10	<1,000	<10	<5"	<10	<10
	7/99	_	1	<10 J	<1,000	<10 J	<10	<10	<10 J				
	9/00	_	1	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	9/01	_	1	<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	6/02 [⊦]	1		NA	NA	NA	NA	NA	NA	NA	ND	ND	NA

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater C	Quality Standard	ls (Part 70	00)	50	1	5	5	5	NS	5	5	1	5
MW-24D ^{DL}	10/02			<25 J	<10	<10	<10	<20 J	<1,000	<10	<5 ^G	<5 ^G	<10
(cont'd)	10/03			<12	<5	<5	<5	<10	<1,000	<5	0.5 J	<5	<5
	11/04								<1,000		<5	<5	
	6/05			<5 J	<1	<5	<4	<5	<1,000	<1	<1	<1	<3
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.1	<1.1 J	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.7	<0.6	<3.0
	9/09			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
MW-25S ^L	8/95	361.2	356.2	<1,000	<5	<5	<5	<5	<1,000	<5	<5	0.7 J	<10
	10/95			NA	<5	<5	<5	<5	NA	<5	<5	<10	<5
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	130	<10	<10 J
	6/99			<10 J	<10	<10	<10	<10	<1,000 J	<10	110 J	21 J	<10 J
	7/99			<10 J	<10	<10	<10	<10	<1,000	<10	5 J	<10	<10
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	9/00			<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	4/02			<10	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	10/02			<25	<10	<10	<10	<20	<1,000	<10	<5 ^G	<5 ^G	<10
	5/03			<12	<5	<5	<5	<5	<1,000	<5	<5	<5	<5
	11/03			<12	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	11/04								<1,000		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.1	<1.1	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.2	<0.5	<3.0
	3/09			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	9/09	1	1	<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
MW-25D ^L	8/95	349.55	344.55	<1,000	<5	<5	<5	<5	<1,000	<5	<5	1 J	<5
	10/95		1	NA	<5	<5	<5	<5	NA	3 J	<5	<10	<5
	8/96		1	15	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97	1		<10	<10	<10	<10	<10	<1,000	<10	<5	<11	<10

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ls (Part 70	00)	50	1	5	5	5	NS	5	5	1	5
MW-25D ^L	2/99	1		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10 J
(cont'd)	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	3/01			<10	<10	<10	<10	<10	<1,000	<10	5 J	<10	<10
	4/02			<10	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	5/03			<12	<5	<5	<5	<5	<1,000	<5	<5	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/06			<5.0 J	<1.0	0.7 J	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/07			12 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	3/09			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<0.5	<1.0
	4/10			<10	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
MW-26	12/96	365	355.3	<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
MW-27	9/98	362.5	354.5	23	3 J	4 J	<10	3 J	<1,000	<10	340 DJ	<10	<10
	7/99			<10 J	4 J	2 J	3 J	8 J	<1,000	<10	740 D	<10	<10
	3/00			<10	6 J	<10	8 J	2 J	<1,000 J	<10	110 D	1 J	<10
	9/00			<10 J	4 J	<10 J	3 J	1 J	<1,000 J	<10 J	16 J	2 J	1 J
	3/01			<10	5 J	<10	5 J	2 J	<1,000	<10	260 D	2 J	<10
	9/01			<10	5 J	<10	2 J	<10	<1,000 J	<10	26	<10	<10
	4/02	1		<18	7	11	12	26	<1,000	<5	176,000 DJ	19 J	<5
	10/02	1		9 J	3 J	<10	<10	<20	<1,000	4 J	2,700 D	100 J	60 JN
	5/03	1		<12	8	11	23	51	<1,000	<5	15,000 DJ	11	43
	10/03	1		170	5	<5	<5	3 J	<1,000	<5	3,700 D	<5	240 D
	6/04	1		23 J	5 J	4 J	2 J	6 J	<1,000	<10	3,700 D	20 J	<10
	11/04	1		<120 (28)	<50 (4 J)	<50 (2 J)	<50 (<10)	<100 (<20)	<1,000	<50 (<10)	1,100 DJ	<5	310 (490 D)
	6/05	1		31 J	6.1	15	5.8	15	<1,000	<1.0	5,200	<23	<3.0
	11/05	1		35 J (37 J)	11 (12)	77 (78)	26 (26)	86 (88)	<1,000 (<1,000)	<1.0 (<1.0)	37,000 (38,000)	<270 J (<260 J)	<3.0 (<3.0)
	6/06	1		5.3 J (5.8 J)	9.5 J (8.9 J)	50 J (48 J)	25 J (25 J)	66 J (63 J)	<1,000 J (<1,000 J)	<1.0 J (<1.0 J)	14,000 J (12,000 J)	<100 J (<100 J)	<3.0 J (<3.0 J)
	9/06	1		NA	NA	NA	NA	NA	NA	NA	1,700	<10	NA
	11/06	1		31 [24]	14 [14]	71 [71]	42 [45]	91 [110]	<500 [<500]	<1.0 [<1.0]	33,000 [33,000]	<210 [<200]	<3.0 [<3.0]
	6/07	1		21	8.4	9.5	14	24	<500	<1.0	1,100	<10	<3.0
	8/07	1		NA	NA	NA	NA	NA	NA	NA	<10 J [4,300 J]	<1.0 [<20]	NA
	11/07	1		<5.0 J [<5.0]	6.6 [5.9]	4.7 J [4.1 J]	8.6 [7.2]	24 [21]	<500 [<500]	<1.0 [<1.0]	3,000 J [3,800 J]	<25 J [<25 J]	<3.0 [<3.0]
	3/08	1		21	9.4	23	43	68	<500	<2.0	13,000	<100	<6.0
	8/08			3.8 J	5	2.2 J	1.8 J	10	<500	<1.0	2,400	<25	<3.0
MW-28	9/98	363.6	355.6	<5,000 J	<5,000	<5,000	<5,000	<5,000	2,200	<5,000	546 D ^H	54	64,000 J
	7/99	1		<500 J	<500	<500	<500	<500	<1,000	<500	1,100 D	40	39,000 D
	3/00	1	1	<10,000	<10,000	<10,000	<10,000	<10,000	<1,000 J	<10,000	1,300 D	30	130,000 J
	9/00	1	1	<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	540 DJ	<10	8,100 BJ
	3/01	1	1	<400	<400	<400	<400	<400	<1,000	<400	3,200 D	7 J	5,900 B
	9/01	1	1	<400	<400	<400	<400	<400	<1,000 J	<400	1,000 D	<10	4,700 B

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater G	Quality Standard	ls (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-28	4/02			<49	8	6	9	10 J	<1,000	<5	33,400 D	57	4,600 D
(cont'd)	10/02			14 J	8 J	6 J	11	12 J	<1,000	<10	2,700 D	R	<10
	5/03	1		13	4 J	2 J	2 J	8 J	<1,000	<5	1,000 DJ	3 J	52
	10/03	1		24	11	6	12	13 J	<1,000	<5	1,900 D	<5	<5
	6/04	1		20 J	4 J	2 J	5 J	4 J	<1,000	<10	910 D	<5	<10
	11/04	1		<120 (<25)	<50 (4 J)	<50 (<10)	<50 (5 J)	<100 (3 J)	190 J	<50 (<10)	640 DJ	<5	<50 (<10)
	6/05	1		5.2 J	4.5	1.2 J	4.6	3.9 J	<1,000	<1.0	630	<5.0	<3.0
	11/05			6.8 J (7.8 J)	6.1 (5.8)	<5.0 (<5.0)	4.7 (4.7)	<5.0 (<5.0)	<1,000 (<1,000)	<1.0 (<1.0)	380 J (350 J)	<2.2 (<2.1)	<3.0 (<3.0)
	6/06			<5.0 J (<5.0 J)	6.0 J (6.3 J)	1.2 J (1.3 J)	5.3 J (5.4 J)	4.2 J (4.3 J)	<500 J (<1,000 J)	<1.0 J (<1.0 J)	430 J (530 J)	<2.1 J (<5.0 J)	<3.0 J (<3.0 J)
	9/06			NA	NA	NA	NA	NA	NA	NA	280	<2.2	NA
	11/06			12	8.2	1.4 J	5.6	4.4 J	<500	<1.0	1,000	<5.2	<3.0
	6/07			13	4.6	0.4 J	0.8 J	0.6 J	<500	<1.0	60	<1.0	<3.0
	8/07			NA	NA	NA	NA	NA	NA	NA	40	<1.0	NA
	11/07			<5.0 J	4.5	0.5 J	1.4 J	0.8 J	<500	<1.0	29 J	<0.5 J	<3.0
	3/08			<5.0	4.0	0.5 J	1.6 J	1.3 J	<500	<1.0	81	0.9	<3.0
	8/08			<5.0	3.8	<5.0	<4.0	<5.0	<500	<1.0	0.7 J	<0.5	<3.0
MW-29	9/98	362.9	345.9	<10	<10	<10	<10	2 J	<1,000	<10	<10	13	<10
	2/99			7 J	<10	<10	<10	1 J	<1,000	<10	5 J	4 J	<10
	7/99			<10	<10	<10	<10	<10	<1,000	<10	2 J	4 J	<10
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	450 D	6 J	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	24 J	4 J	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000	<10	30	4 J	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	7 J	2 J	<10
	4/02			<10	<5	<5	<5	<10	<1,000	<5	3 J	9	<6
	10/02			<25 J	<10	<10	<10	<20	<1,000	<10	8	R	4 JN
	5/03			<12	<5	<5	<5	<10	<1,000	<5	19	1 J	<3
	10/03			<12	<5	<5	<5	<10	<1,000	<5	2 J	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	3 J	<5	<10
	11/04			<120	<50	<50	<50	<100	420 J	<50	<5	<5	<50
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06			<5.0	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/06			5.4	<1.0	<5.0	<4.0	<5.0	<500	<1.0	0.4 J	<1.0	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	0.5 J	<500	<1.0	<5.5	<1.1	<3.0
	11/07	1		<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0 J	<0.5 J	<3.0
	3/08	1		<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
MW-30	9/98	363.5	355.5	<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	2/99	1		7 J	<10	<10	<10	<10	<1,000	<10	<10	2 J	<10
	7/99			<10	0.7 J	<10	<10	<10	<1,000	0.5 J	<10	1 J	<10
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	18	2 J	4 J
	9/00	1	1	<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	9 J	2 J	2 J

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. /	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ds (Part 70	00)	50	1	5	5	5	NS	5	5	1	5
MW-30	3/01			<10	<10	<10	<10	<10	<1,000	<10	8 J	2 J	<10
(cont'd)	9/01			4 J	2 J	<10	<10	<10	<1,000 J	<10	8 J	1 J	<10
	4/02			<10	<5	<5	<5	<10	<1,000	<5	250	210	<5
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	<10	R	R	<10
	5/03			<62	<25	<25	<25	<50	<1,000	<25	18	0.6 J	8 J
	10/03			<12	<5	<5	<5	<10	<1,000	<5	4 J	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	11/04			<120	<50	<50	<50	<100	<1,000	<50	<5	<5	<50
	6/05			<5.0 J	0.3 J	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0 J	0.7 J	0.6 J	<4.0	0.5 J	<1,000	<1.0	240	<1.0 J	<3.0
	6/06			<5.0	0.6 J	0.4 J	<4.0	<5.0	<1,000	<1.0	29	<1.0	<3.0
	11/06			11	1.0	<5.0	<4.0	<5.0	<500	<1.0	200	<1.0	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	30	<1.1	<3.0
	11/07			<5.0 J	0.8 J	<5.0	<4.0	<5.0	<500	<1.0	49	<0.5	<3.0
	3/08			<5.0	0.6 J	<5.0	<4.0	0.2 J	<500	<1.0	3.0 J	0.7	<3.0
	8/08			<5.0	0.7 J	<5.0	<4.0	<5.0	<500	<1.0	31	<0.5	<3.0
MW-31	9/98	363.7	355.4	<10	12	<10	<10	<10	<1,000	<10	34	4 J	<10
	7/99			<10	16	<10	<10	<10	<1,000	<10	230 D	3 J	<10
	3/00			<10	16	<10	<10	<10	<1,000 J	<10	3 J	4 J	<10
	9/00			<10 J	12 J	<10 J	<10 J	<10 J	<1,000	<10 J	10	6 J	<10 J
	3/01			21	11	<10	<10	<10	<1,000	<10	<10	5 J	<10
	9/01			<10	14	<10	<10	<10	<1,000 J	<10	91 D	3 J	<10
	4/02			<14	9	<5	<5	<10	<1,000	<5	804 D	21	<5
	10/02			<25	11	<10	<10	<20	<1,000	<10	560 D	1 J	<10
	5/03			<12	9	<5	<5	<10	<1,000	<5	0.9 J	3 J	<5
	10/03			1,200 D	13	<5	<5	<5	<1,000	<5	88	<5	<5
	6/04			15 J	12	<10	<10	<20	<1,000	<10	3 J	<5	<10
	11/04			<25	9 J	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	11	<5.0	<4.0	1.3 J	<1,000	<1.0	3.2	2.7	<3.0
	11/05			<1.3 J	6.7	<0.4	<0.5	0.6	<1,000	<0.4	16	<1.0 J	<0.5
	6/06			<5.0 J	11 J	0.6 J	<4.0 J	1.7 J	<1,000 J	<1.0 J	<1.0 J	2.4 J	<3.0 J
	9/06			NA	NA	NA	NA	NA	NA	NA	1.6	3.4	NA
	11/06			R	6.9	<5.0	<4.0	<5.0	<500	<1.0	0.4 J	1.1 J	<3.0
	6/07			<5.0	14	0.7 J	<4.0	1.3 J	<500	<1.0	<5.0	2.0	<3.0
	8/07			NA	NA	NA	NA	NA	NA	NA	0.5 J	2.7	NA
	11/07			<5.0 [<5.0]	12 [10]	<5.0 [0.4 J]	<4.0 [<4.0]	1.1 J [1.4 J]	<500 J [<500 J]	<1.0 [<1.0]	<5.0 [0.3 J]	2.3 [2.8]	<3.0 [<3.0]
	3/08			<5.0 J	2.0	<5.0	<4.0	<5.0	<500	<1.0	0.2 J	1.6	<3.0
	8/08			22	13	0.4 J	<1.0	2.2 J	<500	<1.0	<5.6	2.4	<3.0
MW-32	9/98	364	356	<10	16	2 J	5 J	3 J	<1,000	<10	6,300 D	4 J	<10
	7/99			3 J	14	2 J	4 J	<10	<1,000	56	<10	3 J	<10
	3/00			<10	5 J	<10	<10	<10	<1,000 J	<10	800 D	<10	<10

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft.)	en Elev. AMSL)				Ethyl-			Trichloro-		N.N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ls (Part 70	00)	50	1	5	5	5	NS	5	5	1	5
MW-32	9/00			<10 J	12 J	<10 J	<10 J	<10 J	<1,000	<10 J	4,500 D	<10	<10 J
(cont'd)	3/01			<10	5 J	<10	<10	<10	<1,000	<10	1,900 D	2 J	<10
	9/01			<10	10	<10	<10	<10	<1,000 J	<10	1,100 D	2 J	<10
	4/02			<15	4 J	<5	<5	<10	<1,000	<5	4,620 D	11	<5
	10/02			<25	4 J	<10	<10	<20	<1,000	<10	50	R	<10
	5/03			<12	<5	<5	<5	<10	<1,000	<5	0.6 J	0.7 J	<5
	10/03			20	2 J	<5	<5	<10	<1,000	<5	<5	<5	<5
	6/04			6 J	1 J	<10	<10	<20	<1,000	<10	1 J	<5	<10
	11/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	1.0	<5.0	<4.0	<5.0	<1,000	<1.0	0.4 J	<1.0	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06			<5.0 J	<1.0 J	<5.0 J	<4.0 J	<5.0 J	<1,000 J	<1.0 J	<1.0 J	<1.0 J	<3.0 J
	11/06			R	<1.0	0.8 J	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500 J	<1.0	0.1 J	0.8	<3.0
	3/08			<5.0 J	0.8 J	<5.0	<4.0	<5.0	<500	<1.0	<5.0	0.8	<3.0
	8/08			5.8	0.3 J	<5.0	<4.0	<5.0	<500	<1.0	<5.7	<0.6	<3.0
MW-33	9/98	344.1	356.1	<10	<10	<10	<10	<10	<1,000	<10	9 J	6 J	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	120	6 J	<10
	7/99			5 J	2 J	0.7 J	<10	<10	<1,000	<10	150	8 J	<23
	3/00			<10 J	<10	<10	<10	<10	<1,000 J	<10	51	7 J	11
	9/00			45 J	4 J	1 J	<10 J	<10 J	<1,000	<10 J	540 D	23	330 DJ
	3/01			17 J	<20	<20	<20	<20	<1,000	<20	1,300 D	16	370 B
	9/01			21	5 J	<10	<10	<10	<1,000 J	<10	1,900 D	12	<18
	4/02			<18	3 J	<5	<5	<10	<1,000	<5	2,780 D	21	19
	10/02			11 J	4 J	<10	<10	<20	<1,000	<10	290 D	3 J	4 J
	5/03			88	13	<5	<5	<10	<1,000	<5	2,000	35 J	2,800 D
	10/03			22	2 J	<5	<5	<10	<1,000	<5	1,900 D	<6	<5
	6/04			9 J	12 J	<10 J	<10 J	<20 J	<1,000	<10 J	2,700 D	5 J	<10 J
	11/04								<1,000		2,700 D	5 J	
	6/05			<5.0 J	11	1.0 J	<4.0	<5.0	<1,000	<1.0	1,800	<10	<3.0
	11/05			<5.0 J	16	1.8 J	<4.0	<5.0	<1,000	<1.0	3,500	<25 J	<3.0
	6/06			<5.0 J	6.7 J	0.7 J	<4.0 J	<5.0 J	<1,000 J	<1.0 J	370 J	3.5 J	<3.0 J
	9/06			NA	NA	NA	NA	NA	NA	NA	940	8.0	NA
	11/06			17 J	8.6	0.7 J	<4.0	<5.0	<500	<1.0	84	2.9 J	<3.0
	6/07			<5.0	5.7	0.4 J	<4.0	<5.0	<500	<1.0	46	2.6	<3.0
	8/07			NA	NA	NA	NA	NA	NA	NA	46	4.2	NA
	11/07			<5.0	4.0	<5.0	<4.0	<5.0	<500 J	<1.0	0.1 J	3.5	<3.0
	3/08			<5.0 J	4.1	<5.0	<4.0	<5.0	<500	<1.0	<5.0	4.1	<3.0
	8/08			<5.0	3.2	<5.0	<4.0	<5.0	<500	<1.0	<5.9	2.8	<3.0

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

		Scree	en Elev.										
	Sampling	(ft. /	AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene [*]	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	s (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-34	9/98	362.7	354.7	<10	<10	<10	<10	<10	<1,000	<10	83	<10	<10
	7/99			2 J	0.9 J	1 J	<10	<10	<1,000	<10	380 D	2 J	<10
	3/00			<10 J	1 J	2 J	<10	<10	<1,000 J	<10	200 D	3 J	<10
	9/00			<10 J	<1,000	<10 J	320 D	4 J	<10 J				
	3/01			<10	<10	2 J	<10	2 J	<1,000	<10	700 D	5 J	<10
	9/01			7 J	2 J	2 J	<10	2 J	<1,000 J	<10	76	3 J	<10
	4/02			<32	<5	<5	<5	<10	<1,000	<5	640 D	15	<5
	10/02			37 J	<10	<10	<10	<20	<1,000	<10	380 DJ	2 J	<10
	5/03			16	<5	<5	<5	<10	<1,000	<5	140	3 J	<5
	10/03			9 J	<5	<5	<5	<10	<1,000	<5	18	<5	<5
	6/04			24 J	<10	<10	<10	<20	<1,000	<10	30	<5	<10
	11/04			<25	<10	<10	<10	<20	180 J	<10	14	<5	<10
	6/05			5.6 J	0.7 J	0.9 J	<4.0	1.2 J	<1,000	0.4 J	16	2.5	<3.0
	11/05			20 J	<0.3	0.9	<0.5	1.1	<1,000	<0.4	12	2 J	<0.5
	6/06			6.4	0.6 J	0.5 J	<4.0	<5.0	<1,000	<1.0	16	2.3	<3.0
	11/06			49 J	<1.0	0.6 J	<4.0	0.6 J	<500	<1.0	9.9	1.2 J	<3.0
	6/07			22	0.9 J	0.5 J	<4.0	0.6 J	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	0.8 J	0.6 J	<4.0	1.1 J	<500 J	<1.0	0.3 J	1.5	<3.0
	3/08			16	1.0 J	0.5 J	<4.0	1.1 J	<500	<1.0	24	1.3	<3.0
	8/08			12	0.8 J	0.5 J	<4.0	1.1 J	<500	<1.0	0.6 J	1.6	<3.0
MW-35	9/98	363	355	<10	<10	<10	<10	<10	<1,000	<10	6 J	5 J	<10
	7/99			<10	0.7 J	<10	<10	<10	<1,000	<10	3 J	4 J	<10
	3/00			<10 J	<10	<10	<10	<10	<1,000 J	<10	<10	2 J	<10
	9/00			<10 J	<1,000	<10 J	<10	3 J	<10 J				
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000 J	<10	<10	2 J	<10
	4/02			<13	<5	<5	<5	<10	<1,000	<5	3 J	4 J	<5
	10/02			<25	<10	<10	<10	<20	<1,000	<10	2 J	R	<10
	5/03			<12	<5	<5	<5	<10	<1,000	<5	1,000	<100	<5
	10/03			5 J	<5	<5	<5	<10	<1,000	<5	4 J	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	30	4 J	<10
	11/04			<25	<10	<10	<10	<20	240 J	<10	82	<5	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	6/06			<5.0	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	0.4 J	<1.0	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	1.1	<1.0 J	<3.0
	6/07			13	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	11/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500 J	<1.0	<5.0	<0.5	<3.0
	3/08			<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
MMM OCE	8/08	000.0	055.0	5.4	<1.0	<5.0	<4.0	<5.0	<500	<1.0	1.1 J	<0.5	<3.0
10100-30	9/98	363.6	355.6	<10	<10	<10	<10	<10	<1,000	<10	290 D	6J	<10
	2/99	4		<10	<10	<10	<10	<10	<1,000	<10	860 D	4 J	<10
	7/99	1		8 J	U.8 J	<10	<10	<10	<1,000	<10	250	<10	<10
	3/00	4		<10 J	<10	<10	<10	<10	<1,000 J	<10	60	73	<10
	9/00	4		5 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	8 J	6 J	<5
	3/01	4		<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01	4		54	<10	<10	<10	<10	<1,000 J	<10	350 D	5 J	<10
	4/02	4		<20	<0	<0	<0	<10	<1,000	<0	9	41	<5
	10/02			12 J	<10	<10	<10	<20	<1,000	<10	2 J	2 J	<10

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	Sampling	Scree (ft. A	en Elev. AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Qu	ality Standard	ls (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
MW-36 [⊨]	5/03			9 J	<5	<5	<5	<10	<1,000	<5	67	4 J	<5
	10/03			580 D	<5	<5	<5	<10	<1,000	<5	100	<5	<5
	6/04			22 J	<10 J	<10 J	<10 J	<20 J	<1,000	<10 J	33	7	<10 J
	11/04			13 J	<10	<10	<10	<20	<1,000	<10	22	<5	<10
	6/05			24 J	2.1	<5.0	<4.0	1.0 J	<1,000	<1.0	1,200	<5.4	<3.0
	11/05			77 J	3.6	2.0 J	0.6 J	2.8 J	<1,000	<1.0	1,600	<10 J	<3.0
	6/06			25	1.6	0.7 J	<4.0	1.2 J	<1,000	<1.0	76	1.9	<3.0
	9/06			NA	NA	NA	NA	NA	NA	NA	3.5	1.2	NA
	11/06			130 J	3.6	1.2 J	<4.0	1.1 J	<500	<1.0	420	1.7 J	<3.0
	6/07			33	4.6	1.4 J	0.8 J	5.0	<500	<1.0	1,300	<10	<3.0
	8/07			NA	NA	NA	NA	NA	NA	NA	740	<5.0	NA
	11/07			10	4.5	1.7 J	0.9 J	5.3	<500 J	<1.0	480 J	3.4 J	<3.0
	3/08			8.0 J	4.2	1.5 J	0.8 J	5.5	<500	<1.0	130	3.0	<3.0
	8/08			27	3.7	1.4 J	0.6 J	5.7	<500	<1.0	4.5 J	3.2	<3.0
TW-01	12/96	365.1	355.4	<10	82	4 J	6 J	4 J	<1,000	<10	2,090 D	13	4 J
	9/98			<10	15	<10	4 J	<10	<1,000	<10	4,400 DEJ	4 J	<10
	2/99			<10	24	2 J	2 J	2 J	<1,000	<10	9,000 D	5 J	<10
	7/99			<10	16	1 J	3 J	<10	<1,000	<10	4,400 D	4 J	<10
	3/00			<10	16	<10	<10	<10	<1,000 J	<10	280 D	4 J	<10
	9/00			<10 J	11 J	<10 J	<10 J	<10 J	<1,000	<10 J	15	2 J	<10 J
	3/01			<10	5 J	<10	<10	<10	<1,000	<10	<10	3 J	<10
	9/01			<10	10	<10	<10	<10	<1,000 J	<10	<10	2 J	<10
	4/02			<14	3 J	<5	<5	<10	<1,000	<5	8	13	<5
	10/02			<25	7 J	<10	<10	<20	<1,000	<10	<5	R	<10
	5/03			<12	7	<5	<5	<10	<1,000	<5	<5	1 J	<5
	10/03			<12	6	<5	<5	<10	<1,000	<5	0.6 J	<5	<5
	6/04			6 J	3 J	<10	<10	<20	<1,000	<10	<5	<5	<10
	11/04			<25	2 J	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	1.8	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<1.3 J	1.9	<0.4	<0.5	<0.4	<1,000	<0.4	<1.0	<1.0 J	<0.5
	6/06			<5.0 J	1 J	<5.0 J	<4.0 J	<5.0 J	<1,000 J	<1.0 J	<1.0 J	0.8 J	<3.0 J
	11/06			R	0.7 J	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	6/07			7.8	0.5 J	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<1.0	<3.0
	2/09			<5.0	<1.0	<5.0	<4.0	<5.0	<500 J	<1.0	0.2 J	1.1	<3.0
	3/08			<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	1.0	<3.0
TW-02 ^C	0/00	262.2	252.2	< 5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<0.0	<0.0	<3.0
(Replaced by TW-02R) ^E	0/08	303.3	303.3	-500 L	<500 L	<500 1	<500 1	53,000	< 1,000 5 000	300 1	38 000 JD	5,920 D	42,449 D
	2/00			<1.000	<1.000	<000 J	<1 000	150 1	14 000 IN	<1.000	83 000 D	7 900	14 000 B
	2/99			<1,000 620	27	240 1	21	150 5	-1 000	<1,000	100,000 D	2 500 1	9 700 D
	3/00			<1.000	<1.000	160 1	<1.000	240 1	<1,000	<1.000	64,000 D	3,000 0	13 000
	9/00	-		100 J	28 1	95 1	35 1	160 1	<1,000 3	61	79.000	-10,000	390 1
	3/01	-		81	19	68	28	130	<1,000	<10	67 000 D	650.1	400 D
	9/01	-		57	25	70	31	140	<1,000	<20	63 000 D	32	48 B
	4/02	1		240	19	65	23	96	<1,000 0	<5	1 090 000 D	<5 300	14
	10/02	1		110.1	15	19	23	65	<1,000	<10	80 000 D	10.1	<10
	5/03	1		240	30	130	49	226	<1,000	<5	160 000 D	230	97
	10/03	1		68	28	75.1	<5	<10	<1,000	2.1	92,000 D	<260	91
	6/04	1		140 J	19 J	39 J	31 J	111 J	<1.000	<10 J	82.000	<5.200	4 J

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

		Scree	en Elev.										
	Sampling	(ft. /	AMSL)				Ethyl-			Trichloro-		N,N-Dimethyl-	Methylene
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	ethene	Aniline	aniline	Chloride
NYSDEC Groundwater Q	uality Standard	ls (Part 70	0)	50	1	5	5	5	NS	5	5	1	5
TW-02RR ^{BE}	11/04	363.3	353.3	18 J	4 J	8 J	4 J	16 J	<1,000	<10	7,100 D	<5	<10
	6/05			7.2 J	3.6	2.1 J	3.6 J	9.6	<1,000	0.3 J	8,400	<50	<3.0
	11/05			26 J	6	4.1	3.6	11	<1,000	<0.4	14,000	<110 J	<0.5
	6/06			16	4.4	1.3 J	2.7 J	6.7	<1,000	<1.0	10,000	<100	<3.0
	9/06			NA	NA	NA	NA	NA	NA	NA	7,600	<52	NA
	11/06			78 J	4.9	1.4 J	2.2 J	6.2	<500	<1.0	2,100	<10 J	<3.0
	6/07			17	5.5	1.3 J	4.0	8.8	<500	<1.0	6,800	<100	<3.0
	8/07			NA	NA	NA	NA	NA	NA	NA	4,000 J	<20	NA
	11/07			5.5	5.8	1.2 J	3.0 J	7.6	<500 J	<1.0	3,700	<25	<3.0
	3/08			6.4 [5.2]	4.5 J [2.3 J]	1.3 J [0.7 J]	3.8 J [1.9 J]	10 [4.8 J]	<500 [<500]	<1.0 [<1.0]	7,500 [5,400]	<50 [<50]	<3.0 [<3.0]
	8/08			9.0 [9.6]	4.4 [4.6]	1.0 J [1.1 J]	2.3 J [2.4 J]	6.7 [7.0]	<500 [<500]	<1.0 [<1.0]	9,600 [7,000]	<71 [<56]	<3.0 [<3.0]
PZ-4D	11/89	350.8	345.9	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	0.8 J	<5
	10/95			NA	<5	<5	<5	<5	NA	<5	<5	<10	<5
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<6	<12	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10 J
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	4/02			<10	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	5/03			<12	<5	<5	<5	<5	<1,000	<5	<5	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/06			<5.0	<1.0	0.5 J	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.5	<1.1	<3
	3/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
PZ-4S	11/89	362.79	357.88	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<5	<5	<10	<18
	10/95			NA	<5	<5	<5	<5	NA	<5	NA	NA	<5
	8/96			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	6/99			<10 J	<10	<10	<10	<10	<1,000 J	<10	<10 J	<10 J	<10 J
	3/00			<10	<10	<10	<10	<10	<1,000 J	<10	<5	<10	<10
	3/01	1		<10	<10	<10	<10	<10	<1,000	<10	<10	3 J	<10
	4/02			<14	<5	<5	<5	<10	<1,000	<5	8 (<5) [⊦]	<5 (<5)⁵	<5
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	<10	<5 ^G	<5 ^G	<10
	5/03			<12	<5	<5	<5	<5	<1,000	<5	<5	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/06			<5.0	<1.0	0.6 J	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	6/07			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.5	<1.1	<3.0
	3/08	1	1	<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

	0	Scree	en Elev.							T			
Monitoring Wall	Sampling	Ton	Bottom	Acotono	Banzana	Taluana	Ethyl-	Vulana ^A	Mothenel	Trichioro-	Anilina	N,N-Dimethyl-	Chlorido
NVSDEC Croundwater O	Date Unlity Stondorg	lo (Dort 70	Dottoin	Acetone	Denzene	Toluene	Denzene	Aylefie	Wethanoi	ethene	Annine	annine	Chioride
P7-5DL		252 5	249.6	-100	-1	-1	5	-1	1 000	5	-10	-10	
F Z=3D	12/04	353.5	340.0	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	12/94	-		<10	<5	<5	<5	<5	<200	<0	<5	<10	<0
	2/90			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98	-		<10	<10	<10	<10	<10	<1,000	<10	<0	<10	<12
	7/99			<10 J	<1,000	<10 J	<10	<10	<10 J				
	9/00			<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	<10	<5-	<5-	<10
	10/03			<12	<5	<5	<5	<10	<1,000	<5	46	<5	<5
	6/04 -			<25	<10	<10	<10	<20	<1,000	<10	<5	<5	<10
	11/04								<1,000		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0	<3.0
	11/05			<5.0 J	<1.0	0.7 J	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	11/07			<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.1	<0.5	<3.0
	9/09			<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
PZ-5SKL	11/89	361.42	356.52	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
	12/94			<10	<5	<5	<5	<5	<200	<5	<5	<10	<5
	2/96			<1,000	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	2/97			5 J	<10	<10	<10	<10	<1,000	<10	<5	<10	<10
	9/98			<10	<10	<10	<10	<10	<1,000	<10	<5 ^H	<10	<12
	6/99			<10 J	<10	<10	<10	<10	<1,000	<10	<10 J	<10 J	<10 J
	7/99			<10 J	<1,000 J	<10 J	<10	<10	<10 J				
	9/00			<10 J	<1,000 J	<10 J	<10 J	<10	<10 J				
	9/01			7 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	<10	<5 ^G	<5 ^G	<10
	10/03			<12	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
	11/04			-					<1,000		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.1	<1.1	<3.0
	11/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	<1.0	<1.0 J	<3.0
	11/06			R	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<1.0	<1.0 J	<3.0
	11/07			<5.0 J	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.0	<0.5	<3.0
	8/08			<5.0	<1.0	<5.0	<4.0	<5.0	<500	<1.0	<5.3	<0.5	<3.0
	9/09			<10 J	<1.0	<1.0	<1.0	<3.0	<500	<1.0	<5.0	<1.0	<1.0
PZ-8S'	9/98	362.6	357.7	<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
PZ-11D ^D	11/89	352.09	347.19	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
PZ-11S ^D	11/89	359.09	354.19	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
PZ-12D ^D	11/89	350	345.1	<100	<1	<1	<1	<1	<1,000	<1	<53	<53	<1
	11/90			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/91			<100	<1	<1	<1	<1	3	<1	<10	<10	<1
	11/92			<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
PZ-12S ^D	11/89	360	355.1	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90]		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91	1		<100	<1	<1	<1	<3	6	<1	<10	<10	5
	11/92	1		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
PZ-13D ^c	11/89	349.4	344.4	<100	<1	<1	<1	<1	<1,000	<1	<11	<11	<1
PZ-13S ^C	11/89	359.5	354.5	<100	<1	2	<1	2	<1,000	<1	<11	<11	<1

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008, 2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

Table 2. Summary of Historical Groundwater Monitoring Data, March 1988 through August 2008,

2011 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility, Syracuse, New York

General Notes:

- 1. Concentrations are presented in micrograms per liter, which is equivalent to parts per billion.
- 2. Compounds detected are indicated by bold-faced type.
- 3. Detections exceeding New York State Department of Environmental Conservation (NYSDEC) Groundwater Standards (Part 700) are indicated by shading.
- 4. Replacement wells for MW-6, MW-8, MW-9, MW-10, MW-11 and MW-12D were installed 8/95.
- 5. Replacement wells for MW-17, MW-24S, MW-24D and TW-02 were installed 11/97 12/97.
- 6. The laboratory analytical results for the duplicate sample collected from monitoring well MW-23S during the 7/99 sampling event indicated the presence of methanol at 5.1 milligrams per liter. Because methanol was not detected in the original sample, the duplicate results were determined, based on the results of the data validation process, to be unacceptable. Furthermore, methanol has not been previously detected in groundwater samples collected from this monitoring well. Accordingly, the detection of methanol appears to be the result of a laboratory error and not representative of actual groundwater guality in the vicinity of monitoring well MW-23S.
- N,N-dimethylaniline data for 10/02 sampling event for MW-1, MW-3S, MW-28, MW-29, MW-32, MW-35 and TW-01 were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. Aniline and N,N-dimethylaniline data for 10/02 sampling event for MW-30 were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. These wells and piezometers are not perimeter monitoring locations and were not resampled.
- 8. Aniline and N,N-dimethylaniline results of nondetect for the 6/04 sampling event at MW-18 were rejected due to the deviation from a surrogate recovery that was below 10%. This well was not resampled.
- 9. Volatile organic compound (VOC) results for the 11/04 sampling event were inadvertently lost due to laboratory equipment failure for monitoring locations MW-1, MW-17R, MW-23I, MW-23S, MW-24DR, MW-24DR, MW-25, MW-25, MW-33, PZ-5D and PZ-5S. In addition, the initial VOC results were also irretrievable due to laboratory equipment failure for monitoring locations MW-27, MW-28, MW-29 and MW-30; however, results for subsequent dilutions of these groundwater samples were valid, but the detection limits were high. The duplicate sample VOC results for MW-27 and MW-28 have lower detection limits and are presented in parentheses. These wells were not resampled.

Superscript Notes:

- A = Data presented is total xylenes (m- and p-xylenes and o-xylenes). For the 1995 data, the listed quantitation limit applies to the analyses conducted for m- and p-xylenes and o-xylenes.
- ^B = Because aniline was detected at monitoring well MW-3S at a concentration of 690 ug/l during the September 2001 sampling event, this well was resampled for aniline on November 8, 2001. Aniline was detected in MW-3S during the November 8, 2001 resampling event at a concentration of 69 ug/l.
- ^C = Wells/piezometers MW-5, MW-14D, MW-16D, MW-17, MW-20, MW-21, MW-24S, MW-24D, TW-02, PZ-13S, and PZ-13D were abandoned 11/97 1/98.
- ^D = Wells/piezometers MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12D, PZ-11D, PZ-11S, PZ-12D, and PZ-12S were abandoned during OU No.1 soil remediation activities (1994).
- ^E₌ Wells MW-8S, MW-8D, and TW-02R were abandoned in 8/04 and replacement wells MW-8SR and TW-02RR were installed in 8/04.
- F = MW-17R, MW-18, and PZ-4S wells/piezometers were resampled for aniline and N,N-dimethylaniline on June 18, 2002 because N,N-dimethylaniline and/or aniline was detected during the April 2002 sampling event. The results of this additional sampling event are shown in parenthesis. MW-24SR and MW-24DR were also sampled for aniline and N,N-dimethylaniline on June 18, 2002, because N,N-dimethylaniline and/or aniline was detected at nearby perimeter monitoring locations during the April 2002 sampling event.
- ^G = MW-17R, MW-18, MW-19, MW-23S, MW-23I, MW-24DR, MW-24SR, MW-25S, PZ-4S, PZ-5S and PZ-5D wells/peizometers were resampled for aniline and N,N-dimethylaniline during 1/03, because the 10/02 results were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. These wells and piezometers are perimeter monitoring locations.
- H = MW-18, MW-19, MW-23I, MW-23S, MW24DR, MW-24SR, MW-24S, PZ-5S and PZ-5D wells/piezometers were resampled for aniline during 12/98, because the 9/98 results were rejected due to laboratory error.
- ^I = Piezometer PZ-8S was decommissioned 8/00.
- J = MW-24SR and PZ-5D well and piezometer were sampled during the June 2004 sampling event because N,N-dimethylaniline and/or aniline was detected at nearby perimeter monitoring locations during the October 2003 sampling event.
- K = Wells/piezometers MW-1, MW-19, and PZ-5S were abandoned 11/10.
- L= Wells/piezometers, MW-22, MW-24D, MW-24D, MW-25D, PZ-5D, PZ-5D were eliminated from the groundwater monitoring program after the 10/10 sampling event; therefore all data for these locations are presented in this table.

Abbreviations:

- AMSL = Above mean sea level (NGVD of 1929).
- NA = Parameter not analyzed for.
- ND = Not detected.
- NS = Standard not available.

Analytical Qualifiers:

- D = Indicates the presence of a compound in a secondary dilution analysis.
- J = The compound was positively identified; however, the numerical value is an estimated concentration only.
- E = The compound was quantitated above the calibration range.
- JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- B = The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- < = Compound was not detected at the listed quantitation limit.
- U = Undetected.
- R = The sample results were rejected.
- -- = Sample results are not available. (See Note 9.)

LEGEND:

UTILITY POLE

CATCH BASIN

PETROLEUM PIPE LINE MARKER

GM • GAS LINE MARKER

SEWER VENT

HYDRANT

WATER VALVE

MANHOLE

-SAMPLE IDENTIFICATION									NC
				/					
MW-35									
Date	9/98	7/99	3/00	9/00	3/01	9/01	4/02	10/02	5/03
Benzene	<10	0.7 J	<10	<10 J	<10	<10	<5	<10	<5
Aniline	6 J	3 J	<10	<10	<10	<10	3 J	2 J	1,000
N,N-dimethylaniline	5 J	4 J	2 J	3 J	<10	2 J	4 J	R	<100
Acetone	<10	<10	<10 J	<10 J	<10	<10	<13	<25	<12

------PROPERTY LINE

PZ-A PIEZOMETER

MW-19
GROUNDWATER MONITORING WELL

C _ _ APPROXIMATE BOUNDARY OF AREA

GROUNDWATER INFILTRATION TRENCH

CONCENTRATION (ppb)

1. REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).

2. TRENCH LOCATIONS ARE APPROXIMATE.

3. MONITORING LOCATIONS ARE APPROXIMATE.

 FIGURE ONLY SHOWS COC CONCENTRATIONS AT MONITORING LOCATIONS WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROCESS CONTROL MONITORING LOCATIONS.

5. ONLY DETECTED COCs ARE PRESENTED ON THIS FIGURE.

6. < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT.

7. J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY.

8. D = CONCENTRATION IS BASED ON DILUTED SAMPLE ANALYSIS.

 $\mathsf{E}=\mathsf{IDENTIFIES}$ COMPOUNDS WHOSE CONCENTRATIONS EXCEED THE CALIBRATION RANGE OF THE INSTRUMENTS.

10. R = THE SAMPLE RESULT WAS REJECTED.

11. B = THE COMPOUND HAS BEEN FOUND IN THE SAMPLE AS WELL AS IN ITS ASSOCIATED BLANK; ITS PRESENCE IN THE SAMPLE MAY BE SUSPECT.

12. N = THIS ANALYSIS INDICATES THE PRESENCE OF A COMPOUND FOR WHICH THERE IS PRESUMPTIVE EVIDENCE TO MAKE AN TENTATIVE IDENTIFICATION.

13. DETECTIONS EXCEEDING NYSDEC GROUNDWATER QUALITY STANDARDS ARE INDICATED BY SHADING.

14. *= MW-3S WAS RESAMPLED ON 11/8/01 DUE TO ANILINE DETECTION DURING 9/2001 SAMPLING EVENT AT A CONCENTRATION OF 690 PPB. ANILINE WAS DETECTED ON 11/8/01 AT A CONCENTRATION OF 69 PPB.

THE 10/02 SAMPLING EVENT N,N-DIMETHYLANILINE DATA FOR MW-1, MW-3S, MW-32, MW-35, AND TW-01 WERE REJECTED DUE TO MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERIES BELOW CONTROL LIMITS. THESE MONITORING WELLS WERE NOT RESAMPLED. 0 100'

200'

GRAPHIC SCALE

02	5/03
	<12
	<5
	<5
	<5
	<10
00	<1,000
	<5
	<5
	<5
	<5

LEGEND:

- BIANNUAL DOWNGRADIENT PERIMETER GROUNDWATER MONITORING LOCATION

CONCENTRATION (ppb)

MW-265 C PUMPING WELL

_____ APPROXIMATE BOUNDARY OF AREA

A GROUNDWATER INFILTRATION TRENCH

PIPING TO BUILDING

- - - - PIPING FROM BUILDING

MW-

<5

GROUNDWATER WITHDRAWAL TRENCH

8/95 10/95

<1.000 NA

-SAMPLE IDENTIFICATION

- REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).
- 2. TRENCH LOCATIONS ARE APPROXIMATE.
- 3. MONITORING LOCATIONS ARE APPROXIMATE.

Acetone

Aniline

NOTES:

- FIGURE ONLY SHOWS COC CONCENTRATIONS AT MONITORING LOCATIONS WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROCESS CONTROL MONITORING LOCATIONS.
- 5. ONLY DETECTED COCs ARE PRESENTED ON THIS FIGURE.
- $\mathsf{<}=\mathsf{COMPOUND}$ was analyzed for but not detected. The associated value is the compound quantitation limit.
- $\mathsf{J}=\mathsf{THE}$ COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY.
- D = CONCENTRATION IS BASED ON DILUTED SAMPLE ANALYSIS.
- $\mathsf{E}=\mathsf{IDENTIFIES}$ compounds whose concentrations exceed the calibration range of the instruments.
- 10. B = THE COMPOUND HAS BEEN FOUND IN THE SAMPLE AS WELL AS IN ITS ASSOCIATED BLANK; ITS PRESENCE IN THE SAMPLE MAY BE SUSPECT.
- N = THIS ANALYSIS INDICATES THE PRESENCE OF A COMPOUND FOR WHICH THERE IS PRESUMPTIVE EVIDENCE TO MAKE AN TENTATIVE IDENTIFICATION.
- 12. R = THE SAMPLE RESULT WAS REJECTED.
- 13. DETECTIONS EXCEEDING NYSDEC GROUNDWATER QUALITY STANDARDS ARE INDICATED BY SHADING.
- 14. THE ANILINE DATA FOR THE 9/98 SAMPLING EVENT FOR MW-18, MW-19, MW-23S, MW-23I, MW-24SR, MW-240R, MW-28, PZ-5S AND PZ-5D WERE OBTAINED IN 12/98, BECAUSE THE 9/98 RESULTS WERE REJECTED DUE TO LABORATORY ERROR.
- 15. * = MW-3S WAS RESAMPLED ON 11/8/01 DUE TO ANILINE DETECTION DURING 9/2001 SAMPLING EVENT AT A CONCENTRATION OF 690 PPB. ANILINE WAS DETECTED ON 11/8/01 AT A CONCENTRATION OF 69 PPB.
- ** = MONITORING WELLS MW-17R, MW-18, AND P2-4S WERE RESAMPLED FOR ANILINE AND N,N-DIMETHYLANILINE ON JUNE 18, 2002 DUE TO N,N-DIMETHYLANILINE AND/ OR ANILINE DETECTION AT THESE PERIMETER MONITORING LOCATIONS DURING THE APRIL 2002 SAMPLING EVENT. THE RESULTS OF THIS RESAMPLING EVENT ARE SHOWN IN PARENTHESIS. MONITORING WELLS MW-24SR AND MW-24OR WERE ALSO SAMPLED ON JUNE 18, 2002 FOR ANALYSIS OF ANILINE AND N,N-DIMETHYLANILINE. THESE COMPOUNDS WERE NOT DETECTED.
- 17. ^ = THE ANILINE AND N.N-DIMETHYLANILINE DATA FOR THE 10/02 SAMPLING EVENT FOR MW-17R, MW-18, MW-19, MW-23S, MW-23I, MW-24SR, MW-24DR, MW-25S, PZ-4S, PZ-5S, AND PZ-5D WERE OBTAINED IN 1/03, BECAUSE THE 10/02 RESULTS WERE REJECTED DUE TO MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERIES BELOW CONTROL
- 18. THE 10/02 SAMPLING EVENT N,N-DIMETHYLANILINE DATA FOR MW-3S, MW-28 AND MW-29 AND THE 10/02 SAMPLING EVENT ANLINE AND N. -DIMETHYLANILINE DATA FOR MW-30 WERE REJECTED DUE TO MATRIX SPIKE AND MATRIX SPIKE OUPLICATE RECOVERIES BELOW CONTROL LIMITS. THESE MONITORING WELLS WERE NOT RESAMPLED.

McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK PERIODIC REVIEW REPORT

GROUNDWATER MONITORING DATA SUMMARY FOR 1988 - MAY 2003 AREA 3

FIGURE 2

10/02	5/03	
120 J	<12	
23	20 J	
310	600 D	
73	81	
267	300	
<1,000	<1,000	
3,100	6,700 D	
80,000	79,000 D	
21,000 J	29 J	
320,000	910,000 D	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-35 Date 10/03 6/04 11/04 6/05 11/05 6/06 Acetone 5 J 225 225 45.0 J 45.0 J Benzene <5.0 <10 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	MW-36 Date 10/03 6/04 11/04 6/05 11/05 6/06 Acetone 580 D 22 J 13 J 24 J 77 J 25 Benzene <5.0 <10 J 10 2.1 3.6 1.6 Toluene <5.0 <10 J 10 <5.0 2.0 J 7.7 J 25 Benzene <5.0 <10 J 10 2.1 3.6 1.6 Toluene <5.0 <10 J 10 <4.0 0.7 J Ethylbenzene <5.0 <10 J <10 <4.0 J 1.2 J Methanol <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,00 <1.0 <1.0 Aniline <1.0 <1.0 <1.0 Aniline <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	LEGEND: UTILITY POLE PROPER CATCH BASIN MW-19 GROUND PM O PETROLEUM PIPE LINE PZ-A PIEZOMI MARKER TW-02R REMOVE MONITO SV O SEWER VENT C APPRO>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PM PM	PM PM PM REN C	 ↔ HYDRANT ₩ATER VALVE MANHOLE MW-35 Date 10/03 6/04 11/05 6/06 Acetone 5.J 425 425
IW-01 II/04 6/05 II/05 6/06 Acetone <12 6 J <25 <5.0 J <1.3 J <5.0 J Benzene 6 3 J 2 J 1.8 1.9 J J Toluene <5.0 <10 <10 <5.0 <0.4 <5.0 J Ethybenzene <5.0 <10 <10 <4.0 <0.5 <4.0 J Xylene <10 <20 <20 <5.0 <0.4 <5.0 J Methanol <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1		S & F2=90 S & F2=90 SELAER	Ethylbenzene <5.0 <10 <4.0 <4.0 Xylene <10 <20 <5.0 <5.0 <5.0 Methanol <1000 <1000 <1.000 <1.000 <1.000 <1.000 Trichloroethene <5.0 <10 <10 <1.0 <1.0 <1.0 Aniline 4 J 30 82 <1.0 <1.0 <1.0 N,N-dimethylaniline <5.0 <10 <1.0 <1.0 <1.0 <1.0 N,N-dimethylaniline <5.0 <10 <1.0 <1.0 <1.0 <1.0 Methylene Chloride <5.0 <10 <1.0 <1.0 <1.0 <1.0 CONCENTRATION (ppb) GROUNDWATER QU ARE INDICATED BY ARE INDICATED BY NOTES: 1. REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN
Date 10/03 6/04 11/04 6/05 11/05 6/06 Acetone 1,200 D 15 J 25 <5.0 J <1.3 J 5.0 J Benzene 13 12 9 J 11 6.7 I J Toluene <5.0 <10 <10 <5.0 <0.4 0.6 J Ethylbenzene <5.0 <10 <10 <4.0 <0.5 <4.0 J Xylene <5.0 <20 <1.3 J 0.6 1.7 J Methanol <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000 <1,000<	PZ-HR WW-31 WW-32 WW-32 PZ-R WW-32 PZ-R WW-33 PZ-P PZ-Q PZ-Q PZ-Q PZ-Q PZ-G	- - - - - - - - - - - - - - - - - - -	 2. TRENCH LOCATIONS ARE APPROXIMATE. 3. MONITORING LOCATIONS ARE APPROXIMATE. 4. FIGURE ONLY SHOWS COC CONCENTRATIONS AT MONITO WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROC MONITORING LOCATIONS. 5. ONLY COC CONCENTRATIONS DETECTED OR THAT HAVE PRESENTED ON THIS FIGURE (SEE ATTACHMENT A FIGURATIONS AND THE CONTROL DETECTED ON THIS FIGURE (SEE ATTACHMENT A FIGURATIONS AND THE CARDINAL MALE DETECTED
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AREA 1	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	 6. < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTIVALUE IS THE COMPOUND QUANTITATION LIMIT. 7. J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWE NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION O 8. D = CONCENTRATION IS BASED ON DILUTED SAMPLE AT 9. R = THE SAMPLE RESULT WAS REJECTED. 10. DURING THE AUGUST 2004 SUPPLEMENTAL REMEDIAL A WELL TW-02R WAS REMOVED AND TW-02RR WAS CONSTHE SOIL REMOVAL AREA IN THE VICINITY OF TW-02R.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-1	STREET	11. THE 11/04 SAMPLING EVENT VOLATILE ORGANIC COMPO MW-33 AND MW-1 WERE INADVERTENTLY LOST DUE TO EQUIPMENT FAILURE. AS DETAILED IN THE BIANNUAL RE MONITORING WELLS WERE NOT RESAMPLED. 0 100' GRAPHIC S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	McKESSON ENVIRO FORMER BEAR STRE SYRACUSE, NEV PERIODIC REVIEV GROUNDWATER MON SUMMARY FOR OC JUNE 2006 ARE

CITY: SYRACUSE DIV/GROUP: ENVCAD DB: NS.SMITHGALL LD: PIC: PM: B. BYRNES TM: LYR: ON="YOFF="REF" GAENVCADSYRACUSEACTB002600300001901DWGIBIANNUALIMARCH-2009/HISTORICAL26003C03.DWG LAYOUT: 35/

RTY LINE NDWATER MONITORING WELL METER /ED GROUNDWATER ORING WELL XIMATE BOUNDARY OF AREA DWATER INFILTRATION

SAMPLE	IDENTIFICATION

EEDING NYSDEC QUALITY STANDARDS BY SHADING.

"R" (e.g., MW-24DR).

ORING LOCATIONS

E BEEN DETECTED ARE URE 1).

TED. THE ASSOCIATED

EVER THE ASSOCIATED ONLY.

ANALYSIS.

ACTIVITIES, MONITORING

POUND (VOC) DATA FOR TO LABORATORY REPORT, THESE

0	100'	200'
G	RAPHIC SCALI	
McKESS FORMER E SYRA PERIODI	ON ENVIROSYS BEAR STREET F CUSE, NEW YO C REVIEW RI	ITEMS ACILITY RK E PORT
GROUNDWAT SUMMARY F JUNE 20	ER MONITO FOR OCTO 006 AREAS	ORING DATA BER 2003 - S 1 & 2
A R	CADIS	FIGURE 3

2600

1101	Ν	D	:
------	---	---	---

UTILITY POLE	MW-19 🖲	GROUNDWATER MONITORING WELL		
CATCH BASIN	PZ-A 🔍	PIEZOMETER		
PETROLEUM PIPE LINE MARKE	.R 💿 or 🕥	BIANNUAL DOWNGRADIENT PERIMETER		
GAS LINE MARKER		SKOOND WATER MONTORING ECCATION		
	MW-26S 🕄	PUMPING WELL		
HYDRANI	MW−8S I¥I	PEMOVED /DECOMMISSIONED		
WATER VALVE		GROUNDWATER MONITORING		
		WELL/PIEZOMETER		
MANHOLE				
PROPERTY		AFFROXIMATE BOONDART OF AREA		
LINE EDGE OF WATER		GROUNDWATER WITHDRAWAL TRENCH		
	A	GROUNDWATER INFILTRATION TRENCH		
EDGE OF TREELINE	A	AND IDENTIFICATION		
TREE		PIPING TO BUILDING		
		PIPING FROM BUILDING		

NOTES:

- REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).
- 2. TRENCH LOCATIONS ARE APPROXIMATE.
- MONITORING LOCATIONS ARE APPROXIMATE.
- FIGURE ONLY SHOWS COC CONCENTRATIONS AT MONITORING LOCATIONS WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROCESS CONTROL MONITORING LOCATIONS.
- ONLY COC CONCENTRATIONS DETECTED OR HAVE BEEN DETECTED ARE PRESENTED ON THIS FIGURE (SEE ATTACHMENT A FIGURES 2 AND 4).
- < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT.
- 7. NA = COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE.
- J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY.
- R = THE SAMPLE RESULT WAS REJECTED.
- 10. B = COMPOUND WAS FOUND IN ASSOCIATED METHOD BLANK.
- THE 9/06, 8/07 AND 6/09 SAMPLING EVENTS WERE INTERIM SAMPLING EVENTS, ANALYZING FOR ANILINE & N,N-DIMETHYLANILINE ONLY. THE 6/10 SAMPLING EVENT WAS AN INTERIM SAMPLING EVENT ANALYZING FOR VOLATILE ORGANIC COMPOUNDS ONLY. 11.
- 12. SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL GUIDANCE SERIES 1.1.1).
- 13. NS STANDARD NOT AVAILABLE.

-SAMPLE IDENTIFICATION											
D-1-		L	Lun 07		Mar. 00	4 10	bur 10	A		NIVERED COR	-
Aastana		Jun-uo	Jun=07	Mar-08	MOF-09		Jun-10	Apr=11	A ante	NTSUEL GUS	
Reasons		10	40	4.0	40		40		Repro	210 200	30
Ethylhenzer		<4.0	<4.0	<4.0	40	20	4.0	40	5thul		-
Methulene	Chloride	<30	<3.0	<3.0	40	53.1	10	10	Math	Jana Chiorida	ž l
Toluene		0.50 J	<50	65.0	40		10	10	Tolue		5
Trichloroet	hene	10	40	40	40	10	10	10	Tricht	oroethene	ž l
Yvlenes (to	ntal)	<50	<50	65.0	<30	<30	230	<30	Yvlen	es (total)	5
Aniline	v/	4.0	65.5	6.0	6.0	<5.0	NA	<5.3	Anilio		5
N.N-Dimet	hvioniline	<1.0	4.1	<0.50	<0.50	1.0	NA	d.1	N.N-	- dimethylaniline	Ť l
Methanol		<1000	<500	NA	NA	<500	NA	NA	Metho	anol	NS
ION (ppb) TIONS EXCEEDING NYSDEC GROUNDWATER TY STANDARDS ARE INDICATED BY SHADING.											
0 100' 200' GRAPHIC SCALE											
McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK PERIODIC REVIEW REPORT											
GROUNDWATER MONITORING DATA SUMMARY FOR SEPTEMBER 2006 - AUGUST 2009 AREA 3 (AEROBIC TREATMENT)											
	ARCADIS FIGURE 5										

2600

1101	Ν	D	:
------	---	---	---

UTILITY POLE	MW-19 🖲	GROUNDWATER MONITORING WELL		
CATCH BASIN	PZ-A 🔍	PIEZOMETER		
PETROLEUM PIPE LINE MARKE	R 💿 or 🕥	BIANNUAL DOWNGRADIENT PERIMETER		
GAS LINE MARKER		SKOOND WATER MONTORING ECCATION		
	MW-26S 😮	PUMPING WELL		
HYDRANI	MW−8S I¥I	PEMOVED /DECOMMISSIONED		
WATER VALVE		GROUNDWATER MONITORING		
		WELL/PIEZOMETER		
MANHOLE				
PROPERTY		AFFROXIMATE BOONDART OF AREA		
LINE EDGE OF WATER		GROUNDWATER WITHDRAWAL TRENCH		
	A	GROUNDWATER INFILTRATION TRENCH		
EDGE OF TREELINE	A	AND IDENTIFICATION		
TREE		PIPING TO BUILDING		
		PIPING FROM BUILDING		

NOTES:

- REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., 1. MW-24DR).
- TRENCH LOCATIONS ARE APPROXIMATE. 2.
- MONITORING LOCATIONS ARE APPROXIMATE. 3.
- FIGURE ONLY SHOWS COC CONCENTRATIONS AT MONITORING LOCATIONS WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROCESS CONTROL MONITORING LOCATIONS. 4.
- ONLY COC CONCENTRATIONS DETECTED OR HAVE BEEN DETECTED ARE PRESENTED ON THIS FIGURE (SEE ATTACHMENT A FIGURES 2 AND 4). 5.
- < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT. 6.
- 7. NA = COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE.
- $\mathsf{J}=\mathsf{THE}$ COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY. 8.
- 9. R = THE SAMPLE RESULT WAS REJECTED.
- 10. B = COMPOUND WAS FOUND IN ASSOCIATED METHOD BLANK.
- THE 9/06, 8/07 AND 6/09 SAMPLING EVENTS WERE INTERIM SAMPLING EVENTS, ANALYZING FOR ANILINE & N,N-DIMETHYLANILINE ONLY. THE 6/10 SAMPLING EVENT WAS AN INTERIM SAMPLING EVENT ANALYZING FOR VOLATILE ORGANIC COMPOUNDS ONLY. 11.
- 12. SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL GUIDANCE SERIES 1.1.1).
- 13. NS STANDARD NOT AVAILABLE.

	-SAMPLE IDENTIFICATION										
Date Acetone Benzene Ethylbenzy Methylene Trichloroet Xylenes (f Anline N.N-Dime Methanol	thene chloride thene thylaniline thylaniline	Jun-06 <5.0 <1.0 <3.0 0.50 J <1.0 <5.0 <1.0 <1.0 <1.0 <1.0	Jun−07 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 40 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.	PZ-## Mg-08 \$0 7.0 \$0 7.0 \$0 7.0 \$0 7.0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	Mar-09 C10 C1.0	Apr-10 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Jun-10 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NA NA NA	Apr-11 Cl0 Cl.0	N Acetonn Benzen Ettytbe Mettyle Tolunn Trichlor Xyfenes Anliho N,M-di Methon	YSDEC GQS e nzene ns Chloride cethene i (tota) methylaniline ol	50 1 5 5 5 5 5 5 5 5 5 5 5 1 NS
ETECTIONS UALITY ST,	ECTIONS EXCEEDING NYSDEC GROUNDWATER ALITY STANDARDS ARE INDICATED BY SHADING. 0 100' 200' GRAPHIC SCALE										
	McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK PERIODIC REVIEW REPORT										
	GROUNDWATER MONITORING DATA SUMMARY FOR SEPTEMBER 2006 - AUGUST 2009 AREA 3 (AEROBIC TREATMENT)									ARY	
		1	C		A R	RC	A	DI	S	F	GURE

TM: D. PENNIMAN LYR: ON=*;OFF=*REF 18.0S (LMS TECH) PAGESETUP: ----PL DIV/GROUP: ENVCAD-141 DB: N.SMITHGALL, L. FORAKER, W.JONES LD: PIC: D. ULM PM: D. PENNIMAN CCTB002800300001901DWG\OCT201128003C05.DWG LAYOUT: 75AVED: 12/13/2011 207 PM ACADVER: CITY: SYRACUSE, N.Y. G:IENVCAD\SYRACUSE\

2600

CONCENTRATI

N	D:
---	----

UTILITY POLE	MW-19 🖲	GROUNDWATER MONITORING WELL				
CATCH BASIN	PZ-A 🖲	PIEZOMETER				
PETROLEUM PIPE LINE MARKE	ER 💿 or 🍥	BIANNUAL DOWNGRADIENT PERIMETER				
GAS LINE MARKER	MW-265 @					
HYDRANT	MW-203 U	FOMFING WELL				
	MW—8S i∭i	REMOVED /DECOMMISSIONED				
WATER VALVE	<>	GROUNDWATER MONITORING				
MANHOLE		WELL/PIEZOME IER				
	1	APPROXIMATE BOUNDARY OF AREA				
PROPERTY						
LINE EDGE OF WATER		GROUNDWATER WITHDRAWAL TRENCH				
	A	GROUNDWATER INFILTRATION TRENCH				
EDGE OF TREELINE	Ø	AND IDENTIFICATION				
TREE		PIPING TO BUILDING				
		PIPING FROM BUILDING				

NOTES:

- REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., 1. MW-24DR).
- TRENCH LOCATIONS ARE APPROXIMATE. 2.
- MONITORING LOCATIONS ARE APPROXIMATE. 3.
- FIGURE ONLY SHOWS COC CONCENTRATIONS AT MONITORING LOCATIONS WITHIN THE IMPACTED AREAS AND THE CHEMICAL PROCESS CONTROL MONITORING LOCATIONS. 4.
- ONLY COC CONCENTRATIONS DETECTED OR HAVE BEEN DETECTED ARE PRESENTED ON THIS FIGURE (SEE ATTACHMENT A FIGURES 2 AND 4). 5.
- < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT. 6.
- 7. NA = COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE.
- J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY. 8.
- 9. R = THE SAMPLE RESULT WAS REJECTED.
- 10. B = COMPOUND WAS FOUND IN ASSOCIATED METHOD BLANK.
- THE 9/06, 8/07 AND 6/09 SAMPLING EVENTS WERE INTERIM SAMPLING EVENTS, ANALYZING FOR ANILINE & N,N-DIMETHYLANILINE ONLY. THE 6/10 SAMPLING EVENT WAS AN INTERIM SAMPLING EVENT ANALYZING FOR VOLATILE ORGANIC COMPOUNDS ONLY. 11.
- 12. SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL GUIDANCE SERIES 1.1.1).
- 13. NS STANDARD NOT AVAILABLE.

				F	SAMP	LE IDI	ENTIFI	CATIC	N		
Date Acetone Benzene Ethybenze Methybenze Methybenze Trichhorce Xylenes (Anilie N,N-Dime Methanol RATION (p	ne Chloride thene cota) thylaniline opb) — EXCE[Jun-06 <5.0 <1.0 <3.0 <1.0 <5.0 <1.0 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Jun-07 (5.0 (7.0 (3.0 (5.0 (5.0 (5.5 (1.1 (500) NYSE	PZ-# Mar-08 \$.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Mar-09 10 1.0 1.0 1.0 1.0 3.0 5.0 5.0 5.0 8.0 NA	Apr-10 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Jun-10 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NA NA NA NA	Apr-11 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		NYSDEC G cetone mizene sthylenzene sthylene Chlor duene ichloroethene denes (tota) nihe N-dimethylan sthanol	05 50 1 5 5 5 5 5 5 5 1 1 1 1 8 8 8 8 8 8 8 8
JALITT ST	ALITY STANDARDS ARE INDICATED BY SHADING 200' 0 100' 200' GRAPHIC SCALE										
	McKESSON ENVIROSYSTEMS FORMER BEAR STREET FACILITY SYRACUSE, NEW YORK PERIODIC REVIEW REPORT										
	GROUNDWATER MONITORING DATA SUMMARY FOR SEPTEMBER 2006 - AUGUST 2009 FOR ELIMINATED MONITORING WELLS									MARY FOR	
	ARCADIS FIGURE 7									FIGURE	

Attachment B

Validated Analytical Laboratory Report

Imagine the result

McKesson Bear Street

Data Usability Summary Report (DUSR)

SYRACUSE, NEW YORK

Volatile and Semivolatile Organic Compounds (VOCs and SVOCs) and Methanol Analyses

SDG #s: 460-32903, 460-32906, and 460-32958

Analyses Performed By: TestAmerica Laboratories Edison, New York

Report #: 15153R Review Level: Tier III Project: B0026003.0000.00190
SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # 460-32903, 460-32906, and 460-32958 for samples collected in association with the McKesson Bear Street site in Syracuse, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

		Lah ID		Sample	Parant	Analysis				
SDG	Sample ID		Matrix	Date	Sample	voc	svoc	РСВ	MET	MISC
	MW-18	460-32903-1	Water	10/25/11		Х	Х			Х
	MW-29	460-32903-2	Water	10/25/11		Х	Х			
	MW-30	460-32903-3	Water	10/25/11		Х	Х			
	MW-17R	460-32903-4	Water	10/25/11		Х	Х			Х
460-32903	TB-102511-1	460-32903-5	Water	10/25/11		Х				
	MW-9S	460-32903-6	Water	10/25/11		Х	Х			Х
	TW-01	460-32903-7	Water	10/25/11		Х	Х			Х
	MW-32	460-32903-8	Water	10/25/11		Х	Х			Х
	MW-31	460-32903-9	Water	10/25/11		Х	Х			Х
	MW-23S	460-32906-1	Water	10/26/11		Х	Х			Х
	MW-23I	460-32906-2	Water	10/26/11		Х	Х			Х
	MW-28	460-32906-3	Water	10/26/11		Х	Х			Х
	MW-27	460-32906-4	Water	10/26/11		Х	Х			
	MW-8SR	460-32906-5	Water	10/26/11		Х	Х			
460-32906	DUP-102611-01	460-32906-6	Water	10/26/11	MW-8SR	Х	Х			
	MW-34	460-32906-7	Water	10/26/11		Х	Х			Х
	MW-35	460-32906-8	Water	10/26/11		Х	Х			Х
	MW-33	460-32906-9	Water	10/26/11		Х	Х			
	MW-36R	460-32906-10	Water	10/26/11		Х	Х			
	TB-102611-01	460-32906-11	Water	10/26/11		Х				
	MW-3S	460-32958-1	Water	10/27/11		Х	Х			
160 22059	TW-02RRR	460-32958-2	Water	10/27/11		Х	Х			Х
400-32958	DUP-102711-01	460-32958-3	Water	10/27/11	TW-02RRR	Х	Х			Х
	TRIP BLANK	460-32958-4	Water	10/27/11		Х				

Note: Miscellaneous analysis includes methanol. Sample locations MW-30 and MW-35 were used in the MS/MSD analyses.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	Reported		mance otable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		х		Х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8015B, 8260B, and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOPs associated with USEPA SW-846 Validating Volatile Organic Compounds by GC/MS SW-846 Method 8260B (SOP HW-24 Revision 2, October 2006) and Validating Semivolatile Organic Compounds by GC/MS SW-846 Method 8270D (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW/ 846 8260P	Water	14 days from collection to analysis	Cool to 4±2 °C; pH < 2 with HCl
SW-846 8260B	Soil	48 hours from collection to extraction and 14 days from collection to analysis	Cool to 4±2 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were detected in the associated QA blanks; however, the associated sample results were non-detect. Therefore, qualification of the sample results was not required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration (ICV)

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99, and a RRF value greater than control limit (0.05).

4.2 Continuing Calibration (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compounds	Criteria
MW-18 MW-29 MW-30 MW-17R	001/8/5	Acetone	%D > 20% (increase in sensitivity)
TB-102511-1 MW-9S TW-01 MW-32 MW-31		o-Xylene	%D > 20% (decrease in sensitivity)
MW-23S MW-23I MW-28 MW-27 MW-8SR DUP-102611-01 MW-34 MW-35 MW-35 MW-33 MW-36R TB-102611-01	CCV %D	Acetone	%D > 20% (increase in sensitivity)

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	nitial/Continuing Criteria		Qualification	
		Non-detect	R	
	KKF < 0.00	Detect	J	
Initial and Continuing	$PPE < 0.01^{1}$	Non-detect	R	
Calibration	KKF < 0.01	Detect	J	
		Non-detect		
	KKF > 0.05 01 KKF > 0.01	Detect	NO ACION	
Initial Calibratian	%RSD > 15% or a	Non-detect	UJ	
	correlation coefficient < 0.99	Detect	J	
Continuing Colibration	%D > 20%	Non-detect	No Action	
	(increase in sensitivity)	Detect	J	

Initial/Continuing	Criteria	Sample Result	Qualification
	%D > 20%	Non-detect	UJ
	(decrease in sensitivity)	Detect	J

RRF of 0.01 only applies to typically poor responding compounds (e.g. ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard area counts were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPDs between the MS and MSD results.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the

RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compounds	Sample Result	Duplicate Result	RPD
	Benzene	1.9	2	5.1 %
MW-8SR / DUP-102611-01	Ethylbenzene	2	2.1	4.9 %
	Toluene	1.3	1.3	0.0 %
	Xylenes, Total	14	15	6.9 %
	Benzene	1.2	1.1	8.7 %
	Ethylbenzene	0.67 J	0.69 J	AC
100-02KKK/D0F-102711-01	Toluene	0.53 J	0.48 J	AC
	Xylenes, Total	1.5 J	1.4 J	AC

Results (in μ g/L) for the field duplicate samples are summarized in the following table.

AC Acceptable

J Estimated (result is < RL)

The field duplicate sample results are acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B		orted	Perfor Acce	mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks					Х
C. Trip blanks		Х	Х		
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	

%R

Percent recovery Relative percent difference RPD

%RSD Relative standard deviation

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW 946 9270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to 4±2 °C
SW-846 8270C	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution are acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration Verification (ICV)

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration Verification (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits, and that all SVOC surrogate recoveries be greater than ten percent.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Location	Surrogate	Recovery
	Phenol-d₅	> UL
MW-18	2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d ₅ 2-Fluorobiphenyl Terphenyl-d ₁₄	Acceptable

UL Upper control limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of surrogate deviations, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
. 111	Non-detect	No Action
> 0L	Detect	J
all buts 10%	Non-detect	UJ
< LL Dui > 10%	Detect	J
- 10%	Non-detect	R
< 10%	Detect	J
D - Surrogates diluted below	Non-detect	ı ¹
the calibration curve	Detect	J

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

No sample results required qualification.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established or analytical method-referenced acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPDs between the MS and MSD.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compounds	Sample Result	Duplicate Result	RPD
MW-8SR / DUP-102611-01	n,n'-Dimethylaniline	2.6	1.0 U	AC
	n,n'-Dimethylaniline	5.5	6.2	12.0 %
1W-02KKK/D0P-102711-01	Aniline	1300	1500	14.3 %

Results (in μ g/L) for the field duplicate samples are summarized in the following table.

U Not detected

AC Acceptable

The field duplicate sample results are acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compounds that exhibited concentrations greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
TW-02RRR	Aniline		1300	1300 D
DUP-102711-01	Aniline		1500	1500 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result < the calibration range	DJ
Diluted sample result > the calibration range	EDJ
Original sample result > the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA V	ALIDATION	CHECKLIST	FOR	SVOCs
--------	------------------	-----------	-----	-------

SVOCs: SW-846 8270C	Repo	orted	Perfor Acce	mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)				
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (units)		Х		Х	
Blanks					
A. Method Blanks		Х		Х	
B. Equipment/Field Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System Performance and Column Resolution		Х		Х	
Initial Calibration %RSDs		Х		Х	
Continuing Calibration RRFs		Х		Х	
Continuing Calibration %Ds		Х		Х	
Instrument Tune and Performance Check		Х		Х	
Ion Abundance Criteria for Each Instrument Used		Х		Х	
Internal Standards		Х		Х	
Compound Identification and Quantitation					
A. Reconstructed Ion Chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of Sample Compounds Within the Established RT Windows		Х		Х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting Limits Adjusted for Sample Dilutions		Х		Х	

%R

Percent Recovery Relative Percent Difference RPD

%RSD Relative Standard Deviation

%D Percent Difference

METHANOL ANALYSIS

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Methanol	Soil	14 days from collection to analysis	Cool to 4±2 °C
SW-846 8015B	Water	14 days from collection to analysis	Cool to 4±2 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected analyte in an associated blank is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Methanol was not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration (ICV)

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

4.2 Continuing Calibration (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
MW-32 MW-23I	1-Pentanol	> UL

Upper control limit (UL)

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
. 111	Non-detect	No Action
> 0L	Detect	J
all buts 100/	Non-detect	UJ
< LL Dui > 10%	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J
D – Surrogates diluted below	Non-detect	ı ¹
the calibration curve	Detect	J

Note: ¹ - A more concentrated analysis was not performed with surrogate compounds within the calibration range therefore no determination of extraction efficiency could be made.

No sample results required qualification.

6. Matrix Spike/Matrix Spike Duplicate Sample (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked analytes used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the analyte concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPDs between the MS and MSD.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results (in µg/L) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result	Duplicate Result	RPD
TW-02RRR / DUP-102711-01	Methanol	500 U	500 U	AC

U Not detected

AC Acceptable

The field duplicate sample results are acceptable.

9. Analyte Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified analytes met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METHANOL

Methanol: SW-846 8015B	Repo	orted	Perfor Acce	mance otable	Not
	No	Yes	No	Yes	Kequireu
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (Units)		Х		Х	
Blanks					
A. Method Blanks		Х		Х	
B. Equipment Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					
Tier III Validation					
Initial Calibration %RSDs		Х		Х	
Continuing Calibration %Ds		Х		Х	
System Performance and Column Resolution		Х		Х	
Compound Identification and Quantitation					
A. Quantitation Reports		Х		Х	
B. RT of Sample Compounds Within Established RT Windows		х		х	
C. Pattern Identification		Х		Х	
D. Transcription/Calculation Errors Present		Х		Х	
E. Reporting Limits adjusted for Sample Dilutions		Х		Х	

%RPercent RecoveryRPDRelative Percent Difference%RSDRelative Standard Deviation

Percent Difference %D

SAMPLE COMPLIANCE REPORT

Sample Delivery						Co	mplian	cy ¹		
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	Noncompliance
	10/25/11	SW846	MW-18	Water	No	Yes			Yes	VOC: CCV response
	10/25/11	SW846	MW-29	Water	No	Yes				VOC: CCV response
	10/25/11	SW846	MW-30	Water	No	Yes		-		VOC: CCV response
	10/25/11	SW846	MW-17R	Water	No	Yes		-	Yes	VOC: CCV response
460-32903	10/25/11	SW846	TB-102511-1	Water	No					VOC: CCV response
	10/25/11	SW846	MW-9S	Water	No	Yes		-	Yes	VOC: CCV response
	10/25/11	SW846	TW-01	Water	No	Yes			Yes	VOC: CCV response
	10/25/11	SW846	MW-32	Water	No	Yes		-	Yes	VOC: CCV response
	10/25/11	SW846	MW-31	Water	No	Yes		-	Yes	VOC: CCV response
	10/26/11	SW846	MW-23S	Water	Yes	Yes		-	Yes	
	10/26/11	SW846	MW-23I	Water	Yes	Yes			Yes	
	10/26/11	SW846	MW-28	Water	Yes	Yes			Yes	
	10/26/11	SW846	MW-27	Water	Yes	Yes		-		
	10/26/11	SW846	MW-8SR	Water	Yes	Yes		-		
460-32906	10/26/11	SW846	DUP-102611-01	Water	Yes	Yes		-		
	10/26/11	SW846	MW-34	Water	Yes	Yes		-	Yes	
	10/26/11	SW846	MW-35	Water	Yes	Yes			Yes	
	10/26/11	SW846	MW-33	Water	Yes	Yes				
	10/26/11	SW846	MW-36R	Water	Yes	Yes				
	10/26/11	SW846	TB-102611-01	Water	Yes					
	10/27/11	SW846	MW-3S	Water	Yes	Yes				
460 22059	10/27/11	SW846	TW-02RRR	Water	Yes	No			Yes	SVOC: Dilution
400-32936	10/27/11	SW846	DUP-102711-01	Water	Yes	No			Yes	SVOC: Dilution
	10/27/11	SW846	TRIP BLANK	Water	Yes					

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

Validation Performed By:	Dennis Dyke
Signature:	Dennigh
Date:	December 5, 2011
Peer Review:	Dennis Capria
Date:	December 7, 2011

CHAIN OF CUSTODY / CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record TAL-4124 (1007) Client Alc/ADJ S Address 6-723 To WARTM Ad 6-723 To WARTM Ad Only Sy CA CUSC State Sy CA CUSC N Y McUeSSOn ContractPurchase Order/Quote No. So 2 & 00 3. 00 o 0. 000 j 0 Sample i.D. No. and Description Containers for each sample may be combined on one line) MW - J 8 MW - J 8	Temperature on Receipt The project Manager No X THE Project Manager Na $Matrix$ Receipt THE Project Manager Na $Matrix$ Receipt THE Project Manager Na $Matrix$ Receipt THE Site Contact $Matrix$ Soit $Carnier Maybili Number Carc \in Chart Max Site Contact Natrix Contact Carnier Maybili Number Containers & Preservatives Time A queenus Soit Linpres A preservatives 0950 N Z Z Z Z 0450 N Z Z Z Z $	LEADER IN ENVIRONMENTAL TESTING	Page 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
$\frac{mw-3}{mw-17R}$	105 X 1330 X - 5 3 - 2		2 of 523
Mw = 95 $Mw = 32$	1110 X 5 3 1230 X 5 3 1430 X 5 3		С -
MW -31 MW -31 Possible Hazard Identification Non-Hazard C Rammable Skin Initiant Poison B	S30 X 5 3 5 3 5 3 5 5 3 5 5 5 5 5 5 5 5 5 5	2 3 2 3 3	ssed if samples are retained
Non-Hazard Commeann Non-Hazard Fammable Skin Irritant Poison B Tum Around Time Required 24 Hours 48 Hours 70845 14 Days 21 Days	Unknown Return To Client Poisposal By Lab OC Requirements (Spe OC Requirements (Spe Ms/MS)	$\Box \text{ Archive For } Months \text{ (A fee may be assessed)} Archive For Months longer than 1 months (as noticed) and the control of the control o$	(CA)
1. Relinquished By 2. Relinquished By 2. Relinquished By	Date Time T. Received By Date Time 2. Received By Date Time 2. Received By Date 10/25/11 1/9,'00 2. Received By Date 10 c.S.C.1 1/9,'00	also, SyR	Date Time Date 25.11 1.16:30 Date 10/22/11 1.0:10
3. Relinquished By	Date Time 3. RecEived By		Date / Time
1,3 4 7.6 4.5 5.6 1.5 5.6 1.5 C. DISTRIBUTION WHITEF Returned & Client with Report, CANARY-Stays with	To (.5+ 30 + 36) 300 3 3	6 300261 300259	30036 18400

國際是 福建制度和原则

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample	D:	MW-18							es.		with the particular
Lab Sample ID Client Matrix:		460-329 Water	03-1			and the second state of the second			Da Da	te Sampled: 1 te Received: 1	0/25/2011 1440 0/26/2011 1015
				8260B Vo	latile Org	anic Comp	ound	ds (GC/M	IS)		
Analysis Metho Prep Method: Dilution: Analysis Date: Prep Date:	d:	8260B 5030B 1.0 10/30/2011 10/30/2011	1604	Analys Prep B	is Batch: atch:	460-91 N/A	229		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14030.d 5 mL 5 mL	A team and Team's Proposition of Activity of States Cases Of States States Of States
Analyte			ICIM.	副标志的	Result (ug/L)		Qualifie	r MDL	RL	
Methylene Chic	nde		41 L	G	1.0		1217	U	0.19	1.0	IN COMPLETENT
Acetone	8r				10			U	2.5	10	
Trichloroethene	Q)			U	1.0			U	0.18	1.0	n ann an a
Benzene			13 - Li		1.0		-1.F	U	0.13	1.0	Berrye .
Toluene			091.0	ŝ	0.23			J	0.090	1.0	nadulo F
Ethylbenzene	1.5				1.0		1	U	0.25	1.0	THE STORE OF
Xylenes, Total					3.0			U I	0.43	3.0	lato" eorosyX
Surrogate		o i statu a			%Rec			Qualifie	r Accept	ance Limits	elser (
1,2-Dichloroeth Bromofluorober Toluene-d8 (Su	ane-d izene rr)	l4 (Surr)			113 88 90		201 118 118		70 - 12 69 - 13 69 - 12	2 5 5	na an sin (a Sin No ngalanan 15 No Sin an angalan

The second second

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample	ID: MW-29						25	Via sie	algement tought
Lab Sample ID Client Matrix:	: 460-329 Water	903-2					n che Da Da	te Sampled: 1 Ite Received: 1	10/25/2011 0950 10/26/2011 1015
They shall			8260B Vo	latile Orga	nic Compoun	ds (GC/M	IS)		
Analysis Metho	d: 8260B		Analys	is Batch:	460-91229		Instrument ID:	VOAMS4	时的行动。
Prep Method:	5030B		Prep B	atch:	N/A		Lab File ID:	d14031.d	Sec. She that ?!
Dilution:	1.0						Initial Weight/Volume:	5 mL	
Analysis Date:	10/30/2011	1627					Final Weight/Volume:	5 mL	- Jetä ermiana.
Prep Date:	10/30/2011	1627					「 「 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 」 」		$p_{1}=(r+r)p_{2}=r$
							a ,		
Analyte				Result (u	g/L)	Qualifie	r MDL	RL	51 15 1
Methylene Chic	oride		1.1	1.0	¥-1	U	0.19	1.0	
Acetone			U.	10		U I	2.5	.10	
Trichloroethene	e o i			1.0		U	0.18	1.0	
Benzene		61.		1.0		U	0.13	1.0	
Toluene	(15) E			0.22	. 26	J	0.090	1.0	
Ethylbenzene				1.0		U	0.25	1.0	Sec. Star Web
Xylenes, Total	B.D.	£\$.0		3.0		UJ	0.43	3.0	V Paper VX
Surrogate	alus a sti			%Rec		Qualifie	r Accep	tance Limits	
1,2-Dichloroeth	ane-d4 (Surr)			108			70 - 12	2 Mar Mercal	townough C X.F
Bromofluorober	nzene .			86			69 - 13	35	
Toluene-d8 (Su	irr) date	1×1.1		93			69 - 12	25	All the rate for the

and the second second

Client: ARCADIS U.S. Inc

Analytical Data

Cilent Sample ID: MW-30				
Lab Sample ID: 460-32903-3 Client Matrix: Water		Reffer Politik	Date Date	Sampled: 10/25/2011 1105 Received: 10/26/2011 1015
	8260B Volatile Organic Co	mpounds (GC/M	IS)	
Analysis Method: 8260B	Analysis Batch: 460-	91229	Instrument ID:	VOAMS4
Prep Method: 5030B	Prep Batch: N/A		Lab File ID:	d14024.d
Dilution: 1.0			Initial Weight/Volume:	5 mL
Analysis Date: 10/30/2011 1346			Final Weight/Volume:	5 mL
Prep Date: 10/30/2011 1346			2000 J. 1938	
Analyte	Result (ug/L)	Qualifie	er MDL	RL
Methylene Chloride	1.0	U	0.19	1.0
Acetone	10	01 U	2.5	10
Trichloroethene	1.0	U	0.18	1.0
Benzene	1.0	U	0.13	1.0
Toluene	0.18	an a' J	0.090	1.0
Ethylbenzene	1.0	U	0.25	1.0
Xylenes, Total	3.0	UJ	0.43	3.0
Surrogate	%Rec	Qualifie	er Accepta	nce Limits
1,2-Dichloroethane-d4 (Surr)	, and a system of a second sec		70 - 122	enen sandaziego na perezi,
Bromofluorobenzene	87		69 - 135	אליסורום ועבודוי צאריל פודא
Toluene-d8 (Surr)	93		69 - 125	

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-17R											
Lab Sample ID: Client Matrix:	460-329 Water	03-4	_1						51	U- 2060 E	Date Sampled: Date Received	10/25/2011 1330 10/26/2011 1015
n (en an dark en anverse dark	t internet i ander og		8	260B Vo	latile O	rganic Co	ompoun	ds ((GC/M	S)	an an an an ang ang ang ang ang ang ang	abarna gan mer anna anna an
Analysis Method:	8260B			Analysi	is Batch	: 460	-91229			Instrument ID:	VOAMS	64
Prep Method:	5030B			Prep B	atch:	N/A	Child			Lab File ID:	d14032	.d
Dilution:	1.0									Initial Weight/Volum	e: 5 mL	
Analysis Date:	10/30/2011	1650								Final Weight/Volume	e: 5 mL	
Prep Date:	10/30/2011	1650								1944 (P		
Analyte					Result	(ug/L)		QL	ualifie	r MDL	RI	Sec. 1
Methylene Chloride			1.000		1.0			U		0.19	1.0)
Acetone					10			U		2.5	10	99-5470
Trichloroethene					1.0			U		0.18	1.(D restaurus autoresta
Benzene					1.0		1.1	U		0.13	1.()
Toluene					0.19			J		0.090	1.()
Ethylbenzene					1.0			U		0.25	1.0)
Xylenes, Total					3.0			U	5	0.43	3.0	Constant and the
Surrogate	e				%Rec			QL	alifier	Acce	ptance Limits	
1,2-Dichloroethane-c	14 (Surr)				108				an an tha that the second	70 - 1	122	n tean transfer tean a grane transfer de transferant anna grane transferant anna gr
Bromofluorobenzene	121-1				87					69 - 1	135	
Toluene-d8 (Surr)					92					69 - 1	125	

如何的 化中心过程的中心

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID: TB-102511-1	
Lab Sample ID: 460-32903-5	Date Sampled: 10/25/2011 0000
Client Matrix: Water	Date Received: 10/26/2011 1015
8260B Volatile Organic Compo	ounds (GC/MS)

Analysis Method: Prep Method: Dilution: Analysis Date:	∰ 81/2 - 24 (5 - 24 (5	8260B 5030B 1.0 10/30/2011	1541	Analys Prep B	s Batch: atch:	460-91229 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14029.d 5 mL 5 mL	A series sono ne Fregoristical : Chartes A series francis Constant francis Constants
Flep Date.		10/30/2011	1341							
Analyte					Result ((ug/L)	Qualifie	r MDL	RL	(ELE) (EP.S.)
Methylene Chlo	ride		MEL		1.0		U	0.19	1.0	E PER TRA
Acetone	01				10		U	2.5	10	whole of w
Trichloroethene			1.1		1.0	0.4	U	0.18	1.0	s 3,1 4 10 71
Benzene			84 U		1.0		U	0.13	1.0	25,05,000
Toluene					1.0		U	0.090	1.0	
Ethylbenzene			235		1.0		U	0.25	1.0	Sal Antara La
Xylenes, Total					3.0		υJ	0.43	3.0	
Surrogate		a Lightaging			%Rec		Qualifie	r Acceptar	ice Limits	
1,2-Dichloroetha	ane-d	4 (Suπ)	an a	Per populgenera in anadian como para a c	107	· I Style		70 - 122	11 J. N. 9 (S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bromofluoroben	zene				89	Ste		69 - 135		
Toluene-d8 (Su	rr)	2. A 8 .			94			69 - 125		tà Shian T

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-95									etiganets interior
Lab Sample ID: Client Matrix:	460-329 Water	03-6						Da	te Sampled: 1 te Received: 1	0/25/2011 1110 0/26/2011 1015
and an and a second	, A name of the second	Anna sa	8260B Vo	latile Or	ganic Cor	mpound	ds (GC/M	S)	and and a second state of the	n
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/30/2011 10/30/2011	. Напосни Яснёй са. 1714 рода — Палія 1714 рода, Палія 1714	Analys Prep B	is Batch atch:	: 460- N/A	91229	Try He Strat ^{es}	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14033.d 5 mL 5 mL	Arraysis Darin Arrays Afaltau Folo otc Arraysis Date Prep Date
Analyte				Result	(ug/L)		Qualifie	r MDL	RL	
Methylene Chloride Acetone Trichloroethene Benzene Toluene Ethylbenzene Xylenes, Total				1.0 10 1.2 1.8 4.2 41				0.19 2.5 0.18 0.13 0.090 0.25 0.43	1.0 10 1.0 1.0 1.0 1.0 3.0	Antonio de la constante Sentaria Sentar
Surrogate 1,2-Dichloroethane- Bromofluorobenzene	d4 (Surr)	34. U ⁹ H ir	-8.21-Q	%Rec 100 92	n - finn a Chur de nachta an stad a unaith		Qualifie	r Accept 70 - 12 69 - 13	tance Limits	i de geren i i Barnal i el Cilla Subrital Stephi

,主义,杨公子"马伯问。

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample I	D: TW-01								area Carrier
Lab Sample ID: Client Matrix:	460-329 Water	03-7	in the Casim (11 July 1 States	an a		inir andro	Date Date	e Sampled: 10 e Received: 10	0/25/2011 1230 0/26/2011 1015
		ſ	8260B Vo	latile Organ	lc Compound	ds (GC/M	IS)		
Analysis Methor Prep Method: Dilution: Analysis Date: Prep Date:	d: 8260B 5030B 1.0 10/30/2011 10/30/2011	1797 - 1737 1737 1737	Analys Prep B	is Batch: atch:	460-91229 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14034.d 5 mL 5 mL	Angivela Multu Tran Defined Transcore Stratyrus Fore Frago 7 (19)
Analyte			211 - 1	Result (ug	/L) ^{na alazeri}	Qualifie	r MDL	RL	
Methylene Chlo	ride		47	1.0	11	U	0.19	1.0	(4) そのたい(1) 10
Acetone			1 54	10		U	2.5	10	
Trichloroethene	€i 1			1.0		U	0.18	1.0	
Benzene		14.0		1.0		U	0.13	1.0	
Toluene				1.0		U	0.090	1.0	
Ethylbenzene				1.0		U	0.25	1.0	
Xylenes, Total		府川 度		3.0		UJ	0.43	3.0	
Surrogate				%Rec		Qualifie	Accepta	nce Limits	
1,2-Dichloroetha Bromofluoroben Toluene-d8 (Su	ane-d4 (Surr) izene rr)			106 92 97			70 - 122 69 - 135 69 - 125	n Lieu Parendo Artesto Artesto	sangarshiri si t Godi (* 1997) By Dr. (1996)

許可加於 內口間的自然得高

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample I): MW-32							1998 - 19	i samel int o	
Lab Sample ID: Client Matrix:	460-329 Water	003-8				Date Sampled: 10/25/201 Date Received: 10/26/201				
The angle of the second s	n Créach Realann Serring II Starting Raine Stateach	and a second	260B Vo	latile Organi	lc Compoun	ds (GC/N	IS)	a dinamatika kasimika samata dan sa	2	
Analysis Method Prep Method: Dilution: Analysis Date: Prep Date:	: 8260B 5030B 1.0 10/30/2011 10/30/2011	1800 1800	Analys Prep B	is Batch: atch:	460-91229 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volur	VOAMS d14035 me: 5 mL ne: 5 mL	4 Mark Alexandria d London ar a make of stell ar grach stell ar grach	
Analyte				Result (ug/	L) - 1 H See S	Qualifie	er MDL	RL		
Methylene Chlori	ide	-61-2	1	1.0		U	0.19	1.0	lovid or - m	
Acetone		0.5		10		U	2.5	10		
Trichloroethene		1 m		1.0	1. 1.	U	0.18	1.0	SH TE CLOSED	
Benzene				1.0		U	0.13	1.0	ออก เป็นเชื่อไ	
Toluene				0.19		J	0.090	1.0	a 1986 - 1	
Ethylbenzene				1.0		U	0.25	1.0	1	
Xylenes, Total				3.0		υJ	0.43	3.0	1010 T 3076-17	
Surrogate	or i to predictere			%Rec		Qualifie	er Acc	eptance Limits		

Surrogate	El consel el las A	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-c	i4 (Surr)	104		70 - 122	
Bromofluorobenzene	•	92		69 - 135	
Toluene-d8 (Surr)	291-65	97		69 - 125	

A setting to an David

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-31							
Lab Sample ID: Client Matrix:	460-329 Water	03-9				D D	ate Sampled: 1 ate Received: 1	0/25/2011 1530 0/26/2011 1015
		8	260B Volatile Or	ganic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/30/2011 10/30/2011	1823 1823	Analysis Batch Prep Batch:	460-91229 N/A		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	VOAMS4 d14036.d e: . 5 mL e: 5 mL	
Analyte		2.84	Result	(ug/L)	Qualifie	r MDL	RL	
Methylene Chloride	name and a standard state and a state of the	in a shenarda e feliningan, a lano, e anna gyotana a eriga ang an namorina Y ² *	1.0	ner märförstörer täfnaster totartal som er efter stättaren er för 1	U	0.19	1.0	31-11-2-1
Acetone			10		U	2.5	10	编辑 网络马马马马
Trichloroethene			1.0		U	0.18	1.0	
Benzene			5.7			0.13	1.0	1
Toluene			0.62		J	0.090	1.0	
Ethylbenzene			1.0		U	0.25	1.0	
Xylenes, Total			1.5		J	0.43	3.0	
Surrogate			%Rec		Qualifie	r Accep	otance Limits	
1,2-Dichloroethane-c	l4 (Surr)	a hang daraman ka kan satu dari satu ng dara a parta mang dara s	101	nan sanan sa sa sanan kanan sa	deres particulations of provide state	70 - 1	22	
Bromofluorobenzene			93			69 - 1	35	
Toluene-d8 (Surr)			99			69 - 1	25	

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-18								
Lab Sample ID: Client Matrix:	460-329 Water	03-1					Date Date	e Sampled: 10/2 e Received: 10/2	25/2011 1440 26/2011 1015
	and an and the second	modelika and the contained	8270C Sem	ivolatile Or	ganic Compo	unds (GC	/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 10/30/2011 10/28/2011	1324 1055	Analys Prep E	sis Batch: Batch:	460-91318 460-91104		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BNAMS5 x19108.d 1000 mL 2.00 mL 1 uL	
Analyte	4			Result (u	g/L)	Qualifie	r MDL	RL	
Aniline		He of	and a second	5.0	The second state of the second	U	1.8	5.0	e de la competition de la comp
n,n'-Dimethylaniline				1.0		U	0.21	1.0	
Surrogate				%Rec		Qualifie	Accepta	nce Limits	
2-Fluorobiphenyl				64			53 - 108		
2-Fluorophenol				64			10 - 65		
Nitrobenzene-d5				71			56 - 112		
Phenol-d5			80 ⁻	56		Х	10 - 48		
Terphenyl-d14				88			50 - 122	2	
2,4,6-Tribromopheno	ol me			74			46 - 122	च छा भ <u>्</u> रस्तरे।	

는 사내의 유가지, 그는 것 같아요. 문화가지

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-29							AND 10	a grant mains
Lab Sample ID: Client Matrix:	460-329 Water	03-2	1. Det i teks Y day	No	and all the second s	wittinssi i some et a	Da Da	te Sampled: 1 Ite Received: 1	0/25/2011 0950 0/26/2011 1015
		827	OC Semi	volatile Or	ganic Compo	unds (GC	:/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 10/31/2011 10/29/2011	0826 0744	Analys Prep B	is Batch: atch:	460-91440 460-91202		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BNAMS5 x19152.d : 1000 ml 2 mL 1 uL	ла с мана мана ба 1 1 46 мана мана ба 101 1 1 4 мана мана мана мана 1 1 4 мана мана мана мана мана мана мана ма
Analyte				Result (u	g/Ľ) *a) (arstali	Qualifie	er MDL	RL	4 V - 1
Aniline				5.0	U. 6	U	1.8	5.0	THEL.
n,n'-Dimethylaniline				0.22		J.	0.21	1.0	
Surrogate	ni 60000005-			%Rec		Qualifie	Accep	tance Limits	
2-Fluorobiphenyl				82		lender der Batteller einer Banach	53 - 10)8	a republication
2-Fluorophenol				34			10 - 65	5	et and the states
Nitrobenzene-d5				76			56 - 11	12	
Phenol-d5				18			10 - 48	3	
Terphenyl-d14				98			50 - 12	22	Aug Aug Thes
2,4,6-Tribromophenol				87			46 - 12	22	

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-30								the serve	St. Jame Dilacity	
Lab Sample ID: Client Matrix:	460-329 Water	03-3						675	Date Sampled: Date Received	Sampled: 10/25/2011 1105 Received: 10/26/2011 1015	
	N (1992) - Jerson Hees	ana kana a	827	OC Semi	volatile Organ	nic Compou	inds (GC	/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 10/31/2011 10/29/2011	0803 0744		Analys Prep B	is Batch: 4 atch: 4	160-91440 160-91202	iografia Cologonii)	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	BNAM x19151 me: 1000 me: 2 mL 1 uL	S5 motor interprete mL new control of the mL new control of the co	
Analyte					Result (ug/L)) I a Ruisse	Qualifie	r MDL	R	L	
Aniline		10.45		1.0	5.0	0.0	U	1.8	5.	0	
n,n'-Dimethylaniline					1.0		U	0.21	1.	0	
Surrogate		n n The			%Rec	1. Startes	Qualifie	r Ac	ceptance Limits		
2-Fluorobiphenyl	301				77			53	- 108	andondo 1958	
2-Fluorophenol					32			10	- 65		
Nitrobenzene-d5					72			56	- 112		
Phenol-d5					18			10	- 48	P\$750,552811	
Terphenyl-d14					92			50	- 122		
2.4.6-Tribromophene					78			46	- 122		

Client: ARCADIS U.S. Inc

Client Matrix: Water

Analytical Data

Job Number: 460-32903-1

Client Sample ID: MW-17R Lab Sample ID: 460-32903-4

14 - 14 I at 1

Date Sampled: 10/25/2011 1330 Date Received: 10/26/2011 1015

		8270C Semi	volatile Or	ganic Compo	inds (GC	(MS)		
Analysis Method:827Prep Method:351Dilution:1.0Analysis Date:10/2Prep Date:10/2	0C 0C 81/2011 0849 29/2011 0744	Analysi Prep B	s Batch: atch:	460-91440 460-91202	3691 V 18 - 19 1	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BNAMS5 x19153.d 1000 mL 2 mL 1 uL	Andy - Andres Politica 1900 - Santa Politica Politica Politica Politica
Analyte	$\hat{x} = x$		Result (ug	j/L)	Qualifie	MDL	RL	$\gamma_{i,j}(\alpha,A)$
Aniline			5.0	5 A	U	1.8	5.0	(G(xt)(z(x')))
n,n'-Dimethylaniline			1.0		U	0.21	1.0	
Surrogate			%Rec		Qualifie	Acceptan	ce Limits	
2-Fluorobiphenyl			72			53 - 108	1 Section and the section of the sec	and the set of the
2-Fluorophenol			28			10 - 65		
Nitrobenzene-d5			67			56 - 112		Talah art
Phenol-d5			15	- î		10 - 48		1.01
Terphenyl-d14			89			50 - 122		
2,4,6-Tribromophenol	1 1 22		75			46 - 122		10.121-32.2

Anti issi jian A

Client: ARCADIS U.S. Inc

Analytical Data

Cilent Sample ID: MW-9S			and the second s	
Lab Sample ID: 460-32903-6 Client Matrix: Water		a 116	Date Sampled: 10/25/2011 1110 Date Received: 10/26/2011 101	
82	70C Semivolatile Organic Compo	unds (GC/MS)	n na handar an ann an 1999 an strainn a' chuireann air an anna a' chuireann a' chuireann a' chuireann a' chuireann a'	
Analysis Method:8270CPrep Method:3510CDilution:1.0Analysis Date:10/31/2011 0913Prep Date:10/29/2011 0744	Analysis Batch: 460-91440 Prep Batch: 66-96-91202	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	BNAMS5 x19154.d me: 1000 mL me: 2 mL roads 11 uL	
Analyte	Result (ug/L)	Qualifier MDL	RL Stylent	
Aniline n,n'-Dimethylaniline	5.0 1.8 7.6	U 1.8 0.21	5.0 enitation 1.0 metrotomici in p	
Surrogate	official %Rec	Qualifier Ac	ceptance Limits	
2-Fluorobiphenyl	86	53	- 108 Destallation C	
2-Fluorophenol	31	10	- 65	
Nillobenzene-up	01	56	- 112 AS	
Terphenyl-d14	100	50	- 40 - 122	
of a boot production

Client: ARCADIS U.S. Inc

Analytical Data

Cilent Sample ID:	TW-01								
Lab Sample ID: Client Matrix:	460-3290 Water)3-7	unda i ci un el prese	1.1.31: MARGO	boomed Mabili	11	Р _Ф е	Date Sampled Date Received	: 10/25/2011 1230 I: 10/26/2011 1015
		827	0C Semivola	tile Organ	lc Compou	inds (GC	/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 10/31/2011 10/29/2011	0936 0744	Analysis Ba Prep Batch	atch: 4 : 4	60-91440 60-91202		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	BNAM x19155 me: 900 m me: 2 mL 1 uL	S5 5.d nL
Analyte			Re	suit (ug/L)		Qualifie	r MDL	R	L Brite
Aniline n,n'-Dimethylaniline		410.	5.6 1.6		36	U	2.0 0.23	5. 1.	6 1 ¹
Surrogate	al is eta a		66610100 % F	Rec	3.8 100	Qualifie	r Ac	ceptance Limits	
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14			85 39 83 21 95			ng tablen 1 6277 Aproduktionaanse	53 10 56 10 50	- 108 - 65 - 112 - 48 - 122	1997 - 19
2.4.6-Tribromophene	bl		85				46	- 122	

Analytical Data

Client Sample ID:	MW-32						111	- 1947 - 1947	
Lab Sample ID: Client Matrix:	460-329 Water	03-8	2				5 ₅ 7	Date Sampled Date Received	: 10/25/2011 1430 d: 10/26/2011 1015
a adam dia mining adam da ata		827	0C Sem	ivolatile Orga	anic Compou	unds (GC	/MS)	and a set of a pre-	and the second
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 10/31/2011 10/29/2011	0959 0744	Analys Prep B	sis Batch: Batch:	460-91440 460-91202		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	BNAM x1915 ume: 1000 ime: 2 mL 1 uL	IS5 6.d mL
Analyte				Result (ug/	L).	Qualifie	r MDL	9	RL
Aniline n,n'-Dimethylaniline				5.0 1.5	त ह ै। [1]	U	1.8 0.21	- 5 1	.0 .0
Surrogate				%Rec		Qualifie	r Ac	ceptance Limits	Statelei 2
2-Fluorobiphenyl	UT 1			75			53	- 108	100
2-Fluoropheriol				31			10	- 65	
Nitroberizene-d5				72			56	- 112	Sector descent fild
Phenol-d5				16			10	- 48	
Terphenyl-d14				80			50	- 122	
2.4.6-Tribromophene	ot			70			46	- 122	

6月3日,南京通過位而为

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	/W-31					
Lab Sample ID: Client Matrix:	160-32903-9 Vater		in man, framework in the distribution of the large	Da Da	te Sampled: 10/25/2011 153 te Received: 10/26/2011 101	30 15
	188 To 188	270C Semivolatile Org	anic Compounds (G	C/MS)		
Analysis Method:8270Prep Method:3510Dilution:1.0Analysis Date:10/3Prep Date:10/2	0C di fasmalet 0C souto Antorevi para 1000 - 1000 - 1000 - 1000 11/2011 1022 - V di tan 19/2011 0744	Analysis Batch: Prep Batch:	460-91440 460-91202	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BNAMS5 x19157.d 1000 mL 2 mL 1 uL	
Analyte		Result (ug	(L) Qualifi	er MDL	RL	
Aniline n,n'-Dimethylaniline	- Certine - Cert	5.0 3.5	an Ang	1.8 0.21	5.0 1.0	11
Surrogate		%Rec	Qualifi	er Accept	ance Limits	
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2.4.6-Tribromophenol		84 37 82 20 103 85		53 - 10 10 - 65 56 - 11 10 - 48 50 - 12 46 - 12	8 2 3 2 2	

Analytical Data

Cilent Sample	ID: MW-18	•						± 5)	
Lab Sample II Client Matrix:	D: 460-32 Water	903-1					Date S Date F	ampled: 10 Received: 10)/25/2011 1440)/26/2011 1015
	and a second	8015B Non	halogena	ted Organi	c Compounds	- Direct i	injection (GC)		
Analysis Meth Dilution: Analysis Date: Prep Date:	od: 8015B N/A 1.0 10/29/2011 N/A	1 0310	Analys	is Batch:	460-91249 N/A	onglessa rockaj 9	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BNAGC5 1 uL 10 mL 1 uL PRIMARY	Alabat Shiri - A Shirifi - Shiri Shahirk Shirifi Shiri Shirifi Shiri Shirifi Shiri
Analyte			7 A.B. C	Result (u	g/L)	Qualifie	r RL	RL	
Methanol	ng na ng nang pang na ng nang ng nang ng nang ng nang ng n	And a second state of the		500	9 P.	U	500	500	an Bring a
Surrogate				%Rec		Qualifie	Acceptance	e Limits	594(59759) 141 157 1
1-Pentanol	700 (100 (100 (100 (100 (100 (100 (100 (116	1977 - 24 443 443 443 443 441 441 441 441		47 - 132		Groenthal Minister (Minister Minister (Minister) Minister (Minister) Minister (Minister)

night includes the

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	MW-17R	2.5 编辑 (GF-600-863-8 4-844-3)
Lab Sample ID:	460-32903-4	Date Sampled: 10/25/2011 1330
Client Matrix:	Water	Date Received: 10/26/2011 1015
	8015B Nonhalogenated Organic Compounds - Direct Injection (GC	;)

Analysis Metho	od: 8015B N/A	Land the Art of the Art.	Analys	is Batch: 46	60-91249 /A	國際的	Instrument ID: Initial Weight/Volume	BNAGC5	
Dilution: Analysis Date: Prep Date:	1.0 10/29/2 N/A	2011 0316 \\ 1995 \\ 1905 \\ 1905 \\ 1905 \\ 1905 \\ 1905 \\ 1905 \\ 1905 \\ 1905 \\ 1					Final Weight/Volume: Injection Volume: Result Type:	10 mL 1 uL PRIMARY	ар 491 918 2 Пунной 1918 С 1947
Analyte		5 - 1 See	191 E	Result (ug/L)		Qualifie	RL	RL	212/2
Methanol	8.0°	$\chi = \frac{1}{2} \frac{1}{2} \frac{T^2}{T^2}$,		500	· A .**	U	500	500	Row Castery
Surrogate				%Rec	वजे :	Qualifie	r Accept	tance Limits	· · · · · · · · · · · · · · · · · · ·
1-Pentanol		21-12		113		ere internet las jerdepage wit	47 - 13	32	11301 5 1

的建筑1990月19月6月15日

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 460-32903-1

,

Client Sample	iD:	MW	-95								signal motors
Lab Sample ID Client Matrix:	r iba 18 tem	460 Wa	-32903-6 ter				d b		Date Date	e Sampled: 1 e Received: 1	0/25/2011 1110 0/26/2011 1015
			801	5B Nonha	iogenat	ed Organic	Compounds	- Direct i	njection (GC)	a a constante da consta	-
Analysis Metho Dilution: Analysis Date:	od:	8015B N/A 1.0 10/29/2	2011 0323		Analysi	s Batch:	460-91249 N/A		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BNAGC5 1 uL 10 mL 1 uL	
Prep Date:		N/A							Result Type:	PRIMARY	etco de 4
Analyte					1. 1. C. 2.	Result (ug	/L)	Qualifie	RL	RL	1.14
Methanol	067		(a).*., 5			500		U	500	500	Anna Sa
Surrogate		n († 1900)			2 3	%Rec	1 1 Mar	Qualifie	Accepta	nce Limits	
1-Pentanol	nen an fanaan daaren fan her '		Ale and a second s		and and filling anged the rest of	119	ana		47 - 132	2	1.021-102

Client: ARCADIS U.S. Inc

Client Sample I	D:	TW	-01								
Lab Sample ID:		460	-32903-7			3				Date Sampled:	10/25/2011 1230
Chefit Matrix:		vva	ter		um the	The second second second second	udes entrefe an elsa a si		1 (Andre (1920), 2011	Date Received:	10/26/2011 1015
-				8015B No	nhalogena	ted Organ	ic Compounds	s - Direct I	njection (GC)		
Analysis Method	t:	8015B			Analys	is Batch:	460-91249		Instrument ID:	BNAGC	5 (10) (1) Simple (10)
		N/A					N/A		Initial Weight/Volur	ne: 1 uL	
Dilution:		1.0							Final Weight/Volun	ne: 10 mL	
Analysis Date:		10/29/2	2011 0329						Injection Volume:	1 uL	
Prep Date:		N/A							Result Type:	PRIMAR	RY OTHER DESIGN
Analyte				W) +		Result (L	ıg/L)	Qualifie	r RL	RL	
Methanol						500	1	U	500	500) menselvady:
Surrogate						%Rec		Qualifie	r Acc	eptance Limits	
1-Pentanol	1944 ayy 18 ay 1944	ng ng panghan Pant Panghan ang panghan ang panghan ang panghan kang panghan ang panghan ang panghan ang panghan	15-1-1-1-N	distantar - Character das la reflai autor		120	C.C.		47 -	132	an elektronication

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-32								
Lab Sample ID: Client Matrix:	460-329 Water	03-8					Da Da	te Sampled: 10 te Received: 10	/25/2011 1430 /26/2011 1015
		8015B	Nonhaiogenat	ed Organic Co	mpounds	- Direct I	njection (GC)		
Analysis Method:	8015B N/A		Analysi	s Batch: 46 N	50-91249 /A		Instrument ID: Initial Weight/Volume:	BNAGC5 1 uL	
Dilution: Analysis Date:	1.0 10/29/2011	0336				×	Final Weight/Volume: Injection Volume:	10 mL 1 uL	
Prep Date:	N/A						Result Type:	PRIMARY	
Analyte				Result (ug/L)		Qualifie	RL	RL	
Methanol			1	500	、廠	U	500	500	Rocket St.
Surrogate				%Rec		Qualifie	Accept	ance Limits	
1-Pentanol	1	-0		136		Х	47 - 13	2	Invested mattern

Client: ARCADIS U.S. Inc

Job Number: 460-32903-1

Client Sample ID:	MW-31				coane () w		
Lab Sample ID: Client Matrix:	460-32903-9 Water				Date S Date R	ampled: 10 leceived: 10	/25/2011 1530 /26/2011 1015
	8015B P	Nonhalogenated Organi	c Compounds	- Direct I	njection (GC)	가지는 것	
Analysis Method:	8015B	Analysis Batch:	460-91249		Instrument ID:	BNAGC5	
	N/A		N/A		Initial Weight/Volume:	1 uL	
Dilution: Analysis Date:	1.0 10/29/2011 0342				Final Weight/Volume: Injection Volume:	10 mL 1 uL	
Prep Date:	N/A				Result Type:	PRIMARY	C. M. CALL
Analyte		Result (u	g/L)	Qualifie	r RL AVERA	RL	
Methanol		500		U,	500	500	3.8 U. W. 115
Surrogate		%Rec		Qualifie	r Acceptanc	e Limits	
1-Pentanol		111		201	47 - 132		CONTRACTORY
							15
							Sea - 14
						Reith	

a (1977) Imir propieti P^{ran} Brito (1957)

TestAmerica Edison

of Hime tained of Hime Contract of Hime	Comments US ALE 2019 ADDITE - Returned to Client with Report, CANARY - Stays with the Sample; MINK - Field Copy Bro 2717 4.0 3.4 2.7 5.6 a Sta	3. Heinquished By U Date U Date U Tithe By Bar Date Date Date Date Date Date I Tithe Control Date Date Date Date Date Date Date Date	Wettling Ne Sy 10-20 1/1230 Fred by	2. Relinduished By Date Date Time 2 Received By Muran (MSY NULC-11/)	1. Relinquished By	L 24 HOURS L / Uays L 21 Uays W Other _ WARLEY NO IN WWY 37 *	I'un Around Time Required 24 Hours 48 Hours 7 Days 14 Days 21 Days 10 Other Stradic 4 OC Requirements (Specify)	UNOn-Hazard L Flammable Skin Irritant Poison B U Unknown L Return To Client N Disposal By Lab Archive For Months longer than 1 month)	Possible Hazard Identification Sample Disposal A fee may be assessed if samples are retained	$\frac{1}{10} = \frac{10}{100} + \frac{100}{100} + 10$	MW-36R J 1625 1 7 3 K K 10 10	MW-33 1435 1 2 3 4 X 1 1	mw-3) 1210 115 9 XXX 8 8	mw-34 1020 5 3 7 K K - 7	$\Delta u P - 102611 - 01 - 1233 - 30 - 30 - 123 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - $	mw-BSR IIIO Z Z Z K X	mv - 27 /0/0 2 3 X X 4 4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	MW - 7.6 3/27 3/27 3/27 - MM	Z Z X X X X Z Z MW	MW-2 35 10/26/11 1620 X 5 3 XX 2 3 1 1 1 1	Containers for each sample I.D. No. and Description Containers for each sample may be combined on one line) Date Time Air Aqueous Soil Unpress. HNO3 H2SO4 H2O4 Value Value Value Value Value Value Value Value Value Value	Contract/Purchase Order/Quote No.	Mulcers Sin Born Special Instruc	Steffend and Location (State) WY 13214 Nathun Sn. H Gruce Chany more space is needed)	City State Zip Code Site Contact Analysis (Attach list if	Address Interphone Number (Area Code) Fax Number $2375 - 400 - 9170$ Lab Number Page 1 of	Client Project Manager Date Chain of Custody Number Chain of Custody Number 10/20/11 Chain of Custody Number	TAL-4124 (1007)	Custody Record	Chain of Temperature on Receipt ICOIMITICICS 26 047
---	--	--	-------------------------------------	--	--------------------	---	--	---	--	--	-------------------------------	--------------------------	--------------------------	--------------------------	---	-----------------------	--------------------------	---	------------------------------------	--------------------	--	--	-----------------------------------	----------------------------------	---	---	---	--	-----------------	----------------	---

Analytical Data

Client Sample ID:	MW-23S						
Lab Sample ID: Client Matrix:	460-32906-1 Water				[Date Sampled: 1 Date Received: 1	0/26/2011 1620 0/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1824 10/31/2011 1824	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	VOAMS4 d14064.d ne: 5 mL ne: 5 mL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Methylene Chloride		1.0		U	0.19	1.0	
Acetone		10		U	2.5	10	
Trichloroethene		1.0		U	0.18	1.0	
Benzene		1.0		U	0.13	1.0	
Toluene		0.31		J	0.090	1.0	
Ethylbenzene		1.0		U	0.25	1.0	
Xylenes, Total		3.0		U	0.43	3.0	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane-	d4 (Surr)	111			70 -	122	
Bromofluorobenzen	e	95			69 -	135	
Toluene-d8 (Surr)		104			69 -	125	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-23I						
Lab Sample ID: Client Matrix:	460-32906-2 Water]	Date Sample Date Receive	d: 10/26/2011 1500 d: 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1543 10/31/2011 1543	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	VOAI d140; ne: 5 ml ne: 5 ml	ИS4 57.d -
Analyte		Result (u	g/L)	Qualifie	r MDL	1	RL
Methylene Chloride		1.0		U	0.19		1.0
Acetone		10		U	2.5		10
Trichloroethene		1.0		U	0.18		1.0
Benzene		1.0		U	0.13		1.0
Toluene		0.29		J	0.090		1.0
Ethylbenzene		1.0		U	0.25		1.0
Xylenes, Total		3.0		U	0.43	:	3.0
Surrogate		%Rec		Qualifie	r Acce	eptance Limit	s
1,2-Dichloroethane-	d4 (Surr)	122			70 -	122	
Bromofluorobenzen	e	98			69 -	135	
Toluene-d8 (Surr)		104			69 -	125	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-28						
Lab Sample ID: Client Matrix:	460-32906-3 Water				[[Date Sampled: Date Received:	10/26/2011 1320 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/MS))		
Analysis Method: Prep Method: Dilution:	8260B 5030B 1.0 10/31/2011_1605	Analysis Batch: Prep Batch:	460-91293 N/A	lı L Iı	nstrument ID: .ab File ID: nitial Weight/Volum	VOAMS d14058. he: 5 mL	4 d
Prep Date:	10/31/2011 1605			Г		e. 5 mL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Methylene Chloride		1.0		U	0.19	1.0	
Acetone		10		U	2.5	10	
Trichloroethene		1.0		U	0.18	1.0	
Benzene		1.8			0.13	1.0	
Toluene		0.38		J	0.090	1.0	
Ethylbenzene		1.0		U	0.25	1.0	
Xylenes, Total		3.0		U	0.43	3.0	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane-	d4 (Surr)	106			70 -	122	
Bromofluorobenzen	e	87			69 -	135	
Toluene-d8 (Surr)		94			69 -	125	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-27						
Lab Sample ID: Client Matrix:	460-32906-4 Water				[Date Sampled: Date Received:	10/26/2011 1010 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1629 10/31/2011 1629	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	VOAMS d14059. ie: 5 mL ie: 5 mL	4 d
Analyte		Result (u	g/L)	Qualifier	r MDL	RL	
Methylene Chloride		1.0		U	0.19	1.0	I
Acetone		10		U	2.5	10	
Trichloroethene		1.0		U	0.18	1.0	
Benzene		2.1			0.13	1.0	
Toluene		1.3			0.090	1.0	
Ethylbenzene		2.2			0.25	1.0	
Xylenes, Total		3.1			0.43	3.0	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane-	-d4 (Surr)	105			70 -	122	
Bromofluorobenzen	e	90			69 -	135	
Toluene-d8 (Surr)		91			69 -	125	

Analytical Data

Client Sample ID:	MW-8SR						
Lab Sample ID: Client Matrix:	460-32906-5 Water					Date Samp Date Rece	bled: 10/26/2011 1140 vived: 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	IS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1652 10/31/2011 1652	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum	VC d1 ne: 5 ne: 5	DAMS4 4060.d mL mL
Analyte		Result (u	g/L)	Qualifie	er MDL		RL
Methylene Chloride		1.0		U	0.19		1.0
Acetone		10		U	2.5		10
Trichloroethene		1.0		U	0.18		1.0
Benzene		1.9			0.13		1.0
Toluene		1.3			0.090		1.0
Ethylbenzene		2.0			0.25		1.0
Xylenes, Total		14			0.43		3.0
Surrogate		%Rec		Qualifie	er Acc	eptance Li	mits
1,2-Dichloroethane-	d4 (Surr)	105			70 -	122	
Bromofluorobenzen	e	91			69 -	135	
Toluene-d8 (Surr)		89			69 -	125	

Analytical Data

Client Sample ID:	DUP-102611-01						
Lab Sample ID: Client Matrix:	460-32906-6 Water					Date Sampled Date Received	: 10/26/2011 0000 d: 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	IS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1715 10/31/2011 1715	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	VOAM d1406 me: 5 mL ne: 5 mL	IS4 1.d
Analyte		Result (u	g/L)	Qualifie	er MDL	F	۲L
Methylene Chloride		1.0	- ,	U	0.19	1	.0
Acetone		10		U	2.5	1	0
Trichloroethene		1.0		U	0.18	1	.0
Benzene		2.0			0.13	1	.0
Toluene		1.3			0.090	1	.0
Ethylbenzene		2.1			0.25	1	.0
Xylenes, Total		15			0.43	3	.0
Surrogate		%Rec		Qualifie	er Acc	eptance Limits	3
1,2-Dichloroethane-	d4 (Surr)	104			70 -	- 122	
Bromofluorobenzene	9	92			69 -	- 135	
Toluene-d8 (Surr)		91			69 -	125	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-34						
Lab Sample ID: Client Matrix:	460-32906-7 Water				Di D	ate Sampled: 10/26/2011 ate Received: 10/27/2011	1020 1015
		8260B Volatile Orga	nic Compoun	ds (GC/MS)			
Analysis Method:	8260B	Analysis Batch:	460-91293	Inst	rument ID:	VOAMS4	
Prep Method:	5030B	Prep Batch:	N/A	Lab	File ID:	d14062.d	
Dilution:	1.0			Initia	al Weight/Volume	e: 5 mL	
Analysis Date:	10/31/2011 1738			Fina	al Weight/Volume	: 5 mL	
Prep Date:	10/31/2011 1738						
Analyte		Result (u	ıg/L)	Qualifier	MDL	RL	
Methylene Chloride	9	1.0		U	0.19	1.0	
Acetone		350			2.5	10	
Trichloroethene		1.0		U	0.18	1.0	
Benzene		1.2			0.13	1.0	
Toluene		0.71		J	0.090	1.0	
Ethylbenzene		1.0		U	0.25	1.0	
Xylenes, Total		0.90		J	0.43	3.0	
Surrogate		%Rec		Qualifier	Accep	otance Limits	
1,2-Dichloroethane	-d4 (Surr)	100			70 - 1	22	
Bromofluorobenzer	ne	89			69 - 1	35	
Toluene-d8 (Surr)		94			69 - 1	25	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-35						
Lab Sample ID: Client Matrix:	460-32906-8 Water					Date Sampled: Date Received:	10/26/2011 1210 10/27/2011 1015
		8260B Volatile Orga	nic Compoun	ds (GC/MS	S)		
Analysis Method: Prep Method:	8260B 5030B	Analysis Batch: Pren Batch:	460-91293 N/A		Instrument ID:	VOAMS	54 . d
Dilution:	1.0 10/31/2011 1520				Initial Weight/Volum	ne: 5 mL	
Prep Date:	10/31/2011 1520						
Analyte		Result (u	g/L)	Qualifier	MDL	RI	-
Methylene Chloride		1.0		U	0.19	1.0)
Acetone		10		U	2.5	10	1
Trichloroethene		1.0		U	0.18	1.0	0
Benzene		1.0		U	0.13	1.0	0
Toluene		1.0		U	0.090	1.0	0
Ethylbenzene		1.0		U	0.25	1.0	0
Xylenes, Total		3.0		U	0.43	3.0)
Surrogate		%Rec		Qualifier	Acc	eptance Limits	
1,2-Dichloroethane	-d4 (Surr)	106			70 -	122	
Bromofluorobenzer	ne	89			69 -	135	
Toluene-d8 (Surr)		95			69 -	125	

Job

Job Number: 460-32906-1

Client Sample ID:	MW-33						
Lab Sample ID: Client Matrix:	460-32906-9 Water				[Date Sampled: Date Received:	10/26/2011 1435 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	IS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1801 10/31/2011 1801	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum	VOAMS d14063 ne: 5 mL ne: 5 mL	d
Analyte		Result (u	g/L)	Qualifie	er MDL	RL	
Methylene Chloride		1.0		U	0.19	1.0	
Acetone		10		U	2.5	10	
Trichloroethene		1.0		U	0.18	1.0)
Benzene		0.58		J	0.13	1.0)
Toluene		0.12		J	0.090	1.0)
Ethylbenzene		1.0		U	0.25	1.0)
Xylenes, Total		3.0		U	0.43	3.0)
Surrogate		%Rec		Qualifie	er Acce	eptance Limits	
1,2-Dichloroethane-	d4 (Surr)	104			70 -	122	
Bromofluorobenzen	e	89			69 -	135	
Toluene-d8 (Surr)		94			69 -	125	

Client: ARCADIS U.S. Inc

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-36R						
Lab Sample ID: Client Matrix:	460-32906-10 Water]	Date Sampled: Date Received:	10/26/2011 1625 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/MS	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1847 10/31/2011 1847	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum	VOAMS d14065 ne: 5 mL e: 5 mL	54 . d
Analyte		Result (u	g/L)	Qualifier	r MDL	RI	_
Methylene Chloride		1.0		U	0.19	1.0)
Acetone		10		U	2.5	10	1
Trichloroethene		1.0		U	0.18	1.0	0
Benzene		1.8			0.13	1.0	0
Toluene		0.66		J	0.090	1.0	0
Ethylbenzene		1.0		U	0.25	1.0	0
Xylenes, Total		1.4		J	0.43	3.0)
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane-	d4 (Surr)	100			70 -	122	
Bromofluorobenzen	e	88			69 -	135	
Toluene-d8 (Surr)		91			69 -	125	

Analytical Data

Client Sample ID:	TB-102611-01						
Lab Sample ID: Client Matrix:	460-32906-11 Water					Date Sampled Date Received	l: 10/26/2011 0000 d: 10/27/2011 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/31/2011 1433 10/31/2011 1433	Analysis Batch: Prep Batch:	460-91293 N/A		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volun	VOAM d1405 ne: 5 mL ne: 5 mL	IS4 .4.d
Analyte		Result (u	g/L)	Qualifier	r MDL	F	۲L
Methylene Chloride		0.26	- /	J	0.19	1	.0
Acetone		10		U	2.5	1	0
Trichloroethene		1.0		U	0.18	1	.0
Benzene		1.0		U	0.13	1	.0
Toluene		1.0		U	0.090	1	.0
Ethylbenzene		1.0		U	0.25	1	.0
Xylenes, Total		3.0		U	0.43	3	-0
Surrogate		%Rec		Qualifier	Acc	eptance Limits	3
1,2-Dichloroethane-	d4 (Surr)	103			70 -	122	
Bromofluorobenzene	e	88			69 -	135	
Toluene-d8 (Surr)		94			69 -	125	

Analytical Data

Client Sample ID:	MW-23S						
Lab Sample ID: Client Matrix:	460-32906-1 Water					Date Sampled: 10/2 Date Received: 10/2	6/2011 1620 7/2011 1015
		8270C Semivolatile Or	ganic Compou	ınds (GC/M	IS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1514 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203	In La In Fi In	nstrument ID: ab File ID: nitial Weight/Volum inal Weight/Volume njection Volume:	BNAMS5 x19204.d e: 1000 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		5.0		U	1.8	5.0	
n,n'-Dimethylaniline		1.0		U	0.21	1.0	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
2-Fluorobiphenyl		82			53 -	108	
2-Fluorophenol		33			10 - 0	65	
Nitrobenzene-d5		80			56 -	112	
Phenol-d5		18			10 - 4	48	
Terphenyl-d14		107			50 -	122	
2,4,6-Tribromophen	ol	86			46 -	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-23I						
Lab Sample ID: Client Matrix:	460-32906-2 Water]	Date Sampled: 10/26/201 Date Received: 10/27/201	1 1500 1 1015
		8270C Semivolatile Or	ganic Compo	unds (GC/	MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1537 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum Injection Volume:	BNAMS5 x19205.d 1e: 1000 mL 1e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		5.0		U	1.8	5.0	
n,n'-Dimethylaniline	2	1.0		U	0.21	1.0	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
2-Fluorobiphenyl		85			53 -	108	
2-Fluorophenol		46			10 -	65	
Nitrobenzene-d5		84			56 -	112	
Phenol-d5		29			10 -	48	
Terphenyl-d14		103			50 -	122	
2,4,6-Tribromopher	าดไ	93			46 -	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-28						
Lab Sample ID: Client Matrix:	460-32906-3 Water				[)ate Sampled: 10/26/2)ate Received: 10/27/2	2011 1320 2011 1015
		8270C Semivolatile Or	ganic Compo	unds (GC/	/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1600 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum Injection Volume:	BNAMS5 x19206.d le: 1000 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	r MDL	RL	
Aniline		5.0		U	1.8	5.0	
n,n'-Dimethylaniline)	1.0		U	0.21	1.0	
Surrogate		%Rec		Qualifier	r Acce	ptance Limits	
2-Fluorobiphenyl		83			53 -	108	
2-Fluorophenol		31			10 -	65	
Nitrobenzene-d5		76			56 -	112	
Phenol-d5		17			10 -	48	
Terphenyl-d14		97			50 -	122	
2,4,6-Tribromopher	lol	79			46 -	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-27						
Lab Sample ID: Client Matrix:	460-32906-4 Water					Date Sampled: 1	0/26/2011 1010 0/27/2011 1015
		8270C Semivolatile Or	ganic Compou	unds (GC/N	IS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1624 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203	Ir L Ir F Ir	nstrument ID: .ab File ID: nitial Weight/Volum inal Weight/Volume njection Volume:	BNAMS5 x19207.d e: 1000 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		36			1.8	5.0	
n,n'-Dimethylaniline		2.7			0.21	1.0	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
2-Fluorobiphenyl		91			53 -	108	
2-Fluorophenol		36			10 - 0	65	
Nitrobenzene-d5		81			56 - 1	112	
Phenol-d5		19			10 - 4	48	
Terphenyl-d14		98			50 -	122	
2,4,6-Tribromophen	ol	86			46 -	122	

Analytical Data

Client Sample ID:	MW-8SR						
Lab Sample ID: Client Matrix:	460-32906-5 Water				D	ate Sampled: 10/2 ate Received: 10/2	26/2011 1140 27/2011 1015
		8270C Semivolatile Or	ganic Compou	ınds (GC/M	IS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1646 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203	In La In Fi In	nstrument ID: ab File ID: nitial Weight/Volume inal Weight/Volume njection Volume:	BNAMS5 x19208.d e: 1000 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		5.0		U	1.8	5.0	
n,n'-Dimethylaniline		2.6			0.21	1.0	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
2-Fluorobiphenyl		91			53 - 1	108	
2-Fluorophenol		36			10 - 6	65	
Nitrobenzene-d5		82			56 - 1	112	
Phenol-d5		18			10 - 4	48	
Terphenyl-d14		100			50 - 1	122	
2,4,6-Tribromophen	ol	77			46 - 1	122	

Analytical Data

Client Sample ID:	DUP-102611-01						
Lab Sample ID: Client Matrix:	460-32906-6 Water				D D	ate Sampled: 10/26 ate Received: 10/27	2011 0000 2/2011 1015
		8270C Semivolatile Or	ganic Compou	inds (GC/MS	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1710 10/29/2011 1120	Analysis Batch: Prep Batch:	460-91465 460-91203	Ins La Ini Fir Inj	strument ID: b File ID: itial Weight/Volume nal Weight/Volume jection Volume:	BNAMS5 x19209.d e: 1000 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		5.0		U	1.8	5.0	
n,n'-Dimethylaniline		1.0		U	0.21	1.0	
Surrogate		%Rec		Qualifier	Acce	otance Limits	
2-Fluorobiphenyl		91			53 - 1	08	
2-Fluorophenol		33			10 - 6	5	
Nitrobenzene-d5		81			56 - 1	12	
Phenol-d5		21			10 - 4	.8	
Terphenyl-d14		102			50 - 1	22	
2,4,6-Tribromophenc	bl	76			46 - 1	22	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-34						
Lab Sample ID: Client Matrix:	460-32906-7 Water)ate Sampled: 10/26)ate Received: 10/27	/2011 1020 /2011 1015
		8270C Semivolatile Or	ganic Compou	unds (GC/N	MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1733 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203	li L F Ii	nstrument ID: .ab File ID: nitial Weight/Volum Final Weight/Volume njection Volume:	BNAMS5 x19210.d e: 900 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		5.6		U	2.0	5.6	
n,n'-Dimethylaniline		2.5			0.23	1.1	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
2-Fluorobiphenyl		89			53 - 1	108	
2-Fluorophenol		37			10 - 6	ô5	
Nitrobenzene-d5		79			56 - 1	112	
Phenol-d5		21			10 - 4	48	
Terphenyl-d14		100			50 - 1	122	
2,4,6-Tribromophen	ol	74			46 - 1	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-35						
Lab Sample ID: Client Matrix:	460-32906-8 Water				[Date Sampled: 10/ Date Received: 10/	26/2011 1210 27/2011 1015
		8270C Semivolatile Or	ganic Compou	unds (GC/	/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1756 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum Injection Volume:	BNAMS5 x19211.d ne: 980 mL ne: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	r MDL	RL	
Aniline		5.1		U	1.8	5.1	
n,n'-Dimethylaniline	•	1.0		U	0.21	1.0	
Surrogate		%Rec		Qualifier	r Acce	eptance Limits	
2-Fluorobiphenyl		81			53 -	108	
2-Fluorophenol		35			10 -	65	
Nitrobenzene-d5		75			56 -	112	
Phenol-d5		19			10 -	48	
Terphenyl-d14		102			50 -	122	
2,4,6-Tribromopher	ol	83			46 -	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-33						
Lab Sample ID: Client Matrix:	460-32906-9 Water				[Date Sampled: 10 Date Received: 10	/26/2011 1435 /27/2011 1015
		8270C Semivolatile Or	ganic Compou	unds (GC/	MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1906 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum Injection Volume:	BNAMS5 x19214.d ne: 950 mL e: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		5.3		U	1.9	5.3	
n,n'-Dimethylaniline		1.9			0.22	1.1	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
2-Fluorobiphenyl		87			53 -	108	
2-Fluorophenol		35			10 -	65	
Nitrobenzene-d5		77			56 -	112	
Phenol-d5		18			10 -	48	
Terphenyl-d14		96			50 -	122	
2,4,6-Tribromophen	ol	82			46 -	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-36R						
Lab Sample ID: Client Matrix:	460-32906-10 Water				1	Date Sampled: 10/26/20 Date Received: 10/27/20)11 1625)11 1015
		8270C Semivolatile Or	ganic Compo	unds (GC/	MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/01/2011 1929 10/29/2011 0750	Analysis Batch: Prep Batch:	460-91465 460-91203		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum Injection Volume:	BNAMS5 x19215.d ne: 1000 mL ne: 2 mL 1 uL	
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Aniline		92			1.8	5.0	
n,n'-Dimethylaniline		3.6			0.21	1.0	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
2-Fluorobiphenyl		82			53 -	108	
2-Fluorophenol		32			10 -	65	
Nitrobenzene-d5		76			56 -	112	
Phenol-d5		17			10 -	48	
Terphenyl-d14		89			50 -	122	
2,4,6-Tribromophen	ol	63			46 -	122	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-23S					
Lab Sample ID: Client Matrix:	460-32906-1 Water				I	Date Sampled: 10/26/2011 1620 Date Received: 10/27/2011 1015
	8015B	Nonhalogenated Organi	c Compounds	- Direct In	jection (GC)	
Analysis Method:	8015B	Analysis Batch:	460-91249	I	Instrument ID:	BNAGC5
	N/A		N/A	I	nitial Weight/Volun	ne: 1 uL
Dilution:	1.0			1	Final Weight/Volum	ne: 10 mL
Analysis Date:	10/29/2011 0407			I	njection Volume:	1 uL
Prep Date:	N/A			I	Result Type:	PRIMARY
Analyte		Result (u	g/L)	Qualifier	RL	RL
Methanol		500		U	500	500
Surrogate		%Rec		Qualifier	Acc	eptance Limits
1-Pentanol		117			47 -	132

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-23I					
Lab Sample ID: Client Matrix:	460-32906-2 Water				D	ate Sampled: 10/26/2011 1500 Pate Received: 10/27/2011 1015
	8015B	Nonhalogenated Organi	c Compounds	- Direct li	njection (GC)	
Analysis Method:	8015B	Analysis Batch:	460-91249		Instrument ID:	BNAGC5
	N/A		N/A		Initial Weight/Volum	e: 1 uL
Dilution:	1.0				Final Weight/Volume	e: 10 mL
Analysis Date:	10/29/2011 0414				Injection Volume:	1 uL
Prep Date:	N/A				Result Type:	PRIMARY
Analyte		Result (u	g/L)	Qualifier	RL	RL
Methanol		500		U	500	500

Surrogate	%Rec	Qualifier	Acceptance Limits
1-Pentanol	183	Х	47 - 132

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-28					
Lab Sample ID: Client Matrix:	460-32906-3 Water				e Sampled: 10/26/2011 1320 e Received: 10/27/2011 1015	
	8015B	Nonhalogenated Organi	c Compounds	- Direct Inje	ection (GC)	
Analysis Method:	8015B	Analysis Batch:	460-91249	Ins	strument ID:	BNAGC5
	N/A		N/A	Ini	itial Weight/Volume:	1 uL
Dilution:	1.0			Fir	nal Weight/Volume:	10 mL
Analysis Date:	10/29/2011 0348			Inj	jection Volume:	1 uL
Prep Date:	N/A			Re	esult Type:	PRIMARY
Analyte		Result (u	g/L)	Qualifier	RL	RL
Methanol		500		U	500	500
Surrogate		%Rec		Qualifier	Accepta	ince Limits
1-Pentanol		116			47 - 132)

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-34					
Lab Sample ID: Client Matrix:	460-32906-7 Water	Date Date	Date Sampled: 10/26/2011 1020 Date Received: 10/27/2011 1015			
	8015B	Nonhalogenated Organi	c Compounds	- Direct Inje	ction (GC)	
Analysis Method:	8015B	Analysis Batch:	460-91249	Ins	strument ID:	BNAGC5
	N/A		N/A	Init	tial Weight/Volume:	1 uL
Dilution:	1.0			Fin	nal Weight/Volume:	10 mL
Analysis Date:	10/29/2011 0355			Inje	ection Volume:	1 uL
Prep Date:	N/A			Result Type:		PRIMARY
Analyte		Result (u	g/L)	Qualifier	RL	RL
Methanol		500		U	500	500
Surrogate		%Rec		Qualifier	Accepta	nce Limits
1-Pentanol		103		47 - 132		

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-35							
Lab Sample ID: Client Matrix:	460-32906-8 Water	32906-8Date Sampled:erDate Received:						
	8015B	Nonhalogenated Organi	c Compounds	- Direct Inje	ction (GC)			
Analysis Method:	8015B	Analysis Batch:	460-91249	Ins	strument ID:	BNAGC5		
	N/A		N/A	Ini	tial Weight/Volume:	1 uL		
Dilution:	1.0			Fir	nal Weight/Volume:	10 mL		
Analysis Date:	10/29/2011 0401			Inj	ection Volume:	1 uL		
Prep Date:	N/A			Re	esult Type:	PRIMARY		
Analyte		Result (u	g/L)	Qualifier	RL	RL		
Methanol		500		U	500	500		
Surrogate		%Rec		Qualifier	Accepta	nce Limits		
1-Pentanol		108			47 - 132			
Juice								

11/14/2011

Analytical Data

Client Sample I	D: MW-3S								algou Brasilio
Lab Sample ID: Client Matrix:	460-329 Water	958-1			1		Dat Dat	e Sampled: 1 e Received: 1	0/27/2011 1330 0/28/2011 1015
			8260B Vo	latile Organic	Compound	ls (GC/M	S)		
Analysis Method Prep Method: Dilution: Analysis Date: Prep Date:	d: 8260B 5030B 1.0 11/02/2011 11/02/2011	2135 2135	Analys Prep B	is Batch: 44 atch: N	60-91615 /A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14142.d 5 mL 5 mL	A retycou Albeity Progr Albeitson Dikliton Io Alyone Albeits The sp Chate
Analyte				Result (ug/L)		Qualifie	r MDL	RL	
Methylene Chlo	ride	2 - 2 -	2	1.0	The first of the second s	U	0.19	1.0	1 3.6.13
Acetone				10		U	2.5	10	
Trichloroethene				1.0		U	0.18	1.0	
Benzene				1.0		U	0.13	1.0	
Toluene				0.35		J	0.090	1.0	
Ethylbenzene				1.0		U	0.25	1.0	
Xylenes, Total				3.0		U	0.43	3.0	
Surrogate				%Rec		Qualifie	r Accept	ance Limits	
1,2-Dichloroetha	ane-d4 (Surr)		anna air air air an ann air ann an	116	tan kanadan karakangalan Ta		70 - 12	2	
Bromofluoroben	zene			105			69 - 13	5	
Toluene-d8 (Sui	гг) –			108			69 - 12	5 6.4	

Analytical Data

Client Sample ID:	TW-02R	RR						35					
Lab Sample ID: Client Matrix:	460-329 Water	58-2					1	Dat Dat	Date Sampled: 1 Date Received: 1				
	881 - C		8260B Vo	latile Or	ganic Con	npound	ds (GC/M	S)					
Analysis Method: Prep Method:	8260B		Analys Pren B	is Batch:	460-9	1615		Instrument ID:	VOAMS4				
Dilution: Analysis Date:	1.0 11/02/2011	2159	i iop b					Initial Weight/Volume: Final Weight/Volume:	5 mL 5 mL				
Prep Date:	11/02/2011	2159											
Analyte			1. 12 .2	Result	(ug/L)		Qualifie	r MDL	RL				
Methylene Chloride				1.0		1	U	0.19	1.0	in semicrith N			
Acetone		3.9		10		(h)	U	2.5	10				
Trichloroethene			3.1	1.0			U	0.18 ·	1.0				
Benzene				1.2				0.13	1.0				
Toluene				0.53			J	0.090	1.0				
Ethylbenzene				0.67			J	0.25	1.0				
Xylenes, Total				1.5			J	0.43	3.0				
Surrogate			aida ea	%Rec			Qualifie	r Accepta	ance Limits				
1,2-Dichloroethane	-d4 (Surr)			100			in a styletistissiane laporature field	70 - 12	2: 17: 77: 77:				
Bromofluorobenzer	ne			96				69 - 13	5				
Toluene-d8 (Surr)				92				69 - 12	5	A			

-12-1-15-25 ALE ALE

Analytical Data

Client: ARCADIS U.S. Inc

Cilent Sample II	D:	Dup-102	711-01									
Lab Sample ID: Client Matrix:	100	460-329 Water	58-3				49 Los - 91 3 -	100 100	and subject and	Dat Dat	e Sampled: 10 e Received: 10	0/27/2011 0000 0/28/2011 1015
				8	260B Vo	latile Orga	nic Com	pound	ds (GC/M	S)		
Analysis Methoo Prep Method: Dilution: Analysis Date: Prep Date:	inel an	8260B 5030B 1.0 11/02/2011 11/02/2011	2222 2222		Analysi Prep B	is Batch: atch:	460-91 N/A	1615		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14144.d 5 mL 5 mL	
Analyte					STA J.	Result (u	g/L)		Qualifie	r MDL	RL	
Methylene Chlor Acetone Trichloroethene Benzene Toluene Ethylbenzene Xylenes, Total	ide					1.0 10 1.0 1.1 0.48 0.69 1.4			1 1 1 1	0.19 2.5 0.18 0.13 0.090 0.25 0.43	1.0 10 1.0 1.0 1.0 1.0 3.0	در الارتجاب المراجع ال المراجع المراجع المراجع المراجع المراجع
Surrogate 1,2-Dichloroetha Bromofluoroben: Toluene-d8 (Sur	ne-d zene r)	4 (Surr)	k Mangaganan are araadamaa Mangagana	atvegeger - ensuremented Lase est	a an	%Rec 100 95 94	annen bijen er elle plan sjolenser e	3 2000 6600000050.5 2 2	Qualifie	Accepta 70 - 12 69 - 13 69 - 12	ance Limits 2 5	neg telsteren Herriget, ander

Analytical Data

Client Sample li	D:	TRIP BL	ANK								-gra0	
Lab Sample ID: Client Matrix:		460-329 Water	58-4							Da Da	e Sampled: 10 te Received: 10	0/27/2011 0000 0/28/2011 1015
Aviate device	49.46.27.	Contraction of the second	.12-4 -11-	8 8	260B Vo	latile C	Organic Co	mpoun	ds (GC/M	IS)	annar 1997 - Texa	A A AND ADDRESS
Analysis Method Prep Method: Dilution: Analysis Date: Prep Date:	1:	8260B 5030B 1.0 11/02/2011 11/02/2011	1940 1940		Analys Prep B	s Batc atch:	h: 460- N/A	91615 Sta		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS4 d14137.d 5 mL 5 mL	
Analyte						Resu	lt (ug/L)		Qualifie	r MDL	RL	
Methylene Chlor	ride		6	1		1.0		11. 11.	U	0.19	1.0	1.1 A ALC V
Acetone						10			U	2.5	10	
Trichloroethene						1.0			U	0.18	1.0	
Benzene						1.0			U	0.13	1.0	51 5635
Toluene						1.0			U	0.090	1.0	
Ethylbenzene						1.0			U	0.25	1.0	and a finite
Xylenes, Total						3.0		8.1	U	0.43	3.0	Alfe (Bay File)
Surrogate		આંગ તાલુના				%Re	C		Qualifie	r Accept	ance Limits	
1,2-Dichloroetha	ane-d	4 (Surr)				100			den i etteristi.elletiring, de l'frindellig	70 - 12	2 Dellas	
Bromofluoroben	zene					92				69 - 13	5	
Toluene-d8 (Sui	T)					96				69 - 12	5	

Analytical Data

Cilent Sample ID:	MW-3S				
Lab Sample ID: Client Matrix:	460-32958-1 Water			Date Date	Sampled: 10/27/2011 1330 Received: 10/28/2011 1015
		8270C Semivolatile Orga	anic Compounds (G	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/02/2011 1009 11/01/2011 1235	Analysis Batch: Prep Batch:	460-91628 460-91448	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BNAMS5 x19227.d 1000 mL 2.00 mL 1 uL
Analyte		Result (ug/	L) Qualifi	er MDL	RL
Aniline n,n'-Dimethylaniline		5.0 1.0	U U	1.8 0.21	5.0 1.0
Surrogate		%Rec	Qualifi	er Acceptan	ce Limits
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14		90 52 90 27 94		53 - 108 10 - 65 56 - 112 10 - 48 50 - 122	
2,4,6-Tribromopheno	10 10	100		46 - 122	

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID:	TW-02R	RR							
Lab Sample ID: Client Matrix:	460-329 Water	58-2			15		1.68	Date Sampled: Date Received	10/27/2011 1500 : 10/28/2011 1015
A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONT	m = V =	827	OC Semi	volatile Orga	anic Compo	unds (GC	:/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/02/2011 11/01/2011	1032 1235	Analysi Prep Ba	s Batch: atch:	460-91628 460-91448		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	BNAM x19228 ime: 1000 me: 2.00 r 1 uL	S5 3.d mL nL
Analyte				Result (ug/	L)	Qualifie	r MDL	R	L
n,n'-Dimethylaniline	daze o descuedo una internaria Escregana i desc	er verne her en kan en		5.5		Marifes ar srain season	0.21	1.	0
Surrogate				%Rec		Qualifie	r Ac	ceptance Limits	
2-Fluorobiphenyl		anta ganta pina pina pina pina pina pina pina pin	and a second	92		p nahar human a ang tahipogay tar	53	- 108	the second s
2-Fluorophenol				46			10	- 65	
Nitrobenzene-d5				86			56	- 112	
Phenol-d5				24			10	- 48	
Terphenyl-d14	Тr.			99			50	- 122	
2,4,6-Tribromopheno				91			46	- 122	

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID):	TW-02R	RR								
Lab Sample ID: Client Matrix:	The start	460-329 Water	58-2						2.4	Date Sampled: 10 Date Received: 10	0/27/2011 1500 0/28/2011 1015
				827	'0C Semi	volatile O	rganic Compo	unds (GC	/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8 3 1 1 1	3270C 3510C 10 11/02/2011 11/01/2011	1731 1235		Analys Prep B Run Ty	is Batch: atch: /pe:	460-91628 460-91448 DL		Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum Injection Volume:	BNAMS5 x19246.d ne: 1000 mL e: 2.00 mL 1 uL	
Analyte					1.12	Result (u	ıg/L) et elese	Qualifie	r MDL	RL	
Aniline	Ĩ		151,			1300		Þ	18	50	
Surrogate	a (2015).					%Rec	2.0	Qualifie	r Acce	eptance Limits	
2-Fluorobiphenyl						0		D	53 -	108	1779 - 197 -
2-Fluorophenol						0		D	10 -	65	
Nitrobenzene-d5						0		D	56 -	112	
Phenol-d5						0		D	10 -	48	
Terphenyl-d14						0		D	50 -	122	
2,4,6-Tribromoph	enol					0		D	46 -	122	11 00 D 31

自己的 (如此)发行 []

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID:	Dup-102	711-01								frequencia como
Lab Sample ID: Client Matrix:	460-329 Water	58-3						2.83	Date Sampled: Date Received:	10/27/2011 0000 10/28/2011 1015
			82	70C Sem	volatile O	rganic Compo	unds (GC	:/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3510C 1.0 11/02/2011 11/01/2011	1055 1235		Analys Prep B	is Batch: atch:	460-91628 460-91448		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volur Injection Volume:	BNAMS x19229.c me: 1000 m me: 2.00 ml 1 uL	5 millione en certeren di overtearte egentie NL medit och Lied etteren million en millione million
Analyte					Result (ıg/L)	Qualifie	er MDL	RL	
n,n'-Dimethylaniline	20 aliment dan sejan dapat dalam dapat	1	haddhur umdudlur (1,4245,414,414,414,	alati nachairte Ministera Mitta a La	6.2		tankan kina angga da masa mila kayang aga man	. 0.21	1.0	₹. : ¹
Surrogate		*	فالمتحافظ والمتحافظ والمتعارفة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة وال	1.1 ¹⁰ 3	%Rec		Qualifie	er Aco	ceptance Limits	111
2-Fluorobiphenyl		i,			101			53	- 108	
2-Fluorophenol					54			10	- 65	
Nitrobenzene-d5					97			56	- 112	in program in the state
Phenol-d5					28			10	- 48	
rerpnenyl-d14	22.1.4				103			50	- 122	
2,4,6-1 noromophene	DI C				97			46	- 122	

Analytical Data

Client Sample I	ID:	Dup-102	711-01							
Lab Sample ID: Client Matrix:	U.de Логи	460-329 Water	58-3					D	ate Sampled: 10/2 ate Received: 10/2	27/2011 0000 28/2011 1015
a)			17 C 1991 82	70C Semi	lvolatile Or	ganic Compo	unds (GC	/MS)		
Analysis Methor Prep Method: Dilution: Analysis Date: Prep Date:	d:	8270C 3510C 10 11/02/2011 11/01/2011	1754 1235	Analys Prep B Run Ty	is Batch: atch: /pe:	460-91628 460-91448 DL		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume Injection Volume:	BNAMS5 x19247.d a: 1000 mL a: 2.00 mL 1 uL	
Analyte			(light		Result (u	g/L)	Qualifie	r MDL	RL	1. 2 - 2 Strag Barry
Aniline		her filte of the origin is a given in the space result, where it is the space result, where it i	- 90-00-00-00-00-00-00-00-00-00-00-00-00-0	•]	1500	P ₁₇	Ð	18	50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Surrogate	2	La Bar La Ma	a da anticipa de la calcular de cana d	and extension is not making a clinical tra-	%Rec	E.	Qualifie	r Accer	otance Limits	4 Fr
2-Fluorobipheny	yl	* * <u>*</u>			0		D	53 - 1	08	
2-Fluorophenol					0		D	10 - 6	5	
Nitrobenzene-d	5				0		D	56 - 1	12	
Phenol-d5					0		D	10 - 4	8	
Terphenyl-d14					0		D	50 - 1	22	
2,4,6-Tribromop	phenol				0		D	46 - 1	22	

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample II	D: TW-02F	RR								
Lab Sample ID: Client Matrix:	460-329 Water	958-2						Da Da	ite Sampled: 1 ite Received: 1	0/27/2011 1500 0/28/2011 1015
$(\exists T, P, \mathbf{c}_{i}^{*}, \dots, \mathbf{a}_{i}^{*}) = \mathbf{i}$. In constraint	and a read of the second of the second	8015B Nonh	alogenat	ed Orgar	lic Comp	ounds	- Direct i	njection (GC)	a an	
Analysis Method	1: 8015B N/A	1996 - 1997 1996 - 1997	Analysi	s Batch:	460- N/A	91249		Instrument ID: Initial Weight/Volume:	BNAGC5	
Dilution: Analysis Date:	1.0 10/29/2011	0420						Final Weight/Volume: Injection Volume:	10 mL 1 uL	
Prep Date:	N/A							Result Type:	PRIMAR	r (1.23)
Analyte		A		Result (ug/L)		Qualifie	r RL	RL	
Methanol	and the second s		(1 1 3 (2	500		", d	U	500	500	soft of
Surrogate			1.5 - 15(5)	%Rec			Qualifie	r Accep	tance Limits	
1-Pentanol	All			82		9		47 - 13	32	

CONTRACTOR IN CONCERNMENTS

Analytical Data

Client: ARCADIS U.S. Inc

Job Number: 460-32958-1

Client Sample ID:	Dup-102711-01					
Lab Sample ID: Client Matrix:	460-32958-3 Water	Date Date	Sampled: 10/27/2011 0000 Received: 10/28/2011 1015			
- 10 C	8015B N	onhalogenated Organ	ic Compounds	- Direct i	njection (GC)	- 19 J. J 10 - 12 - 12 - 12 - 12 - 12 - 12 - 12
Analysis Method:	8015B	Analysis Batch:	460-91249		Instrument ID:	BNAGC5
	N/A		N/A		Initial Weight/Volume:	1 uL
Dilution:	1.0				Final Weight/Volume:	10 mL
Analysis Date:	10/29/2011 0426				Injection Volume:	1 uL
Prep Date:	N/A				Result Type:	PRIMARY
Analyte		Result (u	ıg/L)	Qualifie	r 🕺 RL 🖓 🚈 🕅	RL
Methanol	4.00/80/mm/80_m999_48/94/48/49/99_314/48/m999_94/44/m5_+45/688/99/48/m86_68_99942948_m688/m9	500	er e	U.	500	500
Surrogate		%Rec		Qualifie	r Acceptar	nce Limits
1-Pentanol	n felder in der die eine Aussense software software software als bei der	85	פון אי ארפי לאיר איראי איר	n enterminent auternet van hen L	47 - 132	apertabilitation - the antichesed Web 4 (pp)// deployed where descent share is enclosed in parts of a second s

11/14/2011