

Mr. Anthony Russo
New York State Department of Environmental Conservation (NYSDEC)
Region 7 Office
Division of Environmental Remediation
5786 Widewaters Parkway
Syracuse, New York 13214-1867

February 9, 2024

Subject: Stauffer Management Company, LLC – Maestri Site

NYSDEC Site No. 7-34-025 900 State Fair Boulevard Town of Geddes, NY

Dear Mr. Russo:

Arcadis on behalf of Stauffer Management Company, LLC (SMC), is submitting the enclosed updated Site Management Plan for the Maestri Site.

If you have any questions or concerns, please do not hesitate to contact me at 315-671-9219 or Ryan.Merrell@arcadis.com.

Sincerely,

Arcadis

Ryan Merrell Project Manager

Ryn Minde

cc: John-Paul Rossi/Stauffer Management Company, LLC

Rebecca Hensel/Arcadis

Stauffer Management Company

Site Management Plan

Maestri Site 900 State Fair Boulevard Onondaga County, Town of Geddes, New York NYSDEC Site Number 7-34-025

February 2024

Revisions to Final Approved Site Management Plan:

Revision Date			NYSDEC
No.	Submitted	Summary of Revision	Approval Date
1	May 17, 2011	Replaced "Property Owner" references with "SMC"	May 18, 2011
2	February 9, 2024	New Lead Consultant	May 28, 2024
		O&M requirement changes (e.g., no required	
		O&M plan).	
		Reduction in monitoring frequency and removal	
		of monitoring wells from sampling program.	
		HASP attachment.	
		 Notification requirement changes. 	
		NYSDEC contact change (David Chiusano to	
		Anthony Russo).	

Site Management Plan

Maestri Site 900 State Fair Boulevard Onondaga County, Town of Geddes, New York NYSDEC Site No. 7-34-025

February 2024

Prepared By:

Arcadis of New York, Inc.
One Lincoln Center, 110 West Fayette Street, Suite 300 Syracuse
New York 13202

Phone: 315 446 9120 Fax: 315 449 0017

Our Ref: 30166089

Ryan Merrell Project Manager

Ryn Mule

Timothy Miller, PE Principal Engineer

Prepared For:

Stauffer Management Company 1800 Concord Pike Wilmington, DE 19850-5437

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

40	cronyms	and Abbreviations	V
1	Introdu	ıction and Description of Remedial Program	1
	1.1 Ir	ntroduction	1
	1.1.1	General	1
	1.1.2	Purpose	1
	1.1.3	Revisions	2
	1.1.4	Notifications	3
	1.2 S	ite Background	3
	1.2.1	Site Location and Description	3
	1.2.2	Site History	4
	1.2.3	Geologic Conditions	4
	1.3 S	ummary of Remedial Investigation Findings	5
	1.3.1	Soil	5
	1.3.2	On-Site and Off-Site Groundwater	6
	1.3.3	On-Site and Off-Site Soil Vapor	6
	1.3.4	Underground Structures	6
	1.4 S	ummary of Remedial Actions	6
	1.4.1	Soil	7
	1.4.2	Groundwater	8
	1.4.3	Remaining Contamination	9
	1.4.4	Engineering and Institutional Controls	10
2	Engine	ering and Institutional Control Plan	11
	2.1 Ir	ntroduction	11
	2.1.1	General	11
	2.1.2	Purpose	11
	2.2 E	ngineering Controls	11
	2.2.1	Engineering Control Systems	11
	2.2.1	I.1 Soil Cover System	11
	2.2.1	l.2 Groundwater Monitoring	12
	2.2.2	Criteria for Completion of Remediation/Termination of Remedial Systems	12
	2.2.2	2.1 Cover System	12

2.2.2	.2 Groundwater Monitoring	12
2.3 Ir	stitutional Controls	12
2.3.1	Soil Vapor Intrusion Evaluation	13
2.4 E	xcavation Plan	14
2.4.1	Notification	14
2.4.2	Soil Screening Methods	15
2.4.3	Stockpile Methods	15
2.4.4	Materials Excavations and Load Out	15
2.4.5	Materials Transport Off Site	16
2.4.6	Materials Disposal Off Site	16
2.4.7	Materials Reuse On Site	17
2.4.8	Fluids Management	17
2.4.9	Cover System Restoration	17
2.4.10	Backfill from Off-Site Sources	17
2.4.11	Stormwater Pollution Prevention	18
2.4.12	Contingency Plan	18
2.4.13	Community Air Monitoring Plan	18
2.4.14	Odor Control Plan	19
2.4.15	Dust Control Plan	19
2.4.16	Other Nuisances	19
2.5 Ir	spections and Notifications	20
2.5.1	Periodic Inspections	20
2.5.2	Evaluation and Reporting	20
2.6 R	eporting Plan	20
2.6.1	Introduction	20
2.6.2	Certification of Engineering and Institutional Controls	21
2.6.3	Periodic Review Report	21
Monito	ring Plan	23
3.1 Ir	troduction	23
3.1.1	General	23
3.1.2	Purpose and Schedule	23
3.2 S	oil Cover Monitoring	24
3.2.1	Inspection Schedule	24

3

3.2.2	Monitoring Event Protocol	24
3.3	Groundwater Monitoring Program	25
3.3.1	Monitoring System Design	25
3.3.2	Groundwater Monitoring Schedule	25
3.3.3	Sampling Event Protocol	26
3.4	Monitoring Well Repairs, Replacement, and Decommissioning	26
3.5	Monitoring Quality Assurance/Quality Control	27
3.6	Monitoring Reporting Requirements	27
	es (in-text)	
Table 1. 0	Geologic Conditions at Maestri Site	4
	Summary of Contaminants in Soil – 1992/1993 RI	
	Site Remedial Action Objectives	
Table 4. S	Soil Boring Sample Results – Xylene	10
Table 5. (Groundwater and Soil Cover Monitoring Schedule	24
Table 6. (Groundwater Monitoring Program	25

Figures

Figure 1 Maestri Site Location

Figure 2 Site Plan

Appendices

Appendix A Tax Map, Metes, and Bounds

Appendix B Aerial Map

Appendix C Drawings

Appendix D Record of Decision

Appendix E Site Inspection Form, Well Sampling Field Record Form

Appendix F Monitoring Well Construction Logs

Appendix G Sampling, Analysis, and Monitoring Plan

Appendix H Laboratory Sample Results from Test Pits and Soil Borings Near MW-9

Appendix I Letter to NYSDEC Detailing Work Done Near MW-9 in July 2007

Site Management Plan

Appendix J SPDES Permit

Appendix K Letter to NYSDEC Detailing Work Done in November 2007

Appendix L Orders on Consent #A7-0139-88-01 and #A7-0226-90-03

Appendix M Acceptance Letter for 2022 Periodic Review Report

Appendix N 2022 Periodic Review Report

Appendix O Health and Safety Plan

Acronyms and Abbreviations

Arcadis Arcadis of New York, Inc.

AS air sparge

CAMP Community Air Monitoring Plan

ECL Environmental Conservation Law

ECs Engineering Controls

EP Excavation Plan

fbg feet below grade

FS Feasibility Study

GWTS groundwater recovery and treatment system

HASP Health and Safety Plan

ICs Institutional Controls

IRM Interim Remedial Measures

NYCRR New York Codes, Rules, and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation and Maintenance

OCDOH Onondaga County Department of Health

ORC Oxygen Release Compound

PID photoionization detector

ppb parts per billion
ppm parts per million

QA/QC Quality Assurance/Quality Control

RAOs Remedial Action Objectives
RAWP Remedial Action Work Plan

INAME INCIDENT ACTION MORE FIRE

RI Remedial Investigation

ROD Record of Decision

SAMP Sampling, Analysis, and Monitoring Plan

SCOs Soil Cleanup Objectives

Site Maestri Site

SMC Stauffer Management Company LLC

Site Management Plan

SMP Site Management Plan

SPDES State Pollution Discharge Elimination System

SVE soil vapor extraction

SVI soil vapor intrusion

SVOCs semi-volatile organic compounds

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds

	that this Site Management Plan	'S registered professional engineer as in was prepared in accordance with all applicab ER Technical Guidance for Site Investigation	
OF NEW CORNERS OF NEW			

_[P.E.]

2/8/2024

NYS Professional Engineer # 077919-1

DATE

1 Introduction and Description of Remedial Program

1.1 Introduction

This document is required as an element of the remedial program at the Maestri Site (hereinafter referred to as the "Site") under the New York State Inactive Hazardous Waste Disposal Site Remedial Program administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Order on Consent Index #A7-0226-90-03, Site #7-34-025, which was executed on December 16, 1992, attached in Appendix L.

1.1.1 General

Stauffer Management Company LLC (SMC) entered into an Order on Consent with NYSDEC to remediate the approximately 4.4-acre property located in Onondaga County, Town of Geddes, New York. This Order on Consent required SMC to investigate and remediate contaminated media at the Site. A map showing the site location is provided in Figure 1. The portion of the Site that is still being actively monitored is 2.5 acres and completely fenced, as shown in Appendix B. The boundaries of the Site are more fully described in the metes and bounds site description attached as Appendix A to this plan. The previous Site Management Plan (SMP) was approved by NYSDEC in August 2010 (revision on May 17, 2011 replacing "Property Owner" references with "SMC"), and a Declaration of Covenants and Restrictions filed July 2011 is currently in place.

Since remaining residual soil and groundwater contamination is present at the Site, Institutional Controls (ICs) and Engineering Controls (ECs) have been implemented at the Site to protect public health and the environment for the applicable future use.

After completion of the remedial work described in the March 1995 Record of Decision (ROD), attached as Appendix D, some contamination was left in the subsurface at this Site. This SMP was prepared to manage remaining contamination at the Site in perpetuity, or until extinguishment of the Declaration of Covenants and Restrictions in accordance with Environmental Conservation Law (ECL) Article 71, Title 36. Remedial action work on the Site began in June 1996, and was completed in May 2008. All reports associated with the Site can be viewed by contacting NYSDEC or any successor agency managing environmental issues in NYS.

This SMP was prepared by Arcadis of New York, Inc. (Arcadis) on behalf of SMC, in accordance with the requirements in DER-10 Technical Guidance for Site Investigation and Remediation, issued by NYSDEC in May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the ICs and ECs established under the Declaration of Covenants and Restrictions for the Site.

1.1.2 Purpose

Site contamination remains after completion of the Remedial Action. ECs have been incorporated into the Site remedy to provide proper management of remaining contamination in the future to ensure protection of public health and the environment. The NYSDEC prepared a Declaration of Covenants and Restrictions, which wase recorded with the Onondaga County Clerk, that provides an enforceable legal instrument to ensure compliance with this SMP and all ECs and ICs placed on the Site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring, and reporting measures for all ECs and ICs. This SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the Declaration of Covenants and Restrictions

for contamination that remains at the Site. This SMP has been approved by NYSDEC and may only be revised with NYSDEC approval. Compliance with this plan is required by SMC, and any successors and assigns.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the Site by SMC, the property owner(s), and any successors after completion of the Remedial Action, including:

- 1. Implementation and management of all ECs and ICs;
- 2. Media monitoring; and
- 3. Performance of periodic inspections, certification of results, and submittal of Periodic Review Reports.

To address these needs, this SMP includes two plans:

- An Engineering and Institutional Control Plan for implementation and management of ECs/ICs, which includes a reporting plan for the submittal of data, information, recommendations, and certifications to NYSDEC (Section 2).
- 2. A Monitoring Plan for implementation of Site Monitoring (Section 3).

An Operation and Maintenance Plan is no longer required. The site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge (AS)/ soil vapor extraction (SVE) systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not applicable in this case and has not been included in this SMP.

It is important to note that:

- This SMP details the Site-specific implementation procedures that are required by the Declaration of Covenants and Restrictions. Failure to properly implement the SMP is a violation of ECL and the Declaration of Covenants and Restrictions, which is grounds for the revocation of the Release and Covenant not to sue.
- Failure to comply with this SMP is also a violation of 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 and the Order on Consent (Index # A7-02226-90-03 Site # 734025) for the Site, and thereby subject to applicable penalties.

This version of the SMP is being updated to incorporate changes proposed in the 2022 Periodic Review Report by SMC and approved by the NYSDEC in a letter dated April 11, 2023. All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in NYS. A list of contacts for persons involved with the Site is provided in the Health and Safety Plan (HASP) (Appendix O) of this SMP. In accordance with the Declaration of Covenants and Restrictions for the Site, NYSDEC will provide a notice of any approved changes to the SMP and append these notices to the SMP that is retained in its files electronically.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC Project Manager or requested by the NYSDEC. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements; upgrades to, or shutdown of, a remedial system; post-remedial removal of contaminated sediment or soil; or any other significant change to the Site conditions. In accordance with the Declaration of Covenants and Restrictions for the Site, the NYSDEC will provide a notice of any approved changes to the SMP and append these notices to the SMP that is retained in its files.

1.1.4 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER-10 for the following reasons and incompliance with the required timeframe:

- 60-day advance notice of any proposed changes in Site use that are required under the terms of the Order on Consent, 6 NYCRR Part 375, and/or ECL.
- 7-day advance notice of any field activity associated with the remedial program by the Responsible Party.
- 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Plan (EP).
- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential
 to reduce the effectiveness of other ECs and likewise any action to be taken to mitigate the damage or defect.
- Notice within 48-hours of any emergency, such as a fire, flood or earthquake, that reduces or has the
 potential to reduce the effectiveness of ECs in place at the Site, including a summary of actions taken, or to
 be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive
 action shall be submitted to NYSDEC within 45 days and shall describe and document actions taken to
 restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will
 include a certification that the prospective purchaser has been provided with copies of the Order on Consent,
 the Declaration of Covenants and Restrictions, and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Notifications will be made to:

Mr. Anthony Russo
New York State Department of Environmental Conservation
Region 7
Division of Environmental Remediation
5786 Widewaters Parkway
Syracuse, New York 13214-1867

In the event that NYSDEC develops a centralized notification system, that system will be used instead.

1.2 Site Background

1.2.1 Site Location and Description

The Site is located in the Town of Geddes of Onondaga County, New York and is identified as Block 13 and Lot 36.1 on the Town of Geddes Tax Map (Appendix A). The Site is located at 900 State Fair Boulevard, Geddes, New York. The Site is an approximately 2.5-acre area bounded by residential property to the north, an empty lot (904 State Fair Boulevard) and State Fair Boulevard to the south, residential property and wooded vacant lots to

the east, and residential property and wooded vacant lots to the west (see Appendix B). The boundaries of the Site are more fully described in Appendix A (Tax Map, Metes, and Bounds).

Currently, the Site is owned by Mr. Mark Maestri. SMC is acting as Site operator and the Potentially Responsible Party for remedial and site management activities.

1.2.2 Site History

In the 1970's, drums containing industrial waste material allegedly generated by Stauffer Chemical Company were buried at the Site. Solvent Savers, a waste disposal contractor, allegedly used the Site as a drum disposal area in the 1970s. In January 1987, the Site's owner at the time, Mr. Bert Maestri, reportedly excavated soil and drums from an area of the Site shown on Drawing #001 in Appendix C. After discovery of the disposal area in 1987, Malcolm Pirnie, Inc. conducted a limited site investigation on behalf of the Onondaga County Department of Health (OCDOH) to evaluate the environmental effects of the Site. Several OCDOH groundwater monitoring wells were constructed adjacent to the Maestri property. In 1987 NYSDEC listed the Site on the New York State Registry of Inactive Hazardous Waste Disposal Sites as Site #734025. In 1988, NYSDEC and SMC executed an Order on Consent (#A7-0139-88-01) for development and implementation of Site Interim Remedial Measures (IRMs).

In June 1989, a site investigation began which included monitoring well installation, soil boring completion, air monitoring, and sampling of subsurface soil and groundwater. A magnetic survey was also conducted to identify buried drums. In December 1990, the first drum excavation and disposal event (approximately 100 drums) was completed (Drawing #001 in Appendix C).

In May 1992, to address contaminated groundwater, an initial groundwater monitoring, recovery, and treatment system was installed on site. In September 1992, SMC submitted a final report to NYSDEC summarizing the findings of the field investigations and development of the Site IRMs (Maestri Site Investigation and Development of Interim Remedial Measures. Final Report. O'Brien and Gere, September 1992).

In December 1992, NYSDEC and SMC executed a second Order on Consent (#A7-0226-90-03) for performance of a Focused Remedial Investigation/Feasibility Study (RI/FS). In 1992-1993, SMC conducted a Focused RI/FS to further determine the nature and extent of soil and groundwater contamination, and to select a remedy for the Site.

In March 1995, upon completion of the RI/FS, a ROD to complete soil and groundwater remediation at the Site was signed in (Appendix D).

1.2.3 Geologic Conditions

In 1995, on behalf of SMC, O'Brien and Gere Engineers Inc. conducted a Subsurface Investigation of the Site. The investigation report indicated that the soils in the area consist of sand and gravel with traces of clay. Native soils extend to an average depth of 20 feet below grade (fbg) as shown in Table 1 below.

Table 1. Geologic Conditions at Maestri Site

Depth Below Grade	Soil Condition
0-4 feet	Brown, dry, loose fine-to-medium sand with traces of fine-to-coarse gravel and plant roots.
4-8 feet	Moderate yellowish brown fine very moist medium dense sand, fine-to-coarse gravel poorly sorted.
8-12 feet	Reddish brown, gray moist medium dense, fine-to-coarse gravel and fine-to-coarse sand, with some cobbles and traces of clay.

Depth Below Grade	Soil Condition
12-16 feet	Fine-to-coarse gravel and fine-to-very fine wet to saturated dense sand, little silt and traces of clay.
16-20 feet	Light brown very moist, very dense, fine/medium gravel, little fine/coarse sand, little silt, trace clay.
20-22 feet	The bedrock layer was encountered and was dark, red, damp hard clay with some embedded very coarse and fine gravel, and olive green dry non-calcareous shale, fissile, weathered Vernon shale.

The depth to groundwater on site ranges from 2 to 22 fbg with an average depth of 9 fbg. Groundwater flows in a northeasterly direction and discharges into Onondaga Lake located approximately 0.4 miles to the east. A groundwater contour map is included as Drawing #002 in Appendix C.

1.3 Summary of Remedial Investigation Findings

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. The results of the RI are described in detail in the following reports:

- 1. Focused Remedial Investigation Report: Maestri Site. O'Brien and Gere, February 1994.
- 2. Feasibility Study: Maestri Site. O'Brien and Gere, September 1994.

Generally, the RI determined that the former drum disposal activities at the Site resulted in subsurface soil and groundwater contamination by volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). No significant impact on the ambient and indoor residential air quality or on surface water was identified.

The following sections provide a summary of site conditions when the RI was performed in 1992-1993.

1.3.1 Soil

Organic contaminants, predominantly xylene, were detected in subsurface soils down to the water table. Xylene was detected in soil at concentrations up to 7,070 parts per million (ppm). Other contaminants detected in on-site soil included toluene, ethylbenzene, tetrachloroethene, 2-methylphenol, 2,4-dimethylphenol, and benzoic acid in substantially lower concentrations as listed in Table 2 below. The areas of potentially impacted soil as designated in the FS are shown on Drawing #003 included in Appendix C.

Table 2. Summary of Contaminants in Soil - 1992/1993 RI.

Compound	Average Soil Concentrations (ppm)	Upper Level Soil Concentrations (ppm)
PCE	28.4	156
Toluene	7.7	45.3
Ethylbenzene	2.2	11.7
Xylene	1,360	7,070
2-Methylphenol	1	3.7
2,4-Dimethylphenol	2.3	14.7
Benzoic Acid	12.8	71.5

1.3.2 On-Site and Off-Site Groundwater

The findings of the RI indicated the presence of site-related contaminants in the shallow overburden groundwater. The principal organic contaminant detected in the shallow groundwater was xylene in concentrations exceeding 30 ppm in on-site monitoring wells, located immediately downgradient of the former drum disposal areas. Movement of the shallow groundwater is in a northeasterly direction toward Alhan Parkway. There is a steep slope downgradient between the northeast boundary of the Site and Alhan Parkway. There are residences located along the Alhan Parkway; all residences are on public water and there are no current or anticipated future uses of groundwater in the vicinity of the Site. No site-related contaminants were detected in bedrock groundwater.

1.3.3 On-Site and Off-Site Soil Vapor

In 1989, O'Brien and & Gere Engineers conducted a site investigation on behalf of SMC, including an initial soil vapor intrusion (SVI) investigation.

In 1991, an indoor air-monitoring program was completed for selected residences located on Alhan Parkway, downgradient of the Site as required by the New York State Department of Health (NYSDOH). The monitoring program was implemented by O'Brien & Gere Engineers on behalf of SMC. Sufficient data was collected to establish in the ROD that there were no remaining significant impacts to the ambient air or residential indoor air quality resulting from the former drum disposal activities at the Site.

1.3.4 Underground Structures

Approximately 400 drums were excavated and removed during the IRM. In December 1990, approximately 100 drums were excavated and properly disposed. In 1993-1994, during the RI, over 200 buried drums were encountered at the Site. Approximately 100 drums were found in 1997, during implementation of remedial activities. There are currently no known underground structures on the Site.

Buried drums were excavated and properly disposed of off site. Approximately 400 drums were excavated and removed from the Site from 1990 to 1997. In December 1990, the first drum excavation and disposal (approximately 100 drums) was completed. Additional drums were excavated and disposed of off site from 1993 to 1994 (approximately 200 drums) and in 1997 (approximately 100 drums). Removal of contaminants from soil and groundwater is discussed below in Sections 1.4.1 and 1.4.2. A list of the SCOs for this project is shown in Table 3. A map showing areas where excavation was performed is shown as Drawing #001 in Appendix C.

1.4 Summary of Remedial Actions

The Site was remediated in accordance with the NYSDEC-approved IRM Work Plan dated September 1992, the Remedial Action Work Plan (RAWP) dated December 1994, and the ROD dated March 1995. The components of the remedy are detailed below.

Remedial activities focused on subsurface soil and groundwater treatment. A combination of SVE and biological treatment were chosen as the most effective remedy for the Site soil contamination that was protective of human health and the environment. In accordance with the ROD, soil was to be excavated, treated in biopiles, and redeposited back on site. Groundwater was to be recovered and treated through an on-site groundwater recovery

and treatment system (GWTS). Remedial Action Objectives (RAOs) for the Site were determined in the ROD, as provided in Table 3 below.

Table 3. Site Remedial Action Objectives

Parameter	Soil Cleanup Objective (ppm, dry weight)	Groundwater Cleanup Level (ppb)	
Volatile Organic Compounds			
Benzene	0.06	5	
Ethylbenzene	5.5	5	
t-1,2-dichloroethylene	0.3	5	
Tetrachloroethylene	1.4	5	
Toluene	1.5	5	
Xylene	1.2	100	
Total VOCs	10	100	
Semi-Volatile Organic Compo	ounds		
Benzoic Acid	2.7	5	
2,4-dimethylphenol	None established	None established	
2-methylphenol	0.1	50	
4-methylphenol	0.9	50	
Total SVOCs	500	None Established	

The following is a summary of the Remedial Actions performed at the Site:

- Excavation of soil/fill quantity exceeding the Soil Cleanup Objectives (SCOs) listed in Table 3. Verification samples were taken from sidewalls and bottom of the excavations to determine the limits of remedial excavation.
- Treatment of excavated soils (approximately 10,000 cubic yards) by SVE/bioremediation techniques in above-grade biopiles. Treated soils were placed back into excavated areas.
- Construction and maintenance of a soil cover system consisting of 3 inches of loam and 6 inches of topsoil.
- Treatment of groundwater exceeding groundwater cleanup levels, as listed in Table 3, through operation of a GWTS.
- Monitoring of the soil cover and groundwater to ensure compliance with cleanup objectives.

1.4.1 Soil

Fluor Daniel Groundwater Technologies, Inc. oversaw soil remediation activities on behalf of SMC. These activities began in June 1996 with the excavation of soils and the construction of above-grade, on-site biopiles for treatment of VOCs and SVOCs with an ex-situ SVE/bioremediation system. Excavation sidewall and bottom verification sampling was conducted to determine the limits of remedial excavation. The majority of excavation was conducted under an environmental enclosure (sprung structure). The excavated soil was conditioned (by adding vermiculite, fertilizer, lime, and wood chips) prior to biopile construction. The biopile construction continued from July 1996 through the end of March 1997, resulting in a total of five biopiles. A map showing areas where excavation was performed is shown as Drawing #009 in Appendix C.

Following construction of the biopiles, an SVE system was operated in each pile to promote biological degradation of contaminants. As biopiles showed contaminant concentrations meeting the SCOs established in ROD, NYSDEC approval was obtained to return treated soil to the excavated area. The biopiles were periodically sampled to evaluate compliance with RAOs. As biopiles showed contaminant concentrations that met SCOs, NYSDEC approval was obtained and the treated soil was returned to the excavated areas. A 6-inch stone drainage layer was constructed at the bottom of the excavation to promote drainage. Over 10,000 cubic yards of soil were excavated and treated on site. By September 1999, the last of the biopile soils (biopile 5) had met the SCOs and were returned to the site excavation area. Approximately 3 inches of loam and 6 inches of clean topsoil were placed over the soil re-deposition areas. The Site was re-graded and seeded in October 1999. The regrading was based on pre-construction grades with an overall increase in elevation of approximately 2 feet due to the importation of materials to the Site for use in the conditioning of the biopiles. A survey showing the final post-remediation grade of the Site is provided as Drawing #007 in Appendix C. This survey does not necessarily reflect current grades on site.

Additional areas excavated in July/November 2007 were backfilled with the excavated soil based on agreement with NYSDEC. The excavated material was backfilled followed by a layer of crusher-run stone (approximately 35 cubic yards) and a layer of clean imported sand (approximately 85 cubic yards). Additional regrading and seeding of these areas was done in May-July 2008.

The GWTS was operated from 1992 to 2008, as discussed further in Section 1.4.2. In April 2007, groundwater monitoring results still showed elevated levels of xylene in well MW-9. In July 2007, two test pits were excavated in the area of MW-9 to investigate a possible remaining source of soil contamination. The locations of the test pits are provided in Drawing #005 in Appendix C. Soil excavated from the test pits was screened with a photoionization detector (PID) and showed low or non-detectable concentrations of VOCs. Overburden soil that had non-detectable PID screen readings was reused as backfill. Remaining soil excavated from the test pits was disposed of off site and the test pits were backfilled with a mixture of overburden soil and clean fill, as denoted in a letter to NYSDEC, dated October 24, 2007 (Appendix I). In November 2007, SMC installed four soil borings outside the area of the test pits to further investigate soil conditions in the area and define the areal extent of possible soil contamination. The locations of the soil borings are provided on Drawing #005 in Appendix C. Soil cuttings were placed back in the bore hole. A letter report from May 8, 2008, attached as Appendix K, details the soil boring work. Samples collected from the soil borings were analyzed for xylene. The concentration of xylene in the soil borings ranged from 0.54 to 4.4 ppm (Appendix H). Detailed sample results are provided in Section 1.4.6.

In May 2008, SMC requested no further action for soil, based on the low xylene results and no further evidence of soil contamination. NYSDEC approved the request on May 14, 2008. Groundwater monitoring continued as detailed in Section 1.4.2 below.

1.4.2 Groundwater

According to the ROD, groundwater was to be recovered and treated through an on-site treatment system. The ROD required continued operation of a GWTS with an annual evaluation until concentrations of site contaminants could no longer be effectively removed, or cleanup objectives were met. A GWTS was installed on site in 1992 and was operational until 2008. Originally six groundwater recovery wells were installed on site, in combination with a network of monitoring wells. The on-site GWTS -treated water from the recovery wells, along with water collected in the soil excavation and leachate, accumulated from the biopiles during remedial activities. The map indicating the location of the recovery wells and the GWTS is provided on Drawing #002 in Appendix C. The water was treated with particulate filtration and carbon adsorption. Treated water was discharged under a State

Pollution Discharge Elimination System (SPDES)-equivalent permit (Appendix J) to a storm sewer, which discharged to Onondaga Lake. A process flow diagram of the GWTS is provided as Drawing #006 in Appendix C.

The GWTS continued to operate after the Site was re-graded and seeded in October 1999. Groundwater sampling results demonstrated decreasing trends of site contaminants in most of the on-site monitoring and recovery wells over the years of system operation. In order to address remaining groundwater contamination and to enhance groundwater remediation, in 2001 potassium permanganate (KMnO4) was injected into five on-site wells (PZ-9, PZ-10, PZ-12, PZ-14, and RW-2). In October 2002, higher levels of groundwater contamination continued to exist in RW-2. In order to further address contamination in this well, Oxygen Release Compound (ORC) was injected in the area around the well. ORC injections were completed in 2002 and 2004. In April 2006, to address the possibility of a soil source of contamination existing in the vicinity of RW-2, the well was overdrilled and backfilled with nutrient-enriched gravel and soil to facilitate bioremediation of remaining organic compounds. A new monitoring well was installed in the same location to replace the recovery well (MW-2A). A split sample collected by NYSDEC in April 2007 showed elevated levels of xylene at 827 parts per billion (ppb). NYSDEC requested SMC investigate a possible source of this contamination, which lead to the test pit and soil boring investigations detailed in Section 1.4.1, along with additional groundwater sampling. MW-9 was removed during the test pit work in July 2007 and was reinstalled during the soil boring work in November 2007. A groundwater sample from MW-9 taken in January 2008 showed xylene at 11 ppb. No evidence of a soil source of contamination was found.

In May 2008, SMC requested approval to shut down the GWTS as the Site RAOs listed in the ROD were achieved. NYSDEC approved SMC's request on May 14, 2008, and the GWTS was shut down on May 27, 2008. The system's main components (electricity, pumps, and controllers) were to remain in place until it could be determined that the residual plume did not migrate as a result of shutting down the system.

SMC was required to maintain the system for a minimum of 1 year, and to monitor the residual groundwater plume quarterly to ensure it did not migrate. In May 2009, since the contaminant plume remained stable after the 1-year monitoring period, the GWTS was decommissioned and the frequency of groundwater sampling was reduced to semiannually. Monitoring continued on a semiannual frequency through 2021 at accessible locations. In 2021 and 2022, NYSDEC approved of the removal of wells MW-2A, RW-3, RW-5, RW-8, and PZ-20 from the monitoring program and reduced the frequency of monitoring to annually.

Annual groundwater monitoring, as detailed in Section 3.0, will continue by SMC, and any successors until a reduction is otherwise approved by NYSDEC and NYSDOH.

1.4.3 Remaining Contamination

There is no designated "Remaining Contamination Zone" on site. The contaminated soil was treated to meet the Site RAOs listed in the ROD. Upon completion of the soil treatment, verification samples were taken to demonstrate that the treated soil met SCO requirements. In November 2007, SMC took four samples from soil borings outside the footprint of the excavated area. Analysis of the samples showed low concentrations of xylene as detailed in Table 4. A sample was additionally taken by NYSDEC from SB-2 in the interval above refusal. One boring (SB-1) showed levels of xylene above the SCOs. The location of SB-1 is shown on Drawing #005 in Appendix C.

Table 4 summarizes the xylene results of soil samples remaining at the Site after completion of the Remedial Action. No samples exceed the Track 2 Restricted Use SCOs as outlined in 6 NYCRR Part 375, dated December 14, 2006. The Site is zoned for Residential Use A, which is designated as single-family dwellings.

Table 4. Soil Boring Sample Results - Xylene

Soil Boring	Xylene Concentration in Soil Borings (ppm)	1995 ROD Site- Specific Xylene SCO for Soil (ppm)	Unrestricted Use Xylene Level (ppm)	Residential and Restricted Use Residential Xylene Level (ppm)	Restricted Use Commercial Xylene Level (ppm)	Restricted Use Industrial Xylene Level (ppm)
SB-1	4.4					
SB-2	<0.15	1.2	0.26	100	500	1,000
SB-3	0.81	1.2				
SB-4	0.54					

The GWTS was shut down based on approval from NYSDEC as sampling results indicate that contaminants remaining in groundwater are low and the system was no longer effectively removing remaining contamination. SMC will continue to monitor groundwater on an annual basis to account for fluctuations in the groundwater table.

No public utility lines or other subsurface infrastructure are present at the Site. The only remaining subsurface utilities and infrastructure are those directly related to the operation of the GWTS, which are decommissioned (grouted in-place). No critical infrastructure remains on site.

1.4.4 Engineering and Institutional Controls

Since remaining residual soil and groundwater contamination are present at the Site, ECs and ICs have been implemented to protect public health and the environment for the applicable future use. The Controlled Property has the following ECs:

- 1. Maintenance of the soil cover over the soil redeposition areas, consisting of 3 inches of loam, 6 inches of topsoil, and grass.
- 2. Continuous monitoring of groundwater.

The installation of mechanical systems, such as sub-slab depressurization systems or AS/SVE systems, were not required to protect public health and the environment upon completion of the remedial activities at the Site.

These ECs and ICs are designed to prevent:

- Ingestion/direct contact with contaminated soil.
- Inhalation of or exposure to contaminants volatilizing from contaminated soil.
- Ingestion of groundwater with contaminant levels that exceed drinking water standards.
- Contact with or inhalation of volatiles from contaminated groundwater.
- Contaminated groundwater from migrating off site.
- Migration of contaminants that would result in off-site groundwater or surface water contamination.

2 Engineering and Institutional Control Plan

2.1 Introduction

2.1.1 General

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved ROD for the Site (March 1995). The SCOs are listed in Table 3 (Section 1.4) and include 1.2 ppm for xylene in the Site soils and 5 ppb for xylene in groundwater. The remedial goals included attainment of SCOs listed in the ROD for onsite soils for unrestricted use. The unrestricted SCOs were approved by NYSDEC and are listed in Table 3. The SCOs listed in the ROD were originally derived from the Technical and Administrative Guidance Memorandum 4046 SCOs. NYSDEC has since issued new restricted use SCOs, listed in 6 NYCRR Subpart 375-6.8(b). The new SCOs list 100 ppm of xylene for residential use and 1.6 ppm of xylene in soil for protection of groundwater. A summary of the remedial strategies and ECs/ICs implemented at the Site are provided in Sections 2.2 and 2.3.

Since remaining contaminated soil and groundwater exists beneath the Site, ECs/ICs are required to protect human health and the environment. This EC/IC Plan describes the procedures for the implementation and management of all ECs/ICs at the Site. The EC/IC Plan is one component of this SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

The purpose of the EC/IC Plan is to provide:

- A description of all ECs/ICs on the Site.
- The basic operation and intended role of each implemented EC/IC.
- A description of the key components of the ICs created as stated in the Declaration of Covenants and Restrictions.
- A description of the features that should be evaluated during each periodic inspection and compliance certification period.
- A description of plans and procedures to be followed for implementation of ECs/ICs.
- A description of the reporting requirements for the ECs/ICs.
- Any other provisions necessary to identify or establish methods for implementing the ECs/ICs required by the Site remedy, as determined by NYSDEC.

2.2 Engineering Controls

2.2.1 Engineering Control Systems

2.2.1.1 Soil Cover System

Exposure to remaining contamination in soil at the Site is prevented by a soil cover system, which is comprised of 3 inches of loam, 6 inches of topsoil, and grass placed over the soil redeposition areas. The EP detailed in

Section 2.4 outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for monitoring the system are included in the Monitoring Plan (Section 3).

2.2.1.2 Groundwater Monitoring

To address remaining residual groundwater contamination present at the Site, continuous groundwater monitoring has been implemented at the Site. Procedures for monitoring groundwater are included in the Monitoring Plan.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, the remedial processes will be considered complete when effectiveness monitoring indicates that the remedy has achieved the RAOs identified by the ROD. The specific determination of when the following remedial processes are complete will be made in compliance with the latest edition of NYSDEC DER-10.

2.2.2.1 Cover System

The soil cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

2.2.2.2 Groundwater Monitoring

Groundwater monitoring activities to assess the residual groundwater plume will continue annually as outlined in the Monitoring Plan, until an alternate schedule is requested or until permission to discontinue is granted in writing by NYSDEC.

2.3 Institutional Controls

A series of ICs is required by the Declaration of Covenants and Restrictions to:

- 1. Implement, maintain, and monitor EC systems;
- 2. Prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and
- 3. Limit the use and development of the Site to residential use with restricted groundwater use.

Adherence to these ICs on the Site is required by the Declaration of Covenants and Restrictions and will be implemented under this SMP, as follows:

- Compliance with the Declaration of Covenants and Restrictions by the property owner and any future owners of the land.
- All ECs are operated and maintained as specified in this SMP.
- All ECs on the Controlled Property are inspected and certified at a frequency and in a manner defined in this SMP.
- Groundwater monitoring is performed as defined in this SMP.

- Data and information pertinent to site management for the Controlled Property is reported at the frequency and in a manner defined in this SMP.
- On-site environmental monitoring devices, including but not limited to groundwater monitoring wells, are protected and replaced as necessary to ensure the devices function in the manner specified in this SMP.

ICs may not be discontinued without an amendment to, or extinguishment of, the Declaration of Covenants and Restrictions.

The Site has a series of ICs in the form of the site restrictions. Adherence to these ICs by the property owner and SMC are required by the Declaration of Covenants and Restrictions. The Site will be inspected in accordance with the Declaration of Covenants and Restrictions. Site restrictions that apply to the Controlled Property are as follows:

- Vegetable gardens and farming, including cattle and dairy farming, on the property are prohibited.
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended purpose.
- All future activities on the property that will disturb remaining contaminated material are prohibited unless they
 are conducted in accordance with this SMP.
- The implementing party must evaluate the potential for vapor intrusion for any buildings developed on the Site, and any potential impacts that are identified must be mitigated by the implementing party.
- The property owner may use the property for residential use with restricted groundwater use provided that the long-term ECs/ICs included in this SMP are employed and land zoning regulations are followed.
- The property may not be used for a less restrictive use, such as unrestricted use, without additional remediation and amendment of the Declaration of Covenants and Restrictions by the Commissioner of NYSDEC.
- A written statement will be submitted to NYSDEC that certifies, under penalty of perjury, that:
 - 1. Controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by NYSDEC.
 - 2. Nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with this SMP.
 - NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the
 continued maintenance of any and all controls. This certification shall be submitted annually, or an
 alternate period of time that NYSDEC may allow and will be made by an expert that NYSDEC finds
 acceptable.

2.3.1 Soil Vapor Intrusion Evaluation

Prior to the construction of any enclosed structures located over areas that contain remaining contamination, an SVI evaluation will be performed by the implementing party to determine whether any mitigation measures are necessary to eliminate potential exposure to volatile organic vapors in the proposed structure. Alternatively, the implementing party may install an SVI mitigation as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive sub-slab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted by the implementing party to NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York." Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to NYSDEC and NYSDOH within 30 days of validation.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

2.4 Excavation Plan

As described in Section 1.4 of this SMP, on-site soils received a no further action letter determination from the NYSDEC on May 11, 2008. In addition, SMC is not the property owner. The site remedy allows for residential use with restricted groundwater use. Any future intrusive work that will penetrate, encounter or disturb the remaining contamination, and any modifications or repairs to the existing cover system as outlined in Section 2.2.1.1 will be performed in compliance with this EP. Intrusive construction work must also be conducted in accordance with the procedures defined in a HASP prepared for the Site. Based on future changes to State and Federal health and safety requirements, and specific methods employed by future contractors, the HASP will be updated and resubmitted with the notification. Any intrusive construction work will be performed in compliance with the EP and HASP and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 2.6).

Parties performing this work, are completely responsible for the safe performance of all invasive work, the structural integrity of excavations, and for structures that may be affected by excavations (such as building foundations and bridge footings).

The only remaining subsurface utilities and infrastructure are those directly related to the operation of the GWTS, which are decommissioned (grouted in-place).

Mechanical processing of historical fill and contaminated soil on site is prohibited.

Excavated areas from the Remedial Action have been surveyed by a surveyor licensed to practice in the State of New York. The survey information will be shown on maps in the Periodic Review Reports.

2.4.1 Notification

At least 15 days prior to the start of any activity that is reasonably anticipated to encounter remaining contamination, the performing party will notify the NYSDEC. Currently, this notification will be made to:

Anthony Russo
New York State Department of Environmental Conservation
Region 7
Division of Environmental Remediation
5786 Widewaters Parkway
Syracuse, New York 13214-1867

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for the site
 re-grading, intrusive elements or utilities to be installed below the soil cover, or any work that may impact an
 EC.
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any preconstruction sampling.
- A schedule for the work, detailing the start and completion of all intrusive work.
- A statement that the work will be performed in compliance with this EP and 29 CFR 1910.120.
- A copy of the contractor's health and safety plan, in electronic format.
- Identification of disposal facilities for potential waste streams.
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

2.4.2 Soil Screening Methods

Visual, olfactory, and instrument-based soil screening will be performed by a qualified environmental professional during all future remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work.

Soils will be segregated based on previous environmental data and screening results into material that: requires off-site disposal; requires testing; can be returned to the subsurface; and can be used as cover soil.

2.4.3 Stockpile Methods

Soil stockpiles will be continuously encircled with a silt fence. Hay bales are used as needed near catch basins, surface waters, and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook that is maintained at the Site. The logbook will be available for inspection by NYSDEC.

2.4.4 Materials Excavations and Load Out

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The performing parties are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the Site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the Site.

A truck wash will be operated on site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the Site until the activities performed under this section are complete.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and New York State Department of Transportation requirements (and all other applicable transportation requirements).

Locations where vehicles enter or exit the Site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the Site are clean of dirt and other materials derived from the Site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

2.4.5 Materials Transport Off Site

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the Site. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Truck transport routes will be identified that will:

- Limit transport through residential areas and past sensitive sites;
- Use city-mapped truck routes;
- Minimize off-site queuing of trucks entering the facility;
- · Limit total distance to major highways; and
- Promote safety in access to highways.

Trucks will be prohibited from stopping and idling in the neighborhood outside the Site. Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during site remediation and development.

Due to limited available space at the Site, some off-site queuing of trucks may be necessary. The number and duration of trucks lined up outside the Site entrance will be minimized through efficient scheduling and staging at a remote location.

2.4.6 Materials Disposal Off Site

All soil/fill/solid waste excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed of in accordance with all local, State (including 6 NYCRR Part 360), and Federal regulations. If disposal of soil/fill from this Site is proposed for unregulated off-site disposal (i.e., clean

soil removed for development purposes), a formal request with an associated plan will be made to NYSDEC. Unregulated off-site management of materials from this Site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate (e.g., hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility). Actual disposal quantities and associated documentation will be reported to NYSDEC in the Periodic Review Report. This documentation will include waste profiles, test results, facility acceptance letters, manifests, bills of lading, and facility receipts.

Non-hazardous historical fill and contaminated soils taken off site will be handled, at minimum, as a Municipal Solid Waste pursuant to 6 NYCRR Part 360-1.2. Material that does not meet the lower of the SCOs for residential use or groundwater protection will not be taken to a New York State recycling facility (6 NYCRR Part 360-16 Registration Facility) without a beneficial use determination issued by NYSDEC.

2.4.7 Materials Reuse On Site

There is no plan to reuse on-site materials. If materials will be reused on site, a plan will be developed by the responsible party for NYSDEC approval prior to work.

2.4.8 Fluids Management

All liquids to be removed from the Site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed of in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the Site but will be managed off site.

Discharge of water generated during large-scale construction activities to surface waters (i.e., a local pond, stream or river) will be performed under an SPDES permit.

2.4.9 Cover System Restoration

After the completion of soil removal and any other invasive remedial activities the cover system will be restored in a manner that complies with the ROD and this SMP. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the SMP.

2.4.10 Backfill from Off-Site Sources

All materials proposed for import onto the Site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP, applicable regulations (6 NYCRR 375-6.7(d)) and guidance (DER-10) prior to receipt at the Site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the Site.

All imported soils will meet the backfill and cover soil quality standards established in 6 NYCRR 375-6.7(d). Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for

this Site, will not be imported onto the Site without prior approval by NYSDEC. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

2.4.11 Stormwater Pollution Prevention

If construction occurs on-site in the future, barriers and hay bale checks will be installed and inspected once a week and after every storm event by the implementing party. Results of inspections will be recorded in a logbook that is maintained at the Site. The logbook will be available for inspection by NYSDEC. All necessary repairs shall be made by the implementing party immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

A detailed Storm Pollution Prevention Plan will be developed by the implementing party prior to work if any construction occurs on site in the future.

2.4.12 Contingency Plan

If underground tanks/drums or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development-related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for VOCs and SVOCs listed in Table 3.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to the NYSDEC Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline; findings will be included in daily and periodic electronic media reports.

2.4.13 Community Air Monitoring Plan

A map showing the locations of the air monitoring stations installed during the remedial activities of 1995-1999 is provided as Drawing #008 in Appendix C. If any future intrusive work will disturb the cover system, a new Community Air Monitoring Plan (CAMP) will be developed and submitted to NYSDEC and NYSDOH Project Managers in accordance with latest revision of the NYSDEC DER-10. The location of the air monitoring stations

will be adjusted based on the actual wind direction and work to be performed on the Site. Any exceedance of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers or their representatives.

2.4.14 Odor Control Plan

Environmental enclosures can be used on a routine basis to control odors from excavation work on site. If nuisance odors are identified at the Site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected by the implementing party. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of SMC, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed by the implementing party to prevent on- and off-site nuisances. These measures will include:

- Limiting the area of open excavations and size of soil stockpiles;
- Shrouding open excavations with tarps and other covers; and
- Using foams to cover exposed odorous soils.

If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include:

- Direct load-out of soils to trucks for off-site disposal;
- · Use of chemical odorants in spray or misting systems; and
- Use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

2.4.15 Dust Control Plan

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

2.4.16 Other Nuisances

A plan for rodent control will be developed if necessary and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work.

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

2.5 Inspections and Notifications

2.5.1 Periodic Inspections

Periodic inspections of all remedial components installed at the Site will be conducted annually, as specified in the Monitoring Plan schedule (Section 3). A comprehensive site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed.
- If these controls continue to be protective of human health and the environment.
- Compliance with requirements of this SMP and the Declaration of Covenants and Restrictions.
- Achievement of remedial performance criteria.
- Sampling and analysis of appropriate media during monitoring events.
- If the Site records are complete and up to date.
- Changes, or needed changes, to the remedial or monitoring system.

Inspections will be conducted by SMC representatives, and any successors in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3), using the Site-Wide Inspection Form included in Appendix E. The reporting requirements are outlined in the Site Management Reporting Plan (Section 2.6).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the ECs/ICs implemented at the Site. This inspection will be conducted by a qualified environmental professional as determined by NYSDEC.

2.5.2 Evaluation and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm:

- ECs/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented; and
- The Site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP.

2.6 Reporting Plan

2.6.1 Introduction

A Periodic Review Report will continue to be submitted to NYSDEC annually, as established in the May 2011 SMP. The Periodic Review Report will be prepared in accordance with the latest revision of the NYSDEC DER-10. The frequency of submittal of the Periodic Review Report may be modified with the approval of NYSDEC.

This report will include the following:

- Identification of all ECs/ICs required by this SMP.
- An assessment of the effectiveness of all ECs/ICs for the Site.
- An evaluation of this EC/IC Plan and the Monitoring Plan (Section 3) for adequacy in meeting remedial goals.
- Results of the required annual inspections of the Site and severe condition inspections, if any.
- A compilation of all deliverables generated during the reporting period, as specified in this EC/IC Plan and the Monitoring Plan.
- Certification of the ECs/ICs.

2.6.2 Certification of Engineering and Institutional Controls

Inspection of the ECs/ICs will occur by SMC representatives, and any successors at the frequency described in Section 3 (Monitoring Plan). After the last inspection of the reporting period, a qualified environmental professional will prepare a Periodic Review Report which certifies the following:

- On-site ECs/ICs are unchanged from the previous certification.
- Controls remain in place and are effective.
- The systems are performing as designed.
- Nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- Access is available to the Site by NYSDEC and NYSDOH to evaluate continued maintenance of such controls.
- Site use is compliant with the Declaration of Covenants and Restrictions.

2.6.3 Periodic Review Report

A Periodic Review Report will continue to be submitted to NYSDEC annually. The report will be submitted within 45 days of the end of each certification period. Groundwater sampling results will also be incorporated into the Periodic Review Report. The report will include the following:

- EC/IC certification.
- All applicable inspection forms and other records generated for the Site during the reporting period.
- Data summary tables and graphical representations of contaminants of concern in groundwater, which
 include a listing of all compounds analyzed, along with the applicable standards, with all contraventions of
 groundwater SCOs highlighted. These will include a presentation of past data sufficient for the NYSDEC to
 evaluate contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format.
- An evaluation of the Site, which includes:
 - The compliance of the remedy with the requirements of the Site-specific ROD;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;

Site Management Plan

- o Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
- o The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC Central Office located in Syracuse, New York, the NYSDOH Syracuse Regional Office, and the NYSDOH Bureau of Environmental Exposure Investigation.

3 Monitoring Plan

3.1 Introduction

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the implemented ECs to reduce or mitigate contamination at the Site. ECs at the Site include a soil cover over excavated areas and annual monitoring of groundwater. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for the following:

- Visual monitoring of soil cover integrity.
- Sampling and analysis of groundwater.
- Assessing compliance with NYSDEC groundwater standards.
- Assessing achievement of the remedial performance criteria.
- Evaluating information of the Site periodically to confirm that the remedy continues to be effective in protecting public health and the environment.
- Preparing the necessary reports for the various monitoring activities.

To adequately address issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency.
- Information on all designed monitoring systems (e.g., well logs).
- Analytical sampling program requirements.
- Reporting requirements.
- Quality Assurance/Quality Control (QA/QC) requirements.
- Inspection and maintenance requirements for monitoring wells.
- Monitoring well decommissioning procedures.
- Annual inspection and periodic certification.

Quarterly monitoring of the performance of the remedy and overall reduction in contamination, both on site and off site, was conducted by SMC for the first year after shutdown of the GWTS, from May 2008 until May 2009. After this 1-year monitoring period, the groundwater plume appeared to remain stable, therefore, the monitoring frequency was reduced to semiannually. A transition to annual sampling was approved by the NYSDEC following the approval of the 2022 Periodic Review Report. Annual groundwater monitoring will continue until otherwise approved by NYSDEC and NYSDOH.

Groundwater contaminant trends in the affected areas will be evaluated to assess if the remedy continues to be effective in achieving remedial goals. The soil cover will be inspected annually to ensure no building on the Site

has occurred and that the Site cover remains in place. Annual inspections of the soil cover will continue until otherwise approved by NYSDEC and NYSDOH. Monitoring programs for environmental media are summarized in Table 5 and outlined in detail in Sections 3.2 through 3.5 below.

Table 5. Groundwater and Soil Cover Monitoring Schedule

Monitoring Program	Frequency	Matrix	Analysis
Soil Cover	Annually	Soil	Visual observation for soil cover integrity
Groundwater Monitoring	Annually	Groundwater	Xylene

^{*} The frequency of events will be conducted as specified until otherwise approved by both NYSDEC and NYSDOH

The annual soil cover monitoring will occur concurrently with a groundwater monitoring event.

3.2 Soil Cover Monitoring

Exposure to remaining contamination in soil at the Site is prevented by a soil cover system. Inspections of the soil cover will be performed periodically to assess its integrity. The Site is routinely mowed to allow for visual inspections of the soil cover onsite.

The soil cover system is comprised of 3 inches of loam, 6 inches of topsoil, and grass placed over the excavated areas. The Site has been regraded and seeded upon completion of the remedial activities. The Site has been secured with an 8-foot-high fence and two locked gates to restrict site access. The fence and gate post location are shown on Drawing #007 in Appendix C. SMC keeps the Site gates locked and will annually assess fence integrity.

An as-built drawing for the Site is included as Drawing #007 in Appendix C.

3.2.1 Inspection Schedule

Site inspections are conducted annually as detailed in Section 3.1.2. The certifications will be issued annually in the Periodic Review Report. The frequency of inspections will be evaluated every 2 years.

3.2.2 Monitoring Event Protocol

A visual inspection of the soil cover integrity will be conducted annually, concurrently with groundwater sampling events. An inspection form for the Site provided in Appendix E will be completed during each inspection and kept on file at Arcadis' office. The inspection frequency is subject to change with the approval of NYSDEC.

Items reviewed during site inspections include site security, general site maintenance, erosion control, condition of neighboring properties and general observations of the Site. General observations include, but are not limited to, evidence of the following:

- Damage to chain link fence
- Odors
- Cover breach or bald spots in grassy areas
- Surface runoffs

- Sink holes
- Water accumulation, water staging/ponding, or pooling

A complete list of components to be checked is provided in the Site Inspection Checklist, presented in Appendix E. If soil cover integrity is not maintained, repairs will be performed within 30 days of the inspection, weather permitting.

Unscheduled inspections and/or sampling may take place when a suspected failure of the soil cover system has been reported or an emergency occurs that is deemed likely to affect the soil cover. Monitoring deliverables for the soil cover system are specified later in this Plan in Section 3.6.

3.3 Groundwater Monitoring Program

Groundwater monitoring will be performed on a periodic basis to assess the performance of the remedy.

3.3.1 Monitoring System Design

The network of monitoring wells was installed to monitor both upgradient and downgradient groundwater conditions at the Site. Twenty-five monitoring wells were originally installed on and off site. The depth of the wells and analytes to be tested annually are detailed in Table 6, below. Drawing #002 in Appendix C shows locations of monitoring wells. Monitoring well construction logs are included in Appendix F. Historical post-remedial groundwater quality conditions are provided in groundwater monitoring reports and Periodic Review Reports submitted to NYSDEC following sampling events.

In 2021 and 2022, as documented in previous submittals and approvals, the monitoring program was reduced to four remaining wells (Table 6). The most recent Periodic Review Report (2022) acceptance letter can be found in Appendix M, and the report can be found in Appendix N.

Well	Depth of Well (ft bgs)	Measuring Point Elevation (ft)	Screened Interval (ft)	Depth to Water (ft)	Total Xylene Concentration Measurement (Y/N)	Water Elevations Measurement (Y/N)	Frequency
MW-9	19.2	408.9	387.00-397.00	12.81	Y	Y	Annually
PZ-21	19.5	386.7	368.00- 378.00	2.50	Y	Υ	Annually
RW-6	21.86	393.6	374.74-384.74	6.04	Y	Y	Annually

17.77

Table 6. Groundwater Monitoring Program

27.5

3.3.2 Groundwater Monitoring Schedule

405.8

Monitoring of the groundwater wells is performed on an annual basis. The need for additional monitoring or decommissioning of the wells will be evaluated every year. The sampling frequency may be modified with the approval of NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC.

Deliverables for the groundwater monitoring program are specified in Section 2.5 and 2.6.

383.76-393.76

RW-7

Annually

Υ

3.3.3 Sampling Event Protocol

All monitoring well sampling activities will be recorded on a Well Sampling Field Record form presented in Appendix E. Other observations (e.g., well integrity, etc.) will be noted on the Site Observation Report also provided in Appendix E.

Groundwater sampling is conducted annually, and annual Periodic Review Reports are submitted to NYSDEC. The reports present the data and compare the results to historical data to assess conditions of the groundwater. During each sampling event, the wells to be sampled are gauged for water level. Groundwater sampling events are conducted via low-flow sampling procedures.

Monitoring wells were purged with a two-inch submersible pump and polyethylene tubing. Purged water is containerized 55-gallon drums or polyethylene tote. The containerized water is temporarily stored within the fenced site area and will be later transported to a regulated disposal facility for disposal. Field data, including pH, temperature, conductivity, turbidity, oxidation-reduction potential, dissolved oxygen, and total dissolved solids, were recorded during purging.

Samples are collected using disposable bailers.

Field QA/QC samples were collected at a rate of one set for every 20 and consisted of a blind duplicate, and matrix spike/matrix spike duplicate. Additionally, for each day of sampling a trip blank and equipment blank were collected and analyzed. Samples were sent to Eurofins TestAmerica in Edison, New Jersey, an NYSDOH Environmental Laboratory Approval Program certified laboratory. The groundwater analytical samples were analyzed following typical chain of custody procedures for xylene, using United States Environmental Protection Agency (USEPA) Method 624.1 Analytical results are included in the annual Periodic Review Report.

3.4 Monitoring Well Repairs, Replacement, and Decommissioning

If biofouling or silt accumulation occurs in the on- and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (per the Monitoring Plan) if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "CP-43: Groundwater Monitoring Well Decommissioning Policy". Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by NYSDEC.

3.5 Monitoring Quality Assurance/Quality Control

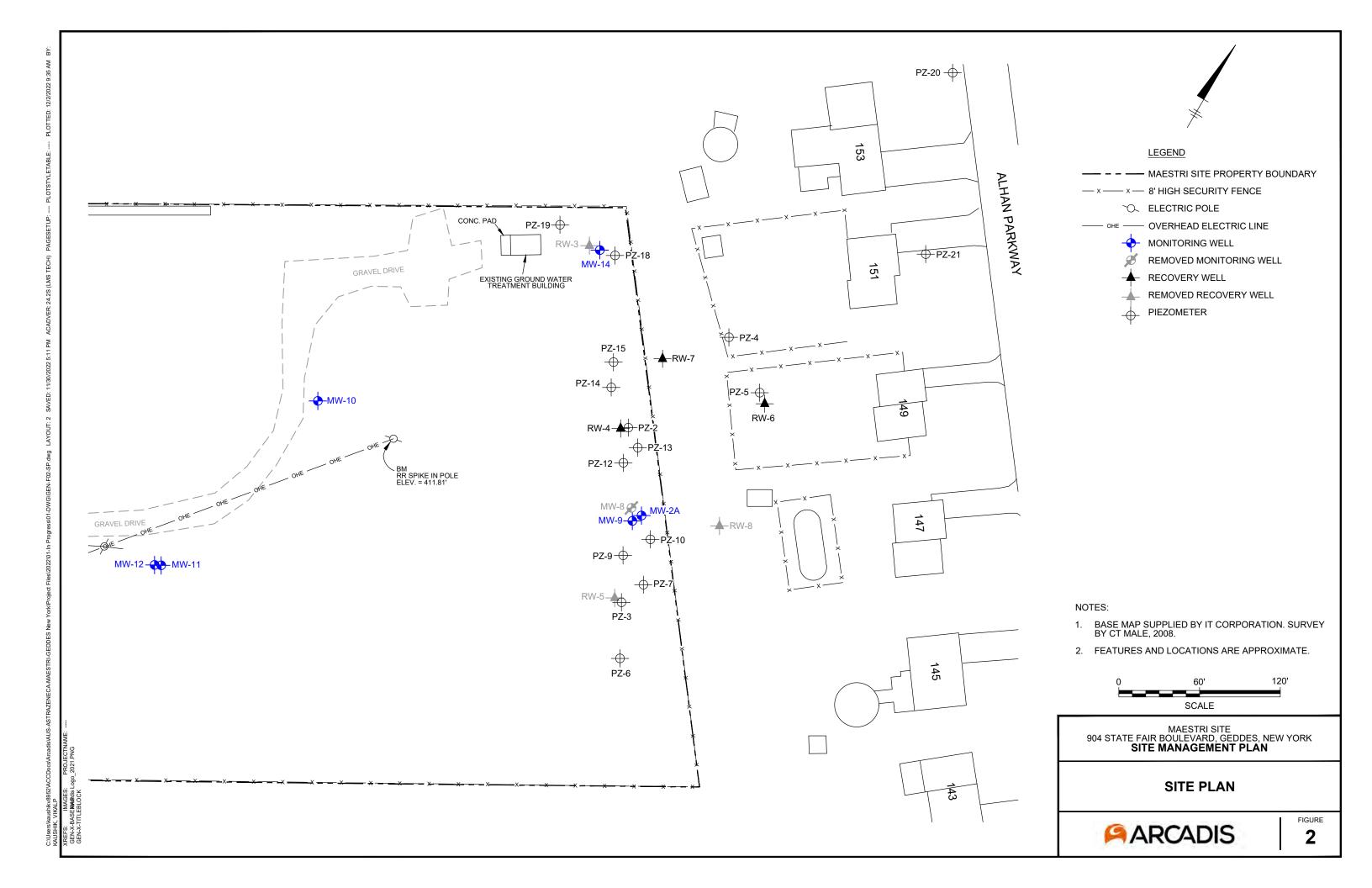
All sampling and analysis is performed in accordance with the requirements of the Sampling, Analysis, and Monitoring Plan (SAMP) prepared for the Site, attached as Appendix G. A main component of the SAMP is the Quality Assurance Project Plan in Section 6, which includes the following:

- QA/QC Objectives for Data Measurement.
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - o Sample holding times will be in accordance with NYSDEC Analytical Services Protocol requirements.
 - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected, as necessary.
- Sample Tracking and Custody.
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
 - The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures.
- Internal QC and Checks.
- QA Performance and System Audits.
- Preventative Maintenance Procedures and Schedules.
- Corrective Action Measures.

3.6 Monitoring Reporting Requirements

Forms and any other information generated during regular monitoring events and inspections will be kept on file by SMC at Arcadis' office. Per NYSDEC approval of the 2022 Periodic Review Report, groundwater monitoring reports will no longer be submitted. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be:

- 1. Subject to approval by NYSDEC; and
- Submitted at the time of the Periodic Review Report, as specified in Section 2.6.


All media and engineering system monitoring results will be reported to NYSDEC in the Periodic Review Report. The report will include, at a minimum:

- Date of event.
- Personnel conducting sampling.
- Description of the activities performed.

Site Management Plan


- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air, etc.).
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, inspection checklists, etc.).
- Sampling results in comparison to appropriate standards/criteria.
- A figure illustrating sample type and sampling locations.
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format).
- Any observations, conclusions, or recommendations.
- · Condition of soil cover and required repairs.
- Condition of site security, of general site maintenance, and of neighboring properties.
- A determination as to whether groundwater conditions have changed since the last reporting event.

Figures

Appendix A

Tax Map, Metes and Bounds

TITLE NO.: 09NYONO11432

SCHEDULE A DESCRIPTION

ALL that certain plot, piece or parcel of land, situate in the Town of Geddes, County of Onondaga and State of New York, known and distinguished as being part of Farm Lot Number Twenty (20) in said Town, bounded and described as follows:

BEGINNING at a point on the centerline of State Fair Boulevard (a/k/a Van Vleck Road) 455.34 feet southerly from the point of intersection of the northerly line of aforesaid Farm Lot Number 20 and the centerline of State Fair Boulevard and which beginning point is also 108.60 feet northerly from the point of intersection of the centerline of Bonnie Drive and the said centerline of State Fair Boulevard;

RUNNING THENCE southerly along said centerline of State Fair Boulevard 329.29 feet to a point;

THENCE easterly at an interior angle of 88 degrees 55 minutes 52 seconds along the northerly line of the premises conveyed by Lewis S. Hanreck to Patrick M. Pontello, Jr. and John E. Szczech by deed recorded in the Onondaga County Clerk's Office on June 8, 1987 in Book 3358 of Deeds at Page 60, 632.80 feet to a point;

THENCE northerly at an interior angle of 86 degrees 23 minutes 13 seconds 331.66 feet to a point;

THENCE westerly at an interior angle of 93 degrees 26 minutes 42 seconds along the southerly line of premises conveyed by Kathryn Ruzio to Philip Ryan and Patricia Ryan, his wife, by deed recorded in the Onondaga County Clerk's Office on July 2, 1973 in Book 2506 of Deeds at Page 111, 605.76 feet to the point and place of BEGINNING.

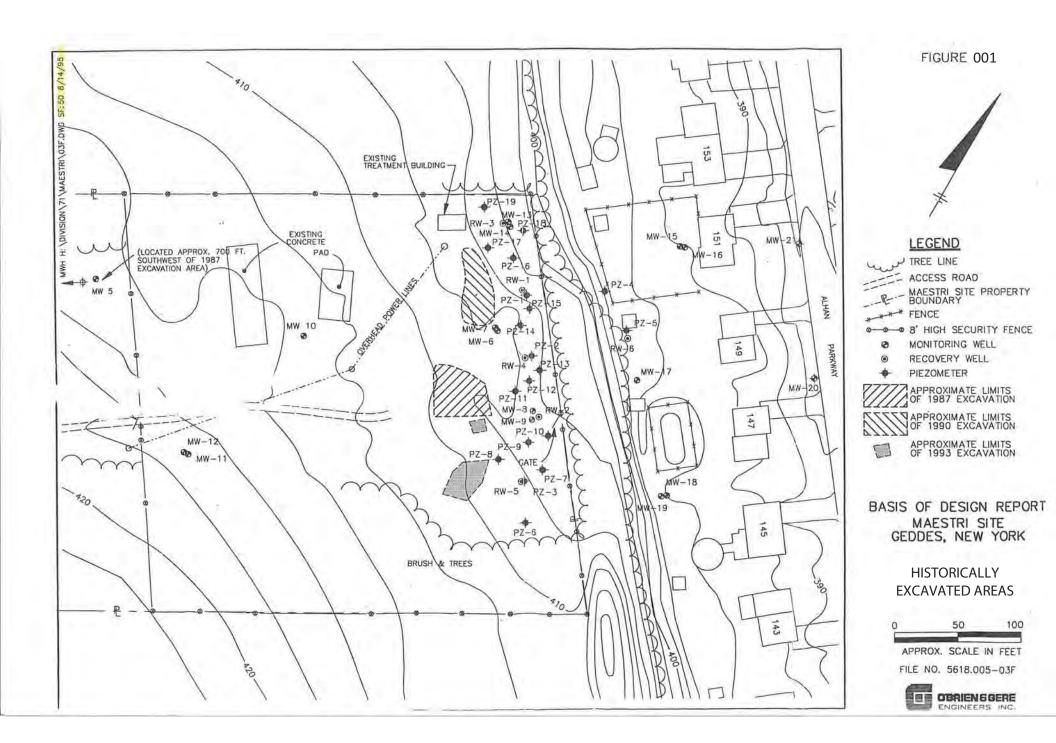
END OF SCHEDULE A

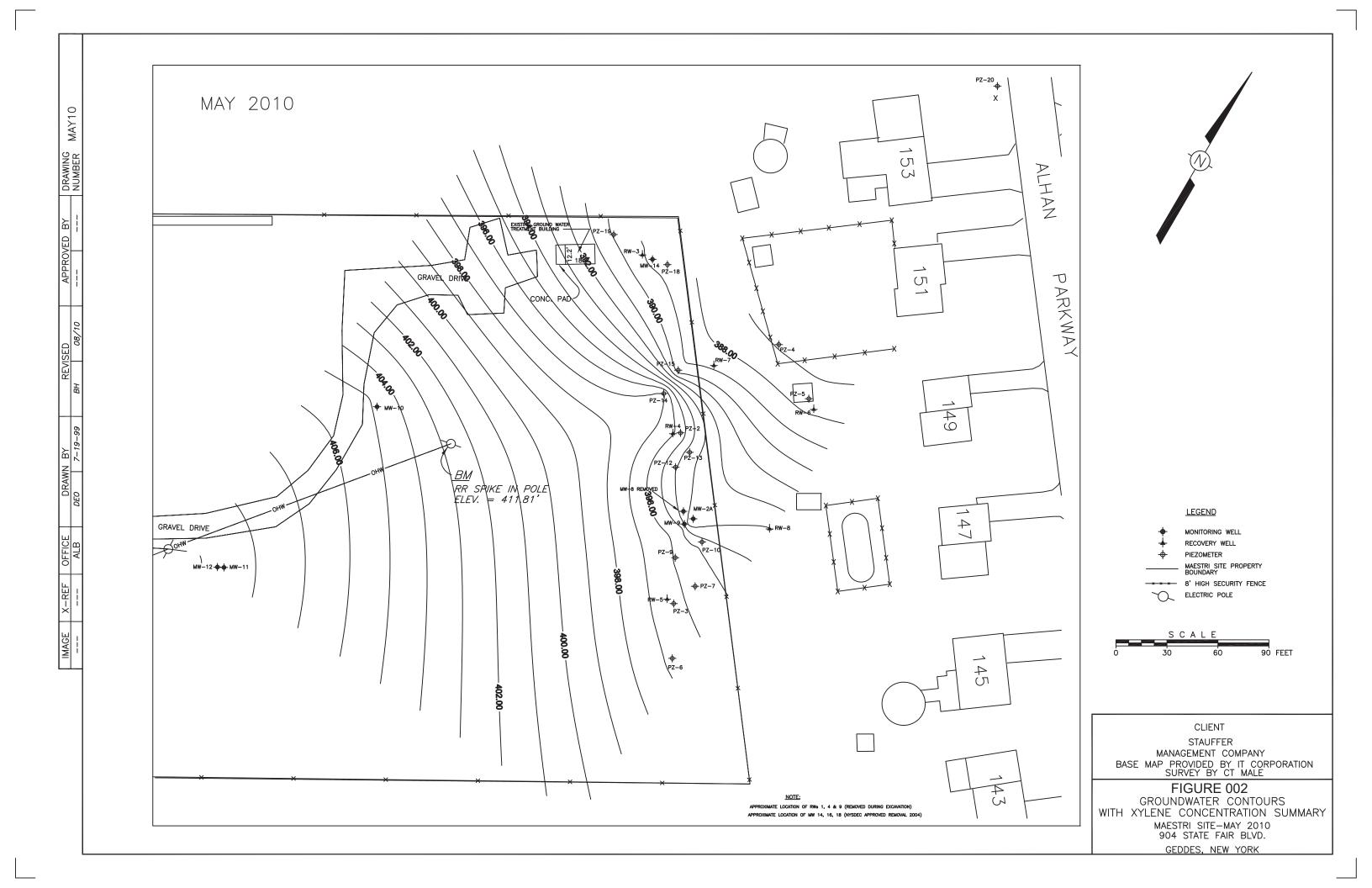
Appendix B

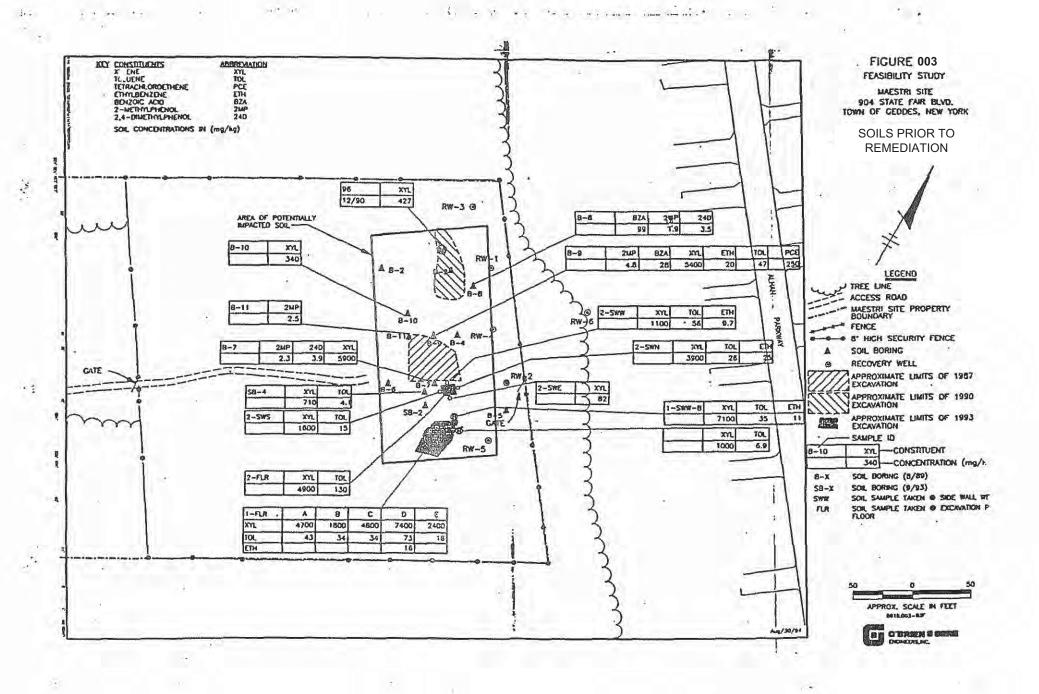
Aerial Map

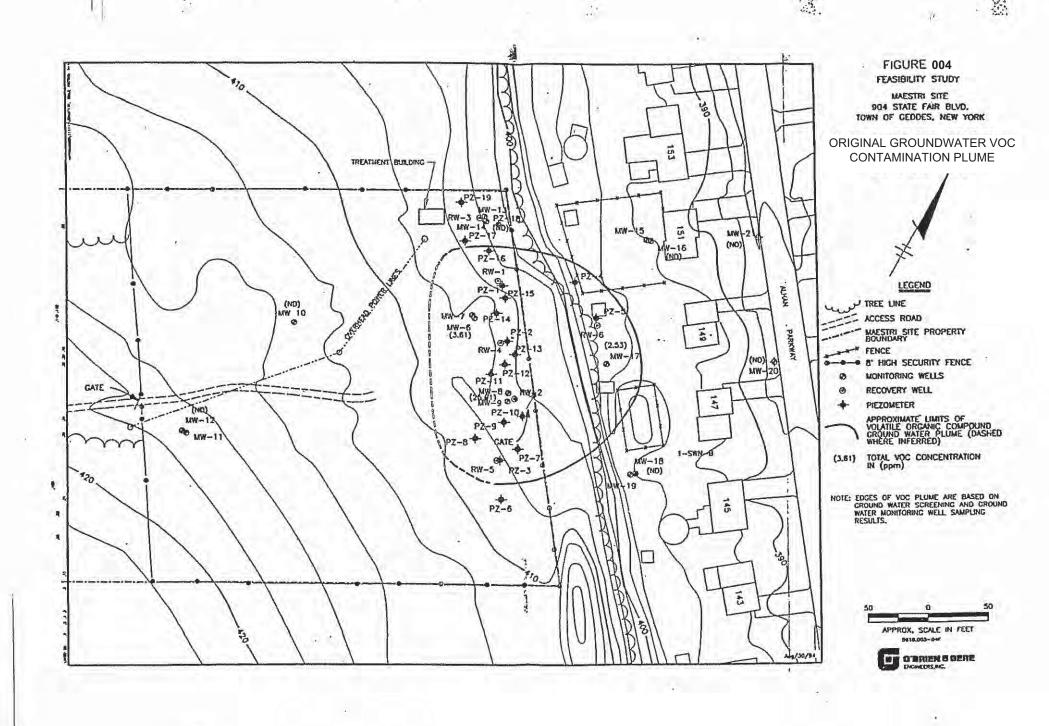
Appendix B AERIAL MAP

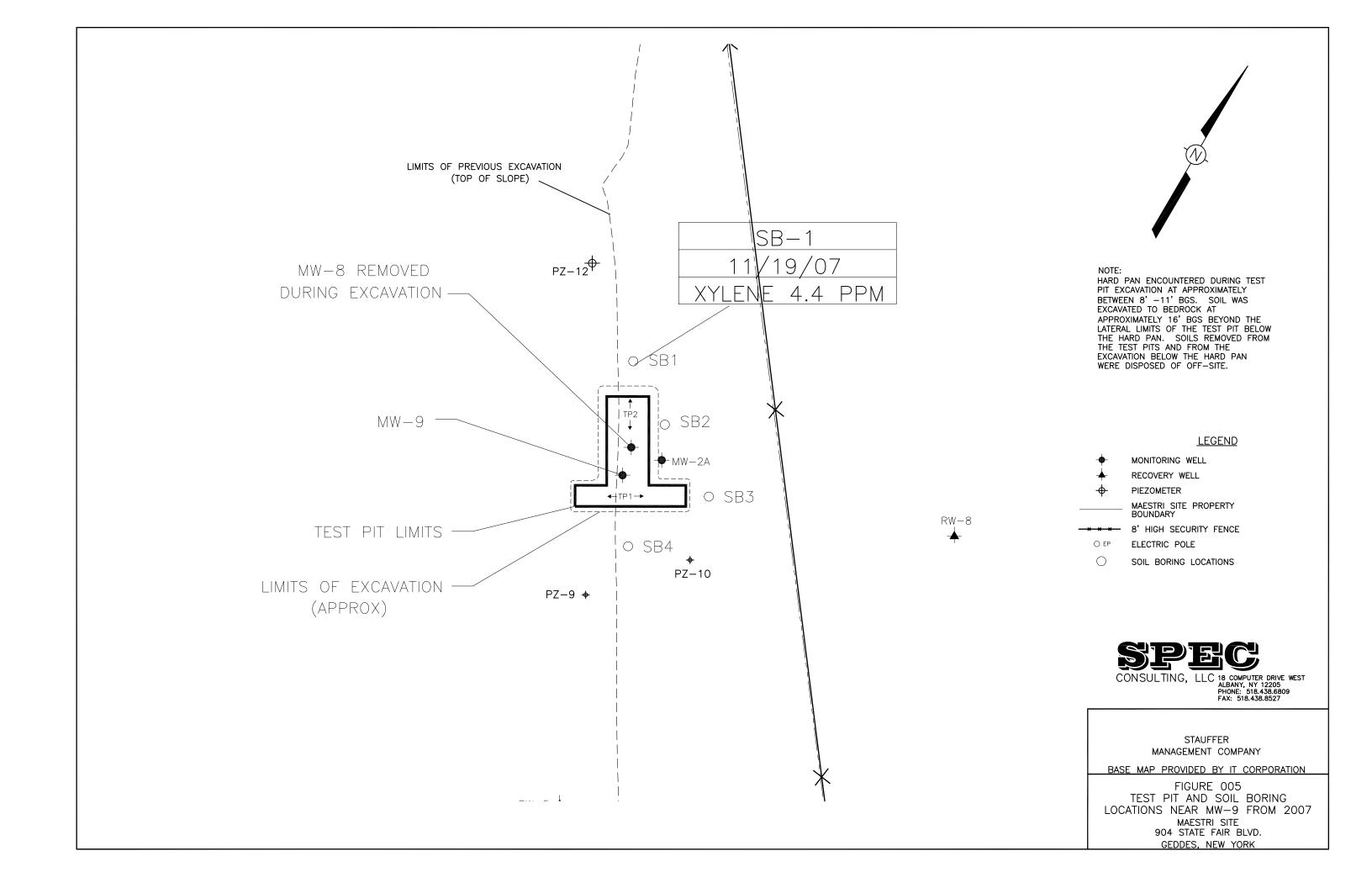
Maestri Site 904 State Fair Blvd, Geddes, New York

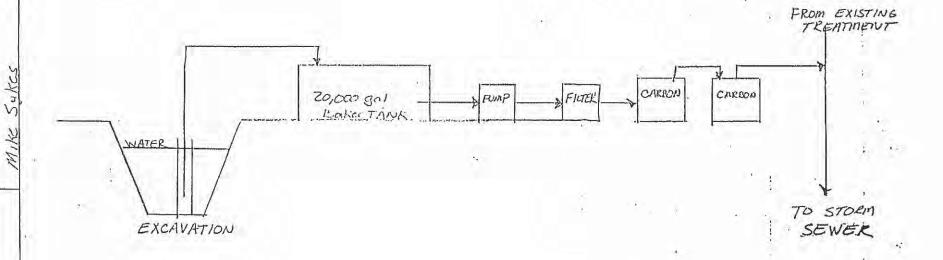

Appendix C

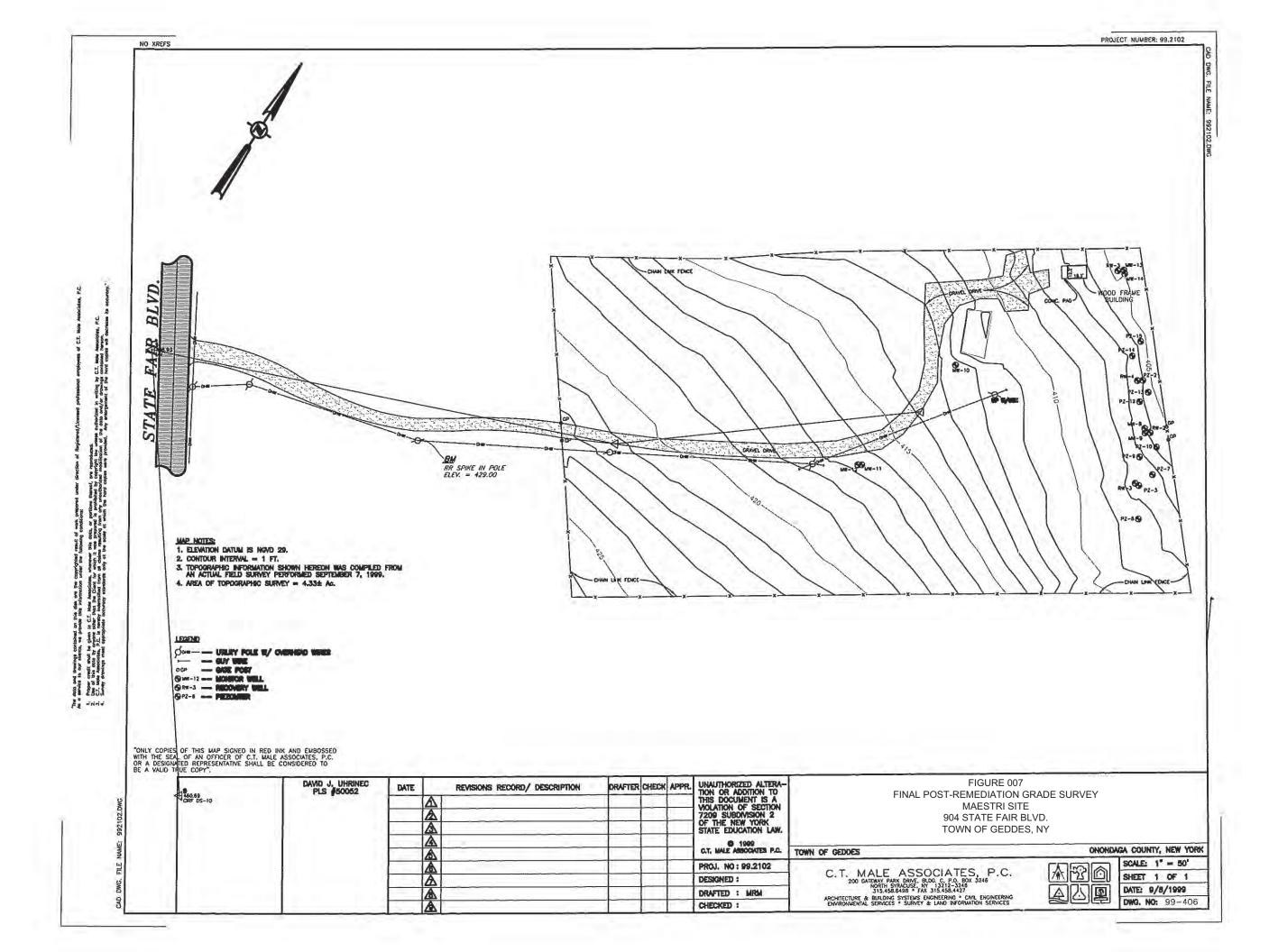

Drawings

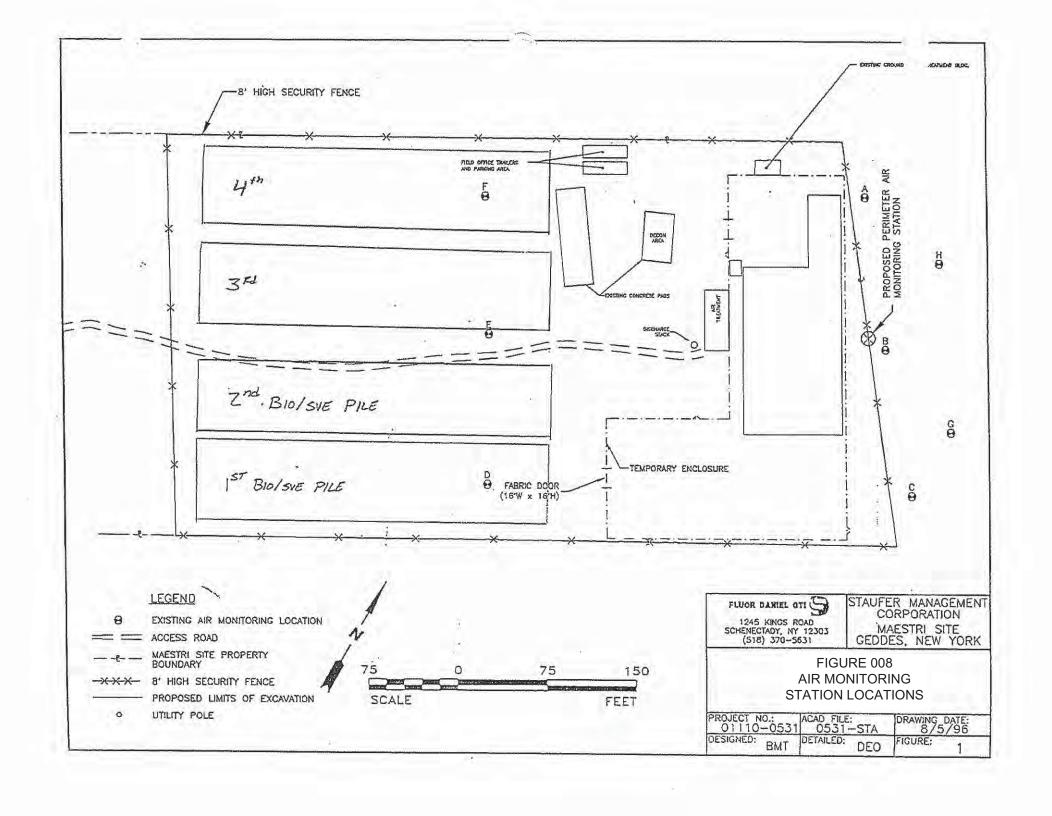

APPENDIX C

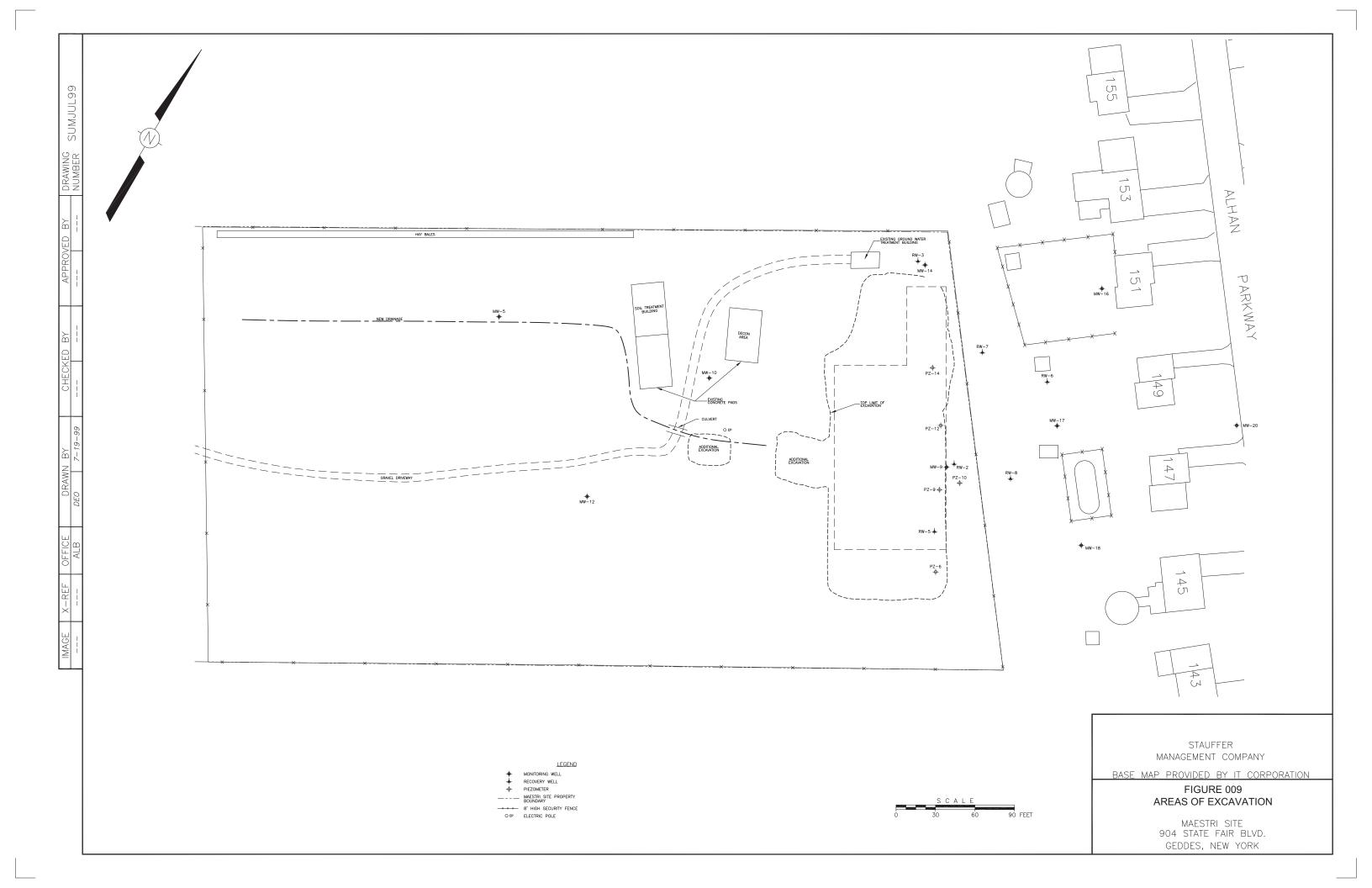

Drawings


- #001 Historically Excavated Areas
- #002 Groundwater Contour Map
- #003 Soils Prior to Remediation
- #004 Original Groundwater VOC Contamination Plume
- #005 Test Pit and Soil Boring Locations Near MW-9 from 2007
- #006 WWTP Process Flow Diagram
- #007 Final Post-Remediation Grade Survey
- #008 Air Monitoring Station Locations
- #009 Areas of Excavation






PROCESS FLOW DIAGRAM


MINESTRI SITE

TEMPER'MEN TREATMENT SYSTEM

Appendix D

Record of Decision (ROD)

ZENECA

INTERNAL MEMORANDUM

March 31, 1995

FROM:

TO:

DATE:

J. A. MacARTHUR

B. A. SPILLER

ZENECA Inc.

Wilmington, DE 19897 USA

ENVIRONMENTAL SERVICES

& OPERATIONS

Telephone:

(302) 886-4257

Facsimile:

(302) 886-5933

FILE:

ENV-MAESTRI-GWS

J. F. Peter* cc:

L. W. Mette

F. R. McNeice

* - No Attachment

MAESTRI - REMEDIAL DESIGN

Attached for your files is the completed and signed Record of Decision for the Maestri Site. As outlined in the cover letter from Gary Kline this effectively "starts the clock" on our remedial activities. As noted in my previous memo due to the aggressive schedule on this project we should take the full 30 days allotted to respond in order to provide us enough time to complete the Remedial Design Work Plan.

JA macolother Environmental Engineering Associate

8A - 033195A.MEM

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road, Albany, New York 12233

March 29, 1995

Mr. Frank R. McNeice Zeneca Inc. Environmental Services and Operations Wilmington, Delaware 19897

RECEIVED

Re: Maestri Site Site #7-34-025 MAR 3 0 1995

Environ Operation

Onondaga County

Dear Mr. McNeice

Enclosed for your review are four (4) copies of the executed Record of Decision (ROD) for the Maestri Inactive Hazardous Waste Site. In accordance with the Order On Consent #A7-02226-90-03 Section XI, Stauffer Management within 30 days of its receipt of the ROD must notify this Department whether or not it elects to undertake the remedial actions identified in the ROD. Upon notification of its election to undertake the remedial actions, Section XII of the Order becomes operative and the ROD shall be incorporated into the Order and attached as Appendix "E".

Within 30 days after the ROD is incorporated into the Order, Stauffer is required to submit a Remedial Design Workplan (RD Workplan) outlining the implementation of the NYSDEC selected remedy. The RD Workplan shall include the elements specified in Section XII paragraph 2 of the Order.

We look forward to Stauffer's response and continuing progress on the Maestri Site. If you should have any questions concerning the above please contact me at (518) 457-5636.

Sincerely,

Gary E. Kline, P.E.

Maestri Project Manager

Div. of Hazardous Waste Rem.

cc: C. Branagh Reg 7

R. Heerkins DOH-Syr

J. McArthur Zeneca

J. Kelly, Esq Zeneca

Department of Environmental Conservation

Division of Hazardous Waste Remediation

Record of Decision

Maestri Site
Town of Geddes, Onondaga County
Site Number 7-34-025

March 1995

New York State Department of Environmental Conservation
GEORGE PATAKI, Governor
MICHAEL ZAGATA, Commissioner

DECLARATION STATEMENT - RECORD OF DECISION

"Maestri" Inactive Hazardous Waste Site Onondaga County, New York Site No. 7-34-025

Statement of Purpose and Basis

The Record of Decision (ROD) presents the selected remedial action for the Maestri Inactive Hazardous Waste Disposal Site which was chosen in accordance with the New York State Environmental Conservation Law (ECL). The remedial program selected is not inconsistent with the National Oil and Hazardous Substances Pollution Contingency Plan of March 8, 1990 (40CFR300).

This decision is based upon the Administrative Record of the New York State Department of Environmental Conservation (NYSDEC) for the Maestri Inactive Hazardous Waste Site and upon public input to the Proposed Remedial Action Plan (PRAP) presented by the NYSDEC. A bibliography of the documents included as a part of the Administrative Record is included in Appendix B of the ROD.

Assessment of the Site

Actual or threatened release of hazardous waste constituents from this site, if not addressed by implementing the response action selected in this ROD, presents a current or potential threat to public health and the environment.

Description of Selected Remedy

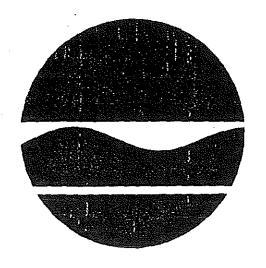
Based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Maestri Site, and the criteria identified for evaluation of alternatives, the NYSDEC has selected excavation of soil contaminated with Xylene in excess of site cleanup levels followed by on-site treatment utilizing vacuum extraction supplemented by biological treatment. The components of the remedy are as follows:

- 1. A remedial design program to verify the conclusions of the conceptual design, and provide the details necessary for construction, operation, maintenance and monitoring of the remedial program.
- 2. Excavation and preparation for treatment of soils that contain contaminants in excess of soil cleanup objectives. This will involve an estimated 8,000 cubic yards of contaminated soil.

- 3. Treatment of the soil utilizing ex-situ piles that combines vapor extraction and biological degradation of organic contamination, and collection and treatment of air discharges from the soil treatment process.
- 4. Redeposition of treated soils on-site. Placement of 6 inches of clean top soil over the soil redeposition areas, site regrading, and restoration.
- Continued operation of the on-site groundwater collection and treatment system with an evaluation annually until concentrations of site contaminants can no longer be effectively removed or cleanup objectives are met. Treatment is by carbon adsorption with discharge to a nearby storm sewer.
- 6. Monitoring of the soil treatment, water treatment, air discharges and groundwater to ensure compliance with clean up objectives.

New York State Department of Health Acceptance

The New York State Department of Health concurs with the remedy selected for this site as being protective of human health.


Declaration

The selected remedy is protective of human health and the environment, complies with State and Federal requirements that are legally applicable or relevant and appropriate to the remedial action to the extent practicable, and is cost effective. This remedy utilizes permanent solutions and alternative treatment or resource recovery technologies, to the maximum extent practicable, and satisfies the preference for remedies that reduce toxicity, mobility, or volume as a principal element.

Date

Michael J. O'Toole, Jr.

Director, Division of Hazardous Waste Remediation

NEW YORK STATE DEPARTMENT OF

ENVIRONMENTAL CONSERVATION

DIVISION OF HAZARDOUS WASTE REMEDIATION

RECORD OF DECISION

MAESTRI SITE

SITE #7-34-025

TOWN OF GEDDES, ONONDAGA COUNTY

March 1995

TABLE OF CONTENTS

SECTI	PAGE
1.	Site and Description1
2.	Site History1
	2.1 Operational/Disposal History1
	2.2 Remedial History2
3.	Current Status2
	3.1 Summary of Remedial Investigation3
	3.2 Interim Remedial Measures4
	3.3 Summary of Human Exposure Pathways4
	3.4 Summary of Environmental Exposure Pathways5
4.	Enforcement Status5
5.	Summary of the Remediation Goals5
6.	Summary of the Evaluation of Alternatives6
	6.1 Description of Alternatives6
	6.2 Evaluation of Remedial Alternatives8
7.	Summary of the Selected Remedy11
	7.1 Elements of the Selected Remedy
	7.2 Documentation of Significant changes
8.	Highlights of Community Participation
Tables	1 - Summary of Contaminants In Soil Samples 2 - Cost Estimates For Remedial Alternatives
Figure	1 - Location Map 2 - Site Topographic Map 3 - General Site Plan 4 - Soil Remediation Zone 5 - Groundwater Remediation Zone 6 - Site Layout For Ex-Situ Remediation
APPENT	TORS

Appendix A: Responsiveness Summary

Appendix B: Administrative Record

RECORD OF DECISION

"MAESTRI SITE"

Town of Geddes, Onondaga County, New York
Site No. 7-34-025
MARCH 1994

SECTION 1: SITE LOCATION AND DESCRIPTION

The Maestri Site, located at 904 State Fair Boulevard in the Town of Geddes, Onondaga County, New York, is approximately 3 miles northwest of Syracuse, New York. A site location map is included as Figure 1. The site, depicted in Figure 2, is approximately 7 acres in area. Onondaga Lake, located 1500 ft. northeast of the site, is the nearest surface water body to the site. Topography of the site is characterized by gently sloping grades which fall to the northeast at slopes up to 5 percent. The site is bordered by State Fair Boulevard to the southwest and the residences along Alhan Parkway to the northeast. Vacant lots that border the site on the northwest and southeast are heavily wooded.

Presently a 2.8 acre portion of the site near Alhan Parkway is cleared and secured with an 8-ft high chained link fence and two locked gates. A gravel road extends from State Fair Boulevard to the secured portion of the site. A ground water treatment building, concrete pads, monitoring wells, recovery wells, piezometers, and former drum disposal areas at the site are indicated on Figure 3.

SECTION 2: SITE HISTORY

2.1 Operational/Disposal History

- * 1970's Drums containing industrial waste materials allegedly generated by Stauffer Chemical Company were buried at the site.
- * 1987 The site owner, Mr. Bert Maestri reportedly excavated soil and drums from an area of the site indicated on Figure 3. Following characterization by the New York State Department of Health (NYSDOH), the material was disposed of at an off site secure landfill.
- * 1987 Samples collected by NYSDOH from a residential basement sump revealed the presence of contaminants from the site. Additional samples collected by NYSDOH from neighboring residential sumps indicated that only the original basement sump was impacted by the site.
- * 1987 Malcolm Pirnie, Inc. conducted a limited site investigation on behalf of the Onondaga County Health Department (OCHD) to evaluate the environmental effects of the former waste disposal area.

* 1987 - NYSDEC listed the site on the NYS Registry of Inactive Hazardous Waste Disposal Sites as site # 7-34-025.

2.2 Remedial History

- * October 1988 NYSDEC and Stauffer Management Company (SMC) executed an Order on Consent for development and implementation of site Interim Remedial Measures (IRM).
- * June 1989 Site investigations began, which included: soil vapor survey, geophysical survey, monitoring well installation, soil boring completion, air sampling, and sampling of surface soil, subsurface soil, and ground water. A magnetic anomaly discovered during the investigation was identified as buried drums.
- * December 1990 SMC completed the first drum excavation. Approximately 100 drums are removed from the site
- * February 1991 An indoor air monitoring program required by NYSDOH for selected residences located on Alhan Parkway, downgradient of the site, was implemented by O'Brien & Gere Engineers on behalf of SMC
- * January 1992 SMC submitted Basis of Design Report to NYSDEC for a ground water recovery and treatment system.
- * May 1992 Operation of the ground water recovery and treatment system began.
- * September 1992 SMC submitted a final report on the results of the field investigations and development of the site IRMs.
- * December 1992 NYSDEC and SMC executed an Order on Consent for performance of a Focused Remedial Investigation/Feasibility Study (RI/FS).
- * December 1993 Second drum removal occurs. Approximately 200 drums found during the focused RI, and containing industrial waste were excavated and disposed off site by SMC.
- February 1994 SMC submitted the Focused Remedial Investigation Report to NYSDEC.
- * September 1994 SMC submitted the Maestri Site Feasibility Study to NYSDEC.

SECTION 3: CURRENT STATUS

Under terms of an Administrative Order on Consent with the NYSDEC, SMC initiated a Remedial Investigation/ Feasibility Study (RI/FS) in December 1992 to address the residual contamination at the site. Field work for the RI was completed in May 1993. The Focused RI Report was submitted by SMC in February 1994 and the report was approved in July 1994. A public meeting to present the results of the RI was held at the Geddes Town Offices on September 22, 1994. The site FS was submitted on September 24 1994. The Proposed Remedial Action Plan was subject to a public meeting on January 19, 1995.

3.1 Summary of the Remedial Investigation

The purpose of the RI was to define the nature and extent of any residual contamination resulting from previous drum disposal activities at the site.

The focused RI was conducted in a single phase. The field work was conducted between January 1993 and May 1993. A report entitled Maestri Site Focused Remedial Investigation has been prepared describing the field activities and findings of the RI in detail. A summary of the RI follows.

The RI activities consisted of the following tasks completed in accordance with the approved RI Workplan:

- 1) An on-site passive soil vapor survey to detect potential areas of subsurface soil contamination was conducted.
- 2) Two geophysical surveys were conducted, originally one in the area of the soil vapor survey and a second confirmatory survey over the remainder of the site after the detection of an anomaly in the soil vapor area.
- 3) 12 on-site test pits, located based on the soil vapor and geophysical survey results
- 4) Installation of 4 soil borings
- 5) On-site and off-site groundwater quality screening, consisting of sampling points GW-1 through GW-16, was performed to evaluate the horizontal extent of groundwater contamination downgradient of the site.
- 6) Installation and hydraulic conductivity testing of 2 additional off-site ground water monitoring wells.
- 7) Collection and chemical analysis of 18 groundwater samples for site specific parameters.
- 8) Completion of a human health risk assessment.
- 9) Summary of all RI results, previous investigations, and remedial work performed during the IRM's, including the performance of the groundwater recovery and treatment system, in a Focused RI Report.
- 10) A Fish and Wildlife Survey was conducted at the site and documented in the Fish and Wildlife Impact Analysis Report dated July 1994.

The analytical data obtained from the RI was compared to applicable Standards, Criteria, and Guldance (SCGs) in determining remedial alternatives. Groundwater, drinking water and surface water SCGs identified for the Maestri Site were based on NYSDEC Ambient Water Quality Standards and Guldance Values and on Part V of the NYS Sanitary Code. For the evaluation and interpretation of soil and sediment analytical results, NYSDEC soil cleanup guidelines for the protection of groundwater, and background conditions were used to develop remediation goals for soil.

Based upon the comparison of results of the remedial investigation to the SCGs and evaluation of potential public health and environmental exposures, certain areas and media of the site require remediation.

During the course of the site investigation conducted under the initial IRM (1988) Order with SMC, sufficient data was collected to establish that there are no remaining significant impacts to the site surface soils, surface water, ambient air, or residential indoor air quality resulting from the former drum disposal activities at the site. As a result the RI was focused to delineate the extent of the off site groundwater plume and to determine the vertical and horizontal extent of subsurface soils containing site contaminants in excess of cleanup goals.

Soil sample analytical results indicate the presence of site related contaminants in subsurface soils near the former drum disposal areas (Figure 4). Organic contaminants, predominantly xylene, were detected in the subsurface soils down to the water table (approx. 11 ft. below grade). Xylene concentrations ranged to a high of 7000 parts per million (PPM) in site subsurface soils. Other contaminants detected on site include toluene, ethlybenzene, tetrachloroethene, 2-methylphenol 2,4-dimethylphenol, and benzoic acid. Concentrations of these contaminants are substantially lower than that of xylene (Table #1).

Results of the groundwater investigations indicate the presence of site related contaminants in the shallow overburden groundwater. Movement of the shallow groundwater is in a northeasterly direction placing the homes on Alhan Parkway in the path of the off-site plume. However, all local residences are on public water, and no current or anticipated future uses of groundwater exist in the vicinity of the site. The principal organic contaminant detected in the shallow groundwater was xylene. Concentrations in excess of 30 ppm have been detected in monitoring wells on site immediately down gradient of the former drum disposal areas. No site related contaminants were detected in the bedrock groundwater. Figure 5 delineates the lateral extent of the volatile organic compound groundwater plume. Based on the results of the groundwater screening the existing groundwater recovery and treatment system installed as an IRM and in operation since May 1992 appears to have controlled the migration of the plume.

3.2 Interim Remedial Measures:

Interim Remedial Measures (IRMs) were conducted at the site based on findings as the RI progressed. An IRM is implemented when a source of contamination or exposure pathway can be effectively addressed before completion of the RI/FS.

As previously mentioned an additional cache of buried drums was discovered during the course of the focused RI. To expedite the removal of this additional source of site contaminants an IRM workplan was prepared for removal of the buried drums. The excavation was conducted in November and December 1993 and resulted in removal of 200+ additional drums. Similar to the 1990 removal, most of the 1993 drums were emptied and crushed but a few of the remaining drums did contain liquid waste. The drums were cut, cleaned-and stacked on a retaining platform on-site before being disposed off-site. The liquid waste was combined and disposed off-site at a commercial treatment facility. Confirmatory samples were taken from the bottom and side walls of the excavation prior to backfilling with clean soil. Excavated soils were staged on site in covered roll-offs prior to off-site disposal.

The groundwater recovery system installed in 1992 consist of six (6) pumping wells, five on-site and one offsite (Fig.3). The wells pump contaminated groundwater to the on-site treatment system. This system treats the water utilizing activated carbon prior to discharge to a nearby storm sewer. A monitoring network of over twenty (20) monitoring wells and piezometers is also in place. Water level data and groundwater quality sampling is conducted weekly. Results since the system was put in place indicate that the organic groundwater plume has been controlled by the operation of the recovery system.

MAESTRI SITE
RECORD OF DECISION

3.3 Summary of Human Exposure Pathways:

A human health risk assessment was conducted during the focused RI to evaluate current and potential future health risks associated with the site. Under current conditions with restricted site access and with the groundwater recovery and treatment system operating, there are no complete exposure pathways, and the site does not pose an unacceptable risk to human health. Two receptor groups were identified under the future on-site unrestricted residential use scenario. Adult and child residents under this scenario would have complete exposure pathways for soil contact, soil ingestion, indoor vapor inhalation, and ingestion of fruits and vegetables from on-site gardening. The USEPA guidelines for hazard indices and or excess cancer risk are both exceeded for the combined impacts of the four on-site exposure pathways.

3.4 <u>Summary of Environmental Exposure Pathways:</u>

As part of the focused RI a Fish and Wildlife Impact Analysis (FWIA) was conducted for the Maestri Site. The FWIA was conducted in accordance with the NYSDEC Division of Fish and Wildlife's document entitled Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (1991). Specifically, Step I - Site Description and Step IIA - Contaminant-Specific Impact Analysis, Pathway Analysis of the NYSDEC document are addressed in the report.

The FWIA concluded that the majority of the terrestrial portion of the study area is highly developed, resulting in limited biological community composition. Although complete exposure pathways were identified on-site for small mammals, such as the woodchuck, and seed/fruit eating birds, these species are expected to use the site minimally because of the poor habitat in adjacent areas. Therefore any impacts from site related contaminants to wildlife on-site are expected to also be minimal.

Downgradient surface waters (Onondaga Lake) and wetlands present in the FWIA study area are not affected by site related contaminants because migration of the contaminants is prevented by the groundwater recovery and treatment system and no other migration pathways have been identified. Therefore, off-site impacts to fish, wildlife and resources are not expected.

SECTION 4: ENFORCEMENT STATUS

The NYSDEC and the Stauffer Management Company (SMC) entered into a Consent Order on December 16, 1992. The Order obligates the responsible party to implement a full remedial program. Upon issuance of the Record of Decision, SMC has 30 days to notify the NYSDEC that it will implement the selected remedy under provisions of the existing Order on Consent.

The following is the chronological enforcement history of this site.

Date Index No. Subject of Order

8/31/88 A7-0139-88-01 IRM Order

12/16/92 A7-0226-90-03 Remedial Program

11/15/93 A7-0226-90-03 Mod.(Drum Removal)

SECTION 5: SUMMARY OF THE REMEDIATION GOALS

Goals for the remedial program have been established through the remedy selection process stated in 6NYCRR 375-1.10. These goals are established under the guideline of meeting all Standards, Criteria, and Guidance (SCGs) and protecting human health and the environment.

At a minimum, the remedy selected should eliminate or mitigate all significant threats to the public health and to the environment presented by the hazardous waste disposed at the site through the proper application of scientific and engineering principles.

The goals selected for this site are:

- Reduce, control, or eliminate the contamination present within the soils on site.
- Eliminate the potential for direct human or animal contact with the contaminated soils on site.
- Prevent, to the extent possible, migration of contaminants in on-site soils to groundwater.
- Provide for attainment of SCGs for groundwater quality at the limits of the existing site boundary.
- Minimize to the maximum extent practicable long-term restrictions to future site usage

SECTION 6: SUMMARY OF THE EVALUATION OF ALTERNATIVES

Potential remedial alternatives for the Maestri Site were identified, and evaluated in the report entitled "Feasibility Study - Maestri Site; Geddes, N.Y." prepared by O'Brien & Gere Engineers for SMC. The process for development of alternatives includes the development of remedial action objectives, development of general response actions, identification of volumes or areas of contaminated media, identification and screening of remedial technologies and process options, and the assembly of remedial alternatives. Seven remedial alternatives were developed to address the remedial action objectives. The preliminary screening of alternatives step was not performed in the FS because the number of identified alternatives was a manageable number for detailed analysis. The number of alternatives given consideration and evaluated in the PRAP has been further reduced by NYSDEC to three (3) as presented herein.

Fencing, groundwater recovery and treatment, and groundwater monitoring are common components of each remedial alternative for the site. The current ground water system will continue to operate as part of each remedial alternative. There is currently a fence around the site to restrict human access to the site. The fence will be maintained until completion of the site remediation. Monitoring wells that have previously been installed will continue to be used to track contaminant concentrations in site ground water.

Therefore, the assembly of process options and remedial alternatives has focused on the approximately 8,000 cubic yards of contaminated subsurface soils surrounding the former drum disposal and excavation areas on site (Figure 4). A summary of the detailed analysis follows.

6.1 Description of Alternatives

The potential remedies are intended to address the contaminated soils at the site. Approximately 8000 cubic yards of soil from an estimated area of 100 ft. x 200 ft. on-site require remediation. The predominant soil contaminant is xylene, detected in on-site soils at a concentration of up to approximately 7,000 parts per million (ppm).

Xylene concentrations have driven the selection of remedial technologies and alternatives. The NYSDEC has established a cleanup goal of 1.2 ppm for xylene in site soils. The cleanup goal is based on a particular contaminant's ability to partition off soils into groundwater. For xylene the 1.2 ppm soil level would result in concentrations in groundwater less than the 5 parts per billion (ppb) ground water standard. Due to xylene's predominance each remedial technology and alternative was initially evaluated for its ability to treat xylene to cleanup levels. The technologies evaluated for xylene may also be applicable to other site contaminants, and given the disproportion of low concentrations of other contaminants in soil to the high levels of xylene, there is a strong likelihood that the other volatile contaminants would be rendered non-detectable after treatment. This would be verified by sampling for all site contaminants at the limits of the soil excavation and prior to redeposition of treated soil.

No Further Action Alternative #1

The no further action alternative was evaluated as a procedual requirement and as a basis for comparison. This alternative recognizes the remedial work already completed under the previously performed IRMs. Continued operation of the groundwater system, implementation of a groundwater monitoring program, fencing, and recommended site deed restrictions, would be included in the no further action alternative.

This is an unacceptable alternative as the site would remain in its present condition, and human health and the environment would not be adequately protected. Site access and potential use would continue to be restricted. Site soils would continue to be a source of ground water contamination though the off-site impacts are minimized by the operation of the ground water system.

Present Worth:

\$1,590,000

Capital Cost:

\$ 20.000

Annual O&M:

\$ 100,000

Time to Implement

30 years

In Situ Soil Vapor Extraction Alternative #2

A series of wells would be installed in the soil to lower the water table and to draw air containing site related organic contaminants from the impacted soils. Since the contamination extends below the water table to an estimated depth of 14 ft. the area would need to be dewatered to allow the passage of air through the full extent of contamination.

The Soil Vapor Extraction (SVE) vacuum unit would draw air through the soil. The air in turn would strip the VOCs from the soil and transport the contaminants to the SVE extraction wells. The off gas from the SVE extraction wells would be directed through a treatment unit such as a carbon adsorption unit. The SVE

vacuum unit would also serve to promote bioventing in the soil. As air is pulled through the soil, oxygen availability to microorganisms would increase, thus enhancing the effectiveness of biodegradation of semi-volatile organics (those site contaminants whose vapor pressure would not be amenable to vapor extraction).

Present Worth: \$1,770,000
Capitol Cost: \$710,000
Annual O&M: \$150,000
Est. Time To Implement 10 years

Ex Situ Biological Treatment/Ex Situ Soil Vapor Extraction Alternative #3

This alternative includes excavation of all on-site soils with contaminant concentrations in excess of site cleanup goals, on-site ex situ biological/vapor extraction treatment, and replacement of the treated soils. The soil vapor extraction component would address the volatile (VOC) fraction of the site contaminants and the biological enhancement would treat the semi-volatile organic contaminant (SVOC) fraction. Excavated soils would likely require blending and screening inside a controlled process enclosure prior to placement in windrow piles approximately 20 ft. wide and 8 ft. high. The soil piles would be underlined and covered with a flexible membrane to promote proper drainage.

In order to maintain the proper bioreactive environment, three additives to the soil piles would be provided: oxygen, water, and nutrients. Perforated piping would be placed horizontally within the piles to allow for circulation of oxygen. Provisions would be made to add moisture and nutrients to the pile as needed. A vacuum would be used to actively extract organic vapors from the pile. Drawing air through the soil and controlling moisture content and nutrients would promote biodegradation activity of site contaminants. Off gases from both the soil handling enclosure and the vapor extraction process would require treatment prior to discharge.

Treated soil would be redeposited on site and covered with a minimum of six (6) inches of clean soil. The site will then be regraded and restored, and the site fence removed.

Present Worth: \$1,570,000
Capital Cost: \$1,200,000
Annual O&M: \$150,000
Est. Time To Implement 5 Years

6.2 Evaluation of Remedial Alternatives

The criteria used to compare the potential remedial alternatives are defined in the regulation that directs the remediation of inactive hazardous waste sites in New York State (6NYCRR Part 375). For each of the criteria, a brief description is provided followed by an evaluation of the alternatives against that criterion. A detailed discussion of the evaluation criteria and comparative analysis is contained in the Feasibility Study.

1. <u>Compliance with New York State Standards, Criteria, and Guidance (SCGs)</u>. Compliance with SCGs addresses whether or not a remedy will meet applicable environmental laws, regulations, standards, and guidance.

Alternative #1, through natural attenuation and operating the existing ground water system over many years, may provide for attainment of NYS Class GA ground water standards for the off site groundwater plume. The alternative would not comply with NYSDEC recommended soil cleanup levels for organic contaminants.

Alternative #2 would provide for attainment of ground water standards and is expected to meet cleanup levels for Volatile Organic Contaminants (VOC) in soils over a 7-10 year period. In situ biodegradation of Semi-Volatile Organic Contaminants (SVOC) to levels meeting soil cleanup levels is uncertain for this site due to difficulties in providing sufficient oxygen and nutrients to the heterogeneous soils.

Alternative #3 would provide attainment of both Class GA ground water standards as well as on-site soil cleanup goals for both VOCs and SVOCs in a 3-5 years after the soil cleanup is completed.

2. <u>Protection of Human Health and the Environment</u>. This criterion is an overall evaluation of the health and environmental impacts to assess whether each alternative is protective.

Alternative #1 would be protective of human health and the environment through site use restrictions and fencing that would restrict access and potential for contact. This Alternative would provide for continued control of the groundwater plume, but does not reduce contaminants in soil from migrating to the groundwater. The risks associated with unrestricted use would remain in excess of USEPA guidelines. However, the existing conditions currently pose little potential risk to the environment.

Alternative #2 may reduce concentrations to levels which do not present unacceptable risk to human health. However, the timeframe to attain clean up levels is uncertain and some residual contamination would remain. Site fencing would be maintained throughout the remediation. Alternative #2 does not pose unacceptable risk to the environment.

Alternative #3 would reduce the risks to human health for all exposure scenarios. Concentrations of all contaminants of concern would be reduced to levels which may support future use. The time frame to attain the target clean up levels for groundwater is estimated as 3-5 years after soil cleanup. Site fencing would be maintained throughout the remediation. Following remediation the fence could be removed because access restrictions would no longer be necessary. The alternative does not pose unacceptable risk to the environment.

3. Short Term Effectiveness. The potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and implementation are evaluated. The length of time needed to achieve the remedial objectives is also estimated and compared with the other alternatives.

Alternative #1 involves no further remedial action other than (O&M) and monitoring. Workers performing O&M are required to wear personal protective equipment to minimize potential hazards during sampling and maintenance activities. There are no additional short-term impacts to the local community or the environment.

Alternative #2 involves a small amount of soil disturbance. As such there is a limited potential for short-term contact with soils and ground water containing contaminants during installation of the vapor extraction system. Workers would be required to wear personal protective equipment and adhere to safe construction practices

to minimize potential hazards. A network of air monitoring would be set up to ensure community protection. It is expected that the cleanup of both soils and ground water would take 7-10 years.

Alternative #3 involves excavation and handling of contaminated soils. As such, the potential for worker exposure is high. Workers would be required to wear personal protective equipment and adhere to safe construction practices to minimize potential hazards. Potential community exposure to vapors would need to be carefully addressed. An air monitoring network would be set up to ensure community protection from release of both particulate (dust) and VOC's. During design an evaluation would be made as to the feasibility to house the excavation and/or the soil processing and piles. It is estimated that the cleanup of soils would take 1-2 years and groundwater would take 3-5 years thereafter.

4. Long-term Effectiveness and Permanence.

This criterion evaluates the long-term effectiveness of alternatives after implementation of the response actions. If wastes or treated residuals remain on site after the selected remedy has been implemented, the following items are evaluated: 1) the magnitude of the remaining risks; 2) the adequacy of the controls intended to limit the risk; and 3) the reliability of these controls.

Alternative #1 provides for deed restrictions and site access restrictions that minimize the magnitude of the residual risks to site contaminants. Risks associated with off-site migration of contaminated ground water would continue to be mitigated. The existing ground water system is adequate and reliable for collecting and remediating ground water with site contaminants. Potential risks to on-site users would remain.

Alternative #2 has uncertainties whether the in situ soil vapor extraction could minimize risks associated with potential residential use scenario, due to dense tight soils limiting the treatment capability for semi-volatiles. The site conditions create effectiveness and reliability uncertainties. The existing fencing is adequate and reliable for restricting site access, and the existing ground water system is adequate and reliable for collecting and remediating ground water with site contaminants.

Alternative #3 would effectively minimize risks associated with the potential future residential scenario. Risks associated with the off-site migration of ground water continue to be mitigated. Excavation and ex situ biological/vapor extraction treatment of site soils are expected to be adequate and reliable. Existing fencing is reliable in restricting access during remediation. The existing groundwater system is adequate and reliable for collecting and remediating groundwater containing site related contaminants.

5. Reduction of Toxicity, Mobility or Volume. Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility or volume of the wastes at the site.

Alternative #1. The current ground water system would continue to reduce the toxicity, mobility, and volume of site related contaminants in ground water. Reduction of contaminants in site soils above the water table through natural attenuation would be minimal.

Alternative #2. In situ vapor extraction treatment would likely reduce toxicity and mobility of organic contaminants in soils. Both the timeframe and overall ability to reduce toxicity and mobility of VOCs and SVOCs to cleanup levels is uncertain due to dense site soils. The current ground water system would continue to reduce the toxicity, mobility and volume of site related contaminants in ground water. The soil vapor extraction and groundwater treatment systems would be irreversible.

Alternative #3. Ex situ vapor extraction/biological treatment within a soil pile would reduce toxicity, mobility and volume of VOC and SVOC contamination in site soils to target clean up levels. The current groundwater system will continue to reduce the toxicity, mobility, and volume of site related contamination in groundwater. The ex situ vapor extraction/biological soil, and ground-water treatment systems would both be irreversible.

6. Implementability. The technical and administrative feasibility of implementing each alternative is evaluated. Technically, this includes the difficulties associated with the construction, the reliability of the technology, and the ability to monitor the effectiveness of the remedy. Administratively, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.

Alternative #1 continues the current ground water remedial system and is easily implemented. The existing discharge limits remain in effect. Existing monitoring wells would continue to be used to evaluate the effectiveness of the system. Long term site restrictions and access agreements are required between the site owner and Responsible Party.

Alternative #2, the in-situ vapor extraction system is readily available technology and easily installed. The reliability of the technology is limited by the nature of the contaminants and by the site's low permeability and heterogeneous nature of the soils. The effectiveness of the remedy could be easily monitored by implementation of a general site monitoring program as presented in the FS. Influent and effluent monitoring of the vapor extraction and ground water systems would be required. Substantive compliance with air and water discharge limits would also be required. Coordination and access agreements with the site owner may be necessary to allow operation and maintenance of the treatment systems.

Alternative #3 would include excavation of soils to an approximate depth of 15 feet, which is well within the limits of standard practice and construction equipment. Soils would be excavated, treated in piles, and backfilled into the excavation areas. Appropriate measures would be taken to ensure that the backfilled soils would not come in contact with contaminated soil or groundwater. Groundwater infiltrating into the excavation would be collected and treated. The effectiveness of the remedy is easily monitored by implementation of a general site monitoring plan as presented in the FS. Confirmatory samples from the side walls and bottom of the excavation would determine the limits of the excavation. Influent and effluent monitoring of the ground water and soil treatment systems would be required. Substantive compliance with air and water discharge limits would also be required. Coordination and access agreements with the site owner may be necessary to allow operation and maintenance of the treatment systems.

- 7. <u>Cost</u>. Capital and operation and maintenance costs are estimated for each alternative and compared on a present worth basis. Although cost is the last balancing criterion evaluated, where two or more alternatives have met the requirements of the remaining criteria, cost effectiveness can be used as the basis for the final decision. The costs for each alternative are presented in Table 2.
- 8. Community Acceptance Concerns of the community regarding the RI/FS reports and the Proposed Remedial Action Plan have been evaluated. The NYSDEC and NYSDOH conducted a public meeting regarding the PRAP on January 19, 1995. There were no public objections to the proposed remedy made at the meeting. In general the public was in strong support of the permanent treatment aspect of the remedy. Concerns raised during the meeting focused on the implementation details of the excavation component and how that may affect adjacent homeowners. The NYSDEC accepted written comments on the PRAP though February 11, 1995. One set of written comments was received from the homeowners on Alhan Parkway that

abut the site. A "Responsiveness Summary" was prepared that addresses the public comments received and briefly describe what measures could be taken during remediation to address the concerns raised. The Responsiveness Summary is included herein as Appendix A. The final remedy selected does not differ significantly from the proposed remedy.

SECTION 7: SUMMARY OF THE SELECTED REMEDY

Based upon the results of the RI/FS, and the evaluation presented in Section 6, the NYSDEC has selected Alternative #3 as the remedy for this site.

This selection is based upon an evaluation of the two threshold criteria and five balancing criteria as presented in Section 6. Alternatives #1 & #2 are not fully protective of human health and the environment under the unrestricted use scenario. Alternative #2 has difficulties in meeting soil clean up objectives particularly for SVOC contamination, and the timeframe for operating the system is uncertain due to site soil conditions. Alternative #3 is effective in meeting site cleanup objectives, and protective in the long term. Short term impacts would be a potential concern but could readily be mitigated through proper controls on excavation, air monitoring, and the use of personal protective equipment for site workers. Alternative #3 uses readily implementable technology that minimizes the timeframe for remedial action objectives. Alternative #3 will result in greater than 95% reduction of all site contamination contained in both ground water and soils. Though higher in initial capital expenditures Alternative #3 is cost effective in that the time required to operate and then monitor the site is substantially less than for Alternatives #1 & #2. Alternative #3 provides the added benefit of allowing future site use with minimal restriction once all remedial activities are completed.

The estimated present worth cost to implement the proposed remedy is \$1.57 million. The cost to construct this remedy is \$1.20 million and the annual operation and maintenance cost for the 3-5 year operating period is \$150,000/yr.

7.1 The Elements Of The Selected Remedy Are As Follows:

- 1. A remedial design program to verify the conclusions of the conceptual design, and provide the details necessary for construction, operation, maintenance and monitoring of the remedial program.
- 2. Excavation and preparation for treatment of soils that contain contaminants in excess of soil cleanup objectives. This would involve an estimated 8,000 cubic yards of contaminated soil.
- 3. Treatment of the soil utilizing ex-situ piles that combines vapor extraction and biological degradation of organic contamination, and collection and treatment of air discharges from the soil treatment process.
- 4. Redeposition of treated soils on site. Placement of 6 inches of clean top soil over the soil redeposition areas, site regrading, and restoration.
- Continued operation of the on-site groundwater collection and treatment system with an evaluation annually until concentrations of site contaminants can no longer be effectively removed or cleanup objectives are met. Treatment will be by carbon adsorption with discharge to a nearby storm sewer.
 - 6. Monitoring of the soil treatment, water treatment, air discharges and groundwater to ensure compliance with clean up objectives.

2 Documentation of Significant Changes

There are no significant changes from the Proposed Remedial Action Plan.

SECTION 8: HIGHLIGHTS OF COMMUNITY PARTICIPATION

Document repositories were established at the following locations for public review of project related material:

* Geddes Town Hall

*NYSDEC

*NYSDEC Region 7 Office

Woods Road

50 Wolf Road

615 Erie Boulevard West

Solvay, N.Y.

Albany, N.Y. 12233-7010

Syracuse, N.Y. 13204

Attn: Mr. Gary Kline, P.E.

Attn: Mr. Charles Branagh, P.E.

The following citizens participation activities were conducted:

- Fact Sheet, September 1994; Described results from RI activities and identified document repositories.
- Public meeting held September 22, 1994; Presented results of the RI and accepted public inquiry.

Fact Sheet, December 1994; summarized PRAP and announced public meeting on same.

- Public Meeting held January 19, 1995; Presented results of the FS and PRAP for public comment.
- Public Comment period open from December 29, 1994 through February 11, 1995 to receive comments on the PRAP.

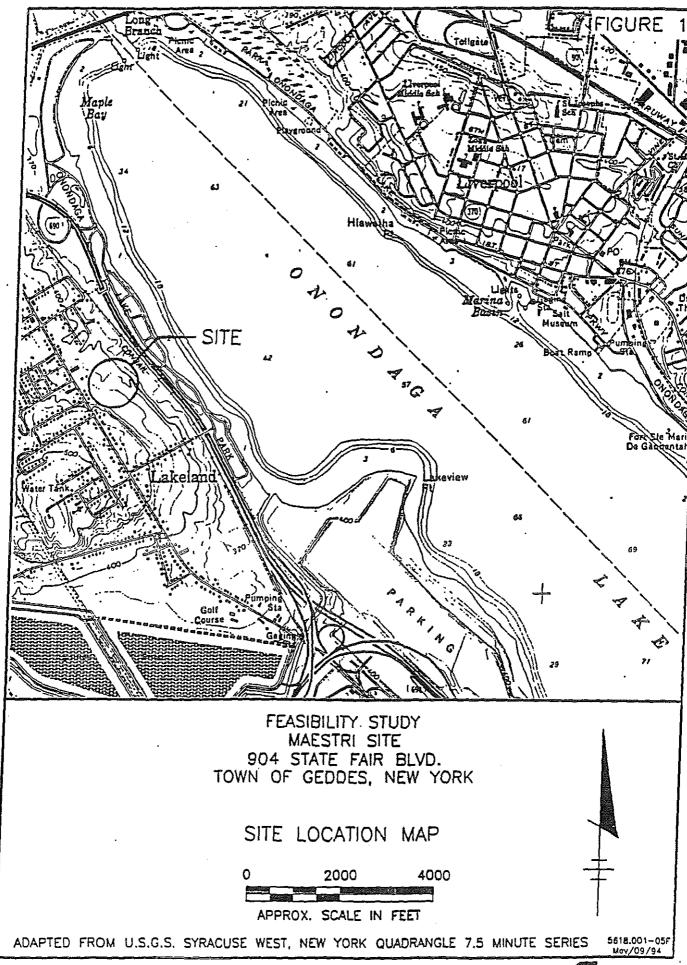
Table 1 SUMMARY OF CONTAMINANTS IN SOIL

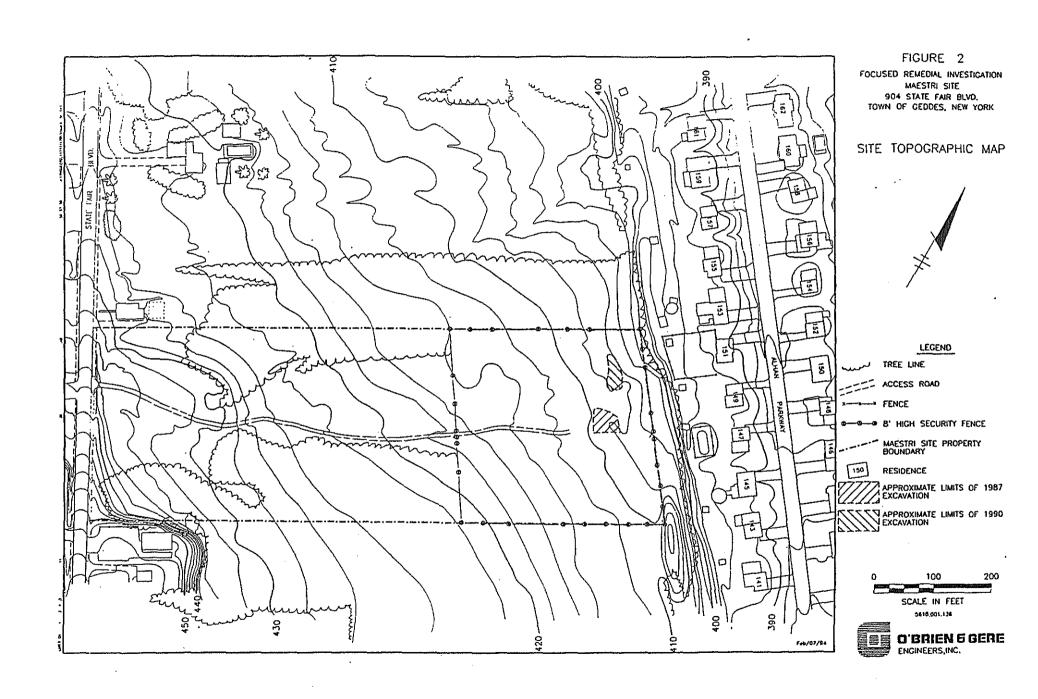
Focused Remedial Investigation Maestri Site 904 State Fair Blvd. Town of Geddes, NY

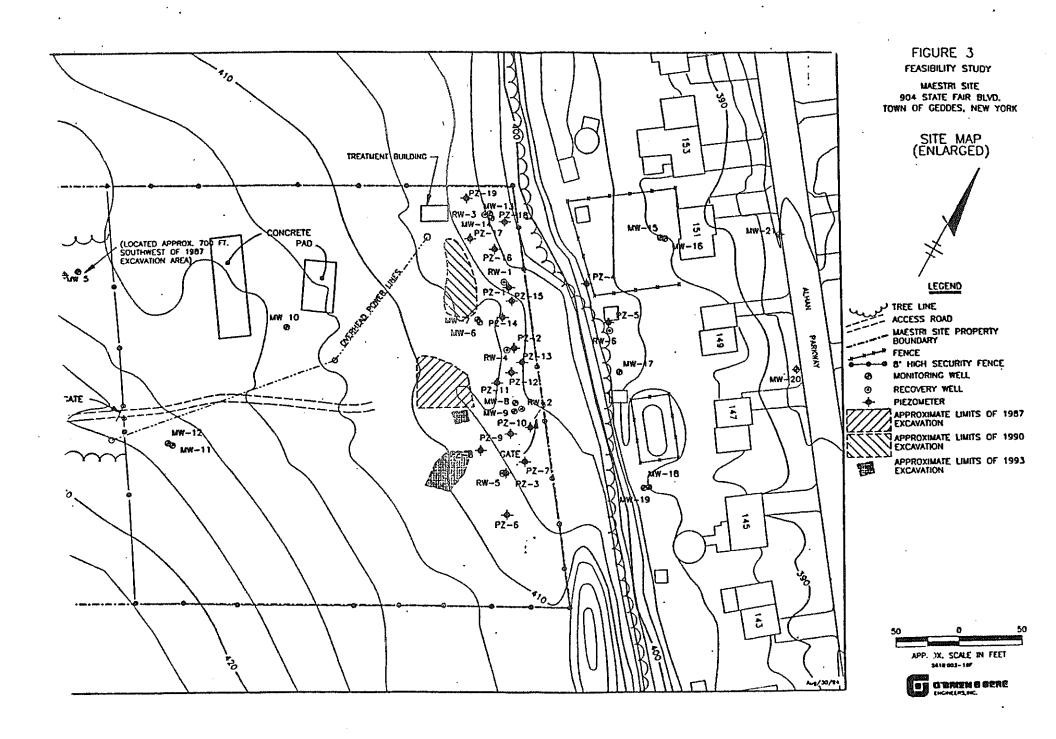
Compound	Average Soli Concentration (mg/kg)	Upper Bound Soil Concentration (mg/kg)
PCE	28.4	156
Toluene	7.7	45.3
Ethylbenzene	2.2	11.7
Xylene	1360	7070
2-Methylphenol	1	3.7
2,4-Dimethylphenol	2.3	14.7
Benzoic Acid	12.8	71.5

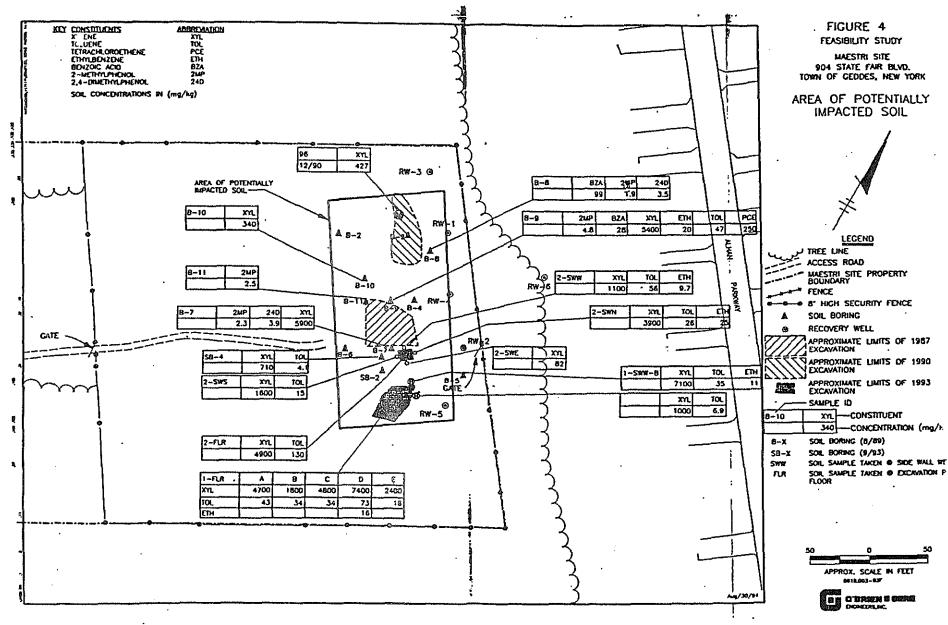
TABLE 2 COST ESTIMATES FOR REMEDIAL ALTERNATIVES MAESTRI SITE SITE # 7-34-025 NOVEMBER 1994

ALTERNATIVE #1-NO FURTHER ACTION

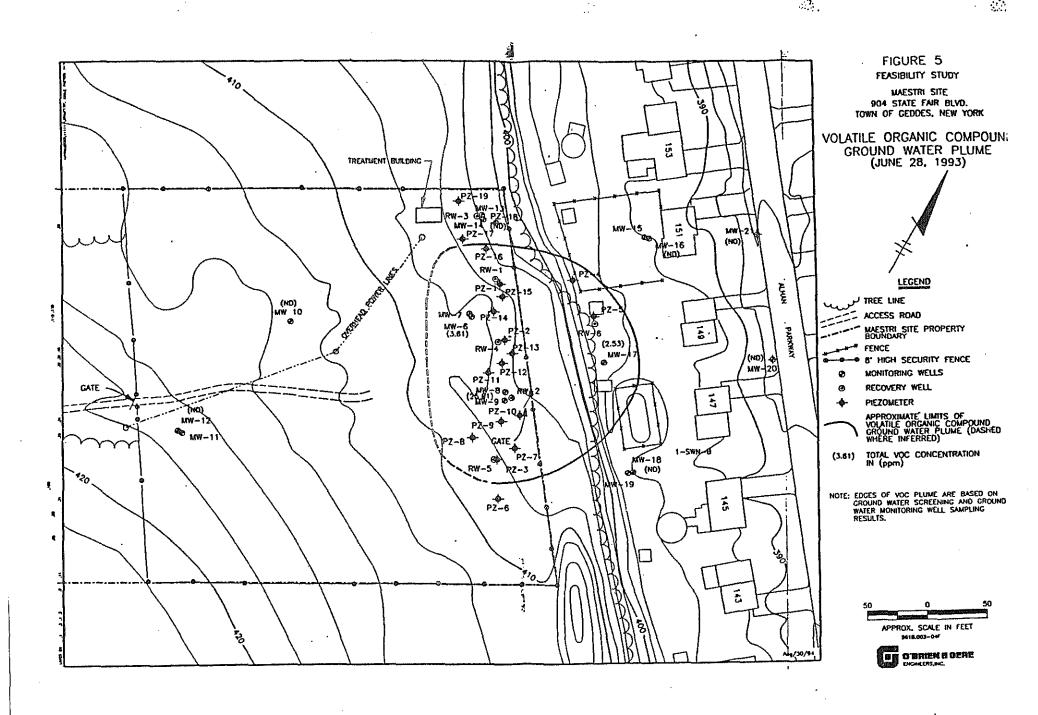

CAPITAL (construction) COST - \$ 20,000 EST. O&M COST - \$ 100,000/yr TIME TO IMPLEMENT - 30yrs TOTAL PRESENT WORTH - \$1,590,000

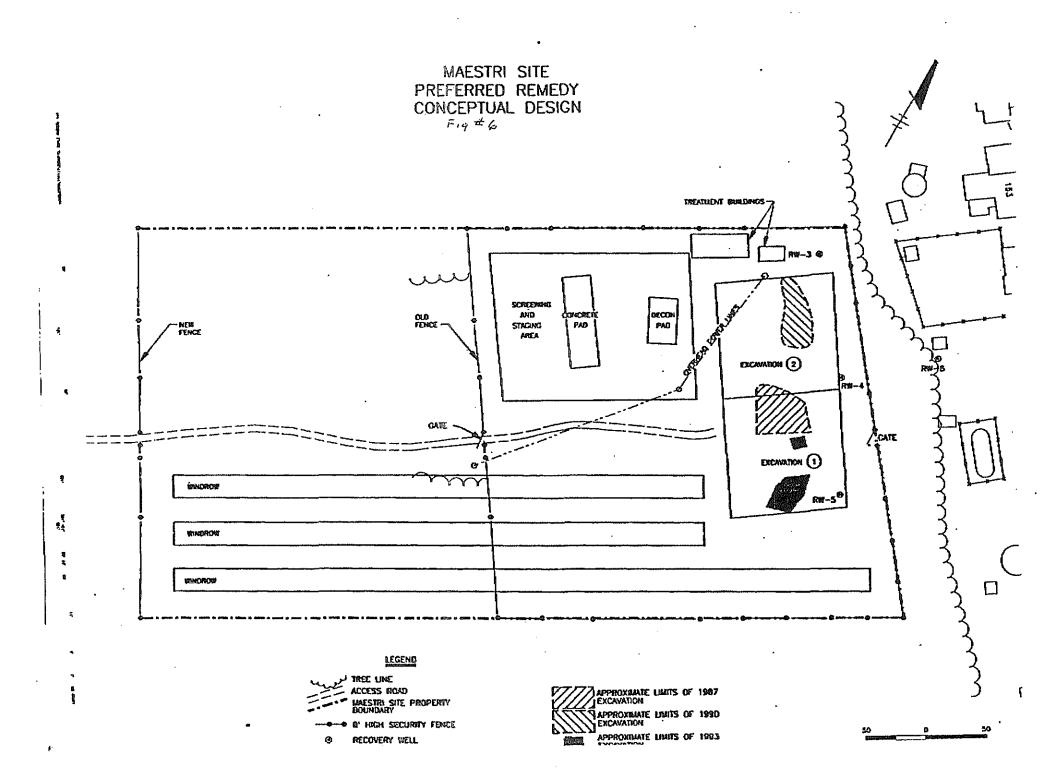

ALTERNATIVE #2-INSITU SOIL VAPOR EXTRACTION


CAPITAL (contruction) COST - \$ 710,000 EST. O&M COST - \$ 150,000/yr TIME TO IMPLEMENT - 10yrs TOTAL PRESENT WORTH - \$1,770,000


ALTERNATIVE #3-EX SITU SOIL VAPOR EXTRACTION w/ BIOREMEDIATION

CAPITAL (construction) COST - \$1,200,000 EST. O&M COST - \$ 150,000/yr TIME TO IMPLEMENT - 5yrs TOTAL PRESENT WORTH - \$1,570,000





٠;

٠

APPENDIX A

RESPONSIVENESS SUMMARY

INTRO:

Attachment number one to this summary is a list of questions submitted by the homeowners on Alhan Parkway during the January 19, 1995 public meeting. The questions and issues raised by the letter are similar to those raised verbally during the public meeting's question and answer session.

Questions from the letter and meeting have been paraphrased and answered by the following Responsiveness Summary.

- 1. Q. Was off-site disposal of contaminated soil evaluated in the Feasibility Study?
 - A. Disposal of excavated soil off site in a landfill was evaluated in the Feasibility Study. The option was rejected due to the volume of contaminated soil, approximately 8,000 cubic yards. The cost for off-site disposal would approximately double the cost of remediation.
- 2. Q. What is the proposed location and nature of the process enclosures?
 - A. Process enclosures are temporary structures that could house the soil conditioning equipment. Details of this construction is a design consideration, currently there are two additional on-site structures planned that will be equipped with air control systems to prevent migration of airborne contaminants. They will be constructed west of the current groundwater treatment building. The process enclosures are not intended to house the soil piles. The piles will be covered with a heavy plastic sheeting.
- 3. Q. How long will excavation last?
 - A. The actual excavation will be short duration approximately 3-4 weeks per campaign. The site soil will be excavated and treated in two campaigns, each lasting for up to six (6) months. Plans call for one half the site to be remediated in 1996 followed by the second half in 1997.
- 4. Q. How will the excavated areas be controlled?
 - A. Excavated areas during treatment may require stabilization. The use of offsite and/or on-site backfill will be considered during design. More likely the side slopes will be graded back to allow the hole to remain open and be used as a sump to collect precipitation and contaminated groundwater which

- would be periodically pumped out for treatment at the existing on-site groundwater treatment system.
- 5. Q. What is the schedule for site remediation and will the neighborhood be notified?
 - A. The current schedule calls for the first soil campaign to start in the Spring of 1996. The local neighborhood will be provided early notice of an anticipated start of remedial activities.
- 6. Q. What is the reputation and history of ex-situ bioremediation?
 - A. Ex-situ bioremediation (soil piles) has been used extensively throughout the environmental industry. In particular, the oil and gasoline refinery industry has had much success remediating soil contaminated with similar compounds. Typical problems with bioremediation are usually associated with the slow down of biological activity during the cold winter months thus prolonging the remedial program.
- 7. Q. Will there be contingency plans for the soil treatment system? What if problems arise with odors?
 - A. Contingency plans will be developed for both the excavation and treatment processes during the design stage. Air monitoring at the perimeter of the site will insure protection of the adjoining homes. Some nuisance odors during remedial activities are likely to occur. All efforts will be made to minimize problems by tight controls on the excavation through the use of plastic covers and foam, weather and wind awareness and odor control systems on the soil handling facility.
- 8. Q. Is there a potential for the back embankment to be undermined during the excavation? How can the homeowners be assured that there will be no property damage as a result of the remedial activities?
 - A. Based on our current knowledge from past experiences excavating drums on site the embankment is believed to be sufficiently stable. A geotechnical review will be made during design to determine if the embankment and/or excavation require additional support.

- 9. Q. If the excavation is left open, wouldn't the hole be come saturated with runoff?
 - A. The excavation areas if left open will be bermed to prevent runoff from entering and will be continually pumped out. Water will be directed to the existing water treatment system.
- 10. Q. Will the remediation and final site regrading affect runoff and drainage?
 - A. Site regrading will restore the site to approximately its existing conditions. It is not anticipated that drainage or runoff problems will occur.
- 11. Q. Does soil "cleaned" to 1.2 ppm xylene exhibit any odors?
 - A. In accordance with NYSDEC TAGM 4046 soil exhibiting nuisance odor, even if it meets target numerical cleanup levels, will not be considered "clean" and therefore in the case of Maestri will be left on the soil piles for further treatment.
- 12. Q. How will local homes be protected from odors and contaminants?
 - A. A Health and Safety plan has been developed for the site which addresses precautions necessary to control chemical releases during remedial activities. This plan will be updated to meet the requirements for the proposed construction work. Potential exposure to airborne contaminants will be addressed by real time air monitoring of the remedial activities and by the installation of a site perimeter monitoring network. The monitoring network will provide early warning of possible off-site migration of airborne contaminants. Tight engineering controls on the soil excavation and soil handling will reduce the chance of off-site migration. Should exceedences occur, the activities will be either modified or halted and evaluation of the cause be undertaken.

It should be understood that odor threshold, which is one's ability to detect a volatile organic, may occur at concentrations below that which can be routinely monitored. We agree, that these "nuisance" odors are a concern for the neighborhood and efforts will be made to control them. Limiting the exposed excavation, use of plastic covers, foam, and/or water, and weather pattern awareness (temp, wind direction, etc.) are all practices which can be used effectively to limit odors. Furthermore, excavation is expected to occur during the spring and work can be done when children are in school and adults are at work. Adequate notice will be provided before the excavation

begins.

- 13. Q. When remediation is complete, what will happen to the site?
 - A. Plans call for completion of both the soil and groundwater cleanup in 5-6 years. Post remedial monitoring of the groundwater to ensure effectiveness of the program may continue for some time at a select number of wells. Pending the outcome of the remediation and monitoring the site will be either delisted, or reclassified as properly closed. Wells not used for long term monitoring will be decommissioned by pulling the casing and grouting the boreholes. It is expected that the site will be available for use with minimal or no restrictions should the cleanup prove successful.
- 14. Q. Has Mr. Maestri cooperated in this program?
 - A. Mr. Maestri has not been involved during the RI/FS process.
- 15. Q. What guarantees are there that there are no other barrels?
 - A. The investigation has used the best methods available to ascertain the location and subsequent removal of drums. Magnetometer surveys, numerous test pits and test borings have been completed over the entire site during the RI/FS.

Attachdort # 1

Was disposal of the excavated soil to a landfill considered?

If it was, why wasn't it chosen?

What would be the cost of off-site disposal?

Describe the "controlled process enclosures".

What materials are they made of?

Are they temporary structures?

Where will they be?

How many will there be?

These will hold 8000 cubic yards of soil?

Will all the soil be excavated at once?

How long will the excavation take?

How will odors be controlled during the excavation process?

What will happen to the excavated areas during treatment?

Will they be backfilled with other soil?

What soil will be used to backfill excavated areas?

Where is the backfill from?

Was the backfill tested for contamination?

What time of year will the excavation happen?

Odors are worse when the weather is warm.

How much notice will the neighborhood have?

If it is planned during the cold winter months, are there alternate dates if the weather is warm?

What is the reputation of the ex-situ treatment?
Where has it been used?
What problems were encountered?
What contingency plans are in place if problems do arise?
(especially with odors)

Has consideration been given to the fact that when severe wet weather occurs the backfilled area may become oversaturated and slide down the hill onto homeowner property possibly causing heavy property damage?

The excavation area is close to the embankment directly behind 147, 149 & 151 Alhan Pkwy.

Does this bank have the structural integrity to retain saturated loose soil behind it?

Should the entire hill be regraded, including the embankment, with a terraced step-like grade?

What protection is going to be provided to homeowners to protect us from mud slides?

We would like to be assured, in writing, that any property damage resulting from the treatment process will be restored to its original form.

MARCH 1995

When the treatment process is done, the soil will be redeposited and regraded. There has been a history of storm run-off and spring-melt drainage problems in the area. The Town has been approached on several occasions to remedy drainage problems. The Town has responded with regrading and the addition of several catch basins.

How will the regrading effect what the Town has done to help the run-off problem?
Will the regrading cause new run-off problems?
Are additional catch basins planned?
How will the run-off be directed to the basins?

The clean-up level for xylenes is 1.2 ppm in the soil.
Will the cleaned soil contain this concentration?
Does 1.2 ppm of xylene have an odor?
Is there any criteria for acceptable odor levels?
As a homeowner, any odor is unacceptable.
How will exposure to odors be addressed?

What happens 5 years from now when the soil and groundwater treatment is done?

Does everyone pack-up and go home and close the book? What happens to the monitoring wells?

What guarantees are there that there are no other barrels?

What evidence do you have that leads you to think that there are no other barrels?

Has Mr. Maestri cooperated in this evaluation?

Simi Lora Fisher
151 Alher P.

APPENDIX B

ADMINISTRATIVE RECORD Maestri Site Site No. 7-34-025

- Maestri Site Investigation and Development of Interim Remedial Measures Final Report including Appendices A-H; O'Brien and Gere, September - 1992.
- 2. Administrative Order on Consent No. A7-0226-90-03, Site No. 3-34-025: Stauffer Management Company Respondent; Development of Remedial Program.
- 3. Work Plan including Addendum No. 1 for Remedial Investigation/Feasibility Study: Maestri Site;
 O'Brien and Gere, April 1992.
- 4. Health and Safety Plan for Remedial Investigation/Feasibility Study: Maestri Site; O'Brien and Gere, revised November 1992.
- 5. Quality Assurance/Quality Control Plan for Remedial Investigation/Feasibility Study: Maestri Site; O'Brien and Gere, revised November 1992.
- 6. Administrative Order on Consent No. A7-0226-90-3 Modification No. 1, Site No. 7-34-025: Stauffer Management Company Respondent. Implementation of Interim Remedial Measure.
- 7. Interim Remedial Measure Work Plan Anomaly Excavation and Removal: Maestri Site; O'Brien and Gere, October 1993.
- Health and Safety Plan Anomaly Excavation and Removal: Maestri Site; O'Brien and Gere,
 November 1993.
- 9. Anomaly Excavation and Removal Final Report: Maestri Site; O'Brien and Gere, November 1994.

- 10. Focused Remedial Investigation Report: Maestri Site; O'Brien and Gere, February 1994.
- 11. Fish and Wildlife Impact Analysis: Maestri Site; O'Brien and Gere, July 1994.
- .2. Groundwater Recovery System Performance Test: Maestri Site; O'Brien and Gere, August 1994.
- 3. Feasibility Study: Maestri Site; O'Brien and Gere, September 1994.
- 4. Proposed Remedial Action Plan: Maestri Site; NYSDEC, December 1994.
- 5. Transcript of January 19, 1995 Public Meeting and Responsiveness Summary to Public Meeting: NYSDEC, March - 1995; included as Appendix A to the Record of Decision.

Appendix E

Site Inspection Form, Well Sampling Field Record Form

		110 West Fayette Street Suite 300		Date:		
		Syracuse		Time:		
	ARCADIS	New York, 13202 Phone: 315 446 9120				
		Fax: 315 449 0017		Weathe	er	Temperature
	Site Inspection	Report	Par	tly Cloudy		High Low
Client	Stauffer Management Company	LLC	Pro	ject No.	3007	7261
Location	Maestri Site, 904 State Fair Blvd	, Geddes, NY	Insp	ected By:		
	e any deficiencies, issues, or actions to	aken at the bottom of the page or	on cont	tinuation pa	ges	
Site Secu	•			Circle one	ı	Comments/Action Required
	te closed and locked when arriving		Υ	N	NA	
	re any holes or breaks in the fenci		Υ	N	NA	
3. Was the	e door to the treatment shed locke	d?	Υ	N	NA	
	ack gate closed and locked?		Υ	N	NA	
	re any signs of vandalism or unau		Υ	N	NA	
	mage to fence, strange debris [bot					
	explain below and notify SMC and	Arcadis immediately				
Wells						
6. Are wel			Y	N	NA	
	wells covered (with lid or cap)? (ex		Υ	N	NA	
	wells locked? (except wells noted in	below)	Υ	N	NA	
Site Main				l Ni l	NIA	Т
	any garbage or debris? If so, plea	ise remove/discard.	Y	N	NA_	
	e visible dust?		Y	N	NA	
	the grass need to be mowed?	A ala ava do	Y	N	NA NA	
	y areas need to be weeded or shr		Y	N N	NA NA	
	ere any bald spots in grassy areas	0.5	Y	N	NA NA	
	e access roads clear? y areas (site roads or access to we	Showard to be played?	<u>т</u> Ү	N	NA NA	•
	ere any sink holes throughout the		Y	N	NA NA	
	dors onsite?	Site !	Y	N	NA NA	
	e signs still up and visible?		Y	N	NA NA	
Erosion C			I	IN	INA	
	ence still intact and upright?		Υ	N	NA	
	as need repair or erosion control i	nstalled indicate helow and c	•			
	e any evidence of runoff? (i.e. wa		Y	N N	NA	
	e any standing, ponded, or pools		Y	N	NA	
	ere any signs of runoff at the north		Y	N	NA	
	e currently any surface water runc		Ÿ	N	NA	
	describe where, approximate flow					
Treatmen	· 11	,				
	e breakers for the pumps still in the	e off position?	Υ	N	NA	
	effluent totalizer on the wall for stil		Υ	N	NA	
	, contact Arcadis or SMC immedia		alve is o	closed.		
	critical valves in the closed position		Υ	N	NA	
	ere any system status alarms on t		Υ	N	NA	
	describe below how they have be		de well l	evel alarms		
	flow values on computer "zero"?		Υ	N	NA	
	ewer," "Tot flow to sewer," "tot daily flo	w," and "TGAL" for each well sho	ould eac	h be "zero")		
28. Check	level of sump. Does sump need	to be pumped out?	Υ	N	NA	
29. List wa	ater level for each recovery well as	s shown on computer: (total de	epth of	well is sho	wn in bra	ackets)

Note:

RW-7 [27.5']

RW-3 [25.3']

RW-2 (not online)

Signature of Inspector:

31. Is the treatment shed locked?

30. Are any recovery wells at close to overtopping? (ref total depth above)

Upon leaving the site, check the following;

32. Were the gates closed and locked after leaving site?

RW-5 [24.5']

RW-8 [24.5']

RW-6 [21.8']

Ν

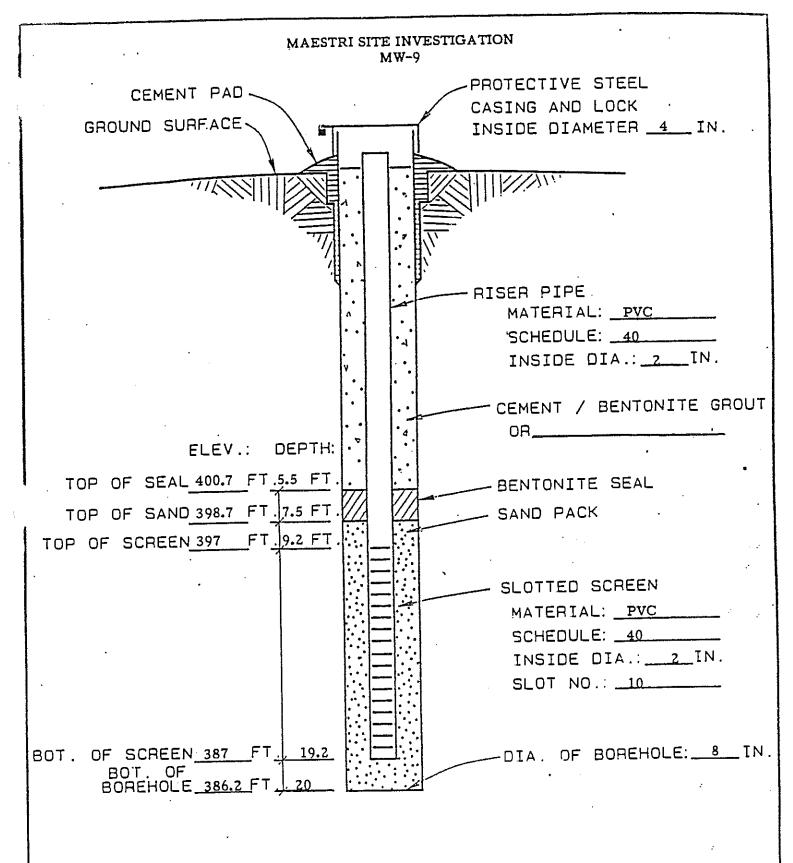
Ν

Ν

NA

NA

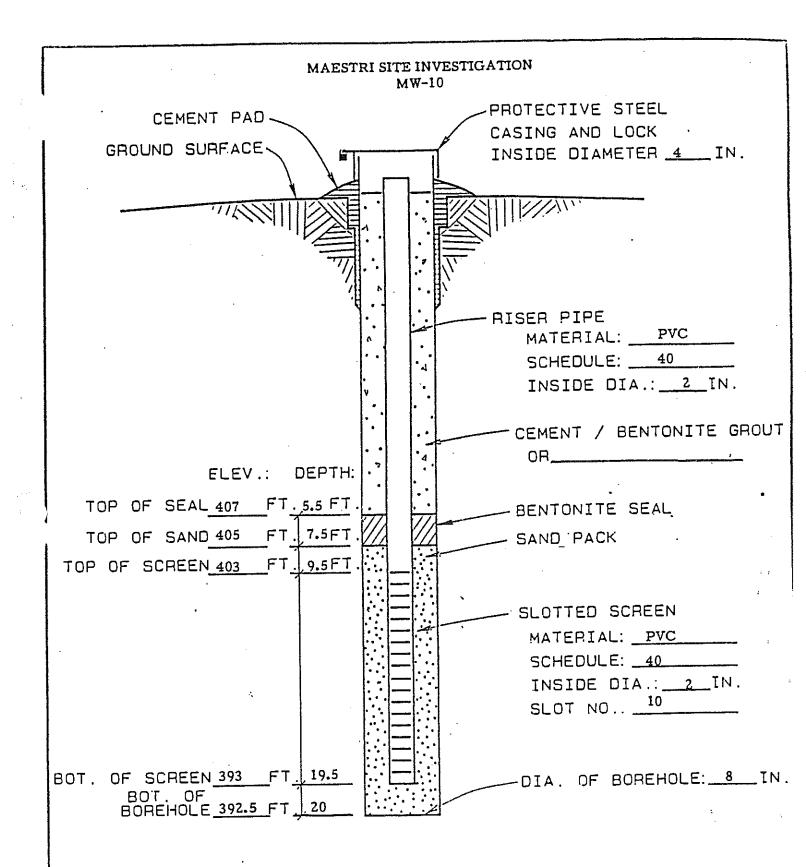
NA


General Site Observations:
Follow-up: Indicate actions required, person(s) contacted, and dates for completion
· · · · · · · · · · · · · · · · · · ·

Signature of Inspector:

ARCADI	S							Page		of	
Maestri	Site Sem	i-Annual	Event					Well ID:			
Project Nu					Task:						
Date:					•	·	- Well Hea	dspace PID:			
Sampling 1	Γime:				Sample	ed By:					
					Coded	Replicate No.:					
			Event Well ID:								
	Identification				-						
Serial #:		PID					Water Qualit	y Meter(s)			
Duraina Inf	formation										
						Purge Method://	circle one) Subr	nercible Centr	ifugal Bladd	or	
				in		_				CI	
				££	•				- 10.		
				ft	•	Tump make oc	itting.				
					•	Total Volume Pi	nraeq.	ī			
					•		argou.	Off:			
					•	p					
		uromonte T	akon Durir		•						
i iciu i aiai	Minutes	Rate			pН	ORP	Conductivity	Temp	DO	TDS	
Time	Elapsed	(ml/min)				(mV)			(mg/L)	(mg/L)	Comments
	Stabili	zation Range	<0.3 ft.	10% if >1	+/- 0.1	+/- 10	3%	3%	10%		<u> </u>
	0										
	5										
	10										
	15										
	20										
	25										
	30										
	35										
	40										
	45										
	50										
	55										
	60										
	65										
	70										
Number	and Type	of Bottle		Analyti	cal Param	eter	Preser	rvative		Collec	ted
3 - 4	0 mL Glass	s Vial		VOC	s - Xylenes	3	Н	CL			
Color:						Well Condition:	snosal·				

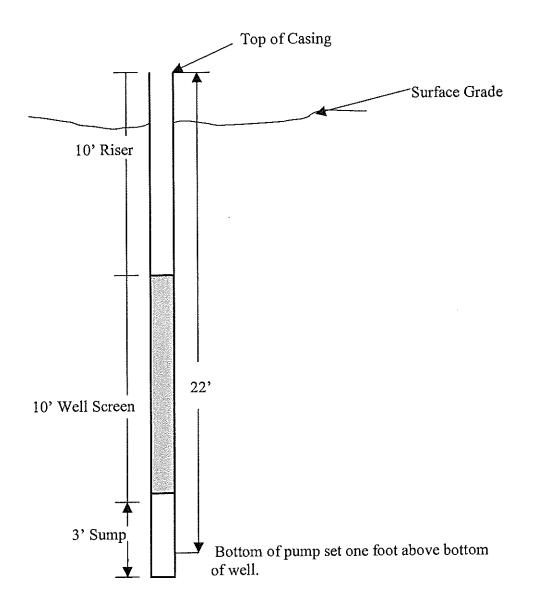
Appendix F


Monitoring Well Construction Logs

TYPICAL OVERBURDEN MONITORING WELL

N.T.S.

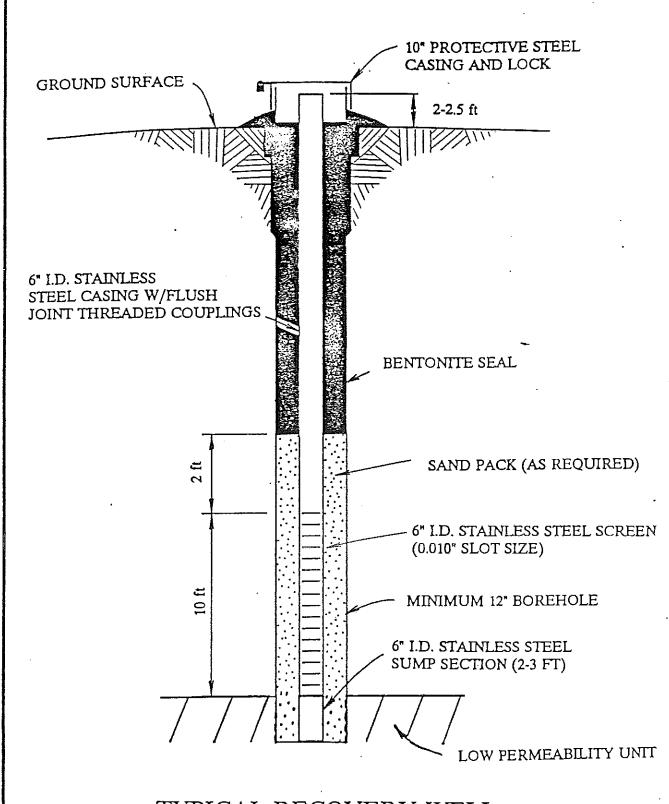
9.11.11.



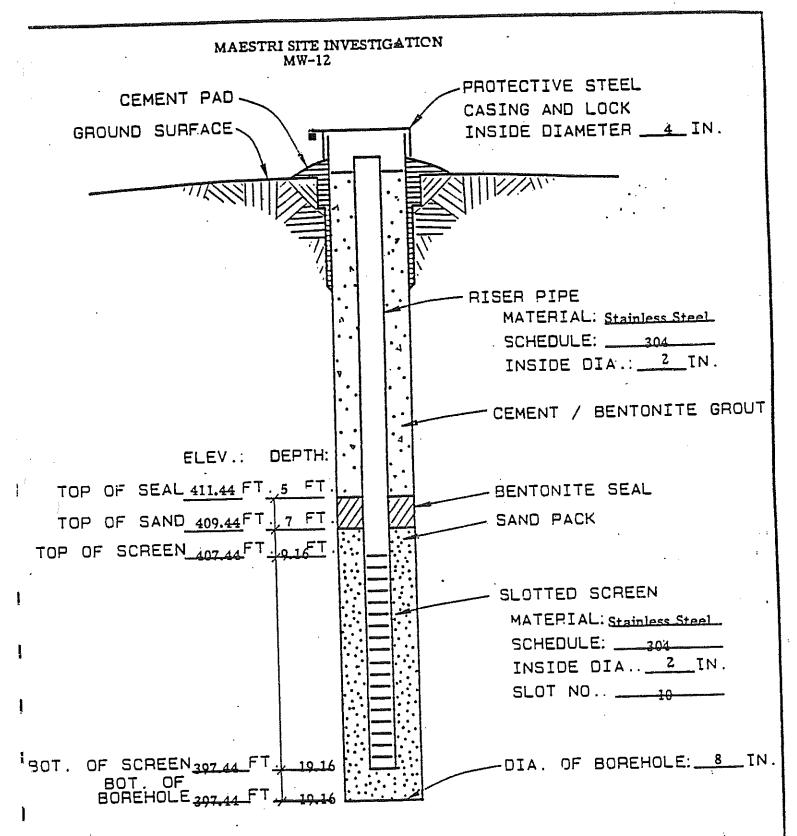
TYPICAL OVERBURDEN MONITORING WELL

N.T.S.

Depth O	No 1	Depth 0-1.5	810ms /6" 2/3/7	Penetr/ Recovry 1.5/1.01	Value	Light brown, damp, medium dense, fine/medium SAND, some silt, trace roots.	Descript	4	P'		0
OBS Geologist: Denmis Theoret Sample					■Na·	Sample Description	Stratus Change General	Equipment Installed	Fie:	d Tes Sp Cond	ting HNU
oring	Co.	: Parrati	-Wolff,	Inc.	-	Boring Location: So Bround Elevation: 4 Dates: Started: 7/8	12.5 ft.			/25/89	
	Lo	ation:	±edoes. N	ite Invest Y. t Company	igatio	Hammer: 140 lbs. Fall: 30 inch		Depth 7.99 2213.004.576	Dat	e 7/2 e 7/3	1/89 1/89
O'BRIE	N &	GERE 1980-				TEST BORING LOG	Repor	t of Boring h	of 1		


Stauffer Management Co. Maestri Site

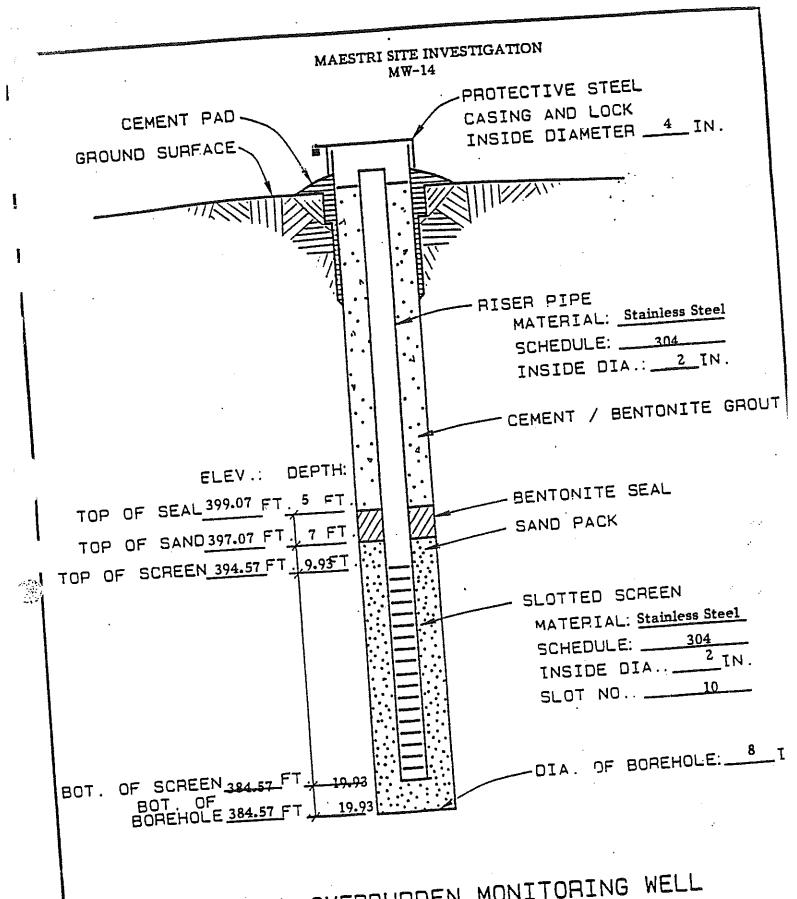
Not to Scale



Maestri Site RW-2 8" Reconfiguration

TYPICAL RECOVERY WELL

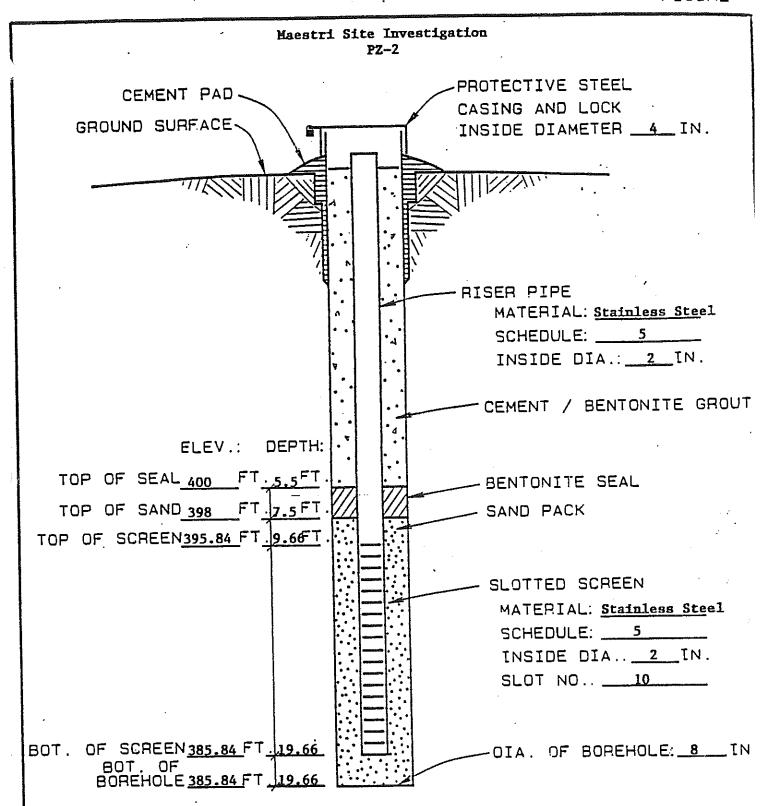
NOT TO SCALE



TYPICAL OVERBURDEN MONITORING WELL

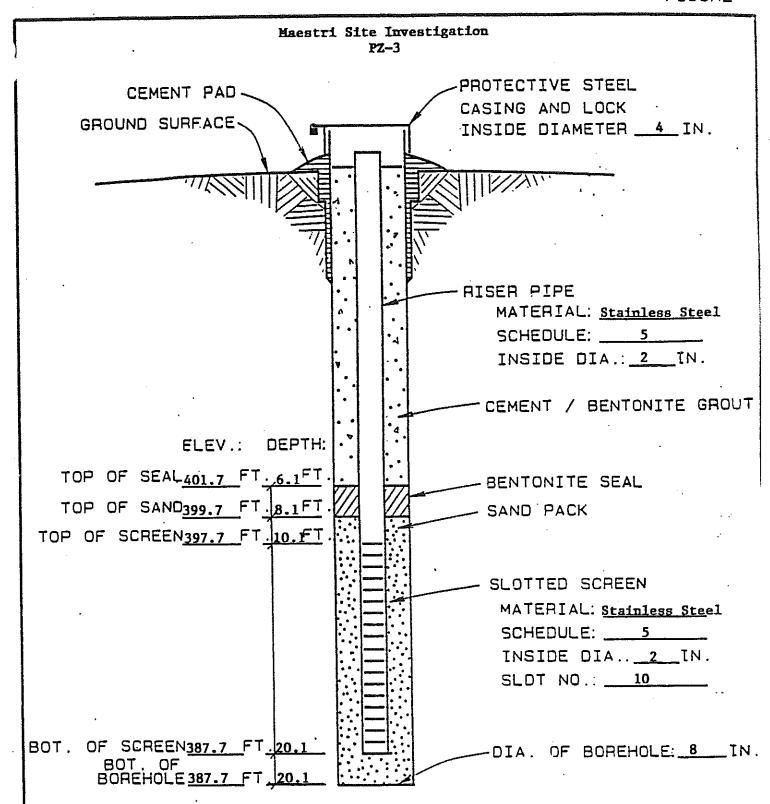
N.T.S.

RIE	N &	GERE INC.			<u>^</u>	TEST BO	ORING LOG	Repor	t of Boring h Sheet 1 c	ko, YAI of !	-i2		
nt:			on: Maestri Site Investigation Geddes, New York er Management Company rratt-Wolff, Inc. Rice Dennis R. Theoret Sample Blows Penetr/ "N" Recovry Value	Type: Split Spoon Hammer: 140 lb.	PLER Fall: 30°	Ground Water Depth Date Depth Date File No.: 3213.004.577							
rig	Co.	: Parrat illy Ric	t-Wolff,	Inc.			Boring Location: Ad Ground Elevation: 4 Dates: Started: 6/3	115.6 FT.	Ende	ed: 6	/25/90		,
								Stratum Change	Equipment	Fiel	d Test	ing.	
:h	160	Depth	Blows	Penetr/	"N" Value		uple ription	General Descript	Installed	рН	Sp Cond	HNU	
						Augered to 19 feet w boring log MW-11 for	ithout sampling. See descriptions.						
					<u> -</u>		•						
			,		-	·			·				
_													
		· 			<u> </u>								
						- - - -							
 5	-				-	-	•						
	1					1							
	1						of an AD fant	19'					
0	1					Bottom of Ro	ring at 19 feet.						
						_							
	-					_							
	1				·	- . -							
	-	-											
-	1					4							
	-				+	-							
	+	-	1		+-	-							


Y & GERE SRS, INC. Dje Location: Maestri Site Investiga Geddes, New York ent: Stauffer Management Company				igation	SPAPLER			Report of Boring No. MW-14 Sheet I of I Bround Water Depth Date Depth Date File No.: 3213.004.577						
nte	Loca	uffer Ma	eddes, N nagement	en York Company	·	Type: Spli Hammer: 14	10 1b.	Fall: 30° Boring Location: Ground Elevation: Dates: Started: 7	Northern Co	rmer of Site, Ad	jacent	M-13		
ng	Co. :	Parratt	-Wolff,	Inc.				Ground Elevation: Dates: Started: 7	/3/90	Enc	Fiel	d Test	ing	
ng Co.: Parratt-Wolff, Inc. essan: Billy Rice ; Geologist: Denmis R. Theoret Sample							Sample			Equipment		Sp Cond		k Se
.	-		Blows	H5 Penetr/ "N"		i	Desci	ription	Genera Descri	ipt .	bii	COIN		
h	No	Depth	/6"	Recovry	ASTOR	Augered to	19.9 feet	without sampling. for descriptions.						
	\sqcup			-		See boring	100 km-12	110						
	-													
	+	\				4								
 5	+				_	-								
						-						•		
		<u> </u>	-		_	-								
	_	-			+-	1							Ì	
_	+					7								1
	-	- 							1					
	\dashv					_								
														÷
		·				\dashv					. }			
	15	 												
-		┼┼-					•							
-		+							Ì					
-		++-								1979,				
-	20	11											-	
-														
Ī			.						1			} ;		
١		4+												
		-+-					•	•						
	-						•							
	-						•							
	-													
	-													لـــــ

TYPICAL OVERBURDEN MONITORING WELL

N.T.5.


BRIE	N L	GERE . INC.				TEST BORIS	46 M06	Repor	t of Boring N Sheet 1 o	o. P	1-2		
ct	Loc	cation:	laestri Si Geddes, Ne	M YORK	igatio	Type: 2" Split Spoon Hammer: 140 lbs.	בי ן	Bround Water File Wo.: 3	Death	Dat Dat			
oring	Co.	: Parrat	inagement t-Holff, lappel nis Theory	ine.		l B	oring Location: East round Elevation: ates: Started: 10/3		Ende	ed: 1	10/31/90)	
B5 684	l otod	IRE: DEST	Sample]			Stratus Change	Equipment	Fie	d Test	ing	F
epth	No	'Depth	B10ws /6"	Penetr/ Recovry	"N" Value	Sampl Descrip	e tion	General Descript	Installed	рН	Sp Cond	HNU	k
0	1	0-21	4-5-6-6	27 /0.81		Brown and reddish brown very fine to medium SPA medium gravel	y moist SILT and D, trace fine to						
		·											
5	2	5-71	10-15- 20-28	21/0.51	35	Same as above		_ ^					
						Dark red, moist, hard fine to coarse gravel, very coarse sand	CLAY, some embedded trace coarse to	7.0					
,	3	10-12'	7-11-	21/1.21	<u>ක</u>								
-	-	10 12	14-20	1.	 							-	
	4	12-13'	14-75	יו/יו	-	Greenish brown, satura very fine to medium SF reddish brown, medium	ND 14C66060060 MTFII						÷
	5	14-16*	11-12-	2" /2"	25	(12-13')	ad sedius dense.	- 14.51					
15	6	16-18'				very fine to medium S/ At 16', Grades to medi and COBRIES, little mediand	and little silt						,
	7	18-19.	17-30-	1.9/1.9	1 54	_		19.01					
20	-		24-50/.	4		Dark red, damp, hard coarse to very coarse coarse gravel	CLAY, some embedded sand and fine to						
						(Bottom of boring 1	9.9 ft.)						
	-												
	1												
	1												
	$\frac{1}{1}$								Ì				
						<u> </u>							

TYPICAL OVERBURDEN MONITORING WELL

N.T.S.

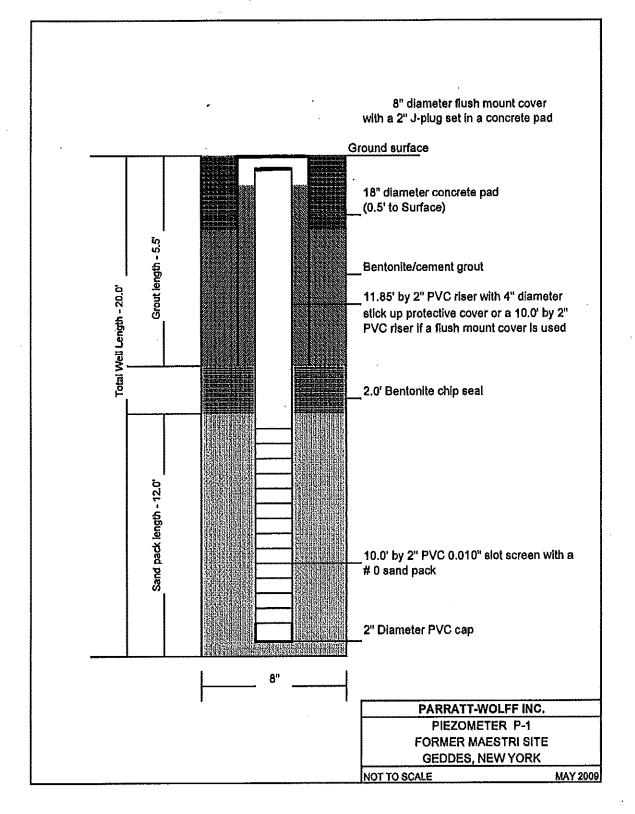
D'BRIG C'SIKE	N I	GERE INC.		<u></u>		TEST BORING LOG		Report	of Boring N Sheet 1 c	ka. P of i	7-3		
	Lo	cations	Maestri Si Geddes, No anagement	PH YOTH	tigatio		1	Ground Water File No.: 3	Deoth	Dat Dat			
Boring	Co.	: Parrat	t-Wolff,	Inc.		Boring Lo	cation: Soud evation: arted: 10/30			edr 1	10/30/9	0	
LIDO OS	1		Sample	· · · · · · · · · · · · · · · · · · ·				Stratus Change	Equipment	Fie	d Tes	ting	R
Depth	No	Depth	Blows /6"	Penatr/ Recovry	"H" Value	Sample Description		General Descript	Installed	рH	Sp Cond	HNU	k s
0	1	0–5,	2-2-5-5	21/0.81		Reddish brown, very moist, stif little very fine to medium sand clay	f SILT, trace						
	2	2-41	5-7 -6-4	21/0.91	 	,			•				
1									·				
5	3	5-6.51	18-28-50	1.51/11	7B	,		6. O¹					
						Reddish brown, moist, very dem coarse GRAVEL and very fine to trace silt	se, medium to coarse SAMD,						
<u> </u>										·			
·	4	10-10.6	27-50/.1	0.6/0.6		Same as above			,				
يبن	+					,							
<u> </u>	5	12-12.7	42-50/.2	0.7/0.7		Reddish brown, very soist, fin SAND, trace coarse to very coa (12.5°)	e to medium rse sand					ŗ	
-	+							14.5					
15	6	15-17	15-14-	21 /01	27	Reddish brown, saturated, medi very fine to medium SAMD, litt	um dense, le silt						١
	十		13-17										
	7	17-191	20-22-	21 /21	47	Same as above							
	T		27-20										
	8	19-20.5	25-44-	1.5/1.5	124	Same as above, little coarse dense	sand, very						
20			86/.5			LETISE .		21.0					
	9	21-231	21-37-	21/1.5	' 80	Dark, red, damp, hard CLRY, so coarse to very coarse sand and	ee embedded fine to				ŀ		
			43-70			coarse gravel							
					:	(Bottom of boring 231)					1		
						·							
1						1							
	\int					1							
1	1	•	1	1	}	\		1	l	1		ļ	

TYPICAL OVERBURDEN MONITORING WELL

N.T.S.

/SBP	IENI	9 61	DEE			TEST BORING LOC	REPO	ORT OF B	ORIN
Client:	ir-iAs		stri Si		RS, INC.			RW-7	•
•		mac	iatii Oli	. .		Sampler: 2" Split Spoon	Page 1 or		
٦٠oj. L	oc:	Tow	n of G	eddes, Nev	v York	Hammer: 140 lb	Location	:	
. de No).:	5618	3.007			Fall: 30 inch	Start Date		3
Boring	Com	pany	: OP	TECH Env	ironmental S	Fall: 30 inch ervices	End Date		_
Forema OBG G		rict.	Tod	ld Burnhaก เes Fitch	n		Riser		Grou Sand
000 0	COIO	Jist.	Jan	les Fitch					Bente
Depth							Stratum Change		Fi
Below Grade	No.	Dep (fee	th Blov		,	Sample Description	General	Equip.	Tes
Jiade	140.	0	3	* Recove		(Crayich have (CVD con)	Descript	installed	(ppm
			4			Grayish brown (5YR 3/2), damp, loose, SILT, trace very fine sand and clay-grades to			
				5		moderate brown (5YR 3/4), damp, SILT, some			
			2	5		very fine SAND (matrix), little medium to			
						coarse SAND, trace gravel - subrounded			
		2	2	24/15"	16	Moderate brown (5YR 3/4), damp, medium			
			4	6		dense, SiLT, some very fine sand (matrix).			
			4	4		little medium to coarse sand, trace gravel, subrounded		1 1]
						Sanianided		1 1	
		4	4	24/1"	10	Poor recovery. moderate brown (5YR 3/4),		\	٥
			4	3		damp medium dense, SILT, some very fine		1 1	
			6	6	- 	sand (matrix) little medium to coarse sand, trace gravel, subrounded		\ \ \	
		6	14 7 50/0.	12/7"		Moderate brown (5YR 3/4), damp, very		il lil	
		·	7 00/0.	<u> </u>		dense SILT, little very fine sand (matrix), some gravel and rock fragments, little		1 1	
				·		medium to coarse sand		!	
			23	0.44000					
			7	24/20"	17	Moderate brown (5YR 3/4), damp to wet, medium, dense, GRAVEL and rock frag-	1		
			10		- ;	ments, some to little fine to coarse sand,			
		10) 5	6	t	race silt and clay, angular to subrounded			.
	1	0	50/0.4	5/5"	- ,	Andorsto brown (EVG 3/4)			
		10.4				Moderate brown (5YR 3/4), damp to wet, nedium, very dense, GRAVEL and rock frag-	•		
	_				<u> </u>	nents, some to little fine to coarse sand.	经		
			 		ţ.	race silt and clay, angular to subrounded			
	13	2	28	24/24"	60 P	ale brown (5YR 5/2), moist to wet, very			
_			36		d	ense gravelly medium to very coarse SAND.			
	\dashv	14	24	1	<u> </u> tr	ace fine sand, silt and clay, angular to sub-		-	
						vanded		=	
	14	,	19	24/19"	41 P	ale brown (5YR 5/2), wet, dense, medium			
_			18 23		to	very coarse SAND and gravel, trace fine and, silt and clay		=	
		16	18		 	and, an any ciay		-	
, ;>	40		10					=	
	16		18 20	24/17"	50 Pa	ale brown (5YR 5/2), wet, dense, GRAVEL		-	
			30		an fin	d coarse to very coarse, sand, trace e to medium sand, silt and clay, angular			
		18	40		to	subrounded		= =	
								-	
+	18		17 22	24/19"	53 Pa	le brown (5YR 5/2), saturated, very dense,		-	
: 7			31		GF	RAVEL and coarse to very coarse sand,		-	
	- 1		ا باب	1	j ltro-	ce fine to medium sand, silt and clay,	2000		

1- 経路	冷地				v "Kradik	TEST BORING LOC	DEDC	DT OF DO	-
O'BR	IEN	& GEF	E ENC	GINEERS	NC.	1231 BOKING LOC	REPU	RT OF BO RW-7	RING
Client:	; ;	Maesi	ri Site		7+12**	Sampler: 2" Split Spoon	Page 2 or		
h		_					Location		
^{lp} roj. L	oc:	Town	of Ged	des, New Y	ork	Hammer: 140 lb		•	
ie No).:	5618.0	107			Falls on the	Start Date		
		pany:		CH Enviro	nmental S	Fall: 30 inch	End Date		
Forem	an:	-	Todd I	Burnham		CIVICES	Screen Riser		Grout Sand Pac
OBG G	eolo	gist:	James	Fitch			1/1361		Bentonite
Depth							Stratum		Field
Below		Denth	Blows	Penetr/	"N"		Change		Testing
Grade	No.		/6"	Recovery	Value	Sample Description	General		HNU
		20	29	24/24"	64	Pale brown (5YR 5/2) saturated, very dense	Descript	Installed	(ppm
			30			GRAVEL and coarse to very coarse sand,			
		 	34			trace fine to medium sand, silt and clay,			
		22	45			angular to subrounded		a = b	
		22	12	24/22"	54	Pale brown (EVD 5/2)			×
			25			Pale brown (5YR 5/2), saturated, very dense GRAVEL and coarse to very coarse, sand,			
			29			trace fine to medium sand, silt and clay,			
		24	50			angular to subrounded to 23.1 ft, then grayish			
						brown (5YR 4/2), moist, very dense SILT,			
						some to little clay and very fine sand (matrix), little fine to coarse sand and fine to coarse			
						gravel approximately '(in suspension),			
						angular to subrounded to '23.5 ft then medium			
						greenish gray, weathered SHALE with			
						several inches mixed with above materials in			
		24	16	24/21"		pockets Greenish gray (5GY 6/1), weathered SHALE		100	
			29			Ordernan gray (3G F 6/1), weathered SHALE			
			49						
		26	57						
	-				!	Bottom of boring 26.0 ft; pilot hole was.			
						advanced using 4 1/4 inch I.D. augers. Advanced 8 1/4 inch I.D. augers to 27.5 ft	27.5		
					ŀ	pelow grade (26.8 ft specified to driller)	27.5		
					· · · · · · · · · · · · · · · · · · ·				
						ŀ			
						Í			
	_					ĺ			
						į		[
	_								
									
	_		 -			ļ			
				· · · · · · · · · · · · · · · · · · ·					
	-]	
								Ì	
te: 6 1/2 f	t of wa	ter on rod	s measure	d from the bot	tom of the so	lit spoon when removed from a depth of 24.0 ft.	A herter#s	<u> </u>	


'.5 to 24.3 ft,a 6-inch diameter carbon steel well sump was placed from 26.7 to 23.1 ft, a stainless steel 6-inch diameter (0.010 slot) well screen iced from 23.1 to 13.1 ft, with a carbon steel riser, to 1.7 ft above ground. A 0 mone sand pack was placed from 24.3 to 10.8 ft, a bentonite chip see, was placed from 10.8 to 8.3 ft, and a bentonite cement grout to approximately 3 ft below ground surface.

¥ -25€\$	uredži i		供送台灣市	The state of the s	"一种甘宁 福民一位。			<u> </u>	
4						TEST BORING LC	REPC	RT OF E	BORING
O'BR	IEN	& GER	E:ENGI	NEERS, 11	VC.		1	RW-8	3
Client:		Maestr	i Site			Sampler: 2" Split Spoon	Page 1 o		
							Location		
^{lo} roj. L	oc:	Town	of Gedde	s, New Yorl	k	Hammer: 140 lb		•	
							Start Dat	e: 6/25/9	6
ile No		5618.0				Fall: 30 inch	End Date		
Boring		npany:	OP-1E	CH Environ	imental Se	rvices	Screen		Grout
OBG G		mints	James	Burnham			Riser		Sand Pa
0000	1010	gist.	James	Fitter	<u> </u>				Bentonit
Depth							Stratum		Field
Below		Depth	Blows	Penetr/	"N"	Sample Description	Change General	Earria	Testin
Grade	No.		/6"	Recovery	Value	Cample Description	Descript	Equip. Installed	HNU
		0	2	24/24"	12	Grayish brown (5YR 3/2), damp, medium	Descript	111Staneu	(hhiii
			5			dense, SILT, little very fine sand, trace			
			7			medium to coarse sand, gravel and clay,	'		
		<u> </u>	2 10			angular to subangular]	1 1	
		5	2	24/24%					
		10	3	24/21"	6	Grayish brown (5YR 3/2), damp, loose,			
		<u> </u>	3			SILT, little very fine sand, trace medium to coarse sand, gravel and clay, angular to] [
		†	7 4			subrounded		2742 Street	
						·		圖 _ 圖	
		10	22	12/12"		Grayish brown (5YR 3/2) to moderate			
		1.	50/0.5			yellowish brown (10YR 5/4), moist to wet,			
						fine to coarse GRAVEL, some fine to coarse		= 3	
						sand, little silt, trace clay	2	=	
		12	114	24/18"					
		12	35	24/16		Moderate brown (5YR 3/4), moist to wet,	inches	3 - 3	
			26			very dense, fine to coarse GRAVEL, some fine to coarse sand, trace silt and clay, sub-	Transfer and the state of the s		- 1
		14				rounded			1
			-						
		14 to 14.5	50/0.5	6/3"		Moderate brown (5YR 3/4), saturated, very		量 - 國	
						dense, fine to coarse GRAVEL, little fine to		> =	`
			<u> </u>			coarse sand trace silt and clay, subrounded		圖 = 選	
		16-16.3	50/0.3	4/4"			2	= 2	
		10-10.5	30/0.3	- 414		Grayish brown (5YR 3/2), moist to slightly vet, very dense, fine to coarse SAND,	2	H = H	
			 			some gravel, little to trace silt, trace clay	等		
						graver, mad to trace dit, trace dray		= =	
		18	10	24/24	26	Grayish brown (5YR,3/2) to moderate brown	2	引 =	ļ
			12		(5	5YR 3/4), saturated, medium dense, medium	美	=	
		20	14			SAND, some coarse sand, little fine sand	3] = 	
		20	19			race silt to 19.5 ft then fine to medium sand,		=	
						ttle silt to 19.45' then fine SAND, little silt, rith 1/2 inch clayey SILT to 19.8 ft then moist			
						rayish brown (5YR 3/2), clayey SILT, little		慶	
						ery fine sand (matrix), trace medium to			
						parse sand, subrounded (in suspension)			
						oderately plastic			
							2		
	2	20	15	24/22"	49 G	rayish brown (5YR 3/2) saturated, dense,	20.9		
			22			ayey SILT, little very fine sand (matrix),		100	
			27			ome to little medium to coarse sand and			
		22	48			avel (in suspension) subrounded to angular,			
- -						anges at 21.3 ft to greenish gray GY 6/1), damp, very weathered SHALE,			
	\dashv					of to 1), damp, very weathered SHALE, If, fissile with clayey component, mixed in			
						ckets with above material to 21.8 ft			
						,			
ent co.	bbles i	between 11	and 18 feet	t. Noted 4 1/2 f	eet of water o	n rods when measured from tip of spoon driven	to 20 ft depth.		

Professor	7 (2)	HATE	2621 Stat	THE STATE OF	Charles and the				
O'RR	IFN	χ.c=		ZIKIEET	S: NC.	TEST BORING LOG	REP	ORT OF B	
Client			tri Site	TIMETER	STINE SE			RW-8	
ļ							Page 2 d	Of 2 n:	
' [©] гој. L	.oc:	Iown	of Ged	des, New	York	Hammer: 140 lb			
ile No	o.;	5618.0				Fall: 30 inch	Start Date		
Boring Forem	on.	npany:	OP-TE	CH Envi Burnham	ronmental	Services	Screer	1 = \	Grout
OBG G	eolo	gist:	James				Rise		Sand Paci
Depth							Stratum		Bentonite Field
Below		Depth	Blows	Penet	/ "N"	Sample Description	Change	 	Testing
Grade	No.	(feet)	/6"	Recove			General Descript	Equip.	HNU (ppm
	 	22	13 26	14/14		Greenish gray (5GY 6/1), damp, very dense,			(ppin
		23.2				very weathered SHALE, soft, fissile with clayey component.			
		 	ļ			Ballian di La			
						Bottom of boring at 24.5' Bottom of pilot hole at 23.3 ft using 4 1/4 inch			
						I.D. augers. Advanced 8 1/4 inch I.D. augers			,
						to 24.5 ft below grade (23.5 ft specified to driller).			
						Backfilled bentonite chips to 20.9 ft while seating well.			
	-								
									
-						<u> </u>		[
].			
						·			
									
						j .			
						1			
	\Box								
		-							
							·		
	二								
	-								
	-								
ionite c	hio olu	IO Was plac	ced from 2	24.5 to 20.0	ft a Circh die				

tonite chip plug was placed from 24.5 to 20.9 ft, a 6-inch diameter carbon steel well sump was placed from 23.4 to 19.8 ft, a stainless steel 6-inch diameter (0.010 slot) well screen was placed from 19.8 to 9.8 ft, with carbon steel riser to 2.5 ft above ground. 4 0 morie sand pack was placed from 20.9 to 7.5 ft, a bentonite chip seal from 7.5 to 4.8 ft and bentonite grout up to approximately 3.5 ft.

JF:ers/4_notes/2RW-8

Appendix G

Sampling, Analysis, and Monitoring Plan

Report

Sampling, Analysis, and Monitoring Plan Soil Remediation Project Maestri Site Geddes, New York

Stauffer Management Company Wilmington, DE

January 12, 1996

5000 Brittonfield Parkway Syracuse, NY 13221

Contents

1.	Introduction 1
	1.1. General 1
2.	Soil sampling during construction
	2.1. Excavated soils sampling
3.	Air sampling during construction
	3.1. Health and safety plan sampling and analysis
4.	Ground water treatment system sampling 7
	4.1. General 7
5.	Bioremediation/soil vapor extraction piles monitoring 9
	5.1. General 9 5.2. Air sampling and analysis 9 5.3. Water sampling and analysis 10 5.4. Soil sampling and analysis 10
6.	Quality assurance/quality control
•	6.1. General 1.1 6.2. Sampling landling 11 6.3. Field QA/QC samples 12
	6.4. Sample custody

1. Introduction

1.1. General

This Sampling, Analysis, and Monitoring Plan is written in accordance with Section 3.3.7 of the Remedial Design/Remedial Action (RD/RA) Work Plan dated July 1995 and the Order on Consent. Presented herein are the tasks and analytical requirements for monitoring the effectiveness of the soil remediation project at the Maestri Site located in Geddes, New York (Figure 1). The plan identifies the matrices to be sampled, analytical methods to be used, sampling frequency, quality assurance and quality control measures, and reporting requirements.

Data collected during these efforts will be used for the following:

- To assess the pre-mechanical screening concentrations of volatile organic compounds (VOCs) and semi-VOCs (SVOCs) in the soils;
- To assess the concentrations of VOCs and SVOCs, if any, remaining in the excavation (verification sampling) following removal of soils exhibiting VOCs and SVOCs above the remedial action objectives (RAOs) established for the site;
- To evaluate the effectiveness of the mechanical screening component of the soil remediation activities for the removal of VOCs from the soils;
- To evaluate the effectiveness of the bioremediation/soil vapor extraction (BIO/SVE) soil pile component of the soil remediation activities for the removal of VOCs and SVOCs from the soils; and
- To document that the modifications to the ground water treatment system have not resulted in a release of VOCs or SVOCs above the New York State Department of Environmental Conservation (NYSDEC) State Pollution Discharge Elimination System (SPDES) effluent limits.

2. Soil sampling during construction

2.1. Excavated soils sampling

WHAT IS PID GUIPMOCE VALUE? Sampling and analysis of excavated soils will involve initial screening at the excavator bucket by the Contractor for the upper four feet of the excavation using a photoionization detector (PID). Soils removed from 1987, 1990, and 1993 excavations are exempt from the sampling requirements specified herein. Soils will be segregated based on PID concentrations and placed into 200 cubic yard (cy) stockpiles designated as either "confaminated" or "potentially contaminated" until more thorough testing can be performed. After the soil is placed in these stockpiles, four samples (three grab and one composite sample) will be collected from each pile designated "potentially contaminated" and analyzed for VOCs using EPA Method 8010/8020. If the concentrations of VOCs in the soils exceed the RAOs, the entire 200 cy soil stockpile will be processed through the mechanical screening system. However, if the concentrations of VOC in the soil arc less than the RAOs for the site, the four soil samples will then be analyzed for SVOCs using EPA Method 8270. If SVOC levels also meet the RAOs, the soil will be stockpiled for use as "clean" backfill within the excavation. However, if the soil VOC or SVOC concentrations in the soil exceed the RAOs, the soil pile will later be designated to require treatment in a bioremediation/soil vapor extraction pile (BIO/SVE) soil pile.

Soils below four feet will be excavated and treated on site.

2.2. Excavation verification soils sampling

A 30 ft. grid pattern (as shown on the Contract Drawing G-8) will be established in the field and will be used in connection with excavation verification sampling. After excavating to the predetermined horizontal and vertical limits shown on the Contract Drawings, a photoionization detector

Final: January 12, 1996

will be used to assess the need for additional excavating. Once PID measurements indicate that the RAOs may have been achieved, a soil sample will be collected by the Contractor at each node of the grid which represents a soil sampling point. The samples will be analyzed for VOCs using EPA Method 8010/8020, and SVOCs using EPA Method 8270. The purpose of this soil sampling and analyses is to document that the soils exhibiting VOCs and/or SVOCs above the RAOs have been removed to the extent practicable.

Following sampling and analyses at each of the grid nodes, the analytical results will be compared to the RAOs established for the Site and presented in Table 2. If any of the samples exhibit VOCs and/or SVOCs above the RAOs, the soils (in one to two feet lifts) at each of the grid nodes and extending 3/4 the distance to the next "elean" grid node will be removed. Following removal of the additional soils, soil sampling and analyses at the grid node will be re-performed by the Contractor as described above.

2.3. Mechanical screening soil sampling

Following processing of soils through the mechanical screening system, the soil stockpiles will be sampled and analyzed for VOCs and SVOCs using EPA Methods 8010/8020 and 8270, respectively. Two samples will be collected for every 200 ey pile processed to assess the concentration of VOCs/SVOCs within the soil pile. If the VOC concentrations exceed the RAOs for the Site, further mechanical screening of the soils will be performed. If the SVOC concentrations exceed the RAOs for the Site, the soils will be staged for treatment in a bioremediation/soil vapor extraction pile. Following processing, if the soils do not exhibit VOCs and SVOCs above the RAOs, the soils will be used later as backfill material.

2.4. Soils staged for bioremediation/soil vapor extraction treatment

Following mechanical screening, soils exhibiting VOC/SVOC concentrations above the RAOs will be stockpiled for treatment through bioremediation/soil vapor extraction (BIO/SVE) soil piles. The soils sampling and analyses to be performed to prepare the soils for BIO/SVE pile treatment are presented in Table 3.

3. Air sampling during construction

3.1. Health and safety plan sampling and analysis

MAGNETURE Z:

The Contractor's Health and Safety Plan (HASP) will include an air monitoring plan describing specific air sampling and analysis, and monitoring procedures to be implemented during completion of the remedial actions. The Contractor will be required to, at a minimum, perform the following items and address these items in the HASP:

- Wind direction will be monitored each day that soil handling activities are occurring outside the environmental enclosures.
- Real-time monitoring (i.e. photoionization detector) for VOCs and particulates (minimum) will be performed at the Site within the enclosures, and along the perimeters of the work zone and Site.
- Verification sampling and analyses for VOCs and particulates (using Tedlar bags or charcoal tubes) will be performed at the Site within the enclosures, and along the perimeters of the work zone and Site.

3.2. Air exhaust

The Contractor will be required to monitor air exhausted from the environmental enclosure to assess the effectiveness of the air treatment system and document that VOCs and air treatment system particulates are not being released above NYSDEC requirements established for the project. At a minimum, air sampling and analysis of the exhaust from these systems will be performed daily for the first week and then on a weekly basis during completion of the soil excavation and mechanical screening activities.

4. Ground water treatment system sampling

4.1. General

During construction, the Contractor will be required to sample and analyze the effluent from the ground water remediation system in compliance with the Monitoring Requirements established by the NYSDEC under the State Pollution Discharge Elimination System (SPDES) fact sheet. Present requirements are included in Appendix A. Analysis of pH will be performed in the field at the time of the effluent sample collection. The analytical results will be transmitted to the NYSDEC in accordance with the SPDES fact sheet reporting requirements. The Contractor will be responsible for operating the ground water remediation system so that the effluent complies with the Effluent Limitations established by the SPDES fact sheet.

Final: January 12, 1996

Maestri-R

5. Bioremediation/soil vapor extraction piles monitoring

5.1. General

This section presents the air, water, and soil sampling and analyses that will be required during the construction and operation of the (BIO/SVE) soil piles.

5.2. Air sampling and analysis

Air sampling and analysis, and monitoring will be performed to assess biological activity, and document VOC concentrations in the exhaust from the biopiles and air treatment system.

Specifically, the following air monitoring, sampling and analyses will be performed:

- · Air flow rate extracted from each of the biopiles;
- Air sampling the soils within the biopiles for oxygen and carbon dioxide; and
- Air sampling the exhaust from the BIO/SVE soil pile and exhaust from the granular activated carbon canisters prior to discharge to the atmosphere.

Table 5 presents a summary of the air sampling to be performed during the BIO/SVE soil pile remediation.

6. Quality assurance/quality control

6.1. General

This section presents an overview of the quality assurance/quality control program that will be performed as part of this project.

6.2. Sampling handling

Samples for chemical analysis will be collected and placed in labeled containers provided by the laboratory. The laboratory will pre-label sample containers with the following information: project name, preservation if applicable, and analyses to be performed. Sample labels will have sufficient space for the sampling team to record the following information: sample identification, data and time of collection, and initials of sampling team. Sample containers for water analyses will be pre-preserved. Samples will be uniquely identified for each sample location. This numbering system will provide a tracking procedure to allow retrieval of information regarding a particular sample.

Prior to sample shipment, preserved samples (except volatile organics) will be checked with pH paper to verify sample preservation. Samples requiring refrigeration will be transferred to coolers packed with ice and ice packs to maintain the temperature inside the cooler at approximately 4 °C.

6.4. Sample custody

Chain of custody procedures will be instituted and followed throughout this project. These procedures include field custody, laboratory custody. When the information has been gathered, the file will be inventoried, numbered, and stored for future reference.

Chain of custody records will be initiated in the field when sample collection has been completed. In the field notebook, samplers will note meteorological data, equipment employed for sample collection, well evacuation techniques, calculations, and information regarding collection of QA/QC samples. The following physical information will be recorded in the field notebook, on sample labels, and on chain of custody records by the field sampling team:

- project identification
- sampling location
- required analysis
- · date and time of sample collection
- type of sample (matrix)
- sampling technique
- · preservation used if applicable
- initials of the sampler.

The field sampler signs the chain of custody when relinquishing custody and includes the form in an air-tight plastic bag in the sample cooler with the associated samples. Sampling containers will be packed in styrofoam sheets, and put in plastic bags to help prevent breakage and cross-contamination. Samples will be shipped in coolers containing ice and ice packs to maintain inside temperature at approximately 4°C. If commercial vendors are used, they will be required to document the transfer of the package within their organization.

Final: January 12, 1996 Maestri-R

7. Reporting

7.1. General

The Contractor will be required to present all analytical reports to the Engineer upon receipt. In addition, the Contractor will be required to prepare weekly reports that are to include the following information:

- Copies of laboratory reports and chain of custody records prepared since the last weekly report.
- · A tabulation of results for each matrix sampled.
- A summary of the upcoming sampling and analysis, and monitoring activities to be completed over the next month.
- A summary of any violations/exceedences to the permit limits of other requirements established for the project, and description of actions taken to correct and/or remedy the violation.

Tables

Volatile Organic Compounds Geddes, New York Maestri Site Data - 1995 Table 1

Sample ID Number: Sample Depth (ft):	B-12 4-6	B-12 22-24	B-13 10-12	B-14 6-8'	B-15 8-10'	B-16 8-10'	B-16 16-18'	B-17 8-10'	B-17 14-16	B-18 6-8'
Wethylene Chloride	\$	N	¥	¥	¥	₹	A A	NA	Ą	Ą
Acetone	Ž	Ą	¥	Ą	¥	¥	ΑN	¥	¥	A A
2-Butanone	¥	¥	¥	¥	₹	¥	¥	NA	N	Ϋ́
Tetrachloroethene	₹	¥	¥	¥	¥	¥	ΑN	¥	¥	ΑN
1.1.2.2-Tetrachioroethane	¥	¥	¥	¥.	₹	¥	¥	¥	¥	≨
Senzene	1.1 U	0,001 U	0.001	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.11 U	0.001
Ethylbenzene	1.1	0.001	0.001 U	0.001 U	0.001 U	0.001 U	0.002	0.001 U	0.11 U	0.001
Foluene	1.1 C	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.11 U	0.001
Kylene	4	0.47	0.004 U	0.003 U	0.004 U	0.003	0.2	0.003 U	0.28	0.004

VOTES: All analytical values measured in mg/kg.
U - below detection limit.
Analytical quantitation limits are sample specific and may vary.
Quantitation limits for each sample and analyte are presented in laboratory reports.

Volatile Organic Compounds Maestri Site Geddes, New York Data - 1995

B-23 B-24 B-25 B-25 14-16 8-10' 10-12' 18-20'	NA NA NA	NA NA	AN AN	NA NA	NA NA	0.001 U 0.001 U	0.001 U 0.001 U	0.001 U 0.001 U	0.003 U 0.004 U
B-23 12-14'	N V	¥	Ϋ́ V	Ϋ́	¥	0.001 U	0.001 U	0.001	0.003 U
B-22 12-14'	Ϋ́	₹	ž	ΑN	¥	0.001 U	0.001 U	0.001 U	0.003 U
B-21 20-22'	Ą	₹	ΑN	ş	¥	0.001 U	0.001 U	0.001 U	0.004 U
B-21 16-18'	Ą	¥	ΑN	A A	ΑĀ	0.001 U	0.002	0,001 U	0.21
B-20 10-12'	Ą	₹	ΑN	¥	ş	0.001 U	0,001 U	0.001 U	0.003 U
B-19 14-16'	A'A	₹	₹	¥	¥	0.001 U	0.001 U	0.001 U	0.004 U
Sample ID Number: Sample Depth (ft):	Methylene Chloride	Acetone	2-Butanone	Tetrachioroethene	1,1,2,2-Tetrachloroethane	Вепzеле	Ethylbenzene	Toluene	Xylene

NOTES: All analytical values measured in mg/kg.
U - below detection limit.
Analytical quantitation limits are sample specific and may vary.
Quantitation limits for each sample and analyte are presented in laboratory reports.

Semi-Volatile Organic Compounds Maestri Site Geddes, New York Data - 1995 Table 1

	0.38 U	0.4 11				17
		,	0.34 U	0.37 U	0.4 U	0.36 U
_	0.38 U	0.4 U	0.34 U	0.37 U	0.4 U	0.36 U
	0,38 U	0.4 U	0.34 U	0.37 U	0.4 U	0.36 U
	1.9 U	2 U	1.7 U	1.8 U	1.9 U	1.8 U
	0.53	0.4 U	0.34 U	0.37 U	0,4 U	0.36 U
0.35 U 0.39 U 0.35 U 0.39 U 1.7 U 1.9 U 0.48 0.39 U	0.38 U 0.38 U 1.9 U 0.53	200 0 24464 3000		0.34 U 0.34 U 0.34 U 1.7 U		0.34 U 0.34 U 1.7 U 0.34 U

NOTES: All analytical values measured in mg/kg.
U - below detection limit
Analytical quantitation limits are sample specific and may vary.
Quantitation limits for each sample and analyte are presented in laboratory reports.

Semi-Volatile Organic Compounds Geddes, New York Maestri Site Data - 1995 Table 1

B-25 B-25 10-12' 18-20'	0.4 U 0.38 U 0.4 U 0.38 U 0.4 U 0.38 U 2 U 1.8 U 0.4 U 0.38 U
B-24 B 8-10' 10-	0.36 0.36 0.36 0.36 0.36 0.36 0.36
B-23 14-16'	0.37 U 0.37 U 0.37 U 1.8 U 0.37 U
B-23 12-14'	0.36 U 0.36 U 0.36 U 1.7 U 0.36 U
B-22 12-14'	0.38 0.38 U 0.38 U 1.8 U 0.38 U
B-21 20-22	0.39 U 0.39 U 0.39 U 1.9 U
B-21 16-18'	0.4 U 0.4 U 0.4 U 0.4 U 0.4 U
B-20 10-12	0.37 U 0.37 U 0.37 U 1.8 U 0.37 U
B-19 14-16'	0.4 U
Sample ID Number: Sample Depth (ft):	2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol Berzoic Acid bis(2-Ethylhexyl)phthalate

NOTES: All analytical values measured in mg/kg.
U - below detection limit
Analytical quantitation limits are sample specific and may vary.
Quantitation limits for each sample and analyte are presented in laboratory reports.

Table 2 Remedial Action Objectives Maestri Site Geddes, New York

Parameter	Soil Clean-up Objective (mg/kg, dry weight)	Ground water clean-up level (ug/l)
Volatile organic compo	unds (VOCs)	, <u>, , , , , , , , , , , , , , , , , , </u>
benzene ethylbenzene t-1,2-dichloroethylene tetrachloroethylene toluene xylene	0.06 5.5 0.3 1.4 1.5	5 5 5 5 5 5
Total VOCs	10	100
Semi-volatile organic co	ompounds (SVOCs)	·
benzoic acid 2,4-dimethylphenoi 2-methylphenoi 4-methylphenol	2.7 none established 0.1 0.9	5 none established 50 50
Total SVOCs	500	none established

DST/maest2.wk1

Table 3
Soil Sampling During Construction
Maestri Site
Geddes, New York

Location	Analysis/Method	Frequency	Action Level	Action
Excavated Soils	Photoionization Detector (PID) with 10.2 eV lamp	Continuous at excavator bucket	background	Soils with PID readings below background are placed in clean stockpile Soils with PID readings above background
	VOCs (EPA Method 8010/8020) SVOCs (EPA Method 8270)	Within top 4 ft. of excavation, 3 grab and 1-5 pt. composite per 200 cy excavated	RAOs	Soils with levels above action level are to be mechanical screened Soils with levels below action level
Excavation	VOCs (EPA Method 8010/8020) SVOCs (EPA Method 8270)	at 30 ft. grid nodes as shown on Contract Drawing G-8	RAOs	will be used for backfill If VOC/SVOC levels are below action level excavation can be backfilled If VOC/SVOC levels are above action level,
Mechanical Screening	VOCs (EPA Method 8010/8020) SVOCs (EPA Method 8270)	2 grab samples per 200 cubic yards excavated and stockpiled	RAOs	soils in 1 to 2 ft, lifts at a distance 3/4 to the next clean grid node are to be removed to the extent practicable If VOC/SVOC levels are below action level excavation can be backfilled If VOC levels are above action level, soils will be reprocessed through machanical expanding un to 2 times.
				If SVOC levels are above action level, soils will be staged for treatment in a BIO/SVE soil pile
Soils Stockpiled for Placement in BIO/SVE Soil Pile	VOCs (EPA Method 8010/8020) SVOCs (EPA Method 8270) Moisture Content Moisture Holding Capacity Soil Texture	2 composite samples per 200 cubic yards stockpiled	попе	utilize data to determine moisture and nutrient addition requirements
	Total Organic Carbon (SW846 9060) Total Kjeldahi Nitrogen Nitrate & Nitrie Nitrogen Ammonia Nitrogen Phosphate Phosphorus Soil pH Total Heterotrophs Petroleum Degraders	60)		

Table 4
Air Sampling During Construction
Maestri Site
Geddes, New York

Location	Analysis/Method	Frequency	Action Level	Action
Within Environmental Enclosure over excavation and Mechanical Screening Operations	VOCs particulates/dust	Refer to HASP	Refer to HASP	Refer to HASP
Exhaust from Air Collection and Treatment System	benzene (NIOSH 1500/1501) weekly fo ethylbenzene (NIOSH 1500/1501) and mech t,1,2-dichloroethylene (NIOSH 1015) activities tetrachloroethylene (NIOSH 1019) toluene (NIOSH 1500/1501) xylene (NIOSH 1500/1501) particulates (miniram)	weekly for soil excavation Annual Guideline and mechanical screening Concentrations (AGCs) activities in Air Guide 1	Annual Guideline Concentrations (AGCs) in Air Guide 1	Change-out filters upo exceedence of action levels

DST/maest4.wk1

Table 5
Bioremediation/soil vapor extraction
soil pile remediation monitoring
Maestri Site
Geddes, New York

Appendix H

Laboratory Sample Results from Test Pits and Soil Borings Near MW-9

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153 NY 13153-Attn: Ms. Gianna Aiczza

PROJECT NAME: Maestri Soil Borings

DATE: 11/28/2007

SAMPLE NUMBER- 508078 SAMPLE ID- SB-1(18-1)
DATE SAMPLED- 11/19/07
DATE RECEIVED- 11/21/07 SAMPLER- Laura Mona
TIME RECEIVED- 1245
DELIVERED BY- Tom Ba SAMPLE NUMBER-

SAMPLE ID- SB-1 (18-20)

DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1450 RECEIVED BY- RS TYPE SAMPLE- Grab

Page 1 of 1

ANALYSIS

METHOD

SAMPLE PREP ANALYSIS DATE BY DATE

TIME BY RESULT UNITS

LRE

Sample Receipt Temperature Percent Solids Total Xylenes

EPA 160.3 SW846 8260 11/21/07 LRE 11/27/07 LRE

3.0 Degrees C 4400 ug/Kg

Analysis performed and reported on a wet weight Note: basis.

NYSDOH LAB ID NO. 11246

APPROVED BY:

(Terms and Conditions on Reverse Side)

Barbara L, DuChene Laboratory Manager

1401 Erle Blvd, East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-Attn: Ms. Gianna Aiczza

PROJECT NAME: Maestri Soil Borings

DATE: 11/28/2007

SAMPLE NUMBER- 508079 SAMPLE ID- SB-2(13-DATE SAMPLED- 11/20/07
DATE RECEIVED- 11/21/07 SAMPLER- Laura Mona
TIME RECEIVED- 1245 DELIVERED BY- Tom B

SAMPLE ID- SB-2(13-15)

DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1415 RECEIVED BY- RS TYPE SAMPLE- Grab

Page 1 of

ANALYSIS

METHOD

SAMPLE PREP ANALYSIS DATE BY DATE

TIME BY

RESULT UNITS

Sample Receipt Temperature

3.0 Degrees C 86. %

Percent Solids Total Xylenes

EPA 160.3 SW846 8260 11/21/07 LRE 11/27/07 LRE

LRE

< 150 ug/Kg

Note: Analysis performed and reported on a wet weight basis,

NYSDOH LAB ID NO. 11246

APPROVED BY:

(Terms and on Reverse Side)

> Barbara L. DuChene Laboratory Manager

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-Attn: Ms. Gianna Aiezza

PROJECT NAME: Maestri Soil Borings

DATE: 11/28/2007

SAMPLE ID- SB-3 (15-16.5)

SAMPLE NUMBER- 508080 SAMPLE ID- SB-3(15-DATE SAMPLED- 11/20/07
DATE RECEIVED- 11/21/07 SAMPLER- Laura Mona TIME RECEIVED- 1245 DELIVERED BY- Tom Be

DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1235 RECEIVED BY- RS TYPE SAMPLE- Grab

Page 1 of 1

ANALYSIS

METHOD

SAMPLE PREP ANALYSIS DATE BY DATE

TIME BY RESULT UNITS

Sample Receipt Temperature Percent Solids Total Xylenes

11/21/07 RS 11/26/07 1010 MM

3.0 Degrees C

EPA 160.3 SW846 8260 11/21/07 LRE 11/27/07 LRE

810 ug/Kg

Analysis performed and reported on a wet weight Note: basis.

NYSDOH LAB ID NO. 11246

APPROVED BY:

(Terms and Reverse Side)

> Barbara L. DuChene Laboratory Manager

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-Attn: Ms. Gianna Aiezza

PROJECT NAME: Maestri Soil Borings

DATE: 11/28/2007

SAMPLE ID- SB-4(17-18.3)

SAMPLE MATRIX- SO

SAMPLE NUMBER- 508081 SAMPLE ID- SB-4(17-18.3)
DATE SAMPLED- 11/19/07
DATE RECEIVED- 11/21/07 SAMPLER- Laura Moma
TIME RECEIVED- 1245 DELIVERED BY- Tom Barry

TIME SAMPLED- 1615 RECEIVED BY- RS TYPE SAMPLE- Grab

LRE

Page 1 of 1

ANALYSIS

METHOD

SAMPLE PREP ANALYSIS BY DATE

TIME BY RESULT UNITS

Sample Receipt Temperature Percent Solids

NYSDOH LAB ID NO. 11246

3.0 Degrees C 87. % 540 ug/Kg

Total Xylenes

EPA 160.3 SW846 8260 11/21/07 LRE 11/27/07 LRE

Note: Analysis performed and reported on a wet weight

APPROVED BY:

(Terms and Conditions Réverse Side)

> Barbara L. DuChene Laboratory Manager

CHAIN OF C.STODY RECORD

	Syracuse, NY 13210 Turkendend Time: Turkendendendendendendendendendendendendende	Syracuse, NY 13210 Turn-Around Time: Tur	1401 Erie Blyd. East		BATCH NO: CONTINUE		Page (_of
MOMBADEW 41.77 D. 13 Hours D. 13 Hours D. 13 Hours D. 14 Hours	TYPE MATRIX Collected Fax: 315.478-2107 Date TYPE MATRIX TYPE	TYPE MATRIX Collected TYPE MATRIX TYPE TYPE			Turn-Around Time:		ARAMETERS FOR ANALYSIS
MAMBAPAM 61, \$\frac{1}{2} MAMBAPAM 61, \$\frac{1}{2}	Collected Fig. 1950 X X X SP-1 (17-18-3) Collected Fig. X X X X X X X X X X X X X X X X X X X	Date Time TYPE MATRIX Collected Date Time	u.		ist.Signoard		
IN A STAPE MATRIX TYPE MATRIX INSTANCE OF CLIENT ID/SAMPLE LOCATION TIME CONTAINERS INSTANCE OF CLIENT ID/SAMPLE LOCATION INSTANCE OF CONTAINERS INSTANCE OF CLIENT ID/SAMPLE LOCATION INSTANCE OF CONTAINERS INSTANCE OF CONTAINE	### Date Time O G B PURCHASE ORDERNO:	MATERIA MATE	_	PROJECT	O 24 Hours		
Mark	### MATRIX	### MATRIX COllected	3				
14 15 15 15 15 15 15 15	Collected MATRIX Collected OF A COLLENT ID/SAMPLE LOCATION TYPE MATRIX Collected OF OF A COLLENT ID/SAMPLE LOCATION Type I 1450 X X X X X X X X X X X X X X X X X X X	TYPE MATRIX PURCHASE ORDERNO: Collected Date Time Collected Coll	Magneti Rige	MICH	NA 124 -1	3N	
PURCHASE ORDERNO: PURC	TYPE MATRIX Collected Date Time Collected Date Dat	Alternative Purchase orderno: Alternative Alternat	IJ,			IATI	
TYPE MATRIX Signature:	TYPE MATRIX Collected E	TYPE MATRIX Signature:	1000 1000 MX	PURCHASI	E ORDERNO:	COV	
TYPE MATRIX	TYPE MATRIX	TYPE MATRIX	Green	Signature: X	A Mick	ER OF	
Time Comp.	Collected Eq. Collected Eq. Culent ID/Sample Location Collected Eq. Collected Collec	Collected Ending Collected Ending Collected Ending Collected Ending Collected Ending	TYPE	RIX		UMB UMB	
Time 8	Date Time	Date Time	ub'			N JAI	
			Time Col	410	JENT ID/SAMPLE LOCATION	01 <u>N</u>	
"Ingles 1955 X X SA-3 (13-15) "Ingles 11015 X X SA-4 (17-18.3) "Ingles 11015 X X SA-4 (17-18.3)	1415 X SA-3 (13-15) 1 1 1 1 1 1 1 1 1	1415 X SA-3 (13-15) 1 1 1 1 1 1 1 1 1	X 05.h! \ \ \ \ X	Sh-1	(S. X.)	د.	
"Ingho 1035 X X SB-3 (15-116.5) "Ingho 11015 X X SB-4 (17-18.8)			\neg	C((13-15)		
1/app 11015 X X SA-4 (17-183)	HIGH HOLS X X SAMPLES RECEIVED BY:	HIGHED BY: SAMPLES RECEIVED BY:	138 X	186-31			
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:	Hols X	19. J. J.	17-183)	×	
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:					
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY: Sam				 	
	ELINQUISHED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY: Sam					
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:					
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:					
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:	77.7% 77.7%			-	
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:	aKS:			+	NUMBER OF CONTAINERS
	ELINQUISHED BY: SAMPLES RECEIVED BY:	ELINQUISHED BY: SAMPLES RECEIVED BY:				3.4	

Temperature 🔞 DATE://s/c/ CYes CI No NAME: SIGNATURE: TIME: SIGNATURE: DATE: 1/12/17 NAME: 70 77 TIME: 1/8/10 SIGNATURE: DATE: //a////
TIME: /2 4 <

NAME

ç

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-Attn: Ms. Gianna Aiezza

PROJECT NAME: Maestri DATE: 08/07/2007

SAMPLE NUMBER- 495756 SAMPLE ID- TP-EX
DATE SAMPLED- 07/30/07
DATE RECEIVED- 08/02/07 SAMPLER- Alan Clark
TIME RECEIVED- 1555 DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1400 RECEIVED BY- RS TYPE SAMPLE- Composite

Page 1 of 2

ANALYSIS	METHOD	SAMPLE PREP DATE BY	analysis Date	TIME	ВУ	RESULT	UNITS
Sample Receipt Temperature TCLP Extraction ZERO HEADSPACE EXTRACTION CYANIDE REACTIVITY SULFIDE REACTIVITY Percent Solids TCLP Metals Arsenic, TCLP Barium, TCLP Cadmium, TCLP Chromium, TCLP Chromium, TCLP Selenium, TCLP Selenium, TCLP MERCURY, TCLP MERCURY, TCLP MERCURY, TCLP MERCURY, TCLP Aroclor 1232 Aroclor 1242/1016 Aroclor 1248	SW846 9030 EPA 160.3 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 EPA 245.1	08/06/07 JDC 08/03/07 KB 08/03/07 KB 08/03/07 KB 08/03/07 KB	08/02/07 08/02/07 08/02/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/04/07 08/04/07	1945 1745	RS MD		Degrees C mg/Kg mg/Kg % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/
Aroclor 1254	EPA 8082	08/02/07 CD	08/04/07	:	BLD	< 0.5	mg/Kg

Certille o Environmental Services, los

1401 Erie Blvd, East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

Page 2 of 2

CONTINUATION OF DATA FOR SAMPLE NUMBER 495756

ANALYSIS	METHOD	SAMPLE PREP DATE BY		DIME BY	RESULT UNITS
ANALYSIS Aroclor 1260 TCLP VOLATILES BENZENE, TCLP CARBON TETRACHLORIDE, TCLP CHLOROBENZENE, TCLP CHLOROFORM, TCLP 1,2-DICHLOROETHANE, TCLP 1,1-DICHLOROETHENE, TCLP METHYL ETHYL KETONE, TCLP TETRACHLOROETHENE, TCLP TRICHLOROETHENE, TCLP VINYL CHLORIDE, TCLP 1,4-DICHLOROBENZENE, TCLP NITROBENZENE, TCLP NITROBENZENE, TCLP PYRIDINE, TCLP CRESOLS (TOTAL), TCLP 2,4-DINITROTOLUENE, TCLP HEXACHLOROBENZENE, TCLP HEXACHLOROBITADIENE, TCLP HEXACHLOROBITADIENE, TCLP PENTACHLOROPHENOL, TCLP 2,4,5-TRICHLOROPHENOL, TCLP	METHOD EPA 8082 EPA 8260 EPA 8270	08/02/07 CD	08/04/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/03/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07	BY BLD LRE LRE LRE LRE LRE LRE LRE LRE LRE KEC KEC KEC KEC KEC KEC KEC	< 0.5 mg/Kg < 0.050 mg/L
2,4,6-TRICHLOROPHENOL, TCLP	EPA 8270	08/03/07 LRE		KEC	< 0.10 mg/L

NYSDOH LAB ID NO. 11246

APPROVED BY:

Terms and Conditions on Reverse Side)

Certified Environmental Services, inc

1401 Erie Blvd, East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-Attn: Ms. Gianna Aiezza

PROJECT NAME: Maestri DATE: 08/07/2007

SAMPLE NUMBER- 495757 SAMPLE ID- TP-EX
DATE SAMPLED- 07/30/07
DATE RECEIVED- 08/02/07 SAMPLER- Alan Clark
TIME RECEIVED- 1555 DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1405 RECEIVED BY- RS TYPE SAMPLE- Grab

Page 1 of 1

ANALYSIS

METHOD

ANALYSIS DATE

RESULT UNITS TIME BY

Sample Receipt Temperature Ignitability of Solids

08/02/07 RS 3.0 Degrees C SW846 1030 08/06/07 1345 RRB NO BURN mm/sec

NYSDOH LAB ID NO. 11246

APPROVED BY:

(Terms and Conditions on Reverse Side)

CHAIN OF JSTODY RECORD

TOTAL NUMBER OF CONTAINERS PARAMETERS FOR ANALYSIS Samples Received in Good Condition: ☐ Yes ☐ No ŏ ò Page Temperature_ ERBUIATUOD RO REBUINTATOT White - CES's Copy . Canary - Return to Client With Report . Pink - Clients Initial Copy 7: DATE: \$7/0 / TIME: 14.30 DATE: 34 1 TIME: 1555 CLIENT ID/SAMPLE LOCATION 95196 SAMPLES RECEIVED BY: Turn-Around Time:

O Standard

O 72 Hours

O 48 Hours

O 24 Hours PROJECT NUMBER/NAME: PURCHASE ORDER NO. BATCH NO: 1000X Signature: TP-EK 7 Certified Environmental Services, Inc. 1 SIGNATURE 9 NAMEK Ofher MATRIX DATE: 81/16> DATE: 30/07 llo2 1401 Erie Blvd. East Syracuse, NY 13210 suceupA Fax: 315-478-2107 CLIENT NAME: Stan Stan Mange 5153 TYPE Grab SAMPLES RELINQUISHED BY: Comp. Mons CES Sample Numbers Date Time 3.8 SBC COSE Collected 56197 6209 |7*(sc)*| 4 Sampler's Name: 1460 Phone: 315-478-2374 NAME: Ala CILI SPECIAL REMARKS ADDRESS: 45/12 CONTACT NAME: LAB USEONLY

Appendix I

Letter to NYSDEC Detailing Work Done Near MW-9 in July 2007

16 Computer Drive West Albany, NY 12205 Phone: 518.453.2203 Fax: 518.689.4800

October 24, 2007

Mr. David Chiusano NYS Department of Environmental Conservation Remedial Bureau E, Section A Division of Environmental Remediation 625 Broadway 12th Floor Albany, NY 12233-7017

Re: Stauffer Management Company, Maestri Site #7-34-025, Onondaga County

Summary of Work Report - Revised

Dear Mr. Chiusano:

On behalf of Stauffer Management Company, LLC (SMC), Envirospec Engineering, PLLC (Envirospec) has prepared the following letter report to summarize field work completed at the SMC Maestri Site on July 25, 2007. The work was completed in accordance with the letter work plan submitted by Envirospec on June 19, 2007 with a response to NYSDEC comments on July 12, 2007. NYSDEC approval was granted in a letter dated July 13, 2007.

General Overview

Field activities completed were at the request of the NYSDEC in order to address concerns resulting from a groundwater sample collected from MW-9 on April 3, 2007 which showed elevated levels of xylene at 827 ppb. The NYSDEC had concerns that an area of soil contamination remains in the area of MW-9 and MW-2A (formerly RW-2). To address NYSDEC concerns, two test pits were excavated in the vicinity of these wells to determine if a source of soil contamination remains. Field work began with excavation of the first test pit (TP1) running from east to west beginning inside the footprint of the original excavation completed during the remedial action near MW-9. The test pit TP1 extended to outside the original footprint. A second test pit (TP2) was then excavated from north to south perpendicular to TP1 creating a "T" shape. TP2 included the area of MW-9 and MW-8. The locations of the test pits are shown on Figure 1.

During the test pit activities, an odor was noted at a depth of approximately 6.5 to 8 feet below ground surface (bgs). Headspace samples were taken throughout excavation of both test pits with results ranging from 0.0 ppm to 258 ppm. Overburden soils were staged on poly adjacent to the excavation, screened with the PID, and ultimately re-used as backfill upon confirmation of non-detectable PID screen readings and concurrence with the DEC. Excavated soils were loaded into lined rolloff boxes positioned next to the excavation. TP1 and TP2 were delineated with poly and backfilled with clean backfill and overburden soil from TP1.

Objectives

The purpose of the field activities was to determine if there was an area of soil contamination remaining in the vicinity of MW-2A and MW-9.

Project Team

Envirospec Engineering, PLLC provided project management and field oversight. Abscope Environmental, Inc completed the site work. The NYSDEC provided regulatory oversight of the excavation activities.

Summary of Work

Field work was completed on July 25, 2007. A photographic log and field notes documenting the project tasks are attached to this letter report.

Work began at 9:00 AM with representatives from Envirospec and the NYSDEC discussing where to begin TP1. Once the location was determined, the test pit was excavated from east to west with a length of approximately twenty-one (21) feet and a width of four (4) feet. A three (3) foot layer of overburden was first removed. Three (3) headspace samples were taken from the overburden, all of which showed PID readings of 0.0 ppm. The next layer observed in TP1 was a sandy layer beginning approximately three (3) feet bgs. This layer continued to approximately eight (8) feet bgs where a solid, cobblestone-like layer was encountered. Excavation continued through the cobblestone layer into a silt layer, which began at approximately eleven (11) feet bgs and ended at bedrock which was encountered at sixteen (16) feet bgs. The NYSDEC representative indicated the presence of an odor from approximately 8 feet to 16 feet bgs. Two (2) headspace samples from the silt layer exhibiting the odor had PID readings of 24.5 and 40.6 ppm.

TP2 began at approximately 10:00 am and was first excavated perpendicular to TP1, at a safe distance to maintain MW-8 and MW-9. The initial test pit was excavated from east to west to a length of four (4) feet. During the excavation, an electrical conduit and two waterlines were encountered. The two water lines were determined to be plugged lines connected to MW-2A which was formerly a recovery well and was replaced with a monitoring well during field work completed the week of April 24-28, 2006. The electrical conduit was former power to the RW-2 pump and was not live. The conduit and water lines were removed from the test pit.

The layers observed in TP2 were similar in appearance to those observed in TP1. The cobble layer of TP2 began at a depth of approximately 6.5 feet bgs. The silt layer began at approximately 10.5 feet below grade and ended at bedrock at a depth of sixteen (16) feet bgs. After discussion between Envirospec and the NYSDEC, it was decided to extend TP2 in order to excavate additional material that exhibited an odor. In order to extend TP2, MW-8 and MW-9 were removed. Odors were again noted by the NYSDEC representative at similar depths as encountered in TP1.

Samples for PID screening and headspace readings were collected throughout the excavation. The results are outlined in Table 1. The highest PID reading was from TP2 which had a PID screen of 432 ppm and a headspace reading of 258 ppm.

Test Pit	Depth (ft)	Time	Screen	Headspace	Other Details
2	~11-12.5	-	185	171	1st sample below hard cobble
2	13.0	-	30.2	147	Exact time not recorded, collected between 10:47 and 11:13 am
2	14.0	-	9.5	16.4	Exact time not recorded, collected between 10:47 and 11:13 am
2	14.5	11:13 AM	196	76.9	NYSDEC collected sample from same area
2	15.5	-	227	158	Exact time not recorded, between 11:13 and 11:35 am
2	16.0	-	100	121	Exact time not recorded, between 11:13 and 11:35 am
2	13.0	11:52 AM	432	258	1st sample taken directly below MW-8 and MW-9
2	15.0	-	10.4	5.1	Exact time not recorded, between 11:52 am and 12:25 pm
1	~13-14	12:25 PM	97.0	16.5	South wall of TP1
2	~14-15	1:14 PM	68.0	20.5	Near the locations of MW-9 and MW-8
-	~15-16	1:27 PM	77.0	93.4	On the corner between TP1 and TP2
2	15.0	1:34 PM	241	129	West wall of TP2
2	~3-6.5	1:46 PM	22.0	9.0	West wall, just above cobble layer
2	~3-6.6	1:53 PM	0.5	0.0	North wall, just above cobble layer
2	~10.5-16	1:57 PM	127	73.3	North wall, just below cobble layer
2	~3-6.6	2:00 PM	0.0	0.0	East wall, just above cobble layer
2	~10.5-16	2:02 PM	26.0	16.9	East wall, just below cobble layer
1	~3-8	2:11 PM	0.0	0.0	South wall, just above cobble layer
1	~11-16	2:07 PM	224	45.4	South wall, just below cobble layer

Table 1 – PID/Headspace Sample Summary

After excavation, the area was delineated with poly and backfilled. The DEC concurred that overburden material could be utilized as backfill within the excavated area based on visual assessment and non-detectable PID readings. Overburden material (approximately 30 cy) was placed in the bottom of the excavation followed by a layer of crusher-run stone (approximately 35 cy) and then clean import sand (approximately 85 cy). Material was compacted with the excavator as backfilling progressed. Clean import sand was obtained from stockpiles of backfill material staged at the SMC Skaneateles Falls site. The import sand originated from an approved source located on Depot Road in Sennett, NY. Crusher-run stone was obtained from Hanson Aggregates in Skaneateles, NY. To facilitate site restoration, the excavation area was restored with topsoil, seed, and mulch.

Waste Management

Waste generated from the field work consisted of excavated soil and solid waste (e.g. PPE, PVC piping, conduit, and removed monitoring wells). Soil generated from the excavation was loaded into five (5) rolloffs staged adjacent to the excavation. In order to remove as much of the impacted soil as possible, each rolloff was loaded to maximum holding capacity (approximately 30 cubic yards each) with the understanding that material would need to be appropriately redistributed for offsite disposal. Excavation ceased upon reaching maximum capacity in all rolloffs.

One RCRA sample (Sample ID: TP-Ex) was collected from the five (5) rolloffs on July 30, 2007 to characterize the waste for offsite disposal. A five-point composite sample was collected with one point from each rolloff. Rolloffs were screened with a PID and a discrete grab sample was

collected from a randomly selected rolloff as each exhibited a PID reading of 0.0 ppm. The composite sample was analyzed for TCLP VOC, SVOC, and metals; PCBs; and reactivity. The grab sample was analyzed for ignitability. Analytical data showed the material was non-hazardous and it was approved for offsite disposal at Waste Management's Mill Seat Landfill in Bergen, NY. Prior to transportation, additional rolloff boxes were brought onsite and the material redistributed so each rolloff would be within appropriate weight limits. A total of nine (9) rolloff boxes were shipped from August 22, 2007 to August 27, 2007 for a total of 170.31 tons. The chain of custody, analytical results, and waste manifests are attached to this letter report.

Proposed Additional Work

Monitoring Well

Two (2) monitoring wells were removed during the excavation (MW-8 and MW-9). SMC is proposing to install one new monitoring well to replace MW-9 which had exhibited elevated levels of xylene. The new well will be installed in the area where MW-9 was located.

Construction of the monitoring well will consist of a two-inch diameter well casing with ten feet of Schedule 40 PVC screen and riser. The well screen will be installed starting at 5 feet above the bottom of the well boring. The annular space in the screened interval will be sand packed with a No. 2 filter sand pack to one to two feet above the top of the screen. The annular space above the screened interval will be sealed with a layer of bentonite to provide a seal above the sand pack. The surface completion will consist of either a stick-up protective steel casing set in concrete and fitted with a lockable cap or a flush-to grade, bolt down, gasketed curb box set in concrete and a lockable sanitary plug.

The monitoring well will be developed no sooner than 24 hours after installation. The well will be purged with a low flow submersible pump. Purging will continue until the water is visibly free of suspended materials and field parameters (pH, temperature) stabilize, or a maximum of 24 hours.

After installation and development of the monitoring well, it will be sampled. If time has elapsed between development and sampling, three well volumes will be purged prior to sampling. The well will be gauged for depth-to -water and total depth from the top of casing to determine the elevation of groundwater and volume of water in the well. The well will be sampled using a dedicated disposable bailer. Samples will be collected in laboratory provided sample jars and placed on ice for shipping or delivery under chain-of-custody protocols. Samples will be analyzed for xylene via EPA Method 8260.

Soil Borings

To further investigate soil conditions in the area of work, SMC is proposing to install four (4) soil borings outside the area of the test pits. Proposed locations are shown on Figure 1. Soil borings will be completed with two-foot split-spoon samplers advanced to bedrock. Soil will be placed back into the hole after the boring is completed.

Each boring will be characterized, screened with a PID, and sampled. A headspace reading will be taken from each interval that has an elevated PID reading and a sample retained from the interval with the highest headspace reading to be sent to the lab for analysis. If there is no reading

on the PID, the interval above bedrock will be sampled. Samples will be analyzed for xylene via EPA Method 8620.

Schedule

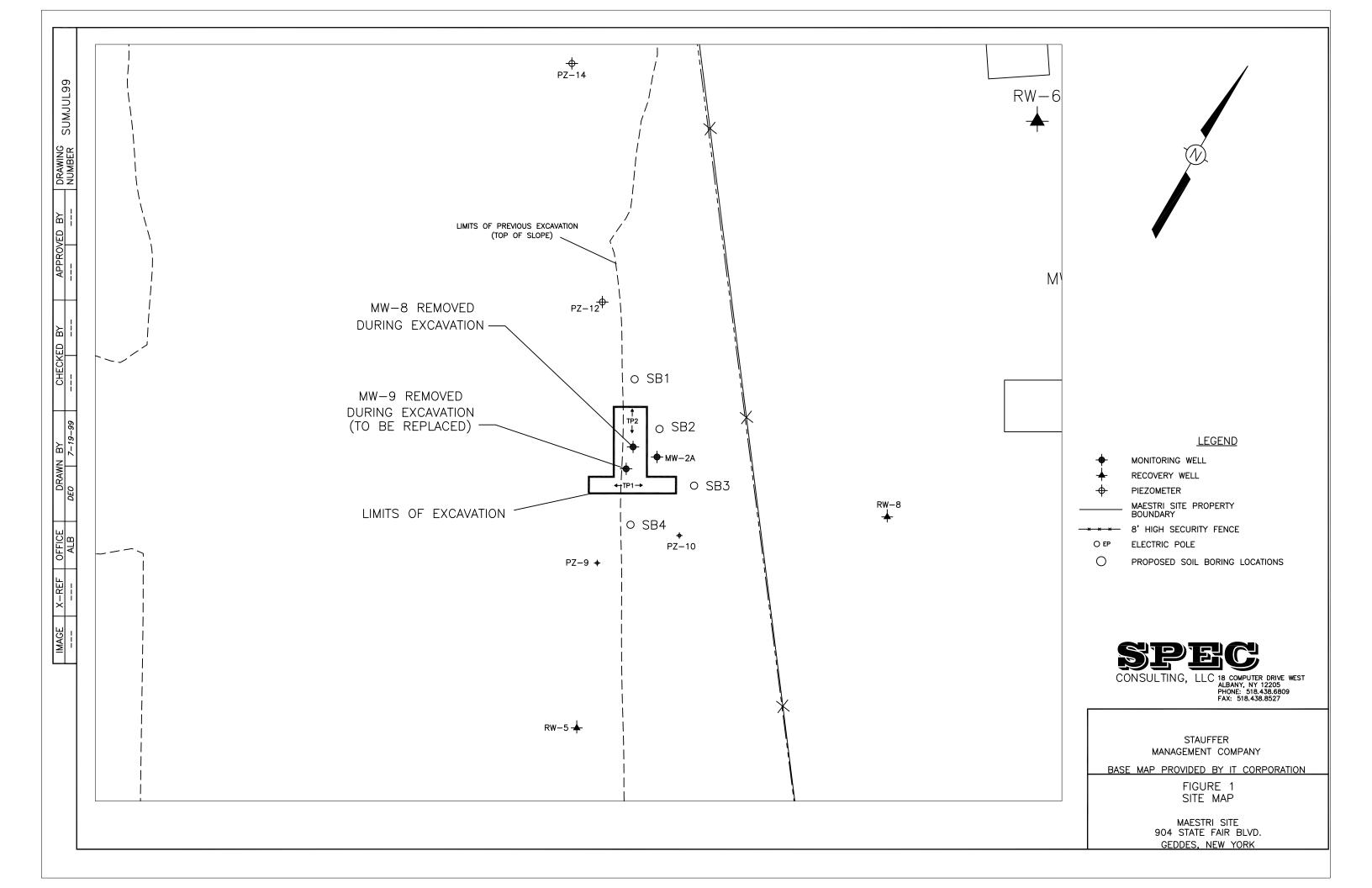
SMC is proposing to complete the additional work upon approval by the NYSDEC. The NYSDEC will be provided with at least five (5) days notice prior to the initiation of work. After completion of the work, a letter report will be submitted to the NYSDEC summarizing the results. The report will also contain a plan for shutting down the groundwater recovery system which will consist of sampling perimeter wells to ensure the plume does not migrate.

Should you have any questions regarding the project, please do not hesitate to contact me at (518) 438-6809.

Sincerely,

Gianna Aiezza

Gianna Aiezza, PE Principal Engineer Envirospec Engineering, PLLC


Enc

cc: B. Shay/P. Ekoniak – SMC

J. Abraham – SMC

L. Mona/M. Newman - Envirospec

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-Attn: Ms. Gianna Aiezza PROJECT NAME: Maestri DATE: 08/07/2007

SAMPLE NUMBER- 495756 SAMPLE ID- TP-EX
DATE SAMPLED- 07/30/07
DATE RECEIVED- 08/02/07 SAMPLER- Alan Clark
TIME RECEIVED- 1555 DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1400 RECEIVED BY- RS TYPE SAMPLE- Composite

Page 1 of 2

ANALYSIS	METHOD	SAMPLE PREP DATE BY	ANALYSIS DATE	TIME	BY	RESULT	UNITS	
Sample Receipt Temperature TCLP Extraction ZERO HEADSPACE EXTRACTION CYANIDE REACTIVITY SULFIDE REACTIVITY Percent Solids TCLP Metals Arsenic, TCLP Barium, TCLP Cadmium, TCLP Chromium, TCLP Lead, TCLP Selenium, TCLP Selenium, TCLP Silver, TCLP MERCURY, TCLP MERCURY, TCLP (HG) PCB's in Solid Aroclor 1231 Aroclor 1242/1016 Aroclor 1248 Aroclor 1254	40CFR 1311 40CFR 1311 SW846 9010 SW846 9030 EPA 160.3 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 SW846-6010 EPA 245.1 EPA 8082	08/06/07 JDC 08/03/07 KB 08/03/07 KB 08/03/07 KB	08/02/07 08/02/07 08/02/07	1945	RS MD MD JDC	3.0 Complete Complete < 10. < 50. < 0.50 < 10.0 < 0.10 < 0.50 < 0.50 < 0.50 < 0.50 < 0.02	Degrees mg/Kg mg/Kg mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	С
							3/	

Certilina Environmental Servines In

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

Page 2 of 2

CONTINUATION OF DATA FOR SAMPLE NUMBER 495756

ANALYSIS	METHOD	SAMPLE PREP DATE BY	ANALYSIS DATE	TIME BY	RESULT UNITS
TRICHLOROETHENE, TCLP VINYL CHLORIDE, TCLP 1,4-DICHLOROBENZENE, TCLP SEMI-VOLATILES, TCLP NITROBENZENE, TCLP PYRIDINE, TCLP CRESOLS (TOTAL), TCLP 2,4-DINITROTOLUENE, TCLP HEXACHLOROBENZENE, TCLP HEXACHLOROBUTADIENE, TCLP	EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8270	08/02/07 CD 08/03/07 LRE 08/03/07 LRE	08/03/07 08/03/07 08/03/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07 08/06/07	LRE LRE LRE LRE LRE LRE LRE LRE LRE	<pre>< 0.5 mg/Kg < 0.050 mg/L < 0.00 mg/L < 0.10 mg/L</pre>

NYSDOH LAB ID NO. 11246 APPROVED BY:

(Terms and Conditions on Reverse Side)

1401 Erie Blvd, East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

REPORT OF ANALYSES

Stauffer Management Company 4512 Jordan Road Skaneateles Falls, NY 13153-

PROJECT NAME: Maestri DATE: 08/07/2007

Attn: Ms. Gianna Aiezza

SAMPLE NUMBER- 495757 SAMPLE ID- TP-EX
DATE SAMPLED- 07/30/07
DATE RECEIVED- 08/02/07 SAMPLER- Alan Clark
TIME RECEIVED- 1555 DELIVERED BY- Tom Barry

SAMPLE MATRIX- SO TIME SAMPLED- 1405 RECEIVED BY- RS TYPE SAMPLE- Grab

Page 1 of 1

ANALYSIS

METHOD

ANALYSIS DATE

TIME BY RESULT UNITS

Sample Receipt Temperature Ignitability of Solids

08/02/07 RS 3.0 Degrees C SW846 1030 08/06/07 1345 RRB NO BURN mm/sec

NYSDOH LAB ID NO. 11246

APPROVED BY:

(Terms Reverse Side)

CHAIN OF CUSTODY RECORD

Certified Environmental Services, Inc. 1401 Erie Blvd. East Syracuse, NY 13210

95196 Turn-Around Time: BATCH NO:

PARAMETERS FOR ANALYSIS TOTAL NUMBER OF CONTAINERS Samples Received in Good Condition: o Page Temperature TOTAL NUMBER OF CONTAINERS TIME: 1430 DATE \$/2/0 CLIENT ID/SAMPLE LOCATION SAMPLES RECEIVED BY: O Standard
O 12 Hours
O 48 Hours PROJECT NUMBER/NAME PURCHASE ORDER NO: Signature: P-EK 4 SIGMATUR SIGMATUR 9 Other MATRIX DATE: 8/1/107 lios 8 Aqueous Fax: 315-478-2107 TYPE Crab CLIENT NAME: Stauffer Mangachan SAMPLES RELINQUISHED BY: Comp. Mong Time 2:00 730 PO 1255 Collected 16/95 6029 AUG 7/36/67 Date Sampler's Name: Man Phone: 315-478-2374 CES Sample Numbers NAME: Alan Claria SIGNATURE: Al SPECIAL REMARKS: NAME TOM 19 H CONTACT NAME: LAB USE ONLY ADDRESS: FAX: (3 12) 495757 PHONE: 495756

White - CES's Copy . Canary - Return to Client With Report . Pink - Clients Initial Copy DATE: 8/4/7

SIGNATURE

NAME

DATE:8/0/07

A	NON-HAZARDOUS 1. Generator ID Number NYD982796914 2. Pagy A.d.	20D-424	HVIN	4. Waste Tra	DID		Ä	1
	Generator's Name and Walling Addition and Mark Machine LOV, LLC 18th CDICOLD PIKE UNILLIAMON, DE 302-886-5147 Generator's Phone:	Generator's Site Address (STAUTEER) ADJ STATE SURACUSE	MANAE FAIR NY	1391	я	TC/M	SITE	(A)
1	Transporter 1 Company Name 48 COPE	*	1	U.S. EPA ID N	turner			
1	, Transporier 2 Company Name			U.S. EPA ID N	lumber			
1	Designated Facility Name and Site Address			U.S. EPA ID 1	Sumber			
	SOUBSOULD 14416 (BBS) 494-3000	10	1	(EXF)				
Ili	9. Waste Shipping Name and Description	10. Contain		11. Total Quartity	12. Unit Wt./Vol.			
11,	I NON REGULATED MATERIAL	No.	Type	Special	_	用点的态 。	A Cari	
GENERATOR	NON REQUESTED PROFESSION	001	文 4	14,000	P			
- GENE	2.					ASAT.		
	3.				-			
	4				-			
						要認識性	14 A	
	13. Special Handling Instructions and Additional Information PROFILE: 101823 NY SOLLDEBUS SAMPLE ID: TP-EX			Ac	x: 25	5.18T		
Н	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not subject.	act to federal regulations for n	eporting propay	disposal of He	azardous Wa	esté.		Marie
V		Laure	M	her	2	MUUTE	21	07 07
INT	15. International Shipments Import to U.S. Export from	n U.S. Port of en						
-	Transporter Signature (for exports anily): 16Transporter Acknowledginged of Receipt of Materials		1	_		Month	Day	Year
	Transporter I Printed Typed Name Randy Furlion	Signature 72 d	fe			-	211	57
TRANSPOR	Transporter 2 PrintedTyped Name	Signature (<i>U</i>			Month	Day	Year
4	17. Discrepancy 17a. Discrepancy Indication Space Quantity Type	Residue		Partial Re	election		full Rejects	ion
	Quantity Type				*******	1,500		
,	17b. Alternate Facility (or Generator)	Marifest Reference N	Number:	U.S. EPA ID	Number .			
CILIT	PRINCE STORY OF ST			1		3		
ED FA	Facility's Phonit: 17c, Signature of Alternate Facility (or Generator)	7				Month	Day	Year
INAT		MESSAGE A SPECI	7.08	Grad Statific	X 9 359	syra-elization	0.500	7.45
- DESIGNATED FACILITY	Jane Gracie-scalehouse Wm Millseat Landfill							
	16 pangunos 202 424-2000 GXC 230	ept as noted in Item 17a				Month	Dev	Year
	PrintedTyped Tuesday August 21, 2007	Signature				Month	Day	1002

TRANSPORTER #1

FLAT LINED SCOILS 4. Waste Tracking Number 800-94-4300 Generator's Site Address (I different fran mailing activess) STATORICK MANAGEMENT CO (MASTRI SITE) AND STATE PAIR BLVD 1. Generator ID Number NVD982796914 NON-HAZARDOUS WASTE MANIFEST 5. Generator's Name and Melling Additions MENT COMPANI STRUMEN MANAGEMENT COMPANI 1800 CONTON PIRE SYRACUSE, MY 13009 WLM INGTON, DE 1302)886-5147 U.S. EPA ID Number nerator's Phone: Transporter 1 Company Name U.S. EPA ID Number 7. Transporter 2 Company Name U.S. EPA ID Number B. Designated Facility Name and Site Address WM OF NY - MILL SEAT LANDFILL 303 DEFURCAD Facility's Phone: 144/16 (505) 4 12. Unit 10. Containers 11. Total Wt_Vol. Quantity No. Type 9. Waste Shipping Name and Description 1. NON-REGULTED MATERIAL 600,000 600 GENERATOR 3. SOIL DEBRIS LOTE WEIGHT IS ESTIMATED Special Handling Instructions and Additional Information 11 Act: 43.94T PLOFILE: 10/823 ML/ VERWEIGHT SAMPLE ID: TP-EX 14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not subject to federal physioticise for reporting geoper-disposal of Hazardous Waste. Generator's/Offieror's Printed Typed Name Laura Mona on behult Port of entry/exit Export from U.S. 15, International Shipments import to U.S. Date leaving U.S. Transporter Signature (for exports only): Year 16. Transporter Acknowledgment of Receipt of Materials Signature TRANSPORTER Transporter 1 Printed/Typed Name Year Transporter 2 Printed/Typed Name Full Rejection Partal Rejection. 17. Discrepancy Residue Type 17a. Discrepancy Indication Space Quantity Manifest Reference Number: U.S. EPA ID Number 17b. Alternate Facility (or Generator)

169-BLS-C 6 10497 (Rev. 8/06)

Printed Typed Name

17c. Signature of Alternate Facility (or Generator)

18. Designated Facility Owner or Operator; Certification of receipt of materials govered by the manifest except as noted in Item 17a

FACILITY

Facility's Phone:

TRANSPORTER #:

Day

Month -- Day

NON-HAZARDOUS AND TOOK 3 701014	of 3. Emergency Response	1 /14/1	1/	Marg Number	
NON-HAZARDOUS N. Generator D. Namber 79614	Generator's Site Address	If different th	an mailing address	MAN	HUY MUTETRISA
Severator's Nilme and Mailing Address STATUFFER MANAGEMENT CONTRANY 1800 CONTOCO PILE JULIANISTON, DE 19850 (30)886-5147	SHUTTER M 904 STATE SYRACUSE	FAIR I	3201		HUY/MUNETRIST
Generator's Phons: 6. Xransporter 1 Company Name			U.S. EPA ID N	mber	
RICCELLI		-	U.S. EPA ID N	umber	
7. Transporter 2 Company Name			U.S. EPAID N	wher	
8. Consignated Facility Name and Site Address WM OF NY - MILL SOTT LANDFILL 303 BLEWROAD			U.S. EFAILIN		
303 BREWROAD RECEIEN, NY 14416 (85) 494-3000)		1/A51 X	W 1/1	1
	10. Cor	Type	Quantity	WL/Vol.	ν
9. Wasta Shipping Name and Description	2	A		1	NELOVOETIV TE TO
NON REGULATED MATERIAL	Contrac	a	60,000	P	
2.			-		
		-	-		Control of the second
<u>10</u> 3.					
		-	-	-	7380
(a)			· .		
13. Special Handling instructions and Additional Information	_				E.
14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not	subject to federal regulations Signature	for reporting to	reper disposal of H	azardous W	aste. Month Day Y
Generator's Offeror's Printed/Typed Name	1 200	6 .	May	e	1/K AD 10
I A was I love on bohalf of they confluences	est //au	Charter	, receip		LO Joseph
Latera Mona on bonait of Shires manage	of from U.S. Port	of entrylexit:			100 100 10
15. International Shipments Import to U.S. Expo	of from U.S. Port	of entry/exit:		1.4.	,
15. International Shipments Import to U.S. Exports Signature (for exports only): 16. Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials	of from U.S. Port	leaving U.S.:		1-1-	Month Day 1
15. International Shipments Import to U.S. Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials 16. Transporter Acknowledgment of Receipt of Materials	ort tron: U.S. Port. Date Signature			14	
15. International Shipments Import to U.S. Export Transporter Signature (for exports only): 16. Transporter Admonifedgment of Receipt of Materials 17. International Shipments Internationa	or from U.S. Port. Date Signature	leaving U.S.:		1.1	18 22 5
15. International Shipments Import to U.S. Export	ort tron: U.S. Port. Date Signature	leaving U.S.:		J. A. 7	Month Day
International Shipments	Signature Besidue	leaving U.S.:	Partal		18 22 5
15. International Shipments Import to U.S. Export	Signature Signature	leaving U.S.:	Partal	Rejection ID Number	Month Day
15. International Shipments Import to U.S. Export	Signature Besidue	leaving U.S.:	Partal		Month Day
15. International Shipments	Signature Besidue	leaving U.S.:	Partal		Month Day
15. International Shipments Import to U.S. Export	Signature Besidue	leaving U.S.:	Partal		Month Day Month Day Month Day
Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name 17. Discrepancy 17a. Discrepancy Indication Space Quantity Type 17b. Alternate Facility (or Generator)	Signature Besidue	leaving U.S.:	Partal		Month Day
Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name 17. Discrepancy 17a. Discrepancy Indication Space Quantity 17b. Alternate Facility (or Generator) Facility's Priorie: 17c. Signature of Atternate Facility (or Generator) Jane Gracie=Scalehouse WM Millseat Landfill Bergen, NY 14416	Signature Signature Signature Manifest Refer	leaving U.S.:	Partal		Month Day Month Day Month Day
Transporter Signature (for exports only): 16. Transporter Signature (for exports only): 16. Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name 17. Discrepancy 17a. Discrepancy Indication Space Quantity 17b. Alternate Facility (or Generator) Transporter 2 Printed/Typed Name 17b. Alternate Facility (or Generator) 17c. Signature of Atternate Facility (or Generator) Jane Gracie=Scalehouse WM Millseat Landfill	Signature Signature Basidue Manifest Refer	leaving U.S.:	Partal		Month Day Full Rejection

4	NON-HAZARDOUS	2. Page 1 of	87)-	424-	9300	1. Waste Tra	013			į
	B. Generator's Narrie and Mailing Associate STADERER MANAGEMENT COMPLY, LC 1900 CONTORD PIRE 19850 (500) 886-5147 Generator's Phone:)	9045	THIEF	HANAGEN HIR BL	909 1	315)	185-57		
	5. Transporter 1 Company Name					U.S. EPA ID N	lumber			
1	RICCELLI					U.S. EPA ID N	lumber			
	7. Transporter 2 Company Name						1		Ľ	
\mathbb{H}	8. Designated Facility Name and Site Address WM OF IN I - MILL SEAT LANDFILL 303 BREWREAD 303 BREWREAD 585) 494-3000					U.S. EPAIDA	umber			STATE
11	Padely a Friend.			10. Cont	ainers	11. Total Quantity	12. Unit Wt./Vol.			
	9. Waste Shipping Name and Description		-	No.	Pou	Quanty	NO VIL	SERVICE X	0.504	100
RATOR -	1 NON-REGULATED MATERIAL			1	微	30,000	P			12
ENE	15. 2				-			\$400 F-18		10
0								100		
	2.10° 3.							网络	9.48	
					-				造 质	が
	•									482
	PROFILE: ID1893NY SOIL DESRIS SAMPLE: TP-EX 14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest	t are not subje	ct to federal r	regulations to	r respecting prop	oer disposal of He	2020.75	r. 21.le		
			ignature	Kam	6/1	laca		Month	24	O D
۲	Caura Mona on behalf of Stauffer Me		- 0						- /	
INT	15. International Shipments Import to U.S.	Export from	U.S.		entry/exit: eving U.S.:		1	1		
E.	Transporter Signature (for exports only): 16. Transporter AdvisorAdvisorance of Receipt of Materials			-	11	1	/	Month	Day	Year
ORTE	Transposes. Fringer Typed Name U Sheurs	1	Signature /	ermer	相)-Ske	us	18	24	07
TRANSPO	Transporter 2 Printed/Typed Name		Signature					Month	Day	Year
A	17. Discrepancy			1						
	17a. Discrepancy Indication Space Quantity Type			Residue	e Number:	Partial Re	ejection	Ш	Full Rejectio	on .
7	17b. Alternate Facility (or Generator)		Acti		7000 - 1 E T	U.S. EPA ID	Number	·		
CIL	A CONTRACTOR OF THE CONTRACTOR					î ·				
S FA	Facility's Phone: 17c. Signature of Alternate Facility (or Generator)							Month	Day	Year
ATE	1/c. organize of Accesses Falsey (or Sensemer)		40.0000					3.75.0 14.0		191 24
DESIGNATED FACILITY	Jane Gracie Scalehouse Whm Millseat Landfill									
1	Bergen, NY 14416	manifest exc	ept as noted	n Item 17a	nt Stickles	113957112	3.547			
	PrintedTyped Ni Friday August 24, 2007		Signature					Month	Day	Year
1		- 1								

A		ON-HAZAHDOUS 1 1 ITS 000 TOLOLL	D-47	Phone Phone	A. Waste Tr		moer	
	S. Gor	COMPANY, LLC STATE	tor's Site Addre	Wille	MENT C	D/M	HESTEL SITE	E)
	TE	STEMINETON DE 1000 / 2000 88/2 5/40 13/18	STATE	FAIR	BUD		HESTE I SITT 1885-1019 S	
	Gener	rator's Phone: MOSO (30-3)300-3717	nouse,	12	U.S. EPA ID 1	-	685-6A5	
	6. Tgg	graporter 1 Company Name			J.O. EFAID	- constanted		
		ansporter 2 Company Name			U.S. EPA ID I	Number		
	8 Per	ionated Facility Name and Site Address			U.S. EPA ID	Number		
	N	WHOF NOT MILLOSEAT LANDFILL OS BREW ROAD ERBENIN 14410 (585) 494-3070						
	B	ERBEN, 127 14416 (585) 494-3000			1/tsi)			
	Facili	by's Phone: 9. Weste Shipping Name and Description	10. Con	stainers -	11. Total Quantity	12. Unit WL/Vol.		
	(A) 3	1. NON REGULATED MATERIAL	No.	AND	Zuminy		SHIP FEE	
TOR			001	M	30,000	P		5
GENERATOR		2.	(150 mm) (150)	CIM				12.149
- GE							1913 D. C.	
		1.	-	+			CONTRACTOR	1611
	24. 24.							
	100	4						1 - 11
	13	Special Handling Instructions and Additional Information	70.1020200	200/200	dam 9 : 8	_	TO SHEAR STATE	100
		PROFILE: 10189314 SOIL/TXEBEB NOTE:	WEIGHT	15 E	STIMMTE	D	10 -11	-
		AMPLE: TP-OX				Ho	T: 19.71	1
	2	EMERICAN AND AND ADDRESS OF THE PARTY OF THE				687.53	25	
	14.6	GENERATOR'S CERTIFICATION: I certify the melarials described above on this manifest are not subject to feder	rajfeguiations is	or reporting pro	per disposal of H	W auctraca	(aste.	Day Vers
	Gape	erator's/Offeror's Printed/Typed Name	SNUS	He			VOB 15	3 67
1		International Shipments Import to U.S. Export from U.S.		f entry/exit:				
INT'L	Tran	responser Signature (for exports only):	Date is	eaving U.S.:				
RTER		Transporter Admowledgment of Receipt of Materials reporter 1 Printed/Typed Name Signature	cho	1	1			Day Year 23 47
	0	DITE TURNER Signature Signature	نك	-		_		Day Year
TRANSPO	1180	Appendix A.1 Strong part Service						
A		Discrepancy Discrepancy Indication Space	Residue		Partial R	nigrtine	Пея	t Rejection
	TOTAL.	. Constant		2000	- Fatali H	- Annual		
1	176	M. Alternate Facility (or Generator)	tanifest Referanc	ce Number:	U.S. EPA II) Number		
FACILITY	110				1			
DFA		Sity's Phone: Signature of Alternate Facility (or Generator)					Month	Day Year
DESIGNATED			evels out to	(大学を)のよ	1000	200	Marin Marin	CONT. IN
DISE	1	Jane Gracie=Scalehouse						
1	4.	WM Millseat Landfill Bergen, NY 14416 the manifest except as not	ed in hom 17a	Party 1	MEN A	0743	MARKET TO	
2000	Annual Contract	Designate: 585-494 -3000 ext 230 the manifest except as not Signature Thursday August 23, 2007	and the second second second				Month	Day Year
4		Thursday August 25, 2007			_		TRANSP	ORTER #

NON-HAZÁRDOUS WASTE MANIFEST	1. Generator ID Number	796914	2. Page 1 of	800-42	4-93	00 11	racking Num	+	
5. Generator's Name and Mail STACHTER MAN 1800 COUCOPT WILMINGTON; Generator's Phone:	PILE 19850	MPANY,LLC	147	Generator's Sale Add STAUFFO 904 STAP S/RAPLISE	ess (it different 2 MAN) E PAIR	than mailing addr ACIENTEN R BLVD	Too.	MESTE	SINE)
6. Transporter 1 Company Na RICCEL	те					U.S. EPA ID	Number		
7. Transporter 2 Company Na						U.S. EPA ID	Number		
8. Designated Facility Name at	MILL SOAT	LANDFILL	15715	12.35	To all	U.S. EPA ID	Number	(15 F)	7. 754 15
303 BRITO BERGEN, NY Facility's Phone:	ROAD 14416	1585)49	4-3000			(KT)			
9. Waste Shipping Nam				10. Co No.	ritainers Type	11. Total Quantity	12. Unit WL/Vol.	1.56	
LOW-RE	GULHED MA	HERIAL			110000	38,000		n di	
2						27/62			
3.				1					
114			30300						
12. Considillo di la la la	on and Additional laboration		And and the second	100			17.00	HA TO	图 医测量
 Special Handling instruction 	in and Auditoria information		011	A Lucy Co		1000	20.00	100	A Shares
PROFILE: 10	1823 M	SOLLIDEBRI	3	NOTE: W	76HT			T Party	T
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC Generator's Offigor's Printed Ty	ATION: I certify the materials ped Name	SOLIDE BRI	inflest are not subject to	to feddraf regulations for		A	er 2	1.78	Day Yes
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC Generator's Offigur's Printed Ty	ATION: I certify the materials in Default of S	SOLLIDEBEL	infest are not subject to Sign Against	to teofici regulations to	yearing proj Mu	A	er 2	1.78	
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC Generator's/Offiger's Printed Ty LAWA JUMA D 15. Internedional Shipments Transporter Signature (for expo	ATION: I certify the materials riped Name Default of States only:	SOLIDE BRI	inflest are not subject to	to teogral regulations to		A	er 2	1.78	Day Yes
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC Generator's/Offeror's PrintedTy LAWA JUNA O 15, International Shipments Transporter Signature (for export 16. Transporter Acknowledgment	ATION: I certify the materials inped Name Import to U.S. its only): of Receipt of Materials	SOLLIDE BRI s described above on this man Staw Fav Ham	inflest are not subject is Sign Sign Sign Export from U.	to teogral regulations to	proporting prop	per disposal of Haz	er 2	1.78	Day Yes
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC Generator's/Offiger's Printed/Ty Quiva JUMA 0 15. Internetional Shipments Transporter Signature (for export 16. Transporter Acknowledgment Transporter 1. Printed/Typed Nat	ATION: I certify the materials red. Name Market Marke	SOLLIDE BRI s described above on this man Staw Fav Ham	inflest are not subject in Sign (Inglished) Export from U.	to federal regulations for the second	proporting prop	A	er 2	1.78 	Day Yes 27 07
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC Generator's/Offiger's Printed Ty Quiva IUMA 15. Internedional Shipments Transporter Signature (for export 16. Transporter Acknowledgment Transporter 1. Printed/Typed Na	ATION: I certify the materials ped Name Import to U.S. rts only): nt of Receipt of Materials materials	SOLLIDE BRI s described above on this man Staw Fav Ham	Infest are not subject in Sign Separate Sign Sign	to federal regulations to neather actions to pate less than actions to pate less than actions to federal act	Introduction property of the control	per disposal of Haz	er 2	1.78 Month	Day Yee 27 07
PROFILE : IC SAMPLE : TP- 14. GENERATOR'S CERTIFIC Generator's/Ottagor's PrintedTy LOWA JUNE 0 15. Intermedional Shipments Transporter Signature (for export 16. Transporter Admowledgment Transporter 1 Printed/Typed Nat 17. Discrepancy 17a. Discrepancy Indication Spa	ATION: I certify the materials ped Name Import to U.S. its only): Import to U.S. its only): The Company of Materials The C	SOLLIDE BRI Standar Man	Infest are not subject in Sign Separate Sign Sign	to federal regulations to nata Aurus 1.S. Port of a Date lea	Introduction property of the control	per disposal of Haz	er; 2	1.78 Month	Day Yea
PROFILE : IC SAMPLE : TP- 14. GENERATOR'S CERTIFIC. Generator's/Offayor's PrintedTy LAWA JUNA D 15. Intermedional Shipments Transporter Signature (for exporter) Transporter Admoviadgment Transporter 1 Printed/Typed Nat 17. Discrepancy 17a. Discrepancy Indication Spa 17b. Alternate Facility (or General Facility's Phone:	ATION: I certify the materials ped Name I import to U.S. rts only): Int of Receipt of Materials me I M Coe Quantity	SOLLIDE BRI Standar Man	Infest are not subject in Sign Separate Sign Sign	to federal regulations to neather actions to pate less than actions to pate less than actions to federal act	Introduction property of the control	per disposal of Haz	er; 2	1.78 Month	Day Yea
PROFILE: IC SAMPLE: TP- 14. GENERATOR'S CERTIFIC. Generator's/Offayor's PrintedTy LOWA JUNE 0 15. International Shipments Transporter Signature (for exporter Signature (for exporter Admowledgment) Transporter 2 Printed/Typed Nat 17. Discrepancy 17a. Discrepancy Indication Spa 17b. Alternate Facility (or General Facility's Phone:	ATION: I certify the materials ped Name I import to U.S. rts only): Int of Receipt of Materials me I M Coe Quantity	SOLLIDE BRI Standar Man	Infest are not subject in Sign Separate Sign Sign	to federal regulations to neather actions to pate less than actions to pate less than actions to federal act	Introduction property of the control	per disposal of Haz	er; 2	1.78 Month 68	Day Yea Day Yea Day Yea Full Rejection
PROFILE : IC SAMPLE : TP- 14. GENERATOR'S CERTIFIC. Generator's/Offaror's Printed Ty LOWA JUNE D 15. International Shipments Transporter Signature (for exporter Signature (for exporter Acknowledgmer Jimmsporter 1 Printed/Typed National State of Printed	ATION: I certify the materials specification of the Market of Second Sec	SOLIDE BRI s described above on this man Place For D Type Type Type Type Type Type Type Type Type Type	Inflest are not subject in Sign. Deport from U.	Is Port of a Date learning Manifest Reference	Introduction property of the control	Partial Rejo	er; 2	1.78 Month 68	Day Yea Day Yea Day Yea Full Rejection

Envirospec Engineering, PLLC Photographic Record

Customer: Stauffer Management Co. Project Number: E07-102

Site Name: SMC Maestri Site Location: Geddes, New York

Pic #: 070725076

Date: 07/25/07

Direction: Looking SE

Comments:

Orange fence shows demarcation of previous excavation

Pic #: 070725077

Date: 07/25/07

Direction: **Looking S**

Comments:

Overburden pile from TP1

Envirospec Engineering, PLLC Photographic Record

Customer: Stauffer Management Co. Project Number: E07-102

Site Name: SMC Maestri Site Location: Geddes, New York

Pic #: 070725086

Date: 07/25/07

Direction: Looking W, Into TP1

Comments:

TP1's three primary layers can be viewed. Odor observed in cobble layer.

Pic #: 070725093

Date: 07/25/07

Direction: Looking E

Comments:

Two (2) waterlines and one (1) electrical line were found in TP2. None were live, removed from the test pits.

Envirospec Engineering, PLLC Photographic Record Customer: Stauffer Management Co. Project Number: E07-102

Site Name: SMC Maestri Site Location: Geddes, New York

Pic #: 070725107

Date: 07/25/07

Direction: Looking W

Comments:

Profile along western wall of TP2 showing distinct layers in soil.

Pic #: **0707251442**

Date: 07/25/07

Direction: Looking S

Comments:

Overview of excavated area

Envirospec Engineering, PLLC Photographic Record Customer: Stauffer Management Co. Project Number: E07-102 Site Name: SMC Maestri Site Location: Geddes, New York

Pic #: **070725134**

Date: 07/25/07

Direction: Into Test Pits

Comments:

Groundwater seepage near bedrock.

Pic #: 070725147

Date: 07/25/07

Direction:
Into Excavator
Bucket

Comments:

Excavated soils from just above bedrock.

Envirospec Engineering, PLLC Photographic Record Customer: Stauffer Management Co. Project Number: E07-102 Site Name: SMC Maestri Site Location: Geddes, New York

Pic #: **070725148**

Date: 07/25/07

Direction: Looking E

Comments:

Delineated sides of excavated area with poly.

Envirospec Engineering, PLLC 16 Computer Drive West Albany, NY 12205

Phone: 518.438.6809 Fax: 518.438.8527

Page No.	1	of	2
Date	Wed	Inesda	ay
Date	July	07	
Weather		Tem	perature
Partly Sunny		High	84
		Low	64

SITE OBSERVATION REPORT

Project	SMC Maestri	Project No.	07-102
Location	Geddes, NY		
On-Site:	Abscope (refer to sign in sheet) David Chiusano (NYSDEC) Laura Mona (SPEC) Matthew Newman (SPEC)		

General

- Test pits dug to observe sediment near MW8 and MW9
- Two test pits labeled TP1 and TP2
- Monitoring wells 8 and 9 were removed during the excavation of TP2
 - MW9 removed at 11:42 AM
 - o MW8 removed at 11:44 AM
- The topmost section of the well piping for PZ9 was broken at approximately 12:57 PM
- Test pits were delineated with poly prior to backfill

Test Pit 1 (TP1)

- TP1 ran east to west with MW9 along its north wall
- TP1 ran from the area where previous cleaning activities had occurred and into untouched area with approximate dimensions of 21'x4' (East/West×North/South)
- TP1 showed three general layers
 - Top layer was a soft, sandy layer beginning 3' bgs and ending 8' bgs
 - Second layer was a solid, "cobblestone-like" layer that began at the end of the top layer and extended 11'
 bgs. It had the appearance of a concrete/cobblestone slab and an odor was noted
 - Third layer was a silt layer beginning at the end of the "cobblestone" layer and ending at bedrock at a
 depth of 16 feet. It had a clay-like appearance with sand-like properties and also was noted with a similar
 odor found in the previous layer
- Three initial samples were taken from the overburden, all three of which had a PID of 0.00
- Two additional samples were screened from all the sediment taken into the first rolloff at 9:56 AM, with head spaces of 24.5 and 40.6 ppm respectively

Test Pit 2 (TP2)

- TP2 ran north to south with MW8 and MW9 both removed
- TP2 ran close to the line between area from previous remediation work and untouched area with approximate dimensions of 8'×14' (East/West×North/South)
- TP2 could be divided into similar sediment layers to those found in TP1
 - o Top soft, sandy layer began at 3' and ended at 6.5' bgs.
 - Second, "cobblestone" layer ranged from 6.5' to 10.5' bgs
 - Third, high silt layer ranged from 10.5' to 16' bgs
 - Odors were noted in the same layers as TP1
- Two water lines and one electrical conduit were struck during the digging of TP2 at 10:33 AM
 - o The conduit/line were at a depth of 5' and a distance of 5' from MW9 to center of piping
 - Casing of electrical conduit was struck
 - o The water lines were connected to RW2A and had been plugged when it was overdrilled and converted into a monitoring well
 - The electrical line was not live and was cut
 - Electrical and water lines were removed from TP2

Continued next page

Envirospec Engineering, PLLC 16 Computer Drive West Albany, NY 12205

Phone: 518.438.6809 Fax: 518.438.8527

CON	TINU	ATIO	N F	PAGE

Page No. 2 of 2 Date 07/25/07

SITE OBSERVATION REPORT

Project SMC Maestri Project No. 07-102

Location City Name, NY

Sampling/Offsite Disposal

Samples

- Headspace samples were taken at random intervals based upon color, texture, and odor of the sediment being extracted
- DEC collected period samples from the bucket of the excavator during work
- A table of the samples can be found below

Test Pit	Depth (ft)	Time	Screen	Headspace	Other Details
2	~11-12.5	-	185	171	1st sample below hard cobble
2	13.0	ı	30.2	147	Exact time not recorded, collected between 10:47 and 11:13 am
2	14.0	-	9.5	16.4	Exact time not recorded, collected between 10:47 and 11:13 am
2	14.5	11:13 AM	196	76.9	NYSDEC collected sample from same area
2	15.5	-	227	158	Exact time not recorded, between 11:13 and 11:35 am
2	16.0	-	100	121	Exact time not recorded, between 11:13 and 11:35 am
2	13.0	11:52 AM	432	258	1st sample taken directly below MW-8 and MW-9
2	15.0	-	10.4	5.1	Exact time not recorded, between 11:52 am and 12:25 pm
1	~13-14	12:25 PM	97.0	16.5	South wall of TP1
2	~14-15	1:14 PM	68.0	20.5	Near the locations of MW-9 and MW-8
-	~15-16	1:27 PM	77.0	93.4	On the corner between TP1 and TP2
2	15.0	1:34 PM	241	129	West wall of TP2
2	~3-6.5	1:46 PM	22.0	9.0	West wall, just above cobble layer
2	~3-6.6	1:53 PM	0.5	0.0	North wall, just above cobble layer
2	~10.5-16	1:57 PM	127	73.3	North wall, just below cobble layer
2	~3-6.6	2:00 PM	0.0	0.0	East wall, just above cobble layer
2	~10.5-16	2:02 PM	26.0	16.9	East wall, just below cobble layer
1	~3-8	2:11 PM	0.0	0.0	South wall, just above cobble layer
1	~11-16	2:07 PM	224	45.4	South wall, just below cobble layer

Rolloffs

- 5 rolloffs were loaded with sediment extracted from the two test pits
- First contained sediment extracted from TP1 from 3' bgs to a depth of 14'
- Second contained sediment extracted from TP2 from 3-4' bgs to a depth of 14'
- Third contained sediment extracted from both TP1 and TP2
 - o TP1 sediment was extracted from 14-16' bgs
 - o TP2 sediment was extracted from 3-4' bgs to a depth of 13' primarily beneath MW8 and MW9
- Fourth contained sediment extracted from TP2 from 13' to 16' bgs
- Fifth contained sediment extracted from both TP1 and TP2 ranging from 3' to 16' bgs

Backfill

- Delineated all sides with poly
- Overburden was placed on bottom (after discussions with DEC)
- 2 loads of Crusher-run (Hanson) placed on top of overburden
- 5 loads of clean sand (trucked in from stockpiles of clean fill Skan Falls site initially from Sennett Pit) placed on top of crusher-run
- · Sand backfill compacted with excavator bucket as much as possible with each "lift"

The above comments were made by:	M. Newman
----------------------------------	-----------

Appendix J

SPDES Permit

SPDES PERMIT FACT SHEET

	Prepared by:	Robert Wither Date: 01/28/92					
Company: ICI Americas Inc.		Site No.: <u>7-34-025</u>					
Location: Geddes (T), Onondag	a County	Industrial Code No.: 9511					
Industrial Segment:	N/A	Part No.: N/A					
Type of Processing & Producti	on Rate:						
Groundwater Remdiation							
Basis for Technology Effluent	t Limitations:						
N/A							
PARAMETER		BASIS FOR PERMIT CONDITION					
Outfall No.: <u>OOl</u> ; Treated	Groundwater	Discharge; Nominal Flow: <u>8 gpm</u>					
Flow Benzene Methylene Chloride Toluene 1,2-(trans)-Dichloroethylene Vinyl Chloride Ethylbenzene o-Xylene m-Xylene p-Xylene Phenolics, Total Bis (2-Ethylhexyl) Phthalate Di (N-Butyl) Phthalate Aluminum, Total Arsenic, Total Barium, Total Cadmium, Total Cadmium, Total Chromium, Total Chromium, Total Iron, Total Iron, Total Nickel, Total Silver, Total		Monitor 6NYCRR Part 703.6					

į

Site No.: 7-34-025

Part 1, Page _1 of _2

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning with the start up of grundwater remediation and treatment system and lasting until 5 years from date of startup of groundwater remediation and treatment system. The discharges from the treatment facility shall be limited and monitored by the operator as specified below:

			,	•	nimum Requirements
Outfall Number &	Discharge	Discharge Limitations		Measurement	Sampl
Effluent Parameter	Dally Avg.	Daily Max	Units	Frequency	Туре
001 - Treated Groundwater.				·	
Flow	Monitor	Monitor	gpđ	Continuous	Recorder
Benzene	Monitor	0.7	ug/l	Weekly	Grab
Methylene Chloride	Monitor	5.0	ug/l	Weekly	Grab
Toluene	Monitor	5.0	ug/l	Weekly	Grab
1,2-(trans)-Dichloroethylene	Monitor	5.0	ug/l	Weekly	Grab
Vinyl Chloride	Monitor	5.0	ug/l	Weekly	Grab
Ethylbenzene	Monitor	5.0	ug/l	Weekly	Grab
o-Xylene	Monitor	5.0	ug/l	Weekly	Grab
m-Xylene	Monitor	5.0	ug/l	Weekly	Grab
>-Xylene	Monitor	5.0	ug/l	Weekly	Grab
Phenolics, Total	Monitor	2.0	ug/l	Weekly	Grab
Bis(2-Ethylhexyl) Phthalate	Monitor	4.2	mg/I	Weekly	Grab
Di-(N-Butyl) Phthalate	Monitor	0.77	mg/I	Weekly	Grab
Aluminum, Total	Monitor	2.0	mg/I	Monthly	Grab
Arsenic, Total	Monitor	0.05	mg/l	Monthly	Grab
Barium, Total	Monitor	2.0	mg/l	Monthly	Grab
Cadmium, Total	Monitor	0.02	mg/l	Monthly	Grab
Chromium, Total	Monitor	0.1	mg/l	Monthly	Grab

Site No.: <u>7-3</u>	14-025
----------------------	--------

Part 1, Page _2_ of _2_

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning with the start up of grundwater remediation and treatment system and lasting until 5 years from date of startup of groundwater remediation and treatment system. The discharges from the treatment facility shall be limited and monitored by the operator as specified below:

					nmum Requirements
Outfall Number & Effluent Parameter	Discharge Limitations Daily Avg. Daily Max.		Units	Measurement Frequency	Sample Type
001 - Treated Groundwater:					
Copper, Total	Monitor	1.0	mg/I	Monthly	Grab .
Iron Total ¹	Monitor	0.6	mg/l	Monthly	Grab
Manganese, Total ¹	Monitor	0.6	mg/l	Monthly	Grab
Nickel, Total	Monitor	2.0	mg/l	Monthly	Grab
Silver, Total	Monitor	0.1	mg/l	Monthly	Grab
Zinc, Total	Monitor	5.0	mg/l	Monthly	Grab

^{1.} The combined concentration of iron, total and manganese, total shall not exceed 1.0 mg/l.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

APPENDIX A GENERAL CONDITIONS (Consent Orders)*

SECT	<u>TION</u>	•		PAGE(s)
1.	General Provisions		• • • • • •	 1
2.	Special Reporting Requirements			 1
3.	Exclusions			1-2
4.	Reporting Noncompliance			 2
5.	Inspection and Entry			 2
6.	Special Provisions - New or Modified Disposal Systems			 3
7.	Monitoring, Recording, and Reporting			 3-5
	7.1 General			 3
	7.2 Signatories and Certification			 4
	7.3 Recording of Monitoring Activities and Results			 4-5
	7.4 Test and Analytical Procedures			 . 5
8.	Disposal System Operation and Quality Control			 6-7
	8.1 General			 . 6
	8.2 Bypass			
	8.3 Upset			
	6.4 Special Condition-Disposal Systems with Septic Tanks .			
	8.5 Sludge Disposal			 . 7

This version of General Conditions is intended to be incorporated as Appendix A of all Consent Orders for site remediation projects where a State Pollutant Discharge Elimination System permit is not required but where the order authorizes the treatment and discharge of wastewaters to the surface or groundwaters of New York State.

1. GENERAL PROVISIONS

- a. This order, or a true copy, shall be kept readily available for reference at the wastewater treatment facility.
- b. A determination has been made on the basis of a submitted plans, or other available information, that compliance with the provisions specified in this order will reasonably protect classified water use and assure compilance with applicable water quality standards. Satisfaction of these provisions notwithstanding, if operation pursuant to the order causes or contributes to a condition in contravention of State water quality standards, or if the Department determines, on the basis of notice provided by the operator and any related investigation, inspection or sampling, that a modification of the order is necessary to prevent impairment of the best use of the waters or to assure maintenance of water quality standards or compliance with other provisions of ECL, the Department may require such a modification and may require abatement action to be taken by the operator and may also prohibit the noticed act until the order has been modified.
- c. All discharges authorized by this order shall be consistent with the terms and conditions of this order. Facility expansion or other modifications, treatment and disposal system changes which will result in new or increased discharges of pollutants into the waters of the state must be reported by submission of a formal request for modification of this order. The discharge of any pollutant, not identified and authorized, or the discharge of any pollutant more frequently than, or at a level in excess of, that identified and authorized by this order shall constitute a violation of the terms and conditions of this order. Facility modifications which result in decreased discharges of pollutants must be reported by submission of written notice to the Department.
- d. Where the operator becomes aware that he/she failed to submit any relevant facts or submitted incorrect information prior to or in pursuit of this order or in any report to the Department, the operator shall promptly submit such facts or information.
- e. It shall not be a defense for an operator in an enforcement action that it would have been necessary to halt or reduce the authorized activity in order to maintain compliance with the conditions of this order, unless directed by the Department to continue the activity.
- f. The filing of a request for a modification of this order, or a notification of planned changes or anticipated noncompliance, does not stay any condition of this order.
- g. The operator shall furnish to the Department, within a reasonable time, any information which the Department may request to determine whether cause exists for modifying, suspending, or revoking this order, or to determine compliance with this order. The operator shall also furnish to the Department, upon request, copies of records required to be kept by this order.

2. SPECIAL REPORTING REQUIREMENTS

Dischargers must notify the Department as soon as they know or have reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant (USEPA Priority Pollutants plus phenois, total) which is not specifically controlled in the order, pursuant to General Provision 1 (c) herein. For the purposes of this section, incurrent accidental or unintentional spills or releases on a frequent basis shall be considered to be a discharge.
- b. That any activity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant which is not limited in the order, if that discharge will exceed five times the maximum concentration value reported for that pollutant in the information submitted prior to this order; or the level established by the Department.
- c. That they will begin to use any toxic pollutant which was not reported prior to this order and which is being or may be discharged to waters of the state.

3. EXCLUSIONS

a. The Issuance of this order by the Department and the receipt thereof by the operator does not supersede, revoke or rescind an order or modification thereof on consent or determination by the Commissioner issued heretofore by the Department or any of the terms, conditions or requirements contained in such order or modification thereof unless specifically intended by said order.

- b. The issuance of this order does not convey any property rights in either real or personal property, or any exclusive privileges, nor a sit authorize any injury to private proper in any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations; nor does it obviate the necessity of obtaining the assent of any other jurisdiction as required by law for the discharge authorized.
- c. Unless specifically authorized in this order, the construction of any onshore or offshore physical structures or facilities or the undertaking of any work in any navigable waters is not approved.

4. REPORTING NONCOMPLIANCE

- a. Anticipated noncompilance. The operator shall give advance notice to the Department of any planned changes in the authorized facility or activity which may result in noncompliance with this order as soon as the operator becomes aware that non-compliance will be unavoidable.
- b. Immediate and twenty-four hour reporting. The operator shall report any noncompliance which may endanger health or the environment. Any unusual situation, caused by a deviation from normal operation or experience (e.g. upsets, bypasses, inoperative treatment process units, spills or illegal chemical discharges or releases to the collection system) which create a potentially hazardous condition shall be orally reported immediately. Other information shall be provided orally within 24 hours from the time he or she becomes aware of the circumstances. A written noncompliance report shall also be provided within five (5) days of the time the operator becomes aware of the circumstances. The written noncompliance report shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent the noncompliance and its reoccurrence.
 - (1) The following shall be included as information which must be reported within 24 hours under paragraph (b) above:
 - (i) any unanticipated bypass which violates any effluent limitation in the order;
 - (ii) any upset which violates any effluent limitation in the order;
 - (iii) violation of a maximum dally discharge limitation for any of the pollutants listed by the Department In the order to be reported within 24 hours.
 - (2) The Department may waive, at their discretion, the written report on a case-by-case basis if the oral report has been received within 24 hours.
 - (3) Reports required by this section shall be filed with the Department's regional office having jurisdiction over the facility. During weekends and holidays, oral noncompliance reports, required by this paragraph, may be made at (518) 457-7362.
- c. Duty to mitigate. The operator shall take all reasonable steps to minimize or prevent any discharge in violation of this order which has a reasonable likelihood of adversely affecting human health or the environment.

5. INSPECTION AND ENTRY

The operator shall allow the Commissioner of the Department, the New York State Department of Health, the County Health Department, or their authorized representatives, upon the presentation of credentials and other documents as may be required by law, to:

- a. enter upon the operator's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this order;
- b. have access to and copy, at reasonable times, any records that must be kept under the conditions of this order, including records maintained for purposes of operation and maintenance;
- inspect at reasonable times any facilities, equipment (Including monitoring and control equipment), practices, or operations regulated or required under this order, and
- d. sample or monitor at reasonable times, for the purposes of assuring compliance with this order or as otherwise authorized by the Environmental Conservation Law, any substances or parameters at any location.

6. SPECIAL PROVISIONS - NEW OR MODIFIED DISPOSAL SYSTEMS

- a. Prior to construction of any new or modified waste a isposal system or modification of a facility generating wastewater which could alter the design volume of, or the method or effect of treatment or disposing of the wastes from an existing waste disposal system, the operator shall submit to the Department or its designated field office for review, an approvable engineering report, plans, and specifications which have been prepared by a person or firm licensed to practice Professional Engineering in the State of New York.
- b. The construction of the above new or modified disposal system shall not start until the operator receives written approval of the system from the Department or its designated field office.
- c. The construction of the above new or modified disposal system shall be under the general supervision of a person or firm licensed to practice Professional Engineering in New York State. Upon completion of construction, that person or firm shall certify to the Department or its designated field office that the system has been fully completed in accordance with the approved engineering report, plans and specifications and letter of approval; and the operator shall receive written acceptance of such certificate from the Department or designated field agency prior to commencing discharge.
- d. The Department and its designated field offices review wastewater disposal system reports, plans, and specifications for treatment process capability only, and approval by either office does not constitute approval of the system's structural integrity.

7. MONITORING, RECORDING, AND REPORTING

7.1 GENERAL

- a. The operator shall comply with all recording, reporting, monitoring and sampling requirements specified in this order and such other additional terms, provisions, requirements or conditions that the Department may deem to be reasonably necessary to achieve the purposes of the Environmental Conservation Law, or rules and regulations adopted pursuant thereto.
- b. Samples and measurements taken to meet the monitoring requirements specified in this order shall be representative of the quantity and character of the monitored discharges. Composite samples shall be composed of a minimum of 8 grab samples, collected over the specified collection period, either at a constant sample volume for a constant flow interval or at a flow-proportioned sample volume for a constant time interval, unless otherwise specified in this order. For GC/MS Volatile Organic Analysis (VOA), allquots must be combined in the laboratory immediately before analysis. At least 4 (rather than 8) aliquots or grab samples should be collected over the specified collection period. Grab sample means a single sample, taken over a period not exceeding 15 minutes.
- c. Accessable sampling locations must be provided, maintained and identified by the operator. New sampling locations shall be provided if proposed or existing locations are deemed unsultable by the Department or its designated field agency.
- d. Actual measured values of all positive analytical results obtained above the Practical Quantitation Limit (PQL)¹ for all monitored parameters shall be recorded and reported, as required by this order; except, for para neters which are limited in this order to values below the PQL, actual measured values for all positive analytical results above the Method Detection Limit (MDL)² shall be reported.
- e. The operator shall periodically calibrate and perform manufacturer's recommended maintenance procedures on all monitoring and analytical instrumentation to insure accuracy of measurements. Verifical on of maintenance shall be logged into the daily record book(s) of the facility. The operator shall notify the Department's regional office immediately if any required instrumentation becomes inoperable. In addition, the operator shall verify the accuracy of their measuring equipment to the Department's Regional Office annually.

Practical Quantitation Limit (PQL) is the lowest level that can be measured within specified limits of precision and accuracy during routine laboratory operations on most effluent matrices.

Method Detection Umit (MDL) is the level at which the analytical procedure referenced is capable of determining with a 99% probability that the substance is present. This value is determined in distilled water with no interfering substances present. The precision at this level is +/+ 100%.

7.2 SIGNATORIES AND CERTIFICATION

- a. All reports required b, inis order shall be signed as follows:
 - (1) for a corporation: by a responsible corporate officer. For the purposes of this section, a responsible corporate officer means:
 - (i) a president, secretary, treasurer, or a vice president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making function for the corporation, or
 - (II) the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
 - (2) for a partnership or sole proprietorship; by a general partner or the proprietor, respectively; or
 - (3) for a municipality, state, federal, or other public agency: by either a principal or executive officer or ranking elected official. For purposes of this section, a principal executive officer of a federal agency includes: (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency; or
 - (4) a duly authorized representative of the person described in items (1), (2), or (3). A person is a duly authorized representative only if:
 - (i) the authorization is made in writing by a person described in paragraph (a)(1), (2), or (3) of this section;
 - (ii) the euthorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position); and
 - (iii) the written authorization is submitted to the Department.
- b. Changes to authorization: If an authorization under subparagraph (a)(4) of this section is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of subparagraph (a)(4) of this section must be submitted to the Department prior to or together with any reports, information, or applications to be signed by an authorized representative.
- c. Certification: Any person signing a report shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision, in accordance with a system, designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the order or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations."

7.3 RECORDING OF MONITORING ACTIVITIES AND RESULTS

a. The operator shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this order, and records of all data used to complete the application for this order, for a period of at least 3 years from the date of the sample, measurement, report or application. This period may be extended by request of the Department at any time.

- b. Records of monitoring information shall include:
 - (1) the date, exact place, and time of sampling or measuren. .s;
 - (2) the individual(s) who performed the sampling or measurements;
 - (3) the date(s) analyses were performed;
 - (4) the individual(s) who performed the analyses;
 - (5) the analytical techniques or methods used; and
 - (6) the results of such analyses.

7.4 TEST AND ANALYTICAL PROCEDURES

- Monitoring and analysis must be conducted using test procedures promulgated, pursuant to 40 CFR Part 136, except:
 - (1) should the Department require the use of a particular test procedure, such test procedure will be specified in this order.
 - (2) should the operator desire to use a test method not approved herein, prior Department approval is required, pursuant to paragraph (b) of this section.
- Application for approval of test procedures shall be made to the Director of DEC's Division of Water, and shall contain:
 - (1) the name and address of the applicant or the responsible person making the discharge, identification of this particular order and the telephone number of applicant's contact person;
 - (2) the names of the pollutants or parameters for which an alternate testing procedure is being requested, and the monitoring location(s) at which each testing procedure will be utilized;
 - (3) Justification for using test procedures, other than those approved in paragraph (a) of this section; and
 - (4) a detailed description of the alternate procedure, together with:
 - references to published studies, if any, of the applicability of the alternate test procedure to the effluent in question;
 - (ii) Information on known interferences, if any; and
 - (5) a comparability study, using both approved and proposed methods. The study shall consist of 8 replicates of 3 samples from a well mixed waste stream for each outfall if less than 5 outfalls are involved, or from 5 outfalls if 5 or more outfalls are involved. Four (4) replicates from each of the samples must be analyzed using a method approved in paragraph (a) of this section, and four replicates of each sample must be analyzed using the proposed method. This results in 24 analyses per outfall up to a maximum of 120 analyses. A statistical analysis of the data r. ust be submitted that shall include, as a minimum:
 - (i) calculated statistical mean and standard deviation;
 - (ii) a test for outliers at the mean ±3 standard deviations level. Where an outlier is dulected an additional sample must be collected and 8 replicates of the sample must be analyzed as specified above;
 - (iii) a plot distribution with frequency counts and histogram;
 - (Iv) a test for equality among with-in sample standard deviation;
 - (v) a check for equality of pooled with-in sample variance with an F-Test;
 - (vi) a t-Test to determine equality of method means; and

copies of all data generated in the study.

Additional Information can be obtained by contacting the Bureau of Technical Services & Researt (NYSDEC, 50 Wolf Road, Albany, New York 12233 - 3502).

8.1 GENERAL

- a. The disposal system shall not receive or be committed to receive wastes from unapproved sources, nor wastes beyond its design capacity as to volume and character of wastes treated, nor shall the system be materially altered as to: type, degree, or capacity of treatment provided; disposal of treated effluent; or treatment and disposal of separated soum, liquids, solids or combination thereof resulting from the treatment process without written approval of the Department of Environmental Conservation or its designated field office.
- b. The operator shall, at all times, properly operate and maintain all facilities and systems of treatment and control (or related appurtenances) which are installed or used by the operator to achieve compliance with the conditions of this order. Proper operation and maintenance also includes as a minimum, the following: 1) A preventive/corrective maintenance program. 2) A site specific action orientated operation and maintenance manual for routine use, training new operators, adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of installed backup or auxiliary facilities or similar systems only when the operation is necessary to achieve compliance with the conditions of the order.
- c. The operator shall not discharge floating solids or visible foam.

8.2 BYPASS

a. Definitions:

- (1) "Bypass" means the Intentional or unintentional diversion of waste stream(s) around any portion of a treatment facility for the purpose or having the effect of reducing the degree of treatment intended for the bypassed portion of the treatment facility.
- (2) "Severe property damage" means substantial damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which would not reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- b. Bypass not exceeding limitations:

The operator may allow any bypass to occur which does not cause effluent limitations to be violated, but only if it also is for essential maintenance, repair or replacement to assure efficient and proper operation. These bypasses are not subject to the provisions of pargraph (c) and (d) of this section, provided that written notice is submitted prior to bypass (if anticipated) or as soon as possible after bypass (if unanticipated), and no public health hazard is created by the bypass.

c. Notice:

- (1) Anticipated bypass If the operator knows in advance of the need for a bypass, it shall submit prior written notice, at least forty five (45) days before the date of the bypass.
- (2) Unanticipated bypass The operator shall submit notice of an unanticipated bypass as required in Section 4, paragraph b. of this Part (24 hour notice).

d. Prohibition of bypass:

- (1) Bypass is prohibited, and the Department may take enforcement action against a operator for bypass, unless:
 - (I) bypass was unavoidable to prevent loss of life, personal injury, public health hazard, or severe property damage;
 - (ii) there were no feasible alternatives to the bypass such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal period of equipment downtime. This condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance or if designed and installed backup equipment which could have prevented or mitigated the impact of the bypass is not operating during the bypass; and
 - (iii) the operator submitted notices as required under paragraph (c) of this section and, excepting emergency conditions, the proposed bypass was accepted by the Department.

a. Definition:

"Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with order effluent limitations because of factors beyond the reasonable control of the operator. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.

b. Effect of an upset:

An upset constitutes an affirmative defense to an action brought for noncompliance with such order effluent limitations if the requirements of paragraph (c) of this section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.

c. Conditions necessary for a demonstration of upset:

An operator who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operation logs, or other relevant evidence that:

- (1) an upset occurred and that the operator can identify the cause(s) of the upset;
- (2) the facility was at the time being properly operated; and
- (3) the operator submitted notice of the upset as required in Section 4, paragraph b of this part (24 hour notice).
- (4) the operator complied with any remedial measures required under Section 4, paragraph d of this part.

d. Burden of proof:

In any enforcement proceeding the operator seeking to establish the occurrence of an upset has the burden of proof.

8.4 SPECIAL CONDITION - DISPOSAL SYSTEMS WITH SEPTIC TANKS

If a septic tank is installed as part of the disposal system, it shall be inspected by the operator or his agent for sourm and sludge accumulation at intervals not to exceed one year's duration, and such accumulation will be removed before the depth of either exceeds one-fourth (1/4) of the liquid depth so that no settleable solids or sourm will leave in the septic tank effluent. Such accumulation shall be disposed of in an approved manner.

8.5 SLUDGE DISPOSAL

The storage or disposal of collected screenings, sludges, other solids, or precipitates separated from the authorized discharges and/or intake or supply water by the operator shall be done in such a manner as to prevent creation of nulsance conditions or entry of such materials into classified waters or their tributaries, and in a manner approved by the Department. Any live fish, shellfish, or other animals collected or trapped as a result of intake water screening or treatment should be returned to their water body habitat. The operator shall maintain records of disposal on all effluent screenings, sludges and other solids associated with the discharge(s) herein described. The following data shall be compiled and reported to the Department or its designated field office upon request:

- a. the sources of the materials to be disposed of;
- b. the approximate volumes, weights, water content and (if other than sewage sludge) chemical composition;
- the method by which they were removed and transported, including the name and permit number of the waste transporter; and
- d. their final disposal locations.

Appendix K

Letter to NYSDEC Detailing Work Done in November 2007

16 Computer Drive West Albany, NY 12205 Phone: 518.453.2203 Fax: 518.689.4800

May 8, 2008

Mr. David Chiusano NYS Department of Environmental Conservation Remedial Bureau E, Section A Division of Environmental Remediation 625 Broadway 12th Floor Albany, NY 12233-7017

RE: Stauffer Management Company, Maestri Site #7-34-025, Onondaga County

Summary of Work Report

Dear Mr. Chiusano:

On behalf of Stauffer Management Company, LLC (SMC), Envirospec Engineering, PLLC (Envirospec) has prepared the following letter report to summarize field work completed at the SMC Maestri Site from November 19 to 20, 2007. The work was completed in accordance with the letter work plan submitted by Envirospec on October 5, 2007 with a response to New York State Department of Environmental Conservation (NYSDEC) comments on October 24, 2007. NYSDEC approval was granted in a letter dated October 24, 2007.

General Overview

Field activities were in response to site activities conducted on July 25, 2007, when two (2) test pits were excavated to address NYSDEC concerns resulting from a groundwater sample collected from MW-9 on April 3, 2007 which showed elevated levels of xylene. In order to complete the test pit activities, two (2) monitoring wells (MW-8 and MW-9) were removed. Field activities conducted in November 2007 consisted of the reinstallation of monitoring well MW-9 and the installation of four (4) soil borings outside the area of the July 2007 test pits in an effort to define the areal extent of possible xylene contamination. The locations of the new well and soil borings are shown on Figure 1.

Soil borings were advanced to refusal with split spoons collected at approximately two (2) foot intervals. Split spoons with recovery were characterized, screened with a PID, and bagged for headspace readings. The interval with the highest headspace reading was sent to the lab for analysis.

The replacement well MW-9 was installed in approximately the same location as the previous well. Purging and sampling of MW-9 was delayed until early January 2008 due to ground stability issues in the area of the new well.

The soil samples and subsequent groundwater sample were analyzed for xylene via EPA Method 8260. The concentration of xylene in the soil borings ranged from 0.54 to 4.4 ppm and groundwater sample collected from MW-9 showed xylene at 11 ppb. Details of the installation and sampling conducted for soil borings and the monitoring well are discussed further in subsequent sections.

Background

Field activities on July 25, 2007 were completed at the request of the NYSDEC in order to address concerns resulting from a groundwater sample collected from MW-9 on April 3, 2007 which showed elevated levels of xylene at 827 ppb. The NYSDEC had concerns that an area of soil contamination

remained in the area of MW-9 and MW-2A (formerly RW-2). To address NYSDEC concerns, two test pits were excavated in the vicinity of these wells to determine if a source of soil contamination remains. In order to complete the test pit activities, two (2) monitoring wells (MW-8 and MW-9) were removed.

During the test pit activities, an odor was noted at a depth of approximately 6.5 to eight (8) feet below ground surface (bgs). Headspace samples were taken throughout excavation of both test pits with results ranging from 0.0 ppm to 258 ppm. Overburden soils were staged on poly adjacent to the excavation, screened with the PID, and re-used as backfill upon confirmation of non-detectable PID screen readings and concurrence with the DEC. Excavated soils were loaded into five (5) lined rolloff boxes positioned next to the excavation. TP1 and TP2 were delineated with poly and backfilled with clean backfill and overburden soil from TP1. The location of the test pits are shown on Figure 1.

Due to continued concerns about the elevated xylene concentrations, MW-9 was proposed to be reinstalled along with the completion of four (4) soil borings as outlined in a letter to the NYSDEC dated October 5, 2007. It was agreed to by the NYSDEC that since MW-8 was no longer being utilized for sampling or elevation data reinstallation was not necessary. Since groundwater elevations had been recorded on a monthly basis from MW-9, its reinstallation was deemed appropriate. Responding to comments from the NYSDEC, Envirospec proposed a modified scope of the work on October 24, 2007 which was approved by the NYSDEC on October 24, 2007.

Objectives

The purpose of the field activities was to reinstall MW-9 and to further investigate soil conditions in the vicinity of MW-9.

Project Team

Envirospec Engineering, PLLC provided project management and field oversight. Abscope Environmental, Inc completed the site work. The NYSDEC provided regulatory oversight of the investigation activities and monitoring well replacement

Summary of Work

Field work was completed from November 19 to 20, 2007. A photographic log and field notes documenting the project tasks are attached to this letter report.

Monitoring Well Installation

Monitoring well installation began at approximately 10:05 AM on November 19. The well was installed in the same general location from which it was previously removed. A six (6) inch hollow stem auger was used to drill the well to a depth of approximately 17.33 feet. A six (6) inch PVC riser was installed at the well bottom followed by ten (10) feet of Schedule 40 PVC screen. The annular space in the screened interval was sand packed with a No. 2 filter sand pack to one (1) foot above the top of the screen. The annular space above the screened interval was then sealed with a layer of bentonite to provide a seal above the sand pack. The surface completion consisted of a stick-up protective steel casing fitted with a lockable cap.

When staff returned to the site the next morning, the backfilled area from the July 2007 work settled creating a "sink hole" effect which caused the metal casing of MW-9 to slip out of place and the fill appeared to have sloughed off from around the casing. The sink hole was most likely the result of backfill settling under the hard pan. During the previous test pit activities, much of the material was

removed laterally from under the hard pan creating a void. This combined with the removal of most of the hard pan layer in the area of the July 2007 activities led to a structurally weaker soil material. To correct the sink hole, additional backfill material was added to the area in front of the well on November 23, 2007 along with an additional layer of bentonite chips around the well casing. The well was allowed to develop overnight. Another sinkhole area was observed in December 2007 by site maintenance personnel, but it was at a far enough distance from the newly installed well that it did not affect the well.

The well was sampled on January 2, 2008. Three (3) well volumes were purged prior to sampling. The well was gauged for depth-to-water and total depth from the top of casing to determine the elevation of groundwater and volume of water in the well. The field record from the sampling activity is attached. The well was sampled using a dedicated disposable bailer. A sample was collected in laboratory provided sample jars and placed on ice for shipping or delivery under chain-of-custody protocols. The sample was analyzed for xylene via EPA Method 8260. The sample results showed a xylene concentration of 11 ppb. The laboratory results are attached to this letter report.

Soil Borings

To further investigate soil conditions in the area of work, SMC installed four (4) soil borings outside the area of site activities from July 25, 2007. Locations are shown on Figure 1.

Soil boring activities began at approximately 12:30 PM on November 19. SB-1 began approximately four (4) feet below ground surface (bgs). Hard pan was encountered at approximately 6.4 feet bgs and continued until approximately twelve (12) feet bgs. Only a few split spoon samples could be collected in this range due to the hard pan. The soil boring was advanced to refusal encountered at approximately twenty (20) feet bgs. The final interval, eighteen (18) to twenty (20) feet bgs, showed the highest headspace reading of 18.7 ppm and a grab sample was collected for laboratory analysis. Envirospec and the DEC discussed the headspace readings in the area above the hard pan and the DEC concurred to drilling straight through the pan and sampling below this region for the remaining soil borings. SB-4 began at approximately 3:30 PM on November 19. Split spoon sampling began at approximately thirteen (13) feet bgs. The soil boring was advanced to refusal encountered at 18.3 feet bgs. The final interval, seventeen (17) to 18.3 feet bgs, showed the highest headspace reading of 35.6 ppm and a grab sample was collected for laboratory analysis.

Soil boring work continued at 9:30 AM on November 20. While beginning SB-3, the original drill rig broke at approximately ten (10) feet bgs. A new rig arrived on site at approximately 12:00 PM. SB-3 continued at approximately 12:10 PM. Split spoon samples were started at approximately thirteen (13) feet bgs. The soil boring was advanced to refusal encountered at 16.5 feet bgs. The final interval, fifteen (15) to 16.5 feet bgs, showed the highest headspace reading of 39.4 ppm and a grab sample was collected for laboratory analysis. SB-2 began at approximately 12:50 PM on November 20. Split spoon sampling began at approximately ten (10) feet bgs. The soil boring was advanced to refusal encountered at 15.5 feet bgs. SMC and the NYSDEC had to collect grab samples from two (2) different intervals due to low recovery in each. The NYSDEC collected their sample from the final interval, fifteen (15) to 15.5 feet bgs, which showed the highest headspace reading. SMC collected their sample from the thirteen (13) to fifteen (15) feet bgs interval which showed the highest PID screen at 0.4 ppm. A summary of headspace readings is presented below in Table 1.

Soil Boring	Depth/Interval (ft)	PID Screen (ppm)	Headspace (ppm)
SB-1	4 - 6	0.0	0.0
SB-1	6 - 6.4	0.0	0.0
SB-1	6.4 - 8	-	-
SB-1	8 - 8.3	0.0	0.0
SB-1	8.3 - 10	-	-
SB-1	10- 10.3	0.0	0.0
SB-1	10.3 - 12	-	-
SB-1	12 - 14	0.0	4.2
SB-1	14 - 14.5	5.8	8.9
SB-1	14.5 - 16	-	-
SB-1	16 - 18	9.0	14.2
SB-1	18 - 20	5.2	18.7
SB-2	10 - 10.5	0.0	1.0
SB-2	10.5 - 12	-	=
SB-2	12 - 12.2	0.0	1.1
SB-2	13 - 15	0.4	1.7
SB-2*	15 - 15.5	0.0	2.4
SB-3	13 - 15	0.0	2.3
SB-3	15 - 16.5	10.8	39.4
SB-4	13 - 15	0.0	1.6
SB-4	15 - 17	0.0	0.5
SB-4	17 - 18.3	25.0	35.6

Table 1 - Bore Screen/Headspace Results

The bolded intervals in Table 1 show the intervals that were jarred and sent to the laboratory. Samples were analyzed for xylene via EPA Method 8620. A summary of sampling results is listed in Table 2 below. A copy of the laboratory results are attached to this report. Results obtained by NYSDEC are not attached to this report.

Table 2 - Bore Sample Results

Soil Boring	Xylene Concentration (ppb)	Depth (feet)		
SMC Samples				
SB-1	SB-1 4400			
SB-2	<150	13 – 15		
SB-3	810	15 – 16.5		
SB-4	540	18 – 18.3		
NYSDEC Samples				
SB-1	26	18 – 20		
SB-2	<10	15 - 15.5		
SB-3	62	15 – 16.5		
SB-4	69	18 – 18.3		

^{*} NYSDEC sample interval

⁽⁻⁾ Interval not screened due to poor recovery and/or hard pan

As previously discussed, DEC split samples were collected from each soil boring. DEC grab samples were collected from the same interval as SMC samples if the split-spoon recovered enough material for two samples. Due to low recovery at SB-2, the SMC sample had to be collected from the higher interval. The DEC sample results show there to be low level xylene contamination but at concentrations lower than those observed in SMC samples. The results showed one sample with levels of xylene above SCGs (1200 ppm).

Waste Management

Since MW-9 was in an area known to contain clean fill material from the backfill activities in August 2007, soil cuttings from the installation of the new well were reused as backfill material around the well. Soil cuttings removed from the soil borings were placed back in the boreholes. Solid materials generated (gloves, plastic bags) were removed from the site and properly disposed. No additional waste was generated during the field work.

Summary and Recommendations

Envirospec recommends no further action for soils at the site. In addition, SMC is requesting to shut down the groundwater recovery system and the addition of RW-8 to quarterly sampling. The Maestri groundwater recovery wells are currently monitored monthly for elevation and sampled quarterly. One monitoring well, MW-2A, which was formerly a recovery well (RW-2) until April 2006 when it was overdrilled and converted to a monitoring well, is sampled. Following the test pit and soil boring activities, the first quarterly sampling event for 2008 occurred on January 8, 2008. The results are summarized in Table 3 below.

Well	Total Xylene (ppb)
MW-2A (RW-2)	3
RW-3	<3.0
RW-5	14
RW-6	52

RW-7

Table 3 – January 8, 2008 Sampling Event

The results followed the general trend of previous sampling results from the past three (3) years as shown in Table 4 below.

<3.0

Table 4 - Total Xylene Concentrations (µg/L) for Recovery Wells

Sample Date	MW-2A (RW-2)	RW-3	RW-5	RW-6	RW-7	RW-8
4-Jan-05	3400	<3.0	7.9	147	7.8	<3.0
1-Feb-05	3844	<3.0	5.8	25	175	<3.0
1-Mar-05	4190	<3.0	7.9	<3.0	39	<3.0
4-Apr-05	4160	<3.0	10	25	<3.0	<3.0
3-May-05	4647	<3.0	6.5	20	<3.0	<3.0
7-Jun-05	902	<7.5	<3.0	<3.0	110	<3.0
5-Jul-05	460	<3.0	<3.0	<3.0	146	<3.0
2-Aug-05	2222	<3.0	<3.0	<3.0	110	<3.0
5-Sep-05	2055	<3.0	<3.0	35	<15	<3.0
4-Oct-05	750	<3.0	<3.0	5.5	180	<3.0
1-Nov-05	2850	3.1	<3.0	<3.0	38	<3.0
6-Dec-05	4757	79	7.8	25	<15	<3.0

Sample Date	MW-2A (RW-2)	RW-3	RW-5	RW-6	RW-7	RW-8
3-Jan-06	4640	<3.0	<3.0	45	<3.0	<3.0
9-Feb-06	3890	<3.0	8.4	70	INC	<3.0
7-Mar-06	6250	<3.0	<3.0	3.2	129	<3.0
4-Apr-06 ¹	2070	<3.0	<3.0	142	<30	<3.0
2-May-06	2400	<3.0	<3.0	58	<30	<3.0
6-Jun-06 ²	NS	<3.0	<3.0	9	102	<3.0
4-Jul-06	665	<3.0	<3.0	34	130	NS
1-Aug-06	NS	5	<3.0	63	90	<3.0
3-Oct-06	<3.0	3.3	<3.0	3	55	NS
2-Jan-07	<3.0	<3.0	<3.0	29	40	NS
3-Apr-07	6.4	25	<3.0	145	3.7	NS
3-Jul-07	410	<3.0	<3.0	<3.0	<3.0	NS
2-Oct-07	1025	<3.0	<3.0	30	6	NS
8-Jan-08	3.0	<3.0	14	52	<3.0	NS

¹RW-2 replaced with MW-2A on April 24-28 2006

²RW-8 sampling ceased as per NYSDEC letter dated June, 6, 2006

The groundwater treatment system has been operating since 1996. Quarterly sampling results currently serve as the basis for evaluating the effectiveness of groundwater remedial activities at the site. As stipulated in the ROD, the onsite groundwater treatment system is to be operated and evaluated annually until "concentrations of site contaminants can no longer be effectively removed or cleanup objectives are met." The levels of contaminants remaining in groundwater are low and the system is no longer effective as shown by the consistency of the results. The groundwater treatment system has achieved the goals of the ROD and SMC is therefore requesting to shut down the system.

Upon shutdown of the recovery system, it is proposed to sample perimeter wells monthly for three (3) months to ensure the plume does not migrate. The wells to be sampled include the current quarterly wells with the addition of PZ-4 and RW-8. Groundwater elevations will be collected from all onsite wells immediately prior to sampling. As shown in the site plan, the sampled wells show an ample cross section of the property and monitoring of those wells would indicate if the plume begins to migrate after pumping is ceased. A table of the wells and piezometers at the site is attached to this Report. The table indicates the screened interval of each of the wells or piezometer. The proposed sampling locations represent a similar screened interval to RW-6.

During the first three (3) months of sampling, monthly reports will be submitted to the NYSDEC. Groundwater elevations of current recovery and monitoring wells as well as piezometers will continue to be collected monthly and included in the monthly reports. Expedited sample results will be requested of the lab in an effort to obtain sample results within no more than five (5) days of sample collection. After three (3) months of sampling, SMC will propose an alternate sampling schedule based on results. If results indicate plume migration, next steps will be discussed with the NYSDEC. If after shutdown of the system flooding is observed in adjacent properties to the site, sampling of the surface water will be completed to determine if there is xylene contamination. The number of samples to be collected will depend on the extent of the flooding and will be discussed with the NYSDEC prior to sampling. If xylene results from the sampling are above SCGs, the system will be turned back on and next steps will be discussed with the NYSDEC. The system will be maintained for one (1) year after shutdown in case reactivation due to flooding or plume migration is necessary. Following the one (1) year shutdown, SMC will propose permanent demobilization of the treatment system in a subsequent proposal.

The site will continue to be monitored on a monthly basis during regular site work conducted each month while the treatment system remains active (i.e. groundwater elevations collected on a monthly basis). The area will be inspected weekly for three (3) months after the treatment system is shutdown to provide a proactive approach to monitor for potential sink hole development and site flooding.

The area of the previously observed sink hole was backfilled and graded on April 16, 2008. Additional site maintenance was conducted on April 16 and 17, 2008. Stone was added to the northwest corner of the site to mitigate site runoff to down gradient residences. Silt fence and hay bales were repaired for the same area. Additional silt fence and hay bales were installed along the southern perimeter. Disturbed areas of the site are scheduled be graded and re-seeded the week of May 19th.

SMC is proposing to shut down the system upon approval of this report by the NYSDEC. Should you have any questions regarding the project, please do not hesitate to contact me at (518) 453-2203.

Sincerely,

Gianna Aiezza

Gianna Aiezza, PE Principal Engineer Envirospec Engineering, PLLC

Enc

cc: B. Shay/P. Ekoniak – SMC

J. Abraham – SMC

L. Mona/M. Newman – Envirospec

Appendix L

Orders on Consent #A7-0139-88-01 and #A7-0226-90-03

Exercition completes

DEPARTMENT OF ENVIRONMENTAL CONSERVAT STATE OF NEW YORK:

In the Matter of the Development and Implementation of an Interim Remedial Measure Program at 904 State Fair Boulevard, pursuant to Article 27, Title 13, of the Environmental Conservation Law of the State of New York (the "ECL") by

INTERIM ORDER ON CONSENT

INDEX # A7-0139-88-01 SITE # 7-34-025

STAUFFER MANAGEMENT COMPANY Respondent.

WHEREAS,

- The New York State Department of Environmental Conservation (the "Department") is responsible for enforcement of Article 27, Title 13, of the Environmental Conservation Law of the State of New York ("ECL"), entitled "Inactive Hazardous Waste Disposal Sites".
- Stauffer Management Company ("Respondent"), is a corporation organized and existing under the laws of the State of Delaware, is doing business in the State of New York and is the parent of a wholly owned subsidiary which is the corporate successor in interest to Stauffer Chemical Company ("SCC").
- Bert Maestri, residing at 129 Pleasant Beach Road, 3. Syracuse, New York, owns a parcel of property located at 904 State Fair Boulevard, Solvay, New York (the "Site"). A map of the Site is attached to this order as Appendix A.

- 4. The Department alleges that beginning approximately in 1974 and continuing approximately until 1976, SCC, generated certain hazardous wastes which were disposed of at the Site.
- 5. Respondent alleges that Mr. John Maestri, and Mr. Robert Valerino, were at all relevant times partners in Westlake Construction Company, and transported and disposed of SCC's wastes at the Site.
- 6. The Site is an inactive hazardous waste disposal site, as that term is defined in ECL Section 27-1301(2), and has been listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State as Site Number 7-34-025.
- 7. The Department has identified and classified the site pursuant to ECL Section 27-1305, under classification 2, a "significant threat to the public health or environment action required".
- 8. Pursuant to ECL Section 27-1313(3)(a), whenever the Commissioner of Environmental Conservation ("Commissioner") finds that hazardous wastes at an inactive hazardous waste disposal site constitute a significant threat to the Environment, he may order the owner of such site and/or any person responsible for the disposal of hazardous wastes at such site (i) to develop an inactive hazardous waste disposal site remedial program, subject to the approval of the department, at such site, and (ii) to implement such program within reasonable time limits specified in the order."

- goal of this Order shall be the expeditious development of an Interim Remedial Measure Program ("IRM Program") for the Site which shall include provision for the implementation of any Interim Remedial Measures ("IRMs") that may be needed. The Department and Respondent further acknowledge that Respondent has developed a plan ("the Work Plan") for a field investigation designed to generate sufficient data from which it will be possible to identify impacts that may require IRMs and to develop a plan for implementing appropriate IRMs and to implement appropriate IRMs, as needed, at the Site. The Work Plan has been approved by the Department and is incorporated into this Order as Appendix B.
- 10. While Respondent does not admit that it is responsible under law for the disposal of hazardous wastes at the Site, Respondent has agreed, subject to the terms and conditions of this Order, to fund and perform the work set forth in the Work Plan, incorporated as Appendix B, as a means of developing the IRM Program.
- 11. Respondent, having waived whatever right it may have to a hearing, to which it would otherwise be entitled before the Commissioner issues an Order pursuant to ECL \$ 27-1313(4) and having consented to the issuance and entry of this Order, agrees to be bound by the terms hereof.

NOW, having considered this matter and being duly advised, IT IS ORDERED THAT:

- I. All investigations, proposals, reports, plans, remedial programs, and supplements and revisions thereto required by this Order shall address, as outlined in the Work Plan, both on-Site and off-Site contamination and impacts caused by the disposal of hazardous wastes at the Site, and shall be prepared, designed and executed in accordance with generally accepted engineering and technical practices, and shall be in compliance with all applicable federal, state and local laws and regulations.
- II. As used herein, "hazardous wastes" shall mean hazardous wastes, as defined at 6 NYCRR 375.2.
- III. A. All submittals made by Respondent pursuant to this Order shall be subject to Departmental review.
- B. If the Department approves a submittal, Respondent shall perform the specified work or continue with Respondent's obligations under the Order in accordance with the terms of the approval and under the Department's supervision. The submittal once approved by the Department shall be appended to and made a part of this Order.
- IV. Respondent shall undertake a site investigation and development and implementation of IRM Program in accordance with the Work Plan incorporated as Appendix B.
- V. Respondent shall immediately commence performance of the work outlined in the Work Plan incorporated as

Appendix B, in accordance with the schedule specified therein.

VI. Pursuant to the time schedule set forth in the Work Plan, Respondent shall submit to the Department a report containing interim data from the initial phases of the site investigations and also containing a proposal which outlines any appropriate IRMs (the "Initial Report and Proposal").

VII. Within fourteen (14) days after receipt of the Initial Report and Proposal, the Department shall provide written notification to the Respondent of its approval or disapproval of the Initial Report and Proposal.

If the Department approves the Initial Report and Proposal, the Respondent shall promptly perform the specified work and begin implementation of the IRM(s) proposed in the Initial Report and Proposal in accordance with the terms of the approval and under the Department's supervision and also continue Respondent's obligations under the Work Plan and Order.

If the Department disapproves the Initial Report and Proposal, the Department shall notify the Respondent in writing of the Department's objections and the basis thereof. Within fourteen (14) days after its receipt of the notice of disapproval, Respondent shall prepare and submit a revised Initial Report and Proposal to the Department which addresses the Department's objections (the "Revised Initial Report and Proposal").

Within fourteen (14) days after receipt of the Revised Initial Report and Proposal, the Department shall provide written notice to the Respondent of its approval or disapproval of the Revised Initial Report and Proposal. If the Department approves the revised submittal, Respondent shall promptly perform the specified work and begin implementation of the IRM(s) proposed therein in accordance with the terms of the approval and under the Department's supervision and also continue with Respondent's obligations under the Work Plan and this Order.

If, after re-submission as provided above, the Department disapproves the Revised Initial Report and Proposal, the parties shall confer together in good faith to resolve their differences.

If after conferring in good faith, there is still a dispute concerning the terms of the submittal, the matter shall be settled in accordance with the dispute resolution procedures set forth in Paragraph X below.

VIII. Pursuant to the time schedule set forth in the Work Plan, incorporated as Appendix B, Respondent shall submit to the Department a report containing all data from the complete site investigation conducted as provided herein and also containing a proposal for the implementation of any appropriate IRMs, not previously proposed or conducted (the "Final Report and Proposal").

IX. Within twenty-one (21) days after receipt of the Final Report and Proposal, the Department shall provide

written notification to the Respondent of its approval or disapproval of the Final Report and Proposal.

If the Department approves the Report and Proposal, the Respondent shall promptly perform the specified work and begin implementation of all IRMs set forth in the Final Report and Proposal in accordance with the terms of the approval and under the Department's supervision and also continue with Respondent's obligations under the Order .

If the Department disapproves the Final Report and Proposal, the Department shall notify the Respondent in writing of the Department's objections and the basis thereof. Within fourteen (T4) days after its receipt of the notice of disapproval, Respondent shall prepare and submit a revised Final Report and Proposal to the Department which addresses the Department's objections (the "Revised Final Report and Proposal").

Within fourteen (14) days after receipt of the Revised Final Report and Proposal, the Department shall provide written notice to the Respondent of its approval or disapproval of the Revised Final Report and Proposal. If the Department approves the revised submittal, Respondent shall perform the specified work and begin implementation of the IRM(s) proposed therein in accordance with the terms of the approval and under the Department's supervision and also continue with its obligations under this Order.

If, after re-submission as provided above, the Department disapproves the Revised Final Report and

Helx

Proposal, the parties shall confer together in good faith to resolve their differences.

If after conferring in good faith there is still a dispute concerning the terms of the submittal, the matter shall be settled in accordance with the dispute resolution procedures set forth in Paragraph X below.

X. If after conferring in good faith, there is still a dispute between Respondent and the Department concerning matters related to paragraphs VI, VII, VIII, IX, XVIII and XXVI, such matters shall be settled in accordance with the following procedures:

other, may request the Commissioner of Environmental
Conservation to appoint an Administrative Law Judge ("ALJ").
Upon receipt of such request the Commissioner shall appoint
an ALJ who shall convene a hearing to settle the dispute.
If the ALJ deems it necessary to convene an evidentiary
hearing, the taking of evidence shall be concluded within
fifteen (15) working days (unless further extended for good
cause) of the receipt of the written request to appoint an
ALJ. If the ALJ deems it unnecessary to convene an
evidentiary hearing, he shall within fifteen (15) working
days (unless further extended for good cause) of the notice
of request to appoint an ALJ, nevertheless convene a
conference at which the issues may be presented and a record
made.

In all proceedings hereunder:

- 1. The parties shall be Respondent and the Department.
- 2. The burden of going forward shall be on the Respondent.
- 3. The ALJ shall have all powers conferred by 6 NYCRR \$622.12.
- this Paragraph shall be stenographically recorded. The Respondent shall arrange for an expedited stenographic transcript to be made within three (3) working days after conclusion of the proceeding, and for the original and two copies of the transcript to be delivered to the ALJ at the expense of the Respondent.
- thirty (30) working days after receipt of the transcript of the proceeding, a written summary of the documentation and testimony received during the proceeding and a recommended decision. The summary and recommendation shall be hand-delivered to the Department's representative and sent by certified mail, return receipt requested, and another copy by Express Mail, to Respondent.
- 6. The ALJ's recommended decision shall become the final determination of the Commissioner unless, within five (5) working days from receipt of the recommended decision, either Respondent or the Department objects in writing. Any objections shall be submitted in writing to

the ALJ with a copy by express mail, telecopier or hand-delivery to the other party, which shall serve and file its response, if any, within two (2) working days of receipt of the objection by express mail, telecopier or hand-delivery. Upon receipt of the objections and any response, the ALJ shall refer the matter to the Commissioner for final determination.

- 7. The final determination of the Commissioner shall be made within fifteen (15) working days, or as soon as practicable, after receipt of the referral by the ALJ.
- 8. With respect to the final determination of the Commissioner, Respondent shall have those rights granted pursuant to Article 78 of the Civil Practice Law and Rules (CPLR) of New York, provided however that the period of four (4) months for petitioning thereunder shall be limited to one (1) month.
- XI. Respondent shall submit a health & safety plan for each component of the site investigation described in this Order. Such plans are to be prepared and certified by a qualified industrial hygienist.
- XII. The Department shall have the right to obtain "split samples" for the purpose of comparative analysis of all substances and materials sampled by Respondent pursuant to this Order.
- XIII. Respondent shall provide notice to the Department of any excavating, drilling or sampling to be conducted

pursuant to the terms of this Order at least five (5) working days in advance of such proposed activities. The parties shall make every effort to mutually arrange the timing and schedule of such activity in a manner which will enable Department personnel to conduct, when it desires, on-site field oversight.

whatever authorizations, including permits, approvals, easements, rights of way and rights of entry are necessary in order to perform its obligations under this Order.

Respondent shall promptly notify the Department in the event of Respondent's inability to obtain such authorizations on a timely basis. In the event Respondent is unable to obtain the necessary authorizations required to implement the Remedial Site Investigation, the Department shall, consistent with its legal authority, assist in obtaining such authorizations Respondent was unable to obtain. If Respondent cannot obtain such authorization, Respondent shall, pursuant to paragraph XXVI, request that this Order be appropriately modified.

XV. Insofar as it may be legally empowered to do so,
Respondent shall permit any duly designated officer,
employee, consultant, contractor or agent of the Department
to enter upon the Site or areas in the vicinity of the Site
which may be under the control of Respondent, and any areas
necessary to gain access thereto, for purposes of inspection
and of making or causing to be made such sampling and tests

as the Department deems necessary, and for assurance of Respondent's compliance with the terms of this Order.

xVI. Respondent shall retain a third-party professional engineering consultant and a Department certified laboratory to perform the technical, engineering and analytical obligations required by this Order. Respondent's third-party engineering consultant must be an engineering firm authorized to offer engineering services in the State of New York.

XVII. All decisions of the Department pursuant to this Order, including approvals, disapprovals, grants or denials of requests for extensions of time and requests for modifications of reports, work plans, specifications, schedules, or other work outputs shall be communicated in writing to Respondent by the Department, in accordance with the provisions of paragraph XXVII below.

of the terms of this Order, or be subject to any proceeding or actions for any remedy or relief if it cannot comply with any requirements hereof including the time deadlines in schedules set forth in this Order or in the Work Plan, if caused by any of the following: (i) an act of God, (ii) unanticipated dangerous conditions at the Site about which timely notice has been given to the Department, (iii) any delays which result from failure to obtain access to the Site after Respondent has exhausted all efforts to obtain site access pursuant to its obligations as set forth in

paragraph XIV, (iv) any delay caused by the Department's failure to complete its review of plans and reports within the time period specified in this Order (v) any delays resulting from invocation of the dispute resolution procedures set forth in paragraph X or (vi) other condition as to which negligence or willful misconduct on the part of Respondent was not a proximate cause, provided however, that Respondent shall immediately notify the Department in writing when it obtains knowledge of any such condition, and shall identify with specificity the cause or causes of such delay and the estimated duration of the delay, and request an extension or modification of the terms of this Order. Respondent agrees to use its best efforts to minimize any delay which may result.

XIX. Nothing contained in this Order shall be construed as barring, diminishing, adjudicating or in any way affecting:

- A. any legal or equitable rights or claims, actions, suits, causes of action or demands whatsoever that the Department may have against anyone other than Respondent, its directors, officers, employees, servants, agents, successors and assigns;
- B. the Department's right to enforce at law or in equity the terms and conditions of this Order against Respondent, its directors, officers, employees, servants, agents, successors and assigns in the event that Respondent shall fail to satisfy any of the terms hereof;

- C. the Department's right to bring any action at law or in equity to which the Department may be entitled against Respondent, its directors, officers, employees, servants, agents, successors and assigns with respect to areas or resources that may have been affected or contaminated as a result of the release or migration of hazardous or industrial wastes at or from the Site or to or from areas in the vicinity of the Site; and
- D. the Department's right to bring any action or proceeding to which the Department may be entitled in connection with, relating to, or arising out of Respondent's alleged disposal of hazardous wastes at the Site.

XX. Respondent's sponsoring, developing and performing the IRM Program, does not constitute an admission by Respondent of liability for the conditions present on the site. Nor shall any studies, reports or other submissions developed pursuant to the terms of this Order be deemed evidence of an admission of liability for conditions present at the site.

XXI. The parties agree that the IRM Program is being conducted and funded by the Respondent to carry out the goals expressed in this Order. Respondent's signing of this Order, and its agreement to sponsor, fund and perform the work and activities outlined herein shall not constitute or be construed as a commitment or agreement, either express or implied to undertake any further activities, at the Site

other than those necessary to perform the activities set forth in the Work Plan in accordance with this Order.

XXII. The terms of this Order shall not be construed to prohibit the Commissioner or his duly authorized representative from exercising any summary abatement powers, either at common law or as granted pursuant to statute or regulation.

XXIII. Respondent shall indemnify and hold the Department, the State of New York, and their representatives and employees harmless for all claims, suits, actions, damages and costs of every name and description arising out of or resulting from the fulfillment or attempted fulfillment of the terms of this Order by Respondent, its directors, officers, employees, servants, agents, successors or assigns.

XXIV. Payment by Respondent in furtherance of any of the activities identified in the Work Plan or in furtherance of this Order shall not be deemed a waiver of, and shall not preclude Respondent from pursuing any actions or proceedings against any other potentially responsible party, with respect to the amounts paid in undertaking the work outlined in the Work Plan attached hereto as Appendix B.

XXV. The effective date of this Order shall be the date it is signed by the Commissioner.

XXVI. If Respondent desires that any terms of this Order be changed, including the terms of or time schedules set forth in the Work Plan attached hereto as Appendix B,

Respondent shall make timely written application to the Commissioner, setting forth reasonable grounds for the relief sought. The parties agree to confer in good faith in response to any such request for modification.

EXXVII. All communication required by this Order to be made between the Department and Respondent shall be made in writing and transmitted by United States Postal Service Return Receipt Requested, express mail or hand delivered to the address listed below.

- A. Communication to be made from Respondent to the Department shall be made as follows:
- 1. Two copies to the Division of Hazardous Waste Remediation, Room 212, 50 Wolf Road, Albany, New York 12233. Attention: Michael J. O'Toole, P.E., Director.
- 2. Two copies to the Division of Environmental Enforcement, Room 415, 50 Wolf Road, Albany, New York 12233. Attention: David Markell, Esq., Director.
- 3. Two copies to the NYS Department of Environmental Conservation, Region 7, 615 Erie Boulevard West, Syracuse, New York 13204 Attention: Regional Director.
- 4. Two copies to the NYS Department of Health, 667 South Salina Street, Syracuse, New York 13202 Attention: Ronald Heerkens.
- B. Communication to be made from the Department to Respondent shall be made as follows:

- 1. Two copies to Stauffer Management
 Company, Law Department, Concord Pike & Murphy Road,
 Wilmington, Delaware 19897. Attention: Melford F. Tietze,
 Esq.
- 2. Two copies to Stauffer Management
 Company, Central Engineering Department, Concord Pike &
 Murphy Road, Wilmington, Delaware 19897. Attention: S.A.
 LaRocca.
- 3. Two copies to Environmental Resources
 Management, Inc., 855 Springdale Drive, Exton, Pennsylvania
 19341. Attention: Alan MacGregor
- c. The Department and Respondent respectively reserve the right to designate other or different addresses on notice to the other.

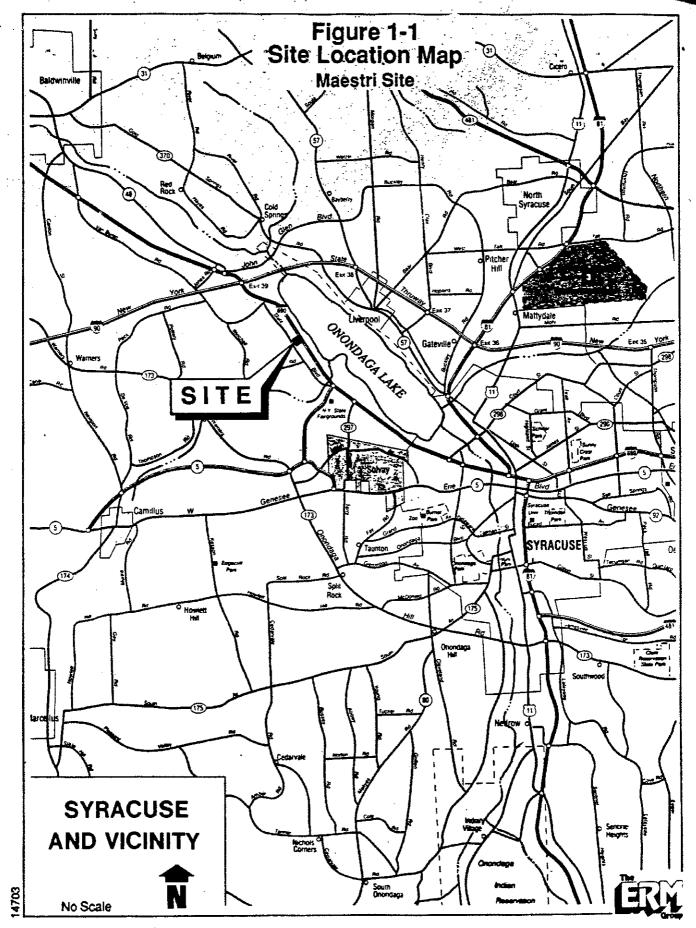
XXVIII. The terms of this Order shall be deemed to bind Respondent, its officers, directors, agents, servants, employees, successors and assigns.

XXIX. Nothing herein shall be construed to bind any entity not specifically bound by the terms of this Order.

entire Order between Respondent and the Department concerning the Site. No terms, conditions, understandings or agreements purporting to modify or vary the terms hereof shall be binding unless made in writing and subscribed by the party to be bound. No informal advice, guidance, suggestions or comments by the Department regarding reports, proposals, plans, specifications, schedules or any other

writing submitted by Respondent shall be construed as relieving Respondent of its obligations to obtain such formal approvals as may be required by this Order. DATED: Octor of albern you york

THOMAS C. JORLING Commissioner New York State Department of Environmental Conservation


CONSENT BY RESPONDENT

Respondent hereby consents to the issuing and entering of this Order, waives its right to a hearing herein as provided by law, and agrees to be bound by the provisions, terms and conditions contained in this Order.

By: Wice President - Technology & Strategy Date: August 31, 1988
STATE OF DELAWARE) s.s.: COUNTY OF NEW CASTLE) On this 31pt day of Quant, 1988,

before me personally came (1.1. Personal), to me known, who being duly sworn, did depose and say that he resides in Wilmington, Delaward that he is the Wilmington, Delaward corporation described in and which executed the foregoing instrument; that he knew the seal of said corporation; that the seal affixed to said instrument was such corporate seal; that it was so affixed by the order of the Board of Directors of said corporation, and that he signed his name thereto by like order.

Joanne Stella Notary Public

2

STATE OF NEW YORK: DEPARTMENT OF ENVIRONMENTAL CONSERVATION

In the Matter of the Implementation of an Interim Remedial Measure at an Inactive Hazardous Waste Disposal Site by:

Modification of Order on Consent Index # A7-0226-90-03 Site #7-34-025

STAUFFER MANAGEMENT COMPANY, Respondent.

WHEREAS:

- 1. The New York State Department of Environmental Conservation ("Department") is responsible for the enforcement of Article 27, Title 13, of the Environmental Conservation Law of the State of New York ("ECL"), entitled "Inactive Hazardous Waste Disposal Sites".
- 2. Stauffer Management Company ("Respondent"), is a corporation organized and existing under the laws of the State of Delaware and is doing business in the State of New York. Stauffer Management Company is an indirect successor to certain liabilities of Stauffer Chemical Company ("SCC"), a corporation which operated a manufacturing plant in Skaneateles Falls, New York from 1967 to 1981.
- 3. Bert Maestri, residing at 129 Pleasant Beach Road, Syracuse, New York, owns a parcel of property located at 904 State Fair Boulevard, Solvay, New York (the "Site"). A map of the Site is attached to this Order as Appendix A.
- 4. The Department alleges, without admission on Respondent's part, that beginning approximately in 1974 and continuing approximately until 1976, SCC, generated certain hazardous wastes which were disposed of at the Site.

- 5. The Site is an inactive hazardous waste disposal site, as that term is defined in ECL § 27-1301(2), and has been listed in the Registry of Inactive Hazardous waste Disposal Sites in New York State as Site Number 7-34-025.
- 6. The Department has identified and classified the Site pursuant to ECL § 27-1305, under classification 2, a "significant threat to the public health or environment action required."
- 7. Pursuant to ECL § 27-1313(3)(a), whenever the Commissioner of Environmental Conservation ("Commissioner") finds that hazardous wastes at an inactive hazardous waste disposal site constitute a significant threat to the environment, he may order the owner of such site and/or any person responsible for the disposal of hazardous wastes at such site (i) to develop an inactive hazardous waste disposal site remedial program, subject to the approval of the Department, at such site, and (ii) to implement such program within reasonable time limits specified in the Order."
- 8. On December 16, 1992 the Department entered into an Order on Consent (Index # A7-0226-90-03) with Respondent that requires a Remedial Investigation/ Feasibility Study for the Site and, if Respondent agrees to implement the remedy set forth in the Record of Decision, the development and implementation of a remedial design (RD) and remedial action (RA).
- 9. The Department and Respondent acknowledge that the goal of this Modification of Order on Consent #A7-0226-90-03 is that Respondent shall develop and implement an interim remedial measure ("IRM") at the Site. If the Department and Respondent agree that further IRMs are appropriate, Respondent shall submit

subsequent IRM Work Plans for the Department's review and approval prior to implementation pursuant to this Modification of Order on Consent.

- 10. For purposes of this Modification of Order on Consent an Interim Remedial Measure is defined as a remedial measure that reduces the threat of harm to the public health and/or the environment which are taken prior to the issuance of a Record of Decision by the Department.
- 11. The Department and Respondent agree that relevant information generated during Respondent's implementation of the approved interim remedial measures under this Modification of Order on Consent #A7-0226-90-03 will be included as an addendum to the Remedial Investigation.
- 12. While Respondent does not admit that it is responsible under law for the disposal of hazardous wastes at the Site, Respondent has agreed to fund and perform the work required in accordance with this Modification of Order on Consent #A7-0226-90-03 reserving its rights to seek contribution from any and/or all parties having any responsibility in connection therewith.
- 13. Respondent, having waived its right to a hearing herein, to which it is entitled before the Commissioner issues an Order pursuant to ECL 27-1313.4 and having consented to the issuance and entry of this Modification of Order on Consent #A7-0226-90-03, without any admission or denial of liability, agrees to be bound by the terms hereof.

NOW, THEREFORE, having considered this matter and being duly advised, it is ORDERED that:

- I. Except where specifically modified or amended herein the terms, conditions, obligations and rights reserved under Order on Consent #A7-0226-90-03 shall remain unchanged and in full force and effect.
- II. A new paragraph is to be added to the Order on Consent #A7-0226-90-03. The Order on Consent #A7-0226-90-03 is hereby amended and modified to read as follows:

XXXV. Within 30 days after the effective date of this Modification Respondent shall submit to the Department, for the Department's review and approval, a detailed work plan describing the methods and procedures to be implemented in performing an interim remedial measure ("IRM") at the Site ("IRM Work Plan"). Within 60 days of receipt of the Department's approval of the IRM Work Plan Respondent shall begin implementation of the Approved IRM Work Plan in accordance with the terms and schedule contained in the Approved IRM Work Plan. Within 60 days after completion of the IRM Respondent shall submit a final engineering report ("Final Report") and a certification that the activities were completed in accordance with the Approved IRM Work Plan, by an engineer licensed to practice by the State of New York. The Department reserves the right to require a clarification, modification,

and/or amplification and expansion of the Final Report by Respondent if the Department determines, as a result of reviewing data generated by the Approved IRM Work Plan and Final Report, or as a result of reviewing any other data or facts, that further information is required. After receipt of the Final Report and certification, the Department shall notify Respondent in writing whether it is satisfied with the quality and completeness of the IRM as being protective of human health and the environment. If the Department and Respondent agree that additional IRMs are appropriate then Respondent shall submit additional IRM Work Plans and implement such approved IRM Work Plans in accordance with procedures to be agreed upon at that time.

III. The effective date of the Modification of Order on Consent #A7-0226-90-03 shall be the date it is signed by the Commissioner or his designated representative.

DATED: November 15, 1993

Gilbon, New York

Ann DeBarbieri
Deputy Commissioner
New York State Department of
Environmental Conservation

Gran Heie Dessare

CONSENT BY RESPONDENT

Respondent hereby consents to the issuing and entering of this Modification to Order on Consent #A7-0226-90-03 and agrees to be bound by the provisions, terms and conditions contained in this Modification to Order on Consent #A7-0226-90-03.

STAUFFER MANAGEMENT COMPANY

By: Junear Askelle

Title: Junear F

STATE OF Delaware) s.s.:
COUNTY OF New)

	On this 20 4 day of (October, 1993, before me personally
came <u>/3/</u>	ian a Spiller	, to me known, who being duly sworn,
did depose a	nd say that he resides in	; that he
is the	(Trepident	of the Staulker Manut Co.
corporation,	thé corporation described	d herein and that he executed the foregoing
		, that he represents that he has the authorization
to bind the c	orporation to this Order ar	nd that he has signed his name hereto.

Janu C Stelly Notary Public

(MAESTIRM.80293NP)

Appendix M

Acceptance Letter for 2022 PRR

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 5786 Widewaters Parkway, Syracuse, NY 13214-1867 P: (315) 426-7519, (315) 426-7551 www.dec.ny.gov

April 11, 2023

Stauffer Management Company LLC John-Paul Rossi 1800 Concord Pike P.O. Box 15437 FOP 3-415 Wilmington, DE 19850-5437

Re: Site Management Periodic Review Report Response Letter

Maestri Site, Site No.: 734025 Solvay, Onondaga County

Dear John-Paul Rossi:

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: January 15, 2022, to January 15, 2023.

The Department hereby accepts the PRR and associated Certification with the following contingencies:

- 1. The Site Management Plan needs to be updated to reflect the proposed changes as presented in this PRR.
- The screened intervals and depths of the wells shall be presented in future PRRs.

The frequency of Periodic Reviews for this site is one year; therefore, your next PRR is due on February 14, 2024. You will receive a reminder letter and updated certification form approximately 75 days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

If you have any questions, or need additional forms, please contact me at 315-426-7446 or e-mail: michael.belveg@dec.ny.gov.

Sincerely,

Michael Belveg Project Manager

Michael Belveg

ec: Gary Priscott, DEC James Sullivan, DOH Rebecca Hensel, Arcadis

Appendix N

2022 PRR

Mr. Michael Belveg
New York State Department of Environmental Conservation (NYSDEC)
Region 7 Office
Division of Environmental Remediation
615 Erie Boulevard West
Syracuse, NY 13204

February 14, 2023

Subject: Stauffer Management Company, LLC – Maestri Site

NYSDEC Site No. 7-34-025 900 State Fair Boulevard Town of Geddes, NY

Dear Mr. Belveg:

Arcadis on behalf of Stauffer Management Company, LLC (SMC), is submitting the enclosed 2022 Periodic Review Report for the Maestri Site.

If you have any questions or concerns, please do not hesitate to contact me at 315-671-9296 or Rebecca.Hensel@arcadis.com.

Sincerely,

Arcadis

Rebecca Hensel Project Manager

cc: John-Paul Rossi/Stauffer Management Company, LLC

Victor Finocchiaro/Arcadis

Stauffer Management Company LLC

2022 PERIODIC REVIEW REPORT

Maestri Site Town of Geddes, New York

February 2023

Site Certification

Maestri Site NYSDEC Site Number 7-34-025 Town of Geddes, New York

Based on my review of this Periodic Review Report, my own observations, and the observations of my staff while inspecting the Maestri Site (Site), I hereby certify, on behalf of Stauffer Management Company LLC, that the Site is compliant with the New York State Department of Environmental Conservation (NYSDEC)-approved Site Management Plan (May 2011).

- The on-site institutional and engineering controls are performing as designed and nothing has occurred that would impair the ability of the controls to continue to be protective of public health and environment.
- Nothing has occurred that would constitute a violation or a failure to comply with the Site Management Plan.
- Access to the Site to evaluate the controls continues to be available.
- The requirements of the Site Monitoring Plan are being met.
- The controls identified for the Site remain necessary for the continued effectiveness and protectiveness of the remedy.
- This Periodic Review Report and attachments (or the inspection/evaluations necessary to make this
 certification) were prepared under my direction and reviewed by me.

To the best of my knowledge, the conclusions described in this certification are in accordance with the requirements of the Site Management Plan, NYSDEC approval documents, and generally accepted engineering practices; the information presented is accurate and complete. Changes to the conditions at the Site, discovery of undisclosed information, or changes in activities at this Site since the last inspection may render this certification invalid. This report has been prepared solely for the use of Stauffer Management Company LLC at the Maestri Site for compliance with NYSDEC-required closure reporting protocols and the reminder notice provided by the NYSDEC on December 6, 2022 (Appendix A). Reliance on this report by others is strictly prohibited. All assumptions, clarifications, observations, and representations stated in this report apply to this certification.

4	STE O SE O A	
	15 W.	~
	The same of the sa	7

077919-1, New York

Signature Professional Engineer Registration Number & State

Timothy Miller Principal Engineer

Name Title

Arcadis U.S., Inc. 02/14/2023

Company Date

Contents

Int	roduction	. 1
Sit	te Overview	1
2.1	Soil Remediation	. 1
2.2	Groundwater Remediation	. 2
Ins	stitutional Controls and Engineering Controls	. 2
3.1	Effectiveness of Institutional Controls and Engineering Controls	. 3
3.2	Attaining Remedial Goals	. 3
3.3	Annual Site Inspection Results	. 4
Su	mmary of Site Evaluation	. 4
Pla	ans Moving Forward	. 5
Re	ferences	. 5
	3.1 3.2 3.3 Su Pla	Site Overview 2.1 Soil Remediation 2.2 Groundwater Remediation Institutional Controls and Engineering Controls 3.1 Effectiveness of Institutional Controls and Engineering Controls 3.2 Attaining Remedial Goals 3.3 Annual Site Inspection Results Summary of Site Evaluation Plans Moving Forward

Tables

Table 1 Remedial Action Objectives

Table 2 Summary of Historical Total Xylene Concentrations

Figures

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Elevation Contour Map, May 2022
Figure 4	Groundwater Elevation Contour Map, October 2022
Figure 5	Groundwater Analytical Results, May 2022
Figure 6	Groundwater Analytical Results, October 2022
Figure 7	Well Xylene Concentration Trends

Appendices

Appendix A	NYSDEC Site Management PRR Notice
Appendix B	NYSDEC Low-Flow Approval Email
Appendix C	October 2022 Site Inspection Forms
Appendix D	NYSDEC Response to 2022 January PRR Comments and Approva

Appendix E Well Decommissioning Logs

Appendix F 2022 Analytical Data Reports

Appendix G Historical Well Xylene Concentrations and Water Table Elevations

Appendix H 2022 Low-Flow Sampling Logs

Appendix I Institutional and Engineering Controls Certification Form

Acronyms and Abbreviations

EC Engineering Controls

IC Institutional Controls

NYSDEC New York State Department of Environmental Conservation

PRR Periodic Review Report

ROD Record of Decision

SMC Stauffer Management Company LLC

SMP Site Management Plan SVE Soil Vapor Extraction

VOC Volatile Organic Compound

1 Introduction

This Periodic Review Report (PRR) has been prepared by Arcadis U.S Inc. (Arcadis) on behalf of Stauffer Management Company LLC (SMC) for the Maestri Site, located in the Town of Geddes, New York (Site). The purpose of this report is to summarize compliance with the Site Management Plan (SMP) dated May 2011, and to provide the status of the Site institutional controls (IC) and engineering controls (EC) for Periodic Review Year 2022.

The Site has been remediated by SMC under Order on Consent Index # A7-0226-90-03 (December 1992), with the NYSDEC. In the 1970s, drums containing industrial waste were allegedly buried at the Site. In 1987, the Site owner, Mr. Bert Maestri, reportedly excavated soil and drums from an area of the Site, leading to investigations to evaluate the environmental effects of the former waste disposal area. A combination of soil vapor extraction (SVE) and biological treatment was chosen as the remedial technology for soil at the Site and a groundwater treatment system was constructed to remediate groundwater. The remedial action work began at the Site in June 1996 and was completed in May 2008. An SMP was approved by the NYSDEC in May 2011 and a Declaration of Covenants and Restrictions is currently in place. Since remaining residual soil and groundwater contamination are present at the Site, ICs/ECs have been implemented to protect public health and the environment for the applicable future use. The effectiveness of the Site IC/EC implementation and maintenance is discussed throughout this report.

2 Site Overview

The Site is located at 904 State Fair Boulevard, Geddes, New York, approximately three miles west of Syracuse, New York. The portion of the Site that is still actively monitored is approximately 2.5 acres. The Site is bordered by State Fair Boulevard to the southwest and residences along Alhan Parkway to the northeast. Vacant, wooded lots border the Site to the northwest and the southeast. A Site Location Map and Site Plan are provided in this report, as Figures 1 and 2, respectively.

2.1 Soil Remediation

Investigation into the extent of the environmental impacts at the Site began in 1987. That same year, the NYSDEC listed the Site on the New York State Registry of Inactive Hazardous Waste Disposal Sites as Site #7-34-025. SMC conducted a remedial investigation and feasibility study to determine the nature and extent of contamination and to select remedial technology for the Site. A combination of SVE and biological treatment was chosen as the most cost-effective remedy that was protective of human health and the environment. A Record of Decision (ROD) to complete soil remediation at the Site was signed in March 1995.

Soil remediation activities began in June 1996 with the excavation of over 10,000 cubic yards of soil and the construction of five above-grade biopiles for treatment of volatile organic compounds (VOC) and semi-volatile organic compounds with an SVE/bioremediation system. By September 1999, the last of the excavated material met the requirements of the ROD and was returned, with the Site re-graded and seeded in October 1999. Soil Remedial Action Objectives are provided in Table 1.

2.2 Groundwater Remediation

An on-site groundwater treatment system was constructed in 1992 and operated until 2008. The system treated water from six recovery wells, water collected from the soil excavation, and leachate accumulated from the biopiles during remedial activities. The water was treated with particulate filtration and carbon adsorption and was discharged, under a State Pollution Discharge Elimination System-equivalent permit, to a storm sewer that subsequently discharged to Onondaga Lake. The groundwater treatment system was shut down in May 2008 after it had achieved remedial goals outlined in the ROD. This required continued operation of the groundwater collection and treatment system with an annual evaluation until concentrations of contaminants at the Site could no longer be effectively removed, or cleanup objectives were met. To address remaining groundwater contamination and to enhance groundwater remediation, a series of chemical oxidation events were completed in 2001, 2002, and 2004. In an email dated May 18, 2021, the NYSDEC approved the use of low-flow sampling techniques starting in 2021 (Appendix B).

3 Institutional Controls and Engineering Controls

As provided in the SMP, ICs and ECs were designed to manage remaining contamination at the Site after completion of the remedial action work and to protect human health and the environment for the applicable future use. The ICs and ECs are designed to prevent the following:

- Ingestion/direct contact with contaminated soil.
- Inhalation of, or exposure to, contaminants volatilizing from contaminated soil.
- Ingestion of groundwater with contaminant levels that exceed applicable drinking water standards.
- Contact with, or inhalation of, volatiles from contaminated groundwater.
- Migration of contaminated groundwater resulting in off-site contamination.
- Migration of contaminants that would result in off-site groundwater or surface water contaminants.

The Site has the following ECs:

- Maintenance of the soil cover over the soil redeposition areas, consisting of three inches of loam, six inches of topsoil, and grass
- Continuous monitoring of groundwater.

The Site has the following ICs:

- Compliance with the established Declaration of Covenants and Restrictions with all elements of the SMP.
- Engineering Controls must be operated and maintained as specified in the SMP.
- Engineering Controls at the Site must be inspected and certified at a frequency and in a manner defined in the SMP.
- Groundwater monitoring must be performed as defined in the SMP.
- Data and information pertinent to the management of the Site must be reported at the frequency and in a manner defined in the SMP.
- On-site environmental monitoring devices, including but not limited to, groundwater monitoring wells, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP.

Additionally, the Declaration of Covenants and Restrictions has placed the following restrictions on the property:

- Vegetable gardens and farming on the property are prohibited.
- Use of groundwater underlying the property is prohibited without treatment rendering it safe for the intended use as approved by the New York State Department of Health.
- As the topsoil cover over the excavated areas acts as a cover system at the Site, disturbance and
 incidental damage to this cover system shall be repaired upon discovery in a manner that complies with
 the SMP.
- All future activities on the property that would disturb remaining contaminated material must be conducted in accordance with the Excavation Plan included in the SMP.
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be mitigated.
- The property may be used for residential use with restricted groundwater use, provided that the longterm ICs/ECs described in the SMP are employed and land zoning regulations are followed.

3.1 Effectiveness of Institutional Controls and Engineering Controls

The ICs/ECs specified in the SMP are in place and effective in protecting human health and the environment. In 2022, the ECs were operated and maintained as specified in the SMP. The soil cover was maintained, and the quality and integrity of the cover was inspected in 2022, as specified in the SMP. The 2022 site inspection report is provided in Appendix C. The semiannual groundwater monitoring continued in 2022 (May and October) as specified in the SMP. Groundwater flow directions for both 2022 monitoring events are provided in Figures 3 and 4, respectively. Groundwater analytical results from both of the events are identified, by sampling location, in Figures 5 and 6.

SMC received approval from NYSDEC on March 9, 2021 to remove PZ-4 from the sampling program and to properly decommission. However, SMC was unable to locate PZ-4 in 2022 similar to the reported activities in the 2021 PRR. The following activities were completed in an attempt to locate PZ-4:

- Reviewed historical aerial photos of the Site.
- Marked well location with hand GPS unit and hand-dug around the area.
- Walked the property with a metal detector.
- Interviewed previous consultants to aid in locating.
- Interviewed homeowner which revealed that the yard had been regraded.
- Attempted to locate with drillers while on site for abandonment work of wells RW-3, RW-5, and RW-8.

SMC proposes to complete the decommissioning form and specify the inability to locate well PZ-4 in the Water Well Abandonment and Decommissioning Report.

In addition to the ICs/ECs, a fence and locked gates prevent access to the Site.

3.2 Attaining Remedial Goals

Groundwater monitoring takes place to ensure that residual groundwater contamination is not migrating off site and to analyze the remaining levels of contamination in the groundwater, which is required for compliance with remedial goals.

Xylene concentrations continue to show seasonal fluctuations across semiannual sampling events. Specifically, the fluctuations are observed in monitoring locations RW-6, MW-2A, RW-7 and MW-9, as presented on Table 2. Samples from off-site downgradient wells PZ-20 and PZ-21 continue to show no detections, indicating that the plume is not migrating to the off-site downgradient area and remediation goals are attainable. Three wells, specifically RW-3, RW-5 and RW-8, have historically shown results less than the detection limit of the test procedure. Pursuant to the 2021 PRR that was approved on April 18, 2022 (Appendix A), groundwater monitoring wells PZ-20, RW-3, RW-5, and RW-8 were to be removed from the monitoring program, beginning in 2022. Monitoring wells RW-3, RW-5, and RW-8 were decommissioned, in accordance with NYSDEC Commissioner Policy 43: Groundwater Monitoring Well Decommissioning Policy, during the October 2022 semiannual sampling event. The decommissioning logs are presented in Appendix E.

A review of groundwater elevation data in comparison to total xylene concentrations (Appendix G) indicate that higher groundwater elevations at the time of sampling typically result in higher reported total xylene concentrations. The higher groundwater table elevations are typically observed during the second quarter (Spring) sampling event.

Historical xylene results are presented in Table 2, visual representation presented in Appendix G, and current analytical lab reports are presented in Appendix F. Additional historical details can be found in previously submitted PRRs.

3.3 Annual Site Inspection Results

The results from the annual site inspection show that the soil cover remains in place and intact and that the ICs/ECs continue to protect public health and the environment. The on-site ICs/ECs remain in place. They have proven to be effective and have not been impaired in their ability to protect human health and the environment. The Site remains accessible to evaluate the ICs/ECs and continues to be compliant with the established Declaration of Covenants and Restrictions. The site inspection report can be found in Appendix C. The NYSDEC Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form has been provided in Appendix I.

4 Summary of Site Evaluation

The Site is compliant with the ROD, as (1) the contaminated soil was treated, redeposited, and covered with a soil cover, (2) the groundwater treatment plant was operated until the contaminants were no longer able to be effectively removed or cleanup objectives were met, and (3) monitoring of the groundwater continues semiannually and has demonstrated no further off-site migration.

Groundwater analytical results from the 2022 sampling events indicated that groundwater collected from MW-2A, MW-9, and RW-7 were the only samples where xylene was detected at a concentration greater than the site-specific clean-up goal of 5 micrograms per liter. A review historical and current groundwater data from the existing monitoring points, beginning June 2014, demonstrate the following:

- Xylene has been detected at concentrations greater than the groundwater cleanup objectives in 3 of the 9 wells sampled (MW-2A, MW-9, and RW-7).
- Xylene has not been detected at a concentration equal to, or greater than, the groundwater cleanup objective in samples collected from PZ-20, PZ-21, RW-3, RW-5, and RW-8. Note that PZ-20, RW-3, RW-5, and RW-8 were all removed from sampling program in second half of 2022.

• Linear regression trend graphs for locations with xylene concentration greater than the cleanup objectives indicated stable to decreasing xylene trends (Figures 7A through 7D).

Analytical results from monitoring well MW-2A remain consistent with those from MW-9, due to their close proximity and well screen across the same groundwater interface. As such, it is proposed that monitoring well MW-2A be removed from the sampling program as the sampling data no longer serves a purpose.

The 2022 groundwater sampling events were conducted via low-flow sampling. The low-flow sampling logs are presented in Appendix H. The 2022 sampling results were consistent with historical results thus low-flow techniques will continue to be utilized at the Site.

5 Plans Moving Forward

Analytical results continue to indicate that the groundwater plume is stable to decreasing. The site remedy and the SMP are effective in complying with cleanup objectives and are protective of public health and the environment. Based on the current and historical data it is requested the following changes to the monitoring program be made:

- Groundwater sample collection via low-flow techniques should continue in 2023.
- Removal of MW-2A from the sampling program as, due to their location and well screens across the same groundwater interface, the analytical data is duplicative of the data from sampling location MW-9.
- Transition to annual sampling for monitoring wells MW-9, PZ-21, RW-6, and RW-7, to occur in the second quarter of each year.
- Cease the submittal of groundwater monitoring reports, only submitting the 2023 PRR by early 2024.
- Complete the Water Well Abandonment and Decommissioning Report for monitoring well PZ-4 based on the evidence documented in this PRR.

7 References

Envirospec Engineering, PLLC. 2010. *Site Management Plan*, Maestri Site, Onondaga County, New York, NYSDEC Site Number: 7-34-025. Prepared for Stauffer Management Company. August.

Tables

TABLE 1 REMEDIAL ACTION OBJECTIVES 2022 PERIOD REVIEW REPORT MAESTRI SITE GEDDES, NEW YORK

Parameter	Groundwater Cleanup Objectives (μg/L)				
Volatile Organic	Compound (VOC)				
Benzene	5				
Ethylbenzene	5				
t-1,2-dichloroethylene	5				
Tetrachloroethylene	5				
Toluene	5				
Xylene	5				
Total VOCs	100				
Semi-Volatile Organi	c Compound (SVOC)				
Benzoic acid	5				
2-methylphenol	50				
4-methylphenol	50				

Parameter	Soil Cleanup Objectives (μg/L)				
Volatile Organic	Compound (VOC)				
Benzene	0.06				
Ethylbenzene	5.5				
t-1,2-dichloroethylene	0.3				
Tetrachloroethylene	1.4				
Toluene	1.5				
Xylene	1.2				
Total VOC	10				
Semi-Volatile Organi	c Compound (SVOC)				
Benzoic acid	2.7				
2-methylphenol	0.1				
4-methylphenol	0.9				
Total SVOC	500				

Notes:

Site Remedial Action Objectives are based on Remedial Objectives from the 2011 SMP.

TABLE 2 SUMMARY OF HISTORIC TOTAL XYLENE CONCENTRATIONS 2022 PERIODIC REVIEW REPORT MAESTRI SITE GEDDES, NEW YORK

Date											
Collected	MW-2A	MW-9	PZ-4	PZ-20	PZ-21	RW-3	RW-4	RW-5	RW-6	RW-7	RW-8
2-May-06	2400	NS	NS	****	*****	<3.0	**	<3.0	58	<30	<3.0
6-Jun-06	NS	NS	NS	****	*****	<3.0	**	<3.0	9	102	<3.0
4-Jul-06	665	NS	NS	****	*****	<3.0	**	<3.0	34	130	NS
1-Aug-06	NS	NS	NS	****	*****	5	**	<3.0	63	90	<3.0
3-Oct-06	<3.0	NS	NS	****	*****	3.3	**	<3.0	3	55	NS
2-Jan-07	<3.0	NS	NS	****	*****	<3.0	**	<3.0	29	40	NS
3-Apr-07	6.4	NS	NS	****	*****	INC	**	<3.0	145	3.7	NS
3-Jul-07	410	NS	NS	****	*****	<3.0	**	<3.0	<3.0	<3.0	NS
2-Oct-07	1025	NS	NS	****	*****	<3.0	**	<3.0	30	6	NS
7-Jan-08	3.0	11	NS	****	*****	<3.0	**	14	52	<3.0	NS
1-Apr-08	987	NS	NS	****	*****	22	**	<3.0	27	15	NS
Treatment S	Treatment System Shutdown on May 27th, 2008										
Jun-08	68 [54]	964	<3.0	****	*****	6.1	**	<3.0	84	119	<3.0
Jul-08	1,700	1,800	<3.0	****	*****	4.4	**	<3.0 [<3.0]	71	124	<3.0
Aug-08	1,770 [1,200]	1,795	<3.0	****	*****	4.3	**	<3.0	148	104	<3.0
Nov-08	16	73	<3.0	****	*****	<3.0	**	<3.0	158	73	<3.0
Feb-09	9.1	<3.0	<3.0	****	*****	<3.0	**	<3.0	590	<3.0 [<3.0]	<3.0
Jun-09	4,635	7,830	<3.0	<3.0	*****	<3.0	**	<3.0	641	23	<3.0
Dec-09	5,780	5,145	<3.0	<3.0	*****	<3.0	**	<3.0	417	169	<3.0
May-10	100 [122]	190	<3.0	<3.0	*****	<3.0	**	<3.0	862	15	<3.0
Oct-10	32	<3.0	<3.0	<3.0	*****	<3.0	**	<3.0	168 [157]	71	<3.0
Apr-11	685	3,598 [3,220]	10	<3.0	*****	<3.0	**	<3.0	208	66	<3.0
Jun-11	5,352	9,337	<3.0	<3.0	*****	NS	**	NS	906	7.7 [7.8]	NS
Nov-11	1,560 [1,980]	3.8	<3.0	<3.0	*****	<3.0	**	<3.0	749	<3.0	<3.0
Jun-12	230 [179]	5,370	<3.0	< 3.0	<3.0	<3.0	**	<3.0	622	41	<3.0
Dec-12	2,903	NS (DRY)	<3.0	<3.0 [<3.0]	<3.0	<3.0	**	13	511	145	7.2
Jun-13	<3.0	<3.0 [<3.0]	4.1	< 3.0	<3.0	<3.0	**	<3.0	14	<3.0	<3.0
Nov-13	2,722	7.0	4.9	< 3.0	<3.0 [<3.0]	<3.0	**	<3.0	418	91	<3.0

TABLE 2 SUMMARY OF HISTORIC TOTAL XYLENE CONCENTRATIONS 2022 PERIODIC REVIEW REPORT MAESTRI SITE GEDDES, NEW YORK

Date Collected	MW-2A	MW-9	PZ-4	PZ-20	PZ-21	RW-3	RW-4	RW-5	RW-6	RW-7	RW-8
Jun-14	4,700	2,800	<3.0	< 3.0	3.5	<3.0	**	<3.0 [<3.0]	770	8.0	<3.0
Oct-14	825	145	7.1	<1.0	<1.0	<1.0	**	<1.0	466 [470]	184.0	<1.0
May-15	407	<1.0	5.3	<1.0	<1.0 [<1.0]	<1.0	**	<1.0	604	16.6	2.0
Nov-15	769	739	5.3	<1.0	<1.0	15.4	**	<1.1	183 [208]	5.2	3.4
Apr-16	261	< 1.0	5.7	<1.0	<1.0	<1.0	**	<1.0	707	22.6 [23.2]	<1.0
Oct-16	68.3	< 1.0	4.3	<1.0	<1.0	<1.0	**	<1.0	88.9 [94.5]	<1.0	<1.0
Apr-17	3,350	3,380	6.4	<1.0	<1.0 [<1.0]	<1.0	**	<1.0	333	0.4	<1.0
Nov-17	<3.0	<3.0	4.6	<3.0	< 3.0	<3.0	**	< 3.0	<3.0	3.0	<3.0 [<3.0]
Jun-18	1,020	870	10	<3.0	<3.0	<3.0	**	<3.0	70	21	<3.0 [<3.0]
Oct-18	170 [160]	410	4.3	<1.0	<1.0	<1.0	**	<1.0	150	13	<1.0
May-19	1,630	6,400 [3,700]	5.8	<1.0	<1.0	<1.0	**	<1.0	300	33	1.6
Oct-19	32 [23]	230	4.3J	<1.0	<1.0	<1.0	**	<1.0	9.5	<1.0	<1.0
May-20	1,270 [1,630]	1,270	5.2	<5.0	<5.0	<5.0	**	<5.0	267	<5.0	<5.0
Oct-20	284	520	NA	<5.0	<5.0	<5.0	**	<5.0 [<5.0]	62	114	<5.0
May-21	<2.0	<2.0 [<2.0]	NA	<2.0	<2.0	<2.0	**	<2.0	<2.0	<2.0	<2.0
Nov-21	<2.0 [<2.0]	<2.0	NA	<2.0	<2.0	NR	**	NR	18	<2.0	NR
May-22	420 J	640 [620]	NA	<10	<10	<40	**	<10	2.8 J	<10	<10
Oct-22	120 [110]	<2.0	NA	NR	<2.0	NR	**	NR	4.9	14	NR

Notes:

All analytical results are in micrograms per liter (µg/L).

October 2022 samples were analyzed by Eurofins TestAmerica in Edison, NJ.

Monitoring well MW-2A was formerly known as RW-2 in 2006.

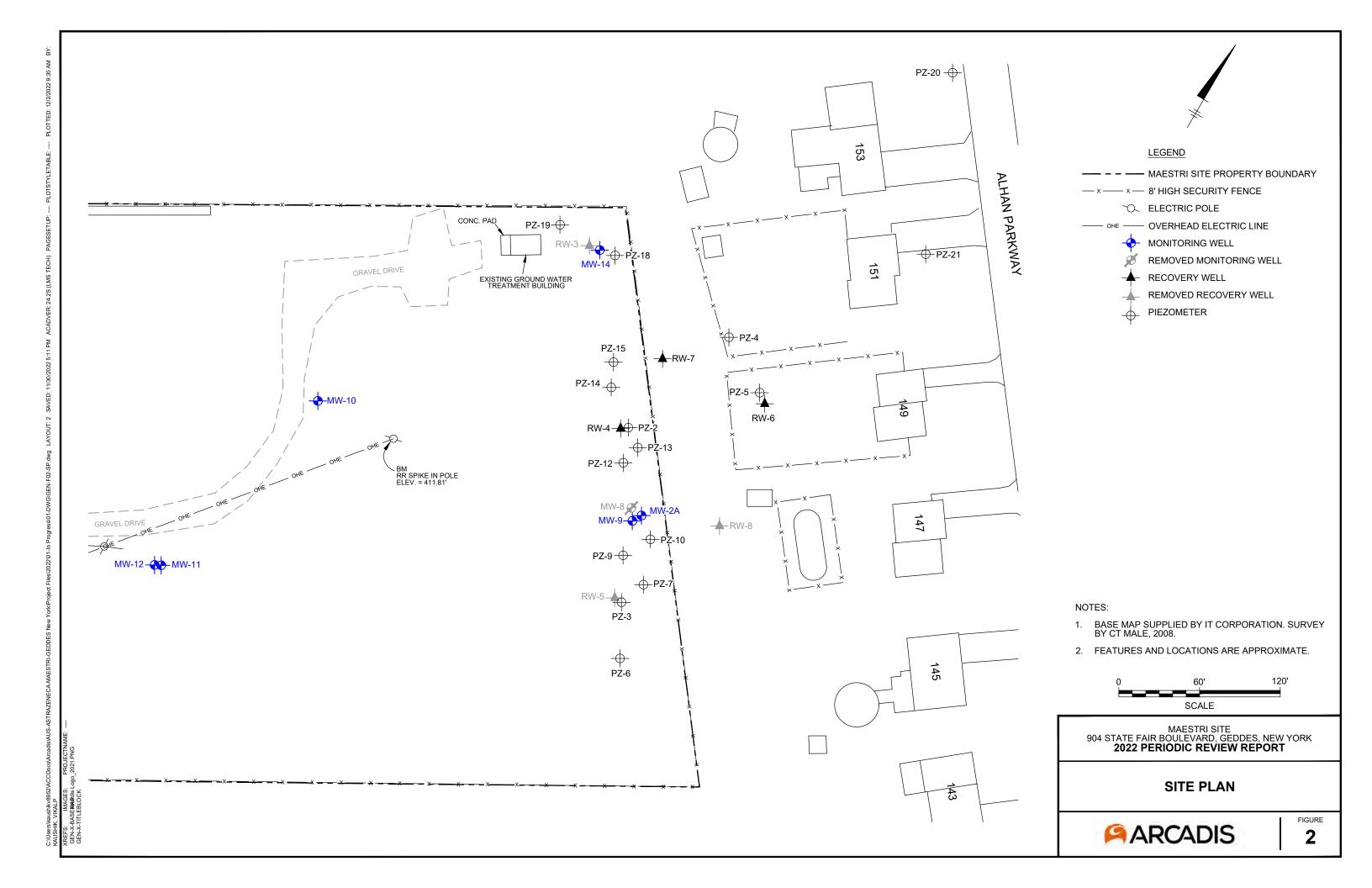
INC = Inconclusive laboratory result

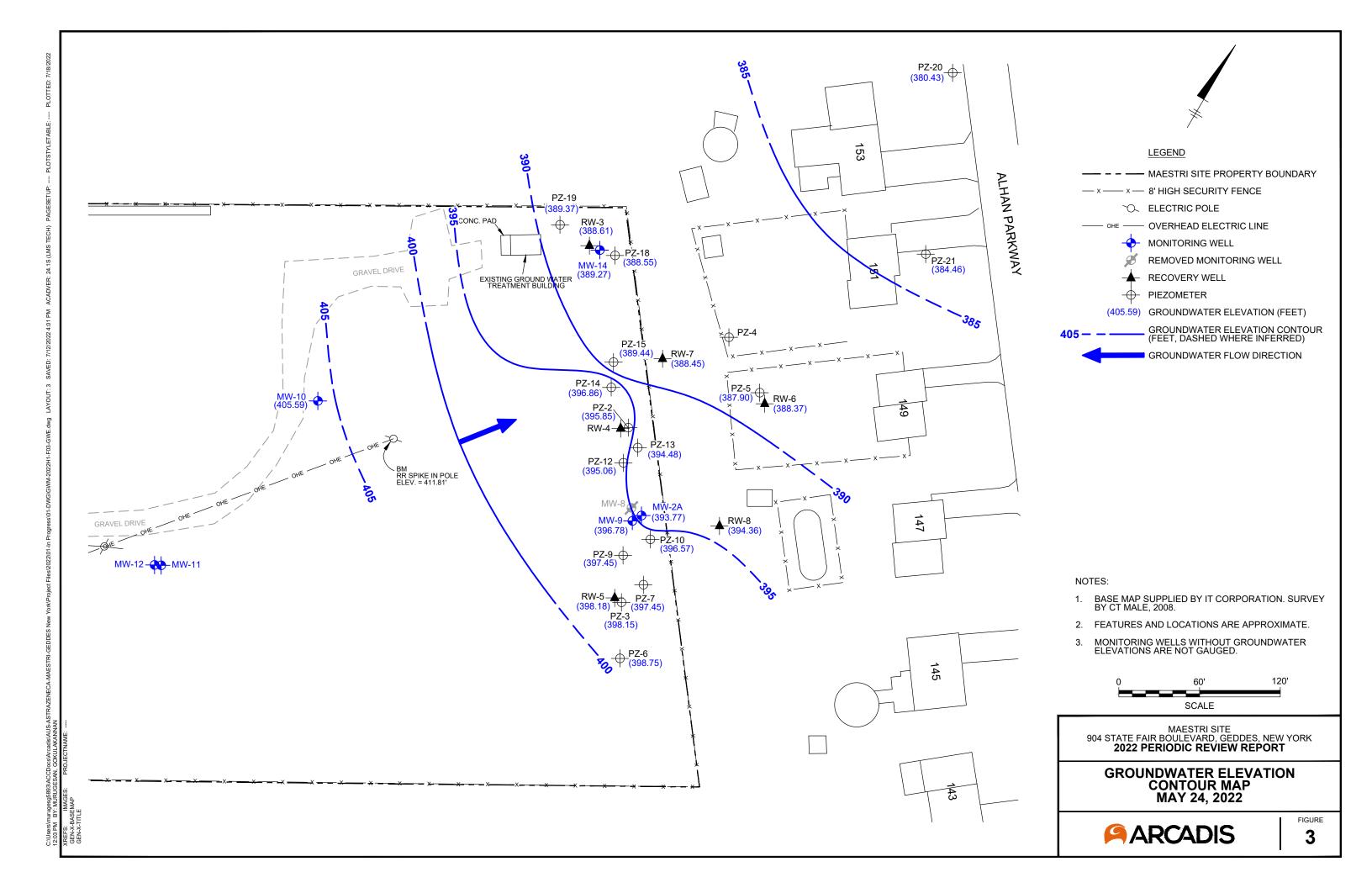
J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value

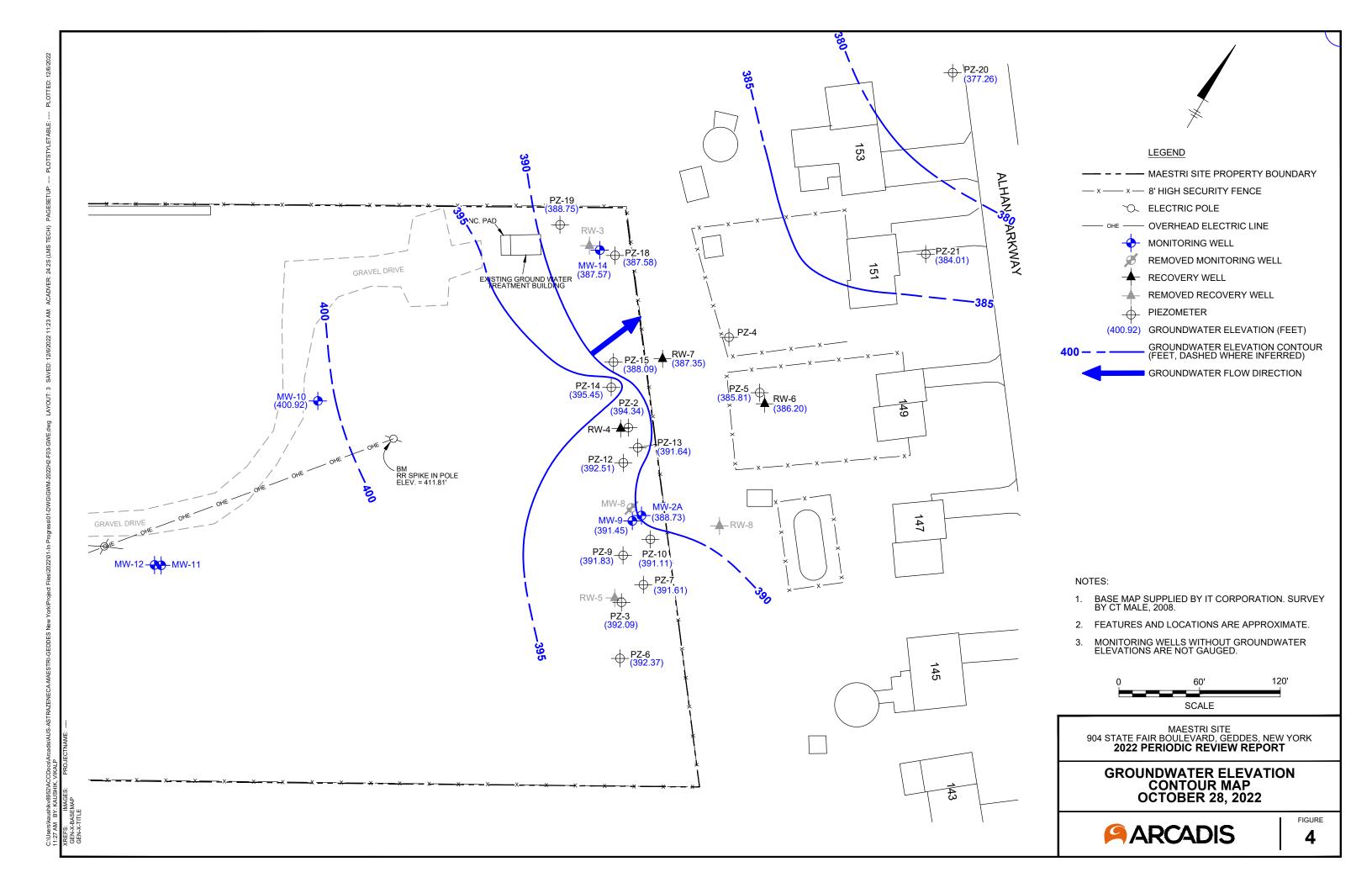
NA = Not available

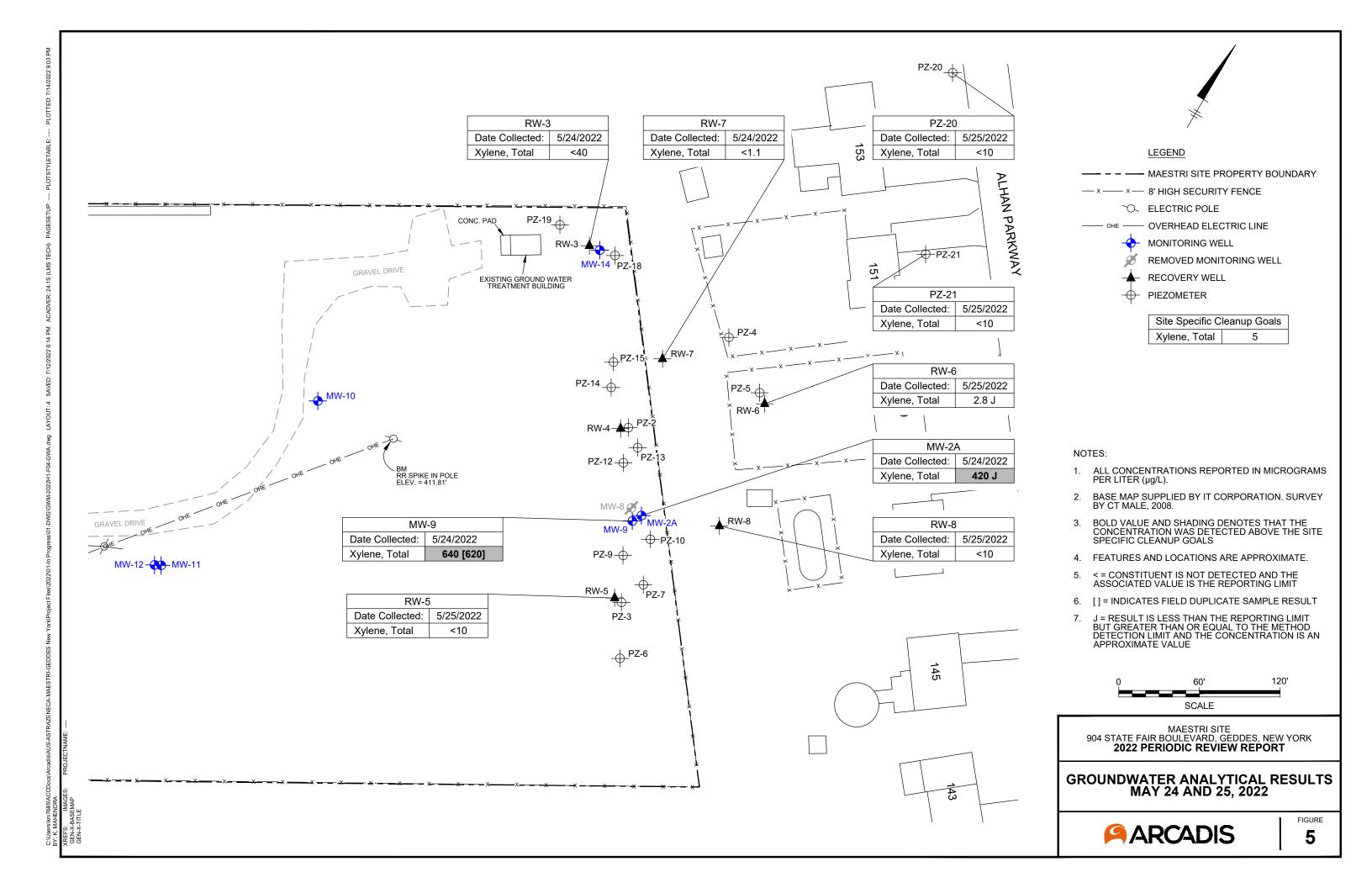
NS = Not sampled

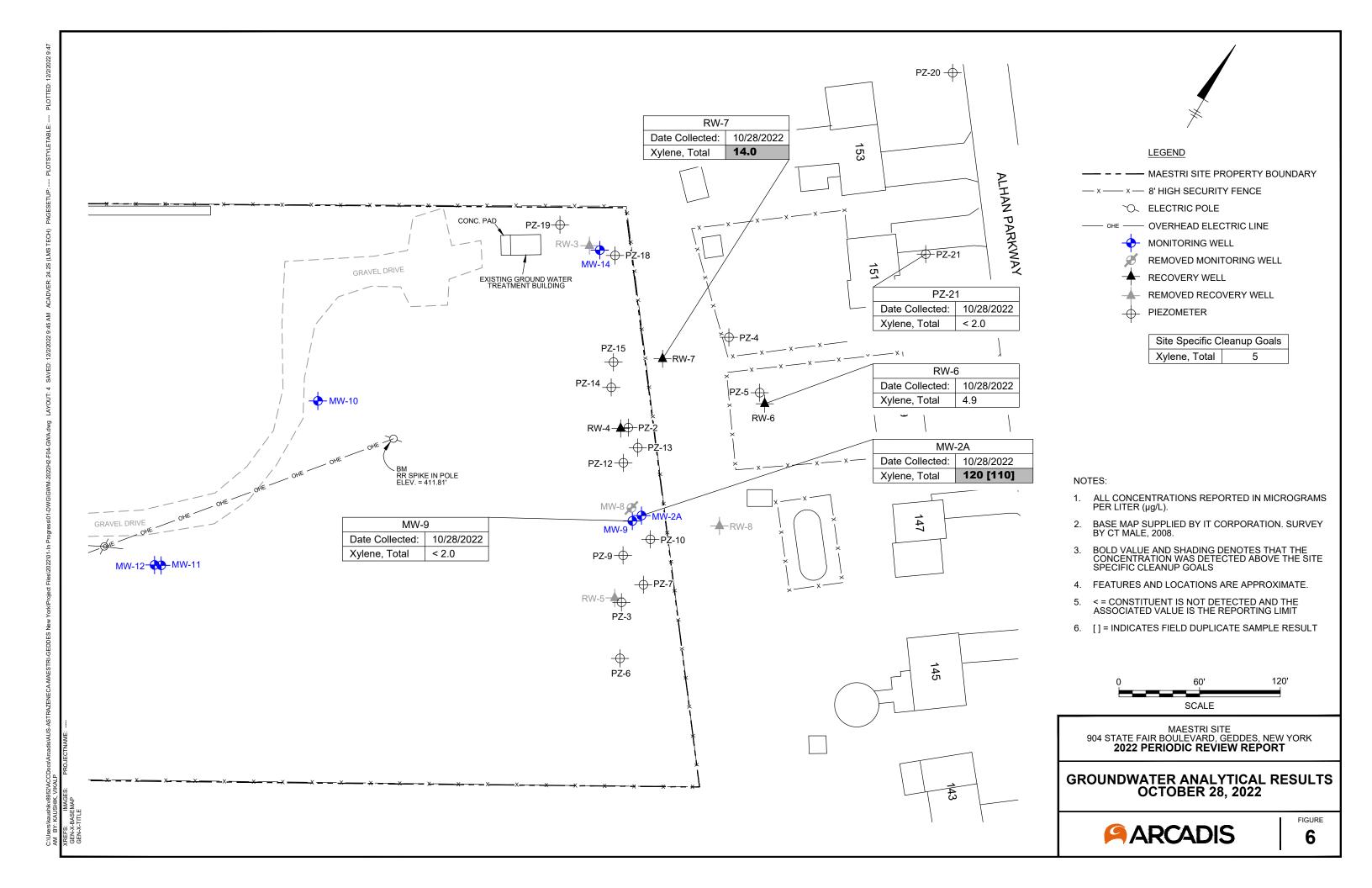
NR = Not required for sampling

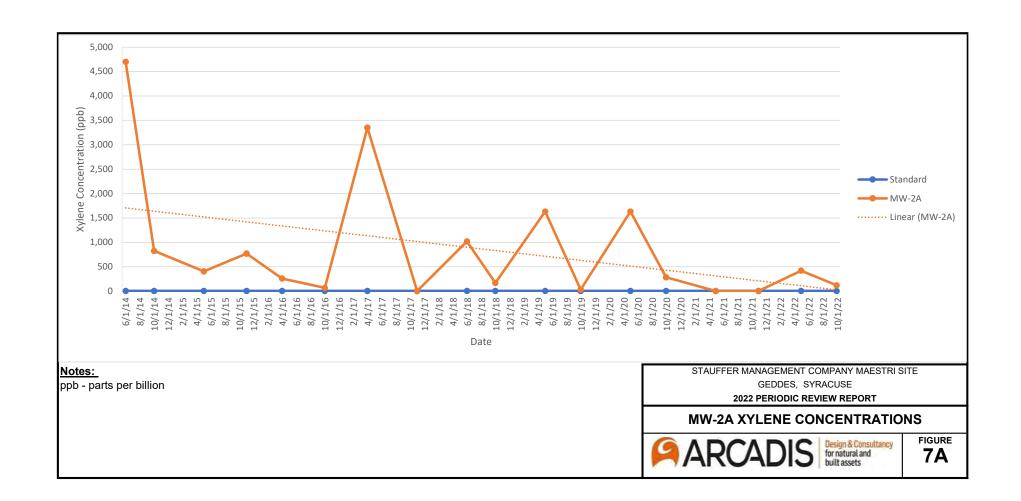

** = Wells No. 1 and 4 were removed as part of the excavation

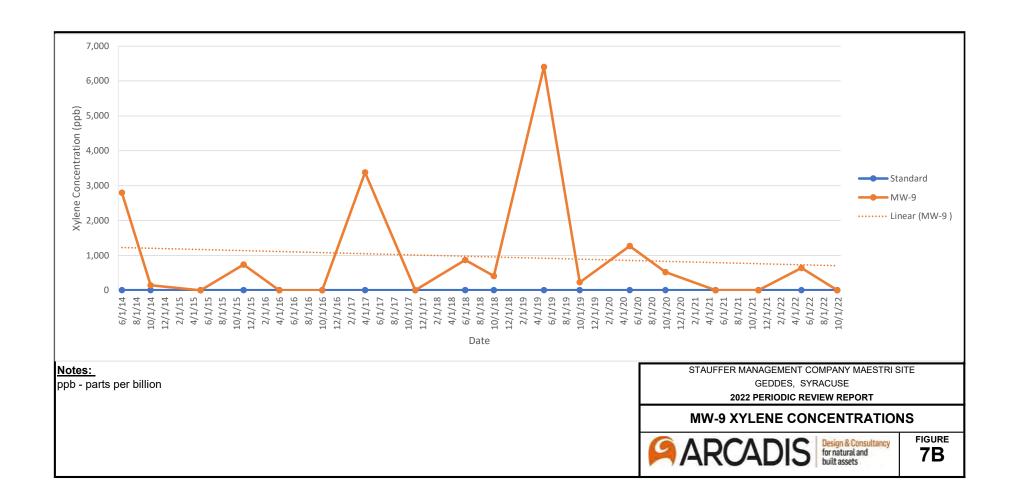

***** = PZ-20 was installed on June 24, 2009

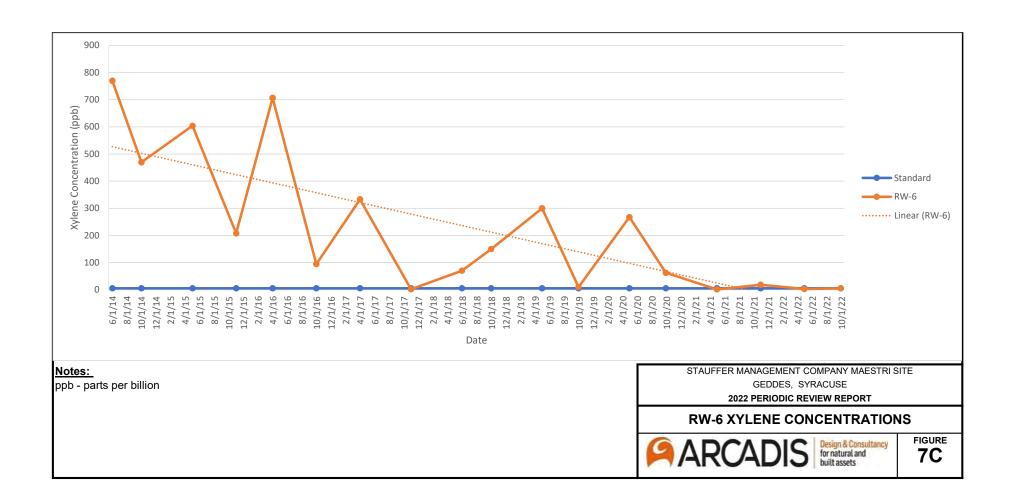

***** = PZ-21 was installed on June 7, 2012

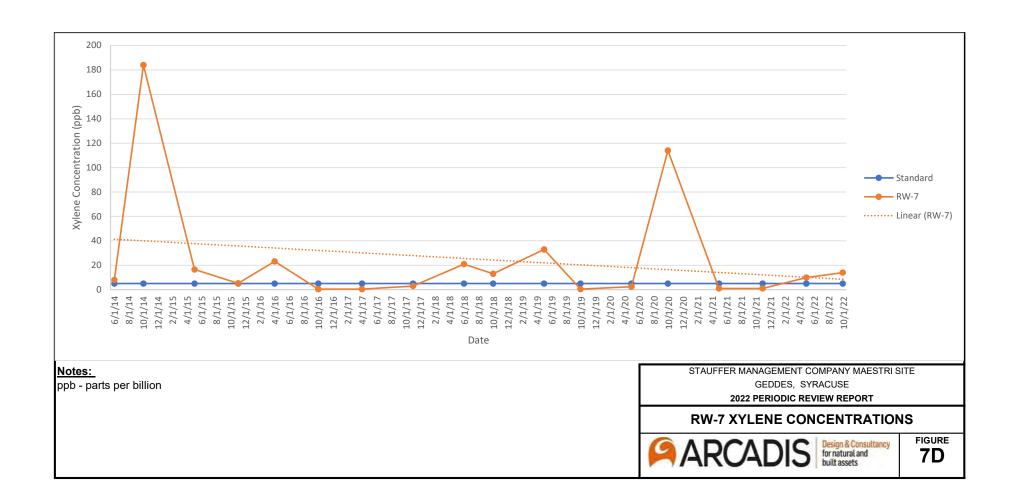

< = Constituent is not detected; the associated value is the reporting limit


Figures









Appendix A

NYSDEC Site Management Periodic Review Report Notice

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

12/6/2022

John-Paul Rossi Project Manager Stauffer Management Company LLC 1800 Concord Pike P.O. Box 15437 FOP 3-415 Wilmington, DE 19850-5437 johnpaul.rossi@astrazeneca.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Maestri Site

Site No.: 734025

Site Address: 900 State Fair Boulevard

Solvay, NY 13209

Dear John-Paul Rossi:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **February 14, 2023**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Michael Belveg, the Project Manager, at 315-426-7446 or michael.belveg@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 615 Erie Blvd W

Syracuse, NY 13204

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

ec: w/ enclosures

Michael Belveg, Project Manager Gary Priscott, Hazardous Waste Remediation Supervisor, Region 7

Arcadis - Rebecca Hensel - rebecca.hensel@arcadis.com

The following parcel owner did not receive an ec:

Mark Maestri - Parcel Owner

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Appendix B

NYSDEC Low-Flow Approval Email

Matt, Luke

From: Hensel, Rebecca

Sent: Tuesday, May 18, 2021 11:45 AM

To: Matt, Luke; O'Leary, Zoe

Subject: FW: NYSDEC Site No. 7-34-025 Maestri Site Stauffer Management Company -

Introduction

Please save and file

Rebecca Hensel, EIT | Environmental Engineer | $\underline{rebecca.hensel@arcadis.com}$ Arcadis | U.S., Inc.

110 West Fayette Street Suite 300, Syracuse, NY | 13202 | USA T. +1 315.671.9296 C. +1 315.751.3069

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

From: Belveg, Michael J (DEC) <michael.belveg@dec.ny.gov>

Sent: Tuesday, May 18, 2021 11:32 AM

To: Hensel, Rebecca < Rebecca. Hensel@arcadis.com >; Rossi, John-Paul < Johnpaul.rossi@astrazeneca.com >

Cc: Finocchiaro, Victor < Victor. Finocchiaro@arcadis.com >

Subject: Re: NYSDEC Site No. 7-34-025 Maestri Site Stauffer Management Company - Introduction

Hi Rebecca,

This is acceptable to the Department for the 2021 sampling events.

Thanks, Mike

From: Hensel, Rebecca < Rebecca. Hensel@arcadis.com >

Sent: Thursday, May 13, 2021 2:09 PM

To: Rossi, John-Paul < Johnpaul.rossi@astrazeneca.com >; Belveg, Michael J (DEC) < michael.belveg@dec.ny.gov >

Cc: Finocchiaro, Victor < <u>Victor.Finocchiaro@arcadis.com</u>>

Subject: RE: NYSDEC Site No. 7-34-025 Maestri Site Stauffer Management Company - Introduction

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good Morning Mike,

Thank you again for taking time to discuss the sampling activities at the Maestri site. As discussed during the meeting Stauffer Management Company is requesting to utilize low flow groundwater sampling methodology in place of 3 volume purge for the 2021 sampling events (May &October). A results comparison of the new results from the Low Flow sampling will be compared to the previously collected 3 Volume purge samples in the 2021 Periodic Review Report.

Please let us know if this is acceptable and if you have any additional questions

Thank you, Rebecca

Rebecca Hensel, EIT | Environmental Engineer | rebecca.hensel@arcadis.com Arcadis | U.S., Inc.

110 West Fayette Street Suite 300, Syracuse, NY | 13202 | USA T. +1 315.671.9296 C. +1 315.751.3069

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

From: Rossi, John-Paul < Johnpaul.rossi@astrazeneca.com >

Sent: Tuesday, May 11, 2021 11:30 AM

To: Belveg, Michael J (DEC) < michael.belveg@dec.ny.gov >; Hensel, Rebecca < Rebecca.Hensel@arcadis.com >

Subject: RE: NYSDEC Site No. 7-34-025 Maestri Site Stauffer Management Company - Introduction

Thanks Mike for the information and taking the time to meet with us. Look forward to working with you on this matter. Best, John-Paul

From: Belveg, Michael J (DEC) < michael.belveg@dec.ny.gov >

Sent: Tuesday, May 11, 2021 9:14 AM **To:** rebecca.hensel@arcadis.com

Cc: Rossi, John-Paul < Johnpaul.rossi@astrazeneca.com>

Subject: Re: NYSDEC Site No. 7-34-025 Maestri Site Stauffer Management Company - Introduction

james.sullivan@health.nv.gov

From: Hensel, Rebecca < <u>Rebecca.Hensel@arcadis.com</u>>

Sent: Monday, May 3, 2021 5:38 PM

To: Belveg, Michael J (DEC) <michael.belveg@dec.ny.gov>

Cc: Finocchiaro, Victor < Victor.Finocchiaro@arcadis.com >; Rossi, John-Paul < Johnpaul.rossi@astrazeneca.com >

Subject: NYSDEC Site No. 7-34-025 Maestri Site Stauffer Management Company - Introduction

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good Afternoon Michael,

Arcadis has recently taken over the sampling and reporting activities for the Maestri and Novack sites and we would like to set up an introduction meeting to discuss upcoming sampling events and sampling methodologies.

Please let me know if you have preferred days/times you would like to meet.

Thank you, Rebecca Rebecca Hensel, EIT | Environmental Engineer | rebecca.hensel@arcadis.com Arcadis | U.S., Inc. 110 West Fayette Street Suite 300, Syracuse, NY | 13202 | USA T. +1 315.671.9296 C. +1 315.751.3069

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Confidentiality Notice: This message is private and may contain confidential and proprietary information. If you have received this message in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this message is not permitted and may be unlawful.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Appendix C

October 2022 Site Inspection Forms

ARCADIS		110 West Fayette Street Suite 300 Syracuse New York, 13202 Phone: 315 446 9120	Date: Time:	10 28 2022 7:30 Temperature	
		Fax: 315 449 9017	Weathe		
Site Inspection Report			Partly Cloudy	High	
Client Stauffer Management Company LLC		Project No.	30077261 30120984		
Location Maestri Site, 904 State Fair Blvd, Geddes, NY		Inspected By:	T. Derleth		

Places note any deficience	sies issues av actions taken at the hotton	u of the nage o	W 0 M 0 0 M	timeration	2000	
Please note any deficiencies, issues, or actions taken at the bottom of the page o Site Security			Circle one			Comments/Action Required
	d lankad whan arriving at aita?		(Ý)	T	1	Comments/Action Required
Was gate closed and locked when arriving at site? And these any halos or breeks in the foreign?				N	NA	
2. Are there any holes or breaks in the fencing?				(N)	NA	
	treatment shed locked?		(8)	Ň	NA	
4. Is the back gate clos		200 VE 24		N	NA	
	of vandalism or unauthorized entry (o		Y	(N)	NA	
	e, strange debris [bottles, cans, etc])					
	and notify SMC and Arcadis immedi	ately				
Wells			0			*
6. Are wells intact?			(Y)	N	NA	
	(with lid or cap)? (except wells noted	d below)	(X)	N	NA	
8. Are all wells locked?	(except wells noted below)		(Y)	N	NA	
Site Maintenance					1	
	or debris? If so, please remove/disc	ard.	Υ	(N)	NA	
10. Is there visible dust			Y	N	NA	
11. Does the grass nee			Y	(N)	NA	Recently moved
	to be weeded or shrub cleared?		Y	(N)	NA	200111101 111000001
13. Are there any bald			Y	(N)	NA	
14. Are the access road			(Y)	N	NA	
	roads or access to wells) need to be	plowed?	Y	(N)	NA	
	holes throughout the site?	pioweu?	Y	(N)	NA NA	
	notes throughout the site?		Y	(N)		
17. Any odors onsite?			(Y)	-	NA	
18. Are site signs still u	p and visible?		(Y)	N	NA	
Erosion Control	11		(1	1 114	
19. Is silt fence still inta			(Y)	N	NA .	
	ir or erosion control installed, indicate			1 1		S.
	ce of runoff? (i.e. water flow paths or	n ground)	Υ	(N)	NA	
	ng, ponded, or pools of water?		Υ	(N)	NA	
	of runoff at the northeast corner? (st	tone area)	Υ	(M)	NA	
23. Is there currently ar	ny surface water runoff?		Y	(N)	NA	
23a. If so, describe who	ere, approximate flow, and appearant	ce of water be	elow.			
Treatment System						
	r the pumps still in the off position?		Y	N	(NA)	
Does effluent totaliz	zer on the wall for still read 2846902?		Y	N	(NA)	
25a. If not, contact Arca	adis or SMC immediately and check t	hat effluent va	alve is c	losed.	\simeq	
26. Are all critical valve	s in the closed position?		Υ	N	(NA)	
27. Are there any syste	m status alarms on the computer?		Y	N	(NA)	
27a. If so, describe belo	ow how they have been handled. (this	does not inclu	de well le	evel alarm	s)	
28. Are all flow values on computer "zero"?			Y	N	(NA)	
("Flow to sewer," "Tot flow to sewer," "tot daily flow," and "TGAL" for each well si			ould each	be "zero		
28. Check level of sump. Does sump need to be pumped out?			Y	N	(NA)	
	each recovery well as shown on comp		epth of v	well is sh	own in br	ackets)
RW-7 [27.5'] DTW 18 41 FT RW-5 [2				DTW	17.00	
RW-2 (not online) RW-8 [2				DTW	16.76	
RW-3 [25.3'] DTW 19.30 FT RW-6 [2				DTW	744 F	
30. Are any recovery wells at close to overtopping? (ref total depth above)			Y	N	(NA)	
Upon leaving the site, check the following;					-	
			N	N	NA	
31. Is the treatment shed locked? 32. Were the gates closed and locked after leaving site?			(A)	N	NA	

Note:
Signature of Inspector:

General Site Observations:

Signature of Inspector:

Client

Location

110 West Fayette Street Suite 300 Syracuse New York, 13202 Phone: 315 446 9120 Fax: 315 449 0017

Date: 10 | 28 | 22

Site Inspection Report

Continuation Page(s)

Stauffer Management Company LLC

Maestri Site, 904 State Fair Blvd, Geddes, NY

Page 2 of 2

30120984 Project No. T. Derleth Inspected By:

Site in good condition
Well apardonment to take place
Site in good condition well abandonment to take place site recently mowed by Tandscaper
Follow-up: Indicate actions required, person(s) contacted, and dates for completion
Follow-up: Indicate actions required, person(s) contacted, and dates for completion
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, Site in good standing
Follow-up: Indicate actions required, person(s) contacted, and dates for completion No Follow up actions required, site in good standing

Jya Deur Deur

Appendix D

NYSDEC Response to 2021 January PRR Comments and Approval

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

April 18, 2022

Stauffer Management Company LLC John-Paul Rossi 1800 Concord Pike P.O. Box 15437 FOP 3-415 Wilmington, DE 19850-5437

Re: Site Management Periodic Review Report Response Letter

Maestri Site, Site No.: 734025 Solvay, Onondaga County

Dear John-Paul Rossi:

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the following period: January 15, 2021, to January 15, 2022.

The Department hereby accepts the PRR and associated Certification with the following modifications:

- 1. Section 6 Plans Moving Forward, Second Bullet Monitoring location MW-2A shall continue to be sampled biannually for another reporting period using the low-flow sampling technique.
- 2. Section 6 Plans Moving Forward, Third Bullet Groundwater monitoring shall continue to be sampled biannually in the second and fourth quarters for another reporting period using the low-flow sampling technique.

The frequency of Periodic Reviews for this site is one year; therefore, your next PRR is due on February 14, 2023. You will receive a reminder letter and updated certification form approximately 75 days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

If you have any questions, or need additional forms, please contact me at 315-426-7446 or e-mail: michael.belveg@dec.ny.gov.

Sincerely,

Michael Belveg Project Manager

Michael Belveg

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

ec:

Gary Priscott, DEC James Sullivan, DOH Project Manager Rebecca Hensel, Arcadis

Appendix E

Well Decommissioning Logs

FIGURE 3 WELL DECOMMISSIONING RECORD

Site Name: Maestri Site	Well I.D.: RW-3
Site Location: Geddes, New York	Driller: Mark Eaves
Drilling Co.: Parratt-Wolff, Inc.	Inspector:
	Date: 10/28/22

DECOMISSIONING	WELL SCHEMATIC*		
(Fill in all that app	Depth		
\	3 /	(feet)	
<u>OVERDRILLING</u>			
Interval Drilled	NA		
Drilling Method(s)	NA	l	
Borehole Dia. (in.)	NA		
Temporary Casing Installed? (y/n)	NA		
Depth temporary casing installed	NA		
Casing type/dia. (in.)	NA	5 	
Method of installing	NA		
		6-inch stainless steel	
CASING PULLING		well grouted	
Method employed	NA	in-place	
Casing retrieved (feet)	NA		
Casing type/dia. (in)	SS / 6"		
		l	
<u>CASING PERFORATING</u>		_	
Equipment used	NA	15	
Number of perforations/foot	NA	l	
Size of perforations	NA	l — 🔀	
Interval perforated	NA	│	
		l — ₩	
GROUTING			
Interval grouted (FBLS)	0 - 27'	l	
# of batches prepared	2	l — ₩	
For each batch record:		l — 🔀	
Quantity of water used (gal.)	32		
Quantity of cement used (lbs.)	376	25 —	
Cement type	Portland I/II		
Quantity of bentonite used (lbs.)	16		
Quantity of calcium chloride used (lbs.)	NA	<u> </u>	
Volume of grout prepared (gal.)	80	<u> </u>	
Volume of grout used (gal.)	70	30 —	
COMMENTS:		* Sketch in all relevant decommissioning data, including: interval	
COMMINION.		overdrilled, interval grouted, casing left in hole, well stickup, etc.	

Drilling Contractor

FIGURE 3 WELL DECOMMISSIONING RECORD

Site Name: Maestri Site	Well I.D.: RW-5
Site Location: Geddes, New York	Driller: Mark Eaves
Drilling Co.: Parratt-Wolff, Inc.	Inspector:
	Date: 10/28/22

DECOMISSIONING	WELL SCHEMATIC*		
(Fill in all that app	Depth		
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	•	(feet)	
<u>OVERDRILLING</u>			
Interval Drilled	NA		
Drilling Method(s)	NA	l	
Borehole Dia. (in.)	NA		
Temporary Casing Installed? (y/n)	NA		
Depth temporary casing installed	NA		
Casing type/dia. (in.)	NA	5 	
Method of installing	NA		
_		6-inch stainless steel	
CASING PULLING		well grouted	
Method employed	NA	in-place	
Casing retrieved (feet)	NA		
Casing type/dia. (in)	SS / 6"		
		l	
<u>CASING PERFORATING</u>		_	
Equipment used	NA	15	
Number of perforations/foot	NA	l	
Size of perforations	NA	l — 🔀	
Interval perforated	NA	│	
		l — ₩	
GROUTING			
Interval grouted (FBLS)	0 - 27'	l	
# of batches prepared	1	l — ₩	
For each batch record:		l — 🔀	
Quantity of water used (gal.)	32		
Quantity of cement used (lbs.)	376	25 —	
Cement type	Portland I/II	l 💮 🕳 🔛	
Quantity of bentonite used (lbs.)	16		
Quantity of calcium chloride used (lbs.)	NA	_	
Volume of grout prepared (gal.)	40	_	
Volume of grout used (gal.)	40	30 —	
COMMENTS:		* Sketch in all relevant decommissioning data, including: interval	
COMMILATIO.		overdrilled, interval grouted, casing left in hole, well stickup, etc.	
L		l	

Drilling Contractor

FIGURE 3 WELL DECOMMISSIONING RECORD

Site Name: Maestri Site	Well I.D.: RW-8
Site Location: Geddes, New York	Driller: Mark Eaves
Drilling Co.: Parratt-Wolff, Inc.	Inspector:
	Date: 10/28/22

DECOMISSIONING I	WELL SCHEMATIC*		
(Fill in all that appl	Depth		
	•	(feet)	
<u>OVERDRILLING</u>		, ,	
Interval Drilled	NA	0 -	
Drilling Method(s)	NA	l — ₩	
Borehole Dia. (in.)	NA		
Temporary Casing Installed? (y/n)	NA		
Depth temporary casing installed	NA	l .	
Casing type/dia. (in.)	NA	l ──, <u>−</u>	
Method of installing	NA		
		stainless steel	
CASING PULLING		well grouted	
Method employed	NA	in-place	
Casing retrieved (feet)	NA		
Casing type/dia. (in)	SS / 6"	l	
		l — ₩	
<u>CASING PERFORATING</u>		l — ₩	
Equipment used	NA	15	
Number of perforations/foot	NA	l — 🔯	
Size of perforations	NA		
Interval perforated	NA	l — ₩	
CDOLUTING		l — ₩	
GROUTING	0. 271	20	
Interval grouted (FBLS)	0 - 27'	l — ₩	
# of batches prepared	1	l — ₩	
For each batch record:	22	l — ₩	
Quantity of water used (gal.) Quantity of cement used (lbs.)	32	l — 🔀	
1 -	Portland I/II	25 —	
Cement type Quantity of bentonite used (lbs.)	16	l — 🔀	
Quantity of calcium chloride used (lbs.)	NA NA		
Volume of grout prepared (gal.)	40		
Volume of grout used (gal.)	40		
· oranic or grout used (gui.)	10	30 —	
COMMENTS:		* Sketch in all relevant decommissioning data, including: interval	
		overdrilled, interval grouted, casing left in hole, well stickup, etc.	

Drilling Contractor

Appendix F

May 2022 & November 2022 Analytical Data Reports

2

3

4

6

8

10

12

14

1

ANALYTICAL REPORT

Eurofins Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-198348-1 Client Project/Site: SMC Maestri Site

Revision: 1

For:

🔅 eurofins

ARCADIS U.S. Inc One Lincoln Center 110 West Fayette St, Suite 300 Syracuse, New York 13202

Attn: Ms. Rebecca Hensel

Authorized for release by: 7/14/2022 4:25:33 PM

John Schove, Project Manager II (716)504-9838

John.Schove@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 480-198348-1

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

Definitions/Glossary

Client: ARCADIS U.S. Inc Job ID: 480-198348-1

Project/Site: SMC Maestri Site

Qualifiers

GC/MS VOA

Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Appreviation	lese commonly used appreviations may or may not be present in this report.				
n	listed under the "D" column to designate that the result is reported on a dry weight basis				

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

J

8

10

111

13

14

Case Narrative

Client: ARCADIS U.S. Inc
Project/Site: SMC Maestri Site

Job ID: 480-198348-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-198348-1

Revsion

This report has been revised to report Total Xylenes.

Comments

No additional comments.

Receipt

The samples were received on 5/26/2022 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method 624.1: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: RW-3 (480-198348-1) and RW-6 (480-198348-3). Elevated reporting limits (RLs) are provided.

Method 624.1: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2A (480-198348-6), MW-2A (480-198348-6[MS]) and MW-2A (480-198348-6[MSD]). Elevated reporting limits (RLs) are provided.

Method 624.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 480-627798 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 624.1: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-9 (480-198348-7), BD_(052422) (480-198348-10), (480-198348-B-7 MS) and (480-198348-B-7 MSD). Elevated reporting limits (RLs) are provided.

Method 624.1: Due to the high concentration of m-Xylene & p-Xylene o-Xylene Xylenes, Total, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 480-627970 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-198348-1

3

Λ

6

0

0

9

10

12

				ر ۲			
Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site				_		Job ID:	480-198348-1
Client Sample ID: RW-3						Lab Sample ID: 48	30-198348-1
No Detections.							
Client Sample ID: RW-5						Lab Sample ID: 48	30-198348-2
No Detections.							
Client Sample ID: RW-6						Lab Sample ID: 48	30-198348-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Xylenes, Total	2.8	J	20	2.2	ug/L	2 624.1	Total/NA
Client Sample ID: RW-7						Lab Sample ID: 48	80-198348-4
No Detections.							
Client Sample ID: RW-8						Lab Sample ID: 48	80-198348-5
No Detections.							
Client Sample ID: MW-2A						Lab Sample ID: 48	80-198348-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Xylenes, Total	420	F1	40	4.3	ug/L	4 624.1	Total/NA
Client Sample ID: MW-9						Lab Sample ID: 48	80-198348-7
Analyte		Qualifier	RL		Unit	Dil Fac D Method	Prep Type
_Xylenes, Total	640	F1	80	8.6	ug/L	8 624.1	Total/NA
Client Sample ID: PZ-20						Lab Sample ID: 48	80-198348-8
No Detections.							
Client Sample ID: PZ-21						Lab Sample ID: 48	80-198348-9
No Detections.							
Client Sample ID: BD_(0524	422)					Lab Sample ID: 480)-198348-10
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Xylenes, Total	620		80	8.6	ug/L	8 624.1	Total/NA
Client Sample ID: FB_(0524	122)					Lab Sample ID: 480)-198348-11
No Detections.							
Client Sample ID: FB_(0525	522)					Lab Sample ID: 480)-198348-12
No Detections.							
Client Sample ID: TB_(0524	122)					Lab Sample ID: 480)-198348-13
No Detections.							

This Detection Summary does not include radiochemical test results.

Client Sample ID: TB_(022522)

No Detections.

Eurofins Buffalo

Lab Sample ID: 480-198348-14

Job ID: 480-198348-1

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site

Client Sample ID: RW-3

Lab Sample ID: 480-198348-1

Date Collected: 05/24/22 18:17 **Matrix: Water**

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	4.3	U	40	4.3	ug/L			05/26/22 20:52	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130					05/26/22 20:52	4
4-Bromofluorobenzene (Surr)	100		76 - 123					05/26/22 20:52	4
Dibromofluoromethane (Surr)	103		75 - 123					05/26/22 20:52	4
Toluene-d8 (Surr)	102		77 - 120					05/26/22 20:52	4

Client Sample ID: RW-5 Lab Sample ID: 480-198348-2

Date Collected: 05/25/22 09:05 **Matrix: Water**

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/26/22 21:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130			•		05/26/22 21:16	1
4-Bromofluorobenzene (Surr)	99		76 - 123					05/26/22 21:16	1
Dibromofluoromethane (Surr)	101		75 - 123					05/26/22 21:16	1
Toluene-d8 (Surr)	100		77 - 120					05/26/22 21:16	1

Client Sample ID: RW-6 Lab Sample ID: 480-198348-3 Date Collected: 05/25/22 11:15 **Matrix: Water**

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	2.8	J	20	2.2	ug/L			05/26/22 21:39	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	-	68 - 130					05/26/22 21:39	2
4-Bromofluorobenzene (Surr)	101		76 - 123					05/26/22 21:39	2
Dibromofluoromethane (Surr)	103		75 - 123					05/26/22 21:39	2
Toluene-d8 (Surr)	100		77 - 120					05/26/22 21:39	2

Lab Sample ID: 480-198348-4 **Client Sample ID: RW-7**

Date Collected: 05/24/22 17:55 Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1 ug/	/L		05/26/22 22:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130				05/26/22 22:03	1
4-Bromofluorobenzene (Surr)	102		76 - 123				05/26/22 22:03	1
Dibromofluoromethane (Surr)	104		75 - 123				05/26/22 22:03	1
Toluene-d8 (Surr)	100		77 - 120				05/26/22 22:03	1

Eurofins Buffalo

Matrix: Water

Job ID: 480-198348-1

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site

Client Sample ID: RW-8

Lab Sample ID: 480-198348-5

Matrix: Water

Date Collected: 05/25/22 08:52 Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/26/22 22:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130					05/26/22 22:27	1
4-Bromofluorobenzene (Surr)	99		76 - 123					05/26/22 22:27	1
Dibromofluoromethane (Surr)	100		75 - 123					05/26/22 22:27	1
Toluene-d8 (Surr)	99		77 - 120					05/26/22 22:27	1

Client Sample ID: MW-2A Lab Sample ID: 480-198348-6

Date Collected: 05/24/22 15:00 **Matrix: Water**

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	420	F1	40	4.3	ug/L			05/26/22 22:52	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130			•		05/26/22 22:52	4
4-Bromofluorobenzene (Surr)	99		76 - 123					05/26/22 22:52	4
Dibromofluoromethane (Surr)	101		75 ₋ 123					05/26/22 22:52	4
Toluene-d8 (Surr)	99		77 - 120					05/26/22 22:52	4

Client Sample ID: MW-9 Lab Sample ID: 480-198348-7 **Matrix: Water**

Date Collected: 05/24/22 14:50

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	640	F1	80	8.6	ug/L			05/27/22 17:04	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 130					05/27/22 17:04	8
4-Bromofluorobenzene (Surr)	101		76 - 123					05/27/22 17:04	8
Dibromofluoromethane (Surr)	102		75 - 123					05/27/22 17:04	8
Toluene-d8 (Surr)	101		77 - 120					05/27/22 17:04	8

Client Sample ID: PZ-20 Lab Sample ID: 480-198348-8 **Matrix: Water**

Date Collected: 05/25/22 13:43 Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1 ug/L			05/26/22 23:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130				05/26/22 23:40	1
4-Bromofluorobenzene (Surr)	100		76 - 123				05/26/22 23:40	1
Dibromofluoromethane (Surr)	104		75 - 123				05/26/22 23:40	1
Toluene-d8 (Surr)	101		77 - 120				05/26/22 23:40	1

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site

Lab Sample ID: 480-198348-9

Client Sample ID: PZ-21 Date Collected: 05/25/22 11:08

Matrix: Water

Job ID: 480-198348-1

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/27/22 00:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 130					05/27/22 00:04	1
4-Bromofluorobenzene (Surr)	101		76 - 123					05/27/22 00:04	1
Dibromofluoromethane (Surr)	105		75 - 123					05/27/22 00:04	1
Toluene-d8 (Surr)	100		77 - 120					05/27/22 00:04	1

Client Sample ID: BD_(052422)

Lab Sample ID: 480-198348-10

Date Collected: 05/24/22 00:00 **Matrix: Water** Date Received: 05/26/22 10:00

Method: 624.1 - Volatile Organic Compounds (GC/MS) Result Qualifier Analyte RL MDL Unit Prepared Analyzed **Xylenes, Total** 620 80 8.6 ug/L 05/27/22 17:28 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 68 - 130 05/27/22 17:28 103 4-Bromofluorobenzene (Surr) 100 76 - 123 05/27/22 17:28 8 Dibromofluoromethane (Surr) 105 75 - 123 05/27/22 17:28 Toluene-d8 (Surr) 100 77 - 120 05/27/22 17:28

Client Sample ID: FB_(052422) Lab Sample ID: 480-198348-11

Date Collected: 05/24/22 19:35 **Matrix: Water**

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/27/22 17:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130			•		05/27/22 17:52	1
4-Bromofluorobenzene (Surr)	100		76 - 123					05/27/22 17:52	1
Dibromofluoromethane (Surr)	102		75 - 123					05/27/22 17:52	1
Toluene-d8 (Surr)	100		77 - 120					05/27/22 17:52	1

Client Sample ID: FB_(052522) Lab Sample ID: 480-198348-12 Date Collected: 05/24/22 14:35

Date Received: 05/26/22 10:00

Method: 624.1 - Volatile Org	ganic Compou	nds (GC/N	IS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/27/22 18:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130			-		05/27/22 18:16	1
4-Bromofluorobenzene (Surr)	99		76 - 123					05/27/22 18:16	1
Dibromofluoromethane (Surr)	102		75 - 123					05/27/22 18:16	1
Toluene-d8 (Surr)	100		77 - 120					05/27/22 18:16	1

Eurofins Buffalo

Matrix: Water

Client Sample Results

Client: ARCADIS U.S. Inc Job ID: 480-198348-1

Project/Site: SMC Maestri Site

Lab Sample ID: 480-198348-13 Client Sample ID: TB_(052422) Date Collected: 05/25/22 00:00

Matrix: Water

Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/27/22 18:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130					05/27/22 18:40	1
4-Bromofluorobenzene (Surr)	100		76 - 123					05/27/22 18:40	1
Dibromofluoromethane (Surr)	103		75 - 123					05/27/22 18:40	1
Toluene-d8 (Surr)	101		77 - 120					05/27/22 18:40	1

Client Sample ID: TB_(022522) Lab Sample ID: 480-198348-14

Date Collected: 05/25/22 00:00 **Matrix: Water** Date Received: 05/26/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.1	U	10	1.1	ug/L			05/27/22 19:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 130					05/27/22 19:04	1
4-Bromofluorobenzene (Surr)	100		76 - 123					05/27/22 19:04	1
Dibromofluoromethane (Surr)	102		75 - 123					05/27/22 19:04	1
Toluene-d8 (Surr)	101		77 - 120					05/27/22 19:04	1

Surrogate Summary

Client: ARCADIS U.S. Inc
Project/Site: SMC Maestri Site

Job ID: 480-198348-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				ercent Surro	•
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-198348-1	RW-3	103	100	103	102
480-198348-2	RW-5	103	99	101	100
480-198348-3	RW-6	104	101	103	100
480-198348-4	RW-7	102	102	104	100
480-198348-5	RW-8	102	99	100	99
480-198348-6	MW-2A	102	99	101	99
480-198348-6 MS	MW-2A	97	97	97	100
480-198348-6 MSD	MW-2A	98	97	97	100
480-198348-7	MW-9	105	101	102	101
480-198348-7 MS	MW-9	100	98	102	96
480-198348-7 MSD	MW-9	98	99	99	101
480-198348-8	PZ-20	104	100	104	101
480-198348-9	PZ-21	105	101	105	100
480-198348-10	BD_(052422)	103	100	105	100
480-198348-11	FB_(052422)	104	100	102	100
480-198348-12	FB_(052522)	102	99	102	100
480-198348-13	TB_(052422)	103	100	103	101
480-198348-14	TB_(022522)	105	100	102	101
LCS 480-627798/7	Lab Control Sample	101	99	97	100
LCS 480-627970/7	Lab Control Sample	107	98	101	101
MB 480-627798/9	Method Blank	99	99	98	100
MB 480-627970/9	Method Blank	103	99	100	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site Job ID: 480-198348-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-627798/9

Matrix: Water

Analysis Batch: 627798

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed Xylenes, Total 1.1 U 10 1.1 ug/L 05/26/22 16:41

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 99 68 - 130 05/26/22 16:41 4-Bromofluorobenzene (Surr) 99 76 - 123 05/26/22 16:41 Dibromofluoromethane (Surr) 98 75 - 123 05/26/22 16:41 Toluene-d8 (Surr) 77 - 120 05/26/22 16:41 100

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 627798

Lab Sample ID: LCS 480-627798/7

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Dibromofluoromethane (Surr)	97		75 - 123
Toluene-d8 (Surr)	100		77 - 120

Lab Sample ID: 480-198348-6 MS Client Sample ID: MW-2A

Matrix: Water

Analysis Batch: 627798

Prep Type: Total/NA

MS MS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 97 68 - 130 4-Bromofluorobenzene (Surr) 97 76 - 123 Dibromofluoromethane (Surr) 97 75 - 123 Toluene-d8 (Surr) 100 77 - 120

Client Sample ID: MW-2A Lab Sample ID: 480-198348-6 MSD **Matrix: Water**

Analysis Batch: 627798

Prep Type: Total/NA MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		68 - 130
4-Bromofluorobenzene (Surr)	97		76 - 123
Dibromofluoromethane (Surr)	97		75 - 123
Toluene-d8 (Surr)	100		77 - 120

Lab Sample ID: MB 480-627970/9 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 627970

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Xylenes, Total 1.1 U 10 1.1 ug/L 05/27/22 16:07

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 68 - 130 05/27/22 16:07 1,2-Dichloroethane-d4 (Surr) 103

QC Sample Results

Client: ARCADIS U.S. Inc Job ID: 480-198348-1

Project/Site: SMC Maestri Site

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-627970/9

Matrix: Water

Analysis Batch: 627970

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 05/27/22 16:07 4-Bromofluorobenzene (Surr) 99 76 - 123 Dibromofluoromethane (Surr) 100 75 - 123 05/27/22 16:07 Toluene-d8 (Surr) 100 77 - 120 05/27/22 16:07

Lab Sample ID: LCS 480-627970/7

Matrix: Water

Analysis Batch: 627970

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate %Recovery Qualifier Limits 107 68 - 130 1,2-Dichloroethane-d4 (Surr) 76 - 123 4-Bromofluorobenzene (Surr) 98 Dibromofluoromethane (Surr) 101 75 - 123 Toluene-d8 (Surr) 101 77 - 120

Lab Sample ID: 480-198348-7 MS Client Sample ID: MW-9

Matrix: Water

Analysis Batch: 627970

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 100 68 - 130 76 - 123 4-Bromofluorobenzene (Surr) 98 Dibromofluoromethane (Surr) 102 75 - 123 Toluene-d8 (Surr) 96 77 - 120

Lab Sample ID: 480-198348-7 MSD Client Sample ID: MW-9 **Matrix: Water**

Analysis Batch: 627970

	IIIOD	INIOD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Dibromofluoromethane (Surr)	99		75 - 123
Toluene-d8 (Surr)	101		77 - 120

MCD MCD

Prep Type: Total/NA

QC Association Summary

Client: ARCADIS U.S. Inc
Project/Site: SMC Maestri Site

Job ID: 480-198348-1

GC/MS VOA

Analysis Batch: 627798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-198348-1	RW-3	Total/NA	Water	624.1	
480-198348-2	RW-5	Total/NA	Water	624.1	
480-198348-3	RW-6	Total/NA	Water	624.1	
480-198348-4	RW-7	Total/NA	Water	624.1	
480-198348-5	RW-8	Total/NA	Water	624.1	
480-198348-6	MW-2A	Total/NA	Water	624.1	
480-198348-8	PZ-20	Total/NA	Water	624.1	
480-198348-9	PZ-21	Total/NA	Water	624.1	
MB 480-627798/9	Method Blank	Total/NA	Water	624.1	
LCS 480-627798/7	Lab Control Sample	Total/NA	Water	624.1	
480-198348-6 MS	MW-2A	Total/NA	Water	624.1	
480-198348-6 MSD	MW-2A	Total/NA	Water	624.1	

Analysis Batch: 627970

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-198348-7	MW-9	Total/NA	Water	624.1	
480-198348-10	BD_(052422)	Total/NA	Water	624.1	
480-198348-11	FB_(052422)	Total/NA	Water	624.1	
480-198348-12	FB_(052522)	Total/NA	Water	624.1	
480-198348-13	TB_(052422)	Total/NA	Water	624.1	
480-198348-14	TB_(022522)	Total/NA	Water	624.1	
MB 480-627970/9	Method Blank	Total/NA	Water	624.1	
LCS 480-627970/7	Lab Control Sample	Total/NA	Water	624.1	
480-198348-7 MS	MW-9	Total/NA	Water	624.1	
480-198348-7 MSD	MW-9	Total/NA	Water	624.1	

- 5

4

6

8

9

10

1 1

13

14

2

10

Job ID: 480-198348-1

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site

Client Sample ID: RW-3

Lab Sample ID: 480-198348-1

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 05/24/22 18:17 Date Received: 05/26/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		4	627798	05/26/22 20:52	ATG	TAL BUF

Client Sample ID: RW-5 Lab Sample ID: 480-198348-2

Date Collected: 05/25/22 09:05 Date Received: 05/26/22 10:00

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 624.1 627798 05/26/22 21:16 ATG TAL BUF

Client Sample ID: RW-6 Lab Sample ID: 480-198348-3

Matrix: Water

Date Collected: 05/25/22 11:15 Date Received: 05/26/22 10:00

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL BUF Total/NA Analysis 624.1 2 627798 05/26/22 21:39 ATG

Client Sample ID: RW-7 Lab Sample ID: 480-198348-4

Date Collected: 05/24/22 17:55 Matrix: Water

Date Received: 05/26/22 10:00

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Analyst Type Lab Total/NA Analysis 624.1 627798 05/26/22 22:03 ATG TAL BUF

Client Sample ID: RW-8 Lab Sample ID: 480-198348-5

Date Collected: 05/25/22 08:52 Date Received: 05/26/22 10:00

Batch Batch Dilution Batch Prepared

Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lab TAL BUF Total/NA Analysis 624.1 627798 05/26/22 22:27 ATG

Client Sample ID: MW-2A Lab Sample ID: 480-198348-6

Date Collected: 05/24/22 15:00 Matrix: Water

Date Received: 05/26/22 10:00

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 05/26/22 22:52 ATG TAL BUF Total/NA Analysis 624.1 627798

Client Sample ID: MW-9 Lab Sample ID: 480-198348-7

Date Collected: 05/24/22 14:50

Date Received: 05/26/22 10:00

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 624.1 8 627970 05/27/22 17:04 ATG TAL BUF

Eurofins Buffalo

Matrix: Water

Job ID: 480-198348-1

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site

Lab Sample ID: 480-198348-8

Client Sample ID: PZ-20 Date Collected: 05/25/22 13:43

Matrix: Water

Date Received: 05/26/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	627798	05/26/22 23:40	ATG	TAL BUF

Lab Sample ID: 480-198348-9 Client Sample ID: PZ-21 **Matrix: Water**

Date Collected: 05/25/22 11:08 Date Received: 05/26/22 10:00

Batch Batch **Dilution Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab

Total/NA Analysis 624.1 627798 05/27/22 00:04 ATG TAL BUF

Lab Sample ID: 480-198348-10 Client Sample ID: BD_(052422) Date Collected: 05/24/22 00:00

Matrix: Water

Date Received: 05/26/22 10:00

Batch Batch Dilution Batch **Prepared** Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA Analysis 624.1 8 627970 05/27/22 17:28 ATG TAL BUF

Client Sample ID: FB (052422) Lab Sample ID: 480-198348-11

Date Collected: 05/24/22 19:35 **Matrix: Water**

Date Received: 05/26/22 10:00

Batch **Batch** Dilution Batch **Prepared Prep Type** Method **Factor** Number or Analyzed Analyst Type Run Lab Analysis 624.1 627970 05/27/22 17:52 ATG TAL BUF Total/NA

Client Sample ID: FB_(052522) Lab Sample ID: 480-198348-12

Date Collected: 05/24/22 14:35 **Matrix: Water**

Date Received: 05/26/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	627970	05/27/22 18:16	ATG	TAL BUF

Client Sample ID: TB_(052422) Lab Sample ID: 480-198348-13

Date Collected: 05/25/22 00:00 **Matrix: Water**

Date Received: 05/26/22 10:00

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab 627970 05/27/22 18:40 ATG TAL BUF Total/NA Analysis 624.1

Client Sample ID: TB_(022522) Lab Sample ID: 480-198348-14

Date Collected: 05/25/22 00:00 **Matrix: Water**

Date Received: 05/26/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	627970	05/27/22 19:04	ATG	TAL BUF

Laboratory References:

TAL BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: ARCADIS U.S. Inc Job ID: 480-198348-1

Project/Site: SMC Maestri Site

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	06-21-22

•

3

4

5

7

9

11

12

11

Method Summary

Client: ARCADIS U.S. Inc Project/Site: SMC Maestri Site Job ID: 480-198348-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

5

7

8

10

11

13

14

Sample Summary

Client: ARCADIS U.S. Inc
Project/Site: SMC Maestri Site

Job ID: 480-198348-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-198348-1	RW-3	Water	05/24/22 18:17	05/26/22 10:00	
480-198348-2	RW-5	Water	05/25/22 09:05	05/26/22 10:00	
480-198348-3	RW-6	Water	05/25/22 11:15	05/26/22 10:00	
480-198348-4	RW-7	Water	05/24/22 17:55	05/26/22 10:00	
480-198348-5	RW-8	Water	05/25/22 08:52	05/26/22 10:00	
480-198348-6	MW-2A	Water	05/24/22 15:00	05/26/22 10:00	
480-198348-7	MW-9	Water	05/24/22 14:50	05/26/22 10:00	
480-198348-8	PZ-20	Water	05/25/22 13:43	05/26/22 10:00	
480-198348-9	PZ-21	Water	05/25/22 11:08	05/26/22 10:00	
480-198348-10	BD_(052422)	Water	05/24/22 00:00	05/26/22 10:00	
480-198348-11	FB_(052422)	Water	05/24/22 19:35	05/26/22 10:00	
480-198348-12	FB_(052522)	Water	05/24/22 14:35	05/26/22 10:00	
480-198348-13	TB_(052422)	Water	05/25/22 00:00	05/26/22 10:00	
480-198348-14	TB_(022522)	Water	05/25/22 00:00	05/26/22 10:00	

/

Ver: 06/08/2021

Cooler Temperature(s) °C and Other Remarks

Chain of Custody Record

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Eurofins Buffalo

Environment Testing

💸 eurofins

N None
O-AshaO2
P-Na2DQS
Q-Na2SO3
R-Na2S2O3
S-H2SO4
T-TSP Dodecanydrate
U-Acetone
V-MCAA
W-pH 4-5
Y-Trizma Special Instructions/Note: Z - other (specify) Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon SANCE SECTION SECTION STATES TO THE STATES T Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MasO94
F - MeOH
G - Amchlor
H - Ascorbic Acid Page 1 of 2 I - Ice J - Di Water 10T X Method of Shipment 480-198348 Chain of Custody **Analysis Requested** Special Instructions/QC Requirements Lab PM: Schove, John R E-Mair John. Schove@et. eurofinsus. com WW 3 5 3 N 3 2 NNN WW 3 M <u>~</u> (ON 40 SEA) CISHVSH Aroact.s (W=water, S=solid, O=waste/oil, Preservation Code: Water Water Matrix Water Water Water Water Water Water Water Water Water Standard Turn Radiological (C=comp, G=grab) Sample Type J 9 0 J D U 0 Jason Guthowski D J J 1632 Sea Sea Sample Time 1500 1506 315 436360 2/52/52 0855 OSh1 22/22/S 25/1/22/22/5 5/25/22 1343 2/22/21 1108 Standard L181 5/24/12 1500 900 5125122 1115 Unknown AT Requested (days): 22/52/5 Due Date Requested: 12/42/2 Sample Date 5/24/22 22/1/2/5 5/25/22 Project #: 48025201 SSOW#: 30120984 Poison B Skin Imtant One Lincoln Center 110 West Fayette St, Suite 300 Non-Hazard Flammaure |Deliverable Requested: I, III, IV, Other (specify) rebecca.hensel@arcadis-us.com Empty Kit Relinquished by: (mw-zA) Client Information Sample Identification Ms. Rebecca Hensel Company: ARCADIS U.S. Inc 315-446-9120(Tel) SMC Maestri Site elinquished by: elinquished by State, Zip: NY, 13202 Syracuse MW-2A MW-9 PZ-20 **RW-3 RW-5** RW-6 RW-8 PZ-21 **RW-7**

Custody Seal No.

Custody Seals Intact:

∆ Yes ∆ No

Chain of Custody Record

Eurofins Buffalo10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

eurofins Environment Testing America

Client Information			Lab PM.		Carrier Tracking Later	COC No.	
Client Contact:	3	25000000	Scho	Schove, John R	3/14/180-37579.2	3 450-174180-3757	9.2
Ms. Rebecca Hensel	315 4136 360	7	John.	E-mail: John.Schove@et.eurofinsus.com	State of Origin:	Page:	
Company: ARCADIS U.S. Inc		PWSID:		sievlenA	C77#	Job #:	
Address: One Lincoln Center 110 West Favette St. Suite 300	Due Date Requested:			Alialysis	nedresied	Preservation Codes	
City	TAT Requested (days):					A - HCL	M - Hexane
State, Zip.	Standard	1					O - AsNaO2
NY, 13202	Project: △ Yes	S 08 ∨				D - Nitric Acid	P - Na2O4S Q - Na2SO3
Prone: 315-446-9120(Tel)	PO#: 30120984						R - Na2S2O3 S - H2SO4
Email: rebecca.hensel@arcadis-us.com	#OM					Acid	T - TSP Dodecahydrate U - Acetone
Project Name: SMC Maestri Site	Project #: 48025201			N JO		J - DI Water K - EDTA	W - pH 4-5 Y - Trizma
Site:	SSOW#:			e) (Ye		Other:	Z - other (specify)
Sample Identification	Sample Date Time	Sample Type (C=comp,	1	ield Filfered S		isal Mumber of	
		g r	Preservation Code:	X			Special Instructions/Note:
(224226) ₋₀₈	5/24/22	0	Water	٧ - ١			
FB_(052421)	5/24/22 1935	2	Water				
FB_(052522)		0	Water	2 2 3			
(5242S)_BT		1	Water	-			
TB_(0525£2)	1)	Water	_			
				2			
2/4							
1/2							
~							
Possible Hazard Identification Non-Hazard Teammable Skin Irritant Pois	Poison B Unknown	Radiological		Sample Disposal (A fee may	ples are re	ined longer than 1 r	nonth)
				Special Instructions/QC Requirements:	Uisposal By Lab Ar ements:	Archive For	Months
Empty Kit Relinquished by:	Date:			Time:	Method of Shipment:		
Relinquished by:	Date/Time: 5/23	1	Company	Received by:	DateRing	1/2-1	Сумрапу
Relinquished by: ALIMII L	7.2.) 3	Company	Received by:	Date/Time:	7501 221	Company
			Company	Received by:	Date/Time:		Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No				Cooler Temperature(s) °C and Other Remarks.	ner Remarks.		
							Ver: 06/08/2021

Client: ARCADIS U.S. Inc Job Number: 480-198348-1

Login Number: 198348 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ARCADIS
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

ANALYTICAL REPORT

Job Number: 460-268503-1

Job Description: Maestri - Geddes, NY

For: ARCADIS U.S. Inc 655 3rd Avenue New York, NY 10017

Attention: Ms. Rebecca Hensel

Approved for release. Patricia Grieco Senior Project Manager 11/8/2022 3:12 PM

Designee for
Grace Chang, Project Manager II
777 New Durham Road, Edison, NJ, 08817
(732)593-2579
Grace.Chang@et.eurofinsus.com
11/08/2022

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Edison and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Edison Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Title Page	 1
Data Summaries	 4
Report Narrative	 4
Sample Summary	 5
Detection Summary	 6
Method Summary	 7
Client Sample Results	 8
Surrogate Summary	 10
QC Sample Results	 11
Definitions	 13
QC Association	 14
Chronicle	 15
Certification Summary	 17
Organic Sample Data	 18
GC/MS VOA	18
624.1_PREC	 18
624.1_PREC QC Summary	 19
624.1_PREC Sample Data	 30
Standards Data	 71
624.1_PREC ICAL Data	 71
624.1_PREC CCAL Data	 310
Raw QC Data	 326
624.1_PREC Tune Data	 326
624.1_PREC Blank Data	 334
624.1_PREC LCS/LCSD Data	 338
624.1_PREC MS/MSD Data	 345

Table of Contents

624.1_PREC Run Logs	359
624.1_PREC Prep Data	361
Shipping and Receiving Documents	366
Client Chain of Custody	367
Sample Receipt Checklist	369

CASE NARRATIVE

Client: ARCADIS U.S. Inc

Project: Maestri - Geddes, NY

Report Number: 460-268503-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 10/29/2022; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.5 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS BY GC/MS

Samples RW-6 (460-268503-1), RW-7 (460-268503-2), MW-2A (460-268503-3), MW-9 (460-268503-4), PZ-21 (460-268503-5), BD_(10282022) (460-268503-6), FB_(20221028) (460-268503-7) and TB_(20221028) (460-268503-8) were analyzed for Volatile Organic Compounds by GC/MS in accordance with EPA Method 624.1. The samples were analyzed on 11/03/2022.

No difficulties were encountered during the VOCs analysis.

All quality control parameters were within the acceptance limits.

Sample Summary

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-268503-1	RW-6	Water	10/28/22 13:40	10/29/22 12:20
460-268503-2	RW-7	Water	10/28/22 12:10	10/29/22 12:20
460-268503-3	MW-2A	Water	10/28/22 11:15	10/29/22 12:20
460-268503-4	MW-9	Water	10/28/22 13:00	10/29/22 12:20
460-268503-5	PZ-21	Water	10/28/22 15:30	10/29/22 12:20
460-268503-6	BD_(10282022)	Water	10/28/22 00:00	10/29/22 12:20
460-268503-7	FB_(20221028)	Water	10/28/22 00:00	10/29/22 12:20
460-268503-8	TB_(20221028)	Water	10/28/22 00:00	10/29/22 12:20

Detection Summary

Client: ARCADIS U.S. Inc

Project/Site: Maestri - Geddes, NY

Client Sample ID: RW-	6					Lab San	nple ID: 4	60-268503-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Xylenes, Total	4.9		2.0	0.65	ug/L		624.1	Total/NA		
Client Sample ID: RW-	7					Lab San	nple ID: 4	60-268503-2		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Xylenes, Total	14		2.0	0.65	ug/L	1	624.1	Total/NA		
Client Sample ID: MW-	-2A					Lab San	nple ID: 4	60-268503-3		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Xylenes, Total	120		2.0	0.65	ug/L	1	624.1	Total/NA		
Client Sample ID: MW-	.9					Lab San	nple ID: 4	60-268503-4		
No Detections.										
Client Sample ID: PZ-2	21					Lab San	nple ID: 4	60-268503-5		
No Detections.										
Client Sample ID: BD_	(10282022)					Lab San	nple ID: 4	60-268503-6		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Xylenes, Total	110		2.0	0.65	ug/L	1	624.1	Total/NA		
Client Sample ID: FB_(20221028)						Lab Sample ID: 460-268503-7				
No Detections.										
Client Sample ID: TB_	(20221028)					Lab San	nple ID: 4	60-268503-8		
No Detections.										

Job ID: 460-268503-1

Method Summary

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Method	Method Description	Protocol	Laboratom
WetHou	method bescription	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	EET EDI

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Client Sample Results

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Client Sample ID: RW-6 Lab Sample ID: 460-268503-1

Date Collected: 10/28/22 13:40 Matrix: Water Date Received: 10/29/22 12:20

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/M
--

Analyte	Result	Qualitier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	4.9		2.0	0.65	ug/L			11/03/22 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	116		60 - 140			-		11/03/22 11:50	1
Dibromofluoromethane (Surr)	131		60 - 140					11/03/22 11:50	1
1,2-Dichloroethane-d4 (Surr)	95		60 - 140					11/03/22 11:50	1
Toluene-d8 (Surr)	86		60 - 140					11/03/22 11:50	1

Client Sample ID: RW-7 Lab Sample ID: 460-268503-2

Date Collected: 10/28/22 12:10 Date Received: 10/29/22 12:20

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	14		2.0	0.65	ug/L			11/03/22 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	113		60 - 140					11/03/22 17:40	1
Dibromofluoromethane (Surr)	117		60 - 140					11/03/22 17:40	1
1,2-Dichloroethane-d4 (Surr)	87		60 - 140					11/03/22 17:40	1
Toluene-d8 (Surr)	94		60 - 140					11/03/22 17:40	1

Client Sample ID: MW-2A Lab Sample ID: 460-268503-3

Date Collected: 10/28/22 11:15 Date Received: 10/29/22 12:20

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/MS)

111001100111001102111	Tolutile Orga	iiiio ooiiip	ourido (Oorin	U ,					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	120		2.0	0.65	ug/L			11/03/22 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	112		60 - 140			•		11/03/22 18:05	1
Dibromofluoromethane (Surr)	118		60 - 140					11/03/22 18:05	1
1,2-Dichloroethane-d4 (Surr)	86		60 - 140					11/03/22 18:05	1
Toluene-d8 (Surr)	98		60 - 140					11/03/22 18:05	1

Client Sample ID: MW-9

Date Collected: 10/28/22 13:00

Lab Sample ID: 460-268503-4

Matrix: Water

Date Collected: 10/28/22 13:00 Date Received: 10/29/22 12:20

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/MS)

111001100111001102111	Tolutile Orga	ino comp	ourido (Oorin	∪ ,					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	2.0	U	2.0	0.65	ug/L			11/03/22 16:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103		60 - 140			-		11/03/22 16:50	1
Dibromofluoromethane (Surr)	123		60 - 140					11/03/22 16:50	1
1,2-Dichloroethane-d4 (Surr)	90		60 - 140					11/03/22 16:50	1
Toluene-d8 (Surr)	90		60 - 140					11/03/22 16:50	1

Eurofins Edison

Matrix: Water

Matrix: Water

Client Sample Results

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Client Sample ID: PZ-21 Lab Sample ID: 460-268503-5

Date Collected: 10/28/22 15:30 Matrix: Water Date Received: 10/29/22 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	2.0	U	2.0	0.65	ug/L			11/03/22 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103		60 - 140			•		11/03/22 17:15	1
Dibromofluoromethane (Surr)	114		60 ₋ 140					11/03/22 17:15	1
1,2-Dichloroethane-d4 (Surr)	86		60 - 140					11/03/22 17:15	1
Toluene-d8 (Surr)	96		60 - 140					11/03/22 17:15	1

Client Sample ID: BD_(10282022) Lab Sample ID: 460-268503-6

Date Collected: 10/28/22 00:00 Date Received: 10/29/22 12:20

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	110		2.0	0.65	ug/L			11/03/22 18:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	115		60 - 140					11/03/22 18:30	1
Dibromofluoromethane (Surr)	117		60 - 140					11/03/22 18:30	1
1,2-Dichloroethane-d4 (Surr)	85		60 - 140					11/03/22 18:30	1
Toluene-d8 (Surr)	90		60 - 140					11/03/22 18:30	1

Client Sample ID: FB_(20221028)

Date Collected: 10/28/22 00:00

Date Received: 10/29/22 12:20

Lab Sample ID: 460-268503-7

Matrix: Water

Matrix: Water

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	2.0	U	2.0	0.65	ug/L			11/03/22 15:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111	-	60 - 140			-		11/03/22 15:10	1
Dibromofluoromethane (Surr)	125		60 - 140					11/03/22 15:10	1
1,2-Dichloroethane-d4 (Surr)	89		60 - 140					11/03/22 15:10	1
Toluene-d8 (Surr)	88		60 - 140					11/03/22 15:10	1

Client Sample ID: TB (20221028)

Date Collected: 10/28/22 00:00

Date Received: 10/29/22 12:20

Lab Sample ID: 460-268503-8

Matrix: Water

Method: 40CFR136A 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	2.0	U	2.0	0.65	ug/L			11/03/22 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107		60 - 140			•		11/03/22 15:35	1
Dibromofluoromethane (Surr)	123		60 - 140					11/03/22 15:35	1
1,2-Dichloroethane-d4 (Surr)	89		60 - 140					11/03/22 15:35	1
Toluene-d8 (Surr)	92		60 - 140					11/03/22 15:35	1

Surrogate Summary

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Lin						
		BFB	DBFM	DCA	TOL				
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)				
460-268503-1	RW-6	116	131	95	86				
460-268503-1 MS	RW-6	119	116	88	99				
460-268503-1 MSD	RW-6	119	113	86	98				
460-268503-2	RW-7	113	117	87	94				
460-268503-3	MW-2A	112	118	86	98				
460-268503-4	MW-9	103	123	90	90				
460-268503-5	PZ-21	103	114	86	96				
460-268503-6	BD_(10282022)	115	117	85	90				
460-268503-7	FB_(20221028)	111	125	89	88				
460-268503-8	TB_(20221028)	107	123	89	92				
LCS 460-875754/5	Lab Control Sample	116	114	86	97				
MB 460-875754/8	Method Blank	110	117	86	90				

Surrogate Legend

BFB = 4-Bromofluorobenzene

Project/Site: Maestri - Geddes, NY

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: ARCADIS U.S. Inc Job ID: 460-268503-1 Project/Site: Maestri - Geddes, NY

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-875754/8 **Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water**

Analysis Batch: 875754

	MB	MB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Xylenes, Total	2.0	U	2.0	0.65	ug/L			11/03/22 10:53	1		

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	110		60 - 140		11/03/22 10:53	1
Dibromofluoromethane (Surr)	117		60 - 140	7	11/03/22 10:53	1
1,2-Dichloroethane-d4 (Surr)	86		60 - 140	7	11/03/22 10:53	1
Toluene-d8 (Surr)	90		60 - 140		11/03/22 10:53	1

Lab Sample ID: LCS 460-875754/5 Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 875754

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	20.0	17.2		ug/L		86	60 - 140	
o-Xylene	20.0	16.7		ug/L		84	60 - 140	
Xylenes, Total	40.0	33.9		ug/L		85	60 - 140	

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene	116		60 - 140	
Dibromofluoromethane (Surr)	114		60 - 140	
1,2-Dichloroethane-d4 (Surr)	86		60 - 140	
Toluene-d8 (Surr)	97		60 - 140	

Lab Sample ID: 460-268503-1 MS **Client Sample ID: RW-6 Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 875754

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
m-Xylene & p-Xylene	4.7		20.0	23.7		ug/L		95	60 - 140
o-Xylene	1.0	U	20.0	17.2		ug/L		86	60 - 140
Xylenes, Total	4.9		40.0	41.0		ug/L		90	60 - 140
	MS	MS							

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	119		60 - 140
Dibromofluoromethane (Surr)	116		60 - 140
1,2-Dichloroethane-d4 (Surr)	88		60 - 140
Toluene-d8 (Surr)	99		60 - 140

Lab Sample ID: 460-268503-1 MSD

Matrix: Water

Analysis Batch: 875754

,											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	4.7		20.0	24.1		ug/L		97	60 - 140	1	50
o-Xylene	1.0	U	20.0	17.5		ug/L		88	60 - 140	2	50
Xylenes, Total	4.9		40.0	41.6		ug/L		92	60 - 140	2	50

Eurofins Edison 11/08/2022

Client Sample ID: RW-6

Prep Type: Total/NA

QC Sample Results

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-268503-1 MSD

Matrix: Water

Analysis Batch: 875754

Client Sample ID: RW-6 Prep Type: Total/NA

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	119		60 - 140
Dibromofluoromethane (Surr)	113		60 - 140
1,2-Dichloroethane-d4 (Surr)	86		60 - 140
Toluene-d8 (Surr)	98		60 - 140

Definitions/Glossary

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Analyzed for but not detected.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may	not be	present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

QC Association Summary

Client: ARCADIS U.S. Inc

Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

GC/MS VOA

Analysis Batch: 875754

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-268503-1	RW-6	Total/NA	Water	624.1	
460-268503-2	RW-7	Total/NA	Water	624.1	
460-268503-3	MW-2A	Total/NA	Water	624.1	
460-268503-4	MW-9	Total/NA	Water	624.1	
460-268503-5	PZ-21	Total/NA	Water	624.1	
460-268503-6	BD_(10282022)	Total/NA	Water	624.1	
460-268503-7	FB_(20221028)	Total/NA	Water	624.1	
460-268503-8	TB_(20221028)	Total/NA	Water	624.1	
MB 460-875754/8	Method Blank	Total/NA	Water	624.1	
LCS 460-875754/5	Lab Control Sample	Total/NA	Water	624.1	
460-268503-1 MS	RW-6	Total/NA	Water	624.1	
460-268503-1 MSD	RW-6	Total/NA	Water	624.1	

Lab Chronicle

Client: ARCADIS U.S. Inc Job ID: 460-268503-1 Project/Site: Maestri - Geddes, NY

Client Sample ID: RW-6 Lab Sample ID: 460-268503-1

Date Collected: 10/28/22 13:40

Matrix: Water

Date Received: 10/29/22 12:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	875754	CJM	EET EDI	11/03/22 11:50

Client Sample ID: RW-7 Lab Sample ID: 460-268503-2

Date Collected: 10/28/22 12:10 Date Received: 10/29/22 12:20

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1			875754 CJM	EET EDI	11/03/22 17:40

Client Sample ID: MW-2A Lab Sample ID: 460-268503-3

Date Collected: 10/28/22 11:15 Date Received: 10/29/22 12:20

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	875754 CJM	EET EDI	11/03/22 18:05

Client Sample ID: MW-9 Lab Sample ID: 460-268503-4

Date Collected: 10/28/22 13:00 Date Received: 10/29/22 12:20

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab 875754 CJM EET EDI 11/03/22 16:50 Total/NA 624.1 Analysis

Client Sample ID: PZ-21 Lab Sample ID: 460-268503-5

Date Collected: 10/28/22 15:30 Date Received: 10/29/22 12:20

Dilution **Batch Batch** Batch **Prepared** Number Analyst **Prep Type** Type Method Run **Factor** or Analyzed Lab 11/03/22 17:15 Total/NA 624.1 875754 CJM FFT FDI Analysis

Client Sample ID: BD (10282022) Lab Sample ID: 460-268503-6

Date Collected: 10/28/22 00:00 Date Received: 10/29/22 12:20

Dilution **Batch Batch** Batch Prepared Number Analyst Type Method Run **Factor** or Analyzed **Prep Type** Lab 11/03/22 18:30 CJM EET EDI Total/NA Analysis 624.1 875754

Client Sample ID: FB (20221028) Lab Sample ID: 460-268503-7

Date Collected: 10/28/22 00:00 Date Received: 10/29/22 12:20

Batch Batch Dilution Batch **Prepared** Method **Number Analyst** or Analyzed **Prep Type** Type Run **Factor** Lab 11/03/22 15:10 Total/NA Analysis 624.1 875754 CJM EET EDI

Lab Chronicle

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Client Sample ID: TB_(20221028)

Lab Sample ID: 460-268503-8

Date Collected: 10/28/22 00:00 Matrix: Water

Date Received: 10/29/22 12:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	875754	CJM	EET EDI	11/03/22 15:35

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: ARCADIS U.S. Inc Job ID: 460-268503-1

Project/Site: Maestri - Geddes, NY

Laboratory: Eurofins Edison

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	11452	04-01-23

Eurofins Edison 11/08/2022

624.1 PREC

Volatile Organic Compounds (GC/MS)

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eu	rofins Edison	Job No.:	460-268503-1

SDG No.:

Matrix: Water Level: Low

GC Column (1): Rtx-624 ID: 0.25(mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
RW-6	460-268503-1	131	95	86	116
RW-7	460-268503-2	117	87	94	113
MW-2A	460-268503-3	118	86	98	112
MW-9	460-268503-4	123	90	90	103
PZ-21	460-268503-5	114	86	96	103
BD_(10282022)	460-268503-6	117	85	90	115
FB_(20221028)	460-268503-7	125	89	88	111
TB_(20221028)	460-268503-8	123	89	92	107
	MB 460-875754/8	117	86	90	110
	LCS 460-875754/5	114	86	97	116
RW-6 MS	460-268503-1 MS	116	88	99	119
RW-6 MSD	460-268503-1 MSD	113	86	98	119

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	60-140
DCA = 1,2-Dichloroethane-d4 (Surr)	60-140
TOL = Toluene-d8 (Surr)	60-140
BFB = 4-Bromofluorobenzene	60-140

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab	Name:	Eurofins	Edison	Job No) .:	460-268503-1	

SDG No.:

 Matrix: Water
 Level: Low
 Lab File ID: J82194.D

 Lab ID: LCS 460-875754/5
 Client ID:

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
m-Xylene & p-Xylene	20.0	17.2	86	60-140	
o-Xylene	20.0	16.7	84	60-140	
Xylenes, Total	40.0	33.9	85	60-140	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 624.1

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Job No.: 460-268503-1 Lab Name: Eurofins Edison

SDG No.:

 Matrix: Water
 Level: Low
 Lab File ID: J82200.D

 Lab ID: 460-268503-1 MS
 Client ID: RW-6 MS

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
m-Xylene & p-Xylene	20.0	4.7	23.7	95	60-140	
o-Xylene	20.0	1.0 U	17.2	86	60-140	
Xylenes, Total	40.0	4.9	41.0	90	60-140	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 624.1

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins Edison Job No.: $\underline{460-268503-1}$

SDG No.:

 Matrix: Water
 Level: Low
 Lab File ID: J82201.D

 Lab ID: 460-268503-1 MSD
 Client ID: RW-6 MSD

	SPIKE	MSD	MSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	%			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
m-Xylene & p-Xylene	20.0	24.1	97	1	50	60-140	
o-Xylene	20.0	17.5	88	2	50	60-140	
Xylenes, Total	40.0	41.6	92	2	50	60-140	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 624.1

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Edison	Job No.: 460-268503-1
SDG No.:	
Lab File ID: J82197.D	Lab Sample ID: MB 460-875754/8
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CVOAMS8	Date Analyzed: 11/03/2022 10:53
GC Column: Rtx-624 ID: 0.25(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 460-875754/5	J82194.D	11/03/2022 09:28
RW-6	460-268503-1	J82199.D	11/03/2022 11:50
RW-6 MS	460-268503-1 MS	J82200.D	11/03/2022 12:15
RW-6 MSD	460-268503-1 MSD	J82201.D	11/03/2022 12:40
FB_(20221028)	460-268503-7	J82207.D	11/03/2022 15:10
TB_(20221028)	460-268503-8	J82208.D	11/03/2022 15:35
MW-9	460-268503-4	J82211.D	11/03/2022 16:50
PZ-21	460-268503-5	J82212.D	11/03/2022 17:15
RW-7	460-268503-2	J82213.D	11/03/2022 17:40
MW-2A	460-268503-3	J82214.D	11/03/2022 18:05
BD_(10282022)	460-268503-6	J82215.D	11/03/2022 18:30

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab File ID: J81260.D BFB Injection Date: 10/12/2022

Instrument ID: CVOAMS8 BFB Injection Time: 22:40

Analysis Batch No.: 871602

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	22.8		
75	30.0 - 60.0 % of mass 95	48.4		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	7.1		
173	Less than 2.0 % of mass 174	0.3	(0.5) 1	
174	Greater than 50% of mass 95	71.8		
175	5.0 - 9.0 % of mass 174	5.6	(7.9) 1	
176	95.0 - 101.0 % of mass 174	71.0	(98.8) 1	
177	5.0 - 9.0 % of mass 176	4.5	(6.4) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD7 460-871602/3	J81262.D	10/12/2022	23:30
	STD1 460-871602/4	J81263.D	10/12/2022	23:56
	STD5 460-871602/5	J81264.D	10/13/2022	0:21
	STD20 460-871602/6	J81265.D	10/13/2022	0:46
	STD50 460-871602/7	J81266.D	10/13/2022	1:11
	STD200 460-871602/8	J81267.D	10/13/2022	1:36
	STD500 460-871602/9	J81268.D	10/13/2022	2:01
	ICV 460-871602/16	J81275.D	10/13/2022	4:56

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab File ID: J82190.D BFB Injection Date: 11/03/2022

Instrument ID: CVOAMS8 BFB Injection Time: 07:37

Analysis Batch No.: 875754

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	17.3		
75	30.0 - 60.0 % of mass 95	45.0		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.6		
173	Less than 2.0 % of mass 174	0.5	(0.6) 1	
174	Greater than 50% of mass 95	94.1		
175	5.0 - 9.0 % of mass 174	6.2	(6.6) 1	
176	95.0 - 101.0 % of mass 174	91.1	(96.8) 1	
177	5.0 - 9.0 % of mass 176	5.3	(5.8) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 460-875754/3	J82192.D	11/03/2022	8:29
	LCS 460-875754/5	J82194.D	11/03/2022	9:28
	MB 460-875754/8	J82197.D	11/03/2022	10:53
RW-6	460-268503-1	J82199.D	11/03/2022	11:50
RW-6 MS	460-268503-1 MS	J82200.D	11/03/2022	12:15
RW-6 MSD	460-268503-1 MSD	J82201.D	11/03/2022	12:40
FB_(20221028)	460-268503-7	J82207.D	11/03/2022	15:10
TB_(20221028)	460-268503-8	J82208.D	11/03/2022	15:35
MW-9	460-268503-4	J82211.D	11/03/2022	16:50
PZ-21	460-268503-5	J82212.D	11/03/2022	17:15
RW-7	460-268503-2	J82213.D	11/03/2022	17:40
MW-2A	460-268503-3	J82214.D	11/03/2022	18:05
BD_(10282022)	460-268503-6	J82215.D	11/03/2022	18:30

ab Name:	Eurofins	Edison	Job	No.:	460-268503-1
----------	----------	--------	-----	------	--------------

SDG No.:

Sample No.: STD20 460-871602/6 Date Analyzed: 10/13/2022 00:46

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm)

Lab File ID (Standard): J81265.D Heated Purge: (Y/N) N

Calibration ID: 91516

	TBAd9		BUT		FB	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	181731	2.41	285282	3.32	460431	4.35
UPPER LIMIT	363462	2.91	570564	3.82	920862	4.85
LOWER LIMIT	90866	1.91	142641	2.82	230216	3.85
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 460-871602/16	183376	2.41	290133	3.33	453232	4.35

TBAd9 = TBA-d9 (IS) BUT = 2-Butanone-d5 FB = Fluorobenzene

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eu	urofins Edison	Job No.:	460-268503-1

SDG No.:

Sample No.: STD20 460-871602/6 Date Analyzed: 10/13/2022 00:46

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm)

Lab File ID (Standard): J81265.D Heated Purge: (Y/N) N

Calibration ID: 91516

	DXE		CBNZd	5	DCBd4	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	23858	5.06	344187	8.01	189292	10.39
UPPER LIMIT	47716	5.56	688374	8.51	378584	10.89
LOWER LIMIT	11929	4.56	172094	7.51	94646	9.89
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 460-871602/16	22507	5.06	324862	8.02	180160	10.39

DXE = 1,4-Dioxane-d8
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Sample No.: CCVIS 460-875754/3 Date Analyzed: 11/03/2022 08:29

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm)

Lab File ID (Standard): J82192.D Heated Purge: (Y/N) N

Calibration ID: 91516

		TBAd9)	BUT		FB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		150637	2.40	186523	3.32	469380	4.33
UPPER LIMIT		301274	2.90	373046	3.82	938760	4.83
LOWER LIMIT		75319	1.90	93262	2.82	234690	3.83
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 460-875754/5		136061	2.40	176579	3.31	479687	4.33
MB 460-875754/8		121739	2.40	152854	3.31	446264	4.33
460-268503-1	RW-6	106769	2.40	125442	3.31	380559	4.33
460-268503-1 MS	RW-6 MS	127026	2.40	160860	3.31	446417	4.33
460-268503-1 MSD	RW-6 MSD	140710	2.40	175894	3.31	479127	4.33
460-268503-7	FB_(20221028)	110848	2.40	138622	3.32	423506	4.33
460-268503-8	TB_(20221028)	121334	2.40	149976	3.31	432274	4.33
460-268503-4	MW-9	127412	2.40	154598	3.31	424798	4.33
460-268503-5	PZ-21	134188	2.40	162140	3.31	473261	4.33
460-268503-2	RW-7	126003	2.40	159187	3.31	453744	4.33
460-268503-3	MW-2A	126783	2.40	161335	3.31	452727	4.33
460-268503-6	BD (10282022)	126387	2.40	151585	3.31	452698	4.33

TBAd9 = TBA-d9 (IS) BUT = 2-Butanone-d5

FB = Fluorobenzene

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Sample No.: CCVIS 460-875754/3 Date Analyzed: 11/03/2022 08:29

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm)

Lab File ID (Standard): J82192.D Heated Purge: (Y/N) N

Calibration ID: 91516

		DXE	DXE CBNZd5			DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		31040	5.04	459118	7.99	298524	10.37
UPPER LIMIT		62080	5.54	918236	8.49	597048	10.87
LOWER LIMIT		15520	4.54	229559	7.49	149262	9.87
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 460-875754/5		30790	5.04	454658	7.99	292839	10.37
MB 460-875754/8		25536	5.04	413500	7.99	246116	10.37
460-268503-1	RW-6	23094	5.04	386619	8.00	245829	10.37
460-268503-1 MS	RW-6 MS	27974	5.04	438814	7.99	291589	10.37
460-268503-1 MSD	RW-6 MSD	30815	5.04	454847	8.00	300191	10.37
460-268503-7	FB_(20221028)	21571	5.04	384810	8.00	239032	10.37
460-268503-8	TB_(20221028)	23920	5.04	393270	8.00	233246	10.38
460-268503-4	MW-9	21829	5.04	404720	8.00	238236	10.38
460-268503-5	PZ-21	23194	5.04	398108	8.00	236740	10.37
460-268503-2	RW-7	21245	5.04	395793	8.00	248485	10.37
460-268503-3	MW-2A	21454	5.04	400901	8.00	243247	10.38
460-268503-6	BD_(10282022)	24008	5.04	391611	7.99	247354	10.37

DXE = 1,4-Dioxane-d8

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison	Job No.: 460-268503-1
SDG No.:	
Client Sample ID: RW-6	Lab Sample ID: 460-268503-1
Matrix: Water	Lab File ID: J82199.D
Analysis Method: 624.1	Date Collected: 10/28/2022 13:40
Sample wt/vol: 5(mL)	Date Analyzed: 11/03/2022 11:50
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 875754	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	4.9		2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	116		60-140
1868-53-7	Dibromofluoromethane (Surr)	131		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		60-140
2037-26-5	Toluene-d8 (Surr)	86		60-140

Report Date: 07-Nov-2022 08:35:46 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82199.D

Lims ID: 460-268503-B-1

Client ID: RW-6 Sample Type: Client

Inject. Date: 03-Nov-2022 11:50:30 ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-1 Misc. Info.: 460-0152676-010

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:07-Nov-2022 08:35:46Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: KG2Q Date: 03-Nov-2022 12:13:39

		RT	Exp RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
* 30 TBA-d9 (IS)	65	2.399	2.402	-0.003	75	106769	1000.0	
* 43 2-Butanone-d5	46	3.312	3.315	-0.003	88	125442	250.0	
\$ 55 Dibromofluoromethane (Surr)	113	3.738	3.740	-0.002	96	108688	65.7	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.072	4.069	0.003	0	108223	47.6	
* 66 Fluorobenzene	96	4.328	4.331	-0.003	98	380559	50.0	
* 72 1,4-Dioxane-d8	96	5.039	5.036	0.003	0	23094	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.043	6.040	0.003	99	355799	43.0	
* 94 Chlorobenzene-d5	117	7.996	7.993	0.003	85	386619	50.0	
98 m-Xylene & p-Xylene	106	8.294	8.291	0.003	0	20864	4.71	
99 o-Xylene	106	8.732	8.741	-0.009	93	865	0.1942	7M
\$ 105 4-Bromofluorobenzene	174	9.322	9.319	0.003	97	159263	58.0	
* 121 1,4-Dichlorobenzene-d4	152	10.369	10.371	-0.002	95	245829	50.0	
S 137 Xylenes, Total	100				0		4.90	
S 138 Total BTEX	1				0		4.90	

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Review Flags

M - Manually Integrated

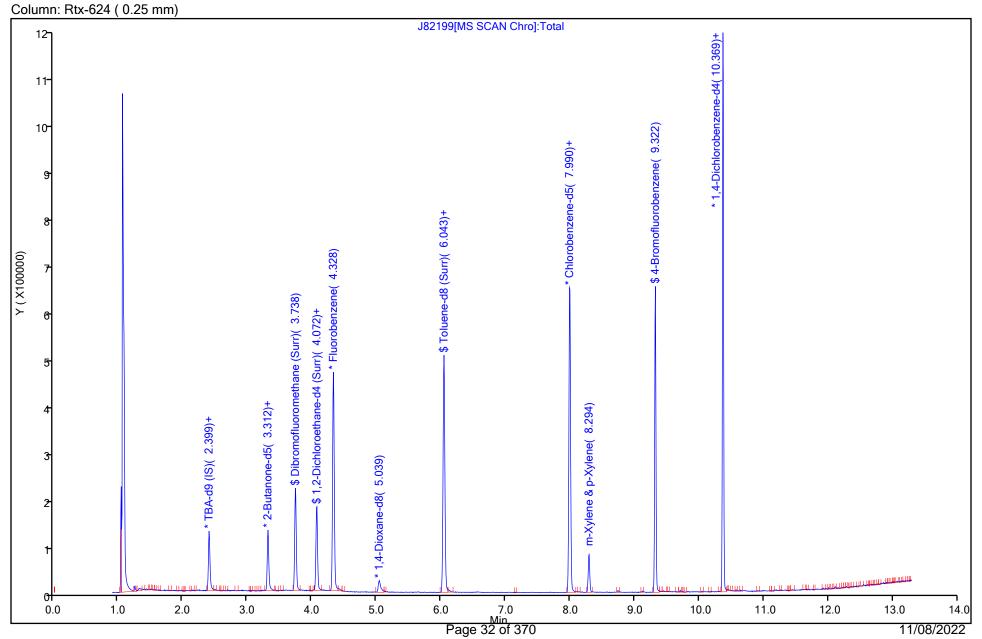
Reagents:

8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 07-Nov-2022 08:35:46 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82199.D Injection Date: 03-Nov-2022 11:50:30 Instrument ID: CVOAMS8


 Injection Date:
 03-Nov-2022 11:50:30
 Instrument ID:
 CVOAMS8
 Operator ID:

 Lims ID:
 460-268503-B-1
 Lab Sample ID:
 460-268503-1
 Worklist Smp#:

Client ID: RW-6

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#:

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

10

9

Report Date: 07-Nov-2022 08:35:46 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82199.D

Lims ID: 460-268503-B-1

Client ID: RW-6 Sample Type: Client

Inject. Date: 03-Nov-2022 11:50:30 ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-1 Misc. Info.: 460-0152676-010

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:07-Nov-2022 08:35:46Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: KG2Q Date: 03-Nov-2022 12:13:39

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	65.7	131.37
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	47.6	95.12
\$ 83 Toluene-d8 (Surr)	50.0	43.0	86.04
\$ 105 4-Bromofluorobenzene	50.0	58.0	116.05

Report Date: 07-Nov-2022 08:35:47 Chrom Revision: 2.3 25-Oct-2022 11:16:06

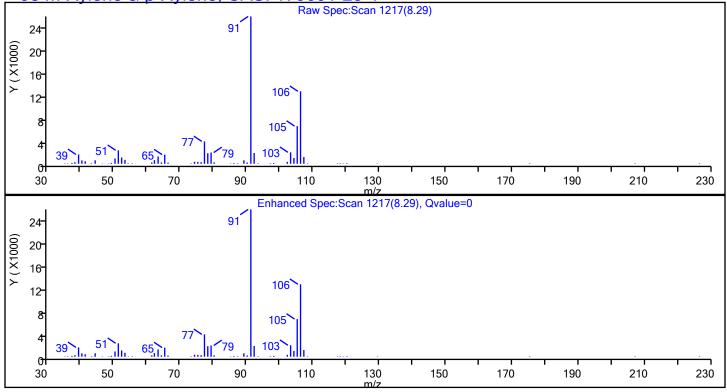
Eurofins Edison

 Data File:
 \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82199.D

 Injection Date:
 03-Nov-2022 11:50:30
 Instrument ID:
 CVOAMS8

 Lims ID:
 460-268503-B-1
 Lab Sample ID:
 460-268503-1

Client ID: RW-6

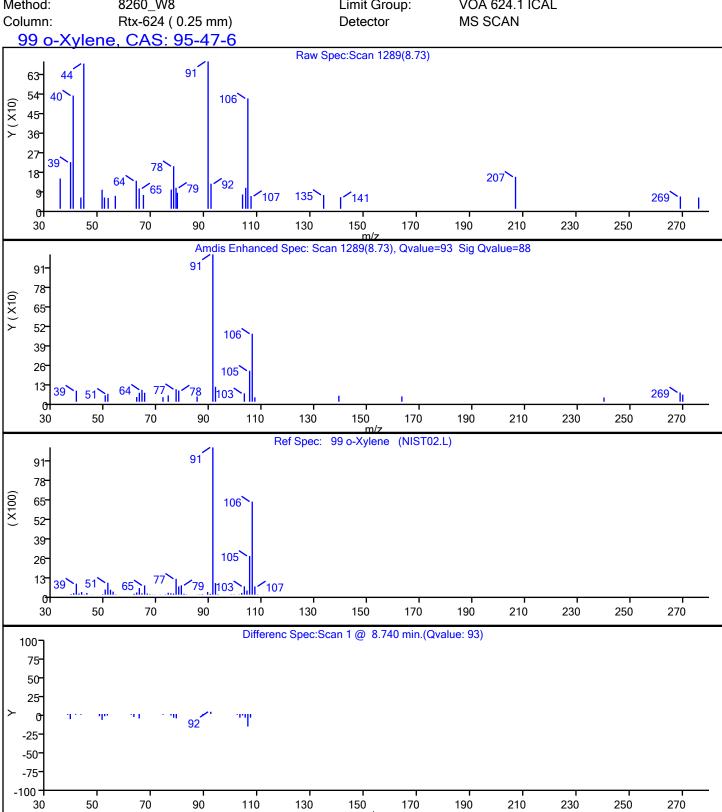

Operator ID: ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

Report Date: 07-Nov-2022 08:35:47 Chrom Revision: 2.3 25-Oct-2022 11:16:06 **Eurofins Edison**


Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82199.D 03-Nov-2022 11:50:30 Injection Date: Instrument ID: CVOAMS8 Lims ID: 460-268503-B-1 Lab Sample ID: 460-268503-1

Client ID: RW-6

Operator ID: ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Detector MS SCAN

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82199.D Injection Date: 03-Nov-2022 11:50:30 CVOAMS8 Instrument ID: Lims ID: 460-268503-B-1 Lab Sample ID: 460-268503-1

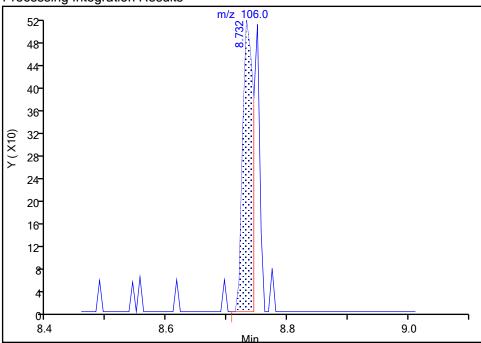
Client ID: RW-6

ALS Bottle#: 9 10 Operator ID: Worklist Smp#:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) MS SCAN Detector

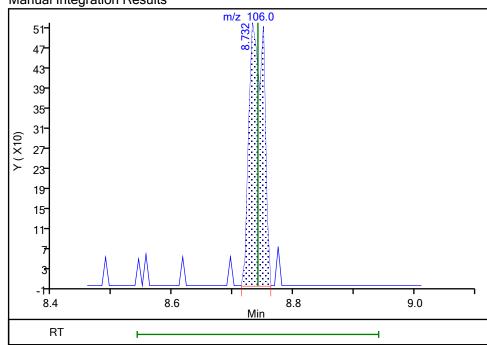
99 o-Xylene, CAS: 95-47-6


Signal: 1

RT: 8.73 Area: 627

Amount: 0.140780

Amount Units: ug/l


Processing Integration Results

RT: 8.73 Area: 865 0.194218 Amount:

Amount Units: ug/I

Manual Integration Results

Reviewer: NN6A, 07-Nov-2022 08:35:39

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 36 of 370

Lab Name: Eurofins Edison	Job No.: 460-268503-1
SDG No.:	
Client Sample ID: RW-7	Lab Sample ID: 460-268503-2
Matrix: Water	Lab File ID: J82213.D
Analysis Method: 624.1	Date Collected: 10/28/2022 12:10
Sample wt/vol: 5 (mL)	Date Analyzed: 11/03/2022 17:40
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH: 7.0
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 875754	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	14		2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	113		60-140
1868-53-7	Dibromofluoromethane (Surr)	117		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		60-140
2037-26-5	Toluene-d8 (Surr)	94		60-140

Report Date: 03-Nov-2022 19:11:21 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82213.D

Lims ID: 460-268503-B-2

Client ID: RW-7 Sample Type: Client

Inject. Date: 03-Nov-2022 17:40:30 ALS Bottle#: 23 Worklist Smp#: 24

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-2 Misc. Info.: 460-0152676-024

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:21

		RT	Exp RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
oopou.iu	0.9	()	()	()			9	1 10.90
* 30 TBA-d9 (IS)	65	2.402	2.402	0.000	75	126003	1000.0	
* 43 2-Butanone-d5	46	3.314	3.315	-0.001	88	159187	250.0	
\$ 55 Dibromofluoromethane (Surr)	113	3.740	3.740	0.000	97	115288	58.4	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.069	4.069	0.000	0	117370	43.3	
* 66 Fluorobenzene	96	4.330	4.331	-0.001	99	453744	50.0	
* 72 1,4-Dioxane-d8	96	5.036	5.036	0.000	0	21245	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.046	6.040	0.006	99	398401	47.1	
* 94 Chlorobenzene-d5	117	7.999	7.993	0.006	85	395793	50.0	
98 m-Xylene & p-Xylene	106	8.291	8.291	0.000	0	38143	8.41	
99 o-Xylene	106	8.741	8.741	0.000	94	27733	6.08	
\$ 105 4-Bromofluorobenzene	174	9.325	9.319	0.006	97	158637	56.5	
* 121 1,4-Dichlorobenzene-d4	152	10.371	10.371	0.000	95	248485	50.0	
S 137 Xylenes, Total	100				0		14.5	

QC Flag Legend

Processing Flags

Reagents:

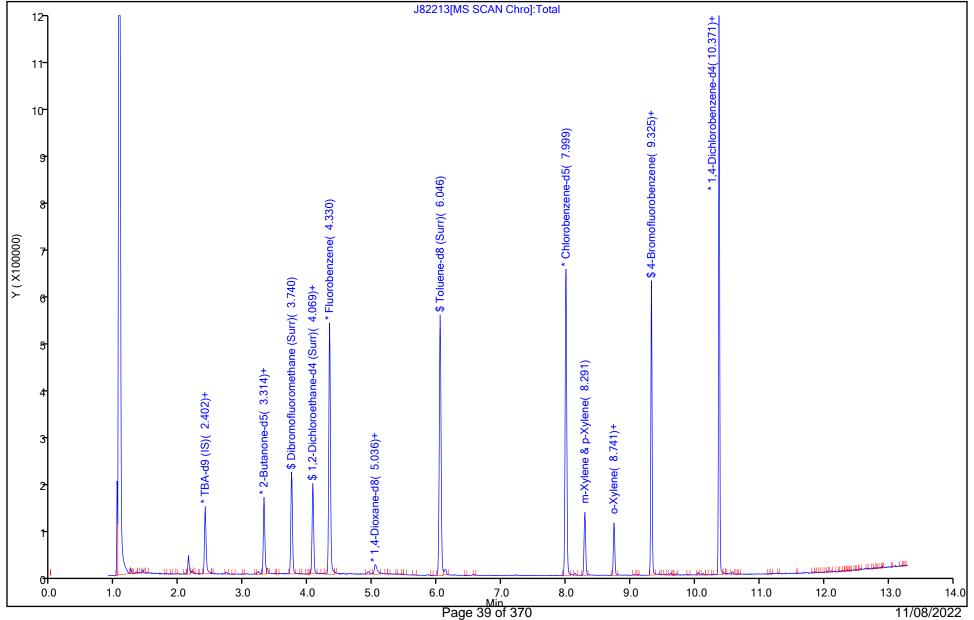
8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 19:11:21 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82213.D Injection Date: 03-Nov-2022 17:40:30 Instrument ID: CVOAMS8

 Injection Date:
 03-Nov-2022 17:40:30
 Instrument ID:
 CVOAMS8
 Operator ID:


 Lims ID:
 460-268503-B-2
 Lab Sample ID:
 460-268503-2
 Worklist Smp#:

Client ID: RW-7

 Purge Vol:
 5.000 mL
 Dil. Factor:
 1.0000
 ALS Bottle#:
 23

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Report Date: 03-Nov-2022 19:11:21 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82213.D

Lims ID: 460-268503-B-2

Client ID: RW-7 Sample Type: Client

Inject. Date: 03-Nov-2022 17:40:30 ALS Bottle#: 23 Worklist Smp#: 24

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-2 Misc. Info.: 460-0152676-024

Operator ID: Instrument ID: CVOAMS8

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

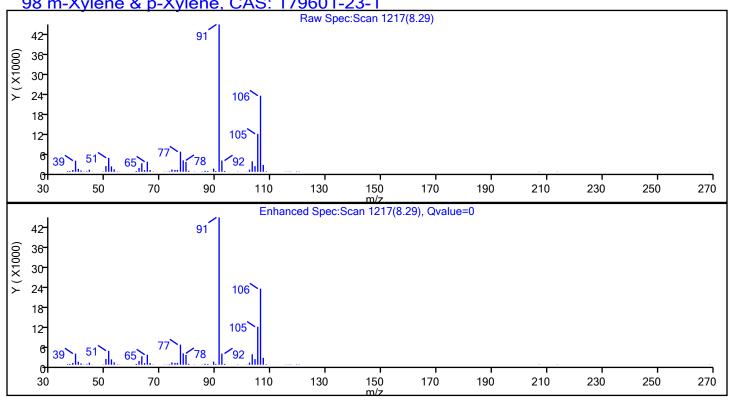
First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:21

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	58.4	116.87
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	43.3	86.53
\$ 83 Toluene-d8 (Surr)	50.0	47.1	94.10
\$ 105 4-Bromofluorobenzene	50.0	56.5	112.92

Report Date: 03-Nov-2022 19:11:21 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82213.D Injection Date: 03-Nov-2022 17:40:30 CVOAMS8 Instrument ID: Lims ID: 460-268503-B-2 Lab Sample ID: 460-268503-2


Client ID: RW-7

Operator ID: ALS Bottle#: 23 Worklist Smp#: 24

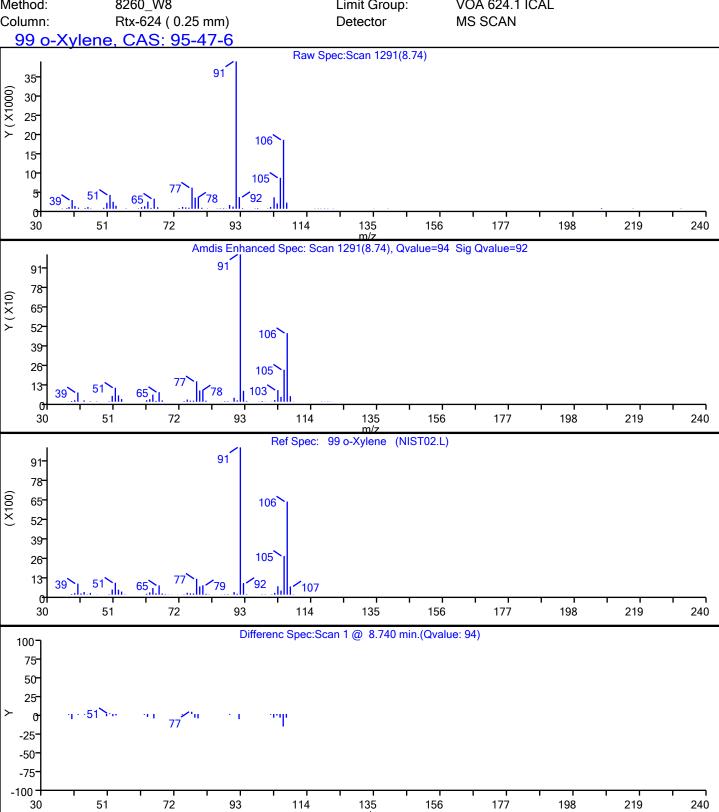
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Rtx-624 (0.25 mm) Column: Detector MS SCAN

98 m-Xylene & p-Xylene, CAS: 179601-23-1

Report Date: 03-Nov-2022 19:11:21 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison


Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82213.D 03-Nov-2022 17:40:30 Injection Date: Instrument ID: CVOAMS8 Lims ID: 460-268503-B-2 Lab Sample ID: 460-268503-2

Client ID: RW-7

Operator ID: ALS Bottle#: 23 Worklist Smp#: 24

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Detector MS SCAN

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison	Job No.: 460-268503-1
SDG No.:	
Client Sample ID: MW-2A	Lab Sample ID: 460-268503-3
Matrix: Water	Lab File ID: J82214.D
Analysis Method: 624.1	Date Collected: 10/28/2022 11:15
Sample wt/vol: 5(mL)	Date Analyzed: 11/03/2022 18:05
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 875754	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	120		2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	112		60-140
1868-53-7	Dibromofluoromethane (Surr)	118		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		60-140
2037-26-5	Toluene-d8 (Surr)	98		60-140

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82214.D

Lims ID: 460-268503-B-3

Client ID: MW-2A Sample Type: Client

Inject. Date: 03-Nov-2022 18:05:30 ALS Bottle#: 24 Worklist Smp#: 25

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-3 Misc. Info.: 460-0152676-025

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:31

			2 0.10.			***************************************			
ſ		0:	, RT	Exp RT	Dlt RT		1	OnCol Amt	-
L	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
Ī									
	* 30 TBA-d9 (IS)	65	2.401	2.402	-0.001	75	126783	1000.0	
	* 43 2-Butanone-d5	46	3.314	3.315	-0.001	88	161335	250.0	
	\$ 55 Dibromofluoromethane (Surr)	113	3.740	3.740	0.000	97	116342	59.1	
	\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.068	4.069	-0.001	0	116746	43.1	
	* 66 Fluorobenzene	96	4.330	4.331	-0.001	99	452727	50.0	
	* 72 1,4-Dioxane-d8	96	5.042	5.036	0.006	0	21454	1000.0	
	\$ 83 Toluene-d8 (Surr)	98	6.045	6.040	0.005	99	418229	48.8	
	* 94 Chlorobenzene-d5	117	7.998	7.993	0.005	84	400901	50.0	
	98 m-Xylene & p-Xylene	106	8.296	8.291	0.005	0	551960	120.2	
	99 o-Xylene	106	8.746	8.741	0.005	95	1865	0.4038	
	\$ 105 4-Bromofluorobenzene	174	9.324	9.319	0.005	95	159290	56.0	
	* 121 1,4-Dichlorobenzene-d4	152	10.377	10.371	0.006	94	243247	50.0	
	S 137 Xylenes, Total	100				0		120.6	

QC Flag Legend

Processing Flags

Reagents:

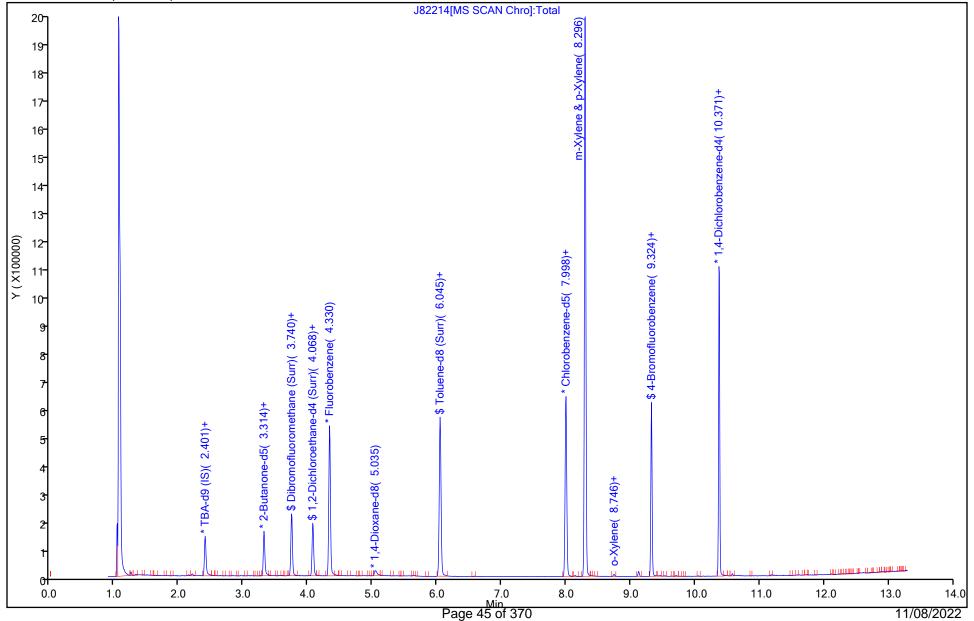
8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 19:11:32 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82214.D Injection Date: 03-Nov-2022 18:05:30 Instrument ID: CVOAMS8

 Injection Date:
 03-Nov-2022 18:05:30
 Instrument ID:
 CVOAMS8
 Operator ID:


 Lims ID:
 460-268503-B-3
 Lab Sample ID:
 460-268503-3
 Worklist Smp#:

Client ID: MW-2A

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 24

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82214.D

Lims ID: 460-268503-B-3

Client ID: MW-2A Sample Type: Client

Inject. Date: 03-Nov-2022 18:05:30 ALS Bottle#: 24 Worklist Smp#: 25

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-3 Misc. Info.: 460-0152676-025

Operator ID: Instrument ID: CVOAMS8

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:31

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	59.1	118.20
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	43.1	86.26
\$ 83 Toluene-d8 (Surr)	50.0	48.8	97.53
\$ 105 4-Bromofluorobenzene	50.0	56.0	111.94

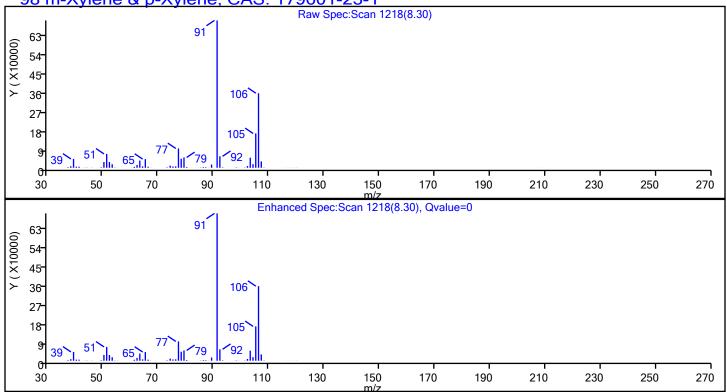
Report Date: 03-Nov-2022 19:11:32 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

 Data File:
 \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82214.D

 Injection Date:
 03-Nov-2022 18:05:30
 Instrument ID:
 CVOAMS8

 Lims ID:
 460-268503-B-3
 Lab Sample ID:
 460-268503-3


Client ID: MW-2A

Operator ID: ALS Bottle#: 24 Worklist Smp#: 25

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method:8260_W8Limit Group:VOA 624.1 ICALColumn:Rtx-624 (0.25 mm)DetectorMS SCAN

Report Date: 03-Nov-2022 19:11:32 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82214.D 03-Nov-2022 18:05:30 Injection Date: Instrument ID: CVOAMS8 Lims ID: 460-268503-B-3 Lab Sample ID: 460-268503-3

Client ID: MW-2A

Operator ID: ALS Bottle#: 24 Worklist Smp#: 25

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL

Lab Name: Eurofins Edison	Job No.: 460-268503-1		
SDG No.:			
Client Sample ID: MW-9	Lab Sample ID: 460-268503-4		
Matrix: Water	Lab File ID: J82211.D		
Analysis Method: 624.1 Date Collected: 10/28/2022 13:00			
Sample wt/vol: 5(mL)	Date Analyzed: 11/03/2022 16:50		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)		
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:		
% Moisture:	ds: Level: (low/med) Low		
Analysis Batch No.: 875754	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	103		60-140
1868-53-7	Dibromofluoromethane (Surr)	123		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		60-140
2037-26-5	Toluene-d8 (Surr)	90		60-140

Report Date: 03-Nov-2022 19:11:06 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82211.D

Lims ID: 460-268503-B-4

Client ID: MW-9 Sample Type: Client

Inject. Date: 03-Nov-2022 16:50:30 ALS Bottle#: 21 Worklist Smp#: 22

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-4 Misc. Info.: 460-0152676-022

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:05

That Edver Reviewer. Trv vv2			Dutc.			00 1107 2022 13.11.00			
0	0:	RT	Exp RT	Dlt RT)	6	OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags	
* 30 TBA-d9 (IS)	65	2.399	2.402	-0.003	75	127412	1000.0		
* 43 2-Butanone-d5	46	3.312	3.315	-0.003	88	154598	250.0		
\$ 55 Dibromofluoromethane (Surr)	113	3.744	3.740	0.004	96	113723	61.6		
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.072	4.069	0.003	0	114610	45.1		
* 66 Fluorobenzene	96	4.328	4.331	-0.003	99	424798	50.0		
* 72 1,4-Dioxane-d8	96	5.040	5.036	0.004	0	21829	1000.0		
\$ 83 Toluene-d8 (Surr)	98	6.043	6.040	0.003	98	391173	45.2		
* 94 Chlorobenzene-d5	117	7.996	7.993	0.003	84	404720	50.0		
\$ 105 4-Bromofluorobenzene	174	9.322	9.319	0.003	95	148380	51.6		
* 121 1,4-Dichlorobenzene-d4	152	10.375	10.371	0.004	94	238236	50.0		
Reagents:									
8260ISNEW_00171		Amount	Added:	1.00	L	Jnits: uL	Run Reager	nt	

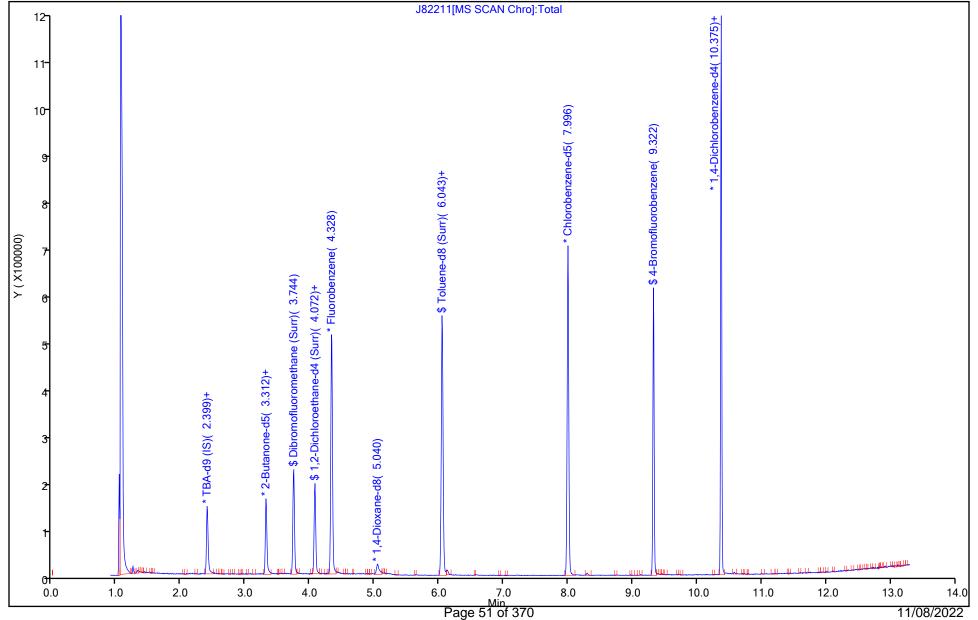
8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 19:11:06 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82211.D Injection Date: 03-Nov-2022 16:50:30 Instrument ID: CVOAMS8

 Injection Date:
 03-Nov-2022 16:50:30
 Instrument ID:
 CVOAMS8
 Operator ID:


 Lims ID:
 460-268503-B-4
 Lab Sample ID:
 460-268503-4
 Worklist Smp#:

Client ID: MW-9

 Purge Vol:
 5.000 mL
 Dil. Factor:
 1.0000
 ALS Bottle#:
 21

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Report Date: 03-Nov-2022 19:11:06 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82211.D

Lims ID: 460-268503-B-4

Client ID: MW-9 Sample Type: Client

Inject. Date: 03-Nov-2022 16:50:30 ALS Bottle#: 21 Worklist Smp#: 22

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-4 Misc. Info.: 460-0152676-022

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:05

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	61.6	123.14
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	45.1	90.25
\$ 83 Toluene-d8 (Surr)	50.0	45.2	90.36
\$ 105 4-Bromofluorobenzene	50.0	51.6	103.28

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins	Edison	Job No.: 460-268503-1				
SDG No.:						
Client Sample ID:	PZ-21	Lab Sample ID: 460-2685	03-5			
Matrix: Water Lab File ID: J82212.D						
Analysis Method: 6	24.1	Date Collected: 10/28/2	022 15:30			
Sample wt/vol: 5(mi	L)	Date Analyzed: 11/03/2022 17:15				
Soil Aliquot Vol:		Dilution Factor: 1				
Soil Extract Vol.:		GC Column: Rtx-624	ID: 0.25(mm)			
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N	pH:			
% Moisture:	% Solids:	Level: (low/med) Low				
Analysis Batch No.	: 875754	Units: ug/L				
			·			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	103		60-140
1868-53-7	Dibromofluoromethane (Surr)	114		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		60-140
2037-26-5	Toluene-d8 (Surr)	96		60-140

Report Date: 03-Nov-2022 19:11:13 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82212.D

Lims ID: 460-268503-B-5

Client ID: PZ-21 Sample Type: Client

Inject. Date: 03-Nov-2022 17:15:30 ALS Bottle#: 22 Worklist Smp#: 23

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-5 Misc. Info.: 460-0152676-023

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:13

				<u></u>		00 1101 2022 1011 1110			
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ug/l	Flags	
Compound.	0.9	()	()	()		1100 011100	49	90	
* 30 TBA-d9 (IS)	65	2.404	2.402	0.002	75	134188	1000.0		
* 43 2-Butanone-d5	46	3.311	3.315	-0.004	88	162140	250.0		
\$ 55 Dibromofluoromethane (Surr)	113	3.742	3.740	0.002	96	117077	56.9		
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.071	4.069	0.002	0	121173	42.8		
* 66 Fluorobenzene	96	4.333	4.331	0.002	99	473261	50.0		
* 72 1,4-Dioxane-d8	96	5.038	5.036	0.002	0	23194	1000.0		
\$ 83 Toluene-d8 (Surr)	98	6.042	6.040	0.002	99	409252	48.1		
* 94 Chlorobenzene-d5	117	7.995	7.993	0.002	85	398108	50.0		
\$ 105 4-Bromofluorobenzene	174	9.327	9.319	0.008	98	145704	51.6		
* 121 1,4-Dichlorobenzene-d4	152	10.373	10.371	0.002	94	236740	50.0		
Reagents:									
8260ISNEW_00171		Amount	Added:	1.00	L	Jnits: uL	Run Reager	nt	

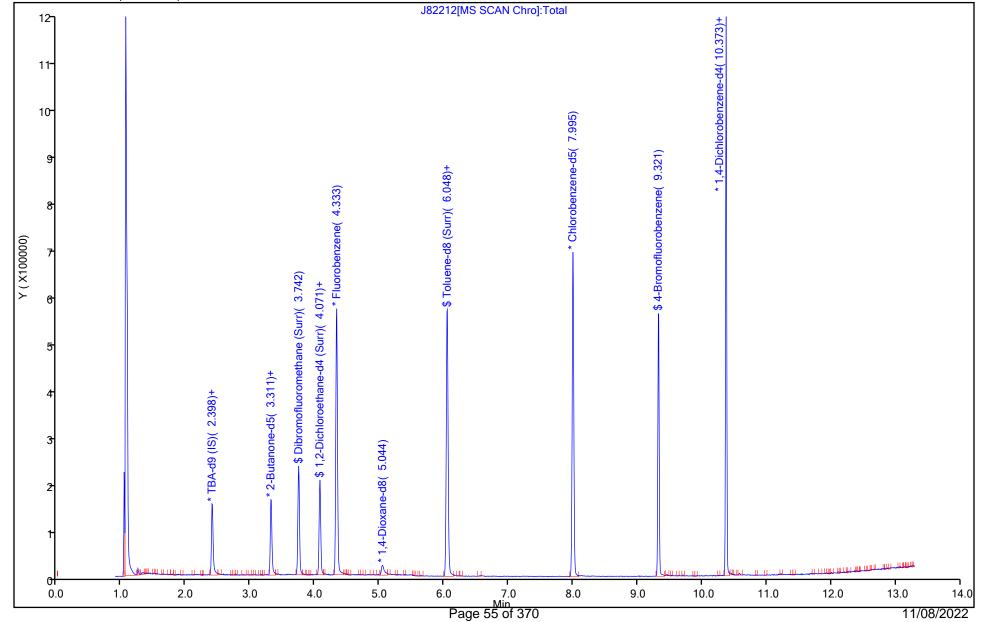
8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 19:11:13 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82212.D Injection Date: 03-Nov-2022 17:15:30 Instrument ID: CVOAMS8

 Injection Date:
 03-Nov-2022 17:15:30
 Instrument ID:
 CVOAMS8
 Operator ID:


 Lims ID:
 460-268503-B-5
 Lab Sample ID:
 460-268503-5
 Worklist Smp#:

Client ID: PZ-21

 Purge Vol:
 5.000 mL
 Dil. Factor:
 1.0000
 ALS Bottle#:
 22

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Report Date: 03-Nov-2022 19:11:13 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82212.D

Lims ID: 460-268503-B-5

Client ID: PZ-21 Sample Type: Client

Inject. Date: 03-Nov-2022 17:15:30 ALS Bottle#: 22 Worklist Smp#: 23

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-5 Misc. Info.: 460-0152676-023

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:11:13

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	56.9	113.79
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	42.8	85.64
\$ 83 Toluene-d8 (Surr)	50.0	48.1	96.11
\$ 105 4-Bromofluorobenzene	50.0	51.6	103.11

Lab Name: Eurofins	s Edison	Job No.: 460-268503-1	Job No.: 460-268503-1					
SDG No.:								
Client Sample ID:	BD_(10282022)	Lab Sample ID: $460-26850$)3-6					
Matrix: Water		Lab File ID: J82215.D						
Analysis Method:	624.1 Date Collected: 10/28/2022 00:00							
Sample wt/vol: 5(r	nL)	Date Analyzed: 11/03/202	22 18:30					
Soil Aliquot Vol:		Dilution Factor: 1						
Soil Extract Vol.	:	GC Column: Rtx-624	ID: 0.25(mm)					
Purge Volume: 5.0	(mL)	Heated Purge: (Y/N) N_	рН:					
% Moisture:	% Solids:	Level: (low/med) Low						
Analysis Batch No	.: 875754	Units: ug/L						

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	110		2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	115		60-140
1868-53-7	Dibromofluoromethane (Surr)	117		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	85		60-140
2037-26-5	Toluene-d8 (Surr)	90		60-140

Report Date: 03-Nov-2022 20:22:03 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82215.D

Lims ID: 460-268503-B-6 Client ID: BD_(10282022)

Sample Type: Client

Inject. Date: 03-Nov-2022 18:30:30 ALS Bottle#: 25 Worklist Smp#: 26

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-6 Misc. Info.: 460-0152676-026

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 20:00:48Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 20:22:03

		RT	Exp RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
* 30 TBA-d9 (IS)	65	2.402	2.402	0.000	75	126387	1000.0	
* 43 2-Butanone-d5	46	3.314	3.315	-0.001	88	151585	250.0	
\$ 55 Dibromofluoromethane (Surr)	113	3.740	3.740	0.000	97	114709	58.3	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.069	4.069	0.000	0	114515	42.3	
* 66 Fluorobenzene	96	4.330	4.331	-0.001	99	452698	50.0	
* 72 1,4-Dioxane-d8	96	5.042	5.036	0.006	0	24008	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.046	6.040	0.006	99	377566	45.1	
* 94 Chlorobenzene-d5	117	7.993	7.993	-0.001	85	391611	50.0	
98 m-Xylene & p-Xylene	106	8.291	8.291	0.000	0	483778	107.8	
99 o-Xylene	106	8.741	8.741	0.000	93	1657	0.3673	
\$ 105 4-Bromofluorobenzene	174	9.325	9.319	0.006	97	160465	57.7	
* 121 1,4-Dichlorobenzene-d4	152	10.371	10.371	0.000	95	247354	50.0	
S 137 Xylenes, Total	100				0		108.2	

QC Flag Legend

Processing Flags

Reagents:

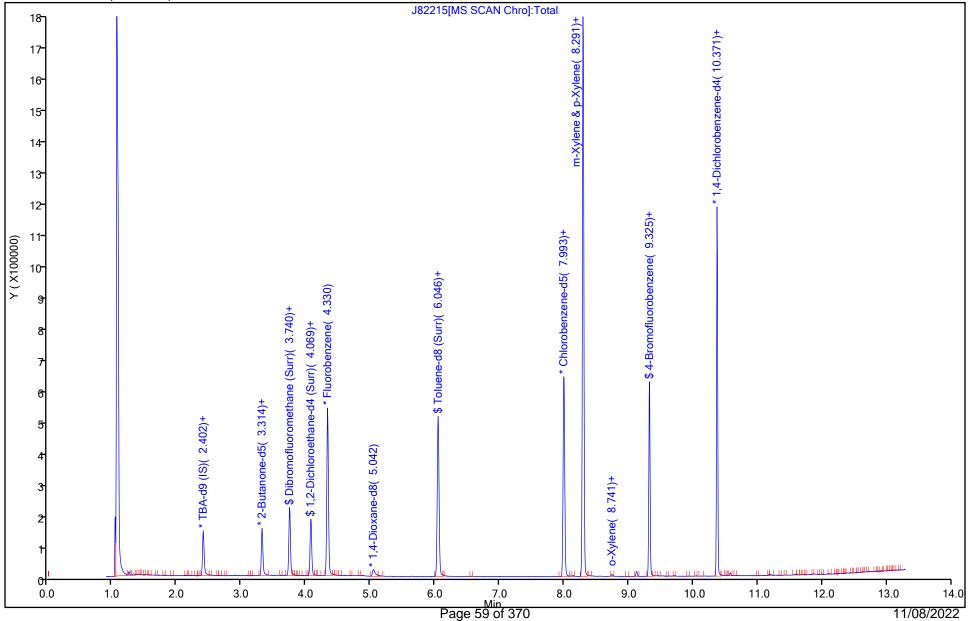
8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 20:22:04 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82215.D Injection Date: 03-Nov-2022 18:30:30 Instrument ID: CVOAMS8

 Injection Date:
 03-Nov-2022 18:30:30
 Instrument ID:
 CVOAMS8
 Operator ID:


 Lims ID:
 460-268503-B-6
 Lab Sample ID:
 460-268503-6
 Worklist Smp#:
 26

Client ID: BD_(10282022)

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 25

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Report Date: 03-Nov-2022 20:22:04 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82215.D

Lims ID: 460-268503-B-6 Client ID: BD_(10282022)

Sample Type: Client

Inject. Date: 03-Nov-2022 18:30:30 ALS Bottle#: 25 Worklist Smp#: 26

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-6 Misc. Info.: 460-0152676-026

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 20:00:48Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

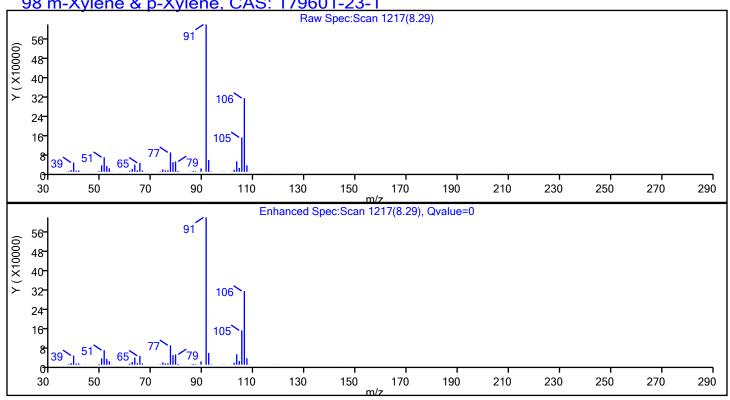
First Level Reviewer: HVW2 Date: 03-Nov-2022 20:22:03

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	58.3	116.55
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	42.3	84.62
\$ 83 Toluene-d8 (Surr)	50.0	45.1	90.14
\$ 105 4-Bromofluorobenzene	50.0	57.7	115.44

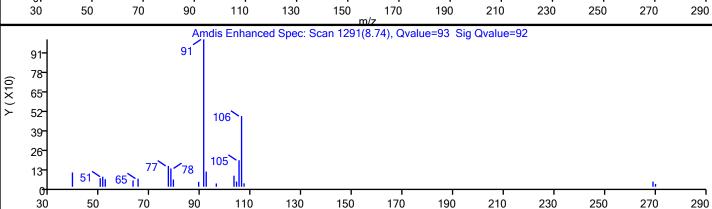
Report Date: 03-Nov-2022 20:22:04 Chrom Revision: 2.3 25-Oct-2022 11:16:06

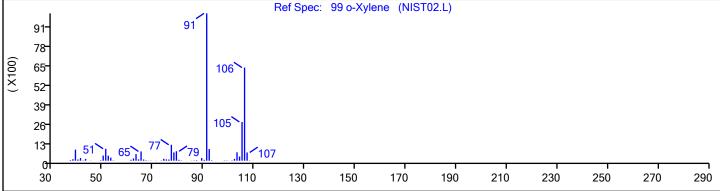
Eurofins Edison

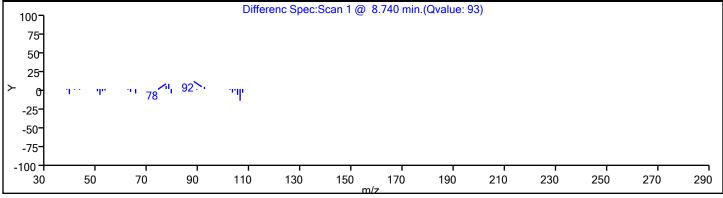
Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82215.D Injection Date: 03-Nov-2022 18:30:30 Instrument ID: CVOAMS8 Lims ID: 460-268503-B-6 Lab Sample ID: 460-268503-6


Client ID: BD_(10282022)

Operator ID: ALS Bottle#: 25 Worklist Smp#: 26


Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: 8260 W8 Limit Group: VOA 624.1 ICAL Rtx-624 (0.25 mm) Column: Detector MS SCAN


98 m-Xylene & p-Xylene, CAS: 179601-23-1

Report Date: 03-Nov-2022 20:22:04 Chrom Revision: 2.3 25-Oct-2022 11:16:06 **Eurofins Edison** Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82215.D 03-Nov-2022 18:30:30 Injection Date: Instrument ID: CVOAMS8 Lims ID: 460-268503-B-6 Lab Sample ID: 460-268503-6 Client ID: BD_(10282022) Operator ID: ALS Bottle#: 25 Worklist Smp#: 26 Purge Vol: 5.000 mL Dil. Factor: 1.0000 Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN 99 o-Xylene, CAS: 95-47-6 Raw Spec:Scan 1291(8.74) 21 91 18 15 12 106 6 105 50 70 90 110 130 150 170 190 210 230 250 270 Amdis Enhanced Spec: Scan 1291(8.74), Qvalue=93 Sig Qvalue=92 91 91-

Lab Name: Eurofins Edison Jo		Job No.: 460-268503-1				
SDG No.:						
Client Sample ID:	FB_(20221028)	Lab Sample ID: $460-26850$	03-7			
Matrix: Water		Lab File ID: J82207.D				
Analysis Method: 624.1		Date Collected: 10/28/20	Date Collected: 10/28/2022 00:00			
Sample wt/vol: 5(mi	L)	Date Analyzed: 11/03/2022 15:10				
Soil Aliquot Vol:		Dilution Factor: 1				
Soil Extract Vol.:		GC Column: Rtx-624	ID: 0.25(mm)			
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N	рН:			
% Moisture:	% Solids:	Level: (low/med) Low				
Analysis Batch No.: 875754		Units: ug/L	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	111		60-140
1868-53-7	Dibromofluoromethane (Surr)	125		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		60-140
2037-26-5	Toluene-d8 (Surr)	88		60-140

Report Date: 03-Nov-2022 19:10:28 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82207.D

Lims ID: 460-268503-B-7 Client ID: FB_(20221028)

Sample Type: Client

Inject. Date: 03-Nov-2022 15:10:30 ALS Bottle#: 17 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-7 Misc. Info.: 460-0152676-018

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:10:28

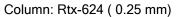
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	D	Response	OnCol Amt ug/l	Flags
-					•			
* 30 TBA-d9 (IS)	65	2.402	2.402	0.000	75	110848	1000.0	
* 43 2-Butanone-d5	46	3.315	3.315	0.000	87	138622	250.0	
\$ 55 Dibromofluoromethane (Surr)	113	3.741	3.740	0.001	96	114849	62.4	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.069	4.069	0.000	0	112243	44.3	
* 66 Fluorobenzene	96	4.331	4.331	0.000	99	423506	50.0	
* 72 1,4-Dioxane-d8	96	5.043	5.036	0.007	0	21571	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.046	6.040	0.006	99	363990	44.2	
* 94 Chlorobenzene-d5	117	7.999	7.993	0.006	85	384810	50.0	
\$ 105 4-Bromofluorobenzene	174	9.325	9.319	0.006	98	151757	55.6	
* 121 1,4-Dichlorobenzene-d4	152	10.372	10.371	0.001	94	239032	50.0	
Reagents:								
8260ISNEW 00171		Amount	Added: 1	1.00	L	Jnits: uL	Run Reager	nt

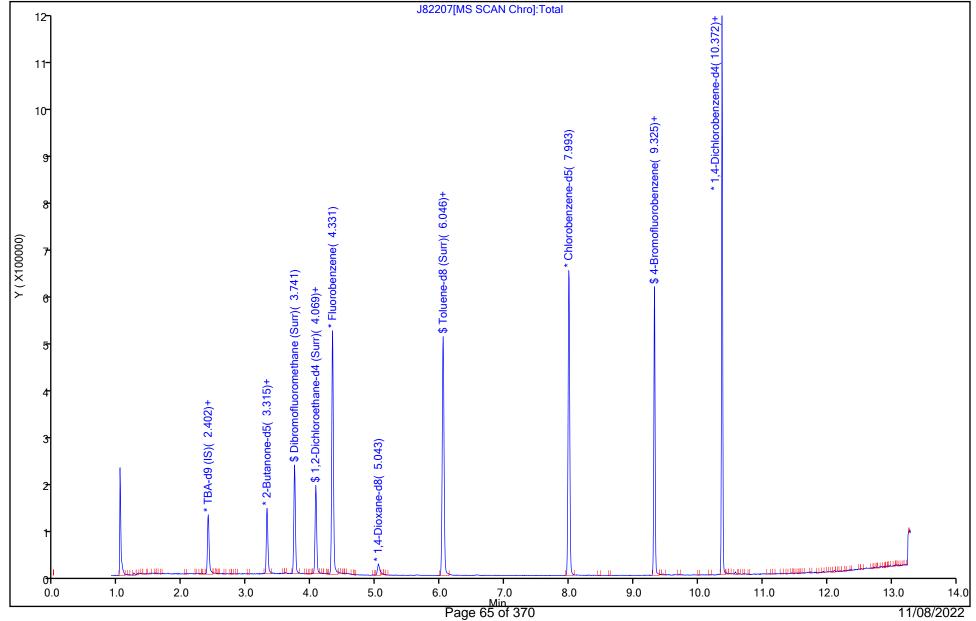
8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 19:10:28 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82207.D Injection Date: 03-Nov-2022 15:10:30 Instrument ID: CVOAMS8


 Injection Date:
 03-Nov-2022 15:10:30
 Instrument ID:
 CVOAMS8
 Operator ID:


 Lims ID:
 460-268503-B-7
 Lab Sample ID:
 460-268503-7
 Worklist Smp#:

Client ID: FB_(20221028)

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 17

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Report Date: 03-Nov-2022 19:10:28 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82207.D

Lims ID: 460-268503-B-7 Client ID: FB_(20221028)

Sample Type: Client

Inject. Date: 03-Nov-2022 15:10:30 ALS Bottle#: 17 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-7 Misc. Info.: 460-0152676-018

Operator ID: Instrument ID: CVOAMS8

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:10:28

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	62.4	124.74
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	44.3	88.65
\$ 83 Toluene-d8 (Surr)	50.0	44.2	88.43
\$ 105 4-Bromofluorobenzene	50.0	55.6	111.10

Lab Name: Eurofins Edison		Job No.: 460-268503-1	Job No.: 460-268503-1				
SDG No.:							
Client Sample ID: TB_(20221028)		Lab Sample ID: 460-2685	03-8				
Matrix: Water		Lab File ID: J82208.D	Lab File ID: J82208.D				
Analysis Method: 624.1		Date Collected: 10/28/2	Date Collected: 10/28/2022 00:00				
Sample wt/vol: 5(mL)		Date Analyzed: 11/03/20	Date Analyzed: 11/03/2022 15:35				
Soil Aliquot Vol:		Dilution Factor: 1	Dilution Factor: 1				
Soil Extract Vol.	:	GC Column: Rtx-624	ID: 0.25(mm)				
Purge Volume: 5.0	(mL)	Heated Purge: (Y/N) N	рН:				
% Moisture:	% Solids:	Level: (low/med) Low					
Analysis Batch No	.: 875754	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	107		60-140
1868-53-7	Dibromofluoromethane (Surr)	123		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		60-140
2037-26-5	Toluene-d8 (Surr)	92		60-140

Report Date: 03-Nov-2022 19:10:35 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82208.D

Lims ID: 460-268503-B-8 Client ID: TB_(20221028)

Sample Type: Client

Inject. Date: 03-Nov-2022 15:35:30 ALS Bottle#: 18 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-8 Misc. Info.: 460-0152676-019

Operator ID: Instrument ID: CVOAMS8

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

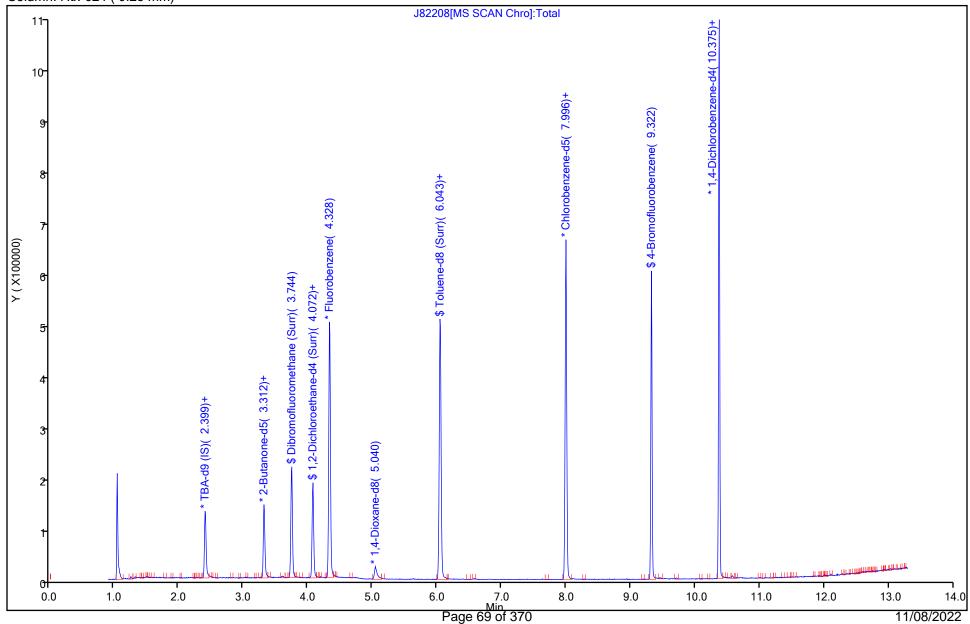
First Level Reviewer: HVW2 Date: 03-Nov-2022 19:10:35

				<u></u>		00 : 10 : 202		
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	О	Response	OnCol Amt ug/l	Flags
·		· · · · · · · · · · · · · · · · · · ·						
* 30 TBA-d9 (IS)	65	2.399	2.402	-0.003	75	121334	1000.0	
* 43 2-Butanone-d5	46	3.312	3.315	-0.003	88	149976	250.0	
\$ 55 Dibromofluoromethane (Surr)	113	3.744	3.740	0.004	96	115678	61.5	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.072	4.069	0.003	0	114772	44.4	
* 66 Fluorobenzene	96	4.328	4.331	-0.003	99	432274	50.0	
* 72 1,4-Dioxane-d8	96	5.040	5.036	0.004	0	23920	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.043	6.040	0.003	99	386471	45.9	
* 94 Chlorobenzene-d5	117	7.996	7.993	0.003	85	393270	50.0	
\$ 105 4-Bromofluorobenzene	174	9.322	9.319	0.003	94	149784	53.6	
* 121 1,4-Dichlorobenzene-d4	152	10.375	10.371	0.004	94	233246	50.0	
Reagents:								
8260ISNEW_00171		Amount	Added:	1.00	L	Jnits: uL	Run Reager	nt

8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 03-Nov-2022 19:10:35 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison


Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82208.D

Client ID: TB_(20221028)

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 18

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

Worklist Smp#:

Report Date: 03-Nov-2022 19:10:35 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82208.D

Lims ID: 460-268503-B-8 Client ID: TB_(20221028)

Sample Type: Client

Inject. Date: 03-Nov-2022 15:35:30 ALS Bottle#: 18 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-8 Misc. Info.: 460-0152676-019

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 16:45:09Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 19:10:35

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	61.5	123.09
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	44.4	88.81
\$ 83 Toluene-d8 (Surr)	50.0	45.9	91.87
\$ 105 4-Bromofluorobenzene	50.0	53.6	107.30

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: <u>871602</u>
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD7 460-871602/3	J81262.D
Level 2	STD1 460-871602/4	J81263.D
Level 3	STD5 460-871602/5	J81264.D
Level 4	STD20 460-871602/6	J81265.D
Level 5	STD50 460-871602/7	J81266.D
Level 6	STD200 460-871602/8	J81267.D
Level 7	STD500 460-871602/9	J81268.D

ANALYTE		RRF				CURVE	COEFFICIENT		MIN RRF	%RSD		XAM	R^2	#	MIN R^2	
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			1 9	RSD	OR COD		OR COD
Dichlorodifluoromethane	++++	0.3568	0.3839	0.3517	0.3503	Ave		0.367			4.5		35.0			
Chloromethane	0.3866		0.5398	0.5079	0.5010	Ave		0.530			5.7		35.0			
	0.5313	0.5175						4								
Vinyl chloride	+++++ 0.3438		0.3592	0.3468	0.3394	Ave		0.352			7.9		35.0			
Butadiene	0.3620 0.3327		0.3562	0.3306	0.3175	Ave		0.338			8.0		35.0			
Bromomethane	+++++ 0.1350		0.1236	0.1231	0.1211	Ave		0.129			6.3		35.0			
Chloroethane	+++++ 0.1620		0.1980	0.1794	0.1665	Ave		0.174			9.8		35.0			
Trichlorofluoromethane	+++++ 0.3685		0.3882	0.3676	0.3619	Ave		0.374			6.8		35.0			
Pentane	+++++ 0.4132		0.5226	0.4774	0.4388	Ave		0.437			13.7		35.0			
Ethanol	+++++ 0.0361		0.0472	0.0513	0.0462	Ave		0.045			12.7		35.0			
Ethyl ether	+++++ 0.2142		0.2156	0.2282	0.2211	Ave		0.217			8.0		35.0			
2-Methyl-1,3-butadiene	+++++ 0.2580		0.3004	0.2765	0.2740	Ave		0.274			10.3		35.0			
1,1,2-Trichloro-1,2,2-trifluoroeth	+++++ 0.2149		0.2407	0.2254	0.2199	Ave		0.221			6.6		35.0			
Acrolein	+++++ 1.7676	2.0821	1.8575	1.6380	1.7370	Ave		1.798			8.7		35.0			

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

 Lab Name:
 Eurofins Edison
 Job No.:
 460-268503-1
 Analy Batch No.:
 871602

SDG No.:

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD	**	1 1 2 1	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
1,1-Dichloroethene	+++++ 0.2031	0.2802 0.1895	0.2296	0.2188	0.2105	Ave		0.221			14.3	35.0		
Acetone	+++++ 0.6729	0.7991 0.6423	0.6542	0.6099	0.5979	Ave		0.662			10.9	35.0		
Iodomethane	+++++ 0.2762	0.1891 0.2572	0.1528	0.2093	0.2492	Lin2	-0.06	0.235			19.1	35.0		
Isopropyl alcohol	+++++ 0.5049	0.4218 0.5617	0.5371	0.5088	0.5829	Ave	'	0.519			10.9	35.0		
Carbon disulfide	+++++ 0.7923	0.9372 0.7213	0.7971	0.8167	0.8286	Ave		0.815			8.6	35.0		
3-Chloro-1-propene	+++++ 0.1456	0.1936 0.1251	0.1570	0.1592	0.1536	Ave		0.155			14.3	35.0		
Methyl acetate	+++++ 0.2095	0.2443 0.1856	0.2071	0.2160	0.2231	Ave		0.214			9.1	35.0		
Acetonitrile	+++++ 1.2453	1.2358 1.5108	1.2687	1.3351	1.3568	Ave		1.325			7.8	35.0		
Methylene Chloride	+++++ 0.2572	0.3297	0.2814	0.2763	0.2623	Ave		0.274			11.3	35.0		
2-Methyl-2-propanol	+++++ 0.7334	0.8998	0.7784	0.7739	0.8174	Ave		0.801			7.0	35.0		
Methyl tert-butyl ether	+++++ 0.6872	0.7326 0.6282	0.6482	0.6853	0.7079	Ave		0.681			5.6	35.0		
trans-1,2-Dichloroethene	+++++ 0.2311	0.3206 0.2142	0.2597	0.2440	0.2390	Ave		0.251			14.7	35.0		
Acrylonitrile	5.0821 4.3947	5.3163 3.8435	4.9801	5.1319	4.7366	Ave		4.783			10.7	35.0		
Hexane	+++++ 0.3135	0.3052 0.2773	0.3302	0.3294	0.3246	Ave		0.313			6.4	35.0		
Isopropyl ether	+++++ 1.0622	1.0622 0.9354	1.0274	1.0723	1.0906	Ave		1.041			5.4	35.0		
1,1-Dichloroethane	+++++ 0.5292	0.6580 0.4661	0.6094	0.5699	0.5575	Ave		0.565			11.7	35.0		
Vinyl acetate	+++++ 0.6571	0.6906 0.5241	0.6940	0.7233	0.6801	Ave		0.661			10.7	35.0		
2,2-Dichloropropane	+++++ 0.1299	0.2127 0.1219	0.1408	0.1341	0.1325	Ave		0.145			23.1	35.0		

 Lab Name:
 Eurofins Edison
 Job No.:
 460-268503-1
 Analy Batch No.:
 871602

SDG No.:

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/12/2022 23:30 Calibration End Date: 10/13/2022 02:01 Calibration ID: 91516

ANALYTE			RRF			CURVE		COEFFICIE	ENT #	MIN RRF	%RSD			#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSI	OR COI		OR COD
cis-1,2-Dichloroethene	+++++ 0.2595	0.3373	0.2865	0.2690	0.2635	Ave		0.276			11.9	35.	0		
2-Butanone (MEK)	++++ 0.1915	0.2397 0.1868	0.1975	0.1882	0.1756	Ave		0.196			11.3	35.	0		
Ethyl acetate	++++ 0.2008	0.2198 0.2044	0.1994	0.2085	0.1985	Ave		0.205			3.9	35.	0		
Chlorobromomethane	+++++ 0.1112	0.1611	0.1208	0.1202	0.1167	Ave		0.122			16.3	35.	0		
Tetrahydrofuran	+++++ 0.1943	0.1558 0.1848	0.2252	0.2141	0.2022	Ave		0.196			12.4	35.	0		
Chloroform	+++++ 0.4673	0.5872 0.4113	0.5180	0.4961	0.4809	Ave		0.493			11.8	35.	0		
Cyclohexane	+++++ 0.2930	0.3313	0.3345	0.3112	0.3029	Ave		0.307			8.0	35.	0		
1,1,1-Trichloroethane	+++++ 0.3770	0.4487	0.4026	0.3860	0.3768	Ave		0.390			8.5	35.	0		
Carbon tetrachloride	+++++ 0.3096	0.3292	0.3143	0.3046	0.3049	Ave		0.310			3.3	35.	0		
1,1-Dichloropropene	+++++ 0.3625	0.4095 0.3478	0.3807	0.3767	0.3698	Ave		0.374			5.5	35.	0		
Benzene	+++++ 1.2966	1.6349 1.1755	1.4449	1.4388	1.3717	Ave		1.393			11.1	35.	0		
Isopropyl acetate	+++++ 0.8052	0.7887	0.7458	0.7871	0.8261	Ave		0.783			4.1	35.	0		
1,2-Dichloroethane	+++++ 0.3980	0.4858	0.4230	0.4223	0.4053	Ave		0.418			8.9	35.	0		
n-Heptane	+++++ 0.1219	0.1425 0.1113	0.1260	0.1233	0.1233	Ave		0.124			8.1	35.	0		
n-Butanol	+++++ 0.1925	0.1339	0.1746	0.1898	0.2206	Ave		0.189			17.4	35.	0		
Trichloroethene	+++++ 0.2593	0.3543	0.2769	0.2623	0.2659	Ave		0.278			13.8	35.	0		
Methylcyclohexane	+++++ 0.3156	0.3139	0.3288	0.3250	0.3205	Ave		0.315			4.3	35.	0		
Ethyl acrylate	+++++ 0.6687	0.7385 0.6159	0.6487	0.6667	0.6870	Ave		0.670			6.1	35.	0		

 Lab Name:
 Eurofins Edison
 Job No.:
 460-268503-1
 Analy Batch No.:
 871602

SDG No.:

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
1,2-Dichloropropane	+++++ 0.3107	0.4078 0.2910	0.3321	0.3283	0.3181	Ave		0.331				12.1	35.0		
Methyl methacrylate	++++ 0.0508	0.0533 0.0486	0.0476	0.0499	0.0503	Ave		0.050				3.9	35.0)	
1,4-Dioxane	+++++ 0.5006	0.3592 0.5429	0.7050	0.5376	0.6154	Ave		0.543				21.3	35.0)	
Dibromomethane	+++++ 0.1711	0.2315 0.1642	0.1778	0.1761	0.1747	Ave		0.182				13.4	35.0)	
n-Propyl acetate	+++++ 0.4316	0.4407 0.4131	0.3685	0.4180	0.4362	Ave		0.418				6.3	35.0)	
Dichlorobromomethane	+++++ 0.3683	0.4174 0.3659	0.3587	0.3587	0.3576	Ave		0.371				6.2	35.0)	
2-Chloroethyl vinyl ether	+++++ 0.1922	0.1842 0.1843	0.1755	0.1771	0.1900	Ave		0.183				3.6	35.0)	
Epichlorohydrin	0.2342 0.1961	0.1919 0.1967	0.1992	0.1943	0.1937	Ave		0.200				7.4	35.0)	
cis-1,3-Dichloropropene	+++++	0.6737	0.6434	0.6691	0.6535	Ave		0.656				2.5	35.0)	
4-Methyl-2-pentanone (MIBK)	+++++ 2.3248			2.4539	2.3298	Ave		2.370				4.8	35.0)	
Toluene	+++++ 1.4136		1.4623	1.4860	1.4140	Ave		1.456				8.0	35.0)	
trans-1,3-Dichloropropene	+++++ 0.6126	0.5874 0.5871	0.5500	0.5817	0.5870	Ave		0.584				3.4	35.0)	
1,1,2-Trichloroethane	+++++	0.3201	0.3058	0.3145	0.3032	Ave		0.307				3.1	35.0)	
Tetrachloroethene	+++++ 0.2995	0.3250	0.3050	0.3139	0.2957	Ave		0.304				4.7	35.0)	
1,3-Dichloropropane	+++++ 0.5733	0.5906	0.5638	0.5941	0.5618	Ave		0.568				4.3	35.0)	
2-Hexanone	+++++	0.8025	0.7985	0.7659	0.7599	Ave		0.774				2.8	35.0)	
n-Butyl acetate	+++++	0.7005 0.6185	0.6750	0.6754	0.6833	Ave		0.672				4.2	35.0)	
Chlorodibromomethane	+++++ 0.3526	0.3142	0.2913	0.3177	0.3272	Ave		0.324				6.8	35.0)	

 Lab Name:
 Eurofins Edison
 Job No.:
 460-268503-1
 Analy Batch No.:
 871602

SDG No.:

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		R^2	# MIN R
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR CO
Ethylene Dibromide	+++++ 0.3287	0.3539 0.3138	0.3205	0.3418	0.3281	Ave		0.331			4.4	35.		
Chlorobenzene	+++++ 0.8488	0.9778 0.8037	0.8953	0.8913	0.8597	Ave		0.879			6.7	35.)	
Ethylbenzene	+++++ 0.4539	0.4872 0.4276	0.4746	0.4635	0.4547	Ave		0.460			4.4	35.		
1,1,1,2-Tetrachloroethane	+++++ 0.3140	0.2997 0.3059	0.2840	0.2911	0.3014	Ave		0.299			3.6	35.		
m-Xylene & p-Xylene	++++ 0.5398	0.6526 0.5182	0.5793	0.5844	0.5629	Ave		0.572			8.1	35.		
o-Xylene	+++++ 0.5553	0.6253 0.5216	0.5970	0.5958	0.5609	Ave		0.576			6.4	35.		
n-Butyl acrylate	++++ 0.2914	0.3093	0.2789	0.2945	0.2920	Ave		0.291			3.8	35.		
Styrene	++++ 0.9670	1.0947	0.9706	1.0150	0.9761	Ave		0.987			6.5	35.		
Bromoform	+++++ 0.2331	0.1817 0.2378	0.1676	0.1942	0.2041	Ave		0.203			13.7	35.		
Amyl acetate (mixed isomers)	+++++ 1.4175		1.4384	1.5441	1.4905	Ave		1.443			6.7	35.)	
Isopropylbenzene	+++++ 1.3496		1.4516	1.4309	1.3569	Ave		1.401			7.5	35.)	
Bromobenzene	+++++ 0.6740	0.8172 0.6207	0.7224	0.7046	0.6781	Ave		0.702			9.4	35.)	
1,1,2,2-Tetrachloroethane	+++++ 0.8268	0.8664 0.7553	0.8300	0.8674	0.8346	Ave		0.830			4.9	35.		
N-Propylbenzene	+++++ 3.1276	3.7916 2.6720	3.4272	3.4296	3.3200	Ave		3.294			11.3	35.		
1,2,3-Trichloropropane	+++++ 0.1780	0.2076 0.1643	0.1914	0.1784	0.1779	Ave		0.182			8.1	35.		
2-Chlorotoluene	+++++ 2.2601	2.6322	2.4238	2.4423	2.3222	Ave		2.353			8.5	35.		
1,3,5-Trimethylbenzene	+++++ 2.1559	2.4439	2.2749	2.2387	2.1467	Ave		2.195			8.0	35.		
4-Chlorotoluene	+++++ 2.2325	2.5653	2.3295	2.3136	2.2448	Ave		2.271			8.8	35.		

Lab Name: Eurofins Edison Job No.: 460-268503-1 Analy Batch No.: 871602

SDG No.:

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		1	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Butyl Methacrylate	+++++ 0.8781	0.8534 0.8106	0.8422	0.8741	0.8629	Ave		0.853			2.9	35.0		
tert-Butylbenzene	+++++ 1.5914	1.8751 1.4237	1.7088	1.7194	1.6492	Ave		1.661			9.0	35.0)	
1,2,4-Trimethylbenzene	+++++ 2.2887	2.5492 2.0246	2.3446	2.3900	2.3326	Ave		2.321			7.4	35.0)	
sec-Butylbenzene	+++++ 2.3741	2.8107	2.6187	2.5840	2.5118	Ave		2.501			9.6	35.0)	
1,3-Dichlorobenzene	+++++ 1.2436	1.3969 1.1161	1.2811	1.2823	1.2532	Ave		1.262			7.1	35.0		
4-Isopropyltoluene	+++++	2.2948 1.7765	2.1083	2.1279	2.1032	Ave		2.076			8.1	35.0		
1,4-Dichlorobenzene	+++++ 1.2918	1.4794 1.1734	1.3323	1.3469	1.3002	Ave		1.320			7.5	35.0)	
1,2,3-Trimethylbenzene	+++++	2.6600	2.5226	2.5354	2.4625	Ave		2.461			6.8	35.0)	
Benzyl chloride	+++++ 1.5324	1.1978	1.1713	1.3005	1.4001	Ave		1.338			10.5	35.0)	
n-Butylbenzene	+++++	1.3006	1.2083	1.1842	1.1582	Ave		1.165			8.4	35.0)	
1,2-Dichlorobenzene	+++++ 1.2426	1.3874	1.2675	1.2694	1.2277	Ave		1.254			6.6	35.0)	
1,2-Dibromo-3-Chloropropane	+++++	0.1227	0.1289	0.1273	0.1307	Ave		0.131			4.9	35.0)	
1,2,4-Trichlorobenzene	+++++	0.9399	0.7851	0.8069	0.8058	Ave		0.814			8.3	35.0)	
Hexachlorobutadiene	+++++ 0.2713	0.3049	0.2951	0.2839	0.2697	Ave		0.281			5.8	35.0)	
Naphthalene	+++++	2.3701	2.0494	2.1153	2.1200	Ave		2.104			7.4	35.0)	
1,2,3-Trichlorobenzene	+++++	0.8585	0.7023	0.7466	0.7392	Ave		0.749			7.8	35.0)	
Dibromofluoromethane (Surr)	0.2307 0.2212	0.2280	0.1858	0.2196	0.2183	Ave		0.217			6.8	35.0		
1,2-Dichloroethane-d4 (Surr)	0.3106 0.3089	0.3104	0.2565	0.2988	0.2996	Ave		0.299			6.5	35.0		

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE			RRF			CURVE		COEFFIC	ENT	#	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
Toluene-d8 (Surr)	1.0614 1.1300	1.0765 1.0989		1.1162	1.0965	Ave		1.069				7.0		35.0			
4-Bromofluorobenzene	0.3593 0.3587		0.2999	0.3670	0.3570	Ave		0.355				7.1		35.0			

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

<u>Calibration</u>	Files	
LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD7 460-871602/3	J81262.D
Level 2	STD1 460-871602/4	J81263.D
Level 3	STD5 460-871602/5	J81264.D
Level 4	STD20 460-871602/6	J81265.D
Level 5	STD50 460-871602/7	J81266.D
Level 6	STD200 460-871602/8	J81267.D
Level 7	STD500 460-871602/9	J81268.D

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Dichlorodifluoromethane	FB	Ave	+++++ 729408	3135 1850513	17424	64772	164101	+++++ 200	1.00 500	5.00	20.0	50.0
Chloromethane	FB	Ave	++++ 1002289	5140 2552636	24499	93533	234711	+++++ 200	1.00	5.00	20.0	50.0
Vinyl chloride	FB	Ave	+++++ 648672	3554 1591757	16302	63880	159015	+++++ 200	1.00	5.00	20.0	50.0
Butadiene	FB	Ave	809 627578	3290 1468363	16168	60887	148773	0.250 200	1.00 500	5.00	20.0	50.0
Bromomethane	FB	Ave	+++++ 254644	1192 694129	5612	22670	56748	+++++ 200	1.00 500	5.00	20.0	50.0
Chloroethane	FB	Ave	+++++ 305622	1636 747795	8988	33037	78010	+++++ 200	1.00 500	5.00	20.0	50.0
Trichlorofluoromethane	FB	Ave	++++ 695233	3674 1695311	17621	67708	169536	+++++ 200	1.00 500	5.00	20.0	50.0
Pentane	FB	Ave	+++++ 1558853	7463 3417145	47440	175847	411174	+++++ 400	2.00 1000	10.0	40.0	100
Ethanol	TBAd	Ave	+++++	343	1672	7465	18619	+++++	40.0	200	800	2000
			59052	167008				8000	20000			
Ethyl ether	FB	Ave	+++++ 404180	2101 923063	9784	42021	103598	+++++ 200	1.00 500	5.00	20.0	50.0
2-Methyl-1,3-butadiene	FB	Ave	+++++ 486738	2706 1136977	13635	50915	128379	+++++ 200	1.00 500	5.00	20.0	50.0
1,1,2-Trichloro-1,2,2-trifluoroe thane	FB	Ave	+++++ 405461	2032 975662	10924	41509	103015	+++++ 200	1.00	5.00	20.0	50.0

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Acrolein	TBAd	Ave	+++++	1455	6575	11907	35021	+++++	4.00	20.0	40.0	100
	9		72291	141694				200	400			
1,1-Dichloroethene	FB	Ave	+++++	2462	10419	40293	98642	+++++	1.00	5.00	20.0	50.0
			383118	934657				200	500			
Acetone	BUT	Ave	++++	4181	17697	69593	184664	+++++	5.00	25.0	100	250
			846983	1990820				1000	2500			
Iodomethane	FB	Lin2	+++++	1661	6937	38539	116770	+++++	1.00	5.00	20.0	50.0
			521096	1268801				200	500			
Isopropyl alcohol	TBAd	Ave	+++++	737	4753	18494	58764	++++	10.0	50.0	200	500
			206503	581800				2000	5000			
Carbon disulfide	FB	Ave	+++++	8234	36178	150419	388233	++++	1.00	5.00	20.0	50.0
			1494626	3557940				200	500			
3-Chloro-1-propene	FB	Ave	+++++	1701	7128	29320	71984	+++++	1.00	5.00	20.0	50.0
			274694	617231				200	500			
Methyl acetate	FB	Ave	+++++	4293	18802	79558	209052	+++++	2.00	10.0	40.0	100
			790377	1830598				400	1000			
Acetonitrile	TBAd	Ave	+++++	2159	11227	48527	136774	++++	10.0	50.0	200	500
			509290	1564806				2000	5000			
Methylene Chloride	FB	Ave	+++++	2897	12771	50896	122912	+++++	1.00	5.00	20.0	50.0
_			485161	1182036				200	500			
2-Methyl-2-propanol	TBAd	Ave	+++++	1572	6888	28129	82405	+++++	10.0	50.0	200	500
	9		299960	836237				2000	5000			
Methyl tert-butyl ether	FB	Ave	+++++	6436	29418	126213	331676	+++++	1.00	5.00	20.0	50.0
			1296415	3098875				200	500			
trans-1,2-Dichloroethene	FB	Ave	+++++	2817	11789	44943	111993	+++++	1.00	5.00	20.0	50.0
			435927	1056563				200	500			
Acrylonitrile	TBAd	Ave	1806	9288	44070	186525	477492	2.00	10.0	50.0	200	500
	9		1797357	3980971				2000	5000			
Hexane	FB	Ave	+++++	2681	14985	60667	152063	++++	1.00	5.00	20.0	50.0
			591478	1367564	11300	55557	_02000	200	500	0.00	20.0	00.0
Isopropyl ether	FB	Ave	+++++	9332	46632	197494	510990		1.00	5.00	20.0	50.0

Lab Name: Eurofins Edison	Job No.: $\frac{460-268503-1}{1}$		Analy Batch No.: 871602	
SDG No.:				
Instrument ID: CVOAMS8	GC Column: Rtx-624	ID: 0.25(mm)	Heated Purge: (Y/N) N	

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
			2003793	4614135				200	500			
1,1-Dichloroethane	FB	Ave	+++++	5781	27661	104968	261202	+++++	1.00	5.00	20.0	50.0
			998356	2299176				200	500			
Vinyl acetate	FB	Ave	+++++	12134	62993	266416	637251	+++++	2.00	10.0	40.0	100
			2479096	5169943				400	1000			
2,2-Dichloropropane	FB	Ave	+++++	1869	6392	24706	62081	+++++	1.00	5.00	20.0	50.0
			244978	601291				200	500			
cis-1,2-Dichloroethene	FB	Ave	+++++	2963	13004	49548	123461	+++++	1.00	5.00	20.0	50.0
			489556	1197715				200	500			
2-Butanone (MEK)	BUT	Ave	+++++	1254	5342	21476	54251	+++++	5.00	25.0	100	250
			241063	579102				1000	2500			
Ethyl acetate	BUT	Ave	+++++	460	2157	9516	24524	+++++	2.00	10.0	40.0	100
			101093	253434				400	1000			
Chlorobromomethane	FB	Ave	+++++	1415	5485	22138	54682	+++++	1.00	5.00	20.0	50.0
			209701	513653				200	500			
Tetrahydrofuran	BUT	Ave	+++++	326	2437	9771	24978	+++++	2.00	10.0	40.0	100
			97840	229080				400	1000			
Chloroform	FB	Ave	++++	5159	23510	91370	225331	+++++	1.00	5.00	20.0	50.0
			881586	2028735				200	500			
Cyclohexane	FB	Ave	++++	2911	15181	57310	141932	+++++	1.00	5.00	20.0	50.0
			552748	1328328				200	500			
1,1,1-Trichloroethane	FB	Ave	++++	3942	18272	71090	176527	+++++	1.00	5.00	20.0	50.0
			711163	1733938				200	500			
Carbon tetrachloride	FB	Ave	++++	2892	14263	56094	142869	+++++	1.00	5.00	20.0	50.0
			584066	1484179				200	500			
1,1-Dichloropropene	FB	Ave	+++++	3598	17277	69378	173240	+++++	1.00	5.00	20.0	50.0
			683826	1715702				200	500			
Benzene	CBNZ	Ave	++++	11308	49674	198090	492802	+++++	1.00	5.00	20.0	50.0
	d5											
			1877633	4554246				200	500			
Isopropyl acetate	FB	Ave	++++	6929	33852	144954	387065	+++++	1.00	5.00	20.0	50.0
			1518941	3686419				200	500			
1,2-Dichloroethane	FB	Ave	+++++	4268	19199	77775	189915	+++++	1.00	5.00	20.0	50.0
			750759	1855837				200	500			
n-Heptane	FB	Ave	+++++	1252	5721	22700	57755	+++++	1.00	5.00	20.0	50.0
			229923	548849				200	500			

 Lab Name:
 Eurofins Edison
 Job No.:
 460-268503-1
 Analy Batch No.:
 871602

SDG No.:

Instrument ID: CVOAMS8 GC Column: Rtx-624 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE			CONCE	NTRATION (U	JG/L)		
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
n-Butanol	TBAd	Ave	++++	585	3863	17245	55587	++++	25.0	125	500	1250
	9											
			196784	578875				5000	12500			
Trichloroethene	FB	Ave	++++	3113	12567	48315	124583	+++++	1.00	5.00	20.0	50.0
			489095	1231962				200	500			
Methylcyclohexane	FB	Ave	+++++	2758	14924	59856	150147	+++++	1.00	5.00	20.0	50.0
			595387	1432134				200	500			
Ethyl acrylate	FB	Ave	++++	6488	29444	122785	321873	+++++	1.00	5.00	20.0	50.0
			1261596	3038171				200	500			
1,2-Dichloropropane	FB	Ave	++++	3583	15072	60458	149051	+++++	1.00	5.00	20.0	50.0
			586171	1435525				200	500			
Methyl methacrylate	FB	Ave	++++	937	4325	18376	47148	+++++	2.00	10.0	40.0	100
			191705	479117				400	1000			
1,4-Dioxane	DXE	Ave	++++	443	1656	5130	16143	+++++	50.0	100	400	1000
			55365	174106				4000	10000			
Dibromomethane	FB	Ave	+++++	2034	8071	32438	81852	+++++	1.00	5.00	20.0	50.0
			322712	809742				200	500			
n-Propyl acetate	FB	Ave	+++++	3872	16727	76992	204392	+++++	1.00	5.00	20.0	50.0
			814239	2037619				200	500			
Dichlorobromomethane	FB	Ave	+++++	3667	16281	66063	167544	+++++	1.00	5.00	20.0	50.0
			694794	1804834				200	500			
2-Chloroethyl vinyl ether	FB	Ave	+++++	1622	7983	32686	89247	+++++	1.00	5.01	20.0	50.1
			363490	911082				200	501			
Epichlorohydrin	BUT	Ave	1218	4017	21548	88675	239367	5.00	20.0	100	400	1000
			987405	2438316				4000	10000			
cis-1,3-Dichloropropene	CBNZ	Ave	+++++	4660	22120	92114	234776	+++++	1.00	5.00	20.0	50.0
	d5											
			966856	2450122				200	500			
4-Methyl-2-pentanone (MIBK)	BUT	Ave	+++++	13211	64689	280021	719589	+++++	5.00	25.0	100	250
			2926389	6818163				1000	2500			
Toluene	CBNZ	Ave	+++++	11462	50271	204579	507992	+++++	1.00	5.00	20.0	50.0
	d5											
			2046949	5050245				200	500			
trans-1,3-Dichloropropene	CBNZ	Ave	++++	4063	18907	80082	210875	+++++	1.00	5.00	20.0	50.0
,	d5										- / -	
	45		887130	2274666				200	500			

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25 (mm)	Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			CONCE	NTRATION (UG/L)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,1,2-Trichloroethane	CBNZ d5	Ave	+++++	2214	10512	43294	108946	+++++	1.00	5.00	20.0	50.0
			446967	1134865				200	500			
Tetrachloroethene	CBNZ d5	Ave	+++++	2248	10485	43218	106239	+++++	1.00	5.00	20.0	50.0
	43		433721	1102554				200	500			
1,3-Dichloropropane	CBNZ d5	Ave	+++++	4085	19381	81788	201831	+++++	1.00	5.00	20.0	50.0
	43		830225	2040410				200	500			
2-Hexanone	BUT	Ave	+++++	4199	21600	87403	234708	+++++	5.00	25.0	100	250
			970278	2320160				1000	2500			
n-Butyl acetate	CBNZ d5	Ave	++++	4845	23204	92982	245488	+++++	1.00	5.00	20.0	50.0
			987937	2396191				200	500			
Chlorodibromomethane	CBNZ d5	Ave	+++++	2173	10015	43742	117568	+++++	1.00	5.00	20.0	50.0
	43		510623	1331880				200	500			
Ethylene Dibromide	CBNZ d5	Ave	+++++	2448	11018	47055	117885	+++++	1.00	5.00	20.0	50.0
			475919	1215875				200	500			
Chlorobenzene	CBNZ d5	Ave	+++++	6763	30778	122710	308874	+++++	1.00	5.00	20.0	50.0
	43		1229142	3113658				200	500			
Ethylbenzene	CBNZ d5	Ave	++++	3370	16314	63813	163350	+++++	1.00	5.00	20.0	50.0
			657252	1656518				200	500			
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	++++	2073	9762	40080	108277	+++++	1.00	5.00	20.0	50.0
			454722	1185206				200	500			
m-Xylene & p-Xylene	CBNZ d5	Ave	++++	4514	19914	80463	202215	+++++	1.00	5.00	20.0	50.0
	43		781707	2007832				200	500			
o-Xylene	CBNZ d5	Ave	+++++	4325	20522	82024	201515	+++++	1.00	5.00	20.0	50.0
	45		804180	2020993				200	500			

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25 (mm)	Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
n-Butyl acrylate	CBNZ	Ave	+++++	2139	9588	40541	104902	++++	1.00	5.00	20.0	50.0
	d5		421915	1086316				200	500			
Styrene	CBNZ	Ave	+++++	7572	33366	139738	350671	+++++	1.00	5.00	20.0	50.0
	d5		1400273	3488106				200	500			
Bromoform	CBNZ	Ave	++++	1257	5762	26732	73334	++++	1.00	5.00	20.0	50.0
	d5		337489	921147				200	500			
Amyl acetate (mixed isomers)	DCBd	Ave	+++++	5671	27264	116915	291831	+++++	1.00	5.00	20.0	50.0
	4		1152166	2911135				200	500			
Isopropylbenzene	CBNZ d5	Ave	+++++	10809	49904	197001	487486	+++++	1.00	5.00	20.0	50.0
	as		1954403	4865564				200	500			
Bromobenzene	DCBd 4	Ave	+++++	3090	13692	53347	132774	++++	1.00	5.00	20.0	50.0
			547850	1422418				200	500			
1,1,2,2-Tetrachloroethane	DCBd 4	Ave	+++++	3276	15731	65677	163403	+++++	1.00	5.00	20.0	50.0
			672005	1730998				200	500			
N-Propylbenzene	DCBd 4	Ave	++++	14337	64960	259677	650039	++++	1.00	5.00	20.0	50.0
			2542113	6123342				200	500			
1,2,3-Trichloropropane	DCBd 4	Ave	+++++	785	3628	13508	34837	+++++	1.00	5.00	20.0	50.0
			144668	376478				200	500			
2-Chlorotoluene	DCBd 4	Ave	++++	9953	45940	184924	454681	+++++	1.00	5.00	20.0	50.0
			1837011	4669756				200	500			
1,3,5-Trimethylbenzene	DCBd 4	Ave	+++++	9241	43118	169505	420309	+++++	1.00	5.00	20.0	50.0
	1		1752352	4376970				200	500			
4-Chlorotoluene	DCBd 4	Ave	+++++	9700	44154	175178	439529	+++++	1.00	5.00	20.0	50.0
	4		1814584	4457934				200	500			

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE	IS	CURVE				CONCE	NTRATION (U	JG/L)				
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Butyl Methacrylate	DCBd	Ave	++++	3227	15963	66185	168959	+++++	1.00	5.00	20.0	50.0
	4		713743	1857726				200	500			
tert-Butylbenzene	2021	Ave	113743	7090	32388	130184	322907	++++	1.00	5.00	20.0	50.0
cere bacymenzene	DCBd 4	1100		7030	32300	130104	322307		1.00	3.00	20.0	30.0
	4		1293495	3262653				200	500			
1,2,4-Trimethylbenzene	DCBd	Ave	+++++	9639	44439	180961	456709	+++++	1.00	5.00	20.0	50.0
	4		1860268	4639682				200	500			
sec-Butylbenzene	DCBd	Ave	++++	10628	49635	195651	491806	+++++	1.00	5.00	20.0	50.0
	4											
			1929650	4833209				200	500			
1,3-Dichlorobenzene	DCBd 4	Ave	+++++	5282	24283	97090	245368	++++	1.00	5.00	20.0	50.0
	-		1010832	2557865				200	500			
4-Isopropyltoluene	DCBd	Ave	++++	8677	39960	161116	411794	+++++	1.00	5.00	20.0	50.0
	4		1664901	4071140				200	500			
1,4-Dichlorobenzene	DCBd	Ave	+++++	5594	25252	101985	254577	+++++	1.00	5.00	20.0	50.0
	4											
			1050024	2689129				200	500			
1,2,3-Trimethylbenzene	DCBd 4	Ave	+++++	10058	47814	191974	482150	++++	1.00	5.00	20.0	50.0
	4		1969152	4957957				200	500			
Benzyl chloride	DCBd	Ave	+++++	4529	22201	98468	274141	++++	1.00	5.00	20.0	50.0
	4		1245583	3276591				200	500			
n-Butylbenzene	DCBd	Ave	+++++	4918	22902	89665	226774	+++++	1.00	5.00	20.0	50.0
-	4											
			928253	2293278				200	500			
1,2-Dichlorobenzene	DCBd	Ave	+++++	5246	24024	96116	240378	+++++	1.00	5.00	20.0	50.0
	4		1009974	2589395				200	500			
1,2-Dibromo-3-Chloropropane	DCBd	Ave	+++++	464	2444	9639	25589	++++	1.00	5.00	20.0	50.0
	4											
			114907	309301				200	500			

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2,4-Trichlorobenzene	DCBd	Ave	+++++	3554	14881	61096	157773	++++	1.00	5.00	20.0	50.0
	4		661790	1688922				200	500			
Hexachlorobutadiene	DCBd 4	Ave	++++	1153	5594	21498	52806	++++	1.00	5.00	20.0	50.0
	1		220516	601278				200	500			
Naphthalene	DCBd 4	Ave	++++	8962	38845	160166	415085	+++++	1.00	5.00	20.0	50.0
			1694112	4325742				200	500			
1,2,3-Trichlorobenzene	DCBd 4	Ave	++++	3246	13311	56533	144726	+++++	1.00	5.00	20.0	50.0
			613422	1598850				200	500			
Dibromofluoromethane (Surr)	FB	Ave	103108 104303	100153 107724	84338	101089	102265	50.0 50.0	50.0 50.0	50.0	50.0	50.0
1,2-Dichloroethane-d4 (Surr)	FB	Ave	138853 145667	136337 151860	116439	137585	140365	50.0 50.0	50.0 50.0	50.0	50.0	50.0
Toluene-d8 (Surr)	CBNZ d5	Ave	372868	372297	312172	384192	393919	50.0	50.0	50.0	50.0	50.0
	as as		409084	425746				50.0	50.0			
4-Bromofluorobenzene	CBNZ d5	Ave	126223	126472	103084	126311	128266	50.0	50.0	50.0	50.0	50.0
			129852	146141				50.0	50.0			

Curve Type Legend
Ave = Average ISTD

Lin2 = Linear 1/conc^2 ISTD

FORM VI

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD7 460-871602/3	J81262.D
Level 2	STD1 460-871602/4	J81263.D
Level 3	STD5 460-871602/5	J81264.D
Level 4	STD20 460-871602/6	J81265.D
Level 5	STD50 460-871602/7	J81266.D
Level 6	STD200 460-871602/8	J81267.D
Level 7	STD500 460-871602/9	J81268.D

ANALYTE			PERCENT ERROR LIMIT									
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
Dichlorodifluoromethane	+++++ 2.1	-2.9	4.5	-4.3	-4.7	5.2	30	50	30	30	30	30
Chloromethane	+++++	10.3	1.8	-4.3	-5.6	0.2	30	50	30	30	30	30
Vinyl chloride	+++++ -8.5	14.7	1.8	-1.7	-3.8	-2.5	30	50	30	30	30	30
Butadiene	6.9 -12.1	10.6	5.2	-2.4	-6.3	-1.8	50 30	30	30	30	30	30
Bromomethane	+++++	4.5	-4.8	-5.2	-6.7	3.9	30	50	30	30	30	30
Chloroethane	+++++	7.0	13.8	3.1	-4.3	-6.9	30	50	30	30	30	30
Trichlorofluoromethane	+++++	11.6	3.6	-1.9	-3.4	-1.6	30	50	30	30	30	30
Pentane	+++++	-2.8	19.5	9.2	0.4	-5.5	30	50	30	30	30	30
Ethanol	+++++ -10.5	9.0	4.9	14.0	2.5	-19.9	30	50	30	30	30	30
Ethyl ether	+++++	9.9	-0.9	4.9	1.6	-1.5	30	50	30	30	30	30
2-Methyl-1,3-butadiene	+++++ -16.0	12.2	9.4	0.7	-0.2	-6.0	30	50	30	30	30	30
1,1,2-Trichloro-1,2,2-trifluoroeth ane	+++++	4.3	8.6	1.7	-0.8	-3.0	30	50	30	30	30	30
Acrolein	+++++	15.8	3.3	-8.9	-3.4	-1.7	30	50	30	30	30	30
1,1-Dichloroethene	+++++	26.3	3.4	-1.4	-5.1	-8.5	30	50	30	30	30	30

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE			PERCENT	PERCENT ERROR LIMIT								
	LVL 1 # LVL 7 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
Acetone	+++++	20.6	-1.3	-8.0	-9.8	1.5	30	50	30	30	30	30
Iodomethane	+++++	6.2	-29.9	-9.8	6.5	17.5	30	50	30	30		30
Isopropyl alcohol	+++++ 8.1	-18.8	3.4	-2.1	12.2	-2.8	30	50	30	30		30
Carbon disulfide	+++++	14.9	-2.3	0.1	1.6	-2.9	30	50				
3-Chloro-1-propene	+++++	24.3	0.9	2.2	-1.3	-6.5	30	50				30
Methyl acetate	+++++	14.0	-3.3	0.8	4.1	-2.2	30	50		30	30	30
Acetonitrile	+++++	-6.8	-4.3	0.7	2.4	-6.0	30	50	30	30	30	30
Methylene Chloride	+++++	20.2	2.5	0.7	-4.4	-6.3	30	50		30	30	30
2-Methyl-2-propanol	+++++	12.2	-2.9	-3.5	2.0	-8.5	30	50	30	30	30	30
Methyl tert-butyl ether	+++++	7.5	-4.9	0.5	3.9	0.8	30	50	30	30	30	30
trans-1,2-Dichloroethene	+++++	27.5	3.3	-3.0	-4.9	-8.1	30	50	30	30	30	30
Acrylonitrile	6.2 -19.7	11.1	4.1	7.3	-1.0	-8.1	50 30	30	30	30	30	30
Hexane	+++++	-2.6	5.4	5.1	3.6	0.1	30	50		30	30	30
Isopropyl ether	+++++	2.0	-1.4	2.9	4.7	2.0	30	50	30	30	30	30
1,1-Dichloroethane	+++++ -17.5	16.5	7.9	0.9	-1.3	-6.3	30	50	30	30	30	30
Vinyl acetate	+++++	4.4	4.9	9.3	2.8	-0.7	30	50	30	30	30	30
2,2-Dichloropropane	+++++	46.4	-3.1	-7.7	-8.8	-10.6	30	50	30	30	30	30
cis-1,2-Dichloroethene	+++++	22.0	3.6	-2.7	-4.7	-6.1	30	50	30	30	30	30
2-Butanone (MEK)	+++++	21.9	0.5	-4.3	-10.6	-2.6	30	50	30	30	30	30

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE			PERCEN'	r error				PI	ERCENT EF	RROR LIMI	ſΤ	
	LVL 1 # LVL 7 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
Ethyl acetate	+++++	7.1	-2.9	1.6	-3.3	-2.2	30	50	30	30	30	30
Chlorobromomethane	+++++ -14.9	31.6	-1.2	-1.8	-4.6	-9.1	30	50	30	30	30	30
Tetrahydrofuran	++++ -5.8	-20.5	14.9	9.2	3.1	-0.9	30	50	30	30	30	30
Chloroform	++++ -16.7	19.0	5.0	0.5	-2.5	-5.3	30	50	30	30		30
Cyclohexane	+++++	7.9	8.9	1.3	-1.3	-4.6	30	50	30	30		30
1,1,1-Trichloroethane	+++++	14.9	3.1	-1.1	-3.5	-3.4	30	50	30	30		30
Carbon tetrachloride	+++++	6.0	1.2	-1.9	-1.8	-0.3	30	50	30	30		30
1,1-Dichloropropene	+++++ -7.1	9.4	1.6	0.6	-1.3	-3.2	30	50	30	30	30	30
Benzene	+++++ -15.7	17.3	3.7	3.2	-1.6	-7.0	30	50	30	30		30
Isopropyl acetate	+++++	0.7	-4.8	0.5	5.5	2.8	30	50	30	30	30	30
1,2-Dichloroethane	++++ -10.1	16.1	1.1	0.9	-3.1	-4.9	30	50	30	30		30
n-Heptane	++++ -10.8	14.3	1.1	-1.2	-1.2	-2.3	30	50	30	30	30	30
n-Butanol	+++++ 18.2	-29.2	-7.7	0.3	16.6	1.7	30	50	30	30		30
Trichloroethene	+++++	27.4	-0.4	-5.7	-4.4	-6.8	30	50	30	30		
Methylcyclohexane	++++	-0.6	4.2	2.9	1.5	0.0	30	50	30	30		
Ethyl acrylate	+++++	10.1	-3.3	-0.6	2.4	-0.3	30	50	30	30	30	
1,2-Dichloropropane	++++ -12.2	23.1	0.2	-0.9	-4.0	-6.2	30	50	30	30		30
Methyl methacrylate	+++++	6.5	-4.9	-0.4	0.4	1.4	30	50	30	30		
1,4-Dioxane	+++++ -0.1	-33.9	29.7	-1.1	13.2	-7.9	30	50	30	30	30	30

Lab Name: Euro	fins Edison	Job No.:	460-268503-1		Analy Batch No.: 871602
SDG No.:					
Instrument ID:	CVOAMS8	GC Column	: Rtx-624	ID: <u>0.25(mm)</u>	Heated Purge: (Y/N) N

ANALYTE			PERCEN'	PERCENT ERROR LIMIT								
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	: LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
Dibromomethane	+++++	26.8	-2.6	-3.5	-4.3	-6.3	30	50	30	30	30	30
n-Propyl acetate	+++++	5.4	-11.8	0.0	4.4	3.2	30	50	30	30	30	30
Dichlorobromomethane	+++++	12.5	-3.3	-3.3	-3.6	-0.8	30	50	30	30	30	30
2-Chloroethyl vinyl ether	+++++	0.2	-4.6	-3.7	3.4	4.5	30	50	30	30	30	30
Epichlorohydrin	16.6 -2.1	-4.4	-0.9	-3.3	-3.5	-2.4	50 30	30	30	30	30	30
cis-1,3-Dichloropropene	+++++	2.6	-2.0	1.9	-0.5	1.7	30	50	30	30	30	30
4-Methyl-2-pentanone (MIBK)	+++++	6.5	0.9	3.5	-1.7	-1.9	30	50	30	30	30	30
Toluene	+++++ -10.5	13.8	0.4	2.1	-2.9	-2.9	30	50	30	30	30	30
trans-1,3-Dichloropropene	+++++	0.5	-5.9	-0.4	0.5	4.8	30	50	30	30	30	30
1,1,2-Trichloroethane	+++++	4.1	-0.6	2.3	-1.4	0.4	30	50	30	30	30	30
Tetrachloroethene	+++++	6.9	0.3	3.3	-2.7	-1.5	30	50	30	30	30	30
1,3-Dichloropropane	+++++	3.9	-0.8	4.5	-1.2	0.9	30	50	30	30	30	30
2-Hexanone	+++++	3.6	3.1	-1.1	-1.9	-0.5	30	50	30	30	30	30
n-Butyl acetate	++++	4.2	0.4	0.4	1.6	1.5	30	50	30	30	30	30
Chlorodibromomethane	+++++ 5.9	-3.2	-10.2	-2.1	0.9	8.7	30	50		30	30	
Ethylene Dibromide	+++++	6.9	-3.2	3.2	-0.9	-0.7	30	50		30	30	
Chlorobenzene	+++++	11.2	1.8	1.4	-2.2	-3.5	30	50	30	30	30	30
Ethylbenzene	+++++	5.9	3.1	0.7	-1.2	-1.4	30	50	30	30	30	30
1,1,1,2-Tetrachloroethane	+++++	0.1	-5.1	-2.7	0.7	4.9	30	50	30	30	30	30

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE			PERCEN'	I ERROR			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
m-Xylene & p-Xylene	+++++	13.9	1.1	2.0	-1.7	-5.8	30	50	30	30	30	30	
o-Xylene	+++++	8.6	3.6	3.4	-2.6	-3.6	30	50	30	30	30	30	
n-Butyl acrylate	+++++	6.2	-4.2	1.2	0.3	0.1	30	50	30	30	30	30	
Styrene	+++++	10.9	-1.7	2.8	-1.1	-2.1	30	50	30	30	30	30	
Bromoform	++++ 17.1	-10.5	-17.5	-4.4	0.5	14.8	30	50	30	30	30	30	
Amyl acetate (mixed isomers)	+++++ -12.0	3.9	-0.3	7.0	3.3	-1.8	30	50	30	30	30	30	
Isopropylbenzene	+++++ -10.4	11.5	3.6	2.1	-3.2	-3.7	30	50	30	30	30	30	
Bromobenzene	+++++ -11.7	16.3	2.8	0.2	-3.5	-4.1	30	50	30	30	30	30	
1,1,2,2-Tetrachloroethane	+++++	4.4	0.0	4.5	0.5	-0.4	30	50	30	30	30	30	
N-Propylbenzene	+++++ -18.9	15.1	4.0	4.1	0.8	-5.1	30	50	30	30	30	30	
1,2,3-Trichloropropane	+++++ -10.2	13.5	4.6	-2.5	-2.7	-2.7	30	50	30	30	30	30	
2-Chlorotoluene	+++++ -13.4	11.9	3.0	3.8	-1.3	-4.0	30	50	30	30	30	30	
1,3,5-Trimethylbenzene	+++++ -13.0	11.3	3.6	2.0	-2.2	-1.8	30	50	30	30	30	30	
4-Chlorotoluene	+++++	12.9	2.5	1.8	-1.2	-1.7	30	50	30	30	30	30	
Butyl Methacrylate	+++++ -5.0	0.0	-1.3	2.4	1.1	2.9	30	50	30	30	30	30	
tert-Butylbenzene	+++++	12.9	2.9	3.5	-0.7	-4.2	30	50	30	30	30	30	
1,2,4-Trimethylbenzene	+++++ -12.8	9.8	1.0	2.9	0.5	-1.4	30	50	30	30	30	30	
sec-Butylbenzene	+++++ -15.7	12.4	4.7	3.3	0.4	-5.1	30	50	30	30	30	30	
1,3-Dichlorobenzene	+++++	10.7	1.5	1.6	-0.7	-1.5	30	50	30	30	30	30	

Lab Name: Eurofins Edison	Job No.: 460-268503-1	Analy Batch No.: 871602
SDG No.:		
Instrument ID: CVOAMS8	GC Column: Rtx-624 ID: 0.25(mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/12/2022 23:30	Calibration End Date: 10/13/2022 02:01	Calibration ID: 91516

ANALYTE			PERCENT	ERROR				PI	ERCENT EF	RROR LIMI	Т	
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
4-Isopropyltoluene	+++++	10.5	1.5	2.5	1.3	-1.4	30	50	30	30	30	30
1,4-Dichlorobenzene	+++++ -11.2	12.0	0.9	2.0	-1.6	-2.2	30	50	30	30	30	30
1,2,3-Trimethylbenzene	+++++ -12.1	8.1	2.5	3.0	0.1	-1.6	30	50	30	30	30	30
Benzyl chloride	+++++	-10.5	-12.5	-2.9	4.6	14.5	30	50	30	30	30	30
n-Butylbenzene	+++++	11.6	3.7	1.6	-0.6	-2.0	30	50	30	30	30	30
1,2-Dichlorobenzene	+++++	10.6	1.1	1.2	-2.1	-0.9	30	50	30	30	30	30
1,2-Dibromo-3-Chloropropane	+++++	-6.3	-1.6	-2.8	-0.2	7.9	30	50	30	30	30	30
1,2,4-Trichlorobenzene	+++++	15.4	-3.6	-1.0	-1.1	-0.1	30	50	30	30	30	30
Hexachlorobutadiene	+++++	8.4	4.9	1.0	-4.1	-3.5	30	50	30	30	30	30
Naphthalene	+++++	12.6	-2.6	0.5	0.7	-1.0	30	50	30	30	30	30
1,2,3-Trichlorobenzene	+++++	14.5	-6.3	-0.4	-1.4	0.7	30	50	30	30	30	30
Dibromofluoromethane (Surr)	6.1 0.5	4.9	-14.5	1.0	0.4	1.7	50 30	30	30	30	30	30
1,2-Dichloroethane-d4 (Surr)	3.9 3.0	3.8	-14.2	0.0	0.2	3.3	50 30	30	30	30	30	30
Toluene-d8 (Surr)	-0.8 2.7	0.6	-15.1	4.4	2.5	5.6	50 30	30	30	30	30	30
4-Bromofluorobenzene	1.2 6.3	3.0	-15.5	3.4	0.6	1.0	50 30	30	30	30	30	30

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D

Lims ID: STD7

Client ID:

Sample Type: IC Calib Level: 7

Inject. Date: 12-Oct-2022 23:30:30 ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD7

Misc. Info.: 460-0151655-003

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:01:44Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 12-Oct-2022 23:54:00

	THIST ECVEL I TOVICWEL. TTV VVZ	St Level Neviewel. 117 WZ			12-0Cl-2022 20.04.00					
			RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
l	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
	8 Butadiene	54	1.375	1.376	-0.001	90	809	0.2500	0.2671	
	* 30 TBA-d9 (IS)	65	2.409	2.410	-0.001	75	177682	1000.0	1000.0	
	35 Acrylonitrile	53	2.641	2.635	0.006	86	1806	2.00	2.12	
	* 43 2-Butanone-d5	46	3.322	3.323	-0.001	85	260052	250.0	250.0	
	\$ 55 Dibromofluoromethane (Surr)	113	3.754	3.754	0.000	95	103108	50.0	53.0	
	\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.082	4.083	-0.001	0	138853	50.0	52.0	
	* 66 Fluorobenzene	96	4.344	4.345	-0.001	97	447005	50.0	50.0	
	* 72 1,4-Dioxane-d8	96	5.056	5.056	0.000	0	23304	1000.0	1000.0	
	80 Epichlorohydrin	57	5.749	5.750	-0.001	63	1218	5.00	5.83	
	\$ 83 Toluene-d8 (Surr)	98	6.060	6.060	0.000	97	372868	50.0	49.6	
	* 94 Chlorobenzene-d5	117	8.012	8.013	-0.001	92	351311	50.0	50.0	
	96 Ethylbenzene	106	8.158	8.153	0.005	1	71		0.0220	
	\$ 105 4-Bromofluorobenzene	174	9.332	9.333	-0.001	84	126223	50.0	50.6	
	* 121 1,4-Dichlorobenzene-d4	152	10.385	10.385	0.000	98	190101	50.0	50.0	
	S 138 Total BTEX	1				0			0.0220	

QC Flag Legend

Processing Flags

Reagents:

8260MIX1COMB_00160	Amount Added: 0.00	Units: uL	
524freon_00058	Amount Added: 0.00	Units: uL	
ACROLEIN W_00145	Amount Added: 0.00	Units: uL	
GASES Li_00497	Amount Added: 2.50	Units: uL	
14DIOXINTER_00146	Amount Added: 0.00	Units: uL	
GAS Hi_00426	Amount Added: 0.00	Units: uL	
ACRY/EPIH MIX_00105	Amount Added: 20.00	Units: uL	
MIX 2 Hi_00128	Amount Added: 0.00	Units: uL	
MIX I Hi_00155	Amount Added: 0.00	Units: uL	
8FreonHi_00049	Amount Added: 0.00	Units: uL	
Ethanol mix_00069	Amount Added: 0.00	Units: uL	
8260ISNEW_00171	Amount Added: 1.00	Units: uL	Run Reagent
8260SURR250_00232	Amount Added: 1.00	Units: uL	Run Reagent

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D

Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8 STD7

Operator ID: Worklist Smp#:

ALS Bottle#:

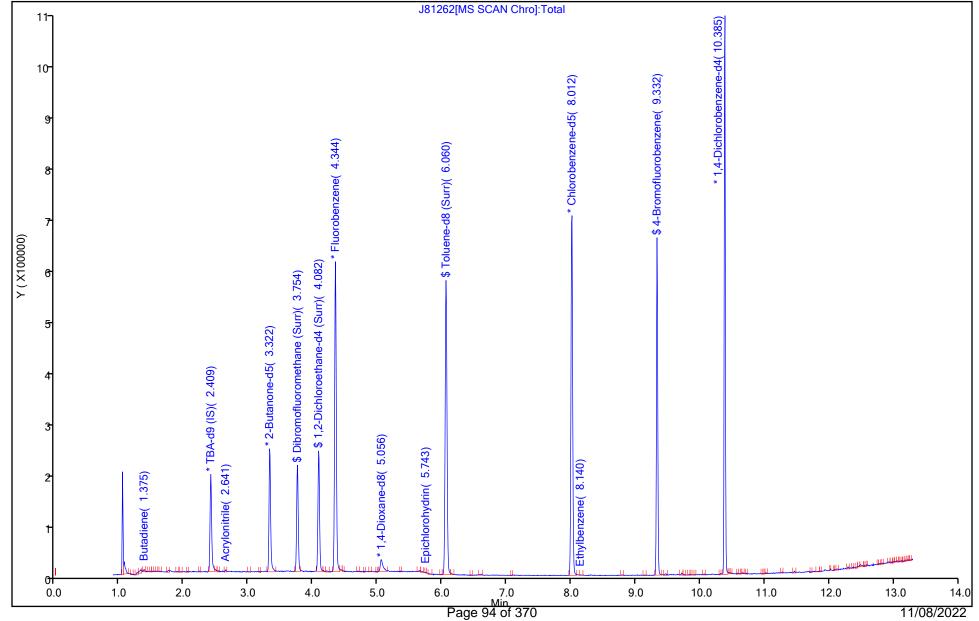
Lims ID:

Client ID:

3

3

Purge Vol:


Method:

5.000 mL 8260_W8

Dil. Factor: 1.0000 Limit Group:

VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

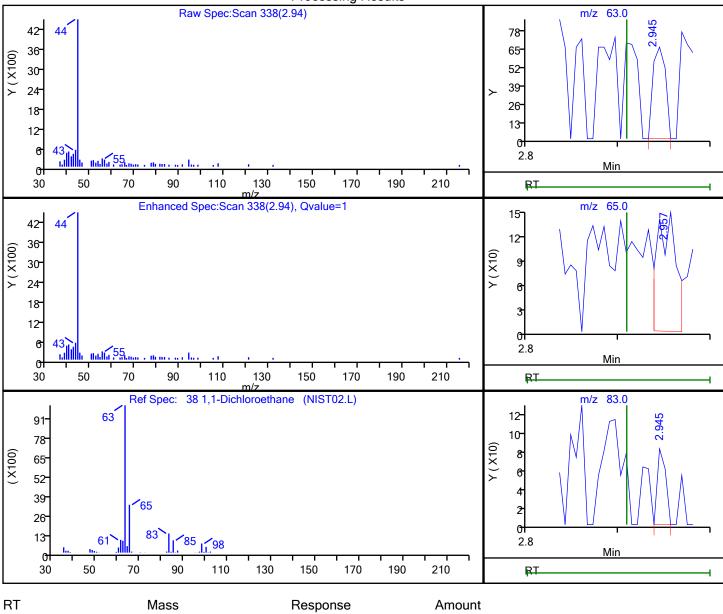
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

38 1,1-Dichloroethane, CAS: 75-34-3

Processing Results

RT	Mass	Response	Amount
2.94	63.00	63	0.012472
2.96	65.00	212	
2.94	83.00	51	

Reviewer: W9CM, 14-Oct-2022 15:01:33

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:48

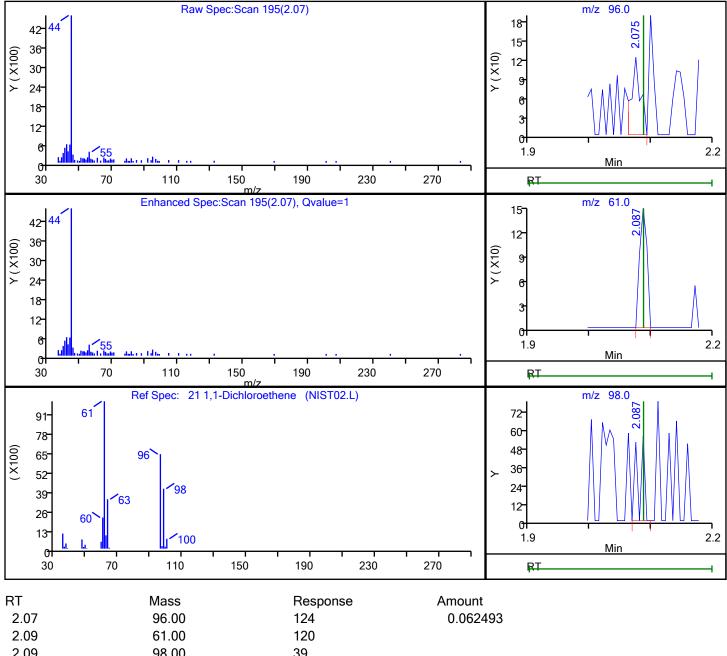
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) MS SCAN Detector

21 1,1-Dichloroethene, CAS: 75-35-4

Processing Results

RT	Mass	Response	Amount
2.07	96.00	124	0.062493
2.09	61.00	120	
2.09	98.00	39	
2.07	63.00	35	

Reviewer: W9CM, 14-Oct-2022 15:00:49 Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:49

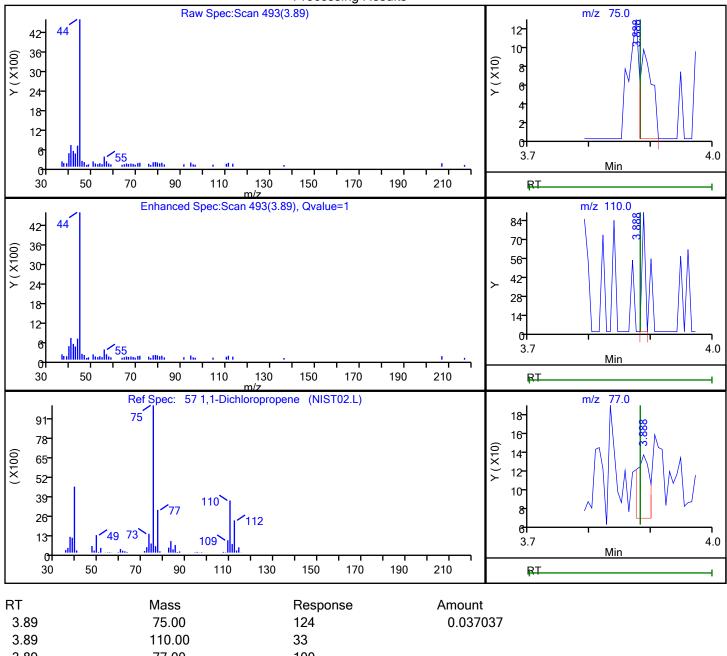
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Worklist Smp#: Operator ID: 3

5.000 mL 1.0000 Purge Vol: Dil. Factor:

Method: 8260 W8 Limit Group: **VOA 624.1 ICAL** Column: Rtx-624 (0.25 mm) Detector MS SCAN

57 1,1-Dichloropropene, CAS: 563-58-6

Processing Results

3.89 77.00 100

Reviewer: W9CM, 14-Oct-2022 15:02:00

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:51

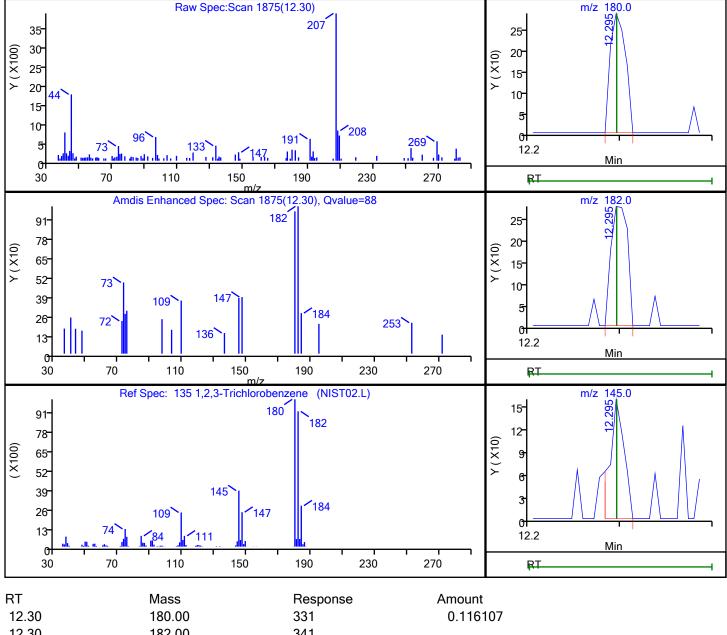
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Worklist Smp#: Operator ID: 3

5.000 mL Purge Vol: Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: **VOA 624.1 ICAL** Column: Rtx-624 (0.25 mm) Detector MS SCAN

135 1,2,3-Trichlorobenzene, CAS: 87-61-6

Processing Results

12.30 182.00 341 12.30 145.00 173

Reviewer: W9CM, 14-Oct-2022 15:03:34

User Disabled Compound Report

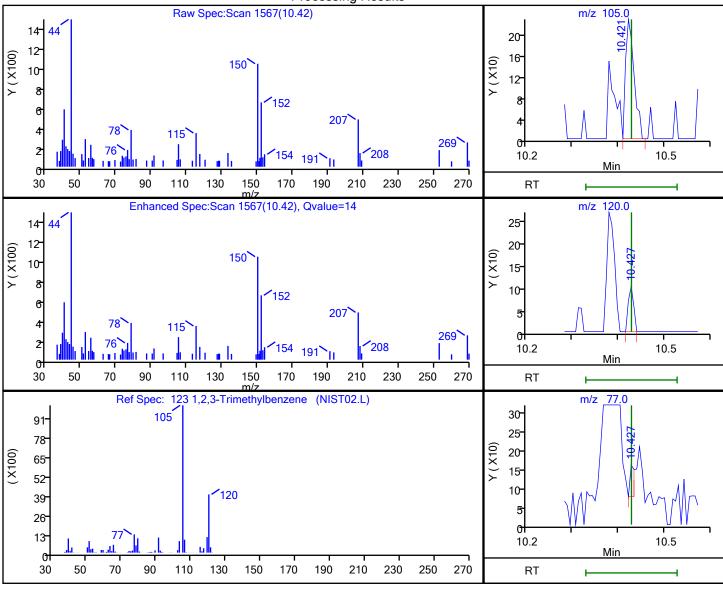
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

123 1,2,3-Trimethylbenzene, CAS: 526-73-8

Processing Results

nt
0779
(

Reviewer: W9CM, 14-Oct-2022 15:03:06

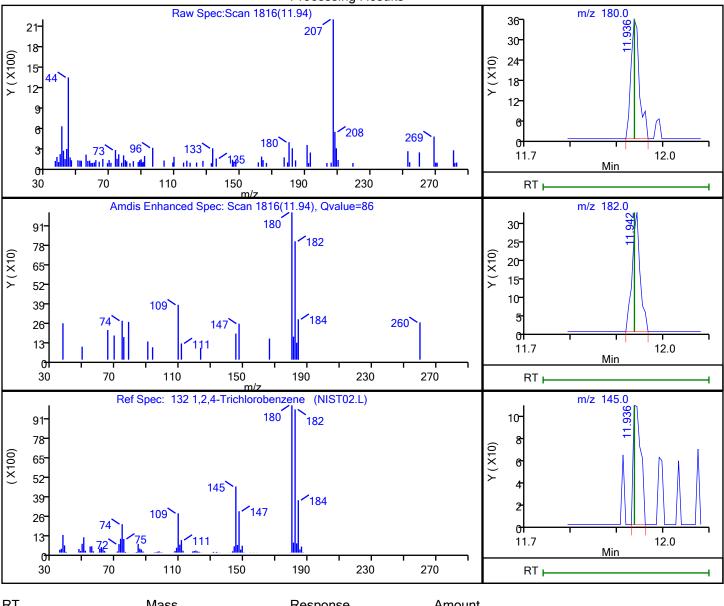
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

132 1,2,4-Trichlorobenzene, CAS: 120-82-1

Processing Results

RT	Mass	Response	Amount
11.94	180.00	458	0.147840
11.94	182.00	389	
11.94	145.00	118	

Reviewer: W9CM, 14-Oct-2022 15:03:27

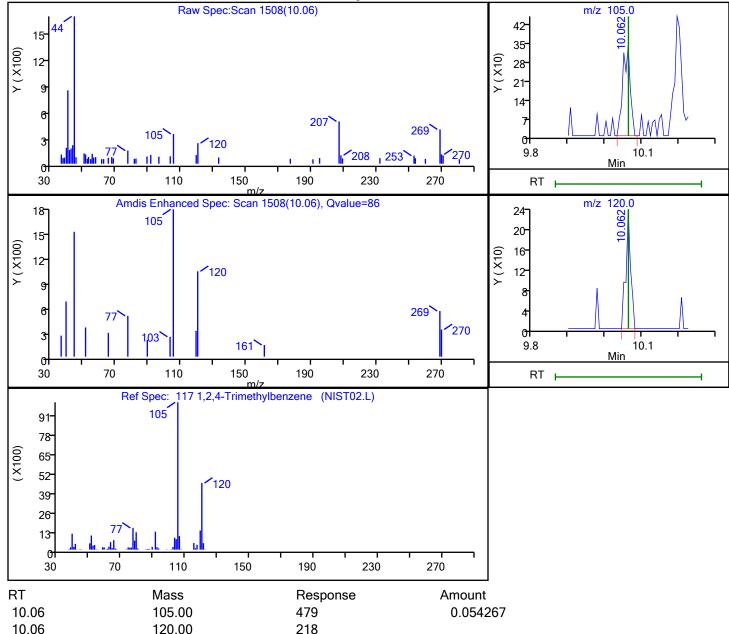
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

117 1,2,4-Trimethylbenzene, CAS: 95-63-6

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:58

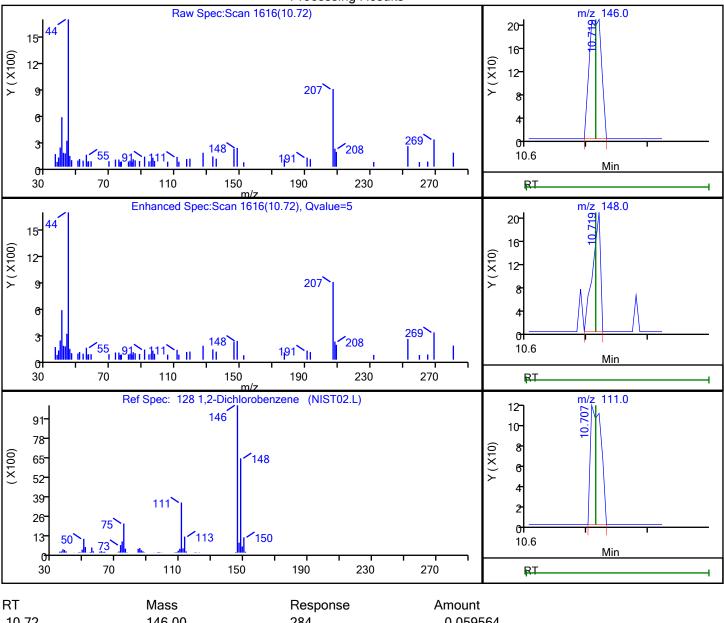
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

128 1,2-Dichlorobenzene, CAS: 95-50-1

Processing Results

RT Mass Response Amount
10.72 146.00 284 0.059564
10.72 148.00 187
10.71 111.00 145

Reviewer: W9CM, 14-Oct-2022 15:03:14

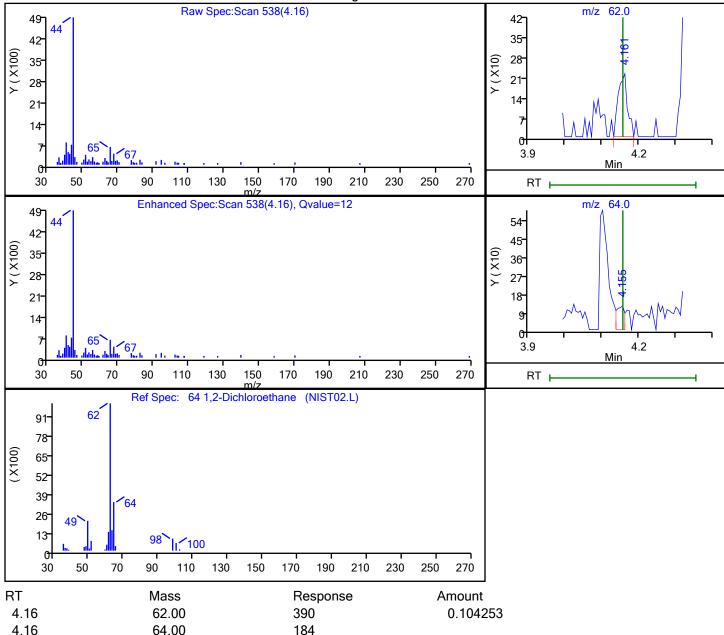
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

64 1,2-Dichloroethane, CAS: 107-06-2

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:08

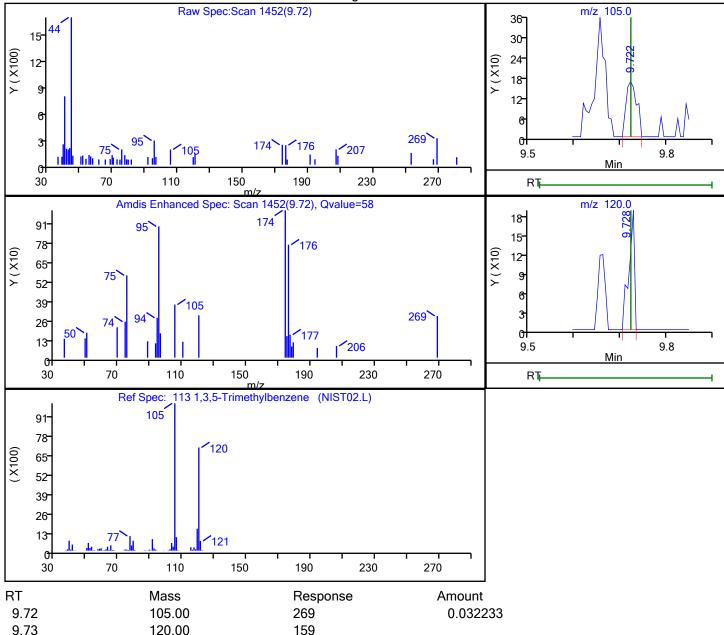
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

113 1,3,5-Trimethylbenzene, CAS: 108-67-8

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:51

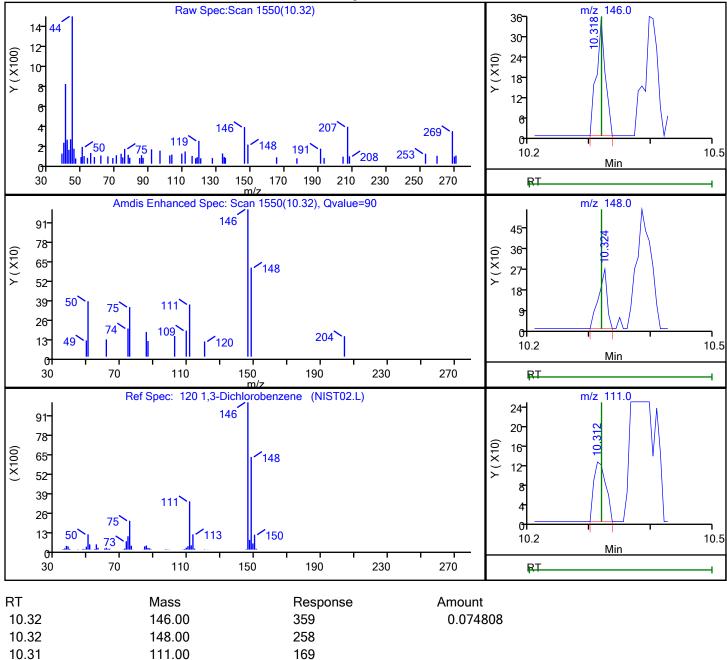
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

120 1,3-Dichlorobenzene, CAS: 541-73-1

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:03:01

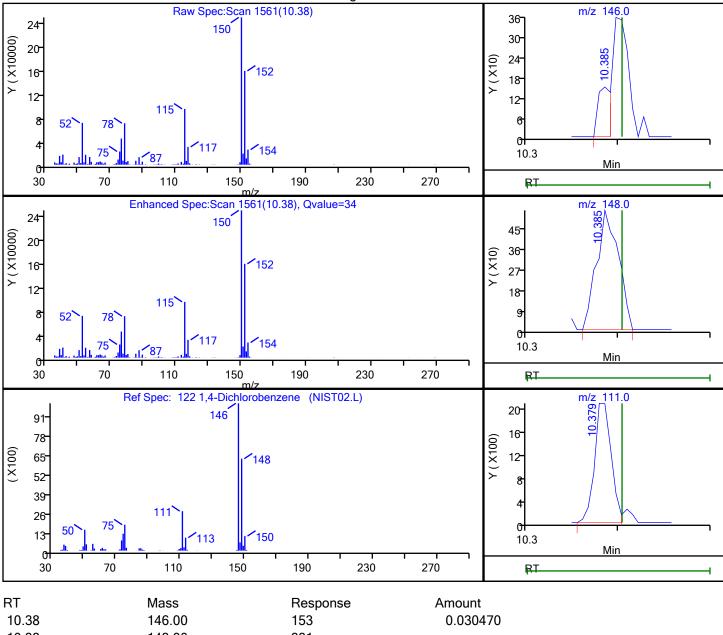
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: **VOA 624.1 ICAL** Column: Rtx-624 (0.25 mm) MS SCAN Detector

122 1,4-Dichlorobenzene, CAS: 106-46-7

Processing Results

10.38 148.00 881 10.38 111.00 2659

Reviewer: W9CM, 14-Oct-2022 15:03:05

User Disabled Compound Report

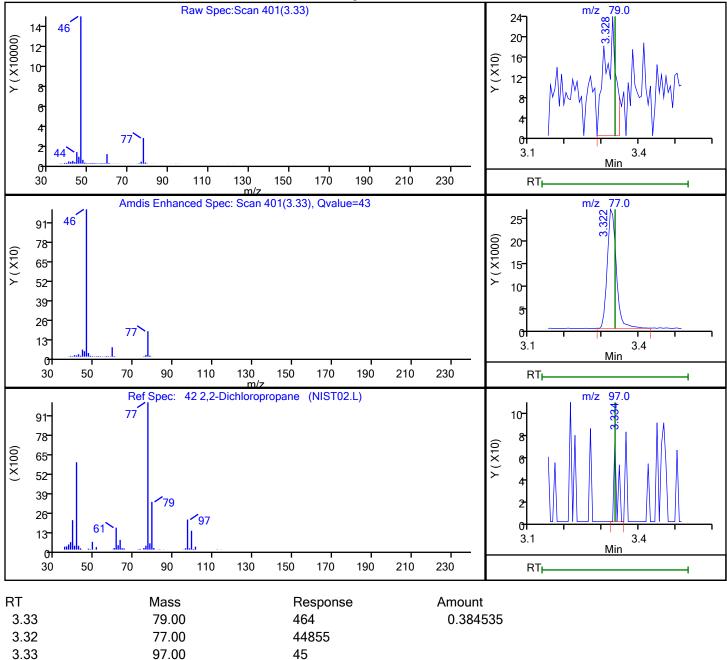
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

42 2,2-Dichloropropane, CAS: 594-20-7

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:39

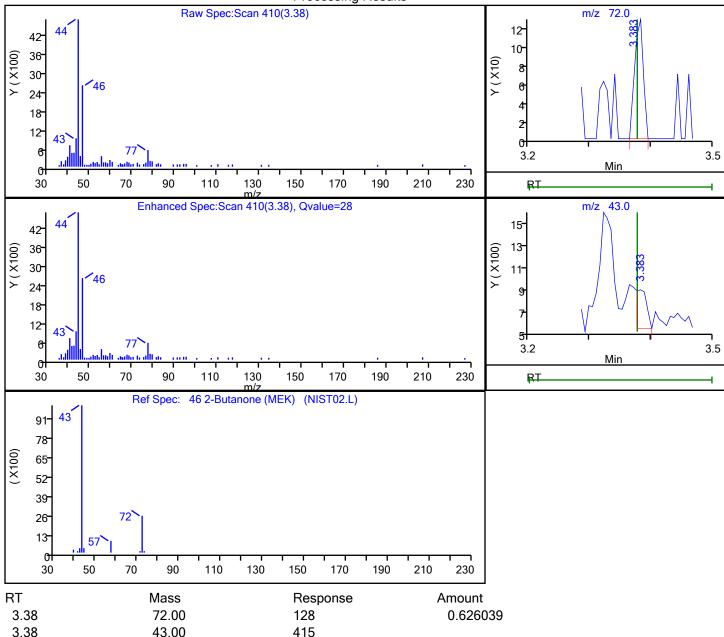
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

46 2-Butanone (MEK), CAS: 78-93-3

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:43

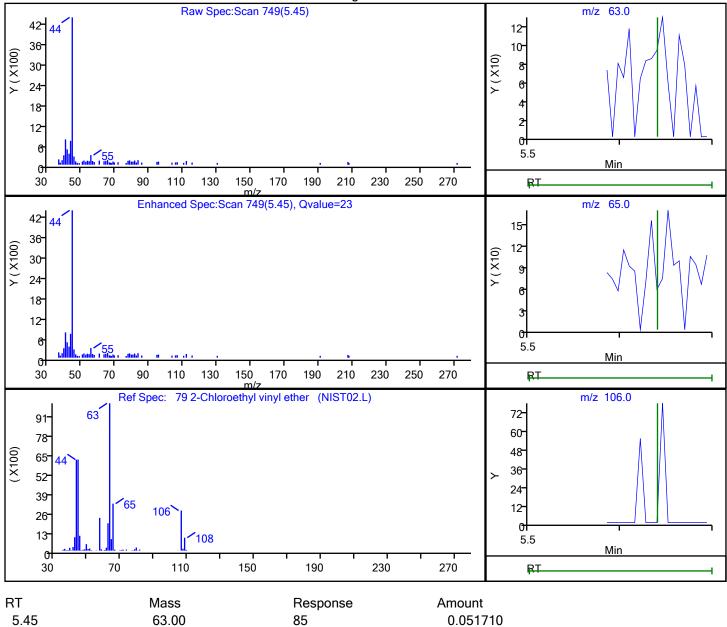
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

79 2-Chloroethyl vinyl ether, CAS: 110-75-8

Processing Results

RT Mass Response Amount 5.45 63.00 85 0.051710 5.45 65.00 75 5.45 106.00 27

Reviewer: W9CM, 14-Oct-2022 15:02:24

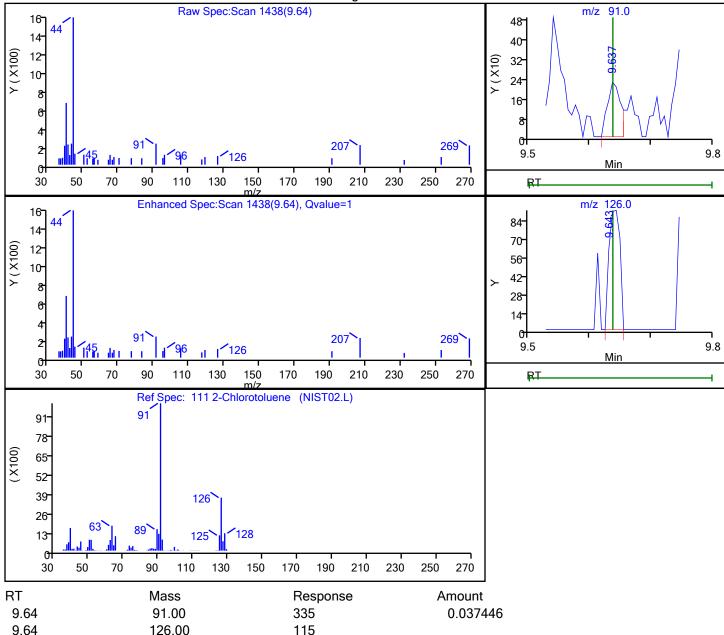
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

111 2-Chlorotoluene, CAS: 95-49-8

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:49

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:48

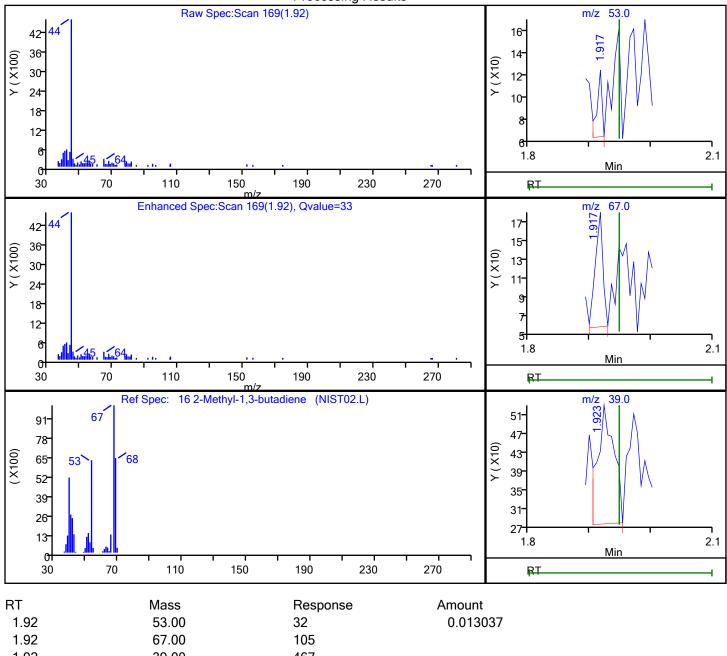
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) MS SCAN Detector

16 2-Methyl-1,3-butadiene, CAS: 78-79-5

Processing Results

1.92 39.00 467

Reviewer: W9CM, 14-Oct-2022 15:00:43

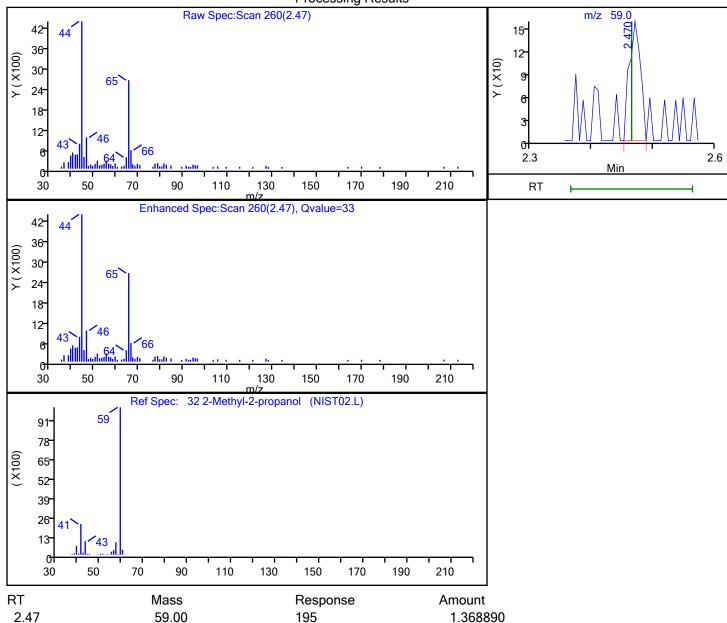
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

32 2-Methyl-2-propanol, CAS: 75-65-0

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:24

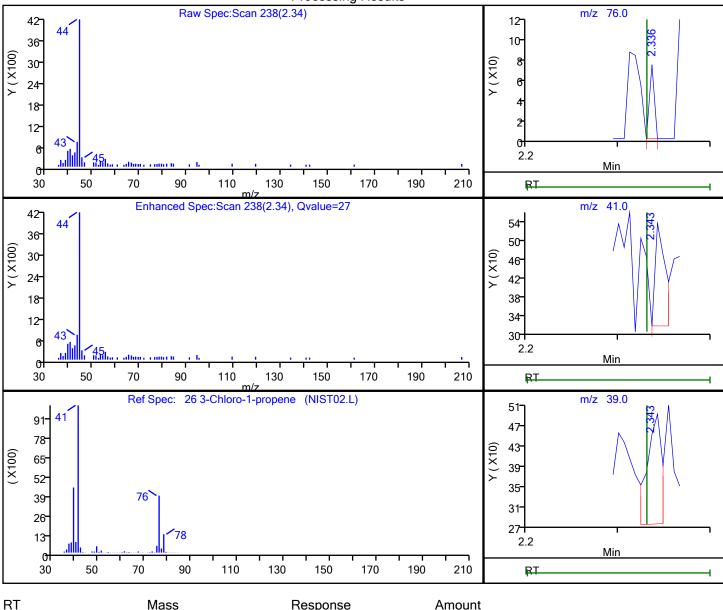
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

26 3-Chloro-1-propene, CAS: 107-05-1

Processing Results

RT	Mass	Response	Amount
2.34	76.00	26	0.018678
2.34	41.00	166	
2.34	39.00	244	

Reviewer: W9CM, 14-Oct-2022 15:00:58

User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

114 4-Chlorotoluene, CAS: 106-43-4

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:52

User Disabled Compound Report

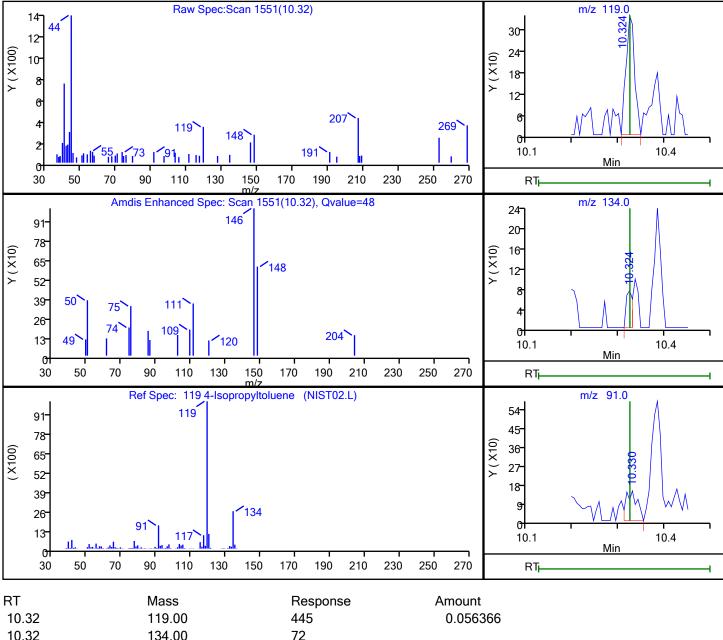
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

119 4-Isopropyltoluene, CAS: 99-87-6

Processing Results

 10.32
 134.00
 72

 10.33
 91.00
 244

Reviewer: W9CM, 14-Oct-2022 15:03:02

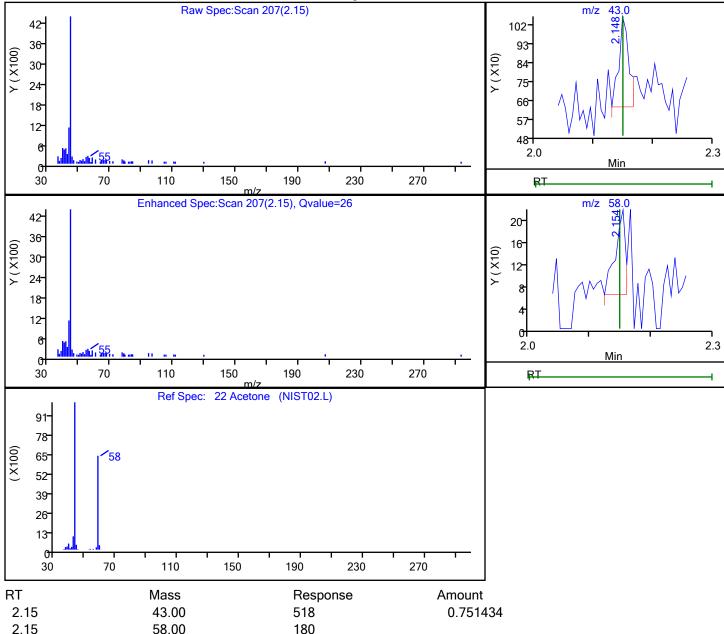
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

22 Acetone, CAS: 67-64-1

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:00:51

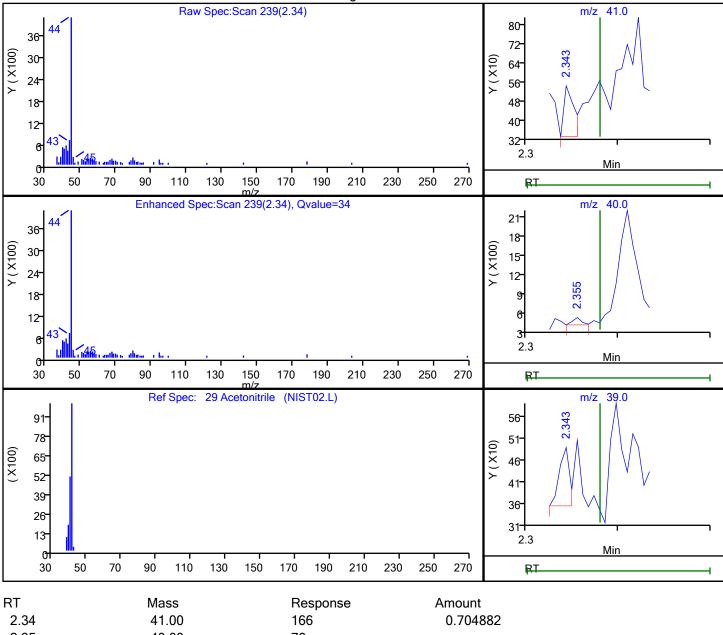
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

29 Acetonitrile, CAS: 75-05-8

Processing Results

RT	Mass	Response	Amount
2.34	41.00	166	0.704882
2.35	40.00	76	
2.34	39.00	107	
2.34	38.00	88	

Reviewer: W9CM, 14-Oct-2022 15:01:03 Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

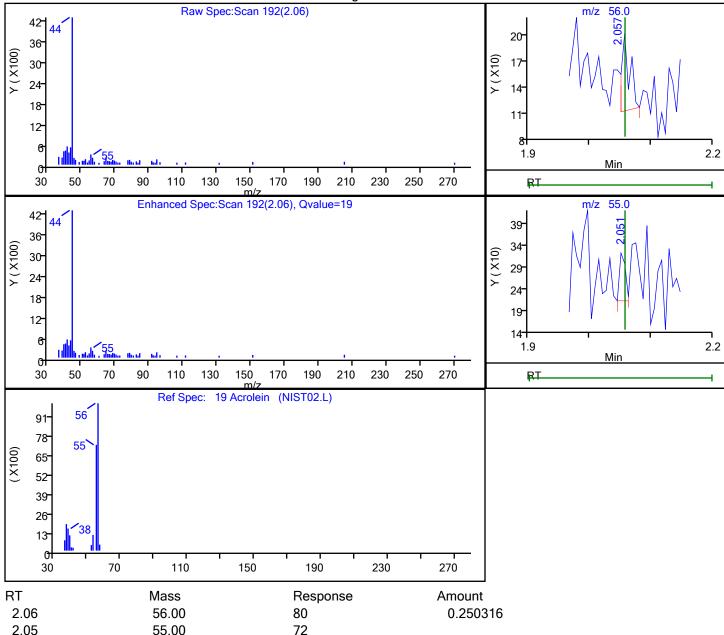
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

19 Acrolein, CAS: 107-02-8

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:00:46

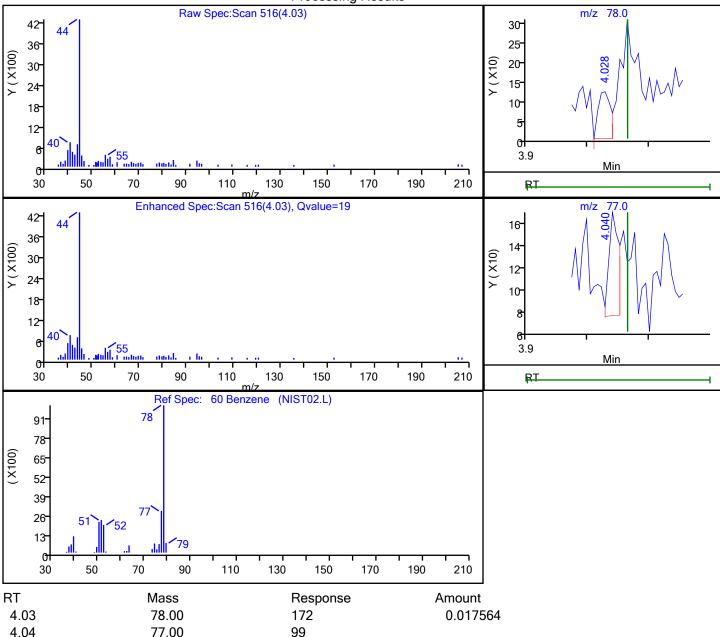
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

60 Benzene, CAS: 71-43-2

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:05

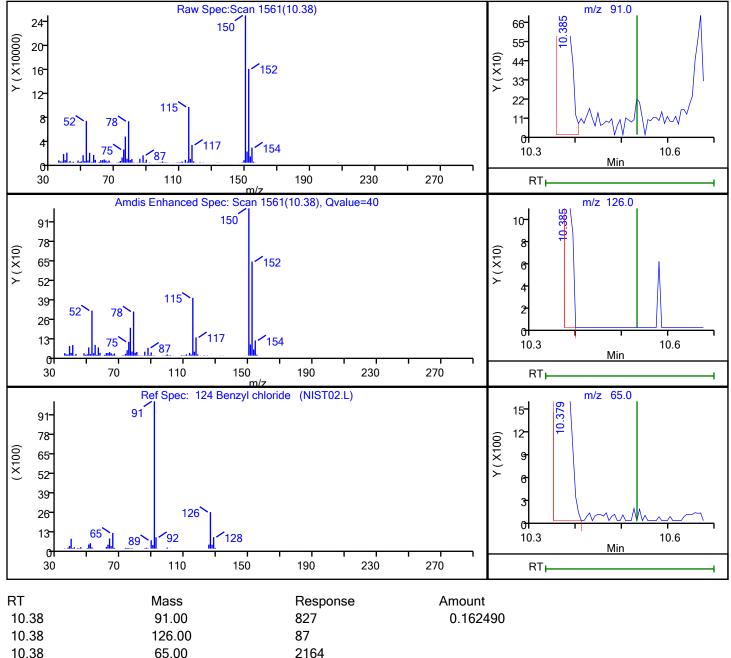
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

124 Benzyl chloride, CAS: 100-44-7

Processing Results

10.38 65.00 Reviewer: W9CM, 14-Oct-2022 15:03:07

Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:51

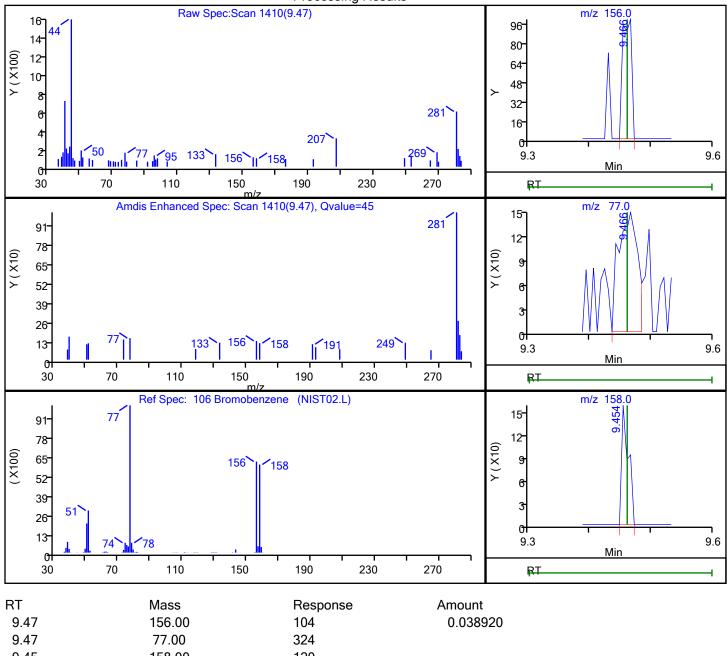
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

5.000 mL Purge Vol: Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

106 Bromobenzene, CAS: 108-86-1

Processing Results

9.45 158.00 120

Reviewer: W9CM, 14-Oct-2022 15:02:44

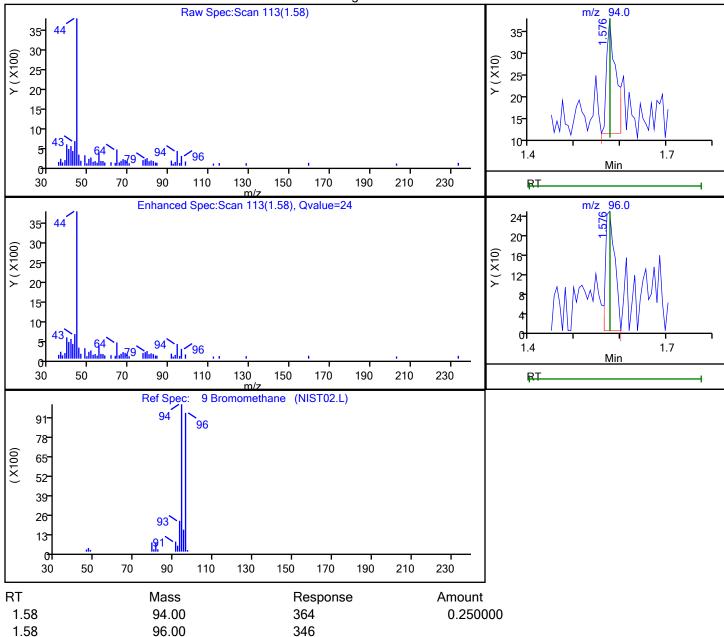
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

9 Bromomethane, CAS: 74-83-9

Processing Results

Reviewer: HVW2, 12-Oct-2022 23:53:30

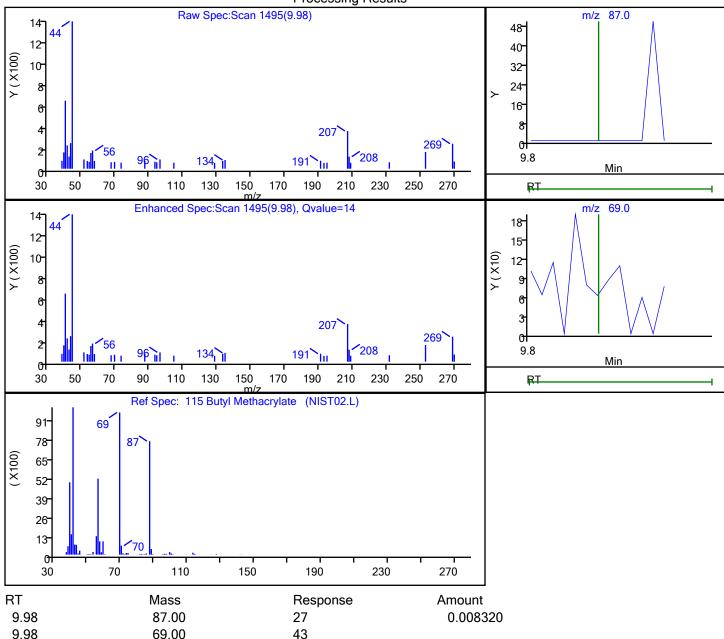
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

115 Butyl Methacrylate, CAS: 97-88-1

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:54

User Disabled Compound Report

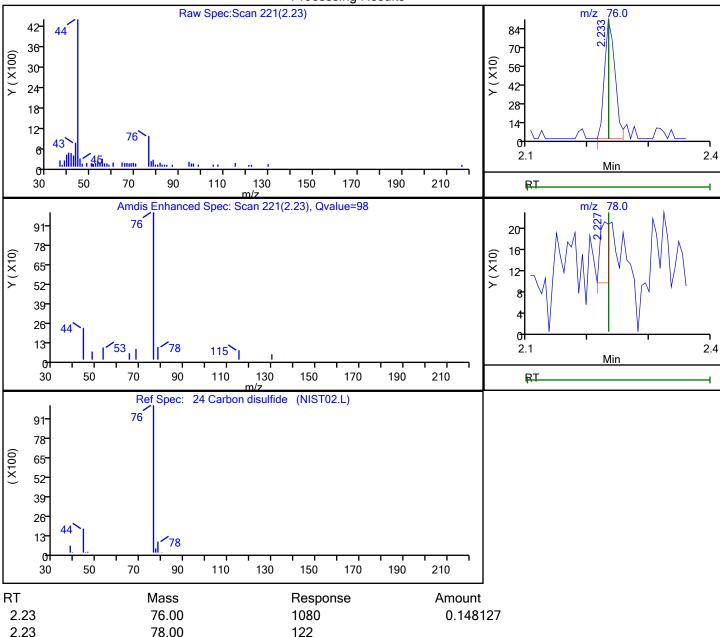
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

24 Carbon disulfide, CAS: 75-15-0

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:00:56

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:49

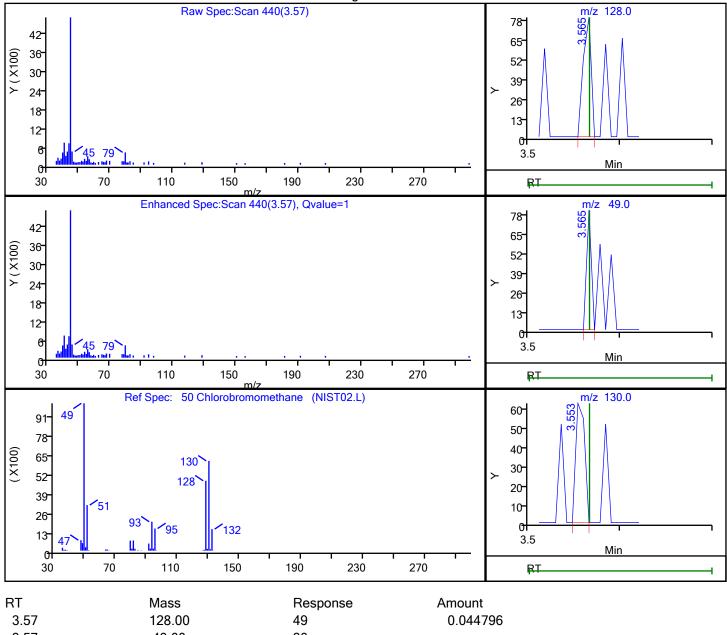
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Worklist Smp#: Operator ID: 3

5.000 mL Purge Vol: Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

50 Chlorobromomethane, CAS: 74-97-5

Processing Results

RT	Mass	Response	Amount
3.57	128.00	49	0.044796
3.57	49.00	30	
3.55	130.00	43	

Reviewer: W9CM, 14-Oct-2022 15:01:53

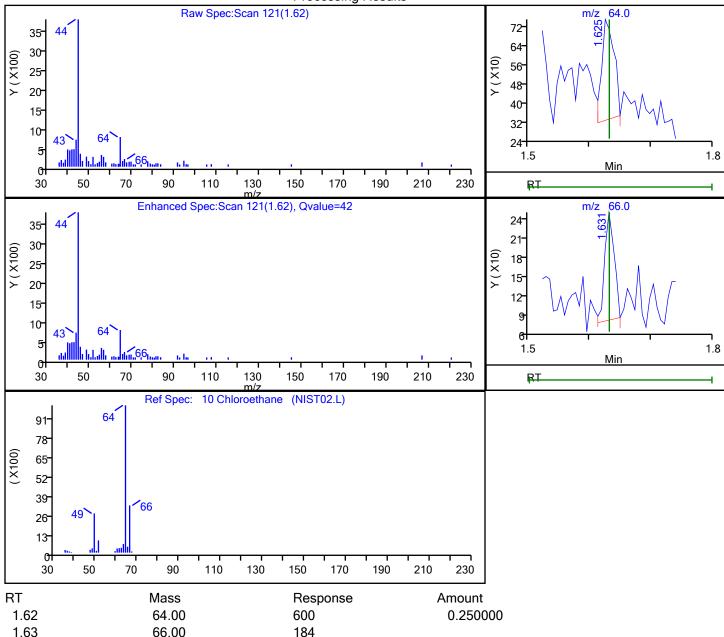
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D \\Injection Date: 12-Oct-2022 23:30:30 \\Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

10 Chloroethane, CAS: 75-00-3

Processing Results

Reviewer: HVW2, 12-Oct-2022 23:53:31

User Disabled Compound Report

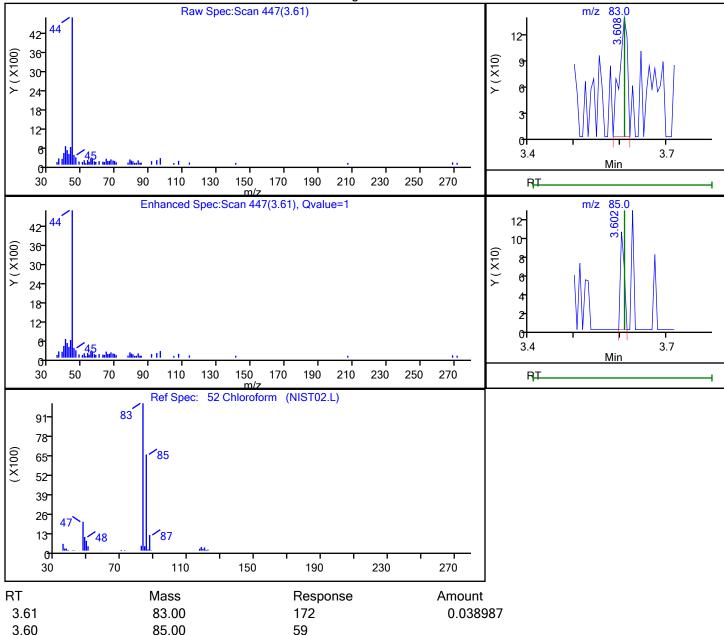
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

52 Chloroform, CAS: 67-66-3

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:57

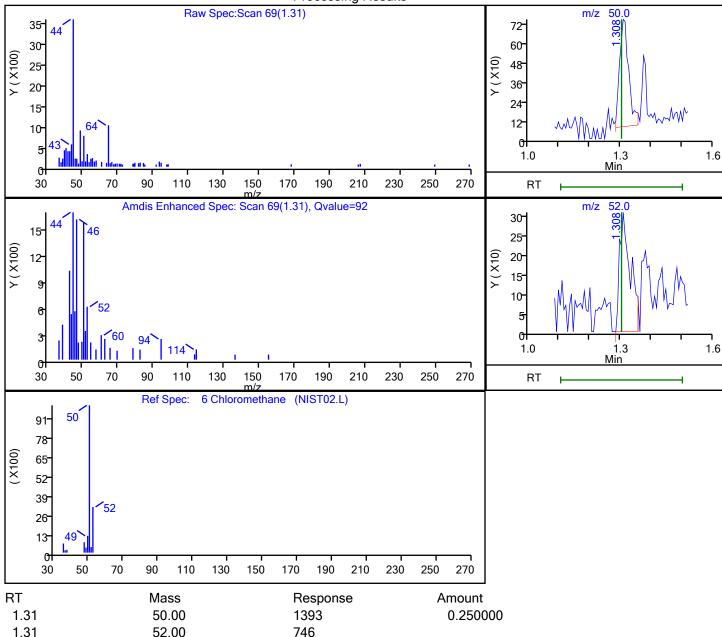
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

6 Chloromethane, CAS: 74-87-3

Processing Results

Reviewer: HVW2, 12-Oct-2022 23:53:26

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Report Date: 14-Oct-2022 16:01:49

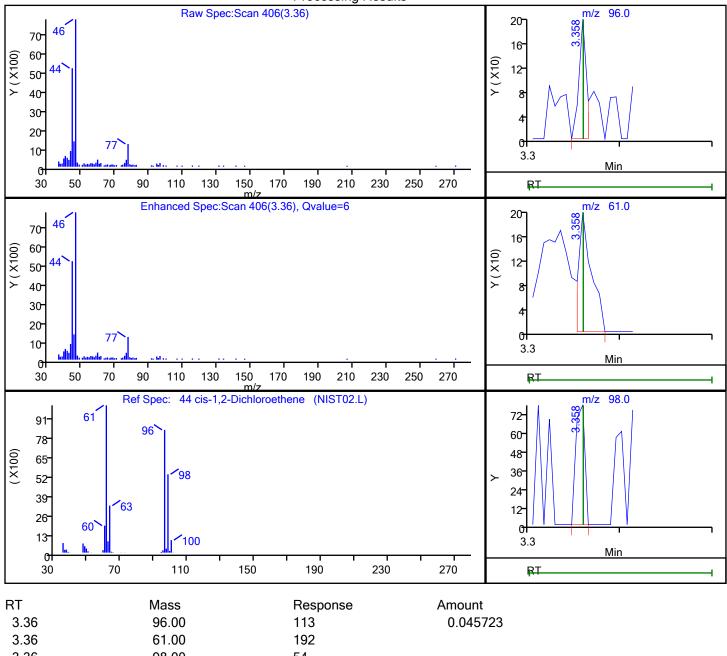
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) MS SCAN Detector

44 cis-1,2-Dichloroethene, CAS: 156-59-2

Processing Results

RT	Mass	Response	Amount
3.36	96.00	113	0.045723
3.36	61.00	192	
3.36	98.00	54	

Reviewer: W9CM, 14-Oct-2022 15:01:41

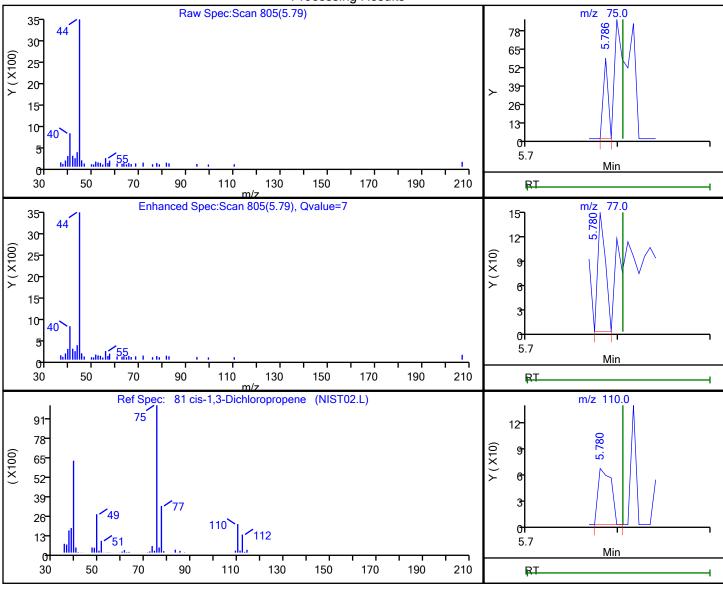
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

81 cis-1,3-Dichloropropene, CAS: 10061-01-5

Processing Results

RT	Mass	Response	Amount
5.79	75.00	21	0.004552
5.78	77.00	84	
5.78	110.00	64	

Reviewer: W9CM, 14-Oct-2022 15:02:26

User Disabled Compound Report

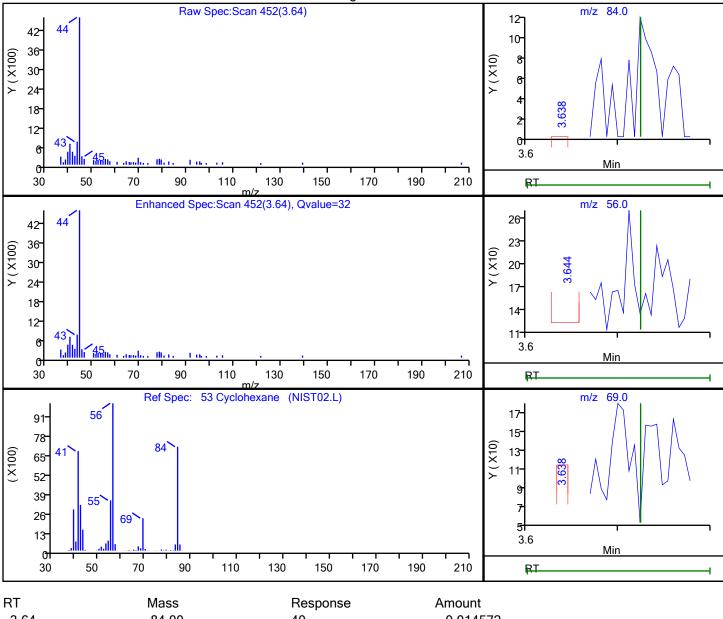
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

53 Cyclohexane, CAS: 110-82-7

Processing Results

RT Mass Response Amount 3.64 84.00 40 0.014572 3.64 56.00 94 3.64 69.00 108

Reviewer: W9CM, 14-Oct-2022 15:01:59

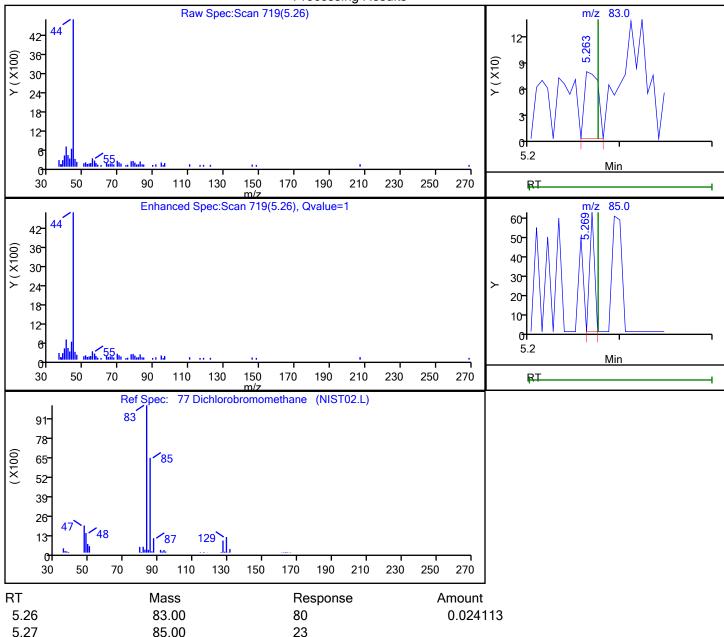
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

77 Dichlorobromomethane, CAS: 75-27-4

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:20

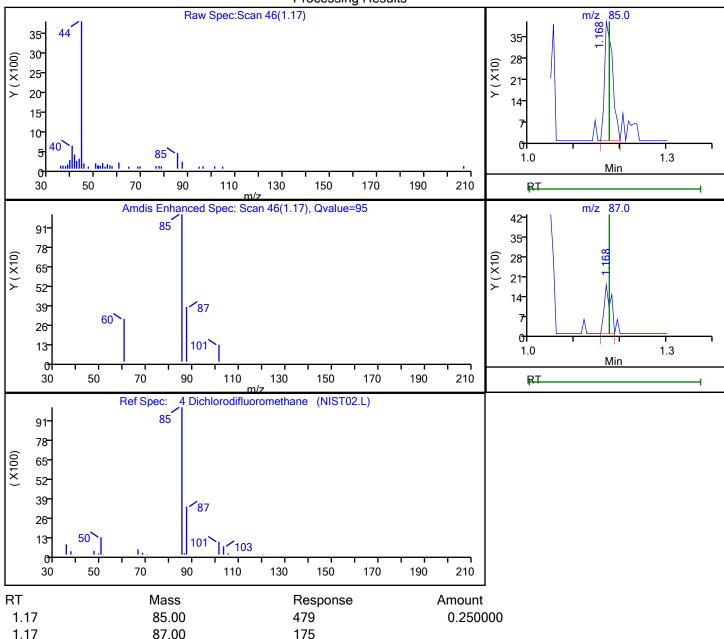
Chrom Revision: 2.3 28-Sep-2022 12:57:42 User Disabled Compound Report Report Date: 14-Oct-2022 16:01:48

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Worklist Smp#: Operator ID: 3

5.000 mL Purge Vol: Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

4 Dichlorodifluoromethane, CAS: 75-71-8

Processing Results

Reviewer: HVW2, 12-Oct-2022 23:53:25

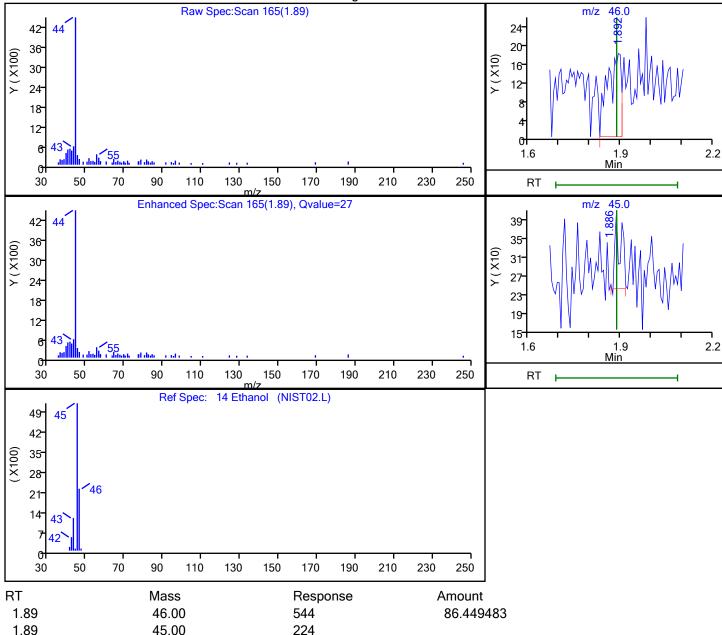
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

14 Ethanol, CAS: 64-17-5

Processing Results

Reviewer: W9CM, 14-Oct-2022 14:49:43

User Disabled Compound Report

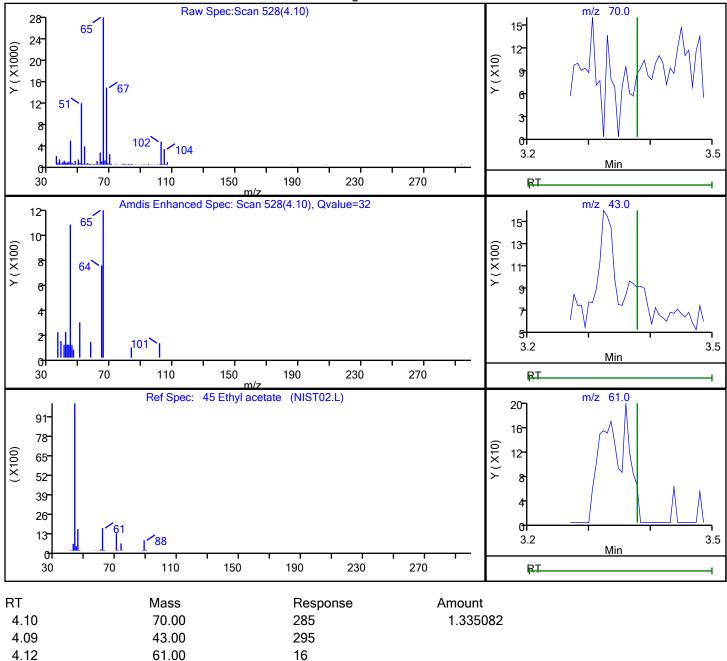
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

45 Ethyl acetate, CAS: 141-78-6

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:45

Audit Action: Marked Compound Undetected Au

Audit Reason: Invalid Compound ID

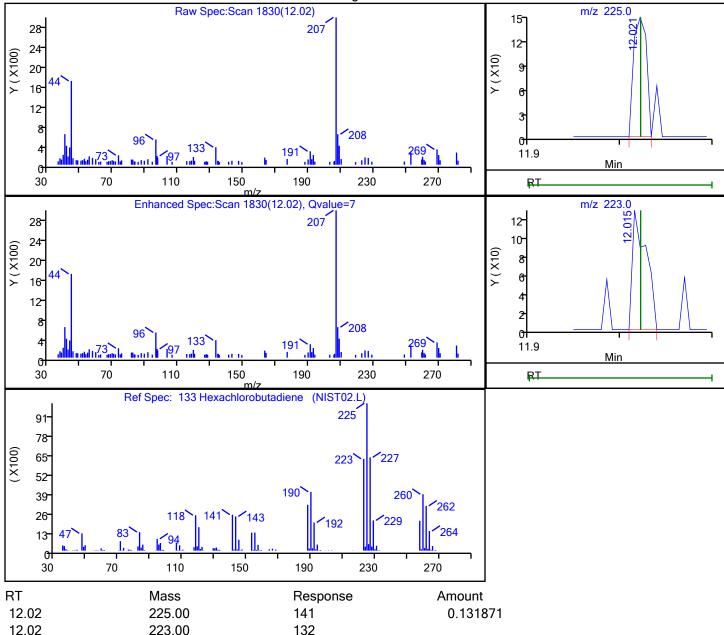
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

133 Hexachlorobutadiene, CAS: 87-68-3

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:03:32

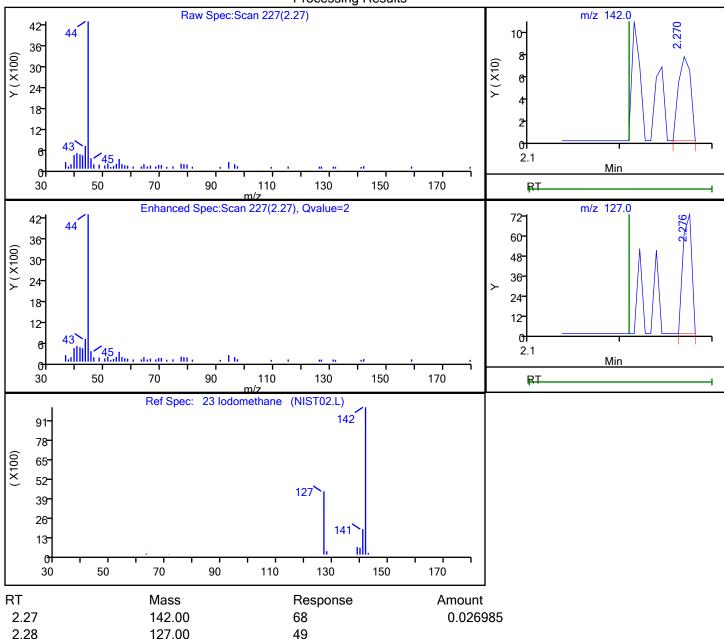
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

23 Iodomethane, CAS: 74-88-4

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:00:53

User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

25 Isopropyl alcohol, CAS: 67-63-0

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:00:55

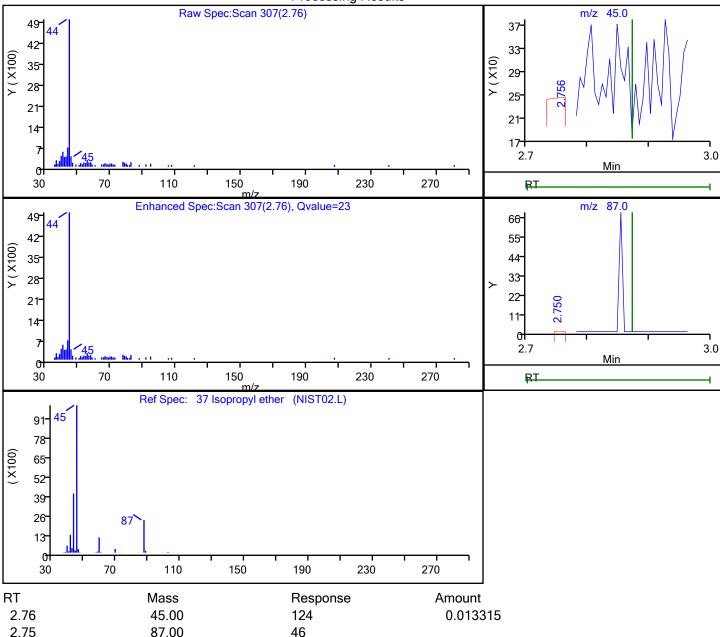
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

37 Isopropyl ether, CAS: 108-20-3

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:31

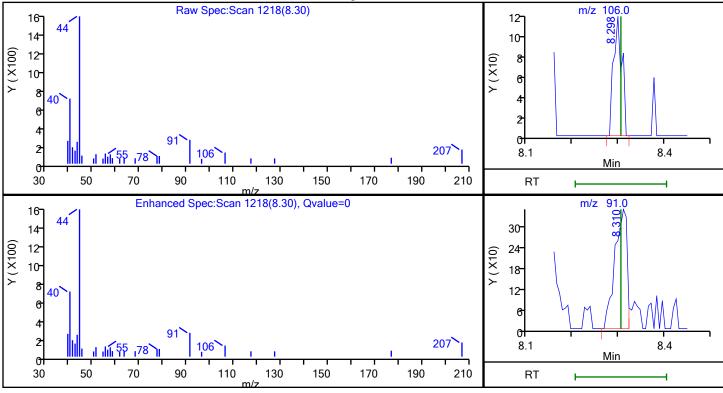
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

98 m-Xylene & p-Xylene, CAS: 179601-23-1

Processing Results

RT Mass Response Amount 8.30 106.00 150 0.037266 8.31 91.00 634

Reviewer: W9CM, 14-Oct-2022 15:02:34

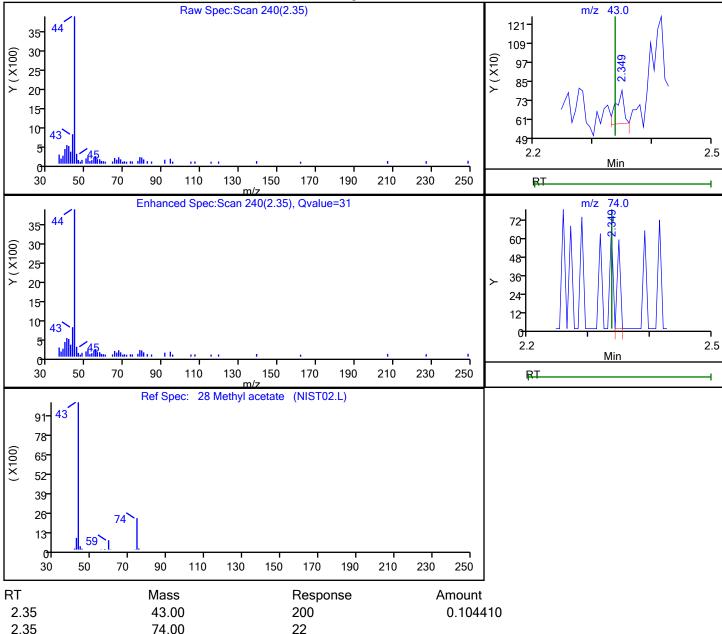
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

28 Methyl acetate, CAS: 79-20-9

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:00

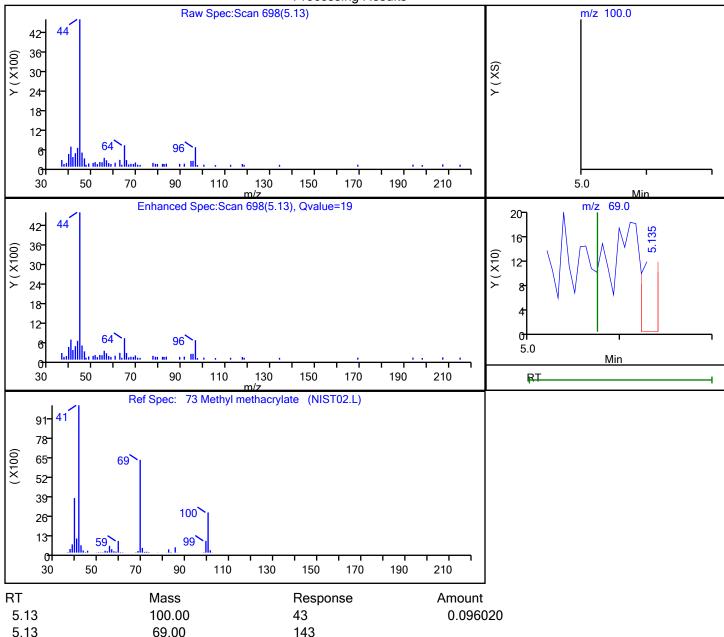
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

73 Methyl methacrylate, CAS: 80-62-6

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:16

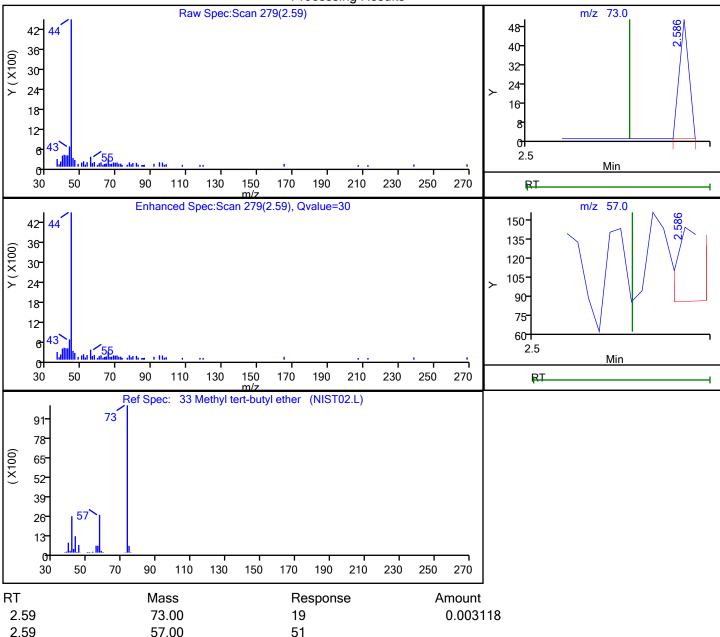
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

33 Methyl tert-butyl ether, CAS: 1634-04-4

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:26

Report Date: 14-Oct-2022 16:01:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

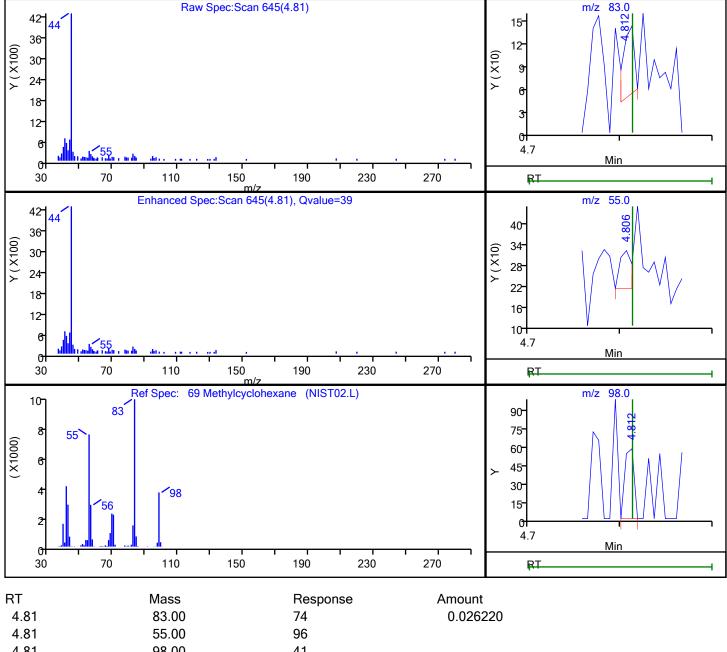
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

69 Methylcyclohexane, CAS: 108-87-2

Processing Results

4.81 98.00 41 Reviewer: W9CM, 14-Oct-2022 15:02:13

Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

Report Date: 14-Oct-2022 16:01:49 Chrom Revision: 2.3 28-Sep-2022 12:57:42

User Disabled Compound Report

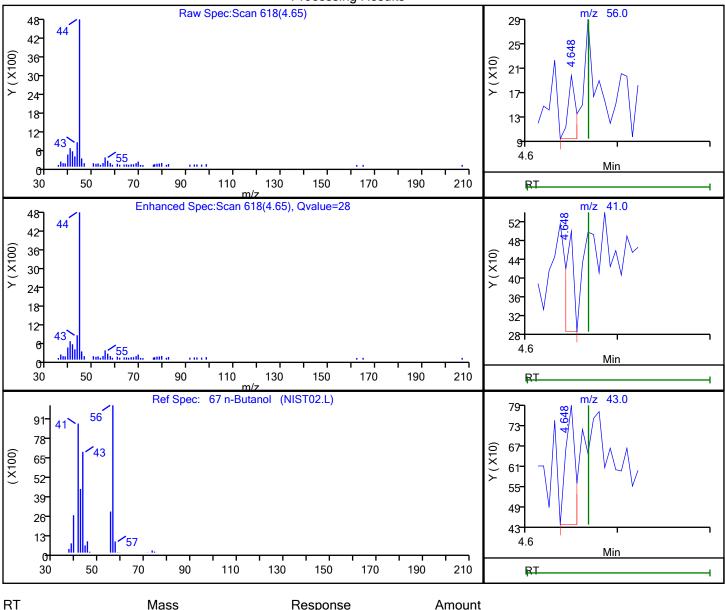
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

67 n-Butanol, CAS: 71-36-3

Processing Results

RT	Mass	Response	Amount
4.65	56.00	57	1.801659
4.65	41.00	126	
4.65	43.00	257	

Reviewer: W9CM, 14-Oct-2022 15:02:11

Report Date: 14-Oct-2022 16:01:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

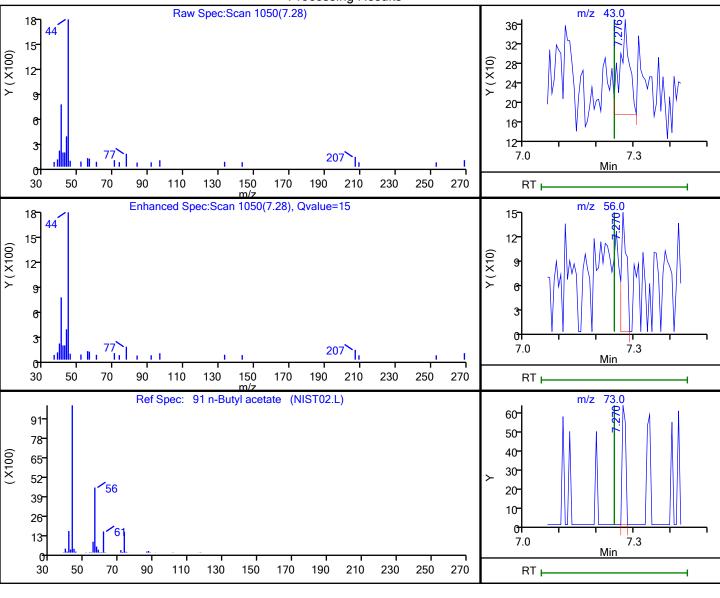
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

91 n-Butyl acetate, CAS: 123-86-4

Processing Results

RT	Mass	Response	Amount
7.28	43.00	332	0.070265
7.27	56.00	144	
7.27	73.00	43	

Reviewer: W9CM, 14-Oct-2022 15:02:31

Report Date: 14-Oct-2022 16:01:51 Chrom Revision: 2.3 28-Sep-2022 12:57:42

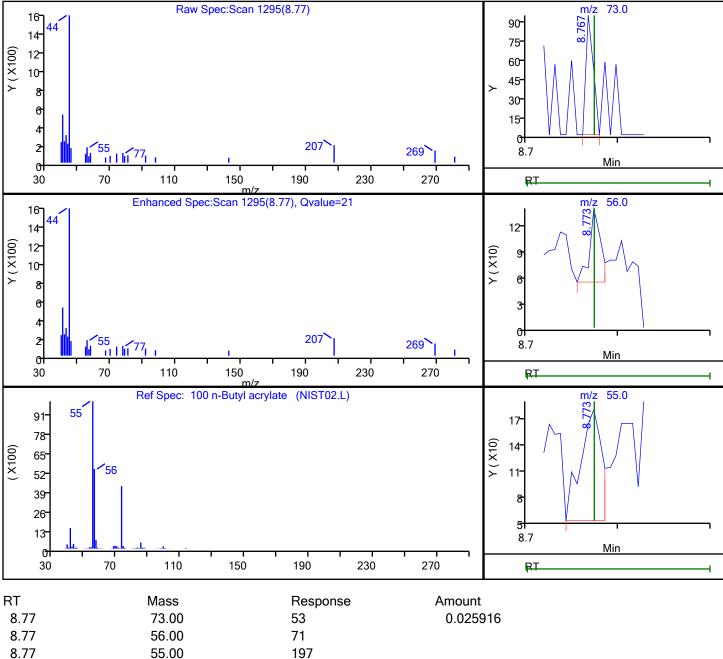
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

100 n-Butyl acrylate, CAS: 141-32-2

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:37

Audit Action: Marked Compound Undetected Aud

Audit Reason: Invalid Compound ID

Report Date: 14-Oct-2022 16:01:51 Chrom Revision: 2.3 28-Sep-2022 12:57:42

User Disabled Compound Report

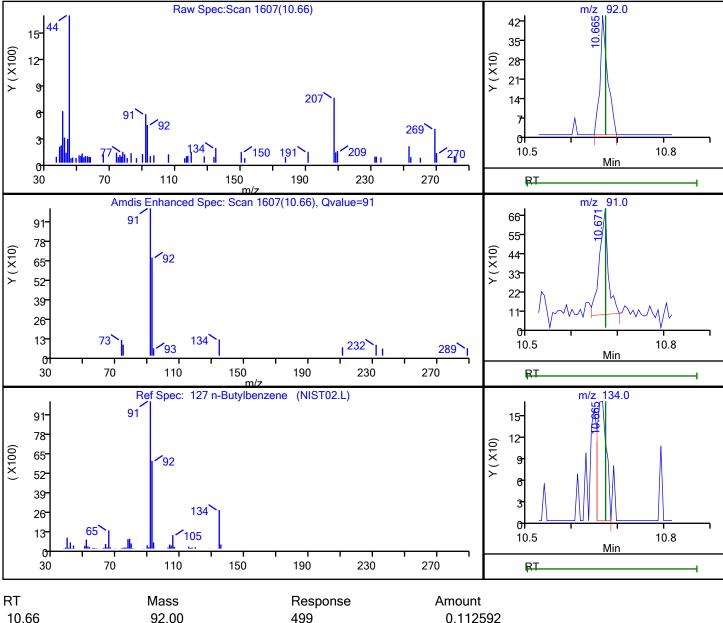
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

127 n-Butylbenzene, CAS: 104-51-8

Processing Results

RT Mass Response Amount
10.66 92.00 499 0.112592
10.67 91.00 817
10.66 134.00 242

Reviewer: W9CM, 14-Oct-2022 15:03:13

Report Date: 14-Oct-2022 16:01:49 Chrom Revision: 2.3 28-Sep-2022 12:57:42

User Disabled Compound Report

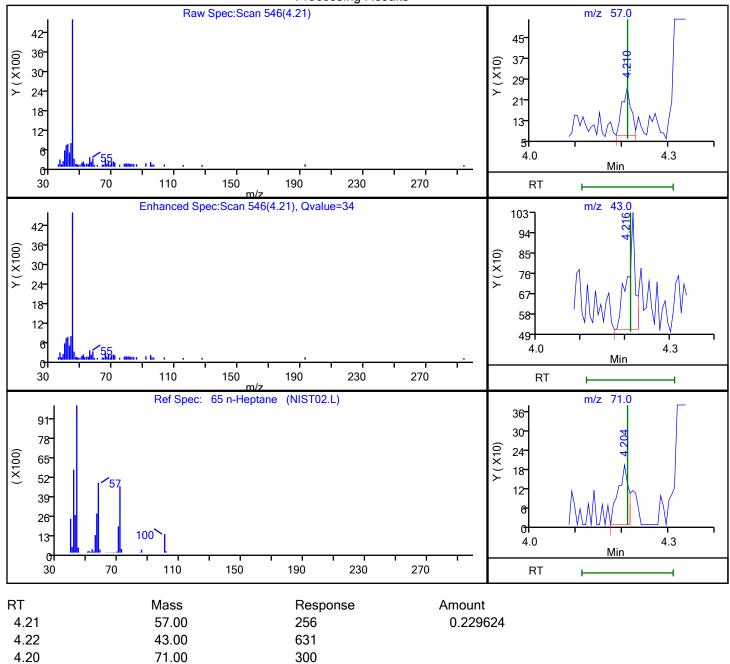
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

65 n-Heptane, CAS: 142-82-5

Processing Results

Audit Reason: Invalid Compound ID

Report Date: 14-Oct-2022 16:01:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

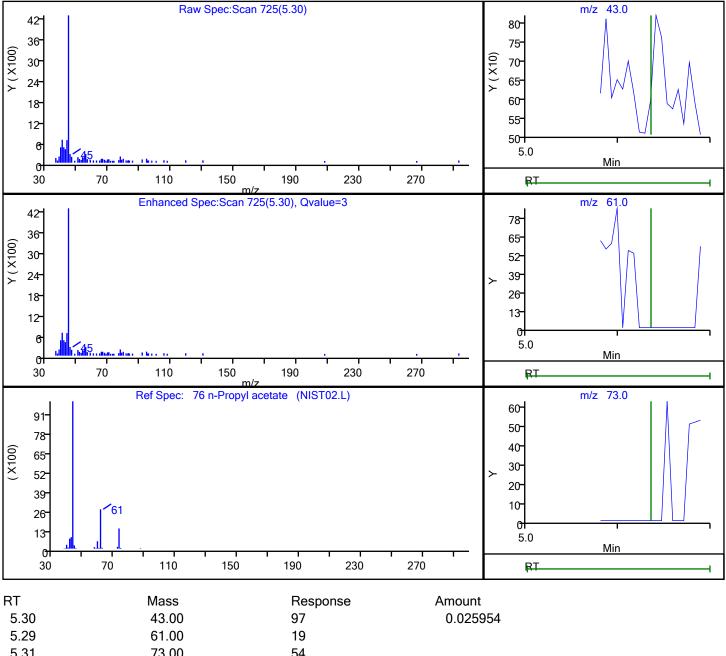
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: **VOA 624.1 ICAL** Column: Rtx-624 (0.25 mm) MS SCAN Detector

76 n-Propyl acetate, CAS: 109-60-4

Processing Results

5.31 73.00 54

Reviewer: W9CM, 14-Oct-2022 15:02:19

Report Date: 14-Oct-2022 16:01:51 Chrom Revision: 2.3 28-Sep-2022 12:57:42

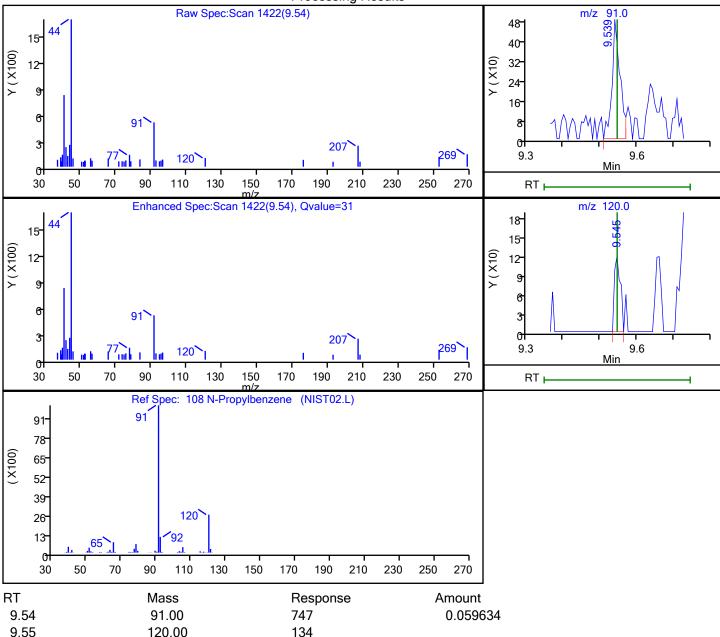
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

108 N-Propylbenzene, CAS: 103-65-1

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:45

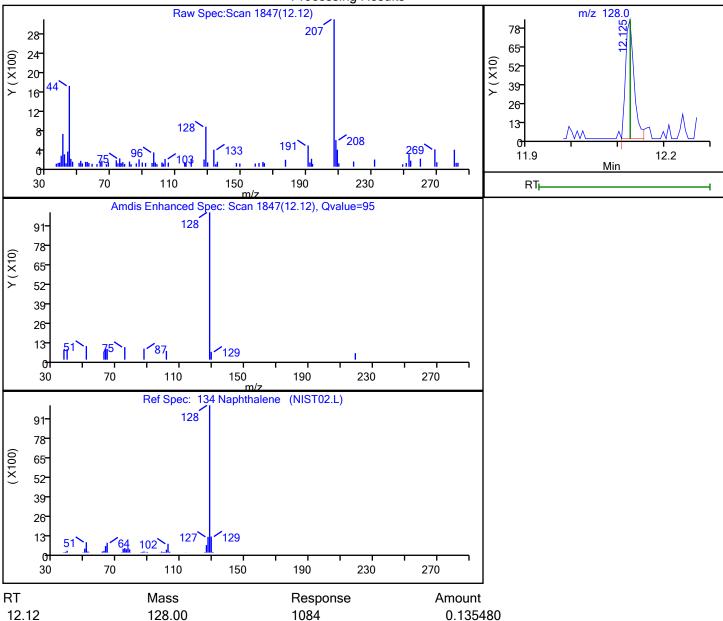
Chrom Revision: 2.3 28-Sep-2022 12:57:42 User Disabled Compound Report Report Date: 14-Oct-2022 16:01:51

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Worklist Smp#: Operator ID: 3

5.000 mL Purge Vol: Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) MS SCAN Detector

134 Naphthalene, CAS: 91-20-3

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:03:29

Report Date: 14-Oct-2022 16:01:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

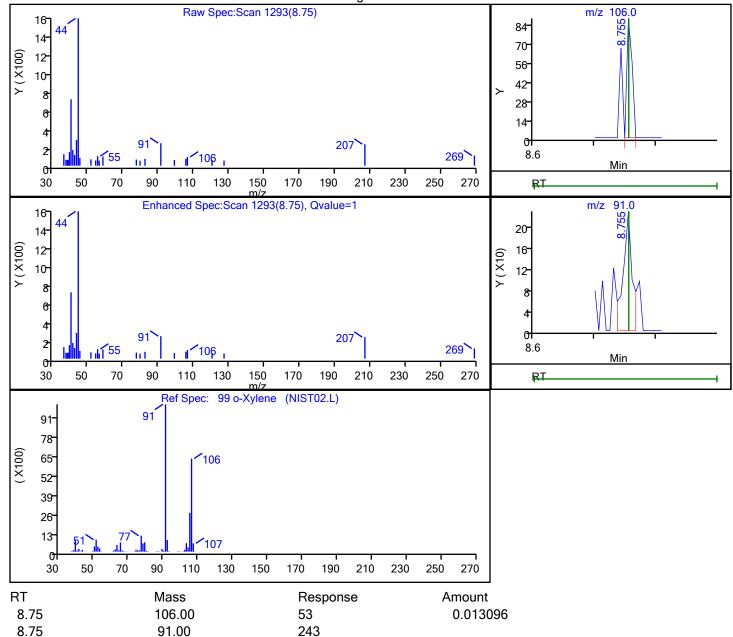
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

99 o-Xylene, CAS: 95-47-6

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:40

Report Date: 14-Oct-2022 16:01:48 Chrom Revision: 2.3 28-Sep-2022 12:57:42

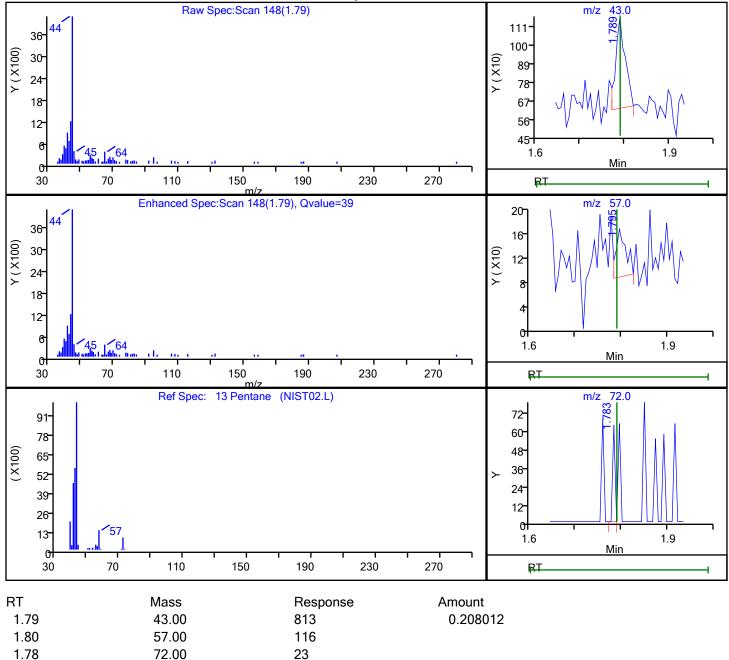
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

13 Pentane, CAS: 109-66-0

Processing Results

Reviewer: W9CM, 14-Oct-2022 14:49:42

Report Date: 14-Oct-2022 16:01:51 Chrom Revision: 2.3 28-Sep-2022 12:57:42

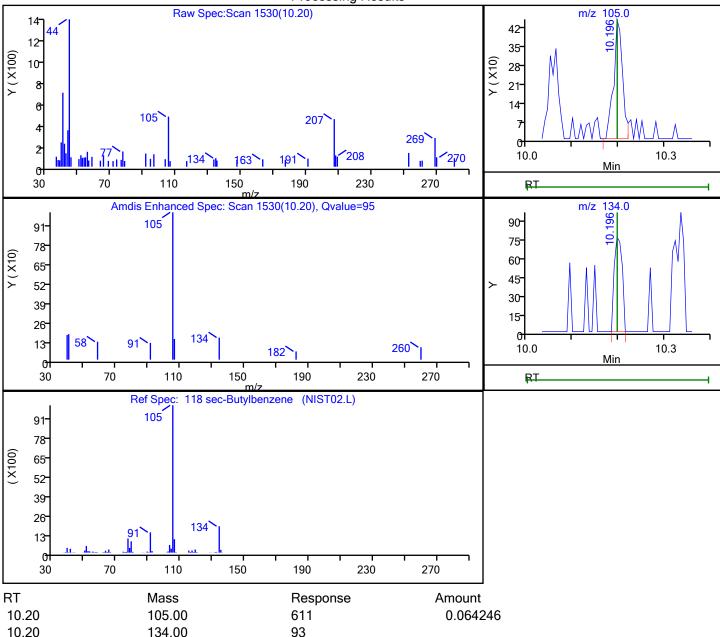
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

118 sec-Butylbenzene, CAS: 135-98-8

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:03:00

Report Date: 14-Oct-2022 16:01:51 Chrom Revision: 2.3 28-Sep-2022 12:57:42

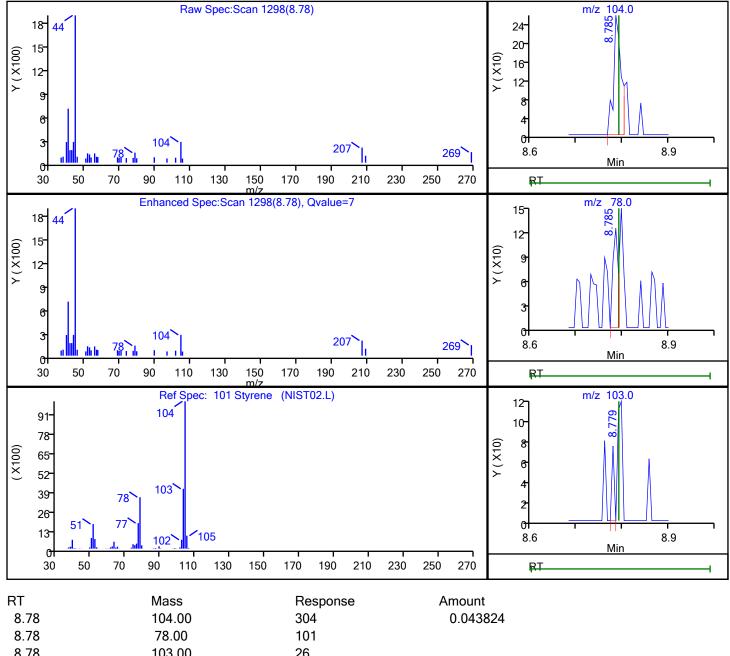
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


ALS Bottle#: 3 Operator ID: Worklist Smp#: 3

5.000 mL Purge Vol: Dil. Factor: 1.0000

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) MS SCAN Detector

101 Styrene, CAS: 100-42-5

Processing Results

8.78 103.00 26

Reviewer: W9CM, 14-Oct-2022 15:02:38

Report Date: 14-Oct-2022 16:01:51 Chrom Revision: 2.3 28-Sep-2022 12:57:42

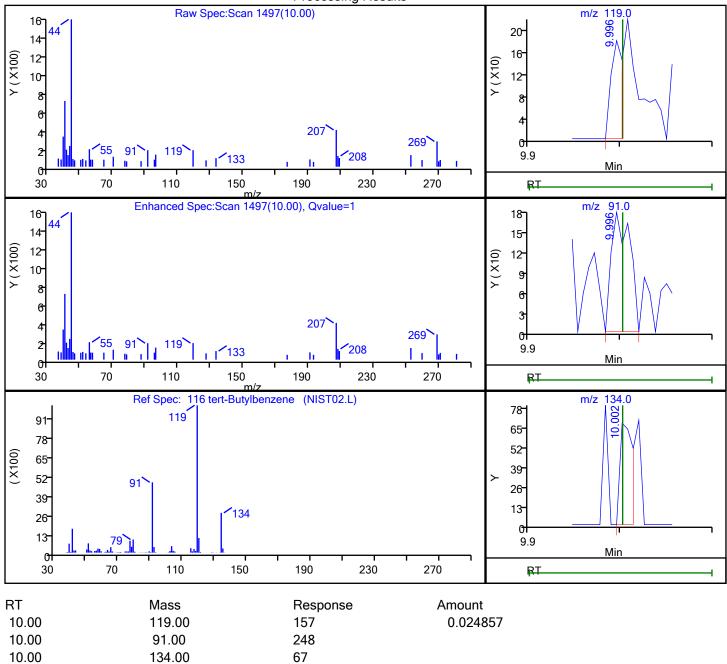
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

116 tert-Butylbenzene, CAS: 98-06-6

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:56

Report Date: 14-Oct-2022 16:01:49 Chrom Revision: 2.3 28-Sep-2022 12:57:42

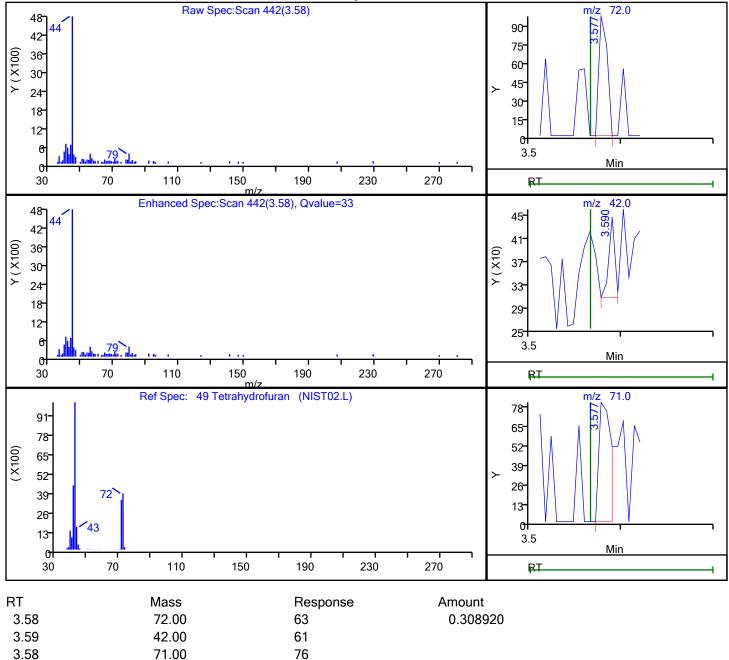
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

49 Tetrahydrofuran, CAS: 109-99-9

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:55

Report Date: 14-Oct-2022 16:01:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

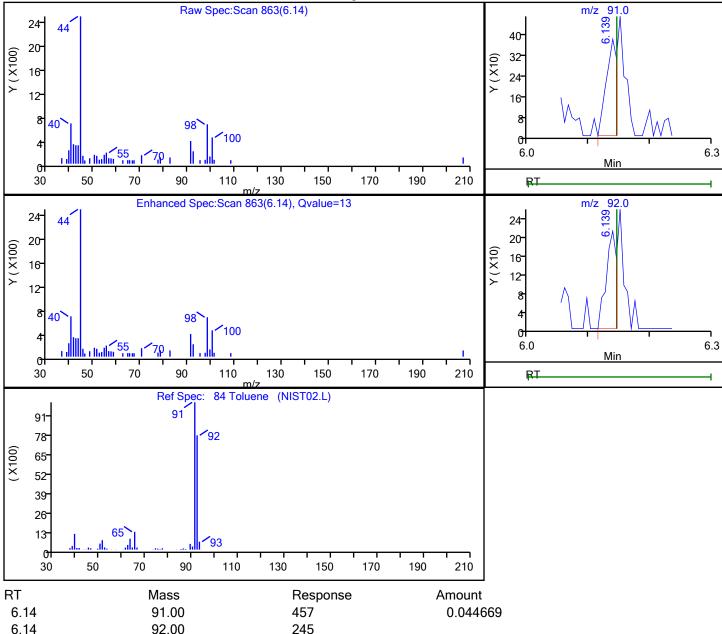
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

84 Toluene, CAS: 108-88-3

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:02:30

Report Date: 14-Oct-2022 16:01:49 Chrom Revision: 2.3 28-Sep-2022 12:57:42

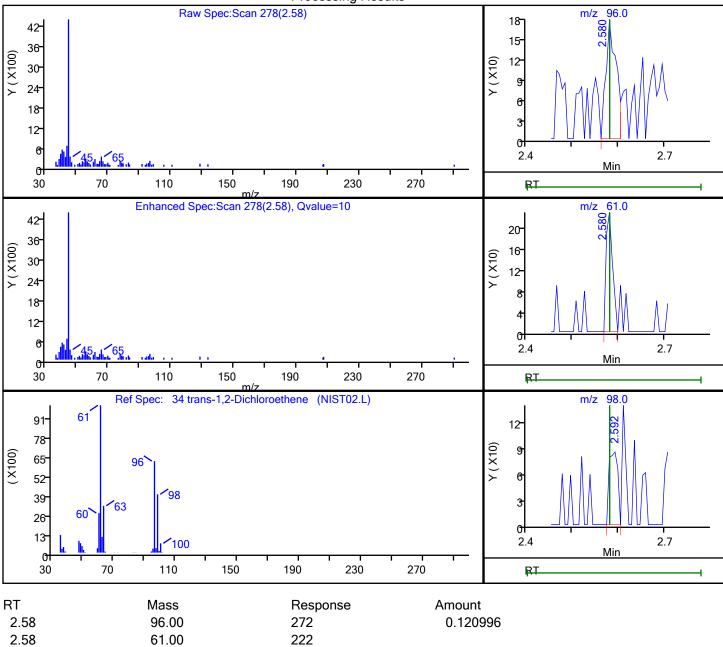
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

34 trans-1,2-Dichloroethene, CAS: 156-60-5

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:27

98.00

2.59

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

108

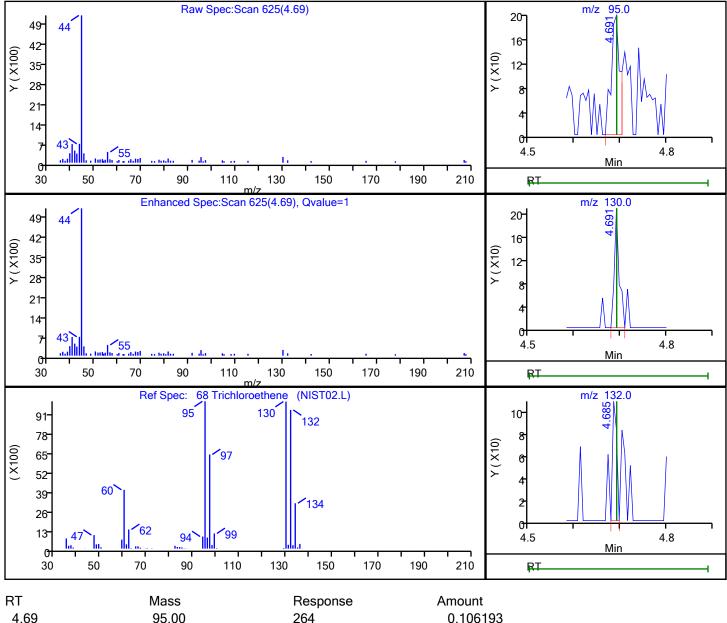
Chrom Revision: 2.3 28-Sep-2022 12:57:42 User Disabled Compound Report Report Date: 14-Oct-2022 16:01:50

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

5.000 mL 1.0000 Purge Vol: Dil. Factor:

Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

68 Trichloroethene, CAS: 79-01-6

Processing Results

RT	Mass	Response	Amount
4.69	95.00	264	0.106193
4.69	130.00	148	
4.68	132.00	69	

Reviewer: W9CM, 14-Oct-2022 15:02:12

Report Date: 14-Oct-2022 16:01:48 Chrom Revision: 2.3 28-Sep-2022 12:57:42

User Disabled Compound Report

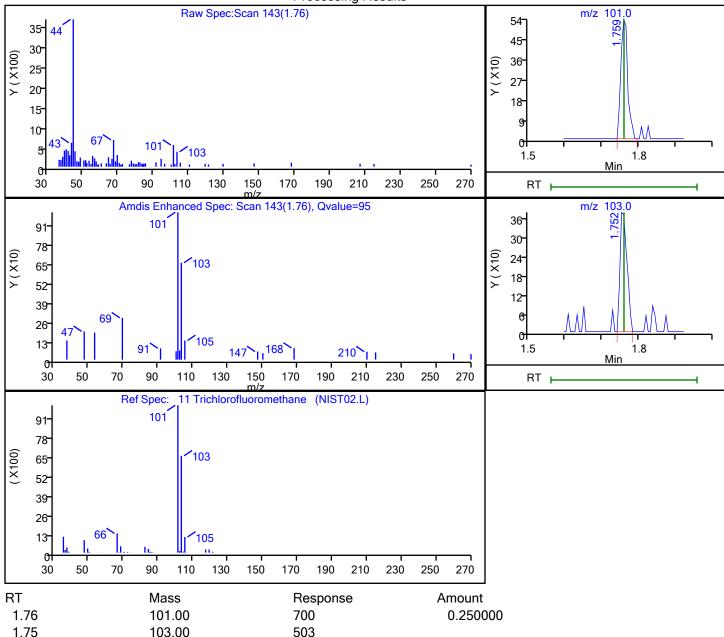
Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3


Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

11 Trichlorofluoromethane, CAS: 75-69-4

Processing Results

Reviewer: HVW2, 12-Oct-2022 23:53:34

Report Date: 14-Oct-2022 16:01:49 Chrom Revision: 2.3 28-Sep-2022 12:57:42

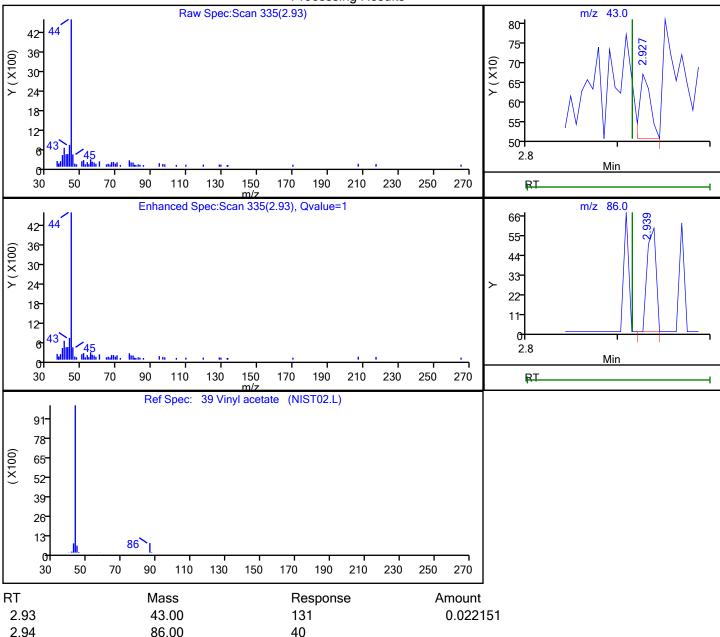
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

39 Vinyl acetate, CAS: 108-05-4

Processing Results

Reviewer: W9CM, 14-Oct-2022 15:01:35

Report Date: 14-Oct-2022 16:01:48 Chrom Revision: 2.3 28-Sep-2022 12:57:42

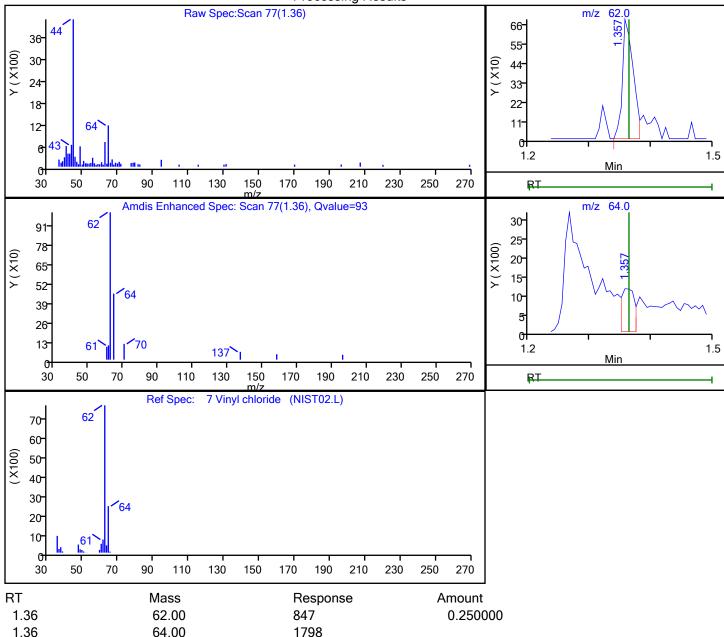
User Disabled Compound Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81262.D Injection Date: 12-Oct-2022 23:30:30 Instrument ID: CVOAMS8

Lims ID: STD7

Client ID:


Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

7 Vinyl chloride, CAS: 75-01-4

Processing Results

Reviewer: HVW2, 12-Oct-2022 23:53:28

Report Date: 14-Oct-2022 16:02:07 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D

Lims ID: STD1

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 12-Oct-2022 23:56:30 ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD1

Misc. Info.: 460-0151655-004

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:02:06Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 00:45:53

First Level Reviewer: HVW2		Date:			13-Oct-2022 00:45:53				
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.150	1.151	-0.001	85	215	NC	NC	
4 Dichlorodifluoromethane	85	1.174	1.175	-0.001	98	3135	1.00	0.9712	
5 Chlorodifluoromethane	67	1.192	1.193	-0.001	97	833	NC	NC	
6 Chloromethane	50	1.302	1.303	-0.001	99	5140	1.00	1.10	
7 Vinyl chloride	62	1.362	1.364	-0.002	96	3554	1.00	1.15	
8 Butadiene	54	1.375	1.376	-0.001	92	3290	1.00	1.11	
9 Bromomethane	94	1.575	1.577	-0.002	91	1192	1.00	1.04	
10 Chloroethane	64	1.630	1.631	-0.001	98	1636	1.00	1.07	
12 Dichlorofluoromethane	67	1.752	1.753	-0.001	96	5178	NC	NC	
11 Trichlorofluoromethane	101	1.758	1.759	-0.001	97	3674	1.00	1.12	
13 Pentane	43	1.788	1.789	-0.001	96	7463	2.00	1.94	
14 Ethanol	46	1.886	1.887	-0.001	37	343	40.0	43.6	M
15 Ethyl ether	59	1.928	1.929	-0.001	90	2101	1.00	1.10	
16 2-Methyl-1,3-butadiene	53	1.946	1.948	-0.002	92	2706	1.00	1.12	
17 1,2-Dichloro-1,1,2-trifluoroet	tha117	1.959	1.960	-0.001	81	1987	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	2.001	1.996	0.005	97	3596	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	oe 101	2.056	2.057	-0.001	91	2032	1.00	1.04	
19 Acrolein	56	2.062	2.057	0.005	82	1455	4.00	4.63	
21 1,1-Dichloroethene	96	2.086	2.088	-0.002	93	2462	1.00	1.26	
22 Acetone	43	2.153	2.148	0.005	85	4181	5.00	6.03	
23 Iodomethane	142	2.208	2.209	-0.001	98	1661	1.00	1.06	M
25 Isopropyl alcohol	45	2.208	2.209	-0.001	87	737	10.0	8.12	
24 Carbon disulfide	76	2.238	2.234	0.004	100	8234	1.00	1.15	
26 3-Chloro-1-propene	76	2.324	2.331	-0.007	89	1701	1.00	1.24	
28 Methyl acetate	43	2.336	2.337	-0.001	88	4293	2.00	2.28	
27 Cyclopentene	67	2.348	2.349	-0.001	94	6537	NC	NC	
29 Acetonitrile	41	2.378	2.380	-0.002	90	2159	10.0	9.32	
* 30 TBA-d9 (IS)	65	2.409	2.410	-0.001	75	174707	1000.0	1000.0	
31 Methylene Chloride	84	2.433	2.428	0.005	95	2897	1.00	1.20	
32 2-Methyl-2-propanol	59	2.464	2.465	-0.001	90	1572	10.0	11.2	
,			Dono	40E at 07	^				0/0000

Data File:

	Data File: \\chromfs\Edis	son\Ch		1		12-15	1655.b\J81263			
		<u> </u>	RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
	00 M	70	0.555	0.550	0.004	07	0.400	4.00	4.07	
	33 Methyl tert-butyl ether	73	2.555	2.556	-0.001	97	6436	1.00	1.07	
	34 trans-1,2-Dichloroethene	96	2.579	2.580	-0.001	97	2817	1.00	1.28	
	35 Acrylonitrile	53	2.640	2.635	0.005	93	9288	10.0	11.1	
	36 Hexane	57	2.707	2.702	0.005	91	2681	1.00	0.9739	
	37 Isopropyl ether	45	2.877	2.872	0.005	96	9332	1.00	1.02	
	38 1,1-Dichloroethane	63	2.908	2.909	-0.001	97	5781	1.00	1.16	
	39 Vinyl acetate	43	2.914	2.915	-0.001	99	12134	2.00	2.09	
	40 2-Chloro-1,3-butadiene	88	2.950	2.945	0.005	96	2031	NC	NC	
	41 Tert-butyl ethyl ether	59	3.151	3.146	0.005	87	7465	NC	NC	
•	43 2-Butanone-d5	46	3.327	3.323	0.004	86	261610	250.0	250.0	
	42 2,2-Dichloropropane	79	3.334	3.335	-0.001	44	1869	1.00	1.46	
	44 cis-1,2-Dichloroethene	96	3.358	3.359	-0.001	91	2963	1.00	1.22	
	46 2-Butanone (MEK)	72	3.376	3.377	-0.001	94	1254	5.00	6.10	
	45 Ethyl acetate	70	3.382	3.377	0.005	91	460	2.00	2.14	а
	47 Methyl acrylate	55	3.425	3.426	-0.001	97	2224	NC	NC	
	48 Propionitrile	54	3.492	3.493	-0.001	97	3271	NC	NC	
	50 Chlorobromomethane	128	3.565	3.566	-0.001	94	1415	1.00	1.32	
	49 Tetrahydrofuran	72	3.583	3.566	0.017	24	326	2.00	1.59	
	51 Methacrylonitrile	67	3.589	3.584	0.005	96	9161	NC	NC	
	52 Chloroform	83	3.613	3.608	0.005	97	5159	1.00	1.19	
	53 Cyclohexane	84	3.723	3.724	-0.001	96	2911	1.00	1.08	
	54 1,1,1-Trichloroethane	97	3.735	3.742	-0.007	97	3942	1.00	1.15	
9	55 Dibromofluoromethane (Surr)		3.753	3.754	-0.001	95	100153	50.0	52.4	
	56 Carbon tetrachloride	117	3.857	3.852	0.005	93	2892	1.00	1.06	
	57 1,1-Dichloropropene	75	3.875	3.882	-0.007	91	3598	1.00	1.09	
	58 Isobutyl alcohol	43	4.021	4.010	0.011	35	2382	NC	NC	Ma
	59 Isooctane	57	4.033	4.034	-0.001	98	5148	NC	NC	
	60 Benzene	78	4.070	4.065	0.005	97	11308	1.00	1.17	
9	61 1,2-Dichloroethane-d4 (Surr)	65	4.088	4.083	0.005	0	136337	50.0	51.9	
	62 Isopropyl acetate	43	4.124	4.126	-0.002	93	6929	1.00	1.01	
	63 Tert-amyl methyl ether	55	4.137	4.132	0.005	77	1758	NC	NC	
	64 1,2-Dichloroethane	62	4.155	4.156	-0.001	95	4268	1.00	1.16	
	65 n-Heptane	57	4.210	4.211	-0.001	93	1252	1.00	1.14	
*	66 Fluorobenzene	96	4.343	4.345	-0.002	97	439281	50.0	50.0	
	67 n-Butanol	56	4.672	4.667	0.005	22	585	25.0	17.7	Ma
	68 Trichloroethene	95	4.696	4.691	0.005	94	3113	1.00	1.27	
	69 Methylcyclohexane	83	4.806	4.813	-0.007	83	2758	1.00	0.99	
	70 Ethyl acrylate	55	4.824	4.819	0.005	96	6488	1.00	1.10	
	71 1,2-Dichloropropane	63	4.988	4.983	0.005	91	3583	1.00	1.23	
*	72 1,4-Dioxane-d8	96	5.055	5.056	-0.001	0	24668	1000.0	1000.0	
	73 Methyl methacrylate	100	5.086	5.075	0.011	94	937	2.00	2.13	
	74 Dibromomethane	93	5.116	5.117	-0.001	81	2034	1.00	1.27	
	75 1,4-Dioxane	88	5.116	5.123	-0.007	35	443	50.0	33.0	М
	76 n-Propyl acetate	43	5.140	5.135	0.005	98	3872	1.00	1.05	
	77 Dichlorobromomethane	83	5.280	5.275	0.005	96	3667	1.00	1.12	
	78 2-Nitropropane	41	5.639	5.634	0.005	74	966	NC	NC	
	79 2-Chloroethyl vinyl ether	63	5.639	5.640	-0.001	75	1622	1.00	1.00	
	80 Epichlorohydrin	57	5.755	5.750	0.005	99	4017	20.0	19.1	
	81 cis-1,3-Dichloropropene	75	5.803	5.805	-0.002	95	4660	1.00	1.03	
	82 4-Methyl-2-pentanone (MIBK)	43	5.992	5.993	-0.002	96	13211	5.00	5.33	
4	8 83 Toluene-d8 (Surr)	98	6.059	6.060	-0.001	98	372297	50.0	50.3	
	84 Toluene	91	6.144	6.145	-0.001	92	11462	1.00	1.14	
	04 I Uluelle	<i>3</i> I	0.144	0.145	-U.UU I	32	11402	1.00	1.14	

Report Date: 14-Oct-2022 16:02:07

Data File:

Data File: \\chromfs\Edis	son\Cr				112-15	1655.b\J81263			
	<u> </u>	RT	Exp RT	Dlt RT		D	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
OF trans 1.0 Diable.	75	6 500	6 544	0.000	07	4000	1.00	1.01	
85 trans-1,3-Dichloropropene	75 60	6.539	6.541	-0.002	97	4063	1.00	1.01	
86 Ethyl methacrylate	69	6.594	6.589	0.005	95	3143	NC	NC	
87 1,1,2-Trichloroethane	83	6.771	6.778	-0.007	92	2214	1.00	1.04	
88 Tetrachloroethene	166	6.813	6.808	0.005	90	2248	1.00	1.07	
89 1,3-Dichloropropane	76	7.008	7.009	-0.001	97	4085	1.00	1.04	
90 2-Hexanone	58	7.111	7.100	0.011	98	4199	5.00	5.18	
91 n-Butyl acetate	43	7.245	7.246	-0.001	95	4845	1.00	1.04	
92 Chlorodibromomethane	129	7.257	7.259	-0.002	73	2173	1.00	0.9682	
93 Ethylene Dibromide	107	7.428	7.423	0.005	98	2448	1.00	1.07	
* 94 Chlorobenzene-d5	117	8.012	8.013	-0.001	91	345836	50.0	50.0	
95 Chlorobenzene	112	8.048	8.049	-0.001	97	6763	1.00	1.11	
96 Ethylbenzene	106	8.152	8.153	-0.001	99	3370	1.00	1.06	
97 1,1,1,2-Tetrachloroethane	131	8.170	8.165	0.005	89	2073	1.00	1.00	
98 m-Xylene & p-Xylene	106	8.304	8.305	-0.001	0	4514	1.00	1.14	
99 o-Xylene	106	8.760	8.755	0.005	90	4325	1.00	1.09	
100 n-Butyl acrylate	73	8.772	8.773	-0.001	95	2139	1.00	1.06	
101 Styrene	104	8.790	8.792	-0.002	94	7572	1.00	1.11	
103 Bromoform	173	8.997	9.004	-0.007	93	1257	1.00	0.8949	
102 Amyl acetate (mixed isomers)		9.022	9.017	0.005	85	5671	1.00	1.04	
104 Isopropylbenzene	105	9.137	9.138	-0.001	98	10809	1.00	1.12	
\$ 105 4-Bromofluorobenzene	174	9.338	9.333	0.005	87	126472	50.0	51.5	
106 Bromobenzene	156	9.460	9.461	-0.001	91	3090	1.00	1.16	
107 1,1,2,2-Tetrachloroethane	83	9.526	9.528	-0.002	98	3276	1.00	1.04	
108 N-Propylbenzene	91	9.545	9.546	-0.001	97	14337	1.00	1.15	
109 1,2,3-Trichloropropane	110	9.563	9.564	-0.001	94	785	1.00	1.13	
110 trans-1,4-Dichloro-2-butene	53	9.593	9.595	-0.002	68	1094	NC	NC	
111 2-Chlorotoluene	91	9.642	9.637	0.005	97	9953	1.00	1.12	
112 4-Ethyltoluene	105	9.654	9.655	-0.001	97	11000	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.721	9.722	-0.001	92	9241	1.00	1.11	
114 4-Chlorotoluene	91	9.752	9.753	-0.001	99	9700	1.00	1.13	
115 Butyl Methacrylate	87	9.837	9.838	-0.001	95	3227	1.00	1.00	
116 tert-Butylbenzene	119	10.001	10.002	-0.001	88	7090	1.00	1.13	
117 1,2,4-Trimethylbenzene	105	10.062	10.063	-0.001	99	9639	1.00	1.10	
118 sec-Butylbenzene	105	10.196	10.197	-0.001	98	10628	1.00	1.12	
120 1,3-Dichlorobenzene	146	10.317	10.319	-0.002	92	5282	1.00	1.11	
119 4-Isopropyltoluene	119	10.329	10.325	0.004	96	8677	1.00	1.11	
* 121 1,4-Dichlorobenzene-d4	152	10.384	10.385	-0.001	98	189061	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.402	10.404	-0.002	91	5594	1.00	1.12	
123 1,2,3-Trimethylbenzene	105	10.421	10.428	-0.007	98	10058	1.00	1.08	
124 Benzyl chloride	91	10.536	10.531	0.005	97	4529	1.00	0.8948	
125 2,3-Dihydroindene	117	10.585	10.586	-0.001	94	10243	NC	NC	
126 p-Diethylbenzene	119	10.652	10.647	0.005	88	4628	NC	NC	
127 n-Butylbenzene	92	10.664	10.671	-0.007	96	4918	1.00	1.12	
128 1,2-Dichlorobenzene	146	10.713	10.714	-0.001	91	5246	1.00	1.11	
129 1,2,4,5-Tetramethylbenzene	119	11.272	11.274	-0.002	96	9006	NC	NC	
130 1,2-Dibromo-3-Chloropropane		11.358	11.353	0.005	80	464	1.00	0.9367	
131 1,3,5-Trichlorobenzene	180	11.461	11.462	-0.001	95	3685	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.942	11.937	0.005	91	3554	1.00	1.15	
133 Hexachlorobutadiene	225	12.021	12.022	-0.001	83	1153	1.00	1.08	
134 Naphthalene	128	12.124	12.125	-0.001	99	8962	1.00	1.13	
135 1,2,3-Trichlorobenzene	180	12.124	12.125	-0.001	95	3246	1.00	1.13	
S 136 1,2-Dichloroethene, Total	100	12.257	12.200	0.002	0	0240	2.00	2.50	
5 130 1,2-Dichiologuiene, Total	100				U		∠.00	2.50	

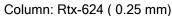
Report Date: 14-Oct-2022 16:02:07

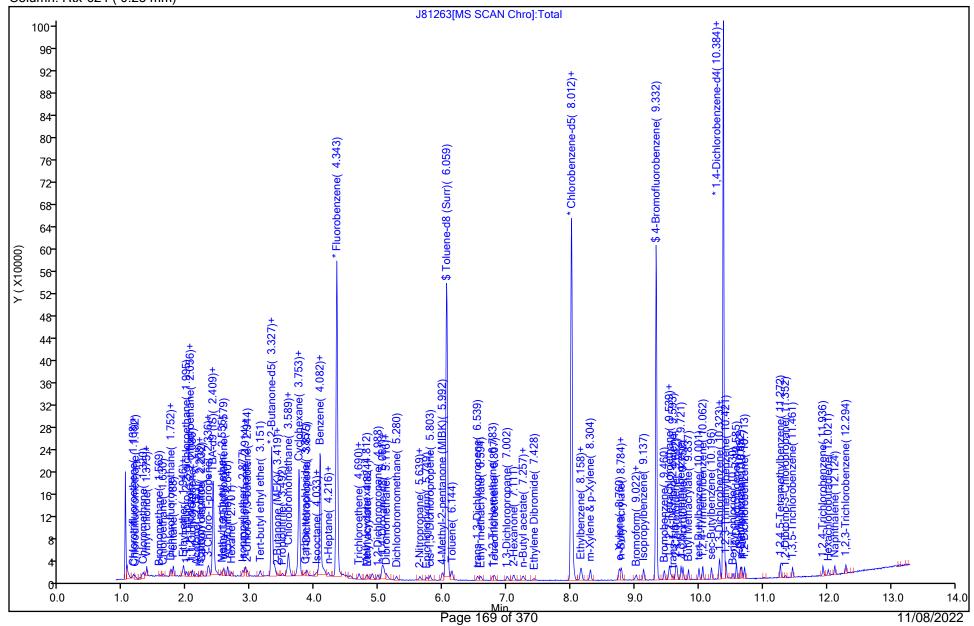
Data File: \\chromfs\Ed	ison\C	nromData	CVOAMS	58\202210	12-15	1655.b\J81263	3.D		
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
S 137 Xylenes, Total S 138 Total BTEX	100 1				0		2.00 5.00	2.22 5.59	
QC Flag Legend Processing Flags NC - Not Calibrated Review Flags M - Manually Integrated a - User Assigned ID Reagents:									
8260MIX1COMB_00160 524freon_00058 ACROLEIN W_00145 GASES Li_00497 14DIOXINTER_00146 8260ISNEW_00171		Amount Amount Amount	Added: Ad	10.00 4.00 10.00	l L	Jnits: uL Jnits: uL Jnits: uL Jnits: uL Jnits: uL Jnits: uL	Run Reage	nt	
8260SURR250_00232		Amount	Added:	1.00	L	Jnits: uL	Run Reage	nt	

Report Date: 14-Oct-2022 16:02:07 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D


Injection Date: 12-Oct-2022 23:56:30 Instrument ID: CVOAMS8


Lims ID: STD1

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

4

4

Chrom Revision: 2.3 28-Sep-2022 12:57:42 Manual Integration/User Assign Peak Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D \\Injection Date: 12-Oct-2022 23:56:30 \Instrument ID: CVOAMS8

Lims ID: STD1

Client ID:

Operator ID: ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

1.6

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

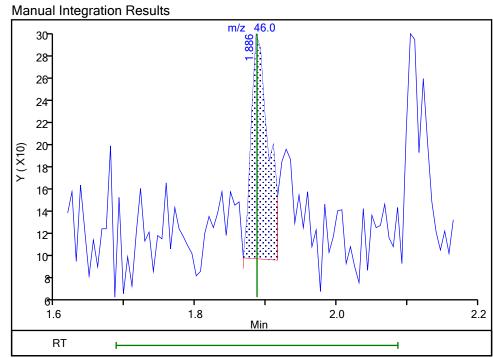
Processing Integration Results

14 Ethanol, CAS: 64-17-5

Signal: 1

RT: 1.89 Area: 458

Amount: 74.028514


Amount Units: ug/l

1.8

RT: 1.89 Area: 343 Amount: 43.588883

Amount Units: ug/l

Min

Reviewer: W9CM, 14-Oct-2022 15:29:18

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 170 of 370 11/08/2022

2.0

2.2

Eurofins Edison

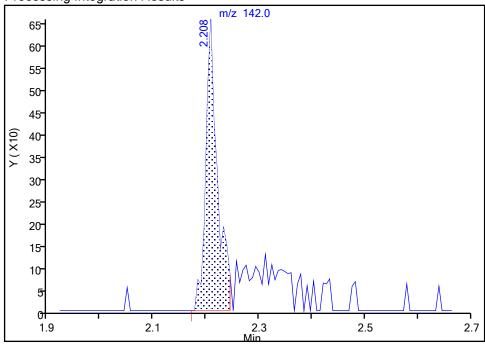
Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D \\Injection Date: 12-Oct-2022 23:56:30 \Instrument ID: CVOAMS8

Lims ID: STD1

Client ID:

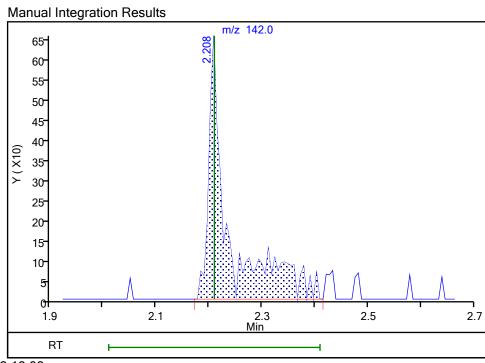
Operator ID: ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

23 Iodomethane, CAS: 74-88-4

Signal: 1


RT: 2.21
Area: 1000
Amount: 0.490761
Amount Units: ug/l

Processing Integration Results

RT: 2.21 Area: 1661 Amount: 1.062242

Amount Units: ug/l

Reviewer: HVW2, 13-Oct-2022 02:18:08

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 171 of 370

Report Date: 14-Oct-2022 16:02:07 Chrom Revision: 2.3 28-Sep-2022 12:57:42 Manual Integration/User Assign Peak Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D \\Injection Date: 12-Oct-2022 23:56:30 \Instrument ID: CVOAMS8

Lims ID: STD1

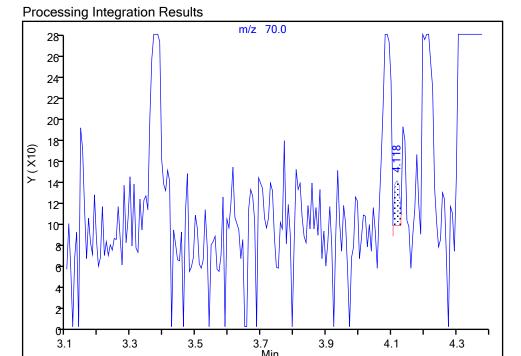
Client ID:

Operator ID: ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

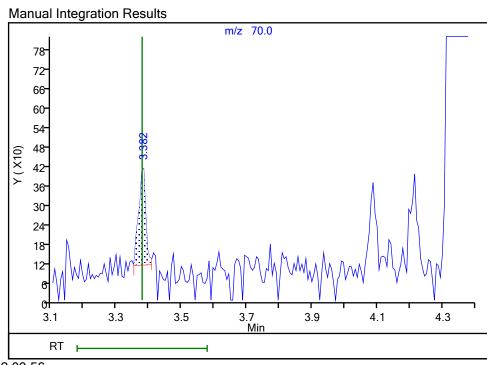
 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN


45 Ethyl acetate, CAS: 141-78-6

Signal: 1

RT: 4.12 Area: 47


Amount: 0.224788

Amount Units: ug/l

RT: 3.38 Area: 460 Amount: 2.142036

Amount Units: ug/I

Reviewer: HVW2, 13-Oct-2022 02:09:56 Audit Action: Assigned Compound ID

Audit Reason: Peak assignment corrected

Page 172 of 370

Manual Integration/User Assign Peak Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D Injection Date: 12-Oct-2022 23:56:30 Instrument ID: CVOAMS8

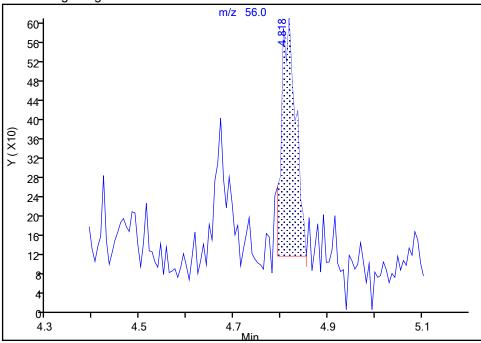
Lims ID: STD1

Client ID:

Operator ID: ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL 1.0000 Dil. Factor:

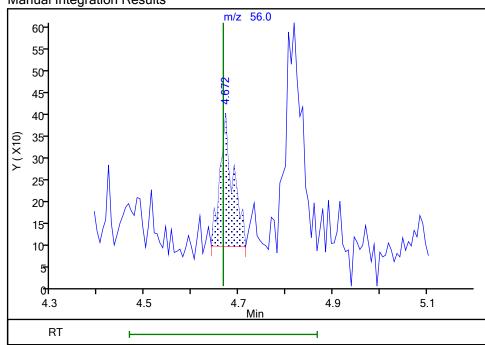
Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN


67 n-Butanol, CAS: 71-36-3

Signal: 1

RT: 4.82 Area: 1028 Amount: 25.000000

Amount Units: ug/l


Processing Integration Results

RT: 4.67 Area: 585

17.702364 Amount: Amount Units: ug/l

Manual Integration Results

Reviewer: W9CM, 14-Oct-2022 15:47:07

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 173 of 370

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81263.D \\Injection Date: 12-Oct-2022 23:56:30 \Instrument ID: CVOAMS8

Lims ID: STD1

Client ID:

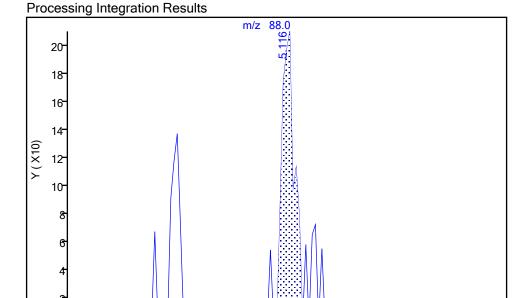
Operator ID: ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Ы

4.7

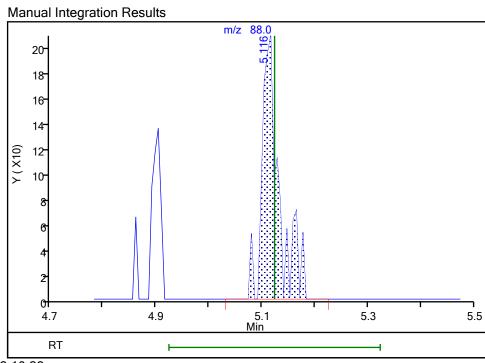
Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN


75 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 5.12 Area: 337

Amount: 21.946271


Amount Units: ug/l

5.1

5.3

RT: 5.12
Area: 443
Amount: 33.046143
Amount Units: ug/l

Reviewer: HVW2, 13-Oct-2022 02:10:28

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 174 of 370

4.9

5.5

Report Date: 14-Oct-2022 16:02:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81264.D

Lims ID: STD5

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 13-Oct-2022 00:21:30 ALS Bottle#: 5 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD5

Misc. Info.: 460-0151655-005

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS\\20221012-151655.b\\\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:02:16Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 01:01:38

First Level Reviewer: HVW2		Date:				13-Oct-2022 01:01:38			
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.150	1.151	-0.001	96	1463	NC	NC	
4 Dichlorodifluoromethane	85	1.174	1.175	-0.001	100	17424	5.00	5.22	
5 Chlorodifluoromethane	67	1.193	1.193	0.000	98	3406	NC	NC	
6 Chloromethane	50	1.302	1.303	-0.001	99	24499	5.00	5.09	
7 Vinyl chloride	62	1.363	1.364	-0.001	98	16302	5.00	5.09	
8 Butadiene	54	1.375	1.376	-0.001	94	16168	5.00	5.26	
9 Bromomethane	94	1.570	1.577	-0.007	98	5612	5.00	4.76	
10 Chloroethane	64	1.631	1.631	0.000	99	8988	5.00	5.69	
12 Dichlorofluoromethane	67	1.752	1.753	-0.001	99	25818	NC	NC	
11 Trichlorofluoromethane	101	1.758	1.759	-0.001	98	17621	5.00	5.18	
13 Pentane	43	1.789	1.789	0.000	96	47440	10.0	12.0	
14 Ethanol	46	1.886	1.887	-0.001	94	1672	200.0	209.7	M
15 Ethyl ether	59	1.929	1.929	0.000	90	9784	5.00	4.95	
16 2-Methyl-1,3-butadiene	53	1.947	1.948	-0.001	94	13635	5.00	5.47	
17 1,2-Dichloro-1,1,2-trifluoroet	tha117	1.959	1.960	-0.001	98	7919	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	1.996	1.996	0.000	97	17600	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	oe 101	2.057	2.057	0.000	91	10924	5.00	5.43	
19 Acrolein	56	2.063	2.057	0.006	99	6575	20.0	20.7	
21 1,1-Dichloroethene	96	2.087	2.088	-0.001	92	10419	5.00	5.17	
22 Acetone	43	2.148	2.148	0.000	84	17697	25.0	24.7	
23 lodomethane	142	2.209	2.209	0.000	98	6937	5.00	3.51	
25 Isopropyl alcohol	45	2.209	2.209	0.000	70	4753	50.0	51.7	
24 Carbon disulfide	76	2.233	2.234	-0.001	100	36178	5.00	4.89	
26 3-Chloro-1-propene	76	2.330	2.331	-0.001	94	7128	5.00	5.04	
28 Methyl acetate	43	2.336	2.337	-0.001	98	18802	10.0	9.67	
27 Cyclopentene	67	2.349	2.349	0.000	95	30917	NC	NC	
29 Acetonitrile	41	2.379	2.380	-0.001	99	11227	50.0	47.9	
* 30 TBA-d9 (IS)	65	2.409	2.410	-0.001	75	176983	1000.0	1000.0	
31 Methylene Chloride	84	2.428	2.428	0.000	95	12771	5.00	5.13	
32 2-Methyl-2-propanol	59	2.464	2.465	-0.001	96	6888	50.0	48.5	
			_		_				

Report Date: 14-Oct-2022 16:02:18

Data File:

	Data File: \\chromfs\Edis	son\Cn				112-15	1655.b\J81264			
	0	Cia	RT	Exp RT	Dlt RT		Decrease	Cal Amt	OnCol Amt	Flagra
L	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
	22 Mathyl tart hutul athar	72	2 555	2.556	-0.001	96	29418	5.00	4 75	
	33 Methyl tert-butyl ether 34 trans-1,2-Dichloroethene	73 96	2.555 2.580	2.580	0.000	96 98	11789	5.00	4.75 5.16	
	35 Acrylonitrile	53	2.641	2.635	0.006	93	44070	50.0	5.10 52.1	
	36 Hexane	53 57	2.701	2.702	-0.001	93 91	14985	5.00	52.1	
	37 Isopropyl ether	45	2.872	2.702	0.000	96	46632	5.00	4.93	
	38 1,1-Dichloroethane	63	2.908	2.909	-0.001	99	27661	5.00	5.39	
	39 Vinyl acetate	43	2.908	2.909	-0.001	100	62993	10.0	10.5	
	40 2-Chloro-1,3-butadiene	43 88	2.945	2.915	0.000	96	10225	NC	NC	
		59	3.145	3.146	-0.001	96 86	36556	NC	NC NC	
,	41 Tert-butyl ethyl ether 43 2-Butanone-d5	46	3.322	3.323	-0.001	90	270494	250.0	250.0	
		79	3.334	3.335	-0.001	92	6392	5.00	4.85	
	42 2,2-Dichloropropane 44 cis-1,2-Dichloroethene	79 96	3.358	3.359	-0.001	90	13004	5.00	4.65 5.18	
		90 72	3.377	3.377	0.000	90 94	5342	25.0	25.1	
	46 2-Butanone (MEK) 45 Ethyl acetate	72 70	3.377	3.377	0.000	94 91	2157	25.0 10.0	25.1 9.71	_
	•	55	3.425	3.426	-0.001	98	10127	NC	NC	а
	47 Methyl acrylate	55 54	3.425	3.426	-0.001 -0.001	96 97	15508	NC NC	NC NC	
	48 Propionitrile		3.492	3.493 3.566	-0.001 -0.001		5485			
	50 Chlorobromomethane	128	3.565	3.566		93 55	2437	5.00	4.94	
	49 Tetrahydrofuran	72 67			-0.001	55 07		10.0	11.5 NC	
	51 Methacrylonitrile52 Chloroform	67 83	3.583	3.584 3.608	-0.001 0.000	97 97	45257 23510	NC 5.00	NC 5.25	
			3.608							
	53 Cyclohexane	84	3.729	3.724	0.005	97 06	15181	5.00	5.45	
,	54 1,1,1-Trichloroethane	97	3.736	3.742	-0.006	96 05	18272	5.00	5.16	
;	55 Dibromofluoromethane (Surr)		3.754	3.754	0.000	95	84338	50.0	42.7	
	56 Carbon tetrachloride	117	3.851	3.852	-0.001	97	14263	5.00	5.06	
	57 1,1-Dichloropropene	75 42	3.882	3.882	0.000	92	17277	5.00	5.08	
	58 Isobutyl alcohol	43	4.009	4.010	-0.001	92	15006	NC	NC	
	59 Isooctane	57	4.034	4.034	0.000	97	27410	NC 5.00	NC	
,	60 Benzene	78 CF	4.070	4.065	0.005	97	49674	5.00	5.18	
;	61 1,2-Dichloroethane-d4 (Surr)	65	4.082	4.083	-0.001	0	116439	50.0	42.9	
	62 Isopropyl acetate	43	4.125	4.126	-0.001	93	33852	5.00	4.76	
	63 Tert-amyl methyl ether	55	4.137	4.132	0.005	87	7729	NC	NC	
	64 1,2-Dichloroethane	62	4.155	4.156	-0.001	96	19199	5.00	5.05	
	65 n-Heptane	57	4.216	4.211	0.005	97	5721	5.00	5.05	
ĺ	66 Fluorobenzene	96	4.344	4.345	-0.001	97	453872	50.0	50.0	
	67 n-Butanol	56	4.666	4.667	-0.001	97	3863	125.0	115.4	
	68 Trichloroethene	95	4.691	4.691	0.000	91	12567	5.00	4.98	
	69 Methylcyclohexane	83	4.806	4.813	-0.007	84	14924	5.00	5.21	
	70 Ethyl acrylate	55	4.818	4.819	-0.001	97	29444	5.00	4.83	
	71 1,2-Dichloropropane	63	4.989	4.983	0.006	89	15072	5.00	5.01	
*	72 1,4-Dioxane-d8	96	5.056	5.056	0.000	0	23491	1000.0	1000.0	
	73 Methyl methacrylate	100	5.080	5.075	0.005	93	4325	10.0	9.51	
	74 Dibromomethane	93	5.117	5.117	0.000	88	8071	5.00	4.87	
	75 1,4-Dioxane	88	5.117	5.123	-0.006	32	1656	100.0	129.7	
	76 n-Propyl acetate	43	5.141	5.135	0.006	98	16727	5.00	4.41	
	77 Dichlorobromomethane	83	5.275	5.275	0.000	98	16281	5.00	4.83	
	78 2-Nitropropane	41	5.634	5.634	0.000	77	6760	NC	NC	
	79 2-Chloroethyl vinyl ether	63	5.646	5.640	0.006	77	7983	5.01	4.78	
	80 Epichlorohydrin	57	5.749	5.750	-0.001	99	21548	100.0	99.1	
	81 cis-1,3-Dichloropropene	75	5.804	5.805	-0.001	98	22120	5.00	4.90	
	82 4-Methyl-2-pentanone (MIBK)	43	5.993	5.993	0.000	97	64689	25.0	25.2	
(83 Toluene-d8 (Surr)	98	6.059	6.060	-0.001	98	312172	50.0	42.4	
	84 Toluene	91	6.145	6.145	0.000	92	50271	5.00	5.02	

Report Date: 14-Oct-2022 16:02:18
Data File: \\chromfs\Edisor

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81264.D									
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
85 trans-1,3-Dichloropropene	75	6.540	6.541	-0.001	96	18907	5.00	4.71	
86 Ethyl methacrylate	69	6.589	6.589	0.000	97	15292	NC	NC	
87 1,1,2-Trichloroethane	83	6.777	6.778	-0.001	94	10512	5.00	4.97	
88 Tetrachloroethene	166	6.808	6.808	0.000	88	10485	5.00	5.02	
89 1,3-Dichloropropane	76	7.008	7.009	-0.001	96	19381	5.00	4.96	
90 2-Hexanone	58	7.106	7.100	0.006	99	21600	25.0	25.8	
91 n-Butyl acetate	43	7.246	7.246	0.000	95	23204	5.00	5.02	
92 Chlorodibromomethane	129	7.264	7.259	0.005	96	10015	5.00	4.49	
93 Ethylene Dibromide	107	7.422	7.423	-0.001	98	11018	5.00	4.84	
* 94 Chlorobenzene-d5	117	8.012	8.013	-0.001	92	343778	50.0	50.0	
95 Chlorobenzene	112	8.043	8.049	-0.006	92	30778	5.00	5.09	
96 Ethylbenzene	106	8.158	8.153	0.005	99	16314	5.00	5.16	
97 1,1,1,2-Tetrachloroethane	131	8.170	8.165	0.005	91	9762	5.00	4.74	
98 m-Xylene & p-Xylene	106	8.304	8.305	-0.001	0	19914	5.00	5.06	
99 o-Xylene	106	8.754	8.755	-0.001	92	20522	5.00	5.18	
100 n-Butyl acrylate	73	8.773	8.773	0.000	94	9588	5.00	4.79	
101 Styrene	104	8.791	8.792	-0.001	91	33366	5.00	4.92	
103 Bromoform	173	8.998	9.004	-0.006	91	5762	5.00	4.13	
102 Amyl acetate (mixed isomers)		9.022	9.017	0.005	86	27264	5.00	4.98	
104 Isopropylbenzene	105	9.138	9.138	0.000	97	49904	5.00	5.18	
\$ 105 4-Bromofluorobenzene	174	9.332	9.333	-0.001	84	103084	50.0	42.2	
106 Bromobenzene	156	9.460	9.461	-0.001	92	13692	5.00	5.14	
107 1,1,2,2-Tetrachloroethane	83	9.527	9.528	-0.001	99	15731	5.00	5.00	
108 N-Propylbenzene	91	9.545	9.546	-0.001	98	64960	5.00	5.20	
109 1,2,3-Trichloropropane	110	9.564	9.564	0.000	94	3628	5.00	5.23	
110 trans-1,4-Dichloro-2-butene	53	9.588	9.595	-0.007	76	4992	NC	NC	
111 2-Chlorotoluene	91	9.637	9.637	0.000	98	45940	5.00	5.15	
112 4-Ethyltoluene	105	9.655	9.655	0.000	97	51040	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.722	9.722	0.000	91	43118	5.00	5.18	
114 4-Chlorotoluene	91	9.752	9.753	-0.001	99	44154	5.00	5.13	
115 Butyl Methacrylate	87	9.837	9.838	-0.001	97	15963	5.00	4.93	
116 tert-Butylbenzene	119	10.002	10.002	0.000	88	32388	5.00	5.14	
117 1,2,4-Trimethylbenzene	105	10.062	10.063	-0.001	99	44439	5.00	5.05	
118 sec-Butylbenzene	105	10.196	10.197	-0.001	98	49635	5.00	5.23	
120 1,3-Dichlorobenzene	146	10.318	10.319	-0.001	92	24283	5.00	5.08	
119 4-Isopropyltoluene	119	10.330	10.325	0.005	96	39960	5.00	5.08	
* 121 1,4-Dichlorobenzene-d4	152	10.385	10.385	0.000	98	189541	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.403	10.404	-0.001	93	25252	5.00	5.04	
123 1,2,3-Trimethylbenzene	105	10.427	10.428	-0.001	99	47814	5.00	5.12	
124 Benzyl chloride	91	10.531	10.531	0.000	97	22201	5.00	4.37	
125 2,3-Dihydroindene	117	10.586	10.586	0.000	93	43925	NC	NC	
126 p-Diethylbenzene	119	10.646	10.647	-0.001	90	20597	NC	NC	
127 n-Butylbenzene	92	10.671	10.671	0.000	97	22902	5.00	5.18	
128 1,2-Dichlorobenzene	146	10.713	10.714	-0.001	92	24024	5.00	5.05	
129 1,2,4,5-Tetramethylbenzene	119	11.273	11.274	-0.001	96	41231	NC	NC	
130 1,2-Dibromo-3-Chloropropane		11.352	11.353	-0.001	86	2444	5.00	4.92	
131 1,3,5-Trichlorobenzene	180	11.332	11.462	0.000	96	15953	NC	4.92 NC	
	180	11.462	11.462	0.000	96 94	14881	5.00	4.82	
132 1,2,4-Trichlorobenzene 133 Hexachlorobutadiene	225	12.021	12.022	-0.005	94 92	5594	5.00 5.00	4.62 5.25	
134 Naphthalene	128	12.125	12.125	0.000	98	38845	5.00	4.87	
135 1,2,3-Trichlorobenzene	180	12.295	12.296	-0.001	94	13311	5.00	4.68	
S 136 1,2-Dichloroethene, Total	100				0		10.0	10.3	

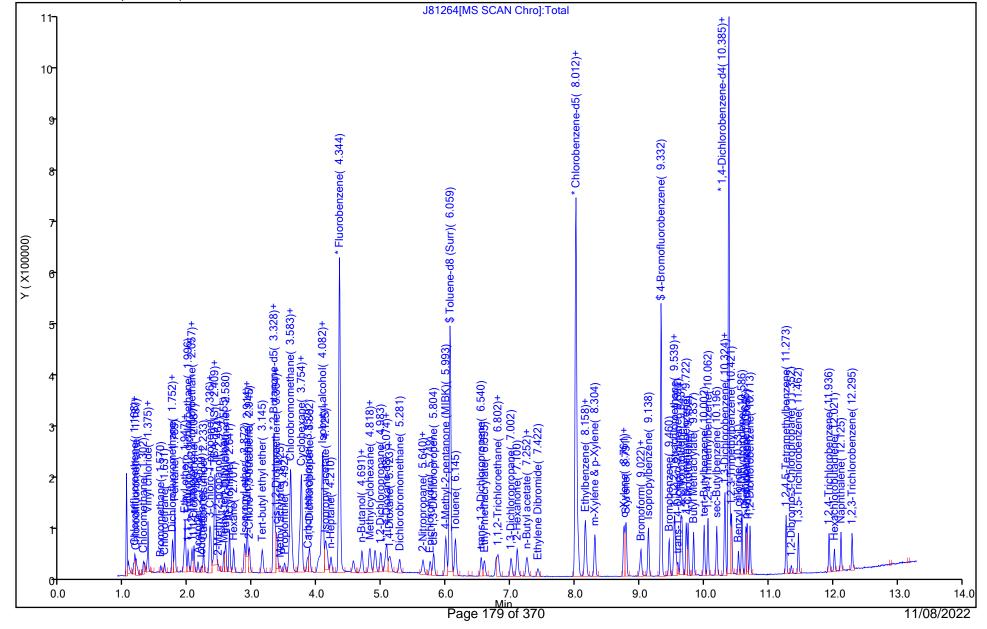
Report Date: 14-Oct-2022 16:02:18
Data File: \\chromfs\Edisor

Data File. \\chinomis\Ec	IISONC	поправ	CVOAIVI	30/202210	12-15	1000.0/061204	+.U		
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
S 137 Xylenes, Total S 138 Total BTEX QC Flag Legend	100 1	, ,			0		10.0 25.0	10.2 25.6	
Processing Flags NC - Not Calibrated Review Flags									
M - Manually Integrated a - User Assigned ID Reagents:									
8260MIX1COMB_00160 524freon_00058			Added: Added:		_	Jnits: uL Jnits: uL			
ACROLEIN W_00145 GASES Li_00497 8260ISNEW_00171		Amount	Added: Added: Added:		L	Jnits: uL Jnits: uL Jnits: uL	Run Reage	nt	
8260SURR250_00232		Amount	Added:	1.00	Ĺ	Jnits: uL	Run Reage	nt	

Report Date: 14-Oct-2022 16:02:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81264.D


Injection Date: 13-Oct-2022 00:21:30 Instrument ID: CVOAMS8
Lims ID: STD5

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

5

5

Report Date: 14-Oct-2022 16:02:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42 Manual Integration/User Assign Peak Report

Eurofins Edison

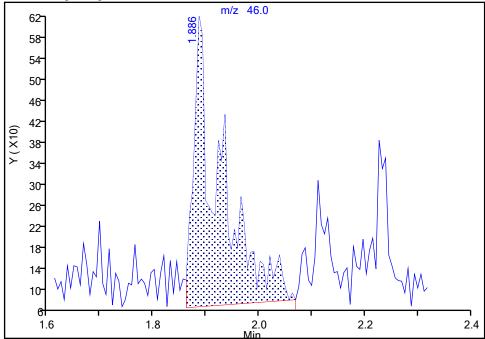
Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81264.D Injection Date: 13-Oct-2022 00:21:30 Instrument ID: CVOAMS8

Lims ID: STD5

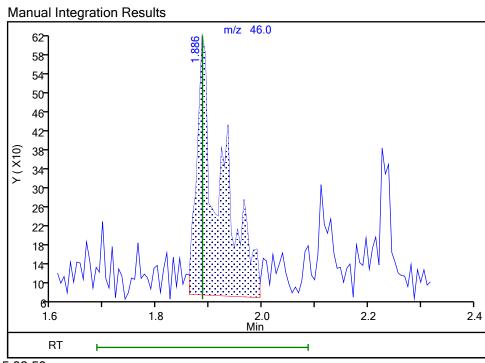
Client ID:

Operator ID: ALS Bottle#: 5 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

14 Ethanol, CAS: 64-17-5


Signal: 1

RT: 1.89
Area: 1893
Amount: 232.1088
Amount Units: ug/I

Processing Integration Results

RT: 1.89
Area: 1672
Amount: 209.7474
Amount Units: ug/l

Reviewer: W9CM, 14-Oct-2022 15:32:59

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 180 of 370

Report Date: 14-Oct-2022 16:02:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42 Manual Integration/User Assign Peak Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81264.D Injection Date: 13-Oct-2022 00:21:30 Instrument ID: CVOAMS8

Lims ID: STD5

Client ID:

Operator ID: ALS Bottle#: 5 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

Processing Integration Results

3.2

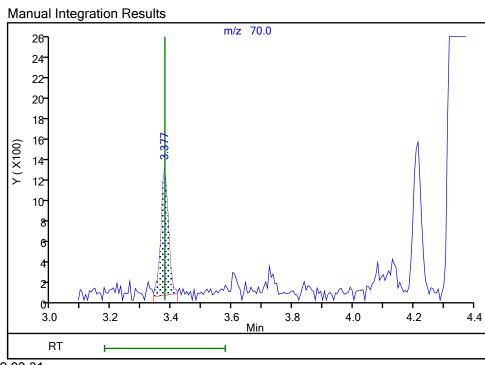
3.0

3.4

45 Ethyl acetate, CAS: 141-78-6

Signal: 1

RT: 4.12 Area: 72


Amount: 0.337579

Amount Units: ug/l

m/z 70.0

5652484440(0 36X) 32> 2824201612-

RT: 3.38
Area: 2157
Amount: 9.714397
Amount Units: ug/l

3.6

3.8

4.0

4.2

4.4

Reviewer: HVW2, 13-Oct-2022 02:09:31 Audit Action: Assigned Compound ID

Audit Reason: Peak assignment corrected

Page 181 of 370

Report Date: 14-Oct-2022 16:02:29 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81265.D

Lims ID: STD20

Client ID:

Sample Type: ICIS Calib Level: 3

Inject. Date: 13-Oct-2022 00:46:30 ALS Bottle#: 6 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD20

Misc. Info.: 460-0151655-006

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:02:27Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 01:31:11

First Level Reviewer: HVW2		Date:			13-Oct-2022 01:31:11				
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.151	1.151	0.000	97	5340	NC	NC	
4 Dichlorodifluoromethane	85	1.175	1.175	0.000	99	64772	20.0	19.1	
5 Chlorodifluoromethane	67	1.193	1.193	0.000	98	12004	NC	NC	
6 Chloromethane	50	1.303	1.303	0.000	100	93533	20.0	19.1	
7 Vinyl chloride	62	1.364	1.364	0.000	99	63880	20.0	19.7	
8 Butadiene	54	1.376	1.376	0.000	94	60887	20.0	19.5	
9 Bromomethane	94	1.577	1.577	0.000	99	22670	20.0	19.0	
10 Chloroethane	64	1.631	1.631	0.000	98	33037	20.0	20.6	
12 Dichlorofluoromethane	67	1.753	1.753	0.000	99	96497	NC	NC	
11 Trichlorofluoromethane	101	1.759	1.759	0.000	98	67708	20.0	19.6	
13 Pentane	43	1.789	1.789	0.000	96	175847	40.0	43.7	
14 Ethanol	46	1.887	1.887	0.000	97	7465	800.0	912.0	
15 Ethyl ether	59	1.929	1.929	0.000	90	42021	20.0	21.0	
16 2-Methyl-1,3-butadiene	53	1.948	1.948	0.000	95	50915	20.0	20.1	
17 1,2-Dichloro-1,1,2-trifluoroe	tha117	1.960	1.960	0.000	98	32408	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	1.996	1.996	0.000	98	64600	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	oe 101	2.057	2.057	0.000	93	41509	20.0	20.3	
19 Acrolein	56	2.057	2.057	0.000	96	11907	40.0	36.4	
21 1,1-Dichloroethene	96	2.088	2.088	0.000	93	40293	20.0	19.7	
22 Acetone	43	2.148	2.148	0.000	84	69593	100.0	92.0	
23 lodomethane	142	2.209	2.209	0.000	100	38539	20.0	18.0	
25 Isopropyl alcohol	45	2.209	2.209	0.000	60	18494	200.0	195.9	
24 Carbon disulfide	76	2.234	2.234	0.000	100	150419	20.0	20.0	
26 3-Chloro-1-propene	76	2.331	2.331	0.000	94	29320	20.0	20.4	
28 Methyl acetate	43	2.337	2.337	0.000	99	79558	40.0	40.3	
27 Cyclopentene	67	2.349	2.349	0.000	95	119298	NC	NC	
29 Acetonitrile	41	2.380	2.380	0.000	99	48527	200.0	201.5	
* 30 TBA-d9 (IS)	65	2.410	2.410	0.000	76	181731	1000.0	1000.0	
31 Methylene Chloride	84	2.428	2.428	0.000	96	50896	20.0	20.1	
32 2-Methyl-2-propanol	59	2.465	2.465	0.000	98	28129	200.0	193.1	
• • •									

Data File:

_	Data File: \\chromfs\Edis	son\Ch	romData	CVOAMS	8\202210	12-15	1655.b\J81265	.D		
			RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
	20.14	70	0.550	0.550	0.000	07	100010	00.0	00.4	
	33 Methyl tert-butyl ether	73	2.556	2.556	0.000	97	126213	20.0	20.1	
	34 trans-1,2-Dichloroethene	96	2.580	2.580	0.000	97	44943	20.0	19.4	
	35 Acrylonitrile	53	2.635	2.635	0.000	93	186525	200.0	214.6	
	36 Hexane	57	2.702	2.702	0.000	93	60667	20.0	21.0	
	37 Isopropyl ether	45	2.872	2.872	0.000	97	197494	20.0	20.6	
	38 1,1-Dichloroethane	63	2.909	2.909	0.000	99	104968	20.0	20.2	
	39 Vinyl acetate	43	2.915	2.915	0.000	100	266416	40.0	43.7	
	40 2-Chloro-1,3-butadiene	88	2.945	2.945	0.000	95	40026	NC	NC	
	41 Tert-butyl ethyl ether	59	3.146	3.146	0.000	86	160087	NC	NC	
*	43 2-Butanone-d5	46	3.323	3.323	0.000	97	285282	250.0	250.0	
	42 2,2-Dichloropropane	79	3.335	3.335	0.000	95	24706	20.0	18.5	
	44 cis-1,2-Dichloroethene	96	3.359	3.359	0.000	89	49548	20.0	19.5	
	46 2-Butanone (MEK)	72	3.377	3.377	0.000	94	21476	100.0	95.7	
	45 Ethyl acetate	70	3.377	3.377	0.000	93	9516	40.0	40.6	а
	47 Methyl acrylate	55	3.426	3.426	0.000	99	42683	NC	NC	
	48 Propionitrile	54	3.493	3.493	0.000	97	64461	NC	NC	
	50 Chlorobromomethane	128	3.566	3.566	0.000	95	22138	20.0	19.6	
	49 Tetrahydrofuran	72	3.566	3.566	0.000	91	9771	40.0	43.7	
	51 Methacrylonitrile	67	3.584	3.584	0.000	97	187156	NC	NC	
	52 Chloroform	83	3.608	3.608	0.000	97	91370	20.0	20.1	
	53 Cyclohexane	84	3.724	3.724	0.000	98	57310	20.0	20.3	
	54 1,1,1-Trichloroethane	97	3.742	3.742	0.000	97	71090	20.0	19.8	
9	5 55 Dibromofluoromethane (Surr)	113	3.754	3.754	0.000	94	101089	50.0	50.5	
	56 Carbon tetrachloride	117	3.852	3.852	0.000	98	56094	20.0	19.6	
	57 1,1-Dichloropropene	75	3.882	3.882	0.000	93	69378	20.0	20.1	
	58 Isobutyl alcohol	43	4.010	4.010	0.000	90	57964	NC	NC	
	59 Isooctane	57	4.034	4.034	0.000	95	102227	NC	NC	
	60 Benzene	78	4.065	4.065	0.000	98	198090	20.0	20.6	
9	6 61 1,2-Dichloroethane-d4 (Surr)	65	4.083	4.083	0.000	0	137585	50.0	50.0	
	62 Isopropyl acetate	43	4.126	4.126	0.000	94	144954	20.0	20.1	
	63 Tert-amyl methyl ether	55	4.132	4.132	0.000	92	34642	NC	NC	
	64 1,2-Dichloroethane	62	4.156	4.156	0.000	97	77775	20.0	20.2	
	65 n-Heptane	57	4.211	4.211	0.000	97	22700	20.0	19.8	
*	66 Fluorobenzene	96	4.345	4.345	0.000	97	460431	50.0	50.0	
	67 n-Butanol	56	4.667	4.667	0.000	96	17245	500.0	501.7	
	68 Trichloroethene	95	4.691	4.691	0.000	92	48315	20.0	18.9	
	69 Methylcyclohexane	83	4.813	4.813	0.000	86	59856	20.0	20.6	
	70 Ethyl acrylate	55	4.819	4.819	0.000	97	122785	20.0	19.9	
	71 1,2-Dichloropropane	63	4.983	4.983	0.000	89	60458	20.0	19.8	
*	72 1,4-Dioxane-d8	96	5.056	5.056	0.000	0	23858	1000.0	1000.0	
	73 Methyl methacrylate	100	5.075	5.075	0.000	94	18376	40.0	39.8	
	74 Dibromomethane	93	5.117	5.117	0.000	92	32438	20.0	19.3	
	75 1,4-Dioxane	93 88	5.123	5.117	0.000	33	5130	400.0	395.7	М
			5.125	5.125		99		20.0	20.0	IVI
	76 n-Propyl acetate 77 Dichlorobromomethane	43 83	5.135	5.135 5.275	0.000 0.000	99 98	76992 66063	20.0	20.0 19.3	
								20.0 NC		
	78 2-Nitropropane	41 62	5.634	5.634	0.000	81	24668		NC 10.3	
	79 2-Chloroethyl vinyl ether	63	5.640	5.640	0.000	79	32686	20.0	19.3	
	80 Epichlorohydrin	57 75	5.750	5.750	0.000	99	88675	400.0	386.9	
	81 cis-1,3-Dichloropropene	75	5.805	5.805	0.000	100	92114	20.0	20.4	
	82 4-Methyl-2-pentanone (MIBK)	43	5.993	5.993	0.000	97	280021	100.0	103.5	
,	8 83 Toluene-d8 (Surr)	98	6.060	6.060	0.000	97	384192	50.0	52.2	
	84 Toluene	91	6.145	6.145	0.000	92	204579	20.0	20.4	

Report Date: 14-Oct-2022 16:02:29

Data File:

Data File: \\chromfs\Edi	son\Ch				172-15	1655.b\J81265			
	<u>.</u>	RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	-
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
05. 40.511		0.544	0.544	0.000			00.0	40.0	
85 trans-1,3-Dichloropropene	75	6.541	6.541	0.000	97	80082	20.0	19.9	
86 Ethyl methacrylate	69	6.589	6.589	0.000	97	61917	NC	NC	
87 1,1,2-Trichloroethane	83	6.778	6.778	0.000	93	43294	20.0	20.5	
88 Tetrachloroethene	166	6.808	6.808	0.000	94	43218	20.0	20.7	
89 1,3-Dichloropropane	76 50	7.009	7.009	0.000	97	81788	20.0	20.9	
90 2-Hexanone	58	7.100	7.100	0.000	98	87403	100.0	98.9	
91 n-Butyl acetate	43	7.246	7.246	0.000	96	92982	20.0	20.1	
92 Chlorodibromomethane	129	7.259	7.259	0.000	97	43742	20.0	19.6	
93 Ethylene Dibromide	107	7.423	7.423	0.000	96	47055	20.0	20.6	
* 94 Chlorobenzene-d5	117	8.013	8.013	0.000	92	344187	50.0	50.0	
95 Chlorobenzene	112	8.049	8.049	0.000	90	122710	20.0	20.3	
96 Ethylbenzene	106	8.153	8.153	0.000	99	63813	20.0	20.1	
97 1,1,1,2-Tetrachloroethane	131	8.165	8.165	0.000	93	40080	20.0	19.5	
98 m-Xylene & p-Xylene	106	8.305	8.305	0.000	0	80463	20.0	20.4	
99 o-Xylene	106	8.755	8.755	0.000	92	82024	20.0	20.7	
100 n-Butyl acrylate	73	8.773	8.773	0.000	95	40541	20.0	20.2	
101 Styrene	104	8.792	8.792	0.000	90	139738	20.0	20.6	
103 Bromoform	173	9.004	9.004	0.000	93	26732	20.0	19.1	
102 Amyl acetate (mixed isomers	•	9.017	9.017	0.000	85	116915	20.0	21.4	
104 Isopropylbenzene	105	9.138	9.138	0.000	97	197001	20.0	20.4	
\$ 105 4-Bromofluorobenzene	174	9.333	9.333	0.000	84	126311	50.0	51.7	
106 Bromobenzene	156	9.461	9.461	0.000	93	53347	20.0	20.0	
107 1,1,2,2-Tetrachloroethane	83	9.528	9.528	0.000	99	65677	20.0	20.9	
108 N-Propylbenzene	91	9.546	9.546	0.000	98	259677	20.0	20.8	
109 1,2,3-Trichloropropane	110	9.564	9.564	0.000	96	13508	20.0	19.5	
110 trans-1,4-Dichloro-2-butene	53	9.595	9.595	0.000	85	19477	NC	NC	
111 2-Chlorotoluene	91	9.637	9.637	0.000	97	184924	20.0	20.8	
112 4-Ethyltoluene	105	9.655	9.655	0.000	97	205033	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.722	9.722	0.000	91	169505	20.0	20.4	
114 4-Chlorotoluene	91	9.753	9.753	0.000	99	175178	20.0	20.4	
115 Butyl Methacrylate	87	9.838	9.838	0.000	97	66185	20.0	20.5	
116 tert-Butylbenzene	119	10.002	10.002	0.000	88	130184	20.0	20.7	
117 1,2,4-Trimethylbenzene	105	10.063	10.063	0.000	99	180961	20.0	20.6	
118 sec-Butylbenzene	105	10.197	10.197	0.000	98	195651	20.0	20.7	
120 1,3-Dichlorobenzene	146	10.319	10.319	0.000	93	97090	20.0	20.3	
119 4-Isopropyltoluene	119	10.325	10.325	0.000	96	161116	20.0	20.5	
* 121 1,4-Dichlorobenzene-d4	152	10.385	10.385	0.000	98	189292	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.404	10.404	0.000	95	101985	20.0	20.4	
123 1,2,3-Trimethylbenzene	105	10.428	10.428	0.000	100	191974	20.0	20.6	
124 Benzyl chloride	91	10.531	10.531	0.000	97	98468	20.0	19.4	
125 2,3-Dihydroindene	117	10.586	10.586	0.000	94	182720	NC	NC	
126 p-Diethylbenzene	119	10.647	10.647	0.000	90	85846	NC	NC	
127 n-Butylbenzene	92	10.671	10.671	0.000	97	89665	20.0	20.3	
128 1,2-Dichlorobenzene	146	10.714	10.714	0.000	93	96116	20.0	20.2	
129 1,2,4,5-Tetramethylbenzene	119	11.274	11.274	0.000	96	167741	NC	NC	
130 1,2-Dibromo-3-Chloropropand		11.353	11.353	0.000	87	9639	20.0	19.4	
131 1,3,5-Trichlorobenzene	180	11.462	11.462	0.000	95	65597	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.937	11.937	0.000	93	61096	20.0	19.8	
133 Hexachlorobutadiene	225	12.022	12.022	0.000	93	21498	20.0	20.2	
134 Naphthalene	128	12.125	12.125	0.000	98	160166	20.0	20.1	
135 1,2,3-Trichlorobenzene	180	12.125	12.123	0.000	95	56533	20.0	19.9	
S 136 1,2-Dichloroethene, Total	100	12.230	12.200	0.000	0	50555	40.0	38.9	
5 130 1,2-DICHIOIDENIENE, TOTAL	100				U		40.0	30.9	

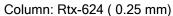
Report Date: 14-Oct-2022 16:02:29
Data File: \chromfs\Edisor

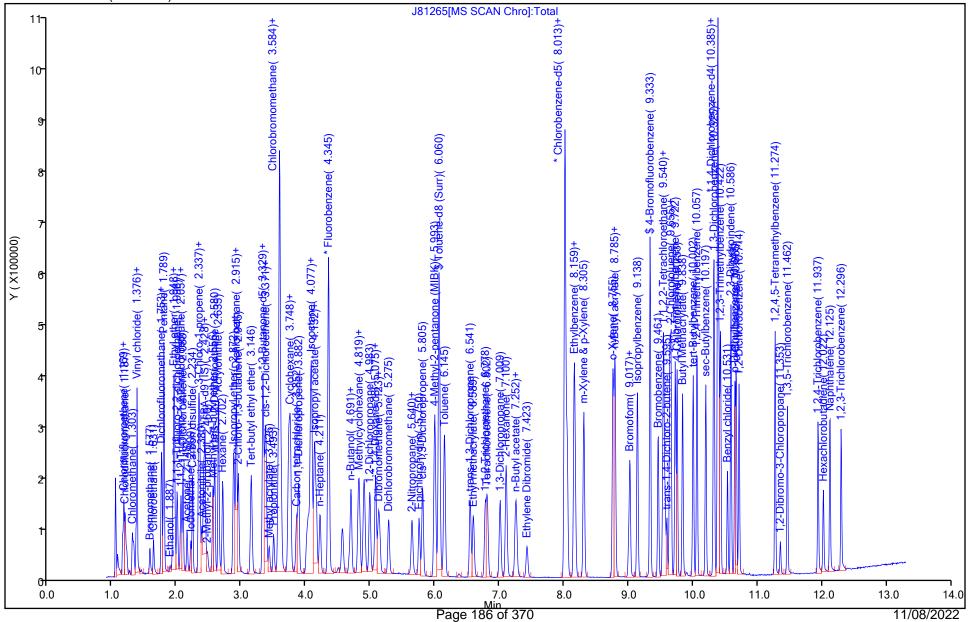
Data File: \\chromfs\Edi	\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81265.b									
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags	
S 137 Xylenes, Total S 138 Total BTEX	100 1				0		40.0 100.0	41.1 102.3		
QC Flag Legend Processing Flags NC - Not Calibrated Review Flags M - Manually Integrated a - User Assigned ID										
Reagents: 8260MIX1COMB_00160 524freon_00058 ACROLEIN W_00145 GASES Li_00497 8260ISNEW_00171 8260SURR250_00232		Amount Amount		20.00 4.00	i L	Jnits: uL Jnits: uL Jnits: uL Jnits: uL Jnits: uL Jnits: uL	Run Reage Run Reage			

Report Date: 14-Oct-2022 16:02:29 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81265.D


Injection Date: 13-Oct-2022 00:46:30 Instrument ID: CVOAMS8


Lims ID: STD20

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

6

6

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81265.D \\Injection Date: 13-Oct-2022 00:46:30 \\Instrument ID: CVOAMS8

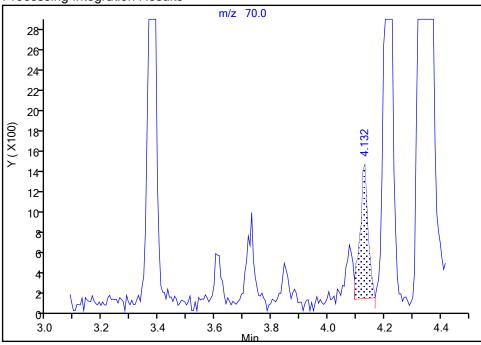
Lims ID: STD20

Client ID:

Operator ID: ALS Bottle#: 6 Worklist Smp#: 6

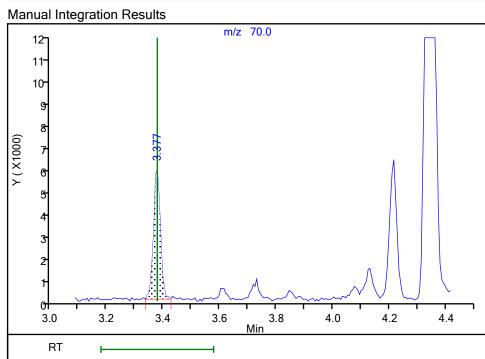
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN


45 Ethyl acetate, CAS: 141-78-6

Signal: 1

RT: 4.13 Area: 2563 Amount: 41.759029


Amount Units: ug/l

Processing Integration Results

RT: 3.38 Area: 9516 Amount: 40.635293

Amount Units: ug/l

Reviewer: HVW2, 13-Oct-2022 01:32:41 Audit Action: Assigned Compound ID

Audit Reason: Peak assignment corrected

Page 187 of 370

Eurofins Edison

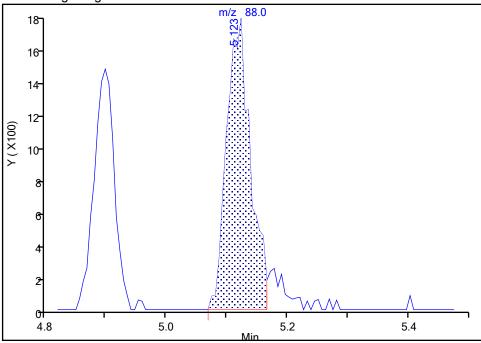
Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81265.D Injection Date: 13-Oct-2022 00:46:30 Instrument ID: CVOAMS8

Lims ID: STD20

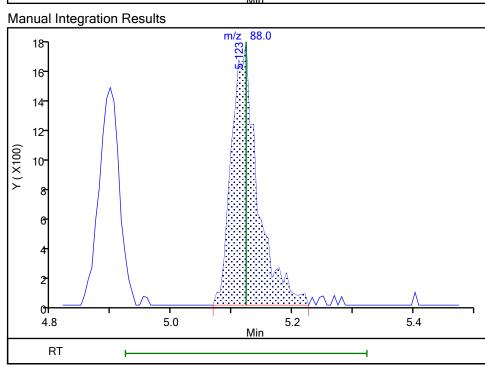
Client ID:

Operator ID: ALS Bottle#: 6 Worklist Smp#: 6

5.000 mL Purge Vol: Dil. Factor: 1.0000


Method: 8260 W8 Limit Group: VOA 624.1 ICAL Column: Rtx-624 (0.25 mm) Detector MS SCAN

75 1,4-Dioxane, CAS: 123-91-1


Signal: 1

RT: 5.12 Area: 4699 Amount: 398.9692 Amount Units: ug/l

Processing Integration Results

RT: 5.12 5130 Area: 395.6711 Amount: Amount Units: ug/I

Reviewer: W9CM, 14-Oct-2022 15:51:00

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 188 of 370

Report Date: 14-Oct-2022 16:02:37 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81266.D

Lims ID: STD50

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 13-Oct-2022 01:11:30 ALS Bottle#: 7 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD50

Misc. Info.: 460-0151655-007

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:02:36Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 01:32:20

First Level Reviewer: HVW2		D	ate:		13-Oct-2022 01:32:20				
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.148	1.151	-0.003	95	13828	NC	NC	
4 Dichlorodifluoromethane	85	1.172	1.175	-0.003	100	164101	50.0	47.7	
5 Chlorodifluoromethane	67	1.191	1.193	-0.002	99	30064	NC	NC	
6 Chloromethane	50	1.300	1.303	-0.003	100	234711	50.0	47.2	
7 Vinyl chloride	62	1.361	1.364	-0.003	99	159015	50.0	48.1	
8 Butadiene	54	1.379	1.376	0.003	95	148773	50.0	46.9	
9 Bromomethane	94	1.574	1.577	-0.003	98	56748	50.0	46.6	
10 Chloroethane	64	1.629	1.631	-0.002	98	78010	50.0	47.9	
12 Dichlorofluoromethane	67	1.750	1.753	-0.003	99	241171	NC	NC	
11 Trichlorofluoromethane	101	1.756	1.759	-0.003	98	169536	50.0	48.3	
13 Pentane	43	1.787	1.789	-0.002	96	411174	100.0	100.4	
14 Ethanol	46	1.890	1.887	0.003	96	18619	2000.0	2050.3	
15 Ethyl ether	59	1.927	1.929	-0.002	90	103598	50.0	50.8	
16 2-Methyl-1,3-butadiene	53	1.945	1.948	-0.003	95	128379	50.0	49.9	
17 1,2-Dichloro-1,1,2-trifluoroet	ha117	1.957	1.960	-0.003	99	79899	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	2.000	1.996	0.004	98	161687	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	oe 101	2.055	2.057	-0.002	94	103015	50.0	49.6	
19 Acrolein	56	2.061	2.057	0.004	93	35021	100.0	96.6	
21 1,1-Dichloroethene	96	2.085	2.088	-0.003	93	98642	50.0	47.4	
22 Acetone	43	2.152	2.148	0.004	85	184664	250.0	225.5	
23 Iodomethane	142	2.207	2.209	-0.002	99	116770	50.0	53.2	
25 Isopropyl alcohol	45	2.207	2.209	-0.002	99	58764	500.0	561.0	
24 Carbon disulfide	76	2.237	2.234	0.003	100	388233	50.0	50.8	
26 3-Chloro-1-propene	76	2.328	2.331	-0.003	93	71984	50.0	49.3	
28 Methyl acetate	43	2.334	2.337	-0.003	99	209052	100.0	104.1	
27 Cyclopentene	67	2.347	2.349	-0.002	94	306021	NC	NC	
29 Acetonitrile	41	2.377	2.380	-0.003	99	136774	500.0	511.8	
* 30 TBA-d9 (IS)	65	2.413	2.410	0.003	83	201619	1000.0	1000.0	
31 Methylene Chloride	84	2.432	2.428	0.004	95	122912	50.0	47.8	
32 2-Methyl-2-propanol	59	2.468	2.465	0.003	99	82405	500.0	509.8	
, 11			_		_				- /

Report Date: 14-Oct-2022 16:02:37
Data File: \\chromfs\Edisor

Data File: \\chromfs\Edis	son\Ch	romData	\CVOAMS	8\202210	12-15	1655.b\J81266	5.D		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
33 Methyl tert-butyl ether	73	2.553	2.556	-0.003	97	331676	50.0	51.9	
34 trans-1,2-Dichloroethene	96	2.578	2.580	-0.002	96	111993	50.0	47.5	
35 Acrylonitrile	53	2.639	2.635	0.004	93	477492	500.0	495.1	
36 Hexane	57	2.705	2.702	0.003	92	152063	50.0	51.8	
37 Isopropyl ether	45	2.876	2.872	0.004	97	510990	50.0	52.3	
38 1,1-Dichloroethane	63	2.906	2.909	-0.003	99	261202	50.0	49.3	
39 Vinyl acetate	43	2.918	2.915	0.003	100	637251	100.0	102.8	
40 2-Chloro-1,3-butadiene	88	2.949	2.945	0.004	95	99953	NC	NC	
41 Tert-butyl ethyl ether	59	3.144	3.146	-0.002	86	414763	NC	NC	
* 43 2-Butanone-d5	46	3.326	3.323	0.003	93	308867	250.0	250.0	
42 2,2-Dichloropropane	79	3.332	3.335	-0.003	94	62081	50.0	45.6	
44 cis-1,2-Dichloroethene	96	3.356	3.359	-0.003	90	123461	50.0	47.7	
46 2-Butanone (MEK)	72	3.375	3.377	-0.002	94	54251	250.0	223.4	
45 Ethyl acetate	70	3.375	3.377	-0.002	94	24524	100.0	96.7	а
47 Methyl acrylate	55	3.423	3.426	-0.003	99	107391	NC	NC	
48 Propionitrile	54	3.490	3.493	-0.003	97	166782	NC	NC	
50 Chlorobromomethane	128	3.563	3.566	-0.003	94	54682	50.0	47.7	
49 Tetrahydrofuran	72	3.569	3.566	0.003	92	24978	100.0	103.1	
51 Methacrylonitrile	67	3.588	3.584	0.004	97	486259	NC	NC	
52 Chloroform	83	3.612	3.608	0.004	97	225331	50.0	48.7	
53 Cyclohexane	84	3.728	3.724	0.004	98	141932	50.0	49.3	
54 1,1,1-Trichloroethane	97	3.740	3.742	-0.002	97	176527	50.0	48.3	
\$ 55 Dibromofluoromethane (Surr)	113	3.752	3.754	-0.002	95	102265	50.0	50.2	
56 Carbon tetrachloride	117	3.849	3.852	-0.003	98	142869	50.0	49.1	
57 1,1-Dichloropropene	75	3.880	3.882	-0.002	92	173240	50.0	49.4	
58 Isobutyl alcohol	43	4.007	4.010	-0.003	95	163074	NC	NC	
59 Isooctane	57	4.032	4.034	-0.002	95	262974	NC	NC	а
60 Benzene	78	4.068	4.065	0.003	98	492802	50.0	49.2	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.086	4.083	0.003	0	140365	50.0	50.1	
62 Isopropyl acetate	43	4.129	4.126	0.003	94	387065	50.0	52.7	
63 Tert-amyl methyl ether	55	4.129	4.132	-0.003	93	87766	NC	NC	
64 1,2-Dichloroethane	62	4.159	4.156	0.003	97	189915	50.0	48.4	
65 n-Heptane	57	4.214	4.211	0.003	97	57755	50.0	49.4	
* 66 Fluorobenzene	96	4.348	4.345	0.003	97	468525	50.0	50.0	
67 n-Butanol	56	4.664	4.667	-0.003	97	55587	1250.0	1457.6	
68 Trichloroethene	95	4.695	4.691	0.004	91	124583	50.0	47.8	
69 Methylcyclohexane	83	4.810	4.813	-0.003	83	150147	50.0	50.8	
70 Ethyl acrylate	55	4.823	4.819	0.004	97	321873	50.0	51.2	
71 1,2-Dichloropropane	63	4.987	4.983	0.004	89	149051	50.0	48.0	
* 72 1,4-Dioxane-d8	96	5.060	5.056	0.004	0	26232	1000.0	1000.0	
73 Methyl methacrylate	100	5.078	5.075	0.003	94	47148	100.0	100.4	
74 Dibromomethane	93	5.115	5.117	-0.002	89	81852	50.0	47.8	
75 1,4-Dioxane	88	5.115	5.123	-0.008	40	16143	1000.0	1132.4	
76 n-Propyl acetate	43	5.133	5.125	-0.002	98	204392	50.0	52.2	
77 Dichlorobromomethane	83	5.133	5.135	0.002	98	167544	50.0	48.2	
	63 41	5.632	5.634	-0.002	98	69740	NC	NC	
78 2-Nitropropane		5.632 5.644	5.640	-0.002 0.004	98 95	89247	50.1	51.8	
79 2-Chloroethyl vinyl ether	63 57								
80 Epichlorohydrin	57	5.753	5.750	0.003	99	239367	1000.0	964.6	
81 cis-1,3-Dichloropropene	75	5.802	5.805	-0.003	99	234776	50.0	49.8	
82 4-Methyl-2-pentanone (MIBK)	43	5.991	5.993	-0.002	98	719589	250.0	245.7	
\$ 83 Toluene-d8 (Surr)	98	6.064	6.060	0.004	98	393919	50.0	51.3	
84 Toluene	91	6.143	6.145	-0.002	92	507992	50.0	48.6	

Report Date: 14-Oct-2022 16:02:37

Data File:

Data File: \\chromfs\Edis	son\Cr				112-15	1655.b\J81266			
	0:	RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	E
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
05 turns 1.0 Divisio	7-	0.544	0.544	0.000	07	040075	F0 0	F0.0	
85 trans-1,3-Dichloropropene	75 60	6.544	6.541	0.003	97	210875	50.0	50.2	
86 Ethyl methacrylate	69	6.593	6.589	0.004	96	160046	NC	NC	
87 1,1,2-Trichloroethane	83	6.775	6.778	-0.003	94	108946	50.0	49.3	
88 Tetrachloroethene	166	6.806	6.808	-0.002	93	106239	50.0	48.6	
89 1,3-Dichloropropane	76	7.007	7.009	-0.003	97	201831	50.0	49.4	
90 2-Hexanone	58	7.098	7.100	-0.002	98	234708	250.0	245.3	
91 n-Butyl acetate	43	7.244	7.246	-0.002	95	245488	50.0	50.8	
92 Chlorodibromomethane	129	7.262	7.259	0.003	97	117568	50.0	50.4	
93 Ethylene Dibromide	107	7.420	7.423	-0.003	98	117885	50.0	49.5	
* 94 Chlorobenzene-d5	117	8.010	8.013	-0.003	92	359266	50.0	50.0	
95 Chlorobenzene	112	8.047	8.049	-0.002	89	308874	50.0	48.9	
96 Ethylbenzene	106	8.156	8.153	0.003	99	163350	50.0	49.4	
97 1,1,1,2-Tetrachloroethane	131	8.175	8.165	0.010	93	108277	50.0	50.3	
98 m-Xylene & p-Xylene	106	8.308	8.305	0.003	0	202215	50.0	49.1	
99 o-Xylene	106	8.759	8.755	0.004	92	201515	50.0	48.7	
100 n-Butyl acrylate	73	8.777	8.773	0.004	95	104902	50.0	50.2	
101 Styrene	104	8.789	8.792	-0.003	90	350671	50.0	49.4	
103 Bromoform	173	9.002	9.004	-0.002	93	73334	50.0	50.3	
102 Amyl acetate (mixed isomers)		9.020	9.017	0.003	85	291831	50.0	51.6	
104 Isopropylbenzene	105	9.136	9.138	-0.002	98	487486	50.0	48.4	
\$ 105 4-Bromofluorobenzene	174	9.336	9.333	0.003	86	128266	50.0	50.3	
106 Bromobenzene	156	9.458	9.461	-0.003	93	132774	50.0	48.2	
107 1,1,2,2-Tetrachloroethane	83	9.531	9.528	0.003	99	163403	50.0	50.3	
108 N-Propylbenzene	91	9.543	9.546	-0.003	98	650039	50.0	50.4	
109 1,2,3-Trichloropropane	110	9.568	9.564	0.004	97	34837	50.0	48.6	
110 trans-1,4-Dichloro-2-butene	53	9.592	9.595	-0.003	87	51284	NC	NC	
111 2-Chlorotoluene	91	9.641	9.637	0.004	97	454681	50.0	49.3	
112 4-Ethyltoluene	105	9.659	9.655	0.004	98	514428	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.726	9.722	0.004	91	420309	50.0	48.9	
114 4-Chlorotoluene	91	9.750	9.753	-0.003	99	439529	50.0	49.4	
115 Butyl Methacrylate	87	9.835	9.838	-0.003	97	168959	50.0	50.5	
116 tert-Butylbenzene	119	10.000	10.002	-0.002	89	322907	50.0	49.6	
117 1,2,4-Trimethylbenzene	105	10.060	10.063	-0.003	99	456709	50.0	50.2	
118 sec-Butylbenzene	105	10.194	10.197	-0.003	98	491806	50.0	50.2	
120 1,3-Dichlorobenzene	146	10.316	10.319	-0.003	95	245368	50.0	49.6	
119 4-Isopropyltoluene	119	10.328	10.325	0.003	97	411794	50.0	50.6	
* 121 1,4-Dichlorobenzene-d4	152	10.383	10.385	-0.002	98	195797	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.401	10.404	-0.003	92	254577	50.0	49.2	
123 1,2,3-Trimethylbenzene	105	10.425	10.428	-0.003	99	482150	50.0	50.0	
124 Benzyl chloride	91	10.535	10.531	0.004	97	274141	50.0	52.3	
125 2,3-Dihydroindene	117	10.590	10.586	0.004	94	453226	NC	NC	
126 p-Diethylbenzene	119	10.651	10.647	0.003	90	214447	NC	NC	
127 n-Butylbenzene	92	10.669	10.671	-0.002	97	226774	50.0	49.7	
128 1,2-Dichlorobenzene	146	10.711	10.714	-0.003	93	240378	50.0	48.9	
129 1,2,4,5-Tetramethylbenzene	119	11.271	11.274	-0.003	96	423662	NC	NC	
130 1,2-Dibromo-3-Chloropropane		11.356	11.353	0.003	91	25589	50.0	49.9	
131 1,3,5-Trichlorobenzene	180	11.466	11.462	0.004	96	166152	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.940	11.937	0.003	93	157773	50.0	49.4	
133 Hexachlorobutadiene	225	12.019	12.022	-0.003	93	52806	50.0	48.0	
134 Naphthalene	128	12.123	12.125	-0.002	98	415085	50.0	50.4	
135 1,2,3-Trichlorobenzene	180	12.299	12.296	0.003	95	144726	50.0	49.3	
S 136 1,2-Dichloroethene, Total	100	00	00	2.000	0		100.0	95.2	
5 100 1,2-Dictiloroetherie, Total	100				U		100.0	JJ.2	

Report Date: 14-Oct-2022 16:02:37
Data File: \\chromfs\Edisor

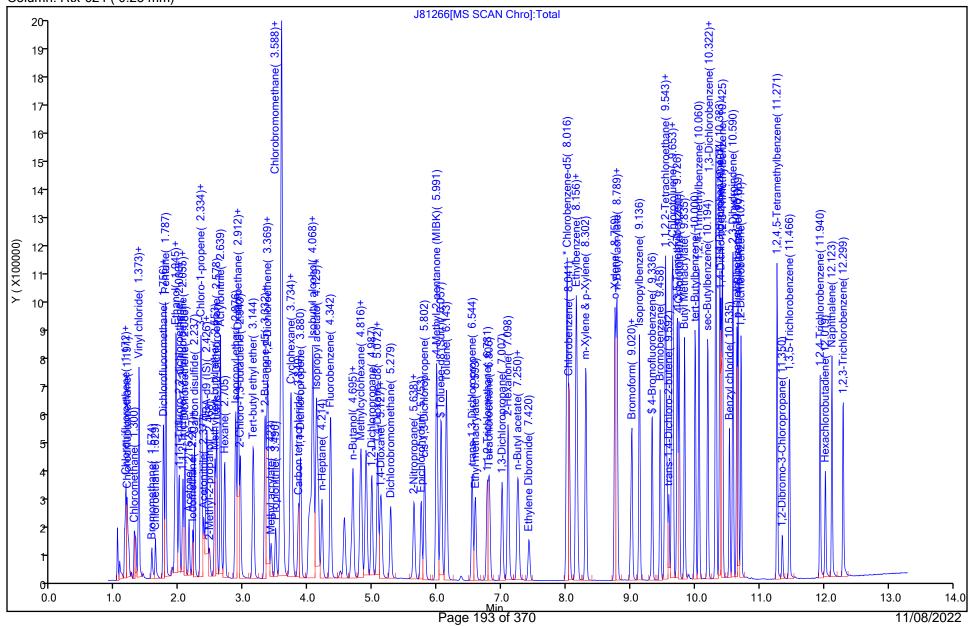
Data File. //Ciliotilis/Edisoff/Ciliotilibata/CVOAM/38/20221012-131033.b/381200.b									
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
231112	- 3	(******)	(******)	(******)		Посронос	3	5.3.1	1 10.90
S 137 Xylenes, Total	100				0		100.0	97.8	
S 138 Total BTEX	1				0		250.0	245.0	
QC Flag Legend Processing Flags NC - Not Calibrated Review Flags a - User Assigned ID									
Reagents:									
8260MIX1COMB_00160		Amount	Added: 5	0.00	L	Jnits: uL			
524freon_00058		Amount	Added: 5	0.00	L	Jnits: uL			
ACROLEIN W_00145		Amount	Added: 1	0.00	L	Jnits: uL			
GASES Li_00497		Amount	Added: 5	0.00	L	Jnits: uL			
8260ISNEW_00171		Amount	Added: 1	1.00	L	Jnits: uL	Run Reage	nt	
8260SURR250_00232		Amount	Added: 1	1.00	L	Jnits: uL	Run Reage	nt	

Report Date: 14-Oct-2022 16:02:37 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81266.D

Injection Date: 13-Oct-2022 01:11:30 Instrument ID: CVOAMS8


Lims ID: STD50

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

7

7

Report Date: 14-Oct-2022 16:02:37 Chrom Revision: 2.3 28-Sep-2022 12:57:42 Manual Integration/User Assign Peak Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81266.D Injection Date: 13-Oct-2022 01:11:30 Instrument ID: CVOAMS8

Lims ID: STD50

Client ID:

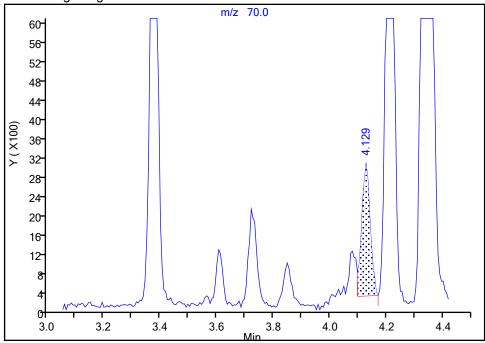
Operator ID: ALS Bottle#: 7 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000

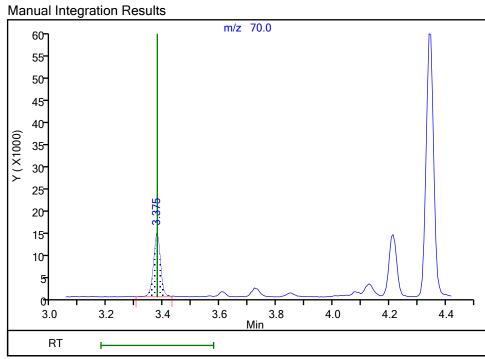
 Method:
 8260_W8
 Limit Group:
 VOA 624.1 ICAL

 Column:
 Rtx-624 (0.25 mm)
 Detector
 MS SCAN

45 Ethyl acetate, CAS: 141-78-6


Signal: 1

RT: 4.13 Area: 5774


Amount: 59.775367

Amount Units: ug/l

Processing Integration Results

RT: 3.37
Area: 24524
Amount: 96.725978
Amount Units: ug/l

Reviewer: HVW2, 13-Oct-2022 01:32:03 Audit Action: Assigned Compound ID

Audit Reason: Peak assignment corrected

Page 194 of 370

Report Date: 14-Oct-2022 16:02:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81267.D

Lims ID: STD200

Client ID:

Sample Type: IC Calib Level: 5

Inject. Date: 13-Oct-2022 01:36:30 ALS Bottle#: 8 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD200

Misc. Info.: 460-0151655-008

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:02:46Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 02:08:48

First Level Reviewer: HVW2			D	ate:		13-Oct-202			
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.149	1.151	-0.002	96	60043	NC	NC	
4 Dichlorodifluoromethane	85	1.174	1.175	-0.001	100	729408	200.0	210.5	
5 Chlorodifluoromethane	67	1.192	1.193	-0.001	98	122540	NC	NC	
6 Chloromethane	50	1.301	1.303	-0.002	100	1002289	200.0	200.3	
7 Vinyl chloride	62	1.362	1.364	-0.002	99	648672	200.0	195.0	
8 Butadiene	54	1.374	1.376	-0.002	93	627578	200.0	196.4	
9 Bromomethane	94	1.569	1.577	-0.008	98	254644	200.0	207.9	
10 Chloroethane	64	1.630	1.631	-0.001	98	305622	200.0	186.3	
12 Dichlorofluoromethane	67	1.752	1.753	-0.001	98	939358	NC	NC	
11 Trichlorofluoromethane	101	1.758	1.759	-0.001	98	695233	200.0	196.7	
13 Pentane	43	1.788	1.789	-0.001	95	1558853	400.0	378.0	
14 Ethanol	46	1.891	1.887	0.004	97	59052	0.0008	6411.4	
15 Ethyl ether	59	1.928	1.929	-0.001	90	404180	200.0	197.0	
16 2-Methyl-1,3-butadiene	53	1.946	1.948	-0.002	99	486738	200.0	187.9	
17 1,2-Dichloro-1,1,2-trifluoroe	tha117	1.958	1.960	-0.002	99	317095	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	1.995	1.996	-0.001	99	651366	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluor	oe 101	2.056	2.057	-0.001	94	405461	200.0	193.9	
19 Acrolein	56	2.062	2.057	0.005	94	72291	200.0	196.5	
21 1,1-Dichloroethene	96	2.086	2.088	-0.002	93	383118	200.0	183.0	
22 Acetone	43	2.153	2.148	0.005	85	846983	1000.0	1015.4	
23 lodomethane	142	2.208	2.209	-0.001	99	521096	200.0	235.1	
25 Isopropyl alcohol	45	2.214	2.209	0.005	99	206503	2000.0	1943.6	
24 Carbon disulfide	76	2.238	2.234	0.004	100	1494626	200.0	194.3	
26 3-Chloro-1-propene	76	2.329	2.331	-0.002	96	274694	200.0	187.0	
28 Methyl acetate	43	2.336	2.337	-0.001	99	790377	400.0	391.1	
27 Cyclopentene	67	2.348	2.349	-0.001	95	1176516	NC	NC	
29 Acetonitrile	41	2.378	2.380	-0.002	99	509290	2000.0	1879.1	
* 30 TBA-d9 (IS)	65	2.415	2.410	0.005	83	204492	1000.0	1000.0	
31 Methylene Chloride	84	2.433	2.428	0.005	97	485161	200.0	187.4	
32 2-Methyl-2-propanol	59	2.469	2.465	0.004	99	299960	2000.0	1829.6	
,			_		_				

Data File:

,	Data File: \\chromfs\Edis	son\Ch				112-15	1655.b\J81267			
		0:	RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
	00 M	70	0.555	0.550	0.004	00	1000445	000.0	004.7	
	33 Methyl tert-butyl ether	73	2.555	2.556	-0.001	96	1296415	200.0	201.7	
	34 trans-1,2-Dichloroethene	96	2.579	2.580	-0.001	97	435927	200.0	183.8	
	35 Acrylonitrile	53	2.640	2.635	0.005	93	1797357	2000.0	1837.4	
	36 Hexane	57	2.701	2.702	-0.001	93	591478	200.0	200.1	
	37 Isopropyl ether	45	2.877	2.872	0.005	97	2003793	200.0	203.9	
	38 1,1-Dichloroethane	63	2.907	2.909	-0.002	99	998356	200.0	187.3	
	39 Vinyl acetate	43	2.920	2.915	0.005	100	2479096	400.0	397.3	
	40 2-Chloro-1,3-butadiene	88	2.950	2.945	0.005	94	411051	NC	NC	
	41 Tert-butyl ethyl ether	59	3.145	3.146	-0.001	86	1620524	NC	NC	
7	43 2-Butanone-d5	46	3.327	3.323	0.004	80	314688	250.0	250.0	
	42 2,2-Dichloropropane	79	3.333	3.335	-0.002	96	244978	200.0	178.7	
	44 cis-1,2-Dichloroethene	96	3.358	3.359	-0.001	90	489556	200.0	187.7	
	46 2-Butanone (MEK)	72	3.376	3.377	-0.001	95	241063	1000.0	974.3	
	45 Ethyl acetate	70	3.376	3.377	-0.001	96	101093	400.0	391.3	
	47 Methyl acrylate	55	3.424	3.426	-0.002	99	450664	NC	NC	
	48 Propionitrile	54	3.497	3.493	0.004	97	666574	NC	NC	
	50 Chlorobromomethane	128	3.564	3.566	-0.002	94	209701	200.0	181.7	
	49 Tetrahydrofuran	72	3.564	3.566	-0.002	75	97840	400.0	396.5	
	51 Methacrylonitrile	67	3.589	3.584	0.005	97	1852361	NC	NC	
	52 Chloroform	83	3.613	3.608	0.005	97	881586	200.0	189.4	
	53 Cyclohexane	84	3.723	3.724	-0.001	97	552748	200.0	190.9	
	54 1,1,1-Trichloroethane	97	3.741	3.742	-0.001	98	711163	200.0	193.1	
9	55 Dibromofluoromethane (Surr)		3.753	3.754	-0.001	95	104303	50.0	50.9	
	56 Carbon tetrachloride	117	3.850	3.852	-0.002	98	584066	200.0	199.4	
	57 1,1-Dichloropropene	75	3.881	3.882	-0.001	92	683826	200.0	193.6	
	58 Isobutyl alcohol	43	4.008	4.010	-0.002	96	636249	NC	NC	
	59 Isooctane	57	4.033	4.034	-0.001	97	1081951	NC	NC	а
	60 Benzene	78	4.069	4.065	0.004	98	1877633	200.0	186.1	
Ş	61 1,2-Dichloroethane-d4 (Surr)	65	4.088	4.083	0.005	0	145667	50.0	51.7	
	62 Isopropyl acetate	43	4.124	4.126	-0.002	97	1518941	200.0	205.6	
	63 Tert-amyl methyl ether	55	4.130	4.132	-0.002	92	345268	NC	NC	
	64 1,2-Dichloroethane	62	4.161	4.156	0.005	97	750759	200.0	190.2	
	65 n-Heptane	57	4.215	4.211	0.004	97	229923	200.0	195.5	
*	66 Fluorobenzene	96	4.343	4.345	-0.002	97	471631	50.0	50.0	
	67 n-Butanol	56	4.665	4.667	-0.002	97	196784	5000.0	5087.4	
	68 Trichloroethene	95	4.696	4.691	0.005	92	489095	200.0	186.5	
	69 Methylcyclohexane	83	4.811	4.813	-0.002	83	595387	200.0	199.9	
	70 Ethyl acrylate	55	4.824	4.819	0.005	98	1261596	200.0	199.3	
	71 1,2-Dichloropropane	63	4.988	4.983	0.005	89	586171	200.0	187.6	
*	72 1,4-Dioxane-d8	96	5.055	5.056	-0.001	0	27648	1000.0	1000.0	
	73 Methyl methacrylate	100	5.079	5.075	0.004	94	191705	400.0	405.7	
	74 Dibromomethane	93	5.116	5.117	-0.001	90	322712	200.0	187.4	
	75 1,4-Dioxane	88	5.110	5.123	-0.013	41	55365	4000.0	3684.9	
	76 n-Propyl acetate	43	5.140	5.135	0.005	99	814239	200.0	206.5	
	77 Dichlorobromomethane	83	5.280	5.275	0.005	98	694794	200.0	198.5	
	78 2-Nitropropane	41	5.633	5.634	-0.001	97	312691	NC	NC	
	79 2-Chloroethyl vinyl ether	63	5.645	5.640	0.005	95	363490	200.5	209.6	
	80 Epichlorohydrin	57	5.754	5.750	0.004	98	987405	4000.0	3905.3	
	81 cis-1,3-Dichloropropene	75	5.803	5.805	-0.002	99	966856	200.0	203.4	
	82 4-Methyl-2-pentanone (MIBK)	43	5.992	5.993	-0.001	98	2926389	1000.0	980.6	
¢	83 Toluene-d8 (Surr)	98	6.059	6.060	-0.001	97	409084	50.0	52.8	
4	84 Toluene	91	6.144	6.145	-0.001	92	2046949	200.0	194.2	
	OT I UIUCIIC	<i>3</i> I	0.144	0.140	-0.001	32	ZU4U343	200.0	134.2	

Report Date: 14-Oct-2022 16:02:50

Data File:

Data File: \\chromfs\Edis	son\Cr				112-15	1655.b\J81267			
	<u> </u>	RT	Exp RT	Dlt RT		Decree	Cal Amt	OnCol Amt	EL.
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
OF trans 1.2 Diable representation	75	C E 4 E	C E 4 1	0.004	00	007120	200.0	200.7	
85 trans-1,3-Dichloropropene	75	6.545	6.541	0.004	98	887130	200.0	209.7	
86 Ethyl methacrylate	69	6.594	6.589	0.005	96	653414	NC	NC	
87 1,1,2-Trichloroethane	83	6.776	6.778	-0.002	94	446967	200.0	200.7	
88 Tetrachloroethene	166	6.813	6.808	0.005	94	433721	200.0	197.1	
89 1,3-Dichloropropane	76	7.008	7.009	-0.001	97	830225	200.0	201.7	
90 2-Hexanone	58	7.099	7.100	-0.001	99	970278	1000.0	995.4	
91 n-Butyl acetate	43	7.245	7.246	-0.001	96	987937	200.0	202.9	
92 Chlorodibromomethane	129	7.263	7.259	0.004	96	510623	200.0	217.3	
93 Ethylene Dibromide	107	7.427	7.423	0.004	98	475919	200.0	198.5	
* 94 Chlorobenzene-d5	117	8.011	8.013	-0.002	90	362022	50.0	50.0	
95 Chlorobenzene	112	8.048	8.049	-0.001	89	1229142	200.0	193.0	
96 Ethylbenzene	106	8.157	8.153	0.004	99	657252	200.0	197.2	
97 1,1,1,2-Tetrachloroethane	131	8.170	8.165	0.005	94	454722	200.0	209.8	
98 m-Xylene & p-Xylene	106	8.309	8.305	0.004	0	781707	200.0	188.5	
99 o-Xylene	106	8.760	8.755	0.005	92	804180	200.0	192.8	
100 n-Butyl acrylate	73	8.778	8.773	0.005	95	421915	200.0	200.2	
101 Styrene	104	8.790	8.792	-0.002	91	1400273	200.0	195.9	
103 Bromoform	173	9.003	9.004	-0.001	93	337489	200.0	229.5	
102 Amyl acetate (mixed isomers)		9.021	9.017	0.004	86	1152166	200.0	196.4	
104 Isopropylbenzene	105	9.137	9.138	-0.001	98	1954403	200.0	192.6	
\$ 105 4-Bromofluorobenzene	174	9.338	9.333	0.005	86	129852	50.0	50.5	
106 Bromobenzene	156	9.459	9.461	-0.002	93	547850	200.0	191.8	
107 1,1,2,2-Tetrachloroethane	83	9.532	9.528	0.004	99	672005	200.0	199.2	
108 N-Propylbenzene	91	9.544	9.546	-0.002	98	2542113	200.0	189.9	
109 1,2,3-Trichloropropane	110	9.569	9.564	0.005	96	144668	200.0	194.6	
110 trans-1,4-Dichloro-2-butene	53	9.593	9.595	-0.002	89	217776	NC	NC	
111 2-Chlorotoluene	91	9.642	9.637	0.005	97	1837011	200.0	192.1	
112 4-Ethyltoluene	105	9.660	9.655	0.005	98	2084043	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.727	9.722	0.005	91	1752352	200.0	196.4	
114 4-Chlorotoluene	91	9.751	9.753	-0.002	99	1814584	200.0	196.5	
115 Butyl Methacrylate	87	9.836	9.838	-0.002	97	713743	200.0	205.8	
116 tert-Butylbenzene	119	10.001	10.002	-0.001	89	1293495	200.0	191.6	
117 1,2,4-Trimethylbenzene	105	10.062	10.063	-0.001	99	1860268	200.0	197.2	
118 sec-Butylbenzene	105	10.195	10.197	-0.002	98	1929650	200.0	189.8	
120 1,3-Dichlorobenzene	146	10.317	10.319	-0.002	92	1010832	200.0	197.1	
119 4-Isopropyltoluene	119	10.329	10.325	0.004	98	1664901	200.0	197.3	
* 121 1,4-Dichlorobenzene-d4	152	10.384	10.385	-0.001	97	203202	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.402	10.404	-0.002	91	1050024	200.0	195.6	
123 1,2,3-Trimethylbenzene	105	10.427	10.428	-0.001	99	1969152	200.0	196.9	
124 Benzyl chloride	91	10.536	10.531	0.005	97	1245583	200.0	229.0	
125 2,3-Dihydroindene	117	10.591	10.586	0.005	94	1870855	NC	NC	
126 p-Diethylbenzene	119	10.652	10.647	0.005	90	905043	NC	NC	
127 n-Butylbenzene	92	10.670	10.671	-0.001	98	928253	200.0	195.9	
128 1,2-Dichlorobenzene	146	10.712	10.714	-0.002	93	1009974	200.0	198.2	
129 1,2,4,5-Tetramethylbenzene	119	11.272	11.274	-0.002	96	1781918	NC	NC	
130 1,2-Dibromo-3-Chloropropane	e157	11.357	11.353	0.004	93	114907	200.0	215.8	
131 1,3,5-Trichlorobenzene	180	11.467	11.462	0.005	96	712844	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.941	11.937	0.004	94	661790	200.0	199.8	
133 Hexachlorobutadiene	225	12.020	12.022	-0.002	93	220516	200.0	192.9	
134 Naphthalene	128	12.124	12.125	-0.001	98	1694112	200.0	198.1	
135 1,2,3-Trichlorobenzene	180	12.300	12.296	0.004	95	613422	200.0	201.3	
S 136 1,2-Dichloroethene, Total	100				0		400.0	371.5	
,, , , , , , , , , , , , , , , ,	-							-	

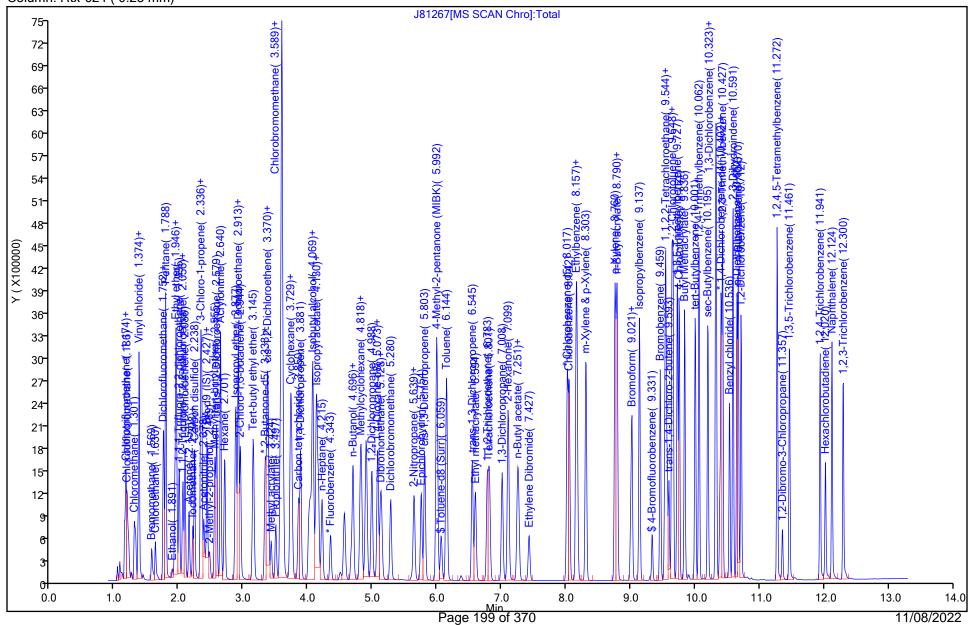
Data File: \\chromfs\Ed	\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81267.D										
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags		
S 137 Xylenes, Total S 138 Total BTEX	100 1				0		400.0 1000.0	381.3 958.7			
QC Flag Legend Processing Flags NC - Not Calibrated Review Flags											
a - User Assigned ID Reagents:											
ACROLEIN W_00145			Added: 2		_	Jnits: uL					
Ethanol mix_00069			Added: 2 Added: 2		_	Jnits: uL Jnits: uL					
MIX I Hi_00155 MIX 2 Hi 00128			Added: 2			Jnits: uL Jnits: uL					
8FreonHi 00049			Added: 2			Jnits: uL					
GAS Hi_00426		Amount	Added: 2	20.00	L	Jnits: uL					
8260ISNEW_00171		Amount	Added:	1.00	L	Jnits: uL	Run Reage				
8260SURR250_00232		Amount	Added:	1.00	L	Jnits: uL	Run Reage	nt			

Report Date: 14-Oct-2022 16:02:50 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81267.D 13-Oct-2022 01:36:30 CVOAMS8 Injection Date: Instrument ID:

STD200


Lims ID:

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

8260_W8 Limit Group: VOA 624.1 ICAL Method:

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

8

8

Report Date: 14-Oct-2022 16:03:06 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Lims ID: STD500

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 13-Oct-2022 02:01:30 ALS Bottle#: 9 Worklist Smp#: 9

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD500

Misc. Info.: 460-0151655-009

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:03:03Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 02:21:24

First Level Reviewer: HVW2			D	ate:		13-Oct-202	2 02:21:24		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.149	1.151	-0.002	96	154736	NC	NC	
4 Dichlorodifluoromethane	85	1.174	1.175	-0.001	100	1850513	500.0	510.5	
5 Chlorodifluoromethane	67	1.192	1.193	-0.001	98	301846	NC	NC	
6 Chloromethane	50	1.301	1.303	-0.002	99	2552636	500.0	487.8	
7 Vinyl chloride	62	1.362	1.364	-0.002	99	1591757	500.0	457.4	
8 Butadiene	54	1.380	1.376	0.004	93	1468363	500.0	439.4	
9 Bromomethane	94	1.569	1.577	-0.008	98	694129	500.0	541.8	
10 Chloroethane	64	1.630	1.631	-0.001	98	747795	500.0	435.8	
12 Dichlorofluoromethane	67	1.751	1.753	-0.002	98	2272429	NC	NC	
11 Trichlorofluoromethane	101	1.764	1.759	0.005	98	1695311	500.0	458.6	
13 Pentane	43	1.788	1.789	-0.001	94	3417145	1000.0	792.3	
14 Ethanol	46	1.891	1.887	0.004	97	167008	20000	17900	
15 Ethyl ether	59	1.928	1.929	-0.001	91	923063	500.0	430.1	
16 2-Methyl-1,3-butadiene	53	1.946	1.948	-0.002	97	1136977	500.0	419.8	
17 1,2-Dichloro-1,1,2-trifluoroe	tha117	1.958	1.960	-0.002	97	812615	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	2.001	1.996	0.005	98	1641332	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluor	oe 101	2.056	2.057	-0.001	95	975662	500.0	446.2	
19 Acrolein	56	2.062	2.057	0.005	94	141694	400.0	380.3	
21 1,1-Dichloroethene	96	2.092	2.088	0.004	94	934657	500.0	426.9	
22 Acetone	43	2.153	2.148	0.005	85	1990820	2500.0	2422.9	
23 lodomethane	142	2.208	2.209	-0.001	99	1268801	500.0	547.0	
25 Isopropyl alcohol	45	2.214	2.209	0.005	99	581800	5000.0	5405.7	
24 Carbon disulfide	76	2.238	2.234	0.004	100	3557940	500.0	442.2	
26 3-Chloro-1-propene	76	2.329	2.331	-0.002	95	617231	500.0	401.8	
28 Methyl acetate	43	2.335	2.337	-0.002	99	1830598	1000.0	866.0	
27 Cyclopentene	67	2.348	2.349	-0.001	94	2739738	NC	NC	
29 Acetonitrile	41	2.384	2.380	0.004	98	1564806	5000.0	5699.3	
* 30 TBA-d9 (IS)	65	2.415	2.410	0.005	77	207151	1000.0	1000.0	
31 Methylene Chloride	84	2.433	2.428	0.005	97	1182036	500.0	436.6	
32 2-Methyl-2-propanol	59	2.469	2.465	0.004	99	836237	5000.0	5035.2	
, , ,									

ct-2022 16:03:06 Chrom Revision: 2.3 28-Sep-2022 12:57:42 \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D Report Date: 14-Oct-2022 16:03:06

Data File:

Compound Sig RT (min.) (min.) (min.) (min.) Response Cal Amt OnCol Amt Flags
33 Methyl tert-butyl ether 73 2 554 2 556 -0.002 96 3098875 50.0 460.9 34 trans-1,2-Dichloroethene 96 2,585 2,580 0,005 98 1056563 500.0 425.9 35 Acrylonitrile 53 2,640 2,635 0,005 92 3980971 5000.0 4017.4 36 Hexane 57 2,707 2,702 0,005 93 1367564 500.0 442.4 37 Isopropyl ether 45 2,877 2,872 0,005 93 1367564 500.0 442.4 37 Isopropyl ether 45 2,877 2,872 0,005 93 167564 500.0 442.4 37 Isopropyl ether 45 2,913 2,909 0,004 100 2,99176 500.0 449.0 38 1,1-Dichloroethane 88 2,913 2,909 0,004 100 2,99176 500.0 442.5 39 Vinyl acetate 43 2,919 2,915 0,004 100 5169943 1000.0 792.2 40 2-Chloro-1,3-butadiene 88 2,950 2,945 0,005 95 997514 NC NC 41 Tert-butyl ether 59 3,145 3,146 -0.001 87 3970271 NC NC 41 Tert-butyl ether 59 3,145 3,146 -0.001 87 3970271 NC NC 42 2,2-Dichloropropane 79 3,333 3,335 -0.002 96 601291 500.0 419.4 44 cis-1,2-Dichloroethene 96 3,364 3,359 0,005 90 1197715 500.0 439.2 45 Ethyl acetate 70 3,376 3,377 -0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3,376 3,377 -0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3,376 3,377 -0.001 95 579102 2500.0 2376.2 48 Propiontirile 54 3,497 3,493 0,004 97 1657072 NC NC 49 Tertahydrofuran 72 3,570 3,566 0,004 97 1657072 NC NC 50 Chlorobromomethane 128 3,570 3,566 0,004 97 1657072 NC NC 50 Chlorobromomethane 72 3,570 3,566 0,004 97 1657072 NC NC 52 Chloroform 83 3,619 3,608 0,011 94 3772707 NC NC 52 Chloroform 84 3,729 3,724 0,005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 84 3,729 3,724 0,005 97 1328328 500.0 438.5 55 Dibromomethane (Surr) 113 3,759 3,754 0,005 97 1328328 500.0 438.5 55 Dibromomethane (Surr) 13 3,759 3,754 0,005 97 1328328 500.0 438.5 55 Dibromomethane (Surr) 13 3,850 3,882 0,000 99 173709 500.0 446.1 58 Isobutyl alcohol 43 4,014 4,010 0,004 96 1648803 NC NC 50 Chlorobromomethane 97 3,741 3,742 0,005 97 1328328 500.0 438.5 55 Dibromomethane 97 3,741 0,005 98 2672147 NC NC 60 Benzene 75 4,009 4,005 0,009 99 173709 500.0 449.6 65 n-Heptahe 57 4,125 4,126 0,000 99 3,884949 500.0 446.1 66 Fluorobenzene 96 4,349 4,345 0,004 97 588849 500.0 4
34 trans-1,2-Dichloroethene
34 trans-1,2-Dichloroethene 96 2.585 2.580 0.005 98 1056563 500.0 425.9 35 Acrylonitrile 53 2.640 2.635 0.005 92 3980971 5000.0 442.4 37 Isopropyl ether 45 2.877 2.872 0.005 93 1367564 500.0 449.0 38 1,1-Dichloroethane 63 2.913 2.909 0.004 100 259176 500.0 449.0 39 Vinyl acetate 43 2.915 2.915 0.004 100 2599176 500.0 412.5 40 2-Chloro-1,3-butadiene 48 2.950 2.945 0.005 95 997514 NC NC 41 Tert-butyl ethyl ether 59 3.145 3.146 -0.001 87 39702271 NC NC 42 22-Dichloroethene 46 3.327 3.323 3.302 90 1197715 500.0 439.2 46 2-Butanone (MEK) 72 3.376 3.377 -0.001 9
35 Acrylonitrile 53 2,640 2,635 0,005 92 3980971 5000.0 4417.4 36 Hexane 57 2,707 2,702 0,005 93 1367564 500.0 442.4 37 Isopropyl ether 45 2,877 2,872 0,005 98 4614135 500.0 442.5 38 1,1-Dichloroethane 63 2,913 2,909 0,004 100 2599175 500.0 412.5 39 Vinyl acetate 43 2,919 2,915 0,004 100 5169943 1000.0 792.2 40 2-Chloro-1,3-butadiene 88 2,950 2,945 0,000 95 997514 NC NC 42 22-Dichloropropane 79 3,333 3,335 0,000 96 601291 500.0 419.4 44 Cis-1,2-Dichloroethene 96 3,364 3,359 0,000 96 197715 500.0 439.2 45 Ethyl acetate 70 3,376 3,377 -0,001 95
36 Hexane
38 1,1-Dichloroethane
38 1,1-Dichloroethane 63 2.913 2.909 0.004 100 2299176 500.0 412.5 39 Vinyl acetate 43 2.919 2.915 0.004 100 5169943 1000.0 792.2 40 2-Chloro-1,3-butadiene 88 2.950 2.945 0.005 95 997514 NC NC 41 Tert-butyl ethyl ether 59 3.145 3.146 0.001 87 3970271 NC NC 42 2,2-Dichloropropane 79 3.333 3.335 -0.002 96 601291 500.0 419.4 44 cls-1,2-Dichloroethene 96 3.364 3.359 0.005 90 1197715 500.0 439.2 45 Ethyl acetate 70 3.376 3.007 -0.001 95 253434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC 48 Erthyl acetate 70 3.570 3.566 0.004 94
39 yinyl acetate 43 2.919 2.915 0.004 100 5166943 1000.0 792.2 40 2-Chloro-1,3-butadiene 88 2.950 2.945 0.005 95 997514 NC NC 41 Tert-butyl ethyl ether 59 3.145 3.146 0.001 87 3970271 NC NC 42 2.2-Dichloropropane 79 3.333 3.335 0.004 81 309968 250.0 250.0 42 2.2-Dichloropropane 79 3.333 3.335 0.005 90 1197715 500.0 419.4 44 cis-1,2-Dichloropropane 79 3.376 3.377 0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3.376 3.377 0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3.376 3.377 0.001 95 525434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 0.002 99 1137120 NC NC 48 Propionitrile 54 3.497 3.493 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 94 513653 500.0 424.4 51 Methacrylonitrile 67 3.595 3.584 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1.1,1-Trichloroptehane 177 3.850 3.852 0.001 97 1733938 500.0 438.5 55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 \$ 55 Dibromofluoromethane (Surr) 17 3.850 3.852 0.001 97 1745702 500.0 484.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 59 Isooctane 78 4.069 4.065 0.004 97 493259 500.0 477.0 61 I.2-Dichloroptane 55 4.894 4.819 0.005 97 185837 500.0 449.6 62 Isopropyl acetate 43 4.130 4.126 0.004 97 493259 50.0 50.0 63 Tert-amyl methyl ether 55 4.697 0.005 96 578875 12500 449.6 64 I.2-Dichloroptane 63 4.692 4.667 0.005 97 483537 500.0 449.6 65 In-Heptane 97 4.156 4.697 0.005 98 3038171 500.0 449.6 66 Fluorobenzene 97 4.697 4.697 0.005 98 3038171 500.0 449.6 67 In-
40 2-Chloro-1,3-butadiene
41 Tert-butyl ethyl ether 59 3.145 3.146 -0.001 87 3970271 NC NC 43 2-Butanone-d5 46 3.327 3.323 0.004 81 30968 250.0 250.0 419.4 4 22.2-Dichloropropane 79 3.333 3.335 -0.002 96 601291 500.0 419.4 4 cis-1,2-Dichloroethene 96 3.364 3.359 0.005 90 1197715 500.0 439.2 262.2-Dichloroethene 96 3.364 3.359 0.005 90 1197715 500.0 439.2 276.2 46 2-Butanone (MEK) 72 3.376 3.377 -0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3.376 3.377 -0.001 95 579102 2500.0 2976.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC SO Chlorobromomethane 128 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 94 3772707 NC NC SO Chlorobrom 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Tichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 55 Dibromofluoromethane (Surr) 113 3.759 3.854 0.011 97 2028735 500.0 416.7 53 Cyclohexane 87 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 450.2 55 Dibromofluoromethane (Surr) 113 3.759 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 464.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 57 1,1-Dichloroethane-44 (Surr) 65 4.089 4.065 0.004 98 4554246 500.0 464.7 56 11.2-Dichloroethane-44 (Surr) 65 4.089 4.065 0.004 97 483595 50.0 50.0 50.0 60 51.5 62 Isopropyl acetate 43 4.130 4.126 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.005 98 180583 1000.0 449.6 66 Therpotyl acetate 57 4.266 0.005 98 180583 1000.0 449.6 67 n-Butanol 66 4.667 0.005 98 180583 1000.0 449.6 67 n-Butanol 66 4.670 4.667 0.005 98 180583 1000.0 449.6 67 n-Butanol
* 43 2-Butanone-d5 46 3.327 3.323 0.004 81 309988 250.0 250.0 42 2,2-Dichloropropane 79 3.333 3.335 -0.002 96 601291 500.0 419.4 44 cis-1,2-Dichloroethene 96 3.364 3.359 0.005 90 1197715 500.0 439.2 46 2-Butanone (MEK) 72 3.376 3.377 -0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3.376 3.377 -0.001 95 253434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC 48 Propionitrile 54 3.497 3.493 0.004 97 1657072 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 97 1657072 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 97 1657072 NC NC 51 Chlorobromomethane 128 3.570 3.566 0.004 97 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 97 1733938 500.0 450.2 55 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 57 1,1-Dichloropropene 75 4.039 4.034 0.005 98 2672147 NC NC 60 Benzene 78 4.098 4.083 0.005 98 2672147 NC NC 61 Sepropyl acetate 43 4.130 4.126 0.004 97 485246 500.0 421.7 63 Tert-amyl methyl ether 65 4.088 4.083 0.005 98 2672147 NC NC 63 Tert-amyl methyl ether 67 4.215 4.211 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 449.6 66 Thichloroethane 83 4.811 4.813 -0.002 86 1432134 500.0 449.6 67 n-Butanol 66 4.672 4.667 0.005 92 1231962 500.0 449.6 68 Trichloropropane 63 4.988 4.983 0.005 92 1231962 500.0 449.6 68 Trichloroethane 95 4.696 4.691 0.005 92 1231962 500.0 449.6 67 n-Butanol 66 4.672 4.667 0.005 94 809742 500.0 449.6 68 Trichloropropane 63 4.988 4.983 0.005 92 1231962 500.0 449.6 67 n-Butanol 56 4.672 4.667 0.005 92 1231962 500.0 449.6 67 n-Butanol 56 4.672 4.667 0.005 92 1231962 5
42 2,2-Dichloropropane 79 3.333 3.355 -0.002 96 601291 500.0 419.4 44 dis-1,2-Dichloroethene 96 3.364 3.359 0.005 90 1197715 500.0 439.2 46 2-Butanone (MEK) 72 3.376 3.377 -0.001 95 253434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 97 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 97 2028735 500.0 416.7 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97
44 cis-1,2-Dichloroethene 96 3.364 3.359 0.005 90 1197715 500.0 439.2 46 2-Butanone (MEK) 72 3.376 3.377 -0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3.378 3.377 -0.001 95 253434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC 48 Propionitrile 54 3.497 3.493 0.004 97 1657072 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 57 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 97 229880 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 97 2028735 500.0 416.7 52 Chloroform 83 3.619 3.626 0.001 97 <td< td=""></td<>
46 2-Butanone (MEK) 72 3.376 3.377 -0.001 95 579102 2500.0 2376.2 45 Ethyl acetate 70 3.376 3.377 -0.001 95 253434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 97 1657072 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 97 153653 500.0 425.6 49 Tetrahydrofuran 72 3.573 3.566 0.004 97 22980 0.00 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 1328328 500.0 435.5 53 Dibromofluoromethane (Surr) 113 3.729 3.754 0.005 95 <td< td=""></td<>
45 Ethyl acetate 70 3.376 3.377 -0.001 95 253434 1000.0 996.0 47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC NC 48 Propionitrile 54 3.497 3.493 3.004 97 1657072 NC NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 57 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 \$55 Dibromoffluoromethane (Surr) 113 3.759 3.754 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 \$56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC NC 59 Isocotane 57 4.039 4.034 0.005 98 2672147 NC NC 86 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 \$61 1,2-Dichloroethane-d4 (Surr) 65 4.088 4.083 0.005 0 151860 50.0 477.0 63 Tert-amyl methyl ether 65 4.130 4.126 -0.004 95 3866419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC NC 64 1,2-Dichloroethane 96 4.349 4.345 -0.004 97 1855837 500.0 449.6 65 n-Heptane 96 4.349 4.345 -0.004 97 1855837 500.0 449.6 66 Fluorobenzene 96 4.349 4.345 -0.004 97 1855837 500.0 449.6 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 13432143 500.0 449.6 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 13432143 500.0 449.6 69 Methylcyclohexane 83 4.814 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.988 0.005 88 133555 500.0 449.6 69 Methylcyclohexane 83 6.516 5.056 0.005 94 809742 500.0 449.6 73 14-Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane-d8 96 5.061 5.056 0.005 94 809742 500.0 449.6 75 1,4-Dioxane-d8 93 5.122 5.117 0.005 94 809742 500.0 493.0
47 Methyl acrylate 55 3.424 3.426 -0.002 99 1137120 NC NC 48 Propionitrile 54 3.493 0.004 97 1657072 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 57 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 \$5 Dibromofluoromethane (Surr) 113 3.852 -0.002 97 1484179 500.0 50.2 56 Carbon tetrachloride 117 3.850 3.602 0.002 97 1484179 500.0
48 Propionitrile 54 3.497 3.493 0.004 97 1657072 NC NC 50 Chlorobromomethane 128 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 57 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 450.2 \$5 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.852 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 98 2672147
50 Chlorobromomethane 128 3.570 3.566 0.004 94 513653 500.0 425.6 49 Tetrahydrofuran 72 3.570 3.566 0.004 57 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Tirchlorogethane 97 3.741 3.742 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96
49 Tetrahydrofuran 72 3.570 3.566 0.004 57 229080 1000.0 942.4 51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 \$55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 164
51 Methacrylonitrile 67 3.595 3.584 0.011 94 3772707 NC NC 52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1328328 500.0 450.2 55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 50.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1775702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 60 Benzene 78 4.069 4.065 0.004 98
52 Chloroform 83 3.619 3.608 0.011 97 2028735 500.0 416.7 53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC NC 59 Isooctane 57 4.039 4.034 0.005 98 2672147 NC NC NC NC 13 13 14.065 0.004 98
53 Cyclohexane 84 3.729 3.724 0.005 97 1328328 500.0 438.5 54 1,1,1-Trichloroethane 97 3.741 3.742 -0.001 97 1733938 500.0 450.2 \$ 55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 60 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 61 1,2-Dichloroethane-d4 (Surr) 65 4.088 4.083 0.005 98 4554246 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002<
\$ 41,1,1-Trichloroethane
\$ 55 Dibromofluoromethane (Surr) 113 3.759 3.754 0.005 95 107724 50.0 50.2 56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 59 Isooctane 77 4.039 4.034 0.005 98 2672147 NC NC 60 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 \$61 1,2-Dichloroethane-d4 (Surr) 65 4.088 4.083 0.005 0 151860 50.0 51.5 62 Isopropyl acetate 43 4.130 4.126 0.004 95 3686419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC 64 1,2-Dichloroethane 62 4.161 4.156 0.004 97 1855837 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 1855837 500.0 446.1 *6 Fluorobenzene 96 4.349 4.345 0.004 97 493259 50.0 50.0 50.0 67 n-Butanol 56 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.9 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 *72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 71 1,0-Dichloropropane 88 5.116 5.123 -0.007 99 2037619 500.0 449.1 75 Dichlorobromomethane 83 5.126 5.127 0.005 98 1804834 500.0 493.0
56 Carbon tetrachloride 117 3.850 3.852 -0.002 97 1484179 500.0 484.4 57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 59 Isooctane 57 4.039 4.034 0.005 98 2672147 NC NC NC 60 Benzene 78 4.069 4.065 0.004 98 2672147 NC NC AC 60 Benzene 78 4.069 4.065 0.004 98 2672147 NC NC AC 0.004 98 2672147 NC NC 421.7 \$611,2-Dichloroethane-d4 (Surr) 65 4.084 4.083 0.005 95 3686419 500.0 477.0 421.7 \$611,2-Dichloroethane-d4 4.130 4.132 -0.002 91 874782 NC NC NC NC
57 1,1-Dichloropropene 75 3.881 3.882 -0.001 92 1715702 500.0 464.4 58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 59 Isooctane 57 4.039 4.034 0.005 98 2672147 NC NC NC 60 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 \$ 61 1,2-Dichloroethane-d4 (Surr) 65 4.083 0.005 0 151860 50.0 51.5 62 Isopropyl acetate 43 4.130 4.126 0.004 95 3686419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC NC 64 1,2-Dichloroethane 62 4.614 4.156 0.004 97 1855837 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97 </td
58 Isobutyl alcohol 43 4.014 4.010 0.004 96 1645803 NC NC 59 Isooctane 57 4.039 4.034 0.005 98 2672147 NC NC NC 60 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 \$ 61 1,2-Dichloroethane-d4 (Surr) 65 4.088 4.083 0.005 0 151860 50.0 51.5 62 Isopropyl acetate 43 4.130 4.126 0.004 95 3686419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC 64 1,2-Dichloroethane 62 4.161 4.156 0.004 97 1855837 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97
59 Isooctane 57 4.039 4.034 0.005 98 2672147 NC NC a 60 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 \$ 61 1,2-Dichloroethane-d4 (Surr) 65 4.088 4.083 0.005 0 151860 50.0 51.5 62 Isopropyl acetate 43 4.130 4.126 0.004 95 3686419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC 64 1,2-Dichloroethane 62 4.161 4.156 0.004 97 1855837 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97 493259 50.0 50.0 67 n-Butanol 56 4.672 4.667 0.005 96 <t< td=""></t<>
60 Benzene 78 4.069 4.065 0.004 98 4554246 500.0 421.7 \$ 61 1,2-Dichloroethane-d4 (Surr) 65 4.088 4.083 0.005 0 151860 50.0 51.5 62 Isopropyl acetate 43 4.130 4.126 0.004 95 3686419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC 64 1,2-Dichloroethane 62 4.161 4.156 0.004 97 1855837 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811
\$ 61 1,2-Dichloroethane-d4 (Surr) 65
62 Isopropyl acetate 43 4.130 4.126 0.004 95 3686419 500.0 477.0 63 Tert-amyl methyl ether 55 4.130 4.132 -0.002 91 874782 NC NC 64 1,2-Dichloroethane 62 4.161 4.156 0.004 97 1855837 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97 493259 50.0 50.0 67 n-Butanol 56 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 * 72 1,4-Dioxane-d8 96 5.061 <
63 Tert-amyl methyl ether
64 1,2-Dichloroethane 62 4.161 4.156 0.004 97 1855837 500.0 449.6 65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97 493259 50.0 50.0 67 n-Butanol 56 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079
65 n-Heptane 57 4.215 4.211 0.004 97 548849 500.0 446.1 * 66 Fluorobenzene 96 4.349 4.345 0.004 97 493259 50.0 50.0 67 n-Butanol 56 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122
* 66 Fluorobenzene 96 4.349 4.345 0.004 97 493259 50.0 50.0 67 n-Butanol 56 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 98 1804834 500.0 493.0
67 n-Butanol 56 4.672 4.667 0.005 96 578875 12500 14774 68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140
68 Trichloroethene 95 4.696 4.691 0.005 92 1231962 500.0 449.1 69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 <t< td=""></t<>
69 Methylcyclohexane 83 4.811 4.813 -0.002 86 1432134 500.0 459.9 70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
70 Ethyl acrylate 55 4.824 4.819 0.005 98 3038171 500.0 459.0 71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
71 1,2-Dichloropropane 63 4.988 4.983 0.005 88 1435525 500.0 439.2 * 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
* 72 1,4-Dioxane-d8 96 5.061 5.056 0.005 0 32068 1000.0 1000.0 73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
73 Methyl methacrylate 100 5.079 5.075 0.004 94 479117 1000.0 969.6 74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
74 Dibromomethane 93 5.122 5.117 0.005 94 809742 500.0 449.6 75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
75 1,4-Dioxane 88 5.116 5.123 -0.007 92 174106 10000 9990.6 76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
76 n-Propyl acetate 43 5.140 5.135 0.005 99 2037619 500.0 494.1 77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
77 Dichlorobromomethane 83 5.280 5.275 0.005 98 1804834 500.0 493.0
70.2 Nitropropose 41 E 620 E 624 0.00E 00 000200 NO NO NO
78 2-Nitropropane 41 5.639 5.634 0.005 98 809328 NC NC
79 2-Chloroethyl vinyl ether 63 5.645 5.640 0.005 96 911082 501.2 502.3
80 Epichlorohydrin 57 5.754 5.750 0.004 98 2438316 10000 9790.6
81 cis-1,3-Dichloropropene 75 5.809 5.805 0.004 99 2450122 500.0 481.6
82 4-Methyl-2-pentanone (MIBK) 43 5.998 5.993 0.005 98 6818163 2500.0 2319.5
\$ 83 Toluene-d8 (Surr) 98 6.065 6.060 0.005 97 425746 50.0 51.4

Report Date: 14-Oct-2022 16:03:06

Data File:

Data File: \\chromfs\Edis	son\Cr				112-15	1655.b\J81268			
	<u>.</u>	RT	Exp RT	Dlt RT		D.	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
OF trans 1.2 Diable representation	75	C E 4 E	C E 4 1	0.004	00	2274666	E00.0	E00.4	
85 trans-1,3-Dichloropropene	75	6.545	6.541	0.004	98 05	2274666	500.0	502.4	
86 Ethyl methacrylate	69	6.594	6.589	0.005	95 05	1630848	NC	NC	
87 1,1,2-Trichloroethane	83	6.782	6.778	0.004	95	1134865	500.0	476.3	
88 Tetrachloroethene	166	6.813	6.808	0.005	93	1102554	500.0	468.1	
89 1,3-Dichloropropane	76	7.008	7.009	-0.001	97	2040410	500.0	463.3	
90 2-Hexanone	58	7.105	7.100	0.005	99	2320160	2500.0	2416.5	
91 n-Butyl acetate	43	7.245	7.246	-0.001	96	2396191	500.0	459.9	
92 Chlorodibromomethane	129	7.263	7.259	0.004	97	1331880	500.0	529.7	
93 Ethylene Dibromide	107	7.427	7.423	0.004	98	1215875	500.0	473.9	
* 94 Chlorobenzene-d5	117	8.011	8.013	-0.002	93	387427	50.0	50.0	
95 Chlorobenzene	112	8.048	8.049	-0.001	91	3113658	500.0	456.9	
96 Ethylbenzene	106	8.163	8.153	0.010	99	1656518	500.0	464.5	
97 1,1,1,2-Tetrachloroethane	131	8.176	8.165	0.011	94	1185206	500.0	511.0	
98 m-Xylene & p-Xylene	106	8.309	8.305	0.004	0	2007832	500.0	452.3	
99 o-Xylene	106	8.760	8.755	0.005	92	2020993	500.0	452.8	
100 n-Butyl acrylate	73	8.778	8.773	0.005	95	1086316	500.0	481.7	
101 Styrene	104	8.796	8.792	0.004	90	3488106	500.0	456.0	
103 Bromoform	173	9.003	9.004	-0.001	93	921147	500.0	585.4	
102 Amyl acetate (mixed isomers)		9.021	9.017	0.004	87	2911135	500.0	440.0	
104 Isopropylbenzene	105	9.143	9.138	0.005	99	4865564	500.0	448.1	
\$ 105 4-Bromofluorobenzene	174	9.338	9.333	0.005	85	146141	50.0	53.1	
106 Bromobenzene	156	9.465	9.461	0.004	96	1422418	500.0	441.6	
107 1,1,2,2-Tetrachloroethane	83	9.532	9.528	0.004	98	1730998	500.0	455.0	
108 N-Propylbenzene	91	9.550	9.546	0.004	98	6123342	500.0	405.5	
109 1,2,3-Trichloropropane	110	9.569	9.564	0.005	95	376478	500.0	449.0	
110 trans-1,4-Dichloro-2-butene	53	9.599	9.595	0.004	91	575198	NC	NC	
111 2-Chlorotoluene	91	9.642	9.637	0.005	98	4669756	500.0	433.0	
112 4-Ethyltoluene	105	9.660	9.655	0.005	97	5160696	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.727	9.722	0.005	91	4376970	500.0	435.1	
114 4-Chlorotoluene	91	9.757	9.753	0.004	99	4457934	500.0	428.1	
115 Butyl Methacrylate	87	9.842	9.838	0.004	97	1857726	500.0	474.8	
116 tert-Butylbenzene	119	10.007	10.002	0.005	88	3262653	500.0	428.5	
117 1,2,4-Trimethylbenzene	105	10.061	10.063	-0.002	99	4639682	500.0	436.0	
118 sec-Butylbenzene	105	10.201	10.197	0.004	97	4833209	500.0	421.6	
120 1,3-Dichlorobenzene	146	10.323	10.319	0.004	93	2557865	500.0	442.1	
119 4-Isopropyltoluene	119	10.329	10.325	0.004	95	4071140	500.0	427.8	
* 121 1,4-Dichlorobenzene-d4	152	10.390	10.385	0.005	96	229171	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.408	10.404	0.004	91	2689129	500.0	444.2	
123 1,2,3-Trimethylbenzene	105	10.433	10.428	0.005	99	4957957	500.0	439.5	
124 Benzyl chloride	91	10.536	10.531	0.005	97	3276591	500.0	534.0	
125 2,3-Dihydroindene	117	10.591	10.586	0.005	93	4594909	NC	NC	
126 p-Diethylbenzene	119	10.652	10.647	0.005	90	2270467	NC	NC	
127 n-Butylbenzene	92	10.670	10.671	-0.001	98	2293278	500.0	429.2	
128 1,2-Dichlorobenzene	146	10.718	10.714	0.004	92	2589395	500.0	450.5	
129 1,2,4,5-Tetramethylbenzene	119	11.278	11.274	0.004	96	4269660	NC	NC	
130 1,2-Dibromo-3-Chloropropane		11.357	11.353	0.004	92	309301	500.0	515.1	
131 1,3,5-Trichlorobenzene	180	11.467	11.462	0.005	96	1797522	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.941	11.937	0.004	94	1688922	500.0	452.2	
133 Hexachlorobutadiene	225	12.026	12.022	0.004	94	601278	500.0	466.5	
134 Naphthalene	128	12.124	12.125	-0.001	97	4325742	500.0	448.5	
135 1,2,3-Trichlorobenzene	180	12.300	12.296	0.004	95	1598850	500.0	465.2	
S 136 1,2-Dichloroethene, Total	100		00	2.001	0	. 200000	1000.0	865.1	
5 155 1,2-Dichiologuiene, Total	100				J		1000.0	000.1	

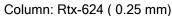
Report Date: 14-Oct-2022 16:03:06
Data File: \chromfs\Edisor

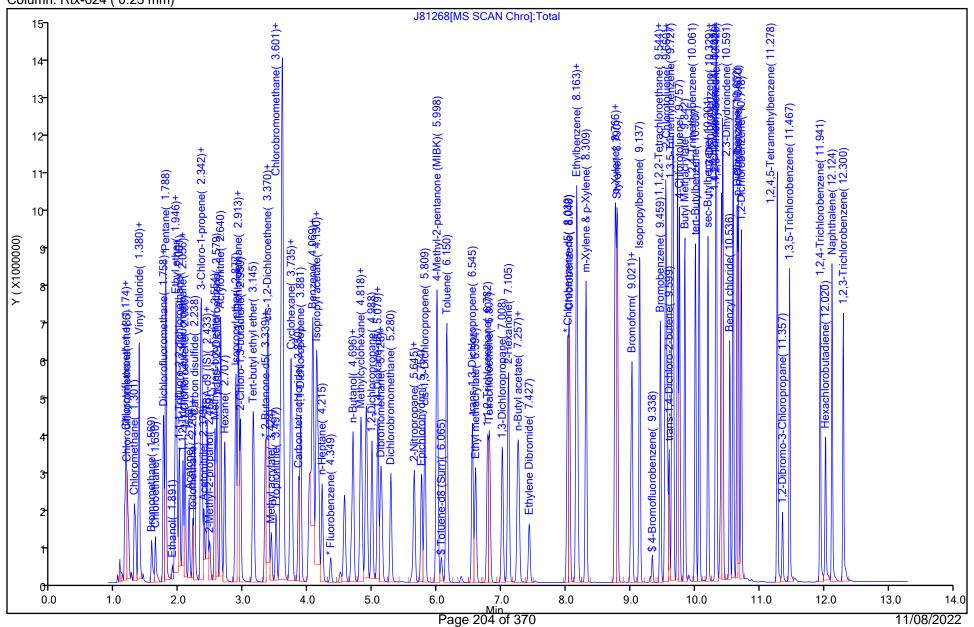
Data File: \\cnromis\Edis	SUITICI	IIUIIDala	CVOAIVI	301202210	12-15	1000.D\J81208	ט.ט		
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
S 137 Xylenes, Total S 138 Total BTEX	100 1				0		1000.0 2500.0	905.1 2239.0	
QC Flag Legend Processing Flags NC - Not Calibrated Review Flags a - User Assigned ID Reagents:									
GAS Hi_00426 MIX 2 Hi 00128			Added: Added:		-	Jnits: uL Jnits: uL			
MIX I Hi_00155 8FreonHi 00049			Added: Added:			Jnits: uL Jnits: uL			
Ethanol mix_00069 ACROLEIN W 00145		Amount	Added: Added:	50.00	ί	Jnits: uL Jnits: uL Jnits: uL			
8260ISNEW_00171 8260SURR250 00232		Amount	Added: Added: Added:	1.00	ί	Jnits: uL Jnits: uL Jnits: uL	Run Reage Run Reage		

Report Date: 14-Oct-2022 16:03:06 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D


Injection Date: 13-Oct-2022 02:01:30 Instrument ID: CVOAMS8


Lims ID: STD500

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Operator ID:

ALS Bottle#:

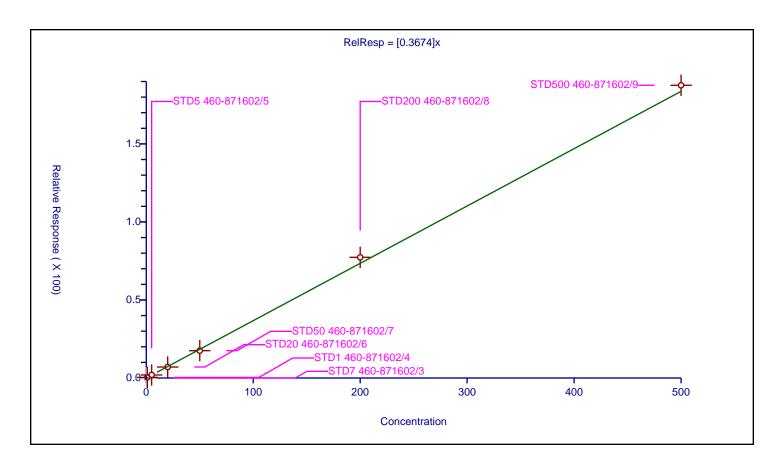
Worklist Smp#:

9

9

Calibration / Dichlorodifluoromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3674

Curve Coefficients

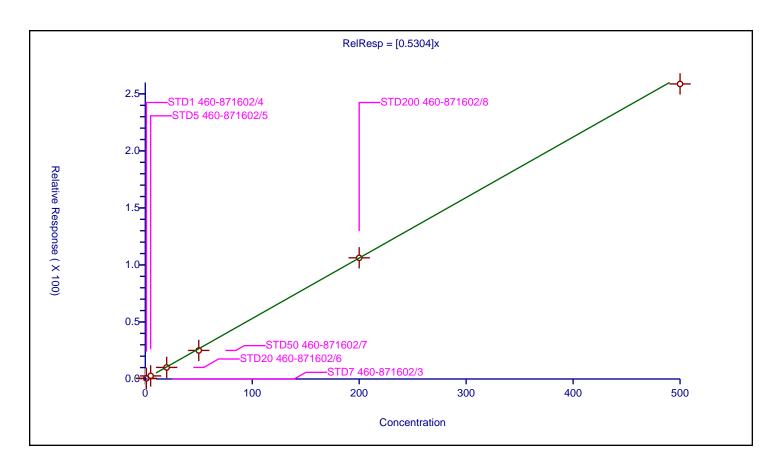
Error Coefficients

Standard Error:893000Relative Standard Error:4.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.0	50.0	447005.0	0.0	N
2	STD1 460-871602/4	1.0	0.356833	50.0	439281.0	0.356833	Υ
3	STD5 460-871602/5	5.0	1.919484	50.0	453872.0	0.383897	Υ
4	STD20 460-871602/6	20.0	7.033844	50.0	460431.0	0.351692	Υ
5	STD50 460-871602/7	50.0	17.512513	50.0	468525.0	0.35025	Υ
6	STD200 460-871602/8	200.0	77.32825	50.0	471631.0	0.386641	Υ
7	STD500 460-871602/9	500.0	187.580257	50.0	493259.0	0.375161	Υ

Calibration / Chloromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5304

Curve Coefficients

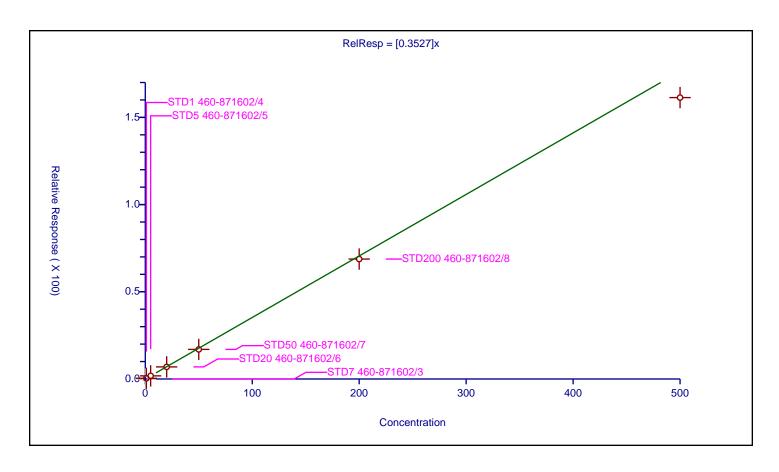
Error Coefficients

Standard Error:1230000Relative Standard Error:5.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.0	50.0	447005.0	0.0	N
2	STD1 460-871602/4	1.0	0.585047	50.0	439281.0	0.585047	Υ
3	STD5 460-871602/5	5.0	2.698889	50.0	453872.0	0.539778	Υ
4	STD20 460-871602/6	20.0	10.157114	50.0	460431.0	0.507856	Υ
5	STD50 460-871602/7	50.0	25.047863	50.0	468525.0	0.500957	Υ
6	STD200 460-871602/8	200.0	106.257752	50.0	471631.0	0.531289	Υ
7	STD500 460-871602/9	500.0	258.752096	50.0	493259.0	0.517504	Υ

Calibration / Vinyl chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3527

Curve Coefficients

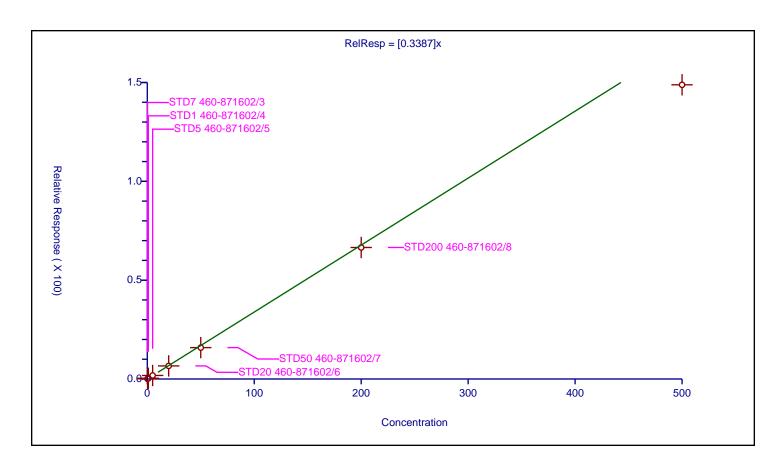
Error Coefficients

Standard Error:772000Relative Standard Error:7.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.0	50.0	447005.0	0.0	N
2	STD1 460-871602/4	1.0	0.404525	50.0	439281.0	0.404525	Υ
3	STD5 460-871602/5	5.0	1.795881	50.0	453872.0	0.359176	Υ
4	STD20 460-871602/6	20.0	6.936979	50.0	460431.0	0.346849	Υ
5	STD50 460-871602/7	50.0	16.969745	50.0	468525.0	0.339395	Υ
6	STD200 460-871602/8	200.0	68.769016	50.0	471631.0	0.343845	Υ
7	STD500 460-871602/9	500.0	161.351035	50.0	493259.0	0.322702	Υ

Calibration / Butadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3387

Curve Coefficients

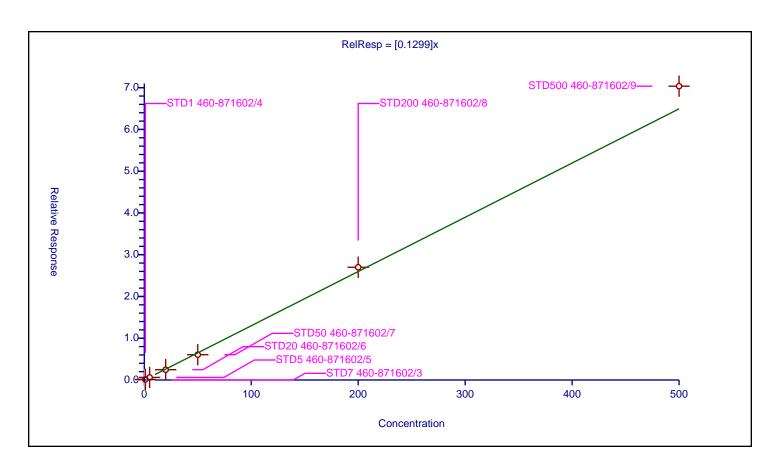
Error Coefficients

Standard Error:	655000
Relative Standard Error:	8.0
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.090491	50.0	447005.0	0.361965	Υ
2	STD1 460-871602/4	1.0	0.374476	50.0	439281.0	0.374476	Υ
3	STD5 460-871602/5	5.0	1.781119	50.0	453872.0	0.356224	Υ
4	STD20 460-871602/6	20.0	6.611957	50.0	460431.0	0.330598	Υ
5	STD50 460-871602/7	50.0	15.876741	50.0	468525.0	0.317535	Υ
6	STD200 460-871602/8	200.0	66.532734	50.0	471631.0	0.332664	Υ
7	STD500 460-871602/9	500.0	148.843001	50.0	493259.0	0.297686	Υ

Calibration / Bromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1299

Curve Coefficients

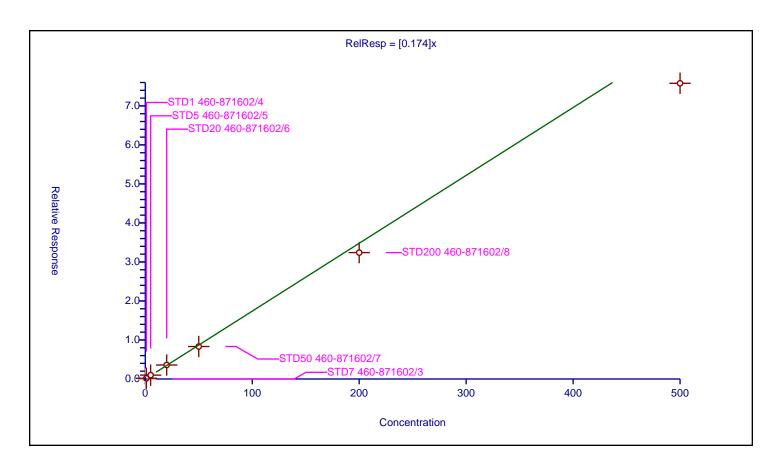
Error Coefficients

Standard Error:332000Relative Standard Error:6.3Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.0	50.0	447005.0	0.0	N
2	STD1 460-871602/4	1.0	0.135676	50.0	439281.0	0.135676	Υ
3	STD5 460-871602/5	5.0	0.618236	50.0	453872.0	0.123647	Υ
4	STD20 460-871602/6	20.0	2.461824	50.0	460431.0	0.123091	Υ
5	STD50 460-871602/7	50.0	6.056027	50.0	468525.0	0.121121	Υ
6	STD200 460-871602/8	200.0	26.996105	50.0	471631.0	0.134981	Υ
7	STD500 460-871602/9	500.0	70.361514	50.0	493259.0	0.140723	Υ
•	010000 400 07 1002/0	000.0	70.001014	00.0	430200.0	0.140720	

Calibration / Chloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.174

Curve Coefficients

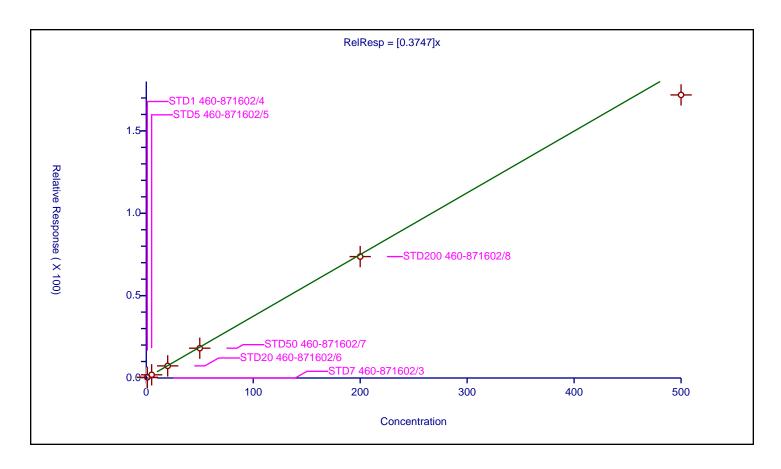
Error Coefficients

Standard Error:	363000
Relative Standard Error:	9.8
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.0	50.0	447005.0	0.0	N
2	STD1 460-871602/4	1.0	0.186213	50.0	439281.0	0.186213	Υ
3	STD5 460-871602/5	5.0	0.990147	50.0	453872.0	0.198029	Υ
4	STD20 460-871602/6	20.0	3.587617	50.0	460431.0	0.179381	Υ
5	STD50 460-871602/7	50.0	8.325063	50.0	468525.0	0.166501	Υ
6	STD200 460-871602/8	200.0	32.400542	50.0	471631.0	0.162003	Υ
7	STD500 460-871602/9	500.0	75.801455	50.0	493259.0	0.151603	Υ

Calibration / Trichlorofluoromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3747

Curve Coefficients

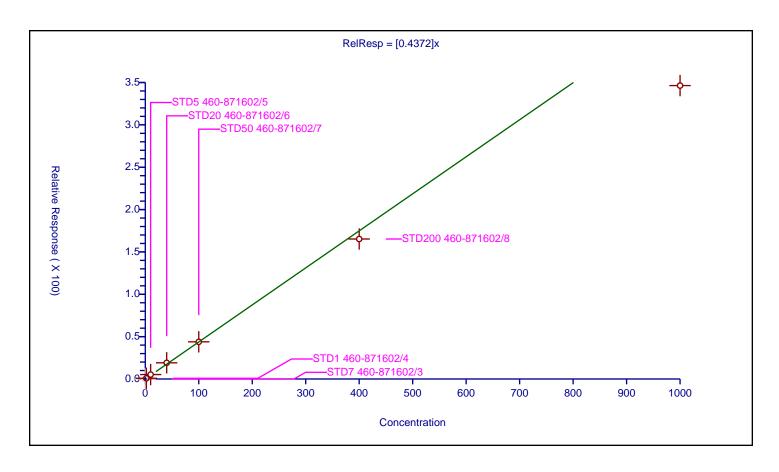
Error Coefficients

Standard Error:	823000
Relative Standard Error:	6.8
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.25	0.0	50.0	447005.0	0.0	N
2	STD1 460-871602/4	1.0	0.418183	50.0	439281.0	0.418183	Υ
3	STD5 460-871602/5	5.0	1.941186	50.0	453872.0	0.388237	Υ
4	STD20 460-871602/6	20.0	7.352676	50.0	460431.0	0.367634	Υ
5	STD50 460-871602/7	50.0	18.092524	50.0	468525.0	0.36185	Υ
6	STD200 460-871602/8	200.0	73.705185	50.0	471631.0	0.368526	Υ
7	STD500 460-871602/9	500.0	171.847954	50.0	493259.0	0.343696	Υ

Calibration / Pentane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4372

Curve Coefficients

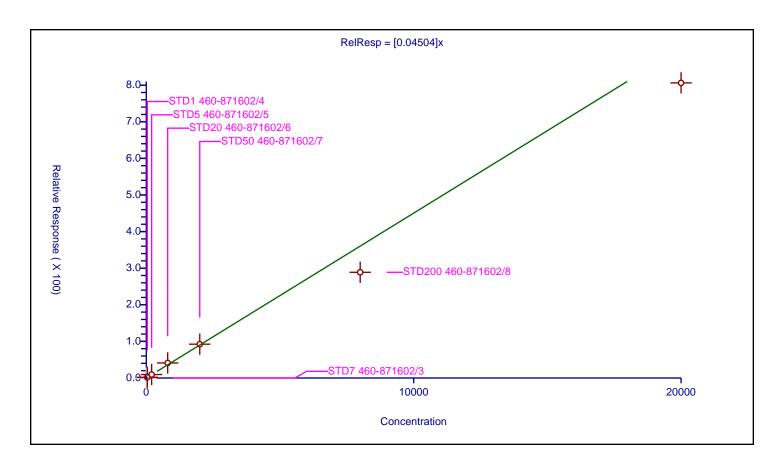
Error Coefficients

Standard Error:1690000Relative Standard Error:13.7Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.979

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	2.0	0.849456	50.0	439281.0	0.424728	Υ
3	STD5 460-871602/5	10.0	5.226143	50.0	453872.0	0.522614	Υ
4	STD20 460-871602/6	40.0	19.095912	50.0	460431.0	0.477398	Υ
5	STD50 460-871602/7	100.0	43.879622	50.0	468525.0	0.438796	Υ
6	STD200 460-871602/8	400.0	165.261931	50.0	471631.0	0.413155	Υ
7	STD500 460-871602/9	1000.0	346.384455	50.0	493259.0	0.346384	Υ

Calibration / Ethanol

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.04504

Curve Coefficients

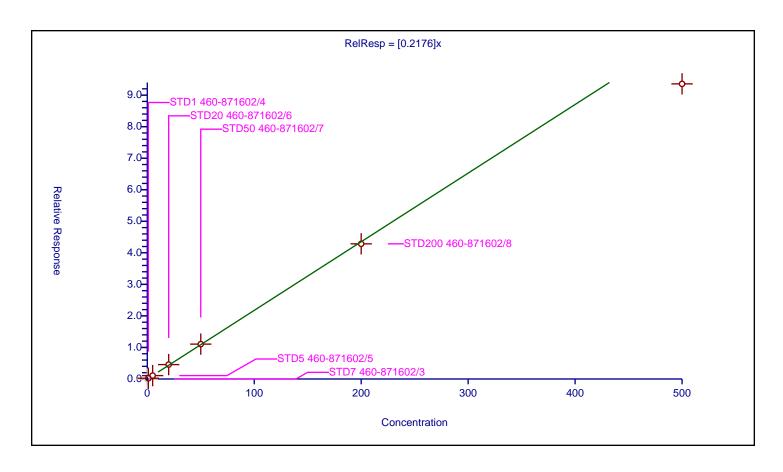
Error Coefficients

79300
12.7
0.997
0.981

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	1000.0	177682.0	NaN	N
STD1 460-871602/4	40.0	1.963287	1000.0	174707.0	0.049082	Υ
STD5 460-871602/5	200.0	9.447235	1000.0	176983.0	0.047236	Υ
STD20 460-871602/6	800.0	41.077197	1000.0	181731.0	0.051346	Υ
STD50 460-871602/7	2000.0	92.347447	1000.0	201619.0	0.046174	Υ
STD200 460-871602/8	8000.0	288.774133	1000.0	204492.0	0.036097	Υ
STD500 460-871602/9	20000.0	806.213825	1000.0	207151.0	0.040311	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 40.0 STD5 460-871602/5 200.0 STD20 460-871602/6 800.0 STD50 460-871602/7 2000.0 STD200 460-871602/8 8000.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 40.0 1.963287 STD5 460-871602/5 200.0 9.447235 STD20 460-871602/6 800.0 41.077197 STD50 460-871602/7 2000.0 92.347447 STD200 460-871602/8 8000.0 288.774133	STD7 460-871602/3 0.0 0.0 1000.0 STD1 460-871602/4 40.0 1.963287 1000.0 STD5 460-871602/5 200.0 9.447235 1000.0 STD20 460-871602/6 800.0 41.077197 1000.0 STD50 460-871602/7 2000.0 92.347447 1000.0 STD200 460-871602/8 8000.0 288.774133 1000.0	STD7 460-871602/3 0.0 0.0 1000.0 177682.0 STD1 460-871602/4 40.0 1.963287 1000.0 174707.0 STD5 460-871602/5 200.0 9.447235 1000.0 176983.0 STD20 460-871602/6 800.0 41.077197 1000.0 181731.0 STD50 460-871602/7 2000.0 92.347447 1000.0 201619.0 STD200 460-871602/8 8000.0 288.774133 1000.0 204492.0	STD7 460-871602/3 0.0 0.0 1000.0 177682.0 NaN STD1 460-871602/4 40.0 1.963287 1000.0 174707.0 0.049082 STD5 460-871602/5 200.0 9.447235 1000.0 176983.0 0.047236 STD20 460-871602/6 800.0 41.077197 1000.0 181731.0 0.051346 STD50 460-871602/7 2000.0 92.347447 1000.0 201619.0 0.046174 STD200 460-871602/8 8000.0 288.774133 1000.0 204492.0 0.036097

Calibration / Ethyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2176

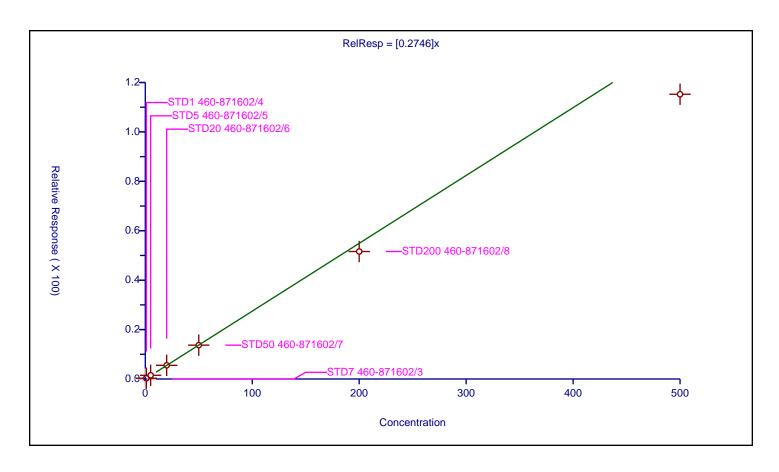
Curve Coefficients

Error Coefficients

Standard Error:453000Relative Standard Error:8.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.239141	50.0	439281.0	0.239141	Υ
3	STD5 460-871602/5	5.0	1.077837	50.0	453872.0	0.215567	Υ
4	STD20 460-871602/6	20.0	4.563224	50.0	460431.0	0.228161	Υ
5	STD50 460-871602/7	50.0	11.05576	50.0	468525.0	0.221115	Υ
6	STD200 460-871602/8	200.0	42.849177	50.0	471631.0	0.214246	Υ
7	STD500 460-871602/9	500.0	93.567781	50.0	493259.0	0.187136	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2746
Slope:	0.2746

Curve Coefficients

Error Coefficients

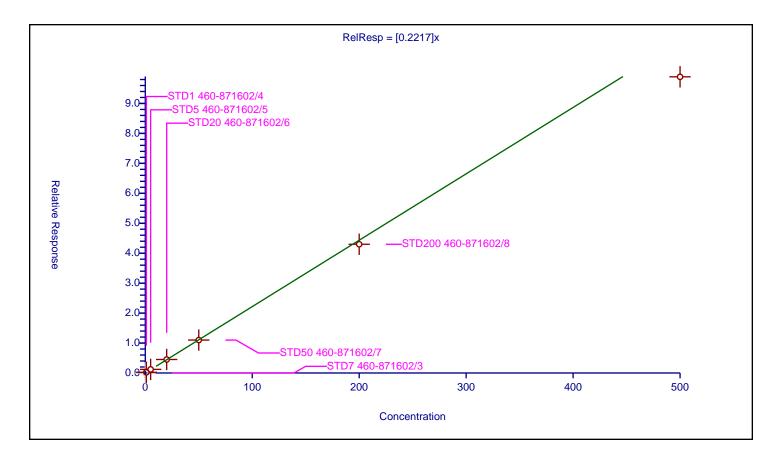
Standard Error:557000Relative Standard Error:10.3Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.308003	50.0	439281.0	0.308003	Υ
3	STD5 460-871602/5	5.0	1.502075	50.0	453872.0	0.300415	Υ
4	STD20 460-871602/6	20.0	5.529059	50.0	460431.0	0.276453	Υ
5	STD50 460-871602/7	50.0	13.700336	50.0	468525.0	0.274007	Υ
6	STD200 460-871602/8	200.0	51.60157	50.0	471631.0	0.258008	Υ
7	STD500 460-871602/9	500.0	115.251521	50.0	493259.0	0.230503	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

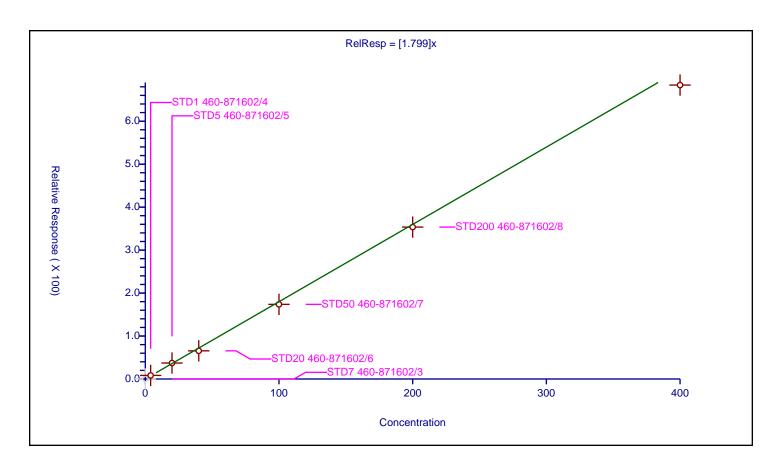
 Slope:
 0.2217

Error Coefficients

Standard Error:475000Relative Standard Error:6.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.231287	50.0	439281.0	0.231287	Υ
3	STD5 460-871602/5	5.0	1.203423	50.0	453872.0	0.240685	Υ
4	STD20 460-871602/6	20.0	4.507624	50.0	460431.0	0.225381	Υ
5	STD50 460-871602/7	50.0	10.993544	50.0	468525.0	0.219871	Υ
6	STD200 460-871602/8	200.0	42.984982	50.0	471631.0	0.214925	Υ
7	STD500 460-871602/9	500.0	98.899564	50.0	493259.0	0.197799	Υ

Calibration / Acrolein


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

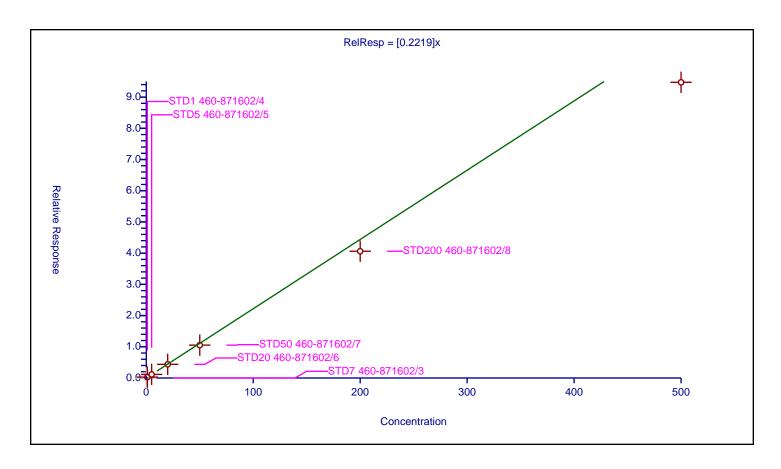
Intercept:	0
Slope:	1.799

Curve Coefficients

Standard Error:	72700
Relative Standard Error:	8.7
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	1000.0	177682.0	NaN	N
2	STD1 460-871602/4	4.0	8.32823	1000.0	174707.0	2.082057	Υ
3	STD5 460-871602/5	20.0	37.150461	1000.0	176983.0	1.857523	Υ
4	STD20 460-871602/6	40.0	65.519917	1000.0	181731.0	1.637998	Υ
5	STD50 460-871602/7	100.0	173.698907	1000.0	201619.0	1.736989	Υ
6	STD200 460-871602/8	200.0	353.515052	1000.0	204492.0	1.767575	Υ
7	STD500 460-871602/9	400.0	684.013111	1000.0	207151.0	1.710033	Υ
5	STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	40.0 100.0 200.0	65.519917 173.698907 353.515052	1000.0 1000.0 1000.0	181731.0 201619.0 204492.0	1.637998 1.736989 1.767575	Y Y Y Y

Calibration / 1,1-Dichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2219

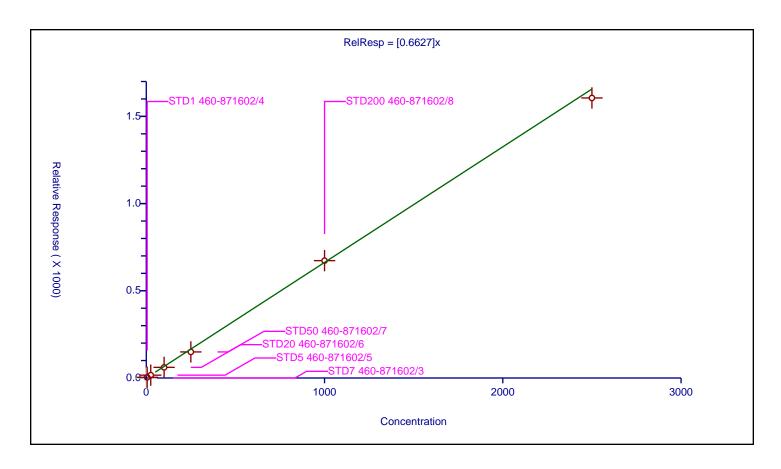
Curve Coefficients

Standard Error:	454000
Relative Standard Error:	14.3
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.973

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.280231	50.0	439281.0	0.280231	Υ
3	STD5 460-871602/5	5.0	1.147791	50.0	453872.0	0.229558	Υ
4	STD20 460-871602/6	20.0	4.375574	50.0	460431.0	0.218779	Υ
5	STD50 460-871602/7	50.0	10.526866	50.0	468525.0	0.210537	Υ
6	STD200 460-871602/8	200.0	40.616287	50.0	471631.0	0.203081	Υ
7	STD500 460-871602/9	500.0	94.743025	50.0	493259.0	0.189486	Υ

Calibration / Acetone

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.6627

Curve Coefficients

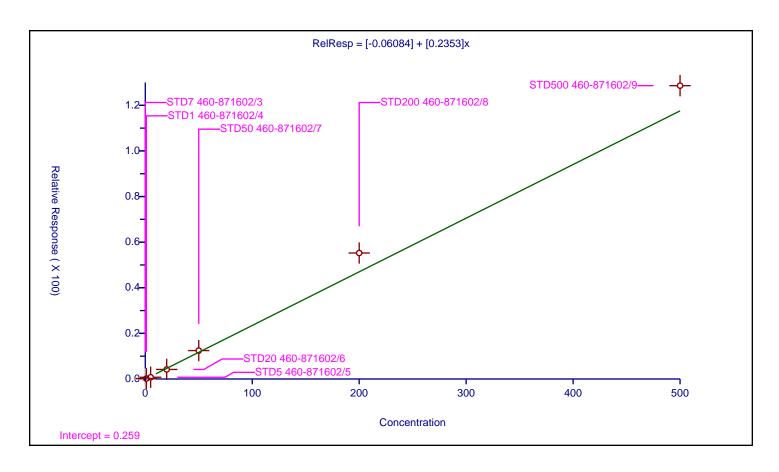
Error Coefficients

Standard Error:971000Relative Standard Error:10.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.985

N
Υ
Υ
Υ
Υ
Υ
Υ
•

Calibration / Iodomethane

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	-0.06084
Slope:	0.2353

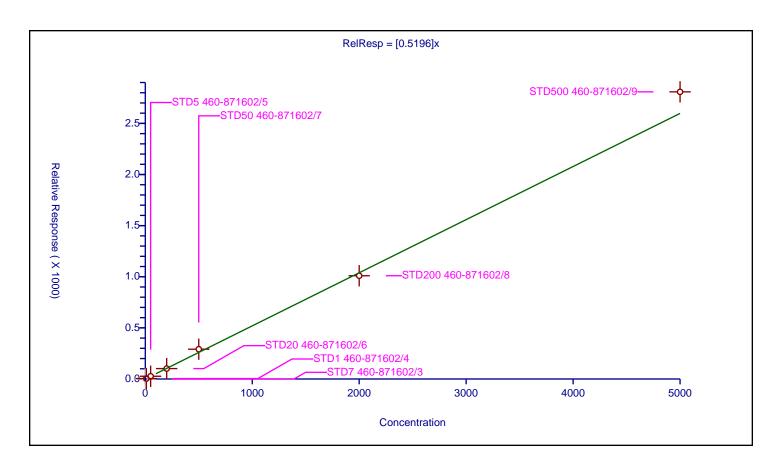
Curve Coefficients

Error Coefficients

Standard Error:689000Relative Standard Error:19.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.968

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.189059	50.0	439281.0	0.189059	Υ
3	STD5 460-871602/5	5.0	0.764202	50.0	453872.0	0.15284	Υ
4	STD20 460-871602/6	20.0	4.1851	50.0	460431.0	0.209255	Υ
5	STD50 460-871602/7	50.0	12.461448	50.0	468525.0	0.249229	Υ
6	STD200 460-871602/8	200.0	55.244036	50.0	471631.0	0.27622	Υ
7	STD500 460-871602/9	500.0	128.614075	50.0	493259.0	0.257228	Υ

Calibration / Isopropyl alcohol


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.5196

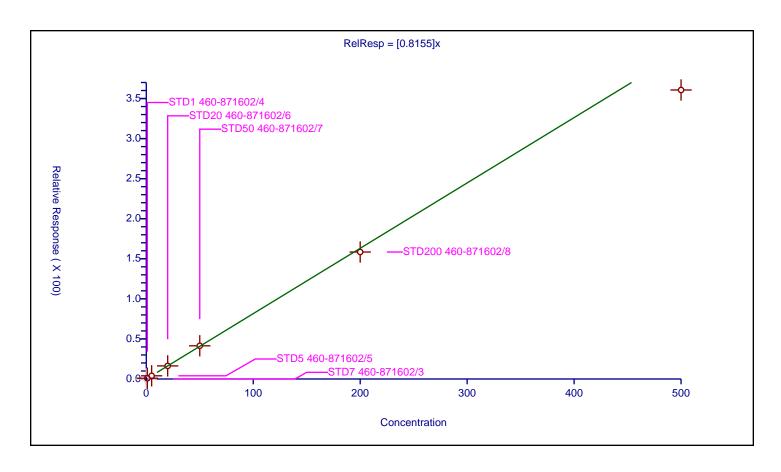
Curve Coefficients

Standard Error:	276000
Relative Standard Error:	10.9
Correlation Coefficient:	0.998
Coefficient of Determination (Adjusted):	0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	1000.0	177682.0	NaN	N
2	STD1 460-871602/4	10.0	4.218492	1000.0	174707.0	0.421849	Υ
3	STD5 460-871602/5	50.0	26.855687	1000.0	176983.0	0.537114	Υ
4	STD20 460-871602/6	200.0	101.765797	1000.0	181731.0	0.508829	Υ
5	STD50 460-871602/7	500.0	291.460626	1000.0	201619.0	0.582921	Υ
6	STD200 460-871602/8	2000.0	1009.834126	1000.0	204492.0	0.504917	Υ
7	STD500 460-871602/9	5000.0	2808.579249	1000.0	207151.0	0.561716	Υ

Calibration / Carbon disulfide

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

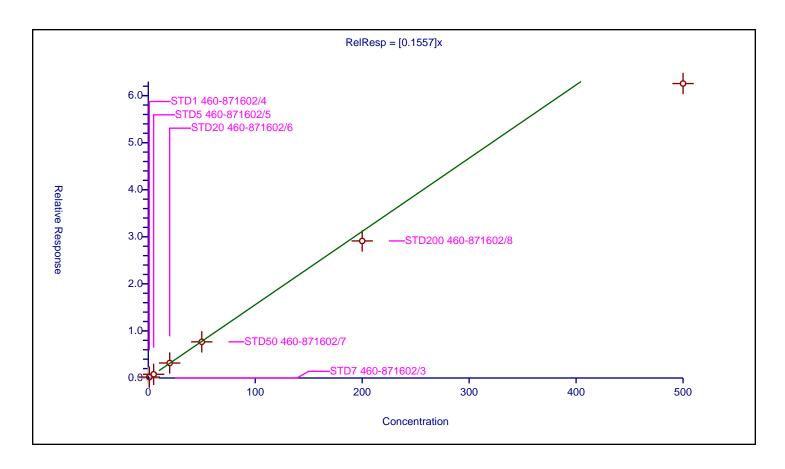

Intercept:	0
Slope:	0.8155

Curve Coefficients

Error Coefficients

Standard Error:1740000Relative Standard Error:8.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.937213	50.0	439281.0	0.937213	Υ
3	STD5 460-871602/5	5.0	3.985485	50.0	453872.0	0.797097	Υ
4	STD20 460-871602/6	20.0	16.334587	50.0	460431.0	0.816729	Υ
5	STD50 460-871602/7	50.0	41.431407	50.0	468525.0	0.828628	Υ
6	STD200 460-871602/8	200.0	158.452901	50.0	471631.0	0.792265	Υ
7	STD500 460-871602/9	500.0	360.656369	50.0	493259.0	0.721313	Υ


Calibration /3-Chloro-1-propene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

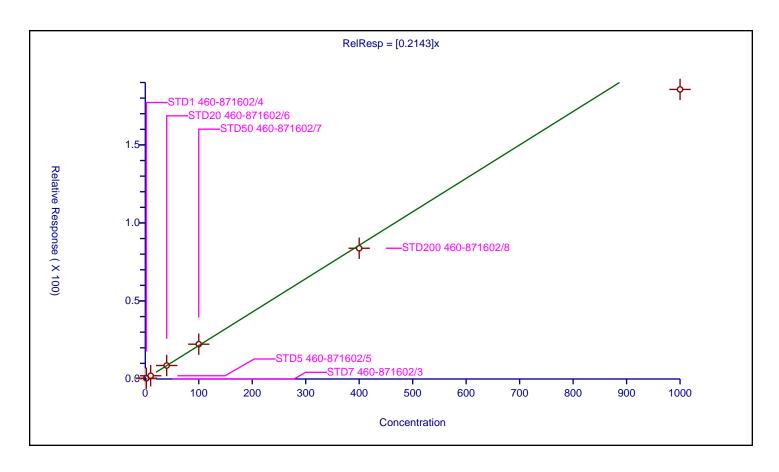
	Curve Coefficients
Intercept:	0
Slope:	0.1557

Standard Error:	304000
Relative Standard Error:	14.3
Correlation Coefficient:	0.998
Coefficient of Determination (Adjusted):	0.974

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.193612	50.0	439281.0	0.193612	Υ
3	STD5 460-871602/5	5.0	0.785243	50.0	453872.0	0.157049	Υ
4	STD20 460-871602/6	20.0	3.183973	50.0	460431.0	0.159199	Υ
5	STD50 460-871602/7	50.0	7.681981	50.0	468525.0	0.15364	Υ
6	STD200 460-871602/8	200.0	29.121707	50.0	471631.0	0.145609	Υ
7	STD500 460-871602/9	500.0	62.566623	50.0	493259.0	0.125133	Υ

Calibration / Methyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2143

Curve Coefficients

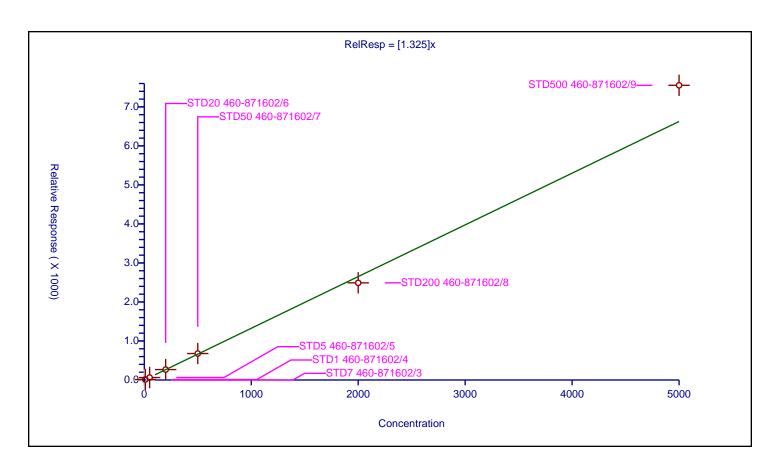
Error Coefficients

Standard Error:897000Relative Standard Error:9.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	2.0	0.488639	50.0	439281.0	0.24432	Υ
3	STD5 460-871602/5	10.0	2.071289	50.0	453872.0	0.207129	Υ
4	STD20 460-871602/6	40.0	8.639514	50.0	460431.0	0.215988	Υ
5	STD50 460-871602/7	100.0	22.309589	50.0	468525.0	0.223096	Υ
6	STD200 460-871602/8	400.0	83.791884	50.0	471631.0	0.20948	Υ
7	STD500 460-871602/9	1000.0	185.561541	50.0	493259.0	0.185562	Υ

Calibration / Acetonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.325

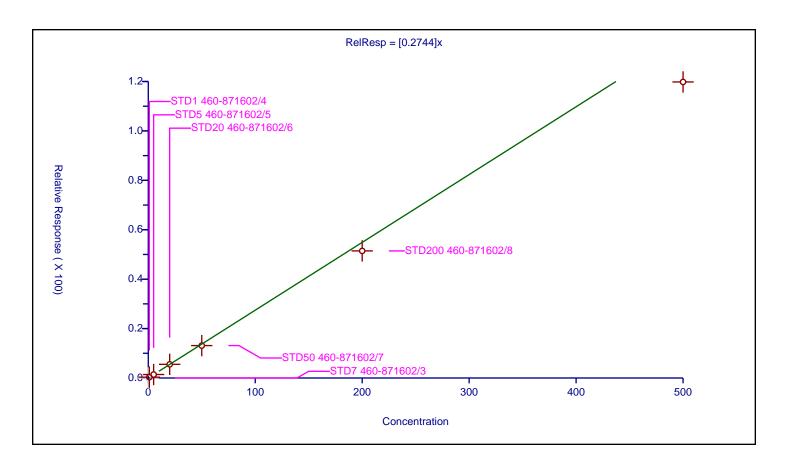
Curve Coefficients

Error Coefficients

Standard Error:736000Relative Standard Error:7.8Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	1000.0	177682.0	NaN	N
2	STD1 460-871602/4	10.0	12.357833	1000.0	174707.0	1.235783	Υ
3	STD5 460-871602/5	50.0	63.435471	1000.0	176983.0	1.268709	Υ
4	STD20 460-871602/6	200.0	267.026539	1000.0	181731.0	1.335133	Υ
5	STD50 460-871602/7	500.0	678.378526	1000.0	201619.0	1.356757	Υ
6	STD200 460-871602/8	2000.0	2490.513076	1000.0	204492.0	1.245257	Υ
7	STD500 460-871602/9	5000.0	7553.938914	1000.0	207151.0	1.510788	Υ

Calibration / Methylene Chloride


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2744

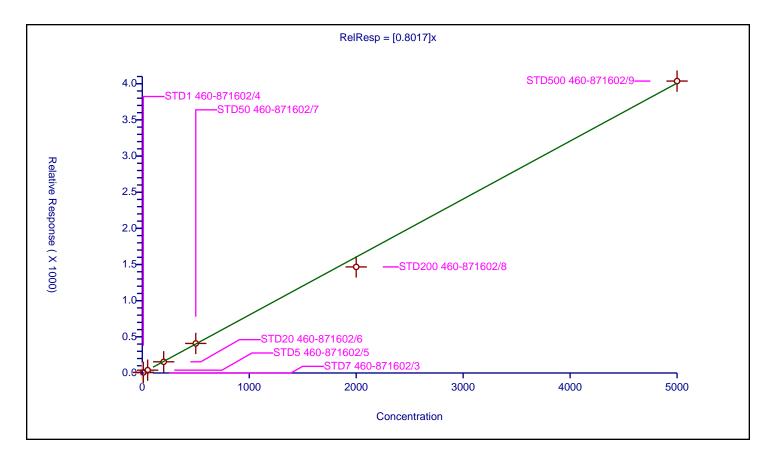
Curve Coefficients

Standard Error:	574000
Relative Standard Error:	11.3
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.984

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.329743	50.0	439281.0	0.329743	Υ
3	STD5 460-871602/5	5.0	1.406894	50.0	453872.0	0.281379	Υ
4	STD20 460-871602/6	20.0	5.526995	50.0	460431.0	0.27635	Υ
5	STD50 460-871602/7	50.0	13.116909	50.0	468525.0	0.262338	Υ
6	STD200 460-871602/8	200.0	51.434384	50.0	471631.0	0.257172	Υ
7	STD500 460-871602/9	500.0	119.819	50.0	493259.0	0.239638	Υ

Calibration / 2-Methyl-2-propanol

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.8017

Curve Coefficients

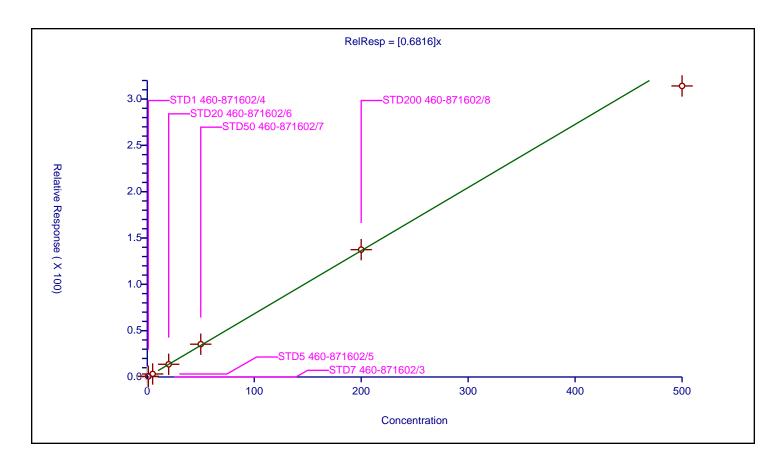
Error Coefficients

Standard Error:397000Relative Standard Error:7.0Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	1000.0	177682.0	NaN	N
2	STD1 460-871602/4	10.0	8.997922	1000.0	174707.0	0.899792	Υ
3	STD5 460-871602/5	50.0	38.918992	1000.0	176983.0	0.77838	Υ
4	STD20 460-871602/6	200.0	154.783719	1000.0	181731.0	0.773919	Υ
5	STD50 460-871602/7	500.0	408.71644	1000.0	201619.0	0.817433	Υ
6	STD200 460-871602/8	2000.0	1466.854449	1000.0	204492.0	0.733427	Υ
7	STD500 460-871602/9	5000.0	4036.847517	1000.0	207151.0	0.80737	Υ
7	STD500 460-871602/9	5000.0	4036.847517	1000.0	207151.0	0.80737	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

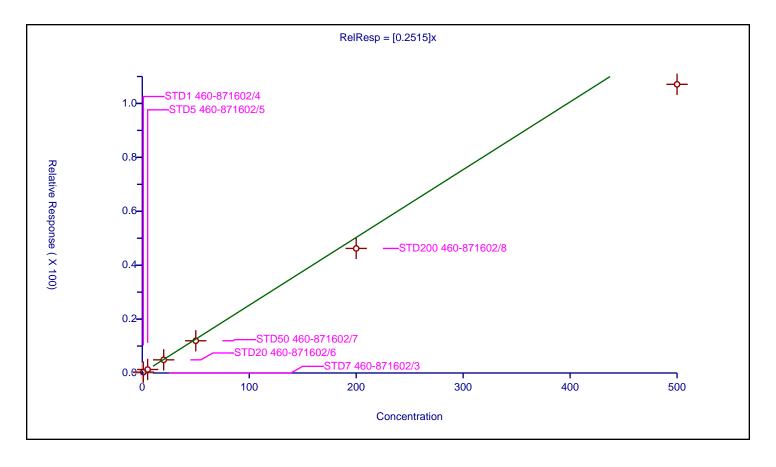

Curve Coefficients

Intercept:	0
Slope:	0.6816

Error Coefficients

Standard Error:1510000Relative Standard Error:5.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.732561	50.0	439281.0	0.732561	Υ
3	STD5 460-871602/5	5.0	3.240782	50.0	453872.0	0.648156	Υ
4	STD20 460-871602/6	20.0	13.705962	50.0	460431.0	0.685298	Υ
5	STD50 460-871602/7	50.0	35.395763	50.0	468525.0	0.707915	Υ
6	STD200 460-871602/8	200.0	137.439545	50.0	471631.0	0.687198	Υ
7	STD500 460-871602/9	500.0	314.1225	50.0	493259.0	0.628245	Υ


Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

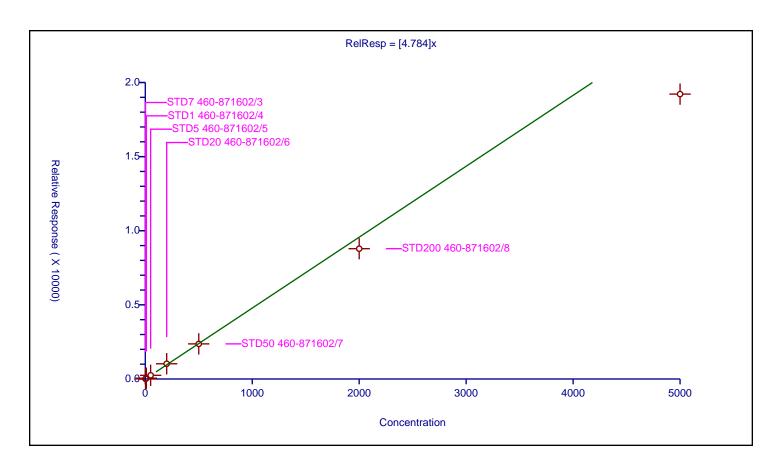
	Curve Coefficients
Intercept:	0
Slope:	0.2515

514000
14.7
1.000
0.971

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.320638	50.0	439281.0	0.320638	Υ
3	STD5 460-871602/5	5.0	1.298714	50.0	453872.0	0.259743	Υ
4	STD20 460-871602/6	20.0	4.880536	50.0	460431.0	0.244027	Υ
5	STD50 460-871602/7	50.0	11.951657	50.0	468525.0	0.239033	Υ
6	STD200 460-871602/8	200.0	46.214837	50.0	471631.0	0.231074	Υ
7	STD500 460-871602/9	500.0	107.100225	50.0	493259.0	0.2142	Υ

Calibration / Acrylonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	4.784

Curve Coefficients

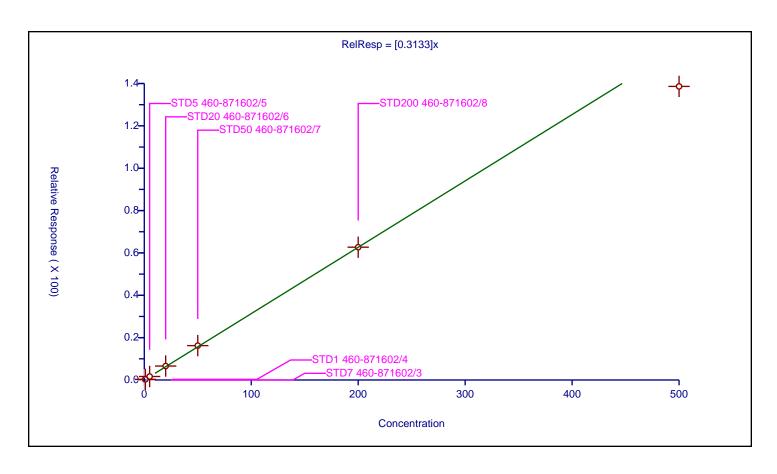
Error Coefficients

Standard Error:1780000Relative Standard Error:10.7Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	2.0	10.164226	1000.0	177682.0	5.082113	Υ
2	STD1 460-871602/4	10.0	53.163296	1000.0	174707.0	5.31633	Υ
3	STD5 460-871602/5	50.0	249.006967	1000.0	176983.0	4.980139	Υ
4	STD20 460-871602/6	200.0	1026.379649	1000.0	181731.0	5.131898	Υ
5	STD50 460-871602/7	500.0	2368.288703	1000.0	201619.0	4.736577	Υ
6	STD200 460-871602/8	2000.0	8789.375623	1000.0	204492.0	4.394688	Υ
7	STD500 460-871602/9	5000.0	19217.725234	1000.0	207151.0	3.843545	Υ

Calibration / Hexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3133

Curve Coefficients

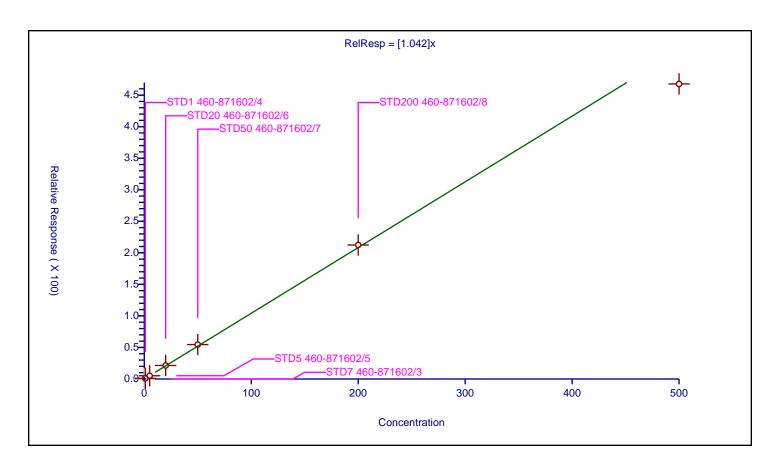
Error Coefficients

Standard Error:670000Relative Standard Error:6.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.305158	50.0	439281.0	0.305158	Υ
3	STD5 460-871602/5	5.0	1.650796	50.0	453872.0	0.330159	Υ
4	STD20 460-871602/6	20.0	6.588066	50.0	460431.0	0.329403	Υ
5	STD50 460-871602/7	50.0	16.227843	50.0	468525.0	0.324557	Υ
6	STD200 460-871602/8	200.0	62.70559	50.0	471631.0	0.313528	Υ
7	STD500 460-871602/9	500.0	138.625347	50.0	493259.0	0.277251	Υ

Calibration / Isopropyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.042

Curve Coefficients

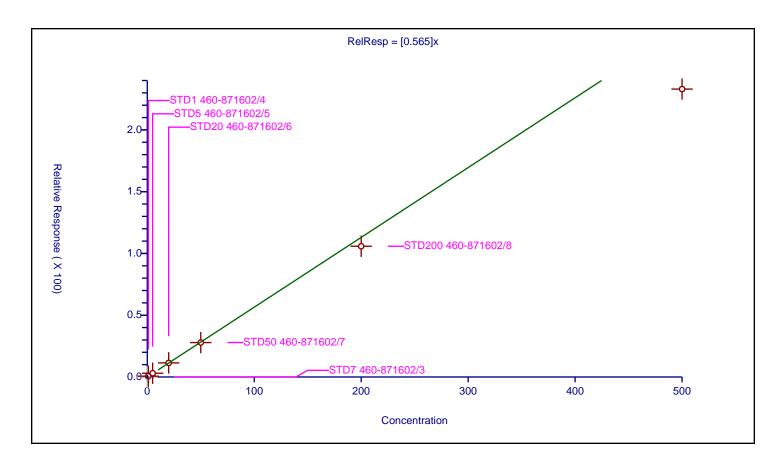
Error Coefficients

Standard Error:2260000Relative Standard Error:5.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	1.06219	50.0	439281.0	1.06219	Υ
3	STD5 460-871602/5	5.0	5.137131	50.0	453872.0	1.027426	Υ
4	STD20 460-871602/6	20.0	21.446645	50.0	460431.0	1.072332	Υ
5	STD50 460-871602/7	50.0	54.531775	50.0	468525.0	1.090636	Υ
6	STD200 460-871602/8	200.0	212.432283	50.0	471631.0	1.062161	Υ
7	STD500 460-871602/9	500.0	467.719291	50.0	493259.0	0.935439	Υ

Calibration / 1,1-Dichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.565

Curve Coefficients

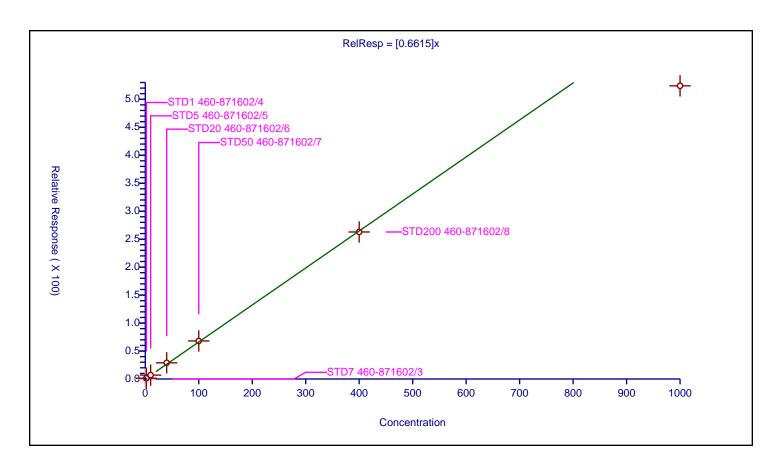
Error Coefficients

Standard Error:1130000Relative Standard Error:11.7Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.983

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.658007	50.0	439281.0	0.658007	Υ
3	STD5 460-871602/5	5.0	3.047225	50.0	453872.0	0.609445	Υ
4	STD20 460-871602/6	20.0	11.398885	50.0	460431.0	0.569944	Υ
5	STD50 460-871602/7	50.0	27.874927	50.0	468525.0	0.557499	Υ
6	STD200 460-871602/8	200.0	105.840795	50.0	471631.0	0.529204	Υ
7	STD500 460-871602/9	500.0	233.059711	50.0	493259.0	0.466119	Υ

Calibration / Vinyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.6615

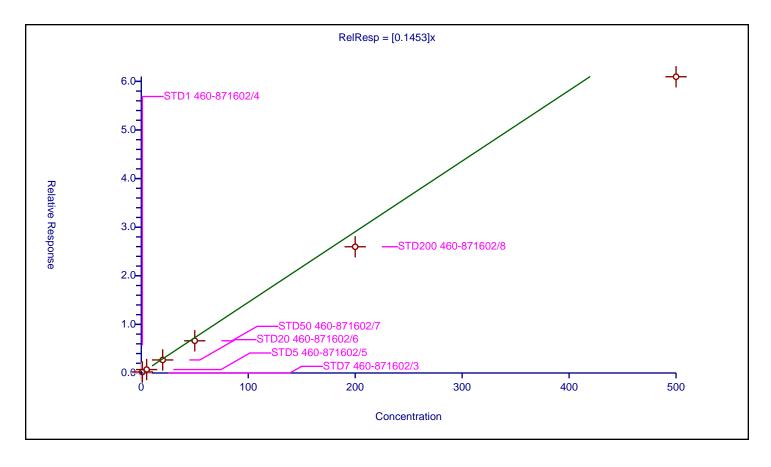
Curve Coefficients

Error Coefficients

Standard Error:2580000Relative Standard Error:10.7Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	2.0	1.381121	50.0	439281.0	0.69056	Υ
3	STD5 460-871602/5	10.0	6.939512	50.0	453872.0	0.693951	Υ
4	STD20 460-871602/6	40.0	28.931154	50.0	460431.0	0.723279	Υ
5	STD50 460-871602/7	100.0	68.006083	50.0	468525.0	0.680061	Υ
6	STD200 460-871602/8	400.0	262.82157	50.0	471631.0	0.657054	Υ
7	STD500 460-871602/9	1000.0	524.059673	50.0	493259.0	0.52406	Υ

Calibration / 2,2-Dichloropropane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

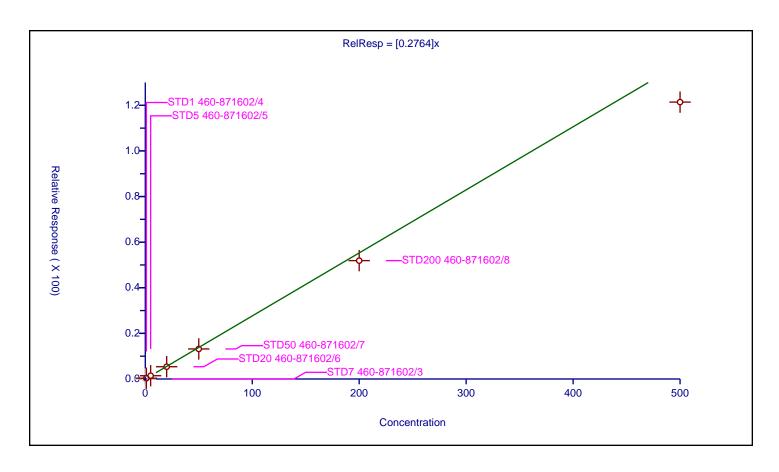
	Curve Coefficients
Intercept:	0
Slope:	0.1453

Error Coefficients

Standard Error:292000Relative Standard Error:23.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.922

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
STD1 460-871602/4	1.0	0.212734	50.0	439281.0	0.212734	Υ
STD5 460-871602/5	5.0	0.704163	50.0	453872.0	0.140833	Υ
STD20 460-871602/6	20.0	2.682921	50.0	460431.0	0.134146	Υ
STD50 460-871602/7	50.0	6.625153	50.0	468525.0	0.132503	Υ
STD200 460-871602/8	200.0	25.971363	50.0	471631.0	0.129857	Υ
STD500 460-871602/9	500.0	60.950839	50.0	493259.0	0.121902	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 0.212734 STD20 460-871602/6 20.0 2.682921 STD50 460-871602/7 50.0 6.625153 STD200 460-871602/8 200.0 25.971363	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 0.212734 50.0 STD5 460-871602/5 5.0 0.704163 50.0 STD20 460-871602/6 20.0 2.682921 50.0 STD50 460-871602/7 50.0 6.625153 50.0 STD200 460-871602/8 200.0 25.971363 50.0	STD7 460-871602/3 0.0 0.0 50.0 447005.0 STD1 460-871602/4 1.0 0.212734 50.0 439281.0 STD5 460-871602/5 5.0 0.704163 50.0 453872.0 STD20 460-871602/6 20.0 2.682921 50.0 460431.0 STD50 460-871602/7 50.0 6.625153 50.0 468525.0 STD200 460-871602/8 200.0 25.971363 50.0 471631.0	STD7 460-871602/3 0.0 0.0 50.0 447005.0 NaN STD1 460-871602/4 1.0 0.212734 50.0 439281.0 0.212734 STD5 460-871602/5 5.0 0.704163 50.0 453872.0 0.140833 STD20 460-871602/6 20.0 2.682921 50.0 460431.0 0.134146 STD50 460-871602/7 50.0 6.625153 50.0 468525.0 0.132503 STD200 460-871602/8 200.0 25.971363 50.0 471631.0 0.129857

Calibration / cis-1,2-Dichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

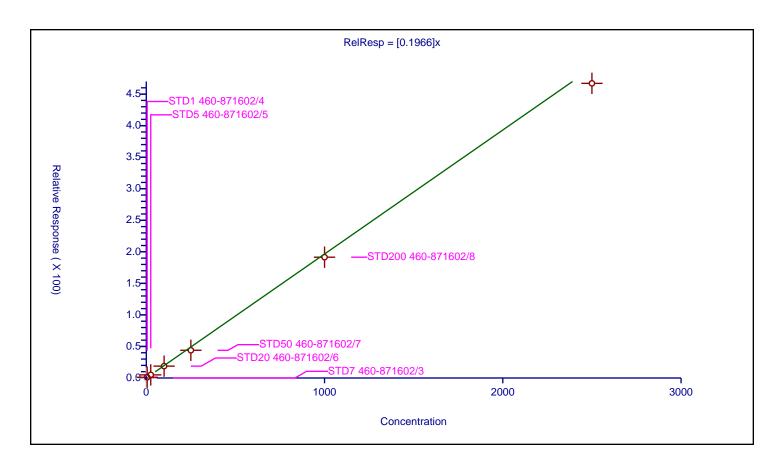
Intercept:	0
Slope:	0.2764

Curve Coefficients

582000
11.9
1.000
0.982

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
STD1 460-871602/4	1.0	0.337256	50.0	439281.0	0.337256	Υ
STD5 460-871602/5	5.0	1.432562	50.0	453872.0	0.286512	Υ
STD20 460-871602/6	20.0	5.380611	50.0	460431.0	0.269031	Υ
STD50 460-871602/7	50.0	13.175498	50.0	468525.0	0.26351	Υ
STD200 460-871602/8	200.0	51.90032	50.0	471631.0	0.259502	Υ
STD500 460-871602/9	500.0	121.408327	50.0	493259.0	0.242817	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 0.337256 STD5 460-871602/5 5.0 1.432562 STD20 460-871602/6 20.0 5.380611 STD50 460-871602/7 50.0 13.175498 STD200 460-871602/8 200.0 51.90032	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 0.337256 50.0 STD5 460-871602/5 5.0 1.432562 50.0 STD20 460-871602/6 20.0 5.380611 50.0 STD50 460-871602/7 50.0 13.175498 50.0 STD200 460-871602/8 200.0 51.90032 50.0	STD7 460-871602/3 0.0 0.0 50.0 447005.0 STD1 460-871602/4 1.0 0.337256 50.0 439281.0 STD5 460-871602/5 5.0 1.432562 50.0 453872.0 STD20 460-871602/6 20.0 5.380611 50.0 460431.0 STD50 460-871602/7 50.0 13.175498 50.0 468525.0 STD200 460-871602/8 200.0 51.90032 50.0 471631.0	STD7 460-871602/3 0.0 0.0 50.0 447005.0 NaN STD1 460-871602/4 1.0 0.337256 50.0 439281.0 0.337256 STD5 460-871602/5 5.0 1.432562 50.0 453872.0 0.286512 STD20 460-871602/6 20.0 5.380611 50.0 460431.0 0.269031 STD50 460-871602/7 50.0 13.175498 50.0 468525.0 0.26351 STD200 460-871602/8 200.0 51.90032 50.0 471631.0 0.259502

Calibration / 2-Butanone (MEK)


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

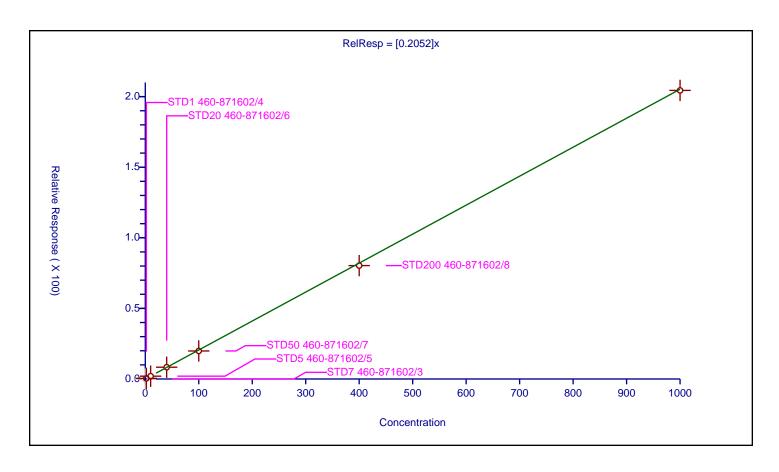
Intercept:	0
Slope:	0.1966

Curve Coefficients

Standard Error:	282000
Relative Standard Error:	11.3
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.984

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	250.0	260052.0	NaN	N
2	STD1 460-871602/4	5.0	1.198349	250.0	261610.0	0.23967	Υ
3	STD5 460-871602/5	25.0	4.937263	250.0	270494.0	0.197491	Υ
4	STD20 460-871602/6	100.0	18.819975	250.0	285282.0	0.1882	Υ
5	STD50 460-871602/7	250.0	43.911295	250.0	308867.0	0.175645	Υ
6	STD200 460-871602/8	1000.0	191.509527	250.0	314688.0	0.19151	Υ
7	STD500 460-871602/9	2500.0	467.065955	250.0	309968.0	0.186826	Υ

Calibration / Ethyl acetate


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2052

Curve Coefficients

Standard Error:	122000
Relative Standard Error:	3.9
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	250.0	260052.0	NaN	N
2	STD1 460-871602/4	2.0	0.439586	250.0	261610.0	0.219793	Υ
3	STD5 460-871602/5	10.0	1.993575	250.0	270494.0	0.199357	Υ
4	STD20 460-871602/6	40.0	8.339117	250.0	285282.0	0.208478	Υ
5	STD50 460-871602/7	100.0	19.849968	250.0	308867.0	0.1985	Υ
6	STD200 460-871602/8	400.0	80.312087	250.0	314688.0	0.20078	Υ
7	STD500 460-871602/9	1000.0	204.403358	250.0	309968.0	0.204403	Υ

Calibration / Chlorobromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.1224

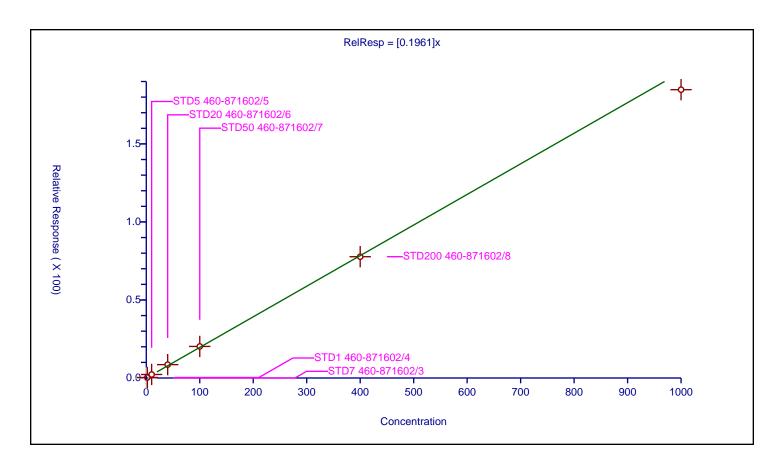
Curve Coefficients

Standard Error:	250000
Relative Standard Error:	16.3
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.964

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.161059	50.0	439281.0	0.161059	Υ
3	STD5 460-871602/5	5.0	0.604245	50.0	453872.0	0.120849	Υ
4	STD20 460-871602/6	20.0	2.404052	50.0	460431.0	0.120203	Υ
5	STD50 460-871602/7	50.0	5.835548	50.0	468525.0	0.116711	Υ
6	STD200 460-871602/8	200.0	22.231469	50.0	471631.0	0.111157	Υ
7	STD500 460-871602/9	500.0	52.067271	50.0	493259.0	0.104135	Υ

Calibration / Tetrahydrofuran

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1961

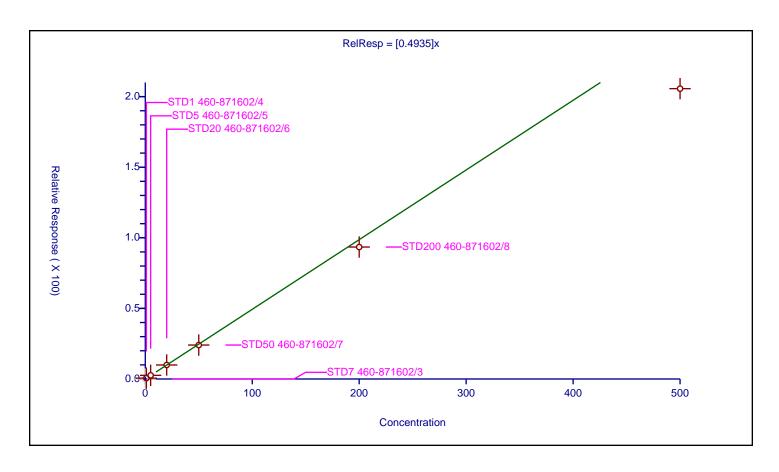
Curve Coefficients

Error Coefficients

Standard Error:112000Relative Standard Error:12.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.984

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	250.0	260052.0	NaN	N
STD1 460-871602/4	2.0	0.311532	250.0	261610.0	0.155766	Υ
STD5 460-871602/5	10.0	2.25236	250.0	270494.0	0.225236	Υ
STD20 460-871602/6	40.0	8.56258	250.0	285282.0	0.214065	Υ
STD50 460-871602/7	100.0	20.21744	250.0	308867.0	0.202174	Υ
STD200 460-871602/8	400.0	77.727781	250.0	314688.0	0.194319	Υ
STD500 460-871602/9	1000.0	184.761008	250.0	309968.0	0.184761	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 2.0 STD5 460-871602/5 10.0 STD20 460-871602/6 40.0 STD50 460-871602/7 100.0 STD200 460-871602/8 400.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 2.0 0.311532 STD5 460-871602/5 10.0 2.25236 STD20 460-871602/6 40.0 8.56258 STD50 460-871602/7 100.0 20.21744 STD200 460-871602/8 400.0 77.727781	STD7 460-871602/3 0.0 0.0 250.0 STD1 460-871602/4 2.0 0.311532 250.0 STD5 460-871602/5 10.0 2.25236 250.0 STD20 460-871602/6 40.0 8.56258 250.0 STD50 460-871602/7 100.0 20.21744 250.0 STD200 460-871602/8 400.0 77.727781 250.0	STD7 460-871602/3 0.0 0.0 250.0 260052.0 STD1 460-871602/4 2.0 0.311532 250.0 261610.0 STD5 460-871602/5 10.0 2.25236 250.0 270494.0 STD20 460-871602/6 40.0 8.56258 250.0 285282.0 STD50 460-871602/7 100.0 20.21744 250.0 308867.0 STD200 460-871602/8 400.0 77.727781 250.0 314688.0	STD7 460-871602/3 0.0 0.0 250.0 260052.0 NaN STD1 460-871602/4 2.0 0.311532 250.0 261610.0 0.155766 STD5 460-871602/5 10.0 2.25236 250.0 270494.0 0.225236 STD20 460-871602/6 40.0 8.56258 250.0 285282.0 0.214065 STD50 460-871602/7 100.0 20.21744 250.0 308867.0 0.202174 STD200 460-871602/8 400.0 77.727781 250.0 314688.0 0.194319

Calibration / Chloroform


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.4935

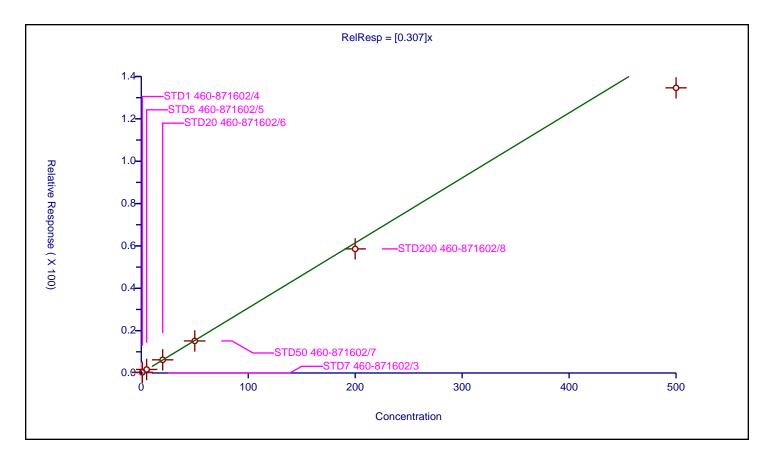
Curve Coefficients

995000
11.8
0.999
0.982

N
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / Cyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.307

Curve Coefficients

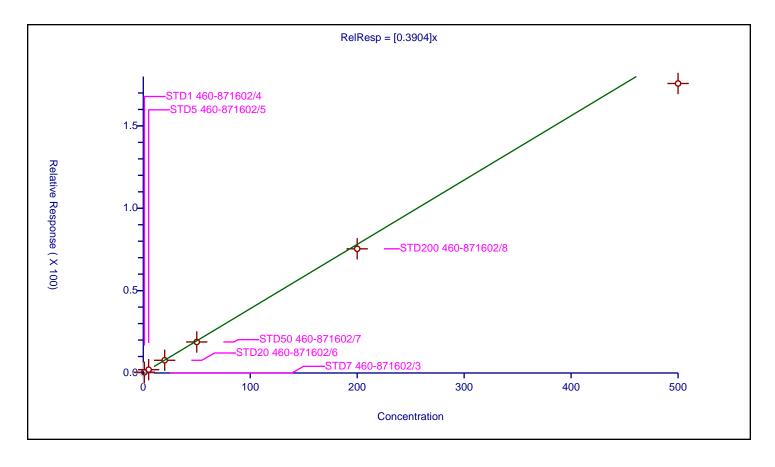
Error Coefficients

Standard Error:647000Relative Standard Error:8.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.331337	50.0	439281.0	0.331337	Υ
3	STD5 460-871602/5	5.0	1.672388	50.0	453872.0	0.334478	Υ
4	STD20 460-871602/6	20.0	6.223517	50.0	460431.0	0.311176	Υ
5	STD50 460-871602/7	50.0	15.146684	50.0	468525.0	0.302934	Υ
6	STD200 460-871602/8	200.0	58.599626	50.0	471631.0	0.292998	Υ
7	STD500 460-871602/9	500.0	134.648126	50.0	493259.0	0.269296	Υ

Calibration / 1,1,1-Trichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3904

Curve Coefficients

Error Coefficients

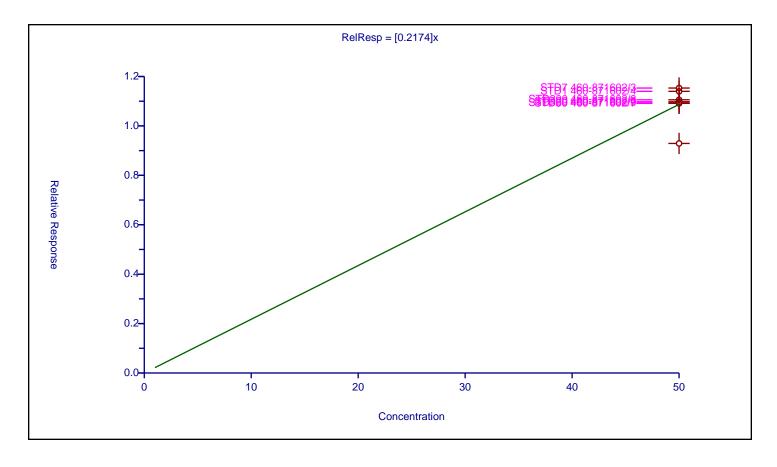
Standard Error:842000Relative Standard Error:8.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.448688	50.0	439281.0	0.448688	Υ
3	STD5 460-871602/5	5.0	2.012902	50.0	453872.0	0.40258	Υ
4	STD20 460-871602/6	20.0	7.719941	50.0	460431.0	0.385997	Υ
5	STD50 460-871602/7	50.0	18.838589	50.0	468525.0	0.376772	Υ
6	STD200 460-871602/8	200.0	75.394005	50.0	471631.0	0.37697	Υ
7	STD500 460-871602/9	500.0	175.763443	50.0	493259.0	0.351527	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients


 Intercept:
 0

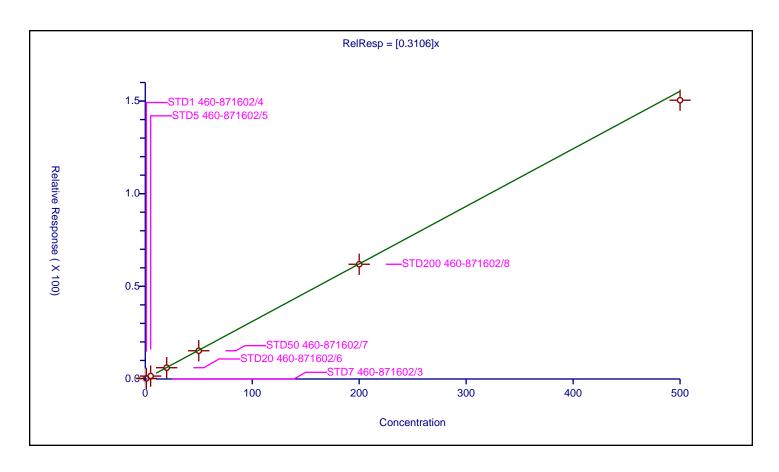
 Slope:
 0.2174

Error Coefficients

Standard Error:109000Relative Standard Error:6.8Correlation Coefficient:NACoefficient of Determination (Adjusted):0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	50.0	11.533204	50.0	447005.0	0.230664	Υ
2	STD1 460-871602/4	50.0	11.399651	50.0	439281.0	0.227993	Υ
3	STD5 460-871602/5	50.0	9.290945	50.0	453872.0	0.185819	Υ
4	STD20 460-871602/6	50.0	10.977649	50.0	460431.0	0.219553	Υ
5	STD50 460-871602/7	50.0	10.913505	50.0	468525.0	0.21827	Υ
6	STD200 460-871602/8	50.0	11.057691	50.0	471631.0	0.221154	Υ
7	STD500 460-871602/9	50.0	10.919618	50.0	493259.0	0.218392	Υ

Calibration / Carbon tetrachloride


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.3106

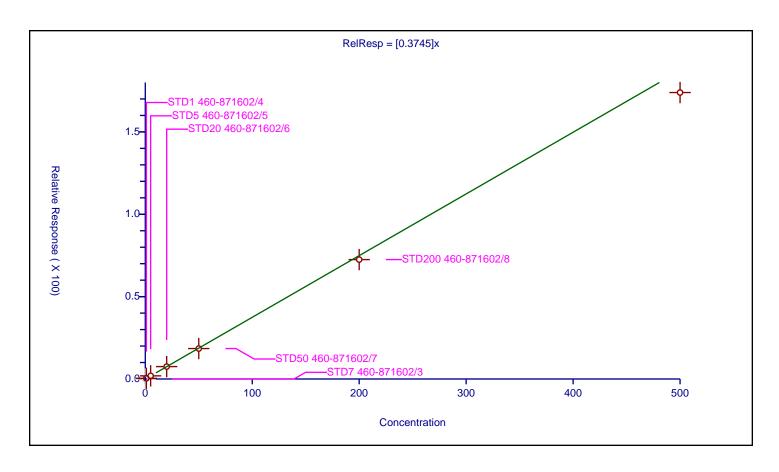
Error Coefficients

Standard Error:717000Relative Standard Error:3.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.329174	50.0	439281.0	0.329174	Υ
3	STD5 460-871602/5	5.0	1.571258	50.0	453872.0	0.314252	Υ
4	STD20 460-871602/6	20.0	6.091466	50.0	460431.0	0.304573	Υ
5	STD50 460-871602/7	50.0	15.246678	50.0	468525.0	0.304934	Υ
6	STD200 460-871602/8	200.0	61.919806	50.0	471631.0	0.309599	Υ
7	STD500 460-871602/9	500.0	150.446216	50.0	493259.0	0.300892	Υ

Calibration / 1,1-Dichloropropene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3745

Curve Coefficients

Error Coefficients

Standard Error:830000Relative Standard Error:5.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

N
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / Benzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	1.394

Curve Coefficients

Error Coefficients

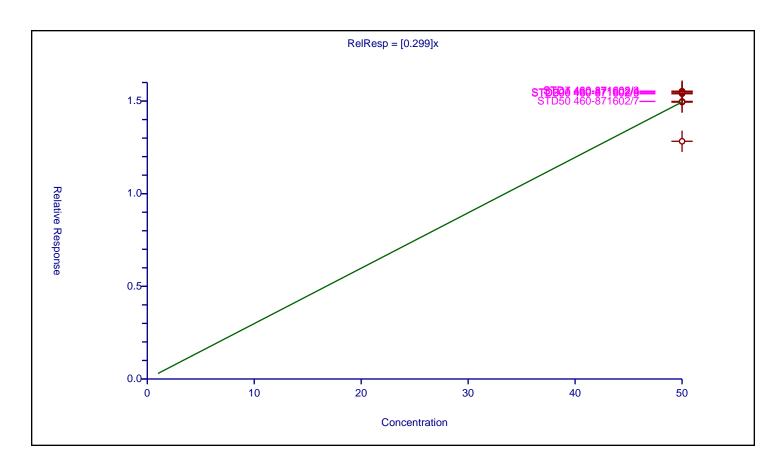
Standard Error:2220000Relative Standard Error:11.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.985

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
STD1 460-871602/4	1.0	1.634879	50.0	345836.0	1.634879	Υ
STD5 460-871602/5	5.0	7.224721	50.0	343778.0	1.444944	Υ
STD20 460-871602/6	20.0	28.776508	50.0	344187.0	1.438825	Υ
STD50 460-871602/7	50.0	68.584559	50.0	359266.0	1.371691	Υ
STD200 460-871602/8	200.0	259.325814	50.0	362022.0	1.296629	Υ
STD500 460-871602/9	500.0	587.755371	50.0	387427.0	1.175511	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 1.634879 STD5 460-871602/5 5.0 7.224721 STD20 460-871602/6 20.0 28.776508 STD50 460-871602/7 50.0 68.584559 STD200 460-871602/8 200.0 259.325814	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 1.634879 50.0 STD5 460-871602/5 5.0 7.224721 50.0 STD20 460-871602/6 20.0 28.776508 50.0 STD50 460-871602/7 50.0 68.584559 50.0 STD200 460-871602/8 200.0 259.325814 50.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 STD1 460-871602/4 1.0 1.634879 50.0 345836.0 STD5 460-871602/5 5.0 7.224721 50.0 343778.0 STD20 460-871602/6 20.0 28.776508 50.0 344187.0 STD50 460-871602/7 50.0 68.584559 50.0 359266.0 STD200 460-871602/8 200.0 259.325814 50.0 362022.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 NaN STD1 460-871602/4 1.0 1.634879 50.0 345836.0 1.634879 STD5 460-871602/5 5.0 7.224721 50.0 343778.0 1.444944 STD20 460-871602/6 20.0 28.776508 50.0 344187.0 1.438825 STD50 460-871602/7 50.0 68.584559 50.0 359266.0 1.371691 STD200 460-871602/8 200.0 259.325814 50.0 362022.0 1.296629

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curv	e Coefficients	


 Intercept:
 0

 Slope:
 0.299

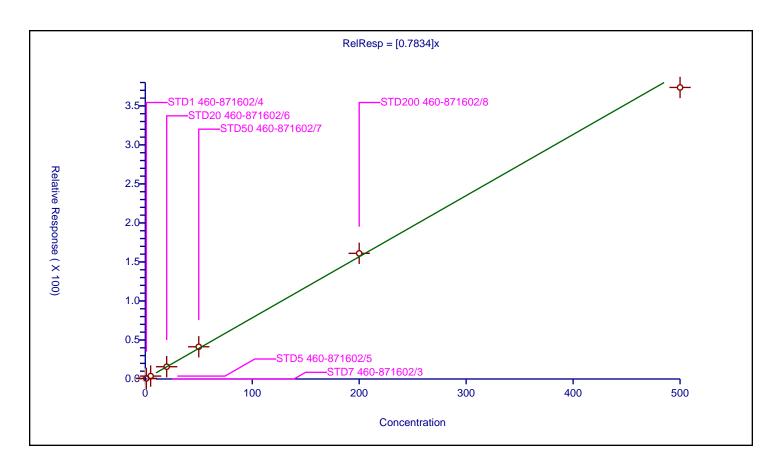
Error Coefficients

Standard Error:150000Relative Standard Error:6.5Correlation Coefficient:NA

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	50.0	15.531482	50.0	447005.0	0.31063	Υ
2	STD1 460-871602/4	50.0	15.518199	50.0	439281.0	0.310364	Υ
3	STD5 460-871602/5	50.0	12.827295	50.0	453872.0	0.256546	Υ
4	STD20 460-871602/6	50.0	14.940892	50.0	460431.0	0.298818	Υ
5	STD50 460-871602/7	50.0	14.979457	50.0	468525.0	0.299589	Υ
6	STD200 460-871602/8	50.0	15.442899	50.0	471631.0	0.308858	Υ
7	STD500 460-871602/9	50.0	15.393536	50.0	493259.0	0.307871	Υ

Calibration / Isopropyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7834

Curve Coefficients

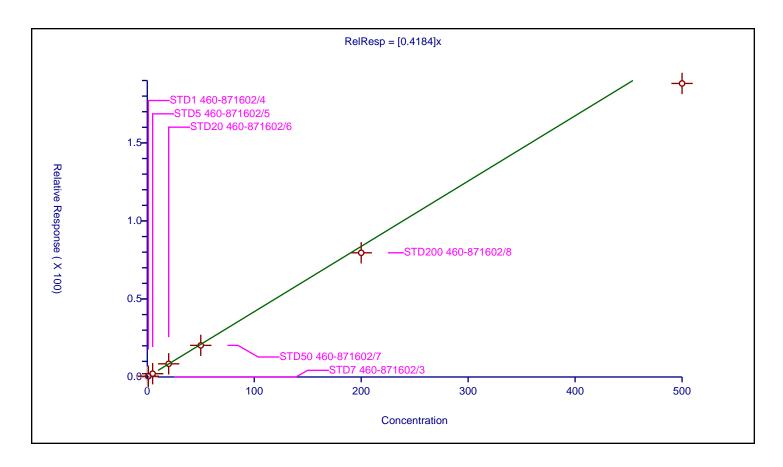
Error Coefficients

Standard Error:1790000Relative Standard Error:4.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.788675	50.0	439281.0	0.788675	Υ
3	STD5 460-871602/5	5.0	3.729245	50.0	453872.0	0.745849	Υ
4	STD20 460-871602/6	20.0	15.741121	50.0	460431.0	0.787056	Υ
5	STD50 460-871602/7	50.0	41.306761	50.0	468525.0	0.826135	Υ
6	STD200 460-871602/8	200.0	161.030657	50.0	471631.0	0.805153	Υ
7	STD500 460-871602/9	500.0	373.679852	50.0	493259.0	0.74736	Υ
•	STD200 460-871602/8	200.0	161.030657	50.0	471631.0	0.805153	Y Y Y

Calibration / 1,2-Dichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4184

Curve Coefficients

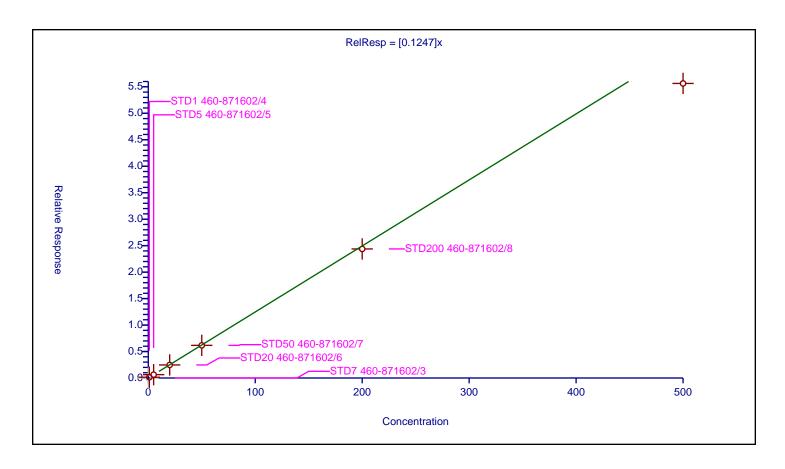
Error Coefficients

Standard Error:900000Relative Standard Error:8.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.485794	50.0	439281.0	0.485794	Υ
3	STD5 460-871602/5	5.0	2.115024	50.0	453872.0	0.423005	Υ
4	STD20 460-871602/6	20.0	8.445891	50.0	460431.0	0.422295	Υ
5	STD50 460-871602/7	50.0	20.267328	50.0	468525.0	0.405347	Υ
6	STD200 460-871602/8	200.0	79.591778	50.0	471631.0	0.397959	Υ
7	STD500 460-871602/9	500.0	188.119933	50.0	493259.0	0.37624	Υ

Calibration / n-Heptane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1247

Curve Coefficients

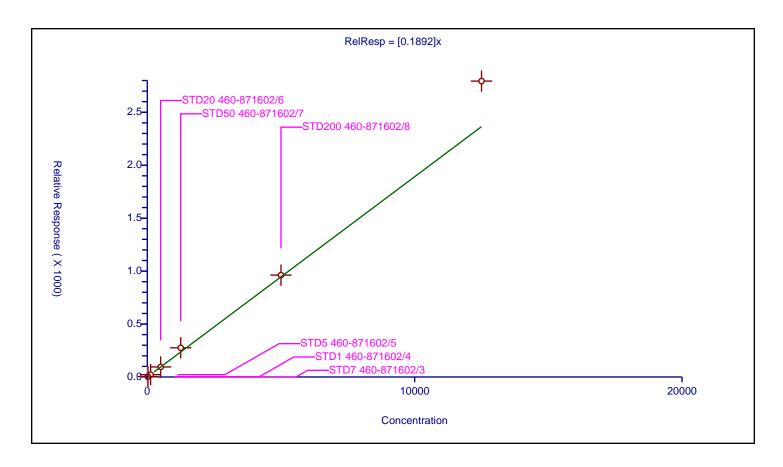
Error Coefficients

Standard Error:268000Relative Standard Error:8.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.142506	50.0	439281.0	0.142506	Υ
3	STD5 460-871602/5	5.0	0.630244	50.0	453872.0	0.126049	Υ
4	STD20 460-871602/6	20.0	2.465082	50.0	460431.0	0.123254	Υ
5	STD50 460-871602/7	50.0	6.163492	50.0	468525.0	0.12327	Υ
6	STD200 460-871602/8	200.0	24.375306	50.0	471631.0	0.121877	Υ
7	STD500 460-871602/9	500.0	55.634971	50.0	493259.0	0.11127	Υ

Calibration / n-Butanol

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1892

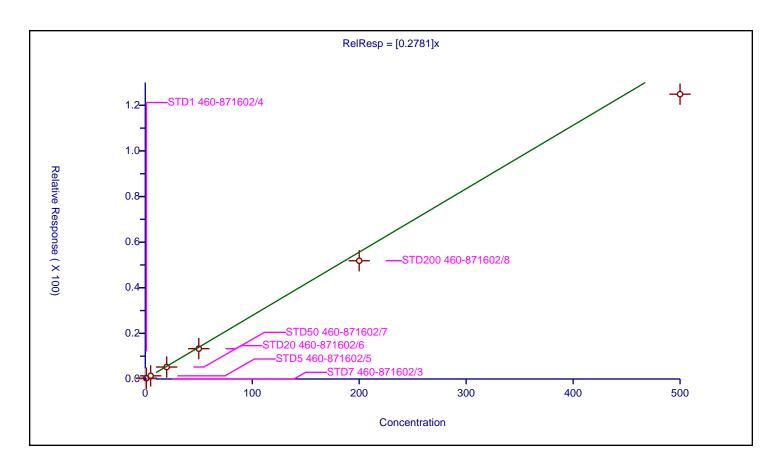
Curve Coefficients

Error Coefficients

Standard Error:274000Relative Standard Error:17.4Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.971

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	1000.0	177682.0	NaN	N
2	STD1 460-871602/4	25.0	3.348463	1000.0	174707.0	0.133939	Υ
3	STD5 460-871602/5	125.0	21.826955	1000.0	176983.0	0.174616	Υ
4	STD20 460-871602/6	500.0	94.893001	1000.0	181731.0	0.189786	Υ
5	STD50 460-871602/7	1250.0	275.703183	1000.0	201619.0	0.220563	Υ
6	STD200 460-871602/8	5000.0	962.306594	1000.0	204492.0	0.192461	Υ
7	STD500 460-871602/9	12500.0	2794.459114	1000.0	207151.0	0.223557	Υ

Calibration / Trichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

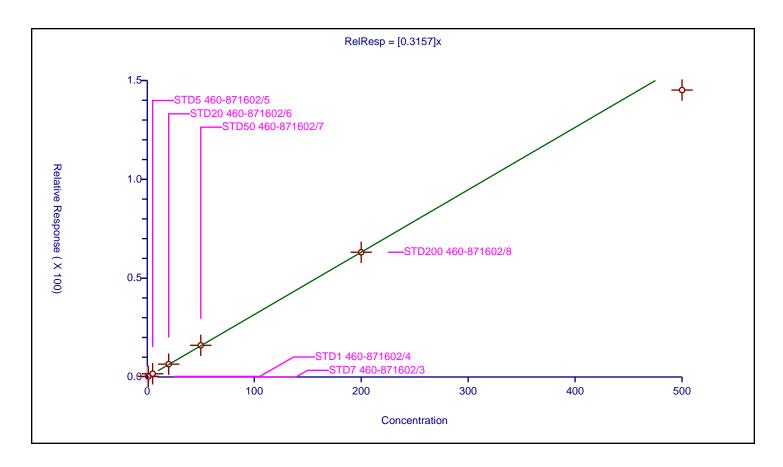
Intercept:	0
Slope:	0.2781

Curve Coefficients

Standard Error:	596000
Relative Standard Error:	13.8
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.975

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.354329	50.0	439281.0	0.354329	Υ
3	STD5 460-871602/5	5.0	1.384421	50.0	453872.0	0.276884	Υ
4	STD20 460-871602/6	20.0	5.246714	50.0	460431.0	0.262336	Υ
5	STD50 460-871602/7	50.0	13.295235	50.0	468525.0	0.265905	Υ
6	STD200 460-871602/8	200.0	51.851447	50.0	471631.0	0.259257	Υ
7	STD500 460-871602/9	500.0	124.87983	50.0	493259.0	0.24976	Υ

Calibration / Methylcyclohexane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.3157

Error Coefficients

Standard Error:697000Relative Standard Error:4.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.313922	50.0	439281.0	0.313922	Υ
3	STD5 460-871602/5	5.0	1.644076	50.0	453872.0	0.328815	Υ
4	STD20 460-871602/6	20.0	6.499997	50.0	460431.0	0.325	Υ
5	STD50 460-871602/7	50.0	16.023371	50.0	468525.0	0.320467	Υ
6	STD200 460-871602/8	200.0	63.120003	50.0	471631.0	0.3156	Υ
7	STD500 460-871602/9	500.0	145.17059	50.0	493259.0	0.290341	Υ

Calibration / Ethyl acrylate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.6709

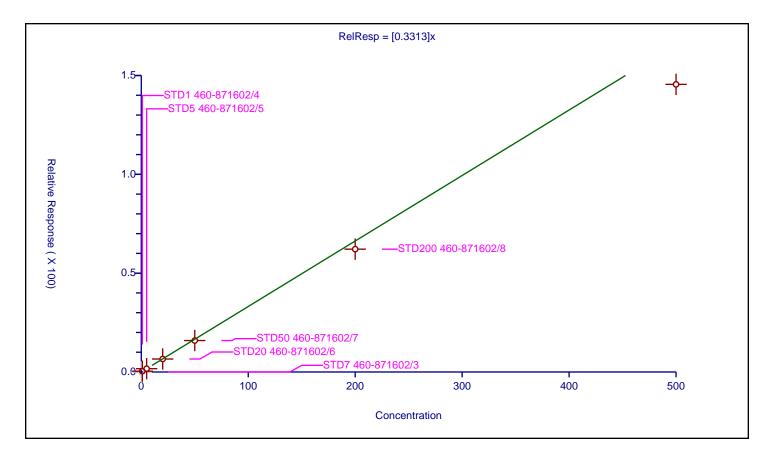
Curve Coefficients

Error Coefficients

Standard Error:1480000Relative Standard Error:6.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.738479	50.0	439281.0	0.738479	Υ
3	STD5 460-871602/5	5.0	3.243646	50.0	453872.0	0.648729	Υ
4	STD20 460-871602/6	20.0	13.333703	50.0	460431.0	0.666685	Υ
5	STD50 460-871602/7	50.0	34.349608	50.0	468525.0	0.686992	Υ
6	STD200 460-871602/8	200.0	133.748206	50.0	471631.0	0.668741	Υ
7	STD500 460-871602/9	500.0	307.96914	50.0	493259.0	0.615938	Υ

Calibration / 1,2-Dichloropropane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

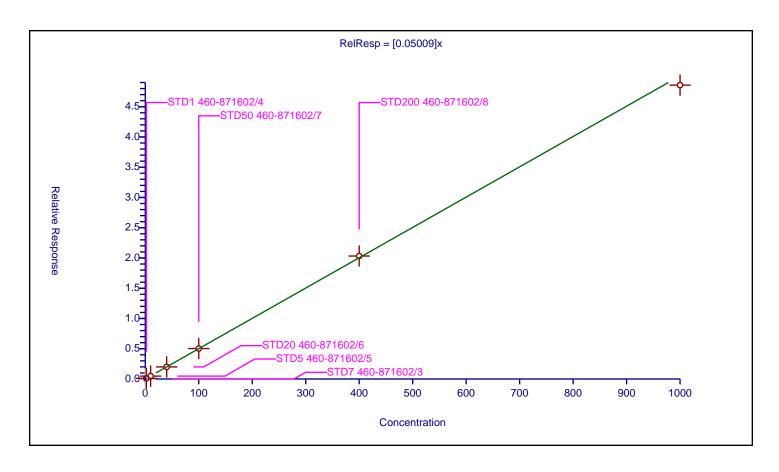
Curve Coefficients	
Intercept:	0
Slope:	0.3313

Error Coefficients

Standard Error:697000Relative Standard Error:12.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.981

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.407826	50.0	439281.0	0.407826	Υ
3	STD5 460-871602/5	5.0	1.66038	50.0	453872.0	0.332076	Υ
4	STD20 460-871602/6	20.0	6.56537	50.0	460431.0	0.328269	Υ
5	STD50 460-871602/7	50.0	15.906408	50.0	468525.0	0.318128	Υ
6	STD200 460-871602/8	200.0	62.142968	50.0	471631.0	0.310715	Υ
7	STD500 460-871602/9	500.0	145.514324	50.0	493259.0	0.291029	Υ
5	STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	5.0 20.0 50.0 200.0	1.66038 6.56537 15.906408 62.142968	50.0 50.0 50.0 50.0	453872.0 460431.0 468525.0 471631.0	0.332076 0.328269 0.318128 0.310715	

Calibration / Methyl methacrylate


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

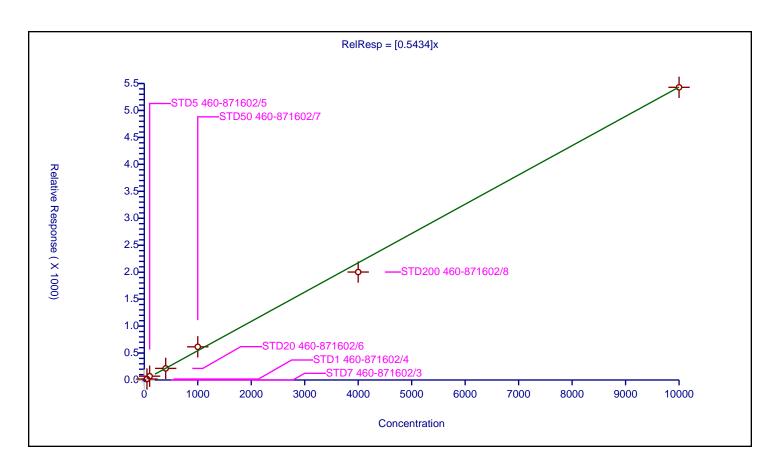
C	urve Coefficients
Intercept:	0
Slope:	0.05009

Error Coefficients

Standard Error:232000Relative Standard Error:3.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	2.0	0.106652	50.0	439281.0	0.053326	Υ
3	STD5 460-871602/5	10.0	0.476456	50.0	453872.0	0.047646	Υ
4	STD20 460-871602/6	40.0	1.995522	50.0	460431.0	0.049888	Υ
5	STD50 460-871602/7	100.0	5.031535	50.0	468525.0	0.050315	Υ
6	STD200 460-871602/8	400.0	20.323622	50.0	471631.0	0.050809	Υ
7	STD500 460-871602/9	1000.0	48.566473	50.0	493259.0	0.048566	Υ

Calibration / 1,4-Dioxane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

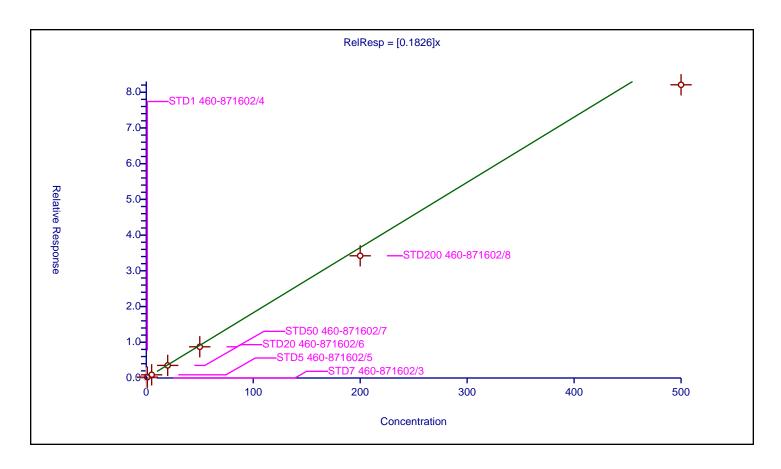
Intercept:	0
Slope:	0.5434

Curve Coefficients

Standard Error:	79400
Relative Standard Error:	21.3
Correlation Coefficient:	0.993
Coefficient of Determination (Adjusted):	0.949

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	1000.0	23304.0	NaN	N
STD1 460-871602/4	50.000062	17.958489	1000.0	24668.0	0.359169	Υ
STD5 460-871602/5	100.0	70.495083	1000.0	23491.0	0.704951	Υ
STD20 460-871602/6	400.0	215.022215	1000.0	23858.0	0.537556	Υ
STD50 460-871602/7	1000.0	615.393413	1000.0	26232.0	0.615393	Υ
STD200 460-871602/8	4000.0	2002.49566	1000.0	27648.0	0.500624	Υ
STD500 460-871602/9	10000.0	5429.27529	1000.0	32068.0	0.542928	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 50.000062 STD5 460-871602/5 100.0 STD20 460-871602/6 400.0 STD50 460-871602/7 1000.0 STD200 460-871602/8 4000.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 50.000062 17.958489 STD5 460-871602/5 100.0 70.495083 STD20 460-871602/6 400.0 215.022215 STD50 460-871602/7 1000.0 615.393413 STD200 460-871602/8 4000.0 2002.49566	STD7 460-871602/3 0.0 0.0 1000.0 STD1 460-871602/4 50.000062 17.958489 1000.0 STD5 460-871602/5 100.0 70.495083 1000.0 STD20 460-871602/6 400.0 215.022215 1000.0 STD50 460-871602/7 1000.0 615.393413 1000.0 STD200 460-871602/8 4000.0 2002.49566 1000.0	STD7 460-871602/3 0.0 0.0 1000.0 23304.0 STD1 460-871602/4 50.000062 17.958489 1000.0 24668.0 STD5 460-871602/5 100.0 70.495083 1000.0 23491.0 STD20 460-871602/6 400.0 215.022215 1000.0 23858.0 STD50 460-871602/7 1000.0 615.393413 1000.0 26232.0 STD200 460-871602/8 4000.0 2002.49566 1000.0 27648.0	STD7 460-871602/3 0.0 0.0 1000.0 23304.0 NaN STD1 460-871602/4 50.000062 17.958489 1000.0 24668.0 0.359169 STD5 460-871602/5 100.0 70.495083 1000.0 23491.0 0.704951 STD20 460-871602/6 400.0 215.022215 1000.0 23858.0 0.537556 STD50 460-871602/7 1000.0 615.393413 1000.0 26232.0 0.615393 STD200 460-871602/8 4000.0 2002.49566 1000.0 27648.0 0.500624

Calibration / Dibromomethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

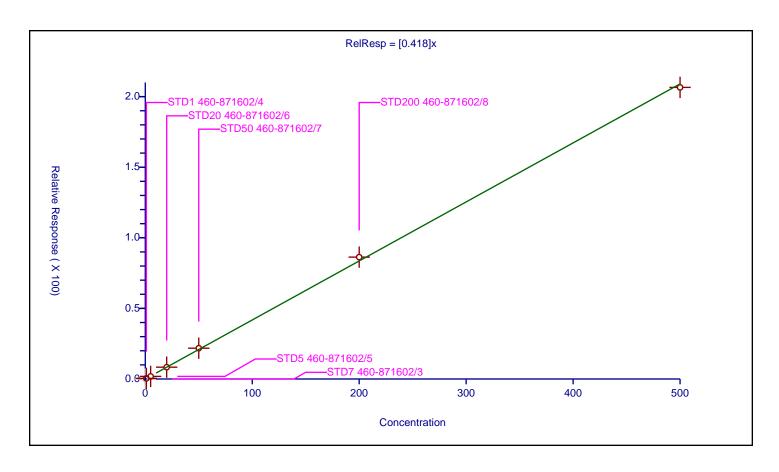
1.	
Intercept:	0
Slope:	0.1826

Curve Coefficients

392000
13.4
1.000
0.977

N
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / n-Propyl acetate


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.418

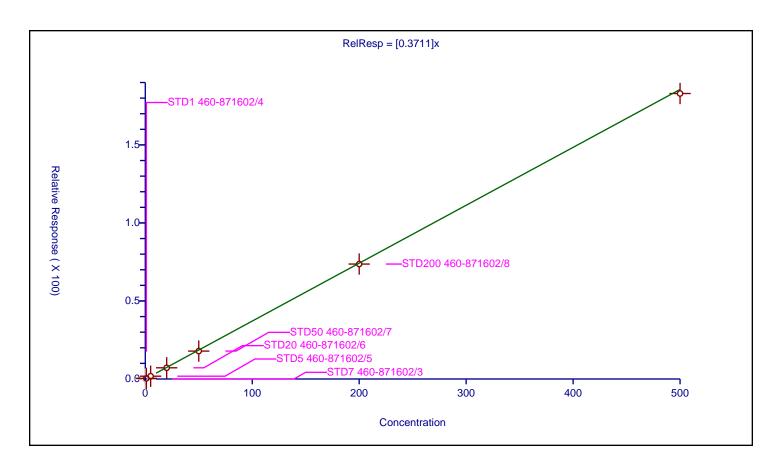
Curve Coefficients

Standard Error:	986000
Relative Standard Error:	6.3
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.44072	50.0	439281.0	0.44072	Υ
3	STD5 460-871602/5	5.0	1.8427	50.0	453872.0	0.36854	Υ
4	STD20 460-871602/6	20.0	8.360862	50.0	460431.0	0.418043	Υ
5	STD50 460-871602/7	50.0	21.812283	50.0	468525.0	0.436246	Υ
6	STD200 460-871602/8	200.0	86.321616	50.0	471631.0	0.431608	Υ
7	STD500 460-871602/9	500.0	206.546561	50.0	493259.0	0.413093	Υ

Calibration / Dichlorobromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3711

Curve Coefficients

Error Coefficients

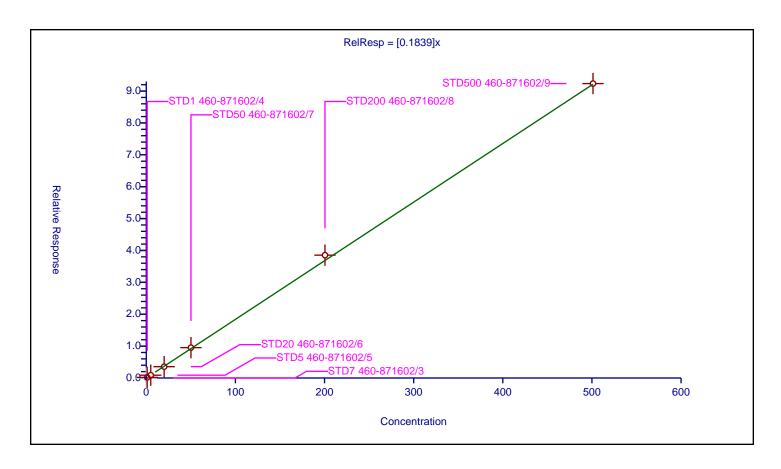
Standard Error:869000Relative Standard Error:6.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0	0.417387	50.0	439281.0	0.417387	Υ
3	STD5 460-871602/5	5.0	1.793567	50.0	453872.0	0.358713	Υ
4	STD20 460-871602/6	20.0	7.174039	50.0	460431.0	0.358702	Υ
5	STD50 460-871602/7	50.0	17.879942	50.0	468525.0	0.357599	Υ
6	STD200 460-871602/8	200.0	73.658644	50.0	471631.0	0.368293	Υ
7	STD500 460-871602/9	500.0	182.949931	50.0	493259.0	0.3659	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	efficients
----------	------------


 Intercept:
 0

 Slope:
 0.1839

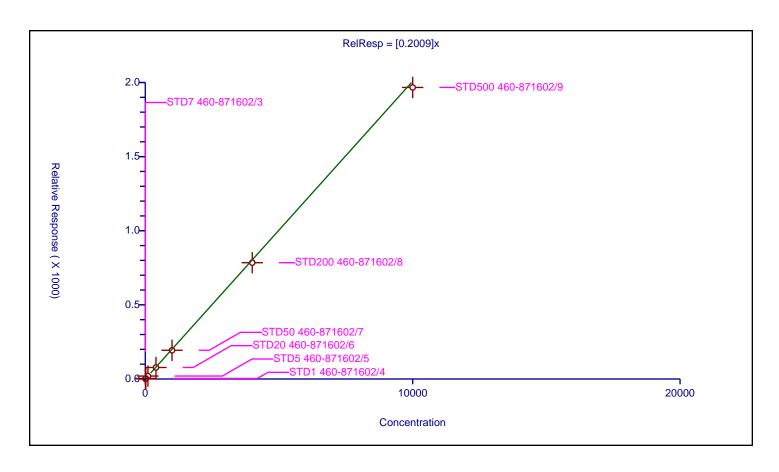
Error Coefficients

Standard Error:441000Relative Standard Error:3.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	447005.0	NaN	N
2	STD1 460-871602/4	1.0024	0.18462	50.0	439281.0	0.184178	Υ
3	STD5 460-871602/5	5.012	0.879433	50.0	453872.0	0.175465	Υ
4	STD20 460-871602/6	20.048	3.5495	50.0	460431.0	0.17705	Υ
5	STD50 460-871602/7	50.12	9.524252	50.0	468525.0	0.190029	Υ
6	STD200 460-871602/8	200.48	38.535423	50.0	471631.0	0.192216	Υ
7	STD500 460-871602/9	501.2	92.353307	50.0	493259.0	0.184264	Υ

Calibration / Epichlorohydrin

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2009

Curve Coefficients

Error Coefficients

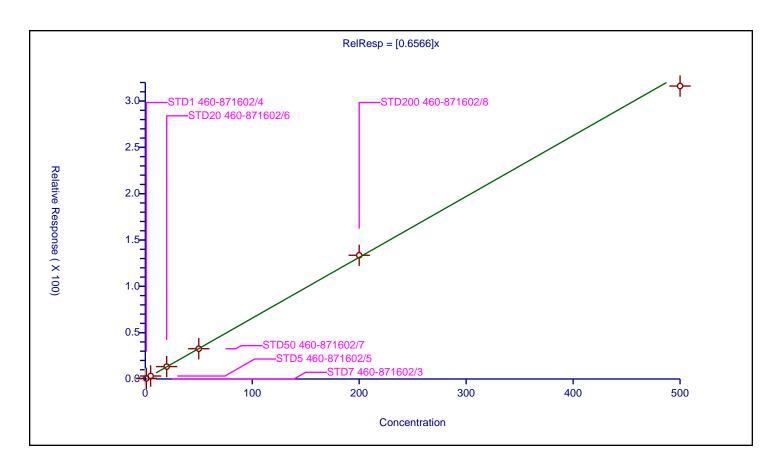
Standard Error:1080000Relative Standard Error:7.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	5.000009	1.17092	250.0	260052.0	0.234184	Υ
2	STD1 460-871602/4	20.000035	3.838729	250.0	261610.0	0.191936	Υ
3	STD5 460-871602/5	100.000173	19.915414	250.0	270494.0	0.199154	Υ
4	STD20 460-871602/6	400.000692	77.708198	250.0	285282.0	0.19427	Υ
5	STD50 460-871602/7	1000.00173	193.746014	250.0	308867.0	0.193746	Υ
6	STD200 460-871602/8	4000.00692	784.431723	250.0	314688.0	0.196108	Υ
7	STD500 460-871602/9	10000.0173	1966.586873	250.0	309968.0	0.196658	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
oont.		


 Intercept:
 0

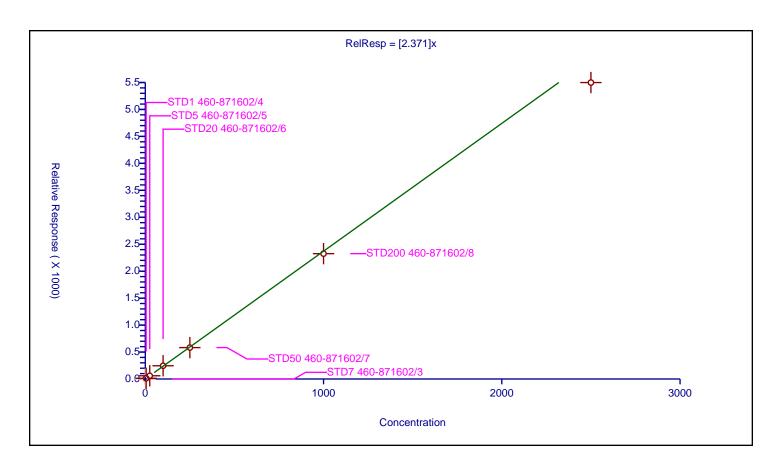
 Slope:
 0.6566

Error Coefficients

Standard Error:1180000Relative Standard Error:2.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.67373	50.0	345836.0	0.67373	Υ
3	STD5 460-871602/5	5.0	3.217192	50.0	343778.0	0.643438	Υ
4	STD20 460-871602/6	20.0	13.381389	50.0	344187.0	0.669069	Υ
5	STD50 460-871602/7	50.0	32.674397	50.0	359266.0	0.653488	Υ
6	STD200 460-871602/8	200.0	133.535531	50.0	362022.0	0.667678	Υ
7	STD500 460-871602/9	500.0	316.204343	50.0	387427.0	0.632409	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients	

Intercept:	0
Slope:	2.371

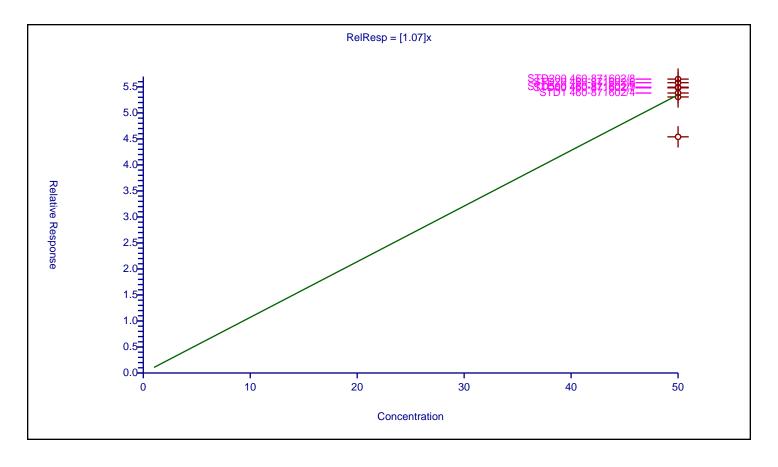
3330000
4.8
0.999
0.997

Used
N
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / Toluene-d8 (Surr)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	1.07


Curve Coefficients

Error Coefficients

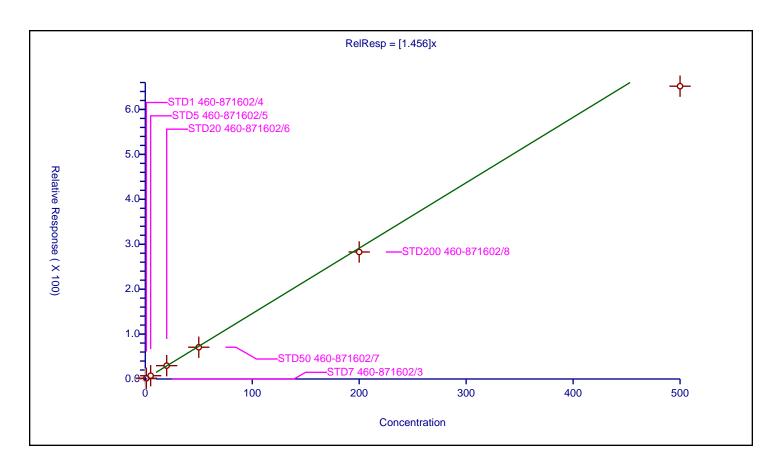
Standard Error:414000Relative Standard Error:7.0

Coefficient of Determination (Adjusted):

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	50.0	53.068079	50.0	351311.0	1.061362	Υ
2	STD1 460-871602/4	50.0	53.825657	50.0	345836.0	1.076513	Υ
3	STD5 460-871602/5	50.0	45.403138	50.0	343778.0	0.908063	Υ
4	STD20 460-871602/6	50.0	55.811521	50.0	344187.0	1.11623	Υ
5	STD50 460-871602/7	50.0	54.82275	50.0	359266.0	1.096455	Υ
6	STD200 460-871602/8	50.0	56.499881	50.0	362022.0	1.129998	Υ
7	STD500 460-871602/9	50.0	54.945319	50.0	387427.0	1.098906	Υ

Calibration / Toluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.456

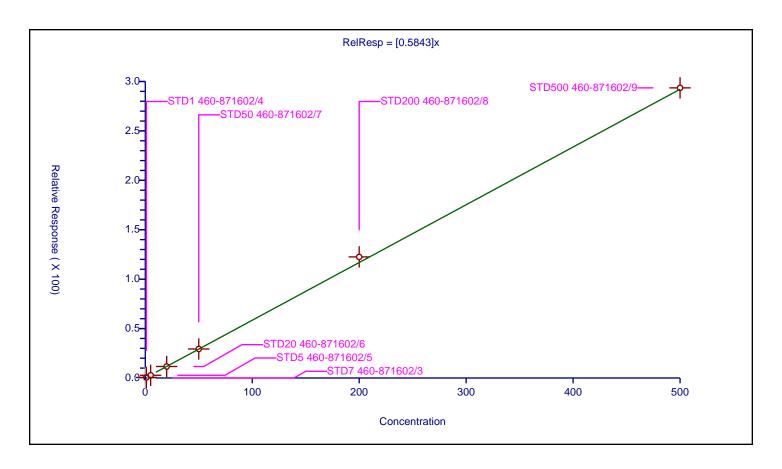
Curve Coefficients

Error Coefficients

Standard Error:2450000Relative Standard Error:8.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

		IS Response	RRF	Used
0.0	50.0	351311.0	NaN	N
1.657144	50.0	345836.0	1.657144	Υ
7.31155	50.0	343778.0	1.46231	Υ
29.719164	50.0	344187.0	1.485958	Υ
70.698591	50.0	359266.0	1.413972	Υ
282.710581	50.0	362022.0	1.413553	Υ
651.767301	50.0	387427.0	1.303535	Υ
1	1.657144 7.31155 29.719164 70.698591 282.710581	1.657144 50.0 7.31155 50.0 29.719164 50.0 70.698591 50.0 282.710581 50.0	0.0 50.0 351311.0 1.657144 50.0 345836.0 7.31155 50.0 343778.0 29.719164 50.0 344187.0 70.698591 50.0 359266.0 282.710581 50.0 362022.0	0.0 50.0 351311.0 NaN 1.657144 50.0 345836.0 1.657144 7.31155 50.0 343778.0 1.46231 29.719164 50.0 344187.0 1.485958 70.698591 50.0 359266.0 1.413972 282.710581 50.0 362022.0 1.413553

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

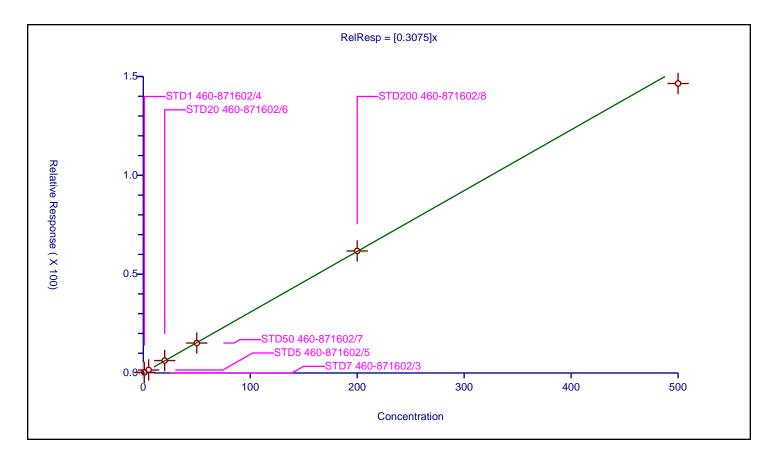
Curve	Coefficients	

Intercept:	0
Slope:	0.5843

Standard Error:	1100000
Relative Standard Error:	3.4
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.587417	50.0	345836.0	0.587417	Υ
3	STD5 460-871602/5	5.0	2.749885	50.0	343778.0	0.549977	Υ
4	STD20 460-871602/6	20.0	11.633502	50.0	344187.0	0.581675	Υ
5	STD50 460-871602/7	50.0	29.348032	50.0	359266.0	0.586961	Υ
6	STD200 460-871602/8	200.0	122.524322	50.0	362022.0	0.612622	Υ
7	STD500 460-871602/9	500.0	293.560593	50.0	387427.0	0.587121	Υ

Calibration / 1,1,2-Trichloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

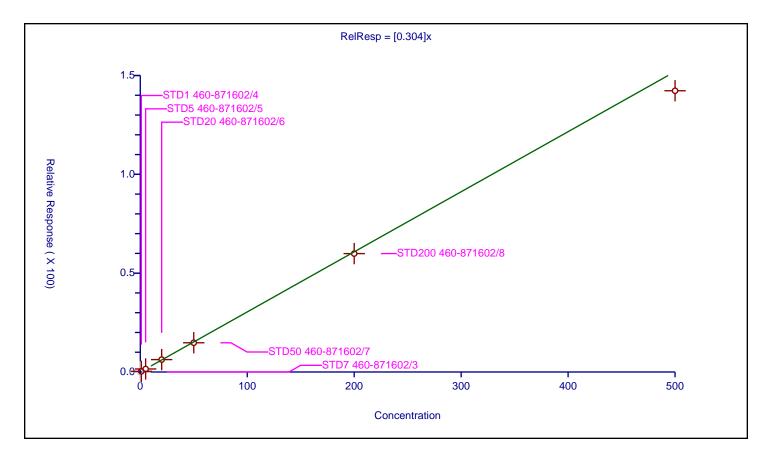
Curve Coefficients			
Intercept:	0		
Slope:	0.3075		

Error Coefficients

Standard Error:548000Relative Standard Error:3.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
STD1 460-871602/4	1.0	0.320094	50.0	345836.0	0.320094	Υ
STD5 460-871602/5	5.0	1.528894	50.0	343778.0	0.305779	Υ
STD20 460-871602/6	20.0	6.289314	50.0	344187.0	0.314466	Υ
STD50 460-871602/7	50.0	15.162303	50.0	359266.0	0.303246	Υ
STD200 460-871602/8	200.0	61.732022	50.0	362022.0	0.30866	Υ
STD500 460-871602/9	500.0	146.461785	50.0	387427.0	0.292924	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 0.320094 STD5 460-871602/5 5.0 1.528894 STD20 460-871602/6 20.0 6.289314 STD50 460-871602/7 50.0 15.162303 STD200 460-871602/8 200.0 61.732022	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 0.320094 50.0 STD5 460-871602/5 5.0 1.528894 50.0 STD20 460-871602/6 20.0 6.289314 50.0 STD50 460-871602/7 50.0 15.162303 50.0 STD200 460-871602/8 200.0 61.732022 50.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 STD1 460-871602/4 1.0 0.320094 50.0 345836.0 STD5 460-871602/5 5.0 1.528894 50.0 343778.0 STD20 460-871602/6 20.0 6.289314 50.0 344187.0 STD50 460-871602/7 50.0 15.162303 50.0 359266.0 STD200 460-871602/8 200.0 61.732022 50.0 362022.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 NaN STD1 460-871602/4 1.0 0.320094 50.0 345836.0 0.320094 STD5 460-871602/5 5.0 1.528894 50.0 343778.0 0.305779 STD20 460-871602/6 20.0 6.289314 50.0 344187.0 0.314466 STD50 460-871602/7 50.0 15.162303 50.0 359266.0 0.303246 STD200 460-871602/8 200.0 61.732022 50.0 362022.0 0.30866

Calibration / Tetrachloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.304

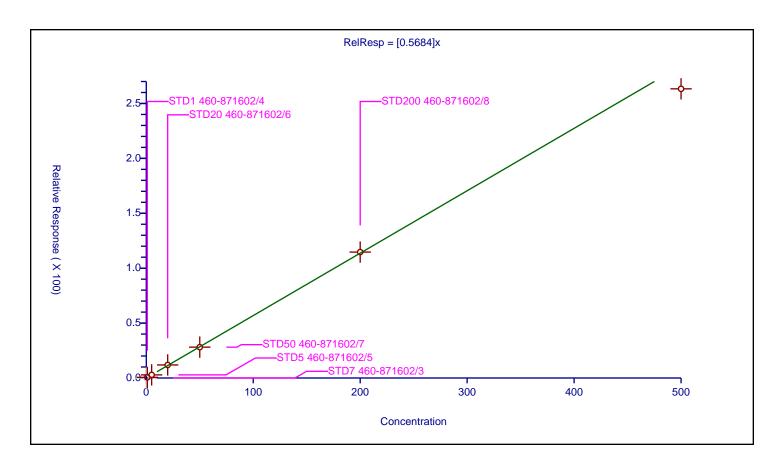
Curve Coefficients

Standard Error:	532000
Relative Standard Error:	4.7
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.32501	50.0	345836.0	0.32501	Υ
3	STD5 460-871602/5	5.0	1.524967	50.0	343778.0	0.304993	Υ
4	STD20 460-871602/6	20.0	6.278273	50.0	344187.0	0.313914	Υ
5	STD50 460-871602/7	50.0	14.785563	50.0	359266.0	0.295711	Υ
6	STD200 460-871602/8	200.0	59.902575	50.0	362022.0	0.299513	Υ
7	STD500 460-871602/9	500.0	142.291838	50.0	387427.0	0.284584	Υ

Calibration / 1,3-Dichloropropane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5684

Curve Coefficients

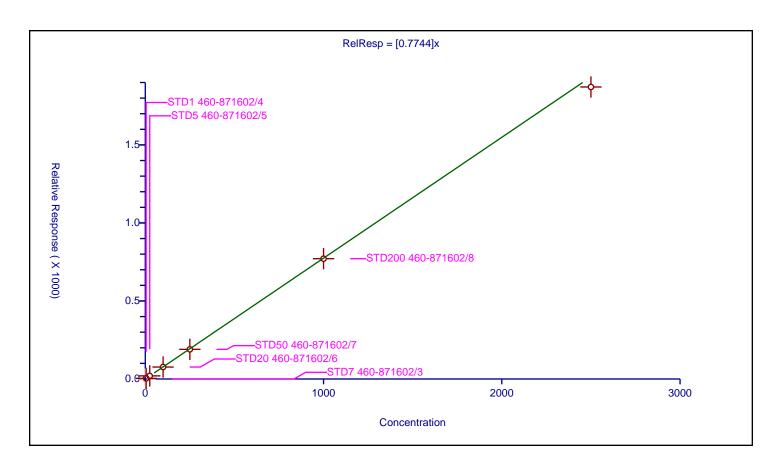
Error Coefficients

Standard Error:990000Relative Standard Error:4.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.590598	50.0	345836.0	0.590598	Υ
3	STD5 460-871602/5	5.0	2.818825	50.0	343778.0	0.563765	Υ
4	STD20 460-871602/6	20.0	11.881332	50.0	344187.0	0.594067	Υ
5	STD50 460-871602/7	50.0	28.089354	50.0	359266.0	0.561787	Υ
6	STD200 460-871602/8	200.0	114.664993	50.0	362022.0	0.573325	Υ
7	STD500 460-871602/9	500.0	263.328317	50.0	387427.0	0.526657	Υ

Calibration / 2-Hexanone

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7744

Curve Coefficients

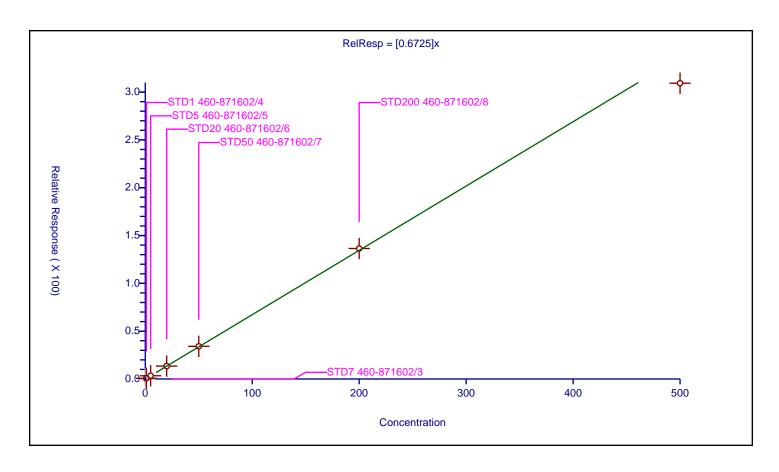
Error Coefficients

Standard Error:1130000Relative Standard Error:2.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	250.0	260052.0	NaN	N
2	STD1 460-871602/4	5.0	4.012652	250.0	261610.0	0.80253	Υ
3	STD5 460-871602/5	25.0	19.963474	250.0	270494.0	0.798539	Υ
4	STD20 460-871602/6	100.0	76.593511	250.0	285282.0	0.765935	Υ
5	STD50 460-871602/7	250.0	189.974973	250.0	308867.0	0.7599	Υ
6	STD200 460-871602/8	1000.0	770.825389	250.0	314688.0	0.770825	Υ
7	STD500 460-871602/9	2500.0	1871.28994	250.0	309968.0	0.748516	Υ

Calibration / n-Butyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.6725

Curve Coefficients

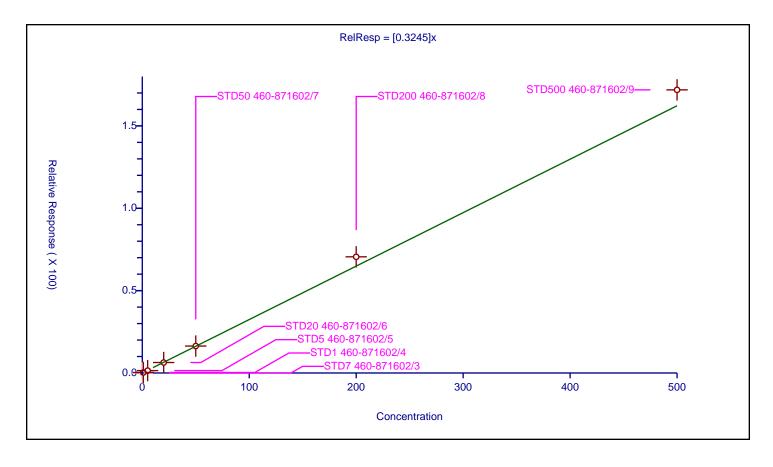
Error Coefficients

Standard Error:1160000Relative Standard Error:4.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.700477	50.0	345836.0	0.700477	Υ
3	STD5 460-871602/5	5.0	3.374852	50.0	343778.0	0.67497	Υ
4	STD20 460-871602/6	20.0	13.507483	50.0	344187.0	0.675374	Υ
5	STD50 460-871602/7	50.0	34.165215	50.0	359266.0	0.683304	Υ
6	STD200 460-871602/8	200.0	136.447094	50.0	362022.0	0.682235	Υ
7	STD500 460-871602/9	500.0	309.244193	50.0	387427.0	0.618488	Υ

Calibration / Chlorodibromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3245

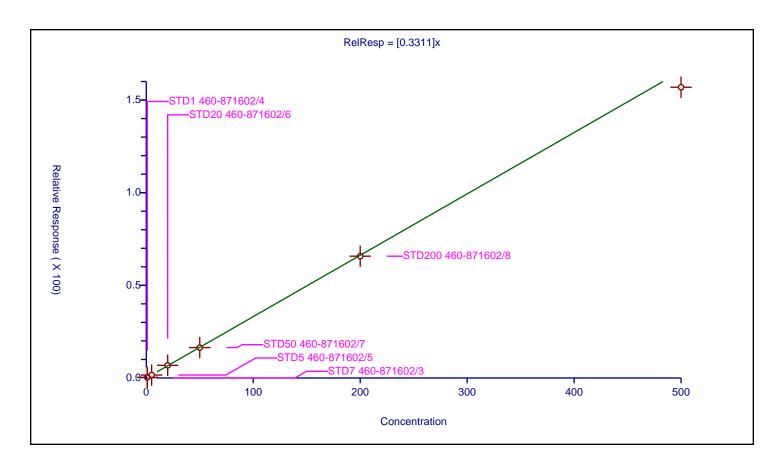
Curve Coefficients

Error Coefficients

Standard Error:640000Relative Standard Error:6.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.314166	50.0	345836.0	0.314166	Υ
3	STD5 460-871602/5	5.0	1.456609	50.0	343778.0	0.291322	Υ
4	STD20 460-871602/6	20.0	6.354395	50.0	344187.0	0.31772	Υ
5	STD50 460-871602/7	50.0	16.36225	50.0	359266.0	0.327245	Υ
6	STD200 460-871602/8	200.0	70.523753	50.0	362022.0	0.352619	Υ
7	STD500 460-871602/9	500.0	171.887865	50.0	387427.0	0.343776	Υ

Calibration / Ethylene Dibromide


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.3311

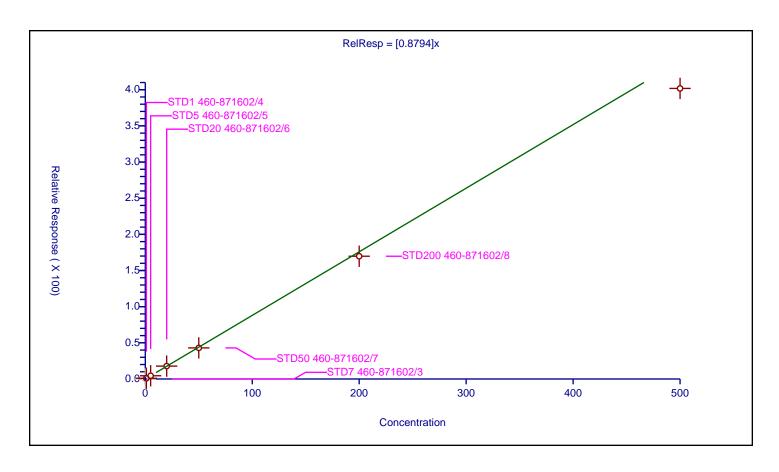
Curve Coefficients

587000
4.4
1.000
0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.353925	50.0	345836.0	0.353925	Υ
3	STD5 460-871602/5	5.0	1.602488	50.0	343778.0	0.320498	Υ
4	STD20 460-871602/6	20.0	6.835674	50.0	344187.0	0.341784	Υ
5	STD50 460-871602/7	50.0	16.406367	50.0	359266.0	0.328127	Υ
6	STD200 460-871602/8	200.0	65.730674	50.0	362022.0	0.328653	Υ
7	STD500 460-871602/9	500.0	156.916658	50.0	387427.0	0.313833	Υ

Calibration / Chlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
ппетсері.	O
Slope:	0.8794

Curve Coefficients

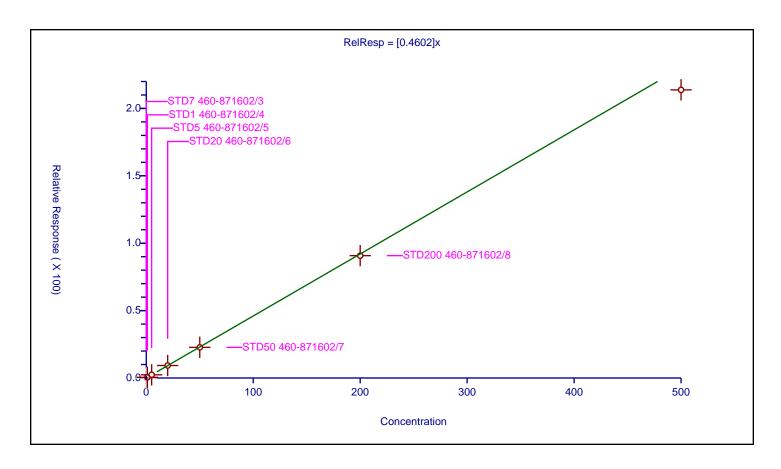
Error Coefficients

Standard Error:1500000Relative Standard Error:6.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.977776	50.0	345836.0	0.977776	Υ
3	STD5 460-871602/5	5.0	4.476435	50.0	343778.0	0.895287	Υ
4	STD20 460-871602/6	20.0	17.826065	50.0	344187.0	0.891303	Υ
5	STD50 460-871602/7	50.0	42.986812	50.0	359266.0	0.859736	Υ
6	STD200 460-871602/8	200.0	169.760678	50.0	362022.0	0.848803	Υ
7	STD500 460-871602/9	500.0	401.838024	50.0	387427.0	0.803676	Υ

Calibration / Ethylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4602

Curve Coefficients

Error Coefficients

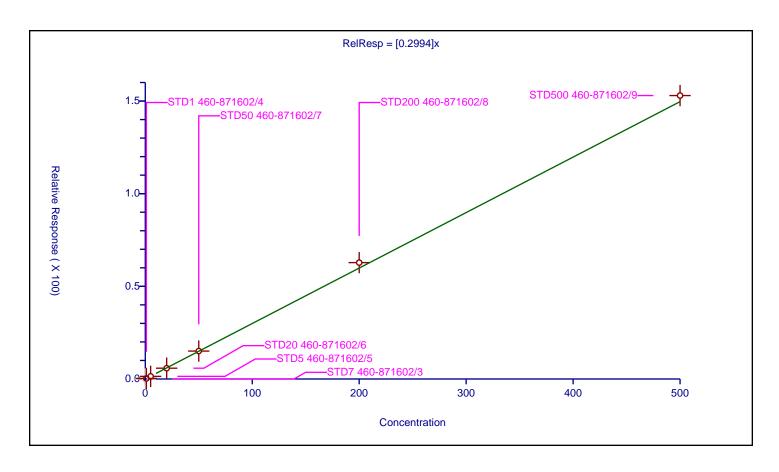
Standard Error:801000Relative Standard Error:4.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.010105	50.0	351311.0		N
2	STD1 460-871602/4	1.0	0.487225	50.0	345836.0	0.487225	Υ
3	STD5 460-871602/5	5.0	2.372752	50.0	343778.0	0.47455	Υ
4	STD20 460-871602/6	20.0	9.270106	50.0	344187.0	0.463505	Υ
5	STD50 460-871602/7	50.0	22.733852	50.0	359266.0	0.454677	Υ
6	STD200 460-871602/8	200.0	90.775146	50.0	362022.0	0.453876	Υ
7	STD500 460-871602/9	500.0	213.784532	50.0	387427.0	0.427569	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve C	oefficients
---------	-------------


 Intercept:
 0

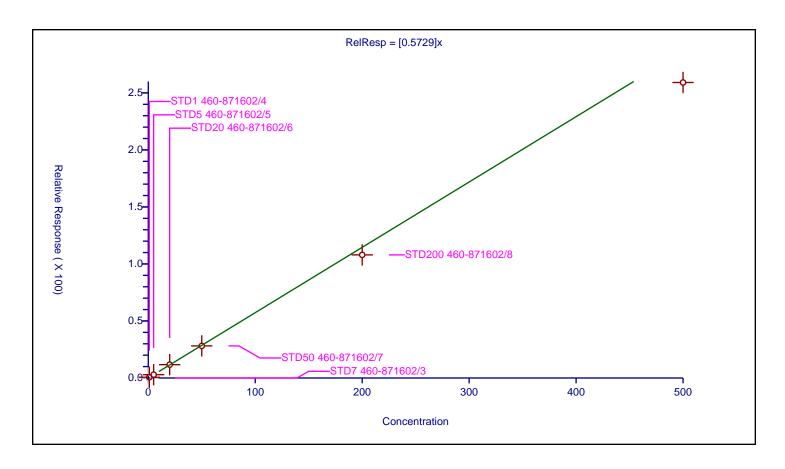
 Slope:
 0.2994

Error Coefficients

Standard Error:570000Relative Standard Error:3.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.299709	50.0	345836.0	0.299709	Υ
3	STD5 460-871602/5	5.0	1.419812	50.0	343778.0	0.283962	Υ
4	STD20 460-871602/6	20.0	5.822416	50.0	344187.0	0.291121	Υ
5	STD50 460-871602/7	50.0	15.069197	50.0	359266.0	0.301384	Υ
6	STD200 460-871602/8	200.0	62.803089	50.0	362022.0	0.314015	Υ
7	STD500 460-871602/9	500.0	152.958622	50.0	387427.0	0.305917	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients
-------	--------------

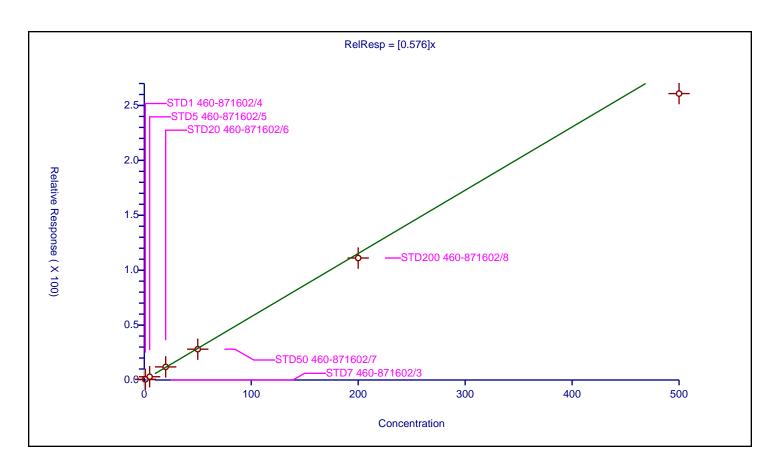
Intercept:	0
Slope:	0.5729

Standard Error:	968000
Relative Standard Error:	8.1
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.652621	50.0	345836.0	0.652621	Υ
3	STD5 460-871602/5	5.0	2.896346	50.0	343778.0	0.579269	Υ
4	STD20 460-871602/6	20.0	11.688849	50.0	344187.0	0.584442	Υ
5	STD50 460-871602/7	50.0	28.142797	50.0	359266.0	0.562856	Υ
6	STD200 460-871602/8	200.0	107.964019	50.0	362022.0	0.53982	Υ
7	STD500 460-871602/9	500.0	259.123912	50.0	387427.0	0.518248	Υ

Calibration / o-Xylene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercents	0
Intercept:	U
Slope:	0.576

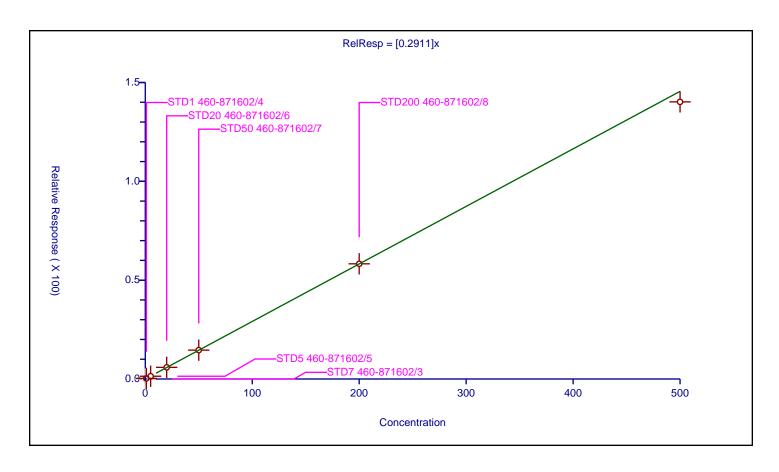
Curve Coefficients

Error Coefficients

Standard Error:978000Relative Standard Error:6.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.625296	50.0	345836.0	0.625296	Υ
3	STD5 460-871602/5	5.0	2.984775	50.0	343778.0	0.596955	Υ
4	STD20 460-871602/6	20.0	11.915616	50.0	344187.0	0.595781	Υ
5	STD50 460-871602/7	50.0	28.045376	50.0	359266.0	0.560908	Υ
6	STD200 460-871602/8	200.0	111.067836	50.0	362022.0	0.555339	Υ
7	STD500 460-871602/9	500.0	260.822426	50.0	387427.0	0.521645	Υ

Calibration / n-Butyl acrylate


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2911

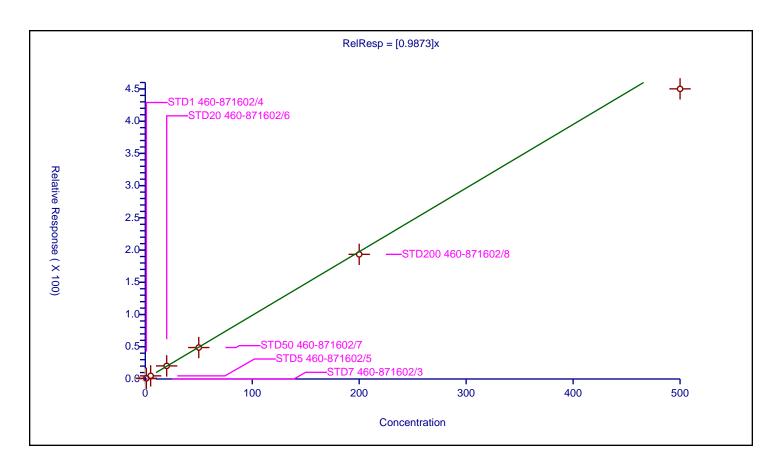
Curve Coefficients

Standard Error:	524000
Relative Standard Error:	3.8
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.998

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
STD1 460-871602/4	1.0	0.309251	50.0	345836.0	0.309251	Υ
STD5 460-871602/5	5.0	1.394505	50.0	343778.0	0.278901	Υ
STD20 460-871602/6	20.0	5.889386	50.0	344187.0	0.294469	Υ
STD50 460-871602/7	50.0	14.599489	50.0	359266.0	0.29199	Υ
STD200 460-871602/8	200.0	58.272011	50.0	362022.0	0.29136	Υ
STD500 460-871602/9	500.0	140.196218	50.0	387427.0	0.280392	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 0.309251 STD5 460-871602/5 5.0 1.394505 STD20 460-871602/6 20.0 5.889386 STD50 460-871602/7 50.0 14.599489 STD200 460-871602/8 200.0 58.272011	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 0.309251 50.0 STD5 460-871602/5 5.0 1.394505 50.0 STD20 460-871602/6 20.0 5.889386 50.0 STD50 460-871602/7 50.0 14.599489 50.0 STD200 460-871602/8 200.0 58.272011 50.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 STD1 460-871602/4 1.0 0.309251 50.0 345836.0 STD5 460-871602/5 5.0 1.394505 50.0 343778.0 STD20 460-871602/6 20.0 5.889386 50.0 344187.0 STD50 460-871602/7 50.0 14.599489 50.0 359266.0 STD200 460-871602/8 200.0 58.272011 50.0 362022.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 NaN STD1 460-871602/4 1.0 0.309251 50.0 345836.0 0.309251 STD5 460-871602/5 5.0 1.394505 50.0 343778.0 0.278901 STD20 460-871602/6 20.0 5.889386 50.0 344187.0 0.294469 STD50 460-871602/7 50.0 14.599489 50.0 359266.0 0.29199 STD200 460-871602/8 200.0 58.272011 50.0 362022.0 0.29136

Calibration / Styrene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.9873

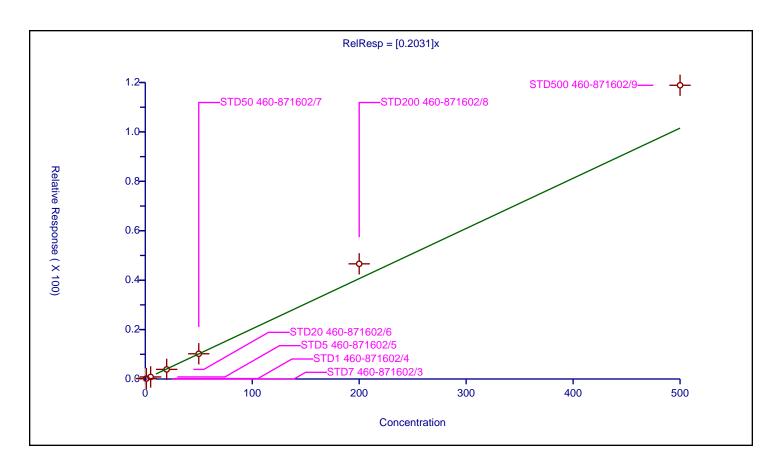
Curve Coefficients

Error Coefficients

Standard Error:1690000Relative Standard Error:6.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
STD1 460-871602/4	1.0	1.094739	50.0	345836.0	1.094739	Υ
STD5 460-871602/5	5.0	4.852841	50.0	343778.0	0.970568	Υ
STD20 460-871602/6	20.0	20.299721	50.0	344187.0	1.014986	Υ
STD50 460-871602/7	50.0	48.803811	50.0	359266.0	0.976076	Υ
STD200 460-871602/8	200.0	193.39612	50.0	362022.0	0.966981	Υ
STD500 460-871602/9	500.0	450.162998	50.0	387427.0	0.900326	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 1.094739 STD5 460-871602/5 5.0 4.852841 STD20 460-871602/6 20.0 20.299721 STD50 460-871602/7 50.0 48.803811 STD200 460-871602/8 200.0 193.39612	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 1.094739 50.0 STD5 460-871602/5 5.0 4.852841 50.0 STD20 460-871602/6 20.0 20.299721 50.0 STD50 460-871602/7 50.0 48.803811 50.0 STD200 460-871602/8 200.0 193.39612 50.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 STD1 460-871602/4 1.0 1.094739 50.0 345836.0 STD5 460-871602/5 5.0 4.852841 50.0 343778.0 STD20 460-871602/6 20.0 20.299721 50.0 344187.0 STD50 460-871602/7 50.0 48.803811 50.0 359266.0 STD200 460-871602/8 200.0 193.39612 50.0 362022.0	STD7 460-871602/3 0.0 0.0 50.0 351311.0 NaN STD1 460-871602/4 1.0 1.094739 50.0 345836.0 1.094739 STD5 460-871602/5 5.0 4.852841 50.0 343778.0 0.970568 STD20 460-871602/6 20.0 20.299721 50.0 344187.0 1.014986 STD50 460-871602/7 50.0 48.803811 50.0 359266.0 0.976076 STD200 460-871602/8 200.0 193.39612 50.0 362022.0 0.966981

Calibration / Bromoform


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2031

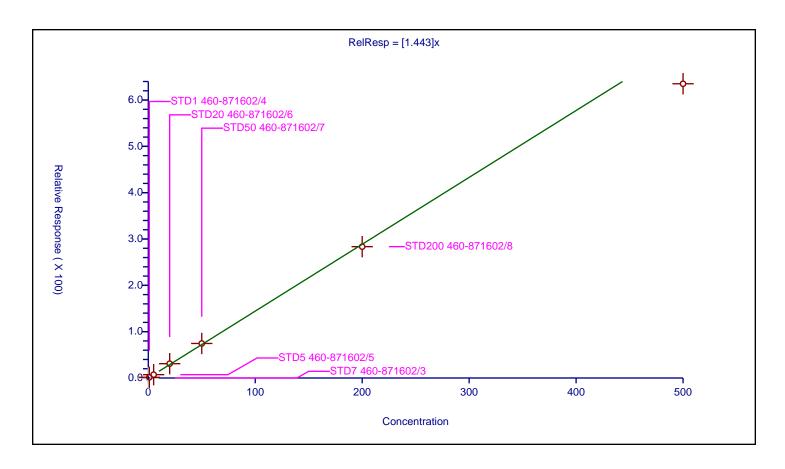
Curve Coefficients

440000
13.7
0.999
0.981

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	0.181734	50.0	345836.0	0.181734	Υ
3	STD5 460-871602/5	5.0	0.838041	50.0	343778.0	0.167608	Υ
4	STD20 460-871602/6	20.0	3.883354	50.0	344187.0	0.194168	Υ
5	STD50 460-871602/7	50.0	10.206087	50.0	359266.0	0.204122	Υ
6	STD200 460-871602/8	200.0	46.61167	50.0	362022.0	0.233058	Υ
7	STD500 460-871602/9	500.0	118.880073	50.0	387427.0	0.23776	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


3

Intercept:	0
Slope:	1.443

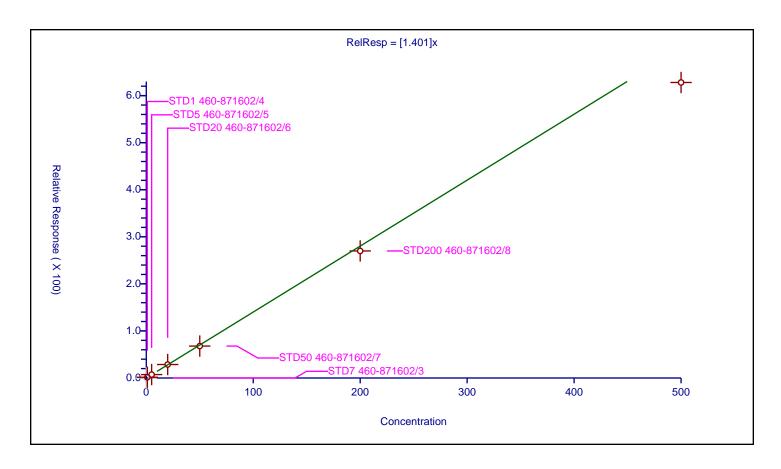
Error Coefficients

Standard Error:1410000Relative Standard Error:6.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	1.49978	50.0	189061.0	1.49978	Υ
3	STD5 460-871602/5	5.0	7.192111	50.0	189541.0	1.438422	Υ
4	STD20 460-871602/6	20.0	30.882182	50.0	189292.0	1.544109	Υ
5	STD50 460-871602/7	50.0	74.523869	50.0	195797.0	1.490477	Υ
6	STD200 460-871602/8	200.0	283.502623	50.0	203202.0	1.417513	Υ
7	STD500 460-871602/9	500.0	635.144717	50.0	229171.0	1.270289	Υ

Calibration / Isopropylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.401

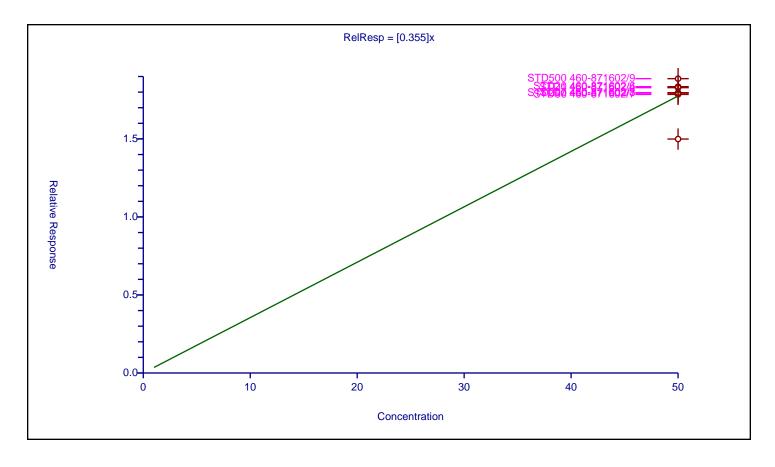
Curve Coefficients

Error Coefficients

Standard Error:2360000Relative Standard Error:7.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	351311.0	NaN	N
2	STD1 460-871602/4	1.0	1.562735	50.0	345836.0	1.562735	Υ
3	STD5 460-871602/5	5.0	7.258172	50.0	343778.0	1.451634	Υ
4	STD20 460-871602/6	20.0	28.618309	50.0	344187.0	1.430915	Υ
5	STD50 460-871602/7	50.0	67.844717	50.0	359266.0	1.356894	Υ
6	STD200 460-871602/8	200.0	269.928761	50.0	362022.0	1.349644	Υ
7	STD500 460-871602/9	500.0	627.933004	50.0	387427.0	1.255866	Υ

Calibration / 4-Bromofluorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.355

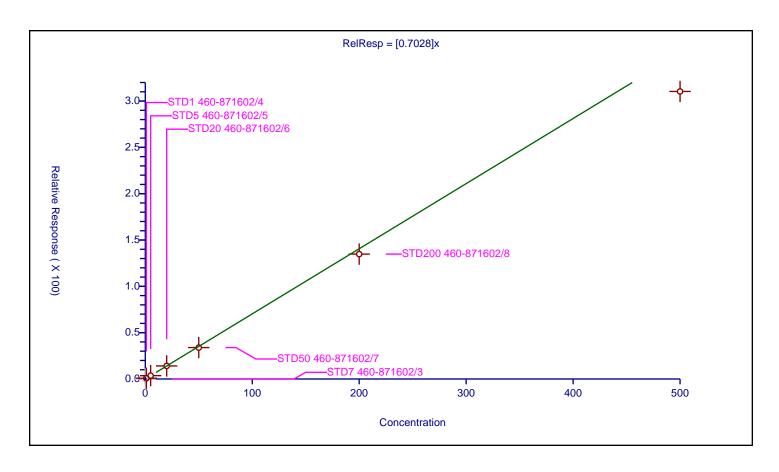
Error Coefficients

Standard Error:137000Relative Standard Error:7.1Correlation Coefficient:NACoefficient of Determination (Adjusted):0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	50.0	17.964567	50.0	351311.0	0.359291	Υ
2	STD1 460-871602/4	50.0	18.284967	50.0	345836.0	0.365699	Υ
3	STD5 460-871602/5	50.0	14.992815	50.0	343778.0	0.299856	Υ
4	STD20 460-871602/6	50.0	18.349182	50.0	344187.0	0.366984	Υ
5	STD50 460-871602/7	50.0	17.851119	50.0	359266.0	0.357022	Υ
6	STD200 460-871602/8	50.0	17.934269	50.0	362022.0	0.358685	Υ
7	STD500 460-871602/9	50.0	18.860456	50.0	387427.0	0.377209	Υ
6 7	STD200 460-871602/8	50.0	17.934269	50.0	362022.0	0.358685	Y Y

Calibration / Bromobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7028

Curve Coefficients

Error Coefficients

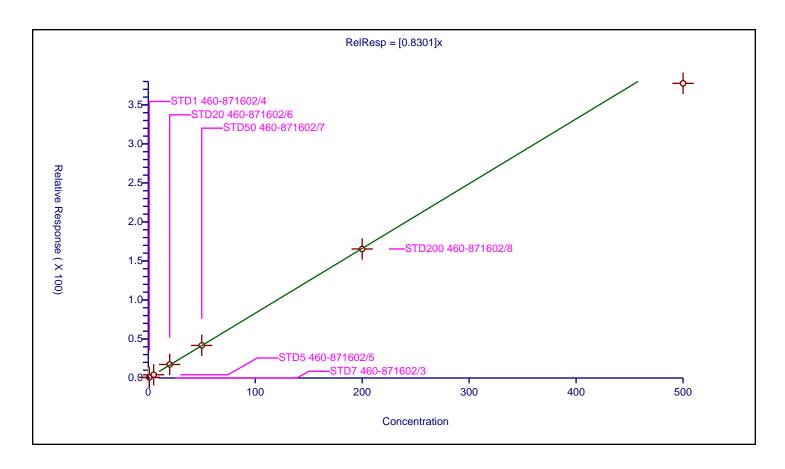
Standard Error:685000Relative Standard Error:9.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	0.817197	50.0	189061.0	0.817197	Υ
3	STD5 460-871602/5	5.0	3.611883	50.0	189541.0	0.722377	Υ
4	STD20 460-871602/6	20.0	14.091192	50.0	189292.0	0.70456	Υ
5	STD50 460-871602/7	50.0	33.906035	50.0	195797.0	0.678121	Υ
6	STD200 460-871602/8	200.0	134.804283	50.0	203202.0	0.674021	Υ
7	STD500 460-871602/9	500.0	310.339877	50.0	229171.0	0.62068	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	pefficients
----------	-------------


 Intercept:
 0

 Slope:
 0.8301

Error Coefficients

Standard Error:834000Relative Standard Error:4.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	0.866387	50.0	189061.0	0.866387	Υ
3	STD5 460-871602/5	5.0	4.149762	50.0	189541.0	0.829952	Υ
4	STD20 460-871602/6	20.0	17.348065	50.0	189292.0	0.867403	Υ
5	STD50 460-871602/7	50.0	41.727657	50.0	195797.0	0.834553	Υ
6	STD200 460-871602/8	200.0	165.353934	50.0	203202.0	0.82677	Υ
7	STD500 460-871602/9	500.0	377.66515	50.0	229171.0	0.75533	Υ

Calibration / N-Propylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	3.295

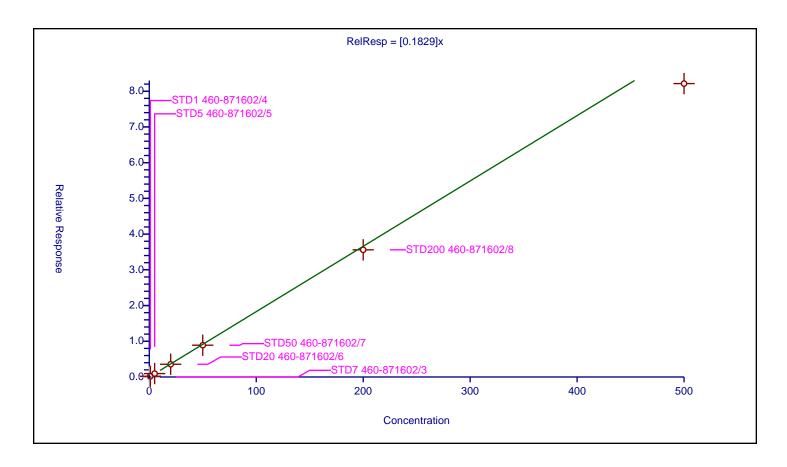
Curve Coefficients

Error Coefficients

Standard Error:2980000Relative Standard Error:11.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.984

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	3.791633	50.0	189061.0	3.791633	Υ
3	STD5 460-871602/5	5.0	17.136134	50.0	189541.0	3.427227	Υ
4	STD20 460-871602/6	20.0	68.591647	50.0	189292.0	3.429582	Υ
5	STD50 460-871602/7	50.0	165.998202	50.0	195797.0	3.319964	Υ
6	STD200 460-871602/8	200.0	625.513774	50.0	203202.0	3.127569	Υ
7	STD500 460-871602/9	500.0	1335.976629	50.0	229171.0	2.671953	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Curve	Coefficients	

Intercept:	0
Slope:	0.1829

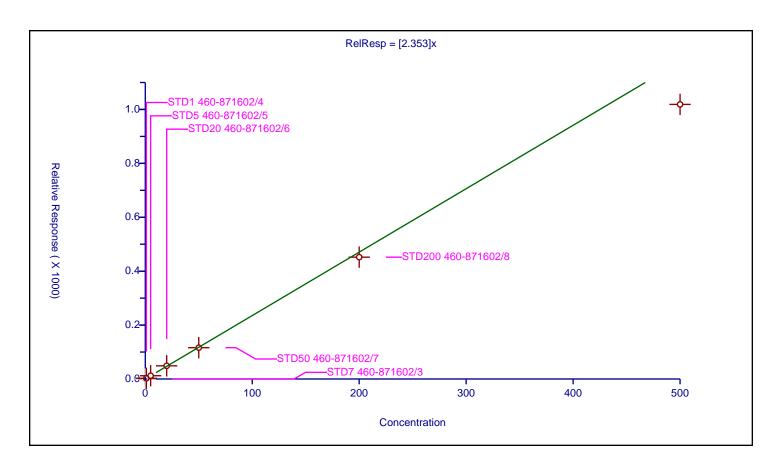
Error Coefficients

Standard Error:	181000
Relative Standard Error:	8.1
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	0.207605	50.0	189061.0	0.207605	Υ
3	STD5 460-871602/5	5.0	0.957049	50.0	189541.0	0.19141	Υ
4	STD20 460-871602/6	20.0	3.568032	50.0	189292.0	0.178402	Υ
5	STD50 460-871602/7	50.0	8.896204	50.0	195797.0	0.177924	Υ
6	STD200 460-871602/8	200.0	35.597091	50.0	203202.0	0.177985	Υ
7	STD500 460-871602/9	500.0	82.139101	50.0	229171.0	0.164278	Υ

Calibration / 2-Chlorotoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

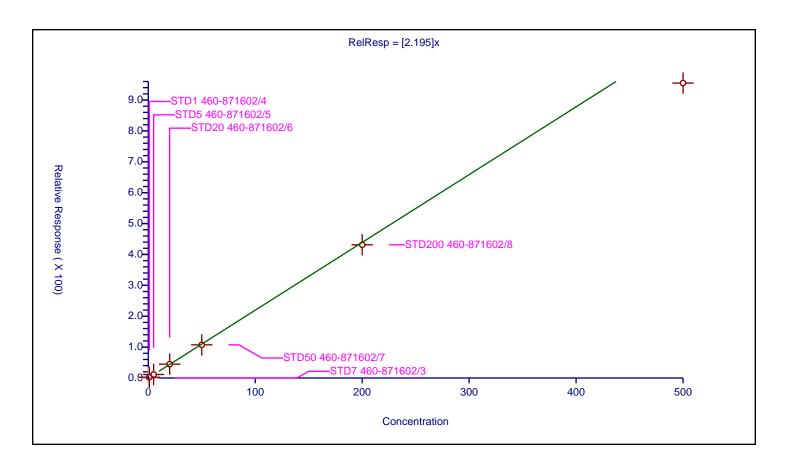

Intercept:	0
Slope:	2.353

Curve Coefficients

Error Coefficients

Standard Error:2250000Relative Standard Error:8.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.632219	50.0	189061.0	2.632219	Υ
3	STD5 460-871602/5	5.0	12.11875	50.0	189541.0	2.42375	Υ
4	STD20 460-871602/6	20.0	48.846227	50.0	189292.0	2.442311	Υ
5	STD50 460-871602/7	50.0	116.110308	50.0	195797.0	2.322206	Υ
6	STD200 460-871602/8	200.0	452.015974	50.0	203202.0	2.26008	Υ
7	STD500 460-871602/9	500.0	1018.836589	50.0	229171.0	2.037673	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	2.195

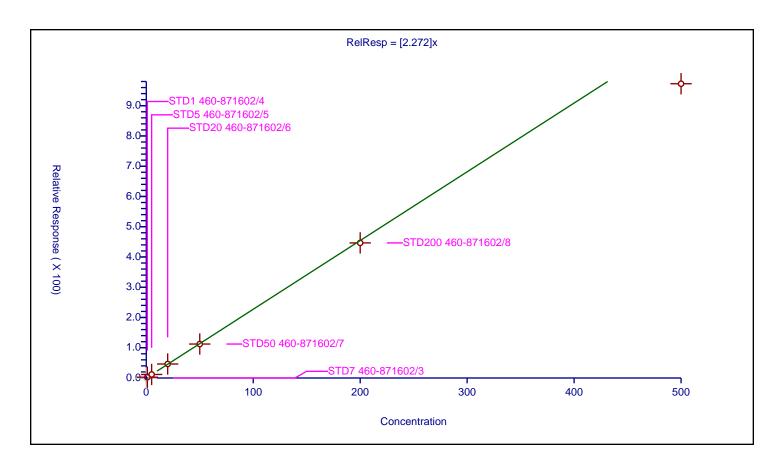
Error Coefficients

Standard Error:2120000Relative Standard Error:8.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.44392	50.0	189061.0	2.44392	Υ
3	STD5 460-871602/5	5.0	11.37432	50.0	189541.0	2.274864	Υ
4	STD20 460-871602/6	20.0	44.773419	50.0	189292.0	2.238671	Υ
5	STD50 460-871602/7	50.0	107.33285	50.0	195797.0	2.146657	Υ
6	STD200 460-871602/8	200.0	431.184732	50.0	203202.0	2.155924	Υ
7	STD500 460-871602/9	500.0	954.957215	50.0	229171.0	1.909914	Υ

Calibration / 4-Chlorotoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.272

Curve Coefficients

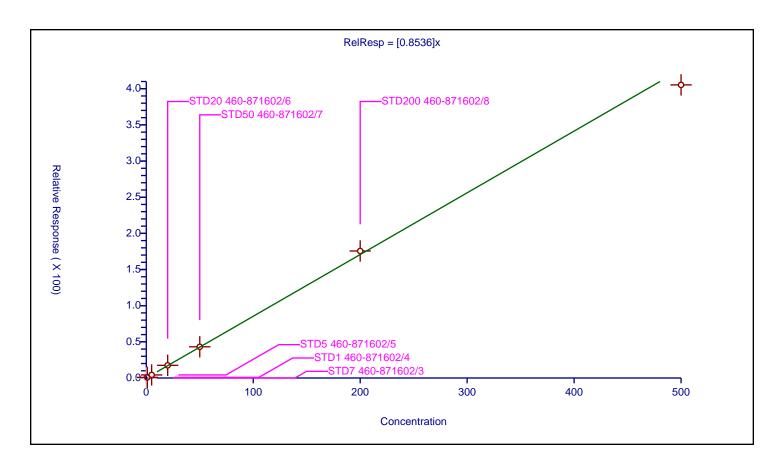
Error Coefficients

Standard Error:2160000Relative Standard Error:8.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

N
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / Butyl Methacrylate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.8536

Curve Coefficients

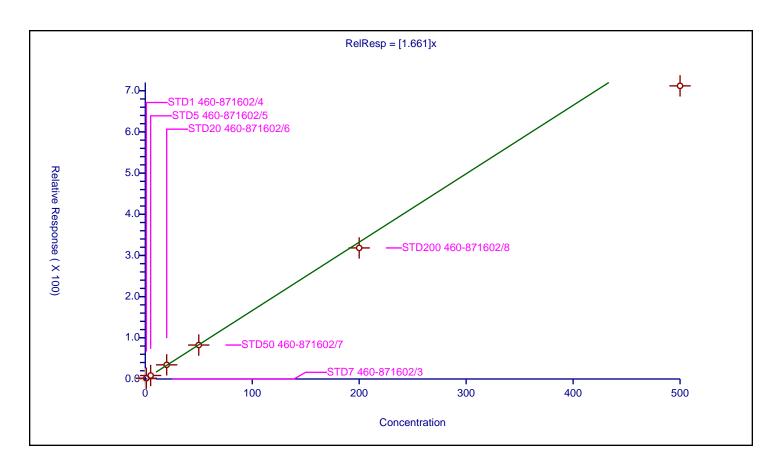
Error Coefficients

Standard Error:894000Relative Standard Error:2.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	0.853428	50.0	189061.0	0.853428	Υ
3	STD5 460-871602/5	5.0	4.210962	50.0	189541.0	0.842192	Υ
4	STD20 460-871602/6	20.0	17.48225	50.0	189292.0	0.874112	Υ
5	STD50 460-871602/7	50.0	43.146473	50.0	195797.0	0.862929	Υ
6	STD200 460-871602/8	200.0	175.62401	50.0	203202.0	0.87812	Υ
7	STD500 460-871602/9	500.0	405.314372	50.0	229171.0	0.810629	Υ
•	STD200 460-871602/8	200.0	175.62401	50.0	203202.0	0.87812	Y Y Y

Calibration / tert-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.661

Curve Coefficients

Error Coefficients

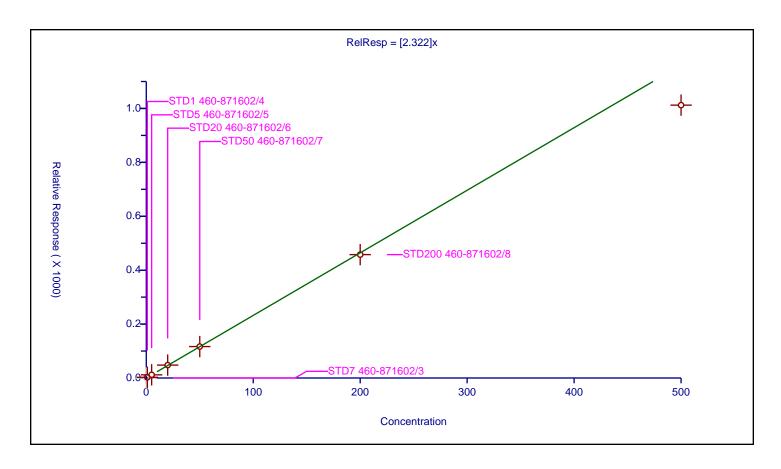
Standard Error:1580000Relative Standard Error:9.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	1.875056	50.0	189061.0	1.875056	Υ
3	STD5 460-871602/5	5.0	8.543798	50.0	189541.0	1.70876	Υ
4	STD20 460-871602/6	20.0	34.387085	50.0	189292.0	1.719354	Υ
5	STD50 460-871602/7	50.0	82.459639	50.0	195797.0	1.649193	Υ
6	STD200 460-871602/8	200.0	318.278117	50.0	203202.0	1.591391	Υ
7	STD500 460-871602/9	500.0	711.838103	50.0	229171.0	1.423676	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
cept:		0


 Intercept:
 0

 Slope:
 2.322

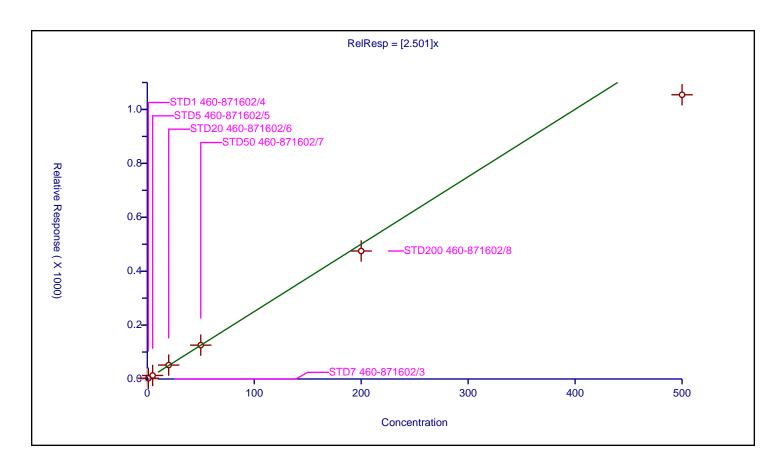
Error Coefficients

Standard Error:2250000Relative Standard Error:7.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.549177	50.0	189061.0	2.549177	Υ
3	STD5 460-871602/5	5.0	11.722793	50.0	189541.0	2.344559	Υ
4	STD20 460-871602/6	20.0	47.799432	50.0	189292.0	2.389972	Υ
5	STD50 460-871602/7	50.0	116.628191	50.0	195797.0	2.332564	Υ
6	STD200 460-871602/8	200.0	457.738605	50.0	203202.0	2.288693	Υ
7	STD500 460-871602/9	500.0	1012.275113	50.0	229171.0	2.02455	Υ
6 7							Y Y

Calibration / sec-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.501

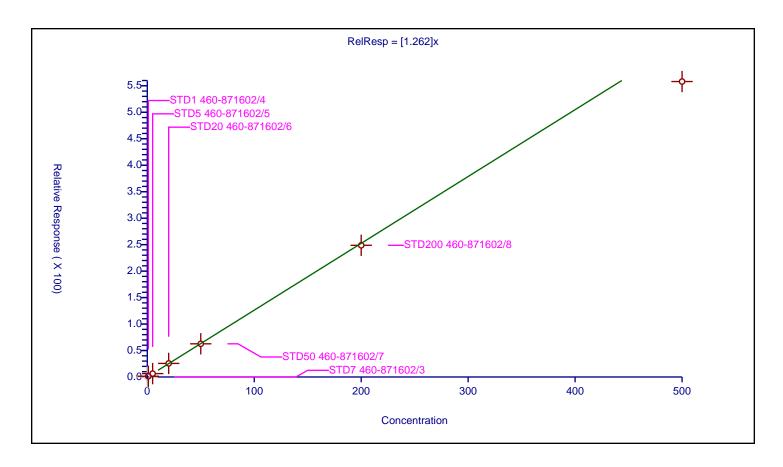
Curve Coefficients

Error Coefficients

Standard Error:2340000Relative Standard Error:9.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.810733	50.0	189061.0	2.810733	Υ
3	STD5 460-871602/5	5.0	13.093473	50.0	189541.0	2.618695	Υ
4	STD20 460-871602/6	20.0	51.67968	50.0	189292.0	2.583984	Υ
5	STD50 460-871602/7	50.0	125.59079	50.0	195797.0	2.511816	Υ
6	STD200 460-871602/8	200.0	474.810779	50.0	203202.0	2.374054	Υ
7	STD500 460-871602/9	500.0	1054.498388	50.0	229171.0	2.108997	Υ

Calibration / 1,3-Dichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.262

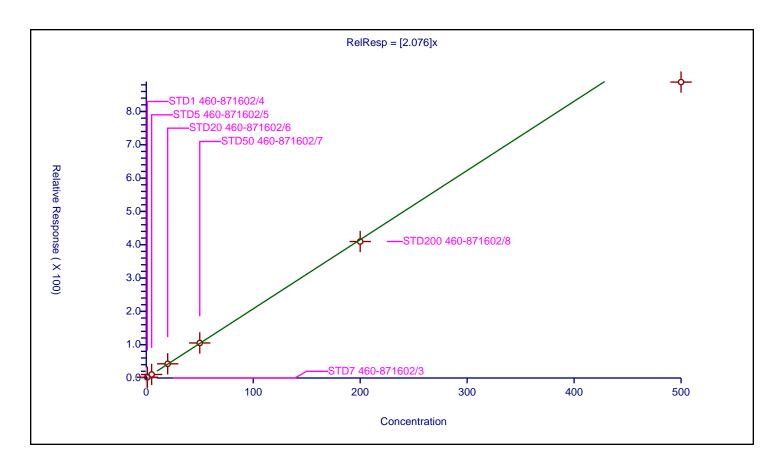
Error Coefficients

Standard Error:1240000Relative Standard Error:7.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	1.396904	50.0	189061.0	1.396904	Υ
3	STD5 460-871602/5	5.0	6.405738	50.0	189541.0	1.281148	Υ
4	STD20 460-871602/6	20.0	25.645563	50.0	189292.0	1.282278	Υ
5	STD50 460-871602/7	50.0	62.658774	50.0	195797.0	1.253175	Υ
6	STD200 460-871602/8	200.0	248.725898	50.0	203202.0	1.243629	Υ
7	STD500 460-871602/9	500.0	558.069084	50.0	229171.0	1.116138	Υ

Calibration / 4-Isopropyltoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.076

Curve Coefficients

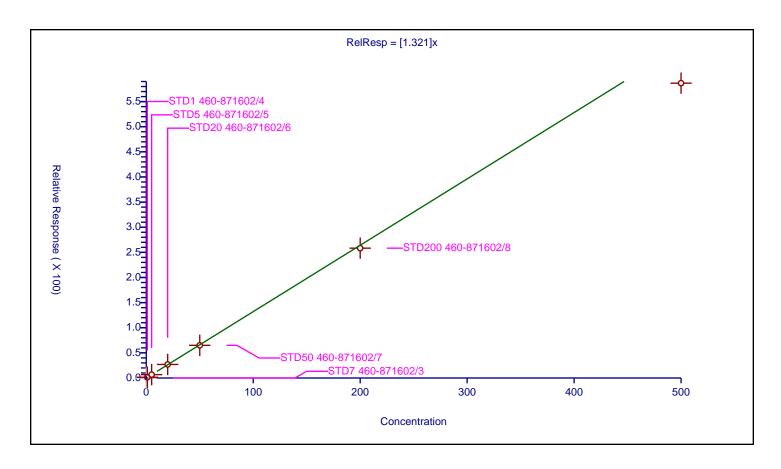
Error Coefficients

Standard Error:1980000Relative Standard Error:8.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.294762	50.0	189061.0	2.294762	Υ
3	STD5 460-871602/5	5.0	10.541255	50.0	189541.0	2.108251	Υ
4	STD20 460-871602/6	20.0	42.55753	50.0	189292.0	2.127877	Υ
5	STD50 460-871602/7	50.0	105.158404	50.0	195797.0	2.103168	Υ
6	STD200 460-871602/8	200.0	409.66649	50.0	203202.0	2.048332	Υ
7	STD500 460-871602/9	500.0	888.231932	50.0	229171.0	1.776464	Υ

Calibration / 1,4-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercent	0
Intercept:	U
Slope:	1.321

Curve Coefficients

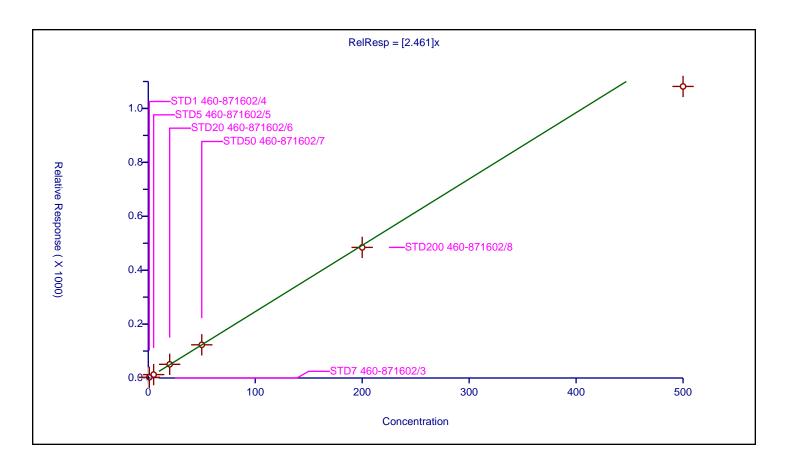
Error Coefficients

Standard Error:1300000Relative Standard Error:7.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	1.479417	50.0	189061.0	1.479417	Υ
3	STD5 460-871602/5	5.0	6.661356	50.0	189541.0	1.332271	Υ
4	STD20 460-871602/6	20.0	26.938539	50.0	189292.0	1.346927	Υ
5	STD50 460-871602/7	50.0	65.010444	50.0	195797.0	1.300209	Υ
6	STD200 460-871602/8	200.0	258.369504	50.0	203202.0	1.291848	Υ
7	STD500 460-871602/9	500.0	586.70796	50.0	229171.0	1.173416	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	2.461

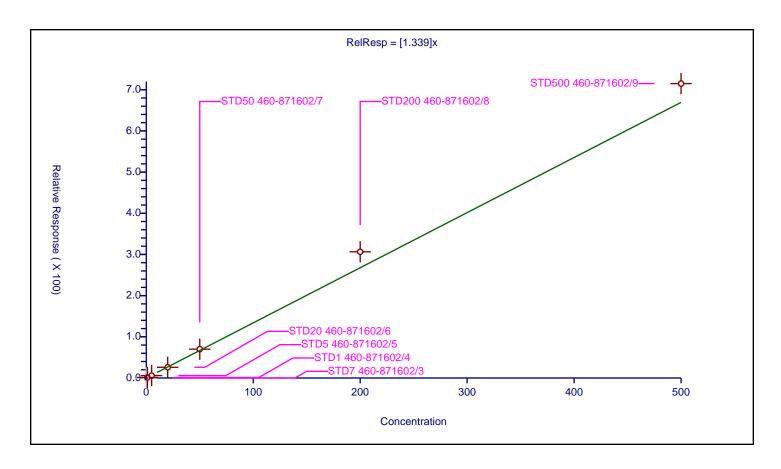
Error Coefficients

Standard Error:2400000Relative Standard Error:6.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.659988	50.0	189061.0	2.659988	Υ
3	STD5 460-871602/5	5.0	12.613102	50.0	189541.0	2.52262	Υ
4	STD20 460-871602/6	20.0	50.708429	50.0	189292.0	2.535421	Υ
5	STD50 460-871602/7	50.0	123.124971	50.0	195797.0	2.462499	Υ
6	STD200 460-871602/8	200.0	484.530664	50.0	203202.0	2.422653	Υ
7	STD500 460-871602/9	500.0	1081.715618	50.0	229171.0	2.163431	Υ

Calibration / Benzyl chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.339

Curve Coefficients

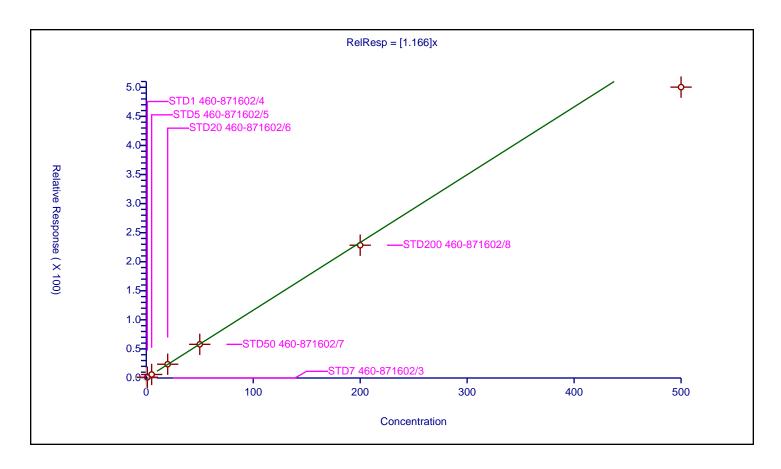
Error Coefficients

Standard Error:1570000Relative Standard Error:10.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	1.197762	50.0	189061.0	1.197762	Υ
3	STD5 460-871602/5	5.0	5.856517	50.0	189541.0	1.171303	Υ
4	STD20 460-871602/6	20.0	26.009551	50.0	189292.0	1.300478	Υ
5	STD50 460-871602/7	50.0	70.006435	50.0	195797.0	1.400129	Υ
6	STD200 460-871602/8	200.0	306.488863	50.0	203202.0	1.532444	Υ
7	STD500 460-871602/9	500.0	714.879064	50.0	229171.0	1.429758	Υ

Calibration / n-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.166

Curve Coefficients

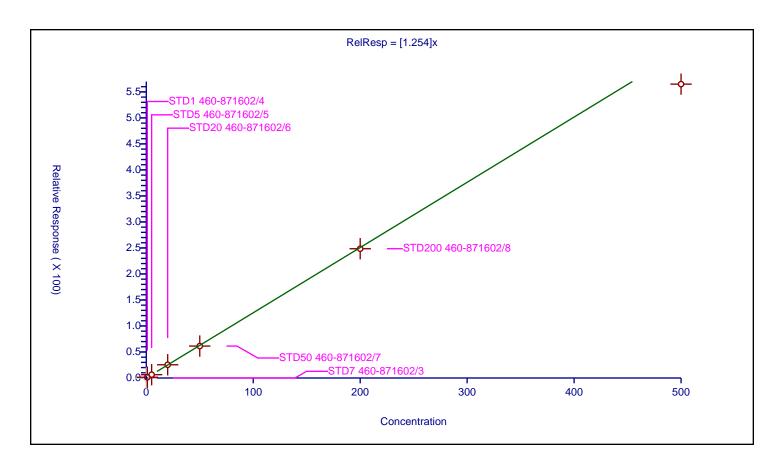
Error Coefficients

Standard Error:1110000Relative Standard Error:8.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	1.300638	50.0	189061.0	1.300638	Υ
3	STD5 460-871602/5	5.0	6.041437	50.0	189541.0	1.208287	Υ
4	STD20 460-871602/6	20.0	23.684308	50.0	189292.0	1.184215	Υ
5	STD50 460-871602/7	50.0	57.910489	50.0	195797.0	1.15821	Υ
6	STD200 460-871602/8	200.0	228.406463	50.0	203202.0	1.142032	Υ
7	STD500 460-871602/9	500.0	500.342103	50.0	229171.0	1.000684	Υ

Calibration / 1,2-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.254

Curve Coefficients

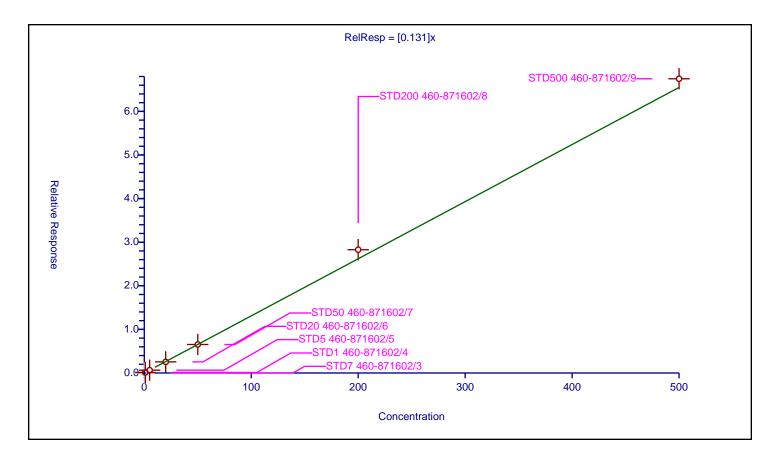
Error Coefficients

Standard Error:1250000Relative Standard Error:6.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

Used
N
Υ
Υ
Υ
Υ
Υ
Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.131

Curve Coefficients

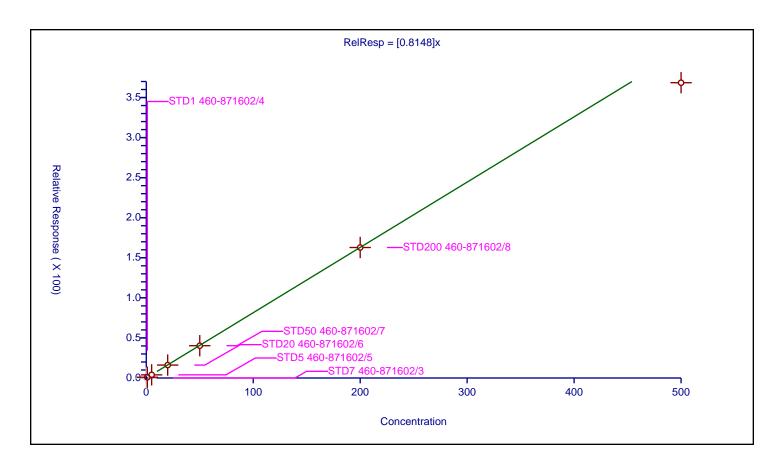
Error Coefficients

Standard Error:148000Relative Standard Error:4.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	0.122712	50.0	189061.0	0.122712	Υ
3	STD5 460-871602/5	5.0	0.644715	50.0	189541.0	0.128943	Υ
4	STD20 460-871602/6	20.0	2.546066	50.0	189292.0	0.127303	Υ
5	STD50 460-871602/7	50.0	6.534574	50.0	195797.0	0.130691	Υ
6	STD200 460-871602/8	200.0	28.274082	50.0	203202.0	0.14137	Υ
7	STD500 460-871602/9	500.0	67.482579	50.0	229171.0	0.134965	Υ

Calibration / 1,2,4-Trichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.8148

Curve Coefficients

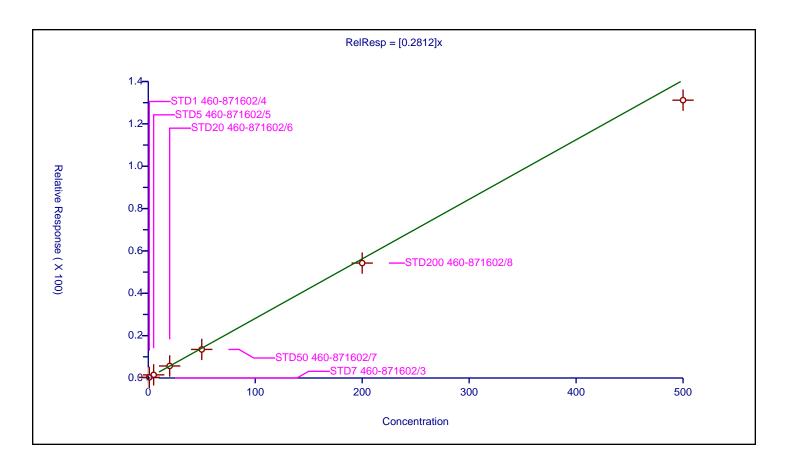
Error Coefficients

Standard Error:815000Relative Standard Error:8.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
STD1 460-871602/4	1.0	0.939908	50.0	189061.0	0.939908	Υ
STD5 460-871602/5	5.0	3.925536	50.0	189541.0	0.785107	Υ
STD20 460-871602/6	20.0	16.13803	50.0	189292.0	0.806902	Υ
STD50 460-871602/7	50.0	40.289943	50.0	195797.0	0.805799	Υ
STD200 460-871602/8	200.0	162.840425	50.0	203202.0	0.814202	Υ
STD500 460-871602/9	500.0	368.485105	50.0	229171.0	0.73697	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 0.939908 STD5 460-871602/5 5.0 3.925536 STD20 460-871602/6 20.0 16.13803 STD50 460-871602/7 50.0 40.289943 STD200 460-871602/8 200.0 162.840425	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 0.939908 50.0 STD5 460-871602/5 5.0 3.925536 50.0 STD20 460-871602/6 20.0 16.13803 50.0 STD50 460-871602/7 50.0 40.289943 50.0 STD200 460-871602/8 200.0 162.840425 50.0	STD7 460-871602/3 0.0 0.0 50.0 190101.0 STD1 460-871602/4 1.0 0.939908 50.0 189061.0 STD5 460-871602/5 5.0 3.925536 50.0 189541.0 STD20 460-871602/6 20.0 16.13803 50.0 189292.0 STD50 460-871602/7 50.0 40.289943 50.0 195797.0 STD200 460-871602/8 200.0 162.840425 50.0 203202.0	STD7 460-871602/3 0.0 0.0 50.0 190101.0 NaN STD1 460-871602/4 1.0 0.939908 50.0 189061.0 0.939908 STD5 460-871602/5 5.0 3.925536 50.0 189541.0 0.785107 STD20 460-871602/6 20.0 16.13803 50.0 189292.0 0.806902 STD50 460-871602/7 50.0 40.289943 50.0 195797.0 0.805799 STD200 460-871602/8 200.0 162.840425 50.0 203202.0 0.814202

Calibration / Hexachlorobutadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2812

Curve Coefficients

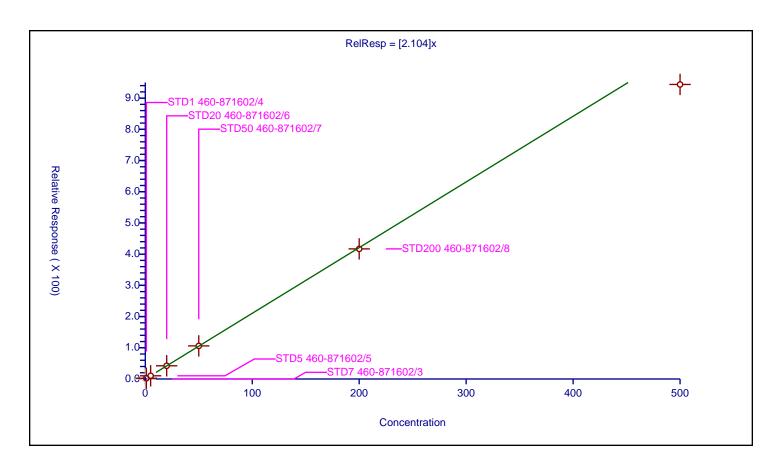
Error Coefficients

Standard Error:	287000
Relative Standard Error:	5.8
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.996

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
STD1 460-871602/4	1.0	0.304928	50.0	189061.0	0.304928	Υ
STD5 460-871602/5	5.0	1.47567	50.0	189541.0	0.295134	Υ
STD20 460-871602/6	20.0	5.678528	50.0	189292.0	0.283926	Υ
STD50 460-871602/7	50.0	13.484885	50.0	195797.0	0.269698	Υ
STD200 460-871602/8	200.0	54.260293	50.0	203202.0	0.271301	Υ
STD500 460-871602/9	500.0	131.185447	50.0	229171.0	0.262371	Υ
	STD7 460-871602/3 STD1 460-871602/4 STD5 460-871602/5 STD20 460-871602/6 STD50 460-871602/7 STD200 460-871602/8	STD7 460-871602/3 0.0 STD1 460-871602/4 1.0 STD5 460-871602/5 5.0 STD20 460-871602/6 20.0 STD50 460-871602/7 50.0 STD200 460-871602/8 200.0	STD7 460-871602/3 0.0 0.0 STD1 460-871602/4 1.0 0.304928 STD5 460-871602/5 5.0 1.47567 STD20 460-871602/6 20.0 5.678528 STD50 460-871602/7 50.0 13.484885 STD200 460-871602/8 200.0 54.260293	STD7 460-871602/3 0.0 0.0 50.0 STD1 460-871602/4 1.0 0.304928 50.0 STD5 460-871602/5 5.0 1.47567 50.0 STD20 460-871602/6 20.0 5.678528 50.0 STD50 460-871602/7 50.0 13.484885 50.0 STD200 460-871602/8 200.0 54.260293 50.0	STD7 460-871602/3 0.0 0.0 50.0 190101.0 STD1 460-871602/4 1.0 0.304928 50.0 189061.0 STD5 460-871602/5 5.0 1.47567 50.0 189541.0 STD20 460-871602/6 20.0 5.678528 50.0 189292.0 STD50 460-871602/7 50.0 13.484885 50.0 195797.0 STD200 460-871602/8 200.0 54.260293 50.0 203202.0	STD7 460-871602/3 0.0 0.0 50.0 190101.0 NaN STD1 460-871602/4 1.0 0.304928 50.0 189061.0 0.304928 STD5 460-871602/5 5.0 1.47567 50.0 189541.0 0.295134 STD20 460-871602/6 20.0 5.678528 50.0 189292.0 0.283926 STD50 460-871602/7 50.0 13.484885 50.0 195797.0 0.269698 STD200 460-871602/8 200.0 54.260293 50.0 203202.0 0.271301

Calibration / Naphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.104

Curve Coefficients

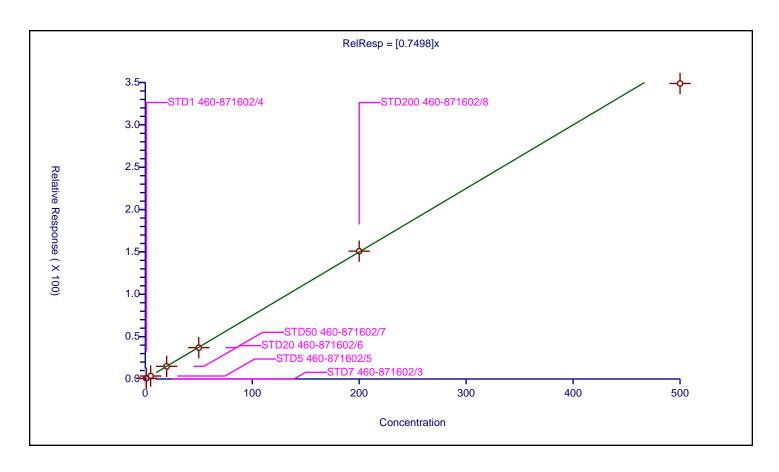
Error Coefficients

Standard Error:2090000Relative Standard Error:7.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	2.370135	50.0	189061.0	2.370135	Υ
3	STD5 460-871602/5	5.0	10.247123	50.0	189541.0	2.049425	Υ
4	STD20 460-871602/6	20.0	42.306595	50.0	189292.0	2.11533	Υ
5	STD50 460-871602/7	50.0	105.998815	50.0	195797.0	2.119976	Υ
6	STD200 460-871602/8	200.0	416.854165	50.0	203202.0	2.084271	Υ
7	STD500 460-871602/9	500.0	943.780409	50.0	229171.0	1.887561	Υ

Calibration / 1,2,3-Trichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7498

Curve Coefficients

Error Coefficients

Standard Error:769000Relative Standard Error:7.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	STD7 460-871602/3	0.0	0.0	50.0	190101.0	NaN	N
2	STD1 460-871602/4	1.0	0.858453	50.0	189061.0	0.858453	Υ
3	STD5 460-871602/5	5.0	3.511377	50.0	189541.0	0.702275	Υ
4	STD20 460-871602/6	20.0	14.932749	50.0	189292.0	0.746637	Υ
5	STD50 460-871602/7	50.0	36.958176	50.0	195797.0	0.739164	Υ
6	STD200 460-871602/8	200.0	150.938967	50.0	203202.0	0.754695	Υ
7	STD500 460-871602/9	500.0	348.833404	50.0	229171.0	0.697667	Υ

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab Sample ID: <u>ICV 460-871602/16</u> Calibration Date: <u>10/13/2022 04:56</u>

Instrument ID: CVOAMS8 Calib Start Date: 10/12/2022 23:30

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/13/2022 02:01

Lab File ID: $\underline{\tt J81275.D}$ Conc. Units: $\underline{\tt ug/L}$ Heated Purge: (Y/N) $\underline{\tt N}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%REC	%REC LIMITS
Dichlorodifluoromethane	Ave	0.3674	0.3225		17.6	20.0	88	60-140
Chloromethane	Ave	0.5304	0.4982		18.8	20.0	94	0.1-205
Vinyl chloride	Ave	0.3527	0.3764		21.3	20.0	107	5-195
Butadiene	Ave	0.3387	0.3046		18.0	20.0	90	60-140
Bromomethane	Ave	0.1299	0.1494		23.0	20.0	115	15-185
Chloroethane	Ave	0.1740	0.1785		20.5	20.0	103	40-160
Trichlorofluoromethane	Ave	0.3747	0.3642		19.4	20.0	97	50-150
Pentane	Ave	0.4372	0.5664		51.8	40.0	130	60-140
Ethanol	Ave	0.0450	0.0335		595	800	74	60-140
Ethyl ether	Ave	0.2176	0.2204		20.3	20.0	101	60-140
2-Methyl-1,3-butadiene	Ave	0.2746	0.2996		21.8	20.0	109	60-140
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2217	0.2133		19.2	20.0	96	60-140
Acrolein	Ave	1.799	1.496		33.3	40.1	83	10-150
1,1-Dichloroethene	Ave	0.2219	0.2131		19.2	20.0	96	50-150
Acetone	Ave	0.6627	0.5453		82.3	100	82	60-140
Iodomethane	Lin2		0.1824		15.8	20.0	79	60-140
Isopropyl alcohol	Ave	0.5196	0.4000		154	200	77	60-140
Carbon disulfide	Ave	0.8155	0.8224		20.2	20.0	101	60-140
3-Chloro-1-propene	Ave	0.1557	0.1571		20.2	20.0	101	60-140
Methyl acetate	Ave	0.2143	0.2240		41.8	40.0	105	60-140
Acetonitrile	Ave	1.325	1.509		228	200	114	60-140
Methylene Chloride	Ave	0.2744	0.2682		19.5	20.0	98	60-140
2-Methyl-2-propanol	Ave	0.8017	0.6463		161	200	81	60-140
Methyl tert-butyl ether	Ave	0.6816	0.6659		19.5	20.0	98	60-140
trans-1,2-Dichloroethene	Ave	0.2515	0.2365		18.8	20.0	94	70-130
Acrylonitrile	Ave	4.784	4.845		203	200	101	60-140
Hexane	Ave	0.3133	0.3290		21.0	20.0	105	60-140
Isopropyl ether	Ave	1.042	1.149		22.1	20.0	110	60-140
1,1-Dichloroethane	Ave	0.5650	0.5568		19.7	20.0	99	70-130
Vinyl acetate	Ave	0.6615	0.7312		44.2	40.0	111	60-140
2,2-Dichloropropane	Ave	0.1453	0.1326		18.2	20.0	91	60-140
cis-1,2-Dichloroethene	Ave	0.2764	0.2715		19.6	20.0	98	60-140
2-Butanone (MEK)	Ave	0.1966	0.1764		89.8	100	90	60-140
Ethyl acetate	Ave	0.2052	0.2003		39.0	40.0	98	60-140
Chlorobromomethane	Ave	0.1224	0.1177		19.2	20.0	96	60-140
Tetrahydrofuran	Ave	0.1961	0.1985		40.5	40.0	101	60-140
Chloroform	Ave	0.4935	0.4943		20.0	20.0	100	70-135
Cyclohexane	Ave	0.3070	0.3150		20.5	20.0	103	60-140
1,1,1-Trichloroethane	Ave	0.3904	0.3792		19.4	20.0	97	70-130
Carbon tetrachloride	Ave	0.3106	0.2924		18.8	20.0	94	70-130

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab Sample ID: <u>ICV 460-871602/16</u> Calibration Date: <u>10/13/2022 04:56</u>

Instrument ID: CVOAMS8 Calib Start Date: 10/12/2022 23:30

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/13/2022 02:01

Lab File ID: $\underline{\mathtt{J81275.D}}$ Conc. Units: $\underline{\mathtt{ug/L}}$ Heated Purge: (Y/N) $\underline{\mathtt{N}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%REC	%REC LIMITS
1,1-Dichloropropene	Ave	0.3745	0.3735		19.9	20.0	100	60-140
Benzene	Ave	1.394	1.503		21.6	20.0	108	65-135
Isopropyl acetate	Ave	0.7834	0.8019		20.5	20.0	102	60-140
1,2-Dichloroethane	Ave	0.4184	0.4119		19.7	20.0	98	70-130
n-Heptane	Ave	0.1247	0.1321		21.2	20.0	106	60-140
n-Butanol	Ave	0.1892	0.1567		414	500	83	60-140
Trichloroethene	Ave	0.2781	0.2635		18.9	20.0	95	65-135
Methylcyclohexane	Ave	0.3157	0.3234		20.5	20.0	102	60-140
Ethyl acrylate	Ave	0.6709	0.6737		20.1	20.0	100	60-140
1,2-Dichloropropane	Ave	0.3313	0.3122		18.8	20.0	94	35-165
Methyl methacrylate	Ave	0.0501	0.0476		38.0	40.0	95	60-140
1,4-Dioxane	Ave	0.5434	0.3693		272	400	68	60-140
Dibromomethane	Ave	0.1826	0.1715		18.8	20.0	94	60-140
n-Propyl acetate	Ave	0.4180	0.4188		20.0	20.0	100	60-140
Dichlorobromomethane	Ave	0.3711	0.3540		19.1	20.0	95	65-135
2-Chloroethyl vinyl ether	Ave	0.1839	0.1726		18.8	20.0	94	0.1-225
Epichlorohydrin	Ave	0.2009	0.1942		19.3	20.0	97	60-140
cis-1,3-Dichloropropene	Ave	0.6566	0.6386		19.4	20.0	97	25-175
4-Methyl-2-pentanone (MIBK)	Ave	2.371	2.306		97.2	100	97	60-140
Toluene	Ave	1.456	1.458		20.0	20.0	100	70-130
trans-1,3-Dichloropropene	Ave	0.5843	0.5750		19.7	20.0	98	50-150
1,1,2-Trichloroethane	Ave	0.3075	0.3054		19.9	20.0	99	70-130
Tetrachloroethene	Ave	0.3040	0.3056		20.1	20.0	101	70-130
1,3-Dichloropropane	Ave	0.5684	0.5749		20.2	20.0	101	60-140
2-Hexanone	Ave	0.7744	0.7191		92.9	100	93	60-140
n-Butyl acetate	Ave	0.6725	0.6914		20.6	20.0	103	60-140
Chlorodibromomethane	Ave	0.3245	0.3098		19.1	20.0	95	70-135
Ethylene Dibromide	Ave	0.3311	0.3242		19.6	20.0	98	60-140
Chlorobenzene	Ave	0.8794	0.8683		19.7	20.0	99	65-135
Ethylbenzene	Ave	0.4602	0.4597		20.0	20.0	100	60-140
1,1,1,2-Tetrachloroethane	Ave	0.2994	0.2926		19.5	20.0	98	60-140
m-Xylene & p-Xylene	Ave	0.5729	0.5658		19.8	20.0	99	60-140
o-Xylene	Ave	0.5760	0.5685		19.7	20.0	99	60-140
n-Butyl acrylate	Ave	0.2911	0.2931		20.1	20.0	101	60-140
Styrene	Ave	0.9873	0.9827		19.9	20.0	100	60-140
Bromoform	Ave	0.2031	0.1877		18.5	20.0	92	70-130
Amyl acetate (mixed isomers)	Ave	1.443	1.536		21.3	20.0	106	60-140
Isopropylbenzene	Ave	1.401	1.422		20.3	20.0	101	60-140
Bromobenzene	Ave	0.7028	0.6909		19.7	20.0	98	60-140
1,1,2,2-Tetrachloroethane	Ave	0.8301	0.8407		20.3	20.0	101	60-140
N-Propylbenzene	Ave	3.295	3.321		20.2	20.0	101	60-140

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab Sample ID: <u>ICV 460-871602/16</u> Calibration Date: <u>10/13/2022 04:56</u>

Instrument ID: CVOAMS8 Calib Start Date: 10/12/2022 23:30

GC Column: Rtx-624 ID: 0.25 (mm) Calib End Date: 10/13/2022 02:01

Lab File ID: J81275.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%REC	%REC LIMITS
1,2,3-Trichloropropane	Ave	0.1829	0.1739		19.0	20.0	95	60-140
2-Chlorotoluene	Ave	2.353	2.407		20.5	20.0	102	60-140
1,3,5-Trimethylbenzene	Ave	2.195	2.192		20.0	20.0	100	60-140
4-Chlorotoluene	Ave	2.272	2.290		20.2	20.0	101	60-140
Butyl Methacrylate	Ave	0.8536	0.8583		20.1	20.0	101	60-140
tert-Butylbenzene	Ave	1.661	1.662		20.0	20.0	100	60-140
1,2,4-Trimethylbenzene	Ave	2.322	2.367		20.4	20.0	102	60-140
sec-Butylbenzene	Ave	2.501	2.518		20.1	20.0	101	60-140
1,3-Dichlorobenzene	Ave	1.262	1.251		19.8	20.0	99	70-130
4-Isopropyltoluene	Ave	2.076	2.100		20.2	20.0	101	60-140
1,4-Dichlorobenzene	Ave	1.321	1.313		19.9	20.0	99	65-135
1,2,3-Trimethylbenzene	Ave	2.461	2.526		20.5	20.0	103	60-140
Benzyl chloride	Ave	1.339	1.359		20.3	20.0	102	60-140
n-Butylbenzene	Ave	1.166	1.173		20.1	20.0	101	60-140
1,2-Dichlorobenzene	Ave	1.254	1.252		20.0	20.0	100	65-135
1,2-Dibromo-3-Chloropropane	Ave	0.1310	0.1172		17.9	20.0	89	60-140
1,2,4-Trichlorobenzene	Ave	0.8148	0.7824		19.2	20.0	96	60-140
Hexachlorobutadiene	Ave	0.2812	0.2845		20.2	20.0	101	60-140
Naphthalene	Ave	2.104	2.006		19.1	20.0	95	60-140
1,2,3-Trichlorobenzene	Ave	0.7498	0.7067		18.8	20.0	94	60-140
Dibromofluoromethane (Surr)	Ave	0.2174	0.2194		50.5	50.0	101	60-140
1,2-Dichloroethane-d4 (Surr)	Ave	0.2990	0.3033		50.7	50.0	101	60-140
Toluene-d8 (Surr)	Ave	1.070	1.129		52.8	50.0	106	60-140
4-Bromofluorobenzene	Ave	0.3550	0.3637		51.2	50.0	102	60-140

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81275.D

Lims ID: ICV

Client ID:

Sample Type: ICV

Inject. Date: 13-Oct-2022 04:56:30 ALS Bottle#: 16 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ICV

Misc. Info.: 460-0151655-016

Operator ID: Instrument ID: CVOAMS8

Sublist:

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:05:18Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 13-Oct-2022 05:16:10

First Level Reviewer: HVW2			D	ate:		13-Oct-202	2 05:16:10		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.148	1.151	-0.003	95	2626	NC	NC	
4 Dichlorodifluoromethane	85	1.173	1.175	-0.002	100	58464	20.0	17.6	
5 Chlorodifluoromethane	67	1.191	1.193	-0.002	98	10922	NC	NC	
6 Chloromethane	50	1.307	1.303	0.004	100	90322	20.0	18.8	
7 Vinyl chloride	62	1.361	1.364	-0.003	99	68231	20.0	21.3	
8 Butadiene	54	1.380	1.376	0.004	94	55213	20.0	18.0	
9 Bromomethane	94	1.574	1.577	-0.003	99	27082	20.0	23.0	
10 Chloroethane	64	1.629	1.631	-0.002	98	32361	20.0	20.5	
12 Dichlorofluoromethane	67	1.751	1.753	-0.002	99	94697	NC	NC	
11 Trichlorofluoromethane	101	1.763	1.759	0.004	98	66030	20.0	19.4	
13 Pentane	43	1.793	1.789	0.004	96	205378	40.0	51.8	
14 Ethanol	46	1.891	1.887	0.004	97	4911	800.0	594.6	
15 Ethyl ether	59	1.933	1.929	0.004	88	39959	20.0	20.3	
16 2-Methyl-1,3-butadiene	53	1.951	1.948	0.003	95	54311	20.0	21.8	
17 1,2-Dichloro-1,1,2-trifluoroe	tha117	1.958	1.960	-0.002	97	29764	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	2.000	1.996	0.004	98	63332	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	oe 101	2.055	2.057	-0.002	92	38666	20.0	19.2	
19 Acrolein	56	2.061	2.057	0.004	94	10989	40.1	33.3	
21 1,1-Dichloroethene	96	2.091	2.088	0.003	92	38639	20.0	19.2	
22 Acetone	43	2.152	2.148	0.004	84	63288	100.0	82.3	
23 lodomethane	142	2.213	2.209	0.004	99	33068	20.0	15.8	
25 Isopropyl alcohol	45	2.213	2.209	0.004	55	14669	200.0	154.0	
24 Carbon disulfide	76	2.237	2.234	0.003	100	149101	20.0	20.2	
26 3-Chloro-1-propene	76	2.335	2.331	0.004	94	28479	20.0	20.2	
28 Methyl acetate	43	2.335	2.337	-0.002	99	81215	40.0	41.8	
27 Cyclopentene	67	2.353	2.349	0.004	95	124604	NC	NC	
29 Acetonitrile	41	2.383	2.380	0.003	97	55356	200.0	227.8	
* 30 TBA-d9 (IS)	65	2.414	2.410	0.004	77	183376	1000.0	1000.0	
31 Methylene Chloride	84	2.432	2.428	0.004	95	48624	20.0	19.5	
32 2-Methyl-2-propanol	59	2.469	2.465	0.004	98	23705	200.0	161.2	
			_		_				- /

Report Date: 14-Oct-2022 16:05:22

Data File:

Data File: \\chromfs\Edis	son\Cr				112-15	1655.b\J81275			
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
00.14 .1	70	0.500	0.550	0.004	0.0	100700	00.0	40.5	
33 Methyl tert-butyl ether	73	2.560	2.556	0.004	96	120728	20.0	19.5	
34 trans-1,2-Dichloroethene	96	2.584	2.580	0.004	95	42878	20.0	18.8	
35 Acrylonitrile	53	2.639	2.635	0.004	93	177700	200.0	202.6	
36 Hexane	57	2.706	2.702	0.004	94	59650	20.0	21.0	
37 Isopropyl ether	45	2.876	2.872	0.004	97	208368	20.0	22.1	
38 1,1-Dichloroethane	63	2.913	2.909	0.004	99	100949	20.0	19.7	
39 Vinyl acetate	43	2.919	2.915	0.004	100	265132	40.0	44.2	
40 2-Chloro-1,3-butadiene	88	2.949	2.945	0.004	95	40152	NC	NC	
41 Tert-butyl ethyl ether	59	3.150	3.146	0.004	86	161015	NC	NC	
* 43 2-Butanone-d5	46	3.326	3.323	0.003	96	290133	250.0	250.0	
42 2,2-Dichloropropane	79	3.339	3.335	0.003	92	24037	20.0	18.2	
44 cis-1,2-Dichloroethene	96	3.363	3.359	0.004	89	49213	20.0	19.6	
46 2-Butanone (MEK)	72	3.381	3.377	0.004	94	20474	100.0	89.8	
45 Ethyl acetate	70	3.381	3.377	0.004	96	9298	40.0	39.0	
47 Methyl acrylate	55	3.430	3.426	0.004	99	43238	NC	NC	
48 Propionitrile	54	3.497	3.493	0.004	97	64209	NC	NC	
50 Chlorobromomethane	128	3.570	3.566	0.004	93	21338	20.0	19.2	
49 Tetrahydrofuran	72	3.570	3.566	0.004	94	9215	40.0	40.5	
51 Methacrylonitrile	67	3.588	3.584	0.004	98	190101	NC	NC	
52 Chloroform	83	3.612	3.608	0.004	96	89617	20.0	20.0	
53 Cyclohexane	84	3.728	3.724	0.004	97	57106	20.0	20.5	
54 1,1,1-Trichloroethane	97	3.740	3.742	-0.002	96	68753	20.0	19.4	
\$ 55 Dibromofluoromethane (Surr)	113	3.758	3.754	0.004	94	99433	50.0	50.5	
56 Carbon tetrachloride	117	3.856	3.852	0.004	97	53018	20.0	18.8	
57 1,1-Dichloropropene	75	3.886	3.882	0.004	91	67712	20.0	19.9	
58 Isobutyl alcohol	43	4.014	4.010	0.004	94	55162	NC	NC	
59 Isooctane	57	4.038	4.034	0.004	98	107205	NC	NC	
60 Benzene	78	4.069	4.065	0.004	98	195279	20.0	21.6	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.087	4.083	0.004	0	137478	50.0	50.7	
62 Isopropyl acetate	43	4.129	4.126	0.003	94	145375	20.0	20.5	
63 Tert-amyl methyl ether	55	4.135	4.132	0.003	90	33616	NC	NC	
64 1,2-Dichloroethane	62	4.160	4.156	0.004	96	74672	20.0	19.7	
65 n-Heptane	57	4.221	4.211	0.010	97	23952	20.0	21.2	
* 66 Fluorobenzene	96	4.348	4.345	0.003	97	453232	50.0	50.0	
67 n-Butanol	56	4.671	4.667	0.004	98	14370	500.0	414.3	
68 Trichloroethene	95	4.695	4.691	0.004	91	47766	20.0	18.9	
69 Methylcyclohexane	83	4.817	4.813	0.004	85	58638	20.0	20.5	
70 Ethyl acrylate	55	4.829	4.819	0.010	97	122137	20.0	20.1	
71 1,2-Dichloropropane	63	4.987	4.983	0.004	87	56597	20.0	18.8	
* 72 1,4-Dioxane-d8	96	5.060	5.056	0.004	0	22507	1000.0	1000.0	
73 Methyl methacrylate	100	5.078	5.075	0.004	94	17258	40.0	38.0	
74 Dibromomethane	93	5.121	5.117	0.003	93	31097	20.0	18.8	
		5.121					400.0		
75 1,4-Dioxane	88		5.123	-0.008	38	3325		271.8	
76 n-Propyl acetate	43	5.139	5.135	0.004	99	75934	20.0	20.0	
77 Dichlorobromomethane	83	5.279	5.275	0.004	98	64169	20.0	19.1	
78 2-Nitropropane	41	5.638	5.634	0.004	81	25830	NC	NC	
79 2-Chloroethyl vinyl ether	63	5.650	5.640	0.010	83	31284	20.0	18.8	
80 Epichlorohydrin	57	5.760	5.750	0.010	91	4508	20.0	19.3	
81 cis-1,3-Dichloropropene	75	5.808	5.805	0.003	99	82978	20.0	19.4	
82 4-Methyl-2-pentanone (MIBK)	43	5.997	5.993	0.004	97	267568	100.0	97.2	
\$ 83 Toluene-d8 (Surr)	98	6.064	6.060	0.004	97	366845	50.0	52.8	
84 Toluene	91	6.149	6.145	0.004	93	189502	20.0	20.0	

Report Date: 14-Oct-2022 16:05:22

Data File:

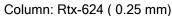
Data File: \\chromfs\Edis	son\Cr				112-15	1655.b\J81275			
	<u>.</u>	RT	Exp RT	Dlt RT		Decree	Cal Amt	OnCol Amt	FI
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
OF trans 1.2 Diable representation	75	C EE1	C E 4 1	0.010	07	74717	20.0	10.7	
85 trans-1,3-Dichloropropene	75 60	6.551	6.541	0.010	97	74717	20.0	19.7	
86 Ethyl methacrylate	69	6.593	6.589	0.004	97	55633	NC	NC	
87 1,1,2-Trichloroethane	83	6.782	6.778	0.004	93	39687	20.0	19.9	
88 Tetrachloroethene	166	6.812	6.808	0.004	92	39710	20.0	20.1	
89 1,3-Dichloropropane	76	7.013	7.009	0.004	95	74702	20.0	20.2	
90 2-Hexanone	58	7.104	7.100	0.004	98	83454	100.0	92.9	
91 n-Butyl acetate	43	7.250	7.246	0.004	95	89839	20.0	20.6	
92 Chlorodibromomethane	129	7.268	7.259	0.009	96	40262	20.0	19.1	
93 Ethylene Dibromide	107	7.433	7.423	0.010	98	42123	20.0	19.6	
* 94 Chlorobenzene-d5	117	8.017	8.013	0.004	93	324862	50.0	50.0	
95 Chlorobenzene	112	8.053	8.049	0.004	89	112830	20.0	19.7	
96 Ethylbenzene	106	8.163	8.153	0.010	100	59738	20.0	20.0	
97 1,1,1,2-Tetrachloroethane	131	8.175	8.165	0.010	93	38016	20.0	19.5	
98 m-Xylene & p-Xylene	106	8.309	8.305	0.004	0	73517	20.0	19.8	
99 o-Xylene	106	8.759	8.755	0.004	92	73874	20.0	19.7	
100 n-Butyl acrylate	73	8.777	8.773	0.004	95	38092	20.0	20.1	
101 Styrene	104	8.795	8.792	0.003	91	127703	20.0	19.9	
103 Bromoform	173	9.008	9.004	0.004	94	24393	20.0	18.5	
102 Amyl acetate (mixed isomers)		9.027	9.017	0.010	85	110667	20.0	21.3	
104 Isopropylbenzene	105	9.142	9.138	0.004	98	184734	20.0	20.3	
\$ 105 4-Bromofluorobenzene	174	9.337	9.333	0.004	83	118149	50.0	51.2	
106 Bromobenzene	156	9.465	9.461	0.004	93	49791	20.0	19.7	
107 1,1,2,2-Tetrachloroethane	83	9.531	9.528	0.003	99	60583	20.0	20.3	
108 N-Propylbenzene	91	9.550	9.546	0.004	98	239348	20.0	20.2	
109 1,2,3-Trichloropropane	110	9.568	9.564	0.004	96	12533	20.0	19.0	
110 trans-1,4-Dichloro-2-butene	53	9.598	9.595	0.003	85	18919	NC	NC	
111 2-Chlorotoluene	91	9.641	9.637	0.004	97	173440	20.0	20.5	
112 4-Ethyltoluene	105	9.659	9.655	0.004	97	193196	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.726	9.722	0.004	91	157946	20.0	20.0	
114 4-Chlorotoluene	91	9.757	9.753	0.004	99	165010	20.0	20.2	
115 Butyl Methacrylate	87	9.842	9.838	0.004	96	61849	20.0	20.1	
116 tert-Butylbenzene	119	10.006	10.002	0.004	88	119763	20.0	20.0	
117 1,2,4-Trimethylbenzene	105	10.061	10.063	-0.002	99	170600	20.0	20.4	
118 sec-Butylbenzene	105	10.201	10.197	0.004	98	181425	20.0	20.1	
120 1,3-Dichlorobenzene	146	10.322	10.319	0.003	92	90117	20.0	19.8	
119 4-Isopropyltoluene	119	10.328	10.325	0.003	96	151330	20.0	20.2	
* 121 1,4-Dichlorobenzene-d4	152	10.389	10.385	0.004	98	180160	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.408	10.404	0.004	95	94607	20.0	19.9	
123 1,2,3-Trimethylbenzene	105	10.426	10.428	-0.002	99	182061	20.0	20.5	
124 Benzyl chloride	91	10.535	10.531	0.004	96	97938	20.0	20.3	
125 2,3-Dihydroindene	117	10.590	10.586	0.004	94	173470	NC	NC	
126 p-Diethylbenzene	119	10.651	10.647	0.004	90	93274	NC	NC	
127 n-Butylbenzene	92	10.669	10.671	-0.002	97	84565	20.0	20.1	
128 1,2-Dichlorobenzene	146	10.718	10.714	0.004	93	90220	20.0	20.0	
129 1,2,4,5-Tetramethylbenzene	119	11.277	11.274	0.003	96	156151	NC	NC	
130 1,2-Dibromo-3-Chloropropane	e157	11.357	11.353	0.004	87	8443	20.0	17.9	
131 1,3,5-Trichlorobenzene	180	11.466	11.462	0.004	95	62656	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.941	11.937	0.004	93	56385	20.0	19.2	
133 Hexachlorobutadiene	225	12.026	12.022	0.004	93	20499	20.0	20.2	
134 Naphthalene	128	12.129	12.125	0.004	98	144549	20.0	19.1	
135 1,2,3-Trichlorobenzene	180	12.299	12.296	0.003	94	50926	20.0	18.8	
S 136 1,2-Dichloroethene, Total	100				0		40.0	38.5	
,					-				

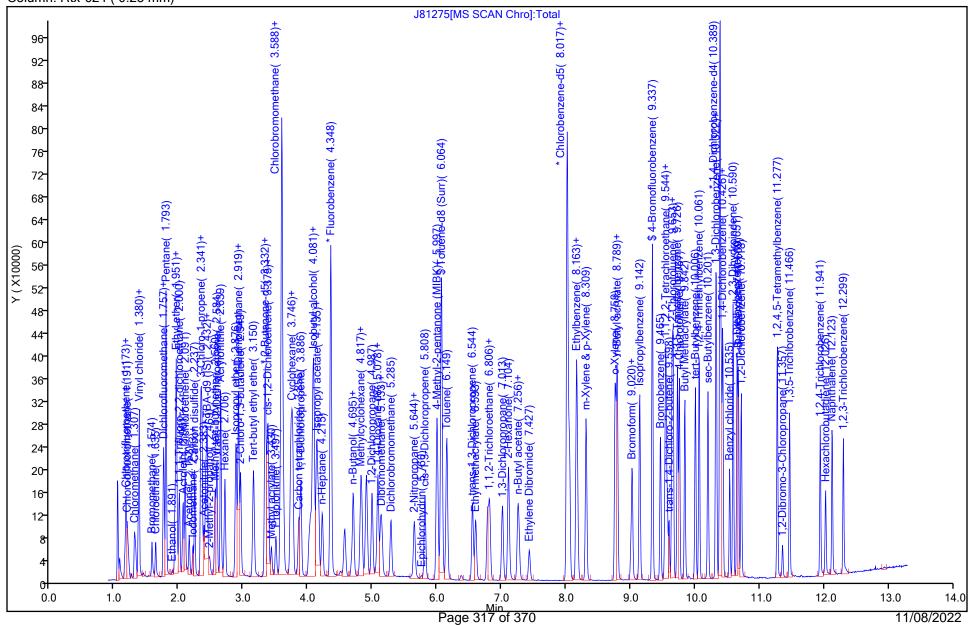
Report Date: 14-Oct-2022 16:05:22
Data File: \\chromfs\Edisor

Data File. \\Cilioniis\Eui	SUITICI	IIUIIDala		301202210	12-13	1000.000127	ט.ט		
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
S 137 Xylenes, Total S 138 Total BTEX	100 1				0 0		40.0 100.0	39.5 101.1	
QC Flag Legend Processing Flags NC - Not Calibrated Reagents: GAS C SP_00483 8260 SP_00159 8FreonsSS_00050 ACROLEIN SP_00142 8260ISNEW_00171		Amount Amount Amount	Added: Added: Added: Added: Added:	20.00 20.00 4.00	l l	Jnits: uL Jnits: uL Jnits: uL Jnits: uL Jnits: uL	Run Reage	nt	
8260SURR250_00232		Amount	Added:	1.00	ι	Jnits: uL	Run Reage	nt	

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81275.D


Injection Date: 13-Oct-2022 04:56:30 Instrument ID: CVOAMS8


Lims ID: ICV

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

16

16

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab Sample ID: CCVIS 460-875754/3 Calibration Date: 11/03/2022 08:29

Instrument ID: CVOAMS8 Calib Start Date: 10/12/2022 23:30

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/13/2022 02:01

Lab File ID: J82192.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%REC	%REC LIMITS
Dichlorodifluoromethane	Ave	0.3674	0.3081		16.8	20.0	84	60-140
Chloromethane	Ave	0.5304	0.2976		11.2	20.0	56	0.1-205
Vinyl chloride	Ave	0.3527	0.2356		13.4	20.0	67	5-195
Butadiene	Ave	0.3387	0.2085		12.3	20.0	62	60-140
Bromomethane	Ave	0.1299	0.0999		15.4	20.0	77	15-185
Chloroethane	Ave	0.1740	0.1261		14.5	20.0	72	40-160
Trichlorofluoromethane	Ave	0.3747	0.3566		19.0	20.0	95	50-150
Pentane	Ave	0.4372	0.3132		28.7	40.0	72	60-140
Ethanol	Ave	0.0450	0.0569		1010	800	126	60-140
Ethyl ether	Ave	0.2176	0.1552		14.3	20.0	71	60-140
2-Methyl-1,3-butadiene	Ave	0.2746	0.2105		15.3	20.0	77	60-140
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2217	0.2482		22.4	20.0	112	60-140
Acrolein	Ave	1.799	1.355		30.1	40.0	75	10-150
1,1-Dichloroethene	Ave	0.2219	0.2156		19.4	20.0	97	50-150
Acetone	Ave	0.6627	0.5697		86.0	100	86	60-140
Iodomethane	Lin2		0.1665		14.4	20.0	72	60-140
Isopropyl alcohol	Ave	0.5196	0.6558		252	200	126	60-140
Carbon disulfide	Ave	0.8155	0.8344		20.5	20.0	102	60-140
3-Chloro-1-propene	Ave	0.1557	0.1358		17.4	20.0	87	60-140
Methyl acetate	Ave	0.2143	0.1240		23.1	40.0	58*	60-140
Acetonitrile	Ave	1.325	1.366		206	200	103	60-140
Methylene Chloride	Ave	0.2744	0.2599		18.9	20.0	95	60-140
2-Methyl-2-propanol	Ave	0.8017	0.9779		244	200	122	60-140
Methyl tert-butyl ether	Ave	0.6816	0.5279		15.5	20.0	77	60-140
trans-1,2-Dichloroethene	Ave	0.2515	0.2423		19.3	20.0	96	70-130
Acrylonitrile	Ave	4.784	4.178		175	200	87	60-140
Hexane	Ave	0.3133	0.2339		14.9	20.0	75	60-140
Isopropyl ether	Ave	1.042	0.5627		10.8	20.0	54*	60-140
1,1-Dichloroethane	Ave	0.5650	0.4525		16.0	20.0	80	70-130
Vinyl acetate	Ave	0.6615	0.3802		23.0	40.0	57*	60-140
2,2-Dichloropropane	Ave	0.1453	0.1189		16.4	20.0	82	60-140
cis-1,2-Dichloroethene	Ave	0.2764	0.2809		20.3	20.0	102	60-140
2-Butanone (MEK)	Ave	0.1966	0.2360		120	100	120	60-140
Ethyl acetate	Ave	0.2052	0.2905		56.6	40.0	142*	60-140
Chlorobromomethane	Ave	0.1224	0.1402		22.9	20.0	115	60-140
Tetrahydrofuran	Ave	0.1961	0.2523		51.5	40.0	129	60-140
Chloroform	Ave	0.4935	0.4642		18.8	20.0	94	70-135
Cyclohexane	Ave	0.3070	0.3011		19.6	20.0	98	60-140
1,1,1-Trichloroethane	Ave	0.3904	0.3916		20.1	20.0	100	70-130
Carbon tetrachloride	Ave	0.3106	0.3344		21.5	20.0	108	70-130

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab Sample ID: CCVIS 460-875754/3 Calibration Date: 11/03/2022 08:29

Instrument ID: CVOAMS8 Calib Start Date: 10/12/2022 23:30

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/13/2022 02:01

Lab File ID: $\underline{\mathtt{J82192.D}}$ Conc. Units: $\underline{\mathtt{ug/L}}$ Heated Purge: (Y/N) $\underline{\mathtt{N}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%REC	%REC LIMITS
1,1-Dichloropropene	Ave	0.3745	0.3196		17.1	20.0	85	60-140
Benzene	Ave	1.394	0.9703		13.9	20.0	70	65-135
Isopropyl acetate	Ave	0.7834	0.4166		10.6	20.0	53*	60-140
1,2-Dichloroethane	Ave	0.4184	0.3403		16.3	20.0	81	70-130
n-Heptane	Ave	0.1247	0.0824		13.2	20.0	66	60-140
n-Butanol	Ave	0.1892	0.3423		905	500	181*	60-140
Trichloroethene	Ave	0.2781	0.3217		23.1	20.0	116	65-135
Methylcyclohexane	Ave	0.3157	0.3493		22.1	20.0	111	60-140
Ethyl acrylate	Ave	0.6709	0.5466		16.3	20.0	81	60-140
1,2-Dichloropropane	Ave	0.3313	0.3164		19.1	20.0	95	35-165
Methyl methacrylate	Ave	0.0501	0.0536		42.8	40.0	107	60-140
1,4-Dioxane	Ave	0.5434	1.075		792	400	198*	60-140
Dibromomethane	Ave	0.1826	0.2164		23.7	20.0	119	60-140
n-Propyl acetate	Ave	0.4180	0.2653		12.7	20.0	63	60-140
Dichlorobromomethane	Ave	0.3711	0.4034		21.7	20.0	109	65-135
2-Chloroethyl vinyl ether	Ave	0.1839	0.1153		12.6	20.0	63	0.1-225
Epichlorohydrin	Ave	0.2009	0.2688		535	400	134	60-140
cis-1,3-Dichloropropene	Ave	0.6566	0.4642		14.1	20.0	71	25-175
4-Methyl-2-pentanone (MIBK)	Ave	2.371	2.274		95.9	100	96	60-140
Toluene	Ave	1.456	1.212		16.7	20.0	83	70-130
trans-1,3-Dichloropropene	Ave	0.5843	0.3844		13.2	20.0	66	50-150
1,1,2-Trichloroethane	Ave	0.3075	0.2564		16.7	20.0	83	70-130
Tetrachloroethene	Ave	0.3040	0.3396		22.3	20.0	112	70-130
1,3-Dichloropropane	Ave	0.5684	0.4253		15.0	20.0	75	60-140
2-Hexanone	Ave	0.7744	0.8540		110	100	110	60-140
n-Butyl acetate	Ave	0.6725	0.2646		7.87	20.0	39*	60-140
Chlorodibromomethane	Ave	0.3245	0.3326		20.5	20.0	103	70-135
Ethylene Dibromide	Ave	0.3311	0.2950		17.8	20.0	89	60-140
Chlorobenzene	Ave	0.8794	0.8591		19.5	20.0	98	65-135
Ethylbenzene	Ave	0.4602	0.3831		16.6	20.0	83	60-140
1,1,1,2-Tetrachloroethane	Ave	0.2994	0.2915		19.5	20.0	97	60-140
m-Xylene & p-Xylene	Ave	0.5729	0.4784		16.7	20.0	84	60-140
o-Xylene	Ave	0.5760	0.4619		16.0	20.0	80	60-140
n-Butyl acrylate	Ave	0.2911	0.1853		12.7	20.0	64	60-140
Styrene	Ave	0.9873	0.9029		18.3	20.0	91	60-140
Bromoform	Ave	0.2031	0.2301		22.7	20.0	113	70-130
Amyl acetate (mixed isomers)	Ave	1.443	0.5439		7.54	20.0	38*	60-140
Isopropylbenzene	Ave	1.401	1.165		16.6	20.0	83	60-140
Bromobenzene	Ave	0.7028	0.6202		17.6	20.0	88	60-140
1,1,2,2-Tetrachloroethane	Ave	0.8301	0.6432		15.5	20.0	77	60-140
N-Propylbenzene	Ave	3.295	2.279		13.8	20.0	69	60-140

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Lab Sample ID: CCVIS 460-875754/3 Calibration Date: 11/03/2022 08:29

Instrument ID: CVOAMS8 Calib Start Date: 10/12/2022 23:30

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/13/2022 02:01

Lab File ID: J82192.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	"-	REC	%REC LIMITS
1,2,3-Trichloropropane	Ave	0.1829	0.1465		16.0	20.0		80	60-140
2-Chlorotoluene	Ave	2.353	1.742		14.8	20.0		74	60-140
1,3,5-Trimethylbenzene	Ave	2.195	1.640		14.9	20.0		75	60-140
4-Chlorotoluene	Ave	2.272	1.687		14.9	20.0		74	60-140
Butyl Methacrylate	Ave	0.8536	0.5090		11.9	20.0		60	60-140
tert-Butylbenzene	Ave	1.661	1.222		14.7	20.0		74	60-140
1,2,4-Trimethylbenzene	Ave	2.322	1.749		15.1	20.0		75	60-140
sec-Butylbenzene	Ave	2.501	1.822		14.6	20.0		73	60-140
1,3-Dichlorobenzene	Ave	1.262	1.134		18.0	20.0		90	70-130
4-Isopropyltoluene	Ave	2.076	1.554		15.0	20.0		75	60-140
1,4-Dichlorobenzene	Ave	1.321	1.179		17.9	20.0		89	65-135
1,2,3-Trimethylbenzene	Ave	2.461	1.887		15.3	20.0		77	60-140
Benzyl chloride	Ave	1.339	1.009		15.1	20.0		75	60-140
n-Butylbenzene	Ave	1.166	0.8797		15.1	20.0		75	60-140
1,2-Dichlorobenzene	Ave	1.254	1.179		18.8	20.0		94	65-135
1,2-Dibromo-3-Chloropropane	Ave	0.1310	0.1288		19.7	20.0		98	60-140
1,2,4-Trichlorobenzene	Ave	0.8148	0.7061		17.3	20.0		87	60-140
Hexachlorobutadiene	Ave	0.2812	0.2819		20.1	20.0		100	60-140
Naphthalene	Ave	2.104	1.663		15.8	20.0		79	60-140
1,2,3-Trichlorobenzene	Ave	0.7498	0.6729		17.9	20.0		90	60-140
Dibromofluoromethane (Surr)	Ave	0.2174	0.245	3	5.	6.4	50.0	12.8	
1,2-Dichloroethane-d4 (Surr)	Ave	0.2990	0.264	3	4	4.2	50.0	-11.6	
Toluene-d8 (Surr)	Ave	1.070	1.05	3	4 :	9.2	50.0	-1.5	
4-Bromofluorobenzene	Ave	0.3550	0.411	3	5	7.9 !	50.0	15.9	

Report Date: 03-Nov-2022 20:00:49 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82192.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 03-Nov-2022 08:29:30 ALS Bottle#: 2 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: CCVIS

Misc. Info.: 460-0152676-003

Operator ID: Instrument ID: CVOAMS8

Sublist: chrom-8260_W8*sub61

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 20:00:48Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: HVW2 Date: 03-Nov-2022 20:00:48

First Level Reviewer: HVW2			D:	ate:		03-Nov-202	22 20:00:48		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.143	1.143	0.000	90	3852	NC	NC	
4 Dichlorodifluoromethane	85	1.167	1.167	0.000	99	57847	20.0	16.8	
5 Chlorodifluoromethane	67	1.185	1.185	0.000	98	10269	NC	NC	
6 Chloromethane	50	1.295	1.295	0.000	99	55871	20.0	11.2	
7 Vinyl chloride	62	1.350	1.350	0.000	99	44237	20.0	13.4	
8 Butadiene	54	1.368	1.368	0.000	97	39144	20.0	12.3	
9 Bromomethane	94	1.563	1.563	0.000	98	18749	20.0	15.4	
10 Chloroethane	64	1.617	1.617	0.000	99	23673	20.0	14.5	
12 Dichlorofluoromethane	67	1.739	1.739	0.000	99	77699	NC	NC	
11 Trichlorofluoromethane	101	1.751	1.751	0.000	98	66948	20.0	19.0	
13 Pentane	43	1.782	1.782	0.000	94	117600	40.0	28.7	
14 Ethanol	46	1.879	1.879	0.000	97	6859	800.0	1010.9	
15 Ethyl ether	59	1.915	1.915	0.000	98	29142	20.0	14.3	
16 2-Methyl-1,3-butadiene	53	1.934	1.934	0.000	97	39529	20.0	15.3	
17 1,2-Dichloro-1,1,2-trifluoroe	tha117	1.946	1.946	0.000	93	34830	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	etha 83	1.988	1.988	0.000	98	62584	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluor	oe 101	2.043	2.043	0.000	97	46595	20.0	22.4	
19 Acrolein	56	2.049	2.049	0.000	45	8164	40.0	30.1	
21 1,1-Dichloroethene	96	2.074	2.074	0.000	99	40488	20.0	19.4	
22 Acetone	43	2.141	2.141	0.000	85	42506	100.0	86.0	
23 lodomethane	142	2.195	2.195	0.000	99	31259	20.0	14.4	
25 Isopropyl alcohol	45	2.201	2.201	0.000	74	19758	200.0	252.5	
24 Carbon disulfide	76	2.226	2.226	0.000	99	156657	20.0	20.5	
26 3-Chloro-1-propene	76	2.317	2.317	0.000	93	25501	20.0	17.4	
28 Methyl acetate	43	2.323	2.323	0.000	100	46552	40.0	23.1	
27 Cyclopentene	67	2.335	2.335	0.000	96	92849	NC	NC	
29 Acetonitrile	41	2.366	2.366	0.000	99	41169	200.0	206.2	
* 30 TBA-d9 (IS)	65	2.402	2.402	0.000	81	150637	1000.0	1000.0	
31 Methylene Chloride	84	2.420	2.420	0.000	90	48793	20.0	18.9	
32 2-Methyl-2-propanol	59	2.457	2.457	0.000	98	29462	200.0	244.0	

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82192.D

	Data File: \\chromfs\Edis	son\Cr				03-15	2676.b\J82192			
	0	0	RT	Exp RT	Dlt RT		Dec	Cal Amt	OnCol Amt	Floring
	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
	33 Methyl tert-butyl ether	73	2.542	2.542	0.000	96	99111	20.0	15.5	
	34 trans-1,2-Dichloroethene	73 96	2.542	2.542	0.000	96 97	45498	20.0	19.3	
	35 Acrylonitrile	53	2.627	2.627	0.000	94	125868	20.0	174.7	
	36 Hexane	55 57	2.688	2.688	0.000	94 91	43915	200.0	174.7	
	37 Isopropyl ether	45	2.858	2.858	0.000	96	105657	20.0	14.9	
	38 1,1-Dichloroethane	63	2.895	2.895	0.000	99	84964	20.0	16.0	
	39 Vinyl acetate	43	2.893	2.893	0.000	100	142767	40.0	23.0	
	40 2-Chloro-1,3-butadiene	43 88	2.931	2.931	0.000	93	36720	NC	NC	
		59	3.132	3.132	0.000	93 88	103358	NC	NC	
*	41 Tert-butyl ethyl ether 43 2-Butanone-d5	46	3.132	3.315	0.000	99	186523	250.0	250.0	
		79	3.315	3.315	0.000	93	22323	20.0	250.0 16.4	
	42 2,2-Dichloropropane 44 cis-1,2-Dichloroethene	79 96	3.345	3.345	0.000	93 98	52740	20.0	20.3	
	45 Ethyl acetate	90 70	3.363	3.363	0.000	96	8670	40.0	20.3 56.6	
	•	70 72	3.363	3.363	0.000	96 96	17606	100.0	120.1	
	46 2-Butanone (MEK)	72 55	3.412	3.412	0.000	100	27704	NC	NC	
	47 Methyl acrylate	55 54	3.479	3.479	0.000	97	48906	NC NC	NC	
	48 Propionitrile		3.546	3.479 3.546	0.000		26322		22.9	
	50 Chlorobromomethane	128 72	3.552	3.552	0.000	85 53	7529	20.0 40.0	51.5	
	49 Tetrahydrofuran	72 67		3.552 3.570		90		NC	NC	
	51 Methacrylonitrile52 Chloroform	83	3.570	3.570 3.594	0.000 0.000	99	149989 87156			
			3.594					20.0	18.8	
	53 Cyclohexane	84	3.710	3.710	0.000	92	56527	20.0	19.6	
	54 1,1,1-Trichloroethane	97	3.722	3.722	0.000	98	73530	20.0	20.1	
1	55 Dibromofluoromethane (Surr)		3.740	3.740	0.000	96	115129	50.0	56.4	
	56 Carbon tetrachloride	117	3.832	3.832	0.000	99	62784	20.0	21.5	
	57 1,1-Dichloropropene	75 42	3.862	3.862	0.000	97	60009	20.0	17.1	
	58 Isobutyl alcohol	43	3.996	3.996	0.000	95	43572	NC	NC	
	59 Isooctane	57	4.014	4.014	0.000	97	74491	NC	NC	а
	60 Benzene	78	4.051	4.051	0.000	97	178184	20.0	13.9	
,	61 1,2-Dichloroethane-d4 (Surr)	65	4.069	4.069	0.000	0	124056	50.0	44.2	
	62 Isopropyl acetate	43	4.112	4.112	0.000	92	78209	20.0	10.6	
	63 Tert-amyl methyl ether	55	4.112	4.112	0.000	88	26499	NC	NC	
	64 1,2-Dichloroethane	62	4.142	4.142	0.000	99	63895	20.0	16.3	
	65 n-Heptane	57	4.197	4.197	0.000	90	15480	20.0	13.2	
*	66 Fluorobenzene	96	4.331	4.331	0.000	98	469380	50.0	50.0	
	67 n-Butanol	56	4.647	4.647	0.000	90	25779	500.0	904.7	
	68 Trichloroethene	95	4.677	4.677	0.000	99	60402	20.0	23.1	
	69 Methylcyclohexane	83	4.793	4.793	0.000	93	65580	20.0	22.1	
	70 Ethyl acrylate	55	4.805	4.805	0.000	97	102621	20.0	16.3	
	71 1,2-Dichloropropane	63	4.963	4.963	0.000	93	59410	20.0	19.1	
*	f 72 1,4-Dioxane-d8	96	5.036	5.036	0.000	0	31040	1000.0	1000.0	
	73 Methyl methacrylate	100	5.055	5.055	0.000	88	20116	40.0	42.8	
	75 1,4-Dioxane	88	5.097	5.097	0.000	45	13352	400.0	791.5	
	74 Dibromomethane	93	5.097	5.097	0.000	98	40626	20.0	23.7	
	76 n-Propyl acetate	43	5.121	5.121	0.000	97	49813	20.0	12.7	
	77 Dichlorobromomethane	83	5.255	5.255	0.000	99	75736	20.0	21.7	
	78 2-Nitropropane	41	5.614	5.614	0.000	85	17474	NC	NC	
	79 2-Chloroethyl vinyl ether	63	5.626	5.626	0.000	86	21700	20.0	12.6	
	80 Epichlorohydrin	57	5.730	5.730	0.000	99	80206	400.0	535.2	
	81 cis-1,3-Dichloropropene	75	5.785	5.785	0.000	91	85251	20.0	14.1	
	82 4-Methyl-2-pentanone (MIBK)	43	5.973	5.973	0.000	96	169696	100.0	95.9	
Ç	83 Toluene-d8 (Surr)	98	6.040	6.040	0.000	99	483518	50.0	49.2	
4	84 Toluene	91	6.125	6.125	0.000	93	222655	20.0	16.7	
	3. 10140110	٠,	0.120	0.120	0.000	00		20.0	10.7	

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82192.D

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82192.D									
0	0:	RT	Exp RT	Dlt RT		Division	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
9E trans 1.2 Diablerances	.no. 75	6 E21	6.521	0.000	96	70500	20.0	12.2	
85 trans-1,3-Dichloroprope	ne 75 69	6.521 6.575	6.575	0.000		70599 45061	20.0 NC	13.2 NC	
86 Ethyl methacrylate	83	6.758	6.758	0.000	87 97			16.7	
87 1,1,2-Trichloroethane	83 166	6.788	6.788	0.000	97 97	47095 62370	20.0	22.3	
88 Tetrachloroethene	76	6.983	6.983	0.000	93	78103	20.0 20.0	22.3 15.0	
89 1,3-Dichloropropane 90 2-Hexanone	76 58	7.080	7.080	0.000		63713	100.0	110.3	
	43		7.080 7.226		96 08				
91 n-Butyl acetate		7.226		0.000	98	48592	20.0	7.87	
92 Chlorodibromomethane		7.238	7.238	0.000	98	61079	20.0	20.5	
93 Ethylene Dibromide	107	7.403	7.403	0.000	98 95	54177	20.0	17.8	
* 94 Chlorobenzene-d5	117	7.993	7.993	0.000	85 06	459118	50.0	50.0	
95 Chlorobenzene	112	8.029	8.029	0.000	96	157770	20.0	19.5	
96 Ethylbenzene	106	8.139	8.139	0.000	98	70349	20.0	16.6	
97 1,1,1,2-Tetrachloroetha		8.151	8.151	0.000	97	53537	20.0	19.5	
98 m-Xylene & p-Xylene	106	8.291	8.291	0.000	0	87854	20.0	16.7	
99 o-Xylene	106	8.741	8.741	0.000	94	84819	20.0	16.0	
100 n-Butyl acrylate	73 104	8.759	8.759	0.000	97 06	34033	20.0	12.7	
101 Styrene	104	8.778	8.778	0.000	96	165809	20.0	18.3	
103 Bromoform	173	8.984	8.984	0.000	97	42255	20.0	22.7	
102 Amyl acetate (mixed iso		9.009	9.009	0.000	91	64949	20.0	7.54	
104 Isopropylbenzene	105	9.124	9.124	0.000	96	213920	20.0	16.6	
\$ 105 4-Bromofluorobenzene		9.319	9.319	0.000	95	188816	50.0	57.9	
106 Bromobenzene	156	9.447	9.447	0.000	94	74054	20.0	17.6	
107 1,1,2,2-Tetrachloroetha		9.514	9.514	0.000	98	76800	20.0	15.5	
108 N-Propylbenzene	91	9.532	9.532	0.000	99	272110	20.0	13.8	
109 1,2,3-Trichloropropane		9.550	9.550	0.000	98	17488	20.0	16.0	
110 trans-1,4-Dichloro-2-bu		9.581	9.581	0.000	94	16578	NC	NC	
111 2-Chlorotoluene	91	9.629	9.629	0.000	96	208004	20.0	14.8	
112 4-Ethyltoluene	105	9.641	9.641	0.000	98	237605	NC	NC	
113 1,3,5-Trimethylbenzene		9.708	9.708	0.000	92	195877	20.0	14.9	
114 4-Chlorotoluene	91	9.739	9.739	0.000	97	201430	20.0	14.9	
115 Butyl Methacrylate	87	9.824	9.824	0.000	90	60781	20.0	11.9	
116 tert-Butylbenzene	119	9.988	9.988	0.000	93	145932	20.0	14.7	
117 1,2,4-Trimethylbenzene		10.049	10.049	0.000	97	208887	20.0	15.1	
118 sec-Butylbenzene	105	10.183	10.183	0.000	99	217559	20.0	14.6	
120 1,3-Dichlorobenzene	146	10.305	10.305	0.000	97	135429	20.0	18.0	
119 4-Isopropyltoluene	119	10.317	10.317	0.000	97	185612	20.0	15.0	
* 121 1,4-Dichlorobenzene-d		10.371	10.371	0.000	94	298524	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.390	10.390	0.000	96	140817	20.0	17.9	
123 1,2,3-Trimethylbenzene		10.414	10.414	0.000	98	225344	20.0	15.3	
124 Benzyl chloride	91	10.517	10.517	0.000	99	120441	20.0	15.1	
125 2,3-Dihydroindene	117	10.572	10.572	0.000	94	226252	NC	NC	
126 p-Diethylbenzene	119	10.633	10.633	0.000	92	120524	NC	NC	
127 n-Butylbenzene	92	10.657	10.657	0.000	98	105050	20.0	15.1	
128 1,2-Dichlorobenzene	146	10.700	10.700	0.000	97	140745	20.0	18.8	
129 1,2,4,5-Tetramethylben	zene 119	11.260	11.260	0.000	97	173177	NC	NC	
130 1,2-Dibromo-3-Chloropropane157		11.345	11.345	0.000	94	15377	20.0	19.7	
131 1,3,5-Trichlorobenzene	•	11.448	11.448	0.000	97	94582	NC	NC	
132 1,2,4-Trichlorobenzene		11.929	11.929	0.000	94	84316	20.0	17.3	
133 Hexachlorobutadiene	225	12.008	12.008	0.000	96	33666	20.0	20.1	
134 Naphthalene	128	12.111	12.111	0.000	100	198608	20.0	15.8	
135 1,2,3-Trichlorobenzene		12.288	12.288	0.000	95	80345	20.0	17.9	
S 136 1,2-Dichloroethene, To					0	-	40.0	39.6	
,,									

Report Date: 03-Nov-2022 20:00:49
Data File: \chromfs\Edison Chrom Revision: 2.3 25-Oct-2022 11:16:06

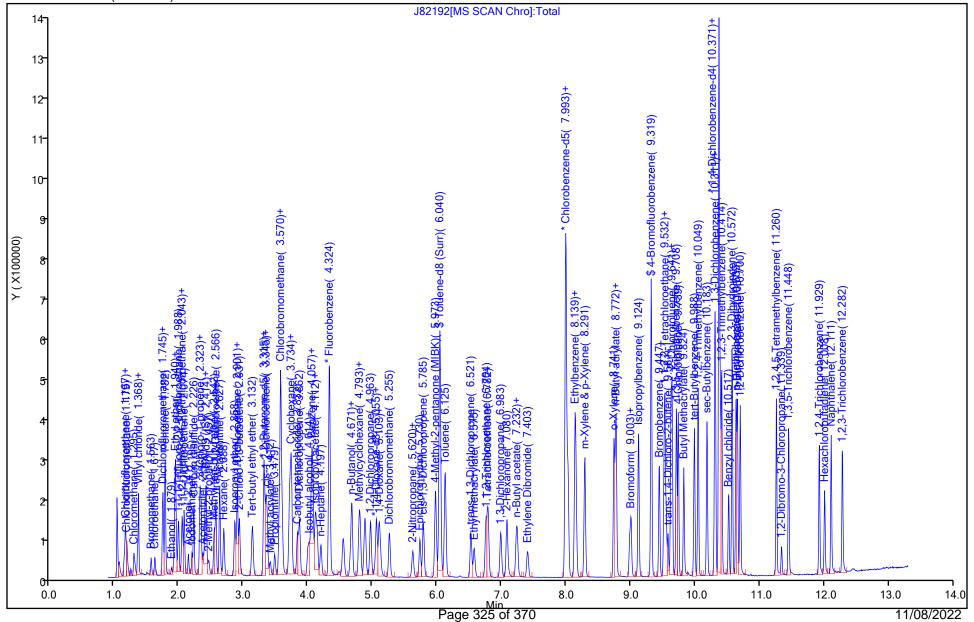
\\chromfs\Edison\ChromData\CVOAMS8\20221103-152676 b\.I82192 D

Data File: \\cnromts\Edison\CnromData\CVOAW58\20221103-152676.b\J82192.D								
Compound	Sig	RT Exp R (min.)		Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
S 137 Xylenes, Total S 138 Total BTEX	100 1			0		40.0 100.0	32.7 80.0	
QC Flag Legend Processing Flags NC - Not Calibrated Review Flags a - User Assigned ID								
Reagents:			00.00					
524freon_00059		Amount Added:		_	Jnits: uL			
GASES Li_00500		Amount Added:		_	Jnits: uL			
8260MIX1COMB_00161		Amount Added:		_	Jnits: uL			
ACROLEIN W_00145		Amount Added:	4.00	l	Jnits: uL			
8260ISNEW_00171		Amount Added:	1.00	L	Jnits: uL	Run Reage	nt	
8260SURR250_00233		Amount Added:	1.00	L	Jnits: uL	Run Reage	nt	

Report Date: 03-Nov-2022 20:00:50 Chrom Revision: 2.3 25-Oct-2022 11:16:06

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82192.D


Injection Date: 03-Nov-2022 08:29:30 Instrument ID: CVOAMS8 Lims ID: CCVIS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

3

Report Date: 14-Oct-2022 16:05:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81260.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 12-Oct-2022 22:40:30 ALS Bottle#: 9 Worklist Smp#: 1

Injection Vol: 5.0 mL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 460-0151655-001

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:14-Oct-2022 16:05:18Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1652

First Level Reviewer: HVW2 Date: 12-Oct-2022 22:51:09

0	0.	KI (t.)	ExpRI	Dlt RT		D	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags

\$ 139 BFB 95 3.910 3.910 0.000 74 54901 NR NR

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB_00032 Amount Added: 1.00 Units: uL

Report Date: 14-Oct-2022 16:05:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42

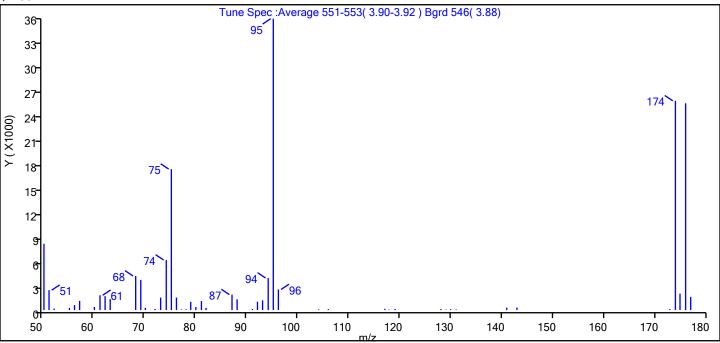
MS Tune Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81260.D Injection Date: 12-Oct-2022 22:40:30 Instrument ID: CVOAMS8

Lims ID: BFB

Client ID:


Operator ID: ALS Bottle#: 9 Worklist Smp#: 1

Injection Vol: 5.0 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Tune Method: BFB Method 8260

\$ 139 BFB

m/z	Ion Abundance Criteria	% Relative Abundance
95	Base peak, 100% relative abundance	100.0
50	15 to 40% of m/z 95	22.8
75	30 to 60% of m/z 95	48.4
96	5 to 9% of m/z 95	7.1
173	Less than 2% of m/z 174	0.3 (0.5)
174	50 to 120% of m/z 95	71.8
175	5 to 9% of m/z 174	5.6 (7.9)
176	Greater than 95% but less than 101% of m/z 174	71.0 (98.8)
177	5 to 9% of m/z 176	4.5 (6.4)

Report Date: 14-Oct-2022 16:05:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81260.D\8260_W8.rslt\spectra.d

Injection Date: 12-Oct-2022 22:40:30

Spectrum: Tune Spec :Average 551-553(3.90-3.92) Bgrd 546(3.88)

Base Peak: 95.10 Minimum % Base Peak: 0 Number of Points: 48

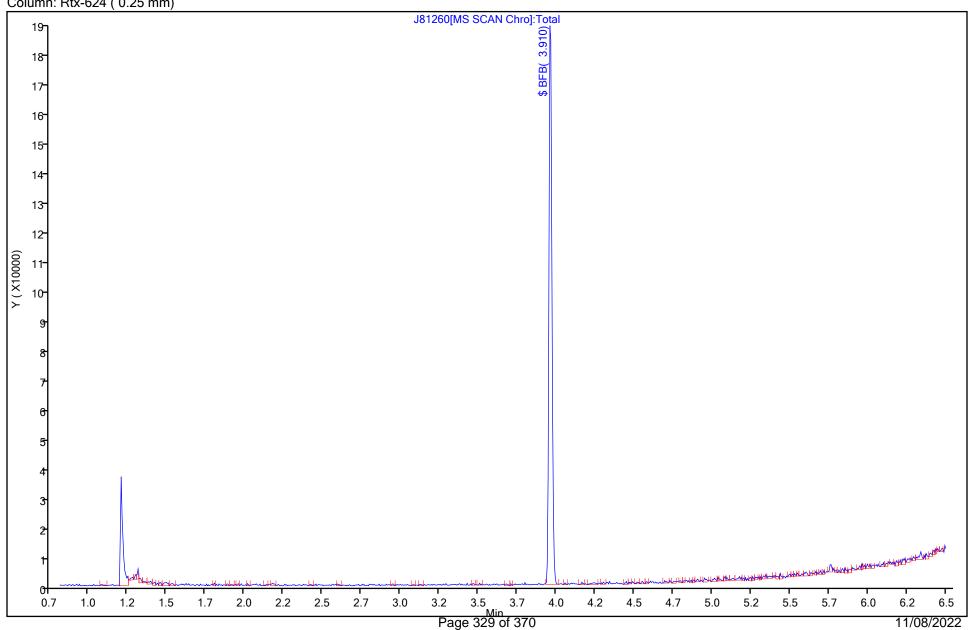
m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
50.00	8048	70.00	276	87.00	1877	119.00	142
51.00	2414	72.00	129	88.00	1306	128.00	128
52.00	175	73.00	1510	91.00	133	129.00	51
55.00	265	74.00	6070	92.00	1018	130.00	113
56.00	601	75.00	17096	93.00	1184	131.00	65
57.00	1116	76.00	1515	94.00	3890	141.00	295
60.00	378	77.00	61	95.00	35328	143.00	305
61.00	1795	78.00	81	96.00	2498	173.00	115
62.00	1691	79.00	1004	104.00	80	174.00	25376
63.00	1335	80.00	368	106.00	111	175.00	1996
68.00	4134	81.00	1087	117.00	152	176.00	25072
69.00	3657	82.00	260	118.00	55	177.00	1601

Report Date: 14-Oct-2022 16:05:18 Chrom Revision: 2.3 28-Sep-2022 12:57:42

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81260.D

12-Oct-2022 22:40:30 Injection Date: Instrument ID: CVOAMS8


Lims ID: BFB

Client ID: Injection Vol:

5.0 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

1

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82190.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 03-Nov-2022 07:37:30 ALS Bottle#: 99 Worklist Smp#: 1

Injection Vol: 5.0 mL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 460-0152676-001

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 08:51:10Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 07:57:19

Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
\$ 139 BFB	95	3.904	3.904	0.000	84	63388	NR	NR	а

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Review Flags

a - User Assigned ID

Reagents:

BFB_00032 Amount Added: 1.00 Units: uL

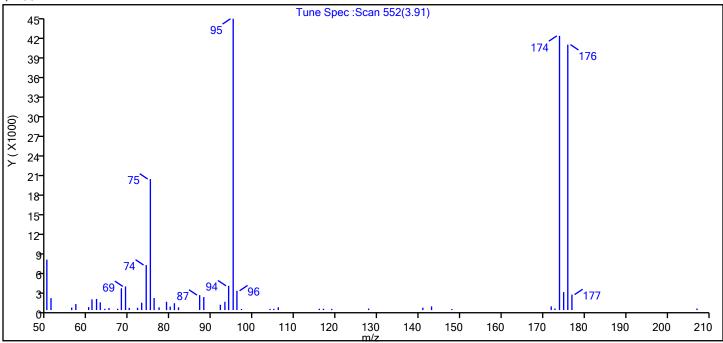
MS Tune Report

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82190.D Injection Date: 03-Nov-2022 07:37:30 Instrument ID: CVOAMS8

Lims ID: BFB

Client ID:


Operator ID: ALS Bottle#: 99 Worklist Smp#: 1

Injection Vol: 5.0 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Tune Method: BFB Method 8260

\$ 139 BFB

m/z	Ion Abundance Criteria	% Relative Abundance
95	Base peak, 100% relative abundance	100.0
50	15 to 40% of m/z 95	17.3
75	30 to 60% of m/z 95	45.0
96	5 to 9% of m/z 95	6.6
173	Less than 2% of m/z 174	0.5 (0.6)
174	50 to 120% of m/z 95	94.1
175	5 to 9% of m/z 174	6.2 (6.6)
176	Greater than 95% but less than 101% of m/z 174	91.1 (96.8)
177	5 to 9% of m/z 176	5.3 (5.8)

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82190.D\8260_W8.rslt\spectra.d

Injection Date: 03-Nov-2022 07:37:30 Spectrum: Tune Spec :Scan 552(3.91)

Base Peak: 95.10 Minimum % Base Peak: 0 Number of Points: 49

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
50.00	7695	70.00	343	92.00	803	141.00	356
51.00	1820	72.00	353	93.00	1262	143.00	556
56.00	389	73.00	1133	94.00	3696	148.00	166
57.00	921	74.00	6859	95.00	44392	172.00	564
60.00	453	75.00	19968	96.00	2943	173.00	242
61.00	1629	76.00	1837	97.00	167	174.00	41784
62.00	1704	77.00	418	104.00	183	175.00	2739
63.00	1176	79.00	1270	105.00	185	176.00	40448
64.00	190	80.00	528	106.00	430	177.00	2358
65.00	303	81.00	1049	116.00	209	207.00	232
67.00	201	82.00	414	117.00	215		
68.00	3315	87.00	2280	119.00	183		
69.00	3598	88.00	1982	128.00	229		

Eurofins Edison

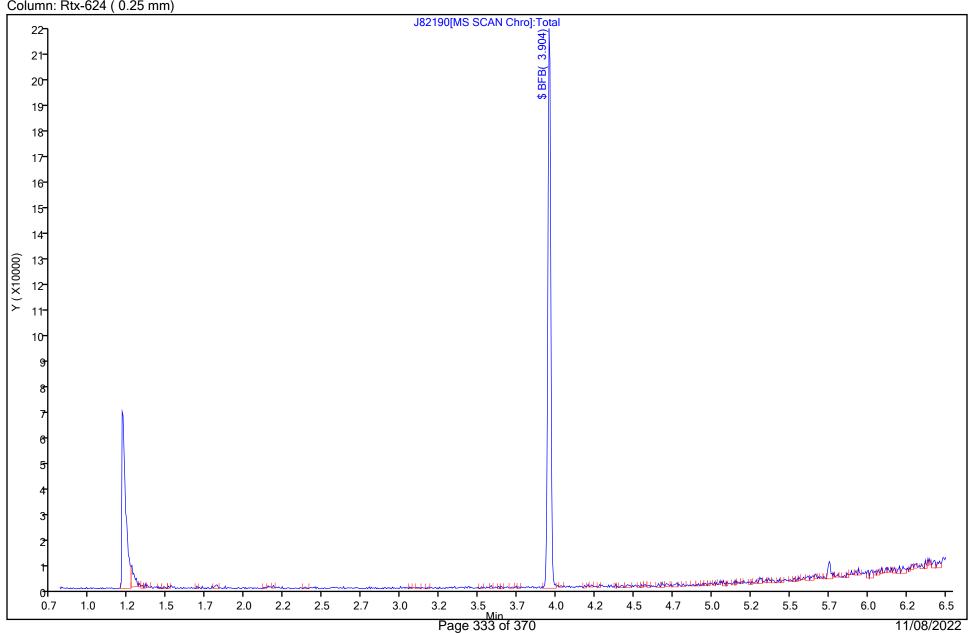
Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82190.D

03-Nov-2022 07:37:30 Injection Date: Instrument ID: Lims ID: BFB

CVOAMS8

Operator ID:

Worklist Smp#: 1


Client ID: Injection Vol:

Method:

5.0 mL

Dil. Factor: 8260_W8 Limit Group: 1.0000 VOA 624.1 ICAL ALS Bottle#: 99

Column: Rtx-624 (0.25 mm)

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eu:	ab Name: Eurofins Edison			Job No.: 460-268503-1							
SDG No.:											
Client Sample	e ID:	Lab	Lab Sample ID: <u>MB 460-875754/8</u>								
Matrix: Wate:	r	Lab	Lab File ID: J82197.D								
Analysis Meth	hod: 624.1	Dat	Date Collected:								
Sample wt/vo	Sample wt/vol: 5(mL)			Date Analyzed: 11/03/2022 10:53							
Soil Aliquot Vol:			Dilution Factor: 1								
Soil Extract Vol.:			GC Column: Rtx-624 ID: 0.25(mm)								
Purge Volume	: 5.0 (mL)	Неа	Heated Purge: (Y/N) N pH:								
% Moisture:	% Solids:	Lev	Level: (low/med) Low								
Analysis Bate	ch No.: 875754	Uni	Units: ug/L								
			I								
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL					
1330-20-7	Xylenes, Total		2.0	U	2.0	0.65					

1550 20 7	Myrches, rotar	2.0	·	2.0	0.05
CAS NO.	SURROGATE		%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene		110		60-140
1868-53-7	Dibromofluoromethane (Surr)		117		60-140
17060-07-0	1 2-Dichloroethane-d4 (Surr)		8.6		60-140

90

2037-26-5

Toluene-d8 (Surr)

60-140

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82197.D

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 03-Nov-2022 10:53:30 ALS Bottle#: 7 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 460-0152676-008

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 11:13:21Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 11:13:21

T II St ECVOIT TOVICWOI. TYOU		Date.			00-1101-2022 11.10.21				
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
* 30 TBA-d9 (IS)	65	2.397	2.402	-0.005	75	121739	1000.0	1000.0	
* 43 2-Butanone-d5	46	3.309	3.315	-0.006	88	152854	250.0	250.0	
\$ 55 Dibromofluoromethane (Sur	113	3.741	3.740	0.001	96	113316	50.0	58.4	
\$ 61 1,2-Dichloroethane-d4 (Surr	65	4.070	4.069	0.001	0	115379	50.0	43.2	
* 66 Fluorobenzene	96	4.325	4.331	-0.006	99	446264	50.0	50.0	
* 72 1,4-Dioxane-d8	96	5.043	5.036	0.007	0	25536	1000.0	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.041	6.040	0.001	99	397867	50.0	45.0	
* 94 Chlorobenzene-d5	117	7.993	7.993	0.000	85	413500	50.0	50.0	
\$ 105 4-Bromofluorobenzene	174	9.320	9.319	0.001	94	160745	50.0	54.8	
* 121 1,4-Dichlorobenzene-d4	152	10.372	10.371	0.001	95	246116	50.0	50.0	

QC Flag Legend

Processing Flags

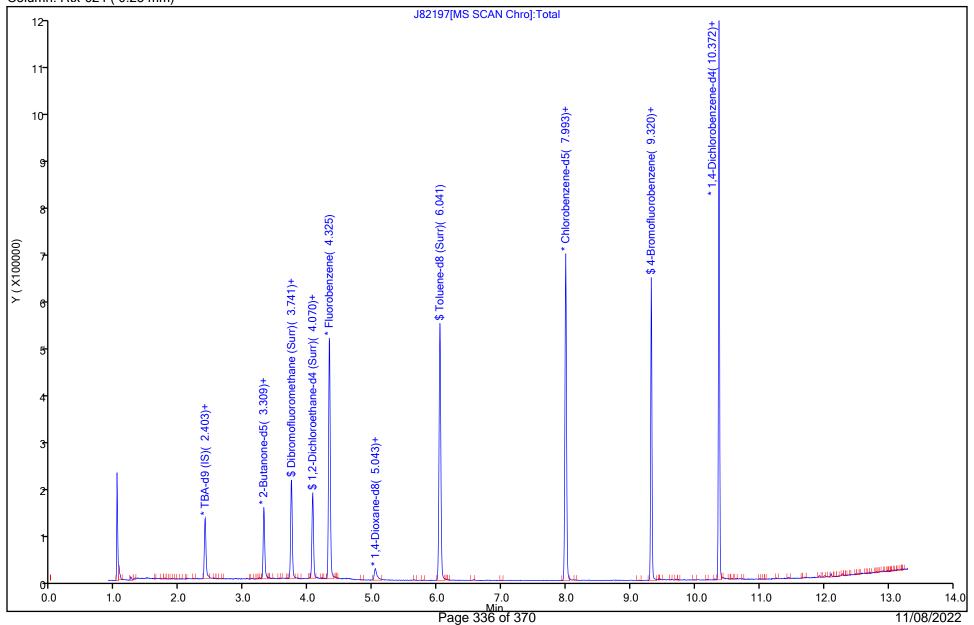
Reagents:

8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250 00233 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82197.D

03-Nov-2022 10:53:30 Injection Date: Instrument ID: CVOAMS8


Lims ID: MB

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

8

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82197.D

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 03-Nov-2022 10:53:30 ALS Bottle#: 7 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 460-0152676-008

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 11:13:21Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 11:13:21

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	58.4	116.80
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	43.2	86.48
\$ 83 Toluene-d8 (Surr)	50.0	45.0	89.95
\$ 105 4-Bromofluorobenzene	50.0	54.8	109.52

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison			Job No.: 460-268503-1						
SDG No.:									
Client Sample ID	:	Lab	Lab Sample ID: LCS 460-875754/5						
Matrix: Water		Lab	Lab File ID: J82194.D						
Analysis Method:	624.1	Dat	Date Collected:						
Sample wt/vol: 5(mL)			Date Analyzed: 11/03/2022 09:28						
Soil Aliquot Vol:			Dilution Factor: 1						
Soil Extract Vol	.:	GC	GC Column: Rtx-624 ID: 0.25 (mm)						
Purge Volume: 5.	0 (mL)	Неа	Heated Purge: (Y/N) N pH:						
% Moisture:	% Solids:	Lev	Level: (low/med) Low						
Analysis Batch No.: 875754			Units: ug/L						
CAS NO.		RESULT	Q	RL	MDL				

1330-20-7	Xylenes, Total	33.9		2.0	0.65
CAS NO.	SURROGATE		%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	11	6	60-140	
1868-53-7	Dibromofluoromethane (Surr)		11	4	60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	8	6	60-140	
2037-26-5	Toluene-d8 (Surr)		9	7	60-140

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82194.D

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 03-Nov-2022 09:28:30 ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 460-0152676-005

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 09:50:31Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 09:50:31

First Level Reviewer: KG2Q			D	ate:		03-Nov-202	22 09:50:31		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.144	1.143	0.001	93	4743	NC	NC	
4 Dichlorodifluoromethane	85	1.168	1.167	0.001	99	61465	20.0	17.4	
5 Chlorodifluoromethane	67	1.186	1.185	0.001	98	12374	NC	NC	
6 Chloromethane	50	1.296	1.295	0.001	99	61936	20.0	12.2	
7 Vinyl chloride	62	1.350	1.350	0.000	98	48560	20.0	14.3	
8 Butadiene	54	1.369	1.368	0.001	97	44124	20.0	13.6	
9 Bromomethane	94	1.563	1.563	0.000	98	23313	20.0	18.7	
10 Chloroethane	64	1.618	1.617	0.001	98	24291	20.0	14.6	
12 Dichlorofluoromethane	67	1.740	1.739	0.001	98	84588	NC	NC	
11 Trichlorofluoromethane	101	1.746	1.751	-0.005	98	73942	20.0	20.6	
13 Pentane	43	1.776	1.782	-0.006	95	120884	40.0	28.8	
14 Ethanol	46	1.874	1.879	-0.005	97	7204	800.0	1175.5	
15 Ethyl ether	59	1.916	1.915	0.001	93	28957	20.0	13.9	
16 2-Methyl-1,3-butadiene	53	1.934	1.934	0.000	96	38506	20.0	14.6	
17 1,2-Dichloro-1,1,2-trifluoroet	:ha117	1.947	1.946	0.001	94	37523	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroe	tha 83	1.983	1.988	-0.005	98	70895	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	oe 101	2.044	2.043	0.001	97	48519	20.0	22.8	
19 Acrolein	56	2.050	2.049	0.001	94	5904	40.0	24.1	
21 1,1-Dichloroethene	96	2.074	2.074	0.000	98	42925	20.0	20.2	
22 Acetone	43	2.141	2.141	0.000	87	43698	100.0	93.4	
23 lodomethane	142	2.196	2.195	0.001	99	35975	20.0	16.2	
25 Isopropyl alcohol	45	2.196	2.201	-0.005	61	19507	200.0	275.9	
24 Carbon disulfide	76	2.220	2.226	-0.006	99	162920	20.0	20.8	
26 3-Chloro-1-propene	76	2.318	2.317	0.001	95	27329	20.0	18.3	
28 Methyl acetate	43	2.324	2.323	0.001	99	43236	40.0	21.0	
27 Cyclopentene	67	2.336	2.335	0.001	96	96180	NC	NC	
29 Acetonitrile	41	2.366	2.366	0.000	98	32892	200.0	182.4	
* 30 TBA-d9 (IS)	65	2.397	2.402	-0.005	77	136061	1000.0	1000.0	
31 Methylene Chloride	84	2.415	2.420	-0.005	93	49793	20.0	18.9	
32 2-Methyl-2-propanol	59	2.458	2.457	0.001	99	27805	200.0	254.9	
33 Methyl tert-butyl ether	73	2.543	2.542	0.001	97	90502	20.0	13.8	
•			_	000 (07	_			4.4.10	0/0000

\\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82194.D

Data File: \\chromfs\Edis	son\Ch	romData	\CVOAMS	8\202211	03-15	2676.b\J82194	·.D		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
34 trans-1,2-Dichloroethene	96	2.567	2.566	0.001	97	47067	20.0	19.5	
35 Acrylonitrile	53	2.622	2.627	-0.005	93	118125	200.0	181.5	
36 Hexane	57	2.689	2.688	0.001	90	41811	20.0	13.9	
37 Isopropyl ether	45	2.859	2.858	0.001	96	100846	20.0	10.1	
38 1,1-Dichloroethane	63	2.896	2.895	0.001	99	88281	20.0	16.3	
39 Vinyl acetate	43	2.902	2.901	0.001	100	129298	40.0	20.4	
40 2-Chloro-1,3-butadiene	88	2.932	2.931	0.001	92	37862	NC	NC	
41 Tert-butyl ethyl ether	59	3.133	3.132	0.001	87	98991	NC	NC	
* 43 2-Butanone-d5	46	3.309	3.315	-0.006	99	176579	250.0	250.0	
42 2,2-Dichloropropane	79	3.321	3.315	0.006	94	23576	20.0	16.9	
44 cis-1,2-Dichloroethene	96	3.346	3.345	0.001	97	52669	20.0	19.9	
45 Ethyl acetate	70	3.364	3.363	0.001	96	8065	40.0	55.6	
46 2-Butanone (MEK)	72	3.358	3.363	-0.005	96	17718	100.0	127.6	
47 Methyl acrylate	55	3.407	3.412	-0.005	100	24770	NC	NC	
48 Propionitrile	54	3.480	3.479	0.001	97	49488	NC	NC	
50 Chlorobromomethane	128	3.547	3.546	0.001	88	27108	20.0	23.1	
49 Tetrahydrofuran	72	3.553	3.552	0.001	51	7745	40.0	55.9	
51 Methacrylonitrile	67	3.571	3.570	0.001	90	149413	NC	NC	
52 Chloroform	83	3.595	3.594	0.001	98	91455	20.0	19.3	
53 Cyclohexane	84	3.711	3.710	0.001	92	59425	20.0	20.2	
54 1,1,1-Trichloroethane	97	3.723	3.722	0.001	98	75725	20.0	20.2	
\$ 55 Dibromofluoromethane (Surr)	113	3.735	3.740	-0.005	96	118806	50.0	57.0	
56 Carbon tetrachloride	117	3.832	3.832	0.000	99	66742	20.0	22.4	
57 1,1-Dichloropropene	75	3.863	3.862	0.001	98	63088	20.0	17.6	
58 Isobutyl alcohol	43	3.997	3.996	0.001	97	43856	NC	NC	
59 Isooctane	57	4.015	4.014	0.001	98	76638	NC	NC	а
60 Benzene	78	4.051	4.051	0.000	96	189758	20.0	15.0	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.070	4.069	0.001	0	122783	50.0	42.8	
62 Isopropyl acetate	43	4.112	4.112	0.000	87	73839	20.0	9.82	
63 Tert-amyl methyl ether	55	4.112	4.112	0.000	87	25831	NC	NC	
64 1,2-Dichloroethane	62	4.137	4.142	-0.005	98	64106	20.0	16.0	
65 n-Heptane	57	4.198	4.197	0.001	91	16132	20.0	13.5	
* 66 Fluorobenzene	96	4.325	4.331	-0.006	98	479687	50.0	50.0	
67 n-Butanol	56	4.648	4.647	0.001	92	22037	500.0	856.3	
68 Trichloroethene	95	4.672	4.677	-0.005	98	49372	20.0	18.5	
69 Methylcyclohexane	83	4.788	4.793	-0.005	94	54689	20.0	18.1	
70 Ethyl acrylate	55	4.806	4.805	0.001	97	80351	20.0	12.5	
71 1,2-Dichloropropane	63	4.964	4.963	0.001	93	60014	20.0	18.9	
* 72 1,4-Dioxane-d8	96	5.037	5.036	0.001	0	30790	1000.0	1000.0	
73 Methyl methacrylate	100	5.055	5.055	0.001	87	18357	40.0	38.2	
75 1,4-Dioxane	88	5.092	5.097	-0.005	44	12567	400.0	751.1	
74 Dibromomethane	93	5.098	5.097	0.001	96	40051	20.0	22.9	
76 n-Propyl acetate	43	5.116	5.121	-0.005	97	46886	20.0	11.7	
77 Dichlorobromomethane	83	5.256	5.255	0.001	99	76351	20.0	21.4	
78 2-Nitropropane	41	5.615	5.614	0.001	92	16724	NC	NC	
79 2-Chloroethyl vinyl ether	63	5.621	5.626	-0.005	94	21702	20.0	12.3	
80 Epichlorohydrin	57	5.731	5.730	0.005	100	78817	400.0	555.5	
81 cis-1,3-Dichloropropene	57 75	5.785	5.785	0.001	90	86016	20.0	555.5 14.4	
	43	5.765 5.974	5.765 5.973	0.000	90 96	158159	100.0	94.5	
82 4-Methyl-2-pentanone (MIBK)									
\$ 83 Toluene-d8 (Surr)	98	6.041	6.040	0.001	99	473617	50.0	48.7 16.0	
84 Toluene	91	6.120	6.125	-0.005	94	223170	20.0	16.9	
85 trans-1,3-Dichloropropene	75	6.521	6.521	0.000	95	71196	20.0	13.4	

Chrom Revision: 2.3 01-Nov-2022 22:37:18

Data File: \\chromfs\Edi	son\C				03-15	2676.b\J82194			
	<u> </u>	RT	Exp RT	Dlt RT		D.	Cal Amt	OnCol Amt	-
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
OC File Levelle en late	00	0.570	C 575	0.005	00	44040	NO	NO	
86 Ethyl methacrylate	69	6.570	6.575	-0.005	88	44846	NC	NC	
87 1,1,2-Trichloroethane	83	6.753	6.758	-0.005	98	46566	20.0	16.7	
88 Tetrachloroethene	166	6.783	6.788	-0.005	97	59610	20.0	21.6	
89 1,3-Dichloropropane	76	6.984	6.983	0.001	93	76823	20.0	14.9	
90 2-Hexanone	58	7.081	7.080	0.001	95	61175	100.0	111.8	
91 n-Butyl acetate	43	7.227	7.226	0.001	98	48413	20.0	7.92	
92 Chlorodibromomethane	129	7.239	7.238	0.001	97	60029	20.0	20.3	
93 Ethylene Dibromide	107	7.403	7.403	0.000	99	53414	20.0	17.7	
* 94 Chlorobenzene-d5	117	7.994	7.993	0.001	85	454658	50.0	50.0	
95 Chlorobenzene	112	8.024	8.029	-0.005	95	160574	20.0	20.1	
96 Ethylbenzene	106	8.140	8.139	0.001	98	70930	20.0	16.9	
97 1,1,1,2-Tetrachloroethane	131	8.152	8.151	0.001	96	53863	20.0	19.8	
98 m-Xylene & p-Xylene	106	8.292	8.291	0.001	0	89764	20.0	17.2	
99 o-Xylene	106	8.742	8.741	0.001	94	87558	20.0	16.7	
100 n-Butyl acrylate	73	8.760	8.759	0.001	98	33908	20.0	12.8	
101 Styrene	104	8.772	8.778	-0.006	96	168820	20.0	18.8	
103 Bromoform	173	8.985	8.984	0.001	97	42349	20.0	22.9	
102 Amyl acetate (mixed isomers		9.003	9.009	-0.006	91	63701	20.0	7.54	
104 Isopropylbenzene	105	9.125	9.124	0.001	96	216914	20.0	17.0	
\$ 105 4-Bromofluorobenzene	174	9.320	9.319	0.001	94	187070	50.0	58.0	
106 Bromobenzene	156	9.448	9.447	0.001	96	75828	20.0	18.4	
107 1,1,2,2-Tetrachloroethane	83	9.514	9.514	0.000	99	78211	20.0	16.1	
108 N-Propylbenzene	91	9.533	9.532	0.001	99	278812	20.0	14.4	
109 1,2,3-Trichloropropane	110	9.551	9.550	0.001	98	18111	20.0	16.9	
110 trans-1,4-Dichloro-2-butene	53	9.575	9.581	-0.006	91	16879	NC	NC	
111 2-Chlorotoluene	91	9.624	9.629	-0.005	97	212124	20.0	15.4	
112 4-Ethyltoluene	105	9.642	9.641	0.001	98	244120	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.709	9.708	0.001	93	197712	20.0	15.4	
114 4-Chlorotoluene	91	9.740	9.739	0.001	97	223226	20.0	16.8	
115 Butyl Methacrylate	87	9.825	9.824	0.001	91	59445	20.0	11.9	
116 tert-Butylbenzene	119	9.989	9.988	0.001	93	148544	20.0	15.3	
117 1,2,4-Trimethylbenzene	105	10.050	10.049	0.001	98	216269	20.0	15.9	
118 sec-Butylbenzene	105	10.184	10.183	0.001	99	226097	20.0	15.4	
120 1,3-Dichlorobenzene	146	10.305	10.305	0.000	97	137897	20.0	18.7	
119 4-Isopropyltoluene	119	10.311	10.317	-0.006	97	190238	20.0	15.6	
* 121 1,4-Dichlorobenzene-d4	152	10.372	10.371	0.001	94	292839	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.390	10.390	0.000	96	146204	20.0	18.9	
123 1,2,3-Trimethylbenzene	105	10.415	10.414	0.001	98	232102	20.0	16.1	
124 Benzyl chloride	91	10.518	10.517	0.001	99	114954	20.0	14.7	
125 2,3-Dihydroindene	117	10.573	10.572	0.001	94	230522	NC	NC	
126 p-Diethylbenzene	119	10.634	10.633	0.001	93	123039	NC	NC	
127 n-Butylbenzene	92	10.658	10.657	0.001	98	109260	20.0	16.0	
128 1,2-Dichlorobenzene	146	10.701	10.700	0.001	97	141619	20.0	19.3	
129 1,2,4,5-Tetramethylbenzene	119	11.260	11.260	0.000	97	172177	NC	NC	
130 1,2-Dibromo-3-Chloropropan	e157	11.339	11.345	-0.006	96	15183	20.0	19.8	
131 1,3,5-Trichlorobenzene	180	11.449	11.448	0.001	98	94124	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.930	11.929	0.001	94	86182	20.0	18.1	
133 Hexachlorobutadiene	225	12.009	12.008	0.001	97	34443	20.0	20.9	
134 Naphthalene	128	12.112	12.111	0.001	100	205784	20.0	16.7	
135 1,2,3-Trichlorobenzene	180	12.282	12.288	-0.006	96	83334	20.0	19.0	
S 136 1,2-Dichloroethene, Total	100	-			0		40.0	39.4	
S 137 Xylenes, Total	100				0		40.0	33.9	
- , - · , · · ·					-				

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82194.D

RT Exp RT Dlt RT Cal Amt	OnCol Amt	
	T OHOOH / WHI	
Compound Sig (min.) (min.) Q Response ug/l	ug/l	Flags

S 138 Total BTEX 1 0 100.0 82.7

QC Flag Legend Processing Flags

Processing Flags
NC - Not Calibrated
Review Flags

a - User Assigned ID

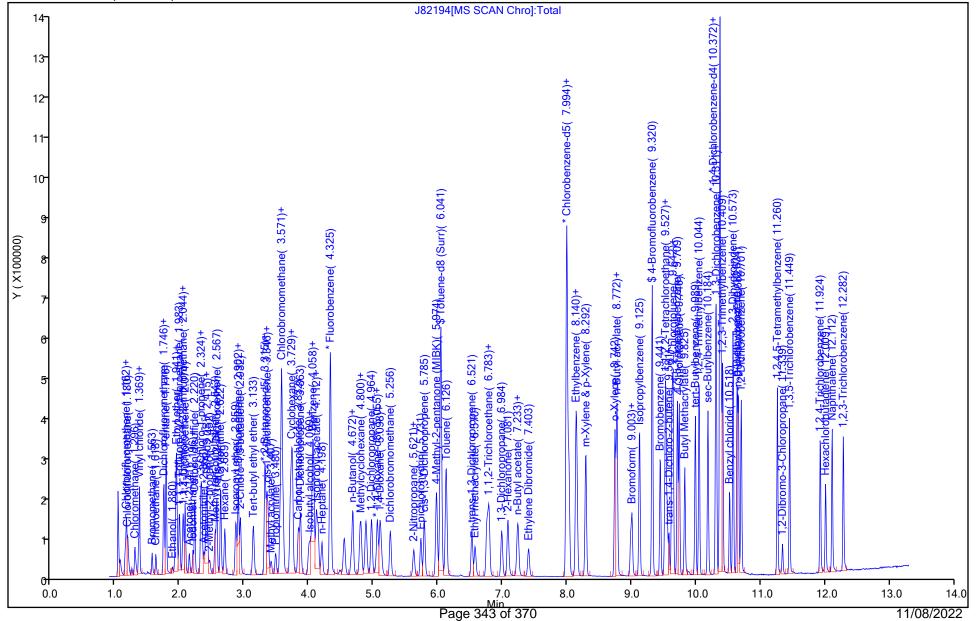
Reagents:

524freon_00059Amount Added: 20.00Units: uLGASES Li_00500Amount Added: 20.00Units: uL8260MIX1COMB_00161Amount Added: 20.00Units: uLACROLEIN W_00145Amount Added: 4.00Units: uL

8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82194.D Injection Date: 03-Nov-2022 09:28:30 Instrument ID: CVOAMS8


Lims ID: LCS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

5

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82194.D

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 03-Nov-2022 09:28:30 ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 460-0152676-005

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 09:50:31Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 09:50:31

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	57.0	113.92
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	42.8	85.62
\$ 83 Toluene-d8 (Surr)	50.0	48.7	97.39
\$ 105 4-Bromofluorobenzene	50.0	58.0	115.91

Lab Name: Eurofins Edison	Job No.: 460-268503-1							
SDG No.:								
Client Sample ID: RW-6 MS	Lab Sample ID: 460-268503-1 MS							
Matrix: Water	Lab File ID: J82200.D							
Analysis Method: 624.1	Date Collected: 10/28/2022 13:40							
Sample wt/vol: 5(mL)	Date Analyzed: 11/03/2022 12:15							
Soil Aliquot Vol:	Dilution Factor: 1							
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)							
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N pH:							
% Moisture: % Solids:	Level: (low/med) Low							
Analysis Batch No.: 875754	Units: ug/L							

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	41.0		2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	119		60-140
1868-53-7	Dibromofluoromethane (Surr)	116		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		60-140
2037-26-5	Toluene-d8 (Surr)	99		60-140

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82200.D

Lims ID: 460-268503-B-1 MS

Client ID: RW-6 Sample Type: MS

Inject. Date: 03-Nov-2022 12:15:30 ALS Bottle#: 10 Worklist Smp#: 11

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-1 MS Misc. Info.: 460-0152676-011

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 12:58:00Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 12:58:00

First Level Reviewer: KG2Q			D	ate:		03-Nov-202	22 12:58:00		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.142	1.143	-0.001	88	4836	NC	NC	
4 Dichlorodifluoromethane	85	1.167	1.167	0.000	99	62971	20.0	19.2	
5 Chlorodifluoromethane	67	1.185	1.185	0.000	99	10606	NC	NC	
6 Chloromethane	50	1.294	1.295	-0.001	100	60378	20.0	12.7	
7 Vinyl chloride	62	1.349	1.350	-0.001	99	47748	20.0	15.2	
8 Butadiene	54	1.367	1.368	-0.001	96	41644	20.0	13.8	
9 Bromomethane	94	1.562	1.563	-0.001	98	22449	20.0	19.4	
10 Chloroethane	64	1.623	1.617	0.006	99	25121	20.0	16.2	
12 Dichlorofluoromethane	67	1.738	1.739	-0.001	99	87080	NC	NC	
11 Trichlorofluoromethane	101	1.751	1.751	0.000	99	75469	20.0	22.6	
13 Pentane	43	1.781	1.782	-0.001	91	110548	40.0	28.3	
14 Ethanol	46	1.878	1.879	-0.001	98	2228	0.008	389.4	
15 Ethyl ether	59	1.921	1.915	0.006	96	29973	20.0	15.4	
16 2-Methyl-1,3-butadiene	53	1.939	1.934	0.005	96	39232	20.0	16.0	
17 1,2-Dichloro-1,1,2-trifluoroet	ha117	1.945	1.946	-0.001	95	40420	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroet	tha 83	1.988	1.988	0.000	98	66001	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoro	e 101	2.043	2.043	0.000	98	49586	20.0	25.1	
19 Acrolein	56	2.049	2.049	0.000	93	6694	40.0	29.3	
21 1,1-Dichloroethene	96	2.073	2.074	-0.001	97	42548	20.0	21.5	
22 Acetone	43	2.140	2.141	-0.001	87	36971	100.0	86.7	
23 lodomethane	142	2.195	2.195	0.000	98	32915	20.0	15.9	
25 Isopropyl alcohol	45	2.195	2.201	-0.006	44	8470	200.0	128.3	
24 Carbon disulfide	76	2.225	2.226	-0.001	99	158763	20.0	21.8	
26 3-Chloro-1-propene	76	2.316	2.317	-0.001	94	25233	20.0	18.2	
28 Methyl acetate	43	2.322	2.323	-0.001	99	38784	40.0	20.3	
27 Cyclopentene	67	2.335	2.335	0.000	96	92053	NC	NC	
29 Acetonitrile	41	2.371	2.366	0.005	97	27720	200.0	164.6	
* 30 TBA-d9 (IS)	65	2.401	2.402	-0.001	80	127026	1000.0	1000.0	
31 Methylene Chloride	84	2.420	2.420	0.000	90	50344	20.0	20.5	
32 2-Methyl-2-propanol	59	2.456	2.457	-0.001	98	16211	200.0	159.2	
33 Methyl tert-butyl ether	73	2.541	2.542	-0.001	96	93084	20.0	15.3	
-			_	040 (07	•			4.4.10	0/0000

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82200.D

Data File: \\cnromfs\Edis	SUII\CI		1	1	103-15	26/6.D\J822UU			
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/l	OnCol Amt ug/l	Flags
Compound	oly	(111111.)	(111111.)	(111111.)	Q	rresponse	ug/i	ug/i	i iays
34 trans-1,2-Dichloroethene	96	2.566	2.566	0.000	97	46686	20.0	20.8	
35 Acrylonitrile	53	2.627	2.627	0.000	93	116207	200.0	191.2	
36 Hexane	57	2.687	2.688	-0.001	91	40217	20.0	14.4	
37 Isopropyl ether	45	2.864	2.858	0.006	97	100265	20.0	10.8	
38 1,1-Dichloroethane	63	2.894	2.895	-0.001	100	89897	20.0	17.8	
39 Vinyl acetate	43	2.900	2.901	-0.001	100	125604	40.0	21.3	
40 2-Chloro-1,3-butadiene	88	2.931	2.931	0.000	92	37984	NC	NC	
41 Tert-butyl ethyl ether	59	3.132	3.132	0.000	89	94468	NC	NC	
* 43 2-Butanone-d5	46	3.314	3.315	-0.001	95	160860	250.0	250.0	
42 2,2-Dichloropropane	79	3.320	3.315	0.005	94	23415	20.0	18.0	
44 cis-1,2-Dichloroethene	96	3.344	3.345	-0.001	98	53579	20.0	21.7	
45 Ethyl acetate	70	3.363	3.363	0.000	95	7703	40.0	58.3	
46 2-Butanone (MEK)	72	3.363	3.363	0.000	96	17064	100.0	134.9	
47 Methyl acrylate	55	3.411	3.412	-0.001	99	24750	NC	NC	
48 Propionitrile	54	3.478	3.479	-0.001	97	44190	NC	NC	
50 Chlorobromomethane	128	3.545	3.546	-0.001	82	27359	20.0	25.0	
49 Tetrahydrofuran	72	3.557	3.552	0.005	53	7185	40.0	57.0	
51 Methacrylonitrile	67	3.570	3.570	0.000	90	149166	NC	NC	
52 Chloroform	83	3.594	3.594	0.000	99	94049	20.0	21.3	
53 Cyclohexane	84	3.709	3.710	-0.001	90	57115	20.0	20.8	
54 1,1,1-Trichloroethane	97	3.722	3.722	0.000	99	75079	20.0	21.5	
\$ 55 Dibromofluoromethane (Surr)		3.740	3.740	0.000	96	112588	50.0	58.0	
56 Carbon tetrachloride	117	3.831	3.832	-0.001	99	67492	20.0	24.3	
57 1,1-Dichloropropene	75	3.868	3.862	0.006	96	61083	20.0	18.3	
58 Isobutyl alcohol	43	3.995	3.996	-0.001	97	29056	NC	NC	
59 Isooctane	57	4.020	4.014	0.006	97	66953	NC	NC	а
60 Benzene	78	4.050	4.051	-0.001	97	184696	20.0	15.1	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.068	4.069	-0.001	0	117096	50.0	43.9	
62 Isopropyl acetate	43	4.111	4.112	-0.001	91	71090	20.0	10.2	
63 Tert-amyl methyl ether	55	4.117	4.112	0.005	83	25588	NC	NC	
64 1,2-Dichloroethane	62	4.141	4.142	-0.001	98	67599	20.0	18.1	
65 n-Heptane	57	4.196	4.197	-0.001	91	14709	20.0	13.2	
* 66 Fluorobenzene	96	4.330	4.331	-0.001	99	446417	50.0	50.0	
67 n-Butanol	56	4.652	4.647	0.005	92	11560	500.0	481.1	
68 Trichloroethene	95	4.677	4.677	0.000	99	62064	20.0	25.0	
69 Methylcyclohexane	83	4.792	4.793	-0.001	91	63287	20.0	22.5	
70 Ethyl acrylate	55	4.804	4.805	-0.001	97	98250	20.0	16.4	
71 1,2-Dichloropropane	63	4.969	4.963	0.006	93	60984	20.0	20.6	
* 72 1,4-Dioxane-d8	96	5.036	5.036	0.000	0	27974	1000.0	1000.0	
73 Methyl methacrylate	100	5.060	5.055	0.006	88	18096	40.0	40.5	
75 1,4-Dioxane	88	5.109	5.097	0.012	30	4841	400.0	318.4	
74 Dibromomethane	93	5.096	5.097	-0.001	98	41668	20.0	25.6	
76 n-Propyl acetate	43	5.121	5.121	0.000	97	43342	20.0	11.6	
77 Dichlorobromomethane	83	5.261	5.255	0.006	99	78549	20.0	23.7	
78 2-Nitropropane	63 41	5.614	5.614	0.000	99 97	16885	NC	NC	
80 Epichlorohydrin	57	5.735	5.730	0.005	99	63739	400.0	493.2	
•	57 75	5.784	5.785	-0.005		84340	20.0	493.2 14.6	
81 cis-1,3-Dichloropropene					91 07				
82 4-Methyl-2-pentanone (MIBK)		5.972	5.973	-0.001	97	155340	100.0	101.8	
\$ 83 Toluene-d8 (Surr)	98	6.039	6.040	-0.001	99	464806	50.0	49.5	
84 Toluene	91 75	6.125	6.125	0.000	93	234461	20.0	18.3	
85 trans-1,3-Dichloropropene	75	6.526	6.521	0.005	95	69751	20.0	13.6	
86 Ethyl methacrylate	69	6.575	6.575	0.000	88	42543	NC	NC	

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82200.D

Data File: \\chromfs\Edi	son\Cr				03-15	2676.b\J82200			
	0.	RT	Exp RT	Dlt RT		Decree	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
87 1,1,2-Trichloroethane	83	6.757	6.758	-0.001	97	48453	20.0	18.0	
88 Tetrachloroethene	166	6.788	6.788	0.000	96	63459	20.0	23.8	
89 1,3-Dichloropropane	76	6.988	6.983	0.005	90	78269	20.0	23.6 15.7	
90 2-Hexanone	58	7.080	7.080	0.003	96	59200	100.0	118.8	
91 n-Butyl acetate	43	7.080	7.080	0.000	98	46347	20.0	7.85	
92 Chlorodibromomethane	129	7.220 7.244	7.220	0.006	98	63623	20.0	22.3	
93 Ethylene Dibromide	107	7.402	7.238	-0.001	98	56315	20.0	19.4	
* 94 Chlorobenzene-d5	117	7.402	7.403	-0.001	85	438814	50.0	50.0	
95 Chlorobenzene	112	8.029	8.029	0.000	96	167957	20.0	21.8	
96 Ethylbenzene	106	8.138	8.139	-0.001	98	74772	20.0	18.5	
	131	8.150	8.151	-0.001	96	55745	20.0	21.2	
97 1,1,1,2-Tetrachloroethane	106	8.290	8.291	-0.001	0	119390	20.0	23.7	
98 m-Xylene & p-Xylene	106	8.740	8.741	-0.001	94	87024	20.0	23.7 17.2	
99 o-Xylene	73	8.740 8.765	8.759	0.006	9 4 97	35521	20.0	13.9	
100 n-Butyl acrylate	73 104	8.777	8.778	-0.001	97 95	173951	20.0	20.1	
101 Styrene 103 Bromoform	173	8.984	8.776 8.984	0.000	95 97	44714	20.0	20.1 25.1	
		9.008	9.009	-0.001	97 91	64330	20.0	25.1 7.64	
102 Amyl acetate (mixed isomers	105	9.008	9.009	0.000	91 96	225936	20.0	7.6 4 18.4	
104 Isopropylbenzene \$ 105 4-Bromofluorobenzene	174		9.124		96 95		20.0 50.0	59.5	
		9.318 9.446	9.319	-0.001	95 95	185218 78282	20.0	59.5 19.1	
106 Bromobenzene	156			-0.001					
107 1,1,2,2-Tetrachloroethane	83	9.519	9.514	0.005	98	79396	20.0	16.4	
108 N-Propylbenzene	91	9.531	9.532	-0.001	99	286488	20.0	14.9	
109 1,2,3-Trichloropropane	110	9.556	9.550	0.006	98	18640	20.0	17.5	
110 trans-1,4-Dichloro-2-butene	53	9.580	9.581	-0.001	93	18373	NC	NC	
111 2-Chlorotoluene	91 105	9.629	9.629	0.000	97	219604	20.0	16.0	
112 4-Ethyltoluene	105	9.647	9.641	0.006	98	255570	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.708	9.708	0.000	93	206909	20.0	16.2	
114 4-Chlorotoluene	91	9.738	9.739	-0.001	97	231143	20.0	17.4	
115 Butyl Methacrylate	87	9.823	9.824	-0.001	90	62418	20.0	12.5	
116 tert-Butylbenzene	119	9.988	9.988	0.000	92	154394	20.0	15.9	
117 1,2,4-Trimethylbenzene	105	10.048	10.049	-0.001	97	222308	20.0	16.4	
118 sec-Butylbenzene	105	10.188	10.183	0.005	99	234562	20.0	16.1	
120 1,3-Dichlorobenzene	146	10.304	10.305	-0.001	97	146985	20.0	20.0	
119 4-Isopropyltoluene	119	10.316	10.317	-0.001	97	195639	20.0	16.2	
* 121 1,4-Dichlorobenzene-d4	152	10.371	10.371	0.000	95	291589	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.389	10.390	-0.001	96	154912	20.0	20.1	
123 1,2,3-Trimethylbenzene	105	10.413	10.414	-0.001	98	243537	20.0	17.0	
124 Benzyl chloride	91	10.523	10.517	0.006	99	118691	20.0	15.2	
125 2,3-Dihydroindene	117	10.578	10.572	0.006	94	244357	NC	NC	
126 p-Diethylbenzene	119	10.639	10.633	0.005	92	128643	NC	NC	
127 n-Butylbenzene	92	10.657	10.657	0.000	98	114873	20.0	16.9	
128 1,2-Dichlorobenzene	146	10.699	10.700	-0.001	97	150115	20.0	20.5	
129 1,2,4,5-Tetramethylbenzene	119	11.259	11.260	-0.001	97	172303	NC	NC	
130 1,2-Dibromo-3-Chloropropan	e157	11.344	11.345	-0.001	95	15010	20.0	19.6	
131 1,3,5-Trichlorobenzene	180	11.454	11.448	0.006	97	97616	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.928	11.929	-0.001	94	85996	20.0	18.1	
133 Hexachlorobutadiene	225	12.007	12.008	-0.001	97	33937	20.0	20.7	
134 Naphthalene	128	12.111	12.111	0.000	99	189736	20.0	15.5	
135 1,2,3-Trichlorobenzene	180	12.287	12.288	-0.001	96	81153	20.0	18.6	
S 136 1,2-Dichloroethene, Total	100				0		40.0	42.5	
S 137 Xylenes, Total	100				0		40.0	41.0	
S 138 Total BTEX	1				0		100.0	92.9	

QC Flag Legend Processing Flags

NC - Not Calibrated

Review Flags

a - User Assigned ID

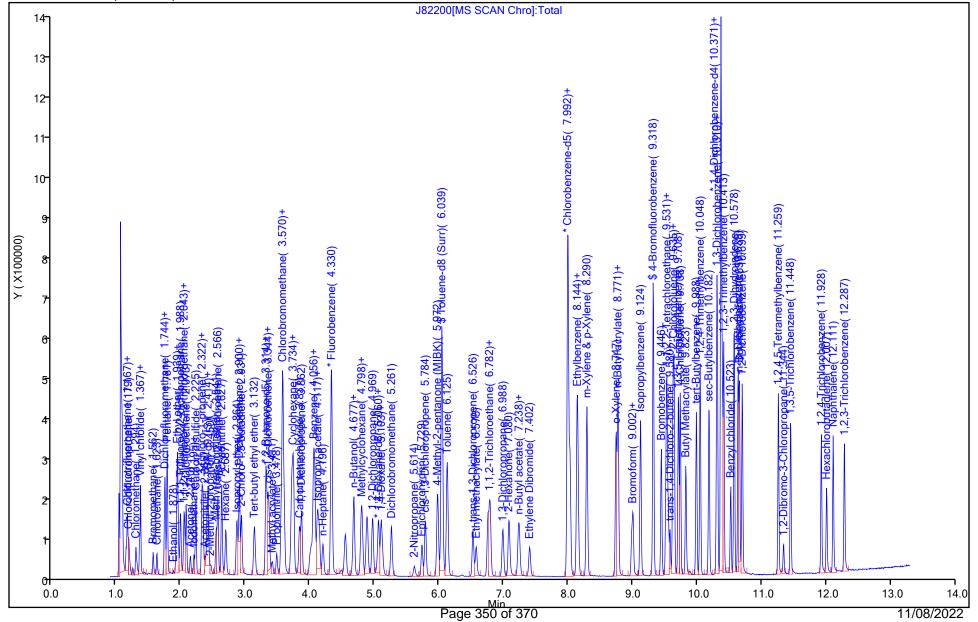
Reagents:

GASES Li_00500	Amount Added: 20.00	Units: uL
8260MIX1COMB_00161	Amount Added: 20.00	Units: uL
524freon_00059	Amount Added: 20.00	Units: uL
ACROLEIN W_00145	Amount Added: 4.00	Units: uL

8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent Run Reagent Amount Added: 1.00 8260SURR250_00233 Units: uL

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82200.D Injection Date: 03-Nov-2022 12:15:30 Instrument ID: CVOAMS8


Injection Date: 03-Nov-2022 12:15:30 Instrument ID: CVOAMS8 Operator ID: Lims ID: 460-268503-B-1 MS Worklist Smp#:

Client ID: RW-6

 Purge Vol:
 5.000 mL
 Dil. Factor:
 1.0000
 ALS Bottle#:
 10

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82200.D

Lims ID: 460-268503-B-1 MS

Client ID: RW-6 Sample Type: MS

Inject. Date: 03-Nov-2022 12:15:30 ALS Bottle#: 10 Worklist Smp#: 11

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-1 MS Misc. Info.: 460-0152676-011

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 12:58:00Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 12:58:00

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	58.0	116.01
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	43.9	87.74
\$ 83 Toluene-d8 (Surr)	50.0	49.5	99.03
\$ 105 4-Bromofluorobenzene	50.0	59.5	118.91

	Job No.: 460-268503-1				
SDG No.:					
Client Sample ID: RW-6 MSD	Lab Sample ID: 460-268503-1 MSD				
Matrix: Water	Lab File ID: J82201.D				
Analysis Method: 624.1	Date Collected: 10/28/2022 13:40				
Sample wt/vol: 5(mL)	Date Analyzed: 11/03/2022 12:40				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)				
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 875754	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	41.6		2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene	119		60-140
1868-53-7	Dibromofluoromethane (Surr)	113		60-140
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		60-140
2037-26-5	Toluene-d8 (Surr)	98		60-140

Eurofins Edison

Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82201.D

Lims ID: 460-268503-B-1 MSD

Client ID: RW-6 Sample Type: MSD

Inject. Date: 03-Nov-2022 12:40:30 ALS Bottle#: 11 Worklist Smp#: 12

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-1 MSD Misc. Info.: 460-0152676-012

Operator ID: Instrument ID: CVOAMS8

Method: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\8260_W8.m

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 12:59:12Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 12:59:12

First Level Reviewer: KG2Q			D	ate:		03-Nov-202	<u> 22 12:59:12</u>		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2 Chlorotrifluoroethene	118	1.146	1.143	0.003	95	4611	NC	NC	
4 Dichlorodifluoromethane	85	1.164	1.167	-0.003	99	68128	20.0	19.4	
5 Chlorodifluoromethane	67	1.188	1.185	0.003	99	11392	NC	NC	
6 Chloromethane	50	1.292	1.295	-0.003	99	66287	20.0	13.0	
7 Vinyl chloride	62	1.353	1.350	0.003	99	53689	20.0	15.9	
8 Butadiene	54	1.365	1.368	-0.003	97	44811	20.0	13.8	
9 Bromomethane	94	1.566	1.563	0.003	96	22713	20.0	18.3	
10 Chloroethane	64	1.620	1.617	0.003	99	25686	20.0	15.4	
12 Dichlorofluoromethane	67	1.742	1.739	0.003	99	93511	NC	NC	
11 Trichlorofluoromethane	101	1.748	1.751	-0.003	99	78803	20.0	21.9	
13 Pentane	43	1.779	1.782	-0.003	95	126266	40.0	30.1	
14 Ethanol	46	1.876	1.879	-0.003	97	7148	0.008	1127.9	
15 Ethyl ether	59	1.919	1.915	0.003	97	30787	20.0	14.8	
16 2-Methyl-1,3-butadiene	53	1.937	1.934	0.003	97	40651	20.0	15.5	
17 1,2-Dichloro-1,1,2-trifluoroeth		1.949	1.946	0.003	96	38170	NC	NC	
18 1,1,1-Trifluoro-2,2-dichloroeth		1.985	1.988	-0.003	97	68079	NC	NC	
20 1,1,2-Trichloro-1,2,2-trifluoroe		2.040	2.043	-0.003	98	51389	20.0	24.2	
19 Acrolein	56	2.046	2.049	-0.003	93	6956	40.0	27.5	
21 1,1-Dichloroethene	96	2.077	2.074	0.003	99	45814	20.0	21.5	
22 Acetone	43	2.138	2.141	-0.003	86	43821	100.0	94.0	
23 Iodomethane	142	2.198	2.195	0.003	99	36878	20.0	16.6	
25 Isopropyl alcohol	45	2.198	2.201	-0.003	63	19858	200.0	271.6	
24 Carbon disulfide	76	2.223	2.226	-0.003	99	171693	20.0	22.0	
26 3-Chloro-1-propene	76	2.320	2.317	0.003	95	28824	20.0	19.3	
28 Methyl acetate	43	2.326	2.323	0.003	99	45412	40.0	22.1	
27 Cyclopentene	67	2.338	2.335	0.003	96	100117	NC	NC	
29 Acetonitrile	41	2.369	2.366	0.003	99	39762	200.0	213.2	
* 30 TBA-d9 (IS)	65	2.399	2.402	-0.003	78	140710	1000.0	1000.0	
31 Methylene Chloride	84	2.417	2.420	-0.003	93	51664	20.0	19.6	
32 2-Methyl-2-propanol	59	2.454	2.457	-0.003	98	28850	200.0	255.7	
33 Methyl tert-butyl ether	73	2.545	2.542	0.003	97	100376	20.0	15.4	

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82201.D

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82201.D									
	C:	RT	Exp RT	Dlt RT		Decree	Cal Amt	OnCol Amt	E1.
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
24 trans 1.2 Diable reathers	06	2 560	2 566	0.002	06	51430	20.0	21.2	
34 trans-1,2-Dichloroethene	96 53	2.569	2.566	0.003	96		20.0	21.3	
35 Acrylonitrile	53 57	2.624	2.627	-0.003	94	128053	200.0	190.2	
36 Hexane	57 45	2.691 2.861	2.688 2.858	0.003 0.003	91 97	44187 111016	20.0 20.0	14.7	
37 Isopropyl ether	43 63	2.898	2.895	0.003	100	95690	20.0	11.1 17.7	
38 1,1-Dichloroethane	43	2.898	2.895	0.003	100	143068	40.0	22.6	
39 Vinyl acetate	43 88	2.904		0.003					
40 2-Chloro-1,3-butadiene			2.931		92	40654	NC	NC NC	
41 Tert-butyl ethyl ether	59 46	3.135	3.132	0.003	88	107540	NC 2F0.0	NC 250.0	
* 43 2-Butanone-d5	46 70	3.312	3.315	-0.003	98	175894	250.0	250.0	
42 2,2-Dichloropropane	79 06	3.318	3.315	0.003	93	25760	20.0	18.5	
44 cis-1,2-Dichloroethene	96 70	3.342	3.345	-0.003	99	56103	20.0	21.2	
45 Ethyl acetate	70 72	3.360	3.363	-0.003	94	8691	40.0	60.2	
46 2-Butanone (MEK)	72 55	3.360	3.363	-0.003	96	18792	100.0	135.9	
47 Methyl acrylate	55 54	3.409	3.412	-0.003	99	26987	NC	NC	
48 Propionitrile	54	3.482	3.479	0.003	97	51204	NC	NC	
50 Chlorobromomethane	128	3.549	3.546	0.003	80	28116	20.0	24.0	
49 Tetrahydrofuran	72 67	3.555	3.552	0.003	51	8842	40.0	64.1	
51 Methacrylonitrile	67	3.573	3.570	0.003	90	155371	NC	NC	
52 Chloroform	83	3.598	3.594	0.004	98	97125	20.0	20.5	
53 Cyclohexane	84	3.713	3.710	0.003	92	60793	20.0	20.7	
54 1,1,1-Trichloroethane	97	3.725	3.722	0.003	99	78068	20.0	20.9	
\$ 55 Dibromofluoromethane (Surr)		3.737	3.740	-0.003	96	117808	50.0	56.5	
56 Carbon tetrachloride	117	3.835	3.832	0.003	98	69220	20.0	23.3	
57 1,1-Dichloropropene	75 40	3.865	3.862	0.003	97	65880	20.0	18.4	
58 Isobutyl alcohol	43	3.993	3.996	-0.003	96	44601	NC	NC	
59 Isooctane	57	4.017	4.014	0.003	97	77942	NC	NC	а
60 Benzene	78	4.048	4.051	-0.003	96	195259	20.0	15.4	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.066	4.069	-0.003	0	122469	50.0	42.8	
62 Isopropyl acetate	43	4.109	4.112	-0.003	94	78692	20.0	10.5	
63 Tert-amyl methyl ether	55	4.115	4.112	0.003	90	27814	NC	NC	
64 1,2-Dichloroethane	62	4.139	4.142	-0.003	98	67361	20.0	16.8	
65 n-Heptane	57	4.200	4.197	0.003	91	17335	20.0	14.5	
* 66 Fluorobenzene	96	4.328	4.331	-0.003	99	479127	50.0	50.0	
67 n-Butanol	56	4.650	4.647	0.003	92	27107	500.0	1018.5	
68 Trichloroethene	95	4.674	4.677	-0.003	99	66161	20.0	24.8	
69 Methylcyclohexane	83	4.796	4.793	0.003	91	71142	20.0	23.5	
70 Ethyl acrylate	55	4.802	4.805	-0.003	97	107995	20.0	16.8	
71 1,2-Dichloropropane	63	4.966	4.963	0.003	92	64537	20.0	20.3	
* 72 1,4-Dioxane-d8	96	5.039	5.036	0.003	0	30815	1000.0	1000.0	
73 Methyl methacrylate	100	5.058	5.055	0.004	85	20477	40.0	42.7	
75 1,4-Dioxane	88	5.094	5.097	-0.003	43	12735	400.0	760.5	
74 Dibromomethane	93	5.094	5.097	-0.003	97	43583	20.0	24.9	
76 n-Propyl acetate	43	5.118	5.121	-0.003	97	50461	20.0	12.6	
77 Dichlorobromomethane	83	5.258	5.255	0.003	99	82253	20.0	23.1	
78 2-Nitropropane	41	5.611	5.614	-0.003	99	17714	NC	NC	
80 Epichlorohydrin	57	5.733	5.730	0.003	99	72721	400.0	514.6	
81 cis-1,3-Dichloropropene	75	5.782	5.785	-0.003	91	90744	20.0	15.2	
82 4-Methyl-2-pentanone (MIBK)	43	5.976	5.973	0.003	97	173223	100.0	103.8	
\$ 83 Toluene-d8 (Surr)	98	6.043	6.040	0.003	99	477493	50.0	49.1	
84 Toluene	91	6.122	6.125	-0.003	93	245386	20.0	18.5	
85 trans-1,3-Dichloropropene	75	6.524	6.521	0.003	96	74790	20.0	14.1	
86 Ethyl methacrylate	69	6.572	6.575	-0.003	87	46604	NC	NC	
•									

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82201.D									
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
87 1,1,2-Trichloroethane	83	6.761	6.758	0.003	97	50893	20.0	18.2	
88 Tetrachloroethene	166	6.791	6.788	0.003	97	65850	20.0	23.8	
89 1,3-Dichloropropane	76	6.986	6.983	0.003	92	83451	20.0	16.1	
90 2-Hexanone	58	7.083	7.080	0.003	96	65305	100.0	119.9	
91 n-Butyl acetate	43	7.223	7.226	-0.003	99	50873	20.0	8.32	
92 Chlorodibromomethane	129	7.242	7.238	0.004	98	66252	20.0	22.4	
93 Ethylene Dibromide	107	7.400	7.403	-0.003	99	59529	20.0	19.8	
* 94 Chlorobenzene-d5	117	7.996	7.993	0.003	85	454847	50.0	50.0	
95 Chlorobenzene	112	8.032	8.029	0.003	96	175083	20.0	21.9	
96 Ethylbenzene	106	8.136	8.139	-0.003	98	76563	20.0	18.3	
97 1,1,1,2-Tetrachloroethane	131	8.154	8.151	0.003	97	58697	20.0	21.6	
98 m-Xylene & p-Xylene	106	8.294	8.291	0.003	0	125353	20.0	24.1	
99 o-Xylene	106	8.744	8.741	0.003	94	91871	20.0	17.5	
100 n-Butyl acrylate	73	8.762	8.759	0.003	98	37302	20.0	14.1	
101 Styrene	104	8.775	8.778	-0.003	96	181994	20.0	20.3	
103 Bromoform	173	8.988	8.984	0.004	97	45051	20.0	24.4	
102 Amyl acetate (mixed isomers)		9.006	9.009	-0.003	92	67144	20.0	7.75	
104 Isopropylbenzene	105	9.121	9.124	-0.003	96	239786	20.0	18.8	
\$ 105 4-Bromofluorobenzene	174	9.322	9.319	0.003	95	191643	50.0	59.3	
106 Bromobenzene	156	9.444	9.447	-0.003	96	81260	20.0	19.3	
107 1,1,2,2-Tetrachloroethane	83	9.517	9.514	0.003	99	83452	20.0	16.7	
108 N-Propylbenzene	91	9.529	9.532	-0.003	99	303204	20.0	15.3	
109 1,2,3-Trichloropropane	110	9.553	9.550	0.003	98	18537	20.0	16.9	
110 trans-1,4-Dichloro-2-butene	53	9.578	9.581	-0.003	90	18165	NC	NC	
111 2-Chlorotoluene	91	9.626	9.629	-0.003	97	230353	20.0	16.3	
112 4-Ethyltoluene	105	9.645	9.641	0.004	98	266874	NC	NC	
113 1,3,5-Trimethylbenzene	105	9.711	9.708	0.003	92	217444	20.0	16.5	
114 4-Chlorotoluene	91	9.742	9.739	0.003	97	238721	20.0	17.5	
115 Butyl Methacrylate	87	9.827	9.824	0.003	90	65656	20.0	12.8	
116 tert-Butylbenzene	119	9.991	9.988	0.003	93	159181	20.0	16.0	
117 1,2,4-Trimethylbenzene	105	10.046	10.049	-0.003	97	235664	20.0	16.9	
118 sec-Butylbenzene	105	10.186	10.183	0.003	99	246441	20.0	16.4	
120 1,3-Dichlorobenzene	146	10.308	10.305	0.003	97	149768	20.0	19.8	
119 4-Isopropyltoluene	119	10.314	10.317	-0.003	97	206128	20.0	16.5	
* 121 1,4-Dichlorobenzene-d4	152	10.368	10.371	-0.003	95	300191	50.0	50.0	
122 1,4-Dichlorobenzene	146	10.393	10.390	0.003	96	159814	20.0	20.2	
123 1,2,3-Trimethylbenzene	105	10.411	10.414	-0.003	99	252624	20.0	17.1	
124 Benzyl chloride	91	10.521	10.517	0.004	99	122443	20.0	15.2	
125 2,3-Dihydroindene	117	10.575	10.572	0.003	94	250538	NC	NC	
126 p-Diethylbenzene	119	10.636	10.633	0.003	92	131858	NC	NC	
127 n-Butylbenzene	92	10.654	10.657	-0.003	97	119239	20.0	17.0	
128 1,2-Dichlorobenzene	146	10.703	10.700	0.003	97	151746	20.0	20.2	
129 1,2,4,5-Tetramethylbenzene	119	11.263	11.260	0.003	97	187629	NC	NC	
130 1,2-Dibromo-3-Chloropropane		11.342	11.345	-0.003	96	15706	20.0	20.0	
131 1,3,5-Trichlorobenzene	180	11.451	11.448	0.003	98	102758	NC	NC	
132 1,2,4-Trichlorobenzene	180	11.926	11.929	-0.003	94	90688	20.0	18.5	
133 Hexachlorobutadiene	225	12.011	12.008	0.003	97	36625	20.0	21.7	
134 Naphthalene	128	12.114	12.111	0.003	100	214886	20.0	17.0	
135 1,2,3-Trichlorobenzene	180	12.114	12.111	-0.003	95	90973	20.0	20.2	
S 136 1,2-Dichloroethene, Total	100	12.200	12.200	-0.003	0	30373	40.0	42.5	
S 137 Xylenes, Total	100				0		40.0	42.5 41.6	
_									
S 138 Total BTEX	1				0		100.0	93.8	

QC Flag Legend Processing Flags

Processing Flags NC - Not Calibrated

Review Flags

a - User Assigned ID

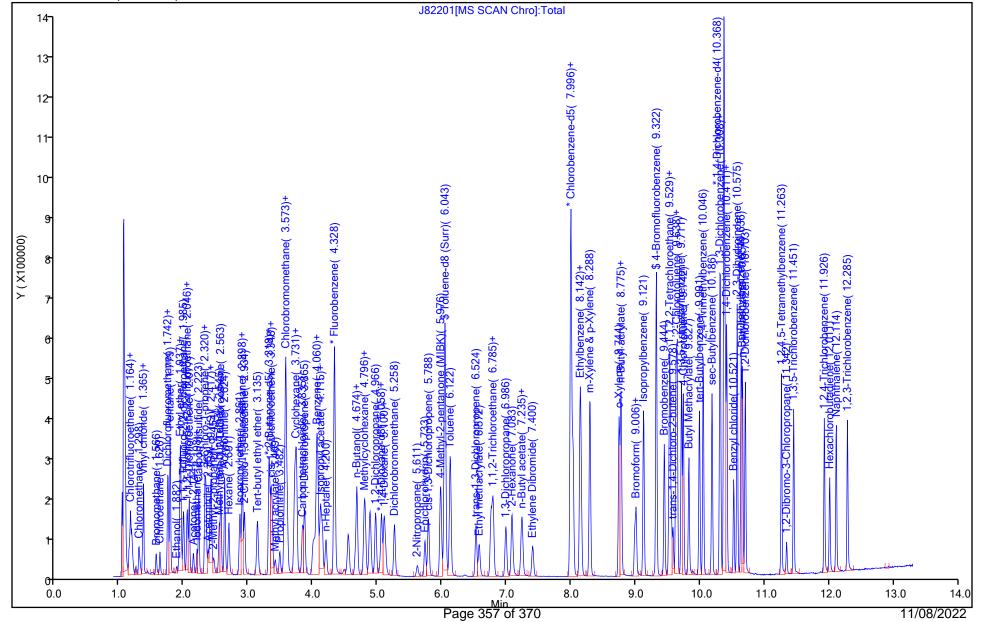
Reagents:

GASES Li_00500	Amount Added: 20.00	Units: uL
8260MIX1COMB_00161	Amount Added: 20.00	Units: uL
524freon_00059	Amount Added: 20.00	Units: uL
ACROLEIN W_00145	Amount Added: 4.00	Units: uL

8260ISNEW_00171 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00233 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Edison

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82201.D Injection Date: 03-Nov-2022 12:40:30 Instrument ID: CVOAMS8


Injection Date: 03-Nov-2022 12:40:30 Instrument ID: CVOAMS8 Operator ID: Lims ID: 460-268503-B-1 MSD Worklist Smp#:

Client ID: RW-6

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 11

Method: 8260_W8 Limit Group: VOA 624.1 ICAL

Column: Rtx-624 (0.25 mm)

Eurofins Edison Recovery Report

Data File: \\chromfs\Edison\ChromData\CVOAMS8\20221103-152676.b\J82201.D

Lims ID: 460-268503-B-1 MSD

Client ID: RW-6 Sample Type: MSD

Inject. Date: 03-Nov-2022 12:40:30 ALS Bottle#: 11 Worklist Smp#: 12

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-268503-B-1 MSD Misc. Info.: 460-0152676-012

Operator ID: Instrument ID: CVOAMS8

Limit Group: VOA 624.1 ICAL

Last Update:03-Nov-2022 12:59:12Calib Date:13-Oct-2022 02:01:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS8\20221012-151655.b\J81268.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1674

First Level Reviewer: KG2Q Date: 03-Nov-2022 12:59:12

Compound	Amount Added	Amount Recovered	% Rec.
\$ 55 Dibromofluoromethane (Surr)	50.0	56.5	113.10
\$ 61 1,2-Dichloroethane-d4 (Surr)	50.0	42.8	85.50
\$ 83 Toluene-d8 (Surr)	50.0	49.1	98.14
\$ 105 4-Bromofluorobenzene	50.0	59.3	118.70

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins Edison	Job No.: 460-268503-1				
SDG No.:					
Instrument ID: CVOAMS8	Start Date: 10/12/2022 22:40				
Analysis Batch Number: 871602	End Date: 10/13/2022 04:56				

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 460-871602/1		10/12/2022 22:40	1	J81260.D	Rtx-624 0.25 (mm)
STD7 460-871602/3 IC		10/12/2022 23:30	1	J81262.D	Rtx-624 0.25 (mm)
STD1 460-871602/4 IC		10/12/2022 23:56	1	J81263.D	Rtx-624 0.25(mm)
STD5 460-871602/5 IC		10/13/2022 00:21	1	J81264.D	Rtx-624 0.25(mm)
STD20 460-871602/6 ICIS		10/13/2022 00:46	1	J81265.D	Rtx-624 0.25(mm)
STD50 460-871602/7		10/13/2022 01:11	1	J81266.D	Rtx-624 0.25 (mm)
STD200 460-871602/8		10/13/2022 01:36	1	J81267.D	Rtx-624 0.25 (mm)
STD500 460-871602/9		10/13/2022 02:01	1	J81268.D	Rtx-624 0.25 (mm)
ICV 460-871602/16		10/13/2022 04:56	1	J81275.D	Rtx-624 0.25 (mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins Edison Job No.: 460-268503-1
SDG No.:

Instrument ID: CVOAMS8 Start Date: <u>11/03/2022 07:37</u>

Analysis Batch Number: 875754 End Date: 11/03/2022 19:20

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 460-875754/1		11/03/2022 07:37	1	J82190.D	Rtx-624 0.25 (mm)
CCVIS 460-875754/3		11/03/2022 08:29	1	J82192.D	Rtx-624 0.25 (mm)
LCS 460-875754/5		11/03/2022 09:28	1	J82194.D	Rtx-624 0.25 (mm)
MB 460-875754/8		11/03/2022 10:53	1	J82197.D	Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 11:25	1		Rtx-624 0.25 (mm)
460-268503-1	RW-6	11/03/2022 11:50	1	J82199.D	Rtx-624 0.25 (mm)
460-268503-1 MS	RW-6 MS	11/03/2022 12:15	1	J82200.D	Rtx-624 0.25 (mm)
460-268503-1 MSD	RW-6 MSD	11/03/2022 12:40	1	J82201.D	Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 13:30	1		Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 13:55	1		Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 14:20	1		Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 14:45	1		Rtx-624 0.25 (mm)
460-268503-7	FB_(20221028)	11/03/2022 15:10	1	J82207.D	Rtx-624 0.25 (mm)
460-268503-8	TB_(20221028)	11/03/2022 15:35	1	J82208.D	Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 16:00	1		Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 16:25	1		Rtx-624 0.25 (mm)
460-268503-4	MW-9	11/03/2022 16:50	1	J82211.D	Rtx-624 0.25 (mm)
460-268503-5	PZ-21	11/03/2022 17:15	1	J82212.D	Rtx-624 0.25 (mm)
460-268503-2	RW-7	11/03/2022 17:40	1	J82213.D	Rtx-624 0.25 (mm)
460-268503-3	MW-2A	11/03/2022 18:05	1	J82214.D	Rtx-624 0.25 (mm)
460-268503-6	BD_(10282022)	11/03/2022 18:30	1	J82215.D	Rtx-624 0.25 (mm)
ZZZZZ		11/03/2022 19:20	50		Rtx-624 0.25 (mm)

Lab Name: Eurofins Edison	Job No.: 460-268503-1
---------------------------	-----------------------

SDG No.:

Batch Number: 871602 Batch Start Date: 10/12/22 22:40 Batch Analyst: Boykin, Kenneth

Batch Method: 624.1 Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	14DIOXINTER 00146	524freon 00058	8260 SP 00159	8260ISNEW 00171
BFB		624.1		5 mL	5 mL				
460-871602/1 STD7 460-871602/3 IC		624.1		5 mL	5 mL				1 uL
STD1 460-871602/4 IC		624.1		5 mL	5 mL	30 uL	10 uL		1 uL
STD5 460-871602/5 IC		624.1		5 mL	5 mL		10 uL		1 uL
STD20 460-871602/6 ICIS		624.1		5 mL	5 mL		20 uL		1 uL
STD50 460-871602/7 IC		624.1		5 mL	5 mL		50 uL		1 uL
STD200 460-871602/8 IC		624.1		5 mL	5 mL				1 uL
STD500 460-871602/9 IC		624.1		5 mL	5 mL				1 uL
ICV 460-871602/16		624.1		5 mL	5 mL			20 uL	1 uL

Lab Sample ID	Client Sample ID	Method Chain	Basis	8260MIX1COMB 00160	8260SURR250 00232	8FreonHi 00049	8FreonsSS 00050	ACROLEIN SP 00142	ACROLEIN W 00145
BFB		624.1							
460-871602/1									
STD7		624.1			1 uL				
460-871602/3 IC									
STD1		624.1		10 uL	1 uL				4 uL
460-871602/4 IC									
STD5		624.1		10 uL	1 uL				4 uL
460-871602/5 IC									
STD20		624.1		20 uL	1 uL				4 uL
460-871602/6									
ICIS									
STD50		624.1		50 uL	1 uL				10 uL
460-871602/7 IC									
STD200		624.1			1 uL	20 uL			20 uL
460-871602/8 IC									
STD500		624.1			1 uL	50 uL			40 uL
460-871602/9 IC									
ICV		624.1			1 uL		20 uL	4 uL	
460-871602/16									

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

624.1 Page 1 of 3

Lab Name: Eur	ofins Edison		J	ob No.: 460-2	68503-1				
SDG No.:									
Batch Number:	871602		В	atch Start Da	te: <u>10/12/22</u>	22:40	Batch Analyst	: Boykin, Ken	neth
Batch Method:	624.1		В	atch End Date	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	ACRY/EPIH MIX 00105	BFB 00032	Ethanol mix 00069	GAS C SP 00483	GAS Hi 00426	GASES Li 00497
DED		L C O A 1		00103	1 -	00003			
BFB 460-871602/1		624.1			1 uL				
STD7 460-871602/3 IC		624.1		20 uL					2.5 uL
STD1		624.1							10 uL
460-871602/4 IC STD5		624.1							10 uL
460-871602/5 IC STD20		624.1							20 uL
460-871602/6		024.1							20 uL
STD50		624.1							50 uL
460-871602/7 IC STD200		624.1				20 uL		20 uL	
460-871602/8 IC		024.1				20 41		20 41	
STD500 460-871602/9 IC		624.1				50 uL		50 uL	
ICV 460-871602/16		624.1					20 uL		
100 071002710									
Lab Sample ID	Client Sample ID	Method Chain	Basis	MIX 2 Hi 00128	MIX I Hi 00155				
BFB 460-871602/1		624.1							
STD7		624.1							
460-871602/3 IC STD1		624.1							
460-871602/4 IC STD5		624.1							
460-871602/5 IC									
STD20 460-871602/6 ICIS		624.1							
STD50 460-871602/7 IC		624.1							
STD200 460-871602/8 IC		624.1		20 uL	20 uL				
STD500		624.1		50 uL	50 uL				
460-871602/9 IC ICV 460-871602/16		624.1							

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

624.1 Page 2 of 3

n, Kenneth

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

624.1 Page 3 of 3

Lab Name: Eurofins Edison Job No.: 460-268503-1

SDG No.:

Batch Number: 875754 Batch Analyst: Moroney, Christopher J

Batch Method: 624.1 Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	524freon 00059	8260ISNEW 00171	8260MIX1COMB 00161
BFB 460-875754/1		624.1		5 mL	5 mL				
CCVIS 460-875754/3		624.1		5 mL	5 mL		20 uL	1 uL	20 uL
LCS 460-875754/5		624.1		5 mL	5 mL		20 uL	1 uL	20 uL
MB 460-875754/8		624.1		5 mL	5 mL			1 uL	
460-268503-B-1	RW-6	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	
460-268503-B-1 MS	RW-6	624.1	Т	5 mL	5 mL	<2 PH Units	20 uL	1 uL	20 uL
460-268503-B-1 MSD	RW-6	624.1	Т	5 mL	5 mL	<2 PH Units	20 uL	1 uL	20 uL
460-268503-B-7	FB_(20221028)	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	
460-268503-B-8	TB_(20221028)	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	
460-268503-B-4	MW-9	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	
460-268503-B-5	PZ-21	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	
460-268503-B-2	RW-7	624.1	Т	5 mL	5 mL	7 PH Units		1 uL	
460-268503-B-3	MW-2A	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	
460-268503-B-6	BD (10282022)	624.1	Т	5 mL	5 mL	<2 PH Units		1 uL	

Lab Sample ID	Client Sample ID	Method Chain	Basis	8260SURR250 00233	ACROLEIN W 00145	BFB 00032	GASES Li 00500	
BFB 460-875754/1		624.1				1 uL		
CCVIS 460-875754/3		624.1		1 uL	4 uL		20 uL	
LCS 460-875754/5		624.1		1 uL	4 uL		20 uL	
MB 460-875754/8		624.1		1 uL				
460-268503-B-1	RW-6	624.1	Т	1 uL				
460-268503-B-1 MS	RW-6	624.1	Т	1 uL	4 uL		20 uL	
460-268503-B-1 MSD	RW-6	624.1	Т	1 uL	4 uL		20 uL	
460-268503-B-7	FB_(20221028)	624.1	Т	1 uL				
460-268503-B-8	TB_(20221028)	624.1	Т	1 uL				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

624.1 Page 1 of 2

Lab Name: Eur	cofins Edison		J	ob No.: $\frac{460-2}{}$	68503-1				
SDG No.:									
Batch Number:	875754		В	atch Start Da	te: <u>11/03/22</u>	07:37	Batch Analyst	: Moroney, Ch	ristopher J
Batch Method:	624.1		В	atch End Date	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	8260SURR250 00233	ACROLEIN W 00145	BFB 00032	GASES Li 00500		
460-268503-B-4	MW-9	624.1	Т	1 uL					
460-268503-B-5	PZ-21	624.1	Т	1 uL					
460-268503-B-2	RW-7	624.1	Т	1 uL					
460-268503-B-3	MW-2A	624.1	Т	1 uL					
160-260503-D-6	DD (10202022)	624 1	TP.	1 ,,T					

Batch Notes

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

624.1 Page 2 of 2

Shipping and Receiving Documents

768503

Environment Testing

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

: eurofins

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica Sample Specific Notes: Syracuse For Lab Use Only: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Nalk-in Client: ab Sampling: Job / SDG No. Months COC No Sampler Archive for Date: 10/28/2022 460-268503 Chain of Custody Carrier: Disposal by Lab Site Contact: Janelle van Lieshout Lab Contact: Kristyn Tempe Other: ☐ Return to Client Volatile Organics (Nethod 624.1) × × × × × × × X Perform MS / MSD (Y / N) z Ż z z ž z 1 z z Ż z z z z z z z Filtered Sample (Y / N) z Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Matrix # of Cont φ က က က 4 ф က က 9 NPDES Nater Water Analysis Turnaround Time Project Manager: Rebecca Hensel Type (C=Comp, G=Grab) Regulatory Progra⊟™ **IAT if different from Below** Sample ф 4 G O G G O G G G T 2 weeks 1 week Tel/Fax: 315.671.9156 2 days 1 day 15.30 Sample 3:40 10/29/22 13:40 01:21 91:11 3.00 Time Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other CALENDAR DAYS 10/20/22 10/28/22 10/28/22 Sample 10/28/22 10/28/22 10/28/22 10/28/22 10/28/22 CC/8C/01 60/80/01 10/28/22 Date BRONGOOD BOLLIOZE 2022 Comments Section if the lab is to dispays of the sample. Special Instructions/QC Requirements & Comments: Sample Identification Phone Edison, NJ 08817-2859 phone 732.549.3900 fax 732.549.3679 FAX FB_(20221028) FB_(20221028) FB_(20221025) TB_(20221028) Client Contact MW-2A 6-WW 8274 PZ-21 RW-7 Your Company: Arcadis U.S., Inc. Project Name: SMC Maestri Site Possible Hazard Identification: MS MSD City/State/Zip: Syracuse, NY Address: 110 W. Fayette St. Site: Geddes, NY 13209 O # 30120984 (315) 671-9296 xxx xxx (xxx Non-Hazard Page 367 of 37≬

~

Form No. CA-C-WI-002, Rev. 4.21, dated 4/4/2019

Date/Time:

Date/Tin

Confipant Sompany

Received/In D

Date/Time

Company:

Company:

Therm ID No. Date/Time

Corrid

Cooler Temp. (°C): Obs'd:

Received by

Date/Time: 1640
Date/Time:

Custody Seal No.

Custody Seals Intact:

Remainished by Remainished by:

Company:

Eurofins TestAmerica Edison Receipt Temperature and pH Log

268503

Job Number:

y.	RAW CORRECTED	Cooler#7: C	Cooler#8:	Cooler#9: &	Total Total Phenols Sulfide TKN TOC Cyanide Phos Other	(pH<2) (pH>9) (pH<2) (pH<2) (pH>12) (pH<2)									ive used (ml):	Expiration Date:
n# Cooler Temperatures	RAW CORRECTED	Cooler #4: c c	Cooler#5: & &	Cooler #6: c	EPH or S Hardness Pest QAM	2) (pH<2) (pH 5-9) (pH<2)				4				ord the mormation below:	Volume of Preservative used (ml):	
Number of Coolers: IR Gun #	RAW CORRECTED.	Cooler #1:0/2 c x 2c	Cooler #2: c	Cooler#3: c c	Nitrate Ammonia COD Nitrite Metals	TALS Sample Number (pH<2) (pH<2) (pH<2) (pH<2)							in the distriction of the state	Sample No(s), adjusted:	Preservative Name/Conc.:	Lot # of Preservative(s):

EDS-WI-038, Rev 4.1 10/22/2019

Login Sample Receipt Checklist

Client: ARCADIS U.S. Inc Job Number: 460-268503-1

Login Number: 268503 List Source: Eurofins Edison

List Number: 1

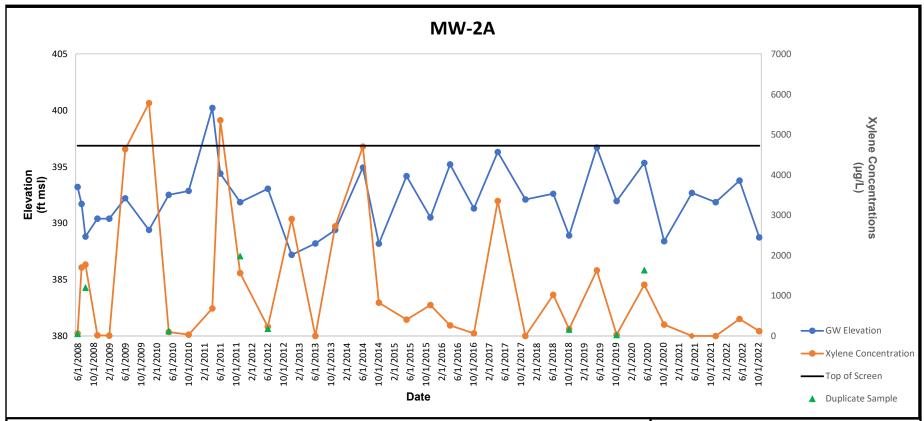
Creator: Thundathorn, Sukanan 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: ARCADIS U.S. Inc Job Number: 460-268503-1

Login Number: 268503 List Source: Eurofins Edison


List Number: 2

Creator: Thundathorn, Sukanan 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	

Appendix G

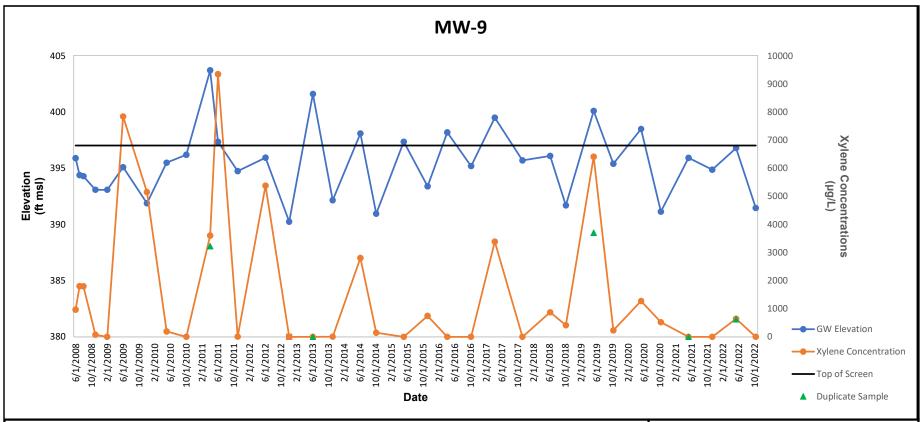
Historic Well Xylene Concentrations and Water Table Elevations

Monitoring well MW-2A was formerly known as RW-2 in 2006

The Site Specific Cleanup Goal for Total Xylene is 5 μg/L

ft msl = feet mean sea level

STAUFFER MANAGEMENT COMPANY


MAESTRI SITE

904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

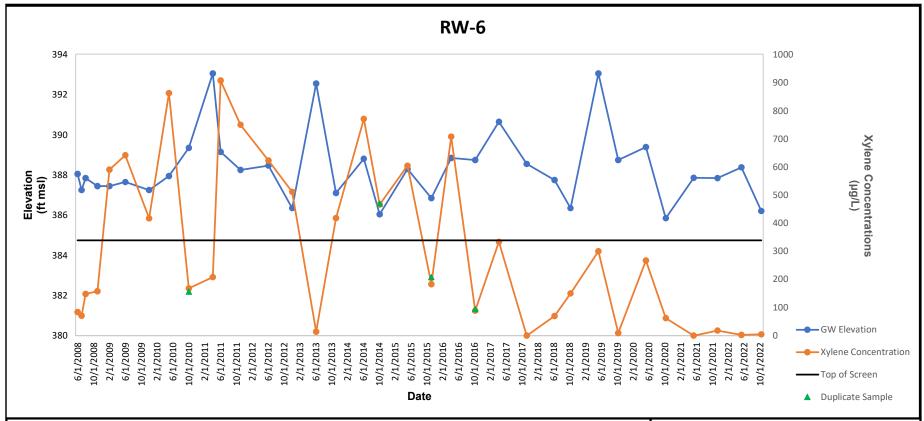
APPENDIX

Monitoring well MW-9 was not sampled in December 2012 due to it being dry

The Site Specific Cleanup Goal for Total Xylene is 5 µg/L

ft msl = feet mean sea level

STAUFFER MANAGEMENT COMPANY


MAESTRI SITE

904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

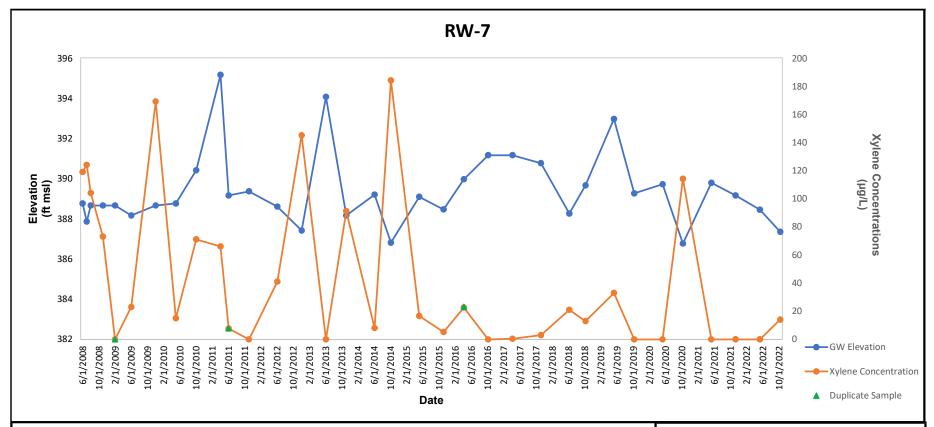
TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

APPENDIX

The Site Specific Cleanup Goal for Total Xylene is 5 µg/L

ft msl = feet mean sea level

STAUFFER MANAGEMENT COMPANY


MAESTRI SITE

904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

APPENDIX

The Site Specific Cleanup Goal for Total Xylene is 5 μg/L

ft msl = feet mean sea level

STAUFFER MANAGEMENT COMPANY

MAESTRI SITE

904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

APPENDIX

Appendix H

2022 Low-Flow Sampling Logs

AstraZeneca - Maestri Site Gauging Log

Date:	5/24/2022	Project Number:	#######################################	Task:	01	
Complete E	By: \TC				1,247	

Well I.D.	Time	Depth to Water (BTIC)	Depth to Product	Depth to Bottom	Notes
			g Wells and F	Piezometers	
MW-9	1075	12.09		18.79	нв
MW-10	0929	8.23		20.64	FB
MW-14	0937	15.90	_	47.53	Lakeled MW-13
PZ-2	1011	11.3%	_	20.37	5B
PZ-3	1044	11.45		22.73	SB
PZ-5	1713	5.47	-	18.95	SB
PZ-6	1048	11.40	_	22.28	58
PZ-7	1041	11.68	_	25.08 #	SB
PZ-9	1633	11.24	-	22.58 #	FB
PZ-10	1630	10.47		21.57	SB
PZ-12	1238	13.11	-	+ 21.62 #	SB
PZ-13	1020	12.64		20.64	abled MW-18 SB
PZ-14	1008	11.58	_	24.23	SB
PZ-15	1006	17.38	_	23.48	'5B
PZ-18	0949	17.75	-	24.55	SB
PZ-19	1000	17.51	-	22.70 #	SB
PZ-20	1203	5.57	_	19.71 #	SB
PZ-21	1200	2.24	_	18.77	SB
MW-2A (formerly RW-2)	1027	12.63	-4-	23.03 #	58
RW-3	0939	18.40	-	27.43	58
RW-5	1036	11.00	-	25.94 #	58
RW-6	1215	5.27	_	19.08	5 B

RW-7	1218	17.31		28.03	# 5	B
	Time	Depth to Water (BTIC)	Depth to Product	Depth to Bottom	r No	tes
RW-8	1150	12.45		25.82	NO Ca	
MW-11	1233	22.10	-	1 1 1 1 1 1 1 1 1	# 57	
MW-12	1231	8.30	-	20.53	SE	3
MW-13	0932	15.96	_		# 51	
RW-4	10:14	12.74		73.69	51	1
			1 4			
					The Win	
					1 689	
					11.31.35	
		1			4 1 1 1 1 1	
		1				
		-			2 3 3 3 3 3	- Line
		1 1 1 1 1 1 1			1 1 10	
		-			1 1 1 1 1 1	
						100
		3				
		1 1 1				
		and marely the spill of a facility against				

Top of Casing elevation was measured from the highest point of the PVC riser within the well protector.

²Yellow highlight denotes where the difference in elevation between groundwater measured inside of piezometer (inside of wall) and the top of the vertical barrier wall is less than 1 foot.

³The minimum difference in elevation required, for vertical barrier wall effectiveness, between ground water and the top of the vertical barrier wall is (+)1 foot..

ARCADIS	3							Page	1	of	1
Maestri S	Site Semi	-Annual	Event					Well ID:	M	W-2	A
Project Nur			30120984		Task:	61					
Date:			4/22		raon.		Well Head	space PID:		_	
Sampling T	ime:		500		Sample	d Bv	1T6				
Weather:		730F				Coded Replicate No.:					
		10-1	DOWN	4		Type (circle one):	-Dunlingto	MS/MS			
Instrument	Identification	on			, i topiloato	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dapiloato	Mornio			
Serial #:5	0077	PID					Water Quality	Meter(s)	YSI :	ProD)55
Purging Inf	formation	,									
Casing Ma	terial:		5+0	۱.		Purge Method:(circle one) Subm	ersible Centri	ifugal Bladde	er	
Casing Dia	meter:		81	/ in		Screen Interval:		386.8		396.	86
Total Depti	n:	2	23.03	ft		Pump Intake Se		390	(1	6.5	0)
Depth to Product:				ft		,		0 10			
Depth to W	ater:		12.6	3 ft		Total Volume P	urged:	27	921.		
Water Colu	ımn:		18.4			Pump on:		Off:	MENG	(1)	
Gallons in	Well:		27.1:	5 gal				-	458	(8)	
Field Parar	neter Meas	urements T	aken Durin	a Puraina					,		fe-
	Minutes	Rate	Depth to	Turbidity	pН	ORP	Conductivity	Temp	DO I	TDS	
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
	Stabili	zation Range		10% if >1	+/- 0.1	+/- 10	3%	3%	10%		
1345	4/P)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12.68	2.32	7.52	-80.7	1.554	9.2	0.85	-	0.
1350	5	1660	12.77	2.62	7.48	-100.8	1.484	9.1	0.54	-	2.1-42
1355	10	2200	12.95	2.71	7.46	-162.0	1.468	9.0	0.45	-	9.29
1400	15	2200	13.13	238	7.37	-102.3	1.468	9.1	0.43	-	7.19
1405	20	0025	13.30	2.19	7.38	-104.6	1.472	9.0	0.40	-	109
1410	25	2700	13.41	1.93	7.39	-105.9	1.476	9.0	0.38	-	12.9
1415	30	2200	13.54	1.92	7.40	-107.6	1.486	9.1	0.38	-	15.8
1420	35	2200	13.67	1.92	7.41	-107.9	1.492	9.0	0.38	-	18.7
1425	40	2200	13.79	1.85	7.46	-108.7	1.503	9.0		-	
1430	45		13.88		7.42	- 98.9	1.487	9.1	0.37		21.6
1435	50		13.91	1.95	7.39	-105.9	1.479		0.38	7.	24.5
1440			13.95					10.3	0.38	-	25.0
_	55				7.39	-108.4	1.477	9.5	0.36	-	25.5
1945	60		13.96			-108.7	1.482	9.5	0.35		26.0
1450	65	400	1396			-110.4	1.484	9.4	0.35	-	26.5
1500	70	400	13.97	2.44	7.40	-111.3	1.491	9.5	0.35	_	27.0
Number	Number and Type of Bottle Analy					eter	Preser	vative		Colle	ected
3 - 40 mL Glass Vial VO					s - Xylenes	S	Н	CL	1	15/A	ASD VES
											7-3
					Section of Company						
				- 4							
								No. VESTIN			
					1 1000		-			13130	
	G			16 ·							
Color:			lear		45	Well Condition			bood		
Odor:			Vone		1.36	Purge Water D	isposal:	5599	1. Dri	Jun	

ARCADIS	S							Page	l	of	1
Maestri S	Site Semi	i-Annual	Event					Well ID:	R	w-3	
Project Nur			30120984		Task:	01					
Date:	ilibel.			27	Task.		- Well Head	space PID:	7	w-3.	
Sampling T	Time:	3	181		- Sampled By:		JT6	юрачо			
Weather:		730F	-	clouds		Replicate No.:	216				
rveamer.		13-6	30m/	C 1008 5		Type (circle one):	Duplicate	*M3/M3	- (10)		
nstrument	Identification	on			Replicate	Type (circle one).	ъчрноске	1010/1010			
Serial #:5		PID					Water Quality	Meter(s)	YSI	Prol	055
									1		
Purging Inf	formation							15.	04		
Casing Ma	terial:		Stee	1		Purge Method:(circle one) Subm				
Casing Dia			6"	in		Screen Interval	: From:	15.0	3 To: ,	23	5.03
Total Depti			27.43	ft		Pump Intaké Se	etting:	22	.00		
Depth to P		-		ft							
Depth to W		1	8.40	ft		Total Volume P	urged:	13.5	991.		
Nater Colu			9.07	? ft		Pump on:	17.07	Off:	816		
Gallons in	Well:		13.20	gal							
ield Parar	meter Meas	urements T	aken Durin	na Puraina							
	Minutes	Rate	Depth to	Turbidity	pH	ORP	Conductivity	Temp	DO	TDS	
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
2 4 5 4 5		zation Range		10% if >1	+/~ 0.1	+/- 10	3%	3%	10%		
1716	0	1500	1954	34.90	7.12	6.2	2-080	9.7	0.92	_	0
1715	5	1500	20.43	16.54	7.09	-5.2	7.060	9.7	0.56	_	1.959
1720	10	900	20.85	3.00	7.03	-14.5	1.961	9.8	0.64	1	5.85%
1725	15	600	21.20	2.56	7.03	-19.0	1.851	9.9	0.48	_	7.0099
1730	20	660	21.12		7.64	-22.3	1.832	10.1	0.48		7.75
1735	25	600	21.00	-	7.04	-27.1	1.901	10.2	0.44	_	8.5
1740	30	600	21.812	2.47	7.04	-32.4	1.660	10.1	0.43	_	9.25
1745	35	600	21.41		7.07	-35.9	1.141			2	10
1750	40		21.60	2.48	7.10	-35-7		10.0	0.45		
		600					1.577	10.1	0.49		10.75
1755	45	400	2168	3.98	7-06	-32.3	1-837	10.2	0.81	_	H.50
1800	50	400	21.65	3.19	7.07	-42.8	1.947	10.3	0.44	_	12125
1805	55	400	21.71	3.03	7.07	-42.7	1.705	10.2	0.52	_	12.53
1810	60	400	21.69	3.04	7,09	-42.1	1.682	10.2	0.50	_	13
815	65	400	21.68	3.00	7.11	-39.9	1.667	10.3	0.54	_	135
	70										
Number	and Type	of Bottle	į.	Analyti	ical Param	eter	Presei	vative	-	Colle	ected
	10 mL Glass				cs - Xylene	No. of the Control of	Н		M		soled
3-4	(Glass	5 VIdI	,	VOC	73 - Aylelle	5			y.	25	
	· · ·										
						0.000					
							. e				
Color:		,	Clear			Well Condition	:	Gazi	1		
			None			Purge Water D		5500	d 21. Dr	u de	
Odor:											

 $G: \ \ A_Prjcts \\ \ \ Maestri\ SA\ Event\ Sampling\ Logs.xls - sheet\ Maestri\ Sampling\ Log$

ARCAL	DIS							Pag	e	of	1
Maestr	i Site Ser	ni-Annua	Event					Well ID:		RW-	-5/
Project N			30120984	4	Task:	_01				KW	8
Date:		5/25			_		— Well Hea	dspace PID):	_	
Sampling	Time:	,	852	,	– Sampl	ed By:	JT6				
Weather	:		SUNU		Coded	Replicate No.:				1 1 1 1 1	
1				/	Replicat	e Type (circle one): Duplicate	1M3/M	30-		
	nt Identificat										
Octial #.	5001	Пыр					Water Quality	y Meter(s)	YSI Pr	0 P55	,
Purging I	nformation										
Casing M	aterial:		Stee	.\		Purge Method	(circle one) Subm	nersible Cen	trifugal Bladd	ler	
Casing D			6"		1	Screen Interva			To:		
Total Dep			25.8	2 f	<u>t</u>	Pump Intake S	Setting:	22.0			
	Depth to Product:										
Depth to \			12.45		<u>t</u>	Total Volume I	Purgèd:	21	921.		
Water Co			13.3		-	Pump on:	0749		851		
Gallons in			19.60		-						
Field Para		surements T	aken Duri	ng Purging)						
Time	Minutes Elapsed	Rate	Depth to	Turbidity	pН	ORP	Conductivity	Temp	DO	TDS	
Time		(ml/min) ization Range	Water <0.3 ft.	(NTUs) 10% if >1	(SI Units) +/- 0.1	(mV) +/- 10	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
0 750	0	2200	13.28	33.98	6.68	35.1	3%	3%	10%		
0755	5	2200		54.80	6.71	7.6	0.957	8.6	0.91		2.9
0800	10	1800	14.66		6.73	- 8.6	0.956	8.7	0.63	-	
0805	15	1800	1492			-55.2	0.957	8.7	0.57	-	8.15
0810	20	1800	15.31	59.78	6.75		0.956	8.7	0.58		
0815	25	1800	15.67			729.7	0.955	8.7	0.60	_	10.5
0820	30	1800		65.5	6.76	-35.8	0.953	8.7	0.67		12.85
0825		1800	16.00		6.77	739.8	0.954	8.7	0.65	_	15.20
	35			74.7	6.88	-42.5	0.954	8.7	1.05	-	17.55
0830	40	1000	16.39	81.9	6.87	- 42.9	0.952	8.8	0.90	_	18-80
0835	45	450	15.93	52.7	6.85	- 46.8	0.955	9.1	0.72	-	19.35
0846	50	_	15.79	31.4	6.86	-47.6	0.955	9.1	0.78	-	19:90
0845	55		13.64	29.5	6.86	-49.2	0.954	9.2	0.74	-	20.45
0850	60	450	1551	26.8	6.85	-50.6	0.954	9.2	0.22	-	21.00
	65				Carlotte						\$
	70										
Number	and Type o	of Bottle		Analyti	cal Parame	eter	Presen	vative		Collec	cted
3 - 40				s - Xylenes		НС	L		ves		
				-							
				-							
				1							
Color: Odor:	-		leav	100		Well Condition: Purge Water D		600d	1 000	. A.	

ARCADI	S							Page	1	of	1	
Maestri	Site Sem	i-Annual	Event					Well ID:	PZ.	-21		
Project Nu			30120984		Task:	01						
Date:			5/22				Well Head	dspace PID:				
Sampling 7	Γime:	1/0			Sample	ed By:	JT6					
Weather:			405+4	Claud		Replicate No.:						
		- 1 4 4 1	*DSTIG	Chaday		Type (circle one):	-Dunlingte	-MS/MS	- 3D			
	Identification				, topout	. , , , , (0.10.10 0.10).	Варновко	1110/1110				
Serial #: 5	10077	PID -					Water Quality	Meter(s)	YSI	D 5.5 J	Pira	
Purging Inf	formation											
Casing Ma		6	VC			Purge Method:(circle one) Suhm	ersible Centr	rifugal Bladd	er		
Casing Dia			2"	in		Screen Interval:		9.3		19.3		
Total Dept		1				Pump Intake Se			1.00	1 ()		
,	Depth to Product: 18.77 ft				Pump intake Se	eung.		(,00				
Depth to W			2.19	ft		Total \/alims D	uraod:		-			
Water Colu						Total Volume P	-	<u>4.1</u> Off: 1	106			
College in Malle					Pump on:	1029	Оп:	106				
Field Parai	meter Meas Minutes	urements T										
Time	Elapsed	Rate (ml/min)	Depth to Water	Turbidity (NTUs)	pH (SI Units)	ORP (mV)	Conductivity	Temp	DO (mg/L)	TDS (mg/L)	Comments	
	L	zation Range		10% if >1	+/- 0.1	+/- 10	(MS/cm)3 3%	(°C)	10%	(1119/L)	Comments	
1030	0	700	2.52	401.7	7.27	-103.4	1.072	12.1	1.95	_	0	
1035	5	700	2.70	179.3	7.15	-120.3	1.049	11.2	6.65		0.9	
1040	10	600	2.68	38.17	7.14	-126.6	1.061	11.1	0.50	_	1.65	
1045	15	400	2.65	17.11	7.15	-130.0	1.065	11.11	0.45	_	2.15	
1050	20	4/00	2.67		7.14	-131. 1	1.064	11.1	0.41		2.65	
1055	25	4/00	2.68	11.03	7.19	-133.3	1.067	11.1	0.39	_	3.15	
1100	30	4/00	2.68	10.92	7.13	-133.5	1.06)	11.1	0.31	-	3.65	
1105	35	400	2.67	10.74	7.13	-133.7	1.060	11-1	0.37	-	4.15	
	40						The last		36	***	100	
	45										ALC: E	
	50							3	1000			
	55						N. 26 July	F 155	BEC THE			
	60											
	65											
	70											
				A11	! D	-4	-			6 "		
	,,				cal Param		Presei			Collec	ted	
3 - 4	3 - 40 mL Glass Vial VOC				s - Xylenes	S	H	CL	4	103		
						-10-10-0						
Color			Class			Well Condition		-	-1			
Color: Odor:			Clea	0	_	Purge Water D		550	1. Dru	260		
JUVI.			~ 00			. dige tratei D	poodu.	70	, , , ,			

ARCAD	IS							Page	1	of	1
Maestri	Site Sem	i-Annual	Event					Well ID:		PZ-	2 n
Project Nu			30120984		Task:	01				1 =	
Date:		5/	25/2				- Well Hea	dspace PID:			
Sampling	Time:		343		Sample	ed By:	JTB				
Weather:			Clou	dy	Coded	Replicate No.:	-				
				,		e Type (circle one):	- Duplica te	-MS/MC	- HD		
	t Identification										
Serial #:5	0877	PID	-				Water Quality	y Meter(s)	YSI [255 -	Pro
Purging In	formation										
Casing Ma			PVC			Purge Method:(circle one) Subm	nersible Centr	ifugal Bladd	er	
	Casing Diameter: 2" in				Screen Interval:	From:	10.0	To:	20.	ბ	
	Total Depth: 19.71 ft				Pump Intake Se	etting:	14	5.0			
Depth to Product:											
	Depth to Water: 5,54 ft					Total Volume P	urged:	2	.95		
	Water Column:				Pump on:	1243	Off: \\\]	342			
Gallons in	Well:	2.3	1-1-1-	7 (/ Bgal							
Field Para	meter Meas	urements T	aken Durir	na Puraina							
	Minutes	Rate	Depth to	Turbidity	pН	ORP	Conductivity	Temp	DO	TDS	
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
12116		zation Range		10% if >1	+/- 0.1	+/- 10	3%	3%	10%		
1245	0	300	6.89	15.34	7.12	7120.1	1.536	12.9	0.99		Ö
1250	5	300	7.95	-	7.06	-138.9	1.521	13.3	0.54		0-35
1255	10	210	7.88		7.06	-152.0	1.521	14.8	0.48	-	0.70
1300	15	210	7.89	14.88	7.07	-157.1	1.525	12.8	0.40	_	0 A 5 . 8 D B
1305	20	210	7.89	14.34	7.07	-166-7	1.498	12.7	0.39	_	1.20
1310	25	210	7.89	12.21	7.08	- 167.8	1.497	12.7	0.41		1.45
1315	30	210	7.88	9.90	7.08	-168.2	1.483	12.8	0.41	-	1.70
1320	35	210	7.88	6.25	7.07	-167.5	1.468	12.8	0.40	-	1.95
1325	40	210	7.89	3.87	7.07	-166.9	1.437	12.9	0.36	-	2.20
1330	45	210	7.89	2.79	7.07	-165.7	1.420	12.9	0.34	-	2.45
1335	50	210	7.88	2.71	7.07	- 164.2	1.411	12.9	0.33	1	2.70
1346	55	210	7.88	2.60	7.07	-162.7	1.461	12.9	0.33	_	2.95
	60					2 6 9	100				
	65										
	70					- 3					
Number	and Type	of Bottle		Analyti	cal Param	eter	Preser	vative		Colle	cted
					s - Xylenes	4 - 150c 1948	Н	Maria de la companio della companio	1000		oteu
3-4	O IIIL Glass	Viai			3 - Aylonoc	,)L	Ves		
									1		
									11.00		
Color: Clear					Well Condition:		6	boo			
Odor: Non				2	_	Purge Water Di	sposal:	55ge	31. Dr	un	3222

Date: Sampling Tir Weather: Instrument to Serial #:	iber:		Event 30120984					Well ID:	RW-	7		
Date: Sampling Tir Weather: Instrument to Serial #:		512	30120984					****	E VV	/		
Sampling Tir Weather: Instrument to Serial #:	me:	512										
Weather: Instrument lo	me:	212	4/22				Well Headspace PID:					
Instrument lo Serial #:		17:	55		Sampled By:		T. Derleth					
Serial #:		Suni	14		Codeo	Replicate No.:			_			
Serial #:			,		Replicat	e Type (circle one)	: Duplicate	MS/M	SD			
	dentificati	on IPID	_				Motor Oveli	h. Matar(a)	00110			
		ILID					Water Qualit	ly Meter(s)	05129			
Purging Infor	rmation											
Casing Mate	erial:	5	teel			Purge Method:	(circle one) Submersible Centrifugal Bladder					
Casing Diam	neter:		6"	in		Screen Interval	: From:	384.26		394.2	26	
Total Depth:		2	28.03 ft			Pump Intake Se	etting:		ay 39			
Depth to Pro		ft						Water	@ 388	3.46		
Depth to Wat		17.3i ft				Total Volume P		2.93 gals				
Water Colum		-	0.72	ft		Pump on:	16:50	Off: 17:	50			
Gallons in W			5.74	gal								
Field Parame	eter Meas Minutes		aken Duri		-U	I opp	Conductive.	T +1	T 80	TDO		
Time	Elapsed	Rate (ml/min)	Water	Turbidity (NTUs)	pH (SI Units)	ORP (mV)	Conductivity (MS/cm)3	Temp (°C)	DO (mg/L)	TDS (mg/L)	Comments	
		zation Range		10% if >1	+/- 0.1	+/- 10	3%	3%	10%	y	,	
1650	0	500	17.42	53.70	7.48	-76.3	0.970	8.9	2.06			
16.55	5	500	18.12	464	7.30	-101.7	0.962	8.8	0.92			
17:00	10	100	17.97	4.65	7.20	-100.8	0.960	9.4	0.90	4		
17:05	15	100	17.77	4.19	7.21	-102.4	0.961	9.7	0.73			
17:10	20	100	17.68	4.20	7.19	-103.7	0.960	9.6	0.00			
17:15	25	100	17.59	4.30	7.16	-101.8	0.968	10.0	0.64			
17:20	30	100	17.48	3.97	7.18	-1034	0.958	10.0	0.61			
17: 25	35	100	17.57	4.81	7.13	-109.5	0.967	93	0.47			
17:30	40	100	17.08	4.31	7.21	-110.9	0.965	9.1	0.43			
17:35	45	100	17.73	4.29	7.18	- 111.0	0.965	9.2	0.42			
17:40	50	100	17.13	4.37	7.17	-110.0	0.965	9.3	0.42			
17:45	55	100		4.38	7.16	-109-2	0966	9.3	0.40			
17:50	60	100	17.73	4.37	7.13	-107.1	0.966	9.4	0.42			
	65								-10			
	70								7			
Number ar	nd Type	of Bottle		Analytic	cal Parame	eter	Preser	vative		Collect	ed	
				s - Xylenes		НС			Conco	.cu		
			1				110					
									1			

ARCAD	IS							Pag	je i	of	1
Maestri	Site Sen	ni-Annual	Event					Well ID:			
Project Nu	umber:		30120984	1	Task:						
Date:		5/29	5					adspace PII	D: NA		
Sampling	Time:	9:0				ed By:	T. Der	leah			
Weather:		Sunn	4			Replicate No.:			-		
Instrumen	t Identificati	ion			Replicat	e Type (circle on	e): Duplicate	MS/N	ISD		
Serial #:		PID N	}				Water Qualit	y Meter(s)	06129		
Purging In	formation										
Casing Ma		<.	reel			Purge Method	:(circle one) Subr	nersible Cer	ntrifugal Blade	ter	
Casing Dia			6	in		Screen Interv	_	386.17	To:	396.1	7
Total Dept		25.0		ft	-	Pump Intake			(16.53 Ft)	314.1	
Depth to F		NA		ft					@ 11.03	ft	
Depth to V	Vater:	11.08	. 01.			Total Volume	Purged:	21.92	gallons		
Water Col	umn:	14.80		ft		Pump on:	7:50	Off:	1:00		
Gallons in	Well:	21.8	2	gal							
Field Para		surements T		_							
Time	Minutes Elapsed	Rate (ml/min)	Depth to Water	Turbidity (NTUs)	pH (SI Units)	ORP (mV)	Conductivity (MS/cm)3	Temp (°C)	DO (mg/L)	TDS (mg/L)	Comments
Tille	L	ization Range		10% if >1	+/- 0.1	+/- 10	3%	3%	10%	(mg/L)	Comments
7:50	0	1000	11:24	684	6.74	135.5	0.701	9.5	203		
7:55	5	1500	12.29	7.35	6.70	60.1	0.707	9.2	0.58		
8:00	10	1500	12.70	8.74	6.69	51.2	0.734	9.2	0.51		
8:05	15	1500	12.98	11.45	0.70	45.8	0.752	9.2	0.48		
8:10	20	1500	13.16	14.15	6.70	41.6	0.765	9.2	0.46		
3:15	25	1500	13.28	18.22	6.70	39.1	0.781	92	0.45		
8:20	30	1500	13.37	12.53	6.71	35.9	0.784	9.2	0.44		
8:25	35	1500	13.49	29.09	671	31.9	0.800	9.2	0.42		
8.30	40	1500	13.56	32.25	6.71	28.9	0.817	9.2	042		
8:35	45	1560	13.64	43.82	6.72	23.7	0.815	9.2	0.40		
8:40	50	1500	13.67	51.55	6.72	23.8	0.833	9.2	0.40		
8 45	55	150	13.26	46.18	6.73	20.1	0.833	9.6	0.40		
8:50	60	150	13.13	58.12	6.73	18.0	0.841	9.5	0.39		
8:55	65	150	12.97	60.48	6.73	14.6	0.840	9.5	0.38		
9:00	70	150	12.84	62.31	6.73	14.3	0.843	9.4	0.38		
Number	and Type	of Bottle		Analyti	cal Parame	eter	Preser	vative		Collect	ed
3 - 4	0 mL Glass	s Vial		voc	s - Xylenes		нс	L			
							1				
		5.5						1			
Color: None			-	Well Condition		Goo					
Odor:		Non			-	Purge Water D	isposal:	55. g	allon du	ım	

Project Nu		i-Annual	Event					Well ID:	MALL C	2	
	mber:							MAGII ID.	MW-	1	
Date:		30120984			Task:			1100			
	Date:		0			Well Headspace PID: N					
		5/24/22			Sampl	Sampled By:		T. Derleth			
		Sunny				Replicate No.					
Instrument	Identificati	on			Replicat	e Type (circle on	e): Duplicate	MS/M	ISD		
Serial #:	identificati	PID NA)	0505	10		Water Qualit	v Meter(s)	051291		
22,149,10		1/1/2		030.1	10		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,o.o. (o)	001011		
Purging In	formation										
Casing Ma		PVC			50	Purge Method	:(circle one) Subr			12.00	
Casing Dia		in			-	Screen Interval: From: 387 To				397	
Total Dept		18.39 ft NA ft			-	Pump Intake	Setting:	16.87 Ft 3920 Water @ 396.78			
Depth to P					•	Total Values	Durand				
Depth to W Water Colu		6.70		ft ft	•	Total Volume Pump on:	13:50	Off: 1)	gallons	2	
Gallons in		1.09		gal	•	rump on.	13.00	off: 14 50			
			-1								
Field Parai	Minutes	Rate	Depth to	Turbidity	pН	ORP	Conductivity	Temp	DO	TDS	
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
12 = .	Stabili	ization Range	<0.3 ft.	10% if >1	+/- 0.1	+/- 10	3%	3%	10%		
13:56	0	375	12.04	86.23	6.74	-91.8	1.020	11.2	2.43		
13:55	5	375	12.39	91.72	6.67	-73.3	0.979	10.4	1.51		
14.00	10	375	12:41	110.19	6.67	-654	0.933	10.3	1.05		
14:05	15	375	12.43	120.29	6-67	~58.2	0.901	10.3	0.82		
14:10	20	375	12.46	146.26	6-68	-55.6	0.892	10.2	0.75	1	
14.15	25	375	17.48	166.63	6.69	-53.0	0.884	10.0	D.64		
14:20	30	375	12.49	164.53	6.69	-52.3	0.888	10.0	0.58		
14:25	35	375	12.50	163.74	6.70	-51.3	0.884	10.0	0.54		
14.30	40	375	12.51	169.15	6.70	-51.0	0.884	10.1	0.48		
14:35	45	375	12.51	156.34	6.71	-50.3	P88.0	10-1	0.43		
14:40	50	375	12.51	160.05	6.71	-50.3	0.882	10.1	0.44		
14:45	55	375	1251	10192	6.71	-50.3	0.882	10:1	0.42		
Y	60								1		
	65										
	70						A				
Number	and Type	of Bottle		Analyti	cal Parame	eter	Preser	vative		Collect	ed
3 - 4	0 mL Glass	Vial		VOC	s - Xylenes	i d	НС	L			
									1		
Color:		None				Well Condition		Good			
Odor:		None			-	Purge Water D		Drum			

ARCAD	S							Pag	e (of	Ì	
Maestri	Site Sem	i-Annual	Event					Well ID:	Moon	AM RW	-10	
		30120984		Task:								
Date:		517	5/25/22				Well Hea	dspace PID):			
Sampling Time:		11:15			Sampl	Sampled By:		rieth				
Weather:		Sunny			Coded	Coded Replicate No.:			4			
V.S. S. S.					Replicat	e Type (circle one)	: Duplicate	MS/M	SD			
Serial #:	t Identificati	on TPID					Water Qualit	v Meter(s)				
OCHAI #.		II ID					Water Quality	y Weter(3)				
Purging In	formation											
Casing Ma	iterial:	Steel				Purge Method:(circle one) Submersible Centrifugal Bladder						
Casing Dia		(pin				Screen Interval	: From:					
Total Depth:		19.5	3	ft		Pump Intake Setting: 14.5 ft						
Depth to P		NA		ft					- 11			
Depth to V		5.04		ft		Total Volume P		28.79	-	5		
Water Coli Gallons in		21.2		ft		Pump on:	10:10	Off:	:10			
				gal								
Field Para		surements T		7	-01	ODD	T Constitution	T	T DO	TDC		
Time	Minutes Elapsed	Rate (ml/min)	Depth to Water	Turbidity (NTUs)	pH (SI Units)	ORP (mV)	Conductivity (MS/cm)3	Temp (°C)	(mg/L)	TDS (mg/L)	Comments	
		ization Range	<0.3 ft.	10% if >1	+/- 0.1	+/- 10	3%	3%	10%			
10:10	0	956	5.71	16.40	7.64	-100.8	1.444	94	1.11			
10:15	5	950	6.03	14.91	7.62	-114.0	1.433	93	0.63			
10:20	10	2000	6.28	17.21	7.65	-123.0	1.431	9.1	0.49			
10:25	15	2000	6.42	26.15	7.69	-129.8	1.449	9.0	044			
10:30	20	2000	6.43	32.22	7.72	-134.0	1.011	9.0	0.42			
10:35	25	2000	6.44	36.31	7.74	-137.2	1.017	9.0	0.40			
10:40	30	2000	6.45	42.91	7.74	-138.4	1.480	9.0	0.39	4		
10:45	35	2000	6.41	48.51	7.76	-139.6	1.491	9.1	0.38	1 - 7		
10:50	40	2000	6.20	20.01	7.75	-117.7	1.517	9.0	0.91	7 = 4		
10:65	45	2000	6.52	22.38	7.74	-134.2	1.521	9.1	0.41			
11:00	50	2000	6.53	27.04	7.74	-138.6	1.551	9.0	0.37			
11:05	55	950	6.47	2683	7.74	-140.8	1.556	9.1	037			
11:10	60	950	6.43	26.91	7.74	-138.9	1.554	9.1	0.37			
11:15	65								E-wa	. ==		
	70									- 71		
			al Parameter		Preservative		Collected					
			s - Xylenes			HCL						
1												
,												
									L			
Color		110	4.0			Wall Canditia		Con	J			
Color: Odor:		NO	110		_	Well Condition: Purge Water Di	enocal.	55 g	al. low	MA		

Orum

Appendix I

Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 734025	Box 1	
Sit	e Name Maestri Site		
Cit Co	e Address: 900 State Fair Boulevard Zip Code: 13209 y/Town: Solvay unty: Onondaga e Acreage: 2.510		
Re	porting Period: January 15, 2022 to January 15, 2023		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	X	
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Residential, Restricted-Residential, Commercial, and Industrial	X	
7.	Are all ICs in place and functioning as designed? X		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
Α (Corrective Measures Work Plan must be submitted along with this form to address th	ese issı	ues.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 734025 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

023-13-36.1 Mark Maestri Site Management Plan

The Site was remediated in accordance with the NYSDEC-approved Interim Remedial Measure Work Plan dated September 1992, the Remedial Action Work Plan

dated December 1994 and the Record of Decision dated March 1995. Remedial action work on the Site began in

June 1996, and was completed in May 2008.

The following is a summary of the Remedial Actions performed at the Site.

- 1) Excavation of soil/fill quantity exceeding the Soil Cleanup Objectives (SCOs)
- 2) Treatment of excavated soils (approximately 10,000 cubic yards) by SVE/bioremediation techniques in above grade biopiles. Treated soils were placed back into excavated areas.
- 3) Construction and maintenance of a soil cover system consisting of three (3)inches of loam and six (6) inches of topsoil.
- 4) Treatment of groundwater exceeding groundwater cleanup levels through operation of a groundwater recovery and treatment system.
- 5) Monitoring of the soil cover and groundwater to ensure compliance with clean up objectives.

A Site Management Plan (SMP) was approved in August 2010 to manage remaining contamination at the Site in perpetuity or until extinguishment of the Declaration of Covenants and Restrictions in accordance with ECL Article 71, Title 36. The Site contains remaining contamination after completion of the remedial action. There is no designated "Remaining Contamination Zone" on-site. The contaminated soil was treated to meet Site remedial objectives listed in the ROD. Operation and monitoring of the groundwater recovery system until 2008 has demonstrated decreasing trends of Site contaminants in the monitoring and recovery wells. The groundwater treatment system was shut down based on approval from NYSDEC after sampling results indicated that contaminants remaining in groundwater have decreased to asymptotic levels and the system was no longer effectively removing remaining contamination. The remedial party (RP) will continue to monitor groundwater on a semiannual basis to account for fluctuations in the groundwater table.

Engineering Controls have been incorporated into the Site remedy to provide proper management of remaining contamination in the future to ensure protection of public health and the environment. The site has the following Engineering Controls: 1) maintenance of the soil cover over the soil redeposition areas, consisting of three (3) inches of loam, six (6) inches of top soil, and grass, and 2) continuous monitoring of groundwater.

An Environmental Notice has been prepared that provides an enforceable legal instrument to ensure compliance with the SMP and all ECs and ICs placed on the Site. The EN was filed with Onondaga County in April 2011. The EN includes the following controls:

- 1) All Engineering Controls must be operated and maintained as specified in the SMP;
- 2) All Engineering Controls on the Site must be inspected and certified at a frequency and in a manner defined in the SMP:
- 3) Groundwater monitoring must be performed as defined in the SMP;
- 4) Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in this SMP;
- 5) On-site environmental monitoring devices, including but not limited to, groundwater monitoring wells must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP.
- 6) Vegetable gardens and farming on the property are prohibited;
- 7) Use of groundwater underlying the property is prohibited without treatment rendering it safe for the intended use as approved by NYSDOH;
- 8) The topsoil cover over the excavated areas acts as a cover system at the property. Disturbance and incidental damage to this cover system shall be repaired upon discovery in a manner that complies with the SMP.
- 9) All future activities on the property that would disturb remaining contaminated material must be

conducted in accordance with the Excavation Plan included in the SMP.

- 10) The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be mitigated;
- 11) The property may be used for residential use, provided that the long-term Engineering and Institutional Controls described in the SMP remain in use and land zoning regulations are followed.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

023-13-36.1

Cover System

Fencing/Access Control

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements			
1.	I certify by checking "YES" below that:			
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;			
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted			
	engineering practices; and the information presented is accurate and compete. YES NO			
	\mathbf{X}			
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:			
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;			
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;			
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;			
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and			
(e) if a financial assurance mechanism is required by the oversight document for the site, mechanism remains valid and sufficient for its intended purpose established in the document for its				
	YES NO			
	\mathbf{X}			
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.			
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.			
	Signature of Owner, Remedial Party or Designated Representative Date			

IC CERTIFICATIONS SITE NO. 734025

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

l John-Paul Rossi	at	1800 Concord Pike, Wilmington, Delaware 19850					
print name		print business addre	ess				
am certifying asRemedial Party			(Owner or Remedial Party)				
for the Site named in the Site Details Section of this form.							
DocuSigned by:			2/14/2023				
Signature of Owner, Remedial Party, or	Desig	nated Representative	Date				
Rendering Certification							

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Timothy Miller at	110 West Fayette Street, Syracuse, NY 13202
print name	print business address
am certifying as a Qualified Environmental Prof	fessional for the Remedial Party
OF NO	(Owner or Remedial Party)
STATE OF ESSIONAL ENDERSON	2/14/2023
Signature of Qualified Environmental Profession the Owner or Remedial Party, Rendering Certification	·

Enclosure 3 Periodic Review Report (PRR) General Guidance

I. Executive Summary: (1/2-page or less)

- A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
- B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.

C. Compliance

- 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
- 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.

D. Recommendations

- 1. recommend whether any changes to the SMP are needed
- 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
- 3. recommend whether the requirements for discontinuing site management have been met.

II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.

B. IC/EC Certification

1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Appendix O

Health and Safety Plan

Site Specific Health and Safety Plan

Revision

Maestri Project Name: Project Number: 30166086 Client Name: AstraZeneca Date: 6/5/2023 **HASP Expires** 6/4/2024 Revision: Approvals: HASP Developer: Lukas Matt and Rebecca Hensel Project Manager: Rebecca Hensel Then W. Oan HASP Reviewer:

Arcadis Culture of Caring

Arcadis is committed to a Culture of Caring that ensures each Arcadis employee, part time as needed employee (PTAN), temporary agency employee under Arcadis day to day control, Inexperienced Workers and contractor (cumulatively referred to here as "field staff") goes home at the end of the day free from injury or illness. I certify that the following has been performed with all Arcadis field staff on this project either in person or virtually through Teams:

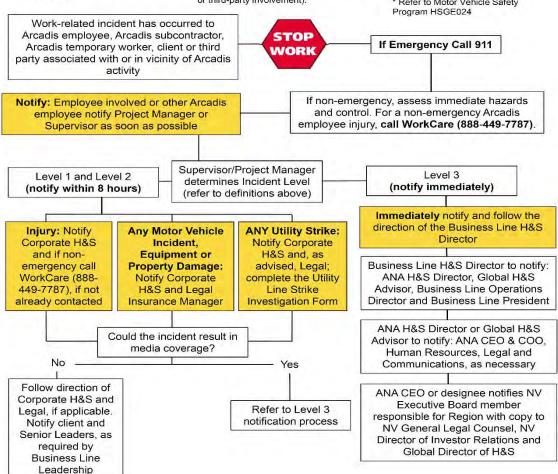
X Reviewed the HASP including a discussion of hazar	d identification and controls.
X If conducting activities deemed by Arcadis to be "reviewed applicable H&S standards (Job Safety A these activities with field staff.	
X If permit to work is required, frontline managemen	t has reviewed the permit(s) with field staff.
X Reviewed proactive H&S engagement expectations/i X Reviewed Stop Work Authority.	njury prevention actions.
X Reviewed the incident reporting process and expects contacted by staff (WorkCare incident intervention fo that the WorkCare phone number is programmed into	r all minor, non-emergency injuries) and
X For Inexperienced Workers, a mentor has been assign	gned for the new task being performed.
For short service employees (SSEs), PTANS* and temp	orary agency employees* :
X Provided coaching and mentoring on Arcadis H&S ex in detail specific hazards and controls and provided a individual has questions regarding planned or unplan	a resource who can be contacted if
Mentor/Resource # Rebecca Hensel	315-671-9296
Name Signed:	Phone Number
Rebecca Hensel	Project Manager

^{*} Upon hiring/contracting for the first time.

Emergency Information

Site Address:	904 State Fair Blvd, Geddes, NY				
Emergency Phone Numbers:					
Emergency (fire, police, ambulant Emergency (facility specific, if ap Fire Department/Ambulance Police (local) Emergency Other (specify): State Primary Client Contact:	plicable):	911 315-468-0072 315-468-3283 315-699-9661 302-886-6932			
Task Manager: Ryar Project Manager: Rebe H&S Specialist: Greg	njury/illness): d Hilt n Merrell ecca Hensel j Mason ew McDonald	1-888-449-7787 317 236 2836 317 909 2341 315-671-9219 315-671-9296 859-806-0746 410-923-7820			
Hospital Name and Address:	St Joseph's Hospital He 301 Prospect Ave Syracuse, NY 13203	alth Center			
Hospital Phone Number:		(315) 448-5111			
Supplemental Client Contact In	iformation:				
Other Important Phone Numbe	rs:				
Poison Control Center Nat. Response Ctr. (spills in repo		1-800-222-1222 1-800-424-8802 1-800-424-8802			

Incident Reporting Protocol Within Arcadis


Incident Levels

Level 1: First aid/self-treated, workrelated injury (contact WorkCare as soon as possible); minor property or equipment damage (less than or equal to \$100); vehicle loss event* (no injuries, no third-party involvement or other vehicle involvement).

Level 2: Professional Medical Treatment (if non-emergency injury or illness, employee must contact WorkCare as soon as possible); moderate property or equipment damage (greater than \$100 but less than or equal to \$5,000); ANY utility strike incident, any motor vehicle accident* (including injury or third-party involvement).

Level 3: Immediately report fatality, severe or catastrophic injury and/or overnight hospitalization required; significant property or equipment damage (greater than \$5,000); missing person or incident that generates media coverage.

* Refer to Motor Vehicle Safety

Client Incident Reporting Protocol

AstraZeneca Account Team Incident Response

AstraZeneca Project Name: Maestri

Project Location: Syracuse, NY

An Incident Is: Near Miss of serious nature*

Injury/Illness Motor Vehicle Accident Process Safety Containment** Other Unexpected Event, including equipment damage Security Issues

Compliance Issues

*Near miss: any event, action, or condition, which could have resulted in injury or illness to people, equipment loss, or harm to the surrounding environment, E.g., electric discharge, utility near miss, lack of response to

an alarm
** Process Safety Containment: Spill, release, fire,

Stabilize scene and TRACK NOTIFY As soon as able

Call down the list until you reach someone directly. Be sure to contact the Safe Work Permit (SWP) issuer.

Emergency Contacts

- Site Worker 1: Matthew Juliana, 315-671-9102
- Field Lead/SSO: Tyler Derleth, 315-436-3605
- SWP Issuer: Tyler Derleth, 315-436-3605
- TM: Ryan Merrell 315 671 9219
- PM: Rebecca Hensel, 315-671-9296

Incident Reporting next page

ARCADIS ===

Emergency Contact reports to project leadership:

PM: Rebecca Hensel, 315-671-9296 / 315-751-3069 (m)

Alternate: Ryan Merrell 315 671 9219 / 315 399 3864 (m)

Account HS: David Hilt 317 236 2836 | 317 909 2341(m)

Role	What you need to do:
General – all onsite personnel	- Stop Work - Assist in Stabilizing the Scene and use TRACK - Focus on first aid and appropriate treatment - Notify others on site - Call WorkCare for all Non-Emergency injuries: WorkCare Process - When in doubt, ask project leadership!
Lead Responder	 First responder to incidents Secure the scene Apply proper level of care (first aid, 911, WorkCare) Assist Injured Person (IP) with obtaining care Travel with or take IP to medical treatment When acting on behalf of the IP, coordinate with WorkCare to report Milestone Updates Quick reporting to Project Leadership and SWP Issuer Gather information and facts for reporting, document if able

AstraZeneca Account Team Incident Reporting

AstraZeneca Project Name: Maestri Site

Project Location: Syracuse, NY

Emergency Contact Calls Project Lead

Information that may be

- Individuals impacted and involved
- Actions taken
- Property Damage Loss of Containment,
- product estimated volume, discharge location, potential regulatory/enviro impact

Project Lead engages an account leader

If you have injured

Call WorkCare

Emergencies call 911

Work Care

888-449-7787

Persons (IP)

first

Notify Account Leader to classify incident*

Account HS: David Hilt 317 236 2836 | 317 909 2341(m)

Project PgM: Rebecca Hensel, 315-671-9296 / 315-751-3069 (m)

Alternate: Ryan Merrell 315 671 9219 / 315 399 3864 (m)

Project Lead Calls RL

Notify RL:

- Incident Classification (see below)
 Summary of Incident
 Actions Taken
- Determine next steps
- RL may request an email, CC
- Account Leadership RL determines who contacts
- AstraZeneca EHS

Contacts: RL: David Hilt 317 236 2836 | 317 909

ARCADIS

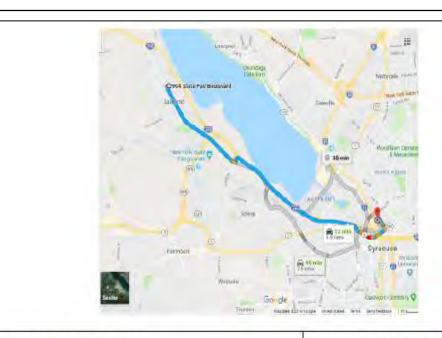
RL Notifies AstraZeneca EHS

- HS is notified:
 Incident Classification Ranking and rationale
- Summary of Incident Actions Taken
- Determine next steps EHS Manager will confirm and
- formally classify the event

Contact:

AstraZeneca ER&R HS: John Paul Rossi Work: 302.886.6932

Role	Accountabilities
General- all parties	Open and available to provide supporting information Participate in follow-up actions and conversations including RCIs
Project Lead	 Engage Account and/or Corporate Health and Safety as appropriate Notify RL in a timely manner Document incident Confirm completion of action items Draft LER
Account Leadership Team	Aid in determining incident classification Support PM to provide detailed account of incident to RL Participate in calls/communication if requested Aid in development of LER
ŔĹ	Engage with PM Notify or direct Arcadis team member to notify AstraZeneca HS as soon as able Participate in follow-up actions and conversations including RCI Direct need for RCI Direct development and approve LER
AstraZeneca Health and Safety	Provide guidance and direction Direct RCI requirements Approve LER and leverage LER for shareable learnings


Incident Classification and Notification

- Incident Classification Matrix
- Objective: Determine if it's a 1-3 vs 4-5. This affects urgency of communication.
- Provide preliminary recommendation of classification, RL will assist with full determination

Timing of notification

- Level 1-3 URGENT: Contact RL as quickly as possible
- If unable to reach RL within 30 minutes, call the ER&R EHS Manager directly
- evel 4-5; Within one business day, contact the RL and ER&R EHS Manager

Route to the Hospital

HOSPITAL DIRECTIONS:

Head southeast on State Fair Blvd toward Winchell Dr

Turn left to merge onto I-690 E

Use the right lane to take exit 12 for W Genesee St Use any lane to turn left onto W Genesee St

Continue onto James St

Turn left onto N Townsend St

Turn left onto Union Ave

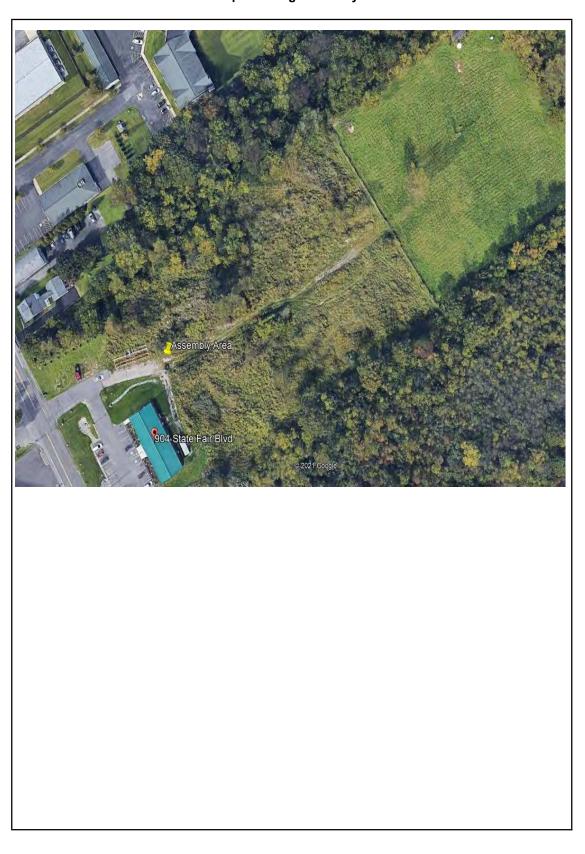
Union Ave turns left and becomes Prospect Ave Arrive at 301 Prospect Ave, Syracuse, NY 13203

Estimated travel time: 12 minutes

Miles: 6.5

HOSPITAL INFORMATION:

Name: St. Joseph's Hospital Health


Center

Address: 301 Prospect Ave

Syracuse, NY 13203

Phone: Emergency (315) 448-5111

Site Map Showing Assembly Areas

Site Type

The project site is an inactive facility which hist	orically h	nad the following attributes:
Residential		
Residential	-	
	_	
	_	

Surrounding Land Use and Topography

The Site is located in the Town of Gedes of Onondaga County, New York and is identified as Block 13 and Lot 36.1 on the Town of Geddes Tax Map. The Site is located at 900 State Faire Boulevard, Geddes NY. The Site is an approximately 2.5-acre area bounded by residential property to the north, an empty lot (904 State Fair Boulevard) and State Fair Boulevard to the south, residential property and wooded vacant lots to the east, and residential property and wooded vacant lots to the west.

Simultaneous Operations (SimOps)

Planned Arcadis site work will not be in proximity to SimOps work activities performed by non Arcadis employees or subcontractors. Arcadis will initiate stop work and evaluate the work activities through the JSA process if during the course of work a SimOps activity is identified that could reasonably affect health and safety of Arcadis employees and subcontractors.

Site Background

In 1970's drums containing industrial waste material allegedly generated by Stauffer Chemical Company were buried at the Maestri Site. Solvent Savers, allegedly used the Site as a drum disposal area in the 1970's. In 1987 the site owner excavated soil and drums from an area of the site. Site investigation was completed to evaluate the environmental effects of the Site. In 1987 the NYSDEC listed site on New York State Registry of Inactive Hazardous Waste Disposal sites as Site #734025. In 1989 site investigation was completed and in 1992 to address contaminated groundwater an initial treatment system was installed on-site. Then remedial investigation and remediation activities took place and documented VOC and SVOC contaminants. The groundwater system operated through 2008 and the site remediated. Currently inspections and groundwater sampling are completed to monitor the site.

Project Tasks

The following tasks are identified for this project:

1	Inspections and audits - Nonbuilding including non-secure/non-controlled areas
	Driving - Motor vehicles
	Waste - Containment of IDW in small containment devices greater than 10 gallons but less than or equal to
3	119 gallons capacity
	Monitor well - Well sounding, water level or product measurements using probes, tapes or downhole water
4	parameter measurements
5	Sampling - Well sampling using peristaltic pumps
6	Decontamination - Small or hand-held objects using manual methods
7	Drilling - Contractor oversight of well decommissioning

Supplemental requirements associated with the above task(s):

The Arcadis Utility Clearance Checklist must be used for utility clearance activities.

X Required Checklists/Work Forms	Required Permits
Tailgate Safety Briefing Form	Not Applicable
Vehicle Inspection Checklist	
Utility and Structures Checklist	
	Required H&S Standards
	Not applicable

Short Service Employees (SSEs)

SSEs (employees who are employed with Arcadis for less than 1 year or are Inexperienced Workers) have the potential to work on this project. If SSEs are utilized, the project team working in conjunction with the SSE's administrative supervisor will ensure requirements of ARC HSGE019 "Short Service Employees" are completed. SSE's will be identified on the project Tailgate Safety Meeting Form.

Roles and Responsibilities

		Short Service
Name	Role	Employee
1 Rebecca Hensel	Project Manager (PM)	No
2 Luke Matt	Associate Project Manager (APM)	No
3 Ryan Merrell	Task Manager	No
4 Tyler Derleth	Field Technical Lead	No
5 Tyler Derleth	Site Safety Officer (SSO)	No
6 Greg Mason	Corporate H&S Specialist	No
7 Andrew McDonald	Corporate H&S Director	No
8		
9		
10		

Training

All Arcadis employees are required to have the following training to be on site:

Selected Arcadis employees are required to have the following additional training:

Defensive Driving - Smith On-Line
Hazwoper 40-Hour
Hazwoper 8-Hour Annual Refresher
H&S Program Orientation (non-certificate)
HAZCOM GHS/EAP (non-certificate)
PPE (non-certificate)
None
None
None
None
None
None
Client specific:

First Aid/CPR 5 5 DOT HazMat #1 BBP (Bloodborne Pathogens) 5 Hearing Conservation/Protection Silica General Awareness 5 None None None None None None None None None

Names or Numbers from above

The Arcadis Fundamental H&S Principles

Staff working on any of the task(s) listed above must utilize the six Arcadis Fundamental H&S Principles to ensure work is conducted safely. These principles include: 1) Use of TRACK, 2) H&S Planning, 3) Stop Work Authority, 4) "If Not Me Then Who", 5) Stewardship, and 6) Incident Reporting. Every project team member plays an important role in project health and safety. This is more than just having a HASP, training, or PPE. Proactive staff engagement with these principles is critical to a safe work environment.

None

Other:

General Task Hazard Assessment and Risk Control (HARC)

General: Hazards Applicable to All Project Tasks

The 12 hazard category HARC ratings are not available in this General THA. The mitigated and unmitigated ratings for the hazards presented are based on the Risk Assessment Matrix below. Modify hazards and ratings as necessary to meet project needs.

Risk Assessme	Likelihood Ratings				
Consequences Ratings		Α	В	С	D
People Property		0 Almost Impossible	1 Possible but Unlikely	2 Likely to Happen	3 Almost Certain to Happen
1-Slight or No Health Effect	Slight or No Damage	0-Low	1-Low	2-Low	3-Low
2-Minor Health Effect	Minor Damage	0-Low	2-Low	4-Medium	6-Medium
3-Major Health Effect	Local Damage	0-Low	3-Low	6-Medium	9-High
4-Fatalities	Major Damage	0-Low	4-Medium	8-High	12-High

Hazard #1

Driving - On road - Injury or vehicle damage from motor vehicle accident or incident

Suggested FHSHB Ref: 3.4 To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk: HIGH Smith System (on line)

Mitigated Risk: MEDIUM JSAs

Comments: Use Smith System "5-Keys" when driving. See Driving JSA for details.

Hazard #2

Driving - Driver - Injury, death or property damage due to driver distraction, fatigue, etc.

Suggested FHSHB Ref: 3.4, 3.21 To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk: HIGH Smith System (on line)

Mitigated Risk: LOW Driver awareness and use of stop work authority

Comments: Use route planning. Keep eyes moving while driving. See Driving JSA.

Hazard #3

Biological - skin/eye irritation or damage from poisonous plants

Suggested FHSHB Ref: 3.17.11 To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk: MEDIUM Job Briefing/Site Awareness

Mitigated Risk: LOW PPE (see HASP "PPE" section)

Comments: Use skin pre-treatment lotions when available.

Hazard #4

Biological - bites or stings from exposure to insects or arachnids

Suggested FHSHB Ref: 3.17: 2,3,7,8,9,10 To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk:

MEDIUM

Job Briefing/Site Awareness

Mitigated Risk:

PPE (see HASP "PPE" section)

Comments: Do body check daily.

Hazard #5

Biological - cuts, scrapes, skin/eye puncture from exposure to physically damaging plants

Suggested FHSHB Ref: 3.17.11 To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk: MEDIUM Job Briefing/Site Awareness

Mitigated Risk: LOW PPE (see HASP "PPE" section)

Comments:

General Task HARC (continued)

Hazard #6	
Environmental - Thermal stress - Injury or illness fr	om heat or cold
Suggested FHSHB Ref: 3.16	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: MEDIUM	Field H&S Handbook (see ref. above)
Mitigated Risk: LOW	JSAs
Comments: Use job rotation or rest breaks	s. Stay hydrated and eat regularly.
Hazard #7	
Environmental - Inclement weather -Injury or equip	ment damage from inclement weather
Suggested FHSHB Ref: 3.12	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: MEDIUM	Weather Monitoring
Mitigated Risk: LOW	Cont./Emerg. Planning
Comments: Use 30/30 rule for lightning. S	See FHSHB for details.
Hazard #8	
Motion - Musculoskeletal - Injury from lifting, twisting	ng , stooping, or awkward body positions
Suggested FHSHB Ref: 3.29.1	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: MEDIUM	Engineering Controls (specify in comments)
Mitigated Risk: LOW	Admin. Controls (specify in comments)
Comments: Use proper lifting techniques.	Use job rotation when applicable. See FHSHB for details.
Hazard #9	
Motion - Musculoskeletal - Injury from repeated wo	rk activity or body motion
Suggested FHSHB Ref: 3.29.2	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: MEDIUM	Engineering Controls (specify in comments)
Mitigated Risk: LOW	Admin. Controls (specify in comments)
Comments: Use proper lifting techniques.	Use job rotation when applicable. See FHSHB for details.
Hazard #10	
Sound - Noise - Injury or illness due to noise expos	sure
Suggested FHSHB Ref: 3.15	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: MEDIUM	Engineering Controls (specify in comments)
Mitigated Risk: LOW	PPE (see HASP "PPE" section)
Comments: Increase distance from source	e if possible. Maintain equipment.
Hazard #11	
Gravity - Falls - Injury due to slips and trips	
Suggested FHSHB Ref: 3.26.4, 4.11	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: MEDIUM	Site Awareness
Mitigated Risk: LOW	Housekeeping
Comments: Use footwear appropriate for s	site conditions, plan routes and do not hurry while walking.
Hazard #12	
None	
Suggested FHSHB Ref: None	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated Risk: Not Ranked	Select
Mitigated Risk: Not Ranked	Select
Comments:	

Task Specific HARC

Inspections and audits - Nonbuilding including non-secure/non-controlled areas								
Task 1:								
HARC Unmitigated Hazard Types (H-High, M-Medium, L-Low): FHSHB Ref: 3.9					3.9			
Biological	L	Chemical	L	Driving	M	Electrical	L	
Environmental	L	Gravity	М	Mechanical	L	Motion	L	
Personal Safety	L	Pressure	L	Radiation	L	Sound	L	
Hazard #1								
Motion - Struck by -	Bodily	injury from impact	with n	noving object				
Suggested FHSHB F	Ref:	2.5, 3.22		To mitigate thi	s hazaı	rd, use TRAC	CK and	the following:
Overall Unmitigated	Risk:	MEDIUM		JSAs				
Mitigated Risk:		LOW		Site Awarenes	ss			
	۸dmin	istrative: JSAs						
Engineering: Set-up exclusion zones as necessary and delineate of work areas								
PPE: Detailed on JSAs and in HASP PPE section								
Considerations: Review site map to select appropriate staging area, identify/remove trip								
hazards from work area. Remove trip hazards from ground before moving equipment					equipment			
	and w	alk around obstacl	es. Av	oid moving object	ts whe	n possible, p	ay atte	ntion and
Comments:	follow	traffic safety plan t	o avo	id injury from traf	fic			

Task 2:	Driving - Motor venicles						
HARC Unmitigated I	Hazard	Types (H-High, M-Me	dium, L-Low):		FHSHB Ref:		3.4
Biological	-	Chemical -	Driving	Н	Electrical	-	
Environmental	-	Gravity -	Mechanical	-	Motion	-	
Personal Safety	L	Pressure -	Radiation	-	Sound	-	
Hazard #1							
Driving - Off road - In	njury or	vehicle damage from	object impact/vehi	icle roll	lover/improper	load s	ecurement
Suggested FHSHB F	Ref:	3.4.2.1	To mitigate th	is haza	ard, use TRAC	K and	the following:
Overall Unmitigated	Risk:	HIGH	JSAs				
Mitigated Risk:		LOW	Smith System	ı (on lin	ne)		
Administrative: JSAs Engineering: Install equipment netting and load bars to secure equipment in vehicle PPE: Detailed on JSAs and in HASP PPE section Considerations: TRACK, Utilize Smith System 5 Keys. Operator Competency. Driver is not allowed to use cell phone while driving to prevent distraction. Driver should avoid radio usage. Set-mirrors and seats prior to driving. Inspect vehicle prior to driving and ensure all functions work (mirrors, headlights, brakelights, brakes). Ensure all equipment is secured in the vehicle. Walk route prior to driving off-road to ensure it can be done in							
Comments:	a safe	matter.					

Hazard #2

Mechanical - Pinch point - Injury by pinching of body part in mechanical process

Suggested FHSHB Ref:

3.27.4

To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk:

MEDIUM

Machine Guarding
Site Awareness

Mitigated Risk:

LOW
Administrative: JSAs

Engineering: Shut off vehicle before opening hood, utilize a cushion and ANSI cut

resistant gloves to prevent

pinching fingers when opening or closing hood PPE: Detailed on JSAs and in HASP PPE section

Considerations: Utilize TRACK., use awareness if performing work on vehicle (especially under hood). Keep hands clear if shutting hood of car. Utilize ANSI cut resistant gloves

Comments: to protect hands from pinch points.

Hazard #3

Chemical - liquids, skin or eye irritation/damage/allergy

Suggested FHSHB Ref:

3.9, 3.22, 3.30, 3.33

To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk:

MEDIUM LOW HASP JSAs

Mitigated Risk:

Administrative: JSAs

Engineering: Use absorbant pads to eliminate dirrect contact with PPE, and use a funnel

when appropriate for pouring to mitigate splash hazards.

PPE: Detailed on JSAs and in HASP PPE section, wear long sleeves

Considerations: TRACK. Wear eye protection with side shields to prevent liquid from

Comments: getting into eyes.

Hazard #4

Motion - Struck by - Bodily injury from impact with moving object

Suggested FHSHB Ref: 2.5, 3.22

To mitigate this hazard, use TRACK and the following:

Overall Unmitigated Risk:

MEDIUM LOW JSAs Site Awareness

Mitigated Risk:

Comments:

Administrative: Safe Work Permit, iCard, JSAs

Engineering: Install barricades as necessary and delineate of work areas

PPE: Detailed on JSAs and in HASP PPE section

Considerations: Review site map to select appropriate staging area, identify/remove trip hazards from work area. Remove trip hazards from ground before moving equipment and walk around obstacles. Avoid moving objects when possible, pay attention and

follow traffic safety plan to avoid injury from traffic.

	Waste - Containment of IDW in small containment devices greater than 10 gallons
Task 3:	but less than or equal to 119 gallons capacity
HARC Unmitigated	Hazard Types (H-High, M-Medium, L-Low): FHSHB Ref: 3.3
Biological	L Chemical M Driving - Electrical -
Environmental	M Gravity M Mechanical L Motion M
Personal Safety	L Pressure L Radiation - Sound L
Hazard #1	
	- injury due to inhalation, asphyxiation, skin/eye contact
_	
Suggested FHSHB	
Overall Unmitigated Mitigated Risk:	Risk: MEDIUM HASP LOW JSAs
iviligated Ptisk.	Administrative: JSAs
	Engineering: Allow drum venting and perform intial screening. Stop Work will be utilized
	if elevated readings are encountered and Air Monitoring will be re-evaluated.
	PPE: Detailed on JSAs and in HASP PPE section
Comments:	Considerations: TRACK and review HASP for air monitoring requirements. Monitor for exposure and STOP WORK if needing to go beyond level D PPE
Hazard #2	exposure and of or Worker needing to go beyond level bit it
	skin or eye irritation/damage/allergy
Suggested FHSHB	
Overall Unmitigated	
Mitigated Risk:	LOW JSAs
Ivilligated Kisk.	LOW
	Administrative: JSAs
	Engineering: Use absorbant pads to eliminate direct contact with PPE, and use a funnel when appropriate for pouring to mitigate splash
	hazards.
	PPE: Detailed on JSAs and in HASP PPE section, wear long sleeves
Comments:	Considerations: TRACK. Wear eye protection with side shields to prevent liquid from
Hazard #3	getting into eyes.
	olid, or gas - Equipment damage due to corrosion or spill
Suggested FHSHB	
Overall Unmitigated	
Mitigated Risk:	LOW Cont./Emerg. Planning
	Administrative: JSAs
	Engineering: Place drums inside or on pallets when appropriate PPE: Detailed on JSAs and in HASP PPE section
	Considerations: TRACK. schedule IDW pick-ups as quickly as possible to limit exposure
Comments:	to elements. Ensure storage is appropriate for IDW
Hazard #4	
Mechanical - Pinch	point - Injury by pinching of body part in mechanical process
Suggested FHSHB	Ref: 3.27.4 To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	Risk: MEDIUM Machine Guarding
Mitigated Risk:	LOW Inspections
	Administrative: JSAs
	Engineering: Utilize a drum wrench and ratchet to open and close drum
	PPE: Detailed on JSAs and in HASP PPE section Considerations: Utilize TRACK., use awareness while closing drums. Keep hands clear
Comments:	of lid when sealing. Utilize ANSI cut resistant gloves to protect hands from pinch points.
Comments.	

		water level or product measurements using probes,				
Task 4: tapes	tapes or downhole water parameter measurements					
HARC Unmitigated Hazar	d Types (H-High, M <u>-Medi</u> u	m, L-Low): FHSHB Ref: 3.9				
Biological L	Chemical L	Driving - Electrical -				
Environmental L	Gravity M	Mechanical - Motion L				
Personal Safety -	Pressure L	Radiation - Sound L				
Hazard #1						
Motion - Struck by - Bodily	y injury from impact with m	oving object				
Suggested FHSHB Ref:	2.5, 3.22	To mitigate this hazard, use TRACK and the following:				
Overall Unmitigated Risk:	MEDIUM	JSAs				
Mitigated Risk:	LOW	Site Awareness				
Admi	inistrative: JSAs					
		ol as necessary and delineate of work areas				
	Detailed on JSAs and in F	IASP PPE section				
Hazard #2	:	:				
. , , ,	or illness from skin absorpt					
Suggested FHSHB Ref:	3.9, 3.22, 3.30, 3.33	To mitigate this hazard, use TRACK and the following:				
Overall Unmitigated Risk: MEDIUM						
<u> </u>		HASP				
Mitigated Risk:	LOW	HASP JSAs				
Mitigated Risk:	LOW inistrative: JSAs	JSAs				
Mitigated Risk: Admi Comments: PPE:	LOW	JSAs				
Mitigated Risk: Admi Comments: PPE: Hazard #3	LOW inistrative: JSAs : Detailed on JSAs and in F	JSAs IASP PPE section				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or	LOW inistrative: JSAs Detailed on JSAs and in F eye irritation/damage/aller	JSAs HASP PPE section				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or Suggested FHSHB Ref:	LOW inistrative: JSAs Detailed on JSAs and in F eye irritation/damage/aller 3.9, 3.22, 3.30, 3.33	JSAs HASP PPE section Try To mitigate this hazard, use TRACK and the following:				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or Suggested FHSHB Ref: Overall Unmitigated Risk:	LOW inistrative: JSAs Detailed on JSAs and in F eye irritation/damage/aller 3.9, 3.22, 3.30, 3.33	JSAs HASP PPE section				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or Suggested FHSHB Ref: Overall Unmitigated Risk: Mitigated Risk:	LOW inistrative: JSAs Detailed on JSAs and in F eye irritation/damage/aller 3.9, 3.22, 3.30, 3.33 MEDIUM LOW	JSAs HASP PPE section Tgy To mitigate this hazard, use TRACK and the following: HASP				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or Suggested FHSHB Ref: Overall Unmitigated Risk: Mitigated Risk: Admi	LOW inistrative: JSAs Detailed on JSAs and in F eye irritation/damage/aller 3.9, 3.22, 3.30, 3.33 MEDIUM LOW inistrative: JSAs	JSAs HASP PPE section To mitigate this hazard, use TRACK and the following: HASP JSAs				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or Suggested FHSHB Ref: Overall Unmitigated Risk: Mitigated Risk: Admi Engli	LOW inistrative: JSAs Detailed on JSAs and in F eye irritation/damage/aller 3.9, 3.22, 3.30, 3.33 MEDIUM LOW inistrative: JSAs	JSAs HASP PPE section To mitigate this hazard, use TRACK and the following: HASP JSAs ds to eliminate direct contact with PPE, and use a funnel				
Mitigated Risk: Admi Comments: PPE: Hazard #3 Chemical - liquids, skin or Suggested FHSHB Ref: Overall Unmitigated Risk: Mitigated Risk: Admi Engli wher PPE:	inistrative: JSAs reye irritation/damage/aller 3.9, 3.22, 3.30, 3.33 MEDIUM LOW inistrative: JSAs neering: Use absorbant pace appropriate for pouring to the Detailed on JSAs and in H	JSAs HASP PPE section To mitigate this hazard, use TRACK and the following: HASP JSAs ds to eliminate direct contact with PPE, and use a funnel				

Task 5:	Samp	oling - Well sampling u	sing peristaltic pumps
		d Types (H-High, M-Med	
Biological		Chemical M	Driving - Electrical L
Environmental		Gravity L	Mechanical - Motion L
Personal Safety		Pressure L	Radiation - Sound L
Hazard #1	L	riessule L	Naulation - Sound L
	skin or	eye irritation/damage/al	lergy
Suggested FHSHB	Ref:	3.9, 3.22, 3.30, 3.33	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated			HASP
Mitigated Risk:	i i tioit.	LOW	JSAs
Iwiligated Ptisk.			00/13
		nistrative: JSAs	and to discipate discount content with DDF and was a formal
		eering: Use absorbant pappropriate for	pads to eliminate dirrect contact with PPE, and use a funnel
		appropriate for ng to mitigate splash haz	zards.
			n HASP PPE section, wear long sleeves
	Consi	derations: TRACK. Wea	ar eye protection with side shields to prevent liquid from
Comments:	gettin	g into eyes.	
Hazard #2			
Chemical - gasses -	- injury	due to inhalation, asphy	/xiation, skin/eye contact
Suggested FHSHB	Ref:	3.30, 3.32	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	Risk:	MEDIUM	HASP
Mitigated Risk:		LOW	JSAs
	Admir	nistrative: JSAs	
			ing and perform intial screening. Stop Work will be utilized
		_	untered and Air Monitoring will be re-evaluated.
		Detailed on JSAs and in	review HASP for air monitoring requirements. Monitor for
Comments:			f needing to go beyond level D PPE
Hazard #3			
Mechanical - Pinch	point -	Injury by pinching of boo	dy part in mechanical process
Suggested FHSHB	Ref:	3.27.4	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	Risk:	MEDIUM	Machine Guarding
Mitigated Risk:		LOW	Site Awareness
		nistrative: JSAs	
		eering: Utilize a drum w Detailed on JSAs and ir	rench and ratchet to open and close drum
			K., use awareness while closing drums. Keep hands clear
Comments:			ISI cut resistant gloves to protect hands from pinch points.
Hazard #4		J	ÿ
Electrical - Houseke	eeping	- Injury or property dama	age due to frayed wiring, improperly mounted wiring,
Suggested FHSHB	Ref:	3.25	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	Risk:	MEDIUM	Housekeeping
Mitigated Risk:		LOW	Inspections
		nistrative: JSAs	
	-	•	erminal when appropriate
		Detailed on JSAs and in	
			cting terminals put down any tools before hand (do not attery in a secure safe location to protect from weather and
			way from objects that may interfere with the battery. The
			Use housekeeping techniques to organize wires that
Comments:		ect to the battery.	

Dec	Decontamination - Small or hand-held objects using manual methods						
Task 6:							
HARC Unmitigated Haza	ard Types (H-High, M	<u>//-Medi</u> um, L-Low):FHSHB Ref: 3.10.4					
Biological L	Chemical	M Driving - Electrical -					
Environmental L	Gravity	L Mechanical - Motion L					
Personal Safety L	Pressure	L Radiation - Sound L					
	_						
Hazard #1							
Chemical- solids/particul	Chemical- solids/particulates - injury or illness from skin absorption						
Suggested FHSHB Ref:	2.5, 3.22	To mitigate this hazard, use TRACK and the following:					
Overall Unmitigated Risk	k: MEDIUM	JSAs					
Mitigated Risk:	LOW	PPE (see HASP "PPE" section)					
Comments:		-					

Task 7:	Drilli	ng - Contractor oversight	of well decommissioning
HARC Unmitigated	Hazar	d Types (H-High, M-Mediur	m, L-Low): FHSHB Ref: 4.5
Biologica	L	Chemical M	Driving - Electrical L
Environmenta	Н	Gravity M	Mechanical M Motion M
Personal Safety	/ -	Pressure L	Radiation - Sound M
,	' I		
Hazard #1			
Chemical - liquids -	injury	or illness from skin absorpt	ion
Suggested FHSHB	Ref:	III C, F, G, K, S, AG	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	d Risk:	MEDIUM	JSAs
Mitigated Risk:		LOW	PPE (see HASP "PPE" section)
Comments:			
Hazard #2			
Mechanical - Pinch	point -	Injury by pinching of body	part in mechanical process
Suggested FHSHB	Ref:	3.27.4	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	d Risk:	MEDIUM	Site Awareness
Mitigated Risk:		LOW	PPE (see HASP "PPE" section)
	Be av	ware of pinch points with dr	ill rig. At no time should Arcadis employees assist with
			d take precautions of setting up work zones and noting
Comments:	pinch	hazards.	
Hazard #3			
Chemical - solids/p	articula	ates, skin or eye irritation/da	amage/allergy
Suggested FHSHB	Ref:	3.9, 3.22, 3.30, 3.33	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	d Risk:	MEDIUM	JSAs
Mitigated Risk:		LOW	PPE (see HASP "PPE" section)
Comments:	Wea	nitrile gloves to prevent sk	tin contact to contaminated soils.
Hazard #4			
Chemical - solids/p	articula	ates, injury or illness from ir	nhalation
Suggested FHSHB	Ref:	3.2, 3.22, 3.30, 3.33	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	d Risk:	MEDIUM	JSAs
Mitigated Risk:		LOW	PPE (see HASP "PPE" section)
			er "sniff" soil as this is an inhalation route that can cause
Comments:	injury	. Utilize PIDs to assess soi	ls. If too much dust is generated, be sure to evaluate.
Hazard #5			
Environmental - Uti	lities -	Injury or property damage f	from utility strike/damage
Suggested FHSHB	Ref:	3.36	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	d Risk:	HIGH	Inspections
Mitigated Risk:		MEDIUM	Specialized Checklist/Forms
			a. Do NOT off-set to a new location if the location was
			ocate procedures. During soft dig methods, be sure the norceful manner, as that can cause more delicate
		es to still break.	i ioroeiui maimer, as marcan cause more uencale
Comments:			
Hazard #6			
Personal safety - Fa	atigue	 Injury or illness caused w 	hile working when fatigued
Suggested FHSHB	Ref:	3.21	To mitigate this hazard, use TRACK and the following:
Overall Unmitigated	d Risk:	MEDIUM	Job Briefing/Site Awareness
Mitigated Risk:		LOW	Job Rotation
l <u> </u>		·	
Comments:			

Ha	zard Communication HAZCOM/GHS for thi	-	-					
	•	ated to be					COM/GHS requirements	S.
	Preservatives	Qty		mination	Qty	_	Calibration	Qty.
L	Not applicable	4F00 mal	Not appli	cable	< 5 lb a		Not applicable	4 1
X	Hydrochloric acid	<500 ml	X Alconox		≤ 5 lbs	_	Isobutylene/air	1 cyl
	Nitric acid	<500 ml	X Liquinox		≤ 1 gal	<u> </u>	Methane/air	1 cyl
	Sulfuric acid	<500 ml	Acetone	•	≤ 1 gal		Pentane/air	1 cyl
	Sodium hydroxide	<500 ml	Methano		≤ 1 gal		Hydrogen/air	1 cyl
	Zinc acetate	<500 ml	Hexane		≤ 1 gal	<u> </u>	Propane/air	1 cyl
_	Ascorbic acid	<500 ml	Isopropy		≤ 4 gal	<u> </u>	Hydrogen sulfide/air	1 cyl
	Acetic acid	<500 ml	Nitric aci	d	≤1L	<u> </u>	Carbon monoxide/air	1 cyl
-	Isopropyl alcohol	< 4 gal.	Other:			_	pH standards (4,7,10)	≤ 1 gal
-	Formalin (<10%)	< 4 gal.			_		Conductivity standards	≤ 1 gal
-	Methanol	<500 ml			_	LX	Other:	
	Sodium bisulfate	<500 ml			_		ORP Standard	_
	Fuels	Qty.	Kits					Qty.
	Not applicable		X Not appli					
X	Gasoline	≤ 5 gal	Hach (sp	• /				1 kit
	Diesel	≤ 5 gal	DTECH (specify):				1 kit
-	Kerosene Propane	≤ 5 gal 1 cyl	Other:					1 kit
	Other:	i Cyi						
	jourior.							- -
	Remediation	Qty.	Other:		Qty.		DOT(1):	Qty.
Х	Not applicable		Not appli	cable	,		MOT eligible soils	,
			X Spray pa		≤ 6 cans		MOT eligible water	-
			X WD-40		≤ 1 can		MOT eligible solids	
		_	Pipe cem		≤ 1 can		MOT eligible liquids	-
		_	Pipe prin		≤ 1 can			-
<u> </u>			Mineral s	pirits	≤ 1 gal			-
(1)	Attach applicable Mate	erials of Tr	ade (MOT) ge	neric shipp	_ oina determ	L inati	on, SDS not generally	_

(1) Attach applicable Materials of Trade (MOT) generic shipping determination. SDS not generally applicable to this category.

SDSs for this project will be available electronically on a designated project field computer. All project workers will be notified of the SDS location in their initial safety briefing.

Contractor SDSs will be submitted to Arcadis in advance of work and will be filed with Arcadis SDSs as indicated above.

This project will not be utilizing materials subject to the HAZCOM Standard in bulk storage. In this HASP, bulk storage means any material stored on the project site in a bulk packaging >119 gallons (> 450 L) liquid capacity or a palletized quantity of a material in packagings ≤119 gallons (≤450 L) liquid capacity.

Personal Protective Equipment (PPE)

See JSA or Permit for the task being performed for required PPE. If work is not conducted under a JSA or Permit, refer to the governing document for PPE requirements. At a minimum, the following checked PPE is required for <u>all tasks during field work</u> (outside of field office trailers and vehicles) not covered by a JSA or Permit on this project:

Minimum PPE required to be worn by all staff on project: Specify Type:					
X Hard hat		Snake chaps/guards		Coveralls:	
X Safety glasses		Briar chaps		Apron:	
Safety goggles		Chainsaw chaps	Х	Chem. resistant gloves:	
Face shield		Sturdy boot		Gloves other:	
Hearing protection	X	Steel or comp. toe boot		Chemical boot:	
Rain suit		Metatarsal boot		Boot other:	
Other:			Х	Traffic vest, shirt or coat:	Class II
				Life vest:	
				_	
Task specific PPE: See attached JSA for applicable PPE required for specific Job Tasks.					
Comments:					
See Control of Ticks and Poisonous Plants section for important PPE information.					

Medical Surveillance

All Arcadis employees performing field work will be required to be current in HAZWOPER medical surveillance.

Client and DOT mandated drug and alcohol testing is not required for this project and will not be performed.

Hazardous Materials Shipping and Transportation

A shipping determination package has been prepared, reviewed and is attached to this HASP.

Traffic Safety and Traffic Safety Plans (TSPs)

The scope of work on this project will not expose Arcadis workers or subcontractors to vehicular traffic. A traffic safety plan will not be required.

Arcadis Commercial Motor Vehicles (CMVs)

CMVs operated by Arcadis employees on public roadways will not be utilized on this project. Arcadis defines a CMV as any single vehicle with a gross vehicle weight rating (GVWR) ≥10,001 pounds or a truck and trailer combination with a combined GVWR ≥10,001 pounds (GVWR of truck + GVWR of trailer = ≥10,001 pounds).

Site Control

Site control requirements are addressed in the applicable task JSA for this project. JSAs requiring site control are attached to this HASP.

Decontamination

Decontamination protocols are addressed in the applicable task JSA(s) for this project. The applicable JSAs are attached to this HASP.

Sanitation

The project scope is a mobile work operation. The project field team will have reasonable access to restroom facilities within 10 minutes of the work area where the mobile work activity is actively taking place. Potable water will be carried by the field team in the vehicle used for the project. Unless alternate requirements are stipulated in a plan supplement (i.e. Heat Injury and Illness Prevention Plan), permit or JSA, bottled or water coolers with potable water will be provided to project workers at 1 gallon/worker/day.

Safety Briefings

Arcadis will lead all safety briefings on this project and will document the safety briefing on a Tailgate Safety Briefing form or logbook. Safety briefings will be conducted once at the beginning of each work day unless the Site Safety Officer deems more frequent safety briefings will be required based on work being conducted. All project workers, including Arcadis subcontractors, will be required to attend the safety briefing. Site visitors and project workers not on duty during the morning safety briefing will receive the safety briefing upon their arrival onto the project site for the day.

Employee Health and Safety Engagement

The CPM or APM is responsible for reviewing and establishing H&S engagement goals for the project. These goals are summarized below.

Hazard Observations (via H&S App or TIP) required at the following frequency on this project:

1 per task

Close Call reporting (via H&S app) goals for this project:

1 per year

Other (specify):

Safety Equipment and Supplies

Safety equipment/supply requirements are addressed in the JSA or Permit for the task being performed. If work is not performed under a JSA or Permit, the following safety equipment is required to be present on site in good condition unless otherwise noted (Check all that apply):

X	First aid kit	Х	Insect repellent:	Permethrin*
X	Bloodborne pathogens kit	Х	Sunscreen	
X	Fire extinguisher		Air horn	
	Eyewash (ANSI compliant)	Х	Traffic cones	
Х	Eyewash (bottle)		2-way radios	
X	Drinking water		Heat stress monitor	
	Other:	Х	Poisonous plant pre/post e	exposure lotion/soap
			As needed	
		*Ap	ply to clothing prior to arrive	al at site

Control of Ticks and Poisonous Plants

Work on this project has a medium tick exposure hazard. Use of inspect repellent (20%-40% DEET on skin and/or permethrin on clothing) is an Arcadis requirement unless alternate control is approved by the applicable BL H&S Director. Apply permethrin to clothing at least 4 hours prior to work. Wear light colored clothing to help identify presence of ticks on staff. Keep shirt tails inside pants and pant leg taped to ankle. Perform tick check upon conclusion of work for day.

Work on this project has a medium poisonous plant exposure hazard. Workers known to have a sensitivity to poisonous plants should use a pre-exposure lotion on exposed skin as an Arcadis expectation. First aid kits must be equipped with post-exposure soap. Inspect work area for presence of hazard prior to initiating work at the location. Wear disposable gloves during work and while removing outer footwear. Use of clothing with long sleeves to protect forearms is an Arcadis expectation.

International Travel

International travel is not required for this project.

Spill Control and Containment

Spill control and containment protocols, including required equipment and supplies, are located in the project work plan governing work on this project.

Use of Electronic Devices in Areas of Increased Safety Risk

Electronic device use and distractions to be discussed and documented in the job briefing/safety briefing.

Signatures

I have read, understand and agree to abide by the requirements presented in this health and safety plan. I understand that I have the absolute right to stop work if I recognize an unsafe condition affecting my work until corrected.

Printed Name	Signature	Date
		<u> </u>
		

Add additional sheets if necessary

You have an absolute right to STOP WORK if unsafe conditions exist!

Arcadis Visitor Acknowledgement and Acceptance of HASP Signature Form

By signing below, I waive, release, and discharge the owner of the site and Arcadis and their employees from any future claims for bodily and personal injuries which may result from my presence at, entering, or leaving the site and in any way arising from or related to any and all known and unknown conditions on the site.

Printed Name	Signature	Company	Date/Time On Site	Date/Time Off Site

Attachment A JSA

Attachment B SDS

Attachment C
Heat Illness Prevention
Plan

Purpose and Scope

Date Completed 3/11/2021

The purpose of this document is to serve as a planning tool and implementation guide to assist the project team, onsite personnel, and the Site Safety Officer (SSO) or other designated responsible party to comply with the requirements set forth by Cal/OSHA Title 8 CCR 3395 Heat Illness Prevention Standard and the Washington State Outdoor Heat Exposure Regulations 296-62-09510 thru 09560.

NOTE: This HASP Supplement is required to be used in California and Washington states. The Arcadis Health and Safety Standards ARC HSIH013 Heat Stress Prevention, and ARC HSGE008 Injury and Illness Prevention Program (IIPP) must accompany this HASP Supplement. To completely address the regulatory requirements for work in CA and WA states these standards are required to be used in association with the project-specific HASP and this supplement.

The scope of this HIPP applies to Arcadis projects which include, but are not limited to: outdoor operations such as contractor oversight, construction, refining, oil and gas extraction, asbestos removal, and hazardous waste site activities and interior work particularly tasks which require employees to wear PPE which can increase the risk for heat stress for the wearer. This HIPP provides guidance to prevent or reduce the risk of work-related heat illness. This HASP Supplement provides site specific instructions for actions to be completed at the project site.

Project sites in other states and provinces are expected to use this HASP Supplement as a Best Management Practice to prevent heat related illness injuries.

Project Site Name

AstraZeneca - Maestri

Authority and Implementation

The following designated individuals have authority and responsibility for implementing the provisions of this program at the project work site indicated above.

Project Manager	Rebecca Hensel
Site Safety Officer (SSO)	Tyler Derleth
SSO Designated	Tyler Derleth

Acclimatization of Personnel for Heat Stress Prevention

The degree to which personnel have been able to physiologically adjust or acclimatize to working under hot conditions affects ability to safely do work. Acclimatized individuals generally have lower heart rates and body temperatures than unacclimated individuals, and sweat sooner and more profusely. This enables them to maintain lower skin and body temperatures at a given level of environmental heat and work loads than unacclimated workers. Acclimatization can occur after a few days of exposure to the hot work environment. OSHA/NIOSH suggests an acclimatization period of 2-3 days for fit personnel. One the 1st day personnel should spend 50% of the day exposed to / working in the hot environment and increasing the amount of work 10-20% based on personnel response to the hot environment and work load.

Procedures for Provisions for Potable Water

The SSO or designee will be responsible for implementing the following when conditions at the site are anticipated to exceed 80 degrees (°) Fahrenheit (F) /

1. Proper hydration is critical to preventing heat related illness and injury. Project sites will maintain an adequate supply of suitably cool, fresh and pure potable water on site/readily accessible to allow each employee to consume 1 quart (1 L) of water per hour, ideally at a rate of four 8-oz (250 mL) cups per hour.

NOTE: Fresh and pure water is defined as being "odor free and suitably cool". Where suitably cool means water being cooler than the ambient temperature but not so cold as to cause discomfort or prevent drinking.

NOTE: Electrolyte replacement drinks or "Sports Drinks" should be used to replace essential minerals lost during sweating. Sports drinks should supplement water intake e.g. one "sport drink" to every three bottles of water (3 waters: 1 sport drink)

- **2**. During the Tailgate Safety Meeting and site briefings identify and communicate the type and location of the water source. The water source must provide suitably cool, fresh, and pure water in sufficient quantity for all employees at the site. Water shall be provided free of charge or expenses will be reimbursed for employees. If the source is potable plumbed water do not complete Item 6 of this Section.
- **3**. Communicate to staff whether all water for the day will be provided at the start of the shift (e.g., 2 gallons / 8 L per employee for an 8-hour shift), or how and when water will be replenished.

NOTE: A sufficient quantity of water must always be present and readily accessible to allow every employee to consume at least 1 quart (1L) of water per hour. It is suggested to have a minimum of three hours supply of water per employee on hand.

- **4.** Water supplies must be positioned as close as reasonable possible to site workers. Placing water only in shaded areas or by toilet facilities is not sufficient, particularly at large work sites or at multi-story construction sites. Drinking water sources need to be close enough to workers to allow for routine consumption per the rate noted above.
- **5.** Inspect the coolers / water dispensers for cleanliness and replenishment of water and cooling ice routinely based on temperatures and staff size. Cooling ice will be stored in clean coolers if added directly to water dispensers.

NOTE: If the site temperature exceeds 90° F / 32° C the frequency of the cooler inspection will increase to verify water remains cool and the water supply is maintained.

6. Oversee the daily inspection and maintenance of coolers to ensure they are kept clean and in good condition.

Potable Water Source & Location

Γ		Potable plumbed source	Location:	
ļ	X	Bottled water in chilled cooler	Location:	Support Truck
I		Drinking water dispenser & cups	Location:	

Check which applies. Must check at least one box, or provide additional detail X Ice will be purchased at the start of each day. Ice will be provided by an onsite source or vendor service. Ice to be potable Alternative potable ice source: Food safe cleaning product for water cooler. Sufficient amount of drinking water cups for each employee per dispenser. Other items needed:

Access to Shade

The SSO or designee is responsible for implementing the following for how shade will be coordinated and provided **when temperatures exceed 80° F / 26° C**.

1. Access to shade must be allowed at all times. Before the start of work, the location of the shade areas, the importance of taking shade breaks, recognizing the signs and symptoms of heat illness, the schedule of shade breaks, and the location of shade break locations (if not portable) will be addressed during each Tailgate Safety Meeting and site briefing.

NOTE: Where required by regulation, shade breaks will be taken at a minimum rate of 10 minutes of shade for every two hour work period. As temperature increases shade breaks will increase in frequency. See the Heat Index table below for Heat Index specific Action Levels defining shade break frequency and duration.

2. The amount of shaded area must be able to accommodate all employees taking a recovery or rest break including employees on meal breaks. The shaded area(s) don't need to provide shade to accommodate **all employees** on a site or working a shift at the same time. An example includes rotating routine breaks among employees. Also, additional portable shade structures can be erected on an "as-needed" basis.

Employees must have enough shaded space so they can sit in a normal posture fully in the shade with enough space to allow for sitting without being in physical contact with each other. Employees who desire access to shade must not be deprived of it due to lack of space.

- 3. Employees who take a preventative cool-down rest;
- (1) shall be monitored and asked if they are experiencing symptoms of heat related illness. (2) shall be encouraged to remain in the shade. (3) shall not be ordered back to work until signs or symptoms of heat illness have abated, but in no event less than 5 minutes in addition to the time needed to access the shade.

If an employee exhibits signs or symptoms of heat illness while taking a preventative cool-down rest the SSO will provide appropriate support (e.g. additional hydration and/or call to WorkCare) or emergency response support as needed based on symptoms.

4. Shade structures will be relocated to follow the crew for moving tasks. Shade structures will be placed within 50 feet of the work area, if practical. Shade structures must be no further than a short walk away (e.g. 2-3 minutes) from the work area. This consideration becomes more critical as the temperature rises above 80° F (26 C).

Access to Shade Continued

5. In situations where it is not safe or feasible to provide shade, the SSO will document in the HASP Supplement the unsafe or unfeasible conditions, and include the steps taken to provide alternative cooling measures equivalent to shade.
 Unsafe/unfeasible conditions:

 Alternative Cooling Measures Implemented:
 Provide vehicles with working air conditioner to all employees for rest breaks / recovery breaks / meal breaks.
 Provide temporary or mobile shade structure(s) that are either ventilated or open to air movement (Secure against wind.)
 Provide a building / permanent structure(s) in close proximity to the work area

Other:

with a cooling environment via mechanical ventilation or open to air movement which will be used for shade. (Job trailer, pavilion, manufacturing building, etc.)

Monitoring of Weather and Heat Index Table

1. The SSO or designee must check the extended weather forecast in advance of the upcoming work on a weekly basis. Work schedules will be adjusted in advance, taking into consideration whether high temperatures or a heat wave is expected.

Accepted weather forecasting resources include webpages "NOAA.gov" or "weather.com" or see the NIOSH Heat Tool (formerly the OSHA Heat Tool app)

https://www.cdc.gov/niosh/topics/heatstress/heatapp.html

2. Before work starts for the day or shift, the SSO will review the forecasted temperature and humidity for the (exterior) work site and compare conditions against the National Weather Service Heat Index (below) to evaluate the risk level for heat illness. Determination will be made of whether or not workers will be exposed to a combination of temperature and humidity characterized as "Caution", "Extreme Caution", "Danger" or "Extreme Danger" for heat illnesses.

NOTE: It is important to know the temperature at which these warnings occur. When working outdoors see the Heat Index Table in this supplement for Action Level specific instructions for hazard controls.

3. Where state regulations indicate a thermometer or similar on-site monitoring device will be used at the job site to monitor for sudden increases in temperature. The SSO will be responsible for obtaining a thermometer/weather station prior to the start of work and make it readily visible / accessible where it can easily be monitored throughout the course of the day.

NOTE: If the temperature is $> 80^{\circ}F$ (26 C) shade structures will be opened and made available to workers. If temperature is $\geq 95^{\circ}F$ (35 C) additional preventive measures will be implemented.

Monitoring of Weather and Heat Index Table Continued

16								R	elat	ive		_	y (%	6)							
		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	80	77	78	78	79	79	79	80	80	80	81	81	82	82	83	84	84	85	86	86	87
	81	78	79	79	79	79	80	80	81	81	82	82	83	84	85	86	86	87	88	90	91
	82	79	79	80	80	80	80	81	81	82	83	84	84	85	86	88	89	90	91	93	95
	83	79	80	80	81	81	81	82	82	83	84	85	86	87	88	90	91	93	95	97	99
	84	80	81	81	81	82	82	83	83	84	85	86	88	89	90	92	94	96	98	100	103
	85	81	81	82	82	82	83	84	84	85	86	88	89	91	93	95	97	99	102	104	107
	86	81	82	83	83	83	84	85	85	87	88	89	91	93 95	95 98	97	100	102	105	108	112
	87 88	82 83	83 84	83 84	84 85	84 85	85 86	86 87	87 88	88	89 91	91	95	98	100	100	103	106	109	113	116
	89	84	84	85	85	86	87	88	89	91	93	95	97	100	103	106	106	110	113	122	121
	90	84	85	86	86	87	88	89	91	92	95	97	100	103	106	100	113	117	122	127	
	91	85	86	87	87	88	89	90	92	94	97	99	102	105	109	113	117	122	126	133	
	92	86	87	88	88	89	90	92	94	96	99	101	105	108	112	116	121	126	131	100	
	93	87	88	89	89	90	92	93	95	98	101	104	107	111	116	120	125	130	136		
	94	87	89	90	90	91	93	95	97	100	103	106	110	114	119	124	129	135	141		
	95	88	89	91	91	93	94	96	99	102	105	109	113	118	123	128	134	140			
	96	89	90	92	93	94	96	98	101	104	108	112	116	121	126	152	138	145			
	97	90	91	93	94	95	97	100	103	106	110	114	119	125	130	136	143	150			
	98	91	92	94	95	97	99	102	105	109	113	117	123	128	134	111	148				
(C	99	92	93	95	96	98	101	104	107	111	115	120	126	132	138	145	153				
(°F)	100	93	94	96	97	100	102	106	109	114	118	124	129	136	143.	150	158				
<u>e</u>	101	93	95	97	99	101	104	108	112	116	121	127	133	140	147	155					
泵	102	94	96	98	100	103	106	110	114	119	124	1.30	137	144	152	160		1	_		L
emperature	103	95	97	99	101	104	108	112	116	122	127	134	141	148	157	165		16	20	71	
9	104	96	98	100	103	106	110	114	119	124	131	137	145	153	161		7			77	-
ē	105	97	99	102	104	108	112	116	121	127	134	141	149	157	166		Ir	1	12	2	-
۲	106	98	100	103	106	109	114	119	124	130	137	145	153	162	172		"	ľ	1 C	-/	
	107	99	101	104	107	111	116	121	127	134	141	149	157	167							
	108	100	102	105	109	113	118	123	130	137	144	103	16Z	172							
	109	100	103	107	110	115	120	126	133	140	148	137	167	317	- 10	trio.					
	110	101	104	108	112	117	122	129	136	111	102	161	121	gi.	1245 AT	The same of	No. X-	4	NEA	THE	
	111	102	106	109	114	119	125	131	132	147	156	166	181	3	no	AA /	1	~	2	To	Tun.
	112	104	107	442	113	122	127	134	142	150	164	170	103	No.			The same	=			12
	114	104	100	112	140	125	123	130	148	158	168	179		1	2	-	S.	3		3	=
	115	106	110	115	121	127	131	1.63	150	162	173	181		10	9		PER	-	V	1	2
	116	107	111	116	122	129	137	146	105	166	177	144	/		clones.	TOPICS			* *	*	
	117	108	112	118	124	132	140	149	159	170	181		Extre		Heat	stroke	likely				- 1
	118	108	113	119	126	134	142	152	162	171	186		Dane		1000					and / and	L
	119	109	114	121	128	138	145	155	165	178							musd likely				
	120	110	116	122	130	138	148	158	170	182			Dang	er	with		longed		posun		nd/or
	121	111	117	124	132	141	151	162	174	187					1 2 24	cal a c	tivity.				
	122	111	118	125	134	113	154	165	178				Extre	me			musd				
	123	112	119	127	136	146	157	169	182				Cauti				pos: nd/or			prolo vity	nged
	124 125	113 114	120	129	138 140	148 151	160 163	172 176					Cauti	on	Fatigu	ie į	nd/or oossib nd/or	le v	vith	prolo	nged

Note: The Heat Index table was developed with an expectation of partial shade & light wind conditions present. Work conducted in direct / full sunlight (e.g. no partial shade) and no wind adds up to 15° F (8° C) to the Heat Index evaluation.

Monitoring of Weather and Heat Index Table Continued

Heat Index Action Levels. Below are recommended additional controls. Each level of additional controls is additive as the temperature increases.

CAUTION 80° - 90° F (26° - 32° C). Implement one or more of the following measures: Provide and direct hydration, schedule breaks, ensure lightweight clothing is worn, provide break areas with shade / ventilation / air conditioning.

EXTREME CAUTION 90° - 105° F (32° - 40.5° C). Implement all the previous and add one or more of the following: Provide light duty PPE, cooled break areas, shaded work areas.

NOTE: "Light Duty PPE" includes hard hat sun shades, sun hats, dry or wet evaporative cooling vests, microfiber cooling towels / scarves / headbands / hard hat suspension inserts or sweatbands, hard hat neck shades.

DANGER 105° - 130° F (40.5° - 54.4° C). Implement all the previous and add one or more of the following: cooled work areas, modified work schedule, heavy duty PPE, and personnel physiological monitoring.

NOTE: "Heavy Duty PPE" phase-change cooling vests, gel pack or ice pack equipped cooling vests. Consider engineering controls such as forced ventilation.

EXTREME DANGER \geq **130° F** (\geq **54.4° C**). If working at this temperature or greater Stop Work until conditions change or hazards are effectively controlled via the items listed above. At this range of temperatures it is critical to implement personnel vital sign monitoring for determining the appropriate frequency and duration of Work / Rest cycles.

Work / Rest Cycle Duration and Frequency Process

All workers, regardless if they are wearing permeable or impermeable clothing, should be monitored when conditions warrant e.g., when temperatures exceed 80°F / 26.6°C. If impermeable clothing is worn (e.g., not standard cotton/synthetic work clothes), it is a best practice to begin monitoring workers when temps are > 70°F in the work area. Prioritize workers completing strenuous tasks. Prioritization should also apply to work conducted indoors, for strenuous tasks, and/or if additional PPE is worn (such as Level C respiratory protection or(CPC). If impermeable clothing, Level C, or CPC is not worn, follow the Heat Index table instructions and evaluate personnel monitoring as part of the high heat measures. Details provided below for appropriate work/rest cycle development with the default rest cycle being a 15-minute interval for every hour when temperatures exceed 90°F.

NOTE: Warning signs include: When a person's sustained (e.g., several minutes) heart rate exceeds 180 beats per minute (bpm) minus their age (e.g., 180 - age = X) for individuals with normal cardiac performance per their physician; or a body core temperature exceeds 101.3°F / 38.5°C for acclimatized workers or 100°F / 38°C for unacclimated workers; a recovery heart rate at 1 minute after a peak work effort is greater than 120 bpm; or there are symptoms of sudden and severe fatigue, nausea, dizziness, or lightheadedness.

Suggested Frequency and Duration of Work / Rest Cycles Applying Physiological Monitoring of Acclimatized Personnel

Adjusted Temp. (1)	Permeable PPE (2)	Impermeable PPE (3)
≥ 90° F / 32° C	After ea. 45 mins. of worl	After ea. 15 mins. working
87.5-90° F / 30.8-32.2° C	After ea. 60 mins. of worl	After ea. 30 mins. Working
82.5-87.5° F / 28.1-30.8° C	After ea. 90 mins. of worl	After ea. 60 mins. Working
77.5-82.5° F / 25.3-28.1° C	After ea.120 mins. of wor	After ea. 90 mins. Working
72.5-77.5° F / 22.5-25.3° C	After ea.150 mins. of wor	After ea. 120 mins. Working

NOTES:

- (1) Adjusted air temp (ta adj) calculation: ta adj F = ta F + (13 x % sunshine). Measure the air temperature (ta) with a thermometer (shielded from radiant heat). Estimate the percent sunshine by judging what percent time the sun is not covered by clouds that are thick enough to produce a shadow. (100 percent sunshine = no cloud cover and a sharp, distinct shadow; 0 percent sunshine = no shadows.)
- (2) Permeable PPE consists of cotton clothing with long sleeves and pants or breathable coveralls.
- (3) Add 1.8 °F for Tyvek coveralls; add 5.4 °F for heavy clothing; add 19.8 °F for impermeable/semi-impermeable PPE Level A/B suits)

Heart Rate Monitoring

When conducting heart rate monitoring, first record a resting heart rate to establish the individuals daily baseline heart rate. Count the radial pulse (located on the inside of the wrist below the thumb) during a 30 second interval before the start of work to establish a baseline heart rate. During rest cycles count the heart rate as early as possible at the beginning of the rest cycle and again 3-5 minutes later. The heart rate should fall and soon approach the individuals baseline heart rate.

- If the heart rate exceeds 110 beats per minute at the beginning of the rest period, shorten the next work cycle by one-third and keep the rest period the same.
- If the heart rate still exceeds 110 beats per minute at the next rest period, shorten the following work cycle by one-third.

Body Temperature Monitoring

Use an oral, inner ear, or an infrared type thermometer to measure the body temperature at the end of the work period (If using an oral thermometer record temperature before drinking liquids).

- If oral temperature exceeds 99.6°F (37.6°C), shorten the next work cycle by one-third
- without changing the rest period.
- If oral temperature still exceeds 99.6°F (37.6°C) at the beginning of the next rest period, shorten the following work cycle by one-third.
- Do not permit a worker to wear a semi-permeable or impermeable garment when his/her oral temperature exceeds 100.6 °F (38.1 °C).

Procedures for High Heat Conditions and Heat Waves

These procedures are additional preventative measures to be implemented when the temperature is > 95° F (35° C). The SSO or designee is responsible for ensuring effective observation and monitoring of employees during periods of high heat by implementing one or more of the following procedures:

- 1. SSO or designee will supervise 20 or fewer employees.
- 2. The "Buddy System" is mandatory. Conduct routine checks for early signs of Heat Illness. Set and verify routine consumption of water & sports drinks in a 3:1
- 3. Maintain regular communication between Project Manager or SSO / designee and field staff (e.g. via mobile phone, radio or another effective means) for observation of early signs of heat illness.
- 4. Designate one or more employees as authorized to contact emergency medical services and communicating that if no designate is identified and the SSO is unavailable that any employee can call for emergency medical assistance.
- 5. Modify work schedule to avoid hottest parts of the day (e.g. start work earlier in the AM, stop work for the hottest hours of the day, conduct work during the Additionally, tailgate Safety Meetings will include a review the high heat procedures, encourage employees to drink plenty of water, and remind employees of the importance to take a preventative or recovery cool-down rest when necessary.

Employees will be observed for alertness and signs and symptoms of heat illness at regular intervals to be documented in the field book or field log.

The "Buddy System" must be implemented. Particular attention needs to be paid to new employees or employees who have yet to acclimate to high heat conditions. Additionally, frequent communication will be maintained with employees working by themselves (via cell phone or two-way radio), to evaluate early warning signs and symptoms of heat illness.

When the SSO is not available, an alternate responsible person must be assigned to look for signs and symptoms of heat illness. Such a designated observer will be trained and know what steps to take if heat illness occurs.

"Heat Wave" Procedures

A "heat wave" as defined by NOAA, is a period of abnormally and uncomfortably hot and unusually humid weather." Typically, a heat wave lasts 2 or more days. A "Heat Wave" as defined for the purposes of this Standard is when temperatures are sustained above 80° F / 26° C.

During a heat wave or if site conditions indicate the potential for "Extreme Caution", "Danger" or "Extreme Danger" per the NOAA Heat Index Table the following steps will be taken:

Work schedules will be modified to protect workers from heat illnesses. The SSO or designee in coordination with the project team, will use their Stop Work Authority and evaluate the following actions and document the action in the daily field log

- 1. Modify work hours to exclude the hottest parts of the day.
- 2. Reschedule work or specific tasks that require strenuous exertion or Stop Work.

If schedule modifications are not possible, the Heat Illness Prevention Plan will be reviewed before work resumes. At a minimum, procedures for heat illness prevention, the provisions of the high heat procedures, the weather forecast and emergency response protocols will be reviewed.

Employees will be provided with additional water and rest breaks and will be observed more frequently. During work activities and rest breaks, employees will be observed for signs and symptoms of heat illness.

All employees will maintain frequent communication with the SSO or designee, who will be monitoring workers for possible symptoms of heat illness. In the event of large project sites where the SSO may be unable to be near the workers (to directly observe or communicate with them), then communication via a cell phone or radio may be used for this purpose provided reception in the area is reliable.

Procedure for Emergency Response

Emergency procedures include recognizing the symptoms of heat related illness. A critical step also involves ensuring that effective communication is established either through voice, direct observation or electronic means such as via mobile phones or 2-way radios. In an emergency situation it is critical that employees understand the process and contact information for requesting emergency medical support. The reception coverage for the site must be evaluated and understood to ensure adequate communication is in place across the project site. During a heat wave or hot temperatures, workers will be reminded and encouraged to immediately report to the SSO any signs or symptoms of the onset of heat stress they are experiencing.

Procedure for Emergency Response Continued

The SSO or designee is responsible for implementing the following procedures for emergency response. These procedures include, but are not limited to, the following:

- 1. Prior to assigning staff to a particular work site, during the Tailgate H&S Safety Meeting all site workers will review the HASP along with the identified Hospital precise directions (such as streets or road names, distinguishing features, and distances to major roads), to avoid a delay of emergency medical services.
- **2.** Prior to work, efforts will be made to ensure that a qualified, appropriately trained and equipped personnel are consistently available to render first aid.
- **3.** Prior to the morning Tailgate Safety Meeting, an evaluation of whether or not a language barrier is present at the site for understanding the necessary preventative measures and emergency notifications procedures can be completed. Necessary steps will be taken (such as assigning the responsibility to call emergency medical services to the SSO or an English speaking worker) to ensure that emergency medical services can be immediately called in the event of an emergency.
- **4.** All SSOs and supervisors will carry cell phones or other means of communication to ensure that emergency medical services can be called. Routine checks will be made to ensure the devices are allowed on site, have adequate reception across the site, and are functional prior to each shift.
- **5.** When an employee reports symptoms, or displaying symptoms of possible heat illness, steps will be taken immediately to keep the affected employee cool and comfortable. Evaluate whether 1st aid is to be administered or emergency services are to be contacted or the employee is to be taken to an emergency facility for care.

Procedure for Handling a Sick Employee

Signs of Heat Stress: Excessive fatigue, heavy sweating, headaches, abdominal and/or upper thigh cramps, mild dizziness, elevated pulse.

Signs of Heat Exhaustion: Cool, moist, pale or flushed skin, nausea or vomiting, disorientation or confusion.

Signs of Heat Stroke: Hot, red skin which can feel dry to the touch, or moist from overexertion, changes in consciousness, rapid or weak pulse, shallow rapid breathing.

The SSO or designee is responsible for implementing the following procedures for evaluating and providing care for a sick employee:

1. When an employee displays signs or symptoms consistent with the heat related illness, the SSO or designee will check the sick employee and determine whether resting in the shade and drinking cool water will suffice or if emergency service providers will need to be called.

Procedure for Handling a Sick Employee Continued

If determined to be a **non-emergency** (e.g. heat cramps or heat stress) the SSO will contact **WorkCare Injury Assistance Hotline 1-888-449-7787** for 1st aid medical assistance. In the event of the injury being an emergency, or potentially (e.g. Heat Exhaustion or Heat Stroke) contact emergency support services.

- **2.** When an employee displays possible signs or symptoms of heat illness and no trained first aid worker or supervisor is available at the site, emergency service providers will be called.
- **3.** Emergency service providers will be called immediately if an employee displays signs or symptoms of advanced stage heat related illness like Heat Exhaustion or Heat Stroke (loss of consciousness, incoherent speech, convulsions, red and hot face) or does not get better after drinking cool water in intervals of 8 ounces every 15 minutes and resting in the shade. While the ambulance is in route, assign a person to care for the injured, first aid will be administered (cool the worker by placing them in the shade, remove excess layers of clothing, place ice pack in the armpits and groin area and fan the person). A worker determined to be suffering an advanced stage of heat related illness will not be allowed to leave the site except under medical care, or as directed by a medical professional.
- **4.** If an employee displays signs or symptoms of advanced stage heat related illness (loss of consciousness, incoherent speech, convulsions, red and hot face), and the work site is located more than 20 minutes away from a hospital, call emergency service providers, communicate the signs and symptoms of the victim, and request an Air Ambulance if necessary.

Revisions, notes, amendments, and clarifications specific to this plan will be detailed in the space below:							

Attachment D Lone Remote Worker Plan

Arcadis Lone Worker or Remote Location Communication Plan

	use the Travel Safety and Security Plan template in lieu of this template)											
Project Name: Project Number:	Maestri 30166086											
Date:	6/5/2023											
Revision:	0/3/2023											
X Worker will be alone X Buddy system will be used X Area is within cell phone so Cell phone service is limite Worker will be performing Work will be performed ou Wilderness work Site is not accessible to sta	d service range											
Communication Plan Frequency of Communication: Planned Start Time: 7	2 HOURS 7:00:00 AM Planned End Time: 7:00:00 PM											
Contact Information: Field Worker Name: Field Worker Phone Number: Vehicle Make/Model/ Plate: Office Contact Name: Office Contact Phone Number	Tyler Derleth 315-436-3605 TBD Ryan Merrell r: 315 671 9219 (office) 315 399 3864 (cell)											
Method of Communication: X Cell Phone (including text Landline 2-way Radio Satellite Phone	notification) GPS Transponder App: Other:											
Contingency Plan (if the Field TBD based on field visit.	Worker cannot be reached, describe actions the Office Contact will take)											

Notification Log

Time	Field Worker Notification		Office Receipt of Notification
7:00:00 AM			
9:00:00 AM			
11:00:00 AM			
1:00:00 PM			
3:00:00 PM			
5:00:00 PM			
7:00:00 PM			
		•	
		•	
		•	
		•	

Attachment E Forms

PID Calibration Log

Zero Gas Source:		Instrument Type:		PAGE of								
Lot Number/Expiration Date:			Serial Number:									
					•							
Lot Number/Expiration Date:												
ot Number/Expiration Date: Serial Number: Serial Number:												
			•			-						
Instrument Number	Date	Time	Zero Cal. OK	Calibration Gas	Comments	Calibration w/in	Alarms Set	User				
			(Y/N)	Reading		2% (Y/N)?	(Yes/No)?	Initials				

Arcadis Weekly Vehicle Inspection Form

Vehicle # / License Plate #					Lease Plan # / Last 6 of Vin #								
Inspection Date													
	Odometer reading												
	Driver / Inspector Name												
Chec	k the appropriate box and enter repair		Needs	Repair		Needs	Repair		Needs	Repair		Needs	Repair
	date for identified repairs:	OK	Repair	Date	OK	Repair	Date	OK	Repair	Date	OK	Repair	Date
	Horn operational												
	Door Locks operational												
	Seat Belts in good repair												
	Seats and Seating Controls												
١.	Steering Wheel - No Excessive Play												
Interior	Interior Lights and Light Controls												
重	Instrument Panel/Gauges												
	Wiper Controls operational												
	Heat/Defrost/Air Conditioning working												
	Rear View Mirror present												
	Backup Camera/Sensors working												
	Jack and Lug Wrench present												
	Lights and Signals operational												
	rires properly inflated/good tread depth												
- <u>-</u>	Spare Tire properly inflated												
Exterior ¹	Doors operational												
Ä	Windows Not Cracked/Damaged												
	Side View Mirrors												
	Body Panels and Bumpers												
	Engine Start & Running Smoothly												
e &	Fluid Levels, No Noticeable Leaks												
Engine & Brakes	Belts tight, no cracks												
"	Brakes operational, no squeaking												
nt²	First Aid Kit, inspected weekly												
ncy Equipment²	Fire Extinguisher properly secured												
l in	Fire Extinguisher inspected weekly												
) S	Prange/Yellow emergency warning light												
rger	Roadside Assistance Information												
Emergen	Recommend spotter cones available												
	Cargo Secure and Properly Distributed												
Cargo	Securing Devices in Good Condition												
	License Plate /Tags												
Registration	Registration and Insurance												
] jistr	City/State Inspection Decal												
Reg	Lease Plan information/Fuel Card												

¹ Note all damages to the vehicle on the back of this page

² Emergency Equipment required per Motor Vehicle Standard ARC HSGE024

Note All Vehicle Damage Below

All Vehicle Damage must be reported to Sue Berndt (Corporate Legal), Andrew McDonald (Corporate H&S), and Roger Elliot (Corporate Fleet Manger)

DMC-DUST AND MUD COVERED UNABLE TO DETERMINE OTHER DEFECTS IF ANY G-GOUGED OR CUT P-PUNCTURED R-RUSTY S-SCRATCHED SC-SCRAPED CPM-COVERED WITH PROTECTIVE **B-BENT** BR-BROKEN BU-BULGE C-CHAFED MATERIAL-UNABLE TO DETERMINE DEFECTS IF ANY CODES: CSA-CHAFED AND SCRATCHED ALL OVER SM-SMASHED ST-STAINED AND/OR SOILED T-TORN CH-CHIPPED CR-CRACKED D-DENTED GC-GLASS CRACKED HS-HAIRLINE SCRATCH M-MISSING **TRUCKS** VANS/BUSES CARS FRONT FRONT 00=00 **=** D $\infty \equiv \infty$ REAR REAR 0 -INDICATE ON DIAGRAM--GIVE DIMENSIONS--CIRCLE WHERE APPLICABLE-

Notes:

Tread guide: If a tread gauge is not available coins may be used to determine remaining tread. 2/32" is the minimum by law in most states (top of Lincoln's head on penny), 4/32" is minimum recommended for wet surfaces (top of Washington's head on quarter), 6/32" is minimum recommended for snowy surfaces (top of Lincoln Memorial on penny). Vehicle tires should be replaced if the tread depth is less than 6/32".

2/32" remaining

4/32" remaining

6/32" remaining

Reference JSA 10907 For Weekly Vehicle Inspection

Attachment FJourney Management
Plan

Arcadis Journey Management Plan

Project Name:	Maestri								
Project Number:	<u>30166086</u> <u>6/5/2023</u>								
Date: Revision:	0/3/2023								
Davita Islantification									
Route Identification									
	tion of route(s) on this project will utilize (select all that apply):								
<u> </u>	software with traffic reporting								
<u> </u>	software without traffic reporting								
— • • • • • • • • • • • • • • • • • • •	X GPS navigation with traffic reporting (portable unit or integrated into the vehicle) X Standard GPS navigation device (portable unit or integrated into the vehicle)								
	• • • • • • • • • • • • • • • • • • • •								
	g and traffic reporting								
App without traffi									
 	osite with traffic and construction zone reporting								
X Standard maps of	or atlases								
Other -Specify:									
•	zards or route concerns identified in the route identification above: ssed prior to each mobilization.								
List any portions of the security	nis route that have recommended driving restrictions due to time of day, weather, or								
X Vehicle Pre-Trip	ched or provided in the project specific HASP Inspections required: Daily X Weekly or Vehicle (CMV) requirements apply to this project.								
	this route includes toll roads. tolls are paid (select all that apply): Transponder License Plate Cash only Other: Request transponder for vehicle when renting Review rental agreement concerning rental agency participation in license plate toll payment systems.								

Documentation

When using on-line mapping software to prepare routes, it is recommended to print an overview map with route, and turn by turn maps of route when available. When using GPS navigation devices, it is also recommended that on-line mapping software routes and maps be printed to augment the GPS navigation device routing. Standard maps or atlases should only be considered if navigation assistance from a passenger in the vehicle.

Printing of maps from on-line mapping software should be considered, especially if little is known about potential traffic or construction hazards from primary route planning.

All hard copy maps and driving directions are attached.

Signatures

_				
JMP Prepared by:	Lukas Matt and Rebecca Hensel	Date:	6/5/2023	
.				
Driver Review:		Date:		
		Date:		
		Date:		
		Date:		

Arcadis of New York, Inc.
One Lincoln Center, 110 West Fayette Street, Suite 300
Syracuse
New York 13202

Phone: 315 446 9120 Fax: 315 449 0017 www.arcadis.com