

Mr. Anthony Russo
New York State Department of Environmental Conservation (NYSDEC)
Region 7 Office
Division of Environmental Remediation
5786 Widewaters Parkway
Syracuse, New York 13214-1867

February 13, 2025

Subject: Stauffer Management Company, LLC – Maestri Site

NYSDEC Site No. 7-34-025 900 State Fair Boulevard Town of Geddes, NY

Dear Mr. Russo:

Arcadis on behalf of Stauffer Management Company, LLC (SMC), is submitting the enclosed Period Review Report for the Maestri Site.

If you have any questions or concerns, please do not hesitate to contact me at 315-671-9219 or Ryan.Merrell@arcadis.com.

Sincerely,

Arcadis

Ryan Merrell Project Manager

cc: Sean Scanlon/Stauffer Management Company, LLC

Timothy Miller/Arcadis
Molly Gill/The Dextra Group

you Mende

Stauffer Management Company LLC

2024 PERIODIC REVIEW REPORT

Maestri Site Town of Geddes, New York

February 2025

Site Certification

Maestri Site NYSDEC Site Number 7-34-025 Town of Geddes. New York

Based on my review of this Periodic Review Report, my own observations, and the observations of my staff while inspecting the Maestri Site (Site), I hereby certify, on behalf of Stauffer Management Company LLC, that the Site is compliant with the New York State Department of Environmental Conservation (NYSDEC)-approved Site Management Plan (February 2024).

- The on-site institutional and engineering controls are performing as designed and nothing has occurred that would impair the ability of the controls to continue to be protective of public health and environment.
- Nothing has occurred that would constitute a violation or a failure to comply with the Site Management Plan.
- Access to the Site to evaluate the controls continues to be available.
- The requirements of the Site Monitoring Plan are being met.
- The controls identified for the Site remain necessary for the continued effectiveness and protectiveness of the remedy.
- This Periodic Review Report and attachments (or the inspection/evaluations necessary to make this
 certification) were prepared under my direction and reviewed by me.

To the best of my knowledge, the conclusions described in this certification are in accordance with the requirements of the Site Management Plan, NYSDEC approval documents, and generally accepted engineering practices; the information presented is accurate and complete. Changes to the conditions at the Site, discovery of undisclosed information, or changes in activities at this Site since the last inspection may render this certification invalid. This report has been prepared solely for the use of Stauffer Management Company LLC at the Maestri Site for compliance with NYSDEC-required closure reporting protocols and the reminder notice provided by the NYSDEC on December 3, 2024 (Appendix A). Reliance on this report by others is strictly prohibited. All assumptions, clarifications, observations, and representations stated in this report apply to this certification.

The same of the sa	
ESSIONAC	

077919-1, New York

Signature Professional Engineer Registration Number & State

Timothy Miller Principal Engineer

Name Title

Arcadis U.S., Inc. 02/13/2025

Company Date

Contents

1	Intr	oduction	1
2	Site	• Overview	1
	2.1	Soil Remediation	1
	2.2	Groundwater Remediation	2
3	Inst	itutional Controls and Engineering Controls	2
	3.1	Effectiveness of Institutional Controls and Engineering Controls	3
	3.2	Attaining Remedial Goals	3
	3.3	Annual Site Inspection Results	4
4	Sun	nmary of Site Evaluation	5
5	Plai	ns Moving Forward	5
6	Ref	erences	5

Tables

Table 1 Remedial Action Objectives

Table 2 Summary of Historical Total Xylene Concentrations

Figures

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Groundwater Elevation Contour Map, May 2024

Figure 4 Groundwater Analytical Results, May 2024

Figure 5 Well Xylene Concentration Trends

Appendices

Appendix A NYSDEC Site Management Periodic Review Report Notice

Appendix B May 2024 Site Inspection Forms

Appendix C NYSDEC Response to 2023 January PRR Comments and Approval

Appendix D Well Decommissioning Report

Appendix E 2024 Data Usability Summary Report

Appendix F Historical Well Xylene Concentrations and Water Table Elevations

Appendix G 2024 Low-Flow Sampling Logs

Appendix H Institutional and Engineering Controls Certification Form

Acronyms and Abbreviations

Arcadis U.S., Inc.

EC Engineering Controls

IC Institutional Controls

NYSDEC New York State Department of Environmental Conservation

PRR Periodic Review Report

ROD Record of Decision

SMC Stauffer Management Company LLC

SMP Site Management Plan

SVE Soil Vapor Extraction

VOC Volatile Organic Compound

1 Introduction

This Periodic Review Report (PRR) has been prepared by Arcadis U.S Inc. (Arcadis) on behalf of Stauffer Management Company LLC (SMC) for the Maestri Site, located in the Town of Geddes, New York (Site). The purpose of this report is to summarize compliance with the Site Management Plan (SMP) Revision No. 2 to the August 2010 SMP dated February 2024, and to provide the status of the Site institutional controls (IC) and engineering controls (EC) for Periodic Review Year 2024.

The Site has been remediated by SMC under Order on Consent Index # A7-0226-90-03 (December 1992), with the New York State Department of Environmental Conservation (NYSDEC). In the 1970s, drums containing industrial waste were allegedly buried at the Site. In 1987, the Site owner, Mr. Bert Maestri, reportedly excavated soil and drums from an area of the Site, leading to investigations to evaluate the environmental effects of the former waste disposal area. A combination of soil vapor extraction (SVE) and biological treatment was chosen as the remedial technology for soil at the Site and a groundwater treatment system was constructed to remediate groundwater. The remedial action work began at the Site in June 1996 and was completed in May 2008. An SMP was approved by the NYSDEC in May 2011 and a Declaration of Covenants and Restrictions is currently in place. An updated SMP, submitted on February 9, 2024, was approved by NYSDEC on May 31, 2024. Since remaining residual soil and groundwater contamination are present at the Site, ICs/ECs have been implemented to protect public health and the environment for the applicable future use. The effectiveness of the Site IC/EC implementation and maintenance is discussed throughout this report.

2 Site Overview

The Site is located at 904 State Fair Boulevard, Geddes, New York, approximately three miles west of Syracuse, New York. The portion of the Site that is still actively monitored is approximately 2.5 acres. The Site is bordered by State Fair Boulevard to the southwest and residences along Alhan Parkway to the northeast. Vacant, wooded lots border the Site to the northwest and the southeast. A Site Location Map and Site Plan are provided in this report as Figures 1 and 2, respectively.

2.1 Soil Remediation

Investigation into the extent of the environmental impacts at the Site began in 1987. That same year, the NYSDEC listed the Site on the New York State Registry of Inactive Hazardous Waste Disposal Sites as Site #7-34-025. SMC conducted a remedial investigation and feasibility study to determine the nature and extent of contamination and to select remedial technology for the Site. A combination of SVE and biological treatment was chosen as the most cost-effective remedy that was protective of human health and the environment. A Record of Decision (ROD) to complete soil remediation at the Site was signed in March 1995.

Soil remediation activities began in June 1996 with the excavation of over 10,000 cubic yards of soil and the construction of five above-grade biopiles for treatment of volatile organic compounds (VOC) and semi-volatile organic compounds with an SVE/bioremediation system. By September 1999, the last of the excavated material met the requirements of the ROD and was returned, with the Site re-graded and seeded in October 1999. Soil Remedial Action Objectives are provided in Table 1.

2.2 Groundwater Remediation

An on-site groundwater treatment system was constructed in 1992 and operated until 2008. The system treated water from six recovery wells, water collected from the soil excavation, and leachate accumulated from the biopiles during remedial activities. The water was treated with particulate filtration and carbon adsorption and was discharged, under a State Pollution Discharge Elimination System-equivalent permit, to a storm sewer that subsequently discharged to Onondaga Lake. The groundwater treatment system was shut down in May 2008 after it had achieved remedial goals outlined in the ROD. This required continued operation of the groundwater collection and treatment system with an annual evaluation until concentrations of contaminants at the Site could no longer be effectively removed, or cleanup objectives were met. To address remaining groundwater contamination and to enhance groundwater remediation, a series of chemical oxidation events were completed in 2001, 2002, and 2004. In an email dated May 18, 2021, the NYSDEC approved the use of low-flow sampling techniques starting in 2021.

3 Institutional Controls and Engineering Controls

As provided in the SMP, ICs and ECs were designed to manage remaining contamination at the Site after completion of the remedial action work and to protect human health and the environment for the applicable future use. The ICs and ECs are designed to prevent the following:

- Ingestion/direct contact with contaminated soil.
- Inhalation of, or exposure to, contaminants volatilizing from contaminated soil.
- Ingestion of groundwater with contaminant levels that exceed applicable drinking water standards.
- Contact with, or inhalation of, volatiles from contaminated groundwater.
- Migration of contaminated groundwater resulting in off-site contamination.
- Migration of contaminants that would result in off-site groundwater or surface water contaminants.

The Site has the following ECs:

- Maintenance of the soil cover over the soil redeposition areas, consisting of three inches of loam, six inches of topsoil, and grass.
- Routine monitoring of groundwater.

The Site has the following ICs:

- Compliance with the established Declaration of Covenants and Restrictions with all elements of the SMP.
- ECs must be operated and maintained as specified in the SMP.
- ECs at the Site must be inspected and certified at a frequency and in a manner defined in the SMP.
- Groundwater monitoring must be performed as defined in the SMP.
- Data and information pertinent to the management of the Site must be reported at the frequency and in a manner defined in the SMP.
- On-site environmental monitoring devices, including groundwater monitoring wells, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP.

Additionally, the Declaration of Covenants and Restrictions has placed the following restrictions on the property:

Vegetable gardens and farming on the property are prohibited.

- Use of groundwater underlying the property is prohibited without treatment rendering it safe for the intended use as approved by the New York State Department of Health.
- As the topsoil cover over the excavated areas acts as a cover system at the Site, disturbance and
 incidental damage to this cover system shall be repaired upon discovery in a manner that complies with
 the SMP.
- All future activities on the property that would disturb remaining contaminated material must be conducted in accordance with the Excavation Plan included in the SMP.
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be mitigated.
- The property may be used for residential use with restricted groundwater use, provided that the longterm ICs/ECs described in the SMP are employed and land zoning regulations are followed.

In addition to the ICs/ECs, a fence and locked gates prevent access to the Site.

3.1 Effectiveness of Institutional Controls and Engineering Controls

The ICs/ECs specified in the SMP are in place and effective in protecting human health and the environment. In 2024, the ECs were operated and maintained as specified in the SMP. The soil cover was maintained, and the quality and integrity of the cover was inspected in 2024, as specified in the SMP. The 2024 site inspection report is provided in Appendix B. Groundwater flow directions for the 2024 monitoring event are provided in Figure 3. Groundwater analytical results from the event are identified, by sampling location, in Figure 4.

SMC received approval from NYSDEC on March 9, 2021 to remove PZ-4 from the sampling program and to properly decommission. However, SMC was unable to locate PZ-4 in 2023 similar to the reported activities in the 2022 PRR. The following activities were completed in an attempt to locate PZ-4:

- Reviewed historical aerial photos of the Site.
- Marked well location with hand GPS unit and hand-dug around the area.
- Walked the property with a metal detector.
- Interviewed previous consultants to aid in locating.
- Interviewed homeowner which revealed that the yard had been regraded.
- Attempted to locate with drillers while on site for abandonment work of wells RW-3, RW-5, and RW-8.

SMC proposes decommissioning PZ-4 due to the inability to locate the well. The Water Well Abandonment and Decommissioning Report can be found in Appendix D for NYSDEC review and approval.

3.2 Attaining Remedial Goals

Groundwater monitoring takes place to ensure that residual groundwater contamination is not migrating off site and to analyze the remaining levels of contamination in the groundwater, which is required for compliance with remedial goals. The depth of the wells and analytes to be tested annually are detailed in the table below.

Well	Depth of Well (ft bgs)	Measuring Point Elevation (ft)	Screened Interval (ft)	Depth to Water (ft)	Total Xylene Concentration Measurement (Y/N)	Water Elevations Measurement (Y/N)	Frequency
MW-9	19.2	408.9	387.00-397.00	12.24	Y	Y	Annually

Well	Depth of Well (ft bgs)	Measuring Point Elevation (ft)	Screened Interval (ft)	Depth to Water (ft)	Total Xylene Concentration Measurement (Y/N)	Water Elevations Measurement (Y/N)	Frequency
PZ-21	19.5	386.7	368.00- 378.00	2.85	Y	Y	Annually
RW-6	21.86	393.6	374.74-384.74	5.45	Y	Y	Annually
RW-7	27.5	405.8	383.76-393.76	17.23	Y	Y	Annually

Arcadis conducted data validation of the laboratory reports to confirm the analytical data is of sufficient quality for usage. The data review reports containing the data validation details are included as Appendix E. The review was conducted as a Tier III evaluation and included review of 100% of the data packages for completeness. The data review found all data quality acceptable for use.

Xylene concentrations continue to show seasonal fluctuations across semiannual sampling events. Specifically, the fluctuations are observed in monitoring locations RW-6, PZ-21, RW-7 and MW-9, as presented on Table 2. Samples from off-site downgradient wells PZ-21 continue to show no detections, indicating that the plume is not migrating to the off-site downgradient area and remediation goals are attainable. Three wells, specifically RW-3, RW-5 and RW-8, have historically shown results less than the detection limit of the test procedure. Pursuant to the 2021 PRR that was approved on April 18, 2022, groundwater monitoring wells PZ-20, RW-3, RW-5 and RW-8 were to be removed from the monitoring program, beginning in 2022. Monitoring wells RW-3, RW-5, and RW-8 were decommissioned, in accordance with NYSDEC Commissioner Policy 43: Groundwater Monitoring Well Decommissioning Policy, during the October 2022 semiannual sampling event.

A review of groundwater elevation data in comparison to total xylene concentrations (Appendix F) indicate that higher groundwater elevations at the time of sampling typically result in higher reported total xylene concentrations. The higher groundwater table elevations are typically observed during the second quarter (Spring) sampling event.

Historical xylene results are presented in Table 2, visual representation presented in Appendix F, and current analytical lab reports are presented in Appendix E. Additional historical details can be found in previously submitted PRRs.

3.3 Annual Site Inspection Results

The results from the annual site inspection show that the soil cover remains in place and intact and that the ICs/ECs continue to protect public health and the environment. The on-site ICs/ECs remain in place. They have proven to be effective and have not been impaired in their ability to protect human health and the environment. The Site remains accessible to evaluate the ICs/ECs and continues to be compliant with the established Declaration of Covenants and Restrictions. The site inspection report can be found in Appendix B. The NYSDEC Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form has been provided in Appendix H.

4 Summary of Site Evaluation

The Site is compliant with the ROD, as (1) the contaminated soil was treated, redeposited, and covered with a soil cover, (2) the groundwater treatment plant was operated until the contaminants were no longer able to be effectively removed or cleanup objectives were met, and (3) monitoring of the groundwater continues semiannually and has demonstrated no further off-site migration.

Groundwater analytical results from the 2024 sampling events indicated that groundwater collected from MW-9 was the only samples where xylene was detected at a concentration greater than the site-specific clean-up goal of 5 micrograms per liter. A review historical and current groundwater data from the existing monitoring points, beginning June 2014, demonstrate the following:

- Xylene has been detected at concentrations greater than the groundwater cleanup objectives in 1 of the 4 wells sampled (MW-9).
- Xylene has not been detected at a concentration equal to, or greater than, the groundwater cleanup objective in samples collected.
- Linear regression trend graphs for locations with xylene concentration greater than the cleanup objectives indicated stable to decreasing xylene trends (Appendix F, Figures F-1 through F-3).

The 2024 groundwater sampling events were conducted via low-flow sampling. The low-flow sampling logs are presented in Appendix G. The 2024 sampling results were consistent with historical results thus low-flow techniques will continue to be utilized at the Site.

The former groundwater treatment system building was demolished from the site in December 2024 by Langan.

5 Plans Moving Forward

Analytical results continue to indicate that the groundwater plume is stable to decreasing. The site remedy and the SMP are effective in complying with cleanup objectives and are protective of public health and the environment. Based on the current and historical data, groundwater sample collection via low-flow techniques should continue in 2025.

6 References

Arcadis of New York, Inc. 2024. *Site Management Plan*, Maestri Site, Onondaga County, New York, NYSDEC Site Number: 7-34-025. Prepared for Stauffer Management Company. February.

Tables

TABLE 1 REMEDIAL ACTION OBJECTIVES 2024 PERIOD REVIEW REPORT MAESTRI SITE GEDDES, NEW YORK

Parameter Volatile Organia	Groundwater Cleanup Objectives (μg/L)
	Compound (VOC)
Benzene	5
Ethylbenzene	5
t-1,2-dichloroethylene	5
Tetrachloroethylene	5
Toluene	5
Xylene	5
Total VOCs	100
Semi-Volatile Organi	c Compound (SVOC)
Benzoic acid	5
2-methylphenol	50
4-methylphenol	50

Parameter	Soil Cleanup Objectives (μg/L)
Volatile Organic	Compound (VOC)
Benzene	0.06
Ethylbenzene	5.5
t-1,2-dichloroethylene	0.3
Tetrachloroethylene	1.4
Toluene	1.5
Xylene	1.2
Total VOC	10
Semi-Volatile Organi	c Compound (SVOC)
Benzoic acid	2.7
2-methylphenol	0.1
4-methylphenol	0.9
Total SVOC	500

Notes:

Site Remedial Action Objectives are based on Remedial Objectives from the 2011 SMP.

TABLE 2 SUMMARY OF HISTORICAL TOTAL XYLENE CONCENTRATION 2024 PERIOD REVIEW REPORT MAESTRI SITE GEDDES, NEW YORK

Date Collected	MW-2A	MW-9	PZ-4	PZ-20	PZ-21	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7	RW-8
2-May-06	2400	NS	NS	****	*****	**	****	<3.0	**	<3.0	58	<30	<3.0
6-Jun-06	NS	NS	NS	****	*****	**	****	<3.0	**	<3.0	9	102	<3.0
4-Jul-06	665	NS	NS	****	*****	**	****	<3.0	**	<3.0	34	130	NS
1-Aug-06	NS	NS	NS	****	*****	**	****	5	**	<3.0	63	90	<3.0
3-Oct-06	<3.0	NS	NS	****	*****	**	****	3.3	**	<3.0	3	55	NS
2-Jan-07	<3.0	NS	NS	****	*****	**	****	<3.0	**	<3.0	29	40	NS
3-Apr-07	6.4	NS	NS	****	*****	**	****	INC	**	<3.0	145	3.7	NS
3-Jul-07	410	NS	NS	****	*****	**	****	<3.0	**	<3.0	<3.0	<3.0	NS
2-Oct-07	1025	NS	NS	****	*****	**	****	<3.0	**	<3.0	30	6	NS
7-Jan-08	3.0	11	NS	****	*****	**	****	<3.0	**	14	52	<3.0	NS
1-Apr-08	987	NS	NS	****	*****	**	****	22	**	<3.0	27	15	NS
Treatment S	Treatment System Shutdown on May 27th, 2008												
Jun-08	68 [54]	964	<3.0	****	*****	**	****	6.1	**	<3.0	84	119	<3.0
Jul-08	1,700	1,800	<3.0	****	*****	**	****	4.4	**	<3.0 [<3.0]	71	124	<3.0
Aug-08	1,770 [1,200]	1,795	<3.0	****	*****	**	****	4.3	**	<3.0	148	104	<3.0
Nov-08	16	73	<3.0	****	*****	**	****	<3.0	**	<3.0	158	73	<3.0
Feb-09	9.1	<3.0	<3.0	****	*****	**	****	<3.0	**	<3.0	590	<3.0 [<3.0]	<3.0
Jun-09	4,635	7,830	<3.0	<3.0	*****	**	****	<3.0	**	<3.0	641	23	<3.0
Dec-09	5,780	5,145	<3.0	<3.0	*****	**	****	<3.0	**	<3.0	417	169	<3.0
May-10	100 [122]	190	<3.0	<3.0	*****	**	****	<3.0	**	<3.0	862	15	<3.0
Oct-10	32	<3.0	<3.0	<3.0	*****	**	****	<3.0	**	<3.0	168 [157]	71	<3.0
Apr-11	685	3,598 [3,220]	10	<3.0	*****	**	****	<3.0	**	<3.0	208	66	<3.0
Jun-11	5,352	9,337	<3.0	<3.0	*****	**	****	NS	**	NS	906	7.7 [7.8]	NS
Nov-11	1,560 [1,980]	3.8	<3.0	<3.0	*****	**	****	<3.0	**	<3.0	749	<3.0	<3.0
Jun-12	230 [179]	5,370	<3.0	< 3.0	<3.0	**	****	<3.0	**	<3.0	622	41	<3.0
Dec-12	2,903	NS (DRY)	<3.0	<3.0 [<3.0]	<3.0	**	****	<3.0	**	13	511	145	7.2
Jun-13	<3.0	<3.0 [<3.0]	4.1	< 3.0	<3.0	**	****	<3.0	**	<3.0	14	<3.0	<3.0
Nov-13	2,722	7.0	4.9	< 3.0	<3.0 [<3.0]	**	****	<3.0	**	<3.0	418	91	<3.0

TABLE 2 SUMMARY OF HISTORICAL TOTAL XYLENE CONCENTRATION 2024 PERIOD REVIEW REPORT MAESTRI SITE GEDDES, NEW YORK

Date Collected	MW-2A	MW-9	PZ-4	PZ-20	PZ-21	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7	RW-8
Jun-14	4,700	2,800	<3.0	< 3.0	3.5	**	****	<3.0	**	<3.0 [<3.0]	770	8.0	<3.0
Oct-14	825	145	7.1	<1.0	<1.0	**	****	<1.0	**	<1.0	466 [470]	184.0	<1.0
May-15	407	<1.0	5.3	<1.0	<1.0 [<1.0]	**	****	<1.0	**	<1.0	604	16.6	2.0
Nov-15	769	739	5.3	<1.0	<1.0	**	****	15.4	**	<1.1	183 [208]	5.2	3.4
Apr-16	261	< 1.0	5.7	<1.0	<1.0	**	****	<1.0	**	<1.0	707	22.6 [23.2]	<1.0
Oct-16	68.3	< 1.0	4.3	<1.0	<1.0	**	****	<1.0	**	<1.0	88.9 [94.5]	<1.0	<1.0
Apr-17	3,350	3,380	6.4	<1.0	<1.0 [<1.0]	**	****	<1.0	**	<1.0	333	0.4	<1.0
Nov-17	<3.0	<3.0	4.6	<3.0	< 3.0	**	****	<3.0	**	< 3.0	<3.0	3.0	<3.0 [<3.0]
Jun-18	1,020	870	10	<3.0	<3.0	**	****	<3.0	**	<3.0	70	21	<3.0 [<3.0]
Oct-18	170 [160]	410	4.3	<1.0	<1.0	**	****	<1.0	**	<1.0	150	13	<1.0
May-19	1,630	6,400 [3,700]	5.8	<1.0	<1.0	**	****	<1.0	**	<1.0	300	33	1.6
Oct-19	32 [23]	230	4.3J	<1.0	<1.0	**	****	<1.0	**	<1.0	9.5	<1.0	<1.0
May-20	1,270 [1,630]	1,270	5.2	<5.0	<5.0	**	****	<5.0	**	<5.0	267	<5.0	<5.0
Oct-20	284	520	NA	<5.0	<5.0	**	****	<5.0	**	<5.0 [<5.0]	62	114	<5.0
May-21	<2.0	<2.0 [<2.0]	NA	<2.0	<2.0	**	****	<2.0	**	<2.0	<2.0	<2.0	<2.0
Nov-21	<2.0 [<2.0]	<2.0	NA	<2.0	<2.0	**	****	NR	**	NR	18	<2.0	NR
May-22	420 J	640 [620]	NA	<10	<10	**	****	<40	**	<10	2.8 J	<10	<10
Oct-22	120 [110]	<2.0	NA	NR	<2.0	**	****	NR	**	NR	4.9	14	NR
Jun-23	NR	1,200	NR	NR	<2.0	**	****	NR	**	NR	<2.0	1.2 J [1.1 J]	NR
May-24	NR	490 J	NR	NR	<2.0 [<2.0]	**	****	NR	**	NR	<2.0	<2.0	NR

Notes:

All analytical results are in micrograms per liter (µg/L).

May 2024 samples were analyzed by Eurofins TestAmerica in Edison, NJ.

Monitoring well MW-2A was formerly known as RW-2 in 2006.

INC = Inconclusive laboratory result

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value

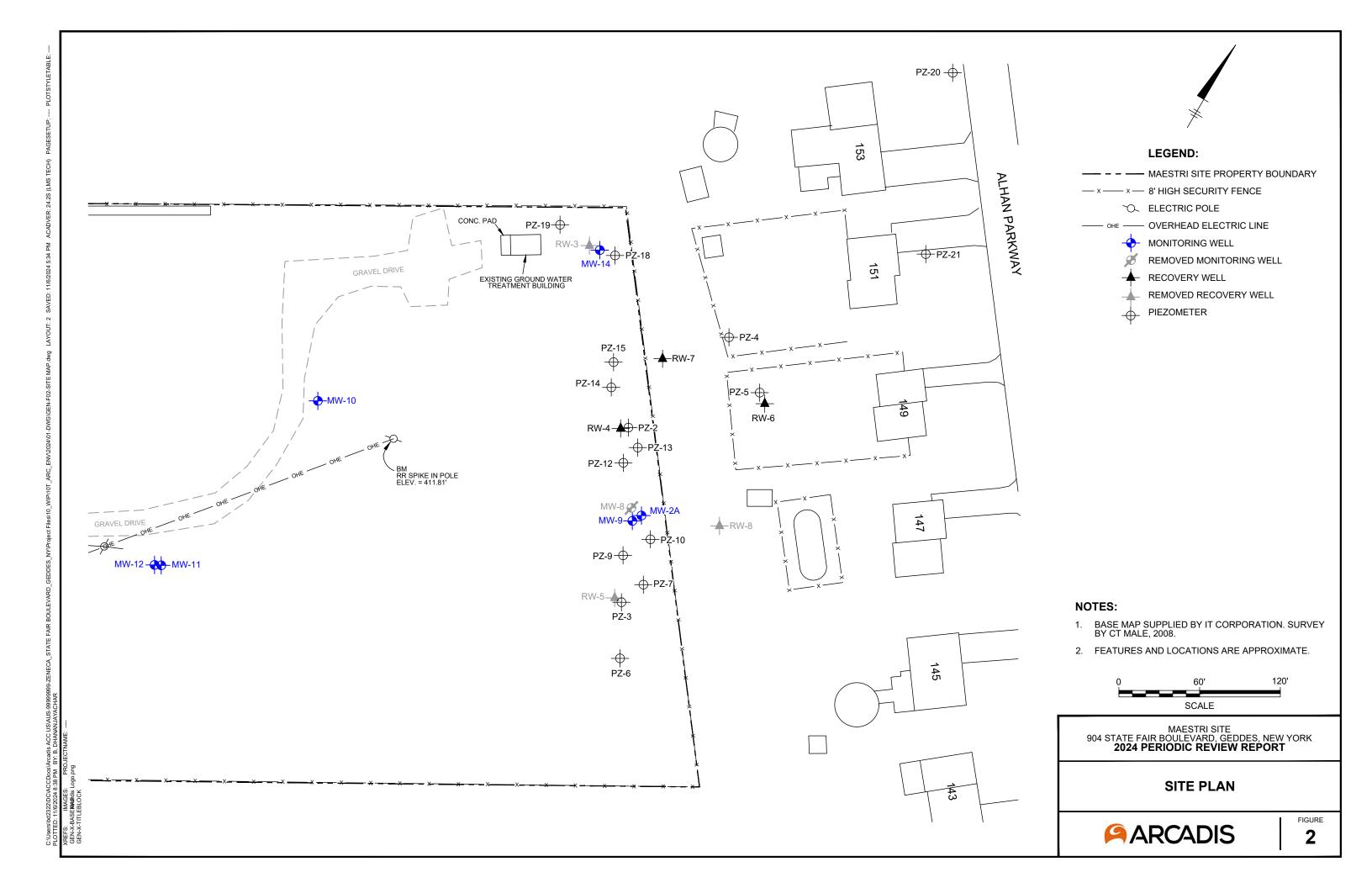
NA = Not available

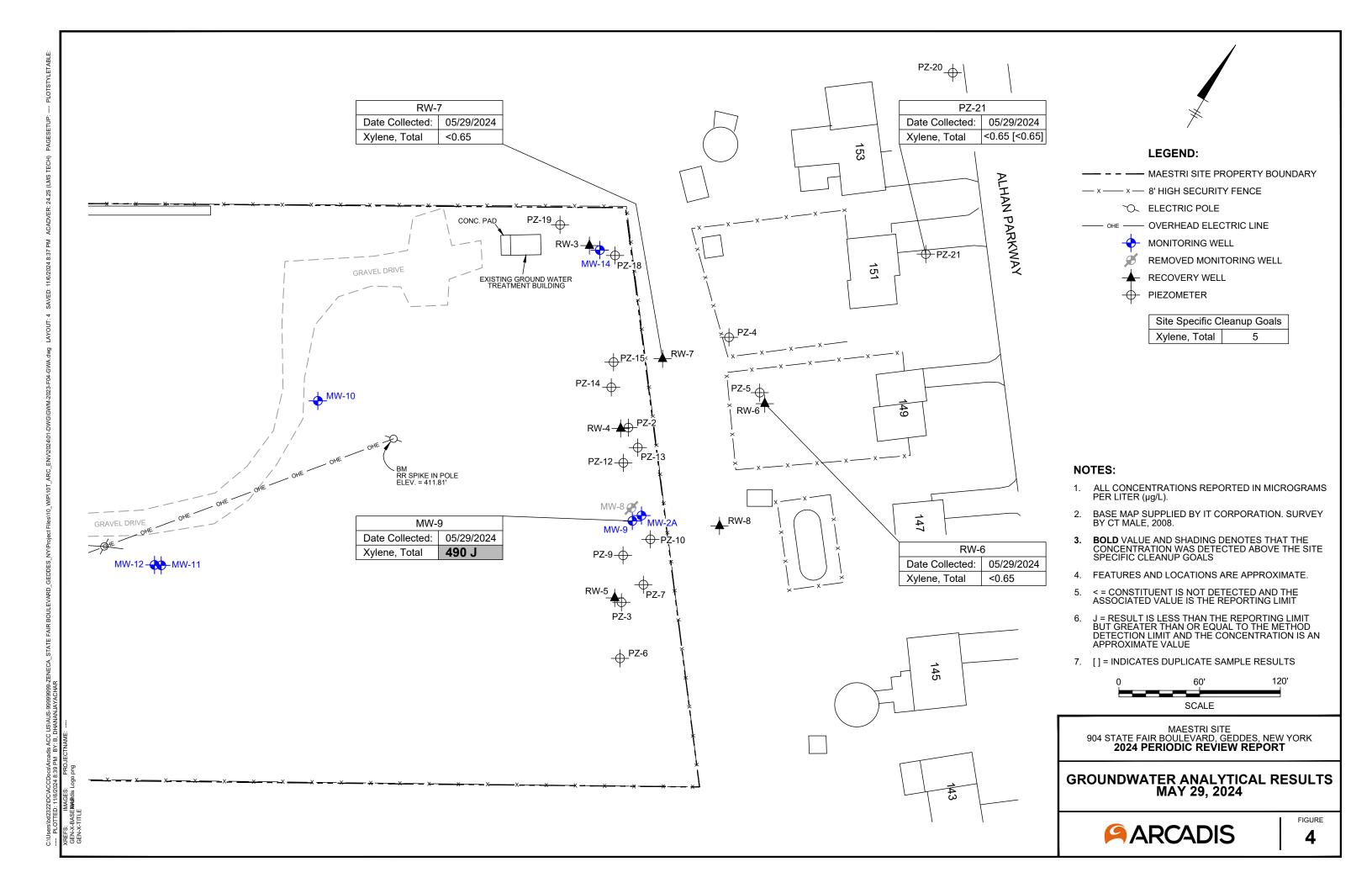
NS = Not sampled

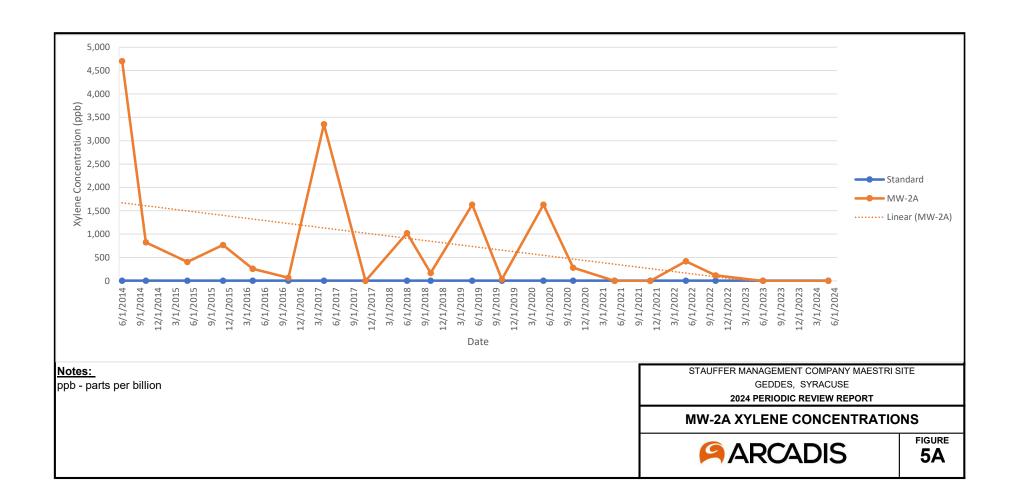
NR = Not required for sampling

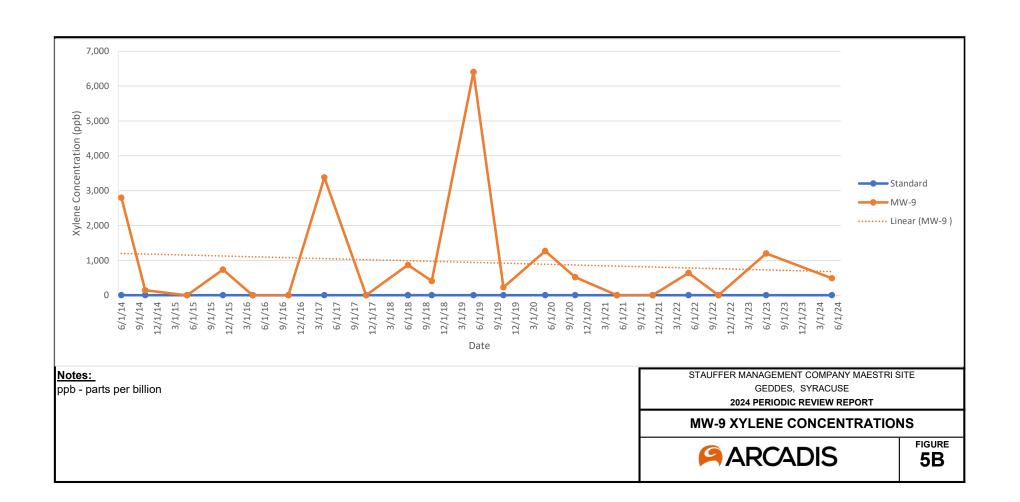
*** - Pump in Well 5 was moved to Well 8.

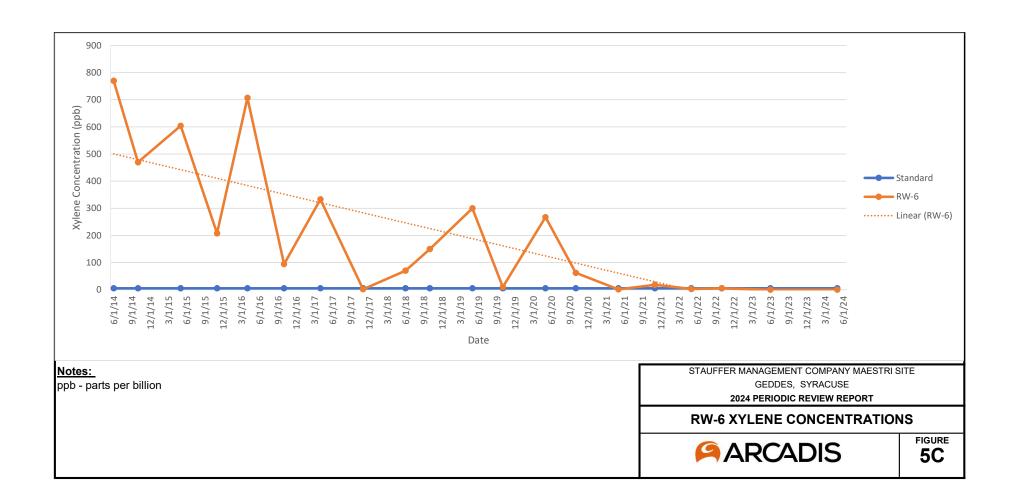
**** - RW-2 changed to monitoring well MW-2A.

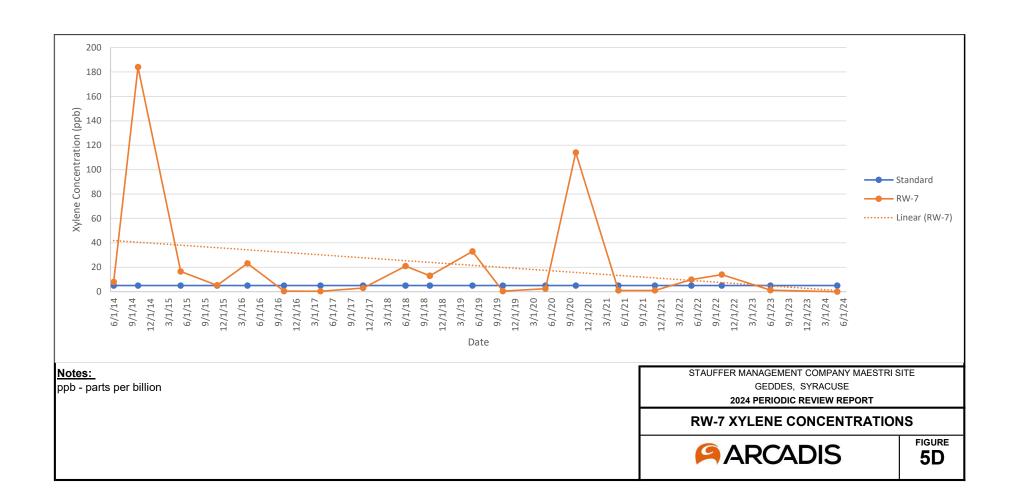

***** = PZ-20 was installed on June 24, 2009


***** = PZ-21 was installed on June 7, 2012


[] = Indicates field duplicate sample result


< = Constituent is not detected; the associated value is the reporting limit


Figures



Appendix A

NYSDEC Site Management Periodic Review Report Notice

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

12/03/2024

John-Paul Rossi Project Manager Stauffer Management Company LLC 1800 Concord Pike P.O. Box 15437 FOP 3-415 Wilmington, DE 19850-5437 johnpaul.rossi@astrazeneca.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Maestri Site

Site No.: 734025

Site Address: 900 State Fair Boulevard

Solvay, NY 13209

Dear John-Paul Rossi:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **February 14, 2025**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Anthony Russo, the Project Manager, at 315-426-7466 or anthony.russo@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 5786 Widewaters Parkway Syracuse, NY 13214

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

ec: w/ enclosures

Anthony Russo, Project Manager
Gary Priscott, Hazardous Waste Remediation Supervisor, Region 7

Arcadis - Ryan Merrell - Ryan.Merrell@arcadis.com

The following parcel owner did not receive an ec:

Mark Maestri - Parcel Owner

Appendix B

May 2024 Site Inspection Form

		110 West Fayette	e Street Suite 300		Date:	5/2	9/202	_4	
(6)	ADCADIC	Syracuse New York, 13202)		Time:	00	000		
	ARCADIS	Phone: 315 446				_04			
		Fax: 315 449 00	17		Weathe	r		Temperature	
	Site Inspection		Partly	y Cloudy		High Low	700F		
Oli - f	•					30077		-(00), I	
Client	Stauffer Management Compan				ect No.				
Location	Maestri Site, 904 State Fair Blv				ected By:		+ EB		
	e any deficiencies, issues, or actions	taken at the botton	n of the page or	on conti	nuation pa	ges		nto/Antion Descript	
Site Secu					Circle one		Comme	nts/Action Required	
	te closed and locked when arrivi			(Y)	N	NA			
	re any holes or breaks in the fen			4	(N)	NA			
	e door to the treatment shed lock	red?		(X)	N	NA			
4. Is the b	ack gate closed and locked?			Ø	N	NA			
5. Are the	re any signs of vandalism or una	uthorized entry (c	odd tire	Υ	(N)	NA			
tracks, da	mage to fence, strange debris [b	ottles, cans, etc])	·/						
	explain below and notify SMC an	d Arcadis immedi	ately						
Wells	1 : 1 . 10		Г	(V)	NI I	NIA T			
6. Are wel			al le a la sei	(Y)	N	NA NA			
	wells covered (with lid or cap)? (a pelow)	Ø	N	NA NA			
8. Are all v	wells locked? (except wells noted	a pelow)		(Y)	N	NA			
Site Main			<u> </u>	(Debrio to L-	emoved during building demo.	
	any garbage or debris? If so, ple	ease remove/disc	ard.	Y	(N)	INA	Debris to be re	emoved during building demo.	
	e visible dust?			Y	(N)	NA			
	the grass need to be mowed?			(Y)	N	NA			
	y areas need to be weeded or sh			Y	(N)	NA			
	ere any bald spots in grassy are	as?		Y	(N)	NA			
	e access roads clear?			(Y)	N	NA	•		
15. Do an	y areas (site roads or access to	wells) need to be	plowed?	Y	0	NA			
	ere any sink holes throughout th	e site?		Y	(N)	NA			
	dors onsite?			Y	(N)	NA			
	te signs still up and visible?			(Y)	N I	NA			
Erosion (V	l Ni l	ALA?			
19. ls silt 1	fence still intact and upright?			Υ	N	(NA)			
	eas need repair or erosion contro					repairs	i.		
	re any evidence of runoff? (i.e. v		n grouna)	Y Y	N)	NA NA			
	re any standing, ponded, or pools		tone oracl	Y	N)	NA			
	ere any signs of runoff at the nor		sione area)	Y		NA			
	re currently any surface water rul		on of water he		(V)	IVA			
	describe where, approximate flo	w, and appearan	ice of water be	510W.					
	nt System	the off position?	T	Υ	N	NA			
	e breakers for the pumps still in effluent totalizer on the wall for s		?	Y	N	NA			
25a If not	t, contact Arcadis or SMC immed	diately and check	that effluent v			۳.			
26 Are al	I critical valves in the closed pos	ition?	inat omdont v	Y	N N	(NA)			
	ere any system status alarms or			Ÿ	N	NA			
27a If so	describe below how they have I	heen handled (th	is does not inclu				I		
	I flow values on computer "zero"	3000 //01 ///01	Y	N	(NA)				
("Flow to se	ewer." "Tot flow to sewer." "tot daily	for each well sh	ould eacl	0.0					
("Flow to sewer," "Tot flow to sewer," "tot daily flow," and "TGAL" for each well should each be "zero") 28. Check level of sump. Does sump need to be pumped out? Y N NA									
29. List w	ater level for each recovery well	epth of v	well is sho		ackets)				
RW-7 [27		1.5']							
RW-2 (no			1.5']						
RW-3 [25			1.8']						
	ny recovery wells at close to ove	rtopping? (ref total o		Y	N	(NA)			
	ving the site, check the follow		L	CA					
	treatment shed locked?			(X)	N	NA			
	the gates closed and locked after	er leaving site?		(Y)	N	NA			

Note:

Signature of Inspector:

General Site Observations:
Dome areas of fonce are significantly overgown
Minor well repair notes/photos included in kickoff meeting group
and on garging log
Follow-up: Indicate actions required, person(s) contacted, and dates for completion

Matt Juliana

Signature of Inspector:

Appendix C

NYSDEC Response to 2023 January PRR Comments and Approval

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 5786 Widewaters Parkway, Syracuse, NY 13214-1867 P: (315) 426-7519, (315) 426-7551 www.dec.ny.gov

March 28, 2024

Stauffer Management Company LLC John-Paul Rossi 1800 Concord Pike P.O. Box 15437 FOP 3-415 Wilmington, DE 19850-5437

Re: Site Management Periodic Review Report Response Letter

Maestri Site, Site No.: 734025 Solvay, Onondaga County

Dear John-Paul Rossi:

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: January 15, 2023 to January 15, 2024.

The Department hereby accepts the PRR and associated Certification with the following contingencies:

1. The screened intervals and depths of the wells shall be presented in future PRRs.

The frequency of Periodic Reviews for this site is one years; therefore, your next PRR is due on February 14, 2025. You will receive a reminder letter and updated certification form 75-days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

If you have any questions, or need additional forms, please contact me at 315-426-7466 or e-mail: anthony.russo@dec.ny.gov.

Sincerely,

Anthony Russo Project Manager

ec: Gary Priscott, DEC

NEW YORK STATE Environmental Conservation

James Sullivan, DOH Ryan Merrell, Arcadis

Appendix D

Well Decommissioning Report

Mr. Anthony Russo
New York State Department of Environmental Conservation (NYSDEC)
Region 7 Office
Division of Environmental Remediation
5786 Widewaters Parkway
Syracuse, NY 13214

February 7, 2025

Subject: Stauffer Management Company, LLC – Maestri Site

NYSDEC Site No. 7-34-025 900 State Fair Boulevard Town of Geddes, NY

Dear Mr. Russo:

Arcadis on behalf of Stauffer Management Company, LLC (SMC), is submitting the enclosed formal submission to decommission monitoring well PZ-4 per NYSDEC approval letter dated April 11, 2023 (Attachment A). As stated in the 2022 Periodic Review Report, the Water Well Abandonment and Decommissioning Report for monitoring well PZ-4 (Attachment B) based on the evidence documented in the 2022 Periodic Review Report, 2024 Periodic Review Report, and below.

SMC received approval from the New York State Department of Environmental Conservation (NYSDEC) on March 9, 2021 to remove monitoring well PZ-4 from the sampling program and to properly decommission. However, attempts to locate monitoring well PZ-4 in the time since approval have been unsuccessful. The following activities were completed in an attempt to locate monitoring well PZ-4:

- Reviewed historical aerial photos of the Site;
- Marked well location with hand GPS unit and hand-dug around the area;
- Walked the property with a metal detector;
- Interviewed previous consultants to aid in locating;
- Interviewed homeowner which revealed that the yard had been regraded; and
- Attempted to locate with drillers while on site for abandonment work of wells RW-3, RW-5, and RW-8.

Please let us know if you have any questions or concerns.

If you have any questions or concerns, please do not hesitate to contact me at 315-671-9219 or Ryan.Merrell@arcadis.com.

Sincerely,

Arcadis

Ryan Merrell Project Manager

Kyan Merrell

cc: Sean Scanlon/Stauffer Management Company, LLC Molly Gill/The Dextra Group

Attachments

Attachment A 2022 Periodic Review Report NYSDEC Approval Letter
Attachment B Water Well Abandonment and Decommissioning Report

Attachment A

2022 Periodic Review Report NYSDEC Approval Letter

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 5786 Widewaters Parkway, Syracuse, NY 13214-1867 P: (315) 426-7519, (315) 426-7551 www.dec.ny.gov

April 11, 2023

Stauffer Management Company LLC John-Paul Rossi 1800 Concord Pike P.O. Box 15437 FOP 3-415 Wilmington, DE 19850-5437

Re: Site Management Periodic Review Report Response Letter

Maestri Site, Site No.: 734025 Solvay, Onondaga County

Dear John-Paul Rossi:

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: January 15, 2022, to January 15, 2023.

The Department hereby accepts the PRR and associated Certification with the following contingencies:

- 1. The Site Management Plan needs to be updated to reflect the proposed changes as presented in this PRR.
- The screened intervals and depths of the wells shall be presented in future PRRs.

The frequency of Periodic Reviews for this site is one year; therefore, your next PRR is due on February 14, 2024. You will receive a reminder letter and updated certification form approximately 75 days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

If you have any questions, or need additional forms, please contact me at 315-426-7446 or e-mail: michael.belveg@dec.ny.gov.

Sincerely,

Michael Belveg
Michael Belveg
Project Manager

ec: Gary Priscott, DEC James Sullivan, DOH Rebecca Hensel, Arcadis

Attachment B

Water Well Abandonment and Decommissioning Report

New York State Department of Environmental Conservation

Division of Water, Bureau of Water Resources Management 625 Broadway, Albany, NY 12233-3508 518-402-8086

Water Well Abandonment and Decommissioning Report

The form below is for use in notifying DEC of a potable water well that is no longer active, servicable, or has been decommissioned. This can include wells that are still in place but no longer used or it can include wells that no longer exist. Please provide the following information so that DEC can update its records. For more information on this topic please see DEC's Water Well Decommissioning webpage. Hover your cursor over a box for information on how to fill out any particular field.

1.	Facility	Information									
	Facility Name					EC Water Witho Number, if appl					
	Address					Town					
	County	Facility Contact Name				Tele	phone				
2.	Well In	formation – Provide the following	ng information for	the well r	no longer i	n service					
		Well Name	Bedrock or Unconsolidated	Well Depth, ft	Max Rate in gpm	Year of installation	Last known of active ser				
			L	l			<u> </u>				
3.	Locatio	n									
	a.	Site description									
	b.	Please attach a large scale map	o showing precise	location							
	c.	If accurate coordinates are known									
4.	Decom a.	missioning Procedure Used The well has been formerly de	ecommissioned as	per NYS D	EC Water	Well -	<u>YES</u> NO	Completion Date			
		Decommissioning Procedures (http://www.dec.ny.gov/lands/86955.html)									
		If response to 4.a. was "yes", please move ahead to Section 6.									
	b.	The well has been decommiss Water Well Decommissioning		erent meth	nod than D	DEC					
		If response to 4.b. was "yes",	, describe the pro	cedure us	ed and go	to Section 6.					
_							ES NO				
5.	_	s but Inactive Well (skip this sec			•	_	<u>'ES</u> <u>NO</u>				
	a. b.	The well is no longer in use, re The well is no longer in use, re	•		•	erational					
	с.	The pump and associated pipi	·								
	d.	Top of well has a locking cap v	<u> </u>								
	e.	Top of well is covered with a s	teel plate welded	to the cas	sing						
	f.	Top of well is open or is cover	ed with a non-lock	ing cover							
6.	NYS Re	gistered Water Well Driller					NYRI	D No			

Form submitted by

Date

Appendix E

2024 Data Usability Summary Report

SMC Maestri Site

Data Usability Summary Report

Geddes, New York

Volatile Organic Compound (VOC) Analyses

SDG # 480-220319-1

Analyses Performed By: Eurofins TestAmerica Laboratories, Inc. Amherst, New York

Report #54439R Review Level: Tier III Project: 30216944.02

Summary

This Data Usability Summary Report (DUSR) summarizes the review of Sample Delivery Group (SDG) #480-220319-1 for samples collected in association with the SMC Maestri site located in Geddes, NY. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection	Parent	Parent	Analysis				
Number	Sample ID	Labib	IVIALITIX	Date	Sample	voc	svoc	РСВ	MET	MISC	
	RW-6	480-220319-1	Water	5/29/2024		Х					
	RW-7	480-220319-2	Water	5/29/2024		Х					
	MW-9	480-220319-3	Water	5/29/2024		Х					
480-220319-1	PZ-21	480-220319-4	Water	5/29/2024		Х					
	BD(05292024)	480-220319-5	Water	5/29/2024	PZ-21	Х					
	FB(05292024)	480-220319-6	Water	5/29/2024		Х					
	TB(05292024)	480-220319-7	Water	5/29/2024		Х					

Note:

^{1.} The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-9.

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Items Reviewed	Rep	orted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
Sample receipt condition		X		Х	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed chain-of-custody form		Х		X ¹	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data package completeness and compliance		Х		Х	

Note:

QA Quality assurance

^{1 –} Sample location FB(05292024) was incorrectly identified as FD(05292024) on the laboratory result sheets (was correctly documented on the COC). The sample ID was hand-corrected on the laboratory result sheets (Form 1s) that are included at the end of this report.

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method 624.1 (Xylenes, Total only). Data were reviewed in accordance with the USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate and USEPA Region II validation guidelines *Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B* (SOP #HW-24, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second

Data Usability Summary Report

fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Volatile Organic Compound (VOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
EPA 624.1	Water	14 days from collection to analysis (preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 24-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (35%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) within the EPA Method 624 Table 5 limits.

All compounds associated with the initial and continuing calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery	
	1,2-Dichloroethane-d4		
RW-7	4-Bromofluorobenzene	AC	
MW-9	Dibromofluoromethane		
	Toluene-d8	> UL	

Notes:

UL Upper control limit AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
7 OL	Detect	J
< LL but > 10%	Non-detect	UJ
CLE Dut > 10 %	Detect	J
< 10%	Non-detect	R
10 /0	Detect	J

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations Compound		MS Recovery	MSD Recovery		
MW-9	Xylenes, Total	SR>4X	SR>4X		

Notes:

SR>4X Sample result is greater than 4 times the added spike concentration

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> the appearantial limit (OL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
Citie lower control limit (EE) but > 1070	Detect	J
< 10%	Non-detect	R
1070	Detect	J
SR>4X: Parent sample concentration > four times the MS/MSD spiking	Detect	No Action
solution concentration.	Non-detect	140 / (01011

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
PZ-21 / BD(05292024)	Xylenes, Total	2.0 U	2.0 U	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for VOCs

VOCs: EPA 624.1	Re	ported		ormance eptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)				
Tier II Validation						
Holding times		Х		X		
Reporting limits (units)		Х		X		
Blanks					ı	
A. Method blanks		Х		Х		
B. Equipment blanks		Х		Х		
C. Trip blanks		Х		Х		
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate (LCSD)	Х				Х	
LCS/LCSD Precision (RPD)	Х				Х	
Matrix Spike (MS)		Х		Х		
Matrix Spike Duplicate (MSD)		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike %R		Х	Х			
Dilution Factor		Х		Х		
Moisture Content					X	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		

VOCs: EPA 624.1	Reported		Performance Acceptable		Not Required	
	No	Yes	No	Yes	required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)					
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		X		Х		
E. Reporting limits adjusted to reflect sample dilutions		X		Х		

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

Data Usability Summary Report

Sample Compliance Report

SAMPLE COMPLIANCE REPORT

Sample	Sampling	Protocol			Compliancy ¹				Noncompliance
Delivery Group (SDG)	Date		Sample ID Matrix	VOC	svoc	PFAS	MISC	Noncompliance	
	5/29/2024		RW-6	Water	Yes				
	5/29/2024		RW-7	Water	Yes				
	5/29/2024	EPA 624.1	MW-9	Water	No				VOC: Surrogate %R
480-220319-1	5/29/2024		PZ-21	Water	Yes				
	5/29/2024		BD(05292024)	Water	Yes				
	5/29/2024		FD(05292024)	Water	Yes				
	5/29/2024		TB(05292024)	Water	Yes				

Note:

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

DATA USABILITY SUMMARY REPORT

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: June 11, 2024

Joseph C. House

PEER REVIEW: Andrew Korycinski

DATE: June 12, 2024

Chain of Custody Co	rrected Sample An	alysis Data Shee	ts

Client Sample Results

Client: Arcadis U.S., Inc.

Job ID: 480-220319-1

Project/Site: SMC Maestri Site

Client Sample ID: RW-6 Lab Sample ID: 480-220319-1

Date Collected: 05/29/24 15:15 Matrix: Water Date Received: 05/30/24 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65	U	2.0	0.65	ug/L			06/04/24 13:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	131		49 - 149					06/04/24 13:32	1
4-Bromofluorobenzene	93		66 - 132					06/04/24 13:32	1
Toluene-d8 (Surr)	113		69 - 121					06/04/24 13:32	1
Dibromofluoromethane (Surr)	130		55 - 150					06/04/24 13:32	1

Client Sample ID: RW-7 Lab Sample ID: 480-220319-2

Date Collected: 05/29/24 16:10

Date Received: 05/30/24 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65	U	2.0	0.65	ug/L			06/04/24 13:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	141		49 - 149					06/04/24 13:54	1
4-Bromofluorobenzene	102		66 - 132					06/04/24 13:54	1
Toluene-d8 (Surr)	122	S1+	69 - 121					06/04/24 13:54	1
Dibromofluoromethane (Surr)	142		55 - 150					06/04/24 13:54	1

Client Sample ID: MW-9 Lab Sample ID: 480-220319-3

Date Collected: 05/29/24 12:35 Date Received: 05/30/24 10:30

Method: EPA 624.1 - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 4.0 1.3 ug/L 06/04/24 10:54 **Xylenes, Total** 490 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

1,2-Dichloroethane-d4 (Surr) 140 49 - 149 06/04/24 10:54 2 4-Bromofluorobenzene 103 66 - 132 06/04/24 10:54 2 Toluene-d8 (Surr) 125 S1+ 69 - 121 06/04/24 10:54 2 Dibromofluoromethane (Surr) 140 55 - 150 06/04/24 10:54

Client Sample ID: PZ-21 Lab Sample ID: 480-220319-4
Date Collected: 05/29/24 14:10 Matrix: Water

Date Received: 05/30/24 10:30

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65	U	2.0	0.65	ug/L			06/04/24 14:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		49 - 149			•		06/04/24 14:17	1
4-Bromofluorobenzene	88		66 - 132					06/04/24 14:17	1

55 - 150

125

Eurofins Buffalo

06/04/24 14:17

Matrix: Water

Matrix: Water

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 480-220319-1

Project/Site: SMC Maestri Site

Client Sample ID: BD(05292024)

Lab Sample ID: 480-220319-5 Date Collected: 05/29/24 00:00

Matrix: Water

Matrix: Water

Lab Sample ID: 480-220319-6

Lab Sample ID: 480-220319-7

Date Received: 05/30/24 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65	U	2.0	0.65	ug/L			06/04/24 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	126		49 - 149					06/04/24 14:40	1
4-Bromofluorobenzene	90		66 - 132					06/04/24 14:40	1
Toluene-d8 (Surr)	110		69 - 121					06/04/24 14:40	1
Dibromofluoromethane (Surr)	126 H 6/11/24)		55 - 150					06/04/24 14:40	1

Client Sample ID: FD(05292024)

Date Collected: 05/29/24 16:00

Date Received: 05/30/24 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65	U	2.0	0.65	ug/L			06/04/24 10:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		49 - 149					06/04/24 10:09	1
4-Bromofluorobenzene	87		66 - 132					06/04/24 10:09	1
Toluene-d8 (Surr)	107		69 - 121					06/04/24 10:09	1
Dibromofluoromethane (Surr)	120		55 - 150					06/04/24 10:09	1

Client Sample ID: TB(05292024)

Date Collected: 05/29/24 00:00

Date Collected: 05/29/24 00	:00							Matrix	Water
Date Received: 05/30/24 10	:30								
Method: EPA 624.1 - Volat	ile Organic Con	npounds (GC/MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65	U	2.0	0.65	ug/L			06/04/24 10:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac	
1,2-Dichloroethane-d4 (Surr)	118		49 - 149		06/04/24 10:32	1	
4-Bromofluorobenzene	87		66 - 132		06/04/24 10:32	1	
Toluene-d8 (Surr)	105		69 - 121		06/04/24 10:32	1	
Dibromofluoromethane (Surr)	117		55 - 150		06/04/24 10:32	1	

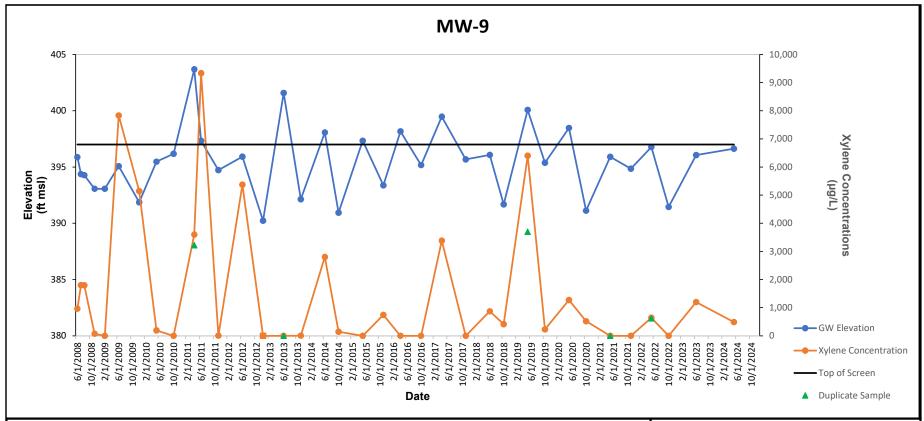
Eurofins Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

100	eu	ro	fi	n	c	
	cu	TO	11	а	5	


Environment Testing

Ver: 04/02/2024

Client Information	Sampler:				PM hove, Jo	ohn F	₹		Ca	min Te Water	CUS	100C No: 1480-196268-39230.1
Client Contact: Ms. Rebecca Hensel	Phone:			E-M	lail:	_		nsus.com	St	ate of Origin	205	Page:
Company:			PWSID.	1301	T.SCHO	ove@	ereuron			#	223	Page 1 of 1
Arcadis U.S., Inc.	Due Date Request	ed:			100	-		Analys	is Requ	ested	- 9	
One Lincoln Center 110 West Fayette St, Suite 300	Date Date Hodges	•			8	ۇ لۇر						Preservation Codes: A - HCL
city: Syracuse	TAT Requested (da	ays):			6							
itate, Zip:	372	NAAR	1									
JY, 13202 hone	Compliance Project	t: A Yes	Δ No									
15-446-9120(Tel)	30216944.03											
mail ebecca.hensel@arcadis.com	WO#: AUS.EUROFIN	5 30216944	MAESTRI 05	0124	5 8							
roject Name:	Project #:			0124		1					1	
MC Maestri Site	48025201 ssow#				- 3	- Xylene	1 1				1 1	Other:
						24.1					1 2	Outer.
			Sample	Matrix	De Si						a d	
			Туре	(W=water, S=solid,	E 1	PREC						
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab) BT	O=waste/oil, *Tissue, A=Ai		624.1						Special Instructions/Note:
		$>\!\!<$	Preservation		X	MA						
RW-6	5/29/2024	1515	G	Water		X						
RW-7	5/29/2024	1610	G	Water	\top	×						
MW-9	5/29/2024	1235	G	Water	1	X						
PZ-21	5/20/2024	1410	G	Water	++^	X			+++			
MS .	5/29/224	1235	G	Water	++-	×		+++				
MSD	5/29/2024	1235	G	Water	+	X	+					
BD_(05292024	5/29/2024		G	Water	+	×	++	+++		1100	Number of the last	
B_(05292024)	5/29/224	1600	6	Water	11	X	-		\top	 		
B_(05292024)	5/29/2024		G	Water	Π	X						-
	-RE									480-2	20319 Chai	n of Custody
	-25				TT					T		- Custody
Possible Hazard Identification					Si	ample	e Dispos	sal (A fee m	ay be ass	essed if samp	les are retail	ned longer than 1 monus
Non-Hazard Flammable Skin Irritant	Poison B Unkn	own .	Radiological			\sqcup_{p}	Return T	o Client	Dis	posal By Lab	- Arc	hive For Months
eliverable Requested: I, II, III, IV, Other (specify)					Sr	pecia	Instruct	ions/QC Req	uirements			
mpty Kit Relinquished by:		Date:			Time:	i:			- 3	Method of Ship	ment	
elinquished by:	Date/Time:	0241		mpany		Rec	eived by	T.61	J	Da	e/Time:	Company
Religiblished by:	5/29/2 Date/Time:	024 1	120	mpany		Rec	eived by:	NY 1.11		Da	24 - 24 e/Lime:	17:20 Company
KENgluh	5.29.2	1. 19.	112	DI				m			e/Time:	4 1000 TAB
Relinquished by:	Date/Time:	/	Co	mpany		Rec	eived by:			Da	e/Time/	1030 Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coo	eler Tempe	rature(s) °C and	Other Rema	rks:		1050

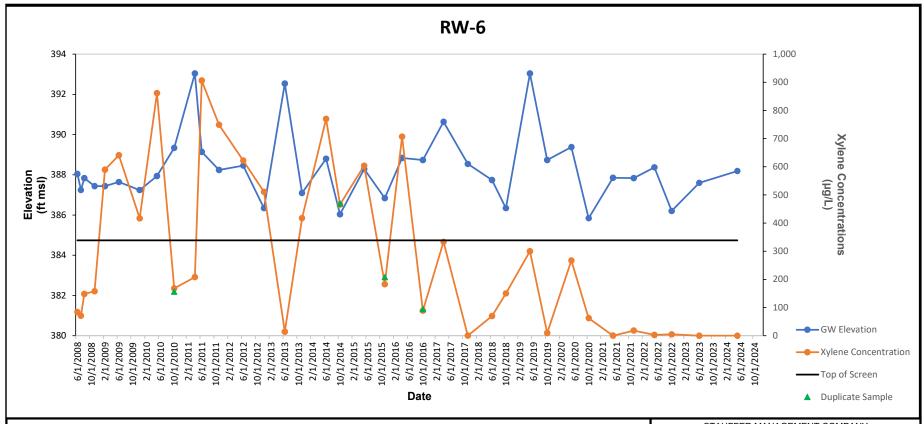
Appendix F

Historical Well Xylene Concentrations and Water Table Elevations

Monitoring well MW-9 was not sampled in December 2012 due to being dry.

The Site specific cleanup goal for total xylene is 5 μg/L.

ft msl = feet mean sea level


STAUFFER MANAGEMENT COMPANY MAESTRI SITE

904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

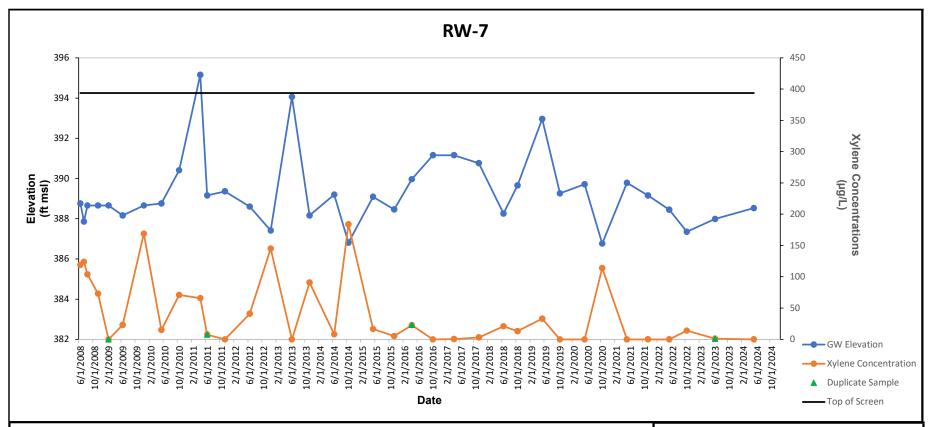
FIGURE

The Site specific cleanup goal for total xylene is 5 µg/L.

ft msl = feet mean sea level

STAUFFER MANAGEMENT COMPANY

MAESTRI SITE


904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

FIGURE

F-2

The Site specific cleanup goal for total xylene is 5 µg/L.

ft msl = feet mean sea level

STAUFFER MANAGEMENT COMPANY MAESTRI SITE

904 STATE FAIR BOULEVARD, GEDDES, NEW YORK

TOTAL XYLENE AND GROUNDWATER ELEVATION TREND GRAPH

FIGURE

F-3

Appendix G

2024 Low-Flow Sampling Logs

ARCADI	S							Page		of _		_
Maestri :	Site Annı	ual Event	t					Well ID:	MI	W-9		
Project Nu	mber:		30216944		Task:	01		,	٠. ۵			_
Date:		5/2	9/202	24			Well Head	dspace PID:	NA			_
Sampling T	Time:		35		Sample	ed By:	MJ/ET	3				_
Weather:			14,70	S	Coded	Replicate No.:	NA I	15/MSD				
		,			Replicate	Type (circle one):	Duplicate	MS/MS	D			
	Identification											_
Serial #:		PID					Water Quality	Meter(s)				
Duraina Inf	formation											
Purging Inf Casing Ma			PVC			Purge Method:(circle one) Suhm	ersible) Centri	fugal Bladd	er		
Casing Na Casing Dia			2	in		Screen Interval			To:	-		
Total Depti		1	8.73	ft	•	Pump Intake Se		16 Ft				_
Depth to P			NP	ft	•		Ü					
Depth to W		1	2.24	ft	•	Total Volume P	urged:	3.759	al			_
Water Colu			6.39	ft	· lo	Pump on:	12:01	Off: 12	40			
Gallons in	Well:		1.06	gal				•				
Field Parar	meter Meas	urements T	aken Durir	na Puraina								
r ioid r drai	Minutes	Rate	Depth to	Turbidity	pН	ORP	Conductivity	Temp	DO	TDS		٦
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments	
	Stabili	zation Range	<0.3 ft.	10% if >1	+/- 0.1	+/- 10	3%	3%	10%			\dashv
1203	0	500	12.59	16.20		-35.4	0.868	10.9	1.12			-
1208	5	400	12.61	7.80	6.56	-39.3	0.869	HITEB	0.66			4
1212	10	400	12.69	3,5	6.58	-39.4	0.861	10,7	0.40			_
1217	15	200	12.70	2.05	6.59	-37.9	0.855	11.2	0.30			_
1222	20	200	12.74	1.65	6.59	-39.0	0.855	11.0	0.25			
1227	25	250	12.77	1.65	6.60	-39.0	0.849	10.9	0.20			
1232	30	200	12.86	1.64	6.61	-41.4	0.850	10.8	0.18			┙
	35											
	40											
	45											
	50											
	55											
	60											
	65											
	70											
Number	and Type	of Bottle		Analyti	cal Param	eter	Preser	vative		Collec	ted	_
	10 mL Glass				s - Xylenes		Н	CL	Y	es		
	TO THE GIAGO	y viai		,,,,	- Aylone				1			
												_
												7
												_
				4								_
		17 1						6				
Color:			BUS			Well Condition Purge Water D		250	01 La	la		_
Odor:		NOI	116			i urge water D	ispusai.		val to	10		

ARCADI	S							Page		of	
Maestri :	Site Annı	ual Even	t					Well ID:	1	PZ-2	1
Project Nu	mber:		30216944		Task:	01	_		1		
Date:		51	29/20	124				dspace PID:	NH		
Sampling 7	Гіте:	1	410		Sample		MIGH				
Weather:		SUN	14,70	S	Coded	Replicate No.:	BD-(05		_ /		
Instrument	Identification	on			Replicate	Type (circle one)	Duplicate	MS/MS	SD		
Serial #:		PID					Water Quality	/ Meter(s)			
Purging Inf	formation										
Casing Ma		PV	C			Purge Method:	(circle one) Subn	nersible Centr	rifugal Bladd	er	
Casing Dia			2	in		Screen Interval		-	To:		
Total Depti		18.5		ft		Pump Intake S	etting:	15.75	-		
Depth to P	roduct:		JP	ft							
Depth to W	/ater:	2.89	5	ft		Total Volume F	urged:	3.6	gal		
Water Colu	umn:	15.	72	ft		Pump on:	1321	Off: 14	MO		
Gallons in	Well:	2.	57	gal							
Field Parar	meter Meas	-	_		1000	T	т				
Time	Minutes Elapsed	Rate (ml/min)	Depth to Water	Turbidity (NTUs)	pH (SI Units)	ORP (mV)	Conductivity (MS/cm)3	Temp (°C)	DO (mg/L)	TDS (mg/L)	Commen
inne		zation Range		10% if >1	+/- 0.1	+/- 10	(IVIS/CIT)3 3%	3%	10%	(1119/12)	Commen
1325	0	250	2.85	294.42	7.29	-97.3	1.072	12.4	0.90		
1330	5	200	3.19	89.80	7.21	-103.1	1.042	11.9	0.27		
1335	10	300	3.08	46.03	7.19	-103.1	1.038	12.4	0.19		
1340	15	300	3.10	11.02	7,20	-105.0	1.048	12.3	0.14		
1345	20	300	3.06	6.55	7.19	-105.2	1.047	12.4	0.10		
13-40	EB 25	300	3.17	5.70	7.18	-105.4	1.043	12.4	0.07		
1355	30	250	3.10	3.15	7,20	-107.3	1.052	12.4	0.05		
1400	35	250	3.20	2,25	7.19	-107.9	1,052	12.7	0.04		
	40	250		1:70	7.19	-108,0	1.055	12.7	0.03		
1405		200	3.07	1270	1219	100,0	1.050	12:1	0.00		
 	45										
	50										
	55										
	60						-		-		
	65										
	70										
	and Type				cal Param		Preser			Collec	ted
3 - 4	0 mL Glass	s Vial		VOC	s - Xylenes	3	НС	CL		yes	
			1						1		

Purge Water Disposal:

Odor:

ARCADIS	S							Page		of _	V
Maestri S	Site Annı	ıal Event	t					Well ID:	R	W-6	
Project Nui			30216944		Task:	01					
Date:			9/202	4			Well Head	dspace PID:	NA		
Sampling T	ime:		515		Sample	ed By:	MI/EB				
Weather:			y, 705	,	Coded	Replicate No.:	NA	1			
			7		Replicate	Type (circle one):	Duplicate	MS/MS	D		
Instrument	Identification	n									
Serial #:		PID					Water Quality	/ Meter(s)			
Purging Inf						Purge Method:(circle one Subr	percible Centr	ifugal Bladde	er	
Casing Ma Casing Dia		55		in		Screen Interval	The state of the s	TOTOIDIC OUTIN	To:		
Total Depti			30	ft		Pump Intake Se		16 F			
Depth to P			JA.	ft		Turnp mane of		10 41			
Depth to W		5.		ft		Total Volume P	urged:	4 90	1		
Water Colu		-	.25	ft		Pump on:	1540		510		
Gallons in			. 3 4	gal			1440				
Elal Dana	t NA		•	a Duraina							
Fleid Parar	meter Meas Minutes	Rate	Depth to	Turbidity	pН	ORP	Conductivity	Temp	DO	TDS	
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
	Stabili	zation Range	<0.3 ft.	10% if >1	+/- 0.1	+/- 10	3%	3%	10%		
1440	0	500	5.45	19.80	7.53	-140.2	1.468	10.0	1.61		
1445	5	4100	5.59	17.33	7.51	-144.4	1.468	10.1	0.79		
1450	10	300	5,72	14.75	7.48	-146.6	1.478	10.4	0.38		
1455	15	400	5.85	14.32	7.46	-148.2	1,482	10.1	0.25		
1500	20	300	5,97	10.99	7,46	-150.7	1,472	10.1	0.18		
1505	25	350	6.05	80.01	7.46	-151.9	1,470	9.8	0.13		
1510	30	350	6.16	9.01	7.47	-152.1	1.467	9.8	0.10		
	35										
	40										
	45										
	50										
	55										
	60										
	65										
	70										
Number	and Type	of Bottle		Analyti	cal Param	eter	Prese	vative		Collec	ted
	10 mL Glass				s - Xylene					Yes	
3-1	TO THE Class	5 VIGI		,,,,	o Aylono						
			-				 				
									1		
Color:		ligh	nt bro	nwn		Well Condition			00	2	
Odor:		V	snor			Purge Water D	usposal:		250 a	al tote	

ARCADIS	S							Page	· ·	of _	
Maestri S	Site Annu	ıal Event	t					Well ID:	R	W-7	
Project Nur			30216944		Task:	01			n 1 .1		
Date:	,	5/2	29120	24			Well Head	Ispace PID:	NA		
Sampling T	ime:	,	610		Sample	ed By:	MJ/EB				
Weather:		SUN	Ny. 70	S	Coded	Replicate No.:	NA		·		
			1.		Replicate	Type (circle one):	Duplicate	MS/MS	D		
LA ROPORTO CONTRACTO DE LO COMP	Identification						IMatar Ovality	Motor(a)	0117-	3	
Serial #:		PID					Water Quality	weter(s)	21135	3	
Purging Inf	ormation										
Casing Ma		S	5			Purge Method:(circle one) Subm	ersible Centri	ifugal Bladd	er	×
Casing Dia			6	in		Screen Interval			To:		
Total Depti		28	,00	ft		Pump Intake Se	etting:	25 Ft			
Depth to P			IR	ft							
Depth to W		17.	3	ft		Total Volume P	urged:	60.500			
Water Colu	ımn:	10.		ft	r.	Pump on:	3535	Off: J	4615	610	
Gallons in	Well:	-ta	76-15	5.82 gal	e.						
Field Parar	meter Meas	urements T	aken Durir	ng Purging							
	Minutes	Rate	Depth to	Turbidity	рН	ORP	Conductivity	Temp	DO	TDS	
Time	Elapsed	(ml/min)	Water	(NTUs)	(SI Units)	(mV)	(MS/cm)3	(°C)	(mg/L)	(mg/L)	Comments
		zation Range	<0.3 ft.	10% if >1	+/- 0.1	+/- 10	3%	3%	10%		
1535	0	500	17.23		7.51	-45,2	1.011	9.7	3.60		
1540	5	300	17.61	2.58	7.44	-83.0	1.005	4.6	0.79		
1545	10	500	17.94	2.68	7.46	-96.4	1.007	9.3	0.32		
1550	15	500	18.08	2.51	7,42	-100,3	1,008	9.5	0.23		
1555	20	500	18.01	2.55	7.41	-104.4	1.006	10:1	0.17		
1600	25	500	18,22	22.42	7,38	-103.0	1,004	9.4	0.13		
1605	30	500	18.41	2,14	7.28	-91.8	0,996	9.4	0.15		
	35										
	40										
	45										
	50										
	55										
	60										
	65										
	70										
		- f D - 111		Α	last Dawe	-1	Preser	votive		Collec	ted
	and Type				ical Param				V	Collec	, ieu
3 - 4	10 mL Glass	s Vial		VOC	s - Xylenes	3	HO	<i></i>			
ļ			-						-		
							-		-		
Color:		cle	ear			Well Condition	:	OKA	y 250		
Odor:			in Gin A			Purge Water D	isposal:	-	250	001 40	te

Appendix H

Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 734025	Box 1	
Sit	e Name Maestri Site		
Cit Co	e Address: 900 State Fair Boulevard Zip Code: 13209 y/Town: Solvay unty: Onondaga e Acreage: 2.510		
Re	porting Period: January 15, 2024 to January 15, 2025		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form		
5.	Is the site currently undergoing development?		X
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Residential, Restricted-Residential, Commercial, and Industrial	X	
7.	Are all ICs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
AC	Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 734025 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

023-13-36.1 Mark Maestri Site Management Plan

The Site was remediated in accordance with the NYSDEC-approved Interim Remedial Measure Work Plan dated September 1992, the Remedial Action Work Plan

dated December 1994 and the Record of Decision dated March 1995. Remedial action work on the Site began in

June 1996, and was completed in May 2008.

The following is a summary of the Remedial Actions performed at the Site.

- 1) Excavation of soil/fill quantity exceeding the Soil Cleanup Objectives (SCOs)
- 2) Treatment of excavated soils (approximately 10,000 cubic yards) by SVE/bioremediation techniques in above grade biopiles. Treated soils were placed back into excavated areas.
- 3) Construction and maintenance of a soil cover system consisting of three (3)inches of loam and six (6) inches of topsoil.
- 4) Treatment of groundwater exceeding groundwater cleanup levels through operation of a groundwater recovery and treatment system.
- 5) Monitoring of the soil cover and groundwater to ensure compliance with clean up objectives.

A Site Management Plan (SMP) was approved in August 2010 to manage remaining contamination at the Site in perpetuity or until extinguishment of the Declaration of Covenants and Restrictions in accordance with ECL Article 71, Title 36. The Site contains remaining contamination after completion of the remedial action. There is no designated "Remaining Contamination Zone" on-site. The contaminated soil was treated to meet Site remedial objectives listed in the ROD. Operation and monitoring of the groundwater recovery system until 2008 has demonstrated decreasing trends of Site contaminants in the monitoring and recovery wells. The groundwater treatment system was shut down based on approval from NYSDEC after sampling results indicated that contaminants remaining in groundwater have decreased to asymptotic levels and the system was no longer effectively removing remaining contamination. The remedial party (RP) will continue to monitor groundwater on a semiannual basis to account for fluctuations in the groundwater table.

Engineering Controls have been incorporated into the Site remedy to provide proper management of remaining contamination in the future to ensure protection of public health and the environment. The site has the following Engineering Controls: 1) maintenance of the soil cover over the soil redeposition areas, consisting of three (3) inches of loam, six (6) inches of top soil, and grass, and 2) continuous monitoring of groundwater.

An Environmental Notice has been prepared that provides an enforceable legal instrument to ensure compliance with the SMP and all ECs and ICs placed on the Site. The EN was filed with Onondaga County in April 2011. The EN includes the following controls:

- 1) All Engineering Controls must be operated and maintained as specified in the SMP;
- 2) All Engineering Controls on the Site must be inspected and certified at a frequency and in a manner defined in the SMP:
- 3) Groundwater monitoring must be performed as defined in the SMP;
- 4) Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in this SMP;
- 5) On-site environmental monitoring devices, including but not limited to, groundwater monitoring wells must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP.
- 6) Vegetable gardens and farming on the property are prohibited;
- 7) Use of groundwater underlying the property is prohibited without treatment rendering it safe for the intended use as approved by NYSDOH;
- 8) The topsoil cover over the excavated areas acts as a cover system at the property. Disturbance and incidental damage to this cover system shall be repaired upon discovery in a manner that complies with the SMP.
- 9) All future activities on the property that would disturb remaining contaminated material must be

conducted in accordance with the Excavation Plan included in the SMP.

- 10) The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be mitigated;
- 11) The property may be used for residential use, provided that the long-term Engineering and Institutional Controls described in the SMP remain in use and land zoning regulations are followed.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

023-13-36.1

Cover System

Fencing/Access Control

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted	
	engineering practices; and the information presented is accurate and compete. YES NO	
	\mathbf{X}	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	\mathbf{X}	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. 734025

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I_Sean Scanlon_	at	1800 Concord Pike, Wilmington,	Delaware 19850,
	print name	print busi	ness address
am certifying as	Remedial Party	-	(Owner or Remedial Party)
for the Site named	in the Site Details	Section of this form.	
B7(_ as agent	for SMC	2/11/25
		, or Designated Representative	Date
Rendering Certification	ation		

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Timothy Miller at -	110 West Fayette Street, Syracuse, NY 13202
print name	print business address
n certifying as a Qualified Environmental Profe	essional for the Remedial Party
SOUND THY E MILE OF NEW YORK AND SESSIONAL PROPERTY OF THE PRO	(Owner or Remedial Party) 2/13/2025
nature of Qualified Environmental Profession Owner or Remedial Party, Rendering Certifi	

Arcadis of New York, Inc.
One Lincoln Center, 110 West Fayette Street, Suite 300
Syracuse
New York 13202

Phone: 315 446 9120 Fax: 315 449 0017 www.arcadis.com