

Prepared For: United Technologies Corp. Shared Remediation Services Farmington, CT Prepared By : AECOM 257 West Genesee St. Suite 400 Buffalo, NY 14202-2657 July 2016

# A&R BUILDING AREA AOC UTC/CARRIER SITE THOMPSON ROAD, SYRACUSE, NY Sampling and Analysis Report

Corrective Action Order - Index CO 7-20051118-4 NYSDEC Site Registry #734043





Prepared For: United Technologies Corp. Shared Remediation Services Farmington, CT Prepared By : AECOM 257 West Genesee St. Suite 400 Buffalo, NY 14202-2657 July 2016

# A&R BUILDING AREA AOC UTC/CARRIER SITE THOMPSON ROAD, SYRACUSE, NY Sampling and Analysis Report

Corrective Action Order - Index CO 7-20051118-4 NYSDEC Site Registry #734043

**Prepared for:** 



UTC Shared Remediation Services 9 Farm Springs Road Farmington, Connecticut 06032

#### **Prepared By:**

AECOM USA, Inc. 257 West Genesee Street, Suite 400 Buffalo, New York 14202

# Contents

| 1.0 | Introd  | uction                                                                           | 1-1 |
|-----|---------|----------------------------------------------------------------------------------|-----|
|     | 1.1     | Site Description                                                                 | 1-1 |
|     | 1.2     | Purpose of Investigation                                                         | 1-1 |
| 2.0 | Site H  | istory                                                                           | 2-1 |
|     | 2.1     | Records Search                                                                   | 2-1 |
| 3.0 | Field / | Activities                                                                       | 3-1 |
|     | 3.1     | Drilling and Soil Sampling                                                       | 3-1 |
|     | 3.2     | Monitoring Well Installation, Development, and Sampling                          | 3-2 |
|     | 3.3     | Surveying                                                                        | 3-3 |
|     | 3.4     | Analytical Program                                                               | 3-3 |
| 4.0 | Invest  | igation Results                                                                  | 4-1 |
|     | 4.1     | Field Screening Results                                                          |     |
|     |         | <ul><li>4.1.1 Soil Observations</li><li>4.1.2 Groundwater Observations</li></ul> |     |
|     | 4.2     | Laboratory Analytical Results                                                    |     |
|     | 4.2     | 4.2.1 Applicable Standards, Criteria, and Guidance                               |     |
|     |         | 4.2.2 Soil Results                                                               |     |
|     |         | 4.2.3 Groundwater Results                                                        |     |
| 5.0 | Summ    | ary and Conclusions                                                              | 5-1 |
|     | 5.1     | Former Pond Area                                                                 | 5-1 |
|     | 5.2     | A&R Building Area                                                                | 5-2 |
| 6.0 | Recon   | nmendations                                                                      | 6-1 |
|     | 6.1     | Pond Area                                                                        | 6-1 |
|     | 6.2     | A&R Building Area                                                                | 6-1 |

#### **List of Tables**

- Table 1 Laboratory Analyses
- Table 2 Sample Bottle, Volume, Preservation, and Holding Time Summary
- Table 3 Soil Boring and Monitoring Well Details
- Table 4 Groundwater Level Measurements
- Table 5 Soil Analytical Results Pond Area Ecological and Residential Criteria
- Table 6 Soil Analytical Results A&R Building Area –Industrial Use Criteria
- Table 7 Groundwater Analytical Results

## **List of Figures**

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Sample Locations
- Figure 4 Groundwater Elevations April 18, 2016
- Figure 5 Soil Analytical Results Pond Area
- Figure 6 Groundwater Exceedances April 2016

# **List of Appendices**

- Appendix A Boring/Well Construction Logs
- Appendix B Well Development Logs
- Appendix C Well Purge/Sampling Logs
- Appendix D Data Usability Summary Report Narrative (appendices are available on request)

# 1.0 Introduction

#### 1.1 Site Description

The United Technologies Corporation (UTC)/Carrier facility is located on Thompson Road in Syracuse, Onondaga County, New York (hereinafter referred to as the Site), as shown on **Figure 1**. The former Administration and Research (A&R) building Area of Concern (AOC), is located south of Sanders Creek in the northeastern portion of the Site. The AOC, totaling approximately 17 acres, is shown on **Figure 2**.

The A&R building was demolished sometime after 1995 and the area now consists of green space where the former administration building, research building, and adjacent parking areas were located. The AOC includes the associated storm sewer and a former pond area. The pond area is a former wide spot on the south side of Sanders Creek that was filled in in the 1980s. The AOC is bordered by Sanders Creek to the north, Kinne Street to the east, First Street to the south, and Telergy Parkway to the west.

#### **1.2** Purpose of Investigation

Per the requirements of UTC's Corrective Action Order (CAO), a sampling and analysis program was developed to perform preliminary assessment of potential AOCs that includes historical research and field investigations capable of yielding representative samples sufficient to identify the presence/absence of contaminants in AOCs. The A&R AOC was identified in 2014 as part of the facility's routine State Pollutant Discharge Elimination System (SPDES) permit sampling. A water sample collected from the storm sewer system contained polychlorinated biphenyls (PCBs). The storm sewer collects groundwater from the A&R building area. The area was identified as potential AOC because it was unclear if groundwater beneath the A&R building is impacted and being collected by the storm sewer system, or if the detection of PCBs in the sewer was residuals from historical releases to the sewer system.

In addition to the A&R building area, the A&R AOC includes the former pond area on the south side of Sanders Creek located directly north of the A&R building. The pond area was backfilled in the 1980s. In 2014, a soil sample collected from the eastern end of the pond area also contained PCBs, albeit at concentrations well below state regulatory cleanup levels. The pond area was included in the A&R AOC because the source of the pond backfill was unknown.

A Sampling and Analysis Plan (SAP), dated July 2015, was prepared to perform an assessment of the A&R building AOC. The SAP identified site investigation activities to be performed to assess soil and groundwater in the A&R building area including the fill material from the pond area near Sanders Creek. The SAP was approved by the New York State Department of Environmental Conservation (NYSDEC) on March 18, 2016. NYSDEC's approval was contingent on the installation and sampling of two additional wells along the creek bank.

The assessment activities included in the SAP were:

 Collection of soil samples from eight soil borings to depths of 1 to 3 feet (ft) in the former pond area for laboratory analysis of volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) and semi-volatile organic compounds (SVOCs);

- Collection of soil samples during the advancement of six soil borings in the former A&R building area;
- Completion of the six soil borings in the former A&R building area as monitoring wells;
- Collection of representative groundwater samples from the six new wells; and
- Analysis of soil and groundwater samples from the six borings/wells for VOCs and PCBs.

The assessment activities were completed in April 2016. This Sampling and Analysis Report presents the results of the investigation.

Note that research performed by UTC subsequent to NYSDEC approval of the SAP revealed information indicating that sediment in the pond area was impacted by oily wastes released from an upgradient, offsite source. The documentation also stated that the backfill used in the pond area was clean imported fill. Based on this information, UTC and NYSDEC agreed that the sampling plan in the pond area would be revised to focus on evaluating sediment beneath the fill. UTC also collected and analyzed two samples of the fill material to confirm that it was from a clean source.

# 2.0 Site History

The former A&R building included engineering offices, engineering laboratories and shops, and administrative offices. The A&R building was built in 1958 with two expansions (TR16 and 17) resulting in a building footprint area of approximately 150,000 square feet that was comprised of approximately 50% office space. The building was demolished sometime after 1995. **Figure 2** shows the layout of the former buildings as well as the existing underground sewer system associated with the A&R building area.

The AOC includes a former wide spot on the south side of Sanders Creek (herein referred to as the pond area) located directly north of the A&R building (see **Figure 2**). The pond area was apparently constructed circa 1958 for unknown reasons, possibly aesthetics, and was backfilled in the early 1980s.

There were no known historic spills or releases in the A&R building area; however, PCBs were detected in a 2014 stormwater sample collected as part of routine SPDES permit sampling at manhole 182 (MH-182, **Figure 2**). Manhole 182 is located in the northwestern corner of the area and is downstream of storm sewers that served the A&R building area. The analytical results were previously submitted to the NYSDEC as part of the SPDES permit reporting.

In 2014, as a measure to prevent surface water from contacting/mixing with potential subsurface groundwater and soil impacts, UTC plugged the storm sewer manholes and catch basins and placed a 2-ft soil cover over the entire area. The soil cover was constructed with a slight grade to the north to promote surface water runoff toward Sanders Creek. The outfall from manhole 182 was also plugged.

The storm sewer continues to collect water, believed to be infiltrating groundwater, which is now pumped to the wastewater treatment plant for treatment prior to discharging to Sanders Creek.

In 2014, a surface water leak was identified that appeared to be emanating from an old well located off the eastern side of the pond area (see **Figure 2**). The well was likely installed years ago and used as a source of make-up water for a decorative fountain that was formerly located in the pond. The surface water leak associated with this well was likely due to an artesian condition in the aquifer that supplied the well. When the well was abandoned in 2014, a pipe was discovered leading to the former pond area. As part of Carrier's well abandonment activities, Carrier plugged the end of the pipe at the former pond area. In addition, a soil sample was collected from the soil disturbed when the end of the pipe was uncovered. The soil sample contained PCBs at a concentration of 73 micrograms per kilogram (ug/kg), which is below the most stringent (unrestricted use) NYSDEC criteria of 100 ug/kg for PCBs.

#### 2.1 Records Search

Subsequent to the NYSDEC approval of the SAP, plant records on the history of the pond dating back to 1965 were found. The records provided information on historic evidence of contamination of pond sediments as well as construction details for the pond closure in the mid 1980's.

Available documentation from 1965, several years after the pond was constructed, identified oil, sheen, and staining at the surface of the water and along the edge of the pond. This condition was reportedly more significant at times of low water elevation or after a high flow event. The source of

the contamination was determined to be from an upgradient, offsite source. Since Carrier could not control the flow from Sanders Creek, an engineering control was recommended to minimize inflow of oily water. A diversion chamber with a weir would allow the pond to receive water during peak flow and bypass flow around the pond during low flow periods. It appears that a nearby irrigation well (artesian well mentioned above in Section 2.0) would serve as a recharge source during bypass periods. Dredging the pond sediment was also recommended. It is unclear whether these recommendations were carried out; however, a weir in the pond outlet was mentioned in later construction documents.

Additional documentation from 1979 indicates that sedimentation within the pond was a maintenance concern. An engineering evaluation was completed, which assessed whether the pond should be periodically dredged and/or closed. Borings installed within the pond indicated that water was approximately 0.25 to 2 ft deep. Underlying sediment, described as soft with black color and petroleum odor, were 1 to 3 ft thick. Soil beneath the sediment was characterized as interbedded silt and clay with fine sand and some gravel.

Construction plans from 1983 indicate that the pond was filled and regraded using existing and imported fill. The work included excavation of the new channel and construction of a confining embankment. The plans indicate that geotextile filter fabric would be placed over sediment and then the embankment would receive a minimum of 12 inches of stone. A minimum of 3 inches of "Type E granular fill" would be placed over the geotextile fabric outside of the embankment. Type E fill from the 1980s is consistent with current NYSDOT specification of "select granular fill" or "select structural fill". This fill consists of "rock, stone, slag, cobbles, or gravel, substantially free of shale or other soft, poor durability particles." Sieve size requirements include 100% for 4-inch, 0-70% for No. 40 and 0-15% for No. 200.

A minimum of 4 inches of topsoil was placed over the stone in the embankment and the select granular fill elsewhere. The outlet structure weir was also modified.

# 3.0 Field Activities

A sampling and analysis program was executed to confirm the presence or absence of contamination in soil and groundwater within the A&R AOC. The investigation was performed during the period of April 4 to 18, 2016. The field activities included monitoring well installation and soil and groundwater sampling around the former A&R building as well as advancement of soil borings and collection and analysis of soil and groundwater samples in the pond area. Activities also included borehole preclearance, community air monitoring, decontamination, location/elevation surveying, and management of investigation-derived wastes (IDW).

Sampling and analysis was performed in accordance with the SAP and site-specific Quality Assurance Project Plan (QAPP). In general, sampling methods and disposable materials limited the need for decontamination of sampling equipment. Prior to commencement of intrusive sampling activities, DigSafely NY was notified for utility clearance. The facility also assessed the presence of buried utilities and each drilling location was pre-cleared by a utility locating subcontractor. Monitoring well borings were manually precleared to an approximate depth of 5 ft using hand augers. Drill cuttings, development water, decontamination water, and sampling tubing were drummed, labeled, and stored on-site pending analyses for offsite disposal. Monitoring well purge water was sent to the facility's waste water treatment plant for treatment.

The field investigation included the collection and analysis of soil and groundwater samples. Analytical parameters included VOCs, SVOCs, and PCBs for pond area soil samples and VOCs and PCBs for well boring and groundwater samples. **Table 1** presents the number of samples collected per media (i.e., soil and groundwater) as well as quality assurance/quality control (QA/QC) samples. **Table 2** provides a summary of the analytical methods, as well as bottle, preservation, and holding time requirements.

#### 3.1 Drilling and Soil Sampling

Six soil borings were advanced around the perimeter of the former A&R building and converted into permanent monitoring wells (AR-MW-01 through AR-MW-06). Wells AR-MW-01, AR-MW-02, and AR-MW-03 were sited on the assumed downgradient (north) side of the former A&R building, and wells AR-MW-04, AR-MW-05, and AR-MW-06 were sited on the assumed upgradient (south) side of the building. In addition, two temporary wells (AR-SB-02 and AR-SB-04) were installed in the pond area at the request of the NYSDEC. The well locations are presented on **Figure 3**.

The permanent well borings were advanced into overburden soils during the period of April 4 through 7, 2016 using a truck-mounted Geoprobe combination direct-push/hollow stem auger rig (model 6712DT). Soil samples were continuously sampled using a 2-inch diameter by 4-ft long, acetate-lined sampler. Borings were advanced to a depth of 16 ft below ground surface (bgs).

The pond area soil borings were originally to be advanced to depths of 3 ft using a hand auger. However, the sampling technicians were unable to attain the 3 ft depth due to presence of an unexpectedly coarse gravel layer that contained gravel and cobbles up to 8 inches in size. Therefore, the former pond area borings were advanced using the same drilling method discussed above, but only to a depth of 6 ft, except boring AR-SB-05, which was advanced to a depth of 8 ft. Upon recovery, the soil samples were inspected for evidence of contamination (e.g., staining and odors) and screened with a photoionization detector (PID) for VOCs. Borings were observed by an AECOM geologist and boring logs were created for each well location (see **Appendix A**).

The soil in the pond area generally consisted of 4 inches of topsoil over 1 to 2 ft of silt and gravel fill over a natural gray to black silt. Groundwater was encountered at depths ranging from approximately 1 to 2 ft bgs. No elevated PID readings were detected. However, petroleum odors were noted in five of the eight borings.

In the A&R building area, drilling observations indicate that this area is underlain by 4 to 9 ft of fill composed of clayey silt with varying amounts of gravel, some to trace cobbles, and debris consisting of brick, metal, and concrete. The fill is underlain by as much as 11 ft of silty clay with some sand and slit lenses that become more common with depth. The silty clay is underlain by a gray clay deposit. With the exception of the boring for well AR-MW-06, no elevated PID readings or evidence of contamination was found. In AR-MW-06, a slight petroleum odor was observed at a depth of 4 to 6 ft bgs.

A minimum of one soil sample above the water table was retained from each boring for laboratory analysis. The sample was selected from the interval of greatest apparent contamination. If no apparent contamination was present, the sample was retained from the interval just above the water table. Samples for VOCs were collected using TerraCore samplers. For the remaining analytical parameters, soil was homogenized, and then transferred into the appropriate sample containers.

#### 3.2 Monitoring Well Installation, Development, and Sampling

The monitoring wells were installed during the period of April 4 through 7, 2016. The permanent monitoring wells were constructed with 10-ft long, 2-inch I.D. 10-slot, flush-coupled polyvinyl chloride (PVC) screen with a solid riser extending to the surface. To facilitate well installation, the boreholes were enlarged with 4-1/4-inch hollow stem augers. The wells were installed through the augers as the augers were slowly removed.

Groundwater was observed at 5.5 to 7 ft bgs; therefore, wells were screened from 4 to 14 ft bgs. A sand filter was placed in the boring around the annulus space of the well screen such that the sand extends 6 inches above the top of the screen. Bentonite chips were placed above the sand filter to provide a seal from the overlying overburden conditions. The monitoring wells were completed with a flush-mount road box set in concrete. Monitoring well construction logs are provided in **Appendix A** and well construction details are summarized in **Table 3**.

The temporary wells were constructed on April 7, 2016 using 5-ft long, 1-inch diameter 10-slot PVC well screen and solid riser. The wells were installed thought the Macrocore casing. Groundwater in the pond area was encountered at shallow depths ranging from 1 to 2 ft bgs. In order to provide an effective surface seal, the tops of the well screens were set to 1 ft bgs. A NJ #0 sand filter was placed in the annual space around the well and extended to approximately 0.5 foot above the screen and riser coupling. The remaining annual space was backfilled with bentonite chips. The well risers extended approximately 2 ft above grade.

The permanent monitoring wells were developed on April 11 and 12, 2016 by pumping to remove the fines and develop the filter pack. Because they were intended only for the collection of grab groundwater samples, the temporary wells were not developed. Water quality measurements of pH, conductivity, temperature, and turbidity were periodically recorded during the development process. Copies of well development logs are provided in **Appendix B**.

On April 18, 2016, groundwater samples were collected from the new permanent and temporary wells using the low-flow purge technique and a peristaltic pump. Water quality measurements of pH, conductivity, dissolved-oxygen, oxidation-reduction potential, temperature, and turbidity were frequently recorded during the purging process. Groundwater quality measurements were documented on AECOM purge logs which are provided in **Appendix C**.

#### 3.3 Surveying

The soil boring and monitoring well locations were surveyed for location and elevation by a licensed AECOM land surveyor. Locations and elevations were measured to 0.01 ft. Location measurements were referenced to New York State Plane Central Zone North American Datum of 1983 (NAD 83) and elevations were referenced to North American Vertical Datum of 1988 (NAVD 88). Survey information is provided in **Table 3**.

#### 3.4 Analytical Program

The soil and groundwater samples were placed in pre-cleaned, laboratory-supplied glass jars, labeled, packed in a cooler with ice, and transported via courier to Accutest Laboratories under standard chain of custody procedures. The samples were submitted for analytical testing for the parameters listed in **Table 1** under standard turnaround time. Category B deliverable packages were requested for all sample delivery groups.

# 4.0 Investigation Results

#### 4.1 Field Screening Results

#### 4.1.1 Soil Observations

Drilling observations show that the former pond area is underlain by topsoil and as much as 2 ft of silty gravel fill with some cobbles up to 8 inches in size. The fill overlies gray to black silt (sediment). No elevated PID readings were observed, but petroleum odors were noted in the silt, which was encountered in several borings. Groundwater occurs at depths ranging from 1 to 2 ft bgs. Two of the borings in the Pond Area were completed as temporary monitoring wells.

The A&R building area is underlain by as much as 9 ft of fill consisting of clayey silt with varying amounts of gravel and some to trace amounts of cobbles, brick, metal, and concrete. No evidence of contamination was observed, with the exception of slight petroleum odor in the 4 to 6-ft depth interval in the boring for AR-MW-06. Groundwater was encountered at depths ranging from 5.5 to 7 ft bgs. The six borings were completed as monitoring wells.

#### 4.1.2 Groundwater Observations

The depth to groundwater in the permanent wells ranged from approximately 3.28 to 9.15 ft bgs. The depth to groundwater in the temporary wells was 2.02 ft bgs in AR-SB-02 and 1.87 ft bgs in AR-SB-04.

Prior to sampling, a synoptic round of groundwater levels was recorded on April 18, 2016 using a water interface probe (see **Figure 4 and Table 4**). Another synoptic round of groundwater levels was recorded on July 6, 2016. The data from both monitoring rounds indicate somewhat anomalous flow conditions that are not consistent with the general northerly flow observed at the site. UTC will continue to monitor groundwater flow conditions in this area as proposed wells are installed across the site.

#### 4.2 Laboratory Analytical Results

The analytical results were validated by an AECOM chemist following USEPA Region II data validation procedures. The validated data is provided in a data usability summary report (DUSR). A copy of the DUSR narrative is provided in **Appendix D. A copy of the DUSR appendices is available on request.** 

Field and laboratory QC samples were collected and analyzed to document the accuracy and precision of the samples, in general accordance with the QAPP. The QA/QC samples included trip blanks, field duplicates, matrix spikes, and matrix spike duplicates.

The DUSR presents deviations from the relevant QC requirements and the associated qualifications to the sample data warranted by these deviations. QC issues discussed in detail in the DUSR include surrogate sample recoveries, matrix spike recoveries, duplicate sample analyses, instrument calibration and performance and method and field blank sample analyses. The report also presents copies of the laboratory reporting forms with hand written qualifications made by the data reviewer. The data presented in the summary tables included in this report reflect these qualifications.

#### 4.2.1 Applicable Standards, Criteria, and Guidance

Analytical results for soil are compared to three sets of Soil Cleanup Objectives (SCOs) presented in 6 NYCRR Part 375-6.8b SCOs: protection of ecological resources, residential use, and industrial use. The application of the criteria is dependent upon the location of the samples. The ecological SCOs are applied to pond area samples. Because portions of the pond area extend offsite onto NYSDOT property, residential use SCOs are also applied. Finally, industrial use SCOs are applied to soils collected from the well borings in the former A&R building area.

The groundwater evaluation is based on comparison of the sample results with the NYS Ambient Water Quality Standards (AWQS) and Guidance Values in Technical & Operational Guidance Series (TOGS) Version 1.1.1., June 1998, with June 2004 Addendum.

#### 4.2.2 Soil Results

#### 4.2.2.1 Pond Area Soil Results

Ten soil samples were collected from the eight shallow soil borings in the pond area. The initial intent of the sampling program was to characterize the fill material. However, following the discovery of documentation identifying contaminant conditions on the former pond sediments and that clean fill was used during pond closure, the sampling approach was changed such that eight samples collected from the sediment and two samples (plus one duplicate sample) were collected from the fill material. The samples were analyzed for VOCs, SVOCs, and PCBs.

The fill samples were collected from the 0.5- to 1.5-ft interval in borings AR-SB-02 and AR-SB-08. The analytical results, presented in **Table 5** and **Figure 5**, are compared to the protection of ecological resources and residential use SCOs. The results indicate that there were no compounds detected at concentrations above the ecological SCOs. However, the samples did contain several SVOCs at concentrations slightly above the residential use SCOs.

Eight samples were collected from the sediment below the fill material. The sample intervals ranged from 2.5 to 5 ft bgs. The analytical results, presented in **Table 5** and **Figure 5**, are compared to both protection of ecological resource and residential use SCOs. No VOCs were detected at concentrations above the protection of ecological resource or residential use SCOs.

No SVOCs were detected at concentrations exceeding the protection of ecological resource SCOs. SVOCs were detected at concentrations above the residential SCOs in two samples: AR-SB-05 and AR-SB-06.

- Only one SVOC, chrysene, was detected at a concentration above the SCO in AR-SB-05. In the sample, chrysene was detected at 1,080 ug/kg, compared to the SCO of 1,000 ug/kg.
- In AR-SB-06, benzo(a)pyrene, benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene were detected at concentrations above the residential SCOs. Benzo(a)pyrene was detected at a concentration of 1,790 ug/kg and benzo(b)fluoranthene was detected at 2,060 ug/kg. The SCO for both compounds is 1,000 ug/kg. Indeno(1,2-cd)pyrene was detected at 2,870 ug/kg, compared to the SCO of 500 ug/kg.

PCBs were detected at concentrations slightly above the protection of ecological resource and residential SCOs of 1,000 ug/kg in four samples – AR-SB-04, AR-SB-05, AR-SB-06 and SB-AR-08. The total PCB concentrations in the samples ranged from 1,479 to 2,721 ug/kg.

#### 4.2.2.2 A&R Building Area Soil Results

Six soil samples (plus one duplicate sample) were collected from the six A&R building area well borings – one from each boring. The samples were analyzed for VOCs and PCBs. The analytical results, presented in **Table 6**, are compared to industrial use SCOs. The results indicate that none of the samples exceeded the industrial use SCOs.

#### 4.2.3 Groundwater Results

#### 4.2.3.1 Pond Area Groundwater Results

Groundwater samples were collected from the two temporary wells installed in the pond area (AR-SB-02 and AR-SB-04). The samples were analyzed for VOCs, SVOCs, and total and dissolved PCBs. None of the compounds were detected at concentrations above the groundwater criteria.

#### 4.2.3.2 A&R Building Area Groundwater Results

Groundwater samples were collected from the six permanent wells in the A&R building area. The samples were analyzed for VOCs and total and dissolved PCBs. The analytical results are presented in **Table 7** and **Figure 6**. Only one well, AR-MW-06, contained compounds at concentrations above the groundwater criteria. In AR-MW-06, four VOCs exceeded the groundwater criteria. Well AR-MW-06 is located on the southeast side of the former A&R building.

# 5.0 Summary and Conclusions

The following conclusions are drawn based on data collected during the preliminary assessment of the former A&R building area AOC.

#### 5.1 Former Pond Area

Eight shallow soil borings were advanced to better characterize the former pond area. Two of the borings were completed as temporary monitoring wells. Observations made during drilling confirmed the presence of coarse gravel fill placed above impacted pond sediments. The thickness of the fill ranged from 1 to 2 ft. The fill is covered with 4 inches of topsoil.

The sediment underlying the fill consists of gray to black silt. Although no elevated PID readings were recorded, petroleum odors were noted in five of the borings and a sheen was observed in one boring. These observations are consistent with the oil, sheen, and staining observed at the surface of the water and along the edge of the pond in 1965 up through closure in the mid 1980's. The petroleum odors were observed in four of the five shallow soil borings adjacent to Sanders Creek and one boring near the southern end of the pond area.

Analytical results for the shallow soil samples, representative of the gravel fill in borings AR-SB-02 and AR-SB-08, did not contain any of the analyzed compounds (i.e., VOCs, SVOCs, or PCBs) at concentrations exceeding the protection of ecological resources SCOs. However, several SVOCs were detected in the samples at concentrations slightly exceeding the residential use SCOs. Historical documentation states that clean fill was used to backfill the pond area more than 30 years ago. SVOCs may be attributable to partial combustion of carbon-based fuels and as a result, are common contaminants. Specifically, the compounds detected above criteria are polycyclic aromatic hydrocarbons (PAHs) which are commonly associated with asphaltic products and runoff from roadways and parking lots. Such compounds are widespread in urban areas.

The samples from the underlying silt were analyzed for VOCs, SVOCs, and PCBs and the results were compared to protection of ecological resource and residential use SCOs. No VOCs exceeded the ecological or residential SCOs. No SVOCs exceeded the ecological SCOs, but some SVOCs slightly exceeded residential SCOs, but only in two samples.

PCBs slightly exceeded the ecological and residential use SCO in four of the eight borings.

The former pond area has historic sediment that was contaminated from offsite sources and some of the fill may have been impacted by SVOCs emissions and/or runoff from adjacent roadways and parking lots. The impacted materials are contained under a soil cap and isolated from Sanders Creek by a stone berm that protects against erosion. The stone berm remains intact and this containment has been effective for over 30 years.

No VOCs or PCBs were detected at concentrations exceeding the groundwater criteria in the samples from the two temporary wells. While PCBs were detected in the soils from one of the temporary well borings, they were not detected in the groundwater samples. This is consistent with PCBs having low aqueous solubilities and, therefore, typically do not migrate in the dissolve phase.

#### 5.2 A&R Building Area

Six borings were advanced to depths of 16 ft each in the former A&R building area. The borings were completed as monitoring wells. Observations made during drilling indicate that the area is underlain by as much as 9 ft of fill composed of silty clay with varying amounts of gravel, cobbles, brick, metal, and concrete. The fill is underlain by natural deposits of silty clay with silty and sand lenses. No evidence of contamination was observed during drilling.

The A&R building area showed no exceedences of soil criteria and only limited VOC impacts to groundwater at one of the six wells. PCBs were essentially non-detect in soils and groundwater.

# 6.0 Recommendations

#### 6.1 Pond Area

The investigation in the pond area identified minor SVOC and PCBs impacts in subsurface soil. The existing embankment is preventing erosion and effectively containing the impacted soil. Based on this assessment, no further action is warranted.

#### 6.2 A&R Building Area

The groundwater results for the A&R building area identified VOC impacts in one of the six wells. While the impacts appear minor and localized, this area should be addressed as part of the planned site-wide groundwater assessment.

Tables

## Table 1 Laboratory Analyses UTC/Carrier A&R Building AOC

| MATRIX/ANALYSIS          | Analytical Method | Field Sample<br>Quantity | Matrix Spike<br>(MS) or LCS | MS Duplicate or<br>Matrix Duplicate | Field<br>Duplicate | Equipment/<br>Field Blank | Trip Blank | Total<br>Analyses |
|--------------------------|-------------------|--------------------------|-----------------------------|-------------------------------------|--------------------|---------------------------|------------|-------------------|
| Soil Boring Samples      |                   |                          |                             |                                     |                    |                           |            |                   |
| Volatile Organics        | SW-846 8260C      | 10                       | 1                           | 1                                   | 1                  | 1                         | 0          | 14                |
| Semivolatile Organics    | SW-846 8270D      | 10                       | 1                           | 1                                   | 1                  | 1                         | 0          | 14                |
| PCBs                     | SW-846 8082A      | 10                       | 1                           | 1                                   | 1                  | 1                         | 0          | 14                |
| Well Boring Soil Samples |                   |                          |                             |                                     |                    |                           |            |                   |
| Volatile Organics        | SW-846 8260C      | 6                        | 1                           | 1                                   | 1                  | 1                         | 0          | 10                |
| PCBs                     | SW-846 8082A      | 6                        | 1                           | 1                                   | 1                  | 1                         | 0          | 10                |
| Groundwater Samples      |                   |                          |                             |                                     |                    |                           |            |                   |
| Volatile Organics        | SW-846 8260C      | 8                        | 1                           | 1                                   | 1                  | 1                         | 1          | 13                |
| PCBs                     | SW-846 8082A      | 8                        | 1                           | 1                                   | 1                  | 1                         | 0          | 12                |

Notes:

PCBs = Polychlorinated Biphenyls

LCS = Laboratory Control Sample

# Table 2Sample Bottle, Volume, Preservation, and Holding Time SummaryUTC/Carrier A&R Building AOC

| MATRIX/ANALYSIS           | Sample Prep Method (1)  | Analytical Method (1) | Samp      | ole Bottles                | Preservation | Holding Time |                         |  |
|---------------------------|-------------------------|-----------------------|-----------|----------------------------|--------------|--------------|-------------------------|--|
| WATKIN/ ANALTSIS          | Sample Frep Method (1)  | Analytical Method (1) | Mat'l     | Size                       | Freservation | Extraction   | Analysis                |  |
| Soil Samples              |                         |                       |           |                            |              |              |                         |  |
| Volatile Organics         | SW-846 5035A            | SW-846 8260C          | TerraCore | 5 or 25 g                  | None         | NA           | 48 hours                |  |
| Semivolatile Organics     | SW-846 3540C/3541/3545A | SW-846 8270D          | G         | 8 oz (6)                   | None         | 14 days      | 40 days from extraction |  |
| Polychlorinated Biphenyls | SW-846 3540C/3541/3545A | SW-846 8082A          | G         | 11                         | None         | 14 days      | 40 days from extraction |  |
| Groundwater Samples       |                         |                       |           |                            |              |              |                         |  |
| Volatile Organics         | SW-846 5030B            | SW-846 8260C          | G         | 40 mL VOA<br>vial w/ septa | HCI to pH<2  | NA           | 14 days                 |  |
| Polychlorinated Biphenyls | SW-846 3510C/3520C      | SW-846 8082A          | G         | 1-L amber                  | None         | 7 days       | 40 days from extraction |  |
|                           |                         |                       |           |                            |              |              |                         |  |

Notes:

(1) SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. USEPA SW-846. Complete through Update IV, March 2009.

#### TABLE 3 Soil Boring and Monitoring Well Details A&R Building Area

|            |           |            |           |                | Total    |               | Well     |                | Screen     |                 |            |                 |
|------------|-----------|------------|-----------|----------------|----------|---------------|----------|----------------|------------|-----------------|------------|-----------------|
| Monitoring | Date      | Coord      | inates    | Surface        | Depth    | Hole Diameter | Diameter | Top of Casing  | Interval   | Screen Interval | Protective | Depth to Water* |
| Well       | Installed | N          | E         | Elevation (ft) | (ft bgs) | (inches)      | (inches) | Elevation (ft) | (ft bgs)   | (Elevations)    | Casing     | (ft bgs)        |
| AR-MW-01   | 4/4/16    | 1124770.59 | 954418.68 | 404.06         | 16.0     | 8             | 2        | 403.76         | 5.0 - 15.0 | 399.1 - 389.1   | Flushmount | 3.84            |
| AR-MW-02   | 4/5/16    | 1124764.40 | 954292.16 | 403.76         | 16.0     | 8             | 2        | 403.40         | 4.0 - 14.0 | 399.8 - 389.8   | Flushmount | 3.38            |
| AR-MW-03   | 4/5/16    | 1124754.76 | 954149.74 | 403.68         | 16.0     | 8             | 2        | 403.41         | 4.0 - 14.0 | 399.7 - 389.7   | Flushmount | 3.28            |
| AR-MW-04   | 4/6/16    | 1124515.46 | 954180.87 | 404.94         | 16.0     | 8             | 2        | 404.50         | 4.0 - 14.0 | 400.9 - 390.9   | Flushmount | 8.33            |
| AR-MW-05   | 4/6/16    | 1124466.37 | 954310.19 | 405.22         | 16.0     | 8             | 2        | 404.87         | 4.0 - 14.0 | 401.2 - 391.2   | Flushmount | 5.45            |
| AR-MW-06   | 4/7/16    | 1124531.93 | 954445.06 | 404.96         | 16.0     | 8             | 2        | 404.63         | 4.0 - 14.0 | 401.0 - 391.0   | Flushmount | 9.15            |
| AR-SB-01   | 4/7/16    | 1124960.20 | 954074.55 | 393.40         | 6.0      | NA            | NA       | NA             | NA         | NA              | NA         | NA              |
| AR-SB-02   | 4/7/16    | 1124990.14 | 954142.62 | 393.74         | 6.0      | 2             | 1        | 396.19         | 1.0 - 5.0  | 392.7 - 388.7   | Stickup    | 4.47            |
| AR-SB-03   | 4/7/16    | 1125021.01 | 954220.42 | 393.78         | 6.0      | NA            | NA       | NA             | NA         | NA              | NA         | NA              |
| AR-SB-04   | 4/7/16    | 1125037.71 | 954296.60 | 394.05         | 6.0      | 2             | 1        | 395.86         | 1.0 - 5.0  | 393.1 - 389.1   | Stickup    | 3.68            |
| AR-SB-05   | 4/7/16    | 1125052.57 | 954388.90 | 394.28         | 8.0      | NA            | NA       | NA             | NA         | NA              | NA         | NA              |
| AR-SB-06   | 4/7/16    | 1124954.21 | 954154.59 | 393.85         | 4.0      | NA            | NA       | NA             | NA         | NA              | NA         | NA              |
| AR-SB-07   | 4/7/16    | 1124960.18 | 954249.12 | 393.92         | 6.0      | NA            | NA       | NA             | NA         | NA              | NA         | NA              |
| AR-SB-08   | 4/7/16    | 1124981.64 | 954325.09 | 393.76         | 6.0      | NA            | NA       | NA             | NA         | NA              | NA         | NA              |

Notes 1. Horizontal grid based on New York State Plane Central Zone (NAD 83). 2. Vertical datum NAVD 88.

NA = Not Applicable

\* - Depth to water measured on April 18, 2016

#### Table 4

#### **Groundwater Level Measurements**

## UTC/Carrier A&R Building AOC

| Location ID | Northing    | Easting     | Ground<br>Elevation (ft) | Casing Elevation<br>(ft) | Meas.point<br>(Riser)Elev.(ft) | Date      | Depth to Water<br>(ft) | Water Elev. (ft) |
|-------------|-------------|-------------|--------------------------|--------------------------|--------------------------------|-----------|------------------------|------------------|
| AR-MW-01    | 1124770.587 | 954418.6790 | 404.060                  | 404.060                  | 403.760                        | 4/11/2016 | 4.25                   | 399.51           |
|             |             |             |                          |                          |                                | 4/18/2016 | 3.84                   | 399.92           |
|             |             |             |                          |                          |                                | 7/6/2016  | 7.60                   | 396.16           |
| AR-MW-02    | 1124764.403 | 954292.1619 | 403.760                  | 403.760                  | 403.400                        | 4/11/2016 | 3.15                   | 400.25           |
|             |             |             |                          |                          |                                | 4/18/2016 | 3.38                   | 400.02           |
|             |             |             |                          |                          |                                | 7/6/2016  | 6.86                   | 396.54           |
| AR-MW-03    | 1124754.760 | 954149.7443 | 403.680                  | 403.680                  | 403.410                        | 4/12/2016 | 3.60                   | 399.81           |
|             |             |             |                          |                          |                                | 4/18/2016 | 3.28                   | 400.13           |
|             |             |             |                          |                          |                                | 7/6/2016  | 6.83                   | 396.58           |
| AR-MW-04    | 1124515.463 | 954180.8719 | 404.940                  | 404.940                  | 404.500                        | 4/12/2016 | 6.65                   | 397.85           |
|             |             |             |                          |                          |                                | 4/18/2016 | 8.33                   | 396.17           |
|             |             |             |                          |                          |                                | 7/6/2016  | 9.88                   | 394.62           |
| AR-MW-05    | 1124466.368 | 954310.1939 | 405.220                  | 405.220                  | 404.870                        | 4/12/2016 | 7.40                   | 397.47           |
|             |             |             |                          |                          |                                | 4/18/2016 | 8.45                   | 396.42           |
|             |             |             |                          |                          |                                | 7/6/2016  | 9.81                   | 395.06           |
| AR-MW-06    | 1124531.931 | 954445.0592 | 404.960                  | 404.960                  | 404.630                        | 4/12/2016 | 8.75                   | 395.88           |
|             |             |             |                          |                          |                                | 4/18/2016 | 9.15                   | 395.48           |
|             |             |             |                          |                          |                                | 7/6/2016  | 10.09                  | 394.54           |
| AR-SB-02    | 1124990.137 | 954142.6139 | 393.735                  | 393.735                  | 396.187                        | 4/18/2016 | 4.47                   | 391.72           |
| AR-SB-04    | 1125037.708 | 954296.6028 | 394.046                  | 394.046                  | 395.860                        | 4/18/2016 | 3.68                   | 392.18           |

 $J: \label{eq:linear} J: \lab$ 

| Loc                                  | ation ID     |                 |                 | AR-SB-01        | AR-SB-02        | AR-SB-02          | AR-SB-03          | AR-SB-04        |
|--------------------------------------|--------------|-----------------|-----------------|-----------------|-----------------|-------------------|-------------------|-----------------|
| Sa                                   | mple ID      |                 |                 | AR-SB-01(3.5-4) | AR-SB-02(4-4.5) | AR-SB-02(0.5-1.5) | AR-SB-03(3.8-4.3) | AR-SB-04(2.5-4) |
| Ν                                    | Natrix       |                 |                 | Soil            | Soil            | Soil              | Soil              | Soil            |
| Depth                                | Interval (ft | :)              |                 | 3.5-4.0         | 4.0-4.5         | 0.5-1.5           | 3.8-4.3           | 2.5-4.0         |
| Date                                 | Sampled      |                 |                 | 04/07/16        | 04/07/16        | 04/11/16          | 04/07/16          | 04/07/16        |
| Parameter                            | Units        | Criteria<br>(1) | Criteria<br>(2) |                 |                 |                   |                   |                 |
| Volatile Organic Compounds           |              |                 |                 |                 |                 |                   |                   |                 |
| Acetone                              | UG/KG        | 2200            | 100000          | 543             | 267             | 228 J             | 361               | 15 U            |
| Benzene                              | UG/KG        | 70000           | 2900            | 0.77 U          | 0.41 J          | 0.86              | 0.64 U            | 0.75 U          |
| Carbon disulfide                     | UG/KG        | -               | -               | 55.6 J          | 30.4 J          | 14.6 J            | 45.9 J            | 42.2 J          |
| Chlorobenzene                        | UG/KG        | 40000           | 100000          | 3.1 U           | 2.1 U           | 3.1 U             | 2.6 U             | 3 U             |
| Methyl ethyl ketone (2-<br>Butanone) | UG/KG        | 100000          | -               | 54.9            | 31.5            | 16 UJ             | 33.6              | 51.3            |
| Methylene chloride                   | UG/KG        | 12000           | 51000           | 3.1 U           | 2.1 U           | 3.1 U             | 2.6 U             | 3 U             |
| Toluene                              | UG/KG        | 36000           | 100000          | 7.7 U           | 0.56 J          | 7.8 U             | 6.4 U             | 7.5 U           |
| Xylene (total)                       | UG/KG        | 260             | 100000          | 3.1 U           | 2.1 U           | 3.1 U             | 2.6 U             | 3 U             |
| Semivolatile Organic Cor             | npounds      |                 |                 |                 |                 |                   |                   |                 |
| Acenaphthene                         | UG/KG        | 20000           | 100000          | 31.4 J          | 120 U           | 36.6 J            | 140 U             | 63.5 J          |
| Acenaphthylene                       | UG/KG        | NS              | 100000          | 150 U           | 120 U           | 47.2 J            | 140 U             | 89.8 J          |
| Anthracene                           | UG/KG        | NS              | 100000          | 150 U           | 120 U           | 134               | 140 U             | 247             |
| Benzo(a)anthracene                   | UG/KG        | NS              | 1000            | 107 J           | 120 U           | 966               | 66.9 J            | 588             |
| Benzo(a)pyrene                       | UG/KG        | 2600            | 1000            | 112 J           | 120 U           | 1,340             | 68.8 J            | 554             |
| Benzo(b)fluoranthene                 | UG/KG        | NS              | 1000            | 141 J           | 120 U           | 1,740             | 74.4 J            | 607             |
| Benzo(g,h,i)perylene                 | UG/KG        | NS              | 100000          | 90.3 J          | 120 U           | 1,210             | 50.7 J            | 360             |
| Benzo(k)fluoranthene                 | UG/KG        | NS              | 1000            | 118 J           | 120 U           | 1,020             | 66.2 J            | 476             |
| bis(2-Ethylhexyl)phthalate           | UG/KG        | -               | -               | 286 J           | 310 U           | 85.0 J            | 91.3 J            | 867             |
| Carbazole                            | UG/KG        | -               | -               | 150 U           | 120 U           | 122 J             | 140 U             | 150 U           |
| Chrysene                             | UG/KG        | NS              | 1000            | 164             | 120 U           | 1,470             | 79.1 J            | 726             |

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Ecological Resources.

Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Residential.

Flags assigned during chemistry validation are shown.

 $\bigcirc$ 

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2) J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit.

NS - Not Specified

Only Detected Results Reported.

| Locat                           | ion ID     |                 |                 | AR-SB-01        | AR-SB-02        | AR-SB-02          | AR-SB-03          | AR-SB-04        |
|---------------------------------|------------|-----------------|-----------------|-----------------|-----------------|-------------------|-------------------|-----------------|
| Samp                            | ole ID     |                 |                 | AR-SB-01(3.5-4) | AR-SB-02(4-4.5) | AR-SB-02(0.5-1.5) | AR-SB-03(3.8-4.3) | AR-SB-04(2.5-4) |
| Mat                             | trix       |                 |                 | Soil            | Soil<br>4.0-4.5 | Soil              | Soil              | Soil            |
| Depth Int                       | terval (ft | :)              |                 | 3.5-4.0         |                 | 0.5-1.5           | 3.8-4.3           | 2.5-4.0         |
| Date Sa                         | ampled     |                 |                 | 04/07/16        | 04/07/16        | 04/11/16          | 04/07/16          | 04/07/16        |
| Parameter                       | Units      | Criteria<br>(1) | Criteria<br>(2) |                 |                 |                   |                   |                 |
| Semivolatile Organic Compo      | ounds      |                 |                 |                 |                 |                   |                   |                 |
| Dibenz(a,h)anthracene           | UG/KG      | NS              | 330             | 31.4 J          | 120 U           | 355               | 140 U             | 126 J           |
| Dibenzofuran                    | UG/KG      | NS              | 14000           | 150 U           | 120 U           | 22.4 J            | 140 U             | 49.5 J          |
| Fluoranthene                    | UG/KG      | NS              | 100000          | 321             | 120 U           | 2,350             | 219               | 1,600           |
| Fluorene                        | UG/KG      | 30000           | 100000          | 24.1 J          | 120 U           | 39.5 J            | 140 U             | 136 J           |
| Indeno(1,2,3-cd)pyrene          | UG/KG      | NS              | 500             | 78.9 J          | 120 U           | 1,030             | 46.0 J            | 341             |
| Naphthalene                     | UG/KG      | NS              | 100000          | 150 U           | 120 U           | 25.1 J            | 140 U             | 150 U           |
| Phenanthrene                    | UG/KG      | NS              | 100000          | 118 J           | 120 U           | 738               | 39.9 J            | 664             |
| Pyrene                          | UG/KG      | NS              | 100000          | 275             | 120 U           | 1,910             | 189               | 1,120           |
| Polychlorinated Bipheny         | rls        |                 |                 |                 |                 |                   |                   |                 |
| Aroclor 1248                    | UG/KG      | -               | -               | 154 J           | 40 U            | 41 U              | 73.2 J            | 749 J           |
| Aroclor 1254                    | UG/KG      | -               | -               | 281             | 40 U            | 50.5 J            | 133               | 1,340           |
| Aroclor 1260                    | UG/KG      | -               | -               | 73.2 J          | 40 U            | 84.3              | 52.9 J            | 632 J           |
| Total Polychlorinated Biphenyls | UG/KG      | 1000            | 1000            | 508.2 J         | 40 U            | 134.8 J           | 259.1 J           | 2,721 J         |

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Ecological Resources. Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Residential.

Flags assigned during chemistry validation are shown.

 $\bigcirc$ 

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

J - The reported concentration is an estimated value.

 $\ensuremath{\mathsf{U}}$  - Not detected above the reported quantitation limit.

NS - Not Specified

Only Detected Results Reported.

**Detection Limits shown are PQL** 

J:\Projects\60310231\_UTCAOCGRI\Project Management\60480273-UTC.TR3PDI\MISC\PDI Data\Analytica1DB\EDMS.m Printed: 6/21/2016 2:01:35 PM [LOCID] >= 'AR-SB-01' AND [LOCID] <= 'AR-SB-08' AND [MATRIX] = 'SC

|                                      | ation ID     |                 |                 | AR-SB-05        | AR-SB-06     | AR-SB-07      | AR-SB-08        | AR-SB-08          |
|--------------------------------------|--------------|-----------------|-----------------|-----------------|--------------|---------------|-----------------|-------------------|
|                                      | mple ID      |                 |                 | AR-SB-05(4.2-5) | AR-SB-06-3-4 | AR-SB-07(3-4) | AR-SB-08(2.5-4) | AR-SB-08(0.5-1.5) |
|                                      | Matrix       |                 |                 | Soil            | Soil         | Soil          | Soil            | Soil              |
| -                                    | Interval (ft | :)              |                 | 4.2-5.0         | 3.0-4.0      | 3.0-4.0       | 2.5-4.0         | 0.5-1.5           |
| Date                                 | Sampled      |                 |                 | 04/07/16        | 04/04/16     | 04/07/16      | 04/07/16        | 04/11/16          |
| Parameter                            | Units        | Criteria<br>(1) | Criteria<br>(2) |                 |              |               |                 |                   |
| Volatile Organic Compounds           |              |                 |                 |                 |              |               |                 |                   |
| Acetone                              | UG/KG        | 2200            | 100000          | 1,220 J         | 1,900 UR     | 614           | 1,710 J         | 389 J             |
| Benzene                              | UG/KG        | 70000           | 2900            | 0.96 J          | 2.3 J        | 0.86 U        | 0.93 U          | 1.1               |
| Carbon disulfide                     | UG/KG        | -               | -               | 67.7 J          | 298 J        | 32.9 J        | 47.5 j          | 25.6              |
| Chlorobenzene                        | UG/KG        | 40000           | 100000          | 3.3 UJ          | 5.8 U        | 3.5 U         | 3.7 U           | 0.59 J            |
| Methyl ethyl ketone (2-<br>Butanone) | UG/KG        | 100000          | -               | 143 J           | 315 J        | 63.2          | 223             | 24 U              |
| Methylene chloride                   | UG/KG        | 12000           | 51000           | 3.3 U           | 1.7 J        | 3.5 U         | 0.82 J          | 2.4 U             |
| Toluene                              | UG/KG        | 36000           | 100000          | 1.8 J           | 3.9 J        | 8.6 U         | 0.92 J          | 1.2 J             |
| Xylene (total)                       | UG/KG        | 260             | 100000          | 3.3 UJ          | 1.3 J        | 3.5 U         | 0.91 J          | 1.9 J             |
| Semivolatile Organic Con             | npounds      |                 |                 |                 |              |               |                 |                   |
| Acenaphthene                         | UG/KG        | 20000           | 100000          | 155 J           | 1,400 U      | 150 U         | 33.1 J          | 27.5 J            |
| Acenaphthylene                       | UG/KG        | NS              | 100000          | 280 U           | 1,400 U      | 150 U         | 150 U           | 53.9 J            |
| Anthracene                           | UG/KG        | NS              | 100000          | 280 U           | 205 J        | 29.3 J        | 80.3 J          | 109 J             |
| Benzo(a)anthracene                   | UG/KG        | NS              | 1000            | 677             | 600 J        | 99.1 J        | 249             | 784               |
| Benzo(a)pyrene                       | UG/KG        | 2600            | 1000            | 638             | 1,790        | 119 J         | 247             | 1,130             |
| Benzo(b)fluoranthene                 | UG/KG        | NS              | 1000            | 874             | 2,060        | 134 J         | 337             | 1,300             |
| Benzo(g,h,i)perylene                 | UG/KG        | NS              | 100000          | 505             | 629 J        | 92.1 J        | 190             | 1,020             |
| Benzo(k)fluoranthene                 | UG/KG        | NS              | 1000            | 562             | 748 J        | 105 J         | 229             | 1,010             |
| bis(2-Ethylhexyl)phthalate           | UG/KG        | -               | -               | 710 U           | 3,470 J      | 304 J         | 295 J           | 62.4 J            |
| Carbazole                            | UG/KG        | -               | -               | 280 U           | 1,400 U      | 150 U         | 150 U           | 93.5 J            |
| Chrysene                             | UG/KG        | NS              | 1000            | 1,080           | 974 J        | 153           | 397             | 1,190             |

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Ecological Resources. Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Residential.

Flags assigned during chemistry validation are shown.

 $\bigcirc$ 

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

 ${\sf J}$  - The reported concentration is an estimated value.  ${\sf U}$  - Not detected above the reported quantitation limit.

NS - Not Specified

Only Detected Results Reported.

**Detection Limits shown are PQL** 

J:\Projects\60310231\_UTCAOCGRI\Project Management\60480273-UTC.TR3PDIMISC\PDI Data\Analytica1DB\EDMS.m Printed: 6/21/2016 2:01:35 PM [LOCID] >= 'AR-SB-01' AND [LOCID] <= 'AR-SB-08' AND [MATRIX] = 'SC

| Locat                           | ion ID     |                 |                 | AR-SB-05        | AR-SB-06     | AR-SB-07      | AR-SB-08        | AR-SB-08          |
|---------------------------------|------------|-----------------|-----------------|-----------------|--------------|---------------|-----------------|-------------------|
| Samp                            | ole ID     |                 |                 | AR-SB-05(4.2-5) | AR-SB-06-3-4 | AR-SB-07(3-4) | AR-SB-08(2.5-4) | AR-SB-08(0.5-1.5) |
| Ma                              | trix       |                 |                 | Soil            | Soil         | Soil          | Soil            | Soil              |
| Depth Int                       | terval (ft | :)              |                 | 4.2-5.0         | 3.0-4.0      | 3.0-4.0       | 2.5-4.0         | 0.5-1.5           |
| Date Sa                         | ampled     |                 |                 | 04/07/16        | 04/04/16     | 04/07/16      | 04/07/16        | 04/11/16          |
| Parameter                       | Units      | Criteria<br>(1) | Criteria<br>(2) |                 |              |               |                 |                   |
| Semivolatile Organic Compo      | ounds      |                 |                 |                 |              |               |                 |                   |
| Dibenz(a,h)anthracene           | UG/KG      | NS              | 330             | 157 J           | 1,400 U      | 150 U         | 57.3 J          | 298               |
| Dibenzofuran                    | UG/KG      | NS              | 14000           | 280 U           | 1,400 U      | 150 U         | 150 U           | 130 U             |
| Fluoranthene                    | UG/KG      | NS              | 100000          | 280 U           | 1,960        | 280           | 780             | 1,830             |
| Fluorene                        | UG/KG      | 30000           | 100000          | 280 U           | 1,400 U      | 150 U         | 150 U           | 29.7 J            |
| Indeno(1,2,3-cd)pyrene          | UG/KG      | NS              | 500             | 425             | 2,870        | 77.8 J        | 158             | 880               |
| Naphthalene                     | UG/KG      | NS              | 100000          | 280 U           | 1,400 U      | 150 U         | 150 U           | 28.1 J            |
| Phenanthrene                    | UG/KG      | NS              | 100000          | 280 U           | 406 J        | 54.3 J        | 134 J           | 522               |
| Pyrene                          | UG/KG      | NS              | 100000          | 1,730           | 1,680        | 243           | 646             | 1,470             |
| Polychlorinated Bipheny         | rls        |                 |                 |                 |              |               |                 |                   |
| Aroclor 1248                    | UG/KG      | -               | -               | 388 J           | 577 J        | 128 J         | 464 J           | 43 U              |
| Aroclor 1254                    | UG/KG      | -               | -               | 747             | 1,080        | 140 J         | 861 J           | 60.5 J            |
| Aroclor 1260                    | UG/KG      | -               | -               | 380 J           | 560 J        | 42.2 J        | 154 J           | 92.3              |
| Total Polychlorinated Biphenyls | UG/KG      | 1000            | 1000            | 1,515 J         | 2,217 J      | 310.2 J       | 1,479 J         | 152.8 J           |

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Ecological Resources. Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Residential.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit. NS - Not Specified

Only Detected Results Reported.

| Locat                                | ion ID        |                 |                 | AR-SB-08              |
|--------------------------------------|---------------|-----------------|-----------------|-----------------------|
| Sam                                  | AR-SB-08(0.5- |                 |                 |                       |
| Ma                                   | Soil          |                 |                 |                       |
| Depth In                             | terval (ft    | )               |                 | 0.5-1.5               |
| Date Sa                              | ampled        |                 |                 | 04/11/16              |
| Parameter                            | Units         | Criteria<br>(1) | Criteria<br>(2) | Field Duplicate (1-1) |
| Volatile Organic Compou              | nds           |                 |                 |                       |
| Acetone                              | UG/KG         | 2200            | 100000          | 731 J                 |
| Benzene                              | UG/KG         | 70000           | 2900            | 2.3                   |
| Carbon disulfide                     | UG/KG         | -               | -               | 61.2 J                |
| Chlorobenzene                        | UG/KG         | 40000           | 100000          | 2.8 U                 |
| Methyl ethyl ketone (2-<br>Butanone) | UG/KG         | 100000          | -               | 14 U                  |
| Methylene chloride                   | UG/KG         | 12000           | 51000           | 1.3 J                 |
| Toluene                              | UG/KG         | 36000           | 100000          | 2.2 J                 |
| Xylene (total)                       | UG/KG         | 260             | 100000          | 0.69 J                |
| Semivolatile Organic Comp            | ounds         |                 |                 |                       |
| Acenaphthene                         | UG/KG         | 20000           | 100000          | 33.8 J                |
| Acenaphthylene                       | UG/KG         | NS              | 100000          | 24.0 J                |
| Anthracene                           | UG/KG         | NS              | 100000          | 117 J                 |
| Benzo(a)anthracene                   | UG/KG         | NS              | 1000            | 895                   |
| Benzo(a)pyrene                       | UG/KG         | 2600            | 1000            | 1,260                 |
| Benzo(b)fluoranthene                 | UG/KG         | NS              | 1000            | 1,730                 |
| Benzo(g,h,i)perylene                 | UG/KG         | NS              | 100000          | 1,120                 |
| Benzo(k)fluoranthene                 | UG/KG         | NS              | 1000            | 898                   |
| bis(2-Ethylhexyl)phthalate           | UG/KG         | -               | -               | 66.2 J                |
| Carbazole                            | UG/KG         | -               | -               | 120 J                 |
| Chrysene                             | UG/KG         | NS              | 1000            | 1,360                 |

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Ecological Resources. Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Residential.

Flags assigned during chemistry validation are shown.

><

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

J - The reported concentration is an estimated value. U - Not detected above the reported quantitation limit.

NS - Not Specified

Only Detected Results Reported.

| Locat                           | ion ID    |                 |                 | AR-SB-08              |
|---------------------------------|-----------|-----------------|-----------------|-----------------------|
| Samp                            | ole ID    |                 |                 | AR-SB-08(0.5-         |
| Mat                             | trix      |                 |                 | Soil                  |
| Depth Int                       | erval (ft | :)              |                 | 0.5-1.5               |
| Date Sa                         | ampled    |                 |                 | 04/11/16              |
| Parameter                       | Units     | Criteria<br>(1) | Criteria<br>(2) | Field Duplicate (1-1) |
| Semivolatile Organic Compo      | ounds     |                 |                 |                       |
| Dibenz(a,h)anthracene           | UG/KG     | NS              | 330             | 330                   |
| Dibenzofuran                    | UG/KG     | NS              | 14000           | 22.5 J                |
| Fluoranthene                    | UG/KG     | NS              | 100000          | 2,180                 |
| Fluorene                        | UG/KG     | 30000           | 100000          | 36.1 J                |
| Indeno(1,2,3-cd)pyrene          | UG/KG     | NS              | 500             | 965                   |
| Naphthalene                     | UG/KG     | NS              | 100000          | 24.3 J                |
| Phenanthrene                    | UG/KG     | NS              | 100000          | 664                   |
| Pyrene                          | UG/KG     | NS              | 100000          | 1,810                 |
| Polychlorinated Bipheny         | ls        |                 |                 |                       |
| Aroclor 1248                    | UG/KG     | -               | -               | 44 U                  |
| Aroclor 1254                    | UG/KG     | -               | -               | 54.2 J                |
| Aroclor 1260                    | UG/KG     | -               | -               | 70.4                  |
| Total Polychlorinated Biphenyls | UG/KG     | 1000            | 1000            | 124.6 J               |

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Ecological Resources. Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Residential.

Flags assigned during chemistry validation are shown.

 $\bigcirc$ 

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

 ${\sf J}$  - The reported concentration is an estimated value.  ${\sf U}$  - Not detected above the reported quantitation limit.

NS - Not Specified

Only Detected Results Reported.

#### TABLE 6 SOIL ANALYTICAL RESULTS A&R BUILDING AREA INDUSTRIAL USE CRITERIA

| Location ID                     |       |           | AR-MW-01     | AR-MW-02         | AR-MW-02              | AR-MW-03     | AR-MW-04     |
|---------------------------------|-------|-----------|--------------|------------------|-----------------------|--------------|--------------|
| Sample ID                       |       |           | AR-MW-01-6-7 | AR-MW-02-4.5-5.5 | FD-040416             | AR-MW-03-5-6 | AR-MW-04-5-6 |
| Matrix                          |       |           | Soil         | Soil<br>4.5-5.5  | Soil                  | Soil         | Soil         |
| Depth Interval (                | ft)   |           | 6.0-7.0      |                  | 4.5-5.5               | 5.0-6.0      | 5.0-6.0      |
| Date Sampled                    | ł     |           | 04/04/16     | 04/04/16         | 04/04/16              | 04/05/16     | 04/06/16     |
| Parameter                       | Units | Criteria* |              |                  | Field Duplicate (1-1) |              |              |
| Volatile Organic Compounds      |       |           |              |                  |                       |              |              |
| Acetone                         | UG/KG | 1.00E+06  | 10 UJ        | 23.6 J           | 26.4 J                | 176 J        | 180 J        |
| Benzene                         | UG/KG | 89000     | 0.52 U       | 0.47 U           | 0.45 U                | 0.59         | 1.2          |
| Carbon disulfide                | UG/KG | -         | 5.2 U        | 4.7 U            | 4.5 U                 | 5 U          | 5.6 UJ       |
| Methylene chloride              | UG/KG | 1.00E+06  | 2.1 U        | 0.50 J           | 1.8 U                 | 0.82 J       | 1.3 J        |
| Toluene                         | UG/KG | 1.00E+06  | 5.2 U        | 4.7 U            | 4.5 U                 | 0.49 J       | 0.67 J       |
| Polychlorinated Biphenyls       |       |           |              |                  |                       |              |              |
| Aroclor 1260                    | UG/KG | -         | 40 U         | 24.3 J           | 35 U                  | 40 U         | 34 U         |
| Total Polychlorinated Biphenyls | UG/KG | 25000     | 40 U         | 24.3 J           | 35 U                  | 40 U         | 34 U         |

\*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Industrial.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

Only Detected Results Reported.

#### TABLE 6 SOIL ANALYTICAL RESULTS A&R BUILDING AREA INDUSTRIAL USE CRITERIA

| Location ID                     | AR-MW-05     | AR-MW-06                         |          |          |  |
|---------------------------------|--------------|----------------------------------|----------|----------|--|
| Sample ID                       | AR-MW-05-5-7 | AR-MW-06(5-6)<br>Soil<br>5.0-6.0 |          |          |  |
| Matrix                          | Soil         |                                  |          |          |  |
| Depth Interval (f               | 5.0-7.0      |                                  |          |          |  |
| Date Sampled                    |              |                                  | 04/06/16 | 04/07/16 |  |
| Parameter                       | Criteria*    |                                  |          |          |  |
| Volatile Organic Compounds      |              |                                  |          |          |  |
| Acetone                         | UG/KG        | 1.00E+06                         | 60.4 J   | 77.4 J   |  |
| Benzene                         | UG/KG        | 89000                            | 0.55 U   | 0.47 J   |  |
| Carbon disulfide                | UG/KG        | -                                | 2.5 J    | 0.96 J   |  |
| Methylene chloride              | UG/KG        | 1.00E+06                         | 0.79 J   | 0.47 J   |  |
| Toluene                         | UG/KG        | 1.00E+06                         | 5.5 U    | 0.45 J   |  |
| Polychlorinated Biphenyls       |              |                                  |          |          |  |
| Aroclor 1260                    | UG/KG        | -                                | 43 U     | 39 U     |  |
| Total Polychlorinated Biphenyls | UG/KG        | 25000                            | 43 U     | 39 U     |  |

\*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Industrial.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

Only Detected Results Reported.

| Location ID                 |       | AR-MW-01  | AR-MW-02         | AR-MW-03         | AR-MW-04    | AR-MW-05         |                  |
|-----------------------------|-------|-----------|------------------|------------------|-------------|------------------|------------------|
| Sample ID                   |       |           | AR-MW01          | AR-MW02          | AR-MW03     | AR-MW04          | AR-MW05          |
| Matrix                      |       |           | Groundwater<br>- | Groundwater<br>- | Groundwater | Groundwater<br>- | Groundwater<br>- |
| Depth Interval (ft)         |       | -         |                  |                  |             |                  |                  |
| Date Sampled                |       |           | 04/18/16         | 04/18/16         | 04/18/16    | 04/18/16         | 04/18/16         |
| Parameter                   | Units | Criteria* |                  |                  |             |                  |                  |
| Volatile Organic Compounds  |       |           |                  |                  |             |                  |                  |
| 1,1,1-Trichloroethane       | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| 1,1,2,2-Tetrachloroethane   | UG/L  | 5         | 0.5 U            | 0.5 U            | 0.5 U       | 0.5 U            | 0.5 UJ           |
| 1,1,2-Trichloroethane       | UG/L  | 1         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| 1,1-Dichloroethane          | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| 1,1-Dichloroethene          | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| 1,2-Dichloroethane          | UG/L  | 0.6       | 1 UJ             | 1 UJ             | 1 UJ        | 1 UJ             | 1 U              |
| 1,2-Dichloroethene (cis)    | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| 1,2-Dichloroethene (trans)  | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| 1,2-Dichloropropane         | UG/L  | 1         | 2 U              | 2 U              | 2 U         | 2 U              | 2 U              |
| 1,3-Dichloropropene (cis)   | UG/L  | 0.4       | 0.5 U            | 0.5 U            | 0.5 U       | 0.5 U            | 0.5 U            |
| 1,3-Dichloropropene (trans) | UG/L  | 0.4       | 0.5 UJ           | 0.5 UJ           | 0.5 UJ      | 0.5 UJ           | 0.5 U            |
| 2-Hexanone                  | UG/L  | 50        | 10 U             | 10 U             | 10 U        | 10 U             | 10 U             |
| 4-Methyl-2-pentanone        | UG/L  | -         | 5 U              | 5 U              | 5 U         | 5 U              | 5 U              |
| Acetone                     | UG/L  | 50        | R                | R                | R           | R                | R                |
| Benzene                     | UG/L  | 1         | 0.5 U            | 0.5 U            | 0.5 U       | 0.5 U            | 0.5 U            |
| Bromodichloromethane        | UG/L  | 50        | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| Bromoform                   | UG/L  | 50        | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| Bromomethane                | UG/L  | 5         | 2 UJ             | 2 UJ             | 2 UJ        | 2 UJ             | 2 U              |
| Carbon disulfide            | UG/L  | 60        | 5 U              | 5 U              | 5 U         | 5 U              | 5 U              |
| Carbon tetrachloride        | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| Chlorobenzene               | UG/L  | 5         | 1 U              | 1 U              | 1 U         | 1 U              | 1 U              |
| Chloroethane                | UG/L  | 5         | 2 U              | 2 U              | 2 U         | 2 U              | 2 U              |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                         |       | AR-MW-01         | AR-MW-02         | AR-MW-03    | AR-MW-04         | AR-MW-05         |          |
|-------------------------------------|-------|------------------|------------------|-------------|------------------|------------------|----------|
| Sample ID                           |       |                  | AR-MW01          | AR-MW02     | AR-MW03          | AR-MW04          | AR-MW05  |
| Matrix<br>Depth Interval (ft)       |       | Groundwater<br>- | Groundwater<br>- | Groundwater | Groundwater<br>- | Groundwater<br>- |          |
|                                     |       |                  |                  | -           |                  |                  |          |
| Date Sampled                        |       |                  | 04/18/16         | 04/18/16    | 04/18/16         | 04/18/16         | 04/18/16 |
| Parameter                           | Units | Criteria*        |                  |             |                  |                  |          |
| Volatile Organic Compounds          |       |                  |                  |             |                  |                  |          |
| Chloroform                          | UG/L  | 7                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Chloromethane                       | UG/L  | 5                | 2 U              | 2 U         | 2 U              | 2 U              | 2 UJ     |
| Dibromochloromethane                | UG/L  | 50               | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Ethylbenzene                        | UG/L  | 5                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Methyl ethyl ketone (2-Butanone)    | UG/L  | 50               | R                | R           | R                | R                | R        |
| Methylene chloride                  | UG/L  | 5                | 2 U              | 2 U         | 2 U              | 2 U              | 2 U      |
| Styrene                             | UG/L  | 5                | 5 U              | 5 U         | 5 U              | 5 U              | 5 U      |
| Tetrachloroethene                   | UG/L  | 5                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Toluene                             | UG/L  | 5                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Trichloroethene                     | UG/L  | 5                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Vinyl chloride                      | UG/L  | 2                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Xylene (total)                      | UG/L  | 5                | 1 U              | 1 U         | 1 U              | 1 U              | 1 U      |
| Polychlorinated Biphenyls           |       |                  |                  |             |                  |                  |          |
| Aroclor 1016                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.15 U           | 0.16 U           | 0.16 U   |
| Aroclor 1221                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.16 U           | 0.16 U           | 0.16 U   |
| Aroclor 1232                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.15 U           | 0.16 U           | 0.16 U   |
| Aroclor 1242                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.16 U           | 0.16 U           | 0.16 U   |
| Aroclor 1248                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.15 U           | 0.16 U           | 0.16 U   |
| Aroclor 1254                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.16 U           | 0.16 U           | 0.16 U   |
| Aroclor 1260                        | UG/L  | 0.09             | 0.16 U           | 0.16 U      | 0.15 U           | 0.16 U           | 0.16 U   |
| Dissolved Polychlorinated Biphenyls |       |                  |                  |             |                  |                  |          |
| Aroclor 1016                        | UG/L  | -                | 0.16 U           | 0.16 U      | 0.15 U           | 0.16 U           | 0.16 U   |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Leastion ID                         |       |           | AR-MW-01    | AR-MW-02                     | AR-MW-03    | AR-MW-04    | AR-MW-05                     |
|-------------------------------------|-------|-----------|-------------|------------------------------|-------------|-------------|------------------------------|
| Location ID                         |       |           | -           |                              |             | -           |                              |
| Sample ID                           |       | AR-MW01   | AR-MW02     | AR-MW03                      | AR-MW04     | AR-MW05     |                              |
| Matrix                              |       |           | Groundwater | Groundwater<br>-<br>04/18/16 | Groundwater | Groundwater | Groundwater<br>-<br>04/18/16 |
| Depth Interval (ft                  | :)    |           | -           |                              | -           | -           |                              |
| Date Sampled                        |       |           | 04/18/16    |                              | 04/18/16    | 04/18/16    |                              |
| Parameter                           | Units | Criteria* |             |                              |             |             |                              |
| Dissolved Polychlorinated Biphenyls |       |           |             |                              |             |             |                              |
| Aroclor 1221                        | UG/L  | -         | 0.16 U      | 0.16 U                       | 0.16 U      | 0.16 U      | 0.16 U                       |
| Aroclor 1232                        | UG/L  | -         | 0.16 U      | 0.16 U                       | 0.15 U      | 0.16 U      | 0.16 U                       |
| Aroclor 1242                        | UG/L  | -         | 0.16 U      | 0.16 U                       | 0.16 U      | 0.16 U      | 0.16 U                       |
| Aroclor 1248                        | UG/L  | -         | 0.16 U      | 0.16 U                       | 0.16 U      | 0.16 U      | 0.16 U                       |
| Aroclor 1254                        | UG/L  | -         | 0.16 U      | 0.16 U                       | 0.16 U      | 0.16 U      | 0.16 U                       |
| Aroclor 1260                        | UG/L  | -         | 0.16 U      | 0.16 U                       | 0.15 U      | 0.16 U      | 0.16 U                       |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                 |       | AR-MW-06    | AR-SB-02    | AR-SB-04               |        |
|-----------------------------|-------|-------------|-------------|------------------------|--------|
| Sample ID                   |       | AR-MW06     | AR-SB02     | AR-SB04<br>Groundwater |        |
| Matrix                      |       | Groundwater | Groundwater |                        |        |
| Depth Interval (f           | t)    | -           | -           | -                      |        |
| Date Sampled                |       | 04/18/16    | 04/18/16    | 04/18/16               |        |
| Parameter                   | Units | Criteria*   |             |                        |        |
| Volatile Organic Compounds  |       |             |             |                        |        |
| 1,1,1-Trichloroethane       | UG/L  | 5           | 1 U         | 1 U                    | 1 U    |
| 1,1,2,2-Tetrachloroethane   | UG/L  | 5           | 0.5 U       | 0.5 U                  | 0.5 U  |
| 1,1,2-Trichloroethane       | UG/L  | 1           | 1 U         | 1 U                    | 1 U    |
| 1,1-Dichloroethane          | UG/L  | 5           | 0.98 J      | 1 U                    | 1 U    |
| 1,1-Dichloroethene          | UG/L  | 5           | 1.6         | 1 U                    | 1 U    |
| 1,2-Dichloroethane          | UG/L  | 0.6         | 1 UJ        | 1 UJ                   | 1 UJ   |
| 1,2-Dichloroethene (cis)    | UG/L  | 5           | 393         | 1 U                    | 0.52 J |
| 1,2-Dichloroethene (trans)  | UG/L  | 5           | 1 U         | 1 U                    | 1 U    |
| 1,2-Dichloropropane         | UG/L  | 1           | 2 U         | 2 U                    | 2 U    |
| 1,3-Dichloropropene (cis)   | UG/L  | 0.4         | 0.5 U       | 0.5 U                  | 0.5 U  |
| 1,3-Dichloropropene (trans) | UG/L  | 0.4         | 0.5 UJ      | 0.5 UJ                 | 0.5 UJ |
| 2-Hexanone                  | UG/L  | 50          | 10 U        | 10 U                   | 10 U   |
| 4-Methyl-2-pentanone        | UG/L  | -           | 5 U         | 5 U                    | 5 U    |
| Acetone                     | UG/L  | 50          | R           | R                      | R      |
| Benzene                     | UG/L  | 1           | 0.5 U       | 0.5 U                  | 0.5 U  |
| Bromodichloromethane        | UG/L  | 50          | 1 U         | 1 U                    | 1 U    |
| Bromoform                   | UG/L  | 50          | 1 U         | 1 U                    | 1 U    |
| Bromomethane                | UG/L  | 5           | 2 UJ        | 2 UJ                   | 2 UJ   |
| Carbon disulfide            | UG/L  | 60          | 5 U         | 5 U                    | 5 U    |
| Carbon tetrachloride        | UG/L  | 5           | 1 U         | 1 U                    | 1 U    |
| Chlorobenzene               | UG/L  | 5           | 1 U         | 1 U                    | 1 U    |
| Chloroethane                | UG/L  | 5           | 2 U         | 2 U                    | 2 U    |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                         |       | AR-MW-06    | AR-SB-02    | AR-SB-04                                |         |
|-------------------------------------|-------|-------------|-------------|-----------------------------------------|---------|
| Sample ID                           |       | AR-MW06     | AR-SB02     | AR-SB04<br>Groundwater<br>-<br>04/18/16 |         |
| Matrix                              |       | Groundwater | Groundwater |                                         |         |
| Depth Interval (ft                  | )     | -           | -           |                                         |         |
| Date Sampled                        |       | 04/18/16    | 04/18/16    |                                         |         |
| Parameter                           | Units | Criteria*   |             |                                         |         |
| Volatile Organic Compounds          |       |             |             |                                         |         |
| Chloroform                          | UG/L  | 7           | 1 U         | 1 U                                     | 1 U     |
| Chloromethane                       | UG/L  | 5           | 2 U         | 2 U                                     | 2 U     |
| Dibromochloromethane                | UG/L  | 50          | 1 U         | 1 U                                     | 1 U     |
| Ethylbenzene                        | UG/L  | 5           | 1 U         | 1 U                                     | 1 U     |
| Methyl ethyl ketone (2-Butanone)    | UG/L  | 50          | R           | R                                       | R       |
| Methylene chloride                  | UG/L  | 5           | 2 U         | 2 U                                     | 2 U     |
| Styrene                             | UG/L  | 5           | 5 U         | 5 U                                     | 5 U     |
| Tetrachloroethene                   | UG/L  | 5           | 0.61 J      | 1 U                                     | 1 U     |
| Toluene                             | UG/L  | 5           | 6.4         | 1 U                                     | 1 U     |
| Trichloroethene                     | UG/L  | 5           | 91.0        | 1 U                                     | 1 U     |
| Vinyl chloride                      | UG/L  | 2           | 16.0        | 1 U                                     | 1 U     |
| Xylene (total)                      | UG/L  | 5           | 1 U         | 1 U                                     | 1 U     |
| Polychlorinated Biphenyls           |       |             |             |                                         |         |
| Aroclor 1016                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.16 U  |
| Aroclor 1221                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.16 U  |
| Aroclor 1232                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.16 U  |
| Aroclor 1242                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.16 U  |
| Aroclor 1248                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.16 U  |
| Aroclor 1254                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.063 J |
| Aroclor 1260                        | UG/L  | 0.09        | 0.16 U      | 0.16 U                                  | 0.16 U  |
| Dissolved Polychlorinated Biphenyls |       |             |             |                                         |         |
| Aroclor 1016                        | UG/L  | -           | 0.16 U      | 0.16 U                                  | 0.16 U  |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

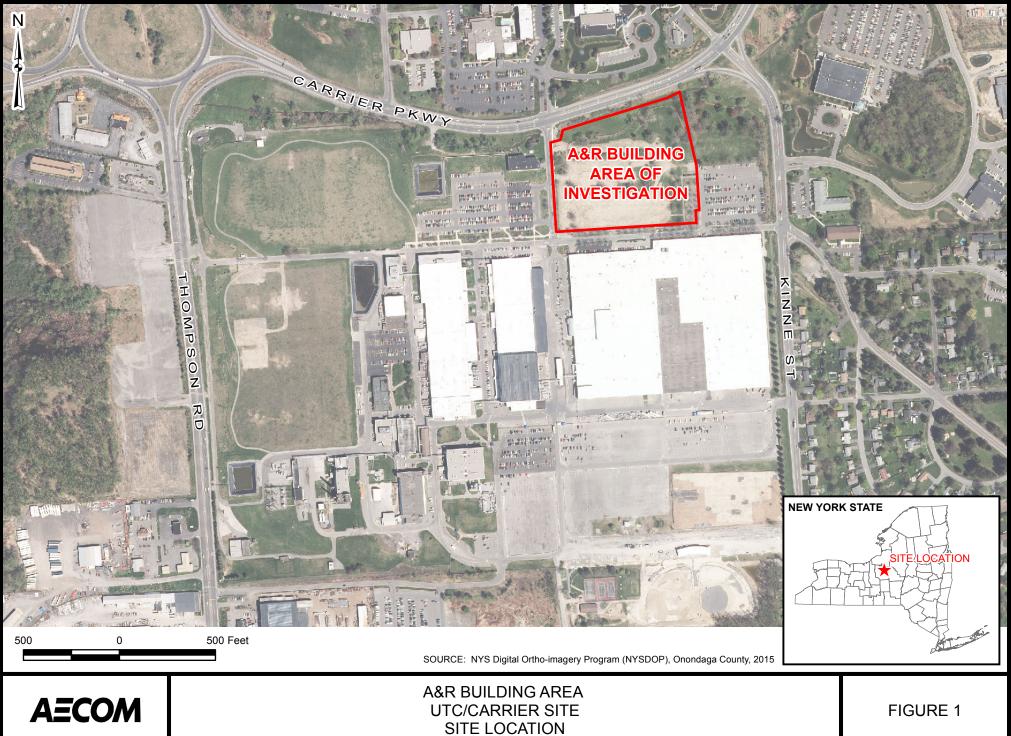
J - The reported concentration is an estimated value.

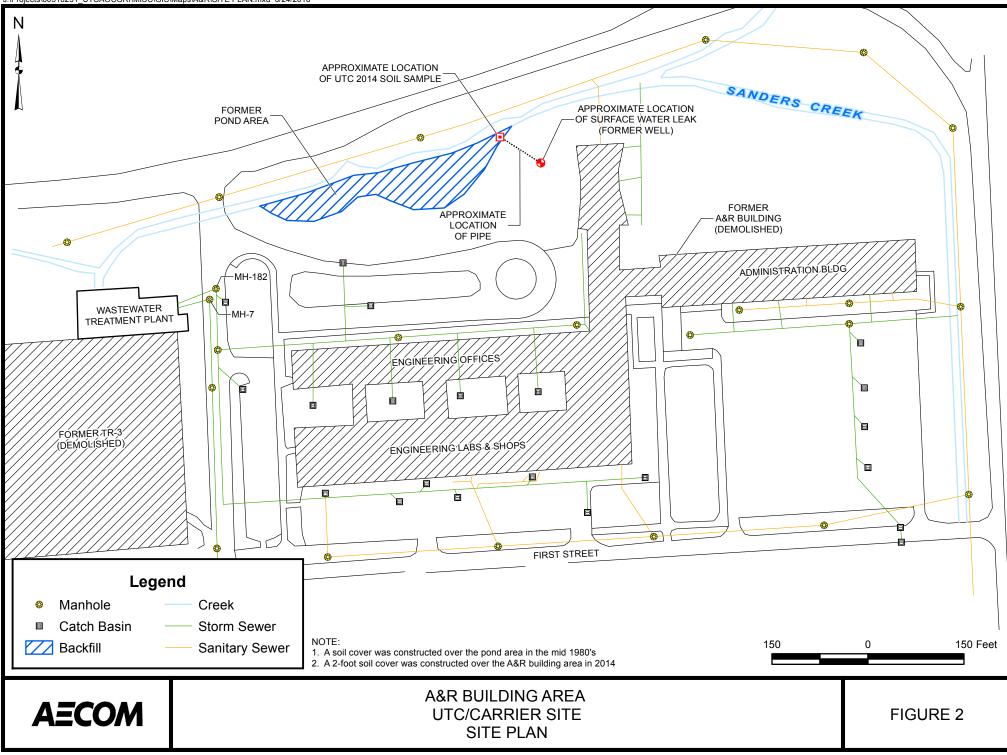
UJ - Not detected. The reported quantitation limit is an estimated value.

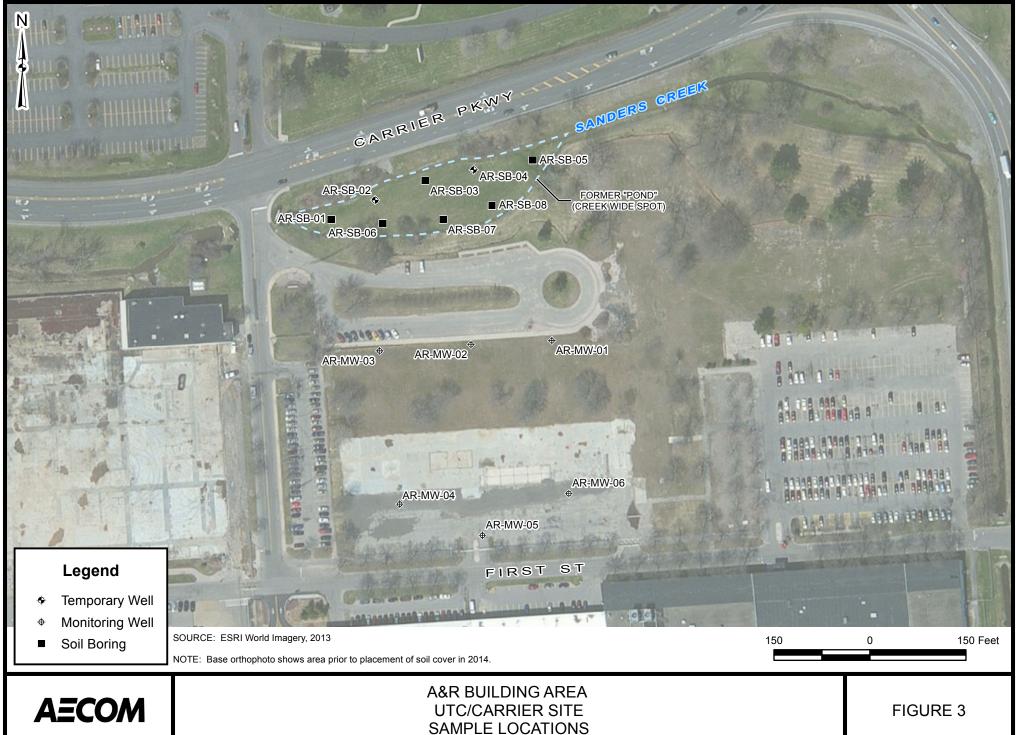
| Location ID                         |       | AR-MW-06  | AR-SB-02    | AR-SB-04    |             |  |
|-------------------------------------|-------|-----------|-------------|-------------|-------------|--|
| Sample ID                           |       | AR-MW06   | AR-SB02     | AR-SB04     |             |  |
| Matrix                              |       |           | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft                  | :)    | -         | -           | -           |             |  |
| Date Sampled                        |       |           | 04/18/16    | 04/18/16    | 04/18/16    |  |
| Parameter                           | Units | Criteria* |             |             |             |  |
| Dissolved Polychlorinated Biphenyls |       |           |             |             |             |  |
| Aroclor 1221                        | UG/L  | -         | 0.16 U      | 0.16 U      | 0.16 U      |  |
| Aroclor 1232                        | UG/L  | -         | 0.16 U      | 0.16 U      | 0.16 U      |  |
| Aroclor 1242                        | UG/L  | -         | 0.16 U      | 0.16 U      | 0.16 U      |  |
| Aroclor 1248                        | UG/L  | -         | 0.16 U      | 0.16 U      | 0.16 U      |  |
| Aroclor 1254                        | UG/L  | -         | 0.16 U      | 0.16 U      | 0.063 J     |  |
| Aroclor 1260                        | UG/L  | -         | 0.16 U      | 0.16 U      | 0.16 U      |  |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

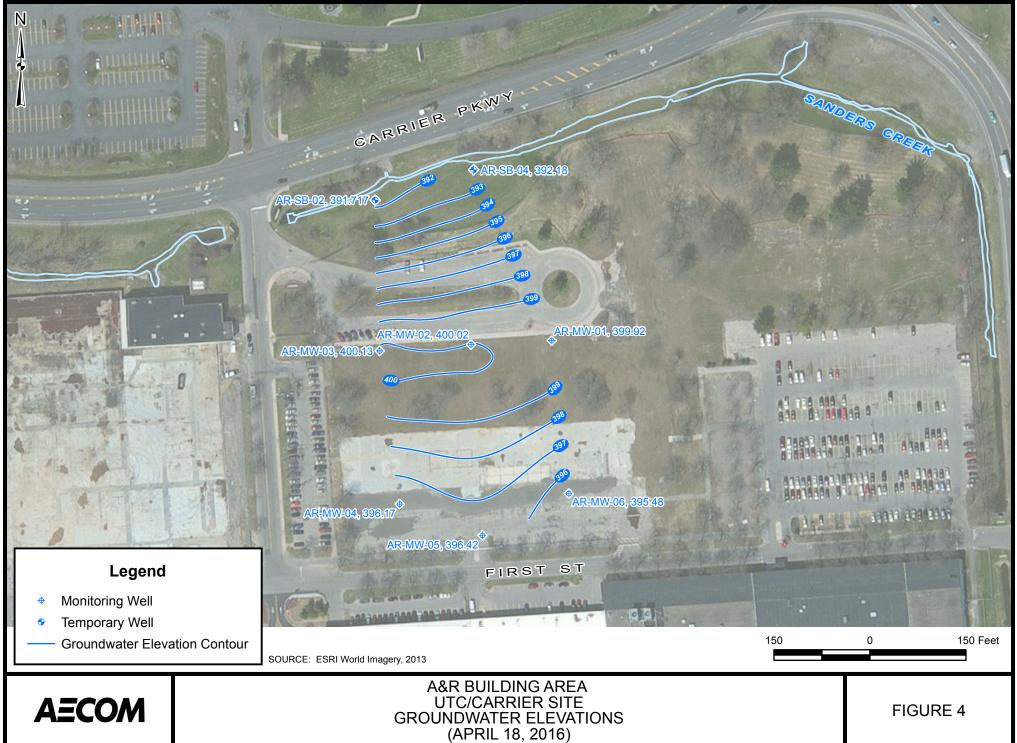
Flags assigned during chemistry validation are shown.


Concentration Exceeds Criteria

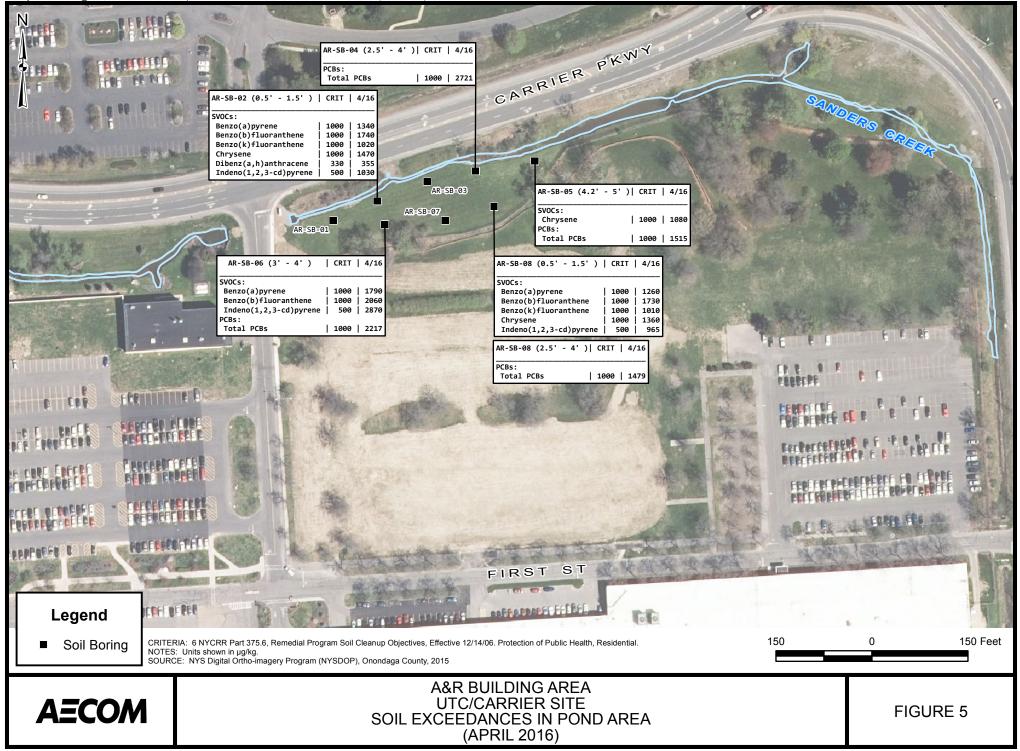

U - Not detected above the reported quantitation limit.


J - The reported concentration is an estimated value.

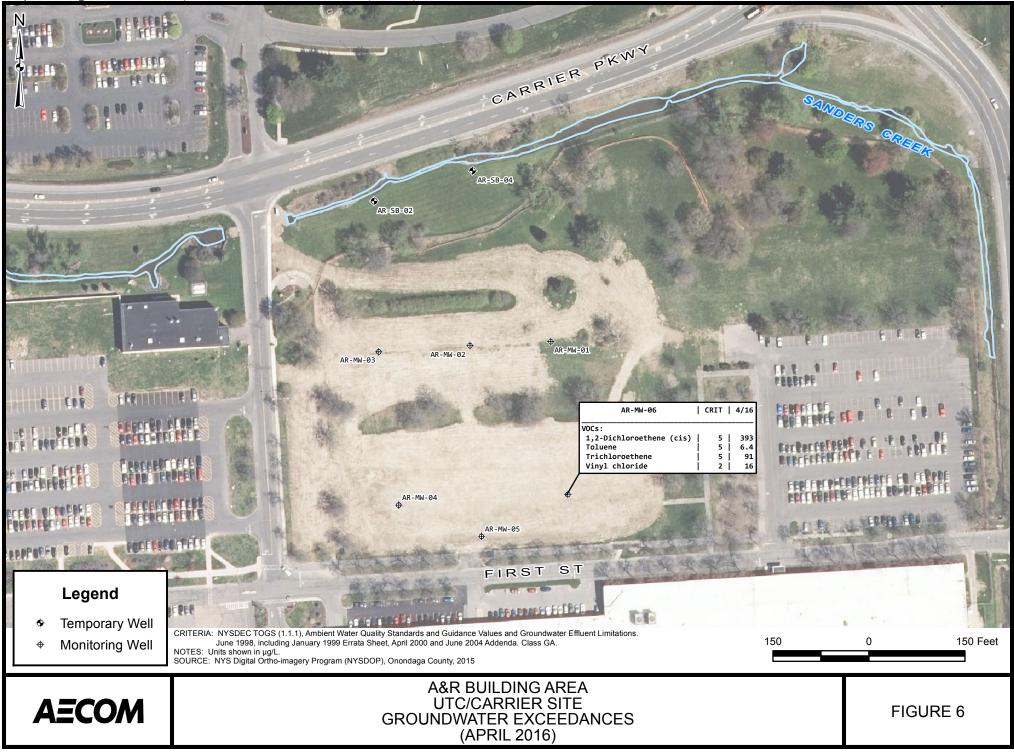
UJ - Not detected. The reported quantitation limit is an estimated value.


**Figures** 









J:\Projects\60310231\_UTCAOCGRI\MISC\GIS\Maps\A&R\GROUNDWATER ELEVATIONS (20160418).mxd 7/8/2016



J:\Projects\60310231 UTCAOCGRI\MISC\GIS\Maps\A&R\SOIL ANALYTICAL RESULTS - POND AREA (APRIL 2016).mxd 6/24/2016



J:\Projects\60310231 UTCAOCGRI\MISC\GIS\Maps\A&R\GROUNDWATER ANALYTICAL RESULTS (APRIL 2016).mxd 6/24/2016



### Appendix A

# **Boring/Well Construction Logs**

|               |                                              |           |          | 4          | <b>E</b> C |       | M                         |                    |               |           | BORING NO.             |                  | BORING L                                            | OG            |
|---------------|----------------------------------------------|-----------|----------|------------|------------|-------|---------------------------|--------------------|---------------|-----------|------------------------|------------------|-----------------------------------------------------|---------------|
|               | CT/PROJE                                     |           |          |            |            |       | uilding                   |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       | unaing                    |                    |               |           | SHEET: 1<br>JOB NO.: 6 | OF 1             |                                                     |               |
| CLIEN         |                                              |           |          |            | JTC        |       |                           |                    |               |           |                        |                  |                                                     | F 4 4 1 0 C 0 |
| -             | G CONTR                                      |           |          | ŀ          | Parrat     | t-woi |                           |                    |               |           | NORTHING: 1            |                  |                                                     | 54418.68      |
|               |                                              |           |          |            |            |       | CAS                       |                    | CORE          | TUBE      | GROUND EL              |                  | 404.06                                              |               |
| DATE          | TIME                                         | LEV       | EL       | TYF        | PE         | TYP   |                           |                    |               |           | DATE START             |                  | 4/4/16                                              |               |
|               |                                              |           |          |            |            | DIA.  |                           | 4" 2"              |               |           | DATE FINISH            | IED:             | 4/4/16                                              |               |
|               |                                              | _         |          |            |            | WT.   |                           |                    |               |           | DRILLER:               |                  | Jolaan Price                                        |               |
|               |                                              |           |          |            |            | FAL   | L                         |                    |               |           | GEOLOGIST              |                  | Rob Murphy                                          |               |
|               |                                              |           |          |            |            |       | * POCKE                   |                    | R READIN      | G         | REVIEWED E             | BY:              | Kevin Connare                                       |               |
| DEDTU         |                                              | S         | AMPLE    |            |            |       | PID                       |                    |               |           |                        |                  |                                                     |               |
| DEPTH<br>FEET | STRATA                                       | DEPTH     |          | OW<br>JNTS | RECO<br>(% |       | DIRECT/<br>HEAD-<br>SPACE |                    |               |           |                        | CON              | WELL<br>STRUCTION                                   | REMARKS       |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| 0             | · <u>· · · ·</u>                             | 0-5       |          |            | N          | A     | ND                        | Brown Clayey SIL   | T with cobble | s (ML)    |                        | Xet              |                                                     |               |
| -             | · · · · · ·                                  |           |          |            |            |       |                           |                    |               | - ()      |                        |                  | X                                                   | Moist         |
| _             |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  | Hole Plug                                           |               |
| _             |                                              |           |          |            |            |       |                           | Brown Clayey SIL   | Г (ML)        |           |                        | $ // \downarrow$ | (0.5-4.0')                                          |               |
|               | · <u>· · · · · ·</u>                         |           |          |            |            |       |                           |                    |               |           |                        |                  | 2" PVC<br>Riser (0'-                                |               |
|               | <u> </u>                                     |           |          |            |            |       |                           |                    |               |           |                        |                  | 5')                                                 |               |
| -5—           |                                              | 5-8       |          |            | 10         | 00    | ND                        | Gray Brown Silty C | CLAY (CL)     |           |                        |                  |                                                     |               |
| _             |                                              |           |          |            |            |       |                           | Brown Silty CLAY   | (CL)          |           |                        |                  |                                                     |               |
| _             | • • • •                                      |           |          |            |            |       |                           | Brown Silty Fine S | AND (SM)      |           |                        |                  |                                                     | Wet @ 7.0'.   |
| -             |                                              | 8-12      |          |            | 10         | 00    | ND                        | Brown Fine Sandy   | SILT (ML)     |           | /                      |                  |                                                     |               |
| _             |                                              |           |          |            |            |       |                           | Brown Silty CLAY,  | trace fine gr | avel (CL) |                        |                  |                                                     |               |
| -10 —         | · · · · · ·                                  |           |          |            |            |       |                           | Brown Fine Sandy   | SILT, some    | clay (ML) |                        |                  | → NJ #0 US<br>Silica (4'-                           |               |
| _             | · <u> ·</u>                                  | -         |          |            |            |       |                           |                    |               |           |                        |                  | 16')                                                |               |
|               | <u>.                                    </u> | -         |          |            |            |       |                           |                    |               |           |                        |                  | 10-slot 2"<br>PVC                                   |               |
|               | · <u>· · · · ·</u>                           | 12-16     |          |            | 10         | 00    | ND                        | Brown SILT, some   | fine sand (N  | L)        |                        |                  | screen<br>(5'-15')                                  |               |
| _             | · · · · · ·                                  |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| _             | · <u> </u>                                   |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| -15           |                                              |           |          |            |            |       |                           | Gray Silty CLAY (  | CL)           |           |                        |                  | ·····]<br>──── Natural<br>── <del>──Collapse,</del> |               |
| _             |                                              |           |          |            |            |       |                           | End of boring @ 1  | 6.0'          |           |                        |                  | Did not<br>Auger.                                   |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| -20 —         |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| -             |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| -             |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| _             |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| _             |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| -25 —         |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
| COMM          | IENTS: Bo                                    | ring hand | d clear  | ed to      | 5' bgs     | then  | advanced                  | d with track mou   | nted Geop     | probe 67  | 12 DT rig.             |                  |                                                     |               |
| Collec        | cted sample                                  | e from 6- | 7' for a | analys     | is of V    | 'OCs  | and PCB                   | s                  |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     |               |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        | BORING           | NO.: ARMW                                           | /-01          |
|               |                                              |           |          |            |            |       |                           |                    |               |           |                        |                  |                                                     | ••            |

|       |                      |           |         |            | -/     | 70     | M                |                 |                  |              |                    | TEST BORING L           | .OG         |
|-------|----------------------|-----------|---------|------------|--------|--------|------------------|-----------------|------------------|--------------|--------------------|-------------------------|-------------|
|       |                      |           |         |            |        |        |                  |                 |                  |              | BORING NO.         | : ARMW-02               |             |
| -     | CT/PROJE             | ECT LOC   | OITAC   |            |        | A&R B  | uilding          |                 |                  |              | SHEET: 1           | OF 1                    |             |
| CLIEN | Г:                   |           |         |            | JTC    |        |                  |                 |                  |              | <b>JOB NO.</b> : 6 |                         |             |
|       | G CONTR              |           |         | F          | Parra  | tt-Wol |                  |                 |                  |              | NORTHING: 1        |                         | 954292.16   |
| GROUI |                      | :         |         |            |        |        | CA               |                 | R CORE           | TUBE         | GROUND EL          |                         |             |
| DATE  | TIME                 | LEV       | EL      | TYF        | ΡE     | TYP    |                  |                 | •                |              | DATE START         |                         |             |
|       |                      | _         |         |            |        | DIA.   | . 41/            | 4" 2"           |                  |              | DATE FINISH        |                         |             |
|       |                      | _         |         |            |        | WT.    |                  |                 |                  |              | DRILLER:           | Jolaan Price            |             |
|       |                      |           |         |            |        | FAL    | L                |                 |                  |              | GEOLOGIST          |                         |             |
|       |                      |           |         |            |        |        | * POCKE          |                 | TER READI        | NG           | REVIEWED E         | BY: Kevin Connar        | e<br>       |
| DEPTH |                      | s         | AMPLE   |            |        |        | PID              |                 | МА               | TERIAL       |                    | WELL                    |             |
| FEET  | STRATA               | DEPTH     |         | OW<br>JNTS |        |        | DIRECT/<br>HEAD- |                 |                  | RIPTION      |                    | CONSTRUCTION            | REMARKS     |
|       |                      |           |         |            | (%     | %)     | SPACE            |                 |                  |              |                    |                         |             |
| 0     |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| 0     | · · · · · · · ·      | 0-4       |         |            | Ν      | IA     | ND               | Brown Clayey    | SILT with grave  | I (ML)       |                    |                         | Moist       |
|       | · <u>· · · · ·</u>   | -         |         |            |        |        |                  |                 |                  |              |                    | Hole Plug               |             |
| -     | · <u>···</u> ·       |           |         |            |        |        |                  | Brown Clayey    | SILT, trace grav | el (ML)      |                    | (0.5-3.0')              |             |
| -     | · <u>· · · · · ·</u> | -         |         |            |        |        |                  |                 |                  |              |                    | 2" PVC<br>Riser (0'-    |             |
| -     |                      | 4-8       |         |            | ę      | 90     | ND               | Brown to Gray   | Brown Silty CL   | AY. some fir |                    | 4')                     |             |
| -5    |                      |           |         |            |        |        |                  |                 |                  | ,            | (. ,               |                         |             |
| -     | · · · · · ·          |           |         |            |        |        |                  | Gray brown Fir  | e Sandy SILT     | (ML)         |                    |                         | Wet @ 5.5'. |
| _     | · <u>···</u> ··      |           |         |            |        |        |                  | Brown Clayey    | SILT, interbedd  | ed with Fine | Sandy SILT (ML)    |                         |             |
| _     | · ·                  | 0.40      |         |            |        |        | ND               |                 |                  |              |                    |                         |             |
|       |                      | 8-12      |         |            |        | 90     | ND               | Brown Silty CL  | AY (CL)          |              |                    | NJ #0 US<br>Silica (3'- |             |
| -10   | <u></u>              |           |         |            |        |        |                  | Brown Clavey    |                  | - <b></b>    | Sandy SILT (ML)    | 14')                    |             |
| -10   | <u>·····</u> ···     |           |         |            |        |        |                  | Drown Glayey    | JET, Interbedu   |              | Galidy GIET (ME)   | 10-slot 2"<br>PVC       |             |
|       |                      |           |         |            |        |        |                  | Brown Silty Fir | e SAND (SM)      |              |                    | screen<br>(4'-14')      |             |
| -     |                      | 12-16     |         |            | 1      | 00     | ND               | Brown Gray Fi   | e SAND (SP)      |              |                    |                         |             |
| -     |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| -     | · <u></u> · <u></u>  |           |         |            |        |        |                  | Brown Gray SI   | T, grades to S   | ilty CLAY, p | lastic (ML/CL)     |                         |             |
| -15 — | · <u></u> · <u></u>  |           |         |            |        |        |                  |                 |                  |              |                    | Natural<br>Collapse-    |             |
| -     | · · -                |           |         |            |        |        |                  | End of boring ( | 2 10 0           |              |                    | Did not                 |             |
| _     |                      |           |         |            |        |        |                  | End of boring ( | <i>v</i> 16.0    |              |                    | Auger                   |             |
| _     |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| -20   |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| -20   |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| -     |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| -     |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| -25 — |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
| COMM  | ENTS: Bo             | ring hand | d clear | ed to      | 4' bgs | s then | advance          | d with track m  | ounted Geo       | probe 67     | 12 DT rig.         |                         |             |
|       | cted sample          |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         |             |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    | BORING NO. : ARMV       | 1.02        |
|       |                      |           |         |            |        |        |                  |                 |                  |              |                    |                         | v-U2        |

|               |                        |           | Δ             | =(       | 77           | M                         |                                           |                |            |                    |        | BORING L                              | OG          |
|---------------|------------------------|-----------|---------------|----------|--------------|---------------------------|-------------------------------------------|----------------|------------|--------------------|--------|---------------------------------------|-------------|
|               |                        |           |               |          |              |                           |                                           |                |            | BORING NO.         |        | 3                                     |             |
|               | CT/PROJI               | ECT LOC   | ATION:        |          |              | Building                  |                                           |                |            | SHEET: 1           | OF 1   |                                       |             |
| CLIEN         |                        |           |               | UTC      |              |                           |                                           |                |            | <b>JOB NO.</b> : 6 |        |                                       |             |
|               | G CONTR                |           |               | Parra    | att-Wol      |                           |                                           | 1              |            | NORTHING: 1        |        | EASTING: 9                            | 54149.74    |
| GROUI         |                        | :         |               |          | 1            | CAS                       |                                           | CORE           | TUBE       | GROUND EL          |        | 403.68                                |             |
| DATE          | TIME                   | LEV       | EL 1          | TYPE     | TYP          | PE HS                     | A Macrocore                               |                |            | DATE START         |        | 4/4/16                                |             |
|               |                        |           |               |          | DIA          | . 41/4                    | 4" 2"                                     |                |            | DATE FINISH        | IED:   | 4/5/16                                |             |
|               |                        | _         |               |          | WT.          |                           |                                           |                |            | DRILLER:           |        | Jolaan Price                          |             |
|               |                        |           |               |          | FAL          | .L                        |                                           |                |            | GEOLOGIST          |        | Rob Murphy                            |             |
|               |                        |           |               |          |              | * POCKE                   |                                           |                | G          | REVIEWED E         | BY:    | Kevin Connare                         |             |
| DEDTU         |                        | S         | AMPLE         |          |              | PID                       |                                           |                |            |                    |        |                                       |             |
| DEPTH<br>FEET | STRATA                 | DEPTH     | BLOW<br>COUNT | ~        | OVERY<br>(%) | DIRECT/<br>HEAD-<br>SPACE |                                           |                | ERIAL      |                    |        | WELL                                  | REMARKS     |
|               |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| 0             |                        | 0-5       |               |          | NA           | ND                        | Brown Clayey SIL                          | and GRAV       | EL (FILL)  |                    |        |                                       |             |
| -             | $\times$               |           |               |          |              |                           |                                           |                | ( )        |                    |        |                                       | Moist       |
| _             | $\times \times \times$ |           |               |          |              |                           |                                           |                |            |                    |        | Hole Plug<br>(0.5-3.0')               |             |
|               | $\bigotimes$           |           |               |          |              |                           | Brown Clayey SIL                          | I, trace brick | and concre | te (FILL)          |        | 2" PVC                                |             |
|               | $\boxtimes$            |           |               |          |              |                           |                                           |                |            |                    |        | Riser (0'-                            |             |
| -5            | $\boxtimes$            | 1         |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -5            |                        | 5-8       |               |          | 43           | ND                        | Brown to Gray Bro<br>sand, trace fine gra | wn Clayey S    | LT, some r | nedium to coarse   |        |                                       | Wet @ 6.0'. |
|               | <u> </u>               |           |               |          |              |                           | No Recovery - Pus                         | . ,            |            |                    |        | · · · · · · · · · · · · · · · · · · · |             |
| -             |                        |           |               |          |              |                           | No riccovery ruc                          |                |            |                    |        |                                       |             |
| -             |                        | 8-12      |               |          | 100          | ND                        | Gray brown Clayey                         | / SILT to Silt | CLAY. tra  | ce sand (ML/CL)    |        | ↔<br>→ NJ #0 US                       |             |
| -             |                        |           |               |          |              |                           |                                           |                |            |                    |        | Silica (3'-                           |             |
| -10 —         |                        |           |               |          |              |                           |                                           |                |            |                    |        | 14')<br>10-slot 2"                    |             |
| _             |                        |           |               |          |              |                           | Brown fine SAND                           |                |            |                    |        | PVC                                   |             |
|               |                        |           |               |          |              |                           | _                                         |                |            |                    |        | (4'-14')                              |             |
|               |                        | 12-16     |               |          | 100          | ND                        |                                           |                |            |                    |        |                                       |             |
|               | :-:-:-                 |           |               |          |              |                           | Gray Silty Fine SA                        | ND (SM)        |            |                    |        |                                       |             |
|               | ·.·.·                  |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -15 —         |                        |           |               |          |              |                           | Gray Silty CLAY (0                        |                |            |                    |        | — Natural<br>Collapse-                |             |
| -             |                        |           |               |          |              |                           | End of boring @ 1                         |                |            |                    |        | Did not<br>Auger                      |             |
| -             |                        |           |               |          |              |                           |                                           |                |            |                    |        | Auger                                 |             |
| _             |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
|               |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -20           |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -20           |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
|               |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -             |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -             |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -             |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| -25           |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
|               |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
| COMM          |                        | ring bond | lolograd      | to 5' ho | ne ther      | advanac                   | d with track mou                          | nted Coo       | vrobo 67   | 12 DT ria          |        |                                       |             |
|               | cted sample            |           |               |          |              |                           |                                           | meu Geop       | 1006.01    | 12 DT 119.         |        |                                       |             |
|               | neu sample             |           | o ioi ana     | 19515 01 | voos         |                           | 3                                         |                |            |                    |        |                                       |             |
|               |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
|               |                        |           |               |          |              |                           |                                           |                |            |                    |        |                                       |             |
|               |                        |           |               |          |              |                           |                                           |                |            |                    | BORING | NO.: ARMW                             | -03         |

|               |                                       |         | Δ              | =/     | 7           | М                         |                    |                |               |                    | TEST BORING L                                        | OG          |
|---------------|---------------------------------------|---------|----------------|--------|-------------|---------------------------|--------------------|----------------|---------------|--------------------|------------------------------------------------------|-------------|
|               |                                       |         |                |        |             |                           |                    |                |               | BORING NO.         | : ARMW-04                                            |             |
| PROJE         | CT/PROJE                              | ECT LOC | ATION:         | UTC A  | A&R B       | uilding                   |                    |                |               | SHEET: 1           | OF 1                                                 |             |
| CLIEN         | Г:                                    |         |                | UTC    |             |                           |                    |                |               | <b>JOB NO</b> .: 6 | 0428933                                              |             |
| BORIN         | G CONTR                               | ACTOR:  |                | Parrat | tt-Wol      | ff                        |                    |                |               | NORTHING: 1        | 124515.46 <b>EASTING:</b> 6                          | 54180.87    |
| GROUI         | NDWATER                               | :       |                |        |             | CAS                       | SAMPLER            | CORE           | TUBE          | GROUND ELI         | EVATION: 404.94                                      |             |
| DATE          | TIME                                  | LEV     | EL T           | /PE    | ТҮР         | E HSA                     | Macrocore          |                |               | DATE START         | <b>ED:</b> 4/6/16                                    |             |
|               |                                       |         |                |        | DIA.        | . 4 1/4                   | l" 2"              |                |               | DATE FINISH        | IED: 4/6/16                                          |             |
|               |                                       |         |                |        | WT.         |                           |                    |                |               | DRILLER:           | Jolaan Price                                         |             |
|               |                                       |         |                |        | FAL         | L                         |                    |                |               | GEOLOGIST          | Rob Murphy                                           |             |
|               |                                       |         |                |        |             | * POCKET                  | PENETROMETE        | R READIN       | G             | REVIEWED B         | SY: Kevin Connare                                    |             |
|               |                                       | s       | AMPLE          | 1      |             | PID                       |                    |                |               |                    |                                                      |             |
| DEPTH<br>FEET | STRATA                                | DEPTH   | BLOW<br>COUNTS |        | OVERY<br>6) | DIRECT/<br>HEAD-<br>SPACE |                    |                | ERIAL         |                    | WELL<br>CONSTRUCTION                                 | REMARKS     |
| 0             | $\bigotimes$                          | 0-4     |                | N      | IA          | ND                        | Brown Clayey SIL1  | 「, some grav   | el (FILL)     |                    |                                                      | Moist       |
| -             |                                       |         |                |        |             |                           | Dark Gray GRAVE    | L, with brick, | metal, and    | concrete (FILL)    | Hole Plug<br>(0.5-3.0')<br>2" PVC<br>Riser (0'-      |             |
| -5            |                                       | 4-8     |                | 6      | 3           | ND                        | Gray Brown Grave   | IIy SILT (ML)  |               |                    | 4')                                                  |             |
| _             |                                       | 8-12    |                | 8      | 8           | ND                        | No Recovery - Pus  |                |               |                    |                                                      | Wet @ 6.5'. |
| -<br>-10 —    |                                       |         |                |        |             |                           | Brown Fine Sandy   |                |               |                    | NJ #0 US<br>Silica (3'-<br>14')<br>10-slot 2"<br>PVC |             |
| _             | · · · · · · · · · · · · · · · · · · · | 12-16   |                | 10     | 00          | ND                        | Red Brown Silty Fi |                |               |                    | screen<br>(4'-14')                                   |             |
| _             |                                       |         |                |        |             |                           | Gray Silty CLAY (C |                | assional silt |                    |                                                      |             |
| -15 —         |                                       |         |                |        |             |                           | (SM)               |                |               | ~                  | Natural<br>Collapse-                                 |             |
| -             |                                       |         |                |        |             |                           | Gray Silty CLAY (C |                |               |                    | Did not                                              |             |
| -<br>-<br>-20 |                                       |         |                |        |             |                           | End of boring @ 16 | 5.0            |               |                    | Auger                                                |             |
| -20 -         |                                       |         |                |        |             |                           |                    |                |               |                    |                                                      |             |
|               |                                       |         |                |        |             |                           |                    |                |               |                    |                                                      |             |
| -25 —         | L                                     | ·1      |                |        |             |                           |                    |                |               |                    |                                                      |             |
|               | ENTS: Bor                             |         |                |        |             |                           | l with track mou   | nted Geop      | orobe 67      | 12 DT rig.         |                                                      |             |
|               |                                       |         |                |        |             |                           |                    |                |               |                    |                                                      |             |
|               |                                       |         |                |        |             |                           |                    |                |               |                    | BORING NO. : ARMW                                    | -04         |

|               |                   |           |             |         | CC             | M                         |                     |               |                   |                        | TEST BORING L           | OG          |
|---------------|-------------------|-----------|-------------|---------|----------------|---------------------------|---------------------|---------------|-------------------|------------------------|-------------------------|-------------|
|               | CT/PROJE          |           |             |         |                |                           |                     |               |                   |                        | : ARMW-05               |             |
| CLIEN         |                   |           | ATION       | . U1    |                | unung                     |                     |               |                   | SHEET: 1<br>JOB NO.: 6 | OF 1<br>0428933         |             |
|               | G CONTR           |           |             | -       | arratt-Wol     | ff                        |                     |               |                   | NORTHING: 1            |                         | 54310.19    |
|               | NDWATER           |           |             |         |                | CAS                       | S. SAMPLER          | CORE          | TUBE              | GROUND EL              |                         |             |
| DATE          | ТІМЕ              | LEV       | EL          | ТҮРЕ    | ТҮР            |                           |                     |               |                   | DATE START             |                         |             |
|               |                   |           |             |         | DIA            |                           | 4" 2"               |               |                   | DATE FINISH            | <b>IED:</b> 4/6/16      |             |
|               |                   |           |             |         | WT.            |                           |                     |               |                   | DRILLER:               | Jolaan Price            |             |
|               |                   |           |             |         | FAL            | L                         |                     |               |                   | GEOLOGIST              | : Rob Murphy            |             |
|               |                   |           |             |         |                | * POCKE                   |                     | R READIN      | G                 | REVIEWED E             | SY: Kevin Connare       | )           |
|               |                   | s         | AMPLE       |         |                | PID                       |                     |               |                   |                        |                         |             |
| DEPTH<br>FEET | STRATA            | DEPTH     | BLO<br>COUN |         | ECOVERY<br>(%) | DIRECT/<br>HEAD-<br>SPACE |                     |               | TERIAL<br>RIPTION |                        |                         | REMARKS     |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| 0             | $\times$          | 0-4       |             |         | NA             | ND                        | Brown Clayey SIL1   | r, some grav  | el (FILL)         |                        |                         | Moist       |
| -             | X X X             |           |             |         |                |                           | COBBLE and GRA      | VEL, some :   | silt (FILL)       |                        | Hole Plug               | Wolst       |
| -             | $\bigotimes$      |           |             |         |                |                           | Gray Silty GRAVE    | L, some cobl  | oles (FILL)       |                        | (0.5-3.0')              |             |
| -             | $\boxtimes$       |           |             |         |                |                           |                     |               |                   |                        | 2" PVC                  |             |
| -             | $\times$          | 4-8       |             |         | 88             | ND                        |                     |               |                   |                        | 4')                     |             |
| -5            |                   |           |             |         |                |                           | Brown to gray brow  | vn Silty CLA  | /, trace fine     | gravel (CL)            |                         |             |
| _             |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| -             |                   |           |             |         |                |                           |                     |               |                   |                        |                         | Wet @ 7.0'. |
| _             | · <u> </u>        | 8-12      |             |         | 100            | ND                        | Brown to gray brov  |               |                   |                        |                         |             |
| _             | · · · · · · · · · |           |             |         |                |                           | BIOWIT to gray biov | VII Clayey SI |                   |                        | NJ #0 US<br>Silica (3'- |             |
| -10           | · · · · · · ·     |           |             |         |                |                           |                     |               |                   |                        | 14')<br>10-slot 2"      |             |
| _             |                   |           |             |         |                |                           |                     |               |                   |                        | PVC<br>screen           |             |
| _             |                   | 12-16     |             |         | 100            | ND                        | Brown Fine SAND     | (SM)          |                   |                        | (4'-14')                |             |
| _             |                   | 12-10     |             |         | 100            | ND                        | Gray Silty CLAY (C  | <br>CL)       |                   |                        |                         |             |
| _             |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| -15           |                   |           |             |         |                |                           |                     |               |                   |                        | Natural                 |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        | Collapse-<br>Did not    |             |
|               |                   |           |             |         |                |                           | End of boring @ 16  | 6.0'          |                   |                        | Auger                   |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| _             |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| -20           |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| -25 —         |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
| COMM          | ENTS: Bo          | ring hand | d cleare    | d to 4' | bgs then       | advanced                  | d with track mou    | nted Geor     | probe 67          | 12 DT rig.             |                         |             |
|               | cted sample       |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        |                         |             |
|               |                   |           |             |         |                |                           |                     |               |                   |                        | BORING NO. : ARMW       | /-05        |

|               |                                       |             | Δ                     | Ξ(    | <b>CC</b>    | M                                |                       |                |                   |                        | TEST BORING L                                   | OG                               |
|---------------|---------------------------------------|-------------|-----------------------|-------|--------------|----------------------------------|-----------------------|----------------|-------------------|------------------------|-------------------------------------------------|----------------------------------|
|               |                                       |             |                       |       |              |                                  |                       |                |                   |                        | : ARMW-06                                       |                                  |
|               | CT/PROJE                              |             | ATION:                |       | A&R B        | uilding                          |                       |                |                   | SHEET: 1               | OF 1                                            |                                  |
| CLIENT        |                                       |             |                       | UTC   |              |                                  |                       |                |                   | JOB NO.: 6             |                                                 |                                  |
| -             | G CONTRA                              |             |                       | Parra | att-Wol      |                                  |                       |                |                   | NORTHING: 1            |                                                 | 004440.06                        |
|               |                                       |             |                       |       |              | CAS                              | -                     | CORE           | TUBE              | GROUND ELI             |                                                 |                                  |
| DATE          | TIME                                  | LEV         | EL                    | TYPE  | TYP          |                                  |                       |                |                   | DATE START             |                                                 |                                  |
|               |                                       |             |                       |       | DIA          |                                  | 4" 2"                 |                |                   |                        | Jolaan Price                                    |                                  |
|               |                                       |             |                       |       | WT.          |                                  |                       |                |                   | DRILLER:<br>GEOLOGIST: |                                                 |                                  |
|               |                                       |             |                       |       | FAL          |                                  |                       |                |                   |                        |                                                 | •                                |
|               |                                       |             |                       |       |              | <b>.</b>                         | F PENETROMETE         | RREADIN        | G                 |                        |                                                 | e<br>†                           |
| DEPTH<br>FEET | STRATA                                | S/<br>DEPTH | AMPLE<br>BLOV<br>COUN |       | OVERY<br>(%) | PID<br>DIRECT/<br>HEAD-<br>SPACE |                       |                | TERIAL<br>RIPTION |                        | WELL<br>CONSTRUCTION                            | REMARKS                          |
|               |                                       |             |                       |       |              |                                  | •<br>•                |                |                   |                        |                                                 | -                                |
| 0             |                                       | 0-4         |                       |       | NA           | ND                               | Gray Clayey SILT      | with Gravel,   | race cobble       | ə (FILL)               | Hole Plug<br>(0.5-3.0')<br>2" PVC<br>Riser (0'- | Moist                            |
| -<br>-5       |                                       | 4-8         |                       |       | 100          | 0.4                              | Brown Gray Claye      | y SILT to Silt | y CLAY (FII       | L)                     | 4')                                             | Slight<br>Petroleum<br>Odor 4-6' |
| -             |                                       |             |                       |       |              | ND                               |                       |                |                   |                        |                                                 | Wet @ 6.0'.                      |
| -             |                                       | 8-12        |                       |       | 100          | ND                               | Gray Silty CLAY w     |                |                   |                        | NJ #0 US<br>Silica (3'-                         |                                  |
| -10           |                                       |             |                       |       |              |                                  | Brown Silty Fine S    |                |                   |                        | 14')<br>10-slot 2"<br>PVC<br>screen             |                                  |
| -             | · · · · · · · · _                     | 12-16       |                       |       | 100          | ND                               | Gray Silty CLAY to    | Clayey SIL1    | (ML/CL)           |                        | (4'-14')                                        |                                  |
| -<br>-15      | · · · · · · · · · · · · · · · · · · · |             |                       |       |              |                                  | Gray Silty Fine SA    | ND (SM)        |                   |                        |                                                 |                                  |
| -15           |                                       |             |                       |       |              |                                  |                       |                |                   |                        | Natural<br>Collapse-<br>Did not                 |                                  |
| -             |                                       |             |                       |       |              |                                  | End of boring @ 1     | 6.0'           |                   |                        | Auger                                           |                                  |
| - <b>-20</b>  |                                       |             |                       |       |              |                                  |                       |                |                   |                        |                                                 |                                  |
| -25           |                                       |             |                       |       |              |                                  |                       |                |                   |                        |                                                 |                                  |
|               |                                       | ing h       |                       |       |              | o du con con                     |                       | ntad Q         | wah = 07          |                        |                                                 | ]                                |
|               | ENTS: Boi                             |             |                       |       |              |                                  | d with track mou<br>s | nted Geop      | orobe 67          | 12 DT rig.             |                                                 |                                  |
|               |                                       |             |                       |       |              |                                  |                       |                |                   |                        | BORING NO. : ARMV                               | V-06                             |

|               |                 |           |            | ΔΞ      | =(           |             | M                         |          |                     |              |          |                          |        | BORING L         | OG                      |
|---------------|-----------------|-----------|------------|---------|--------------|-------------|---------------------------|----------|---------------------|--------------|----------|--------------------------|--------|------------------|-------------------------|
|               |                 |           |            |         |              |             |                           |          |                     |              |          | BORING NO.               |        |                  |                         |
| CLIENT        | CT/PROJE        |           | AIIU       |         |              | A&K B       | uilding                   |          |                     |              |          | SHEET: 1<br>JOB NO. : 60 | OF 1   |                  |                         |
|               | G CONTRA        |           |            |         | UTC<br>Parra | tt-Wol      | ff                        |          |                     |              |          | NORTHING: 1              |        | EASTING: 9       | 54074 55                |
|               |                 |           |            | •       | ana          | 11-4401     | <u>са</u>                 | <u>د</u> | SAMPLER             | CORE         | TUBE     | GROUND ELE               |        | 393.400          | 04074.00                |
| DATE          |                 | LEV       | <b>_</b> 1 | тү      | DE           | TYP         |                           | 3.       | Macrocore           | CONE         | TOBE     | DATE START               |        | 4/7/16           |                         |
| DATE          |                 |           |            |         |              | DIA         |                           |          | 2"                  |              |          | DATE FINISH              |        | 4/7/16           |                         |
|               |                 |           |            |         |              | WT.         |                           |          | -                   |              |          | DRILLER:                 |        | Jolaan Price     |                         |
|               |                 | _         |            |         |              | FAL         |                           |          |                     |              |          | GEOLOGIST:               |        | Rob Murphy       |                         |
|               |                 | _         |            |         |              | 1.75        |                           | ΤPI      |                     |              | G        | REVIEWED B               |        | Kevin Connare    | •                       |
|               |                 |           |            |         |              |             | PID                       | 1        |                     |              | <u> </u> | 1                        |        |                  |                         |
| DEPTH<br>FEET | STRATA          | DEPTH     |            |         |              | OVERY<br>%) | DIRECT/<br>HEAD-<br>SPACE |          |                     |              | ERIAL    |                          |        | WELL<br>TRUCTION | REMARKS                 |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| 0             | $\overline{2}$  | 0-4       |            |         |              | 60          | ND                        | В        | Brown Clayey Silt o | organic tops | il (ML)  |                          |        |                  | Moist                   |
|               |                 |           |            |         |              |             |                           | B        | Brown Clayey SILT   | with GRAV    | EL (GM)  |                          |        |                  | Wet @ 2.0'.             |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  | -                       |
| _             | <u>·</u>        |           |            |         |              |             |                           | B        | Black organic SILT  | (ML)         |          |                          |        |                  | Slight old<br>petroleum |
| -5—           | · <u>···</u> ·· | 4-6       |            |         |              | 80          | ND                        | Ģ        | Gray SILT, trace ro | oots (ML)    |          |                          |        |                  | odor (3.0-<br>4.0')     |
| Ĵ             | · · · · · ·     |           |            |         |              |             |                           | G        | Gray SILT trace fin | e sand (ML)  |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           | E        | End of boring @ 6.  | 0'           |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -10           |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -15           |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -20           |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| _             |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| -25           |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
| COMM          | ENTS' Bo        | ring adva | inced      | with to | rack r       | nounte      | d Geopre                  | obe      | e 6712 DT rig.      |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          | and PCBs            |              |          |                          |        |                  |                         |
|               |                 |           |            | 2. un   | , 010        |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          |        |                  |                         |
|               |                 |           |            |         |              |             |                           |          |                     |              |          |                          | BORING | NO.: ARSB-       | 01                      |

|                                                                                      |            |          | A       |        |           | M      |             |      |      | BORING NO.         |        | BORING L      | OG       |
|--------------------------------------------------------------------------------------|------------|----------|---------|--------|-----------|--------|-------------|------|------|--------------------|--------|---------------|----------|
| PROJE                                                                                | CT/PROJI   | ECT LOC  |         |        |           |        |             |      |      | SHEET: 1           | OF 1   |               |          |
| CLIEN                                                                                |            |          |         | UTC    |           |        |             |      |      | <b>JOB NO.</b> : 6 |        |               |          |
|                                                                                      | G CONTR    |          |         |        | att-Wol   | ff     |             |      |      | NORTHING: 1        |        | EASTING: 9    | 54142.62 |
|                                                                                      | NDWATER    |          |         |        |           | CAS    | SAMPLER     | CORE | TUBE | GROUND ELI         |        | 393.735       |          |
| DATE                                                                                 | ТІМЕ       | LEVI     | EL T    | YPE    | ТҮР       |        | Macrocore   |      | _    | DATE START         | ED:    | 4/7/16        |          |
|                                                                                      |            |          |         |        | DIA.      |        | 2"          |      |      | DATE FINISH        |        | 4/7/16        |          |
|                                                                                      |            |          |         |        | WT.       |        |             |      |      | DRILLER:           |        | Jolaan Price  |          |
|                                                                                      |            |          |         |        | FAL       |        |             |      |      | GEOLOGIST          | •      | Rob Murphy    |          |
|                                                                                      |            |          |         |        |           |        |             |      |      | REVIEWED E         |        | Kevin Connare | •        |
|                                                                                      |            |          |         | -      |           | PID    |             |      |      |                    |        |               | i        |
| DEPTH<br>FEET                                                                        | STRATA     | DEPTH    |         |        |           |        |             |      |      |                    |        |               | REMARKS  |
|                                                                                      |            |          |         |        |           |        |             |      |      |                    |        |               |          |
| FEET STRATA DEPTH BLOW RECOVERY DIRECT/<br>COUNTS AND HEAD- DESCRIPTION CONSTRUCTION |            |          |         |        |           |        |             |      |      |                    |        |               |          |
|                                                                                      |            |          |         |        |           |        |             |      |      |                    |        |               |          |
|                                                                                      |            |          |         |        |           |        | Cs and PCBs |      |      |                    |        |               |          |
| Install                                                                              | ed 1" diam | eter PVC | Tempora | ry wel | i in dore | enole. |             |      |      |                    |        |               |          |
|                                                                                      |            |          |         |        |           |        |             |      |      |                    |        |               |          |
|                                                                                      |            |          |         |        |           |        |             |      |      |                    | BORING | NO.: ARSB-    | 02       |

|               |                                                                                                               |              |       | 4           | <b>E(</b> |             | M                         |          |                    |               |             | BORING NO.      |        | BORING L         | OG                    |
|---------------|---------------------------------------------------------------------------------------------------------------|--------------|-------|-------------|-----------|-------------|---------------------------|----------|--------------------|---------------|-------------|-----------------|--------|------------------|-----------------------|
| PROJE         | CT/PROJE                                                                                                      |              |       |             |           |             |                           |          |                    |               |             | SHEET: 1        |        | •                |                       |
| CLIENT        |                                                                                                               |              |       |             | UTC       | Adrib       | unung                     |          |                    |               |             | JOB NO.: 6      | OF 1   |                  |                       |
|               | G CONTR                                                                                                       |              |       |             |           | tt-Wol      | ff                        |          |                    |               |             | NORTHING:1      |        | EASTING: 9       | 54220 42              |
|               | NDWATER                                                                                                       |              |       |             | unta      |             |                           | s        | SAMPLER            | CORE          | TUBE        | GROUND EL       |        | 393.783          | 01220112              |
| DATE          | TIME                                                                                                          | LEV          | FI    | ТҮ          | DE        | ТҮР         |                           | <u>.</u> | Macrocore          | CONE          | TODE        | DATE START      |        | 4/7/16           |                       |
| DATE          |                                                                                                               |              |       |             |           | DIA         |                           |          | 2"                 |               |             | DATE FINISH     |        | 4/7/16           |                       |
|               |                                                                                                               |              |       |             |           | WT.         |                           |          | _                  |               |             | DRILLER:        |        | Jolaan Price     |                       |
|               |                                                                                                               |              |       |             |           | FAL         |                           |          |                    |               |             | GEOLOGIST:      | :      | Rob Murphy       |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          | NETROMETE          |               | G           | REVIEWED B      |        | Kevin Connare    | •                     |
|               |                                                                                                               |              |       |             | i –       |             | PID                       | 1        |                    |               | <u> </u>    |                 |        |                  |                       |
| DEPTH<br>FEET | STRATA                                                                                                        | DEPTH        |       |             |           | OVERY<br>%) | DIRECT/<br>HEAD-<br>SPACE |          |                    |               | ERIAL       |                 |        | WELL<br>TRUCTION | REMARKS               |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| 0             |                                                                                                               | 0-4          |       |             |           | 50          | ND                        | Br       | rown Clayey Silt o | organic topso | il (ML)     |                 |        |                  | Moist                 |
| -             |                                                                                                               |              |       |             |           |             |                           | Br       | rown Clayey SILT   | with GRAV     | EL (GM)     |                 |        |                  | Wet @ 1.1'.           |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -             |                                                                                                               |              |       |             |           |             |                           |          | ack organic SILT   |               |             | \               |        |                  |                       |
| -             | · _ · _                                                                                                       | 4-6          |       |             |           | 65          | ND                        | -        |                    |               | ades to bro | wn then to gray |        |                  | Moderate<br>Petroleum |
| -5            | · <u>···</u> ·                                                                                                |              |       |             |           |             |                           |          |                    |               |             | 0,1             |        |                  | odor and decay odor   |
| -             | · · · · · ·     4-6     65     ND     Gray Clayey SILT with roots, grades to brown then to gray     Petroleum |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          | id of borning @ 0. | 0             |             |                 |        |                  |                       |
| -             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -10           |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -15           |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -20           |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| _             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -             |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
| -25 —         |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               | vine - 1     |       | - التأثير ا | (a cl     |             |                           | <b>.</b> | 6710 DT            |               |             |                 |        |                  |                       |
|               | ted sample                                                                                                    |              |       |             |           |             |                           |          | 6712 DT rig.       |               |             |                 |        |                  |                       |
|               | neu sample                                                                                                    | 5 110111 3.1 | 0-4.3 | ior an      | arysis    |             | <i>i</i> us, 3v0          |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 |        |                  |                       |
|               |                                                                                                               |              |       |             |           |             |                           |          |                    |               |             |                 | BORING | NO.: ARSB        | 03                    |

|                                                                                                  |          |            | A                       | EC        | Ό      | Μ                         |                                                                                                                                                   |                                                    |                   | BORING NO.  | TEST BORING L                                                                                                                                                          | .OG                                                                                    |
|--------------------------------------------------------------------------------------------------|----------|------------|-------------------------|-----------|--------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| PBOJE                                                                                            | CT/PROJE | ECTLOC     |                         |           |        |                           |                                                                                                                                                   |                                                    |                   | SHEET: 1    | OF 1                                                                                                                                                                   |                                                                                        |
| CLIEN                                                                                            |          |            |                         |           |        | liang                     |                                                                                                                                                   |                                                    |                   | JOB NO.: 60 |                                                                                                                                                                        |                                                                                        |
| -                                                                                                | G CONTR  |            |                         | Parratt   | -Wolff | :                         |                                                                                                                                                   |                                                    |                   | NORTHING: 1 |                                                                                                                                                                        | 54296.60                                                                               |
| -                                                                                                |          |            |                         |           |        | CAS                       | . SAMPLER                                                                                                                                         | CORE                                               | TUBE              | GROUND ELE  |                                                                                                                                                                        |                                                                                        |
| DATE                                                                                             | ТІМЕ     | LEVE       | EL TY                   | PF        | TYPE   |                           | Macrocore                                                                                                                                         | 00.12                                              |                   | DATE START  |                                                                                                                                                                        |                                                                                        |
| DAIL                                                                                             |          |            |                         |           | DIA.   | ·                         | 2"                                                                                                                                                |                                                    |                   | DATE FINISH | IED: 4/7/16                                                                                                                                                            |                                                                                        |
|                                                                                                  |          |            |                         |           | WT.    |                           |                                                                                                                                                   |                                                    |                   | DRILLER:    | Jolaan Price                                                                                                                                                           |                                                                                        |
|                                                                                                  |          |            |                         |           | FALL   |                           |                                                                                                                                                   |                                                    |                   | GEOLOGIST:  | Rob Murphy                                                                                                                                                             |                                                                                        |
|                                                                                                  |          |            |                         |           |        |                           | PENETROMETE                                                                                                                                       |                                                    | G                 | REVIEWED B  | Kevin Connare                                                                                                                                                          | 9                                                                                      |
|                                                                                                  |          |            |                         |           |        | PID                       |                                                                                                                                                   |                                                    | -                 | 1           |                                                                                                                                                                        | 1                                                                                      |
| DEPTH<br>FEET                                                                                    | STRATA   | DEPTH      | AMPLE<br>BLOW<br>COUNTS | RECOV     |        | DIRECT/<br>HEAD-<br>SPACE |                                                                                                                                                   |                                                    | TERIAL<br>RIPTION |             | WELL<br>CONSTRUCTION                                                                                                                                                   | REMARKS                                                                                |
| 0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |          | 4-6        |                         | 90        |        | ND 0.3 0.3                | Gray organic topso<br>Gray brown Clayey<br>Brown GRAVEL Fi<br>Black organic SILT<br>Gray Clayey SILT<br>Light Brown Silty F<br>End of boring @ 6. | / SILT, trace<br>II (GW)<br>(ML)<br>with black cla | ayey silt inte    | '           | 1" Sch.<br>40 PVC<br>Riser (-<br>1.8-1.0')<br>Bentonite<br>Chips<br>(0.0-0.5')<br>#0 NJ<br>Sand<br>(0.5-6.0')<br>1" Sch.<br>40, 10<br>slot PVC<br>Screen<br>(1.0-6.0') | Moist<br>Wet @ 1.0'.<br>Moderate<br>petroleum<br>and organic<br>decay odor<br>2.5-4.0' |
| Collec                                                                                           |          | e from 2.5 | 5-4.0' for ar           | nalysis o | of VOC | Cs, SVOC                  | be 6712 DT rig.<br>Ds and PCBs                                                                                                                    |                                                    |                   |             |                                                                                                                                                                        |                                                                                        |
|                                                                                                  |          |            |                         |           |        |                           |                                                                                                                                                   |                                                    |                   |             | BORING NO. : ARSB                                                                                                                                                      | -04                                                                                    |

|               |                                                                                                  |              |       | 4           | =(    |              | M                         |      |                     |          |             | BORING NO.  |          |               | OG                     |
|---------------|--------------------------------------------------------------------------------------------------|--------------|-------|-------------|-------|--------------|---------------------------|------|---------------------|----------|-------------|-------------|----------|---------------|------------------------|
| PROJE         | CT/PROJI                                                                                         | ECT LOC      |       |             |       |              |                           |      |                     |          |             | SHEET: 1    | OF 1     |               |                        |
| CLIEN         |                                                                                                  |              |       |             | UTC   |              | J                         |      |                     |          |             | JOB NO.: 6  |          |               |                        |
| BORIN         | G CONTR                                                                                          | ACTOR:       |       |             |       | att-Wol      | ff                        |      |                     |          |             | NORTHING: 1 |          | EASTING: 9    | 54388.90               |
|               | NDWATER                                                                                          |              |       |             |       |              | CA                        | S.   | SAMPLER             | CORE     | TUBE        | GROUND EL   | EVATION: | 394.284       |                        |
| DATE          | ТІМЕ                                                                                             | LEV          | EL    | ТҮ          | PE    | ТҮР          | PE                        |      | Macrocore           |          |             | DATE START  | ED:      | 4/7/16        |                        |
|               |                                                                                                  |              |       |             |       | DIA          |                           |      | 2"                  |          |             | DATE FINISH | IED:     | 4/7/16        |                        |
|               |                                                                                                  |              |       |             |       | WT.          |                           |      |                     |          |             | DRILLER:    |          | Jolaan Price  |                        |
|               |                                                                                                  |              |       |             |       | FAL          | .L                        |      |                     |          |             | GEOLOGIST   | :        | Rob Murphy    |                        |
|               |                                                                                                  |              |       |             |       |              | * POCKE                   | T PE | ENETROMETE          | R READIN | G           | REVIEWED E  | BY:      | Kevin Connare | )                      |
|               |                                                                                                  | s            | AMPL  | .E          |       |              | PID                       |      |                     |          |             |             |          |               |                        |
| DEPTH<br>FEET | STRATA                                                                                           | DEPTH        |       | LOW         |       | OVERY<br>(%) | DIRECT/<br>HEAD-<br>SPACE |      |                     |          | ERIAL       |             |          | WELL          | REMARKS                |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| 0             | 0 0-4 50 ND Brown Topsoil, organic silt (ML)<br>Brown clayey SILT (ML)<br>Gray/Brown GRAVEL (GW) |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -             |                                                                                                  |              |       |             |       |              |                           | В    | rown clayey SILT    | (ML)     |             |             |          |               |                        |
| -             |                                                                                                  |              |       |             |       |              |                           | G    | iray/Brown GRAV     | EL (GW)  |             |             |          |               |                        |
| -             | Brown Fine to coarse SAND and GRAVEL (SW)                                                        |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -             |                                                                                                  | 4-8          |       |             |       | 88           |                           |      |                     |          |             | (SW)        |          |               |                        |
| -5            |                                                                                                  |              |       |             |       |              | 0.1<br>ND                 |      | rown Gray Silty C   |          | er (ML)<br> |             |          |               | petroleum<br>odor and  |
| -             |                                                                                                  |              |       |             |       |              |                           | D    | IOWIT CITAY SILLY O |          |             |             |          |               | sheen from<br>4.2-5.0' |
| _             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| _             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           | E    | nd of boring @ 8.   | 0'       |             |             |          |               |                        |
| -10           |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| _             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| _             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -15 —         |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| _             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| _             |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -20           |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
| -25 —         |                                                                                                  |              |       |             | L     |              | 1                         |      |                     |          |             |             | <u> </u> |               | 1                      |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  | ring oduc    | maga  | 1 xx/i+b +- | raal  | mount        | d Coort                   | oha  | 6712 DT rig.        |          |             |             |          |               | ]                      |
|               | ted sample                                                                                       |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               | neu sample                                                                                       | 5 110111 4.2 | ≤-5.0 | ior an      | arysi |              | 05, 300                   | 105  |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             |          |               |                        |
|               |                                                                                                  |              |       |             |       |              |                           |      |                     |          |             |             | BORING   | NO.: ARSB-    | 05                     |

|               |                                                                                                                      |            |        | 4                  | =(       |             | M     |     |                    |              |                  | BORING NO.             |        | BORING L          | .OG      |
|---------------|----------------------------------------------------------------------------------------------------------------------|------------|--------|--------------------|----------|-------------|-------|-----|--------------------|--------------|------------------|------------------------|--------|-------------------|----------|
| PROJE         | CT/PROJE                                                                                                             |            |        |                    |          |             |       |     |                    |              |                  |                        |        | 0                 |          |
| CLIEN         |                                                                                                                      |            |        |                    | UTC      |             | unung |     |                    |              |                  | SHEET: 1<br>JOB NO.: 6 | OF 1   |                   |          |
|               |                                                                                                                      |            |        |                    |          | att-Wol     | ff    |     |                    |              |                  | NORTHING: 1            |        | EASTING: 9        | 54154 59 |
|               |                                                                                                                      |            |        |                    |          | 111-1101    |       | AS. | SAMPLER            | CORE         | TUBE             | GROUND EL              |        | 393.85            | 04104.00 |
| DATE          |                                                                                                                      | LEV        | EI     | ТҮ                 | DE       | TYP         |       | 43. | Hand Tools         | CONE         | TOBE             | DATE START             |        | 4/4/16            |          |
| DATE          |                                                                                                                      |            | EL     | 111                | -6       | DIA         |       |     |                    |              |                  | DATE FINISH            |        | 4/4/16            |          |
|               |                                                                                                                      | _          |        |                    |          | WT.         |       |     |                    |              |                  | DRILLER:               |        |                   |          |
|               |                                                                                                                      |            |        |                    |          | FAL         |       |     |                    |              |                  | GEOLOGIST              |        | K. Stahle         |          |
|               |                                                                                                                      |            |        |                    |          |             |       | т р |                    |              | 6                | REVIEWED               |        | Kevin Connar      | 9        |
|               |                                                                                                                      |            |        |                    | <u> </u> |             | PID   |     |                    |              | ŭ                |                        |        |                   | -        |
| DEPTH<br>FEET | STRATA                                                                                                               | S<br>DEPTH |        | .e<br>Low<br>Junts |          | OVERY<br>%) |       | .   |                    |              | ERIAL<br>RIPTION |                        |        | WELL<br>STRUCTION | REMARKS  |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| 0             |                                                                                                                      | 0-4        |        |                    |          |             | ND    | I   | Brown Topsoil and  | Sandy Fill m | aterial (ML      | )                      |        |                   | Moist    |
| -             | Brown coarse GRAVEL, some fine to medium sand and silt.<br>Grades coarser with depth (GW)<br>Very Coarse GRAVEL (GW) |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -             |                                                                                                                      |            |        |                    |          |             |       | (   | Grades coarser wit | h depth (GW  | )                |                        |        |                   |          |
| -             | Grades coarser with depth (GW) Very Coarse GRAVEL (GW) Dark brown to black Clayey SILT (ML)                          |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -             | Dark brown to black Clayey SILT (ML)                                                                                 |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -5            | Dark brown to black Clayey SILT (ML)                                                                                 |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             | Very Coarse GRAVEL (GW) Dark brown to black Clayey SILT (ML) End of boring @ 4.0'                                    |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -10           |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -15 —         |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -20 —         |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| _             |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
| -25 —         |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   | 1        |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               | L                                                                                                                    |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   | 1        |
|               |                                                                                                                      |            |        |                    |          |             |       |     | ger, post hole     | digger,sh    | ovels, ar        | nd pry bar.            |        |                   |          |
| Collec        | cted sample                                                                                                          | e from 3-  | 4' for | analys             | sis of   | VOCs,       | SVOCs | an  | d PCBs             |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        |        |                   |          |
|               |                                                                                                                      |            |        |                    |          |             |       |     |                    |              |                  |                        | BORING | NO.: ARSB         | -06      |

|               |             |             | 4                   |       | EC              | 0            | M                         |            |            |                          |            | BORING NO.               |        | BORING L         | .OG                     |
|---------------|-------------|-------------|---------------------|-------|-----------------|--------------|---------------------------|------------|------------|--------------------------|------------|--------------------------|--------|------------------|-------------------------|
|               | CT/PROJE    |             |                     |       |                 |              | uilding                   |            |            |                          |            |                          |        |                  |                         |
| CLIEN         |             |             | ATION               |       |                 |              | unaing                    |            |            |                          |            | SHEET: 1<br>JOB NO. : 60 | OF 1   |                  |                         |
|               |             |             |                     |       | JTC<br>Parratt- | Walf         | 4                         |            |            |                          |            | NORTHING:1               |        | EASTING: 9       | 5/2/0 12                |
|               |             |             |                     |       | anall           | won          |                           |            | IPLER      | CORE                     | TUBE       | GROUND ELE               |        | 393.924          | 54249.12                |
|               | 1           | 1           | -                   |       |                 |              |                           |            | rocore     | CORE                     | TUBE       | DATE START               |        | 4/7/16           |                         |
| DATE          | TIME        | LEVI        |                     | TYF   | ~               | TYPI<br>DIA. |                           |            | 2"         |                          |            | DATE FINISH              |        | 4/7/16           |                         |
|               |             |             |                     |       |                 | WT.          |                           | _          | 2          |                          |            | DRILLER:                 | LD.    | Jolaan Price     |                         |
|               |             |             |                     |       |                 | FALI         |                           |            |            |                          |            | GEOLOGIST:               |        | Rob Murphy       |                         |
|               |             |             |                     |       |                 |              |                           |            | OMETE      |                          | G          | REVIEWED B               |        | Kevin Connare    | 2                       |
|               |             |             |                     |       |                 |              | PID                       |            |            |                          | u          |                          | Τ.     | Nevin Connard    | ,<br>                   |
| DEPTH<br>FEET | STRATA      | S/<br>DEPTH | AMPLE<br>BLC<br>COU | w     | RECOV<br>(%)    |              | DIRECT/<br>HEAD-<br>SPACE |            |            |                          | ERIAL      |                          |        | WELL<br>TRUCTION | REMARKS                 |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| 0             | <u> </u>    | 0-4         |                     |       | 63              |              | ND                        | Brown Cl   | ayey SIL1  | Fand GRAV                | EL (ML)    |                          |        |                  | Moist                   |
| _             |             |             |                     |       |                 |              |                           | Gray/Brov  | wn fine to | coarse GRA               | VEL, trace | silt (GW)                |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  | Wet @ 2.0'.             |
| _             |             |             |                     |       |                 |              |                           | Black org  |            | . ,                      |            |                          |        |                  | Strong<br>Organic       |
| -5            |             | 4-6         |                     |       | 75              |              | ND                        | <b>▶</b>   |            | AT and wood              | fragments  | (ML)                     |        |                  | decay odor 3.0-4.0' and |
| -5            | · · · · · · |             |                     |       |                 |              |                           | Gray Silty |            | 5L)<br><br>Sandy SILT (I |            | /                        |        |                  | Petroleum odor.         |
|               |             |             |                     |       |                 |              |                           | End of bo  | -          |                          | vic)       |                          |        |                  |                         |
| -             |             |             |                     |       |                 |              |                           |            | ing @ 0.   | .0                       |            |                          |        |                  |                         |
| -             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -10 —         |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -15           |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -13           |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -20 —         |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| _             |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
| -25 —         |             | I           |                     |       |                 |              |                           | -          |            |                          |            |                          |        |                  | -                       |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            | DT ·       |                          |            |                          |        |                  | ]                       |
|               | ENTS: Bo    |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               | cted sample | - irom 3-4  | + ior a             | naiys | IS OF VO        | JUS,         | SVUUS                     | anu PCB    | >          |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          |        |                  |                         |
|               |             |             |                     |       |                 |              |                           |            |            |                          |            |                          | BORING | NO.: ARSB        | -07                     |

|               |                                       |           |            | ΔΞ     | =(           |             | M                        |          |                     |                  |       |                        |        | BORING L      | OG                                 |
|---------------|---------------------------------------|-----------|------------|--------|--------------|-------------|--------------------------|----------|---------------------|------------------|-------|------------------------|--------|---------------|------------------------------------|
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       | BORING NO.             |        | 3             |                                    |
| CLIENT        | CT/PROJI                              |           |            |        |              | A&R B       | sullaing                 |          |                     |                  |       | SHEET: 1<br>JOB NO.: 6 | OF 1   |               |                                    |
|               |                                       |           |            |        | UTC<br>Parra | tt-Wol      | ff                       |          |                     |                  |       | NORTHING: 1            |        | EASTING: 9    | 54325 09                           |
|               |                                       |           |            |        | rana         | 11-1101     | CA                       | 9        | SAMPLER             | CORE             | TUBE  | GROUND ELI             |        | 393.759       | 04020.00                           |
| DATE          |                                       | LEV       | <b>E</b> 1 | ТҮ     | DE           | TYP         |                          |          | Macrocore           | CORE             | TOBE  | DATE START             |        | 4/7/16        |                                    |
| DATE          |                                       |           | EL         | 111    | FE           | DIA         |                          |          | 2"                  |                  |       | DATE FINISH            |        | 4/7/16        |                                    |
|               |                                       |           |            |        |              | WT.         |                          |          | -                   |                  |       | DRILLER:               |        | Jolaan Price  |                                    |
|               |                                       |           |            |        |              | FAL         |                          |          |                     |                  |       | GEOLOGIST              |        | Rob Murphy    |                                    |
|               |                                       |           |            |        |              |             |                          | тр       |                     |                  | 6     | REVIEWED B             |        | Kevin Connare | 9                                  |
|               |                                       |           |            |        |              |             | PID                      | 1        |                     |                  | ŭ     |                        | ,      |               | ,<br>                              |
| DEPTH<br>FEET | STRATA                                | DEPTH     |            |        |              | OVERY<br>%) | DIRECT<br>HEAD-<br>SPACE |          |                     |                  | ERIAL |                        |        | WELL          | REMARKS                            |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| 0             |                                       | 0-4       |            |        | 1            | 58          | ND                       |          | Gray brown Clayey   | SILT (ML)        |       |                        |        |               | Moist                              |
| _             |                                       |           |            |        |              |             |                          | Ģ        | Gray fine to coarse | GRAVEL (G        | iP)   |                        |        |               | Wet @ 1.0'.                        |
| _             |                                       |           |            |        |              |             |                          | <br>E    | Black organic SILT  | , leaf litter (N |       |                        |        |               | Organic<br>decay odor<br>2.5-4.0'. |
|               | <u> </u>                              | 4-6       |            |        | 1            | 80          | ND                       | E        | Brown to gray, PEA  | -                |       | -                      |        |               |                                    |
| -5            | · · · · · · · · · · · · · · · · · · · |           |            |        |              |             |                          | <u>ر</u> | Gray CLAY (CL)      |                  |       | \                      |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          | E        | nd of boring @ 6.   | 0'               |       |                        |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -10           |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| _             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| _             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| _             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| 45            |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -15 —         |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| _             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -20           |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| _             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| _             |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| -25 —         |                                       | . 1       |            |        | •            |             | -                        | _        |                     |                  |       |                        |        |               | -                                  |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
| 00111         |                                       |           |            |        |              |             |                          |          | 0740 07 1           |                  |       |                        |        |               | ]                                  |
|               |                                       |           |            |        |              |             |                          |          | 6712 DT rig.        |                  |       |                        |        |               |                                    |
|               | cied sample                           | e from 2. | 5-4.0'     | for an | alysis       | SOTVC       | JUS, SVC                 | JUS      | and PCBs            |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        |        |               |                                    |
|               |                                       |           |            |        |              |             |                          |          |                     |                  |       |                        | BORING | NO.: ARSB     | -08                                |

### Appendix B

## Well Development Logs

| PROJECT TITLE: 17C                          | - A       | !R         |        |       |       |          | WELL NO  | 42-1           | (w-0)                        |  |
|---------------------------------------------|-----------|------------|--------|-------|-------|----------|----------|----------------|------------------------------|--|
| PROJECT NO.:                                |           |            |        |       |       |          |          |                |                              |  |
| STAFF: K. ST                                | table_    |            |        |       |       |          |          |                |                              |  |
| STAFF: <u>1. St</u><br>DATE(S): <u>4/11</u> | 16        |            |        |       |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
| 1. TOTAL CASING AND SC                      |           | IGTH (FT.) | )      |       | 2     | 15.      | 0        | WELL ID.<br>1" | VOL. (GAL/FT)<br>0.04        |  |
| 2. WATER LEVEL BELOW                        |           | ASING (FT  | )      |       | =     | 4.2      | 5        | 2"             | 0.17                         |  |
| 3. NUMBER OF FEET STAN                      | NDING WA  | TER (#1 -  | #2)    |       | =     | 10.      | 75       | 3"             | 0.38                         |  |
| 4. VOLUME OF WATER/FO                       | OT OF CA  | SING (GA   | L.)    |       | =     | 0.1      | <u> </u> | 4"             | 0.66                         |  |
| 5. VOLUME OF WATER IN                       | CASING (0 | GAL.)(#3 x | #4)    |       | =     | <u> </u> | 5        | 5"             | 1.04                         |  |
| 6. VOLUME OF WATER TO                       | REMOVE    | (GAL.)(#5  | ix)    |       | =     |          |          | 6"             | 1.50                         |  |
| 7. VOLUME OF WATER AC                       | TUALLY R  | EMOVED     | (GAL.) |       | =     |          | 2        | 8"             | 2.60<br>OR                   |  |
|                                             |           |            |        |       |       |          |          | V=0.0408 x (C  | ASING DIAMETER) <sup>2</sup> |  |
|                                             |           |            |        | ACC   | UMULA |          | ME PURG  | ED (GALLONS)   |                              |  |
| PARAMETERS                                  | 1         | 4          | 16     | 20    |       |          |          |                |                              |  |
| рН                                          | 6.53      | 8.10       | 8.38   | 8411  |       |          |          |                |                              |  |
| SPEC. COND. (umhos)                         | 0.814     | 6.551      | 0.877  | 0.876 |       |          |          |                |                              |  |
| APPEARANCE                                  | BIN       | BN         | Brw    | BIN   |       |          |          |                |                              |  |
| TEMPERATURE (°C)                            | 11.03     | 9.61       | 8-99   | 9.01  |       |          |          |                |                              |  |
| TURK                                        | >999      | 7999       | 7199   | 7999  |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
| COMMENTS:                                   |           | 1          |        |       |       | <u> </u> | I        |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |
|                                             |           |            |        |       |       |          |          |                |                              |  |

| PROJECT TITLE:                    | 72 •     | AI         | ٤      |                        | w        | ELL NO.    | AR-M           | 12-02                       |   |
|-----------------------------------|----------|------------|--------|------------------------|----------|------------|----------------|-----------------------------|---|
| PROJECT NO.:                      |          |            |        |                        |          |            |                |                             |   |
| STAFF: K. St.                     | she      |            |        |                        |          |            |                |                             |   |
| STAFF: K. STA<br>DATE(S): 4/11/16 |          |            |        |                        |          |            |                |                             |   |
| DATE(0)                           |          |            |        | · · · · <u>- · ·</u> · | •        |            |                |                             |   |
| 1. TOTAL CASING AND SC            |          | IGTH (FT.  | )      | =                      | 12.0     | 9          | WELL ID.<br>1" | VOL. (GAL/FT)<br>0.04       |   |
| 2. WATER LEVEL BELOW              | TOP OF C | ASING (FT  | Г.)    | =                      | 3.15     | -          | 2"             | 0.17                        |   |
| 3. NUMBER OF FEET STAI            | NDING WA | TER (#1 -  | #2)    | =                      | 8.8      | 5          | 3"             | 0.38                        |   |
| 4. VOLUME OF WATER/FC             | OT OF CA | SING (GA   | .L.)   | =                      | 0.17     | ,          | 4"             | 0.66                        |   |
| 5. VOLUME OF WATER IN             | CASING ( | GAL.)(#3 x | : #4)  | =                      | 1.4      |            | 5"             | 1.04                        |   |
| 6. VOLUME OF WATER TO             | REMOVE   | (GAL.)(#5  | 5x_)   | =                      |          |            | 6"             | 1.50                        |   |
| 7. VOLUME OF WATER AC             | TUALLY R | EMOVED     | (GAL.) | =                      |          | <u>.</u> , | 8"             | 2.60<br>OR                  |   |
|                                   |          |            |        |                        |          |            | V=0.0408 x (CA | SING DIAMETER) <sup>2</sup> |   |
|                                   |          |            |        | ACCUMULA               |          | PURGED     | (GALLONS)      |                             |   |
| PARAMETERS                        |          | 12         | 16     |                        |          |            |                |                             |   |
| рН                                | 7.96     | 7.85       | 8.03   |                        |          |            |                |                             |   |
| SPEC. COND. (umhos)               | 0.659    | 1.19       | 1.38   |                        |          |            |                |                             |   |
| APPEARANCE                        | Bra      | Bra        | BIN    |                        |          |            |                |                             |   |
| TEMPERATURE (°C)                  | 9.48     | 7.90       | 10.16  |                        |          |            |                |                             |   |
| TURB                              | >999     | > 111      | >999   |                        |          |            |                |                             |   |
|                                   |          |            |        |                        |          |            |                |                             |   |
| COMMENTS:                         | <u> </u> | L          |        | <u> </u>               | <u> </u> | 1          |                |                             | L |
|                                   |          |            |        |                        |          |            |                |                             |   |
|                                   |          |            |        |                        |          |            |                |                             |   |
|                                   |          |            |        |                        |          |            |                |                             |   |
|                                   |          |            |        |                        |          |            |                |                             |   |
|                                   |          |            |        |                        |          |            |                |                             |   |
|                                   |          |            |        |                        |          |            |                |                             |   |

|                       | 2- A       | ir.            |            |         |       |          | WELL NO     | AZ-Ma            | -03                               |    |
|-----------------------|------------|----------------|------------|---------|-------|----------|-------------|------------------|-----------------------------------|----|
| PROJECT NO.:          |            |                |            |         |       |          |             |                  |                                   |    |
| STAFF: K. St.         | shk        |                |            | <u></u> |       |          |             |                  |                                   |    |
| DATE(S): 4/12/        | 16         |                |            |         |       |          |             |                  |                                   |    |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
| 1. TOTAL CASING AND S |            | NGTH (FT.)     | )          |         | =     | _/3      | <b>&gt;</b> | WELL ID.<br>. 1" | VOL. (GAL/FT)<br>0.04             |    |
| 2. WATER LEVEL BELOW  | TOP OF C   | ASING (FT      | <b>.</b> ) |         | =     | _3.6     |             | 2"               | 0.17                              |    |
| 3. NUMBER OF FEET ST  | ANDING WA  | TER (#1 -      | #2)        |         | =     | 9.       | e/          | - 3"             | 0.38                              |    |
| 4. VOLUME OF WATER/F  | OOT OF CA  | SING (GA       | .L.)       |         | =     |          | >           | 4"               | 0.66                              |    |
| 5. VOLUME OF WATER IN | N CASING ( | GAL.)(#3 x     | #4)        |         | =     | /.3      |             | - 5"             | 1.04                              |    |
| 6. VOLUME OF WATER T  |            | : (GAL.)(#5    | 5x)        |         | =     |          |             | - 6"             | 1.50                              |    |
| 7. VOLUME OF WATER A  |            | REMOVED        | (GAL.)     |         | =     |          | 2           |                  | 2.60                              |    |
|                       |            |                |            |         |       |          |             | V=0.0408 x (CA   | OR<br>SING DIAMETER) <sup>2</sup> |    |
|                       |            |                |            | ACC     | UMULA | TED VOLU | ME PURG     | ED (GALLONS)     |                                   |    |
| PARAMETERS            | 1          | 8              | 20         | 36      |       | 1        |             |                  |                                   |    |
| рН                    | 7.1/5      | 7.96           | 7.89       | 7.85    |       |          |             |                  |                                   |    |
| SPEC. COND. (umhos)   | 0.716      | a789           | 0.780      | 0.773   |       |          |             |                  |                                   |    |
| APPEARANCE            | KYN        | Bra            | Bra        | Bra     |       |          |             |                  |                                   | ļ  |
| TEMPERATURE (°C)      | 8.79       | 9.16           | 15.71      | 11-44   |       |          |             |                  |                                   |    |
| TUBB                  | >999       | <i>&gt;199</i> | > 999      | >999    |       |          |             |                  |                                   | _  |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
| COMMENTS:             |            | 1              | 1          |         |       |          |             |                  |                                   | -L |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
|                       |            |                |            |         |       |          |             |                  |                                   |    |
|                       |            |                |            |         | 1174  |          |             |                  |                                   |    |

| PROJECT TITLE:                        | - A      | ÉR         |            |       |           |          | WELL NO | AR-1        | Nw.      | -04                       |  |
|---------------------------------------|----------|------------|------------|-------|-----------|----------|---------|-------------|----------|---------------------------|--|
| PROJECT NO.:                          |          |            |            |       |           |          |         |             |          |                           |  |
| STAFF: K. ST                          | sple     |            |            |       |           |          |         |             |          |                           |  |
| DATE(S): 4/12/                        | 16       |            |            |       |           |          |         |             |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |
| 1. TOTAL CASING AND SC                | REEN LEN | IGTH (FT.) | )          |       | =         | 14.0     | 9       | WELL<br>1"  | ID.      | VOL. (GAL/FT)<br>0.04     |  |
| 2. WATER LEVEL BELOW                  |          | ASING (FT  | <b>.</b> ) |       | =         | 14.0     | 5       | 2"          |          | 0.17                      |  |
| 3. NUMBER OF FEET STAI                | NDING WA | TER (#1 -  | #2)        |       | =         | 7.       | 32      | 3"          |          | 0.38                      |  |
| 4. VOLUME OF WATER/FC                 | OT OF CA | SING (GA   | L.)        |       | =         | 0.1      | 7       | 4"          |          | 0.66                      |  |
| 5. VOLUME OF WATER IN                 | CASING ( | GAL.)(#3 x | #4)        |       | =         | 1.Z      |         | 5"          |          | 1.04                      |  |
| 6. VOLUME OF WATER TO                 | REMOVE   | (GAL.)(#5  | ix)        |       | =         |          |         | 6"          |          | 1.50                      |  |
| 7. VOLUME OF WATER AC                 |          | EMOVED     | (GAL.)     |       | =         | 30       | ?       | 8"          |          | 2.60<br>OR                |  |
|                                       |          |            |            |       |           |          |         | V=0.0408    | x (CASIN | NG DIAMETER) <sup>2</sup> |  |
| · · · · · · · · · · · · · · · · · · · | ii.      |            |            |       |           | ED VOLU  | ME PURG | ED (GALLONS | 6)       |                           |  |
| PARAMETERS                            | /        | 6          | 12         | 20    | 30        |          |         |             |          |                           |  |
| рН                                    | 8.26     | 7.35       | 7:37       | 7.4/2 | 7.21      |          |         |             |          |                           |  |
| SPEC. COND. (umhos)                   | 0.738    | 0.673      | 0.754      | 0.609 | o.616     |          |         |             |          |                           |  |
| APPEARANCE                            | BIN      | BrN        | BIN        | Brw   | ET<br>BIN |          |         |             |          |                           |  |
| TEMPERATURE (°C)                      | 9.36     | 7.76       | 7.44       | 6.75  | 6.91      |          |         |             | -        |                           |  |
| TurBidity                             | >999     | >999       | >999       | 205   | 164       |          |         |             |          |                           |  |
| 1                                     |          |            |            |       |           |          |         |             |          |                           |  |
| COMMENTS:                             |          | 1          | L          |       | 1         | <u> </u> | l       | LI          |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |
|                                       |          |            |            |       |           |          |         |             |          |                           |  |

|                             | 7 - 1    | 4. FR       |        |       |        |          | WELL NO | D.: <u>41</u> | 2- 1      | lw-as            | -                |      |
|-----------------------------|----------|-------------|--------|-------|--------|----------|---------|---------------|-----------|------------------|------------------|------|
| PROJECT NO.:                |          |             |        |       |        |          |         |               |           |                  |                  |      |
| STAFF: K. STAG              | k        |             |        |       |        |          |         |               |           |                  |                  |      |
| STAFF: K. STAL              | 16       |             |        |       |        |          |         |               |           |                  |                  | -    |
|                             |          |             |        |       |        |          |         |               |           |                  |                  | —    |
|                             |          |             |        |       |        | 10       | 10      | WE            | ELL ID.   | VOL. (GA         |                  |      |
| 1. TOTAL CASING AND SC      |          | -           |        |       | =      |          | 10      | -             | 1"        | 0.04             | 7                |      |
| 2. WATER LEVEL BELOW        | TOP OF C | ASING (F    | ſ.)    |       | =      |          |         | -             | 2"        | 0.17             | 7                |      |
| 3. NUMBER OF FEET STAI      |          | ATER (#1 -  | #2)    |       | =      | _6.6     |         | -             | 3"        | 0.38             | 3                |      |
| 4. VOLUME OF WATER/FC       | OT OF CA | SING (GA    | L.)    |       | =      | 0.1      | >       | -             | 4"        | 0.66             | 6                |      |
| 5. VOLUME OF WATER IN       | CASING ( | GAL.)(#3 x  | #4)    |       | =      | /        | ,       | -             | 5"        | 1.04             | 1                |      |
| 6. VOLUME OF WATER TO       | REMOVE   | : (GAL.)(#5 | ix)    |       | =      |          |         | -             | 6"        | 1.50             | )                |      |
| 7. VOLUME OF WATER AC       | TUALLY F |             | (GAL.) |       | =      |          | 7       |               | 8"        | 2.60             | )                |      |
|                             |          |             |        |       |        |          | 54      | V=0.04        | 08 x (CAS | OR<br>ING DIAMET | ER) <sup>2</sup> |      |
|                             | <u> </u> |             |        |       |        |          |         |               |           |                  |                  | ]    |
| PARAMETERS                  |          | 6           | G      | AC    | CUMULA |          | ME PURG | ED (GALLO     | ONS)      | 1                |                  |      |
|                             | 7.11     | 7.55        | 7.4/   |       |        |          |         |               |           |                  |                  |      |
| рН                          |          |             |        | ····· |        |          |         |               |           |                  |                  |      |
| SPEC. COND. (umhos)         | 5.85     | 54/5        | 5.56   |       |        |          |         | ļ             |           |                  |                  |      |
| APPEARANCE                  | BIN      | Bra         | Bra    |       |        |          |         |               |           |                  |                  |      |
| TEMPERATURE (°C)            | 8.23     | 7.98        | 7.76   |       |        |          | =       |               |           |                  |                  |      |
| TUIB                        | >999     | >999        | 7999   |       |        |          |         |               |           |                  |                  |      |
|                             |          |             |        |       |        |          |         |               |           |                  |                  |      |
| COMMENTS:                   |          | I           | L      |       |        | <u> </u> |         | <u> </u>      |           |                  |                  |      |
| Dry P                       | 6        | 941         | Z      | Penn  | rd.    | All      | ow      | TO A          | 600       | tr an            | d le             | 5-60 |
|                             | -        | 1,          |        | ,     |        |          |         |               |           |                  |                  |      |
| COMMENTS:<br>Dry C<br>Dry C | 5        | ga/         | Ranol  | red.  |        |          |         |               | -         |                  |                  |      |
| /                           |          |             |        |       |        |          |         |               |           |                  |                  |      |
|                             |          |             |        |       |        |          |         |               |           |                  |                  |      |
|                             |          |             |        |       |        |          |         |               |           |                  |                  |      |
|                             |          |             |        |       |        |          |         |               |           |                  |                  | ]    |

|                        | '- A      | FR           |             | <u></u>      | WELL N                                  | o. AR-Mu        | 0-06                             | _ |
|------------------------|-----------|--------------|-------------|--------------|-----------------------------------------|-----------------|----------------------------------|---|
| PROJECT NO.:           |           |              |             |              |                                         |                 |                                  | _ |
| STAFF: K. STAL         | 16        |              |             |              |                                         |                 |                                  |   |
| DATE(S): 4/12/1        | 16        |              |             |              |                                         |                 |                                  |   |
|                        |           |              |             |              |                                         |                 |                                  |   |
| 1. TOTAL CASING AND SC | REEN LEN  | IGTH (FT.)   |             | =            | 17.0                                    | WELL ID.<br>1"  | VOL. (GAL/FT)<br>0.04            |   |
| 2. WATER LEVEL BELOW   |           | ASING (FT.   | )           | =            | 8.75                                    | 2"              | 0.17                             |   |
| 3. NUMBER OF FEET STAN | IDING WA  | TER (#1 - #  | <b>#</b> 2) | =            | 3.25                                    | 3"              | 0.38                             |   |
| 4. VOLUME OF WATER/FO  | OT OF CA  | SING (GAL    | )           | =            | 0.17                                    | 4"              | 0.66                             |   |
| 5. VOLUME OF WATER IN  | CASING (C | GAL.)(#3 x i | ¥4)         | =            | 0.5                                     | 5"              | 1.04                             |   |
| 6. VOLUME OF WATER TO  | REMOVE    | (GAL.)(#5    | ×)          | =            |                                         | 6"              | 1.50                             |   |
| 7. VOLUME OF WATER AC  | TUALLY R  | EMOVED       | (GAL.)      | =            | 9.5                                     |                 | 2.60                             |   |
|                        |           |              |             |              |                                         | V=0.0408 x (CAS | OR<br>ING DIAMETER) <sup>2</sup> |   |
|                        |           |              |             |              |                                         |                 |                                  |   |
| PARAMETERS             | 1         | 9.5          |             | ACCONDLA     |                                         |                 |                                  |   |
|                        | 831       | 8.51         |             |              |                                         |                 |                                  |   |
| рН                     |           |              |             |              |                                         |                 |                                  |   |
| SPEC. COND. (umhos)    | 1.57      | 1.70         |             |              |                                         |                 |                                  |   |
| APPEARANCE             | BrN       | Bra          |             |              |                                         |                 |                                  |   |
| TEMPERATURE (°C)       | 8.17      | 845          |             |              |                                         |                 |                                  |   |
| 1000                   | 964       | >999         |             |              |                                         |                 |                                  |   |
| TURB                   | 7111      | ///          |             |              |                                         |                 |                                  |   |
|                        |           |              |             |              |                                         |                 |                                  |   |
| COMMENTS:              | -         |              | 2           | 1 and        | Allon                                   | To Press        |                                  |   |
| Dryc                   | 2         | 50           | 100         |              | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | TO Recover      | •                                |   |
| Dry @                  | Vr        | . ca/        | 1           | and a second |                                         |                 |                                  |   |
| 1 ye                   | 7.3       | ノ            | Venou       |              |                                         |                 |                                  |   |
|                        |           |              |             |              |                                         |                 |                                  |   |
|                        |           |              |             |              |                                         |                 |                                  |   |
|                        |           |              |             |              |                                         |                 |                                  |   |

| PROJECT TITLE:         |          |            |        |    |          |          | WELL NO    | ).:       |              |                            |   |
|------------------------|----------|------------|--------|----|----------|----------|------------|-----------|--------------|----------------------------|---|
| PROJECT NO.:           |          |            |        |    |          |          |            |           |              |                            |   |
| STAFF:                 |          |            |        |    |          |          |            |           |              |                            |   |
| DATE(S):               |          |            |        |    |          | _        |            |           |              |                            |   |
|                        |          | -          |        |    |          |          |            |           |              |                            |   |
| 1. TOTAL CASING AND SC |          | IGTH (FT.  | )      |    | =        |          |            |           | LL ID.<br>1" | VOL. (GAL/FT)<br>0.04      |   |
| 2. WATER LEVEL BELOW   | TOP OF C | ASING (F   | Г.)    |    | =        |          | . <u>.</u> |           | 2"           | 0.17                       |   |
| 3. NUMBER OF FEET STAI | NDING WA | TER (#1 -  | #2)    |    | =        |          |            |           | 3"           | 0.38                       |   |
| 4. VOLUME OF WATER/FC  | OT OF CA | SING (GA   | L.)    |    | =        |          |            |           | 4"           | 0.66                       |   |
| 5. VOLUME OF WATER IN  | CASING ( | GAL.)(#3 x | : #4)  |    | =        |          | <u></u>    |           | 5"           | 1.04                       |   |
| 6. VOLUME OF WATER TO  | REMOVE   | (GAL.)(#5  | 5x_)   |    | =        |          |            |           | 6"           | 1.50                       |   |
| 7. VOLUME OF WATER AC  | TUALLY F | REMOVED    | (GAL.) |    | =        |          |            |           | 8"           | 2.60<br>OR                 |   |
|                        |          |            |        |    |          |          |            | V=0.040   | 08 x (CASI   | ING DIAMETER) <sup>2</sup> | : |
|                        |          |            |        | AC |          | TED VOLU | ME PURG    | ED (GALLC | NS)          |                            |   |
| PARAMETERS             | 8        |            |        |    |          |          |            |           |              |                            |   |
| рН                     |          |            |        |    | <u> </u> |          |            |           |              |                            |   |
| SPEC. COND. (umhos)    | 2        |            |        |    |          |          |            |           |              |                            |   |
| APPEARANCE             |          |            |        |    |          |          |            |           |              |                            |   |
| TEMPERATURE (°C)       |          |            |        |    |          |          |            |           |              |                            |   |
|                        |          |            |        |    |          | 1        |            |           |              |                            |   |
|                        |          |            |        |    | 1        |          |            |           |              |                            |   |
| COMMENTS:              | l        | I          |        |    | I        | <u> </u> |            |           |              |                            |   |
|                        |          |            |        |    |          |          |            |           |              |                            |   |
|                        |          |            |        |    |          |          |            |           |              |                            |   |
|                        |          |            |        |    |          |          |            |           |              |                            |   |
|                        |          |            |        |    |          |          |            |           |              |                            |   |
|                        |          |            |        |    |          |          |            |           |              |                            |   |
|                        |          |            |        |    |          |          |            |           |              |                            |   |

|          | W     | ELL NO.:  |                                       | <u></u>               |                                                                                                                                          |
|----------|-------|-----------|---------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|          |       |           |                                       | · ·                   |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       | <u></u>                                                                                                                                  |
| =        |       | <u>_</u>  | WELL ID.<br>1"                        | VOL. (GAL/FT)<br>0.04 |                                                                                                                                          |
| =        |       |           | 2"                                    | 0.17                  |                                                                                                                                          |
| =        |       | <u> </u>  | 3"                                    | 0.38                  |                                                                                                                                          |
| =        |       |           | 4"                                    | 0.66                  |                                                                                                                                          |
| =        |       |           | 5"                                    | 1.04                  |                                                                                                                                          |
| =        |       |           | 6"                                    | 1.50                  |                                                                                                                                          |
| =        |       |           | 8"                                    | 2.60                  |                                                                                                                                          |
|          |       | V=        | 0.0408 x (CASI                        |                       |                                                                                                                                          |
| ACCUMUL  |       | PURGED (G | ALLONS)                               |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          | ┼╌╌╄╴ |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
| <b>_</b> |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           |                                       |                       |                                                                                                                                          |
|          |       |           | =<br>=<br>=<br>=<br>=<br>=<br>=<br>V= | =                     | $= \qquad \qquad$ |

| PROJECT TITLE:         | PROJECT TITLE:WELL NO.: |                   |            |          |                 |                                   |   |  |  |  |
|------------------------|-------------------------|-------------------|------------|----------|-----------------|-----------------------------------|---|--|--|--|
| 1                      |                         |                   |            |          |                 |                                   |   |  |  |  |
| 1                      |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   | _ |  |  |  |
|                        |                         |                   |            | - 4      |                 | 8385                              |   |  |  |  |
| 1. TOTAL CASING AND SC | REEN LENGTH (FT.)       | =                 |            |          | WELL ID.<br>1"  | VOL. (GAL/FT)<br>0.04             |   |  |  |  |
| 2. WATER LEVEL BELOW   | TOP OF CASING (FT.)     | =                 |            |          | 2"              | 0.17                              |   |  |  |  |
| 3. NUMBER OF FEET STA  | NDING WATER (#1 - #2)   | =                 |            |          | 3"              | 0.38                              |   |  |  |  |
| 4. VOLUME OF WATER/FC  | DOT OF CASING (GAL.)    | =                 |            |          | 4"              | 0.66                              |   |  |  |  |
| 5. VOLUME OF WATER IN  | CASING (GAL.)(#3 x #4)  | =                 |            |          | 5"              | 1.04                              |   |  |  |  |
| 6. VOLUME OF WATER TO  | 0 REMOVE (GAL.)(#5 x )  | =                 |            |          | 6"              | 1.50                              |   |  |  |  |
| 7. VOLUME OF WATER AC  | TUALLY REMOVED (GAL.)   | =                 |            |          | 8"              | 2.60                              |   |  |  |  |
|                        |                         |                   |            |          | V=0.0408 x (CAS | OR<br>SING DIAMETER) <sup>2</sup> |   |  |  |  |
|                        |                         | ACCUMUL           | ATED VOLUM |          | (GALLONS)       | 1                                 | 1 |  |  |  |
| PARAMETERS             |                         |                   |            |          |                 |                                   |   |  |  |  |
| рН                     |                         |                   |            |          |                 |                                   |   |  |  |  |
| SPEC. COND. (umhos)    |                         | ·   · ·   · · · · |            |          |                 |                                   |   |  |  |  |
| APPEARANCE             |                         | _                 |            |          |                 |                                   |   |  |  |  |
| TEMPERATURE (°C)       |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            | _        |                 |                                   | 2 |  |  |  |
| COMMENTS:              | <u> </u>                |                   | <u> </u>   | <b>I</b> | I               |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   | - |  |  |  |
|                        |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   |   |  |  |  |
|                        |                         |                   |            |          |                 |                                   |   |  |  |  |

# Appendix C

# Well Purge/Sampling Logs

| Project:<br>Date:                                      | UTC<br><u>Y-18-16</u> Sampling Personnel:             | Site: <u>A+R</u><br>Ron Russo Tr                                | _ Well I.D.: _<br>_ Company: _                         | MW-0)<br>AECOM                       |
|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
| Purging/<br>Sampling<br>Device:<br>Measuring<br>Point: | Below Top of Initial Depth<br>Riser to Water: 3,84    | Tubing Type:<br>Depth to Well<br>Well Bottom: 14,88 Diameter:   | Pump/Tubing<br>Inlet<br>Location: _<br>2 <sup>(1</sup> | Screen midpoint<br>Screen<br>Length: |
| Casing<br>Type:                                        | PVC                                                   | Volume in 1<br>Well Casing<br>(liters): <u>6.812 (</u> 1.8 g·1) | Estimated<br>Purge<br>Volume<br>(liters):              | Hgal                                 |
| Sample ID<br>Samp                                      | AR-MWDI<br>le Parameters: VDCS<br>FCB<br>FCB.F() Houd | Sample<br>Time: 14:43                                           | QA/QC:                                                 | No                                   |

#### LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

#### PURGE PARAMETERS

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP<br>THT (mV) | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------------|------------------------|-----------------------------|
| 14:10      | 7.29 | 16:77     | 0.806            | 3,67                           | 371            | 155             | 150                    | 4.72                        |
| 14:15      | 6,68 | 9.58      | 0.816            | $\bigcirc$                     | 19.1           | 162             | 150                    | 5.14                        |
| 14:20      | 6.88 | 9.55      | 0.815            | 0                              | 12.8           | 163             | 100                    | 5.11                        |
| 14:25      | 6.87 | 9.32      | 0.816            | 0                              | 2.2            | 165             | 100                    | 5.11                        |
| 14:30      | 6.84 | 8.98      | 0.818            | 0                              | 0              | 167             | 100                    | 5.15                        |
| 14:35      | 6.82 | 9.17      | 0.819            | 0                              | 8              | 169             | 100                    | 5.19                        |
| 14:40      | 6.80 | 9.18      | 0.313            | 0                              | 0              | 170             | 150                    | 5,32                        |
| 14:43      | 6.80 | 9.17      | 0.813            | 0                              | 0              | 170             | 150                    | 5,32                        |
|            |      |           |                  |                                |                | <u> </u>        |                        |                             |
|            |      |           |                  |                                |                | <u> </u>        |                        |                             |
|            |      |           | ··· ··           |                                |                |                 |                        | ,                           |
|            |      |           |                  |                                |                | 1               |                        |                             |
|            |      |           |                  |                                | <u></u>        |                 |                        |                             |
|            |      | 1         |                  |                                |                |                 |                        |                             |
|            |      | 1         |                  |                                |                |                 |                        |                             |
|            |      |           |                  |                                |                |                 |                        |                             |
|            |      |           |                  |                                |                |                 |                        |                             |
|            |      |           |                  |                                |                |                 |                        | ļ                           |
|            |      | L         |                  |                                |                |                 | <b></b>                |                             |
|            |      | 1         |                  | 1000                           | 1001           | 1               |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10       | I I                    |                             |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vq_{t} = \pi r^{2}h$ )

Remarks:

#### LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

| Project:                        | UTC (Carri                                    | er Syracuse) Site: ATR                                                                        | Well I.D.:                                | ARMW-02           |
|---------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|
| Date:                           | <u>4-18-16</u> Samplin                        | ng Personnel: <u>Ronhusso Jk</u>                                                              | Company:                                  | Accom             |
| Purging/<br>Sampling<br>Device: | GeoPump                                       | Tubing Type: 14 # * 3/8 -> LDPE                                                               | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint   |
| Measuring<br>Point:             | Below Top of Initial Depth<br>Riser to Water: | Bepth to         Well         Well           Well Bottom:         Diameter:         Diameter: | 2"                                        | Screen<br>Length: |
| Casing<br>Type:                 | PVC                                           | Volume in 1<br>Well Casing<br>(liters): <u>5.84 (1.54gallons</u> )                            | Estimated<br>Purge<br>Volume<br>(liters): | <u>4</u> ge1      |
|                                 | : <u>AP-MW02</u><br>De Parameters:            | Sample<br>Time: 15:37                                                                         | QA/QC:                                    | No                |
| Gam                             | (very Lig                                     | PCB FILLING<br>A Sheen in by chit)                                                            |                                           |                   |

#### PURGE PARAMETERS

| тіме       | pН          | TEMP (°C) | COND.<br>(mS/cm) | DISS. O₂<br>(mg/l) | TURB.<br>(NTU) | OPP<br>Eh (mV) | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|-------------|-----------|------------------|--------------------|----------------|----------------|------------------------|-----------------------------|
| 14:05      | QUESCO 7.05 | 9.54      | 0,850            | 5,72               | 110            | 37             | 150                    | 4.65                        |
| 15:10      | 6.92        | 9.21      | 0,801            | 0.32               | 79.5           | 49             | 150                    | 5.18                        |
| 15:15      | 6.89        | 8.81      | 0.799            | 0.68               | 3812           | 48             | 150                    | 5,57                        |
| 15:20      | 6.85        | 9.11      | 0,828            | 0                  | 56.1           | 29             | 100                    | 6.04                        |
| 15:25      | 6185        | 9.12      | 0.837            | 0                  | 50             | 16             | 100                    | 6.12                        |
| 15:30      | 6185        | 9,13      | 0.842            | 0                  | 57.3           | 18             | 100                    | 6,43                        |
| 15:35      | 6.86        | 9.73      | 0,845            | 0                  | 57.3           | 32             | 100                    | 6,53                        |
| 15:37      | 6,86        | 7.0/      | 0,845            | <u> </u>           | 2010           |                | 100                    | 10 ( >=                     |
|            |             |           |                  |                    |                |                |                        |                             |
|            |             |           |                  |                    |                |                |                        |                             |
|            |             |           |                  |                    |                | 1              | 1                      |                             |
|            |             |           |                  |                    |                |                |                        |                             |
|            |             |           |                  |                    |                |                |                        |                             |
|            |             |           |                  |                    |                |                |                        |                             |
|            |             |           |                  |                    |                |                |                        |                             |
|            |             |           |                  |                    |                |                |                        | ļ                           |
|            |             |           |                  | ļ                  |                |                |                        |                             |
|            |             | <b> </b>  |                  | <u> </u>           |                |                |                        |                             |
|            |             |           |                  |                    |                |                | +                      |                             |
| Tolerance: | 0.1         |           | 3%               | 10%                | 10%            | + or - 10      | 1                      |                             |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vql<sub>f</sub> =  $\pi r^2 h$ )

Remarks:

9,47×617=5,842,99 mL→ 5.84 Liters 1.54 gel/ms

#### LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

| Project:                        | VTC Currier Syracuse                   | Site: Arr                                                | Well I.D.: _                              | AR-MW-03        |
|---------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------|
| Date:                           | <u>4-18-16</u> Sampling Personnel:     | Ron Russo JE                                             | _ Company:_                               | Atron           |
| Purging/<br>Sampling<br>Device: | Geo Jump<br>Below Top of Initial Depth | Tubing Type: V4 × 3/8 LDPE<br>Depth to Low Well          | Pump/Tubing<br>Inlet<br>Location: _       | Screen midpoint |
| Point:                          | Riser to Water: 3.28                   | Well Bottom: <u>13,44</u> Diameter:                      | 2,"                                       | Length:         |
| Casing<br>Type:                 | PVC                                    | Volume in 1<br>Well Casing<br>(liters): $6.26c(1.65gil)$ | Estimated<br>Purge<br>Volume<br>(liters): | 5               |
|                                 | e Parameters: Vol <sup>c</sup>         | Sample 6:22                                              | QA/QC:                                    | NO              |
| Sam                             |                                        |                                                          |                                           |                 |

#### PURGE PARAMETERS

| TIME       | pН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O₂<br>(mg/l) | TURB.<br>(NTU)                        | OK P<br>Ed (mV) | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------|---------------------------------------|-----------------|------------------------|-----------------------------|
| 15:50      | 7,20 | 9,50      | 0,752            | 6134               | 150                                   | 137             | 150                    | 4.06                        |
| 15:55      | 6.99 | 8,44      | 0,751            | 0                  | -39                                   | 152             | 150                    | 4.61                        |
| 16:00      | 6.99 | 8.46      | 0.752            | 0                  | 40.9                                  | 153             | 150                    | <u>4.72</u>                 |
| 16:05      | 6.97 | 8.35      | 0.753            | 0                  | 15.5                                  | 158             | 100                    | 4.64                        |
| 16:10      | 692  | 8,71      | 0,753            | 0                  | 13.5                                  | 160             | 100                    | 4.64                        |
| 16:15      | 6,95 | 8.61      | 0,755            | 0                  | 3.0                                   | 161             | 100                    | 4.67                        |
| 16:20      | 6.94 | 8.78      | 0,752            | 0                  | 03.2                                  | 163             | 100                    | 469                         |
| 10.20      | 6,44 | 1010      | ONGE             |                    |                                       |                 | 100                    | 7.10                        |
|            |      |           | ·                |                    | · · · · · · · · · · · · · · · · · · · |                 |                        | · · · · ·                   |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 |                        |                             |
|            |      |           |                  |                    |                                       |                 | +                      |                             |
|            |      |           |                  |                    |                                       |                 | 1                      |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                | 10%                                   | + or - 10       |                        | 1                           |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vol, =  $\pi r^2 h$ )

**Remarks:** 

10.16×617= 6268.72 ml = 6.26 L 1.656 gal

| Project:                        | VTC - AFR                                          | Site: G                                 | riere                                  | Well I.D.:                                | ATC-A             | 10-04    |
|---------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------|-------------------|----------|
| Date:                           | Y/18/16 Sampling Personne                          | el: K. STAGL                            |                                        | Company:                                  | AECO              | m        |
| Purging/<br>Sampling<br>Device: | Geopunt                                            | Tubing Type:                            | Pdy                                    | Pump/Tubing<br>Inlet<br>Location:         | Screen r          | nidpoint |
| Measuring<br>Point:             | Below Top of Initial Depth<br>Riser to Water: 8.33 | Depth to<br>Well Bottom:                | Well<br>Diameter:                      | 2                                         | Screen<br>Length: | 10       |
| Casing<br>Type:                 | PVC                                                | Volume in 1<br>Well Casing<br>(liters): |                                        | Estimated<br>Purge<br>Volume<br>(liters): |                   | -        |
|                                 | le Parameters: 110Cs                               | Sample<br>Time: 16                      | 10                                     | QA/QC:                                    |                   |          |
| Gamp                            | RBS L                                              | Hered                                   |                                        |                                           |                   |          |
|                                 | PUR                                                | GE PARAMETER                            | S                                      |                                           |                   |          |
| [                               |                                                    |                                         | ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                           | DEPTH TO          | ]        |

| TIME       | pН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O₂<br>(mg/l) | TURB.<br>(NTU) | JET (mV)  | FLOW RATE<br>(ml/min.) | (btor)       |
|------------|------|-----------|------------------|--------------------|----------------|-----------|------------------------|--------------|
| 1540       | 7.18 | 19.73     | 1.85             | 433                | 77             | 148       | 200                    | 8.70         |
| 1545       | 7.11 | 17.60     | 7.86             | 4.00               | 6.             | 199       | 200                    | 8.13         |
| 1550       | 7.04 | 16.90     | 1. 87            | 5.84               | 5.2            | 149       | 200                    | 8.97         |
| 1555       | 7.03 | 16.54     | 1.89             | 5.76               | 6.5            | 148       | 200                    | 9.10         |
| 1600       | 7.03 | 16.31     | 1.89             | 5.79               | 6.7            | 14.8      | 200                    | 9.30         |
| 1605       | 7.03 | 16.01     | 1.81             | 3.81               | 6.8            | 198       | 200                    | 9.4/<br>9.56 |
| 1610       | 7.03 | 15.96     | 1.89             | 3.97               | 6.9            | 148       | 200                    | 2.58         |
|            |      |           |                  |                    |                |           |                        |              |
| Tolerance: | 0.1  |           | 3%               | 10%                | 10%            | + or - 10 |                        |              |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (v $q_{rl} = \pi r^2 h$ )

| Project:<br>Date:                                      | UTC - ASR<br>4/18/16 Sampling Personnel: | Site: Carriek<br>K.Stahle                                        | Well I.D.: <u>AR-Mw-05</u><br>Company: <u>AECom</u>                           |
|--------------------------------------------------------|------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Purging/<br>Sampling<br>Device:<br>Measuring<br>Point: |                                          | Tubing Type: 5/8 Pary<br>Depth to Well<br>Well Bottom: Diameter: | Pump/Tubing<br>Inlet<br>Location: <u>Screen midpoint</u><br>Screen<br>Length: |
| Casing<br>Type:                                        | PVC                                      | Volume in 1<br>Well Casing<br>(liters):                          | Estimated<br>Purge<br>Volume<br>(liters):                                     |
|                                                        | AR-Mw-05<br>Ne Parameters: VOCS          | Sample 1525                                                      | QA/QC:                                                                        |
|                                                        | - PGBC F                                 | Haled                                                            |                                                                               |

## PURGE PARAMETERS

| TIME       | pН    | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>z</sub><br>(mg/l) | TURB.<br>(NTU) | 072P<br>€h (mV) | FLOW RATE<br>(ml/min.)                | DEPTH TO<br>WATER<br>(btor) |
|------------|-------|-----------|------------------|--------------------------------|----------------|-----------------|---------------------------------------|-----------------------------|
| 1500       | 7.50  | 22.75     | 4.67             | 3.99                           | 20.2           | 13/             | 200                                   | 8.71                        |
| 1505       | 7.51  | 21.65     | 4.36             | 5.86                           | 14.6           | 125             | 8                                     | 8.81                        |
| 1510       | 754   | 21.38     | <u>4.21</u>      | 3.74                           | 7./            | 128             | 202                                   | 8.76                        |
| 1515       | 7.46  | 20.32     | <u>9.72</u>      | 4.07                           | 10.4           | 127             | 200                                   | 7.01                        |
| 1520       | 7.4/5 | 20.26     | 4.13             | 9.15                           | 8.1            | 13/             | 200                                   | 9.14                        |
| 1222       | 7.49  | 20.20     | Y.16             | 4.14                           | 7.6            | 13/             | Car                                   | 9.26                        |
|            |       | <u> </u>  |                  | + ·                            |                |                 |                                       |                             |
|            |       |           |                  | +                              |                | +               | · ·                                   |                             |
|            |       | ++        |                  | · · ·                          |                |                 | · · · · · · · · · · · · · · · · · · · |                             |
|            |       | +         |                  | +                              |                |                 |                                       |                             |
|            |       | 1         |                  | +                              |                | 1               |                                       |                             |
|            |       | 11        |                  | +                              | i              |                 | 1                                     |                             |
|            |       | 11        |                  |                                |                |                 |                                       |                             |
| · - · - ·  |       |           |                  | 1                              |                |                 |                                       |                             |
|            |       |           |                  |                                |                |                 | 1                                     |                             |
|            |       | 1         |                  | 1                              |                | 1               |                                       |                             |
|            |       |           |                  |                                |                |                 |                                       |                             |
|            |       |           |                  |                                |                |                 |                                       |                             |
|            |       |           |                  |                                |                |                 |                                       |                             |
|            |       |           |                  |                                |                |                 |                                       |                             |
| Tolerance: | 0.1   |           | 3%               | 10%                            | 10%            | + or - 10       |                                       |                             |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/R; 1 inch diameter well = 154 ml/R; 2 inch diameter well = 617 ml/R;

4 inch diameter well = 2470 ml/ft (vql<sub>y:</sub> = πr<sup>2</sup>h)

| Project: <u>UTC - ASR</u><br>Date: <u>4/18/16</u> Sampling Personnel:                                           | Site: Carrier<br>K. Stahle                                       | Well I.D.: <u>AR - Mw-0</u> 6<br>Company:                                                      |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Purging/<br>Sampling<br>Device: Croppinp<br>Measuring Below Top of Initial Depth<br>Point: Riser to Water: 9.15 | Tubing Type: 3/8 Paly<br>Depth to Well<br>Well Bottom: Diameter: | Pump/Tubing<br>Inlet<br>Location: <u>Screen midpoint</u><br><u>Screen</u><br>Length: <u>10</u> |
| Casing<br>Type:PVC                                                                                              | Volume in 1<br>Well Casing<br>(liters):                          | Estimated<br>Purge<br>Volume<br>(liters):                                                      |
| Sample ID: <u>AR - Mas - 06</u><br>Sample Parameters: <u>VOCs</u>                                               | Sample 1445<br>Time: 1445                                        | QA/QC:                                                                                         |

## PURGE PARAMETERS

| TIME       | рН       | TEMP (°C) | COND.<br>(mS/cm) | DISS. O₂<br>(mg/l) | TURB.<br>(NTU) | 012 P<br>Ett (mV) | FLOW RATE<br>(ml/min.) | (btor)       |
|------------|----------|-----------|------------------|--------------------|----------------|-------------------|------------------------|--------------|
| MIS        | 7.8/     | 24.05     | 0.949            | 2.06               | 25.2           | /3>               | 200                    | 9.672        |
| 1420       | 7.58     | 19.76     | 1.01             | 2.57               | 27.6           | 75-               | 200                    | 9.47         |
| 1925       | 7.26     | 19.29     | 1.12             | 2.63               | 23.8           | 52                | 200                    | 9.51         |
| 149        | 7.26     | 18.71     | 1.14             | 2.64               | 21.4           | 51                | 200                    | 7.65         |
| 1435       | 7.26     | 18:67     | 1.16             | 2.65               | 20.5           | 5%                | 200                    | 9.71<br>9.81 |
| 1490       | 7.25     | 18.67     | 1.18             | 2.75               |                | 53                |                        | 9.95         |
| 1945       | 7.25     | 10.01     | /./ 0            | Z. 96              | 17.8           | 22                | 200                    | 7.72         |
|            | <u> </u> |           |                  | <u> </u>           |                |                   |                        |              |
|            |          |           |                  |                    |                |                   |                        |              |
|            |          |           |                  |                    |                |                   | +                      |              |
|            |          |           |                  |                    | <u> </u>       |                   | +                      |              |
|            | <u> </u> |           |                  |                    |                |                   |                        |              |
|            | 1        |           |                  |                    |                |                   |                        |              |
|            |          |           |                  |                    |                |                   |                        |              |
|            |          |           |                  |                    |                |                   |                        |              |
|            |          |           |                  | <u> </u>           |                |                   |                        |              |
|            |          | 1         |                  |                    |                | <u> </u>          |                        |              |
|            | 1        | 1         |                  |                    | 1              |                   |                        |              |
|            |          |           |                  | 1                  | 1              | 1                 | 1                      |              |
|            |          |           | · · · · -·       | 1                  | <u> </u>       | 1                 | 1                      |              |
| Tolerance: | 0.1      |           | 3%               | 10%                | 10%            | + or - 10         |                        |              |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 817 ml/ft; 4 inch diameter well = 2470 ml/ft; ( $vg_{\mu} = \pi r^{2}h$ )

| Project:                                                                                                                                                         | Site: UTC-PON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D Well I.D.: ARSB-02 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Date: <u>4/18/16</u> Sampling P                                                                                                                                  | Personnel: <u>Am</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Company:             |
| Purging/<br>Sampling<br>Device: <u>Ceapurp</u><br>Measuring Below Top of Initial Depth<br>Point: <u>Riser</u> to Water: <u>4</u> .<br>Casing<br>Type: <u>PVC</u> | Tubing Type: $LOPS/Periodic Periodic P$ |                      |
| Sample ID:                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QA/QC:               |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

## PURGE PARAMETERS

| TIME                 | рН                   | TEMP (°C)               | COND.<br>(mS/cm) | DISS. O₂<br>(mg/l)    | TURB.<br>(NTU)     | ORP<br>En (mV)    | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor)<br>4.50 |
|----------------------|----------------------|-------------------------|------------------|-----------------------|--------------------|-------------------|------------------------|-------------------------------------|
| 1452<br>1457<br>1502 | 7.49<br>7.35<br>7.28 | 15.41<br>14.05<br>13.02 | 1.51<br>1.52     | 2.75                  | 265                | 126<br>136<br>140 | 350                    | 4.50                                |
| 1507<br>1512<br>1517 | 7.18<br>7.17<br>7.16 | 12.45<br>12.32<br>12.18 | 1.54             | 2.05<br>2.02<br>21.98 | 11.7<br>8.1<br>4.9 | 143<br>147<br>150 | 350                    | 4.52<br>4.52<br>4.52                |
| 1522                 | 7.15                 | 12.10                   | 1.55             | 1.98                  | <u>[.8</u>         | 155               | 350                    | 4.52                                |
|                      |                      |                         |                  |                       |                    |                   |                        |                                     |
|                      |                      |                         |                  |                       |                    |                   |                        |                                     |
|                      |                      |                         |                  |                       |                    |                   |                        |                                     |
|                      |                      |                         |                  |                       |                    |                   |                        |                                     |
| Tolerance:           | 0.1                  |                         | 3%               | 10%                   | 10%                | + or - 10         |                        |                                     |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft; (vq)<sub>r</sub> =  $\pi r^2$ h)

Stickup 2.35 Pune One liter of sity vater, bypassing flan throw cell

#### Site: UTC-POND Well I.D.: ARSBOY Project: RM 16 Sampling Personnel: Company: Date: Pump/Tubing Purging/ Sampling Inlet seopun Tubing Type: Location: Screen midpoint Device: 1 Depth to Well Bottom: 7.8 ( Well nitial Depth Screen Measuring Below Top of 3.68 to Water: Diameter: Length: Point: Riser *4,13* Volume in 1 Estimated Purge Well Casing Volume Casing 0.64 (liters): (liters): Type: **PVC** Sample RSR-0 QA/QC: Sample ID: Time: PCBS PCBS OCS Sample Parameters:

## LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

### PURGE PARAMETERS

| TIME       | pH    | TEMP (°C) | COND.<br>(mS/cm)    | DISS. O₂<br>(mg/l) | TURB.<br>(NTU) | OPP<br>-Et (mV) | FLOW RATE<br>(ml/min.) | (btor) |
|------------|-------|-----------|---------------------|--------------------|----------------|-----------------|------------------------|--------|
| 1327       | 7.39  | 23.60     | 1.69                | 0.00               | 354            | 18              | 250                    | 3.95   |
| 1332       | 7.38  | 11.94     | 2.03                | 6.00               | 673            |                 | 250                    | 2-80   |
| 1347       | 737   | 13.75     | 2.08                | 0.00               | 676            | -4              | 250                    | 3.82   |
| 1352       | 7.38  | 12,27     | 2.16                | 0,00               | 216            | 10              | 250                    | 3.88   |
| 1357       | 7:37  | 12.10     | 2.17                | 0.00<br>5.00       | 1772           | 5               | 250                    | 3.88   |
| 1407       | 7.37  | 10.71     | 2.26                | 0.00               | 764            | 8               | 250                    | 3.90   |
| 1412       | 7.35  | 10.37     | <u>Z.26</u><br>Z.25 | 0.00               | 259            | 1.              | 250                    | 3.90   |
| 17/ /-     | /- 24 | 10.01     |                     | 2,00               |                |                 |                        | 2.7-   |
|            |       | <b> </b>  |                     |                    |                |                 |                        |        |
|            |       |           |                     |                    |                |                 |                        |        |
|            |       |           |                     |                    |                |                 |                        |        |
|            |       |           |                     |                    |                |                 | 1                      |        |
|            |       |           |                     |                    |                |                 |                        |        |
|            |       |           |                     |                    |                |                 |                        |        |
| Tolerance: | 0.1   | 1 1       | 3%                  | 10%                | 10%            | + or - 10       | 1 -                    |        |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vol<sub>i</sub> =  $\pi r^2 h$ )

Allen Recover y her purge as normal 1.70' stickup

# Appendix D

# **Data Usability Summary Report Narrative**

# (Appendices available on request)

## DATA USABILITY SUMMARY REPORT

A&R BUILDING AREA UTC/CARRIER SITE THOMPSON ROAD, SYRACUSE, NY SITE ID# 734043

**Analyses Performed by:** 

SGS ACCUTEST MARLBOROUGH, MA

Prepared for:

UNITED TECHNOLOGIES CORP. UTC SHARED REMEDIATION SERVICES FARMINGTON, CT

Prepared by:

AECOM 257 WEST GENESEE STREET, SUITE 400 BUFFALO, NY 14202

**JUNE 2016** 

## **TABLE OF CONTENTS**

| I.   | INTRODUCTION                                            | .1 |
|------|---------------------------------------------------------|----|
| II.  | ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES | .1 |
| III. | DATA DELIVERABLE COMPLETENESS                           | .2 |
| IV.  | SAMPLE RECEIPT/ PRESERVATION/HOLDING TIMES              | .2 |
| V.   | NON-CONFORMANCES                                        | .2 |
| VI.  | SAMPLE RESULTS AND REPORTING                            | .4 |
| VII. | SUMMARY                                                 | .5 |

## **TABLES**

## (Following Text)

| Table 2Validated Soil Sample Analytical Results - SDG MC4532Table 3Validated Groundwater Sample Analytical ResultsTable 3Validated Field QC Sample Analytical Results | Table 1 | Validated Soil Sample Analytical Results - SDG MC45206 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
|                                                                                                                                                                       | Table 2 | Validated Soil Sample Analytical Results - SDG MC45324 |
| Table 3         Validated Field QC Sample Analytical Results                                                                                                          | Table 3 | Validated Groundwater Sample Analytical Results        |
|                                                                                                                                                                       | Table 3 | Validated Field QC Sample Analytical Results           |

## **ATTACHMENTS**

Attachment A – Form 1s Attachment B – Support Documentation

## I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation*, Appendix 2B - *Guidance for Data Deliverables and the Development of Data Usability Summary Reports*, May 2010.

## II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES

The data being evaluated are from the April 4 - 18, 2016 sampling of 16 soil samples, 2 soil field duplicates, 2 soil Matrix Spike/Matrix Spike Duplicate (MS/MSD) pairs, 8 groundwater samples, and 1 equipment rinsate blank. All samples were sent to SGS Accutest located in Marlborough, MA and were analyzed for target compound list (TCL) volatile organic compounds (VOCs) plus Tentatively Identified Compounds (TICs) following United States Environmental Protection Agency (USEPA) Method 8260C, TCL semivolatile organic compounds (SVOCs) plus TICs following USEPA Method SW8270D; and TCL PCBs (total and dissolved) following USEPA Method 8082A. Not all samples were analyzed for all parameters.

A limited data validation was performed following the guidelines in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008;
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008;
- Polychlorinated Biphenyl (PCB) Aroclor Data Validation, SOP HW-37, Rev. 3, May 2013;

Qualifications applied to the data during the limited data validation include 'R' (rejected), 'J' (estimated concentration), 'U' (non-detect), and 'UJ' (estimated quantitation limit). Definitions of USEPA data qualifiers are presented at the end of this text. The validated analytical results are presented on Tables 1 - 4. Copies of marked-up laboratory analytical summaries (Form 1s) are presented in Attachment A on a per sample delivery group (SDG) basis. Documentation supporting the qualification

of data is presented in Attachment B on a per sample delivery group basis. Only analytical deviations affecting data usability are discussed in this report.

## III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC Category B or equivalent) were provided by the laboratory, which included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

## IV. SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved and under proper chain-ofcustody (COC). All samples were analyzed within the required holding times, except for the following instance:

• The initial VOC analysis of sample AR-SB-02 (0.5-1.5) occurred within the holding time. The laboratory re-analyzed the sample outside of the holding time due to a QC issue with carbon disulfide. Only the result of carbon disulfide are being reported from the re-analysis and have been qualified 'J' due to the holding time exceedance.

## V. NON-CONFORMANCES

### Surrogates

The percent recovery (%R) of VOC surrogate bromofluorobenzene was above the upper QC limit in some of the samples. The detected VOC results in the associated samples as listed on the surrogate recovery summary form were qualified 'J'.

The %R of PCB surrogate tetrachloro-m-xylene (TMX) was below the QC limit on both columns for sample AR-SB-07 (3-4). The PCB results for this sample have been qualified 'J' or 'UJ'.

Support documentation (i.e., surrogate recovery summary form) is presented in Appendix B.

## Instrument Calibration

The relative response factors (RRF) for acetone and/or 2-butanone in the initial calibration (ICAL) and continuing calibration standards (CCAL) were below the QC limit of 0.100. The

non-detect results for these compounds in the associated samples as listed on the instrument performance check forms were qualified 'R' and the detected compounds were qualified 'J'.

The percent difference (%D) between the ICAL average RRF and the RRF in one or more of the CCALs associated with the samples exceeded the QC limit of 20% for one or more of the following VOCs: 2-butanone, 1,1-dichloroethene, 1,2-dichloroethane, 2-hexanone, 1,1,2,2-tetrachloroethane, 1,1,1,-trichloroethane, acetone, bromomethane, carbon disulfide, carbon tetrachloride, chloromethane, trans-1,2-dichloroethene, trans-1,3-dichloropropene, and/or vinyl chloride. The results for these compounds in the associated samples as listed on the instrument performance check forms were qualified 'J' or 'UJ'.

The %D between the ICAL RRF and the RRF in one or more of the CCAL standards associated with the samples exceeded the QC limit of 20% for one or more of the following SVOCs: 4,6-dinitro-2-methylphenol, 2-nitrophenol, and/or butylbenzylphthalate. The results for these compounds in the associated samples as listed on the instrument performance check forms were qualified 'UJ'.

Support documentation (i.e., instrument performance check form, continuing calibration summary form) is provided in Attachment B.

### • Matrix Spike Blanks (MSB)

The VOC MSB was above the QC limit for acetone. The detected results for this compound in the associated samples as listed on the blank spike summary form have been qualified 'J'.

The VOC MSB was less than the QC limit for styrene. The non-detect results for this compound in the associated samples as listed on the blank spike summary form have been qualified 'UJ'.

Support documentation (i.e., Blank Spike/Blank Spike Duplicate Summary form) is provided in Attachment B.

## Method Blanks

VOC methylene chloride was detected below the reporting limit (RL) in the laboratory method blanks associated with the samples. Those associated samples that had concentrations of this compound less than the RL were qualified 'U' at the RL.

Support documentation (i.e., method blank summary form, report of analysis form) is provided in Attachment B.

## Internal Standards (VOCs and SVOCs only)

The %Rs of VOC internal standards (IS) chlorobenzene- $d_5$  and/or 1,4-dichlorobenzene- $d_4$  were below QC limits in the samples. The compounds associated with the IS outliers in the samples listed on the internal standard area summary form have been qualified 'UJ'.

### • Chromatography

The laboratory noted in the case narrative that some samples exhibited interference due to multiple aroclors being present with overlapping peaks. Those samples that are affected have been noted in the laboratory case narrative and on the Form Is. The affected aroclors have been qualified 'J' in accordance with the labs notation.

The %Ds between the dual-column analyses for the samples exceeded QC limits (>25%) for one or more PCBs. The PCB results for the affected samples have been qualified 'J', 'NJ', 'U', or 'R' in accordance with the following validation guidelines.

| % Difference                         | Qualifier |
|--------------------------------------|-----------|
| 0-25%                                | none      |
| 26-100%                              | ʻJ'       |
| 101-200% (interference detected)     | 'NJ'      |
| >50% (value is < QL on both columns) | ·U'       |
| >200%                                | 'R'       |

Support documentation (i.e., GC Identification Summary forms) is provided in Attachment B.

### Field Duplicates

Field duplicates were collected at sample locations AR-MW-02 (4.5-5.5) and AR-SB-08 (0.5-1.5) and exhibited good field and analytical precision.

## VI. SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were adjusted for sample volume, moisture content, and dilution factors. Results below the quantitation limits were qualified 'J' by the laboratory. All quantitation limits were reported in accordance with method requirements and were adjusted for dilution factors.

For TICs (VOC and SVOC only), some compounds were identified as "column artifacts/column bleed" (i.e., siloxanes), method blank contamination, and target compounds reported in the wrong fraction (i.e., a VOC reported as a TIC in the SVOC fraction). TICs identified as such were crossed out on the Form I and should be disregarded.

The concentrations of VOC acetone in sample AR-SB-08 (2.5-4) was greater than the calibration curve and was qualified 'E'. The sample was not analyzed at a dilution. The 'E' qualifier has been changed to 'J' by the data validator.

#### VII. **SUMMARY**

All sample analyses were found to be compliant with the method and validation criteria, except where previously noted. Those results qualified 'R' are considered unusable. Those results qualified 'J', 'U', and 'UJ' are considered conditionally usable. All other sample results are usable as reported. URS does not recommend the recollection of any samples at this time.

Prepared By:Ann Marie Kropovitch, Chemist $\mathcal{A}\mathcal{W}\mathcal{K}$ Date: $\mathcal{G}[\mathcal{A}\mathcal{A}]|\mathcal{G}$ Reviewed By:George E. Kisluk, Senior Chemist $\mathcal{G}\mathcal{K}$ Date: $\mathcal{G}[\mathcal{A}\mathcal{A}]|\mathcal{G}$ 

## **DEFINITIONS OF USEPA DATA QUALIFIERS**

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- (J+) The result is an estimated quantity. The associated numerical value is biased high.
- (J-) The result is an estimated quantity. The associated numerical value is biased low.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- D The sample result was reported from a secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified' and the associated numerical value represents its approximate concentration.

| Location ID                                |       | AR-MW-01     | AR-MW-02         | AR-MW-02              | AR-MW-03     | AR-MW-04     |
|--------------------------------------------|-------|--------------|------------------|-----------------------|--------------|--------------|
| Sample ID<br>Matrix<br>Depth Interval (ft) |       | AR-MW-01-6-7 | AR-MW-02-4.5-5.5 | FD-040416             | AR-MW-03-5-6 | AR-MW-04-5-6 |
|                                            |       | Soil         | Soil<br>4.5-5.5  | Soil                  | Soil         | Soil         |
|                                            |       | 6.0-7.0      |                  | 4.5-5.5               | 5.0-6.0      | 5.0-6.0      |
| Date Sampled                               |       | 04/04/16     | 04/04/16         | 04/04/16              | 04/05/16     | 04/06/16     |
| Parameter                                  | Units |              |                  | Field Duplicate (1-1) |              |              |
| Volatile Organic Compounds                 |       |              |                  |                       |              |              |
| 1,1,1-Trichloroethane                      | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 UJ       |
| 1,1,2,2-Tetrachloroethane                  | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,1,2-Trichloroethane                      | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,1-Dichloroethane                         | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,1-Dichloroethene                         | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,2-Dichloroethane                         | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,2-Dichloroethene (cis)                   | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,2-Dichloroethene (trans)                 | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,2-Dichloropropane                        | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,3-Dichloropropene (cis)                  | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 1,3-Dichloropropene (trans)                | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| 2-Hexanone                                 | UG/KG | 10 U         | 9.4 U            | 8.9 U                 | 10 U         | 11 U         |
| 4-Methyl-2-pentanone                       | UG/KG | 5.2 U        | 4.7 U            | 4.5 U                 | 5 U          | 5.6 U        |
| Acetone                                    | UG/KG | 10 UJ        | 23.6 J           | 26.4 J                | 176 J        | 180 J        |
| Benzene                                    | UG/KG | 0.52 U       | 0.47 U           | 0.45 U                | 0.59         | 1.2          |
| Bromodichloromethane                       | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| Bromoform                                  | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| Bromomethane                               | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| Carbon disulfide                           | UG/KG | 5.2 U        | 4.7 U            | 4.5 U                 | 5 U          | 5.6 UJ       |
| Carbon tetrachloride                       | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 UJ       |
| Chlorobenzene                              | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |
| Chloroethane                               | UG/KG | 5.2 U        | 4.7 U            | 4.5 U                 | 5 U          | 5.6 U        |
| Chloroform                                 | UG/KG | 2.1 U        | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U        |

Flags assigned during chemistry validation are shown.

| Location ID                                |       | AR-MW-01        | AR-MW-02         | AR-MW-02              | AR-MW-03     | AR-MW-04        |
|--------------------------------------------|-------|-----------------|------------------|-----------------------|--------------|-----------------|
| Sample ID<br>Matrix<br>Depth Interval (ft) |       | AR-MW-01-6-7    | AR-MW-02-4.5-5.5 | FD-040416             | AR-MW-03-5-6 | AR-MW-04-5-6    |
|                                            |       | Soll<br>6.0-7.0 | Soil<br>4.5-5.5  | Soil                  | Soil         | Soil<br>5.0-6.0 |
|                                            |       |                 |                  | 4.5-5.5               | 5.0-6.0      |                 |
| Date Sampled                               |       | 04/04/16        | 04/04/16         | 04/04/16              | 04/05/16     | 04/06/16        |
| Parameter                                  | Units |                 |                  | Field Duplicate (1-1) |              |                 |
| Volatile Organic Compounds                 |       |                 |                  |                       |              |                 |
| Chioromethane                              | UG/KG | 5.2 U           | 4.7 U            | 4.5 U                 | 5 U          | 5.6 UJ          |
| Dibromochloromethane                       | UG/KG | 2.1 U           | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U           |
| Ethylbenzene                               | UG/KG | 2.1 U           | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U           |
| Methyl ethyl ketone (2-Butanone)           | UG/KG | 10 UJ           | 19 UJ            | 18 U                  | 20 U         | 22 U            |
| Methylene chloride                         | UG/KG | 2.1 U           | 0.50 J           | 1.8 U                 | 0.82 J       | 1.3 J           |
| Styrene                                    | UG/KG | 5.2 U           | 4.7 U            | a 4.5 U               | 5 U          | 5.6 U           |
| Fetrachloroethene                          | UG/KG | 2.1 U           | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U           |
| Foluene                                    | UG/KG | 5.2 U           | 4.7 U            | 4.5 U                 | 0.49 J       | 0.67 J          |
| frichloroethene                            | UG/KG | 2.1 U           | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U           |
|                                            | UG/KG | 2.1 UJ          | 1.9 U            | 1.8 U                 | 2 U          | 2.2 UJ          |
| (ylene (total)                             | UG/KG | 2.1 U           | 1.9 U            | 1.8 U                 | 2 U          | 2.2 U           |
| Semivolatile Organic Compounds             |       |                 |                  |                       |              |                 |
| ,2,4-Trichlorobenzene                      | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| ,2-Dichlorobenzene                         | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| ,3-Dichlorobenzene                         | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| ,4-Dichlorobenzene                         | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| ,4,5-Trichlorophenol                       | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| 4,6-Trichlorophenol                        | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| 4-Dichlorophenol                           | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| 4-Dimethylphenol                           | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| 4-Dinitrophenol                            | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| 4-Dinitrotoluene                           | UG/KG | NA              | NA               | NA                    | NA           | NA              |
| 6-Dinitrotoluene                           | UG/KG | NA              | NA               | NA                    | NA           | NA              |

Flags assigned during chemistry validation are shown.

| Location ID                    |       | AR-MW-01     | AR-MW-02         | AR-MW-02              | AR-MW-03     | AR-MW-04        |
|--------------------------------|-------|--------------|------------------|-----------------------|--------------|-----------------|
| Sample ID                      |       | AR-MW-01-6-7 | AR-MW-02-4.5-5.5 | FD-040416             | AR-MW-03-5-6 | AR-MW-04-5-6    |
| Matrix<br>Depth Interval (ft)  |       | Soil         | Soil<br>4.5-5.5  | Soil                  | Soil         | Soil<br>5.0-6.0 |
|                                |       | 6.0-7.0      |                  | 4.5-5.5               | 5.0-6.0      |                 |
| Date Sampled                   |       | 04/04/16     | 04/04/16         | 04/04/16              | 04/05/16     | 04/06/16        |
| Parameter                      | Units |              |                  | Field Duplicate (1-1) |              |                 |
| Semivolatile Organic Compounds |       |              |                  |                       |              |                 |
| 2-Chloronaphthalene            | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 2-Chlorophenol                 | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 2-Methylnaphthalene            | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 2-Methylphenol (o-cresol)      | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 2-Nitroaniline                 | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 2-Nitrophenol                  | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 3,3-Dichlorobenzidine          | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 3-Nitroaniline                 | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 4,6-Dinitro-2-methylphenol     | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 4-Bromophenyl-phenylether      | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 4-Chloro-3-methylphenol        | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| 4-Chloroaniline                | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| I-Chlorophenyi-phenylether     | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| I-Methylphenol (p-cresol)      | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| -Nitroaniline                  | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| -Nitrophenol                   | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| Acenaphthene                   | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| Acenaphthylene                 | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| Inthracene                     | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| lenzo(a)anthracene             | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| Penzo(a)pyrene                 | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| enzo(b)fluoranthene            | UG/KG | NA           | NA               | NA                    | NA           | NA              |
| enzo(g,h,i)perylene            | UG/KG | NA           | NA               | NA                    | NA           | NA              |

Flags assigned during chemistry validation are shown.

| Location ID                    |       | AR-MW-01     | AR-MW-02         | AR-MW-02              | AR-MW-03     | AR-MW-04     |
|--------------------------------|-------|--------------|------------------|-----------------------|--------------|--------------|
| Sample ID                      |       | AR-MW-01-6-7 | AR-MW-02-4.5-5.5 | FD-040416             | AR-MW-03-5-6 | AR-MW-04-5-6 |
| Matrix                         |       | Soil         | Soil             | Soll                  | Soli         | Soil         |
| Depth Interval (ft)            |       | 6.0-7.0      | 4.5-5.5          | 4.5-5.5               | 5.0-6.0      | 5.0-6.0      |
| Date Sampled                   |       | 04/04/16     | 04/04/16         | 04/04/16              | 04/05/16     | 04/06/16     |
| Parameter                      | Units |              |                  | Field Duplicate (1-1) |              |              |
| Semivolatile Organic Compounds | ·     |              |                  |                       |              |              |
| Benzo(k)fluoranthene           | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| bis(2-Chloroethoxy)methane     | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| bis(2-Chloroethyl)ether        | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Bis(2-chloroisopropyl) ether   | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| bis(2-Ethylhexyl)phthalate     | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Butylbenzylphthalate           | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Carbazole                      | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Chrysene                       | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Dibenz(a,h)anthracene          | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Dibenzofuran                   | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Diethylphthalate               | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Dimethylphthalate              | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Di-n-butylphthalate            | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Di-n-octylphthalate            | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Fluoranthene                   | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| Fluorene                       | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| lexachlorobenzene              | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| lexachlorobutadiene            | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| lexachlorocyclopentadiene      | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| lexachloroethane               | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| ndeno(1,2,3-cd)pyrene          | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| sophorone                      | UG/KG | NA           | NA               | NA                    | NA           | NA           |
| laphthalene                    | UG/KG | NA           | NA               | NA                    | NA           | NA           |

Flags assigned during chemistry validation are shown.

| Location ID<br>Sample ID       |       | AR-MW-01     | AR-MW-02                    | AR-MW-02              | AR-MW-03     | AR-MW-04            |
|--------------------------------|-------|--------------|-----------------------------|-----------------------|--------------|---------------------|
|                                |       | AR-MW-01-6-7 | AR-MW-02-4.5-5.5            | FD-040416             | AR-MW-03-5-6 | AR-MW-04-5-6        |
| Matrix                         |       | Soil         | Soil<br>4.5-5.5<br>04/04/16 | Soil                  | Soil         | Soil                |
| Depth Interval (ft)            |       | 6.0-7.0      |                             | 4.5-5.5<br>04/04/16   | 5.0-6.0      | 5.0-6.0<br>04/06/16 |
| Date Sampled                   |       | 04/04/16     |                             |                       | 04/05/16     |                     |
| Parameter                      | Units |              |                             | Field Duplicate (1-1) |              |                     |
| Semivolatile Organic Compounds |       |              |                             |                       |              |                     |
| Nitrobenzene                   | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| N-Nitroso-di-n-propylamine     | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| N-Nitrosodiphenylamine         | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| Pentachlorophenol              | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| Phenanthrene                   | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| Phenol                         | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| Pyrene                         | UG/KG | NA           | NA                          | NA                    | NA           | NA                  |
| Polychlorinated Biphenyls      |       |              |                             |                       |              |                     |
| Aroclor 1016                   | UG/KG | 40 U         | 36 U                        | 35 U                  | 40 U         | 34 U                |
| Arocior 1221                   | UG/KG | 40 U         | 36 U                        | 35 U                  | 40 U         | 34 U                |
| Aroclor 1232                   | UG/KG | 40 U         | 36 U                        | 35 U                  | 40 U         | 34 U                |
| Aroclor 1242                   | UG/KG | 40 U         | 36 U                        | 35 U                  | 40 U         | 34 U                |
| Aroclor 1248                   | UG/KG | 40 U         | 36 U                        | 35 U                  | 40 U         | 34 U                |
| Aroclor 1254                   | UG/KG | 40 U         | 36 U                        | 35 U                  | 40 U         | 34 U                |
| voclor 1260                    | UG/KG | 40 U         | 24.3 J                      | 35 U                  | 40 U         | 34 U                |
| otal Polychlorinated Biphenyls | UG/KG | 40 U         | 24.3 J                      | 35 U                  | 40 U         | 34 U                |

Flags assigned during chemistry validation are shown.

2

| Location ID                 |       | AR-MW-05     | AR-MW-06            | AR-SB-01            | AR-SB-02        | AR-SB-03            |
|-----------------------------|-------|--------------|---------------------|---------------------|-----------------|---------------------|
| Sample ID<br>Matrix         |       | AR-MW-05-5-7 | AR-MW-06(5-6)       | AR-SB-01(3.5-4)     | AR-SB-02(4-4.5) | AR-SB-03(3.8-4.3)   |
|                             |       | Soil         | Soil                | Soil                | Soll            | Soil                |
| Depth Interval (ft)         |       | 5.0-7.0      | 5.0-6.0<br>04/07/16 | 3.5-4.0<br>04/07/16 | 4.0-4.5         | 3.8-4.3<br>04/07/16 |
| Date Sampled                |       | 04/06/16     |                     |                     | 04/07/16        |                     |
| Parameter                   | Units |              |                     |                     |                 |                     |
| Volatile Organic Compounds  |       |              |                     |                     |                 |                     |
| 1,1,1-Trichloroethane       | UG/KG | 2.2 UJ       | 2.1 UJ              | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,1,2,2-Tetrachloroethane   | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,1,2-Trichloroethane       | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,1-Dichloroethane          | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,1-Dichloroethene          | UG/KG | 2.2 U        | 2.1 U               | 3.1 UJ              | 2.1 UJ          | 2.6 UJ              |
| 1,2-Dichloroethane          | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,2-Dichloroethene (cis)    | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,2-Dichloroethene (trans)  | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,2-Dichloropropane         | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,3-Dichloropropene (cis)   | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 1,3-Dichloropropene (trans) | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| 2-Hexanone                  | UG/KG | 11 U         | 10 U                | 15 U                | 11 U            | 13 U                |
| 4-Methyl-2-pentanone        | UG/KG | 5.5 U        | 5.1 U               | 7.7 U               | 5.3 U           | 6.4 U               |
| Acetone                     | UG/KG | 60.4 J       | 77.4 J              | 543                 | 267             | 361                 |
| Benzene                     | UG/KG | 0.55 U       | 0.47 J              | 0.77 U              | 0.41 J          | 0.64 U              |
| Bromodichloromethane        | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| Bromoform                   | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| Bromomethane                | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| Carbon disulfide            | UG/KG | 2.5 J        | 0.96 J              | 55.6 J              | 30.4 J          | 45.9 J              |
| Carbon tetrachloride        | UG/KG | 2.2 UJ       | 2.1 UJ              | 3.1 U               | 2.1 U           | 2.6 U               |
| Chlorobenzene               | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |
| Chloroethane                | UG/KG | 5.5 U        | 5.1 U               | 7.7 U               | 5.3 U           | 6.4 U               |
| Chloroform                  | UG/KG | 2.2 U        | 2.1 U               | 3.1 U               | 2.1 U           | 2.6 U               |

Flags assigned during chemistry validation are shown.

| Location ID                                |       | AR-MW-05     | AR-MW-06        | AR-SB-01        | AR-SB-02        | AR-SB-03          |
|--------------------------------------------|-------|--------------|-----------------|-----------------|-----------------|-------------------|
| Sample ID<br>Matrix<br>Depth Interval (ft) |       | AR-MW-05-5-7 | AR-MW-06(5-6)   | AR-SB-01(3.5-4) | AR-SB-02(4-4.5) | AR-SB-03(3.8-4.3) |
|                                            |       | Soil         | Soil<br>5.0-6.0 | Soil            | Soil            | Soil<br>3.8-4.3   |
|                                            |       | 5.0-7.0      |                 | 3.5-4.0         | 4.0-4.5         |                   |
| Date Sampled                               |       | 04/06/16     | 04/07/16        | 04/07/16        | 04/07/16        | 04/07/16          |
| Parameter                                  | Units |              |                 |                 |                 |                   |
| Volatile Organic Compounds                 |       |              |                 |                 |                 |                   |
| Chloromethane                              | UG/KG | 5.5 UJ       | 5.1 UJ          | 7.7 U           | 5.3 U           | 6.4 U             |
| Dibromochloromethane                       | UG/KG | 2.2 U        | 2.1 U           | 3.1 U           | 2.1 U           | 2.6 U             |
| Ethylbenzene                               | UG/KG | 2.2 U        | 2.1 U           | 3.1 U           | 2.1 U           | 2.6 U             |
| Methyl ethyl ketone (2-Butanone)           | UG/KG | 22 U         | 21 U            | 54.9            | 31.5            | 33.6              |
| Methylene chloride                         | UG/KG | 0.79 J       | 0.47 J          | 3.1 U           | 2.1 U           | 2.6 U             |
| Styrene                                    | UG/KG | 5.5 U        | 5.1 U           | 7.7 U           | 5.3 U           | 6.4 U             |
| Tetrachloroethene                          | UG/KG | 2.2 U        | 2.1 U           | 3.1 U           | 2.1 U           | 2.6 U             |
| Toluene                                    | UG/KG | 5.5 U        | 0.45 J          | 7.7 U           | 0.56 J          | 6.4 U             |
| Trichloroethene                            | UG/KG | 2.2 U        | 2.1 U           | 3.1 U           | 2.1 U           | 2.6 U             |
| Vinyl chloride                             | UG/KG | 2.2 UJ       | 2.1 UJ          | 3.1 U           | 2.1 U           | 2.6 U             |
| Xylene (total)                             | UG/KG | 2.2 U        | 2.1 U           | 3.1 U           | 2.1 U           | 2.6 U             |
| Semivolatile Organic Compounds             |       |              |                 |                 |                 |                   |
| 1,2,4-Trichlorobenzene                     | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 1,2-Dichlorobenzene                        | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 1,3-Dichlorobenzene                        | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 1,4-Dichlorobenzene                        | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 2,4,5-Trichlorophenol                      | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2,4,6-Trichlorophenol                      | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2,4-Dichlorophenol                         | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2,4-Dimethylphenol                         | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2,4-Dinitrophenol                          | UG/KG | NA           | 1,100 U         | 1,500 U         | 1,200 U         | 1,400 U           |
| 2,4-Dinitrotoluene                         | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2,6-Dinitrotoluene                         | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |

Flags assigned during chemistry validation are shown,

| Location ID                                |       | AR-MW-05     | AR-MW-06        | AR-SB-01        | AR-SB-02        | AR-SB-03          |
|--------------------------------------------|-------|--------------|-----------------|-----------------|-----------------|-------------------|
| Sample ID<br>Matrix<br>Depth Interval (ft) |       | AR-MW-05-5-7 | AR-MW-06(5-6)   | AR-SB-01(3.5-4) | AR-SB-02(4-4.5) | AR-SB-03(3.8-4.3) |
|                                            |       | Soil         | Soil<br>5.0-6.0 | Soil<br>3.5-4.0 | Soil<br>4.0-4.5 | Soil<br>3.8-4.3   |
|                                            |       | 5.0-7.0      |                 |                 |                 |                   |
| Date Sampled                               |       | 04/06/16     | 04/07/16        | 04/07/16        | 04/07/16        | 04/07/16          |
| Parameter                                  | Units |              |                 |                 |                 |                   |
| Semivolatile Organic Compounds             |       |              |                 |                 |                 |                   |
| 2-Chloronaphthalene                        | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 2-Chlorophenol                             | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 2-Methylnaphthalene                        | UG/KG | NA           | 111             | 150 U           | 120 U           | 140 U             |
| 2-Methylphenol (o-cresol)                  | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2-Nitroaniline                             | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 2-Nitrophenol                              | UG/KG | NA           | 570 U           | 740 UJ          | 620 UJ          | 680 UJ            |
| 3,3-Dichlorobenzidine                      | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 3-Nitroaniline                             | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 4,6-Dinitro-2-methylphenol                 | UG/KG | NA           | 570 U           | 740 UJ          | 620 UJ          | 680 UJ            |
| 4-Bromophenyl-phenylether                  | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 4-Chloro-3-methylphenol                    | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 4-Chloroaniline                            | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 4-Chlorophenyl-phenylether                 | UG/KG | NA           | 290 U           | 370 U           | 310 U           | 340 U             |
| 4-Methylphenol (p-cresol)                  | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 4-Nitroaniline                             | UG/KG | NA           | 570 U           | 740 U           | 620 U           | 680 U             |
| 4-Nitrophenol                              | UG/KG | NA           | 1,100 U         | 1,500 U         | 1,200 U         | 1,400 U           |
| Acenaphthene                               | UG/KG | NA           | 21.9 J          | 31.4 J          | 120 U           | 140 U             |
| Acenaphthylene                             | UG/KG | NA           | 110 U           | 150 U           | 120 U           | 140 U             |
| Anthracene                                 | UG/KG | NA           | 110 U           | 150 U           | 120 U           | 140 U             |
| Benzo(a)anthracene                         | UG/KG | NA           | 11.8 J          | 107 J           | 120 U           | 66.9 J            |
| Benzo(a)pyrene                             | UG/KG | NA           | 110 U           | 112 J           | 120 U           | 68.8 J            |
| Benzo(b)fluoranthene                       | UG/KG | NA           | 110 U           | 141 J           | 120 U           | 74.4 J            |
| Benzo(g,h,i)perylene                       | UG/KG | NA           | 110 U           | 90.3 J          | 120 U           | 50.7 J            |

Flags assigned during chemistry validation are shown.

| Location ID                    |       | AR-MW-05     | AR-MW-06            | AR-SB-01            | AR-SB-02            | AR-SB-03            |
|--------------------------------|-------|--------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID<br>Matrix            |       | AR-MW-05-5-7 | AR-MW-06(5-6)       | AR-SB-01(3.5-4)     | AR-SB-02(4-4.5)     | AR-SB-03(3.8-4.3)   |
|                                |       | Soil         | Soil                | Soil                | Soil                | Soil                |
| Depth Interval (ft)            | -     | 5.0-7.0      | 5.0-6.0<br>04/07/16 | 3.5-4.0<br>04/07/16 | 4.0-4.5<br>04/07/16 | 3.8-4.3<br>04/07/16 |
| Date Sampled                   |       | 04/06/16     |                     |                     |                     |                     |
| Parameter                      | Units |              |                     |                     |                     |                     |
| Semivolatile Organic Compounds |       |              |                     |                     |                     |                     |
| Benzo(k)fluoranthene           | UG/KG | NA           | 110 U               | 118 J               | 120 U               | 66.2 J              |
| bis(2-Chloroethoxy)methane     | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| bis(2-Chloroethyl)ether        | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Bis(2-chloroisopropyl) ether   | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| bis(2-Ethylhexyl)phthalate     | UG/KG | NA           | 290 U               | 286 J               | 310 U               | 91.3 J              |
| Butylbenzylphthalate           | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Carbazole                      | UG/KG | NA           | 110 U               | 150 U               | 120 U               | 140 U               |
| Chrysene                       | UG/KG | NA           | 12.7 J              | 164                 | 120 U               | 79.1 J              |
| Dibenz(a,h)anthracene          | UG/KG | NA           | 110 U               | 31.4 J              | 120 U               | 140 U               |
| Dibenzofuran                   | UG/KG | NA           | 110 U               | 150 U               | 120 U               | 140 U               |
| Diethylphthalate               | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Dimethylphthalate              | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Di-n-butylphthalate            | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Di-n-octylphthalate            | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Fluoranthene                   | UG/KG | NA           | 26.6 J              | 321                 | 120 U               | 219                 |
| Fluorene                       | UG/KG | NA           | 37.6 J              | 24.1 J              | 120 U               | 140 U               |
| Hexachlorobenzene              | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Hexachlorobutadiene            | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Hexachlorocyclopentadiene      | UG/KG | NA           | 570 U               | 740 U               | 620 U               | 680 U               |
| Hexachloroethane               | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| ndeno(1,2,3-cd)pyrene          | UG/KG | NA           | 110 U               | 78.9 J              | 120 U               | 46.0 J              |
| sophorone                      | UG/KG | NA           | 290 U               | 370 U               | 310 U               | 340 U               |
| Naphthalene                    | UG/KG | NA           | 110 U               | 150 U               | 120 U               | 140 U               |

Flags assigned during chemistry validation are shown.

| Location ID<br>Sample ID        |       | AR-MW-05     | AR-MW-06        | AR-SB-01        | AR-SB-02            | AR-SB-03                    |
|---------------------------------|-------|--------------|-----------------|-----------------|---------------------|-----------------------------|
|                                 |       | AR-MW-05-5-7 | AR-MW-06(5-6)   | AR-SB-01(3.5-4) | AR-SB-02(4-4.5)     | AR-SB-03(3.8-4.3)           |
| Matrix                          |       | Soil         | Soil<br>5.0-6.0 | Soil            | Soil                | Soil<br>3.8-4.3<br>04/07/16 |
| Depth Interval (ft)             |       | 5.0-7.0      |                 | 3.5-4.0         | 4.0-4.5<br>04/07/16 |                             |
| Date Sampled                    |       | 04/06/16     | 04/07/16        | 04/07/16        |                     |                             |
| Parameter                       | Units |              |                 |                 |                     |                             |
| Semivolatile Organic Compounds  |       |              |                 |                 |                     |                             |
| Nitrobenzene                    | UG/KG | NA           | 290 U           | 370 U           | 310 U               | 340 U                       |
| N-Nitroso-di-n-propylamine      | UG/KG | NA           | 290 U           | 370 U           | 310 U               | 340 U                       |
| N-Nitrosodiphenylamine          | UG/KG | NA           | 290 U           | 370 U           | 310 U               | 340 U                       |
| Pentachlorophenol               | UG/KG | NA           | 570 U           | 740 U           | 620 U               | 680 U                       |
| Phenanthrene                    | UG/KG | NA           | 74.5 J          | 118 J           | 120 U               | 39.9 J                      |
| Phenol                          | UG/KG | NA           | 290 U           | 370 U           | 310 U               | 340 U                       |
| Pyrene                          | UG/KG | NA           | 25.7 J          | 275             | 120 U               | 189                         |
| Polychlorinated Biphenyls       |       |              |                 |                 |                     |                             |
| Aroclor 1016                    | UG/KG | 43 U         | 39 U            | 49 U            | 40 U                | 46 U                        |
| Aroclor 1221                    | UG/KG | 43 U         | 39 U            | 49 U            | 40 U                | 46 U                        |
| Arocior 1232                    | UG/KG | 43 U         | 39 U            | 49 U            | 40 U                | 46 U                        |
| Aroclor 1242                    | UG/KG | 43 U         | 39 U            | 49 U            | 40 U                | 46 U                        |
| Aroclor 1248                    | UG/KG | 43 U         | 39 U            | 154 J           | 40 U                | 73.2 J                      |
| Arocior 1254                    | UG/KG | 43 U         | 39 U            | 281             | 40 U                | 133                         |
| Aroclor 1260                    | UG/KG | 43 U         | 39 U            | 73.2 J          | 40 U                | 52.9 J                      |
| Total Polychlorinated Biphenyls | UG/KG | 43 U         | 39 U            | 508.2 J         | 40 U                | 259.1 J                     |

Flags assigned during chemistry validation are shown.

| Location ID                 |       | AR-SB-04        | AR-SB-05            | AR-SB-06            | AR-SB-07      | AR-SB-08            |
|-----------------------------|-------|-----------------|---------------------|---------------------|---------------|---------------------|
| Sample ID<br>Matrix         |       | AR-SB-04(2.5-4) | AR-SB-05(4.2-5)     | AR-SB-06-3-4        | AR-SB-07(3-4) | AR-SB-08(2.5-4)     |
|                             |       | Soil            | Soil                | Soil                | Soil          | Soil                |
| Depth Interval (ft)         |       | 2.5-4.0         | 4.2-5.0<br>04/07/16 | 3.0-4.0<br>04/04/16 | 3.0-4.0       | 2.5-4.0<br>04/07/16 |
| Date Sampled                |       | 04/07/16        |                     |                     | 04/07/16      |                     |
| Parameter                   | Units |                 |                     |                     |               |                     |
| Volatile Organic Compounds  |       |                 |                     |                     |               |                     |
| 1,1,1-Trichloroethane       | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U         | 3.7 UJ              |
| 1,1,2,2-Tetrachloroethane   | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,1,2-Trichloroethane       | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,1-Dichloroethane          | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,1-Dichloroethene          | UG/KG | 3 UJ            | 3.3 UJ              | 5.8 U               | 3.5 UJ        | 3.7 U               |
| 1,2-Dichloroethane          | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,2-Dichloroethene (cis)    | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,2-Dichloroethene (trans)  | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,2-Dichloropropane         | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,3-Dichloropropene (cis)   | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 1,3-Dichloropropene (trans) | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| 2-Hexanone                  | UG/KG | 15 U            | 17 UJ               | 29 U                | 17 U          | 19 U                |
| 4-Methyl-2-pentanone        | UG/KG | 7.5 U           | 8.4 U               | 14 U                | 8.6 U         | 9.3 U               |
| Acetone                     | UG/KG | 15 U            | 1,220 J             | R                   | 614           | 1,710 J             |
| Benzene                     | UG/KG | 0.75 U          | 0.96 J              | 2.3 J               | 0.86 U        | 0.93 U              |
| Bromodichloromethane        | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| Bromoform                   | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U         | 3.7 U               |
| Bromomethane                | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |
| Carbon disulfide            | UG/KG | 42.2 J          | 67.7 J              | 298 J               | 32.9 J        | 47.5 J              |
| Carbon tetrachloride        | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U         | 3.7 UJ              |
| Chlorobenzene               | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U         | 3.7 U               |
| Chloroethane                | UG/KG | 7.5 U           | 8.4 U               | 14 U                | 8.6 U         | 9.3 U               |
| Chloroform                  | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U         | 3.7 U               |

Flags assigned during chemistry validation are shown.

| Location ID                      |       | AR-SB-04        | AR-SB-05            | AR-SB-06            | AR-SB-07            | AR-SB-08            |
|----------------------------------|-------|-----------------|---------------------|---------------------|---------------------|---------------------|
| Sample ID<br>Matrix              |       | AR-SB-04(2.5-4) | AR-SB-05(4.2-5)     | AR-SB-06-3-4        | AR-SB-07(3-4)       | AR-SB-08(2.5-4)     |
|                                  |       | Soil            | Soil                | Soil                | Soil                | Soil                |
| Depth Interval (ft)              |       | 2.5-4.0         | 4.2-5.0<br>04/07/16 | 3.0-4.0<br>04/04/16 | 3.0-4.0<br>04/07/16 | 2.5-4.0<br>04/07/16 |
| Date Sampled                     |       | 04/07/16        |                     |                     |                     |                     |
| Parameter                        | Units |                 |                     |                     |                     |                     |
| Volatile Organic Compounds       |       |                 |                     |                     |                     |                     |
| Chloromethane                    | UG/KG | 7.5 U           | 8.4 UJ              | 14 U                | 8.6 U               | 9.3 UJ              |
| Dibromochloromethane             | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U               | 3.7 U               |
| Ethyibenzene                     | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U               | 3.7 U               |
| Methyl ethyl ketone (2-Butanone) | UG/KG | 51.3            | 143 J               | 315 J               | 63.2                | 223                 |
| Methylene chloride               | UG/KG | 3 U             | 3.3 U               | 1.7 J               | 3.5 U               | 0.82 J              |
| Styrene                          | UG/KG | 7.5 U           | 8.4 UJ              | 14 U                | 8.6 U               | 9.3 U               |
| Tetrachloroethene                | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U               | 3.7 U               |
| Toluene                          | UG/KG | 7.5 U           | 1.8 J               | 3.9 J               | 8.6 U               | 0.92 J              |
| Trichloroethene                  | UG/KG | 3 U             | 3.3 U               | 5.8 U               | 3.5 U               | 3.7 U               |
| Vinyl chloride                   | UG/KG | 3 U             | 3.3 UJ              | 5.8 U               | 3.5 U               | 3.7 UJ              |
| Xylene (total)                   | UG/KG | 3 U             | 3.3 UJ              | 1.3 J               | 3.5 U               | 0.91 J              |
| Semivolatile Organic Compounds   |       |                 |                     |                     |                     |                     |
| 1,2,4-Trichlorobenzene           | UG/KG | 380 U           | 710 U               | 3,500 U             | 360 U               | 380 U               |
| 1,2-Dichlorobenzene              | UG/KG | 380 U           | 710 U               | 3,500 U             | 360 U               | 380 U               |
| 1,3-Dichlorobenzene              | UG/KG | 380 U           | 710 U               | 3,500 U             | 360 U               | 380 U               |
| 1,4-Dichlorobenzene              | UG/KG | 380 U           | 710 U               | 3,500 U             | 360 U               | 380 U               |
| 2,4,5-Trichlorophenol            | UG/KG | 760 U           | 1,400 U             | 6,900 U             | 730 U               | 750 U               |
| 2,4,6-Trichlorophenol            | UG/KG | 760 U           | 1,400 U             | 6,900 U             | 730 U               | 750 U               |
| 2,4-Dichlorophenol               | UG/KG | 760 U           | 1,400 U             | 6,900 U             | 730 U               | 750 U               |
| 2,4-Dimethylphenol               | UG/KG | 760 U           | 1,400 U             | 6,900 U             | 730 U               | 750 U               |
| 2,4-Dinitrophenol                | UG/KG | 1,500 U         | 2,800 U             | 14,000 U            | 1,500 U             | 1,500 U             |
| 2,4-Dinitrotoluene               | UG/KG | 760 U           | 1,400 U             | 6,900 U             | 730 U               | 750 U               |
| 2,6-Dinitrotoluene               | UG/KG | 760 U           | 1,400 U             | 6,900 U             | 730 U               | 750 U               |

Flags assigned during chemistry validation are shown.

| Location ID                    |       | AR-SB-04        | AR-SB-05        | AR-SB-06     | AR-SB-07      | AR-SB-08        |
|--------------------------------|-------|-----------------|-----------------|--------------|---------------|-----------------|
| Sample ID                      |       | AR-SB-04(2.5-4) | AR-SB-05(4.2-5) | AR-SB-06-3-4 | AR-SB-07(3-4) | AR-SB-08(2.5-4) |
| Matrix                         |       | Soil            | Soil            | Soil         | Soil          | Soil            |
| Depth Interval (ft)            |       | 2.5-4.0         | 4.2-5.0         | 3.0-4.0      | 3.0-4.0       | 2.5-4.0         |
| Date Sampled                   |       | 04/07/16        | 04/07/16        | 04/04/16     | 04/07/16      | 04/07/16        |
| Parameter                      | Units |                 |                 |              |               |                 |
| Semivolatile Organic Compounds |       |                 |                 |              |               |                 |
| 2-Chloronaphthalene            | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| 2-Chlorophenoi                 | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| 2-Methylnaphthalene            | UG/KG | 150 U           | 280 U           | 1,400 U      | 150 U         | 150 U           |
| 2-Methylphenol (o-cresol)      | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 2-Nitroaniline                 | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 2-Nitrophenol                  | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 3,3-Dichlorobenzidine          | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| 3-Nitroaniline                 | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 4,6-Dinitro-2-methylphenol     | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 4-Bromophenyl-phenylether      | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| 4-Chloro-3-methylphenol        | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 4-Chloroaniline                | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 4-Chlorophenyl-phenylether     | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| 4-Methylphenol (p-cresol)      | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 4-Nitroaniline                 | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| 4-Nitrophenol                  | UG/KG | 1,500 U         | 2,800 U         | 14,000 U     | 1,500 U       | 1,500 U         |
| Acenaphthene                   | UG/KG | 63.5 J          | 155 J           | 1,400 U      | 150 U         | 33.1 J          |
| Acenaphthylene                 | UG/KG | 89.8 J          | 280 U           | 1,400 U      | 150 U         | 150 U           |
| Anthracene                     | UG/KG | 247             | 280 U           | 205 J        | 29.3 J        | 80.3 J          |
| Benzo(a)anthracene             | UG/KG | 588             | 677             | 600 J        | 99.1 J        | 249             |
| Benzo(a)pyrene                 | UG/KG | 554             | 638             | 1,790        | 119 J         | 247             |
| Benzo(b)fluoranthene           | UG/KG | 607             | 874             | 2,060        | 134 J         | 337             |
| Benzo(g,h,i)perylene           | UG/KG | 360             | 505             | 629 J        | 92.1 J        | 190             |

Flags assigned during chemistry validation are shown.

| Location ID                    |       | AR-SB-04                              | AR-SB-05        | AR-SB-06     | AR-SB-07      | AR-SB-08        |
|--------------------------------|-------|---------------------------------------|-----------------|--------------|---------------|-----------------|
| Sample ID                      |       | AR-SB-04(2.5-4)                       | AR-SB-05(4.2-5) | AR-SB-06-3-4 | AR-SB-07(3-4) | AR-SB-08(2.5-4) |
| Matrix                         |       | Soil                                  | Soll            | Soil         | Soil          | Soil            |
| Depth Interval (ft)            |       | 2.5-4.0                               | 4.2-5.0         | 3.0-4.0      | 3.0-4.0       | 2.5-4.0         |
| Date Sampled                   |       | 04/07/16                              | 04/07/16        | 04/04/16     | 04/07/16      | 04/07/16        |
| Parameter                      | Units |                                       |                 |              |               |                 |
| Semivolatile Organic Compounds |       | · · · · · · · · · · · · · · · · · · · |                 |              |               |                 |
| Benzo(k)fluoranthene           | UG/KG | 476                                   | 562             | 748 J        | 105 J         | 229             |
| bis(2-Chloroethoxy)methane     | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| bis(2-Chloroethyl)ether        | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Bis(2-chloroisopropyl) ether   | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| bis(2-Ethylhexyl)phthalate     | UG/KG | 867                                   | 710 U           | 3,470 J      | 304 J         | 295 J           |
| Butyibenzyiphthalate           | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Carbazole                      | UG/KG | 150 U                                 | 280 U           | 1,400 U      | 150 U         | 150 U           |
| Chrysene                       | UG/KG | 726                                   | 1,080           | 974 J        | 153           | 397             |
| Dibenz(a,h)anthracene          | UG/KG | 126 J                                 | 157 J           | 1,400 U      | 150 U         | 57.3 J          |
| Dibenzofuran                   | UG/KG | 49.5 J                                | 280 U           | 1,400 U      | 150 U         | 150 U           |
| Diethylphthalate               | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Dimethylphthalate              | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Di-n-butylphthalate            | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Di-n-octylphthalate            | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Fluoranthene                   | UG/KG | 1,600                                 | 280 U           | 1,960        | 280           | 780             |
| Fluorene                       | UG/KG | 136 J                                 | 280 U           | 1,400 U      | 150 U         | 150 U           |
| Hexachlorobenzene              | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Hexachlorobutadiene            | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Hexachlorocyclopentadiene      | UG/KG | 760 U                                 | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| Hexachloroethane               | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Indeno(1,2,3-cd)pyrene         | UG/KG | 341                                   | 425             | 2,870        | 77.8 J        | 158             |
| isophorone                     | UG/KG | 380 U                                 | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Naphthalene                    | UG/KG | 150 U                                 | 280 U           | 1,400 U      | 150 U         | 150 U           |

Flags assigned during chemistry validation are shown.

| Location ID                     |       | AR-SB-04        | AR-SB-05        | AR-SB-06     | AR-SB-07      | AR-SB-08        |
|---------------------------------|-------|-----------------|-----------------|--------------|---------------|-----------------|
| Sample ID                       |       | AR-SB-04(2.5-4) | AR-SB-05(4.2-5) | AR-SB-06-3-4 | AR-SB-07(3-4) | AR-SB-08(2.5-4) |
| Matrix                          |       | Soil            | Soli            | Soil         | Soil          | Soil            |
| Depth Interval (ft)             |       | 2.5-4.0         | 4.2-5.0         | 3.0-4.0      | 3.0-4.0       | 2.5-4.0         |
| Date Sampled                    |       | 04/07/16        | 04/07/16        | 04/04/16     | 04/07/16      | 04/07/16        |
| Parameter                       | Units |                 |                 |              |               |                 |
| Semivolatile Organic Compounds  |       |                 |                 |              |               |                 |
| Nitrobenzene                    | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| N-Nitroso-di-n-propylamine      | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| N-Nitrosodiphenylamine          | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Pentachlorophenol               | UG/KG | 760 U           | 1,400 U         | 6,900 U      | 730 U         | 750 U           |
| Phenanthrene                    | UG/KG | 664             | 280 U           | 406 J        | 54.3 J        | 134 J           |
| Phenol                          | UG/KG | 380 U           | 710 U           | 3,500 U      | 360 U         | 380 U           |
| Pyrene                          | UG/KG | 1,120           | 1,730           | 1,680        | 243           | 646             |
| Polychlorinated Biphenyls       |       |                 |                 |              |               |                 |
| Aroclor 1016                    | UG/KG | 250 U           | 50 U            | 240 U        | 47 UJ         | 50 U            |
| Aroclor 1221                    | UG/KG | 250 U           | 50 U            | 240 U        | 47 UJ         | 50 U            |
| Aroclor 1232                    | UG/KG | 250 U           | 50 U            | 240 U        | 47 UJ         | 50 U            |
| Aroclor 1242                    | UG/KG | 250 U           | 50 U            | 240 U        | 47 UJ         | 50 U            |
| Aroclor 1248                    | UG/KG | 749 J           | 388 J           | 577 J        | 128 J         | 464 J           |
| Aroclor 1254                    | UG/KG | 1,340           | 747             | 1,080        | 140 J         | 861 J           |
| Arocior 1260                    | UG/KG | 632 J           | 380 J           | 560 J        | 42.2 J        | 154 J           |
| Total Polychlorinated Biphenyls | UG/KG | 2,721 J         | 1,515 J         | 2,217 J      | 310.2 J       | 1,479 J         |

Flags assigned during chemistry validation are shown.

| Location ID                 | AR-SB-02            | AR-SB-08          | AR-SB-08                 |                       |
|-----------------------------|---------------------|-------------------|--------------------------|-----------------------|
| Sample ID                   | AR-SB-02(0.5-1.5)   | AR-SB-08(0.5-1.5) | AR-SB-08(0.5-<br>1.5)DUP |                       |
| Matrix                      | Soil                | Soil              | Soil                     |                       |
| Depth Interval (ft)         | Depth Interval (ft) |                   | 0.5-1.5                  | 0.5-1.5               |
| Date Sampled                |                     | 04/11/16          | 04/11/16                 | 04/11/16              |
| Parameter                   | Units               |                   |                          | Field Duplicate (1-1) |
| Volatile Organic Compounds  |                     |                   | · · · ·                  |                       |
| 1,1,1-Trichloroethane       | UG/KG               | 3.1 UJ            | 2.4 U                    | 2.8 U                 |
| 1,1,2,2-Tetrachloroethane   | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 UJ                |
| 1,1,2-Trichloroethane       | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| 1,1-Dichloroethane          | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| 1,1-Dichloroethene          | UG/KG               | 3.1 UJ            | 2.4 U                    | 2.8 UJ                |
| 1,2-Dichloroethane          | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| 1,2-Dichloroethene (cis)    | UG/KG               | a 3.1 U           | 2.4 U                    | 2.8 U                 |
| 1,2-Dichloroethene (trans)  | UG/KG               | 3.1 UJ            | 2.4 U                    | 2.8 UJ                |
| 1,2-Dichloropropane         | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| 1,3-Dichloropropene (cis)   | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| 1,3-Dichloropropene (trans) | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| 2-Hexanone                  | UG/KG               | 16 UJ             | 12 U                     | 14 U                  |
| 4-Methyl-2-pentanone        | UG/KG               | 7.8 U             | 6.1 U                    | 7 U                   |
| Acetone                     | UG/KG               | 228 J             | 389 J                    | 731 J                 |
| Benzene                     | UG/KG               | 0.86              | 1.1                      | 2.3                   |
| Bromodichloromethane        | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| Bromoform                   | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| Bromomethane                | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |
| Carbon disulfide            | UG/KG               | 14.6 J            | 25.6                     | 61.2 J                |
| Carbon tetrachloride        | UG/KG               | 3.1 UJ            | 2.4 U                    | 2.8 U                 |
| Chlorobenzene               | UG/KG               | 3.1 U             | 0.59 J                   | 2.8 U                 |
| Chloroethane                | UG/KG               | 7.8 U             | 6.1 U                    | 7 U                   |
| Chloroform                  | UG/KG               | 3.1 U             | 2.4 U                    | 2.8 U                 |

Flags assigned during chemistry validation are shown.

| Location ID                      |       | AR-SB-02          | AR-SB-08          | AR-SB-08                 |
|----------------------------------|-------|-------------------|-------------------|--------------------------|
| Sample ID                        |       | AR-SB-02(0.5-1.5) | AR-SB-08(0.5-1.5) | AR-SB-08(0.5-<br>1.5)DUP |
| Matrix                           |       | Soil              | Soil              | Soil                     |
| Depth Interval (ft)              |       | 0.5-1.5           | 0.5-1.5           | 0.5-1.5                  |
| Date Sampled                     |       | 04/11/16          | 04/11/16          | 04/11/16                 |
| Parameter                        | Units |                   |                   | Field Duplicate (1-1)    |
| Volatile Organic Compounds       |       |                   |                   |                          |
| Chloromethane                    | UG/KG | 7.8 U             | 6.1 U             | 7 U                      |
| Dibromochloromethane             | UG/KG | 3.1 U             | 2.4 U             | 2.8 U                    |
| Ethylbenzene                     | UG/KG | 3.1 U             | 2.4 U             | 2.8 U                    |
| Methyl ethyl ketone (2-Butanone) | UG/KG | 16 UJ             | 24 U              | 14 U                     |
| Methylene chloride               | UG/KG | 3.1 U             | 2.4 U             | 1.3 J                    |
| Styrene                          | UG/KG | 7.8 UJ            | 6.1 U             | 7 UJ                     |
| Tetrachloroethene                | UG/KG | 3.1 U             | 2.4 U             | 2.8 U                    |
| Toluene                          | UG/KG | 7.8 U             | 1.2 J             | 2.2 J                    |
| Trichloroethene                  | UG/KG | 3.1 U             | 2.4 U             | 2.8 U                    |
| Vinyl chloride                   | UG/KG | 3.1 UJ            | 2.4 U             | 2.8 U                    |
| Xylene (total)                   | UG/KG | 3.1 U             | 1.9 J             | 0.69 J                   |
| Semivolatile Organic Compounds   |       |                   |                   |                          |
| 1,2,4-Trichlorobenzene           | UG/KG | 320 U             | 320 U             | 320 U                    |
| 1,2-Dichlorobenzene              | UG/KG | 320 U             | 320 U             | 320 U                    |
| 1,3-Dichlorobenzene              | UG/KG | 320 U             | 320 U             | 320 U                    |
| 1,4-Dichlorobenzene              | UG/KG | 320 U             | 320 U             | 320 U                    |
| 2,4,5-Trichlorophenol            | UG/KG | 640 U             | 640 U             | 640 U                    |
| 2,4,6-Trichlorophenol            | UG/KG | 640 U             | 640 U             | 640 U                    |
| 2,4-Dichlorophenol               | UG/KG | 640 U             | 640 U             | 640 U                    |
| 2,4-Dimethylphenol               | UG/KG | 640 U             | 640 U             | 640 U                    |
| 2,4-Dinitrophenol                | UG/KG | 1,300 U           | 1,300 U           | 1,300 U                  |
| 2,4-Dinitrotoluene               | UG/KG | 640 U             | 640 U             | 640 U                    |
| 2,6-Dinitrotoluene               | UG/KG | NA                | 640 U             | 640 U                    |

Flags assigned during chemistry validation are shown.

| Location ID                    |                   | AR-SB-02          | AR-SB-08                 | AR-SB-08              |
|--------------------------------|-------------------|-------------------|--------------------------|-----------------------|
| Sample ID                      | AR-SB-02(0.5-1.5) | AR-SB-08(0.5-1.5) | AR-SB-08(0.5-<br>1.5)DUP |                       |
| Matrix                         | Soil              | Soil              | Soil                     |                       |
| Depth Interval (ft)            |                   | 0.5-1.5           | 0.5-1.5                  | 0.5-1.5               |
| Date Sampled                   |                   | 04/11/16          | 04/11/16                 | 04/11/16              |
| Parameter                      | Units             |                   |                          | Field Duplicate (1-1) |
| Semivolatile Organic Compounds |                   |                   |                          |                       |
| 2-Chloronaphthalene            | UG/KG             | 320 U             | 320 U                    | 320 U                 |
| 2-Chlorophenol                 | UG/KG             | 320 U             | 320 U                    | 320 U                 |
| 2-Methylnaphthalene            | UG/KG             | 130 U             | 130 U                    | 130 U                 |
| 2-Methylphenol (o-cresol)      | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 2-Nitroaniline                 | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 2-Nitrophenol                  | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 3,3-Dichlorobenzidine          | UG/KG             | 320 U             | 320 U                    | 320 U                 |
| 3-Nitroaniline                 | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 4,6-Dinitro-2-methylphenol     | UG/KG             | 640 UJ            | 640 UJ                   | 640 UJ                |
| 4-Bromophenyl-phenylether      | UG/KG             | 320 U             | 320 U                    | 320 U                 |
| 4-Chloro-3-methylphenol        | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 4-Chloroaniline                | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 4-Chlorophenyl-phenylether     | UG/KG             | 320 U             | 320 U                    | 320 U                 |
| 4-Methylphenol (p-cresol)      | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 4-Nitroaniline                 | UG/KG             | 640 U             | 640 U                    | 640 U                 |
| 4-Nitrophenol                  | UG/KG             | 1,300 U           | 1,300 U                  | 1,300 U               |
| Acenaphthene                   | UG/KG             | 36.6 J            | 27.5 J                   | 33.8 J                |
| Acenaphthylene                 | UG/KG             | 47.2 J            | 53.9 J                   | 24.0 J                |
| Anthracene                     | UG/KG             | 134               | 109 J                    | 117 J                 |
| Benzo(a)anthracene             | UG/KG             | 966               | 784                      | 895                   |
| Benzo(a)pyrene                 | UG/KG             | 1,340             | 1,130                    | 1,260                 |
| Benzo(b)fluoranthene           | UG/KG             | 1,740             | 1,300                    | 1,730                 |
| Benzo(g,h,i)perylene           | UG/KG             | 1,210             | 1,020                    | 1,120                 |

Flags assigned during chemistry validation are shown.

| Location ID                    |       | AR-SB-02          | AR-SB-08          | AR-SB-08                 |
|--------------------------------|-------|-------------------|-------------------|--------------------------|
| Sample ID                      |       | AR-SB-02(0.5-1.5) | AR-SB-08(0.5-1.5) | AR-SB-08(0.5-<br>1.5)DUP |
| Matrix                         | Soll  | Soil              | Soil              |                          |
| Depth Interval (ft)            |       | 0.5-1.5           | 0.5-1.5           | 0.5-1.5                  |
| Date Sampled                   | -     | 04/11/16          | 04/11/16          | 04/11/16                 |
| Parameter                      | Units |                   |                   | Field Duplicate (1-1)    |
| Semivolatile Organic Compounds |       |                   |                   |                          |
| Benzo(k)fluoranthene           | UG/KG | 1,020             | 1,010             | 898                      |
| bis(2-Chloroethoxy)methane     | UG/KG | 320 U             | 320 U             | 320 U                    |
| bis(2-Chloroethyl)ether        | UG/KG | 320 U             | 320 U             | 320 U                    |
| Bis(2-chloroisopropyl) ether   | UG/KG | 320 U             | 320 U             | 320 U                    |
| bis(2-Ethylhexyl)phthalate     | UG/KG | 85.0 J            | 62.4 J            | 66.2 J                   |
| Butylbenzylphthalate           | UG/KG | 320 UJ            | 320 UJ            | 320 UJ                   |
| Carbazole                      | UG/KG | 122 J             | 93.5 J            | 120 J                    |
| Chrysene                       | UG/KG | 1,470             | 1,190             | 1,360                    |
| Dibenz(a,h)anthracene          | UG/KG | 355               | 298               | 330                      |
| Dibenzofuran                   | UG/KG | 22.4 J            | 130 U             | 22.5 J                   |
| Diethylphthalate               | UG/KG | 320 U             | 320 U             | 320 U                    |
| Dimethylphthalate              | UG/KG | 320 U             | 320 U             | 320 U                    |
| Di-n-butylphthalate            | UG/KG | 320 U             | 320 U             | 320 U                    |
| Di-n-octylphthalate            | UG/KG | 320 U             | 320 U             | 320 U                    |
| Fluoranthene                   | UG/KG | 2,350             | 1,830             | 2,180                    |
| Fluorene                       | UG/KG | 39.5 J            | 29.7 J            | 36.1 J                   |
| Hexachlorobenzene              | UG/KG | 320 U             | 320 U             | 320 U                    |
| Hexachlorobutadiene            | UG/KG | 320 U             | 320 U             | 320 U                    |
| Hexachlorocyclopentadiene      | UG/KG | 640 U             | 640 U             | 640 U                    |
| Hexachloroethane               | UG/KG | 320 U             | 320 U             | 320 U                    |
| Indeno(1,2,3-cd)pyrene         | UG/KG | 1,030             | 880               | 965                      |
| Isophorone                     | UG/KG | 320 U             | 320 U             | 320 U                    |
| Naphthalene                    | UG/KG | 25.1 J            | 28.1 J            | 24.3 J                   |

Flags assigned during chemistry validation are shown.

| Location ID                     |       | AR-SB-02          | AR-SB-08          | AR-SB-08                 |
|---------------------------------|-------|-------------------|-------------------|--------------------------|
| Sample ID                       |       | AR-SB-02(0.5-1.5) | AR-SB-08(0.5-1.5) | AR-SB-08(0.5-<br>1.5)DUP |
| Matrix                          |       | Soil              | Soil              | Soil                     |
| Depth Interval (ft)             |       | 0.5-1.5           | 0.5-1.5           | 0.5-1.5                  |
| Date Sampled                    |       | 04/11/16          | 04/11/16          | 04/11/16                 |
| Parameter                       | Units |                   |                   | Field Duplicate (1-1)    |
| Semivolatile Organic Compounds  |       |                   |                   |                          |
| Nitrobenzene                    | UG/KG | 320 U             | 320 U             | 320 U                    |
| N-Nitroso-di-n-propylamine      | UG/KG | 320 U             | 320 U             | 320 U                    |
| N-Nitrosodiphenylamine          | UG/KG | 320 U             | 320 U             | 320 U                    |
| Pentachlorophenoi               | UG/KG | 640 U             | 640 U             | 640 U                    |
| Phenanthrene                    | UG/KG | 738               | 522               | 664                      |
| Phenol                          | UG/KG | 320 U             | 320 U             | 320 U                    |
| Pyrene                          | UG/KG | 1,910             | 1,470             | 1,810                    |
| Polychlorinated Biphenyls       |       |                   |                   |                          |
| Aroclor 1016                    | UG/KG | 41 U              | 43 U              | 44 U                     |
| Aroclor 1221                    | UG/KG | 41 U              | 43 U              | 44 U                     |
| Aroclor 1232                    | UG/KG | 41 U              | 43 U              | 44 U                     |
| Aroclor 1242                    | UG/KG | 41 U              | 43 U              | 44 U                     |
| Aroclor 1248                    | UG/KG | 41 U              | 43 U              | 44 U                     |
| Arocior 1254                    | UG/KG | 50.5 J            | 60.5 J            | 54.2 J                   |
| Aroclor 1260                    | UG/KG | 84.3              | 92.3              | 70.4                     |
| Total Polychlorinated Biphenyls | UG/KG | 134.8 J           | 152.8 J           | 124.6 J                  |

Flags assigned during chemistry validation are shown,

| Location ID                 |       | AR-MW-01    | AR-MW-02    | AR-MW-03    | AR-MW-04    | AR-MW-05    |
|-----------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Sample ID<br>Matrix         |       | AR-MW01     | AR-MW02     | AR-MW03     | AR-MW04     | AR-MW05     |
|                             |       | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)         |       | •           | -           | -           | -           | -           |
| Date Sampled                |       | 04/18/16    | 04/18/16    | 04/18/16    | 04/18/16    | 04/18/16    |
| Parameter                   | Units |             |             |             |             |             |
| Volatile Organic Compounds  |       |             |             |             |             |             |
| 1,1,1-Trichloroethane       | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| 1,1,2,2-Tetrachloroethane   | UG/L  | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 UJ      |
| 1,1,2-Trichloroethane       | UG/L  | 1 Մ         | 10          | 1 U         | 1 U         | 1 U         |
| 1,1-Dichloroethane          | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| 1,1-Dichloroethene          | UG/L  | 10          | 1 U         | 1 U         | 1 U         | 1 U         |
| 1,2-Dichloroethane          | UG/L  | 1 UJ        | 1 UJ        | 1 UJ        | 1 UJ        | 1 U         |
| 1,2-Dichloroethene (cis)    | UG/L  | 1U          | 1 U         | 1 U         | 1 U         | 1 U         |
| 1,2-Dichloroethene (trans)  | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| 1,2-Dichloropropane         | UG/L  | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         |
| 1,3-Dichloropropene (cis)   | UG/L  | 0.5 U       |
| 1,3-Dichloropropene (trans) | UG/L  | 0.5 UJ      | 0.5 UJ      | 0.5 UJ      | 0.5 UJ      | 0.5 U       |
| 2-Hexanone                  | UG/L  | 10 U        |
| 4-Methyl-2-pentanone        | UG/L  | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
| Acetone                     | UG/L  | R           | R           | R           | R           | R           |
| Benzene                     | UG/L  | 0.5 U       |
| Bromodichloromethane        | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Bromoform                   | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Bromomethane                | UG/L  | 2 UJ        | 2 UJ        | 2 UJ        | 2 UJ        | 2 U         |
| Carbon disulfide            | UG/L  | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
| Carbon tetrachioride        | UG/L  | 1 U         | 1 U         | 1 U         | 10          | 1 U         |
| Chlorobenzene               | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Chloroethane                | UG/L  | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         |
| Chloroform                  | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |

Flags assigned during chemistry validation are shown.

| Location ID                         |       | AR-MW-01    | AR-MW-02    | AR-MW-03    | AR-MW-04    | AR-MW-05    |
|-------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Sample ID<br>Matrix                 |       | AR-MW01     | AR-MW02     | AR-MW03     | AR-MW04     | AR-MW05     |
|                                     |       | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)                 |       | -           | -           | -           | -           | -           |
| Date Sampled                        |       | 04/18/16    | 04/18/16    | 04/18/16    | 04/18/16    | 04/18/16    |
| Parameter                           | Units |             |             |             |             |             |
| Volatile Organic Compounds          |       |             |             |             |             |             |
| Chloromethane                       | UG/L  | 2 U         | 2 U         | 2 U         | 2 U         | 2 UJ        |
| Dibromochloromethane                | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Ethylbenzene                        | UG/L  | 1 ט         | 1 U         | 1 U         | 1 U         | 1 U         |
| Methyl ethyl ketone (2-Butanone)    | UG/L  | R           | R           | R           | R           | R           |
| Methylene chloride                  | UG/L  | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         |
| Styrene                             | UG/L  | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
| Tetrachloroethene                   | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Toluene                             | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Trichloroethene                     | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Vinyl chloride                      | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Xylene (total)                      | UG/L  | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
| Polychlorinated Biphenyls           |       |             |             |             |             |             |
| Aroclor 1016                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |
| Aroclor 1221                        | UG/L  | 0.16 U      |
| Aroclor 1232                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |
| Aroclor 1242                        | UG/L  | 0.16 U      |
| Aroclor 1248                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |
| Aroclor 1254                        | UG/L  | 0.16 U      |
| Aroclor 1260                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |
| Dissolved Polychlorinated Biphenyls |       |             |             |             |             |             |
| Arocior 1016                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |
| Aroclor 1221                        | UG/L  | 0.16 U      |
| Aroclor 1232                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |

Flags assigned during chemistry validation are shown.

| Location ID                         |       | AR-MW-01    | AR-MW-02    | AR-MW-03    | AR-MW-04    | AR-MW-05    |
|-------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                           |       | AR-MW01     | AR-MW02     | AR-MW03     | AR-MW04     | AR-MW05     |
| Matrix                              |       | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)                 |       | -           | -           | -           | -           | -           |
| Date Sampled                        |       | 04/18/16    | 04/18/16    | 04/18/16    | 04/18/16    | 04/18/16    |
| Parameter                           | Units |             |             |             |             |             |
| Dissolved Polychlorinated Biphenyls |       |             |             |             |             |             |
| Aroclor 1242                        | UG/L  | 0.16 U      |
| Aroclor 1248                        | UG/L  | 0.16 U      |
| Aroclor 1254                        | UG/L  | 0.16 U      |
| Aroclor 1260                        | UG/L  | 0.16 U      | 0.16 U      | 0.15 U      | 0.16 U      | 0.16 U      |

Flags assigned during chemistry validation are shown.

MADE BY: AMK 6/23/16 CHECKED BY: GEK 6/23/16

Detection Limits shown are PQL

| Location ID                 |       | AR-MW-06    | AR-SB-02    | AR-SB-04    |
|-----------------------------|-------|-------------|-------------|-------------|
| Sample ID                   |       | AR-MW06     | AR-SB02     | AR-SB04     |
| Matrix                      |       | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)         |       | •           | -           | •           |
| Date Sampled                | 1     | 04/18/16    | 04/18/16    | 04/18/16    |
| Parameter                   | Units |             |             |             |
| Volatile Organic Compounds  |       |             |             |             |
| 1,1,1-Trichloroethane       | UG/L  | 1 U         | 1 U         | 1 U         |
| 1,1,2,2-Tetrachloroethane   | UG/L  | 0.5 U       | 0.5 U       | 0.5 U       |
| 1,1,2-Trichloroethane       | UG/L  | 1 U         | 1 U         | 1 U         |
| 1,1-Dichloroethane          | UG/L  | 0.98 J      | 1 U         | 1 U         |
| 1,1-Dichloroethene          | UG/L  | 1.6         | 1 U         | 1 U         |
| 1,2-Dichloroethane          | UG/L  | 1 UJ        | 1 UJ        | 1 UJ        |
| 1,2-Dichloroethene (cis)    | UG/L  | 393         | 1 U         | 0.52 J      |
| 1,2-Dichloroethene (trans)  | UG/L  | 1 U         | 1 U         | 1 U         |
| 1,2-Dichloropropane         | UG/L  | 2 U         | 2 U         | 2 U         |
| 1,3-Dichloropropene (cis)   | UG/L  | 0.5 U       | 0.5 U       | 0.5 U       |
| 1,3-Dichloropropene (trans) | UG/L  | 0.5 UJ      | 0.5 UJ      | 0.5 UJ      |
| 2-Hexanone                  | UG/L  | 10 U        | 10 U        | 10 U        |
| 4-Methyl-2-pentanone        | UG/L  | 5 U         | 5 U         | 5 U         |
| Acetone                     | UG/L  | R           | R           | R           |
| Benzene                     | UG/L  | 0.5 U       | 0.5 U       | 0.5 U       |
| Bromodichloromethane        | UG/L  | 1 U         | 1 U         | 1 U         |
| Bromoform                   | UG/L  | 1 U         | 1 U         | 1 U         |
| Bromomethane                | UG/L  | 2 UJ        | 2 UJ        | 2 UJ        |
| Carbon disulfide            | UG/L  | 5 U         | 5 U         | 5 U         |
| Carbon tetrachloride        | UG/L  | 1 U         | 1 U         | 1 U         |
| Chiorobenzene               | UG/L  | 1 U         | 1 U         | 1 U         |
| Chloroethane                | UG/L  | 2 U         | 2 U         | 2 U         |
| Chloroform                  | UG/L  | 1 U         | 1 U         | 1 U         |

Flags assigned during chemistry validation are shown.

| Location ID                                |       | AR-MW-06    | AR-SB-02    | AR-SB-04    |
|--------------------------------------------|-------|-------------|-------------|-------------|
| Sample ID<br>Matrix<br>Depth Interval (ft) |       | AR-MW06     | AR-SB02     | AR-SB04     |
|                                            |       | Groundwater | Groundwater | Groundwater |
|                                            |       | •           | -           |             |
| Date Sampled                               |       | 04/18/16    | 04/18/16    | 04/18/16    |
| Parameter                                  | Units |             |             |             |
| Volatile Organic Compounds                 |       |             |             |             |
| Chloromethane                              | UG/L  | 2 U         | 2 U         | 2 U         |
| Dibromochloromethane                       | UG/L  | 1 U         | 1 U         | 1 U         |
| Ethylbenzene                               | UG/L  | 1 U         | 1 U         | 1 U         |
| Methyl ethyl ketone (2-Butanone)           | UG/L  | R           | R           | R           |
| Methylene chloride                         | UG/L  | 2 U         | 2 U         | 2 U         |
| Styrene                                    | UG/L  | 5 U         | 5 U         | 5 U         |
| Tetrachloroethene                          | UG/L  | 0.61 J      | 1 U         | 1 U         |
| Toluene                                    | UG/L  | 6.4         | 1 U         | 1 Ư         |
| Trichloroethene                            | UG/L  | 91.0        | 1 U         | 1 U         |
| Vinyl chloride                             | UG/L  | 16.0        | 1 U         | 1 U         |
| Xylene (total)                             | UG/L  | 1 U         | 1 U         | 1 U         |
| Polychlorinated Biphenyls                  |       |             |             |             |
| Aroclor 1016                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1221                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1232                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1242                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1248                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1254                               | UG/L  | 0.16 U      | 0.16 U      | 0.063 J     |
| Aroclor 1260                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Dissolved Polychlorinated Biphenyls        |       |             |             |             |
| Aroclor 1016                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1221                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |
| Aroclor 1232                               | UG/L  | 0.16 U      | 0.16 U      | 0.16 U      |

Flags assigned during chemistry validation are shown.

| Location ID<br>Sample ID<br>Matrix<br>Depth Interval (ft)<br>Date Sampled |      | AR-MW-06                                | AR-SB-02      | AR-SB-04<br>AR-SB04<br>Groundwater<br>-<br>04/18/16 |
|---------------------------------------------------------------------------|------|-----------------------------------------|---------------|-----------------------------------------------------|
|                                                                           |      | AR-MW06<br>Groundwater<br>-<br>04/18/16 | AR-SB02       |                                                     |
|                                                                           |      |                                         | Groundwater   |                                                     |
|                                                                           |      |                                         | -<br>04/18/16 |                                                     |
|                                                                           |      |                                         |               |                                                     |
| Dissolved Polychlorinated Biphenyls                                       |      |                                         |               |                                                     |
| Aroclor 1242                                                              | UG/L | 0.16 U                                  | 0.16 U        | 0.16 U                                              |
| Aroclor 1248                                                              | UG/L | 0.16 U                                  | 0.16 U        | 0.16 U                                              |
| Aroclor 1254                                                              | UG/L | 0.16 U                                  | 0.16 U        | 0.063 J                                             |
| Aroclor 1260                                                              | UG/L | 0.16 U                                  | 0.16 U        | 0.16 U                                              |

Flags assigned during chemistry validation are shown.

# TABLE 4 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS A&R BUILDING AREA UTC/CARRIER SITE

| Location ID                 | FIELDQC       |                   |
|-----------------------------|---------------|-------------------|
| Sample ID                   | RB-040616     |                   |
| Matrix                      | Water Quality |                   |
| Depth Interval (ft)         | -             |                   |
| Date Sampled                | 04/06/16      |                   |
| Parameter                   | Units         | Rinse Blank (1-1) |
| Volatile Organic Compounds  |               |                   |
| 1,1,1-Trichloroethane       | UG/L          | 1 U               |
| 1,1,2,2-Tetrachloroethane   | UG/L          | 0.5 U             |
| 1,1,2-Trichloroethane       | UG/L          | 1 U               |
| 1,1-Dichloroethane          | UG/L          | 1 U               |
| 1,1-Dichloroethene          | UG/L          | 1 U               |
| 1,2-Dichloroethane          | UG/L          | 1 U               |
| 1,2-Dichloroethene (cis)    | UG/L          | 1 U               |
| 1,2-Dichloroethene (trans)  | UG/L          | 1 U               |
| 1,2-Dichloropropane         | UG/L          | 20                |
| 1,3-Dichloropropene (cis)   | UG/L          | 0.5 U             |
| 1,3-Dichloropropene (trans) | UG/L          | 0.5 U             |
| 2-Hexanone                  | UG/L          | 10 U              |
| 4-Methyl-2-pentanone        | UG/L          | 5 U               |
| Acetone                     | UG/L          | R                 |
| Benzene                     | UG/L          | 0.5 U             |
| Bromodichloromethane        | UG/L          | 1 U               |
| Bromoform                   | UG/L          | 1 U               |
| Bromomethane                | UG/L          | 2 U               |
| Carbon disulfide            | UG/L          | 5 U               |
| Carbon tetrachloride        | UG/L          | 1 U               |
| Chlorobenzene               | UG/L          | 1 U               |
| Chloroethane                | UG/L          | 2 U               |
| Chloroform                  | UG/L          | 1 U               |

Flags assigned during chemistry validation are shown.

## TABLE 4 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS A&R BUILDING AREA UTC/CARRIER SITE

| Location ID                      | FIELDQC       |                   |
|----------------------------------|---------------|-------------------|
| Sample ID                        | RB-040616     |                   |
| Matrix                           | Water Quality |                   |
| Depth Interval (ft)              | -             |                   |
| Date Sampled                     | 04/06/16      |                   |
| Parameter                        | Units         | Rinse Blank (1-1) |
| Volatile Organic Compounds       |               |                   |
| Chloromethane                    | UG/L          | 2 U               |
| Dibromochloromethane             | UG/L          | 1 U               |
| Ethylbenzene                     | UG/L          | 1 U               |
| Methyl ethyl ketone (2-Butanone) | UG/L          | R                 |
| Methylene chloride               | UG/L          | 2 U               |
| Styrene                          | UG/L          | 5 U               |
| Tetrachloroethene                | UG/L          | 1 U               |
| Toluene                          | UG/L          | 1 U               |
| Trichloroethene                  | UG/L          | 1 U               |
| Vinyi chloride                   | UG/L          | 1 U               |
| Xylene (total)                   | UG/L          | 1 U               |
| Polychlorinated Biphenyls        |               |                   |
| Aroclor 1016                     | UG/L          | 0.28 U            |
| Aroclor 1221                     | UG/L          | 0.28 U            |
| Aroclor 1232                     | UG/L          | 0.28 U            |
| Aroclor 1242                     | UG/L          | 0.28 U            |
| Aroclor 1248                     | UG/L          | 0.28 U            |
| Aroclor 1254                     | UG/L          | 0.28 U            |
| Aroclor 1260                     | UG/L          | 0.28 U            |

Flags assigned during chemistry validation are shown.