

SITE-WIDE GROUNDWATER MONITORING

SUPPLEMENTAL WELL INSTALLATION SAMPLING AND ANALYSIS REPORT

United Technologies Corporation/Carrier Site Thompson Road, Syracuse, NY

Corrective Action Order – Index CO 7-20051118-4 NYSDEC Site Registry #734043

Project Number: 60528299

April 2017

Prepared for:

United Technologies Corporation Shared Remediation Services 9 Farm Springs Road Farmington, Connecticut 06032

Prepared by:

AECOM 257 West Genesee Street Buffalo NY, 14202 USA aecom.com

Copyright © 2017 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Introd	uction	.1
	1.1	Site Description	.1
	1.2	Existing Groundwater Monitoring Well Network	
	1.3	General Rationale of New Monitoring Well Locations	.1
2.	Field I	nvestigation Activities	.2
	2.1	Drilling and Soil Sampling	.2
	2.2	Well Installation and Construction	.3
	2.3	Well Development	.3
	2.4	Groundwater Sampling	.4
	2.5	Surveying	.4
	2.6	Analytical Program	.4
3.	Invest	igation Results	.4
	3.1	Field Screening Results	.4
	3.2	Chemical Analytical Results	.5
	3.2.1	Applicable Standards, Criteria, and Guidance	
	3.2.2	Soil Results	.5
	3.2.3	Groundwater Results	.5
4.	Concl	usions and Recommendations	.6

Figures

Figure 1	Site Location
Figure 2	Sample Locations
Figure 3	Groundwater Elevations (February 15, 2017)
Figure 4	Soil Exceedances (January 2017)
Figure 5	Groundwater Exceedances (February 2017)

Tables

Table 1	Summary of Investigation Samples
Table 2	Sample Bottle, Volume, Preservation, and Holding Time Summary
Table 3	Monitoring Well Details
Table 4	Soil Analytical Results
Table 5	Groundwater Analytical Results

Appendicies

Appendix A	Boring Logs
------------	-------------

- Appendix B Well Development Logs
- Appendix C Groundwater Sampling Purge Logs
- Appendix D Data Usability Summary Report

1. Introduction

United Technologies Corporation (UTC) is performing environmental remediation activities at the Carrier Thompson Road Facility (Site) in Syracuse, Onondaga County, New York. UTC retained AECOM USA, Inc. (AECOM) to provide environmental engineering and investigation support services. The environmental work at the Site is being performed in accordance with the Corrective Action Order on Consent (CO) dated January 4, 2006.

The Site has a substantial number of monitoring wells that have been installed for various reasons, including investigations in areas of concern and establishing a monitoring well network in accordance with the CO. In October 2016, UTC requested that AECOM identify locations where additional monitoring wells are warranted, and particularly in areas near buildings where groundwater contamination, if present, could be a source of vapor intrusion (VI). AECOM prepared a Sampling and Analysis Plan (SAP) for installation and sampling of the additional wells and submitted it to the New York State Department of Environmental Conservation (NYSDEC) in October 2016. The SAP was approved by the NYSDEC on November 3, 2016. The well installation work and groundwater sampling was completed in January through February 2017. This document presents a description of the field procedures and a summary of findings.

1.1 Site Description

The Site is located in the northeast portion of Syracuse, New York, approximately one mile south of the New York State Thruway (**Figures 1 and 2**). The Site is bordered by Sanders Creek to the north, Thompson Road to the west, Kinne Street to the east, and a residential area to the south. The Site is relatively flat with a slight slope to the north toward Sanders Creek. The Site covers approximately 175 acres and most is paved, covered by manufacturing and office buildings, or open grassed areas covering former slabs of demolished buildings.

1.2 Existing Groundwater Monitoring Well Network

In April 2009, a Site-Wide Monitoring Plan (Monitoring Plan) was approved by NYSDEC. The groundwater monitoring well network in the Monitoring Plan is comprised of 16 monitoring wells, which are referred to as the CO (Order on Consent) wells. In addition to the 16 CO wells, there were approximately 90 monitoring points (wells and piezometers) located across the Site. The monitoring points were installed during investigations of Areas of Concern (AOCs) including the Former Buildings TR-1 and TR-2, Parking Lot R, Building TR-3 North Wall/Storm Water Treatment (SWTP) area, MH3 Soil Source Investigation, Administrative and Research (A&R) Building, and the Debris Pile. Other monitoring locations have been installed west of the Thompson Road Facility at the AOC-G Landfill. However, the locations addressed in this Sampling and Analysis Report (SAR) focus on the Thompson Road Campus portion of the Site where on-going operations occur.

In general, the Site is underlain by fill composed of silty clay with varying amounts of gravel, cobbles, brick, metal, and concrete. The fill thickness varies across the Site; in areas of former and existing buildings it has been observed up to 8 feet (ft) thick, in areas away from current and former operations it has been observed to be as little as 1 ft to 2 ft thick. The fill is underlain by natural deposits of silty clay with silt and sand lenses. Below the silty clay unit is a confining clay layer approximately 7 ft to13 ft thick. The clay unit is underlain by 6 ft to10 ft of clayey silt to silt, which is underlain by 2 ft to 6 ft of red brown fine to medium sand. Below the sand unit is a dense clay/silt unit, ranging from 4 ft to 12 ft thick. Red brown to green gray weathered shale underlies this unit. The upper silty clay unit comprises the upper water-bearing zone. The deposits beneath the confining clay unit comprise the lower water-bearing zone. The shallow monitoring wells across the Site are screened in this upper water-bearing zone and deep wells are screened in the lower water-bearing zone.

1.3 General Rationale of New Monitoring Well Locations

Fifteen new shallow wells were proposed in the SAP. Generally, the wells are located:

- in close proximity to buildings in areas that have not been previously investigated;
- to provide groundwater data near buildings to screen for potential VI issues;

- to enhance the Site perimeter monitoring well network; or
- to supplement groundwater information to fill in data gaps or provide data were no or limited data exists.

Following NYSDEC approval of the SAP, a sixteenth well was added to the program to provide another data point on the north side of Building TR-19.

2. Field Investigation Activities

The field activities included borehole pre-clearance, drilling and installation of new groundwater monitoring wells, community air monitoring, equipment decontamination, Investigation-derived waste (IDW) management, collection and analysis of soil and groundwater samples, and survey of investigation point locations and elevations.

Field investigation activities were performed in accordance with the SAP, Generic Site Investigation Procedures (GSIP), Health and Safety Plan (HASP), and Quality Assurance Project Plan (QAPP).

Prior to commencement of intrusive activities, Dig Safely NY was notified for utility clearance. Also, AECOM retained Ground Penetrating Radar Systems, Inc., to conduct a utility location survey at each proposed well location. The survey was performed using a Radiodetection RD7000 cable and pipe locator and ground penetrating radar (GPR). Facility personnel also assisted in the review of Site drawings and field assessment of buried utilities in the investigation areas.

Prior to drilling, each location was pre-cleared to a depth of approximately 5 ft using hand tools. IDW, including drill cuttings, development water, purge water, decontamination water, and sample tubing, were drummed, labeled, and stored on-site pending analyses for appropriate disposal. Solid waste from each location was placed in a drum(s) specific to that location.

The field investigation included the collection and analysis of soil and groundwater samples. The samples were analyzed for volatile organic compounds (VOCs) and polychlorinated biphenyls (PCBs). **Table 1** presents the number of samples collected per media (i.e., soil and groundwater) as well as quality assurance/quality control (QA/QC) samples. **Table 2** provides a summary of the analytical methods, as well as bottle, preservation, and holding time requirements.

2.1 Drilling and Soil Sampling

The drilling and well installation program was performed during the period of January 9 to 19, 2017. Field activities were overseen and documented by the supervising AECOM geologist. Drilling services were provided by Parratt-Wolff, Inc.

The well boring locations were adjusted in the field based on the presence of underground utilities and accessibility of the drilling equipment. A total of 16 wells were installed. The well locations were identified as MW-69 through MW-84 (**Figure 2**).

The well borings were advanced to depths between 10 ft and 20 ft using a truck-mounted drill rig or a track-mounted Geoprobe rig. All borings, except MW-70, were advanced with 4 ¼-inch (in) inside diameter (ID) HSAs.

MW-70 is located within the former building TR-2 footprint. The building was demolished, but the concrete floor slab of the building remains underneath a soil and grass cover. At MW-70, 6 ¼-in ID HSAs were used to auger through the concrete slab and then 4 ¼-in ID HSAs were used to complete the boring.

All borings were continuously sampled using direct-push sampling. Upon recovery, each soil sample was inspected for evidence of contamination (e.g., staining and odors) and screened for volatile organic vapors using a calibrated miniRae photoionization detector (PID) equipped with a 10.6 eV lamp. A generalized summary of observations at each boring is presented below. Field observations are discussed in greater detail in Section 3.1.

Well ID	Total Depth (ft)	Depth to Saturated Soils (ft)	Highest PID Reading (ppm), Depth (ft)	Apparent Impacts
MW-69	15	6.5	ND	None
MW-70	20	12.0	ND	None
MW-71	15	8.0	ND	None
MW-72	12	5.5	ND	None
MW-73	12	4.0	ND	None
MW-74	12	5.0	ND	None
MW-75	10	5.0	ND	None
MW-76	15	6.5	ND	None
MW-77	15	7.0	ND	None
MW-78	15	6.0	ND	None
MW-79	10	4.0	ND	None
MW-80	10	5.0	ND	None
MW-81	15	5.0	ND	None
MW-82	15	5.0	ND	None
MW-83	12	5.0	2.6, 1-2	Petroleum Odors
MW-84	12	5.5	ND	None

Well Installation Observation Summary

One soil sample was retained from each boring for chemical analysis. If no apparent impacts were identified, the sample was generally collected from the interval just above the saturated zone. Field observations were recorded in a dedicated, bound log book. Copies of boring logs are presented in **Appendix A**.

Soil for VOC analysis was collected using a dedicated, disposable TerraCore® sampler and placed in three 40milliliter (ml) volatile organic analysis (VOA) vials (one containing methanol and two containing deionized water). Soil samples for PCB analysis were homogenized and then transferred into laboratory-provided 4-ounce sample containers.

2.2 Well Installation and Construction

The new monitoring wells (MW-69 through MW-84) were installed in the upper water-bearing zone. The monitoring wells were constructed with 10-slot, 2-in diameter flush-coupled polyvinyl chloride (PVC) screen and solid riser. Groundwater was observed at depths ranging from approximately 4 ft to 12 ft below ground surface (bgs). The wells were constructed with a screen length ranging from 7 ft to 10 ft, placed at a depth intended to straddle the water table surface. A NJ #0 sand filter was placed in the annular space between the well screen/riser and borehole wall and extended from the bottom of the well screen to approximately 0.5 ft to 2 ft above the top of the screen. A minimum 2-ft thick bentonite seal was placed above the sand filter. The sand filter and bentonite were added through the augers as the augers were slowly removed. Each well was completed with a flush-mount casing set in concrete. Well construction information is included in the boring logs provided in **Appendix A** and summarized in **Table 3**.

2.3 Well Development

The monitoring wells were developed during the period of January 23 through February 15, 2017 by surging and pumping. Water quality measurements of pH, conductivity, temperature, and turbidity were periodically recorded

during the development process. Well development logs are provided in **Appendix B**. Well development water was placed in drums for subsequent offsite disposal.

2.4 Groundwater Sampling

Groundwater samples were collected from the new wells during the period of February 1 through 15, 2017 using the low-flow purge technique. Water quality measurements of pH, conductivity, dissolved-oxygen, oxidation-reduction potential, temperature, and turbidity were periodically recorded during the purging process. Groundwater quality measurements were documented on AECOM purge logs which are provided in **Appendix C**. Well purge water was placed in drums for subsequent offsite disposal.

The groundwater samples were analyzed for VOCs and total and filtered PCBs. The samples for filtered PCB analyses were passed through a 0.45-micron inline filter.

2.5 Surveying

The monitoring well locations were surveyed for location and elevation by a New York State-licensed, AECOM land surveyor. Locations and elevations were measured to 0.01 ft. Location measurements were referenced to New York State Plane Central Zone North American Datum of 1983 (NAD 83) and elevations were referenced to North American Vertical Datum of 1988 (NAVD 88). Survey information is provided in **Table 3**.

2.6 Analytical Program

Soil and groundwater samples for laboratory VOC and PCB analyses were placed in pre-cleaned, laboratory-supplied glass jars, labeled, packed in a cooler with ice, and transported by courier to Eurofins Laboratories under standard chain-of-custody procedures. The samples were submitted for analytical testing under standard turnaround time. Category B deliverable packages were requested for all sample delivery groups.

3. Investigation Results

This report section provides a summary of field screening and laboratory analytical results.

3.1 Field Screening Results

Field Observations

Drilling observations generally indicated 2 ft to 8 ft of fill consisting of clayey silt with varying amounts of concrete and/or brick. Fill was not observed at locations close to Sanders Creek (MW-79 and MW-80). Saturated conditions were encountered between 4 ft and 12 ft bgs.

The fill is underlain by an interbedded clayey silt to silty clay unit with occasional silty fine sand zones. In general, no apparent contamination was observed. However, in MW-83, low PID readings were recorded from 1 ft to 4 ft bgs and petroleum odors were observed to 3 ft bgs. MW-83 is located in a parking lot. PID readings were non-detect and no odors were observed at the other 15 locations.

Groundwater Observations

Water levels were recorded at the 16 newly installed wells on February 15, 2017 (**Table 3**). No non-aqueous phase liquid (NAPL) was detected. The depth to groundwater ranged from 5.3 to 11.5 ft bgs across most of the Site. At locations MW-79 and MW-81, next to Sanders Creek, the depth to groundwater was 2.25 ft bgs and 1.53 ft bgs, respectively.

The water level data was used to generate a groundwater contour map (**Figure 3**). Overall, flow is generally northnorthwest across the Site. This appears to be consistent with the last Site-wide groundwater contour map presented in EnSafe's *Corrective Measures Update Site-wide Groundwater Monitoring Report*, June 2015. Based on the February 15, 2017 data, there is an apparent high in the groundwater table in the vicinity of MW-81 and MW-83 and an apparent low near MW-84. The Site-wide groundwater contours will be refined during the next Site-wide groundwater monitoring event, which is anticipated to occur in June 2017.

3.2 Chemical Analytical Results

The soil and groundwater chemical analytical results were validated by an AECOM chemist following NYSDEC DER-10 and USEPA Region II data validation procedures. The validated data is provided in a data usability summary report (DUSR).

The DUSR presents deviations from the relevant QC requirements and the associated qualifications to the sample data warranted by these deviations. QC items discussed in detail in the DUSR include surrogate sample recoveries, matrix spike recoveries, duplicate sample analyses, instrument calibration, and performance and method and field blank sample analyses. The report also presents copies of the laboratory reporting forms with hand written qualifications made by the data validator. The data presented in the summary tables included in this report reflect these qualifications.

A copy of the DUSR narrative is provided in Appendix D. A copy of the DUSR appendices (e.g., Form 1s), is available on request.

3.2.1 Applicable Standards, Criteria, and Guidance

Soil PCB and VOC results are compared to Part 375 Soil Cleanup Objectives (SCOs) for Protection of Public Health (Unrestricted Use). The groundwater analytical results are compared to the NYS Ambient Water Quality Standards (AWQS) and Guidance Values in Technical & Operational Guidance Series (TOGS) Version 1.1.1., June 1998, with June 2004 Addendum.

3.2.2 Soil Results

A total of 16 soil samples and one duplicate sample were collected from 16 borings and submitted to the laboratory for chemical analysis. The analytical results are presented in **Figure 4** and **Table 4**.

VOC Soil Analytical Results

Review of the VOC soil analytical results indicates that only three samples contained VOCs at concentrations above the Unrestricted Use criteria. VOCs exceeding the criteria were acetone (at locations MW-70 and MW-80) and vinyl chloride (at location MW-69). Acetone is a common laboratory contaminant.

PCB Soil Analytical Results

PCBs were not detected at concentrations exceeding the Unrestricted Use SCO of 100 micrograms per kilogram (µg/kg).

3.2.3 Groundwater Results

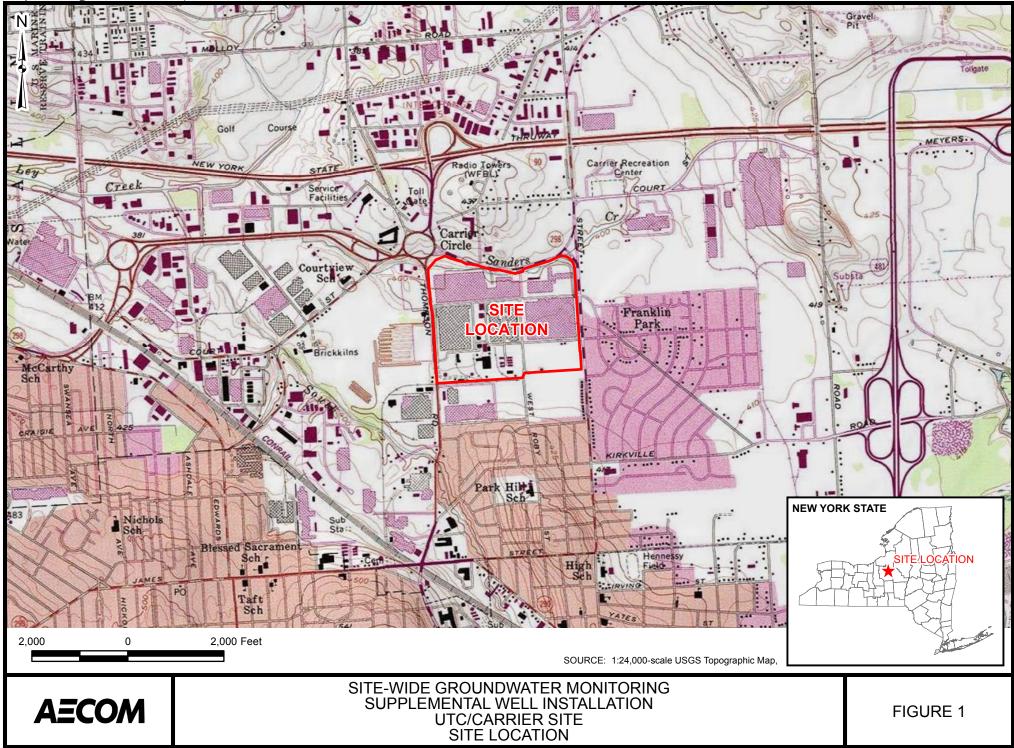
Groundwater samples were collected from the 16 new wells and one previously installed well (MW-08). The samples were analyzed for VOCs and total and dissolved PCBs. The analytical results are presented in **Figure 5** and **Table 5**.

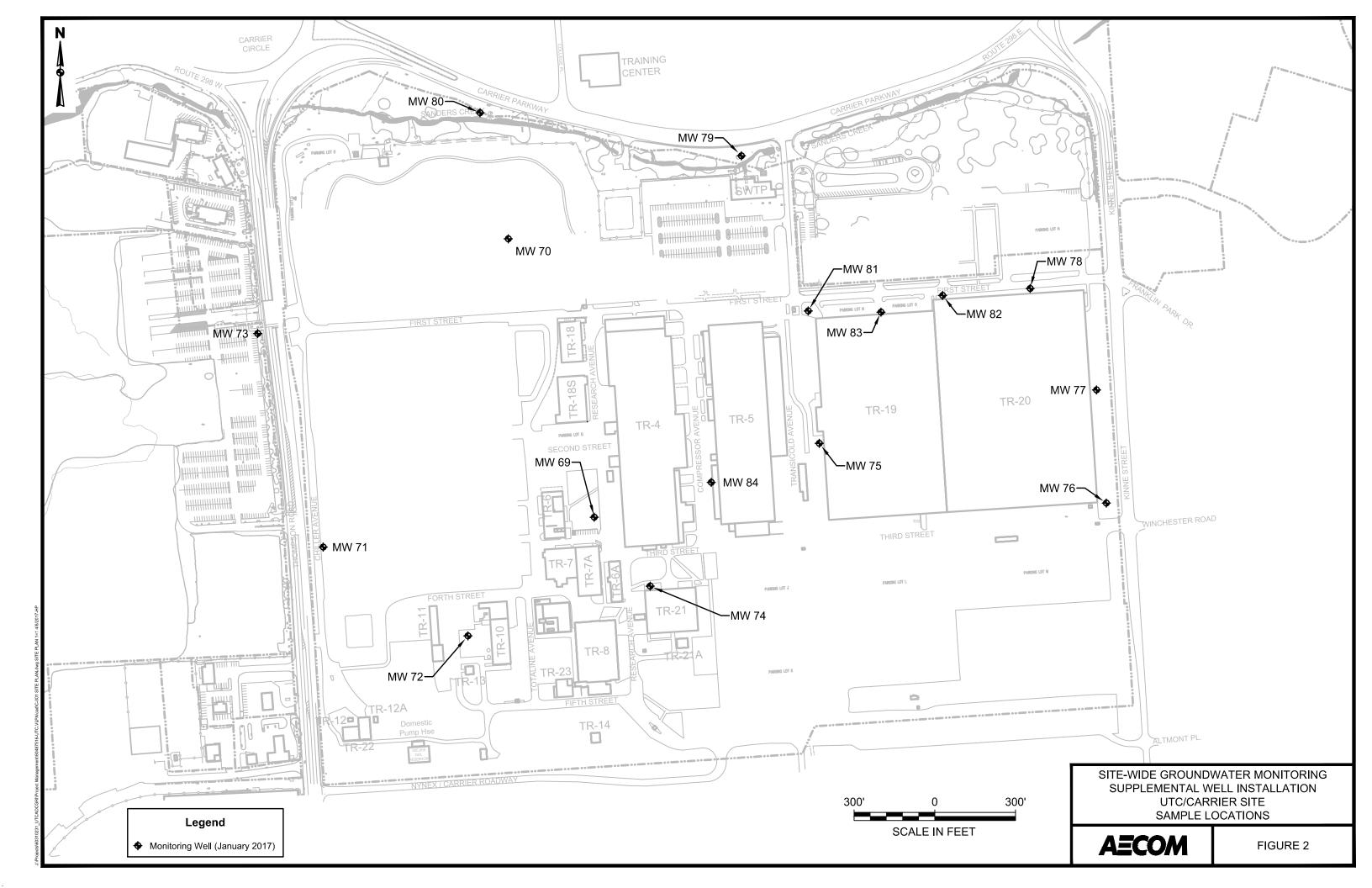
VOC Groundwater Analytical Results

Only three (MW-69, MW-71, and MW-84) of the 17 locations contained compounds at concentrations above the groundwater criteria. Compounds that were detected at concentrations above the groundwater criteria included 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, trichloroethene, and vinyl chloride. The highest concentrations were present at MW-69.

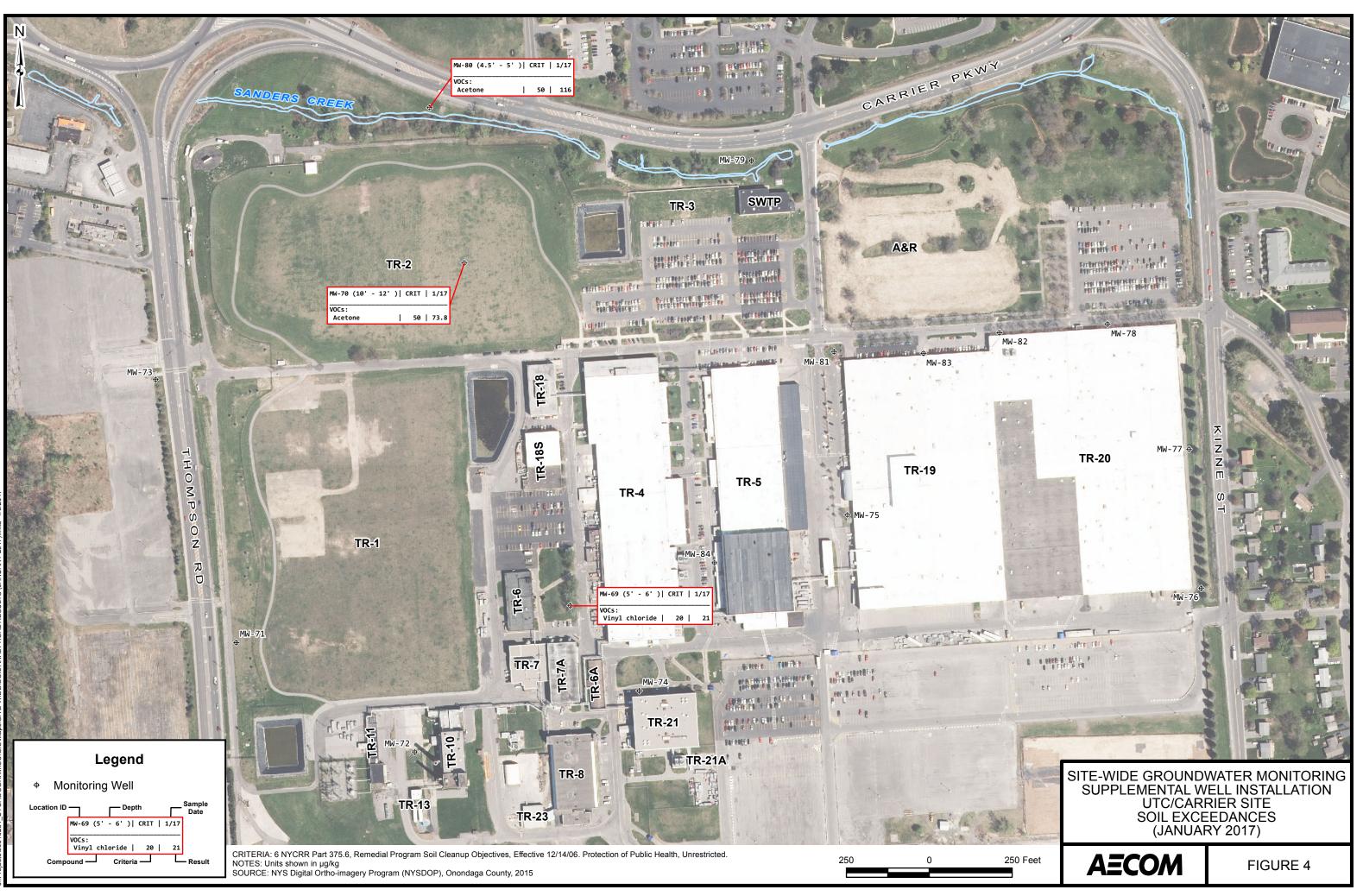
PCB Groundwater Analytical Results

No PCBs were detected in the 17 wells.


4. Conclusions and Recommendations


The Supplemental Groundwater Well Installation was completed in accordance with the NYSDEC-approved SAP. The field work involved a geophysical survey, advancing 16 soil borings, completing the 16 borings as shallow monitoring wells, and analyzing soil and groundwater samples for VOCs and PCBs. The investigation provided the following information:


- The soil boring analytical results show the only VOCs exceeding the criteria were acetone (at locations MW-70 and MW-80) and vinyl chloride (at location MW-69).
- Groundwater depth and overall flow direction to the north-northwest is consistent with previous Site-wide results.
- Groundwater analytical results show chlorinated VOC impacts in three wells (MW-69, MW-71, and MW-84).


The groundwater analytical results, in conjunction with Site-wide historical groundwater results, will be used to update the Conceptual Site Model and evaluate the need for VI investigations at Site buildings. A second round of groundwater samples should be collected from the new wells during the next Site-wide groundwater monitoring event, which is anticipated to occur in June 2017.

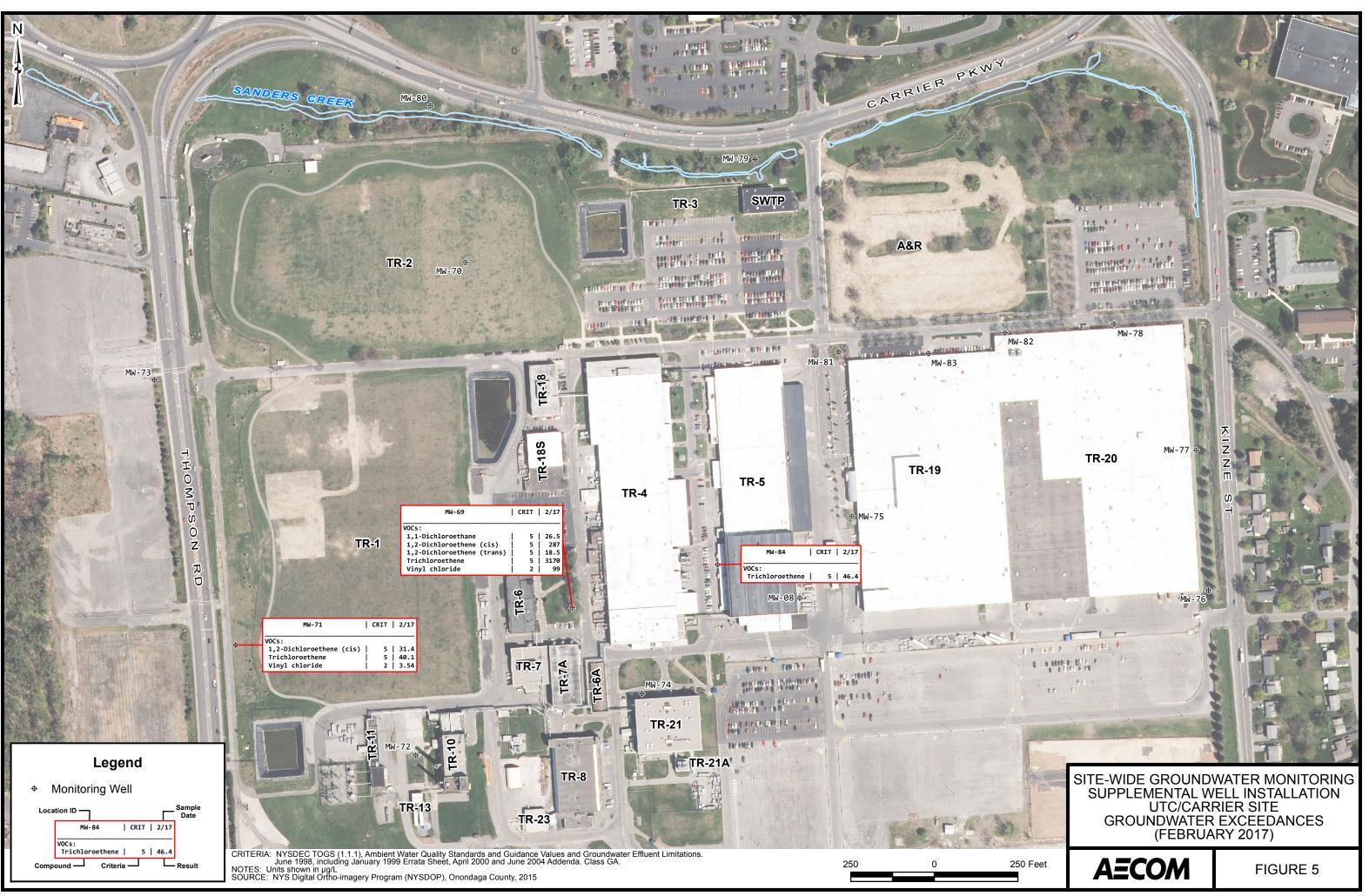

J:\Projects\60310231 UTCAOCGRI\MISC\GIS\Maps\SITE-WIDE\SITE LOCATION.mxd 3/23/2017

Table 1

Summary of Investigation Samples Supplemental Groundwater Monitoring Wells

MATRIX/ANALYSIS	Analytical Method	Field Sample Quantity	Matrix Spike (MS) or LCS	MS Duplicate or Matrix Duplicate	Field Duplicate	Equipment/ Field Blank	Trip Blank	Total Analyses
Well Boring Soil Samples								
Volatile Organics	SW-846 8260C	16	1	1	1	0	0	19
Polychlorinated Biphenyls	SW-846 8082A	16	1	1	1	0	0	19
Groundwater Samples								
Volatile Organics	SW-846 8260C	17	1	1	1	0	5	25
Polychlorinated Biphenyls	SW-846 8082A	17	1	1	1	0	0	20

Notes:

PCBs = Polychlorinated Biphenyls

LCS = Laboratory Control Sample

Table 2Sample Bottle, Volume, Preservation, and Holding Time SummaryUTC/Carrier Site-wide Well Network

MATRIX/ANALYSIS	Sample Prep Method (1)	Analytical Method (1)	Sam	ple Bottles	Preservation	Holding Time	
WIATRIA/ANALTSIS	Sample Prep Method (1)	Analytical Method (1)	Mat'l Size		Preservation	Extraction	Analysis
Soil Samples							
Volatile Organics*	SW-846 5035A	SW-846 8260C	G	1-40ml VOA vial w/ septa	Methanol	NA	48 hours
			G	2-40ml VOA vial w/ septa	None (DI Water)	NA	48 hours
Polychlorinated Biphenyls	SW-846 3541	SW-846 8082A	G	4 oz	None	14 days	40 days from extraction
Groundwater Samples							
Volatile Organics	SW-846 5030B	SW-846 8260C	G	40 mL VOA vial w/ septa	HCl to pH<2	NA	14 days
Polychlorinated Biphenyls	SW-846 3520C	SW-846 8082A	G	1-L amber	None	7 days	40 days from extraction

Notes:

(1) SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. USEPA SW-846. Complete through Update IV, March 2009.

G = Glass

* = Soil samples collected using dedicated, disposable TerraCore samplers to fill laboratory provided bottleware.

TABLE 3 Monitoring Well Details Supplemental Groundwater Monitoring Wells

	Date				Total		Well		Screen			
Monitoring	Installed/	Coordi	nates	Surface	Depth	Hole Diameter	Diameter	Measuring Point	Interval	Screen Interval	Protective	Depth to Water*
Well	Advanced	Ν	E	Elevation (ft)	(ft bgs)	(inches)	(inches)	Elevation (ft)	(ft bgs)	(Elevations)	Casing	(ft bgs)
MW-69	1/9/17	1123575.09	953238.60	404.04	15.0	8	2	403.70	5.0 - 15.0	399.0 - 389.0	Flushmount	4.92
MW-70	1/10/17	1124609.37	952918.96	406.73	20.0	8 (10 from 0-5ft)	2	406.24	10.0 - 20.0	396.7 - 386.7	Flushmount	11.03
MW-71	1/11/17	1123463.97	952230.85	405.24	15.0	8	2	404.95	5.0 - 15.0	400.2 - 390.2	Flushmount	9.34
MW-72	1/11/17	1123133.97	952768.81	404.40	15.0	8	2	404.10	2.0 - 12.0	402.4 - 392.4	Flushmount	5.10
MW-73	1/11/17	1124257.22	951987.57	403.92	15.0	8	2	403.40	2.0 - 12.0	401.9 - 391.9	Flushmount	8.43
MW-74	1/12/17	1123318.97	953446.58	405.99	12.0	8	2	405.64	2.0 - 12.0	404.0 - 394.0	Flushmount	6.70
MW-75	1/12/17	1123849.47	954074.99	405.63	10.0	8	2	405.29	3.0 - 10.0	402.6 - 395.6	Flushmount	7.55
MW-76	1/13/17	1123627.57	955141.81	406.60	15.0	8	2	406.07	5.0 - 15.0	401.6 - 391.6	Flushmount	7.43
MW-77	1/13/17	1124047.75	955105.46	405.36	15.0	8	2	404.81	5.0 - 15.0	400.4 - 390.4	Flushmount	8.74
MW-78	1/16/17	1124424.80	954858.90	402.93	16.0	8	2	402.58	5.0 - 15.0	397.9 - 387.9	Flushmount	7.50
MW-79	1/17/17	1124917.99	953785.24	395.94	10.0	8	2	395.69	2.0 - 10.0	393.9 - 385.9	Flushmount	2.00
MW-80	1/17/17	1125077.83	952814.01	392.71	12.0	8	2	392.31	2.0 - 10.0	390.7 - 382.7	Flushmount	1.13
MW-81	1/18/17	1124341.64	954033.81	406.44	16.0	8	2	406.10	5.0 - 15.0	401.4 - 391.4	Flushmount	6.90
MW-82	1/18/17	1124398.72	954533.30	404.63	12.0	8	2	404.19	2.0 - 12.0	402.6 - 392.6	Flushmount	9.34
MW-83	1/19/17	1124336.76	954304.18	405.50	12.0	8	2	404.92	2.0 - 12.0	403.5 - 393.5	Flushmount	5.72
MW-84	1/19/17	1123704.67	953673.48	403.90	12.0	8	2	403.57	2.0 - 12.0	401.9 - 391.9	Flushmount	6.85

Notes

1. Horizontal grid based on New York State Plane Central Zone (NAD 83).

2. Vertical datum NAVD 88.

* - Depth to water measured on February 15, 2017

Location ID			MW-69	MW-70	MW-71	MW-72	MW-73
Sample ID			MW-069 (5-6)	MW-070 (10-12)	MW-071 (7-8)	MW-072-(5.0-5.5)	MW-073-(3.5-4.0) Soil
Matrix			Soil	Soil	Soil	Soil	
Depth Interval	(ft)		5.0-6.0	10.0-12.0	7.0-8.0	5.0-5.5	3.5-4.0
Date Sample	d		01/09/17	01/10/17	01/10/17	01/11/17	01/11/17
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (cis)	UG/KG	250	64.7	1.81 U	18.6 U	1.76 U	1.65 J
1,2-Dichloroethene (trans)	UG/KG	190	12.4	2.59 U	26.5 U	2.52 U	1.98 U
Acetone	UG/KG	50	33.0 J	73.8 J	213 UJ	20.3 UJ	15.9 UJ
Methyl ethyl ketone (2-Butanone)	UG/KG	120	7.79 UJ	17.9 J	89.4 UJ	8.50 UJ	6.66 UJ
sec-Butylbenzene	UG/KG	11000	0.81 U	0.91 U	9.35 U	0.89 U	0.70 U
Tetrachloroethene	UG/KG	1300	1.49 U	1.67 U	17.1 U	1.63 U	1.27 U
Trichloroethene	UG/KG	470	1.19 U	1.33 U	13.7 U	1.30 U	1.47 J
Vinyl chloride	UG/KG	20	21.0	1.65 U	16.9 U	1.61 U	2.54 J
Polychlorinated Biphenyls							
Aroclor 1260	UG/KG	-	16.1 J	10.7 U	9.66 U	10.9 U	10.3 U
Total Polychlorinated Biphenyls	UG/KG	100	16.1	ND	ND	ND	ND

*- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Unrestricted Use, including CP-51 Table 1, Effective 12/2/10.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value. ND - Not Detected

Only Detected Results Reported.

Detection Limits shown are MDL

Location ID			MW-74	MW-75	MW-75	MW-76	MW-77
Sample ID			MW-074 (4.5-5.0)	FD-011217	MW-075 (5-6)	MW-076 (7-7.5)	MW-077 (6.5-7.0) Soil
Matrix			Soil	Soil	Soil	Soil	
Depth Interval	(ft)		4.5-5.0	5.0-6.0	5.0-6.0	7.0-7.5	6.5-7.0
Date Sample	d		01/12/17	01/12/17	01/12/17	01/13/17	01/13/17
Parameter	Units	*		Field Duplicate (1-1)			
Volatile Organic Compounds							
1,2-Dichloroethene (cis)	UG/KG	250	1.65 U	1.65 U	2.18 U	1.80 U	1.75 U
1,2-Dichloroethene (trans)	UG/KG	190	2.35 U	2.36 U	3.11 U	2.58 U	2.50 U
Acetone	UG/KG	50	18.9 UJ	19.0 UJ	25.0 UJ	20.7 UJ	20.1 UJ
Methyl ethyl ketone (2-Butanone)	UG/KG	120	7.94 UJ	7.96 UJ	10.5 UJ	8.69 UJ	8.43 UJ
sec-Butylbenzene	UG/KG	11000	0.83 U	0.83 U	1.10 U	0.91 U	0.88 U
Tetrachloroethene	UG/KG	1300	1.52 U	1.52 U	2.01 U	1.66 U	1.61 U
Trichloroethene	UG/KG	470	1.21 U	1.21 U	1.60 U	1.33 U	1.29 U
Vinyl chloride	UG/KG	20	1.50 U	1.50 U	1.98 U	1.64 UJ	1.59 UJ
Polychlorinated Biphenyls							
Aroclor 1260	UG/KG	-	9.60 U	11.1 U	11.5 U	11.0 U	11.1 U
Total Polychlorinated Biphenyls	UG/KG	100	ND	ND	ND	ND	ND

*- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Unrestricted Use, including CP-51 Table 1, Effective 12/2/10.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value. ND - Not Detected

Only Detected Results Reported.

Detection Limits shown are MDL

Location ID			MW-78	MW-79	MW-80	MW-81	MW-82
Sample ID			MW-078 (6-8)	MW-079 (3-4)	MW-080 (4.5-5.0)	MW-081 (6-7)	MW-082 (5-5.5) Soil
Matrix			Soil	Soil	Soil	Soil	
Depth Interval	(ft)		6.0-8.0	3.0-4.0	4.5-5.0	6.0-7.0	5.0-5.5
Date Sample	d		01/16/17	01/17/17	01/17/17	01/18/17	01/18/17
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (cis)	UG/KG	250	1.87 U	1.54 U	2.51 U	1.71 U	1.71 U
1,2-Dichloroethene (trans)	UG/KG	190	2.67 U	2.20 U	3.58 U	2.45 U	2.44 U
Acetone	UG/KG	50	21.5 UJ	17.7 UJ	116 J	38.5 J	19.6 UJ
Methyl ethyl ketone (2-Butanone)	UG/KG	120	9.00 UJ	7.42 UJ	24.0 J	8.25 UJ	8.23 UJ
sec-Butylbenzene	UG/KG	11000	0.94 U	0.78 U	1.26 U	0.86 U	0.86 U
Tetrachloroethene	UG/KG	1300	1.72 U	1.42 U	2.31 U	1.58 U	1.57 U
Trichloroethene	UG/KG	470	1.37 U	1.13 U	1.85 U	1.26 U	1.26 U
Vinyl chloride	UG/KG	20	1.70 UJ	1.40 UJ	2.29 UJ	1.56 UJ	1.56 UJ
Polychlorinated Biphenyls							
Aroclor 1260	UG/KG	-	11.0 U	9.98 U	12.9 U	10.5 U	10.6 U
Total Polychlorinated Biphenyls	UG/KG	100	ND	ND	ND	ND	ND

*- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Unrestricted Use, including CP-51 Table 1, Effective 12/2/10.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value. ND - Not Detected

Only Detected Results Reported.

Detection Limits shown are MDL

Location ID	MW-83 MW-083 (1-2)	MW-84 MW-084 (5-5.5)		
Sample ID Matrix	Soil	Soil		
Depth Interval	(ft)		1.0-2.0	5.0-5.5
Date Sampled	. ,		01/19/17	01/19/17
Parameter				
Volatile Organic Compounds				
1,2-Dichloroethene (cis)	UG/KG	250	1.36 U	2.20 U
1,2-Dichloroethene (trans)	UG/KG	190	1.94 U	3.15 U
Acetone	UG/KG	50	16.2 J	25.3 UJ
Methyl ethyl ketone (2-Butanone)	UG/KG	120	6.56 UJ	10.6 UJ
sec-Butylbenzene	UG/KG	11000	2.27	1.11 U
Tetrachloroethene	UG/KG	1300	1.25 U	2.34
Trichloroethene	UG/KG	470	1.00 U	1.62 U
Vinyl chloride	UG/KG	20	1.24 U	2.01 U
Polychlorinated Biphenyls				
Aroclor 1260	UG/KG	-	28.5	11.4 U
Total Polychlorinated Biphenyls	UG/KG	100	28.5	ND

*- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Unrestricted Use, including CP-51 Table 1, Effective 12/2/10.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value. ND - Not Detected

Only Detected Results Reported.

Detection Limits shown are MDL

Location ID			MW-08	MW-69	MW-70	MW-71	MW-71
Sample ID			MW-08	MW-69	MW-70	Dup-1	MW-71
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		02/08/17	02/01/17	02/08/17	02/02/17	02/02/17
Parameter	Units	*				Field Duplicate (1-1)	
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5	1.00 U 26.5		1.00 U	1.00 U	1.00 U
1,2-Dichloroethene (cis)	UG/L	5	1.00 U	287	1.00 U	29.0	31.4
1,2-Dichloroethene (trans)	UG/L	5	1.00 U		1.00 U	1.91	1.85
1,4-Dioxane	UG/L	-	20.0 U	1,000 U	20.0 U	13.3 J	20.0 U
Benzene	UG/L	1	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
etrachloroethene UG/L 5		5	1.00 UJ	50.0 U	1.00 UJ	1.00 UJ	1.00 UJ
richloroethene UG/L 5		5	1.00 UJ	3,170	3,170 1.00 UJ		40.1
yl chloride UG/L 2			1.00 U	99.0	1.00 U	3.01	3.54

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value.

Only Detected Results Reported.

Detection Limits shown are PQL

Location ID			MW-72	MW-73	MW-74	MW-75	MW-76
Sample ID			MW-72	MW-73	MW-74	MW-75	MW-76
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		02/01/17	02/01/17	02/01/17	02/02/17	02/02/17
Parameter	Units	*					
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5	1.00 U				
1,2-Dichloroethene (cis)	UG/L	5	1.12	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichloroethene (trans)	UG/L	5	1.00 U				
1,4-Dioxane	UG/L	-	20.0 U				
Benzene	UG/L	1	0.29	1.00 U	1.00 U	1.00 U	1.00 U
Tetrachloroethene	UG/L	5	1.00 U	1.00 U	1.00 U	1.00 UJ	1.00 UJ
Trichloroethene	UG/L	5	1.93	1.00 U	1.00 U	1.15	1.00 U
Vinyl chloride	chloride UG/L			1.00 U	1.00 U	1.00 U	1.00 U

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value.

Only Detected Results Reported.

Detection Limits shown are PQL

Location ID			MW-77	MW-78	MW-79	MW-80	MW-81
Sample ID			MW-77	MW-78	MW-79	MW-80	MW-81
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		02/07/17	02/07/17	02/15/17	02/15/17	02/08/17
Parameter	Units	*					
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5	1.00 U				
1,2-Dichloroethene (cis)	UG/L	5	1.00 U				
1,2-Dichloroethene (trans)	UG/L	5	1.00 U				
1,4-Dioxane	UG/L	-	20.0 U				
Benzene	UG/L	1	1.00 U				
Tetrachloroethene	UG/L	5	1.00 UJ				
ichloroethene 5 UG/L		5	1.00 UJ	1.00 UJ	1.00 U	1.00 U	1.00 UJ
Vinyl chloride	UG/L	2	1.00 U				

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value.

Only Detected Results Reported.

Detection Limits shown are PQL

Location ID			MW-82	MW-83	MW-84
Sample ID			MW-82	MW-83	MW-84
Matrix			Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-
Date Sampled	1		02/07/17	02/07/17	02/01/17
Parameter	Units	*			
Volatile Organic Compounds					
1,1-Dichloroethane	UG/L	5	1.00 U	0.51 J	1.00 U
1,2-Dichloroethene (cis)	UG/L	5	1.00 U	1.00 U	1.99
1,2-Dichloroethene (trans)	UG/L	5	1.00 U	1.00 U	4.22
1,4-Dioxane	UG/L	-	20.0 U	20.0 U	20.0 U
Benzene	UG/L	1	1.00 U	1.00 U	1.00 U
Tetrachloroethene	UG/L	5	1.00 UJ	1.00 UJ	2.99
Trichloroethene	UG/L	5	1.00 UJ	1.00 UJ	
Vinyl chloride	UG/L	2	1.00 U	1.00 U	1.00 U

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

U - Not detected above the reported quantitation limit. ; J - The reported concentration is an estimated value.

Only Detected Results Reported.

Detection Limits shown are PQL

Appendix A - Boring Logs

				4	E(M					BORING NO.	TEST BORING LOG	
PROJE	CT/PROJE						emental					SHEET: 1	OF 1	
CLIENT					UTC							JOB NO.: 6		
BORIN	G CONTRA	ACTOR:				tt-Wol	ff					NORTHING:		
							CA	s.	SAMPLER	CORE	TUBE	GROUND EL	EVATION: 404.04'	
DATE	TIME	LEV	EL	ТҮР	PE	ТҮР	E HS	5A	Macrocore			DATE STAR	TED: 1/9/17	
						DIA	4 1	/4"	2"			DATE FINISH	HED: 1/9/17	
						WT.						DRILLER:	Jolaan Price	
						FAL	L					GEOLOGIST	Rob Murphy	
							* POCKE	TPE	NETROMETE	R READIN	G	REVIEWED B	BY: K. Connare	
		S	AMPL	E			PID						1	
DEPTH FEET	STRATA	DEPTH		LOW UNTS		OVERY %)	DIRECT/ HEAD- SPACE				ERIAL IPTION		WELL REMARK	
0		0-5				NA	ND	Lig	own clayey silt wi	ayey silt (FIL	L)		Flush-mount roadbox set in concrete Hole Plug	
-								Co	own clayey silt, s obble size concre own Clayey SILT ark gray to black s	te piece at 4	.0'		(0.5-3.0') 2" PVC Riser (0'- 5')	
-5— - - -		5-10				84	Brown Clayey SILT, some fine gravel (ML) Dark gray to black staining around gravel, no odor ND Gray Clayey SILT, some fine sand, trace fine gravel (ML) Light Brown Clayey SILT with dilatent silty fine sand zones (ML) Wet @6.5 MD							
-10		10-15			1	100	ND	Lig	ght Brown Clayey	SILT with fi		lt zones (ML)	15') 10-slot 2" PVC screen (5'-15')	
								Gr	ray Silty CLAY (C	L)				
-									ray Silty fine to mo M)	edium SANE	(coarsenii	ng downward)		
-15 —								En	nd of boring @ 15	5.0'				
- - - - -20 -														
	COMMENTS: Boring hand cleared to 5' bgs then advanced with truck mounted Ingersol Rand A-300 rig. Collected sample from 5-6' for analysis of VOCs and PCBs													
													BORING NO.: MW-69	

			A	=(M					BORING NO.		-	RING L	OG
PROJE	CT/PROJE	ECT LOC				emental	GW	1			SHEET: 1	OF 1	10		
CLIEN				UTC							JOB NO.: 6	-)		
BORIN	G CONTR	ACTOR:			tt-Wol	ff					NORTHING: 1			ASTING: 95	52918.96
-	NDWATER					CA	s.	SAMPLER	CORE	TUBE	GROUND ELI	EVATION	N: 406	6.73'	
DATE	TIME	LEVE	EL TY	PE	ТҮР	E HS	A	Macrocore			DATE START	ED:	1/1(0/17	
					DIA	. 41/	4" 8	6 1/4"2"			DATE FINISH	ED:	1/9/	'17	
					WT.						DRILLER:		Jola	aan Price	
					FAL	L					GEOLOGIST	:	Rob	Murphy	
						* POCKE	ΤP	ENETROMETE	R READIN	G	REVIEWED B	SY:	K. (Connare	
		SA	AMPLE			PID									
DEPTH FEET	STRATA	DEPTH	BLOW COUNTS		OVERY %)	DIRECT/ HEAD- SPACE				TERIAL RIPTION		C	WELL		REMARKS
0		0-5			NA	ND		Brown clayey silt (F Brown silt, some g Beotextile fabric at Gray coarse gravel Sphalt over concre Concrete	ravel, trace c 1.5' (FILL) ete.	lay (FILL)				Flush-mour roadbox set in concrete	t Moist
- -5 - -		5-10			38	ND	9 E	Jo Recovery, Auge ravel. Brown silty clay, so Concrete and grave Brown Silty CLAY,	me gravel (F		and likely subase			Hole Plug (0.5-8.0') 2" PVC Riser (0'- 10')	
-10 — - - -		10-15			60	ND		Brown Silty CLAY (sand layer	s (CL)				Wet @12'
-15 — - - - - - 		15-20			50	ND		Brown Silty CLAY v		ns (CL)				NJ #0 US Silica (8'- 20') 10-slot 2" PVC screen (10'-20')	
-20							-								
			Lata 13	0.01											
Collec	COMMENTS: Boring hand cleared to 2.2' bgs then advanced with truck mounted Ingersol Rand A-300 rig. Collected sample from 10-12' for analysis of VOCs and PCBs (plus MS/MSD) 6-1/4" ID HSAs used to auger through concrete to 5' depth, 4-1/4" ID HSAs used for remainder of hole.														
1												BORI	NG NO.	: MW-70	

			Α	Ξ(M				BORING NO.	TEST BORING L	OG
PROJE	CT/PROJE	ECT LOC				emental	GW			SHEET: 1	OF 1	
CLIENT				UTC						JOB NO.: 6		
BORIN	G CONTR	ACTOR:			att-Wol	ff				NORTHING:		52230.85
	DWATER					CA	S. SAMPLER	CORE	TUBE	GROUND EL	EVATION: 405.24'	
DATE	TIME	LEVI	EL 1	YPE	TYP	E HS.	A Macrocore			DATE STAR	TED: 1/11/17	
					DIA	. 41/	4" 2"			DATE FINISH	HED: 1/10/17	
					WT.					DRILLER:	Jolaan Price	
					FAL	.L				GEOLOGIST	Rob Murphy	
						* POCKE			G	REVIEWED B	BY: K. Connare	
		s	AMPLE			PID						
DEPTH FEET	STRATA	DEPTH				DIRECT/ HEAD- SPACE			ERIAL		WELL CONSTRUCTION	REMARKS
0	DEPTH BLOW RECOVERY DIREC						Brown silty clay with Dark gray silty grav Gray silt with coars Brown to gray rewo (FILL) Light brown Clayey Brown silty fine SA Brown to gray Silty End of boring @ 15	vel (FILL) se sand (FILL porked clayey v SILT, some ND (SM)) silt, some c	ML)	Flush-mour roadbox set in concrete Hole Plug (0.5-3.0') 2" PVC Riser (0'- 5) NJ #0 US Silica (3'- 15') 10-slot 2" PVC screen (5'-15')	Very Moist at 7' Wet @8'
-20 —												
		ring band	cleared	0 5' ho	e ther	advanac	d with truck man	nted Inco	eol Por	1 A-300 ria		
	ted sample						d with truck mou	nted inger	soi Rano	a A-300 rig.		
								oned com	er line)			
	Moved 7' east of proposed location due to refusal at 7' (on possible abandoned sewer line).											
											BORING NO. : MW-71	

				ΔΞ	-/	70	M							T BORING L	OG
												BORING NO.		2	
	CT/PROJE	ECT LOO	CATIO			Supple	emental	GW	1			SHEET: 1	OF 1		
CLIENT					JTC							JOB NO. : 6			
	G CONTRA			F	Parra	tt-Wol						NORTHING: 1			52768.81
GROUN	DWATER	:					C	AS.	SAMPLER	CORE	TUBE	GROUND EL			
DATE	TIME	LEV	EL	TYF	ΡE	TYP	E H	SA	Macrocore			DATE START		1/11/17	
						DIA.	. 4	/4"	2"			DATE FINISH	IED:	1/11/17	
						WT.						DRILLER:		Jolaan Price	
						FAL	L					GEOLOGIST	:	Rob Murphy	
							* POCK	ET P	ENETROMETE	R READIN	G	REVIEWED E	BY:	K. Connare	
		S	AMPLE				PID								
DEPTH FEET	STRATA	DEPTH			RECO	OVERY	DIRECT	/			ERIAL		co		REMARKS
			COL	UNTS	(*	%)	SPAC								
0		0-5				NA B0 00	ND	E	Brown clayey silt, s FILL) Brown Silty CLAY v Brown Silty fine SA Brown Silty CLAY (with silty fine				Flush-mour roadbox set in concrete Hole Plug (0.5-1.5') 2" PVC Riser (0'- 2') NJ #0 US Silica (1.5'-12') 10-slot 2" PVC screen (2'-12')	t Moist Wet at 5.5'
- -15 - - -									Gray fine SAND (S					Natural collapse (did not auger)	
-20 —															
	COMMENTS: Boring hand cleared to 5' bgs then advanced with truck mounted Ingersol Rand A-300 rig. Collected sample from 5-5.5' for analysis of VOCs and PCBs.														
													BORIN	NG NO. : MW-72	

			Δ	=(77	M						BORING L	OG	
										BORING NO				
	CT/PROJE	ECT LOC	CATION:		Supple	emental C	GW			SHEET: 1	OF 1			
CLIENT				UTC						JOB NO. :				
-	G CONTR			Parra	att-Wol			1		NORTHING:		EASTING: 95	51987.57	
					1	CAS	-	CORE	TUBE	GROUND EL		403.92'		
DATE	TIME	LEV	EL 1	YPE	TYP					DATE STAR		1/11/17		
					DIA		4" 2"				HED:	1/11/17		
					WT.					DRILLER:	-	Jolaan Price		
					FAL					GEOLOGIST		Rob Murphy		
						i		R READIN	G	REVIEWED	BY:	K. Connare	i	
DEPTH FEET	STRATA	S. DEPTH	AMPLE BLOW COUNT	~		PID DIRECT/ HEAD-			ERIAL			WELL	REMARKS	
			00011	0	(%)	SPACE								
0		0-3 3-5 5-10			NA 75 80	ND	Brown silty clay, so (FILL) Red Brown Silty C some fine sand (C Red Brown fine Sa gravel 4.5-5.0' (ML Red brown fine SA brown at 9' (SM)	LAY, trace to L) andy SILT, tra	some fine ce gravel.	to coarse gravel, Pushed coarse		Flush-mour roadbox set in concrete Hole Plug (0.5-1.5') 2" PVC Riser (0'- 2') NJ #0 US Silica	t Moist Wet at 4.0'	
-10		10-15			100	ND	brown at 9' (SM) NJ #0 US Silica (1.5'-12') 10-slot 2" PVC screen (2'-12')							
	-15 - End of boring @ 15.0'													
	ted sample	e from 3.	5-4.0' for	analysi	s of VC	OCs and P	PCBs.							
L											BORING	NO.: MW-73	<u>}</u>	

			Δ			M					TEST BORING L	OG	
DRO IE	CT/PROJE					emental	GW			BORING NO.			
CLIENT			ATION.	UTC	Supple	ementar	GW			SHEET: 1 JOB NO.: 6	OF 1		
	G CONTR				att-Wol	ff				NORTHING: 1		53446.58	
	NDWATER					 CA	S. SAMPLER	CORE	TUBE	GROUND EL			
DATE	TIME	LEVE	FI -	ТҮРЕ	ТҮР			COME	TODE	DATE START	-		
DATE					DIA	_				DATE FINISH			
					WT.					DRILLER:	Jolaan Price		
					FAL					GEOLOGIST			
									G	REVIEWED E			
						PID	-					i	
DEPTH FEET	STRATA	DEPTH	BLOW		OVERY (%)	DIRECT/ HEAD- SPACE			TERIAL RIPTION			REMARKS	
0		0-4.5			NA	ND	Brown organic tops Brown clayey silt, s Brown silt, some cl (FILL)	some fine to			Flush-mour roadbox set in concrete Hole Plug (0.5-1.5') 2" PVC Riser (0'- 2')	nt Moist	
-5		4.5-10			82	ND	Brown silt, some clay, with cobbles and rounded gravel (FILL) Riser 2') ND Brown clayey silt and gravel (FILL) Dark gray to black medium to coarse sand and gravel, some silt (FILL) NJ #0 Silica (1.5'-1 Brown Clayey SILT with silty fine sand seams (ML) NJ #0 Silica (1.5'-1						
-10 - - -		10-12			100	ND	Gray Clayey SILT		Y interbed	s (ML)			
-15													
COMM	ENTS: Bo	ring hand	l cleared	to 4.5'	bgs (rei	fusal) the	n advanced with	track mo	unted 78	22DT Geoprob	be rig.		
	ted sample							-			<u> </u>		
				-									
											BORING NO. : MW-74		

			Δ		CC	M					TEST BORING L	OG	
										BORING NO.			
-	CT/PROJE	CT LOC	ATION		C Supple	emental	GW			SHEET: 1	OF 1		
CLIEN				UT	-					JOB NO.: 6		4074.00	
-	G CONTRA			Ра	arratt-Wol					NORTHING:1		54074.99	
		1						CORE	TUBE	GROUND ELI			
DATE	TIME	LEVE	EL	TYPE						DATE START			
					DIA		2"						
									G	REVIEWED	K. Connare	i	
DEPTH FEET	STRATA	SA DEPTH	BLO		ECOVERY (%)						WELL CONSTRUCTION	REMARKS	
												1	
FEET STRATA DEPTH BLOW COUNTS RECOVERY (%) DIRECT/ HEAD- (%) DESCRIPTION CONSTRUCTION Recover (%) 0 0 0 0 0 0 0 Flush-mount roadbox set in concrete 0 0 0 0 0 0 0 Flush-mount roadbox set in concrete 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 <td>t Moist Wet at 5.0'</td>											t Moist Wet at 5.0'		
	COMMENTS: Boring hand cleared to 5' bgs then advanced with track mounted 7822DT Geoprobe rig. Collected sample from 5-6'(plus duplicate FD-011217) for analysis of VOCs and PCBs. BORING NO.: MW-75												

			4		EC		M				BORING NO.		BORING L	OG
PRO IE	CT/PROJE						mental C	2W/						
CLIENT					JTC	uppie		2 V V			SHEET: 1 JOB NO.: 6	OF 1		
					Parrati	t-Wolf	ff				NORTHING: 1		EASTING: 95	55141 81
	G CONTRA				anau		CAS	S. SAMPLER	CORE	TUBE	GROUND EL		406.60'	
DATE		LEV	E 1	TYF		ТҮР			CORE	TOBE	DATE START		1/13/17	
DATE				111		DIA.	_				DATE FINISH		1/13/17	
						WT.					DRILLER:		Jolaan Price	
						FAL					GEOLOGIST	:	Rob Murphy	
										G	REVIEWED		K. Connare	
				.			PID			<u> </u>			R. Comarc	
DEPTH FEET	STRATA	DEPTH	AMPLE BLC COU	ow	RECO' (%		DIRECT/ HEAD- SPACE			TERIAL RIPTION		CON	WELL STRUCTION	REMARKS
	ENTS: Bor					10 10 then a	ND ND ND	Brown clayey silt, 1 trace cobble (FILL Brown Silty Fine S silt interbeds (SM) Brown Silt, some f Gray silty fine SAN Gray fine sandy Si End of boring @ 1 End of boring @ 1 Uwith track mou Bs.	AND to fine s ine sand (ML ID (SM) LT (ML) 5.0'	andy SILT	with thin clayey		Flush-mour roadbox set in concrete Hole Plug (0.5-3.0') 2" PVC Riser (0'- 5') NJ #0 US Silica (3'- 15') 10-slot 2" PVC screen (5'-15')	Wet between 6.0 and 7.0'
												BORING	G NO.: MW-76	;

AECOM												TEST BORING LOG					
PROJE	CT/PROJE	CT LOC				SHEET: 1 OF 1											
CLIENT					JTC							SHEET: 1 OF 1 JOB NO.: 60528299 60528299 60528299					
						tt-Wol	ff					NORTHING: 1124047.75 EASTING: 955105.46					
-							CA	S.	SAMPLER	CORE	TUBE	GROUND ELEVATION: 405.36'					
DATE TIME LEVEL TYPE TYPE								HSA Macrocore DATE START						ED: 1/13/17			
					-	DIA.	_	4 1/4" 2"				DATE FINISHED: 1/13/17					
						WT.						DRILLER: Jolaan Price					
						FAL	L					GEOLOGIST					
							* POCKE			R READIN	G	REVIEWED E	SY: K. Connare				
				-			PID					I					
DEPTH FEET	STRATA	DEPTH	BLO			OVERY %)	DIRECT/ HEAD- SPACE				ERIAL				REMARKS		
	COUNTS (%) SPAC - 0.6 NA ND - 6-10 100 ND - 6-10 100 ND - - - 0.6 NA - 6-10 100 ND - - - 0.10 ND - - - - 0.10 ND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td></td> <td>race fine gra ILT (ML) (ML) ND (SM) CL) ND (SM)</td> <td>ivel (CL)</td> <td></td> <td colspan="4">WELL CONSTRUCTION REMARKS Flush-mourt roadbox set in concrete Hole Plug (0.5-3.0') 2" PVC Riser (0'- 5') Moist NJ #0 US Silica (3'- 15') Wet at 7.0' NJ #0 US Silica (3'- 15') Wet at 7.0' V VC screen (5'-15') Silica (3'- 15')</td>									race fine gra ILT (ML) (ML) ND (SM) CL) ND (SM)	ivel (CL)		WELL CONSTRUCTION REMARKS Flush-mourt roadbox set in concrete Hole Plug (0.5-3.0') 2" PVC Riser (0'- 5') Moist NJ #0 US Silica (3'- 15') Wet at 7.0' NJ #0 US Silica (3'- 15') Wet at 7.0' V VC screen (5'-15') Silica (3'- 15')				
	EE												BORING	BORING NO. : MW-77			

AECOM												TEST BORING LOG					
DRO IE	CT/PROJE																
CLIENT					JTC	Supple	emental	GW				SHEET: 1 OF 1 JOB NO.: 60528299					
						tt-Wol	"					JOB NO. : 00526239 NORTHING: 1124424.80 EASTING: 954858.90					
-	G CONTR				arra	11-9901				0005	TUDE	GROUND ELEVATION: 402.93'					
					-							DATE STAR					
DATE	TIME	LEV	EL TYPE		Ϋ́Ε	TYP	_		e			DATE STAR					
						DIA		4" 2"				DRILLER:	IED.	Rick Novatka			
						WT.						GEOLOGIST		Rob Murphy			
						FAL											
							i				REVIEWED BY:		K. Connare	1			
DEPTH FEET	STRATA	S. DEPTH				OVERY %)	PID DIRECT/ HEAD- SPACE				ERIAL RIPTION		с	WELL CONSTRUCTION	REMARKS		
0	\sim	0-6			Ν	IA	ND	Brown organic	clayey	y silt with ro	ots (FILL)			Flush-mou	nt		
_	<u> </u>							Brown clayey silt with gravel and cobbles (FILL)					M roadbox M set in		Moist		
	\times							Brown clayey s	silt with	n gravel and	d cobbles (FILL)		concrete			
	$\wedge \wedge \wedge$													Hole Plug (0.5-3.0')			
-	Brown clayey silt, some gravel (FILL)											2" PVC Riser (0'-					
_	\boxtimes								,	- 3 (,			5')			
	\boxtimes																
-5	\times																
_	XXX	6-8				35	ND								Wet at 6.0'		
	•••••	0-0				50	ND	Brown silt fine	SAND	9 (SM)					wei alo.0		
-																	
_		8-12				75	ND	-									
		012			,	0		Brown Silty CL	AY (C	:L)							
		-							-		to medium	sand zones (SM)	d zones (SM)				
-10 —														15') 10-slot 2"			
	••••							Gray fine SAN	D trac	ne to some	eilt (SP)			PVC			
	•••••							Citay inte OAN	D, liac	Je to 3011e				screen (5'-15')			
-		12-16			8	38	ND	Gray fine SAN	 D, trac	ce silt (SP)				181 - C			
_										, ,							
-																	
-15 —																	
														Natural			
								End of boring	@ 16.0	י'				<u>collapse</u> (15-16')			
-																	
-20																	
COMMENTS: Boring hand cleared to 6' bgs then advanced with track mounted 6712DT Geoprobe rig.																	
Collected sample from 6-8' for analysis of VOCs and PCBs.																	
	· ·																
													BOD				
													BUR	ING NO. : MW-78	>		

			A		CC	M					BORING NO.	TEST BORING L	OG
PROJE	CT/PROJE	ECT LOC			C Supple						SHEET: 1	OF 1	
CLIENT				UT							JOB NO. : 6		
BORIN	G CONTR	ACTOR:		Pa	rratt-Wol	ff					NORTHING: 1	1124917.99 EASTING: 9	53785.24
GROUN	NDWATER	:				CA	AS.	SAMPLER	CORE	TUBE	GROUND EL	EVATION: 395.94'	
DATE	TIME	LEVI	EL	TYPE	TYP	E HS	SA	Macrocore			DATE START	TED: 1/17/17	
					DIA	. 41	/4"	2"			DATE FINISH	HED: 1/17/17	
					WT.						DRILLER:	Rick Novatka	
					FAL	.L					GEOLOGIST	Rob Murphy	
						* POCKE	ET PE	NETROMETE	R READIN	G	REVIEWED E	BY: K. Connare	
		s	AMPLE			PID					1		1
DEPTH FEET	STRATA	DEPTH	BLO COUN		ECOVERY (%)	DIRECT HEAD- SPACE	.					WELL CONSTRUCTION	REMARKS
	ENTS: Bon						Gra Gra Gra En	own clayey SILT, ght brown clayey ay SILT, trace to ay brown Silty Cl ay Silty CLAY wi ad of boring @ 10	SILT, trace is some fine s LAY, trace s th thin silty fi	o some fine	e sand (ML)	Flush-mou roadbox set in concrete Hole Plug (0.5-1.5') 2" PVC Riser (0'- 2') NJ #0 US Silica (1.5'-10') 10-slot 2" PVC screen (2'-10')	nt Moist Wet at 4.0'
<u> </u>												BORING NO. : MW-7	9

			4		EC		M					BORING NO.		OG
PROJE	CT/PROJE						mental							
CLIENT						uppie	mentar	aw				SHEET: 1 JOB NO.: 6	OF 1	
	G CONTR			-	Parratt	-Wolf	ff					NORTHING:		52814.01
					anau	- 1101	CA	<u>م</u> م	SAMPLER	CORE	TUBE	GROUND EL		
DATE	TIME	LEV	FI	ТҮР		ТҮР	-		Acrocore	CONL	TODE	DATE START		
DAIL						DIA.	_		2"			DATE FINISH		
						WT.			-			DRILLER:	Rick Novatka	
						FAL						GEOLOGIST	: Rob Murphy	
									ETROMETEI	R READIN	G	REVIEWED B		
		e					PID	1	-					1
DEPTH FEET	STRATA	DEPTH	BLC	ow I	RECO\ (%)		DIRECT/ HEAD- SPACE				ERIAL		WELL CONSTRUCTION	REMARKS
0		0-5			N/)	ND	Coars Gray Light Light	n silty CLAY to se gravel (ML) clayey SILT, th brown silty CL brown silty fin gray brown Sil gray brown Cl	AY with woo	vel (ML) od (CL)	ome fine to	Flush-mouroadbox set in concrete Hole Plug (0.5-1.5) 2" PVC Riser (0'- 2') NJ #0 US Silica (1.5'-10') 10-slot 2" PVC screen (2'-10') Natural collapse (10-12')	Wet at 5.0'
]
	ENTS: Bor								track moun	nted 6712	DT Geor	probe rig.		
													BORING NO. : MW-8	0

			4		=(M				BORING NO.	TEST BORING L	OG
PBOJE	CT/PROJE						emental	GW			SHEET: 1	OF 1	
CLIENT					JTC						JOB NO.: 6		
	G CONTRA	ACTOR				tt-Wol	ff				NORTHING: 1		54033.81
-	NDWATER						CA	S. SAMPLER	CORE	TUBE	GROUND EL	EVATION: 406.44'	
DATE	TIME	LEV	EL	TYP	Έ	ТҮР	E HS	A Macrocore			DATE START	TED: 1/18/17	
						DIA.	. 41/	(4" 2"			DATE FINISH	IED: 1/18/17	
						WT.					DRILLER:	Rick Novatka	
						FAL	L				GEOLOGIST	: Rob Murphy	
							* POCKE	T PENETROMETE	R READIN	G	REVIEWED E	SY: K. Connare	
		S	AMPLE				PID				1		
DEPTH FEET	STRATA	DEPTH	BLC			OVERY %)	DIRECT/ HEAD- SPACE			ERIAL		WELL CONSTRUCTION	REMARKS
0	$\sim \sim$	0-5			Ν	١A	ND	Brown clayey silt (F	FILL)			Flush-mour	t
-								Brown silt and grav	vel, some cla	y (FILL)		roadbox set in concrete	Moist
_												Hole Plug (0.5-3.0')	
_	$\times\!\!\times\!\!\times$							Asphalt and concre	ete (FILL)			2" PVC	
_	· <u>· · · · · ·</u>							Brown clayey SILT	, trace grave	I (ML)		Riser (0'-	
-5—								Gray clayey SILT,	trace gravel				
-5	· _ · _ · _	5-8			1	00	ND		-				Wet at 5.0'
_	· <u>···</u> ··												
_								Light brown silty Cl	LAY (CL)				
_		0.10					ND						
		8-12			I	00	ND	Light brown silty Cl interbeds (CL)	LAY with 0.2	thick silty f	ine sand		
_												NJ #0 US Silica (3-	
-10	· · · · · ·											15') 10-slot 2"	
_												PVC screen	
												(5'-15')	
		12-16			ç	90	ND	Gray silty fine SAN	D (SM)				
_								Gray CLAY (CL)					
-													
-15 —								Gray silty fine SAN	D interbedde	d with gray	CLAY (SM/CL)		
												Natural collapse	
								End of boring @ 16	6.0'			(15-16')	
-													
_													
-20 —							I	<u> </u>				1	
СОММ	ENTS: Bor	ring hand	l cleare	ed to !	5' bas	s then	advance	d with track mour	nted 6712	DT Geor	orobe ria.		
	ted sample										3		
												BORING NO. : MW-81	

			A	Ξ(M				BORING NO.	TEST BORING LOG
PROJE	CT/PROJE	ECT LOC				emental (<u>w</u>			SHEET: 1	OF 1
CLIENT				UTC						JOB NO. : 6	
-					att-Wol	ff				NORTHING:	
-						CAS	SAMPLER	CORE	TUBE	GROUND EL	
DATE	TIME	LEVE	EL	ТҮРЕ	ТҮР					DATE STAR	
					DIA					DATE FINISH	HED: 1/18/17
					WT.					DRILLER:	Rick Novatka
					FAL	.L				GEOLOGIST	C: Rob Murphy
						* POCKE			G	REVIEWED I	BY: K. Connare
			AMPLE			PID					
DEPTH FEET	STRATA	DEPTH	BLOW		OVERY (%)	DIRECT/ HEAD- SPACE			TERIAL RIPTION		WELL REMARK CONSTRUCTION
	ENTS: Boild			to 5' bg			Brown clayey silt, s (FILL) Light brown clayey (FILL) Brown clayey SILT (0.1') thick every 0 Brown silty fine SA Brown CLAY, som Brown silty fine SA End of boring @ 12 End of boring @ 12 d with track mout Bs.	silt, some fir with thin silt 5' (ML) ND (SM) e fine sand (ND (SM) um SAND (S 2.0'	to fine sand CL) P)	ce fine gravel	Flush-mount roadbox set in concrete Hole Plug (0.5-1.5') 2" PVC Riser (0'- 2') Wet at 5 NJ #0 US Silica (1.5-12') 10-Slot 2" PVC screen (2'-12')
											BORING NO. : MW-82

			A		CC	M				BORING NO.	TEST BORING L	OG
PBOJE	CT/PROJE					emental (GW			SHEET: 1	OF 1	
CLIENT				UT						JOB NO. : 6		
BORIN	G CONTR	ACTOR:		-	- rratt-Wol	ff				NORTHING:		54304.18
	NDWATER					CAS	S. SAMPLER	CORE	TUBE	GROUND EL		
DATE	TIME	LEVI	EL	TYPE	ТҮР	E HS	A Macrocore			DATE STAR	TED: 1/19/17	
					DIA	. 41/4	4" 2"			DATE FINISH	HED: 1/19/17	
					WT.					DRILLER:	Rick Novatka	
					FAL	L				GEOLOGIST	Rob Murphy	
						* POCKE	T PENETROMETE	R READIN	G	REVIEWED I	BY: K. Connare	
		s	AMPLE			PID						
DEPTH FEET	STRATA	DEPTH	BLO		ECOVERY (%)	DIRECT/ HEAD- SPACE			ERIAL		WELL CONSTRUCTION	REMARKS
0		0-5			NA	ND	4" of asphalt under		nown/aray	silty fino to		J.
_	XXX						coarse gravel (FILL	L)			Flush-mount roadbox	Moist
	$\langle \rangle \rangle$					2.6	Dark gray silty grav	vel (FILL)			set in concrete	Slight petroleum
-						1.9	Dark gray silty grav	vel with cobb	les (FILL)		Hole Plug (0.5-1.5')	odor to 3'
						0.4	Gray brown wilt and trace cobble (FILL)		coarse san	d, some gravel,	- 2" PVC Riser (0'- 2')	
-5-						ND	Brown Clayey SILT	Γ, trace fine g	ravel (ML)			
	· · · · · · · · ·	5-8			100	ND	Brown clayey SILT	, trace fine s	and (ML)			Wet at 5.0'
							Brown silty fine SA	ND (SM)				
_	· · ·						Brown clayey SILT	, trace to sor	ne fine san	d (ML)	Silica (1.5-12')	
		8-12			100	ND	Brown Silty CLAY,	some fine sa	ind (SC)		10-slot 2" PVC screen	
-10 —											(2'-12')	
_												
-							End of boring @ 12	2.0'				
-												
-												
-15 —												
-												
-												
-20 —						•					•	•
COMM	ENTS: Bor	ing hand	l cleared	d to 5' l	bgs then	advanced	d with track mour	nted 6712	DT Geop	probe rig.		
Collec	ted sample	from 1-2	2' for an	nalysis	of VOCs	and PCB	s.					
											BORING NO. : MW-83	3

			А		CC	M				BORING NO.	TEST BORING L	OG
PROJE	CT/PROJE					emental						
CLIENT			ATION.			ementar	GW			SHEET: 1 JOB NO.: 6	OF 1	
	· G CONTR/				, ratt-Wol	ff				NORTHING:		53673 48
				i ui			S. SAMPLER	CORE	TUBE	GROUND EL		
DATE	TIME	LEVE	-	TYPE	ТҮР	-		CONE	TODE	DATE START		
DAIL					DIA	_				DATE FINISH		
					WT.					DRILLER:	Rick Novatka	
					FAL					GEOLOGIST		
									G	REVIEWED		
						PID			-			i
DEPTH FEET	STRATA	DEPTH	MPLE BLOV COUN		COVERY (%)	DIRECT/ HEAD- SPACE			TERIAL RIPTION		WELL CONSTRUCTION	REMARKS
	ENTS: Boi						Asphalt (FILL) Brown clayey silt w Light brown clayey Light brown clayey Gray fine SAND, tr Gray silty fine SAN Gray fine SAND, tr End of boring @ 13 End of boring @ 13 d with track mount DBs.	SILT, some fir SILT, some ace silt (SP) D (SM) ace silt (SP) 2.0'	fine sand (Fil	L)	Flush-mour roadbox set in concrete Hole Plug (0.5-1.5) 2" PVC Riser (0- 2') NJ #0 US Silica (1.5-12) 10-slot 2" PVC screen (2'-12)	t Moist Wet at 5.5'
											BORING NO. : MW-84	

Appendix B - Well Development Logs

PROJECT TITLE:	UTC S	upplemen	tal GW		W	ELL NO.:		MW-70		
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 1/31/	2017									
1. TOTAL CASING AND SCR		GTH (FT.)			=	20.00		WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)		=	10.65	·	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	9.35		3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL)		=	0.17		4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	# 4)		=	1.6		5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 :	x 5)		=	7.9		6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	7.0		8"	2.60 OB	
								V=0.0408 x (CAS	••••	
				AC	CUMULA		PURGED	(GALLONS)		
PARAMETERS	1	5	7							
pН	6.88	6.91	6.89							
SPEC. COND. (mS/cm)	2.62	1.90	1.76							
TURBIDITY (NTUs)	74.6	67.1	47.7							
ORP (mV)	69	81	103							
COMMENTS: Develope	d by sura	ing and n	umpina us	sing a Wat	erra Pun	np, check val	ve and s	urae block		
	a by barg	ng ana p		ing a Wa			ve, and e			

PROJECT TITLE:		UTC S	upplemer	ital GW			WELL NO.:		MW-71	
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 1/31/	2017									
1. TOTAL CASING AND SCR		GTH (FT.)			=	15.	.00	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)		=	9.3	30	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	「ER (#1 - #	2)		=	5.7	70	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	17	4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	ŧ4)		=	1.	.0	5"	1.04	
6. VOLUME OF WATER TO I	REMOVE	(GAL.)(#5	< 5)		=	4.	.8	6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	4.	.0	8"	2.60 OR	
								V=0.0408 x (CAS	-	
				AC	CUMULAT	ED VOLUN	ME PURGE) (GALLONS)		
PARAMETERS	1	4								
pН	7.06	6.87								
SPEC. COND. (mS/cm)	1.56	1.61								
TURBIDITY (NTUs)	96	14								
ORP (mV)	14	58								
COMMENTS: Develope		uing and n			torro Dum	n obook i	valva and	aurao blook		
COMMENTS. Develope	a by surg	ing and p	umping us	sing a wa	liena Fuin	ip, check v	valve, and	Surge Diock.		

PROJECT TITLE:	UTC S	upplement	al GW		V	VELL NO.:		MW-72		
PROJECT NO.:			60528299							
STAFF: K. Stahle										
DATE(S): 1/26/	/2017									
1. TOTAL CASING AND SCF		GTH (FT.)			=	11.8	80	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)			=	4.5	5	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	「ER (#1 - #	2)		=	7.2	5	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	7	4"	0.66	
5. VOLUME OF WATER IN C	CASING (G	AL.)(#3 x #	4)		=	1.2	2	5"	1.04	
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5 >	: 5)		=	6.2		6"	1.50	
7. VOLUME OF WATER ACT	TUALLY RE	EMOVED (GAL.)		=	5.0)	8"	2.60 OR	
								V=0.0408 x (CAS	•••	
				AC	CUMULA	TED VOLUM	E PURGE	D (GALLONS)		
PARAMETERS	1	5								
рН	NR	NR								
SPEC. COND. (mS/cm)	0.641	0.641								
TURBIDITY (NTUs)	422	38								
ORP (mV)	-15	70								
COMMENTS: Develope		uing and p		ing a Wai	torra Dun		alvo and i	surge block.		
NR=not r		ning and pi	umping us	ing a wa	lena run	np, check va	aive, anu :	Surge Diock.		

PROJECT TITLE:		UTC S	upplementa	al GW			WELL NO.:		MW-73	
PROJECT NO.:			60528299							
STAFF: K. Stahle										
DATE(S): 1/31/	/2017									
1. TOTAL CASING AND SCF		GTH (FT.)			=	12.0	00	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)			=	8.1	5	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	3.8	5	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	7	4"	0.66	
5. VOLUME OF WATER IN C	CASING (G	AL.)(#3 x #	4)		=	0.7	7	5"	1.04	
6. VOLUME OF WATER TO	REMOVE	GAL.)(#5 >	(5)		=	3.3	3	6"	1.50	
7. VOLUME OF WATER ACT	TUALLY RE	EMOVED (GAL.)		=	3.0	0	8"	2.60 OR	
								V=0.0408 x (CAS	•••	
				AC	CUMULA	TED VOLUN	IE PURGEI	D (GALLONS)		
PARAMETERS	1	3								
рН	6.97	6.93								
SPEC. COND. (mS/cm)	0.969	0.951								
TURBIDITY (NTUs)	676	46.1								
ORP (mV)	136	151								
		ing and p			orro Dun					
COMMENTS: Develope	eu by surg	ing and pi	umping usi	ny a wai	erra Full	пр, спеск v	aive, and	surge block.		

PROJECT TITLE:	UTC S	upplemen	tal GW		w	ELL NO.:		MW-74		
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 1/26/	2017									
1. TOTAL CASING AND SCR		GTH (FT.)			=	11.70)	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.))		=	6.50		2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	5.20		3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.17		4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	ŧ4)		=	0.9		5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 >	< 5)		=	4.4		6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	7.0		8"	2.60 OR	
								V=0.0408 x (CAS	•••	
		_	_	AC	CUMULA	TED VOLUME	PURGED	(GALLONS)		
PARAMETERS	1	5	7							
рН	6.93	6.97	6.98							
SPEC. COND. (mS/cm)	1.15	1.14	1.16							
TURBIDITY (NTUs)	93.8	76.1	31.6							
ORP (mV)	141	121	115							
		ing and p		ving a Wat	torra Dun	np, check val	we and a			
COMMENTS: Develope	a by surg	ing and p	umping us	sing a wai	lerra Full	np, check va	ive, and s	urge block.		

A	ECO	М

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-75										
PROJECT NO.:			60528299							
STAFF: K. Stahle										
DATE(S): 1/26/	/2017									
1. TOTAL CASING AND SCF		GTH (FT.)			=	10.	00	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)			=	6.9	90	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	3.1	10	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	17	4"	0.66	
5. VOLUME OF WATER IN C	CASING (G	AL.)(#3 x #	4)		=	0.	5	5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 >	: 5)		=	2.	6	6"	1.50	
7. VOLUME OF WATER ACT	TUALLY RE	EMOVED (GAL.)		=	4.	0	8"	2.60 OR	
								V=0.0408 x (CAS		
				ACO	CUMULA			D (GALLONS)		
PARAMETERS	1	4								
рН	6.87	6.89								
SPEC. COND. (mS/cm)	1.16	1.17								
TURBIDITY (NTUs)	86	14.1								
ORP (mV)	126	141								
COMMENTS: Develope	ed by surg	ing and p	umping using	g a Wat	erra Pun	np, check v	valve, and	surge block.		

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-76										
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 1/23/	/2017									
1. TOTAL CASING AND SCF	REEN LENC	GTH (FT.)			=	14.50)	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)		=	6.70		2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	7.80		3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.17		4"	0.66	
5. VOLUME OF WATER IN C	CASING (G	AL.)(#3 x #	# 4)		=	1.3		5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 :	x 5)		=	6.6		6"	1.50	
7. VOLUME OF WATER ACT	TUALLY RE	EMOVED (GAL.)		=	10.0		8"	2.60 OR	
								V=0.0408 x (CAS	•••	
				AC	CUMULA			(GALLONS)		
PARAMETERS	2	5	10							
pН	10.22	6.81	6.79							
SPEC. COND. (mS/cm)	1.70	2.15	3.22							
TURBIDITY (NTUs)	67.8	47.8	18.6							
ORP (mV)	58	136	150							
COMMENTS: Develope	d by surg	ing and p		ving a Wat	torra Pun	np, check va	lvo and c			
	su by Suig	ing and p	umping us	sing a vva	lena i un	np, check va	ive, and s	uige block.		

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-77										
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 1/23/	2017									
1. TOTAL CASING AND SCF		GTH (FT.)			=	14.50)	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)	I		=	8.50		2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	6.00		3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.17		4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	4)		=	1.0		5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 >	(5)		=	5.1		6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	5.0		8"	2.60 OR	
							V=(0.0408 x (CASI	ING DIAMETER) ²	
		[AC	CUMULA	ED VOLUME	PURGED (GA	LLONS)		
PARAMETERS	2	5								
рН	6.89	6.91								
SPEC. COND. (mS/cm)	1.91	1.79								
TURBIDITY (NTUs)	>999	26.3								
ORP (mV)	76	57								
Dry @ 2 Dry @ 1 Dry @ 1	ed by surg gallons, rei gallon, rei gallon, rei gallon, de	emoved a noved allo noved allo	llow recov ow recove ow recove	very. ery. ery.		p, check va	lve, and surge	block.		

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-78										
PROJECT NO.:			60528299							
STAFF: K. Stahle										
DATE(S): 1/23/	/2017									
1. TOTAL CASING AND SCF	REEN LENC	GTH (FT.)			=	13.:	30	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.))		=	6.8	80	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	6.5	50	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	7	4"	0.66	
5. VOLUME OF WATER IN C	CASING (G	AL.)(#3 x #	[±] 4)		=	1.	1	5"	1.04	
6. VOLUME OF WATER TO	REMOVE (GAL.)(#5 >	(5)		=	5.	5	6"	1.50	
7. VOLUME OF WATER ACT	TUALLY RE	MOVED (GAL.)		=	5.0	0	8"	2.60 OR	
								V=0.0408 x (CAS	•••	
				ACC	UMULA		IE PURGE	D (GALLONS)		
PARAMETERS	1	5								
рН	6.88	6.96								
SPEC. COND. (mS/cm)	2.60	1.79								
TURBIDITY (NTUs)	>999	46								
ORP (mV)	79	108								
COMMENTS: Develope	ed by surg	ing and p	umping using	g a Wate	erra Pun	np, check v	valve, and	surge block.		

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-79										
PROJECT NO.:			60528299							
STAFF: K. Stahle										
DATE(S): 1/31/	2017									
1. TOTAL CASING AND SCF		GTH (FT.)			=	10.0	00	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.))		=	1.5	50	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	8.5	50	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	7	4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	[±] 4)		=	1.4	4	5"	1.04	
6. VOLUME OF WATER TO	REMOVE ((GAL.)(#5 >	(5)		=	7.5	2	6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	7.0	0	8"	2.60 OR	
								V=0.0408 x (CAS	•••	
		_		AC	CUMULA		IE PURGE	D (GALLONS)		
PARAMETERS	1	7								
рН	6.77	6.91								
SPEC. COND. (mS/cm)	2.55	1.36								
TURBIDITY (NTUs)	406	31								
ORP (mV)	111	122								
COMMENTS: Develope	l ed by surg	ing and p	umping usir	ng a Wat	erra Pun	np, check v	valve, and	surge block.		

PROJECT TITLE:	E: UTC Supplemental GW WELL NO.: MW-80									
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 2/15/	/2017									
1. TOTAL CASING AND SCF	EEN LEN	GTH (FT.)			=	9.	75	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.))		=	1.	13	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	8.	62	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.	17	4"	0.66	
5. VOLUME OF WATER IN C	CASING (G	AL.)(#3 x #	ŧ4)		=	1	.5	5"	1.04	
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5 >	(5)		=	7	.3	6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	5	.0	8"	2.60 OR	
								V=0.0408 x (CAS		
				AC	CUMULAT	ED VOLU	ME PURGE	D (GALLONS)	1	
PARAMETERS	1	5								
рН	6.67	6.43								
SPEC. COND. (mS/cm)	2.79	2.29								
TURBIDITY (NTUs)	367	50								
ORP (mV)	126	-17								
COMMENTS: Develope	ed by surg	ing and p	l umping us	sing a Wa	I Iterra Pum	ip, check	valve, and	surge block.		
•	, ,	0		U				U		

PROJECT TITLE:	UTC Supplemental GW WELL NO.: MW-81									
PROJECT NO.:			60528299	9						
STAFF: K. Stahle										
DATE(S): 1/27/	2017									
1. TOTAL CASING AND SCR		GTH (FT.)			=	14	.30	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)		=	6.	60	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	「ER (#1 - #	2)		=	7.	70	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL)		=	0.	17	4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	# 4)		=	1	.3	5"	1.04	
6. VOLUME OF WATER TO	REMOVE ((GAL.)(#5 :	x 5)		=	6	.5	6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	8	.0	8"	2.60 OR	
								V=0.0408 x (CAS	• • •	
				ACC	CUMULAT	ED VOLU	ME PURGEI) (GALLONS)		
PARAMETERS	1	5	8							
рН	6.98	6.87	6.86							
SPEC. COND. (mS/cm)	2.41	2.39	1.98							
TURBIDITY (NTUs)	767	144	48.6							
ORP (mV)	75	97	127							
	10	01	127							
COMMENTS: Develope	d by sura	uing and n		sing a Wat	erra Pum	n check	valve and			
	a by barg	nig and p		ong a Wat			valve, and			

PROJECT TITLE:	E: UTC Supplemental GW WELL NO.: MW-82									
PROJECT NO.:			60528299)						
STAFF: K. Stahle										
DATE(S): 1/27/	2017									
1. TOTAL CASING AND SCR		GTH (FT.)			=	11.	.00	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.))		=	7.6	60	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	3.4	40	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	17	4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	ŧ4)		=	0.	.6	5"	1.04	
6. VOLUME OF WATER TO	REMOVE ((GAL.)(#5 >	< 5)		=	2.	.9	6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	6.	.0	8"	2.60 OR	
								V=0.0408 x (CAS	-	
		[1	AC	CUMULAT		ME PURGE	D (GALLONS)	1	
PARAMETERS	1	6								
рН	7.89	6.89								
SPEC. COND. (mS/cm)	1.16	1.17								
TURBIDITY (NTUs)	481	37								
ORP (mV)	138	117								
COMMENTS: Develope		ing and p			torro Dum	n obook i	valvo and	surao blook		
COMMENTS. Develope	u by surg	ing and p	umping us	sing a wa	llena Fun	ip, check v	valve, and	Surge block.		

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-83										
PROJECT NO.:			60528299							
STAFF: K. Stahle										
DATE(S): 1/31/	2017									
1. TOTAL CASING AND SCR		GTH (FT.)			=	11.7	70	WELL ID. 1"	VOL. (GAL/FT) 0.04	
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.))		=	5.2	20	2"	0.17	
3. NUMBER OF FEET STAN	DING WAT	ER (#1 - #	2)		=	6.5	50	3"	0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	.)		=	0.1	7	4"	0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	ŧ4)		=	1.	1	5"	1.04	
6. VOLUME OF WATER TO	REMOVE ((GAL.)(#5 >	< 5)		=	5.	5	6"	1.50	
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)		=	5.0	0	8"	2.60 OR	
								V=0.0408 x (CAS	• • •	
				AC	CUMULA		IE PURGE	D (GALLONS)		
PARAMETERS	1	5								
рН	7.89	6.91								
SPEC. COND. (mS/cm)	1.17	1.23								
TURBIDITY (NTUs)	167	26								
ORP (mV)	126	140								
COMMENTS: Develope	ed by sura	ing and p	umpina usi	ng a Wat	terra Pun	ם. check v	alve. and	surge block.		
•	, ,	5 1	1 0	0			,	5		

PROJECT TITLE: UTC Supplemental GW WELL NO.: MW-84									
		60528299)						
/2017									
REEN LENG	GTH (FT.)			=	11.00		WELL ID. 1"	VOL. (GAL/FT) 0.04	
OP OF CA	SING (FT.))		=	6.40		2"	0.17	
DING WAT	ER (#1 - #	2)		=	4.60		3"	0.38	
OT OF CAS	SING (GAL	.)		=	0.17		4"	0.66	
CASING (G	AL.)(#3 x #	ŧ4)		=	0.8		5"	1.04	
REMOVE	(GAL.)(#5 >	< 5)		=	3.9		6"	1.50	
TUALLY RE	EMOVED (GAL.)		=	5.0		8"	2.60	
							V=0.0408 x (CAS	•••	
			A	CCUMULA	TED VOLUME PU	JRGED	GALLONS)	T	1
1	5								
7.15	6.98								
2.67	2.54								
>999	47								
115	76								
.5 gallons, gallons, re	removed emoved a	allow reco	overy.	ı aterra Pun	np, check valve	, and su	irge block.		L
	/2017 REEN LENG OP OF CA DING WAT OT OF CAS CASING (G REMOVE (TUALLY RE 1 2.67 >999 115 2.67 >999 115 casins, gallons, re	/2017 REEN LENGTH (FT.) TOP OF CASING (FT.) IDING WATER (#1 - # OT OF CASING (GAL CASING (GAL.)(#3 × # REMOVE (GAL.)(#3 × # REMOVE (GAL.)(#3 × # REMOVE (GAL.)(#3 × # 0 T OF CASING (GAL CASING (GAL.)(#3 × # 1 5 7.15 6.98 2.67 2.54 >999 47 115 76 115 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/2017 REEN LENGTH (FT.) TOP OF CASING (FT.) IDING WATER (#1 - #2) OT OF CASING (GAL.) CASING (GAL.)(#3 x #4) REMOVE (GAL.)(#5 x 5) TUALLY REMOVED (GAL.) 2.67 2.54 >999 47 115 76 115 76 2.67 2.54 >999 47 115 76 2.67 2.54 >999 47 115 76 2.67 2.54 >999 47 115 76 2.61 2.67 2.67 2.54 >999 47 115 76 2.61 2.61 2.62 2.54 2.5 3 2.67 2.54	60528299 /2017 REEN LENGTH (FT.) TOP OF CASING (FT.) IDING WATER (#1 - #2) OT OF CASING (GAL.) CASING (GAL.)(#3 x #4) REMOVE (GAL.)(#5 x 5) TUALLY REMOVED (GAL.) A(1 2.67 2.54 2.67 2.54 >999 47 1115 76 List colspan="2">Colspan="2">Colspan="2">A(A(1 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan	60528299 /2017 REEN LENGTH (FT.) TOP OF CASING (FT.) TOP OF CASING (FT.) TOP OF CASING (GAL.) TOT OF CASING (GAL.) CASING (GAL.)(#3 x #4) CASING (GAL.)(#5 x 5) CULLY REMOVED (GAL.) ACCUMULAT 1 5 7.15 6.98 2.67 2.54 >999 47 115 76 115 76 115 76 Auterra Pun 5 gallons, removed allow recovery. gallons, removed allow recovery.	60528299 /2017 REEN LENGTH (FT.) = 11.00 COP OF CASING (FT.) = 6.40 DING WATER (#1 - #2) = 6.40 DING WATER (#1 - #2) = 0.17 CASING (GAL.)(#3 x #4) = 0.8 REMOVE (GAL.)(#5 x 5) = 3.9 TUALLY REMOVED (GAL.) = 5.0 ACCUMULATED VOLUME PR 1 5 — 2.67 2.54 — 2.67 2.54 — 115 76 — — 115 76 — — 115 76 — — ed by surging and pumping using a Waterra Pump, check valve 5 gallons, removed allow recovery. gallons, removed allow recovery. _ _	60528299 /2017 REEN LENGTH (FT.) I 1.00 OP OF CASING (FT.) OP OF CASING (FT.) DING WATER (#1 - #2) OT OF CASING (GAL.) OT OF CASING (GAL.) OT OF CASING (GAL.) COLSPAN (GAL.)(#3 x #4) B 0.8 REMOVE (GAL.)(#5 x 5) TUALLY REMOVED (GAL.) ACCUMULATED VOLUME PURGED (1 COLSPAN (GAL.) ACCUMULATED VOLUME PURGED (1 2 2 2 2 2 2 2 2 2 2 <t< td=""><td>60528299 WELL ID. /2017 = 11.00 1" OP OF CASING (FT.) = 6.40 2" DING WATER (#1 - #2) = 4.60 3" 0 OT OF CASING (GAL.) = 0.17 4" 4" CASING (GAL.)(#3 x #4) = 0.8 5" 5" REMOVE (GAL.)(#5 x 5) = 3.9 6" 6" TUALLY REMOVED (GAL.) = 5.0 8" V=0.0408 x (CASING 1) 1 5 6" 1 7.15 6.98 6" 2.67 2.54 >999 47 115 76 ed by surging and pumping using a Waterra Pump, check valve, and surge block. 5 5 gallons, removed allow recovery. Gallow recovery.</td><td>60528299 WELL ID. VOL. (GAL/FT) 12017 = </td></t<>	60528299 WELL ID. /2017 = 11.00 1" OP OF CASING (FT.) = 6.40 2" DING WATER (#1 - #2) = 4.60 3" 0 OT OF CASING (GAL.) = 0.17 4" 4" CASING (GAL.)(#3 x #4) = 0.8 5" 5" REMOVE (GAL.)(#5 x 5) = 3.9 6" 6" TUALLY REMOVED (GAL.) = 5.0 8" V=0.0408 x (CASING 1) 1 5 6" 1 7.15 6.98 6" 2.67 2.54 >999 47 115 76 ed by surging and pumping using a Waterra Pump, check valve, and surge block. 5 5 gallons, removed allow recovery. Gallow recovery.	60528299 WELL ID. VOL. (GAL/FT) 12017 =

Appendix C - Groundwater Sampling Purge Logs

Well ID: MW -08

Client: UTC Carrier Project No:	Date: 2/8/17	Time	e: Start //	30 am/pm am/pm
Site Location: Syracuse, ny Weather Conds:	Collector(s):	K. Stah	le	
 WATER LEVEL DATA: (measured from Top of Casia. Total Well Length c. Length of Water Cabib. Water Table Depth 5.16 d. Calculated System WELL PURGE DATA 5.16 a. Purge Method: 	olumn(a-b)		Casing Diam	eter/Material S <i>Hee</i>
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0.3)mV 3'	20)	
c. Field Testing Equipment used: Make	Model		Serial	Number
Volume Time Removed Temp. pH Spec. Cond. DO (24hr) (Liters) (°C) (µS/cm) (mg/L) (1/30) 0.5 8.4% 7.70 0.5711 3.70 10/40 1.3 8.71 7.72 0.5713 2.8 3.70 10/45 .2 8.68 7.72 0.5710 2.65 10/45 .2 8.66 7.71 0.505 7.50 10/45 .2 8.66 7.71 0.505 7.50 10/50 .2.5 8.66 7.71 0.505 7.50 1053 .3 8.66 7.71 0.505 7.50 1050 .5 8.66 7.71 0.505 7.50 1000 .5 .5 8.66 7.71 0.505 7.50 1000 .5 .5 .66 7.71 0.505 7.50 1000 .5 .5 .66 7.71 0.505 7.50 1000 .5 .5 .66 7.71 0.5	(mV) (NTU) 182 7/,1 183 91,8 183 32,6 183 32,6 183 34,8 186 22,7	Flow Rate (ml/min)	Drawdown (feet) 0.2 	Color/Odor
Sample ID Container Type No. of Containers	Preservation	Analysis Vac /	Req. MB	Time 1100
Comments				
Signature 200	2	Date	2/8	/17

Well ID: Mw-69

Client: UTC Carrier	[Date: 2/	1/17	Tin		3:00 am/pm
Project No:					Finish	am/pm
Site Location: Syracuse, ny						
Weather Conds:		Collector(s):		K. Sta	hle	•
1. WATER LEVEL DATA: (measured	-					5
a. Total Well Length c. L					-	eter/Material
b. Water Table Depth 4.71 d. C	Calculated System	Volume (see b	ack)			
2. WELL PURGE DATA a. Purge Method:	w Flow			·····		,
b. Acceptance Criteria defined (see v - Temperature 3% -D. - pH <u>+</u> 1.0 unit - C - Sp. Cond. 3% - D	O. 10% RP <u>+</u> 10m					
c. Field Testing Equipment used:	Make		Model		Serial	Number
(24hr) (Liters) (°C) (<u>μS/cm) (mg/L)</u>	(mV)	(NTU)	(ml/min)	(feet)	Color/Odor
1300 9.5 7.58 7.58 4	42 6.50	159	270	150	0.5	
	. 49 3.61 34 1.99	151	Z1Z 147		0.2	
	.65 1.71	147	47		-	
1370 2.5 7.60 6.74 4.	67 1.62		46		-	
1325 3 7.59 6.78 4.	67 1.61	129	45		e	
 Acceptance criteria pass/fail Has required volume been remov Has required turbidity been reach Have parameters stabilized If no or N/A - Explain below. 						(continued on back)
3. SAMPLE COLLECTION: Metho	od:					
Sample ID Container Type No Mai - 69 40 M	of Containers	Preserv 1/C/		Analysi	s Req.	Time 1225
		Nor	Y	16	8	1100
Comments		· · · · · · · · · · · · · · · · · · ·				
·	· · · · · · · · · · · · · · · · · · ·	2				
Signature	4 4			Date	2/1/1	7

Well ID: Mw-70

Client: UTC Carrier	Date: 0/8/17	Time: Start	940 am/pm
Project No: Site Location: Syracuse, ny		Finish_	am/pm
Weather Conds:	Collector(s):	K. Stahle	
1. WATER LEVEL DATA: (measured from Top of Cas			
a. Total Well Length c. Length of Water C	-	Casing Dia	ameter/Material
		210	Puc .
b. Water Table Depth 10:91 d. Calculated System	n Volume (see back)		
2. WELL PURGE DATA a. Purge Method:		x	
b. Acceptance Criteria defined (see workplan)- Temperature3%-D.O.10%- pH+1.0 unit- ORP+10- Sp. Cond.3%- Drawdown< 0.)m\/		
c. Field Testing Equipment used: Make	Model	Seri	ial Number
·	· · · · · · · · · · · · · · · · · · ·	andras Construction of the second	
Volume	0000 7 11 14	<u> </u>	21 21
Time (24hr)Removed Temp. (Liters)pHSpec. Cond. (µS/cm)DO (mg/L		Flow Rate Drawdow (ml/min) (teet)	n Color/Odor
940 0.5 12.49 7.17 1.19 5.80		150 .4	
945 1.5 7.07 1.21 4.16 950 2 11.496.97 1.22 5.5		5.	
955 2.5 11.47 6.95 1.23 3.30		1	
1000 3 11.456.91 1.23 5.16		4 0	
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.	No N/A		(continued on back)
3. SAMPLE COLLECTION: Method:		4	
Sample ID Container Type No. of Containers	Preservation	Analysis Reg.	Time 1000
MW-70-Filt			
Comments			
Signature		Date	

Dop	
X	

Well ID: Mw-71

Client: UTC Carrier Project No: Site Location: Syracuse, ny	Date: 2/2/17	Time:	Start <u>9</u> 30 am/pm Finisham/pm
Weather Conds: <u>Synacuse</u> , ny	Collector(s):	K. Stahle	<u></u>
 WATER LEVEL DATA: (measured from Top of Cas a. Total Well Length c. Length of Water C b. Water Table Depth 9.15 d. Calculated System 	olumn(a-b)	Ca	asing Diameter/Material
a. Purge Method: d. Calculated System d. Calculated System d. Calculated System			
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+1.0 unit- Sp. Cond.3%- Drawdown< 0.)mV		
c. Field Testing Equipment used: Make	Model		Serial Number
Volume <u>Time</u> Removed Temp. pH Spec. Cond. DO (24hr) (Liters) (°C) (µS/cm) (mg/L 930 0;5 17-49 6.94 657 2.92) (mV) (NTU)	(ml/min)	Orawdown Color/Odor (feet) 0.5 C/4cR
935 / 12.04 6.91 .655 1.56 940 1.5 11.81 6.81 .650 1.32 945 Z 11.61 6.87 .648 1.29 955 Z 11.61 6.90 .655 1.30	- 48 4.1 - 53 3.7 - 56 Z.6 - 58 Z.6		0.Z 0.1 0.1 0.1
1000 3.5 //./0 6.9/ . 6.56 /.30 d. Acceptance criteria pass/fail Yes Has required volume been removed □ Has required turbidity been reached □ Have parameters stabilized □ If no or N/A - Explain below. □	-6/ <i>Z.</i> 4/ No N/A □ □ □ □		(continued on back)
3. SAMPLE COLLECTION: Method:		, , , , , , , , , , , , , , , , , , ,	
Sample ID Container Type No. of Containers	Preservation He/ Nove He/ Nove	Analysis /dC VoC	Req. Time REA 1000 RA 1005
Comments			
Signature		Date	2/2/17

Well ID: Mw-72

Client: UTC Carrier Project No:	Date: <u>2/1/17</u>		Start <u>900</u> am/pm Finish am/pm
Site Location: Syracuse, ny Weather Conds:	Collector(s):	K. Stahle	
 WATER LEVEL DATA: (measured from Top of Cas a. Total Well Length c. Length of Water C b. Water Table Depth <u>4.80</u> d. Calculated System 	olumn(a-b)	Cas	ing Diameter/Material
2. WELL PURGE DATA a. Purge Method: Jow Flow			
b. Acceptance Criteria defined (see workplan)- Temperature3%-D.O.10%- pH+1.0 unit- ORP+10- Sp. Cond.3%- Drawdown< 0.	DmV		
c. Field Testing Equipment used: Make	Model		Serial Number
Volume) (mV) (NTU) (I	ml/min) (awdown Color/Odor (feet) 7.2 (/mrR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> 169 72.0 170 73.2 171 19.6 </u>		
d. Acceptance criteria pass/fail Yes Has required volume been removed □ Has required turbidity been reached □ Have parameters stabilized □ If no or N/A - Explain below. □	No N/A	I	(continued on back)
3. SAMPLE COLLECTION: Method:			
Sample ID Container Type No. of Containers	Preservation //C/	Analysis Re VOC PC D	eq. Time 925 1 925
Comments		· · · · · · · · · · · · · · · · · · ·	
Signature		_Date _Z	/1/17

Well ID: MW-75

Client: UTC Carrier Project No: Site Location: Syracuse, ny	_ Date: _ Z/ /	/17 Tim	e: Start <u>//40</u> am/pm Finisham/pm
Weather Conds:	Collector(s):	K. Stah	le
WATER LEVEL DATA: (measured from Top of Ca a. Total Well Length c. Length of Water	Column	(a-b)	Casing Diameter/Material
b. Water Table Depth 5.20 d. Calculated Syste	m Volume (see back))	
2. WELL PURGE DATA a. Purge Method:	Flow		
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+1.0 unit- Sp. Cond.3%- Drawdown	10mV		
c. Field Testing Equipment used: Make	M	odel	Serial Number
Volume	·····	· · · · · · · · · · · · · · · · · · ·	
Time (24hr)Removed Temp. (Liters)pHSpec. Cond. (µS/cm)D((mg	/L) (mV) (N	bidity Flow Rate (ml/min)	Drawdown Color/Odor (feet)
1140 0.5 656 7.17 .963 6.7 1145 1 7.85 7.05 .960 4.6		<u>t6</u> /50 7.5	0.5
1150 1.5 8.51 7.05 .76/ 4.3			
1155 7.5 8.59 7.04 .961 4.4			÷
1200 5.0 8.65 7.03 .961 4.4	1 151 29	.0 .	
d. Acceptance criteria pass/fail Yes Has required volume been removed □ Has required turbidity been reached □ Have parameters stabilized □ If no or N/A - Explain below. □	No N/A		(continued on back)
3. SAMPLE COLLECTION: Method:			
Sample ID Container Type No. of Containers	Preservation	on Analysis	1200
	None	FC	1200
Comments			
Signature		Date	2/1/17

Well ID: Mw-74

Client: UTC Carrier	Date: 2/1/16	Time: Start //	215 am/pm
Project No: Site Location: Syracuse, ny	_	Finish	am/pm
Site Location: Syracuse, ny Weather Conds: Clran & 25°F	Collector(s):	K. Stahle	
Weather conds. CITAL North		K, Stalle	
1. WATER LEVEL DATA: (measured from Top of Car a. Total Well Length c. Length of Water			neter/Material
b. Water Table Depth 6.50 d. Calculated Syste	m Volume (see back)		
2. WELL PURGE DATA a. Purge Method: Low Flow			en deple a fera e la ferancia en
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+1.0 unit- ORP+1- Sp. Cond.3%- Drawdown< 0	0mV		
c. Field Testing Equipment used: Make	Model	Seria	Number
Volume Time Removed Temp. pH Spec. Cond. DC		Flow Rate Drawdown	Color/Odor
(24hr) (Liters) (°C) (μS/cm) (mg/		(ml/min) (feet)	1
1020 1 6.47 6.79 1.18 6.2	6 168 9.6	1	
1075 1.5 6.65 6.75 1.19 6.19	1 168 6.7		
1030 7.5 6.68 6.73 1.72 6.07			
1035 3.1 6.69 6.73 1.22 6.0.	5 169 2.4		
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below. Yes	No N/A		(continued on back)
3. SAMPLE COLLECTION: Method:			· · · ·
Sample ID Container Type No. of Containers	Preservation	Analysis Req.	Time 1035
12	store	PEB	1035
	·		
Comments		· · · · · · · · · · · · · · · · · · ·	
Signature het st		Date 2/1/1	7

Well ID: MW	-75
-------------	-----

Project No:						Finish	am/pm am/pm
Site Location: Syracuse, ny Weather Conds:		· C	ollector(s):		K. Sta	hle	
1. WATER LEVEL DATA: (measu a. Total Well Length	red from Top o	of Casing)			Casing Diam	eter/Material
b. Water Table Depth 7.53	d. Calculated	System Vo	olume (see	back)			·····
2. WELL PURGE DATA a. Purge Method:		· .					
b. Acceptance Criteria defined (- Temperature 3% - pH <u>+</u> 1.0 unit - Sp. Cond. 3%	-D.O. - ORP	10% <u>+</u> 10m\ < 0.3'	1				
c. Field Testing Equipment used	t: Mak	(e		Model		Serial	Number
-							
Volume <u>Time</u> <u>Removed</u> <u>Temp.</u> <u>pH</u> (24hr) (Liters) (°C)	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
1/30 0.5 2.55 7.04	.543	7.85	114	16.4	150	0.4	
1140 1.5 2.76 6.91 1145 Z Z.92 6.86	. 539	7.01	117	<i>4.3</i> <i>1.8</i>		0.2	
1/50 2.5 2.89 6.86		5.98	170	0.0		0.1	
1155 3 2.88 6.86		5.97	172	0.0	Y	0.(
d. Acceptance criteria pass/fail Has required volume been re Has required turbidity been r Have parameters stabilized If no or N/A - Explain bel	emoved [eached [ies No ies ies ies ies		1	L		(continued on back)
3. SAMPLE COLLECTION:	Method:						
Sample ID Container Type	No. of Contai	ners	Prese	rvation	Analysi	s Req.	Time /200
Mw-75 M5					an a		laar
MW-75 MSD							1010
Comments					-		
Signature					Date	2/2/	17

Well ID: Mw-76

Client: 1 Project No: Site Locatio Weather Co	on: Syr	er acuse, 1				ate: Z/		Tir K. Sta	Finish	am/pm am/pm
a. Total b. Wate 2. WELL P	Well Len r Table D PURGE D	epth		red from Top c. Length of ¹ d. Calculated	Water Colu I System V	umn		_	Casing Diam	eter/Material
b. Accer - Tempe - pH	erature	riteria d 3% <u>+</u> 1	.0 unit	see workplan) -D.O. - ORP - Drawdown	10% <u>+</u> 10m	v				5
c. Field	Testing E	quipm	ent used	: Ma	ake		Model		Serial	Number
	Volume Removed (Liters)	Temp. (°C)	 <u>pH</u>	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)		Color/Odor
1235 1235 1245 1250 1255 1255 1255 1255 1255 1255 125	o. 5 7 2 2. 5 3 eptance cr required t required t e paramet	2.67 6.0 6.76 6.18 6.16 riteria p volume turbidity ters sta	been re y been re bilized	Z.65 Z.01 1.63 1.61 1.57 moved eached	Yes No	105 106 109 112 112 114	15.3 7.6 0.0 0.0 0.0	X50 + +	(teet) 0.2 0.1 	(continued on back)
3. SAMPLI Sample ID		CTION	d: N	No. of Conta	ainers	Prese Itc/	ervation	Analys PCS /	is Req.	Time 1300
Comments			-							
Signature			K	SA				Date	z/z/1	7

		Date: 2	2/7/1	7 Tim	ne: Start 1	
oject No: te Location: Syracuse, ny					Finish	am/pi
eather Conds:		Collector(s):	K. Sta	hle	
WATER LEVEL DATA: (measured fro	om Top of Casir	ng)				
a. Total Well Length c. Len	gth of Water Co	lumn	(a-b)		Casing Diam	eter/Material
b. Water Table Depth \$.62 d. Cal	culated System	Volume (see	e hack)		d	pre
WELL PURGE DATA						
a. Purge Method:						
b. Acceptance Criteria defined (see wo	rkplan)		4			
- Temperature 3% -D.O.		-				
- pH <u>+</u> 1.0 unit - ORI - Sp. Cond. 3% - Drav						
c. Field Testing Equipment used:	Make		Model		Serial	Number
	Ware		Wouci		Ocha	Turriber
Volume	1.					
Time Removed Terrio. pH Spec.	Cond. DO	ORP		Flow Rate		Color/Odor
(24hr) (Liters) (C) (µS) 350 / 4.70 663 7.7	(mg/L) (mg/L)	(mV)	(NTU) 148	(ml/min)	(feet)	
355 1.5 5.11 6.59 1.3		129	126		0.1	•
400 2 5.28 638 1.4 405 2.8 5.30 6.57 1.4	8 7.60	152	43			
410 3 5.39 6.57 1.4		140	46		-	- Arriver and the
				1		
d. Acceptance criteria pass/fail	Yes N	lo N/	A	1		(continued on bac
Has required volume been removed]		· ·	
Has required turbidity been reached Have parameters stabilized						
If no or N/A - Explain below.						
1						
SAMPLE COLLECTION: Method	:					
ample ID Container Type No. o	of Containers	Prese	ervation	Analysi	s Req.	Time 1410
Mw-77				Voc: 1	PLB	1410
MW-77- Filt	-					
						18 ⁴ .
omments				-		
an a the Management of the Mathematic					<u></u>	
	-			2		······
				Date		

Well ID: MW-78

Client: UTC Carrier Project No: Site Location: Syracuse, ny		Da	ate: 2/	7/17	Tin	ne: Start <u>/</u> Finish	am/pmam/pm
Weather Conds:	· · ·	C	ollector(s)	-	K. Sta	hle	
 WATER LEVEL DATA: (measure a. Total Well Length b. Water Table Depth 7.70 	c. Length of V	Vater Colu	mn			Casing Diam	eter/Material
2. WELL PURGE DATA a. Purge Method:			Flow	Dack)			
b. Acceptance Criteria defined (- Temperature 3% - pH <u>+</u> 1.0 unit - Sp. Cond. 3%	-D.O.	10% <u>+</u> 10m\ < 0.3'	/				
c. Field Testing Equipment used	d: Ma	ke		Model		Serial	Number
Volume	0		0.000	T 1111	EL	D 1	
$\begin{array}{c c} \underline{\text{Time}} & \underline{\text{Removed}} & \underline{\text{Temp.}} & \underline{\text{pH}} \\ \hline (24hr) & (Liters) & (^{\circ}\text{C}) & (^{\circ}\text{C}) \\ \hline 7230 & 0.5 & 6.0 & 6.43 \\ \hline 7235 & 1 & 6.62 & 6.41 \\ \hline 1240 & 1.5 & 6.74 & 6.40 \\ \hline 1245 & 2.5 & 6.75 & 6.40 \\ \hline 1255 & 3.5 & 6.68 & 6.42 \\ \hline 1255 & 3.5 & 6.68 & 6.42 \\ \hline \end{array}$		DO (mg/L) 1.6/ 1.6/ 1.54 1.44 1.36 1.36 1.57	ORP (mV) 60 65 65 69 71 71	1 urbidity (NTU) 835 520 4/6 374 112 94	Flow Rate (ml/min)	Drawdown (feet) 0.9 0.2 0.1 0.1 0.1 0.1	Color/Odor
 Acceptance criteria pass/fail Has required volume been re Has required turbidity been r Have parameters stabilized If no or N/A - Explain bel 	emoved reached	Yes No		A	-		(continued on back)
	Method:		· · · · ·	<u></u>			
Sample ID Container Type $MW - 78$ MW - 78 - Fi/F	No. of Contai	iners	Prese	rvation	Analysi	s Req.	Time 1500
Comments	-						
110	n					-	

Well ID: Mw	-7	9
-------------	----	---

Client: NYSEG 1777-6777	Date: 2/15/17		Start ///∂ am/pm Finisham/pm
Site Location: _ Ithaca OU -2 Weather Conds:	Collector(s):	K.S./G.W.	
 WATER LEVEL DATA: (measured from Top of Cas a. Total Well Length c. Length of Water C b. Water Table Depth 200 d. Calculated System WELL PURGE DATA a. Purge Method: Peristaltic Pump (Low Flow) 	column(a-b)	Ca:	sing Diameter/Material
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 10 - Sp. Cond. 3% - Drawdown < 0. c. Field Testing Equipment used: Make	3)mV 3' Model		Serial Number
• • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·
Volume Time Removed Temp. pH Spec. Cond. DO (24hr) (Liters) (°C) 6.46 (µS/cm) (mg/L) 11/20 6.5 5.82 5.8 2.25 9.77 11/20 1.5 5.74 6.495 2.25 9.77 11/20 2.5 5.31 6.494 2.26 9.76 11/20 2.5 9.74 6.495 2.26 9.76 11/20 2.5 9.74 6.495 2.26 9.76 11/20 2.5 9.79 6.495 2.26 9.76 11/20 2.5 9.79 6.495 2.27 5.97 11/35 3 1.75 6.495 2.27 5.97 11/35 3 1.75 6.495 2.27 5.97 11/35 3 1.75 6.495 2.27 5.97 11/30 3.5 4.94 6.475 2.27 5.97 11/30 3.5 4.94 6.475 2.27 5.97 d.	-39 20.4 -4/ 27.6	ml/min)	eq.
NW-79-Filt	·		
· · · · · · · · · · · · · · · · · · ·			······································
Comments			
Signature	20	_Date	2/15/12
		м	

Well ID: MW-	80
--------------	----

Client: NYSEG	Date: 2/15/17	Timo: Start	103 d om/om
Project No: 60342530	Date. ~//3 ///	Finish	<u>/030</u> am/pm /050 am/pm
Site Location: Ithaca OU-2			
Weather Conds:	Collector(s):	K.S./G.W.	
1. WATER LEVEL DATA: (measured from Top of Cas	ing)		
a. Total Well Length 9.75 c. Length of Water C	Column(a-b)	Casing D	iameter/Material
b. Water Table Depth / / 5_ d. Calculated Syster	n Volume (see back)		
2. WELL PURGE DATA a. Purge Method: Peristaltic Pump (Low Flow)			
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. 10% - pH <u>+</u> 1.0 unit - ORP <u>+</u> 1 - Sp. Cond. 3% - Drawdown < 0	OmV		
c. Field Testing Equipment used: Make	Model	Se	erial Number
Volume			
Time Removed Temp. pH Spec. Cond. DO (24hr) (Liters) (°C) (µS/cm) (mg/L		Flow Rate Drawdov (ml/min) (teet)	wn Color/Odor
1030 7.72 5.95 7.39 7.60	73 217	150	Cleare
1035 7.01 6.15 Z.20 3.63 1040 6.94 6.21 2.29 3.71			
1040 6.94 6.21 2.29 3.71 1040 6.83 6.23 2.29 2401	-34 64		
1050 6.80 6.23 2.28 3,89	-56 35	V	
d. Acceptance criteria pass/fail Yes Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.	No N/A □ □ □ □ □ □	.	(continued on back)
3. SAMPLE COLLECTION: Method:			
Sample ID Container Type No. of Containers	Preservation	Analysis Req.	Time
Comments _ Sheen on water		· · · ·	
Signature	-	Date	-/17

Well ID: MW-8

ient: MSEG oject No: 60342530 te Location: Ithe 011-2	Ute Com					e: Start <u>//</u> Finish //	
eather Conds:		Col	lector(s):		K.S./G	W.	········
water Level Data: (r a. Total Well Length //	c. Length of V	Vater Colum				Casing Diam	eter/Material AC
WELL PURGE DATA a. Purge Method: Peris	staltic Pump (Low Flow)					
- Sp. Cond. 3%	-D.O. Dunit - ORP - Drawdown						
c. Field Testing Equipmen	nt used: Ma	ke		Model		Serial	Number
Volume <u>Time</u> <u>Removed</u> <u>Temp.</u> (24hr) (Liters) (°C)	<u>pH</u> <u>Spec. Cond.</u> (μS/cm)	DO (mg/L)	ORP (mV)	(NTU)	Flow Rate (ml/min)	(teet)	Color/Odo
	6.76 1.52	5.43	224	1.6	150	0.2	
125 2 8.75	6.67 1.57	3.21	230	0		0.1	
	6.67 1.59 6.68 1.61		232	00		-	
	6.68 1.6(7.8/	252	0		-	
d. Acceptance criteria pa Has required volume to Has required turbidity Have parameters stab If no or N/A - Expla	been removed been reached pilized				2		(continued on bac
SAMPLE COLLECTION:		iners	Preser	vation	Analysi	s Rea.	 Time
10-81 10-81 - FILT							1140
			-				
omments							
	1. 0 50					2/8/1	

Well	ID: Mh	1-82
------	--------	------

Low Flow Ground Water Sample Collection Record

Client: UTC Carrier Project No:	Date: 2/7/17	Time:	Start //SO am/pm Finish am/pm
Site Location: Syracuse, ny			amphi
Weather Conds:	Collector(s):	K. Stahle	
1. WATER LEVEL DATA: (measured from Top of Cas	ing)		
a. Total Well Length c. Length of Water C		b) Ca	S " AVC
b. Water Table Depth <u>9.03</u> d. Calculated Systen	Nolume (see back)		
2. WELL PURGE DATA a. Purge Method: Low Flow			
b. Acceptance Criteria defined (see workplan)- Temperature3%- pH+10 unit- ORP+10- Sp. Cond.3%- Drawdown< 0.)mV		
c. Field Testing Equipment used: Make	Mode	el	Serial Number
Volume			
Time (24hr)Removed (Liters)Temp. (°C)pHSpec. Cond. (μS/cm)DO (mg/L) ORP <u>Turbid</u> (mV) (NTU		rawdown Color/Odor (feet)
1130 0.5 9.09 6.52 11.9 6.57			0.3
1140 1.5 9.26 6.49 12.0 5.3 1145 2 9.31 6.47 12.1 5.11			2.2
1145 2 9.31 6.47 12.1 5.11 1150 2.5 1.35 6.45 12.3 5.06			0.1 0.1
1150 S 9.54 6.46 12.5 5.00	180 86		1./
1200 3.5 9.52 6.47 123 4.98			7-1
· · · · · · · · · · · · · · · · · · ·	No N/A		(continued on back)
Has required volume been removed			
Have parameters stabilized			
If no or N/A - Explain below.			
3. SAMPLE COLLECTION: Method:			
Sample ID Container Type No. of Containers	Preservation	Analysis R	Req. Time
Mw-82- FI/F			en i i i i i i i i i i i i i i i i i i i
	···· · · · · · · · · · · · · · · · · ·		
Comments			Ann an a
Comments		· · · · · · · · · · · · · · · · · · ·	<u> </u>
	·····		
Signature		Date	
	• • Å		

Well ID: Mw-87

È.

Low Flow Ground Water Sample Collection Record

Client: UTC Carrier Project No:		2/	7/17	Tim	ne: Start _/ Finish	2 <u>/00</u> am am	/pm /pm	
Weather Conds: 5	Colle	ctor(s):		K. Sta	hle			
1. WATER LEVEL DATA: (measured from Top o a. Total Well Length c. Length of Wa			(a-b)		Casing Diam	eter/Mater	ial	
b. Water Table Depth $\underline{S.4/}$ d. Calculated S	System Volun	ne (see b	ack)					
a. Purge Method:								
b. Acceptance Criteria defined (see workplan) - Temperature 3% -D.O. - pH <u>+</u> 1.0 unit - ORP - Sp. Cond. 3% - Drawdown	10% <u>+</u> 10mV < 0.3'							
c. Field Testing Equipment used: Make	e		Model		Serial	Number		
Volume								
Time (24hr)Removed (Liters)Temp. (°C)pHSpec. Cond. (µS/cm)	(mg/L) ((mV)	(NTU)	Flow Rate (ml/min)	(feet)	Color/Oc	lor	
1/00 0.5 17.28 7.12 1.92 - 1/05 1 11.36 7.05 1.83		19 27	0.0	150	<u>0.29</u> 0.1			
1/10 1.5 10.93 6.92 1.54		32	0.0					
		21	0.0		÷			
1120 3 10.48 6.93 1.86 5	5.55 1.	3.5	0.0		-			
					-			
d. Acceptance criteria pass/fail Ye Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.	es No	N/A				(continued on	back)	
3. SAMPLE COLLECTION: Method:								
Sample ID Container Type No. of Contain $Mw - \xi S$	iers	Preserv	vation	Analysi	s Req.	Time //20	>	
MW-85-FIIT	// // // // // // // // // // // /	:						
Comments		·						
					· · · · · · · · · · · · · · · · · · ·			
Signature	<u>,</u>			Date				

Well ID: Mw-84

Low Flow Ground Water Sample Collection Record

Client: Project No Site Locat	tion: Sy					ate: 7	71/17		ne: Start <u>//</u> Finish <u>//</u>	
Weather	Conds:				C	ollector(s)		K. Sta	hle	
a. Tota b. Wat	al Well Ler ter Table [ngth Depth(red from Top c. Length of V d. Calculated	Water Colu	mn			Casing Diam $2^{l'}$	eter/Material
	PURGE E ge Method			w Flo	w ·					
- Tem - pH	perature	3% <u>+</u> 1	.0 unit	see workplan) -D.O. - ORP - Drawdown	10% <u>+</u> 10m\	/				
c. Fiel	d Testing I	Equipm	ent used	l: Ma	ake		Model		Serial	Number
Time	Volume Removed	Temp.		Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Drawdown	Color/Odor
(24hr)	(Liters)	(°C)		(μS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	(feet)	
1105	0.5	8.88	8.16	Z.7/ Z.70	5.4/ 4.65	140	232	1	0.4	
11 15	Z		6.78	Z.62	3.82	147	106		0.1	
1170	7:5	10.21	6.79	2.65	3.74	146	54		0.1	
1/20	3	10.23	6.80	2.66	3.66	146	47	•	0.1	
								· · ·		
Ha Ha	L ceptance of s required s required ve parame If no or N	volume turbidit eters sta	e been re y been r abilized	emoved eached	Yes No	N/A		11		(continued on back)
Sample II		ECTION ontainer		Method: No. of Conta	ainers	Prese	rvation	Analysi	s Req.	Time
Mw-	89	<u> 40 M</u>	6			140	/	- VOC	•	1120
		_/				VG	×	rel		11-20
	····			······································						
Commen	ts									
<u></u>			<u>م</u>							
Signature)	/	h	1 A	>		-	Date	2/1/1	>

Appendix D - Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

SUPPLEMENTAL WELL INSTALLATION UTC/CARRIER SITE THOMPSON ROAD, SYRACUSE, NY SITE ID# 734043

Analyses Performed by:

EUROFINS/SPECTRUM ANALYTICAL AGAWAM, MA

Prepared for:

UNITED TECHNOLOGIES CORP. UTC SHARED REMEDIATION SERVICES FARMINGTON, CT

Prepared by:

AECOM 257 WEST GENESEE STREET, SUITE 400 BUFFALO, NY 14202

APRIL 2017

J:\Projects\60310231_UTCAOCGRI\Project Management\60528299 - UTC Suppl GW Wells\400-Technical\440-Field and Laboratory Data\Lab Data\UTC Supp Well Install Winter 2017 DUSR.docx

TABLE OF CONTENTS

I.	INTRODUCTION	.1
II.	ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES	.1
III.	DATA DELIVERABLE COMPLETENESS	.1
IV.	SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES	.2
V.	NON-CONFORMANCES	. 2
VI.	SAMPLE RESULTS AND REPORTING	.3
VII.	SUMMARY	.3

TABLES

(Following Text)

Table 1	Summary of Data Qualifications
Table 2	Validated Soil Sample Analytical Results
Table 3	Validated Groundwater Sample Analytical Results
Table 4	Validated Field QC Sample Analytical Results

ATTACHMENTS

Attachment A – Form 1s Attachment B – Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation*, Appendix 2B - *Guidance for Data Deliverables and the Development of Data Usability Summary Reports*, May 2010.

II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES

The data being evaluated are from the January 9 – February 8, 2017 sampling of 16 soil samples, 1 soil field duplicate (FD), 1 soil matrix spike/matrix spike duplicate (MS/MSD) pair, 17 groundwater samples, 1 groundwater FD, 1 groundwater MS/MSD pair, and 5 trip blanks. All samples were sent to Eurofins/Spectrum Analytical located in Agawam, MA and were analyzed for target compound list (TCL) volatile organic compounds (VOCs) following United States Environmental Protection Agency (USEPA) Method 8260C and TCL polychlorinated biphenyls (PCBs) (total and dissolved) following USEPA Method 8082A. Not all samples were analyzed for all parameters.

A limited data validation was performed following the guidelines in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8260B and 8260C, SOP HW-24, Rev. 4, October 2014; and
- Polychlorinated Biphenyl (PCB) Aroclor Data Validation, SOP HW-37, Rev. 3, May 2013

Qualifications applied to the data during the limited data validation include 'J' (estimated concentration), and 'UJ' (estimated quantitation limit). Definitions of USEPA data qualifiers are presented at the end of this text. The validated analytical results are presented on Tables 1 - 4. Copies of marked-up laboratory analytical summaries (Form 1s) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC Category B or equivalent) were provided by the laboratory, which included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved and under proper chain-ofcustody (COC) with the following exception.

The sampler did not submit field filtered aliquots for the groundwater samples collected on 2/1/17 and 2/2/17 for dissolved PCB analysis. The laboratory removed a portion of the total PCB volume and filtered it in order to perform the dissolved PCB analysis. All subsequent samples were filtered in the field for dissolved PCBs and a separate bottle was submitted to the laboratory.

All samples were analyzed within the required holding times.

V. NON-CONFORMANCES

• Instrument Calibration

The relative response factors (RRF) for acetone and/or methyl ethyl ketone (2-butanone) in the soil VOC initial calibration (ICAL) and continuing calibration standards (CCAL) were below the QC limit of 0.100. The laboratory demonstrated that there is adequate sensitivity to detect the low responding compounds at the applicable quantitation limit, therefore, using professional judgement the non-detect results for these compounds in the associated soil samples, as listed on Table 1, were qualified 'UJ' and the detected compounds were qualified 'J'.

The percent difference (%D) between the soil VOC ICAL average RRF and the RRF in one or more of the CCALs associated with the soil samples exceeded the QC limit of 20% for one or more of the following VOCs: n-butyl benzene, 1,4-dichlorobenzene, methylene chloride (MECL), and/or vinyl chloride. The results for these compounds in the associated samples, as listed on Table 1, were qualified 'UJ'.

The RRFs for acetone (<0.100), trichloroethene (TCE) (<0.200), and/or tetrachloroethene (PCE) (<0.200) were below the recommended QC limits in the groundwater VOC ICAL and CCAL. The laboratory demonstrated that there is adequate sensitivity to detect the low responding compounds at the applicable quantitation limit, therefore, the non-detect results for these compounds in the associated groundwater samples, as listed on Table 1, were qualified 'UJ'.

The %D between the groundwater VOC ICAL average RRF and the RRF in one or more of the CCALs associated with the groundwater samples exceeded the QC limit of 20% for VOC

carbon tetrachloride. The results for this compound in the associated samples, as listed on Table 1, were qualified 'UJ'.

Support documentation (i.e., instrument performance check form, ICAL and CCAL summary forms) is provided in Attachment B.

• Field Duplicates

Field duplicates were collected at soil sample location MW-075 (5-6) and groundwater sample location MW-71 and exhibited good field and analytical precision.

VI. SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were adjusted for sample volume, moisture content (where applicable), and dilution factors. Results below the quantitation limits were qualified 'J' by the laboratory.

Some samples required dilutions due to the nature of the sample matrix and/or high levels to target compounds. The quantitation limits reported for the non-detect compounds are the lowest achievable at the diluted level.

VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, except where previously noted. Those results qualified 'J', and 'UJ' are considered conditionally usable. All other sample results are usable as reported. AECOM does not recommend the recollection of any samples at this time.

Prepared By: George Kisluk, Senior Chemist

Reviewed By: Peter R. Fairbanks, Senior Chemist

in Date: 4/5/17 dust Date: 4/5/17 by by

DEFINITIONS OF USEPA DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- (J+) The result is an estimated quantity. The associated numerical value is biased high.
- (J-) The result is an estimated quantity. The associated numerical value is biased low.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- D The sample result was reported from a secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

TABLE 1

SUPPLEMENTAL WELL INSTALLATION

UTC/CARRIER SITE

SUMMARY OF DATA QUALIFICATIONS

SOILS

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION						
All soil samples	VOCs	RRF < 0.100 for acetone and 2-	Qualify non-detect results						
		butanone.	'UJ' and detected results 'J'.						
MW-069 (5-6)	VOCs	CCAL $%D > 20\%$ for MECL and n-butyl benzene.	Qualify non-detect results 'UJ'.						
MW-70 (10-12), MW-072 (5.0-	VOCs	CCAL %D > 20% for MECL.	Qualify non-detect results						
5.5), and MW-073 (3.5-4.0)			'UJ'.						
MW-074 (4.5-5.0)	VOCs	CCAL %D > 20% for 1,4-	Qualify non-detect results						
		dichlorobenzene.	'UJ'.						
MW-075 (5-6) and FD-011217	VOCs	CCAL % $D > 20\%$ for n-butyl	Qualify non-detect results						
[MW-075 (5-6)]		benzene.	'UJ'.						
MW-076 (7-7.5) and MW-	VOCs	CCAL % $D > 20\%$ for carbon	Qualify non-detect results						
077(6.5-7.0)		tetrachloride and vinyl chloride.	'UJ'.						
MW-078 (6-8), MW-079 (3-4),		CCAL % $D > 20\%$ for vinyl	Qualify non-detect results						
MW-080 (4.5-5.0), MW-081 (6-		chloride.	'UJ'.						
7), and MW-082 (5-5.5)									
	GR	OUNDWATERS							
MW-08, MW-70, MW-77, MW-	VOCs	RRF < 0.100 for acetone and	Qualify non-detect results						
78, MW-81, MW-82, MW-83,		<0.200 for TCE and PCE.	'ŪJ'.						
TB (2/7/17), TB (2/8/17), and									
TB (2/15/17)									
MW-71, DUP-1 (MW-71), MW-	VOCs	RRF < 0.100 for acetone and	Qualify non-detect results						
75, MW-76, MW-79, MW-80,		<0.200 for PCE.	'ŪJ'.						
and TB (2/2/17)									
MW-79, MW-80, and TB	VOCs	CCAL $\%$ D > 20% for carbon	Qualify non-detect results						
(2/15/17)		tetrachloride.	'UJ'.						

Location ID		MW-69	MW-70	MW-71	MW-72	MW-73
Sample ID	MW-069 (5-6)	MW-070 (10-12)	MW-071 (7-8)	MW-072-(5.0-5.5)	MW-073-(3.5-4.0)	
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	10.0-12.0	7.0-8.0	5.0-5.5	3.5-4.0
Date Sampled		01/09/17	01/10/17	01/10/17	01/11/17	01/11/17
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,1-Dichloroethane	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,1-Dichloroethene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,2,4-Trimethylbenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,2-Dichlorobenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,2-Dichloroethane	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,2-Dichloroethene (cis)	UG/KG	64.7	4.88 U	50.0 U	4.75 U	1.65 J
1,2-Dichloroethene (trans)	UG/KG	12.4	4.88 U	50.0 U	4.75 U	3.73 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,3-Dichlorobenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,4-Dichlorobenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
1,4-Dioxane	UG/KG	87.1 U	97.7 U	1,000 U	95.0 U	74.5 U
Acetone	UG/KG	33.0 J	73.8 J	500 UJ	47.5 UJ	37.3 UJ
Benzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Carbon tetrachloride	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Chlorobenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Chloroform	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Ethylbenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Methyl ethyl ketone (2-Butanone)	UG/KG	8.71 UJ	17.9 J	100 UJ	9.50 UJ	7.45 UJ
Methyl tert-butyl ether	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Methylene chloride	UG/KG	8.71 UJ	9.77 UJ	100 U	9.50 UJ	7.45 UJ
n-Butylbenzene	UG/KG	4.36 UJ	4.88 U	50.0 U	4.75 U	3.73 U
n-Propylbenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U

Flags assigned during chemistry validation are shown.

Location ID		MW-69	MW-70	MW-71	MW-72	MW-73
Sample ID	MW-069 (5-6)	MW-070 (10-12)	MW-071 (7-8)	MW-072-(5.0-5.5)	MW-073-(3.5-4.0)	
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	10.0-12.0	7.0-8.0	5.0-5.5	3.5-4.0
Date Sampled		01/09/17	01/10/17	01/10/17	01/11/17	01/11/17
Parameter	Units					
Volatile Organic Compounds						
sec-Butylbenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
tert-Butylbenzene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Tetrachloroethene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Toluene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Trichloroethene	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	1.47 J
Vinyl chloride	UG/KG	21.0	4.88 U	50.0 U	4.75 U	2.54 J
Xylene (total)	UG/KG	4.36 U	4.88 U	50.0 U	4.75 U	3.73 U
Polychlorinated Biphenyls						
Aroclor 1016	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1221	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1232	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1242	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1248	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1254	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1260	UG/KG	16.1 J	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1262	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U
Aroclor 1268	UG/KG	22.7 U	23.8 U	21.4 U	24.3 U	22.9 U

Flags assigned during chemistry validation are shown.

Location ID		MW-74	MW-75	MW-75	MW-76	MW-77
Sample ID	MW-074 (4.5-5.0)	FD-011217	MW-075 (5-6)	MW-076 (7-7.5)	MW-077 (6.5-7.0)	
Matrix	Soil	Soil	Soil	Soil	Soil	
Depth Interval (ft)		4.5-5.0	5.0-6.0	5.0-6.0	7.0-7.5	6.5-7.0
Date Sampled		01/12/17	01/12/17	01/12/17	01/13/17	01/13/17
Parameter	Units		Field Duplicate (1-1)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,1-Dichloroethane	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,1-Dichloroethene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,2,4-Trimethylbenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,2-Dichlorobenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,2-Dichloroethane	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,2-Dichloroethene (cis)	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,2-Dichloroethene (trans)	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,3-Dichlorobenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
1,4-Dichlorobenzene	UG/KG	4.44 UJ	4.45 U	5.87 U	4.86 U	4.71 U
1,4-Dioxane	UG/KG	88.8 U	89.0 U	117 U	97.2 U	94.3 U
Acetone	UG/KG	44.4 UJ	44.5 UJ	58.7 UJ	48.6 UJ	47.1 UJ
Benzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Carbon tetrachloride	UG/KG	4.44 U	4.45 U	5.87 U	4.86 UJ	4.71 UJ
Chlorobenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Chloroform	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Ethylbenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Methyl ethyl ketone (2-Butanone)	UG/KG	8.88 UJ	8.90 UJ	11.7 UJ	9.72 UJ	9.43 UJ
Methyl tert-butyl ether	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Methylene chloride	UG/KG	8.88 U	8.90 U	11.7 U	9.72 U	9.43 U
n-Butylbenzene	UG/KG	4.44 U	4.45 UJ	5.87 UJ	4.86 U	4.71 U
n-Propylbenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U

Flags assigned during chemistry validation are shown.

Location ID		MW-74	MW-75	MW-75	MW-76	MW-77
Sample ID		MW-074 (4.5-5.0)	FD-011217	MW-075 (5-6)	MW-076 (7-7.5)	MW-077 (6.5-7.0)
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		4.5-5.0	5.0-6.0	5.0-6.0	7.0-7.5	6.5-7.0
Date Sampled		01/12/17	01/12/17	01/12/17	01/13/17	01/13/17
Parameter	Units		Field Duplicate (1-1)			
Volatile Organic Compounds						
sec-Butylbenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
tert-Butylbenzene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Tetrachloroethene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Toluene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Trichloroethene	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Vinyl chloride	UG/KG	4.44 U	4.45 U	5.87 U	4.86 UJ	4.71 UJ
Xylene (total)	UG/KG	4.44 U	4.45 U	5.87 U	4.86 U	4.71 U
Polychlorinated Biphenyls						
Aroclor 1016	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1221	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1232	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1242	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1248	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1254	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1260	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1262	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U
Aroclor 1268	UG/KG	21.3 U	24.5 U	25.4 U	24.4 U	24.7 U

Flags assigned during chemistry validation are shown.

Location ID		MW-78	MW-79	MW-80	MW-81	MW-82
Sample ID		MW-078 (6-8)	MW-079 (3-4)	MW-080 (4.5-5.0)	MW-081 (6-7)	MW-082 (5-5.5)
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		6.0-8.0	3.0-4.0	4.5-5.0	6.0-7.0	5.0-5.5
Date Sampled		01/16/17	01/17/17	01/17/17	01/18/17	01/18/17
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,1-Dichloroethane	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,1-Dichloroethene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,2,4-Trimethylbenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,2-Dichlorobenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,2-Dichloroethane	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,2-Dichloroethene (cis)	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,2-Dichloroethene (trans)	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,3-Dichlorobenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,4-Dichlorobenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
1,4-Dioxane	UG/KG	101 U	83.0 U	135 U	92.3 U	92.0 U
Acetone	UG/KG	50.4 UJ	41.5 UJ	116 J	38.5 J	46.0 UJ
Benzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Carbon tetrachloride	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Chlorobenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Chloroform	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Ethylbenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Methyl ethyl ketone (2-Butanone)	UG/KG	10.1 UJ	8.30 UJ	24.0 J	9.23 UJ	9.20 UJ
Methyl tert-butyl ether	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Methylene chloride	UG/KG	10.1 U	8.30 U	13.5 U	9.23 U	9.20 U
n-Butylbenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
n-Propylbenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U

Flags assigned during chemistry validation are shown.

Location ID		MW-78	MW-79	MW-80	MW-81	MW-82
Sample ID		MW-078 (6-8)	MW-079 (3-4)	MW-080 (4.5-5.0)	MW-081 (6-7)	MW-082 (5-5.5)
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		6.0-8.0	3.0-4.0	4.5-5.0	6.0-7.0	5.0-5.5
Date Sampled		01/16/17	01/17/17	01/17/17	01/18/17	01/18/17
Parameter	Units					
Volatile Organic Compounds						
sec-Butylbenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
tert-Butylbenzene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Tetrachloroethene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Toluene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Trichloroethene	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Vinyl chloride	UG/KG	5.04 UJ	4.15 UJ	6.76 UJ	4.62 UJ	4.60 UJ
Xylene (total)	UG/KG	5.04 U	4.15 U	6.76 U	4.62 U	4.60 U
Polychlorinated Biphenyls						
Aroclor 1016	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1221	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1232	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1242	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1248	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1254	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1260	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1262	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U
Aroclor 1268	UG/KG	24.4 U	22.1 U	28.7 U	23.3 U	23.5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-83	MW-84
Sample ID	MW-083 (1-2)	MW-084 (5-5.5)	
Matrix	Soil	Soil	
Depth Interval (ft)	1.0-2.0	5.0-5.5	
Date Sampled		01/19/17	01/19/17
Parameter	Units		
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/KG	3.67 U	5.94 U
1,1-Dichloroethane	UG/KG	3.67 U	5.94 U
1,1-Dichloroethene	UG/KG	3.67 U	5.94 U
1,2,4-Trimethylbenzene	UG/KG	3.67 U	5.94 U
1,2-Dichlorobenzene	UG/KG	3.67 U	5.94 U
1,2-Dichloroethane	UG/KG	3.67 U	5.94 U
1,2-Dichloroethene (cis)	UG/KG	3.67 U	5.94 U
1,2-Dichloroethene (trans)	UG/KG	3.67 U	5.94 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	3.67 U	5.94 U
1,3-Dichlorobenzene	UG/KG	3.67 U	5.94 U
1,4-Dichlorobenzene	UG/KG	3.67 U	5.94 U
1,4-Dioxane	UG/KG	73.4 U	119 U
Acetone	UG/KG	16.2 J	59.4 UJ
Benzene	UG/KG	3.67 U	5.94 U
Carbon tetrachloride	UG/KG	3.67 U	5.94 U
Chlorobenzene	UG/KG	3.67 U	5.94 U
Chloroform	UG/KG	3.67 U	5.94 U
Ethylbenzene	UG/KG	3.67 U	5.94 U
Methyl ethyl ketone (2-Butanone)	UG/KG	7.34 UJ	11.9 UJ
Methyl tert-butyl ether	UG/KG	3.67 U	5.94 U
Methylene chloride	UG/KG	7.34 U	11.9 U
n-Butylbenzene	UG/KG	3.67 U	5.94 U
n-Propylbenzene	UG/KG	3.67 U	5.94 U

Flags assigned during chemistry validation are shown.

Location ID	Location ID				
Sample ID	MW-083 (1-2)	MW-084 (5-5.5)			
Matrix	Soil	Soil			
Depth Interval (ft)		1.0-2.0	5.0-5.5		
Date Sampled	_	01/19/17	01/19/17		
Parameter	Units				
Volatile Organic Compounds					
sec-Butylbenzene	UG/KG	2.27	5.94 U		
tert-Butylbenzene	UG/KG	3.67 U	5.94 U		
Tetrachloroethene	UG/KG	3.67 U	2.34		
Toluene	UG/KG	3.67 U	5.94 U		
Trichloroethene	UG/KG	3.67 U	5.94 U		
Vinyl chloride	UG/KG	3.67 U	5.94 U		
Xylene (total)	UG/KG	3.67 U	5.94 U		
Polychlorinated Biphenyls					
Aroclor 1016	UG/KG	23.0 U	25.3 U		
Aroclor 1221	UG/KG	23.0 U	25.3 U		
Aroclor 1232	UG/KG	23.0 U	25.3 U		
Aroclor 1242	UG/KG	23.0 U	25.3 U		
Aroclor 1248	UG/KG	23.0 U	25.3 U		
Aroclor 1254	UG/KG	23.0 U	25.3 U		
Aroclor 1260	UG/KG	28.5	25.3 U		
Aroclor 1262	UG/KG	23.0 U	25.3 U		
Aroclor 1268	UG/KG	23.0 U	25.3 U		

Flags assigned during chemistry validation are shown.

Location ID		MW-08	MW-69	MW-70	MW-71	MW-71
Sample ID		MW-08	MW-69	MW-70	Dup-1	MW-71
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled	-	02/08/17	02/01/17	02/08/17	02/02/17	02/02/17
Parameter	Units				Field Duplicate (1-1)	
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,1-Dichloroethane	UG/L	1.00 U	26.5	1.00 U	1.00 U	1.00 U
1,1-Dichloroethene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,2,4-Trimethylbenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,2-Dichloroethane	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,2-Dichloroethene (cis)	UG/L	1.00 U	287	1.00 U	29.0	31.4
1,2-Dichloroethene (trans)	UG/L	1.00 U	18.5	1.00 U	1.91	1.85
1,3,5-Trimethylbenzene (Mesitylene)	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
1,4-Dioxane	UG/L	20.0 U	1,000 U	20.0 U	13.3 J	20.0 U
Acetone	UG/L	10.0 UJ	500 U	10.0 UJ	10.0 UJ	10.0 UJ
Benzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Carbon tetrachloride	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Chlorobenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Chloroform	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Ethylbenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Methyl ethyl ketone (2-Butanone)	UG/L	2.00 U	100 U	2.00 U	2.00 U	2.00 U
Methyl tert-butyl ether	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Methylene chloride	UG/L	2.00 U	100 U	2.00 U	2.00 U	2.00 U
n-Butylbenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
n-Propylbenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
sec-Butylbenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
tert-Butylbenzene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08	MW-69	MW-70	MW-71	MW-71
Sample ID		MW-08	MW-69	MW-70	Dup-1	MW-71
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/08/17	02/01/17	02/08/17	02/02/17	02/02/17
Parameter	Units				Field Duplicate (1-1)	
Volatile Organic Compounds						
Tetrachloroethene	UG/L	1.00 UJ	50.0 U	1.00 UJ	1.00 UJ	1.00 UJ
Toluene	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Trichloroethene	UG/L	1.00 UJ	3,170	1.00 UJ	37.2	40.1
Vinyl chloride	UG/L	1.00 U	99.0	1.00 U	3.01	3.54
Xylene (total)	UG/L	1.00 U	50.0 U	1.00 U	1.00 U	1.00 U
Polychlorinated Biphenyls						
Aroclor 1016	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1221	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1232	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1242	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1248	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1254	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1260	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1262	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Aroclor 1268	UG/L	0.256 U	0.476 U	0.253 U	0.476 U	0.444 U
Dissolved Polychlorinated Biphenyls						
Aroclor 1016	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1221	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1232	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1242	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1248	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1254	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1260	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1262	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U
Aroclor 1268	UG/L	0.250 U	0.500 U	0.241 U	0.500 U	0.500 U

Flags assigned during chemistry validation are shown.

Location ID		MW-72	MW-73	MW-74	MW-75	MW-76
Sample ID Matrix		MW-72	MW-73	MW-74	MW-75	MW-76
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/01/17	02/01/17	02/01/17	02/02/17	02/02/17
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	1.00 U				
1,1-Dichloroethane	UG/L	1.00 U				
1,1-Dichloroethene	UG/L	1.00 U				
1,2,4-Trimethylbenzene	UG/L	1.00 U				
1,2-Dichlorobenzene	UG/L	1.00 U				
1,2-Dichloroethane	UG/L	1.00 U				
1,2-Dichloroethene (cis)	UG/L	1.12	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichloroethene (trans)	UG/L	1.00 U				
1,3,5-Trimethylbenzene (Mesitylene)	UG/L	1.00 U				
1,3-Dichlorobenzene	UG/L	1.00 U				
1,4-Dichlorobenzene	UG/L	1.00 U				
1,4-Dioxane	UG/L	20.0 U				
Acetone	UG/L	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ
Benzene	UG/L	0.29	1.00 U	1.00 U	1.00 U	1.00 U
Carbon tetrachloride	UG/L	1.00 U				
Chlorobenzene	UG/L	1.00 U				
Chloroform	UG/L	1.00 U				
Ethylbenzene	UG/L	1.00 U				
Methyl ethyl ketone (2-Butanone)	UG/L	2.00 U				
Methyl tert-butyl ether	UG/L	1.00 U				
Methylene chloride	UG/L	2.00 U				
n-Butylbenzene	UG/L	1.00 U				
n-Propylbenzene	UG/L	1.00 U				
sec-Butylbenzene	UG/L	1.00 U				
tert-Butylbenzene	UG/L	1.00 U				

Flags assigned during chemistry validation are shown.

Location ID		MW-72	MW-73	MW-74	MW-75	MW-76
Sample ID		MW-72	MW-73	MW-74	MW-75	MW-76
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/01/17	02/01/17	02/01/17	02/02/17	02/02/17
Parameter	Units					
Volatile Organic Compounds						
Tetrachloroethene	UG/L	1.00 U	1.00 U	1.00 U	1.00 UJ	1.00 UJ
Toluene	UG/L	1.00 U				
Trichloroethene	UG/L	1.93	1.00 U	1.00 U	1.15	1.00 U
Vinyl chloride	UG/L	1.00 U				
Xylene (total)	UG/L	1.00 U				
Polychlorinated Biphenyls						
Aroclor 1016	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1221	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1232	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1242	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1248	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1254	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1260	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1262	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Aroclor 1268	UG/L	0.444 U	0.476 U	0.541 U	0.500 U	0.476 U
Dissolved Polychlorinated Biphenyls						
Aroclor 1016	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1221	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1232	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1242	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1248	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1254	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1260	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1262	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U
Aroclor 1268	UG/L	0.513 U	0.455 U	0.476 U	0.488 U	0.513 U

Flags assigned during chemistry validation are shown.

Location ID		MW-77	MW-78	MW-79	MW-80	MW-81
Sample ID		MW-77	MW-78	MW-79	MW-80	MW-81
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/07/17	02/07/17	02/15/17	02/15/17	02/08/17
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	1.00 U				
1,1-Dichloroethane	UG/L	1.00 U				
1,1-Dichloroethene	UG/L	1.00 U				
1,2,4-Trimethylbenzene	UG/L	1.00 U				
1,2-Dichlorobenzene	UG/L	1.00 U				
1,2-Dichloroethane	UG/L	1.00 U				
1,2-Dichloroethene (cis)	UG/L	1.00 U				
1,2-Dichloroethene (trans)	UG/L	1.00 U				
1,3,5-Trimethylbenzene (Mesitylene)	UG/L	1.00 U				
1,3-Dichlorobenzene	UG/L	1.00 U				
1,4-Dichlorobenzene	UG/L	1.00 U				
1,4-Dioxane	UG/L	20.0 U				
Acetone	UG/L	10.0 UJ				
Benzene	UG/L	1.00 U				
Carbon tetrachloride	UG/L	1.00 U	1.00 U	1.00 UJ	1.00 UJ	1.00 U
Chlorobenzene	UG/L	1.00 U				
Chloroform	UG/L	1.00 U				
Ethylbenzene	UG/L	1.00 U				
Methyl ethyl ketone (2-Butanone)	UG/L	2.00 U				
Methyl tert-butyl ether	UG/L	1.00 U				
Methylene chloride	UG/L	2.00 U				
n-Butylbenzene	UG/L	1.00 U				
n-Propylbenzene	UG/L	1.00 U				
sec-Butylbenzene	UG/L	1.00 U				
tert-Butylbenzene	UG/L	1.00 U				

Flags assigned during chemistry validation are shown.

Location ID		MW-77	MW-78	MW-79	MW-80	MW-81
Sample ID		MW-77	MW-78	MW-79	MW-80	MW-81
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/07/17	02/07/17	02/15/17	02/15/17	02/08/17
Parameter	Units					
Volatile Organic Compounds						
Tetrachloroethene	UG/L	1.00 UJ				
Toluene	UG/L	1.00 U				
Trichloroethene	UG/L	1.00 UJ	1.00 UJ	1.00 U	1.00 U	1.00 UJ
Vinyl chloride	UG/L	1.00 U				
Xylene (total)	UG/L	1.00 U				
Polychlorinated Biphenyls						
Aroclor 1016	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1221	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1232	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1242	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1248	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1254	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1260	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1262	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Aroclor 1268	UG/L	0.253 U	0.263 U	0.206 U	0.233 U	0.211 U
Dissolved Polychlorinated Biphenyls						
Aroclor 1016	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1221	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1232	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1242	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1248	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1254	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1260	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1262	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U
Aroclor 1268	UG/L	0.250 U	0.241 U	0.213 U	0.235 U	0.250 U

Flags assigned during chemistry validation are shown.

Location ID		MW-82	MW-83	MW-84
Sample ID	Sample ID			MW-84
Matrix	Groundwater	Groundwater	Groundwater	
Depth Interval (ft)	-	-	-	
Date Sampled		02/07/17	02/07/17	02/01/17
Parameter	Units			
Volatile Organic Compounds				
1,1,1-Trichloroethane	UG/L	1.00 U	1.00 U	1.00 U
1,1-Dichloroethane	UG/L	1.00 U	0.51 J	1.00 U
1,1-Dichloroethene	UG/L	1.00 U	1.00 U	1.00 U
1,2,4-Trimethylbenzene	UG/L	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene	UG/L	1.00 U	1.00 U	1.00 U
1,2-Dichloroethane	UG/L	1.00 U	1.00 U	1.00 U
1,2-Dichloroethene (cis)	UG/L	1.00 U	1.00 U	1.99
1,2-Dichloroethene (trans)	UG/L	1.00 U	1.00 U	4.22
1,3,5-Trimethylbenzene (Mesitylene)	UG/L	1.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene	UG/L	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	UG/L	1.00 U	1.00 U	1.00 U
1,4-Dioxane	UG/L	20.0 U	20.0 U	20.0 U
Acetone	UG/L	10.0 UJ	10.0 UJ	10.0 U
Benzene	UG/L	1.00 U	1.00 U	1.00 U
Carbon tetrachloride	UG/L	1.00 U	1.00 U	1.00 U
Chlorobenzene	UG/L	1.00 U	1.00 U	1.00 U
Chloroform	UG/L	1.00 U	1.00 U	1.00 U
Ethylbenzene	UG/L	1.00 U	1.00 U	1.00 U
Methyl ethyl ketone (2-Butanone)	UG/L	2.00 U	2.00 U	2.00 U
Methyl tert-butyl ether	UG/L	1.00 U	1.00 U	1.00 U
Methylene chloride	UG/L	2.00 U	2.00 U	2.00 U
n-Butylbenzene	UG/L	1.00 U	1.00 U	1.00 U
n-Propylbenzene	UG/L	1.00 U	1.00 U	1.00 U
sec-Butylbenzene	UG/L	1.00 U	1.00 U	1.00 U
tert-Butylbenzene	UG/L	1.00 U	1.00 U	1.00 U

Flags assigned during chemistry validation are shown.

Location ID		MW-82	MW-83	MW-84	
Sample ID Matrix Depth Interval (ft)		MW-82	MW-83	MW-84	
		Groundwater	Groundwater	Groundwater	
		-	-	-	
Date Sampled	_	02/07/17	02/07/17	02/01/17	
Parameter	Units				
Volatile Organic Compounds					
Tetrachloroethene	UG/L	1.00 UJ	1.00 UJ	2.99	
Toluene	UG/L	1.00 U	1.00 U	1.00 U	
Trichloroethene	UG/L	1.00 UJ	1.00 UJ	46.4	
Vinyl chloride	UG/L	1.00 U	1.00 U	1.00 U	
Xylene (total)	UG/L	1.00 U	1.00 U	1.00 U	
Polychlorinated Biphenyls					
Aroclor 1016	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1221	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1232	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1242	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1248	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1254	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1260	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1262	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1268	UG/L	0.286 U	0.250 U	0.426 U	
Dissolved Polychlorinated Biphenyls					
Aroclor 1016	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1221	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1232	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1242	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1248	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1254	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1260	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1262	UG/L	0.286 U	0.250 U	0.426 U	
Aroclor 1268	UG/L	0.286 U	0.250 U	0.426 U	

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC	FIELDQC	FIELDQC
Sample ID		Trip Blank				
Matrix		Water Quality				
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/01/17	02/02/17	02/07/17	02/08/17	02/15/17
Parameter	Units	Trip Blank (1-1)				
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	1.00 U				
1,1-Dichloroethane	UG/L	1.00 U				
1,1-Dichloroethene	UG/L	1.00 U				
1,2,4-Trimethylbenzene	UG/L	1.00 U				
1,2-Dichlorobenzene	UG/L	1.00 U				
1,2-Dichloroethane	UG/L	1.00 U				
1,2-Dichloroethene (cis)	UG/L	1.00 U				
1,2-Dichloroethene (trans)	UG/L	1.00 U				
1,3,5-Trimethylbenzene (Mesitylene)	UG/L	1.00 U				
1,3-Dichlorobenzene	UG/L	1.00 U				
1,4-Dichlorobenzene	UG/L	1.00 U				
1,4-Dioxane	UG/L	20.0 U				
Acetone	UG/L	10.0 U	10.0 UJ	10.0 UJ	10.0 UJ	10.0 UJ
Benzene	UG/L	1.00 U				
Carbon tetrachloride	UG/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00 UJ
Chlorobenzene	UG/L	1.00 U				
Chloroform	UG/L	1.00 U				
Ethylbenzene	UG/L	1.00 U				
Methyl ethyl ketone (2-Butanone)	UG/L	2.00 U				
Methyl tert-butyl ether	UG/L	1.00 U				
Methylene chloride	UG/L	2.00 U				
n-Butylbenzene	UG/L	1.00 U				
n-Propylbenzene	UG/L	1.00 U				

Flags assigned during chemistry validation are shown.

MADE BY: GEK 3/27/17 CHECKED BY: PRF 3/27/17 Page 1 of 2

Detection Limits shown are PQL

Location ID		FIELDQC	FIELDQC	FIELDQC	FIELDQC	FIELDQC
Sample ID		Trip Blank				
Matrix		Water Quality				
Depth Interval (ft)		-	-	-	-	-
Date Sampled		02/01/17	02/02/17	02/07/17	02/08/17	02/15/17
Parameter	Units	Trip Blank (1-1)				
Volatile Organic Compounds						
sec-Butylbenzene	UG/L	1.00 U				
tert-Butylbenzene	UG/L	1.00 U				
Tetrachloroethene	UG/L	1.00 U	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
Toluene	UG/L	1.00 U				
Trichloroethene	UG/L	1.00 U	1.00 U	1.00 UJ	1.00 UJ	1.00 U
Vinyl chloride	UG/L	1.00 U				
Xylene (total)	UG/L	1.00 U				

Flags assigned during chemistry validation are shown.

AECOM 257 West Genesee Street Buffalo NY, 14202 USA aecom.com