

42 METRO PARK RD. • ALBANY, NEW YORK 12205 518/458-1313 FAX 518/458-2472

Dick Brazell Azt Fossit treturn

RECEIVED

SEP 2 5 1989

BUREAU OF ENVIRONMENTAL EXPOSURE INVESTIGATION

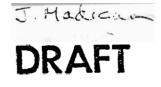
September 25, 1989

Gary A. Litwin Chief, Eastern Section Bureau of Environmental Exposure Investigation II University Place Albany, NY 12203-3313

Dear Mr. Litwin:

Enclosed are two copies of the revised Draft Risk Assessment report for the Clark Property site in Syracuse, New York. The assessment utilizes standard risk assessment methodologies and employs the New York State Air Guide I for ambient air criteria and exposure calculations.

I look forward to receiving your comments on this draft risk assessment. I apologize for the delay in revising this document.


If you have any questions or comments, please feel free to contact Janine Dinan at the number provided.

Sincerely,

David a. Bells

David A. Belluck, Ph.D. Manager Toxicology and Risk Assessment

RECEIVED

SEP 2 5 1989

BUREAU OF ENVIRONMENTAL EXPOSURE INVESTIGATION

BASELINE RISK ASSESSMENT FOR THE CLARK PROPERTY SYRACUSE, NEW YORK

Prepared for:

SHANLEY, SWEENEY & REILLY Albany, New York

Prepared by:

DUNN GEOSCIENCE CORPORATION 12 Metro Park Road Albany, New York 12022

Date:

September 1989

EXECUTIVE SUMMARY

The Baseline Risk Assessment report evaluated the potential risk to public health and welfare associated with the release or potential release of chemicals of the Clark Property in Syracuse, New York. The methodology of this evaluation is based upon the USEPA Superfund Public Health Evaluation Manual and was' prepared to identify and quantitate potential exposures under a no-action alternative for the site.

Potential exposure concentrations were calculated for selected indicator chemicals which represented the most toxic, mobile and persistent chemicals present at the site. In the absence of media-specific ARAR's, these calculated exposure values were compared with existing health-based criteria in order to characterize risk. Of the thirteen indicator chemicals, four were found to greatly exceed health-based criteria, or represent greater than a 10^{-4} cancer risk.

ACRONYM LIST

ADI	Acceptable Daily Intake
ARAR	Appropriate or Relevant and Applicable Requirement
ql*	Cancer Potency Factor
DCE	Dichloroethene
DW	Ditch Water
DGC	Dunn Geoscience Corporation
GW	Groundwater
MCĽ	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MEK	Methyl Ethyl Ketone (a.k.a. 2-Butanone)
NYS	New York State
PCB	Polychlorinated Biphenyl
RfD	Reference Dose
SS&R	Shanley, Sweeney & Reilly, P.C.
SPHEM	Superfund Public Health Evaluation Manual
TCE	Trichloroethene
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Chemical

TABLE OF CONTENTS

ACRONYM LIST

1.0	INT	RODU	CTION	1
2.0	SIT	E LOCA	TION AND ENVIRONMENTAL SETTING	2
3.0	EXF	osuri	E ASSESSMENT	2
	3.1 3.2		ion of Indicator Chemical e Potential Routes of Exposure	2 6
		3.2.1 3.2.2 3.2.3		6 7 8
	3.3	Quant	titate Potential Exposure Concentrations	8
		3.3.1 3.3.2 3.3.3 3.3.4	•	8 12 14 14
4.0	RIS	K ASSE	SSMENT	16
	4.1 4.2	or Re Comp	are Calculated Exposure Concentrations to Applicable levant and Appropriate Requirements (ARARs) are Calculated Exposure Concentrations to Health	16 19
	4.3		Criteria Toxicity and Characterize Risk	20
5.0	UNG	CERTA	INTIES	22
6.0	SUM	MARY		23

REFERENCES

APPENDICES

.

Annandir		Sail	Data
Appendix	A	2011	Data

Appendix B Groundwater Data

Appendix C Surface	Water	and	Sediment	Data
--------------------	-------	-----	----------	------

- Appendix D Calculations and Additional Data Used to Estimate Onsite Air Concentrations
- Appendix E Methodology for Calculating Potential Onsite Chemical Exposures
- Appendix F Methodology for Estimating Potential Offsite Chemical Exposures
- Appendix G Methodology for Calculating Health Based Criteria
- Appendix H USEPA Weight of Evidence Classifications for Carcinogenic Chemicals

LIST OF TABLES

- Table 1
 Concentration of Indicator Chemicals Detected Onsite
- Table 2Potential Onsite Air Concentration
- Table 3 Potential Onsite Exposures
- Table 4
 Potential Offsite Exposure Via Inhalation
- Table 5
 Applicable or Relevant and Appropriate Requirements
- Table 6 Comparison of Estimated Exposure to Health Based Criteria

LIST OF FIGURES

- Figure 1 Clark Property Location
- Figure 2 Sample Locations
- Figure 3 Contours of Maximum Total Volatile Organic Chemicals in TB-Series Borings

1.0 INTRODUCTION

Dunn Geoscience Corporation (DUNN), in response to a request from the law firm of Shanley, Sweeney and Reilly, P.C. (SS&R), has conducted subsurface investigations to characterize soil, groundwater and surface water conditions at the Clark Property in Syracuse, New York (Figure 1.0) This document evaluates the potential risk to public health and welfare associated with the release or potential release of hazardous substances from the Clark Property site. It is based on currently available data generated during a hydrogeologic investigation of the property conducted by Dunn Geoscience Corporation (September 1988). In the event that any additional media-specific analytical data are obtained within a reasonable time frame, this document may be revised to incorporate this data, if warranted.

A risk assessment is a multistage process which evaluates the potential adverse health effects of exposure to chemicals in the environment. The methodology of this assessment is based on the Superfund Public Health Evaluation Manual (EPA, 1986b) which recommends the use of health based criteria to define acceptable exposure levels when media-specific standards are not available.

The following are the major steps in the public health evaluation process:

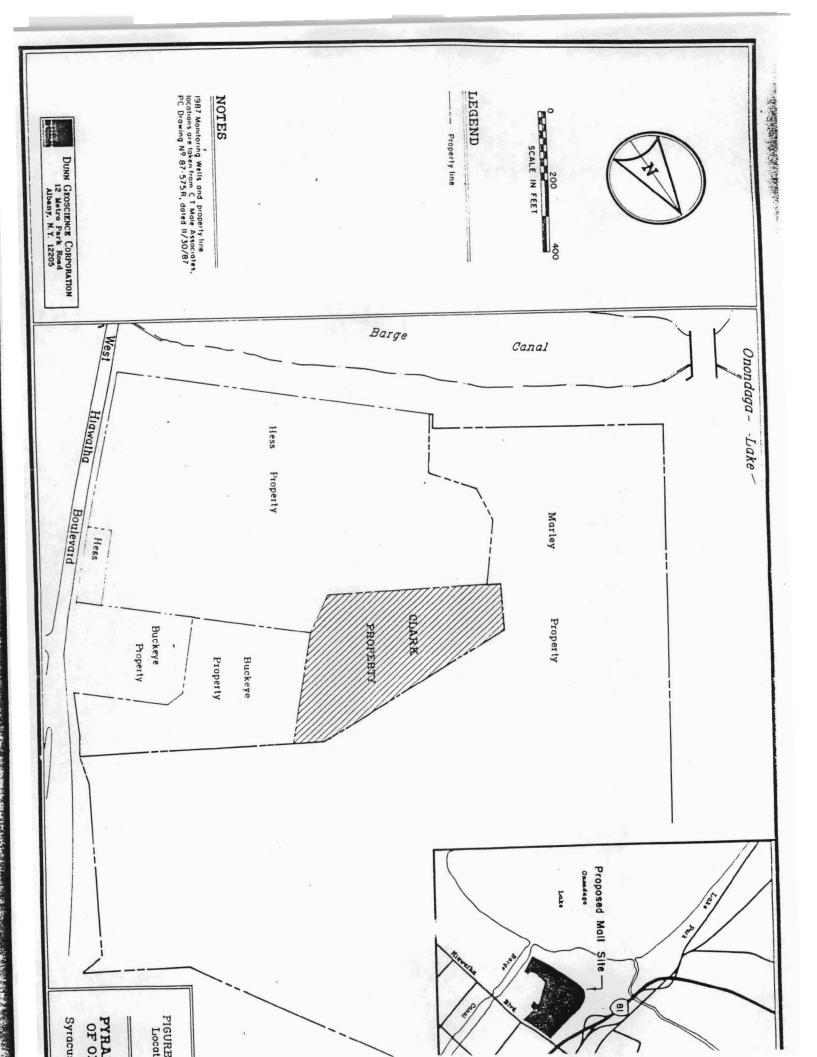
Exposure Assessment:

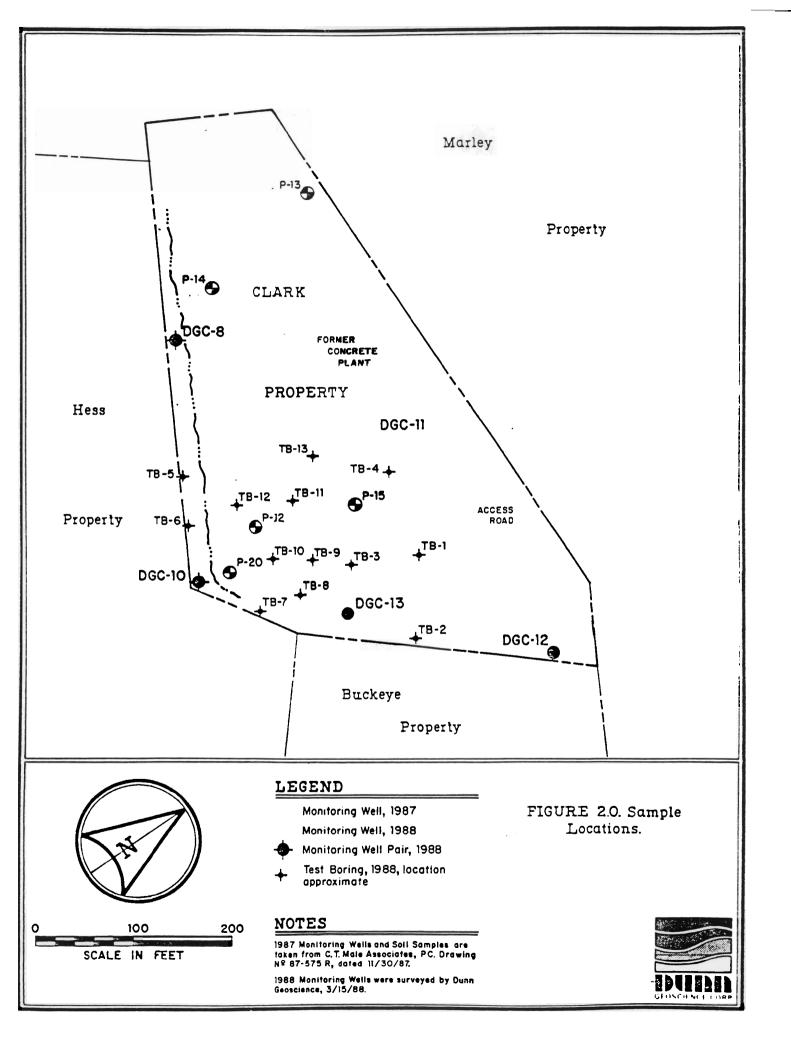
- Select indicator chemicals
- Define potential routes of exposure
- Quantitate potential exposure concentrations

Risk Assessment:

- Compare calculated exposure concentrations to Applicable or Relevant and Appropriate Requirements (ARARs)
- Compare calculated exposure concentrations to health based criteria
- Assess toxicity and characterize risk

2.0 SITE LOCATION AND ENVIRONMENTAL SETTING


The Clark Property site is adjacent to the proposed location of the Carousel Center Mall in the City of Syracuse, New York at the southeastern end of Onondaga Lake (Figure 1.0). A portion of the Clark Property (Figure 2.0) is listed in the New York State registry of Inactive Hazardous Waste Sites as a Class II site. Generally, the site is bordered by Interstate 81 to the northeast, Hiawatha Boulevard to the southeast, the New York State Barge Canal to the southwest, and Onondaga Lake to the northwest.


The Clark Property covers approximately 3.5 acres and is relatively flat with elevations ranging from approximately 366 feet above mean sea level at the southwestern edge of the property to 375 feet above sea level in the northern part of the property. The topography slopes gently toward a drainage ditch along the southwestern property line adjacent to the Hess property. Regrading of some of the unlisted portion of the site has occurred in conjunction with mall construction activities.

3.0 EXPOSURE ASSESSMENT

3.1 Selection of Indicator Chemicals

Sampling results often identify a large number of chemicals present at a site. Conducting a public health evaluation that addresses all the substances detected would be both difficult and impractical. Instead, the indicator chemical selection process is designed to identify 10-15 of the "highest risk" chemicals at a site so that the public health evaluation focuses on the chemicals of greatest concern. The chemicals chosen should represent the most toxic, mobile and persistent chemicals at a site as well as those present in the highest concentrations.

Volatile, semi-volatile PCB (Polychlorinated and Biphenyl) analyses were performed on samples collected from the Clark Property. Results of the semi-volatile analyses revealed very low (i.e., less than 100 ppb) naphthalene, concentrations of phenol, 4-methylphenol, benzoic acid, 2-methylphenol and 1,2-dichlorobenzene in groundwater (Appendix B). The levels were considered negligible relative to concentrations of Volatile reported Organic Chemicals (VOCs) detected in on-site soils, surface water and groundwater.

VOC analyses were performed on surface water samples collected from the Barge Canal. The upstream sample contained tetrachloroethene at 2 ppb. No other volatile organics were detected in either the upstream or downstream samples.

Results of the petroleum hydrocarbon analyses also revealed relatively insignificant concentrations to be present in groundwater, surface (ditch) water and ditch sediment (Appendices B and C).

No PCB's or organochlorine pesticides were detected in surface soil or groundwater samples obtained from the Clark Property.

Of the compounds detected, the following were selected as indicator chemicals ("chemicals of concern") for the Clark Property based on concentration, frequency of detection, as well as, chemical mobility and toxicity:

> Acetone Benzene 2-Butanone (MEK) 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Ethylbenzene

Methylene Chloride Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl Chloride Xylenes

Of the selected indicator chemicals, the following are known or suspected carcinogens:

<u>Chemical Name</u>	USEPA Weight of Evidence Classification*	USEPA Carcinogenicity Determination*
Benzene	Α	Known Human Carcinogen
1,1-Dichloroethane	B2	Probable Human Carcinogen
1,1-Dichloroethene	С	Possible Human Carcinogen
Methylene Chloride	B2	Probable Human Carcinogen
Trichloroethene	B2	Probable Human Carcinogen
Vinyl Chloride	А	Known Human Carcinogen
-	* (See Appendix H)	

3.2 Define potential routes of exposure

Routes of exposure are the probable scenarios by which people may come in contact with contaminated media both onsite and offsite. An exposure pathway consists of four elements: (1) a source and mechanism of chemical release to the environment, (2) an environmental transport medium (e.g., air, groundwater) (3) a point of potential human contact with the contaminated medium ("exposure point") and (4) a human exposure route (e.g. drinking water ingestion) at the contact point. At the Clark Property site, the selected chemicals of concern were detected in groundwater, subsurface soil, onsite surface water (drainage ditch) and ditch sediments. In addition, inhalation of volatile chemicals presents a potential exposure pathway.

3.2.1 <u>Potential Onsite Exposure Routes</u>

In terms of onsite exposures, the concerns are (1) direct contact with chemicals detected in onsite soils and (2) inhalation of volatile chemicals detected in the onsite surface water and soils.

The property is part of a former salt marsh and the groundwater in the area is not useable as a source of potable water. The onsite surface water is located in a ditch along the Hess/Clark property boundary and is comprised primarily of onsite surface water runoff and local groundwater discharge and has no known use. Therefore, direct contact with contaminants in either the groundwater, surface water or sediments is considered unlikely.

Direct contact with contaminants in the subsurface soils is also considered unlikely as site access is restricted and controlled. However, based on the assumption that this site may undergo commercial development in the future, direct contact with onsite subsurface soils during construction activities should be considered as a potential onsite exposure pathway.

Inhalation of ambient air is also considered to be a potential onsite exposure pathway due to the volatile nature of the chemicals of concern in onsite soils and surface (ditch) water.

3.2.2 <u>Potential Offsite Exposure Routes</u>

In evaluating the potential for offsite exposure to chemicals of concern on the Clark Property, the focus is to define potentially completed pathways for the migration of onsite contaminants to offsite receptors. The site is located in an industrial area where access is restricted by six-foot, chain link fencing and guarded around the clock. There is no residential housing in the area nor there any public recreational Therefore, the are facilities. public is unlikely to have direct contact with onsite soils. Onsite groundwater has the potential to, discharge to the NYS Barge Canal and Onondaga Lake, but neither In addition to onsite groundwater, surface water .are potable water supplies. in the onsite drainage ditch discharges to the Barge Canal. Although presently there is no known exposure route for offsite surface water, future use of the Barge Canal and Onondaga Lake may involve recreational activities. In that case, recreational use of potentially impacted surface water would represent a completed pathway for exposure.

To date, sampling results have not indicated the presence of any indicator chemicals in the Barge Canal. Therefore, this potential pathway of exposure is considered incomplete at this time and will not be addressed.

In terms of potential offsite exposure to contaminants in the ambient air, there does not appear to be any offsite receptors immediately downwind of the site. In this case, the New York State Department of Environmental

-7-

Conservation suggests that the evaluation focus on the potential concentration of indicators in ambient air at the site boundary (NYSDEC, 1986).

3.2.3 Exposure Routes of Concern

The following scenarios have been identified as potential completed routes of exposure for chemicals of concern at the Clark Property site:

Onsite

- Inhalation of volatile chemicals from undisturbed soils
- Inhalation of volatile chemicals from surface (ditch) water
- Dermal contact and incidental ingestion of indicator chemicals resulting from direct contact with soils

Offsite

- Inhalation of volatile chemicals in ambient air at the property boundary

3.3 **Ouantitate Potential Exposure Concentrations**

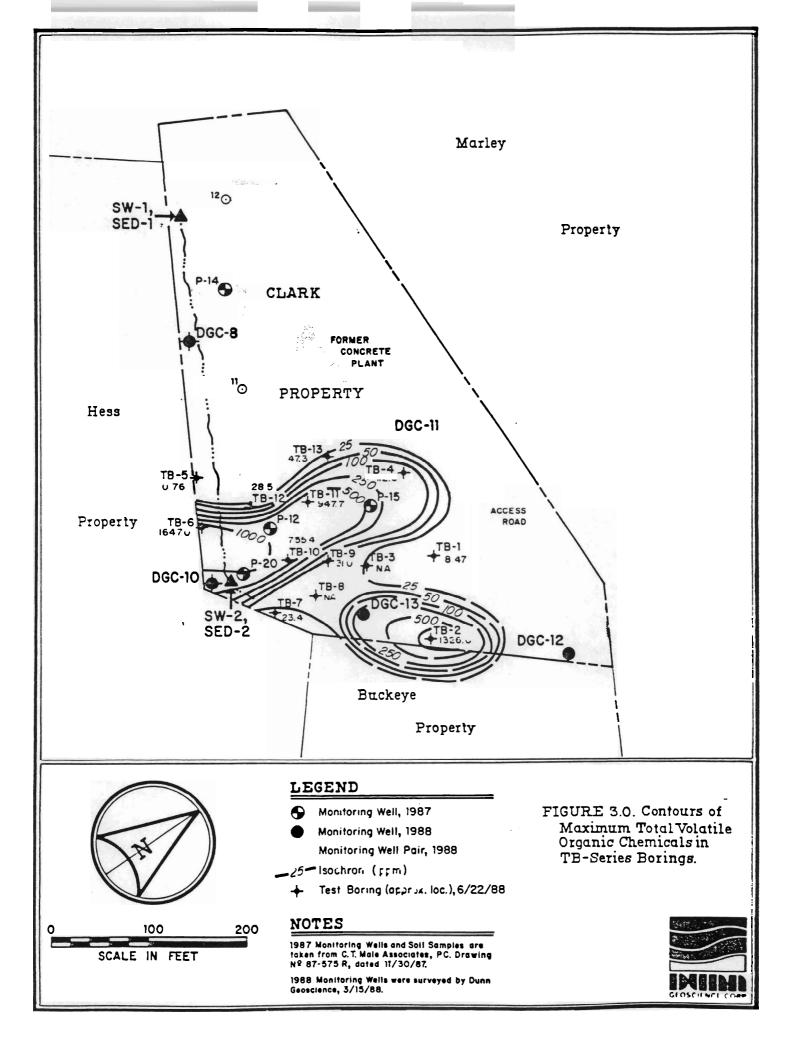
Potential exposure concentrations are calculated by incorporating information on the physical/chemical properties of the indicator chemicals and field monitoring data into an appropriate mathematical model. Sample calculations and methodologies are presented in Appendices D, E, F and G.

3.3.1 Data Used to Estimate Exposure Concentrations

Table 1 presents the "worst case" and "average case" soil, surface water and groundwater data used to calculate both onsite and offsite exposure levels for each of the indicator chemicals.

TABLE 1

CONCENTRATION OF INDICATORS


	CONCEI		D SURFACE N GED TO EST EXPOSURES	IMATE	ONSITE CONCENTRA TO ESTIMA EXPOSI	TION USED
INDICATOR CHEMICALS		worst	avg* Loase	worst case	worst case	avg* Case
	soil	case soil Plume b	soil	5W	soil	soil
		ug/kg		ug/l	ug/kg:	ug/kg
ACETONE	1.50E+05	1.60E+03	1.33E+03	5.80E+03	1.50E+05	1.33E+03
BENZENE		9.40E+01	6.61E+01		9.40E+01	6.61E+01
2 BUTANONE (MEK)			• • • • • • • • • • • • • • • • • • •			
1.1 DICHLOROETHANE	1.80E+04	8.60E+03	8.55E+02	1.10E+03	1.80E+04	8.55E+02
1,1 DICHLOROETHENE	2.40E+03	1.20E+03	1.83E+02	1.80E+02	3.70E+03	1.83E+02
L-1,2 DICHLOROETHENE	6.80E+04	5.40E+04	4.80E+03	1.40E+04	6.80E+04	4.80E+03
ETHYLPENZENE	4.40E+03	2.70E+03	2.50E+02		4.40E+03	2.50E+02
METHYLENE CHLORIPE	1.50E:04	1.10E+05	1.71E+03		1.10E+05	1.71E+03
TOLUENE	4.60E+05	4.90E+05	3.55E+04	5.70E+03	4.90E+05	3.55E+04
1,1,1 TRICHLOROETHANE	1.60E+05	1.60E+05	2.20E+03	5.00E+03	1.60E+05	2.20E+03
TRICHLOROETHENE	9.70E105	5.80E+05	1.32E+04	5.70E+03	9.70E+05	1.32E+04
VINYL CHLORIDE	2.90E+04	8.00E+03	8.64E+02	2.30E+03	2.90E+04	8.64E+02
XYLENES (total)						
· · · · · · · · · · · · · · · · · · ·				ometric mear		1

* Average values based on geometric means

To quantitate potential intake of volatile contaminants in soil via inhalation, both worst case and average case estimates were calculated using areas of contamination defined by total VOC levels obtained during subsurface soil sampling , at the site (DUNN Sept. 1988). Two distinct soil contaminant plumes (Plume a and Plume b) were identified and are shown in Figure 3. Worst case estimates incorporated the highest contaminant concentrations from both contaminant plumes. The worst case area of Plume a was defined as the area outlined by the 500 ppm contaminant concentration isochron which includes TB-6. The worst case area of Plume b was defined as the area TB-10 and TB-11. outlined by the 1000 ppm isochron around TB-2. Contaminant concentrations were estimated by using analytical laboratory data from the soil borings within each defined area. Average case estimates represent the geometric mean of contaminant concentrations from the total area of contamination which covers approximately 38,000 ft². This area is defined by the outermost isochron and incorporates concentrations from both contaminant plumes. Due to the large area of contamination used to estimate the average case exposure, little difference exists between average case and worst case exposure values for inhalation of volatilized soil contaminants.

Analytical results from the soil borings were also used to calculate worst case and average case exposures resulting from dermal contact with onsite soils during excavation/construction activities. The worst case concentration represents the highest level of each indicator chemical detected onsite; whereas, the average case is the geometric mean of onsite soil concentrations for each indicator chemical.

The surface (ditch) water results were used to calculate the potential volatilization of indicator chemicals from water in the onsite drainage ditch. Due to the limited number of samples collected, only worst case estimates are presented.

3.3.2 <u>Calculating Potential Onsite Inhalation Exposures</u>

The emission rate and subsequent air concentration for each indicator chemical detected, in onsite soil and ditch water were calculated using the equations presented in Appendix D. The equations are based on (i.e., combinations of) those presented in the Superfund Exposure Assessment Manual (EPA, 1986a) for estimated volatile releases from landfills and impacted surface water.

The basis for the soil equations is Fick's First Law of steady state diffusion (EPA, 1986a). Fick's Law assumes that diffusion into the atmosphere occurs at a planar surface where concentrations remain constant. The equations do not take into account the effects of biodegradation, dilution and transport in water or adsorption to soils. The model emphasizes diffusion of the contaminant vapor through the soil cover as the controlling factor for The equations also assume that there is zero concentration of the emissions. the soil surface, facilitating the movement volatilizing chemical at of chemicals from an area of higher concentration to an area of lesser The presence of water in the soil cover will decrease the flux concentration. rate of volatiles by decreasing the porosity of the soil. However, EPA suggests that the total soil porosity for dry soils be used in order to represent the worst case (EPA, 1986a).

The equations used to calculate emissions from the onsite ditch water are based on a model where the dominant process is molecular diffusion, which is dependent on phase exchange coefficients rather than vaporization from the solution. It is assumed that the water body and the chemicals dissolved are well mixed with a thin surface layer across which a concentration gradient exists. It also assumes that the air above the water is well mixed and that a thin layer above the water surface contains a second concentration gradient. The concentrations across the layers are assumed to be unequal such that the volatilization rate of the indicator chemicals into the air is greater than the condensation rate back to the water (EPA, 1986a).

Table 2 presents the calculated emission rate and air concentration for each indicator chemical. Air concentrations were derived by dividing the emission

TABLE 2

FOTENTIAL CUSITE AIR CONCENTRATION

	0,	LATILE EMIS (g/sec)	53		ION RATES FOTENTIAL CONCENTIAL CO OF VOLATIL	POTENTIAL CONCENTRATION OF VOLATILES IN AIR+ (g/cu.m)	RATION
							;
INDICATOR CHEMICALS	worst case soil Plume a		avg** soil	worst case sw (ditch)	worst case soil (a+b)	avg** soil	worst case sw (ditch)
ACITONE	1.66E-05	2.14E 08	1.49E-06	4.10E 04	1.66E-06	1.49E-07	4.10E-05
BENZENE		4.02E-10	2.37E 08		4.02E-11	2.37E-09	
2 - BUTANONE (MEK)			1		1	1	1
1, 1 - DI CIILOROETHANE	2.00E-06	1.15E-07	9.62E 07	8.78E-03	2.12E-07	9.62E-08	8.78E-04
1, 1 - DI CIILOROETHENE	6.30E-07	3.81E-08	4.87E-07	4.72E-03	6.68E-08	4.87E-08	4.72E-04
t - 1, 2 - DI CHLOROETHENE	7.14E.06	6.85E-07	5.11E-06	3.35E-01	7.83E-07	5.12E-07	3.35E-02
ETHYLPENZENE	1.49E-08	1.11E.03	8.60E-09		1.60E-09	8.60E-10	1
METHYLENE CHLORIDE	2.77E-06	2.45E-06	3.20E 06		5.22E-07	3.21E.07	
TOLUENE	4.99E-06	6.43E 07	3.91E-06	6.33E-02	5.63E-07	3.91E 07	6.33E-03
1, 1, 1 - TRICHLOROETHANE	1.16E 05	1.41E-06	1.62E-06	8.78E 02	1.30E-06	1.63E-07	8.78E 03
TRICHLOROETHENE	4.25E 05	5.83E 07	5.87E-06	6.33E-02	4.31E-06	5.87E-07	6.33E-03
VINYL CHLORIDE	3.54E-05	1.18E 06		7.02E-02	3.66E-06	1.07E-06	7.02E-03
XYLENES (Lotal)		1.96E-08	7.80E-08	1.82E-03		7.80E 09	1.82E 04
	 Air co ** Averag 	ncentration c values b	Arcrage values based on geometric means	ed with 5 roomed		speed	

rates by the following factors: wind speed, height of the atmospheric mixing zone and the distance from the source to the receptor. The air concentration is then multiplied by the standard air intake volume for an adult during a typical 8 hour workday $(10m^3/day)$. The result, presented in Table 3, is the potential onsite inhalation exposure that might occur during a workday.

3.3.3 Calculating Potential Onsite Exposures from Direct Contact with Soil

The Exposure Factors Handbook (EPA, 1988) estimates chemical intake factors for exposures via direct contact with contaminated soils. For adults engaged in outdoor work (e.g., yardwork, gardening) the combined intake from dermal absorption and ingestion is estimated to be 537 mg/day. The factor is based on the assumption that 57 mg of the chemical would be absorbed through intact skin and 480 mg would be ingested from oral contact with contaminated hands while eating, smoking, etc. For the purpose of this evaluation the intake factor will represent potential exposure during onsite construction/excavation activities.

The potential exposures resulting from direct contact with onsite soil are calculated by multiplying the soil intake factor (537 mg) by the concentration of the indicator chemicals detected in onsite soil samples. The results, presented in Table 3, assume 100% absorption of the chemical from the soil contacted.

3.3.4 <u>Calculating Potential Offsite Exposures</u>

As previously stated, the potential exists for the migration of volatile indicator chemicals from onsite soil and surface (ditch) water to offsite receptors. The nearest offsite receptor has not been identified. In such cases, the NYS Department of Environmental Conservation suggests that the property boundary should be evaluated as the nearest offsite receptor (NYSDEC, 1986). For this evaluation, the corner where the Buckeye and Hess properties meet is the point of access for the Clark Property and will be considered the property boundary. The distance from the source to the boundary is approximately 800 ft. Using methodology set forth in NYS Air Guide I (NYSDEC,

TAPLE 3

COTENTIAL ONSUTE EXPOSURES

7

,

	1 PUUAT 8 - F	HHIALATION EXPOSURE* DURING 8 HOUR WORKDAY (mg/day)	•====	DIRECT CONTACT EXPOSURE DURIN 8 HOUR WORKDAY (mg/day)	DIRECT CONTACT EXPOSURE DURING 8 HOUR WORKDAY (mg/day)
IND LCATOR CHEMI CALS	worst case intake soil	avg ++ intake soil	wurst case intake (sw/dltch)	worst case intake soil	avg** intake soil
ACETONE	1.66E-02	1.49E 03	4.10E-01	8.06E.02	7.14E-04
HENZENE	4.02E-07	2.37E-05	: :	5.05E-05	3.55E 05
: BUTANONE (MEK)					
. 1 PICHLOROETHANE	2.12E 03	9.62E-04	8.786+00	9.67E-03	4.59E-04
1.1 DICHLOROETHENE	6.68E 04	4.87E-04	4.726+00	1.99E 03	9.835.05
L-1,2-DICHLOROETHENE	7.83E-03	5.12E-03	3.35E+02	3.65E-02	2.58E-03
ETHYLGENZENE	1.60E-05	8.60E.06		2.36E-03	1.34E-04
METHYLENE CHLORIDE	5.22E 03	3.21E 03	1	5.91E-02	9.18E-04
TOLUENE	5.63E-03	3.91E-03	6.33E+01	2.63E 01	1.91E-02
	1.30E-02	1.63E-93	8.78E+01	8.59E-02	1.18E-03
TRI CHLOROETHENE	4.31E 02	5.87E-03	6.33E+01	5.21E-01	7.09E 03
VINYL CHLORIDE	3.66E-02	1.07E-02	7.02E+01	1.56E-02	4.64E-04
XYLENES (total)	1.26E-04	7.80E-05	1.82E+00	2.79E-02	1.32E.03
	* Inhala	Inhalation rate estimated at 10 cu.m per 8 hours Average values based on geometric means	stimated at	10 cu.m pe	r 8 hours

1986), calculated air concentrations onsite will be divided by a factor of 35 (see Appendix F) to estimate the ambient air concentrations at the property boundary.

Table 4 presents the calculated onsite air concentrations and the estimated air concentrations at the property boundary.

4.0 RISK ASSESSMENT

4.1 <u>Compare Exposure Concentrations to Applicable or Relevant and Appropriate</u> Requirements (ARARs).

ARARs are media specific, enforceable standards promulgated by the federal or state government that can be applied directly to site conditions. Both federal and state ARARs for the indicator chemicals in each media are listed in Table 5.

In terms of federal regulations, the only promulgated standards are Maximum Contaminant Levels (MCLs) for public drinking water supplies. There are no federal ARARs for the selected indicator chemicals in soils or ambient air. Since the ground and surface waters on the site are not sources of potable water, drinking water MCLs do not apply.

The State of New York has promulgated drinking water standards and ambient water quality criteria for specific classes of water bodies. The ground and surface waters on the site are not sources of potable water nor have they been classified; therefore, the New York State Water Quality standards do not The state has not promulgated standards for organic contaminants in apply. However, guidance values have been set for certain. soil or ambient air. organics in ambient air and are listed under Air Guide I (NYSDEC, 1986). Although, the guidance values in Air Guide I are not enforceable standards, they are widely used as a screening tool for determining whether or not a permit should be issued and to assess ambient air quality in general. Therefore, we compared the calculated onsite air concentrations to the Acceptable Ambient Levels (AALs) set forth in Air Guide I. The results of the

TARLE 4

-

POTENTIAL OFFSITE AIR CONCENTRATION

,

INDICATOR	worst	(g/cu.m)	to real	na hasal	(g/cu.m)	in beset
	case soil (a+b)		case case sw (ditch)	worst worst case soil (a+b)	soil	worst case sw (ditch)
	1.66E-06		4.10E-05		1.26E-09	
4.(4.02E-11	2.37E-09	;		6.77E-11	1.2
2 BUTANONE (MEK)	I	i			1	
1.1 - DI CHLOROETHANE 2.1	2.12E-07	9.62E 08	8.78E-04	6.06E-09	2.75E-09	2.51E-05
NE	6.68E 08	4.87E-08	4.72E 04	1.91E 09	1.39E-09	1.35E-05
L 1, 2-DI CHLOROETHENE 7.6	7.83E-07	5.12E-07	3.35E-02	2.24E-08	1.46E-08	9.57E-04
1.6	1.60E 09	8.60E 10		4.57E-11	2.46E-11	
METHYLENE CHLORIDE 5.3	5.22E-07	3.21E 07		1.49E-08	9.17E-09	
5.	5.63E-07	3.91E-07	6.33E-03	1.61E-08	1.12E-08	1.81E-04
I, I, I - TRI CHLOROETHANE 1. :	1.30E-06	1.63E.07	8.78E-03	3.71E-08	4.66E-09	2.51E 04
TRI CHLOROETHENE	4.31E-06	5.87E-07	6.33E-03	1.23E-07	1.68E-08	1.81E-04
DE	3.66E-06	1.07E-06	7.02E-03		3.06E-08	2.01E-04
XYLENES (Lotal) [1.5	1.26E.08	7.80E 09		1.82E-04 3.60E-10 2.23E-10	2.23E-10	

.

TABLE 5

APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

						61	STATE ARARS		
INDI CATOR CHEMI CALS		FEDERAL ARAI	RAR:s			WATER (ug/L)	,	AIR +++ (ug/m3)	Soll
	WATER MCL/MCLG			-	HCL +	surface water .++	ground water ++		
			1.00E 01 RFD		50			35,600	
EENZENE	0.005 ppm	1 1 1 1 1 2		e Factor/ n Slope Factor	5	1.0	ND (putable) 6 (non potable)	100	
: BUTANONE (MEK)	1		5.00E 02 RFD		50	f		1,967	
1,1 PICHLOROETHANE			9.10E-02 Oral Slope 1.34E+00 Inhalation	e Factor ++++ n ADI +++++	2	50	50		1
1,1 DICHLOROETHENE	mqq 700.0	1	6.00E-01 Oral Slope 1.20E+00 Inhalation	e Factor n Slope Factor	ß	0.07	0.07	1	
	0.1 ppm (proposed)		2.00E-02 RFD		2	50	50		
ETHYLEENZENE	· .		1.00E 01 RFD		5	50	50	1,450	
METHYLENE CHLORIDE		i	7.50E-03 Oral Slope 1.40E-02 Inhalation	e Factor n Slope Factor	2	50	50	1,167	1
	2 ppm (proposed)		3.00E-01 RFD		ß	50	50	7,500	
1, 1, 1 TRICHLOROETHANE	0.2 ppm	1	9.00E-02 RFD		2	50	50	38,000	:
TRICHLOROFTHENE	0.005 ppm (proposed)		1.10E 02 Oral Slope 1.30E 02 Inhalation	e Factor n Slope Factor	S	e.	10 (potable) 11 (non potable	006	
VINYL CIILORIDE	0.002 ppm		1.90(mg/kg/day)-1 2.95(mg/kg/day)-1	+ + + + + + + +	CJ	0.3	G	0.4	
XYLENES (total)	10 ppm (proposed)		2.00E+00 RFD		5	03	50	1450	
	+ New York State Sanitary + New York State Amblent V ++ New York State Air Guide	New York State San New York State Amb New York State Air	abient Water (ir Guide 1,198	Standards and	988 Guidance,	19	2		

comparison indicated that the estimated onsite air concentrations for the following compounds exceeded their respective AALs:

- o "Trichloroethene volatilized from onsite surface (ditch) water
- o Vinyl chloride volatilized from onsite soils and surface (ditch) water

Compliance with AALs must be determined for air levels detected at the "nearest To date, the "nearest downwind receptor" to the Clark downwind receptor." Property has not been established. Thus, for the purpose of this evaluation, the distance from the source to the area where access to the site is restricted will be considered the nearest receptor. In this case, the distance is approximately 800 ft. southwest of the Clark Property at the corners where the Buckeye and Hess properties meet. Using the methodology set forth in Air Guide I, the calculated onsite air concentrations are divided by a factor of 35 to The the nearest receptor. results of this obtain estimated levels at that level comparison the estimated air of vinyl chloride. indicated volatilized from onsite surface (ditch) water, would exceed the AAL at the nearest receptor (i.e., property boundary).

4.2 <u>Health Based Criteria Used for Comparison to Calculated Exposure</u> <u>Concentrations</u>

In the absence of media specific ARARs for each of the indicator chemicals, EPA advises that exposure concentrations be compared to health based criteria (EPA, 1986b). These criteria, listed in Table 5, include reference doses (RfDs) for non-carcinogenic compounds and cancer potency factors (q_1^*) for known or suspected carcinogens (IRIS).

RfDs are an estimate of the daily intake level for humans that is likely to be without appreciable risk of deleterious effects over a lifetime of exposure. These values can be compared to the exposure levels calculated for each indicator chemical.

Cancer potency factors (q1*) can be used to quantitate the level of risk posed by exposure to potentially carcinogenic compounds. For Superfund sites, the

remedial alternatives are designed to reduce the exposure to carcinogenic chemicals to levels that correspond to a range of risk between 10^{-7} and 10^{-4} (EPA, 1986b). For the purpose of this evaluation, the risk level that should not be exceeded is set at 10^{-4} (i.e., a risk of 1 excess case of cancer per 10,000 exposed population). The q1* for each carcinogenic indicator was used to estimate an intake level corresponding to a 10^{-4} risk (see Appendix G Equation A.2).

4.3 Assess Toxicity and Characterize Risk

Table 6 lists the estimated intake levels for onsite exposures to the indicator chemicals and their respective EPA health based criteria. For non-carcinogenic indicators, the calculated exposure levels can be compared to the RfDs. For carcinogenic indicators, the calculated exposure levels are compared to intake levels corresponding to a 10⁻⁴ cancer risk.

The following is a discussion of those compounds for which the calculated exposure levels exceed health based criteria. Also included is a brief explanation of the magnitude by which the health based criteria are exceeded for both noncarcinogens and carcinogens, in the worst case (unless otherwise noted).

o Direct contact with onsite soils

Carcinogens

- The exposure estimate for vinyl chloride exceeds health criteria by one order of magnitude but is still within a 10⁻⁴ risk level (See Appendix G Section I-C).
- o Inhalation exposure from volatiles in onsite soils

Carcinogens

The exposure estimate for vinyl chloride exceeds health criteria by one order of magnitude in both the worst case and average TABLE 6

COMPARISON OF ESTIMATED EXPOSURES TO HEALTH DASED CRITERIA

DIRECT CONTACT INHALATION EXFOSURE HEALTH BASED EXPOSURE DURING FROM ONSITE SOIL AND CRITERIA 8 HOUR WORKDAY SURFACE WATER DURING (mg/dsy) (mg/dsy)	(mg/day) avg* case avg*	7.14E-04 1.66E-02 1.49E-03 4.10E-01 7.00E+00 RFD oral inhalation		3.50E+00 RFD oral	4.59E 01 2.12E-03 9.62E-04 8.78E+00 7.69E-02 1.0E-04 Ri 9.36E+01 Inhalation	9.83E-05 6.68E-04 4.87E-04 4.72E+00 1.17E-02 1.0E-0 5.83E-03 1.0E-0	2.58E-03 7.83E-03 5.12E-03 3.35E+02 1.40E+00 RFD	1.34E-04 1.60E-05 8.60E-06 7.00E+00 RFD 1.09E+01	9.18E 04 5.22E-03 3.21E-03 9.33E-01 1.0E-04 Risk(1.91E-02 5.63E-03 3.91E-03 6.33E+	1.18E-03 1.30E-02 1.63E 03 8.78E+01 6.30	7.09E-03 4.31E 02 5.87E 03 6.33E+01 6.36E-01 1.0E-04 Risk(0) 5.38E-01 1.0E-04 Risk(0)	4.64E 04 3.66E 02 1.07E 02 7.02E+01 3.68E-03 1 2.37E-03 1	79E-02 1.32E 03 1.26E 04 7.80
		2 7.14E-0	05 3.		.4.	. C	c1	-	E-02 9.18E	E-01 1	9E-02 1	1E-01 7.09E	4.64E	

.

case. The worst case exposure represents a 10^{-3} risk level; whereas, the average case exposure is still within a 10^{-4} risk level.

o Inhalation exposure from volatiles in onsite surface (ditch) water

Noncarcinogens

- The exposure estimate for trans-1,2-dichloroethene exceeds the health criteria by two orders of magnitude.
- The exposure estimate for toluene exceeds the health criteria by less than one order of magnitude.
- The exposure estimate for 1,1,1-trichloroethane exceeds the health criteria by less than one order of magnitude.

Carcinogens

- The exposure estimate for 1,1-dichloroethene exceeds the health criteria by three orders of magnitude and represents a 10⁻² risk level.
- The exposure estimate for trichloroethene exceeds the health criteria by two orders of magnitude and represents a 10⁻² risk level.
- The exposure estimate for vinyl chloride exceeds the health criteria by four orders of magnitude and represents a 10⁰ risk level.

5.0 UNCERTAINTIES

Completion of a public health evaluation involves the use of numerous assumptions and many uncertainties are inherent to the process. In most cases,

site history, site characterization, chemical monitoring data and future use information may be lacking to some degree. Toxicity information is based on animal studies and extrapolation of effects to humans is a major source of uncertainty. Likewise, the calculations used in exposure modeling rely on simplifying assumptions, many of which are considered "highly" conservative. It is thought that these conservative assumptions will generally overestimate the potential risks posed by exposure to a particular substance. Consequently, the results of the baseline evaluation should not be taken as a characterization of absolute risk. However when the methodologies and assumptions are applied evenly throughout the process, the evaluation will highlight the areas of concern at a site so that they may be the focus of further evaluation (EPA, 1986b).

Clark Property assessment, the estimated dermal and inhalation For the exposures are conservative in that they do not take into account the attenuating effects of biochemical degradation or actual atmospheric mixing on contaminant concentrations. Nor do they take into account the mitigating effects of personal protective equipment for potential onsite exposures. Furthermore, it is conservative to compare these estimates to health criteria established for chronic/lifetime exposures. One should keep in mind, however, that the methodology used in this assessment does not address the potential additive, synergistic or antagonistic effects of exposure to a mixture of chemicals. The approach necessary to make a definitive assessment of these potential interactive effects is not currently available and is beyond the scope of this investigation.

6.0 SUMMARY

This evaluation was prepared by using currently available site monitoring data and currently accepted EPA methods and assumptions to predict the risk posed by potential exposure to indicator chemicals from the Clark Property site. The results should not be taken as a characterization of absolute risk but should be used to identify the areas of concern at the site so that they may be evaluated further.

For exposures to noncarcinogenic compounds, an element of risk is suggested when an estimated exposure level exceeds health based criteria. However, in light of the conservative assumptions used in calculating onsite and offsite exposure levels, differences of one order of magnitude or less would not appear to be significant. Where exposures to noncarcinogens are estimated at levels greater than one order of magnitude above health criteria or exposure to carcinogens are estimated at greater than a 10^{-4} risk level, remedial efforts should focus on the sources of these potential exposures.

Results of the evaluation indicate that onsite exposure to the following chemicals was found to exceed health criteria by greater than one order of magnitude for noncarcinogens or present a risk level greater than 10^{-4} for carcinogens:

Noncarcinogens

o trans-1,2-Dichloroethene via inhalation

Carcinogens

- o 1,1-Dichloroethene via inhalation
- o Trichloroethene via inhalation
- o Vinyl chloride via inhalation

mhh

REFERENCES

- Agency for Toxic Substance and Disease Registry (1988) <u>Draft Toxicology Profile</u> for Toluene USEPA/ATSDR, 1988.
- Dunn Geoscience Corporation (1988) <u>Report on Hydrogeologic Conditions at the</u> <u>Clark Property</u>, Syracuse, New York, 9/1988.
- Environmental Protection Agency (1988) <u>Exposure Factors Handbook</u>. Draft Report USEPA/OHEA/EAG, 68-02-4254, 5/1988.
- Environmental Protection Agency (1987) <u>Health Advisories for Organic 25</u> Organics, USEPA/ODW, PB87-235578, 3/1987.
- Environmental Protection Agency (1986a) <u>Draft Superfund Exposure Assessment</u> <u>Manual</u>, USEPA/OSWER, 68-01-6271, 1/1986.
- Environmental Protection Agency (1986b) <u>Superfund Public Health Evaluation</u> <u>Manual</u>, USEPA/OERR, EPA/540/1-86/060, 10/1986.
- Environmental Protection Agency (1985) <u>Health and Environmental Effects</u> Profiles, USEPA/OHEA/ECAO, 1984-1988 (300 total).
- Integrated Risk Information System (IRIS), on-line, USEPA Risk Data Base (updated monthly).
- New York State Department of Environmental Conservation (1987). <u>Ambient Water</u> <u>Quality Standards and Guidance Values</u> Division of Water Technical and Operational Guidance Series (1.1.1) 4/1987.
- New York State Department of Environmental Conservation (1986) <u>New York State</u> <u>Air Guide I: Guidelines for the Control of Toxic Ambient Air</u> <u>Contaminants</u>. Division of Air Resources, 7/1986.
- New York State Department of Health (1988) <u>Public Water Supplies</u> Chapter I State Sanitary Code, Part 5, Subpart 5-1, 11/1988.
- Syracuse Research Corporation Center for Chemical Hazard Assessment. (1986) <u>Documentation of ADIs. a1*s. and Associated Relevant Data</u>. Prepared for USEPA (Contract No. 68-03-3228).

APPENDIX A SOIL DATA

,

Table 3.11 Volatile Organic Subsurface Soil Analytical Data Clark Property

Hazardous Substance List (HSL) - Volatile Organics IPA Method 8240/624

1	TB	-1	1	B-2 ;	T	3-2 :	T	8-2	TB-	2
Compound	S-3	(0-2)	S-3	(6-8)	5-4 1	(8-10)	S-5	(10-12)		12-14)
:	RL	TAL	RL	VAL ;	RL	VAL :	RL	TAL	: RL	VAL
Chloromethane :	750	ND	36000	ID ;	4700	ID ;	180	ID	3400	ID
Bromomethane	750	ID	36000	ID :	4700	ID ;	180	ID	3400	ID
Vinyl Chloride	750	ID	36000	ID :	4700	8000 ;	180	1000	3400	ID
Chloroethane	750	ID	36000	ID ;	4700	ID ;	180	ID	3400	11
Methylene Chloride	750	ND	36000	ID ;	4700	11000 ;	180	590	3400	6700
Acetone	3800	ID	180000	ID :	24000	ND ;	920	1600	: 17000	Π
Carbon Disulfide	300	ID	14000	ID :	1900	ID :	74	ID		I
1.1-Dichloroethylene	300	ID	14000	ID :	1900	ID ;	74	1200	1400	I
1.1-Dichloroethane	300	970	14000	ID :	1900	8600 :	74	7600		I
1,2-Trans-Dichloroethylene!	300	1700			1900	54000 ;	74			11
Chloroform	300	ID	14000	ND ;	1900	BD ;	74	ID	: 1400	I
1,2-Dichloroethane	300	ID	14000	ID :	1900	ID ;	74	ID	: 1400	I
2-Butanone	1500	ID	72000	ID :	9400	ID :	370	ID	: 7000	1
1,1,1-Trichloroethane	300	ID	14000	160000 ;	1900	30000 ;	74	20000	: 1400	П
Carbon Tetrachloride	300	ID	14000	ID :	1900	ID ;	74	D	: 1400	I
Vinyl Acetate	1500	ID	72000	ID ;	9450	D ;	370	ID	: 7000	1
Bronodichloromethane	300	ID	14000	ID :	1900	ID ;	74	ID	: 1400	1
1,2-Dichloropropane	300	ID	14000	ID ;	1900	ND ;	74	ID	1400	-
1,3-Trans-Dichloropropene	300	ID	14000	ID ;	1900	ID ;	74	ID	1400	I
Trichloroethylene	300	400	14000	580000 ;	1900	110000 ;	74	110000	: 1400	1900
Dibromochloromethane ;	300	ID	14000	ID ;	1900	ND ;	74	ID	: 1400	I
1.1.2 Trichloroethane	300	ID	14000	ND ;	1900	ND ;	74	ID	1400	II
Benzene	300	ID	14000	ND ;	1900	ND ;	74	94	: 1400	II
1.3-Cis-Dichloropropene :	300	ID	14000	BD ;	1900	ND :	74	ID	: 1400	I
2-Chloroethyl vinyl ether ;	1500	ND	72000	ID :	9400	ND ;	370	ID	: 7000	11
Brosofors	300	D	14000	ND ;	1900	D;	74	ID	: 1400	Π
4-Hethyl-2-Pentanone	1500	ID	72000	ID :	9400	BD ;	370	2000	: 7000	
2-Heranone	1500	ID	72000	ID :	9400	ID ;	370			1
1,1,2,2-Tetrachloroethane ;	300	ID .	14000	ID ;	1900		74		the second se	
[etrachloroethylene]	300	ID	14000	ND ;	1900	ID ;	74	160	: 1400	I
oluene	300	5100		490000		140000 ;	74			1900
hlorobenzene	300	8D		the second s			74		•	1
thyl Benzene	300	ND	14000	ID :	1900		74			
Styrene	300	. ND	14000	ND :	1900		74			
total Iylenes	300	300		52000	1900	13000 ;	74	9800	: 1400	

HOTES :

All parameters are measured in ug/kg (dry wt) except where noted

ND = Not Detected RL = Recording Limit

Table 3.11 (continued) Volatile Organic Subsurface Soil Analytical Data Clark Property

Hazardous Substance List (HSL) - Volatile Organics EPA Method 8240/624

1	TB-4 :			TB-4 ;		TB-4 :		TB-5 ;		TB-6	
Compound		(6-8)	1		(12-14);		14-16)		(2-4)		12-14)
	RL	VAL	:	RL	VAL :	RL	VAL :	RL	VAL :	RL	VAL
Chloromethane :	1500	ND	!	600	ID ;	3400	ND ;	150	ID ;	650	ID
Brononethane	1500	ID		600	D	3400	ID :	150	ID :	650	
Vinyl Chloride	1500	3000		. 600	1700	3400	D	150	BD :	650	1100
Chloroethane											
	1500	ID		600	ID :	3400	ND :	150	ID ;	650	HI
Hethylene Chloride ;	1500	ID	;	600	1300 ;	3400	9300 ;	150	3800 ;	650	1200
Acetone	7500	ID	1	3000	ID ;	17000	ID ;	750	ID :	3300	
Carbon Disulfide	600	ID		240	D	1400	ID :	60	D	260	I
1,1-Dichloroethylene	600	ID		240	D	1400	ID :	60	ID :	250	I
1.1-Dichloroethane	600	1900	:	240	3500	1400	6100 ;	60	ID :	260	1400
	600	11000	:								
1,2-Trans-Dichloroethylene;	000	11000	i	240	14000 ;	1400	ND ;	60	120 ;	260	17000
Chloroform -	600	ID	:	240	ND ;	1400	ID ;	60	ID ;	260	I
1.2-Dichloroethane	600	ID	:	240	ID ;	1400	ID :	68	ID :	260	
2-Butanone	3000	ID	1	1200	ID ;	7000	ID ;	300	ID :	1300	I
1,1,1-Trichloroethane	600	8000	1	240	760 :	1400	11000 ;	60	60 ;	260	1900
Carbon Tetrachloride	600	ID	;	240	ID ;	1400	ID ;	60	D	260	I
						1100					
Vinyl Acetate	3000	ID	:	1200	ID ;	7000	D:	300	ID ;	1300	П
Bromodichloromethame	600	ID	:	240	ID ;	1400	ID ;	60	ID ;	250	11
1,2-Dichloropropane	600	ID	1	240	D;	1400	D ;	60	ID ;	250	I
1.3-Trans-Dichloropropene ;	600	ID	1	240	ID ;	1400	ID ;	60	ID :	260	
Trichloroethylene	600	19000	1	240	20000 ;	1400	47000 ;	60	250 ;	260	1100
Dibromochloromethane :	600	#D	,	240	D ;	1400	ND ;	60	ID ;	260	ID
1.1.2 Trichloroethane	600	ID	-	240	ID	1400	ID ;	60	ID :	260	ND
Benzene	600		:						ID :	260	
		ID	1	240	ND ;	1400	ID :	60			HI.
1,3-Cis-Dichloropropene	600	ID	1	240	ID :	1400	ID :	60	ID :	250	al al
2-Chloroethyl vinyl ether ;	3000	ID		1200	D;	7000	D ;	300	D;	1300	II
Bronoform	600	ID	:	240	SD ;	1400	ID ;	60	D	250	H
4-Hethyl-2-Pentanone	3088	ID	:	1200	D:	7000	ID ;	300	ID ;	1300	I
2-Heranone	3000	ID	:	1200	ID ;	7000	ID ;	300	ID ;	1300	I
1,1,2,2-Tetrachloroethane	600	#D	1	240	ID ;	1400	ID ;	60	ND ;	260	M
fetrachloroethylene	600	D		240	D	1400	ID ;	60	ND ;	260	H
oluene	600	21000		240	16000 1	1400	47000 ;	60	210 ;	260	17000
The second s				240	16000 :	1400			and the second		
Chlorobenzene	600	D		240	D:	1400	ID :	60	D	260	II
thyl Benzene	600		1	240	ID :	1400	ID :	60	ID :	250	I
styrene	600	ID		240	ID :	1400	ID ;	60	ID ;	260	II
Iotal Iylenes	600	3500	1	240	850 ;	1400	1700 ;	60	120 ;	260	700

MOTIS :

All parameters are measured in ug/kg (dry wt) except where noted

ND = Not Detected

RL = Recording Limit

Folatile Organic Subsurface Soil Analytical Data Clark Property

Eaxardous Substance List (ESL) - Volatile Organics EPA Method 8240/624

1	TB-6 ;			TB-6 :		TB-7 :		TB		TB-9		
Compound		(14-16)			(16-18)	-		8-10) ;		10-12) :		12-14)
	PL.	VAL	•	RL	TAL	i	RL	VAL :	RL	VAL :	PL	TAL
Chloromethane	3100	ID	,	6500	ID	1	750	D;	700	ID :	150	II
Bromomethane	3100		1	6500	ID	1	750	ND :	700	ID :	150	J
			1			:						
Vinyl Chloride	3100			6500	D	1	750	ID :	700	ID :	150	170
Chloroethane	3100		1	6500	ND	:	750	ID :	700	BD :	150	
fethylene Chloride	3100	6800	:	6500	15000	;	750	D	700	2000 ;	150	64
cetone	16000	ID	!	32000	ID	!	3800	ID ;	3500	ID :	750	I
arbon Disulfide	1200		i	2600	ID	i	300	ND :	280	ND :	60	1
1,1-Dichloroethylene	1200		-	2600	D	:	300	ID :	280	ID :	60	1
		3700	:			-				•		
1,1-Dichloroethane	1200		:	2500	11000	1	300	1300 ;	280	1800 ;	60	3700
1,2-Trans-Dichloroethylene;	1200	21000	;	2600	7600		300	2600 ;	280	ND ;	60	85
hloroforn	1200	ID	:	2600	ND	:	300	ND :	280	ID :	60	11
.2-Dichloroethane	1200	ID	!	2600	ID	1	300	ID ;	280	ID :	60	
2-Butanone	6200	D	i	13000	ID	1	1500	D:	1400	ID :	300	1
1,1,1-Trichloroethane	1200	56000	;		159000	;	300	D	280	ND :	60	П
arbon Tetrachloride	1200	ID	;	2600	ID	:	300	ID ;	280	BD :	60	Ē
Arbon letracaloride	1200		1	2000		1	200		200			
inyl Acetate	6200	D	:	13000	D	!	1500	D:	1400	ID :	300	
Bromodichloromethane	1200	ID	:	2500	ID	:	300	D:	280	ID :	60	I
.2-Dichloropropane	1200	D	!	2600	ID	1	300	ID :	280	D:	60	
1,3-Trans-Dichloropropene	1200	D	;	2600	ID	i	300	ID ;	280	ID :	50	I
Trichloroethylene		120000	;		970000	:	300	12000 ;	280	ED :	60	29
	1000									!		
libromochloromethane	1200	ID	1	2600	D	i	300	ID ;	280	HD :	60	
1,1,2 Trichloroethane	1200	D	:	2600	ND	:	300	ND :	280	ND :	60	J
Senzene ·	1200	ID	:	2600	ND	1	300	ID ;	280	ND ;	60	I
1,3-Cis-Dichloropropene	1200	ID	;	2600	ID	1	300	ND :	280	ID ;	60	I.
2-Chloroethyl vinyl ether :	6200	D	:	13000	ND	:	1500	ID ;	1400	ND :	300	
romoform	1200	D	!	2500	ND	1	300	ND ;	280	ND :	60	I
-Hethyl-2-Pentanone	6200	ID		13000	ID		1500	ID :		ID :	300	I
	6200			13000			1500		1400	ID :	300	
-Heranone		ID ID			ID			ID ;				
.1,2,2-Tetrachloroethane	1200		:	2600	ND	-	300	ND :	280	HD :	60	I
etrachloroethylene ;	1200	ID	•	2500	ID	1	300	ND ;	280	ND ;	60	I
oluene	1200	110000	1	2600	460000	:	300	7500 ;	280	2900	60	2400
hlorobenzene	1200	ID	-	2600	ID	-	300	ID ;	280	ID :	60	I
thyl Benzene	1200			2600	4400		300	ID :	280	ID :	60	69
tyrene	1200	ID	-	2600	ND		300	ND :	280	ND ;	60	I
			-						280	540	60	130
otal Iylenes	1200	16000	1	2600	34000	1	300	ND ;	200	240 1	00	190

NOTIS :

All parameters are measured in ug/kg (dry wt) except where noted

BD = Not Detected RL = Recording Limit

Volatile Organic Subsurface Soil Analytical Data Clark Property

Hazardous Substance List (HSL) - Volatile Organics EPA Method 8240/624

Compound	TI	8-10	T	TB-10 :		TB-10 ;		TB-10 ;		TB-11	
	5-3 (4-6) ;			S-5 (8-10) ;		S-6 (10-12) !		S-7 (12-14) ;		S-2 (2-4)	
	RL	VAL :	RL	VAL	: PI	YAL :	RL	VAL	RL	VAL	
Chloromethane ;	650	ND :	7500	ID	: 1700	ND	6500	ID :	150	II	
Brononethane	650	ID :	7500	ID	: 1700	ID	6500	ID :	150	EI.	
Vinyl Chloride	650	ID :	. 7500	19000	1 1700	25000	6500	29000	150		
Chlorcethane	650	ID :	7500	ND	1700	ID	6500	ID :	150	I	
Methylene Chloride	650	850	7500	30000	1700	4000	6500	7600	150	480	
Acetone	3300	ND :	38000	40000	: 8500	150000	33000	94000	750	11	
Carbon Disulfide	260	ID :	3000	ID	580	ID ID	2600	ND :	60		
1,1-Dichloroethylene	260	ID :	3000	ID	680	I D	2500	ID :	60		
1,1-Dichloroethane	250	ID :	3000	12000	680		2600	8200	60	П	
1,2-Trans-Dichloroethylene;	260	9400		37000				30000		98	
Chloroform	260	ND :	3000	ND	: 680	ID	2500	ND :	60	10	
1.2-Dichloroethane	260	ID :	3000		680		2500	ID :	60	11	
2-Butanone	1300	ID :	15000	ID	: 3400		13000	BD :	300	II	
1.1.1-Trichloroethane	260	11000		100000	680			11000		П	
Carbon Tetrachloride	260	ID :		ND			the second second	D		П	
Vinyl Acetate	1300	ND ;	15000	ID	: 3400	ID	13000	ID :	300	Π	
Bronodichloromethane	260	ID :		ID	: 680	ID	2600	ID :	60	П	
1,2-Dichloropropane	260	ID :		ID	580	and the second se		ID :	60	Π	
1,3-Trans-Dichloropropene	250	ID :	3000	ND	680	and the second sec		D	60	II	
frichloroethylene	260	38000		350000	680	and the second se		15000		5100	
Dibromochloromethane ;	260	ND :	3000	ND	: 680	ID	2500	ND ;	60	M	
1.1.2 Trichloroethane	260	ID :	3000	ID	: 680	ID	2600	ID ;	60	I	
Benzene	260	ID :	3000	1D	680	ID	2500	ID :	60	I	
1,3-Cis-Dichloropropene	260	ND :	3000	ND	680		2600	ND :	60	I	
2-Chloroethyl vinyl ether	1300	ND :	15000	ND	3400	and the second se	13000	ND :	300	NI	
Bromoform	260	ND ;	3000	ND	: 680	ID	2600	ND :	60	II	
-Methyl-2-Pentanone	1300		15000	ED	3400	4700	13000	ID :	300	11	
2-Heranone	1300	ID :					13000	ID :			
1,1,2,2-Tetrachloroethane ;	250	ND :			680		2600	ID :	60		
etrachloroethylene	260	ID :		ID	•			ND :	60	II	
oluene	260	16000 ;	3000	170000	: 680	57000	2600	55000	60	290	
hlorobensene	260	ID :		ND	-	ND :	2600	ID :	60	11	
thyl Benzene	260	HD ;	3000		: 680		2500	ID :	60	71	
Styrene	260	BD ;	3000	ND	: 680			. ID	60	I	
Total Tylenes	260	980						ID :		420	

HOTES :

All parameters are measured in ug/kg (dry wt) except where noted

ND = Not Detected RL = Recording Limit

Clark Property

Hazardous Substance List (HSL) - Volatile Organics IPA Method 8240/624

	1	B-11		B-11 !		B-11 ¦		B-11 ;	TB	-12
Compound	S-3	(4-6)	: S-4	(6-8)	S-5 ((8-10) ;	S-6	(10-12) ;	S-3	(4-6)
1	RL	TAL	: BI	YAL :	RL	VAL :	RL	VAL ;	RL	VAI
Chloromethane :	. 330	ND	: 1600	ID ;	1500	ID ;	2000	ND ;	700	Π
Bromomethane	330	ID	: 1600	ID ;	1500	ID :	2000	ID ;	700	
Vinyl Chloride	330	1D	: 1600	ID ;	1500	ID ;	2000	8000 ;	700	
Chloroethane	330	ND				ID ;	2000	ID ;	700	
Methylene Chloride	330	ND				ND ;	2000	11000 ;	700	880
Acetone	1700	ND	: 7800	ID ;	7500	ID ;	9800	ND ;	3500	II
Carbon Disulfide	130	ID	: 620	ID ;	600	ID ;	780	ND :	280	I
1,1-Dichloroethylene	130	ID	: - 620	ID ;	600	ID ;	780	2400 ;	280	440
1,1-Dichloroethane	130	ID	-			ID :	780	18000 :	280	15000
1,2-Trans-Dichloroethylene;	130	3900				4000 ;	780	68000 ;	280	I
Chloroform ;	130	ND	: 620	ID ;	600	ND ;	780	ID ;	280	II
1.2-Dichloroethane	130	ID	: 620	ID :	600	D:	780	D:	280	
2-Butanone	660	ID	: 3100		30000	ID ;	3900	ID ;	1400	I
1.1.1-Trichloroethane	130		: 620			5800 ;	780	33000 ;	280	I
Carbon Tetrachloride	130	ID				ID ;	780	D	280	1
Vinyl Acetate	660	ID	; 3100	D;	30000	ID ;	3900	ID ;	1400	I
Bronodichloromethane	130	ID	: 620	ID ;	600	D:	780	ID ;	280	П
1,2-Dichloropropane	130	ID	: 620	ID :	600	ID ;	780	ID :	280	
1,3-Trans-Dichloropropene	130	ID	620		600	D	780	ID :	280	П
Trichloroethylene	130	7300	•			32000 ;		600000 ;	280	2000
Dibromochloromethane	130	ID	; 620	ID ;	600	ID ;	780	ND ;	280	II
1,1,2 Trichloroethane	130	ID	: 620	ID ;	600	ID ;	780	ID ;	280	
Benzene	130		620			ID ;	780	ND ;	280	I
1,3-Cis-Dichloropropene	130		620			D ;	780	ID ;	280	M
2-Chloroethyl vinyl ether :	660	ND	3100			ND ;	3900	ND :	1400	I
Bronoforn	130	ID	: 620	ND ;	600	ID ;	780	ID ;	280	
-Hethyl-2-Pentanone	660	8D	: 3100	ID ;	30000	ID ;	3900	D:	1400	
2-Heranone	660	#D				ID ;	3900		1400	1
1,1,2,2-Tetrachloroethane	130	ID				ID ;	780		280	11
etrachloroethylene	130	ND				D	780		280	N
foluene	130	21000		47000 ;	600	24000 ;	780	200000 ;	280	9900
hlorobenzene	130	ID	620	ID ;	600	D;	780	D;	280	I
thyl Benzene	130	760	620	1400 ;	600	700 ;	780	2300 ;	280	I
Styrene	130	BD				10 ;			280	
total Tylenes	130	5200				4900 ;		16000 ;	280	1200

HOTES :

All parameters are measured in ug/kg (dry wt) except where noted

ND = Not Detected RL = Recording Limit

Table 3.11 (continued) Volatile Organic Subsurface Soil Analytical Data Clark Property

Eazardous Substance List (HSL) - Volatile Organics RPA Method 8240/624

	1		3-13 :		-13
Compound	1	S-34	(6-7) ;	S-3B	(7-8)
	1	RL	VAL :		TAL
Chloromethane	1	3300	ID ;	220	II
Brononethane	1	3300	ID ;	220	10
Vinyl Chloride	i.	3300	7100 :	220	760
Chloroethane	i	3300	ID ;	220	
Sethylene Chloride	:	3300	5400	220	350
Acetone	:	17000	ID ;	1100	Π
Carbon Disulfide	:	1300	D	88	П
1,1-Dichloroethylene	1	1300	ID :	88	140
1,1-Dichloroethane	:	1300	1700 :	88	Π
1,2-Trans-Dichloroethylene	-	1300	12000 ;	88	810
Chloroform	:	1300	ID ;	88	ID
1,2-Dichloroethane	:	1300	ID ;	.88	ID
2-Butanone		56000	ID :	4400	ID
1,1,1-Trichloroethane	;	1300	ID :	88	I
Carbon Tetrachloride	-	1300	ID :	88	ID
/inyl Acetate	:	66000	ID ;	4400	ID
Bromodichloromethane	:	1300	ID :	88	
.2-Dichloropropane	1	1300	ID :	88	Π
.3-Trans-Dichloropropene	:	1300	D	88	I
richloroethylene	:	1300	2100	88	210
Dibromochloromethame	:	1300	ID ;	88	Π
1,1,2 Trichloroethane	1	1300	ID :	88	ID
enzene	1	1300	ND :	88	SD.
.3-Cis-Dichloropropene	1	1300	ID :	88	I
Chloroethyl vinyl ether	:	66000	D	4400	I
ronoforn	:	1300	ID ;	88	I
-Hethyl-2-Pentanone	1	66000	ID ;	4400	I
-Hezanone	1	56000	ND ;		ID
1,1,2,2-Tetrachloroethane	:	1300	ID ;	88	П
etrachloroethylene	:	1300	ID ;	88	I
oluene	:	1300	20000 ;	88	2200
hlorobenzene	1	1300	ID ;	88	T
thyl Benzene	:	1300		88	110
tyrene	:	1300		88	I
otal Iylenes	:	1300	4400 ;	88	520

HOTES :

All parameters are measured in ug/kg (dry wt) except where noted

ND = Not Detected RL = Recording Limit

APPENDIX B

,

GROUNDWATER DATA

Table J.8 Volatile Organic Groundwater Analytical Data Clark Property Harch 22 - 23, 1988

-

Hazardous Substance List (HSL) - Volatile Organics IPA Hethod 524

Compound			1				
	: RL	P-12	:	PL	P-14	RL	P-20
Chloromethane	5000	D	:	5	D	13000	D
Bromomethame	5008	D	:	5	D	: 13000	ID
Vinyl Chloride	5000	35000	1	5	27	; 13000	D
Chloroethane	5000	D	:	5	D	; 13000	ID
Hethylene Chloride	20008	D	1	10	ID	25000	ID
Acetone	25000	D	1	25	D	130000	D
Carbon Disulfide	2000	D	:	2	D	: 5000	ID
1,1-Dichloroethylene	2000	D	:	2	2.1	: 5000	D
1,1-Dichloroethame	2008	31000	:	2	50	: 5000	12000
1,2-Trans-Dichloroethylene	2008	85088	:	2	D	: 5000	240000
Chloroform	2000	D	!	2	D	5000	D
1.2-Dichloroethane	2000	D	1	2.	D	: 5000	D
2-Butanone	10000	D	1	10	D	: 25008	D
1,1,1-Trichloroethame	2008	38008	:	2	D	: 5000	180808
Carbon Tetrachloride	2000	D	1	2	D	5000	D
Vinyl Acetate	10000	D	1	10	D	25000	D
Bromodichloromethame	2000	D	1	2	D	: 5000	D
1.2-Dichloropropane	2000	D	1	2	D	: 5000	D
1.3-Trans-Dickloropropene	2000	D	1	2	D	: 5000	ID
Trichloroethylene	2000	170088	1	2	84	: 5000	330000
Dibromochloromethane	2008	D	:	2	D	5000	ID
1,1,2 Trichloroethane	2088	D	1	2	D	: 5000	ID
Benzene	2000	D	1	2	4.4	: 5000	ID
1,3-Cis-Dichloropropene	2808	D	1	2	D	5000	D
2-Chloroethyl vinyl ether	10000	D	1	10	D	25000	ID
Bronoforn	2008	D	;	2	D	5000	ID
4-Hethyl-2-Pestanone	10000	D	1	10	D	: 25000	D
2-Teranone	10008	D	1	10	D	: 25000	D
1,1,2,2-Tetrachloroethane	2008	D	1	2	D	: 5000	ID
Tetrachloroethylene .	2000	D	1	2	D	5000	D
Tolucae	2008	110000	1	2	128	5000	130000
Chlorobensene	2008	D	1	2	n	: 5000	П
Ithyl Benzene	2008	D	:	2	11	: 5000	10
Styrene	2000	D	1	2	D	: 5000	11
Total Tyleses	2008	D	!	2	46	5000	10

All values expressed in ug/l (ppb).

ND = Not Detected RL = Reporting Limit

Table J.8 (continued) Volatile Organic Groundwater Analytical Data Clark Property Harch 22 - 23, 1988

Hazardous Substance List (ISL) - Volatile Organics IPA Hethod 624

Cospound	RL	DGC-85	RL	DGC-8D	PL.	DGC-105
Chloromethame	5	D	; 5	D	500	D
Bronosethane	5	D	5	D	500	D
Vinyl Chloride	5	D	5	D	508	890
Chloroethane	5	D	1 5	D	500	D
Eethylene Chloride	5	D	5	D	1000	D
Icetone	25	D	: 25	D	2500	21000
Carbon Disulfide :	2	D	2	D	200	ID
1.1-Dichloroethylene ;	2	D	: 2	D	200	350
1,1-Dichloroethane	2	9.1	2	3.9	208	3100
1.2-Trans-Dickloroethylene	2	12	2	5.6	208	13000
Chloroform ;	2	D	; 2	D	200	10
1.2-Dichloroethane	2	D	: 2	D	: 200	n
2-Butanone	10	D	: 10	D	1000	3106
1,1,1-Trickloroethame ;	2	D	: 2	D	200	3700
Carbon Tetrachloride	2	D	: 2	D	200	n
finyl Acetate :	18	D	: 10	D	1000	Π
Srozodichlorozethaze :	2	D	: 2	D	200	п
1.2-Dichloropropane	2	D	2	D	200	11
1,3-Trans-Dickloropropene	2	D	2	D	208	1
Trickloroethylene :	2	4.2	: 2	3.2	208	48000
Dibromochloromethame ;	2	D	; 2	D	290	D
1,1,2 Trichloroethane :	2	D	2	ID	: 200	10
Rasene !	2	2.1	2	D	: 200	I
1,3-Cis-Bichloropropene :	2	n	2	D	288	П
2-Chloroethyl vinyl ether ;	10	D	: 10	D	1000	D
Brosofors	2	D	; 2	D	208	11
-Hethyl-2-Pestasone	10	D	1 10	D	1008	1
-ferance :	10	D	1 10	D	1000	11
1,1,2,2-Tetrachloroethame	2	D	: 2	D	200	П
fetrachloroethylene :		D	; 2	D	200	Π
oluene	2	13	: 2	2.5	208	41000
lorobenzene	2	D	: 2	D	: 200	
thyl Bensene	2	D	: 2	D	200	
styrene	2	D	: 2	D	200	1
lotal Iylenes	2	D	: 2	ID	200	2400

All values expressed in ug/1 (ppb).

ND = Not Detected RL = Reporting Limit

Table 3.8 (continued) Volatile Organic Groundwater Analytical Data Clark Property Barch 22 - 23, 1988

-

Hazardous Substance List (HSL) - Volatile Organics IP1 Method 624

Cospound	1 11	DGC-10D	RL	DGC-11	PL	DGC-12
Chloromethame	; 500	ID ;	5	D	5	D
Broschethane	: 500	ID ;	5	D	5	ID
Vinyl Chloride	; 500	720 ;	5	D	5	D
Chloroethane	500	D	5	D	5	D
Bethylene Chloride	; 500	D ;	5	D	5	ID
Icetone	: 2500	55000 ;	25	D	25	D
Carbon Disulfide	208	D ;	2	D	2	ID
1,1-Dichloroethylene	: 200	1500 ;	2	D	2	D
1,1-Dichloroethane	200	5300 ;	2	D	2	ID
1,2-Trans-Dickloroethylene	; 200	10000 ;	2	D	2	D
Chloroform	; 200	D ;	2	D	2	D
1,2-Dichloroethane	200	D ;	2	D	2	D
2-Butanone	1000	3800 ;	10	D	10	D
1,1,1-Trickloroethame	208	18008 ;	2	D	2	D
Carbon Tetrachloride	: 200	D ;	2	D	2	D
linyl Acetate	: 1000	D :	10	D	10	D
Bronodichloromethane	200	D	2	D	2	D
1,2-Dichloropropane	208	D	2	D	2	D
1,3-Trass-Dichloropropese	208	D	2	.D	2	D
frichloroethylene	200	160000 ;	2	D	2	D
Dibromochloromethane	: 200	D :	2	D	2	D
1.1.2 Trichloroethane	200	10 :	2	D	2	ID
lensene	200	D	2	D	2	ID
1.3-Cis-Dickloropropene	200	D	2	D	2	ID
2-Chloroethyl vinyl ether	1000	D	10	D	10	D
Bronoforn	: 208	D :	• 2	D	2	ID
-Hethyl-2-Pestasone	1008	D	19	D	10	D
-Iezazoze	1000	D	10	D	10	ID
1,1,2,2-Tetrachloroethane	200	D	2	D	2	D
fetrachloroethyleae	208	D	2	D	2	D
foluene	: 200	73968 ;	2	D	2	D
Chlorobensene .	208	D	2	D	2	D
thyl Bensene	200	220	2	D	2	D
Styrene	208	D	2	D	2	ID
Total Tylenes	208	2100	2	D	2	ND

All values expressed in ug/l (ppb).

ID = Not Detected

RL = Reporting Limit

Table 3.8 (continued) Volatile Organic Groundwater Analytical Data Clark Property Earch 22 - 23, 1988

Hazardous Substance List (HSL) - Volatile Organics IPA Method 624

Compound		RL	DGC-13		RL	I-3 (DGC-10D)
Chloromethane	!	5000	D	:	5000	D
Brononethane	1	5000	D	1	5000	D
inyl Chloride	1	5000	55000	1	5008	ID
Aloroethane	1	5000	D	i	5000	D
lethylene Chloride	1	20000	D	i	5000	D
cetone	:	25000	D		25000	53000
arbon Disulfide	:	2000	D	1	2008	D
.1-Dichloroethylene	1	2000	D	i	2000	D
,1-Dichloroethane	i	2000	31000	i.	2000	6700
,2-Trans-Dichloroethylene	i	2000	77000	1	2000	12000
Aloroform	!	2000	D	!	2000	D
.,2-Dichloroethane	i	2000	D	i	2000	D
-Butanone	i	10000	D	i	10000	D
1,1,1-Trichloroethane	:	2009	D	i	2000	22000
arbon Tetrachloride	:	2008	D	i	2800	D
inyl Acetate	!	10080	D	!	10000	D
ronodichloronethane	i	2000	D	i	2000	D
.2-Dichloropropane	i	2000	D	i	2000	D
.3-Trans-Dichloropropene	1	2000	D	i	2000	D
richloroethylene	i	2008	23000	;	2000	150000
ibronochloronethane	!	2008	D	!	2000	D
:1.2 Trichloroethane	1	2000	D	i	2000	D
ensene	i	2000	D	i	2000	ID
.3-Cis-Dichloropropene	i	2008	D	i	2000	D
-Chloroethyl vinyl ether	i	10000	D	i	10000	ID
rosofors	:	2008	D	:	2080	D
-Hethyl-2-Pentanone	;	10000	D	1	10808	D
-lezanone	1	10000	D	1	10000	ID
,1,2,2-Tetrachloroethane	:	2008	D	1	2000	D
etrachloroethylene	:	2008	D	1	2000	D
oluene	1	2000	. 79000	:	2000	73000
Mlorobensene	1	2008	D	:	2000	D
thyl Benzene	:	2000	D	1	2000	D
tyrene	1	2008	D	:	2000	D
otal Tylenes	i	2000	2800	;	2000	D

All values expressed in ug/l (ppb).

X = Blind Duplicate
HD = Hot Detected
RL = Reporting Limit

Table 3.9 Semi-Folatile Organic Groundwater Amalytical Data Clark Property Harch 22 - 23, 1988

Hazardous Substance List (ISL) - Semivolatile Organics and Base Meutrals IPA Method 625

Compound		1.49	;		to the second	:		
	PL.	DGC-10S	1	RL	DGC-10D	;	RL	DEC-10D*
Phenol ;	10	21	!	10	52	!	10	63
bis(2-Chloroethyl)ether	10	D	i	10	ID	i	10	ID
2-Chlorophenol	10	ID	1	10	ID	1	10	ID
1,3-Dichlorobenzene	10	ID	1	10	ID	1	10	ID
1,4-Dichlorobenzene	10	D	1	10	ID	1	10	D
Benzyl Alcohol	10	Tr	-	10	Îr	-	10	Tr
1.2-Dichlorobenzene	10	17	-	10	Tr	1	10	Tr
2-Methylphenol	10	11	:	10	Tr	1	10	Tr
bis(2-Chloroisopropyl)ether :	10	D	:	10	D	1	10	D
4-Methylphenol	10	35	1	10	33	1	10	38
I-Bitrosodi-n-propylamine ;	10	ID	!	10	ID	!	10	ID
Herachloroethane	10	D	1	10	D	1	10	ID
litrobensene	10	D	1	10	D	i	10	ID
Isophorone	10	D	1	10	ID	1	10	ID
2-Mitrophenol	10	D	1	10	ID	1	10	D
2.4-Dimethylphenol	10	D	1	19	D	1	10	ID
Benzoic Acid	50	ID	1	58	D	1	50	23
bis(2-Chloroethoxy) methane	10	D	1	19	D	1	10	ID
2,4-Dichlorophenol	10	D	1	10	D	1	10	D
1,2,4-Trichlorobensene	10	D	1	10	ID	-	10	ID
Taphthalene :	10	47	!	10	24	!	10	23
4-Chloroamilime	10	ID	:	10	ID	:	10	I
Texachlorobutadiene	10	D	;	10	D	1	10	ID
4-Chloro-3-methylphemol	10	D	:	10	ID	1	10	ID
2-Methylmapthaleme	10	Tr	:	10	Īr	;	10	Tr
Herachlorocyclopentadiene :	10	D	:	10	ID	:	10	IC
2.4.5-Trichlorophenol	18	D	:	10	D	:	10	ID
2,4,5-Trichlorophenol	50	D	1	50	D	;	50	
2-Chloronaphthalene	10	D	:	10	ID	1	10	
2-Bitroamiline	50	D	1	50	D	:	50	T

All values expressed in ug/l (ppb).

ID = Not Detected

RL = Reporting Limit

Tr = Trace Detected

1 = filtered Sample

Semi-Volatile Organic Groundwater Analytical Data Clark Property Harch 22 - 23, 1988

Hazardous Substance List (HSL) - Semivolatile Organics and Base Mentrals IPA Method 625

Compound	RL	DGC-10S	RL	DGC-10D	RL	DGC-10Ds
N:==+k=1 =k+k=1=+=	10	ID	10	ID		ID
Dimethyl phthalate	10	D	10	D	10	ID
Acenaphthylene 3-Hitroaniline	50	D	50	ID	50	
	10					ID
Acenaphthene 2.4-Dinitrophenol	50	D	10		10	
4-Mitrophenol	50	D	50	D	50	
Dibenzofuran	10	D	10	D	10	
2.4-Dinitrotoluene	10	ID	10	D	10	
2.6-Dinitrotoluene	10	D	10	D	10	
	10	D	10			
Diethyl phthalate :	10		1. 10	ID	10	10
4-Chlorophenyl phenyl ether ;	10	D	10	ID	10	D
fluorene	10	ID	10	ID	10	10
4-Sitroaniline	50	D	50	ID	50	10
4,6-Dimitro-2-methylphenol ;	50	D	50	ID	50.	Π
I-fitrosodiphenylamine	10	D	10	ID	: 10	11
4-Bromophenyl phenyl ether	10	D	10	D	10	Π
Texachlorobensene	10	D	10	ID	: 10	Π
Pentachlorophenol	50	D	50	ID	50	1
Phenanthrene	10	Tr	10	D	10	11
Inthracene	10	D	10	ID	10	П
Di-m-butyl phthalate :	10	Ĩr	19	Ĩr	: 10	11
Iluoranthene	10	D	10	D	10	
Pyrene	10	D	10	D	10	T
Butyl bensyl phthalate	10	D	10	ID	10	D
3.3'-Dichlorobensidine	20	D	20	D	20	n
Benzo(a)anthracene	10	D	10	ID	10	I
bis(2-Sthylhexyl)phthalate	10	Īr	10	Tr	10	T
Chrysene	10	D	10	ID	10	I
Di-n-octyl phthalate	10	D	10	8D	10	I
Benzo(b)fluoroanthene	10	ID	10	D	10	П
	10	EP.	1 14	ED.	: 10	
Benzo(k)fluoroantheme	10	ID ID	10	ID.	10	
Benzo(a)pyrene	10	D	10	ID	10	
Indeno(1,2,3-c,d)pyrene	10		10			
Dibenzo(a, h)anthracene	10	ID	10	ID	10	11
Benzo(ghi)perylene	10	D	10	D	10	

All values expressed in ug/l (ppb).

HD = Hot Detected RL = Reporting Limit Tr = Trace Detected # = Filtered Sample

Honitoring Well Humber	Total Petroleum Hydrocarbon(ng/L)	
P-12	14	G/LO
P-14	9.5	LO
P-20	12	G/LO
DGC-8S	1.1	LO
DGC-8D	2.3	EC
DGC-10S	1 11	G/LO
DGC-10D	15	G/LO/TO
DGC-11	0.47	HC
DGC-12	5.6	LO
DGC-13	8.9	G/LO
I-3 (DGC-10D)	13	G/LO

Table 3.10 Petroleum Hydrocarbon Groundwater Analytical Data Clark Property Harch 22 - 23, 1988

I = Blind Duplicate

LO = Lubricating Oil

PAH = Polynuclear Aromatic Hydrocarbons

TO = Fuel Oil

G = Gasoline HC = Higher Level Hydrocarbons

* The sample has GC/FID characteristics that are similar to one of the above materials.

APPENDIX C

,

,

.

SURFACE WATER AND SEDIMENT DATA

Table 3.12 Volatile Organic Surfacewater and Stream Sediment Analytical Data Clark Property Harch 22 - 23, 1988 Hazardous Substance List (HSL) - Volatile Organics IPA Method 624

Compound	Barge RL	Canal SP-1	:	Barge RL	Canal SP-2
Chloromethane :	5	ND	1	5	ND
Brononethane	5	ND	1	5	ED.
Vinyl Chloride	5	ID	1	5	ID
Chloroethane :	5	ND	:	5	HD
fethylene Chloride :	10	ND	1	10	ND.
Acetone :	25	ND	1	25	ID
Carbon Disulfide ;	2	1D	1	2	ID
1,1-Dichloroethylene ;	2	ID	1	2	ID
1,1-Dichloroethane	2	ID	1	2	BD
,2-Trans-Dichloroethylene ;	2	ND	ł	2	ND
chloroform ;	2	ID	1	2	ID
1,2-Dichloroethane	2	ID	:	2	ID
2-Butanone	10	ID	1	10	BD
1,1,1-Trichloroethane	2	ID	1	2	ID
Carbon Tetrachloride	2	ID	1	2	ID
finyl Acetate	10	ID	;	10	ND
Bromodichloromethane	2	D	1	2	ID
1,2-Dichloropropane	2	ND	1	2	ID
1,3-Trans-Dichloropropene	2	ID	1	2	ID
richloroethylene	2	ND	1	2	ID
Dibromochloromethane :	2	ND	!	2	ND
1.1.2 Trichloroethane	2	ID	-i -	2	ND
Benzene	2	ND	1	2	ND
.3-Cis-Dichloropropene	2	ID	1	2	ID
-Chloroethyl vinyl ether	10	ND	i	10	ID
Bronoforn	2	ID	1	2	ND
-Hethyl-2-Pentanone	10	ID	i	10	I
-Iezanone	10	ND.	i	10	ND
1,1,2,2-Tetrachloroethane	2	ND		2	ID
etrachloroethene	2	2		2	ID
oluene	2	ND	1	2	ID
hlorobensene	. 2	ID	1	2	ID
thyl Benzene	2	ND	1	2	D
ityrene	2	ID	i	2	ID
otal Tylenes	2	ND	i.	2	ND

Values for aqueous samples expressed in ug/l (ppb). Values for solid samples expressed in ug/kg (ppb) on dry weight basis.

ND = Not Detected

RL = Reporting Limit

Volatile Organic Surfacewater and Stream Sediment Analytical Data Clark Property Harch 22 - 23, 1988 Hazardous Substance List (HSL) - Volatile Organics EPA Method 624

Compound	Ditch BL	water SW-2		Ditch BL	sediment SED-2
Chloromethane !	130	ID		1000	ID
Bronomethane	130	ID	• •	1000	ND
Vinyl Chloride	130	2300	:	1000	3700
Chloroethane	130	D	1	1000	ND
Methylene Chloride	500	ID	i	6000	ND
Acetone :	630	5800	1	5000	8600
Carbon Disulfide :	50	ID	1	2000	8D
1.1-Dichloroethylene	50	180	1	400	5400
1.1-Dichloroethane :	50	1100	:	400	8300
1,2-Trans-Dichloroethylene ;	50	14000	1	400	280000
Chloroform :	50	ID	:	400	ID
1.2-Dichloroethane :	50	ND	1	400	ID
2-Butanone :	250	ID	1	2000	ND
1,1,1-Trichloroethane :	50	5000	:	400	190000
Carbon Tetrachloride :	50	ID	:	400	ID
Vinyl Acetate :	250	ID	1	400	ND
Bromodichloromethane :	50	ID	1	400	ND
1,2-Dichloropropane :	50	ID	1	400	ID
1.3-Trans-Dichloropropene :	50	ID	:	400	ID
Trichloroetheme :	50	5700	1	400	100000
Dibromochloromethane ;	50	ID	1	400	HD
1,1,2 Trichloroethane :	50	ND	1	400	ID
Benzene :	50	ID	1	400	ND
1.3-Cis-Dichloropropene :	50	ID	1	400	HD
2-Chloroethyl vinyl ether ;	250	ND	:	2000	D
Bromoform !	50	ID	:	400	ND
4-Methyl-2-Pentanone :	250	300	1	2000	ND
2-Heranone	250	ND	1	2000	ID
1,1,2,2-Tetrachloroethane :	50	ID	:	400	#D
Tetrachloroethylene ;	50	ND	:	400	ND
foluene	50	5700	1	400	1100000
Chlorobenzene :	50	ND	1	400	ID
thyl Benzene :	50	ND	1	400	19000
Styrene	50	ID	1	400	ID
Total Tylenes :	50	170	1	400	190000

Values for aqueous samples expressed in ug/l (ppb). Values for solid samples expressed in ug/kg (ppb) on dry weight basis.

ND = Not Detected RL = Reporting Limit

Sample Identification	Date	Total Petroleum	Qualititive
and Location		Hydrocarbon(mg/L)	Identification #
Ditch Sediment			
SED-1	3/9/88	140	FO/LO
SED-2	3/22-23/88	4900	LO
Ditch Water			
SW-1	3/9/88	ND	HA
SW-2	3/22-23/88	3.1	Lo
Barge Canal			
SP-1	3/22-23/88	0.22	TA
SP-2	3/22-23/88	0.16	TA

Table 3.13 Petroleum Hydrocarbon Surfacewater and Stream Sediment Analytical Data Clark Property

LO = Lubricating Oil

PAH = Polynuclear Aromatic Hydrocarbons

FO = Fuel Oil

G = Gasoline

SD = Not detected at or above the reporting

limit for total product of 0.50 mg/L.

- NA = Not Applicable.
- = Results in ug/g (dry wt).

* The sample has GC/FID characteristics that are similar to one of the above materials. APPENDIX D

AIR DATA

APPENDIX D

CALCULATIONS AND ADDITIONAL DATA USED TO ESTIMATE ONSITE AIR CONCENTRATIONS

- I. Data used in Tables D-1 and D-2.
 - A. To calculate the concentration in air spaces in the soil, the following factors were used:

$$C_{sa} = \frac{C_i P_i M W_1}{RT}$$

 $C_{sa} = \text{concentration in air space } (g/cm^3)$

 C_i = concentration in soil (weight fraction: mg/mg)

$$ug/kg = 10^{-9} mg/mg$$

P_i = Vapor Pressure (mm Hg)

R = gas constant $(6.24 \times 10^4 \text{ cm}^3 \text{mm Hg/mole-K}^0)$

T = absolute Temp. (298^oK)

MW_i = molecular weight (g/mole)

B. To calculate the emission rate from the soil, the following factors were used:

$$E_i = \frac{C_{sa}D_iA O_T^{4/3}}{Z}$$

E; = emission rate (g/sec)

 $C_{sa} = conc.$ in air spaces (g/cm^3)

 $D_i = Diffusion Coefficient (cm^2/sec)$

A = exposed area (cm^2)

 O_T = total soil porosity (0.1)

Z = depth of soil cover (cm)

TABLE D-1

EMISSION MATES FOR CONTAMINANTS IN SOIL FROM PLUMES a & b

	-	CIUS	VN NOTO	LES P	OK CONTA	MINANTS I	ENTENTON MATES FOR CONTAMINANTS IN SOIL FROM PLUMES a & D	M PLUMES a	& t		
INDICATOR CHEMICALS	worst case soil cunc.* Flume a mg/mg			٨P	vP mmfig •	MW * K/mole	Csa Plume a &/cm3	Csa Flume b g/cm3	c	Ð	Emlasion Kate Worat case Plume b K/sec
ACETONE	1.50E-04	1.60E 06	270	6 30	e 30 deg C	58.08	1.26E.07	1.35E-09	0.09699	1.66E-05	2.14E 08
BENZENE	!	9.40E-08	76	0 20	20 deg C	78.11	· · ·	3.00E-11	0.08195		4.02E-10
2 BUTANONE (MEK)	1	1	77.5	0 20	20 deg C	72.10			0.08417		
1,1 DICHLOROETHANE	1.80E-05		180	9 20	20 deg C	98.96	1.72E-08	8.24E-09	0.08557	2.00E-06	1.15E 07
1, 1 DI CIILOROETHENE	2.40E-06		500	6 20	20 deg C	96.95	6.26E-09	3.13E-09	0.07442	6.30E-07	3.81E-08
t 1.2 DICHLOROETHENE			200	6 14	14 deg C	96.95	7.09E-08	5.63E.08	0.07442	7.14E.06	6.85E-07
ETHYLBENZENE	4.40E-06	AL (12 1	7	0 20	20 deg C	106.17	1.76E-10	1.08E-10	0.06274	1.49E-08	1.11E 09
METHYLENE CHLORIDE	1.50E-05	1.10E-04	349	0 20	20.deg C	84.93	2.39E-08	1.75£-07	0.08557	2.77E.06	2.45E 06
TOLUENE	4.60E-04	4.90E 04	22	e 20	20 deg C	92.10	5.01E-08	5.34E-08	0.07367	4.396.06	6.43E 07
1,1,1 TRICHLOROETHANE	1.60E-04	1.60E-04	100	6 20	20 deg C	133.41	1.15E-07	1.15E-07	0.07496	1.16E-05	1.41E.06
TRICHLOROETHENE	9.70E-04		60	8 20	20 deg C	131.50		4.67E-08	0.07638	4.25E-05	5.83E-07
VINYL CILLORIDE	2.90E-05 8.00E-06	8.00E-06	2660	6 25	25 deg C	62.50		7.15E-08	0.10094	3.54E 05	1.18E 06
XYLENES (total)	3.40E-05 5.20E-05	5.20E-05		e 20	e 20 deg C	106.17	106.17 1.16E-09 1.78E-09	1.78E-09		1.06E-07	1.96E-08
	<pre>* Valu (not valu (not))</pre>	* Values used In L (not shown in th * Value used In E (not shown in th		on 1 on 1 le ar n 2 t re va	to calcu e consta o calcul riables	Equation 1 to calculate Csa value he table are constants R & T foun quation 2 to calculate emission r able are variables A, Z, O_T found i	value found in ion rate und in sec	Equation 1 to calculate Csa value \mathbf{F} found in section D-I.A.) quation 2 to calculate emission rate able are variables A.2.0 \mathbf{T} found in section D-I.B.)	(. N .)		

TABLE D 2

	CALI	ULATED	AVE	RAGE	EMICE	ION LATE	FOR CONTAR	CALCHEATED AVERAGE EMISSION RATE FOR CONTAMINANTS IN SOIL	SOIL	
I NDI CATOR CHEMI CALS	soll conc. (avg) * mg/mg		٨Ŀ	VF mull& **	:	MW **	Csa (avg) g/cm3	diffusion coeff.*** cm2/sec	= .	
ACETONE	1.33E-06	270		30 deg	:	5.8.08	1.12E-09	0.03699	1.49E 06	
BENZENE	6.61E-08	76	6	20 deg	C C	78.11	2.11E-11	0.08195	2.37E.08	
2 BUTANONE (MEK)	1	77.5	6	20 deg	D J	72.10		0.08417	1	
1,1 DICHLOROETHANE	8.55E-U7	180	6	20 deg	C	98.96	8.19E-10	0.08557	9.62E-07	
1,1 DICHLOROETHENE	1.83E-07	500	6	20 deg	с С	96.95	4.77E-10	0.07442	4.87E-07	
L 1, 2 DICHLOROETHENE	4.80E-06	200		14 deg	C	96.95	5.01E 09	0.07442	5.11E.06	
ETHYLBENZENE	2.50E-07	1	6	20 dek	D	106.17	9.99E-12	0.06274	8.60E-09	
METHYLENE CHLORIDE	1.71E .06	349	6	20 deg	0	84.93	2.73E-09	0.08557	3.20E.06	
TOLUENE	3.55E.05	52	6	20 deg	5	92.10	3.87E-09	0.07367	3.91E-06	
1, 1, 1 - TRI CHLOROETHANE	2.20E 06	100	(L)	20 deg	0	133.41	1.58E-09	0.07496	1.62E 06	
TRICULOROETHENE	1.32E 05	60	6	20 deg	C	131.50	5.60E-09	0.07638	5.87E-06	
VINYL CIILORIDE	8.64E-07	2660	0	@ 25 deg C	C	62.50	7.72E-09	0.10094	1.07E-05	
XYLENES (LOLAI)	2.46E-06	3	6	e 20 deg C	0	106.17	106.17 8.43E-11	0.06742	7.80E.08	
	 Average concentrations based on geometric * Values used in Equation 1 to calculate Csa 	ge conc	entr In E	ation	is bas	ed on ge	 Average concentrations based on geometric means Values used in Equation 1 to calculate Csa 	sue		

.

Values used in Equation 1 to calculate Usa (not shown in table are constants R & T found in section D-1.A.)
 Value used in Equation 2 to calculate emission rate (not shown in table are variables for A.2.0_T found in section D 1.

Values for Areas and Depth of Soil Cover

- 1. Worst Case
 - a. Plume a
 - 1. Area (A) = 9560.91 sq. ft. (8.88 E06 cm²)
 - 2. Depth of Soil Cover (Z) = 10 ft. (304.8 cm)
 - 3. Samples used to determine contaminant concentration for the area:
 - TB-6 (12-14') (14-16') (16-18') TB-10 (10-12') (12-14') TB-11 (10-12')

b. Plume b

- 1. Area (A) = 693.08 sq. ft. (6.44 E05 cm²)
- 2. Depth of Soil Cover (Z) = 6 ft. (182.88 cm)
- 3. Samples used to determine contaminant concentration for the area:
 - TB-2 (6-8') TB-2 (8-10') TB-2 (10-12') TB-2 (12-14')
- 2. Average/Most Probable Case
 - a. Area (A) = 38,800 sq. ft. ($3.604 \text{ E}07 \text{ cm}^2$)
 - b. Depth of Soil Cover (Z) = 4 ft. (121.92 cm)
 - c. Average contaminant concentration was based on the geometric mean:
 - 1) $(X_1.X_2.X_3.X_n)^{1/n}$
 - 2) Non-detects were calculated as 10% of the detection limit
 - 3) Data used to calculate geometric mean includes results from all samples collected below 4 ft.
 - 4) Results from the following samples were not included: TB-1; TB-5 (2-4 ft.); TB-11 (2-4 ft)

- II. Data used to construct Table D-3
 - A. To calculate the emission rate from ditch water, the following factors were used:
 - '1. k_1 and k_g

The liquid phase mass transfer coefficient (k_1) and the gas phase mass transfer coefficient (k_g) are calculated as follows:

$$k_{1} = (20) \left(\frac{44^{1/2}}{MW}\right) \text{cm/hr}$$
$$k_{g} = (3,000) \left(\frac{18^{1/2}}{MW}\right) \text{cm/hr}$$

where

MW = molecular weight (g/mole)

2. K_L

The two terms defined above can be used to calculate the overall liquid-phase mass transfer coefficient, K_I :

$$K_{L} = \frac{(H)(k_{g})(k_{1}), cm/hr}{[(H)(k_{g})] + k_{1}}$$

where

H = Chemical specific Henry's Law constant.

3. K_V

The volatilization rate constant, K_V , which determines the rate at which a chemical is released into the air, is

$$K_V = \frac{K_L , hr^{-1}}{h(3.6 \times 10^5)}$$

where

h = depth of the surface water body (cm).

TABLE D 3

* Surface(dltch) water concentration based on one sample collected for analysis g/sec Note: Not included in the table is the value used for the volume of the ditch 5.19 4.73E 07 11.82E 03 Enission 4.10E-04 8.78E-03 6.33E.02 8.78E.02 6.33E.02 4.72E.03 3.35E-01 7.02E 02 . . Rate EI 14.87 1.35E 06 1.16E 06 3.43E 02 3.13E 09 3.73E 09 4.91E-07 EMISSION RATE OF CONTAMINANTS FROM SURFACE WATER 3.53E.07 1.06E-06 2.14E 07 7.77E-07 5.39 4.91E 07 4.72E-07 4.55E 07 K۷ P B B F B P 5.18 3.87 5.39 8.53 - ----4.99 12.77 2.35 11.66 4.09E 02 KL atm m3/mole Henry's Law 7.04E 03 2.06E 05 2.74E 05 2.03E-03 6.66E 03 8.14E 02 5.50E 03 4.26E 03 1.90E-01 6.70E 02 6.60E.03 3.00E 02 9.10E-03 Constant 1235.25 1326.26 1235.25 11.1801 1292.66 1101.95 1109.93 1440.14 1292.66 1609.97 1670.11 1498.96 1279.46 Ke 16.78 12.88 13.47 12.88 14.39 11.49 11.57 15.62 13.34 13.47 13.82 17.41 15.01 KJ ----g/mole 36.95 62.50 1.70E+02 106.17 36.95 106.17 58.08 84.93 92.10 131.50 72.10 78.11 98.96 133.41 E 11 5.70E+03 sw/ditch 1.10E+03 1.80E+02 1.40E+04 5.70E+03 5.00E+03 2.30E+03 5.80E+03 CORC. + 1,'8n 1 1, 1, 1 TRICHLOROETHANE; 11 11 1. L 1, 2 DI CHLOROETHENE 1, 1 - DICHLOROETHENE METHYLENE CHLORIDE 1,1 DICHLOROETHANE 2 BUTANONE (MEK) TR1 CHLOROETHENE XYLENES (total) INDICATOR CHEMICALS VINYL CHLORIDE ETHYLBENZENE TOLUENE ACETONE BENZENE

B. Emission rate (E;)

The volatilization rate constant is used to determine the emission rate of the contaminant into the air.

 $E_i = (K_V)(C_{water})(V)$

 $E_i = emission rate$

 K_V = volatilization rate constant

 $C_{water} = concentration in ditch water (mg/L)$

- V = volume of the onsite ditch; based on the following dimensions of the ditch:
 - 1 ft x 2 ft x 400 ft =

 $30.48 \text{ cm x } 60.96 \text{ cm x } 12,192 \text{ cm} = 2.26 \text{ x } 10^7 \text{ cm}^3$

where $1 \text{ cm}^3 = 0.001 \text{L}$

 $2.26 \times 10^7 \text{ cm}^3 = 2.26 \times 10^4 \text{ L}$

III. Ambient air levels were determined by using the worst case and average case E_i values for onsite soils and ditch water in the following equation.

Air Concentration $(g/m^3) =$

r(m/sec) x u (m) x 1 (m)

E; - Emission rate

E;(g/sec)

r - wind speed (assumed 5m/sec)

- u atmospheric mixing zone (assumed 2m for onsite exposures)
- Distance to receptor (assumed 1m for onsite exposures)

APPENDIX E

APPENDIX E

METHODOLOGY FOR CALCULATING POTENTIAL ONSITE CHEMICAL EXPOSURES

- A. Chemical intake resulting from direct contact with onsite soils.
 - 1. The Exposure Factors Handbook (EPA, 1988) estimates the overall chemical intake via direct contact with soils to be 537 mg/day based on the following assumptions:
 - A 70 kg. adult performing outdoor work (eg. yard work, gardening)
 - No personal protective equipment (eg. gloves, tyvek)
 - 537 mg of totil is equivalent to 557 mg of shomiout (i.e. 100% absorption)
 - 57 mg of chemical would be absorbed through intact skin and 480 mg would be ingested from oral contact with contaminated hands via eating, smoking, etc.
 - 2. The soil intake factor (SIF) is multiplied by the soil concentration as follows:

SIF (mg/day) x Soil conc (mg/mg)=Chemical Intake (mg/day)

- B. Chemical intake from onsite inhalation exposure.
 - 1. The Toxicology Handbook (EPA, 1985) estimates the volume of air inhaled during an average workday to be 10 cu. meters.
 - 2. The air concentration (determined in Appendix D-III) is multiplied by

the workday inhalation volume as follows:

10 cu.m. air x Air conc (g/cu.m.) = Chemical Intake (g/day)

Chemical Intake (g/day) x 1000 mg/g = Chemical Intake (mg/day)

C. Intake factors assume 100% absorption of the chemicals.

APPENDIX F

APPENDIX F

METHODOLOGY FOR ESTIMATING POTENTIAL OFFSITE CHEMICAL EXPOSURES

- I. Quantitation of potential offsite chemical exposures has been limited to inhalation of volatile indicators at the property boundary.
- II. New York State: Air Guide I (NYSDEC, 1986) presents the following methodology for predicting the reduction in ambient air concentration from onsite to offsite receptors:
 - A. Determine the distance to the property boundary (approximately 800 ft).
 - B. Determine the length of the side of the contaminated area (approximately 300 ft).
 - C. The distance to the property boundary is divided by the length of the side of the contaminated area as follows:
 - $\frac{800}{300s} = 2.6s$
 - D. According to Air Guide I methodology, when the receptor is approximately 2.5 times away from the source (i.e., 2.6s) then the onsite air concentration is divided by 35 to yield the offsite air concentration.

APPENDIX G

7

APPENDIX G

METHODOLOGY FOR CALCULATING HEALTH BASED CRITERIA

- I. In the absence of media specific ARARs, EPA advises that health based criteria be used as a comparison to estimated exposure concentrations.
 - A. Health criteria for oral exposures
 - Reference doses (RfDs) are acceptable daily intake levels set by the EPA for noncarcinogenic compounds. RfDs are expressed in mg/day and are directly comparable to estimated exposure concentrations.
 - 2. Cancer potency factors (q_1^*) are used to set "not to exceed" levels for exposure to carcinogenic compounds. For Superfund sites, the cancer risk level should not exceed 10^{-4} (i.e. an excess risk of 1 cancer death per 10,000 people exposed). The following equation is used to set a "not to exceed" level for adults:

 $\frac{70 \text{ kg x } 10^{-4} \text{ risk}}{q_1^* \text{ (oral)}} = \text{"Not to exceed" level for exposure}$ to carcinogens (mg/day)

- B. Health Criteria for inhalation exposures
 - 1. RfDs and q₁* based on inhalation studies were not available for all of the indicator chemicals.
 - 2. Oral RfDs values were used to calculate inhalation health criteria based on relative absorption rates found in the available literature, as follows:

- a. Ethylbenzene
 - 1) 64% of the inhaled dose is absorbed (EPA, 1987)
 - 2) The oral RfD was multiplied by a factor of 1.56 to account for the difference in relative absorption between the oral and inhalation route.
 - 3) Oral RfD Inhalation RfD 1.00E-1 (mg/kg/day) x 1.56, 1.56E-1 (mg/kg/day)
- b. The same methodology was applied to the other indicator chemicals that had relative absorption criteria available, as follows:

Oral RfD (mg/kg/dav) Inhalation RfD (mg/kg/dav)

- Toluene 3.00E-1 x 2, 6.00E-1 (based on 50% relative absorption-ATSDR, 1988)
- 1,1,1-TCA 9.00E-2 x <u>3.33</u> 2.99E-1 (based on 30% relative absorption-EPA, 1987)
- Xylenes 2.00E+00 x <u>1.56</u>, 3.12E+00 (based on 64% relative absorption-EPA, 1987)
- c. Relative absorption data was not available for inhalation exposure to acetone or trans-1,2-dichloroethene; therefore, the oral RfD was used to represent the inhalation RfD.
- d. The calculated inhalation RfD values were multiplied by 70 kg to convert from mg/kg/day to mg/day.

- C. Using Health Criteria to Estimate Level of Carcinogenic Risk from a Known Exposure Concentration
 - 1. For carcinogenic compounds, the q₁* value can be used to predict the level of risk posed by a known exposure level.
 - '2. The exposure level is multiplied by the q_1^* value as follows:

Exposure Level (mg/kg/day) x q_1^* (mg/kg/day)⁻¹ = Risk Level

JAD/cap 2371-1-455

APPENDIX H

,

USEPA Weight of Evidence Classification

for Carcinogenic Chemicals

TOXICITY DATA FOR POTENTIAL CARCINOGENIC EFFECTS - RISK CHARACTERIZATION

Data presented in this appendix are for use in risk characterization. Values in Exhibit H-1 were derived in the following manner:

Carcinogenic Potency Factors

Carcinogenic. potency factors are upper 95 percent confidence limits on the slope of the dose-response curve. These values were recorded directly from Health Effects Assessment Group (HEAs) or Evaluations by the carcinogenic Assessment Group (CAGs) summary tables, with the actual source cited at the end of the exhibit. Potency factors are used to estimate potential carcinogenic risk. These factors, specific to different exposure routes, are given in units of 1/ (mg/kg/day).

Weight of Evidence Ratings

Weight of evidence ratings qualify the level of evidence that supports designating a chemical as a human carcinogen. This exhibit lists ratings based on USEPA categories for potential carcinogens, which are fully itemized in Exhibit H-2. These ratings were recorded directly from EPA's Reportable Quantities database.

(From SPHEM, 1986).

Date Prepared: October 1. 1986

Exhibit H-1

TOXICITY DATA FOR POTENTIAL CARCINOGENIC EFFECTS -- RISK CHARACTERIZATION 14

.

,	· Or	al Route		Inha	lation Ro	ute
			*******	•••••	•••••	
	Potency		EPA	Potency		EPA
	Factor		Weight	Factor		Weight
	(PT)		of	(PF)		of
Chemical Name	(mg/kg/d)-1	Source*-	Evidence	(mg/kg/d)-1	Source ¹ -	Evidence
9-4				•••••		
2-Acetylaminofluorene			82			B2
Acrylonitrile			B1	2.40E-01	CAG	B1
Aflatoxin Bl	2.90E+03	CAG	32			B2
Aldrin .	1.14E+01	CAG	32			B2
Amitrole			32			82
Arsenic and Compounds	1.50E+01	HEA		5.00E+01	HEA	
Asbestos						
Auramine			32			32
Azaserine			32			32
Aziridine			82			. 82
Jenzene	5.20E-02	HEA		2.60E-02	HEA	
Benzidine			A	2.30E+02	CAG	
Senz(a)anthracene			32			82
Benz(c)acridine			С			C
Benzo(a)pyrene	1.15E+01	HEA	32	6.10E+00	HEA	82
Benzo(b)fluoranthene			32			B2
Benzo(k)fluoranthene			D			D
Benzotrichloride			32			82
Benzyl Chloride			C			C
Beryllium and Compounds	NA		81	4.86E+00	CAG	81
Bis(2-chloroethyl)ether	1.10E+00	CAG	82			32
Bis(chloromethyl)ether				9.30E+03	CAG	
Bis(2-ethylhexyl)phthslate (DEHP)	6.84E-04	CAG	82			32
Cacodylic Acid			D			D
Cadmium and Compounds	NA		•	6.10E+00	HEA	81
Carbon Tetrachloride	1.30E-01	HEA	32			32
Chlordane	1.61E+00	HEA	82			32
Chloroform	8.10E-02	HEA	32			82
4-Chloro-o-toluidine Hydrochloride			32			82
Chromium VI and Compounds	NA			4.10E+01	HEA	
Chrysene			82			32
Cyclophosphamide			B1			81
DDD			32			82
IDE			32			82
DDT	3.40E-01	HEA	32			32
	3.402-01	fide a	34			

Exhibit H-1 continued

TOXICITY DATA FOR POTENTIAL CARCINOGENIC EFFECTS -- RISK CHARACTERIZATION

.

,

	Or	al Route	Tanan	Inha	lation Ro	ute
	Potency Factor (PF)		EPA Weight of	Potency Factor (PF)	••••••	EPA Veight
Chemical Name	(mg/kg/d)-1	Source	Evidence	(mg/kg/d)-1	Source ² :	of Evidence
••••••				********		
Ethylene Oxide			31/32	3.50E-01	CAG	B1/B2
Ethylenethioures			32			32
Ethyl Methanesulfonate	Section Company		32			32
1-Ethyl-nitrosourea	3.302+01	CAG	32			32
Formaldehyde			32			82
Glycidaldehyde	Contraction of the		82			82
Heptachlor	3.402+00	CAG	32			32
Reptachlor Epoxide	2.60E+00	CAG	82			32
Hexachlorobenzene	1.69E+00	HEA	32			32
Hexachlorobutadiene	7.75E-03	HEA	C			C
alpha-Hexachlorocyclohexane (HCCH)		CAG	82			32
beta-HCCH	1.80E+00	CAG	C			C
gamma-HCCH (Lindane)	1.33E+00	HEA	B2/C			B2/C
Hexachloroethane	1.40E-02	CAG	C			C
Hydrazine			32			82
Indeno(1,2,3-cd)pyrene			C		÷ •	C
Iodomethane			C			C
Isosafrole			32			C
Lepone			32			B2
Lasiocarpine			82			32
Melphalan			B1			B1
Methyl Chloride			C			C
3-Methylcholanthrene			32			82
4,4'-Methylene-bis-2-chloroaniline			32	,		32
Methylnitrosoures	3.00E+02	CAG	82			32
Methylnitrosourethane			82			32
Hethylthiouracil			32			82
Methylvinylnitrosenine .	·		32			32
N-Hethyl-N'-mitro-N-mitrosoguanadi			82			32
Mitosycin C			82			82
1-Napthylamine			C			C
2-Napthylamine						Ă
Nickel and Compounds	NA			1.19E+00	TEA	
N-Nitrosopiperidine			32			82
N-Nitrosopyrrolidine	2.10E+00	CAG	32			32
5-Nitro-o-toluidine			C			C

Date Prepared: October 1. 1936

Exhibit H-1 continued

TOXICITY DATA FOR POTENTIAL CARCINOGENIC EFFECTS -- RISK CHARACTERIZATION

	Or	al Route		Inha	lation Ro	ute
-	Potency Factor (PF)	•••••	EPA Veight of	Potency Factor (PF)	••••••••	EPA Weight of
Chemical Name	(mg/kg/d)-1	Source ²	Evidence	(mg/kg/d)-1	Source	Evidence
Pentachloronitrobenzene	********					
			C			c
Pentachlorophenol Phenacetin			D			D
	4.34E+00	-	32			82
Polychlorinated Biphenyls (PCBs)		HEA	32			82
Polynuclear Aromatic Hydrocarbons	1.15E+01	nL.		6.11E+00	HEA	
Propane Sultone			32			82
1,2-Propylenimine Saccharin			32			82
Safrole			C			C
Streptozocin			82			32
2,3,7,8-TCDD (Dioxin)	1.36E+05	REA	82 82			B2
1,1,1,2-Tetrachloroethane	1.302403	R.L.A	82			B2
1,1,2,2-Tetrachloroethane	2.00E-01	HEA				c
Tetrachloroethylene	5.10E-02	HEA	C	1.70E-03		C
Thioacatamida	3.102-02	PLE	32	1.702-03	HEA	B2
Thiourea			82 82			82
			82			B2
o-Toluidine hydrochloride Toxaphene	1.10E+00	CAG	32			82
1.1.2-Trichloroethane	5.73E-02	HEA				32
Trichloroethylene	1.10E-02	HEA	C 32	4.60E-03	HEA	C
		HEA	32	a. BUL-US	AL.A	- 32
2,4,6-Trichlorophenol	1.982-02	R.L.A				B2
Tris(2,3-dibromopropyl)phosphate			32			B2
Trypan Blue			32			B2
Uracil Mustard Urathane	· · · · · · · · · · · · · · · · · · ·		32			32
		HEA	32	2.50E-02		B2
Vinyl Chloride	2.30E+00	The second se		2.30E-02	HEA	A

¹J The list of chemicals presented in this exhibit is based on EPA's Reportable Quantities Analysis and should not be considered an all-inclusive list of suspected carcinogens. Refer to Exhibit A-3 for toxicity constants for indicator selection for the chemicals listed here.

*J Sources for Exhibit A-4:

HEA = Health Effects Assessment, prepared by the Environmental Criteria and Assessment Office, U.S. EPA, Cincinnati, Ohio, 1985 (updated in May 1986).

CAG = Evaluation by Carcinogen Assessment Group, U.S. EPA, Washington, D.C., 1985.

EPA Document Pries, EPA or SRC Doc. No.	Toxicity Benchmark NOAEL, q¦ or F Factor	RfD (ADI), 10 ^{-s} Risk Level, Human HED, CAG and IARC Group	CERCLA RV _d × RV _e or Potency Group	CERCLA CS/RQ or Hazard Ranking	Species/Route	Target Organ(s) Cancer Type	Primary Effects	Reference
ACCD 3A, 1980 10/5-80-029	NOAEL: ID	ADI: ID	¥	NA	NA	NA	NA	NA .A
NOCD Update 1C, 1983 1-83-516	NOEL: 57.9 mg/kg/day° (810 mg/m ³) TLV	ADI: 0.81 mg/day for oral exposure UF: 5000 ^b	M	NA	human/ inhalation (occupational)	NA	NA	ACGIH, 1981
EP A, 1983 AO-CIN rst Draft	NOEL: 60.2 mg/kg/day ^c [500 ppm (2024 mg/m ³). 7 hours/day. 5 days/week]	ADI: 4.2 mg/day for oral exposure UF: 1000	NA	NA	rats	5	histological alterations and increased BUN at a higher dose in cats	Dow, n.d.
94-CD 94, 1983 940-C1N-303	NOAEL: 115 mg/kg/day ^d [500 ppm (2025 mg/m ³), 6 hours/day, 5 days/week]	ADI: 8.1 mg/day UF: 1000	NA	NA	rat/inhalation	kidney	histological alterations and increased BUN at a higher dose in cats	Hofmann et al., 1971
A 1984 AO-CIN-H027	NOEL: 115 mg/kg/day ^d : AIC for oral [500 ppm (2025 mg/m ³), exposure: 8 6 hours/day, 5 mg/day ^o days/week] UF: 1000	AIC for oral . exposure: 8.1 mg/day UF: 1000	M	¥	rat/inhalation damage at higher dosage	kidney	histological alterations and increased BUN at a higher dose in cats	Hofmann, 1971; U.S. EPA, 1983
		AIS for oral ex- posure: 81 mg/day' UF: 100	NA	NA	rat/inhalation	kidney	histological alterations and increased BUN at a higher dose in cats	Hofmann, 1971; U.S. EPA, 1983
A A, 1984 AO-CIN-H027	MOEL: 138 mg/kg/day [®] [500 ppm (2025 mg/m ³), 6 hours/day. 5 days/week]	AIC for inhala- tion exposure: 9.7 mg/day UF: 1000	M	N	cat/inhalation	kidney	histological alterations and increased BUN at a higher dose in cats	Hofmann et al., 1971
	NOEL: 138 mg/kg/day ^e [500 ppm (2025 mg/m ³), 6 hours/day, 5 days/week]	AIS for inhala- tion exposure: 96.6 mg/day UF: 100	NA	S	cat/inhalation	kidney	histological alterations and increased BUN at a	Hofmann et al., 1971

3/4/87

54X

(See also Chlorinated Ethanes)

Exhibit H-3

(CAS No. 75-34-3)

EPA Document Series, EPA or SRC Doc. No.	Toxicity Benchmark NOAEL, q° or F Factor	RfD (ADI). 10 ⁻⁵ Risk Level, Human MED. CAG and IARC Group	CERCLA RV ₄ × RV _e or Potency Group	CERCLA CS/RQ or Hazard Ranking	Species/Route	Target Organ(s) Cancer Type	Primary Effects	Reférence
ev. Eval. ADI RC, 1986 R-85-200-U076	NOEL: 134 mg/kg/day ^d [2024 mg/m ³ (500 ppm), 7 hours/day, 5 days/week]	ADI: 93.8 mg/day UF: 100°	ł	НА	rat/inhalation	kidney	histological alterations and increased BUN at a higher dose in cats	Dow Chemical Co., n.d.
EEP PA, 1985 CAO-CIN-P139	NOAEL: NA	ADI: NA	NA	NA	NA	NA	NA	NA
DW-HA RC, 1986 R-86-042	NOAEL: 114 mg/kg/day ^d [2025 mg/m ^g (500 ppm), 6 hours/day, 5 days/week]	DWEL: 8.0 mg/day UF: 1000 Cancer risk at DWEL: 1.0×10 ⁻²	¥	M	rat/inhalation	kidney	histological alterations and increased BUN at a higher dose in cats	Hofmann et al., 1971
DH-HA see above)	NOAEL: 114 mg/kg/day ^d [2025 mg/m ³ (500 ppm), 6 hours/day, 5 days/week]	longer-term HA for adult: 80 mg/day; for child: 11 mg/day UF: 100	NA	NA	rat/inhalation	kidney	histological alterations and increased BUN at a higher dose in cats	Hofmann et al., 1971
DH-HA see above)	NOAELS: ID	10-day or 1-day HA for child: ID	N	NA	NA	NA .	NA	NA
HQCD, HQCD Update, DH-CD, HEEP, HEA see above)	q.*: 10	10 ⁻³ risk level: 10 CAG Group: D (HEA)	NA	NA	NA	NA	NA	NA
EP 94, 1985 240-CIN-P139	qº: 9.1×10 ⁻² (mg/kg/day) ⁻¹ ^h	10 ⁻⁵ risk level: NR' CAG Group B2 IARC Group 2B	NA	NA	rat/ora1 (gavage)	hemangiosarcoma	NA	NCI, 1978b
)H-HA ;ee above)	q¶: 9.1×10 ⁻² (mg/kg/day) ⁻¹ J	10 ⁻⁸ risk level: 7.69x10 ⁻³ mg/day CAG Group B IARC Group NR	¥	NA	rat/oral (gavage)	hemangiosarcoma	NA	NCI, 1978

Chemical: 1,1-Dichloroethane (cont.)

Summary of RfD (ADI), q?, and Other Toxicity Indices

Exhibit II-3 continued

(CAS No. 75-34-3)

254X

3/4/87

0	Chemical: 1,1-Dich	1,1-Dichloroethane (cont.) Summai	.) Summary of RfD (ADI), q°, and Other Tox	l), q°, and ((ADI), q ⁴ , and Other Toxicity Indices	ices	(CAS No. 75-34-3)	
A Document To ies, EPA or C Doc. No.	Toxicity Benchmark NOAEL, q° or F Factor	RfD (ADI), 10 ^{-s} Risk Level, Human MED, CAG and IARC Group	CERCLA RV _d × RV or Potency Group	CERCLA CS/RQ or Hazard Ranking	Species/Route	Target Organ(s) Cancer Type	Primary Effects	Reference
onic Tox RQ , 1983 D-CIN-R101	M	MED: 542 mg/day	1.4x7	9.8/1000	cat/inhalation	kidney	histological alterations and increased BUN	Hofmann et al., 1971
e above)	MA	MED: 542	1.4x7	9.8/NR	cat/inhalation	kidney	histological alterations and increased BUN	Hofmann et al 1971: Bosch, 1983
P . 1985 3-CIN-P139	Ŗ	HED: 5234 mg/day ^e	1x7	7/1000	cat/inhalation	kidney	histological alterations and and increased BUN	Hofmann et al., 1971
p e above) F	Factor: ID*	CAG Group C* IARC Group NR	M	M	M	NA	NA	NA

-

Insufficient data; NA = not applicable; NR = not reported in document; UF = uncertainty factor