

OBG | There's a way

December 21, 2015 (revised February 8, 2016)

Mr. John C. Grathwol, P.E.

Remedial Bureau B – Div of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7016

RE: Former Accurate Die Casting Site, Fayetteville, NY (Site #7-34-052)

FILE: 3902.45845

Dear Mr. Grathwol:

This letter serves as the fourth annual *Periodic Review Report* (PRR) to document the implementation of, and compliance with, Site Management (SM) requirements under the Order on Consent (#A7-0318-94-10) and the December 1994 *Record of Decision* (1994 ROD) for the Former Accurate Die Casting Site (Site) in Fayetteville, New York (Site #7-34-052) (Figure 1). This PRR is accompanied by the Site Management Periodic Review Report Notice and Institutional and Engineering Controls Certification Form (Attachment 1). The reporting period for this PRR is December 1, 2014 through November 30, 2015.

I. EXECUTIVE SUMMARY

In December 1994, the New York State Department of Environmental Conservation (NYSDEC) issued a *Record of Decision* (ROD) (NYSDEC, 1994) in which the NYSDEC selected (1) excavation and off-site disposal for contaminated soil, and (2) extraction and on-site treatment for the contaminated groundwater at the Site. The NYSDEC identified five areas (Figure 1) in the December 1994 ROD which could pose an unacceptable risk to human health if not addressed.

Remedial actions to address these five areas were conducted between 1995 and 1999, as described in Section II below. A *Final Engineering Report* (FER) (OBG, 2000) was provided to the NYSDEC in March 2000 certifying and documenting that the remedial actions required by the Consent Order and December 1994 ROD were complete. The FER provided commitment to on-going groundwater recovery from recovery wells RW-1 and RW-2 on the Site, and also from the sump outside Area 2 and the overburden groundwater interceptor trench downgradient of Area 1 when water is present, until Class GA Standards are achieved in monitoring wells or monitored groundwater concentrations reach an asymptotic level below which further reduction is not practicable.

Presently, the NYSDEC requires sampling of select groundwater monitoring wells on Site on two occasions each year, during the Spring and Fall, and analyses for volatile organic compounds (VOCs). As presented in Section III below, the results indicate that progress is being made toward meeting the remedial objectives for the Site. However, it is likely that the concentration of several VOCs may remain above the Class GA drinking water standards in overburden groundwater and bedrock groundwater on the Site for an indefinite period. Regardless, the current remedy is protective for direct contact with potentially impacted groundwater since groundwater is not recovered for consumption or use on or near the Site because the community is served by the regional public water authority.

On June 4, 2014, the NYSDEC changed the classification of the site from a Class 2 Site (meaning one presenting significant threat to the public health or environment – action required) to a Class 4 Site (meaning one where the site is properly closed – requires continued management). The Site is presently unoccupied without an anticipated future occupant for the facility. The Site owner, 547 East Genesee Street, LLC, wants to demolish the existing facility and redevelop the site.

FOUBU Environmental Services, LLC (FOUBU) submitted an application to the NYSDEC on January 15, 2015, as a "Volunteer", for the site to participate in the Brownfield Cleanup Program (BCP). On March 31, 2015 the NYSDEC provided notice that the application was accepted, and on June 1, 2015 executed Brownfield Site Cleanup Agreement Index C734052-03-15 with FOUBU ("Applicant"). FOUBU subsequently provided notice to NYSDEC on June 15, 2015 of an intended Change of Use for the site, in accordance with the provisions of 6 NYCRR §375-1.11(d), as an initial action to allow demolition of the existing building in preparation for the site redevelopment.

The current site owner is one of the entities having ownership interest in FOUBU Environmental Services, LLC. Prior to remedial action being initiated at the Site under the BCP, 547 East Genesee Street LLC intends to transfer ownership of the Site to FOUBU Environmental Services, LLC for purpose of completing the remedial action under the BCP as a Volunteer.

At present, the demolition and redevelopment under the BCP is on hold pending approval of the development plans by the Village of Fayetteville and rezoning of the Site necessary to allow redevelopment of the Site for restricted residential use.

II. SITE OVERVIEW

LOCATION

The Site is located at 547 East Genesee Street in Fayetteville, New York (Figure 1); it is currently zoned for commercial/industrial use, and is approximately 30 acres in size. The Site is bordered to the west by a former railroad bed that is no longer in use. Residential housing is located west of the former railroad bed. Residential housing also borders the Site to the east while Bishop Brook completes the northern border.

OWNERSHIP

Accurate Die Casting and predecessor owners and operators of the facility conducted manufacturing operations at the Site from approximately 1950 until 1988 when Accurate Die Casting abandoned the facility. Accurate Die Casting and the predecessor owners and operators used the facility for die and casting operations to fabricate metal products for the automobile industry and other industries.

ITT Commercial Finance Corporation, a former subsidiary of ITT Industries, now ITT Corporation (ITT), acquired the Site in 1988 as a result of foreclosure proceedings. ITT never conducted manufacturing operations at the Site and did not own or operate the facility at any time that a disposal or release of hazardous substances occurred at the Site.

The Site was sold to O'Brien & Gere Technical Services, Inc. in 1999. In 2000, O'Brien & Gere Technical Services, Inc. subsequently sold the Site to Three Ponds Corporation. Three Ponds Corporation subsequently changed its name to 547 East Genesee Street, LLC. The Site is presently owned by 547 East Genesee Street, LLC.

INVESTIGATIONS AND RECORD OF DECISION

Although ITT never conducted manufacturing operations at the Site, ITT conducted remedial assessments of the property and also completed a Remedial Investigation and Feasibility Study in accordance with NYSDEC Consent Order (CO) (Index # A7-0258-91-03) dated August 19, 1991 and amended on June 6, 1994.

The Final Report - Remedial Investigation (Stearns & Wheler, December 1993) concluded that:

- Trichloroethene (TCE) was observed in both overburden and bedrock groundwater at concentrations above the NYSDEC Class GA groundwater standards.
- The highest TCE concentrations in soils were observed at about 20 to 25 ft below grade in the vicinity of MW-3, at the interface between the sand/gravel and till layers.

Following the investigation, a ROD (December 5, 1994) was prepared by the NYSDEC in which it selected (1) excavation and off-site disposal for the contaminated soil, and (2) extraction and on-site treatment for the contaminated groundwater. The NYSDEC identified five areas in the December 1994 ROD requiring remedial action, as described below. The NYSDEC subsequently prepared an Amended ROD (October 2, 1997) and an Explanation of Significant Differences (ESD) (October 1998).

REMEDIAL ACTIONS

A Remedial Design was prepared and Remedial Construction was implemented under NYSDEC Consent Order (Index #A7-0318-94-10) dated April 26, 1995, and NYSDEC-approved Site remediation was conducted that included soil excavation and construction of a groundwater collection and treatment (GWC&T) system as summarized below for each area.

Area 1 - PCB/PAH/VOC Soils Area

In accordance with the NYSDEC-approved *PCB/PAH/VOCs Soils Area Excavation Plan* (OBG, 1995a) dated March 1995, unsaturated soils exhibiting concentrations of PAHs, PCBs, and VOCs above remedial action objectives (RAOs) in the northwest area of the site were excavated during September and October 1995. After excavating approximately 600 cubic yards (cy) of soil, grab samples were collected from the excavations and analyzed for PAHs, VOCs, and PCBs to evaluate if further action was required. Based on the results of the sampling and analyses, it was concluded that the unsaturated soils containing PAHs, PCBs and VOCs above the RAOs had been removed to the extent practicable.

In 1997, approximately 350 cy of the 600 cy of excavated soil was removed from the site and transported to the ESMI facility in Fort Edward, New York for low temperature thermal destruction and subsequent off-site disposal. The remaining 250 cy of soil was mechanically processed on-site to enhance volatilization of VOCs in accordance with the ROD amendment issued in October 1997 (NYSDEC, 1997).

In April 1998, following analyses that indicated that the RAOs had been achieved, the 250 cy of mechanically processed soils were spread on-site in the Corrective Action Management Unit (CAMU) (Area 1) identified in the ROD amendment (Figure 1). In accordance with the NYSDEC requirements, approximately 1 foot of general fill, topsoil, and grass seed was placed on top of the processed soils.

Pursuant to an ESD Notice dated October 1998 (NYSDEC, 1998a), a groundwater collection trench was then constructed to intercept groundwater (if any) containing VOCs present in the sand lenses observed in Area 1. Construction plans (OBG, 1998) for the installation of a groundwater interceptor trench in Area 1 were submitted to the NYSDEC for review in August 1998 and approved by a letter dated October 7, 1998 (NYSDEC, 1998b). Construction of the trench was completed in July 1999 following the placement of approximately 300 cy of soil, excavated during construction of the interceptor trench, into the CAMU as approved by the NYSDEC by the letter dated July 14, 1999 (NYSDEC, 1999). The location of the collection trench is shown on Figure 1. Collected groundwater is treated at the existing on-site treatment system.

Area 2 - Northeast Corner of Facility

In accordance with the NYSDEC-approved *IRM Work Plan* dated May 1994 (OBG, 1994a), the area outside the northeast corner of the facility was addressed as part of an IRM between May 24 and June 22, 1994. During that period, soils exhibiting TCE above the RAO of 0.7 milligrams per kilogram (mg/kg) were removed to the extent practicable. Afterwards, the soil was mechanically processed onsite to enhance volatilization of the VOCs until residual levels were documented to be below the RAOs. Following achievement of the RAOs, the soils were used to backfill the excavation. A description of the soil remediation activities completed in this area is provided in the NYSDEC-approved *Soil Remediation Activities Summary Report* dated October 1994 (OBG, 1994b).

Area 3 - Overburden Groundwater

In accordance with the NYSDEC-approved IRM Work Plan (OBG, 1994a) and as part of the IRM which addressed the soils outside the northeast corner of the facility (Area 2), a groundwater collection sump was constructed within the excavation (S-1 on Figure 1). The sump extends to the clay layer that was found to be present at the base of the excavation made during the soil remediation activities. This sump is being utilized when water is present as one of the groundwater recovery points for the groundwater recovery and treatment system constructed at the Site to address the shallow/overburden groundwater. However, the sump is typically dry as reported in the quarterly reports provided to the NYSDEC.

Also, an overburden recovery well designated as RW-1 (Figure 1) was constructed on-site as part of the IRM. A 24-hour aquifer performance test was conducted using this recovery well on September 28 and 29, 1994 to evaluate the overburden aquifer characteristics and to assess the influence of pumping on the overburden aquifer. The results of the performance test are provided in the NYSDEC-approved Basis of Design Report for the System dated December 1994 (OBG, 1994c). This recovery well is being utilized to collect groundwater containing TCE in the overburden aquifer downgradient of the northeast corner of the facility.

Recovery and treatment of overburden groundwater using the sump and RW-1 has been ongoing since February 5, 1996 and is continuing.

Area 4 - Shallow Bedrock Groundwater

A second groundwater recovery well, designated as RW-2, is being utilized on-site to recover groundwater containing VOCs from the shallow bedrock in the vicinity of the northeast corner of the facility (Figure 1). This well was installed between September 5 and 18, 1995, in accordance with the NYSDEC-approved *Remedial Design/Remedial Action (RD/RA) Work Plan* dated March 1995 (OBG, 1995b) and the letter from O'Brien & Gere dated May 26, 1995 (OBG, 1995c), as amended on July 17, 1995 (OBG, 1995e). An aquifer performance test was conducted using this recovery well between November 7 and 13, 1995. The results of the performance test were provided to the NYSDEC in a letter report dated January 12, 1996 (OBG, 1996).

Recovery and treatment of shallow bedrock groundwater using RW-2 was initiated on February 5, 1996 and is continuing.

Area 5 - Septic Tank

During 1995, the septic tank was uncovered and the contents were removed and disposed of at an offsite NYSDEC-approved landfill in accordance with the NYSDEC-approved *Remedial Design/Remedial Action Work Plan* dated March 1995 (OBG, 1995b). Once the contents were removed, the walls of the septic tank were cleaned using a pressure-washer as approved by the NYSDEC. The spent washing liquid was collected and treated on-site using the groundwater treatment system. Subsequent to

decontaminating the floor and walls of the septic tank, the concrete vault was filled and buried, completing remediation of this area.

A *Final Engineering Report* (OBG, 2000) was provided to the NYSDEC in March 2000 certifying and documenting that the remedial actions required by the Consent Order to address the five areas identified in the 1994 ROD were complete. The *Final Engineering Report* provided commitment to on-going groundwater recovery from RW-1, RW-2, the sump outside Area 2, and the overburden groundwater interceptor trench downgrade of Area 1 until achieving Class GA Standards or reaching an asymptotic level below which further reduction is not practicable.

An *On-Site Soil Vapor Sampling Work Plan* (OBG, 2006a) and a letter revision (OBG, 2006b) were subsequently submitted to the NYSDEC on February 13, 2006 and February 16, 2006, respectively. The results of the on-Site sampling were reported to NYSDEC in a Technical Memorandum (TM) dated September 18, 2006 (OBG, 2006c). A soil vapor mitigation system for the on-site building was recommended but due to the changing occupancy and probable site redevelopment, NYSDEC allowed the mitigation system installation to be deferred until such changes were designed. The on-site building is currently unoccupied, and soil vapor mitigation is pending site/building redevelopment or re-occupancy.

Based on the results of the on-site investigation, off-Site vapor intrusion sampling was also recommended as indicated in the technical memorandum titled *Vapor Intrusion Evaluation Results* (OBG, 2006c). The final work plan for conducting off-Site sampling was submitted to NYSDEC on February 23, 2007 (OBG, 2007). The off-Site sampling was conducted in two phases. Phase I was conducted in March and April 2007 (2006/2007 heating season) and repeated at some off-site properties during the 2007/2008, 2008/2009 and 2009/2010 heating seasons. Phase II was conducted at other off-site properties between February and April 2008. Based on the results of the off-site sampling, vapor intrusion mitigation systems were recommended at six off-Site properties and have been installed at five of these six properties. The analytical results of the sampling at the sixth property resulted in a No Further Action (NFA) determination based on the Guidance tables; however, because the properties on either side of the sixth property had analytical results requiring action based on the Guidance tables, the NYSDEC and New York State Department of Health required that a vapor intrusion mitigation system be offered to the sixth property owner. A letter to the property owner dated July 14, 2007 stated this, but the sixth property owner declined to have a system installed at their property. An *Operation and Maintenance Plan for Off-Site Vapor Intrusion Mitigation Systems* (OBG, 2009) was approved by NYSDEC and is currently being followed.

CURRENT STATUS

On June 4, 2014, the NYSDEC changed the classification of the site from a Class 2 Site (meaning one presenting significant threat to the public health or environment – action required) to a Class 4 Site (meaning one where the site is properly closed – requires continued management).

The Site is unoccupied without an anticipated future use for the facility. The site owner wants to demolish the existing facility and redevelop the site.

FOUBU submitted an application to the NYSDEC on January 15, 2015, as a "Volunteer", for the site to participate in the BCP. On March 31, 2015 the NYSDEC provided notice that the application was accepted, and on June 1, 2015 executed Brownfield Site Cleanup Agreement Index C734052-03-15 with FOUBU ("Applicant"). FOUBU subsequently provided notice to NYSDEC on June 15, 2015 of an intended Change of Use for the site, in accordance with the provisions of 6 NYCRR §375-1.11(d), as an initial action to allow demolition of the existing building in preparation for the site redevelopment.

The current site owner, 547 East Genesee Street LLC, is one of the entities having ownership interest in FOUBU. Prior to remedial action being initiated at the site under the BCP, 547 East Genesee Street LLC intends to

transfer ownership of the site to FOUBU for purpose of completing the remedial action under the BCP as a Volunteer.

At present, the demolition and redevelopment under the BCP is on hold pending approval of the development plans by the Village of Fayetteville and rezoning of the site.

III. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

A record of the groundwater elevations measured prior to and since operation of the groundwater recovery and treatment system began is provided in Table 1, and Figures 2 and 3 depict the September 2015 overburden and bedrock groundwater flow contours.

- Figure 2 presents the groundwater elevations for the overburden zone. As indicated in the figure, groundwater flow in the overburden is generally to the north towards Bishop Brook under a hydraulic gradient of approximately 0.05 feet per foot (ft/ft) (before the top of the bank).
- Figure 3 presents the groundwater elevations for the bedrock zone. As indicated in the figure, the hydraulic gradient in the bedrock is to the northwest towards Bishop Brook under a hydraulic gradient of about 0.05 ft/ft.

Tables 2 and 3 provide a record of the groundwater quality for the monitoring wells, and Figures 4 and 5 depict the September 2015 TCE concentrations in the overburden and bedrock groundwater respectively. There are three areas on site during September 2015 where TCE concentrations are notable.

- One area, below the existing building, is evidenced by monitoring wells MW-13 and MW-14 which exhibited TCE concentrations of 260 micrograms per liter (μg/L) and 200 μg/L respectively.
- Another area is evidenced by monitoring well MW-17 which exhibited a TCE concentration of 190 μg/L.
- The third area is evidenced by monitoring wells MW-18 and MW-24, which exhibited TCE concentrations of 1,500 μg/L and 380 μg/L respectively.

Presented as part of Attachment 2 are graphs depicting the trend of TCE concentrations observed in the fifteen monitoring wells and two piezometers including MW-5, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15B, MW-16B, MW-17, MW-18, MW-21, MW-22, MW-24, PZ-1 and PZ-2.

Off-Site Vapor Intrusion Mitigation Systems

Maintenance activities have been performed in accordance with the NYSDEC-approved *Operation and Maintenance Plan for Off-Site Vapor Intrusion Mitigation Systems* (OBG, 2009) and included conducting annual inspections of the systems and submitting annual communication letters to applicable property owners.

IV. INSTITUTIONAL CONTROL/ENGINEERING CONTROL COMPLIANCE REPORT

Digging on Site in the CAMU (Area 1) is not allowed, nor is construction of groundwater recovery wells for consumption or production use. The current site owner filed a Declaration of Covenants and Restrictions (deed restrictions), as required by the NYSDEC, on May 15, 2014 that prohibits the disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results in unacceptable human exposure to contaminated soils, and prohibits use of on-site groundwater. Also, the deed restrictions filed by the current site owner require evaluation of the potential for soil vapor intrusion by the site owner should the on-site building become occupied and for any buildings developed on the Site.

V. MONITORING PLAN COMPLIANCE REPORT

Groundwater samples have been collected and analyzed for VOCs since 1998 in accordance with the NYSDEC-approved *Sampling and Analysis Plan* (SAP) dated March 1996 (OBG, 1996). Presently, the NYSDEC requires sampling of select monitoring wells on two occasions each year, during the Spring and Fall, and analyses for VOCs.

- For the Spring monitoring event, also referred to as the semi-annual event, the NYSDEC presently requires samples to be collected from five monitoring wells including MW-10, MW-11, MW-13, MW-18 and MW-24.
- For the Fall (or annual) event, the NYSDEC presently requires samples to be collected from fifteen monitoring wells and two piezometers including MW-5, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15B, MW-16B, MW-17, MW-18, MW-21, MW-22, MW-24, PZ-1 and PZ-2.

TCE is the primary contaminant of concern, although other chlorinated compounds (cis-1,2-dichloroethene, methylene chloride, tetrachloroethene, and trans-1,2-dichloroethene) have been occasionally detected. The results of the groundwater monitoring events are provided to the NYSDEC with quarterly Operation and Maintenance reports. The latest report containing these results was submitted to NYSDEC on October 9, 2015.

VI. OPERATION AND MAINTENANCE PLAN COMPLIANCE REPORT

In accordance with the 1994 ROD, the groundwater recovery and treatment system (the "System") was constructed on Site and has been in operation since February 5, 1996. The System includes groundwater recovery well RW-1 that is screened in the overburden and groundwater recovery well RW-2 that is screened in the shallow bedrock (Figure 1). Groundwater is also recovered, when present, from the:

- Sump constructed outside the northeast corner of the facility (Area 2) where during 1994 the soil contaminated with TCE was removed and treated as part of an IRM (Figure 1); and
- 300 ft long groundwater interceptor trench (Area 1) constructed in accordance with the ESD dated October 1998 downgradient of the CAMU (Figure 1).

Recovered groundwater is first discharged to an influent equalization tank and then pumped through bag filters and two granular activated carbon (GAC) filters connected in series. The treated effluent from the System is discharged to the rip-rap lined bank of Bishop Brook (Figure 1) and monitored in accordance with the State Pollution Discharge Elimination System (SPDES) fact sheet issued by the NYSDEC (NYSDEC, 1997). The results of monitoring performed in accordance with the SPDES fact sheet are submitted on a quarterly basis (Attachment 3) as presently required by the NYSDEC and indicate that the system effluent complies with the SPDES permit requirements. Also, on a monthly basis, samples of water are collected both between and prior to the GAC filters to gauge System performance.

Table 4 provides a summary of the volume of groundwater recovered each year since operation of the System was initiated on February 5, 1996. The table identifies the average flow rate for each year calculated by taking the volume of groundwater recovered for a particular year, dividing it by the number of days in the period, and dividing it by the number of minutes in a day. Attachment 4 provides a graph depicting the annualized average flow rates and trends.

The shallow bedrock groundwater recovery well RW-2 has recovered an annual average flow between 4 and 6 gpm, and the average flow rate for the 19 years has been approximately 5 gpm.

The annual average flow rate from recovery well RW-1 has been more variable. The highest annual average flow for RW-1 was calculated to be 14 gpm for 1996, the year operation of the System was initiated. Between 1996 and 2005 the annual average flow for RW-1 declined steadily to an annual average flow rate of 2.4 gpm.

Between 2006 and 2012 the annual average flow rate ranged between 2.3 gpm and 5 gpm, averaging 3.7 gpm for the six years. Since 2013, the RW-1 flow rate has an annual average flow ranging between 1.5 and 1.7 gpm, averaging 1.6 gpm for the three years.

Table 5 provides a summary of the influent concentrations of TCE to the System. Attachment 5 provides a graph depicting the concentrations and trend of TCE quantified at the influent of the System over time. As indicated in the trend graph, between 1997 and 2003 the TCE concentrations fluctuated, ranging between 350 μ g/L and 2,300 μ g/L. A decreasing trend with considerably less fluctuation is observed after 2003.

Maintenance has been performed on the system as required including replacement of spent granular activated carbon (GAC) on two occasions (GAC #1 on February 23, 2015 and GAC# 2 on June 23, 2015) between December 1, 2014 and November 30, 2015.

VII. CONCLUSIONS AND RECOMMENDATIONS

The remedial actions completed between 1995 and 1999 to address the five Areas identified in the December 1994 ROD have been maintained as required by the Order on Consent. As presented in Section III above, the results of monitoring conducted at the Site indicate that progress is being made toward meeting the remedial objectives established by the 1994 ROD. However, it is likely that the concentration of several VOCs may remain above the Class GA drinking water standards in impacted overburden groundwater and bedrock groundwater for an indefinite period. There are no changes recommended presently for operation of the groundwater recovery system.

Deed restrictions were filed on May 15, 2014 by the site owner that prohibit use of on-site groundwater and requires future actions by the site owner should the site be occupied or redeveloped. A letter from the site owner certifying that the deed restrictions remain in place is provided as Attachment 6.

On June 4, 2014 the NYSDEC changed the classification of the site from Class 2 to Class 4.

Also, operation and maintenance activities associated with the off-site vapor intrusion mitigation systems will continue in accordance with the NYSDEC-approved 0&M Plan (OBG, 2009).

If you have questions regarding this PRR, please do not hesitate to call or email Al Farrell, John Sutphen, or me on behalf of OBG.

Very truly yours,

O'Brien & Gere Engineers, Inc.

Daugles M. Crant L.

Douglas M. Crawford, P.E.

Vice President

cc: T. Blum - NYSDEC

T. Slutzky - 547 East Genesee Street LLC

J. Sutphen – O'Brien & Gere A. Farrell – O'Brien & Gere

M. Distler - O'Brien & Gere

G. Swenson - O'Brien & Gere

Tables

- 1. Groundwater Elevations Summary
- 2. Groundwater TCE Concentrations
- 3. Groundwater Other Detected VOCs
- 4. Summary of Recovered Groundwater Volumes
- 5. Summary of Influent TCE Concentrations

Figures

- 1. Site Plan
- 2. Overburden Groundwater Elevation (9/16/15)
- 3. Bedrock Groundwater Elevation (9/16/15)
- 4. Overburden TCE Concentration (9/16/15)
- 5. Bedrock TCE Concentration (9/16/15)

Attachments

- 1. Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form
- 2. Monitoring Well TCE Concentration Trend Graphs
- 3. Quarterly Groundwater Treatment System Reports
- 4. Annual Average Flow Rate Trends
- 5. Groundwater Treatment System Influent TCE Concentration Trend Graph
- 6. February 3, 2016 certification from 547 East Genesee, LLC regarding deed restrictions

References:

NYSDEC, 1994 – Record of Decision for Former Accurate Die Casting Site, Fayetteville, New York, Site Number7-34-052. December 1994

NYSDEC, 1997 – Record of Decision Amendment for Former Accurate Die Casting Site, Fayetteville, New York, Site Number 7-34-052, October 1997

NYSDEC, 1998a – Explanation of Significant Differences, Former Accurate Die Casting Site, Fayetteville, New York, Site Number7-34-052, October 1998

NYSDEC, 1998b – October 7, 1998 letter from NYSDEC to O'Brien & Gere Engineers, Inc. regarding approval of groundwater interceptor trench construction plans

NYSDEC, 1999 – July 14, 1999 letter from NYSDEC to O'Brien & Gere Engineers, Inc. regarding establishment of a Corrective Action Management Unit (CAMU) on Site

NYSDEC, 2003 – January 28, 2003 letter from NYSDEC to O'Brien & Gere Engineers, Inc. regarding proposed reclassification of the Site from Class 2 to Class 4

NYSDEC, 2005 – August 19, 2005 letter from NYSDEC to O'Brien & Gere Engineers, Inc. requesting performance of a soil vapor intrusion evaluation for the Accurate Die Casting Site, Site Number7-34-052

OBG, 1994a - Interim Remedial Measure (IRM) Soil Excavation Work Plan, May 1994

OBG, 1994b - Interim Remedial Measure Summary Report, October 1994

OBG, 1994c - Groundwater Recovery and Treatment System Basis of Design Report, December 1994

OBG, 1995a - PCB/PAH/VOC Soils Excavation Work Plan, February 1995

OBG, 1995b - Remedial Design/Remedial Action (RD/RA) Work Plan, March 1995

OBG, 1995c - May 26, 1995 letter from O'Brien & Gere Engineers, Inc. to NYSDEC

OBG, 1995d - PCB/PAH/VOC Soils Area Excavation Plan, June 1995

OBG, 1995e - July 17, 1995 letter from O'Brien & Gere Engineers, Inc. to NYSDEC

OBG, 1996 - Sampling and Analysis Plan, March 1996

OPBG, 1998 – August 1998 letter from O'Brien & Gere Engineers, Inc. to NYSDEC regarding construction plans for groundwater interceptor trench

OBG, 2000 - Final Engineering Report, March 2000

OBG, 2005 – September 21, 2005 letter from O'Brien & Gere Engineers, Inc. to NYSDEC agreeing to conduct a soil vapor intrusion evaluation at the former Accurate Die Casting Site, Site Number 7-34-052

OBG, 2006a - On-Site Soil Vapor Sampling Work Plan, February 2006

OBG, 2006b – February 16, 2006 letter from O'Brien & Gere Engineers, Inc. to NYSDEC regarding revision of *On-Site Soil Vapor Sampling Work Plan*

OBG, 2006c – September 18, 2006 technical memorandum from O'Brien & Gere Engineers, Inc. to NYSDEC presenting results of the on-Site soil vapor sampling

OBG, 2007 - Final Work Plan for Conduct of Off-Site Sampling, February 2007

OBG, 2009 - Operation and Maintenance Work Plan, November 2009

Stearns & Wheler, 1993 – Remedial Investigation Report, December 1993

On June 4, 2014, the NYSDEC changed the classification of the site from a Class 2 Site (meaning one presenting significant threat to the public health or environment – action required) to a Class 4 Site (meaning one where the site is properly closed – requires continued management). The Site is presently unoccupied without an anticipated future occupant for the facility. The Site owner, 547 East Genesee Street, LLC, wants to demolish the existing facility and redevelop the site.

FOUBU Environmental Services, LLC (FOUBU) submitted an application to the NYSDEC on January 15, 2015, as a "Volunteer", for the site to participate in the Brownfield Cleanup Program (BCP). On March 31, 2015 the NYSDEC provided notice that the application was accepted, and on June 1, 2015 executed Brownfield Site Cleanup Agreement Index C734052-03-15 with FOUBU ("Applicant"). FOUBU subsequently provided notice to NYSDEC on June 15, 2015 of an intended Change of Use for the site, in accordance with the provisions of 6 NYCRR §375-1.11(d), as an initial action to allow demolition of the existing building in preparation for the site redevelopment.

The current site owner is one of the entities having ownership interest in FOUBU Environmental Services, LLC. Prior to remedial action being initiated at the Site under the BCP, 547 East Genesee Street LLC intends to transfer ownership of the Site to FOUBU Environmental Services, LLC for purpose of completing the remedial action under the BCP as a Volunteer.

At present, the demolition and redevelopment under the BCP is on hold pending approval of the development plans by the Village of Fayetteville and rezoning of the Site necessary to allow redevelopment of the Site for restricted residential use.

II. SITE OVERVIEW

LOCATION

The Site is located at 547 East Genesee Street in Fayetteville, New York (Figure 1); it is currently zoned for commercial/industrial use, and is approximately 30 acres in size. The Site is bordered to the west by a former railroad bed that is no longer in use. Residential housing is located west of the former railroad bed. Residential housing also borders the Site to the east while Bishop Brook completes the northern border.

OWNERSHIP

Accurate Die Casting and predecessor owners and operators of the facility conducted manufacturing operations at the Site from approximately 1950 until 1988 when Accurate Die Casting abandoned the facility. Accurate Die Casting and the predecessor owners and operators used the facility for die and casting operations to fabricate metal products for the automobile industry and other industries.

ITT Commercial Finance Corporation, a former subsidiary of ITT Industries, now ITT Corporation (ITT), acquired the Site in 1988 as a result of foreclosure proceedings. ITT never conducted manufacturing operations at the Site and did not own or operate the facility at any time that a disposal or release of hazardous substances occurred at the Site.

The Site was sold to O'Brien & Gere Technical Services, Inc. in 1999. In 2000, O'Brien & Gere Technical Services, Inc. subsequently sold the Site to Three Ponds Corporation. Three Ponds Corporation subsequently changed its name to 547 East Genesee Street, LLC. The Site is presently owned by 547 East Genesee Street, LLC.

INVESTIGATIONS AND RECORD OF DECISION

Although ITT never conducted manufacturing operations at the Site, ITT conducted remedial assessments of the property and also completed a Remedial Investigation and Feasibility Study in accordance with NYSDEC Consent Order (CO) (Index # A7-0258-91-03) dated August 19, 1991 and amended on June 6, 1994.

The Final Report - Remedial Investigation (Stearns & Wheler, December 1993) concluded that:

- Trichloroethene (TCE) was observed in both overburden and bedrock groundwater at concentrations above the NYSDEC Class GA groundwater standards.
- The highest TCE concentrations in soils were observed at about 20 to 25 ft below grade in the vicinity of MW-3, at the interface between the sand/gravel and till layers.

Following the investigation, a ROD (December 5, 1994) was prepared by the NYSDEC in which it selected (1) excavation and off-site disposal for the contaminated soil, and (2) extraction and on-site treatment for the contaminated groundwater. The NYSDEC identified five areas in the December 1994 ROD requiring remedial action, as described below. The NYSDEC subsequently prepared an Amended ROD (October 2, 1997) and an Explanation of Significant Differences (ESD) (October 1998).

REMEDIAL ACTIONS

A Remedial Design was prepared and Remedial Construction was implemented under NYSDEC Consent Order (Index #A7-0318-94-10) dated April 26, 1995, and NYSDEC-approved Site remediation was conducted that included soil excavation and construction of a groundwater collection and treatment (GWC&T) system as summarized below for each area.

Area 1 - PCB/PAH/VOC Soils Area

In accordance with the NYSDEC-approved *PCB/PAH/VOCs Soils Area Excavation Plan* (OBG, 1995a) dated March 1995, unsaturated soils exhibiting concentrations of PAHs, PCBs, and VOCs above remedial action objectives (RAOs) in the northwest area of the site were excavated during September and October 1995. After excavating approximately 600 cubic yards (cy) of soil, grab samples were collected from the excavations and analyzed for PAHs, VOCs, and PCBs to evaluate if further action was required. Based on the results of the sampling and analyses, it was concluded that the unsaturated soils containing PAHs, PCBs and VOCs above the RAOs had been removed to the extent practicable.

In 1997, approximately 350 cy of the 600 cy of excavated soil was removed from the site and transported to the ESMI facility in Fort Edward, New York for low temperature thermal destruction and subsequent off-site disposal. The remaining 250 cy of soil was mechanically processed on-site to enhance volatilization of VOCs in accordance with the ROD amendment issued in October 1997 (NYSDEC, 1997).

In April 1998, following analyses that indicated that the RAOs had been achieved, the 250 cy of mechanically processed soils were spread on-site in the Corrective Action Management Unit (CAMU) (Area 1) identified in the ROD amendment (Figure 1). In accordance with the NYSDEC requirements, approximately 1 foot of general fill, topsoil, and grass seed was placed on top of the processed soils.

Pursuant to an ESD Notice dated October 1998 (NYSDEC, 1998a), a groundwater collection trench was then constructed to intercept groundwater (if any) containing VOCs present in the sand lenses observed in Area 1. Construction plans (OBG, 1998) for the installation of a groundwater interceptor trench in Area 1 were submitted to the NYSDEC for review in August 1998 and approved by a letter dated October 7, 1998 (NYSDEC, 1998b). Construction of the trench was completed in July 1999 following the placement of approximately 300 cy of soil, excavated during construction of the interceptor trench, into the CAMU as approved by the NYSDEC by the letter dated July 14, 1999 (NYSDEC, 1999). The location of the collection trench is shown on Figure 1. Collected groundwater is treated at the existing on-site treatment system.

Area 2 - Northeast Corner of Facility

In accordance with the NYSDEC-approved *IRM Work Plan* dated May 1994 (OBG, 1994a), the area outside the northeast corner of the facility was addressed as part of an IRM between May 24 and June 22, 1994. During that period, soils exhibiting TCE above the RAO of 0.7 milligrams per kilogram (mg/kg) were removed to the extent practicable. Afterwards, the soil was mechanically processed onsite to enhance volatilization of the VOCs until residual levels were documented to be below the RAOs. Following achievement of the RAOs, the soils were used to backfill the excavation. A description of the soil remediation activities completed in this area is provided in the NYSDEC-approved *Soil Remediation Activities Summary Report* dated October 1994 (OBG, 1994b).

Area 3 - Overburden Groundwater

In accordance with the NYSDEC-approved IRM Work Plan (OBG, 1994a) and as part of the IRM which addressed the soils outside the northeast corner of the facility (Area 2), a groundwater collection sump was constructed within the excavation (S-1 on Figure 1). The sump extends to the clay layer that was found to be present at the base of the excavation made during the soil remediation activities. This sump is being utilized when water is present as one of the groundwater recovery points for the groundwater recovery and treatment system constructed at the Site to address the shallow/overburden groundwater. However, the sump is typically dry as reported in the quarterly reports provided to the NYSDEC.

Also, an overburden recovery well designated as RW-1 (Figure 1) was constructed on-site as part of the IRM. A 24-hour aquifer performance test was conducted using this recovery well on September 28 and 29, 1994 to evaluate the overburden aquifer characteristics and to assess the influence of pumping on the overburden aquifer. The results of the performance test are provided in the NYSDEC-approved Basis of Design Report for the System dated December 1994 (OBG, 1994c). This recovery well is being utilized to collect groundwater containing TCE in the overburden aquifer downgradient of the northeast corner of the facility.

Recovery and treatment of overburden groundwater using the sump and RW-1 has been ongoing since February 5, 1996 and is continuing.

Area 4 - Shallow Bedrock Groundwater

A second groundwater recovery well, designated as RW-2, is being utilized on-site to recover groundwater containing VOCs from the shallow bedrock in the vicinity of the northeast corner of the facility (Figure 1). This well was installed between September 5 and 18, 1995, in accordance with the NYSDEC-approved *Remedial Design/Remedial Action (RD/RA) Work Plan* dated March 1995 (OBG, 1995b) and the letter from O'Brien & Gere dated May 26, 1995 (OBG, 1995c), as amended on July 17, 1995 (OBG, 1995e). An aquifer performance test was conducted using this recovery well between November 7 and 13, 1995. The results of the performance test were provided to the NYSDEC in a letter report dated January 12, 1996 (OBG, 1996).

Recovery and treatment of shallow bedrock groundwater using RW-2 was initiated on February 5, 1996 and is continuing.

Area 5 - Septic Tank

During 1995, the septic tank was uncovered and the contents were removed and disposed of at an offsite NYSDEC-approved landfill in accordance with the NYSDEC-approved *Remedial Design/Remedial Action Work Plan* dated March 1995 (OBG, 1995b). Once the contents were removed, the walls of the septic tank were cleaned using a pressure-washer as approved by the NYSDEC. The spent washing liquid was collected and treated on-site using the groundwater treatment system. Subsequent to

decontaminating the floor and walls of the septic tank, the concrete vault was filled and buried, completing remediation of this area.

A *Final Engineering Report* (OBG, 2000) was provided to the NYSDEC in March 2000 certifying and documenting that the remedial actions required by the Consent Order to address the five areas identified in the 1994 ROD were complete. The *Final Engineering Report* provided commitment to on-going groundwater recovery from RW-1, RW-2, the sump outside Area 2, and the overburden groundwater interceptor trench downgrade of Area 1 until achieving Class GA Standards or reaching an asymptotic level below which further reduction is not practicable.

An *On-Site Soil Vapor Sampling Work Plan* (OBG, 2006a) and a letter revision (OBG, 2006b) were subsequently submitted to the NYSDEC on February 13, 2006 and February 16, 2006, respectively. The results of the on-Site sampling were reported to NYSDEC in a Technical Memorandum (TM) dated September 18, 2006 (OBG, 2006c). A soil vapor mitigation system for the on-site building was recommended but due to the changing occupancy and probable site redevelopment, NYSDEC allowed the mitigation system installation to be deferred until such changes were designed. The on-site building is currently unoccupied, and soil vapor mitigation is pending site/building redevelopment or re-occupancy.

Based on the results of the on-site investigation, off-Site vapor intrusion sampling was also recommended as indicated in the technical memorandum titled *Vapor Intrusion Evaluation Results* (OBG, 2006c). The final work plan for conducting off-Site sampling was submitted to NYSDEC on February 23, 2007 (OBG, 2007). The off-Site sampling was conducted in two phases. Phase I was conducted in March and April 2007 (2006/2007 heating season) and repeated at some off-site properties during the 2007/2008, 2008/2009 and 2009/2010 heating seasons. Phase II was conducted at other off-site properties between February and April 2008. Based on the results of the off-site sampling, vapor intrusion mitigation systems were recommended at six off-Site properties and have been installed at five of these six properties. The analytical results of the sampling at the sixth property resulted in a No Further Action (NFA) determination based on the Guidance tables; however, because the properties on either side of the sixth property had analytical results requiring action based on the Guidance tables, the NYSDEC and New York State Department of Health required that a vapor intrusion mitigation system be offered to the sixth property owner. A letter to the property owner dated July 14, 2007 stated this, but the sixth property owner declined to have a system installed at their property. An *Operation and Maintenance Plan for Off-Site Vapor Intrusion Mitigation Systems* (OBG, 2009) was approved by NYSDEC and is currently being followed.

CURRENT STATUS

On June 4, 2014, the NYSDEC changed the classification of the site from a Class 2 Site (meaning one presenting significant threat to the public health or environment – action required) to a Class 4 Site (meaning one where the site is properly closed – requires continued management).

The Site is unoccupied without an anticipated future use for the facility. The site owner wants to demolish the existing facility and redevelop the site.

FOUBU submitted an application to the NYSDEC on January 15, 2015, as a "Volunteer", for the site to participate in the BCP. On March 31, 2015 the NYSDEC provided notice that the application was accepted, and on June 1, 2015 executed Brownfield Site Cleanup Agreement Index C734052-03-15 with FOUBU ("Applicant"). FOUBU subsequently provided notice to NYSDEC on June 15, 2015 of an intended Change of Use for the site, in accordance with the provisions of 6 NYCRR §375-1.11(d), as an initial action to allow demolition of the existing building in preparation for the site redevelopment.

The current site owner, 547 East Genesee Street LLC, is one of the entities having ownership interest in FOUBU. Prior to remedial action being initiated at the site under the BCP, 547 East Genesee Street LLC intends to

transfer ownership of the site to FOUBU for purpose of completing the remedial action under the BCP as a Volunteer.

At present, the demolition and redevelopment under the BCP is on hold pending approval of the development plans by the Village of Fayetteville and rezoning of the site.

III. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

A record of the groundwater elevations measured prior to and since operation of the groundwater recovery and treatment system began is provided in Table 1, and Figures 2 and 3 depict the September 2015 overburden and bedrock groundwater flow contours.

- Figure 2 presents the groundwater elevations for the overburden zone. As indicated in the figure, groundwater flow in the overburden is generally to the north towards Bishop Brook under a hydraulic gradient of approximately 0.05 feet per foot (ft/ft) (before the top of the bank).
- Figure 3 presents the groundwater elevations for the bedrock zone. As indicated in the figure, the hydraulic gradient in the bedrock is to the northwest towards Bishop Brook under a hydraulic gradient of about 0.05 ft/ft.

Tables 2 and 3 provide a record of the groundwater quality for the monitoring wells, and Figures 4 and 5 depict the September 2015 TCE concentrations in the overburden and bedrock groundwater respectively. There are three areas on site during September 2015 where TCE concentrations are notable.

- One area, below the existing building, is evidenced by monitoring wells MW-13 and MW-14 which exhibited TCE concentrations of 260 micrograms per liter (μg/L) and 200 μg/L respectively.
- Another area is evidenced by monitoring well MW-17 which exhibited a TCE concentration of 190 μg/L.
- The third area is evidenced by monitoring wells MW-18 and MW-24, which exhibited TCE concentrations of $1,500 \mu g/L$ and $380 \mu g/L$ respectively.

Presented as part of Attachment 2 are graphs depicting the trend of TCE concentrations observed in the fifteen monitoring wells and two piezometers including MW-5, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15B, MW-16B, MW-17, MW-18, MW-21, MW-22, MW-24, PZ-1 and PZ-2.

Off-Site Vapor Intrusion Mitigation Systems

Maintenance activities have been performed in accordance with the NYSDEC-approved *Operation and Maintenance Plan for Off-Site Vapor Intrusion Mitigation Systems* (OBG, 2009) and included conducting annual inspections of the systems and submitting annual communication letters to applicable property owners.

IV. INSTITUTIONAL CONTROL/ENGINEERING CONTROL COMPLIANCE REPORT

Digging on Site in the CAMU (Area 1) is not allowed, nor is construction of groundwater recovery wells for consumption or production use. The current site owner filed a Declaration of Covenants and Restrictions (deed restrictions), as required by the NYSDEC, on May 15, 2014 that prohibits the disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results in unacceptable human exposure to contaminated soils, and prohibits use of on-site groundwater. Also, the deed restrictions filed by the current site owner require evaluation of the potential for soil vapor intrusion by the site owner should the on-site building become occupied and for any buildings developed on the Site.

V. MONITORING PLAN COMPLIANCE REPORT

Groundwater samples have been collected and analyzed for VOCs since 1998 in accordance with the NYSDEC-approved *Sampling and Analysis Plan* (SAP) dated March 1996 (OBG, 1996). Presently, the NYSDEC requires sampling of select monitoring wells on two occasions each year, during the Spring and Fall, and analyses for VOCs.

- For the Spring monitoring event, also referred to as the semi-annual event, the NYSDEC presently requires samples to be collected from five monitoring wells including MW-10, MW-11, MW-13, MW-18 and MW-24.
- For the Fall (or annual) event, the NYSDEC presently requires samples to be collected from fifteen monitoring wells and two piezometers including MW-5, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15B, MW-16B, MW-17, MW-18, MW-21, MW-22, MW-24, PZ-1 and PZ-2.

TCE is the primary contaminant of concern, although other chlorinated compounds (cis-1,2-dichloroethene, methylene chloride, tetrachloroethene, and trans-1,2-dichloroethene) have been occasionally detected. The results of the groundwater monitoring events are provided to the NYSDEC with quarterly Operation and Maintenance reports. The latest report containing these results was submitted to NYSDEC on October 9, 2015.

VI. OPERATION AND MAINTENANCE PLAN COMPLIANCE REPORT

In accordance with the 1994 ROD, the groundwater recovery and treatment system (the "System") was constructed on Site and has been in operation since February 5, 1996. The System includes groundwater recovery well RW-1 that is screened in the overburden and groundwater recovery well RW-2 that is screened in the shallow bedrock (Figure 1). Groundwater is also recovered, when present, from the:

- Sump constructed outside the northeast corner of the facility (Area 2) where during 1994 the soil contaminated with TCE was removed and treated as part of an IRM (Figure 1); and
- 300 ft long groundwater interceptor trench (Area 1) constructed in accordance with the ESD dated October 1998 downgradient of the CAMU (Figure 1).

Recovered groundwater is first discharged to an influent equalization tank and then pumped through bag filters and two granular activated carbon (GAC) filters connected in series. The treated effluent from the System is discharged to the rip-rap lined bank of Bishop Brook (Figure 1) and monitored in accordance with the State Pollution Discharge Elimination System (SPDES) fact sheet issued by the NYSDEC (NYSDEC, 1997). The results of monitoring performed in accordance with the SPDES fact sheet are submitted on a quarterly basis (Attachment 3) as presently required by the NYSDEC and indicate that the system effluent complies with the SPDES permit requirements. Also, on a monthly basis, samples of water are collected both between and prior to the GAC filters to gauge System performance.

Table 4 provides a summary of the volume of groundwater recovered each year since operation of the System was initiated on February 5, 1996. The table identifies the average flow rate for each year calculated by taking the volume of groundwater recovered for a particular year, dividing it by the number of days in the period, and dividing it by the number of minutes in a day. Attachment 4 provides a graph depicting the annualized average flow rates and trends.

The shallow bedrock groundwater recovery well RW-2 has recovered an annual average flow between 4 and 6 gpm, and the average flow rate for the 19 years has been approximately 5 gpm.

The annual average flow rate from recovery well RW-1 has been more variable. The highest annual average flow for RW-1 was calculated to be 14 gpm for 1996, the year operation of the System was initiated. Between 1996 and 2005 the annual average flow for RW-1 declined steadily to an annual average flow rate of 2.4 gpm.

Between 2006 and 2012 the annual average flow rate ranged between 2.3 gpm and 5 gpm, averaging 3.7 gpm for the six years. Since 2013, the RW-1 flow rate has an annual average flow ranging between 1.5 and 1.7 gpm, averaging 1.6 gpm for the three years.

Table 5 provides a summary of the influent concentrations of TCE to the System. Attachment 5 provides a graph depicting the concentrations and trend of TCE quantified at the influent of the System over time. As indicated in the trend graph, between 1997 and 2003 the TCE concentrations fluctuated, ranging between $350\mu g/L$ and $2,300\mu g/L$. A decreasing trend with considerably less fluctuation is observed after 2003.

Maintenance has been performed on the system as required including replacement of spent granular activated carbon (GAC) on two occasions (GAC #1 on February 23, 2015 and GAC# 2 on June 23, 2015) between December 1, 2014 and November 30, 2015.

VII. CONCLUSIONS AND RECOMMENDATIONS

The remedial actions completed between 1995 and 1999 to address the five Areas identified in the December 1994 ROD have been maintained as required by the Order on Consent. As presented in Section III above, the results of monitoring conducted at the Site indicate that progress is being made toward meeting the remedial objectives established by the 1994 ROD. However, it is likely that the concentration of several VOCs may remain above the Class GA drinking water standards in impacted overburden groundwater and bedrock groundwater for an indefinite period. There are no changes recommended presently for operation of the groundwater recovery system.

Deed restrictions were filed on May 15, 2014 by the site owner that prohibit use of on-site groundwater and requires future actions by the site owner should the site be occupied or redeveloped. A letter from the site owner certifying that the deed restrictions remain in place is provided as Attachment 6.

On June 4, 2014 the NYSDEC changed the classification of the site from Class 2 to Class 4.

Also, operation and maintenance activities associated with the off-site vapor intrusion mitigation systems will continue in accordance with the NYSDEC-approved 0&M Plan (OBG, 2009).

If you have questions regarding this PRR, please do not hesitate to call or email Al Farrell, John Sutphen, or me on behalf of OBG.

Very truly yours,

O'Brien & Gere Engineers, Inc.

Daugles M. Cranf L.

Douglas M. Crawford, P.E.

Vice President

cc: T. Blum - NYSDEC

T. Slutzky - 547 East Genesee Street LLC

J. Sutphen – O'Brien & Gere

A. Farrell - O'Brien & Gere

M. Distler - O'Brien & Gere

G. Swenson - O'Brien & Gere

Tables

- 1. Groundwater Elevations Summary
- 2. Groundwater TCE Concentrations
- 3. Groundwater Other Detected VOCs
- 4. Summary of Recovered Groundwater Volumes
- 5. Summary of Influent TCE Concentrations

Figures

- 1. Site Plan
- 2. Overburden Groundwater Elevation (9/16/15)
- 3. Bedrock Groundwater Elevation (9/16/15)
- 4. Overburden TCE Concentration (9/16/15)
- 5. Bedrock TCE Concentration (9/16/15)

Attachments

- 1. Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form
- 2. Monitoring Well TCE Concentration Trend Graphs
- 3. Quarterly Groundwater Treatment System Reports
- 4. Annual Average Flow Rate Trends
- 5. Groundwater Treatment System Influent TCE Concentration Trend Graph
- 6. February 3, 2016 certification from 547 East Genesee, LLC regarding deed restrictions

References:

NYSDEC, 1994 – Record of Decision for Former Accurate Die Casting Site, Fayetteville, New York, Site Number7-34-052. December 1994

NYSDEC, 1997 – Record of Decision Amendment for Former Accurate Die Casting Site, Fayetteville, New York, Site Number 7-34-052, October 1997

NYSDEC, 1998a – Explanation of Significant Differences, Former Accurate Die Casting Site, Fayetteville, New York, Site Number7-34-052, October 1998

NYSDEC, 1998b – October 7, 1998 letter from NYSDEC to O'Brien & Gere Engineers, Inc. regarding approval of groundwater interceptor trench construction plans

NYSDEC, 1999 – July 14, 1999 letter from NYSDEC to O'Brien & Gere Engineers, Inc. regarding establishment of a Corrective Action Management Unit (CAMU) on Site

NYSDEC, 2003 – January 28, 2003 letter from NYSDEC to O'Brien & Gere Engineers, Inc. regarding proposed reclassification of the Site from Class 2 to Class 4

NYSDEC, 2005 – August 19, 2005 letter from NYSDEC to O'Brien & Gere Engineers, Inc. requesting performance of a soil vapor intrusion evaluation for the Accurate Die Casting Site, Site Number7-34-052

OBG, 1994a - Interim Remedial Measure (IRM) Soil Excavation Work Plan, May 1994

OBG, 1994b - Interim Remedial Measure Summary Report, October 1994

OBG, 1994c - Groundwater Recovery and Treatment System Basis of Design Report, December 1994

OBG, 1995a - PCB/PAH/VOC Soils Excavation Work Plan, February 1995

OBG, 1995b - Remedial Design/Remedial Action (RD/RA) Work Plan, March 1995

OBG, 1995c - May 26, 1995 letter from O'Brien & Gere Engineers, Inc. to NYSDEC

OBG, 1995d - PCB/PAH/VOC Soils Area Excavation Plan, June 1995

OBG, 1995e - July 17, 1995 letter from O'Brien & Gere Engineers, Inc. to NYSDEC

OBG, 1996 - Sampling and Analysis Plan, March 1996

OPBG, 1998 – August 1998 letter from O'Brien & Gere Engineers, Inc. to NYSDEC regarding construction plans for groundwater interceptor trench

OBG, 2000 - Final Engineering Report, March 2000

OBG, 2005 – September 21, 2005 letter from O'Brien & Gere Engineers, Inc. to NYSDEC agreeing to conduct a soil vapor intrusion evaluation at the former Accurate Die Casting Site, Site Number 7-34-052

OBG, 2006a - On-Site Soil Vapor Sampling Work Plan, February 2006

OBG, 2006b – February 16, 2006 letter from O'Brien & Gere Engineers, Inc. to NYSDEC regarding revision of *On-Site Soil Vapor Sampling Work Plan*

OBG, 2006c – September 18, 2006 technical memorandum from O'Brien & Gere Engineers, Inc. to NYSDEC presenting results of the on-Site soil vapor sampling

OBG, 2007 - Final Work Plan for Conduct of Off-Site Sampling, February 2007

OBG, 2009 - Operation and Maintenance Work Plan, November 2009

Stearns & Wheler, 1993 – Remedial Investigation Report, December 1993

				Groundwater							
	Ground	Well Casing	Screen Interval	Elevation (ft)							
Well ID			Elevation (ft)	5/28/1992	6/26/1992	8/7/1992	9/26/1994	9/27/1994	10/18/1994	11/2/1994	11/17/1994
MW-01	99.36	101.11	75.4 - 85.4	DRY	DRY	79.69			DRY		
MW-02	91.8	94.68	76.6 - 86.6	83.21	82.81	84.32	83.1	83.28	80.12		
MW-03	97.65	99.63	73.7 - 83.7	80.44		81.63					
MW-04	65.62	68.52	46.6 - 56.6	51.08	49.95	50.81	47.22	52.21	46.79		
MW-05	88.21	90.42	49.2 - 59.2	60.71	63.76	61.22	59.87	59.91	59.45		
MW-06	77.46	79.38	46.4 - 56.4	60.5	60.49	60.46	59.51	59.52	59.05		
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.59	54.55	54.47	53.9	53.97	53.55		
MW-08	88.21	91.78	53.9 - 63.9	66.38	66.38	66.83	61.59	61.65	60.99		
MW-09	102.44	104.03	49.7 - 59.7	60.46	60.51	61.83	59.57	59.59	59.08		
MW-10 (B)	97.51	97.27	43 - 53	61.15	61.99	61.69			56.02	55.07	55.19
MW-11 (B)	91.48	93.8	43.1 - 53.1	62.34	63.7	63.66	58.41	58.39	57.47		56.68
MW-12	93.62	94.14	51.9 - 61.9	62.24	60.74	62.77	59.77	59.79	59.31		
MW-13	98.8	98.7	77.7 - 87.7	DRY	80.62	80.92			78.7	82.92	78.21
MW-14	98.76	100.62	74.6 - 84.6	75.11	79.07	81.54			86.18	80.12	80.54
MW-15 (B)	96.1	98.9	32.7 - 42.7						53.47		
MW-16 (B)	98.5	100.85	50.8 - 60.8						61.67		
MW-17	66.9	69.24	53.7 - 63.7				54.61	54.61	54.08		
MW-18	76.5	78.29	61.5 - 71.5								
MW-19	69.5	71.27	46.5 - 56.5								
MW-20	70.98	73.34	51.9 - 61.9								
MW-21	69.9	71.87	59.5 - 64.5								
MW-22	71.5	73.34	60.9 - 65.9								
MW-23 (B)	89.8	91.72	17.3 - 22.3								
MW-24*			-								
PZ-01	81.8	83.95	49.8 - 59.8				59.56	59.57	59.1		
PZ-02	80.6	83.06	42.8 - 52.8				59.35	59.36	58.89		
RW-01	78.4	80.28	.4 - 39.4, 45.4 - 50				56.88	56.89	58.22		
RW-02 (B)	91.58	95.18	-								
SUMP		97.93	-							76.04	74.83

Notes:

NI-Well not installed at time of monitoring, NA-Data not available, AB-Well was abandoned, --- Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Well ID	Groundwater Elevation (ft) 11/30/1994	Groundwater Elevation (ft) 12/15/1994	Groundwater Elevation (ft) 12/27/1994	Groundwater Elevation (ft) 1/13/1995	Groundwater Elevation (ft) 1/25/1995	Groundwater Elevation (ft) 2/9/1995	Groundwater Elevation (ft) 2/23/1995	Groundwater Elevation (ft) 3/9/1995	Groundwater Elevation (ft) 4/26/1995	Groundwater Elevation (ft) 7/25/1995
MW-01									DRY	DRY
MW-02									83.28	82.42
MW-03										
MW-04									51.44	45.94
MW-05									60.34	58.78
MW-06										58.52
MW-07 (B)									54.51	53.27
MW-08									63.41	59.82
MW-09									60.1	58.56
MW-10 (B)	54.94	55.19	55.02	54.94	54.95	54.52	54.36	55.02	57.49	54.6
MW-11 (B)	55.59	56.63	56.55	55.63	55.63	56.13	55.63	56.55	58.86	55.72
MW-12									60.3	58.76
MW-13	78.21	80.92	78.34	78.25	77.83	77.84	77.75	77.67	DRY	DRY
MW-14	80.54	80.2	80.54	80.62	80.45	78.95	79.54	80.12	80.61	80.61
MW-15 (B)									54.71	51.6
MW-16 (B)									63.86	59.41
MW-17									59.02	57.71
MW-18										
MW-19										
MW-20										
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01										58.58
PZ-02									59.88	58.37
RW-01									59.14	57.6
RW-02 (B)										
SUMP	75	75.17	74.83	75	75	74.88	75	78	75.09	75.25

Notes:

Well ID	Groundwater Elevation (ft) 10/17/1995	Groundwater Elevation (ft) 2/5/1996	Groundwater Elevation (ft) 2/7/1996	Groundwater Elevation (ft) 2/15/1996	Groundwater Elevation (ft) 2/16/1996	Groundwater Elevation (ft) 2/20/1996	Groundwater Elevation (ft) 2/22/1996	Groundwater Elevation (ft) 2/29/1996	Groundwater Elevation (ft) 3/7/1996	Groundwater Elevation (ft) 3/21/1996
MW-01	DRY	77.06	76.64	75.3	DRY	DRY	DRY	75.36	75.17	77.34
MW-02	84.22	84.04	83.87	83.41	83.34	83.15	83.32	83.67	83.5	84.24
MW-03										
MW-04		53.6	52.06	55.39	54.43	52.46	60.37	58.14	55.1	59.26
MW-05		61.26		60.8	60.73	60.5	60.4	60.14	59.73	58.85
MW-06	58.1	60.86	60.44	60.41	60.11	59.8	59.75	59.45	58.96	58.02
MW-07 (B)	52.71	55.16	54.67	55.03	54.52	54.45	54.58	54.46	54.32	54.29
MW-08	60.76	66.61	66.4	65.93	65.84	65.47	65.42	65.12	64.68	64.76
MW-09	58.16	60.95	60.7	60.48	60.35			59.71	59.22	58.3
MW-10 (B)	54.61	62	59.88	62.11	60.42	59.96	59.91	59.64	59.43	59.07
MW-11 (B)	55.31	62.63	60.37	62.67	60.88	60.35	60.29	59.99	59.78	59.38
MW-12	58.35	61.11	60.83	60.65	60.5	60.21	60.16	59.86	59.37	58.44
MW-13	DRY		79.98	79.91	79.9	79.88	79.87	79.86	79.77	79.68
MW-14	80.72	79.91		80.28	80.29	80.35	80.38	80.44	80.45	80.49
MW-15 (B)	50.47	59.24	59.37	59.79	59.63	59.56	59.56	59.46	59.4	59.14
MW-16 (B)	58.06	67.14	67.17	66.9	66.79	66.57	66.52	66.39	66.17	65.99
MW-17	DRY	60.29	60.17	59.75	59.7	59.52	59.64	59.42	59.28	59.3
MW-18										
MW-19										
MW-20										
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01	58.16	60.92	60.61	60.46	60.28	59.99	59.93	59.63	59.14	58.21
PZ-02	57.97	60.7	60.3	60.26	59.97	59.66	59.61	59.33	58.83	57.9
RW-01	57.11	59.64	55.04	59.22	54.71	54.4	54.35	54.05	53.58	52.76
RW-02 (B)	56.05	63.8	59.98	63.83	60.67		59.97	59.63	59.41	58.95
SUMP	76.94	74.67	74.68	74.64	74.63	74.63	75.3	74.9	74.65	74.87

Notes:

Well ID	Groundwater Elevation (ft) 4/4/1996	Groundwater Elevation (ft) 4/10/1996	Groundwater Elevation (ft) 4/18/1996	Groundwater Elevation (ft) 5/2/1996	Groundwater Elevation (ft) 6/6/1996	Groundwater Elevation (ft) 7/16/1996	Groundwater Elevation (ft) 9/5/1996	Groundwater Elevation (ft) 10/21/1996	Groundwater Elevation (ft) 11/19/1996	Groundwater Elevation (ft) 1/16/1997
MW-01	DRY	DRY	DRY	77.73	DRY	DRY	DRY	DRY	76.6	75.15
MW-02	83.68	83.68	84.86	85.35	83.17	83.32	82.57	83.18	84.22	83.56
MW-03										
MW-04	52.66	54.43	60.28	59.7	51.63	52.45	DRY	55.91	55.91	53.12
MW-05	58.32	58.14	58.2	58.71	60.54	58.98	56.33	55.4	56.49	59.15
MW-06	57.48	57.28	57.41	58.17	59.91	58.13	54.95	53.71	55.61	58.39
MW-07 (B)	54.17	54.15	54.32	54.75	55.02	53.95	52.44	51.22	52.68	54.28
MW-08	64.1	63.83	64.08	65.43	67.07	64.5	59.05	59.56	63.61	64.67
MW-09	57.78	57.59	57.73	58.46	60.18	58.38	55.38	54.24	56.64	58.65
MW-10 (B)	58.81	58.72	58.61	59.72	62.25	59.11	53.88		54.95	59.61
MW-11 (B)	59.1	59.01	58.94	60.35	62.68	59.53	54.72	52.88	55.85	60.15
MW-12	57.93	57.74	57.86	58.59	60.33	58.54	55.48	54.3	56.18	58.81
MW-13	79.6	79.57	79.52	79.44	79.28	79.35	79.15	79.07	80.68	80.49
MW-14	80.52	80.55	78.14	79.29	80.56	80.66	80.59	80.61		80.59
MW-15 (B)	59.07	59.04	58.84	59.87	62.62	59.24	54.83	51.58	51.99	58.83
MW-16 (B)	65.99	65.9	65.84	67.02	68.4	65.57	63.31			66.13
MW-17	59.27	59.14	59.3	59.95	59.22	58.46	57.89	55.96	58.02	59.33
MW-18					72.95	72.32	70.81	70.77		73.31
MW-19					DRY	DRY	DRY	DRY	DRY	DRY
MW-20					DRY	50.26	DRY	DRY	DRY	DRY
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01	57.67	57.47	57.6	58.34		58.31	55.13	53.9	55.83	58.57
PZ-02	57.39	57.19	57.3	58.04	59.77	57.97	54.9	53.53	55.25	58.23
RW-01	52.24	52.03	52.11	52.69	53.82	51.94	48.05	41.8	47.33	50.74
RW-02 (B)	58.63	58.52	58.41	59.63	62.56	59.14		42.02	55.39	
SUMP	74.69	74.99	75.89	75.76	74.73	74.78	74.56	74.85	74.77	74.71

Notes:

	Groundwater									
	Elevation (ft)									
Well ID	2/4/1997	4/15/1997	7/8/1997	10/22/1997	1/29/1998	4/15/1998	10/20/1998	4/28/1999	10/19/1999	4/6/2000
MW-01		75.64	DRY	80.92						
MW-02		83.81		82.84	83.47	83.52	83.54	83.38	84.44	86.58
MW-03										
MW-04										
MW-05		59.83	59.16	58.34	60.86			59.91	55.35	60.52
MW-06		59.34	58.58	57.97	60.46	60.57	59.69	59.11	53.34	60.36
MW-07 (B)		54.7	52.93	50.63	52.9	53.82	51.76	54.57	51.73	54.87
MW-08		65.15	61.65	58.9	64.98	67.17	59.86	64.21	62.37	66.41
MW-09		59.6	58.76	58	60.51	60.56	59.71	59.68	54.25	60.62
MW-10 (B)		58.11	53.44	50.75	55.78		51.88	57.97	51.32	57.6
MW-11 (B)		58.59	55.2	52.5	56.75	61.73	53.98	58.36	53.31	59.39
MW-12		59.72	58.92	58.21	60.67	60.8	59.89	59.53	54.09	60.71
MW-13		80.33	79.84	79.53	78.87	78.67	78.31	78.08	80.75	80.89
MW-14		80.53	80.55	80.58	80.78	80.78	80.64	80.54	80.67	80.6
MW-15 (B)		59.83	56.63	50.48	56.34	62.1	52.58	58.94	50.95	58.81
MW-16 (B)		66.89	64.43	58.45	65.71	68.03	61.84	65.99	59.81	66.92
MW-17		59.64	58.33	DRY	59.7	59.51	57.93	58.76	57.47	60.28
MW-18	72.78	73.6	71.34	69.71	73.5	73.29	70.74	72.46	70.78	75.08
MW-19	DRY									
MW-20										
MW-21	63.69	63.74		62.93	63.82	63.54	63.23	63.31	62.69	64.42
MW-22	63.69	67.92	67.35	65.96	68.51	68.39	67.83	68.05	67.69	68.52
MW-23 (B)		37.71	35.61	32.29	34.95	37.95	33.57	36.76	32.48	36.69
MW-24*								-7.38	-10.22	-9.96
PZ-01		59.51	58.7	58.01	60.5	60.61	59.7	59.3	53.65	60.51
PZ-02		59.13	58.34	57.65	60.22	60.34	59.46	59.03	52.71	60.17
RW-01		50.3	43.34	42.03	43.13	32.6	32.36	54.69		50.73
RW-02 (B)		55.69	44.07	42.89	52.74	59.94	44.33	56.74		54.52
SUMP		74.94	75.01	74.75	74.89	74.96	75.2	75.26		78.49

Notes:

Well ID	Groundwater Elevation (ft) 11/7/2000	Groundwater Elevation (ft) 7/3/2001	Groundwater Elevation (ft) 11/8/2001	Groundwater Elevation (ft) 4/3/2002	Groundwater Elevation (ft) 10/9/2002	Groundwater Elevation (ft) 12/28/2004	Groundwater Elevation (ft) 4/8/2005	Groundwater Elevation (ft) 5/8/2005	Groundwater Elevation (ft) 11/9/2005	Groundwater Elevation (ft) 4/21/2006
MW-01	DRY	77.46	76.87	77.42	101.11	76.7	80.09	80.09	78.27	78.66
MW-02		84.33	83.67	84.28	83.6	83.67	85.01	85.01	84.1	85.14
MW-03										
MW-04										
MW-05	59.83	60.92	60.1	60.8	58.42	60.79	61.76	61.76	60.82	60.88
MW-06	59.4	55.87	59.67	60.42	59.84	60.35	61.45	61.45	60.36	70.35
MW-07 (B)	DRY	53.34	51.92	53.59	52.34	54.11	55.35	55.35		54.59
MW-08	61.45	65.63	60.92	64.16	60.73	63.24	67.83	67.83	64.14	65.22
MW-09	59.42	60.51	59.68	60.47	59.85	60.36	61.54	61.54	60.4	60.36
MW-10 (B)	52.73	57.22	52.6	56.07	54.57	54.86	60.38	60.38	55.76	58.75
MW-11 (B)	54.66	59.15	54.73	57.19	54.77	56.54	60.89	60.89	56.05	58.84
MW-12	59.62	60.63	59.87	60.64		60.54	61.67	61.67	60.58	60.54
MW-13	80.53	79.95	80.1	78.65	79.62	83.48	80.04	80.04	80.6	79.8
MW-14	80.75	79.74	80.77	80.48	82.87	81.72	84.69	84.69	82.77	82.71
MW-15 (B)	54.32	58.98	53.52	59.03	54.4	57.78	61.53	61.53	55.87	59.87
MW-16 (B)	63.57	66.14	63.58	66.25	63.5	65.64	68.75	68.75	65.35	66.31
MW-17	58.33	58.55	58.02	59.24	57.58	58.91	60.79	60.79	58.91	58.77
MW-18	71.61	72.09	71.36	73.75	69.84	72.88	74.61	74.61	72.33	72.54
MW-19	DRY	DRY	DRY	DRY	DRY	DRY		DRY	DRY	DRY
MW-20										
MW-21	62.59	62.53	62.58	63.39	61.82	62.54	63.92	63.92	62.62	62.24
MW-22	66.42	68.13	68.15	68.71	67.24	63.41	68.65	68.65	68.68	68.3
MW-23 (B)	33.97	36.21	33.25	35.68	33.63	36.49	39.32	39.32	35.43	37.72
MW-24*	-10.43	-10.41	-10.39	-10.35	-10.3	-10.33	-10.2	-10.2	-10.33	-10.4
PZ-01	59.44		59.7	60.45	59.87	60.4	61.48	61.48	60.38	60.37
PZ-02	59.16		59.48	60.18	59.65	60.23	61.28	61.28	60.22	60.19
RW-01	40.88		36.48	36.53	34.88					
RW-02 (B)	42.86		42.97	49.85	44.13					
SUMP	74.91	75.33	75.05	75.13	74.94					

Notes:

Well ID	Groundwater Elevation (ft) 1/2/2007	Groundwater Elevation (ft) 11/29/2007	Groundwater Elevation (ft) 5/8/2008	Groundwater Elevation (ft) 11/21/2008	Groundwater Elevation (ft) 4/22/2009	Groundwater Elevation (ft) 11/20/2009	Groundwater Elevation (ft) 4/30/2010	Groundwater Elevation (ft) 11/17/2010	Groundwater Elevation (ft) 5/12/2011	Groundwater Elevation (ft) 11/29/2011
MW-01	76.7	80.03	80.06	80.11	80.69	79.49	80.73	79.87	80.71	75.97
MW-02	83.58	85.6			83.26	83.24	83.13	83.6	NM	83.98
MW-03										
MW-04										
MW-05	60.65	61.62	60.72	60.24	60.86	60.32	60.7	60.62	62.32	60.66
MW-06	60.28	60.5	60.28	59.98	60.46	60.03	60.34	60.26	NM	60.26
MW-07 (B)	54.04	52.96	52.94		56.1	52.88	54.04	52.94	53.84	53.18
MW-08	63.24	66.86	66.82	66.88	66.5	61.93	65.94	64.7	NM	63
MW-09	60.36	60.55	60.33	60.53	60.49	60.03	60.37	60.27	61.9	60.25
MW-10 (B)	57.62	56.01	61.05	52.79	60.33	53.77	58.97	58.77	66.37	55.73
MW-11 (B)	57.81	55.72	60.32	52.42	59.4	52.98	57.95	57.84	64.85	54.56
MW-12	60.47	60.72	60.5	60.19	60.67	60.24	60.56	60.44	62.02	60.46
MW-13	79.44	78.68	78.23	DRY	DRY	78.02	Dry	Dry	Dry	Dry
MW-14	82.65	89.24	82.74	82.59	82.72	82.67	82.62	82.77	81.74	82.7
MW-15 (B)	59.26	54.35	61.89	52.85	61.74	54.7	60.4	60.1	62.56	57.88
MW-16 (B)	66.12	63.99	67.78	63.03	67.85	64.11	66.77	66.41	74.8	64.83
MW-17	59	58.46	58.96	57.9	59.36	58.38	58.96	58.89	60.26	58.96
MW-18	73.2	72.84	72.7	71.85	73.08	71.91	72.53	72.95	73.26	73.05
MW-19		DRY	DRY	DRY	DRY	47.11	Dry	47.13	DRY	47.13
MW-20										
MW-21	62.63	63.12	62.65	62.65	62.63	62.43	62.31	63.31	62.36	62.85
MW-22	68.59	68.94	68.6	68.51	68.44	68.29	68.26	68.88	68.44	68.74
MW-23 (B)	36.62	34.82	34.76	34.82	39.14	35.06	38.38	38.08	42.22	36.96
MW-24*	-10.23	-10.12	-10.35	-10.35	-10.45	-11.12	-10.5	-10.44	-10.4	-10.36
PZ-01	60.35	60.53	60.32	59.99	60.49	60.03	60.37	60.27	61.85	60.27
PZ-02	60.09	60.36	60.12	59.81	60.3	59.86	60.18	60.1	61.61	60.11
RW-01										
RW-02 (B)										
SUMP										

Notes:

	Groundwater Elevation (ft)								
Well ID	5/22/2012	11/28/2012	4/18/2013	10/1/2013	4/16/2014	9/18/2014	3/31/2015	9/16/2015	
MW-01	75.07	75.06	78.43	75.06	77.29	75.07	80.26	75.07	
MW-02	83.36	83.4	84.68	83.36	85.18	83.06	85.18	83.06	
MW-03									
MW-04									
MW-05	60.54	60.02	61.08	60.38	61.74	60.24	60.22	60.06	
MW-06	60.16	59.78	60.98	60.04	61.35	59.94	60.02	59.88	
MW-07 (B)	53.32	52.24	54.12	53.14	54.82	52.29	53.28	52.24	
MW-08	62.44	60.93	65.6	62.66	68.38	61.32	63.93	61.36	
MW-09	60.19	59.76	60.71	60.05	61.43	59.97	60.01	59.88	
MW-10 (B)	55.41	52.47	58.67	55.39	61.91	54.73	54.25	54.85	
MW-11 (B)	54.2	51.58	57.48	54.10	60.5	53.54	53.15	53.55	
MW-12	60.38	59.98	60.88	60.24	61.56	60.16	60.22	60.09	
MW-13	Dry	Dry	Dry	78.00	79.94	79.3	78.74	78.3	
MW-14	82.64	82.54	82.54	82.82	82.8	82.88	84.8	83.2	
MW-15 (B)	57.6	52.1	60.12	57.65	63.3	56.34	55.06	56.68	
MW-16 (B)	64.81	61.03	67.15	64.75	69.49	64.19	64.2	64.29	
MW-17	58.92	54.44	59.88	58.24	60.36	58.08	58.7	58	
MW-18	72.47	70.83	74.27	71.07	74.83	70.77	73.63	70.23	
MW-19	47.12	Dry	Dry	Dry	Dry	Dry	Dry	47.13	
MW-20									
MW-21	62.12	60.57	62.92	60.91	63.71	60.55	63.43	60.57	
MW-22	68.3	68.34	68.3	66.39	68.04	66.8	68.18	66.92	
MW-23 (B)	37.4	34	38.6	36.86	40.38	36.22	36.12	36.54	
MW-24*	-10.48	Dry	Dry	-11.12	-10.1	-11.14	-10.3	-11.15	
PZ-01	60.2	59.79	60.69	60.07	61.39	59.97	60.03	59.89	
PZ-02	60.02	59.62	60.51	59.88	61.14	59.78	59.84	59.72	
RW-01		33.54	34.88	34.38	34.88	34.88	33.93	34.14	
RW-02 (B)		43.33	54.73	44.02	58.94	44.18	44.8	43.54	
SUMP									

Notes:

NI-Well not installed at time of monitoring, NA-Data not available, AB-Well was abandoned, --- Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler).

MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96.

System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Sample Date	August-89	December-89	May-90	May-92	July-94	October-94	February-95	April-95	July-95
Oampie Date	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-01	112	ND	2	ND					
MW-02	ND	ND	1	ND		ND	ND	ND	ND
MW-03	ND	ND	440000	340000	ND	NI	NI	NI	NI
MW-04		7	43	6	270	23	13	16	
MW-05		340	344	110	330	410	290	280	
MW-06		700	454	510	390	360	330	280	270
MW-07		ND	ND	ND	ND	ND	ND	ND	ND
MW-08		ND	ND	ND		ND	ND	ND	ND
MW-09		109	106	60	72	74	74	84	75
MW-10				4500	1600	1300	1400	1200	900
MW-11				5200	5500	5300	4300	3900	4000
MW-12				36	44	35	33	30	25
MW-13				110	740	510			
MW-14				67	150	120	79	95	140
MW-15	NI	NI	NI	NI	NI	14	11	10	17
MW-16	NI	NI	NI	NI	NI	6	17	7	18
MW-17	NI	NI	NI	NI	260	140	200	130	160
MW-18	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-22	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-23	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-24	NI	NI	NI	NI	NI	NI	NI	NI	NI
PZ-01	NI	NI	NI	NI	NI				120
PZ-02	NI	NI	NI	NI	NI			490	400
					•	installed at time of m	nonitoring, AB - Well v	vas abandoned.	
	•	•	•	(Stearns & Wheler), F	,				
					•	ta was collected by St	earns & Wheler prior	to 07/22/94.	
				nd MW-22 on 01/20/9					
	Data provided only for	or wells presently inclu	uded in either the ann	nual or semi-annual m	onitoring list of wells.				

Sample Date	October-95	January-96	April-96	May-96	July-96	October-96	January-97	April-97	July-97
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	-	-	-	-	-	-	-	-	-
MW-01									
MW-02	ND					1 U			
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	15					62	NI	NI	NI
MW-05						180			
MW-06	180	170	110		98	71	75	52	
MW-07	ND					1 U			
MW-08	ND					1 U			
MW-09	68	100	64		65	50	95	83	66
MW-10	890	900	820		960	1700	1900	1200	
MW-11	2600	2500	1500		1400	1600	1500	800	
MW-12	29					17			
MW-13						370			
MW-14	78	84	250		230	170	390	400	260
MW-15	7					20			
MW-16	20					11			
MW-17		180	350		460	300	450	220	150
MW-18	NI	NI	NI	1200		2900	850	410	1800
MW-20	NI	NI	NI	70			NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	270	520	310
MW-22	NI	NI	NI	NI	NI	NI	2	1	3
MW-23	NI	NI	NI	NI	NI	NI	NI	1 U	1 U
MW-24	NI	NI	NI	NI	NI	NI	NI	NI	NI
PZ-01						32			
PZ-02						540			
Notes:	ND - Not detected ab	ove unknown MDL, l	J - Not detected abov	e known MDL, N	ot analyzed, NI - Not	installed at time of n	nonitoring, AB - Well v	vas abandoned.	
	MW-01 through MW-	16 installed during Re	medial Investigation	(Stearns & Wheler), F	1 - MS/MSD recovery	outside limits			
	MW-03 removed as p	part of TCE Soils Inter	rim Remedial Measure	e (IRM) completed in	September 1994. Dat	ta was collected by St	earns & Wheler prior	to 07/22/94.	
	MW-04 and MW-20 w	vere abandoned and r	eplaced by MW-21 ar	nd MW-22 on 01/20/9	7.				
	Data provided only for	or wells presently inclu	uded in either the ann	ual or semi-annual m	onitoring list of wells.				

Sample Date	October-97	January-98	April-98	October-98	November-98	April-99	October-99	April-00	November-00
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	-	_	-						
MW-01									
MW-02	1 U			1 U			1 U		1 U
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05	220			200			78		110
MW-06	58		140	92		63	72	30	48
MW-07	1 U			1 U			1 U		
MW-08				1 U			1 U		1 U
MW-09	61	140	120	80		120	46	69	60
MW-10	1300		930	880		720	700	530	690
MW-11	1600		920	1100		740	900	670	840
MW-12	19			22			15		17
MW-13	760			480			430		790
MW-14	560	560	460	400		460	260	250	280
MW-15	18			21			13		7
MW-16	14			4			15		3
MW-17		270	800	250		280	180	160	220
MW-18	3100	1000	1100	3600		620	1800	360	1900
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	450	120	1300	180		510	90	42	73
MW-22	8	5	10	14		10	9	13	12
MW-23	1 U	1 U		1 U			1 U		1 U
MW-24	NI	NI	NI	NI	6000	4300	4300	690	2400
PZ-01	48			85			410		29
PZ-02	420			250			18		160
Notes:		ove unknown MDL, l			•		nonitoring, AB - Well v	vas abandoned.	
	3	16 installed during Re	9	•	,				
		part of TCE Soils Inter		•	•	ta was collected by St	earns & Wheler prior	to 07/22/94.	
		vere abandoned and r							
	Data provided only for	or wells presently inclu	uded in either the ann	nual or semi-annual m	onitoring list of wells.				

Sample Date	July-01	November-01	April-02	June-02	October-02	May-03	December-03	July-04	December-04
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	· ·	· ·	· ·	· ·	· ·	Ü	· ·	· ·	· ·
MW-01		1 U							
MW-02		1 U							
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05		120			100		110		98
MW-06	89	92			92		110		
MW-07		1 U							
MW-08		1 U							
MW-09	70	77			67		110		
MW-10	600	900	740		700	530	570	470	
MW-11	680	1000	870		760	940	620	490	
MW-12		19			18		20		21
MW-13		520		360	370				
MW-14	270	240			200	310	190		200
MW-15		27			21		26		2.1
MW-16		3			1		3		2.1
MW-17	240	230			290		310		140
MW-18	970	2000	350		2500	2100	2300	1600	
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	35	38					12		4.9
MW-22	13	13			4		18		18
MW-23		1 U							
MW-24	600	1500		470		390	190	170	96
PZ-01		79			79		92		120
PZ-02		260			160		150		130
Notes:	ND - Not detected ab	ove unknown MDL, I	J - Not detected abov	e known MDL, N	ot analyzed, NI - Not	installed at time of n	nonitoring, AB - Well v	vas abandoned.	
	MW-01 through MW-	16 installed during Re	medial Investigation	(Stearns & Wheler), F	1 - MS/MSD recovery	outside limits			
	MW-03 removed as p	part of TCE Soils Inte	rim Remedial Measure	e (IRM) completed in	September 1994. Da	ta was collected by St	earns & Wheler prior	to 07/22/94.	
	MW-04 and MW-20 w	vere abandoned and r	eplaced by MW-21 ar	nd MW-22 on 01/20/9	7.				
	Data provided only for	or wells presently inclu	uded in either the ann	ual or semi-annual m	onitoring list of wells.				

Sample Date	April-05	November-05	April-06	January-07	February-07	May-07	November-07	May-08	November-08		
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene		
	UG/L	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
Location ID		-	_	-	_	_	_	_	-		
MW-01											
MW-02											
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI		
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI		
MW-05		75.0		75.2			88		84.6		
MW-06				142			120		84.1		
MW-07											
MW-08											
MW-09		83.3		86.9			88		77.2		
MW-10	450		486		448	448	440	476	126		
MW-11	390		469		407	390	380	293	746		
MW-12		19.6		23		24	38		24.3		
MW-13	200		265		265	282	310	251			
MW-14		127		270			380		484		
MW-15		0.50 U		0.54			0.82		0.5 U		
MW-16		2.25		1.82			2.1		3.21		
MW-17				132			240		210		
MW-18	1300		1490		763	1590	1800	1160	1840		
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI		
MW-21		10.6		6.17			7.2		12.2		
MW-22		15.8		13.5			27		28.9		
MW-23											
MW-24	64	124	70.6	100		197	210	159	452		
PZ-01		103		132			100		48.4		
PZ-02		118		125			110		116		
Notes:	ND - Not detected above unknown MDL, U - Not detected above known MDL, Not analyzed, NI - Not installed at time of monitoring, AB - Well was abandoned.										
	MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits										
		MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94.									
		MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97. Data provided only for wells presently included in either the annual or semi-annual monitoring list of wells.									
	Data provided only for	or wells presently inclu	uded in either the ann	uat or semi-annual m	onitoring list of wells.						

Sample Date	April-09	November-09	April-10	November-10	May-11	November-11	May-12	November-12	April-13
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Location ID	-	_	_	_	_	_	_	_	-
MW-01									
MW-02									
MW-03	NI	NI	NI	NI	NI	NI		NI	
MW-04	NI	NI	NI	NI	NI	NI		NI	
MW-05		77.8		82		73.1		64.8	
MW-06		75.8		83.8		52.6		87.2	
MW-07									
MW-08									
MW-09		71.2		62		52.6		87.6	
MW-10	329	285	369	395	416	169	135	60.7	320
MW-11	260	452	379	406	255	926	891	1080	638
MW-12		16.5		19.5		21.9		17.6	
MW-13			208	262		278	234	307	196
MW-14		426		438		17.8		355	
MW-15		0.65		22.9		0.5 U		0.5 U	
MW-16		1.96		1.69		1.53		2.21	
MW-17		190		79.6		496		118	
MW-18	1160	1290	609	1300	1460	1190	1020	1820	942
MW-20	NI	NI	NI	NI	NI	NI		NI	
MW-21		12.3		6.1		6.76		27.4	
MW-22		19		19.4		23.6		19.1	
MW-23									
MW-24	118		193	331	62.1	246	162	1010	210
PZ-01		50.9		95		94.2		50.8	
PZ-02		101		100		96.6		111	
	ND - Not detected above unknown MDL, U - Not detected above known MDL, Not analyzed, NI - Not installed at time of monitoring, AB - Well was abandoned. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97. Data provided only for wells presently included in either the annual or semi-annual monitoring list of wells.								

Sample Date	October-13	Apr-14	Sep-14	Mar-15	Sep-15		
Gample Date	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene		
	ug/l	ug/l	ug/l	ug/l	ug/l		
Location ID	ug/i	ug/i	ug/i	ug/i	ug/i		
MW-01							
MW-02							
MW-03							
MW-04							
MW-05	73		53		55		
MW-06	64		82		79		
MW-07							
MW-08							
MW-09	52		45		46		
MW-10	84	310	56	96	100		
MW-11	760	470	640	690	680		
MW-12	16		21		16		
MW-13	290	190	260	210	260		
MW-14	1600	210	300		200		
MW-15	0.69 J		1U		0.82 J		
MW-16	1.5		1.5		1.5		
MW-17	330		260		190		
MW-18	1700	650	1500	960	1500 F1		
MW-20							
MW-21	15		15		18		
MW-22	1.5		11		9.5		
MW-23							
MW-24	530	220	400	230	380		
PZ-01	90		77		63		
PZ-02	97		89		83		
Notes:	ND - Not detected ab	ove unknown MDL,	U - Not detected above	ve known MDL, N	Not analyzed, NI - Not	installed at time of monitoring, AB - Well was abandoned.	
	MW-01 through MW-	16 installed during Re	emedial Investigation	(Stearns & Wheler),	F1 - MS/MSD recovery	outside limits	
	MW-03 removed as	part of TCE Soils Inte	rim Remedial Measur	e (IRM) completed in	September 1994. Dat	ta was collected by Stearns & Wheler prior to 07/22/94.	
	MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.						
	Data provided only for	or wells presently incl	uded in either the an	nual or semi-annual n	monitoring list of wells.		

Table 3 Former Accurate Die Casting Site Fayetteville, New York Other Detected Volatile Organic Compounds

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-01	11/8/2001	1 U	1 U	1 U	1 U
MW-02	10/22/1996	1 U	1 U	1 U	1 U
MW-02	10/22/1997	1 U	1 U	1 U	1 U
MW-02	10/21/1998	1 U	1 U	1 U	1 U
MW-02	10/19/1999	1 U	1 U	1 U	1 U
MW-02	11/9/2000	1 U	1 U	1 U	1 U
MW-02	11/10/2001	1 U	1 U	1 U	1 U
MW-04	10/22/1996	12	1 U	1 U	1 U
MW-05	10/21/1996	10 U	10 U	10 U	10 U
MW-05 MW-05	10/22/1997	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
MW-05	10/20/1998 10/19/1999	10 U	10 U	10 U	10 U
MW-05	11/8/2000	5 U	5 U	5 U	5 U
MW-05	11/9/2001	5 U	5 U	5 U	5 U
MW-05	10/10/2002	5 U	5 U	5 U	5 U
MW-05	12/8/2003	5 U	5 U	5 U	5 U
MW-05	12/28/2004	2.5 U	2.7	2.5 U	2.5 U
MW-05	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-05	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/29/2007	0.5 U	2.5	0.5 U	0.5 U
MW-05	11/1/2008	1.52	1.95	0.5 U	0.5 U
MW-05	11/20/2009	1.15	2.25	0.5 U	0.5 U
MW-05	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/28/2012	2.5 U	2.5	2.5 U	2.5 U
MW-05	10/1/2013	1.3	2.5	1 U	1 U
MW-05	9/18/2014	1 U	1.9	1 U	1 U
MW-05	9/16/2015	1 U	1.9	1 U	1 U
MW-06	1/17/1996		5 U	5 U	
MW-06	4/10/1996		5 U	5 U	
MW-06	7/16/1996 10/22/1996	5 U 2 U	5 U 2 U	5 U 2 U	5 U 2 U
MW-06 MW-06	1/16/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1997	1 U	1 U	1 U	1 U
MW-06	10/23/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1998	5 U	5 U	5 U	5 U
MW-06	10/20/1998	2 U	2 U	2 U	2 U
MW-06	4/29/1999	2 U	2 U	2 U	2 U
MW-06	10/19/1999	2 U	2 U	2 U	2 U
MW-06	4/6/2000	1 U	1 U	1 U	1 U
MW-06	11/8/2000	1 U	1 U	1 U	1 U
MW-06	7/3/2001	2 U	2 U	2 U	2 U
MW-06	11/9/2001	2 U	2 U	2 U	2 U
MW-06	10/10/2002	2 U	2 U	2 U	2 U
MW-06	12/8/2003	5 U	5 U	5 U	5 U
MW-06	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	11/29/2007	0.65	0.5 U	0.5 U	0.5 U
MW-06	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/20/2009	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U
MW-06 MW-06	11/23/2010 11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	11/28/2012	2.5 U	2.5 U	1.25 U	2.5 U
MW-06	10/1/2013	1.23 U	1.23 U	1.23 U	1 U
MW-06	9/18/2014	1U	1 U	1 U	1 U
MW-06	9/16/2015	1 U	1 U	1 U	1 U
MW-07	10/21/1996	1 U	1 U	1 U	1 U
MW-07	10/22/1997	1 U	1 U	1 U	1 U
MW-07	10/20/1998	1 U	1 U	1 U	1 U
MW-07	10/19/1999	1 U	1 U	1 U	1 U
MW-07	11/9/2001	1 U	1 U	1 U	1 U
MW-08	10/22/1996	1 U	1 U	1 U	1 U
MW-08	10/21/1998	1 U	1 U	1 U	1 U
MW-08	10/19/1999	1 U	1 U	1 U	1 U
MW-08	11/7/2000	1 U	1 U	1 U	1 U
MW-08	11/8/2001	1 U	1 U	1 U	1 U
MW-09	1/17/1996		5 U	5 U	
MW-09	4/10/1996		1 U	1 U	4.11
MW-09	7/16/1996	1 U	1 U	1 U	1 U
MW-09 MW-09	10/21/1996	1 U	1 U	1 U	1 U
	1/16/1997	5 U	5 U	5 U	5 U
MW-09	4/15/1997	2 U	2 U	2 U	2 U

Table 3 Former Accurate Die Casting Site Fayetteville, New York Other Detected Volatile Organic Compounds

		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-09	7/8/1997	5 U	5 U	5 U	5 U
MW-09	10/22/1997	5 U	5 U	5 U	5 U
MW-09	1/29/1998	5 U	5 U	5 U	5 U
MW-09 MW-09	4/15/1998	5 U	5 U	5 U	5 U
MW-09	10/20/1998	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
MW-09	4/29/1999	2 U 5 U	2 U 5 U	2 U 5 U	2 U 5 U
MW-09	10/19/1999	2 U	2 U	2 U	2 U
MW-09	4/6/2000 11/8/2000	2 U	2 U	2 U	2 U
MW-09	7/3/2001	2 U	2 U	2 U	2 U
MW-09	11/10/2001	2 U	2 U	2 U	2 U
MW-09	10/11/2002	2 U	2 U	2 U	2 U
MW-09	12/8/2003	2 U	2 U	2 U	2 U
MW-09	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-09	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/28/2012	1.25 U	1.25 U	1.25 U	1.25 U
MW-09	10/1/2013	1 U	1 U	1 U	1 U
MW-09	9/18/2014	1 U	1 U	1 U	1 U
MW-09	9/16/2015	1 U	1 U	1 U	1 U
MW-10	1/17/1996		20 U	20 U	
MW-10	4/10/1996		50 U	50 U	
MW-10	7/16/1996	50 U	50 U	50 U	50 U
MW-10	10/22/1996	50 U	50 U	50 U	50 U
MW-10	1/16/1997	100 U	100 U	100 U	100 U
MW-10	4/16/1997	100 U	100 U	100 U	100 U
MW-10	10/23/1997	50 U	50 U	50 U	50 U
MW-10	4/15/1998	50 U	50 U	50 U	50 U
MW-10	10/21/1998	50 U	50 U	50 U	50 U
MW-10	4/29/1999	25 U	25 U	25 U	25 U
MW-10	10/20/1999	25 U	25 U	25 U	25 U
MW-10	4/6/2000	20 U	20 U	20 U	20 U
MW-10	11/8/2000	20 U	20 U	20 U	20 U
MW-10	7/3/2001	20 U	20 U	20 U	20 U
MW-10	11/10/2001	20 U	20 U	20 U	20 U
MW-10	4/3/2002	20 U	20 U	20 U	20 U
MW-10	10/10/2002	20 U	20 U	20 U	20 U
MW-10	5/1/2003	20 U	20 U	20 U	20 U
MW-10	12/8/2003	20 U	20 U	20 U	20 U
MW-10	7/19/2004	10 U	10 U	10 U	10 U
MW-10	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-10	4/21/2006	10 U	10 U	10 U	10 U
MW-10	2/7/2007	10 U	10 U	10 U	10 U
MW-10	5/31/2007	10 U	10 U	10 U	10 U
MW-10	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	11/1/2008	5 U	5 U	5 U	5 U
MW-10	4/22/2009	10 U	10 U	10 U	10 U
MW-10	11/20/2009	10 U	10 U	10 U	10 U
MW-10	4/30/2010	10 U	10 U	10 U	10 U
MW-10	11/17/2010	10 U	10 U	10 U	10 U
MW-10	5/12/2011	10 U	10 U	10 U	10 U
MW-10	11/29/2011	10 U	10 U	10 U	10 U
MW-10	5/22/2012	5 U	5 U	5 U	5 U
MW-10	11/28/2012	1 U	1 U	1 U	1 U
MW-10	4/18/2013	25 U	25 U	25 U	25 U
MW-10 MW-10	10/1/2013	1 U 1 U	1 U	1 U 1 U	1 U 1 U
	4/16/2014 9/18/2014	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
MW-10 MW-10	3/31/2015	1 U	1 U	1 U	1 U
MW-10 MW-10	9/16/2015	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
MW-10	1/17/1996		100 U	100 U	
MW-11	4/10/1996		100 U	100 U	
MW-11 MW-11				100 U 100 U	
MW-11 MW-11	7/16/1996	100 U	100 U	100 U 100 U	100 U
MW-11 MW-11	10/22/1996	100 U	100 U		100 U
MW-11 MW-11	1/16/1997	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U
MW-11	4/15/1997	50 U	50 U	50 U	50 U
MW-11	10/23/1997	50 U		50 U	50 U
MW-11 MW-11	4/15/1998		50 U		
	10/21/1998	50 U	50 U	50 U	50 U
MW-11 MW-11	4/29/1999 10/19/1999	50 U 25 U	50 U 25 U	50 U 25 U	50 U 25 U

		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l	
MW-11	4/6/2000	20 U	20 U	20 U	20 U	
MW-11	11/9/2000	20 U	20 U	20 U	20 U	
MW-11	7/3/2001	20 U	20 U	20 U	20 U	
MW-11	11/9/2001	20 U	20 U	20 U	20 U	
MW-11	4/3/2002	20 U	20 U	20 U	20 U	
MW-11	10/10/2002	20 U	20 U	20 U	20 U	
MW-11	5/1/2003	20 U	20 U	20 U	20 U	
MW-11	12/8/2003	50 U	50 U	50 U	50 U	
MW-11	7/19/2004	10 U	10 U	10 U	10 U	
MW-11	4/8/2005	1.1	0.50 J	0.50 U	0.50 U	
MW-11	4/21/2006	10 U	10 U	10 U	10 U	
MW-11	2/7/2007	5 U	5 U	5 U	5 U	
MW-11	5/31/2007	5 U	5 U	5 U	5 U	
MW-11	11/29/2007	1.2	0.5 U	0.5 U	0.5 U	
MW-11	5/1/2008	0.65	0.5 U	0.5 U	0.5 U	
MW-11	11/1/2008	10 U	10 U	10 U	10 U	
MW-11	4/22/2009	10 U	10 U	10 U	10 U	
MW-11	11/20/2009	10 U	10 U	10 U	10 U	
MW-11	4/30/2010	10 U	10 U	10 U	10 U	
MW-11	11/17/2010	10 U	10 U	10 U	10 U	
MW-11	5/21/2011	10 U	10 U	10 U	10 U	
MW-11	11/29/2011	10 U	10 U	10 U	10 U	
MW-11	5/22/2012	25 U	25 U	25 U	25 U	
MW-11	11/28/2012	25 U	25 U	25 U	25 U	
MW-11	4/18/2013	25 U	25 U	25 U	25 U	
MW-11	10/1/2013	1.1	1 U	1 U	1 U	
MW-11	4/16/2014	1	1 U	1 U	1 U	
MW-11	9/18/2014	5 U	5 U	5 U	5 U	
MW-11	3/31/2015	5 U	5 U	5 U	5 U	
MW-11	9/16/2015	10 U	10 U	10 U	10 U	
MW-12	10/21/1996	1 U	1 U	1 U	1 U	
MW-12	10/22/1997	1 U	1 U	1 U	1 U	
MW-12	10/20/1998	1 U	1 U	1 U	1 U	
MW-12	10/19/1999	1 U	1 U	1 U	1 U	
MW-12	11/8/2000	1 U	1 U	1 U	1 U	
MW-12	11/9/2001	1 U	1 U	1 U	1 U	
MW-12	10/10/2002	1 U	1 U	2	1 U	
MW-12	12/8/2003	1 U	1 U	1 U	1 U	
MW-12	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U	
MW-12	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U	
MW-12	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	5/31/2007	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U	
MW-12	10/1/2013	1 U	1 U	1 U	1 U	
MW-12	9/18/2014	1 U	1 U	1 U	1 U	
MW-12	9/16/2015	1 U	1 U	1 U	1 U	
MW-13	10/24/1996	10 U	10 U	10 U	10 U	
MW-13	10/23/1997	50 U	50 U	50 U	50 U	
MW-13	10/21/1998	25 U	25 U	25 U	25 U	
MW-13	10/20/1999	20 U	20 U	20 U	20 U	
MW-13	11/9/2000	20 U	20 U	20 U	20 U	
MW-13	11/8/2001	20 U	20 U	20 U	20 U	
MW-13	6/11/2002	20 U	20 U	20 U	20 U	
MW-13	10/11/2002	20 U	20 U	20 U	20 U	
MW-13	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U	
MW-13	4/21/2006	5 U	5 U	5 U	5 U	
MW-13	2/7/2007	5 U	5 U	5 U	5 U	
MW-13	5/31/2007	5 U	5 U	5 U	5 U	
MW-13	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U	
MW-13	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U	
MW-13	11/1/2008	NS	NS	NS	NS	
MW-13	4/30/2010	5 U	5 U	5 U	5 U	
MW-13	11/17/2010	5 U	5 U	5 U	5 U	
MW-13	11/29/2011	5 U	5 U	5 U	5 U	
MW-13	5/22/2012	5 U	5 U	5 U	5 U	
MW-13	11/28/2012	5 U	5 U	5 U	5 U	
MW-13	4/18/2013	5 U	5 U	5 U	5 U	
MW-13	10/1/2013	1 U	1 U	1 U	1 U	
MW-13	4/16/2014	1 U	1 U	1 U	1 U	
MW-13	9/18/2014	4 U	4 U	4 U	4 U	
MW-13	3/31/2015	4 U	4 U	4 U	4 U	
MW-13	9/16/2015	4 U	4 U	4 U	4 U	
	1/17/1006		511	511		
MW-14 MW-14	1/17/1996 4/10/1996		5 U 5 U	5 U 5 U		

Notes: U - Not detected, NS - Not sampled, --- - Not Analyzed, Detects in BOLD. MW-04, MW-20 were abandoned and replaced by MW-21, MW-22 on 1/20/97.

Location ID	Chemical Name Sample Date	cis-1,2-Dichloroethene ug/l	Tetrachloroethene ug/l	Toluene ug/l	trans-1,2-Dichloroethene ug/l	
MW-14	10/22/1996	5 U	5 U	5 U	5 U	
MW-14	1/16/1997	10 U	10 U	10 U	10 U	
MW-14 MW-14	4/16/1997	10 U	10 U	10 U	10 U	
MW-14	7/8/1997 10/23/1997	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	
MW-14	1/29/1998	10 U	10 U	10 U	10 U	
MW-14	4/15/1998	10 U	10 U	10 U	10 U	
MW-14	10/21/1998	10 U	10 U	10 U	10 U	
MW-14	4/29/1999	10 U	10 U	10 U	10 U	
MW-14	10/20/1999	10 U	10 U	10 U	10 U	
MW-14	4/6/2000	5 U	5 U	5 U	5 U	
MW-14	11/8/2000	5 U	5 U	5 U	5 U	
MW-14	7/3/2001	5 U	5 U	5 U	5 U	
MW-14 MW-14	11/8/2001	5 U 5 U	5 U 5 U	5 U 5 U	5 U	
MW-14	10/11/2002 5/1/2003	5 U	5 U	5 U	5 U 5 U	
MW-14	12/8/2003	10 U	10 U	10 U	10 U	
MW-14	12/28/2004	5.0 U	5.0 U	5.0 U	5.0 U	
MW-14	11/9/2005	5.00 U	5.00 U	5.00 U	5.00 U	
MW-14	1/2/2007	5 U	5 U	5 U	5 U	
MW-14	11/29/2007	0.94	0.5 U	0.5 U	0.5 U	
MW-14	11/1/2008	1	0.5 U	0.5 U	0.5 U	
MW-14	11/20/2009	12.5 U	12.5 U	12.5 U	12.5 U	
MW-14	11/17/2010	10 U	10 U	10 U	10 U	
MW-14	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U	
MW-14	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U	
MW-14	10/1/2013	200	0.49 J	1 U	0.93 J	
MW-14	9/18/2014	4 U	4 U	4 U	4 U	
MW-14	9/16/2015	4 U	4 U 1 U	4 U 1 U	4 U 1 U	
MW-15 MW-15	10/22/1996	1 U 1 U	1 U	1 U	1 U	
MW-15	10/22/1997 10/21/1998	1 U	1 U	1 U	1 U	
MW-15	10/19/1999	1 U	1 U	1 U	1 U	
MW-15	11/9/2000	1 U	1 U	1 U	1 U	
MW-15	11/8/2001	1 U	1 U	1 U	1 U	
MW-15	10/11/2002	1 U	1 U	1 U	1 U	
MW-15	12/8/2003	1 U	1 U	1 U	1 U	
MW-15	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U	
MW-15	11/9/2005	2.19	0.50 U	0.50 U	0.50 U	
MW-15	1/2/2007	1.8	0.5 U	0.5 U	0.5 U	
MW-15	11/29/2007	1.7	0.5 U	0.5 U	0.5 U	
MW-15	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U	
MW-15	11/20/2009	0.71	0.5 U	0.5 U	0.5 U	
MW-15	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U	
MW-15 MW-15	11/29/2011 11/28/2012	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	
MW-15	10/1/2013	1 U	1 U	1 U	1 U	
MW-15	9/18/2014	1 U	1 U	1 U	1 U	
MW-15	9/16/2015	1 U	1 U	1 U	1 U	
MW-16	10/22/1996	1 U	1 U	1 U	1 U	
MW-16	10/22/1997	1 U	1 U	1 U	1 U	
MW-16	10/21/1998	1 U	1 U	1 U	1 U	
MW-16	10/19/1999	1 U	1 U	1 U	1 U	
MW-16	11/9/2000	1 U	1 U	1 U	1 U	
MW-16	11/8/2001	1 U	1 U	1 U	1 U	
MW-16	10/11/2002	1 U	1 U	1 U	1 U	
MW-16	12/8/2003	1 U	1 U	1 U	1 U	
MW-16	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U	
MW-16	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U	
MW-16	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U	
MW-16	10/1/2013	1 U	1 U	1 U	1 U	
MW-16	9/18/2014	1 U	1 U	1 U	1 U	
	9/16/2015	1 U	1 U	1 U	1 U	
MW-16						
MW-17	1/17/1996		5 U	5 U		
MW-17	4/10/1996		20	5 U		
MW-17	7/16/1996	10 U	10 U	10 U	10 U	
MW-17	10/22/1996	7	12	5 U	5 U	
MW-17	1/16/1997	10 U	22	10 U	10 U	

Notes: U - Not detected, NS - Not sampled, --- - Not Analyzed, Detects in BOLD. MW-04, MW-20 were abandoned and replaced by MW-21, MW-22 on 1/20/97.

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l	
MW-17	4/15/1997	10 U	15	10 U	10 U	
MW-17	7/8/1997	10 U	18	10 U	10 U	
MW-17	1/29/1998	10 U	12	10 U	10 U	
MW-17	4/15/1998	50 U	50 U	50 U	50 U	
MW-17	10/20/1998	10 U	17	10 U	10 U	
MW-17	4/29/1999	10 U	23	10 U	10 U	
MW-17	10/19/1999	10 U	10 U	10 U	10 U	
MW-17	4/6/2000	10 U	10 U	10 U	10 U	
MW-17	11/9/2000	15	7	5 U	5 U	
MW-17	7/3/2001	10	7	5 U	5 U	
MW-17	11/10/2001	10	8	5 U	5 U	
MW-17	10/11/2002	22	5 U	5 U	5 U	
MW-17	12/8/2003	10 U	10 U	10 U	10 U	
MW-17	12/28/2004	5.1	11	5.0 U	5.0 U	
MW-17	11/9/2005	17.9	9.5	2.50 U	2.50 U	
MW-17	1/2/2007	9.45	10.2			
				2.5 U	2.5 U	
MW-17	11/29/2007	22	6.9	0.5 U	0.5 U	
MW-17	11/1/2008	21.7	5.06	0.5 U	0.5 U	
MW-17	11/20/2009	11.6	6.1	5 U	5 U	
MW-17	11/17/2010	2.4	6.18	1.25 U	1.25 U	
MW-17	11/29/2011	20.2	19.7	5 U	5 U	
MW-17	11/28/2012	10.7	5.25	2.5 U	2.5 U	
MW-17	10/1/2013	31	8.1	1 U	1 U	
MW-17	9/18/2014	24	4.9J	5 U	5 U	
MW-17	9/16/2015	16	5.9	1 U	1 U	
MW-18	5/29/1996	50 U	50 U	50 U	50 U	
MW-18	10/22/1996	81	50 U	50 U	50 U	
MW-18	1/16/1997	100 U	100 U	100 U	100 U	
MW-18	4/16/1997	10 U	10 U	10 U	10 U	
MW-18	7/8/1997	66	50 U	50 U	50 U	
MW-18	10/23/1997	100 U	100 U	100 U	100 U	
MW-18	1/29/1998	50 U	50 U	50 U	50 U	
MW-18	4/16/1998	50 U	50 U	50 U	50 U	
MW-18	10/21/1998	160	100 U	100 U	100 U	
MW-18	4/29/1999	37	25 U	25 U	25 U	
MW-18	10/19/1999	100 U	100 U	100 U	100 U	
MW-18		14		100 U		
	4/6/2000		10 U		10 U	
MW-18	11/9/2000	100	50 U	50 U	50 U	
MW-18	7/3/2001	50 U	50 U	50 U	50 U	
MW-18	11/10/2001	120	50 U	50 U	50 U	
MW-18	4/4/2002	10 U	10 U	10 U	10 U	
MW-18	10/15/2002	310	50 U	50 U	50 U	
MW-18	5/1/2003	130	50 U	50 U	50 U	
MW-18	12/8/2003	100 U	100 U	100 U	100 U	
MW-18	7/19/2004	140	50 U	50 U	50 U	
MW-18	4/8/2005	120	0.51	0.50 U	0.86	
MW-18	4/21/2006	127	25 U	25 U	25 U	
MW-18	2/7/2007	68.5	12.5 U	12.5 U	12.5 U	
MW-18	5/31/2007	136	12.5 U	12.5 U	12.5 U	
MW-18	11/29/2007	190	0.51	0.5 U	0.86	
MW-18	5/1/2008	108	0.5 U	0.5 U	0.81	
MW-18	11/1/2008	148	25 U	25 U	25 U	
MW-18	04/22/2009	79.5	25 U	25 U	25 U	
MW-18	11/20/2009	125	25 U	25 U	25 U	
MW-18	04/30/2010	38.5	25 U	25 U	25 U	
MW-18	11/17/2010	99	25 U	25 U	25 U	
MW-18	5/21/2011	73.5	25 U	25 U	25 U	
MW-18	11/29/2011		25 U	25 U	25 U	
		109				
MW-18	5/22/2012	74	25 U	25 U	25 U	
MW-18	11/28/2012	144	25 U	25 U	25 U	
MW-18	4/18/2013	70.5	25 U	25 U	25 U	
MW-18	10/1/2013	210	0.42 J	1 U	0.9 J	
MW-18	4/16/2014	76	1 U	1.0 U	1 U	
MW-18	9/18/2014	270	1 U	10 U	1 U	
MW-18	3/31/2015	210	10 U	10 U	10 U	

		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene		
Location ID	Sample Date	ug/l 430 F1	ug/l	ug/l	ug/l 10 U		
MW-18	9/16/2015		10 U	10 U			
MW-20	5/24/1996	46	1 U	1 U	1 U		
MW-21	1/21/1997	650	100 U	100 U	100 U		
MW-21	4/16/1997	630	50 U	50 U	50 U		
MW-21	7/8/1997	770	50 U	50 U	50 U		
MW-21	10/23/1997	800	50 U	50 U	50 U		
MW-21	1/29/1998	350	10 U	10 U	10 U		
MW-21	4/16/1998	1400	50 U	50 U	50 U		
MW-21	10/21/1998	340	50 U	50 U	50 U		
MW-21	4/29/1999	2100	100 U	100 U	100 U		
MW-21	10/19/1999	670	20 U	20 U	20 U		
MW-21	4/6/2000	140	5 U	5 U	5 U		
MW-21	11/7/2000	220	5 U	5 U	5 U		
MW-21	7/3/2001	130	5 U	5 U	5 U		
MW-21	11/10/2001	240	5 U	5 U	5 U		
MW-21	12/8/2003	32	1 U	1 U	1 U		
MW-21	12/28/2004	2.8	0.50 U	0.50 U	0.50 U		
MW-21	11/9/2005	20	0.50 U	0.50 U	0.50 U		
MW-21	1/2/2007	15.4	0.5 U	0.5 U	0.5 U		
MW-21	11/29/2007	25	0.5 U	0.5 U	0.5 U		
MW-21	11/1/2008	45.2	0.5 U	0.5 U	0.5 U		
MW-21	11/20/2009	40.7	1 U	1 U	1 U		
MW-21	11/17/2010	22.6	1 U	1 U	1 U		
MW-21	11/29/2011	18.8	0.5 U	0.5 U	0.5 U		
MW-21	11/28/2012	71	2.5 U	2.5 U	2.5 U		
MW-21	10/1/2013	28	1 U	1 U	1 U		
MW-21	9/18/2014	30	1 U	1 U	1 U		
MW-21	9/16/2015	40	1 U	1 U	1 U		
MW-22	1/21/1997	5	1 U	1 U	1 U		
MW-22	4/16/1997	4	1 U	1 U	1 U		
MW-22	7/8/1997	9	1 U	1 U	1 U		
MW-22	10/23/1997	22	1 U	1 U	1 U		
MW-22	1/29/1998	11	1 U	1 U	1 U		
MW-22	4/16/1998	22	1 U	1 U	1 U		
MW-22	10/21/1998	35	1 U	1 U	1 U		
MW-22	4/29/1999	24	1 U	1 U	1 U		
MW-22	10/19/1999	28	1 U	1 U	1 U		
MW-22	4/6/2000	26	1 U	1 U	1 U		
MW-22	11/9/2000	29	1 U	1 U	1 U		
MW-22	7/3/2000	37	1 U	1 U	1 U		
MW-22	11/10/2001	36	1 U	1 U	1 U		
MW-22	10/11/2001	50 51	1 U	1 U	1 U		
MW-22		51 52	2 U	2 U	1 U		
MW-22 MW-22	12/8/2003						
MW-22 MW-22	12/28/2004	47 56.2	1.0 U	1.0 U	1.1		
MW-22 MW-22	11/9/2005	56.3	1.00 U	1.00 U	1.00 U		
	1/2/2007	38.4	1 U	1 U	1 U		
MW-22	11/29/2007	37	0.5 U	0.5 U	0.77		
MW-22 MW-22	11/1/2008 11/20/2009	31.2 30.6	0.5 U 1 U	0.5 U 1 U	0.92 1 U		
MW-22		30.5	1 U	1 U	1 U		
MW-22	11/17/2010	30.5 33.4	0.5 U	0.5 U	1.16		
MW-22	11/29/2011		0.5 U 1 U	0.5 U 1 U	1.16		
MW-22 MW-22	11/28/2012	37.2					
	10/1/2013	48	1 U	1 U	2.4		
MW-22	9/18/2014	53	1 U	1 U	5		
MW-22	9/16/2015	54	1 U	1 U	5.2		
MW-23	4/15/1997	1 U	1 U	1 U	1 U		
MW-23	7/8/1997	1 U	1 U	1 U	1 U		
MW-23	10/22/1997	1 U	1 U	1 U	1 U		
MW-23	1/29/1998	1 U	1 U	1 U	1 U		
MW-23	10/21/1998	1 U	1 U	1 U	1 U		
MW-23	10/19/1999	1 U	1 U	1 U	1 U		
MW-23	11/7/2000	1 U	1 U	1 U	1 U		
MW-23	11/8/2001	1 U	1 U	1 U	1 U		

Location ID		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	
Location ID	Sample Date	ug/l	ug/l 200 ∪	ug/l 200 ∪	ug/l	
MW-24	11/9/1998	2600			200 U	
MW-24	4/29/1999	1600	100 U	100 U	100 U	
MW-24	10/19/1999	3000	100 U	100 U	100 U	
MW-24	4/6/2000	250	20 U	20 U	20 U	
MW-24	11/7/2000	1200	50 U	50 U	50 U	
MW-24	7/3/2001	400	50 U	50 U	50 U	
MW-24	11/10/2001	2100	50 U	50 U	50 U	
MW-24	6/11/2002	680	50 U	50 U	50 U	
MW-24	5/1/2003	410	10 U	10 U	10 U	
MW-24	12/8/2003	81	10 U	10 U	10 U	
MW-24	7/19/2004	680	10 U	10 U	10 U	
MW-24	12/28/2004	69	5.0 U	5.0 U	5.0 U	
MW-24	4/8/2005	44	2.0 U	2.0 U	2.0 U	
MW-24	11/9/2005	75.6	2.50 U	2.50 U	2.50 U	
MW-24	4/21/2006	180	2.5 U	2.5 U	2.5 U	
MW-24	1/2/2007	5.15	2.5 U	2.5 U	2.5 U	
MW-24	5/31/2007	45.7	2.5 U	2.5 U	2.5 U	
MW-24		43.7				
	11/29/2007		0.5 U	0.5 U	0.5 U	
MW-24	5/1/2008	8.21	0.5 U	0.5 U	0.5 U	
MW-24	11/1/2008	51.9	5 U	5 U	5 U	
MW-24	04/22/2009	8.1	5 U	5 U	5 U	
MW-24	04/30/2010	11	2.5 U	2.5 U	2.5 U	
MW-24	11/17/2010	212	2.5 U	2.5 U	2.5 U	
MW-24	5/21/2011	492	5 U	5 U	5 U	
MW-24	11/29/2011	43.3	5 U	5 U	5 U	
MW-24	5/22/2012	36.9	5 U	5 U	5 U	
MW-24	11/28/2012	111	25 U	25 U	25 U	
MW-24	4/18/2013	43	25 U	25 U	25 U	
MW-24	10/1/2013	150	1 U	1 U	1.9	
MW-24	4/16/2014	89	1 U	1 U	1.2	
MW-24	9/18/2014	110	5 U	5 U	5 U	
MW-24	3/31/2015	14	5 U	5 U	5 U	
MW-24	9/16/2015	150	5 U	5 U	5 U	
PZ-01	10/21/1996	1 U	1 U	1 U	1 U	
PZ-01	10/23/1997	1 U	1 U	1 U	1 U	
PZ-01	10/20/1998	2 U	2 U	2 U	2 U	
PZ-01	10/19/1999	10 U	10 U	10 U	10 U	
PZ-01	11/7/2000	1 U	1 U	1 U	1 U	
PZ-01	11/9/2001	2 U	2 U	2 U	2 U	
PZ-01	10/10/2002	2 U	2 U	2 U	2 U	
PZ-01	12/8/2003	5 U	5 U	5 U	5 U	
PZ-01	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-01	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U	
PZ-01	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-01	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U	
PZ-01	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U	
PZ-01	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U	
PZ-01	11/17/2010	1 U	1 U	1 U	1 U	
PZ-01 PZ-01		2.5 U	2.5 U	2.5 U	2.5 U	
	11/29/2011					
PZ-01	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-01	10/1/2013	1 U	1 U	1 U	1 U	
PZ-01	9/18/2014	1 U	1 U	1 U	1 U	
PZ-01	9/16/2015	1 U	1 U	1 U	1 U	
PZ-02	10/21/1996	10 U	10 U	10 U	10 U	
PZ-02	10/23/1997	10 U	10 U	10 U	10 U	
PZ-02	10/20/1998	10 U	10 U	10 U	10 U	
PZ-02	10/19/1999	1 U	1 U	1 U	1 U	
PZ-02	11/9/2000	5 U	5 U	5 U	5 U	
PZ-02	11/10/2001	5 U	5 U	5 U	5 U	
PZ-02	10/11/2002	5 U	5 U	5 U	5 U	
-Z-02 PZ-02	12/8/2003	5 U	5 U	5 U	5 U	
PZ-02 PZ-02	12/28/2004	2.5 U				
			2.5 U	2.5 U	2.5 U	
PZ-02	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U	
PZ-02	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-02	11/29/2007	1.1	0.51	0.5 U	0.5 U	
PZ-02	11/1/2008	1	0.5 U	0.5 U	0.5 U	
PZ-02	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-02	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-02	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-02	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U	
PZ-02	10//1/2013	1 U	0.57 J	1 U	1 U	

Notes: U - Not detected, NS - Not sampled, --- - Not Analyzed, Detects in BOLD. MW-04, MW-20 were abandoned and replaced by MW-21, MW-22 on 1/20/97.

Location ID	Chemical Name Sample Date	cis-1,2-Dichloroethene ug/l	ethene Tetrachloroethene ug/l		trans-1,2-Dichloroethene ug/l
PZ-02	9/18/2014	1 U	0.47 J	ug/l 1 ∪	1 U
PZ-02	9/16/2015	1 U	0.49 J	1 U	1 U

FORMER ACCURATE DIE CASTING SITE FAYETTEVILLE, NEW YORK

	RV	V-1	RV	V-2	Total (Note 1)		
	Volume (gal)	RW-1 annual avg.	Volume (gal)	RW-2 annual avg.	Volume (gal)	Total annual avg.	
		flow rate (gpm)		flow rate (gpm)		flow rate (gpm)	
1996 (note 2)	5,998,900	14	1,987,020	4.7	8,024,610	18.8	
1997 (note 3)	6,519,770	12.4	2,494,900	4.8	9,036,730	17.2	
1998 (note 4)	4,578,960	8.7	2,243,700	4.3	6,856,820	13	
1999 (note 5)							
2000	5,536,710	10.5	2,348,840	4.5	7,888,520	15	
2001	4,382,540	8.3	2,285,500	4.3	6,668,320	12.7	
2002	3,680,540	7	2,494,490	4.7	6,176,790	11.8	
2003	1,702,150	3.2	2,850,890	5.4	4,560,930	8.7	
2004	1,362,590	2.6	3,201,590	6.1	4,569,740	8.7	
2005	1,242,760	2.4	2,935,610	5.6	4,179,920	8	
2006	1,820,850	3.5	2,996,200	5.7	4,818,730	9.2	
2007 (note 6)	2,269,640	4.3	2,997,210	5.7	5,267,350	10.0	
2008 (note 7)	2,615,210	5.0	2,697,830	5.1	5,313,040	10.1	
2009 (note 8)	2,183,860	4.2	2,773,920	5.3	4,957,780	9.5	
2010 (note 9)	1,762,230	3.4	2,870,950	5.5	4,639,510	8.9	
2011 (note 10)	1,610,860	3.1	3,051,580	5.8	4,662,440	8.8	
2012 (note 11)	1,225,270	2.3	2,146,120	4.0	3,371,390	6.3	
2013 (note 12)	792,200	1.5	2,058,420	4.0	2,852,470	5.5	
2014 (note 13)	911,470	1.7	2,172,290	4.1	3,090,530	5.9	
2015 (note 14)	613,950	1.6	1,872,200	4.7	2,487,260	6.3	

Notes

- 1. Total includes the flows, when applicable, from the sump and interceptor trench as well as the two recovery wells.
- 2. The groundwater recovery system was placed into operation on February 5, 1996. The data for 1996 includes volumes recovered between February 5, 1996 and November 27, 1996 as reported in February 7, 1997 letter to the NYSDEC. Average calculated by dividing period flow by 296 days in period.
- 3. The data for 1997 includes volumes recovered between December 2, 1996 and December 1, 1997 as reported in Jan 27, 1998 letter to the NYSDEC. Average calculated by dividing period flow by 364 days in period.
- 4. The data for 1998 includes volumes recovered between December 1, 1997 and December 1, 1998 as reported in Feb 25, 1999 letter to the NYSDEC. Average calculated by dividing period flow by 365 days in period.
- 5. Data for 1999 in central records and not recovered for preparation of table.
- 6. Volume of groundwater recovered between January 1, 2007 and January 2, 2008. Average calculated by dividing period flow by 366 days in period.
- 7. Volume of groundwater recovered between January 3, 2008 and January 2, 2009. Average calculated by dividing period flow by 365 days in period.
- 8. Volume of groundwater recovered between January 3, 2009 and December 30, 2009. Average calculated by dividing period flow by 361 days in period.
- 9. Volume of groundwater recovered between December 31, 2009 and December 27, 2010. Average calculated by dividing period flow by 361 days in period.
- 10. Volume of groundwater recovered between December 28, 2010 and December 29, 2011. Average calculated by dividing period flow by 366 days in period.
- 11. Volume of groundwater recovered between December 30, 2011 and January 2, 2013. Average calculated by dividing period flow by 369 days in period.
- 12. Volume of groundwater recovered between January 3, 2013 and December 30, 2013. Average calculated by dividing period flow by 361 days in period.
- 13. Volume of groundwater recovered between December 31, 2013 and December 31, 2014. Average calculated by dividing period flow by 365 days in period.
- 14. Volume of groundwater recovered between December 31, 2014 and October 1, 2015. Average calculated by dividing period flow by 274 days in period.

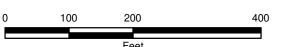
TABLE 5 - SUMMARY OF INFLUENT TCE CONCENTRATIONS

FORMER ACCURATE DIE CASTING SITE FAYETTEVILLE, NEW YORK

	Influent TCE								
Sample date	Concentration								
4/4/1996	1900 ug/l	10/7/1998	840 ug/l	5/2/2001	1100 ug/l	4/7/2005	690 ug/l	1/7/2013	552 ug/l
5/2/1996	1900 ug/l	11/4/1998	750 ug/l	6/6/2001	1000 ug/l	7/7/2005	940 ug/l	4/2/2013	412 ug/l
5/21/1996	2100 ug/l	12/2/1998	580 ug/l	7/5/2001	740 ug/l	10/6/2005	876 ug/l	7/1/2013	384 ug/l
6/6/1996	2300 ug/l	1/6/1999	550 ug/l	8/1/2001	600 ug/l	1/6/2006	654 ug/l	10/10/2013	437 ug/l
7/3/1996	1900 ug/l	2/3/1999	1100 ug/l	9/5/2001	710 ug/l	4/6/2006	125 ug/l	1/21/2014	340 ug/l
8/2/1996	1700 ug/l	3/3/1999	1200 ug/l	10/3/2001	820 ug/l	7/6/2006	584 ug/l	4/1/2014	340 ug/l
9/5/1996	1400 ug/l	4/7/1999	1100 ug/l	10/3/2001	1900 ug/l	10/5/2006	698 ug/l	7/1/2014	520 ug/l
10/3/1996	750 ug/l	5/5/1999	590 ug/l	11/7/2001	710 ug/l	1/4/2007	609 ug/l	10/7/2014	360 ug/l
11/7/1996	500 ug/l	6/2/1999	510 ug/l	12/5/2001	550 ug/l	4/5/2007	560 ug/l	1/6/2015	360 ug/L
12/5/1996	460 ug/l	7/7/1999	530 ug/l	1/2/2002	530 ug/l	7/3/2007	682 ug/l	4/6/2015	360 ug/L
1/2/1997	800 ug/l	8/4/1999	420 ug/l	2/5/2002	610 ug/l	10/2/2007	416 ug/l	7/6/2015	320 ug/L
2/6/1997	1400 ug/l	9/2/1999	470 ug/l	3/5/2002	850 ug/l	1/11/2008	294 ug/l	11/5/2015	340 ug/L
3/5/1997	1100 ug/l	10/6/1999	350 ug/l	4/3/2002	610 ug/l	4/2/2008	425 ug/l		
4/2/1997	1200 ug/l	11/3/1999	520 ug/l	5/1/2002	860 ug/l	7/10/2008	285 ug/l		
5/7/1997	1300 ug/l	12/1/1999	400 ug/l	6/5/2002	850 ug/l	10/2/2008	319 ug/l		
6/4/1997	1200 ug/l	1/5/2000	420 ug/l	7/2/2002	1400 ug/l	4/3/2009	297 ug/l		
7/2/1997	1200 ug/l	2/2/2000	450 ug/l	8/6/2002	790 ug/l	7/7/2009	324 ug/l		
8/5/1997	810 ug/l	3/1/2000	520 ug/l	9/4/2002	690 ug/l	8/6/2009	440 ug/l		
9/3/1997	720 ug/l	4/5/2000	560 ug/l	10/2/2002	700 ug/l	10/8/2009	431 ug/l		
9/30/1997	580 ug/l	5/3/2000	1300 ug/l	11/6/2002	540 ug/l	1/12/2010	368 ug/l		
11/5/1997	590 ug/l	6/7/2000	1900 ug/l	11/6/2002	590 ug/l	4/6/2010	306 ug/l		
12/3/1997	660 ug/l	7/5/2000	1300 ug/l	12/3/2002	600 ug/l	7/7/2010	403 ug/l		
1/7/1998	940 ug/l	8/2/2000	1100 ug/l	1/2/2003	1000 ug/l	10/5/2010	363 ug/l		
2/4/1998	790 ug/l	9/6/2000	900 ug/l	2/4/2003	670 ug/l	1/7/2011	177 ug/l		
3/4/1998	880 ug/l	10/4/2000	740 ug/l	3/4/2003	640 ug/l	4/5/2011	560 ug/l		
4/1/1998	1500 ug/l	11/1/2000	670 ug/l	4/3/2003	910 ug/l	7/7/2011	513 ug/l		
5/5/1998	1700 ug/l	12/6/2000	480 ug/l	5/1/2003	1200 ug/l	10/4/2011	446 ug/l		
6/3/1998	1300 ug/l	1/3/2001	460 ug/l	6/5/2003	970 ug/l	1/3/2012	460 ug/l		
7/1/1998	960 ug/l	2/7/2001	500 ug/l	7/3/2003	930 ug/l	4/3/2012	479 ug/l		
8/5/1998	880 ug/l	3/7/2001	680 ug/l	4/1/2004	850 ug/l	7/6/2012	558 ug/l		
9/2/1998	1100 ug/l	4/4/2001	950 ug/l	10/7/2004	790 ug/l	10/16/2012	425 ug/l		

LEGEND

PROPERTY LINE (approximate)


SAMPLE TYPE

- MONITORING WELL
- PIEZOMETER
- **RECOVERY WELL**

FORMER ACCURATE
DIE CASTING SITE
FAYETTEVILLE, NEW YORK

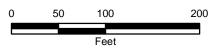
SITE CODE 7-34-052

SITE PLAN

NOVEMBER 2013 2488.45845

Legend

- - GROUNDWATER CONTOUR LINE
 - OVERBURDEN MONITORING WELL
 - OVERBURDEN PIEZOMETER
 - OVERBURDEN RECOVERY WELL
- PROPERTY LINE (approximate)


(60.38) GROUNDWATER ELEVATION (msl)

60 GROUNDWATER CONTOUR

FORMER ACCURATE
DIE CASTING SITE
FAYETTEVILLE, NEW YORK

SITE CODE 7-34-052

OVERBURDEN GROUNDWATER ELEVATIONS (9/16/2015)

NOVEMBER 2013 2488.45845

Legend

- - GROUNDWATER CONTOUR LINE
 - BEDROCK MONITORING WELL
 - ◆ BEDROCK RECOVERY WELL

- PROPERTY LINE (approximate)
- 60 GROUNDWATER CONTOUR
 (53.14) GROUNDWATER ELEVATION (msl)

FORMER ACCURATE
DIE CASTING SITE
FAYETTEVILLE, NEW YORK


SITE CODE 7-34-052

BEDROCK GROUNDWATER ELEVATIONS (9/16/2015)

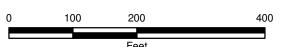
NOVEMBER 2013 2488.45845

LEGEND

- MONITORING WELL
- PIEZOMETER
- RECOVERY WELL
- PROPERTY LINE (approximate)

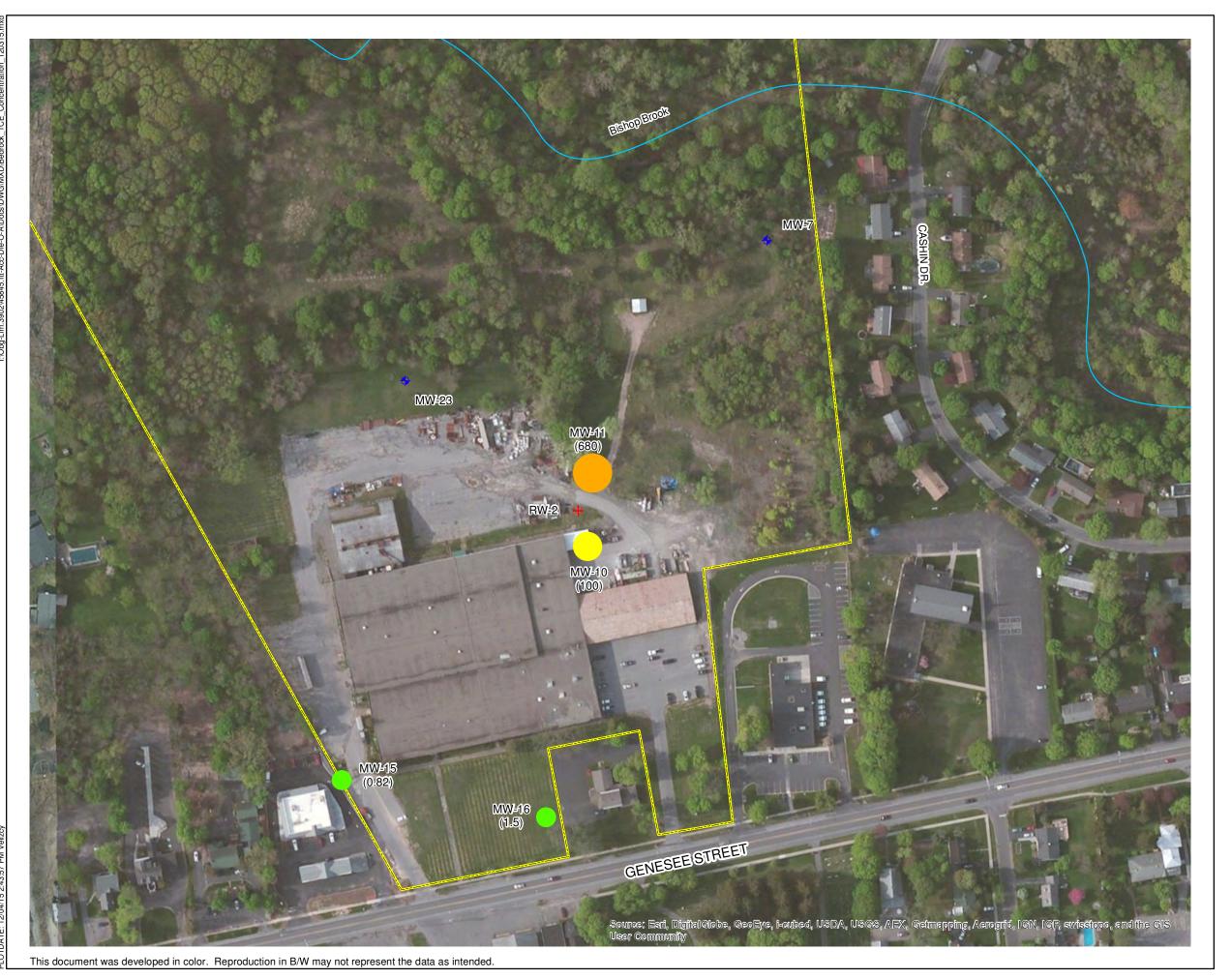
TCE Concentrations (ug/L)

- 0 20
- 20 100
- 100 1000
- 1000 10000


(1500) TCE Concentration (ug/L)

NOTE - MW-24 LOCATION IS APPROXIMATE

FORMER ACCURATE
DIE CASTING SITE
FAYETTEVILLE, NEW YORK


SITE CODE 7-34-052

OVERBURDEN TCE CONCENTRATIONS (09/16/2015)

NOVEMBER 2015 2488.45845

LEGEND

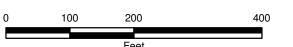
- MONITORING WELL
- PIEZOMETER
- RECOVERY WELL
- PROPERTY LINE (approximate)

TCE Concentrations (ug/L)

0 - 5

5 - 100

100 - 1000


(84) TCE Concentration (ug/l)

(ND) Not Detected

FORMER ACCURATE
DIE CASTING SITE
FAYETTEVILLE, NEW YORK

SITE CODE 7-34-052

BEDROCK TCE CONCENTRATIONS (9/16/2015)

DECEMBER 2015 2488.45845

Site Management Periodic Review Report Notice

> Institutional and Engineering Controls Certification Form

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 7-34-052	Во	ox 1
Sit	e Name Former Accurate Die Casting		
Cit Co	e Address: 547 East Genessee Street Zip Code: 13066 y/Town: Fayetteville ounty: Onondaga e Acreage: 33		
Re	porting Period: December 1, 2014 to November 30, 2015		
		YES	NO
1.	Is the information above correct?	Χ	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone tax map amendment during this Reporting Period?	e a	Х
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issufor or at the property during this Reporting Period?	ed	X
	If you answered YES to questions 2 thru 4, include documentation or evide that documentation has been previously submitted with this certification for		
5.	Is the site currently undergoing development?		Χ
C7	ne site entered the Brownfield Cleanup Program on June 1, 2015 734052-03-15) but redevelopment is presently on hold pending approve evelopment plans by the Village of Fayetteville and rezoning of the	oproval of	
		Во	x 2
		YES	NO
6.	Is the current site use consistent with the use(s) listed below?	Х	
7.	Are all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date belo DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue		
\ Corre	ective Measures Work Plan must be submitted along with this form to address th	ese issues.	
Cia	gnature of Owner, Remedial Party or Designated Representative Date	21/2015	_

SITE NO. 7-34-052

Description of Institutional Controls:

In accordance with the December 1994 Record of Decision (ROD), October 1998 Explanation of Significant Difference (ESD), and letter from the New York State Department of Environmental Conservation (NYSDEC) dated July 14, 1999, a Corrective Action Management Unit (CAMU) was established in the portion of the Site designated in the 1994 ROD as Area 1 – PCB/PAH/VOC Soils Area. Intrusive activities (e.g. excavation) are not allowed to be undertaken in the CAMU without receiving prior approval to do so from the NYSDEC.

Also, groundwater may not be recovered on-site for any use. A Declaration of Convenants and Restrictions dated May 12, 2014, identifying controls for the property, was recorded in the Onondaga County Clerk's office.

Description of Engineering Controls:

In accordance with the December 1994 ROD, October 1998 ESD, and letter from the NYSDEC dated July 14, 1999, a CAMU was established in the portion of the Site designated in the 1994 ROD as Area 1 – PCB/PAH/VOC Soils Area. A groundwater intercept trench is located downgrade of the CAMU, in the overburden material, to collect groundwater (if any) present in sand lenses.

A groundwater recovery well RW-1 operates on site to address overburden groundwater (designated as Area 3 in the 1994 ROD) hydraulically downgradient of the location where trichloroethylene (TCE) was released to the surface outside the northeast corner of the facility (designated as Area 2 in the 1994 ROD). Also, a groundwater collection sump to collect overburden water (if any) is maintained in Area 2. Groundwater recovery well RW-2 operates near Area 2 to address shallow bedrock groundwater (designated as Area 4 in the 1994 ROD) beneath Area 2.

The collected groundwater is treated on site using bag filters and a pair of granular activated carbon (GAC) filters connected in series. The treated groundwater is discharged to the bank of Bishop Brook, where it is further aerated while flowing over the rip-rap lined discharge channel directing the flow to Bishop Brook. Samples of the treated groundwater are collected periodically in accordance with a State Pollutant Discharge Elimination System (SPDES) Fact Sheet to monitor compliance with the discharge standards established for the Site.

Periodic Review Report (PRR) Certification	ı Statements
--	--------------

	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
i	 The Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 	t	
	To the best of my knowledge and belief, the work and conclusions described in this certifiare in accordance with the requirements of the site remedial program, and generally accengineering practices; and the information presented is accurate and compete.		
	engineering practices, and the information presented is accurate and compete.	YES	NO
		X	
4	 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for eor Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that a following statements are true: 		utional
	(a) The Institutional Control and/or Engineering Control(s) employed at this site is unchange Control was put in-place, or was last approved by the Department;	d since th	ne date that the
	(b) Nothing has occurred that would impair the ability of such Control, to protect public healt the environment;	n and	
	(c) Access to the site will continue to be provided to the Department, to evaluate the remedy evaluate the continued maintenance of this Control;	, includin	g access to
	(d) Nothing has occurred that would constitute a violation or failure to comply with the Site Montrol; and	lanageme	ent Plan for this
	(e) If a financial assurance mechanism is required by the oversight document for the site, the and sufficient for its intended purpose established in the document.	e mechar	nism remains valid
		YES	NO
		Χ	
_	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
4	A Corrective Measures Work Plan must be submitted along with this form to address these	issues.	
	Signature of Owner, Remedial Party or Designated Representative 12/21/15 Date		

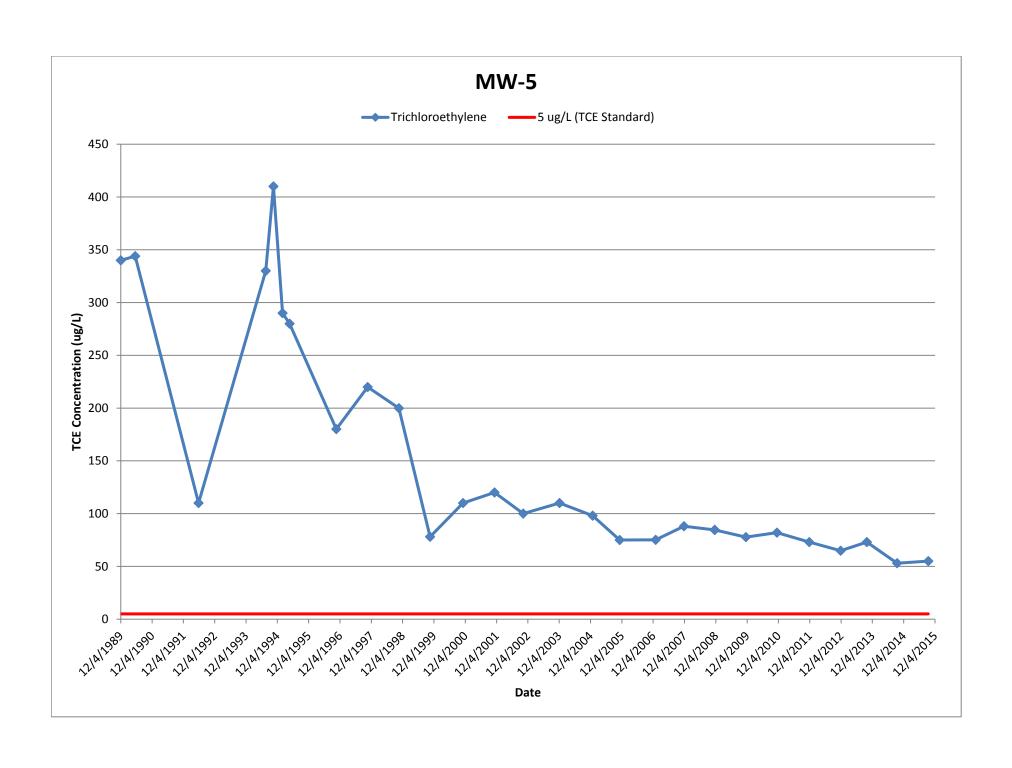
IC CERTIFICATIONS SITE NO.

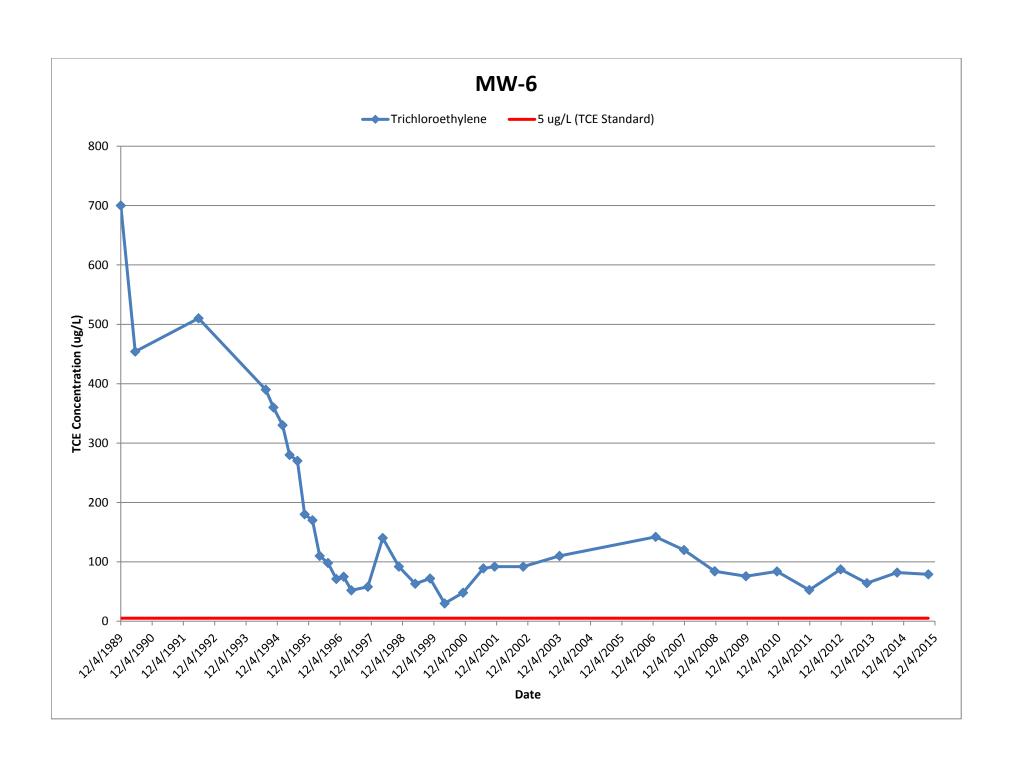
Box 6

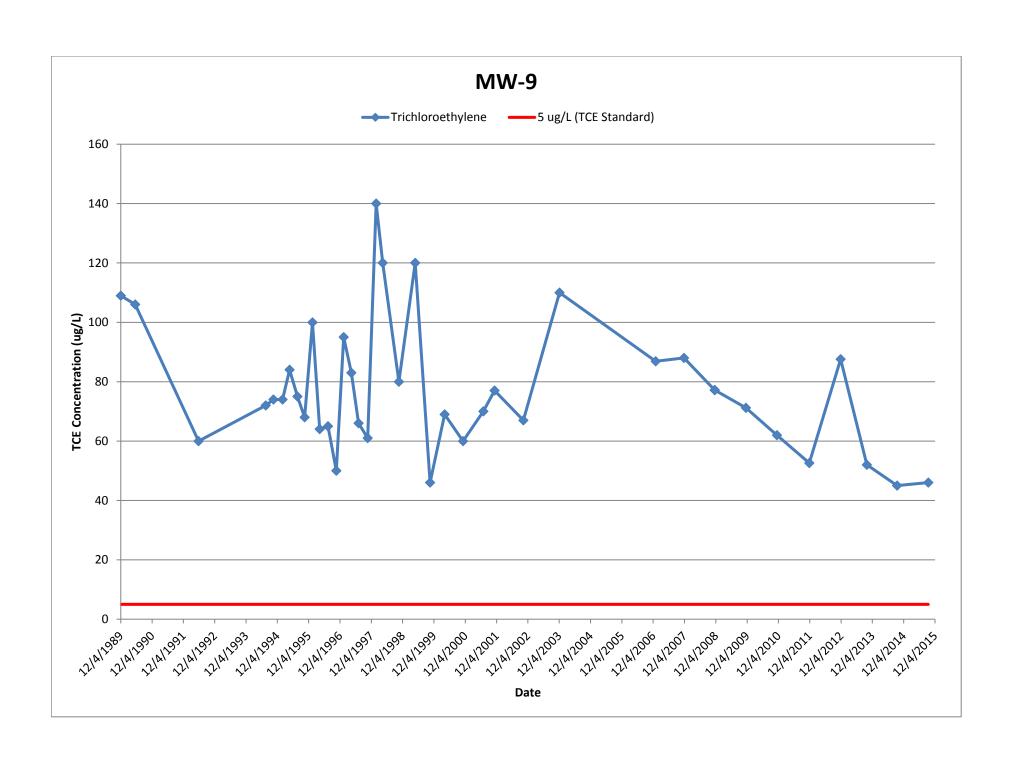
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

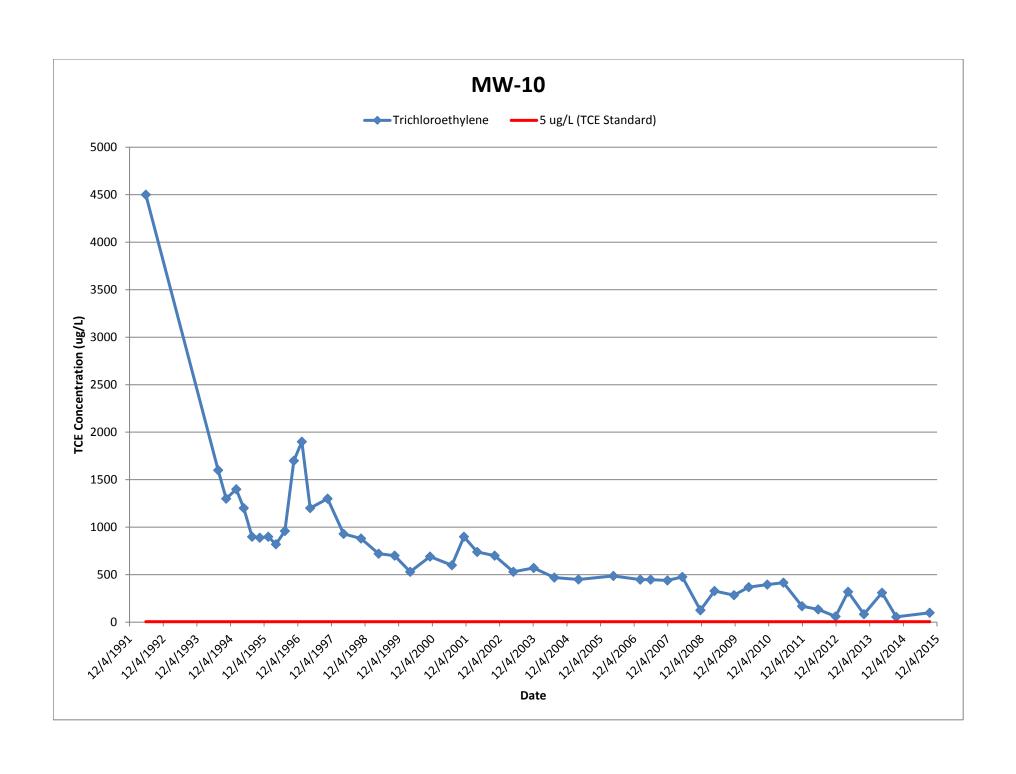
I certify that all information and statements in Boxes 1, 2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

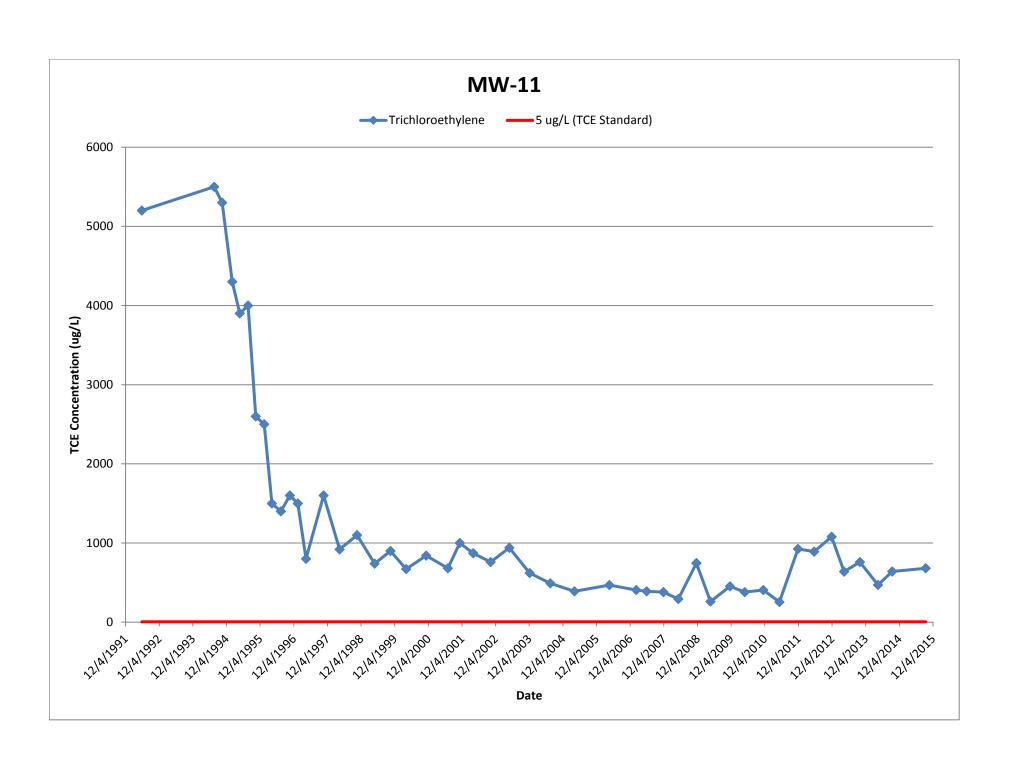
I <u>Douglas M. Crawford</u> at <u>O'Brien & Gere Engineers, Inc., 333 W. Washington St, Syracuse, NY</u> am print name print business address

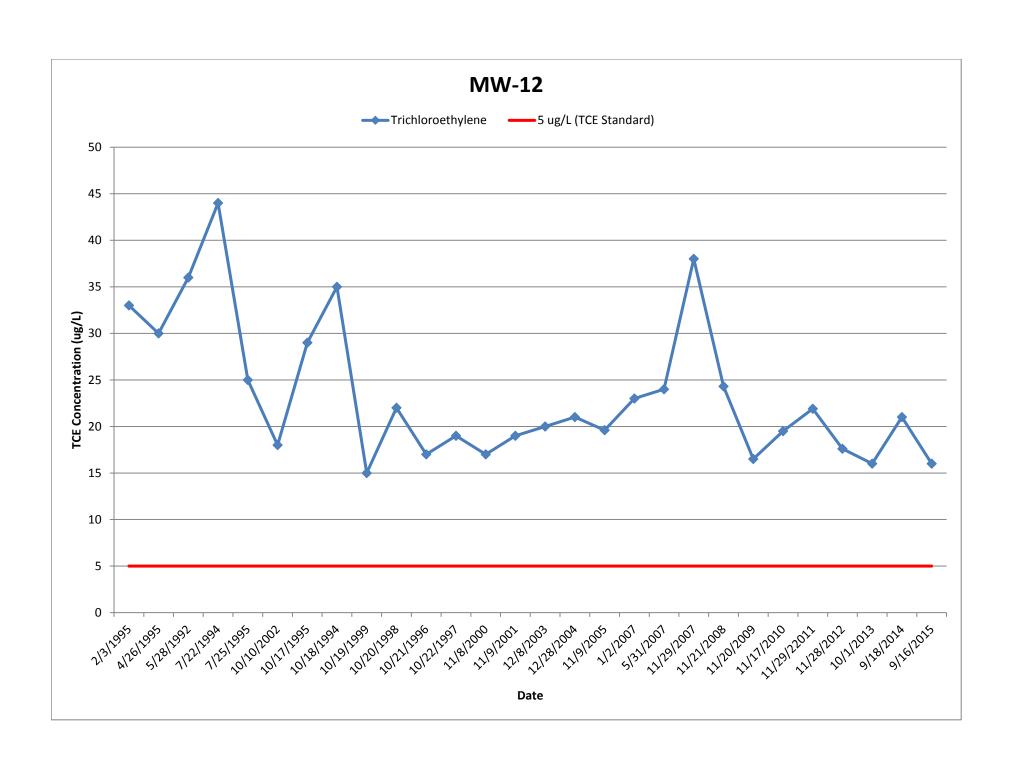

certifying as Representative for Remedial Party (ITT Corporation) (Owner or Remedial Party)

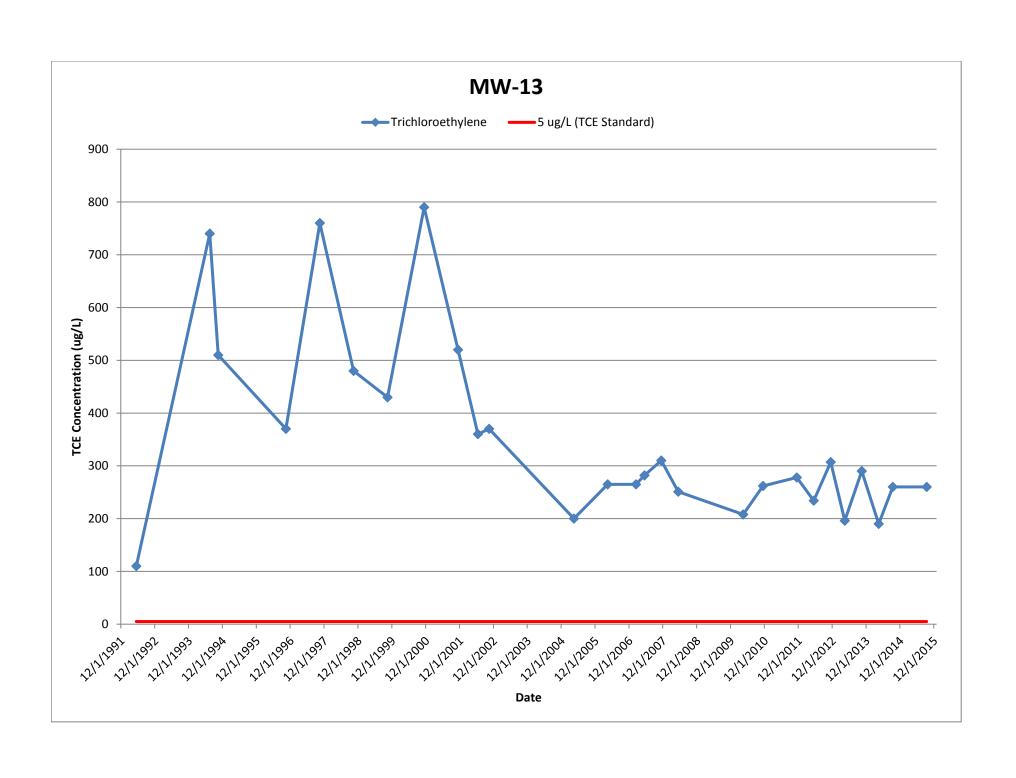

for the Site named in the Site Details Section of this

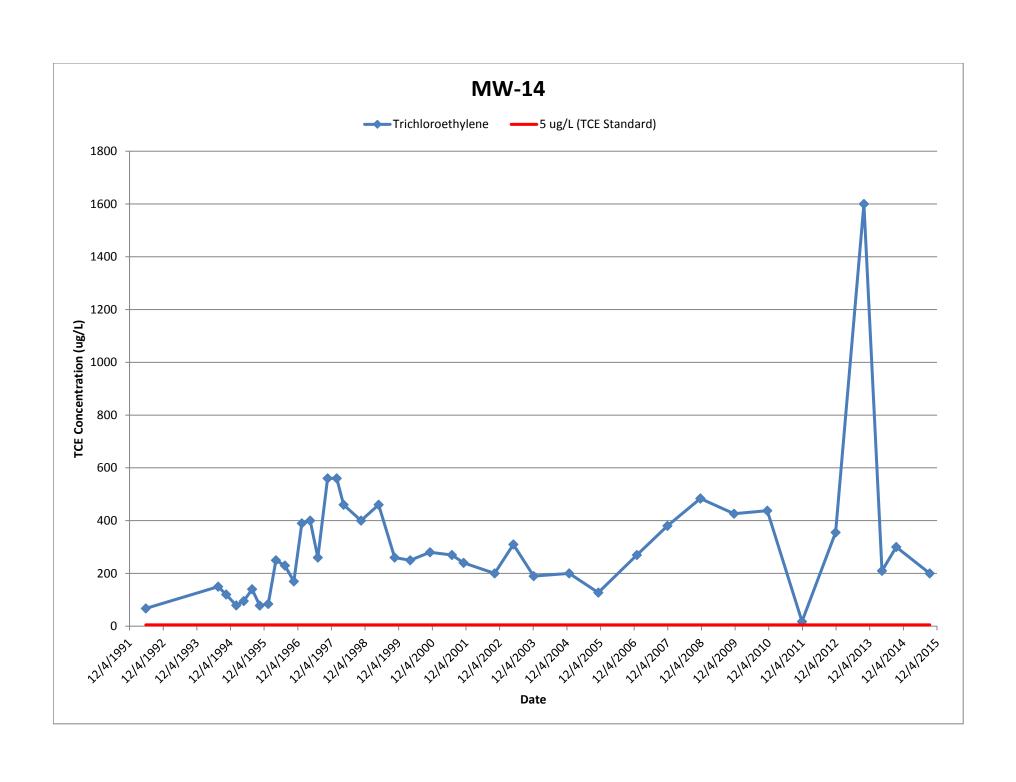

Signature of Owner, Remedial Party, or De Rendering Certification

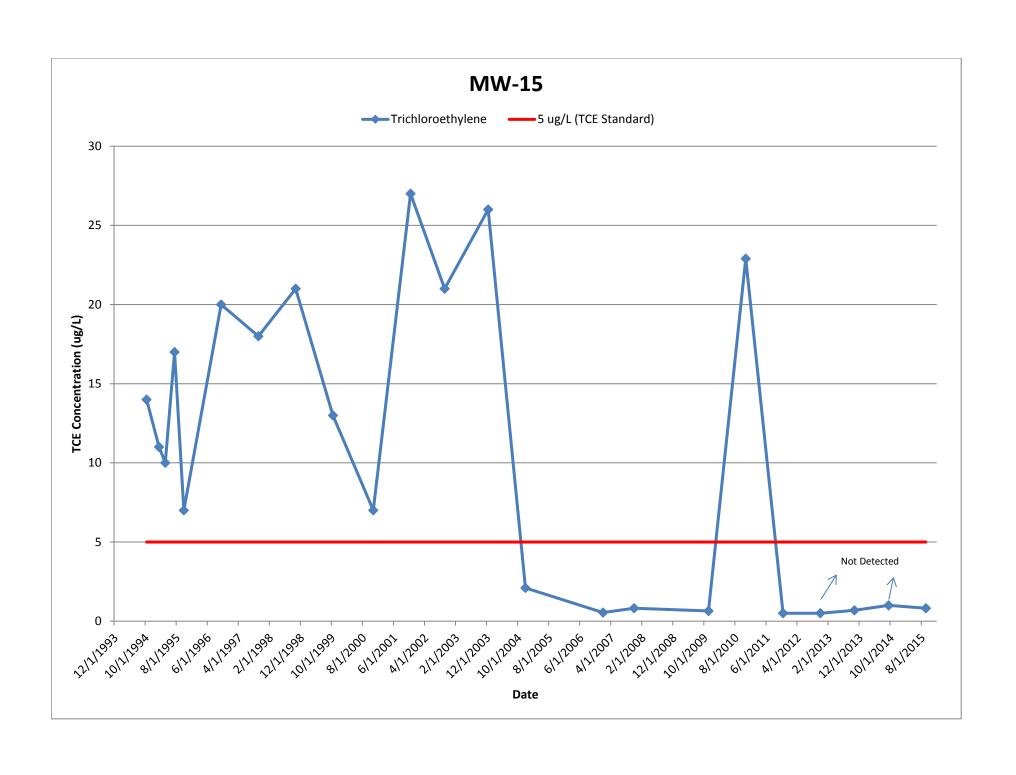

12/21/15

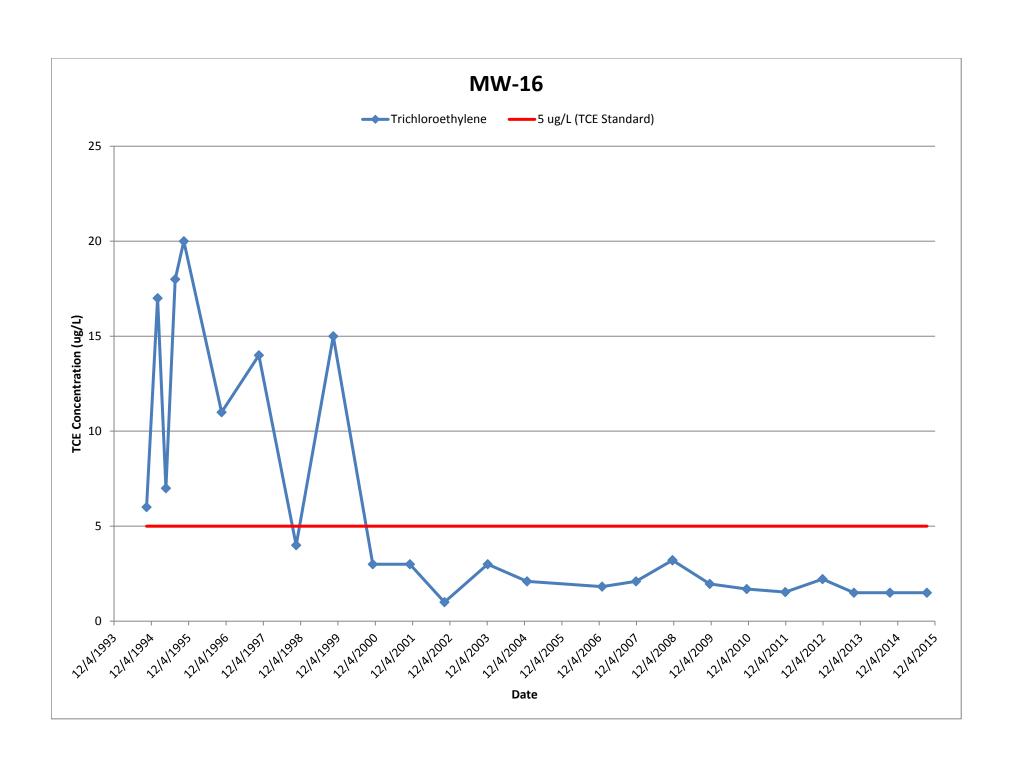

Monitoring Well TCE Concentration Trend Graphs

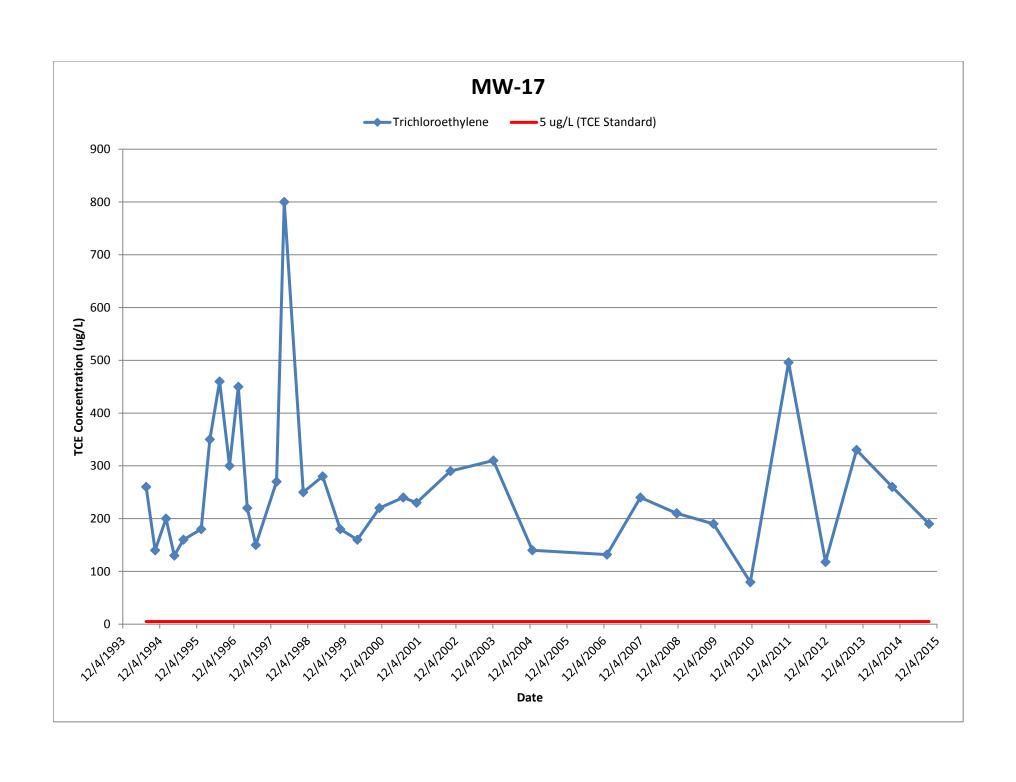


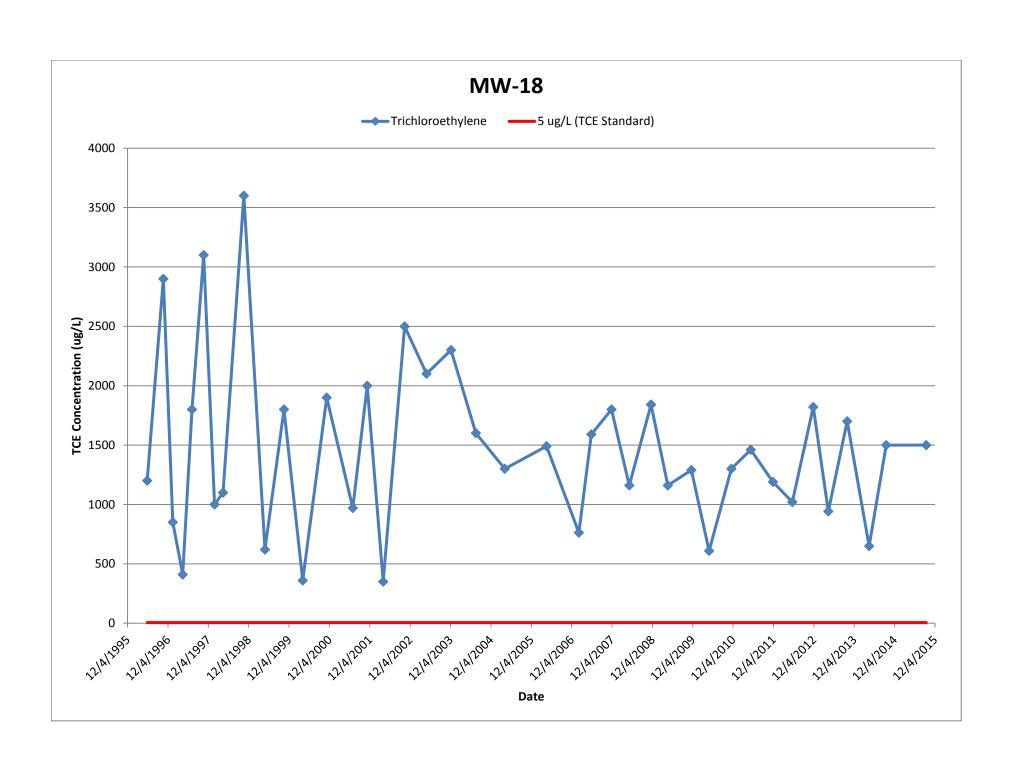


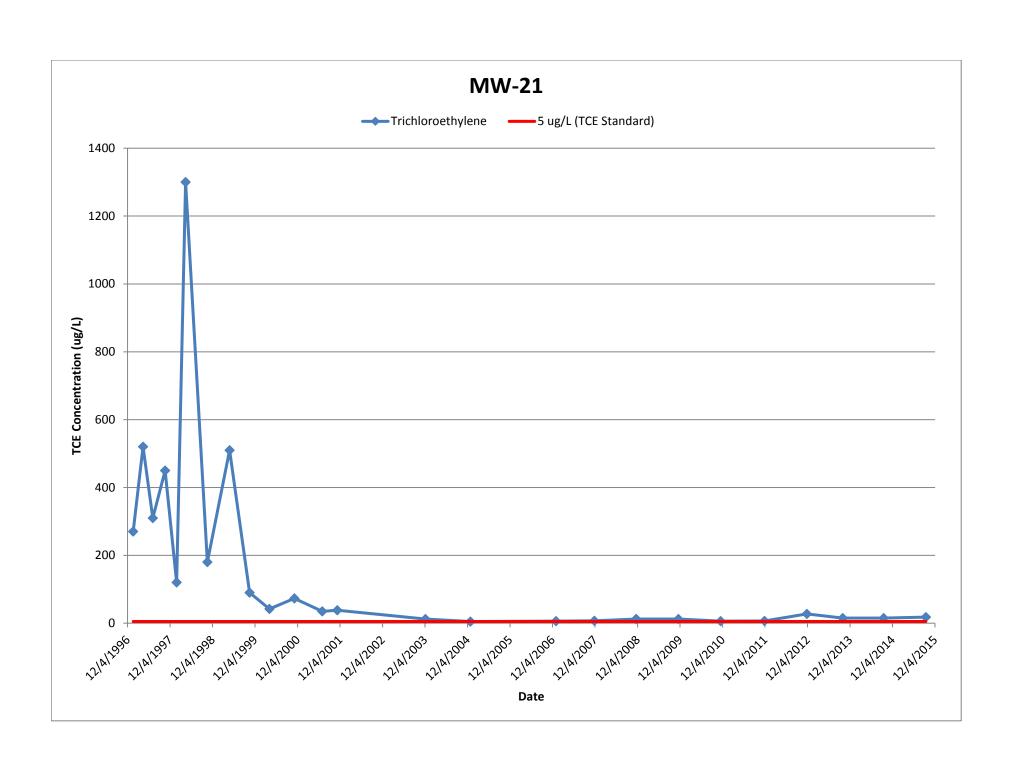


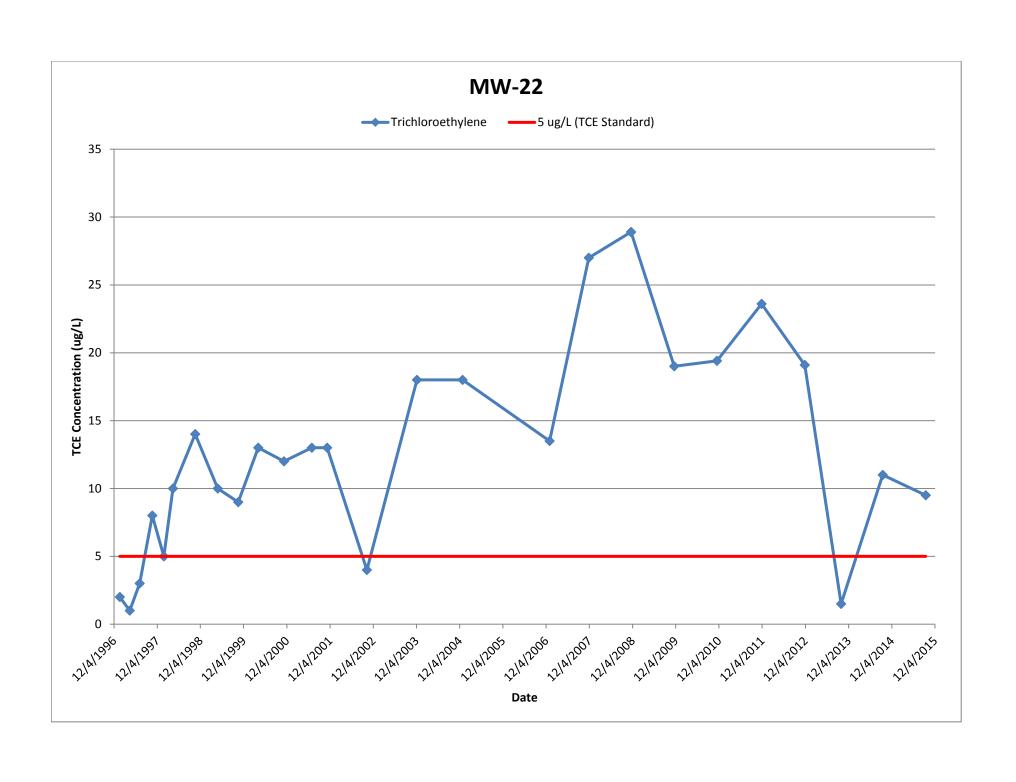


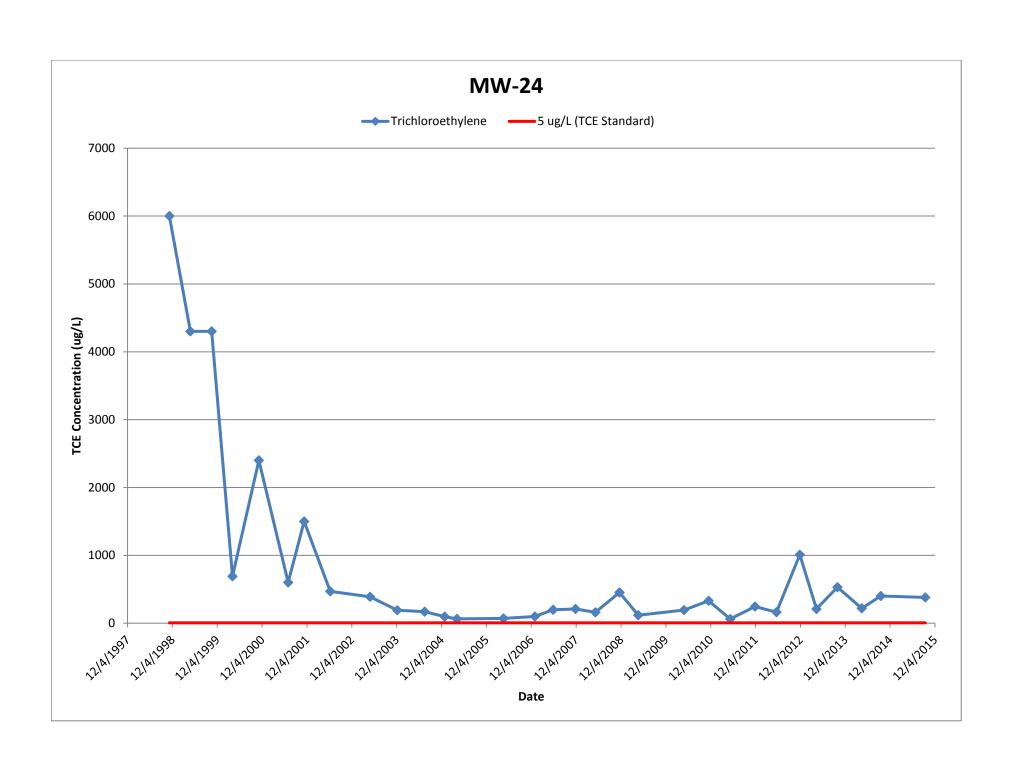


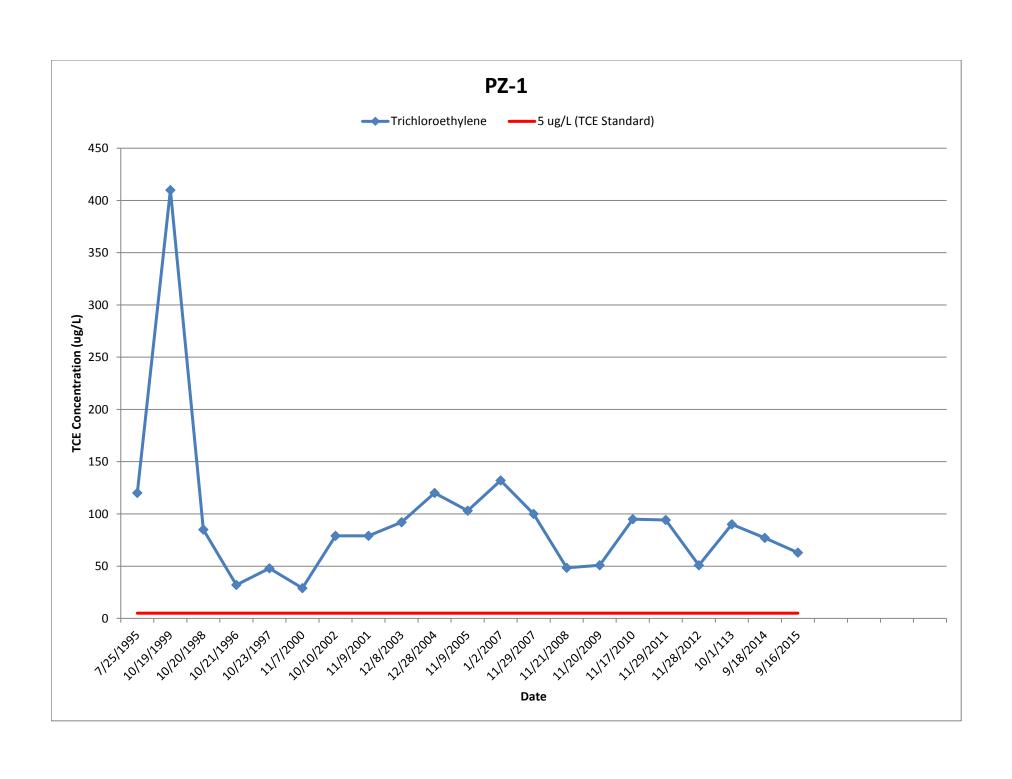


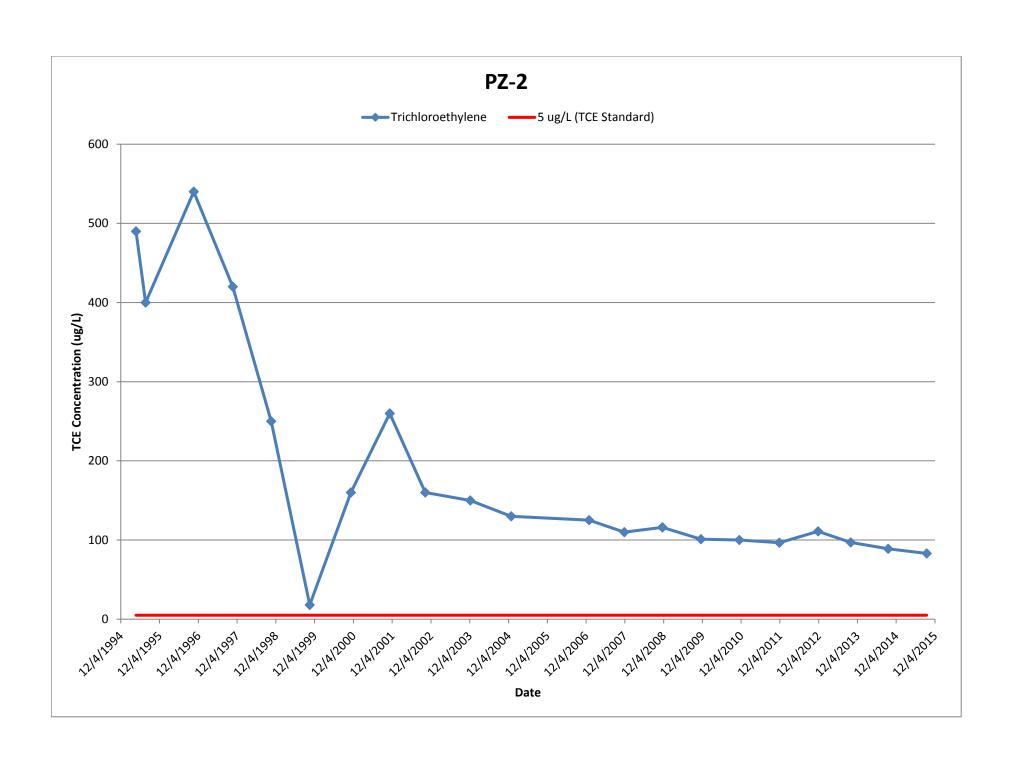












Quarterly Groundwater Treatment System Reports

January 14, 2015

Mr. John C. Grathwol, P.E.

Remedial Bureau B - Div of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7016

RE: Former Accurate Die Casting Site Fayetteville, New York

FILE: 3902.45845 Corres

Dear Mr. Grathwol:

This letter presents the status of groundwater treatment plant operations for the former Accurate Die Casting site in Fayetteville, New York for the fourth quarter of 2014 (October 1 through December 31). This information is provided as required by the Order on Consent (#A7-0318-94-10). Included are the results of the monitoring activities associated with the SPDES Fact Sheet for the groundwater treatment system.

OPERATION STATUS & ACTIVITIES COMPLETED

As of December 31, 2014, a total of 105,042,160 gallons of groundwater have been treated since startup on February 5, 1996. Since October 1, 2014, 640,060 gallons of groundwater have been treated: 204,060 gallons from recovery well RW-1; 435,460 gallons from recovery well RW-2; 310 gallons from the collection trench constructed in the former VOC/PAH/PCB Soils Area; and 230 gallons from the sump located outside the northeast corner of the building.

O'Brien & Gere performed the sampling activities associated with the SPDES Fact Sheet (#734052). The analytical results associated with the SPDES Fact Sheet monitoring activities performed during October, November and December 2014 are summarized in Table 1. The effluent during the period complied with the SPDES discharge limits. The laboratory analytical data sheets are provided as Attachment A.

ACTIVITIES SCHEDULED

Continue operation of the groundwater recovery and treatment system including SPDES monitoring.

If you have any questions regarding this report, please do not hesitate to call me at (315) 956-6100.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Alfred R. Farrell, P.E. Project Manager

cc: T. Slutzky – The Anderson Company

Jeff Stanek – ITT Corporation L. Hall – ITT Corporation

J. Sutphen – O'Brien & Gere, Office of General Counsel

		Monitoring	Requirements										
Analyte (units)	Discharge Limitation Daily Average	Discharge Limitation Daily Maximum	Minimum Measurement Frequency (1)	Sample Type	Effluent 10/1/2014	Effluent 10/7/2014	Effluent 10/9/2014	Effluent 10/13/2014	Effluent 10/15/2014	Effluent 10/17/2014	Effluent 10/20/2014	Effluent 10/22/2014	Effluent 10/24/2014
Flow (GPD)	Monitor	150000	Continuous	Meter	8645	8417	8047	7850	7695	7570	7533	7675	7478
pH (SU)	6.5-8.5		2/Week	Grab	8.38	8.4	8.41	8.42	8.42	8.4	8.4	8.42	8.42
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.	4.0 U	4.0 U		4.0 U			4.0 U		
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	686	704		800			702		
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.		0.00020 U							
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.		0.0077 JB							
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U					1.0 U		
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U					1.0 U		
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1.0 U					1.0 U		
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab		1.0 U					1.0 U		
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U					1.0 U		
Toluene (ug/L)	Monitor	20	2/Month	Grab		1.0 U					1.0 U		
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U					1.0 U		
Notes: - Not analyzed, NA - Data Not available U - Not Detected, J - Estimated													
(1) Minimum monitoring requirements ba	eed on SPEDES not	mit modified Novem	per 21 1007										ļ
(1) ivinimum monitoring requirements ba	seu on ar EDES per	mit mounted Novemi	JC1, 21, 1397.		ļ								

		Monitoring	Requirements										
Analyte (units)	Discharge Limitation Daily Average	Discharge Limitation Daily Maximum	Minimum Measurement Frequency (1)	Sample Type	Effluent 10/27/2014	Effluent 10/29/2014	Effluent 10/30/2014	Effluent 10/31/2014	Effluent 11/3/2014	Effluent 11/6/2014	Effluent 11/7/2014	Effluent 11/10/2014	Effluent 11/10/2014
Flow (GPD)	Monitor	150000	Continuous	Meter	7531	7330	7290	7350	7183	7054	7040	6861	6753
pH (SU)	6.5-8.5		2/Week	Grab	8.4	8.4	8.44	8.42	8.46	8.46	8.46	8.46	8.45
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.	4.0 U					4.0 U			
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	695					766			
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.						***			
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.									
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab						1 U			
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab						1 U			
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab						1 U			
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab						1 U			
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab						1 U			
Toluene (ug/L)	Monitor	20	2/Month	Grab						1 U			
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab						1 U			
					ļ								
Notes: - Not analyzed, NA - Data Not available U - Not Detected, J - Estimated													
(1) Minimum monitoring requirements bas	ed on SPEDES per	mit modified Novemb	per, 21, 1997.										

		Monitoring	Requirements										
Analyte (units)	Discharge Limitation Daily Average	Discharge Limitation Daily Maximum	Minimum Measurement Frequency (1)	Sample Type	Effluent 11/13/2014	Effluent 11/17/2014	Effluent 11/18/2014	Effluent 11/19/2014	Effluent 11/20/2014	Effluent 11/21/2014	Effluent 11/24/2014	Effluent 11/25/2014	Effluent 12/1/2014
Flow (GPD)	Monitor	150000	Continuous	Meter	6753	6557	6480	6490	6630	6465	6515	6540	6342
pH (SU)	6.5-8.5		2/Week	Grab	8.45	8.46	8.46	8.48	8.48	8.48	8.48	8.48	8.47
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.	4.0 U	4.0 U					4.0 U		4.0 U
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	687	721					711		724
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.									
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.									
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U							1 U
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U							1 U
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1 U							1 U
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab		1 U							1 U
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U							1 U
Toluene (ug/L)	Monitor	20	2/Month	Grab		1 U							1 U
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U							1 U
Notes: - Not analyzed, NA - Data Not available U - Not Detected, J - Estimated (1) Minimum monitoring requirements by	used on SPEDES ner	mit modified Novem	ner. 21. 1997.										

		Monitoring	Requirements										
Analyte (units)	Discharge Limitation Daily Average	Discharge Limitation Daily Maximum	Minimum Measurement Frequency (1)	Sample Type	Effluent 12/3/2014	Effluent 12/4/2014	Effluent 12/5/2014	Effluent 12/8/2014	Effluent 12/11/2014	Effluent 12/12/2014	Effluent 12/15/2014	Effluent 12/16/2014	Effluent 12/17/2014
Flow (GPD)	Monitor	150000	Continuous	Meter	6306	6230	6170	6163	6309	6355	6253	6220	6269
pH (SU)	6.5-8.5		2/Week	Grab	7.27	7.29	7.29	7.28	7.17	7.18	7.28	7.15	7.17
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.					4.0 U		4.0 U		
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.					695		682		
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.									
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.									
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab							1 U		
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab							1 U		
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab							1 U		
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab							1 U		
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab							1 U		
Toluene (ug/L)	Monitor	20	2/Month	Grab							1 U		
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab							1 U		***
Notes: - Not analyzed, NA - Data Not available U - Not Detected, J - Estimated (1) Minimum monitoring requirements b		mit modified Novem	oor 21 1007										

		Monitoring	g Requirements										
Analyte (units)	Discharge Limitation Daily Average	Discharge Limitation Daily Maximum	Minimum Measurement Frequency (1)	Sample Type	Effluent 12/18/2014	Effluent 12/22/2014	Effluent 12/24/2014	Effluent 12/22/2014	Effluent 12/29/2014	Effluent 12/30/2014	Effluent 12/31/2014	Effluent 1/5/2015	
Flow (GPD)	Monitor	150000	Continuous	Meter	6383	6723	7048	7374	7374	7570	7660	7766	
pH (SU)	6.5-8.5		2/Week	Grab	7.24	7.19	7.27	7.29	7.29	7.19	7.23	7.2	
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.		4.0 U			4.0 U				
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.		652			629				
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.									
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.									
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab									
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab									
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab									
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab									
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab									
Toluene (ug/L)	Monitor	20	2/Month	Grab									
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab									
Notes: - Not analyzed, NA - Data Not available	2												
U - Not Detected, J - Estimated													
(1) Minimum monitoring requirements b	ased on SPEDES per	mit modified Noveml	ber, 21, 1997.										

April 17, 2015

Mr. John C. Grathwol, P.E.

Remedial Bureau B - Div of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7016

RE: Former Accurate Die Casting Site Fayetteville, New York

FILE: 3902.45845 Corres

Dear Mr. Grathwol:

This letter presents the status of groundwater treatment plant operations for the former Accurate Die Casting site in Fayetteville, New York for the first quarter of 2015 (January 1 through March 31). This information is provided as required by the Order on Consent (#A7-0318-94-10). Included are the results of the monitoring activities associated with the SPDES Fact Sheet for the groundwater treatment system.

OPERATION STATUS & ACTIVITIES COMPLETED

As of March 31, 2015, a total of 105,704,450 gallons of groundwater have been treated since startup on February 5, 1996. Since December 31, 2014, 662,290 gallons of groundwater have been treated: 201,290 gallons from recovery well RW-1; 460,590 gallons from recovery well RW-2; and 410 gallons from the collection trench constructed in the former VOC/PAH/PCB Soils Area. No groundwater was recovered from the sump located outside the northeast corner of the building.

O'Brien & Gere performed the sampling activities associated with the SPDES Fact Sheet (#734052). The analytical results associated with the SPDES Fact Sheet monitoring activities performed during January, February and March 2015 are summarized in Table 1. The effluent during the period complied with the SPDES discharge limits. The laboratory analytical data sheets are provided as Attachment A.

The carbon in granular activated carbon filter GAC#1 was replaced on February 23, 2015 and afterward filter GAC#2 was placed into lead service and GAC#1 placed into lag service.

Onn March 31, 2015 groundwater samples were collected and analyzed for volatile organic compounds for monitoring wells MW-10, MW-11, MW-13, MW-18 and MW-24. The groundwater elevations are presented in Table 2 and the analytical results are summarized in Tables 3 and 4. The laboratory analytical data sheets are provided as Attachment B.

ACTIVITIES SCHEDULED

Continue operation of the groundwater recovery and treatment system including SPDES monitoring.

Mr. John C. Grathwol, P.E. April 17, 2015 Page 2

If you have any questions regarding this report, please do not hesitate to call me at (315) 956-6316. Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Alfred R. Farrell, P.E. Project Manager

cc: T. Slutzky – The Anderson Company

Jeff Stanek – ITT Corporation L. Hall – ITT Corporation

J. Sutphen - O'Brien & Gere, Office of General Counsel

Analyte (units)	Discharge Limitation Daily Average Monitor 6.5-8.5 Monitor Monitor Monitor Monitor Monitor Monitor Monitor	Discharge Limitation Daily Maximum 150000 20 Monitor 0.0008 0.3	Minimum Measurement Frequency (1) Continuous 2/Week Weekly Weekly Quarterly Quarterly	Sample Type Meter Grab 3-hr comp. 3-hr comp. 3-hr comp.	Effluent 1/5/2015 7766 7.2	Effluent 1/6/2015 7920 7.18 4.0 U	Effluent 1/8/2015 8005 7.2	Effluent 1/9/2015 8150 7.24	Effluent 1/12/2015 8123 7.22	Effluent 1/13/2015 8210 7.2 4.0 U	Effluent 1/15/2015 8255 7.22	Effluent 1/21/2015 8235 7.24 4.0 U	Effluent 1/22/2015 8180 7.22	Effluent 1/26/2015 8140 7.31 4.0 U
Flow (GPD) pH (SU) Residue, non-filterable (mg/L) Total dissolved solids (TDS) (mg/L) Mercury, total (mg/L) Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	Daily Average Monitor 6.5-8.5 Monitor Monitor Monitor Monitor Monitor	Daily Maximum 150000 20 Monitor 0.0008 0.3	Frequency (1) Continuous 2/Week Weekly Weekly Quarterly	Type Meter Grab 3-hr comp. 3-hr comp.	1/5/2015 7766	1/6/2015 7920 7.18 4.0 U	1/8/2015 8005	1/9/2015 8150	1/12/2015 8123	1/13/2015 8210 7.2	1/15/2015 8255	1/21/2015 8235 7.24	1/22/2015 8180	1/26/2015 8140 7.31
Flow (GPD) pH (SU) Residue, non-filterable (mg/L) Total dissolved solids (TDS) (mg/L) Mercury, total (mg/L) Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	Monitor 6.5-8.5 Monitor Monitor Monitor Monitor Monitor	150000 20 Monitor 0.0008 0.3	Continuous 2/Week Weekly Weekly Quarterly	Meter Grab 3-hr comp. 3-hr comp.	7766	7920 7.18 4.0 U	8005	8150	8123	8210 7.2	8255	8235 7.24	8180	8140 7.31
pH (SU) Residue, non-filterable (mg/L) Total dissolved solids (TDS) (mg/L) Mercury, total (mg/L) Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	6.5-8.5 Monitor Monitor Monitor Monitor Monitor	20 Monitor 0.0008 0.3	2/Week Weekly Weekly Quarterly	Grab 3-hr comp. 3-hr comp.		7.18 4.0 U				7.2		7.24		7.31
Residue, non-filterable (mg/L) Total dissolved solids (TDS) (mg/L) Mercury, total (mg/L) Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	Monitor Monitor Monitor Monitor Monitor	0.0008 0.3	Weekly Weekly Quarterly	3-hr comp. 3-hr comp.	7.2	4.0 U	7.2	7.24	7.22		7.22		7.22	
Total dissolved solids (TDS) (mg/L) Mercury, total (mg/L) Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	Monitor Monitor Monitor Monitor	0.0008 0.3	Weekly	3-hr comp.						4.0 U		4.0 U		4011
Mercury, total (mg/L) Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	Monitor Monitor	0.0008 0.3	Quarterly	3-hr comp.		665								4.0 0
Zinc, total (mg/L) cis-1,2-Dichloroethene (ug/L)	Monitor Monitor	0.3	- •	•						603		661		653
cis-1,2-Dichloroethene (ug/L)	Monitor		Quarterly	2 hu		0.0002 U								
		10		5-III comp.		0.0047 JB								
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U						1.0 U		
		10	2/Month	Grab		1.0 U						1.0 U		
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1.0 U						1.0 U		
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab		1.0 U						1.0 U		
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U						1.0 U		
Toluene (ug/L)	Monitor	20	2/Month	Grab		1.0 U						1.0 U		
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U						1.0 U		
					Notes:									
					1	NA - Data Not		6		I-1 D. C.		a dha bhada a 1	1.	
					U - Not Detecte		_		on or analyses e t modified Nove		mpound found i	n the blank and	sample	

		Monitoring Re	equirements											
	Discharge	Discharge	Minimum		1									
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	1/27/2015	1/30/2015	2/2/2015	2/3/2015	2/5/2015	2/6/2015	2/9/2015	2/10/2015	2/11/2015	2/12/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	8160	7982	7947	7940	7788	7826	7713	7620	7562	7700
pH (SU)	6.5-8.5		2/Week	Grab	7.24	7.27	7.27	7.26	7.25	7.27	7.26	7.28	7.26	7.24
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.			4.0 U					4.0 U		
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.			683					552		
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Womtor	0.5	Quarterly	5-iii comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab			1.0 U							
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab			1.0 U							
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							
Toluene (ug/L)	Monitor	20	2/Month	Grab			1.0 U							
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							
					Notes:									
						ed, NA - Data N	Jot available							
						ed, J - Estimated		mes for preparat	ion or analyses e	exceeded. B - Co	ompound found	in the blank and	sample	
						onitoring require	-				_	omik and	Jumpie	

		Monitoring Re	equirements											
	Discharge	Discharge	Minimum											
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	2/13/2015	2/16/2015	2/19/2015	2/20/2015	2/23/2015	2/24/2015	2/25/2015	3/2/2015	3/2/2015	3/3/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	7480	7448	5465	7968	7393	7240	7170	6985	6985	6770
pH (SU)	6.5-8.5		2/Week	Grab	7.29	7.28	7.14	7.3	7.48	7.92	7.68	7.65	7.65	7.65
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.			4.0 U			4.0 U				4.0 U
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.			697			671				650 B
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							1.0 U
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							1.0 U
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab			1.0 U							1.0 U
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab			1.0 U							1.0 U
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							1.0 U
Toluene (ug/L)	Monitor	20	2/Month	Grab			1.0 U							1.0 U
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U							1.0 U
					Notes:									
						ed, NA - Data								
							_				ompound found i	n the blank and	sample	
					(1) Minimum m	nonitoring requir	ements based or	SPEDES perm	it modified Nove	ember, 21, 1997.				

		Monitoring Re	equirements											
	Discharge	Discharge	Minimum											
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	3/5/2015	3/6/2015	3/9/2015	3/10/2015	3/11/2015	3/13/2015	3/16/2015	3/19/2015	3/24/2015	3/25/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	6835	6620	6619	6490	6490	6410	6353	6437	6632	6890
pH (SU)	6.5-8.5		2/Week	Grab	7.62	7.42	7.51	7.54	7.52	7.38	7.36	7.4	7.4	7.43
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.			4.0 U					4.0 U		4.0 U
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.			697					660		727
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
7,			<u></u>											
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab								1.0 U		
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab								1.0 U		
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab								1.0 U		
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab								1.0 U		
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab								1.0 U		
Toluene (ug/L)	Monitor	20	2/Month	Grab								1.0 U		
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab								1.0 U		
					Notes:									
					•	ed, NA - Data l		_						
							_	mes for preparat			-	in the blank and	sample	
					(1) Minimum m	onitoring requir	ements based or	n SPEDES perm	it modified Nove	ember, 21, 1997.				

		Manitania D							
	Discharge	Monitoring Re							
	Discharge	Discharge	Minimum	0 1	TOOM .	TO COL	T2.00	Tien .	
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	
	Daily Average	Daily Maximum	Frequency (1)	Type	3/27/2015 6882	3/30/2015 7082	3/31/2015 7340	4/1/2015 7420	
Flow (GPD)	Monitor	150000	Continuous	Meter	7.43	7.4	7.42	7.4	
pH (SU)	6.5-8.5		2/Week	Grab	7.43		1.42	7.4	
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.		4.0 U			
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.		616			
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.					
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.					
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab					
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab					
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab					
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab					
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab					
Toluene (ug/L)	Monitor	20	2/Month	Grab					
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab					
					Notes:				
					Not analyz	ed, NA - Data N	Not available		
					U - Not Detecte	d, J - Estimated	, H - Holding tin	nes for preparation o	or analyses exceeded, B - Compound found in the blank and sample
					(1) Minimum m	onitoring require	ements based on	SPEDES permit mo	odified November, 21, 1997.

				Groundwater							
	Ground	Well Casing	Screen Interval	Elevation (ft)							
Well ID	Elevation (ft)	Elevation (ft)	Elevation (ft)	5/28/1992	6/26/1992	8/7/1992	9/26/1994	9/27/1994	10/18/1994	11/2/1994	11/17/1994
MW-01	99.36	101.11	75.4 - 85.4	DRY	DRY	79.69			DRY		
MW-02	91.8	94.68	76.6 - 86.6	83.21	82.81	84.32	83.1	83.28	80.12		
MW-03	97.65	99.63	73.7 - 83.7	80.44		81.63					
MW-04	65.62	68.52	46.6 - 56.6	51.08	49.95	50.81	47.22	52.21	46.79		
MW-05	88.21	90.42	49.2 - 59.2	60.71	63.76	61.22	59.87	59.91	59.45		
MW-06	77.46	79.38	46.4 - 56.4	60.5	60.49	60.46	59.51	59.52	59.05		
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.59	54.55	54.47	53.9	53.97	53.55		
MW-08	88.21	91.78	53.9 - 63.9	66.38	66.38	66.83	61.59	61.65	60.99		
MW-09	102.44	104.03	49.7 - 59.7	60.46	60.51	61.83	59.57	59.59	59.08		
MW-10 (B)	97.51	97.27	43 - 53	61.15	61.99	61.69			56.02	55.07	55.19
MW-11 (B)	91.48	93.8	43.1 - 53.1	62.34	63.7	63.66	58.41	58.39	57.47		56.68
MW-12	93.62	94.14	51.9 - 61.9	62.24	60.74	62.77	59.77	59.79	59.31		
MW-13	98.8	98.7	77.7 - 87.7	DRY	80.62	80.92			78.7	82.92	78.21
MW-14	98.76	100.62	74.6 - 84.6	75.11	79.07	81.54			86.18	80.12	80.54
MW-15 (B)	96.1	98.9	32.7 - 42.7						53.47		
MW-16 (B)	98.5	100.85	50.8 - 60.8						61.67		
MW-17	66.9	69.24	53.7 - 63.7				54.61	54.61	54.08		
MW-18	76.5	78.29	61.5 - 71.5								
MW-19	69.5	71.27	46.5 - 56.5								
MW-20	70.98	73.34	51.9 - 61.9								
MW-21	69.9	71.87	59.5 - 64.5								
MW-22	71.5	73.34	60.9 - 65.9								
MW-23 (B)	89.8	91.72	17.3 - 22.3								
MW-24*			-								
PZ-01	81.8	83.95	49.8 - 59.8				59.56	59.57	59.1		
PZ-02	80.6	83.06	42.8 - 52.8				59.35	59.36	58.89		
RW-01	78.4	80.28	.4 - 39.4, 45.4 - 50				56.88	56.89	58.22		
RW-02 (B)	91.58	95.18	-								
SUMP		97.93	-							76.04	74.83

Notes:

Well ID	Groundwater Elevation (ft) 11/30/1994	Groundwater Elevation (ft) 12/15/1994	Groundwater Elevation (ft) 12/27/1994	Groundwater Elevation (ft) 1/13/1995	Groundwater Elevation (ft) 1/25/1995	Groundwater Elevation (ft) 2/9/1995	Groundwater Elevation (ft) 2/23/1995	Groundwater Elevation (ft) 3/9/1995	Groundwater Elevation (ft) 4/26/1995	Groundwater Elevation (ft) 7/25/1995
MW-01									DRY	DRY
MW-02									83.28	82.42
MW-03										
MW-04									51.44	45.94
MW-05									60.34	58.78
MW-06										58.52
MW-07 (B)									54.51	53.27
MW-08									63.41	59.82
MW-09									60.1	58.56
MW-10 (B)	54.94	55.19	55.02	54.94	54.95	54.52	54.36	55.02	57.49	54.6
MW-11 (B)	55.59	56.63	56.55	55.63	55.63	56.13	55.63	56.55	58.86	55.72
MW-12									60.3	58.76
MW-13	78.21	80.92	78.34	78.25	77.83	77.84	77.75	77.67	DRY	DRY
MW-14	80.54	80.2	80.54	80.62	80.45	78.95	79.54	80.12	80.61	80.61
MW-15 (B)									54.71	51.6
MW-16 (B)									63.86	59.41
MW-17									59.02	57.71
MW-18										
MW-19										
MW-20										
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01										58.58
PZ-02									59.88	58.37
RW-01									59.14	57.6
RW-02 (B)										
SUMP	75	75.17	74.83	75	75	74.88	75	78	75.09	75.25

Notes:

Well ID	Groundwater Elevation (ft) 10/17/1995	Groundwater Elevation (ft) 2/5/1996	Groundwater Elevation (ft) 2/7/1996	Groundwater Elevation (ft) 2/15/1996	Groundwater Elevation (ft) 2/16/1996	Groundwater Elevation (ft) 2/20/1996	Groundwater Elevation (ft) 2/22/1996	Groundwater Elevation (ft) 2/29/1996	Groundwater Elevation (ft) 3/7/1996	Groundwater Elevation (ft) 3/21/1996
MW-01	DRY	77.06	76.64	75.3	DRY	DRY	DRY	75.36	75.17	77.34
MW-02	84.22	84.04	83.87	83.41	83.34	83.15	83.32	83.67	83.5	84.24
MW-03										
MW-04		53.6	52.06	55.39	54.43	52.46	60.37	58.14	55.1	59.26
MW-05		61.26		60.8	60.73	60.5	60.4	60.14	59.73	58.85
MW-06	58.1	60.86	60.44	60.41	60.11	59.8	59.75	59.45	58.96	58.02
MW-07 (B)	52.71	55.16	54.67	55.03	54.52	54.45	54.58	54.46	54.32	54.29
MW-08	60.76	66.61	66.4	65.93	65.84	65.47	65.42	65.12	64.68	64.76
MW-09	58.16	60.95	60.7	60.48	60.35			59.71	59.22	58.3
MW-10 (B)	54.61	62	59.88	62.11	60.42	59.96	59.91	59.64	59.43	59.07
MW-11 (B)	55.31	62.63	60.37	62.67	60.88	60.35	60.29	59.99	59.78	59.38
MW-12	58.35	61.11	60.83	60.65	60.5	60.21	60.16	59.86	59.37	58.44
MW-13	DRY		79.98	79.91	79.9	79.88	79.87	79.86	79.77	79.68
MW-14	80.72	79.91		80.28	80.29	80.35	80.38	80.44	80.45	80.49
MW-15 (B)	50.47	59.24	59.37	59.79	59.63	59.56	59.56	59.46	59.4	59.14
MW-16 (B)	58.06	67.14	67.17	66.9	66.79	66.57	66.52	66.39	66.17	65.99
MW-17	DRY	60.29	60.17	59.75	59.7	59.52	59.64	59.42	59.28	59.3
MW-18										
MW-19										
MW-20										
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01	58.16	60.92	60.61	60.46	60.28	59.99	59.93	59.63	59.14	58.21
PZ-02	57.97	60.7	60.3	60.26	59.97	59.66	59.61	59.33	58.83	57.9
RW-01	57.11	59.64	55.04	59.22	54.71	54.4	54.35	54.05	53.58	52.76
RW-02 (B)	56.05	63.8	59.98	63.83	60.67		59.97	59.63	59.41	58.95
SUMP	76.94	74.67	74.68	74.64	74.63	74.63	75.3	74.9	74.65	74.87

Notes:

	Groundwater									
	Elevation (ft)									
Well ID	4/4/1996	4/10/1996	4/18/1996	5/2/1996	6/6/1996	7/16/1996	9/5/1996	10/21/1996	11/19/1996	1/16/1997
MW-01	DRY	DRY	DRY	77.73	DRY	DRY	DRY	DRY	76.6	75.15
MW-02	83.68	83.68	84.86	85.35	83.17	83.32	82.57	83.18	84.22	83.56
MW-03										
MW-04	52.66	54.43	60.28	59.7	51.63	52.45	DRY	55.91	55.91	53.12
MW-05	58.32	58.14	58.2	58.71	60.54	58.98	56.33	55.4	56.49	59.15
MW-06	57.48	57.28	57.41	58.17	59.91	58.13	54.95	53.71	55.61	58.39
MW-07 (B)	54.17	54.15	54.32	54.75	55.02	53.95	52.44	51.22	52.68	54.28
MW-08	64.1	63.83	64.08	65.43	67.07	64.5	59.05	59.56	63.61	64.67
MW-09	57.78	57.59	57.73	58.46	60.18	58.38	55.38	54.24	56.64	58.65
MW-10 (B)	58.81	58.72	58.61	59.72	62.25	59.11	53.88		54.95	59.61
MW-11 (B)	59.1	59.01	58.94	60.35	62.68	59.53	54.72	52.88	55.85	60.15
MW-12	57.93	57.74	57.86	58.59	60.33	58.54	55.48	54.3	56.18	58.81
MW-13	79.6	79.57	79.52	79.44	79.28	79.35	79.15	79.07	80.68	80.49
MW-14	80.52	80.55	78.14	79.29	80.56	80.66	80.59	80.61		80.59
MW-15 (B)	59.07	59.04	58.84	59.87	62.62	59.24	54.83	51.58	51.99	58.83
MW-16 (B)	65.99	65.9	65.84	67.02	68.4	65.57	63.31			66.13
MW-17	59.27	59.14	59.3	59.95	59.22	58.46	57.89	55.96	58.02	59.33
MW-18					72.95	72.32	70.81	70.77		73.31
MW-19					DRY	DRY	DRY	DRY	DRY	DRY
MW-20					DRY	50.26	DRY	DRY	DRY	DRY
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01	57.67	57.47	57.6	58.34		58.31	55.13	53.9	55.83	58.57
PZ-02	57.39	57.19	57.3	58.04	59.77	57.97	54.9	53.53	55.25	58.23
RW-01	52.24	52.03	52.11	52.69	53.82	51.94	48.05	41.8	47.33	50.74
RW-02 (B)	58.63	58.52	58.41	59.63	62.56	59.14		42.02	55.39	
SUMP	74.69	74.99	75.89	75.76	74.73	74.78	74.56	74.85	74.77	74.71

Notes:

Well ID	Groundwater Elevation (ft) 2/4/1997	Groundwater Elevation (ft) 4/15/1997	Groundwater Elevation (ft) 7/8/1997	Groundwater Elevation (ft) 10/22/1997	Groundwater Elevation (ft) 1/29/1998	Groundwater Elevation (ft) 4/15/1998	Groundwater Elevation (ft) 10/20/1998	Groundwater Elevation (ft) 4/28/1999	Groundwater Elevation (ft) 10/19/1999	Groundwater Elevation (ft) 4/6/2000
MW-01		75.64	DRY	DRY	DRY	DRY	DRY	DRY	DRY	80.92
MW-02		83.81		82.84	83.47	83.52	83.54	83.38	84.44	86.58
MW-03										
MW-04										
MW-05		59.83	59.16	58.34	60.86			59.91	55.35	60.52
MW-06		59.34	58.58	57.97	60.46	60.57	59.69	59.11	53.34	60.36
MW-07 (B)		54.7	52.93	50.63	52.9	53.82	51.76	54.57	51.73	54.87
MW-08		65.15	61.65	58.9	64.98	67.17	59.86	64.21	62.37	66.41
MW-09		59.6	58.76	58	60.51	60.56	59.71	59.68	54.25	60.62
MW-10 (B)		58.11	53.44	50.75	55.78		51.88	57.97	51.32	57.6
MW-11 (B)		58.59	55.2	52.5	56.75	61.73	53.98	58.36	53.31	59.39
MW-12		59.72	58.92	58.21	60.67	60.8	59.89	59.53	54.09	60.71
MW-13		80.33	79.84	79.53	78.87	78.67	78.31	78.08	80.75	80.89
MW-14		80.53	80.55	80.58	80.78	80.78	80.64	80.54	80.67	80.6
MW-15 (B)		59.83	56.63	50.48	56.34	62.1	52.58	58.94	50.95	58.81
MW-16 (B)		66.89	64.43	58.45	65.71	68.03	61.84	65.99	59.81	66.92
MW-17		59.64	58.33	DRY	59.7	59.51	57.93	58.76	57.47	60.28
MW-18	72.78	73.6	71.34	69.71	73.5	73.29	70.74	72.46	70.78	75.08
MW-19	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
MW-20										
MW-21	63.69	63.74		62.93	63.82	63.54	63.23	63.31	62.69	64.42
MW-22	63.69	67.92	67.35	65.96	68.51	68.39	67.83	68.05	67.69	68.52
MW-23 (B)		37.71	35.61	32.29	34.95	37.95	33.57	36.76	32.48	36.69
MW-24*								-7.38	-10.22	-9.96
PZ-01		59.51	58.7	58.01	60.5	60.61	59.7	59.3	53.65	60.51
PZ-02		59.13	58.34	57.65	60.22	60.34	59.46	59.03	52.71	60.17
RW-01		50.3	43.34	42.03	43.13	32.6	32.36	54.69		50.73
RW-02 (B)		55.69	44.07	42.89	52.74	59.94	44.33	56.74		54.52
SUMP		74.94	75.01	74.75	74.89	74.96	75.2	75.26		78.49

Notes:

	Groundwater									
	Elevation (ft)									
Well ID	11/7/2000	7/3/2001	11/8/2001	4/3/2002	10/9/2002	12/28/2004	4/8/2005	5/8/2005	11/9/2005	4/21/2006
MW-01	DRY	77.46	76.87	77.42	101.11	76.7	80.09	80.09	78.27	78.66
MW-02		84.33	83.67	84.28	83.6	83.67	85.01	85.01	84.1	85.14
MW-03										
MW-04										
MW-05	59.83	60.92	60.1	60.8	58.42	60.79	61.76	61.76	60.82	60.88
MW-06	59.4	55.87	59.67	60.42	59.84	60.35	61.45	61.45	60.36	70.35
MW-07 (B)	DRY	53.34	51.92	53.59	52.34	54.11	55.35	55.35		54.59
80-WM	61.45	65.63	60.92	64.16	60.73	63.24	67.83	67.83	64.14	65.22
MW-09	59.42	60.51	59.68	60.47	59.85	60.36	61.54	61.54	60.4	60.36
MW-10 (B)	52.73	57.22	52.6	56.07	54.57	54.86	60.38	60.38	55.76	58.75
MW-11 (B)	54.66	59.15	54.73	57.19	54.77	56.54	60.89	60.89	56.05	58.84
MW-12	59.62	60.63	59.87	60.64		60.54	61.67	61.67	60.58	60.54
MW-13	80.53	79.95	80.1	78.65	79.62	83.48	80.04	80.04	80.6	79.8
MW-14	80.75	79.74	80.77	80.48	82.87	81.72	84.69	84.69	82.77	82.71
MW-15 (B)	54.32	58.98	53.52	59.03	54.4	57.78	61.53	61.53	55.87	59.87
MW-16 (B)	63.57	66.14	63.58	66.25	63.5	65.64	68.75	68.75	65.35	66.31
MW-17	58.33	58.55	58.02	59.24	57.58	58.91	60.79	60.79	58.91	58.77
MW-18	71.61	72.09	71.36	73.75	69.84	72.88	74.61	74.61	72.33	72.54
MW-19	DRY	DRY	DRY	DRY	DRY	DRY		DRY	DRY	DRY
MW-20										
MW-21	62.59	62.53	62.58	63.39	61.82	62.54	63.92	63.92	62.62	62.24
MW-22	66.42	68.13	68.15	68.71	67.24	63.41	68.65	68.65	68.68	68.3
MW-23 (B)	33.97	36.21	33.25	35.68	33.63	36.49	39.32	39.32	35.43	37.72
MW-24*	-10.43	-10.41	-10.39	-10.35	-10.3	-10.33	-10.2	-10.2	-10.33	-10.4
PZ-01	59.44		59.7	60.45	59.87	60.4	61.48	61.48	60.38	60.37
PZ-02	59.16		59.48	60.18	59.65	60.23	61.28	61.28	60.22	60.19
RW-01	40.88		36.48	36.53	34.88					
RW-02 (B)	42.86		42.97	49.85	44.13					
SUMP	74.91	75.33	75.05	75.13	74.94					

Notes:

Well ID	Groundwater Elevation (ft) 1/2/2007	Groundwater Elevation (ft) 11/29/2007	Groundwater Elevation (ft) 5/8/2008	Groundwater Elevation (ft) 11/21/2008	Groundwater Elevation (ft) 4/22/2009	Groundwater Elevation (ft) 11/20/2009	Groundwater Elevation (ft) 4/30/2010	Groundwater Elevation (ft) 11/17/2010	Groundwater Elevation (ft) 5/12/2011	Groundwater Elevation (ft) 11/29/2011
MW-01	76.7	80.03	80.06	80.11	80.69	79.49	80.73	79.87	80.71	75.97
MW-02	83.58	85.6			83.26	83.24	83.13	83.6	NM	83.98
MW-03										
MW-04										
MW-05	60.65	61.62	60.72	60.24	60.86	60.32	60.7	60.62	62.32	60.66
MW-06	60.28	60.5	60.28	59.98	60.46	60.03	60.34	60.26	NM	60.26
MW-07 (B)	54.04	52.96	52.94		56.1	52.88	54.04	52.94	53.84	53.18
MW-08	63.24	66.86	66.82	66.88	66.5	61.93	65.94	64.7	NM	63
MW-09	60.36	60.55	60.33	60.53	60.49	60.03	60.37	60.27	61.9	60.25
MW-10 (B)	57.62	56.01	61.05	52.79	60.33	53.77	58.97	58.77	66.37	55.73
MW-11 (B)	57.81	55.72	60.32	52.42	59.4	52.98	57.95	57.84	64.85	54.56
MW-12	60.47	60.72	60.5	60.19	60.67	60.24	60.56	60.44	62.02	60.46
MW-13	79.44	78.68	78.23	DRY	DRY	78.02	Dry	Dry	Dry	Dry
MW-14	82.65	89.24	82.74	82.59	82.72	82.67	82.62	82.77	81.74	82.7
MW-15 (B)	59.26	54.35	61.89	52.85	61.74	54.7	60.4	60.1	62.56	57.88
MW-16 (B)	66.12	63.99	67.78	63.03	67.85	64.11	66.77	66.41	74.8	64.83
MW-17	59	58.46	58.96	57.9	59.36	58.38	58.96	58.89	60.26	58.96
MW-18	73.2	72.84	72.7	71.85	73.08	71.91	72.53	72.95	73.26	73.05
MW-19		DRY	DRY	DRY	DRY	47.11	Dry	47.13	DRY	47.13
MW-20										
MW-21	62.63	63.12	62.65	62.65	62.63	62.43	62.31	63.31	62.36	62.85
MW-22	68.59	68.94	68.6	68.51	68.44	68.29	68.26	68.88	68.44	68.74
MW-23 (B)	36.62	34.82	34.76	34.82	39.14	35.06	38.38	38.08	42.22	36.96
MW-24*	-10.23	-10.12	-10.35	-10.35	-10.45	-11.12	-10.5	-10.44	-10.4	-10.36
PZ-01	60.35	60.53	60.32	59.99	60.49	60.03	60.37	60.27	61.85	60.27
PZ-02	60.09	60.36	60.12	59.81	60.3	59.86	60.18	60.1	61.61	60.11
RW-01										
RW-02 (B)										
SUMP										

Notes:

Well ID	Groundwater Elevation (ft) 5/22/2012	Groundwater Elevation (ft) 11/28/2012	Groundwater Elevation (ft) 4/18/2013	Groundwater Elevation (ft) 10/1/2013	Groundwater Elevation (ft) 4/16/2014	Groundwater Elevation (ft) 9/18/2014	Groundwater Elevation (ft) 3/31/2015		
MW-01	75.07	75.06	78.43	75.06	77.29	75.07	80.26		
MW-02	83.36	83.4	84.68	83.36	85.18	83.06	85.18		
MW-03									
MW-04									
MW-05	60.54	60.02	61.08	60.38	61.74	60.24	60.22		
MW-06	60.16	59.78	60.98	60.04	61.35	59.94	60.02		
MW-07 (B)	53.32	52.24	54.12	53.14	54.82	52.29	53.28		
MW-08	62.44	60.93	65.6	62.66	68.38	61.32	63.93		
MW-09	60.19	59.76	60.71	60.05	61.43	59.97	60.01		
MW-10 (B)	55.41	52.47	58.67	55.39	61.91	54.73	54.25		
MW-11 (B)	54.2	51.58	57.48	54.10	60.5	53.54	53.15		
MW-12	60.38	59.98	60.88	60.24	61.56	60.16	60.22		
MW-13	Dry	Dry	Dry	78.00	79.94	79.3	78.74		
MW-14	82.64	82.54	82.54	82.82	82.8	82.88	84.8		
MW-15 (B)	57.6	52.1	60.12	57.65	63.3	56.34	55.06		
MW-16 (B)	64.81	61.03	67.15	64.75	69.49	64.19	64.2		
MW-17	58.92	54.44	59.88	58.24	60.36	58.08	58.7		
MW-18	72.47	70.83	74.27	71.07	74.83	70.77	73.63		
MW-19	47.12	Dry	Dry	Dry	Dry	Dry	Dry		
MW-20									
MW-21	62.12	60.57	62.92	60.91	63.71	60.55	63.43		
MW-22	68.3	68.34	68.3	66.39	68.04	66.8	68.18		
MW-23 (B)	37.4	34	38.6	36.86	40.38	36.22	36.12		
MW-24*	-10.48	Dry	Dry	-11.12	-10.1	-11.14	-10.3		
PZ-01	60.2	59.79	60.69	60.07	61.39	59.97	60.03		
PZ-02	60.02	59.62	60.51	59.88	61.14	59.78	59.84		
RW-01		33.54	34.88	34.38	34.88	34.88	33.93		
RW-02 (B)		43.33	54.73	44.02	58.94	44.18	44.8		
SUMP									

Notes:

Sample Date	August-89	December-89	May-90	May-92	July-94	October-94	February-95	April-95	July-95
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID									
MW-01	112	ND	2	ND					
MW-02	ND	ND	1	ND		ND	ND	ND	ND
MW-03	ND	ND	440000	340000	ND	NI	NI	NI	NI
MW-04		7	43	6	270	23	13	16	
MW-05		340	344	110	330	410	290	280	
MW-06		700	454	510	390	360	330	280	270
MW-07		ND	ND	ND	ND	ND	ND	ND	ND
MW-08		ND	ND	ND		ND	ND	ND	ND
MW-09		109	106	60	72	74	74	84	75
MW-10				4500	1600	1300	1400	1200	900
MW-11				5200	5500	5300	4300	3900	4000
MW-12				36	44	35	33	30	25
MW-13				110	740	510			
MW-14				67	150	120	79	95	140
MW-15	NI	NI	NI	NI	NI	14	11	10	17
MW-16	NI	NI	NI	NI	NI	6	17	7	18
MW-17	NI	NI	NI	NI	260	140	200	130	160
MW-18	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-22	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-23	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-24	NI	NI	NI	NI	NI	NI	NI	NI	NI
PZ-01	NI	NI	NI	NI	NI				120
PZ-02	NI	NI	NI	NI	NI			490	400
Notes:	ND - Not detected ab	ove unknown MDL, l	J - Not detected abov	e known MDL, N	ot analvzed,NI - Not	: installed at time of n	nonitoring, AB - Well v	vas abandoned.	
			emedial Investigation				<i>5.</i>		
	3	-		` ,	September 1994. Da	ta was collected by St	earns & Wheler prior	to 07/22/94.	
		•		nd MW-22 on 01/20/9	'		.	, ,-	
			' '	nual or semi-annual m					

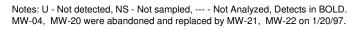
Sample Date	October-95	January-96	April-96	May-96	July-96	October-96	January-97	April-97	July-97
Oampie Date	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-01									
MW-02	ND					1 U			
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	15					62	NI	NI	NI
MW-05						180			
MW-06	180	170	110		98	71	75	52	
MW-07	ND					1 U			
MW-08	ND					1 U			
MW-09	68	100	64		65	50	95	83	66
MW-10	890	900	820		960	1700	1900	1200	
MW-11	2600	2500	1500		1400	1600	1500	800	
MW-12	29					17			
MW-13						370			
MW-14	78	84	250		230	170	390	400	260
MW-15	7					20			
MW-16	20					11			
MW-17		180	350		460	300	450	220	150
MW-18	NI	NI	NI	1200		2900	850	410	1800
MW-20	NI	NI	NI	70			NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	270	520	310
MW-22	NI	NI	NI	NI	NI	NI	2	1	3
MW-23	NI	NI	NI	NI	NI	NI	NI	1 U	1 U
MW-24	NI	NI	NI	NI	NI	NI	NI	NI	NI
PZ-01						32			
PZ-02						540			
Notes:	ND - Not detected ab	ove unknown MDL, I	J - Not detected abov	e known MDL, N	ot analyzed, NI - Not	t installed at time of n	nonitoring, AB - Well v	vas abandoned.	
	MW-01 through MW-	16 installed during Re	medial Investigation	(Stearns & Wheler).					
	MW-03 removed as	part of TCE Soils Inte	rim Remedial Measure	e (IRM) completed in	September 1994. Da	ta was collected by St	earns & Wheler prior	to 07/22/94.	
	MW-04 and MW-20 v	vere abandoned and r	eplaced by MW-21 ar	nd MW-22 on 01/20/9	7.				
	Data provided only fo	or wells presently inclu	uded in either the ann	ual or semi-annual m	onitoring list of wells.				

Sample Date	October-97 Trichloroethene	January-98 Trichloroethene	April-98 Trichloroethene	October-98 Trichloroethene	November-98 Trichloroethene	April-99 Trichloroethene	October-99 Trichloroethene	April-00 Trichloroethene	November-00 Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-01									
MW-02	1 U			1 U			1 U		1 U
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05	220			200			78		110
MW-06	58		140	92		63	72	30	48
MW-07	1 U			1 U			1 U		
MW-08				1 U			1 U		1 U
MW-09	61	140	120	80		120	46	69	60
MW-10	1300		930	880		720	700	530	690
MW-11	1600		920	1100		740	900	670	840
MW-12	19			22			15		17
MW-12	760			480			430		790
MW-14	560	560	460	400		460	260	250	280
MW-15	18			21			13		7
MW-16	14			4			15		3
MW-17		270	800	250		280	180	160	220
MW-18	3100	1000	1100	3600		620	1800	360	1900
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	450	120	1300	180		510	90	42	73
MW-21	8	5	10	14		10	9	13	12
MW-23	1 U	1 U		1 U			1 U		1 U
MW-24	NI	NI	NI	NI	6000	4300	4300	690	2400
PZ-01	48			85			410		29
PZ-02	420			250			18		160
1 2-02	420			250			10		100
Notes:	ND - Not detected ab	oove unknown MDL, I	J - Not detected abov	e known MDI N	ot analyzed. NI - Not	installed at time of n	nonitoring. AB - Well v	vas abandoned.	
		·16 installed during Re		·					
		part of TCE Soils Inte		` ,	September 1994 Da	ta was collected by St	earns & Wheler prior	to 07/22/94.	
		vere abandoned and r		. , .	•	taas concetted by St	.cao a mileter prior		
		or wells presently inclu	. ,						
	Data provided only it	or recita presentity inch	adea in cities the dill	iddi or ocini diniddi ili	orniorning hat or Wella.				

Sample Date	July-01	November-01	April-02	June-02	October-02	May-03	December-03	July-04	December-04
·	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	-	_	-	-	-	-	-	-	_
MW-01		1 U							
MW-02		1 U							
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05		120			100		110		98
MW-06	89	92			92		110		
MW-07		1 U							
MW-08		1 U							
MW-09	70	77			67		110		
MW-10	600	900	740		700	530	570	470	
MW-11	680	1000	870		760	940	620	490	
MW-12		19			18		20		21
MW-13		520		360	370				
MW-14	270	240			200	310	190		200
MW-15		27			21		26		2.1
MW-16		3			1		3		2.1
MW-17	240	230			290		310		140
MW-18	970	2000	350		2500	2100	2300	1600	
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	35	38					12		4.9
MW-22	13	13			4		18		18
MW-23		1 U							
MW-24	600	1500		470		390	190	170	96
PZ-01		79			79		92		120
PZ-02		260			160		150		130
Notes:	ND - Not detected ab	ove unknown MDL, I	J - Not detected abov	e known MDL, N	ot analyzed, NI - Not	t installed at time of n	nonitoring, AB - Well v	was abandoned.	
	MW-01 through MW-	16 installed during Re	emedial Investigation	(Stearns & Wheler).					
	MW-03 removed as	part of TCE Soils Inte	rim Remedial Measure	e (IRM) completed in	September 1994. Da	ta was collected by St	tearns & Wheler prior	to 07/22/94.	
	MW-04 and MW-20 w	vere abandoned and i	eplaced by MW-21 ar	nd MW-22 on 01/20/9	7.				
	Data provided only fo	or wells presently incl	uded in either the ann	nual or semi-annual m	onitoring list of wells.	,			

Sample Date	'	November-05	April-06	January-07	February-07	May-07	November-07	May-08	November-08
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	UG/L	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Location ID									
MW-01									
MW-02									
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05		75.0		75.2			88		84.6
MW-06				142			120		84.1
MW-07									
MW-08									
MW-09		83.3		86.9			88		77.2
MW-10	450		486		448	448	440	476	126
MW-11	390		469		407	390	380	293	746
MW-12		19.6		23		24	38		24.3
MW-13	200		265		265	282	310	251	
MW-14		127		270			380		484
MW-15		0.50 U		0.54			0.82		0.5 U
MW-16		2.25		1.82			2.1		3.21
MW-17				132			240		210
MW-18	1300		1490		763	1590	1800	1160	1840
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21		10.6		6.17			7.2		12.2
MW-22		15.8		13.5			27		28.9
MW-23									
MW-24	64	124	70.6	100		197	210	159	452
PZ-01		103		132			100		48.4
PZ-02		118		125			110		116
Notes:	ND - Not detected ab	ove unknown MDL, I	J - Not detected abov	e known MDL, N	ot analyzed, NI - Not	installed at time of n	nonitoring, AB - Well v	was abandoned.	
	MW-01 through MW-	16 installed during Re	emedial Investigation	(Stearns & Wheler).					
	MW-03 removed as	part of TCE Soils Inte	rim Remedial Measure	e (IRM) completed in	September 1994. Da	ta was collected by St	earns & Wheler prior	to 07/22/94.	
	MW-04 and MW-20 v	vere abandoned and r	eplaced by MW-21 ar	nd MW-22 on 01/20/9	7.				
	Data provided only fo	or wells presently inclu	uded in either the ann	ual or semi-annual m	onitoring list of wells.				

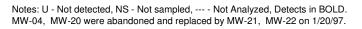
Table 3
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Trichloroethene Concentrations


Sample Date	April-09	November-09	April-10	November-10	May-11	November-11	May-12	November-12	April-13
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Location ID	Ö	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ü
MW-01									
MW-02									
MW-03	NI	NI	NI	NI	NI	NI		NI	
MW-04	NI	NI	NI	NI	NI	NI		NI	
MW-05		77.8		82		73.1		64.8	
MW-06		75.8		83.8		52.6		87.2	
MW-07									
MW-08									
MW-09		71.2		62		52.6		87.6	
MW-10	329	285	369	395	416	169	135	60.7	320
MW-11	260	452	379	406	255	926	891	1080	638
MW-12		16.5		19.5		21.9		17.6	
MW-13			208	262		278	234	307	196
MW-14		426		438		17.8		355	
MW-15		0.65		22.9		0.5 U		0.5 U	
MW-16		1.96		1.69		1.53		2.21	
MW-17		190		79.6		496		118	
MW-18	1160	1290	609	1300	1460	1190	1020	1820	942
MW-20	NI	NI	NI	NI	NI	NI		NI	
MW-21		12.3		6.1		6.76		27.4	
MW-22		19		19.4		23.6		19.1	
MW-23									
MW-24	118		193	331	62.1	246	162	1010	210
PZ-01		50.9		95		94.2		50.8	
PZ-02		101		100		96.6		111	
	MW-01 through MW MW-03 removed as MW-04 and MW-20	/-16 installed during s part of TCE Soils Ir were abandoned an	Remedial Investigat nterim Remedial Mea nd replaced by MW-2	tion (Stearns & Whelesure (IRM) complete 11 and MW-22 on 01	ler). ed in September 199	94. Data was collect	-	AB - Well was abando	

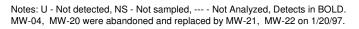
Sample Date	October-13	Apr-14	Sep-14	Mar-15	
Sample Date	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	
		ug/l			
Location ID	ug/l	ug/i	ug/l	ug/l	
MW-01					
MW-02					
MW-03					
MW-04					
	70				
MW-05	73		53		
MW-06	64		82		
MW-07					
MW-08					
MW-09	52		45		
MW-10	84	310	56	96	
MW-11	760	470	640	690	
MW-12	16		21		
MW-13	290	190	260	210	
MW-14	1600	210	300		
MW-15	0.69 J		1U		
MW-16	1.5		1.5		
MW-17	330		260		
MW-18	1700	650	1500	960	
MW-20					
MW-21	15		15		
MW-22	1.5		11		
MW-23					
MW-24	530	220	400	230	
PZ-01	90		77		
PZ-02	97		89		
Notes:	ND - Not detected at	ove unknown MDL,	U - Not detected above	ve known MDL, N	ot analyzed, NI - Not installed at time of monitoring, AB - Well was abandoned.
	MW-01 through MW-	16 installed during Re	emedial Investigation	(Stearns & Wheler).	-
	-	-	-	•	September 1994. Data was collected by Stearns & Wheler prior to 07/22/94.
		•		nd MW-22 on 01/20/9	
				nual or semi-annual m	
	p. 0 aca only it	proserialy inter		3. 30 0	

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-01	11/8/2001	1 U	1 U	1 U	1 U
MW-02	10/22/1996	1 U	1 U	1 U	1 U
MW-02	10/22/1997	1 U	1 U	1 U	1 U
MW-02	10/21/1998	1 U	1 U	1 U	1 U
MW-02 MW-02	10/19/1999	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
MW-02	11/9/2000 11/10/2001	1 U	1 U	1 U	1 U
MW-04	10/22/1996	12	1 U	1 U	1 U
MW-05	10/21/1996	10 U	10 U	10 U	10 U
MW-05	10/22/1997	10 U	10 U	10 U	10 U
MW-05	10/20/1998	10 U	10 U	10 U	10 U
MW-05	10/19/1999	10 U	10 U	10 U	10 U
MW-05	11/8/2000	5 U	5 U	5 U	5 U
MW-05	11/9/2001	5 U	5 U	5 U	5 U
MW-05	10/10/2002	5 U	5 U	5 U	5 U
MW-05	12/8/2003	5 U	5 U	5 U	5 U
MW-05	12/28/2004	2.5 U	2.7	2.5 U	2.5 U
MW-05	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-05	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/29/2007	0.5 U	2.5	0.5 U	0.5 U
MW-05	11/1/2008	1.52	1.95	0.5 U	0.5 U
MW-05	11/20/2009	1.15	2.25	0.5 U	0.5 U
MW-05	11/17/2010	2.5 U	2.5 U 2.5 U	2.5 U	2.5 U
MW-05	11/29/2011	2.5 U		2.5 U	2.5 U
MW-05 MW-05	11/28/2012 10/1/2013	2.5 U 1.3	2.5 2.5	2.5 U 1 U	2.5 U 1 U
MW-05	9/18/2014	1.3 1 U	1.9	1 U	1 U
MW-06	1/17/1996		5 U	5 U	
MW-06	4/10/1996		5 U	5 U	
MW-06	7/16/1996	5 U	5 U	5 U	5 U
MW-06	10/22/1996	2 U	2 U	2 U	2 U
MW-06	1/16/1997	1 U	1 Ü	1 U	1 Ü
MW-06	4/15/1997	1 U	1 U	1 U	1 U
MW-06	10/23/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1998	5 U	5 U	5 U	5 U
MW-06	10/20/1998	2 U	2 U	2 U	2 U
MW-06	4/29/1999	2 U	2 U	2 U	2 U
MW-06	10/19/1999	2 U	2 U	2 U	2 U
MW-06	4/6/2000	1 U	1 U	1 U	1 U
MW-06	11/8/2000	1 U	1 U	1 U	1 U
MW-06	7/3/2001	2 U	2 U	2 U	2 U
MW-06	11/9/2001	2 U	2 U	2 U	2 U
MW-06	10/10/2002	2 U	2 U	2 U	2 U
MW-06 MW-06	12/8/2003 1/2/2007	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U
MW-06	11/29/2007	0.65	0.5 U	0.5 U	2.5 U
MW-06	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/23/2010	1 U	1 U	1 U	1 U
MW-06	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	11/28/2012	1.25 U	1.25 U	1.25 U	1.25 U
MW-06	10/1/2013	1 U	1 U	1 U	1 U
MW-06	9/18/2014	1U	1 U	1 U	1 U
MW-07	10/21/1996	1 U	1 U	1 U	1 U
MW-07	10/22/1997	1 U	1 U	1 U	1 U
MW-07	10/20/1998	1 U	1 U	1 U	1 U
MW-07	10/19/1999	1 U	1 U	1 U	1 U
MW-07	11/9/2001	1 U	1 U	1 U	1 U
MW-08	10/22/1996	1 U	1 U	1 U	1 U
MW-08	10/21/1998	1 U	1 U	1 U	1 U
MW-08	10/19/1999	1 U	1 U	1 U	1 U
MW-08 MW-08	11/7/2000 11/8/2001	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
MW-08	1/8/2001	1 U 	1 U 5 U	5 U	
MW-09	4/10/1996		1 U	1 U	
MW-09	7/16/1996	1 U	1 U	1 U	1 U
MW-09	10/21/1996	1 U	1 U	1 U	1 U
MW-09	1/16/1997	5 U	5 U	5 U	5 U
MW-09	4/15/1997	2 U	2 U	2 U	2 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-09	7/8/1997	5 U	5 U	5 U	5 U
MW-09	10/22/1997	5 U	5 U	5 U	5 U
MW-09	1/29/1998	5 U	5 U	5 U	5 U
MW-09	4/15/1998	5 U	5 U	5 U	5 U
MW-09	10/20/1998	2 U	2 U	2 U	2 U
MW-09	4/29/1999	2 U	2 U	2 U	2 U
MW-09	10/19/1999	5 U	5 U	5 U	5 U
MW-09	4/6/2000	2 U	2 U	2 U	2 U
MW-09	11/8/2000	2 U	2 U	2 U	2 U
MW-09	7/3/2001	2 U	2 U	2 U	2 U
MW-09	11/10/2001	2 U	2 U	2 U	2 U
MW-09	10/11/2002	2 U	2 U	2 U	2 U
MW-09	12/8/2003	2 U	2 U	2 U	2 U
MW-09	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-09	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/28/2012	1.25 U	1.25 U	1.25 U	1.25 U
MW-09	10/1/2013	1 U	1 U	1 U	1 U
MW-09	9/18/2014	1 U	1 U	1 U	1 U
MW-10	1/17/1996		20 U	20 U	
MW-10	4/10/1996		50 U	50 U	
MW-10	7/16/1996	50 U	50 U	50 U	50 U
MW-10	10/22/1996	50 U	50 U	50 U	50 U
MW-10	1/16/1997	100 U	100 U	100 U	100 U
MW-10	4/16/1997	100 U	100 U	100 U	100 U
MW-10	10/23/1997	50 U	50 U	50 U	50 U
MW-10	4/15/1998	50 U	50 U	50 U	50 U
MW-10	10/21/1998	50 U	50 U	50 U	50 U
MW-10	4/29/1999	25 U	25 U	25 U	25 U
MW-10	10/20/1999	25 U	25 U	25 U	25 U
MW-10	4/6/2000	20 U	20 U	20 U	20 U
MW-10	11/8/2000	20 U	20 U	20 U	20 U
MW-10	7/3/2001	20 U	20 U	20 U	20 U
MW-10	11/10/2001	20 U	20 U	20 U	20 U
MW-10	4/3/2002	20 U	20 U	20 U	20 U
MW-10	10/10/2002	20 U	20 U	20 U	20 U
MW-10	5/1/2003	20 U	20 U	20 U	20 U
MW-10	12/8/2003	20 U	20 U	20 U	20 U
MW-10	7/19/2004	10 U	10 U	10 U	10 U
MW-10	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-10	4/21/2006	10 U	10 U	10 U	10 U
MW-10	2/7/2007	10 U	10 U	10 U	10 U
MW-10	5/31/2007	10 U	10 U	10 U	10 U
MW-10	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	11/1/2008	5 U	5 U	5 U	5 U
MW-10	4/22/2009	10 U	10 U	10 U	10 U
MW-10	11/20/2009	10 U	10 U	10 U	10 U
MW-10	4/30/2010	10 U	10 U	10 U	10 U
MW-10	11/17/2010	10 U	10 U	10 U	10 U
MW-10	5/12/2011	10 U	10 U	10 U	10 U
MW-10	11/29/2011	10 U	10 U	10 U	10 U
MW-10	5/22/2012	5 U	5 U	5 U	5 U
MW-10	11/28/2012	1 U	1 U	1 U	1 U
MW-10	4/18/2013	25 U	25 U	25 U	25 U
MW-10	10/1/2013	1 U	1 U	1 U	1 U
MW-10	4/16/2014	1 U	1 U	1 U	1 U
MW-10	9/18/2014	1 U	1 U	1 U	1 U
MW-10	3/31/2015	1 U	1 U	1 U	1 U
MW-11	1/17/1996		100 U	100 U	
MW-11	4/10/1996		100 U	100 U	
MW-11	7/16/1996	100 U	100 U	100 U	100 U
MW-11	10/22/1996	100 U	100 U	100 U	100 U
MW-11	1/16/1997	100 U	100 U	100 U	100 U
MW-11	4/15/1997	50 U	50 U	50 U	50 U
иW-11	10/23/1997	50 U	50 U	50 U	50 U
MW-11	4/15/1998	50 U	50 U	50 U	50 U
MW-11	10/21/1998	50 U	50 U	50 U	50 U
MW-11	4/29/1999	50 U	50 U	50 U	50 U
MW-11	10/19/1999	25 U	25 U	25 U	25 U


	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-11	4/6/2000	20 U	20 U	20 U	20 U
MW-11	11/9/2000	20 U	20 U	20 U	20 U
MW-11	7/3/2001	20 U	20 U	20 U	20 U
MW-11	11/9/2001	20 U	20 U	20 U	20 U
MW-11	4/3/2002	20 U	20 U	20 U	20 U
MW-11	10/10/2002	20 U	20 U	20 U	20 U
MW-11	5/1/2003	20 U	20 U	20 U	20 U
MW-11	12/8/2003	50 U	50 U	50 U	50 U
VIW-11	7/19/2004	10 U	10 U	10 U	10 U
MW-11		1.1	0.50 J	0.50 U	0.50 U
MW-11	4/8/2005	1.1 10 U			
	4/21/2006		10 U	10 U	10 U
MW-11	2/7/2007	5 U	5 U	5 U	5 U
MW-11	5/31/2007	5 U	5 U	5 U	5 U
MW-11	11/29/2007	1.2	0.5 U	0.5 U	0.5 U
MW-11	5/1/2008	0.65	0.5 U	0.5 U	0.5 U
MW-11	11/1/2008	10 U	10 U	10 U	10 U
MW-11	4/22/2009	10 U	10 U	10 U	10 U
MW-11	11/20/2009	10 U	10 U	10 U	10 U
MW-11	4/30/2010	10 U	10 U	10 U	10 U
MW-11	11/17/2010	10 U	10 U	10 U	10 U
MW-11	5/21/2011	10 U	10 U	10 U	10 U
MW-11	11/29/2011	10 U	10 U	10 U	10 U
MW-11	5/22/2012	25 U	25 U	25 U	25 U
MW-11	11/28/2012	25 U	25 U	25 U	25 U
MW-11	4/18/2013	25 U	25 U	25 U	25 U
MW-11	10/1/2013	1.1	1 U	1 U	1 U
MW-11	4/16/2014	1	1 U	1 U	1 U
MW-11	9/18/2014	5 U	5 U	5 U	5 U
MW-11	3/31/2015	5 U	5 U	5 U	5 U
MW-12	10/21/1996	1 U	1 U	1 U	1 U
MW-12	10/22/1997	1 U	1 U	1 U	1 U
MW-12	10/20/1998	1 U	1 U	1 U	1 U
MW-12		1 U	1 U	1 U	1 U
	10/19/1999				
MW-12	11/8/2000	10	1 U	1 U	1 U
MW-12	11/9/2001	1 U	1 U	1 U	1 U
MW-12	10/10/2002	1 U	1 U	2	1 U
MW-12	12/8/2003	1 U	1 U	1 U	1 U
MW-12	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-12	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-12	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	5/31/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	10/1/2013	1 U	1 U	1 U	1 U
MW-12	9/18/2014	1 U	1 U	1 U	1 U
MW-13	10/24/1996	10 U	10 U	10 U	10 U
MW-13	10/23/1997	50 U	50 U	50 U	50 U
MW-13	10/21/1998	25 U	25 U	25 U	25 U
MW-13	10/20/1999	20 U	20 U	20 U	20 U
MW-13	11/9/2000	20 U	20 U	20 U	20 U
MW-13	11/8/2001	20 U	20 U	20 U	20 U
MW-13 MW-13	6/11/2002	20 U	20 U	20 U	20 U
	10/11/2002	20 U	20 U	20 U	20 U
MW-13	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-13	4/21/2006	5 U	5 U	5 U	5 U
MW-13	2/7/2007	5 U	5 U	5 U	5 U
MW-13	5/31/2007	5 U	5 U	5 U	5 U
MW-13	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	11/1/2008	NS	NS	NS	NS
MW-13	4/30/2010	5 U	5 U	5 U	5 U
MW-13	11/17/2010	5 U	5 U	5 U	5 U
MW-13	11/29/2011	5 U	5 U	5 U	5 U
MW-13	5/22/2012	5 U	5 U	5 U	5 U
MW-13	11/28/2012	5 U	5 U	5 U	5 U
MW-13	4/18/2013	5 U	5 U	5 U	5 U
MW-13	10/1/2013	1 U	1 U	1 U	1 U
MW-13	4/16/2014	1 U	1 U	1 U	1 U
MW-13		4 U	4 U	4 U	4 U
	9/18/2014				
MW-13	3/31/2015	4 U	4 U	4 U	4 U
MW-14	1/17/1996		5 U	5 U	
ИW-14	4/10/1996		5 U	5 U	
MW-14	7/16/1996	10 U	10 U	10 U	10 U

		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-14	10/22/1996	5 U	5 U	5 U	5 U
MW-14	1/16/1997	10 U	10 U	10 U	10 U
MW-14	4/16/1997	10 U	10 U	10 U	10 U
MW-14	7/8/1997	10 U	10 U	10 U	10 U
MW-14	10/23/1997	10 U	10 U	10 U	10 U
MW-14	1/29/1998	10 U	10 U	10 U	10 U
MW-14	4/15/1998	10 U	10 U	10 U	10 U
MW-14	10/21/1998	10 U	10 U	10 U	10 U
MW-14	4/29/1999	10 U	10 U	10 U	10 U
MW-14	10/20/1999	10 U	10 U	10 U	10 U
MW-14	4/6/2000	5 U	5 U	5 U	5 U
MW-14	11/8/2000	5 U	5 U	5 U	5 U
MW-14	7/3/2001	5 U	5 U	5 U	5 U
MW-14	11/8/2001	5 U	5 U	5 U	5 U
MW-14	10/11/2002	5 U	5 U	5 U	5 U
MW-14	5/1/2003	5 U	5 U	5 U	5 U
MW-14	12/8/2003	10 U	10 U	10 U	10 U
MW-14	12/28/2004	5.0 U	5.0 U	5.0 U	5.0 U
MW-14	11/9/2005	5.00 U	5.00 U	5.00 U	5.00 U
MW-14	1/2/2007	5 U	5 U	5 U	5 U
MW-14	11/29/2007	0.94	0.5 U	0.5 U	0.5 U
MW-14	11/1/2008	1	0.5 U	0.5 U	0.5 U
MW-14	11/20/2009	12.5 U	12.5 U	12.5 U	12.5 U
MW-14	11/17/2010	10 U	10 U	10 U	10 U
MW-14	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-14	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
MW-14	10/1/2013	200	0.49 J	1 U	0.93 J
MW-14	9/18/2014	4 U	4 U	4 U	4 U
MW-15	10/22/1996	1 U	1 U	1 U	1 U
MW-15	10/22/1997	1 U	1 U	1 U	1 U
MW-15	10/21/1998	1 U	1 U	1 U	1 U
MW-15	10/19/1999	1 U	1 U	1 U	1 U
MW-15	11/9/2000	1 U	1 U	1 U	1 U
MW-15	11/8/2001	1 U	1 U	1 U	1 U
MW-15	10/11/2002	1 U	1 U	1 U	1 U
MW-15	12/8/2003	1 U	1 U	1 U	1 U
MW-15	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-15	11/9/2005	2.19	0.50 U	0.50 U	0.50 U
MW-15	1/2/2007	1.8	0.5 U	0.5 U	0.5 U
MW-15	11/29/2007	1.7	0.5 U	0.5 U	0.5 U
MW-15	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/20/2009	0.71	0.5 U	0.5 U	0.5 U
MW-15	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	10/1/2013	1 U	1 U	1 U	1 U
MW-15	9/18/2014	1 U	1 U	1 U	1 U
MW-16	10/22/1996	1 U	1 U	1 U	1 U
MW-16	10/22/1997	1 U	1 U	1 U	1 U
MW-16	10/21/1998	1 U	1 U	1 U	1 U
MW-16	10/19/1999	1 U	1 U	1 U	1 U
MW-16	11/9/2000	1 U	1 U	1 U	1 U
MW-16	11/8/2001	1 U	1 U	1 U	1 U
MW-16	10/11/2002	1 U	1 U	1 U	1 U
MW-16		1 U	1 U	1 U	1 U
	12/8/2003				
MW-16	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-16	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-16	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-16					
MW-16	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	10/1/2013	1 U	1 U	1 U	1 U
MW-16	9/18/2014	1 U	1 U	1 U	1 U
MW-17	1/17/1996		5 U	5 U	
MW-17	4/10/1996		20	5 U	
MW-17	7/16/1996	10 U	10 U	10 U	10 U
MW-17	10/22/1996	7	12	5 U	5 U
MW-17	1/16/1997	10 U	22	10 U	10 U



		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-17	4/15/1997	10 U	15	10 U	10 U
MW-17	7/8/1997	10 U	18	10 U	10 U
MW-17	1/29/1998	10 U	12	10 U	10 U
MW-17	4/15/1998	50 U	50 U	50 U	50 U
MW-17	10/20/1998	10 U	17	10 U	10 U
MW-17	4/29/1999	10 U	23	10 U	10 U
MW-17	10/19/1999	10 U	10 U	10 U	10 U
MW-17	4/6/2000	10 U	10 U	10 U	10 U
MW-17	11/9/2000	15	7	5 U	5 U
MW-17	7/3/2001	10	7	5 U	5 U
MW-17	11/10/2001	10	8	5 U	5 U
MW-17	10/11/2002	22	5 U	5 U	5 U
MW-17	12/8/2003	10 U	10 U	10 U	10 U
MW-17	12/28/2004	5.1	11	5.0 U	5.0 U
MW-17	11/9/2005	17.9	9.5	2.50 U	2.50 U
MW-17	1/2/2007	9.45	10.2	2.5 U	2.5 U
MW-17	11/29/2007	22	6.9	0.5 U	0.5 U
MW-17	11/1/2008	21.7	5.06	0.5 U	0.5 U
MW-17	11/20/2009	11.6	6.1	5 U	5 U
MW-17	11/17/2010	2.4	6.18	1.25 U	1.25 U
MW-17	11/29/2011	20.2	19.7	5 U	1.25 U
MW-17	11/28/2012	10.7	5.25	2.5 U	2.5 U
MW-17	10/1/2013	31	8.1	1 U	1 U
MW-17	9/18/2014	24	4.9J	5 U	5 U
MW-18	5/29/1996	50 U	50 U	50 U	50 U
MW-18	10/22/1996	81	50 U	50 U	50 U
MW-18	1/16/1997	100 U	100 U	100 U	100 U
MW-18	4/16/1997	10 U	10 U	10 U	10 U
MW-18	7/8/1997	66	50 U	50 U	50 U
MW-18	10/23/1997	100 U	100 U	100 U	100 U
MW-18	1/29/1998	50 U	50 U	50 U	50 U
MW-18	4/16/1998	50 U	50 U	50 U	50 U
MW-18	10/21/1998	160	100 U	100 U	100 U
MW-18	4/29/1999	37	25 U	25 U	25 U
MW-18	10/19/1999	100 U	100 U	100 U	100 U
MW-18	4/6/2000	14	10 U	10 U	10 U
MW-18	11/9/2000	100	50 U	50 U	50 U
MW-18	7/3/2001	50 U	50 U	50 U	50 U
MW-18	11/10/2001	120	50 U	50 U	50 U
MW-18	4/4/2002	10 U	10 U	10 U	10 U
MW-18	10/15/2002	310	50 U	50 U	50 U
MW-18	5/1/2003	130	50 U	50 U	50 U
MW-18	12/8/2003	100 U	100 U	100 U	100 U
MW-18					
	7/19/2004	140	50 U	50 U	50 U
MW-18	4/8/2005	120	0.51	0.50 U	0.86
MW-18	4/21/2006	127	25 U	25 U	25 U
MW-18	2/7/2007	68.5	12.5 U	12.5 U	12.5 U
MW-18	5/31/2007	136	12.5 U	12.5 U	12.5 U
MW-18	11/29/2007	190	0.51	0.5 U	0.86
MW-18	5/1/2008	108	0.5 U	0.5 U	0.81
MW-18	11/1/2008	148	25 U	25 U	25 U
MW-18	04/22/2009	79.5	25 U	25 U	25 U
MW-18	11/20/2009	125	25 U	25 U	25 U
MW-18	04/30/2010	38.5	25 U	25 U	25 U
MW-18	11/17/2010	99	25 U	25 U	25 U
MW-18	5/21/2011	73.5	25 U	25 U	25 U
MW-18	11/29/2011	109	25 U	25 U	25 U
MW-18	5/22/2012	74	25 U	25 U	25 U
MW-18	11/28/2012	144	25 U	25 U	25 U
MW-18	4/18/2013	70.5	25 U	25 U	25 U
MW-18	10/1/2013	210	0.42 J	1 U	0.9 J
MW-18	4/16/2014	76	1 U	1.0 U	1 U
MW-18	9/18/2014	270	1 U	10 U	1 U
		v	. 0		

Location ID MW-20 MW-21	Sample Date 5/24/1996 1/21/1997 4/16/1997 7/8/1997 10/23/1997 1/29/1998 4/16/1998	ug/l 46 650 630 770	ug/l 1 U 100 U 50 U	1 U 100 U	ug/l 1 U 100 U
MW-21 MW-21 MW-21 MW-21 MW-21 MW-21 MW-21	1/21/1997 4/16/1997 7/8/1997 10/23/1997 1/29/1998 4/16/1998	650 630 770	100 U	100 U	
MW-21 MW-21 MW-21 MW-21 MW-21 MW-21	4/16/1997 7/8/1997 10/23/1997 1/29/1998 4/16/1998	630 770			100 U
MW-21 MW-21 MW-21 MW-21 MW-21	7/8/1997 10/23/1997 1/29/1998 4/16/1998	770	50 U		
MW-21 MW-21 MW-21 MW-21	10/23/1997 1/29/1998 4/16/1998			50 U	50 U
MW-21 MW-21 MW-21	1/29/1998 4/16/1998	000	50 U	50 U	50 U
MW-21 MW-21	4/16/1998	800	50 U	50 U	50 U
MW-21		350	10 U	10 U	10 U
		1400	50 U	50 U	50 U
MMM 21	10/21/1998	340	50 U	50 U	50 U
MW-21	4/29/1999	2100	100 U	100 U	100 U
MW-21	10/19/1999	670	20 U	20 U	20 U
MW-21	4/6/2000	140	5 U	5 U	5 U
MW-21	11/7/2000	220	5 U	5 U	5 U
MW-21	7/3/2001	130	5 U	5 U	5 U
MW-21	11/10/2001	240	5 U	5 U	5 U
MW-21	12/8/2003	32	1 U	1 U	1 U
MW-21	12/28/2004	2.8	0.50 U	0.50 U	0.50 U
MW-21	11/9/2005	20	0.50 U	0.50 U	0.50 U
MW-21	1/2/2007	15.4	0.5 U	0.5 U	0.5 U
MW-21	11/29/2007	25	0.5 U	0.5 U	0.5 U
MW-21	11/1/2008	45.2	0.5 U	0.5 U	0.5 U
MW-21	11/20/2009	40.7	1 U	1 U	1 U
MW-21	11/17/2010	22.6	1 U	1 U	1 U
MW-21	11/29/2011	18.8	0.5 U	0.5 U	0.5 U
MW-21	11/28/2012	71	2.5 U	2.5 U	2.5 U
MW-21	10/1/2013	28	1 U	1 U	1 U
MW-21	9/18/2014	30	1 U	1 U	1 U
MW-22	1/21/1997	5	1 U	1 U	1 U
MW-22	4/16/1997	4	1 U	1 U	1 U
MW-22	7/8/1997	9	1 U	1 U	1 U
MW-22	10/23/1997	22	1 U	1 U	1 U
MW-22	1/29/1998	11	1 U	1 U	1 U
MW-22	4/16/1998	22	1 U	1 U	1 U
MW-22	10/21/1998	35	1 U	1 U	1 U
MW-22	4/29/1999	24	1 U	1 U	1 U
MW-22	10/19/1999	28	1 U	1 U	1 U
MW-22	4/6/2000	26	1 U	1 U	1 U
MW-22	11/9/2000	29	1 U	1 U	1 U
MW-22	7/3/2001	37	1 U	1 U	1 U
MW-22	11/10/2001	36	1 U	1 U	1 U
MW-22	10/11/2002	51	1 U	1 U	1 U
MW-22	12/8/2003	52	2 U	2 U	2 U
MW-22	12/28/2004	47	1.0 U	1.0 U	1.1
MW-22	11/9/2005	56.3	1.00 U	1.00 U	1.00 U
MW-22	1/2/2007	38.4	1 U	1 U	1 U
MW-22	11/29/2007	37	0.5 U	0.5 U	0.77
MW-22	11/1/2008	31.2	0.5 U	0.5 U	0.92
MW-22	11/20/2009	30.6	1 U	1 U	1 U
MW-22	11/17/2010	30.5	1 U	1 U	1 U
MW-22	11/29/2011	33.4	0.5 U	0.5 U	1.16
MW-22	11/28/2012	37.2	1 U	1 U	1.24
MW-22	10/1/2013	48	1 U	1 U	2.4
MW-22	9/18/2014	53	1 U	1 U	5
MW-23	4/15/1997	1 U	1 U	1 U	1 U
MW-23	7/8/1997	1 U	1 U	1 U	1 U
MW-23	10/22/1997	1 U	1 U	1 U	1 U
MW-23	1/29/1998	1 U	1 U	1 U	1 U
MW-23	10/21/1998	1 U	1 U	1 U	1 U
MW-23	10/19/1999	1 U	1 U	1 U	1 U
MW-23	11/7/2000	1 U	1 U	1 U	1 U
MW-23	11/8/2001	1 U	1 U	1 U	1 U

Location ID	Chemical Name Sample Date	cis-1,2-Dichloroethene ug/l	Tetrachloroethene ug/l	Toluene ug/l	trans-1,2-Dichloroether ug/l
MW-24	11/9/1998	2600	200 U	200 U	200 U
MW-24	4/29/1999	1600	100 U	100 U	100 U
MW-24	10/19/1999	3000	100 U	100 U	100 U
ИW-24	4/6/2000	250	20 U	20 U	20 U
ИW-24	11/7/2000	1200	50 U	50 U	50 U
ИW-24	7/3/2001	400	50 U	50 U	50 U
ЛW-24	11/10/2001	2100	50 U	50 U	50 U
ЛW-24	6/11/2002	680	50 U	50 U	50 U
ЛW-24	5/1/2003	410	10 U	10 U	10 U
ЛW-24	12/8/2003	81	10 U	10 U	10 U
ЛW-24	7/19/2004	680	10 U	10 U	10 U
ЛW-24	12/28/2004	69	5.0 U	5.0 U	5.0 U
ЛW-24	4/8/2005	44	2.0 U	2.0 U	2.0 U
ЛW-24	11/9/2005	75.6	2.50 U	2.50 U	2.50 U
ЛW-24	4/21/2006	180	2.5 U	2.5 U	2.5 U
/W-24	1/2/2007	5.15	2.5 U	2.5 U	2.5 U
/W-24	5/31/2007	45.7	2.5 U	2.5 U	2.5 U
/W-24	11/29/2007	42	0.5 U	0.5 U	0.5 U
/W-24	5/1/2008	8.21	0.5 U	0.5 U	0.5 U
/W-24	11/1/2008	51.9	5 U	5 U	5 U
1W-24	04/22/2009	8.1	5 U	5 U	5 U
1W-24		11	2.5 U	2.5 U	2.5 U
	04/30/2010				
1W-24	11/17/2010	212	2.5 U	2.5 U	2.5 U
/W-24	5/21/2011	492	5 U	5 U	5 U
/W-24	11/29/2011	43.3	5 U	5 U	5 U
/IW-24	5/22/2012	36.9	5 U	5 U	5 U
ЛW-24	11/28/2012	111	25 U	25 U	25 U
/W-24	4/18/2013	43	25 U	25 U	25 U
/W-24	10/1/2013	150	1 U	1 U	1.9
1W-24	4/16/2014	89	1 U	1 U	1.2
1W-24	9/18/2014	110	5 U	5 U	5 U
1W-24	3/31/2015	14	5 U	5 U	5 U
Z-01		1 U	1 U	1 U	1 U
	10/21/1996				
PZ-01	10/23/1997	1 U	1 U	1 U	1 U
PZ-01	10/20/1998	2 U	2 U	2 U	2 U
PZ-01	10/19/1999	10 U	10 U	10 U	10 U
PZ-01	11/7/2000	1 U	1 U	1 U	1 U
PZ-01	11/9/2001	2 U	2 U	2 U	2 U
PZ-01	10/10/2002	2 U	2 U	2 U	2 U
PZ-01	12/8/2003	5 U	5 U	5 U	5 U
PZ-01	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
PZ-01	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
Z-01	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
Z-01	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
Z-01	11/17/2010	1 U	1 U	1 U	1 U
Z-01	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
Z-01	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
Z-01	10/1/2013	1 U	1 U	1 U	1 U
Z-01	9/18/2014	1 U	1 U	1 U	1 U
PZ-02	10/21/1996	10 U	10 U	10 U	10 U
Z-02	10/23/1997	10 U	10 U	10 U	10 U
Z-02	10/20/1998	10 U	10 U	10 U	10 U
Z-02	10/19/1999	1 U	1 U	1 U	1 U
Z-02	11/9/2000	5 U	5 U	5 U	5 U
Z-02	11/10/2001	5 U	5 U	5 U	5 U
Z-02	10/11/2002	5 U	5 U	5 U	5 U
Z-02	12/8/2003	5 U	5 U	5 U	5 U
Z-02	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U
Z-02	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
Z-02	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
Z-02	11/29/2007	1.1	0.51	0.5 U	0.5 U
Z-02	11/1/2008	1	0.5 U	0.5 U	0.5 U
Z-02	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
Z-02	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
Z-02	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
Z-02	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
Z-02	10//1/2013	1 U	0.57 J	1 U	1 U
PZ-02	9/18/2014	1 U	0.47 J	1 U	1 U

July 14, 2015

Mr. John C. Grathwol, P.E.

Remedial Bureau B – Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7016

RE: Former Accurate Die Casting Site, Fayetteville, NY

FILE: 3902.45845 Corres

Dear Mr. Grathwol:

This letter presents the status of groundwater treatment plant operations for the former Accurate Die Casting site in Fayetteville, New York for the second quarter of 2015 (April 1 through June 30). This information is provided as required by the Order on Consent (#A7-0318-94-10). Included are the results of the monitoring activities associated with the SPDES Fact Sheet for the groundwater treatment system.

OPERATION STATUS & ACTIVITIES COMPLETED

As of June 30, 2015, a total of 106,635,020 gallons of groundwater have been treated since startup on February 5, 1996. Since March 31, 2015, 930,570 gallons of groundwater have been treated: 213,290 gallons from recovery well RW-1; 716,760 gallons from recovery well RW-2; and 520 gallons from the collection trench constructed in the former VOC/PAH/PCB Soils Area. No groundwater was recovered from the sump located outside the northeast corner of the building.

O'Brien & Gere performed the sampling activities associated with the SPDES Fact Sheet (#734052). The analytical results associated with the SPDES Fact Sheet monitoring activities performed during April, May and June 2015 are summarized in Table 1. The effluent during the period complied with the SPDES discharge limits. The laboratory analytical data sheets are provided as Attachment A.

The carbon in granular activated carbon filter GAC#2 was replaced on June 23, 2015 and afterward filter GAC#1 was placed into lead service and GAC#2 placed into lag service.

ACTIVITIES SCHEDULED

Continue operation of the groundwater recovery and treatment system including SPDES monitoring.

Conduct the annual round of groundwater monitoring during September 2015 during which samples will be collected from monitoring wells MW-5, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15B, MW-16B, MW-17, MW-18, MW-21, MW-22, MW-24, PZ-1 and PZ-2.

f 315-463-7554

If you have any questions regarding this report, please do not hesitate to call me at (315) 956-6316.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Alfred R. Farrell, P.E.

Project Manager

I:\Obg-Lim.3902\45845.Itt-Acc-Die-O-A\Corres\2nd qtr2015Rpt.docx

cc: T. Blum – New York State Department of Environmental Conservation

T. Slutzky – The Anderson Company

Jeff Stanek – ITT Corporation L. Hall – ITT Corporation

J. Sutphen – O'Brien & Gere, Office of General Counsel

		Monitoring Ro	equirements											
Analyte (units)	Discharge Limitation	Discharge Limitation	Minimum Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	4/1/2015	4/3/2015	4/6/2015	4/7/2015	4/9/2015	4/10/2015	4/13/2015	4/14/2015	4/15/2015	4/16/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	7420	7630	8043	11215	8942	9360	9790	10180	10200	10290
pH (SU)	6.5-8.5		2/Week	Grab	7.4	7.42	7.42	8.28	7.42	7.45	7.38	7.42	7.38	7.42
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.			4 U						4 U	
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.			588						633	
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.			0.0002 U							
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.			0.002 JB							
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab			1 U							
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab			1 U							
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
Toluene (ug/L)	Monitor	20	2/Month	Grab			1 U							
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
	и				Notes:									
						NA - Data Not								
					U - Not Detecte		_		-		-	the blank and s	sample	
					(1) Minimum m	onitoring requir	rements based or	SPEDES permi	t modified Nove	ember, 21, 1997	-			

		Monitoring Re	equirements											
Analyse (units)	Discharge Limitation	Discharge Limitation	Minimum Measurement	Commis	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Analyte (units)		Daily Maximum	Frequency (1)	Sample Type	4/20/2015	4/22/2015	4/23/2015	4/25/2015	4/27/2015	4/28/2015	4/29/2015	5/1/2015	5/4/2015	5/6/2015
Flow (GPD)	Daily Average Monitor	150000	Continuous	Meter	10422	10545	10520	10530	10583	10610	10420	10600	10550	10568
pH (SU)	6.5-8.5		2/Week	Grab	7.44	7.38	7.42	7.44	7.44	7.4	7.4	7.42	7.42	7.42
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.			4 U			4 U				
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.			639 B			632				
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab			1 U							
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab			1 U							
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
Toluene (ug/L)	Monitor	20	2/Month	Grab			1 U							
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab			1 U							
					Notes:									
					-	ed, NA - Data I								
							_		-		mpound found ir	the blank and s	ample	
					(1) Minimum m	onitoring requir	ements based on	SPEDES permi	t modified Nove	ember, 21, 1997				

Analyte (units) Flow (GPD) pH (SU) Residue, non-filterable (mg/L)	Discharge Limitation Daily Average Monitor 6.5-8.5 Monitor	Discharge Limitation Daily Maximum 150000	Minimum Measurement Frequency (1)	Sample	Effluent									
pH (SU)	Monitor 6.5-8.5		riequency (1)	Trans	5/8/2015	Effluent 5/11/2015	Effluent 5/14/2015	Effluent 5/15/2015	Effluent 5/18/2015	Effluent 5/19/2015	Effluent 5/20/2015	Effluent 5/21/2015	Effluent 5/22/2015	Effluent 5/26/2015
pH (SU)	6.5-8.5	130000	Continuous	Type Meter	10578	10513	10537	10470	10543	10560	10550	10590	10470	10495
, , ,	Monitor		2/Week	Grab	7.43	7.42	7.43	7.4	7.42	7.46	7.42	7.4	7.43	7.42
		20	Weekly	3-hr comp.	4 UH		4 U		4 U					
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	616		650 B		657					
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U				1 U					
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U				1 U					
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab	1 U				1 U					
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab	1 U				1 U					
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U				1 U					
Toluene (ug/L)	Monitor	20	2/Month	Grab	1 U				1 U					
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U				1 U					
					Notes: Not analyz	ed, NA - Data N	Vot available							
						ed, J - Estimated, nonitoring requir	_		-		-	the blank and s	ample	

		Monitoring Ro	equirements											
Analyte (units)	Discharge Limitation	Discharge Limitation	Minimum Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Flow (GPD)	Daily Average	Daily Maximum	Frequency (1)	Type Meter	5/29/2015 10500	6/1/2015	6/2/2015 10510	6/3/2015 10510	6/4/2015 10390	6/5/2015 10350	6/8/2015 10447	6/9/2015 10360	6/10/2015 10430	6/11/2015 10420
pH (SU)	Monitor 6.5-8.5	150000	Continuous 2/Week	Grab	7.43	7.51	7.43	7.42	7.43	7.42	7.47	7.44	7.43	7.51
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.					4 U		4 U			
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	680 B				638		690			
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.		***								
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab					1 U					
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab					1 U					
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab					1 U					
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab					1 U					
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab					1 U					
Toluene (ug/L)	Monitor	20	2/Month	Grab					1 U					
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab					1 U					
					Notes:	J. MA. D.: 3	T-+ 11-1-1							
						ed, NA - Data N				1-1 D C		4-11-1-	1.	
					U - Not Detecte		_		-		-	i the blank and	sample	
					(1) Minimum m	onitoring requir	ements based or	1 SPEDES perm	it modified Nove	ember, 21, 1997				

		Monitoring Re	equirements											
Analyte (units)	Discharge Limitation	Discharge Limitation	Minimum Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
rilarye (ulits)	Daily Average	Daily Maximum	Frequency (1)	Туре	6/15/2015	6/16/2015	6/18/2015	6/19/2015	6/22/2015	6/23/2015	6/26/2015	6/29/2015	6/30/2015	7/1/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	10410	10580	10450	10540	10547	10530	10538	10502	10470	10570
pH (SU)	6.5-8.5		2/Week	Grab	7.49	7.51	7.48	7.47	7.51	7.6	7.75	7.63	7.58	7.61
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.		4 U			4 U					
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.		287			727 B					
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1 U								
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab		1 U								
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								
Toluene (ug/L)	Monitor	20	2/Month	Grab		1 U								
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								
	-				Notes:									
					Not analyz	ed, NA - Data N	lot available							
					U - Not Detecte	d, J - Estimated,	H - Holding times	for preparation of	or analyses exceed	ded, B - Compour	nd found in the bl	ank and sample		
							ements based on S					•		

I:\Obg-Lim.3902\45845.Itt-Acc-Die-O-A\Docs\2Q15\2Q15_Table_1_Effluent_Data.xls

October 9, 2015

Mr. John C. Grathwol, P.E.

Remedial Bureau B – Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7016

RE: Former Accurate Die Casting Site, Fayetteville, NY

FILE: 3902.45845 Corres

Dear Mr. Grathwol:

This letter presents the status of groundwater treatment plant operations for the former Accurate Die Casting site in Fayetteville, New York for the third quarter of 2015 (July 1 through October 1). This information is provided as required by the Order on Consent (#A7-0318-94-10). Included are the results of the monitoring activities associated with the SPDES Fact Sheet for the groundwater treatment system.

OPERATION STATUS & ACTIVITIES COMPLETED

As of October 1, 2015, a total of 107,529,420 gallons of groundwater have been treated since startup on February 5, 1996. Since June 30, 2015, 894,400 gallons of groundwater have been treated: 199,370 gallons from recovery well RW-1; 694,850 gallons from recovery well RW-2; and 180 gallons from the collection trench constructed in the former VOC/PAH/PCB Soils Area. No groundwater was recovered from the sump located outside the northeast corner of the building.

OBG performed the sampling activities associated with the SPDES Fact Sheet (#734052). The analytical results associated with the SPDES Fact Sheet monitoring activities performed during July, August and September 2015 are summarized in Table 1. The effluent during the period complied with the SPDES discharge limits. The laboratory analytical data sheets are provided as Attachment A.

Also, OBG conducted the annual round of groundwater monitoring on September 16, 2015 during which samples were collected from monitoring wells MW-5, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15B, MW-16B, MW-17, MW-18, MW-21, MW-22, MW-24, PZ-1 and PZ-2. Groundwater levels measured are presented on Table 2. The laboratory results are summarized in Tables 3 and 4, and the data sheets are provided as Attachment B.

ACTIVITIES SCHEDULED

Continue operation of the groundwater recovery and treatment system including SPDES monitoring.

If you have any questions regarding this report, please do not hesitate to call me at (315) 956-6316.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Alfred R. Farrell, P.E.

Project Manager

I:\Obg-Lim.3902\45845.Itt-Acc-Die-O-A\Corres\3rd qtr2015Rpt.doc

cc: T. Blum – New York State Department of Environmental Conservation

T. Slutzky – The Anderson Company

Jeff Stanek – ITT Corporation L. Hall – ITT Corporation

J. Sutphen – O'Brien & Gere, Office of General Counsel

		Monitoring Re	equirements											
	Discharge	Discharge	Minimum											
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	7/2/2015	7/6/2015	7/7/2015	7/10/2015	7/13/2015	7/14/2015	7/21/2015	7/27/2015	7/28/2015	7/29/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	10510	10560	10600	10540	10557	10550	10533	10425	10420	10490
pH (SU)	6.5-8.5		2/Week	Grab	7.58	7.54	7.51	7.51	7.67	7.51	7.58	7.54	7.52	7.52
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.		4 U				4 U	4 U		4 U	
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.		652				627	658		649	
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.		0.0002 U								
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.		0.0051 JB								
zinc, total (mg/z)	- Monitor	0.0	Quarterry	5 in comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U					1 U			
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U					1 U			
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1 U					1 U			
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab										
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U					1 U			
Toluene (ug/L)	Monitor	20	2/Month	Grab		1 U					1 U			
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U					1 U			
					Notes:									
					- Not analyzed	, NA - Data No	available							
					U - Not Detect	ed, J - Estimated	l, H - Holding ti	imes for prepara	tion or analyses	exceeded, B - 0	Compound found	l in the blank an	d sample	
					(1) Minimum r	nonitoring requi	rements based of	on SPEDES per	mit modified No	vember, 21, 19	97.			

		Monitoring Re	equirements											
	Discharge	Discharge	Minimum											
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	7/31/2015	8/3/2015	8/4/2015	8/6/2015	8/7/2015	8/10/2015	8/11/2015	8/12/2015	8/14/2015	8/17/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	10340	10417	10310	10350	10340	10267	10195	10268	10134	10087
pH (SU)	6.5-8.5		2/Week	Grab	7.5	7.56	7.52	7.54	7.52	7.54	7.54	7.5	7.54	7.52
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.		4 U				4 U				4 U
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.		661				665				696 B
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								1 U
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								1 U
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1 U								0.52 J
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab										
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								1 U
Toluene (ug/L)	Monitor	20	2/Month	Grab		1 U								1 U
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1 U								1 U
	ш				Notes:									
					Not analyz	ed, NA - Data	Not available							
					U - Not Detecte	ed, J - Estimated	l, H - Holding ti	mes for prepara	tion or analyses	exceeded, B - C	Compound found	in the blank and	d sample	
					(1) Minimum n	onitoring requi	rements based of	n SPEDES peri	nit modified No	ovember, 21, 199	97.			

		Monitoring Re	quirements											
	Discharge	Discharge	Minimum											
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	8/18/2015	8/20/2015	8/27/2015	8/28/2015	8/31/2015	9/1/2015	9/2/2015	9/3/2015	9/8/2015	9/10/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	10000	10040	9866	9640	9403	9390	9140	9150	8862	8595
pH (SU)	6.5-8.5		2/Week	Grab	7.56	7.54	7.72	7.68	7.58	7.58	7.58	7.59	7.56	7.59
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.			4 U		4 U					
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.			681		695 B					
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab										
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab										
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab										
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab										
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab										
Toluene (ug/L)	Monitor	20	2/Month	Grab										
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab										
					Notes:									
					Not analyz	ed, NA - Data	Not available							
					U - Not Detecte	ed, J - Estimated	l, H - Holding ti	mes for prepara	tion or analyses	exceeded, B - C	Compound found	in the blank an	d sample	
					(1) Minimum n	nonitoring requi	rements based of	on SPEDES peri	nit modified No	vember, 21, 19	97.			

		Monitoring Re	quirements											
	Discharge	Discharge	Minimum		1									
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Type	9/11/2015	9/14/2015	9/15/2015	9/16/2015	9/17/2015	9/18/2015	9/25/2015	9/28/2015	9/29/2015	9/30/2015
Flow (GPD)	Monitor	150000	Continuous	Meter	8570	8383	8210	8180	8160	8293	7868	7670	7540	7610
pH (SU)	6.5-8.5		2/Week	Grab	7.56	7.62	7.56	7.56	7.58	7.58	7.6	7.61	7.6	7.61
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.	4 U			4 U			4 U	5.2		
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	739			646			676	701		
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.										
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.										
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U						1 U			
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U						1 U			
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab	1 U						1 U			
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab	1 U						1 U			
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U						1 U			
Toluene (ug/L)	Monitor	20	2/Month	Grab	1 U						1 U			
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab	1 U						1 U			
Themoroeutene (ug/L)	Wonto	10	2/MOIIII	Giab										
	Ш				Notes:									
					Not analya	zed, NA - Data N	lot available							
					U - Not Detect	ed, J - Estimated,	H - Holding tim	es for preparatio	on or analyses exc	eeded, B - Comp	oound found in th	e blank and samp	ole	ļ
					(1) Minimum r	nonitoring requir	ements based on	SPEDES permi	t modified Noven	ber, 21, 1997.				

		Monitoring Re	equirements		
	Discharge	Discharge	Minimum		
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent
Analyte (units)					10/1/2015
Flow (GPD)	Daily Average Monitor	Daily Maximum 150000	Frequency (1) Continuous	Type Meter	7720
pH (SU)	6.5-8.5	130000	2/Week	Grab	7.62
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.	***
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	***
, , , ,			•	•	
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.	
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.	***
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab	
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab	***
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab	
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab	
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab	***
Toluene (ug/L)	Monitor	20	2/Month	Grab	***
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab	***
(-g)					
					N. de
					Notes: Not analyzed, NA - Data Not available
					 Not analyzed, NA - Data Not available U - Not Detected, J - Estimated, H - Holding times for preparation or analyses exceeded, B - Compound found in the blank and sample
					(1) Minimum monitoring requirements based on SPEDES permit modified November, 21, 1997.

	Ground	Well Casing	Screen Interval	Groundwater Elevation (ft)							
Well ID	Elevation (ft)	` '	Elevation (ft)	5/28/1992	6/26/1992	8/7/1992	9/26/1994	9/27/1994	10/18/1994	11/2/1994	11/17/1994
MW-01	99.36	101.11	75.4 - 85.4	DRY	DRY	79.69			DRY		
MW-02	91.8	94.68	76.6 - 86.6	83.21	82.81	84.32	83.1	83.28	80.12		
MW-03	97.65	99.63	73.7 - 83.7	80.44		81.63					
MW-04	65.62	68.52	46.6 - 56.6	51.08	49.95	50.81	47.22	52.21	46.79		
MW-05	88.21	90.42	49.2 - 59.2	60.71	63.76	61.22	59.87	59.91	59.45		
MW-06	77.46	79.38	46.4 - 56.4	60.5	60.49	60.46	59.51	59.52	59.05		
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.59	54.55	54.47	53.9	53.97	53.55		
MW-08	88.21	91.78	53.9 - 63.9	66.38	66.38	66.83	61.59	61.65	60.99		
MW-09	102.44	104.03	49.7 - 59.7	60.46	60.51	61.83	59.57	59.59	59.08		
MW-10 (B)	97.51	97.27	43 - 53	61.15	61.99	61.69			56.02	55.07	55.19
MW-11 (B)	91.48	93.8	43.1 - 53.1	62.34	63.7	63.66	58.41	58.39	57.47		56.68
MW-12	93.62	94.14	51.9 - 61.9	62.24	60.74	62.77	59.77	59.79	59.31		
MW-13	98.8	98.7	77.7 - 87.7	DRY	80.62	80.92			78.7	82.92	78.21
MW-14	98.76	100.62	74.6 - 84.6	75.11	79.07	81.54			86.18	80.12	80.54
MW-15 (B)	96.1	98.9	32.7 - 42.7						53.47		
MW-16 (B)	98.5	100.85	50.8 - 60.8						61.67		
MW-17	66.9	69.24	53.7 - 63.7				54.61	54.61	54.08		
MW-18	76.5	78.29	61.5 - 71.5								
MW-19	69.5	71.27	46.5 - 56.5								
MW-20	70.98	73.34	51.9 - 61.9								
MW-21	69.9	71.87	59.5 - 64.5								
MW-22	71.5	73.34	60.9 - 65.9								
MW-23 (B)	89.8	91.72	17.3 - 22.3								
MW-24*			-								
PZ-01	81.8	83.95	49.8 - 59.8				59.56	59.57	59.1		
PZ-02	80.6	83.06	42.8 - 52.8				59.35	59.36	58.89		
RW-01	78.4	80.28	.4 - 39.4, 45.4 - 50				56.88	56.89	58.22		
RW-02 (B)	91.58	95.18	-								
SUMP		97.93	-							76.04	74.83

Notes:

Well ID	Groundwater Elevation (ft) 11/30/1994	Groundwater Elevation (ft) 12/15/1994	Groundwater Elevation (ft) 12/27/1994	Groundwater Elevation (ft) 1/13/1995	Groundwater Elevation (ft) 1/25/1995	Groundwater Elevation (ft) 2/9/1995	Groundwater Elevation (ft) 2/23/1995	Groundwater Elevation (ft) 3/9/1995	Groundwater Elevation (ft) 4/26/1995	Groundwater Elevation (ft) 7/25/1995
MW-01									DRY	DRY
MW-02									83.28	82.42
MW-03										
MW-04									51.44	45.94
MW-05									60.34	58.78
MW-06										58.52
MW-07 (B)									54.51	53.27
MW-08									63.41	59.82
MW-09									60.1	58.56
MW-10 (B)	54.94	55.19	55.02	54.94	54.95	54.52	54.36	55.02	57.49	54.6
MW-11 (B)	55.59	56.63	56.55	55.63	55.63	56.13	55.63	56.55	58.86	55.72
MW-12									60.3	58.76
MW-13	78.21	80.92	78.34	78.25	77.83	77.84	77.75	77.67	DRY	DRY
MW-14	80.54	80.2	80.54	80.62	80.45	78.95	79.54	80.12	80.61	80.61
MW-15 (B)									54.71	51.6
MW-16 (B)									63.86	59.41
MW-17									59.02	57.71
MW-18										
MW-19										
MW-20										
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01										58.58
PZ-02									59.88	58.37
RW-01									59.14	57.6
RW-02 (B)										
SUMP	75	75.17	74.83	75	75	74.88	75	78	75.09	75.25

Notes:

Well ID	Groundwater Elevation (ft) 10/17/1995	Groundwater Elevation (ft) 2/5/1996	Groundwater Elevation (ft) 2/7/1996	Groundwater Elevation (ft) 2/15/1996	Groundwater Elevation (ft) 2/16/1996	Groundwater Elevation (ft) 2/20/1996	Groundwater Elevation (ft) 2/22/1996	Groundwater Elevation (ft) 2/29/1996	Groundwater Elevation (ft) 3/7/1996	Groundwater Elevation (ft) 3/21/1996
MW-01	DRY	77.06	76.64	75.3	DRY	DRY	DRY	75.36	75.17	77.34
MW-02	84.22	84.04	83.87	83.41	83.34	83.15	83.32	83.67	83.5	84.24
MW-03										
MW-04		53.6	52.06	55.39	54.43	52.46	60.37	58.14	55.1	59.26
MW-05		61.26		60.8	60.73	60.5	60.4	60.14	59.73	58.85
MW-06	58.1	60.86	60.44	60.41	60.11	59.8	59.75	59.45	58.96	58.02
MW-07 (B)	52.71	55.16	54.67	55.03	54.52	54.45	54.58	54.46	54.32	54.29
MW-08	60.76	66.61	66.4	65.93	65.84	65.47	65.42	65.12	64.68	64.76
MW-09	58.16	60.95	60.7	60.48	60.35			59.71	59.22	58.3
MW-10 (B)	54.61	62	59.88	62.11	60.42	59.96	59.91	59.64	59.43	59.07
MW-11 (B)	55.31	62.63	60.37	62.67	60.88	60.35	60.29	59.99	59.78	59.38
MW-12	58.35	61.11	60.83	60.65	60.5	60.21	60.16	59.86	59.37	58.44
MW-13	DRY		79.98	79.91	79.9	79.88	79.87	79.86	79.77	79.68
MW-14	80.72	79.91		80.28	80.29	80.35	80.38	80.44	80.45	80.49
MW-15 (B)	50.47	59.24	59.37	59.79	59.63	59.56	59.56	59.46	59.4	59.14
MW-16 (B)	58.06	67.14	67.17	66.9	66.79	66.57	66.52	66.39	66.17	65.99
MW-17	DRY	60.29	60.17	59.75	59.7	59.52	59.64	59.42	59.28	59.3
MW-18										
MW-19										
MW-20										
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01	58.16	60.92	60.61	60.46	60.28	59.99	59.93	59.63	59.14	58.21
PZ-02	57.97	60.7	60.3	60.26	59.97	59.66	59.61	59.33	58.83	57.9
RW-01	57.11	59.64	55.04	59.22	54.71	54.4	54.35	54.05	53.58	52.76
RW-02 (B)	56.05	63.8	59.98	63.83	60.67		59.97	59.63	59.41	58.95
SUMP	76.94	74.67	74.68	74.64	74.63	74.63	75.3	74.9	74.65	74.87

Notes:

Well ID	Groundwater Elevation (ft) 4/4/1996	Groundwater Elevation (ft) 4/10/1996	Groundwater Elevation (ft) 4/18/1996	Groundwater Elevation (ft) 5/2/1996	Groundwater Elevation (ft) 6/6/1996	Groundwater Elevation (ft) 7/16/1996	Groundwater Elevation (ft) 9/5/1996	Groundwater Elevation (ft) 10/21/1996	Groundwater Elevation (ft) 11/19/1996	Groundwater Elevation (ft) 1/16/1997
MW-01	DRY	DRY	DRY	77.73	DRY	DRY	DRY	DRY	76.6	75.15
MW-02	83.68	83.68	84.86	85.35	83.17	83.32	82.57	83.18	84.22	83.56
MW-03										
MW-04	52.66	54.43	60.28	59.7	51.63	52.45	DRY	55.91	55.91	53.12
MW-05	58.32	58.14	58.2	58.71	60.54	58.98	56.33	55.4	56.49	59.15
MW-06	57.48	57.28	57.41	58.17	59.91	58.13	54.95	53.71	55.61	58.39
MW-07 (B)	54.17	54.15	54.32	54.75	55.02	53.95	52.44	51.22	52.68	54.28
MW-08	64.1	63.83	64.08	65.43	67.07	64.5	59.05	59.56	63.61	64.67
MW-09	57.78	57.59	57.73	58.46	60.18	58.38	55.38	54.24	56.64	58.65
MW-10 (B)	58.81	58.72	58.61	59.72	62.25	59.11	53.88		54.95	59.61
MW-11 (B)	59.1	59.01	58.94	60.35	62.68	59.53	54.72	52.88	55.85	60.15
MW-12	57.93	57.74	57.86	58.59	60.33	58.54	55.48	54.3	56.18	58.81
MW-13	79.6	79.57	79.52	79.44	79.28	79.35	79.15	79.07	80.68	80.49
MW-14	80.52	80.55	78.14	79.29	80.56	80.66	80.59	80.61		80.59
MW-15 (B)	59.07	59.04	58.84	59.87	62.62	59.24	54.83	51.58	51.99	58.83
MW-16 (B)	65.99	65.9	65.84	67.02	68.4	65.57	63.31			66.13
MW-17	59.27	59.14	59.3	59.95	59.22	58.46	57.89	55.96	58.02	59.33
MW-18					72.95	72.32	70.81	70.77		73.31
MW-19					DRY	DRY	DRY	DRY	DRY	DRY
MW-20					DRY	50.26	DRY	DRY	DRY	DRY
MW-21										
MW-22										
MW-23 (B)										
MW-24*										
PZ-01	57.67	57.47	57.6	58.34		58.31	55.13	53.9	55.83	58.57
PZ-02	57.39	57.19	57.3	58.04	59.77	57.97	54.9	53.53	55.25	58.23
RW-01	52.24	52.03	52.11	52.69	53.82	51.94	48.05	41.8	47.33	50.74
RW-02 (B)	58.63	58.52	58.41	59.63	62.56	59.14		42.02	55.39	
SUMP	74.69	74.99	75.89	75.76	74.73	74.78	74.56	74.85	74.77	74.71

Notes:

	Groundwater									
	Elevation (ft)									
Well ID	2/4/1997	4/15/1997	7/8/1997	10/22/1997	1/29/1998	4/15/1998	10/20/1998	4/28/1999	10/19/1999	4/6/2000
MW-01		75.64	DRY	80.92						
MW-02		83.81		82.84	83.47	83.52	83.54	83.38	84.44	86.58
MW-03										
MW-04										
MW-05		59.83	59.16	58.34	60.86			59.91	55.35	60.52
MW-06		59.34	58.58	57.97	60.46	60.57	59.69	59.11	53.34	60.36
MW-07 (B)		54.7	52.93	50.63	52.9	53.82	51.76	54.57	51.73	54.87
MW-08		65.15	61.65	58.9	64.98	67.17	59.86	64.21	62.37	66.41
MW-09		59.6	58.76	58	60.51	60.56	59.71	59.68	54.25	60.62
MW-10 (B)		58.11	53.44	50.75	55.78		51.88	57.97	51.32	57.6
MW-11 (B)		58.59	55.2	52.5	56.75	61.73	53.98	58.36	53.31	59.39
MW-12		59.72	58.92	58.21	60.67	60.8	59.89	59.53	54.09	60.71
MW-13		80.33	79.84	79.53	78.87	78.67	78.31	78.08	80.75	80.89
MW-14		80.53	80.55	80.58	80.78	80.78	80.64	80.54	80.67	80.6
MW-15 (B)		59.83	56.63	50.48	56.34	62.1	52.58	58.94	50.95	58.81
MW-16 (B)		66.89	64.43	58.45	65.71	68.03	61.84	65.99	59.81	66.92
MW-17		59.64	58.33	DRY	59.7	59.51	57.93	58.76	57.47	60.28
MW-18	72.78	73.6	71.34	69.71	73.5	73.29	70.74	72.46	70.78	75.08
MW-19	DRY									
MW-20										
MW-21	63.69	63.74		62.93	63.82	63.54	63.23	63.31	62.69	64.42
MW-22	63.69	67.92	67.35	65.96	68.51	68.39	67.83	68.05	67.69	68.52
MW-23 (B)		37.71	35.61	32.29	34.95	37.95	33.57	36.76	32.48	36.69
MW-24*								-7.38	-10.22	-9.96
PZ-01		59.51	58.7	58.01	60.5	60.61	59.7	59.3	53.65	60.51
PZ-02		59.13	58.34	57.65	60.22	60.34	59.46	59.03	52.71	60.17
RW-01		50.3	43.34	42.03	43.13	32.6	32.36	54.69		50.73
RW-02 (B)		55.69	44.07	42.89	52.74	59.94	44.33	56.74		54.52
SUMP		74.94	75.01	74.75	74.89	74.96	75.2	75.26		78.49

Notes:

	Groundwater									
	Elevation (ft)									
Well ID	11/7/2000	7/3/2001	11/8/2001	4/3/2002	10/9/2002	12/28/2004	4/8/2005	5/8/2005	11/9/2005	4/21/2006
MW-01	DRY	77.46	76.87	77.42	101.11	76.7	80.09	80.09	78.27	78.66
MW-02		84.33	83.67	84.28	83.6	83.67	85.01	85.01	84.1	85.14
MW-03										
MW-04										
MW-05	59.83	60.92	60.1	60.8	58.42	60.79	61.76	61.76	60.82	60.88
MW-06	59.4	55.87	59.67	60.42	59.84	60.35	61.45	61.45	60.36	70.35
MW-07 (B)	DRY	53.34	51.92	53.59	52.34	54.11	55.35	55.35		54.59
MW-08	61.45	65.63	60.92	64.16	60.73	63.24	67.83	67.83	64.14	65.22
MW-09	59.42	60.51	59.68	60.47	59.85	60.36	61.54	61.54	60.4	60.36
MW-10 (B)	52.73	57.22	52.6	56.07	54.57	54.86	60.38	60.38	55.76	58.75
MW-11 (B)	54.66	59.15	54.73	57.19	54.77	56.54	60.89	60.89	56.05	58.84
MW-12	59.62	60.63	59.87	60.64		60.54	61.67	61.67	60.58	60.54
MW-13	80.53	79.95	80.1	78.65	79.62	83.48	80.04	80.04	80.6	79.8
MW-14	80.75	79.74	80.77	80.48	82.87	81.72	84.69	84.69	82.77	82.71
MW-15 (B)	54.32	58.98	53.52	59.03	54.4	57.78	61.53	61.53	55.87	59.87
MW-16 (B)	63.57	66.14	63.58	66.25	63.5	65.64	68.75	68.75	65.35	66.31
MW-17	58.33	58.55	58.02	59.24	57.58	58.91	60.79	60.79	58.91	58.77
MW-18	71.61	72.09	71.36	73.75	69.84	72.88	74.61	74.61	72.33	72.54
MW-19	DRY	DRY	DRY	DRY	DRY	DRY		DRY	DRY	DRY
MW-20										
MW-21	62.59	62.53	62.58	63.39	61.82	62.54	63.92	63.92	62.62	62.24
MW-22	66.42	68.13	68.15	68.71	67.24	63.41	68.65	68.65	68.68	68.3
MW-23 (B)	33.97	36.21	33.25	35.68	33.63	36.49	39.32	39.32	35.43	37.72
MW-24*	-10.43	-10.41	-10.39	-10.35	-10.3	-10.33	-10.2	-10.2	-10.33	-10.4
PZ-01	59.44		59.7	60.45	59.87	60.4	61.48	61.48	60.38	60.37
PZ-02	59.16		59.48	60.18	59.65	60.23	61.28	61.28	60.22	60.19
RW-01	40.88		36.48	36.53	34.88					
RW-02 (B)	42.86		42.97	49.85	44.13					
SUMP	74.91	75.33	75.05	75.13	74.94					

Notes:

Well ID	Groundwater Elevation (ft) 1/2/2007	Groundwater Elevation (ft) 11/29/2007	Groundwater Elevation (ft) 5/8/2008	Groundwater Elevation (ft) 11/21/2008	Groundwater Elevation (ft) 4/22/2009	Groundwater Elevation (ft) 11/20/2009	Groundwater Elevation (ft) 4/30/2010	Groundwater Elevation (ft) 11/17/2010	Groundwater Elevation (ft) 5/12/2011	Groundwater Elevation (ft) 11/29/2011
MW-01	76.7	80.03	80.06	80.11	80.69	79.49	80.73	79.87	80.71	75.97
MW-02	83.58	85.6			83.26	83.24	83.13	83.6	NM	83.98
MW-03										
MW-04										
MW-05	60.65	61.62	60.72	60.24	60.86	60.32	60.7	60.62	62.32	60.66
MW-06	60.28	60.5	60.28	59.98	60.46	60.03	60.34	60.26	NM	60.26
MW-07 (B)	54.04	52.96	52.94		56.1	52.88	54.04	52.94	53.84	53.18
MW-08	63.24	66.86	66.82	66.88	66.5	61.93	65.94	64.7	NM	63
MW-09	60.36	60.55	60.33	60.53	60.49	60.03	60.37	60.27	61.9	60.25
MW-10 (B)	57.62	56.01	61.05	52.79	60.33	53.77	58.97	58.77	66.37	55.73
MW-11 (B)	57.81	55.72	60.32	52.42	59.4	52.98	57.95	57.84	64.85	54.56
MW-12	60.47	60.72	60.5	60.19	60.67	60.24	60.56	60.44	62.02	60.46
MW-13	79.44	78.68	78.23	DRY	DRY	78.02	Dry	Dry	Dry	Dry
MW-14	82.65	89.24	82.74	82.59	82.72	82.67	82.62	82.77	81.74	82.7
MW-15 (B)	59.26	54.35	61.89	52.85	61.74	54.7	60.4	60.1	62.56	57.88
MW-16 (B)	66.12	63.99	67.78	63.03	67.85	64.11	66.77	66.41	74.8	64.83
MW-17	59	58.46	58.96	57.9	59.36	58.38	58.96	58.89	60.26	58.96
MW-18	73.2	72.84	72.7	71.85	73.08	71.91	72.53	72.95	73.26	73.05
MW-19		DRY	DRY	DRY	DRY	47.11	Dry	47.13	DRY	47.13
MW-20										
MW-21	62.63	63.12	62.65	62.65	62.63	62.43	62.31	63.31	62.36	62.85
MW-22	68.59	68.94	68.6	68.51	68.44	68.29	68.26	68.88	68.44	68.74
MW-23 (B)	36.62	34.82	34.76	34.82	39.14	35.06	38.38	38.08	42.22	36.96
MW-24*	-10.23	-10.12	-10.35	-10.35	-10.45	-11.12	-10.5	-10.44	-10.4	-10.36
PZ-01	60.35	60.53	60.32	59.99	60.49	60.03	60.37	60.27	61.85	60.27
PZ-02	60.09	60.36	60.12	59.81	60.3	59.86	60.18	60.1	61.61	60.11
RW-01										
RW-02 (B)										
SUMP										

Notes:

	Groundwater								
	Elevation (ft)								
Well ID	5/22/2012	11/28/2012	4/18/2013	10/1/2013	4/16/2014	9/18/2014	3/31/2015	9/16/2015	
MW-01	75.07	75.06	78.43	75.06	77.29	75.07	80.26	75.07	
MW-02	83.36	83.4	84.68	83.36	85.18	83.06	85.18	83.06	
MW-03									
MW-04									
MW-05	60.54	60.02	61.08	60.38	61.74	60.24	60.22	60.06	
MW-06	60.16	59.78	60.98	60.04	61.35	59.94	60.02	59.88	
MW-07 (B)	53.32	52.24	54.12	53.14	54.82	52.29	53.28	52.24	
MW-08	62.44	60.93	65.6	62.66	68.38	61.32	63.93	61.36	
MW-09	60.19	59.76	60.71	60.05	61.43	59.97	60.01	59.88	
MW-10 (B)	55.41	52.47	58.67	55.39	61.91	54.73	54.25	54.85	
MW-11 (B)	54.2	51.58	57.48	54.10	60.5	53.54	53.15	53.55	
MW-12	60.38	59.98	60.88	60.24	61.56	60.16	60.22	60.09	
MW-13	Dry	Dry	Dry	78.00	79.94	79.3	78.74	78.3	
MW-14	82.64	82.54	82.54	82.82	82.8	82.88	84.8	83.2	
MW-15 (B)	57.6	52.1	60.12	57.65	63.3	56.34	55.06	56.68	
MW-16 (B)	64.81	61.03	67.15	64.75	69.49	64.19	64.2	64.29	
MW-17	58.92	54.44	59.88	58.24	60.36	58.08	58.7	58	
MW-18	72.47	70.83	74.27	71.07	74.83	70.77	73.63	70.23	
MW-19	47.12	Dry	Dry	Dry	Dry	Dry	Dry	47.13	
MW-20									
MW-21	62.12	60.57	62.92	60.91	63.71	60.55	63.43	60.57	
MW-22	68.3	68.34	68.3	66.39	68.04	66.8	68.18	66.92	
MW-23 (B)	37.4	34	38.6	36.86	40.38	36.22	36.12	36.54	
MW-24*	-10.48	Dry	Dry	-11.12	-10.1	-11.14	-10.3	-11.15	
PZ-01	60.2	59.79	60.69	60.07	61.39	59.97	60.03	59.89	
PZ-02	60.02	59.62	60.51	59.88	61.14	59.78	59.84	59.72	
RW-01		33.54	34.88	34.38	34.88	34.88	33.93	34.14	
RW-02 (B)		43.33	54.73	44.02	58.94	44.18	44.8	43.54	
SUMP									

Notes:

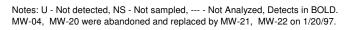
Sample Date	August-89 Trichloroethene	December-89 Trichloroethene	May-90 Trichloroethene	May-92 Trichloroethene	July-94 Trichloroethene	October-94 Trichloroethene	February-95 Trichloroethene	April-95 Trichloroethene	July-95 Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	- 3	- 9	- 3	- 3	- 3.	- 3	- 3	- 3	- 5
MW-01	112	ND	2	ND					
MW-02	ND	ND	1	ND		ND	ND	ND	ND
MW-03	ND	ND	440000	340000	ND	NI	NI	NI	NI
MW-04		7	43	6	270	23	13	16	
MW-05		340	344	110	330	410	290	280	
MW-06		700	454	510	390	360	330	280	270
MW-07		ND	ND	ND	ND	ND	ND	ND	ND
MW-08		ND	ND	ND		ND	ND	ND	ND
MW-09		109	106	60	72	74	74	84	75
MW-10				4500	1600	1300	1400	1200	900
MW-11				5200	5500	5300	4300	3900	4000
MW-12				36	44	35	33	30	25
MW-13				110	740	510			
MW-14				67	150	120	79	95	140
MW-15	NI	NI	NI	NI	NI	14	11	10	17
MW-16	NI	NI	NI	NI	NI	6	17	7	18
MW-17	NI	NI	NI	NI	260	140	200	130	160
MW-18	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-22	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-23	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-24	NI	NI	NI	NI	NI	NI	NI	NI	NI
PZ-01	NI	NI	NI	NI	NI				120
PZ-02	NI	NI	NI	NI	NI			490	400
Notes:	MW-01 through MW- MW-03 removed as	16 installed during Re	emedial Investigation rim Remedial Measure	(Stearns & Wheler), Fe (IRM) completed in	-1 - MS/MSD recovery September 1994. Da	outside limits	nonitoring, AB - Well v		
		or wells presently inclu	' '						

Sample Date	October-95	January-96	April-96	May-96	July-96	October-96	January-97	April-97	July-97
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID									
MW-01									
MW-02	ND					1 U			
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	15					62	NI	NI	NI
MW-05						180			
MW-06	180	170	110		98	71	75	52	
MW-07	ND					1 U			
MW-08	ND					1 U			
MW-09	68	100	64		65	50	95	83	66
MW-10	890	900	820		960	1700	1900	1200	
MW-11	2600	2500	1500		1400	1600	1500	800	
MW-12	29					17			
MW-13						370			
MW-14	78	84	250		230	170	390	400	260
MW-15	7					20			
MW-16	20					11			
MW-17		180	350		460	300	450	220	150
MW-18	NI	NI	NI	1200		2900	850	410	1800
MW-20	NI	NI	NI	70			NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	270	520	310
MW-22	NI	NI	NI	NI	NI	NI	2	1	3
MW-23	NI	NI	NI	NI	NI	NI	NI	1 U	1 U
MW-24	NI	NI	NI	NI	NI	NI	NI	NI	NI
PZ-01						32			
PZ-02						540			
Notes:	ND - Not detected ab	ove unknown MDL, I	J - Not detected abov	e known MDL, N	ot analyzed, NI - Not	installed at time of n	nonitoring, AB - Well v	vas abandoned.	
	MW-01 through MW-	16 installed during Re	medial Investigation	(Stearns & Wheler), F	1 - MS/MSD recovery	outside limits	-		
	MW-03 removed as	part of TCE Soils Inte	rim Remedial Measure	(IRM) completed in	September 1994. Dai	ta was collected by St	earns & Wheler prior	to 07/22/94.	
		•		nd MW-22 on 01/20/9	•	,	,	, ,	
				ual or semi-annual m					

Sample Date	October-97	January-98	April-98	October-98	November-98	April-99	October-99	April-00	November-00
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID			_	_	_		_	_	
MW-01									
MW-02	1 U			1 U			1 U		1 U
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05	220			200			78		110
MW-06	58		140	92		63	72	30	48
MW-07	1 U			1 U			1 U		
MW-08				1 U			1 U		1 U
MW-09	61	140	120	80		120	46	69	60
MW-10	1300		930	880		720	700	530	690
MW-11	1600		920	1100		740	900	670	840
MW-12	19			22			15		17
MW-13	760			480			430		790
MW-14	560	560	460	400		460	260	250	280
MW-15	18			21			13		7
MW-16	14			4			15		3
MW-17		270	800	250		280	180	160	220
MW-18	3100	1000	1100	3600		620	1800	360	1900
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	450	120	1300	180		510	90	42	73
MW-22	8	5	10	14		10	9	13	12
MW-23	1 U	1 U		1 U			1 U		1 U
MW-24	NI	NI	NI	NI	6000	4300	4300	690	2400
PZ-01	48			85			410		29
PZ-02	420			250			18		160
Notes:		oove unknown MDL, I		·	, ,		nonitoring, AB - Well v	vas abandoned.	
	9	16 installed during Re		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		part of TCE Soils Inte		` ' '	'	ta was collected by St	earns & Wheler prior	to 07/22/94.	
		vere abandoned and r	. ,						
	Data provided only for	or wells presently inclu	uded in either the ann	nual or semi-annual m	onitoring list of wells.				

Sample Date	July-01	November-01	April-02	June-02	October-02	May-03	December-03	July-04	December-04
·	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location ID	_	_	-	-	-	-	-	-	_
MW-01		1 U							
MW-02		1 U							
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05		120			100		110		98
MW-06	89	92			92		110		
MW-07		1 U							
MW-08		1 U							
MW-09	70	77			67		110		
MW-10	600	900	740		700	530	570	470	
MW-11	680	1000	870		760	940	620	490	
MW-12		19			18		20		21
MW-13		520		360	370				
MW-14	270	240			200	310	190		200
MW-15		27			21		26		2.1
MW-16		3			1		3		2.1
MW-17	240	230			290		310		140
MW-18	970	2000	350		2500	2100	2300	1600	
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21	35	38					12		4.9
MW-22	13	13			4		18		18
MW-23		1 U							
MW-24	600	1500		470		390	190	170	96
PZ-01		79			79		92		120
PZ-02	3	260			160		150		130
		-		•		t installed at time of n	nonitoring, AB - Well v	was abandoned.	
	MW-01 through MW-	16 installed during Re	emedial Investigation	(Stearns & Wheler), F	1 - MS/MSD recovery	outside limits			
					•	ta was collected by St	tearns & Wheler prior	to 07/22/94.	
	MW-04 and MW-20 w								
	Data provided only fo	or wells presently incl	uded in either the ann	nual or semi-annual m	onitoring list of wells.				

Sample Date	April-05	November-05	April-06	January-07	February-07	May-07	November-07	May-08	November-08
Jan	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	UG/L	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Location ID		29.	25,1	29.	29.1	-9.	-9.	-9.	-9.
MW-01									
MW-02									
MW-03	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-04	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-05		75.0		75.2			88		84.6
MW-06				142			120		84.1
MW-07									
MW-08									
MW-09		83.3		86.9			88		77.2
MW-10	450		486		448	448	440	476	126
MW-11	390		469		407	390	380	293	746
MW-12		19.6		23		24	38		24.3
MW-13	200		265		265	282	310	251	
MW-14		127		270			380		484
MW-15		0.50 U		0.54			0.82		0.5 U
MW-16		2.25		1.82			2.1		3.21
MW-17				132			240		210
MW-18	1300		1490		763	1590	1800	1160	1840
MW-20	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-21		10.6		6.17			7.2		12.2
MW-22		15.8		13.5			27		28.9
MW-23									
MW-24	64	124	70.6	100		197	210	159	452
PZ-01		103		132			100		48.4
PZ-02		118		125			110		116
		pove unknown MDL, I			, .		nonitoring, AB - Well v	was abandoned.	
	-	16 installed during Re	-	•					
		part of TCE Soils Inte			•	ta was collected by St	earns & Wheler prior	to 07/22/94.	
		vere abandoned and r							
	Data provided only for	or wells presently inclu	uded in either the ann	ual or semi-annual m	onitoring list of wells.				

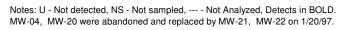

Sample Date	April-09	November-09	April-10	November-10	May-11	November-11	May-12	November-12	April-13
	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Location ID		· ·	· ·	· ·	· ·	· ·	· ·	· ·	· ·
MW-01									
MW-02									
MW-03	NI	NI	NI	NI	NI	NI		NI	
MW-04	NI	NI	NI	NI	NI	NI		NI	
MW-05		77.8		82		73.1		64.8	
MW-06		75.8		83.8		52.6		87.2	
MW-07									
MW-08									
MW-09		71.2		62		52.6		87.6	
MW-10	329	285	369	395	416	169	135	60.7	320
MW-11	260	452	379	406	255	926	891	1080	638
MW-12		16.5		19.5		21.9		17.6	
MW-13			208	262		278	234	307	196
MW-14		426		438		17.8		355	
MW-15		0.65		22.9		0.5 U		0.5 U	
MW-16		1.96		1.69		1.53		2.21	
MW-17		190		79.6		496		118	
MW-18	1160	1290	609	1300	1460	1190	1020	1820	942
MW-20	NI	NI	NI	NI	NI	NI		NI	
MW-21		12.3		6.1		6.76		27.4	
MW-22		19		19.4		23.6		19.1	
MW-23									
MW-24	118		193	331	62.1	246	162	1010	210
PZ-01		50.9		95		94.2		50.8	
PZ-02		101		100		96.6		111	
Notes:	ND - Not detected a	shove unknown MDI	II - Not detected :	shove known MDI	Not analyzed N	II - Not installed at t	ime of monitoring. A	R - Well was abando	ned
			•		, ,	ecovery outside limits	5,	D WEII Was aballut	nicu.
	_	-	-	•		94. Data was collect		eler prior to 07/22/9	4
		were abandoned an				T. Data was collect	eu by steams & Wil	cici piloi to 0//22/9	т.
			. ,			f wolle			
	Data provided only	for wells presently in	iciuaea iii either the	annual of Semi-ann	uai monitoring list o	i wells.			

Sample Date	October-13	Apr-14	Sep-14	Mar-15	Sep-15	
Oumpie Bate	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	
	ug/l	ug/l	ug/l	ug/l	ug/l	
Location ID	ug/i	ug/i	ug/i	ug/i	ug/i	
MW-01						
MW-02						
MW-03						
MW-04						
MW-05	73		53		55	
MW-06	64		82		79	
MW-07						
MW-08						
MW-09	52		45		46	
MW-10	84	310	56	96	100	
MW-11	760	470	640	690	680	
MW-12	16		21		16	
MW-13	290	190	260	210	260	
MW-14	1600	210	300		200	
MW-15	0.69 J		1U		0.82 J	
MW-16	1.5		1.5		1.5	
MW-17	330		260		190	
MW-18	1700	650	1500	960	1500 F1	
MW-20						
MW-21	15		15		18	
MW-22	1.5		11		9.5	
MW-23						
MW-24	530	220	400	230	380	
PZ-01	90		77		63	
PZ-02	97		89		83	
Notes:	ND - Not detected at	oove unknown MDL,	U - Not detected above	ve known MDL, N	Not analyzed, NI - Not	installed at time of monitoring, AB - Well was abandoned.
	MW-01 through MW-	16 installed during Re	emedial Investigation	(Stearns & Wheler),	F1 - MS/MSD recovery	outside limits
	MW-03 removed as	part of TCE Soils Inte	rim Remedial Measur	e (IRM) completed in	September 1994. Dat	ta was collected by Stearns & Wheler prior to 07/22/94.
	MW-04 and MW-20 v	vere abandoned and	replaced by MW-21 a	nd MW-22 on 01/20/9	97.	
	Data provided only for	or wells presently incl	uded in either the an	nual or semi-annual n	nonitoring list of wells.	

		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-01	11/8/2001	1 U	1 U	1 U	1 U
MW-02	10/22/1996	1 U	1 U	1 U	1 U
MW-02	10/22/1997	1 U	1 U	1 U	1 U
MW-02	10/21/1998	1 U	1 U	1 U	1 U
MW-02	10/19/1999	1 U	1 U	1 U	1 U
MW-02	11/9/2000	1 U	1 U	1 U	1 U
MW-02	11/10/2001	1 U	1 U	1 U	1 U
MW-04	10/22/1996	12	1 U	1 U	1 U
MW-05	10/21/1996	10 U	10 U	10 U	10 U
MW-05	10/22/1997	10 U	10 U	10 U	10 U
MW-05	10/20/1998	10 U	10 U	10 U	10 U
MW-05	10/19/1999	10 U	10 U	10 U	10 U
MW-05	11/8/2000	5 U	5 U	5 U	5 U
MW-05	11/9/2001	5 U	5 U	5 U	5 U
MW-05	10/10/2002	5 U	5 U	5 U	5 U
MW-05	12/8/2003	5 U	5 U	5 U	5 U
MW-05	12/28/2004	2.5 U	2.7	2.5 U	2.5 U
MW-05	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-05	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/29/2007	0.5 U	2.5	0.5 U	0.5 U
MW-05	11/1/2008	1.52	1.95	0.5 U	0.5 U
MW-05	11/20/2009	1.15	2.25	0.5 U	0.5 U
MW-05	11/20/2009	1.15 2.5 U	2.25 2.5 U	0.5 U 2.5 U	0.5 U 2.5 U
MW-05	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/28/2012	2.5 U	2.5	2.5 U	2.5 U
MW-05	10/1/2013	1.3	2.5	1 U	1 U
MW-05	9/18/2014	1 U	1.9	1 U	1 U
MW-05	9/16/2015	1 U	1.9	1 U	1 U
MW-06	1/17/1996		5 U	5 U	
MW-06	4/10/1996		5 U	5 U	
MW-06	7/16/1996	5 U	5 U	5 U	5 U
MW-06	10/22/1996	2 U	2 U	2 U	2 U
MW-06	1/16/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1997	1 U	1 U	1 U	1 U
MW-06	10/23/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1998	5 U	5 U	5 U	5 U
MW-06	10/20/1998	2 U	2 U	2 U	2 U
MW-06	4/29/1999	2 U	2 U	2 U	2 U
MW-06	10/19/1999	2 U	2 U	2 U	2 U
MW-06	4/6/2000	1 U	1 U	1 U	1 U
MW-06	11/8/2000	1 U	1 U	1 U	1 U
MW-06	7/3/2001	2 U	2 U	2 U	2 U
MW-06	11/9/2001	2 U	2 U	2 U	2 U
MW-06	10/10/2002	2 U	2 U	2 U	2 U
MW-06		5 U	5 U	5 U	5 U
MW-06	12/8/2003	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	1/2/2007		2.5 U	0.5 U	2.5 U
	11/29/2007	0.65			
MW-06	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/23/2010	1 U	1 U	1 U	1 U
MW-06	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	11/28/2012	1.25 U	1.25 U	1.25 U	1.25 U
MW-06	10/1/2013	1 U	1 U	1 U	1 U
MW-06	9/18/2014	1U	1 U	1 U	1 U
MW-06	9/16/2015	1 U	1 U	1 U	1 U
MW-07	10/21/1996	1 U	1 U	1 U	1 U
MW-07	10/22/1997	1 U	1 U	1 U	1 U
MW-07	10/20/1998	1 U	1 U	1 U	1 U
MW-07	10/19/1999	1 U	1 U	1 U	1 U
MW-07	11/9/2001	1 U	1 U	1 U	1 U
MW-08	10/22/1996	1 U	1 U	1 U	1 U
MW-08	10/21/1998	1 U	1 U	1 U	1 U
MW-08	10/19/1999	1 U	1 U	1 U	1 U
MW-08	11/7/2000	1 U	1 U	1 U	1 U
MW-08	11/8/2001	1 U	1 U	1 U	1 U
MW-09	1/17/1996		5 U	5 U	
MW-09					
	4/10/1996		1 U	1 U	
MW-09	7/16/1996	1 U	1 U	1 U	1 U
MW-09	10/21/1996	1 U	1 U	1 U	1 U
MW-09	1/16/1997	5 U	5 U	5 U	5 U
MW-09	4/15/1997	2 U	2 U	2 U	2 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-09	7/8/1997	5 U	5 U	5 U	5 U
MW-09	10/22/1997	5 U	5 U	5 U	5 U
MW-09	1/29/1998	5 U	5 U	5 U	5 U
MW-09	4/15/1998	5 U	5 U	5 U	5 U
MW-09	10/20/1998	2 U	2 U	2 U	2 U
MW-09	4/29/1999	2 U	2 U	2 U	2 U
MW-09	10/19/1999	5 U	5 U	5 U	5 U
MW-09		2 U	2 U	2 U	2 U
	4/6/2000				
MW-09	11/8/2000	2 U	2 U	2 U	2 U
MW-09	7/3/2001	2 U	2 U	2 U	2 U
MW-09	11/10/2001	2 U	2 U	2 U	2 U
MW-09	10/11/2002	2 U	2 U	2 U	2 U
MW-09	12/8/2003	2 U	2 U	2 U	2 U
MW-09	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-09	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/28/2012	1.25 U	1.25 U	1.25 U	1.25 U
MW-09	10/1/2013	1 U	1 U	1 U	1 U
MW-09	9/18/2014	1 U	1 U	1 U	1 U
MW-09	9/16/2015	1 U	1 U	1 U	1 U
MW-10	1/17/1996		20 U	20 U	
MW-10	4/10/1996		50 U	50 U	
MW-10	7/16/1996	50 U	50 U	50 U	50 U
MW-10	10/22/1996	50 U	50 U	50 U	50 U
MW-10	1/16/1997	100 U	100 U	100 U	100 U
MW-10	4/16/1997	100 U	100 U	100 U	100 U
MW-10	10/23/1997	50 U	50 U	50 U	50 U
MW-10	4/15/1998	50 U	50 U	50 U	50 U
MW-10	10/21/1998	50 U	50 U	50 U	50 U
MW-10	4/29/1999	25 U	25 U	25 U	25 U
MW-10	10/20/1999	25 U	25 U	25 U	25 U
MW-10	4/6/2000	20 U	20 U	20 U	20 U
MW-10	11/8/2000	20 U	20 U	20 U	20 U
MW-10	7/3/2001	20 U	20 U	20 U	20 U
MW-10	11/10/2001	20 U	20 U	20 U	20 U
MW-10	4/3/2002	20 U	20 U	20 U	20 U
MW-10	10/10/2002	20 U	20 U	20 U	20 U
					20 U
MW-10	5/1/2003	20 U	20 U	20 U	
MW-10	12/8/2003	20 U	20 U	20 U	20 U
MW-10	7/19/2004	10 U	10 U	10 U	10 U
MW-10	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-10	4/21/2006	10 U	10 U	10 U	10 U
MW-10	2/7/2007	10 U	10 U	10 U	10 U
MW-10	5/31/2007	10 U	10 U	10 U	10 U
MW-10	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	11/1/2008	5 U	5 U	5 U	5 U
MW-10	4/22/2009	10 U	10 U	10 U	10 U
MW-10	11/20/2009	10 U	10 U	10 U	10 U
MW-10	4/30/2010	10 U	10 U	10 U	10 U
MW-10	11/17/2010	10 U	10 U	10 U	10 U
MW-10	5/12/2011	10 U	10 U	10 U	10 U
MW-10	11/29/2011	10 U	10 U	10 U	10 U
		5 U	5 U	5 U	5 U
MW-10	5/22/2012				
MW-10	11/28/2012	1 U	1 U	1 U	1 U
MW-10	4/18/2013	25 U	25 U	25 U	25 U
MW-10	10/1/2013	1 U	1 U	1 U	1 U
MW-10	4/16/2014	1 U	1 U	1 U	1 U
MW-10	9/18/2014	1 U	1 U	1 U	1 U
MW-10	3/31/2015	1 U	1 U	1 U	1 U
MW-10	9/16/2015	1 U	1 U	1 U	1 U
MW-11	1/17/1996		100 U	100 U	
MW-11	4/10/1996		100 U	100 U	
MW-11	7/16/1996	100 U	100 U	100 U	100 U
MW-11	10/22/1996	100 U	100 U	100 U	100 U
MW-11	1/16/1997	100 U	100 U	100 U	100 U
MW-11	4/15/1997	50 U	50 U	50 U	50 U
MW-11					
	10/23/1997	50 U	50 U	50 U	50 U
MW-11	4/15/1998	50 U	50 U	50 U	50 U
MW-11	10/21/1998	50 U	50 U	50 U	50 U
MW-11	4/29/1999	50 U	50 U	50 U	50 U
MW-11	10/19/1999	25 U	25 U	25 U	25 U

Location ID	Chemical Name Sample Date	cis-1,2-Dichloroethene ug/l	Tetrachloroethene ug/l	Toluene ug/l	trans-1,2-Dichloroethene ug/l
MW-11	4/6/2000	20 U	20 U	20 U	20 U
MW-11	11/9/2000	20 U	20 U	20 U	20 U
MW-11	7/3/2001	20 U	20 U	20 U	20 U
MW-11	11/9/2001	20 U	20 U	20 U	20 U
MW-11	4/3/2002	20 U	20 U	20 U	20 U
MW-11	10/10/2002	20 U	20 U	20 U	20 U
MW-11	5/1/2003	20 U	20 U	20 U	20 U
MW-11	12/8/2003	50 U	50 U	50 U	50 U
MW-11	7/19/2004	10 U	10 U	10 U	10 U
MW-11	4/8/2005	1.1	0.50 J	0.50 U	0.50 U
MW-11	4/21/2006	10 U	10 U	10 U	10 U
MW-11	2/7/2007	5 U	5 U	5 U	5 U
MW-11	5/31/2007	5 U	5 U	5 U	5 U
MW-11	11/29/2007	1.2	0.5 U	0.5 U	0.5 U
MW-11	5/1/2008	0.65	0.5 U	0.5 U	0.5 U
MW-11	11/1/2008	10 U	10 U	10 U	10 U
MW-11	4/22/2009	10 U	10 U	10 U	10 U
MW-11	11/20/2009	10 U	10 U	10 U	10 U
MW-11	4/30/2010	10 U	10 U	10 U	10 U
MW-11	11/17/2010	10 U	10 U	10 U	10 U
MW-11	5/21/2011	10 U	10 U	10 U	10 U
MW-11	11/29/2011	10 U	10 U	10 U	10 U
		25 U	25 U	25 U	25 U
MW-11	5/22/2012				
MW-11	11/28/2012	25 U	25 U	25 U	25 U
MW-11	4/18/2013	25 U	25 U	25 U	25 U
MW-11	10/1/2013	1.1	1 U	1 U	1 U
MW-11	4/16/2014	1	1 U	1 U	1 U
MW-11	9/18/2014	5 U	5 U	5 U	5 U
MW-11	3/31/2015	5 U	5 U	5 U	5 U
MW-11	9/16/2015	10 U	10 U	10 U	10 U
MW-12	10/21/1996	1 U	1 U	1 U	1 U
MW-12	10/22/1997	1 U	1 U	1 U	1 U
MW-12	10/20/1998	1 U	1 U	1 U	1 U
MW-12	10/19/1999	1 U	1 U	1 U	1 U
MW-12	11/8/2000	1 U	1 U	1 U	1 U
MW-12	11/9/2001	1 U	1 U	1 U	1 U
MW-12	10/10/2002	1 U	1 U	2	1 U
MW-12				1 U	
	12/8/2003	1 U	1 U		1 U
MW-12	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-12	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-12	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	5/31/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
		0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/29/2011				
MW-12	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	10/1/2013	1 U	1 U	1 U	1 U
MW-12	9/18/2014	1 U	1 U	1 U	1 U
MW-12	9/16/2015	1 U	1 U	1 U	1 U
MW-13	10/24/1996	10 U	10 U	10 U	10 U
MW-13	10/23/1997	50 U	50 U	50 U	50 U
MW-13	10/21/1998	25 U	25 U	25 U	25 U
MW-13	10/20/1999	20 U	20 U	20 U	20 U
MW-13	11/9/2000	20 U	20 U	20 U	20 U
MW-13	11/8/2001	20 U	20 U	20 U	20 U
MW-13	6/11/2002	20 U	20 U	20 U	20 U
MW-13	10/11/2002	20 U	20 U	20 U	20 U
MW-13	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-13	4/21/2006	5 U	5 U	5 U	5 U
MW-13	2/7/2007	5 U	5 U	5 U	5 U
MW-13	5/31/2007	5 U	5 U	5 U	5 U
MW-13	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	11/1/2008	NS	NS	NS	NS
MW-13	4/30/2010	5 U	5 U	5 U	5 U
MW-13	11/17/2010	5 U	5 U	5 U	5 U
MW-13	11/29/2011	5 U	5 U	5 U	5 U
MW-13	5/22/2012	5 U	5 U	5 U	5 U
MW-13	11/28/2012	5 U	5 U	5 U	5 U
MW-13	4/18/2013	5 U	5 U	5 U	5 U
MW-13	10/1/2013	1 U	1 U	1 U	1 U
ИW-13	4/16/2014	1 U	1 U	1 U	1 U
MW-13	9/18/2014	4 U	4 U	4 U	4 U
MW-13	3/31/2015	4 U	4 U	4 U	4 U
/W-13	9/16/2015	4 U	4 U	4 U	4 U
ЛW-14	1/17/1996		5 U	5 U	
ЛW-14	4/10/1996		5 U	5 U	
	7/16/1996	10 U	10 U	10 U	10 U


	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-14	10/22/1996	5 U	5 U	5 U	5 U
MW-14	1/16/1997	10 U	10 U	10 U	10 U
MW-14	4/16/1997	10 U	10 U	10 U	10 U
MW-14	7/8/1997	10 U	10 U	10 U	10 U
MW-14	10/23/1997	10 U	10 U	10 U	10 U
MW-14	1/29/1998	10 U	10 U	10 U	10 U
MW-14 MW-14	4/15/1998	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
MW-14	10/21/1998 4/29/1999	10 U	10 U	10 U	10 U
MW-14	10/20/1999	10 U	10 U	10 U	10 U
MW-14	4/6/2000	5 U	5 U	5 U	5 U
MW-14	11/8/2000	5 U	5 U	5 U	5 U
MW-14	7/3/2001	5 U	5 U	5 U	5 U
MW-14	11/8/2001	5 U	5 U	5 U	5 U
MW-14	10/11/2002	5 U	5 U	5 U	5 U
MW-14	5/1/2003	5 U	5 U	5 U	5 U
MW-14	12/8/2003	10 U	10 U	10 U	10 U
MW-14	12/28/2004	5.0 U	5.0 U	5.0 U	5.0 U
MW-14	11/9/2005	5.00 U	5.00 U	5.00 U	5.00 U
MW-14	1/2/2007	5 U	5 U	5 U	5 U
MW-14	11/29/2007	0.94	0.5 U	0.5 U	0.5 U
MW-14	11/1/2008	1	0.5 U	0.5 U	0.5 U
MW-14	11/20/2009	12.5 U	12.5 U	12.5 U	12.5 U
MW-14	11/17/2010	10 U	10 U	10 U	10 U
MW-14	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-14	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
MW-14 MW-14	10/1/2013 9/18/2014	200 4 U	0.49 J 4 U	1 U 4 U	0.93 J 4 U
MW-14	9/16/2014	4 U	4 U	4 U	4 U
MW-15	10/22/1996	1 U	1 U	1 U	1 U
MW-15	10/22/1997	1 U	1 U	1 U	1 U
MW-15	10/21/1998	1 U	1 U	1 U	1 U
MW-15	10/19/1999	1 U	1 U	1 U	1 U
MW-15	11/9/2000	1 U	1 U	1 U	1 U
MW-15	11/8/2001	1 U	1 U	1 U	1 U
MW-15	10/11/2002	1 U	1 U	1 U	1 U
MW-15	12/8/2003	1 U	1 U	1 U	1 U
MW-15	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-15	11/9/2005	2.19	0.50 U	0.50 U	0.50 U
MW-15	1/2/2007	1.8	0.5 U	0.5 U	0.5 U
MW-15	11/29/2007	1.7	0.5 U	0.5 U	0.5 U
MW-15	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/20/2009	0.71	0.5 U	0.5 U	0.5 U
MW-15	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-15 MW-15	10/1/2013 9/18/2014	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
MW-15 MW-15	9/18/2014	1 U	1 U	1 U	1 U
MW-15	10/22/1996	1 U	1 U	1 U	1 U
MW-16					
	10/22/1997	1 U	1 U	1 U	1 U
MW-16	10/21/1998	1 U	1 U	1 U	1 U
MW-16	10/19/1999	1 U	1 U	1 U	1 U
MW-16	11/9/2000	1 U	1 U	1 U	1 U
MW-16	11/8/2001	1 U	1 U	1 U	1 U
MW-16	10/11/2002	1 U	1 U	1 U	1 U
MW-16	12/8/2003	1 U	1 U	1 U	1 U
MW-16	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-16	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-16	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	10/1/2013	1 U	1 U	1 U	1 U
MW-16	9/18/2014	1 U	1 U	1 U	1 U
MW-16	9/16/2015	1 U	1 U	1 U	1 U
MW-17	1/17/1996		5 U	5 U	
MW-17	4/10/1996		20	5 U	
MW-17	7/16/1996	10 U	10 U	10 U	10 U
MW-17	10/22/1996	7	12	5 U	5 U
MW-17	1/16/1997	10 U	22	10 U	10 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-17	4/15/1997	10 U	15	10 U	10 U
MW-17	7/8/1997	10 U	18	10 U	10 U
MW-17	1/29/1998	10 U	12	10 U	10 U
MW-17	4/15/1998	50 U	50 U	50 U	50 U
MW-17	10/20/1998	10 U	17	10 U	10 U
MW-17	4/29/1999	10 U	23	10 U	10 U
MW-17	10/19/1999	10 U	10 U	10 U	10 U
MW-17	4/6/2000	10 U	10 U	10 U	10 U
MW-17	11/9/2000	15	7	5 U	5 U
MW-17	7/3/2001	10	7	5 U	5 U
MW-17	11/10/2001	10	8	5 U	5 U
MW-17	10/11/2002	22	5 U	5 U	5 U
MW-17	12/8/2003	10 U	10 U	10 U	10 U
MW-17	12/28/2004	5.1	11	5.0 U	5.0 U
MW-17	11/9/2005	17.9	9.5	2.50 U	2.50 U
MW-17	1/2/2007	9.45	10.2	2.5 U	2.5 U
MW-17	11/29/2007	22	6.9	0.5 U	0.5 U
MW-17	11/1/2008	21.7	5.06	0.5 U	0.5 U
MW-17	11/20/2009	11.6	6.1	5 U	5 U
MW-17	11/17/2010	2.4	6.18	1.25 U	1.25 U
MW-17	11/29/2011	20.2	19.7	5 U	5 U
MW-17	11/28/2012	10.7	5.25	2.5 U	2.5 U
MW-17	10/1/2013	31	8.1	1 U	1 U
MW-17	9/18/2014	24	4.9J	5 U	5 U
MW-17	9/16/2015	16	5.9	1 U	1 U
MW-18	5/29/1996	50 U	50 U	50 U	50 U
MW-18	10/22/1996	81	50 U	50 U	50 U
MW-18	1/16/1997	100 U	100 U	100 U	100 U
MW-18	4/16/1997	10 U	10 U	10 U	10 U
MW-18	7/8/1997	66	50 U	50 U	50 U
MW-18	10/23/1997	100 U	100 U	100 U	100 U
MW-18	1/29/1998	50 U	50 U	50 U	50 U
MW-18	4/16/1998	50 U	50 U	50 U	50 U
MW-18	10/21/1998	160	100 U	100 U	100 U
MW-18	4/29/1999	37	25 U	25 U	25 U
MW-18	10/19/1999	100 U	100 U	100 U	100 U
MW-18	4/6/2000	14	10 U	10 U	10 U
MW-18	11/9/2000	100	50 U	50 U	50 U
MW-18	7/3/2001	50 U	50 U	50 U	50 U
MW-18	11/10/2001	120	50 U	50 U	50 U
MW-18	4/4/2002	10 U	10 U	10 U	10 U
MW-18	10/15/2002	310	50 U	50 U	50 U
MW-18 MW-18	5/1/2003	130	50 U	50 U	50 U
	12/8/2003	100 U	100 U	100 U	100 U
MW-18	7/19/2004	140	50 U	50 U	50 U
MW-18 MW-18	4/8/2005	120 127	0.51 25 U	0.50 U	0.86
	4/21/2006			25 U	25 U
MW-18	2/7/2007	68.5	12.5 U	12.5 U	12.5 U
MW-18	5/31/2007	136	12.5 U	12.5 U	12.5 U
MW-18 MW-18	11/29/2007	190	0.51	0.5 U	0.86
MW-18 MW-18	5/1/2008	108	0.5 U	0.5 U 25 U	0.81 25 U
MW-18 MW-18	11/1/2008 04/22/2009	148 79.5	25 U 25 U	25 U 25 U	25 U 25 U
MW-18	11/20/2009	125	25 U	25 U	25 U
MW-18	04/30/2010	38.5	25 U	25 U	25 U
MW-18	11/17/2010	99	25 U	25 U	25 U
MW-18	5/21/2011	73.5	25 U	25 U	25 U
MW-18	11/29/2011	109	25 U	25 U	25 U
MW-18	5/22/2012	74	25 U	25 U	25 U
MW-18	11/28/2012	144	25 U	25 U	25 U
MW-18	4/18/2013	70.5	25 U	25 U	25 U
MW-18	10/1/2013	70.5 210	0.42 J	1 U	0.9 J
MW-18	4/16/2014		0.42 J 1 U	1.0 U	0.9 J 1 U
MW-18		76 270	1 U	1.0 U	1 U
14144-10	9/18/2014 3/31/2015	270 210	10 U	10 U	10 U

Location ID	Chemical Name Sample Date	cis-1,2-Dichloroethene ug/l	Tetrachloroethene ug/l	Toluene ug/l	trans-1,2-Dichloroethene ug/l
MW-18	9/16/2015	430 F1	10 U	10 U	10 U
MW-20	5/24/1996	46	1 U	1 U	1 U
MW-21	1/21/1997	650	100 U	100 U	100 U
MW-21	4/16/1997	630	50 U	50 U	50 U
MW-21	7/8/1997	770	50 U	50 U	50 U
MW-21	10/23/1997	800	50 U	50 U	50 U
MW-21	1/29/1998	350	10 U	10 U	10 U
MW-21	4/16/1998	1400	50 U	50 U	50 U
MW-21	10/21/1998	340	50 U	50 U	50 U
MW-21	4/29/1999	2100	100 U	100 U	100 U
MW-21	10/19/1999	670	20 U	20 U	20 U
MW-21	4/6/2000	140	5 U	5 U	5 U
MW-21	11/7/2000	220	5 U	5 U	5 U
MW-21	7/3/2001	130	5 U	5 U	5 U
MW-21	11/10/2001	240	5 U	5 U	5 U
MW-21	12/8/2003	32	1 U	1 U	1 U
MW-21	12/28/2004	2.8	0.50 U	0.50 U	0.50 U
MW-21	11/9/2005	20	0.50 U	0.50 U	0.50 U
MW-21	1/2/2007	15.4	0.5 U	0.5 U	0.5 U
MW-21	11/29/2007	25	0.5 U	0.5 U	0.5 U
MW-21	11/1/2008	45.2	0.5 U	0.5 U	0.5 U
MW-21	11/20/2009	40.7	1 U	1 U	1 U
MW-21	11/17/2010	22.6	1 U	1 U	1 U
MW-21	11/29/2011	18.8	0.5 U	0.5 U	0.5 U
MW-21	11/28/2012	71	2.5 U	2.5 U	2.5 U
MW-21	10/1/2013	28	1 U	1 U	1 U
MW-21	9/18/2014	30	1 U	1 U	1 U
MW-21	9/16/2015	40	1 U	1 U	1 U
MW-22	1/21/1997	5	1 U	1 U	1 U
MW-22	4/16/1997	4	1 U	1 U	1 U
MW-22	7/8/1997	9	1 U	1 U	1 U
MW-22	10/23/1997	22	1 U	1 U	1 U
MW-22	1/29/1998	11	1 U	1 U	1 U
MW-22	4/16/1998	22	1 U	1 U	1 U
MW-22	10/21/1998	35	1 U	1 U	1 U
MW-22	4/29/1999	24	1 U	1 U	1 U
MW-22	10/19/1999	28	1 U	1 U	1 U
MW-22	4/6/2000	26	1 U	1 U	1 U
MW-22	11/9/2000	29	1 U	1 U	1 U
MW-22	7/3/2001	37	1 U	1 U	1 U
MW-22	11/10/2001	36	1 U	1 U	1 U
MW-22	10/11/2002	51	1 U	1 U	1 U
MW-22	12/8/2003	52	2 U	2 U	2 U
MW-22	12/28/2004	47	1.0 U	1.0 U	1.1
MW-22	11/9/2005	56.3	1.00 U	1.00 U	1.00 U
MW-22	1/2/2007	38.4	1 U	1 U	1 U
MW-22	11/29/2007	37	0.5 U	0.5 U	0.77
MW-22	11/1/2008	31.2	0.5 U	0.5 U	0.92
MW-22	11/20/2009	30.6	1 U	1 U	1 U
MW-22	11/17/2010	30.5	1 U	1 U	1 U
MW-22	11/29/2011	33.4	0.5 U	0.5 U	1.16
MW-22	11/28/2012	37.2	1 U	1 U	1.24
MW-22	10/1/2013	48	1 U	1 U	2.4
MW-22	9/18/2014	53	1 U	1 U	5
MW-22	9/16/2015	54	1 U	1 U	5.2
MW-23	4/15/1997	1 U	1 U	1 U	1 U
MW-23	7/8/1997	1 U	1 U	1 U	1 U
MW-23	10/22/1997	1 U	1 U	1 U	1 U
MW-23	1/29/1998	1 U	1 U	1 U	1 U
MW-23	10/21/1998	1 U	1 U	1 U	1 U
MW-23	10/19/1999	1 U	1 U	1 U	1 U
MW-23	11/7/2000	1 U	1 U	1 U	1 U
MW-23	11/8/2001	1 U	1 U	1 U	1 U

	Chemical Name	•	Tetrachloroethene	Toluene	trans-1,2-Dichloroethen
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-24	11/9/1998	2600	200 U	200 U	200 U
WW-24	4/29/1999	1600	100 U	100 U	100 U
MW-24	10/19/1999	3000	100 U	100 U	100 U
MW-24	4/6/2000	250	20 U	20 U	20 U
MW-24 MW-24	11/7/2000	1200	50 U	50 U	50 U
VIVV-24 VIW-24	7/3/2001	400 2100	50 U 50 U	50 U 50 U	50 U
VIVV-24 VIW-24	11/10/2001 6/11/2002	680	50 U	50 U	50 U 50 U
MW-24	5/1/2003	410	10 U	10 U	10 U
MW-24	12/8/2003	81	10 U	10 U	10 U
MW-24	7/19/2004	680	10 U	10 U	10 U
MW-24	12/28/2004	69	5.0 U	5.0 U	5.0 U
MW-24	4/8/2005	44	2.0 U	2.0 U	2.0 U
MW-24	11/9/2005	75.6	2.50 U	2.50 U	2.50 U
MW-24	4/21/2006	180	2.5 U	2.5 U	2.5 U
MW-24	1/2/2007	5.15	2.5 U	2.5 U	2.5 U
MW-24	5/31/2007	45.7	2.5 U	2.5 U	2.5 U
MW-24	11/29/2007	42	0.5 U	0.5 U	0.5 U
MW-24	5/1/2008	8.21	0.5 U	0.5 U	0.5 U
MW-24	11/1/2008	51.9	5 U	5 U	5 U
MW-24	04/22/2009	8.1	5 U	5 U	5 U
MW-24	04/30/2010	11	2.5 U	2.5 U	2.5 U
MW-24	11/17/2010	212	2.5 U	2.5 U	2.5 U
MW-24	5/21/2011	492	5 U	5 U	5 U
MW-24	11/29/2011	43.3	5 U	5 U	5 U
MW-24	5/22/2012	36.9	5 U	5 U	5 U
MW-24	11/28/2012	111	25 U	25 U	25 U
MW-24	4/18/2013	43	25 U	25 U	25 U
MW-24	10/1/2013	150	1 U	1 U	1.9
MW-24	4/16/2014	89	1 U	1 U	1.2
MW-24	9/18/2014	110	5 U	5 U	5 U
MW-24	3/31/2015	14	5 U	5 U	5 U
MW-24	9/16/2015	150	5 U	5 U	5 U
PZ-01	10/21/1996	1 U	1 U	1 U	1 U
PZ-01	10/23/1997	1 U	1 U	1 U	1 U
PZ-01	10/20/1998	2 U	2 U	2 U	2 U
PZ-01	10/19/1999	10 U	10 U	10 U	10 U
PZ-01	11/7/2000	1 U	1 U	1 U	1 U
PZ-01	11/9/2001	2 U	2 U	2 U	2 U
PZ-01	10/10/2002	2 U	2 U	2 U	2 U
PZ-01	12/8/2003	5 U	5 U	5 U	5 U
PZ-01	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/9/2005 1/2/2007	2.50 U	2.50 U	2.50 U	2.50 U
PZ-01 PZ-01		2.5 U	2.5 U	2.5 U	2.5 U
	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
PZ-01 PZ-01	11/1/2008 11/20/2009	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
PZ-01 PZ-01	11/17/2010	0.5 U	0.5 U	1 U	0.5 U
PZ-01	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	10/1/2013	1 U	1 U	1 U	1 U
PZ-01	9/18/2014	1 U	1 U	1 U	1 U
PZ-01	9/16/2015	1 U	1 U	1 U	1 U
PZ-02	10/21/1996	10 U	10 U	10 U	10 U
PZ-02 PZ-02	10/23/1997	10 U	10 U	10 U	10 U
PZ-02 PZ-02	10/20/1998	10 U	10 U	10 U	10 U
PZ-02 PZ-02	10/19/1999	1 U	1 U	1 U	1 U
PZ-02	11/9/2000	5 U	5 U	5 U	5 U
PZ-02	11/10/2001	5 U	5 U	5 U	5 U
PZ-02	10/11/2002	5 U	5 U	5 U	5 U
PZ-02	12/8/2003	5 U	5 U	5 U	5 U
PZ-02	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
PZ-02	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/29/2007	1.1	0.51	0.5 U	0.5 U
PZ-02	11/1/2008	1	0.5 U	0.5 U	0.5 U
PZ-02	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
	· -	1 U	0.57 J	1 U	1 U

Table 4 Former Accurate Die Casting Site Fayetteville, New York Other Detected Volatile Organic Compounds

		cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/I	ug/l	ug/l	ug/l
PZ-02	9/18/2014	1 U	0.47 J	1 U	1 U
PZ-02	9/16/2015	1 U	0.49 J	1 U	1 U

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-83058-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 7/9/2015 7:25:56 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-83058-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

3

4

7

0

10

11

12

13

| | 4

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83058-1

Job ID: 480-83058-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-83058-1

Receipt

The sample was received on 6/30/2015 2:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.6° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

D

6

_

10

11

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 062915

TestAmerica Job ID: 480-83058-1

Lab Sample ID: 480-83058-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	701	10.0	4.0 mg/L	1 SM2540 C	Total/NA

А

4

6

8

9

11

16

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83058-1

Client Sample ID: EFFLUENT 062915

Lab Sample ID: 480-83058-1 Date Collected: 06/29/15 07:30

Matrix: Water

Date Received: 06/30/15 02:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	701		10.0	4.0	mg/L			07/05/15 20:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			07/02/15 10:11	1

RL

1.0

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83058-1

Client Sample ID: Method Blank

Analyzed

07/02/15 10:11

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Dil Fac

RPD

Limit

20

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-251435/1 **Matrix: Water**

Analysis Batch: 251435

MB MB

Analyte Result Qualifier

Total Suspended Solids $\overline{\mathsf{ND}}$ Lab Sample ID: LCS 480-251435/2

Matrix: Water Analysis Batch: 251435

Analyte **Total Suspended Solids**

Added 260 Method: SM2540 C - Total Dissolved Solids

Spike

Added

502

Spike

258.4

RL

10.0

Result Qualifier

MDL Unit

LCS LCS

DU DU

489.0

676.0

Result Qualifier

4.0 mg/L

LCS LCS

RL Unit

1.0 mg/L

Unit mg/L D

D %Rec 99

Prepared

Prepared

Client Sample ID: Method Blank

Analyzed

07/05/15 20:57

Analysis Batch: 251631

Matrix: Water

Matrix: Water

Lab Sample ID: MB 480-251631/1

MB MB Analyte Total Dissolved Solids

Result Qualifier ND

Lab Sample ID: LCS 480-251631/2

Analysis Batch: 251631

Lab Sample ID: 480-83058-1 DU **Matrix: Water**

Total Dissolved Solids

Analysis Batch: 251631

Sample Sample Analyte Result Qualifier Total Dissolved Solids 701

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec.

Limits

88 - 110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. Limits Unit %Rec mg/L 97 85 - 115

Client Sample ID: EFFLUENT 062915

Prep Type: Total/NA

Result Qualifier Unit D mg/L

RPD

TestAmerica Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83058-1

General Chemistry

Analysis Batch: 251435

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83058-1	EFFLUENT 062915	Total/NA	Water	SM 2540D	
LCS 480-251435/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-251435/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 251631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83058-1	EFFLUENT 062915	Total/NA	Water	SM2540 C	
480-83058-1 DU	EFFLUENT 062915	Total/NA	Water	SM2540 C	
LCS 480-251631/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-251631/1	Method Blank	Total/NA	Water	SM2540 C	

-0

3

5

O

8

9

10

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 062915

TestAmerica Job ID: 480-83058-1

Lab Sample ID: 480-83058-1

Matrix: Water

Date Collected: 06/29/15 07:30 Date Received: 06/30/15 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	251435	07/02/15 10:11	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	251631	07/05/15 20:57	ELR	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83058-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

9

- - -

4

5

9

10

46

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83058-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

6

7

0

10

11

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83058-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-83058-1	EFFLUENT 062915	Water	06/29/15 07:30	06/30/15 02:00

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-83058-1

Login Number: 83058 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Λ

_

Q

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-83365-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Melisso Deyo

Authorized for release by: 7/16/2015 3:25:20 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

3

4

0

9

10

12

4 4

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-83365-1

Qualifiers

Metals

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83365-1

Job ID: 480-83365-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-83365-1

Receipt

The samples were received on 7/7/2015 1:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

GC/MS VOA

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: INFLUENT 070615 (480-83365-5). Elevated reporting limits (RL) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-253041 recovered above the upper control limit for Methylene Chloride. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data has been reported. The following samples are impacted: BETWEEN CARBONS 070615 (480-83365-2), EFFLUENT 070615 (480-83365-4) and INFLUENT 070615 (480-83365-5).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-253041 recovered above the upper control limit for Methylene Chloride. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: BETWEEN CARBONS 070615 (480-83365-2), EFFLUENT 070615 (480-83365-4) and INFLUENT 070615 (480-83365-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

8

9

11

49

14

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 070615

Client Sample ID: EFFLUENT 070615

TestAmerica Job ID: 480-83365-1

Lab Sample ID: 480-83365-1

Lab Sample ID: 480-83365-4

Analyte	Result Qualif	er RL	MDL	Unit	Dil Fac D	Method	Prep Type
Zinc	0.0051 JB	0.010	0.0015	mg/L		6010C	Total/NA
Total Dissolved Solids	652	10.0	4.0	mg/L	1	SM2540 C	Total/NA
Client Comple ID: BET	WEEN CADDONS	070615			Lab Sa	mple ID: 4	180-83365-2
Silent Sample ID: BET	WEEN CARBONS	070013				р.с	
Client Sample ID: BET No Detections.	WEEN CARBONS	070013				p.10 1.21	
No Detections.		070013				•	
<u> </u>			MDL	Unit		mple ID: 4	180-83365-3 Prep Type

No Detections.

Client Sample ID: INFLUE	Lab Sample ID	: 480-83365-5			
 Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichloroethene	320	5.0	2.3 ug/L		Total/NA

6

Matrix: Water

Matrix: Water

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 070615

Date Collected: 07/06/15 07:30 Date Received: 07/07/15 01:10 Lab Sample ID: 480-83365-1

. Matrix: Water

 Method: 6010C - Metals (ICP)
 Result Zinc
 Qualifier JB
 RL 0.010
 MDL 0.0015
 Unit mg/L
 D 07/08/15 06:15
 Prepared 07/08/15 17:49
 Analyzed 07/08/15 17:49
 D 07/08/15 17:49

Method: 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury ND 0.00020 0.00012 mg/L D Prepared 07/14/15 10:40 07/14/15 14:38 1

General Chemistry

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Result Qualifier Unit Analyte RL MDL D Prepared Analyzed Dil Fac 10.0 4.0 ma/L 07/08/15 23:42 **Total Dissolved Solids** 652 Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Fac Total Suspended Solids 4.0 07/08/15 11:51 $\overline{\mathsf{ND}}$ 4.0 mg/L

Client Sample ID: BETWEEN CARBONS 070615 Lab Sample ID: 480-83365-2

Date Collected: 07/06/15 07:30

Date Received: 07/07/15 01:10

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier **MDL** Unit Dil Fac RL D Prepared Analyzed 1,1,2,2-Tetrachloroethane $\overline{\mathsf{ND}}$ 1.0 0.21 ug/L 07/14/15 18:06 ND cis-1.2-Dichloroethene 1.0 07/14/15 18:06 0.81 ug/L Methylene Chloride ND 1.0 0.44 07/14/15 18:06 ug/L Tetrachloroethene ND 1.0 0.36 ug/L 07/14/15 18:06 Toluene ND 1.0 0.51 ug/L 07/14/15 18:06 trans-1.2-Dichloroethene ND 1.0 0.90 ug/L 07/14/15 18:06 Trichloroethene ND 1.0 0.46 ug/L 07/14/15 18:06

Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 66 - 137 07/14/15 18:06 115 94 4-Bromofluorobenzene (Surr) 73 120 07/14/15 18:06 Toluene-d8 (Surr) 96 71 - 126 07/14/15 18:06 Dibromofluoromethane (Surr) 111 60 - 140 07/14/15 18:06

Client Sample ID: INFLUENT 070615 Lab Sample ID: 480-83365-3

Date Collected: 07/06/15 07:30

Date Received: 07/07/15 01:10

 Method: 6010C - Metals (ICP)
 Result Zinc
 Qualifier JB
 RL 0.010
 MDL 0.0015
 Unit mg/L
 D 07/08/15 06:15
 Prepared 07/08/15 06:15
 Analyzed 07/08/15 18:11
 D 01 Fac 07/08/15 06:15

 Method: 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 ND
 0.00020
 0.00020
 0.00012
 mg/L
 07/14/15 10:40
 07/14/15 14:40
 1

Client Sample ID: EFFLUENT 070615 Lab Sample ID: 480-83365-4

Date Collected: 07/06/15 07:30 Date Received: 07/07/15 01:10

Method: 8260C - Volatile Organic Compounds by GC/MSAnalyteResult 1,1,2,2-TetrachloroethaneQualifierRL NDMDL Unit ug/LD Prepared (07/14/15 18:34)

TestAmerica Buffalo

Matrix: Water

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83365-1

Client Sample ID: EFFLUENT 070615

Lab Sample ID: 480-83365-4 Date Collected: 07/06/15 07:30

Matrix: Water

07/14/15 18:34

Date Received: 07/07/15 01:10

Dibromofluoromethane (Surr)

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contin	าued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/14/15 18:34	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/14/15 18:34	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/14/15 18:34	1
Toluene	ND		1.0	0.51	ug/L			07/14/15 18:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/14/15 18:34	1
Trichloroethene	ND		1.0	0.46	ug/L			07/14/15 18:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		66 - 137			-		07/14/15 18:34	1
4-Bromofluorobenzene (Surr)	95		73 - 120					07/14/15 18:34	1
Toluene-d8 (Surr)	94		71 - 126					07/14/15 18:34	1

Client Sample ID: INFLUENT 070615

Lab Sample ID: 480-83365-5 Date Collected: 07/06/15 07:30 **Matrix: Water**

60 - 140

Date Received: 07/07/15 01:10

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 1,1,2,2-Tetrachloroethane 5.0 1.1 ug/L 07/14/15 19:01 cis-1,2-Dichloroethene ND 5.0 4.1 ug/L 07/14/15 19:01 5 ND Methylene Chloride 5.0 2.2 ug/L 07/14/15 19:01 5 Tetrachloroethene ND 5.0 1.8 ug/L 07/14/15 19:01 5 Toluene ND 5.0 2.6 ug/L 07/14/15 19:01 5 trans-1,2-Dichloroethene ND 5 5.0 4.5 ug/L 07/14/15 19:01 5.0 2.3 ug/L 07/14/15 19:01 **Trichloroethene** 320

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	66 - 137		07/14/15 19:01	5
4-Bromofluorobenzene (Surr)	97	73 - 120		07/14/15 19:01	5
Toluene-d8 (Surr)	97	71 - 126		07/14/15 19:01	5
Dibromofluoromethane (Surr)	116	60 - 140		07/14/15 19:01	5

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83365-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-83365-2	BETWEEN CARBONS 070615	115	94	96	111
480-83365-4	EFFLUENT 070615	112	95	94	110
480-83365-5	INFLUENT 070615	115	97	97	116
LCS 480-253041/4	Lab Control Sample	113	99	95	109
MB 480-253041/6	Method Blank	110	95	95	109

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

3

4

5

7

10

11

13

14

Client: O'Brien & Gere Inc of North America TestAmerica Job ID: 480-83365-1
Project/Site: Former Accurate Die Cast

2

3

4

7

10

12 12

14

Method: 8260C - Volatile Organic Compounds by GC/MS

MD MD

Lab Sample ID: MB 480-253041/6

Matrix: Water

Analysis Batch: 253041

B 480-253041/6 Client Sample ID: Method Blank
Prep Type: Total/NA

		IVID	IVID							
Analyte		Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetra	achloroethane	ND ND		1.0	0.21	ug/L			07/14/15 11:26	1
cis-1,2-Dich	loroethene	ND		1.0	0.81	ug/L			07/14/15 11:26	1
Methylene C	Chloride	ND		1.0	0.44	ug/L			07/14/15 11:26	1
Tetrachloroe	ethene	ND		1.0	0.36	ug/L			07/14/15 11:26	1
Toluene		ND		1.0	0.51	ug/L			07/14/15 11:26	1
trans-1,2-Di	chloroethene	ND		1.0	0.90	ug/L			07/14/15 11:26	1
Trichloroeth	ene	ND		1.0	0.46	ug/L			07/14/15 11:26	1

MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 1,2-Dichloroethane-d4 (Surr) 110 66 - 137 07/14/15 11:26 4-Bromofluorobenzene (Surr) 95 73 - 120 07/14/15 11:26 Toluene-d8 (Surr) 95 71 - 126 07/14/15 11:26 109 60 - 140 Dibromofluoromethane (Surr) 07/14/15 11:26

Lab Sample ID: LCS 480-253041/4

Matrix: Water

Zinc

Analysis Batch: 253041

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LUS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	26.9		ug/L		108	74 - 124	
Tetrachloroethene	25.0	22.5		ug/L		90	74 - 122	
Toluene	25.0	22.7		ug/L		91	80 - 122	
trans-1,2-Dichloroethene	25.0	26.6		ug/L		106	73 - 127	
Trichloroethene	25.0	25.5		ug/L		102	74 - 123	

LCS LCS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 66 - 137 113 99 4-Bromofluorobenzene (Surr) 73 - 120 Toluene-d8 (Surr) 95 71 - 126 109 60 - 140 Dibromofluoromethane (Surr)

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-251975/1-A

Matrix: Water

Analysis Batch: 252333

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 251975

 Analyte
 Result Zinc
 Qualifier Qualifier
 RL Qualifier Qualifier

Lab Sample ID: LCS 480-251975/2-A

Matrix: Water

Analysis Batch: 252333

Spike

LCS LCS

Analyte

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 251975

%Rec.

Added

Result Qualifier Unit

D %Rec Limits

0.206

mg/L

103

80 - 120

0.200

TestAmerica Buffalo

TestAmerica Job ID: 480-83365-1

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-83365-1 MS Client Sample ID: EFFLUENT 070615 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 252333 Prep Batch: 251975**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Zinc 0.200 75 - 125 0.0051 JB 0.211 mg/L 103

Lab Sample ID: 480-83365-1 MSD Client Sample ID: EFFLUENT 070615 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 252333 Prep Batch: 251975** Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Analyte Result Qualifier Limits **RPD** Limit Unit %Rec Zinc 0.0051 JB 0.200 0.204 mg/L 100 75 - 125 20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-253056/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 253213 Prep Batch: 253056 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.00020 0.00012 mg/L 07/14/15 10:40 07/14/15 14:15 Mercury $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 480-253056/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 253213 Prep Batch: 253056 LCS LCS Spike %Rec.

Added Result Qualifier Limits Analyte Unit %Rec Mercury 0.00667 0.00672 mg/L 101 80 - 120

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-252148/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 252148

MB MB Analyte Result Qualifier RI RI Unit D Dil Fac Prepared Analyzed **Total Suspended Solids** 1.0 1.0 mg/L 07/08/15 11:51 ND

Lab Sample ID: LCS 480-252148/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 252148

Spike LCS LCS %Rec. Added **Analyte** Result Qualifier Unit D %Rec Limits 242 100 **Total Suspended Solids** 241.6 mg/L 88 - 110

7/16/2015

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83365-1

Prep Type: Total/NA

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-252259/1 Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 252259

MB MB

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Total Dissolved Solids 10.0 4.0 mg/L 07/08/15 23:42 ND

Lab Sample ID: LCS 480-252259/2 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 252259

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit Limits D %Rec Total Dissolved Solids 502 104 85 - 115 521.0 mg/L

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83365-1

GC/MS VOA

Analysis Batch: 253041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-2	BETWEEN CARBONS 070615	Total/NA	Water	8260C	
480-83365-4	EFFLUENT 070615	Total/NA	Water	8260C	
480-83365-5	INFLUENT 070615	Total/NA	Water	8260C	
LCS 480-253041/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-253041/6	Method Blank	Total/NA	Water	8260C	

Metals

Prep Batch: 251975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-1	EFFLUENT 070615	Total/NA	Water	3005A	_
480-83365-1 MS	EFFLUENT 070615	Total/NA	Water	3005A	
480-83365-1 MSD	EFFLUENT 070615	Total/NA	Water	3005A	
480-83365-3	INFLUENT 070615	Total/NA	Water	3005A	
LCS 480-251975/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-251975/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 252333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-1	EFFLUENT 070615	Total/NA	Water	6010C	251975
480-83365-1 MS	EFFLUENT 070615	Total/NA	Water	6010C	251975
480-83365-1 MSD	EFFLUENT 070615	Total/NA	Water	6010C	251975
480-83365-3	INFLUENT 070615	Total/NA	Water	6010C	251975
LCS 480-251975/2-A	Lab Control Sample	Total/NA	Water	6010C	251975
MB 480-251975/1-A	Method Blank	Total/NA	Water	6010C	251975

Prep Batch: 253056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-1	EFFLUENT 070615	Total/NA	Water	7470A	
480-83365-3	INFLUENT 070615	Total/NA	Water	7470A	
LCS 480-253056/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-253056/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 253213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-1	EFFLUENT 070615	Total/NA	Water	7470A	253056
480-83365-3	INFLUENT 070615	Total/NA	Water	7470A	253056
LCS 480-253056/2-A	Lab Control Sample	Total/NA	Water	7470A	253056
MB 480-253056/1-A	Method Blank	Total/NA	Water	7470A	253056

General Chemistry

Analysis Batch: 252148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-1	EFFLUENT 070615	Total/NA	Water	SM 2540D	
LCS 480-252148/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-252148/1	Method Blank	Total/NA	Water	SM 2540D	

TestAmerica Buffalo

Page 12 of 19

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83365-1

General Chemistry (Continued)

Analysis Batch: 252259

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83365-1	EFFLUENT 070615	Total/NA	Water	SM2540 C	
LCS 480-252259/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-252259/1	Method Blank	Total/NA	Water	SM2540 C	

3

4

6

Q

10

12

13

TestAmerica Job ID: 480-83365-1

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 070615 Lab Sample ID: 480-83365-1 Date Collected: 07/06/15 07:30 **Matrix: Water**

Date Received: 07/07/15 01:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			251975	07/08/15 06:15	CMM	TAL BUF
Total/NA	Analysis	6010C		1	252333	07/08/15 17:49	TRB	TAL BUF
Total/NA	Prep	7470A			253056	07/14/15 10:40	LRK	TAL BUF
Total/NA	Analysis	7470A		1	253213	07/14/15 14:38	LRK	TAL BUF
Total/NA	Analysis	SM 2540D		1	252148	07/08/15 11:51	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	252259	07/08/15 23:42	MGH	TAL BUF

Lab Sample ID: 480-83365-2 Client Sample ID: BETWEEN CARBONS 070615

Date Collected: 07/06/15 07:30

Date Received: 07/07/15 01:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	253041	07/14/15 18:06	JWG	TAL BUF

Client Sample ID: INFLUENT 070615 Lab Sample ID: 480-83365-3

Date Collected: 07/06/15 07:30

Date Received: 07/07/15 01:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			251975	07/08/15 06:15	CMM	TAL BUF
Total/NA	Analysis	6010C		1	252333	07/08/15 18:11	TRB	TAL BUF
Total/NA	Prep	7470A			253056	07/14/15 10:40	LRK	TAL BUF
Total/NA	Analysis	7470A		1	253213	07/14/15 14:40	LRK	TAL BUF

Client Sample ID: EFFLUENT 070615 Lab Sample ID: 480-83365-4

Date Collected: 07/06/15 07:30

Date Received: 07/07/15 01:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			253041	07/14/15 18:34	JWG	TAL BUF

Client Sample ID: INFLUENT 070615 Lab Sample ID: 480-83365-5

Date Collected: 07/06/15 07:30

Date Received: 07/07/15 01:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	253041	07/14/15 19:01	JWG	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83365-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

4

5

7

8

10

11

IC

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83365-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

2

3

4

6

11

12

1 A

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83365-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-83365-1	EFFLUENT 070615	Water	07/06/15 07:30	07/07/15 01:10
480-83365-2	BETWEEN CARBONS 070615	Water	07/06/15 07:30	07/07/15 01:10
480-83365-3	INFLUENT 070615	Water	07/06/15 07:30	07/07/15 01:10
480-83365-4	EFFLUENT 070615	Water	07/06/15 07:30	07/07/15 01:10
480-83365-5	INFLUENT 070615	Water	07/06/15 07:30	07/07/15 01:10

9

10

12

14

TestAmerica Buffalo		•	•		•					•	Ž		
ro nazewood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	5	ain o	Cust	Chain of Custody Record	scora						THE LEADER IN	THE LEACER IN ENVIRONMENTAL TESTING	
	Sampler:	1	1	Lab PM	: ا			Carrier	Carrier Tracking No(s):		COC No:		osperation
Client Information	1111111	NOETH Y	あれて大	neyo	Melissa L			T		2.45	480-59316-10589.1	589.1	Т
Cilent Contact: Mr. Yuri Veliz	Phone: 315-73	29-130	300	E-Mail: melis	E-wait melissa.deyo@testamericainc.com	stamerica	nc.com				rage: Page 1 of 1		······
Company. O'Brien & Gere Inc of North America							Analysis	Requested	פ		Job #:		_
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:					-					Preservation Codes		r
City. East Syracuse	TAT Requested (days):						······································				B - NaOH C - Zn Acetate		a timber de process
State, Zip. NY, 13221											D - Nitric Acid E - NaHSO4 E - MaOH		carrier district and
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#. 11312000EST				(o						G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	***************************************
Emait. Yuri.Veliz@obg.com	WO#:				(on		······································		^ 	S.I	1 - foe J - DI Water V = DTA	U - Acetone V - MCAA	water,
Project Name: Former Accurate Die Cast	Project #: 48008584				io se					enletn	L-EDA	Z - other (specify)	
Site:	SSOW#:				y) ası		, ,) O jo r	00 10	Other:		·····
		Sample (Matrix (w-water, S=solid, O-wastaloli,	berehild bli W.S.M. mrofi BlistoT - Clou	10C_Calcd - 7	00C - Zinc 70A - Mercur		3365 Chall	redmuM let			
Sample Identification	Sample Date	100	G=grab) BT=TISSUB, A=Alt Presenvation Code:	2.000	na X	92 Z			8-08 7		Special	Special Instructions/Note:	286
Effluent CMC615	17-6-15 17	77.30	U	Water		/	i (. T. T.				
Between Carbons 670615	17-6-15 17:	30	Ð	Water		67							
Inffluent 070(c15	17-6-15 17	17:30	U	Water									7
Effern Togols	17-6-15 9	7:30	9	WATER		in							
INFLONT 040615	1 31-9-4	7:30	9	water		W							7
									····				
Pro- 1612 11					Jumps)caoca(1 feet man	10350356 04	dif commodes	orictor ore	Committee of A for may be secreed if complex are retained longs than 1 month	1 month)	- T
Fossible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	son B Unknown	Ц] Radiological			Return To Client	A ree may lent	Disposal By Lab	Dy Lab	Archive For	e For	Months	-
Other (specify)	i .				Special	Instructions	Special Instructions/QC Requirements:	ements:					
Empty Kit Relinquished by:	Date	te:			Time:			Me	Method of Shipment	댝			
Relinquished by Kontha Kontha	Date/Time:	13.	° 35.	$\mathcal{I}_{Ausduoo}^{\mathcal{I}}$	Rece	Charles of the same	Mallo	IN THE	Date/Time	me: JL	1128	J Company O	
Relinquished by: A-1,411, h	Date/Time:	9	2	Company	Receiv					ZEL	0110	Company	
'	Date/Time:		8	Company	Rec	ed by:			Date/I me.	me:/		Company	— Т
Custody Seals Intact Custody Seal No.: A Yes A No				ļ	Cook	r Temperatur	Cooler Temperature(s) °C and Other Remarks:	her Remarks:		9	2	1	

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-83365-1

Login Number: 83365 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

4

o

111

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-83878-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

3

Authorized for release by: 7/24/2015 11:05:56 AM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

3

4

8

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-83878-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Page 3 of 14

7/24/2015

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83878-1

Job ID: 480-83878-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-83878-1

Receipt

The sample was received on 7/15/2015 2:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.9° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

7

8

9

11

16

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 071415

TestAmerica Job ID: 480-83878-1

Lab Sample ID: 480-83878-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	627	10.0	4.0 mg/L	1 SM2540 C	Total/NA

4

5

6

9

10

12

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83878-1

Client Sample ID: EFFLUENT 071415

Lab Sample ID: 480-83878-1 Date Collected: 07/14/15 07:45 Matrix: Water

Date Received: 07/15/15 02:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	627		10.0	4.0	mg/L			07/21/15 00:46	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND	 -	4.0	4.0	mg/L			07/19/15 07:27	1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83878-1

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-254165/1

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 254165

 Analyte
 Result
 Qualifier
 RL
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Suspended Solids
 ND
 1.0
 1.0
 1.0
 mg/L
 07/19/15 07:27
 1

Lab Sample ID: LCS 480-254165/2

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 254165

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-254385/1

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 254385

 MB MB

 Analyte
 Result Total Dissolved Solids
 Qualifier
 RL ND
 MDL Unit Wight
 D Prepared Wight
 Analyzed Analyzed Dil Fac Wight
 Dil Fac Wight

Lab Sample ID: LCS 480-254385/2

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 254385

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result Total Dissolved Solids
 Qualifier Total Dissolved Solids
 Unit mg/L
 D mg/L
 %Rec benefit

7/24/2015

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83878-1

General Chemistry

Analysis Batch: 254165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83878-1	EFFLUENT 071415	Total/NA	Water	SM 2540D	
LCS 480-254165/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-254165/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 254385

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83878-1	EFFLUENT 071415	Total/NA	Water	SM2540 C	
LCS 480-254385/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-254385/1	Method Blank	Total/NA	Water	SM2540 C	

2

3

4

5

6

Ω

9

11

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 071415

TestAmerica Job ID: 480-83878-1

Lab Sample ID: 480-83878-1

Matrix: Water

Date Collected: 07/14/15 07:45 Date Received: 07/15/15 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	254165	07/19/15 07:27	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	254385	07/21/15 00:46	ELR	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83878-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

5

8

10

11

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-83878-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

3

7

8

40

11

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-83878-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-83878-1	EFFLUENT 071415	Water	07/14/15 07:45	07/15/15 02:00

4

6

8

9

44

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

TestAmerico

			Lab PM:		Camer Tracking No(s):	COC No.	
Client Information		NOESWERY	Deyo, Melissa L	yissa L		480-59357-10586.1	CORE SHOPPED
Cherr Contact Mr. Yurì Veliz	From 315-729-	1300	melissa.d	E-Wait: melissa.deyo@testamericainc.com		Page: Page 1 of 1	
Company: O'Brien & Gere Inc of North America				Sis	Request	Job#:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:						
Orb: East Syracuse	TAT Requested (days):						A SALES AND THE SALES AND THE
State, Zip: NY, 13221						D-Nitric Acid P-Na2O4S E-NaHSO4 Q-Na2SO3	de elatino _{de p} opulaçõe
Phone. 315-956-6100(Tel) 315-463-7554(Fax)	PO#. 11312000EST		(0	sı			1
Email: Yuri.Veliz@obg.com	,WO #.			spi	s .	1 - Ice J - Di Water	ir yarare
Project Name: Former Accurate Die Cast	Project #. 48008584			loS pə	Conference Conference price	K-EDTA L-EDA	\$
Site:	:ROW#:			puədsı		Other:	Securita in processors
Sample identification	Sample Date Time	Sample Type (C=comp,	berefild blei	M/SM/(M/O)19: u2 laioT - G04a; T - bolsOO04b	16dmuV. 1610	Snorial Inetrictions Moto	CONTRACTOR STATE OF THE PROPERTY OF THE PROPER
		-1781	X	2 2			
Effluent 07/14/5	17-17-15 17:45	J	Water				
			,				
			ingerigade to			**************************************	
Possible Hazard Identification	Doison B	Radiological	O)	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mon	assessed if samples are retaine	tained longer than 1 month) Archive For Months	ing it Me ningah
ssted: I, II, III, IV, Other (specify)			S	Requireme			
Empty Kit Relinquished by:	Date: /		Time	3;	Method of Shipment:		
Relinguished by: Kern K.	Date/Time: 7-15 /	Q 51,711		Recommend of the 1	23 Date(Time: 14-1	FIII F COUNTY	
 	Date/Time: /	Company	any	Received	Date/Time:	Company Contract	2
Relinquished by:	Date/Time:	Company	апу	Received by:	Date/Time:	Company	
Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Remarks:	narks:	1-8 60	

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-83878-1

Login Number: 83878 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Creator. Williams, Christopher 3		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

1

9

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-84297-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 7/31/2015 10:02:32 AM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

5

7

ð

r	١,	

K

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-84297-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Page 3 of 16

7/31/2015

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

Job ID: 480-84297-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-84297-1

Receipt

The samples were received on 7/22/2015 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.2° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

_

6

_

_

10

13

14

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

Client Sample ID: EFFLUENT 072115

Lab Sample ID: 480-84297-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	658	10.0	4.0 mg/L	1 SM2540 C	Total/NA

Client Sample ID: EFFLUENT Lab Sample ID: 480-84297-2

No Detections.

2

4

5

9

11

13

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

Lab Sample ID: 480-84297-1

Matrix: Water

Client Sample ID: EFFLUENT 072115

Date Collected: 07/21/15 07:45 Date Received: 07/22/15 01:30

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	658		10.0	4.0	mg/L			07/27/15 02:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			07/23/15 15:35	1

Client Sample ID: EFFLUENT Lab Sample ID: 480-84297-2

Date Collected: 07/21/15 07:45 Matrix: Water

Date Received: 07/22/15 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/23/15 13:06	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/23/15 13:06	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/23/15 13:06	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/23/15 13:06	1
Toluene	ND		1.0	0.51	ug/L			07/23/15 13:06	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/23/15 13:06	1
Trichloroethene	ND		1.0	0.46	ug/L			07/23/15 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		66 - 137			•		07/23/15 13:06	1
4-Bromofluorobenzene (Surr)	98		73 - 120					07/23/15 13:06	1
Toluene-d8 (Surr)	100		71 - 126					07/23/15 13:06	1
Dibromofluoromethane (Surr)	100		60 - 140					07/23/15 13:06	1

5

7

8

10

11

13

14

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)				
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)	
480-84297-2	EFFLUENT	94	98	100	100	
LCS 480-254904/5	Lab Control Sample	96	97	100	100	
MB 480-254904/7	Method Blank	98	99	102	100	
Surrogate Legend						
12DCE = 1,2-Dichloro	oethane-d4 (Surr)					

BFB = 4-Bromofluorobenzene (Surr)
TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

4

7

8

10

12

13

14

TestAmerica Job ID: 480-84297-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

000 41101100 000 12. 100 0 1201

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-254904/7

Client Sample ID: Method Blank
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 254904

	MR MR							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND —	1.0	0.21	ug/L			07/23/15 11:41	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			07/23/15 11:41	1
Methylene Chloride	ND	1.0	0.44	ug/L			07/23/15 11:41	1
Tetrachloroethene	ND	1.0	0.36	ug/L			07/23/15 11:41	1
Toluene	ND	1.0	0.51	ug/L			07/23/15 11:41	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			07/23/15 11:41	1
Trichloroethene	ND	1.0	0.46	ug/L			07/23/15 11:41	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 98 66 - 137 07/23/15 11:41 73 - 120 4-Bromofluorobenzene (Surr) 99 07/23/15 11:41 Toluene-d8 (Surr) 102 71 - 126 07/23/15 11:41 Dibromofluoromethane (Surr) 100 60 - 140 07/23/15 11:41

Lab Sample ID: LCS 480-254904/5

Matrix: Water

Analysis Batch: 254904

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	27.0		ug/L		108	74 - 124	
Tetrachloroethene	25.0	27.3		ug/L		109	74 - 122	
Toluene	25.0	27.3		ug/L		109	80 - 122	
trans-1,2-Dichloroethene	25.0	26.0		ug/L		104	73 - 127	
Trichloroethene	25.0	27.2		ug/L		109	74 - 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
4-Bromofluorobenzene (Surr)	97		73 - 120
Toluene-d8 (Surr)	100		71 - 126
Dibromofluoromethane (Surr)	100		60 - 140

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-255041/1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 255041

7, 6.6 20.0 2000	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	mg/L			07/23/15 15:35	1

Lab Sample ID: LCS 480-255041/2

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 255041

_	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Total Suspended Solids	264	259.6		mg/L	98	88 - 110	

TestAmerica Buffalo

Page 8 of 16

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

8

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-255417/1 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 255417

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Dissolved Solids
 ND
 10.0
 4.0
 mg/L
 07/27/15 02:10
 1

Lab Sample ID: LCS 480-255417/2

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 255417

 Analyte
 Added Total Dissolved Solids
 Result Solved Solids
 Qualifier Total Dissolved Solids
 Unit Total Dissolved Solids
 Description of the National Solids
 Where the National Solids
 Where Solids
 Make Total Dissolved Solids</

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84297-1

GC/MS VOA

Analysis Batch: 254904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84297-2	EFFLUENT	Total/NA	Water	8260C	
LCS 480-254904/5	Lab Control Sample	Total/NA	Water	8260C	
MB 480-254904/7	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 255041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84297-1	EFFLUENT 072115	Total/NA	Water	SM 2540D	
LCS 480-255041/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-255041/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 255417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84297-1	EFFLUENT 072115	Total/NA	Water	SM2540 C	- <u> </u>
LCS 480-255417/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-255417/1	Method Blank	Total/NA	Water	SM2540 C	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 072115

TestAmerica Job ID: 480-84297-1

Lab Sample ID: 480-84297-1

Matrix: Water

Date Collected: 07/21/15 07:45 Date Received: 07/22/15 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	255041	07/23/15 15:35	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	255417	07/27/15 02:10	ELR	TAL BUF

Lab Sample ID: 480-84297-2 **Client Sample ID: EFFLUENT**

Date Collected: 07/21/15 07:45 **Matrix: Water**

Date Received: 07/22/15 01:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	254904	07/23/15 13:06	SWO	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

2

-

5

R

9

11

12

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84297-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

__

6

0

- 10

12

4 4

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84297-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-84297-1	EFFLUENT 072115	Water	07/21/15 07:45 07	/22/15 01:30
480-84297-2	EFFLUENT	Water	07/21/15 07:45 07	/22/15 01:30

_

6

8

9

11

12

14

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-84297-1

Login Number: 84297 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

6

8

10

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-84699-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

3

Authorized for release by: 8/5/2015 10:51:36 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Racaint Chacklists	14

6

4

8

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-84699-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Buffalo

Page 3 of 14

8/5/2015

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84699-1

Job ID: 480-84699-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-84699-1

Receipt

The sample was received on 7/29/2015 1:15 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

b

6

10

12

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84699-1

Lab Sample ID: 480-84699-1

Client Sample ID: EFFLUENT 072815

Dil Fac	D	Method	Prep Type

Analyte Result Qualifier RL MDL Unit Total Dissolved Solids SM2540 C 10.0 4.0 mg/L Total/NA 649

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84699-1

Client Sample ID: EFFLUENT 072815

Lab Sample ID: 480-84699-1 Date Collected: 07/28/15 07:00

Matrix: Water

Date Received: 07/29/15 01:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	649		10.0	4.0	mg/L			08/02/15 20:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			08/03/15 09:22	1

Client: O'Brien & Gere Inc of North America TestAmerica Job ID: 480-84699-1 Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-256685/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 256685

MB MB Analyte Result Qualifier RL **RL** Unit Analyzed Dil Fac D Prepared 1.0 08/03/15 09:22 Total Suspended Solids $\overline{\mathsf{ND}}$ 1.0 mg/L

Lab Sample ID: LCS 480-256685/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 256685

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec **Total Suspended Solids** 243 240.8 mg/L 99 88 - 110

Lab Sample ID: 480-84699-1 DU **Client Sample ID: EFFLUENT 072815**

Matrix: Water

Analysis Batch: 256685

Sample Sample DU DU **RPD** Result Qualifier RPD Result Qualifier Limit Analyte Unit D **Total Suspended Solids** $\overline{\mathsf{ND}}$ ND mg/L

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-256624/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 256624

MB MB

Result Qualifier **MDL** Unit Prepared Analyzed Total Dissolved Solids ND 10.0 4.0 mg/L 08/02/15 20:15

Lab Sample ID: LCS 480-256624/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 256624

LCS LCS Spike %Rec. Analyte Added Result Qualifier %Rec Limits Unit D Total Dissolved Solids 502 481.0 mg/L 96 85 - 115

Lab Sample ID: 480-84699-1 DU Client Sample ID: EFFLUENT 072815 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 256624

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit D **Total Dissolved Solids** 649 650.0 mg/L 0.2 20

TestAmerica Buffalo

8/5/2015

Prep Type: Total/NA

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84699-1

General Chemistry

Analysis Batch: 256624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84699-1	EFFLUENT 072815	Total/NA	Water	SM2540 C	
480-84699-1 DU	EFFLUENT 072815	Total/NA	Water	SM2540 C	
LCS 480-256624/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-256624/1	Method Blank	Total/NA	Water	SM2540 C	

Analysis Batch: 256685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84699-1	EFFLUENT 072815	Total/NA	Water	SM 2540D	
480-84699-1 DU	EFFLUENT 072815	Total/NA	Water	SM 2540D	
LCS 480-256685/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-256685/1	Method Blank	Total/NA	Water	SM 2540D	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84699-1

Lab Sample ID: 480-84699-1

Matrix: Water

Client Sample ID: EFFLUENT 072815

Date Collected: 07/28/15 07:00 Date Received: 07/29/15 01:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	256685	08/03/15 09:22	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	256624	08/02/15 20:15	ELR	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84699-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

చ

4

5

9

10

11

10

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84699-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

Λ

7

Q

4 4

10

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84699-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-84699-1	EFFLUENT 072815	Water	07/28/15 07:00	07/29/15 01:15

6

8

9

10

12

13

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

The leader of thurstonaental testing

Client Information	Sampler Reties Ko Ware	Lab PW: Deyo, Melissa L	elissa L	Carrier Tracking No(s):	COC No: 480-59357-10586.1
Client Contact:	Phone:	E-Mait.		(apparent)	Page:
Mr. Yuri Veliz	315-729-1300	melissa	melissa.deyo@testamericaínc.com		Page 1 of 1
Company: O'Brien & Gere Inc of North America			Analysis Remosted	наевал	# qon
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:				Code
City: East Syracuse	TAT Requested (days):				A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: NY, 13221					
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 11312000EST		480-84699 Chain of Custody	or custody	F - MeOH R - Na2S2SO3 G - Amchlor S - H2SO4 H - Asonbic Acid T - TSP Dodecatudazie
Emait Yuri.Veliz@obg.com	WO#	N:IO	spi	•	- toe J - D! Water
Project Name. Former Accurate Die Cast	Project #. 48008584	9人) 。6	log þə	(eulet)	
Site:	SSOW#:	dwes	puads	JOS JÓ	Other:
			1. botal \$1.	- JedmuV	
Sample Identification	ample Fime	-	56401	JE TO	Special Instructions/Note:
	X	Preservation Code		\times 41.1.1.1.1	
Effluent 07 2815	307	Water		<i>(</i> 6)	
Possible Hazard Identification	Poison B Unknown Radiological	fe.	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Mon	assessed if samples are retaine Disposal By Lab	tained longer than 1 month) Archive For Months
ssted: I, II, III, IV, Other (specify)			Requirent	ıts:	
Empty Kit Relinquished by:	Date: 1	Time:	ję:	Method of Shipment:	
Relinquished by Math. Horne Mic.	Date/Time: 7-88-15 / 1435	Company 6	Received by Many	Me Date/Time:	1 / MS Company
Relinquished by:		Company	Receivement	29 June	ONE SUPPLY
Retinquished by:		Company	Received by:	Date/Time: /	Сотрапу
	-		Control from O' (s) on the state of the control of		, ,,

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-84699-1

Login Number: 84699 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Creator. Williams, Christopher 3		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Λ

6

_

111

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-84941-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Z.

Authorized for release by: 8/11/2015 4:56:15 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

3

4

7

9

10

12

4

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-84941-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

8/11/2015

Page 3 of 16

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84941-1

Job ID: 480-84941-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-84941-1

Receipt

The samples were received on 8/4/2015 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-

4

_

6

10

11

13

14

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 080315

TestAmerica Job ID: 480-84941-1

Lab Sample ID: 480-84941-1

No Detections.

Client Sample ID: BETWEEN CARBONS 080315 Lab Sample ID: 480-84941-2

No Detections.

Client Sample ID: EFFLUENT 080315 Lab Sample ID: 480-84941-3

AnalyteResult Total Dissolved SolidsQualifierRL RL Dissolved SolidsMDL Unit mg/LUnit mg/LDil Fac Dil Fac

| 3

4

5

7

8

9

11

13

14

TestAmerica Job ID: 480-84941-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 080315

Date Collected: 08/03/15 07:20 Date Received: 08/04/15 01:30

Lab Sample ID: 480-84941-1

Lab Sample ID: 480-84941-2

08/11/15 00:39

Matrix: Water

Lab Sample ID: 480-84941-3

Matrix: Water

Matrix: Water

Method: 8260C - Volatile O	rganic Compou	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/11/15 00:11	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/11/15 00:11	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/11/15 00:11	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/11/15 00:11	1
Toluene	ND		1.0	0.51	ug/L			08/11/15 00:11	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/11/15 00:11	1
Trichloroethene	ND		1.0	0.46	ug/L			08/11/15 00:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		66 - 137			-		08/11/15 00:11	1
4-Bromofluorobenzene (Surr)	92		73 - 120					08/11/15 00:11	1
Toluene-d8 (Surr)	95		71 - 126					08/11/15 00:11	1
Dibromofluoromethane (Surr)	92		60 - 140					08/11/15 00:11	1

Client Sample ID: BETWEEN CARBONS 080315

Date Collected: 08/03/15 07:20

Date Received: 08/04/15 01:30

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/11/15 00:39	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/11/15 00:39	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/11/15 00:39	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/11/15 00:39	1
Toluene	ND		1.0	0.51	ug/L			08/11/15 00:39	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/11/15 00:39	1
Trichloroethene	ND		1.0	0.46	ug/L			08/11/15 00:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137			•		08/11/15 00:39	1
4-Bromofluorobenzene (Surr)	91		73 - 120					08/11/15 00:39	1
Toluene-d8 (Surr)	95		71 - 126					08/11/15 00:39	1

60 - 140

Client Sample ID: EFFLUENT 080315

100

Date Collected: 08/03/15 07:20

Dibromofluoromethane (Surr)

Date Received: 08/04/15 01:30

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	661		10.0	4.0	mg/L			08/04/15 21:51	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			08/05/15 07:09	1

TestAmerica Buffalo

Page 6 of 16

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84941-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Rec
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-84941-1	EFFLUENT 080315	89	92	95	92
480-84941-2	BETWEEN CARBONS 080315	101	91	95	100
LCS 480-257960/4	Lab Control Sample	98	102	104	97
MB 480-257960/6	Method Blank	103	95	99	100

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

2

6

8

9

1 1

12

TestAmerica Job ID: 480-84941-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-257960/6 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 257960

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane		1.0	0.21	ug/L			08/10/15 22:55	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			08/10/15 22:55	1
Methylene Chloride	ND	1.0	0.44	ug/L			08/10/15 22:55	1
Tetrachloroethene	ND	1.0	0.36	ug/L			08/10/15 22:55	1
Toluene	ND	1.0	0.51	ug/L			08/10/15 22:55	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			08/10/15 22:55	1
Trichloroethene	ND	1.0	0.46	ug/L			08/10/15 22:55	1

MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 1,2-Dichloroethane-d4 (Surr) 103 66 - 137 08/10/15 22:55 4-Bromofluorobenzene (Surr) 95 73 - 120 08/10/15 22:55 Toluene-d8 (Surr) 99 71 - 126 08/10/15 22:55 100 60 - 140 08/10/15 22:55 Dibromofluoromethane (Surr)

Lab Sample ID: LCS 480-257960/4

Matrix: Water

Analysis Batch: 257960

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	25.8		ug/L		103	74 - 124	
Tetrachloroethene	25.0	29.0		ug/L		116	74 - 122	
Toluene	25.0	27.8		ug/L		111	80 - 122	
trans-1,2-Dichloroethene	25.0	26.7		ug/L		107	73 - 127	
Trichloroethene	25.0	26.6		ug/L		107	74 - 123	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 66 - 137 4-Bromofluorobenzene (Surr) 102 73 - 120 Toluene-d8 (Surr) 104 71 - 126 Dibromofluoromethane (Surr) 97 60 - 140

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-257033/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 257033

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	mg/L			08/05/15 07:09	1

Lab Sample ID: LCS 480-257033/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 257033

LCS LCS %Rec. Spike Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 258 259.2 mg/L 100 88 - 110

TestAmerica Buffalo

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84941-1

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: 480-84941-3 DU Client Sample ID: EFFLUENT 080315 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 257033

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit ND ND Total Suspended Solids mg/L NC 15

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-257008/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 257008

MB MB RL **MDL** Unit Analyte Result Qualifier Analyzed Dil Fac D Prepared **Total Dissolved Solids** ND 10.0 4.0 mg/L 08/04/15 21:51

Lab Sample ID: LCS 480-257008/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 257008

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Total Dissolved Solids 502 504.0 100 85 - 115 mg/L

Lab Sample ID: 480-84941-3 DU Client Sample ID: EFFLUENT 080315 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 257008

DU DU RPD Sample Sample Result Qualifier Result Qualifier Unit RPD Limit Total Dissolved Solids 661 649.0 mg/L 20

TestAmerica Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84941-1

GC/MS VOA

Analysis Batch: 257960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84941-1	EFFLUENT 080315	Total/NA	Water	8260C	
480-84941-2	BETWEEN CARBONS 080315	Total/NA	Water	8260C	
LCS 480-257960/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-257960/6	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 257008

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84941-3	EFFLUENT 080315	Total/NA	Water	SM2540 C	
480-84941-3 DU	EFFLUENT 080315	Total/NA	Water	SM2540 C	
LCS 480-257008/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-257008/1	Method Blank	Total/NA	Water	SM2540 C	

Analysis Batch: 257033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84941-3	EFFLUENT 080315	Total/NA	Water	SM 2540D	
480-84941-3 DU	EFFLUENT 080315	Total/NA	Water	SM 2540D	
LCS 480-257033/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-257033/1	Method Blank	Total/NA	Water	SM 2540D	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 080315

TestAmerica Job ID: 480-84941-1

Lab Sample ID: 480-84941-1

Matrix: Water

Date Collected: 08/03/15 07:20 Date Received: 08/04/15 01:30

Dilution Batch Batch **Batch Prepared** Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Lab TAL BUF Total/NA Analysis 8260C 257960 08/11/15 00:11 EDB

Client Sample ID: BETWEEN CARBONS 080315 Lab Sample ID: 480-84941-2

Date Collected: 08/03/15 07:20 **Matrix: Water**

Date Received: 08/04/15 01:30

Batch Batch Dilution **Batch Prepared Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab TAL BUF 8260C 257960 08/11/15 00:39 EDB Total/NA Analysis

Client Sample ID: EFFLUENT 080315 Lab Sample ID: 480-84941-3

Date Collected: 08/03/15 07:20 **Matrix: Water**

Date Received: 08/04/15 01:30

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Total/NA Analysis SM 2540D 257033 08/05/15 07:09 EKB TAL BUF SM2540 C 257008 08/04/15 21:51 MGH Total/NA Analysis **TAL BUF**

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-84941-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

_

4

5

7

9

11

12

4.4

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84941-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-84941-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-84941-1	EFFLUENT 080315	Water	08/03/15 07:20 08/04/15 01:30
480-84941-2	BETWEEN CARBONS 080315	Water	08/03/15 07:20 08/04/15 01:30
480-84941-3	EFFLUENT 080315	Water	08/03/15 07:20 08/04/15 01:30

_

3

4

6

Я

9

11

13

14

Cooler Temperature(s) C and Other Remarks:

3

0130

Chain of Custody Record

TestAmerica Buffalo

10 Hazelwood Drive

THE LEADER IN CANADOMICNIAL TESTING **TestAmerico**

N - None
O - Ashad2
P - Na2O4S
Q - Na2SO3
R - Na2SSSO3
S - H2SO4 U - Acetone V - MCAA W - ph 4-5 Z - other (specify) Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month COC No: 480-59322-10588.1 G - Amchlor H - Ascorbic Acid Page: Page 1 of 1 J - DI Water K - EDTA L - EDA arenistroo to redmuN istoT 65 75 64 Date/Fime: 480-84941 Chain of Custody Method of Shipment Analysis Requested Special Instructions/QC Requirements melissa.deyo@testamericainc.com $\omega | \omega$ Lab PM: Deyo, Melissa L Time: E-Mail: Company O & G Company water (W=water, S=solid, O=waste/oll, Matrix Water Water NAPLUN KENNEKY Radiological 315-729-1300 (C=comp, G=grab) Type 0 B 1050 7:30 1:30 17:20 Sample Time Date: Unknown FAT Requested (days): Due Date Requested; 8-3-15 8-3-15 PO#. 11312000EST Sample Date 8-3-15 Date/Time:
8-3-15
Date/Time:
9-8-/ Project #. 48008584 SSOW#: WO# Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) 518080 Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) 08031 D'Brien & Gere Inc of North America 080315 Possible Hazard Identification empty Kit Relinquished by: Former Accurate Die Cast Client Information がなしまった Sample Identification Yuri. Veliz@obg.com Between Carbons East Syracuse Vr. Yuri Veliz State, Zip: NY, 13221 Efficent

elinquished by:

Custody Seal No.:

Custody Seals Intact:

Δ Yes Δ No

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-84941-1

Login Number: 84941 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	-
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	No: 1 - 40ml vial broke (sample 02)
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

6

46

4.0

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-85340-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

3

Authorized for release by: 8/17/2015 10:23:57 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receint Checklists	14

3

4

6

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-85340-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Page 3 of 14

8/17/2015

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85340-1

Job ID: 480-85340-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-85340-1

Receipt

The sample was received on 8/11/2015 2:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

7

8

9

10

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85340-1

Client Sample ID: EFFLUENT 081015

Lab Sample ID: 480-85340-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	665	10.0	4.0 mg/L	1 SM2540 C	Total/NA

Л

5

6

8

9

10

12

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85340-1

Client Sample ID: EFFLUENT 081015

Lab Sample ID: 480-85340-1 Date Collected: 08/10/15 07:10 **Matrix: Water**

Date Received: 08/11/15 02:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	665		10.0	4.0	mg/L			08/12/15 10:00	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			08/12/15 07:09	1

TestAmerica Job ID: 480-85340-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-258205/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 258205

MB MB Analyte Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac D 1.0 08/12/15 07:09 Total Suspended Solids $\overline{\mathsf{ND}}$ 1.0 mg/L

Lab Sample ID: LCS 480-258205/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 258205

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec **Total Suspended Solids** 246 247.2 mg/L 100 88 - 110

Lab Sample ID: 480-85340-1 DU **Client Sample ID: EFFLUENT 081015** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 258205

Sample Sample DU DU **RPD** Result Qualifier RPD Result Qualifier Limit Analyte Unit D **Total Suspended Solids** $\overline{\mathsf{ND}}$ ND mg/L

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-258308/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 258308

MB MB Result Qualifier **MDL** Unit Prepared Analyzed Total Dissolved Solids ND 10.0 4.0 mg/L 08/12/15 10:00

Lab Sample ID: LCS 480-258308/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 258308

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits D Total Dissolved Solids 501 482.0 mg/L 96 85 - 115

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85340-1

General Chemistry

Analysis Batch: 258205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-85340-1	EFFLUENT 081015	Total/NA	Water	SM 2540D
480-85340-1 DU	EFFLUENT 081015	Total/NA	Water	SM 2540D
LCS 480-258205/2	Lab Control Sample	Total/NA	Water	SM 2540D
MB 480-258205/1	Method Blank	Total/NA	Water	SM 2540D

Analysis Batch: 258308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-85340-1	EFFLUENT 081015	Total/NA	Water	SM2540 C	
LCS 480-258308/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-258308/1	Method Blank	Total/NA	Water	SM2540 C	

3

5

0

8

10

12

10

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85340-1

Lab Sample ID: 480-85340-1

Matrix: Water

Client Sample ID: EFFLUENT 081015 Date Collected: 08/10/15 07:10

Date Received: 08/11/15 02:00

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	SM 2540D			258205	08/12/15 07:09	EKB	TAL BUF
	Total/NA	Analysis	SM2540 C		1	258308	08/12/15 10:00	EKB	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85340-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

4

5

9

10

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85340-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

16

4

7

Ö

10

11

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85340-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-85340-1	EFFLUENT 081015	Water	08/10/15 07:10	08/11/15 02:00

6

3

4

Q

9

10

12

13

N - None
O - AsNaO2
P - NaZO4S
Q - NaZSSO3
R - NaZSSO3
S - FZSO4
T - TSP Dodecatydrate THE LEADER IN EMNICORMENTAL TESTING **TestAmerico** U - Acetone V - MCAA W - ph 4-5 Z - other (specify) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: reservation Codes H - Ascorbic Acid 1 - Ice J - DI Water K - EDTA L - EDA 37,0 Page: Page 1 of 1 Job#: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor 480-85340 Chain of Custody Archive For Potal Number of containers 14 h? 2 Method of Shipment Carrier Tracking No(s) 王 Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: melissa.deyo@testamericainc.com 13 Received by: spilos peniossio letot - Lota Dissolved Solids Lab PM: Deyo, Metissa L E-Mait. Chain of Custody Record Time: Company OOO Company (W=water, S=solid, O=waste/oll, Matrix Water Roewecke Sample Type (C=comp, G=grab) Radiological .3 956 Phone: 315-739-1300 N 7:10 Sample Date: Unknown Sample: 14 R 110 AT Requested (days): Due Date Requested: Date/Time: Sample Date PO#. 11312000EST Date/Time: 8-10-15 Project #: 48008584 SSOW#: **NO#**: Poison B Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Phone (716) 691-2600 Fax (716) 691-7991 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) Sompany: O'Brien & Gere Inc of North America Flammable Possible Hazard Identification 510180 Amherst, NY 14228-2298 Empty Kit Relinquished by: Former Accurate Die Cast Custody Seals Intact: △ Yes △ No Client Information Sample Identification 10 Hazelwood Drive uri. Veliz@obg.com Non-Hazard East Syracuse Client Contact

Mr. Yuri Veliz elinquished by: State, Zip: NY, 13221 Project Name: Effluent

TestAmerica Buffalo

Page 13 of 14

8/17/2015

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-85340-1

Login Number: 85340 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator. Janish, Carr W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

8

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-85736-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 8/26/2015 3:26:44 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

3

4

9

10

12

IS

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85736-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

В Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
A / =	

Percent Recovery %R CFL Contains Free Liquid **CNF** Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit**

MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control RER** Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85736-1

Job ID: 480-85736-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-85736-1

Receipt

The samples were received on 8/18/2015 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

_

Я

9

1 1

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85736-1

Client Sample ID: EFFI	Client Sample ID: EFFLUENT 081715							480-85736-1	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Total Dissolved Solids	696	В	10.0	4.0	mg/L	1	SM2540 C	Total/NA	
Client Sample ID: EFFI	LUENT 08171	5				Lab S	ample ID:	480-85736-2	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Methylene Chloride	0.52	J	1.0	0.44	ug/L		8260C	Total/NA	

А

5

6

9

11

16

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85736-1

Client Sample ID: EFFLUENT 081715

Date Collected: 08/17/15 07:15

Lab Sample ID: 480-85736-1 **Matrix: Water**

Date Received: 08/18/15 01:30

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	696	В	10.0	4.0	mg/L			08/18/15 16:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			08/18/15 13:01	1

Client Sample ID: EFFLUENT 081715 Lab Sample ID: 480-85736-2

Date Collected: 08/17/15 07:15 **Matrix: Water**

Date Received: 08/18/15 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/21/15 15:59	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/21/15 15:59	1
Methylene Chloride	0.52	J	1.0	0.44	ug/L			08/21/15 15:59	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/21/15 15:59	1
Toluene	ND		1.0	0.51	ug/L			08/21/15 15:59	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/21/15 15:59	1
Trichloroethene	ND		1.0	0.46	ug/L			08/21/15 15:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		66 - 137			•		08/21/15 15:59	1
4-Bromofluorobenzene (Surr)	94		73 - 120					08/21/15 15:59	1
Toluene-d8 (Surr)	95		71 - 126					08/21/15 15:59	1
Dibromofluoromethane (Surr)	110		60 - 140					08/21/15 15:59	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85736-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surr	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-85736-2	EFFLUENT 081715	111	94	95	110
LCS 480-259814/5	Lab Control Sample	107	100	97	108
MB 480-259814/7	Method Blank	109	94	97	104
Surrogate Legend					
12DCE = 1,2-Dichlore	oethane-d4 (Surr)				

BFB = 4-Bromofluorobenzene (Surr) TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

_

Λ

Ę

10

4.0

13

TestAmerica Job ID: 480-85736-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-259814/7 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 259814

	MR MR							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane		1.0	0.21	ug/L			08/21/15 12:17	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			08/21/15 12:17	1
Methylene Chloride	ND	1.0	0.44	ug/L			08/21/15 12:17	1
Tetrachloroethene	ND	1.0	0.36	ug/L			08/21/15 12:17	1
Toluene	ND	1.0	0.51	ug/L			08/21/15 12:17	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			08/21/15 12:17	1
Trichloroethene	ND	1.0	0.46	ug/L			08/21/15 12:17	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 109 66 - 137 08/21/15 12:17 4-Bromofluorobenzene (Surr) 94 73 - 120 08/21/15 12:17 Toluene-d8 (Surr) 97 71 - 126 08/21/15 12:17 104 60 - 140 Dibromofluoromethane (Surr) 08/21/15 12:17

Lab Sample ID: LCS 480-259814/5

Matrix: Water

Analysis Batch: 259814

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	74 - 124	
Tetrachloroethene	25.0	24.8		ug/L		99	74 - 122	
Toluene	25.0	24.3		ug/L		97	80 - 122	
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	73 - 127	
Trichloroethene	25.0	25.5		ug/L		102	74 - 123	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 107 66 - 137 4-Bromofluorobenzene (Surr) 100 73 - 120 Toluene-d8 (Surr) 97 71 - 126 Dibromofluoromethane (Surr) 108 60 - 140

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-259247/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 259247

	MB N	ИВ							
Analyte	Result C	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	mg/L			08/18/15 13:01	1

Lab Sample ID: LCS 480-259247/2 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 259247

LCS LCS %Rec. Spike Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 247 246.8 mg/L 100 88 - 110

TestAmerica Buffalo

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85736-1

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: 480-85736-1 DU Client Sample ID: EFFLUENT 081715 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 259247

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit ND ND Total Suspended Solids mg/L NC 15

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-259296/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 259296

MB MB RL **MDL** Unit Analyte Result Qualifier D Prepared Analyzed Dil Fac **Total Dissolved Solids** 4.00 J 10.0 4.0 mg/L 08/18/15 16:36

Lab Sample ID: LCS 480-259296/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 259296

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits **Total Dissolved Solids** 501 500.0 100 85 - 115 mg/L

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85736-1

GC/MS VOA

Analysis Batch: 259814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-85736-2	EFFLUENT 081715	Total/NA	Water	8260C	
LCS 480-259814/5	Lab Control Sample	Total/NA	Water	8260C	
MB 480-259814/7	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 259247

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-85736-1	EFFLUENT 081715	Total/NA	Water	SM 2540D	
480-85736-1 DU	EFFLUENT 081715	Total/NA	Water	SM 2540D	
LCS 480-259247/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-259247/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 259296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-85736-1	EFFLUENT 081715	Total/NA	Water	SM2540 C	
LCS 480-259296/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-259296/1	Method Blank	Total/NA	Water	SM2540 C	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 081715

TestAmerica Job ID: 480-85736-1

Lab Sample ID: 480-85736-1

Matrix: Water

Date Collected: 08/17/15 07:15 Date Received: 08/18/15 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D			259247	08/18/15 13:01	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	259296	08/18/15 16:36	MGH	TAL BUF

Lab Sample ID: 480-85736-2 **Client Sample ID: EFFLUENT 081715**

Matrix: Water

Date Collected: 08/17/15 07:15 Date Received: 08/18/15 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			259814	08/21/15 15:59	GVF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-85736-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

Δ

5

7

9

12

4 /

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85736-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-85736-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-85736-1	EFFLUENT 081715	Water	08/17/15 07:15	08/18/15 01:30
480-85736-2	EFFLUENT 081715	Water	08/17/15 07:15	08/18/15 01:30

4

6

8

9

11

12

14

TestAmerico

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

TestAmerica Buffalo

	Sampler	ļ	×		Carrier 1	Carrier Tracking No(s):	COC No:	
Client Information	1914/1 Kaennac	ĭ	, Melissa L				480-59345-10587.1	87.1
Client Contact. Mr. Yuri Veliz	Phone: 315-729-1300	E-Mai melis	i: ssa.deyo@tes	E-Maii: melissa.deyo@testamericainc.com			Page: Page 1 of 1	
Company: O'Brien & Gere Inc of North America				Analysis	s Requested	þ	3ob #:	
Address: 333 West Washington St. PO BOX 4873	Due Dafe Requested:						Preservation Codes	ides:
Oty: East Syracuse	TAT Requested (days):						B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: NY, 13221							D - Nitric Acid E - NaHSO4	
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#. 11312000EST		<u>)</u> (6				G - Amchlor H - Ascorbic Acid	
Emait: Yuri.Veliz@obg.com	WO#:		(ön				1 - Ice 3 - Di Water 7 - 7 - 7 - 7	
Project Name: Former Accurate Die Cast	Project #: 48008584		do se			φλ	ntaine L-EDA	v - pri 4-5 Z - other (specify)
Site:	SSOW#.		y) asi			ojan O	Other:	factorium de la companya de la comp
O see a s	Sample	Sample Matrix Type (v=water, s=solid, C=comp, o=wasterol), C=comp.	Deriefil Filterel W.S.M. mromer B IstoT - Cloba	Seoc - Volatile	1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111	o to alian of	JedmuM levo	Special Instructions (Notes
	1	Preservation Code	i z IX	-		2298		
Effluent 08/7/5	15 17.15	Water				•		
EffluenT 08/17/5	8-17-15 17:15 6	witer		w	<u> </u>	1 1 1	8	
		.,						
Possible Hazard Identification	B Colonial Radiological	ĬaĊjp.	Sample L	ole Disposal (A fee ma) Return To Client	y be assessed if sam	iples are re	tained longer than Archive For	f month) Months
sted: I, II, III, IV, Other (specify)			Special In	Special Instructions/QC Requirements.	rements:			
Empty Kit Relinquished by:	Date:		Time:	, and	Me	Method of Shipment:		
Relinquished by H. Herry P.	Date/Time: 8-17-15 / 91	S Company 6	Received by	Alba Mape	Jan J	Date Time:	8-17-15	Compartion
Reinguisped by MIN The Land	and Fit Fe	Company	Receive			Date Times 1	5 0130	Company
	Date/Time:	Сотрапу	Received by	ed by:		Dátte/Time:		Сотрапу
Custody Seals Intact Custody Seal No:			Cooler	Cooler Temperature(s) °C and Other Remarks	ther Remarks:		0.5	#1
			1					

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-85736-1

Login Number: 85736 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Creator: Williams, Christopher S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

J

5

6

8

10

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86318-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 9/4/2015 9:50:38 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receint Checklists	14

5

4

7

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-86318-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86318-1

Job ID: 480-86318-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86318-1

Receipt

The sample was received on 8/28/2015 2:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

ī

c

7

8

9

1 1

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86318-1

Client Sample ID: EFFLUENT 082715

Lab Sample ID: 480-86318-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	681	10.0	4.0 mg/L	1 SM2540 C	Total/NA

4

_

10

11

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-86318-1

Client Sample ID: EFFLUENT 082715

Lab Sample ID: 480-86318-1 Date Collected: 08/27/15 07:15

Matrix: Water

Date Received: 08/28/15 02:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	681		10.0	4.0	mg/L			08/31/15 16:19	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			09/01/15 07:58	1

TestAmerica Job ID: 480-86318-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-261374/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 261374

MB MB Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Dil Fac 1.0 09/01/15 07:58 Total Suspended Solids ND 1.0 mg/L

Lab Sample ID: LCS 480-261374/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 261374

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec **Total Suspended Solids** 243 246.8 mg/L 102 88 - 110

Method: SM2540 C - Total Dissolved Solids

Client Sample ID: Method Blank Lab Sample ID: MB 480-261307/1 **Prep Type: Total/NA Matrix: Water**

Analysis Batch: 261307

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 08/31/15 16:19

Lab Sample ID: LCS 480-261307/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 261307

LCS LCS %Rec. Spike Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 501 504.0 mg/L 101 85 - 115

9/4/2015

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86318-1

General Chemistry

Analysis Batch: 261307

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86318-1	EFFLUENT 082715	Total/NA	Water	SM2540 C	
LCS 480-261307/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-261307/1	Method Blank	Total/NA	Water	SM2540 C	

Analysis Batch: 261374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86318-1	EFFLUENT 082715	Total/NA	Water	SM 2540D	
LCS 480-261374/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-261374/1	Method Blank	Total/NA	Water	SM 2540D	

4

6

8

10

12

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 082715

TestAmerica Job ID: 480-86318-1

Lab Sample ID: 480-86318-1

Matrix: Water

Date Collected: 08/27/15 07:15 Date Received: 08/28/15 02:00

l		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	SM 2540D			261374	09/01/15 07:58	EKB	TAL BUF
L	Total/NA	Analysis	SM2540 C		1	261307	08/31/15 16:19	MGH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86318-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

9

4

5

9

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86318-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

7

8

9

11

12

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-86318-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-86318-1	EFFLUENT 082715	Water	08/27/15 07:15	08/28/15 02:00

__

4

8

9

11

16

Chain of Custody Record

Phone (716) 691-2600 Fax (716) 691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

TestAmerica Buffalo

ABOVE THE REAL PROPERTY.	44
7	
4999	
8 N	
1. #	
1000	20
de greenhir	50
	20
a deliberation	22
/33	25
617	8
Contract of	
ALCOHOL:	露
6.	灩
A 1956	8
L	
and the same	
100	2
WEST S	22
199	錬
* 20.cs	
WORKSHIP OF	35
7.0	鑩
W. F	22
- 1 A	
411	12
_ %	20
and the same	R
Sammerons.	1207
-	

the examen in Envisconmental Testing

P - Na2O4S
Q - Na2SO3
R - Na2SSO3
S - H2SC4
T - TSP Dodecabydrate
U - Acetone
V - MCAA
W - ph 4-5
Z - other (specify) Special Instructions/Note: S S Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 480-59357-10586.1 Preservation Codes 4 - Ascorbic Acid - HCL - NaOH :- Zn Acetate - Nitric Acid - NaHSC4 - MeOH 3 - Amchlor Page: Page 1 of 1 Job#: I - foe J - DI Water K - EDTA L - EDA anenistros to redmuN latoT X 🛠 Method of Shipment: 480-86318 Chain of Custody Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements E-Mail: melissa.deyo@testamericainc.com Gived by: Lab PM: Deyo, Melissa L Time: Matrix Preservation Code: Water MHEIM KOEMEKE Sample Type (C=comp, G=grab) Radiological 19:00 0.00 Phone: 215-729-1300 Sample Time Unknown Date/Time: IAT Requested (days): Date/Lime: 8-27-15 Due Date Requested: Sample Date PO#. 11312000EST WO#. 8-47-15 Project #. 48008584 SSOW#: Poison B Skin Irritant Construction of the control of the c Custody Seal No.: Address: 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) Company: O'Brien & Gere Inc of North America Possible Hazard Identification 082715 Empty Kit Relinquished by: Former Accurate Die Cast Custody Seals Intact: Client Information Sample Identification 'uri. Veliz@obg.com City: East Syracuse Client Contact. Mr. Yuri Veliz finquished by: elinquished by: State, Zip: NY, 13221 roject Name; Effluent Page 13 of 14

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-86318-1

Login Number: 86318 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

_

А

5

6

0

10

12

15

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86420-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 9/8/2015 12:48:32 PM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receint Checklists	14

3

4

Ω

9

11

12

IR

| | 4

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-86420-1

Qualifiers

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86420-1

Job ID: 480-86420-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86420-1

Receipt

The sample was received on $9/1/2015\ 2:15\ AM$; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $0.4^{\circ}\ C$.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

F

6

5

Q

9

10

111

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86420-1

Client Sample ID: EFFLUENT 083115

Lab Samp	le ID:	480-8	36420-1
----------	--------	-------	---------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Met	thod Prep Type
Total Dissolved Solids	695 B	10.0	4.0 mg/L	1 SM	2540 C Total/NA

2

А

5

Q

9

10

12

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86420-1

Client Sample ID: EFFLUENT 083115

Lab Sample ID: 480-86420-1

Date Collected: 08/31/15 07:00 Matrix: Water Date Received: 09/01/15 02:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	695	В	10.0	4.0	mg/L			09/02/15 21:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	ma/L			09/02/15 15:37	

5

6

8

9

11

12

TestAmerica Job ID: 480-86420-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-261696/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 261696

MB MB Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Dil Fac 1.0 09/02/15 15:37 Total Suspended Solids $\overline{\mathsf{ND}}$ 1.0 mg/L

Lab Sample ID: LCS 480-261696/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 261696

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec **Total Suspended Solids** 215 212.8 mg/L 99 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-261734/1 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 261734

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids 7.00 J 10.0 4.0 mg/L 09/02/15 21:57

Lab Sample ID: LCS 480-261734/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 261734

LCS LCS Spike %Rec. Added Result Qualifier Limits Unit %Rec Total Dissolved Solids 501 535.0 mg/L 107 85 - 115

Lab Sample ID: 480-86420-1 DU Client Sample ID: EFFLUENT 083115 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 261734

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit D Total Dissolved Solids 695 B 692.0 0.4 20 mg/L

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86420-1

General Chemistry

Analysis Batch: 261696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86420-1	EFFLUENT 083115	Total/NA	Water	SM 2540D	
LCS 480-261696/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-261696/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 261734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86420-1	EFFLUENT 083115	Total/NA	Water	SM2540 C	
480-86420-1 DU	EFFLUENT 083115	Total/NA	Water	SM2540 C	
LCS 480-261734/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-261734/1	Method Blank	Total/NA	Water	SM2540 C	

2

3

4

5

_

8

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-86420-1

Lab Sample ID: 480-86420-1

Matrix: Water

Client Sample ID: EFFLUENT 083115 Date Collected: 08/31/15 07:00

Date Received: 09/01/15 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	261696	09/02/15 15:37	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	261734	09/02/15 21:57	MGH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86420-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

3

6

Q

9

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-86420-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

5

O

0

9

11

10

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-86420-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-86420-1	EFFLUENT 083115	Water	08/31/15 07:00	09/01/15 02:15

4

0

9

1 0

12

13

The Leader in Exhiborativial Testing S - H2SO4
T - TSP Dodecahydrate
U - Acetorie
V - MCAA
W - ph 4-6
Z - other (specify) **TestAmerico** P - Na2O4S Q - Na2SO3 R - Na2S2SO3 480-86420 Chain of Custody Coffipany Company Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) COC No: 480-59357-10586.1 reservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - MeOH
G - Amchlor
H - Assorbic Acid Page: Page 1 of 1 びなり 2011 J - DI Water K - EDTA L - EDA Archive For Total Number of containers Date Time. 6.7 Date Time: Method of Shipment: Disposal By Lab **Analysis Requested** Cooler Temperature(s) C and Other Remarks: | Return To Client | Dis | Special Instructions/QC Requirements Lab PM: Deyo, Melissa L E-Mait melissa.deyo@testamericainc.com 13 **Chain of Custody Record** Time: Company OGC Company Preservation Code: {W=water, S=solfd, O=waste/oif, Matrix Water 2-31 Koerrett Sample Type (C=comp, G=grab) Radiological 19:00 11.00 hone: 315-729-1300 Sample Time 7:00 2 Date: MARIO Unknown (AT Requested (days): Date/Time:
\$ -3(-/5) Due Date Requested: Date/Time: 8 -31-15 8-31-15 Sample Date PO#: 11312000EST Project #: 48008584 SSOW#: 8 Poison B Skin Irritant Mon-Hazard Flammable Skin Intit. Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 14-419 (11 h Phone (716) 691-2600 Fax (716) 691-7991 333 West Washington St. PO BOX 4873 Phone: 315-956-6100(Tel) 315-463-7554(Fax) O'Brien & Gere Inc of North America with Kern Possible Hazard Identification 511880 Empty Kit Relinquished by: Former Accurate Die Cast Custody Seals Intact: △ Yes △ No Client Information Sample Identification ruri. Veliz@obg.com delinquished by. East Syracuse Client Contact Mr. Yurji Velîz Relinquished by: elinquished by: State, Zip: NY, 13221 Effluent

Page 13 of 14

TestAmerica Buffalo

Amherst, NY 14228-2298 10 Hazelwood Drive

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-86420-1

Login Number: 86420 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

5

6

10

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87145-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Melissa Deyo

Authorized for release by: 9/23/2015 9:41:40 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

1

5

6

8

46

11

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-87145-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

9/23/2015

Page 3 of 16

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87145-1

Job ID: 480-87145-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87145-1

Receipt

The samples were received on 9/12/2015 2:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.3° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

_

0

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87145-1

Client Sample ID: EFFLUENT 091115

Lab Sample ID: 480-87145-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	739	10.0	4.0 mg/L	1 SM2540 C	Total/NA

Client Sample ID: BETWEEN CARBONS 091115 Lab Sample ID: 480-87145-2

No Detections.

Client Sample ID: EFFLUENT 091115 Lab Sample ID: 480-87145-3

No Detections.

5

7

Ŏ

10

12

4 4

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87145-1

Client Sample ID: EFFLUENT 091115

Date Collected: 09/11/15 07:15 Date Received: 09/12/15 02:10

Lab Sample ID: 480-87145-1

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	739		10.0	4.0	mg/L			09/14/15 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			09/15/15 07:11	1

Lab Sample ID: 480-87145-2 **Client Sample ID: BETWEEN CARBONS 091115**

Date Collected: 09/11/15 07:15 **Matrix: Water**

Date Received: 09/12/15 02:10

Method: 8260C - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L		-	09/19/15 17:25	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/19/15 17:25	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/15 17:25	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/15 17:25	1
Toluene	ND		1.0	0.51	ug/L			09/19/15 17:25	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/15 17:25	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/15 17:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	-	66 - 137			•		09/19/15 17:25	1
4-Bromofluorobenzene (Surr)	100		73 - 120					09/19/15 17:25	1
Toluene-d8 (Surr)	100		71 - 126					09/19/15 17:25	1
Dibromofluoromethane (Surr)	98		60 - 140					09/19/15 17:25	1

Client Sample ID: EFFLUENT 091115 Lab Sample ID: 480-87145-3 **Matrix: Water**

Date Collected: 09/11/15 07:15 Date Received: 09/12/15 02:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/19/15 17:52	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/19/15 17:52	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/15 17:52	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/15 17:52	1
Toluene	ND		1.0	0.51	ug/L			09/19/15 17:52	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/15 17:52	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/15 17:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137			-		09/19/15 17:52	1
4-Bromofluorobenzene (Surr)	99		73 - 120					09/19/15 17:52	1
Toluene-d8 (Surr)	100		71 - 126					09/19/15 17:52	1
Dibromofluoromethane (Surr)	97		60 - 140					09/19/15 17:52	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87145-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limit						
		12DCE	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)			
480-87145-2	BETWEEN CARBONS 091115	99	100	100	98			
480-87145-3	EFFLUENT 091115	99	99	100	97			
LCS 480-264485/5	Lab Control Sample	107	101	99	99			
LCSD 480-264485/6	Lab Control Sample Dup	106	101	101	98			
MB 480-264485/8	Method Blank	97	97	99	97			

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

7

10

10

12

TestAmerica Job ID: 480-87145-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: MB 480-264485/8

Method: 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 264485

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane		1.0	0.21	ug/L			09/19/15 12:11	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/15 12:11	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/19/15 12:11	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/19/15 12:11	1
Toluene	ND	1.0	0.51	ug/L			09/19/15 12:11	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/19/15 12:11	1
Trichloroethene	ND	1.0	0.46	ug/L			09/19/15 12:11	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fatoria 1,2-Dichloroethane-d4 (Surr) 97 66 - 137 09/19/15 12:11 09/19/15 12:11 4-Bromofluorobenzene (Surr) 97 73 - 120 09/19/15 12:11 09/19/15 12:11 Toluene-d8 (Surr) 99 71 - 126 09/19/15 12:11 09/19/15 12:11 Dibromofluoromethane (Surr) 97 60 - 140 09/19/15 12:11									
4-Bromofluorobenzene (Surr) 97 73 - 120 09/19/15 12:11 Toluene-d8 (Surr) 99 71 - 126 09/19/15 12:11	Surrogate	%Recovery	Qualifier	Limits	ı	Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr) 99 71 - 126 09/19/15 12:11	1,2-Dichloroethane-d4 (Surr)	97		66 - 137			09/19/15 12:11	1	
	4-Bromofluorobenzene (Surr)	97		73 - 120			09/19/15 12:11	1	
Dibromofluoromethane (Surr) 97 60 - 140 09/19/15 12:11	Toluene-d8 (Surr)	99		71 - 126			09/19/15 12:11	1	
	Dibromofluoromethane (Surr)	97		60 - 140			09/19/15 12:11	1	

Lab Sample ID: LCS 480-264485/5

Matrix: Water

Analysis Batch: 264485

Client Sample	ID: Lab	Control	Sample
	Prep	Type:	Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	25.1		ug/L		100	74 - 124	
Tetrachloroethene	25.0	26.7		ug/L		107	74 - 122	
Toluene	25.0	25.1		ug/L		100	80 - 122	
trans-1,2-Dichloroethene	25.0	25.4		ug/L		102	73 - 127	
Trichloroethene	25.0	26.4		ug/L		105	74 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		66 - 137
4-Bromofluorobenzene (Surr)	101		73 - 120
Toluene-d8 (Surr)	99		71 - 126
Dibromofluoromethane (Surr)	99		60 - 140

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 264485

Lab Sample ID: LCSD 480-264485/6

-	Spike	LCSD LCSD					%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
cis-1,2-Dichloroethene	25.0	23.8		ug/L		95	74 - 124	5	15	
Tetrachloroethene	25.0	25.4		ug/L		102	74 - 122	5	20	
Toluene	25.0	24.3		ug/L		97	80 - 122	3	15	
trans-1,2-Dichloroethene	25.0	23.6		ug/L		95	73 - 127	7	20	
Trichloroethene	25.0	24.6		ua/L		98	74 - 123	7	16	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		66 - 137
4-Bromofluorobenzene (Surr)	101		73 - 120
Toluene-d8 (Surr)	101		71 - 126
Dibromofluoromethane (Surr)	98		60 - 140

TestAmerica Buffalo

Page 8 of 16

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87145-1

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-263554/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 263554

MB MB Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Dil Fac 1.0 09/15/15 07:11 Total Suspended Solids $\overline{\mathsf{ND}}$ 1.0 mg/L

Lab Sample ID: LCS 480-263554/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 263554

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec **Total Suspended Solids** 216 214.4 mg/L 99 88 - 110

Lab Sample ID: 480-87145-1 DU **Client Sample ID: EFFLUENT 091115** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 263554

Sample Sample DU DU **RPD** Result Qualifier RPD Result Qualifier Limit Analyte Unit D **Total Suspended Solids** $\overline{\mathsf{ND}}$ ND mg/L

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-263494/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 263494

MB MB Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 09/14/15 15:39

Lab Sample ID: LCS 480-263494/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 263494

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits D Total Dissolved Solids 501 523.0 mg/L 104 85 - 115

TestAmerica Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

GC/MS VOA

Analysis Batch: 264485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87145-2	BETWEEN CARBONS 091115	Total/NA	Water	8260C	
480-87145-3	EFFLUENT 091115	Total/NA	Water	8260C	
LCS 480-264485/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-264485/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-264485/8	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 263494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87145-1	EFFLUENT 091115	Total/NA	Water	SM2540 C	
LCS 480-263494/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-263494/1	Method Blank	Total/NA	Water	SM2540 C	

Analysis Batch: 263554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87145-1	EFFLUENT 091115	Total/NA	Water	SM 2540D	
480-87145-1 DU	EFFLUENT 091115	Total/NA	Water	SM 2540D	
LCS 480-263554/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-263554/1	Method Blank	Total/NA	Water	SM 2540D	

TestAmerica Job ID: 480-87145-1

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87145-1

Lab Sample ID: 480-87145-1

Client Sample ID: EFFLUENT 091115

Date Collected: 09/11/15 07:15 **Matrix: Water**

Date Received: 09/12/15 02:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D			263554	09/15/15 07:11	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	263494	09/14/15 15:39	MGH	TAL BUF

Client Sample ID: BETWEEN CARBONS 091115 Lab Sample ID: 480-87145-2

Date Collected: 09/11/15 07:15 **Matrix: Water**

Date Received: 09/12/15 02:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	264485	09/19/15 17:25	GTG	TAL BUF

Client Sample ID: EFFLUENT 091115 Lab Sample ID: 480-87145-3

Date Collected: 09/11/15 07:15 **Matrix: Water**

Date Received: 09/12/15 02:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	264485	09/19/15 17:52	GTG	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87145-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

2

3

0

8

46

11

13

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87145-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87145-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-87145-1	EFFLUENT 091115	Water	09/11/15 07:15 09/12/15 02:10
480-87145-2	BETWEEN CARBONS 091115	Water	09/11/15 07:15 09/12/15 02:10
480-87145-3	EFFLUENT 091115	Water	09/11/15 07:15 09/12/15 02:10

4

__

6

8

11

13

14

10 Hazelwood Drive

Huent

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-87145-1

Login Number: 87145 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

11

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87385-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 9/28/2015 11:33:02 AM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

5

4

5

7

a

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-87385-1

Glossary

TEF

TEQ

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Contains no Free Liquid
Duplicate error ratio (normalized absolute difference)
Dilution Factor
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision level concentration
Minimum detectable activity
Estimated Detection Limit
Minimum detectable concentration
Method Detection Limit
Minimum Level (Dioxin)
Not Calculated
Not detected at the reporting limit (or MDL or EDL if shown)
Practical Quantitation Limit
Quality Control
Relative error ratio
Reporting Limit or Requested Limit (Radiochemistry)
Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87385-1

Job ID: 480-87385-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87385-1

Receipt

The sample was received on 9/17/2015 1:20 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

3

4

_

7

8

9

11

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87385-1

2

Client Sample	ID: EFFL	LUENT	091615
---------------	----------	-------	--------

Lab Sample ID: 480-87385-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	646	10.0	4.0 mg/L	1 SM2540 C	Total/NA

Л

5

8

9

4 4

12

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87385-1

Client Sample ID: EFFLUENT 091615

Lab Sample ID: 480-87385-1

Date Collected: 09/16/15 07:30 Date Received: 09/17/15 01:20

Lab	Campic	ID.	400-07303- 1	
			Matrix: Water	

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	646		10.0	4.0	mg/L			09/18/15 06:58	1
Analyte Total Suspended Solids	Result	Qualifier	RL 4.0		Unit mg/L	D	Prepared	Analyzed 09/20/15 07:50	Dil Fac

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87385-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-264547/1

Matrix: Water

Analysis Batch: 264547

MB MB

Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Dil Fac 1.0 09/20/15 07:50 Total Suspended Solids ND 1.0 mg/L

Lab Sample ID: LCS 480-264547/2

Matrix: Water

Analysis Batch: 264547

Analyte **Total Suspended Solids**

Spike LCS LCS Added

RL

10.0

232

Spike

Result Qualifier 231.6

MDL Unit

LCS LCS

477.0

Result Qualifier

4.0 mg/L

Unit

mg/L

Unit D %Rec mg/L

Limits 100 88 - 110

Client Sample ID: Method Blank

%Rec.

Client Sample ID: Lab Control Sample

Dil Fac

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-264249/1

Matrix: Water

Analysis Batch: 264249

MB MB

Analyte Result Qualifier **Total Dissolved Solids** ND

Lab Sample ID: LCS 480-264249/2 **Matrix: Water**

Analysis Batch: 264249

Added Total Dissolved Solids 501 **Prep Type: Total/NA**

Prepared Analyzed 09/18/15 06:58

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. %Rec Limits 95 85 - 115

TestAmerica Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87385-1

General Chemistry

Analysis Batch: 264249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87385-1	EFFLUENT 091615	Total/NA	Water	SM2540 C	
LCS 480-264249/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-264249/1	Method Blank	Total/NA	Water	SM2540 C	

Analysis Batch: 264547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87385-1	EFFLUENT 091615	Total/NA	Water	SM 2540D	
LCS 480-264547/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-264547/1	Method Blank	Total/NA	Water	SM 2540D	

2

3

4

e

8

4.0

11

12

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87385-1

Lab Sample ID: 480-87385-1

Matrix: Water

Client Sample ID: EFFLUENT 091615

Date Collected: 09/16/15 07:30 Date Received: 09/17/15 01:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D			264547	09/20/15 07:50	EKB	TAL BUF
Total/NA	Analysis	SM2540 C		1	264249	09/18/15 06:58	CDC	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87385-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

Λ

5

O

8

9

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87385-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

5

6

7

d

9

11

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87385-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87385-1	EFFLUENT 091615	Water	09/16/15 07:30	09/17/15 01:20

S. H2SO4
T. TSP Dodecahydrate
U. Acetone
V. MCAA
W. - ph 4-5
Z. other (specify) the leader in enviscommental testing **TestAmerico** Special Instructions/Note: N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2SO3 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont 480-59359-10586.1 Preservation Codes D - Nitric Acid E - NaHSO4 F - MacOH G - AmcHor H - Ascorbic Acid I - Ice J - Di Water K - EDTA L - EDA Page: Page 1 of 1 Job#: 9210 € 2 Total Number of containers Date/Time: Method of Shipment: 480-87385 Chain of Custody Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: E-Mail: melissa.deyo@testamericainc.com 13 Lab PM: Deyo, Melissa L Chain of Custody Record Time: Sample (Yes or No) Company (C) Water Matrix (W=water, S=solid, O=waste/oli Company Sampler MATIN LOLINE K.L. Radiological Sample
Type
(C=comp,
G=grab) 8,00 hone: 315-729-1300 1500 730 Sample Date: Unknown FAT Requested (days): Due Date Requested: Date/Time: 9 - 1/6 - 15 |
Date/Time: | | Sample Date 9-16-15 PO#: 11312000EST Project #. 48008584 SSOW#: WO# Poison B Skin Irritant eliverable Requested: I, II, III, IV, Other (specify Custody Seal No.: Phone (716) 691-2600 Fax (716) 691-7991 Address: 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) O'Brien & Gere Inc of North America 091615 Possible Hazard Identification TestAmerica Buffalo Amherst, NY 14228-2298 Empty Kit Relinquished by: Project Name: Former Accurate Die Cast Custody Seals Intact:
Δ Yes Δ No Client Information Sample Identification 10 Hazelwood Drive Yuri. Veliz@obg.com Non-Hazard Client Contact: Mr. Yuri Veliz East Syracuse elinquished by: elinquished by: State, Zip: NY, 13221 Effluent 9/28/2015 Page 13 of 14

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-87385-1

Login Number: 87385 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

5

6

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87970-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 10/7/2015 10:52:40 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

Review your project results through

.....LINKS

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

5

7

0

10

12

13

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-87970-1

Classem

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

9

3

5

7

8

4.6

11

12

11

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87970-1

Job ID: 480-87970-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87970-1

Receipt

The samples were received on 9/26/2015 2:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

Я

9

ΙU

12

16

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87970-1

Client Sample ID: EFFLUENT 092515

Lab Sample ID: 480-87970-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Meth	od Prep Type
Total Dissolved Solids	676	10.0	4.0 mg/L	1 SM25	540 C Total/NA

Client Sample ID: EFFLUENT 092515 Lab Sample ID: 480-87970-2

No Detections.

-

5

6

8

9

11

13

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87970-1

Client Sample ID: EFFLUENT 092515

Date Collected: 09/25/15 07:20 Date Received: 09/26/15 02:15

Lab Sample ID: 480-87970-1

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	676		10.0	4.0	mg/L			09/28/15 15:50	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			09/29/15 18:22	1

Client Sample ID: EFFLUENT 092515 Lab Sample ID: 480-87970-2

Date Collected: 09/25/15 07:20 **Matrix: Water**

Date Received: 09/26/15 02:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/06/15 06:23	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			10/06/15 06:23	1
Methylene Chloride	ND		1.0	0.44	ug/L			10/06/15 06:23	1
Tetrachloroethene	ND		1.0	0.36	ug/L			10/06/15 06:23	1
Toluene	ND		1.0	0.51	ug/L			10/06/15 06:23	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			10/06/15 06:23	1
Trichloroethene	ND		1.0	0.46	ug/L			10/06/15 06:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			-		10/06/15 06:23	1
4-Bromofluorobenzene (Surr)	102		73 - 120					10/06/15 06:23	1
Toluene-d8 (Surr)	106		71 - 126					10/06/15 06:23	1
Dibromofluoromethane (Surr)	106		60 - 140					10/06/15 06:23	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87970-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-87970-2	EFFLUENT 092515	102	102	106	106
LCS 480-267088/4	Lab Control Sample	95	108	106	104
MB 480-267088/6	Method Blank	99	105	102	102
Surrogate Legend					
12DCE = 1,2-Dichlore	oethane-d4 (Surr)				

BFB = 4-Bromofluorobenzene (Surr) TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

9

10

12

4 4

TestAmerica Job ID: 480-87970-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-267088/6

Matrix: Water

Analysis Batch: 267088

Client Sam	ple I	D:	Meth	od	Bla	nk
	Pre	рТ	ype:	To	tal/N	۱A

	MB MB							
Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/05/15 23:45	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			10/05/15 23:45	1
Methylene Chloride	ND	1.0	0.44	ug/L			10/05/15 23:45	1
Tetrachloroethene	ND	1.0	0.36	ug/L			10/05/15 23:45	1
Toluene	ND	1.0	0.51	ug/L			10/05/15 23:45	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			10/05/15 23:45	1
Trichloroethene	ND	1.0	0.46	ug/L			10/05/15 23:45	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137	10/05/15 23:45	1
4-Bromofluorobenzene (Surr)	105		73 - 120	10/05/15 23:45	1
Toluene-d8 (Surr)	102		71 - 126	10/05/15 23:45	1
Dibromofluoromethane (Surr)	102		60 - 140	10/05/15 23:45	1

Lab Sample ID: LCS 480-267088/4

Matrix: Water

Analysis Batch: 267088

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	26.3		ug/L		105	74 - 124	
Tetrachloroethene	25.0	28.3		ug/L		113	74 - 122	
Toluene	25.0	26.1		ug/L		104	80 - 122	
trans-1,2-Dichloroethene	25.0	26.3		ug/L		105	73 - 127	
Trichloroethene	25.0	26.1		ug/L		104	74 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		66 - 137
4-Bromofluorobenzene (Surr)	108		73 - 120
Toluene-d8 (Surr)	106		71 - 126
Dibromofluoromethane (Surr)	104		60 - 140

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-266095/1

Matrix: Water

Analysis Batch: 266095

	IVID IVID						
Analyte	Result Qualifie	r RL	RL Un	nit D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND	1.0	1.0 mg	g/L		09/29/15 18:22	1

Lab Sample ID: LCS 480-266095/2

Matrix: Water

Analysis Batch: 266095

7 maryolo Batom 20000	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	269	270.8		mg/L		101	88 - 110	

TestAmerica Buffalo

10/7/2015

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87970-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-265884/1 Matrix: Water

Analysis Batch: 265884

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Dissolved Solids
 ND
 10.0
 4.0
 mg/L
 09/28/15 15:50
 1

Lab Sample ID: LCS 480-265884/2

Matrix: Water

Analysis Batch: 265884

2

3

4

5

6

8

9

10

16

14

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87970-1

GC/MS VOA

Analysis Batch: 267088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87970-2	EFFLUENT 092515	Total/NA	Water	8260C	
LCS 480-267088/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-267088/6	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 265884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87970-1	EFFLUENT 092515	Total/NA	Water	SM2540 C	
LCS 480-265884/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-265884/1	Method Blank	Total/NA	Water	SM2540 C	

Analysis Batch: 266095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87970-1	EFFLUENT 092515	Total/NA	Water	SM 2540D	
LCS 480-266095/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-266095/1	Method Blank	Total/NA	Water	SM 2540D	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 092515

TestAmerica Job ID: 480-87970-1

Lab Sample ID: 480-87970-1

Matrix: Water

Date Collected: 09/25/15 07:20 Date Received: 09/26/15 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D			266095	09/29/15 18:22	MGH	TAL BUF
Total/NA	Analysis	SM2540 C		1	265884	09/28/15 15:50	MGH	TAL BUF

Lab Sample ID: 480-87970-2 **Client Sample ID: EFFLUENT 092515**

Date Collected: 09/25/15 07:20 **Matrix: Water**

Date Received: 09/26/15 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	267088	10/06/15 06:23	GVF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87970-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

4

_

9

11

14

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87970-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

1

8

10

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87970-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87970-1	EFFLUENT 092515	Water	09/25/15 07:20	09/26/15 02:15
480-87970-2	EFFLUENT 092515	Water	09/25/15 07:20	09/26/15 02:15

2

4

6

8

9

4 4

12

13

14

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-87970-1

Login Number: 87970 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

Δ

_

o

11

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-88026-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 10/2/2015 2:30:11 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

6

4

8

9

11

12

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-88026-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Page 3 of 14

10/2/2015

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-88026-1

Job ID: 480-88026-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-88026-1

Receipt

The sample was received on 9/29/2015 1:40 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

4

5

6

8

9

4 4

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-88026-1

Client Sample ID: EFFLUENT 092815

Lab Sample ID: 480-88026-1

Analyte Total Dissolved Solids	Result 701	Qualifier	10.0	MDL 4.0	Unit mg/L	Dil Fac	D	Method SM2540 C	Prep Type Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Total Suspended Solids	5.2		4.0	4.0	mg/L		_	SM 2540D	Total/NA

3

4

5

6

8

9

4 4

12

1/

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-88026-1

Client Sample ID: EFFLUENT 092815 Lab Sample ID: 480-88026-1

Date Collected: 09/28/15 07:10 Matrix: Water

Date Received: 09/29/15 01:40

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	701		10.0	4.0	mg/L			09/30/15 15:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	5.2		4.0	4.0	mg/L			09/30/15 02:31	1

2

4

5

7

0

10

12

13

TestAmerica Job ID: 480-88026-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-266125/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 266125

MB MB Analyte Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac D 1.0 09/30/15 02:31 Total Suspended Solids $\overline{\mathsf{ND}}$ 1.0 mg/L

Lab Sample ID: LCS 480-266125/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 266125

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec **Total Suspended Solids** 261 259.2 mg/L 99 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-266292/1 Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Water**

Analysis Batch: 266292

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids 10.0 4.0 mg/L 09/30/15 15:20 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 480-266292/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 266292

LCS LCS Spike %Rec. Added Result Qualifier Limits Unit %Rec Total Dissolved Solids 501 509.0 mg/L 102 85 - 115

Lab Sample ID: 480-88026-1 DU Client Sample ID: EFFLUENT 092815 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 266292

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit RPD Limit D Total Dissolved Solids 701 722.0 10 mg/L

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-88026-1

General Chemistry

Analysis Batch: 266125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88026-1	EFFLUENT 092815	Total/NA	Water	SM 2540D	
LCS 480-266125/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-266125/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 266292

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88026-1	EFFLUENT 092815	Total/NA	Water	SM2540 C	
480-88026-1 DU	EFFLUENT 092815	Total/NA	Water	SM2540 C	
LCS 480-266292/2	Lab Control Sample	Total/NA	Water	SM2540 C	
MB 480-266292/1	Method Blank	Total/NA	Water	SM2540 C	

3

4

_

8

10

12

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 092815

TestAmerica Job ID: 480-88026-1

Lab Sample ID: 480-88026-1

Matrix: Water

Date Collected: 09/28/15 07:10 Date Received: 09/29/15 01:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	266125	09/30/15 02:31	CDC	TAL BUF
Total/NA	Analysis	SM2540 C		1	266292	09/30/15 15:20	MGH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

5

_

0

40

11

13

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-88026-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

4

5

0

10

11

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-88026-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

5

7

8

9

11

12

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-88026-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-88026-1	EFFLUENT 092815	Water	09/28/15 07:10	09/29/15 01:40

-

3

4

5

9

10

12

13

Cooler Temperature(s) °C and Other Remarks:

Chain of Custody Record

TestAmerica Buffalo

	lestamerica burtaio					
	10 Hazelwood Drive	Chain of Custody Record	ody Record			ブリン シン
, -	Amherst, NY 14228-2238 Phone (716) 691-2600 Fax (716) 691-7991				Merchanista de la casa	. Andrianistrate Testing
Australia		Sampler MAR To Kolennecky	Lab PM: Deyo, Melissa L	Camer Tracking No(s):	COC No: 480-59359-10586,1	
		Phone: 215-429-1300	E-Mait: melissa.devo@testamericainc.com	gáti-less sope e v ^e	Page: Page 1 of 1	
and the Spinor	one, i activities Company: Observa o Corte Inc of Morth America	-	Analysis Requested		Job #:	
	4979	Due Date Requested:			ĕ	
		TAT Requested (days):			A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
						2 - Na2O4S 2 - Na2SO3
	(DO(Tel) 315-463-7554(Fax)	PO#. 11312000EST			70	- H2SO4 - TSP Dodecahydrate
	e	WO#	(oV abii	S	f - fce J - Di Water V = DTA	U-Acetone V-MCAA
- A THE STATE OF	: Cast	Project #. 48008584	10 Se		L-EDA	:- other (specify)
		SSOW#:	puədəi X) ÖŞ	iii kaja akii aa aka	Other:	
		Sample Type Sample Sample	Matrix (www.min.) (www	3 Chain of		
Pag	Sample Identification	Sample Date Time G=grab) BT=TISSUE, A-ALT	797 Z 901 X			Special Instructions/Note:
e 1	THIST COUNTY	1 2 2 3 5 0		-081		
3 o		3/:/-				
f 14				AN PAR		
						-
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		andribological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if samples are retaine	tained longer than 1 m	onth)
	1		Requir			
	ed by:	Date:	Time:	Method of Shipment:		
10	Relinquished by 12 the fourth	Date/Time: 0.50 00	9	,	18-1 8	Company (): (Q)
/2/20	Called Mary	DOM/51-	∂_{i}	Date Grave:	One	Company
)1	Relinquished by:	Date/Time:	Company Regelved by:	Date/Time:	2	Company

Custody Seals Intact: Custody Seal No.:

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-88026-1

Login Number: 88026 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

_

8

10

12

13

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87386-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 9/29/2015 10:56:47 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

results through Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	31
QC Sample Results	32
QC Association Summary	40
Lab Chronicle	41
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	49

3

4

Q

9

11

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-87386-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Page 3 of 49

9/29/2015

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Job ID: 480-87386-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87386-1

Receipt

The samples were received on 9/17/2015 1:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.7° C.

Receipt Exceptions

The labels for sample point MW-11 091615 read MW-10 091615. The time on the label coincides with the time on the COC for sample point MW-11 091615. That sample point is logged is as MW-11 091615.

GC/MS VOA

Method(s) 8260C: Due to the coelution of n-butyl Acetate with 2-Hexanone in the full spike solution, 2-Hexanone exceeded control limits in the laboratory control sample (LCS) associated with batch 480-265520 . The following samples are impacted: MW-5 091615 (480-87386-1), MW-6 091615 (480-87386-2), PZ-1 091615 (480-87386-3), MW-11 091615 (480-87386-4), MW-10 091615 (480-87386-5), MW-14 091615 (480-87386-6), MW-13 091615 (480-87386-7), MW-12 091615 (480-87386-8), MW-9 091615 (480-87386-9), PZ-2 091615 (480-87386-10), MW-17 091615 (480-87386-11) and TRIP BLANK (480-87386-18).

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-11 091615 (480-87386-4), MW-14 091615 (480-87386-6) and MW-13 091615 (480-87386-7). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples was diluted to bring the concentration of target analytes within the calibration range: MW-10 091615 (480-87386-5), MW-17 091615 (480-87386-11), MW-24 091615 (480-87386-13), MW-18 091615 (480-87386-15), (480-87386-A-15 MS) and (480-87386-A-15 MSD). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-18 091615 (480-87386-15), (480-87386-B-15 MS) and (480-87386-B-15 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

- 0

4

5

6

7

10

1 1

13

14

6-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-	5 091615					Lab Sa	mple ID:	480-87386-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	1.9		1.0	0.36	ug/L		8260C	Total/NA
Trichloroethene	55		1.0	0.46	ug/L	1	8260C	Total/NA
Client Sample ID: MW-	6 091615					Lab Sa	mple ID:	480-87386-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Trichloroethene	79		1.0	0.46	ug/L		8260C	Total/NA
Client Sample ID: PZ-1	091615					Lab Sa	mple ID:	480-87386-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone	3.1		10	3.0	ug/L		8260C	Total/NA
Trichloroethene	63		1.0	0.46	ug/L	1	8260C	Total/NA
Client Sample ID: MW-	11 091615					Lab Sa	mple ID:	480-87386-
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	10		10	4.4	ug/L	10	8260C	Total/NA
Trichloroethene	680		10	4.6	ug/L	10	8260C	Total/NA
Client Sample ID: MW-	10 091615					Lab Sa	mple ID:	480-87386-
- Analyte		Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone	4.4	J	10	3.0	ug/L		8260C	Total/NA
Chloroform	0.53	J	1.0	0.34	ug/L	1	8260C	Total/NA
Trichloroethene - DL	100		2.0	0.92	ug/L	2	8260C	Total/NA
Client Sample ID: MW-	14 091615					Lab Sa	mple ID:	480-87386-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	4.4		4.0	1.8	ug/L	4	8260C	Total/NA
Trichloroethene	200		4.0	1.8	ug/L	4	8260C	Total/NA
Client Sample ID: MW-	13 091615					Lab Sa	mple ID:	480-87386-
Analyte	Result	Qualifier	RL	MDL		Dil Fac D	Method	Prep Type
Methylene Chloride	4.1		4.0	1.8	ug/L		8260C	Total/NA
Trichloroethene	260		4.0	1.8	ug/L	4	8260C	Total/NA
	12 091615							480-87386-

Client Sample ID: MW-9 091615 Lab Sample ID: 480-87386-9

RL

1.0

Result Qualifier

16

MDL Unit

0.46 ug/L

Dil Fac D Method

8260C

AnalyteResultQualifierRLMDLUnitDil FacDMethodPrep TypeTrichloroethene461.00.46ug/L18260CTotal/NA

Client Sample ID: PZ-2 091615 Lab Sample ID: 480-87386-10

This Detection Summary does not include radiochemical test results.

Analyte

Trichloroethene

TestAmerica Buffalo

Prep Type

Total/NA

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: PZ-2 (บอางาอ (Con	tinuea)				Lab Sa	mpie וט: 4	80-87386-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
Tetrachloroethene	0.49	J	1.0	0.36	ug/L		8260C	Total/NA
Trichloroethene	83		1.0	0.46	ug/L	1	8260C	Total/NA
Client Sample ID: MW-1	7 091615					Lab Sa	mple ID: 4	80-87386-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
Acetone	4.2	J	10	3.0	ug/L		8260C	Total/NA
cis-1,2-Dichloroethene	16		1.0	0.81	ug/L	1	8260C	Total/NA
Tetrachloroethene	5.9		1.0	0.36	ug/L	1	8260C	Total/NA
Trichloroethene - DL	190		5.0	2.3	ug/L	5	8260C	Total/NA
Client Sample ID: MW-2	1 091615					Lab Sa	mple ID: 4	80-87386-1
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
Acetone	5.1	J	10	3.0	ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	40		1.0	0.81	ug/L	1	8260C	Total/NA
Trichloroethene	18		1.0	0.46	ug/L	1	8260C	Total/NA
Client Sample ID: MW-2	4 091615					Lab Sa	mple ID: 4	80-87386-1
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	150		5.0	4.1	ug/L	5	8260C	Total/NA
Trichloroethene	380		5.0	2.3	ug/L	5	8260C	Total/NA
Client Sample ID: MW-2	2 091615					Lab Sa	mple ID: 4	80-87386-1
- Analyte		Qualifier	RL	MDL		Dil Fac	O Method	Prep Type
cis-1,2-Dichloroethene	54		1.0	0.81	ug/L	1	8260C	Total/NA
trans-1,2-Dichloroethene	5.2		1.0	0.90	ug/L	1	8260C	Total/NA
Trichloroethene	9.5		1.0	0.46	ug/L	1	8260C	Total/NA
Vinyl chloride	1.3		1.0	0.90	ug/L	1	8260C	Total/NA
Client Sample ID: MW-1	8 091615					Lab Sa	mple ID: 4	80-87386-1
Analyte		Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
cis-1,2-Dichloroethene	430	F1	10	8.1	ug/L	10	8260C	Total/NA
Trichloroethene - DL	1500	F1	25	12	ug/L	25	8260C	Total/NA
Client Sample ID: MW-1	5 091615					Lab Sa	mple ID: 4	80-87386-1
Analyte		Qualifier	RL	MDL		Dil Fac	Method	Prep Type
Methyl tert-butyl ether	0.26	J	1.0	0.16	ug/L	1	8260C	Total/NA
Trichloroethene	0.82	J	1.0	0.46	ug/L	1	8260C	Total/NA
Client Sample ID: MW-1	C 004 E4C					l ab Ca	mple ID: 4	00.07000.4

This Detection Summary does not include radiochemical test results.

Result Qualifier

1.5

Analyte

Trichloroethene

TestAmerica Buffalo

Dil Fac D Method

8260C

RL

1.0

MDL Unit

0.46 ug/L

Prep Type

Total/NA

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: TRIP BLANK

TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-18

No Detections.

Δ

5

7

9

11

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-5 091615 Lab Sample ID: 480-87386-1

Date Collected: 09/16/15 07:45 Date Received: 09/17/15 01:20

Method: 8260C - Volatile Orgar Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0		ug/L			09/25/15 16:00	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			09/25/15 16:00	1
1,1,2-Trichloroethane	ND	1.0		ug/L			09/25/15 16:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L			09/25/15 16:00	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 16:00	1
1,1-Dichloroethene	ND	1.0		ug/L			09/25/15 16:00	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/25/15 16:00	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/25/15 16:00	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/25/15 16:00	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/25/15 16:00	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/25/15 16:00	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/25/15 16:00	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/25/15 16:00	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/25/15 16:00	1
2-Hexanone	ND *	5.0	1.2	ug/L			09/25/15 16:00	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/25/15 16:00	1
Acetone	ND	10	3.0	ug/L			09/25/15 16:00	1
Benzene	ND	1.0		ug/L			09/25/15 16:00	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/25/15 16:00	1
Bromoform	ND	1.0		ug/L			09/25/15 16:00	1
Bromomethane	ND	1.0		ug/L			09/25/15 16:00	1
Carbon disulfide	ND	1.0		ug/L			09/25/15 16:00	1
Carbon tetrachloride	ND	1.0		ug/L			09/25/15 16:00	1
Chlorobenzene	ND	1.0		ug/L			09/25/15 16:00	1
Dibromochloromethane	ND	1.0		ug/L			09/25/15 16:00	1
Chloroethane	ND	1.0		ug/L			09/25/15 16:00	1
Chloroform	ND	1.0		ug/L			09/25/15 16:00	1
Chloromethane	ND	1.0		ug/L			09/25/15 16:00	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			09/25/15 16:00	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			09/25/15 16:00	1
Cyclohexane	ND	1.0		ug/L			09/25/15 16:00	1
Dichlorodifluoromethane	ND	1.0		ug/L			09/25/15 16:00	1
Ethylbenzene	ND	1.0		ug/L			09/25/15 16:00	1
1,2-Dibromoethane	ND	1.0		ug/L			09/25/15 16:00	
Isopropylbenzene	ND	1.0	0.79	-			09/25/15 16:00	1
Methyl acetate	ND	2.5		ug/L			09/25/15 16:00	1
Methyl tert-butyl ether	ND	1.0					09/25/15 16:00	
	ND ND	1.0		ug/L ug/L			09/25/15 16:00	1
Methylogo Chlorida	ND ND	1.0		-				1
Methylene Chloride	ND			ug/L			09/25/15 16:00	ا 1
Styrene		1.0		ug/L			09/25/15 16:00	1
Tetrachloroethene Toluene	1.9	1.0		ug/L			09/25/15 16:00	1
	ND	1.0		ug/L			09/25/15 16:00	ا
trans-1,2-Dichloroethene	ND ND	1.0		ug/L			09/25/15 16:00	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			09/25/15 16:00	1
Trichloroethene	55	1.0		ug/L			09/25/15 16:00	1
Trichlorofluoromethane	ND	1.0		ug/L			09/25/15 16:00	1
Vinyl chloride	ND	1.0		ug/L			09/25/15 16:00	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/25/15 16:00	1

TestAmerica Buffalo

3

Matrix: Water

4

6

8

10

12

14

1 %

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-5 091615 Lab Sample ID: 480-87386-1

Date Collected: 09/16/15 07:45 Date Received: 09/17/15 01:20

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	92	71 - 126	09/25/15 16:00	1
1,2-Dichloroethane-d4 (Surr)	98	66 - 137	09/25/15 16:00	1
4-Bromofluorobenzene (Surr)	95	73 - 120	09/25/15 16:00	1
Dibromofluoromethane (Surr)	98	60 - 140	09/25/15 16:00	1

Lab Sample ID: 480-87386-2 Client Sample ID: MW-6 091615

Date Collected: 09/16/15 08:05 **Matrix: Water**

Date Received: 09/17/15 01:20

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			09/25/15 16:27	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/25/15 16:27	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/25/15 16:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/25/15 16:27	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 16:27	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/25/15 16:27	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/25/15 16:27	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/25/15 16:27	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/25/15 16:27	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/25/15 16:27	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/25/15 16:27	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/25/15 16:27	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/25/15 16:27	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/25/15 16:27	1
2-Hexanone	ND *	5.0	1.2	ug/L			09/25/15 16:27	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/25/15 16:27	1
Acetone	ND	10	3.0	ug/L			09/25/15 16:27	1
Benzene	ND	1.0	0.41	ug/L			09/25/15 16:27	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/25/15 16:27	1
Bromoform	ND	1.0	0.26	ug/L			09/25/15 16:27	1
Bromomethane	ND	1.0	0.69	ug/L			09/25/15 16:27	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/25/15 16:27	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/25/15 16:27	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/25/15 16:27	1
Dibromochloromethane	ND	1.0	0.32	ug/L			09/25/15 16:27	1
Chloroethane	ND	1.0	0.32	ug/L			09/25/15 16:27	1
Chloroform	ND	1.0	0.34	ug/L			09/25/15 16:27	1
Chloromethane	ND	1.0	0.35	ug/L			09/25/15 16:27	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			09/25/15 16:27	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/25/15 16:27	1
Cyclohexane	ND	1.0	0.18	ug/L			09/25/15 16:27	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/25/15 16:27	1
Ethylbenzene	ND	1.0		ug/L			09/25/15 16:27	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			09/25/15 16:27	1
Isopropylbenzene	ND	1.0	0.79	ug/L			09/25/15 16:27	1
Methyl acetate	ND	2.5		ug/L			09/25/15 16:27	1
Methyl tert-butyl ether	ND	1.0	0.16	-			09/25/15 16:27	1
Methylcyclohexane	ND	1.0		ug/L			09/25/15 16:27	1
Methylene Chloride	ND	1.0	0.44	-			09/25/15 16:27	1

TestAmerica Buffalo

Page 9 of 49

9/29/2015

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-6 091615

Date Collected: 09/16/15 08:05 Date Received: 09/17/15 01:20

Lab Sample ID: 480-87386-2

09/25/15 16:27

Matrix: Water

Lab Sample ID: 480-87386-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			09/25/15 16:27	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/25/15 16:27	1
Toluene	ND		1.0	0.51	ug/L			09/25/15 16:27	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/25/15 16:27	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/25/15 16:27	1
Trichloroethene	79		1.0	0.46	ug/L			09/25/15 16:27	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/25/15 16:27	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/25/15 16:27	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/25/15 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		71 - 126					09/25/15 16:27	1
1,2-Dichloroethane-d4 (Surr)	97		66 - 137					09/25/15 16:27	1
4-Bromofluorobenzene (Surr)	95		73 - 120					09/25/15 16:27	1

60 - 140

Client Sample ID: PZ-1 091615

Date Collected: 09/16/15 08:45 Date Received: 09/17/15 01:20

Dibromofluoromethane (Surr)

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/25/15 16:55	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/25/15 16:55	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/25/15 16:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/25/15 16:55	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 16:55	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/25/15 16:55	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/25/15 16:55	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/25/15 16:55	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/25/15 16:55	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/25/15 16:55	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/25/15 16:55	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/25/15 16:55	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/25/15 16:55	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/25/15 16:55	1
2-Hexanone	ND *	5.0	1.2	ug/L			09/25/15 16:55	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/25/15 16:55	1
Acetone	3.1 J	10	3.0	ug/L			09/25/15 16:55	1
Benzene	ND	1.0	0.41	ug/L			09/25/15 16:55	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/25/15 16:55	1
Bromoform	ND	1.0	0.26	ug/L			09/25/15 16:55	1
Bromomethane	ND	1.0	0.69	ug/L			09/25/15 16:55	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/25/15 16:55	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/25/15 16:55	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/25/15 16:55	1
Dibromochloromethane	ND	1.0	0.32	ug/L			09/25/15 16:55	1
Chloroethane	ND	1.0	0.32	ug/L			09/25/15 16:55	1
Chloroform	ND	1.0	0.34	ug/L			09/25/15 16:55	1
Chloromethane	ND	1.0	0.35	ug/L			09/25/15 16:55	1

TestAmerica Buffalo

Page 10 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: PZ-1 091615

Date Collected: 09/16/15 08:45 Date Received: 09/17/15 01:20 Lab Sample ID: 480-87386-3

Matrix: Water

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND ND		1.0	0.81	ug/L			09/25/15 16:55	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/25/15 16:55	1
Cyclohexane	ND		1.0	0.18	ug/L			09/25/15 16:55	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/25/15 16:55	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/25/15 16:55	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			09/25/15 16:55	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/25/15 16:55	1
Methyl acetate	ND		2.5	1.3	ug/L			09/25/15 16:55	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/25/15 16:55	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/25/15 16:55	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/25/15 16:55	1
Styrene	ND		1.0	0.73	ug/L			09/25/15 16:55	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/25/15 16:55	1
Toluene	ND		1.0	0.51	ug/L			09/25/15 16:55	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/25/15 16:55	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/25/15 16:55	1
Trichloroethene	63		1.0	0.46	ug/L			09/25/15 16:55	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/25/15 16:55	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/25/15 16:55	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/25/15 16:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		71 - 126			-		09/25/15 16:55	1
1,2-Dichloroethane-d4 (Surr)	96		66 - 137					09/25/15 16:55	1
4-Bromofluorobenzene (Surr)	96		73 - 120					09/25/15 16:55	1

60 - 140

Client Sample ID: MW-11 091615

100

Date Collected: 09/16/15 09:15 Date Received: 09/17/15 01:20

Dibromofluoromethane (Surr)

Lab Sample ID: 480-87386-4

09/25/15 16:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			09/25/15 17:22	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			09/25/15 17:22	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			09/25/15 17:22	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			09/25/15 17:22	10
1,1-Dichloroethane	ND		10	3.8	ug/L			09/25/15 17:22	10
1,1-Dichloroethene	ND		10	2.9	ug/L			09/25/15 17:22	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			09/25/15 17:22	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			09/25/15 17:22	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			09/25/15 17:22	10
1,2-Dichloroethane	ND		10	2.1	ug/L			09/25/15 17:22	10
1,2-Dichloropropane	ND		10	7.2	ug/L			09/25/15 17:22	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			09/25/15 17:22	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			09/25/15 17:22	10
2-Butanone (MEK)	ND		100	13	ug/L			09/25/15 17:22	10
2-Hexanone	ND	*	50	12	ug/L			09/25/15 17:22	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			09/25/15 17:22	10
Acetone	ND		100	30	ug/L			09/25/15 17:22	10

TestAmerica Buffalo

Page 11 of 49

9/29/2015

4

0

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-11 091615

Lab Sample ID: 480-87386-4

Matrix: Water

Date Collected: 09/16/15 09:15 Date Received: 09/17/15 01:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	10	4.1	ug/L			09/25/15 17:22	10
Bromodichloromethane	ND	10	3.9	ug/L			09/25/15 17:22	10
Bromoform	ND	10	2.6	ug/L			09/25/15 17:22	10
Bromomethane	ND	10	6.9	ug/L			09/25/15 17:22	10
Carbon disulfide	ND	10	1.9	ug/L			09/25/15 17:22	10
Carbon tetrachloride	ND	10	2.7	ug/L			09/25/15 17:22	10
Chlorobenzene	ND	10	7.5	ug/L			09/25/15 17:22	10
Dibromochloromethane	ND	10	3.2	ug/L			09/25/15 17:22	10
Chloroethane	ND	10	3.2	ug/L			09/25/15 17:22	10
Chloroform	ND	10	3.4	ug/L			09/25/15 17:22	10
Chloromethane	ND	10	3.5	ug/L			09/25/15 17:22	10
cis-1,2-Dichloroethene	ND	10	8.1	ug/L			09/25/15 17:22	10
cis-1,3-Dichloropropene	ND	10	3.6	ug/L			09/25/15 17:22	10
Cyclohexane	ND	10	1.8	ug/L			09/25/15 17:22	10
Dichlorodifluoromethane	ND	10	6.8	ug/L			09/25/15 17:22	10
Ethylbenzene	ND	10	7.4	ug/L			09/25/15 17:22	10
1,2-Dibromoethane	ND	10	7.3	ug/L			09/25/15 17:22	10
Isopropylbenzene	ND	10	7.9	ug/L			09/25/15 17:22	10
Methyl acetate	ND	25	13	ug/L			09/25/15 17:22	10
Methyl tert-butyl ether	ND	10	1.6	ug/L			09/25/15 17:22	10
Methylcyclohexane	ND	10	1.6	ug/L			09/25/15 17:22	10
Methylene Chloride	10	10	4.4	ug/L			09/25/15 17:22	10
Styrene	ND	10	7.3	ug/L			09/25/15 17:22	10
Tetrachloroethene	ND	10	3.6	ug/L			09/25/15 17:22	10
Toluene	ND	10	5.1	ug/L			09/25/15 17:22	10
trans-1,2-Dichloroethene	ND	10	9.0	ug/L			09/25/15 17:22	10
trans-1,3-Dichloropropene	ND	10	3.7	ug/L			09/25/15 17:22	10
Trichloroethene	680	10	4.6	ug/L			09/25/15 17:22	10
Trichlorofluoromethane	ND	10	8.8	ug/L			09/25/15 17:22	10
Vinyl chloride	ND	10	9.0	ug/L			09/25/15 17:22	10
Xylenes, Total	ND	20	6.6	ug/L			09/25/15 17:22	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	71 - 126			•		09/25/15 17:22	10
1,2-Dichloroethane-d4 (Surr)	97	66 - 137					09/25/15 17:22	10
4-Bromofluorobenzene (Surr)	97	73 - 120					09/25/15 17:22	10
Dibromofluoromethane (Surr)	99	60 - 140					09/25/15 17:22	10

Client Sample ID: MW-10 091615

Date Collected: 09/16/15 09:40 Date Received: 09/17/15 01:20

Lab Sample ID: 480-87386-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/25/15 17:50	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/25/15 17:50	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/25/15 17:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/25/15 17:50	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 17:50	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/25/15 17:50	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-5

Matrix: Water

Client Sample ID: MW-10 091615

Date Collected: 09/16/15 09:40 Date Received: 09/17/15 01:20

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/25/15 17:50	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/25/15 17:50	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/25/15 17:50	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/25/15 17:50	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/25/15 17:50	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/25/15 17:50	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/25/15 17:50	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/25/15 17:50	1
2-Hexanone	ND	*	5.0	1.2	ug/L			09/25/15 17:50	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/25/15 17:50	1
Acetone	4.4	J	10	3.0	ug/L			09/25/15 17:50	1
Benzene	ND		1.0	0.41	ug/L			09/25/15 17:50	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/25/15 17:50	1
Bromoform	ND		1.0	0.26	ug/L			09/25/15 17:50	1
Bromomethane	ND		1.0	0.69	ug/L			09/25/15 17:50	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/25/15 17:50	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/25/15 17:50	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/25/15 17:50	1
Dibromochloromethane	ND		1.0	0.32	ug/L			09/25/15 17:50	
Chloroethane	ND		1.0	0.32	ug/L			09/25/15 17:50	1
Chloroform	0.53	J	1.0	0.34	ug/L			09/25/15 17:50	1
Chloromethane	ND		1.0	0.35	ug/L			09/25/15 17:50	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/25/15 17:50	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/25/15 17:50	1
Cyclohexane	ND		1.0	0.18	ug/L			09/25/15 17:50	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/25/15 17:50	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/25/15 17:50	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			09/25/15 17:50	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/25/15 17:50	1
Methyl acetate	ND		2.5	1.3	ug/L			09/25/15 17:50	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/25/15 17:50	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/25/15 17:50	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/25/15 17:50	1
Styrene	ND		1.0	0.73	ug/L			09/25/15 17:50	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/25/15 17:50	1
Toluene	ND		1.0	0.51	ug/L			09/25/15 17:50	1
trans-1,2-Dichloroethene	ND		1.0	0.90				09/25/15 17:50	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/25/15 17:50	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/25/15 17:50	1
Vinyl chloride	ND		1.0		ug/L			09/25/15 17:50	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/25/15 17:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		71 - 126			-		09/25/15 17:50	
1,2-Dichloroethane-d4 (Surr)	100		66 - 137					09/25/15 17:50	1

TestAmerica Buffalo

09/25/15 17:50

09/25/15 17:50

73 - 120

60 - 140

98

99

3

4

6

8

10

12

1 /

4 E

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-10 091615

Date Collected: 09/16/15 09:40 Date Received: 09/17/15 01:20 Lab Sample ID: 480-87386-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	100		2.0	0.92	ug/L			09/26/15 01:43	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		71 - 126					09/26/15 01:43	2
1,2-Dichloroethane-d4 (Surr)	97		66 - 137					09/26/15 01:43	2
4-Bromofluorobenzene (Surr)	99		73 - 120					09/26/15 01:43	2
Dibromofluoromethane (Surr)	96		60 - 140					09/26/15 01:43	2

Client Sample ID: MW-14 091615 Lab Sample ID: 480-87386-6

Date Received: 09/17/15 01:20

Date Collected: 09/16/15 09:50 **Matrix: Water**

Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			09/25/15 18:17	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			09/25/15 18:17	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			09/25/15 18:17	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			09/25/15 18:17	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			09/25/15 18:17	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			09/25/15 18:17	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			09/25/15 18:17	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			09/25/15 18:17	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			09/25/15 18:17	4
1,2-Dichloroethane	ND	4.0	0.84	ug/L			09/25/15 18:17	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			09/25/15 18:17	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			09/25/15 18:17	4
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L			09/25/15 18:17	4
2-Butanone (MEK)	ND	40	5.3	ug/L			09/25/15 18:17	4
2-Hexanone	ND *	20	5.0	ug/L			09/25/15 18:17	4
4-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L			09/25/15 18:17	4
Acetone	ND	40	12	ug/L			09/25/15 18:17	4
Benzene	ND	4.0	1.6	ug/L			09/25/15 18:17	4
Bromodichloromethane	ND	4.0	1.6	ug/L			09/25/15 18:17	4
Bromoform	ND	4.0	1.0	ug/L			09/25/15 18:17	4
Bromomethane	ND	4.0	2.8	ug/L			09/25/15 18:17	4
Carbon disulfide	ND	4.0	0.76	ug/L			09/25/15 18:17	4
Carbon tetrachloride	ND	4.0	1.1	ug/L			09/25/15 18:17	4
Chlorobenzene	ND	4.0	3.0	ug/L			09/25/15 18:17	4
Dibromochloromethane	ND	4.0	1.3	ug/L			09/25/15 18:17	4
Chloroethane	ND	4.0	1.3	ug/L			09/25/15 18:17	4
Chloroform	ND	4.0	1.4	ug/L			09/25/15 18:17	4
Chloromethane	ND	4.0	1.4	ug/L			09/25/15 18:17	4
cis-1,2-Dichloroethene	ND	4.0	3.2	ug/L			09/25/15 18:17	4
cis-1,3-Dichloropropene	ND	4.0	1.4	ug/L			09/25/15 18:17	4
Cyclohexane	ND	4.0	0.72	ug/L			09/25/15 18:17	4
Dichlorodifluoromethane	ND	4.0	2.7	ug/L			09/25/15 18:17	4
Ethylbenzene	ND	4.0	3.0	ug/L			09/25/15 18:17	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L			09/25/15 18:17	4
Isopropylbenzene	ND	4.0	3.2	ug/L			09/25/15 18:17	4
Methyl acetate	ND	10	5.2	ug/L			09/25/15 18:17	4

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-14 091615

Lab Sample ID: 480-87386-6 Date Collected: 09/16/15 09:50 **Matrix: Water**

Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			09/25/15 18:17	4
Methylcyclohexane	ND		4.0	0.64	ug/L			09/25/15 18:17	4
Methylene Chloride	4.4		4.0	1.8	ug/L			09/25/15 18:17	4
Styrene	ND		4.0	2.9	ug/L			09/25/15 18:17	4
Tetrachloroethene	ND		4.0	1.4	ug/L			09/25/15 18:17	4
Toluene	ND		4.0	2.0	ug/L			09/25/15 18:17	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			09/25/15 18:17	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			09/25/15 18:17	4
Trichloroethene	200		4.0	1.8	ug/L			09/25/15 18:17	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			09/25/15 18:17	4
Vinyl chloride	ND		4.0	3.6	ug/L			09/25/15 18:17	4
Xylenes, Total	ND		8.0	2.6	ug/L			09/25/15 18:17	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		71 - 126			-		09/25/15 18:17	4
1,2-Dichloroethane-d4 (Surr)	97		66 - 137					09/25/15 18:17	4
4-Bromofluorobenzene (Surr)	98		73 - 120					09/25/15 18:17	4
Dibromofluoromethane (Surr)	99		60 - 140					09/25/15 18:17	4

Client Sample ID: MW-13 091615 Lab Sample ID: 480-87386-7 **Matrix: Water**

Date Collected: 09/16/15 10:15 Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			09/25/15 18:45	4
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			09/25/15 18:45	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			09/25/15 18:45	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			09/25/15 18:45	4
1,1-Dichloroethane	ND		4.0	1.5	ug/L			09/25/15 18:45	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			09/25/15 18:45	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			09/25/15 18:45	4
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			09/25/15 18:45	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			09/25/15 18:45	4
1,2-Dichloroethane	ND		4.0	0.84	ug/L			09/25/15 18:45	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			09/25/15 18:45	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			09/25/15 18:45	4
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			09/25/15 18:45	4
2-Butanone (MEK)	ND		40	5.3	ug/L			09/25/15 18:45	4
2-Hexanone	ND	*	20	5.0	ug/L			09/25/15 18:45	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			09/25/15 18:45	4
Acetone	ND		40	12	ug/L			09/25/15 18:45	4
Benzene	ND		4.0	1.6	ug/L			09/25/15 18:45	4
Bromodichloromethane	ND		4.0	1.6	ug/L			09/25/15 18:45	4
Bromoform	ND		4.0	1.0	ug/L			09/25/15 18:45	4
Bromomethane	ND		4.0	2.8	ug/L			09/25/15 18:45	4
Carbon disulfide	ND		4.0	0.76	ug/L			09/25/15 18:45	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			09/25/15 18:45	4
Chlorobenzene	ND		4.0	3.0	ug/L			09/25/15 18:45	4
Dibromochloromethane	ND		4.0	1.3	ug/L			09/25/15 18:45	4

TestAmerica Buffalo

Page 15 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-13 091615

Date Collected: 09/16/15 10:15

Lab Sample ID: 480-87386-7

Matrix: Water

Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		4.0	1.3	ug/L			09/25/15 18:45	4
Chloroform	ND		4.0	1.4	ug/L			09/25/15 18:45	4
Chloromethane	ND		4.0	1.4	ug/L			09/25/15 18:45	4
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			09/25/15 18:45	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			09/25/15 18:45	4
Cyclohexane	ND		4.0	0.72	ug/L			09/25/15 18:45	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			09/25/15 18:45	4
Ethylbenzene	ND		4.0	3.0	ug/L			09/25/15 18:45	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			09/25/15 18:45	4
Isopropylbenzene	ND		4.0	3.2	ug/L			09/25/15 18:45	4
Methyl acetate	ND		10	5.2	ug/L			09/25/15 18:45	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			09/25/15 18:45	4
Methylcyclohexane	ND		4.0	0.64	ug/L			09/25/15 18:45	4
Methylene Chloride	4.1		4.0	1.8	ug/L			09/25/15 18:45	4
Styrene	ND		4.0	2.9	ug/L			09/25/15 18:45	4
Tetrachloroethene	ND		4.0	1.4	ug/L			09/25/15 18:45	4
Toluene	ND		4.0	2.0	ug/L			09/25/15 18:45	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			09/25/15 18:45	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			09/25/15 18:45	4
Trichloroethene	260		4.0	1.8	ug/L			09/25/15 18:45	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			09/25/15 18:45	4
Vinyl chloride	ND		4.0	3.6	ug/L			09/25/15 18:45	4
Xylenes, Total	ND		8.0	2.6	ug/L			09/25/15 18:45	2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		71 - 126		09/25/15 18:45	4
1,2-Dichloroethane-d4 (Surr)	97		66 - 137		09/25/15 18:45	4
4-Bromofluorobenzene (Surr)	96		73 - 120		09/25/15 18:45	4
Dibromofluoromethane (Surr)	101		60 - 140		09/25/15 18:45	4

Client Sample ID: MW-12 091615

Date Collected: 09/16/15 10:55 Date Received: 09/17/15 01:20

Lab Sample	ID: 480-87386-8

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/25/15 19:12	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/25/15 19:12	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/25/15 19:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/25/15 19:12	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 19:12	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/25/15 19:12	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/25/15 19:12	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/25/15 19:12	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/25/15 19:12	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/25/15 19:12	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/25/15 19:12	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/25/15 19:12	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/25/15 19:12	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/25/15 19:12	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-87386-8 Client Sample ID: MW-12 091615

Date Collected: 09/16/15 10:55 **Matrix: Water** Date Received: 09/17/15 01:20

Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND *	*	5.0	1.2	ug/L			09/25/15 19:12	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/25/15 19:12	1
Acetone	ND		10	3.0	ug/L			09/25/15 19:12	1
Benzene	ND		1.0	0.41	ug/L			09/25/15 19:12	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/25/15 19:12	1
Bromoform	ND		1.0	0.26	ug/L			09/25/15 19:12	1
Bromomethane	ND		1.0	0.69	ug/L			09/25/15 19:12	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/25/15 19:12	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/25/15 19:12	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/25/15 19:12	1
Dibromochloromethane	ND		1.0	0.32	ug/L			09/25/15 19:12	1
Chloroethane	ND		1.0	0.32	ug/L			09/25/15 19:12	1
Chloroform	ND		1.0	0.34	ug/L			09/25/15 19:12	1
Chloromethane	ND		1.0	0.35	ug/L			09/25/15 19:12	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/25/15 19:12	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/25/15 19:12	1
Cyclohexane	ND		1.0	0.18	ug/L			09/25/15 19:12	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/25/15 19:12	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/25/15 19:12	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			09/25/15 19:12	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/25/15 19:12	1
Methyl acetate	ND		2.5	1.3	ug/L			09/25/15 19:12	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/25/15 19:12	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/25/15 19:12	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/25/15 19:12	1
Styrene	ND		1.0	0.73	ug/L			09/25/15 19:12	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/25/15 19:12	1
Toluene	ND		1.0	0.51	ug/L			09/25/15 19:12	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/25/15 19:12	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/25/15 19:12	1
Trichloroethene	16		1.0	0.46	ug/L			09/25/15 19:12	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/25/15 19:12	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/25/15 19:12	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/25/15 19:12	1
Surrogate		Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		71 - 126			-		09/25/15 19:12	1
1,2-Dichloroethane-d4 (Surr)	96		66 - 137					09/25/15 19:12	1
4-Bromofluorobenzene (Surr)	94		73 - 120					09/25/15 19:12	1

Client Sample ID: MW-9 091615 Lab Sample ID: 480-87386-9

Date Collected: 09/16/15 11:20 Date Received: 09/17/15 01:20

Method: 8260C - Volatile Org	janic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82 ug/L			09/25/15 19:40	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L			09/25/15 19:40	1
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L			09/25/15 19:40	1

TestAmerica Buffalo

Page 17 of 49

9/29/2015

Matrix: Water

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-9 091615

4-Bromofluorobenzene (Surr)

Lab Sample ID: 480-87386-9 Date Collected: 09/16/15 11:20

Matrix: Water Date Received: 09/17/15 01:20

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,1,2-Trichloro-1,2,2-trifluoroethane $\overline{\mathsf{ND}}$ 1.0 0.31 ug/L 09/25/15 19:40 1.1-Dichloroethane ND 1.0 09/25/15 19:40 0.38 ug/L 1,1-Dichloroethene ND 1.0 0.29 ug/L 09/25/15 19:40 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 09/25/15 19:40 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 09/25/15 19:40 1.2-Dichlorobenzene ND 1.0 0.79 ug/L 09/25/15 19:40 1,2-Dichloroethane ND 1.0 0.21 ug/L 09/25/15 19:40 1,2-Dichloropropane ND 1.0 0.72 ug/L 09/25/15 19:40 ND 1,3-Dichlorobenzene 1.0 0.78 09/25/15 19:40 ug/L 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 09/25/15 19:40 2-Butanone (MEK) ND 10 1.3 09/25/15 19:40 ug/L 2-Hexanone ND 5.0 1.2 ug/L 09/25/15 19:40 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 1 09/25/15 19:40 Acetone ND 10 3.0 ug/L 09/25/15 19:40 Benzene ND 1.0 0.41 ug/L 09/25/15 19:40 Bromodichloromethane ND 1.0 0.39 ug/L 09/25/15 19:40 **Bromoform** ND 1.0 0.26 09/25/15 19:40 ug/L Bromomethane ND 1.0 0.69 ug/L 09/25/15 19:40 Carbon disulfide ND 1.0 0.19 ug/L 09/25/15 19:40 Carbon tetrachloride ND 0.27 1.0 ug/L 09/25/15 19:40 Chlorobenzene ND 1.0 0.75 ug/L 09/25/15 19:40 ND Dibromochloromethane 1.0 0.32 ug/L 09/25/15 19:40 Chloroethane ND 1.0 0.32 ug/L 09/25/15 19:40 Chloroform ND 1.0 0.34 ug/L 09/25/15 19:40 Chloromethane ND 1.0 0.35 ug/L 09/25/15 19:40 cis-1.2-Dichloroethene ND 1.0 0.81 ug/L 09/25/15 19:40 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 09/25/15 19:40 Cyclohexane ND 1.0 0.18 ug/L 09/25/15 19:40 Dichlorodifluoromethane ND 1.0 0.68 ug/L 09/25/15 19:40 Ethylbenzene ND 1.0 0.74 ug/L 09/25/15 19:40 1,2-Dibromoethane ND 1.0 0.73 ug/L 09/25/15 19:40 Isopropylbenzene ND 1.0 0.79 ug/L 09/25/15 19:40 Methyl acetate ND 2.5 1.3 ug/L 09/25/15 19:40 Methyl tert-butyl ether ND 1.0 0.16 ug/L 09/25/15 19:40 Methylcyclohexane ND 1.0 0.16 ug/L 09/25/15 19:40 Methylene Chloride NΩ 1.0 0.44 ug/L 09/25/15 19:40 ND Styrene 1.0 0.73 ug/L 09/25/15 19:40 Tetrachloroethene ND 1.0 0.36 ug/L 09/25/15 19:40 Toluene ND 1.0 0.51 ug/L 09/25/15 19:40 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 09/25/15 19:40 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 09/25/15 19:40 **Trichloroethene** 46 1.0 0.46 ug/L 09/25/15 19:40 Trichlorofluoromethane ND 1.0 0.88 09/25/15 19:40 ug/L Vinyl chloride ND 1.0 0.90 ug/L 09/25/15 19:40 Xylenes, Total ND 2.0 0.66 ug/L 09/25/15 19:40 Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed 95 Toluene-d8 (Surr) 71 - 126 09/25/15 19:40 1,2-Dichloroethane-d4 (Surr) 97 66 - 137 09/25/15 19:40

TestAmerica Buffalo

9/29/2015

09/25/15 19:40

73 - 120

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-9

Client Sample ID: MW-9 091615 Date Collected: 09/16/15 11:20 **Matrix: Water** Date Received: 09/17/15 01:20

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 100 60 - 140 09/25/15 19:40

Client Sample ID: PZ-2 091615 Lab Sample ID: 480-87386-10

Date Collected: 09/16/15 11:45 **Matrix: Water**

Date Received: 09/17/15 01:20

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		1.0	0.82	ug/L		<u> </u>	09/25/15 20:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/25/15 20:07	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/25/15 20:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/25/15 20:07	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 20:07	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/25/15 20:07	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/25/15 20:07	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/25/15 20:07	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/25/15 20:07	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/25/15 20:07	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/25/15 20:07	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/25/15 20:07	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/25/15 20:07	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/25/15 20:07	1
2-Hexanone	ND *	5.0	1.2	ug/L			09/25/15 20:07	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/25/15 20:07	1
Acetone	ND	10	3.0	ug/L			09/25/15 20:07	1
Benzene	ND	1.0	0.41	ug/L			09/25/15 20:07	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/25/15 20:07	1
Bromoform	ND	1.0	0.26	ug/L			09/25/15 20:07	1
Bromomethane	ND	1.0	0.69	ug/L			09/25/15 20:07	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/25/15 20:07	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/25/15 20:07	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/25/15 20:07	1
Dibromochloromethane	ND	1.0	0.32	ug/L			09/25/15 20:07	1
Chloroethane	ND	1.0	0.32	ug/L			09/25/15 20:07	1
Chloroform	ND	1.0	0.34	ug/L			09/25/15 20:07	1
Chloromethane	ND	1.0	0.35	ug/L			09/25/15 20:07	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/25/15 20:07	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/25/15 20:07	1
Cyclohexane	ND	1.0	0.18	ug/L			09/25/15 20:07	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/25/15 20:07	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/25/15 20:07	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			09/25/15 20:07	1
Isopropylbenzene	ND	1.0	0.79	ug/L			09/25/15 20:07	1
Methyl acetate	ND	2.5	1.3	ug/L			09/25/15 20:07	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			09/25/15 20:07	1
Methylcyclohexane	ND	1.0	0.16	ug/L			09/25/15 20:07	1
Methylene Chloride	ND	1.0	0.44				09/25/15 20:07	1
Styrene	ND	1.0	0.73	ug/L			09/25/15 20:07	1
Tetrachloroethene	0.49 J	1.0	0.36	-			09/25/15 20:07	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-10

. Matrix: Water

09/25/15 20:07

09/25/15 20:07

Client Sample ID: PZ-2 091615
Date Collected: 09/16/15 11:45
Date Received: 09/17/15 01:20

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Toluene ND 1.0 0.51 ug/L 09/25/15 20:07 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 09/25/15 20:07 ND trans-1,3-Dichloropropene 1.0 0.37 ug/L 09/25/15 20:07 **Trichloroethene** 83 1.0 0.46 ug/L 09/25/15 20:07 Trichlorofluoromethane ND 1.0 0.88 ug/L 09/25/15 20:07 ND 0.90 ug/L Vinyl chloride 1.0 09/25/15 20:07 Xylenes, Total ND 0.66 ug/L 2.0 09/25/15 20:07 %Recovery Surrogate Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 94 71 - 126 09/25/15 20:07 1,2-Dichloroethane-d4 (Surr) 99 66 - 137 09/25/15 20:07

Client Sample ID: MW-17 091615

Date Collected: 09/16/15 12:00

Lab Sample ID: 480-87386-11

Matrix: Water

Date Collected: 09/16/15 12:00 Matrix: V

Date Received: 09/17/15 01:20

73 - 120

60 - 140

98

100

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/25/15 20:35	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/25/15 20:35	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/25/15 20:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/25/15 20:35	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/25/15 20:35	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/25/15 20:35	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/25/15 20:35	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/25/15 20:35	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/25/15 20:35	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/25/15 20:35	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/25/15 20:35	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/25/15 20:35	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/25/15 20:35	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/25/15 20:35	1
2-Hexanone	ND *	5.0	1.2	ug/L			09/25/15 20:35	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/25/15 20:35	1
Acetone	4.2 J	10	3.0	ug/L			09/25/15 20:35	1
Benzene	ND	1.0	0.41	ug/L			09/25/15 20:35	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/25/15 20:35	1
Bromoform	ND	1.0	0.26	ug/L			09/25/15 20:35	1
Bromomethane	ND	1.0	0.69	ug/L			09/25/15 20:35	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/25/15 20:35	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/25/15 20:35	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/25/15 20:35	1
Dibromochloromethane	ND	1.0	0.32	ug/L			09/25/15 20:35	1
Chloroethane	ND	1.0	0.32	ug/L			09/25/15 20:35	1
Chloroform	ND	1.0	0.34	ug/L			09/25/15 20:35	1
Chloromethane	ND	1.0	0.35	ug/L			09/25/15 20:35	1
cis-1,2-Dichloroethene	16	1.0	0.81	ug/L			09/25/15 20:35	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ua/L			09/25/15 20:35	1

TestAmerica Buffalo

Л

6

8

10

11

13

14

6

Dil Fac

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-17 091615

Lab Sample ID: 480-87386-11

D

Prepared

Date Collected: 09/16/15 12:00 Date Received: 09/17/15 01:20

Matrix: Water

Analyzed

09/25/15 20:35

09/25/15 20:35

09/26/15 02:10

5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **Analyte** Result Qualifier RL **MDL** Unit Cyclohexane $\overline{\mathsf{ND}}$ 1.0 0.18 Dichlorodifluoromethane ND 1.0

ND

99

98

ug/L 09/25/15 20:35 09/25/15 20:35 0.68 ug/L Ethylbenzene ND 1.0 0.74 ug/L 09/25/15 20:35 1,2-Dibromoethane ND 1.0 0.73 ug/L 09/25/15 20:35 ND Isopropylbenzene 1.0 0.79 ug/L 09/25/15 20:35 ND 2.5 1.3 ug/L 09/25/15 20:35

Methyl acetate Methyl tert-butyl ether ND 1.0 0.16 ug/L 09/25/15 20:35 Methylcyclohexane ND 1.0 0.16 ug/L 09/25/15 20:35 ND Methylene Chloride 1.0 ug/L 09/25/15 20:35 0.44 Styrene ND 1.0 0.73 ug/L 09/25/15 20:35 1.0 0.36 ug/L 09/25/15 20:35 **Tetrachloroethene** 5.9 Toluene ND 1.0 0.51 ug/L 09/25/15 20:35 ND trans-1,2-Dichloroethene 1.0 0.90 ug/L 09/25/15 20:35 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 09/25/15 20:35 Trichlorofluoromethane ND 0.88 ug/L 1.0 09/25/15 20:35

Xylenes, Total ND 2.0 0.66 ug/L 09/25/15 20:35 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 92 Toluene-d8 (Surr) 71 - 126 09/25/15 20:35 1,2-Dichloroethane-d4 (Surr) 98 66 - 137 09/25/15 20:35 95 4-Bromofluorobenzene (Surr) 73 - 120 09/25/15 20:35

60 - 140

1.0

0.90 ug/L

Method: 8260C - Volatile Organic Compounds by GC/MS - DL Analyte Result Qualifier **MDL** Unit Dil Fac RL Prepared Analyzed 190 5.0 09/26/15 02:10 **Trichloroethene** 2.3 ug/L Surrogate Qualifier %Recovery Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 93 71 - 126 09/26/15 02:10 5 1,2-Dichloroethane-d4 (Surr) 97 09/26/15 02:10 5 66 - 137 95 5 4-Bromofluorobenzene (Surr) 73 - 120 09/26/15 02:10

Lab Sample ID: 480-87386-12 Client Sample ID: MW-21 091615

60 - 140

Date Collected: 09/16/15 12:20 Date Received: 09/17/15 01:20

Dibromofluoromethane (Surr)

Vinyl chloride

Dibromofluoromethane (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/26/15 02:38	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/26/15 02:38	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/26/15 02:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/26/15 02:38	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/26/15 02:38	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/26/15 02:38	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/26/15 02:38	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/26/15 02:38	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/26/15 02:38	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/26/15 02:38	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-12

Matrix: Water

Client Sample ID: MW-21 091615

Date Collected: 09/16/15 12:20 Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/26/15 02:38	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/26/15 02:38	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/26/15 02:38	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/26/15 02:38	1
2-Hexanone	ND		5.0	1.2	ug/L			09/26/15 02:38	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/26/15 02:38	1
Acetone	5.1	J	10	3.0	ug/L			09/26/15 02:38	1
Benzene	ND		1.0	0.41	ug/L			09/26/15 02:38	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/26/15 02:38	1
Bromoform	ND		1.0	0.26	ug/L			09/26/15 02:38	1
Bromomethane	ND		1.0	0.69	ug/L			09/26/15 02:38	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/26/15 02:38	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/26/15 02:38	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/26/15 02:38	1
Dibromochloromethane	ND		1.0	0.32	ug/L			09/26/15 02:38	1
Chloroethane	ND		1.0	0.32	ug/L			09/26/15 02:38	1
Chloroform	ND		1.0	0.34	ug/L			09/26/15 02:38	1
Chloromethane	ND		1.0	0.35				09/26/15 02:38	1
cis-1,2-Dichloroethene	40		1.0	0.81				09/26/15 02:38	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/26/15 02:38	1
Cyclohexane	ND		1.0	0.18	ug/L			09/26/15 02:38	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/26/15 02:38	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/26/15 02:38	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			09/26/15 02:38	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/26/15 02:38	1
Methyl acetate	ND		2.5	1.3	ug/L			09/26/15 02:38	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/26/15 02:38	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/26/15 02:38	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/26/15 02:38	1
Styrene	ND		1.0	0.73	ug/L			09/26/15 02:38	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/26/15 02:38	1
Toluene	ND		1.0	0.51	ug/L			09/26/15 02:38	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/26/15 02:38	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/26/15 02:38	1
Trichloroethene	18		1.0	0.46	ug/L			09/26/15 02:38	1
Trichlorofluoromethane	ND		1.0	0.88				09/26/15 02:38	1
Vinyl chloride	ND		1.0	0.90				09/26/15 02:38	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/26/15 02:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		71 - 126			-		09/26/15 02:38	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	71 - 126		09/26/15 02:38	1
1,2-Dichloroethane-d4 (Surr)	95	66 - 137		09/26/15 02:38	1
4-Bromofluorobenzene (Surr)	97	73 - 120		09/26/15 02:38	1
Dibromofluoromethane (Surr)	98	60 - 140		09/26/15 02:38	1

TestAmerica Buffalo

2

4

6

8

10

12

1 <u>/</u>

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-24 091615

Date Collected: 09/16/15 12:35 Date Received: 09/17/15 01:20 Lab Sample ID: 480-87386-13

Matrix: Water

Method: 8260C - Volatile Orgar Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	 5.0	4.1	ug/L			09/26/15 03:06	
1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/L			09/26/15 03:06	
1,1,2-Trichloroethane	ND	5.0	1.2	ug/L			09/26/15 03:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.6	ug/L			09/26/15 03:06	
1,1-Dichloroethane	ND	5.0		ug/L			09/26/15 03:06	
1,1-Dichloroethene	ND	5.0	1.5	ug/L			09/26/15 03:06	
1,2,4-Trichlorobenzene	ND	5.0		ug/L			09/26/15 03:06	:
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			09/26/15 03:06	
1,2-Dichlorobenzene	ND	5.0		ug/L			09/26/15 03:06	
1,2-Dichloroethane	ND	5.0	1.1	ug/L			09/26/15 03:06	
1,2-Dichloropropane	ND	5.0	3.6	ug/L			09/26/15 03:06	
1,3-Dichlorobenzene	ND	5.0		ug/L			09/26/15 03:06	
1,4-Dichlorobenzene	ND	5.0		ug/L			09/26/15 03:06	
2-Butanone (MEK)	ND	50		ug/L			09/26/15 03:06	
2-Hexanone	ND	25		ug/L			09/26/15 03:06	
4-Methyl-2-pentanone (MIBK)	ND	25		ug/L			09/26/15 03:06	
Acetone	ND	50		ug/L			09/26/15 03:06	
Benzene	ND	5.0		ug/L			09/26/15 03:06	
Bromodichloromethane	ND	5.0	2.0	ug/L			09/26/15 03:06	
Bromoform	ND	5.0		ug/L			09/26/15 03:06	
Bromomethane	ND	5.0		ug/L			09/26/15 03:06	
Carbon disulfide	ND	5.0		ug/L			09/26/15 03:06	
Carbon tetrachloride	ND	5.0		ug/L			09/26/15 03:06	
Chlorobenzene	ND	5.0		ug/L			09/26/15 03:06	
Dibromochloromethane	ND	5.0		ug/L			09/26/15 03:06	
Chloroethane	ND	5.0		ug/L			09/26/15 03:06	
Chloroform	ND	5.0		ug/L			09/26/15 03:06	
Chloromethane	ND	5.0		ug/L			09/26/15 03:06	
cis-1,2-Dichloroethene	150	5.0		ug/L			09/26/15 03:06	
cis-1,3-Dichloropropene	ND	5.0		ug/L			09/26/15 03:06	
Cyclohexane	ND	5.0		ug/L			09/26/15 03:06	
Dichlorodifluoromethane	ND	5.0		ug/L			09/26/15 03:06	
Ethylbenzene	ND	5.0		ug/L			09/26/15 03:06	
1.2-Dibromoethane	ND	5.0		ug/L			09/26/15 03:06	
Isopropylbenzene	ND	5.0		ug/L			09/26/15 03:06	
Methyl acetate	ND	13		ug/L			09/26/15 03:06	
Methyl tert-butyl ether	ND	5.0		ug/L			09/26/15 03:06	
•	ND ND	5.0		ug/L ug/L			09/26/15 03:06	
Methylcyclohexane Methylene Chloride	ND ND	5.0		•			09/26/15 03:06	
				ug/L				
Styrene	ND ND	5.0		ug/L			09/26/15 03:06 09/26/15 03:06	
Tetrachloroethene	ND ND	5.0		ug/L				
Toluene	ND	5.0		ug/L			09/26/15 03:06	
trans-1,2-Dichloroethene	ND	5.0		ug/L			09/26/15 03:06	
trans-1,3-Dichloropropene	ND	5.0		ug/L			09/26/15 03:06	
Trichloroethene	380	5.0		ug/L			09/26/15 03:06	
Trichlorofluoromethane	ND	5.0		ug/L			09/26/15 03:06	
Vinyl chloride	ND	5.0		ug/L			09/26/15 03:06	
Xylenes, Total	ND	10	3.3	ug/L			09/26/15 03:06	

TestAmerica Buffalo

2

<u>5</u>

5

7

9

4 4

12

1 4

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-24 091615 Lab Sample ID: 480-87386-13

Date Collected: 09/16/15 12:35 Date Received: 09/17/15 01:20 Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	71 - 126		09/26/15 03:06	5
1,2-Dichloroethane-d4 (Surr)	97	66 - 137		09/26/15 03:06	5
4-Bromofluorobenzene (Surr)	97	73 - 120		09/26/15 03:06	5
Dibromofluoromethane (Surr)	99	60 - 140		09/26/15 03:06	5

Client Sample ID: MW-22 091615 Lab Sample ID: 480-87386-14

Date Collected: 09/16/15 12:50 Matrix: Water

Date Received: 09/17/15 01:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/26/15 03:33	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/26/15 03:33	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/26/15 03:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/26/15 03:33	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/26/15 03:33	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/26/15 03:33	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/26/15 03:33	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/26/15 03:33	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/26/15 03:33	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/26/15 03:33	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/26/15 03:33	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/26/15 03:33	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/26/15 03:33	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/26/15 03:33	1
2-Hexanone	ND	5.0	1.2	ug/L			09/26/15 03:33	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/26/15 03:33	1
Acetone	ND	10	3.0	ug/L			09/26/15 03:33	1
Benzene	ND	1.0	0.41	ug/L			09/26/15 03:33	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/26/15 03:33	1
Bromoform	ND	1.0	0.26	ug/L			09/26/15 03:33	1
Bromomethane	ND	1.0	0.69	ug/L			09/26/15 03:33	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/26/15 03:33	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/26/15 03:33	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/26/15 03:33	1
Dibromochloromethane	ND	1.0	0.32	ug/L			09/26/15 03:33	1
Chloroethane	ND	1.0	0.32	ug/L			09/26/15 03:33	1
Chloroform	ND	1.0	0.34	ug/L			09/26/15 03:33	1
Chloromethane	ND	1.0	0.35	ug/L			09/26/15 03:33	1
cis-1,2-Dichloroethene	54	1.0	0.81	ug/L			09/26/15 03:33	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/26/15 03:33	1
Cyclohexane	ND	1.0	0.18				09/26/15 03:33	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/26/15 03:33	1
Ethylbenzene	ND	1.0	0.74				09/26/15 03:33	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			09/26/15 03:33	1
Isopropylbenzene	ND	1.0	0.79	•			09/26/15 03:33	1
Methyl acetate	ND	2.5		ug/L			09/26/15 03:33	1
Methyl tert-butyl ether	ND	1.0	0.16	-			09/26/15 03:33	1
Methylcyclohexane	ND	1.0	0.16				09/26/15 03:33	1
Methylene Chloride	ND	1.0	0.44	ŭ			09/26/15 03:33	1

TestAmerica Buffalo

Page 24 of 49

2

3

5

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-22 091615

Date Collected: 09/16/15 12:50 Date Received: 09/17/15 01:20 Lab Sample ID: 480-87386-14

Matrix: Water

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			09/26/15 03:33	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/26/15 03:33	1
Toluene	ND		1.0	0.51	ug/L			09/26/15 03:33	1
trans-1,2-Dichloroethene	5.2		1.0	0.90	ug/L			09/26/15 03:33	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/26/15 03:33	1
Trichloroethene	9.5		1.0	0.46	ug/L			09/26/15 03:33	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/26/15 03:33	1
Vinyl chloride	1.3		1.0	0.90	ug/L			09/26/15 03:33	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/26/15 03:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		71 - 126			-		09/26/15 03:33	1
1,2-Dichloroethane-d4 (Surr)	100		66 - 137					09/26/15 03:33	1
4-Bromofluorobenzene (Surr)	94		73 - 120					09/26/15 03:33	1
Dibromofluoromethane (Surr)	99		60 - 140					09/26/15 03:33	1

Client Sample ID: MW-18 091615

Date Collected: 09/16/15 13:05

Lab Sample ID: 480-87386-15

Matrix: Water

15

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	10	8.2	ug/L			09/26/15 04:01	10
1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L			09/26/15 04:01	10
1,1,2-Trichloroethane	ND	10	2.3	ug/L			09/26/15 04:01	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L			09/26/15 04:01	10
1,1-Dichloroethane	ND	10	3.8	ug/L			09/26/15 04:01	10
1,1-Dichloroethene	ND	10	2.9	ug/L			09/26/15 04:01	10
1,2,4-Trichlorobenzene	ND	10	4.1	ug/L			09/26/15 04:01	10
1,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L			09/26/15 04:01	10
1,2-Dichlorobenzene	ND	10	7.9	ug/L			09/26/15 04:01	10
1,2-Dichloroethane	ND	10	2.1	ug/L			09/26/15 04:01	10
1,2-Dichloropropane	ND	10	7.2	ug/L			09/26/15 04:01	10
1,3-Dichlorobenzene	ND	10	7.8	ug/L			09/26/15 04:01	10
1,4-Dichlorobenzene	ND	10	8.4	ug/L			09/26/15 04:01	10
2-Butanone (MEK)	ND	100	13	ug/L			09/26/15 04:01	10
2-Hexanone	ND	50	12	ug/L			09/26/15 04:01	10
4-Methyl-2-pentanone (MIBK)	ND	50	21	ug/L			09/26/15 04:01	10
Acetone	ND	100	30	ug/L			09/26/15 04:01	10
Benzene	ND	10	4.1	ug/L			09/26/15 04:01	10
Bromodichloromethane	ND	10	3.9	ug/L			09/26/15 04:01	10
Bromoform	ND	10	2.6	ug/L			09/26/15 04:01	10
Bromomethane	ND	10	6.9	ug/L			09/26/15 04:01	10
Carbon disulfide	ND	10	1.9	ug/L			09/26/15 04:01	10
Carbon tetrachloride	ND	10	2.7	ug/L			09/26/15 04:01	10
Chlorobenzene	ND	10	7.5	ug/L			09/26/15 04:01	10
Dibromochloromethane	ND	10	3.2	ug/L			09/26/15 04:01	10
Chloroethane	ND	10	3.2	ug/L			09/26/15 04:01	10
Chloroform	ND	10	3.4	ug/L			09/26/15 04:01	10
Chloromethane	ND	10	3.5	ug/L			09/26/15 04:01	10

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-18 091615

Lab Sample ID: 480-87386-15

Matrix: Water

Date Collected: 09/16/15 13:05 Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	430	F1	10	8.1	ug/L			09/26/15 04:01	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			09/26/15 04:01	10
Cyclohexane	ND		10	1.8	ug/L			09/26/15 04:01	10
Dichlorodifluoromethane	ND		10	6.8	ug/L			09/26/15 04:01	10
Ethylbenzene	ND		10	7.4	ug/L			09/26/15 04:01	10
1,2-Dibromoethane	ND		10	7.3	ug/L			09/26/15 04:01	10
Isopropylbenzene	ND		10	7.9	ug/L			09/26/15 04:01	10
Methyl acetate	ND		25	13	ug/L			09/26/15 04:01	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			09/26/15 04:01	10
Methylcyclohexane	ND		10	1.6	ug/L			09/26/15 04:01	10
Methylene Chloride	ND		10	4.4	ug/L			09/26/15 04:01	10
Styrene	ND		10	7.3	ug/L			09/26/15 04:01	10
Tetrachloroethene	ND		10	3.6	ug/L			09/26/15 04:01	10
Toluene	ND		10	5.1	ug/L			09/26/15 04:01	10
trans-1,2-Dichloroethene	ND		10	9.0	ug/L			09/26/15 04:01	10
trans-1,3-Dichloropropene	ND		10	3.7	ug/L			09/26/15 04:01	10
Trichlorofluoromethane	ND		10	8.8	ug/L			09/26/15 04:01	10
Vinyl chloride	ND		10	9.0	ug/L			09/26/15 04:01	10
Xylenes, Total	ND		20	6.6	ug/L			09/26/15 04:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		71 - 126			-		09/26/15 04:01	10
1,2-Dichloroethane-d4 (Surr)	97		66 - 137					09/26/15 04:01	10
4-Bromofluorobenzene (Surr)	97		73 - 120					09/26/15 04:01	10
Dibromofluoromethane (Surr)	97		60 - 140					09/26/15 04:01	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	1500	F1	25	12	ug/L			09/26/15 13:13	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		71 - 126			-		09/26/15 13:13	25
1,2-Dichloroethane-d4 (Surr)	95		66 - 137					09/26/15 13:13	25
4-Bromofluorobenzene (Surr)	99		73 - 120					09/26/15 13:13	25
Dibromofluoromethane (Surr)	98		60 - 140					09/26/15 13:13	25

Client Sample ID: MW-15 091615

Date Collected: 09/16/15 13:55 Date Received: 09/17/15 01:20

Lab Sample ID: 480-87386-16
Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/26/15 04:28	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/26/15 04:28	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/26/15 04:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/26/15 04:28	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/26/15 04:28	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/26/15 04:28	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/26/15 04:28	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/26/15 04:28	1

TestAmerica Buffalo

Page 26 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-16

Matrix: Water

Client Sample ID: MW-15 091615

Date Collected: 09/16/15 13:55 Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/26/15 04:28	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/26/15 04:28	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/26/15 04:28	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/26/15 04:28	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/26/15 04:28	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/26/15 04:28	1
2-Hexanone	ND		5.0	1.2	ug/L			09/26/15 04:28	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/26/15 04:28	1
Acetone	ND		10	3.0	ug/L			09/26/15 04:28	1
Benzene	ND		1.0	0.41	ug/L			09/26/15 04:28	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/26/15 04:28	1
Bromoform	ND		1.0	0.26	ug/L			09/26/15 04:28	1
Bromomethane	ND		1.0	0.69	ug/L			09/26/15 04:28	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/26/15 04:28	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/26/15 04:28	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/26/15 04:28	1
Dibromochloromethane	ND		1.0	0.32	ug/L			09/26/15 04:28	1
Chloroethane	ND		1.0	0.32	ug/L			09/26/15 04:28	1
Chloroform	ND		1.0	0.34	ug/L			09/26/15 04:28	1
Chloromethane	ND		1.0	0.35	ug/L			09/26/15 04:28	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/26/15 04:28	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/26/15 04:28	1
Cyclohexane	ND		1.0	0.18	ug/L			09/26/15 04:28	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/26/15 04:28	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/26/15 04:28	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			09/26/15 04:28	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/26/15 04:28	1
Methyl acetate	ND		2.5	1.3	ug/L			09/26/15 04:28	1
Methyl tert-butyl ether	0.26	J	1.0	0.16	ug/L			09/26/15 04:28	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/26/15 04:28	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/26/15 04:28	1
Styrene	ND		1.0	0.73	ug/L			09/26/15 04:28	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/26/15 04:28	1
Toluene	ND		1.0	0.51	ug/L			09/26/15 04:28	1
trans-1,2-Dichloroethene	ND		1.0	0.90				09/26/15 04:28	1
trans-1,3-Dichloropropene	ND		1.0	0.37				09/26/15 04:28	1
Trichloroethene	0.82	J	1.0	0.46				09/26/15 04:28	1
Trichlorofluoromethane	ND		1.0		ug/L			09/26/15 04:28	1
Vinyl chloride	ND		1.0	0.90	-			09/26/15 04:28	1
Xylenes, Total	ND		2.0	0.66	•			09/26/15 04:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	71 - 126		09/26/15 04:28	1
1,2-Dichloroethane-d4 (Surr)	98	66 - 137		09/26/15 04:28	1
4-Bromofluorobenzene (Surr)	94	73 - 120		09/26/15 04:28	1
Dibromofluoromethane (Surr)	99	60 - 140		09/26/15 04:28	1

TestAmerica Buffalo

2

7

9

11 12

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-16 091516

Date Collected: 09/16/15 14:25 Date Received: 09/17/15 01:20 Lab Sample ID: 480-87386-17

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/26/15 04:56	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/26/15 04:56	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/26/15 04:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/26/15 04:56	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/26/15 04:56	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/26/15 04:56	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/26/15 04:56	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/26/15 04:56	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/26/15 04:56	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/26/15 04:56	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/26/15 04:56	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/26/15 04:56	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/26/15 04:56	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/26/15 04:56	1
2-Hexanone	ND	5.0	1.2	ug/L			09/26/15 04:56	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/26/15 04:56	1
Acetone	ND	10	3.0	ug/L			09/26/15 04:56	1
Benzene	ND	1.0	0.41	ug/L			09/26/15 04:56	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/26/15 04:56	1
Bromoform	ND	1.0	0.26	ug/L			09/26/15 04:56	1
Bromomethane	ND	1.0	0.69	ug/L			09/26/15 04:56	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/26/15 04:56	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/26/15 04:56	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/26/15 04:56	1
Dibromochloromethane	ND	1.0	0.32	ug/L			09/26/15 04:56	1
Chloroethane	ND	1.0	0.32	ug/L			09/26/15 04:56	1
Chloroform	ND	1.0	0.34	ug/L			09/26/15 04:56	1
Chloromethane	ND	1.0	0.35	ug/L			09/26/15 04:56	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/26/15 04:56	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/26/15 04:56	1
Cyclohexane	ND	1.0	0.18	ug/L			09/26/15 04:56	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/26/15 04:56	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/26/15 04:56	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			09/26/15 04:56	1
Isopropylbenzene	ND	1.0	0.79	ug/L			09/26/15 04:56	1
Methyl acetate	ND	2.5	1.3	ug/L			09/26/15 04:56	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			09/26/15 04:56	1
Methylcyclohexane	ND	1.0	0.16	ug/L			09/26/15 04:56	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/26/15 04:56	1
Styrene	ND	1.0	0.73	ug/L			09/26/15 04:56	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/26/15 04:56	1
Toluene	ND	1.0	0.51	ug/L			09/26/15 04:56	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			09/26/15 04:56	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			09/26/15 04:56	1
Trichloroethene	1.5	1.0		ug/L			09/26/15 04:56	1
Trichlorofluoromethane	ND	1.0		ug/L			09/26/15 04:56	1
Vinyl chloride	ND	1.0		ug/L			09/26/15 04:56	1
Xylenes, Total	ND	2.0		ug/L			09/26/15 04:56	1

TestAmerica Buffalo

2

4

6

8

10

12

1 /

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Client Sample ID: MW-16 091516 Lab Sample ID: 480-87386-17

Date Collected: 09/16/15 14:25 Date Received: 09/17/15 01:20 Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	71 - 126		09/26/15 04:56	1
1,2-Dichloroethane-d4 (Surr)	97	66 - 137		09/26/15 04:56	1
4-Bromofluorobenzene (Surr)	96	73 - 120		09/26/15 04:56	1
Dibromofluoromethane (Surr)	98	60 - 140		09/26/15 04:56	1

Client Sample ID: TRIP BLANK Lab Sample ID: 480-87386-18

Date Collected: 09/16/15 00:00 Matrix: Water

Date Received: 09/17/15 01:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/25/15 13:15	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/25/15 13:15	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/25/15 13:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			09/25/15 13:15	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/25/15 13:15	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/25/15 13:15	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/25/15 13:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/25/15 13:15	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/25/15 13:15	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/25/15 13:15	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/25/15 13:15	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/25/15 13:15	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/25/15 13:15	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/25/15 13:15	1
2-Hexanone	ND	*	5.0	1.2	ug/L			09/25/15 13:15	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1				09/25/15 13:15	1
Acetone	ND		10	3.0	ug/L			09/25/15 13:15	1
Benzene	ND		1.0	0.41	ug/L			09/25/15 13:15	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/25/15 13:15	1
Bromoform	ND		1.0		ug/L			09/25/15 13:15	1
Bromomethane	ND		1.0		ug/L			09/25/15 13:15	1
Carbon disulfide	ND		1.0	0.19				09/25/15 13:15	1
Carbon tetrachloride	ND		1.0		ug/L			09/25/15 13:15	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/25/15 13:15	1
Dibromochloromethane	ND		1.0	0.32	Ū			09/25/15 13:15	1
Chloroethane	ND		1.0	0.32				09/25/15 13:15	1
Chloroform	ND		1.0	0.34	•			09/25/15 13:15	1
Chloromethane	ND		1.0		ug/L			09/25/15 13:15	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/25/15 13:15	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/25/15 13:15	1
Cyclohexane	ND		1.0		ug/L			09/25/15 13:15	1
Dichlorodifluoromethane	ND		1.0	0.68	•			09/25/15 13:15	1
Ethylbenzene	ND		1.0	0.74	•			09/25/15 13:15	1
1,2-Dibromoethane	ND		1.0	0.73				09/25/15 13:15	1
Isopropylbenzene	ND		1.0	0.79	-			09/25/15 13:15	1
Methyl acetate	ND		2.5		ug/L			09/25/15 13:15	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/25/15 13:15	
Methylcyclohexane	ND		1.0		ug/L			09/25/15 13:15	1
Methylene Chloride	ND		1.0		ug/L			09/25/15 13:15	1

TestAmerica Buffalo

Page 29 of 49

_

3

5

6

8

9

11

13

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: TRIP BLANK

TestAmerica Job ID: 480-87386-1

Lab Sample ID: 480-87386-18

Matrix: Water

Date Collected: 09/16/15 00:00	
Date Received: 09/17/15 01:20	

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND	1.0	0.73	ug/L			09/25/15 13:15	
Tetrachloroethene	ND	1.0	0.36	ug/L			09/25/15 13:15	
Toluene	ND	1.0	0.51	ug/L			09/25/15 13:15	
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/25/15 13:15	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/25/15 13:15	•
Trichloroethene	ND	1.0	0.46	ug/L			09/25/15 13:15	•
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/25/15 13:15	
Vinyl chloride	ND	1.0	0.90	ug/L			09/25/15 13:15	
Xylenes, Total	ND	2.0	0.66	ug/L			09/25/15 13:15	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		71 - 126		09/25/15 13:15	1
1,2-Dichloroethane-d4 (Surr)	98		66 - 137		09/25/15 13:15	1
4-Bromofluorobenzene (Surr)	95		73 - 120		09/25/15 13:15	1
Dibromofluoromethane (Surr)	99		60 - 140		09/25/15 13:15	1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

=			Pe	ercent Surr	ogate Reco
		TOL	12DCE	BFB	DBFM
Lab Sample ID	Client Sample ID	(71-126)	(66-137)	(73-120)	(60-140)
480-87386-1	MW-5 091615	92	98	95	98
180-87386-2	MW-6 091615	94	97	95	99
480-87386-3	PZ-1 091615	94	96	96	100
480-87386-4	MW-11 091615	96	97	97	99
480-87386-5	MW-10 091615	96	100	98	99
480-87386-5 - DL	MW-10 091615	94	97	99	96
480-87386-6	MW-14 091615	95	97	98	99
480-87386-7	MW-13 091615	93	97	96	101
480-87386-8	MW-12 091615	93	96	94	100
480-87386-9	MW-9 091615	95	97	96	100
480-87386-10	PZ-2 091615	94	99	98	100
480-87386-11	MW-17 091615	92	98	95	99
480-87386-11 - DL	MW-17 091615	93	97	95	98
480-87386-12	MW-21 091615	93	95	97	98
480-87386-13	MW-24 091615	94	97	97	99
480-87386-14	MW-22 091615	92	100	94	99
480-87386-15	MW-18 091615	95	97	97	97
480-87386-15 - DL	MW-18 091615	94	95	99	98
480-87386-15 MS	MW-18 091615	95	99	101	98
480-87386-15 MS	MW-18 091615	95	97	100	100
480-87386-15 MSD	MW-18 091615	95	98	99	99
480-87386-15 MSD	MW-18 091615	96	95	103	101
480-87386-16	MW-15 091615	93	98	94	99
480-87386-17	MW-16 091516	93	97	96	98
480-87386-18	TRIP BLANK	93	98	95	99
LCS 480-265520/4	Lab Control Sample	95	103	100	96
LCS 480-265612/4	Lab Control Sample	95	96	100	98
LCS 480-265649/4	Lab Control Sample	95	98	99	99
MB 480-265520/6	Method Blank	93	95	95	95
MB 480-265612/6	Method Blank	98	83	93	90
MB 480-265649/6	Method Blank	94	96	99	97

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Page 31 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-265520/6

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/25/15 12:11	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/25/15 12:11	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/25/15 12:11	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			09/25/15 12:11	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/25/15 12:11	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/25/15 12:11	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/25/15 12:11	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			09/25/15 12:11	1
1,2-Dichlorobenzene	ND		1.0		ug/L			09/25/15 12:11	1
1,2-Dichloroethane	ND		1.0		ug/L			09/25/15 12:11	1
1,2-Dichloropropane	ND		1.0		ug/L			09/25/15 12:11	1
1,3-Dichlorobenzene	ND		1.0		ug/L			09/25/15 12:11	1
1,4-Dichlorobenzene	ND		1.0		ug/L			09/25/15 12:11	1
2-Butanone (MEK)	ND		10		ug/L			09/25/15 12:11	1
2-Hexanone	ND		5.0		ug/L			09/25/15 12:11	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			09/25/15 12:11	1
Acetone	ND		10		ug/L			09/25/15 12:11	1
Benzene	ND		1.0		ug/L			09/25/15 12:11	1
Bromodichloromethane	ND		1.0		ug/L			09/25/15 12:11	· · · · · · · · · · · · · · · · · · ·
Bromoform	ND		1.0		ug/L			09/25/15 12:11	1
Bromomethane	ND		1.0		ug/L			09/25/15 12:11	1
Carbon disulfide	ND		1.0		ug/L			09/25/15 12:11	· · · · · · · · · · · 1
Carbon tetrachloride	ND		1.0		ug/L			09/25/15 12:11	1
Chlorobenzene	ND		1.0		ug/L			09/25/15 12:11	1
Dibromochloromethane	ND		1.0		ug/L			09/25/15 12:11	
Chloroethane	ND ND		1.0		ug/L ug/L			09/25/15 12:11	1
Chloroform	ND ND		1.0		ug/L ug/L			09/25/15 12:11	1
Chloromethane	ND		1.0		ug/L			09/25/15 12:11	· · · · · · · · 1
	ND ND		1.0		ug/L ug/L			09/25/15 12:11	
cis-1,2-Dichloroethene	ND ND				-				1
cis-1,3-Dichloropropene	ND.		1.0		ug/L			09/25/15 12:11 09/25/15 12:11	1
Cyclohexane			1.0		ug/L				1
Dichlorodifluoromethane	ND		1.0		ug/L			09/25/15 12:11	1
Ethylbenzene	ND		1.0		ug/L			09/25/15 12:11	1
1,2-Dibromoethane	ND		1.0		ug/L			09/25/15 12:11	1
Isopropylbenzene	ND		1.0		ug/L			09/25/15 12:11	1
Methyl acetate	ND.		2.5		ug/L			09/25/15 12:11	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/25/15 12:11	1
Methylcyclohexane	ND		1.0		ug/L			09/25/15 12:11	1
Methylene Chloride	ND		1.0		ug/L			09/25/15 12:11	1
Styrene	ND		1.0		ug/L			09/25/15 12:11	1
Tetrachloroethene	ND		1.0		ug/L			09/25/15 12:11	1
Toluene	ND		1.0		ug/L			09/25/15 12:11	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/25/15 12:11	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/25/15 12:11	1
Trichloroethene	ND		1.0		ug/L			09/25/15 12:11	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/25/15 12:11	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/25/15 12:11	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/25/15 12:11	1

TestAmerica Buffalo

Page 32 of 49

9/29/2015

2

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

New Committee Inc. March and District

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-265520/6

Matrix: Water

Analysis Batch: 265520

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 09/25/15 12:11 93 71 - 126 1,2-Dichloroethane-d4 (Surr) 95 66 - 137 09/25/15 12:11 4-Bromofluorobenzene (Surr) 95 73 - 120 09/25/15 12:11 Dibromofluoromethane (Surr) 95 60 - 140 09/25/15 12:11

Lab Sample ID: LCS 480-265520/4

Matrix: Water

Analysis Batch: 265520

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Red	Limits	
1,1-Dichloroethane	25.0	24.2		ug/L	9	71 - 129	
1,1-Dichloroethene	25.0	23.4		ug/L	94	58 - 121	
1,2-Dichlorobenzene	25.0	23.6		ug/L	94	80 - 124	
1,2-Dichloroethane	25.0	23.4		ug/L	94	75 - 127	
Benzene	25.0	23.4		ug/L	94	71 - 124	
Chlorobenzene	25.0	23.5		ug/L	94	72 - 120	
cis-1,2-Dichloroethene	25.0	23.7		ug/L	98	74 - 124	
Ethylbenzene	25.0	22.8		ug/L	9.	77 - 123	
Methyl tert-butyl ether	25.0	24.3		ug/L	97	7 64 ₋ 127	
Tetrachloroethene	25.0	23.9		ug/L	96	5 74 - 122	
Toluene	25.0	23.3		ug/L	93	80 - 122	
trans-1,2-Dichloroethene	25.0	23.8		ug/L	98	5 73 ₋ 127	
Trichloroethene	25.0	23.9		ug/L	96	3 74 ₋ 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		71 - 126
1,2-Dichloroethane-d4 (Surr)	103		66 - 137
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	96		60 - 140

Lab Sample ID: MB 480-265612/6

Matrix: Water

Analysis Batch: 265612

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/26/15 01:15	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/26/15 01:15	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/26/15 01:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			09/26/15 01:15	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/26/15 01:15	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/26/15 01:15	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/26/15 01:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/26/15 01:15	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/26/15 01:15	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/26/15 01:15	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/26/15 01:15	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/26/15 01:15	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/26/15 01:15	1

TestAmerica Buffalo

Page 33 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 480-265612/6

Matrix: Water

Analysis Batch: 265612

Client Sample ID: Method Blank

Prep Type: Total/NA

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	ND		10	1.3	ug/L			09/26/15 01:15	1
2-Hexanone	ND		5.0	1.2	ug/L			09/26/15 01:15	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/26/15 01:15	1
Acetone	ND		10	3.0	ug/L			09/26/15 01:15	1
Benzene	ND		1.0	0.41	ug/L			09/26/15 01:15	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/26/15 01:15	1
Bromoform	ND		1.0	0.26	ug/L			09/26/15 01:15	1
Bromomethane	ND		1.0	0.69	ug/L			09/26/15 01:15	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/26/15 01:15	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/26/15 01:15	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/26/15 01:15	1
Dibromochloromethane	ND		1.0	0.32	ug/L			09/26/15 01:15	1
Chloroethane	ND		1.0	0.32	ug/L			09/26/15 01:15	1
Chloroform	ND		1.0	0.34	ug/L			09/26/15 01:15	1
Chloromethane	ND		1.0	0.35	ug/L			09/26/15 01:15	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/26/15 01:15	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/26/15 01:15	1
Cyclohexane	ND		1.0	0.18	ug/L			09/26/15 01:15	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/26/15 01:15	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/26/15 01:15	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			09/26/15 01:15	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/26/15 01:15	1
Methyl acetate	ND		2.5	1.3	ug/L			09/26/15 01:15	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/26/15 01:15	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/26/15 01:15	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/26/15 01:15	1
Styrene	ND		1.0	0.73	ug/L			09/26/15 01:15	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/26/15 01:15	1
Toluene	ND		1.0	0.51	ug/L			09/26/15 01:15	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/26/15 01:15	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/26/15 01:15	1
Trichloroethene	ND		1.0	0.46	ug/L			09/26/15 01:15	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/26/15 01:15	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/26/15 01:15	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/26/15 01:15	1

	MB MB			
Surrogate	%Recovery Qualifi	er Limits	Prepared Analyz	zed Dil Fac
Toluene-d8 (Surr)	98	71 - 126	09/26/15	01:15 1
1,2-Dichloroethane-d4 (Surr)	83	66 - 137	09/26/15	01:15 1
4-Bromofluorobenzene (Surr)	93	73 - 120	09/26/15	01:15 1
Dibromofluoromethane (Surr)	90	60 - 140	09/26/15	01:15 1

Lab Sample ID: LCS 480-265612/4

Matrix: Water

Analysis Batch: 265612

Analysis Datch: 200012								
_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	22.8		ug/L		91	71 - 129	_

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 34 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-265612/4

Matrix: Water

1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane

Analyte

Benzene Chlorobenzene cis-1,2-Dichloroethene Ethylbenzene Methyl tert-butyl ether Tetrachloroethene

Toluene

Trichloroethene

trans-1,2-Dichloroethene

Analysis Batch: 265612

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
25.0	21.1	-	ug/L		84	58 - 121
25.0	22.8		ug/L		91	80 - 124
25.0	22.8		ug/L		91	75 - 127
25.0	22.6		ug/L		90	71 - 124
25.0	22.7		ug/L		91	72 - 120
25.0	22.8		ug/L		91	74 - 124
25.0	21.9		ug/L		88	77 - 123
25.0	22.9		ug/L		92	64 - 127
25.0	21.7		ug/L		87	74 - 122
25.0	22.2		ug/L		89	80 - 122
25.0	22.1		ug/L		88	73 - 127

ug/L

22.8

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		71 - 126
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	98		60 - 140

Lab Sample ID: 480-87386-15 MS

Matrix: Water

Analysis Batch: 265612

Client Sample ID: MW-18 091615

74 - 123

Prep Type: Total/NA

Analyte Result Result Qualifier Added Added Result Qualifier Qualifier MS MS WRec. MRec. 1,1-Dichloroethane ND 250 236 ug/L 95 71-129 1,1-Dichloroethane ND 250 220 ug/L 88 58-121 1,2-Dichlorobenzene ND 250 225 ug/L 90 80-124 1,2-Dichloroethane ND 250 231 ug/L 92 75-127 Benzene ND 250 230 ug/L 92 71-124 Chlorobenzene ND 250 229 ug/L 92 72-120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74-124 Ethylbenzene ND 250 229 ug/L 87 77-123 Methyl tert-butyl ether ND 250 229 ug/L 89 74-122 Toluene ND 250 222 ug/L	7 maryolo Batom 200012										
1,1-Dichloroethane ND 250 236 ug/L 95 71-129 1,1-Dichloroethene ND 250 220 ug/L 88 58-121 1,2-Dichlorobenzene ND 250 225 ug/L 90 80-124 1,2-Dichloroethane ND 250 231 ug/L 92 75-127 Benzene ND 250 230 ug/L 92 71-124 Chlorobenzene ND 250 229 ug/L 92 72-120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74-124 Ethylbenzene ND 250 217 ug/L 87 77-123 Methyl tert-butyl ether ND 250 229 ug/L 92 64-127 Tetrachloroethene ND 250 222 ug/L 89 74-122 Toluene ND 250 223 ug/L 89 80-122	-	Sample	Sample	Spike	MS	MS				%Rec.	
1,1-Dichloroethene ND 250 220 ug/L 88 58 - 121 1,2-Dichlorobenzene ND 250 225 ug/L 90 80 - 124 1,2-Dichloroethane ND 250 231 ug/L 92 75 - 127 Benzene ND 250 230 ug/L 92 71 - 124 Chlorobenzene ND 250 229 ug/L 92 72 - 120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74 - 124 Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichlorobenzene ND 250 225 ug/L 90 80 - 124 1,2-Dichloroethane ND 250 231 ug/L 92 75 - 127 Benzene ND 250 230 ug/L 92 71 - 124 Chlorobenzene ND 250 229 ug/L 92 72 - 120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74 - 124 Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	1,1-Dichloroethane	ND		250	236		ug/L		95	71 - 129	
1,2-Dichloroethane ND 250 231 ug/L 92 75 - 127 Benzene ND 250 230 ug/L 92 71 - 124 Chlorobenzene ND 250 229 ug/L 92 72 - 120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74 - 124 Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	1,1-Dichloroethene	ND		250	220		ug/L		88	58 ₋ 121	
Benzene ND 250 230 ug/L 92 71 - 124 Chlorobenzene ND 250 229 ug/L 92 72 - 120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74 - 124 Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	1,2-Dichlorobenzene	ND		250	225		ug/L		90	80 - 124	
Chlorobenzene ND 250 229 ug/L 92 72 - 120 cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74 - 124 Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	1,2-Dichloroethane	ND		250	231		ug/L		92	75 - 127	
cis-1,2-Dichloroethene 430 F1 250 584 F1 ug/L 63 74 - 124 Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	Benzene	ND		250	230		ug/L		92	71 - 124	
Ethylbenzene ND 250 217 ug/L 87 77 - 123 Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	Chlorobenzene	ND		250	229		ug/L		92	72 - 120	
Methyl tert-butyl ether ND 250 229 ug/L 92 64 - 127 Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	cis-1,2-Dichloroethene	430	F1	250	584	F1	ug/L		63	74 - 124	
Tetrachloroethene ND 250 222 ug/L 89 74 - 122 Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	Ethylbenzene	ND		250	217		ug/L		87	77 - 123	
Toluene ND 250 223 ug/L 89 80 - 122 trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	Methyl tert-butyl ether	ND		250	229		ug/L		92	64 - 127	
trans-1,2-Dichloroethene ND 250 228 ug/L 91 73 - 127	Tetrachloroethene	ND		250	222		ug/L		89	74 - 122	
	Toluene	ND		250	223		ug/L		89	80 - 122	
Trichloroethene 1400 E 250 1350 E 4 ug/L -26 74 - 123	trans-1,2-Dichloroethene	ND		250	228		ug/L		91	73 - 127	
	Trichloroethene	1400	Ē	250	1350	E 4	ug/L		-26	74 - 123	

25.0

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		71 - 126
1,2-Dichloroethane-d4 (Surr)	99		66 - 137
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	98		60 - 140

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-87386-15 MSD

Matrix: Water

Analysis Batch: 265612

Client Sample ID: MW-18 091615

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	ND		250	244		ug/L		98	71 - 129	3	20
1,1-Dichloroethene	ND		250	235		ug/L		94	58 - 121	7	16
1,2-Dichlorobenzene	ND		250	229		ug/L		91	80 - 124	2	20
1,2-Dichloroethane	ND		250	231		ug/L		92	75 - 127	0	20
Benzene	ND		250	241		ug/L		96	71 - 124	4	13
Chlorobenzene	ND		250	236		ug/L		94	72 - 120	3	25
cis-1,2-Dichloroethene	430	F1	250	602	F1	ug/L		70	74 - 124	3	15
Ethylbenzene	ND		250	229		ug/L		92	77 - 123	6	15
Methyl tert-butyl ether	ND		250	235		ug/L		94	64 - 127	2	37
Tetrachloroethene	ND		250	234		ug/L		94	74 - 122	5	20
Toluene	ND		250	234		ug/L		93	80 - 122	5	15
trans-1,2-Dichloroethene	ND		250	243		ug/L		97	73 - 127	6	20
Trichloroethene	1400	Ē	250	1410	E 4	ug/L		-2	74 - 123	4	16

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		71 - 126
1,2-Dichloroethane-d4 (Surr)	98		66 - 137
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	99		60 - 140

Lab Sample ID: MB 480-265649/6

Matrix: Water

Analysis Batch: 265649

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton. 200040	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/26/15 12:17	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/26/15 12:17	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/26/15 12:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			09/26/15 12:17	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/26/15 12:17	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/26/15 12:17	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/26/15 12:17	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/26/15 12:17	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/26/15 12:17	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/26/15 12:17	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/26/15 12:17	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/26/15 12:17	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/26/15 12:17	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/26/15 12:17	1
2-Hexanone	ND		5.0	1.2	ug/L			09/26/15 12:17	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/26/15 12:17	1
Acetone	ND		10	3.0	ug/L			09/26/15 12:17	1
Benzene	ND		1.0	0.41	ug/L			09/26/15 12:17	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/26/15 12:17	1
Bromoform	ND		1.0	0.26	ug/L			09/26/15 12:17	1
Bromomethane	ND		1.0	0.69	ug/L			09/26/15 12:17	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/26/15 12:17	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/26/15 12:17	1

TestAmerica Buffalo

9/29/2015

Page 36 of 49

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-265649/6

Matrix: Water

Analysis Batch: 265649

Client Sample ID: Method Blank **Prep Type: Total/NA**

MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 09/26/15 12:17 Chlorobenzene $\overline{\mathsf{ND}}$ 1.0 0.75 ug/L Dibromochloromethane ND 1.0 0.32 ug/L 09/26/15 12:17 Chloroethane ND 1.0 0.32 ug/L 09/26/15 12:17 Chloroform ND 1.0 0.34 ug/L 09/26/15 12:17 Chloromethane ND 1.0 0.35 ug/L 09/26/15 12:17 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 09/26/15 12:17 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 09/26/15 12:17 ND Cyclohexane 1.0 0.18 ug/L 09/26/15 12:17 Dichlorodifluoromethane ND 1.0 0.68 ug/L 09/26/15 12:17 ND Ethylbenzene 1.0 0.74 ug/L 09/26/15 12:17 1,2-Dibromoethane ND 1.0 0.73 ug/L 09/26/15 12:17 ND 1.0 0.79 ug/L Isopropylbenzene 09/26/15 12:17 ND 2.5 Methyl acetate 1.3 ug/L 09/26/15 12:17 ND Methyl tert-butyl ether 1.0 0.16 ug/L 09/26/15 12:17 Methylcyclohexane ND 1.0 0.16 ug/L 09/26/15 12:17 Methylene Chloride ND 1.0 0.44 ug/L 09/26/15 12:17 Styrene ND 1.0 0.73 ug/L 09/26/15 12:17 Tetrachloroethene ND 1.0 0.36 ug/L 09/26/15 12:17 Toluene ND 1.0 0.51 ug/L 09/26/15 12:17 ND 1.0 0.90 ug/L trans-1,2-Dichloroethene 09/26/15 12:17 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 09/26/15 12:17 Trichloroethene ND 1.0 0.46 ug/L 09/26/15 12:17 1.0 Trichlorofluoromethane ND 0.88 ug/L 09/26/15 12:17 Vinyl chloride ND 1.0 0.90 ug/L 09/26/15 12:17

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		71 - 126		09/26/15 12:17	1
1,2-Dichloroethane-d4 (Surr)	96		66 - 137		09/26/15 12:17	1
4-Bromofluorobenzene (Surr)	99		73 - 120		09/26/15 12:17	1
Dibromofluoromethane (Surr)	97		60 - 140		09/26/15 12:17	1

2.0

0.66 ug/L

Lab Sample ID: LCS 480-265649/4

Matrix: Water

Xylenes, Total

Analysis Batch: 265649

Client Sample ID: Lab Control Sample Prep Type: Total/NA

09/26/15 12:17

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	25.0	24.4		ug/L		98	71 - 129
1,1-Dichloroethene	25.0	23.8		ug/L		95	58 - 121
1,2-Dichlorobenzene	25.0	23.1		ug/L		93	80 - 124
1,2-Dichloroethane	25.0	23.6		ug/L		94	75 - 127
Benzene	25.0	24.0		ug/L		96	71 - 124
Chlorobenzene	25.0	23.6		ug/L		94	72 - 120
cis-1,2-Dichloroethene	25.0	23.6		ug/L		94	74 - 124
Ethylbenzene	25.0	23.0		ug/L		92	77 - 123
Methyl tert-butyl ether	25.0	24.5		ug/L		98	64 - 127
Tetrachloroethene	25.0	23.8		ug/L		95	74 - 122
Toluene	25.0	23.2		ug/L		93	80 - 122

TestAmerica Buffalo

Page 37 of 49

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-265649/4

Matrix: Water

Trichloroethene

Analyte

Analysis Batch: 265649

trans-1,2-Dichloroethene

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits Unit 24.0 25.0 ug/L 96 73 - 127 25.0 24.4 ug/L 98 74 - 123

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		71 - 126
1,2-Dichloroethane-d4 (Surr)	98		66 - 137
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	99		60 - 140

Lab Sample ID: 480-87386-15 MS

Matrix: Water

Analysis Batch: 265649

Client Sample ID: MW-18 091615

Prep Type: Total/NA

San	ple Sample	Spike	MS	MS				%Rec.	
Analyte Re	sult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	ND	625	632		ug/L		101	71 - 129	
1,1-Dichloroethene	ND	625	605		ug/L		97	58 - 121	
1,2-Dichlorobenzene	ND	625	582		ug/L		93	80 - 124	
1,2-Dichloroethane	ND	625	602		ug/L		96	75 - 127	
Benzene	ND	625	618		ug/L		99	71 - 124	
Chlorobenzene	ND	625	600		ug/L		96	72 - 120	
cis-1,2-Dichloroethene	460	625	974		ug/L		81	74 - 124	
Ethylbenzene	ND	625	578		ug/L		92	77 - 123	
Methyl tert-butyl ether	ND	625	603		ug/L		96	64 - 127	
Tetrachloroethene	ND	625	595		ug/L		95	74 - 122	
Toluene	ND	625	597		ug/L		96	80 - 122	
trans-1,2-Dichloroethene	ND	625	610		ug/L		98	73 - 127	
Trichloroethene 1	500 F1	625	1730	F1	ug/L		33	74 - 123	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		71 - 126
1,2-Dichloroethane-d4 (Surr)	97		66 - 137
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	100		60 - 140

Lab Sample ID: 480-87386-15 MSD

Matrix: Water

Analysis Batch: 265649

Client Sample ID: MW-18 091615 Prep Type: Total/NA

, in any one Date in December 10											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	ND		625	610		ug/L		98	71 - 129	4	20
1,1-Dichloroethene	ND		625	587		ug/L		94	58 - 121	3	16
1,2-Dichlorobenzene	ND		625	567		ug/L		91	80 - 124	3	20
1,2-Dichloroethane	ND		625	593		ug/L		95	75 - 127	2	20
Benzene	ND		625	594		ug/L		95	71 - 124	4	13
Chlorobenzene	ND		625	591		ug/L		95	72 - 120	1	25
cis-1,2-Dichloroethene	460		625	948		ug/L		77	74 - 124	3	15
Ethylbenzene	ND		625	569		ug/L		91	77 - 123	2	15
Methyl tert-butyl ether	ND		625	608		ug/L		97	64 - 127	1	37

TestAmerica Buffalo

Page 38 of 49

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87386-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-87386-15 MSD	Client Sample ID: MW-18 091615
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 265649	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tetrachloroethene	ND	-	625	583		ug/L		93	74 - 122	2	20
Toluene	ND		625	584		ug/L		93	80 - 122	2	15
trans-1,2-Dichloroethene	ND		625	596		ug/L		95	73 - 127	2	20
Trichloroethene	1500	F1	625	1690	F1	ug/L		26	74 - 123	2	16

	MSD I	MSD		
Surrogate	%Recovery	Qualifier	Limits	
Toluene-d8 (Surr)	96		71 - 126	
1,2-Dichloroethane-d4 (Surr)	95		66 - 137	
4-Bromofluorobenzene (Surr)	103		73 - 120	
Dibromofluoromethane (Surr)	101		60 - 140	

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

GC/MS VOA

Analysis Batch: 265520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87386-1	MW-5 091615	Total/NA	Water	8260C	_
480-87386-2	MW-6 091615	Total/NA	Water	8260C	
480-87386-3	PZ-1 091615	Total/NA	Water	8260C	
480-87386-4	MW-11 091615	Total/NA	Water	8260C	
480-87386-5	MW-10 091615	Total/NA	Water	8260C	
480-87386-6	MW-14 091615	Total/NA	Water	8260C	
480-87386-7	MW-13 091615	Total/NA	Water	8260C	
480-87386-8	MW-12 091615	Total/NA	Water	8260C	
480-87386-9	MW-9 091615	Total/NA	Water	8260C	
480-87386-10	PZ-2 091615	Total/NA	Water	8260C	
480-87386-11	MW-17 091615	Total/NA	Water	8260C	
480-87386-18	TRIP BLANK	Total/NA	Water	8260C	
LCS 480-265520/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-265520/6	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 265612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87386-5 - DL	MW-10 091615	Total/NA	Water	8260C	
480-87386-11 - DL	MW-17 091615	Total/NA	Water	8260C	
480-87386-12	MW-21 091615	Total/NA	Water	8260C	
480-87386-13	MW-24 091615	Total/NA	Water	8260C	
480-87386-14	MW-22 091615	Total/NA	Water	8260C	
480-87386-15	MW-18 091615	Total/NA	Water	8260C	
480-87386-15 MS	MW-18 091615	Total/NA	Water	8260C	
480-87386-15 MSD	MW-18 091615	Total/NA	Water	8260C	
480-87386-16	MW-15 091615	Total/NA	Water	8260C	
480-87386-17	MW-16 091516	Total/NA	Water	8260C	
LCS 480-265612/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-265612/6	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 265649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87386-15 - DL	MW-18 091615	Total/NA	Water	8260C	
480-87386-15 MS	MW-18 091615	Total/NA	Water	8260C	
480-87386-15 MSD	MW-18 091615	Total/NA	Water	8260C	
LCS 480-265649/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-265649/6	Method Blank	Total/NA	Water	8260C	

TestAmerica Buffalo

2

6

8

9

11

12

14

10

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-87386-1

Matrix: Water

Client Sample ID: MW-5 091615 Date Collected: 09/16/15 07:45

Client Sample ID: MW-6 091615

Date Received: 09/17/15 01:20

Dilution Batch Prepared Batch Batch Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lab SWO TAL BUF Total/NA Analysis 8260C 265520 09/25/15 16:00

Lab Sample ID: 480-87386-2

Matrix: Water

Date Collected: 09/16/15 08:05 Date Received: 09/17/15 01:20

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C 265520 09/25/15 16:27 SWO TAL BUF Analysis

Client Sample ID: PZ-1 091615 Lab Sample ID: 480-87386-3

Date Collected: 09/16/15 08:45 Matrix: Water

Date Received: 09/17/15 01:20

Batch Batch Dilution Batch Prepared Method **Factor** or Analyzed **Prep Type** Type Run Number Analyst Lab Total/NA Analysis 8260C 265520 09/25/15 16:55 SWO TAL BUF

Client Sample ID: MW-11 091615

Date Collected: 09/16/15 09:15

Lab Sample ID: 480-87386-4

Matrix: Water

Date Collected: 09/16/15 09:15 Date Received: 09/17/15 01:20

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

 Total/NA
 Analysis
 8260C
 10
 265520
 09/25/15 17:22
 SWO
 TAL BUF

Client Sample ID: MW-10 091615

Date Collected: 09/16/15 09:40

Lab Sample ID: 480-87386-5

Matrix: Water

Date Collected: 09/16/15 09:40
Date Received: 09/17/15 01:20

Batch Dilution Batch Prepared Batch Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab Total/NA 8260C 265520 09/25/15 17:50 SWO TAL BUF Analysis Total/NA Analysis 8260C DL 2 265612 09/26/15 01:43 GTG TAL BUF

Client Sample ID: MW-14 091615 Lab Sample ID: 480-87386-6

Date Collected: 09/16/15 09:50 Matrix: Water

Date Received: 09/17/15 01:20

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA 8260C 265520 09/25/15 18:17 SWO Analysis

TestAmerica Buffalo

10

Lab Sample ID: 480-87386-7

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-13 091615

Date Collected: 09/16/15 10:15

Matrix: Water

Date Received: 09/17/15 01:20

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis 8260C 4 265520 09/25/15 18:45 SWO TAL BUF

Client Sample ID: MW-12 091615 Lab Sample ID: 480-87386-8

Date Collected: 09/16/15 10:55 Eas Sample 1D: 400-07300-0

Date Received: 09/17/15 01:20

Dilution Batch Batch **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 09/25/15 19:12 SWO TAL BUF Total/NA 8260C 265520 Analysis

Client Sample ID: MW-9 091615 Lab Sample ID: 480-87386-9

Date Collected: 09/16/15 11:20 East Sample 15: 455-57565-5

Date Received: 09/17/15 01:20

Ratch Ratch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** 8260C 265520 09/25/15 19:40 SWO TAL BUF Total/NA Analysis

Client Sample ID: PZ-2 091615 Lab Sample ID: 480-87386-10

Date Collected: 09/16/15 11:45 Matrix: Water

Date Received: 09/17/15 01:20

Batch Batch Dilution Batch Prepared Method or Analyzed Run **Factor** Number Analyst Prep Type Type Lab TAL BUF Total/NA 8260C 09/25/15 20:07 SWO Analysis 265520

Client Sample ID: MW-17 091615 Lab Sample ID: 480-87386-11

Date Collected: 09/16/15 12:00 Matrix: Water

Date Received: 09/17/15 01:20

Batch Batch Batch Dilution Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 265520 09/25/15 20:35 SWO TAL BUF Total/NA Analysis 8260C DL 5 265612 09/26/15 02:10 GTG TAL BUF

Client Sample ID: MW-21 091615 Lab Sample ID: 480-87386-12

Date Collected: 09/16/15 12:20 Matrix: Water

Date Received: 09/17/15 01:20

Dilution Batch Batch **Batch** Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA 8260C 265612 09/26/15 02:38 GTG Analysis

TestAmerica Buffalo

10

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-87386-13

Client Sample ID: MW-24 091615 Date Collected: 09/16/15 12:35 Date Received: 09/17/15 01:20

Matrix: Water

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis 8260C 5 265612 09/26/15 03:06 GTG TAL BUF

Client Sample ID: MW-22 091615 Lab Sample ID: 480-87386-14

Matrix: Water

Date Collected: 09/16/15 12:50 Date Received: 09/17/15 01:20

> Batch Batch Dilution **Batch** Prepared Type Method Run Factor Number or Analyzed Lab

Prep Type Analyst Total/NA 265612 09/26/15 03:33 GTG TAL BUF 8260C Analysis

Client Sample ID: MW-18 091615 Lab Sample ID: 480-87386-15

Date Collected: 09/16/15 13:05 **Matrix: Water** Date Received: 09/17/15 01:20

Ratch Ratch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Total/NA Analysis 8260C 10 265612 09/26/15 04:01 GTG TAL BUF Total/NA Analysis 8260C DL 25 265649 09/26/15 13:13 JWG **TAL BUF**

Client Sample ID: MW-15 091615 Lab Sample ID: 480-87386-16

Date Collected: 09/16/15 13:55 **Matrix: Water**

Date Received: 09/17/15 01:20

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed Prep Type Type Run **Analyst** Lab Total/NA 8260C 265612 09/26/15 04:28 GTG TAL BUF Analysis

Client Sample ID: MW-16 091516 Lab Sample ID: 480-87386-17

Date Collected: 09/16/15 14:25 **Matrix: Water**

Date Received: 09/17/15 01:20

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis 8260C 265612 09/26/15 04:56 GTG TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-87386-18

Date Collected: 09/16/15 00:00 **Matrix: Water**

Date Received: 09/17/15 01:20

Batch Batch Dilution **Batch** Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab 265520 09/25/15 13:15 SWO TAL BUF 8260C Total/NA Analysis

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

3

4

5

7

q

11

12

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast TestAmerica Job ID: 480-87386-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

J

7

Q

10

12

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

TestAmerica Job ID: 480-87386-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-87386-1	MW-5 091615	Water	09/16/15 07:45 09/17/15 01:20
480-87386-2	MW-6 091615	Water	09/16/15 08:05 09/17/15 01:20
480-87386-3	PZ-1 091615	Water	09/16/15 08:45 09/17/15 01:20
480-87386-4	MW-11 091615	Water	09/16/15 09:15 09/17/15 01:20
480-87386-5	MW-10 091615	Water	09/16/15 09:40 09/17/15 01:20
480-87386-6	MW-14 091615	Water	09/16/15 09:50 09/17/15 01:20
480-87386-7	MW-13 091615	Water	09/16/15 10:15 09/17/15 01:20
480-87386-8	MW-12 091615	Water	09/16/15 10:55 09/17/15 01:20
480-87386-9	MW-9 091615	Water	09/16/15 11:20 09/17/15 01:20
480-87386-10	PZ-2 091615	Water	09/16/15 11:45 09/17/15 01:20
480-87386-11	MW-17 091615	Water	09/16/15 12:00 09/17/15 01:20
480-87386-12	MW-21 091615	Water	09/16/15 12:20 09/17/15 01:20
480-87386-13	MW-24 091615	Water	09/16/15 12:35 09/17/15 01:20
480-87386-14	MW-22 091615	Water	09/16/15 12:50 09/17/15 01:20
480-87386-15	MW-18 091615	Water	09/16/15 13:05 09/17/15 01:20
480-87386-16	MW-15 091615	Water	09/16/15 13:55 09/17/15 01:20
480-87386-17	MW-16 091516	Water	09/16/15 14:25 09/17/15 01:20
480-87386-18	TRIP BLANK	Water	09/16/15 00:00 09/17/15 01:20

2

_

5

7

0

4.0

11

14

14

N - None
O - Ashado
P - Na204S
Q - Na2503
R - Na25S03
S - H2504
T - TSP Dodecahydrate
U - Acetone
W - In Acetone
Z - other (specify) Special Instructions/Note: the Leader in Empiricalness in testing **FostAmerica** SID SID 480-87386 Chain of Custody Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 480-71824-10564.1 Preservation Codes: 25 D - Nitric Acid E - Na-1504 F - MeOH G - Amchlor H - Ascorbic Acid I - Ics J - Di Water K - EDTA Page: Page 1 of 2 NALCA Deserved -17-15 Total Number of containers Method of Shipment Carrier Tracking No(s) **Analysis Requested** Gooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements: E-Mait: melissa.deyo@testamericainc.com Lab PM: Deyo, Melissa L 3 S 3 3 3 Chain of Custody Record 3 3 3 3 (N 14 (on do.sex) dsW/sW. Time: Company (C) Water MARTIN Koennecke Radiological 315-729-1300 G=grab) 9 (С=сошр, Sample Type 3 2 3 5:00 0 3 a) 9 154:8 12:00 05:40 9.50 10:15 10.55 11:30 11:45 9:15 50:8 Sample 7:45 Time Date: Unknown AT Requested (days) due Date Requested: Date/Time: (9-15 9-16-15 51-91-6 PO#: 11312000EST Sample Date 9-16-15 9-119-12 9-16-15 9-16-15 9-16-15 9-16-15 9-119-15 9-16-15 31-91-6 Date/Time: Project #: 48008584 SSOW#: # Q Poison B Skin Irritant eliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 Torne 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) D'Brien & Gere Inc of North America 291815 091615 091615 091615 091615 091615 Flammable 519160 091615 091615 091615 MW-5 091615 Possible Hazard Identification **TestAmerica Buffalo** The fact Empty Kit Relinquished by: Former Accurate Die Cast Custody Seals Intact: Client Information Sample Identification Δ Yes Δ No ruri. Veliz@obg.com 10 Hazelwood Drive MW-12 MW-13 07- MW M W - 10 Non-Hazard MW-14 0 P2-2 M W-17 P.H. 1-MW East Syracuse Client Contact Mr. Yuri Veliz finquished by: elinquished by: ME State, Zip: NY, 13221

TestAmerico THE LEAGER IN ENVIRONMENTAL TESTING **Chain of Custody Record**

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

	ı	, o	Lab PM:		Carrier Tracking No(s):	COC No.); (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	
mation	MARIN KOENNE	KE	Deyo, Melissa L			480-71	480-71824-10564.2	
Client Contact: Mr. Yuri Veliz	Phone: 315-739-1300		E-Mail: melissa.deyo@testamericainc.com	icainc.com		rage. Page 2 of 2	2 of 2	
a loc of North America				Analysis Requested	nested	# dop		
	Due Date Requested:					Presen	Preservation Codes:	
West Washington St. PO BOX 4873						A-HCL		xane
əsr	TAT Requested (days):					C-Z-A		ne NaO2
State, Zip: NY, 13221						HE-Nati		2045 2803 282803
00(Tel) 315-463-7554(Fax)	PO#: 11312000EST		/ (6			G-Ame H-Aso	G - Amchlor S - HZ H - Ascorbic Acid T - TS	S - H2SO4 T - TSP Dodecahydrate
	WO#.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 - Ice J - Di Water K - FDTA		etone 2AA 14-5
Cast	Project #. 48008584					abana indania		Z - other (specify)
	SSOW#:		XI) (Dis			Octher:		
			S P			Jec		
	Sample	Sample Matrix Type Sapid, Sapid, Sapid, Cacomp, Cawassiold,	Sign of the latest of the late			dminy let		
Sample Identification		5 6	E V				Special Instructions/Note:	ions/Note:
2 1 0 V 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G-11-14 1000	Z Water						
16-M/		-						
MW-34	1	(y						
	9-16-15 1250	(5 Water						
18	9-16-15 13:05	(s Water	3					
15	9-16-15 13:55	& Water	3					
9/	9-11-15 14:25	6 Water	<u>~</u>					
		with						
-		,						
	H H							
	1 7 0	K						
		•						
			Sample Dispos	sal (A fee may be a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	are retained long	yer than 1 monti	nth)
Non-Hazard Flammable Skin Initant Poison B Deliverable Requested: I, II, III, IV, Other (specify)	Unknown	Radiological	Special Instructions/QC	Requirem	ris:			
Empty Kit Relinquished by:	Date:		Time:	7	Method of Shipment:	ıt.		
Relincuisted by:	Date/Time: 15/15	5:00 company	Redeiled by:		A LIW Date/Ting	41-91-12	Compa	13(7)
D-16/11/2	Date/Time: 19	Company	Revended by:			7-0	0120 compa	MAS
Retinquished by:	Date/Time:	Company	Received by		Date/Time	me:	Сотрапу	any
Custody Seals Intact: Custody Seal No.:			Cooler Tempe	Cooler Temperature(s) °C and Other Remarks:	anarks.			1

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-87386-1

Login Number: 87386 List Source: TestAmerica Buffalo

List Number: 1

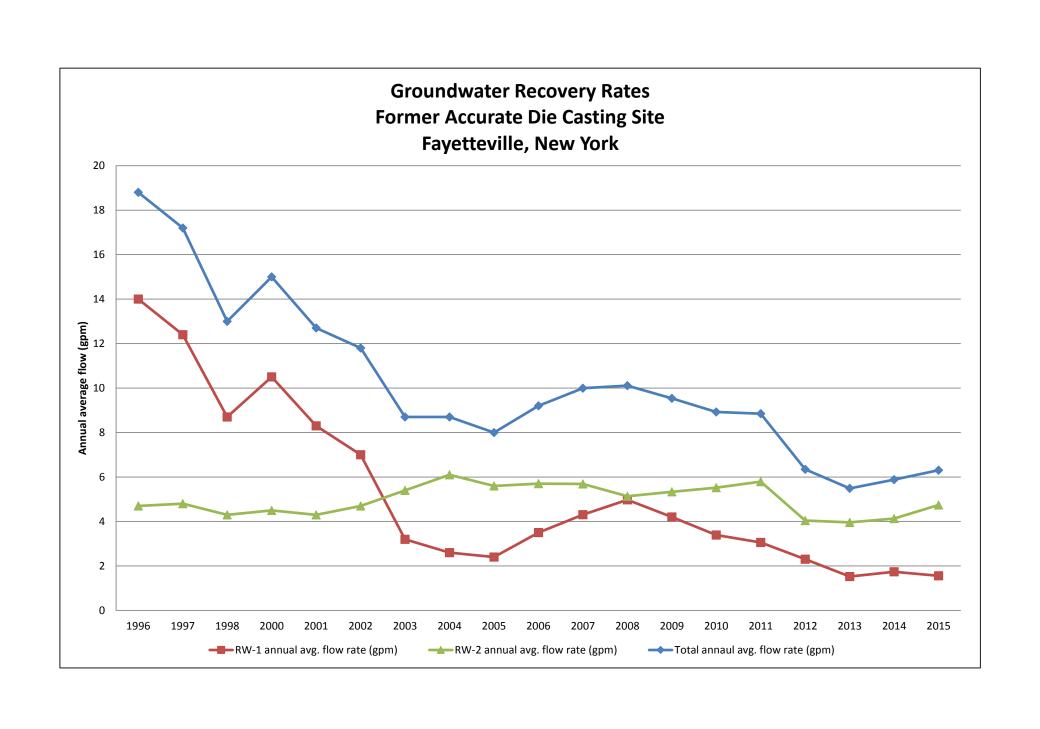
Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

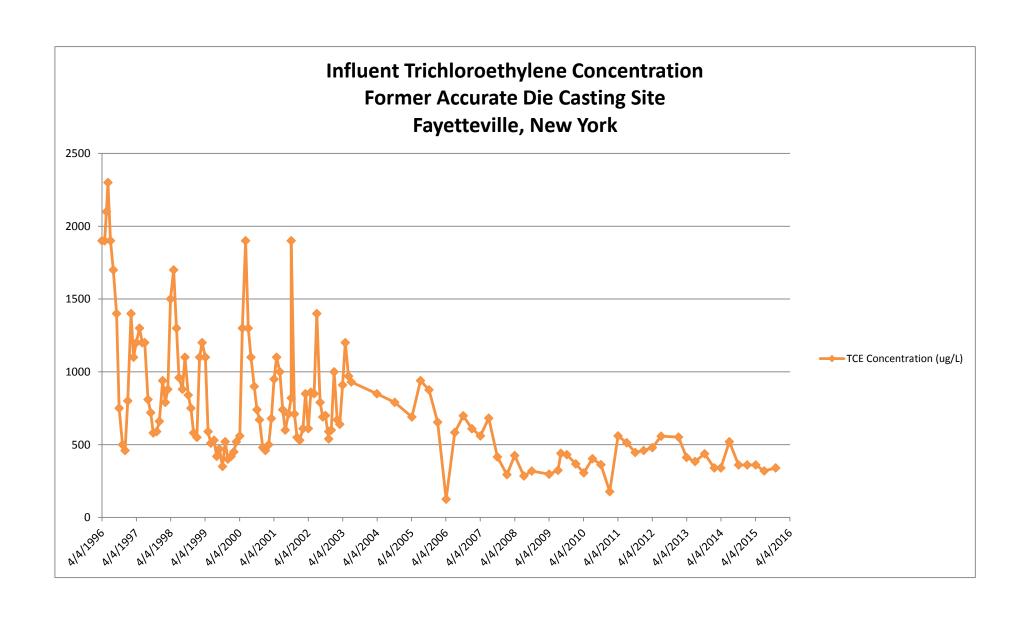
4

6


8

10

12


19

Annual Average Flow Rate Trends

ATTACHMENT 5

Groundwater Treatment
System Influent TCE
Concentration Trend Graph

February 3, 2016 Certification from Site Owner Regarding Deed Restrictions In Place

547 East Genesee, LLC

110 Stage Road Monroe, NY 10950

February 3, 2016

Mr. John C. Grathwol, **P.E.** Remedial Bureau B - Div of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7016

Re: Periodic Review Report / Site # 734052

Dear Mr. Grathwol:

Let this letter serve as notification from us that, as of 5/15/14, deed restrictions were in place and in effect for the above referenced site.

Should you have any further questions, please don't hesitate to contact me.

Thank you.

Sincerely

Tomer Slutzky, Member

TS/rmk