

Mr. Michael Belveg
Regional Enforcement Coordinator – Region 7
New York State Department of Environmental Conservation
615 Erie Blvd. West
Syracuse, NY 13204

Date July 29,2021

Former Accurate Die Casting Site (Site No. 734052), Fayetteville, NY

Dear Mr. Belveg:

This letter presents the status of groundwater treatment plant operations for the former Accurate Die Casting site (Site No. 734052) in Fayetteville, New York for the second quarter of 2021 (April 1 through June 30, 2021). This information is provided as required by the Order on Consent (#A7-0318-94-10). Included are the results of the monitoring activities associated with the SPDES Fact Sheet for the groundwater treatment system.

Operation Status and Activities Completed

As of June 30, 2021, a total of 126,555,012 gallons of groundwater have been treated since startup on February 5, 1996. From April 1 to June 30, 2021, 866,763 gallons of groundwater were treated: 192,835 gallons from recovery well RW-1; 673,842 gallons from recovery well RW-2; and 86 gallons from the collection trench constructed in the former VOC/PAH/PCB Soils Area. No groundwater was recovered from the overburden groundwater collection sump located in the former soil excavation area along the northwest side of the former manufacturing building (Area 2).

The analytical results associated with the SPDES Fact Sheet monitoring activities performed during April, May, and June 2021 are summarized in **Table 1**. The effluent quality during the period was in compliance with the SPDES discharge limits. The laboratory analytical data sheets are provided as **Attachment A**.

On April 20, 2021, groundwater samples were collected and analyzed for volatile organic compounds from monitoring wells MW-10, MW-11, MW-13, MW-18, and MW-24. The groundwater elevations are presented in **Table 2** and the analytical results are summarized in **Tables 3** and **4**. The laboratory analytical data sheets are provided as **Attachment B**.

Ramboll 333 West Washington Street Syracuse, NY 13202 USA

T 315-956-6100 F 315-463-7554 https://ramboll.com

The carbon in granular activated carbon filter GAC#1 was replaced on June 23, 2021 and afterward, filter GAC#2 was placed into lead service and GAC#1 was placed into lag service.

Activities Scheduled

The groundwater recovery and treatment system will continue to be operated and the SPDES monitoring will continue to be conducted.

If you have any questions regarding this report, please do not hesitate to call David Carnevale at (315) 956-6571.

Yours sincerely

Douglas M. Crawford, PE

Vice President

ENVIRONMENT & HEALTH, AMERICAS

Daugles M. Cranf L.

D 315-956-6442 M 315-200-5204

doug.crawford@ramboll.com

cc: J. Cook - New York State Department of Environmental Conservation

- E. O'Neil New York State Department of Health
- S. McLaughlin New York State Department of Health
- T. Slutzky The Anderson Company
- J. Stanek ITT Corporation
- E. Gernant Ramboll, Office of General Counsel

Table 1 Former Accurate Die Casting Site Fayetteville, New York Monitoring Requirements and Effluent Data

		Monitoring Re	equirements													
	Discharge	Discharge	Minimum													
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximu	n Frequency (1)) Туре	4/1/2021	4/5/2021	4/7/2021	4/8/2021	4/12/2021	4/13/2021	4/15/2021	4/16/2021	4/19/2021	4/21/2021	4/23/2021	4/26/2021
Flow (GPD)	Monitor	150000	Continuous	Meter	8979	8992	9101	9065	9141	8937	9038	9073	9094	9041	9109	9068
pH (SU)	6.5-8.5		2/Week	Grab	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.5	7.4	7.5	7.4	7.5
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.		4 U			4 U				4 U			4.8
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.		732			723				718			681
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.												
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.												
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U							1.0 U			
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U							1.0 U			
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab		1.0 U							1.0 U			
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab		1.0 U							1.0 U			
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U							1.0 U			
Toluene (ug/L)	Monitor	20	2/Month	Grab		1.0 U							1.0 U			
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab		1.0 U							1.0 U			
					Notes:											

U - Not Detected, J - Estimated (1) Minimum monitoring requiren

Table 1 Former Accurate Die Casting Site Fayetteville, New York Monitoring Requirements and Effluent Data

		Monitoring Re	quirements													
	Discharge	Discharge	Minimum													
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximun	n Frequency (1)	Туре	4/27/2021	4/30/2021	5/3/2021	5/6/2021	5/7/2021	5/10/2021	5/13/2021	5/14/2021	5/17/2021	5/28/2021	6/1/2021	6/3/2021
Flow (GPD)	Monitor	150000	Continuous	Meter	9142	9107	9144	9368	9548	9864	10086	10390	10381	10495	10417	10500
pH (SU)	6.5-8.5		2/Week	Grab	7.5	7.4	7.4	7.5	7.4	7.4	7.5	7.4	7.4	7.5	7.5	7.5
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.				4 U		4 U			4 U	4 U		
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.				860		644			787	647		
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.												
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.												
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab				1.0 U					1.0 U			
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab				1.0 U					1.0 U			
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab				1.0 U					1.0 U			
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab				1.0 U					1.0 U			
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab				1.0 U					1.0 U			
Toluene (ug/L)	Monitor	20	2/Month	Grab				1.0 U					1.0 U			
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab				1.0 U					1.0 U			
					Notes:											

U - Not Detected, J - Estimated (1) Minimum monitoring requirer

Table 1 Former Accurate Die Casting Site Fayetteville, New York Monitoring Requirements and Effluent Data

		Monitoring Red	quirements										
	Discharge	Discharge	Minimum										
Analyte (units)	Limitation	Limitation	Measurement	Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Daily Average	Daily Maximum	Frequency (1)	Туре	6/4/2021	6/7/2021	6/8/2021	6/11/2021	6/17/2021	6/21/2021	6/24/2021	6/25/2021	6/28/2021
Flow (GPD)	Monitor	150000	Continuous	Meter	10524	10326	10267	10174	10055	9933	9714	9617	9653
pH (SU)	6.5-8.5		2/Week	Grab	7.4	7.4	7.4	7.4	7.5	7.4	7.9	7.8	7.7
Residue, non-filterable (mg/L)	Monitor	20	Weekly	3-hr comp.	4 U		4 U		4 U	4 U			4 U
Total dissolved solids (TDS) (mg/L)	Monitor	Monitor	Weekly	3-hr comp.	701		651		656	654			758
Mercury, total (mg/L)	Monitor	0.0008	Quarterly	3-hr comp.			0.00020 U						
Zinc, total (mg/L)	Monitor	0.3	Quarterly	3-hr comp.			0.0080 J						
cis-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.1		1.4				
trans-1,2-Dichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U		1.0 U				
Methylene chloride (ug/L)	Monitor	20	2/Month	Grab			1.0 U		1.0 U				
1,1,2,2-Tetrachloroethane (ug/L)	Monitor	10	2/Month	Grab			1.0 U		1.0 U				
Tetrachloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U		1.0 U				
Toluene (ug/L)	Monitor	20	2/Month	Grab			1.0 U		1.0 U				
Trichloroethene (ug/L)	Monitor	10	2/Month	Grab			1.0 U		1.0 U				
					Notes:								

U - Not Detected, J - Estimated (1) Minimum monitoring requiren

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

				Groundwater									
	Ground	Well Casing	Screen Interval	Elevation (ft)									
Well ID	Elevation (ft)	Elevation (ft)	Elevation (ft)	5/28/1992	6/26/1992	8/7/1992	9/26/1994	9/27/1994	10/18/1994	11/2/1994	11/17/1994	11/30/1994	12/15/1994
MW-01	99.36	101.11	75.4 - 85.4	DRY	DRY	79.69			DRY				
MW-02	91.8	94.68	76.6 - 86.6	83.21	82.81	84.32	83.1	83.28	80.12				
MW-03	97.65	99.63	73.7 - 83.7	80.44		81.63							
MW-04	65.62	68.52	46.6 - 56.6	51.08	49.95	50.81	47.22	52.21	46.79				
MW-05	88.21	90.42	49.2 - 59.2	60.71	63.76	61.22	59.87	59.91	59.45				
MW-06	77.46	79.38	46.4 - 56.4	60.5	60.49	60.46	59.51	59.52	59.05				
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.59	54.55	54.47	53.9	53.97	53.55				
MW-08	88.21	91.78	53.9 - 63.9	66.38	66.38	66.83	61.59	61.65	60.99				
MW-09	102.44	104.03	49.7 - 59.7	60.46	60.51	61.83	59.57	59.59	59.08				
MW-10 (B)	97.51	97.27	43 - 53	61.15	61.99	61.69			56.02	55.07	55.19	54.94	55.19
MW-11 (B)	91.48	93.8	43.1 - 53.1	62.34	63.7	63.66	58.41	58.39	57.47		56.68	55.59	56.63
MW-12	93.62	94.14	51.9 - 61.9	62.24	60.74	62.77	59.77	59.79	59.31				
MW-13	98.8	98.7	77.7 - 87.7	DRY	80.62	80.92			78.7	82.92	78.21	78.21	80.92
MW-14	98.76	100.62	74.6 - 84.6	75.11	79.07	81.54			86.18	80.12	80.54	80.54	80.2
MW-15 (B)	96.1	98.9	32.7 - 42.7						53.47				
MW-16 (B)	98.5	100.85	50.8 - 60.8						61.67				
MW-17	66.9	69.24	53.7 - 63.7				54.61	54.61	54.08				
MW-18	76.5	78.29	61.5 - 71.5										
MW-19	69.5	71.27	46.5 - 56.5										
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5										
MW-22	71.5	73.34	60.9 - 65.9										
MW-23 (B)	89.8	91.72	17.3 - 22.3										
MW-24*			-										
PZ-01	81.8	83.95	49.8 - 59.8				59.56	59.57	59.1				
PZ-02	80.6	83.06	42.8 - 52.8				59.35	59.36	58.89				
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4				56.88	56.89	58.22				
RW-02 (B)	91.58	95.18	-										
SUMP		97.93	-							76.04	74.83	75	75.17

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

				Groundwater									
	Ground	Well Casing	Screen Interval	Elevation (ft)									
Well ID	Elevation (ft)	Elevation (ft)	Elevation (ft)	12/27/1994	1/13/1995	1/25/1995	2/9/1995	2/23/1995	3/9/1995	4/26/1995	7/25/1995	10/17/1995	2/5/1996
MW-01	99.36	101.11	75.4 - 85.4							DRY	DRY	DRY	77.06
MW-02	91.8	94.68	76.6 - 86.6							83.28	82.42	84.22	84.04
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6							51.44	45.94		53.6
MW-05	88.21	90.42	49.2 - 59.2							60.34	58.78		61.26
MW-06	77.46	79.38	46.4 - 56.4								58.52	58.1	60.86
MW-07 (B)	75.66	78.34	34.3 - 44.3							54.51	53.27	52.71	55.16
MW-08	88.21	91.78	53.9 - 63.9							63.41	59.82	60.76	66.61
MW-09	102.44	104.03	49.7 - 59.7							60.1	58.56	58.16	60.95
MW-10 (B)	97.51	97.27	43 - 53	55.02	54.94	54.95	54.52	54.36	55.02	57.49	54.6	54.61	62
MW-11 (B)	91.48	93.8	43.1 - 53.1	56.55	55.63	55.63	56.13	55.63	56.55	58.86	55.72	55.31	62.63
MW-12	93.62	94.14	51.9 - 61.9							60.3	58.76	58.35	61.11
MW-13	98.8	98.7	77.7 - 87.7	78.34	78.25	77.83	77.84	77.75	77.67	DRY	DRY	DRY	
MW-14	98.76	100.62	74.6 - 84.6	80.54	80.62	80.45	78.95	79.54	80.12	80.61	80.61	80.72	79.91
MW-15 (B)	96.1	98.9	32.7 - 42.7							54.71	51.6	50.47	59.24
MW-16 (B)	98.5	100.85	50.8 - 60.8							63.86	59.41	58.06	67.14
MW-17	66.9	69.24	53.7 - 63.7							59.02	57.71	DRY	60.29
MW-18	76.5	78.29	61.5 - 71.5										
MW-19	69.5	71.27	46.5 - 56.5										
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5										
MW-22	71.5	73.34	60.9 - 65.9										
MW-23 (B)	89.8	91.72	17.3 - 22.3										
MW-24*			-										
PZ-01	81.8	83.95	49.8 - 59.8								58.58	58.16	60.92
PZ-02	80.6	83.06	42.8 - 52.8							59.88	58.37	57.97	60.7
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4							59.14	57.6	57.11	59.64
RW-02 (B)	91.58	95.18	-									56.05	63.8
SUMP		97.93	-	74.83	75	75	74.88	75	78	75.09	75.25	76.94	74.67

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

Well ID	Ground Elevation (ft)	Well Casing Elevation (ft)	Screen Interval Elevation (ft)	Groundwater Elevation (ft) 2/7/1996	Groundwater Elevation (ft) 2/15/1996	Groundwater Elevation (ft) 2/16/1996	Groundwater Elevation (ft) 2/20/1996	Groundwater Elevation (ft) 2/22/1996	Groundwater Elevation (ft) 2/29/1996	Groundwater Elevation (ft) 3/7/1996	Groundwater Elevation (ft) 3/21/1996	Groundwater Elevation (ft) 4/4/1996	Groundwater Elevation (ft) 4/10/1996
MW-01	99.36	101.11	75.4 - 85.4	76.64	75.3	DRY	DRY	DRY	75.36	75.17	77.34	DRY	DRY
MW-02	91.8	94.68	76.6 - 86.6	83.87	83.41	83.34	83.15	83.32	83.67	83.5	84.24	83.68	83.68
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6	52.06	55.39	54.43	52.46	60.37	58.14	55.1	59.26	52.66	54.43
MW-05	88.21	90.42	49.2 - 59.2		60.8	60.73	60.5	60.4	60.14	59.73	58.85	58.32	58.14
MW-06	77.46	79.38	46.4 - 56.4	60.44	60.41	60.11	59.8	59.75	59.45	58.96	58.02	57.48	57.28
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.67	55.03	54.52	54.45	54.58	54.46	54.32	54.29	54.17	54.15
MW-08	88.21	91.78	53.9 - 63.9	66.4	65.93	65.84	65.47	65.42	65.12	64.68	64.76	64.1	63.83
MW-09	102.44	104.03	49.7 - 59.7	60.7	60.48	60.35			59.71	59.22	58.3	57.78	57.59
MW-10 (B)	97.51	97.27	43 - 53	59.88	62.11	60.42	59.96	59.91	59.64	59.43	59.07	58.81	58.72
MW-11 (B)	91.48	93.8	43.1 - 53.1	60.37	62.67	60.88	60.35	60.29	59.99	59.78	59.38	59.1	59.01
MW-12	93.62	94.14	51.9 - 61.9	60.83	60.65	60.5	60.21	60.16	59.86	59.37	58.44	57.93	57.74
MW-13	98.8	98.7	77.7 - 87.7	79.98	79.91	79.9	79.88	79.87	79.86	79.77	79.68	79.6	79.57
MW-14	98.76	100.62	74.6 - 84.6		80.28	80.29	80.35	80.38	80.44	80.45	80.49	80.52	80.55
MW-15 (B)	96.1	98.9	32.7 - 42.7	59.37	59.79	59.63	59.56	59.56	59.46	59.4	59.14	59.07	59.04
MW-16 (B)	98.5	100.85	50.8 - 60.8	67.17	66.9	66.79	66.57	66.52	66.39	66.17	65.99	65.99	65.9
MW-17	66.9	69.24	53.7 - 63.7	60.17	59.75	59.7	59.52	59.64	59.42	59.28	59.3	59.27	59.14
MW-18	76.5	78.29	61.5 - 71.5										
MW-19	69.5	71.27	46.5 - 56.5										
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5										
MW-22	71.5	73.34	60.9 - 65.9										
MW-23 (B)	89.8	91.72	17.3 - 22.3										
MW-24*			-										
PZ-01	81.8	83.95	49.8 - 59.8	60.61	60.46	60.28	59.99	59.93	59.63	59.14	58.21	57.67	57.47
PZ-02	80.6	83.06	42.8 - 52.8	60.3	60.26	59.97	59.66	59.61	59.33	58.83	57.9	57.39	57.19
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4	55.04	59.22	54.71	54.4	54.35	54.05	53.58	52.76	52.24	52.03
RW-02 (B)	91.58	95.18	-	59.98	63.83	60.67		59.97	59.63	59.41	58.95	58.63	58.52
SUMP		97.93	-	74.68	74.64	74.63	74.63	75.3	74.9	74.65	74.87	74.69	74.99

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

Well ID	Ground Elevation (ft)	Well Casing Elevation (ft)	Screen Interval Elevation (ft)	Groundwater Elevation (ft) 4/18/1996	Groundwater Elevation (ft) 5/2/1996	Groundwater Elevation (ft) 6/6/1996	Groundwater Elevation (ft) 7/16/1996	Groundwater Elevation (ft) 9/5/1996	Groundwater Elevation (ft) 10/21/1996	Groundwater Elevation (ft) 11/19/1996	Groundwater Elevation (ft) 1/16/1997	Groundwater Elevation (ft) 2/4/1997	Groundwater Elevation (ft) 4/15/1997
MW-01	99.36	101.11	75.4 - 85.4	DRY	77.73	DRY	DRY	DRY	DRY	76.6	75.15		75.64
MW-02	91.8	94.68	76.6 - 86.6	84.86	85.35	83.17	83.32	82.57	83.18	84.22	83.56		83.81
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6	60.28	59.7	51.63	52.45	DRY	55.91	55.91	53.12		
MW-05	88.21	90.42	49.2 - 59.2	58.2	58.71	60.54	58.98	56.33	55.4	56.49	59.15		59.83
MW-06	77.46	79.38	46.4 - 56.4	57.41	58.17	59.91	58.13	54.95	53.71	55.61	58.39		59.34
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.32	54.75	55.02	53.95	52.44	51.22	52.68	54.28		54.7
MW-08	88.21	91.78	53.9 - 63.9	64.08	65.43	67.07	64.5	59.05	59.56	63.61	64.67		65.15
MW-09	102.44	104.03	49.7 - 59.7	57.73	58.46	60.18	58.38	55.38	54.24	56.64	58.65		59.6
MW-10 (B)	97.51	97.27	43 - 53	58.61	59.72	62.25	59.11	53.88		54.95	59.61		58.11
MW-11 (B)	91.48	93.8	43.1 - 53.1	58.94	60.35	62.68	59.53	54.72	52.88	55.85	60.15		58.59
MW-12	93.62	94.14	51.9 - 61.9	57.86	58.59	60.33	58.54	55.48	54.3	56.18	58.81		59.72
MW-13	98.8	98.7	77.7 - 87.7	79.52	79.44	79.28	79.35	79.15	79.07	80.68	80.49		80.33
MW-14	98.76	100.62	74.6 - 84.6	78.14	79.29	80.56	80.66	80.59	80.61		80.59		80.53
MW-15 (B)	96.1	98.9	32.7 - 42.7	58.84	59.87	62.62	59.24	54.83	51.58	51.99	58.83		59.83
MW-16 (B)	98.5	100.85	50.8 - 60.8	65.84	67.02	68.4	65.57	63.31			66.13		66.89
MW-17	66.9	69.24	53.7 - 63.7	59.3	59.95	59.22	58.46	57.89	55.96	58.02	59.33		59.64
MW-18	76.5	78.29	61.5 - 71.5			72.95	72.32	70.81	70.77		73.31	72.78	73.6
MW-19	69.5	71.27	46.5 - 56.5			DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
MW-20	70.98	73.34	51.9 - 61.9			DRY	50.26	DRY	DRY	DRY	DRY		
MW-21	69.9	71.87	59.5 - 64.5									63.69	63.74
MW-22	71.5	73.34	60.9 - 65.9									63.69	67.92
MW-23 (B)	89.8	91.72	17.3 - 22.3										37.71
MW-24*			-										
PZ-01	81.8	83.95	49.8 - 59.8	57.6	58.34		58.31	55.13	53.9	55.83	58.57		59.51
PZ-02	80.6	83.06	42.8 - 52.8	57.3	58.04	59.77	57.97	54.9	53.53	55.25	58.23		59.13
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4	52.11	52.69	53.82	51.94	48.05	41.8	47.33	50.74		50.3
RW-02 (B)	91.58	95.18	-	58.41	59.63	62.56	59.14		42.02	55.39			55.69
SUMP		97.93	-	75.89	75.76	74.73	74.78	74.56	74.85	74.77	74.71		74.94

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

Well ID	Ground Elevation (ft)	Well Casing Elevation (ft)	Screen Interval Elevation (ft)	Groundwater Elevation (ft) 7/8/1997	Groundwater Elevation (ft) 10/22/1997	Groundwater Elevation (ft) 1/29/1998	Groundwater Elevation (ft) 4/15/1998	Groundwater Elevation (ft) 10/20/1998	Groundwater Elevation (ft) 4/28/1999	Groundwater Elevation (ft) 10/19/1999	Groundwater Elevation (ft) 4/6/2000	Groundwater Elevation (ft) 11/7/2000	Groundwater Elevation (ft) 7/3/2001
MW-01	99.36	101.11	75.4 - 85.4	DRY	DRY	DRY	DRY	DRY	DRY	DRY	80.92	DRY	77.46
MW-02	91.8	94.68	76.6 - 86.6		82.84	83.47	83.52	83.54	83.38	84.44	86.58		84.33
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6										
MW-05	88.21	90.42	49.2 - 59.2	59.16	58.34	60.86			59.91	55.35	60.52	59.83	60.92
MW-06	77.46	79.38	46.4 - 56.4	58.58	57.97	60.46	60.57	59.69	59.11	53.34	60.36	59.4	55.87
MW-07 (B)	75.66	78.34	34.3 - 44.3	52.93	50.63	52.9	53.82	51.76	54.57	51.73	54.87	DRY	53.34
MW-08	88.21	91.78	53.9 - 63.9	61.65	58.9	64.98	67.17	59.86	64.21	62.37	66.41	61.45	65.63
MW-09	102.44	104.03	49.7 - 59.7	58.76	58	60.51	60.56	59.71	59.68	54.25	60.62	59.42	60.51
MW-10 (B)	97.51	97.27	43 - 53	53.44	50.75	55.78		51.88	57.97	51.32	57.6	52.73	57.22
MW-11 (B)	91.48	93.8	43.1 - 53.1	55.2	52.5	56.75	61.73	53.98	58.36	53.31	59.39	54.66	59.15
MW-12	93.62	94.14	51.9 - 61.9	58.92	58.21	60.67	60.8	59.89	59.53	54.09	60.71	59.62	60.63
MW-13	98.8	98.7	77.7 - 87.7	79.84	79.53	78.87	78.67	78.31	78.08	80.75	80.89	80.53	79.95
MW-14	98.76	100.62	74.6 - 84.6	80.55	80.58	80.78	80.78	80.64	80.54	80.67	80.6	80.75	79.74
MW-15 (B)	96.1	98.9	32.7 - 42.7	56.63	50.48	56.34	62.1	52.58	58.94	50.95	58.81	54.32	58.98
MW-16 (B)	98.5	100.85	50.8 - 60.8	64.43	58.45	65.71	68.03	61.84	65.99	59.81	66.92	63.57	66.14
MW-17	66.9	69.24	53.7 - 63.7	58.33	DRY	59.7	59.51	57.93	58.76	57.47	60.28	58.33	58.55
MW-18	76.5	78.29	61.5 - 71.5	71.34	69.71	73.5	73.29	70.74	72.46	70.78	75.08	71.61	72.09
MW-19	69.5	71.27	46.5 - 56.5	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5		62.93	63.82	63.54	63.23	63.31	62.69	64.42	62.59	62.53
MW-22	71.5	73.34	60.9 - 65.9	67.35	65.96	68.51	68.39	67.83	68.05	67.69	68.52	66.42	68.13
MW-23 (B)	89.8	91.72	17.3 - 22.3	35.61	32.29	34.95	37.95	33.57	36.76	32.48	36.69	33.97	36.21
MW-24*			-										
PZ-01	81.8	83.95	49.8 - 59.8	58.7	58.01	60.5	60.61	59.7	59.3	53.65	60.51	59.44	
PZ-02	80.6	83.06	42.8 - 52.8	58.34	57.65	60.22	60.34	59.46	59.03	52.71	60.17	59.16	
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4	43.34	42.03	43.13	32.6	32.36	54.69		50.73	40.88	
RW-02 (B)	91.58	95.18	-	44.07	42.89	52.74	59.94	44.33	56.74		54.52	42.86	
SUMP		97.93	-	75.01	74.75	74.89	74.96	75.2	75.26		78.49	74.91	75.33

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

	O	W-II G!		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Well ID	Ground Elevation (ft)	Well Casing Elevation (ft)	Screen Interval Elevation (ft)	Elevation (ft) 11/8/2001	Elevation (ft) 4/3/2002	Elevation (ft) 10/9/2002	Elevation (ft) 12/28/2004	Elevation (ft) 4/8/2005	Elevation (ft) 5/8/2005	Elevation (ft) 11/9/2005	Elevation (ft) 4/21/2006	Elevation (ft) 1/2/2007	Elevation (ft) 11/29/2007
MW-01	99.36	101.11	75.4 - 85.4	76.87	77.42	101.11	76.7	80.09	80.09	78.27	78.66	76.7	80.03
MW-02	91.8	94.68	76.6 - 86.6	83.67	84.28	83.6	83.67	85.01	85.01	84.1	85.14	83.58	85.6
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6										
MW-05	88.21	90.42	49.2 - 59.2	60.1	60.8	58.42	60.79	61.76	61.76	60.82	60.88	60.65	61.62
MW-06	77.46	79.38	46.4 - 56.4	59.67	60.42	59.84	60.35	61.45	61.45	60.36	70.35	60.28	60.5
MW-07 (B)	75.66	78.34	34.3 - 44.3	51.92	53.59	52.34	54.11	55.35	55.35		54.59	54.04	52.96
MW-08	88.21	91.78	53.9 - 63.9	60.92	64.16	60.73	63.24	67.83	67.83	64.14	65.22	63.24	66.86
MW-09	102.44	104.03	49.7 - 59.7	59.68	60.47	59.85	60.36	61.54	61.54	60.4	60.36	60.36	60.55
MW-10 (B)	97.51	97.27	43 - 53	52.6	56.07	54.57	54.86	60.38	60.38	55.76	58.75	57.62	56.01
MW-11 (B)	91.48	93.8	43.1 - 53.1	54.73	57.19	54.77	56.54	60.89	60.89	56.05	58.84	57.81	55.72
MW-12	93.62	94.14	51.9 - 61.9	59.87	60.64		60.54	61.67	61.67	60.58	60.54	60.47	60.72
MW-13	98.8	98.7	77.7 - 87.7	80.1	78.65	79.62	83.48	80.04	80.04	80.6	79.8	79.44	78.68
MW-14	98.76	100.62	74.6 - 84.6	80.77	80.48	82.87	81.72	84.69	84.69	82.77	82.71	82.65	89.24
MW-15 (B)	96.1	98.9	32.7 - 42.7	53.52	59.03	54.4	57.78	61.53	61.53	55.87	59.87	59.26	54.35
MW-16 (B)	98.5	100.85	50.8 - 60.8	63.58	66.25	63.5	65.64	68.75	68.75	65.35	66.31	66.12	63.99
MW-17	66.9	69.24	53.7 - 63.7	58.02	59.24	57.58	58.91	60.79	60.79	58.91	58.77	59	58.46
MW-18	76.5	78.29	61.5 - 71.5	71.36	73.75	69.84	72.88	74.61	74.61	72.33	72.54	73.2	72.84
MW-19	69.5	71.27	46.5 - 56.5	DRY	DRY	DRY	DRY		DRY	DRY	DRY		DRY
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5	62.58	63.39	61.82	62.54	63.92	63.92	62.62	62.24	62.63	63.12
MW-22	71.5	73.34	60.9 - 65.9	68.15	68.71	67.24	63.41	68.65	68.65	68.68	68.3	68.59	68.94
MW-23 (B)	89.8	91.72	17.3 - 22.3	33.25	35.68	33.63	36.49	39.32	39.32	35.43	37.72	36.62	34.82
MW-24*			-										
PZ-01	81.8	83.95	49.8 - 59.8	59.7	60.45	59.87	60.4	61.48	61.48	60.38	60.37	60.35	60.53
PZ-02	80.6	83.06	42.8 - 52.8	59.48	60.18	59.65	60.23	61.28	61.28	60.22	60.19	60.09	60.36
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4	36.48	36.53	34.88							
RW-02 (B)	91.58	95.18	-	42.97	49.85	44.13							
SUMP		97.93	-	75.05	75.13	74.94							

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

Well ID	Ground Elevation (ft)	Well Casing	Screen Interval Elevation (ft)	Groundwater Elevation (ft) 5/8/2008	Groundwater Elevation (ft) 11/21/2008	Groundwater Elevation (ft) 4/22/2009	Groundwater Elevation (ft) 11/20/2009	Groundwater Elevation (ft) 4/30/2010	Groundwater Elevation (ft) 11/17/2010	Groundwater Elevation (ft) 5/12/2011	Groundwater Elevation (ft) 11/29/2011	Groundwater Elevation (ft) 5/22/2012	Groundwater Elevation (ft) 11/28/2012
MW-01	99.36	101.11	75.4 - 85.4	80.06	80.11	80.69	79.49	80.73	79.87	80.71	75.97	75.07	75.06
MW-02	91.8	94.68	76.6 - 86.6			83.26	83.24	83.13	83.6	NM	83.98	83.36	83.4
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6										
MW-05	88.21	90.42	49.2 - 59.2	60.72	60.24	60.86	60.32	60.7	60.62	62.32	60.66	60.54	60.02
MW-06	77.46	79.38	46.4 - 56.4	60.28	59.98	60.46	60.03	60.34	60.26	NM	60.26	60.16	59.78
MW-07 (B)	75.66	78.34	34.3 - 44.3	52.94		56.1	52.88	54.04	52.94	53.84	53.18	53.32	52.24
MW-08	88.21	91.78	53.9 - 63.9	66.82	66.88	66.5	61.93	65.94	64.7	NM	63	62.44	60.93
MW-09	102.44	104.03	49.7 - 59.7	60.33	60.53	60.49	60.03	60.37	60.27	61.9	60.25	60.19	59.76
MW-10 (B)	97.51	97.27	43 - 53	61.05	52.79	60.33	53.77	58.97	58.77	66.37	55.73	55.41	52.47
MW-11 (B)	91.48	93.8	43.1 - 53.1	60.32	52.42	59.4	52.98	57.95	57.84	64.85	54.56	54.2	51.58
MW-12	93.62	94.14	51.9 - 61.9	60.5	60.19	60.67	60.24	60.56	60.44	62.02	60.46	60.38	59.98
MW-13	98.8	98.7	77.7 - 87.7	78.23	DRY	DRY	78.02	Dry	Dry	Dry	Dry	Dry	Dry
MW-14	98.76	100.62	74.6 - 84.6	82.74	82.59	82.72	82.67	82.62	82.77	81.74	82.7	82.64	82.54
MW-15 (B)	96.1	98.9	32.7 - 42.7	61.89	52.85	61.74	54.7	60.4	60.1	62.56	57.88	57.6	52.1
MW-16 (B)	98.5	100.85	50.8 - 60.8	67.78	63.03	67.85	64.11	66.77	66.41	74.8	64.83	64.81	61.03
MW-17	66.9	69.24	53.7 - 63.7	58.96	57.9	59.36	58.38	58.96	58.89	60.26	58.96	58.92	54.44
MW-18	76.5	78.29	61.5 - 71.5	72.7	71.85	73.08	71.91	72.53	72.95	73.26	73.05	72.47	70.83
MW-19	69.5	71.27	46.5 - 56.5	DRY	DRY	DRY	47.11	Dry	47.13	DRY	47.13	47.12	Dry
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5	62.65	62.65	62.63	62.43	62.31	63.31	62.36	62.85	62.12	60.57
MW-22	71.5	73.34	60.9 - 65.9	68.6	68.51	68.44	68.29	68.26	68.88	68.44	68.74	68.3	68.34
MW-23 (B)	89.8	91.72	17.3 - 22.3	34.76	34.82	39.14	35.06	38.38	38.08	42.22	36.96	37.4	34
MW-24*			-										Dry
PZ-01	81.8	83.95	49.8 - 59.8	60.32	59.99	60.49	60.03	60.37	60.27	61.85	60.27	60.2	59.79
PZ-02	80.6	83.06	42.8 - 52.8	60.12	59.81	60.3	59.86	60.18	60.1	61.61	60.11	60.02	59.62
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4										33.54
RW-02 (B)	91.58	95.18	-										43.33
SUMP		97.93	-										

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

	Ground	Well Casing	Screen Interval	Groundwater									
Well ID	Ground Elevation (ft)	_	Elevation (ft)	Elevation (ft) 4/18/2013	Elevation (ft) 10/1/2013	Elevation (ft) 4/16/2014	Elevation (ft) 9/18/2014	Elevation (ft) 3/31/2015	Elevation (ft) 9/16/2015	Elevation (ft) 3/22/2016	Elevation (ft) 10/4/2016	Elevation (ft) 4/26/2017	Elevation (ft) 10/25/2017
MW-01	99.36	101.11	75.4 - 85.4	78.43	75.06	77.29	75.07	80.26	75.07	76.29	Dry	77.51	Dry
MW-02	91.8	94.68	76.6 - 86.6	84.68	83.36	85.18	83.06	85.18	83.06	84.26	83.38	84.66	83.22
MW-03	97.65	99.63	73.7 - 83.7										
MW-04	65.62	68.52	46.6 - 56.6										
MW-05	88.21	90.42	49.2 - 59.2	61.08	60.38	61.74	60.24	60.22	60.06	60.86	59.7	61.87	59.92
MW-06	77.46	79.38	46.4 - 56.4	60.98	60.04	61.35	59.94	60.02	59.88	60.46	59.52	61.34	59.74
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.12	53.14	54.82	52.29	53.28	52.24	54.3	52.22	55.1	52.19
MW-08	88.21	91.78	53.9 - 63.9	65.6	62.66	68.38	61.32	63.93	61.36	66.44	59.78	69.74	60.54
MW-09	102.44	104.03	49.7 - 59.7	60.71	60.05	61.43	59.97	60.01	59.88	60.47	59.49	61.41	59.73
MW-10 (B)	97.51	97.27	43 - 53	58.67	55.39	61.91	54.73	54.25	54.85	59.77	52.77	64.23	53.71
MW-11 (B)	91.48	93.8	43.1 - 53.1	57.48	54.10	60.5	53.54	53.15	53.55	58.44	51.66	62.6	52.5
MW-12	93.62	94.14	51.9 - 61.9	60.88	60.24	61.56	60.16	60.22	60.09	60.66	59.7	61.58	59.92
MW-13	98.8	98.7	77.7 - 87.7	Dry	78.00	79.94	79.3	78.74	78.3	78.04	78	DRY	DRY
MW-14	98.76	100.62	74.6 - 84.6	82.54	82.82	82.8	82.88	84.8	83.2	83.06	82.7	82.76	82.74
MW-15 (B)	96.1	98.9	32.7 - 42.7	60.12	57.65	63.3	56.34	55.06	56.68	61.32	52.54	66.2	53.92
MW-16 (B)	98.5	100.85	50.8 - 60.8	67.15	64.75	69.49	64.19	64.2	64.29	67.45	61.5	71.99	62.6
MW-17	66.9	69.24	53.7 - 63.7	59.88	58.24	60.36	58.08	58.7	58	59.64	Dry	59.94	57.66
MW-18	76.5	78.29	61.5 - 71.5	74.27	71.07	74.83	70.77	73.63	70.23	73.59	69.39	73.93	69.91
MW-19	69.5	71.27	46.5 - 56.5	Dry	Dry	Dry	Dry	Dry	47.13	47.12	Dry	47.43	DRY
MW-20	70.98	73.34	51.9 - 61.9										
MW-21	69.9	71.87	59.5 - 64.5	62.92	60.91	63.71	60.55	63.43	60.57	62.73	Dry	62.75	Dry
MW-22	71.5	73.34	60.9 - 65.9	68.3	66.39	68.04	66.8	68.18	66.92	68.14	65.58	68.99	68.38
MW-23 (B)	89.8	91.72	17.3 - 22.3	38.6	36.86	40.38	36.22	36.12	36.54	39.36	34.52	41.77	35.52
MW-24*			-	Dry									
PZ-01	81.8	83.95	49.8 - 59.8	60.69	60.07	61.39	59.97	60.03	59.89	60.47	59.5	61.37	59.75
PZ-02	80.6	83.06	42.8 - 52.8	60.51	59.88	61.14	59.78	59.84	59.72	60.28	59.34	61.16	59.56
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4	34.88	34.38	34.88	34.88	33.93	34.14	33.53	35.32	35.48	34.96
RW-02 (B)	91.58	95.18	-	54.73	44.02	58.94	44.18	44.8	43.54	56.36	43.94	61.42	44.68
SUMP		97.93	-										

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler). MW-03 was removed as part of the TCE Soils Interim Remedial Measure (IRM) completed in September 1994. System shutdown 02/15/96; System restored 02/20/96. System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

Table 2
Former Accurate Die Casting Site
Fayetteville, New York
Groundwater Elevation Summary Table

				Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
	Ground	Well Casing	Screen Interval	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)		
Well ID	Elevation (ft)	Elevation (ft)	Elevation (ft)	4/24/2018	10/4/2018	4/11/2019 ¹	10/22/2019	4/15/2020	10/22/2020	4/20/2021		
MW-01	99.36	101.11	75.4 - 85.4	76.09	DRY	75.06	DRY	DRY	DRY	DRY		
MW-02	91.8	94.68	76.6 - 86.6	83.94	84.32	83.72	84.6	83.7	83.94	83.63		
MW-03	97.65	99.63	73.7 - 83.7									
MW-04	65.62	68.52	46.6 - 56.6									
MW-05	88.21	90.42	49.2 - 59.2	61.1	60.1	60.68	60.44	60.66	59.92	60.37		
MW-06	77.46	79.38	46.4 - 56.4	60.62	59.86	60.36	60.12	60.34	59.78	60.16		
MW-07 (B)	75.66	78.34	34.3 - 44.3	54.54	52.7	54.34	52.34	53.32	52.74	53.22		
MW-08	88.21	91.78	53.9 - 63.9	67.92	62.12	64.76	61.88	64.7	60.88	62.16		
MW-09	102.44	104.03	49.7 - 59.7	60.65	59.85	60.39	60.11	60.33	59.77	60.17		
MW-10 (B)	97.51	97.27	43 - 53	61.75	54.41	58.57	55.35	58.35	54.01	55.29		
MW-11 (B)	91.48	93.8	43.1 - 53.1	60.25	53.1	57.28	54.04	56.96	52.72	53.92		
MW-12	93.62	94.14	51.9 - 61.9	60.82	60.04	60.56	60.3	60.52	59.98	60.34		
MW-13	98.8	98.7	77.7 - 87.7	DRY	DRY	DRY	DRY	DRY	DRY	DRY		
MW-14	98.76	100.62	74.6 - 84.6	82.56	82.78	83.18	82.7	82.38	82.62	82.18		
MW-15 (B)	96.1	98.9	32.7 - 42.7	63.6	54.78	60.68	56.48	60.5	54.55	56.74		
MW-16 (B)	98.5	100.85	50.8 - 60.8	69.13	63.59	66.57	64.21	66.29	63.25	64.77		
MW-17	66.9	69.24	53.7 - 63.7	59.34	57.78	58.96	57.84	58.92	57.64	58.84		
MW-18	76.5	78.29	61.5 - 71.5	73.49	70.69	73.21	71.31	73.09	69.97	72.83		
MW-19	69.5	71.27	46.5 - 56.5	47.52	DRY	47.47	47.53	47.53	47.12	47.57		
MW-20	70.98	73.34	51.9 - 61.9									
MW-21	69.9	71.87	59.5 - 64.5	62.51	DRY	62.57	DRY	68.63	DRY	62.05		
MW-22	71.5	73.34	60.9 - 65.9	69.28	68.98	69.74	69.34	69.69	68.74	70.08		
MW-23 (B)	89.8	91.72	17.3 - 22.3	40.48	35.78	39.32	35.6	39.42	36.02	37.22		
MW-24*			-						DRY			
PZ-01	81.8	83.95	49.8 - 59.8	60.65	59.87	60.39	60.13	60.35	59.77	60.17		
PZ-02	80.6	83.06	42.8 - 52.8	60.38	59.68	60.18	59.92	60.14	59.6	59.98		
RW-01**	78.4	80.28	29.4 - 39.4, 45.4 - 50.4	34.34	34.18	33.08	34.73	35.28	34.38	34.96		
RW-02 (B)	91.58	95.18	-	58.58	44.88	52.93	45.43	51.46	45.14	45.76		
SUMP		97.93	-									

 $MW-03 \ was \ removed \ as \ part \ of \ the \ TCE \ Soils \ Interim \ Remedial \ Measure \ (IRM) \ completed \ in \ September \ 1994. \ System \ shutdown \ 02/15/96; \ System \ restored \ 02/20/96.$

⁻⁻⁻ Water level not monitored, (B)-Bedrock groundwater monitoring well,

^{* -} Measurement relative to top of well casing. Elevations based on assumed datum. MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler).

System start-up 02/06/96; MW-13 casing elev. changed 06/06/96. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

^{** -} Groundwater elevations are representative of combined pumping head of both screened intervals.

¹ Elevations represent water levels measured at the time of PDB installation

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	August-89	December-89	May-90	May-92	July-94	October-94	February-95	April-95	July-95
	Trichloroethene								
	ug/L								
Location ID									
MW-01	112	ND	2	ND					
MW-02	ND	ND	1	ND		ND	ND	ND	ND
MW-03	ND	ND	440000	340000	ND	NI	NI	NI	NI
MW-04		7	43	6	270	23	13	16	
MW-05		340	344	110	330	410	290	280	
MW-06		700	454	510	390	360	330	280	270
MW-07		ND							
4W-08		ND	ND	ND		ND	ND	ND	ND
MW-09		109	106	60	72	74	74	84	75
MW-10				4500	1600	1300	1400	1200	900
MW-11				5200	5500	5300	4300	3900	4000
MW-12				36	44	35	33	30	25
MW-13				110	740	510			
MW-14				67	150	120	79	95	140
MW-15	NI	NI	NI	NI	NI	14	11	10	17
MW-16	NI	NI	NI	NI	NI	6	17	7	18
MW-17	NI	NI	NI	NI	260	140	200	130	160
MW-18	NI								
MW-20	NI								
MW-21	NI								
MW-22	NI								
MW-23	NI								
MW-24	NI								
PZ-01	NI	NI	NI	NI	NI				120
PZ-02	NI	NI	NI	NI	NI			490	400

Notes:

MD - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	October-95	January-96	April-96	May-96	July-96	October-96	January-97	April-97	July-97
	Trichloroethene								
	ug/L								
Location ID									
MW-01									
MW-02	ND					1 U			
MW-03	NI								
MW-04	15					62	NI	NI	NI
MW-05						180			
MW-06	180	170	110		98	71	75	52	
MW-07	ND					1 U			
MW-08	ND					1 U			
MW-09	68	100	64		65	50	95	83	66
MW-10	890	900	820		960	1700	1900	1200	
MW-11	2600	2500	1500		1400	1600	1500	800	
MW-12	29					17			
MW-13						370			
MW-14	78	84	250		230	170	390	400	260
MW-15	7					20			
MW-16	20					11			
MW-17		180	350		460	300	450	220	150
MW-18	NI	NI	NI	1200		2900	850	410	1800
MW-20	NI	NI	NI	70			NI	NI	NI
MW-21	NI	NI	NI	NI	NI	NI	270	520	310
MW-22	NI	NI	NI	NI	NI	NI	2	1	3
MW-23	NI	1 U	1 U						
MW-24	NI								
PZ-01						32			
PZ-02						540			

MD - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	October-97	January-98	April-98	October-98	November-98	April-99	October-99	April-00	November-00
	Trichloroethene								
	ug/L								
Location ID									
MW-01									
MW-02	1 U			1 U			1 U		1 U
MW-03	NI								
MW-04	NI								
MW-05	220			200			78		110
MW-06	58		140	92		63	72	30	48
MW-07	1 U			1 U			1 U		
MW-08				1 U			1 U		1 U
MW-09	61	140	120	80		120	46	69	60
MW-10	1300		930	880		720	700	530	690
MW-11	1600		920	1100		740	900	670	840
MW-12	19			22			15		17
MW-13	760			480			430		790
MW-14	560	560	460	400		460	260	250	280
MW-15	18			21			13		7
MW-16	14			4			15		3
MW-17		270	800	250		280	180	160	220
MW-18	3100	1000	1100	3600		620	1800	360	1900
MW-20	NI								
MW-21	450	120	1300	180		510	90	42	73
MW-22	8	5	10	14		10	9	13	12
MW-23	1 U	1 U		1 U			1 U		1 U
MW-24	NI	NI	NI	NI	6000	4300	4300	690	2400
PZ-01	48			85			410		29
PZ-02	420			250			18		160

ND - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	July-01	November-01	April-02	June-02	October-02	May-03	December-03	July-04	December-04
	Trichloroethene								
	ug/L								
Location ID									
MW-01		1 U							
MW-02		1 U							
MW-03	NI								
MW-04	NI								
MW-05		120			100		110		98
MW-06	89	92			92		110		
MW-07		1 U							
MW-08		1 U							
MW-09	70	77			67		110		
MW-10	600	900	740		700	530	570	470	
MW-11	680	1000	870		760	940	620	490	
MW-12		19			18		20		21
MW-13		520		360	370				
MW-14	270	240			200	310	190		200
MW-15		27			21		26		2.1
MW-16		3			1		3		2.1
MW-17	240	230			290		310		140
MW-18	970	2000	350		2500	2100	2300	1600	
MW-20	NI								
MW-21	35	38					12		4.9
MW-22	13	13			4		18		18
MW-23		1 U							
MW-24	600	1500		470		390	190	170	96
PZ-01		79			79		92		120
PZ-02		260			160		150		130

MD - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	April-05	November-05	April-06	January-07	February-07	May-07	November-07	May-08	November-08
	Trichloroethene								
	UG/L								
Location ID									
MW-01									
MW-02									
MW-03	NI								
MW-04	NI								
MW-05		75.0		75.2			88		84.6
MW-06				142			120		84.1
MW-07									
MW-08									
MW-09		83.3		86.9			88		77.2
MW-10	450		486		448	448	440	476	126
MW-11	390		469		407	390	380	293	746
MW-12		19.6		23		24	38		24.3
MW-13	200		265		265	282	310	251	
MW-14		127		270			380		484
MW-15		0.50 U		0.54			0.82		0.5 U
MW-16		2.25		1.82			2.1		3.21
MW-17				132			240		210
MW-18	1300		1490		763	1590	1800	1160	1840
MW-20	NI								
MW-21		10.6		6.17			7.2		12.2
MW-22		15.8		13.5			27		28.9
MW-23									
MW-24	64	124	70.6	100		197	210	159	452
PZ-01		103		132			100		48.4
PZ-02		118		125			110		116

Notes:

MD - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	April-09	November-09	April-10	November-10	May-11	November-11	May-12	November-12	April-13
	Trichloroethene								
	ug/l								
Location ID									
MW-01									
MW-02									
MW-03	NI	NI	NI	NI	NI	NI		NI	
MW-04	NI	NI	NI	NI	NI	NI		NI	
MW-05		77.8		82		73.1		64.8	
MW-06		75.8		83.8		52.6		87.2	
MW-07									
MW-08									
MW-09		71.2		62		52.6		87.6	
MW-10	329	285	369	395	416	169	135	60.7	320
MW-11	260	452	379	406	255	926	891	1080	638
MW-12		16.5		19.5		21.9		17.6	
MW-13			208	262		278	234	307	196
MW-14		426		438		17.8		355	
MW-15		0.65		22.9		0.5 U		0.5 U	
MW-16		1.96		1.69		1.53		2.21	
MW-17		190		79.6		496		118	
MW-18	1160	1290	609	1300	1460	1190	1020	1820	942
MW-20	NI	NI	NI	NI	NI	NI		NI	
MW-21		12.3		6.1		6.76		27.4	
MW-22		19		19.4		23.6		19.1	
MW-23									
MW-24	118		193	331	62.1	246	162	1010	210
PZ-01		50.9		95		94.2		50.8	
PZ-02		101		100		96.6		111	

MD - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	October-13	Apr-14	Sep-14	Mar-15	Sep-15	March-16	Oct-16	Apr-17	Oct-17	Apr-18
	Trichloroethene									
	ug/l									
Location ID										
MW-01										
MW-02										
MW-03										
MW-04										
MW-05	73		53		55		40		44	
MW-06	64		82		79		57		64	
MW-07										
MW-08										
MW-09	52		45		46		33		26	
MW-10	84	310	56	96	100	270	100	260	63	250
MW-11	760	470	640	690	680	560	540 F1	610	180	390
MW-12	16		21		16		13		13	
MW-13	290	190	260	210	260	220	240	220	190	220
MW-14	1600	210	300		200		280		250	
MW-15	0.69 J		1U		0.82 J		1U		1U	
MW-16	1.5		1.5		1.5		1.6		1.6	
MW-17	330		260		190		190		200	
MW-18	1700	650	1500	960	1500 F1	1200	1300	610	1000	1300 F1
MW-20										
MW-21	15		15		18		19		15	
MW-22	1.5		11		9.5		8.4		9.6	
MW-23										
MW-24	530	220	400	230	380	320	420	220	300	150 F1
PZ-01	90		77		63		41		46	
PZ-02	97		89		83		71		64	

Notes:

NOT - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring
MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), FI - MS/MSD recovery outside limits
MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94.
MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

Table 3 Former Accurate Die Casting Site Fayetteville, New York **Groundwater Trichloroethene Concentrations**

Sample Date	Oct-18	May-19	Oct-19	Apr-20	Oct-20	Apr-21	Ī
-	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	Trichloroethene	
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Location ID							
MW-01							
MW-02							
MW-03							
MW-04							
MW-05	57		47		56		
MW-06	72		66		40		
MW-07							
MW-08							
MW-09	40		34		28		
MW-10	77	140	71	120	99	110	
MW-11	300	310	510	440	670	680	
MW-12	17		15		13		
MW-13	250		260	220	220	180	
MW-14	270		220		160		
MW-15	1 U		1 U		3.5		
MW-16	1.6		1 U		1.3		
MW-17	210		180		150		
MW-18	1500 F1	960	1400	1100 F1	1200 F1	940	
MW-20							
MW-21	17		15		13		
MW-22	14		5.7		9.7		
MW-23							
MW-24	370	140	290	160	310	200	
PZ-01	48		47		44		
PZ-02	75		69		67		

MD - Not detected, U - Not detected above known MDL, --- - Not analyzed, NI - Not installed at time of monitoring MW-01 through MW-16 installed during Remedial Investigation (Stearns & Wheler), F1 - MS/MSD recovery outside limits

MW-03 removed as part of TCE Soils Interim Remedial Measure (IRM) completed in September 1994. Data was collected by Stearns & Wheler prior to 07/22/94. MW-04 and MW-20 were abandoned and replaced by MW-21 and MW-22 on 01/20/97.

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-01	11/8/2001	1 U	1 U	1 U	1 U
MW-02	10/22/1996	1 U	1 U	1 U	1 U
MW-02	10/22/1997	1 U	1 U	1 U	1 U
MW-02	10/21/1998	1 U	1 U	1 U	1 U
MW-02	10/19/1999	1 U	1 U	1 U	1 U
MW-02	11/9/2000	1 U	1 U	1 U	1 U
MW-02	11/10/2001	1 U	1 U	1 U	1 U
MW-04	10/22/1996	12	1 U	1 U	1 U
MW-05	10/21/1996	10 U	10 U	10 U	10 U
MW-05	10/22/1997	10 U	10 U	10 U	10 U
MW-05	10/20/1998	10 U	10 U	10 U	10 U
MW-05	10/19/1999	10 U	10 U	10 U	10 U
MW-05	11/8/2000	5 U	5 U	5 U	5 U
MW-05	11/9/2001	5 U	5 U	5 U	5 U
MW-05	10/10/2002	5 U	5 U	5 U	5 U
MW-05	12/8/2003	5 U	5 U	5 U	5 U
MW-05	12/28/2004	2.5 U	2.7	2.5 U	2.5 U
MW-05	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-05	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/29/2007	0.5 U	2.5	0.5 U	0.5 U
MW-05	11/1/2008	1.52	1.95	0.5 U	0.5 U
MW-05	11/20/2009	1.15	2.25	0.5 U	0.5 U
MW-05	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-05	11/28/2012	2.5 U	2.5	2.5 U	2.5 U
MW-05	10/1/2013	1.3	2.5	1 U	1 U
MW-05	9/18/2014	1 U	1.9	1 U	1 U
MW-05	9/16/2015	1 U	1.9	1 U	1 U
MW-05	10/6/2016	1 U	2	1 U	1 U
MW-05	10/25/2017	0.88 J	1.8 F2	1 U	1 U
MW-05	10/4/2018	1.2	2.1	1 U	1 U
MW-05	10/22/2019	1 U 0.92 J	1.8	1 U	1 U
MW-05 MW-06	10/22/2020 1/17/1996	0.92 J	1.9 5 U	1 U 5 U	1 U
MW-06	4/10/1996		5 U	5 U	
MW-06	7/16/1996	5 U	5 U	5 U	5 U
MW-06	10/22/1996	2 U	2 U	2 U	2 U
MW-06	1/16/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1997	1 U	1 U	1 U	1 U
MW-06	10/23/1997	1 U	1 U	1 U	1 U
MW-06	4/15/1998	5 U	5 U	5 U	5 U
MW-06	10/20/1998	2 U	2 U	2 U	2 U
MW-06	4/29/1999	2 U	2 U	2 U	2 U
MW-06	10/19/1999	2 U	2 U	2 U	2 U
MW-06	4/6/2000	1 U	1 U	1 U	1 U
MW-06	11/8/2000	1 U	1 U	1 U	1 U
MW-06	7/3/2001	2 U	2 U	2 U	2 U
MW-06	11/9/2001	2 U	2 U	2 U	2 U
MW-06	10/10/2002	2 U	2 U	2 U	2 U
MW-06	12/8/2003	5 U	5 U	5 U	5 U
MW-06	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	11/29/2007	0.65	0.5 U	0.5 U	0.5 U
MW-06	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-06	11/23/2010	1 U	1 U	1 U	1 U
MW-06	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-06	11/28/2012	1.25 U	1.25 U	1.25 U	1.25 U
MW-06	10/1/2013	1 U	1 U	1 U	1 U
MW-06	9/18/2014	1U	1 U	1 U	1 U
MW-06	9/16/2015	1 U	1 U	1 U	1 U
MW-06	10/6/2016	1 U	1 U	1 U	1 U
MW-06	10/25/2017	1 U	0.21 J	1 U	1 U
MW-06	10/4/2018	1 U	1 U	1 U	1 U
MW-06	10/22/2019	1 U	1 U	1 U	1 U
MW-06	10/22/2020	1 U	1 U	1 U	1 U
MW-07	10/21/1996	1 U	1 U	1 U	1 U
MW-07	10/22/1997	1 U	1 U	1 U	1 U
MW-07	10/20/1998	1 U	1 U	1 U	1 U
MW-07	10/19/1999	1 U	1 U	1 U	1 U
MW-07	11/9/2001	1 U	1 U	1 U	1 U
MW-08	10/22/1996	1 U	1 U	1 U	1 U
MW-08	10/21/1998	1 U	1 U	1 U	1 U
MW-08	10/19/1999	1 U	1 U	1 U	1 U
MW-08	11/7/2000	1 U	1 U	1 U	1 U
MW-08	11/8/2001	1 U	1 U	1 U	1 U

Location ID	Chemical Name Sample Date	cis-1,2-Dichloroethene ug/l	Tetrachloroethene ug/l	Toluene ug/l	trans-1,2-Dichloroethen ug/l
MW-09	1/17/1996		5 U	5 U	ug/1
MW-09	4/10/1996		1 U	1 U	
MW-09	7/16/1996	1 U	1 U	1 U	1 U
MW-09	10/21/1996	1 U	1 U	1 U	1 U
MW-09	1/16/1997	5 U	5 U	5 U	5 U
MW-09	4/15/1997	2 U	2 U	2 U	2 U
MW-09	7/8/1997	5 U	5 U	5 U	5 U
MW-09	10/22/1997	5 U	5 U	5 U	5 U
MW-09		5 U	5 U	5 U	5 U
MW-09	1/29/1998 4/15/1998	5 U	5 U	5 U	5 U
MW-09	10/20/1998	2 U	2 U	2 U	2 U
		2 U	2 U	2 U	2 U
MW-09	4/29/1999				
MW-09	10/19/1999	5 U	5 U	5 U	5 U
MW-09	4/6/2000	2 U	2 U	2 U	2 U
MW-09	11/8/2000	2 U	2 U	2 U	2 U
MW-09	7/3/2001	2 U	2 U	2 U	2 U
MW-09	11/10/2001	2 U	2 U	2 U	2 U
MW-09	10/11/2002	2 U	2 U	2 U	2 U
MW-09	12/8/2003	2 U	2 U	2 U	2 U
MW-09	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
MW-09	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-09	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
MW-09	11/28/2011	1.25 U	1.25 U	1.25 U	1.25 U
MW-09		1.25 U	1.23 U	1.23 U	1.23 U
	10/1/2013				
MW-09	9/18/2014	1 U	1 U	1 U	1 U
MW-09	9/16/2015	1 U	1 U	1 U	1 U
MW-09	10/6/2016	1 U	1 U	1 U	1 U
MW-09	10/25/2017	1 U	1 U	1 U	1 U
MW-09	10/4/2018	1 U	1 U	1 U	1 U
MW-09	10/22/2019	1 U	1 U	1 U	1 U
MW-09	10/22/2020	1 U	1 U	1 U	1 U
MW-10	1/17/1996		20 U	20 U	
MW-10	4/10/1996		50 U	50 U	
MW-10	7/16/1996	50 U	50 U	50 U	50 U
MW-10	10/22/1996	50 U	50 U	50 U	50 U
MW-10	1/16/1997	100 U	100 U	100 U	100 U
MW-10	4/16/1997	100 U	100 U	100 U	100 U
MW-10	10/23/1997	50 U	50 U	50 U	50 U
MW-10	4/15/1998	50 U	50 U	50 U	50 U
MW-10	10/21/1998	50 U	50 U	50 U	50 U
MW-10	4/29/1999	25 U	25 U	25 U	25 U
MW-10	10/20/1999	25 U	25 U	25 U	25 U
MW-10	4/6/2000	20 U	20 U	20 U	20 U
MW-10	11/8/2000	20 U	20 U	20 U	20 U
MW-10	7/3/2001	20 U	20 U	20 U	20 U
MW-10	11/10/2001	20 U	20 U	20 U	20 U
MW-10	4/3/2002	20 U	20 U	20 U	20 U
MW-10	10/10/2002	20 U	20 U	20 U	20 U
MW-10	5/1/2003	20 U	20 U	20 U	20 U
MW-10	12/8/2003	20 U	20 U	20 U	20 U
MW-10	7/19/2004	10 U	10 U	10 U	10 U
MW-10	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-10	4/21/2006	10 U	10 U	10 U	10 U
MW-10	2/7/2007	10 U	10 U	10 U	10 U
MW-10	5/31/2007	10 U	10 U	10 U	10 U
MW-10	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	11/1/2008	5 U	5 U	5 U	5 U
MW-10	4/22/2009	10 U	10 U	10 U	10 U
MW-10	11/20/2009	10 U	10 U	10 U	10 U
MW-10	4/30/2010	10 U	10 U	10 U	10 U
MW-10	11/17/2010	10 U	10 U	10 U	10 U
MW-10	5/12/2011	10 U	10 U	10 U	10 U
MW-10	11/29/2011	10 U	10 U	10 U	10 U
MW-10	5/22/2012	5 U	5 U	5 U	5 U
MW-10	11/28/2012	1 U	1 U	1 U	1 U
MW-10	4/18/2013	25 U	25 U	25 U	25 U
MW-10	10/1/2013	1 U	1 U	1 U	1 U
MW-10	4/16/2014	1 U	1 U	1 U	1 U
MW-10	9/18/2014	1 U	1 U	1 U	1 U
MW-10	3/31/2015	1 U	1 U	1 U	1 U
MW-10	9/16/2015	1 U	1 U	1 U	1 U
MW-10	3/22/2016	2 U	2 U*	2 U	2 U
MW-10	10/6/2016	5 U	5 U	5 U	5 U
MW-10	4/26/2017	1 U	1 U	1 U	1 U
MW-10	10/25/2017	1 U	1 U	1 U	1 U
MW-10	4/24/2018	1 U	1 U	1 U	1 U
MW-10	10/4/2018	2 U	2 U	2 U	2 U
MW-10	5/1/2019	2 U	2 U	2 U	2 U
	40/00/0040	2.11	2 U	2 U	2 U
MW-10 MW-10	10/22/2019 4/15/2020	2 U 2 U	2 U	2 U	2 U

ocation ID	Chemical Name Sample Date	cis-1,2-Dichloroethene	Tetrachloroethene ug/l	Toluene	trans-1,2-Dichloroethene
MW-10	10/22/2020	ug/l 2 U	2 U	ug/l 2 U	ug/l 2 U
MW-10	4/20/2021	2 U	2 U	2 U	2 U
MW-11	1/17/1996		100 U	100 U	
MW-11	4/10/1996		100 U	100 U	
MW-11	7/16/1996	100 U	100 U	100 U	100 U
MW-11	10/22/1996	100 U	100 U	100 U	100 U
MW-11	1/16/1997	100 U	100 U	100 U	100 U
MW-11	4/15/1997	50 U	50 U	50 U	50 U
MW-11	10/23/1997	50 U	50 U	50 U	50 U
MW-11	4/15/1998	50 U	50 U	50 U	50 U
MW-11	10/21/1998	50 U	50 U	50 U	50 U
MW-11	4/29/1999	50 U	50 U	50 U	50 U
MW-11	10/19/1999	25 U	25 U	25 U	25 U
MW-11	4/6/2000	20 U	20 U	20 U	20 U
MW-11	11/9/2000	20 U	20 U	20 U	20 U
MW-11	7/3/2001	20 U	20 U	20 U	20 U
MW-11	11/9/2001	20 U	20 U	20 U	20 U
MW-11	4/3/2002	20 U	20 U	20 U	20 U
MW-11	10/10/2002	20 U	20 U	20 U	20 U
MW-11	5/1/2003	20 U	20 U	20 U	20 U
MW-11	12/8/2003	50 U	50 U	50 U	50 U
MW-11	7/19/2004	10 U	10 U	10 U	10 U
MW-11	4/8/2005	1.1	0.50 J	0.50 U	0.50 U
MW-11	4/21/2006	10 U	10 U	10 U	10 U
MW-11	2/7/2007	5 U	5 U	5 U	5 U
MW-11	5/31/2007	5 U	5 U	5 U	5 U
MW-11	11/29/2007	1.2	0.5 U	0.5 U	0.5 U
MW-11	5/1/2008	0.65	0.5 U	0.5 U	0.5 U
MW-11	11/1/2008	10 U	10 U	10 U	10 U
MW-11	4/22/2009	10 U	10 U	10 U	10 U
MW-11	11/20/2009	10 U	10 U	10 U	10 U
MW-11	4/30/2010	10 U	10 U	10 U	10 U
MW-11	11/17/2010	10 U	10 U	10 U	10 U
MW-11		10 U	10 U	10 U	10 U
MW-11	5/21/2011	10 U	10 U	10 U	10 U
MW-11	11/29/2011	25 U	25 U	25 U	25 U
	5/22/2012				
MW-11	11/28/2012	25 U	25 U	25 U	25 U
MW-11	4/18/2013	25 U	25 U	25 U	25 U
MW-11	10/1/2013	1.1	1 U	1 U	1 U
MW-11	4/16/2014	1 5 U	1 U 5 U	1 U 5 U	1 U 5 U
MW-11	9/18/2014		5 U	5 U	5 U
MW-11 MW-11	3/31/2015	5 U 10 U	10 U	10 U	10 U
	9/16/2015		10 U*	10 U	10 U
MW-11 MW-11	3/22/2016 10/6/2016	10 U 10 U	10 U	10 U	10 U
MW-11	4/26/2017	0.5 J	1 U	1 U	1 U
MW-11		0.33 J	1 U	1 U	1 U
MW-11	10/25/2017	1 U	1 U	1 U	1 U
MW-11	4/24/2018	8 U	8 U	8 U	8 U
	10/4/2018	8 U	8 U	8 U	8 U
MW-11 MW-11	5/1/2019				
	10/22/2019	8 U	8 U	8 U	8 U
MW-11	4/15/2020	8 U	8 U	8 U	8 U
MW-11	10/22/2020	8 U	8 U	8 U	8 U
MW-11	4/20/2021	10 U	10 U	10 U	10 U
MW-12	10/21/1996	1 U	1 U	1 U	1 U
MW-12	10/22/1997	1 U	1 U	1 U	1 U
MW-12	10/20/1998	1 U	1 U	1 U	1 U
MW-12	10/19/1999	1 U	1 U	1 U	1 U
MW-12	11/8/2000	1 U	1 U	1 U	1 U
MW-12	11/9/2001	1 U	1 U	1 U	1 U
MW-12	10/10/2002	1 U	1 U 1 U	2 1 U	1 U 1 U
MW-12 MW-12	12/8/2003	1 U			
	12/28/2004	0.50 U 0.50 U	0.50 U	0.50 U	0.50 U 0.50 U
MW-12 MW-12	11/9/2005		0.50 U	0.50 U	
MW-12 MW-12	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	5/31/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	10/1/2013	1 U	1 U	1 U	1 U
MW-12	9/18/2014	1 U	1 U	1 U	1 U
MW-12	9/16/2015	1 U	1 U	1 U	1 U
MW-12	10/6/2016	1 U	1 U	1 U	1 U
MW-12	10/25/2017	1 U	1 U	1 U	1 U
MW-12	10/4/2018	1 U	1 U	1 U	1 U
MW-12	10/22/2019	1 U	1 U	1 U	1 U
MW-12	10/22/2020	1 U	1 U	1 U	1 U
MW-13	10/24/1996	10 U	10 U	10 U	10 U
	10/23/1997	50 U	50 U	50 U	50 U
MW-13					
MW-13 MW-13	10/21/1998	25 U	25 U	25 U	25 U
MW-13			25 U 20 U 20 U	25 U 20 U 20 U	25 U 20 U 20 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethen
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-13	6/11/2002	20 U	20 U	20 U	20 U
MW-13	10/11/2002	20 U	20 U	20 U	20 U
MW-13	4/8/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-13	4/21/2006	5 U	5 U	5 U	5 U
MW-13	2/7/2007	5 U	5 U	5 U	5 U
MW-13	5/31/2007	5 U	5 U	5 U	5 U
MW-13	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	5/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	11/1/2008	NS	NS	NS	NS
MW-13	4/30/2010	5 U	5 U	5 U	5 U
MW-13	11/17/2010	5 U	5 U	5 U	5 U
MW-13	11/29/2011	5 U	5 U	5 U	5 U
MW-13	5/22/2012	5 U	5 U	5 U	5 U
MW-13	11/28/2012	5 U	5 U	5 U	5 U
MW-13	4/18/2013	5 U	5 U	5 U	5 U
MW-13	10/1/2013	1 U	1 U	1 U	1 U
MW-13	4/16/2014	1 U	1 U	1 U	1 U
MW-13	9/18/2014	4 U	4 U	4 U	4 U
MW-13	3/31/2015	4 U	4 U	4 U	4 U
MW-13	9/16/2015	4 U	4 U	4 U	4 U
MW-13	3/22/2016	4 U	4 U*	4 U	4 U
		4 U	4 U	4 U	4 U
MW-13	10/6/2016				
MW-13	4/27/2017	1 U	1 U	1 U	1 U
MW-13	10/25/2017	1 U	1 U	1 U	1 U
MW-13	4/24/2018	1 U	1 U	1 U	1 U
MW-13	10/4/2018	4 U	4 U	4 U	4 U
MW-13	10/22/2019	4 U	4 U	4 U	4 U
MW-13	4/15/2020	4 U	4 U	4 U	4 U
MW-13	10/22/2020	4 U	4 U	4 U	4 U
MW-13	4/22/2021	4 U	4 U	4 U	4 U
MW-14	1/17/1996		5 U	5 U	
MW-14	4/10/1996		5 U	5 U	
MW-14	7/16/1996	10 U	10 U	10 U	10 U
MW-14	10/22/1996	5 U	5 U	5 U	5 U
MW-14	1/16/1997	10 U	10 U	10 U	10 U
MW-14	4/16/1997	10 U	10 U	10 U	10 U
MW-14	7/8/1997	10 U	10 U	10 U	10 U
MW-14	10/23/1997	10 U	10 U	10 U	10 U
MW-14	1/29/1998	10 U	10 U	10 U	10 U
MW-14	4/15/1998	10 U	10 U	10 U	10 U
		10 U			
MW-14	10/21/1998		10 U	10 U	10 U
MW-14	4/29/1999	10 U	10 U	10 U	10 U
MW-14	10/20/1999	10 U	10 U	10 U	10 U
MW-14	4/6/2000	5 U	5 U	5 U	5 U
MW-14	11/8/2000	5 U	5 U	5 U	5 U
MW-14	7/3/2001	5 U	5 U	5 U	5 U
MW-14	11/8/2001	5 U	5 U	5 U	5 U
MW-14	10/11/2002	5 U	5 U	5 U	5 U
MW-14	5/1/2003	5 U	5 U	5 U	5 U
MW-14	12/8/2003	10 U	10 U	10 U	10 U
MW-14	12/28/2004	5.0 U	5.0 U	5.0 U	5.0 U
MW-14	11/9/2005	5.00 U	5.00 U	5.00 U	5.00 U
MW-14	1/2/2007	5 U	5 U	5 U	5 U
MW-14	11/29/2007	0.94	0.5 U	0.5 U	0.5 U
MW-14	11/1/2008	1	0.5 U	0.5 U	0.5 U
MW-14	11/20/2009	12.5 U	12.5 U	12.5 U	12.5 U
MW-14	11/17/2010	10 U	10 U	10 U	10 U
MW-14	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-14		2.5 U		2.5 U	2.5 U
	11/28/2012		2.5 U		
MW-14	10/1/2013	200	0.49 J	1 U	0.93 J
MW-14	9/18/2014	4 U	4 U	4 U	4 U
MW-14	9/16/2015	4 U	4 U	4 U	4 U
MW-14	10/6/2016	4 U	4 U	4 U	4 U
MW-14	10/25/2017	0.48 J	1 U	1 U	1 U
MW-14	10/4/2018	5 U	5 U	5 U	5 U
MW-14	10/22/2019	5 U	5 U	5 U	5 U
MW-14	10/22/2020	5 U	5 U	5 U	5 U
MW-15	10/22/1996	1 U	1 U	1 U	1 U
MW-15	10/22/1997	1 U	1 U	1 U	1 U
MW-15	10/22/1997	1 U	1 U	1 U	1 U
MW-15	10/19/1999	1 U	1 U	1 U	1 U
MW-15	11/9/2000	1 U	1 U	1 U	1 U
MW-15	11/8/2001	1 U	1 U	1 U	1 U
MW-15	10/11/2002	1 U	1 U	1 U	1 U
MW-15	12/8/2003	1 U	1 U	1 U	1 U
MW-15	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-15		2.19	0.50 U	0.50 U	0.50 U
	11/9/2005				
MW-15	1/2/2007	1.8	0.5 U	0.5 U	0.5 U
MW-15	11/29/2007	1.7	0.5 U	0.5 U	0.5 U
MW-15	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/20/2009	0.71	0.5 U	0.5 U	0.5 U
MW-15	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
		0.5 U	0.5 U		0.5 U
	11/28/2012			0.5 U	
MW-15	10/1/2012	4.11			
MW-15 MW-15 MW-15	10/1/2013 9/18/2014	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-15	9/16/2015	1 U	1 U	1 U	1 U
MW-15	10/6/2016	1 U	1 U	1 U	1 U
MW-15	10/25/2017	1 U	1 U	1 U	1 U
MW-15	10/4/2018	1 U	1 U	1 U	1 U
MW-15	10/22/2019	1 U	1 U	1 U	1 U
MW-15 MW-16	10/22/2020 10/22/1996	1 U 1 U	1 U 1 U	1 U	1 U 1 U
MW-16	10/22/1997	1 U	1 U	1 U	1 U
MW-16	10/21/1998	1 U	1 U	1 U	1 U
MW-16			1 U	1 U	1 U
	10/19/1999	1 U			
MW-16	11/9/2000	1 U	1 U	1 U	1 U
MW-16	11/8/2001	1 U	1 U	1 U	1 U
MW-16	10/11/2002	1 U	1 U	1 U	1 U
MW-16	12/8/2003	1 U	1 U	1 U	1 U
MW-16	12/28/2004	0.50 U	0.50 U	0.50 U	0.50 U
MW-16	11/9/2005	0.50 U	0.50 U	0.50 U	0.50 U
MW-16	1/2/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/17/2010	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/29/2011	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	11/28/2012	0.5 U	0.5 U	0.5 U	0.5 U
MW-16	10/1/2013	1 U	1 U	1 U	1 U
MW-16		1 U	1 U	1 U	1 U
	9/18/2014				
MW-16	9/16/2015	1 U	1 U	1 U	1 U
MW-16	10/6/2016	1 U	1 U	1 U	1 U
MW-16	10/25/0217	1 U	1 U	1 U	1 U
MW-16	10/4/2018	1 U	1 U	1 U	1 U
MW-16	10/22/2019	1 U	1 U	1 U	1 U
MW-16	10/22/2020	1 U	1 U	1 U	1 U
MW-17	1/17/1996		5 U	5 U	
MW-17	4/10/1996		20	5 U	
MW-17	7/16/1996	10 U	10 U	10 U	10 U
MW-17	10/22/1996	7	12	5 U	5 U
MW-17	1/16/1997	10 U	22	10 U	10 U
MW-17	4/15/1997	10 U	15	10 U	10 U
MW-17	7/8/1997	10 U	18	10 U	10 U
MW-17	1/29/1998	10 U	12	10 U	10 U
MW-17	4/15/1998	50 U	50 U	50 U	50 U
MW-17	10/20/1998	10 U	17	10 U	10 U
MW-17	4/29/1999	10 U	23	10 U	10 U
MW-17		10 U	10 U	10 U	10 U
MW-17	10/19/1999	10 U	10 U	10 U	10 U
	4/6/2000				
MW-17	11/9/2000	15	7	5 U	5 U
MW-17	7/3/2001	10	7	5 U	5 U
MW-17	11/10/2001	10	8	5 U	5 U
MW-17	10/11/2002	22	5 U	5 U	5 U
MW-17	12/8/2003	10 U	10 U	10 U	10 U
MW-17	12/28/2004	5.1	11	5.0 U	5.0 U
MW-17	11/9/2005	17.9	9.5	2.50 U	2.50 U
MW-17	1/2/2007	9.45	10.2	2.5 U	2.5 U
MW-17	11/29/2007	22	6.9	0.5 U	0.5 U
MW-17	11/1/2008	21.7	5.06	0.5 U	0.5 U
MW-17	11/20/2009	11.6	6.1	5 U	5 U
MW-17	11/17/2010	2.4	6.18	1.25 U	1.25 U
MW-17	11/29/2011	20.2	19.7	5 U	5 U
MW-17	11/28/2011	10.7	5.25	2.5 U	2.5 U
MW-17	10/1/2013	31	8.1	1 U	1 U
MW-17	9/18/2014	24	4.93	5 U	5 U
MW-17	9/16/2015	16	5.9	1 U	1 U
MW-17	10/6/2016	18	5.2	5 U	5 U
MW-17	10/25/2017	29	4.4	1 U	0.68 J
MW-17	10/4/2018	23	4.1 J	5 U	5 U
MW-17	10/22/2019	29	4.3 J	5 U	5 U
MW-17	10/22/2020	25	4.3 J	5 U	5 U

5/29/1996 10/22/1996 1/16/1997 4/16/1997	ug/l 50 U 81	ug/l 50 U	ug/l	ug/l
10/22/1996 1/16/1997		50.11		
1/16/1997	04	30 0	50 U	50 U
	91	50 U	50 U	50 U
4/16/1997	100 U	100 U	100 U	100 U
7/10/133/	10 U	10 U	10 U	10 U
7/8/1997	66	50 U	50 U	50 U
10/23/1997	100 U	100 U	100 U	100 U
1/29/1998	50 U	50 U	50 U	50 U
4/16/1998	50 U	50 U	50 U	50 U
10/21/1998	160	100 U	100 U	100 U
4/29/1999	37	25 U	25 U	25 U
10/19/1999	100 U	100 U	100 U	100 U
4/6/2000	14	10 U	10 U	10 U
11/9/2000	100	50 U	50 U	50 U
7/3/2001	50 U	50 U	50 U	50 U
	120	50 U	50 U	50 U
	10 U	10 U	10 U	10 U
				50 U
				50 U
				100 U
				50 U
				0.86
				25 U
				12.5 U
				12.5 U
				0.86
				0.81
				25 U
				25 U
				0.9 J
				1 U
				1 U
				10 U
				10 U
				25 U
				20 U
				5U
10/25/2017				6.1
4/24/2018	340			20 U
10/4/2018	510	20 U	20 U	20 U
5/1/2019	290	20 U	20 U	20 U
10/22/2019	440	20 U	20 U	20 U
4/15/2020	330	20 U	20 U	20 U
10/22/2020	470	20 U	20 U	20 U
	4/16/1998 10/21/1998 4/29/1999 10/19/1999 4/6/2000 11/9/2000 7/3/2001 11/10/2001 4/4/2002 10/15/2002 5/1/2003 12/8/2003 7/19/2004 4/8/2005 4/21/2006 2/7/2007 5/31/2007 11/29/2007 5/31/2008 11/1/2008 04/22/2009 11/20/2009 04/30/2010 11/17/2010 5/21/2011 11/29/2011 5/22/2012 11/28/2012 4/18/2013 10/1/2013 4/16/2014 9/18/2014 3/31/2015 9/16/2015 3/22/2016 10/6/2016 4/27/2017 10/25/2017 4/24/2018 5/1/2019 10/22/2019 4/15/2020	4/16/1998 50 U 10/21/1998 160 4/29/1999 37 10/19/1999 100 U 4/6/2000 14 11/9/2000 100 7/3/2001 50 U 11/10/2001 120 4/4/2002 10 U 10/15/2003 130 5/1/2003 100 U 7/19/2004 140 4/8/2005 120 4/21/2006 127 2/7/2007 68.5 5/31/2007 136 11/29/2007 190 5/1/2008 108 11/1/2008 148 04/22/2009 79.5 11/20/2009 125 04/30/2010 38.5 11/17/2010 99 5/21/2011 73.5 11/29/2011 109 5/22/2012 74 11/28/2013 70.5 10/1/2013 210 4/16/2014 76 9/16/2015 430 F1 3/22/2016 360 10/6/2016 500	4/16/1998 50 U 50 U 10/21/1998 160 100 U 4/29/1999 37 25 U 10/19/1999 100 U 100 U 4/6/2000 14 10 U 11/9/2000 100 50 U 50 U 11/19/2001 50 U 50 U 11/10/2001 120 50 U 10 U 10 U 10/15/2002 310 50 U 50 U 50 U 5/12/2003 130 50 U 50 U 12/8/2003 100 U 100 U 7/19/2004 140 50 U 5/31/2006 127 25 U 27/7/2007 68.5 12.5 U 27/7/2007 136 12.5 U 11/29/2007 136 12.5 U 11/29/2007 190 0.51 11/29/2007 190 0.51 11/19/2008 148 25 U 04/30/2010 38.5 25 U 04/30/2010 38.5 25 U 01/17/2010 99 25 U 5/21/2011 73.5 25 U 11/29/2011 73.5 25 U 11/29/2011 73.5 25 U 11/28/2012 144 25 U 4/18/2013 70.5 25 U 10/12013 210 0.42 J 4/16/2014 76 1 U 9/18/2014 76 1 U 9/18/2015 360 25 U* 10/4/2016 500 20 U 4/27/2017 180 5 U 5/12/2017 180 5 U 5/12/2017 180 5 U 5/12/2018 340 20 U * 10/4/2018 510 20 U 5/12/2019 290 20 U 4/15/2020 330 20 U 10/22/2020 470 20 U 10/22/2020	4/16/1998 160

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-20	5/24/1996	46	1 U	1 U	1 U
MW-21	1/21/1997	650	100 U	100 U	100 U
MW-21	4/16/1997	630	50 U	50 U	50 U
MW-21	7/8/1997	770	50 U	50 U	50 U
MW-21	10/23/1997	800	50 U	50 U	50 U
MW-21	1/29/1998	350	10 U	10 U	10 U
MW-21	4/16/1998	1400	50 U	50 U	50 U
MW-21	10/21/1998	340	50 U	50 U	50 U
MW-21	4/29/1999	2100	100 U	100 U	100 U
MW-21	10/19/1999	670	20 U	20 U	20 U
MW-21	4/6/2000	140	5 U	5 U	5 U
MW-21	11/7/2000	220	5 U	5 U	5 U
MW-21	7/3/2001	130	5 U	5 U	5 U
MW-21	11/10/2001	240	5 U	5 U	5 U
MW-21	12/8/2003	32	1 U	1 U	1 U
MW-21	12/28/2004	2.8	0.50 U	0.50 U	0.50 U
MW-21	11/9/2005	20	0.50 U	0.50 U	0.50 U
MW-21	1/2/2007	15.4	0.5 U	0.5 U	0.5 U
MW-21	11/29/2007	25	0.5 U	0.5 U	0.5 U
MW-21	11/1/2008	45.2	0.5 U	0.5 U	0.5 U
MW-21	11/20/2009	40.7	1 U	1 U	1 U
MW-21	11/17/2010	22.6	1 U	1 U	1 U
MW-21	11/29/2011	18.8	0.5 U	0.5 U	0.5 U
MW-21	11/28/2012	71	2.5 U	2.5 U	2.5 U
MW-21	10/1/2013	28	1 U	1 U	1 U
MW-21	9/18/2014	30	1 U	1 U	1 U
MW-21	9/16/2015	40	1 U	1 U	1 U
MW-21	10/6/2016	48	1 U	1 U	1 U
MW-21	10/25/2017	48	1 U	1 U	1.3
MW-21	10/4/2018	43	1 U	1 U	1 U
MW-21	10/22/2019	38	1 U 1 U	1 U 1 U	1 U 1 U
MW-21 MW-22	10/22/2020	29 5	1 U	1 U	1 U
MW-22	1/21/1997 4/16/1997	4	1 U	1 U	1 U
MW-22	7/8/1997	9	1 U	1 U	1 U
MW-22	10/23/1997	22	1 U	1 U	1 U
MW-22	1/29/1998	11	1 U	1 U	1 U
MW-22	4/16/1998	22	1 U	1 U	1 U
MW-22	10/21/1998	35	1 U	1 U	1 U
MW-22	4/29/1999	24	1 U	1 U	1 U
MW-22	10/19/1999	28	1 U	1 U	1 U
MW-22	4/6/2000	26	1 U	1 U	1 U
MW-22	11/9/2000	29	1 U	1 U	1 U
MW-22	7/3/2001	37	1 U	1 U	1 U
MW-22	11/10/2001	36	1 U	1 U	1 U
MW-22	10/11/2002	51	1 U	1 U	1 U
MW-22	12/8/2003	52	2 U	2 U	2 U
MW-22	12/28/2004	47	1.0 U	1.0 U	1.1
MW-22	11/9/2005	56.3	1.00 U	1.00 U	1.00 U
MW-22	1/2/2007	38.4	1 U	1 U	1 U
MW-22	11/29/2007	37	0.5 U	0.5 U	0.77
MW-22	11/1/2008	31.2	0.5 U	0.5 U	0.92
MW-22	11/20/2009	30.6	1 U	1 U	1 U
MW-22	11/17/2010	30.5	1 U	1 U	1 U
MW-22	11/29/2011	33.4	0.5 U	0.5 U	1.16
MW-22	11/28/2012	37.2	1 U	1 U	1.24
MW-22	10/1/2013	48	1 U	1 U	2.4
MW-22	9/18/2014	53	1 U	1 U	5
MW-22	9/16/2015	54	1 U	1 U	5.2
MW-22	10/6/2016	30	1 U	1 U	2.5
MW-22	10/25/2017	18	1 U	1 U	1.1
MW-22	10/4/2018	19	1 U	1 U	1.5
MW-22	10/22/2019	5.6	1 U	1 U	1 U
MW-22	10/22/2020	7	1 U	1 U	0.9 J
MW-23	4/15/1997	1 U	1 U	1 U	1 U
MW-23	7/8/1997	1 U	1 U	1 U	1 U
MW-23	10/22/1997	1 U	1 U	1 U	1 U
MW-23	1/29/1998	1 U	1 U	1 U	1 U
		1 U	1 U	1 U	1 U
MW-23	10/21/1998				
	10/21/1998 10/19/1999 11/7/2000	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
MW-24	11/9/1998	2600	200 U	200 U	200 U
MW-24	4/29/1999	1600	100 U	100 U	100 U
MW-24	10/19/1999	3000	100 U	100 U	100 U
MW-24	4/6/2000	250	20 U	20 U	20 U
MW-24	11/7/2000	1200	50 U	50 U	50 U
MW-24	7/3/2001	400	50 U	50 U	50 U
MW-24	11/10/2001	2100	50 U	50 U	50 U
MW-24	6/11/2002	680	50 U	50 U	50 U
MW-24	5/1/2003	410	10 U	10 U	10 U
MW-24	12/8/2003	81	10 U	10 U	10 U
MW-24	7/19/2004	680	10 U	10 U	10 U
MW-24	12/28/2004	69	5.0 U	5.0 U	5.0 U
MW-24	4/8/2005	44	2.0 U	2.0 U	2.0 U
MW-24	11/9/2005	75.6	2.50 U	2.50 U	2.50 U
MW-24		180	2.5 U	2.50 U	
	4/21/2006				2.5 U
MW-24	1/2/2007	5.15	2.5 U	2.5 U	2.5 U
MW-24	5/31/2007	45.7	2.5 U	2.5 U	2.5 U
MW-24	11/29/2007	42	0.5 U	0.5 U	0.5 U
MW-24	5/1/2008	8.21	0.5 U	0.5 U	0.5 U
MW-24	11/1/2008	51.9	5 U	5 U	5 U
MW-24	04/22/2009	8.1	5 U	5 U	5 U
MW-24	04/30/2010	11	2.5 U	2.5 U	2.5 U
MW-24	11/17/2010	212	2.5 U	2.5 U	2.5 U
MW-24	5/21/2011	492	5 U	5 U	5 U
MW-24	11/29/2011	43.3	5 U	5 U	5 U
MW-24	5/22/2012	36.9	5 U	5 U	5 U
MW-24	11/28/2012	111	25 U	25 U	25 U
MW-24	4/18/2013	43	25 U	25 U	25 U
MW-24	10/1/2013	150	1 U	1 U	1.9
MW-24	4/16/2014	89	1 U	1 U	1.2
MW-24	9/18/2014	110	5 U	5 U	5 U
MW-24	3/31/2015	14	5 U	5 U	5 U
MW-24	9/16/2015	150	5 U	5 U	5 U
MW-24	3/22/2016	34	5 U*	5 U	5 U
MW-24	10/6/2016	65	5 U	5 U	5 U
MW-24	4/26/2017	31	1 U	1 U	1U
MW-24	10/25/2017	60	1 U	1 U	1.7
MW-24	4/24/2018	18	5 U	5 U	5 U
MW-24	10/4/2018	60	5 U	5 U	5 U
MW-24	5/1/2019	6.2	5 U	5 U	5 U
MW-24	10/22/2019	63	5 U	5 U	5 U
MW-24	4/15/2020	9	5 U	5 U	5 U
MW-24	10/20/2020	59	5 U	5 U	5 U
MW-24	4/20/2021	18	5 U	5 U	5 U
PZ-01	10/21/1996	1 U	1 U	1 U	1 U
PZ-01	10/23/1997	1 U	1 U	1 U	1 U
PZ-01	10/20/1998	2 U	2 U	2 U	2 U
PZ-01	10/19/1999	10 U	10 U	10 U	10 U
PZ-01	11/7/2000	1 U	1 U	1 U	1 U
PZ-01	11/9/2000	2 U	2 U	2 U	2 U
		2 U			2 U
PZ-01	10/10/2002		2 U	2 U	
PZ-01	12/8/2003	5 U	5 U	5 U	5 U
PZ-01	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
PZ-01	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/29/2007	0.5 U	0.5 U	0.5 U	0.5 U
PZ-01	11/1/2008	0.5 U	0.5 U	0.5 U	0.5 U
PZ-01	11/20/2009	0.5 U	0.5 U	0.5 U	0.5 U
PZ-01	11/17/2010	1 U	1 U	1 U	1 U
PZ-01	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
PZ-01	10/1/2013	1 U	1 U	1 U	1 U
PZ-01	9/18/2014	1 U	1 U	1 U	1 U
PZ-01	9/16/2015	1 U	1 U	1 U	1 U
PZ-01	10/6/0216	1 U	1 U	1 U	1 U
PZ-01 PZ-01	10/0/0210	1 U	1 U	1 U	1 U
PZ-01 PZ-01	10/4/2018 10/22/2019	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U

	Chemical Name	cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene
Location ID	Sample Date	ug/l	ug/l	ug/l	ug/l
PZ-02	10/21/1996	10 U	10 U	10 U	10 U
PZ-02	10/23/1997	10 U	10 U	10 U	10 U
PZ-02	10/20/1998	10 U	10 U	10 U	10 U
PZ-02	10/19/1999	1 U	1 U	1 U	1 U
PZ-02	11/9/2000	5 U	5 U	5 U	5 U
PZ-02	11/10/2001	5 U	5 U	5 U	5 U
PZ-02	10/11/2002	5 U	5 U	5 U	5 U
PZ-02	12/8/2003	5 U	5 U	5 U	5 U
PZ-02	12/28/2004	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/9/2005	2.50 U	2.50 U	2.50 U	2.50 U
PZ-02	1/2/2007	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/29/2007	1.1	0.51	0.5 U	0.5 U
PZ-02	11/1/2008	1	0.5 U	0.5 U	0.5 U
PZ-02	11/20/2009	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/17/2010	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/29/2011	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	11/28/2012	2.5 U	2.5 U	2.5 U	2.5 U
PZ-02	10//1/2013	1 U	0.57 J	1 U	1 U
PZ-02	9/18/2014	1 U	0.47 J	1 U	1 U
PZ-02	9/16/2015	1 U	0.49 J	1 U	1 U
PZ-02	10/6/2016	1 U	0.48 J	1 U	1 U
PZ-02	10/25/2017	0.51 J	0.50 J	1 U	1 U
PZ-02	10/4/2018	1 U	0.46 J	1 U	1 U
PZ-02	10/22/2019	1 U	0.51 J	1 U	1 U
PZ-02	10/22/2020	1 U	0.49 J	1 U	1 U

Notes: J - Estimated, U - Not detected, NS - Not sampled, --- - Not Analyzed, Detects in BOLD, * - LCS or LCSD outside limits MW-04, MW-20 were abandoned and replaced by MW-21, MW-22 on 1/20/97.

ATTACHMENT A EFFLUENT MONITORING LABORATORY REPORTS

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-182835-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

The

Authorized for release by: 4/14/2021 9:04:58 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

6

4

5

7

9

10

12

4 /

41

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Job ID: 480-182835-1

Project/Site: Former Accurate Die Cast

Qualifiers

GC/MS VOA

Qualifier Description

*- LCS and/or LCSD is outside acceptance limits, low biased.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Le

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

4/14/2021

Page 3 of 22

Í

3

Δ

Ę

7

8

40

11

10

14

15

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-182835-1

Job ID: 480-182835-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-182835-1

Comments

No additional comments.

Receipt

The samples were received on 4/6/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: BETWEEN CARBONS 040521 (480-182835-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

Б

6

1

a

10

1 2

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-182835-1

Lab Sample ID: 480-182835-1

Client San	ple ID: EFFLUENT 040521			Lab Sample
Analyte	Result Q	Qualifier RL	MDL Unit	Dil Fac D Method

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	732	10.0	4.0 mg/L	1	SM2540 C	Total/NA

Client Sample ID: BETWEEN CARBONS 040521

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	7.4	1.0	0.81 ug/L		8260C	Total/NA
Trichloroethene - DL	150	4.0	1.8 ug/L	4	8260C	Total/NA

Client Sample ID: EFFLUENT 040521

Lab Sample ID: 480-182835-3

Lab Sample ID: 480-182835-2

No Detections.

11

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-182835-1

Client Sample ID: EFFLUENT 040521

Date Collected: 04/05/21 07:00 Date Received: 04/06/21 08:00 Lab Sample ID: 480-182835-1

Matrix: Water

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	732		10.0	4.0	mg/L			04/07/21 15:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			04/06/21 19:30	1

Client Sample ID: BETWEEN CARBONS 040521

Date Collected: 04/05/21 07:00

Date Received: 04/06/21 08:00

Lab Sample	ID: 480-182835-2
------------	------------------

Matrix: Water

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/06/21 23:17	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/06/21 23:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/06/21 23:17	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/06/21 23:17	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/06/21 23:17	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/06/21 23:17	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/06/21 23:17	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/06/21 23:17	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			04/06/21 23:17	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/06/21 23:17	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/06/21 23:17	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/06/21 23:17	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/06/21 23:17	1
1,4-Dichlorobenzene	ND	1.0		ug/L			04/06/21 23:17	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/06/21 23:17	1
2-Hexanone	ND	5.0	1.2	ug/L			04/06/21 23:17	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/06/21 23:17	1
Acetone	ND	10	3.0	ug/L			04/06/21 23:17	1
Benzene	ND	1.0	0.41	ug/L			04/06/21 23:17	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/06/21 23:17	1
Bromoform	ND	1.0	0.26	ug/L			04/06/21 23:17	1
Bromomethane	ND	1.0	0.69	ug/L			04/06/21 23:17	1
Carbon disulfide	ND	1.0	0.19	ug/L			04/06/21 23:17	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			04/06/21 23:17	1
Chlorobenzene	ND	1.0	0.75	ug/L			04/06/21 23:17	1
Chloroethane	ND	1.0	0.32	ug/L			04/06/21 23:17	1
Chloroform	ND	1.0	0.34	ug/L			04/06/21 23:17	1
Chloromethane	ND	1.0	0.35	ug/L			04/06/21 23:17	1
cis-1,2-Dichloroethene	7.4	1.0	0.81	ug/L			04/06/21 23:17	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			04/06/21 23:17	1
Cyclohexane	ND	1.0	0.18	ug/L			04/06/21 23:17	1
Dibromochloromethane	ND	1.0	0.32	ug/L			04/06/21 23:17	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			04/06/21 23:17	1
Ethylbenzene	ND	1.0	0.74	ug/L			04/06/21 23:17	1
Isopropylbenzene	ND	1.0	0.79	ug/L			04/06/21 23:17	1
Methyl acetate	ND	2.5	1.3	ug/L			04/06/21 23:17	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			04/06/21 23:17	1
Methylcyclohexane	ND	1.0	0.16	ug/L			04/06/21 23:17	1
Methylene Chloride	ND	1.0	0.44	ug/L			04/06/21 23:17	1
Styrene	ND	1.0		ug/L			04/06/21 23:17	1

Eurofins TestAmerica, Buffalo

Page 6 of 22 4/14/2021

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-182835-2

Matrix: Water

Job ID: 480-182835-1

Client Sample ID: BETWEEN CARBONS 040521

Date Collected: 04/05/21 07:00 Date Received: 04/06/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene		1.0	0.36	ug/L			04/06/21 23:17	1
Toluene	ND	1.0	0.51	ug/L			04/06/21 23:17	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			04/06/21 23:17	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			04/06/21 23:17	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			04/06/21 23:17	1
Vinyl chloride	ND	1.0	0.90	ug/L			04/06/21 23:17	1
Xylenes, Total	ND	2.0	0.66	ug/L			04/06/21 23:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	77 - 120		04/06/21 23:17	1
4-Bromofluorobenzene (Surr)	111	73 - 120		04/06/21 23:17	1
Dibromofluoromethane (Surr)	110	75 - 123		04/06/21 23:17	1
Toluene-d8 (Surr)	108	80 - 120		04/06/21 23:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	150		4.0	1.8	ug/L			04/07/21 15:20	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120			-		04/07/21 15:20	4
4-Bromofluorobenzene (Surr)	107		73 - 120					04/07/21 15:20	4
Dibromofluoromethane (Surr)	111		75 - 123					04/07/21 15:20	4
Toluene-d8 (Surr)	109		80 - 120					04/07/21 15:20	4

Client Sample ID: EFFLUENT 040521

Date Collected: 04/05/21 07:00

ab Sample ID: 480-182835-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/06/21 23:41	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/06/21 23:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/06/21 23:41	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/06/21 23:41	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/06/21 23:41	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/06/21 23:41	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/06/21 23:41	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/06/21 23:41	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/06/21 23:41	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/06/21 23:41	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/06/21 23:41	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/06/21 23:41	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/06/21 23:41	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/06/21 23:41	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/06/21 23:41	1
2-Hexanone	ND		5.0	1.2	ug/L			04/06/21 23:41	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/06/21 23:41	1
Acetone	ND		10	3.0	ug/L			04/06/21 23:41	1
Benzene	ND		1.0	0.41	ug/L			04/06/21 23:41	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/06/21 23:41	1
Bromoform	ND		1.0	0.26	ug/L			04/06/21 23:41	1

Eurofins TestAmerica, Buffalo

Page 7 of 22 4/14/2021

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 040521

Date Collected: 04/05/21 07:00 Date Received: 04/06/21 08:00

Lab Sample ID: 480-182835-3

Matrix: Water

Job ID: 480-182835-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND ND	1.0	0.69	ug/L			04/06/21 23:41	1
Carbon disulfide	ND	1.0	0.19	ug/L			04/06/21 23:41	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			04/06/21 23:41	1
Chlorobenzene	ND	1.0	0.75	ug/L			04/06/21 23:41	1
Chloroethane	ND	1.0	0.32	ug/L			04/06/21 23:41	1
Chloroform	ND	1.0	0.34	ug/L			04/06/21 23:41	1
Chloromethane	ND	1.0	0.35	ug/L			04/06/21 23:41	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			04/06/21 23:41	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			04/06/21 23:41	1
Cyclohexane	ND	1.0	0.18	ug/L			04/06/21 23:41	1
Dibromochloromethane	ND	1.0	0.32	ug/L			04/06/21 23:41	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			04/06/21 23:41	1
Ethylbenzene	ND	1.0	0.74	ug/L			04/06/21 23:41	1
Isopropylbenzene	ND	1.0	0.79	ug/L			04/06/21 23:41	1
Methyl acetate	ND	2.5	1.3	ug/L			04/06/21 23:41	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			04/06/21 23:41	1
Methylcyclohexane	ND	1.0	0.16	ug/L			04/06/21 23:41	1
Methylene Chloride	ND	1.0	0.44	ug/L			04/06/21 23:41	1
Styrene	ND	1.0	0.73	ug/L			04/06/21 23:41	1
Tetrachloroethene	ND	1.0	0.36	ug/L			04/06/21 23:41	1
Toluene	ND	1.0	0.51	ug/L			04/06/21 23:41	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			04/06/21 23:41	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			04/06/21 23:41	1
Trichloroethene	ND	1.0	0.46	ug/L			04/06/21 23:41	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			04/06/21 23:41	1
Vinyl chloride	ND	1.0	0.90	ug/L			04/06/21 23:41	1
Xylenes, Total	ND	2.0	0.66	ug/L			04/06/21 23:41	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	77 - 120			_		04/06/21 23:41	1
4-Bromofluorobenzene (Surr)	110	73 - 120					04/06/21 23:41	1
Dibromofluoromethane (Surr)	107	75 - 123					04/06/21 23:41	1
Toluene-d8 (Surr)	109	80 - 120					04/06/21 23:41	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-182835-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-182835-2	BETWEEN CARBONS 040521	110	111	110	108
480-182835-2 - DL	BETWEEN CARBONS 040521	107	107	111	109
480-182835-3	EFFLUENT 040521	106	110	107	109
LCS 480-575238/6	Lab Control Sample	107	107	107	108
LCS 480-575316/32	Lab Control Sample	102	104	102	104
MB 480-575238/8	Method Blank	113	115	119	110
MB 480-575316/8	Method Blank	108	116	107	112

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-182835-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-575238/8

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/06/21 22:52	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/06/21 22:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/06/21 22:52	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/06/21 22:52	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/06/21 22:52	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/06/21 22:52	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/06/21 22:52	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/06/21 22:52	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/06/21 22:52	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/06/21 22:52	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/06/21 22:52	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/06/21 22:52	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/06/21 22:52	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/06/21 22:52	
2-Butanone (MEK)	ND		10		ug/L			04/06/21 22:52	
2-Hexanone	ND		5.0		ug/L			04/06/21 22:52	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	-			04/06/21 22:52	
Acetone	ND		10		ug/L			04/06/21 22:52	
Benzene	ND		1.0		ug/L			04/06/21 22:52	
Bromodichloromethane	ND		1.0		-			04/06/21 22:52	
Bromoform	ND		1.0		ug/L			04/06/21 22:52	
Bromomethane	ND ND		1.0		ug/L			04/06/21 22:52	
Carbon disulfide	ND		1.0		ug/L			04/06/21 22:52	
Carbon tetrachloride	ND		1.0		ug/L			04/06/21 22:52	
Chlorobenzene	ND ND		1.0		ug/L			04/06/21 22:52	
Chloroethane	ND		1.0		ug/L			04/06/21 22:52	
Chloroform	ND		1.0		ug/L			04/06/21 22:52	
								04/06/21 22:52	
Chloromethane	ND		1.0		ug/L				
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/06/21 22:52	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/06/21 22:52	
Cyclohexane	ND		1.0		ug/L			04/06/21 22:52	
Dibromochloromethane	ND		1.0		ug/L			04/06/21 22:52	
Dichlorodifluoromethane	ND		1.0		ug/L			04/06/21 22:52	
Ethylbenzene 	ND		1.0		ug/L			04/06/21 22:52	
Isopropylbenzene	ND		1.0		ug/L			04/06/21 22:52	
Methyl acetate	ND		2.5		ug/L			04/06/21 22:52	
Methyl tert-butyl ether	ND		1.0		ug/L			04/06/21 22:52	
Methylcyclohexane	ND		1.0	0.16	ug/L			04/06/21 22:52	
Methylene Chloride	ND		1.0		ug/L			04/06/21 22:52	
Styrene	ND		1.0		ug/L			04/06/21 22:52	
Tetrachloroethene	ND		1.0	0.36	ug/L			04/06/21 22:52	
Toluene	ND		1.0	0.51	ug/L			04/06/21 22:52	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/06/21 22:52	
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/06/21 22:52	
Trichloroethene	ND		1.0	0.46	ug/L			04/06/21 22:52	
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/06/21 22:52	
Vinyl chloride	ND		1.0	0.90	ug/L			04/06/21 22:52	
Xylenes, Total	ND		2.0		ug/L			04/06/21 22:52	

Eurofins TestAmerica, Buffalo

Page 10 of 22

4/14/2021

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-182835-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-575238/8

Matrix: Water

Analysis Batch: 575238

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 113 77 - 120 04/06/21 22:52 73 - 120 4-Bromofluorobenzene (Surr) 115 04/06/21 22:52 75 - 123 04/06/21 22:52 Dibromofluoromethane (Surr) 119 Toluene-d8 (Surr) 110 80 - 120 04/06/21 22:52

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-575238/6 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 575238

Analyse Adoes Result (Qualifier) Unit. 0 Ne. Limits 1,1,1-Trichirocultame 250 287 ugl. 100 73-128 1,1,2-Trichirocultame 250 267 ugl. 103 16-128 1,1,2-Trichirocultame 250 287 ugl. 110 76-122 1,1-Dichilocultame 250 287 ugl. 100 76-122 1,1-Dichilocultame 250 285 ugl. 100 76-122 1,1-Dichilocultame 250 27.1 ugl. 100 76-122 1,2-Dichilocultame 250 27.1 ugl. 101 78-129 1,2-Dichilocultame 250 27.7 ugl. 111 77-120 1,2-Dichilocultame 250 27.7 ugl. 111 77-120 1,2-Dichilocultame 250 27.7 ugl. 111 77-120 1,2-Dichilocultame 250 28.5 ugl. 111 77-120 1,2-Dichilocultame	•	Spike	LCS	LCS				%Rec.	
1,1,2-Tetrachioroethane 25.0 27.1 ug/L 10.8 76.120 1,1,2-Tichloroethane 25.0 27.4 ug/L 10.8 1.48 1,1,2-Tichloroethane 25.0 27.4 ug/L 110 76.122 1,1-Dichloroethane 25.0 25.5 ug/L 10.7 77.120 1,1-Dichloroethane 25.0 27.1 ug/L 10.8 97.122 1,2-Dibromoethane 25.0 27.1 ug/L 10.8 97.122 1,2-Dibromoethane 25.0 27.9 ug/L 111 77.120 1,2-Dibromoethane 25.0 27.6 ug/L 110 00.124 1,2-Dichloroberane 25.0 27.6 ug/L 111 77.120 1,2-Dichloroberane 25.0 28.5 ug/L 111 77.120 1,2-Dichloroberane 25.0 28.5 ug/L 117 75.140 1,2-Dichloroberane 25.0 28.0 ug/L 117 75.140 1,3-Dichloroberane <th>Analyte</th> <th>Added</th> <th>Result</th> <th>Qualifier</th> <th>Unit</th> <th>D</th> <th>%Rec</th> <th>Limits</th> <th></th>	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloro-1,2,2-triflucroethan 25.0 25.7 ugl. 10.3 61.148 1,1-Trichloroethane 25.0 27.4 ugl. 10.7 77.120 1,1-Dichloroethane 25.0 25.5 ugl. 10.7 77.120 1,2-Dichloroethane 25.0 25.5 ugl. 10.8 79.122 1,2-Dichrome-Schloroppane 25.0 27.1 ugl. 10.8 79.122 1,2-Dichrome-Schloroppane 25.0 27.6 ugl. 110 77.120 1,2-Dichlorobenzene 25.0 27.6 ugl. 110 80.124 1,2-Dichlorobenzene 25.0 27.6 ugl. 111 76.120 1,2-Dichlorobenzene 25.0 28.5 ugl. 111 76.120 1,3-Dichlorobenzene 25.0 28.5 ugl. 114 77.120 1,3-Dichlorobenzene 25.0 28.5 ugl. 112 80.122 2-Butanone (MEK) 125 146 ugl. 117 57.140	1,1,1-Trichloroethane	25.0	26.9		ug/L		107	73 - 126	
Ne	1,1,2,2-Tetrachloroethane	25.0	27.1		ug/L		108	76 ₋ 120	
1,1,2-Tickloroethane 25.0 27.4 ug/L 110 75 - 122 1,1-Dickloroethane 25.0 25.5 ug/L 102 66 - 127 1,2-Dickloroethane 25.0 25.5 ug/L 108 79 - 122 1,2-Dicknome-3-Chloropropane 25.0 27.1 ug/L 111 77 - 120 1,2-Dicknome-1 25.0 27.6 ug/L 111 77 - 120 1,2-Dicknorethane 25.0 27.6 ug/L 110 80 - 124 1,2-Dicknorethane 25.0 27.6 ug/L 110 75 - 120 1,2-Dicknorethane 25.0 27.6 ug/L 110 75 - 120 1,2-Dicknorethane 25.0 28.5 ug/L 111 75 - 120 1,2-Dicknorethane 25.0 28.5 ug/L 111 77 - 120 1,2-Dicknorethane 25.0 28.5 ug/L 111 77 - 120 1,3-Dicklorobenzene 25.0 28.0 ug/L 117 65 - 127 2-Bu	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.7		ug/L		103	61 - 148	
1,1-Dichloroethene 25.0 26.7 ug/L 107 77.120 1,1-Dichloroethene 25.0 25.5 ug/L 102 66-127 1,2-Dichloroethene 25.0 27.1 ug/L 108 79-122 1,2-Dichloroethane 25.0 27.9 ug/L 111 77-120 1,2-Dichloroethane 25.0 27.9 ug/L 110 77-120 1,2-Dichloroethane 25.0 26.5 ug/L 110 75-120 1,2-Dichloroethane 25.0 26.5 ug/L 111 75-120 1,2-Dichloroethane 25.0 28.5 ug/L 111 77-120 1,2-Dichloroethane 25.0 28.0 ug/L 117 77-120 2-Hexanone 125	ne								
1,1-Dichloroethene 25.0 25.5 ug/L 102 66.127 1,2-Hirolhorobenzene 25.0 27.1 ug/L 194 59.132 1,2-Dibrono-3-Chloropropane 25.0 27.9 ug/L 111 77.120 1,2-Dichlorobenzene 25.0 27.6 ug/L 110 80.124 1,2-Dichlorophane 25.0 27.7 ug/L 111 76.120 1,2-Dichlorophane 25.0 27.7 ug/L 111 76.120 1,2-Dichlorophane 25.0 28.5 ug/L 114 77.70 1,3-Dichlorobenzene 25.0 28.5 ug/L 112 80.120 2-Butanone (MEK) 125 146 ug/L 117 57.140 2-Heathyl-2-pentanone (MIBK) 125 136 ug/L 117 57.140 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 117 56.142 8-mondorm 25.0 28.8 ug/L 107 71.124 Berzene	1,1,2-Trichloroethane	25.0	27.4		ug/L		110	76 - 122	
1.2.4.Trichlorobenzene 25.0 27.1 ug/L 108 79.122 1.2.Dibromo-S-Chloropropane 25.0 23.4 ug/L 111 77.120 1.2.Dibromo-S-Chloropropane 25.0 27.9 ug/L 110 80.124 1.2.Dichlorobenzene 25.0 27.6 ug/L 110 80.124 1.2.Dichloropropane 25.0 28.5 ug/L 111 76.120 1.3.Dichlorobenzene 25.0 28.0 ug/L 114 77.120 1.4.Dichlorobenzene 25.0 28.0 ug/L 117 77.120 1.4.Dichlorobenzene 125 131 ug/L 117 77.122 2Butanone (MEK) 125 131 ug/L 117 76.142 2But	1,1-Dichloroethane	25.0	26.7		ug/L		107	77 - 120	
1.2-Dibromo-3-Chloropropane 25.0 23.4 ug/L 194 66.134 1.2-Dibromoethane 25.0 27.9 ug/L 1111 77.120 1.2-Dichlorobenzen 25.0 27.6 ug/L 110 80.124 1.2-Dichlorobenzene 25.0 28.5 ug/L 111 76.120 1.2-Dichlorobenzene 25.0 28.5 ug/L 111 77.120 1.4-Dichlorobenzene 25.0 28.0 ug/L 112 80.120 1.4-Dichlorobenzene 25.0 28.0 ug/L 112 80.120 2-Butanone (MEK) 125 146 ug/L 117 67.140 2-Hexanone 125 152 ug/L 112 65.127 Acetone 125 131 ug/L 105 71.125 Acetone 125 148 ug/L 107 71.125 Benzene 25.0 28.8 ug/L 107 71.124 Bercane 25.0 28.8	1,1-Dichloroethene	25.0	25.5		ug/L		102	66 - 127	
1.2-Dibromoethane 25.0 27.9 ug/L 111 77-120 1.2-Dichlorobenzene 25.0 27.6 ug/L 110 80-124 1.2-Dichloropenane 25.0 26.5 ug/L 106 75-120 1.3-Dichloropenane 25.0 27.7 ug/L 111 76-120 1.3-Dichlorobenzene 25.0 28.5 ug/L 114 77-120 1.4-Dichlorobenzene 25.0 28.0 ug/L 112 80-120 2-Butanone (MEK) 125 146 ug/L 102 77-140 2-Hexanone 125 131 ug/L 105 71-125 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 107 71-124 4-Methyl-2-pentanone (MIBK) 125 134 ug/L 107 71-124 4-Methyl-2-pentanone (MIBK) 125 134 ug/L 107 71-124 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 107 71-124 Benzene	1,2,4-Trichlorobenzene	25.0	27.1		ug/L		108	79 - 122	
1.2-Dichlorobenzene 25.0 27.6 ug/L 110 80-124 1.2-Dichloroerthane 25.0 26.5 ug/L 116 75-120 1.2-Dichloropropane 25.0 27.7 ug/L 111 76-120 1.3-Dichlorobenzene 25.0 28.5 ug/L 114 77-120 1.4-Dichlorobenzene 25.0 28.0 ug/L 112 80-120 2-Butanone (MEK) 125 146 ug/L 117 57-140 2-Hexanone 125 152 ug/L 105 71-125 Acetone 125 131 ug/L 105 71-124 Benzene 25.0 26.8 ug/L 107 71-124 Benzene 25.0 26.8 ug/L 107 71-124 Bromodichloromethane 25.0 26.8 ug/L 107 61-132 Bromodichloromethane 25.0 26.8 ug/L 107 61-132 Carbon tetrachloride 25.0 26.9	1,2-Dibromo-3-Chloropropane	25.0	23.4		ug/L		94	56 - 134	
1,2-Dichloroethane 25.0 26.5 ug/L 106 75.120 1,2-Dichloropropane 25.0 27.7 ug/L 111 75.120 1,2-Dichloropenzene 25.0 28.5 ug/L 112 80.120 1,4-Dichlorobenzene 25.0 28.0 ug/L 117 57.140 2-Butanone (MEK) 125 146 ug/L 117 57.140 2-Hexanone 125 152 ug/L 117 57.140 2-Hexanone 125 131 ug/L 105 71.125 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 107 71.125 Acetone 25.0 26.8 ug/L 107 71.124 Benzene 25.0 26.8 ug/L 107 71.124 Bromodichloromethane 25.0 26.8 ug/L 107 71.124 Bromodichloromethane 25.0 28.8 ug/L 107 75.144 Carbon tetrachloride 25.0 26.	1,2-Dibromoethane	25.0	27.9		ug/L		111	77 - 120	
1,2-Dichloropropane 25.0 27.7 ug/L 111 76-120 1,3-Dichlorobenzene 25.0 28.5 ug/L 114 77-120 1,4-Dichlorobenzene 25.0 28.0 ug/L 112 80-120 2-Butanone (MEK) 125 146 ug/L 117 57-140 2-Hexanone 125 152 ug/L 105 71-125 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71-125 Acetone 125 146 ug/L 107 71-125 Acetone 125 146 ug/L 107 71-125 Acetone 125 146 ug/L 107 71-124 Bromodichloromethane 25.0 26.8 ug/L 107 71-124 Bromodichloromethane 25.0 26.8 ug/L 107 76-132 Bromodichloromethane 25.0 26.8 ug/L 197 80-132 Carbon disulfide 25.0 26.9	1,2-Dichlorobenzene	25.0	27.6		ug/L		110	80 - 124	
1,3-Dichlorobenzene 25.0 28.5 ug/L 114 77 - 120 1,4-Dichlorobenzene 25.0 28.0 ug/L 112 80 - 120 2-Butanone (MEK) 125 146 ug/L 117 57 - 140 2-Hexanone 125 152 ug/L 122 65 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 146 ug/L 107 56 - 142 Benzene 25.0 26.8 ug/L 107 71 - 124 Bromodichloromethane 25.0 26.8 ug/L 107 71 - 124 Bromodichloromethane 25.0 26.8 ug/L 107 76 - 142 Bromodichloromethane 25.0 26.8 ug/L 107 76 - 142 Bromodichloromethane 25.0 26.8 ug/L 107 76 - 142 Carbon disulfide 25.0 26.9 ug/L 108 72 - 134 Chloroforbenzene 25.0 26.9 ug/L 110 80 - 136 Chloroform <td>1,2-Dichloroethane</td> <td>25.0</td> <td>26.5</td> <td></td> <td>ug/L</td> <td></td> <td>106</td> <td>75 ₋ 120</td> <td></td>	1,2-Dichloroethane	25.0	26.5		ug/L		106	75 ₋ 120	
1.4-Dichlorobenzene 25.0 28.0 ug/L 112 80-120 2-Butanone (MEK) 125 146 ug/L 117 57-140 2-Hexanone 125 152 ug/L 122 65-127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71-125 Acetone 125 146 ug/L 107 71-124 Benzene 25.0 26.8 ug/L 107 71-124 Bromodichloromethane 25.0 26.8 ug/L 107 80-122 Bromoform 25.0 28.8 ug/L 107 80-122 Bromoform 25.0 28.8 ug/L 107 80-122 Bromoform 25.0 28.8 ug/L 107 61-132 Bromoform 25.0 28.9 ug/L 108 72-134 Carbon disulfide 25.0 28.9 ug/L 110 80-120 Chlorobenzene 25.0 26.9 ug/L	1,2-Dichloropropane	25.0	27.7		ug/L		111	76 - 120	
2-Butanone (MEK) 125 146 ug/L 117 57 - 140 2-Hexanone 125 152 ug/L 122 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 146 ug/L 117 56 - 142 Benzene 25.0 26.8 ug/L 107 71 - 124 Bromodichloromethane 25.0 26.8 ug/L 107 71 - 124 Bromoform 25.0 26.8 ug/L 107 61 - 132 Bromoform 25.0 26.8 ug/L 107 61 - 132 Bromoform 25.0 26.8 ug/L 107 61 - 132 Bromoform 25.0 28.8 ug/L 107 61 - 132 Bromoform 25.0 28.8 ug/L 108 59 - 134 Carbon disulfide 25.0 27.5 ug/L 108 72 - 134 Chibromethane 25.0 26.4 ug/L <td>1,3-Dichlorobenzene</td> <td>25.0</td> <td>28.5</td> <td></td> <td>ug/L</td> <td></td> <td>114</td> <td>77 - 120</td> <td></td>	1,3-Dichlorobenzene	25.0	28.5		ug/L		114	77 - 120	
2-Hexanone 125 152 ug/L 122 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 146 ug/L 117 56 - 142 Benzene 25.0 26.8 ug/L 107 71 - 124 Bromodishloromethane 25.0 26.8 ug/L 107 80 - 122 Bromoform 25.0 26.8 ug/L 107 80 - 122 Bromomethane 25.0 26.8 ug/L 107 61 - 132 Bromomethane 25.0 28.8 ug/L 95 55 - 144 Carbon disulfide 25.0 24.0 ug/L 108 73 - 134 Carbon tetrachloride 25.0 26.9 ug/L 108 72 - 134 Chloroberzne 25.0 27.5 ug/L 108 73 - 127 Chloroform 25.0 26.4 ug/L 105 73 - 127 Chloromethane 25.0 26.8	1,4-Dichlorobenzene	25.0	28.0		ug/L		112	80 - 120	
4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71-125 Acetone 125 146 ug/L 117 56-142 Benzene 25.0 26.8 ug/L 107 71-124 Bromodichloromethane 25.0 26.8 ug/L 107 80-122 Bromoform 25.0 26.8 ug/L 95 55-144 Bromomethane 25.0 23.8 ug/L 96 59-134 Carbon disulfide 25.0 24.0 ug/L 96 59-134 Carbon tetrachloride 25.0 26.9 ug/L 108 72-134 Chlorobenzene 25.0 27.5 ug/L 110 80-120 Chloroform 25.0 24.2 ug/L 17 73-127 Chloroform 25.0 26.4 ug/L 110 86-124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74-124 cis-1,3-Dichloropropene 25.0 26.4 <	2-Butanone (MEK)	125	146		ug/L		117	57 - 140	
Acetone 125 146 ug/L 117 56 - 142 Benzene 25.0 26.8 ug/L 107 71 - 124 Bromodichloromethane 25.0 26.8 ug/L 107 80 - 122 Bromoform 25.0 26.8 ug/L 95 55 - 144 Bromomethane 25.0 23.8 ug/L 95 55 - 144 Carbon disulfide 25.0 24.0 ug/L 96 59 - 134 Carbon disulfide 25.0 26.9 ug/L 108 72 - 134 Carbon disulfide 25.0 26.9 ug/L 108 72 - 134 Carbon disulfide 25.0 26.9 ug/L 108 72 - 134 Carbon disulfide 25.0 27.5 ug/L 110 80 - 120 Chiorosertane 25.0 26.9 ug/L 110 80 - 120 Chioroform 25.0 26.4 ug/L 107 74 - 124 Gis-1,2-Dichloroethene 25.0 26.4 <td>2-Hexanone</td> <td>125</td> <td>152</td> <td></td> <td>ug/L</td> <td></td> <td>122</td> <td>65 - 127</td> <td></td>	2-Hexanone	125	152		ug/L		122	65 - 127	
Benzene 25.0 26.8 ug/L 107 71-124 Bromodichloromethane 25.0 26.8 ug/L 107 80-122 Bromoform 25.0 26.8 ug/L 107 61-132 Bromomethane 25.0 23.8 ug/L 95 55-144 Carbon disulfide 25.0 24.0 ug/L 96 59-134 Carbon tetrachloride 25.0 26.9 ug/L 108 72-134 Chlorobenzene 25.0 27.5 ug/L 110 80-120 Chloroform 25.0 24.2 ug/L 105 73-127 Chloroform 25.0 26.4 ug/L 105 73-127 Chloromethane 25.0 28.4 ug/L 107 74-124 cis-1,2-Dichloroptene 25.0 26.8 ug/L 106 74-124 Cyclohexane 25.0 25.4 ug/L 101 59-135 Dichlorodifluoromethane 25.0 25.2 ug	4-Methyl-2-pentanone (MIBK)	125	131		ug/L		105	71 - 125	
Bromodichloromethane 25.0 26.8 ug/L 107 80 - 122 Bromoform 25.0 26.8 ug/L 107 61 - 132 Bromomethane 25.0 23.8 ug/L 95 55 - 144 Carbon disulfide 25.0 24.0 ug/L 96 59 - 134 Carbon tetrachloride 25.0 26.9 ug/L 108 72 - 134 Chlorobenzene 25.0 27.5 ug/L 110 80 - 120 Chloroethane 25.0 24.2 ug/L 10 80 - 120 Chloromethane 25.0 26.4 ug/L 10 80 - 124 Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,3-Dichloropropene 25.0 28.4 ug/L 117 74 - 124 cis-1,3-Dichloropropene 25.0 26.8 ug/L 10 75 - 125 Dibromochloromethane 25.0 28.0 ug/L 111 59 - 135 Ethylbenzene 25.0	Acetone	125	146		ug/L		117	56 - 142	
Bromoform 25.0 26.8 ug/L 107 61.132 Bromomethane 25.0 23.8 ug/L 95 55.144 Carbon disulfide 25.0 24.0 ug/L 96 59.134 Carbon tetrachloride 25.0 26.9 ug/L 108 72.134 Chlorobenzene 25.0 27.5 ug/L 110 80.120 Chloroethane 25.0 24.2 ug/L 97 69.136 Chloroform 25.0 26.4 ug/L 105 73.127 Chloromethane 25.0 28.4 ug/L 114 68.124 cis-1,2-Dichloropthene 25.0 26.8 ug/L 107 74.124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74.124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 110 59.135 Dibromochloromethane 25.0 28.0 ug/L 110 59.135 Ethylbenzene 25.0 26.7<	Benzene	25.0	26.8		ug/L		107	71 - 124	
Bromomethane 25.0 23.8 ug/L 95 55.144 Carbon disulfide 25.0 24.0 ug/L 96 59.134 Carbon tetrachloride 25.0 26.9 ug/L 108 72.134 Chlorobenzene 25.0 27.5 ug/L 110 80.120 Chloroethane 25.0 24.2 ug/L 97 69.136 Chloroform 25.0 26.4 ug/L 105 73.127 Chloromethane 25.0 28.4 ug/L 114 68.124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74.124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74.124 Cyclohexane 25.0 25.0 25.4 ug/L 101 59.135 Dibromochloromethane 25.0 25.0 28.0 ug/L 101 59.135 Ethylbenzene 25.0 25.2 ug/L 107 77.123 Isopropylbenzene	Bromodichloromethane	25.0	26.8		ug/L		107	80 - 122	
Carbon disulfide 25.0 24.0 ug/L 96 59 - 134 Carbon tetrachloride 25.0 26.9 ug/L 108 72 - 134 Chlorobenzene 25.0 27.5 ug/L 110 80 - 120 Chloroethane 25.0 24.2 ug/L 97 69 - 136 Chloroform 25.0 26.4 ug/L 105 73 - 127 Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene	Bromoform	25.0	26.8		ug/L		107	61 - 132	
Carbon tetrachloride 25.0 26.9 ug/L 108 72 - 134 Chlorobenzene 25.0 27.5 ug/L 110 80 - 120 Chloroethane 25.0 24.2 ug/L 97 69 - 136 Chloroform 25.0 26.4 ug/L 105 73 - 127 Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate <	Bromomethane	25.0	23.8		ug/L		95	55 - 144	
Chlorobenzene 25.0 27.5 ug/L 110 80 - 120 Chloroethane 25.0 24.2 ug/L 97 69 - 136 Chloroform 25.0 26.4 ug/L 105 73 - 127 Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl certate 50.0 54.0 ug/L 104 77 - 120 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Carbon disulfide	25.0	24.0		ug/L		96	59 - 134	
Chloroethane 25.0 24.2 ug/L 97 69 - 136 Chloroform 25.0 26.4 ug/L 105 73 - 127 Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 104 77 - 120 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Carbon tetrachloride	25.0	26.9		ug/L		108	72 - 134	
Chloroform 25.0 26.4 ug/L 105 73 - 127 Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 104 77 - 120 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Chlorobenzene	25.0	27.5		ug/L		110	80 - 120	
Chloromethane 25.0 28.4 ug/L 114 68 - 124 cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Chloroethane	25.0	24.2		ug/L		97	69 - 136	
cis-1,2-Dichloroethene 25.0 26.8 ug/L 107 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Chloroform	25.0	26.4		ug/L		105	73 - 127	
cis-1,3-Dichloropropene 25.0 26.4 ug/L 106 74 - 124 Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Chloromethane	25.0	28.4		ug/L		114	68 - 124	
Cyclohexane 25.0 25.4 ug/L 101 59 - 135 Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	cis-1,2-Dichloroethene	25.0	26.8		ug/L		107	74 - 124	
Dibromochloromethane 25.0 28.0 ug/L 112 75 - 125 Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	cis-1,3-Dichloropropene	25.0	26.4		ug/L		106	74 - 124	
Dichlorodifluoromethane 25.0 25.2 ug/L 101 59 - 135 Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Cyclohexane	25.0	25.4		ug/L		101	59 ₋ 135	
Ethylbenzene 25.0 26.7 ug/L 107 77 - 123 Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Dibromochloromethane	25.0	28.0		ug/L		112	75 - 125	
Isopropylbenzene 25.0 27.5 ug/L 110 77 - 122 Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Dichlorodifluoromethane	25.0	25.2		-		101	59 ₋ 135	
Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Ethylbenzene	25.0	26.7		ug/L		107	77 - 123	
Methyl acetate 50.0 54.0 ug/L 108 74 - 133 Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120	Isopropylbenzene	25.0	27.5		_		110	77 - 122	
Methyl tert-butyl ether 25.0 26.0 ug/L 104 77 - 120		50.0	54.0		•		108	74 ₋ 133	
		25.0	26.0				104	77 - 120	
	Methylcyclohexane	25.0	25.7		ug/L			68 - 134	

Eurofins TestAmerica, Buffalo

Page 11 of 22

Client: O'Brien & Gere Inc of North America

Job ID: 480-182835-1 Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-575238/6

Matrix: Water

Analysis Batch: 575238

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	27.3		ug/L		109	75 - 124	
Styrene	25.0	27.3		ug/L		109	80 - 120	
Tetrachloroethene	25.0	27.2		ug/L		109	74 - 122	
Toluene	25.0	27.3		ug/L		109	80 - 122	
trans-1,2-Dichloroethene	25.0	26.5		ug/L		106	73 _ 127	
trans-1,3-Dichloropropene	25.0	26.7		ug/L		107	80 - 120	
Trichloroethene	25.0	27.0		ug/L		108	74 - 123	
Trichlorofluoromethane	25.0	27.2		ug/L		109	62 _ 150	
Vinyl chloride	25.0	27.6		ug/L		110	65 _ 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		77 - 120
4-Bromofluorobenzene (Surr)	107		73 - 120
Dibromofluoromethane (Surr)	107		75 - 123
Toluene-d8 (Surr)	108		80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 575316

Matrix: Water

Lab Sample ID: MB 480-575316/8

		МВ							
Analyte		Qualifier	RL	MDL		<u>D</u> _	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			04/07/21 12:56	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/21 12:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			04/07/21 12:56	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/07/21 12:56	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/07/21 12:56	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/07/21 12:56	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/07/21 12:56	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/07/21 12:56	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/07/21 12:56	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/07/21 12:56	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/07/21 12:56	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/07/21 12:56	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/07/21 12:56	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/07/21 12:56	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/07/21 12:56	1
2-Hexanone	ND		5.0	1.2	ug/L			04/07/21 12:56	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/07/21 12:56	1
Acetone	ND		10	3.0	ug/L			04/07/21 12:56	1
Benzene	ND		1.0	0.41	ug/L			04/07/21 12:56	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/07/21 12:56	1
Bromoform	ND		1.0	0.26	ug/L			04/07/21 12:56	1
Bromomethane	ND		1.0	0.69	ug/L			04/07/21 12:56	1
Carbon disulfide	ND		1.0	0.19	ug/L			04/07/21 12:56	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/07/21 12:56	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/07/21 12:56	1
Chloroethane	ND		1.0	0.32	ug/L			04/07/21 12:56	1
Chloroform	ND		1.0	0.34	ug/L			04/07/21 12:56	1

Eurofins TestAmerica, Buffalo

Job ID: 480-182835-1

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-575316/8

Matrix: Water

Analysis Batch: 575316

Client Sample ID: Method Blank

Prep Type: Total/NA

	MR	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L		· ·	04/07/21 12:56	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/07/21 12:56	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/07/21 12:56	1
Cyclohexane	ND		1.0	0.18	ug/L			04/07/21 12:56	1
Dibromochloromethane	ND		1.0	0.32	ug/L			04/07/21 12:56	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/07/21 12:56	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/07/21 12:56	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/07/21 12:56	1
Methyl acetate	ND		2.5	1.3	ug/L			04/07/21 12:56	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/07/21 12:56	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/07/21 12:56	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/07/21 12:56	1

04/07/21 12:56 Styrene ND 1.0 0.73 ug/L Tetrachloroethene ND 1.0 0.36 ug/L 04/07/21 12:56 Toluene ND 1.0 0.51 ug/L 04/07/21 12:56 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/07/21 12:56 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/07/21 12:56

Trichloroethene ND 1.0 0.46 ug/L Trichlorofluoromethane ND 1.0 0.88 ug/L Vinyl chloride ND 1.0 0.90 ug/L Xylenes, Total ND 2.0 0.66 ug/L

> MB MB Dil Fac %Recovery Qualifier Limits Prepared Analyzed 77 - 120 04/07/21 12:56 108

1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 116 73 - 120 04/07/21 12:56 Dibromofluoromethane (Surr) 107 75 - 123 04/07/21 12:56 Toluene-d8 (Surr) 80 - 120 04/07/21 12:56 112

Lab Sample ID: LCS 480-575316/32

Matrix: Water

Surrogate

Analysis Batch: 575316

Client Sample ID: Lab Control Sample Prep Type: Total/NA

04/07/21 12:56

04/07/21 12:56

04/07/21 12:56

04/07/21 12:56

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	20.1		ug/L		80	73 - 126
1,1,2,2-Tetrachloroethane	25.0	20.6		ug/L		83	76 ₋ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.7		ug/L		83	61 - 148
ne							
1,1,2-Trichloroethane	25.0	20.5		ug/L		82	76 - 122
1,1-Dichloroethane	25.0	19.6		ug/L		78	77 - 120
1,1-Dichloroethene	25.0	20.3		ug/L		81	66 - 127
1,2,4-Trichlorobenzene	25.0	21.3		ug/L		85	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	17.4		ug/L		70	56 - 134
1,2-Dibromoethane	25.0	20.9		ug/L		84	77 - 120
1,2-Dichlorobenzene	25.0	21.4		ug/L		86	80 - 124
1,2-Dichloroethane	25.0	19.7		ug/L		79	75 - 120
1,2-Dichloropropane	25.0	20.2		ug/L		81	76 - 120
1,3-Dichlorobenzene	25.0	21.7		ug/L		87	77 - 120
1,4-Dichlorobenzene	25.0	21.6		ug/L		86	80 - 120
2-Butanone (MEK)	125	111		ug/L		89	57 ₋ 140

4/14/2021

Page 13 of 22

Spike

LCS LCS

Job ID: 480-182835-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: LCS 480-575316/32

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 575316

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

	Opino		.00		/011001	
Analyte	Added	Result C	Qualifier Unit	D %Rec	Limits	
2-Hexanone	125	116	ug/L	92	65 _ 127	
4-Methyl-2-pentanone (MIBK)	125	100	ug/L	80	71 - 125	
Acetone	125	114	ug/L	91	56 - 142	
Benzene	25.0	20.1	ug/L	80	71 - 124	
Bromodichloromethane	25.0	19.3 *-	- ug/L	77	80 - 122	
Bromoform	25.0	19.9	ug/L	80	61 - 132	
Bromomethane	25.0	18.2	ug/L	73	55 - 144	
Carbon disulfide	25.0	18.5	ug/L	74	59 _ 134	
Carbon tetrachloride	25.0	19.7	ug/L	79	72 - 134	
Chlorobenzene	25.0	21.0	ug/L	84	80 - 120	
Chloroethane	25.0	17.5	ug/L	70	69 _ 136	
Chloroform	25.0	19.4	ug/L	78	73 - 127	
Chloromethane	25.0	21.1	ug/L	84	68 - 124	
cis-1,2-Dichloroethene	25.0	19.9	ug/L	80	74 - 124	
cis-1,3-Dichloropropene	25.0	19.8	ug/L	79	74 - 124	
Cyclohexane	25.0	20.1	ug/L	80	59 _ 135	
Dibromochloromethane	25.0	20.4	ug/L	82	75 - 125	
Dichlorodifluoromethane	25.0	18.5	ug/L	74	59 _ 135	
Ethylbenzene	25.0	20.5	ug/L	82	77 - 123	
Isopropylbenzene	25.0	21.0	ug/L	84	77 - 122	
Methyl acetate	50.0	39.5	ug/L	79	74 - 133	
Methyl tert-butyl ether	25.0	19.4	ug/L	78	77 - 120	
Methylcyclohexane	25.0	20.2	ug/L	81	68 - 134	
Methylene Chloride	25.0	18.7	ug/L	75	75 - 124	
Styrene	25.0	20.3	ug/L	81	80 - 120	
Tetrachloroethene	25.0	21.3	ug/L	85	74 - 122	
Toluene	25.0	21.2	ug/L	85	80 - 122	
trans-1,2-Dichloroethene	25.0	20.4	ug/L	81	73 _ 127	
trans-1,3-Dichloropropene	25.0	20.2	ug/L	81	80 _ 120	
Trichloroethene	25.0	20.7	ug/L	83	74 - 123	
Trichlorofluoromethane	25.0	20.6	ug/L	82	62 _ 150	
Vinyl chloride	25.0	20.8	ug/L	83	65 - 133	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	104		73 - 120
Dibromofluoromethane (Surr)	102		75 - 123
Toluene-d8 (Surr)	104		80 - 120

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-575289/1

Matrix: Water

Analysis Batch: 575289

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	mg/L			04/06/21 19:30	1

Eurofins TestAmerica, Buffalo

Page 14 of 22

QC Sample Results

Client: O'Brien & Gere Inc of North America

Job ID: 480-182835-1

Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-575289/2

Matrix: Water

Analysis Batch: 575289

, ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	2600	2587		mg/L		100	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-575450/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 575450

	IVID IVID						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND =	10.0	4.0 mg/L			04/07/21 15:25	1

Lab Sample ID: LCS 480-575450/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 575450

7 maryoro Batom or o roc								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	 501	502.0		mg/L		100	85 - 115	

Prep Type: Total/NA

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-182835-1

GC/MS VOA

Analysis Batch: 575238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-182835-2	BETWEEN CARBONS 040521	Total/NA	Water	8260C
480-182835-3	EFFLUENT 040521	Total/NA	Water	8260C
MB 480-575238/8	Method Blank	Total/NA	Water	8260C
LCS 480-575238/6	Lab Control Sample	Total/NA	Water	8260C

Analysis Batch: 575316

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-182835-2 - DL	BETWEEN CARBONS 040521	Total/NA	Water	8260C	
MB 480-575316/8	Method Blank	Total/NA	Water	8260C	
LCS 480-575316/32	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 575289

Lab Sample ID 480-182835-1	Client Sample ID EFFLUENT 040521	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
MB 480-575289/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-575289/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 575450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-182835-1	EFFLUENT 040521	Total/NA	Water	SM2540 C	
MB 480-575450/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-575450/2	Lab Control Sample	Total/NA	Water	SM2540 C	

3

4

0

9

10

40

13

14

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-182835-1

Lab Sample ID: 480-182835-1

Matrix: Water

Client Sample ID: EFFLUENT 040521

Date Collected: 04/05/21 07:00 Date Received: 04/06/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	575289	04/06/21 19:30	CSS	TAL BUF
Total/NA	Analysis	SM2540 C		1	575450	04/07/21 15:25	CSS	TAL BUF

Client Sample ID: BETWEEN CARBONS 040521

Lab Sample ID: 480-182835-2

Date Collected: 04/05/21 07:00 **Matrix: Water** Date Received: 04/06/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	575238	04/06/21 23:17	WJD	TAL BUF
Total/NA	Analysis	8260C	DL	4	575316	04/07/21 15:20	AMM	TAL BUF

Client Sample ID: EFFLUENT 040521 Lab Sample ID: 480-182835-3

Date Collected: 04/05/21 07:00 **Matrix: Water**

Date Received: 04/06/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	575238	04/06/21 23:41	WJD	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-182835-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	04-01-22
The following analytes		it the laboratory is not certifi	ed by the governing authority. This list ma	ly include analytes for t
the agency does not of	fer certification.			
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	

5

7

9

11

4.0

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-182835-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

R

9

44

12

4 /

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-182835-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-182835-1	EFFLUENT 040521	Water	04/05/21 07:00	04/06/21 08:00	
480-182835-2	BETWEEN CARBONS 040521	Water	04/05/21 07:00	04/06/21 08:00	
480-182835-3	EFFLUENT 040521	Water	04/05/21 07:00	04/06/21 08:00	

10 Hazelwood Drive Amherst, NY 14228-2298	J	Chain of Custody Record	Custo	ody Re	cord					eurofins Environ	Environment Testing America
Phone: 716-691-2600 Fax: 716-691-7991	c										
Client Information	Sampler: MRCI.	In Koenna	wake	Lab PM: Giacon	iazza, Jo	e V		Syracuse	cns	COC No: 480-145298-10588.1	
Client Contact Mr. Yuri Veliz	Phone 315-1734	1-1	300	E-Mail: joe.gia	omazza	@testamer	E-Mail: joe.giacomazza@testamericainc.com	State of Origin # 2005	10E	Page Page 1 of 1	
Company O'Brien & Gere Inc of North America			/SID:				Analysis Requested	quested		Job#	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:	d:								ion Cod	
City. East Syracuse	TAT Requested (days)	ys):								B NaOH N None	salre ne ne
State, Ztp. NY, 13221	Compliance Project:	t: A Yes A No									IS)3
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 12000090			(c							U3 vdecahydrate
Email: yuri.veliz@ramboll.com	"MO #			OF W	(ON				Market Of School		σ.
Project Name: Former Accurate Die Cast	Project #: 48008584			SĐĄ) 0	70 24		1	480-1828	335 Cilain o		(specify)
Site: New York	\$SOW#:			Igms2	N) as					Other:	
	,	0		Matrix (Wwwater, Sesolid, O=waste/oli,	M/SM mioh 40D - Total Su	40C_Calcd - T			iai Number		
Sample Identification	Sample Date	Time	G=grab) BT-	雪	4)	0.7				Special Instructions/Note	ons/Note:
Effluent A LASO !	ULKISI	17:00	Water	Water	Z	< z ~			0		
Carbons	- 1	7.4	+	Motor	1				911		
04070	4-5-21	NΙ.	3	water	\pm	7 (w.		
EALLOW OUCS 21	4-5-21	7:00	(3)	WATER		2				N	
,											
(2)											
, J											
ant	Poison B Unknown		Radiological		Sample	le Disposal (A 1 Return To Client	(A fee may be	assessed if sample	les are retai	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal RV I ab More	nth)
Other (specify)			2		Special	Instruction	Requirement	nts:			200
Empty Kit Relinquished by:		Date: /		Ë	Time:			Method of Shipment	nent.		
Relinquished by:	Date/Time:	101	5/	Company 6	Receive	Magazi	11/3M	Date	Date/Time:	Edwood 11:01	my Q.s.
Relinquished by	Date/Time.	51	2	Company	Rece	Received by C	allo	Legie ()	10/10	Compa	Sq
1 1	Date/Time:		Cou	Company	Rece	Received by		Date	Date/Time:	Company	ηλ
Custody Seals Intact: Custody Seal No∷ Δ Yes Δ No					Cool	er Temperatur	Cooler Temperature(s) °C and Other Remarks.	marks: #	3.1		
				1	1	1	Feet 1	1		Ver. 1	Ver. 11/01/2020
				5	4	3	1	9	7	4 5 6	2

eurofins Environment Testing America

Eurofins TestAmerica, Buffalo

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-182835-1

Login Number: 182835 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator. Wallace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

6

8

11

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183204-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Ty-

Authorized for release by: 4/20/2021 5:45:42 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

Links

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Racaint Chacklists	14

4

5

7

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Job ID: 480-183204-1

Project/Site: Former Accurate Die Cast

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RL

RPD

TEF

TEQ

TNTC

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins TestAmerica, Buffalo

4/20/2021

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183204-1

Job ID: 480-183204-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183204-1

Comments

No additional comments.

Receipt

The sample was received on 4/13/2021 10:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

1

6

9

10

11

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 041221

Job ID: 480-183204-1

Lab Sample ID: 480-183204-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil		D Metho	od	Prep Type
Total Dissolved Solids	723		10.0	4.0	mg/L		1	SM25	40 C	Total/NA

4

4

5

6

8

4.6

11

13

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183204-1

Client Sample ID: EFFLUENT 041221

Lab Sample ID: 480-183204-1

Matrix: Water

Date Collected: 04/12/21 07:20 Date Received: 04/13/21 10:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	723		10.0	4.0	mg/L			04/14/21 10:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			04/13/21 18:26	1

5

7

9

11

12

QC Sample Results

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Job ID: 480-183204-1

Prep Type: Total/NA

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-576205/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 576205

MB MB Dil Fac Analyte Result Qualifier RLRL Unit Prepared Analyzed Total Suspended Solids ND1.0 1.0 mg/L 04/13/21 18:26

Lab Sample ID: LCS 480-576205/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576205

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	2810	2799		mg/L		100	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-576304/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576304

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			04/14/21 10:57	1

Lab Sample ID: LCS 480-576304/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576304

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	501	513.0		mg/L		102	85 - 115	

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183204-1

General Chemistry

Analysis Batch: 576205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183204-1	EFFLUENT 041221	Total/NA	Water	SM 2540D	
MB 480-576205/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-576205/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 576304

Lab Sample ID 480-183204-1	Client Sample ID EFFLUENT 041221	Prep Type Total/NA	Matrix Water	Method SM2540 C	Prep Batch
MB 480-576304/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-576304/2	Lab Control Sample	Total/NA	Water	SM2540 C	

1

3

4

_

0

10

12

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-183204-1

Project/Site: Former Accurate Die Cast

Date Received: 04/13/21 10:00

Client Sample ID: EFFLUENT 041221

Lab Sample ID: 480-183204-1 Date Collected: 04/12/21 07:20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	576205	04/13/21 18:26	CSS	TAL BUF
Total/NA	Analysis	SM2540 C		1	576304	04/14/21 10:57	CSS	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183204-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program NELAP		Identification Number	Expiration Date
New York			10026	04-01-22
The following analytes	are included in this report, but	ut the laboratory is not certifie	ed by the governing authority. This list ma	av include analytes for v
0 ,		,	, , ,	ay molado dharytoo lor t
the agency does not of		•	, , ,	ay molado analytoo for t
0 ,		Matrix	Analyte	y morado analytoo loi i

3

4

5

7

_

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183204-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

9

Eurofins TestAmerica, Buffalo

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183204-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-183204-1	EFFLUENT 041221	Water	04/12/21 07:20	04/13/21 10:00	

3

6

0

9

10

12

13

Chain of Custody Record

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax. 716-691-7991

eurofins Environment Testing America

	Sampler:	,	Lab PM:	Carrier Tracking No./e).	
Client Unformation Client Contact:	ARIN K	Seuvecke	Giacomazza, Joe V	Canici Hacking No(s).	COC No: 480-158057-10586 1
	715- 729-	1300	E-Mail:	ののではいる	Page:
Company:		PWSID:	Joe glacomazza@testamencainc.com	mo:	Page 1 of 1
O'Brien & Gere Inc of North America			Anal	Analysis Requested 25	Job #:
333 West Washington St. PO BOX 4873	Due Date Requested:				Preservation Codes:
City: East Syracuse	TAT Requested (days):		T		
State, Zip: NY, 13221	Compliance Project: A Ves	QW <	I		
100(Tel) 315-463-7554(Fax)	3	ON T	T		E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3
	WO #:		s (c		
ast	Project #: 48008584		or No	ners	J - DI Water V - MCAA K - EDTA W - PH 4-5
Site: New York	SSOW#:		beuge	sonta	Other:
Sample Identification	Sample Date Time	Sample Mat	Matrix Sacolid, Watrix Sacolid, Watrix Garon Fotal Sus Sacolid Filtered S Sacolid Filtered Sus Sacolid Filtered Sus	o vedmuk ls	
		Preservation Code:	Z Z	OT	Special Instructions/Note:
Effluent O41221	4-12-21 7:30	Water		(
				8	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
				480-183204 Chain of Custody	Ιλ
Possible Hazard Identification			Sample Disposal (A fee	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed longer than 1 month)
sted: I, II, III, IV, Ot	Unknown	Radiological	Special Instructions/QC Requirements	Disposal By Lab Arch.	Archive For Months
Empty Kit Relinquished by:	Date:		Time		
		Company	1	Method of Shipment:	d
June 1	1000	000	(C/1/9	1,14 4.12.2	1. Ogs Company
Relinquished by	4-12-21 19	00	20	Date/Time:	Company
olo lakat Castella	Date/Time: /	Company		Date/Time:	Company
			Cooler Temperature(s) °C a	°C and Other Remarks.	#(
					Ver: 11/01/2020

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-183204-1

Login Number: 183204 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Creator: Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.9 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183529-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

T

Authorized for release by: 4/28/2021 5:27:44 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

4.6

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receint Checklists	16

4

5

7

a

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Job ID: 480-183529-1

Project/Site: Former Accurate Die Cast

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RER

RPD TEF

TEQ

TNTC

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183529-1

Job ID: 480-183529-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183529-1

Comments

No additional comments.

Receipt

The samples were received on 4/20/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

9

10

12

16

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183529-1

Lab Sample ID: 480-183529-1

Client Sample ID: EFFLUENT 041921 - COMP

ì	-						
	Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
	Total Dissolved Solids	718	10.0	4.0 mg/L		SM2540 C	Total/NA

Client Sample ID: EFFLUENT 041921 - GRAB Lab Sample ID: 480-183529-2

No Detections.

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183529-1

Matrix: Wastewater

Job ID: 480-183529-1

Client Sample ID: EFFLUENT 041921 - COMP

Date Collected: 04/19/21 07:20 Date Received: 04/20/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	718		10.0	4.0	mg/L			04/22/21 10:51	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			04/21/21 09:30	1

Client Sample ID: EFFLUENT 041921 - GRAB

Lab Sample ID: 480-183529-2 Date Collected: 04/19/21 07:20 **Matrix: Wastewater**

Date Received: 04/20/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	MD		1.0	0.21	ug/L			04/20/21 13:40	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/20/21 13:40	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/21 13:40	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/21 13:40	1
Toluene	ND		1.0	0.51	ug/L			04/20/21 13:40	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/21 13:40	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/21 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120			=		04/20/21 13:40	1
4-Bromofluorobenzene (Surr)	89		73 - 120					04/20/21 13:40	1
Toluene-d8 (Surr)	92		80 - 120					04/20/21 13:40	1
Dibromofluoromethane (Surr)	99		75 - 123					04/20/21 13:40	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183529-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Wastewater Prep Type: Total/NA

_				Percent Su	rrogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)
480-183529-2	EFFLUENT 041921 - GRAB	102	89	92	99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Reco	very (Acceptance I	Limits)
		DCA	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)		
LCS 480-576968/5	Lab Control Sample	96	89	96	96		
MB 480-576968/7	Method Blank	100	91	94	100		

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-183529-1

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-576968/7 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 576968

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/20/21 11:41	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/20/21 11:41	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/21 11:41	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/21 11:41	1
Toluene	ND		1.0	0.51	ug/L			04/20/21 11:41	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/21 11:41	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/21 11:41	1

MB MB

MD MD

Surrogate	%Recover	y Qualifier L	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	(Surr) 10	0 7			04/20/21 11:41	1
4-Bromofluorobenzene	e (Surr) 9	1 7	⁷ 3 ₋ 120		04/20/21 11:41	1
Toluene-d8 (Surr)	9	4 8	80 - 120		04/20/21 11:41	1
Dibromofluoromethane	e (Surr) 10	0 7	⁷ 5 ₋ 123		04/20/21 11:41	1

Lab Sample ID: LCS 480-576968/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 576968

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec 1,1,2,2-Tetrachloroethane 25.0 26.7 ug/L 107 76 - 120 cis-1,2-Dichloroethene 25.0 23.9 ug/L 96 74 - 124 Methylene Chloride 25.0 23.7 ug/L 95 75 - 124 Tetrachloroethene 25.0 97 74 - 122 24.4 ug/L Toluene 25.0 24.9 ug/L 100 80 - 122 trans-1,2-Dichloroethene 25.0 23.5 73 - 127 ug/L 94 Trichloroethene 25.0 74 - 123 23.8 ug/L 95

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		77 - 120
4-Bromofluorobenzene (Surr)	89		73 - 120
Toluene-d8 (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	96		75 - 123

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-577183/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 577183

мв мв Analyte Result Qualifier RL RLUnit Analyzed Dil Fac Prepared Total Suspended Solids 1.0 1.0 mg/L 04/21/21 09:30 ND

Lab Sample ID: LCS 480-577183/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 577183

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec

2110 2098 Total Suspended Solids 88 - 110 mg/L

Eurofins TestAmerica, Buffalo

Page 8 of 16

4/28/2021

QC Sample Results

Client: O'Brien & Gere Inc of North America

Job ID: 480-183529-1

Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 480-577183/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 577183

Spike LCS LCS %Rec. Result Qualifier Analyte Added Unit %Rec Limits Total Suspended Solids 2160 2132 mg/L 99 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-577391/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 577391

MB MB

Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 10.0 4.0 mg/L **Total Dissolved Solids** ND 04/22/21 10:51

Lab Sample ID: LCS 480-577391/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 577391

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 501 493.0 mg/L 85 - 115

Eurofins TestAmerica, Buffalo

4/28/2021

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183529-1

GC/MS VOA

Analysis Batch: 576968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183529-2	EFFLUENT 041921 - GRAB	Total/NA	Wastewater	8260C	
MB 480-576968/7	Method Blank	Total/NA	Water	8260C	
LCS 480-576968/5	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 577183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183529-1	EFFLUENT 041921 - COMP	Total/NA	Wastewater	SM 2540D	
MB 480-577183/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-577183/4	Lab Control Sample	Total/NA	Water	SM 2540D	
LCS 480-577183/6	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 577391

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Ba
480-183529-1	EFFLUENT 041921 - COMP	Total/NA	Wastewater	SM2540 C	
MB 480-577391/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-577391/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-183529-1 Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 041921 - COMP

Lab Sample ID: 480-183529-1

Matrix: Wastewater

Date Collected: 04/19/21 07:20 Date Received: 04/20/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	577183	04/21/21 09:30	CSS	TAL BUF
Total/NA	Analysis	SM2540 C		1	577391	04/22/21 10:51	CSS	TAL BUF

Client Sample ID: EFFLUENT 041921 - GRAB

Lab Sample ID: 480-183529-2

Matrix: Wastewater

Date Collected: 04/19/21 07:20 Date Received: 04/20/21 08:00

Batch Batch Dilution Batch Prepared

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 576968 04/20/21 13:40 CRL TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183529-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	LAP	10026	04-01-22
The following analytes	are included in this report by	t the laboratory is not cortified	by the governing outhority. This list me	w include analytee for wh
,	• •	it the laboratory is not certified	by the governing authority. This list ma	ay include analytes for wh
The following analytes the agency does not of	• •	It the laboratory is not certified	by the governing authority. This list ma	ay include analytes for wh
,	• •	It the laboratory is not certified Matrix	by the governing authority. This list material and the state of the st	ay include analytes for wh

5

Q

10

11

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183529-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

7

8

4.6

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183529-1

	011 4 0 1 1D				_
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
480-183529-1	EFFLUENT 041921 - COMP	Wastewater	04/19/21 07:20	04/20/21 08:00	
480-183529-2	EFFLUENT 041921 - GRAB	Wastewater	04/19/21 07:20	04/20/21 08:00	

3

4

5

g

10

111

13

14

Chain of Custody Record

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	J	Chain of Custody Record	of Cus	tody R	ecorc					💸 eurofins Enviro	Environment Testing America
Client Information	Sampler:	in Koen	Dennecke		mazza,	Joe V		Camer Tracking No(s):		COC No: 480-145313-10587.1	
Client Contact: Mr. Yuri Veliz	Phone: 315	1729.	1300	E-Mail Joe.g	ı: iacomazz	a@testar	E-Mail: joe.giacomazza@testamericainc.com	State of Origin:		Page: Page 1 of 1	
Company: O'Brien & Gere Inc of North America			PWSID:				l o	Requested		Job#:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:	÷									
City. East Syracuse	TAT Requested (days):	ys):								A - HCL M - Hexa B - NaOH N - None C - Zn Acetate O - AsNa	M - Hexane N - None O - AsNaO2
State, Zip: NY, 13221	Compliance Project:	∆ Yes	Δ No								48 103
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO #: 1940002622				(0						203 04 Dodecahydrate
Email: yuri.veliz@ramboll.com	, MO#:				(ON						ne
Project Name Former Accurate Die Cast	Project #: 48008584				10 96						5 specify)
Site: New York	SSOW#				a) ds						
			Sample Type	Matrix (wwwater.	Filtered : MISM mre	T - balea_(480-183529	480-183529 Chain of Custody	ıstody	
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab) e	O=waste/oll, BT=Tissue, A=Air)	опал	2000			Total	Special Instructions/Note:	ns/Note:
	X	X.	Preservation Code	ion Code	Z X	V.	100	THE STATE OF THE PARTY OF THE P	X		
Effluent O4/92/	14-14-21	17:30	U	Water					d		
EALLENT 041921	4-19-21	7:20	9	water		\	₩		W		
									ķ		
, L					- ,5						
									SX	vracuse	
										700h	
									R	222	
tification	- 1				Sampl	e Dispos	al (A fee may be	assessed if sample	s are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
Non-Hazard Flammable Skin Irritant Poison B Dalivarable Bennested: 1.11 III IV Other (sneeds)	ison B Unknown		Radiological			Seturn To	Return To Client Disp	Disposal By Lab	Archi	Archive For Months	hs
Ceivelage requested: 1, 11, 111, Otter (specify)					obecia	INSTINCT	ons/dc Requirem	- 1			
Empty Kit Relinquished by:		Date:			Time:			Method of Shipment	ant		
Reinquisted by Feltran Reinquisted by	4-19-7	0//	10	Company	Kec	Received by:	11961h	Date/Time:	-19.21	10 UN Company	3
Relinquished by	Date/Time:	24 6	200	Company	Receive	Received by	W. Mare	Date/fime	100/	1 O 500 Company	8
Custody Seals Intact: Custody Seal No.:					Coo	ler Temper	Cooler Temperature(s) °C and Other Remarks			0	
Δ Yes Δ No								4	1	1	Ver. 11/01/2020

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-183529-1

Login Number: 183529 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator. Wallace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

J

6

8

10

12

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183833-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

T.

Authorized for release by: 5/7/2021 2:42:04 PM
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

results through
Total Access

Review your project

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

3

4

6

0

9

10

12

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Job ID: 480-183833-1

Glossary

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Eurofins TestAmerica, Buffalo

5/7/2021

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183833-1

Job ID: 480-183833-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183833-1

Comments

No additional comments.

Receipt

The sample was received on 4/27/2021~8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-

4

5

6

6

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183833-1

Client Sample ID: EFFLUENT - 042621

Lab Sample ID: 480-183833-1

Analyte	Result Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
Total Suspended Solids	4.8	4.0	4.0 mg/L		SM 2540D	Total/NA
Total Dissolved Solids	681	10.0	4.0 mg/L	1	SM2540 C	Total/NA

4

5

0

8

9

4 4

12

13

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183833-1

Matrix: Water

Job ID: 480-183833-1

Client Sample ID: EFFLUENT - 042621

Date Collected: 04/26/21 07:00 Date Received: 04/27/21 08:00

Gene	eral Chemistry									
Analy	te	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total	Dissolved Solids	681		10.0	4.0	mg/L			04/29/21 11:19	1
Analy	te	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total	Suspended Solids	4.8		4.0	4.0	mg/L			04/28/21 14:47	1

QC Sample Results

Client: O'Brien & Gere Inc of North America

Job ID: 480-183833-1

Prep Type: Total/NA

Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-578400/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 578400

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	ma/L			04/28/21 14:47	1

Lab Sample ID: LCS 480-578400/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 578400

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	394	393.6		mg/L		100	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-578552/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 578552

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit Prepared Analyzed Total Dissolved Solids ND 10.0 4.0 mg/L 04/29/21 11:19

Lab Sample ID: LCS 480-578552/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 578552

	Spike	LCS LCS				%Rec.	
Analyte	Added R	esult Qualifie	r Unit	D	%Rec	Limits	
Total Dissolved Solids	501	498.0	mg/L		100	85 - 115	

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183833-1

General Chemistry

Analysis Batch: 578400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183833-1	EFFLUENT - 042621	Total/NA	Water	SM 2540D	
MB 480-578400/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-578400/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 578552

Lab Sample ID 480-183833-1	Client Sample ID EFFLUENT - 042621	Prep Type Total/NA	Matrix Water	Method SM2540 C	Prep Batch
MB 480-578552/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-578552/2	Lab Control Sample	Total/NA	Water	SM2540 C	

3

4

5

0

0

10

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-183833-1

Project/Site: Former Accurate Die Cast

Date Received: 04/27/21 08:00

Client Sample ID: EFFLUENT - 042621

Lab Sample ID: 480-183833-1 Date Collected: 04/26/21 07:00

Matrix: Water

Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Total/NA SM 2540D 578400 CSS TAL BUF Analysis 04/28/21 14:47 Total/NA Analysis SM2540 C 578552 04/29/21 11:19 CSS TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183833-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date 04-01-22	
New York	NE	LAP	10026		
The following analytes	are included in this report, but	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for w	
the agency does not of	fer certification.	•	, , ,	ay include analytes for w	
• .	• •	it the laboratory is not certifi Matrix	ied by the governing authority. This list ma	ay include analytes for w	

Eurofins TestAmerica, Buffalo

- 0

5

6

0

10

11

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183833-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Л

5

6

10

11

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183833-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-183833-1	EFFLUENT - 042621	Water	04/26/21 07:00	04/27/21 08:00	

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-183833-1

Login Number: 183833 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

Overtion	A massar =	Commont
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

_

4

5

7

9

11

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184352-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

F

Authorized for release by: 5/17/2021 2:02:07 PM
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

4

8

46

11

13

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Job ID: 480-184352-1

Project/Site: Former Accurate Die Cast

Glossary

RPD

TEF

TEQ

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

5/17/2021

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184352-1

Job ID: 480-184352-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184352-1

Comments

No additional comments.

Receipt

The samples were received on 5/7/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: BETWEEN CARBONS 050621 (480-184352-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

А

0

0

9

10

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184352-1

Lah	Sample	ID.	480-1	84352-1
Lab	Jailible	, IU.	400-	104332-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	D Method	Prep Type
Total Dissolved Solids	860	10.0	4.0 mg/L	1	SM2540 C	Total/NA

Client Sample ID: BETWEEN CARBONS 050621

Lab Sample ID: 480-184352-2

Analyte	Result Qualifier	RL	MDL U	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	6.8	4.0	3.2 t	ug/L	4		8260C	Total/NA
Trichloroethene	170	4.0	1.8 ι	ug/L	4		8260C	Total/NA

Client Sample ID: EFFLUENT 050621

Lab Sample ID: 480-184352-3

No Detections.

9

10

16

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-184352-1

Matrix: Water

Job ID: 480-184352-1

Client Sample ID: EFFLUENT 050621

Date Collected: 05/06/21 07:00 Date Received: 05/07/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	860		10.0	4.0	mg/L			05/12/21 12:24	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			05/10/21 13:02	1

Client Sample ID: BETWEEN CARBONS 050621

Lab Sample ID: 480-184352-2 Date Collected: 05/06/21 07:00 **Matrix: Water**

Date Received: 05/07/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			05/08/21 18:30	4
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			05/08/21 18:30	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			05/08/21 18:30	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			05/08/21 18:30	4
1,1-Dichloroethane	ND		4.0	1.5	ug/L			05/08/21 18:30	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			05/08/21 18:30	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			05/08/21 18:30	4
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			05/08/21 18:30	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			05/08/21 18:30	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			05/08/21 18:30	4
1,2-Dichloroethane	ND		4.0	0.84	ug/L			05/08/21 18:30	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			05/08/21 18:30	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			05/08/21 18:30	4
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			05/08/21 18:30	4
2-Butanone (MEK)	ND		40	5.3	ug/L			05/08/21 18:30	4
2-Hexanone	ND		20	5.0	ug/L			05/08/21 18:30	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			05/08/21 18:30	4
Acetone	ND		40	12	ug/L			05/08/21 18:30	4
Benzene	ND		4.0	1.6	ug/L			05/08/21 18:30	4
Bromodichloromethane	ND		4.0	1.6	ug/L			05/08/21 18:30	4
Bromoform	ND		4.0	1.0	ug/L			05/08/21 18:30	4
Bromomethane	ND		4.0	2.8	ug/L			05/08/21 18:30	4
Carbon disulfide	ND		4.0	0.76	ug/L			05/08/21 18:30	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			05/08/21 18:30	4
Chlorobenzene	ND		4.0	3.0	ug/L			05/08/21 18:30	4
Chloroethane	ND		4.0	1.3	ug/L			05/08/21 18:30	4
Chloroform	ND		4.0		ug/L			05/08/21 18:30	4
Chloromethane	ND		4.0	1.4	ug/L			05/08/21 18:30	4
cis-1,2-Dichloroethene	6.8		4.0	3.2	ug/L			05/08/21 18:30	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			05/08/21 18:30	4
Cyclohexane	ND		4.0	0.72	ug/L			05/08/21 18:30	4
Dibromochloromethane	ND		4.0	1.3	ug/L			05/08/21 18:30	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			05/08/21 18:30	4
Ethylbenzene	ND		4.0	3.0	ug/L			05/08/21 18:30	4
Isopropylbenzene	ND		4.0		ug/L			05/08/21 18:30	4
Methyl acetate	ND		10	5.2	ug/L			05/08/21 18:30	4
Methyl tert-butyl ether	ND		4.0		ug/L			05/08/21 18:30	4
Methylcyclohexane	ND		4.0	0.64	ug/L			05/08/21 18:30	4
Methylene Chloride	ND		4.0	1.8	ug/L			05/08/21 18:30	4
Styrene	ND		4.0		ug/L			05/08/21 18:30	4

Eurofins TestAmerica, Buffalo

Page 6 of 19 5/17/2021

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-184352-2

Matrix: Water

Job ID: 480-184352-1

Client Sample ID: BETWEEN CARBONS 050621

Date Collected: 05/06/21 07:00 Date Received: 05/07/21 08:00

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND			4.0	1.4	ug/L			05/08/21 18:30	4
Toluene	ND			4.0	2.0	ug/L			05/08/21 18:30	4
trans-1,2-Dichloroethene	ND			4.0	3.6	ug/L			05/08/21 18:30	4
trans-1,3-Dichloropropene	ND			4.0	1.5	ug/L			05/08/21 18:30	4
Trichloroethene	170			4.0	1.8	ug/L			05/08/21 18:30	4
Trichlorofluoromethane	ND			4.0	3.5	ug/L			05/08/21 18:30	4
Vinyl chloride	ND			4.0	3.6	ug/L			05/08/21 18:30	4
Xylenes, Total	ND			8.0	2.6	ug/L			05/08/21 18:30	4
Surrogate	%Recovery	Qualifier	Limi	its				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		77 -	120			-		05/08/21 18:30	4
4-Bromofluorobenzene (Surr)	93		73 -	120					05/08/21 18:30	4
Dibromofluoromethane (Surr)	96		75 -	123					05/08/21 18:30	4

80 - 120

Client Sample ID: EFFLUENT 050621

Date Collected: 05/06/21 07:00 Date Received: 05/07/21 08:00

Toluene-d8 (Surr)

Lab Sample ID: 480-184352-3

05/08/21 18:30

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			05/08/21 18:52	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			05/08/21 18:52	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			05/08/21 18:52	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			05/08/21 18:52	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			05/08/21 18:52	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			05/08/21 18:52	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			05/08/21 18:52	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			05/08/21 18:52	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			05/08/21 18:52	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			05/08/21 18:52	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			05/08/21 18:52	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			05/08/21 18:52	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			05/08/21 18:52	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			05/08/21 18:52	1
2-Butanone (MEK)	ND	10	1.3	ug/L			05/08/21 18:52	1
2-Hexanone	ND	5.0	1.2	ug/L			05/08/21 18:52	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			05/08/21 18:52	1
Acetone	ND	10	3.0	ug/L			05/08/21 18:52	1
Benzene	ND	1.0	0.41	ug/L			05/08/21 18:52	1
Bromodichloromethane	ND	1.0	0.39	ug/L			05/08/21 18:52	1
Bromoform	ND	1.0	0.26	ug/L			05/08/21 18:52	1
Bromomethane	ND	1.0	0.69	ug/L			05/08/21 18:52	1
Carbon disulfide	ND	1.0	0.19	ug/L			05/08/21 18:52	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			05/08/21 18:52	1
Chlorobenzene	ND	1.0	0.75	ug/L			05/08/21 18:52	1
Chloroethane	ND	1.0	0.32	ug/L			05/08/21 18:52	1
Chloroform	ND	1.0	0.34	ug/L			05/08/21 18:52	1
Chloromethane	ND	1.0	0.35	ug/L			05/08/21 18:52	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			05/08/21 18:52	1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Date Received: 05/07/21 08:00

Job ID: 480-184352-1

Client Sample ID: EFFLUENT 050621

Lab Sample ID: 480-184352-3 Date Collected: 05/06/21 07:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/08/21 18:52	1
Cyclohexane	ND		1.0	0.18	ug/L			05/08/21 18:52	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/08/21 18:52	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/08/21 18:52	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/08/21 18:52	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/08/21 18:52	1
Methyl acetate	ND		2.5	1.3	ug/L			05/08/21 18:52	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/08/21 18:52	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/08/21 18:52	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/08/21 18:52	1
Styrene	ND		1.0	0.73	ug/L			05/08/21 18:52	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/08/21 18:52	1
Toluene	ND		1.0	0.51	ug/L			05/08/21 18:52	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/08/21 18:52	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/08/21 18:52	1
Trichloroethene	ND		1.0	0.46	ug/L			05/08/21 18:52	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/08/21 18:52	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/08/21 18:52	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/08/21 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120			-		05/08/21 18:52	1
4-Bromofluorobenzene (Surr)	91		73 - 120					05/08/21 18:52	1
Dibromofluoromethane (Surr)	98		75 - 123					05/08/21 18:52	1
Toluene-d8 (Surr)	88		80 - 120					05/08/21 18:52	1

5/17/2021

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184352-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

DOA DED DEEM TOL
DCA BFB DBFM TOL
Lab Sample ID Client Sample ID (77-120) (73-120) (75-123) (80-120)
480-184352-2 BETWEEN CARBONS 050621 95 93 96 85
480-184352-3 EFFLUENT 050621 98 91 98 88
LCS 480-579983/5 Lab Control Sample 95 96 103 93
MB 480-579983/7 Method Blank 94 92 102 88

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184352-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-579983/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/08/21 12:29	•
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/08/21 12:29	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/08/21 12:29	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/08/21 12:29	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/08/21 12:29	•
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/08/21 12:29	•
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/08/21 12:29	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/08/21 12:29	•
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/08/21 12:29	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/08/21 12:29	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/08/21 12:29	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/08/21 12:29	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/08/21 12:29	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/08/21 12:29	
2-Butanone (MEK)	ND		10	1.3	ug/L			05/08/21 12:29	
2-Hexanone	ND		5.0	1.2	ug/L			05/08/21 12:29	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/08/21 12:29	
Acetone	ND		10	3.0	ug/L			05/08/21 12:29	
Benzene	ND		1.0	0.41	ug/L			05/08/21 12:29	
Bromodichloromethane	ND		1.0	0.39	_			05/08/21 12:29	
Bromoform	ND		1.0		ug/L			05/08/21 12:29	
Bromomethane	ND		1.0		ug/L			05/08/21 12:29	
Carbon disulfide	ND		1.0		ug/L			05/08/21 12:29	
Carbon tetrachloride	ND		1.0		ug/L			05/08/21 12:29	
Chlorobenzene	ND		1.0		ug/L			05/08/21 12:29	
Chloroethane	ND		1.0		ug/L			05/08/21 12:29	
Chloroform	ND		1.0	0.34	-			05/08/21 12:29	
Chloromethane	ND		1.0	0.35				05/08/21 12:29	
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/08/21 12:29	
cis-1,3-Dichloropropene	ND		1.0		ug/L			05/08/21 12:29	
Cyclohexane	ND		1.0		ug/L			05/08/21 12:29	
Dibromochloromethane	ND		1.0	0.32	_			05/08/21 12:29	
Dichlorodifluoromethane	ND		1.0	0.68	_			05/08/21 12:29	
Ethylbenzene	ND		1.0		ug/L			05/08/21 12:29	
Isopropylbenzene	ND		1.0		ug/L			05/08/21 12:29	
Methyl acetate	ND		2.5		ug/L			05/08/21 12:29	,
Methyl tert-butyl ether	ND		1.0		ug/L			05/08/21 12:29	,
Methylcyclohexane	ND		1.0		ug/L			05/08/21 12:29	,
Methylene Chloride	ND		1.0		ug/L			05/08/21 12:29	,
Styrene	ND		1.0		ug/L			05/08/21 12:29	,
Tetrachloroethene	ND		1.0		ug/L			05/08/21 12:29	,
Toluene	ND ND		1.0		ug/L ug/L			05/08/21 12:29	
trans-1,2-Dichloroethene	ND				ug/L ug/L				
			1.0					05/08/21 12:29	,
trans-1,3-Dichloropropene Trichloroethene	ND		1.0		ug/L			05/08/21 12:29	,
	ND ND		1.0		ug/L			05/08/21 12:29	
Trichlorofluoromethane	ND		1.0		ug/L			05/08/21 12:29	,
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			05/08/21 12:29 05/08/21 12:29	,

Eurofins TestAmerica, Buffalo

Page 10 of 19

2

3

5

7

^

10

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184352-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-579983/7

Lab Sample ID: LCS 480-579983/5

Matrix: Water

Methylcyclohexane

Analysis Batch: 579983

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 94 77 - 120 05/08/21 12:29 4-Bromofluorobenzene (Surr) 92 73 - 120 05/08/21 12:29 Dibromofluoromethane (Surr) 102 75 - 123 05/08/21 12:29 Toluene-d8 (Surr) 88 80 - 120 05/08/21 12:29

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab cample is: Loc 400 07000070				Gilont Gampio		or oump
Matrix: Water					Prep Type	e: Total/N
Analysis Batch: 579983						
	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	25.5	ug/L	102	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.6	ug/L	98	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.7	ug/L	99	61 ₋ 148	
ne					- 111 - 122 - 1 - 1	
1,1,2-Trichloroethane	25.0	25.9	ug/L	103	76 - 122	
1,1-Dichloroethane	25.0	26.4	ug/L	106	77 - 120	
1,1-Dichloroethene	25.0	24.3	ug/L	97	66 - 127	
1,2,4-Trichlorobenzene	25.0	23.4	ug/L	94	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	23.7	ug/L	95	56 - 134	
1,2-Dibromoethane	25.0	26.9	ug/L	107	77 - 120	
1,2-Dichlorobenzene	25.0	23.8	ug/L	95	80 - 124	
1,2-Dichloroethane	25.0	25.6	ug/L	102	75 _ 120	
1,2-Dichloropropane	25.0	26.4	ug/L	106	76 - 120	
1,3-Dichlorobenzene	25.0	24.3	ug/L	97	77 - 120	
1,4-Dichlorobenzene	25.0	23.8	ug/L	95	80 _ 120	
2-Butanone (MEK)	125	138	ug/L	110	57 - 140	
2-Hexanone	125	137	ug/L	110	65 _ 127	
4-Methyl-2-pentanone (MIBK)	125	137	ug/L	110	71 - 125	
Acetone	125	140	ug/L	112	56 ₋ 142	
Benzene	25.0	25.0	ug/L	100	71 _ 124	
Bromodichloromethane	25.0	25.4	ug/L	102	80 - 122	
Bromoform	25.0	24.1	ug/L	96	61 ₋ 132	
Bromomethane	25.0	23.7	ug/L	95	55 - 144	
Carbon disulfide	25.0	23.3	ug/L	93	59 ₋ 134	
Carbon tetrachloride	25.0	24.0	ug/L	96	72 _ 134	
Chlorobenzene	25.0	25.0	ug/L	100	80 _ 120	
Chloroethane	25.0	24.7	ug/L	99	69 ₋ 136	
Chloroform	25.0	25.1	ug/L	101	73 - 127	
Chloromethane	25.0	26.8	ug/L	107	68 - 124	
cis-1,2-Dichloroethene	25.0	25.3	ug/L	101	74 - 124	
cis-1,3-Dichloropropene	25.0	24.9	ug/L	100	74 - 124	
Cyclohexane	25.0	23.9	ug/L	95	59 ₋ 135	
_			_			
Dibromochloromethane	25.0	25.2	ug/L	101	75 - 125	
Dichlorodifluoromethane	25.0	24.8	ug/L	99	59 ₋ 135	
Ethylbenzene	25.0	24.7	ug/L	99	77 - 123	
Isopropylbenzene	25.0	23.9	ug/L	95	77 - 122	
Methyl acetate	50.0	52.6	ug/L	105	74 - 133	
Methyl tert-butyl ether	25.0	25.6	ug/L	102	77 - 120	
Mothylayalahayana	25.0	22.1	ua/I	02	60 124	

Eurofins TestAmerica, Buffalo

68 - 134

92

Page 11 of 19

23.1

ug/L

25.0

Job ID: 480-184352-1

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-579983/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 579983

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	26.2		ug/L		105	75 - 124	
Styrene	25.0	24.7		ug/L		99	80 - 120	
Tetrachloroethene	25.0	25.1		ug/L		100	74 - 122	
Toluene	25.0	23.9		ug/L		96	80 _ 122	
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	73 _ 127	
trans-1,3-Dichloropropene	25.0	25.9		ug/L		104	80 _ 120	
Trichloroethene	25.0	24.6		ug/L		98	74 - 123	
Trichlorofluoromethane	25.0	23.9		ug/L		96	62 _ 150	
Vinyl chloride	25.0	25.2		ug/L		101	65 _ 133	

LCS LCS

%Recovery	Qualifier	Limits
95		77 - 120
96		73 - 120
103		75 - 123
93		80 - 120
	95 96 103	95 96 103

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-580155/1

Matrix: Water

Analysis Batch: 580155

MB MB

Analyte	Result	Qualifier	RL	RL	Unit	D	Prep	ared	Analyzed	Dil Fac	
Total Suspended Solids	ND		1.0	1.0	mg/L				05/10/21 13:02	1	

Lab Sample ID: LCS 480-580155/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580155

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	397	396.4		mg/L		100	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-580554/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 580554

MB	MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND	10.0	4.0 mg/L			05/12/21 12:24	1

Lab Sample ID: LCS 480-580554/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580554

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	501	500.0		mg/L		100	85 _ 115	

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184352-1

GC/MS VOA

Analysis Batch: 579983

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184352-2	BETWEEN CARBONS 050621	Total/NA	Water	8260C	
480-184352-3	EFFLUENT 050621	Total/NA	Water	8260C	
MB 480-579983/7	Method Blank	Total/NA	Water	8260C	
LCS 480-579983/5	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 580155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184352-1	EFFLUENT 050621	Total/NA	Water	SM 2540D	
MB 480-580155/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-580155/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 580554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-184352-1	EFFLUENT 050621	Total/NA	Water	SM2540 C	
MB 480-580554/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-580554/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-184352-2

Lab Sample ID: 480-184352-3

Lab Sample ID: 480-184352-1

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 480-184352-1

Client Sample ID: EFFLUENT 050621

Date Collected: 05/06/21 07:00 Date Received: 05/07/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	580155	05/10/21 13:02	JGO	TAL BUF
Total/NA	Analysis	SM2540 C		1	580554	05/12/21 12:24	JGO	TAL BUF

Client Sample ID: BETWEEN CARBONS 050621

Date Collected: 05/06/21 07:00

Date Received: 05/07/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		4	579983	05/08/21 18:30	WJD	TAL BUF

Client Sample ID: EFFLUENT 050621

Date Collected: 05/06/21 07:00

Date Received: 05/07/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	579983	05/08/21 18:52	WJD	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

A

5

6

8

10

13

14

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184352-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
New York	NI	ELAP	10026		
The following analytee	are moladed in this report, by	at the laboratory is not certify	ed by the governing authority. This list ma	ay include analytes for v	
the agency does not of	• '	at the laboratory is not certifi	ed by the governing additionty. This list me	ay include analytes for v	
,	• '	Matrix	Analyte	ay include analytes for v	

3

4

5

6

ð

10

12

1/

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184352-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

7

8

16

11

16

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184352-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
480-184352-1	EFFLUENT 050621	Water	05/06/21 07:00	05/07/21 08:00	
480-184352-2	BETWEEN CARBONS 050621	Water	05/06/21 07:00	05/07/21 08:00	
480-184352-3	EFFLUENT 050621	Water	05/06/21 07:00	05/07/21 08:00	

3

4

0

9

a a

12

11

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-184352-1

Login Number: 184352 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator: Wallace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

_

4

6

ŏ

11

13

14

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184473-1

Client Project/Site: Former Accurate Die Cast

or:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Zy-

Authorized for release by: 5/20/2021 4:34:06 PM
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

4

8

10

11

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Job ID: 480-184473-1

Project/Site: Former Accurate Die Cast

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RL RPD

TEF

TEQ

TNTC

<u> </u>	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins TestAmerica, Buffalo

Page 3 of 14

E

5

6

7

_

10

4.6

13

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184473-1

Job ID: 480-184473-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184473-1

Comments

No additional comments.

Receipt

The sample was received on 5/11/2021 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

J

6

9

10

11

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184473-1

Client Sample ID: EFFLUENT 051021

Lab Sample ID: 480-184473-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	644	10.0	4.0 mg/L		SM2540 C	Total/NA

4

J

Q

10

40

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-184473-1

Matrix: Water

Job ID: 480-184473-1

Client Sample ID: EFFLUENT 051021

Date Collected: 05/10/21 07:20 Date Received: 05/11/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	644		10.0	4.0	mg/L			05/14/21 10:19	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			05/12/21 09:54	1

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184473-1

Prep Type: Total/NA

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-580500/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 580500

-	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	ma/l			05/12/21 09:54	

Lab Sample ID: LCS 480-580500/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 580500

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	392	381.2		mg/L		97	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-580960/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580960

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit Prepared Analyzed Total Dissolved Solids ND 10.0 4.0 mg/L 05/14/21 10:19

Lab Sample ID: LCS 480-580960/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580960

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	512	476.0		mg/L		93	85 - 115	

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184473-1

General Chemistry

Analysis Batch: 580500

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184473-1	EFFLUENT 051021	Total/NA	Water	SM 2540D	
MB 480-580500/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-580500/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 580960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184473-1	EFFLUENT 051021	Total/NA	Water	SM2540 C	
MB 480-580960/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-580960/2	Lab Control Sample	Total/NA	Water	SM2540 C	

3

4

C

R

9

10

12

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-184473-1

Project/Site: Former Accurate Die Cast

Date Received: 05/11/21 08:00

Client Sample ID: EFFLUENT 051021

Lab Sample ID: 480-184473-1 Date Collected: 05/10/21 07:20

Matrix: Water

	Batcl	n Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analy	sis SM 2540D)	1	580500	05/12/21 09:54	CSS	TAL BUF
Total/NA	Analy	sis SM2540 C	;	1	580960	05/14/21 10:19	CSS	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184473-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date		
New York	NE	LAP	10026	04-01-22		
The following analytes	are included in this report, but	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for w		
the agency does not of	fer certification.	•	, , ,	ay include analytes for w		
• .	• •	it the laboratory is not certifi Matrix	ied by the governing authority. This list ma	ay include analytes for w		

Eurofins TestAmerica, Buffalo

Page 10 of 14

4

4

5

7

9

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184473-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

G

J

4

5

6

6

9

10

11

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184473-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-184473-1	EFFLUENT 051021	Water	05/10/21 07:20	05/11/21 08:00	

6

0

9

44

12

13

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Environment Testing

💸 eurofins

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-184473-1

Login Number: 184473 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

Structure Francisco		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

2

E

6

8

46

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184819-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Authorized for release by: 5/28/2021 11:44:17 AM

Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receint Checklists	18

4

8

46

11

13

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Job ID: 480-184819-1

Glossary

QC

RER

RPD

TEF

TEQ

TNTC

RL

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Cioodary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184819-1

Job ID: 480-184819-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184819-1

Comments

No additional comments.

Receipt

The samples were received on 5/18/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-581601 recovered above the upper control limit for Isopropylbenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: Effluent 051721 - G (480-184819-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

.

4

5

6

10

4.0

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184819-1

Client Sample ID: Effluent 051721 - C

Lab Sample ID: 480-184819-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Dissolved Solids	787		10.0	4.0	mg/L	1		SM2540 C	Total/NA

Client Sample ID: Effluent 051721 - G

Lab Sample ID: 480-184819-2

No Detections.

-4

5

7

9

44

12

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184819-1

Client Sample ID: Effluent 051721 - C

Date Collected: 05/17/21 07:00 Date Received: 05/18/21 08:00

Lab Sample ID: 480-184819-1

Matrix: Water

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	787		10.0	4.0	mg/L			05/21/21 09:12	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			05/19/21 09:34	1

Client Sample ID: Effluent 051721 - G

Date Collected: 05/17/21 07:00

Date Received: 05/18/21 08:00

Matrix: Water

Method: 8260C - Volatile Organic	Compounds b	y GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/19/21 16:05	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/19/21 16:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/19/21 16:05	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/19/21 16:05	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/19/21 16:05	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/19/21 16:05	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/19/21 16:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/19/21 16:05	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			05/19/21 16:05	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			05/19/21 16:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			05/19/21 16:05	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			05/19/21 16:05	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			05/19/21 16:05	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			05/19/21 16:05	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			05/19/21 16:05	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			05/19/21 16:05	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			05/19/21 16:05	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			05/19/21 16:05	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			05/19/21 16:05	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			05/19/21 16:05	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			05/19/21 16:05	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			05/19/21 16:05	1
2-Butanone (MEK)	ND	10	1.3	ug/L			05/19/21 16:05	1
2-Hexanone	ND	5.0	1.2	ug/L			05/19/21 16:05	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			05/19/21 16:05	1
Acetone	ND	10	3.0	ug/L			05/19/21 16:05	1
Benzene	ND	1.0	0.41	ug/L			05/19/21 16:05	1
Bromodichloromethane	ND	1.0	0.39	ug/L			05/19/21 16:05	1
Bromoform	ND	1.0	0.26	ug/L			05/19/21 16:05	1
Bromomethane	ND	1.0	0.69	ug/L			05/19/21 16:05	1
Carbon disulfide	ND	1.0	0.19	ug/L			05/19/21 16:05	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			05/19/21 16:05	1
Chlorobenzene	ND	1.0	0.75	ug/L			05/19/21 16:05	1
Chloroethane	ND	1.0	0.32	ug/L			05/19/21 16:05	1
Chloroform	ND	1.0	0.34	ug/L			05/19/21 16:05	1
Chloromethane	ND	1.0	0.35	ug/L			05/19/21 16:05	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			05/19/21 16:05	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			05/19/21 16:05	1
Cyclohexane	ND	1.0	0.18	ug/L			05/19/21 16:05	1
Dibromochloromethane	ND	1.0	0.32	ug/L			05/19/21 16:05	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			05/19/21 16:05	1
Ethylbenzene	ND	1.0	0.74	ug/L			05/19/21 16:05	1
Isopropylbenzene	ND	1.0	0.79	ug/L			05/19/21 16:05	1
Methyl acetate	ND	2.5	1.3	ug/L			05/19/21 16:05	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			05/19/21 16:05	1
Methylcyclohexane	ND	1.0	0.16	ug/L			05/19/21 16:05	1
Methylene Chloride	ND	1.0	0.44	ug/L			05/19/21 16:05	1
Styrene	ND	1.0	0.73	ug/L			05/19/21 16:05	1

Eurofins TestAmerica, Buffalo

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184819-1

Client Sample ID: Effluent 051721 - G

Lab Sample ID: 480-184819-2 Date Collected: 05/17/21 07:00 Matrix: Water

Date Received: 05/18/21 08:00

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND ND		1.0	0.36	ug/L			05/19/21 16:05	1
Toluene	ND		1.0	0.51	ug/L			05/19/21 16:05	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/19/21 16:05	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/19/21 16:05	1
Trichloroethene	ND		1.0	0.46	ug/L			05/19/21 16:05	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/19/21 16:05	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/19/21 16:05	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/19/21 16:05	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		77 - 120			_		05/19/21 16:05	1
4-Bromofluorobenzene (Surr)	87		73 - 120					05/19/21 16:05	1
Dibromofluoromethane (Surr)	83		75 - 123					05/19/21 16:05	1
Toluene-d8 (Surr)	101		80 - 120					05/19/21 16:05	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184819-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_				Percent Sui	rogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-184819-2	Effluent 051721 - G	85	87	83	101
LCS 480-581601/5	Lab Control Sample	89	90	84	101
MB 480-581601/7	Method Blank	90	85	83	99
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184819-1

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

ND

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: MB 480-581601/7

Matrix: Water

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Toluene

Analysis Batch: 581601

Client Sample ID: Method Blank Prep Type: Total/NA

	IVID	IVID						
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		05/19/21 14:04	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L		05/19/21 14:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L		05/19/21 14:04	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L		05/19/21 14:04	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L		05/19/21 14:04	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L		05/19/21 14:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L		05/19/21 14:04	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L		05/19/21 14:04	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L		05/19/21 14:04	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L		05/19/21 14:04	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L		05/19/21 14:04	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L		05/19/21 14:04	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L		05/19/21 14:04	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L		05/19/21 14:04	1
2-Butanone (MEK)	ND		10	1.3	ug/L		05/19/21 14:04	1
2-Hexanone	ND		5.0	1.2	ug/L		05/19/21 14:04	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L		05/19/21 14:04	1
Acetone	ND		10	3.0	ug/L		05/19/21 14:04	1
Benzene	ND		1.0	0.41	ug/L		05/19/21 14:04	1
Bromodichloromethane	ND		1.0	0.39	ug/L		05/19/21 14:04	1
Bromoform	ND		1.0	0.26	ug/L		05/19/21 14:04	1
Bromomethane	ND		1.0	0.69	ug/L		05/19/21 14:04	1
Carbon disulfide	ND		1.0	0.19	ug/L		05/19/21 14:04	1
Carbon tetrachloride	ND		1.0	0.27	ug/L		05/19/21 14:04	1
Chlorobenzene	ND		1.0	0.75	ug/L		05/19/21 14:04	1
Chloroethane	ND		1.0	0.32	ug/L		05/19/21 14:04	1
Chloroform	ND		1.0	0.34	ug/L		05/19/21 14:04	1
Chloromethane	ND		1.0	0.35	ug/L		05/19/21 14:04	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L		05/19/21 14:04	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L		05/19/21 14:04	1
Cyclohexane	ND		1.0	0.18	ug/L		05/19/21 14:04	1
Dibromochloromethane	ND		1.0	0.32	ug/L		05/19/21 14:04	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L		05/19/21 14:04	1
Ethylbenzene	ND		1.0	0.74	ug/L		05/19/21 14:04	1
Isopropylbenzene	ND		1.0	0.79	ug/L		05/19/21 14:04	1
Methyl acetate	ND		2.5	1.3	ug/L		05/19/21 14:04	1
Methyl tert-butyl ether	ND		1.0	0.16			05/19/21 14:04	1
Methylcyclohexane	ND		1.0	0.16	ug/L		05/19/21 14:04	1
Methylene Chloride	ND		1.0	0.44	ug/L		05/19/21 14:04	1
Styrene	ND		1.0	0.73	ug/L		05/19/21 14:04	1

Eurofins TestAmerica, Buffalo

5/28/2021

05/19/21 14:04

05/19/21 14:04

05/19/21 14:04

05/19/21 14:04

05/19/21 14:04

05/19/21 14:04

05/19/21 14:04

05/19/21 14:04

Page 9 of 18

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

3

5

0

9

1 4

12

4 4

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184819-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-581601/7

Lab Sample ID: LCS 480-581601/5

Matrix: Water

Analysis Batch: 581601

Client Sample ID: Method Blank **Prep Type: Total/NA**

MB MB

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	77 - 120		05/19/21 14:04	1
4-Bromofluorobenzene (Surr)	85	73 - 120		05/19/21 14:04	1
Dibromofluoromethane (Surr)	83	75 - 123		05/19/21 14:04	1
Toluene-d8 (Surr)	99	80 - 120		05/19/21 14:04	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 581601

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	23.9		ug/L		96	73 - 126
1,1,2,2-Tetrachloroethane	25.0	27.6		ug/L		110	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.4		ug/L		106	61 ₋ 148
ne							
1,1,2-Trichloroethane	25.0	26.4		ug/L		106	76 ₋ 122
1,1-Dichloroethane	25.0	25.0		ug/L		100	77 - 120
1,1-Dichloroethene	25.0	25.6		ug/L		102	66 - 127
1,2,4-Trichlorobenzene	25.0	23.4		ug/L		94	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	20.1		ug/L		80	56 - 134
1,2-Dibromoethane	25.0	24.3		ug/L		97	77 - 120
1,2-Dichlorobenzene	25.0	25.2		ug/L		101	80 - 124
1,2-Dichloroethane	25.0	22.7		ug/L		91	75 - 120
1,2-Dichloropropane	25.0	25.6		ug/L		103	76 ₋ 120
1,3-Dichlorobenzene	25.0	26.9		ug/L		108	77 ₋ 120
1,4-Dichlorobenzene	25.0	25.4		ug/L		101	80 _ 120
2-Butanone (MEK)	125	119		ug/L		95	57 - 140
2-Hexanone	125	128		ug/L		102	65 ₋ 127
4-Methyl-2-pentanone (MIBK)	125	128		ug/L		103	71 - 125
Acetone	125	107		ug/L		85	56 ₋ 142
Benzene	25.0	25.2		ug/L		101	71 - 124
Bromodichloromethane	25.0	24.6		ug/L		98	80 - 122
Bromoform	25.0	23.1		ug/L		93	61 - 132
Bromomethane	25.0	29.9		ug/L		119	55 - 144
Carbon disulfide	25.0	27.8		ug/L		111	59 ₋ 134
Carbon tetrachloride	25.0	22.9		ug/L		92	72 ₋ 134
Chlorobenzene	25.0	25.5		ug/L		102	80 _ 120
Chloroethane	25.0	28.4		ug/L		113	69 - 136
Chloroform	25.0	23.5		ug/L		94	73 - 127
Chloromethane	25.0	25.4		ug/L		102	68 - 124
cis-1,2-Dichloroethene	25.0	23.9		ug/L		95	74 ₋ 124
cis-1,3-Dichloropropene	25.0	26.4		ug/L		105	74 - 124
Cyclohexane	25.0	27.2		ug/L		109	59 ₋ 135
Dibromochloromethane	25.0	25.1		ug/L		100	75 - 125
Dichlorodifluoromethane	25.0	28.3		ug/L		113	59 ₋ 135
Ethylbenzene	25.0	27.8		ug/L		111	77 _ 123
Isopropylbenzene	25.0	30.1		ug/L		120	77 ₋ 122
Methyl acetate	50.0	39.7		ug/L		79	74 ₋ 133
Methyl tert-butyl ether	25.0	22.8		ug/L		91	77 - 120
,,	25.0	29.2		ug/L		117	68 - 134

Eurofins TestAmerica, Buffalo

Page 10 of 18

5/28/2021

Job ID: 480-184819-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-581601/5

Matrix: Water

Analysis Batch: 581601

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	24.3		ug/L		97	75 - 124	
Styrene	25.0	27.2		ug/L		109	80 - 120	
Tetrachloroethene	25.0	27.1		ug/L		108	74 - 122	
Toluene	25.0	28.0		ug/L		112	80 - 122	
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	73 - 127	
trans-1,3-Dichloropropene	25.0	28.4		ug/L		114	80 - 120	
Trichloroethene	25.0	25.3		ug/L		101	74 - 123	
Trichlorofluoromethane	25.0	27.5		ug/L		110	62 - 150	
Vinyl chloride	25.0	29.0		ug/L		116	65 - 133	

LCS LCS

%Recovery	Qualifier	Limits
89		77 - 120
90		73 - 120
84		75 - 123
101		80 - 120
	89 90 84	90 84

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-581617/1

Matrix: Water

Analysis Batch: 581617

MB MB

AnalyteResultQualifierRLRLUnitDPreparedAnalyzedDil FacTotal Suspended SolidsND4.04.0mg/L05/19/21 09:341

Lab Sample ID: LCS 480-581617/2

Matrix: Water

Analysis Batch: 581617

Analysis Baton, 661617	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	303	300.4		mg/L		99	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-582005/1

Matrix: Water

Analysis Batch: 582005

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			05/21/21 09:12	1

Lab Sample ID: LCS 480-582005/2

Matrix: Water

Analysis Batch: 582005

-		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	 	508	483.0		mg/L		95	85 - 115	

Eurofins TestAmerica, Buffalo

3

<u>+</u>

6

8

10

13

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-184819-1

GC/MS VOA

Analysis Batch: 581601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184819-2	Effluent 051721 - G	Total/NA	Water	8260C	
MB 480-581601/7	Method Blank	Total/NA	Water	8260C	
LCS 480-581601/5	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 581617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184819-1	Effluent 051721 - C	Total/NA	Water	SM 2540D	
MB 480-581617/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-581617/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 582005

Lab Sample ID 480-184819-1	Client Sample ID Effluent 051721 - C	Prep Type Total/NA	- Matrix Water	Method SM2540 C	Prep Batch
MB 480-582005/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-582005/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: Effluent 051721 - C

Lab Sample ID: 480-184819-1

Matrix: Water

Job ID: 480-184819-1

Date Collected: 05/17/21 07:00 Date Received: 05/18/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	581617	05/19/21 09:34	JGO	TAL BUF
Total/NA	Analysis	SM2540 C		1	582005	05/21/21 09:12	JGO	TAL BUF

Client Sample ID: Effluent 051721 - G

Analysis

8260C

Lab Sample ID: 480-184819-2

TAL BUF

Matrix: Water

Date Collected: 05/17/21 07:00 Date Received: 05/18/21 08:00

-Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

581601

05/19/21 16:05

CRL

Laboratory References:

Total/NA

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

5

9

IV

12

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184819-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date 04-01-22	
New York	NE	LAP	10026		
		1 (b) - 1 - b 1 1 1 CC	 J. B. B. Grander, A. G. G. B. G. B. B. C. C.		
The following analytes	are included in this report, but	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wh	
The following analytes the agency does not of	. ,	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wh	
,	. ,	t the laboratory is not certifi Matrix	ied by the governing authority. This list ma Analyte	ay include analytes for wl	

6

8

11

12

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184819-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

ŏ

4.6

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-184819-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-184819-1	Effluent 051721 - C	Water	05/17/21 07:00	05/18/21 08:00	
480-184819-2	Effluent 051721 - G	Water	05/17/21 07:00	05/18/21 08:00	

4

_

9

11

4.0

14

Chain of Custody Record

Euronns TestAmerica, Buffalo			
10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	Chain of Custody Record	ody Record	eurofins Environment Testing America
Client Information	Sampler.	Lab PM:	Camp acking Nuts):
Client Contact: Mr. Yuri Veliz	139-1300	Т	State of Orgin: Page:
Company: O'Brien & Gere Inc of North America	<u>a.</u>		# CC Job#
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:	Alialysis Re	requested Preservation Codes:
City: East Syracuse	TAT Requested (days):		A - HCL M - Hexane B - NaOH N - None
ap. 3221	Compliance Project: A Yes A No	I	
956-6100(Tel) 315-463-7554(Fax)	PO#: 1940002622	S	מיני
Email: yuri veliz@ramboll.com	WO#:	o) spilos	TSP Dodecahydrate Acetone
ct Name: mer Accurate Die Cast	Project #: 48008584	or N	MCAA PM-AA phar (snoris)
Site: New York	SSOW#:	Spende	
	Sample (Type (Sample (C=comp.	(Warwaler, Sassold, Sassold, Sassold, Sassold, Calcul - Total Sus	480-184819 Chain of Custody
Sample Identification	G=grab)	Tiel Set	Special Instructions/Note:
Effluent 051721	5-17-21 12:00		
EAGLUIT OSIAZI	7 0012	1	6
	6	C	m
0			
()			
		Sample Disposal (A fee may be	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
	SOLI D. OTIKLIOWII RADIOLOGICAL	Special Instructions/QC Requirements	Disposal By Lab Archive For Months
Empty Kit Relinquished by:	Date	Timo	. Г
1 11		Company Received by	
1 Kommer	21/10:00	^	4 S-12-21, 10 in Company
Relinquished by:	Date/Time: 12-2/ 1200	Complete Beeslind	Uate/Time: Company
Custody Seal No		received by:	SISING Company
△ Yes △ No		Cooler Temperature(s) °C and Other Remarks	Remarks: 3.3 HT
			Ver. 11/01/2020

Client: O'Brien & Gere Inc of North America

Job Number: 480-184819-1

Login Number: 184819

List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

Question Answer Comment
Radioactivity either was not measured or, if measured, is at or below True
background
The cooler's custody seal, if present, is intact. True
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable. True
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC?
There are no discrepancies between the sample IDs on the containers and the COC.
Samples are received within Holding Time (Excluding tests with immediate HTs)
Sample containers have legible labels. True
Containers are not broken or leaking.
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.
If necessary, staff have been informed of any short hold time or quick TAT True needs
Multiphasic samples are not present. True
Samples do not require splitting or compositing.
Sampling Company provided. True OBG
Samples received within 48 hours of sampling.
Samples requiring field filtration have been filtered in the field. N/A
Chlorine Residual checked. N/A

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-185391-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

T

Authorized for release by: 6/10/2021 11:20:33 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

4

5

9

11

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Job ID: 480-185391-1 Project/Site: Former Accurate Die Cast

Glossary

RL

RPD

TEF

TEQ

TNTC

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins TestAmerica, Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185391-1

Job ID: 480-185391-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-185391-1

Comments

No additional comments.

Receipt

The sample was received on 5/29/2021 9:20 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

6/10/2021

Eurofins TestAmerica, Buffalo

Page 4 of 14

9

•

4

E

6

1 N

4 4

IR

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185391-1

12

Client Sample ID: Efluent 052821

Lab Sample ID: 480-185391-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	647	10.0	4.0 mg/L	1	SM2540 C	Total/NA

4

J

7

Ŏ

10

1 1

13

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-185391-1

Matrix: Water

Job ID: 480-185391-1

Client Sample ID: Efluent 052821

Date Collected: 05/28/21 07:00 Date Received: 05/29/21 09:20

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	647		10.0	4.0	mg/L			06/02/21 11:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			06/01/21 14:06	1

QC Sample Results

Client: O'Brien & Gere Inc of North America

Job ID: 480-185391-1

Prep Type: Total/NA

Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-583465/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 583465

MB MB Dil Fac Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Total Suspended Solids ND 4.0 4.0 mg/L 06/01/21 14:06

Lab Sample ID: LCS 480-583465/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 583465

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 296 289.2 mg/L 98 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-583630/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 583630

MB MB Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 06/02/21 11:36

Lab Sample ID: LCS 480-583630/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 583630

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 502 484.0 85 - 115 mg/L

Eurofins TestAmerica, Buffalo

6/10/2021

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-185391-1

General Chemistry

Analysis Batch: 583465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185391-1	Efluent 052821	Total/NA	Water	SM 2540D	
MB 480-583465/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-583465/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 583630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185391-1	Efluent 052821	Total/NA	Water	SM2540 C	
MB 480-583630/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-583630/2	Lab Control Sample	Total/NA	Water	SM2540 C	

6

3

4

6

8

9

11

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-185391-1

Project/Site: Former Accurate Die Cast

Client Sample ID: Efluent 052821

Lab Sample ID: 480-185391-1 Date Collected: 05/28/21 07:00

Matrix: Water

Date Received: 05/29/21 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	583465	06/01/21 14:06	JGO	TAL BUF
Total/NA	Analysis	SM2540 C		1	583630	06/02/21 11:36	JGO	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185391-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	LAP	10026	04-01-22
		1 (b) - 1 - b 1 1 1 CC	 J. B. B. Grander, A. G. G. B. G. B. B. C. C.	
The following analytes	are included in this report, but	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wh
The following analytes the agency does not of	. ,	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wh
,	. ,	t the laboratory is not certifi Matrix	ied by the governing authority. This list ma Analyte	ay include analytes for wl

6

8

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185391-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

6

1

8

9

ш

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-185391-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-185391-1	Efluent 052821	Water	05/28/21 07:00	05/29/21 09:20	

3

4

0

9

4 4

12

13

13

14

Chain of Custody Record

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

seurofins Environment Testing America

		1		Lab PM:				(arrier Tracking No(s)		OOC No.		
Client Information	1119R IN	ROENNEC	vecke	Giaco	Giacomazza, Joe V	oe V			しなここの	a	480-158062-10586	10586.1	
Mr. Yuri Veliz	215-72	29-13	300	E-Mail: joe.gia	comazz	a@testa	E-Mail: joe.giacomazza@testamericainc.com) mos	tate of Origin		Page:		
Company: O'Brien & Gere Inc of North America			/SID:				Ā	Analysis Reoffes	#225		Job #:		
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:										Preservation Codes:	Codes:	
se	TAT Requested (days):										A - HCL B - NaOH		ane
State, Zip: NY, 13221	ject:	A Yes A No	۰								C - Zn Acetate D - Nitric Acid E - NaHSO4		O - AsnaO2 P - Na2O4S Q - Na2SO3
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO #: 1940002622					sį					F - MeOH G - Amchlor	2	\$203 54
Email: yuri.veliz@ramboll.com	.#OM				(0)						1 - Ice	0	Dodecahydrate one A
Project Name: Former Accurate Die Cast	Project #: 48008584				110 8			_				W - pH 4 Z - other	W - pH 4-5 Z - other (specify)
Site: New York	SSOW#:				SD (V								
Sample Identification	Sample Date	Sample (C	Sample Type (C=comp, oG=carab)	Watrix (w=water, S=solid, O=waste/oli, BT=Tissue, a=ar)	ield Filtered S M\SM morrec M\SM morrec MS lstoT - G043	T - balsa_20048		4	480-185391 Chain of Custody	n of Custody			
	\ \ \	V	1 00		X	-						Special instructions/Note	ins/Note:
Effluent 052821	5-28-31	7.00	7	Water		é				0			
	+									5			
							-						
					_								
2													
Z Z													
\rangle \rangl													
ant 🗌	Poison B		Radiological		Samp	le Disp	le Disposal (A f Return To Client	e may be as	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	es are retain	ed longer tha	in 1 month)	
Deliverable Requested: I, II, III, IV, Other (specify)					Speci	al Instru	ctions/QC	Special Instructions/QC Requirements	S:		TO LONGO	Months	ws.
Empty Kit Relinquished by:	Date:	ie:			Time:				Method of Shipment	nent:			
Relinquished by Heahe	Date(Time:	9:30		Company 6	8	Received by:	3	3	- Cate	Date/Time:	1.	Company	, C/K
Relinquished by: RELIGION.	Date/Time:	1805		Company	8	Received by	0		1	Date/Time:		Company	
	Date/Time:			Company	R	Received by		B	DateClin	() ()	86 NG/6	Salar Bac	- CA
Custody Seals Intact: Custody Seal No.: △ Yes △ No					8	oler Temp	erature(s) °	Cooler Temperature(s) °C and Other Remarks:	arks:	5,4	一廿		
												Ver. 11	Ver. 11/01/2020

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-185391-1

Login Number: 185391 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

3

4

0

10

12

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-185655-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

T

Authorized for release by: 6/15/2021 7:17:07 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

Ŏ

10

15

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Racaint Chacklists	14

4

<u>۾</u>

46

11

12

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Job ID: 480-185655-1

Project/Site: Former Accurate Die Cast

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

Eurofins TestAmerica, Buffalo

6/15/2021

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185655-1

Job ID: 480-185655-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-185655-1

Comments

No additional comments.

Receipt

The sample was received on 6/5/2021 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

4

5

6

O

0

q

10

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 060421

Job ID: 480-185655-1

Lab Sample ID: 480-185655-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Dissolved Solids	701	10.0	4.0	mg/L	1	SM2540 C	Total/NA

4

7

8

46

11

40

4 /

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 060421

Lab Sample ID: 480-185655-1

Matrix: Water

Job ID: 480-185655-1

Date Collected: 06/04/21 07:00 Date Received: 06/05/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	701		10.0	4.0	mg/L			06/08/21 11:34	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			06/05/21 19:20	1

9

10

12

13

QC Sample Results

Client: O'Brien & Gere Inc of North America

Job ID: 480-185655-1

Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-584125/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 584125

MB MB Dil Fac Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Total Suspended Solids ND 1.0 1.0 mg/L 06/05/21 19:20

Lab Sample ID: LCS 480-584125/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 584125

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 3370 3292 mg/L 98 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-584427/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 584427

MB MB Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 06/08/21 11:34

Lab Sample ID: LCS 480-584427/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 584427

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 501 484.0 85 - 115 mg/L

Prep Type: Total/NA

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-185655-1

General Chemistry

Analysis Batch: 584125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185655-1	EFFLUENT 060421	Total/NA	Water	SM 2540D	
MB 480-584125/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-584125/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 584427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185655-1	EFFLUENT 060421	Total/NA	Water	SM2540 C	
MB 480-584427/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-584427/2	Lab Control Sample	Total/NA	Water	SM2540 C	

6

3

4

Ω

9

4 4

40

4 /

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-185655-1

Project/Site: Former Accurate Die Cast

Date Received: 06/05/21 08:00

Client Sample ID: EFFLUENT 060421

Lab Sample ID: 480-185655-1 Date Collected: 06/04/21 07:00

Matrix: Water

	Bato	h Batc	h		Dilution	Batch	Prepared		
Prep Type	Туре	e Meth	od	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Ana	ysis SM 2	540D		1	584125	06/05/21 19:20	CSS	TAL BUF
Total/NA	Ana	ysis SM2	540 C		1	584427	06/08/21 11:34	JGO	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185655-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date 04-01-22	
New York	N	ELAP	10026		
The following analytes	are included in this report, by	ut the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for w	
0 ,	' '	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w	
The following analytes the agency does not of	' '	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w	
0 ,	' '	ut the laboratory is not certif Matrix	ied by the governing authority. This list ma Analyte	ay include analytes for w	

Eurofins TestAmerica, Buffalo

2

3

7

9

4 4

12

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185655-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

5

6

10

11

4.0

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-185655-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-185655-1	EFFLUENT 060421	Water	06/04/21 07:00	06/05/21 08:00	

9

10

12

13

EUrorins lestAmerica, Buttalo 10 Hazelwood Drive Amherst, NY 14228-2298	Chain of Custody Record	Record	💸 eurofins Environment Testing
Phone: 716-691-2600 Fax: 716-691-7991			America
Client Information	MARIN KRENNECKE	Lab PM: Giacomazza, Joe V	-COC No:
Cilent Contact: Mr. Yuri Veliz	134-1300	State of Orest Onestamericaine com	Page:
Company: O'Brien & Gere Inc of North America	PWSID:] &	Job #:
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:		Preservation Codes:
City: East Syracuse	TAT Requested (days):		A - HCL M - Hexane B - NaOH N - None
State, Zip. NY, 13221	Compliance Project: Δ Yes Δ No		
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 12000090		F - MeOH R - Na2S203 G - Amchlor S - H2S04
Email: yuri.veliz@ramboll.com	WO#;	(ol	
Project Name: Former Accurate Die Cast	Project #: 48008584	ed Solive	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site: New York	SSOW#:	spender Diesender	Other:
Sample Identification		Wick myone of the man MS/MS month of the mon	umber o
		z z d X	structions/Note:
Be Effluent 660421	6-4-21 17:00 C Water		
e 13		480-185655 Chain of Custody	
of 14			
1			
R			
1			
1			
Precible Harard Idonéficacion			
ole Skin Irritant	Poison B 🔲 Unknown 🔲 Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mana	tained longer than 1 month) Archive For
Denverable Requested: I, II, III, IV, Other (specify)			
Ently Nit Kelinquished by: Relinquished by:	Date:	Time: Method of Shipment:	
Reinquished by:	1/12,30	Cuglin	1, 12:20 Company
Relinquished by: RC 4/9 (1/4	Date/Time: Company	Date	
Custody Seals Intact: Custody Seal No.:		Frature(s) C and Other Remarks	Of the Company
_		D. J.	
			Ver: 11/01/2020

Eurofins TestAmerica, Buffalo

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-185655-1

Login Number: 185655 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

oroatori otopa, Erik o		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

_

4

O

e S

4.0

11

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-185768-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

The

Authorized for release by: 6/16/2021 5:22:21 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

7

10

46

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

4

5

R

9

11

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Job ID: 480-185768-1

Qualifiers

GC/MS VOA

F1 MS and/or MSD recovery exceeds control limits.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

•

3

5

6

9

10

12

13

6/16/2021

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185768-1

Job ID: 480-185768-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-185768-1

Comments

No additional comments.

Receipt

The samples were received on 6/9/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: Influent 060821 (480-185768-5). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: Between Carbons 060821 (480-185768-2), (480-185768-B-2 MS) and (480-185768-B-2 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

K

4

5

6

1

a

10

12

13

14

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185768-1

Client Sample ID: Effluent	060821					Lal	o S	sample ID:	480-185768-1
— Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	0.0080	J	0.010	0.0015	mg/L		_	6010C	Total/NA
Total Dissolved Solids	651		10.0	4.0	mg/L	1		SM2540 C	Total/NA
Client Sample ID: Betwee	n Carbons 0608	321				Lal	o S	sample ID:	480-185768-2
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	6.8		1.0	0.81	ug/L	1	_	8260C	Total/NA
Trichloroethene - DL	240	F1	5.0	2.3	ug/L	5		8260C	Total/NA
Client Sample ID: Influent	060821					Lal	o S	ample ID:	480-185768-3
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	0.0043	J	0.010	0.0015	mg/L	1	_	6010C	Total/NA
Client Sample ID: Effluent	060821					Lal	o S	sample ID:	480-185768-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.1		1.0	0.81	ug/L	1	_	8260C	Total/NA
Client Sample ID: Influent	060821					Lal	o S	ample ID:	480-185768-
	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	310		8.0	3.7	ug/L	8	_	8260C	Total/NA

This Detection Summary does not include radiochemical test results.

6/16/2021

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: Effluent 060821

Date Collected: 06/08/21 07:15 Date Received: 06/09/21 08:00

Lab Sample ID: 480-185768-1

Matrix: Water

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	0.0080	J	0.010	0.0015	mg/L		06/10/21 10:02	06/11/21 19:33	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/14/21 12:30	06/14/21 17:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	651		10.0	4.0	mg/L			06/09/21 14:12	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			06/10/21 17:33	1

Client Sample ID: Between Carbons 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Lab	Sample	ID:	48	0-18	357	68-2	

Matrix: Wastewater

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/10/21 04:34	1
cis-1,2-Dichloroethene	6.8		1.0	0.81	ug/L			06/10/21 04:34	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/10/21 04:34	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/10/21 04:34	1
Toluene	ND		1.0	0.51	ug/L			06/10/21 04:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/10/21 04:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
100:11 11 11 11 10						-		00//0/0/ 0/ 0/	

Surrogate	%Recovery	Qualifier L	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		77 - 120		06/10/21 04:34	1
4-Bromofluorobenzene (Surr)	82	7	73 - 120		06/10/21 04:34	1
Toluene-d8 (Surr)	103	8	30 - 120		06/10/21 04:34	1
Dibromofluoromethane (Surr)	94	7	75 - 123		06/10/21 04:34	1

Γ		2			
Method: 8260C	 Volatile 	Organic	Compounds	by GC/MS -	· DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	240	F1	5.0	2.3	ug/L			06/10/21 13:08	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	93		77 - 120			-		06/10/21 13:08	

Garrogate	7011CCCVC1 y	Quanner	Lillies	rrepared	Analyzea	Dii i uc
1,2-Dichloroethane-d4 (Surr)	93		77 - 120		06/10/21 13:08	5
4-Bromofluorobenzene (Surr)	85		73 - 120		06/10/21 13:08	5
Toluene-d8 (Surr)	96		80 - 120		06/10/21 13:08	5
Dibromofluoromethane (Surr)	86		75 - 123		06/10/21 13:08	5
-						

Client Sample ID: Influent 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Mercury

L	.ab	Samp	ie iD	: 480-	1857	68-3

Matrix: Water

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	0.0043	J	0.010	0.0015	mg/L		06/10/21 10:02	06/11/21 19:37	1
Method: 7470A - Mercury (CVAA)	- "	Qualifier	RI	MDI	Unit	_	Prepared	A nalyzed	Dil Fac

0.00020

0.00012 mg/L

ND

Eurofins TestAmerica, Buffalo

06/14/21 17:52

Page 6 of 20 6/16/2021

06/14/21 12:30

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: Effluent 060821

Date Collected: 06/08/21 07:15 Date Received: 06/09/21 08:00

Lab Sample ID: 480-185768-4

Matrix: Water

Job ID: 480-185768-1

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/10/21 04:57	1
cis-1,2-Dichloroethene	1.1		1.0	0.81	ug/L			06/10/21 04:57	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/10/21 04:57	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/10/21 04:57	1
Toluene	ND		1.0	0.51	ug/L			06/10/21 04:57	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/10/21 04:57	1
Trichloroethene	ND		1.0	0.46	ug/L			06/10/21 04:57	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		77 - 120			-		06/10/21 04:57	1
4-Bromofluorobenzene (Surr)	90		73 - 120					06/10/21 04:57	1
Toluene-d8 (Surr)	95		80 - 120					06/10/21 04:57	1
Dibromofluoromethane (Surr)	90		75 ₋ 123					06/10/21 04:57	1

Client Sample ID: Influent 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Lab Sample ID: 480-185768-5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier Analyte RLMDL Unit D Dil Fac Prepared Analyzed 1,1,2,2-Tetrachloroethane ND 8.0 1.7 ug/L 06/10/21 05:19 cis-1,2-Dichloroethene ND 8.0 6.5 ug/L 06/10/21 05:19 8 Methylene Chloride ND 8.0 3.5 ug/L 06/10/21 05:19 Tetrachloroethene ND 06/10/21 05:19 8.0 2.9 ug/L 8 ND Toluene 8.0 4.1 ug/L 06/10/21 05:19 8 trans-1,2-Dichloroethene ND 8.0 7.2 ug/L 06/10/21 05:19 8 **Trichloroethene** 310 8.0 3.7 ug/L 06/10/21 05:19 8

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		77 - 120	_		06/10/21 05:19	8
4-Bromofluorobenzene (Surr)	76		73 - 120			06/10/21 05:19	8
Toluene-d8 (Surr)	102		80 - 120			06/10/21 05:19	8
Dibromofluoromethane (Surr)	96		75 - 123			06/10/21 05:19	8

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-185768-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Wastewater Prep Type: Total/NA

			Percent Surrogate Rec					
		DCA	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)			
480-185768-2	Between Carbons 060821	90	82	103	94			
480-185768-2 - DL	Between Carbons 060821	93	85	96	86			
480-185768-2 MS	Between Carbons 060821	89	90	99	83			
480-185768-2 MSD	Between Carbons 060821	84	88	100	83			

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCA	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)			
480-185768-4	Effluent 060821	93	90	95	90			
480-185768-5	Influent 060821	93	76	102	96			
LCS 480-584676/6	Lab Control Sample	90	88	100	86			
LCS 480-584791/5	Lab Control Sample	92	91	105	88			
MB 480-584676/9	Method Blank	91	85	95	87			
MB 480-584791/7	Method Blank	91	83	99	90			

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-584676/9	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Matrix: Water

Analysis Batch: 584676

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/10/21 00:07	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/10/21 00:07	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/10/21 00:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/10/21 00:07	1
Toluene	ND		1.0	0.51	ug/L			06/10/21 00:07	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/10/21 00:07	1
Trichloroethene	ND		1.0	0.46	ug/L			06/10/21 00:07	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91	77 _ 120		06/10/21 00:07	1
4-Bromofluorobenzene (Surr)	85	73 - 120		06/10/21 00:07	1
Toluene-d8 (Surr)	95	80 - 120		06/10/21 00:07	1
Dibromofluoromethane (Surr)	87	75 - 123		06/10/21 00:07	1

Lab Sample ID: LCS 480-584676/6 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 584676

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane	25.0	27.4		ug/L		110	76 - 120	
cis-1,2-Dichloroethene	25.0	24.9		ug/L		100	74 - 124	
Methylene Chloride	25.0	25.4		ug/L		101	75 ₋ 124	
Tetrachloroethene	25.0	27.5		ug/L		110	74 - 122	
Toluene	25.0	29.6		ug/L		118	80 _ 122	
trans-1,2-Dichloroethene	25.0	25.7		ug/L		103	73 - 127	
Trichloroethene	25.0	27.5		ua/L		110	74 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		77 - 120
4-Bromofluorobenzene (Surr)	88		73 - 120
Toluene-d8 (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	86		75 - 123

Lab Sample ID: MB 480-584791/7 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 584791

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/10/21 11:23	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/10/21 11:23	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/10/21 11:23	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/10/21 11:23	1
Toluene	ND		1.0	0.51	ug/L			06/10/21 11:23	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/10/21 11:23	1
Trichloroethene	ND		1.0	0.46	ug/L			06/10/21 11:23	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/10/21 11:23	1 1 1

Page 9 of 20

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-584791/7

Matrix: Water

Surrogate

Analysis Batch: 584791

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA

06/10/21 11:23

MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac 91 77 - 120 06/10/21 11:23 83 73 - 120 06/10/21 11:23 99 80 - 120 06/10/21 11:23

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-584791/5

75 - 123

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 584791

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane	25.0	26.1		ug/L		104	76 - 120	
cis-1,2-Dichloroethene	25.0	26.1		ug/L		104	74 - 124	
Methylene Chloride	25.0	26.3		ug/L		105	75 ₋ 124	
Tetrachloroethene	25.0	27.2		ug/L		109	74 - 122	
Toluene	25.0	27.6		ug/L		110	80 _ 122	
trans-1,2-Dichloroethene	25.0	25.0		ug/L		100	73 _ 127	
Trichloroethene	25.0	26.8		ug/L		107	74 - 123	

LCS LCS

90

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		77 - 120
4-Bromofluorobenzene (Surr)	91		73 - 120
Toluene-d8 (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	88		75 - 123

Lab Sample ID: 480-185768-2 MS

Matrix: Wastewater

Analysis Batch: 584791

Client Sample ID	: Between Carbons 060821
	Pren Tyne: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane	ND		125	123		ug/L		98	76 - 120	
cis-1,2-Dichloroethene	5.7		125	124		ug/L		95	74 - 124	
Methylene Chloride	ND		125	120		ug/L		96	75 - 124	
Tetrachloroethene	ND		125	129		ug/L		103	74 - 122	
Toluene	ND		125	140		ug/L		112	80 - 122	
trans-1,2-Dichloroethene	ND		125	121		ug/L		97	73 - 127	
Trichloroethene	240	F1	125	329	F1	ug/L		71	74 - 123	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		77 - 120
4-Bromofluorobenzene (Surr)	90		73 - 120
Toluene-d8 (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	83		75 - 123

Eurofins TestAmerica, Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-185768-2 MSD Client Sample ID: Between Carbons 060821 **Matrix: Wastewater** Prep Type: Total/NA

Analysis Batch: 584791

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	ND		125	126		ug/L		101	76 - 120	3	15
cis-1,2-Dichloroethene	5.7		125	113		ug/L		86	74 - 124	10	15
Methylene Chloride	ND		125	113		ug/L		90	75 - 124	6	15
Tetrachloroethene	ND		125	121		ug/L		97	74 - 122	6	20
Toluene	ND		125	133		ug/L		106	80 - 122	6	15
trans-1,2-Dichloroethene	ND		125	108		ug/L		86	73 - 127	12	20
Trichloroethene	240	F1	125	287	F1	ug/L		37	74 - 123	14	16

MSD MSD %Recovery Surrogate Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 84 77 - 120 4-Bromofluorobenzene (Surr) 88 73 - 120 Toluene-d8 (Surr) 100 80 - 120 Dibromofluoromethane (Surr) 83 75 - 123

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-584727/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 585249 Prep Batch: 584727 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Zinc 0.010 0.0015 mg/L ND 06/10/21 10:02 06/11/21 18:38

Lab Sample ID: LCS 480-584727/2-A

Matrix: Water

Analysis Batch: 585249

Prep Batch: 584727 Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Zinc 0.200 0.207 mg/L 103 80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-585276/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 585345

MB MB

RL MDL Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Mercury ND 0.00020 0.00012 mg/L 06/14/21 12:30 06/14/21 17:25

Lab Sample ID: LCS 480-585276/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 585345

Spike LCS LCS Analyte Added Result Qualifier Limits Unit %Rec

Mercury 0.00667 0.00707 mg/L 106 80 - 120

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 585276

Prep Type: Total/NA

Prep Batch: 585276

Client Sample ID: Lab Control Sample

6/16/2021

QC Sample Results

Client: O'Brien & Gere Inc of North America

Job ID: 480-185768-1

Project/Site: Former Accurate Die Cast

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-584934/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 584934

MB MB Dil Fac Analyte Result Qualifier RL RL Unit D Prepared Analyzed Total Suspended Solids ND 1.0 1.0 mg/L 06/10/21 17:33

Lab Sample ID: LCS 480-584934/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 584934

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Suspended Solids 2950 2944 mg/L 100 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-584672/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 584672

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 06/09/21 14:12

Lab Sample ID: LCS 480-584672/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 584672

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 501 489.0 85 - 115 mg/L

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185768-1

GC/MS VOA

Analysis Batch: 584676

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185768-2	Between Carbons 060821	Total/NA	Wastewater	8260C	
480-185768-4	Effluent 060821	Total/NA	Water	8260C	
480-185768-5	Influent 060821	Total/NA	Water	8260C	
MB 480-584676/9	Method Blank	Total/NA	Water	8260C	
LCS 480-584676/6	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 584791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185768-2 - DL	Between Carbons 060821	Total/NA	Wastewater	8260C	
MB 480-584791/7	Method Blank	Total/NA	Water	8260C	
LCS 480-584791/5	Lab Control Sample	Total/NA	Water	8260C	
480-185768-2 MS	Between Carbons 060821	Total/NA	Wastewater	8260C	
480-185768-2 MSD	Between Carbons 060821	Total/NA	Wastewater	8260C	

Metals

Prep Batch: 584727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185768-1	Effluent 060821	Total/NA	Water	3005A	
480-185768-3	Influent 060821	Total/NA	Water	3005A	
MB 480-584727/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-584727/2-A	Lab Control Sample	Total/NA	Water	3005A	

Analysis Batch: 585249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185768-1	Effluent 060821	Total/NA	Water	6010C	584727
480-185768-3	Influent 060821	Total/NA	Water	6010C	584727
MB 480-584727/1-A	Method Blank	Total/NA	Water	6010C	584727
LCS 480-584727/2-A	Lab Control Sample	Total/NA	Water	6010C	584727

Prep Batch: 585276

Lab Sample ID	Client Sample ID	Prep Type		Method	Prep Batch
480-185768-1	Effluent 060821	Total/NA	Water	7470A	
480-185768-3	Influent 060821	Total/NA	Water	7470A	
MB 480-585276/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-585276/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 585345

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185768-1	Effluent 060821	Total/NA	Water	7470A	585276
480-185768-3	Influent 060821	Total/NA	Water	7470A	585276
MB 480-585276/1-A	Method Blank	Total/NA	Water	7470A	585276
LCS 480-585276/2-A	Lab Control Sample	Total/NA	Water	7470A	585276

General Chemistry

Analysis Batch: 584672

Lab Sample ID	Client Sample ID	Prep Type Matrix		Method	Prep Batch
480-185768-1	Effluent 060821	Total/NA	Water	SM2540 C	
MB 480-584672/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-584672/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Eurofins TestAmerica, Buffalo

6/16/2021

Page 13 of 20

6

9

10

13

14

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185768-1

General Chemistry

Analysis Batch: 584934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185768-1	Effluent 060821	Total/NA	Water	SM 2540D	
MB 480-584934/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-584934/2	Lab Control Sample	Total/NA	Water	SM 2540D	

3

4

5

6

0

40

11

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: Effluent 060821

Date Collected: 06/08/21 07:15 Date Received: 06/09/21 08:00

Lab Sample ID: 480-185768-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			584727	06/10/21 10:02	KMP	TAL BUF
Total/NA	Analysis	6010C		1	585249	06/11/21 19:33	LMH	TAL BUF
Total/NA	Prep	7470A			585276	06/14/21 12:30	BMB	TAL BUF
Total/NA	Analysis	7470A		1	585345	06/14/21 17:51	BMB	TAL BUF
Total/NA	Analysis	SM 2540D		1	584934	06/10/21 17:33	CSS	TAL BUF
Total/NA	Analysis	SM2540 C		1	584672	06/09/21 14:12	JGO	TAL BUF

Client Sample ID: Between Carbons 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Lab Sample ID: 480-185768-2

Matrix: Wastewater

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	584676	06/10/21 04:34	CRL	TAL BUF
Total/NA	Analysis	8260C	DL	5	584791	06/10/21 13:08	CRL	TAL BUF

Client Sample ID: Influent 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Lab Sample ID: 480-185768-3

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 3005A Total/NA Prep 584727 06/10/21 10:02 KMP TAL BUF Total/NA Analysis 6010C 1 585249 06/11/21 19:37 LMH TAL BUF Total/NA Prep 7470A 585276 06/14/21 12:30 BMB TAL BUF Total/NA Analysis 7470A 1 585345 06/14/21 17:52 BMB TAL BUF

Client Sample ID: Effluent 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Lab Sample	ID: 480-185768-4
------------	------------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			584676	06/10/21 04:57	CRL	TAL BUF

Client Sample ID: Influent 060821

Date Collected: 06/08/21 07:15

Date Received: 06/09/21 08:00

Lab S	ample	ID: 4	180-1	857	68-5
-------	-------	--------------	-------	-----	------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	_	8	584676	06/10/21 05:19	CRL	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185768-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NI	ELAP	10026	04-01-22
The following analytes	are included in this report, but	at the laboratory is not certific	ed by the governing authority. This list ma	ay include analytes for
• ,	•	ut the laboratory is not certific	ed by the governing authority. This list ma	ay include analytes for
The following analytes the agency does not of	•	ut the laboratory is not certific	ed by the governing authority. This list ma	ay include analytes for
• •	•	ut the laboratory is not certific Matrix	ed by the governing authority. This list ma Analyte	ay include analytes for

- 0

4

5

6

11

12

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-185768-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF
7470A	Preparation, Mercury	SW846	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

3

4

5

7

8

9

12

10

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-185768-1

3

4

5

6

8

9

11

12

.

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-185768-1

Login Number: 185768 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Creator. Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.8 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Λ

7

9

10

12

16

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-186243-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

T

Authorized for release by: 6/28/2021 5:14:40 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

8

9

11

12

1/

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

3

4

6

8

9

11

16

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Job ID: 480-186243-1

Project/Site: Former Accurate Die Cast

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RER

RPD

TEF

TEQ

TNTC

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186243-1

Job ID: 480-186243-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-186243-1

Comments

No additional comments.

Receipt

The samples were received on 6/18/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

6

0

9

10

4.0

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186243-1

Client Sample ID: EFFLUENT 061721

Lab Sample ID: 480-186243-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Total Dissolved Solids	656	10.0	4.0 mg/L	1	SM2540 C	Total/NA

Client Sample ID: EFFLUENT 061721

L	_ab	Samp	le ID:	480-1	86243-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	1.4	1.0	0.81 ug/L	1	8260C	Total/NA

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-186243-1

Matrix: Water

Job ID: 480-186243-1

Client Sample ID: EFFLUENT 061721

Date Collected: 06/17/21 07:15 Date Received: 06/18/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	656		10.0	4.0	mg/L			06/21/21 10:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			06/21/21 15:12	1

Client Sample ID: EFFLUENT 061721

Date Collected: 06/17/21 07:15 Date Received: 06/18/21 08:00

Lab Sample ID: 480-186243-2 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/21/21 18:55	1
cis-1,2-Dichloroethene	1.4		1.0	0.81	ug/L			06/21/21 18:55	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/21/21 18:55	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/21/21 18:55	1
Toluene	ND		1.0	0.51	ug/L			06/21/21 18:55	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/21/21 18:55	1
Trichloroethene	ND		1.0	0.46	ug/L			06/21/21 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		77 - 120			-		06/21/21 18:55	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	77 _ 120		06/21/21 18:55	1
4-Bromofluorobenzene (Surr)	106	73 - 120		06/21/21 18:55	1
Toluene-d8 (Surr)	102	80 - 120		06/21/21 18:55	1
Dibromofluoromethane (Surr)	116	75 - 123		06/21/21 18:55	1

6/28/2021

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186243-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rrogate Red
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)
480-186243-2	EFFLUENT 061721	110	106	102	116
LCS 480-586255/5	Lab Control Sample	109	114	105	113
LCSD 480-586255/6	Lab Control Sample Dup	107	109	100	111
MB 480-586255/8	Method Blank	107	97	97	112

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

3

A

7

8

4.0

11

14

1!

Client: O'Brien & Gere Inc of North America Job ID: 480-186243-1

Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-586255/8

Matrix: Water

Analysis Batch: 586255

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND -	1.0	0.21	ug/L			06/21/21 15:16	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			06/21/21 15:16	1
Methylene Chloride	ND	1.0	0.44	ug/L			06/21/21 15:16	1
Tetrachloroethene	ND	1.0	0.36	ug/L			06/21/21 15:16	1
Toluene	ND	1.0	0.51	ug/L			06/21/21 15:16	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			06/21/21 15:16	1
Trichloroethene	ND	1.0	0.46	ug/L			06/21/21 15:16	1

MB MB

		·· ·			
Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	77 - 120		06/21/21 15:16	1
4-Bromofluorobenzene (Surr)	97	73 - 120		06/21/21 15:16	1
Toluene-d8 (Surr)	97	80 - 120		06/21/21 15:16	1
Dibromofluoromethane (Surr)	112	75 - 123		06/21/21 15:16	1

Lab Sample ID: LCS 480-586255/5

Matrix: Water

Analysis Batch: 586255

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Limits %Rec Analyte Unit 25.0 23.7 95 1,1,2,2-Tetrachloroethane ug/L 76 - 120 cis-1,2-Dichloroethene 25.0 26.9 108 74 - 124 ug/L Methylene Chloride 25.0 26.4 ug/L 106 75 - 124 Tetrachloroethene 25.0 28.4 ug/L 114 74 - 122 Toluene 25.0 25.6 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 27.7 ug/L 111 73 - 127 Trichloroethene 25.0 74 - 123 29.1 ug/L 116

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		77 - 120
4-Bromofluorobenzene (Surr)	114		73 - 120
Toluene-d8 (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	113		75 - 123

Lab Sample ID: LCSD 480-586255/6

Matrix: Water

Analysis Batch: 586255

Client Sample ID: I	ab Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	25.0	22.3		ug/L		89	76 - 120	6	15
cis-1,2-Dichloroethene	25.0	24.9		ug/L		100	74 - 124	8	15
Methylene Chloride	25.0	25.5		ug/L		102	75 - 124	4	15
Tetrachloroethene	25.0	25.6		ug/L		102	74 - 122	11	20
Toluene	25.0	23.4		ug/L		94	80 - 122	9	15
trans-1,2-Dichloroethene	25.0	25.3		ug/L		101	73 - 127	9	20
Trichloroethene	25.0	26.5		ug/L		106	74 - 123	9	16

Eurofins TestAmerica, Buffalo

Page 8 of 16

Job ID: 480-186243-1

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-586255/6 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 586255

Prep Type: Total/NA

LCSD LCSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 107 77 - 120 4-Bromofluorobenzene (Surr) 109 73 - 120 Toluene-d8 (Surr) 100 80 - 120 Dibromofluoromethane (Surr) 111 75 - 123

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-586286/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 586286

мв мв

Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac Total Suspended Solids 1.0 1.0 mg/L 06/21/21 15:12 ND

Lab Sample ID: LCS 480-586286/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586286

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 347 333.6 mg/L 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-586245/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 586245

MR MR

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 06/21/21 10:42

Lab Sample ID: LCS 480-586245/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 586245

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits D Total Dissolved Solids 505 458.0 85 - 115 mg/L 91

Eurofins TestAmerica, Buffalo

6/28/2021

Prep Type: Total/NA

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186243-1

GC/MS VOA

Analysis Batch: 586255

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186243-2	EFFLUENT 061721	Total/NA	Water	8260C	
MB 480-586255/8	Method Blank	Total/NA	Water	8260C	
LCS 480-586255/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-586255/6	Lab Control Sample Dup	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 586245

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186243-1	EFFLUENT 061721	Total/NA	Water	SM2540 C	
MB 480-586245/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-586245/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Analysis Batch: 586286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186243-1	EFFLUENT 061721	Total/NA	Water	SM 2540D	
MB 480-586286/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-586286/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-186243-1

Matrix: Water

Job ID: 480-186243-1

Client Sample ID: EFFLUENT 061721

Date Collected: 06/17/21 07:15 Date Received: 06/18/21 08:00

Date Received: 06/18/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	586286	06/21/21 15:12	JGO	TAL BUF
Total/NA	Analysis	SM2540 C		1	586245	06/21/21 10:42	JGO	TAL BUF

Client Sample ID: EFFLUENT 061721

Lab Sample ID: 480-186243-2 Date Collected: 06/17/21 07:15

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 586255 06/21/21 18:55 CRL TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186243-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NI NI	ELAP	10026	04-01-22
The following analytes	are included in this report, but	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wl
the agency does not of	fer certification.	•	, , ,	ay include analytes for wl
• .	•	it the laboratory is not certifi Matrix	ied by the governing authority. This list ma	ay include analytes for w

7

9

11

15

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186243-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

6

7

8

9

4 4

12

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186243-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-186243-1	EFFLUENT 061721	Water	06/17/21 07:15	06/18/21 08:00	
480-186243-2	EFFLUENT 061721	Water	06/17/21 07:15	06/18/21 08:00	

3

6

0

9

11

14

Eurofins TestAmerica, Buffalo

eurofins Environment Testing America

	Euronns lestAmerica, Buttalo										: eurofins		
	To hazelwood Drive Amherst, NY 14228-2298	်	ain of	Cust	Shain of Custody Record	ord						Environment Testing America	w
	Fax: 716-691-7991	Sampler	1	1		Lab PM:			A Circ	SINGE SE	COC No:	2-	Г
	ormation	MARIN	VOENNEC	Vecpe	T	zza, Joe)		480-158093-1	10587.1	T
		315-73	29-13	300	joe.giaco	mazza@t	c-mail. joe.giacomazza@testamericainc.com	ainc.com	366年	225	Page 1 of 1		
	Company: O'Brien & Gere Inc of North America		A	PWSID				Analysis Requested	quested		# gor		
	Address: 333 West Washington St. PO BOX 4873	Due Date Requested:									Preservation Codes	odes:	
	City: East Syracuse	TAT Requested (days):								_	A-HCL	M - Hexane V - None) - AsNaO2	
	State, Zip: NY, 13221	Compllance Project:	A Yes A No		T			-				- Na2O4S - Na2SO3	
	Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 1940002622			(- Na2S2O3 - H2SO4 TSD Oxfershydrate	
		# OM			OF NO					Of Custo	dy dy	Acetone MCAA	
	ast	Project #: 48008584			80A) 6	lo2 ba			480-186243 Chain of	hain of or	AU CUA	.v pH 4-5 Z - other (specify)	
		**************************************			dwes	puads					of con		
					Matrix (W-wester,	L Pole 2	Calcd - T				*HedmuN		
	Sample Identification	Sample Date	Sample (C Time G	6.0	Field	S 240 D	_					Special Instructions/Note:	
D ₂ /		V V	Ž	Preservation Code:	on Code:	z	∢						
10 1	Effluent 06 [72]	6-17-21 7	1.15	2	Water					4 0	X		
5.0	E-91-1061731	6-17-31 7	:15	4	3		8				0		
f 16													
	~												
							1						
	Donnith to the word laboration and												П
	Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	on B Unknown		Radiological	,	Ret	le Disposal (A 1 Return To Client	A ree may be	assessed if san Disposal By Lab	nples are retai	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month, Return To Client Disposal By Lab Archive For Annual Mor	1 1 month) Months	
	Deliverable Requested: I, II, III, IV, Other (specify)				8	pecial Ins	structions/	Special Instructions/QC Requirements					
	Empty Kit Relinquished by:	Date	(e)		Time	äj			Method of Shipment	Shpment			
	Reinquished by Kennoh	Date/Time: 6-17-21	12.	35 6	Company 6	Received by	77	11/19		Date/Time.	: (12:5)	Company	
6/29	Reinquished by:	Date/Time:	1800		Company	Received by	S C C	ale		Date/Time 9 B Date/Time	J. 108	Company	
8/20°	Custody Seals Intact. Custody Seal No.:					Cooler 1	emperature	Cooler Temperature(s) °C and Other Remarks	smarks.	#	9 ()		
21										土	1 41 A	Ver. 11/01/2020	
												Ver: 11/01/2020	ı

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-186243-1

Login Number: 186243 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator: Wallace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in liameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

5

4

6

40

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-186335-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

The state of the s

Authorized for release by: 6/30/2021 10:54:20 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

4 6

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Chacklists	14

4

5

7

0

10

10

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Job ID: 480-186335-1

Project/Site: Former Accurate Die Cast

Glossary

RL

RPD

TEF

TEQ

TNTC

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins TestAmerica, Buffalo

6/30/2021

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186335-1

Job ID: 480-186335-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-186335-1

Comments

No additional comments.

Receipt

The sample was received on 6/22/2021 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

4

5

6

7

8

3

12

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT - 062121

Job ID: 480-186335-1

Lab Sample ID: 480-186335-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	654	10.0	4.0 mg/L		SM2540 C	Total/NA

4

e

0

9

10

12

13

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-186335-1

Matrix: Water

Job ID: 480-186335-1

Lab Sample ID. 400-100333

Client Sample ID: EFFLUENT - 062121 Date Collected: 06/21/21 07:00

Date Received: 06/22/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	654		10.0	4.0	mg/L			06/23/21 10:11	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			06/23/21 14:29	1

5

b

8

46

11

13

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186335-1

Prep Type: Total/NA

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-586661/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 586661

MB MB Dil Fac Analyte Result Qualifier RL RL Unit D Prepared Analyzed Total Suspended Solids ND 1.0 1.0 mg/L 06/23/21 14:29

Lab Sample ID: LCS 480-586661/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 586661

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Suspended Solids 284 280.0 mg/L 99 88 - 110

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-586593/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586593

MB MB Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 4.0 mg/L 06/23/21 10:11

Lab Sample ID: LCS 480-586593/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586593

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 505 466.0 85 - 115 mg/L 92

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186335-1

General Chemistry

Analysis Batch: 586593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186335-1	EFFLUENT - 062121	Total/NA	Water	SM2540 C	
MB 480-586593/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-586593/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Analysis Batch: 586661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186335-1	EFFLUENT - 062121	Total/NA	Water	SM 2540D	
MB 480-586661/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-586661/2	Lab Control Sample	Total/NA	Water	SM 2540D	

3

4

6

8

9

10

12

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Job ID: 480-186335-1

Project/Site: Former Accurate Die Cast

Date Received: 06/22/21 08:00

Client Sample ID: EFFLUENT - 062121

Lab Sample ID: 480-186335-1 Date Collected: 06/21/21 07:00

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	586661	06/23/21 14:29	JGO	TAL BUF
Total/NA	Analysis	SM2540 C		1	586593	06/23/21 10:11	JGO	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186335-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
New York	NI	ELAP	10026	04-01-22	
The following analytes	are included in this report by	it the laboratory is not certific	ed by the governing authority. This list ma	v include analytes for	
THE IOHOWING ANALYLES	are included in this report, bu	it the laboratory is not certili	ed by the governing authority. This list ma		
0 ,	• •			iy iiioiddo dilaiytoo ioi	
the agency does not of	fer certification.			y monado analytoo to	
0 ,	fer certification. Prep Method	Matrix	Analyte	y molado analytoo to.	

3

4

5

7

9

10

12

13

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186335-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

5

7

8

9

11

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186335-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-186335-1	EFFLUENT - 062121	Water	06/21/21 07:00	06/22/21 08:00	

2

4

5

7

10

11

12

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

eurofins | Environment Testing

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SC03
S - H2SO4
T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon State of 400 VI a CUS (4-158064-10586.1 reservation Codes H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - AmcMor 0.0 Page 1 of 1 Job# I - Ice J - Di Water K - EDTA L-EDA Total Number of containers 480-186335 Chain of Custody # ethod of Shipment 77 **Analysis Requested** Special Instructions/QC Requirements: Cooler Temperature(s) °C and Ot oe.giacomazza@testamericainc.com Received by: Giacomazza, Joe V sbiloS bebrieged Suspended Solids Perform MS/MSD (Yes or No) ime -Mail BT-Tissue, A-Air Preservation Code: Water Matrix cenne Radiological 300 WSID: Type (C≃comp, G=grab) Sample o V Compliance Project: A Yes A No 0 315.739. 7.00 Sample Time Unknown Date: FAT Requested (days): Oue Date Requested: Sample Date PO# 1940002622 19-18-A Project #: 48008584 SSOW#: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. 333 West Washington St. PO BOX 4873 315-463-7554(Fax) O'Brien & Gere Inc of North America Flammable Possible Hazard Identification 06212 Empty Kit Relinquished by Former Accurate Die Cast Custody Seals Intact. Client Information /uri.veliz@ramboll.com Sample Identification 315-956-6100(Tel) Non-Hazard East Syracuse Mr. Yuri Veliz Hinquished by nquished by State, Zip: NY, 13221 **New York** Effluent

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-186335-1

Login Number: 186335 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Creator: Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo

6/30/2021

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-186611-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Joseph V. giacomagger

Authorized for release by: 7/6/2021 3:04:10 PM

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

10

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America
Project/Site: Former Accurate Die Cast

Job ID: 480-186611-1

Glossary

RPD

TEF

TEQ

TNTC

Ciocoary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186611-1

Job ID: 480-186611-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-186611-1

Comments

No additional comments.

Receipt

The sample was received on 6/29/2021 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

0

9

10

12

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186611-1

00 10. 400-100011-1

Client Sample ID: EFFLUENT 062821

Lab Sample ID: 480-186611-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	758	10.0	4.0 mg/L	1	SM2540 C	Total/NA

4

5

6

8

9

44

12

16

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: EFFLUENT 062821

FLUENT 062821 Lab Sample ID: 480-186611-1

Matrix: Water

Job ID: 480-186611-1

Date Collected: 06/28/21 07:00 Date Received: 06/29/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	758		10.0	4.0	mg/L			06/30/21 10:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L			07/01/21 11:08	1

5

9

10

12

13

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186611-1

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-587769/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587769

	MB	МВ							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		1.0	1.0	mg/L			07/01/21 11:08	1

Lab Sample ID: LCS 480-587769/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587769

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	 337	340.0		mg/L		101	88 - 110	

Method: SM2540 C - Total Dissolved Solids

Lab Sample ID: MB 480-587575/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587575

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepar	ed Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			06/30/21 10:10	1

Lab Sample ID: LCS 480-587575/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587575

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	505	459.0		mg/L		91	85 - 115	

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186611-1

General Chemistry

Analysis Batch: 587575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186611-1	EFFLUENT 062821	Total/NA	Water	SM2540 C	
MB 480-587575/1	Method Blank	Total/NA	Water	SM2540 C	
LCS 480-587575/2	Lab Control Sample	Total/NA	Water	SM2540 C	

Analysis Batch: 587769

Lab Sample ID 480-186611-1	Client Sample ID EFFLUENT 062821	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
MB 480-587769/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-587769/2	Lab Control Sample	Total/NA	Water	SM 2540D	

D. 100-100011-1

3

4

5

8

46

11

13

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186611-1

Client Sample ID: EFFLUENT 062821

Lab Sample ID: 480-186611-1 Date Collected: 06/28/21 07:00

Matrix: Water

Date Received: 06/29/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	587769	07/01/21 11:08	JGO	TAL BUF
Total/NA	Analysis	SM2540 C		1	587575	06/30/21 10:10	JGO	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186611-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	LAP	10026	04-01-22
The fellow to a control to a				
0 ,	. ,	t the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for whi
the agency does not of	. ,	t the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for whi
0 ,	. ,	t the laboratory is not certif Matrix	fied by the governing authority. This list ma Analyte	ay include analytes for whi

Eurofins TestAmerica, Buffalo

2

3

6

3

11

12

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-186611-1

Method	Method Description	Protocol	Laboratory
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM2540 C	Total Dissolved Solids	SM18	TAL BUF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

4

5

6

0

9

1 4

ш

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-186611-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-186611-1	EFFLUENT 062821	Water	06/28/21 07:00	06/29/21 08:00	

3

_

9

10

12

13

Ver: 11/01/2020

14

N - None O - Ashaboz P - NaZOGS R - NaZSCOS V - Acctorne V - Acctorne W - MCAA Special Instructions/Note Z - other (specify) Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon 480-186611 Chain of Custody COC No: 480-158063-10586.1 reservation Codes 000 G - Amchlor H - Ascorbic Acid C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page: Page 1 of 1 Job#: I - Ice J - DI Water K - EDTA L - EDA Total Number of containers C'26-2 **Symmetise** Method of Shipment **Analysis Requested** Cooler Temperature(s) "Cand Other Remarks: joe.giacomazza@testamericainc.com Received by: 540C_Calcd - Total Dissolved Solids LURINGE KA Giacomazza, Joe V Perform MS/MSD (Yes or No) Time: BToTissue, A=Air) Matrix (w=water, 8=solid, O=wate/oll, Preservation Code: Water 315-739-1300 PWSID Radiological 00:11 Type (C=comp, G=grab) 000 compilance Project: △ Yes △ No 7:00 Sample Time Machin Unknown Date: TAT Requested (days): Due Date Requested: 15-35-0 Sample Date PO #: 1940002622 Project #: 48008584 SSOW#: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.. 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) O'Brien & Gere Inc of North America Possible Hazard Identification 06 2831 Empty Kit Relinquished by: Former Accurate Die Cast yuri.veliz@ramboll.com Client Information Sample Identification Non-Hazard East Syracuse Client Contact: Mr. Yuri Veliz linquished by: State, Zip: NY, 13221 New York Effluent

💸 eurofins | Environment Testing

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-186611-1

Login Number: 186611 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Yeager, Brian A

Question Answer Cor	omment
Radioactivity either was not measured or, if measured, is at or below background True	omment.
The cooler's custody seal, if present, is intact. True	
The cooler or samples do not appear to have been compromised or tampered with.	
Samples were received on ice.	
Cooler Temperature is acceptable. True	
Cooler Temperature is recorded. True	
COC is present. True	
COC is filled out in ink and legible.	
COC is filled out with all pertinent information.	
Is the Field Sampler's name present on COC?	
There are no discrepancies between the sample IDs on the containers and the COC.	
Samples are received within Holding Time (Excluding tests with immediate HTs)	
Sample containers have legible labels. True	
Containers are not broken or leaking.	
Sample collection date/times are provided. True	
Appropriate sample containers are used. True	
Sample bottles are completely filled. True	
Sample Preservation Verified True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in N/A diameter.	
If necessary, staff have been informed of any short hold time or quick TAT needs True	
Multiphasic samples are not present. True	
Samples do not require splitting or compositing.	
Sampling Company provided. True obg	bg
Samples received within 48 hours of sampling.	
Samples requiring field filtration have been filtered in the field. True	
Chlorine Residual checked. N/A	

2

5

6

8

10

10

13

ATTACHMENT B

GROUNDWATER MONITORING LABORATORY REPORT

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183584-1

Client Project/Site: Former Accurate Die Cast

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Authorized for release by: 4/26/2021 1:29:08 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Joe Giacomazza, Project Manager I (716)691-2600

joe.giacomazza@testamericainc.com

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

11

13

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Job ID: 480-183584-1 Project/Site: Former Accurate Die Cast

Glossary

RER

RPD

TEF

TEQ

TNTC

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183584-1

Job ID: 480-183584-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183584-1

Comments

No additional comments.

Receipt

The samples were received on 4/21/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-24-042021 (480-183584-1), MW-18-042021 (480-183584-2), MW-11 042021 (480-183584-3), MW-10 042021 (480-183584-4) and MW-13 04221 (480-183584-5). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-577326 recovered above the upper control limit for 2-Butanone (MEK) and 2-Hexanone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-24-042021 (480-183584-1), MW-18-042021 (480-183584-2), MW-11 042021 (480-183584-3), MW-10 042021 (480-183584-4), MW-13 04221 (480-183584-5) and QC TRIP BLANK (480-183584-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

5

4

5

6

1

10

12

13

14

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183584-1

Client Sample ID: MW-24-042	021					Lab	Sample ID): 480-183584-1
	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	18		5.0	4.1	ug/L		8260C	Total/NA
Trichloroethene	200		5.0	2.3	ug/L	5	8260C	Total/NA
Client Sample ID: MW-18-042	021					Lab	Sample ID): 480-183584-2
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	350		20	16	ug/L	20	8260C	Total/NA
Trichloroethene	940		20	9.2	ug/L	20	8260C	Total/NA
Client Sample ID: MW-11 0420	021					Lab	Sample ID): 480-183584-
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	680		10	4.6	ug/L	10	8260C	Total/NA
Client Sample ID: MW-10 042	021					Lab	Sample IE): 480-183584-4
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	110		2.0	0.92	ug/L	2	8260C	Total/NA
Client Sample ID: MW-13 042	21					Lab	Sample ID): 480-183584-5
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	180		4.0	1.8	ug/L	4	8260C	Total/NA
Client Sample ID: QC TRIP BI	_ANK					Lab	Sample ID): 480-183584-6

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

4/26/2021

Page 5 of 24

6

4

4

6

_

9

11

1 1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183584-1

Matrix: Water

Job ID: 480-183584-1

Client Sample ID: MW-24-042021

Date Collected: 04/20/21 10:00 Date Received: 04/21/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	4.1	ug/L			04/22/21 11:39	
1,1,2,2-Tetrachloroethane	ND		5.0	1.1	ug/L			04/22/21 11:39	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.6	ug/L			04/22/21 11:39	
1,1,2-Trichloroethane	ND		5.0	1.2	ug/L			04/22/21 11:39	
1,1-Dichloroethane	ND		5.0	1.9	ug/L			04/22/21 11:39	
1,1-Dichloroethene	ND		5.0	1.5	ug/L			04/22/21 11:39	
1,2,4-Trichlorobenzene	ND		5.0	2.1	ug/L			04/22/21 11:39	
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	ug/L			04/22/21 11:39	
1,2-Dibromoethane	ND		5.0	3.7	ug/L			04/22/21 11:39	
1,2-Dichlorobenzene	ND		5.0	4.0	ug/L			04/22/21 11:39	
1,2-Dichloroethane	ND		5.0	1.1	ug/L			04/22/21 11:39	
1,2-Dichloropropane	ND		5.0	3.6	ug/L			04/22/21 11:39	
1,3-Dichlorobenzene	ND		5.0	3.9	ug/L			04/22/21 11:39	
1,4-Dichlorobenzene	ND		5.0		ug/L			04/22/21 11:39	
2-Butanone (MEK)	ND		50		ug/L			04/22/21 11:39	
2-Hexanone	ND		25		ug/L			04/22/21 11:39	
1-Methyl-2-pentanone (MIBK)	ND		25		ug/L			04/22/21 11:39	
Acetone	ND		50		ug/L			04/22/21 11:39	
Benzene	ND		5.0		ug/L			04/22/21 11:39	
Bromodichloromethane	ND		5.0		ug/L			04/22/21 11:39	
Bromoform	ND		5.0		ug/L			04/22/21 11:39	
Bromomethane	ND		5.0		ug/L			04/22/21 11:39	
Carbon disulfide	ND		5.0	0.95	•			04/22/21 11:39	
Carbon tetrachloride	ND		5.0		ug/L			04/22/21 11:39	
Chlorobenzene	ND		5.0		ug/L			04/22/21 11:39	
Chloroethane	ND		5.0		ug/L			04/22/21 11:39	
Chloroform	ND		5.0		ug/L			04/22/21 11:39	
Chloromethane	ND		5.0		ug/L			04/22/21 11:39	
cis-1,2-Dichloroethene	18		5.0		ug/L			04/22/21 11:39	
cis-1,3-Dichloropropene	ND		5.0		ug/L			04/22/21 11:39	
Cyclohexane	ND		5.0		ug/L			04/22/21 11:39	
Dibromochloromethane	ND		5.0		ug/L ug/L			04/22/21 11:39	
Dichlorodifluoromethane	ND		5.0		ug/L ug/L			04/22/21 11:39	
Ethylbenzene	ND		5.0		ug/L			04/22/21 11:39	
sopropylbenzene	ND ND		5.0		ug/L ug/L			04/22/21 11:39	
• • • •					-			04/22/21 11:39	
Methyl text butle other	ND ND		13 5.0		ug/L ug/L				
Methyl tert-butyl ether					_			04/22/21 11:39	
Methylcyclohexane	ND		5.0		ug/L			04/22/21 11:39	
Methylene Chloride	ND		5.0		ug/L			04/22/21 11:39	
Styrene	ND		5.0		ug/L			04/22/21 11:39	
Tetrachloroethene	ND		5.0		ug/L			04/22/21 11:39	
Foluene	ND		5.0		ug/L			04/22/21 11:39	
rans-1,2-Dichloroethene	ND		5.0		ug/L			04/22/21 11:39	
rans-1,3-Dichloropropene	ND		5.0		ug/L			04/22/21 11:39	
Frichloroethene	200		5.0		ug/L			04/22/21 11:39	
Trichlorofluoromethane	ND		5.0		ug/L			04/22/21 11:39	
/inyl chloride	ND		5.0	4.5	ug/L			04/22/21 11:39	

Eurofins TestAmerica, Buffalo

4/26/2021

Page 6 of 24

2

5

9

11

40

14

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183584-1

Matrix: Water

Job ID: 480-183584-1

Client Sample ID: MW-24-042021

Date Collected: 04/20/21 10:00 Date Received: 04/21/21 08:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		77 - 120		04/22/21 11:39	5
4-Bromofluorobenzene (Surr)	94		73 - 120		04/22/21 11:39	5
Dibromofluoromethane (Surr)	91		75 - 123		04/22/21 11:39	5
Toluene-d8 (Surr)	101		80 - 120		04/22/21 11:39	5

Client Sample ID: MW-18-042021 Lab Sample ID: 480-183584-2

Date Collected: 04/20/21 10:45

Matrix: Water

Date Received: 04/21/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	20	16	ug/L			04/22/21 12:01	20
1,1,2,2-Tetrachloroethane	ND	20	4.2	ug/L			04/22/21 12:01	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	20	6.2	ug/L			04/22/21 12:01	20
1,1,2-Trichloroethane	ND	20	4.6	ug/L			04/22/21 12:01	20
1,1-Dichloroethane	ND	20	7.6	ug/L			04/22/21 12:01	20
1,1-Dichloroethene	ND	20	5.8	ug/L			04/22/21 12:01	20
1,2,4-Trichlorobenzene	ND	20	8.2	ug/L			04/22/21 12:01	20
1,2-Dibromo-3-Chloropropane	ND	20	7.8	ug/L			04/22/21 12:01	20
1,2-Dibromoethane	ND	20	15	ug/L			04/22/21 12:01	20
1,2-Dichlorobenzene	ND	20	16	ug/L			04/22/21 12:01	20
1,2-Dichloroethane	ND	20	4.2	ug/L			04/22/21 12:01	20
1,2-Dichloropropane	ND	20	14	ug/L			04/22/21 12:01	20
1,3-Dichlorobenzene	ND	20	16	ug/L			04/22/21 12:01	20
1,4-Dichlorobenzene	ND	20	17	ug/L			04/22/21 12:01	20
2-Butanone (MEK)	ND	200	26	ug/L			04/22/21 12:01	20
2-Hexanone	ND	100	25	ug/L			04/22/21 12:01	20
4-Methyl-2-pentanone (MIBK)	ND	100	42	ug/L			04/22/21 12:01	20
Acetone	ND	200	60	ug/L			04/22/21 12:01	20
Benzene	ND	20	8.2	ug/L			04/22/21 12:01	20
Bromodichloromethane	ND	20	7.8	ug/L			04/22/21 12:01	20
Bromoform	ND	20	5.2	ug/L			04/22/21 12:01	20
Bromomethane	ND	20	14	ug/L			04/22/21 12:01	20
Carbon disulfide	ND	20	3.8	ug/L			04/22/21 12:01	20
Carbon tetrachloride	ND	20	5.4	ug/L			04/22/21 12:01	20
Chlorobenzene	ND	20	15	ug/L			04/22/21 12:01	20
Chloroethane	ND	20	6.4	ug/L			04/22/21 12:01	20
Chloroform	ND	20	6.8	ug/L			04/22/21 12:01	20
Chloromethane	ND	20	7.0	ug/L			04/22/21 12:01	20
cis-1,2-Dichloroethene	350	20	16	ug/L			04/22/21 12:01	20
cis-1,3-Dichloropropene	ND	20	7.2	ug/L			04/22/21 12:01	20
Cyclohexane	ND	20	3.6	ug/L			04/22/21 12:01	20
Dibromochloromethane	ND	20	6.4	ug/L			04/22/21 12:01	20
Dichlorodifluoromethane	ND	20	14	ug/L			04/22/21 12:01	20
Ethylbenzene	ND	20	15	ug/L			04/22/21 12:01	20
Isopropylbenzene	ND	20		ug/L			04/22/21 12:01	20
Methyl acetate	ND	50	26	ug/L			04/22/21 12:01	20
Methyl tert-butyl ether	ND	20	3.2	ug/L			04/22/21 12:01	20
Methylcyclohexane	ND	20		ug/L			04/22/21 12:01	20
Methylene Chloride	ND	20		ug/L			04/22/21 12:01	20

Eurofins TestAmerica, Buffalo

Page 7 of 24 4/26/2021

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183584-2

Matrix: Water

Job ID: 480-183584-1

Client Sample ID: MW-18-042021

Date Collected: 04/20/21 10:45 Date Received: 04/21/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		20	15	ug/L			04/22/21 12:01	20
Tetrachloroethene	ND		20	7.2	ug/L			04/22/21 12:01	20
Toluene	ND		20	10	ug/L			04/22/21 12:01	20
trans-1,2-Dichloroethene	ND		20	18	ug/L			04/22/21 12:01	20
trans-1,3-Dichloropropene	ND		20	7.4	ug/L			04/22/21 12:01	20
Trichloroethene	940		20	9.2	ug/L			04/22/21 12:01	20
Trichlorofluoromethane	ND		20	18	ug/L			04/22/21 12:01	20
Vinyl chloride	ND		20	18	ug/L			04/22/21 12:01	20
Xylenes, Total	ND		40	13	ug/L			04/22/21 12:01	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		77 - 120			-		04/22/21 12:01	20
4-Bromofluorobenzene (Surr)	91		73 - 120					04/22/21 12:01	20
Dibromofluoromethane (Surr)	91		75 - 123					04/22/21 12:01	20
Toluene-d8 (Surr)	95		80 - 120					04/22/21 12:01	20

Client Sample ID: MW-11 042021

Date Collected: 04/20/21 12:00

Date Received: 04/21/21 08:00

Lab Sample ID: 480-183584-3

Matrix: Water

Method: 8260C - Volatile Organic (Analyte	•	oy GC/MS Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10		ug/L	— <u> </u>		04/22/21 12:23	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			04/22/21 12:23	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			04/22/21 12:23	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			04/22/21 12:23	10
1,1-Dichloroethane	ND		10	3.8	ug/L			04/22/21 12:23	10
1,1-Dichloroethene	ND		10	2.9	ug/L			04/22/21 12:23	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			04/22/21 12:23	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			04/22/21 12:23	10
1,2-Dibromoethane	ND		10	7.3	ug/L			04/22/21 12:23	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			04/22/21 12:23	10
1,2-Dichloroethane	ND		10	2.1	ug/L			04/22/21 12:23	10
1,2-Dichloropropane	ND		10	7.2	ug/L			04/22/21 12:23	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			04/22/21 12:23	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			04/22/21 12:23	10
2-Butanone (MEK)	ND		100	13	ug/L			04/22/21 12:23	10
2-Hexanone	ND		50	12	ug/L			04/22/21 12:23	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			04/22/21 12:23	10
Acetone	ND		100	30	ug/L			04/22/21 12:23	10
Benzene	ND		10	4.1	ug/L			04/22/21 12:23	10
Bromodichloromethane	ND		10	3.9	ug/L			04/22/21 12:23	10
Bromoform	ND		10	2.6	ug/L			04/22/21 12:23	10
Bromomethane	ND		10	6.9	ug/L			04/22/21 12:23	10
Carbon disulfide	ND		10	1.9	ug/L			04/22/21 12:23	10
Carbon tetrachloride	ND		10	2.7	ug/L			04/22/21 12:23	10
Chlorobenzene	ND		10	7.5	ug/L			04/22/21 12:23	10
Chloroethane	ND		10	3.2	ug/L			04/22/21 12:23	10
Chloroform	ND		10	3.4	ug/L			04/22/21 12:23	10
Chloromethane	ND		10	3.5	ug/L			04/22/21 12:23	10

Eurofins TestAmerica, Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183584-3

Matrix: Water

Job ID: 480-183584-1

Client Sample ID: MW-11 042021

Date Collected: 04/20/21 12:00 Date Received: 04/21/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		10	8.1	ug/L			04/22/21 12:23	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			04/22/21 12:23	10
Cyclohexane	ND		10	1.8	ug/L			04/22/21 12:23	10
Dibromochloromethane	ND		10	3.2	ug/L			04/22/21 12:23	10
Dichlorodifluoromethane	ND		10	6.8	ug/L			04/22/21 12:23	10
Ethylbenzene	ND		10	7.4	ug/L			04/22/21 12:23	10
Isopropylbenzene	ND		10	7.9	ug/L			04/22/21 12:23	10
Methyl acetate	ND		25	13	ug/L			04/22/21 12:23	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			04/22/21 12:23	10
Methylcyclohexane	ND		10	1.6	ug/L			04/22/21 12:23	10
Methylene Chloride	ND		10	4.4	ug/L			04/22/21 12:23	10
Styrene	ND		10	7.3	ug/L			04/22/21 12:23	10
Tetrachloroethene	ND		10	3.6	ug/L			04/22/21 12:23	10
Toluene	ND		10	5.1	ug/L			04/22/21 12:23	10
trans-1,2-Dichloroethene	ND		10	9.0	ug/L			04/22/21 12:23	10
trans-1,3-Dichloropropene	ND		10	3.7	ug/L			04/22/21 12:23	10
Trichloroethene	680		10	4.6	ug/L			04/22/21 12:23	10
Trichlorofluoromethane	ND		10	8.8	ug/L			04/22/21 12:23	10
Vinyl chloride	ND		10	9.0	ug/L			04/22/21 12:23	10
Xylenes, Total	ND		20	6.6	ug/L			04/22/21 12:23	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		77 - 120			-		04/22/21 12:23	10
4-Bromofluorobenzene (Surr)	89		73 - 120					04/22/21 12:23	10
Dibromofluoromethane (Surr)	92		75 - 123					04/22/21 12:23	10
Toluene-d8 (Surr)	98		80 - 120					04/22/21 12:23	10

Client Sample ID: MW-10 042021

Date Collected: 04/20/21 13:00

Date Received: 04/21/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			04/22/21 12:46	2
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			04/22/21 12:46	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			04/22/21 12:46	2
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			04/22/21 12:46	2
1,1-Dichloroethane	ND		2.0	0.76	ug/L			04/22/21 12:46	2
1,1-Dichloroethene	ND		2.0	0.58	ug/L			04/22/21 12:46	2
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L			04/22/21 12:46	2
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L			04/22/21 12:46	2
1,2-Dibromoethane	ND		2.0	1.5	ug/L			04/22/21 12:46	2
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L			04/22/21 12:46	2
1,2-Dichloroethane	ND		2.0	0.42	ug/L			04/22/21 12:46	2
1,2-Dichloropropane	ND		2.0	1.4	ug/L			04/22/21 12:46	2
1,3-Dichlorobenzene	ND		2.0	1.6	ug/L			04/22/21 12:46	2
1,4-Dichlorobenzene	ND		2.0	1.7	ug/L			04/22/21 12:46	2
2-Butanone (MEK)	ND		20	2.6	ug/L			04/22/21 12:46	2
2-Hexanone	ND		10	2.5	ug/L			04/22/21 12:46	2
4-Methyl-2-pentanone (MIBK)	ND		10	4.2	ug/L			04/22/21 12:46	2

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-183584-4

Matrix: Water

Page 9 of 24 4/26/2021

2

6

8

10

1 1

13

14

4 -

Job ID: 480-183584-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-10 042021

Date Collected: 04/20/21 13:00 Date Received: 04/21/21 08:00

Lab Sample ID: 480-183584-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Acetone ND 20 6.0 04/22/21 12:46 ug/L Benzene ND 2.0 0.82 ug/L 04/22/21 12:46 2 Bromodichloromethane ND 2.0 0.78 ug/L 04/22/21 12:46 2 2 Bromoform ND 2.0 0.52 ug/L 04/22/21 12:46 ND 04/22/21 12:46 2 Bromomethane 2.0 1.4 ug/L Carbon disulfide ND 2.0 0.38 ug/L 04/22/21 12:46 2 Carbon tetrachloride ND 2.0 0.54 ug/L 04/22/21 12:46 2 2 Chlorobenzene ND 20 04/22/21 12:46 1.5 ug/L Chloroethane ND 2.0 0.64 ug/L 04/22/21 12:46 2 Chloroform ND 2.0 0.68 ug/L 04/22/21 12:46 2 Chloromethane ND 2.0 0.70 ug/L 04/22/21 12:46 2 ND 2.0 2 cis-1.2-Dichloroethene 1.6 ug/L 04/22/21 12:46 cis-1,3-Dichloropropene ND 2.0 0.72 ug/L 04/22/21 12:46 2 Cyclohexane ND 2.0 0.36 ug/L 04/22/21 12:46 2 2 ND Dibromochloromethane 2.0 0.64 ug/L 04/22/21 12:46 2 Dichlorodifluoromethane ND 2.0 1.4 ug/L 04/22/21 12:46 ND 2 Ethylbenzene 2.0 1.5 ug/L 04/22/21 12:46 Isopropylbenzene 04/22/21 12:46 2 ND 2.0 1.6 ug/L 2 Methyl acetate ND 5.0 2.6 ug/L 04/22/21 12:46 Methyl tert-butyl ether ND 2.0 0.32 ug/L 04/22/21 12:46 2 Methylcyclohexane ND 2 2.0 0.32 ug/L 04/22/21 12:46 Methylene Chloride ND 2.0 0.88 ug/L 04/22/21 12:46 2 2 Styrene ND 2.0 1.5 ug/L 04/22/21 12:46 Tetrachloroethene ND 2.0 0.72 ug/L 04/22/21 12:46 2 Toluene ND 2.0 ug/L 04/22/21 12:46 2 1.0 trans-1,2-Dichloroethene ND 2.0 1.8 ug/L 04/22/21 12:46 2 trans-1,3-Dichloropropene ND 2.0 0.74 ug/L 04/22/21 12:46 2 0.92 ug/L 04/22/21 12:46 2 **Trichloroethene** 110 2.0 2 Trichlorofluoromethane ND 2.0 1.8 ug/L 04/22/21 12:46

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		77 - 120	-		04/22/21 12:46	2
4-Bromofluorobenzene (Surr)	92		73 - 120			04/22/21 12:46	2
Dibromofluoromethane (Surr)	92		75 - 123			04/22/21 12:46	2
Toluene-d8 (Surr)	99		80 - 120			04/22/21 12:46	2

2.0

4.0

1.8 ug/L

1.3 ug/L

Client Sample ID: MW-13 04221

Date Collected: 04/20/21 13:50

Vinyl chloride

Xylenes, Total

Date Received: 04/21/21 08:00

Lab Sample ID: 480-183584-5

04/22/21 12:46

04/22/21 12:46

Matrix: Water

Method: 8260C - Volatile Organic Comp	ound	ls t	by C	GC/MS
	_		_	

ND

ND

motious ozobo volutio organic compounds by contro								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	4.0	3.3	ug/L			04/22/21 13:08	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			04/22/21 13:08	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			04/22/21 13:08	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			04/22/21 13:08	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			04/22/21 13:08	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			04/22/21 13:08	4

Eurofins TestAmerica, Buffalo

Page 10 of 24

6

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183584-1

Lab Sample ID: 480-183584-5

Matrix: Water

Client Sample ID: MW-13 04221

Date Collected: 04/20/21 13:50 Date Received: 04/21/21 08:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D Pi	repared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			04/22/21 13:08	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			04/22/21 13:08	
1,2-Dibromoethane	ND		4.0	2.9	ug/L			04/22/21 13:08	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			04/22/21 13:08	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			04/22/21 13:08	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			04/22/21 13:08	2
1,3-Dichlorobenzene	ND		4.0		ug/L			04/22/21 13:08	
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			04/22/21 13:08	4
2-Butanone (MEK)	ND		40	5.3	ug/L			04/22/21 13:08	2
2-Hexanone	ND		20	5.0	ug/L			04/22/21 13:08	
4-Methyl-2-pentanone (MIBK)	ND		20		ug/L			04/22/21 13:08	2
Acetone	ND		40		ug/L			04/22/21 13:08	2
Benzene	ND		4.0		ug/L			04/22/21 13:08	
Bromodichloromethane	ND		4.0		ug/L			04/22/21 13:08	2
Bromoform	ND		4.0		ug/L			04/22/21 13:08	2
Bromomethane	ND		4.0		ug/L			04/22/21 13:08	
Carbon disulfide	ND		4.0	0.76				04/22/21 13:08	2
Carbon tetrachloride	ND		4.0		ug/L			04/22/21 13:08	2
Chlorobenzene	ND		4.0		ug/L			04/22/21 13:08	
Chloroethane	ND		4.0		ug/L			04/22/21 13:08	2
Chloroform	ND		4.0		ug/L			04/22/21 13:08	2
Chloromethane	ND		4.0		ug/L			04/22/21 13:08	
cis-1,2-Dichloroethene	ND		4.0		ug/L			04/22/21 13:08	2
cis-1,3-Dichloropropene	ND		4.0		ug/L			04/22/21 13:08	2
Cyclohexane	ND		4.0	0.72				04/22/21 13:08	
Dibromochloromethane	ND		4.0		ug/L			04/22/21 13:08	2
Dichlorodifluoromethane	ND		4.0		ug/L			04/22/21 13:08	2
Ethylbenzene	ND		4.0		ug/L			04/22/21 13:08	
Isopropylbenzene	ND		4.0		ug/L			04/22/21 13:08	2
Methyl acetate	ND		10		ug/L			04/22/21 13:08	4
Methyl tert-butyl ether	ND		4.0		ug/L			04/22/21 13:08	
Methylcyclohexane	ND		4.0	0.64	-			04/22/21 13:08	2
Methylene Chloride	ND		4.0		ug/L			04/22/21 13:08	4
Styrene	ND		4.0		ug/L			04/22/21 13:08	
Tetrachloroethene	ND		4.0		ug/L			04/22/21 13:08	2
Toluene	ND		4.0		ug/L			04/22/21 13:08	2
trans-1,2-Dichloroethene	ND		4.0		ug/L			04/22/21 13:08	
trans-1,3-Dichloropropene	ND		4.0		ug/L			04/22/21 13:08	
Trichloroethene	180		4.0		ug/L			04/22/21 13:08	
Trichlorofluoromethane	ND		4.0		ug/L			04/22/21 13:08	
Vinyl chloride	ND		4.0		ug/L			04/22/21 13:08	2
Xylenes, Total	ND ND		8.0		ug/L ug/L			04/22/21 13:08	2
Surrogate	%Recovery	Qualifier	Limits			Pi	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					04/22/21 13:08	
4-Bromofluorobenzene (Surr)	90		73 - 120					04/22/21 13:08	4

Eurofins TestAmerica, Buffalo

04/22/21 13:08

04/22/21 13:08

75 - 123

80 - 120

92

98

2

6

8

10

12

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183584-1

Client Sample ID: QC TRIP BLANK

Date Collected: 04/20/21 00:00 Date Received: 04/21/21 08:00 Lab Sample ID: 480-183584-6

Matrix: Water

Analyte	Result Qualifier	RL	MDL Ur	nıt	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82 ug	g/L			04/22/21 13:31	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug	g/L			04/22/21 13:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug	g/L			04/22/21 13:31	
1,1,2-Trichloroethane	ND	1.0	0.23 ug	g/L			04/22/21 13:31	
1,1-Dichloroethane	ND	1.0	0.38 ug	g/L			04/22/21 13:31	
1,1-Dichloroethene	ND	1.0	0.29 ug	g/L			04/22/21 13:31	
1,2,4-Trichlorobenzene	ND	1.0	0.41 ug	g/L			04/22/21 13:31	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ug	g/L			04/22/21 13:31	
1,2-Dibromoethane	ND	1.0	0.73 ug	g/L			04/22/21 13:31	
1,2-Dichlorobenzene	ND	1.0	0.79 ug	g/L			04/22/21 13:31	
1,2-Dichloroethane	ND	1.0	0.21 ug	g/L			04/22/21 13:31	
1,2-Dichloropropane	ND	1.0	0.72 ug	g/L			04/22/21 13:31	
1,3-Dichlorobenzene	ND	1.0	0.78 ug	g/L			04/22/21 13:31	
1,4-Dichlorobenzene	ND	1.0	0.84 ug	g/L			04/22/21 13:31	
2-Butanone (MEK)	ND	10	1.3 ug	_			04/22/21 13:31	
2-Hexanone	ND	5.0	1.2 ug	g/L			04/22/21 13:31	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 ug				04/22/21 13:31	
Acetone	ND	10	3.0 ug	_			04/22/21 13:31	
Benzene	ND	1.0	0.41 ug				04/22/21 13:31	
Bromodichloromethane	ND	1.0	0.39 ug				04/22/21 13:31	
Bromoform	ND	1.0	0.26 ug	_			04/22/21 13:31	
Bromomethane	ND	1.0	0.69 ug				04/22/21 13:31	
Carbon disulfide	ND	1.0	0.19 ug	_			04/22/21 13:31	
Carbon tetrachloride	ND	1.0	0.27 ug	_			04/22/21 13:31	
Chlorobenzene	ND	1.0	0.75 ug				04/22/21 13:31	
Chloroethane	ND	1.0	0.32 ug	_			04/22/21 13:31	
Chloroform	ND	1.0	0.34 ug				04/22/21 13:31	
Chloromethane	ND	1.0	0.35 ug				04/22/21 13:31	
cis-1,2-Dichloroethene	ND	1.0	0.81 ug	_			04/22/21 13:31	
cis-1,3-Dichloropropene	ND	1.0	0.36 ug	_			04/22/21 13:31	
Cyclohexane	ND	1.0	0.18 ug				04/22/21 13:31	
Dibromochloromethane	ND	1.0	0.32 ug				04/22/21 13:31	
Dichlorodifluoromethane	ND	1.0	0.68 ug	_			04/22/21 13:31	
Ethylbenzene	ND	1.0	0.74 ug				04/22/21 13:31	
Isopropylbenzene	ND	1.0	0.79 ug	_			04/22/21 13:31	
Methyl acetate	ND	2.5	1.3 ug				04/22/21 13:31	
Methyl tert-butyl ether	ND	1.0	0.16 ug				04/22/21 13:31	
Methylcyclohexane	ND	1.0	0.16 ug				04/22/21 13:31	
Methylene Chloride	ND	1.0	0.44 ug				04/22/21 13:31	
Styrene	ND	1.0	0.73 ug				04/22/21 13:31	
Tetrachloroethene	ND	1.0	0.36 ug				04/22/21 13:31	
Toluene	ND	1.0	0.50 ug				04/22/21 13:31	
trans-1,2-Dichloroethene	ND ND	1.0	0.90 ug				04/22/21 13:31	
trans-1,3-Dichloropropene	ND ND	1.0	0.90 ug	-			04/22/21 13:31	
Trichloroethene	ND ND	1.0	0.37 ug	_			04/22/21 13:31	
Trichlorofluoromethane								
	ND ND	1.0	0.88 ug				04/22/21 13:31	
Vinyl chloride Xylenes, Total	ND ND	1.0 2.0	0.90 ug 0.66 ug	_			04/22/21 13:31 04/22/21 13:31	

Eurofins TestAmerica, Buffalo

2

5

8

10

12

1 *1*

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: 480-183584-6

5 Campic ID: 400 100004 0

Matrix: Water

Job ID: 480-183584-1

Client Sample ID: QC TRIP BLANK

Date Collected: 04/20/21 00:00 Date Received: 04/21/21 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	77 - 120		04/22/21 13:31	1
4-Bromofluorobenzene (Surr)	92	73 - 120		04/22/21 13:31	1
Dibromofluoromethane (Surr)	89	75 ₋ 123		04/22/21 13:31	1
Toluene-d8 (Surr)	99	80 - 120		04/22/21 13:31	1

5

5

0

10

12

4 4

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183584-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-183584-1	MW-24-042021	93	94	91	101
480-183584-2	MW-18-042021	94	91	91	95
480-183584-3	MW-11 042021	95	89	92	98
480-183584-4	MW-10 042021	92	92	92	99
480-183584-5	MW-13 04221	97	90	92	98
480-183584-6	QC TRIP BLANK	95	92	89	99
LCS 480-577326/5	Lab Control Sample	93	93	88	100
MB 480-577326/7	Method Blank	91	91	93	96

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins TestAmerica, Buffalo

Page 14 of 24

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183584-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-577326/7

Matrix: Water

Analysis Batch: 577326

Client Sample ID: Method Bla	ınk
Prep Type: Total/	NA

	МВ								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/22/21 10:39	•
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/22/21 10:39	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/22/21 10:39	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/22/21 10:39	•
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/22/21 10:39	•
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/22/21 10:39	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/22/21 10:39	•
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/22/21 10:39	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/22/21 10:39	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/22/21 10:39	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/22/21 10:39	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/22/21 10:39	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/22/21 10:39	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/22/21 10:39	
2-Butanone (MEK)	ND		10	1.3	ug/L			04/22/21 10:39	
2-Hexanone	ND		5.0	1.2	ug/L			04/22/21 10:39	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/22/21 10:39	
Acetone	ND		10	3.0	ug/L			04/22/21 10:39	
Benzene	ND		1.0	0.41	ug/L			04/22/21 10:39	
Bromodichloromethane	ND		1.0	0.39	ug/L			04/22/21 10:39	
Bromoform	ND		1.0	0.26	ug/L			04/22/21 10:39	
Bromomethane	ND		1.0		ug/L			04/22/21 10:39	
Carbon disulfide	ND		1.0		ug/L			04/22/21 10:39	
Carbon tetrachloride	ND		1.0		ug/L			04/22/21 10:39	
Chlorobenzene	ND		1.0		ug/L			04/22/21 10:39	
Chloroethane	ND		1.0		ug/L			04/22/21 10:39	
Chloroform	ND		1.0		ug/L			04/22/21 10:39	
Chloromethane	ND		1.0		ug/L			04/22/21 10:39	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/22/21 10:39	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/22/21 10:39	
Cyclohexane	ND		1.0		ug/L			04/22/21 10:39	
Dibromochloromethane	ND		1.0		ug/L			04/22/21 10:39	
Dichlorodifluoromethane	ND		1.0		ug/L			04/22/21 10:39	
Ethylbenzene	ND		1.0		ug/L			04/22/21 10:39	
Isopropylbenzene	ND		1.0		ug/L			04/22/21 10:39	
Methyl acetate	ND		2.5		ug/L			04/22/21 10:39	
Methyl tert-butyl ether	ND		1.0		ug/L			04/22/21 10:39	
Methylcyclohexane	ND		1.0		ug/L			04/22/21 10:39	
Methylene Chloride	ND		1.0		ug/L			04/22/21 10:39	
Styrene	ND ND		1.0		ug/L			04/22/21 10:39	
Tetrachloroethene	ND ND		1.0		ug/L			04/22/21 10:39	
					•				
Toluene trans 1.2 Dichloroothone	ND		1.0		ug/L			04/22/21 10:39	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/22/21 10:39	
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/22/21 10:39	
Trichloroftyaramethana	ND		1.0		ug/L			04/22/21 10:39	
Trichlorofluoromethane	ND		1.0		ug/L			04/22/21 10:39	
Vinyl chloride	ND		1.0		ug/L			04/22/21 10:39	•
Xylenes, Total	ND		2.0	0.66	ug/L			04/22/21 10:39	•

Eurofins TestAmerica, Buffalo

4/26/2021

Page 15 of 24

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183584-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-577326/7

Matrix: Water

Analysis Batch: 577326

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 91 77 - 120 04/22/21 10:39 4-Bromofluorobenzene (Surr) 91 73 - 120 04/22/21 10:39 Dibromofluoromethane (Surr) 93 75 - 123 04/22/21 10:39 Toluene-d8 (Surr) 96 80 - 120 04/22/21 10:39

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-577326/5 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 577326

1,1,1-Trichloroethane 25.0 19.9 ug'l. 80 73.126 1,1,2-Terlorachloroethane 25.0 25.6 ug/l. 103 75.120 1,1,2-Terlohor-1,2-Arthuroetha 25.0 25.9 ug/l. 75 61.148 ne 11,2-Terlohor-1,2-Arthuroethane 25.0 25.9 ug/l. 103 76.122 1,1-Dichloroethane 25.0 25.0 18.3 ug/l. 73 66.127 1,1-Dichloroethane 25.0 25.0 18.3 ug/l. 88 77.120 1,1-Dichloroethane 25.0 25.0 29.0 ug/l. 100 56.134 1,2-Dichloroethane 25.0 25.0 29.0 ug/l. 100 56.134 1,2-Dichloroethane 25.0 22.0 ug/l. 89 77.120 1,2-Dichloroethane 25.0 22.18 ug/l. 89 76.120 1,2-Dichloroethane 25.0 22.9 ug/l. 99 76.120 1,2-Dichloroethane 25.0 22.9 ug/l. 99 76.120 1,2-Dichloroethane		Spike	LCS	LCS				%Rec.
1,1,2,2-Tetrachloroethane	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloro-t,2,2-Influoroethan ne ne	1,1,1-Trichloroethane	25.0	19.9		ug/L		80	73 - 126
ne 1,1,2-Tichloroethane 25.0 25.9 ug/L 10.3 76 .122 1,1,2-Tichloroethane 25.0 22.1 ug/L 88 77 .120 1,1-Dichloroethane 25.0 18.3 ug/L 73 66 .127 1,1-Dichloroethane 25.0 18.3 ug/L 73 66 .127 1,1-Dichloroethane 25.0 21.4 ug/L 85 79 .122 1,2-Hinchloroethane 25.0 25.0 ug/L 100 56 .134 1,2-Dichlorome-S-Chiloropropane 25.0 25.0 ug/L 100 56 .134 1,2-Dichloromethane 25.0 24.8 ug/L 99 77 .120 1,2-Dichloroethane 25.0 22.2 ug/L 89 80 .124 1,2-Dichloroethane 25.0 22.2 ug/L 89 80 .124 1,2-Dichloroethane 25.0 22.9 ug/L 89 80 .124 1,2-Dichloropropane 25.0 22.9 ug/L 89 80 .124 1,2-Dichloropropane 25.0 24.7 ug/L 99 76 .120 1,2-Dichloropropane 25.0 22.8 ug/L 91 77 .120 1,2-Dichloroethane 25.0 22.9 ug/L 91 77 .120 1,2-Dichloroethane 25.0 22.9 ug/L 91 80 .120 1,2-Dichloroethane 25.0 22.8 ug/L 101 77 .120 1,2-Dichloroethane 25.0 22.8 ug/L 101 77 .120 1,2-Dichloroethane 25.0 22.8 ug/L 101 77 .125 1,2-Dichloroethane 125 154 ug/L 126 57 .140 1,2-Dichloroethane 125 154 ug/L 126 57 .140 1,2-Dichloroethane 125 154 ug/L 126 57 .140 1,2-Dichloroethane 125 154 ug/L 101 71 .125 1,2-Dichloroethane 125 154 ug/L 101 77 .55 .144 1,2-Dichloroethane 25.0 25.0 ug/L 101 61 .132 1,2-Dichloroethane 25.0 19.1 ug/L 80 80 .122 1,2-Dichloroethane 25.0 25.0 ug/L 101 61 .132 1,2-Dichloroethane 25.0 2	1,1,2,2-Tetrachloroethane	25.0	25.6		ug/L		103	76 - 120
1.1.2-Trichtoroethane 25.0 25.9 ug/L 103 76-122 (1.1-Dichloroethane 25.0 22.1 ug/L 88 77-120 (1.1-Dichloroethane 25.0 18.3 ug/L 73 66-127 (1.2-Dichloroethane 25.0 18.3 ug/L 73 66-127 (1.2-Dichloroethane 25.0 25.0 ug/L 100 55.134 (1.2-Dichloroethane 25.0 25.0 ug/L 100 55.134 (1.2-Dichloroethane 25.0 25.0 ug/L 100 55.134 (1.2-Dichloroethane 25.0 24.8 ug/L 89 80.124 (1.2-Dichloroethane 25.0 22.2 ug/L 89 80.124 (1.2-Dichloroethane 25.0 22.8 ug/L 99 77.120 (1.2-Dichloroethane 25.0 24.8 ug/L 99 76.120 (1.2-Dichloroethane 25.0 24.7 ug/L 99 76.120 (1.2-Dichloroethane 25.0 22.8 ug/L 91 77.120 (1.2-Dichloroethane 25.0 22.8 ug/L 91 80.120 (1.2-Dichloroethane 25.0 25.0 ug/L 89 71.124 (1.2-Dichloroethane 25.0 22.2 ug/L 89 71.124 (1.2-Dichloroethane 25.0 22.2 ug/L 89 71.124 (1.2-Dichloroethane 25.0 22.2 ug/L 89 71.124 (1.2-Dichloroethane 25.0 25.0 ug/L 98 80.122 (1.2-Dichloroethane 25.0 25.0 ug/L 98 80.120 (1.2-Dichloroethane 25.0 25.0 ug/L 80 72.134 (1.2-Dichloroethane 25.0 25.0 ug/L 80 72.134 (1.2-Dichloroethane 25.0 25.0 ug/L 80 73.127 (1.2-Dichloroethane 25.0 25.0 ug/L 80 73.127 (1.2-Dichloroethane 25.0 25.0 ug/L 80 73.127 (1.2-Dichloroethane 25.0 25.0 ug/L 80 80.120 (1.2-Dichloroet	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	18.8		ug/L		75	61 - 148
1,1-Dichloroethane 25.0 22.1 ug/L 88 77-120 1,1-Dichloroethene 25.0 18.3 ug/L 73 66.127 1,2-Dichloroebenee 25.0 21.4 ug/L 85 79-122 1,2-Dibromoethane 25.0 25.0 ug/L 199 77-120 1,2-Dichloroethane 25.0 22.2 ug/L 89 80-124 1,2-Dichloroethane 25.0 22.8 ug/L 87 75-120 1,2-Dichloroethane 25.0 22.8 ug/L 99 76-120 1,2-Dichloroethane 25.0 24.7 ug/L 99 76-120 1,2-Dichloroethane 25.0 22.8 ug/L 99 76-120 1,2-Dichloroethane 25.0 22.8 ug/L 99 76-120 1,2-Dichloroethane 25.0 22.8 ug/L 91 77-120 1,2-Dichloroethane 25.0 22.8 ug/L 91 80-122 2-Bulanone 125 113 ug/L 110 71-125 4-Hexanone 125	ne							
1,1-Dichloroethene 25.0 18.3 ug/L 73 66 - 127 1,2,4-Tirchlorobenzene 25.0 21.4 ug/L 105 56 - 134 1,2-Dibromo-Chloropropane 25.0 25.0 ug/L 109 56 - 134 1,2-Dichlorobenzene 25.0 24.8 ug/L 89 80 - 124 1,2-Dichlorobenzene 25.0 22.2 ug/L 89 80 - 124 1,2-Dichloropropane 25.0 24.7 ug/L 99 75 - 120 1,2-Dichloropropane 25.0 22.8 ug/L 91 77 - 120 1,2-Dichloropropane 25.0 22.8 ug/L 91 91 77 - 120 1,2-Dichloropropane 25.0 22.8 ug/L 91 71	1,1,2-Trichloroethane	25.0	25.9		ug/L		103	76 - 122
1,2,4-Trichlorobenzene 25.0 21.4 ug/L 85 79 - 122 1.2-Dibromo-3-Chloropropane 25.0 25.0 ug/L 100 56 . 134 1.2-Dibromo-sthane 25.0 24.8 ug/L 99 77 - 120 1.2-Dibromoethane 25.0 24.8 ug/L 99 77 - 120 1.2-Dichlorobenzene 25.0 22.2 ug/L 89 80. 124 1.2-Dichlorobenzene 25.0 22.2 ug/L 89 80. 124 1.2-Dichloropropane 25.0 22.9 ug/L 99 76 . 120 1.2-Dichloropropane 25.0 22.9 ug/L 99 77 - 120 1.3-Dichlorobenzene 25.0 22.9 ug/L 91 80 . 120 1.3-Dichlorobenzene 25.0 22.9 ug/L 91 80 . 120 1.3-Dichlorobenzene 25.0 22.8 ug/L 91 80 . 120 1.3-Dichlorobenzene 25.0 125 158 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 158 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 158 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 154 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 154 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 154 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 158 ug/L 126 57 . 140 1.2-Dichlorobenzene 125 154 ug/L 126 154 154 154 154 154 154 154 154 154 154	1,1-Dichloroethane	25.0	22.1		ug/L		88	77 - 120
1,2-Dibromo-3-Chloropropane 25.0 25.0 ug/L 100 56.134 1,2-Dibromoethane 25.0 24.8 ug/L 99 77.120 1,2-Dichlorobenzene 25.0 22.2 ug/L 89 80.124 1,2-Dichloropropane 25.0 21.8 ug/L 99 75.120 1,3-Dichlorobenzene 25.0 22.9 ug/L 91 77.120 1,3-Dichlorobenzene 25.0 22.8 ug/L 91 78.120 1,3-Dichlorobenzene 25.0 22.8 ug/L 91 80.120 2-Butanone (MEK) 125 158 ug/L 126 57.140 2-Hexanone 125 154 ug/L 123 65.127 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71.124 Benzene 25.0 22.2 ug/L 89 71.124 Benzene 25.0 22.2 ug/L 89 71.124 Bromodichioromethane 25.0 25.2 ug/L 10 61.132 Bromodichioromethane	1,1-Dichloroethene	25.0	18.3		ug/L		73	66 - 127
1,2-Dibromoethane 25.0 24.8 ug/L 99 77 - 120 1,2-Dichloroberzene 25.0 22.2 ug/L 89 80 - 124 1,2-Dichlorobertane 25.0 21.8 ug/L 87 75 - 120 1,2-Dichloropropane 25.0 24.7 ug/L 99 76 - 120 1,3-Dichlorobenzene 25.0 22.9 ug/L 91 77 - 120 1,4-Dichlorobenzene 25.0 22.8 ug/L 91 80 - 120 2-Butanone (MIEK) 125 158 ug/L 123 65 - 127 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71 - 125 4-Methyl-2-pentanone (MIBK) 125 111 ug/L 89 56 - 142 Benzene 125 111 ug/L 89 56 - 142 Benzene 25.0 22.2 ug/L 89 71 - 124 Benzene 25.0 22.2 ug/L 89 71 - 124 Benzene 25.0 22.2 ug/L 89 71 - 124 Benzene 25.0 </td <td>1,2,4-Trichlorobenzene</td> <td>25.0</td> <td>21.4</td> <td></td> <td>ug/L</td> <td></td> <td>85</td> <td>79 - 122</td>	1,2,4-Trichlorobenzene	25.0	21.4		ug/L		85	79 - 122
1,2-Dichlorobenzene 25.0 22.2 ug/L 89 80 - 124 1,2-Dichlorocethane 25.0 21.8 ug/L 87 75 - 120 1,2-Dichloropropane 25.0 22.7 ug/L 99 76 - 120 1,3-Dichlorobenzene 25.0 22.9 ug/L 91 77 - 720 2,5-Dichlorobenzene 25.0 22.8 ug/L 126 57 - 140 2,5-Dichlorobenzene 125 158 ug/L 126 57 - 140 2,5-Dichlorobenzene 125 154 ug/L 120 56 - 122 2,5-Dichlorobenzene 125 154 ug/L 120 56 - 122 2,5-Dichlorobenzene 125 154 ug/L 89 56 - 122 4,6-Weithyl-2-pentanone (MIBK) 125 111 ug/L 89 76 - 142 4,0-Lorobenzene 25.0 22.2 ug/L 89 71 - 124 Berzene 25.0 22.2 ug/L 101 61 - 132 Bromodichloromethane 25.0 25.2 ug/L 17 55 - 144	1,2-Dibromo-3-Chloropropane	25.0	25.0		ug/L		100	56 - 134
1.2-Dichloroethane 25.0 21.8 ug/L 87 75.120 1.2-Dichloropropane 25.0 24.7 ug/L 99 76.120 1.3-Dichloropropane 25.0 22.9 ug/L 91 77.120 1.3-Dichlorobenzene 25.0 22.9 ug/L 91 77.120 1.3-Dichlorobenzene 25.0 22.8 ug/L 91 80.120 2-Butanone (MEK) 125 158 ug/L 126 57.140 2-Hexanone (MEK) 125 154 ug/L 123 65.127 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71.125 8-pentanone (MIBK) 125 131 ug/L 89 56.142 8-pentanone (MIBK) 125 111 ug/L 89 56.142 8-pentanone (MIBK) 125 111 ug/L 89 56.142 8-promodichloromethane 25.0 22.2 ug/L 89 71.124 8-promodichloromethane 25.0 22.2 ug/L 89 71.124 8-promodichloromethane 25.0 25.2 ug/L 101 61.132 8-promodichloromethane 25.0 19.1 ug/L 77 55.144 Carbon disulfide 25.0 19.1 ug/L 77 55.144 Carbon disulfide 25.0 19.9 ug/L 77 55.144 Carbon disulfide 25.0 20.0 ug/L 80 72.134 Chlorobenzene 25.0 25.8 ug/L 103 66.124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 103 66.124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 103 74.124 cis-1,3-Dichloroptopene 25.0 25.8 ug/L 103 74.124 cis-1,3-Dichloroptopene 25.0 24.1 ug/L 96 80.120 Chloromethane 25.0 24.5 ug/L 91 74.124 cis-1,3-Dichloroptopene 25.0 24.1 ug/L 96 77.125 Dichlorodifluoromethane 25.0 24.1 ug/L 96 77.123 Slopropylbenzene 25.0 24.1 ug/L 93 77.122 Elthylenzene 25.0 24.1 ug/L 93 77.122 Elthylenzene 25.0 24.1 ug/L 93 77.123 Methyl acetate 50.0 47.8 ug/L 93 77.120	1,2-Dibromoethane	25.0	24.8		ug/L		99	77 - 120
1.2-Dichloropropane 25.0 24.7 ug/L 99 76.120 1.3-Dichlorobenzene 25.0 22.9 ug/L 91 77.120 1.3-Dichlorobenzene 25.0 22.9 ug/L 91 77.120 1.4-Dichlorobenzene 25.0 22.8 ug/L 91 80.120 1.4-Dichlorobenzene 25.0 22.8 ug/L 91 80.120 1.4-Dichlorobenzene 25.0 158 ug/L 126 57.140 1.4-Dichlorobenzene 125 158 ug/L 123 65.127 1.4-Methyl-2-pentanone (MIBK) 125 154 ug/L 123 65.127 1.4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71.125 1.4-Methyl-2-pentanone (MIBK) 125 131 ug/L 89 56.142 1.4-Dichloromethane 125 111 ug/L 89 56.142 1.4-Dichloromethane 125.0 127 1.4-Methyl-2-pentanone (MIBK) 125 131 ug/L 89 71.124 1.4-Dichloromethane 125.0 127 127 127 127 127 127 127 127 127 127	1,2-Dichlorobenzene	25.0	22.2		ug/L		89	80 - 124
1,3-Dichlorobenzene 25.0 22.9 ug/L 91 77 . 120 1,4-Dichlorobenzene 25.0 22.8 ug/L 91 80 . 120 1,4-Dichlorobenzene 25.0 128 ug/L 126 57 . 140 2-Butanone (MEK) 125 158 ug/L 126 57 . 140 2-Hexanone 125 154 ug/L 123 65 . 127 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71 . 125 140 140 17 . 125 140 17 . 125 180 180 180 180 180 180 180 180 180 180	1,2-Dichloroethane	25.0	21.8		ug/L		87	75 _ 120
1,4-Dichlorobenzene 25.0 22.8 ug/L 91 80 - 120 2-Butanone (MEK) 125 158 ug/L 126 57 - 140 2-Hexanone 125 154 ug/L 123 65 - 127 4-Methyl-2-pentanone (MIBK) 125 111 ug/L 190 71 - 125 Acetone 125 111 ug/L 89 76 - 142 Benzene 25.0 22.2 ug/L 89 71 - 124 Bromodichloromethane 25.0 24.6 ug/L 98 80 - 122 Bromoferm 25.0 25.2 ug/L 198 80 - 122 Bromofermane 25.0 25.2 ug/L 198 80 - 122 Bromofermane 25.0 19.1 ug/L 198 80 - 122 Carbon disulfide 25.0 19.9 ug/L 10 65 - 144 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 20.1 ug/L 80 69 - 136 Chlorobenzene 25.0 <td< td=""><td>1,2-Dichloropropane</td><td>25.0</td><td>24.7</td><td></td><td>ug/L</td><td></td><td>99</td><td>76 - 120</td></td<>	1,2-Dichloropropane	25.0	24.7		ug/L		99	76 - 120
2-Butanone (MEK) 125 158 ug/L 126 57 - 140 2-Hexanone 125 154 ug/L 123 65 - 127 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71 - 125 Acetone 125 131 ug/L 89 56 - 142 Benzene 250 222 ug/L 89 71 - 124 Bromodichloromethane 250 246 ug/L 98 80 - 122 Bromoform 250 25.2 ug/L 101 61 - 132 Bromomethane 250 250 25.2 ug/L 101 61 - 132 Bromomethane 250 250 19.9 ug/L 77 55 - 144 Carbon disulfide 250 250 29.0 ug/L 77 55 - 144 Carbon disulfide 250 250 19.9 ug/L 79 59 - 134 Chlorobenzene 250 240 ug/L 80 72 - 134 Chlorobenzene 250 240 ug/L 80 72 - 134 Chlorobenzene 250 250 19.9 ug/L 80 72 - 134 Chlorobenzene 250 250 201 ug/L 80 69 . 136 Chlorothane 250 250 201 ug/L 80 69 . 136 Chlorothane 250 250 201 ug/L 80 69 . 136 Chlorothane 250 250 201 ug/L 80 69 . 136 Chlorothane 250 250 201 ug/L 80 69 . 136 Chlorothane 250 250 201 ug/L 80 69 . 136 Chlorothane 250 250 258 ug/L 103 68 . 124 cis-1,3-Dichlorothene 250 258 ug/L 81 74 - 124 cis-1,3-Dichlorothene 250 258 ug/L 81 74 - 124 cis-1,3-Dichlorothene 250 258 ug/L 81 74 - 124 Cyclohexane 250 258 ug/L 81 74 - 124 Cyclohexane 250 258 ug/L 91 59 . 135 Dibromochloromethane 250 245 ug/L 91 59 . 135 Dibromochloromethane 250 245 ug/L 96 77 - 123 Bibpomochloromethane 250 241 ug/L 96 77 - 123	1,3-Dichlorobenzene	25.0	22.9		ug/L		91	77 - 120
2-Hexanone 125 154 ug/L 123 65 - 127 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71 - 125 Acetone 125 111 ug/L 89 56 - 142 Benzene 25.0 22.2 ug/L 89 71 - 124 Bromodichloromethane 25.0 24.6 ug/L 98 80 - 122 Bromoferm 25.0 24.6 ug/L 101 61 - 132 Bromodichloromethane 25.0 19.1 ug/L 77 55 - 144 Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 20.1 ug/L 80 69 - 136 Chlorobenzene 25.0 20.1 ug/L 80 69 - 136 Chlorobenzene 25.0 25.8 ug/L 81 74 - 124 cis-1,2-Dichloroethane 25.0	1,4-Dichlorobenzene	25.0	22.8		ug/L		91	80 - 120
4-Methyl-2-pentanone (MIBK) 125 137 137 137 137 137 137 137 137 137 137	2-Butanone (MEK)	125	158		ug/L		126	57 - 140
Acetone 125 111 ug/L 89 56 - 142 Benzene 25.0 22.2 ug/L 89 71 - 124 Bromodichloromethane 25.0 24.6 ug/L 98 80 - 122 Bromoform 25.0 25.2 ug/L 101 61 - 132 Bromomethane 25.0 19.1 ug/L 77 55 - 144 Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 24.0 ug/L 80 72 - 134 Chlorobethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 80 69 - 136 Chloromethane 25.0 25.8 ug/L 80 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 81 74 - 124 cis-1,2-Dichloropropene 25.0 25.8 ug/L 91 59 - 135 Dibromochloromethane 25.0	2-Hexanone	125	154		ug/L		123	65 - 127
Benzene 25.0 22.2 ug/L 89 71.124 Bromodichloromethane 25.0 24.6 ug/L 98 80 - 122 Bromoform 25.0 25.2 ug/L 101 61 - 132 Bromomethane 25.0 19.1 ug/L 77 55 - 144 Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 20.1 ug/L 80 72 - 134 Chloroform 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5	4-Methyl-2-pentanone (MIBK)	125	137		ug/L		110	71 - 125
Bromodichloromethane 25.0 24.6 ug/L 98 80 - 122 Bromoform 25.0 25.2 ug/L 101 61 - 132 Bromomethane 25.0 19.1 ug/L 77 55 - 144 Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 24.0 ug/L 96 80 - 120 Chlorocethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 103 68 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 75 - 125 Dibromochloromethane 25.0	Acetone	125	111		ug/L		89	56 - 142
Bromoform 25.0 25.2 ug/L 101 61 - 132 Bromomethane 25.0 19.1 ug/L 77 55 - 144 Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 24.0 ug/L 96 80 - 120 Chloroethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 25.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0	Benzene	25.0	22.2		ug/L		89	71 - 124
Bromomethane 25.0 19.1 ug/L 77 55 - 144 Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 24.0 ug/L 96 80 - 120 Chloroethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 91 59 - 135 Cyclohexane 25.0 25.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 24.5 ug/L 80 59 - 135 Ethylbenzene 25.0	Bromodichloromethane	25.0	24.6		ug/L		98	80 - 122
Carbon disulfide 25.0 19.9 ug/L 79 59 - 134 Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 24.0 ug/L 96 80 - 120 Chloroethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 91 59 - 135 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 24.1 ug/L 96 77 - 123 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl tert-butyl ethe	Bromoform	25.0	25.2		ug/L		101	61 - 132
Carbon tetrachloride 25.0 20.0 ug/L 80 72 - 134 Chlorobenzene 25.0 24.0 ug/L 96 80 - 120 Chloroethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 24.5 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 82 77 - 120	Bromomethane	25.0	19.1		ug/L		77	55 - 144
Chlorobenzene 25.0 24.0 ug/L 96 80 - 120 Chloroethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 25.8 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 82 77 - 120	Carbon disulfide	25.0	19.9		ug/L		79	59 ₋ 134
Chloroethane 25.0 20.1 ug/L 80 69 - 136 Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 20.3 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Carbon tetrachloride	25.0	20.0		ug/L		80	72 - 134
Chloroform 25.0 20.6 ug/L 82 73 - 127 Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 20.3 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Chlorobenzene	25.0	24.0		ug/L		96	80 - 120
Chloromethane 25.0 25.8 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 20.3 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Chloroethane	25.0	20.1		ug/L		80	69 - 136
cis-1,2-Dichloroethene 25.0 20.3 ug/L 81 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Chloroform	25.0	20.6		ug/L		82	73 - 127
cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Chloromethane	25.0	25.8		ug/L		103	68 - 124
cis-1,3-Dichloropropene 25.0 25.8 ug/L 103 74 - 124 Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	cis-1,2-Dichloroethene	25.0	20.3		ug/L		81	74 ₋ 124
Cyclohexane 25.0 22.8 ug/L 91 59 - 135 Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	cis-1,3-Dichloropropene		25.8		-		103	74 - 124
Dibromochloromethane 25.0 24.5 ug/L 98 75 - 125 Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Cyclohexane		22.8				91	
Dichlorodifluoromethane 25.0 19.9 ug/L 80 59 - 135 Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Dibromochloromethane				_		98	
Ethylbenzene 25.0 24.1 ug/L 96 77 - 123 Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120								
Isopropylbenzene 25.0 23.2 ug/L 93 77 - 122 Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	Ethylbenzene							
Methyl acetate 50.0 47.8 ug/L 96 74 - 133 Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120	•				-			
Methyl tert-butyl ether 25.0 20.4 ug/L 82 77 - 120								
	Methylcyclohexane	25.0	21.2		ug/L		85	68 ₋ 134

Eurofins TestAmerica, Buffalo

Page 16 of 24

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Lab Sample ID: LCS 480-577326/5

Job ID: 480-183584-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 577326

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	22.3		ug/L		89	75 - 124	
Styrene	25.0	24.3		ug/L		97	80 - 120	
Tetrachloroethene	25.0	21.9		ug/L		88	74 - 122	
Toluene	25.0	23.7		ug/L		95	80 - 122	
trans-1,2-Dichloroethene	25.0	19.1		ug/L		76	73 - 127	
trans-1,3-Dichloropropene	25.0	25.1		ug/L		100	80 - 120	
Trichloroethene	25.0	22.7		ug/L		91	74 - 123	
Trichlorofluoromethane	25.0	20.3		ug/L		81	62 - 150	
Vinyl chloride	25.0	21.4		ug/L		86	65 _ 133	

LCS LCS

%Recovery	Qualifier	Limits
93		77 - 120
93		73 - 120
88		75 - 123
100		80 - 120
	93 93 88	93 93 88

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183584-1

GC/MS VOA

Analysis Batch: 577326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183584-1	MW-24-042021	Total/NA	Water	8260C	
480-183584-2	MW-18-042021	Total/NA	Water	8260C	
480-183584-3	MW-11 042021	Total/NA	Water	8260C	
480-183584-4	MW-10 042021	Total/NA	Water	8260C	
480-183584-5	MW-13 04221	Total/NA	Water	8260C	
480-183584-6	QC TRIP BLANK	Total/NA	Water	8260C	
MB 480-577326/7	Method Blank	Total/NA	Water	8260C	
LCS 480-577326/5	Lab Control Sample	Total/NA	Water	8260C	

3

4

5

6

8

9

10

12

. .

4 -

Job ID: 480-183584-1

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Client Sample ID: MW-24-042021

Date Collected: 04/20/21 10:00

Lab Sample ID: 480-183584-1 **Matrix: Water**

Date Received: 04/21/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	_	5	577326	04/22/21 11:39	CRL	TAL BUF

Client Sample ID: MW-18-042021

Lab Sample ID: 480-183584-2

Matrix: Water

Date Collected: 04/20/21 10:45 Date Received: 04/21/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		20	577326	04/22/21 12:01	CRL	TAL BUF

Client Sample ID: MW-11 042021

Lab Sample ID: 480-183584-3 Date Collected: 04/20/21 12:00

Matrix: Water

Date Received: 04/21/21 08:00

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C 577326 04/22/21 12:23 CRL TAL BUF Analysis

Client Sample ID: MW-10 042021 Lab Sample ID: 480-183584-4

Date Collected: 04/20/21 13:00 **Matrix: Water**

Date Received: 04/21/21 08:00

Dilution Batch Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab CRL TAL BUF 8260C 577326 04/22/21 12:46 Total/NA Analysis

Client Sample ID: MW-13 04221 Lab Sample ID: 480-183584-5

Date Collected: 04/20/21 13:50 **Matrix: Water**

Date Received: 04/21/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		4	577326	04/22/21 13:08	CRL	TAL BUF

Client Sample ID: QC TRIP BLANK Lab Sample ID: 480-183584-6

Date Collected: 04/20/21 00:00 **Matrix: Water**

Date Received: 04/21/21 08:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			577326	04/22/21 13:31	CRL	TAL BUF	-

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Former Accurate Die Cast

Job ID: 480-183584-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-22

3

5

8

10

__

13

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast Job ID: 480-183584-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

_

a

10

13

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Former Accurate Die Cast

Job ID: 480-183584-1

3

4

5

6

8

4.0

11

12

14

Client: O'Brien & Gere Inc of North America

Job Number: 480-183584-1

Login Number: 183584 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

• •	_	
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo