report. hw734053, 2005-12-13. Annual rpt. Year 2.pdf

.

.

-

ENVIRONMENTAL CONSULTING & MANAGEMENT ROUX ASSOCIATES INC

1222 FOREST PARKWAY, SUITE 190 WEST DEPTFORD, NEW JERSEY 08066 856 423-8800 FAX 856 423-3220

December 13, 2005

Mr. John Grathwol, P.E. Division of Environmental Remediation, 12th Floor New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7010

Re: Annual Landfill Inspection Report (Year 2) Syracuse China Landfill Town of Salina, Onondaga County, New York NYSDEC Site Number 7-34-053

REMEDIAL BUREAU B

Dear Mr. Grathwol:

Remedial Engineering, P.C. (Remedial Engineering) and Roux Associates, Inc. (Roux Associates) on behalf of The Pfaltzgraff Co. (Pfaltzgraff) have prepared this Annual Landfill Inspection Report to summarize the second year of operation, maintenance and monitoring activities performed at the Syracuse China Landfill, located in the Town of Salina, Onondaga County, New York. This report has been prepared in accordance with the Operation, Maintenance and Monitoring (OM&M) Plan prepared by Remedial Engineering, dated September 25, 2003 and the landfill closure and post-closure criteria specified in Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6NYCRR) Part 360. The referenced OM&M Plan is on file with the New York State Department of Environmental Conservation (NYSDEC). A site plan is provided as Figure 1.

This report is divided into three sections:

- Summary of Monitoring and Inspection Activities;
- Recommended Maintenance Actions and Monitoring Modifications; and
- Proposed Modifications to OM&M Schedule.

Supporting tables, figures and appendices are included at the end of this report.

Summary of Monitoring and Inspection Activities

Site inspection activities were performed during the second year following Remedial Action as specified in the OM&M Plan. Ground-water sampling, surface water sampling and landfill gas monitoring were performed by Upstate Laboratories, Inc. (Upstate Laboratories) of East Syracuse, New York on December 5, 2004 (first quarter) and March 2, 2005 (second quarter). Ground-water sampling, surface water sampling and landfill gas monitoring were performed by Paradigm Environmental Services, Inc. (Paradigm) of Rochester, New York on June 29, 2005 (third quarter) and September 28 and October 19, 2005 (fourth quarter). An inspection of the landfill was completed on September 16, 2005 by Roux Associates. Site Monitoring, Inspection and Maintenance Forms are included in Appendix A, and site photographs are included in Appendix B.

Mr. John Grathwol, P.E. December 13, 2005 Page 2

Ground-Water Monitoring

Ground-water sampling was performed on a quarterly basis by Upstate Laboratories during the first and second quarters and by Paradigm during the third and fourth quarters. Sampling was conducted on December 5, 2004, March 2, 2005, June 29, 2005 and September 28, 2005. Ground-water levels were gauged and samples were collected from monitoring wells MW-1, MW-2, MW-5, MW-6, MW-8 and MW-10 and analyzed for lead.

The results of the monitoring for year two indicate that lead concentrations in groundwater samples were below the appropriate Ambient Water Quality Standard for lead in ground water with the exception of one sample collected from MW-8 on September 28, 2005. On that occasion, lead was detected at a concentration of 0.052 milligrams per liter (mg/L), slightly exceeding the ambient standard of 0.025 mg/L. The slightly elevated lead concentration in MW-8 was attributed to sample turbidity. Lead concentrations for the remaining quarterly rounds for MW-8 were below the Ambient Water Quality Standard. Table 1 includes a summary of ground-water monitoring results and laboratory analytical reports are included as Appendix C.

Surface Water Monitoring

Surface water sampling was performed on a quarterly basis by Upstate Laboratories during the first and second quarters and by Paradigm during the third and fourth quarters. Sampling was conducted on December 5, 2004, March 2, 2005, June 29, 2005, September 28, 2005 and October 19, 2005. Two surface water samples were collected during each quarter. During each field event, one sample was collected from the base of the drainage swale on the northern face of the landfill (SW-1) and one sample was collected from a point north of the wetlands that is representative of runoff from the northern wetland area (SW-2). All surface water samples were analyzed for lead.

The results of the monitoring for year two indicate that lead concentrations in surface water samples were below the appropriate Ambient Water Quality Standard for lead in surface water with the exception of one sample collected from SW-2 on September 28, 2005. Lead was detected at a concentration of 0.622 mg/L, which exceeds the ambient standard of 0.050 mg/L. However, it appeared that the elevated lead concentration in SW-2 was a result of significant sediment entrainment in the sample. As the SW-2 lead result was an order of magnitude above the TOGS 1.1.1 Standard, a second sample was collected for SW-2 on October 19, 2005, utilizing sampling techniques that resulted in less sediment disturbance, and analyzed for lead. Lead was not detected above the laboratory detection limit in the SW-2 sample collected on October 19, 2005. Table 2 includes a summary of surface water monitoring results and the laboratory analytical reports are included as Appendix C.

Landfill Gas Monitoring

Landfill gas was monitored on June 29, 2005 by Paradigm. Monitoring was conducted for hydrogen sulfide and lower explosive limit (LEL) in permanent gas vents GV-1 through GV-7 located within the landfill and temporary gas points TG-1 through TG-6 located outside the perimeter of the landfill cap.

Landfill gas monitoring indicated 1%, 5% and 1% LEL for permanent monitoring points GV-1, GV-2 and GV-3, respectively. Landfill gas monitoring indicated 0% LEL for the remaining four permanent and all temporary monitoring points analyzed at the site. Historical monitoring in the landfill has indicated 0% LEL to date. The 1% and 5% LEL

Mr. John Grathwol, P.E. December 13, 2005 Page 3

readings are well below the 25% safety threshold set forth in the Code of Federal Regulations (CFR) 40 Part 257.3-8.

Landfill gas monitoring indicated 0.0 parts per million (ppm) of hydrogen sulfide for all permanent and temporary monitoring points analyzed at the site. Table 3 includes a summary of landfill gas monitoring results.

Landfill Inspection

Roux Associates conducted an inspection of the site on September 16, 2005. The inspection included an evaluation of the landfill cap, site vegetation, drainage structures, access road and security fence. Photographs of the site are included as Appendix B.

The landfill cap surface exhibited 100 percent vegetative cover with no visible signs of erosion. The upper and lower landfill cap swales were observed to be intact with no visible signs of settling, clogging or erosion of riprap or subgrade materials. No obstructions were identified in the cap swales; however, some plant growth was observed within the swales. The landfill down chute was clear of obstructions and vegetative growth. The corrugated pipe and flared outlet located at the toe of the landfill were unobstructed and in good condition; however, some plant growth was observed at the outlet.

The existing wet area located at the northern base of the landfill was inspected for signs of erosion. No ponding was observed in the area and no signs of erosion were evident.

The four onsite monitoring wells (MW-2, MW-5, MW-8 and MW-10) and two wells (MW-1 and MW-6) in the Syracuse China facility were inspected and appeared to be undamaged. Seven permanent gas vents (GV-1 through GV-7), located on the landfill, were also inspected. Two of the gas vents were observed to be damaged. One gas vent (GV-4) required replacement of the outlet and one gas vent (GV-7) was observed to have a breached screen. All remaining vents appeared undamaged.

The access road along the south boundary of the site was observed to be stable and in good condition. The existing chain link security fence was also in good condition. All fence gates were undamaged and secured with locks.

The sixteen signs installed along Factory Avenue in 2004 were inspected. The eight signs installed on the Syracuse China chain link fence were undamaged and tightly secured to the fence. The remaining eight signs installed on posts in the right-of-way on the north side of Factory Avenue were also undamaged.

Recommended Maintenance Actions and Monitoring Modifications

The landfill will require periodic mowing to prevent woody vegetation growth on the landfill cap. In addition to mowing activities, weed whacking will be required to remove vegetation within the landfill swales. Weed whacking can be performed concurrently with seasonal mowing activities.

Proposed Modifications to OM&M Schedule

Groundwater Monitoring

As presented in the OM&M Plan, Pfaltzgraff is requesting that the ground-water sampling frequency be reduced to semi-annually. This request is based on year one and year two monitoring results. Ground-water samples indicated lead below 0.025 mg/L with the

Mr. John Grathwol, P.E. December 13, 2005 Page 4

exception of one sample in year one and one sample in year two (both attributed to turbidity). It is anticipated that Pfaltzgraff will request that ground-water sampling continue to be conducted semi-annually in years four and five based on the results of the first three years of monitoring. Sampling after year five would be conducted on an annual basis, if deemed necessary.

Surface Water Monitoring

As presented in the O&M Plan, Pfaltzgraff is requesting that surface water monitoring frequency be reduced to semi-annually. This request is based on year one and year two monitoring results. Lead concentrations in all surface water samples collected during year one were below the appropriate Ambient Water Quality Standard for lead in surface water. The concentration of lead detected in surface water sample SW-2 collected during year two exceeded the appropriate Ambient Water Quality Standard for lead in surface water. However, it appeared that the elevated lead concentration in SW-2, during the September 28, 2005 event, was a result of significant turbidity in the sample. A second sample was collected for SW-2 and analyzed for lead. Lead was not detected above the laboratory detection limit in the second SW-2 sample collected.

Landfill Gas Monitoring

As presented in the O&M Plan, Pfaltzgraff is requesting that the landfill gas monitoring be discontinued for years three through five. This request is based on the results of the year one and year two landfill gas surveys and the character of the landfill waste (largely inert materials with no potential to produce methane). Landfill gas monitoring indicated 0.0 ppm of hydrogen sulfide for all permanent and temporary monitoring points analyzed at the site during year one and year two. Landfill gas monitoring indicated 0% LEL in year one. In year two, there were two readings indicating 1% LEL and one reading indicating 5% LEL. The 1% and 5% LEL readings, however, are well below the 25% safety threshold set forth in CFR 40 Part 257.3-8.

Subsequent Annual Landfill Inspection Reports summarizing yearly inspection activities and monitoring data will be submitted to the NYDSEC after years three, four and five.

Please call either of the undersigned with any questions regarding this report.

Sincerely, ROUX ASSOCIATES, INC.

Meridith Harris

Meredith Harris, P.E. Senior Engineer

REMEDIAL ENGINEERING, P.C.

harles J. McBucken

Charles J. McGuckin, P.E. Principal Engineer

Page 1 of 1

Table 1. S	Summary o	f Ground-Water	Monitoring Resul	ts. Syracuse China	Landfill; Town	of Salina, New York.
	J		9			, .

	Ambient Water Quality		Lead Concer	ntration (mg/L)	
Sample Date: Sample ID	Standard for Lead in Ground Water (mg/L) ¹	12/5/04	3/2/05	6/29/05	9/28/05
MW-1	0.025	<0.001	<0.001	0.009	0.018
MW-2	0.025	0.002	<0.001	<0.005	<0.005
MW-5	0.025	0.003	` NA	<0.005	<0.005
MW-6	0.025	0.001	<0.001	<0.005	0.006
MW-8	0.025	0.005	<0.001	0.020	0.052
MW-10	0.025	<0.001	<0.001	<0.005	<0.005

Bold = Indicates an exceedence of the Ambient Water Quality Standard.

mg/L = Milligrams per liter.

 $NA \approx Not Analyzed.$

1. The Ambient Water Quality Standard was obtained from 6 NYCRR Part 703 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations (New York State Department of Environmental Conservation, 1999).

Page 1of 1

Table 2. Summary of Surface water Monitoring Results. Syracuse Unina Landini; Town of Salina, New	Fable 2.	Summary	v of Surface	Water	Monitoring	Results. S	vracuse Chin	a Landfill	: Town of Salina	I. New	Yo	rk.
---	----------	---------	--------------	-------	------------	------------	--------------	------------	------------------	--------	----	-----

	Ambient Water Quality		Concer	tration of Lead	(mg/L)	
Sample Date: Sample ID	Standard for Lead in Surface Water (mg/L) ¹	12/5/04	3/2/05	6/29/05	9/28/05	10/19/05
SW-1	0.050	0.041	< 0.001	<0.005	<0.005	NA
SW-2	0.050	0.001	NA	0.005	0.622	<0.005

Bold = indicates an exceedence of the Ambient Water Quality Standard.

mg/L = Milligrams per liter.

NA = Not Analyzed.

1. The Ambient Water Quality Standard was obtained from 6 NYCRR Part 703 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations (New York State Department of

I ago I OL I	Page	1	of	1
--------------	------	---	----	---

Sample Date:	11/1	7/04	3/2	/05	6/29	9/05	9/10	5/05
Location	H ₂ S (ppm)	LEL (%)						
GV-1	NA	NA	NA	NA	0	1%	NA	NA
GV-2	NA	NA	'NA	NA	0	.5%	NA	NA
GV-3	NA	NA	NA	NA	0	1%	NA	NA
GV-4	NA	NA	NA	NA	0	0%	NA	NA
GV-5	NA	NA	NA	NA	0	0%	NA	NA
GV-6	NA	NA	NA	NĂ	0	0%	NA	NA
GV-7	NA .	NA	NA	NA	0 、	. 0%	NA	NA
TG-1	NA	NA	NA	NA	0	0%	NA	NA
TG-2	NA	NA	NA	NA	0	0%	NA	NA
TG-3	NA	NA	NA	NA	0 ·	0%	NA	NA
TG-4	NA	NA	NA	NA	0	0%	NA	NA
TG-5	NA	NA	NA	NA	0	0%	NA	· NA
TG-6	NA	NA	NA	NA	0	0%	NA	NA

Table 3. Summary of Landfill Gas Monitoring Results. Syracuse China Landfill; Town of Salina, New York.

 $H_2S = Hydrogen Sulfide.$

LEL = Lower Explosive Limit.

ppm = parts per million.

NA = Not Analyzed.

	- EXISTING PROPERTY LINE :		DESIGN DOWN CHUTE	SW-2	SURFACE WATER MONITORING LOCATION
	- EXISTING EASEMENT	XXXX	FENCE		
434	- 1 FOOT CONTOUR	RIM=397.41	EXISTING MANHOLE RIM ELEVATION	GV-7	PERMANENT LANDFILL GAS VENT
	EXISTING RAILROAD TRACKS	Ø	EXISTING UTILITY POLE WITH OVERHEAD	_ MW-8	
ОНW	_ EXISTING OVERHEAD ELECTRICAL TRANSMISSION WIRES	• UGT	EXISTING UNDERGROUND TELEPHONE CABLE	0	GROUND-WATER MONITORING WELL
SAN	SAN EXISTING SUBSURFACE SANITARY SEWER WATERLINE		EXISTING POLYVINYL CHLORIDE CHLORIDE PIPE	● ^{IG-4}	Temporary Perimeter Gas Monitoring Point
	_ EXISTING APPROXIMATE LOCATION 24" WATERLINE	MON	WITH DIAMETER EXISTING SURVEY MONUMENT SET 3-8-1990		
	EXISTING UNDERGROUND TELEPHONE	0	CAPPED IRON ROD SET IN CONCRETE)	NOTE	=8
001	LINE (FIBER OPTIC) LOCATION	SMH О	EXISTING SANITARY SEWER MANHOLE		DATA PRESENTED ON THIS DRAWING IS TA
G	_ EXISTING GAS LINE LOCATION	GM	EXISTING GAS MARKER	"REC NOVE SURV	ORD DRAWINGS SYRACUSE CHINA LANDFILL MBER/DECEMBER 2001, MARCH 2005 TOI TEY", DRAWING NUMBER 05-168 PREPARE

APPENDIX A

SITE MONITORING, INSPECTION AND MAINTENANCE FORMS

Inspector: Monica LaSelva/Paul Baltzersen

Date: 11/17/2002 12/5/2004

Item	Action	Value	Notes	Corrective Action Suggested
MW-1 ^a	Ground-Water Sample for Lead (ug/l)	<1	TOGS 1.1.1 Standard = 25 ug/l	None
MW-1ª	Ground-Water Elevation (ft MSL)	399.47		None
MW-2 ^a	Ground-Water Sample for Lead (ug/l)	2	TOGS 1.1.1 Standard = 25 ug/l	None
MW-2ª	Ground-Water Elevation (ft MSL)	390.43	-	None
MW-5*	Ground-Water Sample for Lead (ug/l)	3	TOGS 1.1.1 Standard = 25 ug/l	None
MW-5 ^a	Ground-Water Elevation (ft MSL)	387.78	<u> </u>	None
MW-6ª	Ground-Water Sample for Lead (ug/l)	1	TOGS 1.1.1 Standard`= 25 ug/l	None
MW-6 ^a	Ground-Water Elevation (ft MSL)	410.94	_	None
MW-8ª	Ground-Water Sample for Lead (ug/l)	5	TOGS 1.1.1 Standard = 25 ug/l	None
MW-8ª	Ground-Water Elevation (ft MSL)	388.13		None
MW-10 ^a	Ground-Water Sample for Lead (ug/l)	<1	TOGS 1.1.1 Standard = 25 ug/l	None
MW-10 ^a	Ground-Water Elevation (ft MSL)	379.83	-	None
GV-1	Inspect for Damage	` NA	Good condition	None
GV-2	Inspect for Damage	NA	Good condition	None
GV-3	Inspect for Damage	NA	Good condition	None
GV-4	Inspect for Damage	NA	Seal broken, screen breached	Repair
GV-5	Inspect for Damage	NA	Good condition	None
GV-6	Inspect for Damage	NA	Good condition	None
GV-7	Inspect for Damage	NA	Good condition	None
SW-1 ^b	SW Sample for Lead at Swales (ug/l)	41	TOGS 1.1.1 Standard = 50 ug/l	None
SW-2 ^b	SW Sample for Lead at Northern Discharge (ug/l)	1	TOGS 1.1.1 Standard = 50 ug/l	None
Eastern Portion of Site ^e	Inspect Vegetation	NA	Good condition	None
Eastern Portion of Site ^c	Mow Grass	NA	2-3 feet high	Spring mowing
Cap Surface ^c	Inspect Vegetation	NA	Good condition	None
Cap Surface ^c	Mow Grass	NA	2-3 feet high	Spring mowing
Northern Wetland ⁴	Inspect Vegetation	NA	Good condition	None
Swales ^e	Inspect for Erosion	NA	Some vegetation	Weed-whacking
Fence	Inspect for Damage	NA	Good condition	None

Inspector: Monica LaSelva/Paul Baltzersen

Date: 11/17/2002 12/5/2004

Item	Action	Value	Notes	Corrective Action Suggested
Signs on SC Fence ^e	Inspect for Damage	NA	Installed 11/17/04	None
Signs north of Factory Avenue	Inspect for Damage	NA	Installed 11/17/04	None
Access Road ^e	Inspect for Wear and Erosion	NA	Good condition	None
Drop Chute ^e	Inspect for Blockage	NA	Good condition	None
Energy Dissipation Structures ^e	Inspect for Damage	NA	Good condition	None
Sitewide	Inspect for Major Erosion Problems .	NA	Good condition	None
Sitewide	Inspect for Significant Differential Settlement	NA	No settlement observed	None

SW = Surface Water

SC = Syracuse China

GM = General Motors Corporation

MW = Ground-Water Monitoring Well

GV = Permanent Landfill Gas Vent

LEL = Lower Explosive Limit

Notes and Assumptions

^a Ground-Water Sampling

1. Ground-water sampling to be performed quarterly for years 1 and 2.

2. Ground-water sampling to be performed semi-annually for years 3 through 5.

3. Ground-water sampling to be performed annually for years 6 through 30.

4. NYSDEC will grant reduction of ground-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

^b Surface-Water Sampling

1. Surface-water sampling to be performed quarterly for years 1 and 2.

2. Surface-water sampling to be performed semi-annually for year 3.

3. No Surface-water sampling will be performed after year 3.

4. NYSDEC will grant reduction of surface-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

^c Landfill Mowing and Repairs

1. Landfill mowing to be performed semi-annually for years 1 through 30.

⁴Wetlands Monitoring Activities

1. Wetlands vegetation inspection is for erosion only and is not part of the USACE-required activities.

⁴Annual Landfill Inspection and Reporting

1. One inspection to be performed annually for years 1 through 30.

REMEDIAL ENGINEERING, P.C.

Inspector: Paul Baltzersen/Nate Talucci

Date: 3/2/2005

Item	Action	Value	Notes	Corrective Action Suggested
MW-1ª	Ground-Water Sample for Lead (ug/l)	<1	TOGS 1.1.1 Standard = 25 ug/l	None
MW-1 ^a	Ground-Water Elevation (ft MSL)	397.55		None
MW-2 ^a	Ground-Water Sample for Lead (ug/l)	<1	TOGS 1.1.1 Standard = 25 ug/l	None
MW-2 ^a	Ground-Water Elevation (ft MSL)	390.37		None
MW-5 ^a	Ground-Water Sample for Lead (ug/l)	NA	TOGS 1.1.1 Standard = 25 ug/l	None
MW-5ª	Ground-Water Elevation (ft MSL)	NA		None
MW-6ª	Ground-Water Sample for Lead (ug/l)	· <1	TOGS 1.1.1 Standard = 25 ug/l	None
MW-6 ^a	Ground-Water Elevation (ft MSL)	410.09		None
MW-8ª	Ground-Water Sample for Lead (ug/l)	<] ·	TOGS 1.1.1 Standard = 25 ug/l	None
MW-8 ^a	Ground-Water Elevation (ft MSL)	388.94		None
MW-10 ^a	Ground-Water Sample for Lead (ug/l)	· <1	TOGS 1.1.1 Standard = 25 ug/1	None
MW-10 ^a	Ground-Water Elevation (ft MSL)	379.94		None
GV-1	Inspect for Damage	NA		None
GV-2	Inspect for Damage	¹ NA		None
GV-3	Inspect for Damage	NA		' None
GV-4	Inspect for Damage	NA		None
GV-5	Inspect for Damage	NA		None
GV-6	Inspect for Damage	NA		None
GV-7	Inspect for Damage	NA		None
SW-1 ^b	SW Sample for Lead at Swales (ug/l)	<1	TOGS 1.1.1 Standard = 50 ug/l	None
SW-2 ^b	SW Sample for Lead at Northern Discharge (ug	NA	TOGS 1.1.1 Standard = 50 ug/l	None
Eastern Portion of Site ^c	Inspect Vegetation	NA		None
Eastern Portion of Site ^c	Mow Grass	NA		Fall mowing
Cap Surface ^c	Inspect Vegetation	NA		None
Cap Surface ^c	Mow Grass	NA		Fall mowing

Inspector: Paul Baltzersen/Nate Talucci

3/2/2005 Date:

Item	Action	Value	Notes	Corrective Action Suggested
Northern Wetland ⁴	Inspect Vegetation	NA		None
Swales ^e	Inspect for Erosion	NA	`	Weed-whacking as needed
Fence ^c	Inspect for Damage	NA	,	None
Signs on SC Fence ^e	Inspect for Damage	NA		None
Signs on GM Fence ^e	Inspect for Damage	NA		None
Access Road ^e	Inspect for Wear and Erosion	NA		None
Drop Chute ^e	Inspect for Blockage	NA		None
Energy Dissipation Structures ^e	Inspect for Damage	NA .	·	None
Sitewide ^e	Inspect for Major Erosion Problems	NA	· ·	None
Sitewide	Inspect for Significant Differential Settlement	NA		None

MW = Ground-Water Monitoring Well

GV = Permanent Landfill Gas Vent

SW = Surface Water SC = Syracuse China GM = General Motors Corporation NA = Not Analyzed.

LEL = Lower Explosive Limit

Notes and Assumptions

^a Ground-Water Sampling

- 1. Ground-water sampling to be performed quarterly for years 1 and 2.
- 2. Ground-water sampling to be performed semi-annually for years 3 through 5.
- 3. Ground-water sampling to be performed annually for years 6 through 30.
- 4. NYSDEC will grant reduction of ground-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

^b Surface-Water Sampling

1. Surface-water sampling to be performed quarterly for years 1 and 2.

2. Surface-water sampling to be performed semi-annually for year 3.

3. No Surface-water sampling will be performed after year 3.

4. NYSDEC will grant reduction of surface-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

^c Landfill Mowing and Repairs

1. Landfill mowing to be performed semi-annually for years 1 through 30.

^d Wetlands Monitoring Activities

1. Wetlands vegetation inspection is for erosion only and is not part of the USACE-required activities.

⁴Annual Landfill Inspection and Reporting

1. One inspection to be performed annually for years 1 through 30.

REMEDIAL ENGINEERING, P.C.

Landfill Gas Monitoring Form.

Inspector: Date:	Paul Baltzersen/Nate Talucci 3/2/2005				,
Item	Action	Location	Value	Notes	Corrective Action Suggested
GV-1	Monitor for Hydrogen Sulfide		NA		None
GV-1	Monitor for LEL		NA		None
GV-2	Monitor for Hydrogen Sulfide		NA		None
GV-2	Monitor for LEL		· , NA		None
GV-3	Monitor for Hydrogen Sulfide		NA		None
GV-3	Monitor for LEL		NA		None
GV-4	Monitor for Hydrogen Sulfide		NA		None
GV-4	Monitor for LEL		NA		None
GV-5	Monitor for Hydrogen Sulfide		NA	·	None
GV-5	Monitor for LEL		NA		None
GV-6	Monitor for Hydrogen Sulfide	· · ·	NA		None
GV-6	Monitor for LEL		NA	'	None
GV-7	Monitor for Hydrogen Sulfide		NA		None
GV-7	Monitor for LEL		NA		None
TG-1	Monitor for Hydrogen Sulfide		NĂ		None
TG-1	Monitor for LEL	,	·NA		None
TG-2	Monitor for Hydrogen Sulfide		NA		None .
TG-2	Monitor for LEL	· · · · · · · · · · · · · · · · · · ·	NA		None
TG-3	Monitor for Hydrogen Sulfide		NA		None
TG-3	Monitor for LEL		NA		None
TG-4	Monitor for Hydrogen Sulfide	<u> </u>	NA		None
TG . 4	Monitor for LEL		NA		None
TG-5	Monitor for Hydrogen Sulfide	-	. NA		None

REMEDIAL ENGINEERING, P.C.

~

Landfill Gas Monitoring Form.

Inspector:	Paul Baltzersen/Nate Talucci				
Date:	3/2/2005	,			• *
Item	Action	Location	Value	Notes	Corrective Action Suggested
TG-5	Monitor for LEL		NA		None

NA

NA

.

Notes and Assumptions

TG-6

TG-6

GV = Landfill Gas Vent.

TG = Temporary Gas Monitoring Point (Points are placed at 400-foot intervals around the perimeter of the constructed cap).

NA = Not Analyzed.

LEL = Lower Explosive Limit.

Landfill gas sampling to be performed quarterly year 1.

Monitor for Hydrogen Sulfide

Monitor for LEL

Landfill gas sampling to be performed annually years 2 through 5.

No landfill gas sampling will be performed after year 5.

REMEDIAL ENGINEERING, P.C.

None

None

. .

Inspector: Byron Peterson

Date: 6/29/2005

Item	Action	Value	Notes	Corrective Action Suggested
MW-1 ^a	Ground-Water Sample for Lead (mg/l)	9	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-1 ^a	Ground-Water Elevation (ft MSL)	393.78		None
MW-2 ^a	Ground-Water Sample for Lead (mg/l)	<5	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-2 ^a	Ground-Water Elevation (ft MSL)	386.84		None
MW-5 ^a	Ground-Water Sample for Lead (mg/l)	<5	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-5 ^a	Ground-Water Elevation (ft MSL)	385.4	- ,	None
MW-6 ^a	Ground-Water Sample for Lead (mg/l)	<5	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-6 ^a	Ground-Water Elevation (ft MSL)	406.7		None
MW-8ª	Ground-Water Sample for Lead (mg/l)	20	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-8ª	Ground-Water Elevation (ft MSL)	386.87		None
MW-10 ^a	Ground-Water Sample for Lead (mg/l)	<5	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-10 ^a	Ground-Water Elevation (ft MSL)	379.55		None
GV-1	Inspect for Damage	NA		None
GV-2	Inspect for Damage	NA		None
GV-3.	Inspect for Damage	NA		None
GV-4	Inspect for Damage	NA		None
GV-5	Inspect for Damage	NA		None
GV-6	Inspect for Damage	NA		None
GV-7	Inspect for Damage	NA		None
SW-1 ^b	SW Sample for Lead at Swales (mg/l)	<5	TOGS 1.1.1 Standard = 0.050 mg/1	None
SW-2 ^b	SW Sample for Lead at Northern Discharge (mg/l)	5 、	TOGS 1.1.1 Standard = 0.050 mg/l	None
Eastern Portion of Site ^c	Inspect Vegetation	NA	·	None
Eastern Portion of Site ^c	Mow Grass	NA		Fall mowing
Cap Surface ^c	Inspect Vegetation	NA		None
Cap Surface ^c	Mow Grass	NA		Fall mowing

1

.

Inspector: Byron Peterson

Date: 6/29/2005

Item	Action	Value	Notes	Corrective Action Suggested
Northern Wetland ^d	Inspect Vegetation	NA		None
Swales ^e	Inspect for Erosion	NA		Fall weed-whacking
Fence [¢]	Inspect for Damage	NA		Nóne
Signs on SC Fence ^e	Inspect for Damage	NA		None
Signs on GM Fence ^c	Inspect for Damage	NA		None
Access Road ^e	Inspect for Wear and Erosion	NA		None
Drop Chute ^c	Inspect for Blockage	NA		None
Energy Dissipation Structures ^e	Inspect for Damage	NA		None
Sitewide	Inspect for Major Erosion Problems	NA		None
Sitewide ^c	Inspect for Significant Differential Settlement	NA		None

MW = Ground-Water Monitoring Well.

- GV = Permanent Landfill Gas Vent
- LEL = Lower Explosive Limit

Notes and Assumptions

^a Ground-Water Sampling

- 1. Ground-water sampling to be performed quarterly for years 1 and 2.
- 2. Ground-water sampling to be performed semi-annually for years 3 through 5.7
- 3. Ground-water sampling to be performed annually for years 6 through 30.

4. NYSDEC will grant reduction of ground-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

^b Surface-Water Sampling

1. Surface-water sampling to be performed quarterly for years 1 and 2.

2. Surface-water sampling to be performed semi-annually for year 3.

3. No Surface-water sampling will be performed after year 3.

4. NYSDEC will grant reduction of surface-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

SW = Surface Water SC = Syracuse China GM = General Motors Corporation NA = Not Analyzed.

^c Landfill Mowing and Repairs

1. Landfill mowing to be performed semi-annually for years 1 through 30.

^d Wetlands Monitoring Activities

1. Wetlands vegetation inspection is for erosion only and is not part of the USACE-required activities.

⁴ Annual Landfill Inspection and Reporting

1. One inspection to be performed annually for years 1 through 30.

Landfill Gas Monitoring Form.

Inspector: Byron Peterson

Date: 6/29/2005

Corrective Action Suggested Location Value Item Action Notes Monitor for Hydrogen Sulfide GV-1 0 ppm None --GV-1 Monitor for LEL 1% None ---GV-2 Monitor for Hydrogen Sulfide None 0 ppm , ---5% ۰. GV-2 Monitor for LEL --None GV-3 . Monitor for Hydrogen Sulfide 0 ppm None --GV-3 1% Monitor for LEL --None Monitor for Hydrogen Sulfide GV-4 0 ppm None ---GV-4 Monitor for LEL 0% None --GV-5 Monitor for Hydrogen Sulfide 0 ppm None ---GV-5 Monitor for LEL 0% ---. None ı. Monitor for Hydrogen Sulfide GV-6 0 ppm None ---**GV-6** 0% Monitor for LEL **...** None ٠. Monitor for Hydrogen Sulfide GV-7 0 ppm None --0% GV-7 Monitor for LEL None --TG-1 Monitor for Hydrogen Sulfide 0 ppm None --TG-1 Monitor for LEL 0% None --TG-2 Monitor for Hydrogen Sulfide 0 ppm None --TG-2 Monitor for LEL 0% None ---Monitor for Hydrogen Sulfide TG-3 0 ppm None ---TG-3 0% Monitor for LEL None •• Monitor for Hydrogen Sulfide TG-4 ~ 0 ppm None --0% TG-4 Monitor for LEL None ' •• , TG-5 Monitor for Hydrogen Sulfide 0 ppm None ---

3

Landfill Gas Monitoring Form.

Inspector: Byron Peterson

Date: 6/29/2005

Item	Action	Location	Value	Notes	Corrective Action Suggested
TG-5	Monitor for LEL		0%		None
TG-6	Monitor for Hydrogen Sulfide		0 ppm		None
TG-6	Monitor for LEL		0%		None

Notes and Assumptions

GV = Landfill Gas Vent.

TG = Temporary Gas Monitoring Point (Points are placed at 400-foot intervals around the perimeter of the constructed cap).

NA = Not Analyzed.

LEL = Lower Explosive Limit. Landfill gas sampling to be performed quarterly year 1. Landfill gas sampling to be performed annually years 2 through 5.

No landfill gas sampling will be performed after year 5.

REMEDIAL ENGINEERING, P.C.

÷

Inspector: Monica LaSelva/ Byron Peterson

Date: 9/16/2005 9/28/2005

ltem	Action	Value	Notes	Corrective Action Suggested
MW-1 ^a	Ground-Water Sample for Lead (mg/l)	0.018	TOGS 1.1,1 Standard = 0.025 mg/l	None
MW-1ª	Ground-Water Elevation (ft MSL)	391.78		None
MW-2 ^a	Ground-Water Sample for Lead (mg/l)	<0.005	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-2ª	Ground-Water Elevation (ft MSL)	386.84		None
MW-5ª	Ground-Water Sample for Lead (mg/l)	<0.005	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-5 ^a	Ground-Water Elevation (ft MSL)	378.9		None
MW-6ª	Ground-Water Sample for Lead (mg/l)	0.006	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-6ª	Ground-Water Elevation (ft MSL)	405.7		None
MW-8ª	Ground-Water Sample for Lead (mg/l)	0.052	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-8 ^a	Ground-Water Elevation (ft MSL)	378.87		None
MW-10 ^a	Ground-Water Sample for Lead (mg/l)	<0.005	TOGS 1.1.1 Standard = 0.025 mg/l	None
MW-10 ^a	Ground-Water Elevation (ft MSL)	378.55		None
GV-1	Inspect for Damage		Good condition	None
GV-2	Inspect for Damage	`	Good condition	None
GV-3	Inspect for Damage		Good condition	None
GV-4	Inspect for Damage		Outlet broken	Repair /
GV-5	Inspect for Damage		Good condition	None
GV-6	Inspect for Damage		Good condition	None
GV-7	Inspect for Damage		Screen breached	Repair
SW-1 ^b	SW Sample for Lead at Swales (mg/l)	<0.005	TOGS 1.1.1 Standard = 0.050 mg/l	None
SW-2 ^b	SW Sample for Lead at Northern Discharge (mg/l)	<0.005	TOGS 1.1.1 Standard = 0.050 mg/l	None
SW-2 ^b	SW Sample for Lead at Northern Discharge (mg/l)	0.622	TOGS 1.1.1 Standard = 0.050 mg/l	None
Eastern Portion of Site ^c	Inspect Vegetation		Good condition	None
Eastern Portion of Site ^c	Mow Grass		2-4 feet high	Fall mowing
Cap Surface ^c	Inspect Vegetation		Good condition	None

.

,

Inspector: Monica LaSelva/ Byron Peterson

Date: 9/16/2005 9/28/2005

Item	Action	Value	Notes	Corrective Action Suggested
Cap Surface ^c	Mow Grass		2-3 feet high	Fall mowing
Northern Wetland ^d	Inspect Vegetation	·	Good condition	None
Swales ^e	Inspect for Erosion		Some vegetation	Fall weed-whacking
Fence ^e	Inspect for Damage		Good condition	None
Signs on SC Fence ^e	Inspect for Damage		Good condition	None
Signs in Factory Avenue Row	Inspect for Damage		Good condition	None
Access Road ^e	Inspect for Wear and Erosion		Good condition	None
Drop Chute ^e	Inspect for Blockage		Good condition	None
Energy Dissipation Structures ^e	Inspect for Damage		Good condition; some vegetation	None
Sitewide	Inspect for Major Erosion Problems		Good condition	None
Sitewide	Inspect for Significant Differential Settlement		No settlement observed	None

MW = Ground-Water Monitoring Well

GV = Permanent Landfill Gas Vent

LEL = Lower Explosive Limit

Notes and Assumptions

^a Ground-Water Sampling

1. Ground-water sampling to be performed quarterly for years 1 and 2.

2. Ground-water sampling to be performed semi-annually for years 3 through 5.

3. Ground-water sampling to be performed annually for years 6 through 30,

4. NYSDEC will grant reduction of ground-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

^b Surface-Water Sampling

1. Surface-water sampling to be performed quarterly for years 1 and 2.

2. Surface-water sampling to be performed semi-annually for year 3.

3. No Surface-water sampling will be performed after year 3.

4. NYSDEC will grant reduction of surface-water sampling, Part 360 requires quarterly sampling for minimum of 5 years.

SW = Surface Water SC = Syracuse China

GM = General Motors Corporation

NA = Not Analyzed.

^c Landfill Mowing and Repairs

1. Landfill mowing to be performed semi-annually for years 1 through 30.

^d Wetlands Monitoring Activities

1. Wetlands vegetation inspection is for erosion only and is not part of the USACE-required activities.

^eAnnual Landfill Inspection and Reporting

1. One inspection to be performed annually for years 1 through 30.

APPENDIX B

PHOTOGRAPHS

Photo 1: Northwest portion of the site as seen from the landfill cap.

Photo 2: Northeast portion of the site as seen from the landfill cap.

ROUX ASSOCIATES INC

٦

Photo 3: Southern side of the landfill cap. Photo looks east.

Photo 4: Typical landfill gas vent.

Photo 5: Drainage swale located on the northern portion of the landfill. Photo looks southeast.

Photo 6: Landfill drainage outlet structure. Photo looks north.

Photo 7: Drop chute on the northern portion of the landfill cap. Photo looks south.

Photo 8: Northern portion of the fence along Factory Avenue. Photo looks east.

Photo 9: Access road and southern portion of the fence. Photo looks east.

Photo 10: Access road and eastern portion of the fence. Photo looks south.ROUX ASSOCIATES INC5PA5770

APPENDIX C

ANALYTICAL REPORTS

•

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 289 * Syracuse, NY 13206 Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (585) 436-9070 * New Jersey (201) 343-5353 * South Carolina (864) 878-3280

Ms. Meredith Harris Roux Associates, Inc. 1222 Forest Parkway Suite 190 West Deptford, NJ 08066

Thursday, December 30, 2004

RE: Syracuse China Landfill

Order No.: U0412306

Dear Ms. Meredith Harris:

Upstate Laboratories, Inc. received 8 sample(s) on 12/15/2004 for the analyses presented in the following report.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Tiony Scon Anthony J. Scala

President/CEO

Date: 30-Dec-04

CLIENT: Project:	Roux Associates, Inc. Syracuse China Landfill			·	Lab Order	·: U0412306
Lab ID:	U0412306-001	· · · · · · · · · · · · · · · · · · ·	···=	Collection Dat	te: 12/15/0	4 12:35:00 PM
Client Sample ID:	MW-1			Matri	x: WATE	R ,
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETE	RS		FLD		-	Analyst:
Conductivity	× 2 -	523	1.0	umhos/cm		12/15/04 12:35:00 PM
Eh		-10		mV		12/15/04 12:35:00 PM
рH		7.05	6.5-8.5	SU		12/15/04 12:35:00 PM
Temperature		7.7	s.	 degC 		12/15/04 12:35:00 PM
Turbidity	· .	1.14	5.0	NTU		12/15/04 12:35:00 PM
TOTAL LEAD BY	GFAA		E239.2	(SW302	0A)	Analyst: AB
Lead*	<u> </u>	ND	0.001	mg/L	. 1	12/22/04
Lab ID:	U0412306-002			Collection Dat	e: 12/15/0	4 11:15:00 AM
Client Sample ID:	MW-2			Matri	x: WATER	ર
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed
	RS		FLD			Analyst
Conductivity		992	1.0	umhos/cm		12/15/04 11:15:00 AM
Eh .		-20		mV		12/15/04 11:15:00 AM
рH	· ·	7.18	6.5-8.5	SU		12/15/04 11:15:00 AM
Temperature	r	9.5		degC		12/15/04 11:15:00 AM
Turbidity	•	3.66	5.0	NTU		12/15/04 11:15:00 AM
TOTAL LEAD BY	SFAA		E239.2	(SW3020	DA)	Analyst: AB
Lead*		0.002	0.001	mg/L	1	12/22/04
Lab ID:	U0412306-003			Collection Date	e: 12/15/04	4 11:50:00 AM
Client Sample ID:	MW-5			Matrix	x: WATER	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETE	RS		FLD			Analyst:
Conductivity	· · · ·	1218	1.0	umhos/cm .		12/15/04 11:50:00 AM
Eh		-15	-	mν		12/15/04 11:50:00 AM
рН		· 7.11	6.5-8.5	SU		12/15/04 11:50:00 AM
Temperature	,	/ 6.8	``````````````````````````````````````	degC		12/15/04 11:50:00 AM
Turbidity		5.63	.5.0	NTU		12/15/04 11:50:00 AM
TOTAL LEAD BY G	FAA		E239.2	(SW3020	A)	Analyst: AB
Lead*		0.003	0.001	mg/L	1 .	12/22/04
			•			

Approved By:		PFF	Date:	12-30-04	Page 1 of 3
Qualifiers:	. *	Low Level	**	Value exceeds Maximum Contan	ninant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitat	ion limits
· ~	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted	recovery limits

.

Date: 30-Dec-04

CLIENT: Project:	Roux Associates, Inc. Syracuse China Land	fill			Lab Ord	er: U0412306
Lab ID:	U0412306-004			Collection D	ate: 12/15/	04 10:35:00 AM
Client Sample II	D : MW-6			Ma	trix: WATI	ER
Analyses		Result	Limit Q	ual Units	DF	Date Analyzed
	TRS	, .	FI ก			Analyst
Conductivity		1016	1.0	umhos/cm	•	12/15/04 10:35:00 AM
Eh		-15 -		mV		12/15/04 10:35:00 AM
pН		7.11	6.5-8.5	SU		12/15/04 10:35:00 AM
Temperature		10.4		degC		12/15/04 10:35:00 AM
Turbidity	-	28.6	5.0	NTU	•	12/15/04 10:35:00 AM
TOTAL LEAD BY	GFAA		E239.	2 (SW30	020A)	Analyst: AB
Lead*		· 0.001	0.001	mg/L	1	12/22/04
Lab ID:	U0412306-005			Collection D	ate: 12/15/	04 2:00:00 PM
Client Sample ID	: MW-8	N		Mat	rix: WATE	ER
Analyses		Result	Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMET	ERS		FLD			Analyst:
Conductivity		2310	1.0	umhos/cm		12/15/04 2:00:00 PM
Eh		-35		mV		12/15/04 2:00:00 PM
ρH		7.46	6.5-8.5	SU		12/15/04 2:00:00 PM
Temperature		. 6.2		degC		12/15/04 2:00:00 PM
Turbidity		1.69	5.0	NTU		12/15/04 2:00:00 PM
TOTAL LEAD BY	GFAA		E239.2	2 (SW30	20A)	Analyst: AB
Lead*		0.005	0.001 2	17 mg/L	1.	12/22/04
Lab ID:	U0412306-006			Collection D	ate: 12/15/(04 1:15:00 PM
Client Sample ID	: MW-10			Mat	rix: WATE	R
Analyses		Result	Limit Q	1al Units	DF	Date Analyzed
	ERS	-	FLD			Analyst:
Conductivity		2310	1.0	umhos/cm		12/15/04 1:15:00 PM
Eh	·	-10		mV		12/15/04 1:15:00 PM
рH	·	7.06	6.5-8.5	SU		12/15/04 1:15:00 PM
Temperature		7.6		degC		12/15/04 1:15:00 PM
Turbidity		12.6	5.0	. NTU		12/15/04 1:15:00 PM
TOTAL LEAD BY	GFAA	•	E239.2	(SW30	20A)	Analyst: AB
Lead*	_	ND	0.001 2	8 mg/L	1	12/22/04

Approved By:		PFF	Date:	12-30-04 Page 2 of 3
Qualifiers:	. •	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	L	Analyte detected below quantitation limits
,	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits

Date: 30-Dec-04

CLIENT: Project:	Roux Associates, Inc. Syracuse China Landfi	11			Lab Orde	er: U0412306
Lab ID:	U0412306-007			Collection	Date: 12/15/	04 1:00:00 PM
Client Sample ID	: SW-1			М	atrix: WATE	ER
Analyses		Result	Limit	Qual Units	DF	Date Analyzed
FIELD PARAMETI	ERS		FL	D	,	Analyst:
Conductivity	,	1731	1.0	 umhos/cm 		12/15/04 1:00:00 PM
Eh		-30		mV .		12/15/04 1:00:00 PM
pН		7.34	6.5-8.5	SU		.12/15/04 1:00:00 PM
. Temperature		2.5		degC		12/15/04 1:00:00 PM
Turbidity	· · ·	83.6	5.0	NTU	,	12/15/04 1:00:00 PM
TOTAL LEAD BY	GFAA		E23	9.2 (SW:	3020A)	Analyst: AB
Lead*		0.041	0.005	mg/L	5	12/22/04
Lab ID:	U0412306-008			Collection	Date: 12/15/(04 1:05:00 PM
Client Sample ID:	SW-2			M	atrix: WATE	R
Analyses		Result	Limit	Qual Units	DF	Daté Analyzed
	RS		FI	D ·		Analyst
Conductivity		791	1.0	umhos/cm		12/15/04 1:05:00 PM
Eh	•	-65		mV		12/15/04 1:05:00 PM
рH		7.95	6.5-8.5	SU		12/15/04 1:05:00 PM
Temperature		1.8		degC		12/15/04 1:05:00 PM
Turbidity		2.12	5.0	NTU		- 12/15/04 1:05:00 PM
TOTAL LEAD BY	GFAA		E23	9.2 (SW3	3020A)	Analyst: AB
Lead*		0.001	0.001	mg/L	1	12/22/04

Approved	By:	PFF	Date:	12-30-04 Page 3 of 3
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	1	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits
			•	

KEY PAGE

1	MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS
2	REFERENCE SAMPLE/CCV RECOVERY WAS OUTSIDE OF CONTROL LIMITS
3	METHOD BLANK RESULT WAS ABOVE THE CONTROL LIMITS
4	ANALYSIC NOT DEPENDENCIES OF INSUFFICIENT SAMPLE
-	ANALISIS NOT PERFORMED BECAUSE OF THOUSE CONTINUES AND DECEMPTOR A DECEMPTOR AND DECEM
2	THE PRESENCE OF OTHER TARGET ANALITE(S) PRECIODES LOWER DETECTION LIMITS
6	BLANK CORRECTED
7	- HEAD SPACE PRESENT IN SAMPLE
8	QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL.
9	THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID
10) RESULTS ARE REPORTED ON AN AS REC.D BASIS
11	POSSIBLE CONTAMINATION FROM FIELD/LABORATORY
12	SAMPLE ANALYZED OVER HOLDING TIME
13	DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM
	THE FILTERING PROCEDURE
14	
7 5	C DECONTRED DE VEL DE UTCUER TUNN TOTAL - VOURTER TUR TATURE ADD
тз	DISSULVED VALUE MAI DE ALGAER IMAN IOIAL, HOWEVER, IME VALUES ARE
	WITHIN EXPERIMENTAL ERROR
16	AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS
17	PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING
18	THE SERIAL DILUTION OF THIS SAMPLE SUGGESTS A POSSIBLE PHYSICAL AND/OR CHEMICAL
	INTERFERENT IN THIS DETERMINATION. THE DATA MAY BE BIASED EITHER HIGH OR LOW.
19	CALCULATION BASED ON DRY WEIGHT
2.0	INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE DRACTICAL ONANTITATION
	TIMITS
27	
2 -	VG/KG AS REC.D / UG/KG DAT MI
. 44	MG/KG AS REC.D / MG/KG DRI WI
43	INSUFFICIENT SAMPLE PRECLUBES LOWER DETECTION LIMITS
24	SAMPLE DILUTED/BLANK CORRECTED
25	ND (NON~DETECTED)
26	DUPLICATE SAMPLE OUTSIDE QC CRITERIA
27	SPIRE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX, INTERFERENCE
28	POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL
	LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE POL
29	ANALYZED BY METHOD OF STANDARD ADDITIONS
30	
31	FIELD MEASURED PARAMETER TAKEN BY CLIENT
32	TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED
37	MILLICANE DED LITED (MC/L) LINEAD ALVIN SULEANATE (183) / DOUDLO (184)
20	DEP DAVID FER HEILE (HG/D) BIMERK ADRID SCHEONRIE (HAS) / POUNDS (185)
74	PER DAI LAS
34	THE SAMPLE WAS ANALIZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED
	TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20,
	CREATING A THEORETICAL TCLP VALUE
35	THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON
	PETROLEUM DISTILLATES
36	MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY
37	MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY
38	MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS)
	PER DAY OF CL2
39	MICOGRAMS DEP LITTER (IIG/L) / DOMNES (LBS) DEP DAY
(1)) DETECTED IN BLANK
(D) (T)) DIIGUID IN DUAIN) sii condonna thenmivied in shi shiivate se s chaands di chaala short-
	ALL COMPOUNDS IDENTIFIED IN AN ANALISIS AT A SECUNDARY DILUTION FACTOR.
(E) COMPOUNDS WHOSE CONCENTRATIONS EACLED THE CALIBRATION RANGE OF THE GC/MS
_	INSTRUMENT FOR THAT SPECIFIC ANALYSIS
(រ)) DETECTED BELOW THE CRQL
(a)) SAMPLE(S) RECEIVED AT THE IMPROPER TEMPERATURE
(Ъ)) HEADSPACE IN VOA VIAL(S)
(c)	HEADSPACE IN ALKALINITY BOTTLE (S)
(đ)	SAMPLE CONTAINER(S) RECEIVED BROKEN

Upstate Lat	poratories, In	C. Ground	d water Fie	eld Log	File: TS-30-	01 Revise	d: 12/200	1
Client:	Roux A	ssociates, l	nc					
Project:	Syracus	e China Lan	dfill		I ID No. (ent	er by lab)		
Well ID.:		MW-1						
Condition of We	ell:	GOOD		Locke	d:	NO		
Method of Evac	uation: DE	DICATED BAIL	ER	Lock J	D:	N/A		
Method of Sam	pling: DE	DICATED BAIL	_ER			ì		
↑ ↑ ↑		А.	Diameter o	fWell		2"	incl	hes
		В.	Well Depth	Measured		24.5	fee	t
		C.	Depth to W	/ater		14.31	fee	t
		D.	Length of V	Vater Column	(calculated)	10.19	feel	t i
в́ А Е	WATER LEVEL		Conversior	Factor	•	X.16		
			Well Volum	e (calculated)		1.6304	gall	ons
			No. of Volu	mes to be Eva	cuated	· X 3		- 80
		· ·	Total Volun	ne to be Evacu	ated	4.8912	gall	ons
	SUT	E	Actual Volu	oll Dopth (if kn	0.442)	5 	galli	ons
		с. F	Depth of Si	lt (calculated	uwn)	N/A	feet	
• • • <u>•</u>			e optil el ej					
Field	Initial	Fir	nal		% Rechar	ne:		u se
Measurements	Evacuation	Sa	Impling			37.		
•			. –		Initial Dep	th to Water	14.31	feet
Date Time	12/15/2004		12/15/200	4	Deebarra D	onth to Mater	· n/a	feet
	12.00 PM		12:33 PN	<u>"</u>	Recharge Di	eptn to vvater	n/a	166[
CM Temperature	-5	·	<u>-10</u>		0			
remperature	<u>4.6 C</u>		<u> </u>		∠nd water	column neight	n/a	<u>%</u>
pH	6.89		/.05		1st water	column height		
Specific Cond.	547	— · —	523		Elouation/*-	n of (Cnoi)		foot
Dissolved Oracia	<u> </u>		1.14 N1/A	<u> </u>		p or Casing)	·	1001
Dissolved Oxygen	N/A		N/A	— <u> </u>	G.W. Elev	auon= 	lev-Total Do	reet
Master								Put ()
vveatner: Observations:		25 t cloudy			Sampler: Paul Baltz	ersen / Nathan	Talucci	
					Signature:	1 1 1 2L		
					- Fa	W Gatt		

,

.

ľ.

1

Upstate Lab	oratories, Inc.	Ground	d water Field	Log	File: TS-30	-01 Revise	d: 12/200	1
Client:	Roux Asso	ociates, I	nc.					
Project:	Syracuse C	hina Lan	dfill	ULI	ID No. (en	ter by lab)		
Well ID.:	MV	<u>N-2</u>						
Condition of Wel	l:	GOOD		Locked	:	<u>NO .</u>		-
Method of Evacu	ation:	ATED BAI	LER	Lock IE):	<u>N/A</u>		
Method of Samp	ling: DEDIC	ATED BAI	LER					
		A.	Diameter of W	/ell		2"	inci	hes
		В.	Well Depth Me	easured		1.3.1	fee	t ·
		C.	Depth to Wate	r		4.41	fee	t
		D.	Length of Wate	er Column (d	calculated)	8.69	fee	t
В ▲	WATER		Conversion Fa	ctor		X.16		00
			Well Volume (calculated)		1.3904	gall	lons
			No. of Volume	s to be Evac	uated '	X 3		200000000
		-	Total Volume t	o be Evacua	ited	4.1712	gall	ons
			Actual Volume	Evacuated	144	4.5	gall	ons
F	SILT	E.	Installed Well	Depth (if kno	wn) [·]	<u> </u>	feet	
		F.	Depth of Silt (c	alculated	,	N/a	feet	
=ield	nitial	Fi	nal		% Recha	rge:		
measurements	Evacuation	56	ampling		Initial Dec	oth to Water	4 4 1	feet
Date _	12/15/2004		12/15/2004			· · · · · · · ·		
Time	10:45 AM		11:15 AM		Recharge D	epth to Water	n/a	feet
EH	-10		-20	 .				
Femperature	8.9 c		9.5 c		2nd water	column height	n/a	%
pH -	7.09		7.18	📓	1st water	column height) Marina di
Specific Cond. Furbidity	<u> </u>		<u>992</u> 3.66		Elevation(To	op of Casing)		feet
Dissolved Oxygen	N/A		N/A	🐰	G.W. Elev	ation=		feet
Appearance	<u>clear</u>		clear	<u></u>	G.W.Elevati	on =Top of Case El	ev-Total De	pth
Weather:	25	fcloudy	·		Sampler:			
Observations:		· · · · · · · · · · · · · · · · · · ·	·		Paul Baltz	ersen / Nathan	Talucci	
· · · · · · · · · · · · · · · · · · ·			·		Signature	Val Rott	<u> </u>	

Upstate Lab	oratories, Inc. Roux Ass	Ground w sociates, Inc.	ater Field Log	g File: TS- -	30-01 Revised	d: 12/200	1
Project:	Syracuse	China Landfi	il l	ULLID No. ((enter by lab)		
		144-5		_			
Condition of We	·II:	GOOD		Locked:	NO	. <u></u>	· · ·
Method of Evac	uation:DED	CATED BAILER	<u> </u>	Lock ID:	<u>N/A</u>		
Method of Sam	oling: DED	CATED BAILER	<u>}</u>	· · · · · · · · · · · · · · · · · · ·		÷	•
	<u> </u>		iameter of Well	• •	. ·	inc	hoc
	ТОР	A. U		•	<u>_</u>	inc	1105
		B. V	/ell Depth Measu	ured	13.4	fee	t
		C. D	epth to Water		2.62	fee	t
		D. Le	ength of Water C	Column (calculate	d) <u>10.78</u>	fee	t
₿ ♠	WATER	C	onversion Facto	٢	X.16		
	LEVEL	Ŵ	ell Volume (calc	ulated)	1.7248	gali	lons
		N	o, of Volumes to	be Evacuated	X 3		
		. То	otal Volume to be	e Evacuated	5.1744	gall	ons
▼ ↓		Ad	ctual Volume Ev	acuated	5.5	gall	ons
 F	SILT	E. In	stalled Well Dep	th (if known)	N/A	feet	t .
		F. De	epth of Silt (calci	ulated	N/a	 feet	t ·
	······································	-				—	
Field Measurements	Initial Evacuation	Final Samp	ling	% Rec	charge:	-	
Date	12/15/2004		12/15/2004	Initial I	Depth to Water	2.62	feet
Time	11:20 AM	<u>-</u>	11:50 AM	Recharg	e Depth to Water	n/a	feet
EH	-18	- <u></u>	-15	•	·		
Temperature	6.0 c		6.8 c	2nd wa	ater column height	n/a	%
pН	7.21	• • •	7.11	1st wa	ter column heiaht		
Specific Cond.		• •• <u></u>	1218		Ç -		
Turbidity	227 ,		5.63	Elevation	n(Top_of Casing)		feet
Dissolved Oxygen	N/A		N/A	G.W. E	Elevation=		feet
Appearance	thick orange		<u>clear</u>	G.W.Ele	vation =Top of Case Ele	ev-Total De	pth
Weather:	2	5 f cloudy		Sample	er:		
Observations:				Paul B	altzersen / Nathan	Talucci	
		<u> </u>		Siynati	Tanl Ent		
		·					

Upstate La	iboratories, inc.	Ground water Field Lo	ig File: TS-30-	01 Revised	1: 12/2001
Client:	Roux Associ	ates, Inc.		1 1 1 1 1	
Project:	Syracuse Uni		- ULI ID NO. (ent	er by Iab)	
		0			
Condition of V	Vell:G	OOD	Locked:	NO	
Method of Eva	acuation: DEDICAT	ED BAILER	Lock ID:	N/A	, ·
Method of Sar	mpling: DEDICAT	ED BAILER		-	. • -
. ·	<u>← A → </u>	· · ·			
	ТОР	A. Diameter of Well		2"	inches
		B. Well Depth Meas	ured	15.36	feet
		C. Depth to Water		3.76	feet
		D. Length of Water	Column (calculated)	11.6	feet
B A	WATER	Conversion Facto	or	X.16	
		Well Volume (cale	culated)	1.856	gallons
		No. of Volumes to	be Evacuated	X 3	
		Total Volume to b	e Evacuated	5.568	gallons
		Actual Volume Ev	vacuated -	6	gallons
F	SILT	E. Installed Well Dep	oth (if known)	N/A .	_ feet
		F. Depth of Silt (calc	ulated	N/a	_ feet
		· · ·			
Held Measurements	Initial Evacuation	Final Sampling	% Rechar	ge:	
medodiemento		oumphing	Initial Dep	th to Water	3.76 feet
Date	12/15/2004	12/15/2004	-		
	9:50 AM	10:35 AIVI	- · Recharge De	epth to water	<u>n/a teet</u>
	-20		- 2nd water	oolump bojabt	-
	<u> </u>	7.11		column height	
PII ·	940	1016		solumn neight	
Turbidity	60.6	28.6	- Elevation(To	p of Casing)	feet
Dissolved Oxygen	N/A	N/A	- G.W. Elev	ation=	feet
Appearance	cloudy	slightly cloudy	- G.W.Elevatio	n =Top of Case Ele	v-Total Depth
Weather:	25 f c	loudy	Sampler:		
Observations:	· · · · · · · · · · · · · · · · · · ·		Paul Baltz	ersen / Nathan	Talucci
		· · · · · · · · · · · · · · · · · · ·	Signature:	1 DP Ale	~ §

Faul

Jpstate Laboratori	es, Inc. Ground wat	er Field Log File: TS-30	-01 Revised	12/2001
Project: S	yracuse China Landfill	ULI ID No. (en	ter by lab)	
Vell ID.:	MW-8			
Condition of Well:	GOOD	Locked:	NO	
Method of Evacuation:	DEDICATED BAILER	Lock ID:	N/A	~
Method of Sampling:	DEDICATED BAILER	· · · ·		
	A. Dian	neter of Well	2"	inches
	B. Well	Depth Measured	20.73	feet
	C. Dept	th to Water	4.74	feet
	D. Leng	th of Water Column (calculated)	15.99	feet
	Conv	version Factor	X.16	
	Well	Volume (calculated)	2.5584	gallons
	No. c	of Volumes to be Evacuated	<u> </u>	
	Tota	Volume to be Evacuated	7.6752	gallons
	Actu	al Volume Evacuated	8	gallons
F SILT	E. Insta	lled Well Depth (if known)	N/A	feet
₩ ₩	F. Dept	h of Silt (calculated	N/a	feet

	Iniuai ,			70 Necharge
Measurements	Evacuation		Sampling	· · · · · -
Date Time	12/15/2004 1:25 PM		12/15/2004 2:00 PM	Recharge Depth
EH	-25		-35	
Temperature	4.1 c		6.2 c	2nd water co
pН	7.25	· · ·	7.46	1st water col
Specific Cond.	2540	,	2310	
Turbidity	2.26		1.69	Elevation(Top o
Dissolved Oxygen	N/A		N/A	G.W. Elevati
Appearance	clear		clear	G.W.Elevation =
Weather:		25 f cloudy		Sampler:
Observations:				Paul Baltzers
			· ·	Signature:
		•		Join

% Recharge:		
Initial Depth to Water	4.74	feet
Recharge Depth to Water	n/a	feet
2nd water column heigh	nt <u>n/a</u>	%
1st water column heigh	t	
Elevation(Top of Casing)		feet
G.W. Elevation=		feet
G.W.Elevation =Top of Case	Elev-Total De	epth
Sampler:		
Paul Baltzersen / Natha	n Talucci	
Signature:		

Upstate Lab	oratories, Inc. Roux Ass Syracuse	Groun ociates, I China Lar	d water Fi Inc. ndfill	eld Log 	File: TS-30- ID No. (ent	01 Revised er by lab)	d: 12/200	1
Well ID.:	M	W-10						
Condition of We	ll: <u> </u>	GOOD	, 	Locked	1: <u> </u>	NO		
Method of Evacu	uation:DEDI	CATED BAI	LER	Lock I	D:	N/A		
Method of Samp	ling: DEDI	CATED BAI	LER	•	,			
4	A >				- ,			
		Α.	Diameter	of Well		2"	inċ	hes
		. В.	Well Dept	h Measured		13	fee	et
C		C.	Depth to \	Nater		2.72	fee	t
		Đ.	Lenath of	Water Column (calculated).	10.28	fee	t
	MATED		Convorsio		· · · · · · · · · · · · · · · · · · ·	¥ 16		
			Conversio		· · ·			
		•	Well Volu	me (calculated)		1.6448	gai	lons
			No. of Vol	umes to be Evad	cuated	X 3		- - .
			Total Volu	me to be Evacua	ated	4.9344	gail	lons
			Actual Vol	ume Evacuated	•	5	gall	ons
F	SILT	E.	Installed V	Vell Depth (if kno	own)	. : N/A	feet	t
V V		۶.	Depth of S	Silt (calculated		∗ N/a	feet	t.
		• 		<i>,</i>	•			3.00000000
easurements	Initial Evacuation	Fi Sa	inal ampling		% Rechar	rge:	۰ u	
at a	40450004		404500	.04	Initial Dep	th to Water	2.72	feet
me	12/15/2004 12:45 PM	. —	1:15 PM	<u>104</u> M	Recharge D	enth to Water	n/a ·	feet
··· -l	-3	. <u></u>	-10					
- emperature	710	· · <u> </u>	760		2nd water	column height	 n/a	%
	6.86	• · · · •	7.06		1st water	column height		,,,
- Pecific Cond	2330		2310		· ct mator			
urbidity	17.9	·	12.6		Elevation(To	p of Casing)		feet
- ssolved Oxvaen	N/A		N/A		G.W. Elev	ation=		feet
ppearance	slightly cloudy		slightly clo	udy	G.W.Elevatio	on =Top of Case El	ev-Total De	pth
eather:	2	5 f cloudy			Sampler:			si se
bservations:					Paul Baltz	ersen / Nathan	Talucci	
					Signature	oval		
•					<u>ta</u>	ne page		

, r			
Upstate Labora Tap Water / Surface V	tories, Inc. Vater / Wastewater Field Log	. ,	
Client: Roux Asso	ociates, Inc.	Sampler (print):	Paul Baltzersen
Project: Syracuse	China Landfill	 Signature:	Jan Fort
Date: <u>12/15/200</u>	14	·	- Contraction of the second se
Location	Surface Water 1	TIME SAMPLED 1:00 I	PM ULLID: NO
EH	-30 MV	WEATHER CONDITION:	25 f cloudy
TEMPERATURE	2.5 c	•	
РН	7.34 STD.UNITS	APPEARANCE / OBSERVATION	ONS cloudy
SPEC. CON.	1731 имноѕ/см	DO n/a	MG/L
TURB .		STAFF GUAGE <u>N/a</u>	
l ocation	Surface Water 2		PM
			25 f cloudy
	<u> </u>	WEATHER CONDITION.	231 Clobdy
PH	7.95 sto libuts		
PEC CON	7.33 SID.ONITS		MG/
TURB	2.12 NTU	STAFF GUAGE n/a	
Location	·		UEUP NO
	MV .	WEATHER CONDITION:	
	C		
	STD.UNITS	DO	- MG4
			MOL
	MV	WEATHER CONDITION;	
	C		
	SIDUNITS		MG/I
		STAFE GUAGE	
ocation			
	MV	WEATHER CONDITION:	
	c-		
	STD.UNITS	APPEARANCE/OBSERVATIO	
		STAFE GUAGE	
ocation	· · · · · · · · · · · · · · · · · · ·		ULID.NO.
H	MV	WEATHER CONDITION:	
EMPERATURE	c		
7 4	STD.UNITS	APPEARANCE / OBSERVATIC	DNS
PEC. CON	UMHOS/CM		MG/L
JRB	. NTU <	STAFF GUAGE	

-

.

.

Upstate Labor 6034 Corporate Drive E. Syracuse N	atorie: New York 1305	5, Inc	~ ~		Chain	0	f	C	us	sto	bd	ly	R	le	c	or	d	$\langle a \rangle$
Phone (315) 437 0255		Fax (315) 4	37 1209			•	•			. <u> </u>								·
Nient: ROUX ASSOCIATES, INC		SYRACU	ISE CHIN	NA LANI	DFILL	Numbe												Remarks
lient Contact:	Phone #	Location (city/state) Address	•		f of C												
MEREDITH HARRIS		SYRACU	SE, NY			Conte	ł										r	
Sample ID	Date	Time	Matrix	GRAB OR COMP	ULI Internal Use Only	iners	1	2	3	4	5	6	7	8	9	10		
MW-1	12-15-04	12:35P	H20	GRAB	-601	1	X	X										
MW-2	12-15-04	11:15A	H20	GRAB	-703	0	X	X										
MW-5	12-15-04	11:50A	H2O	GRAB	-003	T	X	X			_						. '	• <u> </u>
MW-6	12-15-04	10:35A	H20	GRAB	~04	1	X	x			•						·	
MW-8	12-15-04	2:00p	H20	GRAB	-005	17	X	x										
MW-10	12-15-04	1:150	H20	GRAB	-rrts	77	X	x										
SW-1	12-15-04	1:0012	H2O	GRAB	-601	TA	x	X										
SW-2	12-15-04	1:05P	H20	GRAB	-008	1/1	X	x				t						
						<u>~</u>	1		<u> </u>									1121 <u></u>
· · · · · · · · · · · · · · · · · · ·	· · · ·						<u> </u>		 _			-				-		
·				+			-						•				<u>↓</u>	
		·						-						<u> </u>				.
		· · ·				1	1				·			·		<u> </u>		
	· .					1				<u> </u>						1		
							-	-	1-	· ·						-		· · · · · · · · · · · · · · · · · · ·
				1			-			<u> </u>						1		· ,
Parameter and Method	Sarr	ple bottle:	Туре	Size	Preservative	Sar	nple	d by	<u>/</u> (Pr	int)	· .	II			<u>. </u>	1	Name	of Courier
1 FIELD PH,EH,SPEC. CON,TURB,TEM	1P	•	n/a	n/a	none		Au	- í	344	-T 2	ER	sæ⁄	V	1				`,
2 Pb by low level			plastic	500m	HNU3	Re	npai incu	ishe	d h	risi		rato	nes Da	te te). ITin	ne [,]	Receiv	red by: (sign)
4			<u> </u>						, u,		,		04					ou by: (oigh)
5		n.			·	~				-			•					
6						Rel	inqu	ishe	ed by	/:(si	gn)		Da	te	Tin	ne	Receiv	red by: (sign)
7	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>.</u>	· ·		4						-			.			
8	·		}		· · · · · · · · · · · · · · · · · · ·	Dol	lingu	icho	nd h	rici			0-2	to'			Boold	for Lab bu:
_ <u>*</u>	···		<u> </u>					2-		יינא <u>י</u> כ	17		/2	//	2	н е 30-		
			1		<u> </u>	1	a	SL.	5	05			'//	1704		pm	14	S NI M

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 289 * Syracuse, NY 13206 Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (585) 436-9070 * New Jersey (201) 343-5353 * South Carolina (864) 878-3280

Ms. Meredith Harris Roux Associates, Inc. 1222 Forest Parkway Suite 190 West Deptford, NJ 08066

Tuesday, March 08, 2005

RE: Syracuse China Landfill

Order No.: U0503043

Dear Ms. Meredith Harris:

Upstate Laboratories, Inc. received 6 sample(s) on 3/2/2005 for the analyses presented in the following report.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

non us. Scala

Anthony J. Scala President/CEO

Date: 08-Mar-05

_ CLIENT: Client Sample ID: MW-1 Roux Associates, Inc. Collection Date: 3/2/05 11:55:00 AM Lab Order: U0503043 **Project:** Syracuse China Landfill Matrix: WATER Lab ID: U0503043-001 Result Limit Qual Units DF Date Analyzed Analyses

FIELD PARAMETERS		FLD		Analyst:
Conductivity	792	1.0	umhos/cm	3/2/05 11:55:00 AM
Eh	-28		mV	3/2/05 11:55:00 AM
рН	7,45	6.5-8.5	· SU	3/2/05 11:55:00 AM
Temperature	5.4		degC	3/2/05 11:55:00 AM
Turbidity	1.13	5.0	NTU	3/2/05 11:55:00 AM
TOTAL LEAD BY GFAA		E239.2	(SW3020A)	Analyst: AB
Lead*	ND	0.001	mg/L 1	3/7/05 1:09:35 PM

Approved	By:	PFF	Date:	3-8-05	Page 1 of 6
Qualifiers: * B		Low Level		Value exceeds Maximum Contarr	ninant Value
		Analyte detected in the associated Method Blank	E	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitati	on limits
N		Not Detected at the Reporting Limit	S	Spike Recovery outside accepted	recovery limits

Date: 08-Mar-05

CLIENT:Roux Associates, Inc.Lab Order:U0503043Project:Syracuse China LandfillLab ID:U0503043-002

Client Sample ID: MW-2 Collection Date: 3/2/05 11:20:00 AM

Matrix: WATER

st:
D AM
AM ·
D AM
AM -
D AM
st: AB
PM

Approved By:		PFF	Date:	_3-8-05	Page 2 of 6
Qualifiers:	*	Low Level	**	Value exceeds Maximum Conta	minant Value
	B	Analyte detected in the associated Method Blank	Ε	Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantita	ition limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepter	d recovery límits

Date: 08-Mar-05

Client Sample ID: MW-6 CLIENT: Roux Associates, Inc. Collection Date: 3/2/05 10:35:00 AM Lab Order: U0503043 Project: Syracuse China Landfill Matrix: WATER Lab ID: U0503043-003 Limit Qual Units DF Result Date Analyzed Analyses

	<		
	FLD		Analyst:
785	1.0	umhos/cm	3/2/05 10:35:00 AM
-45		mV	3/2/05 10:35:00 AM
7.76	6.5-8.5	SU	3/2/05 10:35:00 AM
7.2		degC	3/2/05 10:35:00 AM
- 5.46	5.0	NTU .	3/2/05 10:35:00 AM
	E239.2	(SW3020A)	Analyst: AB
ND	0.001	mg/L 1	3/7/05 1:16:33 PM
-	785 -45 7.76 7.2 5.46 ND	FLD 785 1.0 -45 7.76 6.5-8.5 7.2 5.46 5.0 E239.2 ND 0.001	FLD FLD 785 1.0 umhos/cm -45 mV 7.76 6.5-8.5 SU 7.2 degC 5.46 5.0 NTU E239.2 (SW3020A) ND 0.001 mg/L 1

Approved B	y: _	PFF	Date:	3-8-05	Page 3 of 6
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contamina	int Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	. ,	Analyte detected below quantitation	limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted reco	overy limits

Date: 08-Mar-05

CLIENT: Roux Associates, Inc. Client Sample ID: MW-8 Lab Order: U0503043 Collection Date: 3/2/05 1:30:00 PM **Project:** Syracuse China Landfill Matrix: WATER U0503043-004 Lab ID: Limit Qual Units Result DF Analyses **Date Analyzed** FLD FIELD PARAMETERS Analyst: Conductivity 2960 1.0 umhos/cm 3/2/05 1:30:00 PM - mV Εh -20 3/2/05 1:30:00 PM pН 7.18 6.5-8.5 SU 3/2/05 1:30:00 PM degC 3/2/05 1:30:00 PM Temperature . 6.8 5.22 5.0 NTU 3/2/05 1:30:00 PM Turbidity E239.2 (SW3020A) TOTAL LEAD BY GFAA Analyst: AB 0.001 3/7/05 1:20:04 PM Lead* ND mg/L -1

Approved By: PFF Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 3-8-05

Page 4 of 6

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 08-Mar-05

Client Sample ID: MW-10 CLIENT: Roux Associates, Inc. Lab Order: U0503043 Collection Date: 3/2/05 12:40:00 PM Project: Syracuse China Landfill Matrix: WATER Lab ID: U0503043-005 Limit Qual Units Result DF Date Analyzed Analyses FIELD PARAMETERS FLD Analyst: Conductivity 2680 1.0 umhos/cm 3/2/05 12:40:00 PM mV 3/2/05 12:40:00 PM Ξh -9

pH ·		7.02	6.5-8.5	SU	3/2/05 12:40:00 PM
Temperature		- 6.0		degC	3/2/05 12:40:00 PM
Turbidity		3.01	5.0	NTU	3/2/05 12:40:00 PM
TOTAL LEAD BY GFAA		•	E239.2	(SW3020A)	Analyst: AB
Lead*	• .	NĎ	0.001	mg/L 1	3/7/05 1:23:44 PM

Approved B	y:	PFF	Date:	3-8-05	Page 5 of 6	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Vi	alue	
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range		
H Holding times for preparation or analysis exceeded		Holding, times for preparation or analysis exceeded	J	Analyte detected below quantitation limits		
ND Not Detected at the Reporting Limit		Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery	y limits	

Date: 08-Mar-05

CLIENT:	Roux Associates, Inc.			Client San	nple ID: SV	V-1	
Lab Order:	U0503043			n Date: 3/2	3/2/05 12:10:00 PM		
Project:	Syracuse China Landfill					. ,	
Lab ID:	U0503043-006	-	ATER				
Analyses		Result	Limit	Qual Units	DI	F Date Analyzed	
FIELD PARAM	ETERS		FL	.D		Analyst:	
Conductivity		1188	1.0	umhos/cn	٦.	3/2/05 12:10:00 PM	
Eh		-35		mV		3/2/05 12:10:00 PM	
рH		7.52	6.5-8.5	SU		3/2/05 12:10:00 PM	
Temperature		5.2		degC		3/2/05 12:10:00 PM	
Turbidity		1.23 (5.0	NTU		3/2/05 12:10:00 PM	
TOTAL LEAD B	BY GFAA	-	E23	9.2 (SV	V3020A)	Analyst: AB	
Lead*		ND	0.001	mg/L	1	3/7/05 1:27:15 PM	

Date: Page 6 of 6 Approved By: 3-8-05 PFF ** Qualifiers: Low Level Value exceeds Maximum Contaminant Value в Analyte detected in the associated Method Blank Ε Value above quantitation range Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits Н S Spike Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit

_				· ·			
Upstate Lab	oratories, Inc.	Ground water F	ield Log File	: TS-30-	01 Revised	1: 12/2001	0000000000
Client:	Roux Asso	ociates, Inc.					
Project:	Syracuse C			No. (ent	er by lab)		
	. 101 /	/٧-1					
Condition of We	ll:	GOOD	Locked:		NO.	· · ·	
Method of Evac	uation:PERIS		Lock ID:		N/A	:	
Method of Samp	pling: PERIS						
▋ <u></u>		A. Diameter	of Well	•	2"	inche	es .
		B. Well Dep	th Measured		24.5	feet	
		C. Depth to	Water		16.23	feet	
		D. Length of	f Water Column (calo	culated)	8.27	feet	
B ▲	WATER LEVEL	Conversi	on Factor		X.16		
		• Well Volu	me (calculated)		1.3232	gallo	ns
		No, of Vo	lumes to be Evacuat	ted .	X 3		
∎ ╈.₩		Total Vol	ime to be Evacuated	. t	3.9696	gallor	ns
		Actual Vo	lume Evacuated	•	4	gallor	ns
F	SILT	E. Installed	Well Depth (if known)	N/A	feet	
		F. Depth of	Silt (calculated	-	N/a	feet	
Field	Initial	Final	9	% Rechar	ge:		
Measurements	Evacuation	Sampling	1	nitial Dani	un bui	46.00	faat
Date	3/2/2005	3/2/20	<u>)5</u>	nuar Depi	ui to vvater	10.23	reet
Time	11:35 AM	11:55 A	<u>\M</u> F	lecharge De	epth to Water	n/a i	feet
EH	-38	-28	<u> </u>				
Temperature	6.9 c	<u> </u>	2	nd water	column height	n/a	_%
pH	7.66	7.45	1	st water o	column height		
Specific Cond. Turbidity	<u>838</u> 2.63		_ 	levation(To	p of Casing)	f	feet

Appearance Weather:

Dissolved Oxygen

N/A

clear

Observations:

30 f snow

N/A

clear

feet

G.W. Elevation=

Jan

Sampler:

Signature;

G.W.Elevation ≠Top of Case Elev-Total Depth

Paul Baltzersen / Nate Talucci

ent: oject: ell ID.:	Roux Ass Syracuse	sociates, China Lai 1W-2	Inc. ndfill	ULI ID No. (e	nter by lab)	. 12.2001
Condition of Well:		GOOD		Locked:	<u>NO</u>	
Method of Evacuation:		STOLTIC P		Lock ID:	<u>N/A</u>	<u> </u>
Method of Samplin	ng: <u>PERI</u>		UMP			
	<u>A</u>	А.	Diameter of We	ell	. 2"	inches
	OP	В.	Well Depth Me	asured	13.1	– feet
C .		С.	Depth to Water	 · · ·	4.47	feet
		 D	Longth of Wate	r Column (calculated)		-, foot
		D.			0.03	- 1961
	EVEL			, , , , , , , , , , , , , , , , , , ,	<u> </u>	
			vveii voiume (c		1.3808	_ gallons
			No. of Volumes	to be Evacuated	X 3	
\mathbf{v}			Total Volume to	be Evacuated	4.1424	_ gallons
			Actual Volumer	Evacuated	4.5	_ gallons
F S	ILT	E.	Installed Well D	epth (if known)	N/A	_ feet
♥ ♥		F.	Depth of Silt (ca	lculated	<u>z N/a</u>	feet
d Ir isurements E	itial vacuation	F S	inal ampling	% Rech	arge:	4.47
e	3/2/2005		3/2/2005			4.47 100
e <u>-</u>	10:55 AM		11:20 AM	Recharge	Depth to Water	n/a fee
	-10 -10		-14 6.6.c	 2nd wate	er column height	n/a %
	7.17		<u>7,10</u>	1st wate	r column heiaht	/
cific Cond.	1072		1126	-		
pidity	2.87	·	3.86	Elevation(Top of Casing)	fee
olved Oxygen	. N/A		N/A	G.W. Ele	evation=	fee
earance	clear		clear	G.W.Eleva	tion =Top of Case Ele	v-Total Depth
ather:		30 f snow		Sampler		
ervations:		·	<u></u>	Paul Bal	tzersen / Nate Tal	ucci
	· <u>····</u>				0 1 stan	

۱

÷

.

~

-

Upstate Laborate	Dries, Inc. Grour Roux Associates, Syracuse China La MW-5	nd water Field Log Inc. ndfill	File: TS-30-	01 Revisec er.by.lab)	I: 12/200	1
Condition of Well:	GOOD	Locke	d:	NO		
Method of Evacuation:	PERISTOLTIC F	PUMP Lock	D:	N/A		
Method of Sampling:		PUMP				
	→ A.	Diameter of Well		2"	incl	hes
C	В.	Well Depth Measured		13.4	fee	t
	C.	Depth to Water		well frozen	fee	t
	D.	Length of Water Column	(calculated)	n/a	fee	t
B A WATE	R	Conversion Factor		X.16		
		Well Volume (calculated)		n/a	gall	ons
		No. of Volumes to be Eva	icuated	X 3		
		Total Volume to be Evac	uated	n/a	_ gall	ons
▼ ↑ 		Actual Volume Evacuated	j .	n/a	gall	ons
F SILT	E .	Installed Well Depth (if kr	iown)	n/a	_ feet	
\downarrow \downarrow	F.	Depth of Silt (calculated		<u>n/a</u>	_` feet	
eld Initial easurements Evacua	ition S	Final Sampling	% Rechar	ge: th to Water	n/a	feet
ate	<u>3/2/2005</u>	n/a n/a	Recharge De	epth to Water	n/a	feet
{	n/a	n/a	_			
mperature		n/a	2nd water	column height	n/a	%
·	n/a	n/a	1st water (column height		
ecific Cond.	n/a	n/a	Elevation/To	p of Casing)		feet
ssolved Oxvaen		n/a	G.W. Elev	ation=		feet
pearance	n/a	n/a	G.W.Elevatio	on =Top of Case Ele	v-Total De	pth
eather:	30 f snow no sample - well fr	ozen	Sampler: Paul Baltz Signature:	ersen / Nate Tal	ucci	

Upstate Lab	oratories, Inc. Roux Ass	Ground ociates, In	d water Field Log nc.	g File: TS-30- -	01 Revised	: 12/2001
Project:	Syracuse C	China Lan	dfill	ULHD No. (en	er by lab)	
	<u>IVI</u>	<u> </u>		_		
Condition of We	ll: <u> </u>	GOOD		Locked:	NO	
Method of Evac	uation: PERIS	STOLTIC PL	IMP	Lock ID:	N/A	
Method of Samp	pling: <u>PERIS</u>	STOLTIC PL	IMP			
	<u> </u>	А.	Diameter of Well		2"	inches
	TOP	В.	Well Depth Measu	rred	15.36	feet
		C.	Depth to Water	- ,	4.61	_ feet
		D.	Length of Water C	column (calculated)	10.75	_ feet
	WATER		Conversion Factor	r	X.16	
			Well Volume (calc	ulated)	1.72	_ gallons
			No. of Volumes to	be Evacuated	<u> </u>	 ,
			Total Volume to be	e Evacuated	5.16	_ gallons
		•	Actual Volume Eve	acuated	5;5	_ gallons
F	SILT	E.	Installed Well Dep	th (if known)	N/A	_ feet `
₩ ₩		.F.	Depth of Silt (calcu	ulated	N/a	- feet
Field Measurements	Initial Evacuation	Fii Sa	nal Impling	% Recha	rge:	4.61 foot
Date Time	3/2/2005	·	3/2/2005 10:35 AM	Recharge D	enth to Water	n/a feet
EH	-55	·	-45			
Temperature	8.4 c	,	7.2 c	2nd water	column height	<u>n/a %</u>
pН	8.01		7.76	1st water	column height	
Specific Cond.	980		785			
Turbidity	15.2	<u> </u>	5.46	Elevation(To	p of Casing)	feet
Dissolved Oxygen	N/A	·	N/A	G.W. Elev	vation=	feet
Appearance	slightly cloudy	. <u>.</u>	Clear	G.W.Elevati	on = lop of Case Ele	v-Total Depth
Weather:		10 f snow		Sampler:	ersen / Nate Tal	ucci
			· · · · · · · · · · · · · · · · · · ·	Signature		
	. <u></u>		<u> </u>		nt Bitt	-

Unstate I	aboratori	es Inc	Groun	nd water F	ïeld I od	File [,] TS-30-()1 Revised	12/2001
Client:		Roux Associ	ates,	Inc.		1 110. 10 00 0		12/2001
Project:	S	yracuse Chir	na La	ndfill	U	LI ID No. (ente	er by lab)	
Well ID.:		MW-	<u>8 </u>					
Condition of	Well:	G			Locke	ed:	NO	
Method of E	vacuation:	PERISTO	LTIC P	UMP	Lock	D:	N/A	、
Method of Sa	ampling:	PERISTO	LTIC P	UMP				
↑ ↑ ↑	<a td="" →<=""><td></td><td>A.</td><td>Diameter</td><td>of Well</td><td></td><td>2"</td><td>_ inches</td>		A.	Diameter	of Well		2"	_ inches
	TOP		В.	Well Dep	th Measured	,-	20.73	feet
			C.	Depth to	Water	-	3.93	feet
			D.	Length of	f Water Column	(calculated)	16.8	feet
B A F	WATER			Conversi	on Factor	-	X.16	
	L.V.			Well Volu	ime (calculated)	-	2.688	gallons
			· _	No. of Va	lumes to be Eva	cuated	X 3	
				Total Volu	ume to be Evaci	uated	8.064	_ gallons
				,Actual Vo	lume Evacuated	- t	8.5	_ gallons
F	SILT		E.	Installed V	Well Depth (if kr	iown)	`N/A	- feet
₩ ₩		~	F.	Depth of 3	Silt (calculated	•	N/a	feet
Field	Initial		F	inal		% Recharç	je:	

Field	Initial	Final	% Recharge:	
Measurements	Evacuation	Sampling		
			Initial Depth to Water	3.93 feet
Date	3/2/2005	3/2/2005		
Time	12:50 PM	<u> </u>	Recharge Depth to Water	n/a feet
EH	-11	-20		
Temperature	7.0 c	<u> </u>	2nd water column height	n/a%
pН	7.03	7.18	1st water column height	
Specific Cond.	2930	2960		
Turbidity	15.6	5.22	Elevation(Top of Casing)	feet
Dissolved Oxygen	N/A	N/A	G.W. Elevation=	feet
Appearance	slightlt cloudy	clear	G.W.Elevation =Top of Case El	ev-Total Depth
Weather:		30 f snow	Sampler:	
Observations:			Paul Baltzersen / Nate Ta	lucci
			Signature:	

.

Upstate Labora Client: Project: Well ID.:	tories, Inc. Grou Roux Associates Syracuse China La MW-10	nd water Field Log , Inc. andfill	File: TS-30-0 ULI ID No (ente)1 Revised er by lab)	J: 12/200	1
Condition of Well:	GOOD	Loc	cked:	NO	<u> </u>	
Method of Evacuation		PUMP Loc	:k ID:	N/A		
Method of Sampling:	PERISTOLTIC	PUMP				
	→ A.	Diameter of Well		2"	incl	hés
	B.	Well Depth Measured	-	13	fee	t
	c.	Depth to Water		2.61	fee	t
	D.	Length of Water Colun	nn (calculated)	10.39	fee	t
` ↓ в ↓ WAT	ER	Conversion Factor		X.16		
	E .	Well Volume (calculate	- ed)	1.6624	 oall	ons
D.		No. of Volumes to be E	- Evacuated	X 3		-
		Total Volume to be Eva	acuated	4.9872	 gall	ons
★ ★		Actual Volume Evacua	ted -	5	_ v	ons
F SILT	- E.	Installed Well Depth (if	- known)	N/A	_ c	
\downarrow	F.	Depth of Silt (calculate	d ,	N/a ···	feet	
· · ·		-	-			
ield Initial Aeasurements Evaci	ation	Final Sampling	% Recharg	je: h to Water	2.61	feet
ate	3/2/2005	3/2/2005	Recharge De	nth to Watar		faat
"""" - <u></u> H	-24	-9		put to water		1001
emperature	6.2 c	6.0 c	2nd water	column height	n/a	%
·	7.14	7.02	1st water c	olumn height	<u></u>	
pecific Cond.		2680		_		
urbidity	4.27	3.01	Elevation(Top	of Casing)		feet
issolved Oxygen	N/A	N/A	G.W. Eleva	ition=		feet
ppearance	<u> </u>	clear	G.W.Elevatio	n =Top of Case Ele	ev-Total De	pth
/eather:	30 f snow		Sampler:			
oservations:	<u> </u>		Paul Baltze	rsen / Nate Ta.	, ,	
			- F	and Pat	>	

1

•

Upstate Labor Fap Water / Surface	atories, Inc. Water / Wastewater Field Log	· ·	
Client: Roux As	sociates, Inc.	Sampler (print):	Paul Baltzersen
Project: Syracuse	e China Landfill	Signature:	Hand Fort
Date: 3/2/20	005		10
ocation	Surface Water 1	TIME SAMPLED 12:10 P	MULTID NO.
н	 -35 мv	WEATHER CONDITION:	30 f snow
EMPERATURE	5.2 c	·	
Ή	7.52 STD UNITS	APPEARANCE / OBSERVATIO	NS clear
PEC. CON.	1188 имноя/см	DO n/a	
URB	<u>1.23</u> мти	STAFF GUAGE <u>N/a</u>	
ocation	Surface Water 2	TIME SAMPLED 1:35 P	MULIDNO
н	п/а му	WEATHER CONDITION:	30 f snow
EMPERATURE	n/a c	no sample - wetland froze	n and covered with 3 ft of snow
H	. n/a std.units	APPEARANCE / OBSERVATIO	NS n/a
PEC. CON.	 n/a имноѕ/см	DO n/a	MG/L
URB	 n/aмтu	STAFF GUAGE n/a	······································
ocation	<u>A TOYONYINA MINA KUNINA KUNINA MUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU</u>	TIME SAMPLED	ULIID NO.
н		WEATHER CONDITION:	
EMPERATURE	c	-	······································
н	STD.UNITS	APPEARANCE / OBSERVATIO	INS
PEC. CON.		.DO	MG/L
URB .	NTU	STAFF GUAGE	
ocation		TIME SAMPLED	ULIID NO.
н .		WEATHER CONDITION:	
EMPERATURE	c	· · · · · · · · · · · · · · · · · · ·	
Н	STD.UNITS	APPEARANCE / OBSERVATIO	NS
PEC. CON.	UMHOS/CM	DO	MG/L
URB	NTU	STAFF GUAGE	
ocation		TIME SAMPLED	ULID NO.
Н		WEATHER CONDITION:	
EMPERATURE	C		
Н	STD.UNITS	APPEARANCE / OBSERVATIO	NS
PEC. CON.	UMHOS/CM	DO	MG/L
URB	NTU	STAFF GUAGE	
ocation	9 Y WAY DI TURNING MENNYA TURNING TANAH TAN MENYA DI TURNING MENYA DI TURNING MENYA DI TURNING MENYA DI TURNING	TIME SAMPLED	ULIND NO.
4		WEATHER CONDITION:	
EMPERATURE	c		·
	STD.UNITS	APPEARANCE / OBSERVATIO	NS
PEC. CON	UMHOS/CM	DO	
IRB		STAFF GUAGE	

•

Upstate Laboratories, Inc. Chain of Custody Record 6034 Corporate Drive E. Syracuse New York 13057 Phone (315) 437 0255 Fax (315) 437 1209 Client Number of Containers ROUX ASSOCIATES, INC SYRACUSE CHINA LANDFILL Remarks Client Contact: Location (city/state) Address Phone # **MEREDITH HARRIS** SYRACUSE, NY Sample ID Time Matrix Date GRAB ULI Internal Use Only 3 4 5 6 7 8 9 10 LOSOBOLIZ 2 OR COMP 1 Х Х MW-1 3-2-05 H2O GRAB 1 -001 11:55A Х Х MW-2 H20⁻ GRAB <1^ 3-2-05 $-c\alpha 2l$ 11:20 A Х wellfrezen MW-5 GRAB Х 3-2-05 12:05P H20 4 Х 13 X MW-6 H20 GRAB -CCF 3-2-05 10:35 A $\overline{(1)}$ x Х **MW-8** GRAB 3-2-05 1:30P H2O COU IMW-10 3-2-05 ·H2O GRAB Х Х 12:40P (1)-005 Х SW-1 X H2O IGRAB 3-2-05 (1) 12:10P -02-SW-2 H2O GRAB Х Х 1:35p ø 3-2-05 FROTEN 4 · · · · Parameter and Method Preservative Sampled by (Print) Name of Courier Sample bottle: Type Size PAUL BALTZEPSEN 1 FIELD PH, EH, SPEC. CON, TURB, TEMP n/a n/a none 2 Pb by low level 500ml HNO'3 Company:Upstate Laboratories, Inc. plastic 3 Received by: (sign) Relinquished by:(sign) Date Time 4 5

	Syracuse Rochester	Buffalo	Albany	Binghamton	Fair Lawn	(NJ)
10)			- Van Ruth	3/4/05 2 P	KIMA
9				Relinquished by:(sign)	Date Time	Rec'd for Lab by:
8				·····		
7						•
			((Reinquisnea by.(sign)		(Received by, (sign)

Delignighted by (sign)

Data

Time

Dessived by (gigs)

6

6)	PA	R	AD	IG	Μ	

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

ENVIRONMENTAL SERVICES. INC.

N/A

Client:

Roux Associates Inc

Client Job Site:

Syracuse China

Client Job No.:

Lab Project No.: 05 - 2220

Sample Type: Water Method: EPA 200.7

Date(s) Sampled: 06/29/2005 Date Received: 06/30/2005 Date Analyzed: 07/01/2005

Laboratory Report for Metals Analysis in Water

Lab	Field ID	Field Location	Lead
Sample	No.		Results
No.			(mg/L)
8729	N/A	Well #1	0.009
8730	N/A	Well #2	<0.005
8731	N/A	Well #5	<0.005
8732	N/A	Well #6	<0.005
8733	N/A	Welt #8	0.020
8734	N/A	Well #10	<0.005
8735	N/A	SW #1	<0.005
8736	N/A	SW #2	0.005
-			

ELAP ID No.: 10709

Comments:

Approved By:

Bruce Hoggesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information including compliance with sample condition requirements upon receipt. information, including compliance with sample condition requirements upon receipt.

Data Table for Montoring Wells, Gas Vents, Temporary Vents Syacuse China Landfill

Data Table for Monitoring Wells

	······································	Well #1	Well #2	Well #5	Well #6	Well #8	Well #10	
	Date:	6/29/05	6/29/05	6/29/05	6/29/05	6/29/05	6/29/05	×
	Time:	8:00am	8:30am	9:15am	9:45am	10:15am	11:00am	
	Depth to Bottom:	25'	14'	13'	16.5'	22'	16'	
	Depth to Water:	20'	8'	5'	8'	6'	3'	
	Volume Purged:	3 gal	4 gal	5 gal	5.5 gal	10 gal	8 gal	
· ·		, ,	······································	······································	· · · · · · · · · · · · · · · · · · ·			;
Data Table for Gas Vents		·						
		GV #1	GV #2	GV #3	GV #4	GV #5	GV #6	GV #7
	Date:	5/29/05	5/29/05	5/29/05	5/29/05	5/29/05	5/29/05	5/29/05
	Time:	11:15am	, 11:20am	11:30am	11:40am	11:50am	12:00pm	12:10pm
	LEL Read:	1ppm	5ppm	1ppm	Oppm	0ppm	Оррт	0ppm
	H2S Read:	Oppm	0ppm -	0ppm	Оррт	0ppm	0ppm	0ppm
Data Table for Temporar	y Gas Vents							
		TG #1	TG #2	TG #3	TG #4	TG #5	TG #6	[]
	Date:	5/29/05	5/29/05	5/29/05	5/29/05	5/29/05	5/29/05	
	Time:	12:20pm	12:30pm	12:40pm	12:55pm	1:10pm	1:20pm	
	LEL Read:	Oppm	Oppm	0ppm	Oppm	Oppm	Oppm	
	H2S Read:	0ppm	0ppm	0ppm	Oppm	0ppm	0ppm	

Created 7/1/2005

		ن			· · · · · · · · · · · · · · · · · · ·					LOWA 11 ING	TEM TRANSPORT	Sector States			Man and America		mai si matri i a r	an an a fort with a life	a harded e demon
ENVIRON	MENTA	۹L		A STATE REPORT TO A STATE		Sec.	S.So		INVO	IÇET	0:X	233					Kalento,	Sauser	
SERVICE	S, INC.		COMPANY	Roux Associates Inc		COMPAN	Y:								ROJEC	CT#:		NT PROJEC	CT#:
179 Lake Avenue	, ,		ADDRESS	1222 Forest Parkway ,Suite 1	90	ADDRESS	S:							05	- J	220			
Rochester, NY 14	4608		CITY;	West Deptford STATE: NJ	ZIP: 08066	CITY:					STATE:		ZIP:	TURNA	ROUI	ND TIME:	: (WORKI	IG DAYS)	
(585) 647-2530 * ((800) 724-19	97	PHONE:	856-423-8800 FAX: 856-423-3	220	PHONE:				FAX:]				STD	OTHER
PROJECT NAME/SITE	NAME:		ATTN:	Meredith Harris	•	ATTN:									· Г]2 [3	X 5	
Syracuse Chi	na		COMMENT	rs:		. L					·.	,						•••	L
	教教 会学生	N III			6942 ar		家 R I	ÉQÜE	<u>S</u> ŢĒC	DAN/	AĽÝS	IS 矣						的现在分词	
DATE	TIME	С О М Р О S I Т Е	G R B	SAMPLE LOCATION/FIELD ID	- M A T R I X	C O N T A U T A B I N E R E R S	Total Lead							R	EMAR	ĸs		PARA	DIGM LAB E NUMBER
16/29/05	0800		X	Well # 1	w	<u>, 1</u>	X										1	8	729
26/28/05	০৪৬০		X	Well # 2	. w	1	x											8	730
36/22/05	1915		X	Well # 30 5 10	w	1	X											8	731
46/29/25	0945		X	Well # 4 6	w	1 1	X											8	732
5 6/29/05	1015		X	Well # \$ 8 CC &	w	1	X									•		8	723
6 6129/05	11 Arts		X	Well # 5 10 CC BAP	w	1	x			-			1.					1 8	724
7 6128/25	1430		x	S in (# /	1.4/		X						+					T k	725
8 - 112/25	1100			≤ 11 ± 2			$\left \right\rangle$					+ + -	-				·-··`·	8	721
0 6/2/03	1775																		124
10				· · · · · · · · · · · · · · · · · · ·	·		╎╴┤						<u> </u>		·				
LAB USE	ONLY	1	L	· · · · · · · · · · · · · · · · · · ·	I	_I	<u>. ! I</u>		<u> </u>		<u>I I .</u>		!					_I	III
SAMPLE CONDI	TION: Chec note deviati	k box on:	с	ONTAINER TYPE: PRESERVA	TIONS:	V		но	DING TI	ME:		Y	TEI]	<u></u>	
Sampled By:	 ,	,		Date/Time: Re	linquished	By:	<u> </u>			···			Date/T	ime:			Total 0	Cost:	
Buro	NKP	ete.	150-1	6/28/05 0800															
Relinquished By	Poto	,		Date/Time: Re G/28/25 / 5 00	ceived By:								Date/T	ime:					
Received By!	· · ·			Date/Time: Re	ceived @ L	ab By:		0.		1_1		1./20	Date/T	ime:	24	10	P.I.F.		

. .

• PARADIGM

ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:	ROUX	Lab Project No.:	05-3323
Client Job Site:	Well Sampling	Sample Type: Method:	Water EPA 200.7
		Date(s) Sampled Date Received: Date Analyzed:	: 09/28/2005 09/28/2005 10/05/2005

Laboratory Report for Metals Analysis in Water

Lab Sample No.	Field ID No.	Field Location	Lead Results (mg/L)
11880	N/A	Weil #1	0.018
11881	N/A	Well #2	<0.005
11882	N/A	Well #5	<0.005
11883	N/A	Well #6	- 0.006
11884	N/A	Weil #8	0.052
11885	N/A	Weil #10	<0.005
11886	N/A	SW #1	<0.005
11887	N/A	SW #2	0.622
		··· ··· ·	

ELAP ID No.: 10958

Comments: The sample duplicate was 51% difference for lab sample #11887.

Approved By: _

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt. File ID:053323.XLS

÷. -

PARA	ÐICI	1 1							DF	- 6	HS:	Te	Y									
ENVIRON	MENT	4L		RE	RORTITO				T.			NVO	ÎĈÊ T	0:39 P	Martin Ver E							6444 10152
SERVICE	S, INC.		COMPANY	POVX		. ,		COMPA	۲¥: د ۱۷:	<u>30</u>	ple	.					LAB PROJ	IECT #:	CLIE	NT PRO.	ECT #: ~	
179 Lake Avenue	1600		ADDRESS	1222 For	GT PACK	WAY SI	, -1-2 18	ADDRES	is:								05-:	3323			,	
(585) 647-2530 •	(800) 724-19	997	CITY:	(DEPTE:	STATE:	 	66	CITY:					ST.	ATE:		ZIP:	TURNARO	UND TIME: ((WORKIN	G DAYS)		
			PHONE:		DU 856-42	2-32	20	PHONE:					FAX:	_						STD	<u>o</u>	THER
PROJECT NAME/SITE	NAME:		ATTN:	lonica C	R Selve	,		ATTN:						_	_	,	. 1	2	3	λ 5		
Writ Go.	ut lun		COMMENT	S:	ς																	
			- Antoli		s at the sec		and the	<u>त.</u> संस्थान	<u>to</u> R	ÊQU	JEST	ED,	NAL	YSIS								
DATE	TIME	00 M P 0 S -	G R A B	SAMPLE	LOCATION/FIELD ID		М А Т Л	C N N N T A B F N			-						REMAR	ĸs		PAI SAM	IADIGM L PLE NUM	AB BER
		T E	}		,		. X	R	19											j		
19/28/05	0745		×	Well#1			W	1	X	┟╌╍┢											81	50
2	1120		1	Well #2	,		1	1	X								• .			11	8 13	.)
3	0900			W.11#5					X			1-		-					·	11	K K	- 2
4	1200			Well #6	· · · · · · · · · · · · · · · · · · ·				X								······				81	83
5	0245			Well # 8					X					1-1						111	8	84
6	0824			111011# 10		- <u></u>			×			-							····		8	8 (7
7	//20			Su #1					×	┨╼┤										Γì	18	56
8	1145			Sw #2		- -			1×	1		-		+-+						$\frac{1}{1}$	185	< 7
9			- *			•			1	┼─┤		+		╺╋╸┧	· .							
10		<u> </u>	1	···				<u> </u>	+	┢╼╌┨				╶╂╼┤						╏╌┥╴		
LAB USE	ONLY BI	LOW	THIS	LINE***			1 273 (57)		National Astronomy		No.							· 行业				
Sample Condition	on: Per NEL	AC/ELA	P 210/24	1/242/243/244		········																<u> </u>
Rec	Container	eter		NELAC Comp	liance	R		1. *	Ďe	£	50			010		~ ~ ~ / r	- 1200					
Comments:	RIAST	<u>C</u>		Y	N	<u> </u>	~ 6시 ed By	<u></u>		<u> </u>				12	Date/1	ime	-1200	Total	Cost:			
Comments: Pres.	Preserva () LAF	ation:		Y	N	<u> </u>	y <u>r on</u> uished I	 By	<u>P</u> e	<u>e-1 r</u>	50	н.		9/28	/ <i>55</i> Date/1	<u>753</u> ime	50					
Comments:	Holding	Time:	·	Y 🔽	N []	Receiv	ed By		<u></u>				<u></u>		Date/T	ime		P.1.F.		[
Comments:	Tempera	ature: //	<u>9° ′</u>	Y	N []		run ed @/L	15(ab By	gi						1 2& Date/⊺	/05 Time	1530			ļ]	

Case Narrative Syracuse China Groundwater Monitoring

Sampling at the Syracuse China Landfill was performed on September 28, 2005. Upon arrival we met with the site contact in the main lobby of the Syracuse China Plant to obtain the key allowing access to the sampling area. The weather was warm and sunny, and site conditions were generally dry. Access by vehicle was limited by overgrown vegetation. Sampling commenced at about 7:45am.

- 1.) Well # 2 purged
- 2.) Wells # 10, 5, & 8 purged
- 3.) Well #1 purged
- 4.) Wells # 10, 5, & 8 sampled
- 5.) Surface waters sampled
- 6.) Well #1 sampled
- 7.) Well # 2 sampled
- 8.) Well #6 purged
- 9.) Well #6 sampled

All wells were purged of 2-3 volumes and allowed to regenerate for 1.0–1.5 hours prior to sampling. Field measurements for conductivity, pH, temperature, dissolved oxygen, and turbidity were performed on purged water using a Horiba model # U-22 monitor. Accumulated sediment was observed in several wells during the purging and sampling process. Most wells were in good shape except for well # 6, which is starting to shift. Very little water was available at surface location SW-1, and location SW-2 was completely overgrown with vegetation and difficult to reach.

Note: Due to the heavy loading of sediment in the original SW-2 sample, we returned to the site on October 19, 2005 to obtain a new sample. The replacement sample was visually free of sediment. At that time we were able to take field measurements at the surface water locations. These had been missed during the original sampling event.

Syracuse China Landfill Monitoring

		T		Dissolved					Depth To	
			Conductivity	Oxygen			Turbidity	Depth to	Bottom	
Location ID	Date	Time	(mS/cm)	(PPM)	pН	Temp (°C)	(NTU's)	Water (ft)	(ft)	
			_						·	
Well # 1	09/28/05	7:45	1.03	10.76	7.5	17.3	> 999	22	25	
Well # 2	09/28/05	11:20	1.46	10.01	7.3	18.0	320	8	14	
Well # 5	09/28/05	9:00	1.46	8.10	7.2	14.7	> 999	11.5	13	
Well # 6	09/28/05	12:00	1.00	9.27	7.4	20.6	838	9	16.5	
Well # 8	09/28/05	9:45	0.029	7.82	7.0	18.5	268	14	22	
Well # 10	09/28/05	8:24	2.85	7.80	6.7	20.2	269	4	16	
SW-1	10/19/05	9:40	0.692	9.10	7.0	11.3	25.2	NA	NA	
SW-2	10/19/05	10:00	0.985	7.35	6.5	12.1	15.5	NA	NA	

* Conductivity, pH, dissolved oxygen, temperature and turbidity readings performed using Horiba model # U-22 monitor, serial # 925102/9252003. ** Calibration certificate # 12931, 9/27/05, Ashtead Technology, for 9/28/05 readings.

** Calibration certificate # 13453, 10/18/05, Ashtead Technology, for 10/19/05 readings.

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

ENVIRONMENTAL SERVICES, INC.

05 0500	
.: 05-3586	
b.: 12539	
Water	
10/19/2005	
: 10/19/2005	
	 b.: 05-3586 b.: 12539 b.: Water c.: 10/19/2005 c.: 10/19/2005

Laboratory Report for Metals Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/L)					
Lead	10/21/2005	EPA 200.7						
-								
		-						
l	,,,,	<u> </u>	ELAP ID No 10958					

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt. File ID:053586 xls

	-			DF f	67		۳									
ENVIRONMENTAL REPORT TO		COMPANY:				INVOICE TO:										
SERVICES, INC.	an na 1999 na shekara ta shekara Mana 2009 na 1999 na 199				· · · · · · · · · · · · · · · · · · ·	- Andrew Color - California Anglesia Anglesia Anglesia Anglesia	LAB PROJECT #:	CLIEN	NT PR	OJECT	#:					
179 Lake Avenue ADDRESS/222 For cst Parkw Rochester, NY 14608 CITY: (585) 647-2530 • (800) 724-1997 STATE:		IAVISUITC/19	ADDRESS: S O CITY:				STATE:			05-3586	.					
		08966							ZIP:	TURNAROUND TIME: (WORKI		(ING DAYS)				ł
FAX: (585) 647-3311	PHONE: 856-423-880 FAX: 856-41	23-3220	PHONE:			· FA)	K:				٤	STD		Ō	THER	
PROJECT NAME/SITE NAME:	ATTN: MON; Ca La Selva		ATTN:				İ			1 2]₃[5			
Success ChiNG (ANS	COMMENTS:					-		_		QUOTE #:	· .					
			263 (*)	REQ	UEST	ED AN	ALYSI	ÎŜ 🦄			全部的				國國國	
c			C O		.											
M	G	M A	N N U T													
DATE TIME O	A	T R	Bt							REMARKS		P SA	ARADIO	GM L NUM	.AB IBER	
I T		×	RE	4						x					1	
E			s '	-								···· 1				
110/19/05 1000	V 3W#2	jar.)	<u>×</u>								1	<u>Z </u>	5]	3 9	
2		• • •														
3																
4		,														
5																
6										·						
7									:	· · · · · · · · · · · · · · · · · · ·]
8									1.1.							
9			ŀ			·				×					-	1
10									and the second							1
LAB USE ONLY BELOW	THIS LINE													Eq.		T 設
Sample Condition: Per NELAC/ELA	AP 210/241/242/243/244	,	Λ /	1												-
Container Type:	NELAC Compliance	RI	Det	17				1010	her 100	<u>,</u>						
Comments: PLASTIC	Y N	Sampled By		20	<u>, </u>			Date	e/Time	Total (Cost:]
Preservation:	Y . N	Relinguished	, <u></u> av	da,	m		10	/ <u>,9/</u> 5 Date	<u>5 121</u> e/Time	<u>4</u>						1
Holding Time:	Y	C.)* 				. 		·		1	,		1		
Temperature:		I Ch 1	Bac	KEN	7			10/1	9/05	1225-PI.F.						
Comments:		Received @'La	аb Ву					Date	e/Time	· .						

