DRAFT SITE INSPECTION TECHNICAL MEMORANDUM Sites 1 and 4

174th Fighter Wing Hancock Air National Guard Base Syracuse, New York

> Air National Guard 3500 Fetchet Avenue Andrews A.F.B., Maryland

> > **June 2007**

ANG Delivery Order Number 0073

The Hancock Air National Guard (ANG) Base is located in Syracuse, New York immediately south of and adjacent to the Syracuse International Airport (Hancock Field). The ANG Base consists of several buildings and operational facilities separated into three main tracts of land (Tracts I, II, and III). Previous environmental investigations were conducted under the Installation Restoration Program (IRP) at the ANG Base and five specific sites (Site 1, Site 4, Site 9, Site 11, and Site AOC-P) were identified as potential areas of concern. The previous environmental investigations included a Phase 1 investigation conducted in 1982, Phase 2 investigations conducted in 1984 and 1989, and a Site Assessment (SA) investigation conducted in 1999. Aneptek Corp. conducted a SA investigation and report in 2003. In 2004, CH2M HILL conducted additional Site Inspection (SI) activities at IRP Sites 1, 4, 9, 11, and AOC-P.

The SI Report for IRP Sites 1, 4, 9, 11, and AOC-P recommended no additional activities for Sites 9, 11, and AOC-P, and limited additional investigations for Sites 1 and 4. A letter prepared on August 24, 2004 by the NYSDEC provided concurrence with the Site Inspection Report recommendations. The additional activities at Sites 1 and 4 were recommended to complete delineation at these sites. Specifically, these additional activities include the installation of an additional monitoring well at Site 4, the collection of surface and subsurface soil samples from the new monitoring well location, and the collection of groundwater samples from the new and existing monitoring wells at Site 4 and from the existing monitoring wells at Site 1.

In the surface and subsurface soil samples collected, three SVOCs [benzo(a)anthracene, benzo(a)pyrene, and chrysene] were detected above NYSDEC Recommended Soil Cleanup Objective criteria. These detections are consistent with SVOC detections in soil associated with the Site 4 area. However, SVOC were not detected in groundwater at Site 4 above the NYSDEC Drinking Water Quality Standard (DWQS) values. In addition, there were no exceedances of VOCs in the collected Site 4 groundwater samples. Therefore, SVOC exceedances in soils are insufficient to impact groundwater, and no further action is recommended at Site 4.

Aluminum, iron, manganese, nickel, and sodium were found in dissolved groundwater samples from Site 1 at concentrations that exceed the NYSDEC DWQS. These exceedances are similar to those detected in January 2004, indicating that metals concentrations at Site 1 are stable. A review of the distribution of the dissolved metals detected, the aluminum, iron, nickel, and sodium concentrations that exceed the NYSDEC DWQS were found in upgradient or side-gradient monitoring wells and are not related to the Site 1 activities. However, the manganese concentrations that exceed the NYSDEC DWQS are found in the monitoring well immediately adjacent to the suspected Site 1 source area and in the monitoring well hydraulically downgradient from the source area. Since the manganese concentrations in groundwater appear stable between the January 2004 and December 2006 sampling events, there is apparently little migration potential to further downgradient areas. No additional Site Inspection activities are recommended at Site 1.

Contents

Execut	ive Sun	nmary	ii
Conter	nts	-	.iii
		d Abbreviations	
1.0	Introd	uction	1-1
	1.1	Site Geology	1-1
	1.2	Site Descriptions	1-2
		1.2.1 Site 1 – Former Fire Training Area, Tract III	1-2
		1.2.2 Site 4 – D5 Disposal Site, Tract III	
2.0	Site In	vestigation Activities	2-1
	2.1	Site 1	2-1
	2.2	Site 4	2-1
	2.3	Deviations	2-3
3.0	Site In	vestigation Results and Conclusions	3-1
	3.1	Analytical Results	3-1
	3.2	Hydrogeological Characterization	3-1
	3.3	Site 1 – Groundwater	3-2
	3.4	Site 4 – Soil	3-4
	3.5	Site 4 – Groundwater	3-4
4.0	Recom	mendations	4-1
	4.1	Site 1	4-1
	4.2	Site 4	4-1
5.0	Refere	nces	5-1

Tables

- 1 Depth to Groundwater Measurements
- 2 Summary of Total Metals Detected in Groundwater Site 1 Monitoring Wells
- 3 Summary of Dissolved Metals Detected in Groundwater Site 1 Monitoring Wells
- 4 Summary of VOCs detected in soil Site 4
- 5 Summary of SVOCs detected in soil Site 4
- 6 Summary of VOCs detected in groundwater Site 4 Monitoring Wells
- 7 Summary of SVOCs detected in groundwater Site 4 Monitoring Wells

Figures

- 1 Site Map
- 2 Site 1 Former Fire Training Area

- 3 Site 4 D-5 Disposal Site
- 4 December 2006 Groundwater Flow Conditions Site 1
- 5 December 2006 Groundwater Flow Conditions, Site 4
- 6 Groundwater Flow Conditions Sites 1 and 4

Appendixes

- A Soil Boring Log and Well Construction Diagram for MW-4C
- B Data Validation Memorandum
- C Data Validation Results

Acronyms and Abbreviations

ANG	Air National Guard
DoD	Department of Defense
DWQS	Drinking Water Quality Standards
IRP	Installation Restoration Program
NAVD	North American Vertical Datum
NYSDEC	New York State Department of Environmental Conservation
PID	Photoionization Detector
QAPP	Quality Assurance Project Plan
RSCO	Recommended Soil Cleanup Objective
SA	Site Assessment
SI	Site Inspection
SVOC	Semi-Volatile Organic Compound
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound

1.0 Introduction

The Defense Environmental Restoration Program was established in 1984 to promote and coordinate efforts for the evaluation and cleanup of contamination at Department of Defense (DoD) installations. The program currently includes the Installation Restoration Program (IRP), through which potential contamination at DoD installations and formerly owned or used properties are investigated and, as necessary, site cleanups are conducted. The Air National Guard (ANG), through ANG Headquarters, conducts that portion of the IRP that is applicable to ANG units and facilities.

The Hancock ANG Base is located in Syracuse, NY immediately south of and adjacent to the Syracuse International Airport (Hancock Field). The ANG Base consists of several buildings and operational facilities separated into three main tracts of land (Tracts I, II, and III) (Figure 1). Previous environmental investigations were conducted under the IRP at the ANG Base and five specific sites (Site 1, Site 4, Site 9, Site 11, and Site AOC-P) were identified as potential areas of concern. The previous environmental investigations included a Phase 1 investigation conducted in 1982, Phase 2 investigations conducted in 1984 and 1989, and a Site Assessment (SA) investigation conducted in 1999. Aneptek Corp. completed the SA investigation and report in 2003 (Aneptek, 2003). In 2004, CH2M HILL conducted additional Site Inspection (SI) activities at IRP Sites 1, 4, 9, 11, and AOC-P.

The Site Inspection Report for IRP Sites 1, 4, 9, 11, and AOC-P (CH2M HILL, 2004) recommended no additional activities for Sites 9, 11, and AOC-P, and limited additional investigations for Sites 1 and 4. A letter prepared on August 24, 2004 by the New York State Department of Environmental Conservation (NYSDEC) provided concurrence with the Site Inspection Report recommendations. The additional activities at Sites 1 and 4 were recommended to complete delineation at these sites. Specifically, these additional activities include the installation of an additional monitoring well at Site 4, and the collection of groundwater samples from the new and existing monitoring wells at Site 4 and from the existing monitoring wells at Site 1.

CH2M HILL developed a Scope of Work, under ANG Contract Number DAHA 92-01-D-009, to complete site delineation of IRP Sites 1 and 4 as required by the NYSDEC, and submitted a Site Inspection Addendum #1, Work Plan Addendum to the ANG and NYSDEC in November 2006. The Work Plan was implemented after receiving NYSDEC approval. The purposes of this Technical Memorandum are to describe the activities conducted during the SI addendum, present the analytical results from the SI addendum activities, compare these results with historical data, and assess if delineation has been completed at Sites 1 and 4.

1.1 Site Geology

A simple layer-cake stratigraphy is found beneath the site with unconsolidated lacustrine (former lake) sediments overlying glacial till sediments overlying sedimentary bedrock. The lacustrine sediment occur from near the surface to depths of about 50 ft below grade and are

composed of silts with varying amounts of clay and fine to medium sand. The glacial till sediments are about 30 to 50 ft thick and consist of large cobbles and gravel in a silty clay matrix. This glacial till unit acts as a confining unit for the groundwater in the underlying sedimentary bedrock. The sedimentary bedrock is composed of shales and siltstones of the Vernon Formation.

An unconfined water table aquifer occurs in the lacustrine sediments at depth of 5 to 10 feet across the site, although the low transmissivity of the aquifer precludes it as a viable potable water source. Existing overburden monitoring wells are screened across the first-encountered groundwater table to assess the potential of floating product in the groundwater. A confined aquifer occurs in the bedrock below the glacial till aquitard. Existing bedrock monitoring wells indicate that there is a strong upward flow potential between the confined bedrock aquifer and the unconfined water table aquifer. This strong upward flow potential indicates that potential site-related contaminants would be limited to the water table aquifer.

1.2 Site Descriptions

1.2.1 Site 1 – Former Fire Training Area, Tract III

Site 1 (FT001 Fire Training Area) (Figure 2) encompasses an area of about 0.75 acres and is located approximately 250 feet northwest of the intersection of Avenue D and Thompson Road. The site is located on top of an abandoned concrete aircraft parking area, and was used from 1948 to 1985 for fire training exercises where waste fuels such as fuel oils, jet fuel, etc. were used as accelerants.

During the 2004 site investigation, CH2M HILL advanced soil borings, installed one monitoring well (MW-1A), and collected soil and groundwater samples from Site 1. There are currently six monitoring wells at Site 1, consisting of five shallow water table monitoring wells, and one bedrock monitoring well.

Site 1 Conceptual Site Model

The use and disposal of flammable liquids resulted in potential environmental impacts at Site 1. Unburned liquid and residuals represent the majority of the potential contaminants and these may have migrated from the concrete pad surface to the surface and subsurface soils along the outside of the concrete pad. Once in the soil, these contaminants would either adhere to soil particles, migrate further down into the soil column, leach to groundwater, or vaporize into the soil gas based on their chemical-specific properties and the properties of the soil. Dissolved contaminants in groundwater would flow vertically and horizontally based on the groundwater flow conditions and natural dispersion.

Overburden groundwater flow at Site 1 is to the southeast under a hydraulic gradient of about 0.007 ft/ft. Based data gathered during previous investigations, exceedances of volatile organic compounds (VOCs) (xylene and toluene) and semivolatile organic compounds (SVOCs) (phenol and benzo(a)pyrene) in soil are limited in nature and extent to the area immediately adjacent to the concrete pad, and have not impacted the groundwater at the site (CH2M HILL, 2004). The SVOCs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and dibenzo(a,h)anthracene were

detected at concentrations above the recommended soil cleanup objective (RSCO) in the shallow (0 to 2 inch depth) soil samples collected in 2004, and, as these compounds are also found in the shallow background soil samples, these detections may represent a background condition at the ANG Base. Aluminum, iron, magnesium, manganese, nickel, and sodium were found to exceed the applied standards for both the soil and groundwater samples collected in 2004. The exceedances of aluminum, magnesium, manganese, nickel, and sodium in groundwater are from monitoring well MW-1A located near the concrete pad and in the hydraulically downgradient wells MW-12 and MW-13.

1.2.2 Site 4 – D5 Disposal Site, Tract III

Site 4 (DP004 Disposal Site) (Figure 3) is an unlined disposal area located approximately 250 feet north of Avenue D. The site surrounds an old concrete aircraft hardstand (parking area) that extends north from Avenue D. The disposal area was approximately 100 feet by 150 feet wide, and was used from 1950 to 1976 to dispose of construction debris, empty ammunition boxes, sod, empty drums, and possibly a few drums that contained hazardous wastes (paints, thinners, and solvents) generated by shops at the installation. After 1976, the aircraft hardstand was used by the ANG as an engine test pad. During the 2004 site investigation, CH2M HILL advanced soil borings, installed two monitoring wells (MW-4A and MW-4B), excavated three trenches, and collected soil and groundwater samples from Site 4. There are currently five existing and one newly installed shallow water table monitoring wells at Site 4.

Site 4 Conceptual Site Model

The disposal of construction debris, empty ammunition boxes, sod, and drums may have resulted in environmental impacts at Site 4. Since these items were buried in unlined pits, water from precipitation would migrate downward through the disposal area, potentially leaching metals and residual liquids further into the soil column. Once in the soil, these contaminants would adhere to soil particles, migrate further down into the soil column, leach to groundwater, or may vaporize into the soil gas based on their chemical-specific properties and the properties of the soil. Dissolved contaminants in groundwater would flow vertically and horizontally based on the groundwater flow conditions and natural dispersion.

Overburden groundwater flow at Site 4 is to the northeast-east under a hydraulic gradient of about 0.007 ft/ft. The presence of buried debris at Site 4 was confirmed in 2004 during the course of investigation activities. Three test pits, designated as TP-4A, TP-4B, and TP-4C, were excavated to assess the source of the geophysical anomalies (Figure 3). Each test pit was excavated using a conventional backhoe which removed the soil in 6-inch to 1-foot lifts. The completed test pits were about 20 feet long, 3 feet wide, and six feet deep. During the excavation of test pit TP-4A, various automotive parts and other debris were uncovered including a muffler, rubber hoses, copper tubing, concrete, 55-gallon drum lid, and unidentified debris. Excavation TP-4B revealed similar debris including an empty 55-gallon drum. Test pit TP-4C contained automotive metallic and other debris including wires, a wet cell battery, bumper, tailpipe, and asphalt. Soil samples collected during this time had concentrations of VOCs below the applicable NYSDEC RSCO standard. Several SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and dibenzo(a,h)anthracene, dimethylphthalate, indeno(1,2,3-cd) pyrene, phenol, and pyrene) were detected in the shallow (0.5-feet below grade) and deeper (5.0 feet below grade) soil samples at concentrations above the RSCO Standards (CH2M HILL, 2004). These SVOC exceedances in soil are likely related to the debris that was found in the test pits. The SVOCs detected in groundwater were below the applicable standard and therefore the SVOC exceedances in the soils are insufficient to impact groundwater. Two metals (iron and manganese) were found to exceed the established standards for both soil and groundwater samples. It is noted that the iron and manganese exceedances in groundwater are from the upgradient monitoring well MW-18, suggesting that these metals may not be related to the buried metals at the site.

CH2M HILL implemented site investigation activities identified in the Work Plan Addendum (November 2006) with the support of ANG personnel, and various subcontractors. ANG personnel assisted with underground utility clearance, security clearance, facilitating communications at the ANG Base, providing access to the sites, and other logistical issues. Parratt Wolfe of East Syracuse, New York provided the subsurface drilling crew. RJ Rybinski, LS of Manlius, New York conducted the surveying of the sample locations and monitoring well elevations, and STL Laboratories of Edison, New Jersey provided the analytical laboratory services. The activities described below were conducted in accordance with the NYSDEC-approved Site Inspection Addendum #1, Final Work Plan Addendum (November 29, 2006), including decontamination between sampling locations and sampling intervals, management of the investigation derived waste, adherence to the site-specific health and safety plan, and implementation of the quality assurance project plan.

2.1 Site 1

Synoptic water level measurements were recorded and groundwater samples were collected from the five existing monitoring wells (MW-1A, MW-09, MW-11, MW-12, and MW-13). Together, these wells form an effective monitoring network around Site 1 to assess the groundwater quality related to historic site activities. A groundwater sample was not collected from deeper monitoring well MW-13D based on the strong upward hydraulic gradient (near artesian conditions) noted in the SA Report (Aneptek, 2003) that would limit the potential downward vertical migration of groundwater at the site. As detailed in the NYSDEC-approved Work Plan (November 29, 2006), groundwater samples were collected from monitoring wells MW-1A, MW-09, MW-12, and MW-13 using the United States Environmental Protection Agency (USEPA) low flow method with 2-inch-diameter Grundfos pump and dedicated Teflon-lined polyethylene tubing. Due to the presence of an obstruction (see Section 2.3) USEPA low flow sampling was performed using a peristaltic pump for monitoring well MW-11 to collect samples for metals analysis. The low-flow sampling method was used during this investigation to minimize the sample turbidity. Total and dissolved groundwater samples were collected from each monitoring well. Groundwater samples collected for dissolved metals were filtered in the field using a 0.45 micron in-line filter prior to metals analysis. The groundwater samples were collected in labeled containers, placed in an ice-filled cooler, and submitted for laboratory analysis of total (unfiltered) and dissolved (filtered) metals (EPA Method 6010B).

2.2 Site 4

Field activities at Site 4 included the installation of one monitoring well (MW-4C), collection of one surface soil sample, collecting synoptic water elevation measurements, and sampling existing and newly installed monitoring wells.

Prior to advancing the boring for monitoring well MW-4C, a surface soil sample was collected at this location. This sample was collected at a depth of 0.5-feet below grade due to a shallow water table (less than one foot below grade). The soil sample was submitted to a NY-licensed laboratory for analysis of VOCs and SVOCs.

One groundwater monitoring well, MW-4C, was installed at Site 4, northeast of the geophysical survey area (Figure 3), to complete the groundwater monitoring network for this area. This monitoring well was completed in accordance with SOP C.6 of the December 2003 NYSDEC-approved Site Inspection Work Plan for Sites 1, 4, 9, 11, and AOC-P.

Monitoring well MW-4C (Figure 3) was installed by advancing a nominal 6-inch diameter boring to 14-feet below grade using hollow-stem auger methods. Soil samples were collected continuously every two feet using split-barrel samplers, and were logged for lithologic purposes. In addition, the soil samples were screened using a photoionization detector (PID) to assess the presence of VOCs. After reaching the target depth, a monitoring well, consisting of 2 inch diameter PVC materials with a 10 foot section of 0.010-inch slotted well screen, was placed into the borehole. A sand filter pack was installed around the monitoring well screen from the bottom of the borehole to about 2 feet above the top of the well screen. A bentonite-grout seal was then placed on top of the filter pack. The monitoring well was completed with a stick-up outer-protective casing with a concrete pad and locking cap. Excess drill cuttings were spread on the ground adjacent to the drilling location as approved by the NYSDEC. A well construction diagram is included in Appendix A.

After installation, MW-4C was developed in accordance with SOP C.6 of the December 2003 NYSDEC-approved Site Inspection Work Plan for Sites 1, 4, 9, 11, and AOC-P. Development consisted of purging the well using a submersible pump and continued until the well yield consisted of relatively sediment-free water. Development purge water was allowed to infiltrate into the ground adjacent to the monitoring well location.

A NY-licensed surveyor surveyed the location and elevation of the MW-4C in accordance with SOP C.11. The location of the monitoring well was established within 0.1 ft and the casing elevation was established within 0.01 ft of the North American Vertical Datum (NAVD) 1988.

Synoptic water level measurements were recorded and groundwater samples were collected from four existing monitoring wells (MW-4A, MW-4B, MW-17, and MW-18), and one newly installed monitoring well MW-4C. Monitoring well MW-16 was not sampled since it was inaccessible at the time of the December 2006 site inspection (see Section 2.3).

As detailed in the NYSDEC-approved Work Plan (November 2006), groundwater samples were collected from MW-4A, MW-4B, and MW-4C using the USEPA low flow method with 2-inch-diameter Grundfos pump and dedicated Teflon-lined polyethylene tubing. Due to the presence of an obstruction (see Section 2.3), monitoring wells MW-17 and MW-18 were sampled using dedicated Teflon bailers. The groundwater samples were collected in labeled containers, placed in an ice-filled cooler, and submitted for laboratory analysis of VOCs and SVOCs using EPA Method 8260B and 8270C, respectively.

2.3 Deviations

Low-flow groundwater sampling using a 2-inch diameter Grundfos pump was not possible in monitoring wells MW-11, MW-17, and MW-18, due to the fact that the well casings were damaged. Evidence of construction activity was observed in the general vicinity of these monitoring wells, as large vehicle tracks were present on the ground around the concrete well pads. Monitoring well MW-11, at Site 1, was sampled for metals using a peristaltic pump and Teflon-lined polyethylene tubing for the purpose of collecting a low turbidity groundwater sample. Monitoring wells MW-17 and MW-18, at Site 4 were sampled for VOCs and SVOCs using a dedicated Teflon bailer.

In addition, monitoring well MW-16 was inaccessible since the outer casing cap was pinched into the outer casing, and could not be safely removed. As mentioned above, construction equipment was parked in the vicinity of this monitoring well, and there was evidence of construction vehicle traffic directly adjacent to MW-16.

3.1 Analytical Results

A data validation effort was completed on the analytical data set received from the laboratory. The data validation effort was conducted in accordance with the Quality Assurance Project Plan (QAPP) (December 2003) and included a review of the data accuracy, precision, and completeness. A data validation memorandum (Appendix B) summarizes the data qualifiers added to the data and concludes that the data are of good quality and are acceptable as reported and qualified. Appendix C contains summary tables of the validated data set. The soil results for metals were compared to an established background standard (as described in the September 2004 Final Technical Memorandum for Sites 1, 4, 9, 11, and AOC-P). The VOC and SVOC analyses were compared to the NYSDEC Recommended Soil Cleanup Objective (RSCO). Groundwater results were compared to the NYSDEC Drinking Water Quality Standards (DWQS).

3.2 Hydrogeological Characterization

Depths to groundwater (DTW) measurements of the water table monitoring wells were collected at Sites 1 and 4 on December 12, 2006. These data are presented below in Table 1 along with groundwater elevation measurements collected during the previous SI investigation at these sites on February 3, 2004. The water level elevations in the monitoring wells were calculated by subtracting the DTW measurement from the well casing elevation.

TABLE 1

Depth to Groundwater Measurements

```
174th Fighter Wing, Hancock Air National Guard Base, Syracuse, New York
```

		February	3, 2004	Decembe	r 12, 2006
Monitoring Well	Well Casing Elevation (feet AMSL)	Depth to Groundwater (ft)	Water Level Elevation (feet AMSL)	Depth to Groundwater (ft)	Water Level Elevation (feet AMSL)
		Site 1 Monit	oring Wells		
MW-1A	400.37	11.58	388.79	8.86	391.51
MW-09	397.63	8.41	389.22	6.25	391.38
MW-11	400.10	10.25	389.85	6.97	393.13
MW-12	398.89	11.13	387.76	8.74	390.15
MW-13	398.77	11.61	387.16	8.94	389.83

		February	3, 2004	Decembe	r 12, 2006
Monitoring Well	Well Casing Elevation (feet AMSL)	Depth to Groundwater (ft)	Water Level Elevation (feet AMSL)	Depth to Groundwater (ft)	Water Level Elevation (feet AMSL)
		Site 4 Monit	oring Wells		
MW-4A	396.53	3.87	392.66	3.76	392.77
MW-4B	396.49	3.55	392.94	3.34	393.15
MW-4C	394.76	NM	NM	2.29	392.47
MW-16	398.79	5.42	393.37	NM	NM
MW-17	398.19	5.46	392.73	4.89	393.3
MW-18	398.16	4.74	393.42	4.32	393.84

TABLE 1 Depth to Groundwater Measurements 174th Fighter Wing, Hancock Air National Guard Base, Syracuse, New York

NM – Not Measured

AMSL - Above mean sea level

Groundwater elevations from December 12, 2006 were contoured on Figures 4, 5, and 6, for Site 1, Site 4, and the overall ANG Base, respectively. Groundwater flow at Site 1 (Figure 4) is to the southeast under a hydraulic gradient of about 0.007 ft/ft. At Site 4 (Figure 5), the groundwater flow direction is to the northeast-east under a hydraulic gradient of about 0.007 ft/ft. Groundwater flow of the water table aquifer across Sites 1 and 4 (Figure 6) is generally to the east under an apparent hydraulic gradient of about 0.003 ft/ft. The groundwater flow direction and hydraulic gradient at Sites 1 and 4 are consistent with those measured in January 2004.

3.3 Site 1 – Groundwater

A summary of the analytical detections in groundwater are presented on Tables 2 and 3 for total (unfiltered) metals and dissolved (filtered) metals, respectively.

The groundwater sampling method employed during the January 2004 and December 2006 SI at Site 1 was focused on reducing the turbidity of the samples submitted for total metals (unfiltered) using low-flow sampling methods. Also, filtered samples were collected during the sampling event to further assess the dissolved fraction of metals in groundwater. During the previous SA investigation (Aneptek, 2003), groundwater samples to be analyzed for total metals were collected using a bailer, which tends to increase the amount of turbidity in the sample. The total metals (unfiltered) results are summarized in Table 2. The analytical results from the January 2004 and December 2006 sampling events at Site 1 demonstrate that the low-flow sampling method effectively reduced the metals concentrations in the unfiltered groundwater samples, suggesting that particles in the groundwater samples are likely resulting in the number of metals exceeding the groundwater quality standard. As such, the nine metals that exceed the groundwater quality standard (aluminum, chromium, cobalt, copper, iron, magnesium, manganese, nickel, and sodium) are not likely representative of the dissolved metals that could potentially migrate in the groundwater.

Five metals exceeded the NYSDEC DWQS in the dissolved (filtered) groundwater samples collected from Site 1 monitoring wells (Table 3), and these are aluminum and iron in monitoring well MW-09, manganese in monitoring wells MW-1A and MW-12, nickel in monitoring well MW-13, and sodium in monitoring wells MW-12 and MW-13. The distribution of the wells where dissolved metal concentrations exceed the NYSDEC DWQS provides an understanding of the potential sources.

Aluminum and Iron

Monitoring well MW-09 is located about 350 ft north (side-gradient) of the former fire training pad area and the aluminum and iron are likely related to naturally occurring metals in the soils and not from activities associated with fire training.

Manganese

Monitoring wells MW-1A and MW-12 are located adjacent to and immediately downgradient from the suspected source area, respectively. The dissolved manganese concentrations in these wells $(1,510 \ \mu\text{g/L}$ for MW-1A and $400 \ \mu\text{g/L}$ for MW-12) are consistent with the January 2004 groundwater sampling results, which suggests that these concentrations are stable. The distribution of the dissolved manganese groundwater concentrations suggest that they may be associated with the previous fire training activities, with the highest concentration detected in the adjacent well (MW-1A) and the concentration decreases to near the NYSDEC DWQS (300 μ g/L) in the downgradient well (MW-12). The stability of the dissolved manganese concentration from January 2004 to December 2006 indicates that additional manganese is not being introduced into the groundwater (i.e., no on-going manganese soil source) and that the migration potential of manganese is limited.

Nickel

Nickel was detected in monitoring well MW-13 at a concentration of 251 μ g/L, which exceeds the NYSDEC DWQS of 100 μ g/L. The concentration of nickel in this monitoring well decreased from the previous sampling event (652 μ g/L in January 2004). As nickel was not detected at concentrations above the NYSDEC DWQS in January 2004 or December 2006 in the monitoring well immediately adjacent to the suspected source area, the nickel is not considered to be related to the former fire training activities.

Sodium

Exceedances of sodium were detected in monitoring wells MW-12 and MW-13 at concentrations of 53,000 μ g/L and 76,600 μ g/L, respectively. These two monitoring wells are located along side a road that is treated with salt to assist in melting snow during the winter months. The elevated concentrations of sodium are most likely the result of these winter salt treatments.

Overall, the results confirm the conclusions of the January 2004 Site Inspection Technical Memorandum (CH2M HILL, 2004), which state that metals concentrations at Site 1 are stable. Further, the land occupying Site 1 and surrounding area is to be used for

military/industrial purposes indefinitely, and there are no known or planned uses of groundwater from this area. Based on this information, no further action for Site 1 is needed.

3.4 Site 4 – Soil

A summary of the analytical detections in the soil sample collected at Site 4 are presented on Tables 4 and 5 for VOC and SVOC analysis, respectively. No VOCs were detected above NYSDEC RSCO criteria in the soil sample collected from Site 4 (Table 4). SVOCs, specifically benzo(a)anthracene, benzo(a)pyrene, and chrysene, were detected in the shallow soil sample at concentrations above the RSCO Standards (Table 5). However, these compounds were detected at similar concentrations in the background soil samples collected for the SI Report (CH2M HILL, 2004) and are considered to be associated with the background conditions.

3.5 Site 4 – Groundwater

A summary of the analytical detections in groundwater are presented on Tables 6 and 7 for VOCs and SVOCs, respectively.

A review of Table 6 and 7 indicates there were no exceedances of the NYSDEC DWQS by VOCs or SVOCs detected in groundwater at Site 4. A groundwater sample was not collected from monitoring well MW-16 since this well was inaccessible during the December 2006 SI. MW-16 has historically been the upgradient monitoring well at Site 4, and has not historically exhibited concentrations of VOCs and SVOCs in exceedance of the NYSDEC DWQS.

It is noted that the SVOCs detected in the soil samples above NYSDEC RSCO criteria were not detected in the groundwater samples collected from Site 4. Therefore, the SVOC exceedance in soils does not represent a source to groundwater at Site 4.

4.0 Recommendations

4.1 Site 1

Overall, the results confirm the conclusions of the January 2004 Site Inspection Technical Memorandum (CH2M HILL, 2004), which state that metals concentrations at Site 1 are stable. Further, the land occupying Site 1 and surrounding area is to be used for military/industrial purposes indefinitely, and there are no known or planned uses of groundwater from this area. Based on this information, no further action for Site 1 is recommended.

4.2 Site 4

Since VOCs and SVOCs were not detected groundwater samples at Site 4 and concentrations of SVOCs in soil are insufficient to impact groundwater, no further action is recommended at Site 4.

5.0 References

Aneptek Corporation. 2003. Final Site Assessment Report Site 1, Site 4, Site 9, Site 10, Site 11, AOC 1-3. 174th Fighter Wing New York Air National Guard, Hancock Air National Guard Base, Syracuse, New York. February 2003.

CH2M HILL. 2004, Site Inspection Technical Memorandum, Syracuse, New York, Air National Guard. September 2004.

CH2M HILL. 2006. CH2M HILL Proposal for Site Inspection – Addendum #1 at Sites 1 and 4. Environmental Restoration Program Services. August 2006.

CH2M HILL. 2006. Site Inspection Addendum #1, Final Work Plan Addendum. New York, Air National Guard. November 2006.

Tables

TABLE 2 Summary of Total Metals Detected in Groundwater Site 1 - Monitoring Wells Air National Guard - Hancock Field Syracuse, NY

Monitoring Well	-	Aluminum 100	د Antimony	Arsenic	Barium 0001	L Beryllium	c, Cadmium	S Calcium	66 Chromium	පි Cobalt	Copper 200	<u>Б</u> 300	Cead 20	Magnesium	000 Manganese	Mercury	001 Nickel	S Potassium	55 Silver	Sodium	SX Thallium	S Vanadium	Zinc
	Standard*	16000	3 3U	50 6	300U	3U	э 5	160000	50U	50 60	40	25000	50 9	35000 43000	600	0.4U	100	6800	50U	20000 6600	3U	300U	60
Previous SA	MW-03	79000	3U 3U	25	500	8	37	800000	180	440	250	140000	450	270000	4500	0.40	290	17000	50U	8300	30	300U	400
Report	MW-12	120000	3U	24	600	10	52	890000	250	760	380	220000	60	300000	9200	0.5	430	16000	90	9000	41	300U	670
	MW-13	18000	3U	6	300U	3U	9	200000	130	90	50	28000	11	65000	550	0.4U	180	8000	50U	29000	3U	300U	100
	MW-1A	18100	3.9U	6	203	0.77 UB	0.4U	270000	28.8	14.9 B	41.8	30600	13.6	101000	2430	0.1U	39.8 B	4030 B	0.7U	10900	4.4U	32.3 B	89.3
January 2004 City	MW-09	401	3.9U	3.4U	31.2 B	0.1U	0.4U	151000	2.8U	3.5U	2.1U	2680	2.2U	26700	235	0.1U	4.1 B	387 B	0.7U	4990	4.4U	1.5U	7.9 B
January 2004 Site 1 Investigation	MW-11	55800	3.9U	35.7	284	2.7	0.92 UB	532000	95.7	42.4 B	146	107000	57.8	203000	4380	0.12 B	117	7030	0.7U	5730	4.4U	97	285
i investigation	MW-12	59300	3.9U	52.1	314	2.9	1.1 UB	570000	99.3	44.8 B	173	142000	45.6	205000	4450	0.12 B	129	7010	0.7U	37000	4.4U	105	297
	MW-13	20900	6.3 B	14.2	180 B	0.89 UB	0.4U	320000	21200	137	277	113000	18.1	116000	1880	0.1U	2200	3780 B	0.98 B	54500	4.4U	107	273
	MW-1A	1440	5.8U	3.2U	57.8 B	0.3U	0.4U	128000	301	11.4 B	18.9 B	3750	2.7U	26300	1530	0.1U	197	1960 B	1.4U	18000	4.7U	4.7U	12.1 B
December 2006	MW-09	3630	5.8U	9.8	69.2 B	0.3U	0.4U	174000	55	4.2 B	17.9 B	34600	2.7U	35200	400		37.6 B	1920 B	1.4U	5690	4.7U	7.6 B	14.4 B
Site 1	MW-11	4890	5.8U	3.5 B		0.53 B	0.4U	140000	7.5 B	2.0 B	13.8 B	8230	2.7U	26800	194	0.1U	8.7 B	3510 B	1.4U	3370 B	4.7U	9.0 B	32.2
Investigation	MW-12	19600	5.8U	12.9	131 B	0.79 B	0.4U	214000	158	13.6 B	53	38500	7.7	62900	1660	0.1U	86.2	6990	1.4U	52700	4.7U	34.4 B	87
	MW-13	1980	5.8U	7.5	132 B	0.3U	0.4U	127000	26800	51.9	232	118000	2.7U	30800	298	0.1U	1860	2010 B	1.4U	74300	4.7U	103	69.4

Units are in µg/L

B - Compound detected in associated field blank

U - Compound not detected, reporting limit shown UB - Undetected due to blank contamination

NS - No standard

Standard* - NYSDEC Drinking Water Quality Standard (DWQS)

Exceeds NYSDEC DWQS

TABLE 3

Summary of Dissolved Metals Detected in Groundwater Site 1 - Monitoring Wells Air National Guard - Hancock Field Syracuse, NY

Monitoring Well	Number Standard	00 Aluminum	ی Antimony	G Arsenic	000 Barium	1 Beryllium	n Cadmium	S Calcium	6 Chromium	g Cobalt	Copper	uou 300	6 Lead	00058 Magnesium	Manganese	0.0 Mercury	Nickel	S Potassium	G Silver	minibos 20000	Z S Thallium	Z Ø Vanadium	SZ inc
			•				5	-			200				300	-	100	-			-	-	_
	MW-1A				118 B						4.1 UB			43900		0.1U	5.5 B						17.1 B
January 2004	MW-09							154000		3.5U	2.1U	982		27300		0.1U	3.9U	415 B	0.7U	5130			
Site 1	MW-11	77.4U	3.9U	3.4U	33.8 B	0.1U	0.4U	133000	2.8U	3.5U	2.1U	39.7U	2.2U	29200	2.9U	0.1U	3.9U	724 B	0.7U	3960 B	4.4U	1.5U	7.4 B
Investigation	MW-12	77.4U	3.9U	3.4U	36.4 B	0.1U	0.4U	158000	2.8U	3.5U	2.1U	39.7U	2.2U	41600	407	0.1U	3.9U	607 B	0.7U	37000	4.4U	1.5U	6.7 B
	MW-13	77.4U	3.9U	3.4U	25.5 B	0.1U	0.4U	141000	2.8U	16.2 B	2.1U	39.7U	2.2U	42600	148	0.1U	652	428 B	0.7U	53300	4.4U	1.5U	7.0 B
	MW-1A	62.6U	5.8U	3.2U	53.1 B	0.3U	0.4U	131000	7.5 B	7.1 B	7.3 B	261	2.7U	24300	1510	0.1U	26.5 B	1650 B	1.4U	19200	4.7U	4.7U	18.2 B
December 2006	MW-09	791	5.8U	3.2U	34.6 B	0.3U	0.4U	163000	10.2	1.7U	3.7U	1090	2.7U	28700	260	0.1U	4.3 B	470 B	1.4U	5550	4.7U	4.7U	14.5 B
Site 1	MW-11	62.6U	5.8U	3.2U	36.3 B	0.3U	0.4U	122000	1.6U	1.7U	3.7U	39.2U	2.7U	17500	2.7 B	0.1U	2.4U	2200 B	1.4U	3120 B	4.7U	4.7U	6.7 B
Investigation	MW-12	62.6U	5.8U	3.2U	38.6 B	0.3U	0.4U	147000	1.6U	1.7U	3.7U	68.2 B	2.7U	30200	400	0.1U	2.4U	1740 B	1.4U	53000	4.7U	4.7U	5.8U
	MW-13	62.6U	5.8U	3.2U	29.9 B	0.3U	0.4U	115000	4.1 B	6.2 B	4.3 B	159	2.7U	27200	51.2	0.1U	251	1360 B	1.4U	76600	4.7U	4.7U	18.9 B

Units are in µg/L

B - Compound detected in associated field blank

U - Compound not detected, reporting limit shown

UB - Undetected due to blank contamination

NS - No Standard

*Standard - NYSDEC Drinking Water Quality Standard (DWQS)

Exceeds NYSDEC DW(

Soil Boring Nu	mber and Depth	Acetone	Methylene Chloride	Tetrachloroethene	Toluene	Xylenes (total)
	Standard*	200	100	1400	1500	1200
	SB-01 2-4 ft	NA	NA	NA	NA	30U
	SB-01 5-7 ft	NA	NA	NA	NA	30U
	SB-02 2-4 ft	NA	NA	NA	NA	198
Previous SA	SB-02 4-6 ft	NA	NA	NA	NA	30U
Report	SB-02 8-10 ft	NA	NA	NA	NA	30U
кероп	SB-03 2-4 ft	NA	NA	NA	NA	25U
	SB-03 4-6 ft	NA	NA	NA	NA	25U
	SB-04 2-4 ft	NA	NA	NA	NA	95
	SB-04 4-6 ft	NA	NA	NA	NA	25U
	SB-4A 0.15 ft	22J	0.6 UB	1.1UJ	5.5UJ	5.5UJ
	SB-4B 0.15 ft	140J	4UJ	1.3UJ	6.6UJ	6.6UJ
	SB-4B 3 ft	33J	3.7U	1.2U	6.2U	6.2U
	SB-4B 5 ft	26	0.9 UB	1.2U	5.9U	5.9U
	SB-4C 0.15 ft	36J	4UJ	1.3UJ	6.6UJ	6.6UJ
	SB-4C 3 ft	18J	3.4U	1.1U	5.7U	5.7U
	SB-4C 0.15 ft	32J	3.5UJ	1.2UJ	5.9UJ	5.9UJ
	SB-4D 0.15 ft	6R	3.6U	1.2U	6U	6U
	SB-4D 3 ft	34J	1.0 UB	1.2UJ	1.4 J	6.2UJ
	SB-4D 7 ft	19J	3.5U	1.2U	1.1 J	5.9U
	MW-4A 0.15 ft	52J	3.4UJ	1.1UJ	1.1 J	5.7UJ
January 2004 Site	MW-4A 3 ft	24J	1.4 UB	1.3U	6.3U	6.3U
4 Investigation	MW-4A 11 ft	29J	3.6UJ	1.2UJ	5.9UJ	5.9UJ
4 investigation	MW-4B 0.15 ft	60J	4UJ	1.4UJ	1.9 J	6.8UJ
	MW-4B 3 ft	21J	0.7 UB	1.1U	5.7U	5.7U
	MW-4B 6 ft	23J	2.5 UB	1.2UJ	5.9UJ	5.9UJ
	TP-4A 4 ft - A	6.4U	3.9U	1.3U	6.4U	6.4U
	TP-4A 4 ft - B	22	8	0.6 J	5.6U	5.6U
	TP-4A 4 ft - C	45	8.9	1.3U	6.4U	6.4U
	TP-4B 4.5 ft - A	23	12	1.1U	5.7U	5.7U
	TP-4B 4.5 ft - B	37	18	1.1U	5.6U	5.6U
	TP-4B 5 ft - C	39	12	1.1U	5.6U	5.6U
	TP-4C 3 ft - A	34	9.4	1.2U	5.9U	5.9U
	TP-4C 4 ft - B	73	16	210	6.2U	6.2U
	TP-4C 5 ft - C	41	20	1.2U	6U	6U
December 2006 Site 4						
Investigation	MW-4C 0.5 ft	6.9U	1.1 J	1.4U	6.9U	6.9U

Units are in µg/L

J - Estimated value

U - Compound not detected, reporting limit shown

UJ - Undetected due and biased low due to QA/QC deficiencies, reporting limit shown

NA - Data not available

NS - No standard

Standard* - NYSDEC Recommended Soil Cleanup Objective

Exceeds NYSDEC Recommended Soil Cleanup Objective

TABLE 5 Summary of SVOCs Detected in Soil Site 4 Soil Borings Air National Guard - Hancock Field

Soil Boring Nun	ber and Depth	2-Methylnaphthalene	Acenaphthene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	bis(2-Ethylhexyl)phthalate	Carbazole	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Dimethylphthalate	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Napthalene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene
_	Standard*	36400	50000	NS	224	61	1100	NS	1100	50000	NS	400	14	NS	2000	50000	50000	3200	NS	NS	NS	30	50000
	SB-01 2-4 ft	NA	NA	3900U	3900U	3900U	3900U	3900U	3900U	NA	3900U	3900U	NA	3900U	NA	6500	3900U	3900U	3900U	7800	4500	NA	5400
	SB-01 5-7 ft	NA	NA	400U	400U	400U	400U	400U	400U	NA	400U	400U	NA	400U	NA	400U	400U	400U	400U	800	400U	NA	400U
	SB-02 2-4 ft	NA	NA	19000U	19000U	19000U	19000U	19000U	19000U	NA	19000U	19000U	NA	19000U	NA	44000	19000U	19000U	19000U	38000U	45000	NA	40000
Previous SA	SB-02 4-6 ft	NA	NA	810	970	780	980	440	410	NA	380U	840	NA	380U	NA	2400	380U	470	380U	760	2400	NA	1800
Report Borings	SB-02 8-10 ft	NA	NA	390U	390U	390U	390U	390U	390U	NA	390U	390U	NA	390U	NA	390U	390U	390U	390U	780	390U	NA	390U
Report Bornigs	SB-03 2-4 ft	NA	NA	3900U	7600	7400	8300	4700	4000	NA	3900U	6800	NA	3900	NA	16000	3900	4600	3900U	7800	12000	NA	14000
	SB-03 4-6 ft	NA	NA	380	380	380	380	380	380	NA	380	380	NA	380	NA	380	380	380	380	760	380	NA	380
	SB-04 2-4 ft	NA	NA	10000	13000	10000	13000	5400	5800	NA	4300	11000	NA	4900	NA	26000	6200	5700	4100	8100	33000	NA	25000
	SB-04 4-6 ft	NA	NA	390U	390U	390U	390U	390U	390U	NA	390U	390U	NA	390U	NA	390U	390U	390U	390U	780	390U	NA	390U
	SB-4A 0.15 ft	38 J	170 J	380U	2500	2800	2400	3300	2700	380U	310 J	3400	920	110 J	380U	5000	220 J	2800	38 J	1500U	2700	380U	6300
	SB-4B 0.15 ft	150 J	360J	24 J	2700	2600	1800	2100	2300	940U	640 J	2800	580	670 J	940U	5100	770 J	2000	120 J	3800U	5800	940U	6100
	SB-4B 3 ft	420U	420U	420U	9.5 J	42U	42U	420U	42U	420U	420U	420U	42U	420U	420U	17 J	420U	42U	420U	1700U	420U	420U	15 J
	SB-4B 5 ft	420U	420U	420U	42U	42U	42U	420U	42U	420U	420U	420U	42U	420U	420U	15 J	420U	42U	420U	1700U	420U	420U	13 J
	SB-4C 0.15 ft	3000 J	3200 J	4400U	11000	8200	6500	4400 J	7900	4400U	2800 J	9800	1600	5000	4400U	25000	7600	4700	3100 J	18000U	34000	6500	23000
	SB-4C 3 ft	390U	390U	390U	39U	39U	39U	390U	39U	390U	390U	390U	39U	390U	390U	390U	390U	39U	390U	1600U	390U	390U	390U
	SB-4C 5 ft	400U	400U	400U	40U	40U	40U	400U	40U	400U	400U	400U	40U	400U	400U	400U	400U	40U	400U	1600U	400U	400U	400U
	SB-4D 0.15 ft	410 J	1000 J	2000U	7300	6700	5000	5500	5500	2000U	1200 J	7400	1900	880 J	2000U	12000	1700 J	5200	440 J	8200U	12000	2000U	16000
	SB-4D 3 ft	29 J	180 J	440U	1600	1600	1200	1300	1400	190 J	200 J	1800	360	96 J	440U	3100	220 J	1200	37 J	1800U	2200	440U	3800
	SB-4D 7 ft	410U	410U	410U	41U	41U	41U	410U	41U	410U	410U	410U	41U	410U	410U	410U	410U	41U	410U	1600U	410U	410U	410U
	MW-4A 0.15 ft	400U	400U	400U	40 J	39 J	31 J	23 J	40 J	400U	400U	48 J	40U	400U	400U	96 J	400U	21 J	400U	1600U	68 J	400U	74 J
January 2004 Site	MW-4A 3 ft	22 J	19 J	420U	280	310	280	260 J	330	420U	77 J	340 J	55	24 J	420U	590	26 J	230	20 J	1700U	410 J	420U	540
4 Investigation	MW-4A 11 ft	420U	420U	420U	42U	42U	42U	420U	42U	420U	420U	420U	42U	420U	420U	420U	420U	42U	420U	1700U	420U	420U	420U
-	MW-4B 0.15 ft	450U	450U	450U	31 J	38 J	36 J	450U	45 J	100 J	450U	56 J	45U	450U	450U	85 J	450U	25 J	450U	1800U	50 J	450U	85 J
	MW-4B 3 ft MW-4B 6 ft	400U 410U	400U 410U	400U 410U	40U 41U	40U 41U	40U 41U	400U 410U	40U 41U	400U 410U	400U 410U	400U	40U 41U	400U 410U	400U 410U	400U 410U	400U 410U	40U 41U	400U 410U	1600U 1600U	400U 410U	400U 410U	400U 410U
	MW-4B 6 ft TP-4A 4 ft - A	4100 110 J	4100 300 J	4100 440U	2000	1900	1400	1600J	1800	4100 100 J	300 J	410U 2100	410	280 J	4100 440U	3600	4100 540	1500	4100 110 J	16000 24 J	3400	4100 440U	4100 5300J
	TP-4A 4 ft - A	3800U	300 J 3500 J	3800U	2000	18000	1400	14000J	1800	3800U	300 J 3800U	2100	480	280 J 3800U	3800	47000	540 6500	13000	1400 J	24 J 15000U	41000	3800U	5300J
	TP-4A 4 ft - C	94 J	430 J	850U	4600	5100	4000	2900J	4300	850U	470 J	5100	1200	450 J	850U	7100	910	3100	84 J	920 J	6400	850U	9800J
	TP-4B 4.5 ft - A	46 J	200 J	390U	2200	2000	1600	2900J 1500J	2000	88 J	290 J	2300	420	450 J	390U	4300	330 J	1400	65 J	1600U	3000	390U	4700J
	TP-4B 4.5 ft - B	900 J	2300 J	3800U	18000	18000	14000	12000J	16000	3800U	2600 J	19000	35000	2200 J	3800U	37000	4200	11000	1300 J	15000U	30000	3800U	43000J
	TP-4B 5 ft - C	150 J	690 J	760U	5500	5300	3800	3500J	5000	760U	750 J	5900	1300	550 J	760U	9100	990	3700	180 J	3000U	8700	760U	12000J
	TP-4C 3 ft - A	220 J	790 J	790U	4700	4500	3500	2800J	3800	280 J	740 J	5400	1100	540 J	790U	8100	880	2700	180 J	3200U	8100	790U	8700J
	TP-4C 4 ft - B	400J	2800J	4200U	23000	22000	19000	15000J	21000	4200U	3700J	24000	5300	1600J	4200U	49000	3600J	13000	560J	17000U	31000	4200U	52000J
	TP-4C 5 ft - C	59 J	270 J	410U	3200	3000	2500	2800J	2500	100 J	310 J	3500	970	210 J	410U	5600	440	2500	56 J	490 J	4100	410U	7200J
December 2006 Site 4 Investigation	MW-4C 0.5 ft	96 J	180 J	460 J	670	540	480	230 J	520	220 J	160 J	610	47U	210 J	470U	1700	320 J	200	180 J	1400U	1800	470U	1300

Units are in µg/L

J - Estimated value

U - Compound not detected, reporting limit shown

UJ - Undetected due and biased low due to QA/QC deficiencies, reporting limit shown

NA - Data not available

NS - No Standard

Standard* - NYSDEC Recommended Soil Cleanup Objective

Exceeds NYSDEC Recommended Soil Cleanup Objective

TABLE 6Summary of VOCs Detected in GroundwaterSite 4 Monitoring WellsAir National Guard - Hancock Field

Monitoring	Well Number	Acetone	o Methylene Chloride	Tetrachloroethane	Toluene	Xylenes (total)
	Standard*	50	5	5	5	5
Previous SA Report	MW-17GW	5U	3U	1U	5U	0.05U
	MW-4A	5U	3U	1U	5U	5U
Jonuary 2004 Site	MW-4B	5U	3U	1U	5U	5U
January 2004 Site 4 Investigation	MW-16	5U	3U	1U	5U	5U
4 investigation	MW-17	5U	3U	1U	5U	5U
	MW-18	5U	3U	1U	5U	5U
	MW-4A	5U	3U	1U	5U	5U
December 2006	MW-4B	5U	3U	1U	5U	5U
Site 4	MW-4C	5U	3U	1U	5U	5U
	MW-16	*	*	*	*	*
Investigation	MW-17	5U	3U	1U	5U	5U
	MW-18	5U	3U	1U	5U	5U

Units are in µg/L

J - Estimated value

U - Compound not detected, reporting limit shown

UJ - Undetected due and biased low due to QA/QC deficiencies, reporting limit shown

NA - Data not available

NS - No standard

Standard* - NYSDEC Drinking Water Quality Standard (DWQS)

Exceeds NYSDEC DWQS

* - This monitoring well was not sampled during the December 2006 Site 4 Investigation since it was not accessable

TABLE 7 Summary of SVOCs Detected in Groundwater Site 4 Monitoring Wells Air National Guard - Hancock Field

Monitoring We	II Number Standard*	8 Acenaphthene	S Anthracene	Ø Benzo(a)anthracene	G Benzo(a)pyrene	ර් Benzo(b)fluoranthene	🖉 Benzo(ghi)perylene	6 Benzo(k)fluoranthene	K Carbazole	Ø Chrysene	ପ୍ତ Dibenz(a,h)anthracene	Ø Dibenzofuran	පි Dimethylphthalate	Z Fluoranthene	05 Fluorene	G Indeno(1,2,3-cd)pyrene	S Napthalene	→ Pentachlorophenol	G Phenanthrene	L Phenol	05 Pyrene
Previous SA	MW-17 GW	NA	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	10U	5U	5U	5U
Report																					
	MW-4A	11U	11U	1.1U	1.1U	1.1U	11U	1.1U	11U	11U	1.1U	11U	11U	11U	11U	1.1U	11U	42U	11U	11U	11U
January 2004 Site	MW-4B	10U	10U	1U	1U	1U	10U	1U	10U	10U	1U	10U	10U	10U	10U	1U	10U	40U	10U	10U	10U
4 Investigation	WW-16	10UJ	10UJ	1UJ	1UJ	1UJ	10UJ	1UJ	10UJ	10UJ	1UJ	10UJ	10UJ	10UJ	10UJ	1UJ	10UJ	42UJ	0.7J	10UJ	0.3J
lintooliguion	MW-17	11U	11U	1.1U	1.1U	1.1U	11U	1.1U	11U	11U	1.1U	11U	11U	11U	11U	1.1U	11U	46U	11U	11U	11U
	MW-18	1.4 J	10U	1U	1U	1U	10U	1U	10U	10U	1U	10U	10U	10U	0.4 J	1U	10U	41U	10U	10U	10U
	MW-4A	10U	10U	1U	1U	1U	10U	1U	10U	10U	1U	10U	10U	10U	10U	1U	10U	30U	10U	10U	10U
December 2006	MW-4B	10U	10U	10	1U	10	10U	1U	10U	10U	10	10U	10U	10U	10U	10	10U	30U	10U	10U	10U
Site 4	MW-4C	10U	10U	1U	1U	1U	10U	1U	10U	10U	1U *	10U	10U	10U	10U	1U	10U	30U	10U	10U	10U *
Investigation	MW-16	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*		
J J	MW-17	10U	10U	10	10	10	10U	10	10U	10U	10	10U	10U	10U	10U	10	10U	30U	10U	10U	10U
	MW-18	0.9 J	10U	10	1U	1U	10U	1U	10U	10U	1U	10U	10U	10U	0.3 J	10	10U	30U	10U	10U	10U

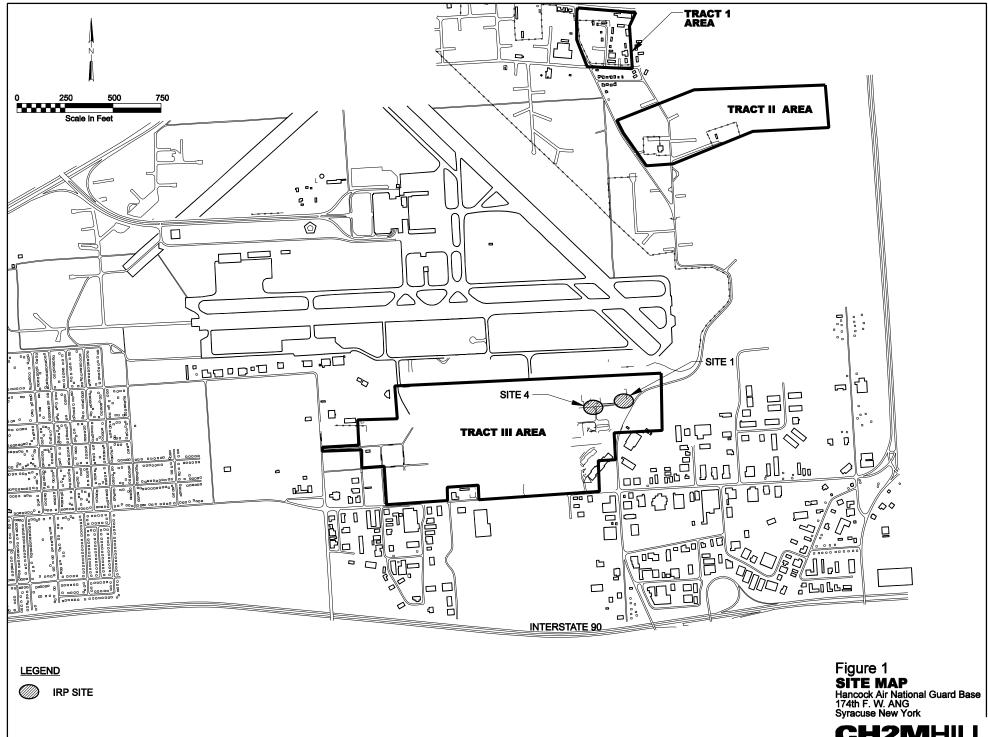
Units are in μ g/L

J - Estimated value

U - Compound not detected, reporting limit shown

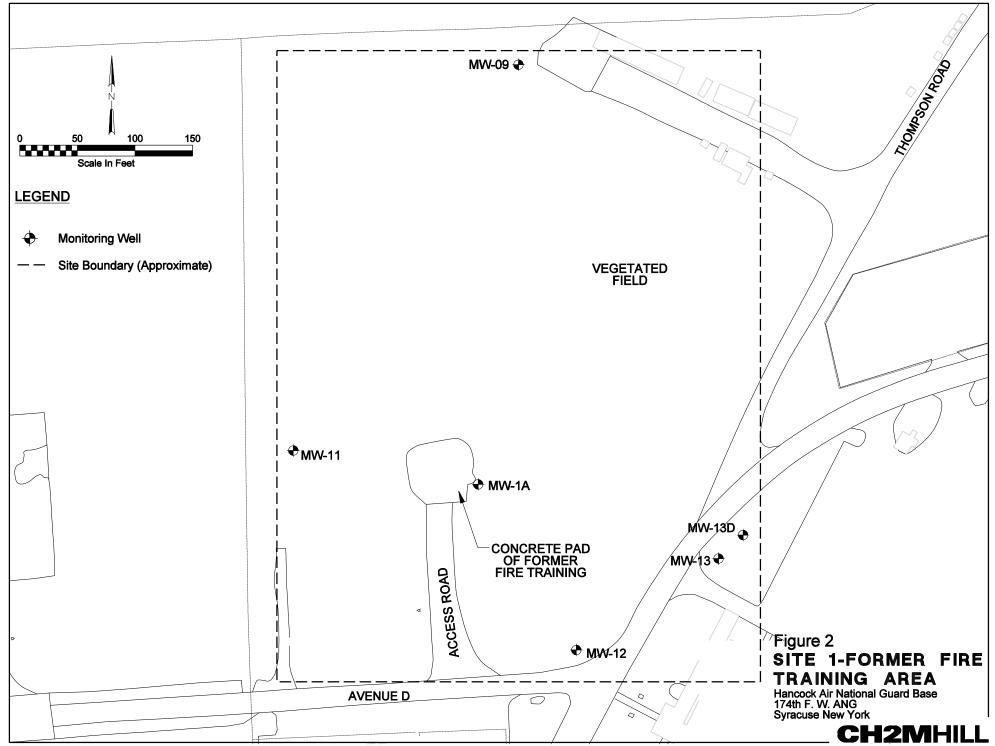
UJ - Undetected due and biased low due to QA/QC deficiencies, reporting limit shown

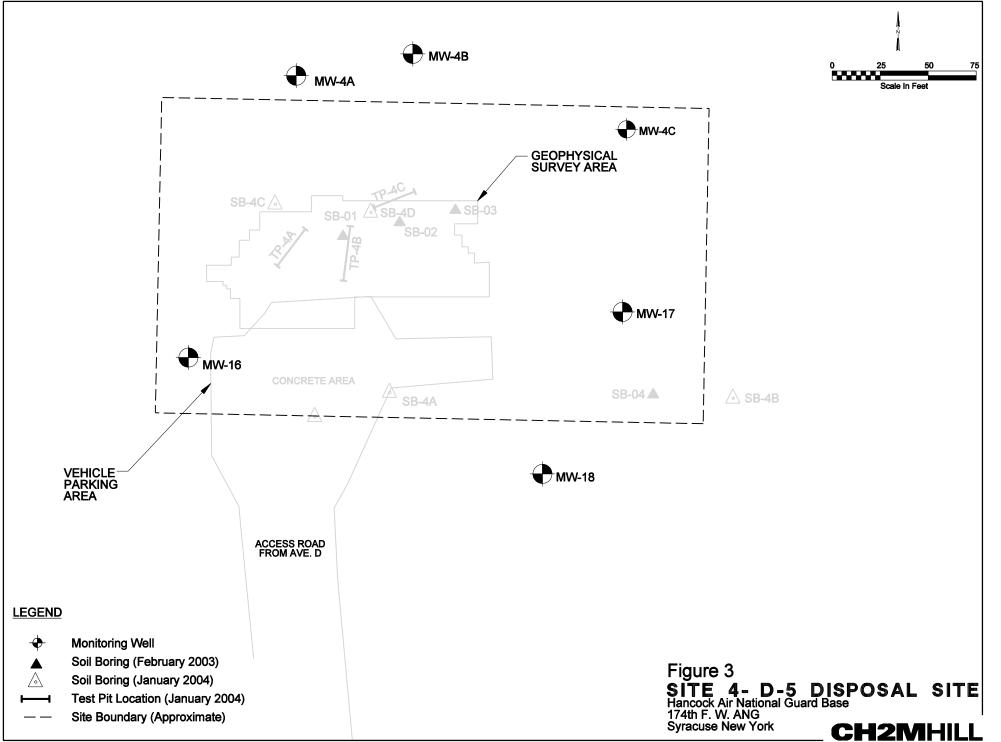
NA - Data not available

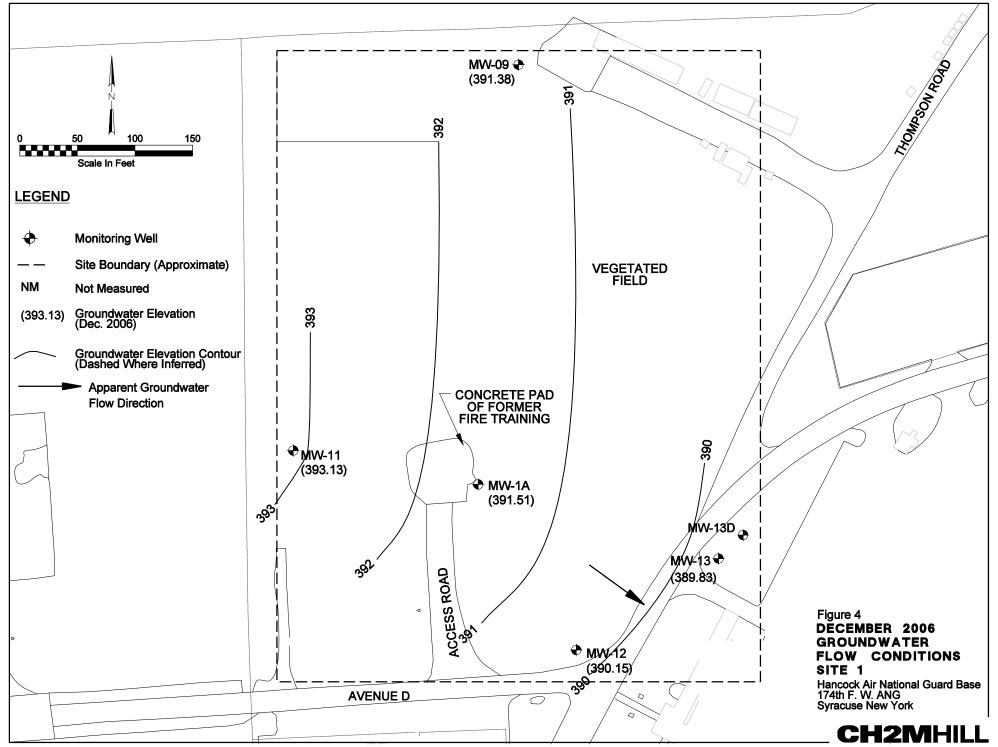

NS - No standard

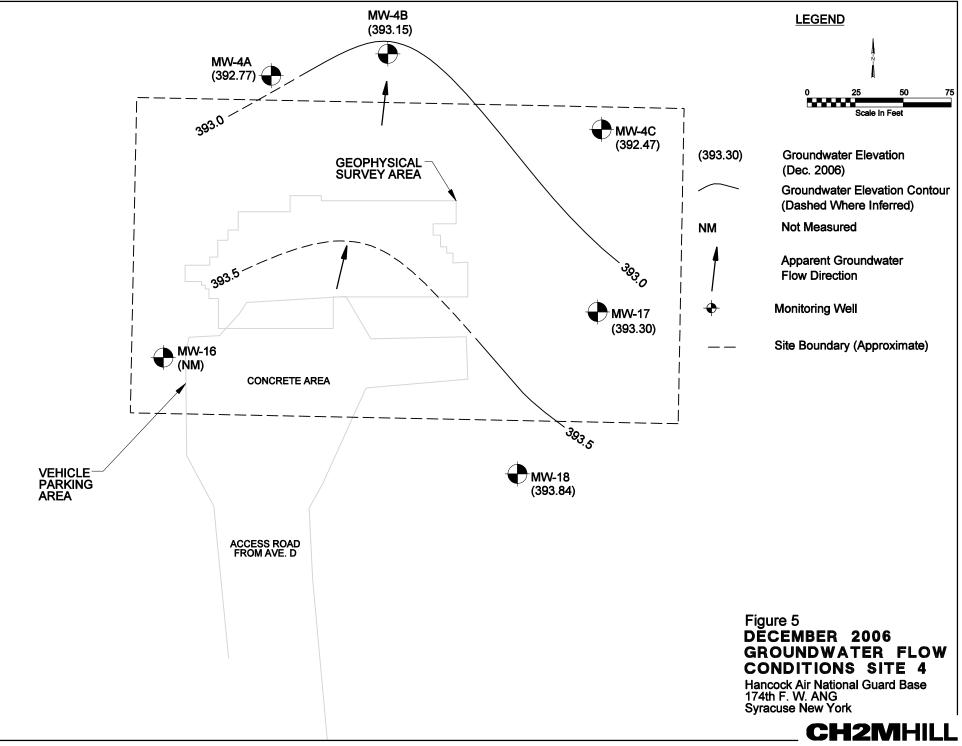
Standard* - NYSDEC Drinking Water Quality Standard (DWQS)

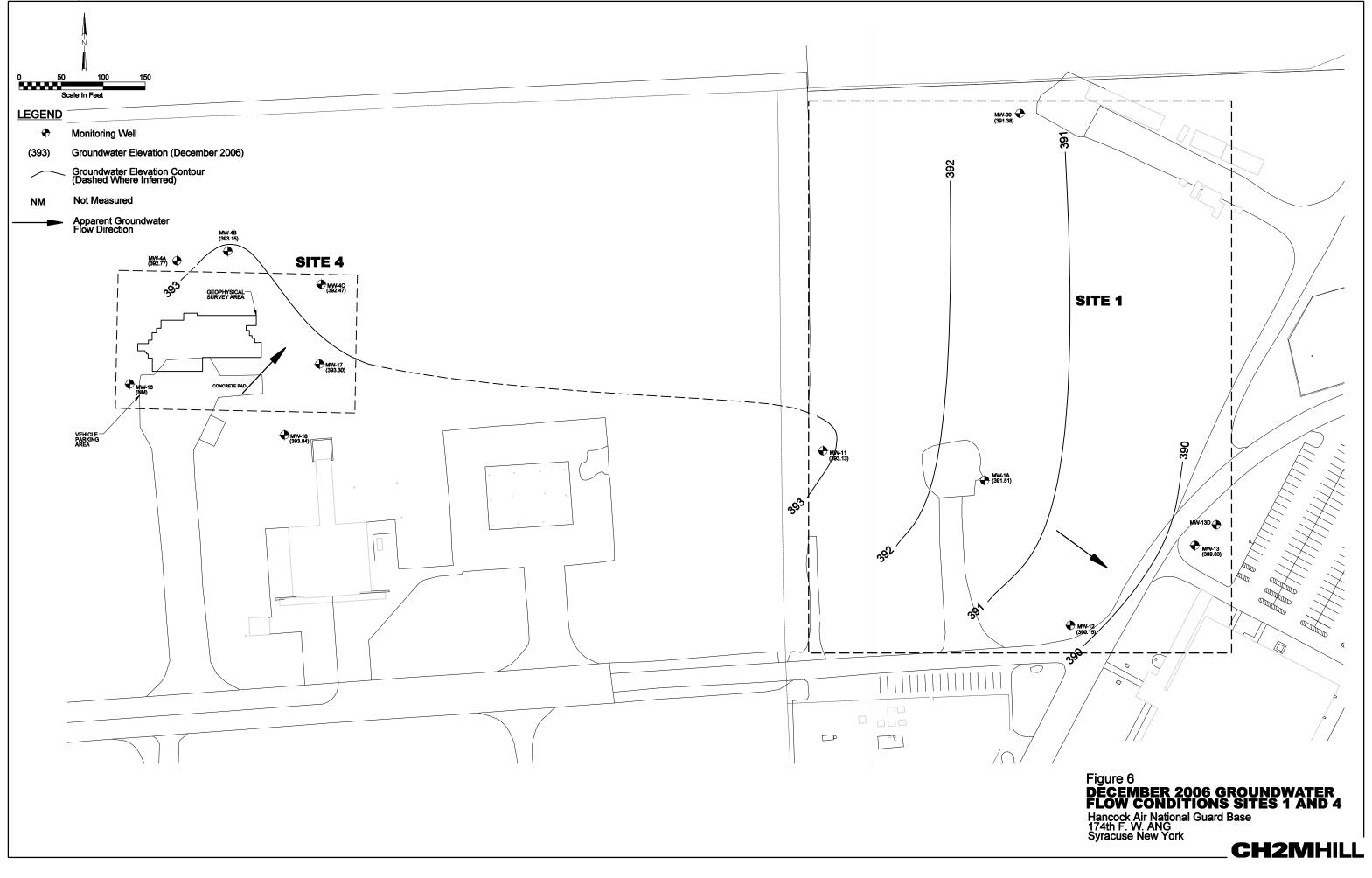
Exceeds NYSDEC DWQS


Figures


f21_180533.dgn 16-OCT-2006


CH2MHILI


f24_345202.dgn 28-JAN-2007



f26_345202.dgn 02-FEB-2007

f29_345202.dgn 05-APR-2007

Appendixes

Appendix A Soil Boring Log and Well Construction Diagram for MW-4C PROJECT NUMBER

SHEET / OF

SOIL BORING LOG

LIN	ION : G METH	OD AND	EQUIPM		DRILLING CONTRACTOR: Proport - Wolff Medrich D-120 - Hollow-Stam / Z' split spend 1230 12/14/06 END: 1430 12/14/06 DEER: I Zomlan
ER	LEVELS	:		START	: 1230 12/14/06 END: 1430 12/14/00 GGER: I 2 - 2-1-2-
~		SAMPLE	Ξ	STANDARD	SOIL DESCRIPTION COMMENTS
SURFAUE (FI)		·	12	PENETRATION TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE.
	VAL	BER TYPE	VEH	RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS,
	NTERVAL	NUMBER AND TYP	RECOVERY (FT)	6"-6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION.
ő	N	AN	H E	(N)	MINERALOGY. OVM (ppm): Breathing Zone Headspace
					Top B" - Grups & Tap Soil, Wat, 0.0 gpm
-		1			DAGINICS, IOYA 3/6, DK.
-					Yokonish BAN. V.F. Sail & Clay,
-	Š				Slight Plasticity, Mul. Density
	Y.	Lan	[8-12"- 5 YA 6/3- Lt. Rollin
-	2 Stad				Ban, V.F. Jad + Silt, Mud.
-	Y.L.	10x			Devel viet
	N				ding, Silt, & F. Jand.
					Deusity, Wet. 1'- 2' -7.5 VA S/4 - BAN, F. Chup, Silt, & F. Sand. SL, Sill, & Chup, Deuse, Wet, 0.0 ppm Slight Physicity
-					Sussil & Clay Donse, Wer, _ 0.0 pm
~					Slight Plasticity
				8-2 K	23' bys, SAA - 7.5 YK 5/4
-	1	2 . 1	231	2-2.7	
-	4-6	14	CL	Mott-1-2-2	WET, DENSO, SLIGHT TLASPICITY 0.0 PPM
_	1			2.2-2-3	2'- 10 YA 5/3. BAN.
					Clay & Sift, Tax co F. Soud,
-					
-	6-8'	592	254		WAT DONSE, V. Plantie Q. O.O.O.
		~2	1-2	Wat-1-2-3	3-4'-SAL, 10 YR 5/3, BRN 0.0000
					4-6' -SDD, IDYR ST3, BRN
5		8			1 of the first of pick
-	8-12'	553	100	1-1-1.2	6-8', SAA, 10 YK \$ /3, BRN 0.0 ppm
	× 10	13		· · · -	8-10', SAB, IOYK ST, BALL
-					
-					
_					
		100 100 million			l a mada a
-	10 -12	554	12"	1-1-2-2	10-12', SAD, 104R \$ 3, BRD 0.0000
-					
				•	-
-					
_	1	·		1-2-1-2	12-14', SAD, 104K \$ 3, BRN 4.0 PM
	10-17	787		1-2-1-4	
>_			FULL		-
2			AB Cove	~	-
_					Į
_					B.O.B. B = 14'by MW-40 Sot to 14'by
2					Scrossed interval: 4-14'
_					

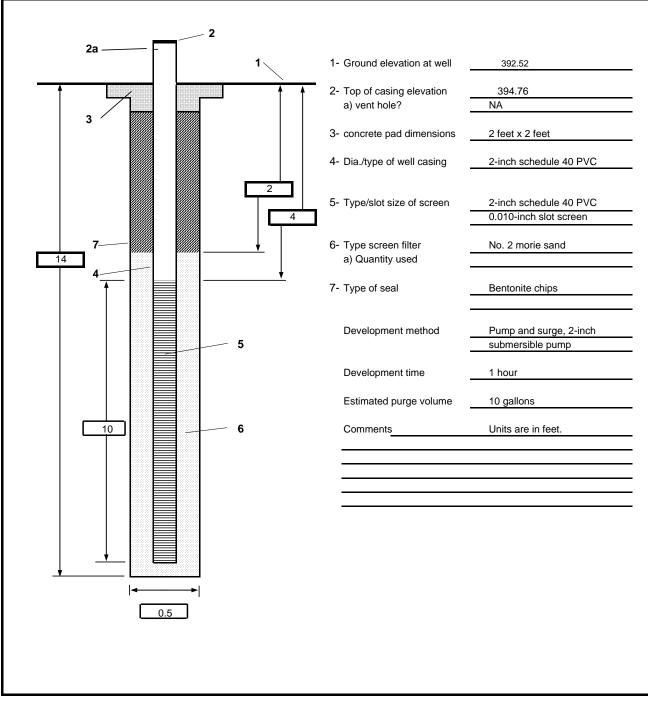
PROJECT NUMBE	R
34	5202

WELL NUMBER

SHEET 1

OF 1

WELL COMPLETION DIAGRAM


MW-4C

PROJECT : Air National Guard Hancock, Sites 1 and 4 SI addendum LOCATION : Site 4

DRILLING CONTRACTOR : Parratt Wolfe

DRILLING METHOD AND EQUIPMENT USED : Hollow-stem auger, 4 1/2-inch inside diameter augers, 2-foot x 2-inch split spoons WATER LEVELS : START : END : LOGGER : Ian Zmudzin

Appendix B Data Validation Memorandum

Appendix C Data Validation Results