Environmental Restoration Program Final Technical Memorandum Site 15 Data Gap Investigation

174th Fighter Wing New York Air National Guard Hancock Air National Guard Base Syracuse, New York

August 2011

NGB/A7OR Joint Base Andrews, Maryland

Environmental Restoration Program Final Technical Memorandum Site 15 Data Gap Investigation

174th Fighter Wing New York Air National Guard Hancock Air National Guard Base Syracuse, New York

August 2011

Prepared For:

Air National Guard
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews
Maryland 20762-5157
Contract No. DAHA92-01-D-005
Delivery Order 0109

Prepared By:

Environmental Resources Management 5788 Widewaters Parkway DeWitt, New York 13214

TABLE OF CONTENTS

LIST OF FIGURES		iii
LIST OF T	TABLES	iv
LIST OF A	ACRONYMS	v
EXECUTIV	VE SUMMARY	vii
SECTION	1.0	1-1
INTRODU	CTION	1-1
1.1	Project Objectives and Scope	1-1
1.2	General Investigation Approach	1-2
1.3	Technical Memorandum Structure	1-2
SECTION	2.0	2-1
SITE DESC	CRIPTION	2-1
2.1	Installation Description	2-1
2.2	Site 15 Description	2-1
2.3	Summary of Remedial Investigation Results	2-2
SECTION	3.0	3-1
ENVIRON	MENTAL SETTING	3-1
3.1	Climate	3-1
3.2	Topography	3-1
3.3	Geology	3-1
3.4	Hydrogeology	3-2
3.5	Critical Habitats and Endangered Species	3-2
SECTION	4.0	4-1
FIELD PRO	OGRAM	4-1
4.1	Summary	4-1
	4.1.1 Access Agreements	4-2
	4.1.2 Groundwater Sampling	4-2
	4.1.3 Indoor Air Monitoring	4-4
4.2	Deviations from the Work Plan	4-5
4.3	Analytical Activities	4-5
4.4	Investigation-Derived Waste Management	4-6

TABLE OF CONTENTS

SECTION	5.0	5-1
INVESTIGATION FINDINGS		5-1
5.1	Summary	5-1
5.2	, and the second	5-1
	5.2.1 Groundwater Sampling	5-2
	5.2.2 Indoor Air Monitoring	5-3
SECTION	6.0	6-1
CONCLUSIONS		6-1
SECTION	7.0	7-1
RECOMMENDATIONS		7-1
SECTION	8.0	8-1
REFERENC	CES	8-1
APPENDI	X A	
	W DATA SHEETS - MONITORING WELL SAMPLING	
APPENDI	ХВ	
	ORY REPORTS	
APPENDI	X C	
	VALUATION RESULTS	
· / ~		

LIST OF FIGURES

FIGURE 1	Site Location Map
FIGURE 2	Site Layout Map
FIGURE 3	Static Groundwater Contour Map – 4 October 2010
FIGURE 4	Estimated BTEX Extent – 1995 to 2010
FIGURE 5	Groundwater Isoconcentration Map, Benzene - October 2010
FIGURE 6	Groundwater Isoconcentration Map, Ethylbenzene – October 2010
FIGURE 7	Groundwater Isoconcentration Map, Xylenes - October 2010
FIGURE 8	Total BTEX Trends
FIGURE 9	Indoor Air Sampling Locations

LIST OF TABLES

TABLE 1	Summary of Groundwater Elevation Data - October 2010
TABLE 2	Summary of Groundwater Analytical Data - October 2010
TABLE 3	Summary of Indoor Air Evaluation – RamTech Engineers Building

LIST OF ACRONYMS

<u>Acronym</u> <u>Definition</u>

μg/L Micrograms per liter

AFB Air Force Base

ANG Air National Guard AOC Area of Concern

BEX Benzene, Ethylbenzene and Xylenes

BGC Brooklawn Golf Course bgs Below ground surface

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

CaO₂ Calcium Peroxide

DGI Data Gap Investigation

ELAP Environmental Laboratory Approval Program EPA United States Environmental Protection Agency

ERM Environmental Resources Management

ft Feet

FW Fighter Wing GE General Electric

HVAC Heating, ventilation and air conditioning

IDW Investigation Derived Waste

JP Jet propulsion

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O.D. Outside diameter

PID Photo ionization Detector

PT Pilot Test

QA/QC Quality Assurance/Quality Control QAPP Quality Assurance Project Plan

RamTech Ram-Tech Engineers

RI/PT Remedial Investigation/Pilot Test

ROD Record of Decision

SCG Standards, Criteria, and Guidance

TM Technical Memorandum VOCs Volatile Organic Compounds

EXECUTIVE SUMMARY

This Final Technical Memorandum (TM) to the Supplemental Remedial Investigation/Pilot Test (RI/PT) for the Site 15 Data Gap Investigation (DGI) has been prepared for the Environmental Restoration Program at the 174th Fighter Wing (FW) of the New York Air National Guard (ANG) in Syracuse, New York. This TM was completed under Task 3A of Delivery Order 0137 under National Guard Bureau contract DAHA92-01-D-0005 between ERM-West, Inc. (ERM) and the National Guard Bureau, Departments of the Army and Air Force.

A Final Work Plan Addendum for Site 15 RI/PT (ERM 2010) was prepared and submitted in August 2010. This Work Plan Addendum addressed the Supplemental RI/PT Work Plan for Site 15 DGI work scope of an additional round of groundwater monitoring completed in October 2010 and an indoor air evaluation performed at the Ram-Tech Engineers (RamTech) property between January and March 2011. All data collected during execution of the Work Plan Addendum is presented in this TM.

The groundwater monitoring event was performed in October 2010. The thirty wells (both on-site and off-site) were sampled in general conformance with United States Environmental Protection Agency (EPA) low-flow (minimal drawdown) well purging and sample collection techniques (EPA 1996). The low-flow groundwater purging/sampling technique employed the use of a flow-through cells (Horiba U-22 and/or the YSI 600XL) equipped with probes connected to an electronic water quality meter for measuring parameters such as pH, temperature, conductivity, dissolved oxygen, and oxidation reduction potential.

Based on this additional investigation described in this TM, as per the previous investigation, the extent of BEX-affected groundwater has been delineated on the Hancock ANG property, the Brooklawn Golf Course (BGC) property, and the RamTech property with the plume dissipating within the boundaries of the General Electric (GE) Property

Natural attenuation parameters from the October 2010 sampling event were compared to previous data and the recommendations detailed in Appendix A of the Final FFS submitted to the ANG and the NYSDEC in March 2010 are still appropriate.

The evaluation of natural attenuation data indicates that the Pilot Test (PT) injection of calcium peroxide (CaO₂) enhanced the natural attenuation process. Remedial Alternative No. 3, as recommended in the ANG and the New York State Department of Environmental Conservation (NYSDEC) approved Final Record of Decision (ROD) (ERM 2011), should be implemented as soon as possible.

Two rounds of sub-slab, background outdoor air and "room" indoor air samples were collected in axial sorbent tubes using positive displacement pumping. Sorbent methodology uses EPA Method TO-17 to analyze soil vapor samples for the presence of volatile organic compounds (VOCs) and for this application the analytes are limited to benzene, ethylbenzene and xylene (BEX) plus the analytes as shown on the analyte list in the approved Work Plan Appendix E of the Quality Assurance Project Plan (QAPP). Method TO-17 is an approved analytical method in the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (New York State Department of Health (NYSDOH 2006). At the same time, a passive (no pump) 30-day sample was initiated and collected in axial sorbent tubes.

Evaluation of indoor air monitoring at the RamTech facility indicates that an indoor air issue associated with the BEX compounds of the Site 15 investigation is not present. Additional investigation of air data is not recommended at this time.

SECTION 1.0

INTRODUCTION

This Final TM to the Supplemental RI/PT for the Site 15 DGI has been prepared for the Environmental Restoration Program at the 174th FW of the New York ANG in Syracuse, New York. This Final TM was completed under Task 3A of Delivery Order 0137 under National Guard Bureau contract DAHA92-01-D-0005 between ERM and the National Guard Bureau, Departments of the Army and Air Force.

Based on the additional investigation previously described the March 2010 Final Technical Memorandum Supplemental Remedial Investigation/Pilot Test (ERM 2010a), the extent of benzene, toluene, ethylbenzene, and total xylenes (BTEX) affected groundwater has been delineated on the Hancock ANG Base property, BCG property, and on RamTech property with the plume dissipating within the boundaries of the GE Property. An additional round of groundwater monitoring was recommended to be performed.

A soil vapor survey was performed at the RamTech property in October 2009 as part of the *Final Technical Memorandum Supplemental Remedial Investigation/Pilot Test* (ERM 2010b); Based upon results of the soil vapor and groundwater data collected in the vicinity of the RamTech building, an indoor air evaluation was recommended to be performed.

The *Final Work Plan Addendum for Site 15 RI/PT* (ERM 2010) was prepared and submitted in August 2010. This Work Plan Addendum addressed the scope of work which consisted of an additional round of groundwater monitoring and an indoor air evaluation performed at the RamTech property. All data collected during execution of the Work Plan Addendum is presented in this TM.

1.1 Project Objectives and Scope

The objectives of the groundwater monitoring and indoor air evaluation are to:

- Evaluate the effectiveness of enhanced natural attenuation in treating BEX in groundwater;
- Verify that the BEX plume is not migrating onto down-gradient properties; and
- Determine whether the VOCs detected in the October 2009 soil vapor survey have impacted the RamTech facility work environment.

The scope of work consisted of the collection of an additional round of groundwater monitoring and an indoor air evaluation performed at the RamTech property. The scope of work was completed according to the *Final Work Plan Addendum for Site 15 RI/PT* (ERM 2010) as submitted in August 2010.

1.2 General Investigation Approach

One groundwater monitoring round was conducted in early October 2010 that included a total of 30 wells located on and around Site 15. All groundwater sampling was performed by low-flow methodology in accordance with applicable federal, state, and local regulations. In accordance with NYSDEC DER-10, Appendix 1A, Final Technical Guidance for Site Investigation and Remediation (NYSDEC 2010), Periodic monitoring the head space of the monitoring wells and the ambient air space was performed for the presence of VOCs with a calibrated photoionization detector (PID).

Two separate indoor air monitoring events were also performed. A total of seven air and vapor samples were collected during each event at the location approved by the operating officer of the RamTech Facility.

The scope of work was completed according to the *Final Work Plan Addendum for Site 15 RI/PT* (ERM 2010).

1.3 Technical Memorandum Structure

This TM was written in general conformance with the guidelines presented in ANG's Environmental *Restoration Program Investigation Guidance* (ANG 2005). It provides a description of the activities performed and is organized as follows:

- Section 1.0 Introduction;
- Section 2.0 Site Description;
- Section 3.0 Environmental Setting;
- Section 4.0 Field Program;
- Section 5.0 Investigation Findings;
- Section 6.0 Conclusions;
- Section 7.0 Recommendations;
- Section 8.0 References;
- Appendix A Low-Flow Data Sheets Monitoring Well Sampling
- Appendix B Laboratory Reports; and
- Appendix C- QA/QC Evaluation Results.

SITE DESCRIPTION

2.1 Installation Description

This section provides an overview of the project site as related to the Hancock ANGB Supplemental RI/PT for the 2010 DGI. The 174th FW of the New York ANG is based at Hancock Field, an active international airport and a former Air Force Base (AFB) located 2 miles north-northeast of the City of Syracuse in Onondaga County in central New York (Figure 1). The 174th FW supplies air reconnaissance for the eastern portion of the United States.

The ANG facility is currently operating within the southern portion of the former Hancock AFB located south of the municipal airport. Facilities on the base include hangers, support buildings, offices and maintenance buildings (Figure 2). The ANG Readiness Center at Joint Base Andrews Naval Air Facility Washington manages Installation Restoration Program-related efforts for ANG installations. Hancock ANGB is bordered by the airport to the north, the Town of Dewitt to the east and south, and the Town of Salina to the west.

2.2 Site 15 Description

Site 15 was formerly used as a pump house. It is approximately 2.5 acres in area, and originally consisted of brush and wooded vegetation, a large concrete pad, a bermed area where a 215,000-gallon aboveground tank was formerly located, and two drainage swales. One drainage swale borders the Site along the north-northeast side, and a second drainage swale borders the west side of the Site. The drainage swales contain water only intermittently following storm events. Water within the drainage swales does not appear to be hydraulically connected to underlying groundwater (Parsons 2004).

Site 15 has sustained spills of polychlorinated biphenyl, Jet Propulsion (JP)-4, and JP-8 fuels over the years. Several Site structures were removed in 2003 as part of a removal action for polychlorinated biphenyl -impacted

soils. Structures removed include a transformer pad, the foundation of the former pump house, and associated underground structures consisting of six underground tanks, three drainage sumps, and an oil-water separator (Parsons 2004).

2.3 Summary of Remedial Investigation Results

Based on the results of the additional investigation previously described in the *Final Technical Memorandum Supplemental Remedial Investigation/Pilot Test* (ERM 2010a), the extent of BTEX in groundwater has been delineated on the Hancock ANG and Brooklawn Golf Course properties, and on the RamTech property with the plume dissipating within the boundaries of the GE property. Concentrations of the BTEX compounds are generally decreasing but the latest round of data was obtained in October 2009 and an additional round of groundwater monitoring was recommended.

A soil vapor survey at the RamTech property was performed during the *Supplemental Remedial Investigation/Pilot Test* in October 2009. Based on the evaluation of soil vapor and groundwater data collected in the vicinity of the RamTech building, the potential for soil vapor to migrate within the RamTech building was a possibility. An indoor air evaluation at the RamTech facility was recommended.

ENVIRONMENTAL SETTING

This section summarizes pertinent information relative to the environmental setting of the project site as related to the Supplemental RI/PT for the 2010 DGI.

3.1 Climate

Syracuse has a four-season continental climate with marked seasonal changes. Geographical location, cyclonic systems and cold air masses affect the Syracuse weather, making winters cold with significant amounts of snow. During the summer and parts of spring and autumn, temperatures customarily rise during the daytime to fall rapidly after unset, so the nights are relatively cool and comfortable. Temperatures (Fahrenheit) average 23 degrees in January; 46 degrees in April; 70 degrees in July; and 61 degrees in September.

3.2 Topography

The Hancock ANG Base is in Onondaga County in the northwest portion of the United States Geologic Survey Syracuse East quadrangle. The Hancock ANG Base is on generally flat terrain gently sloping to the southeast. Surface elevations generally range from 395 to 415 feet (ft) above mean sea level

3.3 Geology

The surficial geology at Site 15 consists of glaciofluvial sediments deposited by glacial meltwater underlying by poorly sorted till deposited directly by glaciers. The glaciofluvial sediments include silty clays, sands, and gravels, with thickness ranging from 45 to 55 ft. The underlying till consists of gravel, cobbles, and boulders entrained in a silty clay matrix and ranges in thickness from 30 to 100 ft (Lockheed 1997).

Bedrock is encountered at depths ranging from 75 to 109 ft below ground surface (bgs), and is one of the Upper Silurian Vernon Formation. This formation consists of thinly bedded soft red shale with thin beds of green shale, gypsum, halite, and dolomite. Competence varies from soft and crumbly to dense and hard. The degree of competence appears to be proportional to the density of the fractures in the shale. The shale is characterized by enlarged fractures, joints, and bedding planes (Lockheed 1997).

3.4 Hydrogeology

The overburden at Site 15 consists of fine-grained sediments. The subgrade soils are fairly uniform, with the upper 10 to 15 ft of the soil characterized by relatively soft, dark yellowish-brown silt and silty clay. Towards the southeast the interval thins to approximately 5 ft. Beneath the silty clay are fine- to medium-grained sands, yellowish brown to dark brown with silt, and trace amounts of clay down to a depth of approximately 20 ft. Underlying these silty sands is a lens of stiff clayey silts (often called glacial till). Till was encountered at as much as 15 ft thick (Lockheed 1997).

3.5 Critical Habitats and Endangered Species

There are no known occurrences of endangered plant or animal species within or near the Site.

SECTION 4.0

FIELD PROGRAM

4.1 Summary

The work outlined in the Work Plan was performed as discussed below:

The groundwater monitoring event was performed in October 2010. The thirty wells (both on-site and off-site) were sampled in general conformance with EPA low-flow (minimal drawdown) well purging and sample collection techniques (EPA 1996). Low-flow data sheets associated with the October 2010 groundwater sampling event are presented in Appendix A.

As part of the indoor air evaluation, a pre-sampling inspection of the main level of the RamTech building was performed prior to the sampling event to identify and minimize building factors or conditions that may interfere with the proposed investigation. Information on floor slab layout and condition, construction characteristics, general air flow characteristics, heating, ventilation and air conditioning (HVAC) systems, other potentially relevant physical conditions, and potential sources of VOCs inside the main building were described and documented on a building inventory form. Chemicals or other products used in the building for routine office activities and/or maintenance operations were documented on the building inventory form.

Two rounds of sub-slab, background outdoor air and "room" indoor air samples were collected in axial sorbent tubes using positive displacement pumping. Sorbent methodology uses EPA Method TO-17 to analyze soil vapor samples for the presence of VOCs and for this application the analytes are limited to BEX plus the analytes as shown on the analyte list in the approved Work Plan Appendix E of the QAPP. Method TO-17 is an approved analytical method in the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH 2006). At the same time, a passive (no pump) 30-day sample was initiated and collected in axial sorbent tubes.

4.1.1 Access Agreement

The ANG worked with RamTech and the ANG to attain access agreements to perform the indoor air testing. Final approval by the ANG of the access agreement was received on 4 January 2011.

4.1.2 Groundwater Sampling

A complete groundwater sampling event was conducted during the week of 4 October 2009. All existing monitoring wells (total of 30 wells) were sampled as described below. All monitoring well locations are presented on Figure 3.

The following general procedures were used for this groundwater sampling event:

- Monitoring wells were located in the field and opened to allow access for sampling activities. The exterior of each well was visually inspected for signs of damage or tampering and relevant information will be recorded in the field notebook or on an appropriate form.
- Field personnel wore appropriate health and safety equipment as outlined in the Level II Health and Safety Form. Samplers put on new sampling gloves at each individual well location prior to sampling.
- The well cap was removed and a calibrated PID with a minimum 10.2 eV lamp was used to measure the concentration of VOCs at the top of the well riser.
- Depth to water and the depth to the bottom of the well were measured to the nearest 0.01-ft using an electronic water level indicator or an interface probe. The water level indicator or the interface probe was cleaned between wells using decontamination procedures described in the *Groundwater Monitoring Work Plan* (ERM 2006).
- Adjustable-rate, peristaltic pumps were utilized for purging/sampling
 of each well. The dedicated tubing was slowly lowered into the well to
 a depth approximately 6-inches above the bottom of the well to
 prevent mobilization of any sediment.
- During purging the depth to water, pumping rates, turbidity, temperature, specific conductance, pH, oxygen reduction potential,

and dissolved oxygen were measured and recorded every 5 minutes or as appropriate based on field conditions.

- Pumping rates were adjusted to minimize drawdown and/or to facilitate stabilization of field parameters as required.
- Purging ceased when the turbidity dropped below 50 Nephelometric Turbidity Units and/or field parameters have stabilized as follows for three consecutive readings:
 - \circ ±0.1 for pH;
 - o Temperature ±0.1 degree Celsius; and
 - ±10 percent for specific conductance (conductivity).
- Before sampling, the flow-through cell was disconnected to collect groundwater samples before the flow-through cell. Each of the sample containers were filled by allowing the pump discharge to flow gently down the inside of the container with minimal turbulence and agitation.
- Sample bottles were labeled using waterproof pens. All samples were placed into a pre-chilled cooler for subsequent delivery to LSL.

The groundwater samples submitted to Test America of North Canton, Ohio, an approved environmental laboratory using EPA-approved or standard methods. The samples were analyzed for BEX by EPA Method 8260. In addition, during the groundwater sampling event, all monitoring wells were analyzed for the following natural attenuation parameters to evaluate the performance of the PT:

- Alkalinity using SM 18 2320B;
- Ammonia using EPA 350.2;
- Methane using GC FID;
- Nitrate using EPA 300;
- Sulfate using EPA 300; and
- Total hardness using EPA 200.7.

All natural attenuation parameters listed above were also analyzed at Test America. In addition, the samples were field-tested for ferrous iron using

a Hach Model IR-18C ferrous iron test kit (1,10-phenanthroline iron reagent method). The results of ferrous iron analyses in the field were recorded in the field notebook and/or on appropriate sampling forms.

As previously discussed, depth to groundwater was measured to the nearest 0.01-foot using an electronic water level indicator or an interface probe. The water level indicator and the interface probe were decontaminated between wells using decontamination procedure outlined in the Work Plan. A summary of groundwater elevations is presented in Table 1. A static groundwater elevation contour map for October 2010 is also presented on Figure 3.

Laboratory data reports are presented in Appendix B. Associated Quality Assurance/Quality Control (QA/QC) samples were collected in accordance with the project QAPP. QA/QC information associated with groundwater sampling results is presented in Appendix C of this Final TM.

4.1.3 Indoor Air Monitoring

Two indoor air sampling events were performed, one in the early to mid winter (10 January 2011) and one during mid to late winter (4 February 2011). One sub-slab sample and one indoor air sample with associated duplicates were collected during each sampling event.

The sub-slab samples were installed and collected as per Section 2.7.2 of the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH 2006). A 1-inch diameter hole was drilled to a depth of approximately 4-inches into the concrete floor slab using an electric hammer drill. A ½-inch drill bit will be used to drill through the remaining thickness of the slab and not more than 2-inches into the sub-slab material. A section of ¼-inch outside-diameter (O.D.) Teflon™ tubing was installed to a depth just below the bottom of the concrete slab. The annular space between the 1-inch hole and ¼-inch tubing was sealed with melted beeswax. A calibrated PID was used to purge approximately 1-liter of gas from the subsurface and peak PID readings during purging were recorded on the sampling form. A helium tracer gas was used to determine if ambient air is being drawn into the sampling zone. The Teflon™ tubing was then attached to the stainless steel sorbent tubes and a positive displacement pump.

Sub-slab, background outdoor air and indoor air samples were collected in axial sorbent tubes using positive displacement pumping. Sorbent methodology uses EPA Method TO-17 to analyze soil vapor samples for the presence of VOCs and for this application the analytes were limited to BEX plus the analytes as shown on the analyte list presented in Work Plan Appendix E of the QAPP. Method TO-17 is an approved analytical method in the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH 2006). At the same time, a passive (no pump) 30-day sample was initiated and collected in axial sorbent tubes.

The pumps ran for approximately a 24-hour sampling period and all QA/QC samples associated with the method were collected. The collected indoor air samples were logged and transported under chain-of-custody to Vapor Trail Analytical, the NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory for air samples. QA/QC information associated with indoor air sampling results is presented in Appendix C of this Final Final TM.

4.2 Deviations from the Work Plan

The scope of work for the Supplemental RI/PT for the 2010 DGI assumed access to the RamTech Property in October 2010. Since access to RamTech was not received until 4 January 2011, the scope of work varied as described below:

- Proposed: Two indoor air sampling events will be performed (early fall 2010 and late fall 2010). Two 30-day indoor air passive events were planned associated with each of the indoor air sampling events.
- Performed: Two indoor air sampling events were performed, one in the early to mid winter (10 January 2011) and one during mid to late winter (4 February 2011). The 30-day tubes associated with the 10 January 2011 sampling event did not absorb any volatile compounds and sampling could not be reproduced.

4.3 Analytical Activity

The Supplemental RI/PT for the 2010 DGI was performed between 4 October 2010 and 9 March 2011. One distinct groundwater sampling event was performed during this investigation resulting in 30-groundwater samples being obtained. Two separate indoor air

monitoring events at the RamTech property were performed between 10 January and 9 March 2011. A total of seven air and vapor samples were collected during each event at the location approved by the operating officer of the RamTech Facility. QA/QC samples were obtained as required with the above referenced samples.

Laboratory reports are presented in Appendix B. QA/QC information relating to the groundwater sampling has been completed and is presented in Appendix C of this Final TM.

4.4 Investigation-Derived Waste Management

Section 4.5 of *Management of Investigation-Derived Wastes during Site Inspections* (EPA 1991) states that non-hazardous soil and liquid investigation-derived waste (IDW) should be left on-site within the area of concern (AOC) unless other circumstances, such as a State Applicable or Relevant and Appropriate Requirements or a high probability of community concerns, require off-site disposal. EPA does not prohibit the disposal of non-hazardous groundwater and/or decontamination fluids in the AOC if they have been containerized and sampled. The following options for non-hazardous IDW management are cited from Section 4.5 of EPA (1991):

- *Groundwater*: pour onto ground next to well and allow infiltration;
- *Decontamination fluids*: pour onto ground from containers to allow infiltration; and
- Decontaminated personal protective equipment and disposable sampling equipment: double bag and deposit at the Facility, in an EPA dumpster, or at a municipal landfill.

Non-hazardous IDW generated during the TM was managed in a manner consistent with the options listed above. Groundwater was containerized in 5-gallon buckets and upon completion of sampling; the containerized groundwater was spread on the ground surface adjacent to the particular well location. Used personal protective equipment and disposable sampling equipment was bagged after use and placed in a Base dumpster for subsequent disposal at a NYSDEC-permitted solid waste disposal facility.

INVESTIGATION FINDINGS

5.1 Summary

The primary chemical-specific Applicable or Relevant and Appropriate Requirements for groundwater at the Site are the NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. These criteria are contained in the NYSDEC Division of Water *Technical and Operational Guidance Series Memorandum Number 1.1.1* (TOGS 1.1.1; NYSDEC 1998).

The NYSDEC criteria for the compounds present in groundwater analyzed during this TM are listed below. The values shown for BEX are ambient water quality standards.

• Benzene: 1 micrograms per liter (µg/L)

• Ethylbenzene: 5 μg/L

• Xylene: 5 μg/L

The results of the Supplemental RIs conducted to date indicate that BEX-affected groundwater extends across the BGC and RamTech properties further down-gradient towards the south-southeast (GE Property) but does not migrate off GE Property.

5.2 Field Findings

All fieldwork associated with the Work Plan and as described above was performed between 4 October 2010 and 9 March 2011. This section summarizes field results and findings from implementation of the Supplemental Remedial Investigation/Pilot Test for the 2010 DGI Supplemental RI.

5.2.1 Groundwater Sampling

A complete groundwater sampling event was conducted during the week of 4 October 2010. All 30 existing monitoring wells were sampled as described above in Section 4.1.2. All monitoring well locations are presented on Figure 3.

Field data associated with groundwater sampling is presented in Appendix A. Laboratory data associated with groundwater sampling results are summarized in Table 2. Analytical laboratory reports are presented in Appendix B.

The groundwater analysis indicated BEX concentrations below laboratory method reporting limits in 24 of the 30 monitoring wells. Concentrations of BEX above Standards, Criteria, and Guidance (SCG) were present in MW-11, MW-14, MW-15, MW-19, MW-105, and MW-112. Total BEX concentrations are presented on Figure 4.

Benzene concentrations in the 30 wells ranged from ND to 26 $\mu g/L$. Figure 5 shows the lateral extent of benzene in groundwater in October 2010 using all 30 MW sampling locations. Five of the thirty wells had concentrations above the NYSDEC ambient groundwater quality standard of 1 $\mu g/L$ (NYSDEC 1998). The highest concentration of benzene was found in the area immediately south of the southern fence line of Site 15 and immediately north of Molloy Road on the ANG property.

Figure 6 illustrates the distribution of dissolved ethylbenzene in October 2010 using all the 30 MW locations. Five of the thirty wells had concentrations above the NYSDEC ambient groundwater quality standard of 5 μ g/L (NYSDEC 1998). Ethylbenzene concentrations in these five wells ranged from 7.8 to 100 μ g/L. Ethylbenzene concentrations were highest in the vicinity of well MW-19 north of Molloy Road on the ANG property and MW-105 on the Brooklawn Golf Course just south of Molloy Road.

Figure 7 shows the distribution of dissolved xylenes in October 2010 using all 30 MW sampling locations. Three of the thirty wells had concentrations above the NYSDEC ambient groundwater quality standard of 5 μ g/L. Xylene concentrations in these three wells ranged from 9.5 to 105 μ g/L. Xylene concentrations were highest in the vicinity of well MW-19 north of Molloy Road on the ANG property and MW-105 on the Brooklawn Golf Course just south of Molloy Road.

Historically, BTEX compounds have been detected in the groundwater at Site 15. Toluene has not been encountered during groundwater sampling events since 2008.

Total BTEX Trends, as shown on Figure 8, indicates that in general, total BTEX concentrations have been decreasing at Site 15. Concentrations of BEX from groundwater samples taken at MW-105 show a recent slight increase which may be due to rebound after the sustained oxygen release from the oxidant used during the May 2009 Pilot Test injection became depleted.

Natural attenuation parameters from the October 2010 sampling event were compared to previous data and the recommendations detailed in Appendix A of the Final FFS submitted to the ANG and the NYSDEC in March 2010 are still appropriate.

As per the data obtained in this TM and as per the data obtained in the previous investigation, the extent of BEX-affected groundwater has been delineated on the Hancock ANG property, BGC property, and on the RamTech property with the plume dissipating within the boundaries of the GE Property.

5.2.2 Indoor Air Monitoring

Two indoor air sampling events were performed, one in the early to mid winter (10 January 2011) and one during mid to late winter (4 February 2011). One sub-slab sample and one indoor air sample with associated duplicates were collected during each sampling event at the locations shown on Figure 9. During each sampling event, a passive (no pump) 30-day sample was initiated and collected in axial sorbent tubes.

There are no current databases available with background levels of VOCs for indoor air vapors. In the absence of this information, indoor air sampling results are reviewed "as a whole," in conjunction with the results of other environmental sampling at the site. To put some perspective on the data, the NYDOH and NYSDEC often compare the soil vapor results to the NYSDOH's background database that was used to evaluate outdoor air data (NYSDOH 2003 and 2).

The results of indoor air evaluation conducted on RamTech's facility are summarized in Table 3. The evaluation was conducted to characterize the nature of the sub slab and indoor air within the RamTech facility. The results of the sub slab and indoor air evaluation were compared to a statistical evaluation of background concentrations of VOCs 90th

percentile of indoor air which are summarized in the *Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes* (NYSDOH 2003) and the Air Guidance Values as presented on Table 3.1 and Matrixes 1 and 2 as presented in the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006).

The summarized concentrations in the tabular summary on Table 3 do not exceed the indoor air 90th percentile of the samples collected in the NYSDOH study or the Air Guidance Values. Based on the evaluation of the sub slab and indoor air data along with known groundwater data collected in the vicinity of the RamTech facility, an indoor air issue associated with the BEX compounds of the Site 15 investigation is not present. Additional investigation of air data is not recommended at this time.

SECTION 6.0

CONCLUSIONS

The Site 15 DGI was performed to evaluate the effectiveness of enhanced natural attenuation in treating BEX in groundwater; verify that the BEX plume is not migrating onto down-gradient properties and determine whether the VOCs detected in the October 2009 soil vapor survey have impacted the RamTech facility work environment.

A significant amount of additional data was obtained during implementation of this Supplemental RI/PT. The following technical conclusions are derived from implementation of the approved *Final Work Plan Addendum for Site 15 RI/PT* (ERM 2010).

- 1. Test results which are generally decreasing in concentrations indicate that the PT injection of CaO₂ was effective and natural attenuation was enhanced with the chemical injection.
- 2. Dissolved-phase BEX in groundwater at concentrations above applicable SCGs has migrated completely across portions of the BGC and RamTech properties to properties further down gradient. This Site 15 DGI confirmed the previous investigation that the end of the plume is somewhere on GE Property as indicated by BEX sampling on the west, south, and east sides of the GE Property.
- 3. Evaluation of indoor air monitoring at the RamTech facility indicates that an indoor air issue associated with the BEX compounds of the Site 15 investigation is not present.

SECTION 7.0

RECOMMENDATIONS

The following actions based on the results of the Supplemental RI/PT for the 2010 DGI to facilitate remediation of Site 15, including the off-site portion of the plume are recommended:

- Additional investigation of air data is not recommended at this time.
- Remedial Alternative No. 3, as recommended in the ANG and NYSDEC approved Final ROD (ERM 2011), should be implemented as soon as possible.

REFERENCES

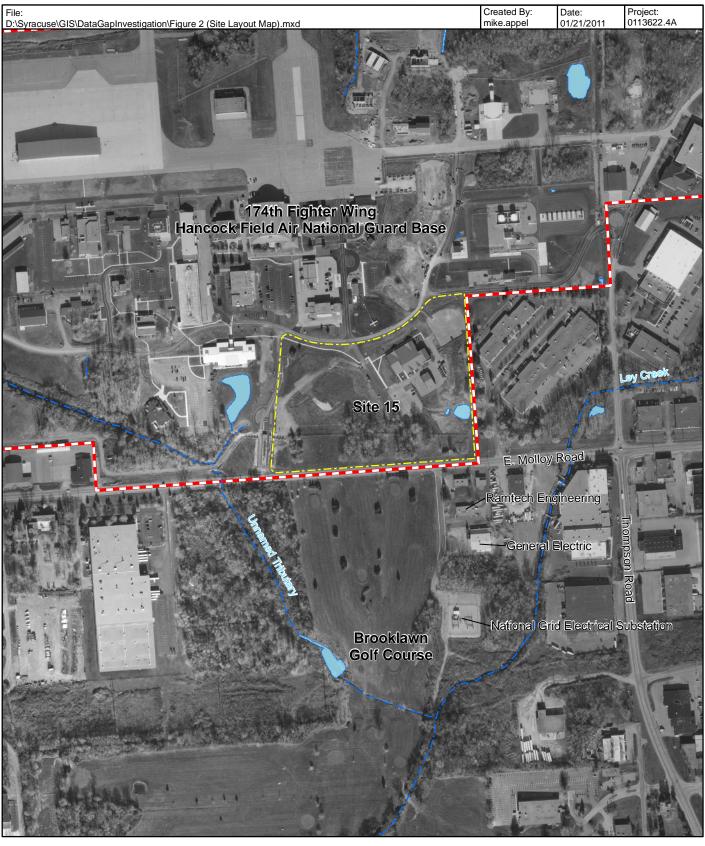
- ANG, 2005. Environmental Restoration Program Investigation Guidance
- EPA, 1991. Management of Investigation-Derived Wastes during Site Inspections. United States Environmental Protection Agency, Office of Emergency and Remedial Response Directive Number 9345.3-02, EPA/540/G-91/009, Washington, D.C., 88 pp.
- EPA, 1996. Low-flow (minimal drawdown) groundwater sampling procedures. United States Environmental Protection Agency Groundwater Issue, Office of Research and Development and Office of Solid Waste and Emergency Response, EPA/540/S-95/504, 12 pp
- ERM, 2011, Final Record of Decision, 174th Fighter Wing New York Air National Guard- Hancock Air National Guard Base Syracuse, New York ERM, Dewitt, New York, April 2011.
- ERM, 2010, Final Work Plan Addendum for Site 15 RI/PT, 174th Fighter Wing New York Air National Guard- Hancock Air National Guard Base Syracuse, New York ERM, Dewitt, New York, August 2010.
- ERM, 2010a, Final Technical Memorandum Supplemental Remedial Investigation/Pilot Test, 174th Fighter Wing New York Air National Guard- Hancock Air National Guard Base Syracuse, New York ERM, Dewitt, New York, March 2010.
- ERM, 2006, Site 15 Interim Remedial Action Groundwater Monitoring Work Plan, 174th Fighter Wing New York Air National Guard- Hancock Air National Guard Base Syracuse, New York ERM, Dewitt, New York, June 2006.
- Lockheed. 1997. Final Remedial Investigation Report for Petroleum, Oil, and Lubricant Facility, Site 15. Volumes I and II. Prepared by Lockheed Martin for the Air National Guard Readiness Center, Andrews AFB, Maryland. July 1997.
- NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. NYSDEC Division of Water

- Technical and Operational Guidance Series Memorandum Number 1.1.1., June 1998 (latest amendment April 2000).
- NYSDEC, 2010. DER-10: Technical Guidance for Site Investigation and Remediation. NYSDEC Division of Environmental Remediation, Albany, May 2010, 226 pp.
- NYSDOH, 2003, Volatile Organic Chemicals in Air of Fuel Oil Heated Homes.
- NYSDOH, 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006).
- Parsons, 2004. Remedial Action Plan For Hancock Air National Guard Site 15. Parsons Engineering Science, Inc., Liverpool, New York, January 2004.

FIGURES

Legend

1,000
2,000


Feet

N

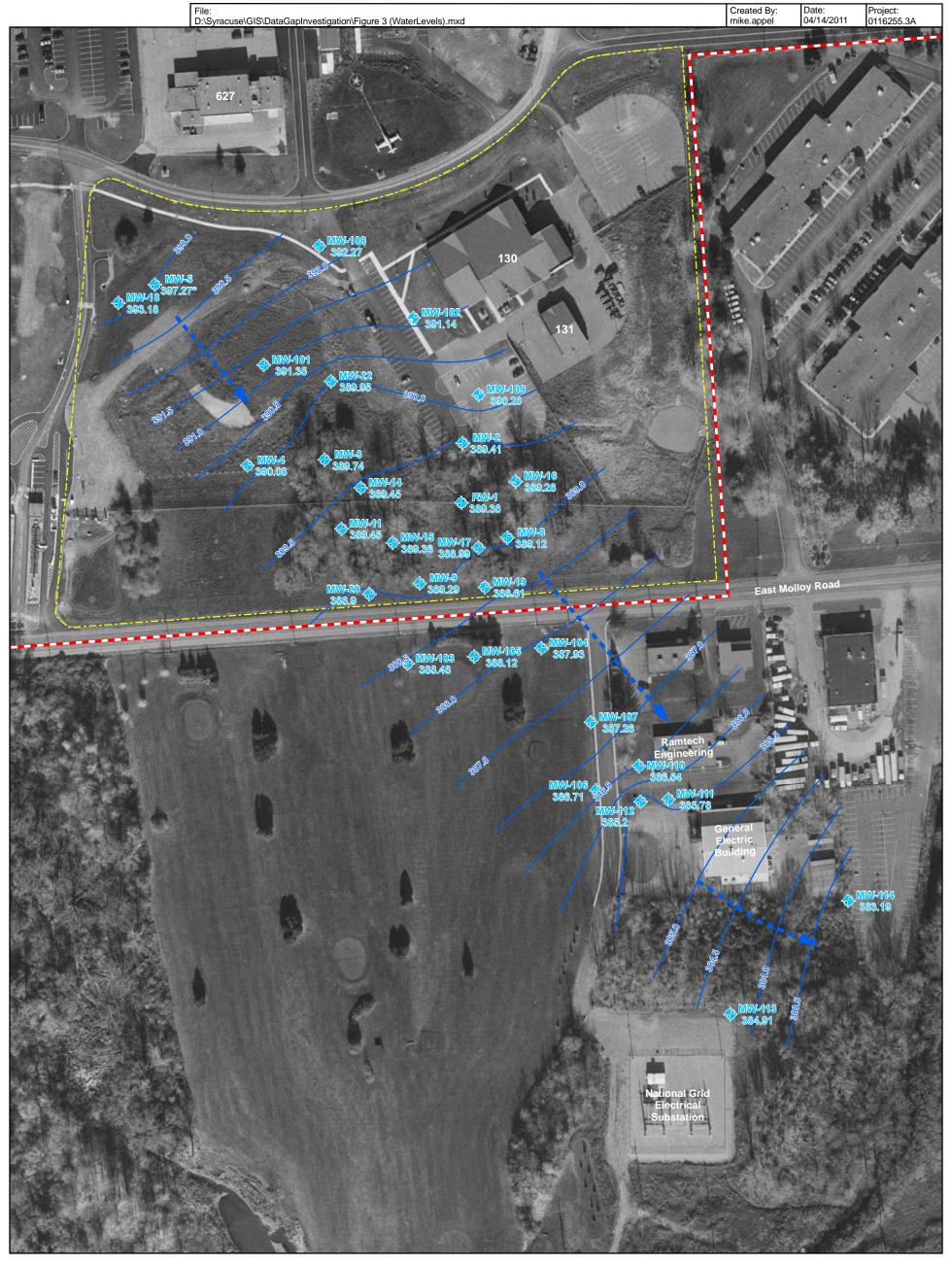
Site 15

Hancock Field Air National Guard
Base Property Boundary

Figure 1
Site Location Map
174th Fighter Wing
New York Air National Guard
Hancock International Airport
Syracuse, New York

Legend

0 500 1,000
Feet


---- Stream or Creek

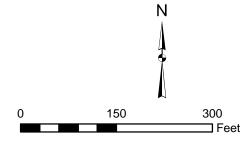
Pond
Site 15

Hancock Field Air National Guard
Base Property Boundary

Figure 2 Site Layout 174th Fighter Wing New York Air National Guard Hancock International Airport Syracuse, New York

Ν

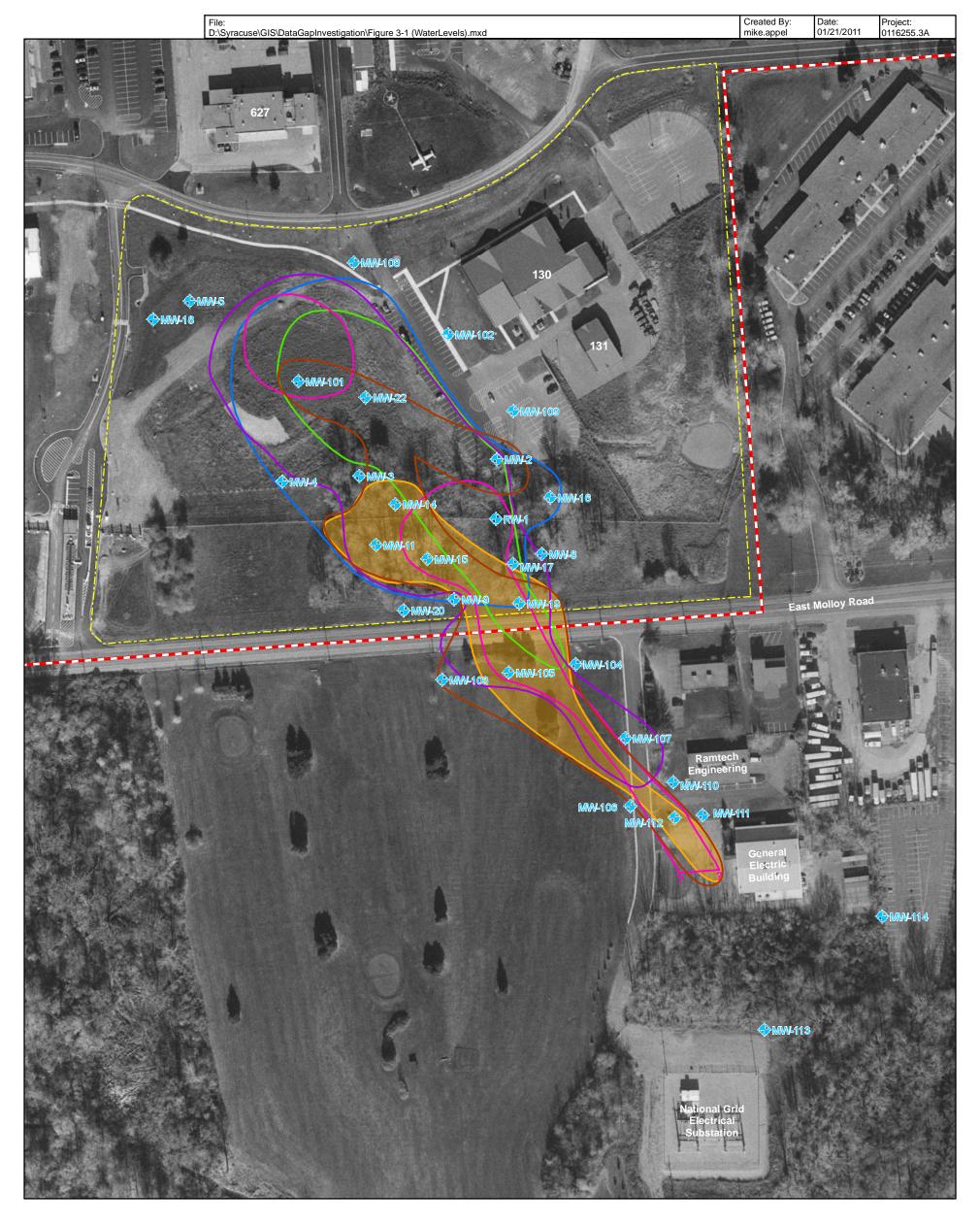
LEGEND


Monitoring Well with October 2010 Groundwater Elevation

Groundwater Contour (1 ft)

174th FW Property Boundary

Groundwater Flow Direction

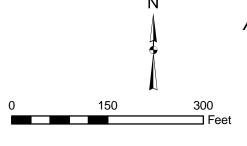


October 2010 Groundwater Contour Map 174th Fighter Wing New York Air National Guard Hancock International Airport Syracuse, New York

All elevations in feet above mean sea level (NGVD29).

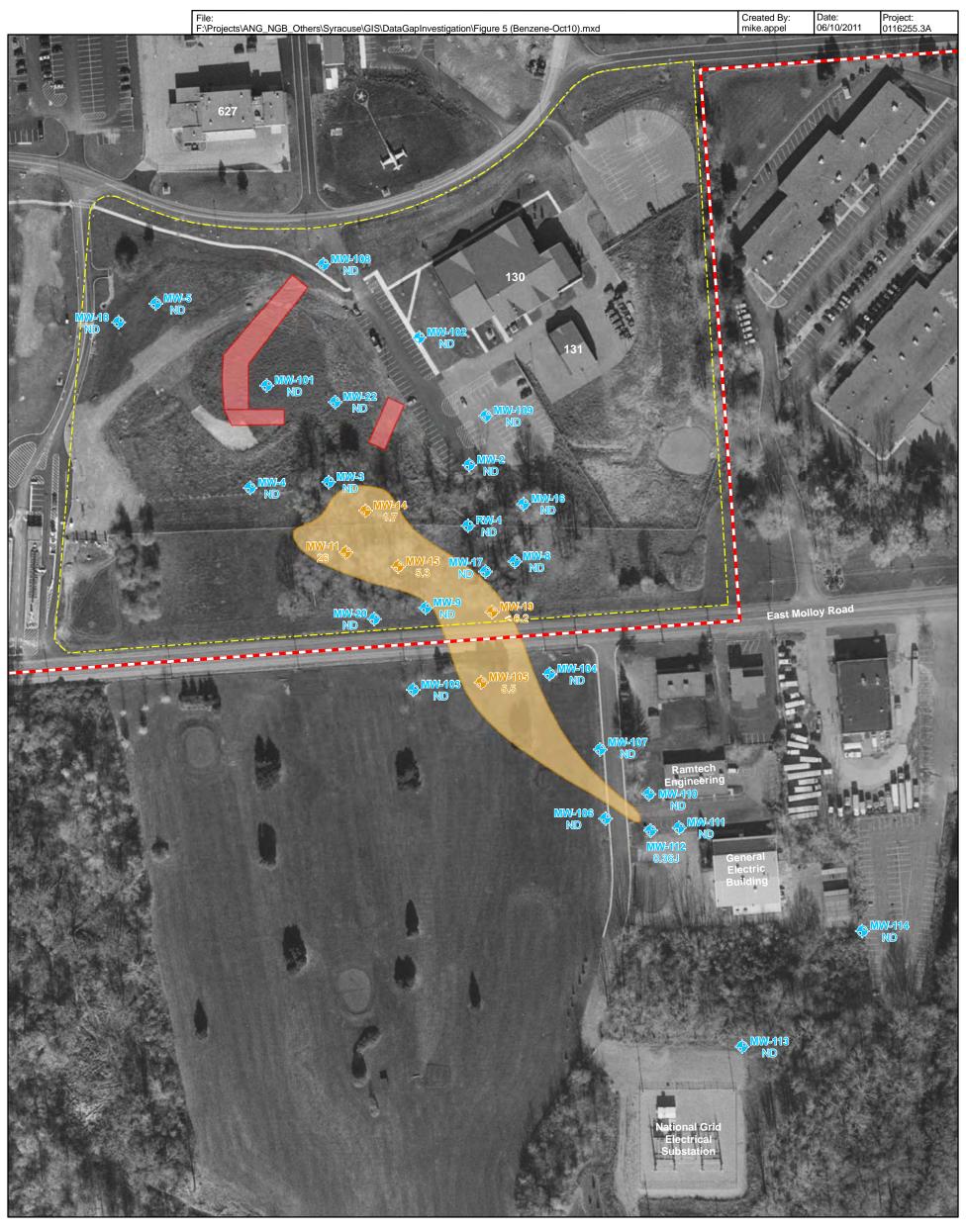
* - Water level not used for contouring.

Figure 3

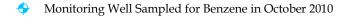


LEGEND

Monitoring Well Approximate Extent of BTEX in Groundwater in 1995 Approximate Extent of BTEX in Groundwater in 2001 Approximate Extent of BTEX in Groundwater in 2006 Approximate Extent of BTEX in Groundwater in 2008 Approximate Extent of BEX in Groundwater in 2009 Approximate Extent of BEX in Groundwater in 2010


Site 15

174th FW Property Boundary



Approximate Extent of BTEX in Groundwater 1995 through 2010 174th Fighter Wing New York Air National Guard Hancock International Airport Syracuse, New York

Notes: BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes Figure 4

LEGEND

Monitoring Well where Benzene exceeded the 1 $\mu g/L$ NYSDEC Standard $\,$ in October 2010 $\,$

Approximate Extent of Benzene in Groundwater above the 1 $\mu g/L$ NYSDEC Standard

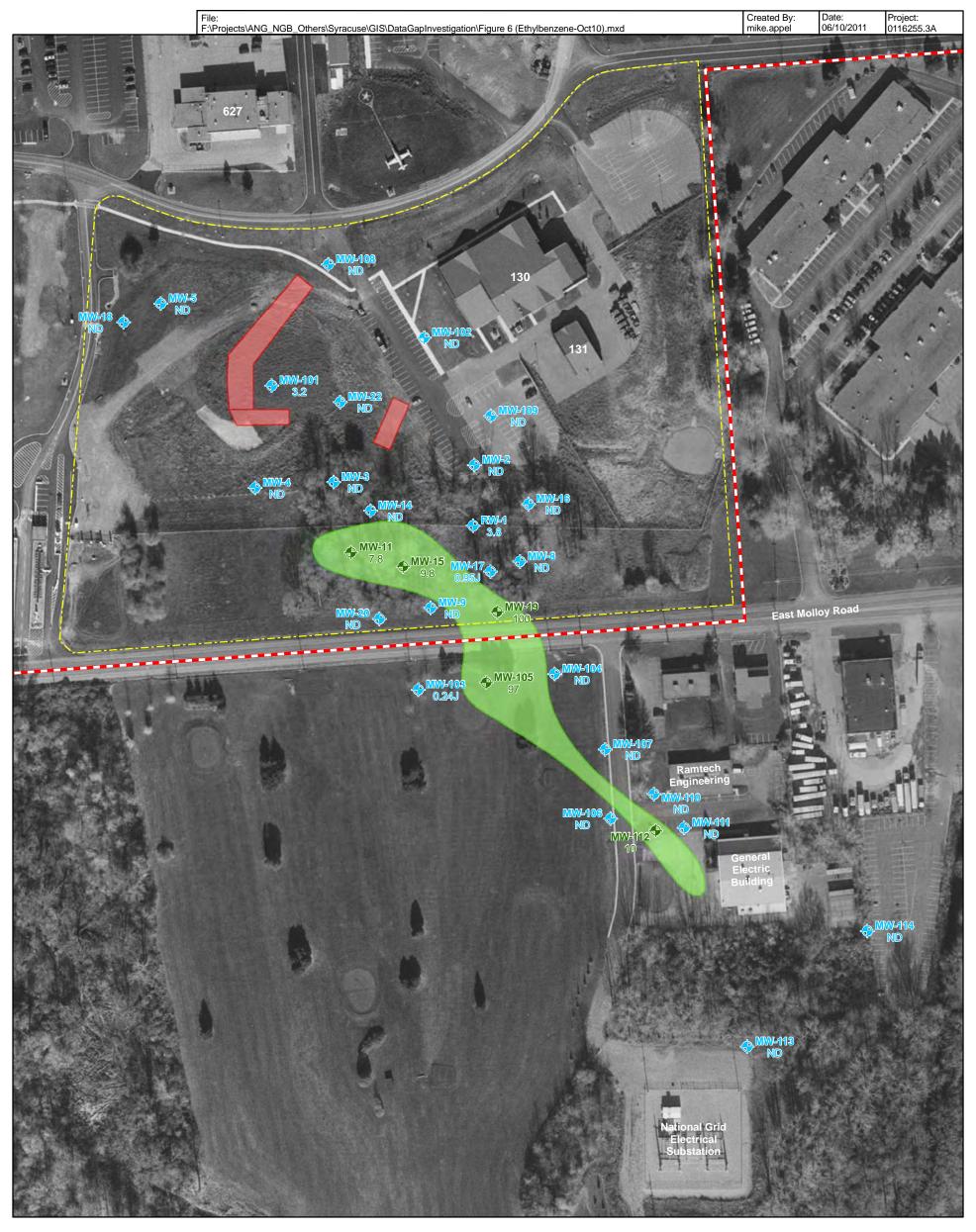
Source Area Removal Excavations (August 2008)

Site 15

174th FW Property Boundary

Notes:

 $\mu g/L$ - micrograms per liter


ND - Benzene not detected at or above the laboratory reporting limit.

< 6.2 Benzene not detected at or above the elevated laboratory reporting limt.

All concentrations in micrograms per liter.

150 300

Figure 5 Groundwater Isoconcentration Map, Benzene 174th Fighter Wing New York Air National Guard Hancock International Airport Syracuse, New York

LEGEND

Monitoring Well Sampled for Ethylbenzene in October 2010

Monitoring Well where Ethylbenzene exceeded the 5 $\,\mu g/L$ NYSDEC Standard in October 2010

Approximate Extent of Ethylbenzene in Groundwater above the 5 $\mu g/L$ NYSDEC Standard

Source Area Removal Excavations (August 2008)

Site 15

174th FW Property Boundary

Notes:

 $\mu g/L$ - micrograms per liter

ND - Benzene not detected at or above the laboratory reporting limit.

< 6.2 Benzene not detected at or above the elevated laboratory reporting limt.

All concentrations in micrograms per liter.

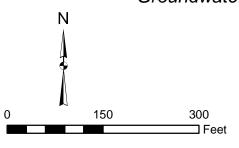
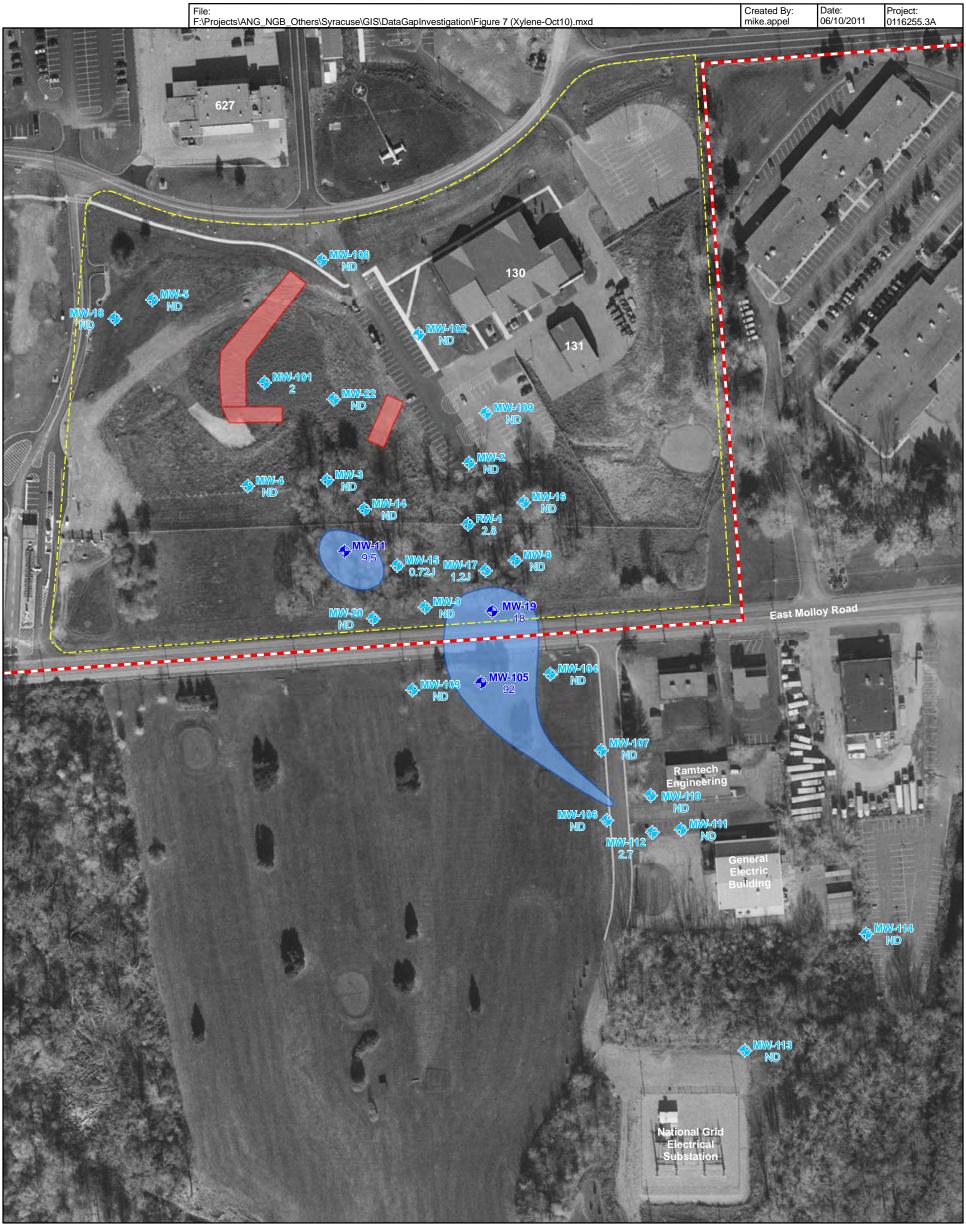



Figure 6 Groundwater Isoconcentration Map, Ethylbenzene 174th Fighter Wing New York Air National Guard Hancock International Airport Syracuse, New York

LEGEND

Monitoring Well Sampled for Xylenes in October 2010

Monitoring Well where Xylenes exceeded the 5 $\mu g/L$ NYSDEC Standard in October 2010

Approximate Extent of Xylenes in Groundwater above the 5 $\mu g/L$ NYSDEC Standard

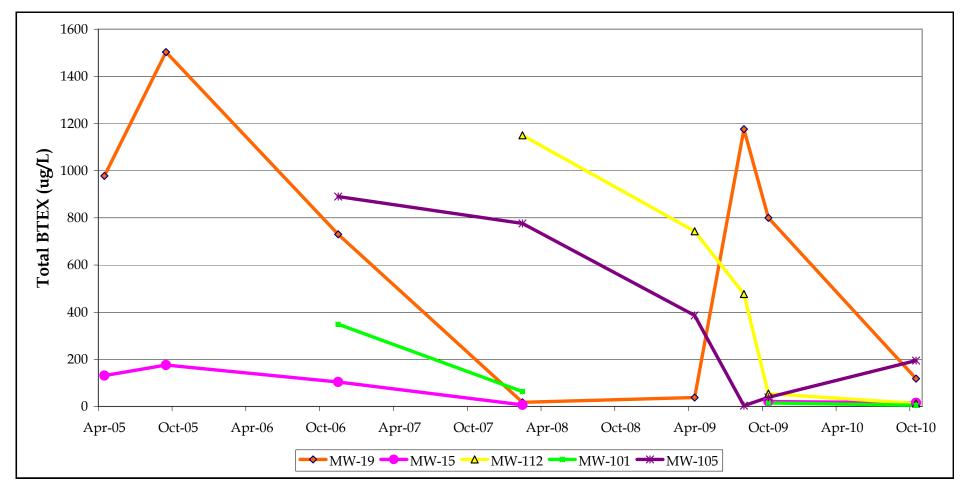
Source Area Removal Excavations (August 2008)

Site 15

174th FW Property Boundary

Notes:

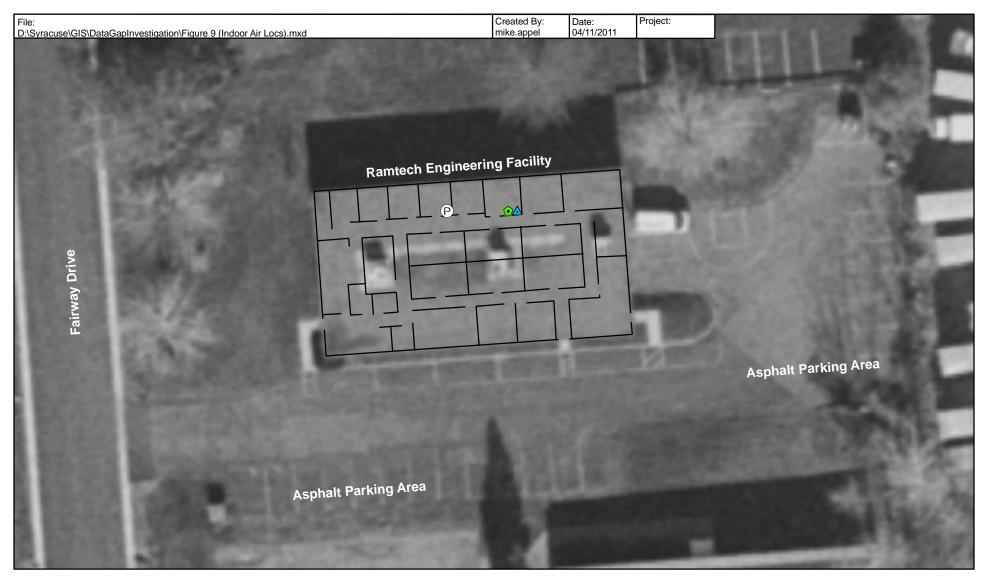
 $\mu g/L$ - micrograms per liter


ND - Benzene not detected at or above the laboratory reporting limit.

< 6.2 Benzene not detected at or above the elevated laboratory reporting limt.

All concentrations in micrograms per liter.

150 300


Figure 7 Groundwater Isoconcentration Map, Xylene 174th Fighter Wing New York Air National Guard Hancock International Airport Syracuse, New York

	Apr-05	Sep-05	Nov-06	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10
MW-19	978	1,503	730	18	38	1,176	800	118
MW-15	131	176	104	7	NA	NA	21	16
MW-112	NA	NA	NA	1,150	743	477	54	13
MW-101	NA	NA	349	63	NA	NA	15	5
MW-105	NA	NA	890	776	386	3	39	195

Notes: NA - not available $ug/L - micrograms\ per\ liter$

Figure 8
Total BTEX Trends
174th Fighter Wing
New York Air National Guard
Hancock International Airport
Syracuse, New York

Legend

- ▲ Indoor Air Sample Location
- Passive Air Sample Location

Ramtech Interior Layout

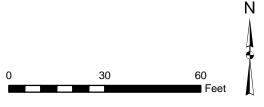


Figure 9
Indoor Air Sampling Locations
174th Fighter Wing
New York Air National Guard
Hancock International Airport
Syracuse, New York

TABLES

TABLE 1 - Final
SUMMARY OF GROUNDWATER ELEVATION DATA- OCTOBER 2010
HANCOCK AIR NATIONAL GUARD BASE- SYRACUSE, NEW YORK
NYSDEC SITE NUMBER 734054
ERM PROJECT NUMBER 0116255

	10.04	10.17	9.72	3.07	8.88	6.86	10.24	13.47	12.81	12.9	11.34	6.92	7.74	8.91	11.16	10.73
Well ID	MW-2	MW-3	MW-4	MW-5	MW-8	MW-9	MW-11	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19	MW-20	MW-22	RW-1
Top of Casing	399.45	399.91	399.80	400.34	398.00	396.15	399.69	402.92	402.17	402.18	400.33	400.10	396.35	397.81	401.11	400.11
Date																
11-Apr-2005	391.17	391.72	391.99	394.76	389.28	390.97	390.14	391.45	390.95	390.71	390.24	394.32	389.66	390.22	392.58	390.87
28-Sep-2005	388.33	388.44	388.67	390.52	387.63	386.99	388.05	388.20	388.00	388.05	387.49	391.12	387.10	387.47	389.26	387.92
6-Nov-2006	390.02	390.96	391.13	393.25	389.69	389.74	390.37	390.65	390.25	390.07	389.60	393.36	389.13	389.58	390.88	390.15
4-Feb-2008	390.04	390.80	392.18	393.26	389.58	389.79	390.18	390.36	390.11	390.00	389.50	393.41	389.11	389.63	390.58	390.06
13-Apr-2009	390.52	391.49	391.62	394.41	390.22	390.57	390.84	391.11	390.65	390.54	390.02	394.08	389.54	389.93	391.50	390.57
6-Oct-2009	388.22	388.68	388.85	390.86	387.95	387.32	388.24	388.41	388.23	388.40	387.79	391.37	387.42	387.70	388.86	388.20
4-Oct-2010	389.41	389.74	390.08	397.27	389.12	389.29	389.45	389.45	389.36	389.28	388.99	393.18	388.61	388.90	389.95	389.38

	10.23	9.56	9.26	6.50	8.26	1.83	4.59	9.46	9.72	3.23	2.27	3.13	1.02	0.00
Well ID	MW-101	MW-102	MW-103	MW-104	MW-105	MW-106	MW-107	MW-108	MW-109	MW-110	MW-111	MW-112	MW-113	MW-114
Top of Casing	401.58	400.70	397.74	394.43	396.38	388.54	391.85	401.73	400.00	389.77	388.05	388.33	385.93	383.19
Date														
11-Apr-2005	NM													
28-Sep-2005	NM													
6-Nov-2006	392.08	391.60	388.95	388.22	388.57	386.48	387.15	NM						
4-Feb-2008	391.79	391.56	389.09	388.30	388.63	386.63	387.41	392.60	390.77	386.51	385.61	386.01	NM	NM
13-Apr-2009	392.74	392.18	389.27	388.62	388.83	386.87	387.65	393.29	391.33	386.76	385.80	386.26	NM	NM
6-Oct-2009	390.06	389.81	387.33	387.01	387.00	385.81	386.31	390.80	389.08	385.74	385.13	385.44	384.25	383.19
4-Oct-2010	391.35	391.14	388.48	387.93	388.12	386.71	387.26	392.27	390.28	386.54	385.78	385.20	384.91	383.19

NOTES:

NM - Not measured.

MW-114 was artesian.

⁻ Top of casing provided by others.

⁻ Measurements reported in feet.

WELL ID			M	W-2					MV	V-3					MV	V-4					MV	V- 5			NYSDEC
Sample Date	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	STANDARD
VOCs (ug/l)																									
BENZENE							200	57	75																1
ETHYL BENZENE	3.5	83	52		200		200	16	61																5
TOLUENE					NA	NA			0.34J		NA	NA					NA	NA					NA	NA	5
XYLENE	2	98	44		370		95	15	28																5
MTBE					NA	NA					NA	NA					NA	NA					NA	NA	10
NATURAL ATTENUATION PARAMETERS (mg/l)																								
NITRATE	0.55		0.17	0.86	< 0.1	0.41	0.21			0.33	< 0.1	0.11	0.13	0.41		0.18	0.21	0.11	1.20	0.98	0.28	1.3	< 0.1	1.2	NA
SULFATE	67.0	7.5	37	98	2.8	134	2.8	2.4	4	6.0	9.3	3.9	26.0	26.0	8.9	3.7	37.0	6.1	12.0	15.0	11	8.0	8.6	7.3	NA
ALKALINITY	300	310	380	190	400	341	270	350	300	120	360	149	190	250	240	40	290	227	220	260	340	140	280	202	NA
TOTAL HARDNESS	740	310	350	820	590	330	380	310	230	57	500	180	240	250	180	37	350	220	280	260	270	180	310	240	NA
AMMONIA		0.088	UJ	0.046	0.20			0.76	0.065J		0.75			0.18			0.11				UJ		< 0.03		NA
METHANE		8.800		0.0076	4.4	0.19	0.100	1.600			0.28	0.035	0.011	0.011			0.012	0.0035					0.02	<0.0005	NA
PARAMETERS MEASURED IN THE FIELD																									
FERROUS IRON		3.8	0.9	0.8	4.2	1.2	6.1	3.3	2.2	0	2.1	1.7		1.200	0	0	1	0.4		0.300	0	0	1.7	0.2	NA
pH_	7.06	6.95	8.26	6.96	7.54	6.87	6.92	6.45	6.77	6.3	6.33	6.51	7.30	6.88	8.26	7.16	7.43	6.91	7.12	8.21	6.68	7.04	7.14	6.53	NA
DISSOLVED OXYGEN	0.00	0.00	0.29	2.28	0.18	0.45	0.00	0.00	2.79	7.99	0.12	1.22	1.15	0.00	0	0.64	0.49	2.93	4.80	0.00	0.77	7.70	0.00	3.23	NA
OXIDATION REDUCTION POTENTIAL	76	-127	-76	123.9	44.4	42.1	-61	-81	-8	146.6	-71	83.9	43	-113	-46	186.9	44	6.2	146	-50	121	41.6	-109	66	NA
CONDUCTIVITY	1.120	0.999	1.4	6.794	1.471	1.178	0.531	0.811	0.76	0.106	0.822	0.09	0.366	0.803	0.391	0.067	0.440	0.226	0.391	0.362	0.577	0.377	0.595	0.318	NA
FIELD OBSERVATIONS							Odor	Odor	Odor																

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

 $NYSDEC\ Standards\ -\ NYS\ Division\ of\ Water\ Technical\ and\ Operational\ Guidance\ Series\ (1.1.1)\ 1998$

The MTBE ground water standard is from NYSDEC's TAGM 8086

- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in mg/L

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter

WELL ID			M	N-8					MV	V- 9					MV	V-11			1		MV	V-14			NYSDEC
Sample Date	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	STANDARDS
VOCs (ug/l)																									
BENZENE													32	31	17		49	26	3.7	4.5	2		3.9	1.7	1
ETHYL BENZENE	6.4													1.4	0.63J		11	7.8		1.2	0.22J				5
TOLUENE					NA	NA					NA	NA			0.11J		NA	NA					NA	NA	5
XYLENE	4													5.2	0.36J		16	9.5							5
MTBE					NA	NA					NA	NA		2.2			NA	NA		1.9			NA	NA	10
NATURAL ATTENUATION PARAMETERS (mg/l)																								
NITRATE	0.20			1.2	< 0.1	<0.1	0.16	0.37	0.1	0.91	< 0.1	<0.1	0.23	0.15		0.34	<0.1	< 0.10	0.77			0.26	<0.1	< 0.10	NA
SULFATE	24.0	28.0	42	8.7	52.0	60.6	38.0	21.0	20	6.1	12.0	24.1	8.8	22.0	22	72	4.5	9.9	24.0	43.0	45	66.0	45.0	56.8	NA
ALKALINITY	320	320	250	88	400	380	110	200	270	32	260	120	330	330	260	370	360	403	230	320	370	350	340	360	NA
TOTAL HARDNESS	380	120	370	96	650	560	130	360	83	26	220	100	320	320	370	440	510	570	230	350	380	400	470	440	NA
AMMONIA			UJ		< 0.03			0.25	0.12J	0.14	0.37	<2.0			0.042J		< 0.03				0.2		< 0.03		NA
METHANE	0.730	0.015		0.0024	0.011	0.032		0.020				0.0025	0.006	0.740		0.052	1.6	1.9	1.800	0.130	0.039	0.14	0.16	0.13	NA
PARAMETERS MEASURED IN THE FIELD																									
FERROUS IRON	2.0	2.4	1	0.8	1.2		0.1	2.0	1.05	1.1	2.0	0.2	4.0	4.4	1.6	2.5	2.2	2.6	0.5	2.8	NM	1.4	2.0	1.1	NA
рН	6.94	7.12	4.58	6.29	7.70	7.03	6.27	6.51	6.41	6.64	8.31	6.18	7.38	7.19	4.51	7.29	7.00	0.02	6.96	7.07	7.33	7.13	7.68	7.15	NA
DISSOLVED OXYGEN	0.00	0.00	10.9	6.21	0.35	0.32	0.00	0.00	0	10.09	3.02	0.85	0.00	0.00	11.36	0.23	0.00	0.36	2.12	0.00	0	0.20	0.15	0.44	NA
OXIDATION REDUCTION POTENTIAL	-28	-126	271	41	12.8	-97.4	152	-26	0.43	109.9	-144.7	43.8	-271	-155	270	-93.1	-163	-24.9	-14	-137	-121	-50.2	14.7	23.1	NA
CONDUCTIVITY	0.706	0.999	0	0.172	0.873	0.264	1.270	0.969	0.83	0.137	1.006	0.748	0.643	0.97	0	1.056	1.280	0.504	0.496	0.9	0.91	0.567	0.467	0.196	NA
FIELD OBSERVATIONS							Odor	Odor					Odor	Odor			Odor		Odor	Odor	Odor	Dye	Dye		

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

NYSDEC Standards - NYS Division of Water Technical and Operational Guidance Series (1.1.1) 1998

The MTBE ground water standard is from NYSDEC's TAGM 8086

- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in \mbox{mg}/\mbox{L}

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter

WELL ID			MV	V-15			1		MW	V-16			1		MV	V-17			1		MV	V-18			NYSDEC
Sample Date	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	STANDARDS
VOCs (ug/l)																									
BENZENE	100	140	66	6.8	10	5.3									0.18J										1
ETHYL BENZENE	28	33	38		11	9.8			0.25J					2	49			0.95J							5
TOLUENE					NA	NA			0.38J		NA	NA					NA	NA					NA	NA	5
XYLENE	3					0.72J									31			1.2J							5
MTBE		2.8			NA	NA					NA	NA					NA	NA					NA	NA	10
NATURAL ATTENUATION PARAMETERS (mg/l)																								
NITRATE	0.21			0.8	<0.1	<0.10	0.20		0.11	0.48	<0.1	< 0.10	3.20	0.13		3.3	< 0.1	<0.1	1.40	0.34	0.83	0.52	<0.1	0.45	NA
SULFATE	37.0	17.0	27	28	31	36.5	62.0	37.0	99	63	63	60	58.0	16.0	41	27	19	18.8	13.0	12.0	13	6.0	14.0	15.0	NA
ALKALINITY	380	340	290	410	340	360	260	350	520	400	370	385	260.0	360.0	320	260	370	382	290	310	320	92	390	396	NA
TOTAL HARDNESS	430	370	380	460	420	430	450	390	480	530	550	540	300	370	370	260	540	610	300	280	300	99	430	450	NA
AMMONIA			0.11J	0.041	< 0.03				5.1J		< 0.03		1.50	1.20	0.13J		0.22				UJ		< 0.03		NA
METHANE	2.100	1.400		0.93	0.19	0.32		0.057	0.0078		0.0089	0.012	0.033	1.400			1.1	1.3					0.0029	< 0.0005	NA
PARAMETERS MEASURED IN THE FIELD																									
FERROUS IRON	4.6	3.1	2.95	2.2	2.4	3.2		0.400	NM	0.2	0.2	0.00		2.200	3.2	0	1.4	1.4		0.00	0.00	0.00	0.00	0.00	NA
pH_	7.00	6.88	7.2	7.16	7.55	6.8	7.17	6.99	7.15	6.67	7.60	6.94	7.35	6.83	7.01	6.75	6.69	6.6	7.25	8.10	7.13	7.07	7.49	6.77	NA
DISSOLVED OXYGEN	0.00	0.00	0	0.31	0.13	0.42	1.70	0.00	0	1.30	0.42	0.84	0.00	0.00	0	6.29	0.00	0.58	0.20	0.00	0	1.06	1.11	3.86	NA
OXIDATION REDUCTION POTENTIAL	-67	150	-153	-99.1	7.8	-7.1	-85	-16	-19	153.8	18.9	114.8	-308	-139	-98	53.9	-115	-6.5	-202	127	185	181.1	44.5	61.7	NA
CONDUCTIVITY	1.170	1.01	0.99	0.630	0.525	0	1.050	0.97	3.06	1.052	0.891	0.329	0.62	0.6	0.9	0.522	1.260	0.547	0.486	0.378	0.986	0.143	0.568	0.341	NA
FIELD OBSERVATIONS			Odor		Odor					Dye	Dye														

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

NYSDEC Standards - NYS Division of Water Technical and Operational Guidance Series (1.1.1) 1998

The MTBE ground water standard is from NYSDEC's TAGM 8086

- $\hbox{- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value}\\$
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in \mbox{mg}/\mbox{L}

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter

WELL ID				MV	V-19				Ī		MV	V-20					MW	7-22			NYSDEC
Sample Date	Apr-05	Sep-05	Nov-06	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	STANDARDS
VOCs (ug/l)															_						
BENZENE	28	33	17J		0.71 J	6	< 10	< 6.2							110	70	51		5.6		1
ETHYL BENZENE	300	610	270	8.5	17	410	380	100							89	32	82		21		5
TOLUENE					NA	NA	NA	NA					NA	NA			0.34J		NA	NA	5
XYLENE	650	860	460	9	20	760	420	18							88	46	90		3		5
MTBE					NA	NA	NA	NA					NA	NA					NA	NA	10
NATURAL ATTENUATION PARAMETERS (mg/l)																				
NITRATE	0.19			0.28			<0.1	< 0.1	0.45			1.4	<0.1	<0.1	1.50		0.3	1.9	<0.1	0.48	NA
SULFATE	15.0		11	25.0	20.0	6.7	4.9	11.2	36.0	15.0	240	11.0	9.4	12.8	32.0	8.8	41	16.0	31.0	37.4	NA
ALKALINITY	350	330	240	410	330	330	340	401	340	340	370	67	350	430	330	400	370	170	410	349	NA
TOTAL HARDNESS	340	350	330	350	400	560	550	610	420	330	300	83	330	440	390	340	340	160	570	420	NA
AMMONIA			0.75J			0.077	0.16				0.03J		< 0.03	<2.0		0.12	0.1		< 0.03		NA
METHANE	3.400	3.500		0.99	0.61	0.98	3	1.1	0.018	0.027			0.13	0.0066	2.300	1.800	1.3	0.017	1.0	0.017	NA
PARAMETERS MEASURED IN THE FIELD																					
FERROUS IRON		4.100	2.2	2	1.7	2.7	1.9			2.500	1.2	0	1.8	0.00		5.300	NM	0	0.8	0	NA
рН	6.78	6.68	4.66	6.37	7.1	6.64	8.21	6.72	7.06	6.71	4.69	6.47	7.48	6.73	6.87	7.81	5.19	6.57	6.85	6.63	NA
DISSOLVED OXYGEN	0.00	0.00	10.95	0.88	0.71	0.29	0.21	0.45	0.00	0.00	11.17	0.26	0.23	0.61	5.70	0.00	9.55	0.16	0.00	1.87	NA
OXIDATION REDUCTION POTENTIAL	-79	-101	267	23.7	11.6	-33.4	-132.6	-66	-390	-76	261	207.5	-50.1	8.9	-242	-92	226	174.9	-25	-17.7	NA
CONDUCTIVITY	1.210	0.91	0	1.260	0.997	1.052	1.450	0.183	0.839	0.954	0	0.143	0.807	0.554	0.607	1.07	0	0.155	1.410	0.365	NA
FIELD OBSERVATIONS						Odor									Odor	Odor		Odor			

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

 $NYSDEC\ Standards\ -\ NYS\ Division\ of\ Water\ Technical\ and\ Operational\ Guidance\ Series\ (1.1.1)\ 1998$

The MTBE ground water standard is from NYSDEC's TAGM 8086

- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value $\,$
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in \mbox{mg}/\mbox{L}

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter

WELL ID			R	W-1				MW	-101			MW	7-102			MW	'-103			MW	7-104		NYSDEC
Sample Date	Apr-05	Sep-05	Nov-06	Feb-08	Oct-09	Oct-10	Nov-06	Feb-08	Oct-09	Oct-10	Nov-06	Feb-08	Oct-09	Oct-10	Nov-06	Feb-08	Oct-09	Oct-10	Nov-06	Feb-08	Oct-09	Oct-10	STANDARDS
VOCs (ug/l)	_																						
BENZENE		2.4	1.4J				8.9										1.3						1
ETHYL BENZENE	11.0	18	60	45		3.8	110	22	7.9	3.2								0.24J					5
TOLUENE			0.4J		NA	NA			NA	NA			NA	NA			NA	NA			NA	NA	5
XYLENE	21.0	36.0	30	60		2.8	230	41	7.4	2.0													5
MTBE					NA	NA			NA	NA			NA	NA			NA	NA			NA	NA	10
NATURAL ATTENUATION PARAMETERS	(mg/l)																						
NITRATE	0.12			0.18	<0.1	< 0.10	0.72	0.47	< 0.1	0.08B	0.13	0.42	<0.1	0.08B	0.34	0.32	< 0.1	< 0.1	0.38	0.3	<0.1	0.45	NA
SULFATE	13.0	19.0	170	6.7	5	5.7	44	35	42	51.6	50	52	5	66.4	27	36	33	38.4	39	4.5	41	46.9	NA
ALKALINITY	200	310	310	250	310	292	380	300	360	342	410	390	340	365	250	340	330	383	330	54	370	344	NA
TOTAL HARDNESS	240.0	310.0	380	280	430	460	430	420	490	530	550	520	640	740	310	360	510	730	440	22	500	490	NA
AMMONIA	0.45	0.34	1.1	0.44	0.82	1.1B	0.12		< 0.03		UJ		< 0.03				< 0.03	<2.0	0.13	0.34	< 0.03	<2.0	NA
METHANE	1.300	1.300	6.3	4.4	1.3	1.50E	0.63	0.55	0.44	0.091	0.026	0.016	0.0084	0.02	0.27	0.90	0.0970	0.28	0.055		0.033	0.014	NA
PARAMETERS MEASURED IN THE FIELD	-										-				_				_				
FERROUS IRON	1.0	3.2	NM	1.3	2.5	1.0	2.8	1.6	1.2	1.6	0.6	0.4	1.8	1.6	1.2	0.9	2.9	1.8	0.2	0.0	2.1	0.4	NA
pH	7.11	7.01	6.8	6.90	6.83	7.07	5.15	7.82	6.98	7.08	4.89	6.93	7.40	6.96	4.65	7.12	6.82	7.01	7.27	6.99	7.55	7.01	NA
DISSOLVED OXYGEN	0.00	0.00	0	0.13	0.00	0.46	9.84	0.50	0.00	0.58	9.9	0.72	0.16	0.45	10.92	0.33	0.00	0.51	0	12.38	0.28	1.75	NA
OXIDATION REDUCTION POTENTIAL	-129	-166	-200	-248.8	-156	-145.8	238	-35.2	-103	-5.5	267	46.3	46.8	30.7	275	-48.9	-132	3.3	-51	112.3	-70.5	25.9	NA
CONDUCTIVITY	0.605	0.999	12.1	0.666	1.100	0.652	0	0.731	1.280	0.554	0	1.459	1.532	0.819	0	1.776	1.420	0.964	1.49	0.034	1.674	1.188	NA
FIELD OBSERVATIONS	O/S	Odor	Odor	O/S	Dye /Odor		O/S																

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

 $NYSDEC\ Standards\ -\ NYS\ Division\ of\ Water\ Technical\ and\ Operational\ Guidance\ Series\ (1.1.1)\ 1998$

The MTBE ground water standard is from NYSDEC's TAGM 8086

- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in \mbox{mg}/\mbox{L}

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter

O/S= Oil and/or Sheen on purge water and/or sample

WELL ID			MW	'-105			[MW	7-106			1		MW	7-107			NYSDEC
Sample Date	Nov-06	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10	Nov-06	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10	Nov-06	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10	STANDARDS
VOCs (ug/l)																			
BENZENE	110	86	6.2	3.3	16	5.5							0.52J						1
ETHYL BENZENE	300	260	120		8.6	97							30						5
TOLUENE			NA	NA	NA	NA			NA	NA	NA	NA			NA	NA	NA	NA	5
XYLENE	480	430	260		14	92							0.41J		0.27 J				5
MTBE			NA	NA	NA	NA	0.34J		NA	NA	NA	NA			NA	NA	NA	NA	10
NATURAL ATTENUATION PARAMETERS	mg/l)																		
NITRATE	0.11	0.29	0.21		< 0.1	<0.1		0.12			<0.1	< 0.1	1.1	2.6	2.1	0.41	0.54	2.8	NA
SULFATE	6.3	5.6	8.1	25	14	13.8	28	42	49	48	36	45.3	17	12	15	45	42	23.8	NA
ALKALINITY	270	420	380	320	360	379	420	340	390	340	340	369	290	100	200	190	180	155	NA
TOTAL HARDNESS	370	320	370	370	460	470	430	410	450	550	380	490	360	120	200	510	330	290	NA
AMMONIA	0.054				< 0.03	0.84B	UJ				< 0.03	<2.0	0.099				< 0.03	<2.0	NA
METHANE	3.3	7.8	2.8	1.5	0.51	3.9	0.14	0.07	0.051	0.28	0.045	0.091	0.29		0.0049	0.033	0.057	0.017	NA
PARAMETERS MEASURED IN THE FIELD							a.						=.						
FERROUS IRON	2.2	1.1	3.5	0.8	2.9	2.0	0	0.0	0.8	0.0	0.0	0.4	1.6	0.0	0.0	5.2	3.5	0.2	NA
pH	4.64	6.97	7.39	7.21	7.77	7.28	7.32	7.35	6.97	7.53	7.38	7.31	5	6.88	6.92	7.62	7.49	6.73	NA
DISSOLVED OXYGEN	11.09	0.38	0.29	2.95	0.38	0.68	0	0.19	0.23	0.26	0.14	0.68	10.45	7.57	4.89	2.57	2.24	2.57	NA
OXIDATION REDUCTION POTENTIAL	272	-66.1	-43.1	86.1	-107.1	2.6	-20	-58.7	-5.3	10.1	-6.0	30.3	255	99.8	21.4	-21.7	-17.7	34.2	NA
CONDUCTIVITY	0	0.567	817	0.956	1.128	1.165	1.66	0.558	1.404	0.850	0.854	0.641	0	0.490	0.845	0.915	1.238	0.552	NA
FIELD OBSERVATIONS	O/S	Odor	Odor	Oxidant															

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

 $NYSDEC\ Standards\ -\ NYS\ Division\ of\ Water\ Technical\ and\ Operational\ Guidance\ Series\ (1.1.1)\ 1998$

The MTBE ground water standard is from NYSDEC's TAGM 8086

- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in \mbox{mg}/\mbox{L}

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter

O/S= Oil and/or Sheen on purge water and/or sample

WELL ID		MW-108		I	MW-109			MW-110		I		MW-111			I		MW-112				MW-113		Ī	MW-114	!	NYSDEC
Sample Date	Feb-08	Oct-09	Oct-10	Feb-08	Oct-09	Oct-10	Feb-08	Oct-09	Oct-10	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10	Feb-08	Apr-09	Aug-09	Oct-09	Oct-10	Feb-08	Oct-09	Oct-10	Feb-08	Oct-09	Oct-10	STANDARDS
VOCs (ug/l)																							_			
BENZENE																13	6.9	< 10	0.36J							1
ETHYL BENZENE															410	250	300	48	10							5
TOLUENE		NA	NA	NA	NA		NA	NA	NA	5																
XYLENE															740	480	170	<20	2.7							5
MTBE		NA	NA	NA	NA		NA	NA	NA	10																
NATURAL ATTENUATION PARAMETERS	mg/l)																									
NITRATE	0.39	<0.1	0.17	0.66	< 0.1	1.4		<0.1	<0.1				<0.1	<0.1				1.4	<0.1		<0.1	<0.1		< 0.1	<0.1	NA
SULFATE	41	44	45.8	70	65	79.8	41	57	59.9	65	45	48	49	57.4	19	11	11	8.4	38.8	11	62	65.2	11	56	55.9	NA
ALKALINITY	400	380	398	410	340	402	370	380	366	350	360	330	360	383	370	360	330	340	329	330	470	350	330	350	330	NA
TOTAL HARDNESS	510	540	700	460	420	510	450	570	570	410	490	600	540	520	380	570	530	510	440	530	540	550	530	400	630	NA
AMMONIA	< 0.03	< 0.03		< 0.03	< 0.03			< 0.03	<2.0				< 0.03	<2.0				0.051	<2.0		< 0.03	<2.0		< 0.03	<2.0	NA
METHANE	0.018	0.0082	0.012	0.28	0.0078	0.097	0.048	0.061	0.18	0.044	0.040	0.051	0.039	0.21	7.2	3	1.6	1.4	0.68	1.6	0.021	0.028	1.6	0.0044	0.0013	NA
PARAMETERS MEASURED IN THE FIELD				_			_			_					_					_			_			
FERROUS IRON	1.6	1.2	0.0	0.0	0.2	0.0	0.4	0.0	0.4	0.0	0.0	0.2	0.0	0.0	1.3	2.1	2.2	0.0	3.4	1.7	1.5	1.8	1.8	1.4	1.7	NA
pН	6.92	6.93	6.92	6.95	7.49	6.84	7.14	7.54	7.16	7.23	7.34	7.24	7.21	6.96	7.25	8.30	6.57	7.33	7.36	7.06	7.19	7.23	6.90	7.12	7.16	NA
DISSOLVED OXYGEN	0.39	0	0.71	0.04	0.68	0.77	0.11	0.17	0.50	0.10	0.28	0.33	0.15	0.69	0.42	0.16	0.37	0.26	0.82	0.30	0.00	0.46	0.14	0.00	0.39	NA
OXIDATION REDUCTION POTENTIAL	27.6	-61	45	162.5	59.1	112.2	0.4	30.7	25.3	14.7	22.3	28.8	27.9	-35.7	-110.2	-74.6	-71.3	21.5	-106.9	-57.8	-42.7	26.9	-43.3	-112	29.8	NA
CONDUCTIVITY	1.033	2.16	0.649	1.269	1.458	0.517	0.970	1.311	1.013	0.725	0.848	1.199	1.750	0.248	0.599	0.855	15.890	1.481	0.210	1.349	1.863	0.780	1.055	1.38	0.80	NA
FIELD OBSERVATIONS															Odor	Odor	Odor	Odor					artesian	artesian	artesian	

NOTES:

ug/L = Micrograms per liter

VOCs - volatile organic compounds determined by USEPA Method 8260

NYSDEC Standards - NYS Division of Water Technical and Operational Guidance Series (1.1.1) 1998

The MTBE ground water standard is from NYSDEC's TAGM 8086

- $\hbox{- Bold white type with black background indicates exceedance of the NYSDEC Standards or Guidance Value}\\$
- J = Results greater than the reporting limit that are considered estimated.

UJ= Results less than the reporting limit that are considered estimated.

---- = the compound was not detected at a concentration above the laboratory reporting limit

Natural Attenuation Parameters are used to characterize the physical, chemical and biological response of a hydrologic system to contamination.

Dissolved Oxygen, Oxidation Reduction Potential, pH and conductivity were measured in the field using a Horiba U-22 and flow through cell just prior to collecting samples.

Ferrous Iron concentration were measured using a HACH Test Kit

Ferrous Iron and DO are reported in \mbox{mg}/\mbox{L}

pH is reported in standard units

Oxidation Reduction Potential is reported in mV

Conductivity is reported in ms/cm

Odor = "Petroleum-like" odor

mg/L= Milligrams per liter
Sheen= Sheen on purge water and/or sample

Table 3 Final SUMMARY OF INDOOR AIR EVALUATION DATA- RAMTECH ENGINEERS BUILDING HANCOCK AIR NATIONAL GUARD BASE- SYRACUSE, NEW YORK NYSDEC SITE NUMBER 734054 ERM PROJECT NUMBER 0116255

Sample Date	Air Guideline	Indoor Air	Ī	10 January 201	1 24-Hour Act	ive Sampling			7 February 2	011 24-Hour A	Active Sampling		Passive Sampling 2-7-	2011 through 3/8/2011
Sample Identification	Values	90th Pctl	Indoor Air	Indoor Air Dup	Sub-Slab	Sub-Slab Dup	Outdoor Air	Indoor Air	Indoor Air Dup	Sub-Slab	Sub-Slab Dup	Outdoor Air	Indoor Air	Indoor Air Dup
Potential Petroleum Related Co	mpounds (ug/r	n³)												
Benzene	NA	15	0.77 B	0.74	0.34 B	0.27 B	0.61 B		0.81	0.50		0.73	1.04	1.02
Cyclohexane	NA	8.1	3.52	2.55	0.76	0.36	0.18		0.76	0.12		0.07	1.47	1.36
1,2-Dibromoethane	NA	< 0.25	0.05											
Ethylbenzene	NA	7.3	0.25	0.28	0.51	0.20	0.09		0.43	3.34	1.31	0.15	0.55	0.50
Isopropylbenzene	NA	0.9	0.04	0.06					0.07 J		0.06 J		0.11	0.10
Methylcyclohexane	NA	6.4	3.62	3.28	0.91	0.51	0.27		0.41	0.13		0.21	1.64	1.39
Toluene	NA	58	1.31	1.19	0.57 J	0.39	0.43 J		1.61 B	1.08 B	0.44 B	0.66 B	3.10	2.56
0- Xylene	NA	7.6	0.22	0.25	0.12	0.06	0.10		0.46		0.28	0.15	0.79	0.68
m,p- Xylenes	NA	12	0.53	0.27	0.20	0.10	0.11		1.06	1.25		0.39	1.10	0.95
Non-Petroleum Related Compo	ounds (ug/m³)													
Bromoform	NA	NA										0.04 R		
Bromodichloromethane	NA	NA	0.04	0.03										
Carbon tetrachloride	Matrix 1	0.8	0.72	0.73	3.53		0.69		0.27			0.25		
Chloroform	NA	1.4	0.25	0.26	0.05	0.11	0.07		0.18	0.17	0.36	0.06	0.17	0.17
1,2-Dibromo-3-chloropropane	NA	NA		0.03	0.20									
1,2-Dichloroethane	NA	< 0.25	0.10	0.11			0.08		0.08			0.05	0.10	0.09
trans -1,2-Dichloroethene	NA	NA	J		0.43	0.16								
1,2-Dichloropropane	NA	NA	0.03			J								
trans-1,2-Dichloropropene	NA	NA			0.08		0.05							
1,3- Dichlorobenzene	NA	0.6	0.13								0.08 R			
1,4-Dichlorobenzene	NA	1.3	0.12	0.15	0.04				0.15 R	0.22	0.08 R			
Methyl acetate	NA	NA	0.10 B	0.13		0.08 B	0.06 B				0.58		0.22	0.17
Styrene	NA	1.3	0.30	0.99	2.12	1.49	0.15		0.51 J	3.60 J	1.12 J			
Tetrachloroethene	100	2.9	0.38	0.36	0.14	0.10	0.06		0.22			0.11	0.27	0.25
1,1,1-Trichloroethane	Matrix 2	3.1	0.40	0.44	0.29	0.07	0.04		0.21		0.29	0.04	1.55	1.42
1,1,2- Trichloroethane	NA	< 0.25	0.45											
Trichloroethene	5	0.5	0.03	0.04			0.03					0.09 R	0.31	0.27
1,1,2- Trichlorotrifluoroethane	NA	1.8	2.10 J	2.47	1.31 J	0.34 J	2.11 J		0.74	0.81	0.03	0.75		

NOTES:

- Only analytes detected above the laboratory reporting limits are summarized in this table.

 $Air Guideline \ Values - Final \ NYSDOH \ CEH \ BEEI \ Soil \ Vapor \ Intrusion \ Guidance - October \ 2006 - Table \ 3.1; \ Matrix \ 1 \ and \ Matrix \ 2 \ Matrix \ 3 \ Matrix \ 3 \ Matrix \ 3 \ Matrix \ 3 \ Matrix \ 4 \ Ma$

The concentrations within this column present the 90th percentile of the data group used in the NYSDOH's background volatile organic compounds study.

Indoor Air 90th Pctl - The NYSDOH published a database statistically evaluating the concentration of select analytes collected in indoor air samples in their Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes (NYSDOH 2003).

The concentrations within this column present the 90th percentile of the data group used in the NYSDOH's background volatile organic compounds study.

= the compound was not detected at a concentration above the laboratory reporting limit

J = Analyte was positively identified at a concentration greater than or equal to the reporting limit, the associated concentration is considered an estimate.

B = Analyte was identified in the method blank at a concentration of 1 nanogram.

R = Reject analyte results due to continuing calibration,; percent difference values >90%. In these cases the initial calibration RSDs were acceptable for all analytes.

 $Concentration\ highlighted\ in\ {\bf red}\ are\ the\ result\ of\ adding\ the\ resulting\ concentration\ of\ the\ primary\ and\ secondary\ sorbent\ tubes.$

Section 10.8.1.3 of TO-17 defines breakthrough as when 5% or more of the concentration of one or more analytes detected in the primary tube is detected in the back up tube. When break through occurs between 5% and 66% the sum of the concentrations will be reported.

Concentration highlighted in blue are the result of averaging the resulting concentration of the primary and secondary sorbent tubes.

 $TO-17\ defines\ a\ safe\ sample\ volume\ as\ 2/3\ or\ 66\%, if\ a\ concentration\ in\ the\ secondary\ tube\ is\ greater\ than\ 66\%\ of\ the\ amount\ found$

on the primary tube, this is evidence of a non-linear sampling effect, and the front and back tube values are averaged.

APPENDIX A LOW-FLOW DATA SHEETS

Date: lo/d/2ol6Well ID: MW-2

Project Name: AMG Hencock 1:20

Project Number: 01/6255

Weather Conditions:

t Soft overcast, dry rain

Static water level before lowflow: 10.02 (feet below top of casing)

Bottom of well: 13.42 (feet below top of casing)

Paristalic Pumphousell Pump Used

Time Started:

519

Time Finished: 1715

Comments							***************************************							***************************************			(0)02/0		ons	
ORP Co	Γ	+/-10 mv	44.7	43.4	17.7	7 2 7	42.6	47.0	42.1	-							Sample ID: ANG-MW-2 (10/2010)	1705	zed: 1. C Gallons	è
Flow	ml/min.	100-400	2) 2						1	*							Sample ID: A	Sample Time: 170	Total Vol. Purged: 1. C	Samplere Initiale.
DO	T/Sm	+/-10%	1.27	0.86	0.56	67.0	0.4%	0.40	5h.a											
Cond.	ns/cm	+/-3%	999	105.	1110	1143	2 68	717	1178											
pH	SU	0.1 unit	6.95	6.88	F8.9	6.84	58.5	98.9	L.87											
Temp.	deg. C	+/-3%	15.18	15.86 6.88	18.9 19.01	16.81		70.1	17.10											
Turb.	DIN	+/- 10%	22.4	Σス			E	13.7	79.6			·								
Pump	(on/ott)	}	گر						-\$							7	7			
DTW	teet	1	22.01	Sh-a1	50.01	hL.91	2 L-01	D-01	عاد.ها	******						E 27 =				
Time			1230	1635	०५ १०	१७५८	1650	1655	1700							Notes.				

Project Name: AMG Hancock 1:60

Project Number: 01/6255

Well ID: MW-3

Date: 10/5 /2010

Lawrent 1

1.55°F

Weather Conditions:

(feet below top of casing) (feet below top of casing) Static water level before lowflow: 12.04
Bottom of well:

Pump Used Paristalic Pump YST SSC Uit Thou call

Time Started:

Time Finished:

		Comments							971 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 - 1711 -		1,11									(00)		HOLES
		ORP	mv	+/- 10 mv	8	20.6	75.7	5:32	() ()	P5.9									Sample ID: DAIC.m. a (In-	7	Total Vol. Purged: 4.0 6 Callons	ils: RS
		FIOW	ml/min.	100-400	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	367	3 2	000	3	100									Sample ID: D	Sample Time: 17::	Total Vol. Pure	Samplers Initials: RS
	200	3	mg/ L	+/-10%	7.82	75.1	126	1.14		1:66												3
	Cond	110/02	ns/cm	+/-3%	0.096		0.000	200	30.0	0.0.0												
	Ha	511	8	0.1 unit	7.46	107		1 2 7	75.0	6.2					,				4	,		
	Temp.	J oep	· · · · ·	+/-3%	205	13.88	12.84	1282	12.90										2 [sea: 1.7 mg	ł		
	Turb.	NTC		+/- 10%	£8:2	0.37	0.08	0.00	0.00							*****			24 (2014)			
	Pump	(JJo/uo)			e G	0	9	00	00													
i	MLQ	feet			10.94	11.62	12.02	12.33	21													
	Time				h4:21	12:4B	h5:21	12:50	13:64										Notes:			

Well ID: MW-4

Date: 10/5 /2016

Project Name: AMG Hencock field

Project Number: 01/6255

Weather Conditions:

overcast rain t soof

(feet below top of casing) Bottom of well: 18.60 (feet below top of casing) Static water level before lowflow: 9.65

Paristalic Pumpouselly yst 550 vith Thouselly Pump Used

Time Started:

Time Finished: 1230

ŀ	1	1	1	1	1	l.	1	1	1	!	ı	ı	1	ı	1	•	ı	1	í	1 1
Comments			and the second s	**************************************													(0/02/01)		Gallons	
ORP		+/- 10 mv	۲. 00	0.93	2.0	7.3	5.9	د. ي	7.9								NG-MW-4	1325		als: SP
Flow	ml/min.	100-400	200										in the second se				Sample ID: ANG-MW-4 (10/2010)	Sample Time: 1325	Total Vol. Purged: 2	Samplers Initials:
00	mg/L	+/-10%	2.84	3.59	3.44	3.43	3.5	\$.0J	2.93								5	5		3
Cond.	sm2/sn	+/-3%	157	242	239	133	952	822	222											
Hd	SU	0.1 unit	7.15	30.1	669	5b.9	6.93	76.5	ė											
Temp.	deg. C	+/-3%	13.95	13.48	14.02	14.02	14.03	14.02	4.00								***************************************			
Turb.	NTU	+/-10%	11.07	Į,			-6	4.32	3.42											
Pump	(JJo/uo)	-	لمط	•													h·o			
DTW	feet	1	11.01	QS -) !	11.90	12.21	12.49	Jz. LaS	12.81								Ce # : 0.			
Time		١	1250	5521	1300	1305	1310	1315	13.20	•••••							Notes:	~		

Date: 10/4 /2010 Well ID: MW - S

Project Name: AMC Hancock Field

Project Number: 0/16255

Weather Conditions:

± 55° F 75 pyerzest

(feet below top of casing) Static water level before lowflow: 3.07

Bottom of well: 14.02

(feet below top of casing)

Pump Used Paristalic Pampoucall yst ssc vitatioucall

Time Started:

Time Finished: 112D

Shoi

(P Comments	Λ) mv	17	<i>a</i> .	8			0.95						Sample ID: ANG-MO-S (10/2010)		• S Gallons	S.
ORP	mv	+/- 10 mv	10.H	0.60	ล.เ	1.21	-	3				ļ		ANG-	e: tibÇ	urged: 1	
Flow	mI/min.	100-400	2 (50					A						Sample ID:	Sample Time: 1105	Total Vol. Purged: 1.5	C11
DO	mg/L	+/-10%	55·h	Ch.S	3.27	3.16	3.10	3.23									
Cond.	as/cm \$	+/-3%	194	298	340	288	216	318									
μd	SU	0.1 unit	20·L	<u> </u>	19.9	95.9	16.52	25.7			· · · · · · · · · · · · · · · · · · ·						
Temp.	deg. C	%E-/+	<u> </u> ት የ - ግ	35.91	たられ	16.63	12.51	古らっ									
Turb.	NTU	+/-10%	0.0	٥.٥		,	٥	0.0									
Pump	(on/off)	į	۾					-Đ									
DTW	feet	1	3.51	3.59	5.59	3.to?	3.60	3.40						Fe2t = 0.2			
Time		j	1035	940)	Shai	aSal	1055	1100		***************************************				Notes:			

Well ID: MJ-B

Date: 10/5 /2016

Project Name: ANG Hencock + 10(0)

Project Number: 0/16755

Weather Conditions: たろうも、のででき

±55°S, overcest col-

rest com

(feet below top of casing) (feet below top of casing)

Static water level before lowflow: 8.40

Bottom of well:

Pump Used Paristalia Pumpou call yst sso vith tou call

Time Started:

Time Finished:

Pump		Turb.	Temp.	pH	Cond.	DO	Flow	ORP	Comments
(on/orr)			deg. C	SU	us/cm	mg/L	ml/min.	mv	
	+	+/-10%	+/-3%	0.1 unit	+/-3%	+/-10%	100-400	+/-10 mv	
S	`	23.6	1241	6.87	0.242	2).8	8	-53.6	
0		14.7	13.30	7.00	6,249	0.38	8	-86.5	
70		81.01	13.37	7.02)52.0	0.35	09)	-43.7	
00		4.67	13.39	7.63	P25.0	6,35	007	h.7h -	
00		10.04	13.42	7.03	tSZ:0	6,34	100	- 43.7	
00		9.99	(3.43	7.03	42.0	25.0	001	-97.4	
							- Andrews		
	l								
ferrans iron: " m		1/56					Sample ID: ANG-MU-8 (10/2010)	NG-MY-	(olæ/ol) 8
		,					Sample Time: ξι40	15:40	
							Total Vol. Purged: ~0.6	rged: ~0.5	Gallons
							Samplers Initials: 2.5	1915: 2.C	

Date: 10/12 /2010

Project Name: ANG Hencock + is()

Project Number: 01/6755

Well ID: MW-9

Weather Conditions:

200 overcest, 752et

(feet below top of casing) 72,55 (feet below top of casing) Static water level before lowflow: 7.14

Bottom of well:

Paristalic Pampion call ySE SSC Uit Flow call Pump Used

Time Started:

10:26

Time Finished:

Comments															,	(0)02/01		Gallons	
ORP Co	mv	+/-10 mv	15.8	000	8-61	27.8	8.8	7.11	45.3	46.4	45.4	43.8				Sample ID: ANG-MW-4 (10/2010)	11:25		als: 6 5
Flow	ml/min.	100-400	125	100	00)	00)	(00)	(00)	00)	001	100	(00)				Sample ID: A	Sample Time: 11:25	Total Vol. Purged: ~0.5	Samplers Initials: 65
DO	mg/L	+/-10%	16.2	2.39	2.35	1.32	1.24	1.03	0.93	0.83	6.83	0.85							
Cond.	ms/sn	+/-3%	£88	228	018	165	526	b9t	260	552	752	248							
Hd	SU	0.1 unit	7.01	637	6.29	12.7	02.9	61.7	6.(8	6.19	6.77	6.18							
Temp.	deg. C	+/-3%	13.74	13.81	13.85	13.70	2t.21	14.51	13.78	18.81	13.88	13.93							
Turb.	NTU	+/-10%	19.4	11.2	9.46	\$ 5.89	3.44	28.5	3.91	3.88	3.81	3.79	-						
Pump	(JJo/uo)		00	00	00	00	00	00	00	00	00	00				10,2 mg/			
DTW	feet		7.81	7.86	8.23	4.64	9.03	25:6	83.6	10.39	10.74	11:02				Forrows from 0,2 mg			
Time			10:32	10:37	10:45	10:50	(0:55	14:00	50:11	11:10	51:11	02:11				Notes: Tor			

Well ID: MW-11 Date: 10/5 | 2010

Project Name: AMG Hencock 1:60

Project Number: 01/6255

Weather Conditions:

overcast, rain tsoof

ו ביון דייון

Static water level before lowflow: 10.19 (feet below top of casing)

Bottom of well: 16.75 (feet below top of casing)

Paristalic Pump Used Paristalic Pump 1000 call

Time Started:

1000

Time Finished: 1700

			9														
Comments		turbid, meter	hot functioning			All the second s								[0/20/01)]		Gallons	
ORP		+/- 10 mv	7.4.7	-19.1	3.12	-24.R	7.52-	P.112-						NG-MW.	5000	ged: 1.5	1
Flow	ml/min.	100-400	2512					D						Sample ID: A.V.G. Mw. 11 (10/2010)	Sample Time: 1650	Total Vol. Purged: 1.5	
DO	mg/L	+/-10%		97.9	0.50	2h.a	0.38	0.36						J	0)		***************************************
Cond.	us/cm\$	+/-3%)as	205	Sol	Sol	205	has					,				***************************************
μd	SU	0.1 unit	56.9	6.98	12.88 7.D(1.0.	7.01	7.07				e					
Temp.	deg. C	+/-3%	13.01	12.96 6.98	38.2)	(2.86 7.0)	h8.21	12.79									***************************************
Turb.	NIU	+/-10%	Z					Φ									
Pump	(JJo/uo)	,	d.				-	4						2.6			
DTW	feet	,	£2.01	10.23	27.91	≥2·a1	10.73	h2.91						Ferr = 2			
Time		1	1220	1625	1630	1635	1040	3291						Notes: F			

Well ID: MU-(4

Date: 10/5 /2016

Project Name: ANG Hancock 1:06

Project Number: 01/6255

Weather Conditions:

±55-F, overcest light rain Pelling coln

Static water level before lowflow: 13.33 (feet below top of casing)

Bottom of well: (feet below top of casing)

Pump Used Paristalia Pump VSI SSC Uith Thow call

Time Started:

5:13 Time Finished:

	Commonte	Community																	1	((IO/2010)		Gallons	
	ORP	100	A117	+/-10 mv	<u>6</u>	96.1	- 1×	- N	1 3	N.	0.25	1.92	73,1							NG-047/	10:05	zed: 🏕 📗	ils: R
	Flow	ml/min	400,000	100-400	521	501	X	120	(7/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	523	\$21	7	73.						Jample I.J. H.NG - My 1/4 (10/2010)	Sample Time:	Total Vol. Purged: ~	Samplers Initials:
	00	mg/L	2000	T/- 10%	20.	0.53	24.0	0.53	3	27. 4	o C	0.44	9.44						-		S	 	S
	Cond.	ms/cm	+/30/	0/0-/	552.0	0.277	92.0	202.0	3.783	200	5	0.147	0.196										
	bΗ	SU	0.1 mit	min vi	6.20	6-99	7.08	21.5	2.13	7.14	1	4:12	7.15										
	Temp.	deg. C	+/-3%	ָרָ (נַ	16.45	1260	12.55	3521	75'21	1700	100	15.8%	12.59			•			~				
	Turb.	NTU	+/-10%	300	3	6.8	0.8	s. S	6.00	8.6	8	3	9			······							
f	Pump	(ou/ott)		6	5	ક	0	00	כס	0	,	67	0						1 ,	†			
, ELC	MIO	teet		12.07	17.7	27.45	13:50	13:21	13:51	13:51	13.21	12.22	13:53	••••					Tecons (no.				
Time	aurr			24.56		2:5	52:5	95:6	4:45	4:50	ななな		00:00	:					Notes: Ferra				

Date: 10/5 /2016 Well ID: MW-15

Project Name: AMG Hancock 1:0

Project Number: 01/6255

Weather Conditions:

overcast dry ±50°F

Static water level before lowflow: 12.69

Bottom of well: 17.75

Pump Used Paristalic Pamp VSI SSC UIT TOU Call

Time Started:

Time Finished: \SSS

1500

_(feet below top of casing) (feet below top of casing)

Comments					1 4 1 7	The pick to meter	hot tunctioning.									44	(10/2010)		Gallone	Caracter
ORP	Am	+/ 10 m	AITT OT = /.	200	0 0		ا ا ا	3.5	· · ·								V(r. MW. 18	0>>		
Flow	ml/min.	100.400	200) _						4							Sample ID: ANG-MW-IS (10/2010)	ample Time:	Total Vol. Purged: 1.5	
DO	mg/L	+/-10%	2.41	- 62	0.00	0.84	2000	1 2 2	0.11.0	7 5						•	S	S		
Cond.	sm2/sn	+/-3%	429	478	12 h	774	121	111	1											
μd	SU	0.1 unit	5.9	4.58	3:5	29.9	01.9		(80	3	••••									
Temp.	deg. C	+/-3%	13.07	13.00	12.88	12.80	2.68)										
Turb.		+/- 10%	23.4	22.3	Z	Z Z	<u>Σ</u>	2	2		Hŋ									
dund	(on/oft)	j	۾						-						******	2.7				
MLQ	ıeer	1	12.73	12.73	12.73	12.80	12.81	18.21	12.21							Fe. 2. 2.				
Time		1	1515	1520	1525	1530	1535	SHO	1545							Notes:				į

Well ID: MW-16

Date: 10/5 /2010

Project Name: ANG Hencock 1:00

Project Number: 01/6255

Weather Conditions:

=51°5, overcest drizzle

(feet below top of casing) (feet below top of casing) Static water level before lowflow: 12,69 Bottom of well:

Paristalic Pumples call yet ssc uith thou call Pump Used

Time Started:

Time Finished: 55:E

Well ID: Mw-(つ

Date: 10/5 /2016

Project Name: AMG Hencock 1:60

Project Number: 01 | 6255

Weather Conditions:

+ SDOF overcast dry Static water level before lowflow: 11.34 (feet below top of casing)

Bottom of well: 17.02 (feet below top of casing)

Pump Used Paristalic Pampou call

Time Started:

1345

Time Finished: 1440

Comments	and the second s							***************************************	111111111111111111111111111111111111111			**************************************		[olazio]		Gallons	
ORP Co	mv	+/-10 mv	V.0	6.0-	- 4.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20.00		,					Sample ID: ANG-MW-18 (10/2010)	1430		
Flow	ml/min.	100-400	· 150					6			•			Sample ID: A	Sample Time:	Total Vol. Purged: 1.	
DO	mg/L	+/-10%	2.06	1.22	1.02	01.0	29.0	0.58							,		,
Cond.	⊊ mɔ/sn	+/-3%	503	125	\$ 33	SHD	545	547									
pH	SU	0.1 unit	و د د	6.43	ر د د	6.40	6.60	3									
Temp.	deg. C	+/-3%	13.47	13.42	13.33	13.23	13.19	13.13									
Turb.	NTO	+/-10%	35.b	30.1	ZZ	Σ2	ΣZ	20.5									
Pump	(on/off)	,	ہے					-						**************************************			
DTW	teet	1	12.38	15.21	17.21	57.71	12.67	<u> </u> ትレ・21						Fe 2+ = 1.			
Time			1400	Sohl	1410	1415	1420	1425						Notes: F			

Well ID: Mw-(B

Date: 10/4 /2010

Project Name: ANG Hencock 1:06

Project Number: Of | 6255

SSOF

41

वरत

overcast

Weather Conditions:

Paristalic Pumproused! Pump Used

Time Started:

1125

Time Finished: 1215

(feet below top of casing) (feet below top of casing)

Static water level before lowflow: 6.87

Bottom of well: [5.3]

		1		1												
Comments													(0/2010)		Gallons	
ORP	vm	+/- 10 mv	43.0	8.29	2:1	5.12	2.19	L:19					NG-194-18	50:71	ged: 1.0	als: <≯
Flow	ml/min.	100-400	2512					A			11.54.54.55.55.55.55.55.55.55.55.55.55.55.		Sample ID: ANG-NW-18 (10/2010)	Sample Time: 17:05	Total Vol. Purged: 1.0	Samplers Initials: <>
DO	mg/L	+/-10%	\$2·4	4.27	4.34	4.32	70.4	3.86						3,	•	
Cond.	us/cm\$	+/-3%	341	344	7h2	341	1175	341								
μd	SU	0.1 unit	29.9	81.9	6.11	いっこ	20.00	rr-2								
Temp.	deg. C	+/-3%	15.86	20.91	16.12	15.96	15.95	18.39								
Turb.	NTU	+/-10%	S. 60	(.33	ZZ	ΣZ	50.1	87.1								
Pump	(JJo/uo)	1	ha	*				-4					0.0			
DIW	feet	1		1.27	Oh·L	7.4d	05·L	15.2					Fert = 0			
Time		-	1135	ohii	१मन	1150	5511	1200				***************************************	Notes:			

g:geoforms\LowFlow (with variance).XLS rev. 10/99

Well ID: MW19

Date: <u>10/5 /20</u>16

Project Name: AMG Hencock 1:00

Project Number: 01/6255

(feet below top of casing) (feet below top of casing) Static water level before lowflow: 7720 Bottom of well: 1850 DUSICES Weather Conditions:

Time Finished:

13:37

Time Started:

Pump Used Paristalic Panflow call

Comments					***************************************		****									(2012)	(2)(2)(2)	Gallons	canonic
ORP	Ţ	+/-10 mi	Auror -/-	000	100	7.12-	1600-	100	0 1/2	10.77))			···		Alamina	74:51		ı
Flow	ml/min.	100-400	S		000	3	00)	100	100	00/)					Sample ID: DAYG.m., 6 (10/20)	Sample Time: 14:26	Total Vol. Purged: 1.1	10 :9
DOG	mg/L	+/-10%	1	`	0.43	22.0	0.54	0.49	0.47	0.45							00		
Cond.	ms/cm	+/-3%	17.00	821.0	D. 174	0,178	0.181	`	0.187	0.183		_							
ЬH	SU	0.1 unit	27.7	6.71	24.9	24.9	24.7		6.75	24.9							(0)0		
Temp.	deg. C	+/-3%	[337]	13.39	13.52	13.60	13.65	13.66	13,66	13.68							2/01) 10-2	•	1
Turb.	NTU	+/-10%	0.00	0.00	0.00	0.00	0.00	0.8	8.0	0.00			****			lated	ANG- DU	16:00	•
Pump	(JJo/uo)		0	Up	V0	00	00	V0	80	しゅ						Duplicate collated	Semple I D: ANG-DUR-01 (10/2010)	Semple Time: 16:00	
DTW	teet		7.77	7.73	ht.t	7.76	7.7H	7.73	7.71	7.70						DAD	5emp	Sem	
Time			5:43	13:48	13:54	14:00	15:0%	14:10	14:15	02:41						Notes:			

Well ID: My-70

Date: 10/12 /2016

Project Name: ANG Hencock Liel

Project Number: 0/16255

overcest calm

7007

Weather Conditions:

Pump Used Paristalic Pumpouselly YSE SSC Uith Flowsell

Time Started:

II. St

Time Finished:

(feet below top of casing) (feet below top of casing)

7.76

Static water level before lowflow:

Bottom of well: 1453

•			!		diskin kiringan mananan]			
Comments				, , , , , , , , , , , , , , , , , , , ,											(0)22/01)	\ \ }	Gallons	
ORP	mv	+/- 10 mv	8.721	24.2	21.7	72.7	0.81	h21	9°C	2.5	60.0	•			NG-MU-TO	5£ :21	1	als: 05
Flow	ml/min.	100-400	8)	00)	00)	loo	100	00)	3	90)	001				Sample ID: ANG-MU-to (10/2010)	Sample Time: 12: 35	Total Vol. Purged: ~0.5	Samplers Initials:
DO	mg/L	+/-10%	4.25	h5:2	82.1	<i>58.0</i>	6.84	0.70	99.0	0,0	0.61							
Cond.	ns/cm	+/-3%	849	543	574	270	625	h75	561	258	55c	•						
pH	SU	0.1 unit	6.93	627	0.70	0t:7	04.7	6.71	220	6.73	6.73							
Temp.	deg. C	+/-3%	13.69	13.23	(3.12	54.5	13.49	hs 21	13.58	13.56	12.49	-						
Turb.	NIU	+/-10%	11.3	8:32	4.14	202	1.94	1.80	1.73	29.1	1.59				1 / sm 0.	1		
Pump	(JJo/uo)		00	00	00	00	00	0	0	00	00				1500 0.0 mg	<u>.</u>		
DTW	feet		J8.£	7.89	7.42	14.5	7.4	26.6	7.42	26.£	7.93	,			Torra as			
Time		,	11:52	11:57	29:2	40:21	17:12	セン	72:21	£2:21	12:32				Notes:			

Well ID: MW-22 Date: 10/5 /2010

Project Name: AMG Henceck 1:66

Project Number: 0/16255

+1 overcast, rain

Weather Conditions:

SSPF

(feet below top of casing) Static water level before lowflow: |\$\psi \cdot 2 \end{2}\$

Bottom of well: |\psi \cdot 2 \end{2}\$

(feet below top of casing)

Paristalic Punglowsall Pump Used

Time Started:

Time Finished: 1025

0430

		1]	_	1			1	l	:	İ]]	1	1	1	1	1	
Comments				***************************************			THE PERSONAL PROPERTY.									AAAAA aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaa	(0/02/01)7		Gallons	
ORP	mv	+/- 10 mv	-29.3	-24.9	r.42-	7.22-	-20.3	-17.9	1:11-	•							NG-14W.2	V 0		als: SP
Flow	ml/min.	100-400	2 200														Sample ID: ANG-IMW. ZZ (10/2010)	Sample Time: (O)	Total Vol. Purged: 2	Samplers Initials:
DO	mg/L	+/-10%	4.80	3.28	3.10	79.7	2-29	76.1	1-8-1										_	
Cond.	us/cm3	+/-3%	399	380	371	366	363	365	365								1			
Hd	SI	0.1 unit	6.83	72-9	و و و	6.66 306	から	6.64	6.43											
Temp.	deg. C	%E-/+	13.01	12.98	16.2)	12.93	12.48	ha · S)	13.05											
Turb.	NTU	+/-10%	48·E	MM			-	<u>-6</u>	31.1											
Pump	(JJo/uo)	1.	ΩN						-								0.0			
DTW	feet	1	11.29	16.31	11.32	11.32	11.33	11.33	11.33								pert : 0.			
Time		-	0440	०४ ५८	03 F0	2560	1000	Saal	0/0/								Notes:			

g:geoforms\LowFlow (with variance).XLS rev. 10/99

Sep.

Date: 10/5 /2010

Project Name: AMG Hencock 1:cl

Project Number: 01/6255

Well ID: MW-10

Weather Conditions:

1 50°F overcast, rain

(feet below top of casing) Bottom of well: 21.35 (feet below top of casing) Static water level before lowflow: 10.15

Paristalia Pump 45± 550 vith Froncall Pump Used

Time Started:

Time Finished: 112S

1035

	.	1	1	ı	ı	ı	ı	1	i	ı	1	ı		ı	i	i		ı	,	1 1
	Comments												***************************************				(0)02/01)	7.0	Gallons	
	ORP	Am	+/- 10 mv	-77-	5	-1.53	-62.6	200	5.65)							1/4-Mw-10	170	ged: 700	als: \$P
	Flow	ml/min.	100-400	1							>						Sample ID: DAIG-MW-101 (10/2012)	Sample Time: 1175	Total Vol. Purged: Zoo Gallons	Samplers Initials: SP
	000	mg/L	+/-10%	15.21-	- 0	hL .0	39 · à	29.0	85.0									3		0,
2	Cond.	us/cm3	+/-3%	2.12	537	8hS	135	553	7.5.5											
	Hd	SU	0.1 unit	- La-F	7.03	7.05	20.1	7.06	1.08											
	Temp.	deg. C	+/-3%	13.94	H-67	E.:	Sa·ħl	[4. bo	₹.8											
	Turb.	NTU	+/-10%	3.50	アス			A	2.38	<u>-</u> 96										
•	Pump	(JJo/uo)	1	pw						4							9			
	DTW	feet	1	اه. اد	10.18	10.18	10·18	10.18	10.69	10.19							Fett = 1. L			
	Time		1	1045	050)	5501	1100	5011	0111	5111							Notes:			

Well ID: MW-102 Date: 10/4 /2010

Project Name: AMG Hencock field

Project Number: 01/6255

Weather Conditions:

overcast rain t

rain + 50°F

Static water level before lowflow: 4.55 (feet below top of casing)

Bottom of well: 22.48 (feet below top of casing)

Pump Used Paristalic Pumpou call YST SSC vith Flow call

Time Started:

Time Finished: | 6 | 0

1510

									1			Ì						
Comments					19444			- PARAMETER - PARA	****						(Social of)	1000 m	Gallons	
ORP	mv	+/- 10 mv	29.5	38.4	\$ to . td	33.4	33.3	3.28	30.9	50.7					A1C. MEU-1N	11.00	۱_	
Flow	ml/min.	100-400	~ 200							E					Sample ID: DA1C. MU:101	Sample Time: 11.0K	Total Vol. Purged: 2.0	Samplers Initials: NO
DO	mg/L	+/- 10%	1.31	08.0	0	25.0	75.0	27.0	hh.0	>h.0								
Cond.	us/cm \$	+/-3%	820	836	806	805	812	815	818	819								
Hd	SU	0.1 unit	7.04	7.63	1.0.	6.98	6.98	1.97	6.97	26.9								
Temp.	deg. C	+/-3%	14.54	14.55	J4.2S	14.19	14.19	14.11	H-14	ta.41								
Turb.	NTU	+/- 10%	711	211	(20:3	P.78	76.4	NM	N M	74.2								
Pump	(JJo/uo)	J	מא							Þ								
DTW	feet	}	9.55	9.55	9.57	4.57	9.5.6	4.57	75.6	9.56					7 = tz		ora. co lor	<u></u>
Time		1	5251	1530	1535	9451	ShSI	1550	1555	1600					Notes: Fe 2+		à	

Well ID: MW-103 Date: 10/13 /2010

Project Name: AMG Hencock 1:86

Project Number: 01/6755

Well ID: MW-105 Date

Weather Conditions:

clear dru + LOOF

Static water level before lowflow: 4.29 (feet below top of casing)

Bottom of well: 29.49 (feet below top of casing)

Pump Used Paristalic Pumpoucal!

Time Started:

Time Finished: | LoS

5051

Comments														Circles /c	5/10/00/01	Callone	Canonia
ORP	nv	+/- 10 mv	7.1.10	10.6	1.5	0.0	2.5	7.5	3.5					A1C. 1823. 18	0.00.00.00.		1
Flow	ml/min.	100-400	2 200						A					Sample ID: OAIC and State of the Control of the Con	Sample Terror	Total Vol Purged: 1.0	Samplers Initials: CD
DO	T/8m	+/- 10%	79.1	0.99	11.0	0.67	0.55	₽S.0	0.51								
Cond.	us/cm \$	+/-3%	L301	1401	1010	990	416	973	46प								
ЬH	SG	0.1 unit	7.35	7.12	20.1	7.03	7.07	10.7	1.01								
Temp.	deg. C	+/-3%	13.48	13.44	13.34	13.41	3.44	13.43	13.44								
Turb.	D.I.Z.	+/- 10%	39.7	32.0	ΣZ	T Z	Σ2	1.07	10.4								
dwnd	(on/oft)	,	an						Þ					8			
DTW	feet		9.31	9.3(4.32	4.37	9.33	9-33	9.33					Forts 1-8			
Time			1520	1525	1530	1535	1540	SHSI	1550					Notes:			

Well ID: Mw-104

Date: 10/13 /2010

Project Name: AMG Hencock 1:00

Project Number: 01/6255

Weather Conditions:

Cleer dry I SSOF

Static water level before lowflow: 6.56 (feet below top of casing) Bottom of well: 24.35 (feet below top of casing)

Pump Used Paristalic Pampos set!

	-	Comments								7000							4(10/2010)		Gallons	
	aaO		Aur	+/- 10 mv	35.9	22.0	21.4	74.53	18.4	27.17	71.6	75.9	3				NG-MW-1D	>07)	3ed: 2.5	als: SP
	Flow	miw/lm	ши/ шш.	100-400	- 200								•				Sample ID: ANG-Mu-104(10/2010)	Sample Time:	Total Vol. Purged: 2. C Gallons	Samplers Initials:
	DO	mo/I	7/9	+/-10%	Ö	2,97	2.76	7.29	1.01	.93	٠٦٥	\$L.1	\				5	S	L	S
1215	Cond.3	us/cm	, , , , , , , , , , , , , , , , , , ,	+/-3%	200	676	1501	1201	0711	8711	1176	1188								
Time Finished: 1215	Hd	SU			ري خا	15.00 6.95	86.9 00·SI	6.99	09.1	10.1	1-0-1	10.1								
Ti	Temp.	deg. C	, oc / -	4/-3%	15.16	15.06	15.00	15.00	10.51	20.51	11:51	15.09								
0111	Turb.	NTO	701 / 1	1/ - IU %	Σ							>						•	Working	
	Pump	(JJo/uo)			م													•	meter not	
Time Started:	DTW	feet	1	01	5.87	1.59	6.59	v. 58	8S:3	6.59	10.50	b.59					-e IT = 0.4		ard mete	
	Time		1	1	\$7.11	1130	1135	0411	1145	1150	1155	(200					Notes:		100	

Date: 10/13 /2010 Well ID: MW-10S

Project Name: AMG Hencock + 1:e(0)

Project Number: 01/6255

Weather Conditions:

clear dry I 60°F

Pump Used Paristalic Pampousell YST SSC Uitl'Flowcall

- S

Time Started:

SOHI

Time Finished:

(feet below top of casing)

Bottom of well: 33.96 (feet below top of casing)

8.31

Static water level before lowflow:

ı	1	ı	ı	ı	1	ı	ı	ı	ī	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	
Comments																	(0/2010)		Gallons	
ORP	mv	+/-10 mv	20.7	16.2	14.2	5.8	1.7	2.6		1							NG-MW-10	1450	Ged: 1.0	als: \$P
Flow	ml/min.	100-400	2,200					-0									Sample ID: ANG-MW-100 10/2010	Sample Time: 1450	Total Vol. Purged: 1.0	Samplers Initials:
DO	mg/L	+/-10%	1.87	01.1	ho.)	78.0	89.0	6.03					ŭ.							
Cond.	us/cm3	+/-3%	0111	181	1179	1171	3711	5711												
Hd	SU	0.1 unit	7.60	hh-L	7.40	1-31	1.28	82·L												
Temp.	deg. C	+/-3%	13.43	13.35	13.39	13.24	13.16	13.18												
Turb.	NTU	+/-10%	16.8	1.21	MZ	NN	01.01	7.56												
Pump	(JJo/uo)	1	DN					-									2			
DTW	feet	1	8.33	8-33	8.33	8.34	8.33	8.33									Fezt= 7.0			
Time			07/11	1425	1430	1435	1440	5445									Notes: F			

Well ID: Mus-loc

Date: 10/13 /2016

Project Name: AMG Hencock 1:clo

Project Number: Oll 6255

Weather Conditions:

clear, dry + SOOF

Static water level before lowflow: $\frac{2 \cdot oO}{2 \cdot c \cdot o}$ (feet below top of casing) Bottom of well: $\frac{2 \cdot c \cdot oO}{2 \cdot c \cdot oO}$ (feet below top of casing)

Pump Used Paristalia Pump YST SSC vitl Trowcal!

Time Started:

Time Finished: 0945

a\$80

Comments								- MANAGE - TANAGE - T		***************************************				Sample ID: DAIC and the Colonia Mc Mck	and the family	allons	
ORP	νm	+/- 10 mv	22.2	28.5	74.7	727	24.10	30.3)					A 1/2 - 24-2-1-178	09 3C	Total Vol. Purged: 2. OGallons	als: <
Flow	ml/min.	100-400	4 200					₽						Sample ID: D	Sample Time: 242C	Total Vol. Pur	Samplers Initials: <
DO	mg/L	+/- 10%	3.80	1.02	0.99	78.0	0.13	99 0									,
Cond.	us/cm 3	+/-3%	499	252	200	453	CH2	120									
Hd	SI	0.1 unit	8.45	7.56	2.26 7.53	7. 44		7.31									
Temp.	deg. C	+/-3%	1150	12.23	27.21	12.38	12.39	15.21						17.72	h		
Turb.	O.I.V.	+/-10%	T2					4						म्बर्			
Pump	(on/oft))	Ę					Ð								0-4	
DTW	reet	j	7-01	19.2	2.01	2.01	2.0]	10.2						Turb. Meter		Feet = 0	
Time			5060	04 10	5160	0260	5260	0550						Notes:			

Date: 10/13/2016

Project Name: ANG Hencock field

Project Number: 01/6255

Well ID: MW-1D]

clear, dry

Weather Conditions:

SOOF

(feet below top of casing) Static water level before lowflow: 4. 11

Bottom of well: **z4.88**

(feet below top of casing)

Pump Used Paristalic Pampos call

Time Started:

Time Finished: 1/10

alai

Time	DTW	Pump	Turb.	Temp.	Hd	Cond.	00	Flow	ORP	Comments
	feet	(JJo/uo)	NTU	deg. C	SU	us/cm 3	mg/L	ml/min.	mv	
			+/-10%	+/-3%	0.1 unit	+/-3%	+/-10%	100-400	+/-10 mv	
5201	4.75	ليه	ΣΖ	13.89	1.18	745	C+ -5	2 200	31.6	
1030	4.75			14.21	6.99	403	11.+		36.9	
5801	4.75			[4.यव	Le. 87	92h	-3 -8 -6		36.0	
ahal	4.74			14.64	98·9	446	3.(3		35.9	
Shal	4.15			14.75	51.9	bas	28.5		35.1	
1050	SL +			9L.41		530	2.13		35.3	
1055	4.75			[4·1]	12.0	145	2.68	•	35.5	
0011	4.75	D	P	78.4)	6-73	755	15-7	A	34.7	
		,								
		,								
Notes:	C = +2 3 d	2.0						Sample ID: ANG-NW-107(10/2010)	NG-MO-	(0)0Z/01)Lo
								Sample Time: (105	5011 :	
+	turb. meter not work	eter no	of worl	2 i mg				Total Vol. Purged: 2.	rged: 1.5	Gallons
								Samplers Initials:	ials: SP	
								-	ı	

Date: 10/4 /2010 Well ID: MW-108

Project Name: AMG Hencock fielo

Project Number: 01/6755

Weather Conditions:

#55°F rain overcast,

(feet below top of casing) Static water level before lowflow: 9.40

Bottom of well: 19.54

Pump Used Paristalic Pumprouselly yst ssc vith frousell

Time Started:

Time Finished: | \$00

(335

(feet below top of casing)

	1		1	[1						1	İ
	Comments																 Sample TD: 0.116. MRV-108(10/2010)		; (Gallons	
	ORP	mv	+/-10 mv	72.1	58.1	2.4.5	49.5	1.87	せられ	म८.म							- WE - 17. A. C.	500	27 E	rrged: 1.5	tials: SP
	Flow	ml/min.	100-400	2150						4							Sample ID: /	Campic and	Sample Lime: 14 LS	Total Vol. Purged: 1.	Samplers Initials: 5P
	oa	mg/L	+/-10%	3.25	1.5v	1.07	26.0	08.0	0.12	0.71											
	Cond.	us/cm³	+/-3%	SBS	2 2 3	phon	242	9779	Lha	०५४											
	Ηd	SU	0.1 unit	7.24	7.03	6.93	514	₽.94 1	76.97	76.4 25.41											
	Temp.	deg. C	+/-3%	07:51	14.99	14.94	1	14.S7	14.5B	14.52											
	Turb.	NTU	+/-10%	49.5	43.1	24.S	Σ Σ	•		0.0											
•	Pump	(JJo/uo)	1	3						-			. — . 41					0.0			
	DIW	feet	J	15.6	9.52	9.51	9.51	15.6	4.51	9.51			•				- 1	たたこ			
	Time		1	1350	1355	[五] [2]	1405	0171	1415	1470								Notes:			

Date: 10/4 /2010

Project Name: AMG Hencock 1:00

Project Number: 01/6255

Well ID: المالي-رامط

1500 Guercest, Drivole

Weather Conditions:

(feet below top of casing)
(feet below top of casing)

9.71

Static water level before lowflow:

Bottom of well:

Pump Used Paristalic Pump YSI SSC Uith Flow call

Time Started:

15:20 Time Finished:

														1					
Comments																(0/02/01)		Gallons	
ORP	mv	+/-10 mv	112.0	115.7	5711	1127	116.2	115.4	1149	114.4	113.0	17.7	112.2			NG-MU-10	16:20		
Flow	ml/min.	100-400	2002	700	/20	150	150	5	(50	150	150	150	(25)			Sample ID: ANG-my-109 (10/2010)	Sample Time: 16:26	Total Vol. Purged: ~7.≤	
DO	mg/L	+/-10%	22.2	41.2	1.54	1.39	1.04	0.95	£8.0	0.85	6.79	84.0	6.77			8	S	L	(
Cond.	ns/cm	+/-3%	0.583	145.0	0.580	0.550	0,540	0.535	0.533	0.532	6.524	0.520	5/5/0						
Ηd	SU	0.1 unit	6.63	6.66	6.76	6.74	6.78	08.7	6.81	28.9	6.83	58.7	6.84			0.00	. 11		
Temp.	deg. C	+/-3%	1644	16.60	10.01	16.67	10.64	1665	16.67	16.09	16.65	16.64	16.63			100 0.0			
Turb.	NTU	+/-10%	0.00	0.00	6.8	0.00	0.0	0.00	0.0c	0.00	0.00	00.00	0.00			Forceus			4.
Pump	(JJo/uo)		60	00	00	60	00	00	0	00	00	60	0					ß	
DTW	feet		9.83	9.89	4.84	4.80	4.79	9.73	4.75	12.8	12.6	9.71	123						
Time			15.54	15:29	15:34	15:34	15:45	15:50	15:55	16:00	16:05	16:10	16:15			Notes:			

0

Date: 10/13 /2010

Project Name: AMG Hencock 1:06

Project Number: 0116755

Well ID: MW- ES

Weather Conditions:

Clear, dry + SSOF

Static water level before lowflow: $\frac{5.5 \, \text{U}}{22.79}$ (feet below top of casing) Bottom of well: $\frac{2.5.79}{}$ (feet below top of casing)

Pump Used Paristalia Pampou call

Time Started:

1300

Time Finished: 1550

	1	1	1					ļ	I	1	1		1			l	1]		
	Comments																(0/2010)		Gallons	
	ORP	mv	+/-10 mv	29.0	24.5	26.9	25.6	25.2	25.3								NG-MW-B	(3rp	ged: 1.0	als: 54
	Flow	mI/min.	100-400	4 200	-				>								Sample ID: ANG-RW-PK (10/2010)	Sample Time: (340	Total Vol. Purged: 1.0 Gallons	Samplers Initials: 🛠
	DO	T/gm	+/-10%	1.01	10-)	0.77	09.60	0.53	05.0											
	Cond.	us/cm 3	+/-3%	0[0]	2005	240)	1833	8101	1013											
•	pH	SU	0.1 unit	7-42	1.38	7.23	02.1	7.16	7-15											
	Temp.	deg. C	+/-3%	18.51	18.51	10.07	ت ف	15.96	10.01											
	Turb.	DTO	+/-10%	49:1	49.7	38.1	30.6	アコ	1.77											
•	Pump	(JJo/uo)	}	ИД					4											
	DTW	feet	j	3.38	3.57	3-37	537	3.37	3.38								-e ²⁺ = 0.4			
	Time		1	(310	1315	1310	1325	1330	(335								Notes: F			

Well ID: My-(((D

Date: 10/13/2010

Project Name: AMG Hencock 1:00

Project Number: 0116755

Weather Conditions:

1650 F clar caly

Static water level before lowflow: $\frac{7.4}{}$ (feet below top of casing) Bottom of well: ____ (feet below top of casing)

Pump Used Paristalic Pumpou call

Comments Sample ID: ANG・MU~**!! (10/2010) Gallons $+/-10 \, \text{mv}$ -35.7 788.9 92h-ORP -54.3 - 48.1 mv Total Vol. Purged: 1 Sample Time: 12:40 ml/min. 100-400 Flow 150 50 B 150 69.0 0.68 +/-10% 0.63 mg/L 0.52 DO 442.0 0,248 0.246 2/20 7750 +/-3% Cond. us/cm Time Finished: 45 (0.98 6.96 0.1 unit 500 pH SU 14.49 15.03 14.97 Temp. deg. C +/-3% 14.95 13.19 7.44 7.30 X +/-10% 4.12 Turb. NTO 3 Pump (JJo/uo) 7 0 0 0 Ferrow iron: 6.0 0 Time Started: 2.49 DTW bh.2 549 2-47 12.51 feet 12:35 2:25 12:20 Time Notes:

Well ID: MW-112

Date: $\frac{10}{15}/\frac{70}{15}$

Project Name: AMG Hancock 1:0(0)

Project Number: 01/6755

Weather Conditions:

26504, class, co

Static water level before lowflow: 7.3 \$ (feet below top of casing)

(feet below top of casing)

Bottom of well:

Pump Used Paristalic Pumpou call yet 550 vith Fron call

Time Started:

Time Finished:

50:11

Comments														(0102/0		Gallons	
ORP Con	mv	+/-10 mv	7.97	4.1	-64.3	1.28-	-93.9	265-	- [63.	- 108.9				Sample ID: ANG-MU-1/2(10/2010)	Sh:11		
Flow	ml/min.	100-400	150	52/	521	(25	521	521	521	521				Sample ID: A	Sample Time: 11:45	Total Vol. Purged: ~/. ≤	
DO	mg/L	+/-10%	2:58	2.28	1.46	1.14	1.10	£8.0	68.0	28.9					0,		
Cond.	ns/cm	+/-3%	0.246	252.0	0.226	h22:0	0.220	212.0	212.9	0.210						(0/2010)	٩
Hd	SU	0.1 unit	7.55	7.27	2.5C	£2.2	7.28	7.33	7.35	7.36						1) 20-0-	
Temp.	deg. C	+/-3%	15.67	15.85	16.11	17.12	21/21	15.90	25.51	15.62				//	000	ONG. D.	
Turb.	DTU	+/-10%	33.4	31.1	7:11	16.48	10.40	12.7	5.40	5.37				1: 3.4 m)	770	10	1
Pump	(JJo/uo)	7.	50	00	00	00	00	0	00	60				Forrows 100: 3.4	0 1	Somo	-
DTW	feet		147	24.5	2.45	5h'Z	5h.Z	5,45	54.5	2.45				704	10.0	1	
Time			11:07	71:11	11:11	22:11	11:27	11:32	42:11	74:11				Notes:			

Date: 10/12/2010

Project Name: AMG Hencock 1:6(0)

Project Number: 0116755

Well ID: Mひ-((ろ

Weather Conditions:

\$600, pertly clarby, brace,

(feet below top of casing) (feet below top of casing)

Static water level before lowflow:

Bottom of well:

Pump Used Paristalia Pumpo sall

Time Started:

Time Finished:

			1		1												1		1	
	Comments																(0/2/01)	200	Gallons	
	ORP	nn	+/- 10 mv	22.6	B. 4.5	7:00	226	000	200	10:4	56.9						11/10-W/11	16:8		
	Flow	ml/min.	100-400	757	7 40	727	177	7/2	170	057	250						Sample ID: DAVC=101 July (10/2015)	Sample Time:	Total Vol. Purged: ~ /, ≤	Samplers Initials: 25
la de	DO	mg/L	+/-10%	762	0.87) 77. (25.0	3.57	0.7.0	2	0.40						S	S	L	S
	Cond.	ms/cm	+/-3%	290	181	796	787	276	701	101	780									
	Hd	SU	0.1 unit	7.50	t2.C	7.74	22.6	7.73	727	7.1	4.23									
	Temp.	deg. C	+/-3%	13.69	13.34	15.77	72.51	13.09	13:10	2.1	13:22) m	1		
	Turb.	NTU	+/-10%	0.22	222	701	h 52	12.0	15.9	11 0	(6. L						81: ros			
	Pump	(JJo/uo)		00	00	00	00	00	00		00						Formans 11			
	DTW	teet	•	1.35	1.35	1.36	1.33	1.38	1.38	1 20	1.71						Cot			
	Time			15:20	15:35	12:40	57:51	15:50	15:55	(65)	5.5						Notes:			

Well ID: MW-114 Date: 10/12/2010

Project Name: AMG Hencock - 1:60

Project Number: 0/16255

Weather Conditions: \$7.0.f

+60.f. profly cleedy, brooz

Static water level before lowflow: Toc. (feet below top of casing)

Bottom of well: (feet below top of casing)

Pump Used Paristalic Pump YST SSC vith Flow call

Time Started:

Time Finished:

Comments															(10/201)		Gallons	
ORP	nm	+/- 10 mv	47.2	20.00	22.9	24.0	1.02	772	78.9	29.4	79.7	8.62			NG-MU-II	19:05	ged: ~ 6	als: E5
Flow	ml/min.	100-400	200	7/00	ooh	20)	400	400	400	400	400	00/1			Sample ID: ANG-My (10/2010)	Sample Time: 19:09	Total Vol. Purged:	Samplers Initials: R
DO	mg/L	+/-10%	5.59	1.19	0.8(45.0	0.55	0.51	0.46	24.0	04.0	0.34			0.	0	L	S
Cond.	ns/cm	+/-3%	218	hit	800	800	10%	208	803	803	301	800						
Hd	SU	0.1 unit	18.6	436	7.24	2.20	7.18	7.17	7.4	2.16	91.t	7.16						
Temp.	deg. C	+/-3%	14.63	14.21	14.11	14.64	ho.pl	14.0(14.04	14.04	14:02	14.04						
Turb.	NTU	+/-10%	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00		,	// sw	11		
Pump	(JJo/uo)		00	00	00	70	00	00	00	00	00	00			7:1:0			
DTW	feet		TOC	toc	TOC	70C	Toc	TOC	TOC	TOC	toc	701			collons len:			
Time			14:14	14:19	h2:h/	05:41	14:35	14:40	14:45	14:50	14:55	15:00			Notes:			

Date: 10/5 /2016

Well ID: Pw− |

Project Name: AMG Hancock field

Project Number: Oll6255

Weather Conditions:

overcast, rain ± 50° F

Static water level before lowflow: 10-71 (feet below top of casing)

Bottom of well: 14.65 (feet below top of casing)

Paristalia Pumpousali YST SSC vitatiousali Pump Used

Time Started:

5780

Time Finished:

	Commonfe	Comments															 Charles Contraction	(0)0)	Gallons		
	ORP C	T	7/ 10	-159.10	-162.3	7.CC1	C.O. 1	りたり、レロ・	0.01:	5-5-1-	-(45.8						Sample ID: DAIC - 21 / (10/20)	04.00	10	ı	7
	Flow	ml/min.	100.400	2200							Ð						Sample ID: D	Sample Time: 0410	Total Vol. Purged. 2.0	Samplers Initials: <p< td=""><td></td></p<>	
	DO	mg/L	+/-10%	N. 0.	1.25	0.85	2 0	2000		1.0	0.4C										
	Cond.	us/cm3	+/-3%	762	734	110	1,941	מפת	1	550	759										
, manual	Hd	SU	0.1 unit	1.84	14.7	27.7	Ļ	7.08	7.07		1.0.1										
	Temp.	deg. C	+/-3%	15.18	3.14	(3.0L	13.02	(2.93	17.97	1 1	12.91								H20		
	Turb.	NTU	+/-10%	ab.9	Σ 2			-	01.0	Τ.	2:								40	4	
	Pump	(Jyo/uo)	1	かり						+	Ð	•							eer tiv	like napr	
	MLQ	feet	١	10.79	10.85	10.87	[B.6]	10.88	98.01	100	10.0						Fe* = 1.0		-Slight green tint	をなればい	`
	Time		1	2880	0h 80	5489	0580	5580	0060	7000	600						Notes: Fe		-51	4	

APPENDIX B LABORATORY REPORTS

Client Sample ID: ANG-TRIPBLANK-03(10/2010)

GC/MS Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	10/12/10 10/22/10	Work Order #: Date Received: Analysis Date:	10/13/10	Matrix	κ:	WQ
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>			Wgt/Vol:	5 mL
		Method:	SW846 82601	В		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS		
Benzene		ND	1.0	ug/L		
Ethylbenzene		ND	1.0	ug/L		
Xylenes (total)		ND	2.0	ug/L		
SURROGATE Dibromofluorometh	nane	PERCENT RECOVERY 82	RECOVERY LIMITS (75 - 121)			
1,2-Dichloroethan	ie-d4	90	(63 - 129)			
Toluene-d8		89	(74 - 115)			
4-Bromofluorobenz	ene	89	(66 - 117)			

Client Sample ID: ANG-EB-02(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-002 Date Sampled: 10/12/10 10:30 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix: WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 ml
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	84	(75 - 121)	
1,2-Dichloroethane-d4	88	(63 - 129)	
Toluene-d8	93	(74 - 115)	
4-Bromofluorobenzene	94	(66 - 117)	

Client Sample ID: ANG-MW-9(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-003 Date Sampled: 10/12/10 11:25 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix W	G
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5	mL
	Method:	SW846 82601	3	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Xylenes (total)	ND	2.0	ug/L	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Dibromofluoromethane	84	(75 - 121)		
1,2-Dichloroethane-d4	87	(63 - 129)		
Toluene-d8	91	(74 - 115)		
4-Bromofluorobenzene	91	(66 - 117)		

Client Sample ID: ANG-MW-20(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-004	Work Order #: L8EPA1AA	Matrix WG
-----------------------------	------------------------	-----------

Date Sampled...: 10/12/10 12:35 Date Received..: 10/13/10 Prep Date.....: 10/22/10 Analysis Date..: 10/22/10

Prep Batch #...: 0298401

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

DI	DO C	DRT	TN	
K			1.17	10

PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Xylenes (total)	ND	2.0	ug/L	
	PERCENT	RECOVERY	(
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	84	(75 - 12	21)	
1,2-Dichloroethane-d4	86	(63 - 12)	29)	
Toluene-d8	89	(74 - 11)	L5)	
4-Bromofluorobenzene	90	(66 - 11	L7)	

Client Sample ID: ANG-MW-114(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-005 Date Sampled: 10/12/10 15:05 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	85	(75 - 121)	
1,2-Dichloroethane-d4	87	(63 - 129)	
Toluene-d8	89	(74 - 115)	
4-Bromofluorobenzene	89	(66 - 117)	

Client Sample ID: ANG-MW-113(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-006 Date Sampled: 10/12/10 16:05 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	83	(75 - 121)	
1,2-Dichloroethane-d4	86	(63 - 129)	
Toluene-d8	92	(74 - 115)	
4-Bromofluorobenzene	89	(66 - 117)	

Client Sample ID: ANG-TRIP BLANK-04(10/2010)

GC/MS Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	10/13/10 10/22/10	Work Order #: Date Received: Analysis Date:	10/14/10	Matri	x:	WQ
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>			Wgt/Vol:	5 mL
		Method:	SW846 82601	В		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS		
Benzene		ND	1.0	ug/L		
Ethylbenzene		ND	1.0	ug/L		
Xylenes (total)		ND	2.0	ug/L		
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS			
Dibromofluorometh	ane	104	$\frac{111115}{(75 - 121)}$			
1,2-Dichloroethan		114	(63 - 129)			
Toluene-d8		101	(74 - 115)			
4-Bromofluorobenz	ene	90	(66 - 117)			

Client Sample ID: ANG-DUP-02(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-002	Work Order #:	L8G021AA	Matrix WG
Date Sampled: 10/13/10 16:00	Date Received:	10/14/10	
Prep Date: 10/22/10	Analysis Date:	10/22/10	
Prep Batch #: 0297044			
Dilution Factor: 1	Initial Wgt/Vol:	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	UNITS
Benzene	0.35 J	1.0	ug/L
Ethylbenzene	9.5	1.0 u	ug/L
Xylenes (total)	2.4	2.0 u	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(75 - 121)	
1,2-Dichloroethane-d4	112	(63 - 129)	
Toluene-d8	102	(74 - 115)	
4-Bromofluorobenzene	93	(66 - 117)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-111(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-003 Date Sampled: 10/13/10 12:40 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(75 - 121)	
1,2-Dichloroethane-d4	114	(63 - 129)	
Toluene-d8	102	(74 - 115)	
4-Bromofluorobenzene	91	(66 - 117)	

Client Sample ID: ANG-MW-112(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-004 Date Sampled: 10/13/10 11:45 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	0.36 J	1.0	ug/L
Ethylbenzene	10	1.0	ug/L
Xylenes (total)	2.7	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(75 - 121)	
1,2-Dichloroethane-d4	113	(63 - 129)	
Toluene-d8	103	(74 - 115)	
4-Bromofluorobenzene	95	(66 - 117)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-106(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J1405 Date Sampled: 10/13/1 Prep Date: 10/22/1 Prep Batch #: 0297044	0 09:35 Date Received: 0 Analysis Date:	10/14/10	Matrix:	WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol:	5 mL
	Method:	SW846 8260E	3	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Xylenes (total)	ND	2.0	ug/L	
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 104 113 103 89	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115) (66 - 117)		

Client Sample ID: ANG-MW-107(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-006 Date Sampled: 10/13/10 11:05 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix	·····	WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>			Wgt/Vol:	5 mL
	Method:	SW846 8260E	3		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
Benzene	ND	1.0	ug/L		
Ethylbenzene	ND	1.0	ug/L		
Xylenes (total)	ND	2.0	ug/L		
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 104 112 100 87	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115) (66 - 117)			

Client Sample ID: ANG-MW-104(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-007 Date Sampled: 10/13/10 12:0 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	Initial Wgt/Vol:	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(75 - 121)	
1,2-Dichloroethane-d4	111	(63 - 129)	
Toluene-d8	103	(74 - 115)	
4-Bromofluorobenzene	89	(66 - 117)	

Client Sample ID: ANG-MW-110(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-008 Date Sampled: 10/13/10 13:40 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	PERCENT RECOVERY 103 113 104	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115)	
4-Bromofluorobenzene	86	(66 - 117)	

Client Sample ID: ANG-MW-105(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-009 Date Sampled: 10/13/10 14:50 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260F	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	5.5	1.0	ug/L
Ethylbenzene	97	1.0	ug/L
Xylenes (total)	92	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	98	(75 - 121)	
1,2-Dichloroethane-d4	108	(63 - 129)	
Toluene-d8	101	(74 - 115)	
4-Bromofluorobenzene	96	(66 - 117)	

Client Sample ID: ANG-MW-103(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-010	Work Order #:	L8G171AA	Matrix WG
Date Sampled: 10/13/10 15:55	Date Received:	10/14/10	
Prep Date: 10/22/10	Analysis Date:	10/22/10	
Prep Batch #: 0297044			
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	NITS
Benzene	ND	1.0 ug	g/L
Ethylbenzene	0.24 J	1.0 ug	g/L
Xylenes (total)	ND	2.0 ug	g/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(75 - 121)	
1,2-Dichloroethane-d4	110	(63 - 129)	
Toluene-d8	100	(74 - 115)	
4-Bromofluorobenzene	91	(66 - 117)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-5(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-001 Date Sampled: 10/04/10 11:05 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method</pre>		Final Wgt/Vol: 5 mL
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	111	(73 - 122)	
1,2-Dichloroethane-d4	98	(61 - 128)	
Toluene-d8	102	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

Client Sample ID: ANG-MW-18(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-00 Date Sampled: 10/04/10 12: Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane	PERCENT RECOVERY 104	RECOVERY LIMITS (73 - 122)	
1,2-Dichloroethane-d4 Toluene-d8	96 101	(61 - 128)	
4-Bromofluorobenzene	93	(76 - 110)	
4-promorrancopeuseue	93	(74 - 116)	

Client Sample ID: ANG-MW-108(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-003 Date Sampled: 10/04/10 14:25 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 108 96 98	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110)	
4-promorraoropeuseue	94	(74 - 116)	

Client Sample ID: ANG-MW-102(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-00 Date Sampled: 10/04/10 16: Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix: WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	PERCENT RECOVERY 100 93 99	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110)	
4-Bromofluorobenzene	94	(74 - 116)	

Client Sample ID: ANG-MW-109(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-005 Date Sampled: 10/04/10 16:20 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>		Final Wgt/Vol: 5 mL
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 107 94 98 98	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)	

Client Sample ID: ANG-MW-2(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-006 Date Sampled: 10/04/10 17:05 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matri	x:	₩G
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final	Wgt/Vol:	5 mL
	Method:	SW846 8260	В		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
Benzene	ND	1.0	ug/L		
Ethylbenzene	ND	1.0	ug/L		
Xylenes (total)	ND	2.0	ug/L		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	108	(73 - 122)			
1,2-Dichloroethane-d4	98	(61 - 128)			
Toluene-d8	98	(76 - 110)			

(74 - 116)

100

4-Bromofluorobenzene

Client Sample ID: ANG-EB-01(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-007 Date Sampled: 10/04/10 17:10 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WQ
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	107	$\frac{111113}{(73 - 122)}$	
1,2-Dichloroethane-d4	97	(61 - 128)	
Toluene-d8	98	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

Client Sample ID: TB-01

GC/MS Volatiles

Lot-Sample #: A0J050456-008 Date Sampled: 10/04/10 Prep Date: 10/12/10 Prep Batch #: 0286476	Work Order #: Date Received: Analysis Date:	10/05/10	Matrix WQ
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	100	$\frac{111113}{(73 - 122)}$	
1,2-Dichloroethane-d4	94	(61 - 128)	
Toluene-d8	99	(76 - 110)	
4-Bromofluorobenzene	90	(74 - 116)	

Client Sample ID: ANG-MW-16(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-001 Date Sampled: 10/05/10 08:45 Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		DEDODUTNO	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 122)	
1,2-Dichloroethane-d4	97	(61 - 128)	
Toluene-d8	100	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

Client Sample ID: ANG-RW-1(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-002 Date Sampled: 10/05/10 09:10 Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260B	3
		REPORTING	
PARAMETER	RESULT		UNITS
Benzene	ND		ug/L
Ethylbenzene	3.8		ug/L
Xylenes (total)	2.8	2.0	ug/L
GUDDOGAMA	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 122)	
1,2-Dichloroethane-d4	91	(61 - 128)	
Toluene-d8	99	(76 - 110)	
4-Bromofluorobenzene	104	(74 - 116)	

Client Sample ID: ANG-MW-14(10/2010)

GC/MS Volatiles

PARAMETER		RESULT	LIMIT	UNITS
			REPORTING	
		Method:	SW846 8260	В
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
Prep Batch #:				
Prep Date:	10/13/10	Analysis Date:	10/13/10	
100 C 100 C		Work Order #: Date Received:		Matrix WG

Benzene	1.7	1.0 ug/L	
Ethylbenzene	ND	1.0 ug/L	
Xylenes (total)	ND	2.0 ug/L	
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	95	(73 - 122)	
1,2-Dichloroethane-d4	88	(61 - 128)	
Toluene-d8	95	(76 - 110)	
4-Bromofluorobenzene	93	(74 - 116)	

Client Sample ID: ANG-MW-22(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-004 Date Sampled: 10/05/10 10:15 Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	PERCENT RECOVERY 106 97 102	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110)	
4-Bromofluorobenzene	96	(74 - 116)	

Client Sample ID: ANG-MW-3(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-005 Date Sampled: 10/05/10 13:10			Matrix WG
Prep Date: 10/13/10	Analysis Date:		
Prep Batch #: 0286479			
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method</pre>		Final Wgt/Vol: 5 mL
	Method:	5W040 02001	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 122)	
1,2-Dichloroethane-d4	95	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	99	(74 - 116)	

Client Sample ID: ANG-MW-4(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060 Date Sampled: 10/05/ Prep Date: 10/13/ Prep Batch #: 028647	/10 13:25 Date Received. /10 Analysis Date.	.: 10/06/10	Matrix WG
Dilution Factor: 1	Initial Wgt/Vo	L: 5 mL	Final Wgt/Vol: 5 mL
	Method	.: SW846 8260B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 103 93 98 94	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)	

Client Sample ID: ANG-MW-101(10/2010)

GC/MS Volatiles

Lot-Sample #:	A0J060452-007	Work Order	#:	L72W9	1AA		Matri	x:	WG
Date Sampled:	10/05/10 11:20	Date Receive	ed:	10/06	/10				
Prep Date:	10/13/10	Analysis Da	te:	10/13	/10				
Prep Batch #:	0286479								
Dilution Factor:	1	Initial Wgt.	/Vol:	5 mL			Final	Wgt/Vol:	5 mL
		Method	:	SW846	82601	В			
				REPORT	ring				
PARAMETER		RESULT		LIMIT		UNIT	S		
Benzene		ND		1.0		ug/L			
Ethylbenzene		3.2		1.0		ug/L	Ü		
Xylenes (total)		2.0		2.0		ug/L	i.		
		PERCENT		RECOVE	ERY				
SURROGATE		RECOVERY		LIMITS	3				
Dibromofluorometh	nane	100		(73 -	122)				
1,2-Dichloroethan	ne-d4	91		(61 -	128)				
Toluene-d8		100		(76 -	110)				
4-Bromofluorobenz	ene	98		(74 -	116)				

Client Sample ID: ANG-MW-17(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-008	Work Order #:	L72XA1AA	Matrix WG
Date Sampled: 10/05/10 14:30	Date Received:	10/06/10	
Prep Date: 10/13/10	Analysis Date:	10/13/10	
Prep Batch #: 0287174			
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	0.95 J	1.0	ug/L
Xylenes (total)	1.2 J	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(73 - 122)	
1,2-Dichloroethane-d4	103	(61 - 128)	
Toluene-d8	100	(76 - 110)	
4-Bromofluorobenzene	101	(74 - 116)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-19(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-009 Date Sampled: 10/05/10 14:25 Prep Date: 10/14/10 Prep Batch #: 0288153		10/06/10	Matrix WG
Dilution Factor: 6.25	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND J	6.2	ug/L
Ethylbenzene	100	6.2	ug/L
Xylenes (total)	18	12	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 122)	
1,2-Dichloroethane-d4	106	(61 - 128)	
Toluene-d8	102	(76 - 110)	
4-Bromofluorobenzene	102	(74 - 116)	

Client Sample ID: ANG-MW-8(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-010 Date Sampled: 10/05/10 15:40 Prep Date: 10/13/10 Prep Batch #: 0287174		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(73 - 122)	
1,2-Dichloroethane-d4	104	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	92	(74 - 116)	

Client Sample ID: ANG-MW-15(10/2010)

GC/MS Volatiles

Lot-Sample #:	A0J060452-011	Work Order #:	L72XF1AA	Matrix WG
Date Sampled:	10/05/10 15:50	Date Received:	10/06/10	
Prep Date:	10/13/10	Analysis Date:	10/13/10	
Prep Batch #:	0287174			
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
		Method:	SW846 8260	В
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Benzene		5.3	1.0	ug/L
			1.0	
Ethylbenzene		9.8	(U-2012) (E)	ug/L
Xylenes (total)		0.72 J	2.0	ug/L
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluorometh	nane	100	(73 - 122)	
1,2-Dichloroethan	ne-d4	101	(61 - 128)	
Toluene-d8		107	(76 - 110)	
4-Bromofluorobenz	zene	102	(74 - 116)	
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-11(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-012 Date Sampled: 10/05/10 16:50 Prep Date: 10/13/10 Prep Batch #: 0287174		10/06/10	Matrix WG
Dilution Factor: 1.67	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	26	1.7	ug/L
Ethylbenzene	7.8	1.7	ug/L
Xylenes (total)	9.5	3.3	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	(73 - 122)	
1,2-Dichloroethane-d4	99	(61 - 128)	
Toluene-d8	106	(76 - 110)	
4-Bromofluorobenzene	101	(74 - 116)	

Client Sample ID: ANG-DUP-01(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060	0452-013 Work	Order #: I	L72XH1AA	Matrix	x	WG
Date Sampled: 10/05	/10 16:00 Date	Received: 1	10/06/10			
Prep Date: 10/14/	/10 Anal	ysis Date: 1	10/14/10			
Prep Batch #: 028819	53					
Dilution Factor: 5	Init	ial Wgt/Vol: 5	5 mL	Final	Wgt/Vol:	5 mL
	Meth	od S	SW846 82601	3		
		F	REPORTING			
PARAMETER	RESU	LT I	LIMIT	UNITS		
Benzene	2.7	J 5	5.0	ug/L		
Ethylbenzene	120	5	5.0	ug/L		
Xylenes (total)	24	1	10	ug/L		
	PERCI	ENT F	RECOVERY			
SURROGATE	RECO	JERY I	LIMITS			
Dibromofluoromethane	106	((73 - 122)			
1,2-Dichloroethane-d4	107	((61 - 128)			
Toluene-d8	102	((76 - 110)			
4-Bromofluorobenzene	105	((74 - 116)			
NOTE(S):						

J Estimated result. Result is less than RL.

Client Sample ID: ANG-TRIPBLANK-02(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-014 Date Sampled: 10/05/10 Prep Date: 10/13/10 Prep Batch #: 0287174	Work Order #: Date Received: Analysis Date:	10/06/10	Matrix: WQ
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>	SW846 8260	Final Wgt/Vol: 5 mL
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 102 103 100 91	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)	

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Analytical Results Report Cover Sheet

For VTA Project Number 201108

Total Number of Pages Including This Cover: 32

Please refer to the bottom of each page for identification of the individual page number.

The results in this report refer to samples collected by the Client.

Results from samples collected by the Client or an associated party relate to the samples or components within as received by the laboratory.

This report is part of a multipart document, and should only be evaluated in its entirety.

Partial reproduction is prohibited without the prior written consent of Vapor Trail Analytics LLC.

Please refer to the chain of custody for additional sample information.

Any deviations from, additions to, exclusions from, or non-standard conditions that may affect the quality of the results are communicated in the report in text or qualifier form. The following data qualifiers are defined and, where necessary, are utilized on an individual analyte basis in the report:

- B The method blank contained trace levels of analyte; refer to the method blank report.
- E The calibration limit was exceeded; the associated numerical value is the approximate concentration of analyte in the sample.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

Narrative

The sample identified as 1431 on the chain of custody was not analyzed since a multibed active tube was inadvertently utilized for passive sampling. The 30-day passive indoor air sample ID 1421 was analyzed twice, but no analyte signals were obtained, despite the fact that the field blank analysis was normal. Due to carryover from samples immediately prior to this project, certain analytes had to be qualified as rejected; R data is rejected due to continuing calibration %D values > ±90%. For these cases, the initial calibration RSDs were acceptable for all analytes.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107792

Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1408

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ^{·3})	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.36	0.07	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.76	0.10	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	0.22	0.04	
Benzene	1.00	0.07	0.50	0.15	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107792

Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1408

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	\underline{RL}	Result	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	0.17	0.04	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.12	0.03	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	3.34	0.75	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.07	1.25	0.28	
Methyl acetate	1.00	0.17	ND	ND	4
Methylcyclohexane	1.00	0.03	0.13	0.03	
o -Xylene	1.00	0.03	0.52	0.12	
Styrene	1.00	0.03	3.60	0.83	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	1.08	0.28	В
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.11	0.02	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-22.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 120013 Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1409

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

1	•	(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.05	0.01	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	*
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume, ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120013 Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1409

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m⁻³)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.07	ND	ND	
Methyl acetate	1.00	0.17	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND .	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.04	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-17.D

Jack D. Fox PhD, Technical Director

Signature:

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107800

Field Location: Sub-Slab Dupe Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1410

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.29	0.05	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	0.08	0.01	R
1,4-Dichlorobenzene	1.00	0.03	0.08	0.01	R
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107800

Field Location: Sub-Slab Dupe Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1410

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 3/21/11

Lab Project Number: 201108

· · · · · · · · · · · · · · · · · · ·		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	0.36	0.07	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	1.31	0.30	
Isopropylbenzene	1.00	0.03	0.06	0.01	J
m,p-Xylenes	1.00	0.03	0.58	0.13	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	0.28	0.06	
Styrene	1.00	0.03	1.12	0.26	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	0.44	0.11	В
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 032111-6.D

Signature:

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 120012

Field Location: Sub-Slab Dupe Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1411

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.06	0.01	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120012

Field Location: Sub-Slab Dupe

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1411

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻⁵)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.07	ND	ND	
Methyl acetate	1.00	0.18	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-18.D

Signature:____

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107791

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1412

Date Sampled: 2/7-8/11 Date Received: 2/11/11

Date Analyzed: 3/17/11

Lab Project Number: 201108

. ,,		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	0.06	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107791

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1412

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	Qualifiers
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	0.06	0.03	ND	ND	
Methyl acetate	0.15	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 031711-6.D

Signature:__

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 120016

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1413

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	· ND	•
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	0.06	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120016

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1413

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

•		(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	0.06	0.03	ND	ND	
Methyl acetate	0.15	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 02

022811-19.D

Signature:__

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796

phone 315.445.2554

Field Location: Indoor Air DupeClient Project Number: 0116255,2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1414

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

1 71		, -3s	-3.		
		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.00	0.04	0.21	0.04	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.74	0.09	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.08	0.02	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	0.15	0.03	R
Benzene	1.00	0.07	0.81	0.25	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.27	0.04	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796

Field Location: Indoor Air Dupe Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1414

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	Qualifiers
Chloroform	1.00	0.04	0.18	0.04	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.76	0.22	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.43	0.10	
Isopropylbenzene	1.00	0.03	0.07	0.01	J
nı,p -Xylenes	1.00	0.07	1.06	0.24	
Methyl acetate	1.00	0.18	ND	ND	
Methylcyclohexane	1.00	0.03	0.41	0.10	
o -Xylene	1.00	0.03	0.46	0.10	
Styrene	1.00	0.03	0.51	0.12	J
Tetrachloroethene	1.00	0.03	0.22	0.03	
Toluene	1.00	0.03	1.61	0.42	В
trans -1,2-Dichloroethene	1.00	0.03	0.09	0.02	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.05	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 031711-7.D

Signature:_

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120020

Field Location: Indoor Air Dupe Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1415

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

1 71		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; μ g·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120020

Field Location: Indoor Air Dupe Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1415

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

. ,,		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.07	ND	ND	
Methyl acetate	1.00	0.18	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-20.D

Signature:_

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107798

phone 315.445.2554

Field Location: Ambient Outdoor Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1416

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	$\underline{\mathbf{RL}}$	Result	<u>Result</u>	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.04	0.01	•
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.70	0.08	
1,1-Dichloroethane	1.00	0.03	ND.	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.05	0.01	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	0.73	0.21	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	0.04	0.00	R
Carbon tetrachloride	1.00	0.03	0.25	0.04	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107798

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1416

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

- · · ·		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	0.06	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.07	0.02	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.15	0.03	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p -Xylenes	1.00	0.07	0.39	0.08	
Methyl acetate	1.00	0.16	ND	ND	
Methylcyclohexane	1.00	0.03	0.21	0.05	
o-Xylene	1.00	0.03	0.15	0.03	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	0.11	0.02	
Toluene	1.00	0.03	0.66	0.16	В
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.06	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 031711-8.D

Signature:

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120018

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Back-up Tube

Lab Sample Number: 1417

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

* **	1		.,		
		(μg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
Analyte	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.05	0.01	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120018

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Back-up Tube

Lab Sample Number: 1417

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

•		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	\underline{RL}	<u>Result</u>	Result	<u>Qualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.03	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-21,D

Signature:

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Field Blank Report for Air

Field ID Number: 107797
Field Location: Active Blank

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Field Blank for Active Sampling

Dilution Factor: 1

(n	\sim	١.	
(n	ø	1	

Lab Sample Number: 1418				
Date Sampled: 2/7/11				
Date Received: 2/11/11				
Date Analyzed: 2/28/11				

Lab Project Number: 201108

(ng)

	\ - -6/	(3.5)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,1,2,2-Tetrachloroethane	1.0	ND
1,1,2-Trichloroethane	1.0	ND
1,1,2-Trichlorotrifluoroethane	1.0	ND
1,1-Dichloroethane	1.0	ND
1,1-Dichloroethene	1.0	ND
1,2,4-Trichlorobenzene	1.0	ND
1,2-Dibromo-3-chloropropane	1.0	ND
1,2-Dibromoethane	1.0	ND
1,2-Dichlorobenzene	1.0	ND
1,2-Dichloroethane	1.0	ND
1,2-Dichloropropane	1.0	ND
1,3-Dichlorobenzene	1.0	ND
1,4-Dichlorobenzene	1.0	ND
Benzene	2.0	ND
Bromodichloromethane	1.0	ND
Bromoform	1.0	ND
Carbon disulfide	1.0	ND
Carbon tetrachloride	1.0	ND
Chlorobenzene	1.0	ND

Comments: ng = nanograms. ND = Not Detected

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Field Blank Report for Air

Field ID Number: 107797 Field Location: Active Blank

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Field Blank for Active Sampling

Dilution Factor: 1

(ng)

Lab Sample Number: 1418

Date Sampled: 2/7/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

	١٠٥٠	٠ ٠,
<u>Analyte</u>	Reporting Limit	Mass on Tube
Chloroform	1.0	ND
cis -1,2-Dichloroethene	1.0	ND
cis -1,3-Dichloropropene	1.0	ND
Cyclohexane	1.0	ND
Dibromochloromethane	1.0	ND
Ethylbenzene	1.0	ND
Isopropylbenzene	1.0	ND J
m,p-Xylenes	2.0	ND
Methyl acetate	5.0	ND
Methyl tert -butyl ether	1.0	ND
Methylcyclohexane	1.0	ND
Methylene chloride	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND J
Tetrachloroethene	2.0	ND
Toluene	1.0	ND
trans -1,2-Dichloroethene	1.0	ND
trans -1,3-Dichloropropene	1.0	ND
Trichloroethene	1.0	ND

Comments: ng = nanograms. ND = Not Detected

Data File:

022811-16.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: 120011

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

(ng)

Lab Sample Number: 1419

Date Sampled: NA

Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

	• •	
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,1,2,2-Tetrachloroethane	1.0	ND
1,1,2-Trichloroethane	1.0	ND
1,1,2-Trichlorotrifluoroethane	1.0	ND
1,1-Dichloroethane	1.0	ND
1,1-Dichloroethene	1.0	ND
1,2,4-Trichlorobenzene	1.0	ND
1,2-Dibromo-3-chloropropane	1.0	ND
1,2-Dibromoethane	1.0	ND
1,2-Dichlorobenzene	1.0	ND
1,2-Dichloroethane	1.0	ND
1,2-Dichloropropane	1.0	ND
1,3-Dichlorobenzene	1.0	ND
1,4-Dichlorobenzene	1.0	ND
Benzene	2.0	ND
Bromodichloromethane	1.0	ND
Bromoform	1.0	ND
Carbon disulfide	1.0	ND
Carbon tetrachloride	1.0	ND
Chlorobenzene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Signature:_

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: 120011

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

(ng)

Lab Sample Number: 1419

Date Sampled: NA
Date Received: 2/11/11

Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

	\ - 0/	\ - -0/
<u>Analyte</u>	Reporting Limit	Mass on Tube
Chloroform	1.0	ND
cis -1,2-Dichloroethene	1.0	ND ·
cis -1,3-Dichloropropene	1.0	ND
Cyclohexane	1.0	ND
Dibromochloromethane	1.0	ND
Ethylbenzene	1.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	5.0	ND
Methyl tert -butyl ether	1.0	ND
Methylcyclohexane	1.0	ND
Methylene chloride	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND
Tetrachloroethene	2.0	ND
Toluene	1.0	ND
trans -1,2-Dichloroethene	1.0	ND
trans -1,3-Dichloropropene	1.0	ND
Trichloroethene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

022811-15.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: 140420

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

(ng)

Lab Sample Number: 1420

Date Sampled: NA
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,1,2,2-Tetrachloroethane	1.0	ND
1,1,2-Trichloroethane	1.0	ND
1,1,2-Trichlorotrifluoroethane	1.0	ND
1,1-Dichloroethane	1.0	ND
1,1-Dichloroethene	1.0	ND
1,2,4-Trichlorobenzene	1.0	ND
1,2-Dibromo-3-chloropropane	1.0	ND
1,2-Dibromoethane	1.0	ND
1,2-Dichlorobenzene	1.0	ND
1,2-Dichloroethane	1.0	ND
1,2-Dichloropropane	1.0	ND
1,3-Dichlorobenzene	1.0	ND
1,4-Dichlorobenzene	1.0	ND
Benzene	2.0	ND
Bromodichloromethane	1.0	ND
Bromoform	1.0	ND
Carbon disulfide	1.0	ND
Carbon tetrachloride	1.0	ND
Chlorobenzene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

(ng)

Field ID Number: 140420

Field Location: NA

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1420

Date Sampled: NA
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

(ng)

	\ O ₂	\ U/
<u>Analyte</u>	Reporting Limit	Mass on Tube
Chloroform	1.0	ND
cis -1,2-Dichloroethene	1.0	ND
cis -1,3-Dichloropropene	1.0	ND
Cyclohexane	1.0	ND
Dibromochloromethane	1.0	ND
Ethylbenzene	1.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	5.0	ND
Methyl tert -butyl ether	1.0	ND
Methylcyclohexane	1.0	ND
Methylene chloride	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND
Tetrachloroethene	2.0	ND
Toluene	1.0	1.1
trans -1,2-Dichloroethene	1.0	ND
trans -1,3-Dichloropropene	1.0	ND
Trichloroethene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

031711-9.D

Signature:

Jack D. Fox PhD, Technical Director .

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Analysis Report for Air

Field ID Number: GO122008 Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1421
Dates Sampled: 1/10-2/8/11
Date Received: 2/11/11
Date Analyzed: 2/21/11
Lab Project Number: 201108

	(μg·m ⁻³)	(μg·m ⁻³)
<u>Analyte</u>	Reporting Limit	<u>Result</u>
1,1,1-Trichloroethane	0.06	NASD J
1,2-Dichloroethane	0.05	NASD
Benzene	0.04	NASD B
Chloroform	0.05	NASD
Cyclohexane	0.05	NASD
Ethylbenzene	0.05	NASD
Isopropylbenzene	0.05	NASD
m,p-Xylenes	0.04	NASD
Methyl acetate	0.05	NASD J
Methylcyclohexane	0.05	NASD
o-Xylene	0.05	NASD
Styrene	0.05	NASD J
Tetrachloroethylene	0.05	NASD
Toluene	0.05	NASD
Trichloroethylene	0.05	NASD

Comments: $\mu g \cdot m^{-3} = \text{micrograms per cubic meter. ND} = \text{Not Detected.}$

NASD = No Analyte Signals Detected; tube contamination or anomaly indicated

Data File: 022111-15.D, 022211-4.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Tentatively Indentified Compounds in Air

Field ID Number: GO122008

Field Location: Indoor Air

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Long-Term Passive Indoor Air

(ng)

Compound

Mass on Tube

Lab Sample Number: 1421

Dates Sampled: 1/10-2/8/11 Date Received: 2/11/11 Date Analyzed: 2/21/11 Lab Project Number: 201108

(μg·m⁻³)

Estimated Concentration

NASD = No Analyte Signals Detected; tube contamination or anomaly indicated.

Comments: ng = nanograms.

Data File:

022111-15.D, 022211-4.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Field Blank Report for Air

Field ID Number: GO122028 Field Location: Passive Blank

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Field Blank for Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1422
Date Sampled: 1/10/11
Date Received: 2/11/11
Date Analyzed: 2/21/11
Lab Project Number: 201108

(m m)

(ng)	(ng)
Reporting Limit	Mass on Tube
1.0	ND J
1.0	ND
2.0	2.9 B
1.0	ND
1.0	ND
2.0	ND
1.0	ND
2.0	ND
1.0	ND J
1.0	ND
1.0	ND
1.0	ND J
1.0	ND
2.0	ND
1.0	ND
	1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

Comments: ng = nanograms. ND = Not Detected.

Data File: 022111-14.D

I. J. D. E... DI-D. T. 3

Signature:_

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

(ng)

Laboratory Blank Report for Air

(ng)

Field ID Number: GO122005

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1423

Date Sampled: NA
Date Received: 2/11/11
Date Analyzed: 2/21/11
Lab Project Number: 201108

Analyte

	(6)	(1.6)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	2.0	2.5
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND
Tetrachloroethylene	1.0	ND
Toluene	2.0	ND
Trichloroethylene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File: 022111-13.D

Signature:

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway

Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Laboratory Blank Report for Air

Field ID Number: GO122047

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1424

Date Sampled: NA Date Received: 2/11/11 Date Analyzed: 2/21/11

Lab Project Number: 201108

ctor: 1		
	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	2.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND

1.0

2.0

1.0

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File: 022111-17,D

Toluene

Tetrachloroethylene

Trichloroethylene

Signature:

Jack D. Fox PhD, Technical Director

ND

ND

ND

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Volatiles and Semivolatiles Characterization
Office: 16015 Lomond Shores, Kendall, NY 14476 USA

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

Rev 0 Effective 15 Apr 2008

COMPENDIUM METHOD TO-17 FIELD TEST DATA SHEET (FTDS)

I. Gen	eral Inforn	nation								
Project	: ANG	DGI- Ro	un toch	VI	Date	e(s) Samp	led: <u>Z/7/</u>	2011-7	zlelzo	1
-	RAMTECH						Sampled: _			
	on: <u>6160</u> J			racuse h			Sonts 1			
	nent Mode						7:		75-7	<u> </u>
	Serial No.:			1			erial No.: _		763-1	
i ump		01, 1906				No		1	100	
	, , _	- 17 (100	•	Snow						
Sampli	ng Tube A	dsorbent	Cartridge	e Informat	tion					
Tube T	ype:	S 5								
Adsort	ent(s):	TA-	170-	5TD						
II. Sam	pling Dat	a								
		Ambient	Ambient	Pre-	Initial	Post-	Final	Total	Mean	Total
Tube	Sampling	Temp.	Pressure	Sampling	Sampling	Sampling	Sampling	Time	Flow	Sample
ID	Location	(°F)	(in, Hg)	Flow Rate (mL/min)	Time	Flow Rate (mL/min)	Time	(min)	Rate	Volume (mL) ¹
		2 65	7000		2/7/11	· ,	7/8/11 19:03	1440	(mL/min)	
	Sub-slab	1	79.86	18-22	19:03	18-22	1 14:03		Z0 1	28,300
120013	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Y	2 7 11 16:03	<u> </u>	zlel11 14:03	4	+	<u> </u>
	sub-slab			18-22	7711 14:03	18-22	10111 19:03	1440	70	28,800
120012	. ↓			4	↓		√	4	*	Ψ
107791	indoor			20-28	2/7/11 19:06	18-28		144	23	33,143
120016	4		V	1	₩	+	1	1	4	↓
III. Fie	ld Audit		* 40	rst tube						
	ore- and po ist the rele				gree to wit	hin 10%?	Yes	□ No)	
•			•							
•			_	_	ater than 5	000 mL?	∠ Yes	∐ No	i	
If so, lis	st the relev	ant tube l	Ds here:	AIL +	Labes				4	
¹ This v	will be veri	ified using	the rota	meter cali	bration at	the Analy	tical Labor	ratorv.		

Volatiles and Semivolatiles Characterization
Office: 16015 Lomond Shores, Kendall, NY 14476 USA

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

Rev 0 Effective 15 Apr 2008

COMPENDIUM METHOD TO-17 FIELD TEST DATA SHEET (FTDS)

I. Gene	eral Infort	nation								
Site: Location Instrum Pump S Sampli Tube T Adsort	nent Mode	d Engine And Andrews A	ceriae vey Dr. 7 Rekot 7737, 190 Cartridge	Syracuse, Pumps SSI, 19201, Rain:	Tim , NY Ope Cal: Rot Yes	e Period S erator: <u>R</u> ibrated By	7: _	D. My	ors	
Tube ID	Sampling Location	Ambient Temp. (°F)	Ambient Pressure (in. Hg)	Pre- Sampling Flow Rate (mL/min)	Initial Sampling Time	Post- Sampling Flow Rate (mL/min)	Final Sampling Time	Total Time (min)	Mean Flow Rate (mL/min)	Total Sample Volume (mL) ¹
107796	indoor	65	Z9.86	18-22	2/7/11 14:08	16-21	2 8 11 14:08	1440	19	27,360
20020	4	+		1	4	4	4	4	4	4
107798	ambjent outdoor	Z.Z.	,	18-24	यसमा १४:15	18-22	78 11 19:24	1449	75	39479
120018	1	-	\downarrow	4	4	4	4	<i>\(\)</i>	4	4
-	ì							,		
			·							
Do all p	Id Audit ore- and poist the rele			•	gree to wit	hin 10%?	Yes	□ No)	
Are any If so, lis	y apparent st the relev	total sam ant tube I	pling vol Ds here: ₋	umes grea	ater than 5	000 mL?	Yes	☐ No		
¹ This v	vill be veri	fied using	g the rotai	meter cali	bration at	he Analy	tical Labor	atory.		

Lab: 179 Lake Avenue, Rochester, New York 14608 USA Phone (585) 727-2825

		_												k	rk-			,		7	<u> Z</u>					_	
Page 10 F 2		LAB PROJECT #: CLIENT PROJECT #:	101108 O16255.2A	REOUESTED TURNAROUND TIME	STD SAMEDAY	13	Quotation #	1171	Remarks Number		80H/ Spls-gns	5 wy- 5/65- Dep 1410 1411	1, Joan A) 1 14/3	1/4/4	Anticat Cutter 1416 THIS	l	27 (27)	1902 Jan		1(1100 e1) 1 g	-BZ (140420)1420	`	(2 8/11 ZO:00	Dale/Ime	Date/Time	Date/Time 20	//// /// Date/Time
CHAIN OF CUSTODY RECORD	SEND INVOICE TO:	MPANY:		STATE: ZIP:	. Van r			REQUESTED ANALYSIS		Pω	×	X	<u>×</u>		×	*		ε		7	7				\c	/x	1/4 m
CHAIN OF	Ö	FERSON/COMPANY	Prkva ADDRESS:	STATE: NY ZIP. 152.14 CITY:	S-445-2554 PHONE: FAX:	Mr. cong EMAIL:			Matrix Containers		Salyski	৭ খs-৭স্ড	Jeopu:	Jackii	ambient		20-02y	-,	Ø. 7		Receiving:	П		Sampled By	Relinquished By	Received By	Received At Lab By
	SEND REPORT TO	PERSON/COMPANY: DAVE Myers	ADDRESS: 5788 WISKURTOS PARKURY	CITY: Dewift STAT	PHONE: FAX: 315-7535-7539 315-445-2554	EMAIL: DOUC, MYERS @ EDWA, COIN	COMMENTS:		Time Sample Type	hish.	s active 24-har		*	•	- 3-	active field blank			passive Field blank			NELAC Compliance	N/A x W/N	N X Y/V	· · · · · · · · · · · · · · · · · · ·		
Stratospheric	Pertormance	PER	AD	CIT	PHC				Sample Date Sample Time	Finish F	1102/8/2 1102/4/2	1501) 218/2011 19:03 19:03		_	1102/8/2 /102/E/2)102/±/2	1102/L/2 1102/t		242/243/244	eter	ıture:	Time:	General Comments:		
	Vapor I rail		179 Lake Avenue	Rochester, New York 14608 USA	1 HOUR: (202) 121-2002 F3	PROJECT/SITE:	ANG DGI-RAMTECH VI		Sample Identification Sam	<u> </u>		2 107800-[26012		4 107796-120020 2/3	810001-				9 6015 7992	10 13001	40 4 10 Sample Condition: Per NELAC/ELAP 210/241/242/243/244	Receipt Parameter	$\mathcal{Z}_{\mathcal{S}}^{\mathfrak{d}}$ Temperature:		Comments: Genera		

		ric		CHAI	NOFCL	CHAIN OF CUSTODY RECORD	ECORD	Phas	Pro 2072
Analytics	Performance	93	SEND REPORT TO:		S	SEND INVOICE TO:	TO:	-6:	
		PERSON/CO	MPANY:		PERSON/COMPANY:	NY:		LAB PROJECT #:	CLIENT PROJECT #:
179 Lake Avenue Rochester, New York 14608 USA Phone: (585) 727-28 65- 25		ADDRESS: CITY:	ADDRESS: 5788 Widowhis Rikwy CITY. Dev: H	ZEISZIY	ADDRESS: CITY:	IS drag	STATE: ZIP:	301108 OUICESS.	OI 6255.2A
PROJECT/SITE:		PHONE: FAX	PHONE FAX' 3K-23F-2038/ 345-4445-5543 EMAIL: OLVG. MyG-5 @ EPM, GOM	-2543 / Gon	PHONE: FAX: EMAIL:			1	STD SAME DAY
ANG DGI-Ranted VI	A	COMMENTS:						Quotation #	
						REQUESTED ANALYSIS	ANALYSIS		5 5
Sample Identification Samp	le Date	Sample Time	Sample Type	Matrix	Number Containers	F1-OI POW		Remarks	VIA Sample Number
1 60122008		1-	Rssive 30-02V	inden	-				1431
								do not run	1431
			Passive blank	ر ۔۔	\rightarrow				1422
: ——gr		7	60122005					> 681	1423
チャ	n/n/z	1	G0122047					787 €	1424
9						,			
8									
6									
10									
Sample Condition: Per NELAC/ELAP 210/241/242/243/244	11/242/243/244			Receiving	ng:				
Recei	Parameter Femperature:		NELAC Compliance		1			2/8/24/ 20:00	9
	Holding Time:			Sampled By))			Date/Time	
Comments:	General Comments:			Relinquished By	hed By Sawyer	7		Date/Time	70
				Received By	ed Bu		6	Date/Time	30
				Кесегуед	Received At Lab By			Date/ 1me	

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Analytical Results Report Cover Sheet

For VTA Project Number 201102 Total Number of Pages Including This Cover: 25

Please refer to the bottom of each page for identification of the individual page number.

The results in this report refer to samples collected by the Client.

Results from samples collected by the Client or an associated party relate to the samples or components within as received by the laboratory.

This report is part of a multipart document, and should only be evaluated in its entirety. Partial reproduction is prohibited without the prior written consent of Vapor Trail Analytics LLC. Please refer to the chain of custody for additional sample information.

Any deviations from, additions to, exclusions from, or non-standard conditions that may affect the quality of the results are communicated in the report in text or qualifier form. The following data qualifiers are defined and, where necessary, are utilized on an individual analyte basis in the report:

- B The method blank contained trace levels of analyte; refer to the method blank report.
- E The calibration limit was exceeded; the associated numerical value is the approximate concentration of analyte in the sample.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

Narrative

Due to the inadvertent switching of active and passive field blank tubes, the results in this study are reported without the use of the labeled field blank (sample 1352). Given that the samples were collected with the primary (front) sorbent tubes backed up, taken together with the fact that none of the backup tubes demonstrated that breakthrough had occurred, the backup tube results can be considered to be functionally equivalent to field blanks. In our professional opinion, the quality of the sample results in this study has not been affected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140403

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1342

Date Sampled: 1/10/11 Date Received: 1/14/11

Date Analyzed: 1/19/11

Lab Project Number: 201102

		(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	Result	Result	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	0.40	0.07	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	0.45	0.08	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	2.10	0.27	J.
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	0.05	0.01	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.10	0.02	
1,2-Dichloropropane	1.00	0.03	0.03	0.01	
1,3-Dichlorobenzene	1.00	0.03	0.13	0.02	
1,4-Dichlorobenzene	1.00	0.03	0.12	0.02	
Benzene	1.00	0.03	0.77	0.24	В
Bromodichloromethane	1.00	0.03	0.04	0.01	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.72	0.11	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140403

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1342

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m˙³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
Chloroform	1.00	0.03	0.25	0.05	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	3.52	1.00	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.25	0.06	
Isopropylbenzene	1.00	0.03	0.04	0.01	
m,p -Xylenes	1.00	0.03	0.53	0.12	
Methyl acetate	1.00	0.03	0.10	0.03	В
Methylcyclohexane	1.00	0.03	3.62	0.88	
o -Xylene	1.00	0.03	0.22	0.05	
Styrene	1.00	0.03	0.30	0.07	
Tetrachloroethene	1.00	0.03	0.38	0.05	
Toluene	1.00	0.03	1.31	0.34	•
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.03	0.005	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic metery

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-21.D

11-21.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140401

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1343

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

*		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140401

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1343

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	, (μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND ·	ND ·	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meters:

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-16.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140415

Field Location: Sub-Slab Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1344

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	0.07	0.01	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.30	0.04	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	. 1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.24	0.07	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140415

Field Location: Sub-Slab Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1344

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m¯)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.04	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	•
Cyclohexane	1.00	0.03	0.36	0.10	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.20	0.05	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p-Xylenes	1.00	0.03	0.10	0.02	
Methyl acetate	1.00	0.03	0.08	0.02	В
Methylcyclohexane	1.00	0.03	0.51	0.12	•
o-Xylene	1.00	0.03	0.06	0.01	
Styrene	1.00	0.03	1.49	0.34	
Tetrachloroethene	1.00	0.03	0.10	0.01	
Toluene	1.00	0.03	0.39	0.10	
trans -1,2-Dichloroethene	1.00	0.03	0.13	0.03	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter:

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-22.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1345

Date Sampled: 1/10/11 Date Received: 1/14/11

Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.04	0.005	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.03	0.01	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1345

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(μg·m ⁻³)	$(\mu g \cdot m^{-3})$	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	0.17	0.04	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	•
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	0.03	0.01	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-17.D

Signature:__

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1346

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.11	0.03	0.29	0.05	
1,1,2,2-Tetrachloroethane	1.11	0.03	ND	ND	
1,1,2-Trichloroethane	1.11	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.11	0.03	1.06	0.14	J
1,1-Dichloroethane	1.11	0.03	ND	ND	
1,1-Dichloroethene	1.11	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.11	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.11	0.03	0.20	0.02	
1,2-Dibromoethane	1.11	0.03	ND	ND	
1,2-Dichlorobenzene	1.11	0.03	ND	ND	
1,2-Dichloroethane	1.11	0.03	ND	ND	
1,2-Dichloropropane	1.11	0.03	ND	ND	
1,3-Dichlorobenzene	1.11	0.03	ND	ND	
1,4-Dichlorobenzene	1.11	0.03	0.04	0.01	
Benzene	1.11	0.03	0.34	0.10	В
Bromodichloromethane	1.11	0.03	ND	ND	
Bromoform	1.11	0.03	ND	ND	
Carbon tetrachloride	1.11	0.03	3.53	0.55	
Chlorobenzene	1.11	0.03	ND.	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1346

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.11	0.03	0.06	0.01	
cis -1,2-Dichloroethene	1.11	0.03	ND	ND	
Cyclohexane	1.11	0.03	0.76	0.22	
Dibromochloromethane	1.11	0.03	ND	ND	
Ethylbenzene	1. 11	0.03	0.51	0.12	
Isopropylbenzene	1. 11	0.03	ND	ND	
m,p-Xylenes	1.11	0.03	0.20	0.04	
Methyl acetate	1.11	0.03	ND	ND	
Methylcyclohexane	1.11	0.03	0.91	0.22	
o-Xylene	1.11	0.03	0.12	0.03	
Styrene	1.11	0.03	2.12	0.49	
Tetrachloroethene	1.11	0.03	0.14	0.02	
Toluene	1.11	0.03	0.57	0.15	
trans -1,2-Dichloroethene	1.11	0.03	0.33	0.08	J .
trans -1,3-Dichloropropene	1.11	0.03	0.08	0.02	
Trichloroethene	1.11	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 013111-6.D

Signature: Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1347

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

	(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	Qualifiers
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	•
1.00	0.03	0.25	0.03	J
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	DF RL 1.00 0.03	DF RL Result 1.00 0.03 ND 1.00 0.03 ND 1.00 0.03 ND 1.00 0.03 0.25 1.00 0.03 ND 1.00 0.03 <td>DF RL Result Result 1.00 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 0.25 0.03 1.00 0.03 ND ND 1.00 0.03 ND</td>	DF RL Result Result 1.00 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 0.25 0.03 1.00 0.03 ND ND 1.00 0.03 ND

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1347

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	0.03	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p -Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	0.10	0.02	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-18.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107793

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1348

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1 71		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.44	0.08	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	2.47	0.32	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	0.03	0.003	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.11	0.03	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	0.15	0.03	
Benzene	1.00	0.03	0.74	0.23	В
Bromodichloromethane	1.00	0.03	0.03	0.004	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.73	0.11	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107793

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1348

Date Sampled: 1/10/11

Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m⁻³)	(µg·m³)	(ppbv)	÷
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	0.26	0.05	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	2.55	0.73	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.28	0.06	
Isopropylbenzene	1.00	0.03	0.06	0.01	
m,p-Xylenes	1.00	0.03	0.27	0.06	
Methyl acetate	1.00	0.03	0.13	0.04	В
Methylcyclohexane	1.00	0.03	3.28	0.80	
o-Xylene	1.00	0.03	0.25	0.06	
Styrene	1.00	0.03	0.99	0.23	
Tetrachloroethene	1.00	0.03	0.36	0.05	
Toluene	1.00	0.03	1.19	0.31	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.04	0.01	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-24.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107797

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1349

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	. ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107797

Field Location: Indoor Air Duplicate Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1349

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Qualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; μg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-19.D Signature:

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107799

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1350

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·mິ)	(µg·m²)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.04	0.01	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	2.11	0.24	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.08	0.02	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.56	0.15	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.69	0.09	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107799

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1350

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1 71		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	0.07	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND .	
Cyclohexane	1.00	0.03	0.18	0.05	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.09	0.02	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p -Xylenes	1.00	0.03	0.11	0.02	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	0.27	0.06	
o-Xylene	1.00	0.03	0.10	0.02	
Styrene	1.00	0.03	0.15	0.03	
Tetrachloroethene	1.00	0.03	0.06	0.01	
Toluene	1.00	0.03	0.43	0.10	
trans -1,2-Dichloroethene	1.00	0.03	0.05	0.01	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.03	0.004	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-25,D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107798

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

phone 315.445.2554

Sample Type: Active Outdoor Air - Backup Tube

Lab Sample Number: 1351

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m³)	(µg·m⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	$\underline{\text{RL}}$	Result	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.05	0.01	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107798

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Backup Tube

Lab Sample Number: 1351

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

	•		(µg·m³)	(µg·m³)	(ppbv)	
<u>Analyte</u>		<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
Chloroform	:	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	:	1.00	0.03	ND	ND	
Cyclohexane		1.00	0.03	ND	ND	
Dibromochloromethane		1.00	0.03	ND	ND	
Ethylbenzene	:	1.00	0.03	ND	ND	
Isopropylbenzene	:	1.00	0.03	ND	ND	
m,p-Xylenes	:	1.00	0.03	ND	ND	
Methyl acetate	:	1.00	0.03	0.08	0.02	В
Methylcyclohexane	:	1.00	0.03	ND	ND	
o-Xylene		1.00	0.03	ND	ND	
Styrene	-	1.00	0.03	ND	ND	
Tetrachloroethene	:	1.00	0.03	ND	ND	
Toluene	-	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene		1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	:	1.00	0.03	ND	ND	
Trichloroethene		1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; μ g·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-20.D

Jack D. Fox PhD, Technical Director

Signature:

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: GO122076

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1353

Date Received: 1/14/11

(ng)

<u>Analyte</u>

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane

1,1,2-Trichlorotrifluoroethane

1,1-Dichloroethane 1,1-Dichloroethene

1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane

1,2-Dibromoethane

1,2-Dichlorobenzene 1,2-Dichloroethane

1,2-Dichloropropane 1,3-Dichlorobenzene

1,4-Dichlorobenzene

Benzene

Bromodichloromethane

Bromoform Carbon disulfide Carbon tetrachloride

Chlorobenzene

Comments: ng = nanograms. NA = Not Applicable.

Date Sampled: NA

Date Analyzed: 1/19/11

Lab Project Number: 201102

Mass on Tube Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected

Not Detected

Signature:

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: GO122076

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1353

Date Sampled: NA
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

(ng) Mass on Tube

Not Detected Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected Not Detected

Not Detected

Not Detected Not Detected

Not Detected Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

<u>Analyte</u>

Chloroform

cis -1,2-Dichloroethene

cis -1,3-Dichloropropene

Cyclohexane Dibromochloromethane

Ethylbenzene

Isopropylbenzene *m,p* -Xylenes

Methyl acetate Methyl tert -butyl ether

Methylcyclohexane Methylene chloride

o -Xylene

Styrene Tetrachloroethene

Toluene

011911-15.D

Data File:

trans -1,2-Dichloroethene trans -1,3-Dichloropropene

Trichloroethene

Comments: ng = nanograms. NA = Not Applicable.

Signature:_

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: GO125865

Field Location: NA

phone 315.445,2554

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1354

Date Sampled: NA
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

(ng)
Mass on Tube

Not Detected

Not Detected Not Detected

Not Detected

Not Detected

Not Detected Not Detected

Not Detected

Not Detected

Not Detected Not Detected

Not Detected Not Detected

Not Detected

<u>Analyte</u>

1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane
1,1,2-Trichlorotrifluoroethane

1,1-Dichloroethane
1,1-Dichloroethene
1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane 1,2-Dibromoethane

1,2-Dichlorobenzene1,2-Dichloroethane1,2-Dichloropropane

1,3-Dichlorobenzene 1,4-Dichlorobenzene

Benzene

Bromodichloromethane Bromoform Carbon disulfide Carbon tetrachloride

Chlorobenzene

Comments: ng = nanograms. NA = Not Applicable.

ne 1 odichloromethane Not Detected

Not Detected Not Detected Not Detected Not Detected

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: GO125865

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1354

Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

<u>Analyte</u>

Chloroform cis-1,2-Dichloroethene

cis -1,3-Dichloropropene

Cyclohexane

Dibromochloromethane

Ethylbenzene Isopropylbenzene

m,p-Xylenes

Methyl acetate

Methyl tert -butyl ether Methylcyclohexane

Methylene chloride

o-Xylene Styrene

Tetrachloroethene

Toluene

trans -1,2-Dichloroethene trans -1,3-Dichloropropene

Trichloroethene

Date Sampled: NA

(ng)

Mass on Tube

Not Detected

1

Not Detected

Comments: ng = nanograms. NA = Not Applicable.

Data File:

011911-28.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Volatiles and Semivolatiles Characterization
Office: 16015 Lomond Shores, Kendall, NY 14476 USA

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

Rev 0 Effective 15 Apr 2008

COMPENDIUM METHOD TO-17 FIELD TEST DATA SHEET (FTDS)

I. Gene	eral Inforn	nation								
Project Site: Location Instrum Pump S Sampli Tube T Adsort	ANG- RAM TO LIDO TO	Hawcocl Tech En Del No.:	(Sub-Sla (Sub-Sla (SS Dupli (Upwind Cartridge	cate)Rain: [Tim use Ope Cal Rot Yes	e Period Serator: \(\frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}{\fi		8:45 P	m to Rob Seuts	
Tube ID	Sampling Location	Ambient Temp. (°F)	Ambient Pressure (in. Hg)	Pre- Sampling Flow Rate (mL/min)	Initial Sampling Time	Post- Sampling Flow Rate (mL/min)	Final Sampling Time	Total Time (min)	Mean Flow Rate (mL/min)	Total Sample Volume (mL) ¹
107795	dol2-142	70°F	30.17	18-22	1-10-11 8:40 PM	20-24	8:40	1440	21	30,240
107796	↓		<u> </u>	18-22	1	Į.	↓	1	V	4
140415	Sub-Slab Stankoute			20-24	1-10-11 8:45 PM	22-26	1-11-11 8145	1440	22	31,680
140416	Ì			20-24	1	4	<u> </u>	<u> </u>	4	1
107799	Upwind	0.20°7	,	70-30	1-10-11 9:05 PM	20-26	1-11-11 9:10	1445	243	34725
107798	·l	+	1	20-30	\ \ \	Ł	¥	<u> </u>	4	1 34,6
III. Fie	ld Audit	* Firs	+ Tube							
-	ore- and po ist the rele				gree to wit	hin 10%?	X Yes	N	0	
	y apparent st the relev				ater than 5	000 mL?	× Yes	No)	
¹ This v	vill be veri	ified using	g the rota	meter cali	bration at	the Analy	tical Labor	ratory.		

Volatiles and Semivolatiles Characterization
Office: 16015 Lomond Shores, Kendall, NY 14476 USA

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

Rev 0 Effective 15 Apr 2008

COMPENDIUM METHOD TO-17 FIELD TEST DATA SHEET (FTDS)

	I. Gene	eral Inform	nation								
	Site:	: ANG - Am Tec on: 6100 nent Mode Serial No.:	h Enga o Fairu el No.: 19060	eering ay Dri	r Air)	<u>use</u> Ope	e Period Serator: \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	Sampled: _ <u>wid W. N</u>	8:50P	m to Rob Sast	<u> </u>
	Sampli	ng Tube A	dsorbent	Cartridg	e Informat	tion					
	Adsorb	ype:\$ pent(s): p ling Dat	TA KG1	Steel TD/66	5 TD						
	Tube ID	Sampling Location	Ambient Temp. (°F)	Ambient Pressure (in. Hg)	Pre- Sampling Flow Rate (mL/min)	Initial Sampling Time	Post- Sampling Flow Rate (mL/min)	Final Sampling Time	Total Time (min)	Mean Flow Rate (mL/min)	Total Sample Volume (mL) ¹
*	140403	Judeor Air	7°°F	30.12	18-22	1-10-11 B:50 PM	20-24	8.50	1440	اکہ	30,240
. [140401	\		Ì	18-22	V	1	1	<u>↓</u>	L	1
*	107793	TA Dup			20-22	8:22 PM	70-24	8:55	1440	'2 Z	31, 180
	107797		•		20-12	1	4	\downarrow	k	1	
Go	177032	Active Field Blank	70°F	4	NA	1-10-11					
	III. Field Audit										
		ist the rele				gree to wit		<u>K</u> res	∐ N		
	Are any	y apparent st the relev	t total sam vant tube l	npling vo IDs here:	lumes gre	ater than 5	000 mL?	X Yes	No	and the second s	
	¹ This v	vill be ver	ified usinį	g the rota	ımeter cali	bration at	the Analy	tical Labo	ratory.		

	Stratospheric	heric		CHAI	N OF CI	JSTODY	CHAIN OF CUSTODY RECORD		
		2211	SEND REPORT TO:	*	0 1	SEND INVOICE TO:	E TO:		
Allanyues		PERSON/CO		8.60	PERSON/COMPANY:	ANY:		LAB PROJECT #:	CLIENT PROJECT #:
179 Lake Avenue		ADDRESS:	ADDRESS: 5788 Without 1	Perkuay	ADDRESS:			201102	_
Rochester, New York 14608 USA		CITY: DEW!		STATE: NYZIP:13Z1Y	CITY:	ž K	STATE: ZIP:		
Phone: (585) 727- 2865- F		PHONE: FA3	PHONE: FAX: 315-235-3038/315-445-2542	£352-51	PHONE: FAX:			REQUESTED TURNAROUND TIME 	AROUND TIME STD SAMEDAY
PROJECT/SITE:		EMAIL: Dev	EMAIL: DLING, Myers @ ERM, com		EMAIL:			1 2 3	
		COMMENTS:	35:					Quotation #	
						REQUESTE	REQUESTED ANALYSIS		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	Number Containers	CI-OT LO		Remarks	VTA Sample Number
FOROM - Schohl		4		1.530		W >		Ý T	1342
110415-140416	11 0	0000	GC41VR 24-75	19) T		< >		Linguist Control	12 PHG 12 PHG
397795-101796		8:40		278-512		× ×		Sub-Slab	1346 1347
4		8:55		Triber D)r		×		4	1348 1349
5 107799-107798		9:05	>	Cock door		*		Ext Hamind	1350 1351
		9,00	Passive 30-Day			×		30-day Pasive	
G0122D3		8:35	Passium blank	Bienk		X		Field Blank	1352
8 60122028		9;00	Passive blank	Bienk	_	~		Field Blank	
80022100	->	9:00	PESSIUR 30-Day					30-day Assive	
10 140411 140420(achie)	chive)		Market Company				(octive)) L81 LR2	1353,354
Sample Condition: Per NELAC/ELAP 210/241/242/243/244	0/241/242/243/244			Receiving:	:Bu		Į.		
Receipt	Receipt Parameter		NELAC Compliance		6				
Comments	Temperature: 22^{6}		$N/4^x \square ^n \square$	C.	a la			01/11/10	
	Holding Time:			Sampled By				Date/Time	
Comments:	4 days			Relinquished By	ned By			Date/Time	
General Comments:	General Comments: ころこう	Story Const	1102/6/2 5	<u>ග්</u>	G. Gernder			Q	0939
wed has at moni			-	Received By		{\		Date/Time	
				Received.	Received At Lab By	X		Date/Time	105

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Analytical Results Report Cover Sheet

For VTA Project Number 201112
Total Number of Pages Including This Cover:

8

Please refer to the bottom of each page for identification of the individual page number.

The results in this report refer to samples collected by the Client.

Results from samples collected by the Client or an associated party relate to the samples or components within as received by the laboratory.

This report is part of a multipart document, and should only be evaluated in its entirety. Partial reproduction is prohibited without the prior written consent of Vapor Trail Analytics LLC. Please refer to the chain of custody for additional sample information.

Any deviations from, additions to, exclusions from, or non-standard conditions that may affect the quality of the results are communicated in the report in text or qualifier form. The following data qualifiers are defined and, where necessary, are utilized on an individual analyte basis in the report:

- B The method blank contained trace levels of analyte; refer to the method blank report.
- E The calibration limit was exceeded; the associated numerical value is the approximate concentration of analyte in the sample.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
- UJ The analyte was not detected at or above the Reporting Limit; however the associated numerical value is the approximate concentration of analyte in the sample.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Analysis Report for Air

Field ID Number: GO125843 Field Location: Passive Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1450
Dates Sampled: 2/7-3/8/11
Date Received: 3/14/11
Date Analyzed: 3/23/11
Lab Project Number: 201112

	(μg·m ⁻³)	(μg·m ⁻³)
<u>Analyte</u>	Reporting Limit	<u>Result</u>
1,1,1-Trichloroethane	0.06	1.55
1,2-Dichloroethane	0.05	0.10
Benzene	0.22	1.04
Chloroform	0.05	0.17
Cyclohexane	0.05	1.47
Ethylbenzene	0.11	0.55
Isopropylbenzene	0.05	0.11
m,p-Xylenes	0.08	1.10
Methyl acetate	0.05	0.22
Methylcyclohexane	0.05	1.64
o-Xylene	0.05	0.79
Styrene	0.24	ND
Tetrachloroethylene	0.05	0.27
Toluene	0.05	3.10
Trichloroethylene	0.10	0.31

Comments: $\mu g \cdot m^{-3} = micrograms$ per cubic meter. ND = Not Detected.

Data File:

032311-18.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Tentatively Indentified Compounds in Air

Field ID Number: GO125843

Field Location: Passive Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1450 Dates Sampled: 2/7-3/8/11

Date Received: 3/14/11
Date Analyzed: 3/23/11

Lab Project Number: 201112

	(ng)	(μg·m ⁻³)
Compound	Mass on Tube	Estimated Concentration
1,1-Difluoroethane	33	1.61
2-Methylbutane	18	0.88
Acetic acid	87	4.25
Aliphatic C ₉ Hydrocarbons	16	0.78
Ethanol	52	2.54
Ethyl acetate	7	0.35
Hexanal	9	0.44
Limonene	13	0.64
Methenamine	6	0.29
Methylcyclopentane	39	1.91
n -Decane	7	0.34
n -Heptane	18	0.88
Nonanal	10	0.49
<i>n</i> -Pentane	14	0.68
Pentanal	8	0.39
tert -Butyl alcohol	9	0.44
Trichlorofluoromethane	7	0.34
Trimethylpentanes	17	0.83

Comments: ng = nanograms.

Data File: 032311-18.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Analysis Report for Air

Field ID Number: GO124449

Field Location: Duplicate Passive Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1451 Dates Sampled: 2/7-3/8/11 Date Received: 3/14/11

Date Analyzed: 3/23/11 Lab Project Number: 201112

	(µg·m ⁻³)	(µg·m³)
<u>Analyte</u>	Reporting Limit	<u>Result</u>
1,1,1-Trichloroethane	0.06	1.42
1,2-Dichloroethane	0.05	0.09
Benzene	0.22	1.02
Chloroform	0.05	0.17
Cyclohexane	0.05	1.36
Ethylbenzene	0.11	0.50
Isopropylbenzene	0.05	0.10
m,p-Xylenes	0.08	0.95
Methyl acetate	0.05	0.17
Methylcyclohexane	0.05	1.39
o-Xylene	0.05	0.68
Styrene	0.24	ND
Tetrachloroethylene	0.05	0.25
Toluene	0.05	2.56
Trichloroethylene	0.10	0.27

Comments: $\mu g \cdot m^{-3} = micrograms$ per cubic meter. ND = Not Detected.

Data File: 032311-19.D Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Tentatively Indentified Compounds in Air

Field ID Number: GO124449

Field Location: Duplicate Passive Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1451

Dates Sampled: 2/7-3/8/11 Date Received: 3/14/11 Date Analyzed: 3/23/11 Lab Project Number: 201112

 $(\mu g \cdot m^{-3})$ (ng)

	, 0,	., •
Compound	Mass on Tube	Estimated Concentration
1,1-Difluoroethane	34	1.66
2,2,4-Trimethylpentane	5	0.24
2-Methylbutane	19	0.93
Acetic acid	59	2.88
Ethanol	23	1.12
Ethyl acetate	7	0.35
Hexanal	6	0.29
Limonene	13	0.64
Methyl salicylate	6	0.29
Methylcyclopentane	47	2.30
n -Decane	11	0.54
n -Heptane	13	0.64
Nonanal	10	0.49
n -Pentane	14	0.68
Pentanal	8	0.39
tert -Butyl alcohol	9	0.44
Trichlorofluoromethane	6	0.29
Trimethylpentanes	14	0.68
Undecane	16	0.8
: ng = nanograms.		1.
Data File: 032311-19.D	Signature:	JalD. tox

Comments:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Field Blank Report for Air

/-- --\

Field ID Number: GO157992 Field Location: Passive Blank

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Field Blank for Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1449

Date Sampled: 2/7/11
Date Received: 3/14/11
Date Analyzed: 3/23/11
Lab Project Number: 201112

, ,

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	5.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	5.0	ND
Tetrachloroethylene	1.0	ND
Toluene	1.0	ND
Trichloroethylene	2.0	ND

Comments: ng = nanograms. ND = Not Detected.

Data File:

032311-17.D

Signature

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Laboratory Blank Report for Air

Field ID Number: GO158987

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1452

Date Sampled: NA
Date Received: 3/14/11
Date Analyzed: 3/23/11
Lab Project Number: 201112

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
•		
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	5.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	5.0	ND
Tetrachloroethylene	1.0	ND
Toluene	1.0	ND
Trichloroethylene	2.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

032311-16.D

Signature.

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway

Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Laboratory Blank Report for Air

Field ID Number: GO158930

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1453

Date Sampled: NA
Date Received: 3/14/11
Date Analyzed: 3/23/11
Lab Project Number: 201112

(ng)

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	5.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	5.0	ND
Tetrachloroethylene	1.0	ND
Toluene	1.0	ND
Trichloroethylene	2.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

032311-20.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Stratospheric Stratospheric	Stratospheric	heric		CHAI	CHAIN OF CUSTODY RECORD	CORD		
			SEND REPORT TO:		SEND INVOICE TO:			
Analytics		PERSON/CO	PERSON/COMPANY: Rob Sonts 1 ERM	2	PERSON/COMPANY:		LAB PROJECT #: C	CLIENT PROJECT #:
179 Lake Avenue		ADDRESS:	5788 Widewater		ADDRESS:		201113	
Rochester, New York 14608 USA		CITY: Dewitt	W. H STATE, NYTP 1321		CITY: SEM (STATE:	z ZIP:	REQUESTED TURNAROUND TIME	OUND TIME
Phone: (585) 727-2865		PHONE: FA	PHONE FAX: 715-233-3038 (315-445-2545		PHONE: FAX:		,	STD SAME DAY
PROJECT/SITE: ANG HAN COCK	ž	EMAIL: R	EMAIL: Robad. Sonts@ERM. com		EMAIL: Duc. Mycrs/28Pm.	m. com	1 2 3	
Rantech Engineering	ير أمع	COMMENTS:	S:			_	Quotation #	
					REQUESTED ANALYSIS	VALYSIS		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	Number Containers		Remarks	VTA Sample Number
1 60157997	1102/4/2	1102/4/2	Black	1983	X			1449
(2)17CB47	3	3/8/2011	Pessive Indoor A:		×			1450
			Duplicate Passive		~			145/
	C 36	2	1				181	7541
5-60158954 60158930	8930						182	1453
9								
7				3				
8								
6								
10								
Sample Condition: Per NELAC/ELAP 210/241/242/243/244	1241/242/243/244			Receiving:	â			
Receipt Parameter Temperature	arameter nperature:		NELAC Compliance	(1 /	
Comments:	23°C		Z	10	S S S S S S S S S S S S S S S S S S S		3/14/11 17:15	
	Holding Time:		N X	Sampled-By Relinquished By	od By		1) 13:15 14 11 17:15	
	General Comments:	ıts:		•			***	
				Received By Received At Lab By	Received By Bun Received At Lab By	3//	Solution 1200 Date/Time	01
-14-17								

APPENDIX C QA/QC EVALUATION RESULTS

DATA USABILITY SUMMARY REPORT (DUSR) ANG HANCOCK FIELD - SITE 15 SYRACUSE, NEW YORK GROUND WATER SAMPLE ANALYSES ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) PROJECT NUMBER 0116255 TEST AMERICA LABORATORIES, INC. SAMPLE DELIVERY GROUP (SDG) NUMBER 0105456

Environmental Resources Management

5788 Widewaters Parkway Dewitt, NY 13214 (315) 445-2554 (315) 445-2543 (fax)

http://www.erm.com

Deliverables:

The above referenced data package for eighteen (18) ground water samples, one (1) blind field duplicate sample, two (2) trip blanks, one (1) equipment blank, and one (1) matrix spike/matrix spike duplicate (MS/MSD) sample contains all required deliverables as stipulated under the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) for Category B deliverables.

The sample specific analyses included benzene, ethylbenzene and xylene (BEX) analyzed by United States Environmental Protection Agency (USEPA) SW-846 Method 8260B in accordance with "Test Methods for Evaluating Solid Wastes, SW-846 Third Edition, Final Update III, December 1996". Note that the samples were also analyzed for other compounds in addition to BEX; however, this DUSR has been prepared to address BEX only.

The data have been validated according to the protocols and quality control (QC) requirements of the ASP; the National Functional Guidelines for Organic Data Review (October 1999); the USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-24, Revision 2, October 2006: Validating Volatile Organic Compounds by SW-846 Method 8260B; and the reviewer's professional judgment.

The validation report pertains to the following ground water samples collected on 4 and 5 October 2010:

Samples

ANG-MW-5 (10/2010)	ANG-MW-16 (10/2010)	ANG-MW-101 (10/2010)
ANG-MW-18 (10/2010)	ANG-RW-1 (10/2010)	ANG-MW-17 (10/2010)
ANG-MW-108 (10/2010)	ANG-MW-14 (10/2010)	ANG-MW-19 (10/2010)
ANG-MW-102 (10/2010)	ANG-MW-22 (10/2010)	ANG-MW-8 (10/2010)

Samples (continued)

ANG-MW-109 (10/2010) ANG-MW-3 (10/2010) ANG-MW-15 (10/2010) ANG-MW-2 (10/2010) ANG-MW-4 (10/2010) ANG-MW-11 (10/2010)

QC Samples

ANG-DUP-01 (10/2010) - blind field duplicate of sample ANG-MW-19 (10/2010) ANG-MW-108 (10/2010) MS/MSD
TB-01 - collected 10/4/2010
ANG-Trip Blank-02 (10/2010) - collected 10/5/2010
ANG-EB-01 (10/2010) - collected 10/4/2010

Organics

The following items/criteria were reviewed for this report:

- Case narrative and deliverables compliance
- Holding times and sample preservation (including pH and temperature)
- Surrogate Compound recoveries, summary and data
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) results, recoveries, summary and data
- Laboratory Check Sample (LCS), recoveries, summary and data
- · Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Trip Blank sample results
- Blind Field Duplicate sample results
- Organic analysis data sheets (Form I)
- GC/MS and GC chromatograms, mass spectra and quantitation reports
- Quantitation/detection limits
- Qualitative and quantitative compound identification

The items listed above were technically and contractually in compliance with SW-846 protocols with the exceptions discussed in the text below. The data have been validated according to the procedures outlined above and qualified accordingly.

Volatiles

- Several samples were run at dilutions due to high levels of target and/or non-target compounds, causing elevated reporting limits. The laboratory has reported the final result only on the Form I. No qualification of the sample data is required; however, the data user should be aware of the elevated detection limits.
- Benzene was not detected in sample ANG-MW-19 (10/2010), but was detected in the associated blind field duplicate, ANG-DUP-01 (10/2010). The benzene results for both the sample and the duplicate have been reported on the data tables. The concentration of benzene in each sample is considered estimated and qualified "ND J" for the non-detection and "J" for the positive result.

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Signed:

Melissa A. McGinnis

Meh & McGin

Project Scientist

Dated: 21 March 2010

Client Sample ID: ANG-MW-5(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-001 Date Sampled: 10/04/10 11:05 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method</pre>		Final Wgt/Vol: 5 mL
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	111	(73 - 122)	
1,2-Dichloroethane-d4	98	(61 - 128)	
Toluene-d8	102	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

Client Sample ID: ANG-MW-18(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-00 Date Sampled: 10/04/10 12: Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		<pre>Final Wgt/Vol: 5 mL</pre>
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane	PERCENT RECOVERY 104	RECOVERY LIMITS (73 - 122)	
1,2-Dichloroethane-d4 Toluene-d8	96 101	(61 - 128)	
4-Bromofluorobenzene	93	(76 - 110)	
4-promorrancopeuseue	93	(74 - 116)	

Client Sample ID: ANG-MW-108(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-003 Date Sampled: 10/04/10 14:25 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 108 96 98	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110)	
4-promorraoropeuseue	94	(74 - 116)	

Client Sample ID: ANG-MW-102(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-00 Date Sampled: 10/04/10 16: Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix: WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	PERCENT RECOVERY 100 93 99	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110)	
4-Bromofluorobenzene	94	(74 - 116)	

Client Sample ID: ANG-MW-109(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-005 Date Sampled: 10/04/10 16:20 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>		Final Wgt/Vol: 5 mL
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 107 94 98 98	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)	

Client Sample ID: ANG-MW-2(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-006 Date Sampled: 10/04/10 17:05 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matri	x:	₩G
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final	Wgt/Vol:	5 mL
	Method:	SW846 8260	В		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
Benzene	ND	1.0	ug/L		
Ethylbenzene	ND	1.0	ug/L		
Xylenes (total)	ND	2.0	ug/L		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	108	(73 - 122)			
1,2-Dichloroethane-d4	98	(61 - 128)			
Toluene-d8	98	(76 - 110)			

(74 - 116)

100

4-Bromofluorobenzene

Client Sample ID: ANG-EB-01(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J050456-007 Date Sampled: 10/04/10 17:10 Prep Date: 10/12/10 Prep Batch #: 0286476		10/05/10	Matrix WQ
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	107	$\frac{111113}{(73 - 122)}$	
1,2-Dichloroethane-d4	97	(61 - 128)	
Toluene-d8	98	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

Client Sample ID: TB-01

GC/MS Volatiles

Lot-Sample #: A0J050456-008 Date Sampled: 10/04/10 Prep Date: 10/12/10 Prep Batch #: 0286476	Work Order #: Date Received: Analysis Date:	10/05/10	Matrix WQ
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	100	$\frac{111113}{(73 - 122)}$	
1,2-Dichloroethane-d4	94	(61 - 128)	
Toluene-d8	99	(76 - 110)	
4-Bromofluorobenzene	90	(74 - 116)	

Client Sample ID: ANG-MW-16(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-001 Date Sampled: 10/05/10 08:45 Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		DEDODUTNO	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 122)	
1,2-Dichloroethane-d4	97	(61 - 128)	
Toluene-d8	100	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

Client Sample ID: ANG-RW-1(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-002 Date Sampled: 10/05/10 09:10 Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260B	3
		REPORTING	
PARAMETER	RESULT		UNITS
Benzene	ND		ug/L
Ethylbenzene	3.8		ug/L
Xylenes (total)	2.8	2.0	ug/L
GUDDOGAMA	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 122)	
1,2-Dichloroethane-d4	91	(61 - 128)	
Toluene-d8	99	(76 - 110)	
4-Bromofluorobenzene	104	(74 - 116)	

Client Sample ID: ANG-MW-14(10/2010)

GC/MS Volatiles

PARAMETER		RESULT	LIMIT	UNITS
			REPORTING	
		Method:	SW846 8260	В
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
Prep Batch #:				
Prep Date:	10/13/10	Analysis Date:	10/13/10	
100 C 100 C		Work Order #: Date Received:		Matrix WG

Benzene	1.7	1.0 ug/L	
Ethylbenzene	ND	1.0 ug/L	
Xylenes (total)	ND	2.0 ug/L	
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	95	(73 - 122)	
1,2-Dichloroethane-d4	88	(61 - 128)	
Toluene-d8	95	(76 - 110)	
4-Bromofluorobenzene	93	(74 - 116)	

Client Sample ID: ANG-MW-22(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-004 Date Sampled: 10/05/10 10:15 Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	PERCENT RECOVERY 106 97 102	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110)	
4-Bromofluorobenzene	96	(74 - 116)	

Client Sample ID: ANG-MW-3(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-005 Date Sampled: 10/05/10 13:10			Matrix WG
Prep Date: 10/13/10	Analysis Date:		
Prep Batch #: 0286479			
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>		Final Wgt/Vol: 5 mL
	Method	5W040 02001	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 122)	
1,2-Dichloroethane-d4	95	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	99	(74 - 116)	

Client Sample ID: ANG-MW-4(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J06 Date Sampled: 10/05 Prep Date: 10/13 Prep Batch #: 02864	/10 13:25 Date Receive /10 Analysis Dat	Matrix: WG ed.: 10/06/10 ee.: 10/13/10
Dilution Factor: 1	Initial Wgt/	Vol: 5 mL Final Wgt/Vol: 5 mL
	Method	: SW846 8260B
		REPORTING
PARAMETER	RESULT	LIMIT UNITS
Benzene	ND	1.0 ug/L
Ethylbenzene	ND	1.0 ug/L
Xylenes (total)	ND	2.0 ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 103 93 98 94	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)

Client Sample ID: ANG-MW-101(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-00 Date Sampled: 10/05/10 11: Prep Date: 10/13/10 Prep Batch #: 0286479		10/06/10	Matrix: WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>		Final Wgt/Vol: 5 mL
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	3.2	1.0	ug/L
Xylenes (total)	2.0	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 100 91 100 98	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)	

Client Sample ID: ANG-MW-17(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-008	Work Order #:	L72XA1AA	Matrix WG
Date Sampled: 10/05/10 14:30	Date Received:	10/06/10	
Prep Date: 10/13/10	Analysis Date:	10/13/10	
Prep Batch #: 0287174			
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	0.95 J	1.0	ug/L
Xylenes (total)	1.2 J	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(73 - 122)	
1,2-Dichloroethane-d4	103	(61 - 128)	
Toluene-d8	100	(76 - 110)	
4-Bromofluorobenzene	101	(74 - 116)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-19(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-009 Date Sampled: 10/05/10 14:25 Prep Date: 10/14/10 Prep Batch #: 0288153		10/06/10	Matrix WG
Dilution Factor: 6.25	<pre>Initial Wgt/Vol:</pre>	5 mL	<pre>Final Wgt/Vol: 5 mL</pre>
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND J	6.2	ug/L
Ethylbenzene	100	6.2	ug/L
Xylenes (total)	18	12	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 122)	
1,2-Dichloroethane-d4	106	(61 - 128)	
Toluene-d8	102	(76 - 110)	
4-Bromofluorobenzene	102	(74 - 116)	

Client Sample ID: ANG-MW-8(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-010 Date Sampled: 10/05/10 15:40 Prep Date: 10/13/10 Prep Batch #: 0287174		10/06/10	Matrix: WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mI
	Method:	SW846 82601	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(73 - 122)	
1,2-Dichloroethane-d4	104	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	92	(74 - 116)	

Client Sample ID: ANG-MW-15(10/2010)

GC/MS Volatiles

Lot-Sample #: A	A0J060452-011	Work Order #:	L72XF1AA	Matrix WG
Date Sampled:	10/05/10 15:50	Date Received:	10/06/10	
Prep Date:	10/13/10	Analysis Date:	10/13/10	
Prep Batch #:	0287174			
Dilution Factor: 1	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
		Method:	SW846 8260	В
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Benzene		5.3	1.0	ug/L
			1.0	
Ethylbenzene		9.8	0-2020	ug/L
Xylenes (total)		0.72 J	2.0	ug/L
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluorometha	ane	100	(73 - 122)	
1,2-Dichloroethane	e-d4	101	(61 - 128)	
Toluene-d8		107	(76 - 110)	
4-Bromofluorobenze	ene	102	(74 - 116)	
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-11(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-012 Date Sampled: 10/05/10 16:50 Prep Date: 10/13/10 Prep Batch #: 0287174		10/06/10	Matrix WG
Dilution Factor: 1.67	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	26	1.7	ug/L
Ethylbenzene	7.8	1.7	ug/L
Xylenes (total)	9.5	3.3	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	(73 - 122)	
1,2-Dichloroethane-d4	99	(61 - 128)	
Toluene-d8	106	(76 - 110)	
4-Bromofluorobenzene	101	(74 - 116)	

Client Sample ID: ANG-DUP-01(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060	0452-013 Work	Order #: I	L72XH1AA	Matrix	x	WG
Date Sampled: 10/05	/10 16:00 Date	Received: 1	10/06/10			
Prep Date: 10/14/	/10 Anal	ysis Date: 1	10/14/10			
Prep Batch #: 028819	53					
Dilution Factor: 5	Init	ial Wgt/Vol: 5	5 mL	Final	Wgt/Vol:	5 mL
	Meth	od S	SW846 82601	3		
		F	REPORTING			
PARAMETER	RESU	LT I	LIMIT	UNITS		
Benzene	2.7	J 5	5.0	ug/L		
Ethylbenzene	120	5	5.0	ug/L		
Xylenes (total)	24	1	10	ug/L		
	PERCI	ENT F	RECOVERY			
SURROGATE	RECO	JERY I	LIMITS			
Dibromofluoromethane	106	((73 - 122)			
1,2-Dichloroethane-d4	107	((61 - 128)			
Toluene-d8	102	((76 - 110)			
4-Bromofluorobenzene	105	((74 - 116)			
NOTE(S):						

J Estimated result. Result is less than RL.

Client Sample ID: ANG-TRIPBLANK-02(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J060452-014 Date Sampled: 10/05/10 Prep Date: 10/13/10 Prep Batch #: 0287174	Work Order #: Date Received: Analysis Date:	10/06/10	Matrix: WQ
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>	SW846 8260	Final Wgt/Vol: 5 mL
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 102 103 100 91	RECOVERY LIMITS (73 - 122) (61 - 128) (76 - 110) (74 - 116)	

DATA USABILITY SUMMARY REPORT (DUSR) ANG HANCOCK FIELD - SITE 15 SYRACUSE, NEW YORK GROUND WATER SAMPLE ANALYSES ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) PROJECT NUMBER 0116255 TEST AMERICA LABORATORIES, INC. SAMPLE DELIVERY GROUP (SDG) NUMBER 0J13535

Environmental Resources Management

5788 Widewaters Parkway Dewitt, NY 13214 (315) 445-2554 (315) 445-2543 (fax)

http://www.erm.com

Deliverables:

The above referenced data package for twelve (12) ground water samples, one (1) blind field duplicate sample, two (2) trip blanks, one (1) equipment blank, and one (1) matrix spike/matrix spike duplicate (MS/MSD) sample contains all required deliverables as stipulated under the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) for Category B deliverables.

The sample specific analyses included benzene, ethylbenzene and xylene (BEX) analyzed by United States Environmental Protection Agency (USEPA) SW-846 Method 8260B in accordance with "Test Methods for Evaluating Solid Wastes, SW-846 Third Edition, Final Update III, December 1996". Note that the samples were also analyzed for other compounds in addition to BEX; however, this DUSR has been prepared to address BEX only.

The data have been validated according to the protocols and quality control (QC) requirements of the ASP; the National Functional Guidelines for Organic Data Review (October 1999); the USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-24, Revision 2, October 2006: Validating Volatile Organic Compounds by SW-846 Method 8260B; and the reviewer's professional judgment.

The validation report pertains to the following ground water samples collected on 12 and 13 October 2010:

Samples

ANG-MW-9 (10/2010)	ANG-MW-105 (10/2010)	ANG-MW-111 (10/2010)
ANG-MW-20 (10/2010)	ANG-MW-106 (10/2010)	ANG-MW-112 (10/2010)
ANG-MW-103 (10/2010)	ANG-MW-107 (10/2010)	ANG-MW-113 (10/2010)
ANG-MW-104 (10/2010)	ANG-MW-110 (10/2010)	ANG-MW-114 (10/2010)

QC Samples

ANG-Dup-02 (10/2010) - blind field duplicate of sample ANG-MW-112 (10/2010) ANG-MW-106 (10/2010) MS/MSD ANG-Trip Blank-03 (10/2010) - collected 10/12/2010 ANG-Trip Blank-04 (10/2010) - collected 10/13/2010 ANG-EB-02 (10/2010) - collected 10/12/2010

Organics

The following items/criteria were reviewed for this report:

- Case narrative and deliverables compliance
- Holding times and sample preservation (including pH and temperature)
- Surrogate Compound recoveries, summary and data
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) results, recoveries, summary and data
- Laboratory Check Sample (LCS), recoveries, summary and data
- Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Trip Blank sample results
- Blind Field Duplicate sample results
- Organic analysis data sheets (Form I)
- GC/MS and GC chromatograms, mass spectra and quantitation reports
- Quantitation/detection limits
- Qualitative and quantitative compound identification

The items listed above were technically and contractually in compliance with SW-846 protocols with the exceptions discussed in the text below. The data have been validated according to the procedures outlined above and qualified accordingly.

Volatiles

• No qualification of the sample data is required.

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Signed:

Dated: 10 March 2010

Melissa A. McGinnis Project Scientist

Mely McGin

Client Sample ID: ANG-TRIPBLANK-03(10/2010)

GC/MS Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	10/12/10 10/22/10	Work Order #: Date Received: Analysis Date:	10/13/10	Matrix	κ:	WQ
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>			Wgt/Vol:	5 mL
		Method:	SW846 82601	В		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS		
Benzene		ND	1.0	ug/L		
Ethylbenzene		ND	1.0	ug/L		
Xylenes (total)		ND	2.0	ug/L		
SURROGATE Dibromofluorometh	nane	PERCENT RECOVERY 82	RECOVERY LIMITS (75 - 121)			
1,2-Dichloroethan	ie-d4	90	(63 - 129)			
Toluene-d8		89	(74 - 115)			
4-Bromofluorobenz	ene	89	(66 - 117)			

Client Sample ID: ANG-EB-02(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-002 Date Sampled: 10/12/10 10:30 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix: WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 ml
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	84	(75 - 121)	
1,2-Dichloroethane-d4	88	(63 - 129)	
Toluene-d8	93	(74 - 115)	
4-Bromofluorobenzene	94	(66 - 117)	

Client Sample ID: ANG-MW-9(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-003 Date Sampled: 10/12/10 11:25 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix W	G
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5	mL
	Method:	SW846 82601	3	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Xylenes (total)	ND	2.0	ug/L	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Dibromofluoromethane	84	(75 - 121)		
1,2-Dichloroethane-d4	87	(63 - 129)		
Toluene-d8	91	(74 - 115)		
4-Bromofluorobenzene	91	(66 - 117)		

Client Sample ID: ANG-MW-20(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-004	Work Order #: L8EPA1AA	Matrix WG
-----------------------------	------------------------	-----------

Date Sampled...: 10/12/10 12:35 Date Received..: 10/13/10 Prep Date.....: 10/22/10 Analysis Date..: 10/22/10

Prep Batch #...: 0298401

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

DI	DO	DRT	TN	
K	11		1.17	10

PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Xylenes (total)	ND	2.0	ug/L	
	PERCENT	RECOVERY	(
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	84	(75 - 12	21)	
1,2-Dichloroethane-d4	86	(63 - 12)	29)	
Toluene-d8	89	(74 - 11)	L5)	
4-Bromofluorobenzene	90	(66 - 11	L7)	

Client Sample ID: ANG-MW-114(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-005 Date Sampled: 10/12/10 15:05 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Dibromofluoromethane	85	(75 - 121)	
1,2-Dichloroethane-d4	87	(63 - 129)	
Toluene-d8	89	(74 - 115)	
4-Bromofluorobenzene	89	(66 - 117)	

Client Sample ID: ANG-MW-113(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J130535-006 Date Sampled: 10/12/10 16:05 Prep Date: 10/22/10 Prep Batch #: 0298401		10/13/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	83	(75 - 121)	
1,2-Dichloroethane-d4	86	(63 - 129)	
Toluene-d8	92	(74 - 115)	
4-Bromofluorobenzene	89	(66 - 117)	

Client Sample ID: ANG-TRIP BLANK-04(10/2010)

GC/MS Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	10/13/10 10/22/10	Work Order #: Date Received: Analysis Date:	10/14/10	Matri	x:	WQ
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>			Wgt/Vol:	5 mL
		Method:	SW846 82601	В		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS		
Benzene		ND	1.0	ug/L		
Ethylbenzene		ND	1.0	ug/L		
Xylenes (total)		ND	2.0	ug/L		
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS			
Dibromofluorometh	ane	104	$\frac{111115}{(75 - 121)}$			
1,2-Dichloroethan		114	(63 - 129)			
Toluene-d8		101	(74 - 115)			
4-Bromofluorobenz	ene	90	(66 - 117)			

Client Sample ID: ANG-DUP-02(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-002	Work Order #:	L8G021AA	Matrix WG
Date Sampled: 10/13/10 16:00	Date Received:	10/14/10	
Prep Date: 10/22/10	Analysis Date:	10/22/10	
Prep Batch #: 0297044			
Dilution Factor: 1	Initial Wgt/Vol:	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	UNITS
Benzene	0.35 J	1.0	ug/L
Ethylbenzene	9.5	1.0 u	ug/L
Xylenes (total)	2.4	2.0 u	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(75 - 121)	
1,2-Dichloroethane-d4	112	(63 - 129)	
Toluene-d8	102	(74 - 115)	
4-Bromofluorobenzene	93	(66 - 117)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-111(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-003 Date Sampled: 10/13/10 12:40 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 82601	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(75 - 121)	
1,2-Dichloroethane-d4	114	(63 - 129)	
Toluene-d8	102	(74 - 115)	
4-Bromofluorobenzene	91	(66 - 117)	

Client Sample ID: ANG-MW-112(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-004 Date Sampled: 10/13/10 11:45 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260	B
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	0.36 J	1.0	ug/L
Ethylbenzene	10	1.0	ug/L
Xylenes (total)	2.7	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(75 - 121)	
1,2-Dichloroethane-d4	113	(63 - 129)	
Toluene-d8	103	(74 - 115)	
4-Bromofluorobenzene	95	(66 - 117)	
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: ANG-MW-106(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J1405 Date Sampled: 10/13/1 Prep Date: 10/22/1 Prep Batch #: 0297044	0 09:35 Date Received: 0 Analysis Date:	10/14/10	Matrix:	WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol:	5 mL
	Method:	SW846 8260E	3	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Xylenes (total)	ND	2.0	ug/L	
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 104 113 103 89	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115) (66 - 117)		

Client Sample ID: ANG-MW-107(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-006 Date Sampled: 10/13/10 11:05 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix	·····	WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>			Wgt/Vol:	5 mL
	Method:	SW846 8260E	3		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
Benzene	ND	1.0	ug/L		
Ethylbenzene	ND	1.0	ug/L		
Xylenes (total)	ND	2.0	ug/L		
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 104 112 100 87	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115) (66 - 117)			

Client Sample ID: ANG-MW-104(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-007 Date Sampled: 10/13/10 12:0 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	Initial Wgt/Vol:	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(75 - 121)	
1,2-Dichloroethane-d4	111	(63 - 129)	
Toluene-d8	103	(74 - 115)	
4-Bromofluorobenzene	89	(66 - 117)	

Client Sample ID: ANG-MW-110(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-008 Date Sampled: 10/13/10 13:40 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol: 5 mL
	Method:	SW846 8260E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	PERCENT RECOVERY 103 113 104	RECOVERY LIMITS (75 - 121) (63 - 129) (74 - 115)	
4-Bromofluorobenzene	86	(66 - 117)	

Client Sample ID: ANG-MW-105(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-009 Date Sampled: 10/13/10 14:50 Prep Date: 10/22/10 Prep Batch #: 0297044		10/14/10	Matrix WG
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260F	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	5.5	1.0	ug/L
Ethylbenzene	97	1.0	ug/L
Xylenes (total)	92	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	98	(75 - 121)	
1,2-Dichloroethane-d4	108	(63 - 129)	
Toluene-d8	101	(74 - 115)	
4-Bromofluorobenzene	96	(66 - 117)	

Client Sample ID: ANG-MW-103(10/2010)

GC/MS Volatiles

Lot-Sample #: A0J140547-010	Work Order #:	L8G171AA	Matrix WG
Date Sampled: 10/13/10 15:55	Date Received:	10/14/10	
Prep Date: 10/22/10	Analysis Date:	10/22/10	
Prep Batch #: 0297044			
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
	Method:	SW846 8260B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	NITS
Benzene	ND	1.0 ug	g/L
Ethylbenzene	0.24 J	1.0 ug	g/L
Xylenes (total)	ND	2.0 ug	g/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(75 - 121)	
1,2-Dichloroethane-d4	110	(63 - 129)	
Toluene-d8	100	(74 - 115)	
4-Bromofluorobenzene	91	(66 - 117)	
NOTE(S):			

J Estimated result. Result is less than RL.

DATA USABILITY SUMMARY REPORT (DUSR) ANG HANCOCK FIELD - SITE 15 SYRACUSE, NEW YORK AIR SAMPLE ANALYSES ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) PROJECT NUMBER 0116255 VAPOR TRAIL ANALYTICS, LLC (VTA) SAMPLE DELIVERY GROUP (SDG) NUMBER 201102

Environmental Resources Management

5788 Widewaters Parkway Dewitt, NY 13214 (315) 445-2554 (315) 445-2543 (fax)

http://www.erm.com

Deliverables:

The above referenced data package for ten (10) air samples and two (2) method blank samples contains all the required deliverables as stipulated under the 2005 New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B deliverables. The samples were analyzed for volatile organics following United States Environmental Protection Agency (USEPA) Method TO-17. The data have been evaluated according to the protocols and quality control (QC) requirements of the ASP, the National Functional Guidelines for Organic Data Review (October 1999), the USEPA Region 2 Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Volatile Organic Analysis of Ambient Air in canister by Method TO-15, and the reviewer's professional judgment.

This report pertains to the following air samples collected on 10 January 2011:

<u>Samples</u>

140403	Active Indoor Air - Front Tube
140401	Active Indoor Air - Backup Tube
140415	Active Sub-Slab – Front Tube
140416	Active Sub-Slab – Backup Tube
107795	Active Sub-Slab - Front Tube
107796	Active Sub-Slab – Backup Tube
107793	Active Indoor Air - Front Tube
107797	Active Indoor Air – Backup Tube
107799	Active Outdoor Air - Front Tube
107798	Active Outdoor Air - Backup Tube

QC Samples

140411	Lab Method Blank #1 (Before Samples)
140420	Lab Method Blank #2 (After Samples)

The following items/criteria were reviewed:

- Case narrative and deliverable compliance
- Chain-of-Custody (COC)
- · Holding times
- Sorbent tube cleaning summary and data
- Surrogate compound recoveries, summary and data
- Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Report of Analysis data sheets (Form I)
- GC/MS chromatograms, mass spectra and quantitation reports
- Quantitation/reporting limits
- Qualitative and quantitative compound identification

The items listed above were in compliance with the analytical methods and with the ASP and USEPA criteria with the exceptions discussed in the text below. The data have been validated according to the procedures outlined above and qualified accordingly.

- At the request of ERM, the passive samples listed on the Chain-of-Custody (COC) were not analyzed by the laboratory due to a field sampling error. These samples included: 140412, GO122035, GO122028 and GO122008. No qualification of the sample data is required.
- Sample 107795 was analyzed at a dilution factor of 1.11. No qualification of the sample data is required, and the reporting limit was not affected.
- Benzene (1 ng) and methyl acetate (1 ng) were positively identified in Lab Method Blank #2 (140420); this blank was analyzed after the samples. Benzene and methyl acetate were positively identified in several of the samples analyzed as part of this SDG; however, based on the levels of these detections, it is ERM's professional opinion that qualification of the sample data is not required.
- In several samples, positive concentrations of certain analytes were detected in the backup sampling tubes. Method TO-17

defines breakthrough as when 5% or more of the concentration of one or more analytes detected in the primary tube (i.e., front tube) is detected in the backup tube. Per the method, the sum of the concentrations was reported on the data tables when break through occurred between 5% and 66%. Method TO-17 defines a safe sample volume as 2/3 or 66%. Per the method, the average of the concentrations in the front and backup tubes was reported on the data tables if the concentration in the backup tube was greater than 66% of the concentration in the front tube. No qualification of the sample data is required.

• The following table lists compounds that exceeded 30 percent relative standard deviation (%RSD) for relative response factors (RRF) in the initial calibration (ICAL) and compounds that exceeded 30 percent difference (%D) between the ICAL average RRF and the continuing calibration verification (CCV) RRF. Calibrations applicable to QC samples only have not been included. Associated field samples are also listed. Positive results for these compounds in the associated samples are considered estimated and qualified "J" and non-detect results are qualified "ND J". Exceptions are noted below.

Calibration	Compound	Deficiency	Associated Samples
ICAL 1/19/2011	trans-1,2-dichloroethene 1,2,4-trichlorobenzene	%RSD = 30.57 ¹ %RSD = 31.11 ¹	All samples
CCV 1/20/2011 @ 1:11	trans-1,2-dichloroethene 1,1,2-trichlorotrifluoroethane	%D = -63.7 %D = -51.8	All samples

¹Two exceptions are allowed up to limit of ±40%. Therefore, no qualification of the sample data is required in this instance.

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Signed:

Melissa A. McGinnis Project Scientist

Meh & McGim

Dated: 15 June 2011

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140403

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1342

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		3.	-3.		
		(μg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.40	0.07	•
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	0.45	0.08	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	2.10	0.27	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	0.05	0.01	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.10	0.02	
1,2-Dichloropropane	1.00	0.03	0.03	0.01	
1,3-Dichlorobenzene	1.00	0.03	0.13	0.02	
1,4-Dichlorobenzene	1.00	0.03	0.12	0.02	
Benzene	1.00	0.03	0.77	0.24	В
Bromodichloromethane	1.00	0.03	0.04	0.01	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.72	0.11	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140403

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1342

Date Sampled: 1/10/11 Date Received: 1/14/11

Date Analyzed: 1/19/11

Lab Project Number: 201102

7		$(\mu g \cdot m^{-3})$	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	Oualifiers
Chloroform	1.00	0.03	0.25	0.05	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	3.52	1.00	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.25	0.06	
Isopropylbenzene	1.00	0.03	0.04	0.01	
m,p -Xylenes	1.00	0.03	0.53	0.12	
Methyl acetate	1.00	0.03	0.10	0.03	В
Methylcyclohexane	1.00	0.03	3.62	0.88	
o -Xylene	1.00	0.03	0.22	0.05	
Styrene	1.00	0.03	0.30	0.07	
Tetrachloroethene	1.00	0.03	0.38	0.05	
Toluene	1.00	0.03	1.31	0.34	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.03	0.005	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter,

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-21.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140401

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1343

Date Sampled: 1/10/11

Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

-		(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140401

Field Location: Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1343

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

Sample 1) per 120m of 120m of 120m		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
Analyte	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-16.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140415

Field Location: Sub-Slab Duplicate Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1344

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1 31 ;		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.07	0.01	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.30	0.04	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.24	0.07	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140415

Field Location: Sub-Slab DuplicateClient Project Number: Not Indicated

Cheffi I Toject Number. Not malcate

Client Job Site: ANG

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1344

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

1 71		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	Result	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.04	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	•
Cyclohexane	1.00	0.03	0.36	0.10	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.20	0.05	
Isopropylbenzene	1.00	0.03	ND	ND	
nı,p-Xylenes	1.00	0.03	0.10	0.02	
Methyl acetate	1.00	0.03	0.08	0.02	В
Methylcyclohexane	1.00	0.03	0.51	0.12	•
o-Xylene	1.00	0.03	0.06	0.01	
Styrene	1.00	0.03	1.49	0.34	
Tetrachloroethene	1.00	0.03	0.10	0.01	
Toluene	1.00	0.03	0.39	0.10	
trans -1,2-Dichloroethene	1.00	0.03	0.13	0.03	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files:

011911-**22**.D

BB 3/31/11 Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab Duplicate Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1345

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

-3

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.04	0.005	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.03	0.01	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1345

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

cample 2)perizeare out out of the		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.17	0.04	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	0.03	0.01	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-17.D Signature: Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

phone 315.445.2554

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1346

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.11	0.03	0.29	0.05	
1,1,2,2-Tetrachloroethane	1.11	0.03	ND	ND	
1,1,2-Trichloroethane	1.11	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.11	0.03	1.06	0.14	J
1,1-Dichloroethane	1.11	0.03	ND	ND	
1,1-Dichloroethene	1.11	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.11	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.11	0.03	0.20	0.02	
1,2-Dibromoethane	1.11	0.03	ND	ND	
1,2-Dichlorobenzene	1.11	0.03	ND	ND	
1,2-Dichloroethane	1.11	0.03	ND	ND	
1,2-Dichloropropane	1.11	0.03	ND	ND	
1,3-Dichlorobenzene	1.11	0.03	ND	ND	
1,4-Dichlorobenzene	1.11	0.03	0.04	0.01	
Benzene	1.11	0.03	0.34	0.10	В
Bromodichloromethane	1.11	0.03	ND	ND	
Bromoform	1.11	0.03	ND	ND	
Carbon tetrachloride	1.11	0.03	3.53	0.55	
Chlorobenzene	1.11	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 140416

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

phone 315.445.2554

Sample Type: Active Sub-Slab - Front Tube

Lab Sample Number: 1346

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1 31		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
Chloroform	1.11	0.03	0.06	0.01	
cis -1,2-Dichloroethene	1.11	0.03	ND	ND	
Cyclohexane	1.11	0.03	0.76	0.22	
Dibromochloromethane	1.11	0.03	ND	ND	
Ethylbenzene	1.11	0.03	0.51	0.12	
Isopropylbenzene	1.11	0.03	ND	ND	
m,p-Xylenes	1.11	0.03	0.20	0.04	
Methyl acetate	1.11	0.03	ND	ND	
Methylcyclohexane	1.11	0.03	0.91	0.22	
o-Xylene	1.11	0.03	0.12	0.03	
Styrene	1.11	0.03	2.12	0.49	
Tetrachloroethene	1.11	0.03	0.14	0.02	
Toluene	1.11	0.03	0.57	0.15	
trans -1,2-Dichloroethene	1.11	0.03	0.33	0.08	J
trans -1,3-Dichloropropene	1.11	0.03	0.08	0.02	
Trichloroethene	1.11	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 013111-6.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 107796

Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1347

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	•
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.25	0.03	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796 Field Location: Sub-Slab

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Sub-Slab - Backup Tube

Lab Sample Number: 1347

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1		(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.03	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p -Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	0.10	0.02	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files:

011911-18.D

Signature:__

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 107793

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1348

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

ommero appearation and a second and a		(3\	(um m-3)	/1\	
		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	\underline{RL}	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.44	0.08	
1,1,2,2-Tetrachloroethane	1.00	0.03	, ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	2.47	0.32	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	0.03	0.003	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.11	0.03	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	0.15	0.03	
Benzene	1.00	0.03	0.74	0.23	В
Bromodichloromethane	1.00	0.03	0.03	0.004	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.73	0.11	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107793

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1348

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

1 71		$(\mu g \cdot m^{-3})$	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	Qualifiers
Chloroform	1.00	0.03	0.26	0.05	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	2.55	0.73	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.28	0.06	
Isopropylbenzene	1.00	0.03	0.06	0.01	
nı,p -Xylenes	1.00	0.03	0.27	0.06	
Methyl acetate	1.00	0.03	0.13	0.04	В
Methylcyclohexane	1.00	0.03	3.28	0.80	
o-Xylene	1.00	0.03	0.25	0.06	
Styrene	1.00	0.03	0.99	0.23	
Tetrachloroethene	1.00	0.03	0.36	0.05	
Toluene	1.00	0.03	1.19	0.31	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.04	0.01	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files:

011911-24.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107797

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1349

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107797

Field Location: Indoor Air Duplicate

Client Project Number: Not Indicated

Client Job Site: ANG

phone 315.445.2554

Sample Type: Active Indoor Air - Backup Tube

Lab Sample Number: 1349

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	DF	\underline{RL}	<u>Result</u>	Result	Oualifiers
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
nı,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 011911-19.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107799

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1350

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	<u>Result</u>	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	0.04	0.01	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	2.11	0.24	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.08	0.02	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.56	0.15	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	0.69	0.09	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107799

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1350

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

1 71		$(\mu g \cdot m^{-3})$	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.07	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.18	0.05	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.09	0.02	
Isopropylbenzene	1.00	0.03	ND	ND	
nı,p -Xylenes	1.00	0.03	0.11	0.02	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	0.27	0.06	
o-Xylene	1.00	0.03	0.10	0.02	
Styrene	1.00	0.03	0.15	0.03	
Tetrachloroethene	1.00	0.03	0.06	0.01	
Toluene	1.00	0.03	0.43	0.10	
trans -1,2-Dichloroethene	1.00	0.03	0.05	0.01	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.03	0.004	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files:

011911-25.D

Signature:____

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Analysis Report for Air

Field ID Number: 107798

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Backup Tube

Lab Sample Number: 1351

Date Sampled: 1/10/11
Date Received: 1/14/11
Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	Result	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	J
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	0.05	0.01	В
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107798

Field Location: Outdoor Air

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Active Outdoor Air - Backup Tube

Lab Sample Number: 1351

Date Sampled: 1/10/11 Date Received: 1/14/11 Date Analyzed: 1/19/11

Lab Project Number: 201102

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	0.08	0.02	В
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	J
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files:

011911-20.D

Signature:___

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Date Sampled: NA

Laboratory Blank Report for Air

140411 3/3/

Field ID Number: GO122076 B13 Lab Sample Number: 1353

Field Location: NA

Client Project Number: Not Indicated Date Received: 1/14/11
Client Job Site: ANG Date Analyzed: 1/19/11

Sample Type: Lab Method Blank #1 (Before Samples)

Lab Project Number: 201102

Dilution Factor: 1 (ng)

	\ U/
<u>Analyte</u>	Mass on Tube
1,1,1-Trichloroethane	Not Detected
1,1,2,2-Tetrachloroethane	Not Detected
1,1,2-Trichloroethane	Not Detected
1,1,2-Trichlorotrifluoroethane	Not Detected
1,1-Dichloroethane	Not Detected
1,1-Dichloroethene	Not Detected
1,2,4-Trichlorobenzene	Not Detected
1,2-Dibromo-3-chloropropane	Not Detected
1,2-Dibromoethane	Not Detected
1,2-Dichlorobenzene	Not Detected
1,2-Dichloroethane	Not Detected
1,2-Dichloropropane	Not Detected
1,3-Dichlorobenzene	Not Detected
1,4-Dichlorobenzene	Not Detected
Benzene	Not Detected
Bromodichloromethane	Not Detected
Bromoform	Not Detected
Carbon disulfide	Not Detected
Carbon tetrachloride	Not Detected

Comments: ng = nanograms. NA = Not Applicable.

Chlorobenzene

Signature:

Jack D. Fox PhD, Technical Director

Not Detected

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

140411 3/3/

Field ID Number: GO122076 3/

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Date Sampled: NA Date Received: 1/14/11 Date Analyzed: 1/19/11 Lab Project Number: 201102

Lab Sample Number: 1353

(ng)

Mass on Tube <u>Analyte</u> Not Detected Chloroform cis -1,2-Dichloroethene Not Detected Not Detected cis -1,3-Dichloropropene Not Detected Cyclohexane Not Detected Dibromochloromethane Ethylbenzene Not Detected Not Detected Isopropylbenzene m,p-Xylenes Not Detected Not Detected Methyl acetate Methyl tert -butyl ether Not Detected Not Detected Methylcyclohexane Methylene chloride Not Detected o-Xylene Not Detected Styrene Not Detected Not Detected Tetrachloroethene Toluene Not Detected Not Detected trans -1,2-Dichloroethene Not Detected trans -1,3-Dichloropropene Trichloroethene Not Detected

Comments: ng = nanograms. NA = Not Applicable.

Data File:

011911-15.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

140420

Field ID Number: GO125865-

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1354 Date Sampled: NA Date Received: 1/14/11

Date Analyzed: 1/19/11

Lab Project Number: 201102

	(ng)
<u>Analyte</u>	Mass on Tube
1,1,1-Trichloroethane	Not Detected
1,1,2,2-Tetrachloroethane	Not Detected
1,1,2-Trichloroethane	Not Detected
1,1,2-Trichlorotrifluoroethane	Not Detected
1,1-Dichloroethane	Not Detected
1,1-Dichloroethene	Not Detected
1,2,4-Trichlorobenzene	Not Detected
1,2-Dibromo-3-chloropropane	Not Detected
1,2-Dibromoethane	Not Detected

Not Detected 1,2-Dichlorobenzene 1,2-Dichloroethane Not Detected 1,2-Dichloropropane Not Detected 1,3-Dichlorobenzene Not Detected 1,4-Dichlorobenzene Not Detected Benzene 1 Not Detected Bromodichloromethane

Bromoform Not Detected Carbon disulfide Not Detected

Carbon tetrachloride Not Detected Chlorobenzene Not Detected

Comments: ng = nanograms. NA = Not Applicable.

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

4-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

JYOYJO

BB

Field ID Number: GO125865

3/3 J

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG

Dilution Factor: 1

Lab Sample Number: 1354

Date Sampled: NA

Date Analyzed: 1/19/11

Lab Project Number: 201102

(ng)

Analyte

Sample Type: Lab Method Blank #2 (After Samples)

Chloroform

cis -1,2-Dichloroethene

cis -1,3-Dichloropropene

Cyclohexane

Dibromochloromethane

Ethylbenzene

Isopropylbenzene m,p-Xylenes

Methyl acetate

Methyl tert -butyl ether

Methylcyclohexane Methylene chloride

o-Xylene

Styrene

Tetrachloroethene

Toluene

trans -1,2-Dichloroethene

trans -1,3-Dichloropropene

Trichloroethene

Date Received: 1/14/11

Mass on Tube

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected Not Detected

Not Detected

Not Detected

1

Not Detected

Comments: ng = nanograms. NA = Not Applicable.

Data File:

011911-28.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

DATA USABILITY SUMMARY REPORT (DUSR) ANG HANCOCK FIELD - SITE 15 SYRACUSE, NEW YORK AIR SAMPLE ANALYSES ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) PROJECT NUMBER 0116255 VAPOR TRAIL ANALYTICS LLC, (VTA) SAMPLE DELIVERY GROUP (SDG) NUMBER 201108

Environmental Resources Management

5788 Widewaters Parkway Dewitt, NY 13214 (315) 445-2554 (315) 445-2543 (fax)

http://www.erm.com

Deliverables:

The above referenced data package for eleven (11) air samples, two (2) field blank samples, and four (4) method blank samples contains all the required deliverables as stipulated under the 2005 New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B deliverables. The samples were analyzed for volatile organics following United States Environmental Protection Agency (USEPA) Method TO-17. The data have been evaluated according to the protocols and quality control (QC) requirements of the ASP, the National Functional Guidelines for Organic Data Review (October 1999), the USEPA Region 2 Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Volatile Organic Analysis of Ambient Air in canister by Method TO-15, and the reviewer's professional judgment.

The validation report pertains to the following air samples collected from 7 February through 11 February 2011:

<u>Samples</u>	
107792	Active Sub-Slab Vapor – Front Tube
120013	Active Sub-Slab Vapor - Backup Tube
107800	Active Sub-Slab Vapor - Front Tube
120012	Active Sub-Slab Vapor - Backup Tube
107791	Active Indoor Air - Front Tube
120016	Active Indoor Air - Backup Tube
107796	Active Indoor Air - Front Tube
120020	Active Indoor Air - Backup Tube
107798	Active Outdoor Air - Front Tube
120018	Active Outdoor Air - Backup Tube
GO122008	Long-Term Passive Indoor Air

QC Samples

107797	Field Blank for Active Sampling
120011	Lab Method Blank #1 (Before Samples)
140420	Lab Method Blank #2 (After Samples)
GO122028	Field Blank for Passive Indoor Air
GO122005	Lab Method Blank #1 (Before Samples)
GO122047	Lab Method Blank #2 (After Samples)

The following items/criteria were reviewed:

- Case narrative and deliverable compliance
- Chain-of-Custody (COC)
- Holding times
- Sorbent tube cleaning summary and data
- Surrogate compound recoveries, summary and data
- Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Report of Analysis data sheets (Form I)
- GC/MS chromatograms, mass spectra and quantitation reports
- Quantitation/reporting limits
- Qualitative and quantitative compound identification

The items listed above were in compliance with the analytical methods and with the ASP and USEPA criteria with the exceptions discussed in the text below. The data have been validated according to the procedures outlined above and qualified accordingly.

- At the request of ERM, sample MI140412 (passive 30-day indoor air sample) listed on the Chain-of-Custody (COC) was not analyzed by the laboratory due to a field sampling error. No qualification of the sample data is required.
- Sample GO122008 (passive 30-day indoor air sample) was analyzed twice by the laboratory, but no analyte signals were obtained, despite the fact that the field blank analysis was normal. No results were therefore reported by the laboratory for this sample.

- Several parameters in samples 107791 and 120016 were analyzed at varying dilution factors. No qualification of the sample data is required, and the reporting limits were not affected.
- Toluene (1.1 ng) was positively identified in Lab Method Blank #2 (140420); this blank was analyzed after the samples. Toluene was positively identified in several of the associated samples; however, based on the levels of these detections, it is ERM's professional opinion that qualification of the sample data is not required.
- Benzene (2.5 ng) was positively identified in Lab Method Blank #1 (GO122005); this blank was analyzed before the samples.
 Benzene was positively identified in one of the associated samples; however, based on the level of this detection, it is ERM's professional opinion that qualification of the sample data is not required.
- In several samples, positive concentrations of certain analytes were detected in the backup sampling tubes. Method TO-17 defines breakthrough as when 5% or more of the concentration of one or more analytes detected in the primary tube (i.e., front tube) is detected in the backup tube. Per the method, the sum of the concentrations was reported on the data tables when break through occurred between 5% and 66%. Method TO-17 defines a safe sample volume as 2/3 or 66%. Per the method, the average of the concentrations in the front and backup tubes was reported on the data tables if the concentration in the backup tube was greater than 66% of the concentration in the front tube. No qualification of the sample data is required.
- The following table lists compounds that exceeded 30 percent relative standard deviation (%RSD) for relative response factors (RRF) in the initial calibration (ICAL) and compounds that exceeded 30 percent difference (%D) between the ICAL average RRF and the continuing calibration verification (CCV) RRF. Calibrations applicable to QC samples only have not been included. Associated field samples are also listed. Positive results for these compounds in the associated samples are considered estimated and qualified "J" and non-detect results are qualified "ND J" (exceptions are noted below). Also, compounds that exceeded ±90 %D in the CCV are rejected per

the method and qualified "R" for positive detections in the associated samples.

Calibration	Compound	Deficiency	Associated Samples
ICAL (active) 2/28/2011	1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	%RSD = 30.53 ¹ %RSD = 33.58 ¹	Active samples
ICAL (passive) 2/15/2011	methyl acetate benzene styrene	%RSD = 51.17 %RSD = 32.30 ¹ %RSD = 82.13	Passive samples
CCV (active) 2/28/2011 @ 17:37	trichloroethene bromoform styrene 1,1,2,2-tetrachloroethane isopropylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene 1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	%D = - 284.5 %D = - 106.4 %D = - 55.8 %D = - 155.3 %D = - 31.2 %D = - 130.0 %D = - 139.9 %D = - 150.3 %D = - 192.9 %D = - 213.7	Active samples
CCV (passive) 2/15/2011 @ 23:58	styrene	%D = 59.4	Passive samples
CCV (passive) 2/21/2011 @ 22:42	1,1,1-trichloroethane	%D = - 69.1	Passive samples

 $^{^{1}}$ Two exceptions are allowed up to limit of $\pm 40\%$. Therefore, no qualification of the sample data is required in this instance.

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Signed:

_____ Dated: <u>15 June 2011</u>
Melissa A. McGinnis

Maly McGin

Project Scientist

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107792

Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1408

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Oualifiers
1,1,1-Trichloroethane	1.00	0.03	0.36	0.07	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.76	0.10	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	•
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	0.22	0.04	
Benzene	1.00	0.07	0.50	0.15	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107792

Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1408

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
Chloroform	1.00	0.03	0.17	0.04	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.12	0.03	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	3.34	0.75	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p -Xylenes	1.00	0.07	1.25	0.28	
Methyl acetate	1.00	0.17	ND	ND	
Methylcyclohexane	1.00	0.03	0.13	0.03	
o-Xylene	1.00	0.03	0.52	0.12	
Styrene	1.00	0.03	3.60	0.83	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	1.08	0.28	В
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.11	0.02	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-22.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120013 Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1409

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.05	0.01	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120013

Field Location: Sub-Slab

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1409

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

	-	(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p -Xylenes	1.00	0.07	ND	ND	
Methyl acetate	1.00	0.17	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.04	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-17.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107800 Field Location: Sub-Slab Dupe Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1410

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	DF	<u>RL</u>	<u>Result</u>	Result	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.29	0.05	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	0.08	0.01	R
1,4-Dichlorobenzene	1.00	0.03	0.08	0.01	R
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107800
Field Location: Sub-Slab Dupe
Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Front Tube

Lab Sample Number: 1410

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/21/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.36	0.07	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	1.31	0.30	
Isopropylbenzene	1.00	0.03	0.06	0.01	J
m,p-Xylenes	1.00	0.03	0.58	0.13	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	0.28	0.06	
Styrene	1.00	0.03	1.12	0.26	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	0.44	0.11	В
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 032111-6.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120012

Field Location: Sub-Slab Dupe Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1411

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	Qualifiers
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.06	0.01	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120012
Field Location: Sub-Slab Dupe
Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Sub-Slab Vapor - Back-up Tube

Lab Sample Number: 1411

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

· · · · · · · · · · · · · · · · · · ·	-	(µg·m ⁻³)	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	Result	Result	<u>Qualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.07	ND	ND	
Methyl acetate	1.00	0.18	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-18.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:__

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107791

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1412

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

	(µg·m ⁻³)	$(\mu g \cdot m^{-3})$	(ppbv)	
<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	•
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
0.06	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
1.00	0.03	ND	ND	
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	DF RL 1.00 0.03	DF RL Result 1.00 0.03 ND 1.00 0.03 ND	DF RL Result Result 1.00 0.03 ND ND 0.06 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 ND ND 1.00 0.03 ND <t< td=""></t<>

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107791

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1412

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	Qualifiers
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	0.06	0.03	ND	ND	
Methyl acetate	0.15	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 031711-6.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120016

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1413

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	0.06	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214

Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120016

Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1413

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

			,		
		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	RL	Result	<u>Result</u>	<u>Qualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	0.06	0.03	ND	ND	
Methyl acetate	0.15	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o -Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-19.D

Signature: Jaly

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796

Field Location: Indoor Air Dupe Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1414

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 3/17/11

Lab Project Number: 201108

(µg·m³)	(µg·m³)	(ppbv)	
<u>RL</u>	<u>Result</u>	Result	<u>Qualifiers</u>
0.04	0.21	0.04	
0.03	ND	ND	
0.03	ND	ND	
0.03	0.74	0.09	
0.03	ND	ND	
0.03	0.08	0.02	
0.03	ND	ND	
0.03	ND	ND	
0.03	0.15	0.03	R
0.07	0.81	0.25	
0.03	ND	ND	
0.03	ND	ND	
0.03	0.27	0.04	
0.03	ND	ND	
	RL 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	RL Result 0.04 0.21 0.03 ND 0.03 0.74 0.03 ND 0.03 0.15 0.07 0.81 0.03 ND 0.03 ND	RL Result Result 0.04 0.21 0.04 0.03 ND ND 0.03 ND ND 0.03 0.74 0.09 0.03 ND ND 0.03 0.15 0.03 0.07 0.81 0.25 0.03 ND ND 0.03 ND ND

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107796

Field Location: Indoor Air Dupe Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Front Tube

Lab Sample Number: 1414

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

			,		
		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Qualifiers</u>
Chloroform	1.00	0.04	0.18	0.04	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.76	0.22	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.43	0.10	
Isopropylbenzene	1.00	0.03	0.07	0.01	J
nı,p -Xylenes	1.00	0.07	1.06	0.24	
Methyl acetate	1.00	0.18	ND	ND	
Methylcyclohexane	1.00	0.03	0.41	0.10	
o-Xylene	1.00	0.03	0.46	0.10	
Styrene	1.00	0.03	0.51	0.12	J
Tetrachloroethene	1.00	0.03	0.22	0.03	
Toluene	1.00	0.03	1.61	0.42	В
trans -1,2-Dichloroethene	1.00	0.03	0.09	0.02	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.05	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 031711-7.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120020 Field Location: Indoor Air Dupe

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1415

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	ND	ND	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120020

Field Location: Indoor Air Dupe Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Indoor Air - Back-up Tube

Lab Sample Number: 1415

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

		(μg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	Result	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
n,p-Xylenes	1.00	0.07	ND	ND	
Methyl acetate	1.00	0.18	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^3 = micrograms$ per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-20.D

Signature: Jall. +

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 107798

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1416

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

• • • • • • • • • • • • • • • • • • • •		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	0.04	0.01	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.70	0.08	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	0.05	0.01	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.07	0.73	0.21	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	0.04	0.00	R
Carbon tetrachloride	1.00	0.03	0.25	0.04	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

Analysis Report for Air

Field ID Number: 107798

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Front Tube

Lab Sample Number: 1416

Date Sampled: 2/7-8/11
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

		(μg·m ^{·3})	(μg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	Result	Result	<u>Qualifiers</u>
Chloroform	1.00	0.03	0.06	0.01	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	0.07	0.02	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	0.15	0.03	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.07	0.39	0.08	
Methyl acetate	1.00	0.16	ND	ND	
Methylcyclohexane	1.00	0.03	0.21	0.05	
o-Xylene	1.00	0.03	0.15	0.03	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	0.11	0.02	
Toluene	1.00	0.03	0.66	0.16	В
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.06	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 031711-8.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120018

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Back-up Tube

Lab Sample Number: 1417

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

ountpic Type: Accare outdoor 1111	Duck up - moo				_ + + _
		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Qualifiers</u>
1,1,1-Trichloroethane	1.00	0.03	ND	ND	
1,1,2,2-Tetrachloroethane	1.00	0.03	ND	ND	
1,1,2-Trichloroethane	1.00	0.03	ND	ND	
1,1,2-Trichlorotrifluoroethane	1.00	0.03	0.05	0.01	
1,1-Dichloroethane	1.00	0.03	ND	ND	
1,1-Dichloroethene	1.00	0.03	ND	ND	
1,2,4-Trichlorobenzene	1.00	0.03	ND	ND	
1,2-Dibromo-3-chloropropane	1.00	0.03	ND	ND	
1,2-Dibromoethane	1.00	0.03	ND	ND	
1,2-Dichlorobenzene	1.00	0.03	ND	ND	
1,2-Dichloroethane	1.00	0.03	ND	ND	
1,2-Dichloropropane	1.00	0.03	ND	ND	
1,3-Dichlorobenzene	1.00	0.03	ND	ND	
1,4-Dichlorobenzene	1.00	0.03	ND	ND	
Benzene	1.00	0.03	ND	ND	
Bromodichloromethane	1.00	0.03	ND	ND	
Bromoform	1.00	0.03	ND	ND	
Carbon tetrachloride	1.00	0.03	ND	ND	
Chlorobenzene	1.00	0.03	ND	ND	

Comments: DF = Dilution Factor; RL = Reporting Limit; $\mu g \cdot m^{-3}$ = micrograms per cubic meter; ppbv = Parts Per Billion by Volume. ND = Not Detected.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Analysis Report for Air

Field ID Number: 120018

Field Location: Ambient Outdoor Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Active Outdoor Air - Back-up Tube

Lab Sample Number: 1417

Date Sampled: 2/7-8/11 Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

bampic Type: Henric Outliers Anna			,		
* *-		(µg·m ⁻³)	(µg·m ⁻³)	(ppbv)	
<u>Analyte</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>	<u>Result</u>	<u>Oualifiers</u>
Chloroform	1.00	0.03	ND	ND	
cis -1,2-Dichloroethene	1.00	0.03	ND	ND	
Cyclohexane	1.00	0.03	ND	ND	
Dibromochloromethane	1.00	0.03	ND	ND	
Ethylbenzene	1.00	0.03	ND	ND	
Isopropylbenzene	1.00	0.03	ND	ND	J
m,p-Xylenes	1.00	0.03	ND	ND	
Methyl acetate	1.00	0.03	ND	ND	
Methylcyclohexane	1.00	0.03	ND	ND	
o-Xylene	1.00	0.03	ND	ND	
Styrene	1.00	0.03	ND	ND	J
Tetrachloroethene	1.00	0.03	ND	ND	
Toluene	1.00	0.03	ND	ND	
trans -1,2-Dichloroethene	1.00	0.03	ND	ND	
trans -1,3-Dichloropropene	1.00	0.03	ND	ND	
Trichloroethene	1.00	0.03	0.03	0.01	R

Comments: DF = Dilution Factor; RL = Reporting Limit; µg·m⁻³ = micrograms per cubic meter;

ppbv = Parts Per Billion by Volume. ND = Not Detected.

Data Files: 022811-21.D

Jack D. Fox PhD, Technical Director

al D. Fex

Signature:___

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Field Blank Report for Air

Field ID Number: 107797

Field Location: Active Blank

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Field Blank for Active Sampling

Dilution Factor: 1

(ng)

Lab Sample Number: 1418

Date Sampled: 2/7/11
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

(- O)	(0)
Reporting Limit	Mass on Tube
1.0	ND
2.0	ND
1.0	ND
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Comments: ng = nanograms. ND = Not Detected

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Field Blank Report for Air

Field ID Number: 107797

Field Location: Active Blank

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Field Blank for Active Sampling

Dilution Fact

Date Received: 2/11/11 Date Analyzed: 2/28/11

Date Sampled: 2/7/11

Lab Sample Number: 1418

Lab Project Number: 201108

ctor: 1	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
Chloroform	1.0	ND
cis -1,2-Dichloroethene	1.0	ND
cis -1,3-Dichloropropene	1.0	ND
Cyclohexane	1.0	ND
Dibromochloromethane	1.0	ND
Ethylbenzene	1.0	ND
Isopropylbenzene	1.0	ND J
m,p-Xylenes	2.0	ND
Methyl acetate	5.0	ND
Methyl tert -butyl ether	1.0	ND
Methylcyclohexane	1.0	ND
Methylene chloride	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND J
Tetrachloroethene	2.0	ND
Toluene	1.0	ND
trans -1,2-Dichloroethene	1.0	ND
trans -1,3-Dichloropropene	1.0	ND
Trichloroethene	1.0	ND

Comments: ng = nanograms. ND = Not Detected

Data File: 022811-16.D Signature:_

Jack D. Fox PhD, Technical Director

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

(ng)

Field ID Number: 120011

Field Location: NA

phone 315.445.2554

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1419

Date Sampled: NA

Date Received: 2/11/11

Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,1,2,2-Tetrachloroethane	1.0	ND
1,1,2-Trichloroethane	1.0	ND
1,1,2-Trichlorotrifluoroethane	1.0	ND
1,1-Dichloroethane	1.0	ND
1,1-Dichloroethene	1.0	ND
1,2,4-Trichlorobenzene	1.0	ND
1,2-Dibromo-3-chloropropane	1.0	ND
1,2-Dibromoethane	1.0	ND
1,2-Dichlorobenzene	1.0	ND
1,2-Dichloroethane	1.0	ND
1,2-Dichloropropane	1.0	ND
1,3-Dichlorobenzene	1.0	ND
1,4-Dichlorobenzene	1.0	ND
Benzene	2.0	ND
Bromodichloromethane	1.0	ND
Bromoform	1.0	ND
Carbon disulfide	1.0	ND
Carbon tetrachloride	1.0	ND
Chlorobenzene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.
Report To: Dave Myers
5788 Widewaters Parkway
Dewitt, New York 13214
phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

(ng)

Field ID Number: 120011

Field Location: NA

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1419
Date Sampled: NA

D . D . 1 2/44

Date Received: 2/11/11 Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

	` ' ' ' '	` ' ' ' '
<u>Analyte</u>	Reporting Limit	Mass on Tube
Chloroform	1.0	ND
cis -1,2-Dichloroethene	1.0	ND
cis -1,3-Dichloropropene	1.0	ND
Cyclohexane	1.0	ND
Dibromochloromethane	1.0	ND
Ethylbenzene	1.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	5.0	ND
Methyl tert -butyl ether	1.0	ND
Methylcyclohexane	1.0	ND
Methylene chloride	1.0	ND
o-Xylene	1.0	NĎ
Styrene	1.0	ND
Tetrachloroethene	2.0	ND
Toluene	1.0	ND
trans -1,2-Dichloroethene	1.0	ND
trans -1,3-Dichloropropene	1.0	ND
Trichloroethene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

022811-15.D

Signature:

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

Laboratory Blank Report for Air

Field ID Number: 140420

Field Location: NA

Client Project Number: 0116255.2A

Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

(ng)

Lab Sample Number: 1420

Date Sampled: NA
Date Received: 2/11/11
Date Analyzed: 2/28/11

Lab Project Number: 201108

(ng)

<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,1,2,2-Tetrachloroethane	1.0	ND
1,1,2-Trichloroethane	1.0	ND
1,1,2-Trichlorotrifluoroethane	1.0	ND
1,1-Dichloroethane	1.0	ND
1,1-Dichloroethene	1.0	ND
1,2,4-Trichlorobenzene	1.0	ND
1,2-Dibromo-3-chloropropane	1.0	ND
1,2-Dibromoethane	1.0	ND
1,2-Dichlorobenzene	1.0	ND
1,2-Dichloroethane	1.0	ND
1,2-Dichloropropane	1.0	ND
1,3-Dichlorobenzene	1.0	ND
1,4-Dichlorobenzene	1.0	ND
Benzene	2.0	ND
Bromodichloromethane	1.0	ND
Bromoform	1.0	ND
Carbon disulfide	1.0	ND
Carbon tetrachloride	1.0	ND
Chlorobenzene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: USEPA TO-17

Laboratory Blank Report for Air

Field ID Number: 140420

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

(ng)

Lab Sample Number: 1420

Date Sampled: NA
Date Received: 2/11/11
Date Analyzed: 3/17/11

Lab Project Number: 201108

(ng)

(rig)	(11g)
Reporting Limit	Mass on Tube
1.0	ND
2.0	ND
5.0	ND
1.0	ND .
1.0	ND
2.0	ND
1.0	1.1
1.0	ND
1.0	ND
1.0	ND
	Reporting Limit 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File: 031711-9.D

Signature: Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Analysis Report for Air

Field ID Number: GO122008 Field Location: Indoor Air

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1421
Dates Sampled: 1/10-2/8/11
Date Received: 2/11/11
Date Analyzed: 2/21/11
Lab Project Number: 201108

(µg·m ⁻³)	(μg·m ⁻³)
Reporting Limit	<u>Result</u>
0.06	NASD J
0.05	NASD
0.04	NASD B
0.05	NASD
0.04	NASD
0.05	NASD J
0.05	NASD
0.05	NASD
0.05	NASD J
0.05	NASD
0.05	NASD
0.05	NASD
	Reporting Limit 0.06 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05

Comments: $\mu g \cdot m^{-3} = micrograms$ per cubic meter. ND = Not Detected.

NASD = No Analyte Signals Detected; tube contamination or anomaly indicated

Data File: 022111-15.D, 022211-4.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.

phone 315.445.2554

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Tentatively Indentified Compounds in Air

Field ID Number: GO122008 Field Location: Indoor Air

Compound

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Long-Term Passive Indoor Air

(ng)

Mass on Tube

Lab Sample Number: 1421

Dates Sampled: 1/10-2/8/11
Date Received: 2/11/11
Date Analyzed: 2/21/11
Lab Project Number: 201108

 $(\mu g \cdot m^{-3})$

Estimated Concentration

NASD = No Analyte Signals Detected; tube contamination or anomaly indicated.

Comments: ng = nanograms.

Data File:

022111-15.D, 022211-4.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Field Blank Report for Air

Field ID Number: GO122028 Field Location: Passive Blank

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Field Blank for Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1422
Date Sampled: 1/10/11
Date Received: 2/11/11
Date Analyzed: 2/21/11

Lab Project Number: 201108

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND J
1,2-Dichloroethane	1.0	ND
Benzene	2.0	2.9 B
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND J
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND J
Tetrachloroethylene	1.0	ND
Toluene	2.0	ND
Trichloroethylene	1.0	ND

Comments: ng = nanograms. ND = Not Detected.

Data File: 022111-14.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

Please refer to the included chain of custody for additional sample information.

Signature:

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Мат-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway

Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

/-- -- \

Laboratory Blank Report for Air

/-- -\

Field ID Number: GO122005

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Factor: 1

Lab Sample Number: 1423

Date Sampled: NA Date Received: 2/11/11 Date Analyzed: 2/21/11 Lab Project Number: 201108

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	2.0	2.5
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND
Tetrachloroethylene	1.0	ND
Toluene	2.0	ND
Trichloroethylene	1.0	ND

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

022111-13.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

25-Mar-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Laboratory Blank Report for Air

Field ID Number: GO122047

Field Location: NA

Client Project Number: 0116255.2A Client Job Site: ANG DGI - Ramtech VI

Sample Type: Lab Method Blank #2 (After Samples)

Dilution Factor: 1

Lab Sample Number: 1424

Date Sampled: NA
Date Received: 2/11/11
Date Analyzed: 2/21/11
Lab Project Number: 201108

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND .
Benzene	2.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	1.0	ND
Tetrachloroethylene	1.0	ND

2.0

1.0

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

Toluene

Trichloroethylene

022111-17.D

Signature:

Jack D. Fox PhD, Technical Director

ND

ND

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

DATA USABILITY SUMMARY REPORT (DUSR) ANG HANCOCK FIELD - SITE 15 SYRACUSE, NEW YORK AIR SAMPLE ANALYSES ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) PROJECT NUMBER 0116255 VAPOR TRAIL ANALYTICS, LLC (VTA) SAMPLE DELIVERY GROUP (SDG) NUMBER 201112

Environmental Resources Management

5788 Widewaters Parkway Dewitt, NY 13214 (315) 445-2554 (315) 445-2543 (fax)

http://www.erm.com

Deliverables:

The above referenced data package for two (2) air samples, one (1) field blank sample, and two (2) method blank samples contains all the required deliverables as stipulated under the 2005 New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B deliverables. The samples were analyzed for volatile organics following United States Environmental Protection Agency (USEPA) Method TO-17. The data have been evaluated according to the protocols and quality control (QC) requirements of the ASP, the National Functional Guidelines for Organic Data Review (October 1999), the USEPA Region 2 Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Volatile Organic Analysis of Ambient Air in canister by Method TO-15, and the reviewer's professional judgment.

This report pertains to the following air samples collected from 7 February 2011 through 8 March 2011:

Samples

GO125843	Long-Term Passive Indoor Air
GO124449	Long-Term Passive Indoor Air

QC Samples

GO157992	Field Blank for Passive Indoor Air
GO158987	Lab Method Blank #1 (Before Samples)
GO158930	Lab Method Blank #2 (After Samples)

The following items/criteria were reviewed:

- Case narrative and deliverable compliance
- Chain-of-Custody (COC)
- · Holding times
- Sorbent tube cleaning summary and data
- Surrogate compound recoveries, summary and data
- Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Report of Analysis data sheets (Form I)
- GC/MS chromatograms, mass spectra and quantitation reports
- Quantitation/reporting limits
- Qualitative and quantitative compound identification

The items listed above were in compliance with the analytical methods and with the ASP and USEPA criteria with the exceptions discussed in the text below. The data have been validated according to the procedures outlined above and qualified accordingly.

• No qualification of the sample data is required.

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Signed:

Melissa A. McGinnis

Mely McGin

Project Scientist

Dated: 15 June 2011

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Analysis Report for Air

Field ID Number: GO125843
Field Location: Passive Indoor Air
Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1450
Dates Sampled: 2/7-3/8/11
Date Received: 3/14/11
Date Analyzed: 3/23/11
Lab Project Number: 201112

<u>Analyte</u>	(µg·m ⁻³) <u>Reporting Limit</u>	(μg·m ⁻³) <u>Result</u>
1,1,1-Trichloroethane	0.06	1.55
1,2-Dichloroethane	0.05	0.10
Benzene	0.22	1.04
Chloroform	0.05	0.17
Cyclohexane	0.05	1.47
Ethylbenzene	0.11	0.55
Isopropylbenzene	0.05	0.11
m,p-Xylenes	0.08	1.10
Methyl acetate	0.05	0.22
Methylcyclohexane	0.05	1.64
o-Xylene	0.05	0.79
Styrene	0.24	ND
Tetrachloroethylene	0.05	0.27
Toluene	0.05	3.10
Trichloroethylene	0.10	0.31

Comments: $\mu g \cdot m^{-3} = \text{micrograms per cubic meter. ND} = \text{Not Detected.}$

Data File: 032311-18.D

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety. Please refer to the included chain of custody for additional sample information.

Signature:_

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554 NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Analysis Report for Air

Field ID Number: GO124449

Field Location: Duplicate Passive Indoor Air

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Long-Term Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1451
Dates Sampled: 2/7-3/8/11
Date Received: 3/14/11
Date Analyzed: 3/23/11
Lab Project Number: 201112

	(μg·m ⁻³)	(µg·m ⁻³)
<u>Analyte</u>	Reporting Limit	<u>Result</u>
1,1,1-Trichloroethane	0.06	1.42
1,2-Dichloroethane	0.05	0.09
Benzene	0.22	1.02
Chloroform	0.05	0.17
Cyclohexane	0.05	. 1.36
Ethylbenzene	0.11	0.50
Isopropylbenzene	0.05	0.10
m,p-Xylenes	0.08	0.95
Methyl acetate	0.05	0.17
Methylcyclohexane	0.05	1.39
o-Xylene	0.05	0.68
Styrene	0.24	ND
Tetrachloroethylene	0.05	0.25
Toluene	0.05	2.56
Trichloroethylene	0.10	0.27

Comments: $\mu g \cdot m^{-3} = micrograms$ per cubic meter. ND = Not Detected.

Data File:

032311-19.D

Signature:_

Jack D. Fox PhD, Technical Director

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc. Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932 Analytical Method: **Modified USEPA TO-1**7

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Field Blank Report for Air

Field ID Number: GO157992 Field Location: Passive Blank

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Field Blank for Passive Indoor Air

Dilution Factor: 1

Lab Sample Number: 1449

Date Sampled: 2/7/11
Date Received: 3/14/11
Date Analyzed: 3/23/11

Lab Project Number: 201112

	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	5.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
Styrene	5.0	ND
Tetrachloroethylene	1.0	ND .
Toluene	1.0	ND

2.0

Comments: ng = nanograms. ND = Not Detected.

Trichloroethylene

Data File:

032311-17.D

Signature:

Jack D. Fox PhD, Technical Director

ND

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway

Dewitt, New York 13214

phone 315.445.2554

NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Laboratory Blank Report for Air

Field ID Number: GO158987

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering

Sample Type: Lab Method Blank #1 (Before Samples)

Dilution Fac

Lab Sample Number: 1452

Date Sampled: NA Date Received: 3/14/11 Date Analyzed: 3/23/11

Lab Project Number: 201112

ctor: 1		
•	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	5.0	ND
Chloroform	.1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND
-		

5.0

1.0

1.0

2.0

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

Styrene

Toluene

Tetrachloroethylene

Trichloroethylene

032311-16.D

Signature:

Jack D. Fox PhD, Technical Director

ND

ND

ND

ND

Note: This report is part of a multipart document, and should only be evaluated in its entirety.

179 Lake Avenue Rochester, NY 14608 USA Tel: (585) 727-2825 www.vaportrailanalytics.com

7-Apr-2011

Client: ERM, Inc.

Report To: Dave Myers 5788 Widewaters Parkway Dewitt, New York 13214 phone 315.445.2554

NYSDOH ELAP ID Number: 11932

Analytical Method: Modified USEPA TO-17

Sampling Method: ASTM D6196-03 (Axial Diffusive)

Laboratory Blank Report for Air

Field ID Number: GO158930

Field Location: NA

Client Project Number: Not Indicated

Client Job Site: ANG Hancock - Ramtech Engineering Sample Type: Lab Method Blank #2 (After Samples)

Dilution Facto

Lab Sample Number: 1453

Date Sampled: NA Date Received: 3/14/11 Date Analyzed: 3/23/11

Lab Project Number: 201112

tor: 1		
	(ng)	(ng)
<u>Analyte</u>	Reporting Limit	Mass on Tube
1,1,1-Trichloroethane	1.0	ND
1,2-Dichloroethane	1.0	ND
Benzene	5.0	ND
Chloroform	1.0	ND
Cyclohexane	1.0	ND
Ethylbenzene	2.0	ND
Isopropylbenzene	1.0	ND
m,p-Xylenes	2.0	ND
Methyl acetate	1.0	ND
Methylcyclohexane	1.0	ND
o-Xylene	1.0	ND

5.0

1.0

1.0

2.0

Comments: ng = nanograms. ND = Not Detected. NA = Not Applicable.

Data File:

o-Xylene

Styrene

Toluene

Tetrachloroethylene

Trichloroethylene

032311-20.D

Signature:

Jack D. Fox PhD, Technical Director

ND

ND

ND

ND

Note: This report is part of a multipart document, and should only be evaluated in its entirety.