Periodic Groundwater Report For Site 15 Hancock Air National Guard Base

Draft Final

Site:

Hancock Air National Guard Base Syracuse, New York

Prepared for:

NGB/A7OR Conaw ay Hall 3500 Fetchet Avenue Joint Base Andrews, MD 20762-5157

Contract #: DA HA92-02- D-0012

Delivery Order #: 93

December 2013

Table of Contents

1	INTR	RODUCTION	1-1
	1.1	Site Description	1-1
2	CAL	CIUM PEROXIDE INJECTIONS	2-1
3	GRO	DUNDWATER MONITORING	3-1
	3.1	Groundw ater Monitoring Program Overview	3- ² 3-
	3.2	Sampling Methodology	3- ²
	3.3	3.2.3 Sample Locations	3- <i>-</i>
		3.3.2 September 2012 Groundw ater Monitoring Results	3-2 3-3-3
4	CON	3.3.5 August 2013 Groundw ater Monitoring Results NCLUSIONS AND RECOMM ENDATIONS	
5	REF	ER ENC ES	5-1

List of Figures

Figure 1 Site Location Map
Figure 2 Static Groundw ater Contour Map, August 2013
Figure 3 Soil Excavations and Biosparge Well Locations
Figure 4 2009 BEX Plume with 2012 Calcium Peroxide Injection Locations
Figure 5 Groundw ater Contamination Plumes, 2009 through Present

List of Tables

Table 1Groundw ater Sampling ResultsTable 2Groundw ater Field ParametersTable 3Proposed Groundw ater Monitoring Well Network

List of Appendices

Appendix A	Well Inspection Forms
Appendix B	Groundwater Sampling Forms
Appendix C	Laboratory Data Packages

Periodic Groundwater Report.	ERP	Sito 15	Hancock Air	r National	Guard Raca

List of Acronyms and Abbreviations

ANG Air National Guard

ARAR Applicable or Relevant and Appropriate Requirements

AWQS Ambient Water Quality Standards

BEX Benzene, Ethylbenzene, Xylenes

bgs Below Ground Surface

cfm Cubic feet per minute COC Compounds of Concern

DO Dissolved Oxygen
DOD Department of Defense

ELAP Environmental Laboratory Accreditation Program

ERM Environmental Resources Management ERP Environmental Restoration Program

FFS Focused Feasibility Study FSP Field Sampling Plan

ft Feet

HANGB Hancock Air National Guard Base

IRM Interim Remedial Measure

JP Jet Propulsion

lbs Pounds

mg/L Milligram per liter µg/L Micrograms per Liter

MNA Monitored Natural Attenuation

MW Monitoring Well

NGB National Guard Bureau NYS New York State

NYSDEC New York State Department of Environmental Conservation

ORP Oxidation Reduction Potential

PCB Polychlorinated Biphenyls
pH Pondus Hydrogenii
PV C Polyvinyl Chloride

QAPP Quality Assurance Project Plan

RAO Remedial Action Objective
RAWP Remedial Action Work Plan

ROD Record of Decision
ROI Radius of Influence

STARS Spills Technology and Remediation Series

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

Periodic Groundwater Report, ERP Sit	ite 15, Hancock Air National Guard Base
--------------------------------------	---

1 Introduction

This Periodic Groundwater Report summarizes the progress of the remedial activities implemented to address petroleum hydrocarbon groundwater contamination associated with Environmental Restoration Program (ERP) Site 15 at the 174th Fighter Wing, New York Air National Guard (ANG), Hancock Air National Guard Base (HANGB), Syracuse, New York. A Final Record of Decision (ROD) was issued by the ANG in April 2011 for the remediation of groundwater at Site 15. The remedy selected in the ROD consists of the injection of calcium peroxide to enhance aerobic biodegradation of the dissolved phase petroleum hydrocarbon groundwater plume, coupled with long-term monitoring.

The remedial activities conducted to date at ERP Site 15 under this contract consist of the installation of a biosparging system to address residual contamination in soil in October 2011; and an initial injection of calcium peroxide substrate conducted in October 2012. A baseline groundwater monitoring event was conducted in September 2012 and the first post-injection groundwater monitoring event was conducted in January 2013. This report provides a comparison of pre- and post-injection groundwater conditions at ERP Site 15 including groundwater monitoring results from June and August 2013.

The activities summarized in this report were conducted in accordance with the *Final Remedial Action Work Plan* (WP) submitted to the New York State Department of Environmental Conservation (NYSDEC) in September 2011 and approved by NYSDEC in October 2011. The WP was prepared in accordance with NYSDEC Program Policy, DER-10; Chapter 5, Section 5.3.

1.1 Site Description

HANGB is located in Syracuse, New York and ERP Site 15 comprises approximately 2.5 acres in the southeastern portion of the HANGB. Site 15 was formerly used as a pump house and fuel storage facility where numerous spills of jet propulsion (JP)-4 and JP-8 military aviation fuels and polychlorinated biphenyls (PCBs) occurred during active use. The pump house, tanks, and associated piping and structures have been demolished and the majority of the Site is now a large open field. Site 15 was listed as a Class 2 site on the NYS Inactive Hazardous Waste Disposal Site Registry in 1994 as Site Number 734054. PCBs identified at the site have been successfully remediated. A map illustrating the location of the HANGB and ERP Site 15 is provided as Figure 1.

The recurrent releases of JP-4 and JP-8 at ERP Site 15 resulted in contamination of soil and a dissolved-phase plume of petroleum hydrocarbons with maximum historic dimensions of approximately 1,000 feet (ft) along the axis in the north-south direction and a width of approximately 150 ft. The plume is aligned with groundwater flow at Site 15, which is to the south-southeast towards Ley Creek and Onondaga Lake. The source area is located at the northern end of the plume in the vicinity of monitoring well MW-101; the down-gradient edge of the plume is at the boundary of the General Electric Property. The contaminants of concern (COCs) within the plume are benzene, ethylbenzene, and xylenes (BEX). The historic maximum detection of BEX occurred at MW-19 in September 2005 at a concentration of 1,500 micrograms per liter (μ g/L). The first post injection monitoring event was conducted in January 2013, BEX compounds exceeded cleanup criteria in only three (3) of 19 monitoring wells sampled, and in each instance the total BEX concentration was less than 50 μ g/L. The most recent sampling event was conducted in August 2013 and there was only one detection of Benzene in excess of the cleanup criteria. ERP Site 15 monitoring well locations are depicted in Figure 2 along with groundwater elevation contours and flow directions. Historic plume dimensions are depicted in Figure 3.

1.1.1 Site Geology

The surficial geology at Site 15 consists of glaciofluvial sediments deposited by glacial melt water underlain by poorly sorted till deposited directly by glaciers. The glaciofluvial sediments include clayey silts, sands and gravels with thickness ranging from 45 to 55 ft. The underlying till consists of gravel, cobbles, and boulders entrained in a clayey silt matrix and ranges in thickness from 30 to 100 ft (Lockheed 1997).

Bedrock is encountered at depths ranging from 75 to 109 ft below ground surface (bgs), and is part of the Upper Silurian Vernon Formation. This formation consists of thinly bedded soft red shale with thin beds of green shale, gypsum, halite and dolomite. Competence varies from soft and crumbly to dense and hard. The degree of competence appears to be proportional to the density of the fractures in the shale. The shale is characterized by enlarged fractures, joints and bedding planes (Lockheed 1997). Significant portions of ERP Site 15 have been re-graded and filled due to previous construction and demolition activities.

1.1.2 Site Hydrogeology

The overburden at Site 15 consists of fine-grained sediments. The subgrade soils are fairly uniform with the upper 10 to 15ft of the soil characterized by relatively soft, dark yellow ish-brown silt and clayey silt. Towards the southeast, the interval thins to approximately 5 ft. Beneath the clayey silt are yellow ish brown to dark brown fine to medium-grained sands with silt and trace amounts of clay down to a depth of approximately 20 ft. Underlying these silty sands is a lens of stiff clayey silts (often called glacial till). Till has been encountered as much as 15 ft thick (Lockheed 1997).

Groundw ater is generally encountered at depths of 1.5 to 13 ft bgs and, as previously discussed, flows in a south to southeasterly direction towards Ley Creek and eventually into Onondaga Lake. Groundwater contours based on elevation data gathered during the September 2013 performance monitoring event are depicted in Figure 2.

1.2 Previous Remedial Activities

Based on an evaluation of the site conditions, the compounds of concern (COC), and an analysis of applicable or relevant and appropriate requirements (ARARs), the following remedial action objectives (RAOs) were developed for groundwater contaminated with BEX at ERP Site 15:

- Prevent exposure to contaminated groundwater containing BEX concentrations above the NYSDEC Ambient Water Quality Standards (AWQS) and Guidance Values;
- Prevent or minimize further off-site migration of the contaminant plume (plume containment);
- Prevent or minimize further migration of contaminants from source materials to groundwater (source control); and
- Enhance the natural process for the attenuation of BEX compounds on-site and off-site.

Achievement of RAOs will be quantitatively measured by the achievement of NYSDEC AWQS included in NYS Division of Water Technical and Operational Guidance Series (1.1.1) 1998. The AWQS for BEX are included on Table 1.

Environmental studies performed from 1990 to 2009 indentified Site 15 and down-gradient off-site areas as having soil and groundwater impacted with petroleum hydrocarbons. A Focused Feasibility Study (FFS) recommended excavation and off-site disposal of the source areas (these were completed in 2003 and 2008) and focused enhanced aerobic bioremediation with monitored natural attenuation (MNA). Two vadose zone source area removals have occurred as interim remedial measures (IRMs):

- Year 2003: removal of 5,360 tons of petroleum-impacted soil from the vadose zone, steel tanks and associated piping; and
- Year 2008: excavation of 2,890 tons of petroleum-impacted soil from the vadose zone source area followed by application of 4,800 pounds of an oxygen-releasing product (calcium peroxide) within the bottom of the excavation areas.

The location of the IRM soil excavations is presented in Figure 3. Calcium peroxide was applied directly to the bottom of the 2008 excavations prior to backfilling with crushed concrete. Post excavation confirmation soil sampling and groundwater monitoring results from wells adjacent to the excavations indicated that there was an area of residual soil contamination as well as a lack of oxygen available in this portion of the aquifer, potentially limiting biodegradation in the residual petroleum impacted soil. Biosparging was selected for accelerated biodegradation of the COCs in the source area as the presence of petroleum hydrocarbons adsorbed to soil in the saturated region can act as a continuous source of dissolved phase contamination; limiting the effectiveness of calcium peroxide injections in achieving RAOs in a reasonable timeframe.

A biosparge system was designed and installed in October 2011 to inject air into the saturated zone to stimulate aerobic biodegradation of residual source area smear zone impacts. Fifteen one-inch diameter polyvinyl chloride (PVC) biosparge wells screened from 18 to 20 ft bgs were installed at Site 15 in accordance with the WP. The biosparge well locations are depicted in Figure 3. The biosparging system was operated from November 2011 through December 2012, when it was shutdown to monitor for contaminant rebound. During operation, filtered atmospheric air was delivered to each well at a rate of 1 to 2 cubic feet per minute (cfm). The radius of influence (ROI) for sparge wells was estimated at up to 30 feet, based on dissolved oxygen measurements taken at IRP Site 15 monitoring wells. The temporary electrical drop to the biosparge system has been removed and the system will be shipped off site at the end of November 2013. The biosparge points will be decommissioned along with the monitoring wells after the site is closed.

2 Calcium Peroxide Injections

The prescribed remedy for remediation of BEX impacted groundwater is enhanced aerobic biodegradation via calcium peroxide injection. The injection of calcium peroxide provides and extended release of oxygen into the subsurface to maintain an aerobic environment; enhancing microbial activity which results in the degradation of petroleum compounds. Delivery of calcium peroxide to the aquifer is accomplished by pressure injection, which ensures a uniform distribution across the injection interval and allows for delivery of the substrate at a faster rate. Distribution of calcium within the aquifer is by advection along the natural hydraulic gradient.

An initial calcium peroxide injection event was conducted from October 2-5, 2012. A total of 2,200 pounds of calcium peroxide were injected at 44 injection locations. Each injection location received 50 pounds of calcium peroxide, which was injected as a 40-percent slurry comprised of 9 gallons of water and 50 pounds of calcium peroxide. Substrate was injected using direct-push technology (DPT) techniques. Substrate was injected using a 'bottom up' approach across a 15-foot injection interval at each location. Injection intervals ranged from 3- to 18-feet bgs to 15- to 30-feet bgs, dependent on the water table elevation in monitoring wells located adjacent to the injection locations. The injection locations are depicted in Figure 4.

3 Groundwater Monitoring

3.1 Groundwater Monitoring Program Overview

3.1.1 Rationale

The groundwater monitoring program at ERP Site 15 was developed to provide baseline characterization of the BEX plume by sampling the 30 existing monitoring wells; and for performance monitoring to assess the effectiveness of biosparging and calcium peroxide injection in remediating BEX contamination. Performance monitoring will consist of sampling up to 30 monitoring wells on a quarterly basis for two years after the initial injection event, followed by semi-annual sampling of up to 20 monitoring wells for two additional years. Samples are analyzed for VOCs and geochemical data is also collected to assess the performance of the remedial action. After four quarters of non-detect or detections below the NYSDEC AGWQS at any particular well, it will be proposed that the well be removed from the sampling network.

3.2 Sampling Methodology

3.2.1 Sample Collection

Groundw ater samples are collected using low-flow (minimal draw down) sampling techniques. Wells are gauged with an oil-water interface probe prior to sampling to determine the water level, total well depth and the presence/absence of non-aqueous phase liquids (NA PL). Water level data is utilized to develop potentiometric surface maps. Following gauging, the wells are purged using a peristaltic pump and dedicated tubing. During purging, the depth to water is monitored as well as geochemical and physical parameters including temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductivity and turbidity. The geochemical and physical parameters are utilized to determine well stabilization which indicates that the water being purged is from the formation surrounding the well and will provide a representative sample. VOC samples are collected in 40 milliliter (mL) vials preserved with hydrochloric acid provided by the analytical laboratory and shipped on ice to the laboratory for analysis. Geochemical and physical parameter readings are recorded on field sheets; and the geochemical data, particularly DO and ORP, are evaluated as indicators of the favorability of the aquifer for promoting aerobic biodegradation of BEX. In some instances, the hydraulic conductivity at a given well is insufficient to allow for low-flow sampling. In such cases, the well was purged dry, allowed to recharge and sampled with a disposable bailer. Additional information regarding sampling techniques can be found in the *Final Field Sampling Plan* (AECOM, 2011), which is included as an appendix of the WP.

3.2.2 Sample Analysis

Samples are analyzed for BEX using United States Environmental Protection Agency (USEPA) Method 8260. Samples are analyzed at a Spectrum Analytical, Inc. laboratories in North Kingstown, Rhode Island; a Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) certified facility. In addition to environmental samples, quality assurance/quality control (QA/QC) samples are also submitted to the laboratory. These include duplicates, matrix spike and matrix spike duplicate (MS/MSD) samples, trip blanks, and ambient blanks. Additional information on analytical procedures and QA/QC procedures can be found in the Quality Assurance Program Plan (QAPP), which is included as an appendix of the WP.

3.2.3 Sample Locations

Sample locations are selected from the existing 30 well monitoring network at ERP Site 15. All 30 wells were sampled during the October 2012 and January 13 events. Wells in which BEX was not detected in these events as well as previous events were dropped from future events as proposed in the April 2013 Periodic Groundwater Report. During the June and August 2013 sampling events 10 monitoring wells were sampled. These wells had detections of VOCs following the calcium peroxide injections. Future events will include fewer locations as wells are dropped from the network based on contaminant trends. The sampling locations and historic plume dimensions are depicted in Figure 5.

3.3 Groundwater Monitoring Results

The following sections present groundwater monitoring results from five sampling events. The October 2010 event was conducted by Environmental Resources Management (ERM) and predates the installation of the biosparge system and calcium peroxide injection. The second event, conducted by AECOM, occurred in September 2012, following 10 months of biosparging and prior to the initial calcium peroxide injection event. The third event presented in this report occurred in January 2013,

approximately three months after the initial calcium peroxide injection event. The fourth event discussed in this report was from a sampling event that occurred in June 2013, eight months after initial calcium peroxide injection, and the final event discussed in this report details the results from the most recent, August 2013, sampling event.

3.3.1 October 2010 Groundwater Monitoring Results

Thirty (30) monitoring wells were sampled by ERM in October 2010. COCs were detected in 10 of the 30 wells sampled; with detections at 6 wells exceeding the NYSDEC AWQS. Benzene was detected in samples from six (6) monitoring wells at concentrations ranging from 0.36J-µg/L to 26-µg/L. Five of the six detections of benzene exceeded the NYSDEC AWQS of 1-µg/L. The maximum detection of benzene occurred at MW-11. Ethylbenzene was detected in samples from six wells at concentrations ranging from 3.8-µg/L to 100-µg/L. Five of the six detections of ethylbenzene exceeded the NYSDEC AWQS of 5-µg/L. The maximum detection of ethylbenzene occurred at MW-19. Xylenes were detected in samples from eight wells at concentrations ranging from 0.72J-µg/L to 92-µg/L. Three of the eight detections of xylenes exceeded the NYSDEC AWQS of 5-µg/L. The maximum detection of xylenes occurred at MW-105. MW-112 was the furthest down-gradient monitoring well with detections of COCs in October 2010. Benzene, ethylbenzene, and xylenes were detected at MW-112 at concentrations of 0.36J-µg/L, 10-µg/L, and 2.7-µg/L, respectively. The detection of ethylbenzene at MW-112 exceeded the NYSDEC AWQS. Groundwater analytical data is summarized in Table 1 and the extent of the BEX plume during the October 2010 monitoring event is depicted in Figure 5.

Geochemical parameter monitoring conducted during sampling indicated that conditions were generally anaerobic (DO less than 1-mg/L) and reducing (ORP below 0 mV) throughout ERP Site 15. These conditions are typically of sites contaminated with petroleum hydrocarbons that have not undergone chemical or biological amendment. Geochemical data for the October 2010 monitoring event is summarized in Table 2.

3.3.2 September 2012 Groundwater Monitoring Results

Thirty (30) monitoring wells were sampled in September 2012. The intent of this monitoring event was to serve as a baseline for evaluating the effectiveness of the calcium peroxide injections to be conducted in October 2012. The biosparging system had been operational for approximately 10 months at the time of the September 2012 monitoring event. COCs were detected in samples from seven wells during the September 2012 monitoring event. Benzene was detected in samples from three monitoring wells at concentrations ranging from 1.4-µg/L to 5.9-µg/L. All three detections of benzene exceeded the NYSDEC AWQS of 1-µg/L. The maximum detection of benzene occurred at MW-103. Ethylbenzene was detected in samples from four wells at concentrations ranging from 1.7-µg/L to 53-µg/L. Three detections exceeded the NYSDEC AWQS of 5-µg/L. The maximum detection of ethylbenzene occurred at MW-112. Xylenes were detected at three monitoring wells at concentrations ranging from 26-µg/L; all of which exceeded the NYSDEC AWQS of 5-µg/L. The maximum detection of xylenes occurred at MW-112. As during the October 2010 event, MW-112 was the furthest down-gradient monitoring well with detections of COCs. Ethylbenzene was detected in the sample from MW-112 at 29-µg/L and xylenes were detected at 18-µg/L. Both of these detections exceed their respective NYSDEC AWQS of 5-µg/L. Groundwater analytical data is summarized in Table 1 and the extent of the BEX plume during the September 2012 monitoring event is depicted in Figure 5.

Geochemical parameter monitoring conducted during sampling indicated that dissolved-oxygen concentrations had increased in many areas since the October 2010 monitoring event, as would be expected following 10 months of biosparging. ORP readings were still within the reducing range throughout the majority of ERP Site 15. Geochemical data for the September 2012 monitoring event is summarized in Table 2.

3.3.3 January 2013 Groundwater Monitoring Results

Thirty (30) monitoring wells were sampled at ERP Site 15 in January 2013 to assess the performance of calcium peroxide injections and biosparging at reducing dissolved-phase BEX contamination. COCs were detected in samples from four monitoring wells, with at least one COC exceeding the NYSDEC AWQS at three wells. This represents a significant decrease from October 2010, when COCs were detected in ten wells and exceeded the NYSDEC AWQS at six wells. The frequency of COC detections and exceedances of the NYSDEC AWQS also decreased from the September 2012 monitoring event. Benzene was detected in samples from two wells at concentrations of 0.78J-µg/L and 4.7-µg/L. The detection of 4.7-µg/L, at MW-11, exceeded the NYSDEC AWQS of 1-µg/L. Ethylbenzene was detected in samples from three monitoring wells at concentrations of 0.63J-µg/L to 29-µg/L. The detection of ethylbenzene at 29-µg/L, which occurred at MW-112, exceeded the NYSDEC AWQS of 1-µg/L. Xylenes were detected at MW-112 and MW-101 at concentrations of 18-µg/L and 26-µg/L, respectively. Both detections of xylene exceeded the NYSDEC AWQS of 1-µg/L. As in the previous monitoring events, MW-112 was the furthest down-gradient well with BEX impacts. The data from the January 2013 monitoring indicate that there is no longer a contiguous BEX plume at ERP Site 15 but rather pockets of residual groundwater contamination.

DO and ORP measurements taken while sampling show increases in DO at numerous wells when compared to October 2010 and September 2012 data. While DO concentrations decreased at some wells from September 2012, the values were generally

higher than those in October 2010, prior to the implementation of biosparging and calcium peroxide injection. ORP data shows many wells still within the reducing range.

3.3.4 June 2013 Groundwater Monitoring Results

During the June 2013 sampling event, 10 monitoring wells were sampled (MW-14, MW-101, RW-01, MW-11, MW-15, MW-17, MW-19, MW-103, MW-105, MW-106, and MW-112). The other 19 wells showed no sign of contamination for four consecutive sampling events, therefore, were no longer sampled. This change to the monitoring network was proposed in the April 2013 Periodic Groundwater Report, Table 3. Out of the 11 wells sampled, COCs were detected in the sample from one well, MW-101. Contaminants found included Ethyl Benzene (5.7 μ g/L) and Total Xylene (7.2 μ g/L), both in exceedance of NYSDEC standard of 5 μ g/L.

DO measurements taken during this sampling event showed both increases and decreases in many of the wells. Monitoring wells that showed a decrease in DO (MW-11, MW-15, MW-101, MW-112, and RW-1) dropped much more significantly than the monitoring wells that showed an increase (MW-14, MW-19, MW-103, MW-105, and MW-106,) went up in value. Wells with a decreasing DO dropped on an average of 2.775 mg/l, while monitoring wells that increased only rose 0.506 mg/l on average. ORP continued to fluctuate as it has in the past, but showed an overall increasing trend. The decreasing trend in DO is expected as the calcium peroxide is depleted.

3.3.5 August 2013 Groundwater Monitoring Results

A total of 10 monitoring wells were sampled on August 29, 2013 (MW-14, MW-101, RW-01, MW-11, MW-15, MW-19, MW-103, MW-105, MW-106, and MW-112). The sample from MW-11 contained benzene at a concentration of 9.6 μ g/L which is above the NYSDEC standard of 1 μ g/L. The result for the June 2013 sample from MW-11 was non-detect for benzene. The COCs ethyl-benzene (3.1 μ g/L) and xylene (1.9 μ g/L) were detected below NYSDEC standards in the sample from MW-101. These COCs had been detected above NYSDEC standards in the previous three quarterly samples. COCs were not detected in samples from the other 9 wells which were sampled during this event.

DO concentrations have stabilized below 1 mg/L in all of the wells sampling. This suggests that the calcium peroxide injected in the fall of 2012 has been depleted. The ORP measurements from this round of sampling continues to fluctuate but overall is showing a negative trend which is consistent with the depletion of the calcium peroxide.

4 Conclusions and Recommendations

The post remedial groundwater monitoring data collected in September 2012, January 2013, June 2013, and August 2013 indicates that the addition of oxygen to the saturated zone at ERP Site 15 via biosparging and calcium peroxide injection has resulted in a significant decrease in BEX contamination within the aquifer, as evidenced by decreases in the frequency and magnitude of BEX detections over time. The current data indicates that the plume is no longer contiguous and that BEX impacts are isolated to one monitoring well, MW-11. The rebound seen in this well is typical and monitoring will be ongoing.

Calcium peroxide is typically effective in providing dissolved-oxygen to an aquifer for a period of 6 to 12 months, depending on groundwater flow rates, contaminant concentrations and utilization rates. The falling DO level in the monitoring wells suggests that the calcium peroxide injected in the fall of 2012 is nearing depletion. The next performance monitoring event is scheduled for December 2013. Should monitoring results indicate that BEX is still present at concentrations in excess of the NYSDEC AWQS, a second calcium peroxide injection will be conducted. This injection would possibly be augmented using a sodium-persulfate product, which degrades contaminants chemically; while the calcium peroxide would persist to stimulate biodegradation.

Quarterly groundwater monitoring should be continued until BEX concentrations are below the AWQS for four consecutive quarters as specified in DER-10 Section 6.4. The monitoring well network for December 2013 and subsequent events will include all wells where BEX compounds were detected in any of the three previous quarterly sampling events. The proposed monitoring well network is provided in Table 3.

5 References

- AECOM, 2011. Remedial Action Work Plan for Site 15 Hancock Air National Guard Base Syracuse, New York, September 2011.
- ERM, 2009. Site 15 Final Construction Completion Report Source Area Soil Removal, 174th Fighter Wing New York Air National Guard- Hancock Air National Guard Base Syracuse, New York, January 2009.
- ERM, 2010. Final Focused Feasibility Study 174th Fighter Wing New York Air National Guard Hancock Air National Guard Base Syracuse, New York, March 2010.
- ERM, 2010. Final Proposed Plan for Environmental Cleanup 174th Fighter Wing New York Air National Guard- Hancock Air National Guard Base Syracuse, New York, July 2010.
- ERM, 2011. Environmental Restoration Program Final Record of Decision for Site 15-74th Fighter Wing New York Air National Guard Hancock Air National Guard Base Syracuse, New York, April 2011.
- Lockheed, 1997. Final Remedial Investigation Report for Petroleum, Oil and Lubricant Facility, Site 15. Volumes I and II. Air National Guard Readiness Center, Andrews AFB, Maryland, July 1997.
- NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. *NYSDEC Division of Water Technical and Operational Guidance Series Memorandum Number 1.1.1.*, June 1998 (latest amendment April 2000).
- NYSDEC, 2010. DER-10, Final Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation, May 2010.

Figures

AECOM

40 British American Blvd. Latham, NY 12110 T: (518) 951-2200 F: (518) 951-2300

FIGURE 1

SITE LOCATION MAP

HANCOCK AIR NATIONAL GUARD SYRACUSE, NEW YORK

Source: ArcGIS World Imagery MARCH 2013 60214697

Tables

Table 1 Groundwater Sampling Results Hancock Air National Guard Base

Well ID	NYSDEC Std			MW-112					MW-106					MW-19					MW-15					MW-11		
Sample Date	or GV	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13
VOCs µg/L																										
Benzene	1	0.36 J	-		-	-	-	1.4		-	-	6.2	-	-	-	-	5.3	-	-	-		26	3.1	4.7	-	9.6
Ethyl Benzene	5	10	53	29		-	-	-		-	-	100		-	-		9.8	-	0.63 J	-	-	7.8		-	-	-
Total Xylene	5	2.7	67	18		-	-	-		-	-	18		-	-		0.72 J	-		-	-	9.5		-	-	-

Vell ID	NYSDEC Std			MW-103					MW-105					RW-1					MW-14					MW-101		
ample Date	or GV	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13	Oct-10	Sep-12	Jan-13	Jun-13	Aug-13
OCs µg/L																										
enzene	1	-	5.9	-	-	-	5.5	-	-	-	0.95 J	-	-	-	-	-	1.7	0.98 J	-	-	-	-	-	-	-	-
thyl Benzene	5	0.24 J	-				97	1.7		-		3.8	13			-					-	3.2	5.2	1.9	5.7	3.1
otal Xylene	5	-	-		-		92		-	-	-	2.8	27	-		-	-	-		-		2.0	26	26	7.2	1.9
	 Results compare 	ed to the New Y	ork State Dena	artment of Env	ironmental Cor	servations (N)	YSDEC) Divisio	n of Water Ter	chnical and One	erational Guida	nce Series (TC	GS 1.1.1), 199	88. standards (Stnd) and quida	ance values (G	SV)										

Table 2
Groundwater Field Parameters
Hancock Air National Guard Base

	- 1	MW-2	N	MW-3	M	IW-4	M	W-5	M\	W-8	MW-9		MW-11	1	MW-1	4	MW-15	M	W-16	MW-17		MW-18	M	W-19	MW-2	20	MW-22	N	IW-101	MW-10)2	MW-103	MW-104		MW-105	MW	′-106	MW-107	M\	W-110	MW-1	11	MW-112		RW-1
Date	DO (mg/L	ORP) (mV)	DO (mg/L)	ORP (mV)	DO (mg/L)	ORP (mV)	DO (mg/L)	ORP (mV)	DO (mg/L)	ORP (mV)	DO O)RP nV) (DO (mg/L) (ORP mV)	DO (ORP (mV)	DO OR	P DO	ORP (mV)	DO O	RP [OO ORF	DO (mg/L)	ORP (mV)	DO (mg/L)	ORP (mV)	DO ORP	DO (mg/l	ORP) (mV)	DO (ORP mV)	DO ORP	DO OI	RP DO	O ORP	DO (mg/L)	ORP (mV)	DO OR	P DO	ORP	DO (mg/L)	ORP	DO OR	P DO	ORP) (mV)
Oct-10	0.45	42.1	1.22	83.9	2.93	6.2	3.23	66	0.32	-97.4	0.85 4	3.8	0.36 -	24.9	0.44	23.1	0.42 -7.	1 0.84	114.8	0.58 -	6.5 3	.86 61.7	7 0.45	-66	0.61	8.9	1.87 -17.7	0.58	-5.5	0.45	30.7	0.51 3.3	1.75 25	5.9 0.6	8 2.6	0.68	30.3	2.57 34.	2 0.5	25.3	0.69	-35.7	0.82 -106	6.9 0.46	-145.8
Nov-11	5.31	-318.8	2.32	-218.8	1.5	-210.2	5.83	-277.5	-	-	-	-	-	-	0.7 -2	268.6		-	-	-	- 4	.86 -277.	.9 -	-	-	-	3.82 -249.	2 -	-	0.14 -3	34.5		-		-	-	-		-	-	-	-		-	-
Sep-12	6.3	-57	0.58	-79.5	0.66	-2.2	-	-	3.9	-88.2	4.34 -6	59.1	0.72 -	-122	1.04 -	-94.5	4.04 -142	1.04	214.4	0.38 -1	11 0	.79 -93.0	6 0.34	-103.5	1.08	-94.2	9.31 9.1	1.23	-128.1	3.37 -	89.3	2.75 -66.4	1.66 -3	3.9 4.0	9 -139.5	1.9	0.8	3.63 -124	.4 -		-	-		0.4	-101.1
Dec-12	5.11	-133.1	7.06	-93.8	2.91	-87.7	4	27.1	4.1	-10.8	4.81 4	7.2	3.73 -	99.4	3.04 -	-46.5	2.96 -75	7 5.82	-14.2	8.02 -5	4.6 6	.17 67.6	5.23	-67.1	3.4	-78.1	10.69 -24.9	4.13	-71.8	0.68 -	52.8	4.1 -70.9	3.77 46	3.4	6 -112.4	2.04	-70.3	11.43 -53	.8 -	-	-	-		3.08	-115.6
Jan-13	1.34	-88	-0.03	-1.3	-	-	-	-	-	-	10.76	-8	4.75 -1	106.9	0.25 -	-52.9	2.39 -111	.3 -	-	3.11 -9	6.3		-0.36	-47.4	-	-	3.88 168.8	2.65	-102	-	-	-0.1 -78.9	5.24 -1	5.4 0.0	1 -119.8	1.14	-68.4	5.09 14.	8 0.24	4 70.9	1.78	-1.1 2	2.47 -14	6 2.62	6.2
Jun-13	-	-	-	-	-	-	-	-	-	-		-	0.23 -	72.3	0.42	-9	0.9 -103	3.6 -	-	0.26 -1	34		0.65	-66.2	-	-		0.4	-172.4	-	-	0.17 -43.6	-	0.8	3 -91.2	1.61	-44.8		-		-	- (0.27 -82	.7 0.57	-131.3
Aug-13	-	-	-	-	-	-	-	-	-	-	-	-	0.18 -	-100	0.19 -	-43.6	0.31 -101	.6	-	-	-		0.2	-80	-	-		0.13	-129.9	-	-	0.33 -83.8	-	0.1	1 -112.8	0.61	-35.9		-	-	-	- (0.19 -89	.4 0.33	-107.9

Table 3
Proposed Groundwater Monitoring Well Network
Hancock Air National Guard Base, Syracuse, NY

Previous Groundwater Monitoring Well Network	Proposed Groundwater Monitoring Well Network
MW-2	
MW-3	
MW-4	
MW-5	
MW-8	
MW-9	
MW-11	MW-11
MW-14	
MW-15	
MW-16	
MW-17	
MW-18	
MW-19	
MW-20	
MW-22	
MW-101	MW-101
MW-102	
MW-103	MW-103
MW-104	
MW-105	
MW-106	MW-106
MW-107	
MW-108	
MW-109	
MW-110	
MW-111	
MW-112	MW-112
MW-113	
MW-114	
RW-1	RW-1

Notes:

The proposed groundwater monitoring well network is based on the results of the baseline (September 2012) and performance monitoring (Jan, Jun, Sep 2013) groundwater sampling events. Wells that did not have any compounds of concern detected above laboratory reporting limits for four consecutive quarters (-) are proposed to be dropped from the sampling plan.

Appendix A Well Inspection Forms

SITE NAME: Jancock	SITE ID.:	6021469
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR:	Cto/ HV
THE THE PROPERTY OF THE PROPER	DATE/TIME: WEll ID.:	11/30/11
	- ip	
WELL VISIBLE? (If not, provide directions below)	YE	S NO
WELL COORDINATES? NYTM X NYTM Y		`
PDOP Reading from Trimble Pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YE	S NO
WELL I.D. VISIBLE?	9:	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YE	S NO
SURFACE SEAL PRESENT?	×	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X.	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	\ \	
HEADSPACE READING (ppm) AND INSTRUMENT USED)	64 L N
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		h and t
PROTECTIVE CASING MATERIAL TYPE:	51	721
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOCK PRESENT?	YE	S NO
LOCK FUNCTIONAL?		- X
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		-
WELL MEASURING POINT VISIBLE?	×'	×
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	į.	7 7 15
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		3.35
MEASURE WELL DIAMETER (Inches):		1.08
WELL CASING MATERIAL:	<u> </u>	<u> </u>
PHYSICAL CONDITION OF VISIBLE WELL CASING:	<u>>r</u>	0
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		VA
	·—	VA
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NEC	ESSARY.	

5000

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS: Sketch

[.]	fancock
	1.1

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:

INSPECTOR:

Coclau

DATE/TIME: WEll ID.: 11/30 MW

ELL COORDINATES? NYTM X PDOP Reading from Trimble Pathfinder: GRS Method (circle) Trimble And/Or Magellan YES NO X ELL LD, VISIBLE? ELL LD, VISIBLE? ELL LD, AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW - 3 IRFACE SEAL PRESENT? IRFACE SEAL PRESENT? IRFACE SEAL PRESENT? IRFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) ADDITION? (If damaged, describe below) ADDITION (If damage		YES NO
ELL COORDINATES? NYTM X PDOP Reading from Trimble Pathfinder: GRS Method (circle) Trimble And/Or Magellan YES NO X ELL LD, VISIBLE? ELL LD, VISIBLE? ELL LD, AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW - 3 IRFACE SEAL PRESENT? IRFACE SEAL PRESENT? IRFACE SEAL PRESENT? IRFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) ADDITION? (If damaged, describe below) ADDITION (If damage	WELL VISIBLE? (If not, provide directions below)	X
GPS Method (circle) Trimble And/Or Magellan ELL LD. VISIBLE? ELL LD. VISIBLE? ELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-3 IRFACE SEAL PRESENT? IRFACE SEAL PRESENT? IRFACE SEAL PRESENT? IRFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		
ELL LD. VISIBLE? ELL LD. VISIBLE? ELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-3 IRFACE SEAL PRESENT? ERACE SEAL COMPETENT? (If cracked, heaved etc., describe below) EADSPACE READING (ppm) AND INSTRUMENT USED. PP OF PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) EADSPACE READING (ppm) AND INSTRUMENT USED. PP OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) OTECTIVE CASING MATERIAL TYPE: EASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): CK PRESENT? CK PENCTIONAL? D YOU REPLACE THE LOCK? HEERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SAURE WELL DEPTH FROM MEASURING POINT (Feet): ASSURE WELL DIAMETER (Inches): EASURE WELL DIAMETER (Inches): SCALL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. CRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. CRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) INTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
ELL LD. VISIBLE? ELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	GPS Method (circle) Trimble And/Or Magellan	
ELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back). ELL L.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-3 IRFACE SEAL PRESENT? IRFACE SEAL COMPETENT? (if cracked, heaved etc., describe below)		YES NO
RELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-3 REFACE SEAL PRESENT? REFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X
RFACE SEAL PRESENT? RFACE SEAL PRESENT? RFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) ACTION OF PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) ACTION OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) OTECTIVE CASING MATERIAL TYPE: ASSURE PROTECTIVE CASING INSIDE DIAMETER (Inches): CK PRESENT? CK PERSENT? CK PUNCTIONAL? DYOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) ASSURE WELL DEPTH FROM MEASURING POINT (Feet): ASSURE WELL DIAMETER (Inches): SEAL CASING MATERIAL: YES NO. X X YES NO. YES	VELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	<u> </u>
RFACE SEAL PRESENT? RFACE SEAL PRESENT? RFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) ACTION OF PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) ACTION OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) OTECTIVE CASING MATERIAL TYPE: ASSURE PROTECTIVE CASING INSIDE DIAMETER (Inches): CK PRESENT? CK PERSENT? CK PUNCTIONAL? DYOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) ASSURE WELL DEPTH FROM MEASURING POINT (Feet): ASSURE WELL DIAMETER (Inches): SEAL CASING MATERIAL: YES NO. X X YES NO. YES	VELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-3	
AND STATE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. EXERCISE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) EXERCISE OF CONTAMINATION, IF PRESENT		YES NO
ADSPACE READING (ppm) AND INSTRUMENT USED	URFACE SEAL PRESENT?	
ADSPACE READING (ppm) AND INSTRUMENT USED		X
PE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) OTECTIVE CASING MATERIAL TYPE: SEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): OCK PRESENT? OCK FUNCTIONAL? DE YOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SELL MEASURING POINT VISIBLE? SEASURE WELL DEPTH FROM MEASURING POINT (Feet): SEASURE WELL DIAMETER (Inches): SELL CASING MATERIAL: SEASURE WELL DIAMETER (Inches): SELL CASING MATERIAL: OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	ROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) 2boils missing	¥.
PE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) OTECTIVE CASING MATERIAL TYPE: SEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): WEST NOTED THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SELL MEASURING POINT VISIBLE? SASURE WELL DEPTH FROM MEASURING POINT (Feet): SASURE WELL DIAMETER (Inches): SELL CASING MATERIAL: SASURE WELL DIAMETER (Inches): SELL CASING MATERIAL: SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	IEADSPACE READING (ppm) AND INSTRUMENT USED	NA
OTECTIVE CASING MATERIAL TYPE: SASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): OCK PRESENT? OCK FUNCTIONAL? OF YOU REPLACE THE LOCK? STHERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SASURE WELL DEPTH FROM MEASURING POINT (Feet): SASURE WELL DEPTH FROM MEASURING POINT (Feet): SASURE WELL DIAMETER (Inches): SASURE WELL CASING: AND ASSEST TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SASURE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. CONTINUE AND NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	YPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	-Clushmount
EASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): OCK PRESENT? OCK FUNCTIONAL? D YOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SLUMEASURING POINT VISIBLE? EASURE WELL DEPTH FROM MEASURING POINT (Feet): EASURE WELL DIAMETER (Inches): EASURE WELL DIAMETER (Inches): EASURE WELL DIAMETER (Inches): SCIL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	ROTECTIVE CASING MATERIAL TYPE:	
CCK PRESENT? CCK FUNCTIONAL? D YOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SLACE MEASURING POINT VISIBLE? EASURE WELL DEPTH FROM MEASURING POINT (Feet): CASURE WELL DIAMETER (Inches): SCALURE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. COLUMN THE ARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	IEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
CK FUNCTIONAL? D YOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SELL MEASURING POINT VISIBLE? EASURE WELL DEPTH FROM MEASURING POINT (Feet): EASURE WELL DIAMETER (Inches): SELL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		YES NO
D YOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) ELL MEASURING POINT VISIBLE? EASURE WELL DEPTH FROM MEASURING POINT (Feet): EASURE DEPTH TO WATER FROM MEASURING POINT (Feet): EASURE WELL DIAMETER (Inches): ELL CASING MATERIAL: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	OCK PRESENT?	X
THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) SLAGURE WELL DEPTH FROM MEASURING POINT (Feet): ASSURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): ASSURE WELL DIAMETER (Inches): SLAGURE WELL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED.	OCK FUNCTIONAL?	X
EASURE WELL DEPTH FROM MEASURING POINT (Feet): ASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): SASURE WELL DIAMETER (Inches): SCAL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	ID YOU REPLACE THE LOCK?	×
EASURE WELL DEPTH FROM MEASURING POINT (Feet): EASURE DEPTH TO WATER FROM MEASURING POINT (Feet): EASURE WELL DIAMETER (Inches): ELL CASING MATERIAL: SCHA CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	S THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) 544 (4.1)	X
EASURE DEPTH TO WATER FROM MEASURING POINT (Feet): EASURE WELL DIAMETER (Inches): ELL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	/ELL MEASURING POINT VISIBLE?	X
EASURE DEPTH TO WATER FROM MEASURING POINT (Feet): EASURE WELL DIAMETER (Inches): ELL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	(EASTIDE WELL DEDTHED ON MEASTIDING DOINT (East).	17 712
EASURE WELL DIAMETER (Inches): ELL CASING MATERIAL: YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		8 (1
SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) TO ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT)"
YSICAL CONDITION OF VISIBLE WELL CASING: TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE OXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		Salvad HO
TACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		Sefula
SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		1-
SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ver lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ADD ASSESS THE TYPE OF RESTORATION REQUIRED. CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		A.A
SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. CINTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		7071
SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ID ASSESS THE TYPE OF RESTORATION REQUIRED. CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	ower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR'	Υ.
CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	You	
CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
CONTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
Chen field Charley any nearby potential sources of contamination, if present		
ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	0 1	
	Gren Killa	
	V	
Gas station, salt pile, etc.):	ENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
A 14/1	g. Gas station, salt pile, etc.):	
NH	AN	
	EMARKS: Temp 13.06 DO% 22.1 ORP -218,8	
(as mys Soul Coal 34 DD 7 32 pt 597	steel cusings Soul Coal 34 DD 7 32 pH 597	
) San Cond . 11 20 2.32	South Cong . M Co Z . 32 F S . 1 1	
Spec Cond . 192 Sketch	Spec Cond 1472 Sketch	

SITE NAME: Jancock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:

60214697

INSPECTOR:

GUYAV

DATE/TIME: WEll ID.:

11/30/11 Mb=4

WELL VISIDLES (If not provide directions heles)	YES NO
WELL VISIBLE? (If not, provide directions below)	\sim
WELL COORDINATES? NYTM XNYTM YPDOP Reading from Trimble Pathfinder:Satelites:	
PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan	
GFS Method (chele) Trinible And of Magenan	YES NO
WELLID VICIDIES	TES ING
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL LOCATION MATCH SITE MAY? (II not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	×
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
	. (1)
HEADSPACE READING (ppm) AND INSTRUMENT USED	NA NA
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	. l'Inshmaint
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
	YES NO
LOCK PRESENT?	X
LOCK FUNCTIONAL?	X
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	X
WELL MEASURING POINT VISIBLE?	B X
MEACHDE WELL DEDTH EDOM MEACHDING DOINT (Footh)	18.60
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	8.69
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	3,,
WELL CASING MATERIAL:	4"Steel
PHYSICAL CONDITION OF VISIBLE WELL CASING:	(rect)
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	1/2
ROADINITY TO CHOLKOROUND OR O'T EIGHEAD CHEATLED	700
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY	r" ⊗
Good - In open field	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open grossy field	
<u> </u>	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
REMARKS:	, e
Double cased + Steel casing Temp: 12.93°C Spec Cond. O. 4	34 m5/12m
DO 1450 DO 1 60 15 0.2	335 ms 10 m
Sketch OLL FEG COO.	1
Skeich Salat Fed (5)(3)	- 111)

SITE NAME: Jan (oct	SITE ID.: 602/469 INSPECTOR: 602/4	17
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: \\\(\frac{\gamma_0}{\dagger}\)	<u> </u>
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES NO	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES NO	
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	18.22 5.75 25 2000 ste	= : e1
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead owner lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, AND ASSESS THE TYPE OF RESTORATION REQUIRED.	CESSARY.	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.)		

Sketch

REMARKS:

MONITORING WELL FIELD INSPECTION LOG	SITE ID.: INSPECTOR: DATE/TIME: WEII ID.:	11/30/11 MLD
WELL VISIBLE? (If not, provide directions below)		/ES NO
WELL COORDINATES? NYTM XNYTM Y	·	
PDOP Reading from Trimble Pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	Y	ZES NO
WELL I.D. VISIBLE?		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	-	
GUIDE - GEO OD LV DD FORDUMO	Y	ES NO
SURFACE SEAL PRESENT?	-	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	<u> </u>	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X
HEADSPACE READING (ppm) AND INSTRUMENT USED		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) 3 \(\frac{1}{4}\)	_5	A. cleup
PROTECTIVE CASING MATERIAL TYPE:		Arel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
	Y	ES NO
LOCK PRESENT?		大 俊
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		-
S THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		
WELL MEASURING POINT VISIBLE?		
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		17.74
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		11.90
MEASURE WELL DIAMETER (Inches):	·*	211
VELL CASING MATERIAL:	-	Sterl
HYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	~) NA
ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	Fa	new system
		Frenching"
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead in the control of the con		
ower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NEC	ESSARY.	
Good - In open field		
1		
PROPRIE WELL GETTING (F		
ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden,	etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
Open grassy field		

ΙĽ (e.g. Gas station, salt pile, etc.)

REMARKS:

Sketch

1/1	SITE NAME:	Jancock
	SITE NAME:	-Jancock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: 6024697. GWAV

DATE/TIME: WEll ID.: 11/30/11

				YES NO
WELL VISIBLE? (If not, provide directions below)				TES NO

PDOP Reading from Trimble Pathfinder:		s:		
GPS Method (circle) Trimble Ar				
or a mountain (wrote)	idi Oi Wagoi	411		YES NO.
WELL I.D. VISIBLE?				125 110
WELL LOCATION MATCH SITE MAP? (if not, ske				
WEDE ECONTION WITHOUT BITE WITH: (II Hot, ske	ten actual locati	on on backj	••	
WELL I.D. AS IT APPEARS ON PROTECTIVE CAS	SING OR WEI	1.		
The state of the s	Sirvo Oit Will			YES NO
SURFACE SEAL PRESENT?				X 10
SURFACE SEAL COMPETENT? (If cracked, heaved			ell the	
PROTECTIVE CASING IN GOOD CONDITION? (I	f damaged, desc	ribe below)Lan2	In the	<u> </u>
(2 1 1	
HEADSPACE READING (ppm) AND INSTRUMEN	T USED			
TYPE OF PROTECTIVE CASING AND HEIGHT O				
PROTECTIVE CASING MATERIAL TYPE:				0
MEASURE PROTECTIVE CASING INSIDE DIAME				-
	, ,			YES NO
LOCK PRESENT?			manage.	X
LOCK FUNCTIONAL?				
DID YOU REPLACE THE LOCK?			********	X
IS THERE EVIDENCE THAT THE WELL IS DOUB				×
WELL MEASURING POINT VISIBLE?			927-992-1000	X
MEASURE WELL DEPTH FROM MEASURING PO	INT (Feet):			8.45
MEASURE DEPTH TO WATER FROM MEASURIN	G POINT (Fee	t):		7.90
MEASURE WELL DIAMETER (Inches):				3.,
WELL CASING MATERIAL:				Steel
PHYSICAL CONDITION OF VISIBLE WELL CASI	NG:		*****	B6: 3
ATTACH ID MARKER (if well ID is confirmed) and I				(1) (1)
PROXIMITY TO UNDERGROUND OR OVERHEAI	O UTILITIES			
		J 4		
DESCRIBE ACCESS TO WELL: (Include accessibility	•	· ·	,	
power lines, proximity to permanent structures, etc.); A	DD SKETCH (OF LOCATION ON BA	.CK, IF NECESSA	ARY.
Good				
DESCRIBE WELL SETTING (For example, located in	a field, in a pla	yground, on pavement,	in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQ	UIRED.			
Open grassy field				
Sterry Frede				
				
DENTIFY ANY NEARBY POTENTIAL SOURCES	OF CONTAMI	NATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):				
· //				
104				
/ · · · · }				
REMARKS:				
Well in auch shape	Tuma	11.40	DO06 19	11 -111-49
in along	S	1 1 2 2	000	4 200 7
	1	1.313	10).	00 ON - 741.
	Sketc	Con 0 781		
	1	0 - 10 1		

SITE NAME:

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:

SITE ID.: 60214697

DATE/TIME:

WEII ID.:

ZGI-WM

WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? NYTM XNYTM Y	
PDOP Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
or o mental (entro) Trimble Tringendin	YES NO
WELL I.D. VISIBLE?	×
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WEBE BOOKTTON WITTON SITE WITT: (II not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED.	uspless due -
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Stick-4
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
LOCK DRECENTO	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	I X
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	X
WELL MEASURING POINT VISIBLE?	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	·
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.	i e
Good J	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open, grassy Reld	
V.	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
(e.g. Gas station, san pine, etc.).	
REMARKS:	
Temp Do% pH	
5 17 1	
Spec (and 100 OKT	
Size Cond Sketch	

SITE NAME: Jancock

SIT

SITE ID.: INSPECTOR: 60214697 60/AT

DATE/TIME: WEll ID.: 11/30/11 Mw-13

	YES NO
WELL VISIBLE? (If not, provide directions below)	X
WELL COORDINATES? NYTM XNYTM Y	
PDOP Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
WELL I.D. VISIBLE?	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
5 . (
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Sewer Co.	
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
	. 10
HEADSPACE READING (ppm) AND INSTRUMENT USED	NA
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	flush
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
	YES NO
LOCK PRESENT?	X
LOCK FUNCTIONAL?	X
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	
WELL MEASURING POINT VISIBLE?	
TEED TIE TOTAL OF THE TEED TO	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	11.70
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.96
MEASURE WELL DIAMETER (Inches):	211
WELL CASING MATERIAL:	Steel
PHYSICAL CONDITION OF VISIBLE WELL CASING:	cont)
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	1000
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	AIA
TROMINITY TO ONDEROROUND OR OVERNIEND OTHERTED	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY	
^ / -	
God	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open grassy (id)	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.)	
REMARKS:	
Casing causes depression in parement where 150 pools over well	
1 Temp 14.96	
Spec and 4.374 Do % Sketch 23-3 SH 6 15	
Spec (and 3.515 DO 2.33 ORP - 2930	

SITE NAME:

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:

INSPECTOR: DATE/TIME:

WEll ID.:

11/30/11 MW-14

WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? NYTM XNYTM Y	
PDOP Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
WELL I.D. VISIBLE?	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-14	
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
	1.74
HEADSPACE READING (ppm) AND INSTRUMENT USED	/U/1
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	3.517
PROTECTIVE CASING MATERIAL TYPE:	5 Pecil
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	[]
A COMPANIE OF THE PROPERTY OF	YES NO
LOCK PRESENT?	X
LOCK FUNCTIONAL?	16
DID YOU REPLACE THE LOCK?	<u> </u>
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	
WELL MEASURING POINT VISIBLE?	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.09
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	12.44
MEASURE WELL DIAMETER (Inches):	2,1
WELL CASING MATERIAL:	The
PHYSICAL CONDITION OF VISIBLE WELL CASING:	(+000
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY,	8
රියට	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open field	
Jan Mero	
TO ENTRY AND A DEAD DOMESTICAL GOLD OF CONTRA AND A TROLL OF DECENT	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
REMARKS:	
Temp 12.63 Spec Cond 8.162 DO% 6.8 pH 6.60	
10.887 DO 0.70 DRP - 704.6	
3 - Plus Shiks us so that Sketch last and sit source	
3 - May Shields up so that sketch does not sit snul	

SITE NAME: Jancock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: (INSPECTOR:

+ POP/160.

DATĘ/TIME: WEll ID.:

11/30/11

WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? NYTM XNYTM Y	
PDOP Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
of B Welliod (chele) Trimble And of Wagehali	YES NO
WELL ID VICIDLES	1123 110
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
WEDD I.D. AND IT ALL DAMES ON TROTECTIVE CANNAC OR WEDD.	YES NO
SURFACE SEAL PRESENT?	120
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
TROTEOTIVE ONBING IN GOOD CONDITION: (II damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	-31
PROTECTIVE CASING MATERIAL TYPE:	Slad
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Steel
MEASORET ROTECTIVE CASING INSIDE DIAMETER (IIICIES).	YES NO
LOCK PRESENT?	TES NO
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	
WELL MEASURING POINT VISIBLE?	
WELL MEASURING POINT VISIBLE?	V
MEASURE WELL DEDTH EDOM MEASURING DOINT (Forth).	18 87
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	10.00
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.95
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	Steal
PHYSICAL CONDITION OF VISIBLE WELL CASING:	(2009)
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	No
DESCRIPE ACCESS TO WELL (Include accessibility to the desired of the description of the d	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.	
Choc el	
	*
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open grassy field	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
DEMARKS	
REMARKS: 14 11 Con Co 11 930 Dog 20 11 081	
Temp 19.11 Spec (and 1.939 DO% 2.9 pt 6.8)	
1 1.535 DO 0.30 102P -301.0	

	11
SITE NAME:	1-tancock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:

INSPECTOR:

CONTRA

DATE/TIME: WEll ID.:

1/30/11

WELL VICIDIES (15 - 4 1 - 1 1 - 1 1 - 1	YES NO
WELL VISIBLE? (If not, provide directions below)	×
PDOP Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
of 5 Method (chele) Trinible And of Magenan	YES NO
WELL I.D. VISIBLE?	TES NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL LOCATION MATCH SITE MAY! (II not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
WEEL I.D. AG IT ATTEMAS ON TROTECTIVE CASING OR WEEL.	YES NO
SURFACE SEAL PRESENT?	ILS IVO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
TROTECTIVE CREATED IN GOOD CONDITION: (It damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	-Nushmount
PROTECTIVE CASING MATERIAL TYPE:	-1 1 - 2/4 - 20 - 1
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	·
(monos).	YES NO
LOCK PRESENT?	TES NO.
LOCK FUNCTIONAL?	X
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	X
WELL MEASURING POINT VISIBLE?	×
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	15.30
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	5,20
MEASURE WELL DIAMETER (Inches):	2
WELL CASING MATERIAL:	3/5/
PHYSICAL CONDITION OF VISIBLE WELL CASING:	(ce. c)
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	Tev -
	=
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSA	RY.
Good	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
yen grassy fill	
	=======================================
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
o.g. out traiton, suit prio, oto.j.	
$\lambda f \lambda$	
/Vtt	
EMARKS:	11/52
Well depressed below grass. Temp 13.30 Dois 4	66 PH 6 21
10' Not Soplin free Spec (and 6 156 100 -	1.86 087-277
Sketch	
Spec (000 6.123	
THE CONTRACT	

SITE NAME:	Hancock

SITE ID.:

INSPECTOR:

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 11/30/11

MW-2WEILID: In SB 21 circu

WELL VISIBLE? (If not, provide directions below)	YES NO
	7
PDOP Reading from Trimble Pathfinder: Satelites: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	Luna Itra
	YES NO
WELL I.D. VISIBLE?	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	10
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X.
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED	_
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	flusharound
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Sheel
MEASORE FROTECTIVE CASING INSIDE DIAMETER (IIICIES).	YES NO
LOCK BREGENTS	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	×
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	X
WELL MEASURING POINT VISIBLE?	×
	40-
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	17.10
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	(0.0
MEASURE WELL DIAMETER (Inches):	۵ ۰۰
WELL CASING MATERIAL:	51241
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY	
Cood	•
0-600	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open grassy field	
<u> </u>	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
(1)	
N TT	
REMARKS:	5 W V W
Temp 13.29 DO% 36.6	6.67
Spec (on) 0.592 DO 3.52 OK	-249.2
Spec Cond O. 460 Sketch	

SITE NAME:	Hancock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: 602/4697

INSPECTOR: DATE/TIME:

WEll ID.:

1/30/11

YES NO WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan YES NO WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)..... WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: YES NO SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED...... TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): YES NO LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES..... DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. anassu. IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): REMARKS: ormed skim test on well today

SITE NAME:	ancock
------------	--------

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR:

6021464 F

DATE/TIME:

11/30/11

WEll ID.:

MW 102

	YES NO
WELL VISIBLE? (If not, provide directions below)	~
WELL COORDINATES? NYTM XNYTM Y	
PD@P Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	MEG NO
, and the supplier of the supp	YES NO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	A"
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	N N
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	K
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	YES NO
LOCK PRESENT?	A NO
LOCK FUNCTIONAL?	12
DID YOU REPLACE THE LOCK?	2
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	1
WELL MEASURING POINT VISIBLE?	- X
* The state of the	1.0
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	2249
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.57
MEASURE WELL DIAMETER (Inches):	2"
WELL CASING MATERIAL:	Schodan
PHYSICAL CONDITION OF VISIBLE WELL CASING:	9500
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	7-
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	N251
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY	
$Q \rightarrow 0 \wedge \lambda$	
- good	
Ų.	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
in army area	
The contract of the contract o	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.)	
(erg. cus cumon, cure prior, cure)	
- WA	
	= = ===================================
REMARKS:	
Temp 14.73 Spec Cond 2.793 DO2 1.5. PH.	10.108
77/13 7/13	-22115
	224.2
Sketch	

SITE NAME: Lawcock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:

60214697

INSPECTOR:

VA/W

DATE/TIME: WEll ID.: 11/30/11

	I vec lye
WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? NYTM XNYTM Y	
GPS Method (circle) Trimble And/Or Magellan	L VEC INO
	YES NO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	XES NO
SURFACE SEAL PRESENT?	
CUREACE CEAL COMPETENTS (If any leaf housed to describe heless)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
TROTECTIVE CASING IN GOOD CONDITION! (II dailiaged, describe below)	
THE A DODA OF DE A DINIO () AND INICIDIA MENT LIGED	
HEADSPACE READING (ppm) AND INSTRUMENT USED	-2
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	flushmiunt
PROTECTIVE CASING MATERIAL TYPE:	51-14
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	,
	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	V
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	X
WELL MEASURING POINT VISIBLE?	
WELL MEADORING FORM FIBERS	
MEACURE WELL DEPTH FROM MEACURING DOINT (Foot).	19.28
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	- 1100
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	343
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	Ster
PHYSICAL CONDITION OF VISIBLE WELL CASING:	9000
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY	
Good	
4 000	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Open grossy tide	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
1 13	
- AA	
REMARKS:	
Casing Silling w/ water	

SITE NAME: - ancock

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:

-0214697

INSPECTOR:

11/30/11

DATE/TIME: WEll ID.:

A100-13

	7 7
WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? NYTM XNYTM Y	
PDOP Reading from Trimble Pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
of 5 Welliod (chele) Trilliole Alla of Wagerian	YES NO
WELL I.D. VISIBLE?	1 LS INO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	V
WELL LOCATION MATCH STIL MAT! (II not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	y
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	\mathcal{N} A
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Llush
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (IIICIES).	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	
WELL MEASURING POINT VISIBLE?	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	14.54
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	884
MEASURE WELL DIAMETER (Inches):	11"
WELL CASING MATERIAL:	Strel
PHYSICAL CONDITION OF VISIBLE WELL CASING:	9500
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	20
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	ter
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY	
C-00	
G-80 0	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Chen grassy Cpl	
green, greens free	
· · · · · · · · · · · · · · · · · · ·	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.);	
/ (X	
/\J- \ \	
REMARKS: July not fit into well	
(3) Oct Hot Mrs cost	

SITE NAME: Hancock	SITE ID.: 60214697 INSPECTOR: 60214697
MONITORING WELL FIELD INSPECTION LOG	WEII ID.: N/56/11
WELL VISIBLE? (If not, provide directions below)	YES NO
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES NO
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) 2.5C+ PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	NA Steel Stick
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES NO X X X X X X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	19.63 9.93 8" Steel Good

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS: 7-mp 13.50 D0% 2.8 02p -291

ec (and 0 864 Ske

Sketch

This page intentionally left blank.

Appendix B

Groundwater Sampling Forms

This page intentionally left blank.

MONITORING WELL SAMPLE COLLECTION FORM HANCOCK A-B - ERP SITE 15 Page 1 or Site: Hancock LOCATION LocID: Date: Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Recorded By: Checked By: H2O Quality Meter Type/ID #: 🌾 **EQUIPMENT** Sampling Equipment: PID Type/ID #: Water Level Indicator Type/ID # Cectech Intervace Equipment Decon.: Liquinox and Potable Wash/Potable Rinse/Distilled Rinse Casing I.D. (in): 2" Ambient PID (ppm): Initial Depth to Water (ft): WELL Ground Condition of Well: Qood Well Mouth PID (ppm): Total Well Depth (ft): ~//_____ INFO Approximate Pump Intake Depth (ft): 16 Remarks: Begin Durge @ 1535 Water Volume **Pumping** Date Time **Specific** Temp. Pump Level DO ORP Removed Rate Turb. (mm/dd/yy) Conduct. PSI (24 hr) рH Refill/Discharge (C) (FTOC) (mg/L) Note (Gals) (mv) (NTU) (Lpm) (mS/cm) (pump) (Seconds) 00% nitial 6 16.0 7.00 13.9 2.6 10.46 1.35 10.23 9 10.59 1603 .70 23 7.03 2.0 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings Sample ID #(s)/Time(s) # of conts./Vol./Type Preservative Parameter(s) (3) 40 mL VOAs **HCI** MW11-060413 @ 1604 VOCs by 8260B

/ L WICHTOKING WELL SP TPLE COLLECTION FORM HANCOCK AND - ERP SITE 15 Page 1 or Site: Hancock MW-14 LocID: **LOCATION** Date: 6 5 13 Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Recorded By: 6-LW Checked By: H2O Quality Meter Type/ID #: **EQUIPMENT** Sampling Equipment: Punyo PID Type/ID #: N7 Water Level Indicator Type/ID #:(sectech Interface Equipment Decon.: Liquinox and Potable Wash Potable Rinse/Distilled Rinse Casing I.D. (in): Ambient PID (ppm): Initial Depth to Water (ft): Ground Condition of Well: Qood WELL Stickup Well Mouth PID (ppm): Total Well Depth (ft): INFO Approximate Pump Intake Depth (ft): Remarks: PUNGE @ 1030 - india makes well too Beain Droperly cover-Slight Dink high Water Volume Pumping Date Specific Time Temp. Pump DO ORP Level Removed Turb. Rate (mm/dd/yy) Conduct. PSI (24 hr) pН Refill/Discharge (C) (mg/L) Note (FTOC) (Gals) (mv) (NTU) (Lpm) (pump) (mS/cm) (Seconds) 20% 0513 nitial 237 .20 48.4 34.2 10.2 1049 again 0.40 46.2 9.4 1120 68 0.90 40 4.3 59 .60 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+-0.5 C +3% conductivity, +-10% DO, +-0.1 pH, ++10 mv ORP, +-10% turb (<= 10 NTU ideal) All for 3 consecutive readings Sample ID #(s)/Time(s) Preservative 8,01 # of conts./Vol./Type 140 Parameter(s) MW14-060513@ 1142 (3) 40 mL VOAs HCI VOCs by 8260B

AFTOM

MONITORING WELL SAMPLE COLLECTION FORM HANCOCK AND - ERP SITE 15

Page 1 or 1

LOCATION	Site:						N-15		Date: (14 13				
	Project Nam	e: Hancock AN	GB ERP Site 15			Project #: 6021	4697		Recorded By: TS Checked By:				
													Hilliam I
EQUIPMENT	H2O Quality	Meter Type/ID #	#: YSI	Lamo	tte	Sampling Equip	oment:	eristal	tice		PID Type/ID #:		· · · · · · · · · · · · · · · · · · ·
	Water Level	Indicator Type/I	D#: Soli	nist		Equipment Dec	on.: Liquinox a	and Potable W	/ash/Potable I	Rinse/Distilled			
						Equipment Decon.: Liquinox and Potable Wash/Potable Rinse/Distilled Rinse							
	Casing I.D. ((in): 2				Ambient PID (p	pm):				Initial Depth to Wa	iter (ft):	3.52
WELL	Ground Con	dition of Well:	Good			Well Mouth PID	(ppm):				Total Well Depth (7.541
INFO	Approximate	Pump Intake De	epth (ft): 17								Testal troil bepart		
	Remarks:												
										:::::::::::::::::::::::::::::::::::::::		:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Do % -Note-
6/4/13	1505	13.12	0	0.05	11.16	.893	1.44	6.89	-68.5	601.8			101
	1510	13.15	4-25	0.05	11.65	.955	66	6.74	-91.9	291			6.2
	1515	13.15	c.25	0.05	12-06	. 988	.82	6.68	_91.9	21.3			8.2
	1520	13.15	. 25	0.05	11.87	1.006	74	6.69		19.4			7.9
					Pead	Batter		0.07	-101.9	17.9			1.7
	1525	13.15	.25	0-1	1260	1.023	, 44	6.69	-102.5	13.7			4.2
	1530	13.15	4.5	0.1	11.67	1.013	86	6.73	-108.2	13.9			80
).	1535	13.15	4.5	0.1	11.51	1 005	* 88	6.40	-1053	-2			8-1
	1540	13.15	.5	0.1	11.34	1.009	90	6.68	-103.6	13.42	_		8.7
								0.00	103	1.0.10	<u> </u>		0.7
Pumping Rate:<=0	.5 L/min Draw	down: <0.33 ft Me	easurements:3-5	min Stabilization	1:+/- 0.5 C, +/- 3	3% conductivity, +	/- 10% DO, +/- (D.1 pH, +/-10 r	nv ORP, +/- 10	% turb (<= 10	NTU ideal) All for 3 c	onsecutive r	eadings
Sample ID #(s)/Ti	ime(s)				# of conts./			Preservativ			Parameter(s)		
MW16-0	66413	collec	ted @		(3) 40 mL \	/OAs		HCI			VOCs by 8260B		
1540													-
1: 													

WIONITOKING WELL SATTPLE COLLECTION FORM HANCOCK AND - ERP SITE 15 Page 1 or Site: Hancock Locid: MINI-**LOCATION** Date: 10/4/13 Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Recorded By: Checked By: H2O Quality Meter Type/ID #: **EQUIPMENT** Sampling Equipment: Peri PID Type/ID #: Water Level Indicator Type/ID # -pot poh Equipment Decon.: Liquinox and Potable Wash/Potable Rinse/Distilled Rinse Casing I.D. (in): Ambient PID (ppm): Initial Depth to Water (ft): Ground Condition of Well: WELL 9000 Well Mouth PID (ppm): Total Well Depth (ft): INFO Approximate Pump Intake Depth (ft): Remarks: Bean surge (@ 1344 Water Volume Pumping Date Specific Time Pump Temp. Level DO ORP Removed Turb. Rate **PSI** (mm/dd/yy) Conduct. (24 hr) pН Refill/Discharge (C) Note (mg/L) (FTOC) (Gals) (mv) (NTU) (Lpm) (pump) (mS/cm) (Seconds) 4/13 1345 2.39 nitial 4.86 06 5.7 0.55 3.3 .05 33 2.9 2.8 ,55 2.8 .80 2.6 25 25, 30 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings # of conts./Vol./Type Preservative Parameter(s) (3) 40 mL VOAs HCI VOCs by 8260B

ALCOM

MONITORING WELL SAMPLE COLLECTION FORM HANCOCK AND - ERP SITE 15

Page 1 or

LOCATION	Site:					LocID: M	W-19	Date: 6/4/13					
200/11/01/	Project Nam	e: Hancock ANC	GB ERP Site 15			Project #: 60214	1697		Recorded By: 7 5 Checked By:				
EQUIPMENT		Meter Type/ID #	1	Lamott	ē	Sampling Equip	ment: Per	istalti	C		PID Type/ID #:		
	Water Level	Indicator Type/II)#: Sol:	rist		Equipment Deco	on.: Liquinox a	nd Potable W	ash/Potable F	Rinse/Distilled	Rinse		
	Casing I.D. (in): Z				Ambient PID (pp	om): -				Initial Depth to Wa	ter (ft):	26
	Ground Cond	dition of Well:	Good			Well Mouth PID	(ppm):				Total Well Depth (f		
INFO	Approximate	Pump Intake De	epth (ft):	3 + 1									
	Remarks:												
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note
	1345	8.26	0	0.1	10.99	1.454	1.94	7.09	13.2	18.1			
6/4/13	1350	8.27	4.25	0.1	11.65	1.455	.70	60.85	7.6	43.8			
	1355	8.26	- 25	01	12.10	1.441	.67	662	-8.0	37.8			_
	1400	8.26	6.5	0-1	12.30	1.407	.71	6.54	-34.7	22.4	~	_	
	1405	8.26	.5	0	12.08	1.379	,02	6.50	-52.3	14.2			
	1410	8.2c	4.75	0.1	12.00	1.329	.62	6.44	-60.7	17.2	-		
	1415	8.26	- 75	0.1	12.10	1.312	,66	6.72	-65.9	14.04			
	1420	8.26		0.1	12,19	1.294	.66	6.39	-65.8	10.02			~
	1426	8.26	C1.25	0-1	12.61	1.280	.65	6.46	-63.2	8 02		\ <u>-</u>	~
	1430	8.26	<1.25	0.05	12.79	1.282	65	6.50	-67.0	(0.20			_
	1435	8.26	1.25	0.05	12.80	1.279	.65	6.40	-66.2	5.69			
Pumping Rate:<=0.	5 Umin Drawe	down: <0.33 ft Me	easurements:3-5 r	nin Stabilization	n:+/- 0.5 C, +/- :	3% conductivity, +	/- 10% DO, +/- ().1 pH, +/-10 n	nv ORP, +/- 10	% turb (<= 10 l	NTU ideal) All for 3 c	onsecutive rea	adings
Sample ID #(s)/Ti	me(s)				# of conts./	Vol./Type		Preservative	9		Parameter(s)		
MWIG	1-00	0413	Sampl	ed	(3) 40 mL \	VOAs		HCI			VOCs by 8260B		
collected @ 1435													
												-	

, LE CIVI WICHITOKING WELL SP "TPLE COLLECTION FORM HANCOCK A-B - ERP SITE 15 Page 1 or 2 Site: MWIOI LOCATION LocID: Date: Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Recorded By: 7 5 Checked By: H2O Quality Meter Type/ID #: 🕓 **EQUIPMENT** amotte Sampling Equipment: PID Type/ID #: Water Level Indicator Type/ID #: Geotech Equipment Decon.; Liquinox and Potable Wash/Potable Rinse/Distilled Rinse Casing I.D. (in): Ambient PID (ppm): Initial Depth to Water (ft) 21.07 Ground Condition of Well: WELL Doc-Well Mouth PID (ppm): Total Well Depth (ft): INFO Approximate Pump Intake Depth (ft): Remarks: Sheen odur Water Volume Pumping Date Time Specific 100% Temp. Pump Level DO ORP Removed Turb. Rate (mm/dd/yy) Conduct. PSI (24 hr) рΗ Refill/Discharge (C) -Note (mg/L) (FTOC) (Gals) (mv) (NTU) (Lpm) (mS/cm) (pump) (Seconds) 1130 .63 67 .05 156.5 Limit 6.3 0.25 .40 86 268 6-90 -1621 13.6 4.5 12.03 .07 0-15 .79 094 8.4 50 22 6.6 6.75 200 0.65 .15 68 0 5.3 25 5 60 . 3 0.65 5 70 32 3 20 75 65 9 6 2.00 20 148 16.00 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings Sample ID #(s)/Time(s) # of conts./Vol./Type Preservative Parameter(s) MWIOX-060513 Collected @ 1230 (3) 40 mL VOAs **HCI** VOCs by 8260B

ALCOM

MONITORING WELL SAMPLE COLLECTION FORM

Delaware ANG

Page 2 of 2

LOCATION	Site:		Locid: MW-10										
2	Project Nam	e: Hancock ANG	SB ERP Site 15			Project #: 6021							
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct, (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Do % -Note
6513	1225	10.65	2.25	0.20	11.63	1.151	.35	6.82	£8.4	11.56		_	3.2
	1230	10.65	2.5	0.20	11.76	1.157	30	6.78	-167.0				2.4
													-
													8
	ļ				ļ								
	-												
	-								ļ		V		
	-												
											l		

Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings

/ L WIONITOKING WELL SAMPLE COLLECTION FORM HANCOCK A -B - ERP SITE 15 Page 1 or Region 1 Site: Hancock LocID: MIN - 103 LOCATION Date: Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Recorded By: (</ I/A) Checked By: H2O Quality Meter Type/ID #: **EQUIPMENT** Sampling Equipment: Pump VA PID Type/ID #: Water Level Indicator Type/ID #Cectech Interlace Equipment Decon.: Liquinox and Potable Wash/Potable Rinse/Distilled Rinse Casing I.D. (in): Ambient PID (ppm): Initial Depth to Water (ft): 9. 85 Ground Condition of Well: WELL 9000 Well Mouth PID (ppm): Total Well Depth (ft): ル3ろ INFO Approximate Pump Intake Depth (ft): N32 5 Durge @ 0835 - floc in useu-have to dearing out 1SI Water Volume Pumping Date Specific Time Pump Temp. Level DO ORP Removed Rate Turb. PSI (mm/dd/yy) Conduct (24 hr) рΗ Refill/Discharge (C) Note (mg/L) (FTOC) (Gals) (mv) (NTU) (Lpm) (pump) (mS/cm) (Seconds) 0% 05 initial 904 253 8 0.60 1.8 readin - atting 090 8.6 85 2.25 883 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings Sample ID #(s)/Time(s) # of conts./Vol./Type Preservative Parameter(s) MWI1-060513@ 094 (3) 40 mL VOAs HCI VOCs by 8260B

ALCOM

MONITORING WELL SAMPLE COLLECTION FORM

Delaware ANG

Page of 2

LOCATION	Site: Ha	goock	1			LociD: N	W-103	3				-3-2		
	Project Nam	e: Hancock ANG	SB ERP Site 15			Project #: 60214967								
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note	
6513	0934	9.85	2.5		11.40	0.898	0.18	7.10	-45.4	9.57			1.6	
, ,	0939	9.85	2.75		11.41	0.898	0.17	7.11	-45.8	8.53			1.6	
									13.0				1.0	
							77-1						160	
												30		
							-							
9														
						1.								
4.0			X											
													J	

Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings

AFCOM

MONITORING WELL SAMPLE COLLECTION FORM HANCOCK AND - ERP SITE 15

, Page 1 or ___

LOCATION	Site:				LocID: MW-105						Date: 6 5 13		
200/1101	Project Nam	ne: Hancock AN	GB ERP Site 15			Project #: 60214	1697				Recorded By: T	Check	ked By:
											Hoderada By: 7	J Officer	::::::::::::::::::::::::::::::::::::::
EQUIPMENT		Meter Type/ID	1-	Lamot	te	Sampling Equip	ment: Pe	rista	1+, _		PID Type/ID #:		*
	Water Level	Indicator Type/I	D#: Splin	15+		Equipment Dec	on.: Liquinox a	nd Potable W	ash/Potable F	Rinse/Distilled			
	Casing I.D.	(in): 2				Ambient PID (p	om):				Initial Depth to Wa	ter (ft):	84
WELL	Ground Con	dition of Well:	good			Well Mouth PID		otal Well Depth (ft): 33.75					
INFO	Approximate	Pump Intake D	epth (ft): 33	3									, ,
	Remarks:												
												5341655	
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	pН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	DO %
6/5/13	835	8.84	0	0.15	11.14	1.187	1.24	7.37	-88.0	11.8			10.9
	840	8.86	C.25	0.10	11.14	1206	3.60	7.22	-72.1	1107			29.7
	845	8.85	6.5	0.10	11.51	1.213	, 98	7.00	-77.0	130		_	7.6
	850	8.85	.5	0.10	11.57	1.216	.99	6.93	- 798	374			8.8
	855	8.84	4.75	0.10	11.78	1.224	.95	6.96	-84.0	74.7			8.8
	900	8.85	C.75	0.10	11.73	1 220	.43	6.92	-85.9	16.6		_	8.4
	905	8.85	.75	17.10	11.31	1.223	1.0395		-8 5.9	604.5			3.6
	910	8.85	<1.0	0.10	12.00	1.228	190	6.88	-86.5	510.8			8.4
	915	8,35	1.0	0.10	12.33	1.239	.87	6.93	-86.8	56.3			8.2
	420	8.84	>1.0	0.10	12.04	1.236	,83	6.94	-91.7	56.7	_		79
Pumping Rate:<=0	.5 L/min Draw	down: <0.33 ft M	easurements:3-5	min Stabilization	ı:+/- 0.5 C, +/- 3	1% conductivity, +	'- 10% DO, +/- ().1 pH, +/-10 n	ıv ORP, +/- 10	% turb (<= 10 l	NTU ideal) All for 3 c	onsecutive re	adings
Sample ID #(s)/Ti	ime(s)				# of conts./\	/ol./Type	•	Preservative)		Parameter(s)		
MWIDS	5-06	0513	Collec	ted	(3) 40 mL \	/OAs		нсі			VOCs by 8260B		
			Conici										
Co	Q 920												

AECOM

MONITORING WELL SAMPLE COLLECTION FORM HANCOCK AND - ERP SITE 15

Page 1 or 2

LOCATION	Site:		12			LocID: /	W-10	(0		Date: (0./9/13				
	Project Nam	e: Hancock ANO	GB ERP Site 15			Project #: 60214					Recorded By: 7	Checke	ed By:	
											Internation by:	- OHOOK	11111111111111111111111111111111111111	
EQUIPMENT		Meter Type/ID #		-/Car	10He	Sampling Equip	ment: Per	istalt	ic		PID Type/ID #:			
*************	Water Level	Indicator Type/II	D#: 50	nst		Equipment Deco	on.: Liquinox a	nd Potable W	ash/Potable I	Rinse/Distilled	Rinse			
	Casing I.D. (Ambient PID (pp	om):				Initial Depth to Water (ft): 2.33			
WELL INFO		dition of Well:	Good			Well Mouth PID	(ppm):				Total Well Depth (ft): 25. 3.1			
INFO	Approximate	Pump Intake De	epth (ft): 2	1'										
	Remarks:												y-	
													1111111111	
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note	
6/4/15	11:15	2.33	0	0.)	12.67	+866 lde	. 94	7.56	-855	103.0				
5113	1120	2.41	,25	0.1	13.28	.670	55	7.24	-7P5	75.8				
	1125	2.35	4.5	0.1	13.40	.673	.45	7.04	~73.3	73.5		, -		
	1130	2.34	C.5	01	13.43	.672	,42	6.96	-70.7	56.0				
	1135	2.31	.5	0.1	13.34	.672	,38	6.92	-67.1	30.4				
	140	2.34	4.75	0-1	13.38	670).	.22	6.88	-63 9	24.4	-			
	1145	2.34	<1	0.1	13.29	.690	.25	6.85	-51.0	16.7				
	1150	2.34		0.1	13-30	,695	, 35	6.83	-52.6	14.06	~	_		
	1155	2.34	C1.25	0.1	13.21	,697	. 26	6.83	-44.2	12.74	_	-	_	
	1730	2.34	C1.5	0.1	13.08	,697	1.90	0.85	-47.5	11.95	_	_	~	
	1205	2.34	1.5	1.0	13.10	.697	1,61	6-84	-44.8	8.61	~			
Pumping Rate:<=0.	5 L/min Drawo	lown: <0.33 ft Me	easurements:3-5	min Stabilization	1:+/- 0.5 C, +/- 3	3% conductivity, +/-	- 10% DO, +/- 0).1 pH, +/-10 n	IV ORP, +/- 10	% turb (<= 10	NTU ideal) All for 3 c	onsecutive rea	adings	
Sample ID #(s)/Ti	me(s)			Ď H	# of conts./	Vol./Type		Preservative	•		Parameter(s)			
MWIO	6-06	2412	11.10)	(3) 40 mL \	/OAs		HCI			VOCs by 8260B			
10000	0 00		ollecte	J.										
@ 12	15													
						1			, i					
									(V)					
								C 14		-				

AECOM

MONITORING WELL SAMPLE COLLECTION FORM Delaware ANG

Page 2 of 2

LOCATION	Site:					LociD:										
	Project Nam	e: Hancock ANC	GB ERP Site 15			Project #: 6021	4967			-						
													0111111111			
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note			
6/4/13	1210	2.34.	1.75	0.1	1305	.698	1.06	6.86	-44.8	8.09						
	1215	2.34	C2 .	0.1	13.10	.699	1.00	685	- 47 -				_			
							1300	000	14.1	0.00						
		V														
4.3									-							
				4												
									-							
8																
			9													
		i														

Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 my ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings

ALCOM

MONITORING WELL SAMPLE COLLECTION FORM HANCOCK AND - ERP SITE 15

Page 1 or

LOCATION	Site: ta	ncock	4			LocID: MV	V-112	-		Date: (24)3				
	Project Nan	ne: Hancock AN	GB ERP Site 15			Project #: 6021					Recorded By		ed By:	1
											111111111111111111111111111111111111111	A Officer	difficulties	1
EQUIPMENT		y Meter Type/ID #			1 0	Sampling Equip				mp	PID Type/ID#:			
	water Leve	i indicator Typerii	D#: Geo te	ch inte	MACE P	Equipment Dec	on.: Liquinox a	and Potable W	/ash/Potable	Rinse/Distilled	1 Rinse			
1111111111111111	Ta	10 C			1/]
	Casing I.D.					Ambient PID (p	om):	10			Initial Depth to Wat	8	1	
WELL			9000			Well Mouth PID	(ppm): /	VA			Total Well Depth (ft): P7.5			
INFO		e Pump Intake De		Ba							<u> </u>			1
	Remarks:	103-B	egin a	was:	1108 04	mp failu	00-010	nck ~				1		
			O 1	0		TO COM			WII P	CLIC ()		111111111111	F: F	-
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	pH *	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note	100	
13,000	1105	2.52	initial		13.82	1.053	3.63	7.39	-129.6	6.22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	
	1110	2.51	0.25		13.32	0.995	0.63	1.01	-947	10.54				-
	1115	2.52	0 -		1		0.11	7.02			-			10-
	2000		0.70		12.81	0.977	0.50	7.01	-93.3	7.32				4.5
	1120	2.57	1.0		12.15	0.965	0.33	7.01	-89.2	2.89				3.1
	1125	2.52	1.35		12.64	0.963	0.28	7.02	-82.1	1.53	y-			2.0
	1130	2.53	1.70		12.68	0.968	0.27	7.05	-82.7	2.06				Ja.
														1
														1
								 						1
							,				 			4
					1			-						4
Pumping Rate:<=0	.5 ∐min Draw	/down: <0.33 ft Me	easurements:3-5 n	nin Stabilization	n:+/- 0.5 C, +/- 3	3% conductivity, +	/- 10% DO, +/-	<u> </u> 0.1 рН, <i>+/</i> -10 г	NV ORP, +/- 10	% turb (<= 10	NTU ideal) All for 3 co	onsecutive re	adings	
Sample ID #(s)/Ti					# of conts./			Preservative			Parameter(s)		•	1
mwii	2-060	0413@	1132		(3) 40 mL \	VOAs		HCI			VOCs by 8260B			
\$ Dup	0000	413 colle	ected as											1
1 - 1			dia lin	at.										1
			~~									1		
													3/	1
														1

ALCOM

MONITORING WELL SAMPLE COLLECTION FORM
HANCOCK AL B. FRP SITE 15

HANCOCK A B - ERP SITE 15 Page 1 or ___ Site: LocID: WW -01 LOCATION Date: Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Recorded By: Checked By: H2O Quality Meter Type/ID #: amotte Stattle **EQUIPMENT** Sampling Equipment: PID Type/ID #: Water Level Indicator Type/ID #: Equipment Decon.: Liquinox and Potable Wash/Potable Rinse/Distilled Rinse Casing I.D. (in): Ambient PID (ppm): Initial Depth to Water (ft): Ground Condition of Well: WELL Well Mouth PID (ppm): Total Well Depth (ft): INFO Approximate Pump Intake Depth (ft): Remarks: Water Volume Pumping Specific Date Time DO % Pump Temp. DO ORP Level Turb. Removed PSI Rate (mm/dd/yy) Conduct. pН (24 hr) Refill/Discharge Note (C) (mg/L) (mv) (NTU) (FTOC) (Gals) (pump) (Lpm) (mS/cm) (Seconds) 1030 .10 12.66 40 -131.2 15.8 11.23 4.25 13.40 10 21 0.2 28 1040 6.25 13.60 0.10 722 7.10 -119.0 1045 30 .25 0.10 13.34 07 1050 30 5.50 0.10 13.54 5.0 11.31 1055 0.50 13.52 0 -127.9 5.6 1100 4.75 0.10 13.26 717 -1313 8.31 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings Sample ID #(s)/Time(s) # of conts./Vol./Type Preservative Parameter(s) -660513 (ollectede) (3) 40 mL VOAs HCI VOCs by 8260B

L '

MICHALL OKING AAETT 24. JETE COFFECTION LOKIN

HANCOCK AL B - ERP SITE 15

Page 1 or 1

LOCATION	Site:	incock A	NGB			LocID: MA	1-11			Date: 08/25/13				
	Project Nam	e: Hancock AN	GB ERP Site 15			Project #: 6021					Recorded By: 25M Checked By:			
	<u> </u>												iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
EQUIPMENT		Meter Type/ID #		e Hach	2100	Sampling Equip	oment: Qua	i. PV	nuo	-1-1-1-1-1-	PID Type/ID #:	MA		
3	Water Level	Indicator Type/I	o#: intox	ace of	50l	Equipment Dec				Rinse/Distilled		/ // /		
)								((1):11:11:11		
_	Casing I.D. (in): 2°				Ambient PID (p	pm):	10			Initial Depth to Water (ft): 1/,34			
WELL	Ground Cone	dition of Well:	Good			Well Mouth PID	(ppm): /V	H			Total Well Depth (ft):			
INFO	Approximate	Pump Intake De	epth (ft):								rotal Wolf Depth (it).			
N. T.	Remarks:	Remarks:												
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note	
08/29/13	15:52	11.40	_	.45	13.92	1.259	1.60	7,39	-112.9	369	_	_	Murky	
	15:57	11.40	.7	.26	14.56	1.263	.23	7.10	-119.7	78	_	_	Murky	
	16:02	i1.40	1.2	-24	14.90	1.276	,17	7.02	-115.0	40	_	_		
	16:07	11.90	1.5	-21	15.19	1,273	.18	6,99	-167.6	35	_	_		
	16:12	11.40	1.75	, 28	15.22	1.261	-16	6.96	-107.6	78)		
	16:17	11,40	2	.20	15.77	1-261	.17	6.94	-103.6	23	_	_		
	16:22	11.40	2.25	. 20	16.09	1.270	-18	6.94	-100.0	21	_	-		
	16:27						•		1 Sec.					
				V										
Pumping Rate:<=0).5 L/min Drawo	lown: <0.33 ft Me	easurements:3-5 r	nin Stabilization	n:+/- 0.5 C, +/- 3	3% conductivity, +	-/- 10% DO, +/-	0.1 pH, +/-10 r	nv ORP, +/- 10	% turb (<= 10	NTU ideal) All for 3 c	onsecutive	readings	
Sample ID #(s)/T					# of conts./	Vol./Type		Preservativ	e		Parameter(s)			
Begar	pop o	2 15:5	6		(3) 40 mL \	/OAs		HCI			VOCs by 8260B	BEX	only	
Samp	les Collo	And O	16:26											
			Ÿ											

\L '\\

MODITIONING WELL SF. THE COLLECTION FORW

HANCOCK AL B - ERP SITE 15

Page	1	Oi	L

LOCATION		ancock				LociD: MW - 14					Date: 08/29//3				
	Project Nam	ne: Hancock AN	GB ERP Site 15			Project #: 6021					Recorded By: R	,	ked By:		
EQUIPMENT	H2O Quality	/ Meter Type/ID #	75I 55	6 / HACK	2100	Sampling Equi	pment: 🔎	i oun	ip		PID Type/ID#: ^	V/4			
Later Harrison	Water Level	Indicator Type/II	D#:	*********		Equipment Dec	on.: Liquinox	and Potable V	Vash/Potable F	Rinse/Distilled	d Rinse				
	::::::::::::::::::::::::::::::::::::::	<u> </u>													
	Casing I.D.					Ambient PID (p	pm):	VA	74		Initial Depth to Water (ft): 14.33				
WELL INFO		dition of Well:				Well Mouth PID	(ppm): /	ON	Total Well Depth (ft):					
INFO	Approximate	Pump Intake De	epth (ft):												
	Remarks:					27									
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	Hq	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note		
08/29/13	11:49	14.42	_	.15	17.76	,960	1.13	6.82	14.2	19	_	_	Blight/very St		
	11:54	14.42	.5	,20	15,40	.940	.47	6.85	-15.3	9	_	_	gc .		
	11:59	14.41	772	,12	15.94	.938	24	6.91	-32,3	4	_	_			
	12:04	14.41	1.0	.12	15.72		. 25	6.92	-34,9	2	_	_			
	12:09	14.41	1.28	.12	15.86	.940	.19	6,91	-34.0	2	_	_			
	12:14	14.41	1.5	.12	15.85	.948	.18	6.91	-36.2	-	_	_			
	12:19	14.41	1.75	-12	15.86	.955	.19	6.93	43.6	1	_	_			
								-							
Pumping Rate:<=0.	.5 L/min Draw	down: <0.33 ft Me	easurements:3-5	min Stabilizatio	on:+/- 0.5 C. +/-:	3% conductivity.		0.1 pH +/-10	mv ORP +/- 10	% turb 7<= 10	NTU ideal) All for 3 c	onsecutive r	eadings		
Sample ID #(s)/Ti					# of conts./			Preservativ		70 1415 (10	Parameter(s)	01100001110 1	<u>Jackings</u>		
Started	Progra	7 @ 11:4	(7		(3) 40 mL	VOAs		HCI			VOCs by 8260B	BEX a	rly		
Collecte	d Sam	pls @ 12	2:22												

HANCOCK AL B - ERP SITE 15

Page 1 or ____

LOCATION	Site: Ha	ncock				LociD: MV	N-\$15			Date: 8/29/13				
	Project Nam	e: Hancock ANG	B ERP Site 15			Project #: 60214	1697				Recorded By:	Check	ed By:	
EQUIPMENT	H2O Quality	Meter Type/ID #	43155	6, HACH		Sampling Equip	10		mp			VA		
	Water Level	Indicator Type/ID	# inter	ace o	lobe	Equipment Deco	on.: Liquinox ar	nd Potable W	ash/Potable f	Rinse/Distilled	Rinse			
	: (1)	0.11		V										
	Casing I.D. (Ambient PID (pp		ıΛ			Initial Depth to Wa	ter (ft): /3	85	
WELL	Ground Con	dition of Well:	9000			Well Mouth PID	(ppm):	VH			Total Well Depth (ft):			
INFO	Approximate	Pump Intake De	pth (ft):		* u									
	Remarks:	SI.	odo	/										
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note	
08/29/3	1550	13.90	initial	V25	15.05	0.955	4.41	6.99	-121,1	16.0	-	•	clean	
C	1555	13.91	0.25	1-75	14.56	0.943	0.98	7.01	-119.8		_	_	1	
	1600 13.91 0.50 175 15					0.936	0.55	7.03	-117.9	1.9	_	_		
	1605 13.91 0.75 175 1				14.39	0.933	0.39	7.05	-105.4	2.0		_		
	1610	13.91	1.0	1.25	14.56	0.927	0.35	7.07		_	_	_		
	1615	13.91	1.25	1.75	14.52	0.919	0.31	7:06	-101.6	1.5	_	_	V	
													L	
		down: <0.33 ft Me	asurements:3-5 r	nin Stabilization			/- 10% DO, +/- 0			% turb (<= 10	NTU ideal) All for 3 c	onsecutive re	adings	
Sample ID #(s)/Ti	me(s)				# of conts./			Preservativ	e		Parameter(s)	77-		
Begi	in puge@1547 (3)					/OAs		HCI		*	VOCs by 8260B	BEX	mly	
Coll	ect '	MW15-	-											
	1618													
												1	-	

VE / VIVI

INDIVITIONING WELL SE THE CULLECTION FURIN

HANCOCK AL B - ERP SITE 15

Page 1 or 1

LOCATION		ancock	ANGB			LocID: ~	w-19				Date: 8/29//3				
	Project Nam	e: Hancock ANO	GB ERP Site 15			Project #: 60214	1697				Recorded By: Rs		ked By:		
EQUIPMENT		Meter Type/ID #		6 / Hach	21067	Sampling Equip	ment: QU	li. p	ump		PID Type/ID#: N	/A			
	Water Level	Indicator Type/II)#: otesho	ace pr	o/se	Equipment Dec	on.: Liquinox a	nd Potable V	/ash/Potable F	Rinse/Distilled	Rinse				
111111111111111111111111111111111111111	::::::::::::::::::::::::::::::::::::::		ν												
	Casing I.D. (in): L*				Ambient PID (pr	141		Initial Depth to Water (ft): 8.91						
WELL	Ground Cond	dition of Well:	arol			Well Mouth PID	(ppm):	M			Total Well Depth (1				
INFO		Pump Intake De	epth (ft):								-	<i>'</i>			
41/4	Remarks:					-									
										19311111111			1001111111		
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note		
08/29/13	16:45	8.35	•	,5	15.62	1.383	5.67	7,08	-84.9	46	_	_	Clear		
	16:50	8.95	-5	,15	15.01	1.347	24	6.83	-93.4	19	_	_			
	16:55	8.95	.75	15.86	1.384	. 24	6.80	-97.1	13	_	_				
	17:00	8.95	1,0	15.69	1.419	. 21	6.76	-93.6	7	_	_				
	17:05	8.95	1.25	,18	15.49	1.439	. 22	6.70	-98.9	5	-				
	17:10	8.95	1.5	,10	15.44	1,452	.20	6.68	- 80.0	5	_	_	W-		
Pumping Rate:<=0.	5 L/min Drawo	lown: <0.33 ft Me	easurements:3-5 r	nin Stabilizatior	n:+/- 0.5 C, +/- 3	3% conductivity, +	'- 10% DO, +/- (0.1 pH, +/-10 i	mv ORP, +/- 10	% turb (<= 10	NTU ideal) All for 3 c	onsecutive r	eadings		
Sample ID #(s)/Ti	me(s)				# of conts./	Vol./Type		Preservativ	e		Parameter(s)				
Began (ruge @	16:42			(3) 40 mL \	/OAs		HCI			VOCs by 8260B	BEX	only		
,	1 11	45-Call	ect AMF	3-082913											
	10	05 20	nbient	Blank											
					0										
5	plamples	taken e	17:12												

HANCOCK AL B - ERP SITE 15

Page 1 or

LOCATION		encock				LociD: MW/O/						Date: 8/29/13			
(1) 1 (1) 1 (1) 1 (1)	Project Nami	e: Hancock ANG	3B ERP Site 15			Project #: 60214	4697		-11	9	Recorded By: K	Check	ked By:		
			-101												
EQUIPMENT	H2O Quality	Meter Type/ID #	451551	5		Sampling Equip		ri- pu			PID Type/ID #:	NA			
	water Lever	indicator Type/IL	#: intou	ace pi	Obe	Equipment Dec	on.: Liquinox a	and Potable V	Vash/Potable F	Rinse/Distilled	Rinse	, ,			
	0	3 11													
	casing I.D. (I	1):2" 90	adj			Ambient PID (p	om):	1/A			Initial Depth to Wa	ter (ft):	39		
WELL INFO	Ground Cond		· ·			Well Mouth PID	(ppm):				Total Well Depth (1	it):			
INFO		Pump Intake De	pth (ft):										yk.		
	Remarks:														
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note		
8/29/13	12:47	11.43	_	.30	16.32	1.236	1.86	7.43	755.7	12	_		Sulfor ed.		
,,	12:52	11.46	0.5	,30	15.37	1.224	-21	7.40	157.6	5		-	1		
	12:57	12:57 11.45 .75 .36				1.264	.11	7.06	-153, 1	4	_	_			
	13:02 11.47 1.5 ,3				15.62	1.279	, 08	6.94	-135.1	4	_	_			
	13:07	11.46	2	,3	14.96	1.278	, is	6.92	-125.5	3		_			
	13:12	11.46	2.5	.3	15.26	1.287	.13	6.92	-129.9	3	-	_			
- 33.7															
oumping Rate:<=0.	5 L∕min Draw d	own: <0.33 ft Me	asurements:3-5 n	nin Stabilization	:+/- 0.5 C, +/- 3	3% conductivity, +	'- 10% DO, +/-	0.1 pH, +/-10 r	nv ORP, +/- 10	% turb (<= 10 I	NTU ideal) All for 3 c	onsecutive re	adings		
Sample ID #(s)/Ti	me(s)				# of conts./	Vol./Type		Preservativ	e 🗼		Parameter(s)				
Beg:	np	nge e	12:45		(3) 40 mL \	/OAs		HCI	· F		VOCs by 8260B	BEXO	rly		
Co	llect	MWIOL	-0829	3											
		(P)	13:13												
	\$	Dup -	-0829 13:13 082913	3			-								

MICHITORING WELL SF TELE CULLECTION FURIM Page 1 or __ HANCOCK AL B - ERP SITE 15 · 🔾 | | Y | Date: 8/29/13 LocID: MW-103 Recorded By: GLW Checked By: Hancock Site: Project #: 60214697 LOCATION Project Name: Hancock ANGB ERP Site 15 PID Type/ID #: Sampling Equipment: H2O Quality Meter Type/ID #: Equipment Decon.: Liquinox and Potable Wash/Potable Rinse/Distilled Rinse **EQUIPMENT** Water Level Indicator Type/ID#: The place probe Initial Depth to Water (ft): 10-4 Ambient PID (ppm): Casing I.D. (in): Total Well Depth (ft): Well Mouth PID (ppm): Ground Condition of Well: WELL Approximate Pump Intake Depth (ft): INFO Roc Inuel Remarks: oranal Pump PSI Specific Turb. ORP Note Pumping DO Refill/Discharge Volume Water Temp. (pump) pН (NTU) Conduct. (mv) Time Rate Date (Seconds) (mg/L) Removed Level (mS/cm) (24 hr) (mm/dd/yy) (Lpm) (FTOC) (Gals) emotied 200 @ 200 Floc Stagged 13 200 Floc bark 200 FLOC no Floc 200 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb (<= 10 NTU ideal) All for 3 consecutive readings Preservative

Sample ID #(s)/Time(s)

of conts./Vol./Type Preservative Parameter(s)

WOCS by 8260B, BEX only

(3) 40 mL VOAs

Collect MW 103 - 082913

Collect MW 103 - 082913

HANCOCK AL B - ERP SITE 15

LOCATION	Site:	ancock	ANYB		LociD: MW-105						Date: 8/2-	1//3	
 - - - - - - - - - - - - -	Project Nam	e: Hancock AN	GB ERP Site 15			Project #: 60214	1697				Recorded By: 72	7	ked By:
EQUIPMENT	H2O Quality	Meter Type/ID #	181556	HACH!	2100	Sampling Equip			mp		PID Type/ID #:	NA	
151525151515151	Tyvater Level	indicator Type/II	D#: inter	ace s	100e	Equipment Deco	on.: Liquinox a	and Potable V	/ash/Potable f	Rinse/Distilled	Rinse		
	Ta i i a		\cup										
	Casing I.D. (Ambient PID (pp	om): 1 1	Λ			Initial Depth to Wa	ater (ft): 9	. 33'
WELL INFO			Good			Well Mouth PID	(ppm);///	7			Total Well Depth (
INT O		Pump Intake De	epth (ft):										
	Remarks:					jà.							
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note
0829 13	14:41	9.35	_	.2	15.10	1.301	.71	7.34	-136.6	164	_	_	murky
	14:46	9.35	.6	.22	15.53	1.306	. 20	7.22	-128.0	77	_	_	T
	14:51	9.35	.9	.20	15.69	1.297	,17	7.12	-121.4	49	-	/	Cleaner
	14:56 9.35 1.15 .2				15.31	1.257	. 20	7.10	-113.7	36	_	_	
	15:01	9.35	1.5	.2	15.13	1.230	15	7,09	-117.0	24	-		
	15:06	9.35	1.8	.2	/5.11	1.209	.16	7.08	-115.8	17		_	
	15:11	9.35	2.25	.2	14.29	1.170	:07	7,07	-1200	14	_	_	
	15:16	9.35	2.60	.22	13.98	1.747	. 09	7.07	- (17.4	12	_		
	15:21	9.35	3.00	.22	13.97	1.139	-11	7.07	-112.8	12		_	
		-6											
Pumping Rate:<=0.	.5 L/min Drawo	lown: <0.33 ft Me	easurements:3-5 r	nin Stabilization	L	1% conductivity +/	- 10% DO +/-	0.1 pH +/-10 r	7V ORP ±/- 10	% turb 7<= 10 l	NTU ideal) All for 3 o	onsocutivo r	L adiago
Sample ID #(s)/Ti					# of conts./\		10 % 50, 11-	Preservativ		70 1010 (<= 101	Parameter(s)	- Consecutive 16	saumys
1	0				(3) 40 mL \			нсі				BEX on	L.
Degar	lunge &	14:37									, , ,	DEN ON	19
160-	7 0 11												
1527-collect MW105-082913													
				_									

(L /) 141

HANCOCK AL. .8 - ERP SITE 15

							- PIZI. 4					Page 1 or	
LOCATION		rncock				LociD: M	W-10	ماد			Date: 8/2	3/13	
	Project Nam	ne: Hancock AN	GB ERP Site 15			Project #: 60214	4697				Recorded By	M/ Check	ked By:
													11111111111
EQUIPMENT		Meter Type/ID		Sto HAY	H 2100	Sampling Equip	ment: Per	Pump	7		PID Type/iD#:	VA	
	Water Leve	Indicator Type/I	D#: inter	Lace p	10be	Equipment Dec	on.: Liquinox a	and Potable W	ash/Potable	Rinse/Distilled	Rinse		
				J									
	Casing I.D.					Ambient PID (p)	pm):	NIA			Initial Depth to Wa	iter (ft): 2. (05
WELL INFO	Ground Cor	dition of Well:	send-in	weeds	Š	Well Mouth PID	(ppm):	VT			Total Well Depth (ft):	
INFO	Approximate	e Pump Intake D	epth (ft):		-								
Maria de la composición	Remarks:	No	odor			2							
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	pH	ORP (mv)	Turb. (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note
8 29/13	10多	2.66	initial	200	1493	0780	1.48	7.0%	-569	24.6			clear
	1038	2.65	0.50	200	14.53	0.782	0.61	7.12	-44.3	6.2	_	_	000
	1043	2-66	1.0	225	14.29	6.801	0.64	7.14	-41.5	3.0	_		
	1048	2.66	1.40	286	14.35	0.811	0.61	7.15	-359		_	_	
				-00		0.011			93,1	1.0			
								1					
Pumping Rate:<=0	.5 L/min Draw	/down: <0.33 ft M	leasurements:3-5	Min Stabilization	n:+/- 0.5 C. +/- 3	3% conductivity +	/- 10% DO +/-	0.1 pH +/-10 m	v ∩RP +/- 10	1 1% turb 7<= 10	NTU ideal) All for 3 d	onsecutive r	
Sample ID #(s)/Ti					# of conts./		7 10 70 20 0, 17	Preservative		370 1010 (4- 10	Parameter(s)	- Indiaecutive in	
		ge @ i	03Z 06-082°		(3) 40 mL \			HCI				BEX	only
0	alland	Mindia	1 0000	312									
	ULECT			115									
		0	1053										
			ev										

L / CIVI

2.74

MICHALLOLING AAETT 24. JETE COFFECTION LOKIM

HANCOCK AL B - ERP SITE 15

Page 1 or

	Site: 1) Page 1 or													
LOCATION		ancock	ANGB			LociD: M	N-112				Date: 8/29//3			
	Project Nam	e: Hancock AN	GB ERP Site 15			Project #: 60214	697				Recorded By: Z	M Chec	ked By:	
EQUIPMENT		Meter Type/ID		0/0214	53	Sampling Equip	ment: YSI .	556 //	tach 210	107	PID Type/ID #:	V/A		
..*.	Water Level	Indicator Type/I	D#: Get	ich		Equipment Deco	n.: Liquinox a	ind Potable W	/ash/Potable F	Rinse/Distilled		,		
	Casing I.D. (Ambient PID (pp	om):	MA			Initial Depth to Wa	iter (ft): 2.	.74	
WELL INFO	Ground Cond	dition of Well:	Good			Well Mouth PID	(ppm):	1011			Total Well Depth (ft):		
INFO	Approximate	Pump Intake D	epth (ft):		la									
	Remarks:													
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO es2 (mg/L)	рН	ORP (mv)	Turb. 02 (NTU)	Pump Refill/Discharge (Seconds)	PSI (pump)	Note	
8/29/13	0950	2.74	-	.2	17.30	1,232	1.72	5.99	-82.8	7	_			
	0956	2.81	0.60	. 2	16.52	1.191	,34	6.44	-81.3	14	-	_	clear	
	10:01 2.80 0,90 .175 16.49 1.180 .20 6.66 -90.4 7 -											Clear		
	10;06	2.81	1.3	, i5	16.82	1.(83	, 30	6,77	-70.3	4		_	clear	
	16:11	2.80	1.5	.15	16.66	1.166	,22	6.83	-80.6	5		_	11	
	10:16	2.79	1.75	.15	16.64	1.158	.17	6.86	-90.3	2	_	_	ц	
	10:21	2.79	2.10	.15	16.76	1.156	.19	6.90	-83.9	2	_			
	16:26	7.80	2,35	,15	16.57	1,150	.19	6.91	-89.4	2			6	
			*											
Pumping Rate:<=0	.5 ∐min Draw o	down: <0.33 ft M	easurements:3-5	min Stabilizatio	n:+/- 0.5 C, +/- 3	3% conductivity, +/	- 10% DO, +/- (0.1 pH, +/-10 r	nv ORP, +/- 10	% turb (<= 10	NTU ideal) All for 3 c	onsecutive r	eadings	
Sample ID #(s)/Ti					# of conts./			Preservativ			Parameter(s)			
start	porpe &	09:49			(3) 40 mL \	VOAs		HCI			VOCs by 8260B	BEX c	nly	
Sample	mple MW-112 @ 10i28													
	•													

INICIALL OVING AAETT 21. JETE COFFECTION LOKIN HANCOCK AL B - ERP SITE 15 Page 1 or Site: Hancock LocID: RW-Date: LOCATION Project Name: Hancock ANGB ERP Site 15 Project #: 60214697 Checked By: Recorded By H2O Quality Meter Type/ID #: Sampling Equipment: **EQUIPMENT** PID Type/ID #: Water Level Indicator Type/ID#: into reace proble Equipment Decon.: Liquinox and Potable Wash Potable Rinse/Distilled Rinse Casing I.D. (in): Ambient PID (ppm): Initial Depth to Water (ft): 1/83 Ground Condition of Well: WELL arod Well Mouth PID (ppm): Total Well Depth (ft): INFO Approximate Pump Intake Depth (ft) Remarks: < odor - unable 10 slower Water Volume Pumping Specific Date Pump Time Temp. **ORP** Turb. Level **PSI** Removed Rate Conduct. pН Refill/Discharge (mm/dd/yy) (24 hr) Note (C) (mg/L) (NTU) (mv) (pump) (FTOC) (Gals) (Lpm) (mS/cm) (Seconds) 08/29/13 15C initial 225 BI. Pleas 1155 200 200 1205 175 2,0 12.0 50 1220 Pumping Rate:<=0.5 L/min Drawdown: <0.33 ft Measurements:3-5 min Stabilization:+/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, +/- 10% turb_(<= 10 NTU ideal) All for 3 consecutive readings Sample ID #(s)/Time(s) # of conts./Vol./Type Preservative Parameter(s) Begin punge@1147

Collect RW01-082913

@1223

Ms/msD (3) 40 mL VOAs BEX only lhci. VOCs by 8260B

Appendix C Laboratory Data Packages

This page intentionally left blank.

Final Rep	ort
Re-Issued	Report
Revised I	Report

Laboratory Report

AECOM Technical Services, Inc.

Work Order: M0903 40 British American Boulevard Project: Hancock ANGB Latham, NY 12110 Project #: HANCOCK ANGB, 60214697

Attn: John Santacroce

<u>Laboratory ID</u>	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
M0903-01	MW112-060413	Aqueous	04-Jun-13 11:32	07-Jun-13 10:50
M0903-02	MW106-060413	Aqueous	04-Jun-13 12:15	07-Jun-13 10:50
M0903-03	DUP-060413	Aqueous	04-Jun-13 00:00	07-Jun-13 10:50
M0903-04	TB-060413	Aqueous	04-Jun-13 00:00	07-Jun-13 10:50
M0903-05	MW19-060413	Aqueous	04-Jun-13 14:35	07-Jun-13 10:50
M0903-06	MW17-060413	Aqueous	04-Jun-13 14:37	07-Jun-13 10:50
M0903-07	MW15-060413	Aqueous	04-Jun-13 15:40	07-Jun-13 10:50
M0903-08	MW11-060413	Aqueous	04-Jun-13 16:04	07-Jun-13 10:50
M0903-09	MW105-060513	Aqueous	05-Jun-13 09:20	07-Jun-13 10:50
M0903-10	MW103-060513	Aqueous	05-Jun-13 09:41	07-Jun-13 10:50
M0903-11	RW01-060513	Aqueous	05-Jun-13 11:00	07-Jun-13 10:50
M0903-12	MW14-060513	Aqueous	05-Jun-13 11:42	07-Jun-13 10:50
M0903-13	MW101-060513	Aqueous	05-Jun-13 12:30	07-Jun-13 10:50

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense N/A Connecticut PH-0153 Delaware N/A Florida E87664 2007037 Maine Massachusetts M-RI907 New Hampshire 2631 New Jersey RI001 11522 New York North Carolina 581 Rhode Island LAI00301 USDA P330-08-00023 USEPA - ISM EP-W-09-039 EP-W-11-033 USEPA - SOM

Certificate # L2247 Testing

Authorized by:

Yihai Ding Laboratory Director Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

WorkOrder: M0903

Location: HANCOCK_ANGB, HANCOCK ANGB, 60214697

Comments: Send copy of invoice to John Santacroce at Latham office.

PO: 60214697, 11S-14728-DC30

Report Level: LEVEL 4A EDD: ERPIMS_5 Special Program: DoD HC Due: 06/26/13 Fax Report: Fax Due: Case: SDG: Project: Hancock ANGB WO Name: Hancock ANGB Cilent ID: EARTH_NY

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage	Storage
M0903-01A	MW112-060413	06/04/2013 11:32 06/07/2013	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>^</i>	VOA
M0903-02A	MW106-060413	06/04/2013 12:15 06/07/2013	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-03A	DUP-060413	06/04/2013 00:00 06/07/2013	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-04A	TB-060413	06/04/2013 00:00	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-05A	MW19-060413	06/04/2013 14:35	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-06A	MW17-060413	06/04/2013 14:37 06/07/2013	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>> > ></i>	VOA
M0903-07A	MW15-060413	06/04/2013 15:40	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-08A	MW11-060413	06/04/2013 16:04	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-09A	MW105-060513	06/05/2013 09:20 06/07/2013	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-10A	MW103-060513	06/05/2013 09:41	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-11A	RW01-060513	06/05/2013 11:00	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-12A	MW14-060513	06/05/2013 11:42 06/07/2013	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA
M0903-13A	MW101-060513	06/05/2013 12:30	06/07/2013	Aqueous	SW8260_W	/ BEX list	<i>></i>	VOA

HT = Test logged in but has been placed on hold

Sample Transmittal Documentation

M0903 Page 2 of 127

<u>"""</u>		ı				1 100000								1						
Special Handling: TAT- Ind icate Date Needed:	All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	750117	Site Name: Hancack ANGB	State: NY	SET	below: QA/QC Reporting Notes:	QA/QC Reporting Level	☐ Level I ☐ Level II	☐ Level III ☐ Level IV	□ Other	State-specific reporting standards:									
RECORD	☐ 646 Camp Avenue N Kingstown, RI 02852 (401) 732-3400	Project No.: (2021 4(297	Site Name: HOLD	Location: Suffaces	Sampler(s): \$\int\text{\$\in\text{\$\end{\\$\in\text{\$\ext{\$\in\text{\$\in\text{\$\ext{\$\in\text{\$\ext{\$\in\text{\$\exitin\text{\$\ext{\$\ext{\$\ext{\$\exitin\ta\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	List preservative code below:	Analyses:	hjuo	X-35	3	MZS		n. Officiarrophy		MAN Views II O NAVIOLES					
F CUSTODY RECORD	☐ 8405 Benjamin Road, Ste A Tampa, FL 33634 (813) 888-9507	AECOM			RQN:	6=Ascorbic Acid 7=CH ₃ OH 12=	Containers:	sse	Glas	OV A	Type Matrix # of Vi # of Ai # of Ci # of Ci # of Pi	5 GW 3								antaraspo
CHAIN O	E 11 Almgren Drive Agawam, MA 01001 (413) 789-9018	Sid Invoice To:		-	P.O. No.:	4=HNO ₃ 5=NaOH 6=_ 10=H ₃ PO ₄ 11=	r WW=Wastewater	SL=Sludge A=Air X3=		ite	Date: Time:	64113 1132 6	04/13 1215	(1 3 -	, and an analysis of the second of the secon	0/413 1435	643 1457	6 4 13 1451	6413	
Nooce Nooce	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	Report To: AECON	Latham, N.Y. 12110	00 170 017	Project Mgr. John Janta (1700)	1=Na2S2O3 $2=HCl$ $3=H2SO4$ $8=NaHSO4$ $9=Deionized Water$	rinking Water GW=G	O=Oil SW= Surface Water SO=Soil X1= X2=		G=Grab C=Composite	Sample Id:	MW112-020413	M 2 2 MW106-060413 6	2 51000-CUC 18-	- TB-060413	25/MW19-CHOCH13	2 -06 MW17-CLOOUIS	9 SM-51400D-CIWM 90-	JSW-5140010- LIWM 30-	N SON STATE OF THE
M0903)										ć	NO TO	<i>y</i> 3							
												Com								

TE-mail to John. Santacroce@HECOM. Con

TEDD Format ERPIMS

Termo °C

Time:

-08 MW11-04041

Revised Feb 2013

www.spectrym-analytical.com

Condition upon receipt: Custody Seals: Dresent Dinact Droken DAmbient Road DROA Frozen DSoil Jar Frozen

8 Revised Feb 2013 Condition uppreceipt: Custody Seals: Dresent Dintact DBroken DAmbient Cleed DRefrigerated DIVOA Frozen DSoil Jar Frozen · All TATs subject to laboratory approval Min. 24-hour notification needed for rushes. State-specific reporting standards: QA/QC Reporting Notes: QA/QC Reporting Level TE-mail to John. Jantacreceletaecom □ Level IV TAT- Ind icate Date Needed: S+Tr-Samples disposed of after 60 days unless □ Level II Special Handling: State: □ Level III ☐ Level I □ Other otherwise instructed. PKP NA Project No.: 6-60214 697 Location: State Sund a Cull Site Name: Hancock List preservative code below: **I** EDD Format N Kingstown, RI 02852 Analyses: ☐ 646 Camp Avenue DY RECORD (401) 732-3400 Sampler(s): Temp°C www.spectrum-analyticalseom Time: ☐ 8405 Benjamin Road, Ste A # of Plastic Containers: $7=CH_3OH$ CHAIN OF CUSTOI Tampa, FL 33634 # of Clear Glass (813) 888-9507 RON: of # of Amber Glass AFCON Page A 6=Ascorbic Acid Date: s IsiV AOV to # $\mathcal{O}_{\mathcal{I}}$ 3 Matrix Туре Invoice To: P.O. No.: ✓ 11 Almgren Drive Agawam, MA 01001 ととこ 5=NaOH Time: (413) 789-9018 DW=Drinking Water GW=Groundwater WW=Wastewater SL=Sludge A=Air 3 1921 Ž 1 Received bay 10=H₃PO₄ 4=HN03 Date: American Old C=Composite 0 Santa Cock Telephone #: C/K -9C/- JUGS SO=Soil 2=HCl 3=H₂SO₄9= Deionized Water -13 NW/101-060513 -10 MW 103-010513 11 N 105-0600 3 -ii | HENKWOI-016051 -12 NW 14-060513 SPECTRUM ANALYTICAL, INC. SW= Surface Water Sample Id: Feathring HANIBAL TECHNOLOGY G=Grab A FIGOR Relinquished by: Project Mgr. John $1 = Na_2S2O_3$ がような athan 8= NaHSO₄ Report To: 0=0<u>:</u>1 Lab Id: X1=M0903 Page

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

Received By: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Page 01 of 00								
Reviewed By:	D						Lo	g-in	Date 06/0	7/2013
Work Order: M0903	Client Name: Al	ECOM '	Technical	Serv	ices,	Inc.				
Project Name/Event:	Hancock ANGB / Hanc	ock A	NGB							
Remarks: (1/2) Please s sample/extract transfer	logbook pages				Preser	rvation	n (pH)			Soil HeadSpace or Air Bubble >
submitted with this dat		Lab :	Sample ID	ниоз	H2SO4	HCl	NaOH H	13PO4	VOA Matrix	or equal to 1/4"
1. Custody Seal(s)	Present / Absent		M0903-01						Н	
	Intaqt/Broken	\triangleright	M0903-02						Н	:
2. Custody Seal Nos.	N/A		M0903-03						Н	
3. Traffic Reports/ Chain	Present / Apsent		M0903-04						Н	
of Custody Records (TR/COCs) or Packing			M0903-05						Н	
Lists			M0903-06						Н	
			M0903-07						Н	·
4. Airbill	AirBill / Sticker		M0903-08						H 	
	Present / Absent	2	M0903-09						H	
5. Airbill No.	Courier N/A		M0903-10						H	
	**************************************		M0903-11						H	
6. Sample Tags	Present / Absent	\triangleright —	M0903-12 M0903-13						H H	
Sample Tag Numbers	Listed/		1010902-12						П	
	Not Listed on Chain-									
	of-Custody									
7. Sample Condition	Intact/Broken/									
	Leaking									
8. Cooler Temperature Indicator Bottle	Present / Absent	\triangleright								
9. Cooler Temperature	4 °C									
10. Does information on	Yes / No									
TR/COCs and sample tags agree?										
11. Date Received at	06/07/2013									
Laboratory	06/07/2013									
12. Time Received	10:50	_								
	Fransfer									
Fraction (1) TVOA/VOA	Fraction (2) SVOA/PEST/ARO									
Area #	Area #									
Ву	Ву	<u> </u>								
On	On									
IR Temp Gun ID:MT-1 CoolantCondition: ICE			V	OA Matr			-4 C-11	•	- Ain	
	<u> </u>			US = Un				= Air = HCl		
Preservative Name/Lot No:				UA = Un M = Me0	-	ed Aqueo		= HCI = Encore		
				N = NaH				= Ericore = Freeze		
			Se				tification/C		ve Action For	n Yes / No
				,						
			Ra	ad OK	Yes	// No				

* Volatiles *

M0903 Page 6 of 127

REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

Project: Hancock ANGB

Laboratory Workorder / SDG #: M0903

SW846 8260C, VOC by GC-MS

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW5030B

V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: V5

Instrument Type: GCMS-VOA

M0903 Page 7 of 127

Description: HP6890 / HP6890 Manufacturer: Hewlett-Packard

Model: 6890 / 6890

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

D. Spikes:

1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

Replicate RPDs were within the advisory QC limits.

2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

Matrix spikes were performed on samples: MW17-060413 (M0903-06AMS) and MW17-060413 (M0903-06AMSD).

Percent recoveries were within the QC limits.

Replicate RPDs were within the advisory QC limits.

E. Internal Standards:

Internal standard peak areas were within the QC limits.

F. Dilutions:

No sample in this SDG required analysis at dilution.

G. Samples:

No other unusual occurrences were noted during sample analysis.

M0903 Page 8 of 127

H. Manual Integration

No manual integrations were performed on any sample or standard.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

tSigned:	J-W	
Date:	6/25/2013	

M0903 Page 9 of 127

SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

Data Flag/Qualifiers:

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
 - the compound was detected below the reporting limit, or
 - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates an interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as aldol condensation byproducts.
- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.

Page 10 of 127

SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

Sample ID Suffixes

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

* Sample Data *

M0903 Page 12 of 127

EPA SAMPLE NO.

MW112-060413

Lab Name: SPECTRUM ANAI	LYTICAL, IN	C.		Contract:		
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	M0903-01A	
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V504002.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	06/07/2013	
% Moisture: not dec.				Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(u	L
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO. MW106-060413

Lab Name: SPECTRUM ANAL	YTTCAL, IN	C.		Contract:	
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	M0903-02A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V504003.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	06/07/2013
% Moisture: not dec.				Date Analyzed:	06/07/2013
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.
DUP-060413

Lab Name: SPECTRUM ANALY	YTICAL, IN	C.		Contract:		
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
<pre>Matrix: (SOIL/SED/WATER)</pre>	WATER			Lab Sample ID:	M0903-03A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V504004.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	06/07/2013	
% Moisture: not dec.				Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA	SAMPLE	NO.
TB-06	0413	

Lab Name: SPECTRUM ANAI	YTICAL, IN	C.		Contract:	
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	M0903-04A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V504005.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	06/07/2013
% Moisture: not dec.				Date Analyzed:	06/07/2013
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5 0		·	_ (mT.)		

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.
MW19-060413

Lab Name: SPECTRUM ANALY	FICAL, IN	C.		Contract:		
Lab Code: MITKEM C	ase No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	M0903-05A	
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V504006.D	
Level: (TRACE/LOW/MED) L	OW			Date Received:	06/07/2013	
% Moisture: not dec.				Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.

MW17-060413

Lab Name: SPECTRUM ANAI	LYTICAL, IN	C.		Contract:		
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	M0903-06A	
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V504007.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	06/07/2013	
% Moisture: not dec.				Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.

MW17-060413MS

Lab Name: SPECTRUM ANALYTICA	L, INC.	Contract:	
Lab Code: MITKEM Case	No.: M0903	Mod. Ref No.:	SDG No.: SM0903
Matrix: (SOIL/SED/WATER) WAS	ΓER	Lab Sample ID:	M0903-06AMS
Sample wt/vol:5.00 (g.	/mL) <u>ML</u>	Lab File ID:	V503995.D
Level: (TRACE/LOW/MED) LOW		Date Received:	06/07/2013
% Moisture: not dec.		Date Analyzed:	06/07/2013
GC Column: DB-624	ID: <u>0.25</u> (mm	n) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0	(mL	,)	

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	56		0.33	0.50	1.0
100-41-4	Ethylbenzene	46		0.35	0.50	1.0
179601-23-1		92		0.77	1.0	1.0
95-47-6	o-Xylene	48		0.36	0.50	1.0
1330-20-7	Xylene (Total)	140		0.36	1.0	1.0

EPA SAMPLE NO.

MW17-060413MSD

Lab Name: SPECTRUM	ANALYTICAL, IN	C.		Contract:		
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SED/W	ATER) WATER			Lab Sample ID:	M0903-06AMSD	
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V503996.D	
Level: (TRACE/LOW/M	ED) LOW			Date Received:	06/07/2013	
% Moisture: not dec	•			Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume	:		(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	56		0.33	0.50	1.0
100-41-4	Ethylbenzene	46		0.35	0.50	1.0
179601-23-1		93		0.77	1.0	1.0
95-47-6	o-Xylene	47		0.36	0.50	1.0
1330-20-7	Xylene (Total)	140		0.36	1.0	1.0

EPA SAMPLE NO.
MW15-060413

Lab Name: SPECTRUM ANALY	FICAL, IN	C.		Contract:		
Lab Code: MITKEM C	ase No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	M0903-07A	
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V504008.D	
Level: (TRACE/LOW/MED) L	OW			Date Received:	06/07/2013	
% Moisture: not dec.				Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.
MW11-060413

Lab Name:	SPECTRUM ANA	LYTICAL, IN	C.		Contract:		
Lab Code:	MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (S	OIL/SED/WATER	WATER			Lab Sample ID:	M0903-08A	
Sample wt/	vol:5.	00 (g/mL)	ML		Lab File ID:	V504009.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	06/07/2013	
% Moisture	: not dec.				Date Analyzed:	06/07/2013	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uI	
Purge Volu	me: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.

MW105-060513

Lab Name: SPECTRUM ANA	LYTICAL, IN	C.		Contract:		
Lab Code: MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	M0903-09A	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V504010.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	06/07/2013	
% Moisture: not dec.				Date Analyzed:	06/07/2013	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.

MW103-060513

Lab Name: SPECTRUM ANALYTICAL	, INC.	Contract:	
Lab Code: MITKEM Case N	o.: M0903	Mod. Ref No.:	SDG No.: SM0903
Matrix: (SOIL/SED/WATER) WATE	IR	Lab Sample ID:	M0903-10A
Sample wt/vol:5.00 (g/m	nL) ML	Lab File ID:	V504011.D
Level: (TRACE/LOW/MED) LOW		Date Received:	06/07/2013
% Moisture: not dec.		Date Analyzed:	06/07/2013
GC Column: DB-624	ID: <u>0.25</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO. RW01-060513

Lab Name:	SPECTRUM ANAI	LYTICAL, IN	C.		Contract:	
Lab Code:	MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903
Matrix: (SC	OIL/SED/WATER) WATER			Lab Sample ID:	M0903-11A
Sample wt/v	vol: 5.	00 (g/mL)	ML		Lab File ID:	V504012.D
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	06/07/2013
% Moisture:	not dec.				Date Analyzed:	06/07/2013
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volum	ne: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.
MW14-060513

Lab Name: SP	ECTRUM ANALY	TICAL, IN	C.		Contract:		
Lab Code: MI	TKEM (Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL	/SED/WATER)	WATER			Lab Sample ID:	M0903-12A	
Sample wt/vol	: 5.00	0 (g/mL)	ML		Lab File ID:	V504013.D	
Level: (TRACE	/LOW/MED)]	LOW			Date Received:	06/07/2013	
% Moisture: n	ot dec.				Date Analyzed:	06/07/2013	
GC Column: D	B-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL	
Purge Volume:	5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

EPA SAMPLE NO.

MW101-060513

Lab Name: SPECT	RUM ANALYI	'ICAL, IN	C.		Contract:		
Lab Code: MITKE	M Ca	se No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (SOIL/SE	D/WATER)	WATER			Lab Sample ID:	M0903-13A	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V504014.D	
Level: (TRACE/LO	W/MED) LO	DW			Date Received:	06/07/2013	
% Moisture: not	dec.				Date Analyzed:	06/08/2013	
GC Column: DB-6	24	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Vol	ume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5	.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	5.7		0.35	0.50	1.0
179601-23-1	m,p-Xylene	7.2		0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	7.2		0.36	1.0	1.0

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

_	EPA	SAMPLE	NO.
Г	LCS-7	2123	

Lab Name: SPECTRUM ANA	LYTICAL, INC.	Contract	:	
Lab Code: MITKEM	Case No.: M090	Mod. Ref	No.:	SDG No.: SM0903
Matrix: (SOIL/SED/WATER) WATER	Lab Samp	le ID: LCS-72123	3
Sample wt/vol: 5.	00 (g/mL) ML	Lab File	ID: V503994.I)
Level: (TRACE/LOW/MED)	LOW	Date Rec	eived:	
% Moisture: not dec.		Date Ana	lyzed: 06/07/201	13
GC Column: DB-624	ID: 0.25	(mm) Dilution	Factor: 1.0	
Soil Extract Volume:		(uL) Soil Ali	quot Volume:	(uL
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	52		0.33	0.50	5.0
100-41-4	Ethylbenzene	42		0.35	0.50	5.0
179601-23-1	m,p-Xylene	86		0.77	1.0	5.0
95-47-6	o-Xylene	44		0.36	0.50	5.0
1330-20-7	Xylene (Total)	130		0.36	1.0	5.0

SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

* QC Summary *

M0903 Page 29 of 127

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EP	A S	SAMPL	E NO	•
MB-7	721	.23		

Lab Name:	SPECTRUM ANAI	YTICAL, IN	C.		Contract:		
Lab Code:	MITKEM	Case No.:	M0903		Mod. Ref No.:	SDG No.: SM0903	
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	MB-72123	
Sample wt/	vol: 5.0	00 (g/mL)	ML		Lab File ID:	V503993.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:		
% Moisture	: not dec.				Date Analyzed:	06/07/2013	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volu	me: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION: UG/L	Q	DL	LOD	LOQ
71-43-2	Benzene	0.50	U	0.33	0.50	1.0
100-41-4	Ethylbenzene	0.50	U	0.35	0.50	1.0
179601-23-1	m,p-Xylene	1.0	U	0.77	1.0	1.0
95-47-6	o-Xylene	0.50	U	0.36	0.50	1.0
1330-20-7	Xylene (Total)	1.0	U	0.36	1.0	1.0

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-72123

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-72123	LCS-72123	V503994.D	15:39
02	MW17-060413M S	M0903-06AMS	V503995.D	16:05
03	MW17-060413M SD	M0903-06AMSD	V503996.D	16:30
04	MW112-060413	M0903-01A	V504002.D	19:04
05	MW106-060413	M0903-02A	V504003.D	19:30
06	DUP-060413	M0903-03A	V504004.D	19:56
07	TB-060413	M0903-04A	V504005.D	20:22
08	MW19-060413	M0903-05A	V504006.D	20:48
09	MW17-060413	M0903-06A	V504007.D	21:13
10	MW15-060413	M0903-07A	V504008.D	21:39
11	MW11-060413	M0903-08A	V504009.D	22:05
12	MW105-060513	M0903-09A	V504010.D	22:30
13	MW103-060513	M0903-10A	V504011.D	22:56
14	RW01-060513	M0903-11A	V504012.D	23:21
15	MW14-060513	M0903-12A	V504013.D	23:47
16	MW101-060513	M0903-13A	V504014.D	0:12

COMMENTS:

2B - FORM II VOA-2

WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Level: (TRACE or LOW) LOW

	EPA	VDMC1	VDMC2	VDMC3	VDMC4		TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB)	#	OUT
01	MB-72123	106	101	93	104		0
02	LCS-72123	104	99	93	108		0
03	MW17-060413M S	107	94	93	106		0
04	MW17-060413M SD	106	99	92	106		0
05	MW112-060413	107	102	94	106		0
06	MW106-060413	103	99	94	105		0
07	DUP-060413	105	96	94	105		0
08	TB-060413	104	96	92	102		0
09	MW19-060413	105	98	94	105		0
10	MW17-060413	104	100	93	105		0
11	MW15-060413	104	98	91	104		0
12	MW11-060413	107	95	93	103		0
13	MW105-060513	106	98	94	105		0
14	MW103-060513	106	99	94	103		0
15	RW01-060513	107	97	94	106		0
16	MW14-060513	106	99	93	102		0
17	MW101-060513	107	99	95	105		0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

[#] Column to be used to flag recovery values

som13.06.03.A

Page 1 of 1 SW846

M0903 Page 32 of 127

^{*} Values outside of contract required QC limits

5A - FORM V VOA

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

BFB5V		

EPA SAMPLE NO.

BROMOFLUOROBENZENE (BFB)

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Lab File ID: V503800.D BFB Injection Date: 05/30/2013

Instrument ID: V5 BFB Injection Time: 12:22

GC Column: DB-624 ID: 0.25 (mm)

	% RELATIVE
m/e ION ABUNDANCE CRITERIA	ABUNDANCE
50 15.0 - 40.0% of mass 95	22.4
75 30.0 - 60.0% of mass 95	44.0
95Base peak, 100% relative abundance	100.0
965.0 - 9.0% of mass 95	6.8
173 Less than 2.0% of mass 174	0.0 (0.0)1
174 Greater than 50.0% of mass 95	74.6
175 5.0 - 9.0% of mass 174	4.0 (5.3)1
176 95.0 - 101.0% of mass 174	72.2 (96.9)1
1775.0 - 9.0% of mass 176	4.8 (6.7)2

1 - Value is % mass 174

2 - Value is % mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD0015V	VSTD0015V	V503801.D	05/30/2013	12:48
02	VSTD0055V	VSTD0055V	V503802.D	05/30/2013	13:14
03	VSTD0205V	VSTD0205V	V503803.D	05/30/2013	13:39
04	VSTD0505V	VSTD0505V	V503804.D	05/30/2013	14:05
05	VSTD1005V	VSTD1005V	V503805.D	05/30/2013	14:32
06	VSTD2005V	VSTD2005V	V503806.D	05/30/2013	14:58
07	VICV0505V	VICV0505V	V503807.D	05/30/2013	15:46

som13.06.03.A Page 1 of 1 SW846

5A - FORM V VOA

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

BFBD5		

EPA SAMPLE NO.

BROMOFLUOROBENZENE (BFB)

Lab	Name:	SPECTRUM	ANALYTICAL,	INC.	Contract:
-----	-------	----------	-------------	------	-----------

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Lab File ID: V503990.D BFB Injection Date: 06/07/2013

Instrument ID: V5 BFB Injection Time: 13:58

GC Column: DB-624 ID: 0.25 (mm)

	% RELATIVE
m/e ION ABUNDANCE CRITERIA	ABUNDANCE
50 15.0 - 40.0% of mass 95	24.8
7530.0 - 60.0% of mass 95	44.8
95Base peak, 100% relative abundance	100.0
965.0 - 9.0% of mass 95	6.3
173 Less than 2.0% of mass 174	0.0 (0.0)1
174 Greater than 50.0% of mass 95	72.2
1755.0 - 9.0% of mass 174	5.8 (8.0)1
176 95.0 - 101.0% of mass 174	69.8 (96.7)1
1775.0 - 9.0% of mass 176	4.4 (6.3)2

1 - Value is % mass 174

2 - Value is % mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD050D5	VSTD050D5	V503991.D	06/07/2013	14:23
02	MB-72123	MB-72123	V503993.D	06/07/2013	15:14
03	LCS-72123	LCS-72123	V503994.D	06/07/2013	15:39
04	MW17-060413M S	M0903-06AMS	V503995.D	06/07/2013	16:05
05	MW17-060413M SD	M0903-06AMSD	V503996.D	06/07/2013	16:30
06	MW112-060413	M0903-01A	V504002.D	06/07/2013	19:04
07	MW106-060413	M0903-02A	V504003.D	06/07/2013	19:30
08	DUP-060413	M0903-03A	V504004.D	06/07/2013	19:56
09	TB-060413	M0903-04A	V504005.D	06/07/2013	20:22
10	MW19-060413	M0903-05A	V504006.D	06/07/2013	20:48
11	MW17-060413	M0903-06A	V504007.D	06/07/2013	21:13
12	MW15-060413	M0903-07A	V504008.D	06/07/2013	21:39
13	MW11-060413	M0903-08A	V504009.D	06/07/2013	22:05
14	MW105-060513	M0903-09A	V504010.D	06/07/2013	22:30
15	MW103-060513	M0903-10A	V504011.D	06/07/2013	22:56
16	RW01-060513	M0903-11A	V504012.D	06/07/2013	23:21
17	MW14-060513	M0903-12A	V504013.D	06/07/2013	23:47
18	MW101-060513	M0903-13A	V504014.D	06/08/2013	0:12

Page 1 of 1

som13.06.03.A M0903 SW846

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 05/30/2013 05/30/2013

EPA Sample No.(VSTD#####): VSTD050D5 Date Analyzed: 06/07/2013

Lab File ID (Standard): V503991.D Time Analyzed: 14:23

Instrument ID: V5 Heated Purge: (Y/N) N

		IS1 (S1)		IS2 (S2)		IS3 (S3)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	793954	5.604	665170	9.077	311190	12.237
	UPPER LIMIT	1587908	6.104	1330340	9.577	622380	12.737
	LOWER LIMIT	396977	5.104	332585	8.577	155595	11.737
	EPA SAMPLE NO.						
01	MB-72123	779985	5.605	649391	9.078	281655	12.238
02	LCS-72123	788569	5.599	658540	9.072	306088	12.244
03	MW17-060413M S	793004	5.611	665941	9.084	312009	12.244
04	MW17-060413M SD	790614	5.600	667620	9.073	304729	12.245
05	MW112-060413	796720	5.605	652480	9.078	284647	12.238
06	MW106-060413	801398	5.602	658057	9.076	280142	12.235
07	DUP-060413	776334	5.606	637969	9.079	274792	12.239
08	TB-060413	778639	5.600	642363	9.073	274583	12.245
09	MW19-060413	778963	5.604	630329	9.078	278498	12.237
10	MW17-060413	762182	5.600	623305	9.073	264311	12.244
11	MW15-060413	751663	5.599	625719	9.073	264861	12.244
12	MW11-060413	737897	5.605	616471	9.079	261716	12.238
13	MW105-060513	746710	5.605	620570	9.078	269318	12.238
14	MW103-060513	735924	5.602	614291	9.075	257071	12.235

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

som13.06.03.A

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 05/30/2013 05/30/2013

EPA Sample No.(VSTD#####): VSTD050D5 Date Analyzed: 06/07/2013

Lab File ID (Standard): V503991.D Time Analyzed: 14:23

Instrument ID: V5 Heated Purge: (Y/N) N

		IS1 (S1)		IS2 (S2)		IS3 (S3)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	793954	5.604	665170	9.077	311190	12.237
	UPPER LIMIT	1587908	6.104	1330340	9.577	622380	12.737
	LOWER LIMIT	396977	5.104	332585	8.577	155595	11.737
	EPA SAMPLE NO.						
15	RW01-060513	737920	5.605	604449	9.079	260408	12.238
16	MW14-060513	728580	5.600	604231	9.073	255556	12.244
17	MW101-060513	732159	5.605	612002	9.079	272002	12.238

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

som13.06.03.A

3A - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ab Name: SPI	ECTRUM ANALYTI	CAL, INC.	Contract	: 			
ab Code: MI	TKEM Cas	e No.: M0903	Mod. Ref	No.:	SDG	No.:	SM0903
atrix Spike	- EPA Sample N	o.: MW17-060413	1	Level:	(TRACE or	LOW)	LOW
					1		
		SPIKE	SAMPLE	MS			QC.
	COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	MS %REC	#	LIMITS
		(ug/L)	(ug/L)	(ug/L)			REC.
Benzene		50.0000	0.0000	55.5099	111		80-120
Ethylben	zene	50.0000	0.0000	46.3680	93		75-125
m,p-Xyle	ne	100.0000	0.0000	92.3896	92		75-130
o-Xylene		50.0000	0.0000	47.6515	95		80-120
Xylene (Total)	150.0000	0.0000	140.0411	. 93		81-121
				1	1	1	
		SPIKE	MSD			QC L	IMITS
		ADDED	CONCENTRATION	MSD %REC #	%RPD #		

(ug/L)

55.7700

46.4063

92.9766

46.5698

139.5464

112

93

93

93

93

Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	οf	OC	limits	

Benzene

Ethylbenzene

Xylene (Total)

m,p-Xylene

o-Xylene

COMPOUND

RPD:	0	out of		5 o	utside	lim	its				
Spike	Recove	ery:	0	out	of	10	outside	limits			
COMMEN	NTS:								 		

(ug/L)

50.0000

50.0000

100.0000

50.0000

150.0000

som13.06.03.A SW846

RPD

0-40

0-40

0-40

0 - 40

0-40

0

0

1

2

0

REC. 80-120

75-125

75-130

80-120

81-121

3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-72123

Lab	Name:	SPECTI	RUM ANA	LYTICAL	, INC.	Contract	:				
Lab	Code:	MITKE	N	Case N	o.: <u>M0903</u>	Mod. Ref	No.:	SDG 1	ЛО.	: SM0903	
Lab	Sample	ID:	LCS-72	123		LCS Lot 1	No.:				
Date	e Extra	cted:	06/07/2	2013		Date Ana	lyzed (1): 0	6/07/2013			
		COM	POUND		SPIKE ADDED	SAMPLE CONCENTRATION	LCS CONCENTRATION	LCS %REC	#	QC. LIMITS REC.	
	Benze	ne			50.0000	0.0000	52.3818	105		80 - 120	
	Ethyl	benzene	9		50.0000	0.0000	42.4445	85		75 - 125	
	m,p-X	ylene			100.0000	0.0000	86.4939	86		75 - 130	
	o-Xyl	ene			50.0000	0.0000	43.8419	88		80 - 120	
	Xylen	e (Tota	al)		150.0000	0.0000	130.3358	87		81 - 121	
* Va	lues ou	tside o	of QC li	mits	ery and RPD v	values with an	asterisk				
COMM	MENTS:										

som13.06.03.A SW846

Featuring
HANIBAL TECHNOLOGY

* Standards Data *

Page 39 of 127 M0903

	DATA
/ OA- Z	CALIBRATION
OKM VI V	INITIAL
0B - I	ORGANICS
	VOLATILE

1090 Name:	Spectrum Analytical,	al, Inc.		VOLATILE	ORGANIC	S INITI	VOLATILE ORGANICS INITIAL CALIBRATION DATA Contract:	ATION DATA					
Lab Code:	MITKEM		Case	No.:	M0903	SA	SAS No.:		SDG No.:	0	SM0903		
Instrument ID:	ID: V5					Ca	Calibration Date(s):	Date(s):	05/30/2013	013	05/30/2013		
Heated Purge:	N (N/X) :=					Сa	Calibration Times:	Times:	12	12:48	14:58		
Purge Volume:	: d					m)	(mL)					ı	
GC Column:	DB-624		ID:	0.25		(mm)	Length: 30		(mm)				
LAB FILE ID	FILE ID: RRF005 = V503802.D		RRF020 = 1	V503803.D	D RRF050	II	V503804.D	RRF100 =	V503805.D	RRF200	0 = V503806.D	6.D	
	RRF001 = <u>V503801.D</u>	1.D											
COMPOUND		RRF005	RRF020	RRF050	RRF100	RRF200	RRF001				RRF	% RSD	
Benzene		1.623	1.632	1.544	1.990	1.888	1.689				1.728	10.0	
Ethylbenzene		0.688	0.698	0.672	0.887	0.871	0.760				0.763	12.5	
m,p-Xylene		0.872	0.891	0.815	1.087	1.039	0.895				0.933	11.3	
o-Xylene		0.860	0.858	0.839	1.075	1.055	0.857				0.924	11.9	
Xylene (Total)		0.868	0.880	0.823	1.083	1.045	0.883				0.930	11.4	

_
~:
8
99
≍
ä
Ē

70A-3	CALIBRATION DATA	Contract:
6C - FORM VI VOA-3	VOLATILE ORGANICS INITIAL CALIBRATION DATA	Conti
	VOLATILE	
		nalytical, Inc.

D Dab Name: Spectrum Analytical, Inc.	ytical,	Inc.	>	OLATILE	6C ORGANI	- FORM V CS INITI	6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA CONTRACT:	ION DATA				
Lab Code: MITKEM			Case No.:		M0903	SP	SAS No.:		SDG No.:	ov	SM0903	
Instrument ID: V5						Ğ	Calibration Date(s):	ate(s):	05/30/2013	013	05/30/2013	
Heated Purge: (Y/N) N						Ö	Calibration Times:	imes:	12	12:48	14:58	1
Purge Volume: 5						ш)	(mL)					1
GC Column: DB-624			1D: 0	.25		(mm) Le	Length: 30		(mm)			
LAB FILE ID: RRF005 = $\frac{V5}{N}$	V503802.D V503801.D	RRF020 =		V503803.D	D RRF050	II	V503804.D R	RRF100 =	V503805.D	RRF200	00 = <u>V503806.D</u>	6.D
COMPOUND	RRI	RRF005 RI	RRF020	RRF050	RRF100	RRF200	RRF001				RRF	% RSD
Dibromofluoromethane	0.315	5 0.311	11 0	.316	0.302	0.307	0.320				0.312	2.1
1,2-Dichloroethane-d4	0.072	2 0.068	0 89	790.0	690.0	0.069	0.072				0.070	2.9
Toluene-d8	1.295	5 1.293	93 1	258	1.330	1.275	1.296				1.291	1.9
Bromofluorobenzene	0.520	0 0.521	21 0	.525	0.515	0.507	0.521				0.518	1.2
	-	3	=					-		_		

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Instrument ID: V5 Calibration Date: 05/30/2013 Time: 15:46

Lab File ID: V503807.D Init. Calib. Date(s): 05/30/2013 05/30/2013

EPA Sample No.(VSTD#####) VICV0505V Init. Calib. Time(s): 12:48 14:58

 $\label{eq:heated Purge: (Y/N) N GC Column: DB-624} \qquad \qquad \text{ID: 0.25 (mm) Length: 30 (m)}$

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX %D
Benzene	1.728	1.504	0.500	-13.0	20.0
Ethylbenzene	0.763	0.658	0.100	-13.7	20.0
m,p-Xylene	0.933	0.808	0.100	-13.5	20.0
o-Xylene	0.924	0.806	0.300	-12.8	20.0
Xylene (Total)	0.930	0.807	0.000	-13.2	20.0

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Instrument ID: V5 Calibration Date: 05/30/2013 Time: 15:46

Lab File ID: V503807.D Init. Calib. Date(s): 05/30/2013 05/30/2013

EPA Sample No.(VSTD#####) VICV0505V _____ Init. Calib. Time(s): 12:48 _____ 14:58

 $\label{eq:heated Purge: (Y/N) N GC Column: DB-624} \qquad \qquad \text{ID: 0.25 (mm) Length: 30 (m)}$

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX %D
Dibromofluoromethane	0.312	0.310	0.100	-0.6	20.0
1,2-Dichloroethane-d4	0.070	0.067	0.100	-3.3	20.0
Toluene-d8	1.291	1.272	0.100	-1.5	20.0
Bromofluorobenzene	0.518	0.508	0.100	-1.9	20.0

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Instrument ID: V5 Calibration Date: 06/07/2013 Time: 14:23

Lab File ID: V503991.D Init. Calib. Date(s): 05/30/2013 05/30/2013

EPA Sample No.(VSTD#####) VSTD050D5 Init. Calib. Time(s): 12:48 14:58

 $\label{eq:heated Purge: (Y/N) N GC Column: DB-624} \qquad \qquad \text{ID: 0.25 (mm) Length: 30 (m)}$

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX %D
Benzene	1.728	1.885	0.500	9.1	20.0
Ethylbenzene	0.763	0.694	0.100	-9.0	20.0
m,p-Xylene	0.933	0.849	0.100	-9.1	20.0
o-Xylene	0.924	0.863	0.300	-6.6	20.0
Xylene (Total)	0.930	0.853	0.000	-8.3	20.0

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: M0903 Mod. Ref No.: SDG No.: SM0903

Instrument ID: V5 Calibration Date: 06/07/2013 Time: 14:23

Lab File ID: V503991.D Init. Calib. Date(s): 05/30/2013 05/30/2013

EPA Sample No.(VSTD#####) VSTD050D5 _____ Init. Calib. Time(s): 12:48 _____ 14:58

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX %D
Dibromofluoromethane	0.312	0.325	0.100	4.3	20.0
1,2-Dichloroethane-d4	0.070	0.065	0.100	-6.0	20.0
Toluene-d8	1.291	1.200	0.100	-7.1	20.0
Bromofluorobenzene	0.518	0.553	0.100	6.6	20.0

SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

* Raw Data *

M0903 Page 46 of 127

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Page 1

Data file : \\avogadro\organics\V5.I\130530.B\V503800.D

Lab Smp Id: BFB5V Client Smp ID: BFB5V

Inj Date : 30-MAY-2013 12:22

Operator : WL SRC: WL Smp Info : 2UL, BFB5V, BFB5V Inst ID: V5.i

Misc Info: Comment

Method : \\avogadro\organics\V5.I\130530.B\bfb8260.m Meth Date: 30-May-2013 14:16 wluo Quant Type: ISTD Cal Date : 21-MAR-2011 17:17 Cal File: V5M6831.D Als bottle: 2 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14 Sample Matrix: WATER

Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * Vf * VI * CpndVariable

Name	Value	Description
DF Uf Vf VI Cpnd Variable	1.000	Dilution Factor ng unit correction factor Volumetric correction factor Injection Volume Local Compound Variable

CONCENTRATIONS

					ON-COL	FINAL		
RT	EXP RT	REL RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
====	======	======	====	======	======	======	========	=====
1	bfb					CAS #:	460-00-4	
10.635	11.000	(0.000)	95	104568			0.00- 100.00	100.00
10.635	11.000	(0.000)	50	23408			15.00- 40.00	22.39
10.635	11.000	(0.000)	75	46024			30.00- 60.00	44.01
10.635	11.000	(0.000)	96	7126			5.00- 9.00	6.81
10.635	11.000	(0.000)	173	0	0.0	0.0	0.00- 2.00	0.00
10.635	11.000	(0.000)	174	77960			50.00- 100.00	74.55
10.635	11.000	(0.000)	175	4144			5.00- 9.00	5.32
10.635	11.000	(0.000)	176	75544			95.00- 101.00	96.90
10.635	11.000	(0.000)	177	5030			5.00- 9.00	6.66

M0903 Page 47 of 127 Date : 30-MAY-2013 12:22

Client ID: BFB5V Instrument: V5.i

Sample Info: 2UL,BFB5V,BFB5V

Operator: WL SRC: WL Column diameter: 0.25

M0903 Page 48 of 127

Date : 30-MAY-2013 12:22

Column phase: DB-624

Client ID: BFB5V Instrument: V5.i

Sample Info: 2UL,BFB5V,BFB5V

Operator: WL SRC: WL Column diameter: 0.25

1 bfb

m/e ION ABUNDANCE CRITERI		ABUNDANCE	
++ 			+ I
95 Base Peak, 100% relative	abundance I	100.00	1
50 15.00 - 40.00% of mass 95	1	22,39	1
75 30.00 - 60.00% of mass 95	1	44,01	1
96 5.00 - 9.00% of mass 95	1	6,81	1
173 Less than 2.00% of mass	174 I	0,00 (0,00)	1
174 50.00 - 100.00% of mass 9	5 I	74,55	1
175 5.00 - 9.00% of mass 17	4 1	3,96 (5,32)	1
176 95.00 - 101.00% of mass 1	74 I	72,24 (96,90)	1
177 5.00 - 9.00% of mass 17	6 1	4,81 (6,66)	1

M0903 Page 49 of 127

Date : 30-MAY-2013 12:22

Client ID: BFB5V Instrument: V5.i

Sample Info: 2UL,BFB5V,BFB5V

Operator: WL SRC: WL

Column phase: DB-624 Column diameter: 0.25

Data File: V503800.D

Spectrum: Avg. Scans 868-870 (10.64), Background Scan 863

Location of Maximum: 95.00 Number of points: 114

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ
Ī	35,00	37	67.00	290	104.00	425	147.00	 85 I
1	36.00	1715	I 68₊00	11022	105.00	274	148.00	212 I
1	37.00	7302	69.00	10416	106.00	464	149.00	73 I
1	38.00	6081	70,00	822	107,00	154	150,00	121 I
1	39,00	2568	71,00	57	111.00	34	153. 00	45 I
1	40.00	50	72.00	515	112.00	 55	155.00	173 I
1	43.00	80	73.00	3988	113.00	52	157.00	186 I
1	44.00	876	74.00	15198	115.00	115	159,00	97 I
I	45.00	1428	75.00	46024	116.00	324	161.00	164 I
1	46,00	111	I 76.00	4221	117,00	701	163.00	1 I
1	47,00	2428	77,00	784	 118.00	415	164.00	 39 I
1	48.00	1030	78,00	540	119,00	377	172,00	118 I
1	49,00	4814	79,00	3202	122,00	82	174,00	77960 I
1	50,00	23408	80,00	793	124.00	47	175.00	4144 I
1	51,00	6980	81,00	3204	125,00	37	176,00	75544 I
1	52,00	305	 I 82,00	570	 127.00	 35	 177.00	5030 I
1	53,00	104	83,00	41	128,00	303	178,00	225 I
1	54,00	13	86,00	55	129,00	259	191.00	110 I
1	55.00	237	87.00	6004	130.00	362	192.00	93 I
I	56,00	1489	I 88.00	5398	131,00	250	193,00	16 I
+-	57.00	 2959	+ 91.00	244	+ 132.00	41	+ 208.00	+ 160 I
i	58.00	303			134.00		1 209.00	262
i	60.00	981		3950			1 210.00	37 1
i	61.00	4988			137.00		1 264.00	81
Ī	62,00	4562			1 140,00		1 268,00	37
+-	63,00	 3199	+ 96.00	7126	+ 141.00	 723	+ 284,00	+ 41 l
ı	64.00	463	97,00	136	142,00	109	344.00	34 I
ı	65.00	158	98,00	38	143,00	704	ı	1
ı	66,00	98	103,00	34	146.00	93	I	1
+-			+		+		+	+

M0903 Page 50 of 127

Data File: \\avoqadro\organics\V5.I\130530.B\V503801.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130530.B\V503801.D

Lab Smp Id: VSTD0015V Client Smp ID: VSTD0015V

Inj Date : 30-MAY-2013 12:48

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD0015V, VSTD0015V

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130530.B\v5_8260W.m

Meth Date : 03-Jun-2013 13:35 wluo Quant Type: ISTD

Cal Date : 30-MAY-2013 12:48 Cal File: V503801.D

Als bottle: 3 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		======	======	======
1 Dichlorodifluoromethane	85	1.603	1.583 (0.286)	9020	1.00000	1
3 Chloromethane	50	1.708	1.734 (0.305)	15957	1.00000	1
4 Vinyl Chloride	62	1.836	1.850 (0.328)	12648	1.00000	1
5 Bromomethane	94	2.138	2.141 (0.382)	7914	1.00000	1
6 Chloroethane	64	2.242	2.233 (0.400)	7606	1.00000	1
7 Trichlorofluoromethane	101	2.440	2.454 (0.436)	9497	1.00000	1
8 Ethanol	46	2.637	2.617 (0.471)	5822	500.000	110
10 Acrolein	56	2.823	2.814 (0.504)	9008	1.00000	5
13 Acetone	58	2.951	2.942 (0.527)	2618	1.00000	2
15 Carbon Disulfide	76	3.102	3.105 (0.554)	37439	1.00000	1
16 Acetonitrile	41	3.218	3.221 (0.575)	31924	1.00000	10
17 Allyl Chloride	39	3.218	3.221 (0.575)	12573	1.00000	1(T)
18 Methyl Acetate	43	3.241	3.232 (0.579)	15460	1.00000	1
19 Methylene Chloride	84	3.334	3.325 (0.595)	10114	1.00000	1
20 tert-Butanol	59	3.439	3.430 (0.614)	2297	1.00000	3
22 trans-1,2-Dichloroethene	96	3.578	3.569 (0.639)	8124	1.00000	1
23 Methyl tert-butyl ether	73	3.578	3.581 (0.639)	19675	1.00000	1
24 1,1-Dichloroethane	63	3.950	3.941 (0.705)	14895	1.00000	1
25 Vinyl acetate	43	4.008	3.999 (0.716)	30094	1.00000	1
26 Diisopropyl Ether	45	4.020	4.011 (0.718)	36721	1.00000	1
27 2-Chloro-1,3-Butadiene	53	4.043	4.034 (0.722)	11382	1.00000	1
28 Ethyl tert-butyl ether	59	4.345	4.348 (0.776)	24800	1.00000	1

M0903 Page 51 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503801.D Report Date: 03-Jun-2013 13:35

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====			======	======
29 cis-1,2-Dichloroethene	96	4.484	4.475 (0.801)	8548	1.00000	1
30 2,2-Dichloropropane	77	4.484	4.487 (0.801)	7956	1.00000	1
31 2-Butanone	72	4.496	4.487 (0.803)	1170	1.00000	1(T)
35 Tetrahydrofuran	72	4.775	4.754 (0.853)	2087	1.00000	2
36 Chloroform	83	4.786	4.777 (0.855)	12579	1.00000	1
\$ 37 Dibromofluoromethane	113	4.937	4.928 (0.882)	241902	1.00000	52
38 1,1,1-Trichloroethane	97	4.972	4.975 (0.888)	9767	1.00000	1
40 1,1-Dichloropropene	110	5.135	5.126 (0.917)	3494	1.00000	1
41 Carbon Tetrachloride	117	5.135	5.138 (0.917)	6909	1.00000	1
\$ 43 1,2-Dichloroethane-d4	102	5.263	5.265 (0.940)	54612	1.00000	52
* 47 Fluorobenzene	96	5.599	5.602 (1.000)	756380	50.0000	
48 Trichloroethene	130	5.983	5.986 (1.068)	6662	1.00000	1
49 Methylcyclohexane	83	6.203	6.195 (1.108)	8337	1.00000	1
50 1,2-Dichloropropane	63	6.215	6.218 (1.110)	8694	1.00000	1
52 Methyl Methacrylate	69	6.343	6.346 (1.133)	9823	1.00000	2
53 1,4-Dioxane	88	6.389	6.357 (1.141)	1416	1.00000	20(T)
M 55 1,2-Dichloroethene (Total	96			16672	1.00000	2
56 2-Chloroethyl vinyl ether	63	6.761	6.846 (1.207)	142	1.00000	1(T)
\$ 59 Toluene-d8	98	7.319	7.322 (0.806)	689005	1.00000	50
63 1,1,2-Trichloroethane	97	7.876	7.867 (1.407)	7516	1.00000	1
65 1,3-Dichloropropane	76	8.074	8.077 (0.889)	10612	1.00000	1
* 69 Chlorobenzene-d5	117	9.084	9.076 (1.000)	531545	50.0000	
70 1-Chlorohexane	91	9.108	9.099 (1.003)	9649	1.00000	1
72 1,1,1,2-Tetrachloroethane	131	9.224	9.227 (1.015)	5585	1.00000	1
79 trans-1,4-Dichloro-2-buter	ne 75	10.629	10.528 (1.170)	122996	1.00000	68(T)
\$ 80 Bromofluorobenzene	95	10.629	10.632 (1.170)	276913	1.00000	50
* 93 1,4-Dichlorobenzene-d4	152	12.244	12.247 (1.000)	236920	50.0000	
97 n-Butylbenzene	91	12.813	12.816 (1.046)	17552	1.00000	1
99 1,2-Dibromo-3-chloropropar	ne 75	13.917	13.908 (1.137)	1746	1.00000	1

QC Flag Legend

T - Target compound detected outside RT window.

M0903 Page 52 of 127

Data File: \\avoqadro\organics\V5.I\130530.B\V503802.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130530.B\V503802.D

Lab Smp Id: VSTD0055V Client Smp ID: VSTD0055V

Inj Date : 30-MAY-2013 13:14

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD0055V, VSTD0055V

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130530.B\v5_8260W.m

Meth Date : 03-Jun-2013 13:35 wluo Quant Type: ISTD

Cal Date : 30-MAY-2013 13:14 Cal File: V503802.D

Als bottle: 4 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14
Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RI	RESPONSE	(ug/L)	(ug/L)
=====	=======	====	====		= ======	======	======
1	Dichlorodifluoromethane	85	1.579	1.583 (0.282)	32922	5.00000	4
3	Chloromethane	50	1.707	1.734 (0.305)	61804	5.00000	4
4	Vinyl Chloride	62	1.835	1.850 (0.328)	54772	5.00000	4
5	Bromomethane	94	2.125	2.141 (0.380)	39290	5.00000	5
6	Chloroethane	64	2.230	2.233 (0.398)	31362	5.00000	5
7	Trichlorofluoromethane	101	2.439	2.454 (0.436)	42325	5.00000	4
8	Ethanol	46	2.613	2.617 (0.467)	21583	500.000	410
9	Ether	59	2.694	2.698 (0.481)	32536	5.00000	5
10	Acrolein	56	2.811	2.814 (0.502)	39871	25.0000	23
11	1,1-Dichloroethene	96	2.904	2.907 (0.519)	34105	5.00000	5
12	1,1,2-Trichloro-1,2,2-Trifluo	101	2.915	2.919 (0.521)	29489	5.00000	5
13	Acetone	58	2.938	2.942 (0.525)	5797	5.00000	5
14	Iodomethane	142	3.043	3.047 (0.544)	52041	5.00000	4
15	Carbon Disulfide	76	3.101	3.105 (0.554)	139701	5.00000	4
16	Acetonitrile	41	3.217	3.221 (0.575)	143368	50.0000	47
17	Allyl Chloride	39	3.217	3.221 (0.575)	57752	5.00000	5
18	Methyl Acetate	43	3.229	3.232 (0.577)	49139	5.00000	4
19	Methylene Chloride	84	3.322	3.325 (0.593)	38562	5.00000	4
20	tert-Butanol	59	3.438	3.430 (0.614)	7830	10.0000	9
21	Acrylonitrile	53	3.542	3.534 (0.633)	14717	5.00000	4
22	trans-1,2-Dichloroethene	96	3.566	3.569 (0.637)	32920	5.00000	4
23	Methyl tert-butyl ether	73	3.577	3.581 (0.639)	91622	5.00000	5

M0903 Page 54 of 127

Data File: v03802.D Report Date: 03-Jun-2013 13:35

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	=======================================	=======	======	======
	24 1,1-Dichloroethane	63	3.949	3.941 (0.705)	69572	5.00000	5
	25 Vinyl acetate	43	3.996	3.999 (0.714)	142460	5.00000	5
	26 Diisopropyl Ether	45	4.007	4.011 (0.716)	169147	5.00000	5
	27 2-Chloro-1,3-Butadiene	53	4.030	4.034 (0.720)	50535	5.00000	4
	28 Ethyl tert-butyl ether	59	4.344	4.348 (0.776)	114754	5.00000	5
	29 cis-1,2-Dichloroethene	96	4.483	4.475 (0.801)	35653	5.00000	5
	30 2,2-Dichloropropane	77	4.483	4.487 (0.801)	34359	5.00000	5
	31 2-Butanone	72	4.495	4.487 (0.803)	3400	5.00000	4
	32 Propionitrile	54	4.541	4.534 (0.811)	51810	50.0000	43
	33 Methacrylonitrile	41	4.681	4.685 (0.836)	53566	10.0000	9
	34 Bromochloromethane	128	4.704	4.708 (0.840)	17123	5.00000	5
	35 Tetrahydrofuran	72	4.762	4.754 (0.851)	8803	10.0000	9
	36 Chloroform	83	4.774	4.777 (0.853)	58574	5.00000	5
Ś	37 Dibromofluoromethane	113	4.925	4.928 (0.880)	238884	50.0000	51
7	38 1,1,1-Trichloroethane	97	4.971	4.975 (0.888)	37539	5.00000	4
	39 Cyclohexane	56	5.029	5.033 (0.898)	52972	5.00000	4
	40 1,1-Dichloropropene	110	5.122	5.126 (0.915)	14352	5.00000	4
	41 Carbon Tetrachloride	117	5.134	5.138 (0.917)	30157	5.00000	4
	42 Isobutyl Alcohol	43	5.227	5.219 (0.934)	40986	100.000	96
\$	43 1,2-Dichloroethane-d4	102	5.262	5.265 (0.940)	54458	50.0000	52
Ÿ	44 Benzene	78	5.331	5.335 (0.952)	122934	5.00000	5
	45 1,2-Dichloroethane	62	5.331	5.335 (0.952)	45746	5.00000	5
	46 tert-Amyl methyl ether	73	5.436	5.440 (0.971)	87435	5.00000	5
*	47 Fluorobenzene	96	5.430	5.602 (1.000)	757597	50.0000	5
	48 Trichloroethene	130	5.982	5.986 (1.068)	29721	5.00000	4
	49 Methylcyclohexane	83	6.203	6.195 (1.108)	35952	5.00000	4 5
	50 1,2-Dichloropropane	63	6.214	6.218 (1.110)	39228	5.00000	
	51 Dibromomethane	93	6.342	6.346 (1.133)	24011	5.00000	5
	52 Methyl Methacrylate	69	6.342	6.346 (1.133)	25680	5.00000	4
	53 1,4-Dioxane	88	6.377	6.357 (1.139)	7471	100.000	110
	54 Bromodichloromethane	83	6.505	6.508 (1.162)	41864	5.00000	5
M	55 1,2-Dichloroethene (Total)	96			68573	10.0000	9
	56 2-Chloroethyl vinyl ether	63	6.865	6.846 (1.226)	629	5.00000	5(T)
	57 cis-1,3-Dichloropropene	75	7.016	7.008 (1.253)	51361	5.00000	4
	58 4-Methyl-2-pentanone	43	7.190	7.182 (1.284)	49351	5.00000	4
\$	59 Toluene-d8	98	7.318	7.322 (0.806)	694258	50.0000	50
	60 Toluene	91	7.399	7.403 (1.322)	115751	5.00000	5
	61 trans-1,3-Dichloropropene	75	7.655	7.647 (1.367)	43663	5.00000	4
	62 Ethyl Methacrylate	69	7.771	7.775 (1.388)	27987	5.00000	4
	63 1,1,2-Trichloroethane	97	7.875	7.867 (1.407)	25958	5.00000	4
	64 Tetrachloroethene	164	8.061	8.053 (0.887)	23517	5.00000	4
	65 1,3-Dichloropropane	76	8.073	8.077 (0.889)	48916	5.00000	5
	66 2-Hexanone	43	8.189	8.181 (0.902)	31594	5.00000	4
	67 Dibromochloromethane	129	8.340	8.344 (0.918)	26886	5.00000	4
	68 1,2-Dibromoethane	107	8.491	8.483 (0.935)	30560	5.00000	4
*	69 Chlorobenzene-d5	117	9.084	9.076 (1.000)	536169	50.0000	
	70 1-Chlorohexane	91	9.095	9.099 (1.001)	39412	5.00000	4
	71 Chlorobenzene	112	9.118	9.110 (1.004)	72726	5.00000	5
	72 1,1,1,2-Tetrachloroethane	131	9.223	9.227 (1.015)	25244	5.00000	4
	73 Ethylbenzene	106	9.269	9.273 (1.020)	36902	5.00000	4
	74 m,p-Xylene	106	9.420	9.424 (1.037)	93531	10.0000	9
	75 o-Xylene	106	9.943		46137	5.00000	5
	76 Styrene	104	9.955	9.958 (1.096)	62060	5.00000	4
	77 Bromoform	173	10.187	10.179 (1.121)	16014	5.00000	4
		-					

M0903 Page 55 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503802.D Report Date: 03-Jun-2013 13:35

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	====	=======================================	=======	======	======
78 Isopropylbenzene	105	10.443	10.446 (1.150)	111115	5.00000	4
79 trans-1,4-Dichloro-2-butene	75	10.524	10.528 (1.159)	4381	5.00000	2
\$ 80 Bromofluorobenzene	95	10.629	10.632 (1.170)	278682	50.0000	50
81 Bromobenzene	156	10.838	10.830 (0.885)	29245	5.00000	4
82 1,1,2,2-Tetrachloroethane	83	10.838	10.841 (0.885)	41336	5.00000	5
83 1,2,3-Trichloropropane	75	10.896	10.888 (0.890)	35514	5.00000	4
84 n-Propylbenzene	120	11.000	11.004 (0.898)	26268	5.00000	4
85 2-Chlorotoluene	126	11.105	11.109 (0.907)	26411	5.00000	4
86 4-Chlorotoluene	126	11.256	11.260 (0.919)	27881	5.00000	4
87 1,3,5-Trimethylbenzene	105	11.256	11.260 (0.919)	88431	5.00000	5
88 tert-Butylbenzene	119	11.709	11.713 (0.956)	80932	5.00000	4
89 1,2,4-Trimethylbenzene	105	11.779	11.771 (0.962)	87860	5.00000	4
90 sec-Butylbenzene	105	12.011	12.015 (0.981)	108837	5.00000	4
91 1,3-Dichlorobenzene	146	12.150	12.142 (0.992)	48240	5.00000	4
92 4-Isopropyltoluene	119	12.232	12.235 (0.999)	79677	5.00000	4
* 93 1,4-Dichlorobenzene-d4	152	12.243	12.247 (1.000)	238114	50.0000	
94 1,4-Dichlorobenzene	146	12.278	12.270 (1.003)	52171	5.00000	5
95 1,2-Dichlorobenzene	146	12.789	12.793 (1.045)	47722	5.00000	4
M 96 Xylene (Total)	106			139668	15.0000	14
97 n-Butylbenzene	91	12.812	12.816 (1.046)	80665	5.00000	4
98 Hexachloroethane	117	13.161	13.165 (1.075)	11777	5.00000	4
99 1,2-Dibromo-3-chloropropane	75	13.916	13.908 (1.137)	5967	5.00000	5
100 1,3,5-Trichlorobenzene	182	15.124	15.128 (2.701)	26953	5.00000	4
101 1,2,4-Trichlorobenzene	180	15.124	15.128 (1.235)	28494	5.00000	4
102 Hexachlorobutadiene	225	15.403	15.407 (1.258)	11276	5.00000	4
103 Naphthalene	128	15.461	15.465 (1.263)	64029	5.00000	4
104 1,2,3-Trichlorobenzene	180	15.821	15.825 (1.292)	25188	5.00000	4

QC Flag Legend

T - Target compound detected outside RT window.

M0903 Page 56 of 127

Data File: \\avoqadro\organics\V5.I\130530.B\V503803.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130530.B\V503803.D

Lab Smp Id: VSTD0205V Client Smp ID: VSTD0205V

Inj Date : 30-MAY-2013 13:39

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD0205V, VSTD0205V

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130530.B\v5_8260W.m

Meth Date : 03-Jun-2013 13:35 wluo Quant Type: ISTD

Cal Date : 30-MAY-2013 13:39 Cal File: V503803.D

Als bottle: 5 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		======	======	======
1 Dichlorodifluoromethane	85	1.586	1.583 (0.283)	132228	20.0000	17
3 Chloromethane	50	1.725	1.734 (0.308)	260586	20.0000	18
4 Vinyl Chloride	62	1.829	1.850 (0.326)	219664	20.0000	18
5 Bromomethane	94	2.143	2.141 (0.382)	145201	20.0000	20
6 Chloroethane	64	2.236	2.233 (0.399)	119377	20.0000	18
7 Trichlorofluoromethane	101	2.457	2.454 (0.438)	173035	20.0000	18
8 Ethanol	46	2.619	2.617 (0.467)	91530	2000.00	1700
9 Ether	59	2.701	2.698 (0.482)	128172	20.0000	19
10 Acrolein	56	2.817	2.814 (0.503)	158857	100.000	91
11 1,1-Dichloroethene	96	2.910	2.907 (0.519)	138203	20.0000	20
12 1,1,2-Trichloro-1,2,2-Trifluo	101	2.921	2.919 (0.521)	111805	20.0000	18
13 Acetone	58	2.945	2.942 (0.525)	19551	20.0000	18
14 Iodomethane	142	3.038	3.047 (0.542)	215791	20.0000	18
15 Carbon Disulfide	76	3.107	3.105 (0.554)	570514	20.0000	18
16 Acetonitrile	41	3.212	3.221 (0.573)	580455	200.000	190
17 Allyl Chloride	39	3.223	3.221 (0.575)	231822	20.0000	19(T)
18 Methyl Acetate	43	3.235	3.232 (0.577)	203923	20.0000	18
19 Methylene Chloride	84	3.328	3.325 (0.594)	150832	20.0000	18
20 tert-Butanol	59	3.433	3.430 (0.612)	33643	40.0000	40
21 Acrylonitrile	53	3.537	3.534 (0.631)	63364	20.0000	20
22 trans-1,2-Dichloroethene	96	3.572	3.569 (0.637)	135791	20.0000	18
23 Methyl tert-butyl ether	73	3.584	3.581 (0.639)	354663	20.0000	18

M0903 Page 58 of 127

Data File: Cogadro Corganics V5.I\130530.B\V503803.D Report Date: 03-Jun-2013 13:35

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	======	======	======	======	======
	24 1,1-Dichloroethane	63	3.944	3.941	(0.704)	279934	20.0000	19
	25 Vinyl acetate	43	4.002	3.999	(0.714)	580431	20.0000	20
	26 Diisopropyl Ether	45	4.013	4.011	(0.716)	669454	20.0000	19
	27 2-Chloro-1,3-Butadiene	53	4.037	4.034	(0.720)	208127	20.0000	19
	28 Ethyl tert-butyl ether	59	4.350	4.348	(0.776)	468067	20.0000	19
	29 cis-1,2-Dichloroethene	96	4.478	4.475	(0.799)	141901	20.0000	17
	30 2,2-Dichloropropane	77	4.490	4.487	(0.801)	129657	20.0000	18
	31 2-Butanone	72	4.501	4.487	(0.803)	17224	20.0000	19
	32 Propionitrile	54	4.536	4.534	(0.809)	229763	200.000	190
	33 Methacrylonitrile	41	4.687	4.685	(0.836)	241772	40.0000	40
	34 Bromochloromethane	128	4.710		(0.840)	71119	20.0000	19
	35 Tetrahydrofuran	72	4.757		(0.849)	34150	40.0000	36
	36 Chloroform	83	4.780		(0.853)	230796	20.0000	19
Ś	37 Dibromofluoromethane	113	4.931		(0.880)	235426	50.0000	50
~	38 1,1,1-Trichloroethane	97	4.966		(0.886)	154687	20.0000	18
	39 Cyclohexane	56	5.036		(0.898)	217638	20.0000	17
	40 1,1-Dichloropropene	110	5.129		(0.915)	57733	20.0000	18
	41 Carbon Tetrachloride	117	5.140		(0.917)	120850	20.0000	18
	42 Isobutyl Alcohol	43	5.222		(0.932)	160044	400.000	370
\$	43 1,2-Dichloroethane-d4	102	5.268		(0.932)	51774	50.0000	49
Ą	44 Benzene	78	5.326		(0.940)	494920	20.0000	19
		62	5.338			184683	20.0000	19
	45 1,2-Dichloroethane				(0.952)			
	46 tert-Amyl methyl ether	73	5.442		(0.971)	356739	20.0000	19
*	47 Fluorobenzene	96	5.605		(1.000)	758047	50.0000	1.0
	48 Trichloroethene	130	5.988		(1.068)	124434	20.0000	19
	49 Methylcyclohexane	83	6.197		(1.106)	137636	20.0000	17
	50 1,2-Dichloropropane	63	6.221		(1.110)	152873	20.0000	18
	51 Dibromomethane	93	6.337		(1.131)	97631	20.0000	19
	52 Methyl Methacrylate	69	6.337		(1.131)	109704	20.0000	19
	53 1,4-Dioxane	88	6.360		(1.135)	26524	400.000	380
	54 Bromodichloromethane	83	6.511	6.508	(1.162)	165828	20.0000	19
M	55 1,2-Dichloroethene (Total)	96				277692	40.0000	36
	56 2-Chloroethyl vinyl ether	63	6.859	6.846	(1.224)	3029	20.0000	22
	57 cis-1,3-Dichloropropene	75	7.010	7.008	(1.251)	213355	20.0000	19
	58 4-Methyl-2-pentanone	43	7.185	7.182	(1.282)	208699	20.0000	19
\$	59 Toluene-d8	98	7.324	7.322	(0.807)	691005	50.0000	50
	60 Toluene	91	7.405	7.403	(1.321)	469198	20.0000	19
	61 trans-1,3-Dichloropropene	75	7.649	7.647	(1.365)	185036	20.0000	19
	62 Ethyl Methacrylate	69	7.777	7.775	(1.388)	116837	20.0000	18
	63 1,1,2-Trichloroethane	97	7.870	7.867	(1.404)	111247	20.0000	18
	64 Tetrachloroethene	164	8.056	8.053	(0.887)	96654	20.0000	19
	65 1,3-Dichloropropane	76	8.068	8.077	(0.889)	197814	20.0000	19
	66 2-Hexanone	43	8.184	8.181	(0.901)	136250	20.0000	19
	67 Dibromochloromethane	129	8.346	8.344	(0.919)	119805	20.0000	20
	68 1,2-Dibromoethane	107	8.486	8.483	(0.935)	131082	20.0000	19
*	69 Chlorobenzene-d5	117	9.078	9.076	(1.000)	534273	50.0000	
	70 1-Chlorohexane	91	9.101	9.099	(1.003)	160897	20.0000	18
	71 Chlorobenzene	112	9.113	9.110	(1.004)	295038	20.0000	19
	72 1,1,1,2-Tetrachloroethane	131	9.218	9.227	(1.015)	104892	20.0000	19
	73 Ethylbenzene	106	9.264		(1.020)	149142	20.0000	18
	74 m,p-Xylene	106	9.427		(1.038)	380985	40.0000	38
	75 o-Xylene	106	9.938		(1.095)	183407	20.0000	18
	76 Styrene	104	9.961		(1.097)	277645	20.0000	19
	77 Bromoform	173	10.182		(1.122)	72115	20.0000	20
		_, 5	2		2 ,	. 2223		20

M0903 Page 59 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503803.D Report Date: 03-Jun-2013 13:35

			AMOUNTS	
	QUANT SIG		CAL-AMT ON-CO	L
Compounds	MASS	RT EXP RT REL RT RESPO	NSE (ug/L) (ug/	L)
	====			==
78 Isopropylbenzene	105	10.437 10.446 (1.150) 461	20.0000	19
79 trans-1,4-Dichloro-2-butene	75	10.519 10.528 (1.159) 24	774 20.0000	14
\$ 80 Bromofluorobenzene	95	10.635 10.632 (1.171) 278	50.0000	50
81 Bromobenzene	156	10.832 10.830 (0.885) 121	20.0000	18
82 1,1,2,2-Tetrachloroethane	83	10.844 10.841 (0.886) 171	259 20.0000	19
83 1,2,3-Trichloropropane	75	10.890 10.888 (0.890) 148	20.0000	18
84 n-Propylbenzene	120	11.007 11.004 (0.899) 112	20.0000	19
85 2-Chlorotoluene	126	11.111 11.109 (0.908) 111	20.0000	19
86 4-Chlorotoluene	126	11.262 11.260 (0.920) 114	118 20.0000	18
87 1,3,5-Trimethylbenzene	105	11.262 11.260 (0.920) 363	20.0000	18
88 tert-Butylbenzene	119	11.704 11.713 (0.956) 344	20.0000	19
89 1,2,4-Trimethylbenzene	105	11.773 11.771 (0.962) 364	776 20.0000	18
90 sec-Butylbenzene	105	12.017 12.015 (0.982) 453	20.0000	19
91 1,3-Dichlorobenzene	146	12.145 12.142 (0.992) 206	20.0000	19
92 4-Isopropyltoluene	119	12.226 12.235 (0.999) 347	20.0000	19
* 93 1,4-Dichlorobenzene-d4	152	12.238 12.247 (1.000) 244	213 50.0000	
94 1,4-Dichlorobenzene	146	12.273 12.270 (1.003) 213	20.0000	19
95 1,2-Dichlorobenzene	146	12.796 12.793 (1.046) 199	226 20.0000	18
M 96 Xylene (Total)	106	564	392 60.0000	57
97 n-Butylbenzene	91	12.819 12.816 (1.047) 338	20.0000	19
98 Hexachloroethane	117	13.156 13.165 (1.075) 55	767 20.0000	18
99 1,2-Dibromo-3-chloropropane	75	13.911 13.908 (1.137) 24	20.0000	18
100 1,3,5-Trichlorobenzene	182	15.119 15.128 (2.697) 122	20.0000	19
101 1,2,4-Trichlorobenzene	180	15.119 15.128 (1.235) 126	20.0000	18
102 Hexachlorobutadiene	225	15.398 15.407 (1.258) 50	20.0000	18
103 Naphthalene	128	15.467 15.465 (1.264) 296	20.0000	19
104 1,2,3-Trichlorobenzene	180	15.827 15.825 (1.293) 109	20.0000	19

QC Flag Legend

T - Target compound detected outside RT window.

M0903 Page 60 of 127

Data File: \\avoqadro\organics\V5.I\130530.B\V503804.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130530.B\V503804.D

Lab Smp Id: VSTD0505V Client Smp ID: VSTD0505V

Inj Date : 30-MAY-2013 14:05

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD0505V, VSTD0505V

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130530.B\v5_8260W.m

Meth Date : 03-Jun-2013 13:35 wluo Quant Type: ISTD

Cal Date : 30-MAY-2013 14:05 Cal File: V503804.D

Als bottle: 6 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							AMOU	NTS
	JQ	JANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
	=====	====	====	======	======	======	======	======
1 Dichlorodifluo	romethane	85	1.583	1.583	(0.283)	361103	50.0000	46
3 Chloromethane		50	1.734	1.734	(0.310)	656487	50.0000	45
4 Vinyl Chloride		62	1.850	1.850	(0.330)	538132	50.0000	44
5 Bromomethane		94	2.141	2.141	(0.382)	337417	50.0000	45
6 Chloroethane		64	2.233	2.233	(0.399)	284691	50.0000	43
7 Trichlorofluor	omethane	101	2.454	2.454	(0.438)	427870	50.0000	45
8 Ethanol		46	2.617	2.617	(0.467)	242832	5000.00	4500
9 Ether		59	2.698	2.698	(0.482)	306194	50.0000	44
10 Acrolein		56	2.814	2.814	(0.502)	360295	250.000	200
11 1,1-Dichloroet	hene	96	2.907	2.907	(0.519)	309697	50.0000	44
12 1,1,2-Trichlor	o-1,2,2-Trifluo	101	2.919	2.919	(0.521)	283948	50.0000	46
13 Acetone		58	2.942	2.942	(0.525)	41152	50.0000	37
14 Iodomethane		142	3.047	3.047	(0.544)	514176	50.0000	44
15 Carbon Disulfi	de	76	3.105	3.105	(0.554)	1347691	50.0000	42
16 Acetonitrile		41	3.221	3.221	(0.575)	1382919	500.000	450
17 Allyl Chloride		39	3.221	3.221	(0.575)	524208	50.0000	44
18 Methyl Acetate		43	3.232	3.232	(0.577)	472297	50.0000	41
19 Methylene Chlo	ride	84	3.325	3.325	(0.594)	355469	50.0000	42
20 tert-Butanol		59	3.430	3.430	(0.612)	75327	100.000	89
21 Acrylonitrile		53	3.534	3.534	(0.631)	156854	50.0000	49
22 trans-1,2-Dich	loroethene	96	3.569	3.569	(0.637)	316252	50.0000	43
23 Methyl tert-bu	tyl ether	73	3.581	3.581	(0.639)	841644	50.0000	44

M0903 Page 62 of 127

Data File: $\\v0.1\130530.B\v0.3804.D$ Report Date: 03-Jun-2013 13:35

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
		====	====				======	======
	24 1,1-Dichloroethane	63	3.941	3.941	(0.704)	657619	50.0000	44
	25 Vinyl acetate	43	3.999	3.999	(0.714)	1347846	50.0000	45
	26 Diisopropyl Ether	45	4.011	4.011	(0.716)	1536465	50.0000	44
	27 2-Chloro-1,3-Butadiene	53	4.034	4.034	(0.720)	495274	50.0000	45
	28 Ethyl tert-butyl ether	59	4.348	4.348	(0.776)	1102936	50.0000	44
	29 cis-1,2-Dichloroethene	96	4.475	4.475	(0.799)	336778	50.0000	40
	30 2,2-Dichloropropane	77	4.487	4.487	(0.801)	298412	50.0000	41
	31 2-Butanone	72	4.487	4.487	(0.801)	43916	50.0000	48
	32 Propionitrile	54	4.534	4.534	(0.809)	548180	500.000	450
	33 Methacrylonitrile	41	4.685	4.685	(0.836)	570699	100.000	93
	34 Bromochloromethane	128	4.708	4.708	(0.840)	166568	50.0000	44
	35 Tetrahydrofuran	72	4.754	4.754	(0.849)	85853	100.000	91
	36 Chloroform	83	4.777	4.777	(0.853)	525965	50.0000	43
\$	37 Dibromofluoromethane	113	4.928	4.928	(0.880)	240525	50.0000	51
	38 1,1,1-Trichloroethane	97	4.975	4.975	(0.888)	362036	50.0000	43
	39 Cyclohexane	56	5.033	5.033	(0.898)	588104	50.0000	47
	40 1,1-Dichloropropene	110	5.126	5.126	(0.915)	144574	50.0000	45
	41 Carbon Tetrachloride	117	5.138	5.138	(0.917)	309111	50.0000	46
	42 Isobutyl Alcohol	43	5.219		(0.932)	398164	1000.00	920
\$	43 1,2-Dichloroethane-d4	102	5.265		(0.940)	51048	50.0000	48
Ċ	44 Benzene	78	5.335		(0.952)	1176164	50.0000	45
	45 1,2-Dichloroethane	62	5.335		(0.952)	429211	50.0000	45
	46 tert-Amyl methyl ether	73	5.440		(0.971)	848966	50.0000	44
*	47 Fluorobenzene	96	5.602		(1.000)	761578	50.0000	- 1
	48 Trichloroethene	130	5.986		(1.068)	306119	50.0000	46
	49 Methylcyclohexane	83	6.195		(1.106)	356801	50.0000	44
	50 1,2-Dichloropropane	63	6.218		(1.110)	365450	50.0000	44
	51 Dibromomethane	93	6.346		(1.113)	225657	50.0000	45
	52 Methyl Methacrylate	69	6.346		(1.133)	259610	50.0000	45
	53 1,4-Dioxane	88	6.357		(1.135)	59461	1000.00	850
	54 Bromodichloromethane						50.0000	45
M		83	6.508	6.508	(1.162)	399972		
M	55 1,2-Dichloroethene (Total)	96	6 045		(1 000)	653030	100.000	83
	56 2-Chloroethyl vinyl ether	63	6.845		(1.222)	8519	50.0000	63
	57 cis-1,3-Dichloropropene	75	7.008		(1.251)	519104	50.0000	45
	58 4-Methyl-2-pentanone	43	7.182		(1.282)	490680	50.0000	45
\$	59 Toluene-d8	98	7.322		(0.807)	687685	50.0000	49
	60 Toluene	91	7.403		(1.321)	1094587	50.0000	45
	61 trans-1,3-Dichloropropene	75	7.647		(1.365)	461524	50.0000	47
	62 Ethyl Methacrylate	69	7.775		(1.388)	302233	50.0000	45
	63 1,1,2-Trichloroethane	97	7.867		(1.404)	264275	50.0000	43
	64 Tetrachloroethene	164	8.053	8.053	(0.887)	229750	50.0000	44
	65 1,3-Dichloropropane	76	8.077		(0.890)	473633	50.0000	44
	66 2-Hexanone	43	8.181	8.181	(0.901)	340483	50.0000	46
	67 Dibromochloromethane	129	8.344	8.344	(0.919)	294934	50.0000	47
	68 1,2-Dibromoethane	107	8.483	8.483	(0.935)	312059	50.0000	45
*	69 Chlorobenzene-d5	117	9.076	9.076	(1.000)	546450	50.0000	
	70 1-Chlorohexane	91	9.099	9.099	(1.003)	387045	50.0000	44
	71 Chlorobenzene	112	9.110	9.110	(1.004)	717418	50.0000	45
	72 1,1,1,2-Tetrachloroethane	131	9.227	9.227	(1.017)	249915	50.0000	44
	73 Ethylbenzene	106	9.273	9.273	(1.022)	367397	50.0000	44
	74 m,p-Xylene	106	9.424	9.424	(1.038)	891238	100.000	87
	75 o-Xylene	106	9.935	9.935	(1.095)	458316	50.0000	45
	76 Styrene	104	9.958	9.958	(1.097)	709616	50.0000	48
	77 Bromoform	173	10.179	10.179	(1.122)	181239	50.0000	48

M0903 Page 63 of 127

Data File: $\\v0.1\130530.B\v0.3804.D$ Report Date: 03-Jun-2013 13:35

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====	=======================================	======	======	======
78 Isopropylbenzene	105	10.446	10.446 (1.151)	1109253	50.0000	45
79 trans-1,4-Dichloro-2-butene	75	10.528	10.528 (1.160)	84315	50.0000	46
\$ 80 Bromofluorobenzene	95	10.632	10.632 (1.172)	287018	50.0000	51
81 Bromobenzene	156	10.830	10.830 (0.884)	289604	50.0000	44
82 1,1,2,2-Tetrachloroethane	83	10.841	10.841 (0.885)	408181	50.0000	44
83 1,2,3-Trichloropropane	75	10.888	10.888 (0.889)	376605	50.0000	45
84 n-Propylbenzene	120	11.004	11.004 (0.899)	270271	50.0000	45
85 2-Chlorotoluene	126	11.109	11.109 (0.907)	264929	50.0000	44
86 4-Chlorotoluene	126	11.260	11.260 (0.919)	275130	50.0000	44
87 1,3,5-Trimethylbenzene	105	11.260	11.260 (0.919)	882193	50.0000	45
88 tert-Butylbenzene	119	11.713	11.713 (0.956)	823973	50.0000	44
89 1,2,4-Trimethylbenzene	105	11.771	11.771 (0.961)	895788	50.0000	45
90 sec-Butylbenzene	105	12.015	12.015 (0.981)	1098867	50.0000	45
91 1,3-Dichlorobenzene	146	12.142	12.142 (0.991)	496416	50.0000	45
92 4-Isopropyltoluene	119	12.235	12.235 (0.999)	820906	50.0000	44
* 93 1,4-Dichlorobenzene-d4	152	12.247	12.247 (1.000)	245450	50.0000	
94 1,4-Dichlorobenzene	146	12.270	12.270 (1.002)	508048	50.0000	44
95 1,2-Dichlorobenzene	146	12.793	12.793 (1.045)	481995	50.0000	45
M 96 Xylene (Total)	106			1349554	150.000	130
97 n-Butylbenzene	91	12.816	12.816 (1.046)	809118	50.0000	45
98 Hexachloroethane	117	13.165	13.165 (1.075)	146631	50.0000	48
99 1,2-Dibromo-3-chloropropane	75	13.908	13.908 (1.136)	54041	50.0000	40
100 1,3,5-Trichlorobenzene	182	15.128	15.128 (2.700)	300741	50.0000	47
101 1,2,4-Trichlorobenzene	180	15.128	15.128 (1.235)	307813	50.0000	45
102 Hexachlorobutadiene	225	15.407	15.407 (1.258)	118552	50.0000	43
103 Naphthalene	128	15.465	15.465 (1.263)	737789	50.0000	46
104 1,2,3-Trichlorobenzene	180	15.825	15.825 (1.292)	263900	50.0000	45

M0903 Page 64 of 127

Data File: \\avoqadro\organics\V5.I\130530.B\V503805.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130530.B\V503805.D

Lab Smp Id: VSTD1005V Client Smp ID: VSTD1005V

Inj Date : 30-MAY-2013 14:32

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD1005V, VSTD1005V

Misc Info: Comment

Method : \avogadro\organics\V5.I\130530.B\v5_8260W.m
Meth Date : 03-Jun-2013 13:35 wluo Quant Type: ISTI Quant Type: ISTD Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 7 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		=======	======	======
1 Dichlorodifluoromethane	85	1.588	1.583 (0.283)	569698	100.000	110
3 Chloromethane	50	1.728	1.734 (0.308)	1057565	100.000	110
4 Vinyl Chloride	62	1.844	1.850 (0.329)	900500	100.000	120
5 Bromomethane	94	2.146	2.141 (0.383)	487758	100.000	100
6 Chloroethane	64	2.227	2.233 (0.397)	452063	100.000	110
7 Trichlorofluoromethane	101	2.448	2.454 (0.437)	705030	100.000	120
8 Ethanol	46	2.622	2.617 (0.468)	439733	10000.0	13000
9 Ether	59	2.704	2.698 (0.482)	511013	100.000	120
10 Acrolein	56	2.808	2.814 (0.501)	675124	500.000	600
11 1,1-Dichloroethene	96	2.901	2.907 (0.517)	533133	100.000	120
12 1,1,2-Trichloro-1,2,2-Trifluo	101	2.913	2.919 (0.519)	489621	100.000	120
13 Acetone	58	2.947	2.942 (0.526)	89179	100.000	130
14 Iodomethane	142	3.040	3.047 (0.542)	857307	100.000	120
15 Carbon Disulfide	76	3.098	3.105 (0.553)	2228024	100.000	110
16 Acetonitrile	41	3.215	3.221 (0.573)	2229701	1000.00	1100
17 Allyl Chloride	39	3.215	3.221 (0.573)	866132	100.000	110(T)
18 Methyl Acetate	43	3.238	3.232 (0.577)	787362	100.000	110
19 Methylene Chloride	84	3.331	3.325 (0.594)	604267	100.000	110
20 tert-Butanol	59	3.435	3.430 (0.613)	117388	200.000	220
21 Acrylonitrile	53	3.540	3.534 (0.631)	251152	100.000	120
22 trans-1,2-Dichloroethene	96	3.575	3.569 (0.638)	527857	100.000	110
23 Methyl tert-butyl ether	73	3.575	3.581 (0.638)	1392294	100.000	110

M0903 Page 66 of 127

Data File: Cogadro Corganics V5.I\130530.B\V503805.D Report Date: 03-Jun-2013 13:35

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==	=======================================	====	====		=======	======	======	======
	24 1,1-Dichloroethane	63	3.946	3.941	(0.704)	1085248	100.000	110
	25 Vinyl acetate	43	4.005	3.999	(0.714)	2098275	100.000	110
	26 Diisopropyl Ether	45	4.016	4.011	(0.716)	2438187	100.000	110
	27 2-Chloro-1,3-Butadiene	53	4.028	4.034	(0.718)	817442	100.000	120
	28 Ethyl tert-butyl ether	59	4.341	4.348	(0.774)	1786827	100.000	110
	29 cis-1,2-Dichloroethene	96	4.481	4.475	(0.799)	549410	100.000	110
	30 2,2-Dichloropropane	77	4.492	4.487	(0.801)	525760	100.000	110
	31 2-Butanone	72	4.492	4.487	(0.801)	71464	100.000	120
	32 Propionitrile	54	4.539	4.534	(0.809)	894819	1000.00	1200
	33 Methacrylonitrile	41	4.690	4.685	(0.836)	878294	200.000	220
	34 Bromochloromethane	128	4.702		(0.838)	281229	100.000	120
	35 Tetrahydrofuran	72	4.760		(0.849)	135291	200.000	220
	36 Chloroform	83	4.771		(0.851)	862237	100.000	110
Ś	37 Dibromofluoromethane	113	4.934		(0.880)	146163	50.0000	49
~	38 1,1,1-Trichloroethane	97	4.969		(0.886)	589887	100.000	110
	39 Cyclohexane	56	5.027		(0.896)	996312	100.000	120
	40 1,1-Dichloropropene	110	5.131		(0.915)	230093	100.000	110
	41 Carbon Tetrachloride	117	5.131		(0.915)	480915	100.000	110
	42 Isobutyl Alcohol	43	5.224		(0.932)	616843	2000.00	2200
\$	43 1,2-Dichloroethane-d4	102	5.259		(0.932)	33595	50.0000	50
Ą	44 Benzene	78	5.329		(0.950)	1926274	100.000	120
		62				685558		110
	45 1,2-Dichloroethane		5.340		(0.952)		100.000	
*	46 tert-Amyl methyl ether	73	5.445		(0.971)	1386990	100.000	110
*	47 Fluorobenzene	96	5.608		(1.000)	483935	50.0000	110
	48 Trichloroethene	130	5.979		(1.066)	485138	100.000	110
	49 Methylcyclohexane	83	6.200		(1.106)	634854	100.000	120
	50 1,2-Dichloropropane	63	6.212		(1.108)	598321	100.000	110
	51 Dibromomethane	93	6.339		(1.130)	365468	100.000	110
	52 Methyl Methacrylate	69	6.339		(1.130)	422044	100.000	120
	53 1,4-Dioxane	88	6.363		(1.135)	99321	2000.00	2200
	54 Bromodichloromethane	83	6.502	6.508	(1.159)	634435	100.000	110
M	55 1,2-Dichloroethene (Total)	96				1077267	200.000	220
	56 2-Chloroethyl vinyl ether	63	6.851	6.846	(1.222)	7679	100.000	88
	57 cis-1,3-Dichloropropene	75	7.013	7.008	(1.251)	830294	100.000	110
	58 4-Methyl-2-pentanone	43	7.188	7.182	(1.282)	778832	100.000	110
\$	59 Toluene-d8	98	7.327	7.322	(0.807)	448197	50.0000	52
	60 Toluene	91	7.397	7.403	(1.319)	1744568	100.000	110
	61 trans-1,3-Dichloropropene	75	7.652	7.647	(1.365)	713389	100.000	110
	62 Ethyl Methacrylate	69	7.768	7.775	(1.385)	507623	100.000	120
	63 1,1,2-Trichloroethane	97	7.861	7.867	(1.402)	423910	100.000	110
	64 Tetrachloroethene	164	8.059	8.053	(0.887)	369360	100.000	110
	65 1,3-Dichloropropane	76	8.070	8.077	(0.889)	745505	100.000	110
	66 2-Hexanone	43	8.175	8.181	(0.900)	550602	100.000	120
	67 Dibromochloromethane	129	8.349	8.344	(0.919)	455390	100.000	120
	68 1,2-Dibromoethane	107	8.489	8.483	(0.935)	486325	100.000	110
*	69 Chlorobenzene-d5	117	9.081	9.076	(1.000)	336924	50.0000	
	70 1-Chlorohexane	91	9.104	9.099	(1.003)	644632	100.000	120
	71 Chlorobenzene	112	9.116	9.110	(1.004)	1152835	100.000	120
	72 1,1,1,2-Tetrachloroethane	131	9.220		(1.015)	394608	100.000	110
	73 Ethylbenzene	106	9.267		(1.020)	597862	100.000	120
	74 m,p-Xylene	106	9.418		(1.037)	1464909	200.000	230
	75 o-Xylene	106	9.941		(1.095)	724382	100.000	120
	76 Styrene	104	9.952		(1.096)	1115720	100.000	120
	77 Bromoform	173	10.185		(1.122)	270165	100.000	120
		_, 5			2 /	0103		120

M0903 Page 67 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503805.D Report Date: 03-Jun-2013 13:35

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	====		======	======	======
78 Isopropylbenzene	105	10.440	10.446 (1.150)	1770436	100.000	120
79 trans-1,4-Dichloro-2-butene	75	10.521	10.528 (1.159)	182650	100.000	160
\$ 80 Bromofluorobenzene	95	10.638	10.632 (1.171)	173633	50.0000	50
81 Bromobenzene	156	10.835	10.830 (0.885)	471234	100.000	120
82 1,1,2,2-Tetrachloroethane	83	10.835	10.841 (0.885)	640140	100.000	120
83 1,2,3-Trichloropropane	75	10.893	10.888 (0.890)	586294	100.000	120
84 n-Propylbenzene	120	11.009	11.004 (0.899)	442646	100.000	120
85 2-Chlorotoluene	126	11.102	11.109 (0.907)	423385	100.000	120
86 4-Chlorotoluene	126	11.253	11.260 (0.919)	441923	100.000	120
87 1,3,5-Trimethylbenzene	105	11.253	11.260 (0.919)	1380807	100.000	120
88 tert-Butylbenzene	119	11.706	11.713 (0.956)	1322381	100.000	120
89 1,2,4-Trimethylbenzene	105	11.776	11.771 (0.962)	1388282	100.000	120
90 sec-Butylbenzene	105	12.020	12.015 (0.982)	1736108	100.000	120
91 1,3-Dichlorobenzene	146	12.148	12.142 (0.992)	774758	100.000	120
92 4-Isopropyltoluene	119	12.229	12.235 (0.999)	1329087	100.000	120
* 93 1,4-Dichlorobenzene-d4	152	12.241	12.247 (1.000)	145240	50.0000	
94 1,4-Dichlorobenzene	146	12.276	12.270 (1.003)	797725	100.000	120
95 1,2-Dichlorobenzene	146	12.798	12.793 (1.046)	760213	100.000	120
M 96 Xylene (Total)	106			2189291	300.000	350
97 n-Butylbenzene	91	12.810	12.816 (1.047)	1254263	100.000	120
98 Hexachloroethane	117	13.158	13.165 (1.075)	223332	100.000	120
99 1,2-Dibromo-3-chloropropane	75	13.902	13.908 (1.136)	80771	100.000	100
100 1,3,5-Trichlorobenzene	182	15.122	15.128 (2.696)	476375	100.000	120
101 1,2,4-Trichlorobenzene	180	15.122	15.128 (1.235)	501678	100.000	120
102 Hexachlorobutadiene	225	15.400	15.407 (1.258)	200770	100.000	120
103 Naphthalene	128	15.459	15.465 (1.263)	1183537	100.000	120
104 1,2,3-Trichlorobenzene	180	15.819	15.825 (1.292)	430643	100.000	120

T - Target compound detected outside RT window.

M0903 Page 68 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503806.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file: \\avogadro\organics\V5.I\130530.B\V503806.D

Lab Smp Id: VSTD2005V Client Smp ID: VSTD2005V

Inj Date : 30-MAY-2013 14:58

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD2005V, VSTD2005V

Misc Info : Comment :

Als bottle: 8 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14
Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=====	=======================================	====	====		======	======	======	======
1	Dichlorodifluoromethane	85	1.589	1.583	(0.283)	1024552	200.000	210(A)
3	Chloromethane	50	1.729	1.734	(0.308)	2005056	200.000	220(A)
4	Vinyl Chloride	62	1.833	1.850	(0.327)	1663708	200.000	220(A)
5	Bromomethane	94	2.135	2.141	(0.381)	859337	200.000	190
6	Chloroethane	64	2.240	2.233	(0.399)	854717	200.000	210(A)
7	Trichlorofluoromethane	101	2.449	2.454	(0.437)	1260546	200.000	220(A)
8	Ethanol	46	2.623	2.617	(0.468)	733495	20000.0	22000(A)
9	Ether	59	2.704	2.698	(0.482)	959581	200.000	230(A)
10	Acrolein	56	2.809	2.814	(0.501)	1235422	1000.00	1100(A)
11	1,1-Dichloroethene	96	2.902	2.907	(0.517)	958296	200.000	220(A)
12	1,1,2-Trichloro-1,2,2-Trifluo	101	2.913	2.919	(0.520)	845427	200.000	220(A)
13	Acetone	58	2.937	2.942	(0.524)	139045	200.000	200(A)
14	Iodomethane	142	3.041	3.047	(0.542)	1643178	200.000	230(A)
15	Carbon Disulfide	76	3.099	3.105	(0.553)	4104622	200.000	210(A)
16	Acetonitrile	41	3.216	3.221	(0.573)	4073578	2000.00	2200(A)
17	Allyl Chloride	39	3.216	3.221	(0.573)	1531346	200.000	210(A)
18	Methyl Acetate	43	3.239	3.232	(0.578)	1413747	200.000	200(A)
19	Methylene Chloride	84	3.332	3.325	(0.594)	1106408	200.000	210(A)
20	tert-Butanol	59	3.436	3.430	(0.613)	227238	400.000	440(A)
21	Acrylonitrile	53	3.541	3.534	(0.631)	470578	200.000	240(A)
22	trans-1,2-Dichloroethene	96	3.576	3.569	(0.638)	981532	200.000	220(A)
2.3	Methyl tert-butyl ether	73	3.576	3.581	(0.638)	2584617	200.000	220(A)

M0903 Page 70 of 127

Data File: V5.I\130530.B\V503806.D Report Date: 03-Jun-2013 13:35

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==	========	====	====				======	======
	24 1,1-Dichloroethane	63	3.947	3.941	(0.704)	2002226	200.000	220(A)
	25 Vinyl acetate	43	3.994	3.999	(0.712)	3836327	200.000	210(A)
	26 Diisopropyl Ether	45	4.017	4.011	(0.716)	4454319	200.000	210(A)
	27 2-Chloro-1,3-Butadiene	53	4.029	4.034	(0.718)	1489240	200.000	220(A)
	28 Ethyl tert-butyl ether	59	4.342	4.348	(0.774)	3340826	200.000	220(A)
	29 cis-1,2-Dichloroethene	96	4.482	4.475	(0.799)	1031346	200.000	200(A)
	30 2,2-Dichloropropane	77	4.482	4.487	(0.799)	994715	200.000	220(A)
	31 2-Butanone	72	4.493	4.487	(0.801)	125192	200.000	220(A)
	32 Propionitrile	54	4.540	4.534	(0.809)	1660189	2000.00	2200(A)
	33 Methacrylonitrile	41	4.691		(0.836)	1615495	400.000	430(A)
	34 Bromochloromethane	128	4.702		(0.838)	514023	200.000	220(A)
	35 Tetrahydrofuran	72	4.761		(0.849)	256800	400.000	440(A)
	36 Chloroform	83	4.772		(0.851)	1621994	200.000	220(A)
Ś	37 Dibromofluoromethane	113	4.935		(0.880)	143501	50.0000	50
7	38 1,1,1-Trichloroethane	97	4.970		(0.886)	1112457	200.000	210(A)
	39 Cyclohexane	56	5.028		(0.896)	1765501	200.000	230(A)
	40 1,1-Dichloropropene	110	5.121		(0.913)	444043	200.000	220(A)
	41 Carbon Tetrachloride	117	5.132		(0.915)	915248	200.000	220(A)
	42 Isobutyl Alcohol	43	5.225		(0.932)	1120085	4000.00	4200(A)
\$	43 1,2-Dichloroethane-d4	102	5.260		(0.938)	32126	50.0000	50
٧	44 Benzene	78	5.330		(0.950)	3529485	200.000	220(A)
	45 1,2-Dichloroethane	62	5.341		(0.952)	1261820	200.000	220(A)
	46 tert-Amyl methyl ether	73	5.446		(0.971)	2576898	200.000	220(A)
*	47 Fluorobenzene	96	5.609		(1.000)	467336	50.0000	220(A)
	48 Trichloroethene	130	5.992		(1.068)	921506	200.000	220(A)
			6.201					
	49 Methylcyclohexane	83	6.213		(1.106)	1029042	200.000	210(A)
	50 1,2-Dichloropropane	63 93			(1.108)	1119616	200.000	220(A)
	51 Dibromomethane		6.340		(1.130)	691605	200.000	220(A)
	52 Methyl Methacrylate	69	6.340		(1.130)	772499	200.000	220(A)
	53 1,4-Dioxane	88	6.364		(1.135)	176492	4000.00	4100(A)
	54 Bromodichloromethane	83	6.503	6.508	(1.159)	1216518	200.000	220(A)
М	55 1,2-Dichloroethene (Total)	96			(4.000)	2012878	400.000	420
	56 2-Chloroethyl vinyl ether	63	6.852		(1.222)	13000	200.000	160
	57 cis-1,3-Dichloropropene	75	7.014		(1.251)	1573980	200.000	220(A)
	58 4-Methyl-2-pentanone	43	7.188		(1.282)	1481310	200.000	220(A)
\$	59 Toluene-d8	98	7.328		(0.807)	421483	50.0000	49
	60 Toluene	91	7.397		(1.319)	3193851	200.000	210(A)
	61 trans-1,3-Dichloropropene	75	7.653		(1.365)	1380333	200.000	230(A)
	62 Ethyl Methacrylate	69	7.769		(1.385)	944985	200.000	230(A)
	63 1,1,2-Trichloroethane	97	7.874	7.867	(1.404)	820788	200.000	220(A)
	64 Tetrachloroethene	164	8.060	8.053	(0.887)	694707	200.000	220(A)
	65 1,3-Dichloropropane	76	8.071	8.077	(0.889)	1407049	200.000	220(A)
	66 2-Hexanone	43	8.176	8.181	(0.900)	999079	200.000	220(A)
	67 Dibromochloromethane	129	8.350	8.344	(0.919)	885519	200.000	240(A)
	68 1,2-Dibromoethane	107	8.489	8.483	(0.935)	945907	200.000	220(A)
*	69 Chlorobenzene-d5	117	9.082	9.076	(1.000)	330520	50.0000	
	70 1-Chlorohexane	91	9.105	9.099	(1.003)	1190137	200.000	220(A)
	71 Chlorobenzene	112	9.117	9.110	(1.004)	2131899	200.000	220(A)
	72 1,1,1,2-Tetrachloroethane	131	9.221	9.227	(1.015)	762243	200.000	220(A)
	73 Ethylbenzene	106	9.268	9.273	(1.020)	1152054	200.000	230(A)
	74 m,p-Xylene	106	9.419	9.424	(1.037)	2748390	400.000	440(A)
	75 o-Xylene	106	9.942	9.935	(1.095)	1394609	200.000	230(A)
	76 Styrene	104	9.953	9.958	(1.096)	2088598	200.000	230(A)
	77 Bromoform	173	10.185	10.179	(1.122)	538889	200.000	240(A)

M0903 Page 71 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503806.D Report Date: 03-Jun-2013 13:35

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		=======	======	======
78 Isopropylbenzene	105	10.441	10.446 (1.150)	3281213	200.000	220(A)
79 trans-1,4-Dichloro-2-butene	75	10.522	10.528 (1.159)	311860	200.000	280(A)
\$ 80 Bromofluorobenzene	95	10.639	10.632 (1.171)	167726	50.0000	49
81 Bromobenzene	156	10.836	10.830 (0.885)	875905	200.000	220(A)
82 1,1,2,2-Tetrachloroethane	83	10.836	10.841 (0.885)	1194250	200.000	220(A)
83 1,2,3-Trichloropropane	75	10.894	10.888 (0.890)	1222015	200.000	240(A)
84 n-Propylbenzene	120	11.010	11.004 (0.899)	843627	200.000	230(A)
85 2-Chlorotoluene	126	11.115	11.109 (0.908)	809708	200.000	230(A)
86 4-Chlorotoluene	126	11.266	11.260 (0.920)	851957	200.000	230(A)
87 1,3,5-Trimethylbenzene	105	11.254	11.260 (0.919)	2561828	200.000	220(A)
88 tert-Butylbenzene	119	11.707	11.713 (0.956)	2456448	200.000	220(A)
89 1,2,4-Trimethylbenzene	105	11.777	11.771 (0.962)	2623493	200.000	220(A)
90 sec-Butylbenzene	105	12.021	12.015 (0.982)	3208280	200.000	220(A)
91 1,3-Dichlorobenzene	146	12.149	12.142 (0.992)	1481522	200.000	220(A)
92 4-Isopropyltoluene	119	12.230	12.235 (0.999)	2457017	200.000	220(A)
* 93 1,4-Dichlorobenzene-d4	152	12.242	12.247 (1.000)	146849	50.0000	
94 1,4-Dichlorobenzene	146	12.276	12.270 (1.003)	1505803	200.000	220(A)
95 1,2-Dichlorobenzene	146	12.799	12.793 (1.046)	1461689	200.000	230(A)
M 96 Xylene (Total)	106			4142999	600.000	670
97 n-Butylbenzene	91	12.811	12.816 (1.046)	2336754	200.000	220(A)
98 Hexachloroethane	117	13.159	13.165 (1.075)	436048	200.000	240(A)
99 1,2-Dibromo-3-chloropropane	75	13.914	13.908 (1.137)	153880	200.000	190
100 1,3,5-Trichlorobenzene	182	15.123	15.128 (2.696)	928046	200.000	240(A)
101 1,2,4-Trichlorobenzene	180	15.123	15.128 (1.235)	944724	200.000	230(A)
102 Hexachlorobutadiene	225	15.401	15.407 (1.258)	368145	200.000	220(A)
103 Naphthalene	128	15.471	15.465 (1.264)	2173009	200.000	230(A)
104 1,2,3-Trichlorobenzene	180	15.820	15.825 (1.292)	820918	200.000	230(A)

A - Target compound detected but, quantitated amount exceeded maximum amount.

M0903 Page 72 of 127

Data File: \\avoqadro\organics\V5.I\130530.B\V503807.D

Report Date: 03-Jun-2013 13:35

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130530.B\V503807.D

Lab Smp Id: VICV0505V Client Smp ID: VICV0505V

Inj Date : 30-MAY-2013 15:46

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VICV0505V, VICV0505V

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130530.B\v5_8260W.m

Meth Date : 03-Jun-2013 13:35 wluo Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 10 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		=======	======	======
1 Dichlorodifluoromethane	85	1.586	1.583 (0.283)	341042	50.0000	41
3 Chloromethane	50	1.737	1.734 (0.310)	671838	50.0000	43
4 Vinyl Chloride	62	1.841	1.850 (0.329)	557906	50.0000	43
5 Bromomethane	94	2.143	2.141 (0.382)	349157	50.0000	44
6 Chloroethane	64	2.248	2.233 (0.401)	295529	50.0000	42
7 Trichlorofluoromethane	101	2.445	2.454 (0.436)	432044	50.0000	43
8 Ethanol	46	2.620	2.617 (0.467)	219462	5000.00	3800
9 Ether	59	2.701	2.698 (0.482)	323078	50.0000	44
10 Acrolein	56	2.817	2.814 (0.503)	385301	250.000	200
11 1,1-Dichloroethene	96	2.910	2.907 (0.519)	335171	50.0000	45
12 1,1,2-Trichloro-1,2,2-Trifluo	101	2.922	2.919 (0.521)	297868	50.0000	45
13 Acetone	58	2.945	2.942 (0.525)	45082	50.0000	38
14 Iodomethane	142	3.038	3.047 (0.542)	553448	50.0000	44
15 Carbon Disulfide	76	3.108	3.105 (0.554)	1412367	50.0000	42
16 Acetonitrile	41	3.224	3.221 (0.575)	1420327	500.000	430
17 Allyl Chloride	39	3.224	3.221 (0.575)	551550	50.0000	43(T)
18 Methyl Acetate	43	3.235	3.232 (0.577)	486830	50.0000	40
19 Methylene Chloride	84	3.328	3.325 (0.594)	370410	50.0000	41
20 tert-Butanol	59	3.444	3.430 (0.615)	73719	100.000	82
21 Acrylonitrile	53	3.537	3.534 (0.631)	163308	50.0000	48
22 trans-1,2-Dichloroethene	96	3.572	3.569 (0.637)	334185	50.0000	42
23 Methyl tert-butyl ether	73	3.584	3.581 (0.639)	887490	50.0000	43
24 1,1-Dichloroethane	63	3.944	3.941 (0.704)	690524	50.0000	43

M0903 Page 74 of 127

Data File: $\\v0.1\130530.B\v0.3807.D$ Report Date: 03-Jun-2013 13:35

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==	=======================================	====	====			======	======	======
	25 Vinyl acetate	43	4.002	3.999	(0.714)	1398121	50.0000	44
	26 Diisopropyl Ether	45	4.014	4.011	(0.716)	1583931	50.0000	42
	27 2-Chloro-1,3-Butadiene	53	4.037	4.034	(0.720)	517269	50.0000	44
	28 Ethyl tert-butyl ether	59	4.351	4.348	(0.776)	1147254	50.0000	43
	29 cis-1,2-Dichloroethene	96	4.478	4.475	(0.799)	350996	50.0000	42
	30 2,2-Dichloropropane	77	4.490	4.487	(0.801)	324602	50.0000	42
	31 2-Butanone	72	4.490	4.487	(0.801)	45367	50.0000	46
	32 Propionitrile	54	4.536	4.534	(0.809)	567513	500.000	440
	33 Methacrylonitrile	41	4.687	4.685	(0.836)	588701	100.000	90
	34 Bromochloromethane	128	4.711	4.708	(0.840)	172339	50.0000	43
	35 Tetrahydrofuran	72	4.757	4.754	(0.849)	89936	100.000	90
	36 Chloroform	83	4.780	4.777	(0.853)	544998	50.0000	42
\$	37 Dibromofluoromethane	113	4.931	4.928	(0.880)	251556	50.0000	50
	38 1,1,1-Trichloroethane	97	4.978	4.975	(0.888)	369436	50.0000	41
	39 Cyclohexane	56	5.036	5.033	(0.898)	553651	50.0000	42
	40 1,1-Dichloropropene	110	5.129	5.126	(0.915)	152719	50.0000	44
	41 Carbon Tetrachloride	117	5.141	5.138	(0.917)	305718	50.0000	43
	42 Isobutyl Alcohol	43	5.222	5.219	(0.932)	390723	1000.00	850
\$	43 1,2-Dichloroethane-d4	102	5.268	5.265	(0.940)	54610	50.0000	49
Ċ	44 Benzene	78	5.326		(0.950)	1220432	50.0000	44
	45 1,2-Dichloroethane	62	5.338		(0.952)	433136	50.0000	43
	46 tert-Amyl methyl ether	73	5.443		(0.971)	884280	50.0000	44
*	47 Fluorobenzene	96	5.605		(1.000)	811616	50.0000	
	48 Trichloroethene	130	5.989		(1.068)	316227	50.0000	44
	49 Methylcyclohexane	83	6.198		(1.106)	386007	50.0000	45
	50 1,2-Dichloropropane	63	6.221		(1.110)	384907	50.0000	43
	51 Dibromomethane	93	6.337		(1.110)	233911	50.0000	44
	52 Methyl Methacrylate	69	6.337		(1.131)	263778	50.0000	43
	53 1,4-Dioxane	88	6.360		(1.131)	57508	1000.00	770
	54 Bromodichloromethane	83	6.511		(1.162)	416670	50.0000	44
М			0.511	0.506	(1.102)		100.000	85
M	55 1,2-Dichloroethene (Total)	96	6 040	6 046	(1 222)	685181		
	56 2-Chloroethyl vinyl ether	63	6.848		(1.222)	6634	50.0000	46
	57 cis-1,3-Dichloropropene	75	7.011		(1.251)	535829	50.0000	44
_	58 4-Methyl-2-pentanone	43	7.185		(1.282)	515678	50.0000	44
\$	59 Toluene-d8	98	7.324		(0.807)	740306	50.0000	49
	60 Toluene	91	7.406		(1.321)	1132118	50.0000	44
	61 trans-1,3-Dichloropropene	75	7.650		(1.365)	472791	50.0000	45
	62 Ethyl Methacrylate	69	7.777		(1.388)	322740	50.0000	46
	63 1,1,2-Trichloroethane	97	7.870		(1.404)	280389	50.0000	43
	64 Tetrachloroethene	164	8.056	8.053	(0.887)	239622	50.0000	43
	65 1,3-Dichloropropane	76	8.068	8.077	(0.889)	485948	50.0000	43
	66 2-Hexanone	43	8.184	8.181	(0.901)	355325	50.0000	44
	67 Dibromochloromethane	129	8.347	8.344	(0.919)	305134	50.0000	46
	68 1,2-Dibromoethane	107	8.486	8.483	(0.935)	322360	50.0000	44
*	69 Chlorobenzene-d5	117	9.079	9.076	(1.000)	582029	50.0000	
	70 1-Chlorohexane	91	9.102	9.099	(1.003)	414846	50.0000	44
	71 Chlorobenzene	112	9.113	9.110	(1.004)	743245	50.0000	44
	72 1,1,1,2-Tetrachloroethane	131	9.218	9.227	(1.015)	264563	50.0000	44
	73 Ethylbenzene	106	9.264	9.273	(1.020)	383124	50.0000	43
	74 m,p-Xylene	106	9.427	9.424	(1.038)	940429	100.000	86
	75 o-Xylene	106	9.938	9.935	(1.095)	468851	50.0000	44
	76 Styrene	104	9.961	9.958	(1.097)	729098	50.0000	46
	77 Bromoform	173	10.182	10.179	(1.122)	190295	50.0000	47
	78 Isopropylbenzene	105	10.438	10.446	(1.150)	1154431	50.0000	44
					•			

M0903 Page 75 of 127

Data File: \\avogadro\organics\V5.I\130530.B\V503807.D Report Date: 03-Jun-2013 13:35

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==	=======================================	====	====		=======	======	======
	79 trans-1,4-Dichloro-2-butene	75	10.519	10.528 (1.159)	90244	50.0000	45
\$	80 Bromofluorobenzene	95	10.635	10.632 (1.171)	295877	50.0000	49
	81 Bromobenzene	156	10.833	10.830 (0.885)	299808	50.0000	43
	82 1,1,2,2-Tetrachloroethane	83	10.844	10.841 (0.886)	418252	50.0000	43
	83 1,2,3-Trichloropropane	75	10.891	10.888 (0.890)	399463	50.0000	46
	84 n-Propylbenzene	120	11.007	11.004 (0.899)	281744	50.0000	44
	85 2-Chlorotoluene	126	11.111	11.109 (0.908)	273548	50.0000	43
	86 4-Chlorotoluene	126	11.262	11.260 (0.920)	283693	50.0000	43
	87 1,3,5-Trimethylbenzene	105	11.262	11.260 (0.920)	907977	50.0000	44
	88 tert-Butylbenzene	119	11.704	11.713 (0.956)	863054	50.0000	44
	89 1,2,4-Trimethylbenzene	105	11.774	11.771 (0.962)	918274	50.0000	44
	90 sec-Butylbenzene	105	12.018	12.015 (0.982)	1138751	50.0000	44
	91 1,3-Dichlorobenzene	146	12.145	12.142 (0.992)	517171	50.0000	44
	92 4-Isopropyltoluene	119	12.227	12.235 (0.999)	852985	50.0000	44
*	93 1,4-Dichlorobenzene-d4	152	12.238	12.247 (1.000)	258983	50.0000	(Q)
	94 1,4-Dichlorobenzene	146	12.273	12.270 (1.003)	521029	50.0000	43
	95 1,2-Dichlorobenzene	146	12.796	12.793 (1.046)	491562	50.0000	43
M	96 Xylene (Total)	106			1409280	150.000	130
	97 n-Butylbenzene	91	12.819	12.816 (1.047)	827011	50.0000	43
	98 Hexachloroethane	117	13.156	13.165 (1.075)	153483	50.0000	48
	99 1,2-Dibromo-3-chloropropane	75	13.911	13.908 (1.137)	54869	50.0000	39
	100 1,3,5-Trichlorobenzene	182	15.119	15.128 (2.697)	305952	50.0000	45
	101 1,2,4-Trichlorobenzene	180	15.119	15.128 (1.235)	317598	50.0000	44
	102 Hexachlorobutadiene	225	15.398	15.407 (1.258)	127370	50.0000	44
	103 Naphthalene	128	15.468	15.465 (1.264)	745626	50.0000	44
	104 1,2,3-Trichlorobenzene	180	15.828	15.825 (1.293)	276293	50.0000	44

- T Target compound detected outside RT window. Q Qualifier signal failed the ratio test.

Page 76 of 127 M0903

Page 1

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Data file : \\avogadro\organics\V5.I\130607.B\V503990.D

Client Smp ID: BFBD5 Lab Smp Id: BFBD5

Inj Date : 07-JUN-2013 13:58

Operator : WL SRC: WL Smp Info : 2UL,BFBD5,BFBD5 Inst ID: V5.i

Misc Info: Comment

Method : \avogadro\organics\V5.I\130607.B\bfb8260.m Meth Date: 30-May-2013 14:16 wluo Quant Type: ISTD Cal Date : 21-MAR-2011 17:17 Cal File: V5M6831.D Als bottle: 2 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14 Sample Matrix: WATER

Processing Host: TARGET103

Concentration Formula: Amt * DF * Uf * Vf * VI * CpndVariable

Name	Value	Description
DF Uf Vf VI Cpnd Variable	1.000	Dilution Factor ng unit correction factor Volumetric correction factor Injection Volume Local Compound Variable

CONCENTRATIONS

					ON-COL	FINAL		
RT	EXP RT	REL RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
==== =		======	====	======	======	======	========	=====
1 k	ofb					CAS #:	460-00-4	
10.635	11.000	(0.000)	95	139008			0.00- 100.00	100.00
10.635	11.000	(0.000)	50	34504			15.00- 40.00	24.82
10.635	11.000	(0.000)	75	62296			30.00- 60.00	44.81
10.635	11.000	(0.000)	96	8712			5.00- 9.00	6.27
10.635	11.000	(0.000)	173	0	0.0	0.0	0.00- 2.00	0.00
10.635	11.000	(0.000)	174	100312			50.00- 100.00	72.16
10.635	11.000	(0.000)	175	7993			5.00- 9.00	7.97
10.635	11.000	(0.000)	176	96984			95.00- 101.00	96.68
10.635	11.000	(0.000)	177	6155			5.00- 9.00	6.35

M0903 Page 78 of 127 Date : 07-JUN-2013 13:58

Client ID: BFBD5 Instrument: V5.i

Sample Info: 2UL,BFBD5,BFBD5

Operator: WL SRC: WL Column diameter: 0.25

M0903 Page 79 of 127

Date : 07-JUN-2013 13:58

Column phase: DB-624

Client ID: BFBD5 Instrument: V5.i

Sample Info: 2UL,BFBD5,BFBD5

Operator: WL SRC: WL Column diameter: 0.25

1 bfb

m/e	ION ABUNDANCE CRITERIA		ABUNDANCE	
++-				+
1 1		'		1
1 95 1	Base Peak, 100% relative abundance	I	100.00	ı
I 50 I	15.00 - 40.00% of mass 95	1	24.82	1
1 75 1	30.00 - 60.00% of mass 95	1	44,81	1
1 96 1	5.00 - 9.00% of mass 95	1	6,27	1
I 173 I	Less than 2.00% of mass 174	1	0.00 (0.00)	1
I 174 I	50.00 - 100.00% of mass 95	1	72,16	1
l 175 l	5.00 - 9.00% of mass 174	1	5,75 (7,97)	1
I 176 I	95.00 - 101.00% of mass 174	1	69,77 (96,68)	1
I 177 I	5.00 - 9.00% of mass 176	1	4,43 (6,35)	1
++-				+

M0903 Page 80 of 127

Date : 07-JUN-2013 13:58

Client ID: BFBD5 Instrument: V5.i

Sample Info: 2UL,BFBD5,BFBD5

Operator: WL SRC: WL

Column phase: DB-624 Column diameter: 0.25

Data File: V503990.D

Spectrum: Avg. Scans 868-870 (10.64), Background Scan 863

Location of Maximum: 95.00 Number of points: 114

4	m/z	Υ	m/z	Y	m/z	Υ	m/z	Y
ı	36,00	2228	69.00	15687	107.00	179	148.00	209 I
Ι	37,00	10645	70,00	1119	110,00	46	I 149.00	125 I
Ι	38.00	8146	71,00	69	111.00	112	150,00	51 I
Ι	39,00	3442	72,00	883	112,00	105	155,00	239
1	40,00	291	I 73,00	5749	113,00	163	1 56.00	60 I
1	44.00	775	74.00	19968	115.00	219	157.00	180 I
1	45.00	1664	75,00	62296	116.00	452	158.00	41
1	46.00	109	76.00	5319	117.00	763	159,00	146 I
1	47.00	3001	77,00	1046	118.00	463	161.00	54 I
1	48,00	1303	I 78.00	853	119,00	663	170.00	48 I
1	49,00	6946	 I 79.00	4908	123.00	 36	171.00	 54 I
ı	50,00	34504	I 80,00	1401	124,00	35	172,00	183 I
1	51,00	10215	81,00	5101	125,00	39	174,00	100312 I
1	52,00	548	I 82,00	1190	126,00	37	175,00	7993 I
I	53,00	34	83,00	69	128,00	448	176.00	96984
1	54.00	6	+ 87.00	7159	 129.00	264	+ 177.00	 6155 I
1	55,00	583	I 88,00	7890	130,00	426	178,00	168 I
ı	56,00	2587	91,00	622	131,00	183	I 182,00	36 I
ı	57.00	4300	92,00	3389	134.00	45	184.00	34 I
1	58,00	257	93,00	5689	135,00	220	191.00	88 1
+-	59.00	34	+ I 94.00	14875	 137.00	134	+ 207.00	 216 I
ı	60.00	1343	95.00	139008	138.00	35	1 208.00	25
ı	61.00	6837	96,00	8712	141.00	1029	1 219,00	27
ī	62,00	6642	97,00	289	142,00	43	1 243,00	35 I
ı	63,00	4867	98,00	36	143,00	846	1 256,00	45
+-	64,00	488	+ 103,00	139	+ 144.00	122	+ 281.00	 19 I
ī	65,00	94	104,00	580	145,00	80	1 291,00	39
ı	67,00	369	105.00	107	146,00	95	I	ı
I	68,00	15875	106.00	571	147.00	93	I	I

M0903 Page 81 of 127

Data File: \\avoqadro\organics\V5.I\130607.B\V503991.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V503991.D

Lab Smp Id: VSTD050D5 Client Smp ID: VSTD050D5

Inj Date : 07-JUN-2013 14:23

Operator : WL SRC: WL Inst ID: V5.i

Smp Info : 5ML, VSTD050D5, VSTD050D5

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 3 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable
cpiid variable		docar compound variable

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compour	nds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
======		====	====	======	======	======	======	======
1 I	Dichlorodifluoromethane	85	1.584	1.584	(0.283)	338761	50.0000	42
3 (Chloromethane	50	1.735	1.735	(0.310)	796233	50.0000	52
4 7	Vinyl Chloride	62	1.839	1.839	(0.328)	694425	50.0000	54
5 E	Bromomethane	94	2.142	2.142	(0.382)	446582	50.0000	58
6 (Chloroethane	64	2.234	2.234	(0.399)	391031	50.0000	57
7 7	Trichlorofluoromethane	101	2.444	2.444	(0.436)	558847	50.0000	57
8 I	Ethanol	46	2.618	2.618	(0.467)	213695	5000.00	3800(Q)
9 I	Ether	59	2.699	2.699	(0.482)	383762	50.0000	53(Q)
10 2	Acrolein	56	2.804	2.804	(0.500)	485003	250.000	260
11 1	1,1-Dichloroethene	96	2.908	2.908	(0.519)	375769	50.0000	51
12 1	1,1,2-Trichloro-1,2,2-Trifluo	101	2.920	2.920	(0.521)	364653	50.0000	57
13 2	Acetone	58	2.943	2.943	(0.525)	51175	50.0000	44
14	Iodomethane	142	3.036	3.036	(0.542)	617661	50.0000	51
15 (Carbon Disulfide	76	3.106	3.106	(0.554)	1359002	50.0000	41
16 <i>I</i>	Acetonitrile	41	3.210	3.210	(0.573)	1657781	500.000	520
17 2	Allyl Chloride	39	3.210	3.210	(0.573)	710159	50.0000	57(Q)
18 N	Methyl Acetate	43	3.233	3.233	(0.577)	560760	50.0000	47
19 N	Methylene Chloride	84	3.326	3.326	(0.594)	450027	50.0000	51
20 t	tert-Butanol	59	3.431	3.431	(0.612)	70631	100.000	80
21 /	Acrylonitrile	53	3.536	3.536	(0.631)	174895	50.0000	52
22 t	trans-1,2-Dichloroethene	96	3.570	3.570	(0.637)	394950	50.0000	51
23 N	Methyl tert-butyl ether	73	3.570	3.570	(0.637)	991919	50.0000	49
24 1	1,1-Dichloroethane	63	3.942	3.942	(0.704)	859740	50.0000	55

M0903 Page 82 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V503991.D Report Date: 11-Jun-2013 09:23

ompounds ====================================	QUANT SIG MASS				CAL-AMT	ON-COL
-	MASS		EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	RT ====	EXP KI KEL KI		(ug/L)	(ug/L)
25 (111/1 0000000	43	4.000	4.000 (0.714)	1645563	50.0000	53
26 Diisopropyl Ether	45	4.012	4.012 (0.716)	2089299	50.0000	57
27 2-Chloro-1,3-Butadiene	53	4.035	4.035 (0.720)	674178	50.0000	58
28 Ethyl tert-butyl ether	59	4.349	4.349 (0.776)	1378756	50.0000	53
29 cis-1,2-Dichloroethene	96	4.476	4.476 (0.799)	428272	50.0000	53
30 2,2-Dichloropropane	77	4.488	4.488 (0.801)	433366	50.0000	57
31 2-Butanone	72	4.488	4.488 (0.801)	45922	50.0000	48
32 Propionitrile	54	4.535	4.535 (0.809)	590500	500.000	470
33 Methacrylonitrile	41	4.686	4.686 (0.836)	651752	100.000	100
34 Bromochloromethane	128	4.697	4.697 (0.838)	202505	50.0000	52
						90
35 Tetrahydrofuran 36 Chloroform	72 83	4.755 4.778	4.755 (0.849)	88505	100.000	90 55
			4.778 (0.853)	702256	50.0000	
37 Dibromofluoromethane	113	4.929	4.929 (0.880)	258246	50.0000	52
38 1,1,1-Trichloroethane	97	4.964	4.964 (0.886)	469246	50.0000	53
39 Cyclohexane	56	5.022	5.022 (0.896)	728135	50.0000	56
40 1,1-Dichloropropene	110	5.127	5.127 (0.915)	183643	50.0000	54
41 Carbon Tetrachloride	117	5.127	5.127 (0.915)	385530	50.0000	55
42 Isobutyl Alcohol	43	5.220	5.220 (0.932)	383487	1000.00	850
43 1,2-Dichloroethane-d4	102	5.255	5.255 (0.938)	51958	50.0000	47
44 Benzene	78	5.324	5.324 (0.950)	1496829	50.0000	54
45 1,2-Dichloroethane	62	5.336	5.336 (0.952)	553748	50.0000	56
46 tert-Amyl methyl ether	73	5.441	5.441 (0.971)	1023543	50.0000	52
47 Fluorobenzene	96	5.603	5.603 (1.000)	793954	50.0000	
48 Trichloroethene	130	5.987	5.987 (1.068)	348597	50.0000	50
49 Methylcyclohexane	83	6.196	6.196 (1.106)	486552	50.0000	58
50 1,2-Dichloropropane	63	6.219	6.219 (1.110)	485645	50.0000	56
51 Dibromomethane	93	6.335	6.335 (1.131)	284548	50.0000	54
52 Methyl Methacrylate	69	6.335	6.335 (1.131)	277723	50.0000	46
53 1,4-Dioxane	88	6.358	6.358 (1.135)	47679	1000.00	650
54 Bromodichloromethane	83	6.509	6.509 (1.162)	515231	50.0000	56
56 2-Chloroethyl vinyl ether	63	7.009	7.009 (1.251)	4616	50.0000	32
57 cis-1,3-Dichloropropene	75	7.009	7.009 (1.251)	660752	50.0000	55
58 4-Methyl-2-pentanone	43	7.183	7.183 (1.282)	571235	50.0000	50
59 Toluene-d8	98	7.323	7.323 (0.807)	798371	50.0000	46
60 Toluene	91	7.404	7.404 (1.321)	1389711	50.0000	55
61 trans-1,3-Dichloropropene	75	7.648	7.648 (1.365)	563851	50.0000	55
62 Ethyl Methacrylate	69	7.776	7.776 (1.388)	314167	50.0000	45
63 1,1,2-Trichloroethane	97	7.868	7.868 (1.404)	323336	50.0000	50
64 Tetrachloroethene	164	8.054	8.054 (0.887)	258063	50.0000	41
65 1,3-Dichloropropane	76	8.066	8.066 (0.889)	590992	50.0000	45
66 2-Hexanone	43	8.182		398133	50.0000	44
67 Dibromochloromethane	129	8.345	8.345 (0.919)	332509	50.0000	44
68 1,2-Dibromoethane	107	8.484	8.484 (0.935)	363665	50.0000	43
69 Chlorobenzene-d5	117	9.077	9.077 (1.000)	665170	50.0000	
70 1-Chlorohexane	91	9.100	9.100 (1.003)	505622	50.0000	47
71 Chlorobenzene	112	9.111	9.111 (1.004)	899182	50.0000	46
72 1,1,1,2-Tetrachloroethane	131	9.216		303216	50.0000	44
73 Ethylbenzene	106	9.210		461777	50.0000	46
=						
74 m,p-Xylene	106	9.413		1129278	100.000	91
75 o-Xylene	106	9.936		573873	50.0000	47
76 Styrene	104	9.959		883553	50.0000	49
77 Bromoform	173	10.180		195494	50.0000	42
78 Isopropylbenzene 79 trans-1,4-Dichloro-2-buter	105 ne 75	10.436 10.517	10.436 (1.150) 10.517 (1.159)	1396096 83298	50.0000 50.0000	46 36

M0903 Page 83 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V503991.D Report Date: 11-Jun-2013 09:23

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=====	=======================================	====	====		======	======	======	======
\$ 80	Bromofluorobenzene	95	10.633	10.633	(1.171)	367513	50.0000	53
81	Bromobenzene	156	10.831	10.831	(0.885)	348210	50.0000	42
82	1,1,2,2-Tetrachloroethane	83	10.842	10.842	(0.886)	468795	50.0000	40
83	1,2,3-Trichloropropane	75	10.889	10.889	(0.890)	418563	50.0000	40
84	n-Propylbenzene	120	11.005	11.005	(0.899)	339563	50.0000	44
85	2-Chlorotoluene	126	11.110	11.110	(0.908)	318430	50.0000	42
86	4-Chlorotoluene	126	11.261	11.261	(0.920)	344248	50.0000	43
87	1,3,5-Trimethylbenzene	105	11.261	11.261	(0.920)	1090956	50.0000	44
88	tert-Butylbenzene	119	11.702	11.702	(0.956)	1036050	50.0000	44
89	1,2,4-Trimethylbenzene	105	11.772	11.772	(0.962)	1114064	50.0000	44
90	sec-Butylbenzene	105	12.016	12.016	(0.982)	1357716	50.0000	44
91	1,3-Dichlorobenzene	146	12.143	12.143	(0.992)	596044	50.0000	42
92	4-Isopropyltoluene	119	12.225	12.225	(0.999)	1026274	50.0000	44
* 93	1,4-Dichlorobenzene-d4	152	12.236	12.236	(1.000)	311190	50.0000	
94	1,4-Dichlorobenzene	146	12.271	12.271	(1.003)	617182	50.0000	42
95	1,2-Dichlorobenzene	146	12.794	12.794	(1.046)	580966	50.0000	42
97	n-Butylbenzene	91	12.817	12.817	(1.047)	1053736	50.0000	46
98	Hexachloroethane	117	13.154	13.154	(1.075)	214938	50.0000	56
99	1,2-Dibromo-3-chloropropane	75	13.909	13.909	(1.137)	54682	50.0000	32
100	1,3,5-Trichlorobenzene	182	15.117	15.117	(2.698)	328024	50.0000	50
101	1,2,4-Trichlorobenzene	180	15.117	15.117	(1.235)	339542	50.0000	39
102	Hexachlorobutadiene	225	15.408	15.408	(1.259)	135098	50.0000	39
103	Naphthalene	128	15.466	15.466	(1.264)	713456	50.0000	35
104	1,2,3-Trichlorobenzene	180	15.826	15.826	(1.293)	272363	50.0000	36

- T Target compound detected outside RT window. Q Qualifier signal failed the ratio test.

Page 84 of 127 M0903

Data File: \\avogadro\organics\V5.I\130607.B\V503993.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V503993.D

Lab Smp Id: MB-72123 Client Smp ID: VBLKD5

Inj Date : 07-JUN-2013 15:14

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML, MB-72123, VBLKD5, 72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 5 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	ATTONS
		QUANT SIG					ON-COLUMN	FINAL
(Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=		====	====	======	: ======	======	======	======
Ş	37 Dibromofluoromethane	113	4.930	4.929	(0.880)	257142	53.1459	53
Ş	\$ 43 1,2-Dichloroethane-d4	102	5.267	5.255	(0.940)	54625	50.6938	51
,	* 47 Fluorobenzene	96	5.604	5.603	(1.000)	779985	50.0000	
Ş	59 Toluene-d8	98	7.323	7.323	(0.807)	778971	46.4784	46
7	* 69 Chlorobenzene-d5	117	9.077	9.077	(1.000)	649391	50.0000	
Ş	80 Bromofluorobenzene	95	10.634	10.633	(1.171)	348858	51.8860	52
7	* 93 1,4-Dichlorobenzene-d4	152	12.237	12.236	(1.000)	281655	50.0000	

M0903 Page 86 of 127

Data File: \\avoqadro\organics\V5.I\130607.B\V503994.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file: \\avogadro\organics\V5.I\130607.B\V503994.D

Lab Smp Id: LCS-72123 Client Smp ID: VLCSD5

Inj Date : 07-JUN-2013 15:39

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML, LCS-72123, VLCSD5, 72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 6 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: FULL.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		=======	======	======
1 Dichlorodifluoromethane	85	1.579	1.584 (0.282)	310501	50.0000	38
3 Chloromethane	50	1.718	1.735 (0.307)	762816	50.0000	50
4 Vinyl Chloride	62	1.835	1.839 (0.328)	605379	50.0000	48
5 Bromomethane	94	2.137	2.142 (0.382)	405931	50.0000	53
6 Chloroethane	64	2.230	2.234 (0.398)	351498	50.0000	51
7 Trichlorofluoromethane	101	2.439	2.444 (0.436)	484679	50.0000	50
8 Ethanol	46	2.613	2.618 (0.467)	235359	5000.00	4200(Q)
9 Ether	59	2.694	2.699 (0.481)	372267	50.0000	52(Q)
10 Acrolein	56	2.799	2.804 (0.500)	473153	250.000	260
11 1,1-Dichloroethene	96	2.892	2.908 (0.517)	330248	50.0000	46
12 1,1,2-Trichloro-1,2,2-Trifluo	101	2.915	2.920 (0.521)	323419	50.0000	51
13 Acetone	58	2.938	2.943 (0.525)	44322	50.0000	39
14 Iodomethane	142	3.031	3.036 (0.541)	574456	50.0000	47
15 Carbon Disulfide	76	3.089	3.106 (0.552)	1240740	50.0000	38
16 Acetonitrile	41	3.205	3.210 (0.573)	1611056	500.000	500
17 Allyl Chloride	39	3.205	3.210 (0.573)	667203	50.0000	54(Q)
18 Methyl Acetate	43	3.229	3.233 (0.577)	560159	50.0000	47
19 Methylene Chloride	84	3.322	3.326 (0.593)	432676	50.0000	49
20 tert-Butanol	59	3.426	3.431 (0.612)	73374	100.000	84
21 Acrylonitrile	53	3.531	3.536 (0.631)	170177	50.0000	51
22 trans-1,2-Dichloroethene	96	3.566	3.570 (0.637)	359567	50.0000	47
23 Methyl tert-butyl ether	73	3.566	3.570 (0.637)	982631	50.0000	49
24 1,1-Dichloroethane	63	3.937	3.942 (0.703)	812576	50.0000	52

M0903 Page 88 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V503994.D Report Date: 11-Jun-2013 09:23

					AMOUN	
James accorder	QUANT SIG	рш	EXP RT REL R	T RESPONSE	CAL-AMT	ON-COL
Compounds	MASS ====	RT	EXP RT REL R		(ug/L) ======	(ug/L) ======
25 Vinyl acetate	43	3.995	4.000 (0.714)		50.0000	52
26 Diisopropyl Ether	45	4.007	4.012 (0.716)		50.0000	55
27 2-Chloro-1,3-Butadiene	53	4.030	4.035 (0.720)		50.0000	52
28 Ethyl tert-butyl ether	59	4.344	4.349 (0.776)		50.0000	52
29 cis-1,2-Dichloroethene	96	4.472	4.476 (0.799)		50.0000	50
30 2,2-Dichloropropane	77	4.483	4.488 (0.801)		50.0000	50
31 2-Butanone	72	4.483	4.488 (0.801)		50.0000	48
32 Propionitrile	54	4.530	4.535 (0.809)		500.000	470
33 Methacrylonitrile	41	4.681	4.686 (0.836)		100.000	100
34 Bromochloromethane	128	4.692	4.697 (0.838)		50.0000	51
35 Tetrahydrofuran	72	4.750	4.755 (0.849)		100.000	91
36 Chloroform	83	4.774	4.778 (0.853)		50.0000	53
37 Dibromofluoromethane	113	4.925	4.929 (0.880)		50.0000	52
38 1,1,1-Trichloroethane	97	4.960	4.964 (0.886)		50.0000	50
39 Cyclohexane	56	5.029	5.022 (0.898)		50.0000	50
40 1,1-Dichloropropene	110	5.122	5.127 (0.915)		50.0000	47
41 Carbon Tetrachloride	117	5.134	5.127 (0.917)		50.0000	50
42 Isobutyl Alcohol	43	5.215	5.220 (0.932)		1000.00	900
3 43 1,2-Dichloroethane-d4	102	5.262	5.255 (0.940)		50.0000	50
44 Benzene	78	5.320	5.324 (0.950)		50.0000	52
45 1,2-Dichloroethane	62	5.320	5.336 (0.952)		50.0000	56
46 tert-Amyl methyl ether	73	5.436	5.441 (0.971)		50.0000	50
47 Fluorobenzene	96	5.598	5.603 (1.000)		50.0000	30
48 Trichloroethene	130	5.982	5.987 (1.068)		50.0000	46
49 Methylcyclohexane	83	6.191	6.196 (1.106)		50.0000	52
50 1,2-Dichloropropane	63	6.214	6.219 (1.110)		50.0000	54
51 Dibromomethane	93	6.330	6.335 (1.131)		50.0000	52
52 Methyl Methacrylate	69	6.330	6.335 (1.131)		50.0000	45
53 1,4-Dioxane	88	6.354	6.358 (1.135)		1000.00	760
54 Bromodichloromethane	83	6.505	6.509 (1.162)		50.0000	54
4 55 1,2-Dichloroethene (Total)	96	0.303	0.309 (1.102)	762660	100.000	97
56 2-Chloroethyl vinyl ether	63	7.004	7.009 (1.251)		50.0000	29(
57 cis-1,3-Dichloropropene	75	7.004	7.009 (1.251)		50.0000	53
58 4-Methyl-2-pentanone	43	7.190	7.183 (1.284)		50.0000	49
5 59 Toluene-d8	98	7.190	7.323 (0.807)		50.0000	46
60 Toluene	91	7.316	7.404 (1.322)	1299964	50.0000	52
61 trans-1,3-Dichloropropene	75	7.643			50.0000	53
			7.648 (1.365)			46
62 Ethyl Methacrylate 63 1,1,2-Trichloroethane	69	7.771	7.776 (1.388) 7.868 (1.405)		50.0000	
64 Tetrachloroethene	97	7.864	8.054 (0.887)		50.0000	48 37
	164	8.050			50.0000	
65 1,3-Dichloropropane 66 2-Hexanone	76	8.073	8.066 (0.890)		50.0000	44
	43	8.177	8.182 (0.901)		50.0000	41
67 Dibromochloromethane	129	8.340	8.345 (0.919)		50.0000	44
68 1,2-Dibromoethane 69 Chlorobenzene-d5	107	8.479	8.484 (0.935) 9.077 (1.000)		50.0000	43
	117	9.072			50.0000	427
70 1-Chlorohexane 71 Chlorobenzene	91	9.095 9.118	9.100 (1.003) 9.111 (1.005)		50.0000	42(
	112					44
72 1,1,1,2-Tetrachloroethane	131	9.223	9.216 (1.017)		50.0000	42
73 Ethylbenzene	106	9.269	9.262 (1.022)		50.0000	42
74 m,p-Xylene	106	9.420	9.413 (1.038)		100.000	86
75 o-Xylene	106	9.943	9.936 (1.096)		50.0000	44
76 Styrene	104	9.955	9.959 (1.097)		50.0000	46
77 Bromoform 78 Isopropylbenzene	173 105	10.187	10.180 (1.123) 10.436 (1.151)		50.0000	41 43

M0903 Page 89 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V503994.D Report Date: 11-Jun-2013 09:23

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	====		======	======	======
79 trans-1,4-Dichloro-2-butene	75	10.524	10.517 (1.160)	80667	50.0000	36
\$ 80 Bromofluorobenzene	95	10.628	10.633 (1.172)	367036	50.0000	54
81 Bromobenzene	156	10.826	10.831 (0.884)	332276	50.0000	40
82 1,1,2,2-Tetrachloroethane	83	10.838	10.842 (0.885)	459374	50.0000	40
83 1,2,3-Trichloropropane	75	10.896	10.889 (0.890)	409679	50.0000	40
84 n-Propylbenzene	120	11.000	11.005 (0.898)	311042	50.0000	41
85 2-Chlorotoluene	126	11.105	11.110 (0.907)	298208	50.0000	40
86 4-Chlorotoluene	126	11.256	11.261 (0.919)	313970	50.0000	40
87 1,3,5-Trimethylbenzene	105	11.256	11.261 (0.919)	1019062	50.0000	42
88 tert-Butylbenzene	119	11.709	11.702 (0.956)	950579	50.0000	41
89 1,2,4-Trimethylbenzene	105	11.778	11.772 (0.962)	1033449	50.0000	42
90 sec-Butylbenzene	105	12.011	12.016 (0.981)	1227904	50.0000	40
91 1,3-Dichlorobenzene	146	12.150	12.143 (0.992)	560875	50.0000	40
92 4-Isopropyltoluene	119	12.231	12.225 (0.999)	925062	50.0000	40
* 93 1,4-Dichlorobenzene-d4	152	12.243	12.236 (1.000)	306088	50.0000	
94 1,4-Dichlorobenzene	146	12.278	12.271 (1.003)	590355	50.0000	41
95 1,2-Dichlorobenzene	146	12.789	12.794 (1.045)	546584	50.0000	41
M 96 Xylene (Total)	106			1596988	150.000	130
97 n-Butylbenzene	91	12.812	12.817 (1.046)	937951	50.0000	42
98 Hexachloroethane	117	13.161	13.154 (1.075)	189385	50.0000	50
99 1,2-Dibromo-3-chloropropane	75	13.904	13.909 (1.136)	54283	50.0000	33
100 1,3,5-Trichlorobenzene	182	15.124	15.117 (2.701)	312851	50.0000	48
101 1,2,4-Trichlorobenzene	180	15.124	15.117 (1.235)	326317	50.0000	38
102 Hexachlorobutadiene	225	15.403	15.408 (1.258)	117682	50.0000	34
103 Naphthalene	128	15.461	15.466 (1.263)	677366	50.0000	34
104 1,2,3-Trichlorobenzene	180	15.821	15.826 (1.292)	258886	50.0000	35

- T Target compound detected outside RT window. Q Qualifier signal failed the ratio test.

Page 90 of 127 M0903

Data File: \\avoqadro\organics\V5.I\130607.B\V503995.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file: \\avogadro\organics\V5.I\130607.B\V503995.D

Lab Smp Id: M0903-06AMS Client Smp ID: MW17-060413MS

Inj Date : 07-JUN-2013 16:05

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-06AMS,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 7 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==	=======================================	====	====		======	======	======
\$	37 Dibromofluoromethane	113	4.937	4.929 (0.880)	262271	50.0000	53
\$	43 1,2-Dichloroethane-d4	102	5.262	5.255 (0.938)	51458	50.0000	47
	44 Benzene	78	5.332	5.324 (0.950)	1521065	50.0000	56
*	47 Fluorobenzene	96	5.610	5.603 (1.000)	793004	50.0000	
\$	59 Toluene-d8	98	7.318	7.323 (0.806)	800340	50.0000	46
*	69 Chlorobenzene-d5	117	9.084	9.077 (1.000)	665941	50.0000	
	73 Ethylbenzene	106	9.270	9.262 (1.020)	471067	50.0000	46
	74 m,p-Xylene	106	9.421	9.413 (1.037)	1148662	100.000	92
	75 o-Xylene	106	9.943	9.936 (1.095)	586459	50.0000	48
\$	80 Bromofluorobenzene	95	10.629	10.633 (1.170)	365270	50.0000	53
*	93 1,4-Dichlorobenzene-d4	152	12.244	12.236 (1.000)	312009	50.0000	
M	96 Xylene (Total)	106			1735121	150.000	140

M0903 Page 92 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V503996.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V503996.D

Lab Smp Id: M0903-06AMSD Client Smp ID: MW17-060413MSD

Inj Date : 07-JUN-2013 16:30

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-06AMSD,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 8 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==	=======================================	====	====		======	======	======
\$	37 Dibromofluoromethane	113	4.926	4.929 (0.880)	260694	50.0000	53
\$	43 1,2-Dichloroethane-d4	102	5.263	5.255 (0.940)	54131	50.0000	50
	44 Benzene	78	5.332	5.324 (0.952)	1523587	50.0000	56
*	47 Fluorobenzene	96	5.600	5.603 (1.000)	790614	50.0000	
\$	59 Toluene-d8	98	7.319	7.323 (0.807)	796718	50.0000	46
*	69 Chlorobenzene-d5	117	9.073	9.077 (1.000)	667620	50.0000	
	73 Ethylbenzene	106	9.270	9.262 (1.022)	472644	50.0000	46
	74 m,p-Xylene	106	9.422	9.413 (1.038)	1158875	100.000	93
	75 o-Xylene	106	9.944	9.936 (1.096)	574591	50.0000	46
\$	80 Bromofluorobenzene	95	10.630	10.633 (1.172)	366940	50.0000	53
*	93 1,4-Dichlorobenzene-d4	152	12.244	12.236 (1.000)	304729	50.0000	
M	96 Xylene (Total)	106			1733466	150.000	140

M0903 Page 94 of 127

Data File: \\avoqadro\organics\V5.I\130607.B\V504002.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504002.D

Lab Smp Id: M0903-01A Client Smp ID: MW112-060413

Inj Date : 07-JUN-2013 19:04

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-01A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 14

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Cc	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	======	: ======	======	======	======
\$	37 Dibromofluoromethane	113	4.930	4.929	(0.880)	264287	53.4753	53
\$	43 1,2-Dichloroethane-d4	102	5.256	5.255	(0.938)	55884	50.7729	51
*	47 Fluorobenzene	96	5.604	5.603	(1.000)	796720	50.0000	
\$	59 Toluene-d8	98	7.324	7.323	(0.807)	791782	47.0192	47
*	69 Chlorobenzene-d5	117	9.078	9.077	(1.000)	652480	50.0000	
\$	80 Bromofluorobenzene	95	10.634	10.633	(1.171)	357595	52.9337	53
*	93 1,4-Dichlorobenzene-d4	152	12.237	12.236	(1.000)	284647	50.0000	

M0903 Page 96 of 127

Data File: \\avoqadro\organics\V5.I\130607.B\V504003.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504003.D

Lab Smp Id: M0903-02A Client Smp ID: MW106-060413

Inj Date : 07-JUN-2013 19:30

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-02A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 15

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Cc	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====		: ======	======	======	======
\$	37 Dibromofluoromethane	113	4.928	4.929	(0.880)	255948	51.4857	51
\$	43 1,2-Dichloroethane-d4	102	5.253	5.255	(0.938)	54986	49.6654	50
*	47 Fluorobenzene	96	5.602	5.603	(1.000)	801398	50.0000	
\$	59 Toluene-d8	98	7.321	7.323	(0.807)	795684	46.8504	47
*	69 Chlorobenzene-d5	117	9.075	9.077	(1.000)	658057	50.0000	
\$	80 Bromofluorobenzene	95	10.632	10.633	(1.172)	356390	52.3082	52
*	93 1,4-Dichlorobenzene-d4	152	12.235	12.236	(1.000)	280142	50.0000	

M0903 Page 98 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504004.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504004.D

Lab Smp Id: M0903-03A Client Smp ID: DUP-060413

Inj Date : 07-JUN-2013 19:56

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-03A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 16

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	ALTONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	======	======	======	======	======
\$	37 Dibromofluoromethane	113	4.931	4.929 ((0.880)	253232	52.5839	52
\$	43 1,2-Dichloroethane-d4	102	5.268	5.255 ((0.940)	51725	48.2283	48
*	47 Fluorobenzene	96	5.605	5.603 ((1.000)	776334	50.0000	
\$	59 Toluene-d8	98	7.324	7.323 ((0.807)	774103	47.0149	47
*	69 Chlorobenzene-d5	117	9.078	9.077 ((1.000)	637969	50.0000	
\$	80 Bromofluorobenzene	95	10.635	10.633 ((1.171)	346273	52.4236	52
*	93 1,4-Dichlorobenzene-d4	152	12.238	12.236 ((1.000)	274792	50.0000	

M0903 Page 100 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504005.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504005.D

Lab Smp Id: M0903-04A Client Smp ID: TB-060413

Inj Date : 07-JUN-2013 20:22

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-04A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 17

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=:		====	====			======	======	======
\$	37 Dibromofluoromethane	113	4.926	4.929 (0	0.880)	251271	52.0223	52
\$	43 1,2-Dichloroethane-d4	102	5.251	5.255 (0	0.938)	51422	47.8038	48
*	47 Fluorobenzene	96	5.599	5.603 (1	L.000)	778639	50.0000	
\$	59 Toluene-d8	98	7.319	7.323 (0	0.807)	764993	46.1438	46
*	69 Chlorobenzene-d5	117	9.073	9.077 (1	L.000)	642363	50.0000	
\$	80 Bromofluorobenzene	95	10.629	10.633 (1	1.172)	340570	51.2075	51
*	93 1,4-Dichlorobenzene-d4	152	12.244	12.236 (1	L.000)	274583	50.0000	

M0903 Page 102 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504006.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504006.D

Lab Smp Id: M0903-05A Client Smp ID: MW19-060413

Inj Date : 07-JUN-2013 20:48

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-05A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 18

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Cc	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==	=======================================	====	====		======	======	======
\$	37 Dibromofluoromethane	113	4.930	4.929 (0.880)	254418	52.6519	53
\$	43 1,2-Dichloroethane-d4	102	5.255	5.255 (0.938)	52540	48.8229	49
*	47 Fluorobenzene	96	5.604	5.603 (1.000)	778963	50.0000	
\$	59 Toluene-d8	98	7.323	7.323 (0.807)	766790	47.1352	47
*	69 Chlorobenzene-d5	117	9.077	9.077 (1.000)	630329	50.0000	
\$	80 Bromofluorobenzene	95	10.634	10.633 (1.171)	342377	52.4620	52
*	93 1,4-Dichlorobenzene-d4	152	12.237	12.236 (1.000)	278498	50.0000	

M0903 Page 104 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504007.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504007.D

Lab Smp Id: M0903-06A Client Smp ID: MW17-060413

Inj Date : 07-JUN-2013 21:13

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-06A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 19

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=:		====	====	=======================================		======	======	======
\$	37 Dibromofluoromethane	113	4.925	4.929 (0	0.880)	246721	52.1832	52
\$	43 1,2-Dichloroethane-d4	102	5.262	5.255 (0	0.940)	52435	49.7981	50
*	47 Fluorobenzene	96	5.599	5.603 (1	1.000)	762182	50.0000	
\$	59 Toluene-d8	98	7.318	7.323 (0	0.807)	750595	46.6596	47
*	69 Chlorobenzene-d5	117	9.073	9.077 (1	1.000)	623305	50.0000	
\$	80 Bromofluorobenzene	95	10.629	10.633 (1	1.172)	338019	52.3779	52
*	93 1,4-Dichlorobenzene-d4	152	12.244	12.236 (1	1.000)	264311	50.0000	

M0903 Page 106 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504008.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504008.D

Lab Smp Id: M0903-07A Client Smp ID: MW15-060413

Inj Date : 07-JUN-2013 21:39

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-07A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 20

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=:		====	====	=======	======	======	======	======
\$	37 Dibromofluoromethane	113	4.925	4.929 (0.880)	243192	52.1566	52
\$	43 1,2-Dichloroethane-d4	102	5.262	5.255 (0.940)	50823	48.9426	49
*	47 Fluorobenzene	96	5.599	5.603 (1.000)	751663	50.0000	
\$	59 Toluene-d8	98	7.318	7.323 (0.807)	736902	45.6317	46
*	69 Chlorobenzene-d5	117	9.072	9.077 (1.000)	625719	50.0000	
\$	80 Bromofluorobenzene	95	10.629	10.633 (1.172)	337942	52.1640	52
*	93 1,4-Dichlorobenzene-d4	152	12.244	12.236 (1.000)	264861	50.0000	

M0903 Page 108 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504009.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504009.D

Lab Smp Id: M0903-08A Client Smp ID: MW11-060413

Inj Date : 07-JUN-2013 22:05

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-08A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 21

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	ALTONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	======	======	======	======	======
\$	37 Dibromofluoromethane	113	4.931	4.929	(0.880)	244252	53.3612	53
\$	43 1,2-Dichloroethane-d4	102	5.256	5.255	(0.938)	48462	47.5396	48
*	47 Fluorobenzene	96	5.605	5.603	(1.000)	737897	50.0000	
\$	59 Toluene-d8	98	7.324	7.323	(0.807)	736926	46.3178	46
*	69 Chlorobenzene-d5	117	9.078	9.077	(1.000)	616471	50.0000	
\$	80 Bromofluorobenzene	95	10.635	10.633	(1.171)	329155	51.5698	52
*	93 1,4-Dichlorobenzene-d4	152	12.238	12.236	(1.000)	261716	50.0000	

M0903 Page 110 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504010.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504010.D

Lab Smp Id: M0903-09A Client Smp ID: MW105-060513

Inj Date : 07-JUN-2013 22:30

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-09A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 22

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	======	======	======	======	======
\$	37 Dibromofluoromethane	113	4.930	4.929 (0.880)	245456	52.9913	53
\$	43 1,2-Dichloroethane-d4	102	5.256	5.255 (0.938)	50615	49.0656	49
*	47 Fluorobenzene	96	5.604	5.603 (1.000)	746710	50.0000	
\$	59 Toluene-d8	98	7.323	7.323 (0.807)	754903	47.1343	47
*	69 Chlorobenzene-d5	117	9.078	9.077 (1.000)	620570	50.0000	
\$	80 Bromofluorobenzene	95	10.634	10.633 (1.171)	336878	52.4312	52
*	93 1,4-Dichlorobenzene-d4	152	12.237	12.236 (1.000)	269318	50.0000	

M0903 Page 112 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504011.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504011.D

Lab Smp Id: M0903-10A Client Smp ID: MW103-060513

Inj Date : 07-JUN-2013 22:56

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-10A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 23

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	ALTONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====	======	======	======	======	======
\$	37 Dibromofluoromethane	113	4.927	4.929	(0.880)	242943	53.2175	53
\$	43 1,2-Dichloroethane-d4	102	5.264	5.255	(0.940)	50384	49.5575	50
*	47 Fluorobenzene	96	5.601	5.603	(1.000)	735924	50.0000	
\$	59 Toluene-d8	98	7.320	7.323	(0.807)	747166	47.1280	47
*	69 Chlorobenzene-d5	117	9.074	9.077	(1.000)	614291	50.0000	
\$	80 Bromofluorobenzene	95	10.631	10.633	(1.172)	326867	51.3931	51
*	93 1,4-Dichlorobenzene-d4	152	12.234	12.236	(1.000)	257071	50.0000	

M0903 Page 114 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504012.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504012.D

Lab Smp Id: M0903-11A Client Smp ID: RW01-060513

Inj Date : 07-JUN-2013 23:21

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-11A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 24

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=:	=======================================	====	====		======	======	======	======
\$	37 Dibromofluoromethane	113	4.931	4.929 (0	.880)	243768	53.2538	53
\$	43 1,2-Dichloroethane-d4	102	5.256	5.255 (0	.938)	49193	48.2552	48
*	47 Fluorobenzene	96	5.605	5.603 (1	.000)	737920	50.0000	
\$	59 Toluene-d8	98	7.324	7.323 (0	.807)	732035	46.9255	47
*	69 Chlorobenzene-d5	117	9.078	9.077 (1	.000)	604449	50.0000	
\$	80 Bromofluorobenzene	95	10.635	10.633 (1	.171)	330499	52.8103	53
*	93 1,4-Dichlorobenzene-d4	152	12.238	12.236 (1	.000)	260408	50.0000	

M0903 Page 116 of 127

Data File: \\avoqadro\organics\V5.I\130607.B\V504013.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504013.D

Lab Smp Id: M0903-12A Client Smp ID: MW14-060513

Inj Date : 07-JUN-2013 23:47

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-12A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 25

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

							CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
Cc	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====		: ======	======	======	======
\$	37 Dibromofluoromethane	113	4.926	4.929	(0.880)	238720	52.8196	53
\$	43 1,2-Dichloroethane-d4	102	5.262	5.255	(0.940)	49647	49.3248	49
*	47 Fluorobenzene	96	5.599	5.603	(1.000)	728580	50.0000	
\$	59 Toluene-d8	98	7.319	7.323	(0.807)	725325	46.5121	46
*	69 Chlorobenzene-d5	117	9.073	9.077	(1.000)	604231	50.0000	
\$	80 Bromofluorobenzene	95	10.629	10.633	(1.172)	320223	51.1867	51
*	93 1,4-Dichlorobenzene-d4	152	12.244	12.236	(1.000)	255556	50.0000	

M0903 Page 118 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504014.D

Report Date: 11-Jun-2013 09:23

Spectrum Analytical, Inc. RI Division

Method 8260 Water and Medium Soil

Data file : \\avogadro\organics\V5.I\130607.B\V504014.D

Lab Smp Id: M0903-13A Client Smp ID: MW101-060513

Inj Date : 08-JUN-2013 00:12

Operator : WL SRC: LIMS Inst ID: V5.i

Smp Info : 5ML,M0903-13A,,72123

Misc Info : Comment :

Method : \\avogadro\organics\V5.I\\130607.B\v5_8260W.m

Meth Date : 10-Jun-2013 15:40 V5.i Quant Type: ISTD

Cal Date : 30-MAY-2013 14:32 Cal File: V503805.D

Als bottle: 26

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: BEX.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * 5/Vo * CpndVariable

Name	Value	Description
DF Uf Vo Cpnd Variable	1.000 1.000 5.000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Local Compound Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Cc	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	====		=======	======	======
\$	37 Dibromofluoromethane	113	4.931	4.929 (0.880)	243118	53.5297	54
\$	43 1,2-Dichloroethane-d4	102	5.256	5.255 (0.938)	49892	49.3260	49
*	47 Fluorobenzene	96	5.605	5.603 (1.000)	732159	50.0000	
\$	59 Toluene-d8	98	7.324	7.323 (0.807)	750763	47.5320	48
*	69 Chlorobenzene-d5	117	9.078	9.077 (1.000)	612002	50.0000	
	73 Ethylbenzene	106	9.264	9.262 (1.020)	53679	5.74941	6(Q)
	74 m,p-Xylene	106	9.427	9.413 (1.038)	81862	7.16467	7
\$	80 Bromofluorobenzene	95	10.635	10.633 (1.171)	333298	52.6002	53
*	93 1,4-Dichlorobenzene-d4	152	12.238	12.236 (1.000)	272002	50.0000	
M	96 Xylene (Total)	106			81862	7.16467	7

QC Flag Legend

Q - Qualifier signal failed the ratio test.

M0903 Page 120 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504014.D

Date : 08-JUN-2013 00:12 Client ID: MW101-060513

Instrument: V5.i

Sample Info: 5ML,M0903-13A,,72123

Purge Volume: 5.0 Operator: WL SRC: LIMS Column phase: DB-624 Column diameter: 0.25

73 Ethylbenzene

M0903 Page 122 of 127

Data File: \\avogadro\organics\V5.I\130607.B\V504014.D

Date : 08-JUN-2013 00:12 Client ID: MW101-060513

Instrument: V5.i

Sample Info: 5ML,M0903-13A,,72123

Purge Volume: 5.0 Operator: WL SRC: LIMS
Column phase: DB-624 Column diameter: 0.25

M0903 Page 123 of 127

M0903

VOLATILES LABORATORY

Spe n And

j	5			
_			INTERNAL STDS SURROGATES	
FILE TIME	WE LAB ID	CLIENT ID	PREP MI BN	COMMENTS
_	_		BATCH FBZ CBZ DCB DFM DCE TOL BFB	
V503800 12:22 BFB5V	:22 BFB5V	BFB5V	AQ 11 66	<i>y</i> ,
V503801 12:	V503801 12:48 VSTD0015V	VSTD0015V	AQ 99 97 97 100	X
V503802 13:	V503802 13:14 VSTD0055V	VSTD0055V	O 1 1 1 1 1 1 1 1 1	X
V503803 13:	V503803 13:39 VSTD0205V	VSTD0205V	AQ 1100 98 99	X
V503804 14:	V503804 14:05 VSTD0505V	VSTD0505V	AQ 100 100 100	<u> </u>
V503805 14:	V503805 14:32 VSTD1005V	VSTD1005V	AQ 64 62 59	Y
V503806 14:	V503806 14:58 VSTD2005V	VSTD2005V	AQ _ 61 60 60	Y
V503807 15:	V503807 15:46 VICV0505V	VICV0505V	AQ 107 107 106 100 97 98 98 1	J
* - Internal	Standard or Sur	rogate outside of	* - Internal Standard or Surrogate outside of control limits	
E - One or mo	ore target compo	unds are above th	- One or more target compounds are above the calibration range R - One or more spike compounds a	One or more spike compounds are outside of control limits
E			ş	

T - Sample was injected outside of the 12 hour sequence

D - Surrogates are diluted

58

Logbook ID 90.0199-03/13

INSTERION LOG

VOLATILES LABORATORY

Start: 07-JUN-13 13:58 End: 08-JUN-13 01:32 End: BATCH: 130607.B ANALYST: ANALYST: W 검검검 25/55-12/30521A 5 TD-VW130521B BFB-VINITOSOSA METHOD: 8260_W ICAL DATE: 5/70/13 Standards: CAL ID: MI Review: V5 Injection Log Manual Integration: NA METHOD:

OSpectrum Analytical, Inc. RI Division Reviewed By: Volatiles Laboratory Comments:

Hq STMENMOO			2/2/2	2	2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2 7	2 2	7 7 7	7 7	2
DILN FLG		1 Not weck 1 OK	1 0%		10 VE=10, RRX		1 06		000			1 0K
		101 100 93 105 102 94	100 100 98 102 102 103 105 1	100 94 104 91			98 97 88 1104	94				100 97 90 103 9
CLIENT ID	BFBDS VSTDOSODS VBLKDS	60413MS		SB70984-01	1 513	<u>-</u> -			- <u></u> -	MW103-060513 73 RW01-060513 72	MW14-060513 72	
FILE TIME LAB ID	V503990 13:58 BFBD5 V503991 14:23 VSTD050D5 V503992 14:49 MB-72123	3 	V503996 16:30 M0903-06AMSD V503997 16:56 M0901-01A V503908 177-03 M0901 M09	17:47 M0904-01A 17:47 M0904-01A 18:13 M0907-01A	V504001 18:39 M0907-02A V504002 19:04 M0903-01A		V504005 20:22 M0903-04A	21:13 M0903-05A 21:39 M0903-07A	V504009 22:05 M0903-08A N V504010 22:30 M0903-09A N	V504011 22:56 M0903-10A N504012 23:21 M0903-11A F	V504013 23:47 M0903-12A N V504014 00:12 M0903-13A N	V504015 00:38 M0910-01A 1 <u>V</u> 504017 01:32 M0907-01A 1

Definition of the polynomial o

 \ensuremath{R} - One or more spike compounds are outside of control limits D - Surrogates are diluted

	Spectrum	Spectrum Analytical, Inc. RI	II, Inc. RI Division : VOLATILE SAMPLES RECEIVING LOGBOOK	SAMPLES	RECEIVIN	1G LOG	BOOK	
VOA Log-In Date	Workorder	Client ID	Sample Numbers	Relinquished by:	Received by:	Pres. Used	F/R	Returned to R23
0/4/9	Mogs)	ENE	70/10	Š	7	エ	Rio	
dilo	Mogo 3	EARTH-NY ACCOM	Σ/-10 c/<19	ZZ.		Z	RIO	
51/17	M0878	COR	SC-81	VEB		#	TO THE PROPERTY OF THE PROPERT	Q ş
	0160W	COM	0]			ŧ	5	દ્વાન
	M0913	Land	01-20				200	
,	M0913	Land	06-30	▼		Σ	KID	
U11/3	MOGIN	CPA	1) -10	VER		-	RH	
6/7/13	7160M	BEN-1	70,60,10	VEB		L	12	
धानाउ	MOGIL	STEEL STEEL		156		Y	RS	
(0/10)13	M18914	EPA	81-61	VCB	<u>,</u>	+	RY	
					. \			
					4/11/			
			W	0	ci/n			
Logbook ID 90.0191-01/13).0191-01/13			Reviewed By:	3	1/9	1/3	
("Preservative Used" Key UA = Unpreserved Aqueous	H = HCL	A = Air	M = MeOH		E = Encore
32			US = Unpreserved Soil	N = NaHSO ₄		F = Freeze		T = Trace, HCL

Last Page of Data Report

M0903 Page 127 of 127