

HYDROGEOLOGIC INVESTIGATION OF THE OSWEGO VALLEY LANDFILL SITE VOLNEY, NEW YORK

Prepared for the County of Oswego, Oswego, New York

July 1985

Geraghty & Miller, Inc.
Consulting Ground-Water Geologists and Hydrologists
North Shore Atrium
6800 Jericho Turnpike
Syosset, New York 11791

CONTENTS

		<u>Page</u>
EXECL	JTIVE SUMMARY	i
1.]	INTRODUCTION	1
2. H	HYDROGEOLOGY	2
	2.1 Geology	2 4
3. W	WATER QUALITY ANALYSIS	7
3	3.1 Water—Table Aquifer	9
	3.1.1 Alkalinity	9 10 11 12 13 13
	3.2 Artesian Aquifer (Bedrock/Till)	15 15 16 17
4. R	RECOMMENDED MONITORING PROGRAM	18
REFER	RENCES	21
	<u>FIGURES</u>	
	<u>Fc</u>	ollowing page
2. 3. 4. 5. 6. 7.	Location of Wells and Surface Water Sampling Sites Geologic Cross Section A-A'	2 2 2 2 4 6 6
	in Micrograms Per Liter	8
	Water-Bearing Zone	10

FIGURES (Cont'd.)

		Following
		page
10.		4.4
11.	,	
12.		
4.7	Water-Bearing Zone	
13.		13
14.	Total Dissolved Solids Concentrations in the Shallow Water-Bearing Zone	14
15.		14
12.	in the Shallow Water-Bearing Zone	14
16.	Concentrations of Inorganic Compounds in the Bedrock Aquifer (Includes Analytical Results from Samples Collected from the Unconsolidated Zone – Bedrock	
17	Interface)	15
17.	Concentrations of Inorganic and Organic Compounds in Surface Water Samples 1-26-85	15
18.		20
	TABLES	
1.		
	for Monitoring Wells Installed Between December 3 and 7, 1984	2
2.	Water-Level Elevations Relative to Mean Sea Level	
3.	Datum Measured January 21 and 28, 1985	4
,	for Volatile Organic Compounds on the EPA 624 Scan	8
4.	Chemical Quality of Drinking Water from Residential Wells near the Oswego Valley Landfill, Volney,	
	New York, January 27, 1985	16
5.	Chemical Quality of Leachate Samples Collected	17
6.	Recommended Quarterly Monitoring Program	18
7.	Monitoring Rationale	18
	ADDEND 7 050	5
	<u>APPENDICES</u>	<u>Page</u>
Α.	FIELD INVESTIGATIONS	A1
	Task 1 Inspection and Restoration of Existing Landfill Monitorino Wells	A1

В.

С.

D.

F. •

F.

APPENDICES (Cont'd.)

		<u>Page</u>				
Task 2	Installation of Supplemental Monitoring Wells and Surface—Water Monitoring Stations					
Task 3	Collection of Surface- and Ground-Water Samples					
DRILLERS	LOGS					
WELL CONSTRUCTION LOGS						
ELEVATIONS						
WATER SAMPLING LOGS						
WATER QUALITY DATA						

EXECUTIVE SUMMARY

- 1) Ground water in the water-table aquifer at the Oswego Valley Landfill flows radially from the site towards nearby residential wells and surface water systems. In terms of water quality, the landfill has its greatest impact on the water-table aquifer (above the lodgement till).
- 2) Inorganic compounds moving from the landfill in the water-table aquifer, exceed background levels of similar compounds in the ground-water system and are indicative of leachate from a municipal landfill.
- 3) The quality of water in nearby drinking water supply wells and surface water bodies is within state and federal drinking water standards and quidelines and does not appear to have been affected by the landfill.
- 4) Surface water quality in Bell Creek meets state and federal guidelines and standards. However, the landfill does appear to influence concentrations of inorganic compounds downstream of the site.
- 5) Ground-water quality in the bedrock formation, which serves as a water supply for several residences, has not been affected by the landfill. This is most likely due to the low-permeability glacial material (lodgement till) that acts as a confining unit between water-table and artesian aguifers.
- 6) The potential risk to drinking water supplies is greatest in areas south and west of the landfill. There is no apparent risk to drinking water supplies east or north of the landfill since creeks that separate the landfill from residential wells act as a boundary to groundwater flow.

- 7) Analyses of leachate samples (OVL-1, 2 and 3) indicate the presence of volatile organic compounds. Similar compounds were detected in several ground-water monitoring wells near the landfill, indicating the landfill is a source of these compounds.
- 8) The types of volatile organic compounds detected in ground-water samples near the landfill are common and widely used for both household and commercial purposes. Therefore, their presence could also be a result of activities in the vicinity of the landfill unassociated with leachate.
- 9) Of all chemical constituents detected in ground water near the Oswego Valley Landfill, the volatile organic compounds pose the greatest risk to drinking water supplies. However, because of their sparse distribution in the area and since they were not detected in residential wells or surface water samples, they do not present an imminent hazard. Monitoring for these compounds should continue.
- 10) The potential risk to ground-water supplies will be reduced by capping the landfill. Capping would result in reduced infiltration and less generation of leachate, which in turn will reduce concentrations of contaminants and rates of ground-water flow moving offsite.
- 11) Quarterly monitoring of ground water and surface water for one year is recommended to establish a sound, comprehensive data base and detect seasonal water-quality variablity.
- 12) Several new monitoring wells are needed to map underground leachate movement. In addition, several monitoring wells need to be replaced to upgrade the monitoring well network.

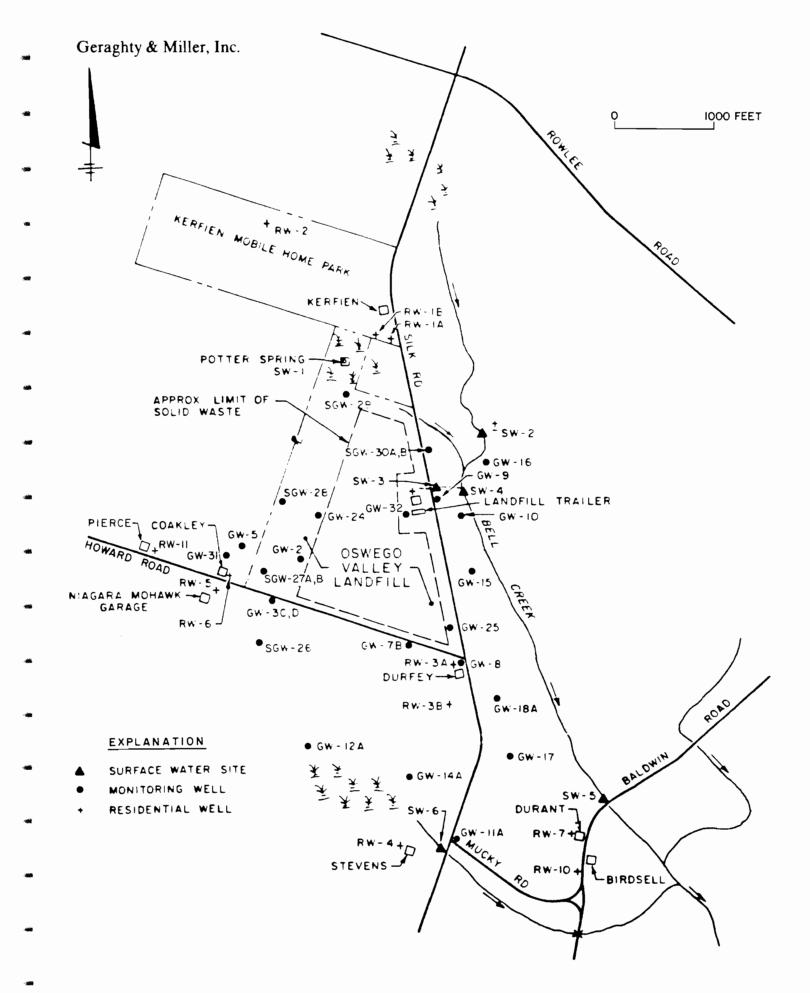
HYDROGEOLOGIC INVESTIGATION OF THE OSWEGO VALLEY LANDFILL SITE, VOLNEY, NEW YORK

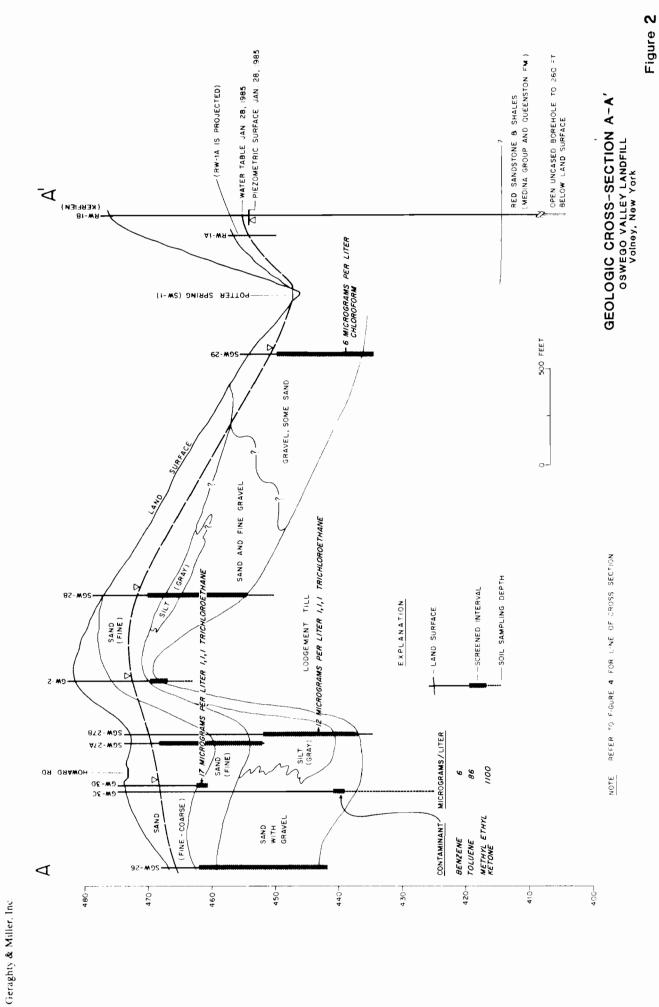
INTRODUCTION

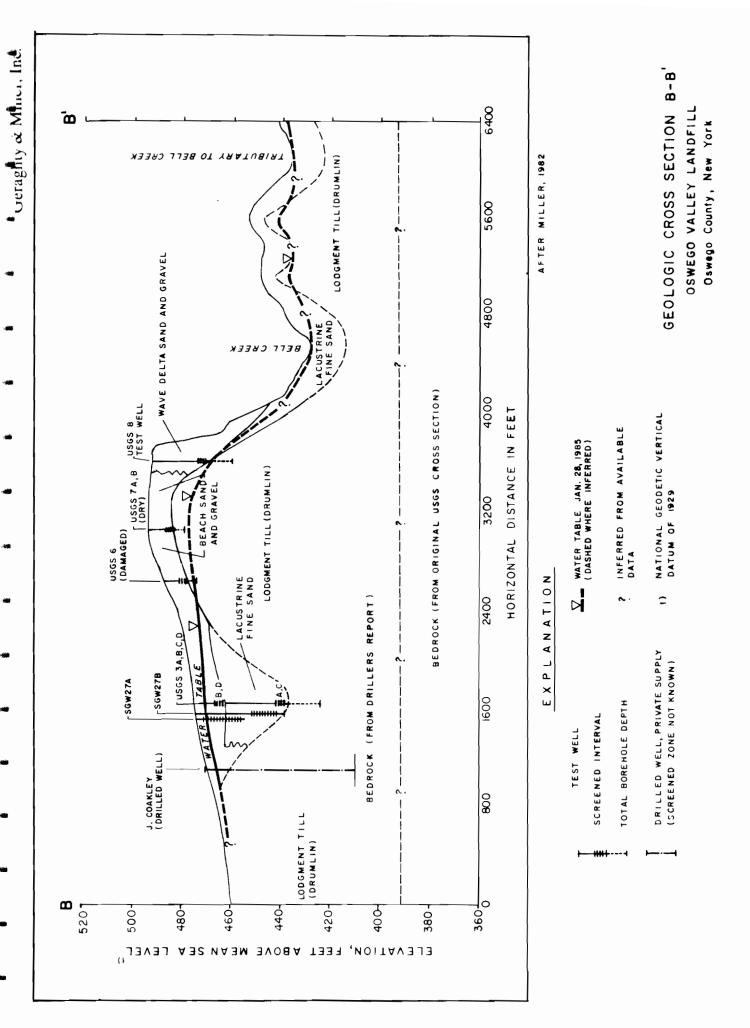
In March, 1984, the County of Oswego retained Geraghty & Miller, Inc. to conduct a hydrogeologic investigation of the Oswego Valley Landfill in Volney, New York. A first report on ground-water conditions based on existing data was issued by Geraghty & Miller in August, 1984. The report contained recommendations for installation of additional monitoring wells and comprehensive water sampling in order to further determine the impact of the landfill on the environment. The County of Oswego subsequently authorized Geraghty & Miller, Inc. to carry out this supplemental program. This report describes the field program carried out in January, 1985 (Appendix A) and contains the results of the water-quality assessment. A program for future monitoring of ground water and surface water is included.

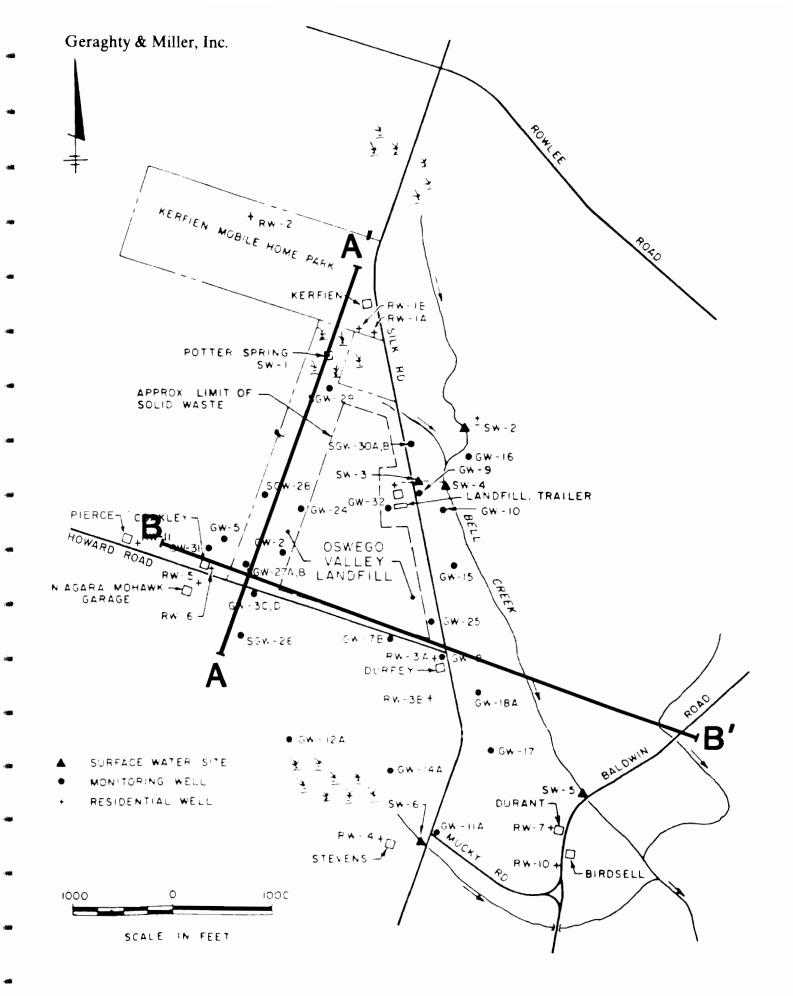
HYDROGEOLOGY

2.1 Geology


Geologic conditions in the vicinity of the Oswego Valley Landfill have been investigated through a number of test borings, monitoring wells, and residential wells drilled in the area. In addition, soil samples were collected by Geraghty & Miller for geologic interpretation during the drilling of the supplemental (SGW) wells. Construction data for test wells and residential wells are summarized in Tables 1 and 2 of our August, 1984 report: "Evaluation of Hydrogeologic Conditions and Preparation of a Proposed Cround Water Monitoring Program, Oswego Valley Landfill." Geologic descriptions of samples collected from the supplemental wells are included in Table 1. The locations of all wells are shown on Figure 1.


The geologic setting of the Oswego Valley Landfill area has been described in detail in publications of the U.S. Geological Survey (USGS) (Anderson, 1982 and Miller, 1982). These reports indicate that the area is underlain by glacial deposits over sandstone bedrock. The surficial glacial deposits have been identified as beach sand and gravel, lacustrine fine sand, and lodgement till.


The supplementary well drilling explored the unconsolidated deposits and the upper zone of the underlying lodgement till. Our interpretations of lithologic and textural changes within the unconsolidated deposits agree with previous findings as shown in geologic cross sections A - A' and B - E' on, Figures 2 and 3, respectively. The lines of section are shown on Figure 4. Geologic data from existing USGS wells have been incorporated.


Table 1. Geologic Logs Compiled by Geraghty & Miller, Inc. for Monitoring Wells Installed Between December 3 and 7, 1984, Oswego County Landfill, Volney, New York.

***	Well No.	No. Description				
•	SGW-26	Sand, cobbles, black, moist Sand, fine to medium, trace fine gravel, tan, wet Sand, very fine, gray, wet Sand, fine to coarse, with layers of	0 - 2.5 2.5 - 4 4 - 8			
**		fine gravel, some silt and clay streamers, reddish-gray, wet Silt, sandy (very dense) some fine to coarse gravel and cobbles, red,	8 - 24			
		moist (lodgement till)	24 - 25			
***	SGW-27A and	Topsoil, sandy, black, moist Sand, medium to coarse, trace fine	0 - 1.5			
***	SGW-27B	gravel, dark brown, wet Sand, fine, dark brown, wet	1.5 - 13 13 - 18			
-		Silt and very fine sand, brown to gray-brown, wet Sand, fine, some fine gravel, brown,	18 – 31			
		wet Silt and very fine sand, (moderately dense), reddish-gray (weathered	31 - 36			
***		lodgement till)	36 - 38.5			
48	SGW-28	Sand, fine to medium, brown, wet Silt, some very fine sand, gray-brown, wet	0 - 1U 10 - 13			
2.000		Sand and fine gravel, reddish-brown, wet Silt, sandy (very dense), some fine	13 - 24			
•		to coarse gravel and cobbles, red, moist (lodgement till)	24 - 26.5			
188	SGW-29	Gravel, fine to coarse, some sand, (brown wet silt at 10 to 11 feet) Silt, sandy (very dense), some fine to	0 - 19			
±100		coarse gravel and cobbles, red, moist (lodgement till)	19 - 21.5			
ndi	SGW-30A and SGW-30B	Sand, very fine to medium, little coarse sand, some fine gravel, trace silt, brown to gray-brown,				
***		wet Silt, some very fine sand, gray, wet Gravel, fine, some sand, red, wet Silt, sandy (very dense), some fine to	0 - 12 12 - 23.5 23.5 - 27			
188		coarse gravel and cobbles, red, moist (lodgement till)	27 - 34.5			

LINES OF GEOLOGIC CROSS SECTIONS OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

The unconsolidated zone is comprised of four zones with different textural characteristics. Valleys cut into the dense lodgement till, most likely by glacial melt-water, are filled with sand and gravel deposits and a discontinuous layer of gray silt (outwash deposits). The valleys in the till roughly follow current streams and tributaries to the north and east of the site. One such valley was defined during the drilling program at the southwestern tip of the landfill property and runs in a southeasterly direction from wells SGW-27A to GW-3. The sand and gravel deposits outcrop on the northern boundary of site and along Potter Spring and its connecting tributary. This outcrop continues east toward Bell Creek. The sand and gravel deposits and the gray silt zone in the southern half of the landfill and areas south and west are overlain by a fine sand zone with a thickness of 10 to 15 feet. A zone of fine to coarse sand overlies the fine sand zone along the southwest portion of the landfill property (near the Coakley residence) and directly overlies a gray silt zone near well SGW 30 (the fine sand zone is absent here).

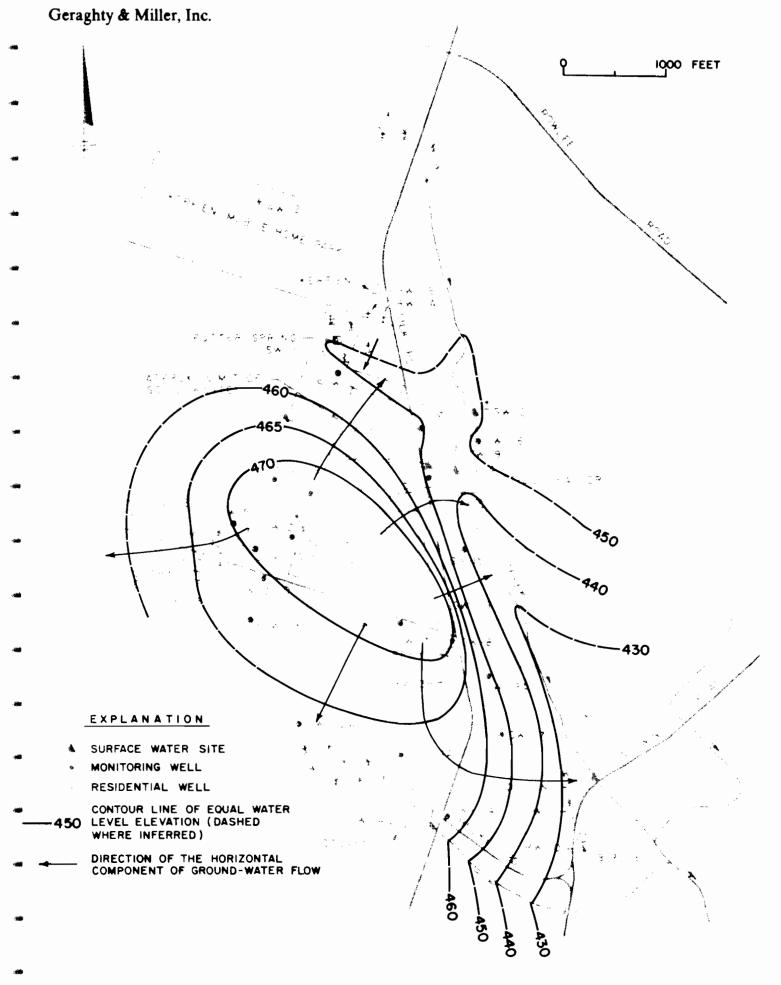
The lodgement till was described in well logs from previous studies as a dense, compact material. This characteristic was noted during Geraghty & Miller, Inc.'s drilling program, since more than 100 blows per 6 inches with a 180-pound weight were required to penetrate the till with a split-barrel (core) sampler. The upper 5 feet of the till layer is primarily a very densely compacted silt. The influence of this resistant lodgement till material on land surface topography as well as the hydrogeology of the site is evident from examining the cross-sections.

The bedrock underlying the lodgement till is a red sandstone and shale, and has been mapped as the Medina Group and the Queenston Form-

ation (Miller, 1982). Depths to bedrock near the landfill, based on driller's reports from nearby residential wells, are approximately 30 to 50 feet. These drilling records do not contain detailed descriptions of the bedrock, such as rock type, grain size, and fracturing.

2.2 Hydrology

Water levels were measured in monitoring wells, surface water stations, and in accessible residential wells at the Oswego Valley Landfill site. A preliminary measurement round was completed on January 21, 1985; a second, more complete round, was completed on January 28, 1985. Water-level elevations collected on both occasions are given in Table 2. The results of the second round were used to construct the water-level maps for this report.


The water-table contour map (Figures 5) indicates that ground water flows radially from beneath the Oswego Valley Landfill toward surface water discharge points. The western component of ground-water flow was suspected during Geraghty & Miller, Inc.'s initial assessment of ground-water conditions at the site (August, 1984) and confirmed by contouring water-level elevations obtained from the supplemental (SGW) wells in January, 1985. The water-table surface generally conforms to the topographic surface and is largely controlled by the slope and geology of the lodgement till. The water table, as shown in the cross-sections is roughly parallel to the slope of the lodgement till.

Ground water in the immediate vicinity of the landfill discharges north to Potter Spring and the connecting tributary to Bell Creek, east

Table 2. Water-Level Elevations Relative to Mean Sea Level Datum, Measured January 21 and 28, 1985 at the Oswego Valley Landfill, Volney, New York.

140	Well Number	Measuring Point Elevation (feet)	Water-Level Elevation January 21, 1985 (feet)	Water-Level Elevation January 28, 1985 (feet)
	GW-2	484.67	471.92	472.63
	GW-3C	476.94	468.83	468.58
•	GW-3D	476.88	468.75	468.52
	GW-5	473.40	470.95	470.70
	GW-7	498.93	Dry	Dry
**	GW-8	497.09	470.68	470.20
	GW-9	473.48	448.82	448.58
	GW-10	458.63	444.41	443.26
****	GW-11A	471.66	461.62	461.51
	GW-12A	472.53	463.31	463.14
	GW-14A	474.85	462.63	462.49
	GW-15	451.57	440.25	440.08
~ 49	GW-16	469.94	458.69	458.38
	GW-17	466.49	451.42	454.11
	GW-18A	466.94	455.38	451.55
144	GW-24	483.20	480.10	479.40
	GW-25	495.60	472.10	Dry
	SGW-26	470.24	465.79	465.78
-	SGW-27A	475.44	470.23	469.91
_	SGW-27B	475.50	470.08	469.75
	SGW-28	479.99	472.93	472.75
	SGW-29	458.42	452.90	452.80
***	SGW-30A	457.13	450.11	450.05
	SGW-30B	456.37	450.55	450.46
	GW-31	472.60	Not Measured	470.55
	GW-32	469.90	Not Measured	442.40
	RW-1A	457.9	Not Measured	454.9
	R₩-1B	479.1	Not Measured	454.0
460	RW−2	458.2	Not Measured	Inaccessible
	RW-3A	472.7	Not Measured	471.8
	RW-3B	496.8	Not Measured	469.0
	RW-4	472.5	Not Measured	463.0
	RW-5	467.9	Not Measured	465.4
	RW-6	472.1	Not Measured	466.8
	RW-7	436.4	Not Measured	434.6
**	RW-10	444.1	Not Measured	Not Measured
	RW-11	468.94	Not Measured	463.28
•	Surface Water S	itations		
	SW-1	454.54	452.39	450.72
	SW-4	447.37	444.97	444.96
*	SW-5	428.15	Not Measured	425.60
	SW-6	463.62	461.46	461.34
	.5,,, 5		.5,•,5	

Measuring point elevations for ground-water monitoring wells = top of well casings. Measuring point elevations for surface-water monitoring points = top of staff gauges.

WATER TABLE MEASURED 1-28-85 AT THE OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

to Bell Creek, and south from the landfill to a wetland area and tributary which feed into Bell Creek. Surface-water levels measured at Potter Spring and in creeks and tributaries surrounding the landfill confirm that these surface-water features act as hydraulic boundaries to ground-water flow. In other words, shallow ground water in the water-table zone moves away from the landfill and discharges along the creek beds.

The lodgement till functions as a low-permeability confining unit that separates the unconsolidated sand and gravel zone from the bedrock formation. The primary permeability of the till, which governs flow of ground water between grains of silt and other sediment, is probably very low because of till's compact nature. Secondary permeability, whereby ground water flows through fractures, can occur in till and clay formations. The occurrence and extent of fracturing within the lodgement till is not known. Considering the thickness and compact nature of the till layer, flow through the till between the water-table and artesian zones is either not possible or insignificant.

Estimates of ground-water flow velocity and travel time in the water-table zone have been made from the perimeter of the landfill to selected points hydraulically downgradient. These estimates are determined from Darcy's Equation for Velocity (V);

$$V = \frac{K \times dh/d1}{n}$$

General values of permeability (K) and porosity (n) are used from the literature (Freeze and Cherry, 1982) for earth materials similar to the type observed at the site during the drilling program. The hydraulic

gradient (dh/dl), or slope of the water table, was measured directly from the January 28, 1985, water-level contour map shown on Figure 5.

The landfill and surrounding areas have been divided into two permeability zones based on our observations in the field and past drilling records. For the eastern zone, where fine sands were encountered during drilling and where the hydrogeologic gradient is fairly steep (indicative of lower permeability zones), we have assumed a permeability of 2.8 feet per day. In the western zone where more coarse material (sand and gravel) was encountered, we have assumed a permeability of 28 feet per day. We have assumed a porosity of 35 percent for both zones. Sections A, B, and C shown on Figure 6 represent ground-water flow paths toward residential areas (Sections A and B) and toward Bell Creek (Section C). Estimates of ground-water velocities and travel time are also shown on Figure 6.

Based on these estimates, the results of the ground-water quality survey, and the age of the facility (approximately 15 years), leachate has reached and is discharging into Bell Creek (5 years travel time), and has moved into areas south of the landfill near wells GW-12 and 14 (10 years travel time). Our travel time estimates indicate that leachate could have traveled as far as RW-11 (Pierce Well) to the west in 10 years, however, the water quality data does not support this estimate indicating that leachate has not yet reached this area.

Ground water in the bedrock formation is under confined or artesian conditions, and the water levels measured in wells tapping the bedrock and the bedrock/till interface represent a pressure or piezometric head. The piezometric surface shown on Figure 7 was determined from water-levels

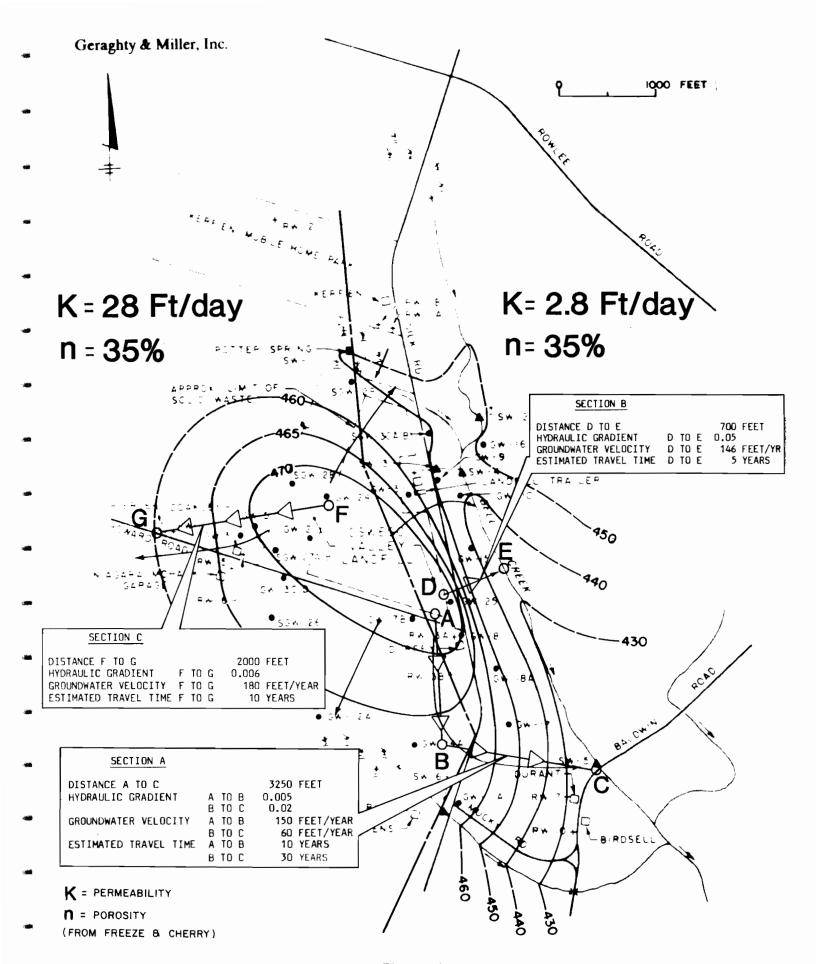
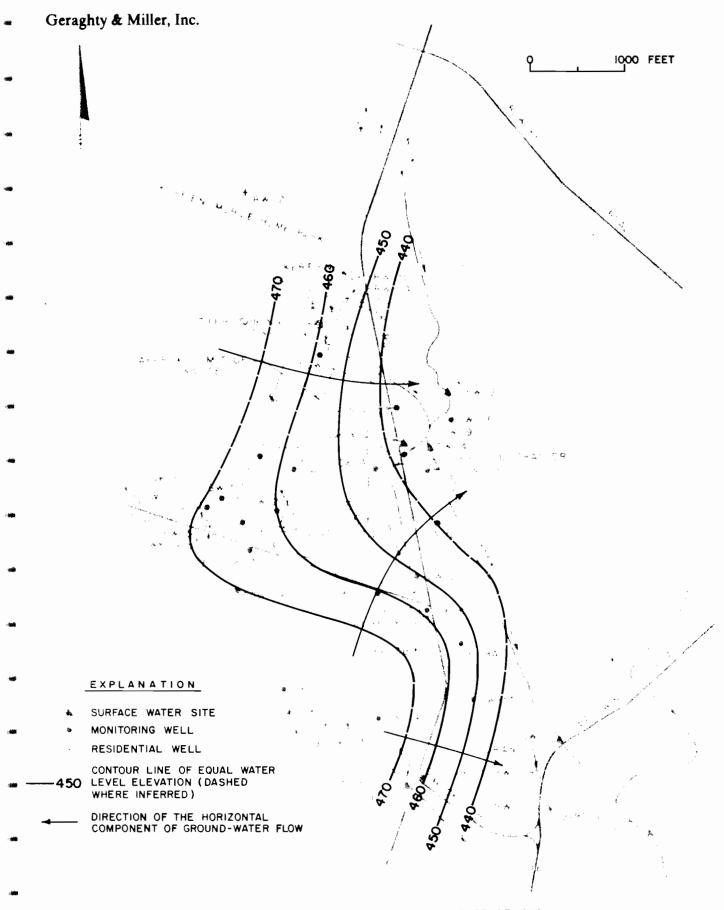



Figure 6

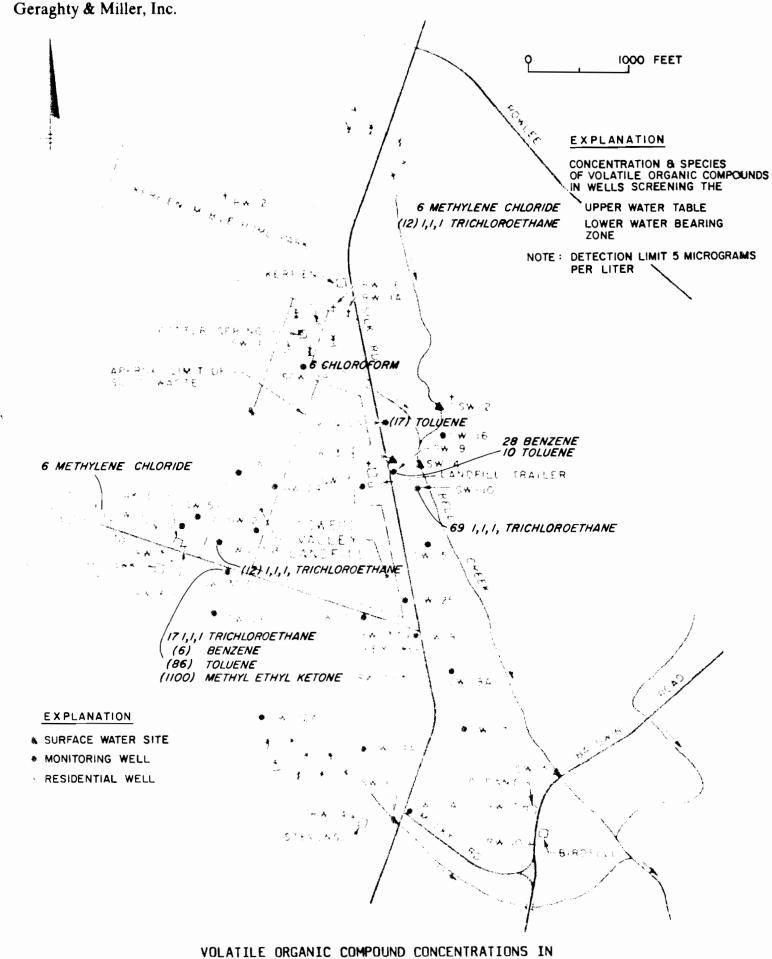
PIEZOMETRIC SURFACE MEASURED 1-28-85 AT THE OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

Figure 7

measured in monitoring wells and residential wells screened in the deeper aquifer. Ground-water flow in the artesian zone is generally to the northeast which agrees with regional ground-water flow patterns in the bedrock as discussed in published reports (Miller, 1982). Many of the piezometric surface contour lines are inferred since there are relatively few deep wells near the landfill.

The vertical head gradient, i.e., the difference between the water-table elevation and the piezometric surface elevation, indicates a downward potential for ground-water flow from the water-table zone to the artesian zone directly beneath the landfill. Downward flow of ground-water would probably occur if it were not for the presence of the till layer. The vertical head gradient decreases east toward Bell Creek where the water-table elevation and stream elevation are roughly equal to the piezometric surface elevation. This implies that flow in both the artesian zone and the water-table zone may be discharging to Bell Creek. There is an upward head gradient, indicating an upward component of ground-water flow from the artesian zone, which begins approximately at the western property boundary of the landfill and increases westward. Under these conditions no downward flow of ground water from the water-table aquifer to the artesian aquifer could take place.

3. Water Quality Analysis


During January 22-28, 1985 water samples were collected from selected monitoring wells, residential wells, and surface-water stations on and near the Oswego Valley Landfill site. In addition, leachate samples were collected from the landfill's leachate collection system to determine

the types and concentrations of compounds that are being generated at the site. The purpose of this sampling program was to determine the impact of the landfill on the chemical quality of surrounding surface water and ground water and to assess the potential risk to nearby drinking water supplies. The results of chemical analyses for all sampling points are given in Appendix F.

A purgeable organic analysis performed on ground-water samples from both the water table and artesian aquifers detected a number of compounds. Benzene, toluene, and 1,1,1-trichloroethane were found the most frequently. However, the distribution of these compounds when mapped does not form a coherent pattern that would indicate that they are exclusively components of the landfill leachate plume (Figure 8). Benzene and toluene are components of gasoline and 1,1,1-trichloroethane is a widely used solvent and degreaser. Benzene and 1,1,1-trichloroethane were not prevalent in the leachate samples, 19 ppb (OVL-1) and non-detectable, respectively. Therefore, the presence of these compounds in ground water could also be a result of activities in the vicinity of the landfill unassociated with the leachate.

One compound was found at relatively high concentrations in both the leachate and ground water. Methyl ethyl ketone (MEK) was present in the water sample from GW-3C at 1,100 ppb and in the leachate sample OVL-3 at 12,000 ppb. This correlations suggests that the leachate is a source of some volatile organics as well.

The results of the analysis for non-priority pollutant volatile organic peaks are shown in Table 3. The compounds are noted only as to their presence or absence in the water samples. More of the extra

VOLATILE ORGANIC COMPOUND CONCENTRATIONS IN MICROGRAMS PER LITER OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

Figure 8

Qualitative Listing of Extra Chromatographic Peaks for Volatile Organic Compounds on the EPA 624 Scan (Greater than 10% IS); Oswego County Landfill, Volney, New York.

- saje	Peaks	GW-3C	GW-9	GW-14A	GW-24	Bird- sell RW-10	GVL-1 (Sump)	0VL-2 (Tank)	0VL-3 (Pump)
***	Sulfur Dioxide					X		X	
***	Oxybismethane						X	X	Χ
	Acetone	Χ					X	X	Χ
***	Isopropanol	X						X	Χ
***	2-Butanol							X	Χ
	Tetrahydrofuran			X	X		X	X	Χ
100	Dichlorofluoromethane	Χ	Χ						
	Chlorodifluoromethane		X						
· 1986									

compounds were detected in leachate than in ground-water samples. That is not surprising since there is only a fraction of the leachate that apparently discharges to ground water. Two compounds, chlorofluoromethanes or Freons, were detected in ground water but not in leachate. These compounds are used in refrigerating systems and may have other sources.

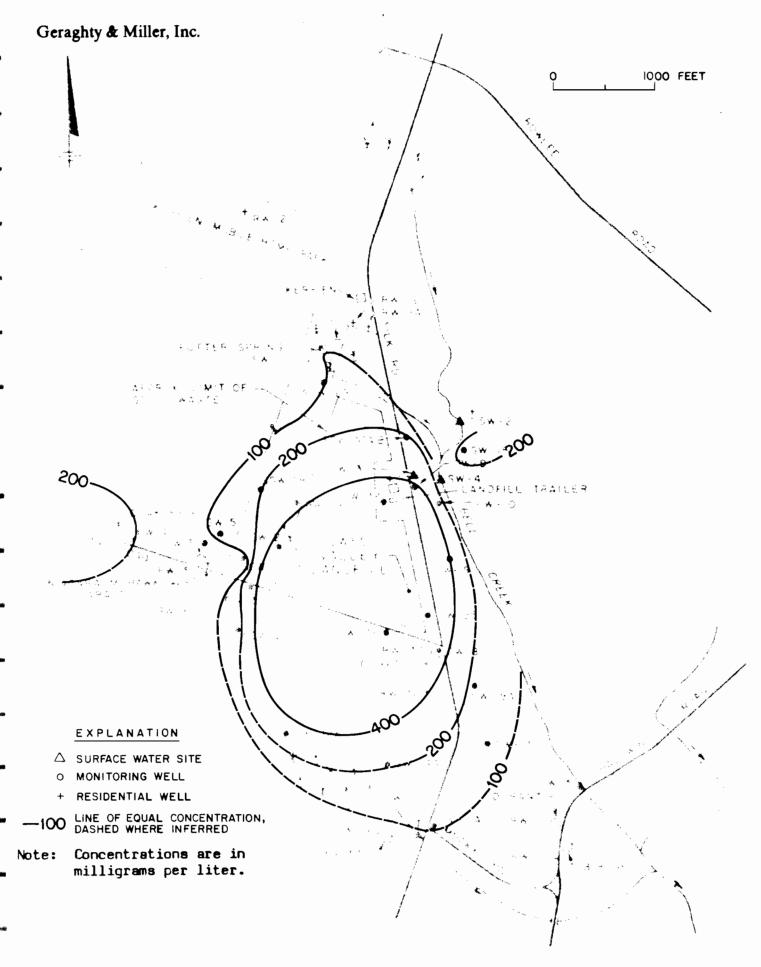
Our experience with organic contaminants has shown that there is usually a high variability in concentration with time. Therefore, a second or third sampling should take place before conclusions are drawn concerning the sources or degree of contamination.

The water quality of the water-table aquifer, the artesian bedrock/
till aquifer, surface water, residential wells and leachate is discussed
in the following sections:

3.1 Water-Table Aquifer

3.1.1 Alkalinity

The reactions that occur in a landfill causing the decomposition of organic matter, produce carbon dioxide. Carbon dioxide reacts with water to form the bicarbonate ion. The presence of biocarbonate in solution produces a condition that is described as alkalinity, that is, the ability to neutralize acid. An increase in alkalinity or the ability of the water to maintain at pH 7 or above is typical of landfill leachates. The bicarbonate ion is usually more concentrated in the landfill leachate than it would be in natural waters because the carbon dioxide is the system is present at higher concentrations than it is in the atmosphere and is also under pressure.

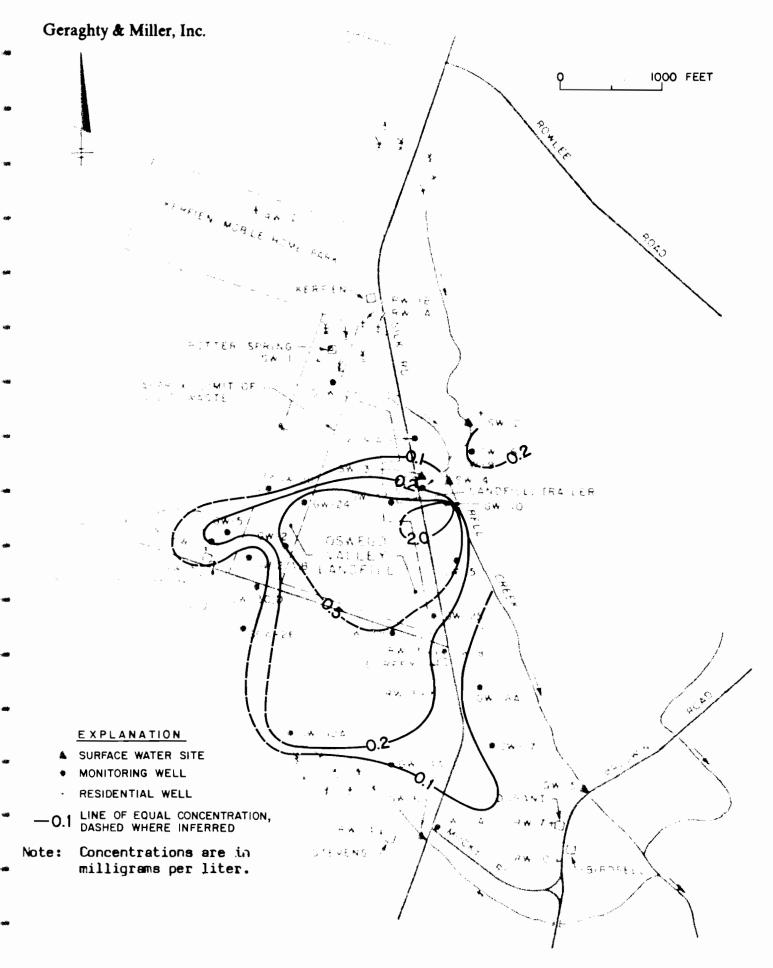

Figure 9 shows the contours for concentrations of alkalinity in the vicinity of the landfill. It should be noted that the concentration above ambient extends outward from the landfill in the southeasterly direction following the gradient of the water table. The outline of the alkalinity illustrates the shape of the inorganic leachate plume emanating from the landfill.

Two anomalies are evident in the distribution of alkalinity concentration. One is in the vicinity of the Pierce well and the other is at Well 16. Alkalinity is enhanced in septic tank effluent for the same reason it is in landfill leachate. This area of increased alkalinity may result from septic system influence. This is suggested particularly because wells between Pierce and the landfill are at ambient concentration levels.

The higher alkalinity at well GW-16 may be a result of easterly flow of some leachate-contaminated ground water beyond Bell Creek. Movement of leachate past Pell Creek, if this does in fact occur, may be due to the steep hydraulic gradient (slope) that exists east of the landfill. There is no evidence of any activity other than the landfill near well GW-16 that would cause degradation of water quality. Additional water quality and water level data are needed to better access alkalinity concentrations and levels of other inorganic compounds near well GW-16 and east of Bell Creek.

3.1.2 Ammonia

Nitrogeneous components in putrescible waste decompose under conditions in the landfill to produce ammonia. Ammonia is the most reduced form of nitrogen and forms under anaerobic conditions. Ammonia is not


ALKALINITY CONCENTRATIONS IN THE SHALLOW WATER BEARING ZONE OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

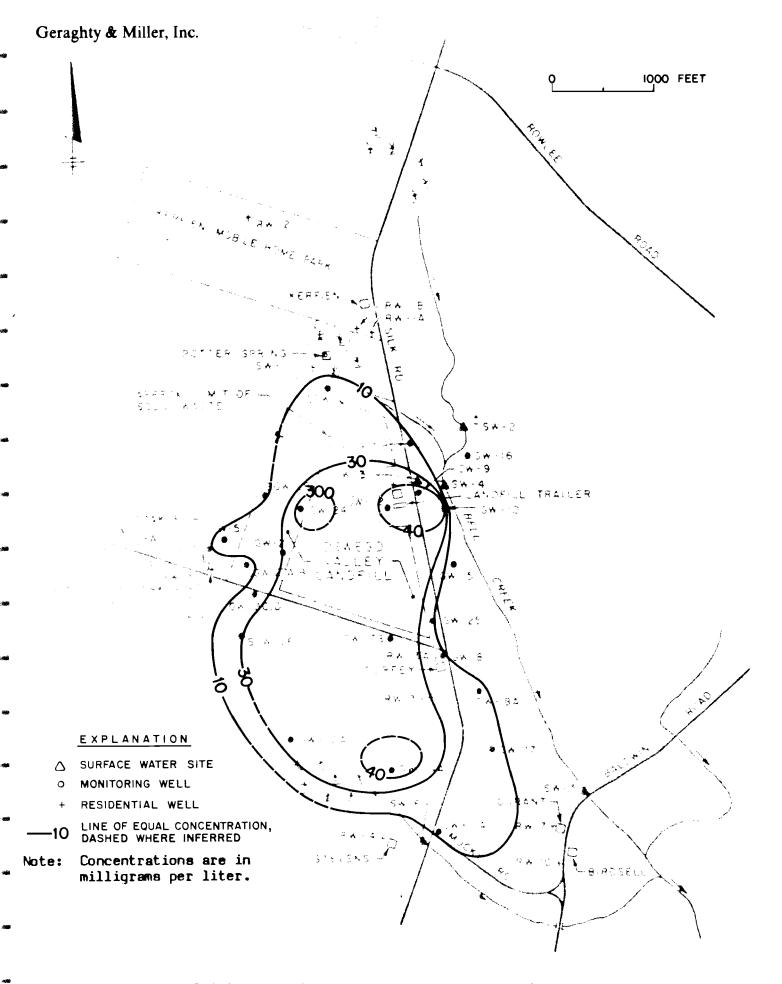
found at concentrations that are significant in natural water because oxidative conditions (the presence of dissolved oxygen) result in ammonia being converted rather quickly to nitrate. Thus, in analyzing ground-water quality data, the presence of ammonia is usually indicative of some sort of contamination. Landfill leachate is a typical source as is septic tank effluent. Under the conditions found in landfill leachate which usually include no dissolved oxygen, ammonia will remain unchanged. It is thus a good tracer for leachate because it appears in ground water when ambient ground water is likely to show little or none. In Figure 10 the concentrations of ammonia in ground water in the vicinity of the landfill are contoured. The enhanced concentrations are shown to extend in a southeasterly direction according to the ground-water flow direction. A slight lobe of ammonia also extends to the west.

Ammonia is also indicative of domestic septic tank leachate which may have affected one or more wells on the west side of the landfill (GW-5 and RW-5). Enhanced concentrations of ammonia are noted at well GW-16 as are concentrations of several other leachate indicators. As discussed in the previous section this phenomenon may be the result of local hydrologic conditions in the area east of Bell Creek.

3.1.3 Chemical oxygen demand (COD)

Many kinds of organic materials are deposited in municipal landfills. Much of the organic matter is rather easily biodegraded and in this process decomposition products are produced having a higher water solubility than the original organic materials. Some of these materials are dissolved in water and become part of the constituents of the landfill

AMMONIA CONCENTRATIONS IN THE SHALLOW WATER BEARING ZONE OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK


Figure 10

leachate. The dissolved organic chemicals in the water will react with an oxidizing agent and that reaction is described as a chemical oxygen demand. This value is simply an index to the amount of oxygen used in the oxidation of dissolved organic matter which occurs in a water sample.

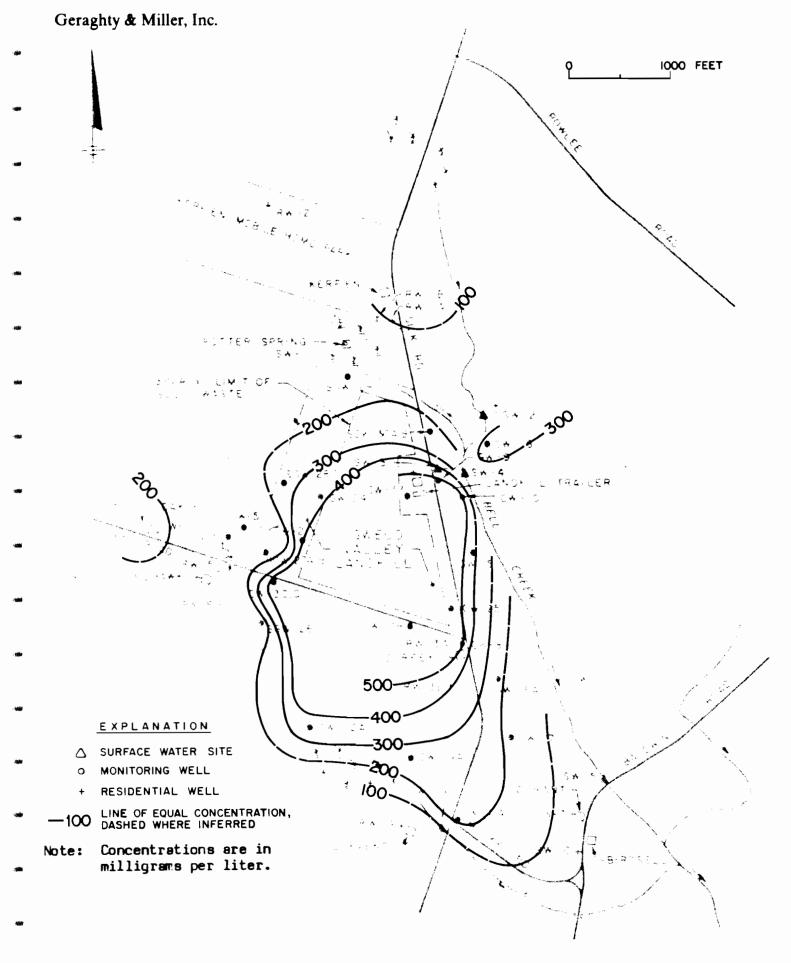
The COD values are contoured in Figure 11 and show the same sort of pattern as was noted for alkalinity and ammonia. The extension to the southeast of concentrations of COD indicate the path that the landfill leachate takes. The lobe to the west may indicate slight radial flow in this direction. An area of slightly higher concentration of COD is noted in the vicinity of leachate treatment plant.

3.1.4 Hardness

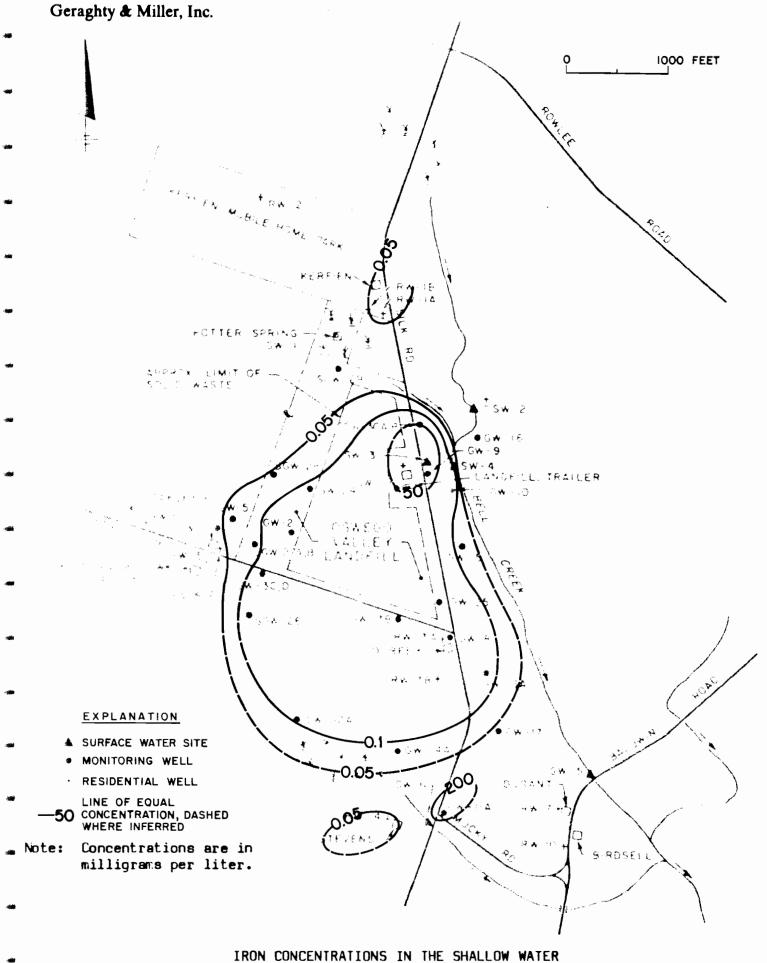
Hardness is a term used to describe the mineral and alkalinity content of water. When calcium and magnesium carbonates or other calcium and magnesium minerals dissolve in water, the water will form deposits of mineral matter upon its evaporation. In addition, the calcium and magnesium react with soap to form insoluble precipitates that flock out of solution causing a scum in wash water and inefficiency in the use of soap. Hard water will cause a buildup of mineral deposits in pipes and will show up as deposits in fixtures and on the ends of water faucets. In the landfill there is a deposit of organic and mineral matter which releases calcium and magnesium enriching the leachate with those elements. This reaction increases the hardness of the water contaminated by leachate. In areas of generally soft water such as that at Oswego, the increased hardness is quite apparent when leachate contamination occurs.

CHEMICAL OXYGEN DEMAND CONCENTRATIONS IN THE SHALLOW WATER BEARING ZONE OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

The pattern of hardness follows that of other leachate indicators and is shown in Figure 12. Anomalous hardness concentrations, above ambient concentrations, were found at wells GW-16 and RW-11.


3.1.5 Iron

Chemical conditions in a landfill are highly reducing. This means that there is no dissolved oxygen present and that decomposition processes take place anaerobically. Under these conditions, iron present in the landfill can also be reduced and become more soluble. Iron in a reduced state chemically dissolves in water much more readily than it does in an oxidized state. The flow of highly reduced water such as landfill leachate into native soil or sediment will reduce iron which is coating the sediment particles and lead to relatively high iron concentrations in the water. This phenomenon is almost universally true at landfills that receive putrescible wastes. In Figure 13, the iron concentration contours show a southeasterly extension. This follows the general trend showing the pathway of the leachate-contaminated ground water.


Iron concentrations are the highest at Well 11A (200 mg/l) and do not appear to be related to the leachate plume. There is no ready explanation for the elevated iron concentrations, however, the well is located at the edge of the road and could be affected by deicing chemicals (TDS concentration, is also elevated).

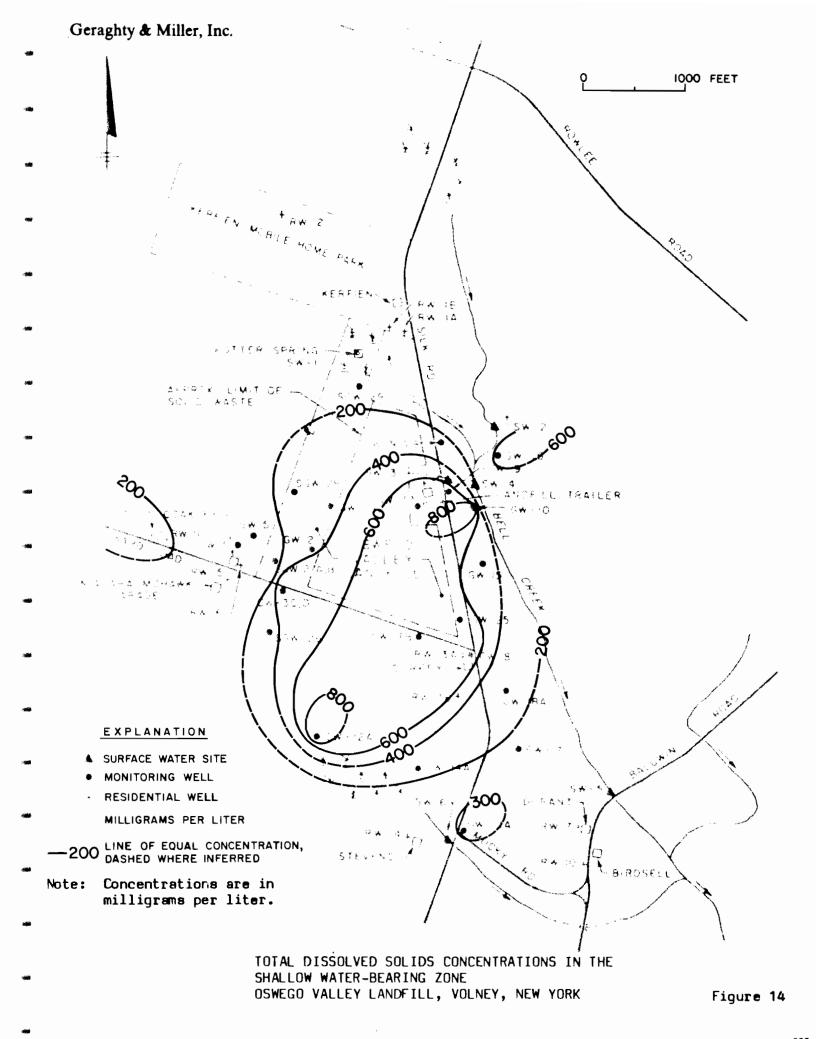
3.1.6 Total Dissolved Solids (TDS)

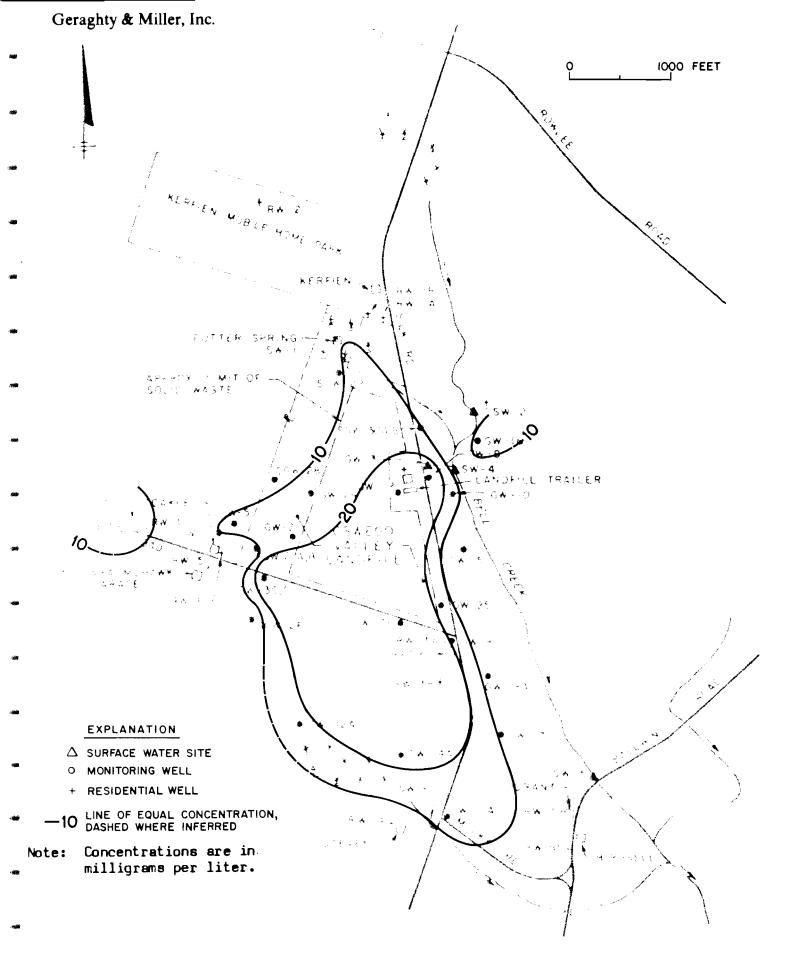
A measure of the total amount of inorganic material dissolved in water is termed total dissolved solids (TDS). The TDS is simply the

HARDNESS CONCENTRATIONS IN THE SHALLOW WATER BEARING ZONE
OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

BEARING ZONE
OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK

Figure 13


organic material may make up a small portion of the TDS, but as a rule it is not significant. The TDS is an index of the amount of mineral matter that has been dissolved in ground water and in this case represents a general index of the strength of the landfill leachate. TDS does not discriminate in terms of the individual components that may be dissolved.

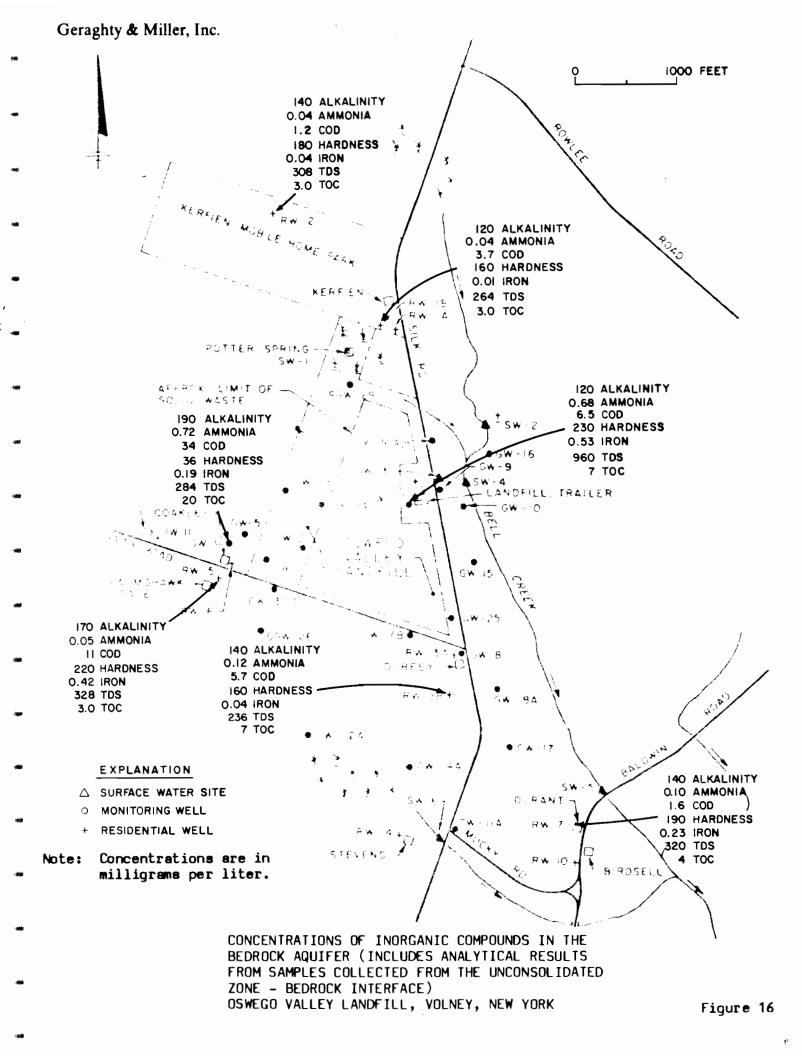

TDS is related to the specific conductivity of a water sample because it is the dissolved solid concentration which gives rise to the electrical conductivity. The TDS contours are shown in Figure 14 and generally agree with the pattern of leachate flow. There are several locations where concentrations of TDS are slightly higher than the concentration in the immediate vicinity. There are a number of potential causes such as the influence of septic tank effluent or road salting or other activities that may add dissolved substances to the water.

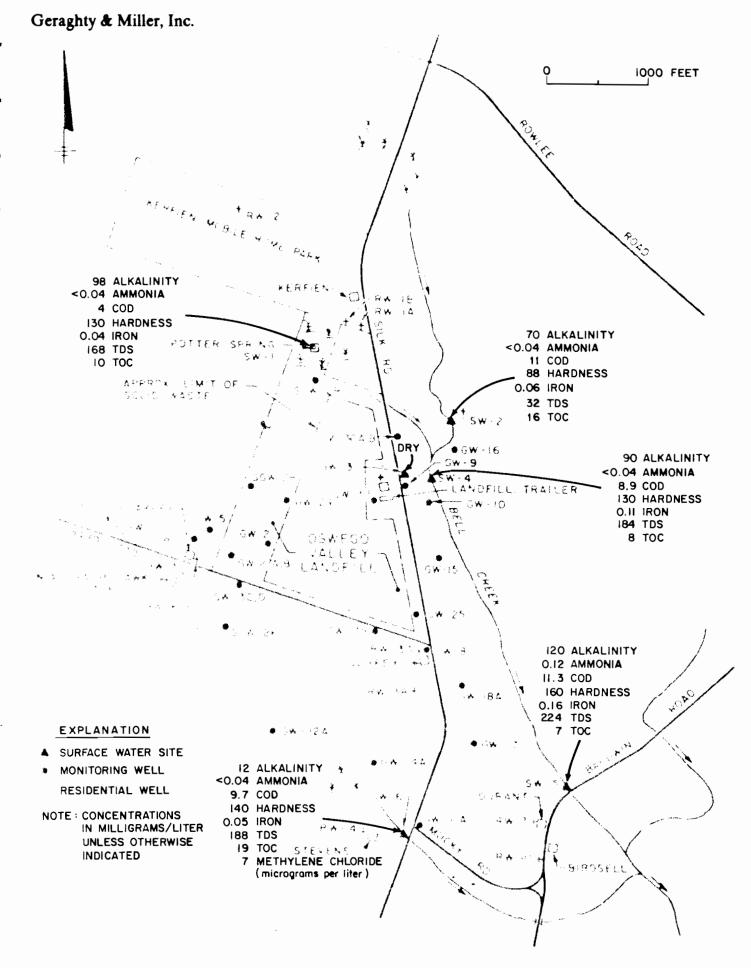
3.1.7 Total Organic Carbon (TOC)

The TOC concentrations are similar to the COD as they represent dissolved organic matter. In this case, the measurement is made directly of combustible carbon rather than indirectly by using an oxidizing agent. There is no discrimination in the organic matter which is being measured as it is totally combusted.

TOC concentration contours shown in Figure 15 follow the same flow path as other contours denoting the area of leachate contemination. It should also be noted that the area near well GW-16 and the Pierce residence shows a slight increase in TOC values. These anomalies show up and have been explained previously.

TOTAL ORGANIC CARBON CONCENTRATIONS IN THE SHALLOW WATER BEARING ZONE OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK


Figure 15


3.3 Artesian Aquifer (Bedrock/Till)

Analytical work had been done on ground-water samples from the bedrock aquifer and the deep unconsolidated zone above the bedrock. The results depicted in Figure 16 are for the same suite of leachate indicator parameters that was analyzed for in shallow ground-water samples. Although some differences may be noted between samples in certain of the chemical constituents, there does not seem to be any trend or any area delineated by higher than normal concentrations. Some samples such as GW-32 and GW-5 have somewhat elevated ammonia concentrations and iron and TDS concentration exceed the drinking water guidelines in a few samples. However, comparing the results, there appears to be no pattern of concentrations that delineate a leachate contamination plume. Thus it can be concluded that the leachate has not had any influence on the bedrock and deep unconsolidated aquifer.

3.3 Surface Water

Surface-water samples were collected from Potter's spring, Bell Creek and other surface water drainage areas and analyzed for leachate indicator constituents and volatile organic compounds. The results of these analyses are shown in Figure 17. Bell Creek in the reach between surface water sampling site SW-2 and surface water sampling site SW-5 has been slightly influenced by discharge of leachate-contaminated ground water as indicated by increased concentrations of TDS, hardness, ammonia, and alkalinity. Iron concentration also appears to be influenced, but the differences in concentration may not be statistically significant. This interpretation of the surface-water quality is consistent with the previous ground-water quality data and understanding of the ground-water flow system.

CONCENTRATIONS OF INORGANIC AND ORGANIC COMPOUNDS IN SURFACE WATER SAMPLES JANUARY 26, 1985 OSWEGO VALLEY LANDFILL, VOLNEY, NEW YORK A trace amount (7 micrograms per liter) of methylene chloride was detected in surface water sample SW-6. Methylene chloride is a common laboratory reagent and is a problem as a trace contaminant. When methylene chloride is present at levels of 10 micrograms per liter or less in a sample it is probable that it is a laboratory artifact. Unless it is confirmed during future analyses, we do not attach much significance to this result.

3.4 Residential Wells

Residential wells were sampled for the purpose of analyzing the water for inorganic, volatile organic, and microbiological constituents. The results are presented in Table 4. Inorganic analyses included the suite of leachate indicators discussed above. None of the inorganic constituents in residential wells exceeded the NYSDEC Class GA ground-water standards. Generally the water would be classified as neutral to slightly alkaline, hard to very hard, and moderately mineralized.

The Kerfien well sample was the most affected by biological contamination. The Pierce and Stevens wells showed slight contamination. Up to four bacterial colonies are tolerable under the state sanitary code, but the presence of coliform bacteria indicates further sampling should be done. In all cases, the samples were obtained from dug wells which seldom have effective sanitary seals.

Only the Pierce well showed a positive test for volatile organic compounds. In this case, 6 ug/L of methylene chloride was detected. Methylene chloride is universally used in laboratories for extraction and cleaning and, as explained in the previous section, is a problem as a trace

<u>Table 4.</u> Chemical Quality of Drinking Water from Residential Wells near the Oswego Valley Landfill, Volney, New York, January 27, 1985 (concentrations in milligrams per liter, unless otherwise indicated).

⇔ °arameter	NYSDEC Class GA Drinking Water Standards	Birdsell (RW-10) (Dug Well)	Durant (RW-7) (Drilled Well)	Durfey (RW-3A) (Dug Well)	Durfey (RW-3B) (Drilled Well)	Kerfien (RW-1A) (Dug Well)
Alkalinity	-	38	140	200	140	56
20D	-	4.1	1.6	7.8	5.7	2
Chloride	250	4	29	4	10	27
⊸Specific Conductance (umhos/cm)	-	200	40U	400	300	190
Jardness	-	92	190	220	160	100
Ammonia	-	0.05	0.10	<0.04	0.12	<0.04
Nitrate	10	2.25	<0.04	0.05	<0.04	0.47
pH (standard units)	6.8-8.5	7.3	7.4	6.6	7.9	7.1
TDS	500 ²⁾	168	320	296	236	152
Sulfate	250	18	27	7	6.5	8.2
TOC	-	4	4	9	7	<3.0
™ Iron	0.3	0.03	0.23	<0.01	0.04	0.08
Manganese	0.3	0.01	0.03	<0.01	0.04	0.03
Zinc	5	0.21	0.05	0.49	0.10	0.17
_Coliform Fecal (colonies/100 ml)	<1	<1	<1	<1	<1	Positive
Coliform Total (colonies/100 ml)	<1	<1	<1	<1	<1	25
Volatile Organic • Compounds (ug/L)	-	ND	ND	ND	ND	ND

_1) Methylene chloride detected.

²⁾ USEPÁ Drinking Water Standard.

ND - None detected.

[able 4. (Continued)

Parameter	NYSDEC Class GA Drinking Water Standards	Kerfien (RW-1B) (Drilled Well)	Kerfien (RW-2) (Trailer Park Well)	Niagara Mohawk (RW-5) (Drilled Well)	Pierce (RW-11) (Dug Well)	Stevens (RW-4) (Dug Well)
"Alkalinity	-	120	140	170	250	82
COD	-	3.7	1.2	11	8.6	4.1
Chloride	250	20	23	18	1	<1.0
_Specific Conductance (umhos/cm)	-	300	400	400	450	200
-lardness	-	160	180	220	270	96
Ammonia	-	<0.04	<0.04	0.05	0.05	<6.04
⊸Nitrate	10	1.45	0.41	<0.04	0.60	0.64
pH (standard units)	6.8-8.5	7.3	7.5	7.3	7.4	8.0
TDS	-	264	308	328	368	176
Sulfate	250	18	23	29	22	10
TOC	500 ²⁾	<3.0	3.0	<3.0	19	9
≔ Iron	0.3	<0.01	0.04	0.42	<0.01	0.06
Manganese	0.3	<0.01	0.01	0.24	<0.01	<0.01
Zinc	5	0.09	0.09	0.08	0.11	0.10
Coliform Fecal (colonies/100 ml)	<1	<1	<1	<1	2	<1
Coliform Total (colonies/100 ml)	<1	<1	<1	<1	3	3
Volatile Organic Compounds (uq/L)	-	ND	ND	ND	6 ¹⁾	ND

¹⁾ Methylene chloride detected.
2) USEPA Drinking Water Standard.
ND - None detected.

laboratory's atmosphere, therefore, we do not attach significance to this analysis unless it is confirmed with future sampling.

3.5 Leachate Quality

The Oswego Valley Landfill is constructed with a leachate collection system that allows leachate to be collected and treated on site. The collection accounts for the relatively low levels of leachate contamination in ground water as compared to other New York State sites without leachate control (Kimmel & Braids). Table 5 shows the results of analysis of samples from the leachate sump, the leachate tank, and the pump station. For comparative purposes, typical leachate composition is also shown.

The pump station presumably represents an integrated leachate sample, so that is the analysis that will be discussed. The solution is highly mineralized as indicated by the high TDS equal to about one third that of sea water. Alkalinity and hardness are also high as the leachate is charged with carbon dioxide. Ammonia is over 700 mg/L, whereas nitrate is less than 1 mg/L. This contrast illustrates the lack of oxidative conditions within the landfill. The reducing conditions also result in over 100 mg/L iron in solution and only a small concentration of sulfate.

COD and TOC concentrations reflect the high concentrations of organic substances in the leachate. Most of the organic matter is comprised of low molecular weight acids, alcohols, and ketones that are decomposition products of garbage. The synthetic organic compounds shown as Selected Organic Parameters are recorded in concentration units one thousand times smaller than the inorganic parameters. Thus they do not comprise a very significant percentage of the overall organic loading.

<u>Table 5.</u> Chemical Quality of Leachate Samples Collected from the Oswego Valley Landfill, Volney, New York, January 27, 1985

•	Inorganic Parameters mg/L	OVL-1 Leachate Sump	OVL-2 Leachate Tank	OVL-3 Pump Station	Chemical Quality of) Typical Municipal Landfill Leachate Fresh Old		
•	Alkalinity	8,000	2,900	5,300	0 - 20,850	-	
	Ammonia	822	290	713	0 - 1,106	-	
/ ****	COD	1,315	4,015	8,423	22,650	81.1	
**	Chloride	1,800	610	130	742	197.4	
-	Hardness	5,000	1,900	3,000	0 - 22,800	-	
: -15	Iron	6.7	45	140	500	1.5	
	Nitrate	0.07	<0.04	0.07	0 - 1,300	-	
1980	Sulfate	67	4.5	4.5	1 - 1,826	-	
ri ne	TDS	8,824	5,244	10,952	12,620	1,144	
	TOC	1,100	140	2,100	6,500	70	
ad	Specific Conductance umhos/cm	14,500	4,000	12,000	9,200	1,400	
.949	pH (standard units)	7.0	7.2	6.9	5.2	7.3	
	Selected Organic Parame	ters ug/l					
- 16	Benzene	19	<5	<5	-	-	
***	Ethylbenzene	134	8	49	-	-	
	Methylene Chloride	<5	140	530	-	-	
****	Methyl Ethyl Ketone	420	3,200	12,000	-	-	
	Toluene	1,900	180	660	-	-	
***	1,1,1-Trichloroethane	<5	<5	<5	-		

¹⁾ Sources: Brunner and Carnes, 1974 and USEPA, 1973.

Methyl ethyl ketone, toluene, and methylene chloride are present in the highest concentrations of the volatile compounds. Methyl ethyl ketone was also found in well GW-3C at the highest concentration of all of the volatiles in ground water. All three compounds are commonly used as solvents in paints, paint removers, and degreasers. These substances could have originated in consumer products discarded in the landfill.

4. RECOMMENDED MONITORING PROGRAM

It is recommended that surface-water and ground-water monitoring continue on a quarterly basis for a period of one year. The purpose of continued monitoring is to establish a comprehensive data base to assess seasonal variability in ground-water and surface-water quality and to better quantify the impact of the landfill. The quarterly ground-water level and quality data will be evaluated after one year of sampling and, at that time, a future course of action will be recommended. Table 6 presents the recommended ground-water, surface-water and leachate sampling points and analytical parameters. Table 7 explains the rationale for monitoring at each data point.

In addition to the quarterly monitoring program, we recommend replacing several existing monitoring wells determined to be unsuitable for sampling purposes, and installing several new wells in areas where little is known about hydrogeologic ground-water quality conditions. USGS wells 6, 7 and 8, along Howard Road, are located at key early warning areas for movement of leachate from the landfill to the south. The integrity of these wells is questionable based on our field inspection during Task 1

Table 6. Recommended Quarterly Monitoring Program for the Oswego Valley Landfill, Volney, New York - May, 1985.

WELLS

***	Resident	ial Wells	<u>Monitori</u>	Monitoring Wells		
•	RW-1A RW-1B RW-2	RW-5 RW-6 RW-7	GW-3C GW-3D GW-5	GW-16 GW-17 GW-18A		
-##	RW-3A RW-3B RW-4	RW-10 RW-11	GW-7B GW-8 GW-9	SGW-26 SGW-27A SGW-27B		
wint			GW-10 GW-12A GW-14A GW-15	SGW-28 SGW-29 SGW-30A SGW-30B		
				_		

1) Replace existing wells.

LEACHATE

OVL-1 (Sump)

OVL-2 (Tank)

OVL-3 (Pump)

SURFACE-WATER

SW-1

SW-3

SW-5

Table 6. (Continued) ANALYTICAL PARAMETERS Alkalinity Ammonia Chemical Oxygen Demand Chloride Coliform (residential wells only) Hardness Nitrate Sulfate Total Dissolved Solids Total Organic Carbon Volatile Organic Analyses + Methyl Ethyl Ketone Iron Semi-annual parameters Manganese Zinc Specific Conductance Measured in field Temperature рΗ BLANKS AND REPLICATES (see text) WATER-LEVEL MEASUREMENTS All wells and surface-water sites

Geraghty & Miller, Inc.

Ta	abl	.e	7.

MONITORING RATIONALE

	7,0,12,0,12,	
	WELLS	RATIONALE
***	All residential wells	Public health and safety.
-100h	GW-3C GW-3D GW-9 GW-10 SGW-27 A, B	Monitor concentration and species of volatile organic compounds.
	SGW-29 SGW-30 A, B	
	GW-5 SGW-28	Monitor ground water quality moving west from the landfill.
:# 6	*GW-7P *GW-8 SGW-26	Early warning wells, monitor ground water quality south of the landfill.
	GW-12 GW-14A GW-17 GW-18A	Monitor quality of ground water moving toward residential areas along Baldwin Road.
: Madia	GW-15	Monitor ground water moving east from landfill toward Bell Creek.
∕™	GW-16	Monitor elevated levels of inorganic compounds.
10 3/0 2	SURFACE WATER	
***	SW-1 SW-3 SW-5	Monitor ground water discharge zones nearest to the landfill. Monitor surface water quality down stream from the landfill.
***	<u>LEACHATE</u>	
· ***	0VL-1 0VL-2 0VL-3	Monitor concentration and species of volatile organic compounds.
*##		

*Replace, poor construction.

and, therefore, we recommend that they be replaced. The replacement wells must be located further from Howard Road or Silk Road than the existing wells, so they will not be directly affected by street runoff.

As a quality control/quality assurrance (QC/QA) measure, at least two trip blanks and two field blanks should be analyzed for volatile organic compounds each quarter. A trip blank is a vial that is filled with organic-free water in the laboratory and travels unopened with the sample bottles. It is opened in the laboratory and analyzed along with the field samples for the constituents of interest. A field blank is made by taking organic-free water and placing it in contact with any field apparatus (bailer, pump, container) or with the atmosphere near a well that the samples contact and which conceivably is a source of contamination. The water is then sealed into the same type of sample bottle as will contain the actual samples.

In addition, "blind" replicate samples should be collected at two wells where elevated concentrations of contaminants are known or suspected, and two from background wells. These samples should be analyzed for the full suite of parameters recommended in this program. This procedure is done to monitor the reproducibility of the analytical procedure.

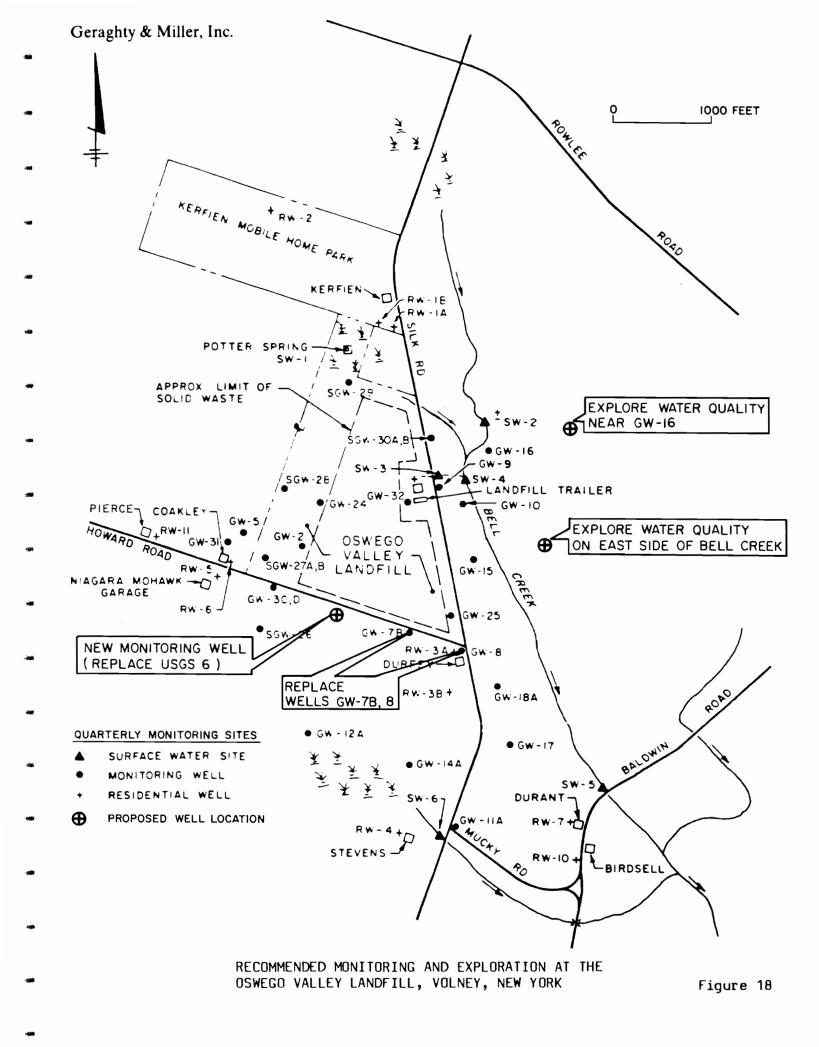
The concentrations of certain inorganic compounds in ground-water samples from well GW-16 were higher then expected for the area east of Bell Creek. Bell Creek is thought to be a hydraulic boundary to ground-water flow from the landfill. It is uncertain whether the inorganic

compounds found in GW-16 have originated from the landfill and traveled beneath the creek or have originated from another source. Because of the limited ground-water quality and water-level information east of Bell Creek we recommend that at least two monitoring wells be installed so that the impact of the landfill in this area can be assessed. The proposed locations of these wells are shown on Figure 18.

Respectfully submitted,

GERAGHTY & MILLER, INC.

Thomas Lobasso Senior Scientist


Olin C. Braids, Ph.D.

Associate

Frits van der Leeden

Vice President

July 18, 1985

REFERENCES

- Anderson, H., 1982, Fulton Area Aquifer: In Atlas of 11 Selected Aquifers in New York, U.S. Geolgoical Survey Open-File Report 82-553, pp. 215-235.
- Freeze, R. Allan and J. A. Cherry, 1979, Groundwater, (Prentice-Hall) chapter 2
- Geraghty and Miller, Inc., 1984, Evaluation of Hydrogeologic Conditions and Preparation of a Proposed Ground-Water Monitoring Program, Oswego Valley Landfill, Volney, New York; Unpublished consultant's report
- Miller, T., 1982 Geology and Groundwater Resources of Oswego County, New York: U.S. Geological Survey Water Resources Investigation 81-60, 37 pp.

APPENDIX A

Field Investigation

FIELD INVESTIGATION

The hydrogeologic field investigation of the Oswego Valley Landfill, Volney, New York, site was carried out in a series of related tasks (Task 1, 2 and 3) which began in December 1984. Task 1 involved the inspection and restoration of existing (USGS) landfill monitoring wells; Task 2 involved the installation of new monitoring wells designed to supplement the existing monitoring network (SGW wells); Task 3 involved collecting water samples and water-levels from monitoring wells, residential wells, leachate collection systems and streams. This section summarizes activities performed during each task.

Task 1. Inspection and Restoration of Existing Landfill Monitoring Wells

To insure ground-water samples and levels collected from existing USGS landfill monitoring wells are representative of conditions within the formation, it was necessary to inspect the integrity of the wells and undertake remedial measures when appropriate.

Inspection of the wells involved comparing the actual well depth with the reported depth (from well logs). Actual depth was determined by sounding the bottom of the well with a weighted tape. If the depths did not correspond, for reason of silt accummulation inside the well, the silt was then removed by bailing (bottom-filling bailer) and pumping (centrifugal pump) until the bottom of the well was cleared.

To insure that there was good hydraulic connection between the well screens and the formation, attempts were made to develop wells by removing

at least 3 to as much as 10 casing volumes of ground-water from the wells. In most cases it was not possible to remove water from wells at a continuous rate. In these instances at least one casing volume of water was removed. Recovery rates of water flowing into the wells after they were pumped or bailed dry were measured to determine progress of the development process. With few exceptions, recovery rates were very slow due to the low-permeability of the unconsolidated deposits and the relatively short screen lengths used in most of the USGS wells.

None of the existing USGS wells were constructed with cement (or clay) seals at land surface to prevent surface runnoff from moving down the annular space between the well casing and borehole wall, nor did they have protective steel casings with locking caps to prevent damage to the wells. Such protective equipment was installed on all wells deemed suitable for the January 1985 sampling program and future monitoring. For steel wells with threaded casing, only locking caps were installed.

In cases where two USGS wells, of equal dimensions and depth, but different construction material (galvanized steel vs PVC), existed at a single location, the PVC well was selected for restoration (except for PVC Well USGS 18B which could not be located). PVC wells are more resistant to chemical decomposition that could effect the chemistry ground-water samples, and are consistent with the PVC construction of new, supplemental wells that were later installed during Task 2.

Well casings that were damaged above ground or finished at ground surface, where they could be inundated by flooding, were replaced or extended so that approximately two feet of well casing extend above land surface. Because Wells USGS-6 and TW-9 were irreparably damaged below grade, and the construction of GW-7B (USGS-7B) was questionable (installed too shallow), these wells were not restored. Well construction details at existing (USGS) landfill monitoring wells are included in Geraghty & Miller, Inc.'s August 1984 report: Evaluation of Hydrogeologic Conditions and Preparation of a Proposed Ground-Water Monitoring Program, Oswego Valley Landfill, Oswego County, New York.

Task 2. Installation of Supplemental Monitoring Wells and Surface-Water Monitoring Stations

Monitoring wells, designated as SGW wells, were installed at five locations, (Figure 1) to supplement the existing monitoring network at the Oswego Valley Landfill. These wells are designed to provide ground-water quality and water-level data in areas Geraghty & Miller, Inc. believed needed further investigation as a result of an initial evaluation of hydrogeologic data at the site (August 1984). The Task 2 program also established permanent water-level measuring and sampling stations at Potter Spring, Bell Creek and its tributaries (Figure 1).

Well installation was carried out from December 3 to 7, 1985, by Parratt-Wolff, Inc., East Syracuse, New York. An eight-inch diameter borehole was advanced to the lodgement till at each well location using hollow-stem auger equipment. Soil samples (cores) were collected at five-foot intervals from land surface to the top of the till (including several feet into the till) using a split barrel sampler and were retained

in jars for geologic interpretation. No drilling fluids were used during well drilling or installation so as not to affect the chemistry of water in the wells. Equipment used to collect soil samples and drill wells was cleaned with steam at each site before moving to the next well location. Driller's logs are included in Appendix B.

Clean, two-inch diameter PVC well casing and screen were installed inside the hollow auger flytes to the bottom of each borehole. Internally threaded well casing and screen were used to avoid glue (PVC cement) which could leach contaminants into the water inside the well. A graded sand pack was placed around the entire length of well screen, filling the annular space between the well screen and borehole wall. As sand was poured through the hollow auger flytes (between the hollow-stem and well casing) the flytes were slowly removed to make certain the hole did not collapse and the entire space surrounding the screen was filled with the sand pack. The sand pack was placed at least three feet above the top of the screen at all wells.

To prevent surface runoff from moving into the well, the annular space above the sand pack was sealed first with bentonite clay pellets (approximately three feet thick) then a bentonite-cement slurry. The slurry was installed through a tremie pipe so that the space was filled from the bottom of the hole up to several feet below land surface. The remaining space was filled with cement, and a protective steel casing with a locking cap was installed. Well construction logs are given in Appendix C.

To insure the wells were functioning properly and that silt and clay were cleared from the well screens, each well was developed with a centrifugal pump until the discharged water became clear.

Measuring point elevations were surveyed to 0.01 foot relative to mean sea level at the top of each supplemental well by a licensed New York State engineering firm. Measuring point elevations were resurveyed on all existing (USGS) monitoring wells that were restored and used during this investigation. Elevations of several residential wells and surface water monitoring sites SW-1, 4, 5 and 6 were also surveyed. Elevations are given in Appendix D.

Surface water monitoring stations were established at locations shown on Figure 1. SW-1, 4, 5 and 6 were established by Geraghty & Miller, Inc. to monitor surface-water quality and levels at these locations, and are marked with a staff quage (2-inch diameter galvanized steel pipe). SW-2 and 3 were established by the County of Oswego and have been monitored for surface-water quality during previous studies as well as the January 1985 sampling program.

Task 3. Collection of Surface- and Ground-Water Samples.

Surface- and ground-water samples were collected by Geraghty & Miller, Inc. at the locations shown on Figure 1 (except for GW-7R, GW-25 and SW-3 which were dry and could not be sampled). In addition, three leachate samples were collected from the Oswego Valley Landfill leachate collection system. Sampling took place from January 21 to 28, 1985.

The sampling protocol for all landfill monitoring wells was as follows:

- The volume of water in each well was determined prior to sampling by multiplying the length of the water column (total well depth minus depth to water) by a constant value, in gallons per foot, for the given diameter of the well.

- When possible, at least three casing volumes of water were removed from the wells (ten volumes from the "SGW" wells). In most cases, however, wells were pumped or bailed dry because of the fairly low permeability of the formation. Therefore, only one casing volume could be removed prior to sample collection, which took place as soon as water refilled the wells.
- Ground-water was evacuated and sampled from wells using dedicated PVC (3/4-inch diameter) bailers and disposible nylon bailer line. Precaution was taken not to allow the bailer line come into contact the ground during well evacuation and sampling so as not to contaminate samples. Bailer lines were disposed of after use. Bailers, which are dedicated to individual wells to prevent cross-contamination, are labeled and stored at the Calocerinos and Spina laboratory.
- Ground water samples were collected with bailers and poured directly from the bailer into the appropriate containers.

Details of sampling procedures used for each well are included in log form in Appendix E_{\bullet}

To be consistent with the sampling locations and procedures used for residential well and leachate sampling prior to Geraghty & Miller, Inc.'s investigation, the following locations and protocols developed by the County and Barton and Loguidice P.C. were used during the January 1985 sampling program:

I. RESIDENTIAL SITES

A. Sampling Locations

D. Kerfien (dug well) - kitchen sink
D. Kerfien (drilled well) - kitchen sink

Kerfien Mobile Home Park Well - raw water from pump house (test for chlorine)

S. Durfey (dug well) - basement tap
S. Durfey (drilled well) - basement tap
J. Stevens - kitchen sink
Niaoara Mohawk Well - feeder pipe

J. Coakley (dug well) - to be determined in field

J. Coakley (drilled well) - well

H. Durant – kitchen sinkG. Pirdsell – kitchen sink

Landfill Trailer - submersible pump discharge

B. Protocol

- 1. Remove screen from spigot, if present.
- 2. Run water for 5 minutes.
- 3. Fill sample vials from running stream of water.
- 4. Replace screen, if appropriate.

II. LEACHATE SITES

A. Sampling Locations (sample identification)

Landfill sump (OVL-1) Leachate tank (OVL-2) Pump Station (OVL-3)

B. Protocol

- 1. Cut top off clean 1/2 gallon plastic sample container. Attach string to handle.
- 2. Lower container to sampling point (immerse in the standing water for the tank and pump station; sample the running water in the sump via the string. Remove container when full.
- 3. Fill sample bottles.
- 4. Repeat 1 through 3 as necessary until all sample bottles are full.

The dug well used for potable water supply at the Coakley residence was unavailable for sample collection during the January 1985 sampling program (residents out-of-town).

Surface water samples were collected by immersing clean sample containers directly into the stream. Stream samples were collected from approximately the middle of the streams where flow is usually the greatest.

All surface-water, ground-water and leachate samples were analyzed for selected organic and inorganic compounds (described in the water quality section of this report). Samples were collected and preserved in accordance with current and soon to be promulgated USEPA sampling procedures (USEPA, Guidelines Establishing Test Procedures for the Analyses of Pollutants under the Clean-Water Act: Federal Register Volume 49, Number 209, October 28, 1984).

Some of these procedures include filtering samples for metals' analyses through a 0.45-micron filter; containing samples for volatile organic analyses in 40-milliliter septum vials, free of air space; measuring specific conductance, temperature and pH in the field; properly storing of samples (cooling); and chain-of-custody documentation. All equipment coming into contact with water samples was thoroughly cleaned and rinsed before being re-used in the following way:

- o wash with tap water and Micro detergent solution
- o rinse with tap water
- o rinse with distilled water
- o final rinse with distilled water

Two rounds of water-level measurements were completed during Task 2, the first preliminary round on January 21, 1985 (before sampling) and the second, more complete round, on January 28, 1985 (after sampling). The water-level survey included all monitoring wells, surface-water stations SW-1, 4, 5 and 6, and residential wells, except RW-2 and RW-10 which were inaccessible for water-level measurements. Measurements were taken using a chalked tape which is lowered into the well or along side of the staff guage until it reaches the water. The tape is held at that point, then removed. The distance of the wet mark left on the chalked tape is sub-

tracted from the total length of tape from the point it was held to give the depth to water (in feet). The depth to water in turn is subtracted from the measuring point elevation for that well to give the water-level elevation relative to mean sea level. All water-level measuring equipment was rinsed between wells to prevent cross contamination.

APPENDIX B

Drillers Logs

June 18, 1985

Geraghty and Miller, Inc.
Consulting Ground-Water Geologists
and Hydrologists
North Shore Atrium
6800 Jericho Turnpike
Syosset, New York 11791

Attention: Mr. Tom Lobasso

Re: 84190

Monitoring Wells Silk Road Landfill

Oswego County, New York

Gentlemen:

In accordance with your request, we are forwarding herewith copies of logs of test borings and observation wells completed by us for the above project.

Very truly yours,

PARRATT - WOLFF, INC.

Steffen Wolff SW/Ic

encs:

cc: Barton and Loguidice

P.O. Box 3107

Syracuse, New York 13220 Attention: Mr. William Jones

TEST BORINGS AND MONITORING WELL INSTALLATIONS SILK ROAD LANDFILL OSWEGO COUNTY

December 27, 1984

Mr. John J. Tierney, Purchasing Agent
Oswego County Purchasing Department
County Office Building
Oswego, New York 13126

Re: 84190

Monitoring Wells Silk Road Landfill Oswego County

Gentlemen:

- Enclosed are the logs of eight test borings and seven monitoring wells installed for you for the above project.
- Samples from these borings will be delivered to your office under separate cover.
- The wells were placed at points located in the field by a representative of Geraghty and Miller and all work was done in accordance with his instructions.
- In addition to the above work, we installed locking covers on two existing wells at the site, placed concrete seals around two other existing wells and furnished and placed 2" X 6.0' stakes at all existing and newly installed wells. This additional work was also done at the direction of and under the supervision of the Geraghty and Miller representative.

Thank you for this opportunity to work with you.

Very truly yours,

PARAATT - WOLFF, INC.

Steffen/Wolff

SW/lc encs:

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION

DATE STARTED

Monitoring Wells

Silk Road Landfill

Oswego, New York

30" - ASTM D-1586, STANDARD PENETRATION TEST

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

12/4/84

DATE COMPLETED

12/4/84

HAMMER FALLING

HOLE NO. MW-1

50.00 -26. SURF. EL.

JOB NO.

84190

GROUND WATER DEPTH

WHILE DRILLING

BEFORE CASING

REMOVED

AFTER CASING

REMOVED

2.0'

2.0'

C -- NO. OF BLOWS TO DRIVE CASING 12" W/

*/OR — % CORE RECOVERY

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.0'-	1		Auger		TOPSOIL and COBBLES	
WL T	2.0'			Sample			2.0'
	2.0'-	2		9/18		Gray moist dense to medium dense fine	
	4.01			22/20	40	SAND, trace silt	
5.0	4.0'-	3		8/14			
	6.0'			15/16	29		
	6.04-	4		9/12			
	8.0'			15/18	27		0 51
	8.0'-	5		3/18		CAND	8.5'
10.0	10.0'			20/25	38	Gray wet dense fine to coarse SAND	
	10.0'-	6		9/29		and fine to coarse GRAVEL	
	12.0'			39/22	68		11.5'
	12.0'-	7		4/2		Gray wet very dense coarse to fine	
	14.0'			4/8	6	SAND and fine to medium GRAVEL, little	i
15.0	14.0'-	8		4/5		silt	12.5'
	16.0'	1		6/8	11	Brown wet loose fine to coarse SAND,	
	16.0'-	9		2/2		trace silt, trace fine to medium gravel	14.0'
	18.0'			2/1	4	Gray wet medium dense to very loose	
	18.0'-	10		1/2		fine to coarse SAND, some silt, some	
20.0	20.0'	1.0		1/4	3	fine to coarse gravel	19.0'
20.0	20.0'-	11		4/5	-	Brown wet medium dense fine to coarse	
	22.0'	 • • • •		6/9	11	SAND and SILT, some fine to coarse	
	22.0'-	12	 	9/11		gravel	23.0
	24.0'	<u> </u>	† · ·	24/26	35	Brown moist very dense fine to coarse	23.0
25.0	24.0'-	13	<u> </u>	41/75		SAND, some silt, some fine to coarse	
23.0	25.0'		ļ — —			gravel	
	23.0	 	<u> </u>			Bottom of Boring	25.0'
		-	†			Bottom of Boring	23.0
						Note: Installed 2" P.V.C. observation well to 25.0', 20.0' screen and locking top.	
					-		
			-		-		

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Monitoring Wells

LOCATION

Silk Road Landfill Oswego, New York

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" - ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

12/5/84

DATE COMPLETED

12/5/84

HAMMER FALLING

HOLE NO. MW-2A

SURF. EL. Sing CA

JOB NO. 84190

GROUND WATER DEPTH

WHILE DRILLING

BEFORE CASING

REMOVED

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

"/OR — % CORE RECOVERY

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
						Drilled to 20.0' without sampling	
						Boring MW2-A is 5.0' west of MW-2	
5.0							
10.0							
10.0							
15.0							
	TEA						
20.0							
					_	Bottom of Boring	20.0'
						Note: Installed 2" P.V.C. observation well to 20.0', 15.0' screen and locking top.	

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION Monitoring Wells

Silk Road Landfill

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" - ASTM D-1586, STANDARD PENETRATION TEST

Oswego, New York

DATE STARTED

12/4/84

DATE COMPLETED

12/4/84

HAMMER FALLING

HOLE NO. MW-1

SURF. EL.

36-6-26

JOB NO.

84190

GROUND WATER DEPTH WHILE DRILLING

BEFORE CASING

REMOVED

2.01

AFTER CASING

REMOVED

2.0'

"/OR -- % CORE RECOVERY CASING TYPE - HOLLOW STEM AUGER

C - NO. OF BLOWS TO DRIVE CASING 12" W/

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	_	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.01-	1		Auger		TOPSOIL and COBBLES	
WL V	2.0			Sample			2.0
	2.01-	2		9/18		Gray moist dense to medium dense fine	
	4.0'			22/20	40	SAND, trace silt	
5.0	4.0'-	3		8/14		·	
	6.01			15/16	29		
	6,0'-	4_		9/12			
	8.0'			15/18	27		0 51
	8.01-	5		3/18		C. C.AND	8.5'
10.0	10.0'			20/25	38	Gray wet dense fine to coarse SAND	
	10.01-	6		9/29		and fine to coarse GRAVEL	44 -1
	12.0'			39/22	68		11.5
	12.0'-	7		4/2		Gray wet very dense coarse to fine	
	14.0'			4/8	6	SAND and fine to medium GRAVEL, little	
15.0	14.01-	8		4/5		silt	12.5'
	16.0'			6/8	11	Brown wet loose fine to coarse SAND,	
	16.0'-	9		2/2		trace silt, trace fine to medium gravel	14.01
	18.0'			2/1	4	Gray wet medium dense to very loose	
	18.0'-	10		1/2		fine to coarse SAND, some silt, some	
20.0	20.0			1/4	3	fine to coarse gravel	19.0'
	20.01-	11		4/5		Brown wet medium dense fine to coarse	
	22.0'			6/9	11	SAND and SILT, some fine to coarse gravel	
	22.0'-	12		9/11			23.0
	24.0'			24/26	35	Brown moist very dense fine to coarse	
25,0	24.0'-	13		41/75		SAND, some silt, some fine to coarse	
	25.0					gravel	
						Bottom of Boring	25.0
						Note: Installed 2" P.V.C. observation	
						well to 25.0', 20.0' screen and	
						locking top.	
						locking top:	
	 				<u> </u>		
	-		+ +		 		
		+	1		ļ., .		
	ļ		 		+		

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION Monitoring Wells

Silk Road Landfill

Oswego, New York

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

12/5/84

DATE COMPLETED

12/5/84

HOLE NO. MW-2B

SURF. EL.

≥ >1:11 2/115

JOB NO. 84190

GROUND WATER DEPTH WHILE DRILLING 3.0'

WITHEL DINELIN

BEFORE CASING REMOVED

REMOVED

6.0'

HAMMER FALLING

AFTER CASING

3.0

C -- NO. OF BLOWS TO DRIVE CASING 12" W/
"/OR -- % CORE RECOVERY

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.01-	1		2/2		TOPSOIL	1.0'
	2.01			2/4	4	Brown moist loose fine to coarse SAND	
WL_						and fine to coarse GRAVEL, trace silt	_ 3.0'
						Brown wet loose fine to medium SAND	
5.0	5 01						:
	5.0'-	2_		2/2			İ
	6.51			3	5		
10.0					-		
10.0	10.0'-	3		2/2			
	11.5'			3	5		
15.0					-	Note: Installed 2" P.V.C. Observation	
	15.0'-	4		2/4		well to 35.0', 15.0' screen and	
	16.5'			5	9	locking top.	
20.0							20.0
	20.0'-	5		13/14		Gray wet medium dense fine SAND and	
	21.5'			16	30	SILT	
İ							
25.0		-					
25.0	25.0'-	6		11/12			25.5'
	26.5	0		15	27	Brown wet medium dense fine SAND	
	20.5	-			21	for the second s	
		-		:	-		
30.0							30.0'
20.0	30.0'-	7		8/10	-	Brown wet medium dense fine to coarse	30.0
	31.5'			10	20	SAND, some fine to coarse gravel	
1		-					!
	-				1		
35.0					1		35.0'
,	35.0'-	8		6/7	! !	Brown wet dense fine to coarse SAND,	+
i	36.5'		· ·	12	19	some fine to coarse gravel, little silt	
	37.0'	9		22/22		, , , , , , , , , , , , , , , , , , ,	
	38.5'			18	40	Pottom of Daving	20.51
40.0		1				Bottom of Boring	38.5'

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

LOCATION

Monitoring Wells

Silk Road Landfill

Oswego, New York

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" - ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

12/6/84

DATE COMPLETED

12/6/84

HAMMER FALLING

HOLE NO. MW- 3 School 23

84190

SURF. EL.

JOB NO.

GROUND WATER DEPTH WHILE DRILLING

BEFORE CASING

REMOVED

3.0'

AFTER CASING

REMOVED

3.0'

*/OR — % CORE RECOVERY CASING TYPE - HOLLOW STEM AUGER

C — NO. OF BLOWS TO DRIVE CASING 12" W/

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
WL_						Brown wet medium dense fine to medium SAND, trace silt	
5.0							
	5.0'-	1	`	7/7			
	6.5			6	13		
							9.0'
10.0	10.0'-	2		15/17		Brown wet medium dense fine SAND, some silt	
	11.5			.8	25	Some Sitt	
							13.0
4						Brown wet dense fine to coarse SAND	
15.0	15.0'-	3		60/31		and fine to coarse GRAVEL, little silt	
	16.5'	J		12	43		
20.0	20.01	ļ.,	- -				
	20.0'- 20.2'	4	No Rec	502'			
	20.2		ITCC				
							1
25.0		<u> </u>	ļ			4 <u>_</u>	
	25.0'- 25.2'	5	-	502'		Brown moist very dense fine to coarse	
	23.2	Ι				SAND and fine to medium GRAVEL, trace silt	
			 		 	Bottom of Boring	25.2
30.0						3	
			<u> </u>		ļ	Note: Installed 2" P.V.C. observation	
		+	,			well to 22.0', 15.0' screen and	!
			•			locking top.	
		-	•		 		:
	† · · · · · · · · · · · · · · · · · · ·				<u></u>	1	
	ļ 	ļ	+			•	r r
	· -· -·	+ -		·			ı
	1						A CONTRACTOR OF THE CONTRACTOR

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION

:

Monitoring Wells

Silk Road Landfill Oswego, New York

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

12/6/84

DATE COMPLETED

12/7/84

HAMMER FALLING

HOLE NO. MW-4A

SURF. EL.

JOB NO.

JKF. EL.

84190

GROUND WATER DEPTH

WHILE DRILLING

BEFORE CASING

REMOVED

AFTER CASING

REMOVED

C — NO. OF BLOWS TO DRIVE CASING 12" W/

"/OR — % CORE RECOVERY

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
						Brown moist dense fine to coarse SAND and fine to coarse GRAVEL, little silt	
5.0							
	5.0'~ 6.5'	1		31/26 17	43		
							8.0'
10.0						Red-brown moist very dense fine to	
10.0	10.0'-	2		754'		coarse SAND and fien to coarse GRAVEL some silt	,
	10.4			/3 .4			
						Refusal	12.5'
						Bottom of Boring	12.5'
15.0						1	
		_					
					i • · · •		
		<u></u>			<u> </u>	,	
						•	
					 	·	
					:		
					,	:	
		ļ ,					:
						•	
					i.	•	
		 	-		:		ı
					:	-	:
						•	1
							I

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION Monitoring Wells Silk Road Landfill

Oswego, New York

MW-4B HOLE NO. 56W-24

SURF. EL.

DATE STARTED

12/7/84

DATE COMPLETED

12/7/84

84190 JOB NO.

GROUND WATER DEPTH WHILE DRILLING 3.01

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586, STANDARD PENETRATION TEST

REMOVED # HAMMER FALLING

BEFORE CASING 3.0'

C - NO. OF BLOWS TO DRIVE CASING 12" W/ */OR - % CORE RECOVERY

AFTER CASING

REMOVED

3.01

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANG DEPTH
						TOPSOIL	1.5'
WL_▼ 5.0	5.0'-			F/2		Brown wet loose to medium dense fine to coarse SAND and fine to coarse GRAVEL, trace silt	,
	6.5'	1		5/3	5		
				_			
10.0	10.04-	2	<u> </u>	8/10			
	11.5'	-		9	19	ļ 	
							13.0
15.0	1					Brown wet medium dense fine to coarse SAND, little silt	
	15.0'- 16.5'	3		14/8	17		
	10.5				<i>'</i>		18.0
20.0	20.0'-			21/2/		Red-brown moist very dense fine to coarse SAND and fine to coarse GRAVEL	
	21.5'	4		21/24 30	54	little silt	
	2113	 			J.	Bottom of Boring	21.5
25.0	•					Note: Installed 2" P.V.C. well to 21.0', 15.0' screen and locking top.	
					├─ · - · └─ · - ·		
					ļ		
						,	
			-				
		 	 		ļ	1	
			-		F -		
		-	: •				
		 	 	 	<u> </u>		
					†		
			+		į .	,	
			+	·			
]	.	L	L	l	

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

MW-5A

84190

30 A

PROJECT

LOCATION

Monitoring Wells

Silk Road Landfill Oswego, New York

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

HOLE NO. SURF. EL.

DATE STARTED

12/4/84

DATE COMPLETED

JOB NO.

GROUND WATER DEPTH

WHILE DRILLING

WHILE DRILL

BEFORE CASING

REMOVED

HAMMER FALLING

12/4/84

AFTER CASING

REMOVED

C — NO. OF BLOWS TO DRIVE CASING 12" W/
"/OR — % CORE RECOVERY

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANG DEPTH
				1 1	·	Drilled to 20.0' without sampling	-
5.0							
10.0					<u>-</u>		
10.0							
15.0							
			<u> </u>				
20.0						Bottom of Boring	20.0
						Note: Installed 2" P.V.C. observation well to 20.0', 15.0' screen and	i :
			 			locking top.	1
			-	ļ		·	1
						· 1	
_						i i	
			į	 			1
			-			1	
			·-····		İ	•	
			-		: ! !	4	
			,		L	<u> </u>	<u> </u>

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION

·

Monitoring Wells

Silk Road Landfill

30" - ASTM D-1586, STANDARD PENETRATION TEST

Oswego, New York

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

DATE STARTED

12/3/84

DATE COMPLETED

12/4/84

HAMMER FALLING

HOLE NO. MW-5B

SURF. EL.

Sew 303

JOB NO.

84190

GROUND WATER DEPTH WHILE DRILLING 3.01

BEFORE CASING

REMOVED 15.0'

AFTER CASING

REMOVED

3.0'

C - NO. OF BLOWS TO DRIVE CASING 12" W/ "/OR - % CORE RECOVERY

CASING TYPE - HOLLOW STEM AUGER

SHEET 1 OF 1

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	Ν	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.0'-	1		Auger		Brown moist fine to coarse SAND, some	
	2.0'			Sample		fine to medium gravel, little silt	2.5'
WL T	2.0'-	2		9/8		Brown moist medium dense fine to be	2.5
	4.0'			13/16	21	medium SAND	2 01
5.0	4.01-	3		6/7			3.0'
	6.0'			7/8	14	Brown wet medium dense fine SAND,	C 01
	6.0'-	4		6/5		some silt Brown wet medium dense fine to medium	6.01
	8.0			5/3	10		
	8.01-	5		2/3		SAND, trace silt	
10.0	10.0'			4/3	7		
	10.0'-	6		1/2			
	12.0			9/3	11		12.0'
	12.0'-	7		3/4		Gray wet medium stiff to very soft	
	14.0'			4/4	8	SILT, some fine sand	
15.0	14.0'-	8		2/4			
	16.0'			4/4	8		
	16.0'-	9		3/3			
	18.0'			3/3	6		i
	18.0'-	10		WH / 1			
20.0	20.0'			3/2	4		
	20.0'-	11		2/2			
!	22.0'			3/3	5		22.0'
	22.0'-	12		22/22		Brown wet dense fine to coarse GRAVEL	i
1	24.0'	L		24/15	46		1
25.0	24.0'-	13		22/9	.	little silt	24.5
1	26.0'			10/16	19	Brown wet medium dense fine to medium	
1	26.0'-	14		15/33	1	SAND, little silt, little fine gravel	27.0'
	28.0'		<u>.</u>	39/50	72	Brown moist very dense fine to coarse	
	28.0'-	15	ļ	50		SAND, SILT, fine to coarse GRAVEL,	
30.0	28.5'			•		COBBLES and BOULDERS	
		1.					
				I .			

100

mq ' ?" P.V observation

n and

Geraghty & Miller, Inc.

APPENDIX C

Well Construction Logs

3 ^T ft	ProjectN7760C3Well_SGW-26
LAND SURFACE	Town/City Volney
ИИ	County Oswego State New York
8 inch diameter	Permit No
drilled hole	Land-Surface Elevation
May 2	and Datum 467.24 feet 🗵 surveyed
Well casing, 2 inch diameter, Sched. 40, PVC	mean sea levelestimated
<u> </u>	
Backfill Grout	Drilling Method
	Drilling Contractor Parratt Wolff
ИИ	Drilling Fluid None
4 <u>0</u> ft*	
Bentonite ⊠slurry 2 ft+ □pellets	Development Technique(s) and Date(s)
	centrifugal pump and bailing
5_ft*	Fluid Lost During Drilling gallons
	Water Removed During Developmentgallons
-Well Screen,	Static Depth to Waterfeet below M.P.
$\frac{2 \text{inch diameter}}{PVC}, \frac{10}{slot}$	Pumping Depth to Waterfeet below M.P.
	Pumping Durationhours
Gravel Pack	Yieldgpm
Sand Pack 40	Specific Capacity gpm/ft
Collapse	Well Purpose
25 ft*	
Fixe Fixe Land	
	Remarks pumped dry twice
Magazaina Osiak is Tas as	
Measuring Point is Top of Well Casing Unless Other-	
wise Noted.	
*Depth Below	
Land Surface	Joseph T. Gurrieri
	Prepared by

Geragniy & Miller, Inc.

2.4 ft	Project N7760C3 Well SGW-27A
LAND SURFACE	Town/City Volney
ИИ	County Oswego State New York
8 inch diameter	Permit No
drilled hole	Land-Surface Elevation
12 154	and Datum 473.04 feet 🗵 surveyed
Well casing, 2 inch diameter.	_mean_sea_levelestimated
2 inch diameter, Sched. 40, PVC	Installation Date(s) 1.05-84
Backfill Sant coment	Drilling MethodAuger
☑ Grout _cement	Drilling Contractor Parratt Wolff
N N	Drilling Fluid None
2 ft*	
Bentonite slurry 3 ft* X pellets	Development Technique(s) and Date(s)
	centrifugal pump and bailing
5	Fluid Lost During Drilling gallons
5 ft*	Water Removed During Developmentgallons
Well Screen,	Static Depth to Waterfeet below M.P.
$\frac{2}{2}$ inch diameter	Pumping Depth to Waterfeet below M.P.
PVC	Pumping Durationhours
Gravel Pack	Yieldgpm Date
Sand Pack 40	
Formation Collapse	Specific Capacitygpm/ft
Corrapse	Well Purpose
20 ft*	
	Remarks water was clear after developing.
	Well never pumped dry.
Measuring Point is Top of	
Well Casing Unless Other- wise Noted.	
WISC NOTER	
*Depth Below	
Land Surface	loseph T. Gurriari
	Prepared byJoseph T. Gurrieri

3 Ft	Project
LAND SURFACE	Town/CityVolney
ИИ	County Oswego State New York
8 inch diameter	Permit No
drilled hole	Land-Surface Elevation
Well casing,	and Datum 472.50 feet surveyed
_2_inch diameter,	
Sched. 40, PVC Seckfill	Installation Date(s) 12-5-04
Grout cement	Drilling Method
	Drilling Contractor Parratt Wolff
16 ft*	Drilling Fluid None
Bentonite □slurry	Purel and Track in the Control of th
18 ft* pellets	Development Technique(s) and Date(s) 12-5-84
	centrifugal pump and bailing
20.4 ft*	Fluid Lost During Drilling gallons
	Water Removed During Developmentgallons
-Well Screen,	Static Depth to Waterfeet below M.P.
Well Screen, 2 inch diameter PVC , 10 slot Gravel Pack Sand Pack 40 Formation	Pumping Depth to Waterfeet below M.P.
	Pumping Durationhours
Gravel Pack Sand Pack 40	Yieldgpm
Formation	Specific Capacitygpm/ft
Collapse	Well Purpose
35.4ft*	
37 ft*	Remarks water was clear after developing.
	Well never pumped dry.
	mo Hever pumped dry.
Measuring Point is Top of	
Well Casing Unless Other- wise Noted.	
*Depth Below	

3 ⁷ f+	Project
LAND SURFACE	Town/City Volney
ИИ	County Oswego State New York
8 inch diameter	Permit No
drilled hole	Land-Surface Elevation
Well casing,	and Datum 476.99 feet ⊠ surveyed
2 inch diameter, Sched. 40, PVC	mean sea level estimated
/	installation vate(s)
☐ Backfill	Drilling MethodAuger
	Drilling Contractor Parratt Wolff
3 ft*	Drilling Fluid None
Bentonite □slurry 4 ft* ⊠ pellets	Development Technique(s) and Date(s) 12-6-84
	centrifugal pump and bailing
	Fluid Lost During Drilling gallons
	Water Removed During Developmentgallons
-Well Screen,	Static Depth to Waterfeet below M.P.
PVC , 10 slot	Pumping Depth to Waterfeet below M.P.
	Pumping Durationhours
Gravel Pack	Yield gpm Date
Sand Pack 40 Formation	Specific Capacitygpm/ft
Collapse	Well Purpose
22_ft*	
25 f t*	Remarks
<u> </u>	Remarks
Measuring Point is Top of	
Well Casing Unless Other- wise Noted.	
MISC MOCER.	
*Depth Below Land Surface	
cand Juliace	loosah T. Cumuisui

	ProjectN7760C3WellSGW-29
LAND SURFACE	Town/City Volney
ИИ	County Oswego State New York
8 inch diameter	Permit No
drilled hole	Land-Surface Elevation
Wall assiss	and Datum 455.42 feet surveyed
Well casing, _2_inch diameter,	mean sea level estimated
Sched. 40, PVC	Installation Date(s) 12-7-84
Backfill	Drilling Method
Grout	Drilling Contractor Parratt Wolff
KI KI	Drilling Fluid None
<u> </u>	Diriting Field
Bentonite ⊠slurry	Development Technique(s) and Date(s)
ft* □pellets	
5ft*	Fluid Lost During Drilling gallons
	Water Removed During Developmentgallons
──Well Screen, —2_inch diameter	Static Depth to Waterfeet below M.P.
PVC , 10 slot	Pumping Depth to Waterfeet below M.P.
	Pumping Durationhours
Gravel Pack	Yieldgpm Date
Sand Pack 4Q	Specific Capacitygpm/ft
Collapse	Well Purpose
₩ ₩ ft*	
	Remarks
Measuring Point is Top of	
Well Casing Unless Other- wise Noted.	
*Depth Below Land Surface	
Land Sufface	Joseph T. Gurrieri

₹.	ProjectN7760C3Well
LAND SURFACE	Town/City Volney
N N	County Oswego State New York
8 inch diameter	.
drilled hole	Land-Surface Elevation
Well casing,	and Datum 454.13feet ⊠surveyed
_2_inch diameter,	mean_sea_levelestimated
Sched. 40, PVC	Installation Date(s) 12-7-84
Backfill Groutcement	Drilling Method
W 61 500 TEMENT	Drilling MethodParratt Wolff Drilling Contractor
1.5ft*	Drilling Fluid None
Bentonite ∐slurry 2_6ft* □pellets	Development Technique(s) and Date(s)
4 ft*	Fluid Lost During Drilling gallons
	Water Removed During Developmentgallons
-Well Screen,	Static Depth to Waterfeet below M.P.
_2_inch diameter	Burning Booth to Water feet helow M.P.
PVC , 10 slot	Pumping Durationhours
Gravel Pack	Yieldgpm
Sand Pack 4Q	Specific Capacitygpm/ft
Collapse	Well Purpose
19 _{ft*}	
20ft*	Remarks
Measuring Point is Top of	
Well Casing Unless Other- wise Noted.	
*Depth Below	
Land Surface	Jacob I Gurrieri

Prepared by_

3 [∓] ft □	Project <u>N7760C3</u> <u>Well SGW-30B</u>
LAND SURFACE	Town/City Volney
ИИ	County Oswego State New York
8 inch diameter	
drilled hole	Land-Surface Elevation
M KL	and Datum 453.37 feet surveyed
Well casing, 2_inch diameter.	mean sea levelestimated
Sched 40, PVC	Installation Date(s) 12-3-84
Backfill Grout	Drilling Method Auger
	Drilling Contractor Parratt Wolff
ИИ	Drilling Fluid None
Bentonite ⊤slurry 12_ft* □ pellets	Development Technique(s) and Date(s) 12-4-84
	centrifugal pump and bailing
14 ft*	Fluid Lost During Drilling gallons
	Water Removed During Developmentgallons
Well Screen, _2_inch diameter	Static Depth to Waterfeet below M.P.
PVC	Pumping Depth to Waterfeet below M.P.
	Pumping Durationhours
☐ ☐ Gravel Pack Sand Pack 40	Yieldgpm Date
Formation	Specific Capacitygpm/ft
Collapse	Well Purpose
34 ft*	
	Remarks steady yield during development
Measuring Point is Top of	
Well Casing Unless Other- wise Noted.	
*Depth Below Land Surface	
Cand Survace	Joseph T. Gurrieri
	Prepared by

Geraghty & Miller, Inc.

APPENDIX D

Elevations

Calocerinos & Spina consulting Engineers

1020 Seventh North Street, Liverpool, NY 13088 • (315) 457-6711

January 14, 1985

Mr. Robert Walsh
Deputy Superintendent
Solid Waste Division
Oswego County Department of
Public Works
46 Bridge Street
Oswego, New York 13126

Re: Oswego Landfill Ground Water

Monitoring Program

File: 180.134

Dear Bob:

Following are the wells and monitoring station elevations, related to mean sea level datum (USC&GS).

Existing	Wells	s and	Monitorin	g Points	

New	Mo	ni	tor	Wel	15
II C M	1.10	111	LUI	uc i	13

<u>Station</u>	Elevation	Station	Elevation
USGS-2 USGS-3C USGS-3D USGS-5 USGS-7B	484.67 (well casing only) 476.94 476.88 473.40 (well casing only) 498.93	MW-1 MW-2A MW-2B MW-3 MW-4	470.24 475.44 475.50 479.99 458.42
USGS-8 USGS-9 USGS-10 USGS-11A USGS-12A USGS-14A	497.09 473.48 458.63 (well casing only) 471.66 472.53 474.85	MW-5A MW-5B Surface-Water	457.13 456.37 Stations
USGS-15 USGS-16 USGS-17 USGS-18A	451.57 469.94 466.49 466.94	Station SW-1 SW-2 SW-3 SW-4	Elevation 454.54 No well No well 447.37
Landfill Sump	470.68 MAE	,	

Memo

315 457-5200

· •

1 3086	
	1,50 4/1911p
	7,77 478.39
	RW#// 5,30 474,24 4.61 468,54
	4.69 473.61
456-5 # Bes Sec. p. 19 74/5 BK.	3,99 475 56
TOP OF CAP CIMETAILS FERE WE'L	BM 2,56 47962 477.06
(R.) 134 B	Jest Well Elevellens
(COD) 24 72/1	

Geraghty & Miller, Inc. APPENDIX E Water Sampling Logs

	N7760C3			Page <u>1</u> o
Site Location	Oswego Val	ley Landfill		
Site/Well No	GW-2	Coded/ Replicate No		Date: 1-25-85
Weather 20°F		Time Sampling Began8:	40	Time Sampling Completed 9:30
Description of Me	asuring Po	int (MP) <u>Top o</u>	f 2" steel c	easing
Height of MP Abov	/e/Below Lar	nd Surface1.6	7 MP Ele	evation <u>484.67</u>
Total Sounded De	epth of Well	Below MP 14.4	O Water-	Level Elevation <u>471.92</u>
Held 14.00 Dep	oth to Water	Below MP <u>12.7</u>	5Diamet	er of Casing2"
Wet 1.25	Water Colum	nn in Well <u>0.65</u>		s Pumped/ <u>Bailed</u>
	Gallons	s per Foot 0.16		to Sampling 0.5 gal
	Gallor	ns in Well <u>0.1</u>		ng Pump Intake Setting below land surface)
	11			
Evacuation Method	3/4 PVC	C Bailer – remov	ed 1/2 gallo	on .
•	Odor <u>Yes</u> ion; OVA; HN	Appearance		Temperature9
Color <u>Black</u> Other (specific i	Odor <u>Yes</u> ion; OVA; HN	Appearance	Silty	Temperature9
Color <u>Black</u> Other (specific i Specific Conducta umhos/cm	Odor <u>Yes</u> ion; OVA; HN	Appearance	Silty	Temperature9
Color Black Other (specific i Specific Conducta umhos/cm	Odor <u>Yes</u> ion; OVA; HN	Appearance NU; etc.) PWC Bailer Container Des	Silty cription r G&M	Temperature 9
Color Black Other (specific i Specific Conducta umhos/cm Sampling Method a	Odor <u>Yes</u> ion; OVA; HN	Appearance U; etc.) PWC Bailer Container Des From Lab _x o	Silty cription r G&M	Temperature 9
Color Black Other (specific i Specific Conducta umhos/cm Sampling Method a Constituents Samp	Odor Yes ion; OVA; HN ance, and Material	Appearance U; etc.) pH PVC Bailer Container Des From Lab _x _ o 40 ml Vial	Silty cription r G&M	Temperature 9

.

Project/No	11770007					Page <u>1</u>
Site Location _	Oswego Val	lley Landfill				
Site/Well No	GW-3C	Coded/ Replicate No.		Da	ate: _	1-22-85
Weather 20°F		Time Sampling Began				mpling ed <u>16:</u>
Description of	Measuring Po	oint (MP) <u>PVC</u>				
Height of MP Ab	ove/Below La	and Surface <u>2</u>	.39 MF	Elevation	476	5.94
Total Sounded	Depth of Wel	.1 Below MP <u>36</u>	.95 Wa	ter-Level	Elevat	ion <u>468.7</u>
Held <u>10.00</u> D	epth to Wate	er Below MP <u>8</u>	.18 Di	ameter of	Casing	2"
Wet <u>1.82</u>		mn in Well <u>28</u> s per Foot O	Pı	llons Pump ior to Sam		i <u>led</u> 10 gal
		ons in Well 4	Sa			ake Setting surface)
	Gallo		•			
Evacuation Meth		 				
Evacuation Meth . Color <u>Clear</u>	od <u>PVC Ba</u>	iler			empera	ature <u>9</u>
•	od <u>PVC Ba</u> _ Odor <u>Non</u>	e Appearance			empera	ature <u>9</u>
Color <u>Clear</u>	od PVC Ba Odor Non ion; OVA; H	e Appearance NU; etc.)	ce <u>Sl.</u> tur	bid T	empera	ature <u>9</u>
Color Clear Other (specific Specific Conduc	od PVC Ba Odor Non ion; OVA; H tance, 1140,1140,11	niler Appearance NU; etc.)	ce <u>Sl. tur</u>	bid T	empera	ature _ 9
Color <u>Clear</u> Other (specific Specific Conductumhos/cm <u>1140</u> ,	od PVC Ba Odor Non ion; OVA; H tance, 1140,1140,11	niler Appearance NU; etc.)	7.25,7.25,	bid T	•	vative
Color Clear Other (specific Specific Conductumhos/cm 1140,	od PVC Ba Odor Non ion; OVA; H tance, 1140,1140,11	Appearance NU; etc.) PVC Bailer Container De	7.25,7.25,	bid T	•	
Color Clear Other (specific Specific Conductumhos/cm 1140, Sampling Method Constituents Sam	od PVC Ba Odor Non ion; OVA; H tance, 1140,1140,11	Appearance NU; etc.) PVC Bailer Container Define Lab X	7.25,7.25, r - dedica	bid T	Preser	
Color Clear Other (specific Specific Conduc umhos/cm 1140, Sampling Method Constituents Sametals	od PVC Ba Odor Non ion; OVA; H tance, 1140,1140,11	Appearance NU; etc.) PVC Bailer Container De From Lab _X	7.25,7.25, r - dedica escription or G&M	bid T	Preser HNO ₃ H ₂ SO ₄	

Project/No. N7760C3	Page _1_
Site Location Oswego Valley Landfill	
Site/Well NoGW-3D Coded/ Replicate No.	Date: 1-22-85
Weather 15°F Began	
Description of Measuring Point (MP) <u>PV</u>	/C
Height of MP Above/Below Land Surface	2.36 MP Elevation 476.88
Total Sounded Depth of Well Below MP 1	2.58 Water-Level Elevation 468.69
Held 10.0 Depth to Water Below MP	8.19 Diameter of Casing 2"
Wet 1.81 Water Column in Well	Gallons Pumped/Bailed Prior to Sampling 1 gal
Gallons per Foot	_
Gallons in Well	0.702 (feet below land surface)
Gallons in Well Evacuation Method <u>Evacuated dry w/bai</u>	
Evacuation Method <u>Evacuated dry w/bai</u> Color <u>lt. brown</u> Odor <u>None</u> Appeara Other (specific ion; OVA; HNU; etc.)	ance <u>Sl. turbid</u> Temperature <u>9</u>
Evacuation Method <u>Evacuated dry w/bai</u> Color <u>lt. brown</u> Odor <u>None</u> Appears Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm <u>750,750,750,750</u> pH <u>6.75</u>	ence <u>S1. turbid</u> Temperature <u>9</u>
Evacuation Method Evacuated dry w/bai Color It. brown Odor None Appears Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 750,750,750,750 pH 6.75 Sampling Method and Material PVC Bail Container	ence <u>S1. turbid</u> Temperature <u>9</u>
Evacuation Method <u>Evacuated dry w/bai</u> Color <u>lt. brown</u> Odor <u>None</u> Appeara Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 750,750,750,750 pH 6.75 Sampling Method and Material <u>PVC Bail</u> Container Constituents Sampled From Lab X	ence S1. turbid Temperature 9 2,6.75,6.75,6.75 .er - dedicated Description
Evacuation Method Evacuated dry w/bai Color It. brown Odor None Appears Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 750,750,750,750 pH 6.75 Sampling Method and Material PVC Bail Container Constituents Sampled From Lab X Metals	ance S1. turbid Temperature 9 2,6.75,6.75,6.75 er - dedicated Description or G&M Preservative
Evacuation Method Evacuated dry w/bai Color	ance S1. turbid Temperature 9 2,6.75,6.75,6.75 er - dedicated Description or G&M Preservative HNO 3

: .*

Project/No	N7760C3			Page <u>1</u> c
Site Location	Oswego Vall	ley Landfill		
Site/Well No	<u>GW-5</u>	Coded/ Replicate No		Date: <u>1-25-85</u>
Weather 10°F	Snow	Time Sampling Began09:	00	Time Sampling Completed 09:30
Description of M	easuring Poi	int (MP) <u>Top o</u>	f 2"_casing	
Height of MP Abo	ve/Below Lar	nd Surface <u>1.6</u>	5 MP E1	evation <u>473.</u> 40
Total Sounded D	epth of Well	Below MP 8.0	2 Water-	Level Elevation 470.95
Held 4.00 De	pth to Water	Below MP 2.4	5Diamet	er of Casing <u>2" - 1-1/</u>
Wet 1.55 2.45	Water Colum	nn in Well5.5		ns Pumped/ <u>Bailed</u> to Sampling2.2 gal
	Gallons	per Foot 0.0		ng Pump Intake Setting.
Evacuation Metho			4 (feet <i>u</i>	below land surface)
Color <u>Brown</u>	d <u>Bailed</u> Odor <u>None</u>	1.5 liters with	4 (feet # 3/4 PVC Bai	
Color <u>Brown</u>	d <u>Bailed</u> Odor <u>None</u>	1.5 liters with	4 (feet # 3/4 PVC Bai	lerTemperature7
Color <u>Brown</u> Other (specific	d <u>Bailed</u> Odor <u>None</u> ion; OVA; HN	1.5 liters with	4 (feet # 3/4 PVC Bai	lerTemperature7
Color Brown Other (specific 1-25-85 Specific Conduct	Odor <u>None</u> ion; OVA; HN	Appearance U; etc.) Collec	4 (feet 1/2 3/4 PVC Bai Turbid ted 4 VOA, m	lerTemperature _7 metals and nitrogen 10-10-
Color Brown Other (specific 1-25-85 Specific Conductsumhos/cm 260	Odor <u>None</u> ion; OVA; HN ance,	Appearance U; etc.) Collec	4 (feet 1/2 3/4 PVC Bai Turbid ted 4 VOA, m	lerTemperature7
Color Brown Other (specific 1-25-85 Specific Conduct umhos/cm 260 Sampling Method	Odor <u>None</u> ion; OVA; HN ance,	Appearance U; etc.) Collec pH 7.55 3/4 PVC Bai Container Des	4 (feet 1/2 3/4 PVC Bai Turbid ted 4 VOA, m ler cription r G&M	lerTemperature _7netals and nitrogen 10-10-
Color Brown Other (specific 1-25-85 Specific Conduct umhos/cm 260 Sampling Method Constituents Sam	Odor <u>None</u> ion; OVA; HN ance,	Appearance U; etc.) Collec pH 7.55 3/4 PVC Bai Container Des From Lab X o	4 (feet 1/2 3/4 PVC Bai Turbid ted 4 VOA, m ler cription r G&M	Temperature 7 metals and nitrogen 10-10
Color Brown Other (specific 1-25-85 Specific Conduct umhos/cm 260 Sampling Method Constituents Samp	Odor <u>None</u> ion; OVA; HN ance,	Appearance Appearance U; etc.) Collec pH 7.55 3/4 PVC Bai Container Des From Lab X o 4 40 ml vials	4 (feet 1/2 3/4 PVC Bai Turbid ted 4 VOA, m ler cription r G&M	Temperature 7 metals and nitrogen 10-10 Preservative Sodium Thiosulfate

WELL CASING VOLUMES

Project/No	N7760C3			-	Pa	age <u>1</u> c
Site Location	Oswego Val	ley Landfill		<u>-</u>		
Site/Well No	GW-8	Coded/ Replicate No		_ Date	e: <u>1-22</u>	2-85
Weather 20°F	Windy	Time Sampling Began	15:30		Samplir	ng 16:30
Description of M	Measuring Po	int (MP) <u>Top o</u>	of casing			
Height of MP Abo	ove/Below La	nd Surface3	.39 MP E	levation _	497.09	
Total Sounded D	epth of Wel	l Below MP28.	.75 Wate	r-Level El	evation	470.20
Held <u>28.75</u> De	pth to Wate	r Below MP26.	.89_ Diame	eter of Ca	sing	2"
Wet <u>1.86</u>	Water Colu	mn in Well1.		ons Pumped r to Sampl		0.50
	0-11	s per Foot 0.	16		_	
		ns in Well 0.		li <mark>ng Pu</mark> mp t below la		
Evacuation Metho	Gallo	ns in Well 0.				
Color <u>lt. brown</u> Other (specific	Gallo d PVC Ba Odor None ion; OVA; H	ns in Well 0.	Sampi 35 (fee		nd surfa	ace)
Color <u>lt. brown</u> Other (specific Specific Conduct	Gallo d PVC Ba Odor None ion; OVA; H	ns in Well 0.	Sampi 35 (fee	t below la	nd surfa	ace)
Color <u>lt. brown</u> Other (specific Specific Conduct	Gallo d PVC Ba Odor None ion; OVA; H ance, 000,1000,10	ns in Well 0. iler Appearance NU; etc.)	Samp. 35 (fee	t below la	nd surfa	ace)
Color <u>lt. brown</u> Other (specific Specific Conduct umhos/cm 1000,1	Gallo d PVC Ba Odor None ion; OVA; H ance, 000,1000,100	ns in Well 0. iler Appearance NU; etc.)	Samp: .35 (fee	Tem	nd surfa	8
Color 1t. brown Other (specific Specific Conduct umhos/cm 1000 ,1 Sampling Method	Gallo d PVC Ba Odor None ion; OVA; H ance, 000,1000,100	ns in Well 0. iler Appearance NU; etc.) 00 pH 6.65,6 1 PVC Bailer Container Des	Samp. 35 (fee	Tem	perature	e _ 8
Color It. brown Other (specific Specific Conduct umhos/cm 1000,1 Sampling Method Constituents Sam	Gallo d PVC Ba Odor None ion; OVA; H ance, 000,1000,100	ns in WellO. iler Appearance NU; etc.) OOpH6.65,6 lPVC Bailer Container Des From Lab _XO	Samp. 35 (fee	t below laTem	perature	e 8
Color 1t. brown Other (specific Specific Conduct umhos/cm						

Project/No. N776	0C3	Page <u>1</u> or
Site LocationOswe	go Valley Landfill	
Site/Well NoGW-9	Coded/ Replicate No	Date: 1-22-85
Weather 20°F Snow	Time Sampling Began 12:	Time Sampling 10 Completed 12:30
Description of Measur	ing Point (MP) <u>Top of 2</u>	2" casing
Height of MP <u>Above</u> /Be	low Land Surface 2.48	MP Elevation 473.48
Total Sounded Depth	of Well Below MP <u>38.70</u>	Water-Level Elevation 448.82
Held 26.00 Depth to	o Water Below MP <u>24.66</u>	Diameter of Casing 2"
	r Column in Well 14.04 Gallons per Foot 0.16	Gallons Pumped/ <u>Bailed</u> Prior to Sampling 11.23
	•	Sampling Pump Intake Setting (feet below land surface)
•	Bailed well with PVC 1-1/	/4 bailers supplied by C&S
•	None Appearance V.	
Colorbrown/gray Odor Other (specific ion; (Specific Conductance, umhos/cm 1025,1000,10	None Appearance V. OVA; HNU; etc.) DVA; 1025 pH 7.3,7.3,7	A bailers supplied by C&S Silty Temperature 6.0 °
Colorbrown/gray Odor Other (specific ion; (Specific Conductance, umhos/cm 1025,1000,10	None Appearance V. None Appearance V. DVA; HNU; etc.) D25,1025 pH 7.3,7.3,7 aterial PVC Bailer (December 1988)	/4 bailers supplied by C&S Silty Temperature 6.0 ° 7.3,7.3 edicated)
Colorbrown/gray Odor Other (specific ion; (Specific Conductance, umhos/cm 1025,1000,10	None Appearance V. OVA; HNU; etc.) DVA; 1025 pH 7.3,7.3,7	/4 bailers supplied by C&S Silty Temperature 6.0 ° 7.3,7.3 edicated)
Colorbrown/gray Odor Other (specific ion; (Specific Conductance, umhos/cm 1025,1000,10 Sampling Method and Ma	None Appearance V. DVA; HNU; etc.) D25,1025 pH 7.3,7.3,7 aterial PVC Bailer (Decomption of the container Description of the conta	/4 bailers supplied by C&S Silty Temperature 6.0 ° 7.3,7.3 edicated)
Colorbrown/gray Odor Other (specific ion; (Specific Conductance, umhos/cm 1025,1000,10 Sampling Method and Ma. Constituents Sampled	None Appearance V. DVA; HNU; etc.) DVA; HNU; etc.) DVA PVC Bailer (December Container Description Lab x or General x or	A bailers supplied by C&S Silty Temperature 6.0 A 3,7.3 Edicated) Aption A M Preservative
Colorbrown/gray Odor Other (specific ion; (Specific Conductance, umhos/cm 1025,1000,10 Sampling Method and Ma Constituents Sampled 4 VOA	None Appearance V. None Appearance V. DVA; HNU; etc.) D25,1025 pH 7.3,7.3,7 D25,1025 pH 7.3,7.3,7 D25,1025 pH 7.3,7.3,7 D25,1025 pH 7.3,7.3,7 D25,1025 pH 7.3,7.3,7 D25,1025 pH 7.3,7.3,7	A bailers supplied by C&S Silty Temperature 6.0 ° A 3,7.3 edicated) iption G&M Preservative Sodium Thiosulfate

WF!

Project/No	N7760C3		Page _1_
Site Location _	Oswego Val	lley Landfill	
Site/Well No	GW-10	Coded/ Replicate No	Date: <u>1-23-85</u>
Weather <u>20°F</u>	Snow	Time Sampling Began 10:1	Time Sampling Completed10:
Description of	Measuring Po	pint (MP) <u>Top of 2</u> '	" steel
Height of MP Ab	ove/Below La	and Surface 4.2	MP Elevation 458.63
Total Sounded	Depth of Wel	ll Below MP <u>22.40</u>	Water-Level Elevation 444.4
Held <u>16.00</u> D	epth to Wate	er Below MP 14.22	Diameter of Casing4"
Wet <u>1.78</u>		umn in Well <u>8.18</u> ns per Foot 0.65	Gallons Pumped/ <u>Bailed</u> Prior to Sampling <u>26 gal</u>
			Sampling Pump Intake Setting
Evacuation Meth		ons in Well <u>5.2</u> ated with centrifugal	
Color <u>brown</u> /grey	od <u>Evacua</u>	ated with centrifugal	(feet below land surface) l_yield3 gpm sheenTemperature7
Color <u>brown/grey</u> Other (specific Specific Conduc	Odor Yes ion; OVA; H	Appearance Appearance HNU; etc.) Slightly	(feet below land surface)
Color <u>brown/grey</u> Other (specific Specific Conduc umhos/cm 1350,	od Evacuation Odor Yes ion; OVA; H tance, 1350,1350,13	Appearance Appearance HNU; etc.) Slightly	(feet below land surface)
Color <u>brown/grey</u> Other (specific Specific Conduc umhos/cm 1350,	od Evacuation Odor Yes ion; OVA; H tance, 1350,1350,13	Appearance Appearance HNU; etc.) Slightly S50 pH 6.55,6.55, al PVC Bailer Container Descrip	(feet below land surface)
Color <u>brown/grey</u> Other (specific Specific Conduc umhos/cm 1350, Sampling Method Constituents Sa	od Evacuation Odor Yes ion; OVA; H tance, 1350,1350,13	Appearance Appearance NU; etc.) Slightly PVC Bailer Container Descrip	(feet below land surface)
Color <u>brown/grey</u> Other (specific Specific Conduc umhos/cm 1350, Sampling Method Constituents Sa Metals	od Evacuation Odor Yes ion; OVA; H tance, 1350,1350,13	Appearance Appearance HNU; etc.) Slightly S50 pH 6.55,6.55, al PVC Bailer Container Descrip From Lab x or G8	(feet below land surface)

WELL CASING YOU

WATER SAMPLING LOG

Project/No	N7769C3			Page1 of
	Oswego Valley Landf	_		
Site/Well No.	GW-11A			Date 1-21-85
	0°F Windy	Time Sampling Began	16:00	Time Sampling Completed 16:20
		EVACUATIO	ON DATA	
Description of	Measuring Point (MP)	PVC coupling		
Height of MP	Above/Below Land Surface	2.39	MP Elevation 471.66	5
Total Sounder	d Depth of Well Below MP	19.50	Water-Level Elevation	461.59
Held	_ Depth to Water Below MP	10.07	Diameter of Casing	2"
Wet			Gallons Pumped/Bailed	<u> </u>
	Gallons per Foot			
	Gallons in Well		Sampling Pump Intake (feet below land surface	Setting 1.5 gal
Evacuation Me	ethod PVC bailer dry	after 1.5 ga		
	n Odor None	Appea		
Other (specific	Odor None cion; OVA; HNU; etc.)	Appea	aranceturbid	
Other (specific Specific Cond umhos/cm 42	Odor None cion; OVA; HNU; etc.)	Appea	aranceturbid	
Other (specific Specific Condumnos/cm 42	Odor None Cion; OVA; HNU; etc.)	Appea	turbid , 7.45, 7.45	
Other (specific Specific Condumnos/cm 42	Odor None cion; OVA; HNU; etc.) luctance, 20, 420, 420 ph hod and Material PVC	Appea 7.45, 7.45 bailer	turbid 7.45, 7.45 Description or G&M	
Other (specific Specific Condumhos/cm 42 Sampling Meti	Odor None Cion; OVA; HNU; etc.) Cluctance, 20, 420, 420 ph Chod and Material PVC Construction of the c	Appea 7.45, 7.45, bailer Container D From Lab _ X	turbid 7.45, 7.45 escription or G&M	Preservative
Other (specific Specific Cond umhos/cm 42 Sampling Meti Constitue 2 VOA	Odor None Cion; OVA; HNU; etc.) Juctance, 20, 420, 420 ph hod and Material PVC ents Sampled	Appear	turbid 7.45, 7.45 Description or G&M	Preservative Sodium_Thiosulfate
Specific Condumnos/cm 42 Sampling Method 2 VOA Metals Nitroge	Odor None Cion; OVA; HNU; etc.) Juctance, 20, 420, 420 ph hod and Material PVC ents Sampled	Appead 1 250 ml plas 1/2 gal pla	pescription or G&Ms lastic stic astic	Preservative Sodium_Thiosulfate HNO3
Specific Condumnos/cm 42 Sampling Method 2 VOA Metals Nitroge Inorgan	Odor None Cion; OVA; HNU; etc.) Juctance, 20, 420, 420 ph hod and Material PVC ents Sampled	Appear	pescription or G&Ms lastic stic	Preservative Sodium_Thiosulfate HNO3 H2NO4

Project/No	N7760C3			•	Page <u>1</u> of
Site Location	Oswego Valley L	andfill			
Site/Well No	GW-12A Code Repl		<u>-</u>	Date: <u>1-</u>	-24-85
Weather 25°F S	Time Snow Bega	Sampling n	9:30	Time Sampl Completed	9:40
Description of Me	easuring Point (MP) <u>Top o</u>	f <u>2</u> " PVC Cas	ing	
Height of MP Abov	e/Below Land Su	rface <u>2.6</u> 2	2 MP Ele	vation <u>472.5</u>	53
Total Sounded De	epth of Well Bel	ow MP 16.0	7Water-	Level Elevatio	on 463.31
Held 12.00 Dep	oth to Water Bel	ow MP 9.22	2 Diamet	er of Casing _	2"
Wet <u>2.78</u>	Water Column in Gallons per	 	Prior		 1.5*
	Gallons in	Well 1.09		ng Pump Intake below land sur	. –
			(,,,,,,		
Evacuation Method . Colorlt. brown			PVC Bailer	Temperato	ıre 8 °F
Color <u>lt. brown</u> Other (specific i	Odor <u>None</u> on; OVA; HNU; et	Appearance	PVC Bailer turbid		ure <u>8</u> °F
Color <u>lt. brown</u> Other (specific i Specific Conducta umhos/cm 75Q, 75	Odor <u>None</u> on; OVA; HNU; el	Appearance	turbid		ure <u>8</u> °F
Color <u>lt. brown</u> Other (specific i	Odor None on; OVA; HNU; end noce, 0, 750, 750	Appearance tc.) pH 6.90,6	turbid .90,6.90,6.9		ure <u>8</u> °
Color <u>lt. brown</u> Other (specific i Specific Conducta umhos/cm 75Q, 75	Odor None on; OVA; HNU; end noce, O, 750, 750 and Material Cor	Appearance	turbid .90,6.90,6.9		
Color <u>lt. brown</u> Other (specific i Specific Conducta umhos/cm 75Q, 75 Sampling Method a	Odor None On; OVA; HNU; elements, O, 750, 750 Ind Material Corporate from	Appearance tc.) pH 6.90,6 Puntainer Desc	turbid .90,6.90,6.9	5Preserva	
Color <u>lt. brown</u> Other (specific i Specific Conducta umhos/cm 75Q, 75 Sampling Method a Constituents Samp	Odor None On; OVA; HNU; end Ince, O, 750, 750 Ind Material Con From	Appearance tc.) pH _6.90,6 PN ntainer Desc	turbid	5Preserva	ntive hiosulfate
Color <u>lt. brown</u> Other (specific i Specific Conducta umhos/cm 75Q, 75 Sampling Method a Constituents Samp	Odor None On; OVA; HNU; end Ince, O, 750, 750 Ind Material Cor From 40 250	Appearance tc.) pH 6.90,6 PV ntainer Desc n Lab x of	turbid turbid .90,6.90,6.9	Preserva Sodium T	ntive hiosulfate

Site Location Oswego Valley Landfill Coded/ Site/Well No. GW-14A Replicate No Time Sampling Began 9:20 Description of Measuring Point (MP) Top of 2" PVC Casing	Date: 1-24-85 Time Sampling Completed 9:30
Site/Well No Replicate No Time Sampling Began 9:20	Time Sampling
Weather 25°F Snow Began 9:20	
Description of Measuring Point (MP)Top of 2" PVC Casing	
Height of MP Above/Below Land Surface2.33 MP Elevat	ion 474.85
Total Sounded Depth of Well Below MP 19.62 Water-Lev	el Elevation 462.63
Held 15.00 Depth to Water Below MP 12.22 Diameter	of Casing _2"
	umped/ <u>Bailed</u>
Prior to Gallons per Foot 0.16	
. •	Pump Intake Setting ow land surface)
Evacuation Method PVC Bailer	
ColorCloop Oden None Appropriate Cl. construction	
ColorClear Odor None Appearance Sl. grey Other (specific ion; OVA; HNU; etc.) Filters easily	_ Temperature <u>8.0</u> °
	_ Temperature <u>8.0</u> °
Other (specific ion; OVA; HNU; etc.) Filters easily Specific Conductance,	_ Temperature <u>8.0</u> °
Other (specific ion; OVA; HNU; etc.) Filters easily Specific Conductance, umhos/cm 450, 460, 460, 450 pH 7.30,7.25,7.25,7.30	Temperature 8.0 °
Other (specific ion; OVA; HNU; etc.) Filters easily Specific Conductance, umhos/cm 450, 460, 460, 450 pH 7.30,7.25,7.25,7.30 Sampling Method and Material PVC Bailer Container Description	
Other (specific ion; OVA; HNU; etc.) Filters easily Specific Conductance, umhos/cm 450, 460, 460, 450 pH 7.30,7.25,7.25,7.30 Sampling Method and Material PVC Bailer Container Description From Lab x or G&M	Preservative
Other (specific ion; OVA; HNU; etc.) Filters easily Specific Conductance, umhos/cm 450, 460, 460, 450 pH 7.30,7.25,7.25,7.30 Sampling Method and Material PVC Bailer Container Description Constituents Sampled From Lab x or G&M VOA 40 ml vials	Preservative Sodium Thiosulfate

		Page _1_
Site Location Oswego	Valley Landfill	
Site/Well No. <u>GW-15</u>	Coded/ Replicate No	Date: <u>1-23-85</u>
Weather 20°F Snow	Time Sampling Began 10:30	Time Sampling Completed 10:
Description of Measuring	Point (MP) 2" PVC	Casing
Height of MP Above/Below	Land Surface 2.98 MP	Elevation <u>451.57</u>
Total Sounded Depth of	Well Below MP 20.10 Wa	iter-Level Elevation <u>440.25</u>
Held 13.00 Depth to W	ater Below MP 11.32 Di	ameter of Casing2"
Wet		llons Pumped/ <u>Bailed</u>
Gal	Pr lons per Foot <u>0.16</u>	ior to Sampling 2.0*
Ga		mpling Pump Intake Setting eet below land surface)
Evacuation Method pvc	Bailer	
	one Appearance v. turb; HNU; etc.) Silty sand	id Temperature 7.0
Specific Conductance,	650 pH 6.8, 6.8, 6.8,	6.8
	rial PVC Baile	
	Container Description From Lab x or G&M	
Sampling Method and Mate	. Container Description	
Sampling Method and Mate Constituents Sampled	Container Description From Lab x or G&M	Preservative
Sampling Method and Mate Constituents Sampled Metals	Container Description From Lab x or G&M 250 ml plastic	Preservative HNO ₃
Sampling Method and Mate Constituents Sampled Metals Nitrogen Inorganics VOC	Container Description From Lab x or G&M 250 ml plastic 500 ml plastic	Preservative HNO ₃ H ₂ SO ₄ None Sodium Thiosulfate

ر ع

:

WATER SAMPLING LOG

Project/No	N7760C3			Page1 of1
Site Location_	Oswego Valley Landf	i11		
	011 1.6	Coded/		Date1-23-85
Site/Well No.		Replicate No. Time Sampling Began		
Weather	20°F Snow	Began	11:20	Completed 11:50
		EVACUATION	ON DATA	
Description of I	Measuring Point (MP)	p of 2" PVC	<u>Casing</u>	
Height of MP	Above/Below Land Surface	2.71	MP Elevation469.	94
Total Sounded	Depth of Well Below MP	21.40	Water-Level Elevation	458.68
Held14.00	Depth to Water Below MP	11.26	Diameter of Casing	
Wet2.74	Water Column in Well	10.14	Gallons Pumped/Bailed Prior to Sampling	
	Gallons per Foot	0.16		
	Gallons in Well	1.6	Sampling Pump Intake (feet below land surface	
Evacuation Me	thod PVC Bailer			
Color Lt. B Other (specific	ion; OVA; HNU; etc.)		arance_sl. turbid	
	od and Material PVC 1	<u>7.25, 7.25</u> -1/4" Bailer	, 7.25, 7.25	
Constitue	nts Sampled F	Container D	Description or G&M	Preservative
VOA		40 ml vials	<u> </u>	Sodium Thiosulfate
Metals		500 ml plas	stic	HNO ₃ - Filtered
Nitrog	en	500 ml plas		H ₂ SO ₄
Inorga:		1/2 gal pla	astic	None
	onnelD. Schantz, [R. Swedborg		
-		WELL CASING		
G	SAL./FT $1-\frac{1}{4}$ " = 0.077 $1-\frac{1}{2}$ " = 0.10	$2'' = 0.16$ $2^{-1/2}'' = 0.24$		4'' = 0.65 6'' = 1.46

Project/No	N776UC3				Page <u>1</u>	of _1
Site Location _	Oswego Val	lley Landfi	11			
Site/Well No	GW-17	Coded/ Replicate	No		Date: 1-23-85	
Weather 20°F,	, Snow	Time Sampi Began	ling 15:15	<u> </u>	Time Sampling Completed15.2	5
Description of	Measuring Po	oint (MP) _	2"	Steel Cas	ing	
Height of MP At	ove/Below La	and Surface	2.90	MP Eleva	tion <u>466.49</u>	
Total Sounded	Depth of Wel	.1 Below MP	33.30	Water-Le	vel Elevation <u>450.89</u>	
Held <u>19.00</u> D	epth to Wate	r Below MP	15.60	Diameter	of Casing2"	
Wet					Pumped/ <u>Bailed</u> Sampling 14	
-		ns per Foot		. ,	Pump Intake Setting low land surface)	
	Galic	112 III METT		(Leer be		
Evacuation Meth	nod		_	DV 0 D : 1		
Evacuation Meth	nod 			PVC Bailer		
Color Greyish Other (specific	Odor <u>None</u> : ion; OVA; H	NU; etc.) _ 5 pH _7 1	.75,7.75, PVC Baile	turbid 7.75,7.75 r	Temperature <u>8</u>	°F/°
Color Greyish Other (specific Specific Conduct umhos/cm 275, Sampling Method Constituents Sa	Odor <u>None</u> ion; OVA; Hetance, 275, 275, 27	NU; etc.) _ 5 pH _7 1 Containe From Lab	2.75,7.75, PVC Baile Pr Descrip x or G&	turbid 7.75,7.75 r tion	Temperature 8	°F/°
Color Greyish Other (specific Specific Conduct umhos/cm 275, Sampling Method Constituents Sa Metals	Odor <u>None</u> ion; OVA; Hetance, 275, 275, 27	NU; etc.) _ 5 pH _7 1 Containe From Lab 250 mil	2.75,7.75, PVC Baile Tr Descript X or G&	turbid 7.75,7.75 r tion M	Preservative HNO3	
Color Greyish Other (specific Specific Conduct umhos/cm 275, Sampling Method Constituents Sa Metals Nitrogen	Odor <u>None</u> ion; OVA; Hetance, 275, 275, 27	NU; etc.) _ 5 pH _7 1 Containe From Lab 250 mil	PVC Baile or G&	turbid 7.75,7.75 r tion M	Preservative HNO ₃ H ₂ SO ₄	
Color Greyish Other (specific Specific Conduct umhos/cm 275, Sampling Method Constituents Sa Metals	Odor <u>None</u> ion; OVA; Hetance, 275, 275, 27	NU; etc.) _ 5 pH _7 1 Containe From Lab 250 mil	PVC Baile To Descrip	turbid 7.75,7.75 r tion M	Preservative HNO3	

	•			
Project/No.	N7760C3			Page 1 c
Site Location		allev Lándfill	-	
	- 00.10g0 10			
Site/Well No	GW-18A	Coded/ Replicate No		Date: <u>1-22-85</u>
Weather <u>Windy 20</u>)°F	Time Sampling Began 14	:00	Time Sampling Completed 14.3
Description of N	1easuring P	Point (MP)	2" PVC	
Height of MP Abo	ove/Below L	and Surface2.5	O MP Ele	vation <u>466.94</u>
Total Sounded D	epth of We	ell Below MP <u>21.6</u>	Water-	Level Elevation 455.04
Held <u>16.00</u> De	epth to Wat	er Below MP11.9	<u>O</u> Diamet	er of Casing2"
Wet <u>4.10</u>	Water Col	umn in Well9.7	OGallon	s Pumped/ <u>Bailed</u>
	Gal lo	ons per Foot 0.1		to Sampling 7.5
	ddiio		<u> </u>	
		ons in Well1.5	Sampli	ng Pump Intake Setting below land surface)
Evacuation Metho	Gall	ons in Well1.5	Sampli	
Evacuation Metho	Gall	-	Sampli	
	Gall od	PVC Bailer	Sampli (feet	below land surface)
Evacuation Metho Color <u>Brown</u>	Gall	PVC Bailer	Sampli (feet	
Color <u>Brown</u>	Gall od Odor None	PVC Bailer	Sampli (feet v. turbid	below land surface) Temperature7
Color <u>Brown</u>	Gall od Odor None	PVC Bailer Appearance	Sampli (feet v. turbid	below land surface) Temperature7
Color <u>Brown</u> Other (specific	Gall od Odor None ion; OVA;	PVC Bailer Appearance	Sampli (feet v. turbid	below land surface) Temperature7
Color Brown Other (specific Specific Conduct	Gall Odor None ion; OVA;	PVC Bailer Appearance	Sampli (feet	below land surface) Temperature7
Color Brown Other (specific Specific Conduct	Gall Odor None ion; OVA; ance,	PVC Bailer Appearance HNU; etc.) 50 pH 7.45,7.4	Sampli (feet v. turbid	below land surface) Temperature7
Color Brown Other (specific Specific Conduct umhos/cm 350, 3 Sampling Method	Odor None ion; OVA; ance, 550, 350, 3	PVC Bailer Appearance HNU; etc.) 50 pH 7.45,7.4 PVC Bail Container Description	Sampli (feet v. turbid 45,7.45,7.4	Temperature7
Color Brown Other (specific Specific Conduct umhos/cm 350, 3	Odor None ion; OVA; ance, 550, 350, 3	PVC Bailer Appearance HNU; etc.) 50 pH 7.45,7.4 PVC Bai Container Desc: From Lab x or	Sampli (feet v. turbid 45,7.45,7.4 ler ription G&M	Temperature7
Color Brown Other (specific Specific Conduct umhos/cm 350, 3 Sampling Method	Odor None ion; OVA; ance, 550, 350, 3	PVC Bailer Appearance HNU; etc.) 50 pH 7.45,7.4 PVC Bail Container Description	Sampli (feet v. turbid 45,7.45,7.4 ler ription G&M	Temperature7
Color Brown Other (specific Specific Conduct umhos/cm 350, 3 Sampling Method Constituents Sam	Odor None ion; OVA; ance, 550, 350, 3	PVC Bailer Appearance HNU; etc.) 50 pH 7.45,7.4 PVC Bai Container Desc: From Lab x or	Sampli (feet v. turbid 45,7.45,7.4 ler ription G&M	Temperature7
Color Brown Other (specific Specific Conduct umhos/cm 350, 3 Sampling Method Constituents Sam Metals	Odor None ion; OVA; ance, 550, 350, 3	PVC Bailer Appearance HNU; etc.) 50 pH 7.45,7.4 al PVC Bai Container Description Lab x or 250 mil	Sampli (feet v. turbid 45,7.45,7.4 ler ription G&M	Temperature7

WELL CASING

Project/No. N776	•		
Site Location Oswe	go Valley Landfill		
Site/Well NoGW-2	Coded/ 4 Replicate No	Date: <u>1-25</u>	-85
Weather 20°F Clear -	Time Sampling Snow Began12.		
Description of Measur	ing Point (MP) <u>1-1/</u>	/2" PVC	
Height of MP Above/Be	low Land Surface <u>1.48</u>	MP Elevation <u>483.20</u>	
Total Sounded Depth	of Well Below MP <u>15.7</u>	Water-Level Elevation	480.30
Held Depth to	o Water Below MP <u>2.90</u>	Diameter of Casing	1-1/
	r Column in Well 12.8	Gallons Pumped/Bailed Prior to Sampling _Eva	c. drv
,	Gallons per Foot 0.1	Sampling Pump Intake S	etting
	Gallons in Well 1.28	(feet b elow land surfa	(C)
Evacuation Method —			
 Color <u>Brown</u> Odor	Yes Appearance	Turbid Temperature Very Silty	7.0
Color Brown Odor Other (specific ion; (Specific Conductance, umhos/cm 550, 550, 55	Yes Appearance	Very Silty	7.0
Color Brown Odor Other (specific ion; (Specific Conductance, umhos/cm 550, 550, 55	Yes Appearance	Very Silty 50,7.50,7.50	•
Color Brown Odor Other (specific ion; (Specific Conductance, umhos/cm 550, 550, 55	Yes Appearance	Very Silty 50,7.50,7.50	• /e
Color Brown Odor Other (specific ion; (Specific Conductance, umhos/cm 550, 550, 55 Sampling Method and Ma	Yes Appearance	Very Silty 50,7.50,7.50 Siption G&M Preservative Sodium Thice	• ve osulfate
Color Brown Odor Other (specific ion; (Specific Conductance, umhos/cm 550, 550, 55 Sampling Method and Ma Constituents Sampled	Yes Appearance DVA; HNU; etc.) 50, 550 pH 7.50,7.5 aterial 3/4" PVC Bailer Container Descr From Lab x or 40 ml vials	Very Silty 0,7.50,7.50 Pription G&M Preservative Sodium Thice HNO_3 - Filt	/e osulfate
Color Brown Odor Other (specific ion; Conductance, umhos/cm 550, 550, 550, 550) Sampling Method and Mathematical Constituents Sampled VOA Metals	Yes Appearance DVA; HNU; etc.) 50, 550 pH 7.50,7.5 aterial 3/4" PVC Bailer Container Descr From Lab x or 40 ml vials 250 plastic	Very Silty 0,7.50,7.50 iption G&M Preservativ Sodium Thic HNO_3 - Filt H_2SO_4	• ve osulfate

NOT SAMPLED

110Jece/110		
Site Location <u>Osweg</u>	o Valley Landfill	
Site/Well NoGW-25	Coded/ Replicate No	Date: <u>1-24-85</u>
Weather 25°F Snow	Time Sampling Began	Time Sampling Completed
Description of Measuri	ng Point (MP) <u>Top of 3/4</u>	" PVC
Height of MP Above/Bel	ow Land Surface 3.58	MP Elevation 495.60
Total Sounded Depth o	f Well Below MP 23.95	Water-Level Elevation 477.12
Held 23.95 Depth to	Water Below MP 23.48	Diameter of Casing3/4
Wet	Column in Well 0.47	Gallons Pumped/Bailed
G	allons per Foot 0.053	Prior to Sampling
	Gallons in Well <u>0.025</u>	Sampling Pump Intake Setting (feet below land surface)
	enough H ₂ O to collect a s	sample Temperature
ColorOdor	<u>-</u>	Temperature
ColorOdor_Other (specific ion; O	Appearance	Temperature
ColorOdor_Other (specific ion; O	Appearance	Temperature
ColorOdor_Other (specific ion; O	Appearance VA; HNU; etc.) pH	Temperature
ColorOdor_Other (specific ion; O Specific Conductance, umhos/cm Sampling Method and Ma Constituents Sampled	Appearance VA; HNU; etc.) pH terial Container Descript From Lab or G&M	tion M Preservative
ColorOdor_Other (specific ion; O Specific Conductance, umhos/cm Sampling Method and Ma	Appearance VA; HNU; etc.) pH terial Container Descript	tion M Preservative
ColorOdor_Other (specific ion; O Specific Conductance, umhos/cm Sampling Method and Ma Constituents Sampled	Appearance VA; HNU; etc.) pH terial Container Descript From Lab or G&M	tion M Preservative

WELL SAMPLING LOG

Project/No. <u>N7760C3</u>		Page <u>1</u>
Site Location Oswego	Valley Landfill	
Site/Well No. SGW-26	Coded/ Replicate No	Date:1-23-85
Weather Snowy, 20°F	Time Sampling Began <u>16:30</u>	Time Sampling Completed 16:45
	EVACUATION	DATA
Description of Measuring	Point (MP) Top of 2"	PVC
Height of MP Above/Below	Land Surface 2.23	MP Elevation 470.24
Total Sounded Depth of V	Well Below MP 27.2	Water-Level Elevation465.78
Held 6.00 Depth to Wa	ater Below MP <u>4.46</u>	Diameter of Casing2"
Wet 1.53 Water Co	olumn in Well 22.74	Gallons Pumped/Bailed
Gali	lons per Foot 0.16	Prior to Sampling 18.1
Gal	llons in Well 3.63	Sampling Pump Intake Setting (feet below land surface)
Evacuation MethodP\	C Bailer	
	SAMPLING DATA/FIELD	PARAMETERS
Other (specific ion; OVA;		rbid Temperature 8
Specific Conductance, umhos/cm 340, 340, 340, Sampling Method and Mater		
Constituents Sampled	Container Descri From Lab <u>x</u> or G	
Metals	250 ml plastic	HNO ₃
Nitrogen	500 ml plastic	H ₂ SO ₄
VOA	40 ml Vials	Sodium Thiosulfat
Inorganics Remarks	1/2 gal	None
Sampling Personnel Da		

WELL SAMPLING LOG

Project/No. N7760C3			Page 1
Site Location Oswego	Valley Landfill	·	
Site/Well No. SGW-27A	Coded/ Replicate No	Date:1	-24-85
Weather 30°F Snow	Time Sampling Began 14:00	Time Samp Completed	_
	EVACUATION D	DATA	
Description of Measuring	Point (MP) Top of 2"	PVC Casing	
Height of MP Above/Below	Land Surface 2.30	MP Elevation	47 <u>5.4</u> 4
Total Sounded Depth of	Well Below MP 22.15	Water-Level Elevati	on 479.23
Held 8.00 Depth to W	ater Below MP <u>5.21</u>	Diameter of Casing	2"_Casi
Wet <u>2.79</u> Water C	olumn in Well <u>16.94</u>	Gallons Pumped/Bail	
Gal	lons per Foot <u>0.16</u>	Prior to Sampling _	13.55
Ga	llons in Well _2.71	Sampling Pump Intak (feet below land su	
Evacuation Method Baile	d 16 gal w/dedicated ba	iler. Good recharge	- Couldn't
below static			
	SAMPLING DATA/FIELD	PARAMETERS .	
Color Brown Odor N	one Appearance <u>Tur</u>	bid Temperat	ure <u>8</u>
Other (specific ion; OVA	; HNU; etc.) -		
	-		
Specific Conductance,			
umbos/cm 95.705.700.	105 nH 7.10. 6.85.	6.85. 6.85	
umhos/cm 95, 105, 100,			
Sampling Method and Mate	rialPVC_Ba	iler	
		ilertion	ative
Sampling Method and Mate	rial PVC Ba	tion M Preserv	
Sampling Method and Mate Constituents Sampled	rial <u>PVC Ba</u> Container Descrip From Lab <u>x</u> or G&	tion M Preserv	
Sampling Method and Mate Constituents Sampled Metals	Container Descrip From Lab x or G&	tion M Preserv HN0_3 H_2S0_4	
Sampling Method and Mate Constituents Sampled Metals Nitrogen	Container Descrip From Lab x or G& 250 ml plastic	HNO 3	ative Thiosulfate

Project/No. N7760C3		Page <u>1</u> c
Site Location Oswego	Valley Landfill	
Site/Well No. SGW-27B	Coded/ Replicate No	Date: <u>1-24-85</u>
Weather 30°F Snow	Time Sampling Began 14:30	Time Sampling Completed15:00
	EVACUATION (DATA
Description of Measuring	Point (MP) Top of 2"	PVC Casing
Height of MP Above/Below	Land Surface 3.68	MP Elevation 475.50
Total Sounded Depth of V	Well Below MP 37.90	Water-Level Elevation 470.08
Held 9.00 Depth to Wa	ater Below MP <u>5.42</u>	Diameter of Casing2"
Wet 3.58 Water Co	olumn in Well <u>32.48</u>	Gallons Pumped/Bailed
Gall	lons per Foot <u>0.16</u>	Prior to Sampling25.9
		Sampling Pump Intake Setting
Ga	llons in Well <u>5.19</u>	(feet below land surface)
		(feet below land surface)
Evacuation Method Bailed		ailer. Good recharge - Couldn't
Evacuation Method Bailed below static	d 14 gal w/dedicated b	PARAMETERS
Evacuation Method Bailed below static	SAMPLING DATA/FIELD one Appearance S1	PARAMETERS
Evacuation Method Bailed below static Color Brown Odor No	SAMPLING DATA/FIELD one Appearance S1	PARAMETERS
Evacuation Method Bailed below static Color Brown Odor No	SAMPLING DATA/FIELD one Appearance S1; HNU; etc.)	PARAMETERS Turbid Temperature 7.0
Evacuation Method Bailed below static Color Brown Odor No Other (specific ion; OVA; Specific Conductance,	SAMPLING DATA/FIELD one Appearance S1; HNU; etc.)	PARAMETERS Turbid Temperature 7.8
Evacuation Method Bailed below static Color Brown Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 380, 380, 380,	SAMPLING DATA/FIELD one Appearance S1; HNU; etc.)	PARAMETERS Turbid Temperature 7.0 7.25, 7.25
Evacuation Method Bailed below static Color Brown Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 380, 380, 380, 380, Sampling Method and Mater	SAMPLING DATA/FIELD one Appearance S1 ; HNU; etc.) 380 pH 7.30, 7.25 rial PVC Ba	PARAMETERS Turbid Temperature 7.0 7.25, 7.25
Evacuation Method Bailed below static Color Brown Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 380, 380, 380, 380, Sampling Method and Mater Constituents Sampled	SAMPLING DATA/FIELD one Appearance S1 ; HNU; etc.) 380 pH 7.30, 7.25 rial	PARAMETERS Turbid Temperature 7.0 7.25, 7.25 Ailer Preservative H ₂ SO ₄
Evacuation Method Bailed below static Color Brown Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 380, 380, 380, 380, Sampling Method and Mater Constituents Sampled Nitrogen	SAMPLING DATA/FIELD one Appearance S1 ; HNU; etc.) 380 pH 7.30, 7.25 rial	PARAMETERS Turbid Temperature 7.0 7.25, 7.25 Ailer Preservative H ₂ SO ₄

110Jecc/140. 147700c3	· · · · · · · · · · · · · · · · · · ·		age
Site LocationOswego V	alley_Landfill		
Site/Well No. SGW-28	Coded/ Replicate No	Date:1-24	4- 85
Weather 30°F Clear	Time Sampling Began 15:20	Time Samplin	
	EVACUATION D	ATA	
Description of Measuring P	oint (MP) <u>Top of 2"</u>	Steel Casing	_
Height of MP Above/Below L	and Surface 2.71	MP Elevation	479 .99
Total Sounded Depth of We	11 Below MP <u>24.85</u>	Water-Level Elevation	472.93
Held 10.00 Depth to Wat	er Below MP <u>7.06</u>	Diameter of Casing	2"
Wet 2.94 Water Col	umn in Well <u>17.79</u>	Gallons Pumped/ <u>Bailed</u> Prior to Sampling	14.5
Gallo	ns per Foot <u>0.16</u>	Sampling Pump Intake S	
Gall	ons in Well 2.8	(feet below land surfa	
Evacuation Method Bailed	3 gal. dry w/dedicate	d PVC Bailer.	
	SAMPLING DATA/FIELD	PARAMETERS	
Color Red-Tan Odor None Other (specific ion; OVA; N		Turbid Temperature	7.0
			
Specific Conductance, umhos/cm 600, 600, 600, 62	pH <u>7.35</u> , 7.40,	7.40, 7.40	
Sampling Method and Materia	al PVC Ba	iler	
Constituents Sampled	Container Descrip From Lab <u>x</u> or G&		ve
V04	40 ml vials	Sodium Thi	osulfat
VOA			
Metals	250 plastic	HNO 3	
	250 plastic 500 ml plastic	HNO ₃	
Metals		•	

Project/No. <u>N776UC3</u>			
Site Location Oswec	go Valley Landfill		
Site/Well No. SGW-29	Coded/ Replicate No.	Date:	1-25-85
Weather 10°F Clear	Time Sampling Began 9:45	Time Sam Complete	pling d9:50
	EVACUATION	DATA	
Description of Measurin	ng Point (MP) <u>Top of 2"</u>	Casing	
Height of MP Above/Belo	w Land Surface 2.13	MP Elevation	458.42
Total Sounded Depth of	Well Below MP 22.20	Water-Level Elevat	ion <u>452.90</u>
Held Depth to	Water Below MP 5.52	Diameter of Casing	2"
Wet Water	Column in Well 16.68		
Ga	llons per Foot 0.16		
C	allons in Well 2.66	Sampling Pump Inta (feet below land s	
u.			
	ed w/dedicated PVC Baile	er - 13.5 gal.	
Evacuation Method <u>Bail</u>	ed w/dedicated PVC Baild		
Evacuation Method <u>Bail</u>	ed w/dedicated PVC Bailo	PARAMETERS	tupo 7.0 º
Evacuation Method <u>Bail</u> Color <u>Brown</u> Odor _	ed w/dedicated PVC Bailo SAMPLING DATA/FIELD None Appearance	PARAMETERS Turbid Tempera	
Evacuation Method <u>Bail</u> . Color <u>Brown</u> Odor _	ed w/dedicated PVC Bailo	PARAMETERS Turbid Tempera	
Evacuation Method <u>Bail</u> Color <u>Brown</u> Odor _ Other (specific ion; OV	ed w/dedicated PVC Bailo SAMPLING DATA/FIELD None Appearance	PARAMETERS Turbid Tempera	
Evacuation Method Bail Color Brown Odor Other (specific ion; OV Specific Conductance,	ed w/dedicated PVC Bailo SAMPLING DATA/FIELD None Appearance A; HNU; etc.)	PARAMETERS Turbid Tempera	
Evacuation Method Bail Color Brown Odor Other (specific ion; OV Specific Conductance, umhos/cm 220, 230, 220	SAMPLING DATA/FIELD None Appearance A; HNU; etc.) , 235 pH 7.35, 7.40	PARAMETERS Turbid Temperat , 7.40, 7.45	
Evacuation Method Bail Color Brown Odor _ Other (specific ion; OV Specific Conductance, umhos/cm 220, 230, 220	ed w/dedicated PVC Bailo SAMPLING DATA/FIELD None Appearance A; HNU; etc.)	PARAMETERS Turbid Tempera , 7.40, 7.45 ailer	
Evacuation Method Bail Color Brown Odor Other (specific ion; OV Specific Conductance, umhos/cm 220, 230, 220 Sampling Method and Mat	SAMPLING DATA/FIELD None Appearance A; HNU; etc.) - , 235 pH 7.35, 7.40 erial PVC Ba	PARAMETERS Turbid Temperat , 7.40, 7.45 ailer ption	· · · · · · · · · · · · · · · · · · ·
Evacuation Method Bail Color Brown Odor Other (specific ion; OV Specific Conductance, umhos/cm 220, 230, 220 Sampling Method and Mat Constituents Sampled	SAMPLING DATA/FIELD None Appearance A; HNU; etc.) — , 235 pH 7.35, 7.40 erial PVC Ba Container Descrip	PARAMETERS Turbid Temperat , 7.40, 7.45 ailer ption &M Preserv	· · · · · · · · · · · · · · · · · · ·
Evacuation Method Bail Color Brown Odor Other (specific ion; OV Specific Conductance, umhos/cm 220, 230, 220 Sampling Method and Mat Constituents Sampled	SAMPLING DATA/FIELD None Appearance A; HNU; etc.) — , 235 pH 7.35, 7.40 erial PVC Ba Container Descrip	PARAMETERS Turbid Temperate , 7.40, 7.45 ailer ption MM Preserv Sodium	vative Thiosulfate
Evacuation Method Bail Color Brown Odor Other (specific ion; OV Specific Conductance, umhos/cm 220, 230, 220	SAMPLING DATA/FIELD None Appearance A; HNU; etc.) — PVC Ba Container Descrip From Lab x or Ga 40 ml vials	PARAMETERS Turbid Temperate , 7.40, 7.45 ailer ption &M Preserv Sodium HN03	vative

HELL CASING VOLUMES

		,
Site Location Oswego	Valley Landfill	<u> </u>
Site/Well No. SGW-30A	Coded/ Replicate No.	Date: <u>1-22-85</u>
Weather 20°F Snow	Time Sampling Began 13:50	Time Sampling Completed 14:30
	EVACUATION D	<u>ATA</u>
Description of Measuring	Point (MP) Top of 2" F	PVC Casing
Height of MP Above/Below	Land Surface 2.68	MP Elevation 457.13
Total Sounded Depth of	Well Below MP 21.15	Water-Level Elevation <u>450.08</u>
Held 9.00 Depth to Wa	ater Below MP _7.05	Diameter of Casing2"
Wet 1.95 Water Co	olumn in Well <u>14.10</u>	Gallons Pumped/Bailed
Gal	lons per Foot _0.16	Prior to Sampling 11.28 Centrifugal - Dry at 3 gal
Ga:	llons in Well 2.66	Sampling Pump Intake Setting (feet below land surface) Bott
		
Evacuation Method Pumped	d 3 gal - Dry with Centi	rifugal
Evacuation Method Pumped	d 3 gal - Dry with Centi SAMPLING DATA/FIELD F	
Evacuation Method Pumped Color Brown Odor No Other (specific ion; OVA;	SAMPLING DATA/FIELD Fone Appearance v.	PARAMETERS Turbid Temperature 7.0
Color Brown Odor No Other (specific ion; OVA: Specific Conductance, umhos/cm 600, 600, 600,	SAMPLING DATA/FIELD Fone Appearance v.; HNU; etc.) Fine Silt	Turbid Temperature 7.0
Color Brown Odor No Other (specific ion; OVA; Specific Conductance,	SAMPLING DATA/FIELD Fone Appearance v.; HNU; etc.) Fine Silt	PARAMETERS Turbid Temperature 7.0 6.9,.6.9 iler
Color Brown Odor No Other (specific ion; OVA: Specific Conductance, umhos/cm 600, 600, 600, Sampling Method and Mater Constituents Sampled	SAMPLING DATA/FIELD Fone Appearance v. ; HNU; etc.) Fine Silt 600 pH 6.90, 6.9, 6 rial PVC Bai	PARAMETERS Turbid Temperature 7.0 6.9,.6.9 iler
Color Brown Odor No Other (specific ion; OVA: Specific Conductance, umhos/cm 600, 600, 600, Sampling Method and Mater	SAMPLING DATA/FIELD Fone Appearance v. ; HNU; etc.) Fine Silt 600 pH 6.90, 6.9, 6 rial PVC Bai Container Descript From Lab x or G&M	PARAMETERS Turbid Temperature 7.0 6.9,.6.9 iler ion 1 Preservative Sodium Thiosulfate
Color Brown Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 600, 600, 600, Sampling Method and Mater Constituents Sampled	SAMPLING DATA/FIELD Fone Appearance v. HNU; etc.) Fine Silt 600 pH 6.90, 6.9, 6 rial PVC Bai Container Descript From Lab x or G&M 40 ml vials	Turbid Temperature 7.0 6.9,.6.9 iler ion Preservative

Project/No. N//6UC3		Page <u>1</u>
Site Location Oswego	Valley Landfill	_
Site/Well No. SGW-30B	Coded/ Replicate No	Date:1-22-85
Weather 20°F Snow	Time Sampling Began 13:50	Time Sampling Completed 14:30
	EVACUATION DATA	
Description of Measuring	Point (MP) <u>Top of 2" PVC Ca</u>	sing
Height of MP Above/Below	Land Surface 2.32 MP E	levation456.37
Total Sounded Depth of	Well Below MP 35.85 Wate	r-Level Elevation <u>450.51</u>
Held 8.00 Depth to W	ater Below MP <u>5.86</u> Diam	eter of Casing2"
Wet <u>2.14</u> Water C		ons Pumped/ <u>Bailed</u> r to Sampling 23.99
Gal	lons per Foot 0.16	ling Pump Intake Setting
Ga		t below land surface) 20
Evacuation Method Evacu	ated 4 gal w/Centrigal - Bailo	ed w/PVC Bailer 12 gal -
	Total 16 gal. SAMPLING DATA/FIELD PARAMET	
Color <u>Clear</u> Odor <u>N</u> Other (specific ion; OVA	one Appearance Clear	Temperature 7.0
Specific Conductance, umhos/cm 300, 300, 300,	300 pH 8.70, 8.75, 8.75,	8.80
Sampling Method and Mate	rialPVC Bailer 1-	-1/4"
Constituents Sampled	Container Description From Lab <u>x</u> or G&M	Preservative
	40 1 1 1	Cadina Thiann16ab
VOA	40 ml vials	Sodium Iniosulrate
Metals	250 plastic	LINO
		HNO_3
Metals	250 plastic	Sodium Thiosulfate HNO3 H ₂ SO ₄ None

	Page _1
Site Location Oswego Valley Landfill	·
Coded/ Site/Well No. <u>GW-31</u> Replicate No	Date: <u>1-25-85</u>
Weather 20°F Snow Began 13:50	Time Sampling Completed 14:30
EVACUATION DATA	_
Description of Measuring Point (MP) <u>Top of 6" Cas</u>	ing
Height of MP Above/Below Land Surface 2.00 M	P Elevation472.6
Total Sounded Depth of Well Below MP 99.70	ater-Level Elevation 470.7
Held 4.00 Depth to Water Below MP 1.85 D	iameter of Casing6"
P:	allons Pumped/ <u>Bailed</u> rior to Sampling73 ga
	ampling Pump Intake Setting feet below land surface)
Evacuation Method See reverse side	
SAMPLING DATA/FIELD PARA	AMETERS
Color <u>Slate gray</u> Odor <u>None</u> Appearance <u>Turbic</u>	d Temperature 7.0
	Tomperacure
Other (specific ion; OVA; HNU; etc.)	
Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 450, 450, 450, 450 pH 8.05, 8.10, 8.0 Sampling Method and Material PVC Bailer	
Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 450, 450, 450, 450 pH 8.05, 8.10, 8.0 Sampling Method and MaterialPVC Bailer Container Description	05, 8.05
Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 450, 450, 450, 450 pH 8.05, 8.10, 8.0 Sampling Method and MaterialPVC Bailer Container Description	05, 8.05
Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 450, 450, 450, 450 Sampling Method and MaterialPVC Bailer Container Description Constituents Sampled From Lab or G&M	n Preservative
Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 450, 450, 450, 450 pH 8.05, 8.10, 8.0 Sampling Method and Material	05, 8.05 Preservative

HELL CASING VOLUMES

Project/No. N7760C3			Page 1
Site Location Oswego	Valley Landfill		
Site/Well No. <u>GW-32</u>	Coded/ Replicate No	Date:	1-27-85
Weather	Time Sampling Began 9:00	Time Sam Complete	pling d <u>10:30</u>
	EVACUATION	N_DATA	
Description of Measuring	Point (MP) <u>Top of</u>	Well Casing	
Height of MP Above/Below	Land Surface 0.35	MP Elevation	469.90
Total Sounded Depth of	Well Below MP	Water-Level Elevat	ion <u>451.28</u>
Held 29.00 Depth to Wa	ter Below MP 18.62	Diameter of Casing	
Wet 10.38 Water 0	olumn in Well		
Gal	lons per Foot	Prior to Sampling	
Ga	llons in Well	Sampling Pump Inta (feet below land s	
Evacuation Method Ran t	ap for 1-1/2 hours		
	SAMPLING DATA/FIEL	D PARAMETERS	
Color Clear Odor N	one Appearance	Clear Tempera	ture 8.0
Other (specific ion; OVA	_		
, , , , , , , , , , , , , , , , , , , ,			
Specific Conductance, umhos/cm 1400, 1400 1400	1400 pH 7.05, 7.1	15, 7.20, 7.20	
Sampling Method and Mate			
	Container Descr	•	
Constituents Sampled	From Lab X or		
Metals	250 ml plastic	HNO_3	_
Nitrogen	250 ml plastic	H ₂ S0 ₄	
Inorganics	1/2 gal. plast:	ic None	
VOA Remarks	40 ml vials Land	Sodium Sodium	Thiosulfate
	ave Schantz		

Site LocationOswego Va	alley Landfill	
Site/Well No.KFRO RW - 1A	Coded/ Replicate No	Date: <u>1-26-85</u>
Weather	Time Sampling Began 11:20	Time Sampling Completed 11:30
	EVACUATION	N_DATA
Description of Measuring Po	oint (MP)Top o	of well
Height of MP Above/Below La	and Surface	MP Elevation 475.90
Total Sounded Depth of Wel	ll Below MP	Water-Level Elevation
Held Depth to Wate	er Below MP	Diameter of Casing
Wet Water Column		Prior to Sampling
	ons in Well .	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method Rar	n tap 10 minutes.	
•		
· · · · · · · · · · · · · · · · · · ·	SAMPLING DATA/FIEL	D PARAMETERS
		D PARAMETERS Clear Temperature 8.0
Color Clear Odor N	None Appearance	
Color Clear Odor N	None Appearance	Clear Temperature 8.0
Color Clear Odor N	None Appearance _	Clear Temperature 8.0
Color Clear Odor N Other (specific ion; OVA; H Specific Conductance, umhos/cm 190, 190, 190, 19	None Appearance	Clear Temperature 8.0 0, 7.10, 7.10
Color Clear Odor N Other (specific ion; OVA; H Specific Conductance, umhos/cm 190, 190, 190, 19 Sampling Method and Materia	None Appearance	Clear Temperature 8.0 10, 7.10, 7.10 o in kitchen.
Color Clear Odor N Other (specific ion; OVA; H Specific Conductance, umhos/cm 190, 190, 190, 19 Sampling Method and Materia	None Appearance HNU; etc.) O pH 7.10, 7.1 al Sampled from tap Container Descr	Clear Temperature 8.0 O, 7.10, 7.10 o in kitchen. ription G&M Preservative
Color <u>Clear</u> Odor <u>N</u> Other (specific ion; OVA; H Specific Conductance,	None Appearance HNU; etc.) PO pH 7.10, 7.1 al Sampled from tap Container Descr From Lab X or	Clear Temperature 8.0 10, 7.10, 7.10 o in kitchen. Ciption G&M Preservative HNO3
Color Clear Odor N Other (specific ion; OVA; H Specific Conductance, umhos/cm 190, 190, 190, 19 Sampling Method and Materia Constituents Sampled Metals Nitrogen	None Appearance HNU; etc.) PO pH 7.10, 7.1 al Sampled from tap Container Descr From Lab X or 250 ml plastic	Clear Temperature 8.0 10, 7.10, 7.10 o in kitchen. Ciption G&M Preservative HN0_3 H_2S0_4
Color Clear Odor N Other (specific ion; OVA; H Specific Conductance, umhos/cm 190, 190, 190, 19 Sampling Method and Materia Constituents Sampled Metals	None Appearance HNU; etc.) PO	Clear Temperature 8.0 10, 7.10, 7.10 o in kitchen. Ciption G&M Preservative HN03 H_2S04 None
Color Clear Odor N Other (specific ion; OVA; H Specific Conductance, umhos/cm 190, 190, 190, 19 Sampling Method and Materia Constituents Sampled Metals Nitrogen Inorganics	None Appearance HNU; etc.) PO pH 7.10, 7.1 al Sampled from tap Container Descr From Lab X or 250 ml plastic 250 ml plastic 1/2 gal. plasti	Clear Temperature 8.0 10, 7.10, 7.10 In kitchen. 20 in kitchen. Preservative HN03. H2504 None Sodium Thiosulfate

WATER SAMPLING LOG

Project/No	N7760C3			Page1 of1
Site Location_	Oswego Valley Landf	iil		
Site/Well No	KFRN RW - 1B	Coded/ Replicate No.		Date1-26-85
		Time Sampling Began	11.00	Time Sampling 11:10
		EVACUATION	ON DATA	
Description of	Measuring Point (MP)	Top of Casir	ng	
•	Above/Below Land Surface		MP Elevation 479.	1
•	Depth of Well Below MP		Water-Level Elevation	
		25.15		
3 85	Depth to Water Below MP		Gallons Pumped/Baile	
Wet	Water Column in Well		Prior to Sampling	
	Gallons per Foot		Sampling Pump Intake	e Settina
	Gallons in Well		. • .	e)
Evacuation Me	thod Ran tap 10	minutes.		
	ion; OVA; HNU; etc.)	•		Temperature5.0°F/
	uctance, 10, 300, 300, 300 ph nod and Material Sample			
Sampling Meti	lod and Material			
Constitue	ents Sampled	Container D From Lab X		Preservative
Metals		250 ml plas	stic	HNO ₃
Nitrogen		250 ml plas	stic	H ₂ SO ₄
Inorgani		1/2 gal. pl	astic	None
E. Coli		40 ml vial 150 ml plas	tic	Sodium Thiosulfate None
	Sampled from tap			NOTIC
Sampling Pers	connelDave Schant	Z	-	
		WELL CASING	VOLUMES	
C	GAL./FT $1-\frac{1}{4}$ " = 0.077 $1-\frac{1}{2}$ " = 0.10	$2'' = 0.16$ $2 - \frac{1}{2}'' = 0.24$	3" = 0.37	4" = 0.65 6" = 1.46

Site Location Oswego Va	alley Landfill	
Site/Well No. DRFO RW-3A	Coded/ Replicate No	Date: <u>1-26-85</u>
Weather	Time Sampling Began 13:00	Time Sampling Completed 13.10
	EVACUATION (DATA
Description of Measuring Po	oint (MP) <u>Top of well</u>	l casing, even with mark on wall
Height of MP Above/Below La	and Surface	MP Elevation472.70
Total Sounded Depth of Wel	ll Below MP <u>8.20</u>	Water-Level Elevation 471./5
Held 3.00 Depth to Wate	er Below MP0.95	Diameter of Casing
Wet 2.05 Water Colu	umn in Well	Gallons Pumped/Bailed
Gallor	ns per Foot	Prior to Sampling
Gallo	ons in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method Ran t	ap 10 minutes	
	SAMPLING DATA/FIELD	PARAMETERS
Color Clear Odor Nor	ne Appearance C	PARAMETERS Clear Temperature 8.0
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40	ne Appearance C	Clear Temperature 8.0
Color Clear Odor Nor Other (specific ion; OVA; H	Appearance Constant of the second of the sec	Clear Temperature 8.0 6.60, 6.95 sement
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40	ne Appearance C	Temperature 8.0 6.60, 6.95 sement
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40 Sampling Method and Materia	ne Appearance C INU; etc.) D pH 6.50, 6.50, al from tap in bas Container Descrip	Temperature 8.0 6.60, 6.95 sement
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40 Sampling Method and Materia Constituents Sampled	ne Appearance Container Descriper Lab X or Go	Temperature 8.0 6.60, 6.95 sement otion M Preservative
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40 Sampling Method and Materia Constituents Sampled Metals	Appearance Container Description Lab X or G&	Temperature 8.0
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40 Sampling Method and Materia Constituents Samoled Metals Nitrogen	ne Appearance Container Descripe From Lab X or Go 250 ml plastic	Temperature 8.0
Color Clear Odor Nor Other (specific ion; OVA; H Specific Conductance, umhos/cm 400, 400, 400, 40 Sampling Method and Materia Constituents Sampled Metals Nitrogen Inorganics	Appearance	Temperature 8.0

WATER SAMPLING LOG

Site Location Oswego Valley Landf	ill		
Site/Well No. DRFN RW-3B	Coded/ Replicate No.		Date <u>1-26-85</u>
Weather	Time Sampling Began	12:50	Time Sampling Completed 13:00
	EVACUATI		
Description of Measuring Point (MP)			
Height of MP Above/Below Land Surface			96.8
Total Sounded Depth of Well Below MP		Water-Level Elevation	
Held 31.00 Depth to Water Below MP			
Wet Water Column in Well		Gallons Pumped/Baile	
Gallons per Foot			
Gallons in Well		Sampling Pump Intake	_
Gallons in Well . Fuggistion Mothed Ran tap 10 minu		(leet below land surface	9)
		ELD PARAMETERS arance <u>v</u> .sl.Turbic	Temperature8.0c
Color Clear Odor yes	Appe	arance <u>v.sl.Turbic</u>	•
Odor Clear Odor yes Other (specific ion; OVA; HNU; etc.)	Appe	arance v. sl. Turbic	•
Odor Clear Odor yes Other (specific ion; OVA; HNU; etc.)	Appe	arance v. sl. Turbic	•
Other (specific ion; OVA; HNU; etc.) Specific Conductance, and a phase of the phas	Appe	, 7.90, 7.80	•
Other (specific ion; OVA; HNU; etc.) Specific Conductance, and another sampling Method and Material from	7.95, 7.95 tap in baser	, 7.90, 7.80	
Color Clear Odor yes Other (specific ion; OVA; HNU; etc.) Specific Conductance, 300, 300, 300 pH Sampling Method and Material from Constituents Sampled	7.95, 7.95 tap in baser Container Com Lab	narance v. sl. Turbic , 7.90, 7.80 ment Description or G&M	Preservative
ColorClearOdoryes	7.95, 7.95 tap in baser	narance v. sl. Turbic , 7.90, 7.80 ment Description or G&M	Preservative HNO
ColorClearOdoryes	7.95, 7.95 tap in baser Container Company 250 ml pla 250 ml pla 1/2 gal.	, 7.90, 7.80 ment Description or G&M astic clastic clastic	Preservative HNO 2 H 2 SO 4 None
ColorClearOdoryes	7.95, 7.95 tap in baser Container Com Lab X 250 ml pla 250 ml pla 1/2 gal. p	narance v. sl. Turbic 7.90, 7.80 ment Description or G&M astic astic plastic	Preservative HNO H2SO 4 None Sodium Thiosulfate
Color Clear Odor yes Other (specific ion; OVA; HNU; etc.) Specific Conductance, 300, 300, 300 pH Sampling Method and Material from Constituents Sampled Metals Nitrogen Inorganics VOA E. Coli	7.95, 7.95 tap in baser Container	narance v. sl. Turbic 7.90, 7.80 ment Description or G&M astic astic plastic	Preservative HNO 2 H 2 SO 4 None
Color Clear Odor yes Other (specific ion; OVA; HNU; etc.) Specific Conductance, 300, 300, 300 pH Sampling Method and Material from Constituents Sampled F Metals Nitrogen Inorganics VOA E. Coli Remarks Slightly turbid, but cl	7.95, 7.95 tap in baser Container	narance v. sl. Turbic 7.90, 7.80 ment Description or G&M astic astic plastic	Preservative HNO H2SO 4 None Sodium Thiosulfate
Color Clear Odor yes Other (specific ion; OVA; HNU; etc.) Specific Conductance, 300, 300, 300 pH Sampling Method and Material from Constituents Sampled F Metals Nitrogen Inorganics VOA E. Coli Remarks Slightly turbid, but cl	7.95, 7.95 tap in baser Container	narance v. sl. Turbic 7.90, 7.80 ment Description or G&M astic astic plastic	Preservative HNO H2SO 4 None Sodium Thiosulfate
ColorClearOdoryes	7.95, 7.95 tap in baser Container	narance V. sl. Turbic 7.90, 7.80 ment Description or G&M astic astic olastic ls astic	Preservative HNO H2SO 4 None Sodium Thiosulfate

	Coded/		
Site/Well No. STEV RW-4	Replicate N	No	Date: <u>1-26-85</u>
Weather	Time Sampl: Began		Time Sampling Completed 15:45
	EVAC	CUATION D	DATA
Description of Measuring F	oint (MP)	Top of	well casing
Height of MP Above/Below L	and Surface _		MP Elevation 472.5
Total Sounded Depth of We	ell Below MP _	14.0	Water-Level Elevation 463.04
Held <u>12.0</u> Depth to Wat	er Below MP _	9.46	Diameter of Casing
Wet 2.54 Water Col	umn in Well _		Gallons Pumped/Bailed Prior to Sampling
Gallo	ons per Foot		Sampling Pump Intake Setting
			Jampiting Fump theake Jeccing
Gall	ons in Well _		(feet below land surface)
	_		
Evacuation Method	Ran tap.	TA/FIELD	(feet below land surface) PARAMETERS
Evacuation Method Color Clear Odor No	Ran tap. SAMPLING DAT	TA/FIELD	(feet below land surface)
Evacuation Method Color Clear Odor No	Ran tap. SAMPLING DAT one Appear HNU; etc.)	rance <u>C</u>	PARAMETERS Temperature 8.0
Evacuation Method Color Clear Odor No Other (specific ion; OVA; Specific Conductance,	Ran tap. SAMPLING DAT one Appear HNU; etc.) OO pH 8.0	TA/FIELD ranceC	PARAMETERS Clear Temperature 8.0 8.00, 8.05
Evacuation Method Color Clear Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 200, 200, 200, 2	Ran tap. SAMPLING DAT one Appear HNU; etc.) OO pH 8.0	TA/FIELD ranceC 00, 8.05, itchen ta	PARAMETERS Plear Temperature 8.0 8.00, 8.05
Evacuation Method Color Clear Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 200, 200, 200, 2 Sampling Method and Materi	Ran tap. SAMPLING DAT one Appear HNU; etc.) OO pH 8.0 al from ki	TA/FIELD ranceC 00, 8.05, itchen ta	PARAMETERS Plear Temperature 8.0 8.00, 8.05
Evacuation Method Color Clear Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 200, 200, 200, 2 Sampling Method and Materi	Ran tap. SAMPLING DAT one Appear HNU; etc.) OO pH 8.0 al from ki Container From Lab	TA/FIELD ranceC 00, 8.05, itchen ta r Descrip X or G&	PARAMETERS Plear Temperature 8.0 8.00, 8.05 process Preservative
Evacuation Method Color Clear Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 200, 200, 200, 2 Sampling Method and Materi Constituents Sampled Metals	Ran tap. SAMPLING DAT one Appear HNU; etc.) OO pH 8.0 al from ki Container From Lab 250 ml pl	TA/FIELD ranceC 00, 8.05, itchen ta c Descrip X or G& lastic	PARAMETERS
Evacuation Method Color Clear Odor No Other (specific ion; OVA; Specific Conductance, umhos/cm 200, 200, 200, 2 Sampling Method and Materi Constituents Sampled Metals Nitrogen	Ran tap. SAMPLING DAT one Appear HNU; etc.) OO pH 8.0 al from ki Container From Lab 250 ml pl	TA/FIELD ranceC 00, 8.05, itchen ta r Descrip X or G& lastic plastic	PARAMETERS

WATER SAMPLING LOG

Project/No. <u>N7760C3</u>			Page1 of _
Site Location Oswego Valley La	ındfill		
Site/Well No. NIMO RW-5	Coded/		Date _1-28-85
Sito 77611 140.	Time Sampling		Time Sampling
Weather Sunny 25°F	Began	10:00	Completed 10:30
	EVACUATI	ON DATA	
Description of Measuring Point (MP)	Top of well c	asing	
Height of MP Above/Below Land Surf	ace	MP Elevation 467.9	
Total Sounded Depth of Well Below	√P 91.60	Water-Level Elevation	465.4
Held $\frac{5.00}{}$ Depth to Water Below	MP 2.50	Diameter of Casing	
2 50	Well	Gallons Pumped/Baile	
	oot		
·		Sampling Pump Intake	•
	Vell	, by side entrance	e)
Color Clear Odor No.			
Other (specific ion; OVA; HNU; etc.) Specific Conductance, umhos/cm 400, 400, 400, 400	рН <u>7.35, 7.35</u> ,		
Sampling Method and MaterialSamp	oled from tap		
Constituents Sampled	Container D	Description or G&M	Preservative
Metals	250 ml plas		HNO
Nitrogen	250 ml plas		H_S0.
Inorganics VOA	1/2 gal. pl		None ⁴
E. Coli	40 ml vials 150 ml plas		Sodium Thiosulfate None
Remarks			
Sampling Personnel Dave Sch			
	WELL CASING	3 VOLUMES	
GAL./FT $1-\frac{1}{4}$ " = 0.0			4" = 0.65 6" = 1.46

	ley Landfill	
	Coded/ Replicate No	Date: 1-27-85
	Time Sampling Began10.20_	Time Sampling Completed 10:30
	EVACUATION	N DATA
Description of Measuring Poi	.nt (MP)	
Height of MP Above/Below Lan	nd Surface	MP Elevation436.4
Total Sounded Depth of Well	Below MP	Water-Level Elevation
Held		Diameter of Casing
Wet Water Colum	n in Well	Gallons Pumped/Bailed
Gallons	per Foot	
Gallon	s in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method Ran tap	for 10 minutes.	
	AMPLING DATA/FIEL	D PARAMETERS
Color <u>Clear</u> Odor <u>None</u>	Appearance _	Clear Temperature 8.0
		Clear Temperature 8.0
	U; etc.) <u></u>	
Other (specific ion; OVA; HN Specific Conductance,	U; etc.) <u></u> pH <u>7.40, 7.4</u>	15, 7.45, 7.40
Other (specific ion; OVA; HN Specific Conductance, umhos/cm 400, 400, 400, 400	U; etc.) <u></u> pH <u>7.40, 7.4</u>	s5, 7.45, 7.40 o in kitchen
Other (specific ion; OVA; HN Specific Conductance, umhos/cm 400, 400, 400, 400 Sampling Method and Material	pH 7.40, 7.4 Sampled from tag Container Descr	s5, 7.45, 7.40 o in kitchen
Other (specific ion; OVA; HN Specific Conductance, umhos/cm 400, 400, 400, 400 Sampling Method and Material Constituents Sampled	pH 7.40, 7.4 Sampled from tap Container Description Lab X or	o in kitchen ription G&M Preservative HNO ₃
Other (specific ion; OVA; HN Specific Conductance, umhos/cm 400, 400, 400, 400 Sampling Method and Material Constituents Sampled Metals	pH 7.40, 7.4 Sampled from tap Container Descr From Lab X or 250 ml plastic	15, 7.45, 7.40 o in kitchen ciption G&M Preservative HN0 ₃ H ₂ S0 ₄
Other (specific ion; OVA; HN Specific Conductance, umhos/cm 400, 400, 400, 400 Sampling Method and Material Constituents Sampled Metals Nitrogen	pH 7.40, 7.4 Sampled from tap Container Descr From Lab X or 250 ml plastic	15, 7.45, 7.40 o in kitchen ciption G&M Preservative HN0 ₃ H ₂ S0 ₄
Other (specific ion; OVA; HN Specific Conductance, umhos/cm 400, 400, 400, 400 Sampling Method and Material Constituents Sampled Metals Nitrogen Inorganics	pH 7.40, 7.4 Sampled from tap Container Descr From Lab X or 250 ml plastic 250 ml plastic 1/2 gal. plasti	o in kitchen Ciption G&M Preservative HN03 H_2S04 None Sodium Thiosulfate

Project/No. N//6UC3		Page 1
Site Location Oswego Va	alley Landfill	
Site/Well No. BIRD RW-10	Coded/ Replicate No	Date: 1-27-85
Weather	Time Sampling Began 10.00	Time Sampling Completed10:10
	EVACUATION D	DATA
Description of Measuring Po	oint (MP)	
Height of MP Above/Below La	and Surface	MP Elevation
Total Sounded Depth of Wel	.1 Below MP	Water-Level Elevation
Held Depth to Wate	er Below MP	Diameter of Casing
Wet Water Colu	mn in Well	Gallons Pumped/Bailed
Gallor	ns per Foot	Prior to Sampling
Gallo	ons in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method Ran	tap 10 minutes.	
	SAMPLING DATA/FIELD	PARAMETERS
Color Clear Odor Nor	e Appearance C	ClearTemperature 8.0
Specific Conductance, umhos/cm 200, 200, 200, 20	0 pH 7.35, 7.35,	7.25, 7.30
Sampling Method and Materia	l <u>Sampled from tap i</u>	n kitchen
Constituents Sampled	Container Descrip From Lab X or G&	
Metals	250 ml plastic	HNO ₃
A1 * 1	250 ml plastic	H ₂ S0 ₄
Nitrogen		
Inorganics	1/2 gal. plastic	
Nitrogen Inorganics VOA	1/2 gal. plastic	<u>None</u>
Inorganics		<u>None</u>

WATER SAMPLING LOG

Project/No	N7760C3			Page1 of
Site Location	Oswego Valley Land			
Site/Well No.	PIER RW-11			Date <u>1-26-85</u>
Weather		Time Sampling Began	16:00	Time Sampling 16:10
		EVACUATIO	ON DATA	
Description of N	Measuring Point (MP)	Top of well	- at concrete	
leight of MP A	bove/Below Land Surface		MP Elevation 468.	94
otal Sounded	Depth of Well Below MP	16.55	Water-Level Elevation	463.78
leid <u>8.00</u>	Depth to Water Below MP	5.66	Diameter of Casing	3'
Net	Water Column in Well	11.09	Gallons Pumped/Baile Prior to Sampling	d
	Gallons per Foot			-
	Gallons in Well		Sampling Pump Intake (feet below land surface	e)
Evacuation Met	Ran tap 10 mi	nutes outside	e rear.	
	on; OVA; HNU; etc.)			
	50, 450, 450, 450 pH		. <u>7.35, 7</u> .35 side - rear tap.	
Constituer	nts Sampled F	Container D From Lab X		Preservative
Metals Nitrogor		250 ml pla 250 ml pla		H ₂ SO ₄
Nitroger Inorgani	CS	1/2 gal.		None None
VOA		40 ml vial	S	Sodium thiosulfate
		<u>150 ml</u> pla		None
	Dava Schantz			
Sampling Perso	onnel <u>Dave Schantz</u>			
-		WELL CASING	VOLUMES	
	AL./FT $1-\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4'' = 0.65

Site Location Oswego	Valley Landfill	·
Site/Well No. SW-1	Coded/ Replicate No	Date:1-26-85
Weather <u>O°F Snow</u>	Time Sampling Began 2:50	Time Sampling Completed 2:55
	EVACUATION	DATA
Description of Measuring	Point (MP) <u>Top of S</u>	taff Gauge
Height of MP Above/Below	Land Surface	MP Elevation 454.54
Total Sounded Depth of	Well Below MP2.45	Water-Level Elevation
Held		Diameter of Casing
Wet Water C	Column in Well	
Gal	lons per Foot	Prior to Sampling
Ga	illons in Well	Sampling Pump Intake Setting (feet below land surface)
	SAMPLING DATA/FIELD	
Color <u>Clear</u> Odor	SAMPLING DATA/FIELD None Appearance	
Color <u>Clear</u> Odor	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.11 rial Grab sample at Co	Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance
Color Clear Odor Other (specific ion; OVA Specific Conductance, umhos/cm 225, 225, 225,	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.1	Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance iption
Color <u>Clear</u> Odor <u>Other</u> (specific ion; OVA Specific Conductance, umhos/cm 225, 225, 225, 225, 225, 225, 225, 225	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.12 rial Grab sample at Container Description	Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance iption
Color Clear Odor Other (specific ion; OVA Specific Conductance, umhos/cm 225, 225, 225, Sampling Method and Mate Constituents Sampled	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.15 rial Grab sample at Container Description Lab X or Container	Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance iption G&M Preservative HNO_3
Color Clear Odor Other (specific ion; OVA Specific Conductance, umhos/cm 225, 225, 225, Sampling Method and Mate Constituents Sampled Metals	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.12 rial Grab sample at Container Description Lab X or Co	D PARAMETERS Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance iption G&M Preservative HNO3 H2SO4
Color Clear Odor Other (specific ion; OVA Specific Conductance, umhos/cm 225, 225, 225, Sampling Method and Mate Constituents Sampled Metals Nitrogen	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.15 rial Grab sample at Container Description Lab X or Co	D PARAMETERS Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance iption G&M Preservative HNO3 H2SO4
Color Clear Odor Other (specific ion; OVA Specific Conductance, umhos/cm 225, 225, 225, Sampling Method and Mate Constituents Sampled Metals Nitrogen Inorganics	SAMPLING DATA/FIELD None Appearance ; HNU; etc.) 225 pH 7.10, 7.19 rial Grab sample at Container Description Lab X or Co	D PARAMETERS Clear Temperature 8.0 5, 7.15, 7.15 ulvert Entrance iption Preservative HNO3 H2504 None Sodium Thiosulfate

Project/No. N7760C3		Page <u>1</u> 0
Site Location Oswego	o Valley Landfill	
Site/Well No. <u>SW-2</u>	Coded/ Replicate No	Date: <u>1-26-85</u>
Weather O°F Snow	Time Sampling Began 12:50	Time Sampling Completed 1:00
	EVACUATI	ON DATA
Description of Measuring	g Point (MP) <u>None -</u>	200 yds. upstream of GW-16
Height of MP Above/Below	v Land Surface	MP Elevation
Total Sounded Depth of	Well Below MP	Water-Level Elevation
Held		Diameter of Casing
Wet Water 0	Column in Well	
Gal	llons per Foot	Prior to Sampling
Ga	allons in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method	Grab sample	
		ELD PARAMETERS
	SAMPLING DATA/FI	
Color <u>Clear</u> Odor _	SAMPLING DATA/FII	Clear Temperature 0.0
Color <u>Clear</u> Odor _	SAMPLING DATA/FII	
Color <u>Clear</u> Odor <u></u> Other (specific ion; OVA	SAMPLING DATA/FII	Clear Temperature 0.0
Color <u>Clear</u> Odor _	SAMPLING DATA/FII None Appearance A; HNU; etc.)	Clear Temperature 0.0
Color Clear Odor Other (specific ion; OVA	SAMPLING DATA/FII None Appearance A; HNU; etc.) 180 pH 7.55, 7	Clear Temperature 0.0
Color Clear Odor Other (specific ion; OVA) Specific Conductance, umhos/cm 180, 180, 180, 180, Sampling Method and Mate	SAMPLING DATA/FING None Appearance A; HNU; etc.) 180 pH 7.55, 7 Perial Grab Container Desc	Clear Temperature 0.0 .55, 7.55, 7.50 cription
Color Clear Odor Other (specific ion; OVA) Specific Conductance, umhos/cm 180, 180, 180, 180, 180, 180, 180, 180,	SAMPLING DATA/FII None Appearance A; HNU; etc.) 180 pH 7.55, 7 erial Grab Container Description	
Color Clear Odor Other (specific ion; OVA) Specific Conductance, umhos/cm 180, 180, 180, 180, Sampling Method and Mate Constituents Sampled	SAMPLING DATA/FII None Appearance A; HNU; etc.) 180 pH 7.55, 7 Prial Grab Container Description Lab of the container Description Lab	Clear Temperature 0.0 .55, 7.55, 7.50 cription r G&M Preservative Sodium Thiosulfate
Color Clear Odor Other (specific ion; OVA) Specific Conductance, umhos/cm 180, 180, 180, 180, 180, 180, 180, 180,	SAMPLING DATA/FINANONE Appearance A; HNU; etc.) 180 pH 7.55, 7 erial Grab Container Description Lab 40 ml vials 250 ml plastic	
Color Clear Odor Other (specific ion; OVA) Specific Conductance, umhos/cm 180, 180, 180, 180, Sampling Method and Mate Constituents Sampled	SAMPLING DATA/FII None Appearance A; HNU; etc.) 180 pH 7.55, 7 Prial Grab Container Description Lab of the container Description Lab	

WATER SAMPLING LOG

Project/No	N7760C3			Page1 of _1
Site Location	Oswego Valley Land	lfill .		
Site/Well No.	SW-3	Coded/		Date1-26-85
Weather	0°F Snow	Time Sampling Began		Time Sampling 1:00
TYEALIE		began		Сотрына
		EVACUATION	ON DATA	
Description of N	Measuring Point (MP)	No Flow		
Height of MP A	Above/Below Land Surface		MP Elevation	
Total Sounded	Depth of Well Below MP		Water-Level Elevation _	
Held	Depth to Water Below MP		Diameter of Casing	
Wet	Water Column in Well		Gallons Pumped/Bailed Prior to Sampling	
	Gallons per Foot			
	·		Sampling Pump Intake	•
	Gallons in Well		(teet below land surface)	
Evacuation Met	thod			
	SAM	PLING DATA/FIE	ELD PARAMETERS	
Color	Odor	Anne	arance	Temperature°F/
Other (specific i	ion; OVA; HNU; etc.)			
Charife Cand	untanaa			
Specific Condu umhos/cm	·	·		
Sampling Meth	od and Material			
Januarion is	6			
Constitue	nts Sampled I	Container D 		Preservative
	·			
				-
Remarks				
Sampling Perso	onnel			
-		WELL CASING		
G	$6AL./FT$ $1-\frac{1}{4}$ " = 0.077 $1-\frac{1}{2}$ " = 0.10	$2'' = 0.16$ $2^{-1/2}'' = 0.24$		4'' = 0.65 6'' = 1.46

Site LocationOs	wego Valley Landfill	
Site/Well No. SW-4	Coded/ Replicate No	Date:1-26-85
Weather <u>O°F Snow</u>	Time Sampling Began 12:28	Time Sampling Completed 12:57
	EVACUATION	DATA
Description of Measu	ring Point (MP) <u>Top of St</u>	aff Gauge
Height of MP Above/B	elow Land Surface	MP Elevation 447.37
Total Sounded Depth	of Well Below MP	Water-Level Elevation <u>444.92</u>
Held Depth	to Water Below MP 2.45	Diameter of Casing
Wet Wate	er Column in Well	
	Gallons per Foot	Prior to Sampling
		Sampling Pump Intake Setting (feet below land surface)
Evacuation Method		
	SAMPLING DATA/FIEL	D PARAMETERS
Color <u>Clear</u> Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 7	SAMPLING DATA/FIEL rNoneAppearance OVA; HNU; etc.)	Clear Temperature 0.0 0, 7.40, 7.40
Color Clear Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 7	SAMPLING DATA/FIEL T. None Appearance OVA; HNU; etc.) 700, 700 pH 7.40, 7.4 Material Grab sample - Mi Container Descr	Clear Temperature 0.0 0, 7.40, 7.40 d Channel iption
Color Clear Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 700, 700, 700, 700, 700, 700	SAMPLING DATA/FIEL None Appearance OVA; HNU; etc.) OVA; HNU; etc.) PH 7.40, 7.4 Material Grab sample - Mi Container Descr From Lab _x or	Clear Temperature 0.0 O, 7.40, 7.40 d Channel iption G&M Preservative
Color Clear Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 700, 700, 700, 700, 700, 700	SAMPLING DATA/FIEL T. None Appearance OVA; HNU; etc.) OVA; HNU; etc.) PH 7.40, 7.4 Material Grab sample - Mi Container Descr From Lab _x or 40 ml vials	Clear Temperature 0.0 O, 7.40, 7.40 d Channel iption G&M Preservative Sodium Thiosulfate
Color Clear Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 700, 700, 700, 700, 700, 700	SAMPLING DATA/FIEL None Appearance OVA; HNU; etc.) OVA; HNU; etc.) Photograph 7.40, 7.4 Material Grab sample - Mi Container Descr From Lab _x or 40 ml vials 250 plastic	Clear Temperature 0.0 O, 7.40, 7.40 d Channel iption G&M Preservative Sodium Thiosulfate HNO3
Color Clear Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 700, 700, 700, 700, 700, 700	SAMPLING DATA/FIEL T. None Appearance OVA; HNU; etc.) OVA; HNU; etc.) PH 7.40, 7.4 Material Grab sample - Mi Container Descr From Lab _x or 40 ml vials 250 plastic 250 plastic	D PARAMETERS Clear Temperature
Color Clear Odor Other (specific ion; Specific Conductance umhos/cm 700, 700, 700, 700, 700, 700, 700, 700	SAMPLING DATA/FIEL None Appearance OVA; HNU; etc.) OVA; HNU; etc.) PH 7.40, 7.4 Material Grab sample - Mi Container Descr From Lab _x or 40 ml vials 250 plastic	D PARAMETERS Clear Temperature

	Coded/	
Site/Well No. SW-5		Date: 1-26-85
Weather <u>O°F Snow</u>	Time Sampling Began 13:10	Time Sampling Completed <u>13:20</u>
	EVACUATION	N DATA
Description of Measuring	Point (MP)	
Height of MP Above/Below	Land Surface	MP Elevation 428.15
Total Sounded Depth of	Well Below MP	Water-Level Elevation 425,70
Held Depth to	Water Below MP 2.4	Diameter of Casing
Wet Water C	olumn in Well	Gallons Pumped/Bailed
Gal	lons per Foot	Prior to Sampling
Ga	llons in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method Grab	sample - Good flow do	epth 2-3 ft.
	SAMPLING DATA/FIEL	_D PARAMETERS
Color <u>Clear</u> Odor	None Appearance	ClearTemperature 0.0
Other (specific ion; OVA	; HNU; etc.)	
Specific Conductance,		
Specific Conductance, umhos/cm 260, 250, 250,	260 pH 7.35, 7.4	40, 7.40, 7.40
•		40, 7.40, 7.40
umhos/cm 260, 250, 250,		ription
umhos/cm 260, 250, 250, Sampling Method and Mate	rialContainer Desc	ription G&M Preservative
umhos/cm 260, 250, 250, Sampling Method and Mate	rialContainer Desc From Lab _x or	ription G&M Preservative Sodium Thiosulfate
umhos/cm 260, 250, 250, Sampling Method and Mate Constituents Sampled	Container Descr From Lab <u>x</u> or 40 ml vials	ription G&M Preservative Sodium Thiosulfate HNO3
umhos/cm 260, 250, 250, Sampling Method and Mate Constituents Sampled VOA Metals	Container Descr From Lab <u>x</u> or 40 ml vials 250 plastic	Preservative Sodium Thiosulfate HNO3 H2SO4

Project/No. N7760C3		Page <u>1</u>
Site Location Oswego	o Valley Landfill	
Site/Well No. SW-6	Coded/ Replicate No	Date:1-26-85
Weather <u>O°F Snow</u>	Time Sampling Began <u>12:00</u>	Time Sampling Completed12:15
	EVACUATION	DATA
Description of Measuring	g Point (MP)	<u> </u>
Height of MP Above/Below	w Land Surface	MP Elevation463.62
Total Sounded Depth of	Well Below MP	Water-Level Elevation 461.42
Held Depth to	Water Below MP 2.20	Diameter of Casing
Wet Water (Column in Well	Gallons Pumped/Bailed
Gal	llons per Foot	Prior to Sampling
Ga	allons in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method <u>Grab</u>	sample - Mid Channel -	Good flow depth 0-6 ft.
	SAMPLING DATA/FIELD	PARAMETERS
Color <u>Clear</u> Odor _	None Appearance	Clear Temperature 0.0
Other (specific ion; OVA	A; HNU; etc.)	
	<u> </u>	
Specific Conductance, umhos/cm 200, 200, 200,	, 200 pH 7.25, 7.25	, 7.30, <u>7.</u> 30
Sampling Method and Mate	erial	
	Container Descri	
Constituents Compled	Enom Lob v on C	xM Freservative
Constituents Sampled	From Lab x or Go	
VOA	40 ml vials	Sodium Thiosulfate
VOA Metals	40 ml vials 250 plastic	Sodium Thiosulfate
Metals Nitrogen	40 ml vials 250 plastic 250 plastic	Sodium Thiosulfate HNO ₃
VOA Metals	40 ml vials 250 plastic	Sodium Thiosulfate HNO ₃

Site/Well No. <u>OVL-1</u> (Landfill S		Date: <u>1-27-85</u>
Weather	Time Sampling	Time Sampling Completed 12:00
	EVACUATION	DATA
Description of Measurin	ng Point (MP)	
Height of MP Above/Belo	w Land Surface	MP Elevation
Total Sounded Depth of	Well Below MP	Water-Level Elevation
Held Depth to	Water Below MP 2.20	Diameter of Casing
Wet Water	Column in Well	
Ga	llons per Foot	Prior to Sampling
G	allons in Well	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method	Grab Sample	
	SAMPLING DATA/FIELD	PARAMETERS
		Temperature <u>O</u>
	0, 14,500 14,500 pH 6.95	5, 7.00, 7.00, 7.00
Sampling Method and Mat	Container Descri	at i on
Constituents Sampled	From Lab <u>x</u> or G	
Metals	250 ml plastic	HNO ₃
Nitrogen	250 ml plastic	H ₂ SO ₄
	40 ml vials	Sodium Thiosulfate
VOA Inorganics	1/2 gal. plastic	None

	Coded/	
Site/Well No. OVL-2		
Weather	Time Sampling Began 12	Time Sampling:20 Completed 12:30
	EVACUATION (DATA
Description of Measuring	Point (MP)	
Height of MP Above/Below	Land Surface	MP Elevation
Total Sounded Depth of V	Well Below MP	Water-Level Elevation
Held Depth to	Water Below MP	Diameter of Casing
Wet Water Co	olumn in Well	Gallons Pumped/Bailed Prior to Sampling
Gal	lons per Foot	
Ga	llons in Well	(feet below land surface)
Evacuation Method	Grab Sample	
		PARAMETERS ssy, foamy Temperature 4
Other (specific ion; OVA		
Other (specific ion; OVA; Specific Conductance,	; HNU; etc.)	ssy, foamy Temperature 4
Other (specific ion; OVA; Specific Conductance,	; HNU; etc.) 4,000, 4,000pH 7.20	ssy, foamy Temperature 4
Other (specific ion; OVA) Specific Conductance, umhos/cm 4,000, 4,000, 4	; HNU; etc.) 4,000, 4,000pH 7.20	7.20, 7.20, 7.20
Other (specific ion; OVA; Specific Conductance, umhos/cm 4,000, 4,000, 4 Sampling Method and Mater Constituents Sampled	; HNU; etc.)	7.20, 7.20, 7.20
Other (specific ion; OVA) Specific Conductance, umhos/cm 4,000, 4,000, 4 Sampling Method and Mater Constituents Sampled Metals	; HNU; etc.)	2, 7.20, 7.20, 7.20 otion kM Preservative
Other (specific ion; OVA) Specific Conductance, umhos/cm 4,000, 4,000, 4 Sampling Method and Mater Constituents Sampled Metals	; HNU; etc.)	7, 7.20, 7.20, 7.20 Preservative HNO ₃ H ₂ SO ₄
Other (specific ion; OVA) Specific Conductance, umhos/cm 4,000, 4,000, 4 Sampling Method and Mater Constituents Sampled Metals Nitrogen	; HNU; etc.)	7, 7.20, 7.20, 7.20 Preservative HNO ₃ H ₂ SO ₄

WELL CASING VOLUMES

Project/No. <u>N7760C3</u>			,
Site Location Oswego	Valley Landfill		•
Site/Well No. OVL-3	Coded/ Replicate No		Date: 1-27-85
Weather	Time Sampling Began	13:30	Time Sampling Completed 14:00
	EVACUATIO	N DATA	
Description of Measuring	Point (MP)		
Height of MP Above/Below	Land Surface	MP Elevat:	ion
Total Sounded Depth of	Water-Leve	el Elevation	
Held Depth to	Water Below MP	Diameter o	of Casing
Wet Water C	olumn in Well	Gallons Pu	umped/Bailed
Gal	lons per Foot		Sampling
		Sampling F	oump Intake Setting
Ga	llons in Well	(feet bélo	ow land surface)
Ga Evacuation Method		(feet belo	ow land surface)
Evacuation Method	Grab Sample SAMPLING DATA/FIE	(feet belo	ow land surface)
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance,	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.)	(feet belo	ow land surface)
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.)	(feet belo	ow land surface)
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance, umhos/cm 12,000, 12,000	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.) , 12,000, 12,000 pH	LD PARAMETERS Gassy 6.85, 6.85, 6.8	Temperature 4
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance,	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.) , 12,000, 12,000 pH	LD PARAMETERS Gassy 6.85, 6.85, 6.8	Temperature 4
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance, umhos/cm 12,000, 12,000 Sampling Method and Mate	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.) , 12,000, 12,000 pH rial Baile Container Desc	LD PARAMETERS Gassy 6.85, 6.85, 6.8 r ription G&M	Temperature 4
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance, umhos/cm 12,000, 12,000 Sampling Method and Mate Constituents Sampled	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.) , 12,000, 12,000 pH rial Baile Container Desc From Lab _x or	LD PARAMETERS Gassy 6.85, 6.85, 6.8 r ription G&M	Temperature 4
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance, umhos/cm 12,000, 12,000 Sampling Method and Mate Constituents Sampled Metals	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.) , 12,000, 12,000 pH rial Baile Container Desc From Lab _x or 250 ml plastic	LD PARAMETERS Gassy 6.85, 6.85, 6.8 r ription G&M	Temperature 4 Preservative HNO3
Evacuation Method Color Brown/Black Odor Other (specific ion; OVA Specific Conductance, umhos/cm 12,000, 12,000 Sampling Method and Mate Constituents Sampled Metals Nitrogen	Grab Sample SAMPLING DATA/FIE Yes Appearance ; HNU; etc.) 12,000, 12,000 pH rial Baile Container Desc From Lab x or 250 ml plastic	LD PARAMETERS Gassy 6.85, 6.85, 6.8 r ription G&M ic	Temperature 4 Preservative HNO ₃ H ₂ SO ₄

MELL CASING VOLUMES

Geraghty & Miller, Inc. APPENDIX F Water Quality Data

6 8 05VEGO WALLEY GROUNDWATER MONITORING PROGRAM

	តែក្រុមក្រុមក្រុមក្រុមក្រុមប្រជាជាជាជាជាជាជាជាជាជាជាជាជាជាជាជាជាជាជា	<u> </u>
-31		
न्त्रभ	1 TTACKLONOSTRY LENG 13	
an a	TETALCHIO	
5 93	88 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ale ,	CHIORODI BROMOMETHANK 13 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	
r eli	THI CKLOROITHYTENE CS CS CS CS CS CS CS CS CS CS CS CS CS	
* 古田		
湖南	DICHLOROBBONOMETHANK 19.1 19.1 10	
-iB	CARBON TETRACHLORIDE (5	
冷脏	1,1,1 TRICHLOROETHANE (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	
4 8	AD MODEL S S S S S S S S S S S S S S S S S S S	
DCRAM	PHENO C STATE OF STAT	
# TORING PR		
藤 INDVATER HON	CV-2 CV-3 CV-3 CV-3 CV-9 CV-19 CV-10 CV-11A CV-11A CV-11A CV-12A CV-14A CV-12A CV-14A CV-12A CV-14A CV-12A CV-14A CV-13A CV-14A CV-14A CV-12A CV-14A CV-12A CV-14A CV-14A CV-13A CV-14A CV-17A CV	
EY GROU	8	
(株) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	DATE 10 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85 1/12/85	

																						_		
CHLOROETHANE 19/1	5	e	\$	•	5	5	5	\$	5	:	5	5	\$	\$	5	\$	5	5	5	5	\$	5	\$	5
TRANS-1,2-DICKLOROETHYLENE ug/1	ŝ	\$	\$	5	5	2	\$3	\$	\$°	\$	S	S	2	\$	5	5	\$	\$	\$9	\$3	\$		5	5
1,1 DICHLOROETHYLENE 09/1	5	5	5	5	\$	\$	5	5	\$	\$	S	۹۰۰۰ 😘	5	5	5	•	\$	5	\$	S	\$	\$	5	5
1,2 DICHLOROETHANE 16/8	5	S .	\$3	\$	\$)	5	\$>	\$3	5	5	\$	(\$	\$)	5	S	\$:	\$	5	5	\$)	\$	5	S	5
1.1 DICHLOROETHANE ug/1	\$)	ŝ	\$3	5	5	5	<\$>	\$	5	5	\$	\$	\$	5	\$3	\$3	5	\$3	5	\$3	5	5	5	5
1,1,2,2 TETRACHLOROETHANE ug/l	<.5	\$:	\$3	\$3	5	23	\$3	\$	\$	\$	\$	\$	S	\$3	2	52	\$\$	\$	\$>	\$2	\$)	\$	5	\$)
CHLOROBENZENE ug/l	ŝ	5	S	S	3	5	5	\$	ŝ	5	5	S	\$)	5	\$ >	5	5	ŝ	5)	Š	5	Ş	5	S
NETHYLENE CHLORIDE ug/ł	\$)	5	5	\$3	5	5	\$	\$)	\$)	\$)	5	\$3	(\$	\$	\$)	53	5	\$	\$3	\$)	5	5	5	5
LOCATION	CV-1	CV-3C	6.4-30	\$ - A 3	-A3	6 - A3	CA-10	CW-11A	CW-12A	CV-143	S1-80	\$1 -A3	CH-17	CV-18A	CV-24	SCV-14	SCV-17A	SCV-178	SCW-28	SCV- 29	5 C.4 - 3 C A	SCV-308	CV-31	CA-31
OC 907	\$10	434	133	=	1 21	5	452	138	493	161	£\$	5	435	124	\$12	457	495	184	497	5.13	436	137		\$29
DATE	1725/85	1/22/85	1/22/85	1/25/85	1/13/85	1/11/185	1/23/85	1 ' 22 ' 95	1/24/85	1/24/85	1 : 2 3 : 6 5	1/23/85	1.13/85	1 23 . 85	1/25/85	1/23/85	1/14/85	1/24/85	17.14795	1/25/85	1132/85	1/22/85	1/25/85	1127/85

ě csweco valley croundwater monitoring program 40

d ja

章 章 OSWEGO VALLEY GROUNDVATER MONITORING PROGRAM

`	~~~	•	Ţ		,		gı	17	71	Ξ	=	<u>-</u>	±	2	ot.	ž.	Ę	12.	2:	ξ.	74	£	%	<u>, </u>
																						-		
												· \												
											•													
١																								
	ONE																							
	METHYL ETHTL KETONE	(50	1100	95		: :	(\$0	95	\$6	S :	3 5	2 5			900	;	e :		95	200		20	\$:	•
	THYL ET	. ~	-																					
	. KES ME																							
	BYLENES no/ i	•																						
	NZ ENE																							
	ETHYL BENZENE Ball		₽ :	2 5	: :	: ::	€	ŝ	Ç	5	:		c :	9 5	c :	:	c :	:	C	ŝ	5	S	: :	2
											_							_		_	<u></u>		_	_
	TOTUENE	, °C	9	2 5	2 2	=	ŝ	3	S	5	Ξ:	:	C :		c :	; ;	c :	<i>c</i> '	C	2	C	=	ς :	:
	BENZENE		9	~ :	: :	=	S	â	ŝ	5	: :	c :	c :	c :	c :	: :	c	c :	5	5	ŝ	S	: :	:
	LOCATION	7	0 € - 3C	e .			01.33	411-W	CV-12A	CV-14	\$1.75 5	• : • :	/1-1	Val - 20	67-85	97-200	W/2-N0S	8 CA - 17 B	80A-18	SCV-19	SCW-30A	SCV-308		:
	00 NO	916	+3+	433							€ :					2	•		4.5	3	436		<u>.</u>	
	DATE	125/85	1/22/85	1/22/85	1/23/85	1/11/85	17.23 - 85	11:22:85	1734785	1/14/85	1737.65	1/23/65			1,12,183	00/57/1	\$ 77.	1/24/83	1/14/85	1725/85	1/12/85	1/22/85	1/25/85	
			-			. =		_	_	_						_	_	_	_	_		_		_

	- C. T	1 2 2 1 2 4 2 8 6 8	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 2 2 2 3 3 3 3 8	25	8 3 8 3 8 3 8 3
9 6 li			•			
*49	20					
	FEERO-CTANTOS					

	0.0					
***	是		***************************************			
**	11 1					
•	99/1 and GREEST				1000	
a)	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	= 1					
	Ξ ,					
Æ	<u>.</u>					
	¥ €	4.5				
-Mil	5 (g					
268	75.					
	17 Sa 17 Sa					
*41						
	FRENOLS Bg/1					
one.	100					
-961	8005 89/1					
	MH3-N 8g/1 00.06 00.06 00.06 00.06 00.06					
						-
	COND cmbos/on 225 180 190 255 268	•				
-19 2	PH units 7 5 7 4 7 6 7 6 7 6				•	
v ilit	17 10 10 10 10 10 10 10 10 10 10 10 10 10					
JCRAK	Mp					
-	~ 5 5 5 6 6					
NOT INC	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
COURTO VALÉE, UUNEACE (ВЭНІТОЯВJGRAN В	NO. 1. 4. 4. 4.					
PACE SE	SV-1 SV-3 SV-4 SV-4 SV-4					
1	\$15 \$15 \$14 \$17 \$18 \$18					
VALE.						
994.00	DATE 1/26/85 1/26/85 1/26/85 1/26/85					
-0.0						

SULLE O VALEEL SURFACE WASHING ... ONITORFILE ... JGRAM

Y	~,~ ~ ~ ~ ~ ~ 9	22 23 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	X	X	* * * P = 3 5 5 5 <u>3 3 5 5</u>
_					
14000			- '		
**					
A MARKET					
-					
,					
AND					
		*			
-					·
_					
1					
or the last of the					Ĭ
	30				
	VINYL CHLORIDE up./ 1 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5				
**	S) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4				
	Ş				
	J EN E				
****	1				
	CHICROF. 152 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)				
	EF.				
	HANE				
	T308C				
	11CHLORG 15 15 15 15 15 15 15 15 15 15 15 15 15				
	£1-£.				
	3				
~~	HAKE				
	CHLOROET W# / 1 (S (S (S (S (S (S (S (S (S (S (S (S (S (
* ₹	3 3 2 2 2 2 2				
300E	<u>F</u> -1.				
3NG P	EGCATION TOLUENE 1.1.1-TRICHLORGETHANE 1.1.2-TRICHLORGETHANE TRICHLORGETHYLL SW-1 (3 (4 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5				
# E	01UENE (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (
SUSTECO VALLEY SURFACE VATER MONITORING PROGRAM	Ē -				
VATE	SV-1 SV-2 SV-3 SV-4 SV-4 SV-5				
IF ACE					
Y SUB	515 514 514 514 518				
14 E E	901				
1 003	DATE 1/26/85 1/26/85 1/26/85 1/26/85 1/26/85				
VSO					
•					

20 Z Cell-7 Cell-7 Cell-19 MITRITE Bg/8 TP04-F mg/1 #6/1 306 176 320 320 140 152 254 274 236 5P COND umbos/cm 400 200 200 100 190 100 450 ALE 140 170 140 140 156 120 120 120 120 75 1,5 3 5 DSVECO VALLEY GROUNDWATER MONITORING PROGRAM RESIDENTIAL VELL PROGRAM LOCATION Fe mg/1

MHP-EV-2 04

STEV-RV-4 04

NIMO-RV-5 13

BURB-RV-10 03

KFRO-RV-1A 00

BKFO-RV-1A (001

DKFO-RV-1A (001

DKFO-RV-1A (001

DKFO-RV-1A (001

DKFO-RV-1A (001) 524 535 535 535 532 528 528 528 528 2 501 11/26/85 11/26/85 11/27/85 11/27/85 11/26/85 11/26/85 11/26/85 11/26/85

÷ .

TETRACHLOROETHYLENE BRONOFORM CHLOROOI BRONOMETHANE . . . THI CHLOROETHYLENE DICHLOROBROMONETHANE ្តីខែខន្ធន**ន**ន្ន**ន** CARBON TETRACHLORIDE PHENOL Bg/1 OSVICO VALLEY GROUNDVATER MONITORING PROCRAM RESIDENTIAL VELL PROCRAM COD #4/1 STEV.RV-1
NINO-RV-5
DURA-RV-1
BIRO-RV-1
LOCATION LOC NO 524 515 535 532 528 528 523 526 520 1/26/85 1/26/85 1/26/85 1/26/85 1/26/85 1/26/85 1/26/85

DATE

CHLOROETHANE TRAKS-1, 2-DICHLOROSTNYLENE 1,1 OICHLOROETHYLENE I, 3 DICHLOROETHANE 1.1 DICHLOROETHANE 1,1,2,2 TETRACHLOROETHANE CHLOROBENZENE SECTO VALLEY GROUNDVATER MONITORING PROGRAMHESIDENTIAL VELL PROGRAM STEV-RV-4
NIMO-RV-5
BURA-RV-1
BIRD-RV-1
KFO-RV-1
KAFN-RV-1
ORFO-RV-3
BRFN-RV-3
BFFR-RV-3 LOCATION ON 301 524 535 535 528 521 521 520 DATE

65WECO VALLEY GROUNDWATER MONITORING PROGRAM

100		
*HG\$B		

~		
:000	118 mg/1 118	
yelder		
**		
::: ::		
***	14300 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 11004 1100	
7		
₹99		
· delle		
**		1
∞	1	
AM	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
TORING.	4	
JNDVATË,	0VL-3 0VL-3	
LLE, CHU	5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
LEACHATE PROGRAM	17.07.183 17.07.183 17.07.183	

TETRACELOROETHTLENE

10 9

15 (5 TRICULOROETHYLENE

ug/1

(5

(5)

11 DICHLOROBROMOMETHAME
ug/1
(5
(5
(5 CARBON TETRACHLOBIDE

ug/1

(5

(5

(5) CHLOROFORM 1.1.1 TRICHLOROETHANE ug/1 ug/1 ug/1 (5 (5 (5 (5 1) 1) 1) ug/1 (5 LEACHATE FROCRAM PHENOL Rg/1 COD Mg/1 1315 4015 LOCATION 0VL-1 0VL-1 0VL-3 DATE LOC NO 1/27/85 531 1/27/85 530 1/27/85 530 1/27/85

CALOROFTHANE

ug/1

(5

(5

(5

(5)

(5)

(5) TRAMS-1, 3-DICHLOROETHYLENE wg/l (5 (5 DATE LOG NO LOCATION METHYLENE CHLONIDE 127/15 531 OVL-1 (5 127/15 530 OVL-2 140 # . . O VALUM JNG LEACHATE PROGRAM 1/27/65

TORIN

HDVAT

4		
-	CRICROSTRYLVIRE 44/1 (18 (18 (18 (18 (18 (18 (18 (18 (18 (1	
-	15 ·	
* ●	NE OB OB INC.	
-	TRAMS-1.3-DICKLOROPROPERRY Wg / 1 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	
:###	THAN E	
-	1,1,2 TRICKLOROETHANE ug / 1 (5 (5 B B B B C C C C C C C C C	
**	I NOTE TO A STATE OF THE STATE	
•	C13-1.3-DICHLOROPROPENT 094/1 (3 (3 (3 (3 (3 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	
**		
sale.	1,2 DICHLOROPROPANE Ug / 1 (5 (5 (3) (4)	

	METHIL BROWIDE 194/1 (3 (3 (4) (5) (5)	
•	METHYL CHLORIDE 18/1 (5 (5 (5) (5)	
OSVECO VALLEY CROUNDVATER MONITORING PROGRAM LEACHATE PROGRAM	VINT CKLORIDE ug/1 (3 (3 (5) (5)	
PVATER HG	0VL-1 0VL-2 0VL-3	
LEY GROUNE	07 07 08 08 08 08 08 08 08 08 08 08 08 08 08	
OSVEGO VAL	0ATE 1 1/27/85	

ITLENES METHYL ETHYL KETONE 09/1 420 3100 0 LOCATION BENZENE TOLUENE ETHYL BENZENE

1 QVL-1 19 1900 134

2 QVL-2 (5 180 8

0 QVL-3 (5 660 49 B CLILLO VALÉ., UMUUNDVAR., INLITORINE.JAM E LEACHATE PROCRAM DATE LOG NO 1/127/85 531 1/127/85 527 1/127/85 519

. VOLATILES

EXTRA PEAKS - QUALITATIVE LISTING OF PEAKS PRESENT (GREATER THAN 10% I.S.) AS REPORTED BY CAMO LABS, INC.

Sample Identification

Peaks	#434	#435	#494	#512	#527	#528	#530	#531
Sulfur Dioxide	_				Х	Х		
Oxybismethane					Х		Х	Х
Acetone	Х				Х		Х	Х
Isopropanol	X				Х		Х	
2-Butanol					X		Х	
Tetrahydrofuran			Х	Х	Х		Х	Х
Dichlorofluoromethane	Х	Х						
Chlorodifluoromethane		Х						
			-		_			

	SAMPLE #	LOCATION
-	#434	GW-3C
486	#435	GW-9
	#494	• GW14A
-	#512	GW-24
	#527	0 V L-2
	#528	BIRD RW-10
***	#530	0VL-3
	#531	OVL-1

NOTE: These peaks appear on the chromatogram for the EPA 624 Scan but are not included for quantification or identification in the EPA 624 Scan as defined in the Federal Register, Monday, December 3, 1979; Method 624.