1993 ANNUAL REPORT TEST PIT 3 AREA TREATMENT TRAILER OPERATIONS VAPOR EXTRACTION/GROUNDWATER WITHDRAWAL AND TREATMENT

THE COLUMBIA MILLS, INCORPORATED MINETTO, NEW YORK NYSDEC SITE NO. 7-38-012

FEBRUARY 1994 REVISED MAY 1994

> MALCOLM PIRNIE, INC. 7481 Henry Clay Blvd. Liverpool, New York 13088

1069-079

TABLE OF CONTENTS

I

1.0	SUM	IARY OF TRAILER OPERATIONS 1-1					
	1.1	1.1 Groundwater Withdrawal/Treatment System					
		1.1.1 Overall System Operation 1-1					
		1.1.2 Recovery Well Operation and Maintenance 1-2					
		1.1.3 Metals Removal System 1-3					
		1.1.4 Volatile Organic Removal System					
	1.2	Vapor Extraction System 1-5					
		1.2.1 Initial Start-up Period 1-5					
		1.2.2 Full-scale Operations 1-8					
		1.2.3 Vapor Phase Carbon Life 1-9					
2.0	SAMPLING AND MONITORING RESULTS						
	2.1	Groundwater Withdrawal/Treatment System					
		2.1.1 Groundwater Levels					
		2.1.2 System Sampling 2-2					
	2.2	Vapor Extraction System					
		2.2.1 Start-up Sampling 2-3					
		2.2.2 Sampling During Full-Scale Operations					
		2.2.3 Contaminant Loading on Carbon 2-4					
		2.2.4 Summary and Conclusions 2-6					
30	SYSTEM OPERATIONS AND MONITORING IN 1994						
	3.1	Operations in 1994					
	3.2	Monitoring/Sampling					
		3.2.1 Monitoring and Recording					
		3.2.2 Sampling/Analytical Testing					

LIST OF TABLES

Table No.	Description	Followi Pa	ing 1ge
1	Vapor Extraction Syste	m - Vacuum Well Flow Data	1-8
2	Start-up Groundwater	Sampling - Summary of Results	2-2
3	Routine Groundwater	Sampling - Summary of Results	2-2
4	Start-up Vapor Extract	ion System Sampling - Summary of Results	2-3
5	Routine Vapor Extrac	ion System Monitoring with OVA Meter	
	Summary of Re	esults	2-4
6	Routine Vapor Extract	ion System Sampling - Summary of Results	2-4
7	Spent Vapor Carbon C	Quality Data	2-4

LIST OF TABLES (Cont.)

Table No.	Description	Following Page	
			_
8	Vapor Carbon Cont	aminant Loading and Weight Percent Removal 2	2-5
9	Vapor Extraction Sy	stem - Monitoring Schedule 3	3-2
10	Groundwater Extrac	tion System - Monitoring Schedule	3-2
11	Vapor Extraction/G Sampling Schedule .	roundwater Extraction Operations -	3-3
12	Air Discharge Criter (Primary Carbon Ef	ria for Vapor Extraction System Quent)	3-3
13	Groundwater Efflue	nt Discharge Limits 3	3-3

LIST OF FIGURES

Figure		Following
No.	Description	Page

1	Treatment System Schematic 1-3
2	Test Pit 3 Area Details 2-1
3	Water Table Configuration - 2/11/93 2-1
4	Water Table Configuration - 3/4/93 2-1
5	Water Table Configuration - 8/10/93 2-1
6	Vapor Extraction System - OVA Meter Readings vs Time - Primary Influent
7	Vapor Extraction Syst <mark>e</mark> m - Per Cent Efficiency for Primary Carbon Adsorber
8	Sample Port Locations

LIST OF APPENDICES

Appendix	Description	
Volume 1		
volume 1		
Α	Vapor Extract	ion/Groundwater Withdrawal System Logs
В	Flow Monitor	ing Logs
С	Groundwater	System Flow Plots
D	Filter Log She	ets
E	Groundwater	Elevations
Н	Vapor Carbor	Loading/Percent Removal Calculations

Volume 2

F	Groundwater	Sampling - Laboratory	Reports
G	Vapor Extract	ion System Sampling -	Laboratory Reports

1.0 SUMMARY OF TRAILER OPERATIONS

1.1 GROUNDWATER WITHDRAWAL/TREATMENT SYSTEM

1.1.1 Overall System Operation

Operation of the Test Pit 3 Area groundwater withdrawal/treatment system commenced on February 11, 1993, and continued through December 31, 1993. Over this period, approximately 1.8 million gallons of water were treated. Operation of the system has been continuous; however, temporary shut-downs of the system have occurred throughout the year. Reasons include the inherent start-up problems encountered during initial operation of the system, fouling problems caused by the precipitation of iron and manganese, as well as the growth of iron bacteria, in the liquid phase carbon, and the occurrence of several power failures in the Town. The system was also shut down during the last half of April 1993 due to excessively high water levels and Spring flooding.

Listed below are periods of time during which the groundwater withdrawal/treatment system was shut down for two days or more. The reasons for each shut-down are provided.

Feb 15 - Feb 18	Liquid phase carbon plugged, changed locations of check valves after bag filter housings
Apr 15 - May 3	Excessive amounts of silt flushed into the recovery wells, plugging the prefilters located before the carbon, due to high water levels and Spring flooding

The growth of iron bacteria in the groundwater treatment system, especially in the carbon canisters, negatively affected system operations during 1993. Chlorine addition was implemented on a permanent basis during July, after receiving approval from the New York State Department of Environmental Conservation (NYSDEC), to destroy the biological growth. However, addition of chlorine was discontinued at the end of August, after it was found not to be as effective as bench testing and initial testing indicated.

Inspection logs were kept for the groundwater withdrawal/treatment system. These logs are contained in Appendix A.

1.1.2 Recovery Well Operation and Maintenance

Seasonal variations directly influenced the amount of groundwater recovered by the treatment system. Recovery rates generally decreased between February and August. The lowest flows were recorded during August and September. Flow then increased slightly in October and November, and greatly increased during December. Flow monitoring logs for 1993 are contained in Appendix B.

Two figures which show the relationship between the average daily flow and month of operation are provided in Appendix C. For the first figure, the total gallons of water treated with the system during each month were averaged over the number of days in each month-long period. For the second figure, the total gallons were averaged over the approximate number of days of actual system operation. A table is also included in the appendix which summarizes the data used to plot the figures. The total gallons of groundwater treated are based on the totalizer readings, which were obtained from the three carbon train flow meters.

The five Test Pit 3 Area recovery wells operated effectively during 1993. Only two wells had any down-time associated with them (in addition to the above periods of time when the treatment system and all wells were shut down). These wells were:

1. RW-5	Did not operate Feb 18 - Feb 25, and May 3 - Jun 4	Actuator valve problems, valve removed for repair
2. RW-3	Did not operate Oct 14 - Dec 31	Water level transmitter inoperable - removed for repair, then water froze in line

The pumps in the recovery wells were required to be pulled and cleaned two to three times during 1993 due to the growth of iron bacteria on the pump intake screens. Some of the well lines were also cleaned out. The bacterial growth on some of the pumps actually inhibited the flow of water into the pumps, decreasing the pumping rates and increasing the groundwater levels in the affected wells.

During January 1994, Malcolm Pirnie, Inc. (MPI) added LBA, a chemical for the treatment of iron bacteria, to some of the groundwater recovery wells in an attempt to resolve the bacteria problems. Approval to add LBA to the wells had previously been received from the NYSDEC, and this chemical is certified for use in water wells by the National Sanitation Foundation.

Enough LBA was added to each well to treat the well itself, the surrounding filter pack and the piping leading to the treatment trailer. The well screen was brushed and surged, and the LBA solution was pumped into the piping. The well pump was then shut off. MPI could not keep the treated wells shut off for the recommended full length of time due to the risk of the water freezing in the lines. Although each well treated was not kept off as long as recommended by the LBA manufacturer, it did appear that this chemical could prove to be effective in controlling the iron bacteria problems. MPI plans to test this solution again, when the wells can be shut off for the required amount of time.

Most of the recovery well pumps were pulled, dismantled and cleaned during February 1994. The insides of the pumps had become plugged with iron and silt, and the pumps could no longer maintain the required drawdown.

Well/pump maintenance is expected to be a routine task during 1994. This is expected to consist of pulling the well pumps and cleaning the outside of the pumps and pump screens, as well as treating the wells and piping with LBA and cleaning the insides (impellers) of the pumps.

1.1.3 Metals Removal System

The metals removal system consists of the aeration tank, polymer addition/flash mix tank, flocculation tank, sump tank, and bag filtration system (refer to Figure 1). Operation and maintenance of this part of the treatment system involved preparing polymer for addition to the system and changing the bag filters. Polymer was usually prepared on a weekly basis. Bag filters used for the removal of precipitated metals and sediment were changed based on a change in pressure between the primary and secondary filter housings. Filters usually lasted between two to three days and three weeks.

Filter log sheets are provided in Appendix D. Although the logs are not totally complete, filters appeared to be changed out less frequently during the second half of the year (August - November), when system flow was less, than during the Spring and early Summer.

1.1.4 Volatile Organic Removal System

The volatile organic compound (VOC) removal system is located after the metals removal system and consists of three parallel trains of liquid phase carbon (refer to Figure 1). Maintenance of the drums of carbon was required during 1993, and consisted of routinely backwashing the drums. This was accomplished by flowing tap water through the drums in the reverse direction at a velocity sufficient enough to dislodge any particles as well as the iron bacteria growing inside the canisters. This process does not remove VOCs adsorbed onto the carbon.

The liquid phase carbon canisters were changed three times during 1993. They were changed because they became plugged, and backwashing was no longer effective. The carbon was not changed due to contaminant breakthrough. Changes occurred as follows:

Apr 14	"A" canister removed from each line, replaced with new canister
Aug 10	"A" canister removed from each line
Sep 14	Other two canisters moved up ("C" to "B", and "B" to "A"), and new canister placed into "C" position
Dec 1 & 2	"A" canister removed from each line
Dec 22	Other two canisters moved up ("C" to "B", and "B" to "A"), and new canister placed into "C" position

1.2.1 Initial Start-up Period

A schematic of the vapor extraction system is shown in Figure 1. The start-up period, or first month of system operation, actually lasted from March to October 1993. Several issues required resolution during this time in order for the system to operate effectively. Listed below are the start-up and shut-down dates for the vapor extraction system during this time period. It should be noted that these dates refer to the periods of operation of the vacuum wells, or the actual vapor extraction system. The vapor extraction system vacuum pump does also operate during groundwater treatment, serving to capture vapors from the aeration tank. These vapors are then piped through the vapor carbon treatment system. However, these vapors are much less contaminated than the vapors recovered from the vacuum wells.

Days of System Operation Notes

Mar 10 - Mar 11 (1 day	Shut down Mar 11 due to emission of vapors from vent holes in vacuum pump, required implementation of engineering control to capture vapors and route them back into system
Jun 8 - Jun 21 (13 days)	Vacuum wells VW - 1, 2, 3, 4, and 9 turned on Jun 8, Vacuum wells VW - 5, 6, 7, and 8 turned on Jun 16, All VWs turned off Jun 21 - breakthrough of some compounds detected in primary vapor phase carbon adsorber, compounds also detected in secondary effluent
Jun 28	Carbon in primary and secondary adsorbers changed out
Jun 29 - Jul 5 (6 days)	Shut down Jul 5 due to power failure
Jul 8 - Jul 12 (4 days)	Shut down Jul 12 due to possible breakthrough of contaminants, as measured in primary carbon unit effluent with HNU photoionization detector
Sep 30 - Oct 1 (1 day)	Vapor extraction system temporarily turned on for confirmatory sampling

Analytical data obtained during the Test Pit 3 Area vapor extraction system start-up in June/July 1993 indicated that relatively low levels of VOCs, mostly tentatively identified compounds (TICs), were being recovered from the soil. Total hydrocarbon analyses, on the other hand, indicated that relatively high levels of contaminants were present in the vapors. At this time, it was difficult to determine which set of values was more representative or accurate. Total target VOC concentrations detected in the primary vapor carbon influent during June and July 1993 ranged from 0.02 - 0.28 ppm. The target VOC detected most often was xylene.

TIC concentrations ranged from 1.3 - 1.4 ppm for volatiles and 2.0 - 3.6 ppm for semivolatiles. These values were converted from the analytical lab's concentrations (given in ug/m3) to ppm using the molecular weight of methylcyclohexane (volatiles) and dimethylcyclohexane (semivolatiles). Total hydrocarbon concentrations ranged from 149 - 6890 ppm in the primary carbon influent during June and July. All sampling results are summarized in Section 2.2 of this report.

Based on the VOC/TIC data, the carbon being used to treat the vapors experienced breakthrough sooner than expected. However, the contaminant levels detected in the discharge from the carbon at breakthrough were within health-based discharge limits.

Reevaluation of the discharge limits conducted by MPI during July using NYSDEC Air Guide-1 modeling showed that the discharge limits originally established in the air permit application averaged four to five orders of magnitude less than health-based limits (calculated through the modeling). The extremely low levels in the permit were based on the assumption that 99 percent removal of the maximum contaminant concentrations detected during previous soil vapor sampling would be achieved with the carbon. Because the discharge limits were so low, contaminant levels detected at what was previously considered breakthrough were also very low - in fact, several orders of magnitude lower than what could have been discharged.

Because the levels detected were so low compared to health-based limits, MPI proposed to the State that more reasonable discharge limits, which would still meet Air Guide-1 health-based criteria, be established for the primary carbon unit. This would in turn allow for more efficient utilization of the carbon and avoid unnecessary carbon changeouts.

ANNL\SEC1

The vapor extraction system was shut down on July 12, 1993, when TIC breakthrough was again detected, and was kept off until three main issues were resolved. The issues requiring resolution prior to restarting the vapor extraction system for full-scale operations were: 1) a monitoring program needed to be devised that would verify TIC discharge limits were met but still be technically and administratively implementable, 2) feasible, health-based limits for the vapor extraction system discharge needed to be established, replacing those included in the November 1992 air permit application, and 3) the discrepancy that existed between the monitoring data and breakthrough frequency of the carbon needed to be resolved. In an effort to resolve these issues, the vapor extraction system was temporarily turned on and split samples were obtained on October 1, 1993 (as noted above). Samples were analyzed by Upstate Laboratories, Inc. (Upstate), East Syracuse, New York and by the New York State Department of Health (NYSDOH).

The discrepancy that existed between the analytical data and carbon breakthrough rate was resolved through the split sampling. Once the NYSDOH and Upstate data were interpreted together, and after discussions with the laboratories, it was evident that the total hydrocarbon data provided a more accurate estimate of the total contaminant concentrations than the TIC Data. Therefore, it was determined that total contaminant concentrations actually were relatively high, but contained relatively low levels of the target VOCs.

Also, site records indicated that three partially buried steel tanks containing "benzine" were formerly located in this area. Benzine, also known as ligroine, is a petroleum based solvent which is a mixture of a variety of volatile hydrocarbons. The presence of ligroine accounted for the difficulty in identifying the specific individual compounds present, which are not the target VOCs typically identifiable with analytic methods.

The other two issues requiring resolution (ie, the need for the establishment of a feasible air monitoring program as well as air discharge limits) were also resolved. The NYSDEC revised the November 1992 air permit discharge criteria, in response to MPI's request, in the NYSDEC's August 17, 1993 letter. This revision set more feasibly monitored health based limits for the target compounds and set efficiency criteria for the 6NYCRR Part 212 A, B and C rated compounds. Also, just prior to the December 1, 1993 full-scale start up of the system, it was established that the TICs would be regarded collectively as ligroine, a C rated (low toxicity) compound, which must be treated to 70% or greater efficiency in the primary carbon unit. A removal efficiency of 60% was required during initial full-scale operations. It was also established that total TICs would be monitored with

real time instrumentation by monitoring for total hydrocarbons with an organic vapor analyzer (OVA). The OVA meter utilizes the same flame ionization detector (FID) method used for total hydrocarbon analysis in the laboratory.

Inspection and monitoring logs were kept for the vapor extraction system. These are contained in Appendix A. Flow data for each of the nine vacuum wells are summarized in Table 1. Included are flow rate and vacuum readings taken during operation of the vacuum wells.

1.2.2 Full-scale Operations

Once the technical issues related to operation of the vapor extraction system were resolved, full-scale operation commenced on December 1, 1993. Listed below are the operating dates during December 1993, and reasons for any shut-downs.

Dec 1 (2.5 hrs)		Vacuum Wells VW - 1, 3, 4, and 9 turned on 1:40 PM, all other vacuum wells turned on 3:30 PM, all vacuum wells shut off 4:20 PM due to elevated water levels
Dec 2 - Dec 9 (7 days)		Vacuum wells VW - 1, 2, 3, 4, 5, and 9 turned on Dec 2, vacuum wells VW - 6, 7, and 8 turned on Dec 6, all VWs turned off Dec 9 - relatively low treatment efficiency achieved by primary carbon unit
Dec 10 (5 hrs)		All VWs turned on, but turned off at 3:30 PM due to decreasing treatment efficiency achieved by primary carbon unit
Dec 13 (6 hrs)		All VWs turned on, but turned off at 4:00 PM due to decreasing treatment efficiency achieved by primary carbon unit
Dec 14 - Dec 17 (3 days	s)	All VWs turned off Dec 17 due to low treatment efficiency achieved by primary carbon unit
Dec 20 - Dec 23 (3 days	s)	All VWs turned off Dec 23 - variable primary carbon treatment efficiency, loading calculations showed carbon near maximum adsorption capacity - carbon changeout planned for both adsorbers

Days of System Operation Notes

TABLE 1 COLUMBIA MILLS TEST PIT 3 AREA IRM VAPOR EXTRACTION SYSTEM VACUUM WELL FLOW DATA

Date	VV	V− 1	VV	V- 2	VV	⊬- 3	vv	₩-4	VV	8 −V	VV	V-6	VV	⊬- 7	vv	8-1	VV	V-0	Total
	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate	Vacuum	Flowrate*
	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)	(in. Hg)	(cfm)
03/10/93	6	0	7	0	6.5	1.5	5.2	2	0	1.5	>0	1.5	6.5	1	6.5	0	4.5	0	235
06/08/93	12.6	2.5	15.6	0.5	10.5	2.7	10	2.6	off	off	off	off	off	off	off	off	-	1.25	220
06/11/93	12.5	3.2	15	1		4	9.5	4	off	off	off	off	off	off	off	off	-	2.5	215
06/16/93	10.5	3	15	1	9	3.2	9	3	<3	3	4.5	3	14	2	-	2.5	-	2.5	220
06/18/93	10	2.8	15	1	9	3.2	9	3	<3	3	4.5	3	14	2		2.5		2.5	220
06/28/93	11.5	1.5	13.5	0.2	8	2	7	2	-	2	-	2	12	0.9	_	1.1	-	1.1	230
06/30/93	14.5	4.5	14.5	1	13	5	14	5	-	4.5	-	5	15.5	2	_	4	-	4	210
07/08/93	9.5	2.3	15.1	1	10	3.1	9.6	3	-	3	4.7	3	16.2	2	5	2.5	_	2.5	220
09/30/93	3.5	2	_	1	10	2	10	2	<3	2	5	2	14	1.5	_	1	-	1.5	230
10/01/93	3.5	2.2	_	1.5	11	2.2	8	2.5	_	2.5	5	2.7	14	2	-	2	-	2	225
12/03/93	2	4 1	25	4 1	9	47	14	47	_	4 4	off	off	off	off	off	off	_	47	215
12/07/93	1		19.5	4	85-10	4.5		4.5	_			45		45	55		_	4	215
12/10/02	>0	25	24	35	0.0 10	4.5	75	4.5	_	4		4.5	_	4.5	0.0	25		35	215
12/10/93	>0	3.5	24	3.5	9	4	1.5	4		4		- 4	_	4		3.5	_	5.5	215
12/17/93	-	6		6	-	5.5		6	-	6.5	-	5.5		6	-	6	-	5.5	200

NOTES: - indicates reading not taken - flowmeter plug stuck or water in flowmeter

* includes flow from vacuum wells as well as from groundwater aeration tank/sump tank air line

P:\PROJ\1069079\VACFLOW.wk1

Inspection and monitoring logs for the vapor extraction system are contained in Appendix A, and vacuum well flow data are summarized in Table 1.

1.2.3 Vapor Phase Carbon Life

The carbon in both the primary and secondary adsorbers was changed out once during 1993. As noted in Section 1.2.1, this occurred in June, during the start-up period. The carbon in both units was again changed out during January 1994. Listed below are the changeout dates and the approximate number of days of vacuum well operation prior to each changeout.

Changeout #1 June 28, 1993 14 days of operation before changeout Changeout #2 January 12, 1994 24.5 days of operation before changeout

Changeout #1 occurred after TICs were detected in the effluent from the primary and secondary carbon adsorption units at levels exceeding then-current discharge limits. Limits (for the primary adsorber) had been established for target VOCs, phenol and total TICs in the November 1992 air permit application. Following the first changeout, the vapor extraction system was restarted; however, breakthrough of TICs was again detected earlier than expected in the primary adsorber. The system was shut down on July 12, 1993, and was kept off until issues related to contaminant breakthrough and system monitoring were resolved. These issues were previously discussed in Section 1.2.1.

The vapor extraction system was restarted on December 1, 1993 for full-scale operations, and continued to operate through December. It was shut off for changeout #2 on December 23, 1993.

Changeout #2 was necessary because the treatment efficiency of the primary carbon adsorber was decreasing, and loading calculations indicated the carbon was near its maximum adsorption capacity. MPI determined to also change out the carbon in the secondary unit at the same time since it was economically more feasible to do so than to wait and change it out at a later date.

It is anticipated that the carbon changeout frequency will decrease during 1994, as soil and soil gas contaminant concentrations decrease. An analysis of the contaminant loading on the vapor phase carbon which was changed out is provided in Section 2.2.3.

2.0 SAMPLING AND MONITORING RESULTS

2.1 GROUNDWATER WITHDRAWAL/TREATMENT SYSTEM

2.1.1 Groundwater Levels

During 1993, Test Pit 3 Area groundwater levels were periodically measured to monitor the effectiveness of the groundwater withdrawal system. Levels were obtained from the vacuum wells and groundwater recovery wells on a semi-weekly basis. Monitoring well and piezometer water levels were obtained semi-monthly. Well and piezometer locations are shown in Figure 2.

Groundwater level elevations are provided in Appendix E. The water table configuration in the Test Pit 3 Area on February 11, 1993 is shown in Figure 3, and represents conditions as they existed prior to the commencement of pumping. The configurations of the water table while the recovery well system was operating during both a relatively wet period (March 4, 1993) and a relatively dry period (August 10, 1993) are depicted in Figures 4 and 5, respectively.

Based on the water level data collected, the groundwater withdrawal system is effectively dewatering the Test Pit 3 Area. However, it appeared that during operation of the vapor extraction system, groundwater levels increased within the vacuum wells. This was due to either the removal by the vacuum wells of capillary water held in pore spaces adjacent to the well screens or to vacuum induced mounding of the groundwater in the vicinity of each vacuum well. Limiting the flow of air from the vacuum wells will be necessary to minimize the amount of water accumulating in them.

ANNL/SEC2

2.1.2 System Sampling

Sampling of the groundwater withdrawal/treatment system was conducted in accordance with the schedules contained in the Preliminary Operations, Maintenance and Monitoring Plan (Preliminary O, M & M Plan), dated November 1992. All samples were collected by MPI and analyzed by Life Science Laboratories, Inc. (LSL), East Syracuse, New York.

Analytical results are summarized in Tables 2 and 3. Table 2 summarizes the results of sampling conducted during the initial start-up period, or first month of system operation. In Table 3, the results of the routine sampling conducted after this period are summarized. Copies of the 1993 laboratory reports from LSL are provided in Appendix F.

All system discharge limits were consistently met since start-up. In fact, VOC influent concentrations were relatively low, and only xylenes were detected on more than one occasion. Methyl ethyl ketone (MEK) was detected during the first sampling episode in February 1993, but was not detected since then. The source of this compound was most likely the PVC glue used to connect all piping and sample ports, since PVC glue contains MEK.

On December 20 and 21, 1993, the rinse water generated during the remediation of the on-site sewers was pumped from dewatering pits, located in the center of the site, through the Test Pit 3 Area treatment system. The water had previously been sampled, and a portion of the water was run through the system on December 15, when monthly sampling was undertaken, to verify that it would be effectively treated. Toluene and chlorobenzene were detected in the water before the carbon treatment system; however, analytical results indicate that all discharge limits for the system were met during the treatment of the sewer rinse water.

PARAMETER	RW-	1	RW-2	RW-3	RW-4	RW-5
DATE	02/12/9	3	02/12/93	02/12/93	02/12/93	02/12/93
VOLATILE ORGANICS						
<u>ЕРА 8240 (µg/l)</u>						
2-Butanone (MEK)		85	38	91	< 10	< 10
Ethylbenzene		17	< 5	9.7	< 5	< 5
Toluene		< 5	< 5	< 5	< 5	5.8
total Xylenes		110	< 5	33	21	74
TICs (estimated values (µg/l))						
Cyclohexane		50				220
2.2 – Dimethylbutane				20	32	
1,1 – Dimethykyclohexane					44	34
cis-1,2-Dimethylcyclohexane			35			
trans-1,2-Dimethykyclohexane		35			56	47
cis/trans - 1,2 - Dimethylcyclohexane				42		
cis-1.3-Dimethylcyclohexane						140
trans - 1,3 - Dimethylcyclohexane		22	17, 36	26	40	
1,4 – Dimethylcyclohexane						27
trans-1,2-Dimethylcyclopentane					860	210
cis - 1,3 - Dimethylcyclopentane					180	
3,3-Dimethylpentane					50	
Ethylcyclohexane		35				36
1-Ethyl-3-methylbenzene			9.2	7.6	6.3	
lleptane				16		42
Hexane				43		130
2-Methylbutane		9.0		89	110	
Methylcyclohexane		610	120	640	1100	620
1 – Methylcyclohexene		43			74	
Methylcyclopentane		24				130
1 – Methylethylbenzene		36	12			
2-Methylpentane		14		130	230	180
3-Methylpentane		11		81	190	130
Pentane		7.2		77	74	44
Propylbenzene		24				
Tetrahydrofuran			50	50		
1,2,3-Trimethylbenzene		19			10	
1,3,5-Trimethylbenzene		55				
1.2.4-Trimethylcyclopentane			35			31
Unknown			14			150
Unknown			11			
Unknown			7.8			

PARAMETER	RW-1		RW-2	RW-3	RW-4	RW-5
DATE	02/12/93	3	02/12/93	02/12/93	02/12/93	02/12/93
INORGANICS		1				
<u>(mg/l)</u>						
Aluminum		< 0.1	< 0.1	< 0.1	0.30	2.3
Antimony	<	0.002	< 0.002	< 0.002	< 0.002	< 0.002
Arsenic		0.017	0.0079	0.019	0.015	0.0097
Barium		0.81	0.16	0.44	0.40	0.11
Cadmium	<	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium totał	<	< 0.01	< 0.01	< 0.01	< 0.01	0.021
Copper		< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Iron		5.1	6.6	4.2	4.8	3.3
Lcad	•	< 0.05	< 0.05	< 0.05	< 0.05	0.10
Magnesium		22	10	11	5.8	4.2
Manganese		4.1	4.2	6.1	3.0	1.2
Zinc		< 0.05	0.052	< 0.05	< 0.05	0.052
Cyanide	<	<mark>0.005</mark>	< 0.005	0.013	< 0.005	< 0.005
MISCELLANEOUS						
<u>(mg/l)</u>						
тос		na	na	na	na	na

:\PROJ1069052START-UPSTARTUPW.WK1

PARAMETER	1	Ae	ration	ŀ	Filter
		In	fluent	E	fluent
DATE	02/12/9	3	03/04/93	02/12/93	03/04/93
VOLATILE ORGANICS					
EPA 8240 (µg/l)					
		. 10	. 10	- 10	- 10
2-Butanone (MEK)		< 10	< 10	< 10	< 10
Ethylbenzene		1.1	< 5	< 5	< 3
Toluene		5.4	< 5	< 3	< 5
total Xylenes		20	< 3	15	< 3
TICs (estimated values (µg/1))	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Cyclohexane		na	na	na	na
2,2-Dimethylbutane		na	na	na	na
1.1 – Dimethykycyclohexane		na	na	na	na
cis - 1.2 - Dimethylcyclohexane		na	na	na	na
trans - 1.2 - Dimethylcyclohexane		na	na	na	na
cis/trans - 1.2 - Dimethylcyclohexane		na	na	na	na
cis-1.3-Dimethylcyclohexane		na	na	na	na
trans-13-Dimethylcyclohexane		na	na	na	na
1.4 – Dimethylcyclohexane		na	na	na	na
trans-1,2-Dimethylcyclopentane		na	na	na	na
cis - 1.3 - Dimethylcyclopentane		na	na	na	na
3,3-Dimethylpentane		na	na	na	na
Ethykyclohexane		na	na	na	na
1-Ethyl-3-methylbenzene		na	na	na	na
Heptane		na	na	na	na
Hexane		na	na	na	na
2-Mcthylbutane		na	na	na	na
Methylcyclohexane		na	na	na	na
1 Mcthylcyclohexene		na	na	na	na
Methylcyclopentane		na	na	na	na
1 – Methylethylbenzene		na	na	na	na
2-Methylpentane		na	na	na	na
3-Methylpentane		na	na	na	na
Pentane		na	na	na	na
Propylbenzene		na	na	na	na
Tetrahydrofuran		na	na	na	na
1,2,3-Trimethylbenzene		na	na	na	na
1.3.5 - Trimethylbenzene		na	na	na	na
1,2,4-Trimethylcyclopentane		па	na	na	na
Unknown		na	na	na	na
Unknown		na	na	na	na
Unknown		na	na	na	na

PARAMETER		Ae	ration	I	Filter
		In	fluent	E	ffluent
DATE	02/12/9	3	03/04/93	02/12/93	03/04/93
INORGANICS					
<u>(mg/l)</u>					
Aluminum		0.43	< 0.1	0.36	< 0.1
Antimony	<	0.002	< 0.002	< 0.002	< 0.002
Arsenic		0.014	0.014	0.012	0.0091
Barium		0.40	0.72	0.34	0.75
Cadmium		< 0.01	< 0.005	< 0.01	< 0.005
Chromium total		< 0.01	< 0.05	< 0.01	< 0.05
Copper		< 0.04	0.015	< 0.04	0.016
Iron		4.7	1.9	2.3	< 0.06
Lead		< 0.05	< 0.05	< 0.05	< 0.05
Magnesium		10	15	10	16
Manganese		3.6	3.7	3.4	3.5
Zinc		< 0.05	< 0.05	< 0.05	< 0.05
Cyanide		0.055	< 0.005	< 0.005	< 0.005
MISCELLANEOUS					
<u>(mg/l)</u>					
тос		na	na	na	na

:\PROJ\1069052\START-UPSTARTUPW.WK1

PARAMETER			Discharge		Discharge
DATE	02/12/9	3	02/24/93	03/04/93	Linns
VOLATILE ORGANICS					
<u>EPA 8240 (μg/l)</u>					
2-Butanone (MEK)		120 *	< 10	< 10	10
Ethylbenzene		< 5	< 5	< 5	10
Toluene		< 5	< 5	< 5	10
total Xylenes		< 5	< 5	< 5	10
<u>TICs (estimated values (µr/l))</u>					
Cyclohexane			na	na	na
2,2-Dimethylbutane			na	na	na
1,1 – Dimethylcyclohexane			na	na	na
cis-1,2-Dimethylcyclohexane			na	na	na
trans-1,2-Dimethylcyclohexane			na	na	na
cis/trans-1,2-Dimethylcyclohexane			na	na	na
cis-1,3-Dimethylcyclohexane			na	na	na
trans-1,3-Dimethylcyclohexane			na	na	na
1.4 – Dimethylcyclohexane			na	na	na
trans-1,2-Dimethylcyclopentane			na	na	na
cis-1,3-Dimethylcyclopentane			na	na	na
3.3-Dimethylpentane			na	na	na
Ethylcyclohexane			na	na	na
1-Ethyl-3-methylbenzene			na	na	na
Heptane			na	na	na
licxanc			na	na	na
2 – Mcthylbutane			na	na	na
Methylcyclohexane			na	na	na
1 – Mcthylcyclohexene			na	na	na
Methylcyclopentane		1	na	na	na
1 – Mcthylethylbenzene			na	na	na
2-Methylpentane			na	na	na
3-Methylpentane			na	na	na
Pentane			na	na	na
Propylbenzene			na	na	na
Tetrahydrofuran		50 *	na	na	na
1.2.3 – Trimethylbenzene			na	na	na
1,3,5 - Trimethylbenzene			na	na	na
1.2.4-Trimethylcyclopentane			na	na	na
Unknown			na	na	na
Unknown			na	na	na
Unknown			na	na	na

PARAMETER			Discharge		Discharge Limits
DATE	02/12/)3	02/24/93	03/04/93	
INORGANICS					
<u>(mg/l)</u>					
Aluminum		0.54	na	< 0.1	4.0
Antimony	<	0.002	na	< 0.002	0.15
Arsenic		0.029	na	0.0074	0.05
Barium		< 0.08	na	0.47	2.5
Cadmium		< 0.01	na	< 0.005	0.02
Chromium total		< 0.01	na	< 0.05	0.1
Copper		< 0.04	na	0.010	0.25
Iron		0.21	na	< 0.06	4.0
Lcad		< 0.05	na	< 0.05	0.1
Magnesium		11	na	16	25
Manganese		0.30	na	1.3	6.0
Zinc		< 0.05	na	< 0.05	2.5
Cyanide	•	0.005	na	< 0.005	0.1
MISCELLANEOUS					
<u>(mg/l)</u>					
тос		2.7	na	1.0	50

P:\PROJI069052\START-UP\STARTUPW.WK1

PARAMETER	1		Trip Blank	
DATE	02/12/9	3	02/24/93	03/04/93
VOLATILE ORGANICS				
<u>ΕΡΛ 8240 (μg/l)</u>				
2-Butanone (MEK)		< 10	< 10	< 10
Ethylbenzene		< 5	< 5	< 5
Toluene		< 5	< 5	< 5
total Xylenes		< 5	< 5	< 5
<u>TICs (estimated values (μg/l))</u>	1			
Cyclohexane		na	na	na
2,2-Dimethylbutane		na	na	na
1,1-Dimethylcyclohexane		na	na	na
cis – 1,2 – Dimethylcyclohexane		na	na	na
trans-1,2-Dimethylcyclohexane		na	na	na
cis/trans-1.2-Dimethylcyclohexane		na	na	na
cis-1.3-Dimethylcyclohexane		na	na	na
trans-1,3-Dimethylcyclohexane		na	na	na
1,4-Dimethylcyclohexane		na	na	na
trans-1,2-Dimethylcyclopentane		na	na	na
cis-1,3-Dimethylcyclopentane		na	na	na
3,3-Dimethylpentane		na	na	na
Ethylcyclohexane		na	na	na
1-Ethyl-3-methylbenzene		na	na	na
lleptane		na	na	na
licxane		na	na	na
2-Mcthylbutane		na	na	na
Methylcyclohexane		na	na	na
1 – Mcthylcyclohexene		na	na	na
Methylcyclopentane		na	na	na
1 – Mcthylcthylbenzene		na	na	na
2-Methylpentane		na	na	na
3-Methylpentane		na	na	na
Pentane		na	na	na
Propylbenzene		na	na	na
Tetrahydrofuran		na	na	na
1,2.3 - Trimethylbenzene		na	na	na
1.3.5 - Trimethylbenzene		na	na	na
1.2.4-Trimethylcyclopentane		na	na	na
Unknown		na	na	na
Unknown		na	na	na
Unknown		na	na	na

PARAMETER			Trip Blank	
DATE	02/12/9	3	02/24/93	03/04/93
INORGANICS				
<u>(mg/l)</u>				
Aluminum		na	na	na
Antimony		na	na	na
Arsenic		na	na	na
Barium		na	na	na
Cadmium		na	na	na
Chromium total		na	na	na
Copper		na	na	na
Iron		na	na	na
Lead		na	na	na
Magnesium		na	na	na
Manganese		na	na	na
Zinc		na	na	na
Cyanide		na	na	na
MISCELLANEOUS				
(mg/l)				
тос		na	na	na

NOTES: na – Not Analyzed or Not Applicable

- -- Not Detected
- The source of the MEK and tetrahydrofuran detected in the 02/12/93 Discharge sample was most likely the glue used to connect the piping and/or sample ports after the carbon. MEK was not detected in the combined flow prior to the carbon treatment (sample ID's - Aeration Influent and Filter Effluent), and the PVC glue used to connect all piping, sample ports, etc. contains MEK and tetrahydrofuran.

VPROJ/1069052/START-UP/STARTUPW.WK1

				VOLAT	ILE ORGANIC	\$ (ug/1)					
		2-Bute	1,2-01-	1,1,1-	Tri-	Benzene	Toluene	Ethyl-	Total	4-Methyl-	TOC
		none	chloro-	Tri⊢	chloro-			benzene	Xylenes	2-penta-	(mg/l)
Sample	Date	(MEK)	ethane	chloro-	othene			0		none	
Location	Sampled			ethane				-		(MIBK)	
RW-1											
	07/14/93	<10		্ৰ ব	<	্ৰ ব	_ ⊲5	ব	5.4	<10	_
	11/15/93	<10	- 45	ব	<	্ৰ ব	্ৰ ব	্ৰ ব	ব	<10	
R W -2											
	07/14/93	<10	ব	্ৰ ব্য	্ৰ ব্য	্ৰ ব	্ৰ ব	্ৰ ব	ব	<10	
	11/15/93	<10	45	<5	ব	<5	5	5		<10	-
RW-S	07/14/00										-
	07/14/93	<10		S	<3	0				<10	
RW-4											
	07/14/93	<10		ব	ব	্ৰ ব	্ৰ ব	্ৰ ব	ব	<10	_
	11/15/93	<10	4	ব	্র ব্য	্র ব্য	5	6	ব	<10	_
					_	-		-	-		
R₩-6										i	
	07/14/93	<10	ব	<	্ৰ ব্য	্ৰ ব			ব	<10	_
	11/15/93	<10	ব	ব	ব	ব	ব	্ৰ ব	ব	<10	_
A											
Aeration lank	09/09/09										
Innuent	03/23/93	<10	0						0.9	<10	
	05/12/93	<10	9							<10	
	07/14/09	~10			- O						
	08/12/09		10		C3				720		
	09/15/93		<10	<10	<10	<10		<10	11		
	10/14/93	<10	6	<5	6				6	<10	
	11/15/93	<10	6	් ර	୍ଷ	6				<10	
	12/15/93	<10	୍କ ଶ	6	6	6	6		6.5	<10	-
	,										
Bag Filter											
Effluent	03/23/93	<10	ব	্ ব		্ৰ ব		ব	ব	<10	_
	05/12/93	<10	ব	্ ব	্ৰ ব	্ৰ ব	ব	্ৰ ব	ব	<10	_
	06/11/93	<10	ব	্ ব	্ৰ ব	ব	ব	ব	ব	<10	_
	07/14/93	<10	ব	<	্ৰ ব	্ৰ ব	্ৰ ব	্ৰ ব	ব	<10	_
	08/12/93+	<10	ব	<5	্ৰ ব	্র ব	<	12	120	<10	5

		VOLATILE ORGANICS (ug/)									
Sample	Date	2-Buta- none (MEK)	1,2-Di- chloro- ethane	1,1,1- Tri- chloro-	Tri- chloro- ethene	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	4-Methyl- 2-penta- none	TOC (mg/l)
	Sampled			enane						(MIDK)	
Bag Filter	09/15/93	<10	<5	ব	ব	ব	ব	<5		<10	-
Effluent (cont.)	10/14/93	<10	<5	ব	ব	্ৰ ব্য	্ৰ ব	<5	্ৰ ব	<10	_
	11/15/93	<10	<5	্ৰ ব		্ৰ ব	্ৰ ব	<5	ব	<10	-
	12/15/93**	<10	<5	ব	ব	<5	380	<5	ব	<10	-
Carbon Tap A	_										
Train 1	03/23/93	<10	<5	ব	ব	ব	ব	<5	4	<10	-
Train 2	05/12/93	<10	<5	ব	ব	ব	ব	<5	4	<10	-
Train 3	06/11/93	<10	<5	ব	ব	ব	ব	<5	ব	<10	-
Train 1	07/14/93	<10	<5	ব		্ৰ ব	ব	<5	5	<10	-
Train 2	08/12/93+	<10	<5	ব	ব	্ৰ ব	্ৰ ব	13	130	<10	-
Train 3	09/15/93	<10	<5	ব	্ৰ ব	্ৰ ব	্ৰ ব	<5	5	<10	-
Train 1	10/14/93	<10	<5	ব	< ব	্ ব	ব	<5	<5	<10	-
Train 2	11/15/93	<10	<5	্ ব	ব	<5	্ৰ ব	<5	্ৰ ব	<10	-
Train 3	12/15/93**	<10	<5	ব	ব	- 5	370	<5	ব	<10	-
Carbon Tap B											
Train 1	03/23/93	<10	<5	ব		<5	্ৰ ব	<5	5	<10	-
Train 2	05/12/93	<10	<5	ব	্ৰ ব	্ৰ ব্য	ব	<5	<5	<10	-
Train 3	06/11/93	<10	<5	<	<	্ৰ ব্য	< ⊲	<	< ⊲	<10	-
Train 1	07/14/93	<10	<5	ব	্ৰ ব্য	্ ব	< ⊲	<5	_ ⊲5	<10	-
Train 2	08/12/93+	<10	<5	্ৰ ব	্ৰ ব	্ ব	45	<5		<10	-
Train 3	09/15/93	<10	<5	্ৰ ব	্ৰ ব	্ ব	<u> </u>	<	- 4	<10	-
Train 1	10/14/93	<10	<5	্ ব	ব	্ৰ ব	্ৰ ব	5	5	<10	-
Train 2	11/15/93	<10	<5	্ৰ ব	্ৰ ব	্ৰ ব্য	্ৰ ব	<5	5	<10	-
Train 3	12/15/93	<10	<5	ব	ব	ব	4	4	4	<10	-
Carbon Tap C											
Train 1	03/23/93	<10	<5	ব	ব	্ৰ ব	ব	<5	ব	<10	-
Train 2	05/12/93	<10	<5	ব	ব	্ৰ ব	্ৰ ব	<5	5	<10	_
Train 3	06/11/93	<10	<5	ব	ব	্ ব	ব	<5	ব	<10	-
Train 1	07/14/93	<10	<5	্ৰ ব	্ৰ ব	্ৰ ব্য	ব	<5	5	<10	-
Train 2	08/12/93	<10	<5	্ৰ ব	ব	্ ব	ব	<5	ব	<10	-
Train 3	09/15/93	<10	<5	্ৰ ব	্ৰ ব	্ৰ ব্য	ব	<5	ব	<10	-
Train 1	10/14/93	<10	<5	্ৰ ব্য	ব	ব	ব	<5	<5	<10	-
Train 2	11/15/93	<10	<5	ব	ব	ব	⊲5	<5	< ⊲	<10	-
Train 3	12/15/93	<10	<5	ব	ব	্ৰ ব		<5	- 5	<10	-

								5 4	T • •		Tee
Sample Location	Date Sampled	2-Bute- none (MEK)	1,2-UF- chloro- ethane	1,1,1- Tri- chloro- ethane	in- chloro- ethene	Benzene	loluene	Eshyl- benzene	iotal Xylenes	4-Methyl- 2-penta- none (MIBK)	10C (mg/l)
Discharge											
	03/23/93	<10	<5	ব	্ ব	ব	<5	<5	্ ব	<10	30
	04/09/93										_
	05/12/93	<10	<5	ব	<5		্ৰ ব	<5	ব	<10	6
	05/28/93			<u> </u>		-		·	<1		
	06/11/93	<10	<5	ব	<5	ব	্ৰ ব্য	<5	ব	<10	12
	06/30/93								ব		
	07/14/93*	<10	<5	ব	<5	ব	ব	<5	<5	<10	8
	07/28/93	-				-	-	·	্ ব		
	08/12/93++	<10	<5	ব	<5	ব	্ৰ ব	<5	্ ব	<10	<1
	08/30/93		-	-					্ৰ ব		1
	09/15/93	<10	<5	<5	্ৰ ব	ব	্ৰ ব	<5	্ৰ ব	<10	<1
	09/30/93		, <u> </u>		·			·	্ৰ ব		
	10/14/93	<10	<5	ব	্ৰ ব	ব	্ৰ ব	<5	্ ব	<10	2
	10/29/93			-		-			্ৰ ব		
	11/15/93	<10	<5	<5	্	ব	্ৰ ব	<5	ব	<10	5
	11/30/93				· · · ·	-			ব		
	12/15/93	<10	<5	ব	্	্ৰ ব	্ৰ ব	<5	্ ব	<10	1
	12/30/93								ব	-	
Discharge Limits	-	10	20	10	10	10	10	10	10	10	50

						INORGANI	CS (mg/l)							
Sample	Date	Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Соррег	Iron	Lead	Magnesium	Manganese	Zinc	Cyanide
Location	Sampled													
RW-1														
	07/14/93								1.8		27	3.0		
	11/15/93	_							1.2	_	29	3.4	_	
												_		·
R W 2														
	07/14/93	i —			·	-			1.3		21	4.0		
	11/15/93	-							8.7		26	5.3	-	
HW-3	07/14/09								1.0		26	4.9		
	07/14/93			1 -	1 –	1 -	_	_	1.3			4.3		_
		(
R W-4														
	07/14/93				· —	-		-	2.5	-	14	4.6	-	-
	11/15/93			-	-	-	_	-	3.1	-	- 18	9.4		· -
RW-5											<u> </u>			
	07/14/93		_						1.1		17	3.9	_	
	11/15/93		<u> </u>	-	-	-		-	1.5	_	14	3.7	_	-
A and a Task			ļ											
neration (ank Influent	09/29/99		_						6			59		
	05/12/93] _
	06/11/93		<u> </u>										_	
	07/14/93							-					_	
	08/12/93	0.36	<0.002	0.018	1.0	<0.01	<0.01	<0.05	2.3	<0.05	21	5.0	<0.01	<0.00
	09/15/93	·		-	-	-	-	-	-	-			- 1	-
	10/14/93			-	-	-		-	-	-		-	- 1	-
	11/15/93			-	-	-	-	-		_	-		- 1	- 1
	12/15/93				-		_		- 1	-	·	-		- 1
Bag Filter														
Effluent	03/23/93			_			_		1 9	_		40	_	
	05/12/93					_				_		4.0		
	06/11/93						_							
	07/14/93								-	_				
	08/12/93+	0.92	<0.002	<0.01	0.84	<0.01	<0.01	<0.05	0 59	~0.05	21	9.1	-0.01	<0.00

			1			INUHGAN			1				1	1
		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Magnesium	Manganese	Zinc	Cyanide
Sample	Dete													
Location	Sampled													
Bag Filter	09/15/93						_							
Effluent (cont.)	10/14/93										-		-	-
	11/15/93	_					_				_		_	
	12/15/93**	_										-		
Carbon Tap A														
Train 1	03/23/93								0.20	-	-	1.3		
Train 2	05/12/98		_								-			
Train 3	06/11/93				_					_		_		_
Train 1	07/14/93					_							· ·	_
Train 2	08/12/93+	· -												
Train 3	09/15/93													
Train 1	10/14/93				_					_	_			
Train 2	11/15/93					_				_				
Train 3	12/15/93**							_						
Carbon Tap B														
Train 1	03/23/93								0.14	-		0.92		
Train 2	05/12/93	3						_					-	
Train 3	06/11/93							_					-	
Train 1	07/14/93	s												
Train 2	08/12/93+									·				
Train 3	09/15/93				·		-							
Train 1	10/14/93	-			-			- <u>-</u>					-	-
Train 2	11/15/93						· · · ·							
Train 3	12/15/93													
Carbon Tap C														
Train 1	03/23/93			· -	· · ·			· · · ·	0.13	-		0.74		
Train 2	05/12/93		-	-	·		-	-		-		-	-	
Train 3	06/11/93								·	· -				
Train 1	07/14/93						· ·		-					
Train 2	08/12/93		-	· · · · ·										
Train 3	09/15/93				· · ·		·		-					
Train 1	10/14/93		-		-		-						-	
Train 2	11/15/93	_	_	-		_		-	-	_	-			
Train 9	12/15/93	· · · · ·				-			_					

						INORGANI	CS (mg/l)							
		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Соррег	Iron	Lead	Magnesium	Manganese	Zinc	Cyanide
Sample Location	Date Sampled													
Discharge														
	03/23/93	<0.1	<0.002	0.0083	0.52	<0.005	<0.01	<0.05	0.092	⊲0.2	16	0.73	0.33	<0.00
	04/09/93		- <u>-</u>	. <u> </u>		· · · · ·			-	-		·		
	05/12/93	⊲0.1	<0.001	0.0040	0.42	<0.005	<0.01	<0.05	0.12	⊲0.001	16	0.080	<0.01	<0.00
	05/28/93		· · · · ·	· ·	· -	• •		a :						
	06/11/93	0.15	<0.01	0.0016	0.40	<0.004	<0.01	<0.05	0.052	<0.05	16	0.010	<0.02	<0.00
	06/30/93				-				-	-				
	07/14/93*	0.32	⊲0.01	⊲0.01	0.61	⊲0.004	<0.005	<0.05	0.066	⊲0.05	21	0.030	<0.05	0.006
	07/28/93		• · · · · ·		·	· · · · · ·		· · · ·	-		· · · ·			
	08/12/93++	0.54	<0.002	<0.01	0.50	<0.01	<0.01	<0.05	0.13	⊲0.05	20	2.3	<0.01	0.01
	08/30/93		e 0 			• · · · · ·		· • -	-			-	-	
	09/15/93	0.28	0.0010	0.0078	1.0	<0.01	<0.01	<0.05	0.13	⊲0.05	21	5.5	<0.05	<0.00
	09/30/93		· ·						-					
	10/14/93	0.23	<0.002	0.0062	0.91	<0.01	<0.01	<0.05	0.12	<0.05	21	3.2	<0.02	0.006
	10/29/93		c sa 		·	• : <u></u>		< . 	-					
	11/15/93	0.12	0.0042	<0.01	0.38	<0.01	<0.01	<0.05	<0.06	<0.05	23	0.55	0.013	<0.00
	11/30/93		·				-		-		-	-	-	
	12/15/93	0.17	0.0032	0.0029	0.46	<0.01	<0.01	<0.05	0.19	<0.05	21	0.35	0.014	<0.0
	12/30/93		· · · ·	· · · ·	· · · ·	· · · ·	_	· · · · ·			-			-
Discharge Limits	-	4.0	0.15	0.05	2.5	0.02	0.1	0.25	4.0	0.1	25	6.0	2.5	0

NOTES:

---= Not Applicable or Not Analyzed

- * = Acetone detected at 76 µg/l-most likely from lab since acetone is a common lab contaminant
- + = Bag Filter Effluent: chloroform-12 ug/l, bromodichloromethane-16 ug/l, dibromochloromethane-16 ug/l
 - Carbon Tap A: chloroform-14 ug/l, bromodichloromethane-16 ug/l, dibromochloromethane-18 ug/l, first carbon canister removed from service at time of sampling
 - Carbon Tap B: chloroform-6.1 ug/l
- ++ = Chlorine analyzed for in field on 08/13/93 Free Chlorine = <0.1 mg/l, Total Chlorine = <0.1 mg/l, Discharge Limit (total residual) = 0.5 mg/l
- ** = Bag Filter Effluent: chlorabenzene-6.3 ug/l
 - Carbon Tap A: chlorobenzene-6.4 ug/l, first carbon canister removed from service at time of sampling, water from site sewer remediation project being passed through system at time of sampling

2.2.1 Start-Up Sampling

During the month following the start-up of the vapor extraction system (June 8, 1993), start-up sampling was conducted in accordance with the Preliminary O, M & M Plan. Some preliminary air sampling was conducted prior to this to determine the concentrations of contaminants in the air vented from the groundwater treatment system aeration tank. The last sampling conducted during start-up occurred on October 1, 1993. The vapor extraction system had previously been shut down on July 12, 1993 due to contaminant breakthrough in the primary carbon unit. As noted in Section 1.2, the system remained off until the data collected during start-up was reviewed and several issues regarding system operation were resolved. The sampling conducted on October 1, 1993, was conducted as part of the effort to restart the system.

Analytical results of the start-up sampling are summarized in Table 4, and copies of the lab reports are provided in Appendix G. All air samples were obtained by and analyzed by Upstate Labs. Additional split samples were obtained by MPI on October 1, 1993, and analyzed by the NYSDOH.

Sampling of the air originating from the groundwater aeration tank indicated that relatively low levels of VOCs were present following the groundwater system start-up period in February. This would be expected since very little VOC contamination was detected in the groundwater pumped from the recovery wells after the initial period of their operation.

The main contaminants present in the air being removed with the Test Pit 3 Area vacuum wells were TICs. These TICs included alkanes (such as methyl-hexanes), cycloalkanes (such as methyl-cyclohexanes), and unknowns. Ethylbenzene, toluene, xylenes, and phenol were the target compounds detected; however, the concentrations of these compounds were relatively low. Based on these data and review of the former plant's records, the probable source of the contamination found in the Test Pit 3 Area was the petroleum based solvent, benzine (or ligroine), formerly stored in this area.

TABLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS

TARGET COMPOUNDS DETECTED

PARAMETER MW	Ethylbenzene	106.17	Toluene	92.14	Xylenes	106.16	Total	Methane	Phenol	94.11
							Hydrocarbons			
DATE	<u>μg/m3</u>	ppm	μ <u>g</u> /m3	ppm	μ <u>g</u> /m3	ppm	ppm	ppm	μg/m3	ppm
Vacuum Well 1										
06/11/93	410	0 0944	-25	< 0.0066	2200	0 5067	2557	261	- 75	~0.0105
Vacuum Well 2	410	0.0744	25	<0.0000	200	0.5007	2337	201		<0.0175
06/11/93	25	0.0058	<25	< 0.0066	370	0.0852	1186	39	<75	< 0.0195
Vacuum Well 3				6						
06/11/93	25	0.0058	<25	< 0.0066	170	0.0392	234	21	<75	< 0.0195
Vacuum Well 4										
06/11/93	<25	< 0.0058	<25	< 0.0066	1000	0.2303	1481	111	<75	< 0.0195
Vacuum Well 5										
06/18/93	< 300	< 0.0691	< 300	< 0.0796	380	0.0875	36642	801	170	0.0442
Vacuum Well 6										
06/18/93	< 300	< 0.0691	< 300	< 0.0796	< 300	< 0.0691	14649	2212	38	0.0099
Vacuum Well 7										
06/18/93 ***	< 300	< 0.0691	< 300	< 0.0796	< 300	< 0.0691	15246	583	380	0.0987
Vacuum Well 8										
06/18/93	< 300	< 0.0691	< 300	< 0.0796	730	0.1681	903	37	150	0.0390
Vacuum Well 9										
06/11/93	<25	< 0.0058	<25	< 0.0066	31	0.0071	681	408	<75	<0.0195
Combined Vacuum Well Air Stream	200	0.0401		0.000	(20)	0.1.61				
06/18/93	<.900	< 0.0691	<.500	< 0.0796	6.50	0.1451	86.38	.346	230	0.0598
06/.30/93	<23	< 0.005.3	<23	< 0.0061	150	0.0345	9380	180	250	0.0650
07/08/93 *	<23	< 0.005.3	<23	< 0.0061	46	0.0106	4940	140	140	0.0364
Aeration Tank/Sump Air Stream										
02/12/93 - front	520	0.1198	280	0.0743	2500	0.5758	300	167		
02/12/93 - back	< 3	< 0.0007	4	0.0011	< 3	< 0.0007				
06/11/93	<25	< 0.0058	<25	< 0.0066	39	0.0090	1530	4		
06/30/93	<23	< 0.0053	<23	< 0.0061	<23	< 0.0053	14	6		
Demister Air Stream Influent			l							
$03/11/93 - \text{front}^*$	< 120	< 0.0276	< 120	< 0.0318	580	0.1336	1822	531	< 80	< 0.0208
06/11/93	69	0.0159	<25	< 0.0066	750	0.1727	1360	4	<75	< 0.0195
06/30/93	<23	< 0.0053	<23	< 0.0061	120	0.0276	7610	140	140	0.0364

-

TADLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS

TARGET COMPOUNDS DETECTED

PARAMETER	MW	Ethylbenzene	106.17	Toluene	92.14	Xylenes	106.16	Total	Methane	Phenol	94.11
								Hydrocarbons			
DATE		μ <u>α</u> /m3	ppm	μg/m3	ppm	μg/m3	ppm	ppm	ppm	μg/m3	DDW
Primary Vapor Carbo	n Influent			A							
02/12/93	– front	23	0.0053	52	0.0138	130	0.0299	54	34		
02/12/93	– back	< 5	< 0.0012	6	0.0016	< 5	< 0.0012				
02/24/93	– front	10	0.0023	19	0.0050	58	0.0134	27	14		
02/24/93	– back	< 2	< 0.0005	2	0.0005	< 2	< 0.0005				
06/11/93		100	0.0230	<25	< 0.0066	1100	0.2533	149	4	<75	< 0.0195
06/30/93	*	<23	< 0.0053	<23	< 0.0061	120	0.0276	4620	90	150	0.0390
07/08/93	*	<23	< 0.0053	<23	< 0.0061	85	0.0196	6890	150	230	0.0598
10/01/93	- Upstate *	<2300	< 0.5297	<2300	< 0.6103	<2300	< 0.5297				
	- NYSDOH *	245	0.0564	< 3.8	< 0.0010	<4.3	< 0.0010	1018 (4650 mg/m3)			
Primary Vapor Carbo	n Effluent										
02/24/93	– front	< 3	< 0.0007	3	0.0008	< 3	< 0.0007	14	14		
04/09/93	– front	< 3	< 0.0007	< 3	< 0.0008	< 3	< 0.0007	23	23		
06/11/93		25	0.0058	<2	< 0.0005	2.30	0.0530	31	2	<75	< 0.0195
06/18/93	*	<23	< 0.0053	<23	< 0.0061	<23	< 0.0053	3475	165	138	0.0359
06/30/93	• + *	<23	< 0.0053	<23	< 0.0061	<23	< 0.0053	90	84	< 80	< 0.0208
07/08/93	(2)*	<23	< 0.0053	<23	< 0.0061	<23	< 0.0053	1065	105	120	0.0312
10/01/93	– Upstate *	<2300	< 0.5297	<2300	< 0.6103	<2300	< 0.5297				
	- NYSDOH *	<4.3	< 0.0010	12	0.0032	<4.3	< 0.0010	46 (211 mg/m3)			
Secondary Vapor Car	bon Effluent										
06/23/93	*	< 23	< 0.0053	< 73	< 0.0061	< 23	< 0.0053	1921	146		
10/01/93	– Unstate *	<2300	< 0.5297	< 2300	< 0.6103	<2300	< 0 5297				
10/01/7.	- NYSDOH *	52	0.0012	< 3.8	< 0.0010	<43	< 0.0010	$17 (76 \text{ mg/m}^3)$			
	NISDON		0.0012	< 5.0	<0.0010		<0.0010	17 (70 mg/m3)			
Bag/Pump Equipmen	t Blank										
02/12/93	– front	8	0.0018	12	0.0032	40	0.0092	< 1.0	< 1.0		
02/12/93	- back	< 5	< 0.0012	< 5	< 0.0013	< 5	< 0.0012				
02/24/93	– front	< 3	< 0.0007	< 3	< 0.0008	< 3	< 0.0007	< 1.0	< 1.0		
03/11/93	- front **	8	0.0018	8	0.0021	31	0.0071	< 1.0	< 1.0	< 80	< 0.0208
06/11/93		<2	< 0.0005	3	0.0008	<2	< 0.0005	< 1.0	< 1.0	<75	< 0.0195
06/18/93		<3	< 0.0007	<3	< 0.0008	<3	< 0.0008	<1	<1	< 38	< 0.0088
06/30/93	•	<2	< 0.0005	6	0.0016	3	0.0007	<1	<1	80	0.0208

T/ E 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS

TARGET COMPOUNDS DETECTED

PARAMETER MW	Ethylbenzene	106.17	Toluene	92.14	Xylenes	106.16	Total	Methane	Phenol	94.11
							Hydrocarbons			
DATE	μg/m3	ppm	μ <u>g</u> /m3	DDm	<u>μg/m3</u>	ppm	ppm	DDm	μ <u>g</u> /m3	ppm
Control/Media Blank										
02/12/93	< 0.15 µg		< 0.15 μg		< 0.15 μg					
03/11/93									< 5 μg	
06/11/93	< 0.2 µg		0.2 µg		< 0.2 μg				< 5 μg	
06/18/93 ***	< 3 µg		4 μg		< 3 μg				< 3 μg	
06/23/93 ****	< 3 µg		4 μg		< 3 μg					
06/30/93 (1)*	< 0.2 µg		0.4 μg		< 0.2 μg				< 5 μg	
07/08/93 (2)*	< 0.2 µg		0.6 µg		< 0.2 µg				< 5 µg	
10/01/93 (3)* - Upstate	< 0.2 µg		0.4 μg		< 0.2 µg					
	270000	(10)	270000	72.0	270000	(10)			270000	
Max Allowable Discharge Limit	278098	64.0	278098	/.5.8	218098	64.0			278098	12.3
Ior the vapor Carbon Effluent										

NOTES: -- = not analyzed, or not applicable

- * = table of tentatively identified compounds (TICs) attached
- ** = methyl ethyl ketone (MEK) also detected at $35 \mu g/m3$
- *** = methylene chloride also detected at 850 μ g/m3 (VW7) and 17 μ g (media blank).
- **** = acetone also detected at 23 μ g and methylene chloride at 11 μ g.
- + = primary and secondary vapor carbon changed out 06/28/93.
- (1) = acetone also detected at 1.4 μ g and methylene chloride at 0.5 μ g.
- (2) = acetone also detected in primary vapor carbon effluent at 190 $\mu g/m3$ and in media
 - blank at $1.2 \mu g$ methylene chloride detected in media blank at $0.6 \mu g$.
- (3) = acetone also detected at 1.5 ug and methylene chloride at 0.6 ug.

A known volume of air was collected for each sample then passed through two carbon adsorbant tubes in series.

The VOCs adsorb onto the carbon; the carbon is then analyzed for VOCs.

The Front and Back designations refer to the first and second carbon tube in series, respectively.

77°F

24.45

The sample for the TOC analysis is taken as a gaseous direct injection into the GC.

Conversion from $\mu g/m^3$ to ppm assumes T = 77°F, and V = 24.45.

T = V = V = $ppm = ((mg/m^3)(V))/(molecular weight)$

P:\PROJ\1069052\START-UP\STARTUPA.WK1

TABLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS TENTATIVELY IDENTIFIED COMPOUNDS

	Demister Air St	ream	Pump/Bag Blan	k
PARAMETER	Influent			
DATE	03/11/93		03/11/93	
	μg/m3	ppm	μg/m3	ppm
SEMIVOLATILE ORGANICS				
EPA 8270 - TICs (estimated values)				
cis-1.3-Dimethylcyclohexane	2700	na		
1.4 – Dimethylcyclohexane	750	na		
trans – 1,4 – Dimethylcyclohexane	1200	na		
2,3-Dimethylhexane	230	na		
2,5 – Dimethyloctane	460	na		
Ethylcyclohexane	1200	na		
1-Ethyl-4-methylcyclohexane	1700	na		
1-Ethyl-4-methylcyclohexane	400	па		
2-Methylheptane	980	na		
3-Methylnonane	620	na		
4-Methylnonane	460	па		
Propylcyclohexane	720	na		
1,3,5 – Trimethylbenzene	200	па		
1,3,5 – Trimethylcyclohexane	660	na		
1,2,3-Trimethylcyclopentane	550	na		
Unknown	880	na		
Unknown	1100	na		
Unknown	3300	na		
Unknown	370	na		
Unknown	1000	na		
Unknown	450	na		
Unknown	800	na		
Unknown	540	na		
Unknown	460	na		
Unknown	460	na		
Unknown	220	na		
Unknown Hydrocarbon	570	na		
Unknown Hydrocarbon	1100	na		
Unknown Hydrocarbon	1100	na		
Unknown Hydrocarbon	740	na		
Total TICs (estimated values)++ 112.	2 25920	5.65		

ΓA 34

TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	Demister Air St	ream	Pump/Bag Blank			
DATE	03/11/93		03/11/93			
	μg/m3	ppm	$\mu g/m3$	ppm		
VOLATILE ORGANICS						
EPA 8240 – TICs (estimated values)						
cis - 1.3 - Dimethylcyclohexane	3200	па		na		
2,5-Dimethylhexane	1700	na		na		
3,5-Dimethylheptane	1200	na		na		
decahydro-1,6-Dimethylnapthalene		na	7	na		
trans-1-ethyl-4-methyl-cyclohexane	1200	na		na		
Methylcyclohexane	2900	па		na		
2-Methyldecane	960	na		na		
2-Methylheptane		na		na		
3-Methylheptane	1700	na		na		
2-Methylpentane		na		na		
Unknown	2100	na	12	na		
Unknown	2000	na	70	na		
Unknown	1600	na	8	na		
Unknown		na	10	na		
Unknown hydrocarbon		na		na		
Unknown hydrocarbon		na		na		
Unknown hydrocarbon		na		na		
Unknown hydrocarbon		na		na		
Total TICs (estimated values) + 98.19	18560	4.622	107	0.0266		

NOTES:

-- = not detected

na = not analyzed, or not applicable

A known volume of air was collected for each sample then passed through two carbon adsorbant tubes in series.

The VOCs adsorb onto the carbon; the carbon is then analyzed for VOCs.

The Front and Back designations refer to the first and second carbon tube in series, respectively.

The sample for the TOC analysis is taken as a gaseous direct injection into the GC.

Conversion from µg/m³ to ppm assumes T = 77°F, and V = 24.45. 77°F 24.45

 $ppm = [(mg/m^3)(V)]/(molecular weight)$

+ = the estimated Total Volatile TIC's concentration in ppm was calculated using the molecular weight of methylcyclobezane.

++ = the estimated Total Semivolatile TIC's concentration in ppm was calculated using the molecular weight of dimethylcyclobexane.

P:\PROJ\1069052\START-UP\CMTCLTIC.WK1
I ABLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS TENTATIVELY IDENTIFIED COMPOUNDS

	Combined Vacuum	Primary Va	apor Carbon	Prim	n ary V apor	Carbon	Secondary Carbon	Bag/Pump	Control	l/Media
PARAMETER	Well Air Stream	Influ	uent		Effluent		Effluent	Equipment Blank	Bla	nk
DATE	07/08/93	06/30/93	07/08/93	06/18/93	06/30/93	07/08/93	06/23/93	06/30/93	06/30/93	07/08/93
VOLATILE ORGANICS										
EPA 8240 - TICs (estimated values)										
1,1,2-Trimethylcyclopentane				500						
1,1,3-Trimethylcyclopentane				2500	150	1100		_ _		
1,1-Dimethylcyclopentane				62			3000			
2,3-Dimethylpentane							300			
2,4 – Dimethylpentane				96		150	2200			
2 – Methylhexane				390		380				
2-Methylpentane				100			3000			
3-Methylhexane				550	150					[
3-Methylpentane				72			2400			
Cycloheptane				250						
Cyclohexane							750			
Cyclohexane, 1,3-Dimethyl-trans					100					
Cyclohexane, 1,4-Dimethyl-trans	320	540	570					8		
Cyclohexane, 1-Ethyl-4-Methyl-trans	210	290	370							
Cyclohexane, Methyl		380	380	9300	450	22000	12000	12		
Cyclopentane, 1,2,3-Trimethyl					77					
Cyclopentane, 1,2-Dimethyl-trans				2500		4600	6400			
Cyclopentane, 1,3-Dimethyl-trans				1600		3000	3800			
Cyclopentane, Ethyl						1100				
Heptane, 2,5– Dimethyl		240								
Heptane, 2,6–Dimethyl		230								
Hexane				110		120	4500			
Methylcyclopentane				49			1300			
Nonane, 3-Methyl	380	490	460							
Octane, 2.5–Dimethyl	350		290							
Unknown		310			85					
Unknown	180	230	220		150					
Unknown		240	230		38	200				
Unknown		280			77					
Unknown Hydrocarbon	320		360							
Unknown Hydrocarbon	260		260							
Unknown Hydrocarbon	460	360	500	39		490	1500			
Unknown Hydrocarbon	350	270	340							
Unknown Hydrocarbon	180	350	240	880	110					
Unknown Hydrocarbon	430	270	350	190			600			
Unknown Hydrocarbon	440		460							

TABLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS TENTATIVELY IDENTIFIED COMPOUNDS

	Combined Vacuum	Primary Va	apor Carbon	Prin	ary Vapor	Carbon	Secon dary Carbon	Bag/Pump	Control	/Media
PARAMETER	Well Air Stream	Influ	uent		Effluent		Effluent	Equipment Blank	Bla	nk
DATE	07/08/93	06/30/93	07/08/93	06/18/93	06/30/93	07/08/93	06/23/93	06/30/93	06/30/93	07/08/93
Unknown Hydrocarbon	380	380	520	140				6		
Unknown Hydrocarbon	200	490	220	1400						
SEMIVOLATILE ORGANICS										
EPA 8270 - TICs (estimated values)										
Benzene, 1,2,3-Trimethyl		620		NA			NA			
Cyclohexane, 1,3,5-Trimethyl	510		550	NA			NA			
Cyclohexane, 1,3-Dimethyl-trans	850		830	NA			NA			
Cyclohexane, 1,4-Dimethyl	1600	480		NA			NA			
Cyclohexane, 1,4-Dimethyl-trans		1000	1600	NA			NA			
Cyclohexane, 1-Ethyl-4-Methyl-trans	630			NA			NA			
Cyclohexane, Ethyl	800	480	850	NA			NA			
Octane, 2,5 – Dimethyl		400	650	NA			NA			
Octane, 3,6-Dimethyl			1100	NA			NA			
Unknown	790	590	650	NA			NA			
Unknown	940		920	NA			NA			
Unknown	540	430	590	NA			NA			
Unknown		370		NA	230	150	NA	92		
Unknown	1900	1200	2100	NA			NA			
Unknown	970		97 0	NA			NA			
Unknown	690	490	740	NA			NA			
Unknown Hydrocarbon	690	680	710	NA			NA			
Unknown Hydrocarbon	620			NA			NA			
Unknown Hydrocarbon	550	390	570	NA			NA			
Unknown Hydrocarbon	790	390	800	NA			NA			
Unknown Hydrocarbon	890	490	630	NA			NA			
Unknown Hydrocarbon	660		610	NA			NA			
Unknown Hydrocarbon	590	630	590	NA			NA			
Unknown Hydrocarbon	1100	460	880	NA			NA			
,										

NOTES:

All concentrations in μ g/m3.

--- = not detected

NA = not anlayzed

P:\PROJ\1069052\START-UP\TP3IRMST.WK1

14

TABLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS

TENTATIVELY IDENTIFIED COMPOUNDS October 1, 1993

PARAMETER	Primary Vapor Carbon Influent mg/m 3		Primary Va Effl mg	por Carbon uent (m3	Secondary Vapor Carbon Effluent mg/m3		Control/Media Blank µg	
	Upstate	NYSDOH	Upstate	NYSDOH	Upstate	NYSDOH	Upstate	NYSDOH
VOLATILE ORGANICS								
EPA 8240 - TICs (Estimated values)		See Note 1		See Note 1		See Note 1		NA
Benzene, 1,2–diethyl–			0.02					
Benzene, 1,3-diethyl-							0.66	
Benzene, 1,4-diethyl-							0.45	
Benzene, 1-ethenyl-3-ethyl-			0.01				0.48	
Benzene, 1-ethenyl-4-ethyl-			0.01					
Benzene, ethyl-(1-methylethenyl)-							0.94	
Benzene, 2-methyl-1-butenyl-							0.27	
Bicyclo [3.2.1] octane					0.005			
Cycloheptane								
Cycloheptane, methyl-			0.03		0.22			
Cyclohexane, 1,2-dimethyl-, cis-					0.08			
Cyclohexane, 1,3-dimethyl-, cis-	4.1		0.40					
Cyclohexane, 1,3-dimethyl-, trans-	0.3		0.82					
Cyclohexane, 1,4-dimethyl-, cis-					0.13			
Cyclohexane, 1,4-dimethyl-, trans-					0.17			
Cyclohexane, methyl-	2.5		0.03					
Cyclohexane, 1,2,4-trimethyl-	0.9							
Cyclopentane, 1,3-dimethyl-, trans-					0.02			
Cyclopentane, 1-ethyl-2-methyl-, cis-					0.006			
Cyclohexane, 1,3,5-trimethyl-	0.5							
Cyclopentane, 1,2,3-trimethyl-								
Cyclopentane, 1,2,4-trimethyl-	0.9				0.11			
Ether, heptyl hexyl-			0.24					
Heptane	1.4				0.08			
Heptane, 2-methyl-	2.3		0.37					
Hexane, 2,2-dimethyl-			0.04		0.04			
Hexane, 2-methyl-	0.4		0.04		0.04			
Hexane, 3-methyl-	0.4		0.04		0.04			
1H-Indene, octahydro-, cis-			0.09					
Naphthalene							0.33	
Nonane, 4–methyl–	0.7							

TABLE 4 TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS

TENTATIVELY IDENTIFIED COMPOUNDS October 1, 1993

	Primary Vapor Carbon		Primary Vapor Carbon		Secondary Vapor Carbon		Control/Media		
PARAMETER	Influ	uent	EfO	uent	EfO	uent	Bla	ank	
	mg	mg/m3		/m3	ന്നു	/m3	μ	g	
	Upstate	NYSDOH	Upstate	NYSDOH	Upstate	NYSDOH	Upstate	NYSDOH	
Octane, 3,6-dimethyl-	0.3								
Octane, 3-methyl-	0.3								
Pentalene, octahydro–			0.05		0.04				
Unknown Hydrocarbon ($RT = 13.92$)	1.6								
Unknown Hydrocarbon ($RT = 15.51$)					0.004				
Unknown Hydrocarbon ($RT = 16.36$)					0.02				
Unknown Hydrocarbon (RT = 17.90)	0.4								
Unknown Hydrocarbon ($RT = 18.77$)			1.50						
Unknown Hydrocarbon (RT = 19.16)			0.04						
Unknown Hydrocarbon ($RT = 20.19$)	0.4								
Unknown Hydrocarbon ($RT = 20.88$)			0.14						
Unknown Hydrocarbon ($RT = 21.18$)			0.08						
Unknown Hydrocarbon ($RT = 21.40$)	0.2								
Unknown Hydrocarbon ($RT = 21.75$)			0.02						
Unknown Hydrocarbon ($RT = 22.84$)	0.4		_						
Unknown Hydrocarbon ($RT = 23.28$)	0.4								
Unknown Hydrocarbon ($RT = 24.12$)	0.2								
Unknown Hydrocarbon ($RT = 24.22$)			0.04						
Unknown Hydrocarbon ($RT = 26.25$)							0.67		
Unknown Hydrocarbon ($RT = 26.57$)							0.35		
Unknown Hydrocarbon ($RT = 27.38$)							0.33		

Notes:

1. The attached hand written NYSDOH table contains the estimated concentrations of eight TICs for each sample location, as determined through GC/MS analysis. NYSDOH GC/MS analysis indicated the presence of TICs at a total level greater than that detected by their FID total hydrocarbon scan. However, the State considers the results of the total hydrocarbon scan to be more reliable than the GC/MS TIC results.

--- = not detected

NA = not analyzed/not applicable

(RT) = retention time of unknown compound

P:\PROJ\1069079\TP3IRMR2.WK1

TEST PIT 3 AREA IRM START-UP VAPOR EXTRACTION SYSTEM AIR SAMPLING SUMMARY OF ANALYTICAL RESULTS

Dave:

Here are the three samples in chlutic form. Our usual sample load on to the M.S. is soo mile. Therefore, a so mi sample load is 10 our usual load. Dilections whe done in each sample canister or transferred + a clean (FID Tested) canister; diluted with clean air. (The clean air is used as blanks; a cleaned canister filled with clean air is also run as a control). A so not sample load of a 1:8 dilution is equal to a 1/30 final delution. PRIMARY PRIMARY SECON DARY CARBON INFLUENT CARBON EFFLUENT CARBON EFFLUENT File no. 932 303 D 932304B 932305A delection, final 1:80 1:5 1:20 372/ 5.9 398/ 689 Teak scon 394/ in mg/m3 1360 448 452/ /395 430 1158 1852 1167 1173 1227/ 1212/2512 1219 1335 1342 1348 1536/123 1529 1531 1768/ 1771 1766 / 2018/ 2017 2022/ For identification see Library searches enclosed.

2.2.2 Sampling During Full-Scale Operations

Conditions for restarting the Test Pit 3 Area vacuum wells were finalized during the end of November with the NYSDEC, and the wells were turned back on during early December. As per the NYSDEC, semi-continuous air monitoring was performed by MPI with a Foxboro Century OVA (Model 108) flame ionization detector during December. Upstate Labs also obtained air samples for total hydrocarbon analysis on three different occasions during the month.

Sampling the vapor extraction system air stream for USEPA 8240 VOCs and phenol was undertaken at the beginning of December, when the system was restarted. Consistent with the results of previous analyses, these compounds were detected at very low concentrations (several orders of magnitude lower than their respective discharge limits) or not detected at all.

A summary of OVA meter monitoring results is provided in Table 5, and Upstate Lab's December 1993 analytical results are summarized in Table 6. Copies of the laboratory reports from Upstate are provided in Appendix G.

Graphs showing how the contaminant concentrations (as measured with the OVA meter) in the primary vapor carbon influent stream and the primary vapor carbon treatment efficiency varied over the period of system operation are included in Figures 6 and 7, respectively. As expected, contaminant levels decreased over time, and a treatment efficiency of greater than 60% was maintained by the primary vapor carbon adsorber. It also appears that relatively low levels of light compounds, such as methane, were being recovered by the vacuum wells. Compounds such as methane are not adsorbed by carbon and will pass through the system untreated.

2.2.3 Contaminant Loading on Carbon

The quality of the vapor phase carbon was tested both times it was changed out to confirm that the carbon was exhausted. Samples of the carbon were obtained by MPI and analyzed by Barnebey & Sutcliffe Corp., Columbus, Ohio. In both cases, the apparent density and carbon tetrachloride (CCl4) activity of the carbon were determined. Testing results are summarized in Table 7.

2-4

TABLE 5 ROUTINE VAPOR EXTRACTION SYSTEM MONITORING WITH OVA METER SUMMARY OF RESULTS

Date	Time	Primary	Primary	Secondary	Primary	Active	Dilution
		Influent	Effluent	Effluent	% Removal	Wells	Valve
		(ppm)	(ppm)	(ppm)			
12/1/93	13:35	850	340	280	60	1,3,4,9	Closed
	14:00	680	250	175	63	1,3,4,9	Closed
	14:20	625	230	175	63	1,3,4,9	Closed
	14:50	500	150	110	70	1,3,4,9	Closed
	15:20	375	110	90	71	1,3,4,9	Closed
	15:30	825	310	250	62	All	Closed
	15:45	1025	225	170	78	All	Closed
	16:10	1010	210	150	79	All*	Closed
12/2/93	10:30	800	140	75	83	1,2,3,4,5,9	Open
	11:00	550	110	75	80	1,2,3,4,5,9	Open
	11:30	1200	250	125	79	1,2,3,4,5,9	Closed
	12:00	700	125	85	82	1,2,3,4,5,9	Closed
	12:30	650	100	65	85	1,2,3,4,5,9	Closed
	13:00	600	90	65	85	1,2,3,4,5,9	Closed
	13:30	550	85	60	85	1,2,3,4,5,9	Closed
	14:00	500	75	58	85	1,2,3,4,5,9	Closed
	14:30	500	70	60	86	1,2,3,4,5,9	Closed
	15:00	500	75	50	85	1,2,3,4,5,9	Closed
12/3/93	9:25	550	65	40	88	1,2,3,4,5,9	Closed
	9:44+	600	55	45	91	1,2,3,4,5,9	Closed
	10:05	550	60	40	89	1,2,3,4,5,9	Closed
	11:05	500	60	35	86	1,2,3,4,5,9	Closed
	12:00	500	50	35	90	1,2,3,4,5,9	Closed
	13:00	450	50	35	89	1,2,3,4,5,9	Closed
	14:00	450	55	40	88	1,2,3,4,5,9	Closed
	15:00	400	50	35	88	1,2,3,4,5,9	Closed
12/4/93	10:00	300	40	25	87	1,2,3,4,5,9	Closed
	17:00	250	30	20	88	1,2,3,4,5,9	Closed
12/5/93	15:30	175	25	19	86	1,2,3,4,5,9	Closed
12/6/93	10:45	250	25	20	90	1,2,3,4,5,9	Closed
	11:45	250	30	20	88	1,2,3,4,5,9	Closed
	11:50	400	100	80	75	All	Closed
	12:50	350	95	80	73	All	Closed
	13:50	325	95	75	71	All	Closed
12/7/93	9:00	275	65	40	76	All	Closed
	9:30++	250	65	40	74	All	Closed
	10:00	225	60	35	73	All	Closed
	11:00	225	60	40	73	All	Closed
	12:00	200	50	35	75	All	Closed
12/8/93	12:00	225	55	35	76	All	Closed
	13:00	170	50	30	71	All	Closed
	14:00	150	45	30	70	All	Closed
	15:00	150	45	27	70	All	Closed
12/9/93	9:30	150	40	30	73	All	Closed
	10:30	125	45	30	64	All	Closed
	11:30	100	45	30	55	All	Closed
	12:30	85	40	30	53	All	Closed
	13:35	125	50	25	60	1,2,3,4,5,9*	Closed
	15:15	375	60	35	84	All	Closed
	16:15	210	50	35	76	All*	Closed

TABLE 5 ROUTINE VAPOR EXTRACTION SYSTEM MONITORING WITH OVA METER SUMMARY OF RESULTS

Date	Time	Primary	Primary	Secondary	Primary	Active	Dilution
		Influent	Effluent	Effluent	% Removal	Wells	Valve
		(mag)	(mag)	(ppm)			, vane
12/10/93	10:30	350	45	25	87	All	Closed
	11:30	350	50	30	80	All	Closed
	12:40	200	45	27	78	All	Closed
	13:30	200	50	27	75	All	Closed
	14:30	200	55	27	73	All	Closed
	15:30	200	52	27	74	All*	Closed
12/13/93	10:00	375	85	35	77	All	Closed
	11:00	250	70	30	72	All	Closed
	12:00	225	60	27	73	All	Closed
	13:00	200	60	30	70	All	Closed
	14:00	200	60	25	70	All	Closed
	15:00	175	55	25	69	All	Closed
	16:00	175	55	25	69	All*	Closed
12/14/93	11:00	275	70	32	75	All	Closed
	12:00	250	80	32	68	All	Closed
	13:00	200	70	27	65	All	Closed
	14:00	175	60	50	66	All	Closed
	14:05	200	50 (B)	45 (A)	75	All	Closed
	14:30	200	45 (B)	40 (A)	78	All	Closed
	15:00	200	45 (B)	42 (A)	78	All	Closed
	15:05	225	70	30	69	All	Closed
	15:30	200	65	30	68	All	Closed
	16:00	200	65	30	68	All	Closed
12/15/93	9:35	175	50	25	71	All	Closed
	10:35	175	45	25	74	All	Closed
	11:40	150	47	25	69	All	Closed
	12:45	160	47	22	71	All	Closed
	13:35	170	50	25	69	All	Closed
	14:30	170	50	25	69	All	Closed
	15:20	175	50	25	71	All	Closed
12/16/93	11:00	200	55	27	73	All	Closed
	12:15	175	50	25	71	All	Closed
12/17/93	14:00	90	75	22	17	All*	Closed
12/20/93	9:55	400	90	35	78	All	Closed
	12:50	250	65	32	74	All	Closed
12/21/93	8:00	275	85	32	69	All	Closed
	9:30+++	250	60	30	76	All	Closed
12/22/93	10:45	250	40	20	84	All	Closed
	12:55	125	45	25	64	All	Closed
12/23/93	15:00	250	50	25	80	All*	Closed

Notes: Total air flow rate = 210-215 cfm

* ~ All wells were turned off after this reading

+ - Upstate Labs sampling results for 12/3/93 are:

Total Hydrocarbons (ppm) - Primary Influent = 1080, Primary Effluent = 52, Secondary Effluent = 57

Methane (ppm) - Primary Influent = 17, Primary Effluent = 17, Secondary Effluent = 17

++- Upstate Labs sampling results for 12/7/93 are:

Total Hydrocarbons (ppm) – Primary Influent = 375, Primary Effluent = 80, Secondary Effluent = 80

Methane (ppm) - Primary Influent = 20, Primary Effluent = 20, Secondary Effluent = 20

+++- Upstate Labs sampling results for 12/21/93 are:

Total Hydrocarbons (ppm) - Primary Influent = 473, Primary Effluent = 146, Secondary Effluent = 54

Methane (ppm) - Primary Influent = 10, Primary Effluent = 10, Secondary Effluent = 10

(B)/(A)-Denotes which adsorber is in the primary position and which is in the secondary position. Noted when adsorbers switched.

TABLE 6

COLUMBIA MILLS TEST PIT 3 AREA IRM ROUTINE VAPOR EXTRACTION SYSTEM SAMPLING SUMMARY OF ANALYTICAL RESULTS TARGET COMPOUNDS DETECTED OR PREVIOUSLY DETECTED

			USEPA 8240 V	olatile Org	anics:					
PARAMETER MW	Total	Methane	Ethylbenzene	106.17	Toluene	92.14	Xylenes	106.16	Phenol	94.11
	Hydrocarbons									
DATE	ppm	ppm	μg/m3	ppm	μg/m3	ppm	μg/m3	ppm	μg/m3	ppm
Primary Vapor Carbon Influent										
12/03/93	1080	17	<25	< 0.0058	<25	< 0.0066	180	0.0415	<80	< 0.0208
12/07/93	375	20								
12/21/93	473	10								
	_									
Primary Vapor Carbon Effluent				-						
12/03/93	52	17	<25	< 0.0058	<25	< 0.0066	<25	< 0.0058	< 80	< 0.0208
12/07/93	80	20								
12/21/93	146	10								
Secondary Vapor Carbon Effluent										
12/03/93	57	17	<25	< 0.0058	<25	< 0.0066	<25	< 0.0058	< 80	< 0.0208
12/07/93	80	20								
12/21/93	54	10								
Max Allowable Discharge Limit			278098	64.0	278098	73.8	278098	64.0	278098	72.3
for the Primary Vapor Carbon										

NOTES: -- = not analyzed, or not applicable

A known volume of air was collected for each sample then passed through two carbon adsorbant tubes in series. The VOCs adsorb onto the carbon; the carbon is then analyzed for VOCs. The sample for the Total Hydrocarbon/Methane analysis is taken as a gaseous direct injection into the GC.

Conversion from $\mu g/m^3$ to ppm assumes T = 77°F, and V = 24.45.

 $T = 77^{\circ}F$ V = 24.45

 $ppm = [(mg/m^3)(V)]/(molecular weight)$

P:\PROJ\1069052\START-UP\VEAIR.WK1

Figure 6 Columbia Mills Vapor Extraction System OVA Readings vs Time-Prim. Influent

HOURS

Figure 7 Columbia Mills Vapor Extraction System % Efficiency – Primary Carbon

TABLE 7 COLUMBIA MILLS VAPOR EXTRACTION SYSTEM SPENT VAPOR CARBON QUALITY DATA

REMOVED FROM ADSORBERSORIGINALSPENT CARBONDIFFERENCEORIGINALJune 28, 199340000.43-0.450.5720.1365-68January 12, 199412, 199412, 199412, 199412, 199412, 1994	CARBON CHANGEOUT DAT	CCI4 ACTIVITY (wt.%)		
June 28, 1993 4000 0.43-0.45 0.572 0.13 65-68 January 12, 1994 <td></td> <td>IAL SPENT CARBON</td>		IAL SPENT CARBON		
January 12, 1994	June 28, 1993	3 37.5		
Primary Adsorber 1628 0.383 0.471 0.088 71.2	January 12, 1994 Primary Adsorber	27.6		
Secondary Adsorber 1628 0.387 0.414 0.027 71.0	Secondary Adsorber	40.6		

CONTAMINANT REMOVAL CALCULATIONS:

-calculations based on difference in apparent density of carbon

Carbon removed June 28, 1993-

(4000 lb) X (453.593 g/lb) X (ml/0.44 g) X (0.13 g/ml) X (lb/453.593 g) = 1182 lbs - both adsorbers

Carbon removed January 12, 1994 -

primary adsorber: (1628 lb) X (453.593 g/lb) X (ml/0.383 g) X (0.088 g/ml) X (lb/453.593 g) = 374 lbs secondary adsorber: (1628 lb) X (453.593 g/lb) X (ml/0.387 g) X (0.027 g/ml) X (lb/453.593 g) = 114 lbs TOTAL 488 lbs - both adsorbers

P:\PROJ\1069079\CARBCCL4.wk1

The apparent density and CCl4 activity tests are meant to be quick tests performed on an "as received" carbon sample to determine the ultimate capacity of the carbon. The apparent density is simply the mass of a certain volume of the VOC contaminated carbon. If the original density of the carbon is known, the change in density can be used to calculate the approximate pounds of contaminants adsorbed onto the carbon. The presence of water vapor, however, can affect the apparent density by increasing it from what it would be if only VOCs were adsorbed.

The CCl4 activity test involves passing a saturated airstream of CCl4 through a weighed carbon sample until it will no longer adsorb the CCl4. This weight gain is the CCl4 activity in weight percent. According to Carbon Service Company, if a carbon is loaded with contaminants, in most cases it will show a residual activity of 10 - 60 % of its original specification. In some instances, the CCl4 activity might actually be lower than results indicate since CCl4 vapor is much more adsorbable than most compounds, and could actually "kick out" weaker adsorbing VOCs. In such instances, the carbon would have adsorbed more contaminants than the test indicated.

The apparent densities of the changed-out carbon were used to calculate the pounds of VOCs removed from the Test Pit 3 Area through the vapor extraction system during 1993. Calculations are shown in Table 7, and indicate that a total of 1670 pounds were adsorbed by the carbon. CCl4 activity results confirm that there was a significant quantity of organic loading on the carbon at the times of changeout.

The estimated total pounds of organic contaminants removed by each adsorber are also summarized in Table 8, along with the corresponding weight percent removal achieved. Loading and weight percent removals were also estimated based on contaminant concentrations in the inlet vapor, carbon removal efficiencies, and vapor extraction system operating time. These estimates are included in Table 8 as well, and the calculations are contained in Appendix H. The vendor's prediction for carbon performance is included in the last column of Table 8.

Based on the vapor phase carbon adsorption isotherm for cyclohexane, the vendor predicted a weight percent pick-up of roughly 10% to 12% for the types of hydrocarbons present in the Test Pit 3 Area. The contaminant loadings which were calculated based on the difference in apparent density of the new and spent carbon used at the site were generally higher than predicted. The loadings calculated from the contaminant concentrations in the vapor stream were higher than those based on apparent density

ANNL/SEC2

TABLE 8 COLUMBIA MILLS VAPOR EXTRACTION SYSTEM VAPOR CARBON CONTAMINANT LOADING & WEIGHT % REMOVAL

REMOVED FROM ADSORBERS		CARBON APPARENT DENSITY	CONTAMINANT CONCS IN VAPOR	PREDICTION*
		DENSITY	INVAPOR	
2000	contaminant			
	loading (lbs)	591	928	200-240
	weight %			
	removal	30	46	10-12
2000	contaminant			
	loading (lbs)	591	651	200-240
	weight %			
	removal	30	33	10-12
1628	contaminant			
	loading (lbs)	374	4320	163 - 195
	weight %			
	removal	23	270	10-12
1628	contaminant			
	loading (lbs)	114	417	163-195
	weight % removal	7.0	26	10-12
	2000 2000 1628 1628	2000 contaminant loading (lbs) weight % removal 2000 contaminant loading (lbs) weight % removal 1628 contaminant loading (lbs) weight % removal 1628 contaminant loading (lbs) weight % removal	2000contaminant loading (lbs)591weight % removal302000contaminant loading (lbs)591weight % removal301628contaminant loading (lbs)3741628contaminant loading (lbs)374weight % removal231628contaminant loading (lbs)114weight % removal231628contaminant loading (lbs)114weight % removal7.0	2000 contaminant bading (bs) 591 928 weight % 30 46 2000 contaminant

Note: * Vendor's prediction for expected percent contaminant removal based on vapor phase carbon adsorption isotherm for cyclohexane. These numbers represent the predicted weight pick-up for carbon in general.

p:\proj\1069079\carbload

differences. However, many of the concentrations used in the calculations were estimated, and some error may have been introduced in converting hydrocarbon concentrations in ppm to mg/m³. A total molecular weight of 100 was assumed for the conversion.

In general, the contaminant loading and weight percent removal values calculated using the difference in carbon apparent density appeared to be closest to the predicted performance values. Part of the gain shown by the apparent density results over the predicted values could have been due to the presence of some water vapor.

2.2.4 Summary and Conclusions

Based on the evaluation of the vapor extraction system operation and data collected through March 1994, the following conclusions and observations have been made:

- a. TICs make up the majority of the vapor phase contaminants. These compounds are generally considered to be compounds related to ligroine.
- b. Analysis for total hydrocarbons appears to provide the best measurement of total VOCs and TICs in the vapor phase, and is the best indicator of the operating efficiency of the carbon. Total hydrocarbons can be analyzed either in the lab or in the field with an OVA meter. But, the field meter provides real time data and, therefore, is considered to be the best method of total VOC analysis.
- c. Light hydrocarbons make up a portion of the vapor stream contamination, which are not adsorbed by the carbon, e.g. methane. This was determined based on the fact that a portion of the vapor contamination always passes through the carbon even if carbon is fresh. Methane was also detected in the vapor extraction air stream as part of the total hydrocarbon analyses performed by the lab. The inability to adsorb lighter compounds is a known characteristic of carbon. In addition, the light hydrocarbons appear to be generally proportional to the inlet concentrations.
- d. The removal efficiency of the vapor phase carbon depends on the inlet contaminant concentrations. The carbon efficiency appears to be better at high inlet concentrations and decreases at low inlet concentrations. This may be due to the fact that at low concentrations there are less driving forces to cause the compounds to adsorb onto the carbon. Another explanation is that light hydrocarbons may dominate the vapor stream at low concentrations and, therefore, greatly reduce the calculated efficiency of the carbon, if not compensated for.

e. Consistent with literature, a reduction in VOC concentrations in the vacuum well air stream has occurred over time. In general, at system start-up, the saturated vapors present in the soil are quickly removed. After the initial period of operation, contaminant removal tends to become diffusion-limited, and removal rates drop with time. The vacuum wells at Columbia Mills have been temporarily turned off several times recently to allow the soil vapor to reequilibrate and contaminant concentrations to build back up. This increases removal efficiency.

3.0 SYSTEM OPERATIONS AND MONITORING IN 1994

3.1 OPERATIONS IN 1994

Based on the operation of the vapor extraction/ground water withdrawal and treatment system during the past year, several actions will be taken in 1994 to improve its efficiency. Although the system as a whole is effectively removing and treating volatile contamination from the Test Pit 3 Area groundwater and soil, there are some steps which can be taken to improve the overall operating efficiency. These are described below.

1. During 1993, iron/iron bacteria fouling of the groundwater withdrawal and treatment system negatively affected operations. Maintenance of the recovery well pumps and carbon units was required. Groundwater levels began to rise in the recovery wells when the pumps became plugged and could no longer pump at the rates required to maintain the necessary drawdown. Operating pressures also began to rise when the carbon units became plugged. In fact, the carbon was plugging and required replacement before its VOC treatment capacity was fully utilized. During 1994, MPI will implement a structured maintenance program for the recovery wells. The pumps will be pulled, disassembled, and cleaned once every three to four months. MPI is also looking into the feasibility of replacing the current liquid phase carbon adsorbers with adsorbers which are much more resistant to fouling from inorganics and biological growth. If this proves not to be feasible, a permanent carbon backwash system will be installed.

2. Although it appeared that the groundwater withdrawal system effectively dewatered the Test Pit 3 Area, groundwater levels rose in the vacuum wells when they were operating. The vacuums applied to the vacuum wells will be optimized so as to limit the amount of water accumulating in the wells and, at the same time, maintain a maximum air flowrate.

3. Operation of the vapor extraction system during 1993 indicated that vapor contaminant levels were relatively high at the time of system start-up, and dropped off quickly over time. MPI anticipates that during 1994, the vapor extraction system will have to operate on an on-and-off basis. In this way, contaminant levels will be able to build back up in the soil/soil gas when the system is shut off, allowing for more efficient contaminant recovery and treatment. Further testing and evaluation of current data will be required to determine the most effective on/off operating schedule.

3.2 MONITORING/SAMPLING

3.2.1 Monitoring and Recording

As approved by the NYSDEC (March 28, 1994 letter), monitoring and recording vapor and groundwater extraction system operating parameters will take place as outlined below. During preparation of this Annual Report, MPI determined that monitoring the system as frequently as originally proposed in the Preliminary OM & M Plan was not necessary to ensure effective operation.

a. Vapor Extraction System

Monitoring and recording the vapor extraction system operating characteristics is to take place according to the schedule shown in Table 9. Parameters will be recorded twice a month.

b. Groundwater Extraction System

Monitoring and recording flow into and through the treatment system is to take place according to the schedule shown in Table 10. Groundwater levels in the Test Pit 3 Area recovery and monitoring wells and piezometers are also to be measured as shown in Table 10. Flow monitoring will be conducted twice per month, and vacuum well and recovery well water levels will be obtained twice a month to ensure proper operation. All Test Pit 3 Area groundwater levels will be measured on a quarterly basis.

In order to monitor groundwater filtration system performance, the date will be noted when one set of bag filters becomes plugged, and the flow is diverted to the other set.

ANNL/SEC3

TABLE 9 COLUMBIA MILLS – TEST PIT 3 AREA VAPOR EXTRACTION SYSTEM MONITORING SCHEDULE

PARAMETER/LOCAT	ON	FREQUENCY
<u>Air Flow Rate*</u> Nine Individual Combined Influ	Vacuum Well Lines at entrance to trailer ent Line to Primary Vapor Carbon Adsorber	2/month 2/month
Vacuum/Pressure* Nine Individual Manifolded Line Before and afte	Vacuum Well Lines at entrance to trailer near entrance to Demister r Filter in Vapor Extraction Vacuum Pump Unit	2/month 2/month 2/month
Line exiting Var Lines entering C	or Extraction Vacuum Pump Unit Carbon Adsorber Units	2/month 2/month
Water Level Nine Vacuum V Demister Efflue	Vells (ground water) nt Holding Tank (water removed from air stream)	2/month 2/month
Miscellaneous* Status of Manua LEL MonitorN Temperature-I	al Air Dilution Valve (open/closed) Ianifolded Line near entrance to Demister ** ine exiting Vapor Extraction Vacuum Pump Unit	2/month 2/month 2/month

P:\PROJ\1069079\TABLES\VEMONSCH.WK1

NOTES: * These parameters should be recorded when air monitoring/sampling is conducted (at the middle and end of each month).

** The LEL Monitor continually monitors the gross contaminant levels in the manifolded vacuum well line and regulates an air dilution valve. This ensures explosive conditions will not exist in the line. The LEL Monitor reading will also be obtained during inspection of the system as noted above.

TABLE 10 GROUND WATER EXTRACTION SYSTEM MONITORING SCHEDULE

PARAMETER/LOCATION		FREQUENCY
Flow		
Individual Recovery Well Flow Rat	les	2/month
Individual Recovery Well Totalizer	Readings	2/month
Flow Rate through each Carbon C	anister Train	2/month
Carbon Canister Train Totalizer R	eadings	2/month
Total Flow Rate exiting Treatment	System **	2/month
Total Flow exiting Treatment Syste	em – Totalizer Reading **	2/month
Water Level		
Five Recovery Wells		2/month
Monitoring Wells/Piezometers		Quarterly+

Notes:

- * These parameters should be recorded at the beginning and middle of each month.
- ** The flow rate of the treatment system effluent stream and the total gallons exiting the system are continually recorded by an inline recorder. Readings will also be visually obtained as noted above.
- + Monitoring well and piezometer water levels should be obtained during March, June, September, and December of each year.

P:\PROJ\1069079\TABLES\GWSCH.WK1

3.2.2 Sampling/Analytical Testing

Based on analytical results of sampling last year, MPI has revised the sampling program, and, as approved by the NYSDEC (March 28, 1994 letter), plans to conduct sampling as outlined in Table 11. Sample port locations are shown in Figure 8.

a. Vapor Extraction System

Samples of the extracted vapor will be routinely obtained at several system locations during operation to determine when carbon within the primary treatment vessel has become exhausted, to verify that the effluent air from the carbon meets NYSDEC air discharge criteria and to aid in determining the amount of VOCs removed from the Test Pit 3 Area soils. Analytical results will also be used to predict carbon breakthrough. Monitoring with an OVA meter will take place two times per month, and samples of the primary carbon influent and effluent will be obtained for USEPA 8240 analysis after each month of operation. This will occur monthly if the system continually operates, with no shut downs.

Table 12 lists the revised air discharge criteria established by the NYSDEC for the vapor extraction system.

b. Groundwater Extraction System

Samples of the withdrawn groundwater will be routinely obtained at several locations during operation to monitor system performance, determine when carbon within the canisters has become exhausted and verify the discharge limits established by the NYSDEC are met.

Table 13 lists the groundwater effluent discharge limitations required at this facility as established by the NYSDEC. These levels have been set for the treatment of groundwater piped from both the Test Pit 3 Area and UST Area 1. Construction of the UST Area 1 pumping system and its connection to the treatment trailer is planned to be completed by May 1994.

TABLE 11 COLUMBIA MILLS – TEST PIT 3 AREA IRM VAPOR EXTRACTION/GROUND WATER EXTRACTION OPERATIONS SAMPLING SCHEDULE

SAMPLE PORT ID/LOCATION	NO. OF SAMPLES	FREQUENCY	ANALYSES
Vapor Extraction System			
1 Primary carbon unit influent	1	monthly	USEPA 8240
		2/month (middle & end)	Total hydrocarbons w/OVA meter
2 Primary carbon unit effluent	1	monthly	USEPA 8240
		2/month (middle & end)	Total hydrocarbons w/OVA meter
3 Secondary carbon unit effluent (system discharge)	1	2/month (middle & end)	Total hydrocarbons w/OVA meter
4 Individual well streams (VW1–VW9) – untreated	9	to be determined	USEPA 8240
· · ·			Total hydrocarbons w/OVA meter
Ground Water Withdrawal System			
5 Combined stream before metals treatment	1	monthly	USEPA 8240
6 Influent to carbon (bag filter effluent)	1	monthly	USEPA 8240
7 Carbon canister #2 effluent (Tap B)	1	monthly	USEPA 8240, TOC
8 Carbon system effluent	1	monthly	USEPA 8240, Inorganics, TOC
-	1	2/month	Xylenes
9 Individual well streams (RW1–RW5) – untreated	5	2/year**	USEPA 8240, 3 select metals*

NOTES:

USEPA 8240 – VOC analysis

Inorganics = Aluminum, Antimony, Arsenic, Barium, Cadmium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Zinc, Cyanide TOC-Total Organic Carbon

* = 3 select metals = Iron, Magnesium and Manganese

** = Individual well streams tentatively scheduled to be sampled during March and September of each year

P:\PROJ\1069079\TABLES\SAMPSC1.WK1

TABLE 12

COLUMBIA MILLS SITE – TEST PIT 3 AREA IRM AIR DISCHARGE CRITERIA FOR VAPOR EXTRACTION SYSTEM (PRIMARY CARBON EFFLUENT)

RATING		PARAMETER	MAXIMUM ALLOWABLE DISCHARGE LIMIT (LB/HR)
Α	99%	Benzene	0.02
B	90%	Xylene	0.25
		Methyl ethyl ketone	0.25
		Methyl isobutyl ketone	0.25
		Ethylbenzene	0.25
		Trichloroethylene	0.21
		1,1,2,2-Tetrachloroethane	0.01
		Methylene chloride	0.25
		1,1,2-Trichloroethane	0.03
С	70%	Toluene	0.25
		1,1-Dichloroethene	0.25
		Acetone	0.25
	70%*	Total Hydrocarbons	NA

Notes: * Indicates normalized to account for lighter untreatable hydrocarbons

NA Not Applicable

P:\PROJ\1069079\TABLES\ADCVES3.WK1

TABLE 13COLUMBIA MILLS – TEST PIT 3 AREA AND UST AREA 1 IRM
GROUND WATER EFFLUENT DISCHARGE LIMITS

PARAMETER		LIMITS	
		CONCENTRATION (mg/l)	LOADING (Ib/day)
VOLATILES			
Xylenes, total		0.01	0.0029
Benzene		0.01	0.0029
1,2-Dichloroethane		0.02	0.0058
1,1,1-Trichloroethane		0.01	0.0029
1,2-(trans)-Dichloroet	hene	0.01	0.0029
1,2-(cis)-Dichloroethe	ne	0.01	0.0029
Vinyl Chloride		0.01	0.0029
Methyl ethyl ketone		0.01	0.0029
Methyl isobutyl keton	8	0.01	0.0029
Toluene		0.01	0.0029
Ethylbenzene		0.01	0.0029
Trichloroethylene		0.01	0.0029
Acetone		0.01	0.0029
INORGANICS	1		
Aluminum		4.0	1.15
Antimony		0.15	0.043
Arsenic		0.05	0.014
Barium		2.5	0.72
Cadmium		0.02	0.0058
Chromium		0.1	0.029
Copper		0.25	0.072
Iron		4.0	1.15
Lead		0.1	0.029
Magnesium		25	7.2
Manganese		6.0	1.7
Zinc		2.5	0.72
Cyanide		0.1	0.029
TOTAL ORGANIC CAR	BON	50	_
CHLORINE, TOTAL RESIDUAL		0.5	_

P:VPROJ1069079\TABLES\CMGWLIMS.WK1

NOTE:

Loading (lb/day) calculated utilizing a 24 gpm flow rate.

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 2,24/93

93

TIME: 10:00 Am

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	0	6
VW2		
VW3		
VW4		
VW5		
VW6		
VW7		
VW8		
₩9	V	\checkmark

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	3.8			2	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	2.6				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	3.4				
Line Exiting Vacuum Pump Unit		0	240		< 130
Line Entering Primary Carbon A or B (circle one)		2			¥
Line Entering Secondary Carbon Argr(B)(circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _____ Status of Manual Air Dilution Valve: _____ open ____

direct (c

(circle one)

J reads to be zeroed

11

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

ገለጣም •	z h /93	
Individuals On	Site:	
individuits on		
Items to check	:	
Vapor Ext	raction System	
1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW2 Adjustment 🗆 No Adjustment Necessary 🖡	
	<u>VW3 Adjustment 🗆 No Adjustment Necessary 🖗</u>	
	VW4 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW5 Adjustment D No Adjustment Necessary 9	
	<u>VW6 Adjustment D No Adjustment Necessary D</u>	
	VW7 Adjustment No Adjustment Necessary	
	VW8 Adjustment No Adjustment Necessary	
2	Vwy Adjustment U No Adjustment Necessary Q	
2.	Adjust metal sustan Inflaw Date at Massure Duan Unit	
з.	Adjust Total System Inflow Rate at Vacuum Pump Unit Adjustment D No Adjustment Necessary	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum B <mark>e</mark> fore Filter <u>/ 8</u> in. Hg	
	Vacuum After Filter 3in. Hg	
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
Ground Wa	ter Extraction System	
1.	Check Submersible Well Pumps	
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump 🗳	
6.	Check Primary and Secondary Filters: Set B	
	Pressure at Primary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet <u>9</u>	psi
	Pressure at Secondary Filter Outlet N/A	psi
_	Overall Differential Pressure 10	psi
7.	Check Carbon Canisters	
	Pressure - Train 17.5psi	
	Pressure - Train 2 <u>7.5</u> psi	
	Pressure - Train 3 <u></u> psi 7	
	less flow	
	they this	
	Toin	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 3/1/93

5

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	0	0
VW2		
VW3		
VW4		
VW5		
VW6		
VW7		
VW8		
VW9	V	V

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	3.4			1	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	1.5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	2.8				
Line Exiting Vacuum Pump Unit		0	240		< 130
Line Entering Primary Carbon A of B (circle one)		2			
Line Entering Secondary Carbon Afor B circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = . Status of Manual Air Dilution Valve: open -clused (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DWK, Dave (BSW

DATE: 313 93 Individuals On Site:

Items to check:

Vapor Extraction System

			No fl	01-1	
1.	Adjust Indivi	lual Air Line Inf	flows		
	VWI Adj	istment 🗆	No Adjustment	Necessary 🏻	
	VW2 Adj	ustment 🗆	No Adjustment	Necessary 🖗	
	VW3 Adj	istment D	No Adjustment	Necessary 🔍	
	VW4 Adj	istment 🗆	No Adjustment	Necessary	
	VW5 Adj	ustment 🗆	No Adjustment	Necessary 🖣	
	VW6 Adji	ustment D	No Adjustment	Necessary D	
	VW7 Adj	ustment 🗆	No Adjustment	Necessary 👎	
	VW8 Adj	istment 🗆	No Adjustment	Necessary 🖗	
	VW9 Adj	ustment 🗆	No Adjustment	Necessary 🖡	
2.	Verify Operat	ion of Vacuum Pur	np Unit 🛛		
3.	Adjust Total	System Inflow Rat	te at Vacuum Pu	ump Unit	
	Adj	ustment 🗆	No Adjustment	Necessary 🔍	
4.	Check Vacuum	Pump Unit Filter:	$\sim \epsilon$		
	Vacuum B	efore Filter <u> </u>	2.2	in. H g	
\sim	Vacuum A	<mark>f</mark> ter Filter		in. H g	
5.	Verify Operat	ion of Demister 1	Liquid Drain Pu	amp 🗆	
6 .	Check Carbon	Adsorbers		Ċ	
Ground Wat	ter Extraction	System			
1.	Check Submers	ible Well Pumps		4	
2.	Verify Operat	<mark>i</mark> on of Aeration 1	Tank Blower	4	
3.	Verify Operat	ion of Polymer a	nd Chemical Fee	ed Pumps 🌵	
4.	Check Polymer	<mark>/</mark> Chemical Supplie	25	φ	
5.	Verify Operat:	ion of Waste Wate	er Feed Pump 🔿	d)	
6.	Check Primary	and Secondary F:	ilters: Set 15		
	Pressure at Pr	<mark>r</mark> imary Filter Inl	let	1.5	psi
	Pressure at Pr	<mark>r</mark> imary Filter Out	<pre>clet/Secondary</pre>	Inlet	<u>psi</u>
	Pressure at S	condary Filter (Autlet		psi
	Overall Diffe	rential Pressure	8	3	psi
7.	Check Carbon	Canisters	F1		
	Pressure	- Train 1	5.6	psi	
	Pressure	- Train 2	5.6	psi	
	Pressure	- Train 3	<u> 4.2</u>	psi	

(2)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: _ 3/3/93

TIME: _____ 12115 Pm

DWK

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VWI	\bigcirc	\bigcirc
VW2	1	
VW3		
VW4		
VW5		
VW6		
VW7		
VW8		
VW9	V	

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	4.2			-	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	2.5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	4				
Line Exiting Vacuum Pump Unit		0	240		6 130
Line Entering Primary Carbon A 657 (circle one)		2			
Line Entering Secondary Carbon Aler B (circle one)		0.5			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DWK

DATE:	3	18/93
Individuals	On	Site:

Items to check:

Vapor Extraction System

		alo t land
1.	Adjust Individual Air Line	Inflows
	VW1 Adj <mark>u</mark> stment 🗆	No Adjustment Necessary 👎
	VW2 Adjustment 🗆	No Adjustment Necessary
	VW3 Adjustment D	No Adjustment Necessary
	VW4 Adjustment 🗆	No Adjustment Necessary
	VW5 Adjustment 🗆	No Adjustment Necessary 👎
	VW6 Adjustment 🗆	No Adjustment Necessary 4
	VW7 Adjustment 🗆	No Adjustment Necessary 🗭
	VW8 Adjustment 🗆	No Adjustment Necessary 🏚
	VW9 Adjustment 🗆	No Adjustment Necessary 🕏
2.	Verify Operation of Vacuum	Pump Unit
3.	Adjust Total System Inflow	Rate at Vacuum Pump Unit
	Adju <mark>stment</mark> 🗆	No Adjustment Necessary 🔍
4.	Check Vacuum Pump Unit Filt	ter:
	Vacuum B <mark>e</mark> fore Filter <u>.</u>	in. Hg
	Vacuum A <mark>f</mark> ter Filter	in. Hg
5.	Verify Operation of Demiste	er Liquid Drain Pump 🛛 🖉
6.	Check Carbon Adsorbers	
Ground Wa	ter Extraction System	
		-A.
1.	Check Submersible Well Pum	ps p
2.	Verify Operation of Aeratic	on Tank Blower
3.	Verify Operation of Polymer	r and Chemical Feed Pumps 🏼 🖣
4.	Check Polymer/Chemical Sup	plies 🕴
5.	Verify Operation of Waste N	Water Feed Pump d

6.	Check Primary and Secondary Filters: 213		
	Pressure at Primary Filter Inlet	_	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	10.5	psi
	Pressure at Secondary Filter Outlet		psi
	Overall Differential Pressure		psi
7.	Check Carbon Canisters		-

neck Carbon Canister	S	/	
Pressure - Traim	1 1	6	psi
Pressure 🗕 Traim	ר 1	6	psi
Pressure <mark>-</mark> Train	n 3	5	psi

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: ____ 3 18 13

TIME: 1:00 Pm

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	0	()
VW2		
VW3		
VW4		
VW5		
VW6		
VW7		
VW8		
VW9	V	V

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	1.5			-	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	0				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	1.5				
Line Exiting Vacuum Pump Unit		1.5	240		< 130
Line Entering Primary Carbon A dt/18 (circle one)		2			
Line Entering Secondary Carbon A for B (circle one)		0.7			

đ

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _ Status of Manual Air Dilution Valve: (circle one) open ____CIUSEC

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

INDIVIDUAL VACUUM WELL LINES - start-op am =) 12:30 Pm

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	6	\bigcirc
VW2	7	Ġ
VW3	6.5	1,5
VW4	5.2	2.
VW5	\bigcirc	1.5
VW6	>0	1.5
VW7	6.5	/
VW8	6.5	0
VW9	4.5	0

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pr ess ure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	4.7			41	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	2,5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	3.2				
Line Exiting Vacuum Pump Unit		\bigcirc	235		130
Line Entering Primary Carbon A of B (circle one)		2			
Line Entering Secondary Carbon & (circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _ Status of Manual Air Dilution Valve: open elosed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

Garret Mol

Roe -

Kelle ..

1pstate

UST Are I

92 DATE: Individuals On Site:

Items to check:

VW= that down at 2 pm Vapor Extraction System Adjust Individual Air Line Inflows 7 1. VW1 Adjustment 🌵 No Adjustment Necessary D No Adjustment Necessary D VW2 Adjustment 🌵 VW3 Adjustment 🖗 No Adjustment Necessary D No Adjustment Necessary D VW4 Adjustment Ø VW5 No Adjustment Necessary 🗆 Adjustment 🌵 VW6 Adjustment Ø No Adjustment Necessary D Adjustment P Adjustment P No Adjustment Necessary D VW7 **WW**8 No Adjustment Necessary D VW9 Adjustment 👜 No Adjustment Necessary D 2. Verify Operation of Vacuum Pump Unit Adjust Total System Inflow Rate at Vacuum Pump Unit 3. Adjustment 🅱 No Adjustment Necessary D 4. Check Vacuum Pump Unit Filter: Vacuum Before Filter ____ in. Hq \bigcirc in. Hq Vacuum After Filter 5% Verify Operation of Demister Liquid Drain Pump 6. Check Carbon Adsorbers X Ground Water Extraction System Check Submersible Well Pumps 1. 2. Verify Operation of Aeration Tank Blower 3. Verify Operation of Polymer and Chemical Feed Pumps 4. Check Polymer/Chemical Supplies Verify Operation of Waste Water Feed Pump 5. Check Primary and Secondary Filters: - A 6. Pressure at Primary Filter Inlet psi Pressure at Primary Filter Outlet/Secondary Inlet 8.5 psi -Pressure at Secondary Filter Outlet _____ psi Overall Differential Pressure psi 7. Check Carbon Canisters Pressure - Train 1 psi Pressure - Train 2 psi Pressure - Train 3 psi

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DATE: Was S. , Chun Individuals

Items to check:

Vapor Extraction System

1. Adjust Individual Air Line Inflows Sha

1	VW1	Adj	ustment		No	Adjustment	Necess	ary 🗆	
/	VW2	Adj	ustment		No	Adjustment	Necess	ary 🗆	
5	<u>VW3</u>	Adi	ustment		No	Adjustment	Necess	ary D	
	VW4	Adj	ustment		No	Adjustment	Necess	ary 🗆	
4	VW5	Adj	ustment		No	Adjustment	Necess	ary 🗆	
. 5	VW6	Adi	ustment		No	Adjustment	Necess	ary 🗆	
)	VW7	Adj	ustment		No	Adjustment	Necess	ary 🗆	
	VW8	Adj	ustment		No	Adjustment	Necess	ary 🗆	
	VW9	Adj	ustment		No	Adjustment	Necess	ary 🗆	
2.	Verify	Operat	ion of '	Vacuum	Pump (Jnit 🖤		-	
3.	Adjust	Total	System	Inflow	Rate a	at Vacuum Pu	ump Uni	t	
	2	Adj	ustment		No	Adjustment	Necess	ary 🔊	
4.	Check V	acuum	Pump Un	it Filt	ter:	-			
	Va	cuum B	efore F	ilter		\mathcal{O}		in. Hg	
	Va	cuum A	fter Fi	lter		0		in, Hg	
5.	Verify	Operat	ion of 1	Demiste	er Liqu	id Drain Pu	qmr		
6.	Check	arbon .	Adsorbe	rs	•		•	B	

Ground Water Extraction System

1. 2. 3. 4.	Check Submersible Well Pumps Verify Operation of Aeration Tank Blower Verify Operation of Polymer and Chemical Feed Pumps Check Polymer/Chemical Supplies		
5.	Verify Operation of Waste Water Feed Pump	Ø	
6.	Check Primary and Secondary Filters:		
	Pressure at Primary Filter Inlet //		psi
	Pressure at Primary Filter Outlet/Secondary Inlet	2	psi
	Pressure at Secondary Filter_Outlet		psi
	Overall Differential Pressure 3		psi
7.	Check Carbon Canisters		
	Pressure – Train 1 <u>5psi</u>		
	Pressure - Train 2 psi		
	Pressure – Train 3 <u> </u>		

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

(circle one)

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)		
VW1				
VW2	7777			
VW3	X/l. t			
VW4	7/10/			
VW5				
VW6	1 Aug			
VW7				
VW8				
V ₩ 9		1×		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	C			2	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	\mathcal{O}				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		4	250		<130
Line Entering Primary Carbon A or B (circle one)		23			
Line Entering Secondary Carbon A or(B (circle one)		. 8			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _______ Status of Manual Air Dilution Valve: open ______
OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 3/26/93 TIME: 2.30 PM

INIT

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VWI	t	
VW2	1 / / T	
VW3	T S NO	
VW4		
VW5		
VW6		\wedge
VW7		
VW8		
VW9		V

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	2.5			3	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	O				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	1.6				
Line Exiting Vacuum Pump Unit		1.5	245		4 130
Line Entering Primary Carbon A or Bicircheme)		2.1			
Line Entering Secondary Carbon Apr B (circle one)		0.7			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _____ Status of Manual Air Dilution Valve: _____open__

NA - (circle one) closed

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DWK, GWM

3/29/93

DATE: Individuals On Site:

Items to check:

1.	Adjust Individual Air Line Inflows	22
	VW1 Adjustment 🗆 No Adjustment Necess	ary 🛱
	VW2 Adjustment D No Adjustment Necess	ary 🛛
	VW3 Adjustment 🗆 No Adjustment Necess	ary q
	VW4 Adjustment 🗆 No Adjustment Necess	ary 4
	VW5 Adjustment 🗆 No Adjustment Necess	ary 🗭
	VW6 Adjustment D No Adjustment Necess	ary d
	VW7 Adjustment 🗆 No Adjustment Necess	ary 🛛
	VW8 Adjustment D No Adjustment Necess	ary 🗘
	VW9 Adjustment 🗆 No Adjustment Necess	ary 🗭
2.	Verify Operation of Vacuum Pump Unit	
3.	Adjust Total System Inflow Rate at Vacuum Pump Uni	t _
	Adjustment 🗆 🛛 No Adjustment Necess	ary Ø
4.	Check Vacuum Pump Unit Filter:	·
	Vacuum Before Filter	in. Hg
	Vacuum A <mark>f</mark> ter Filter <u>()</u>	in. Hg
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
	· · · · · · · · · · · · · · · · · · ·	
Ground Wat	ter Extraction System	
1.	Check Submersible Well Pumps	Ø
2.	Verify Operation of Aeration Tank Blower	_8
3.	Verify Operation of Polymer and Chemical Feed Pump	s ø
4.	Check Polymer/Chemical Supplies	_B_
5.	Verify Operati <mark>o</mark> n of Waste Water Feed Pump	_8
6.	Check Primary and Secondary Filters:	
	Pressure at Primary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	psi
	Pressure at Se <mark>c</mark> ondary Filter-Outlet	psi
	Overall Differ <mark>e</mark> ntial Pressure	psi
7.	Check Carbon C <mark>a</mark> nisters	
	Pressure – Train 1 <u>57</u> ps	i - 1 - 1 - 1
	Pressure – Train 2 <u> 3.9 </u> ps	i ., ', , , ,
	Pressure - Train 3 <u>5.6</u> ps	i to local
		10 1

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

3/29/23

TIME: 12: 45 PM

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VWI		
VW2		
VW3	Shu'	
VW4		
VW5	Dun	
VW6		
VW7		
VW8		Y Y
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	\bigcirc			4	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	0				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	\bigcirc				
Line Exiting Vacuum Pump Unit		4.7	245		× 130
Line Entering Primary Carbon A or-Br(circle one)		2.1			
Line Entering Secondary Carbon A of B (circle one)		0.7			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

Wed, 6WM, KR

DATE: 4/2 Individuals On Site:

Items to check:

1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW2 Adjustment D No Adjustment Necessary 🖗	
	VW3 Adjustment D No Adjustment Necessary 🖣	
	VW4 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW5 Adjustment 🗆 No Adjustment Necessary 🗖	
	VW6 Adjustment D No Adjustment Necessary D	
	VW7 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW8 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW9 Adjustment 🗆 No Adjustment Necessary 🗹	
2.	Verify Operation of Vacuum Pump Unit 🛛 🗆	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗆 🛛 No Adjustment Necessary 🗆	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filter //in. Hg	
	Vacuum A <mark>f</mark> ter Filter 🕖in. Hg	
5.	Verify Operation of Demister Liquid Drain Pump 🛛 🗆	
6.	Check Carbon Adsorbers	
Ground Wat	cer Extraction System	
1.	Check Submersible Well Pumps 🗗	
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters:	
	Pressure at Primary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure	psi
7.	Check Carbon Canisters	
	Pressure – Train 1 <u> </u>	
	Pressure – Train 2 <u>3</u> nsi	
	Pressure – Train 3 <u>3</u> psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

\$3 4 DATE:

TIME: <u>3 pa</u>

LAS **INITIALS**

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
vw 1		
vw2 7 ~	C	
VW3	JAU-	
VW4		
VW5	~1	
VW6		
VW7		
VW8		
VW9		7

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	0			4	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	0				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		4.2	247		<13.
Line Entering Primary Carbon A or B(circle one)					
Line Entering Secondary Carbon A or B (circle one)					

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _______ Status of Manual Air Dilution Valve: open closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DATE: WW. GWM Individuals On/ te:

Items to check:

1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW2 Adjustment 🗆 No Adjustment Necessary 🗭	
	<u>VW3 Adjustment D No Adjustment Necessary E</u>	
	VW4 Adjustment 🗆 No Adjustment Necessary 🖡	
	VW5 🛛 Adjustment 🗆 🛛 No Adjustment Necessary 🛛	
	<u>VW6 Adjustment 🗆 No Adjustment Necessary 🖗</u>	
	VW7 Adjustment D No Adjustment Necessary 🖗	
	VW8 Adjustment 🗆 No Adjustment Necessary 🗅	
	VW9 Adjustment 🗆 No Adjustment Necessary 🗆	
2.	Verify Operation of Vacuum Pump Unit	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗆 No Adjustment Necessary 🗗	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filter 0in. Hg	
	Vacuum After Filter 📃 🕗 in. Hg	
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
Ground Wa	ter Extraction System	
	-	
1.	Check Submersible Well Pumps	
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump b	
6.	Check Primary and Secondary Filters:	
	Pressure at Primary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure	psi
7.	Check Carbon Canisters	
	Pressure - Train 1	
	Pressure - Train 2 3 psi	
	Pressure - Train 3 3 psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: _

TIME: ____/ _____

Whs INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		
VW2	5	
VW3		
VW4		
VW5		
VW6	Dom	1
VW7		9
VW8		
VW9		7

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister				4	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	20				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	O				
Line Exiting Vacuum Pump Unit		2	250		
Line Entering Primary Carbon A or B (circle one)		Z			
Line Entering Secondary Carbon A or B (circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = ______ Status of Manual Air Dilution Valve: open closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DATE: Wes, D. CAMP Individuals On te:

Items to check:

1.	Adjust Indivi <mark>d</mark> ual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🛱	
	VW2 Adjustment 🗆 No Adjustment Necessary 🗭	
	<u>VW3 Adjustment 🗆 No Adjustment Necessary 🖗</u>	
	VW4 Adj <mark>u</mark> stment 🗆 No Adjustment Necessary 👎	
	VW5 Adj <mark>u</mark> stment 🗆 No Adjustment Necessary 🖣	
	<u>VW6 Adjustment 🗆 No Adjustment Necessary 🖣</u>	
	VW7 Adjustment 🗆 No Adjustment Necessary 🗭	
	VW8 Adj <mark>u</mark> stment 🗆 No Adjustment Necessary 🖗	
	VW9 Adj <mark>u</mark> stment 🗆 No Adjustment Necessary 🗅	
2.	Verify Operat <mark>i</mark> on of Vacuum Pump Unit 🛛 🖓	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adj <mark>u</mark> stment 🗆 No Adjustment Necessary 🖻	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum B <mark>e</mark> fore Filter	
	Vacuum A <mark>f</mark> ter Filter in. Hg	
5.	Verify Operat <mark>i</mark> on of Demister Liquid Drain Pump 🛛 🖉	
6.	Check Carbon Adsorbers	
Ground	Water Extraction System	
1	Check Submergible Hell Bumps	
1.	Varify Operation of Apration Tank Blower	
2.	Verify Operation of Polymer and Chemical Food Dumps -	
J. 4	Check Polymer Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump	
5. 6.	Check Primary and Secondary Filters:	
0.	Pressure at Primary Filter Inlet	nsi
	Pressure at Primary Filter Outlet/Secondary Inlet 20	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure	nsi
7.	Check Carbon Canisters	
. •	Pressure - Train 1 25 nsi	
	Pressure - Train 2 7.5 psi	
	Pressure - Train 3 75 psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: _

TIME: __________

WLU INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW 1		
VW2		
VW3	1 JA	
VW4	107	
VWS		
VW6		h
VW7	U	White
VW8		
VW9		7

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister				4	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	2				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		٢	270		
Line Entering Primary Carbon A dr B (circle one)		2			
Line Entering Secondary Carbon A or/B (circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _____ Status of Manual Air Dilution Valve: _____ open

(circle one) closed

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

JATE: WIS, CWM Individuals On

items to check:

1.	Adjust Individ <mark>u</mark> al Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🛱	
	VW2 Adjustment 🗆 No Adjustment Necessary 🛱	
	<u>VW3 Adjustment D No Adjustment Necessary P</u>	
	VW4 Adjustment 🗆 No Adjustment Necessary 🛱	
	VW5 Adjustment D No Adjustment Necessary D	
	VW6 Adjustment D No Adjustment Necessary D	
	VW7 Adjustment 🗆 No Adjustment Necessary 🗗	
	VW8 🛛 Adjustment 🗆 👘 No Adjustment Necessary 🋱	
	VW9 Adjustment D No Adjustment Necessary D	
2.	Verify Operation of Vacuum Pump Unit	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗆 🛛 No Adjustment Necessary 🗹	
4.	Check Vacuum P <mark>u</mark> mp Unit Filter:	
	Vacuum Be <mark>f</mark> ore Filter0in. Hg	
	Vacuum Af <mark>t</mark> er Filter 🖉 in Hg	
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
Ground Wat	ter Extraction <mark>S</mark> ystem	
1.	Check Submersible Well Pumps 🛛 🖉	
2.	Verify Operation of Aeration Tank Blower	e
3.	Verify Operation of Polymer and Chemical Feed Pumps 🛛 🔎 🦳	
4.	Check Polymer/Chemical Supplies 🛛 🖉	
5.	Verify Operation of Waste Water Feed Pump 🖉	
6.	Check Primary and Secondary Filters: 7	
	Pressure at Primary Filter Inlet	<u>psi</u>
	Pressure at Primary Filter Outlet/Secondary Inlet <u>6</u>	psi
	Pressure at Se <mark>c</mark> ondary Filter Outlet	psi
	Overall Differential Pressure	psi
7.	Check Carbon Canisters	
	Pressure – Train 1 ʃpsi	
	Pressure - Train 2 3psi	
	Pressure – Train 3 <u> </u>	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

TIME: __________

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		
VW2		
VW3	H.L-	
VW4		
VW5	\sim	D .
VW6		h al
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister				5	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	2				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		2	250		
Line Entering Primary Carbon A or B (circle one)		2			
Line Entering Secondary Carbon A or B (circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _____ Status of Manual Air Dilution Valve: open

(circle one) closed

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DWK

DATE:	5/9/93		_
Individuals	On	Site:	 _

Items to check:

1.	Adjust Individual Air Line Inflows	1
	VW1 Adjustment 🗆 No Adjustment Necessary 🕻	7
	VW2 Adjustment 🗆 No Adjustment Necessary 🕻	1
	VW3 Adjustment D No Adjustment Necessary D	1
	VW4 Adjustment 🗆 No Adjustment Necessary 🕻	1 1
	VW5 Adjustment D No Adjustment Necessary C	₽
	VW6 Adjustment D No Adjustment Necessary C	1
	VW7 Adjustment 🗆 No Adjustment Necessary 🛛	
	VW8 Adjustment 🗆 No Adjustment Necessary 🕻	9
	VW9 Adjustment 🗆 No Adjustment Necessary 🤅	}
2.	Verify Operation of Vacuum Pump Unit 🛛 🗠	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	/
	Adjustment 🗆 🛛 No Adjustment Necessary 🕻	ν
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filter in. I	lg
	Vacuum After Filterin. I	lg
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
• • • •		
Ground Wa	ter Extraction System	
		Ä
1.	Check Submersible well Pumps	4
2.	Verify Operation of Aeration Tank Blower	Ĩ
3.	Verify Operation of Polymer and Chemical Feed Pumps	T T
4.	Check Polymer/Chemical Supplies	¥
5.	Verify Operation of Waste Water Feed Pump	Ψ
0.	Check Primary and Secondary Filters: Man	
	Pressure at Primary Filter Infet//	
	Pressure at Primary Filter Outlet/Secondary Inlet	o psi
	Pressure at Secondary Filter Outlet	psi
7	Overall Differential Pressure()	ps1
/.	Check Carbon Canisters	
	Pressure - Train 1 Or psi	
	Pressure - Train 2 psi	
	pressure - Train 3 <u>1.7 p</u> Si	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: ____

5/9/93

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in. Hg)
VW1		
VW2		
VW3		
VW4	SLut	
VW5		
VW6	ショフレック	
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pr ess ure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	8				
Between Vacuum Pump Unit Filter and Demister (Before Filter)	8				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	8				
Line Exiting Vacuum Pump Unit		0	230		130
Line Entering Primary Carbon (A or B (circle one)		2			
Line Entering Secondary Carbon Alor B (circle one)		0.5			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DLIK

14/93 51 DATE: Individuals On Site:

Items to check:

1.	Adjust Individ	ual Air Line In	flows	1	
	VW1 Adju	stment 🗆	No Adjustment	Necessary 9	
	VW2 Adju	stment 🗆	No Adjustment	Necessary 🗖	
	VW3 Adju	stment D	No Adjustment	Necessary 🗆	
	VW4 Adju	stment 🗆	No Adjustment	Necessary 🛛	
	VW5 Adju	stment 🗆	No Adjustment	Necessary 🖣	
	VW6 Adju	stment D	No Adjustment	Necessary 4	
	VW7 Adju	stment 🗆	No Adjustment	Necessary 🕈	
	VW8 Adju	stment 🗆	No Adjustment	Necessary 🗭	
	VW9 Adju	stment 🗆	No Adjustment	Necessary 🛱	
2.	Verify Operati	on of Vacuum Pu	mp Unit 🛛 🗠	1	
3.	Adjust Total S	ystem Inflow Ra	te at Vacuum Pu	1mp Unit	
	Adju	stment 🗆	No Adjustment	Necessary 🛛	
4.	Check Vacuum P	ump Unit Filter			
	Vacuum Be	fore Filter		in. Hg	
	Vacuum Af	ter Filter	5+5	in. Hg	
5.	Verify Operati	on of Demister	Liquid Drain Pu	amp 🖾	
6.	Check Carbon A	dsorbers		e	
Ground Wat	cer Extraction	System			
1.	Check Submersi	ble Well Pumps		a)	
2.	Verify Operati	on of Aeration	Tank Blower	цар на страните	2
3.	Verify Operati	on of Polymer a	nd Chemical Fee	ed Pumps 👎	
4.	Check Polymer/	Chemical Suppli	es	- dj	
5.	Verify Operati	on of Waste Wat	er Feed Pump	di	
6.	Check Primary	and Secondary F	ilters: (Set P)	21 222	
	Pressure at Pr	imary Filter In	let	26 220	_psi
	Pressure at Pr	imary Filter Ou	tlet/Secondary	Inlet <u>24->26</u>	_psi
	Pressure at Se	condary Filter	Outlet		psi
	Overall Differ	ential Pressure		1	_psi
7.	Check Carbon C	anisters			
	Pressure	- Train 1	4.4	psi	
	Pressure	- Train 2	5.5 00 6.5	psi	
	Pressure	- Train 3	1.11 -> ~	psi	
			h		
			from	d up inter inter	
) is no rate	
				, , , , , , , , , , , , , , , , , , ,	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: ____

5/14/93

TIME: 2:30 jm

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW 1		
VW2		
VW3		
VW4		
VW5		2 V
VW6		
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	6.4			6	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	5,5				
Line Exiting Vacuum Pump Unit		Ø	220		130
Line Entering Primary Carbon A or B (circle one)		1.2			
Line Entering Secondary Carbon Apr (B)(circle one)		0.5			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

5/20/93 DATE: Individuals On Site:

DWK /WLJ

Items to check:

1.	Adjust Indivi <mark>d</mark> ual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW2 Adjustment 🗆 No Adjustment Necessary 🗖	
	<u>VW3 Adjustment D No Adjustment Necessary D</u>	
	VW4 Adjustment 🗆 No Adjustment Necessary 🗆	
	VW5 Adjustment 🗆 No Adjustment Necessary 🗆	
	<u>VW6 Adjustment 🗆 No Adjustment Necessary 🗖</u>	
	VW7 Adjustment 🗆 No Adjustment Necessary 🗗	
	VW8 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW9 Adjustment 🗆 No Adjustment Necessary 🖗	
2.	Verify Operation of Vacuum Pump Unit 🗹	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗆 🛛 No Adjustment Necessary 🗹	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum B <mark>e</mark> fore Filter	
	Vacuum A <mark>f</mark> ter Filter	
5.	Verify Operation of Demister Liquid Drain Pump 🛛 🔍 🧹	
6.	Check Carbon Adsorbers	
Creating 11		
Ground w	ater Extraction System	
1.	Check Submersible Well Pumps 🛛 🖗	
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters: Set B)	
	Pressure at Primary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet 29	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure 3.8	psi
7.	Check Carbon Canisters	-
	Pressure - Train 1 6,5 psi	
	Pressure - Train 27psi	
	Pressure - Train 3 5.5 psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

5/20 92

TIME: _____ Am

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		<u>\</u>
VW2		
VW3		
VW4	NV /	
VW5	T JOW PT	
VW6		
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	1.8			6	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	\bigcirc				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		3.5	flowmate - icmored for		130
Line Entering Primary Carbon A or B (circle one)		1.8			
Line Entering Secondary Carbon (A/or B) (circle one)		0.5			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

hel

DATE: Individuals On/Site:

Items to check:

	1.	Adjust Individual Air Line Inflows	
		VW1 Adjustment 🗆 No Adjustment Necessary 🗹	
		VW2 Adjustment D No Adjustment Necessary D	
		VW3 Adjustment D No Adjustment Necessary D	
		VW4 Adjustment D No Adjustment Necessary 4	
		VW5 Adjustment D No Adjustment Necessary 4	
		VW6 Adjustment D No Adjustment Necessary Ф	
		VW7 Adjustment D No Adjustment Necessary 🖗	
		VW8 Adjustment 🗆 No Adjustment Necessary 🖗	
		VW9 Adjustment D No Adjustment Necessary D	
	2.	Verify Operation of Vacuum Pump Unit	
	3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
		Adjustment 🗆 No Adjustment Necessary 🖗	
	4.	Check Vacuum Pump Unit Filter:	
		Vacuum Before Filter /in. Hq	
		Vacuum After Filter 🕖 in Hg	
	5.	Verify Operation of Demister Liquid Drain Pump	
	6.	Check Carbon Adsorbers	
Groun	d Wat	er Extraction System	
	1.	Check Submersible Well Pumps	
	2.	Verify Operation of Aeration Tank Blower	
	3.	Verify Operation of Polymer and Chemical Feed Pumps 🛛 🗸	
	4.	Check Polymer/Chemical Supplies	
	5.	Verify Operation of Waste Water Feed Pump 🛛	
	6.	Check Primary and Secondary Filters:	
		Pressure at Primary Filter Inletpsi	
		Pressure at Primary Filter Outlet/Secondary Inlet psi	
		Pressure at Secondary Filter Outletpsi	
		Overall Differential Pressure	
	7.	Check Carbon Canisters	
		Pressure - Train 1psi	
		Pressure - Train 2psi	
		Pressure - Train 3psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: ________

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
vw1		
VW2	$\sum_{i=1}^{n}$	
VW3	2H11-	
VW4		
VW5		
VW6		
VW7		
VW8		<i>c</i>
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	1.8			7	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	\mathcal{I}				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	\bigcirc				
Line Exiting Vacuum Pump Unit		35			13.
Line Entering Primary Carbon A or B (circle one)		1.3			
Line Entering Secondary Carbon A or B (circle one)		6.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _____ Status of Manual Air Dilution Valve: open closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DATE:	6/1/93	
Individuals	On Site:	_

DWK, Jms

Items to check:

1.	Adjust Individual Air Line Inflows
	VW1 Adjustment 🗆 No Adjustment Necessary 🖣
	VW2 Adjustment 🗆 No Adjustment Necessary 🗖
	VW3 Adjustment D No Adjustment Necessary D
	VW4 Adjustment 🗆 No Adjustment Necessary 🖣
	VW5 🛛 Adjustment 🗆 🐘 No Adjustment Necessary 📭
	VW6 Adjustment D No Adjustment Necessary Q
	VW7 Adjustment 🗆 No Adjustment Necessary 🖗
	VW8 Adjustment 🗆 No Adjustment Necessary 🖗
	VW9 Adjustment 🗆 No Adjustment Necessary 🖗
2.	Verify Operation of Vacuum Pump Unit
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit
	Adjustment 🗆 No Adjustment Necessary 🗹
4.	Check Vacuum Pump Unit Filter:
	Vacuum Before Filter 3.5 in. Hg
	Vacuum After Filter 5 in. Hg
5.	Verify Operation of Demister Liquid Drain Pump
6.	Check Carbon Adsorbers
Ground Wa	ter Extraction System
1.	Check Submersible Well Pumps
2.	Verify Operation of Aeration Tank Blower
3.	Verify Operation of Polymer and Chemical Feed Pumps
4.	Check Polymer/Chemical Supplies
5.	Verify Operation of Waste Water Feed Pump
6.	Check Primary and Secondary Filters: Set A
	Pressure at Primary Filter Inlet
	Pressure at Primary Filter Outlet/Secondary Inlet 17.5 psi
	Pressure at Secondary Filter Outlet NIA psi
	Overall Differential Pressure
7.	Check Carbon Canisters
	Pressure - Train 1 6.8 psi
	Pressure - Train 2 6-7 psi
	Pressure - Train 3 7.2 psi

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: _____6/1/93

TIME: ______ /: 10 Pm

INIT

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		
VW2		
VW3		
VW4		
VW5	1 - Down	
VW6	/ /	
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	4			7	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	3.5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	5				
Line Exiting Vacuum Pump Unit		2	225		130
Line Entering Primary Carbon A 325 (circle one)		1.8			
Line Entering Secondary Carbon Afer B (circle one)		0.5			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _ Status of Manual Air Dilution Valve: (circle one) closed open

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

GARY W MULLEN

6/3/93

DATE: Individuals On Site:

Items to check:

1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW2 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW3 Adjustment D No Adjustment Necessary 🕈	
	VW4 Adjustment D No Adjustment Necessary Q	
	VW5 Adjustment 🗆 No Adjustment Necessary 🖣	
	VW6 Adjustment D No Adjustment Necessary D	
	VW7 Adjustment D No Adjustment Necessary D	
	VW8 Adjustment 🗆 No Adjustment Necessary 🛛	
	VW9 Adjustment 🗆 No Adjustment Necessary 🕩	
2.	Verify Operation of Vacuum Pump Unit	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗆 No Adjustment Necessary 🗗	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filter6.3in. Hg	
	Vacuum After Filter 7 / in. Hg	
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
Ground Wa	ter Extraction System	
1.	Check Submersible Well Pumps 🛛 🖉	
2.	Verify Operation of Aeration Tank Blower 🖉	
3.	Verify Operation of Polymer and Chemical Feed Pumps 🛛 者 👘	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters:	
	Pressure at Pr <mark>i</mark> mary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Iplet	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure 🕐	psi
7.	Check Carbon Canisters	
	Pressure – Train 1 ðpsi	
	Pressure - Train 2 🥼 psi	
	Pressure - Train 3 <u> </u>	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

TIME: 2:26

Courr INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		
VW2		
VW3		
VW4		
vws	fl gut	
VW6		
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	6				
Between Vacuum Pump Unit Filter and Demister (Before Filter)	6				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	6.5				
Line Exiting Vacuum Pump Unit		1.8	220		130
Line Entering Primary Carbon A or A (circle one)		.#1.5			
Line Entering Secondary Carbon (X or B (circle one)		0,6			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _____ Status of Manual Air Dilution Valve: (open)

closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

932 TIME: _

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	12.6	2,5
VW2	15,6	0,5
VW3	D_15	2,7
VW4	10	2,6
VW5	DEF	
VW6	DFF	-
VW7	OFF	
VW8)FF	-
VW9	?	1.25

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pr ess ure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	8.5			23	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	3,0				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	7,0				
Line Exiting Vacuum Pump Unit		0	220		14/0
Line Entering Primary Carbon A or B (circle one)		1,6			
Line Entering Secondary Carbon A or B circle one)		0			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

Tim

Upitate

11<

Pa.

92 DATE: Individuals On Site:

Items to check:

1.	Adjust Individual Air Line Inflows
	VW1 Adjustment 🗆 No Adjustment Necessary 🖣
	VW2 Adjustment D No Adjustment Necessary 🖣
	VW3 Adjustment D No Adjustment Necessary d
	VW4 Adjustment 🗆 No Adjustment Necessary 🗭
	VW5 Adjustment 🗆 No Adjustment Necessary 📮
	<u>VW6 Adjustment 🗆 No Adjustment Necessary 🗅</u>
	VW7 Adjustment D No Adjustment Necessary 🖗
	VW8 Adjustment 🗆 No Adjustment Necessary 🖗
	VW9 Adjustment 🗆 No Adjustment Necessary 🖣
2.	Verify Operation of Vacuum Pump Unit
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit
	Adjustment 🗆 🛛 No Adjustment Necessary 🗖
4.	Check Vacuum Pump Unit Filter:
	Vacuum Before Filter in. Hg
	Vacuum After Filter15in. Hg
5.	Verify Operation of Demister Liquid Drain Pump
6.	Check Carbon Adsorbers
Ground Wat	er Extraction System
1.	Check Submersible Well Pumps 🛛 🦉
2.	Verify Operation of Aeration Tank Blower 🗡
3.	Verify Operation of Polymer and Chemical Feed Pumps 🛛 💆
4.	Check Polymer/Chemical Supplies
5.	Verify Operation of Waste Water Feed Pump 🛛 🕅 🕅
6.	Check Primary and Secondary Filters: Set B
	Pressure at Primary Filter Inlet Z_6psi
	Pressure at Primary Filter Outlet/Secondary Inlet <u>22</u> psi
	Pressure at Secondary Filter Outlet psi
	Overall Differential Pressure y
7.	Check Carbon Canisters
	Pressure <mark>-</mark> Train 1 <u> </u>
	Pressure - Train 2 2.7psi
	Pressure - Train 3 <u><u>4</u>5 psi</u>

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: ____ 6/11/93

TIME: _____/[:30 Am

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	12.5	3,2
VW2	15	/
VW3	? - plug chick	4
VW4	9.5	4
VW5	OFF	
VW6	OFF	
VW7	OFF	
VW8	OFF	·
VW9	? plug stuck	2,5

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	6			18	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	4.5				
Line Exiting Vacuum Pump Unit		0	215		140
Line Entering Primary Carbon A or B (circle one)		1.7			
Line Entering Secondary Carbon A or B (circle one)		0.5			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

6/16/93 DATE: Individuals On Site:

DWK DMS, KJR

Items to check:

1.	· • • • • • • • • • • • • • • • • • • •		
	Adjust Individ	ual Air Line Inflows	
	VWI Adju	istment U No Adjustment Nece	essary <u>u</u>
	VW2 Adju	istment D No Adjustment Nece	essary P
	VW3 Adju	istment D No Adjustment Nece	essary D
	VW4 Adju	istment 🗆 🛛 No Adjustment Nece	essary 🖗
	VW5 Adju	istment 🗆 🛛 No Adjustment Nece	essary P
	VW6 Adju	istment 🗆 No Adjustment Nece	essary 😐
	VW7 Adju	istment 🗆 No Adjustment Nece	essary 🖗
	VW8 Adju	istment 🗆 🛛 No Adjustment Nece	essary 🖗
	VW9 Adju	istment 🗆 🛛 No Adjustment Nece	essary 🗣
2.	Verify Operati	on of Vacuum Pump Unit 🛛 🖾	- \
3.	Adjust Total	vstem Inflow Rate at Vacuum Pump U	Jnit
	Adiu	istment No Adjustment Nece	essarv Ø
4 .	Check Vacuum	ump Unit Filter:	
••	Vacuum Be	fore Filter 8.5	in Ha
		ter Filter	in Ha
5	Vacuum Al	on of Demister Liquid Drain Dump	
J. C	Check Carbon	deorborg	
0.	Check Carbon P	usor bers	× .
	Destaura to i a u	2 sectors	
		SVCTOM	
Ground wat	Ler Exclaction	System	
GLOUNG WAT			~~
1.	Check Submersi	ble Well Pumps	X
1. 2.	Check Submersi Verify Operati	ble Well Pumps on of Aeration Tank Blower	X
1. 2. 3.	Check Submersi Verify Operati Verify Operati	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu	amps X
1. 2. 3. 4.	Check Submersi Verify Operati Verify Operati Check Polymer/	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies	umps
1. 2. 3. 4. 5.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump	umps X
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati Check Primary	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: At A	umps X
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet/2_	umps X X X X X X X X X X X X X X X X X X X
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: 20t A imary Filter Inlet imary Filter Outlet/Secondary Inle	imps x x x x x x x y x y si x z y si
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet imary Filter Outlet/Secondary Inle	imps x psi t <u>/2 psi</u> psi
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr Pressure at Se Overall Differ	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet imary Filter Outlet/Secondary Inle condary Filter Outlet	imps 2 psi psi psi psi psi psi
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr Pressure at Se Overall Differ Check Carbon C	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet imary Filter Outlet/Secondary Inle condary Filter Outlet ential Pressure anisters	1mps 2 1mps 2
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr Pressure at Se Overall Differ Check Carbon C Pressure	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet imary Filter Outlet/Secondary Inle condary Filter Outlet/Secondary Inle ential Pressure	imps 2 psi psi psi psi psi psi
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr Pressure at Se Overall Differ Check Carbon C Pressure Pressure	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet /2_ imary Filter Outlet/Secondary Inle condary Filter Outlet / ential Pressure anisters - Train 1 - Train 2	imps 2 psi psi psi psi psi psi
1. 2. 3. 4. 5. 6.	Check Submersi Verify Operati Check Polymer/ Verify Operati Check Primary Pressure at Pr Pressure at Pr Pressure at Se Overall Differ Check Carbon C Pressure Pressure Pressure	ble Well Pumps on of Aeration Tank Blower on of Polymer and Chemical Feed Pu Chemical Supplies on of Waste Water Feed Pump and Secondary Filters: A imary Filter Inlet /2_ imary Filter Outlet/Secondary Inle condary Filter Outlet /// ential Pressure anisters - Train 1 - Train 2 - Train 3	Imps 2 sc psi psi psi psi psi psi psi

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

16 33

TIME: ______ 2:30 Pm

Dut INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VWI	10.5	3
VW2	15	/
VW3	9	3.2
VW4	9	3
VW5	43	3
VW6	4.5	3
VW7	10/	2
VW8	- plug stuck -	2,5
VW9	- plug stick -	2,5

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pr ess ure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	8.5			25	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	8:5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	8.5				
Line Exiting Vacuum Pump Unit		\bigcirc	220		145
Line Entering Primary Carbon A of B (circle one)		1.8			
Line Entering Secondary Carbon Kot B (circle one)		0.5			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

RULA

Instate

93 6 DATE: Individuals On Site:

Items to check:

1.	Adjust Individ <mark>ual Air Line Inflows</mark>	
	VW1 Adjustment 🗆 No Adjustment Necessary 🛛	1
	VW2 Adjustment 🗆 No Adjustment Necessary 🖓	\$
	VW3 Adjustment D No Adjustment Necessary C	2
	VW4 Adjustment D No Adjustment Necessary	p i i i i i i i i i i i i i i i i i i i
	VW5 Adjustment D No Adjustment Necessary	
	VW6 Adjustment D No Adjustment Necessary C	2
	VW7 Adjustment D No Adjustment Necessary C	P
	VW8 Adjustment 🗆 No Adjustment Necessary 🕻	þ
	VW9 Adjustment 🗆 No Adjustment Necessary 🕻	±
2.	Verify Operation of Vacuum Pump Unit 🛛 🖾	.)
3.	Adjust Total <mark>S</mark> ystem Inflow Rate at Vacuum Pump Unit	,
	Adjustment 🗆 🛛 No Adjustment Necessary 🖡	٤
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filter IC, in. H	łg
	Vacuum A <mark>f</mark> ter Filter <u>[0,4</u> in. F	ig
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
Ground W	Water Extraction System	
1.	Check Submersible Well Pumps	X
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	×BX
4.	Check Polymer/Chemical Supplies	B
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters: Set B	
	Pressure at Primary Filter Inlet <u>7-70</u>	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	<u> 8 psi</u>
	Pressure at Secondary Filter Outlet	psi
	Overall Differential PressureO	psi
7.	Check Carbon Canisters	
	Pressure <mark>-</mark> Train 1 <u></u> psi	
	Pressure <mark>-</mark> Train 2 <u>psi</u> psi	
	Pressure <mark>-</mark> Train 3 <u>6.0</u> <u>psi</u>	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

93

TIME: ______ / /: / SAM

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	10	2,8
VW2	15	/
VW3	9	3,2
VW4	9	27
VWS	< ?	3
VW6	4.5	3
VW7	14	2
VW8	-plug stuck.	2,5
VW9	- plug stuck -	2,5

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	13			21	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	12.2				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	10.4				
Line Exiting Vacuum Pump Unit		0	220		145
Line Entering Primary Carbon A or B (circle one)		1.8			
Line Entering Secondary Carbon & B (circle one)		0,5			

MISCELLANEOUS:

(closed (circle one) open

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

WW DWK

DATE: Individuals On /Sit/e:

Items to check:

- SHUT SYSTAM DOWN -

1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🖣 No Adjustment Necessary 🗆	
	VW2 Adjustment 🖞 No Adjustment Necessary 🗆	
	VW3 Adjustment W No Adjustment Necessary D	
	VW4 Adjustment 🖣 No Adjustment Necessary 🗆	
	VW5 Adjustment 🖣 No Adjustment Necessary 🗆	
	VW6 Adjustment W No Adjustment Necessary D	
	VW7 Adjustment Adjustment Necessary	
	VW8 Adjustment 🗖 No Adjustment Necessary 🗆	
	VW9 Adjustment 🗆 No Adjustment Necessary 🗆	
2.	Verify Operation of Vacuum Pump Unit	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗠 🛛 No Adjustment Necessary 🗆	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filterin. Hg	
	Vacuum After Filterin. Hg	
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
Ground Wat	ter Extraction System	
1.	Check Submersible Well Pumps 🖤	
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters:	
	Pressure at P <mark>r</mark> imary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Diffe <mark>r</mark> ential Pressure	psi
7.	Check Carbon Canisters	
	Pressure – Train 1 <u>Ø</u> <u>psi</u>	
	Pressure <mark>-</mark> Train 2 <u>8</u> psi	
	Pressure – Train 3 8 psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)		
VW1				
VW2 ~ ()				
VW3	4			
VW4	10T			
VW5				
VW6				
VW7	W			
VW8				
VW9				

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister					
Between Vacuum Pump Unit Filter and Demister (Before Filter)					• •
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)					
Line Exiting Vacuum Pump Unit		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			
Line Entering Primary Carbon A or B (circle one)					
Line Entering Secondary Carbon A or B (circle one)					

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _________ Status of Manual Air Dilution Valve: open closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

Bubon Chenyort (Typer Phase) done leg before DATE: hls , Encur Individuals On Site:

Items to check:

1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🖣 No Adjustment Necessary 🗆	
	VW2 Adjustment 🖬 No Adjustment Necessary 🗆	
	VW3 Adjustment W No Adjustment Necessary 🗆	
	VW4 Adjustment 🛱 No Adjustment Necessary 🗆	
	VW5 Adjustment 🖞 No Adjustment Necessary 🗆	
	VW6 Adjustment Adjustment Necessary	
	VW7 Adjustment 🏳 No Adjustment Necessary 🗆	
	VW8 Adjustment 🛛 No Adjustment Necessary 🗆	
	VW9 Adjustment 🛛 No Adjustment_Necessary 🗆	
2.	Verify Operat <mark>i</mark> on of Vacuum Pump Unit 🛛 🗗	
з.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🔍 🛛 No Adjustment Necessary 🗆	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum B <mark>e</mark> fore Filter <u> </u>	
	Vacuum A <mark>f</mark> ter Filter <u> </u>	
5.	Verify Operation of Demister Liquid Drain Pump 🛛 🗖	
6.	Check Carbon Adsorbers 🛛 🗖	
Ground Wat	ter Extraction System	
1.	Check Submersible Well Pumps 🛛 🖉	
2.	Verify Operation of Aeration Tank Blower 🛛 🖉	
3.	Verify Operation of Polymer and Chemical Feed Pumps 🛛 🖉 🖊	
4.	Check Polymer <mark>/</mark> Chemical Supplies 🛛 🗹	
5.	Verify Operation of Waste Water Feed Pump 🛛 🛛 🖉	
6.	Check Primary and Secondary Filters:	
	Pressure at Primary Filter Inlet	<u>psi</u>
	Pressure at Primary Filter Outlet/Secondary InletO	psi
	Pressure at S <mark>e</mark> condary Filter Outlet	psi
	Overall Differential Pressure	psi
7.	Check Carbon Canisters /	
	Pressure – Train 1 <u> </u>	
	Pressure – Train 2 <u> </u>	
	Pressure – Train 3 <u>6</u> psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	11.5	1,5
VW2	13,5	0,2
VW3	Ŕ	2
VW4	2	2
VW5	STUCK	2
VW6	STUCK	L
VW7	12	0,9
VW8	STUCK	<i> ,</i>
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	2			22	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	Ð				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		5	230		130
Line Entering Primary Carbon A or B (circle one)		1.7			
Line Entering Secondary Carbon A or B (circle one)		0			

MISCELLANEOUS:

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE:

TIME: <u>3²</u>A

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	14,5	4,5
VW2	14,5	
VW3	1.3	l'n
VW4	<i>]ί</i> /	5
VW5	Stich	2
VW6	<u> </u>	5
VW7	15.5	2
VW8	STUR	4
VW9	1	e

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	-9			25	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	8.5				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	6.5				
Line Exiting Vacuum Pump Unit		1.5	210		155
Line Entering Primary Carbon (A) or B (circle one)		2.5			
Line Entering Secondary Carbon A or B (circle one)		0			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = ______ Status of Manual Air Dilution Valve: open / plosed /

(circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

Change filers 525A+529A

Z DATE: Individuals On Site:

DMS

Items to check:

1.	Adjust Individual	Air Line Inflo	NS		(27)	
	VW1 Adjustm	ent 🗆 No	Adjustment	Necessary	6	
	VW2 Adjustm	ent 🗆 No	Adjustment	Necessary	ф	
	VW3 Adjustm	ent 🗆 No	Adjustment	Necessary	<u> </u>	
	VW4 Adjustm	ent 🗆 No	Adjustment	Necessary	9	
	VW5 Adjustm	ent 🗆 No	Adjustment	Necessary	9	
	VW6 Adjustm	ent 🗆 No	Adjustment	<u>Necessary</u>	<u>_</u>)	
	VW7 Adjustm	ent 🗆 No	Adjustment	Necessary		
	VW8 Adjustm	ent 🗆 No	Adjustment	Necessary	0)	
	VW9 Adjustm	ent 🗆 No	Adjustment	Necessary	9	
2.	Verify Operation	of Vacuum Pump	Unit 🖉			
3.	Adjust Total Syst	em Inflow Rate a	at Vacuum Pu	ump Unit	/	
	Adj <mark>u</mark> stm	ent 🗆 No	Adjustment	Necessary		
4.	Check Vacuum Pump	Unit Filter:				
	Vacuum Befor	e Filter		in.	Hg	
	Vacuum A <mark>f</mark> ter	Filter	50	in.	Hg	
5.	Verify Operation	of Demister Liqu	uid Drain Pu	ump 🖉		
6.	Check Carbon Adso	rbers		لطح		
Ground Wat	er Extraction Sys	tem				
					/	
1.	Check Submersible	Well Pumps			G	
2.	Verify Operation	of Aeration Tan	k Blower		G	
3.	Verify Operation	of Polymer and (Chemical Fee	ed Pumps		
4.	Check Polymer/Che	mical Supplies		-		
5.	Verify Operation	of Waste Water	Feed Pump		8	
6.	Check Primary and	Secondary Filt	ers:	_		
	Pressure at Prima	ry Filter Inlet		10		psi
	Pressure at Prima	ry Filter Outle	t/Secondary	Inlet ∡		psi
	Pressure at Secon	dary Filter Out	let	15-		psi
	Overall Different	ial Pressure		5		psi
7.	Check Carbon Cani	sters	1.			
	Pressure – T	rain 1 <u>7</u> ,	8	psi		
	Pressure – T	rain 2	6	psi		
	Pressure – T	rain 3	6	psi		
OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 7/8/93 TIME: 11:00 ~

INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW 1	9,5	2,3
VW2	15.1	1
VW3	10	3.
VW4	9.(p	3
VW5	stuck	3
VW6	4,7	3
VW7	16.2	Z
VW8	5	2.5
VW9	strek	2.5

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	11.4			z 3	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	7.1				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	10.4				
Line Exiting Vacuum Pump Unit		0	220		150
Line Entering Primary Carbon (A) or B (circle one)		12			
Line Entering Secondary Carbon B (circle one)		0			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _ Status of Manual Air Dilution Valve: closed open (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

7/9/93 s on Site: DATE: DMS Individuals On

Items to check:

Vapor Extraction System

1.	Adjust Individual Air Line Inflows	
	VWI Adjustment 🗆 No Adjustment Necessary 🖣	
	VW2 Adjustment 🗆 No Adjustment Necessary 🛛	
	VW3 Adjustment D No Adjustment Necessary D	
	VW4 Adjustment 🗆 No Adjustment Necessary 🗆	
	VW5 Adjustment 🗆 No Adjustment Necessary 🛛	
	<u>VW6 Adjustment D No Adjustment Necessary D</u>	
	VW7 Adjustment 🗆 No Adjustment Necessary 🗖	
	VW8 Adjustment 🗆 No Adjustment Necessary 👎	
	VW9 Adjustment 🗆 No Adjustment Necessary Ф	
2.	Verify Operat <mark>i</mark> on of Vacuum Pump Unit 🛛 🗠	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment 🗆 🛛 No Adjustment Necessary 🖾	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum B <mark>e</mark> fore Filter <u>/5</u> in. Hg	
	Vacuum A <mark>ft</mark> er Filter <u>16</u> in. Hg	
5.	Verify Operati <mark>o</mark> n of Demister Liquid Drain Pump 🛛 🗆	
6.	Check Carbon Adsorbers	
Ground Wat	ter Extraction <mark>S</mark> ystem	
1.	Check Submersible Well Pumps	
2.	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Pumps	
4.	Check Polymer/Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump_	
6.	Check Primary and Secondary Filters: Set D	
	Pressure at Primary Filter Inlet	_psi
	Pressure at Primary Filter Outlet/Secondary Inlet	_psi
	Pressure at Se <mark>c</mark> ondary Filter Outlet	_psi
	Overall Differential Pressure	_psi
7.	Check Carbon Canisters	
	Pressure - Train 1 ^{3,3} psi	
	Pressure - Train 2 <u>3.5 psi</u>	
	Pressure – Train 3 <u>36 psi</u>	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DATE:	71	19	93
Individuals	On	Sí	te:

Items to check:

Vapor Extraction System 5, Sten off (wells only)

MAS

- 1. Adjust Individual Air Line Inflows VW1 Adjustment 🗆 No Adjustment Necessary D VW2 Adjustment 🗆 No Adjustment Necessary D VW3 <u>No Adjustment Necessary D</u> Adiustment 🗆 No Adjustment Necessary D VW4 Adjustment 🗆 VW5 Adjustment No Adjustment Necessary D No Adjustment Necessary VW6 Adjustment 🗆 No Adjustment Necessary D VW7 Adjustment 🗆 VW8 Adjustment 🗆 No Adjustment Necessary D VW9 Adjustment 🗆 No Adjustment Necessary D 2. Verify Operation of Vacuum Pump Unit 123 3. Adjust Total System Inflow Rate at Vacuum Pump Unit Adjustment 🗆 No Adjustment Necessary 🕰 Check Vacuum Pump Unit Filter: 4. Vacuum Before Filter ____ in. Hq in. Hq Vacuum A<mark>f</mark>ter Filter 5. Verify Operation of Demister Liquid Drain Pump
- 6. Check Carbon Adsorbers

Ground Water Extraction System

1.	Check Submersible Well Pumps	24
2.	Verify Operation of Aeration Tank Blower	ÚB
3.	Verify Operation of Polymer and Chemical Feed Pumps	a mfp
4.	Check Polymer/Chemical Supplies	5 POLY
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters:	
	Pressure at Primary Filter Inlet	psi
	Pressure at Primary Filter Outlet/Secondary Inlet	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure こ	psi
7.	Check Carbon <mark>C</mark> anisters —	
	Pressure – Train 1 bi	
	Pressure – Train 2 si	
	Pressure - Train 3 <u>5</u> psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 7/19 93

TIME: ___________

DM S INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in. Hg)
VW1	Q	0
VW2		
VW3		
VW4		
VW5		
VW6		
VW7		
VW8		
VW9	V	\bigvee

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowtate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	Ô			11	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	0				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	0				
Line Exiting Vacuum Pump Unit		フ	235		130
Line Entering Primary Carbon A) or B (circle one)		14			
Line Entering Secondary Carbon A or B (circle one)		4			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _______ Status of Manual Air Dilution Valve: open closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

7/29/93 DATE: ms Individuals On Sité:

Items to check:

Vapor Extraction System Wells off

1.	Adjust Individ <mark>ual Air Line Inflows</mark>
	VW1 Adjustment 🗆 No Adjustment Necessary 🖗
	VW2 Adjustment 🗆 No Adjustment Necessary 🖗
	VW3 Adjustment D No Adjustment Necessary D
	VW4 Adjustment D No Adjustment Necessary D
	VW5 Adjustment D No Adjustment Necessary D
	VW6 Adjustment D No Adjustment Necessary D
	VW7 Adjustment 🗆 No Adjustment Necessary 🖣
	VW8 Adjustment 🗆 No Adjustment Necessary 🖣
	VW9 Adjustment 🗆 No Adjustment Necessary 🖣
2.	Verify Operation of Vacuum Pump Unit A
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit
	Adjustment 🗆 No Adjustment Necessary 🎗
4.	Check Vacuum Pump Unit Filter:
	Vacuum Before Filter 🗢in. Hg
	Vacuum After Filter <u>2</u> in. Hg
5.	Verify Operation of Demister Liquid Drain Pump 🛛 🗆
6.	Check Carbon Adsorbers
Ground Wat	ter Extraction System
1.	Check Submersible Well Pumps Do Pumps
2.	Verify Operation of Aeration Tank Blower
3.	Verify Operation of Polymer and Chemical Feed Pumps 39 13017 # 28
4.	Check Polymer/Chemical Supplies 🛛 🗖
5.	Verify Operation of Waste Water Feed Pump 🛛 🗖
6.	Check Primary and Secondary Filters:
	Pressure at Primary Filter Inlet 26psi
	Pressure at Primary Filter Outlet/Secondary Inlet <u>24</u> psi
	Pressure at Secondary Filter Outletpsi
	Overall Differential Pressurepsipsi
7.	Check Carbon C <mark>a</mark> nisters
	Pressure – Train 1/psi
	Pressure – Train 2 <u>7</u> psi
	Pressure - Train 3 7 psi

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 7/29/93

TIME: <u>9:00</u>

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1	\bigcirc	\bigcirc
VW2		
VW3		
VW4		
VW5		
VW6		
VW7		
VW8		
VW9		
	E.	

needs COMBINED FLOW System Location Vacuum Pressure Air Temp. Flowrate (in.Hg) (psi) (°F) (cfm) 2.5 11 Near Entrance to Demister Between Vacuum Pump Unit Filter and Demister \bigcirc (Before Filter) Between Vacuum Pump Unit Filter and Vacuum Pump Z (After Filter) 235 5 Line Exiting Vacuum Pump Unit 135 Line Entering Primary Carbon A or B (circle one) 14 Line Entering Secondary Carbon A or B (circle one) 5

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = ______ Status of Manual Air Dilution Valve: open closed (circle one)

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

DATE:	00	13193	
Individuals	On	Site:	

Items to check:

Vapor Extraction System Vor wells off

Dms

- 1. Adjust Individual Air Line Inflows VW1 Adjustment 🗆 No Adjustment Necessary No Adjustment Necessary 🖣 VW2 Adjustment 🗆 VW3 Adjustment 🗆 No Adjustment Necessary d No Adjustment Necessary VW4 Adjustment 🗆 **VW**5 Adjustment 🗆 No Adjustment Necessary VW6 Adjustment D No Adjustment Necessary D VW7 No Adjustment Necessary D Adjustment 🗆 VW8 Adjustment 🗆 No Adjustment Necessary D VW9 Adjustment 🗆 No Adjustment Necessary D 2. Verify Operation of Vacuum Pump Unit X. 3. Adjust Total System Inflow Rate at Vacuum Pump Unit Adjustment 🗆 No Adjustment Necessary A 4. Check Vacuum Pump Unit Filter: Vacuum Before Filter _ in. Hq Vacuum After Filter in. Hg Verify Operation of Demister Liquid Drain Pump 5. 3
- Check Carbon Adsorbers 6.

Ground Water Extraction System

1.	Check Submersi	ble Well Pumps	EC
2.	Verify Operati	on of Aeration Tank Blower	P
3.	Verify Operati	on of Polymer and Chemical Feed Pumps	8
4.	Check Polymer/	Chemical Supplies	\$ 12019 0/2/93
5.	Verify Operati	on of Waste Water Feed Pump	2
6.	Check Primary	and Secondary Filters:	
	Pressure at Pr	imary Filter Inlet29	psi
	Pressure at Pr	imary Filter Outlet/Secondary Inlet	psi
	Pressure at Se	condary Filter Outlet	psi
	Overall Differ	ential Pressure2	psi
7.	Check Carbon C	anisters	
	Pressure	Train 17psi	
	Pressure	Train 26,6psi	
	Pressure	Train 3 <u> </u>	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: _____ &/ 3/93

TIME: _____

Dms INITIALS

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		
VW2		
VW3		
vw 4	IS Off	
vws NE		
VW6		
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	6			12	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	4				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	l,				
Line Exiting Vacuum Pump Unit		Z	235		145
Line Entering Primary Carbon A or B (circle one)		14			
Line Entering Secondary Carbon A or B (circle one)		4			

MISCELLANEOUS:

Depth of Water in Demister Effluent Holding Tank = _ Status of Manual Air Dilution Valve: (circle one) open closed

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

INSPECTION LOG SHEET

93 8 13 DATE: Individuals On

DWK

Items to check:

Vapor Extraction System VWS off

1.	Adjust Individual Air Line Inflows	
	VW1 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW2 Adjustment 🗆 No Adjustment Necessary 🖣	
	<u>VW3 Adjustment 🗆 No Adjustment Necessary 🖣</u>	
	VW4 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW5 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW6 Adjustment D No Adjustment Necessary 4	
	VW7 Adjustment 🗆 No Adjustment Necessary 🖗	
	VW8 Adjustment D No Adjustment Necessary 4	
_	VW9 Adjustment D No Adjustment Necessary D	
2.	Verify Operation of Vacuum Pump Unit A	
3.	Adjust Total System Inflow Rate at Vacuum Pump Unit	
	Adjustment D No Adjustment Necessary D	
4.	Check Vacuum Pump Unit Filter:	
	Vacuum Before Filterin. Hg	
_	Vacuum After Filter <u>42</u> in Hg	
5.	Verify Operation of Demister Liquid Drain Pump	
6.	Check Carbon Adsorbers	
a		
Ground wa	ter Extraction System	
1	Check Submersible Well Bumps	
2	Verify Operation of Aeration Tank Blower	
3.	Verify Operation of Polymer and Chemical Feed Dumps 7	
4.	Check Polymer Chemical Supplies	
5.	Verify Operation of Waste Water Feed Pump	
6.	Check Primary and Secondary Filters: set R	
•••	Pressure at Primary Filter Inlet 13	nsi
	Pressure at Primary Filter Outlet/Secondary Inlet 12	psi
	Pressure at Secondary Filter Outlet	psi
	Overall Differential Pressure	nsi
7.	Check Carbon Canisters	
	Pressure - Train 1 5.5 psi	
	Pressure - Train 2 5,5 psi	
	Pressure - Train 3 5.5 psi	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

VAPOR EXTRACTION SYSTEM - MONITORING LOG SHEET

DATE: 8/13/93

13

DWK

INDIVIDUAL VACUUM WELL LINES

Well Line	Air Flowrate (cfm)	Vacuum (in.Hg)
VW1		
VW2		
VW3		
VW4		
vws	P	
VW6		
VW7		
VW8		
VW9		

COMBINED FLOW

System Location	Vacuum (in.Hg)	Pressure (psi)	Air Flowrate (cfm)	% LEL	Temp. (°F)
Near Entrance to Demister	4			10	
Between Vacuum Pump Unit Filter and Demister (Before Filter)	2.2				
Between Vacuum Pump Unit Filter and Vacuum Pump (After Filter)	3.6				
Line Exiting Vacuum Pump Unit		2.4	240		130
Line Entering Primary Carbon A of B (circle one)		2			
Line Entering Secondary Carbon Andr B (circle one)		0.5			

MISCELLANEOUS:

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Da	te: 8/19/93 Initials DMS
VAPOR	A EXTRACTION SYSTEM
1	
	Ven Adjustment Air Flow Vacuum
-	
-	
	VW2 COCTEMA
-	
	VW-4 C C
	VW-5
1	VV-S
2. \ Ter 3. \	Vacuum Pump Unit On Off mp (F)_ <u>130</u> Air Flow (cfm)_ <u>Z40</u> Pressure (psi)_ <u>6.5</u> Vacuum Pump Unit Filter
Be	fore Filter in. Hg After Filter in. Hg
4. Va	Verify Operation of Demister Pump
5. (Check Air Dilution Valve Open Closed
6. I Lin	Inspect Carbon Adsorbers
7. 9	% LEL <u>9</u>
GROUI 1. (RW	NDWATER EXTRACTION SYSTEM Check Levels of Submersible Well Pumps Set Act Set Act Set Act Set Act Set Act W-1 <u>4.0 4.2</u> RW-2 <u>5.7 5.5</u> RW-3 <u>5.9</u> RW-4 <u>60 6.0</u> RW-5 <u>5.8</u> 5.8
2. \	
3. \	Verify Operation of Chlorine Feed Pump On Off Amount of Chlorine In Tank 5 gal. Make Chlorine Yes No
4. \	Verify Operation of Polymer Feed Pump Off Amount of Polymer In Tank 95 gal. Make Polymer Yes No
5. \	Verify Operation of Wastewater Feed Pump
6. Filt Pri	Check Bag Filter System er Set In Use A B Filter Type: Set A 3 ^M Set B 3 ^M mary Filter Pressure <u>19</u> psi Secondary Filter Pressure <u>20</u> psi Differential Pressure <u>5</u> psi
7. (Check Pressure in Carbon Canisters
	Train 1 Λ 6.2. 7 3
	Train 2 0 7 ₩
	Train 3 4.2 146.5

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

	Date: <u>⊈∤</u> ∠	4/93	Initials			
VAF		CTION SYSTEM				
	Woll	Adjustment		Vacuum		
	AA GII	Adjustment				
		Necessary	(CIIII)	(in. Hg)	_	
	V W-1				_	
	VW-2					
	VW-3	$) \neg]$	Stem			
	VW-4	7, 0	*			
	VW-5	0				
	VW-5		> 0		-	
	VW-7	O^{\pm}			-	
	VWLA				-	
	VWLO				-	
		11				
	2. Vacuum P Temp (F) 3. Vacuum P	Pump Unit On) Off Air Flow (cfm) <u> </u>	0	Pressure (psi) 💍	
	Before Filter	<u></u> in. Hg		After Filter	<u>7.5</u> in. Hg	
	 Verify Ope Vacuum Nea Check Air Inspect Ca Line Entering 	eration of Demister ar Entrance To Dem Dilution Valve Op arbon Adsorbers g Primary Carbon (Pump7_ in. en Closed A or B)14_ ps	. Hg <u>si</u>	Line Entering Secondary Ca	urbon (A o(B)) psi
	7. % LEL <u>/</u> (<u>)</u>				
GRO	OUNDWATE 1. Check Lev Set	REXTRACTION vels of Submersible Act Set	SYSTEM Well Pumps Act Set	Act	Set Act Set	Act
	1.0	<u> </u>				
	2. Verify Ope	eration of Aeration 1	Tank Blower On Ol	ff		
	3. Verify Ope	eration of Chlorine F Amount of Chlorine	Feed Pump On Off		Make Chlorine Yes No	
	4. Verify Ope	ration of Polymer F Amount of Polyme	eed Pump (On) Off r In Tank <u>30</u> gal.		Make Polymer Yes 😡	
	5. Verify Ope	eration of Wastewat	er Feed Pu <mark>m</mark> p			
	6. Check Ba Filter Set In L Primary Filter	g Filter System Jse A or B F r Pressure <u>2</u> ps	filter Type: Set A <u>} ∕</u> si	<u>مرکح</u> Set <u>B</u> Secondary Fi	<u>//</u> Iter Pressure <u>//</u> psi	Differential Pressure psi
	7. Check Pre	ssure in Carbon Ca	anisters			
		1st 2nd	3rd			
	Train 1		0			
	Train 2			-		
	Train 3	λ ρ_{-}		-		
	i diri o					

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 9/2/93

Initials DMS

VAPOR EXTRACTION SYSTEM

	ndividual A	Air Flow Lines				
<u>, , , ,</u>	Well	Adjustment	Air Flow	Vacuum		
	ID	Necessarv	(cfm)	(in. Hg)		
	VW-1				-	
	VW-2			111		
	VW-3	C	SIE	101		
	VW-4	27	210			
	VW-5					
	VW-6	\sim				
	VW-7		V			
	VW-8	<u> </u>				
	VW-0					
2. V Ter	/acuum Pu np (F)	ump Unit On	Off Air Flow (cfm) <u>2</u>	240	Pressure (psi)	
3. v Bef	ore Filter	in. Hg	/	After Filter	O_in. Hg	
4. V Vac	/erify Oper cu um Nea r	ration of Demister Entrance To Der	Pumpi	n. Hg		
5. 0	Check Air [Closed			
6. li Lini	nspect Car e Entering	toon Adsorbers Primary Carbon	\overline{A} or B) <u>1</u>	psi	Line Entering Secondary C	arbon (A or 🕖psi
7. 9	6 LEL <u></u>	_				
SROUN	DWATEF	REXTRACTION als of Submersible	SYSTEM e Well Pumps			
RW	Set ⊢1_ <u>4,o</u> _	Act Set 3.8 RW-2 <u>5</u> .	t Act Se <u>7 5.6</u> RW-3 <u>S.</u>	et Act <u>9 5.8</u> RW-	Set Act Set 4 <u>(</u>	Act
2. V	erify Oper	ation of Aeration	Tank Blower	Off		
3. V	erify Oper/ /	ation of Chlorine Amount of Chlorin	Feed Pump On (C e In Tank ga		Make Chlorine Yes No	
4. V	erify Oper ¢	ation of Polymer I Amount of Polyme	Feed Pump On C er In Tank 18 gal	Off I.	Make Polyme Yes No	
5. V	erify Oper	ation of Wastewa	ter Feed Pump _/	_		
6. (Filte Prir	Check Bag er Set In U nary Filter	Filter System se A of B Pressure <u>2 7 p</u>	Filter Type: Set A <u>_</u> si	Secondary Fi	Iter Pressure <u>/9</u> psi	Differential Pressure <u>3</u> psi
7. C	heck Pres	sure in Carbon C 1st 2n	anisters d 3rd			
		$\frac{2 \cdot 1}{2}$	/ -			
	Train 3	S.E UN	2 -			
		4.5	2	_		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 9/3/93

Initials_<u>Dm</u>S

TCM V

1. Individual	Air Flow Lines			_	
Well	Adjustment	Air Flow	Vacuum		
ID	Necessarv	(cfm)	(in, Hg)		
VW-1				7	
VW-2	<u> </u>			-	
VWLa	CIC	1600		-	
				-	
				-	
V VV-6				-	
VW-6				-	
VW-7		· ·			
VW-8					
VW-0					
3. Vacuum P 3. Vacuum P Before Filter	2000 Unit Filter	Air Flow (cfm) <u>2^L</u>	After Filter	Pressure (psi) <u>5</u>	
4. Verity Ope Vacuum Nea	eration of Demister ar Entrance To Der	r Pump nister in	n. Hg		
5, Check Air	Dilution Valve	Den Closed			
6. Inspect Ca Line Entering	arbon A dsorbers g Prim ary Carbon	(Ад в) <u>15</u> р	si	Line Entering Secondary Ca	rbon (A or B) <u>5 psi</u>
7. % LEL	3_				
GROUNDWATE 1. Check Lev	R EXTRACTION	e Well Pumps			
Set RW-1 <u>4-0</u>	Act Se <u>4.1</u> RW-2 <u>S</u>	t Act Set <u>7 5.9</u> RW-3 <u>5.9</u>		Set Act Set 4 <u>6.0 <u>6.2</u> RW-5 <u>5.8</u></u>	$\frac{\text{Act}}{4.0}$
2. Verify Ope	eration of Aeration	Tank Blower	Off		
3. Verify Ope	eration of Chlorine Amount of Chlorin	Feed Pump On Of le In Tank <u>/</u> gal.	I)	Make Chlorine Yes No	
4. Verify Ope	eration of Polymer Amount of Polyme	Feed Pump On Of ar In Tank <u>40</u> gal.	f	Make Polymer Yes No	
5. Verify Ope	eration of Wastewa	iter Feed Pump	-		
6. Check Ba Filter Set In L Primary Filter	ig Filter System Jse A or (₿) r Pressure//_p	Filter Type: Set A <u>32</u> si	7 Set B <u>3</u> Secondary Fil	25 ter Pressure <u>6</u> psi	Differential Pressure <u>4</u> ps
7. Check Pre	essure in Carbon C 1st 2n 2 Z.	anisters d 3rd			
Train 2	2 21	0 1.5	_		
Train 3	25 -		<u></u>		
	L 1 J		_		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 9/14/93

Initials DM >

VAI		CTION SYSTEM				
	Woll	Adjustment		Vacuum	7	
		Necessan		(in Ha)		
	VWL1	Hocossary	<u>(Cirri)</u>	(in. rig)	-	
	VWL2				-	
		(11 m			-	
		6,65,1			-	
					-	
					-	
	VW-6	6101	-		-	
	VW-/	CHI			-	
	<u><u>vw-</u>8</u>	<u> </u>			-	
	VW-9					
	2. Vacuum Pr Temp (F) 3. Vacuum Pr Before Filter	ump Unit On <u>140</u> Ai ump Unit Filter	Off r Flow (cfm) <u>은 '</u>	After Filter	Pressure (psi) <u>3</u>	-
	-				<u> </u>	
	4. Verify Ope Vacuum Nea	ration of Demister F r Entrance To Demi	ump <u>/</u> ster <u></u> ir	n. Hg		
1	5. Check Air I	Dilution Valve Ope	n Closed			
	6, Inspect Ca Line Entering	rbon Adsorbers <u>1</u> Primary Carbon (2	50r B) <u>15</u> p	Si	Line Entering Secondary (Carbon (A or B)psi
	7. % LEL	<u> </u>				
GR		R EXTRACTION S	YSTEM			
	1 Check Lev	els of Submersible I				
	Sot		Act Set	Act	Set Act Set	Act
		<u>), E</u> NV-2 <u>3.7</u>	<u> </u>			<u> </u>
	2. Verify Ope	ration of Aeration Ta	ank Blower on C	off		
	2 Varity One	ration of Chloring Fr		.		
	5. Verily Ope				Make Chloring Mag	
	/	Amount of Chiorine	in rank <u>10</u> gai.		Make Chiorine Yes No	
	A Marity One	nation of Dolumon Fr				
	4. Verity Ope	ration of Polymer Fe	lea Pump On Or	ſ		
		Amount of Polymer	in lank <u>sd</u> gal.		Make Polymer (Yes) No	
	5. Verify Ope	ration of Wastewate	r Feed Pump	-	~> q /	12/93
	6. Check Bag Filter Set In U Primary Filter	g Filter System Ise A o(B) Fi Pressure <u>12 psi</u>	ter Type: Set A <u>3</u>	21 Set B <u>3 M</u> Secondary Fil	<u>1_</u> ter Pressure <u>_/</u> ∂_psi	Differential Pressurepsi
	7 Check Pres	ssure in Carbon Car	histers			
		1st 2nd	3rd			
	Train 1		0.6			
	Train 2	0 1.2	0.5			
	Train 3	7		-		
				-		

-

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

	Date: 9/2 4	1 (93	Initials_DMJ			
VA		CTION SYSTEM				
		AII FIUW LINES			-	
	Well	Adjustment	Air F <mark>low</mark>	Vacuum		
	ID	Necessarv	(cfm)	(in, Ha)		
	1/1AL_1	itteeting	(0)	1	-	
	VW-2		\sim			
	VW63	\sim	THAT			
	V VV-4) – (–	/			
	V₩-5	J				
	VW-6					
		7 14				
	V VV-/			L		
	VW-8	\bigcirc 1				
	VW-0					
			1			
	2. Vacuum P Temp (F) 3. Vacuum P Before Filter	ump Unit On	Off Air Flow (cfm) <u>24</u>	After Filter	Pressure (psi) <u>S</u>	
	 Verify Ope Vacuum Nea Check Air Inspect Ca Line Entering 	eration of Demister In Entrance To Der Dilution Valve Or Indon Adsorbers _ Primary Carbon (Pump in. pen Closed Appr B)p:	. Нg si	Line Entering Secondary Ca	rbon (A of B)psi
	7. % LEL _ /					
3R	OUNDWATE 1. Check Lev Set RW-1 <u>4.0</u> 2. Verity One	R EXTRACTION rels of Submersible Act Set <u>3.8</u> RW-2 <u>5.</u>	SYSTEM Well Pumps Act Set <u>5.7</u> RW-3 <u>5.9</u> Tank Blower Od 0	Act <u>S.9</u> RW-	Set Act Set 4 <u>(, 0 (,)</u> RW-5 <u>, 5 , 8</u>	Act <u>5-8</u>
	z. veiny ope					
	3. Verify Ope	eration of Chlorine Amount of Chlorin	Feed Pump On Off e In Tank gal.	\supset	Make Chlorine Yes No	
	4 Verify One	ration of Polymer			_	
	4. Veiny Ope					
		Amount of Polyme	erin Tank gal.		Make Polymer Yes No	
	5. Verify Ope	eration of Wastewa		/ {		
	6. Check Ba	g Filter System		0	140	
	Filter Set In I	Jser A or B	Filter Type: Set A 5M	7 Set B グ		
	Drimon Eller	Processo 17 -	ei	Secondary	Itor Prossure 17 ani	
	Filler		51	Secondary F		Differential Pressurepsi
	7. Check Pres	ssure in Carbon C	anisters			
		1st 2n	d 3rd			
	Tenin 4	···· 20				
		1.0 0	O	_		
	Train 2	2.0 0.5	0	_		
	Train 3	15 ~	-			
				-		

-

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 9/30/93

Initials DWK

1 Individual	Air Flow Lines			
Well	Adjustment	Air Flow	Vacuum	
ID	Necessarv	(cfm)	(in, Hg)	
VW-1	times on 3 Pm	3.5	2	
VW-2	1	plug stuck		
VW-3		10	2	
VW-4	1 1	10	2.	
VW-5		٤ 3. 🖉	2	
VW-6		<	2	
VWL7		14	1.5	
VWLA	1 1	alue stuck		
VWLO	W I	-loss dans la	1.5	
			11.2	
3. Vacuum F Before Filter 4. Verity Op	Pump Unit Filter <u>O</u> in. Hg eration of Demister F	2ump	fter Filter	
5. Check Air 6. Inspect C	ar Entrance To Demi Dilution Valve Ope arbon Adsorbers	ster in.		
7. % LEL	g Prim ary Carbon (14)	(or B)p	Line Entering Sec	xondary Carbon (א סוק שין ב-2-2 psi
iROUNDWATE 1. Check Lee Set RW-1 <u>7. 0</u>	REXTRACTIONS vels of Submensible Act Set 3.9 RW-2 6.3	Well Pumps Act Set <u>6,3</u> RW-3 <u>5.9</u>	Act Set Act <u>6.0_</u> RW-4_ <u>6.06.1</u> RI	Set Act W-5 <u>5.8 5.8</u>
2. Verify Op	eration of Aeration T	ank Blower On D		
3. Verify Op	eration of Chlorine Fo Amount of Chlorine	eed Pump On (Off In Tank gal.	Make Chlorine Y	es No
4. Verify Op	eration of Polymer Fe Amount of Polymer	eed Pump (On) Off In Tank <u>30</u> gal.	Make Polymer (Y	es No
5. Verify Ope	eration of Wastewate	r Feed Pu <mark>m</mark> p		
6. Check Ba Filter Set In Primary Filte	ag Filter System Use A or (B) Fi r Pressure <u>///</u> psi	lter Type: Set A	Set B econdary Filter Pressure _//	_psi Differential Pressure <u>2-5</u> p
7. Check Pre Train 1 Train 2 Train 3	essure in Carbon Car 1st 2nd 5 0 5	histers 3rd 0 1.5 C		
-				

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 10/1/93

Initials_<u>DW/C</u>

	Adjustment	Air Flow	Vacuum			
ID	Necessary	(cfm)	(in. Hg)			
VW-1		3,5	2.2		me wate	
VW-2		plug stuck	7.5	- 1		
VW-3		11	2.2	7 //	+ lew	meter
VW-4		8	2.5			22 6
VW-5		dug sprik	2.5	()		himed off
VW-6		5	2.7	- /		10. +
VW-7		ĨY	2	-		ULDS at
VW-8		olve shick	152	1		VUC A
VWLO		lu hule	2	-		10.90 1
3. Vacuum P 3. Vacuum P Before Filter 4. Verify Ope Vacuum Nea	ump Unit Filter in. Hg pration of Demister F ir Entrance To Demi		After Filter	Pressure (psi)	<u>-</u>	
5. Check Air	Dilution Valve Ope	en Closed				
5. Inspect Ca Line Entering	rbon Adsorbers Primary Carbon		<u>si</u>	Line Entering	Secondary C	Carbon (++++++++++++++++++++++++++++++++++++
_						
7. % LEL _2	2					
7. % LEL <u>2</u> UNDWATE I. Check Lev Set	R EXTRACTION S els of Submersible Act Set	SYSTEM Well Pumps Act Set	Act	Set Act	Set	Act
7. % LEL UNDWATE D. Check Lev Set RW-1	-2_ R EXTRACTION S rels of Submersible Act Set RW-2	SYSTEM Well Pumps Act Set	Act RW-	Set Act 4	Set RW-5	Act
7. % LEL UNDWATE I. Check Lev Set RW-1 2. Verify Ope	R EXTRACTION S rels of Submersible Act Set RW-2 ration of Aeration T	SYSTEM Well Pumps Act Set RW-3 ank Blower On C	Act RW-	Set Act 4	Set RW-5	Act
7. % LEL UNDWATE I. Check Lev Set RW-1 2. Verify Ope 3. Verify Ope	R EXTRACTION S rels of Submersible Act Set RW-2 ration of Aeration T pration of Chlorine F Amount of Chlorine	SYSTEM Well Pumps Act Set RW-3 ank Blower On O eed Pump On Of In Tank gal.	Act RW-	Set Act 4 Make Chlorine	Set RW-5	Act
7. % LEL UNDWATE I. Check Lev Set RW-1 2. Verify Ope 8. Verify Ope	R EXTRACTION S rels of Submersible Act Set RW-2 ration of Aeration T pration of Chlorine F Amount of Chlorine ration of Polymer For Amount of Polymer	SYSTEM Well Pumps Act Set ank Blower On C eed Pump On Of In Tank gal. eed Pump On Of In Tank gal.	Act RW-	Set Act 4 Make Chlorine Make Polymer	Set RW-5 Yes No Yes No	Act
7. % LEL UNDWATE J. Check Lev Set W-1 2. Verify Ope 3. Verify Ope 5. Verify Ope	R EXTRACTION S rels of Submersible Act Set RW-2 ration of Aeration T aration of Chlorine F Amount of Chlorine ration of Polymer Fo Amount of Polymer	SYSTEM Well Pumps Act Set ank Blower On O eed Pump On Of In Tank gal. eed Pump On Of In Tank gal. er Feed Pump	Act RW-	Set Act 4 Make Chlorine Make Polymer	Set RW-5 Yes No Yes No	Act
7. % LEL UNDWATE I. Check Lew Set RW-1 2. Verify Ope 3. Verify Ope 5. Verify Ope 5. Verify Ope 5. Check Ba Filter Set In L Primary Filter	-2_ R EXTRACTION S rels of Submersible Act Set Act Set ration of Aeration T aration of Aeration T aration of Chlorine F Amount of Chlorine F Amount of Polymer F	SYSTEM Well Pumps Act Set RW-3 ank Blower On C eed Pump On Of In Tank gal. eed Pump On Of In Tank gal. er Feed Pump iter Type: Set A	Act RW- ff f Set B Secondary Fil	Set Act 4 Make Chlorine Make Polymer	Set RW-5 Yes No Yes No	Act
7. % LEL UNDWATE Check Lev Set RW-1 2. Verify Ope 3. Verify Ope 5. Verify Ope 5. Verify Ope 5. Check Ba Filter Set In L Primary Filter 7. Check Pre	-2 R EXTRACTION S rels of Submersible Act Set RW-2 aration of Aeration T aration of Aeration T aration of Chlorine F Amount of Chlorine F Amount of Polymer F State S State S Amount of Polymer F State S State S State S Amount of Polymer F State S State S State S State S	SYSTEM Well Pumps Act Set RW-3 ank Blower On O eed Pump On Of In Tank gal. eed Pump On Of In Tank gal. er Feed Pump fiter Type: Set A inisters 3rd	Act RW- ff f Secondary Fil	Set Act 4 Make Chlorine Make Polymer	Set RW-5 Yes No Yes No	Act
7. % LEL UNDWATE Check Lev Set W-1 2. Verify Ope 3. Verify Ope 3. Verify Ope 5. Verify Ope 5. Verify Ope 5. Check Ba Filter Set In L Primary Filter 7. Check Pre Train 1	-2 R EXTRACTION S rels of Submersible Act Set RW-2 aration of Aeration T aration of Aeration T aration of Chlorine F Amount of Chlorine F Amount of Polymer F Station of Wastewate g Filter System Jse A or B Filter Ssure in Carbon Ca 1st 2nd	SYSTEM Well Pumps Act Set RW-3 ank Blower On O eed Pump On Of In Tankgal. eed Pump On Of In Tankgal. er Feed Pump iter Type: Set A nisters 3rd	Act RW- Iff f Secondary Fil	Set Act Make Chlorine Make Polymer	Set RW-5 Yes No Yes No	Act Differential Pressurep
7. % LEL UNDWATE Check Lev Set W-1 Verify Ope Verify Ope Verify Ope Check Ba Filter Set In L Primary Filter Check Pre Train 1 Train 2	-2 R EXTRACTION S rels of Submersible Act Set RW-2 aration of Aeration T pration of Chlorine F Amount of Chlorine F Amount of Polymer F Amount of Polymer F aration of Wastewate g Filter System Jse A or B Filter System ssure in Carbon Ca 1st 2nd	SYSTEM Well Pumps Act Set RW-3 ank Blower On O eed Pump On Of In Tank gal. eed Pump On Of In Tank gal. er Feed Pump itter Type: Set A nisters 3rd	Act RW- f f Secondary Fil	Set Act Make Chlorine Make Polymer	Set RW-5 Yes No Yes No	Act

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 101-120

Initials Dlate

1. Individua	I Air Flow Lines				
Well	Adjustment	Air Flow	Vacuum		
ID	Necessary	(cfm)	(in. Hg)		
VW-1					
VW-2		C 171 140	1		
VW-3		COPIN			
VW-4		- 1 - 1			
VW-5					
VW-6	1	DK-1-			
VW-7	L L	11			
VW-8					
0			1	h.	
2. Vacuum Temp (F) 3. Vacuum Before Filte	Pump Unit (On _ <u>140</u> Pump Unit Filter r <u>(0</u> in. Hg) Off Air Flow (cfm) <u>23</u>	After Filter	Pressure (psi)	
4. Verify Op Vacuum Ne 5. Check Ai	peration of Demister par Entrance To Der ir Dilution Valve O	Pump/0 in nister/0 in Den Closed	. Hg		
6. Inspect C Line Enterir 7. % LEL _	Carbon Adsorbers	Aour	si l	Line Entering Secondary Ca	arbon (2008)0.5 _psi
GROUNDWATI 1. Check Le Set RW-1 <u>4. 0</u>	ER EXTRACTION evels of Submersible Act Se <u>4.1</u> RW-2 <u>6.0</u>	SYSTEM Well Pumps Act Set <u>6.0</u> RW-3 <u>5.1</u>	Act <u>6.1</u> RW-4	Set Act Set <u>ຢູ່ບໍ່ບໍ່, 2</u> RW-5 <u>5.8</u>	Act <u>5,9</u>
2. Verify Op	peration of Aeration	Tank Blower (On) O	ff		
3. Verity Op	Amount of Chlorin	e In Tank gal.	י ש	Make Chlorine Yes No	
4. Verify Op	eration of Polymer Amount of Polyme	Feed Pump Op Offer In Tank <u>25</u> gal.	i /	Make Polymer Yes No	
5. Verify Op	peration of Wastewa	ter Feed Pump	_		
6. Check B Filter Set In Primary Filt	ag Filter System Use A or (B) er Pressure/8_p	Filter Type: Set A si	Set B Secondary Filte	er Pressure <u>[4</u> psi	Differential Pressure <u>3.75 ps</u>
7. Check Pr Train 1 Train 2 Train 3	ressure in Carbon C 1st 2n 2.3 0. 7.5	anisters d 3rd 25 0 / 0	-		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 10/14/93

Initials DWK

t Individual	Air Flow Lines		
Well	Adjustment	Air Flow	Vacuum
	Necessary	(cfm)	(in Ha)
VWL1	riccossary		
VIALO			
	C 1	TOMA	
V VV-3			
V W-4			
VW-5			
VW-6		611	
VW-7			
VW-8			
VW-9			
 Vacuum Program (F) Vacuum Program (F) Vacuum Program (F) Verify Ope Vacuum Nea Check Air (F) 	ump Unit Filter in. Hg ration of Demister r Entrance To Dem Dilution Valve Op	Air Flow (cfm) <u>239</u> Pump <u>/</u> hister <u>()</u> in.	Fressure (psi) <u>6.5</u> After Filter <u>in</u> . Hg
6. Inspect Ca Line Entering 7. % LEL <u>9</u> -	rbon Adsorbers _ Primary Carbon (- 10	Араг В)ре	Line Entering Secondary Carbon (A or)
ROUNDWATEI 1. Check Lev Set	R EXTRACTION els of Submersible Act Set	SYSTEM Well Pumps Act Set	Act Set Act Set Act
RW-1 <u>9.0</u>			FF RW-4 <u>6.0 6.0</u> RW-5 <u>5.8 6.0</u>
z. veniy ope			
3. Verify Oper	ration of Chlorine F Amount of Chlorine	Feed Pump On Off a In Tank gal.) Make Chlorine Yes No
4. Verify Ope	ration of Polymer F Amount of Polyme	eed Pump (On) Off In Tank 25 gal.	Make Polymer Yes (No)
5. Verify Ope	ration of Wastewat	er Feed Pump	
6. Check Bag Filter Set In U Primary Filter	g Filter System ise A or (B) F Pressure <u>25</u> ps	ilter Type: Set A si	Set B Secondary Filter PressurepsiDifferential Pressure
7. Check Pres Train 1 Train 2 Train 3	Source in Carbon Ca 1st 2nc 6,8 0. 6,7,2	anisters I 3rd 3 0 5 0	

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

	. /		11		5	
	Date: 10/1	<u>8 93</u>	Initials //			
VAF	OR EXTAN	CTION SYSTEM				
	1. Individual	Air Flow Lines		_		
	Well	Adjustment	Air Flow	Vacuum		
	ID	Necessary	(cfm)	(in. Hg)		
	VW-1					
	VW-2	C.	. 1			
	VW-3		$\langle \cdot \rangle$			
	VW-4		15m	· · · · · · · · · · · · · · · · · · ·		
	VW-5					
	VW-6		Y In			
	VW-7		VIRA			
	VW-8					
	VW-9			1		
	2. Vacuum P Temp (F)/	ump Unit On A	Off ir Flow (cfm) <u>23</u>	<u>) </u>	Pressure (psi) 12	
	3. Vacuum P	ump Unit Filter				
	Before Filter	in. Hg		After Filter	in. Hg	
	-		7	3 - T		
	4. Verify Ope Vacuum Nea	ration of Demister F r Entrance To Demi	oump <u>6</u> ster <u>0</u> in.	Hg		
- Y	5. Check Air	Dilution Valve Ope	n Closed			
	6 Inspect Ca	uton Adsorbers V				
	Line Entering	Primary Carbon (A		si	Line Entering Secondary C	arbon (A o(B) <u>55</u> psi
	7. % LEL <u>/(</u>	<u> </u>				
GRO	DUNDWATE		Well Pumps			
	Set	Act Set	Act Set	Act	Set Act Set	Act
	RW-1	RW-2	R <mark>W</mark> -3	RW-	4 RW-5	
	2. Verify Ope	ration of Aeration T	ank Blower	Ħ		
	3 Verity Ope	ration of Chloring R				
	o. Verny Ope	Amount of Chiorine	in Tank gal.		Make Chlorine Yes No	
	4. Verify Ope	ration of Polymer Fe	ed Pump (On) Off		-	
		Amount of Polymer	In Tank 💇 gal.		Make Polymer Yes (No)	
	5. Verify Ope	ration of Wastewate	r Feed Pump		C	
	6 Cheek Be					
	Ciltor Set In I		Itor Tupo: Sot A	Set		
	Primary Filter	Pressure <u>20 ps</u>	iter Type. Set A	Secondary Fi	ter Pressure <u>3</u> psi	Differential Pressure <u>5</u> psi
	7. Check Pre	ssure in Carbon Ca 1șt 2nd	nisters 3rd			
	Train 1	6. 1	0	-		
	Train 2	6 1	0	-		
	Train 3	6 /	0	-		
				-		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: /C

Initials hu

1 Individual	Air Flow Lines			_	
Well	Adjustment	Air Flow	Vacuum	1	
ID	Necessary	(cfm)	(in. H <u>q</u>)		
V W-1					~
VW-2	Θ				
VW-3					
VW-4		/		7	
VW-5		ĥ		1	
VW-6			11	1	
		Ticc		1	
VWA				-	
		- • • •		-	
				_	
2. Vacuum P Temp (F)	Pump Unit On	⁾ Off ir Flow (cf <mark>m</mark>) <u>23</u>	<u> </u>	Pressure (psi) 3	í.
3. Vacuum P Before Filter	Pump Unit Filter		After Filter	in. Hg	
4. Verify Ope Vacuum Nea	eration of Demister F ar Entrance To Dem	Pump <u>i</u> isteri	n. Hg		
5. Check Air	Dilution Valve Ope	en Closed			
6. Inspect Ca Line Entering	arbon A dsorbers g Prim ary Carbon (7	ог B)	psi	Line Entering Secondary C	Carbon (A o(B)psi
7. % LEL <u>/</u>	0				
GROUNDWATE 1. Check Lev Set	R EXTRACTION Set	SYSTEM Well Pumps	at Act	Set Act Set	Act
RW-1	3,8 RW-2	_ <u>65</u> _RW-3_	<u>re</u> RW-	4 612 1.4 RW-5	5,9
2. Verify Ope	eration of Aeration T	ank Blower On (Off		
3. Verify Ope	eration of Chlorine F Amount of Chlorine	eed Pump On (C In Tank ga	l.	Make Chlorine Yes No	
4. Verify Ope	eration of Polymer F Amount of Polymer	eed Pump On O In Tank <u>4</u> gal)ff	Make Polymer Yes No	
5. Verify Ope	eration of Wastewate	er Feed Pump	_		
6. Check Ba Filter Set In I Primary Filte	lg Filter System Use (A) or B F Ir Pressure _ <u>]</u> ;_ps	ilter Type: Set A i	Set B Secondary Fil	ter Pressure <u>/</u> 3_psi	Differential Pressure _ <i>O</i> _psi
7. Check Pre	essure in Carbon Ca 1st 2nd	nisters 3 <mark>rd</mark>			
Train 2					
Train 2					
					-

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 11/4/94

Initials_DWK

Weil Adjustment Air Flow Vacuum (cfm) (n. Hq) VW+3 (cfm) (n. Hq) VW+3 (cfm) (n. Hq) VW+3 (cfm) (n. Hq) VW+4 (cfm) (cfm) VW+5 (cfm) (cfm) VW+6 (cfm) (cfm) VW+7 (cfm) (cfm) VW+6 (cfm) (cfm) VW+9 (cfm) (cfm) Sucum Pump Unit (flier (cfm) (cfm) Sucum Neer Entrace To Demister Pump (cfm) Line Entering Primery Cathon (Aborters (cfm) Line Entering Primery Cathon (Aborters) (cfm) 1. Check Levels of Submersible WilP Pumps (cfm) 1. Check Levels of Submersible WilP Pumps (cfm) 1. Check Levels of Submersible WilP Pumps	• • •	1. Individual	Air Flow Lines			
ID Necessary (cm) (in. Hg) VW+2 VW+3 VW+3 VW+3 VW+3 VW+4 VW+4 VW+4 VW+3 VW+4 VW+4 VW+4 VW+4 VW+4 VW+4 VW+4 Verif Operation of Demister Pump After Filter		Well	Adjustment	Air Flow	Vacuum	
VW-1 VW-4 VW-4 Verty Operation of Demister Pump Vacuum Neer Entrance To Demister V Verty Operation of Demister Pump V Vacuum Neer Entrance To Demister V Scheek Entrance To Demister Pump Vacuum Neer Entrance To Demister 1< Check Levels of Submersiole Well Pumps <td></td> <td>ID</td> <td>Necessary</td> <td>(cf<mark>m</mark>)</td> <td>(in. Hg)</td> <td></td>		ID	Necessary	(cf <mark>m</mark>)	(in. Hg)	
VW-2 VW-4 VW-4 VW-4 VW-5 VW-7 VW-6 VW-7 VW-9 VW-9 Verty Operation of Demister Pump After Filter in. Hg S. Check Air Dilution Valve Dpm S. Check Air Dilution Valve Dpm Vacuum Neer Entrance To Demister -5^{-} in. Hg S. Check Air Dilution Valve Dpm Check Entrance To Demister -5^{-} in. Hg S. Check Air Dilution Valve Dpm S. Check Air Dilution Valve Dpm S. Check Star Stat Set Act S. Verity Operation of Aeration Tank Blower D) Off 3. Verity Operation of Aeration Tank God S. Verity Operation of Polymer Feed Pump Off Annount of Chionie In Tank God S. Verity Operation of Wastewater Feed Pump		VW-1				
VW-4 VW-6 VW-6 VW-6 VW-7 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 VW-9 Stacum Pump Unit Filter Before Filterin. Hg Atter Filter/in. Hg 4. Verity Operation of Demister Pump Vacuum Neer Entrance To Demisteris in. Hg S. Check Air Dilution Valve. OpenClosed 5. Inspect Carbon Adsorbers Line Entering Primary Carbon (Abr B) psi Line Entering Secondary Carbon (A on B) O.75 psi 7. % LELC GROUNDWATER EXTRACTION SYSTEM 1. Check Levels of Submersible Well Pumps Set Act BW-1 gSi B. Act Set Act Set Act Set Act Set Act BW-1 gSi B		VW-2				
VW-4 VW-6 VW-6 VW-7 VW-9 VW-9 VW-9 V Verside Atter Filterin. Hg 3. Vacuum Nump Unit Filter Before Filterin. Hg 4. Verity Operation of Domister Pump /-> Vecuum Near Entrance To Domister Pump		VW-3	-1)1	TEN		
VW-6 VW-7 VW-7 VW-9 2. Vacuum Pump Unit Image: Pressure (psi) 3. Vacuum Pump Unit Image: Pressure (psi) 3. Vacuum Pump Unit Filter Image: Pressure (psi) Before Filter Image: Pressure (psi) 4. Verity Operation of Demister Pump Image: Pump Vacuum Near Entrance To Demister Image: Pump 5. Check Air Dilution Valve Open 6. Inspect Carbon Adsorbers Image: Pump Vacuum Near Entrance To Demister 1. Check Levels of Submersible Well Pumps Image: Pump Vacuum Near Entrance To Demister 1. Check Levels of Submersible Well Pumps Set 1. Check Levels of Submersible Well Pumps Set 1. Check Levels of Submersible Well Pumps Set 1. Check Levels of Submersible Well Pumps OFF 1. Check Levels of Submersible Well Pumps Make Chlorine Yes No 2. Verity Operation of Advance Feed Pump Off 3. Verity Operation of Polymer Feed Pump Off 4. Verity Operation of Polymer Feed Pump Off 4. Verity Operation of Polymer Feed Pump Off 6. Check Bag Filter System Filter Type: Set A Set B Filter Set In U		VW-4	ZYP	· · · ·		
VW-6 VW-7 VW-9 Off 2. Vacuum Pump Unit Image: Carbon Adsorbers 3. Vacuum Pump Unit Filter Before Filter Before Filter		VW-5		AFT		
VW-7 VW-9 2. Vacuum Pump Unit Air Flow (cfm) 230 Pressure (psi) 3.5		VW-6		()		
VW-8 2. Vacuum Purpo Unit Temp (F) 3. Vacuum Purpo Unit Filter Before Filterin. Hg 4. Verity Operation of Demister Purpo/5_ in. Hg 5. Check Air Dilution Valve Open 7. % LEL GROUNDWATER EXTRACTION SYSTEM 1. Check Levels of Submersible Well Purpos Set Act		VW-7				
W4-9 2. Vacuum Pump Unit Off Temp (F) Air Flow (cfm, 3. Vacuum Pump Unit Filter Before Filter Before Filter in. Hg 4. Verify Operation of Demister Pump After Filter 4. Verify Operation of Demister Pump In. Hg 5. Check Air Dilution Valve Open Closed 6. Inspect Carbon Adsorbers		VW-8				
2. Vacuum Pump Unit Temp (F)		9		1		
4. Verify Operation of Demister Pump 1.5 in. Hg 5. Check Air Dilution Valve Open Closed 6. Inspect Carbon Adsorbers		2. Vacuum P Temp (F)/ 3. Vacuum P Before Filter	ump Unit On <u>30</u> ump Unit Filter 0 in Ho	Off ir Flow (cfm) <u>2.3</u>	O	Pressure (psi) <u>3.5</u>
 4. Verify Operation of Demister Pump				/		<u></u>
5. Check Air Dilution Valve Open Closed 6. Inspect Carbon Adsorbers		4. Verify Ope Vacuum Nea	eration of Demister F Ir Entrance To Demi	Pumpir sterir	n. Hg	
6. Inspect Carbon Adsorbers Line Entering Primary Carbon (A) or B)psi 7. % LEL GROUNDWATER EXTRACTION SYSTEM 1. Check Levels of Submersible Well Pumps Set Act Set Act Set Act Set Act Set Act RW-1 <u>7.7</u> <u>3.8</u> RW-2 <u>5.8</u> <u>6.0</u> RW-3 <u>OFF</u> RW-4 <u>6.2</u> <u>6.3</u> RW-5 <u>6.0</u> <u>6.0</u> 2. Verify Operation of Aeration Tank Blower On Off 3. Verify Operation of Chlorine Feed Pump On Off Amount of Chlorine In Tankgal. Make Chlorine Yes No 4. Verify Operation of Polymer In Tank <u>7.7</u> gal. Make Polymer Yes No 5. Verify Operation of Wastewater Feed Pump 6. Check Bag Filter System Filter Set In Usa <u>A</u> or B Filter Type: Set A Set B Primary Filter Pressure <u>100</u> Psi 7. Check Pressure in Carbon Canisters 1st 2 nd 3rd <u>Train 1 3.5 0.75 psi</u> Train 3 <u>7.5</u> <u>6.0</u> <u>6.0</u>)	5. Check Air	Dilution Valve Ope			
7. % LEL _/O_ GROUNDWATER EXTRACTION SYSTEM 1. Check Levels of Submersible Well Pumps Set Act Set Act Set Act Set Act RW+1 <u>7./_3.8</u> RW+2 <u>5.8</u> <u>6.0</u> RW-3 <u>OFF</u> RW-4 <u>6.2</u> <u>6.3</u> RW-5 <u>6.0</u> <u>6.0</u> 2. Verify Operation of Aeration Tank Blower On Off 3. Verify Operation of Chlorine Feed Pump On Off 4. Verify Operation of Polymer Feed Pump On Off 4. Verify Operation of Polymer Feed Pump Op 6. Check Bag Filter System Filter Type: Set A Filter Set In Use A) or B Filter Type: Set A Secondary Filter Pressure ZO psi Secondary Filter Pressure ZZ psi 7. Check Pressure in Carbon Canisters 1st 1st 2nd 1st 0.5		6. Inspect Ca Line Entering	rbon Adsorbers		<u>osi</u>	Line Entering Secondary Carbon (A or B)
GROUNDWATER EXTRACTION SYSTEM 1. Check Levels of Submersible Well Pumps Set Act Set Act Set Act Set Act RW-1 <u>4</u> / <u>4</u> / <u>4</u> / <u>3</u> .8 RW-2 <u>5</u> / <u>8</u> 6.0 RW-3 <u>OFF</u> RW-4 <u>6</u> .2 <u>6</u> .3 RW-5 <u>6</u> .0 <u>6</u> ,0 2. Verify Operation of Aeration Tank Blower On Off Off Amount of Chlorine Feed Pump On Off 3. Verify Operation of Chlorine In Tank gal Make Chlorine Yes No Make Polymer Yes No 4. Verify Operation of Polymer Feed Pump On Off Amount of Polymer In Tank <u>7</u> gal Make Polymer Yes No 5. Verify Operation of Wastewater Feed Pump		7. % LEL _/	<u>0</u>			
1. Check Levels of Submersible Well Pumps Set Act Make Chlorine Yes No 1. Verify Operation of Polymer Feed Pump On Off Amount of Polymer Feed Pump Off Make Polymer Yes No 5. Verify Operation of Wastewater Feed Pump O Set B Secondary Filter Pressure Z psi Differential Pressure psi psi Secondary Filter Pressure Z	GR		R EXTRACTION S	YSTEM		
Set Act Set Bc Set Act Se		1. Check Lev	els of Submersible	Well Pumps		
 2. Verify Operation of Aeration Tank Blower On Off 3. Verify Operation of Chlorine Feed Pump On Off Amount of Chlorine In Tank gal. Make Chlorine Yes No 4. Verify Operation of Polymer Feed Pump Op Off Amount of Polymer In Tank gal. Make Polymer Yes No 5. Verify Operation of Wastewater Feed Pump		Set RW-1 <u>4.</u>	Act Set 3.8 RW-2 5.8	Act Set 6.0_ RW-3_0	Act	Set Act Set Act 4 <u>6.2 6.3</u> RW-5 <u>6.0 6.0</u>
 3. Verify Operation of Chlorine Feed Pump On Off gal. Make Chlorine Yes No 4. Verify Operation of Polymer Feed Pump Op Off Amount of Polymer In Tank <u>y</u> gal. Make Polymer Yes No 5. Verify Operation of Wastewater Feed Pump <u>y</u> 6. Check Bag Filter System Filter System Filter Set In Use A or B Filter Type: Set A <u>Set B</u> Secondary Filter Pressure <u>ZZ</u> psi Differential Pressure <u>psi</u> 7. Check Pressure in Carbon Canisters <u>1st</u> 2nd 3rd <u>Train 1</u> 3.5 0.75 0.5 <u>Train 3</u> <u>y</u> 5 		2. Verify Ope	ration of Aeration Ta	ank Blower On C	Off	
 4. Verify Operation of Polymer Feed Pump On Off Amount of Polymer in Tank <u>f</u> gal. Make Polymer Yes No 5. Verify Operation of Wastewater Feed Pump		3. Verify Ope	ration of Chlorine Fo Amount of Chlorine	eed Pump On Ol In Tank gal.	H	Make Chlorine Yes No
5. Verify Operation of Wastewater Feed Pump 6. Check Bag Filter System Filter Set In Use A or B Filter Type: Set A Set B Primary Filter Pressure 20 psi Secondary Filter Pressure 22 psi Differential Pressure opsi 7. Check Pressure in Carbon Canisters 1st 2nd 3rd Train 1 3.5 0.75 0.5 Train 2 3.5 1.5 0.5 Train 3 4.5		4. Verify Ope	ration of Polymer Fe Amount of Polymer	eed Pump Op Of In Tank <u>45</u> gal.	f	Make Polymer Yes No
6. Check Bag Filter System Filter Set In Use A or B Filter Type: Set A Set B Primary Filter Pressure 20 psi Secondary Filter Pressure 22 psi Differential Pressure psi 7. Check Pressure in Carbon Canisters 1st 2nd 3rd Train 1 3.5 0.75 0.5 Train 2 3.5 1.5 0.5 Train 3 4.5		5. Verify Ope	ration of Wastewate	er Feed Pu <mark>mp</mark>	-	
7. Check Pressure in Carbon Canisters1st2nd3rdTrain 1 3.5 0.75 0.5 Train 2 3.5 1.5 0.5 Train 3 4.5 $$		6. Check Bay Filter Set In L Primary Filter	g Filter System Jse A or B Fi Pressure <u>20</u> psi	lter Type: Set A	Set B Secondary Fil	ter Pressure <u>ZZ_psi</u> Differential Pressure <u>O</u> ps
		7. Check Pres Train 1 Train 2 Train 3	ssure in Carbon Car 1st 2nd 3.5 0.75 3.5 /.5 7.5	nisters <u>3rd</u> <u>0,5</u> <u>0,5</u> <u>-</u>		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 11 10/93

Initials DMS

1. Indivi	dual Air Flow Lines			_		
We	II Adjustment	Air Flow	Vacuum			
ID	Necessary	(cfm)	(in. Hg)	_		
VW	-1					
VW	2 ()(IGN	0			
VW	-3 /	$\sum 1^{\prime}$	/	4		
VW	4 0 '			4		
VW4	-5			4		
VW	6					
VW	7			_		
VW	-8			4		
VW	-9					
2. Vacu Temp (i	um Pump Unit On F)130) Off ir Flow (cfm) <u>23</u>	5	Pressure (psi) <u>3.</u> S		
3. Vacu Before I	um Pump Unit Filter Filterin. Hg		After Filter	in. Hg		
4. Verify Vacuun	y Operation of Demister for Near Entrance To Dem	Pump <u>2</u> ister <u>0</u> ir	n. Hg			
5. Chec	k Air Dilution Valve	Closed				
6. Inspe Line En	ct Carbon Adsorbers	Бог В) <u>14</u> г	osi	Line Entering Secondary C	arbon (A or 🗐 <u>5</u>	_psi
7. % LE	L _] _					
GROUNDW	ATER EXTRACTION					
RW-1_	Set Act Set Y.0 3.8 RW-2 5.8	Act Set	t Act <u>F</u> FR₩-	Set Act Set 4 <u>6 47 6 1</u> RW-5 <u>5 9</u>	Act 6./	
2. Verify	Operation of Aeration T	ank Blower On C	Dff			
3. Verify	<pre>/ Operation of Chlorine F Amount of Chlorine</pre>	eed Pump On (O In Tank gal.	E C	Make Chlorine Yes No		
4. Verity	y Operation of Polymer F Amount of Polymer	eed Pump On Of	ff	Make Polymer Yes No		
5. Verify	Operation of Wastewat	er Feed Purnp	-		3 14 3	
6. Cheo Filter Se Primary	ck Bag Filter System et In Use A or B F Filter Pressure <u>/ /</u> ps	ilter Type: Set A ^{Stra}	SP23 Set B <u>3 /</u> Secondary Fil	n Iter Pressure _/ <u>/</u> ∠_psi	Differential Pressure _	psi
7. Chec Train	k Pressure in Carbon Ca 1st 2nd 11 2.0 0.5	nisters 3rd 0.4				
Train	13 2.8		_			

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 11 17 193

Initials

Well	Adjustment		Vacuum	
	Necessary	(cfm)	(in, Ha)	
VW-1		(0.0.1)		-
VW-2		10	1	-
VW-3				
VW-4				7
VW-6				-
VW-6	NO			
VW-7	$ () \square$	Ů I		
VW-8				
V W 0				
 2. vacuum P Temp (F) 3. Vacuum P Before Filter_ 4. Verify Ope Vacuum Nea 5. Check Air I 6. Inspect Ca Line Entering 	ump Unit Un USO A ump Unit Filter in. Hg ration of Demister I r Entrance To Dem Dilution Valve Open rbon Adsorbers Primary Carbon (Flow (cfm) Pump ister ir an Closed Aor B) 4	<u>3 s</u> After Filter n. Hg <u>Dsi</u>	Pressure (psi) in. Hg Line Entering Secondary Carbon (A or (E))psi
7. % LEL <u>[(</u> iROUNDWATE 1. Check Lev Set RW-1 <u>4.0</u>	REXTRACTION els of Submersible Act Set 3. RW-2	SYSTEM Well Pumps Act Sel RW-3	t Act	Set Act Set Act 4. <u>(1. (3.</u> RW-6 <u>≤8</u> (0
2. Verify Ope	ration of Aeration T	ank Blower (On C	nc	
3. Verify Ope	ration of Chlorine F Amount of Chlorine	eed Pump On Q In Tank gal.		Make Chlorine Yes No
4. Verify Ope	ration of Polymer F Amount of Polymer	eed Pump On Of In Tank <u>SJ</u> gal.	ff	Make Polymer Yes No
5. Verify Ope	ration of Wastewate	er Feed Pump	_	4 11/13/11
6. Check Bag Filter Set In U Primary Filter	g Filter System Ise A)or B F Pressure <u> </u> C ps	ilter Type: Set A <u>Acc</u> i	Set B <u>3</u> Secondary Fil	M Iter Pressure <u>(</u> のpsi Differential Pressure <u></u> ps
7. Check Pres Train 1 Train 2 Train 3	ssure in Carbon Ca 1st 2nd [.0 0 ⋅ 5 1.0 1.0 1.5 ~	nisters	-	

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 11 29 93

Initials_CMS

1. Individual A	Adjustment	Air Flow	Vacuum	1
	Necessary	(cfm)	(in Ha)	
	Necessary			-
VWL2				-
VWL2	7 1			-
				-
				-
VW-6				_
VWHO	6.4	har		4
/				-
VW-8				-
V V/-0				
2. Vacuum Pu Temp (F) 3. Vacuum Pu Before Filter	mp Unit On 130 Ai mp Unit Filter © in. Ha	Off r Flow (cfm) <u>2</u>	<u>35</u> After Filter	Pressure (psi) <u>6.5</u>
4. Verity Operation	ation of Demister F	ump //		
Vacuum Near	Entrance To Demi	ster 🕖 i	n. Hg	
	100	~	•	
5. Check Air D	ilution Valve / Ope	n 🦯 Closed		
6. Inspect Carl	bon Adsorbers	/		
Line Enterina	Primary Carbon	Боr B) /Ч и	osi	Line Entering Secondary Carbor Rocal S osi
J		·	-	
7.% LEL 12				
	_			
	EXTRACTION S	YSTEM		
1 Check Leve	ls of Submersible \	Vell Pumps		
Set	Act Set	Act Se	t Act	Set Act Set Act
	4.0 RW-2 S.S.	T.S. RW-3 C	FF BW	A (O (O BWLS SCA SS
<u> </u>		<u></u>		
2 Verify Oper	ation of Aeration T		ר#	
3 Verity Oper	ation of Chloring E		a)	
	mount of Chloring			Make Chloring Vas Na
A				
A Vority Open	ation of Polymor Er		**	
				Make Dolumot Yes No
A	mount of Polymer	и галк <u>20</u> gal.		Make Polymer Tes/No
5. Verify Opera	ation of Wastewate	r Feed Pump	_	
6 Check Bac	Filtor System			
Eilter Set In Lie			17 Set - 2/	- ² 1
		iter Type: Set A	Secondary Fil	
Frimary Filter	ressurepsi		Secondary Fil	
7 Chack Brook	sure in Cathon Ca			
7. CHECK FIES		1131912		
Train 1	יאני 200 1.0 ארי			
Train I	N. 1.1	<u></u>		
		0.7	_	
Irain 3	. 0	-		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 17 [3

Dons Initials

1. Indi	vidual Air Flow Lines		0.296
W	ell Adjustment	Air Flow	Vacuum A in Ha
	D Necessary		(in. Hall Je pris
VV	V-1 ~	<u>+ 20</u>	14 51
VV	¥2 —	250	14 7.1
VV	¥-3	9.0	16
VV	¥4 -	140	16
VV	¥-5 -	STUK	<u>(5</u>
VV	¥-5 -		-
VV	¥-7 ~	+	0
VV	- 8-4	-	
VV	- 04	115	16
Temp 3. Vac Before 4. Veri Vacuu 5. Che 6. Insp	(F) <u>(45</u> uum Pump Unit Filter Filter <u>2.8</u> in. Hg fy Operation of Demister m Near Entrance To Den ck Air Dilution Valve Op rect Carbon Adsorbers V	Air Flow (cfm) 215 Pump 3.0 in. en Closed	5 Pressure (psi) <u>7.0</u> After Filter <u>2.8</u> in. Hg
נוחפ ב 7. % נו 2011 גרוטאט	EL <u>15</u>	Afgr B) <u>[Z</u> ps	si Une Entering Secondary Carbon (A <u>or 19) 7</u> psi
1 Che	ck Levels of Submersible		
RW-1	Set Act Set 식.0 식.1 RW-2 5	Act Set 1_ <u>5</u> ·7_ RW-3_ <u>O</u> ≁	$\begin{array}{c} \text{Act} & \text{Set} & \text{Act} & \text{Set} & \text{Act} \\ \hline $
2. Veri	fy Operation of Aeration	Fank Blower 🗗 Off)ff
3. Veri	fy Operation of Chlorine I Amount of Chloring	Feed Pump On Off a In Tank gal.	Make Chlorine Yes
4. Veri	ly Operation of Polymer F Amount of Polyme	$\frac{1}{2}$ eed Pump $\frac{1}{2}$ Off r in Tank $\frac{2}{2}$ gal.	f Make Polymer Yes No
5. Veri	fy Operation of Wastewa	er Feed Pump	-
6. Che Filter S Primar	ck Bag Filter System Set In Use A or B f Filter Pressure 25 pa	Filter Type: Set A <u>5 // </u> si	<u> Set B ▲ こっ</u> チ こ S P Z Secondary Filter Pressure <u> こ</u> psi Differential Pressure <u> こ</u> psi
7. Che Trai Trai Trai	ck Pressure in Carbon Ca 1st2nd n 1 てい ろ、イ n 2 ち、う	anisters 1 3rd 0.3 0.0	
-			

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 12/7/93

Initials

1. Individual A	Air Flow Lines		154	_	
Well	Adjustment	Air <mark>Flow</mark>	Vacuum		
ID	Necessary	(cfm)	(in. Hg)		
VW-1	No		eł		
V W-2		19.5	Ч		
VW-3		8.5-10	4.5		
VW-4		9	4.5		
VW-6		Stuck	4		
VW-6		GLick	4.6		
VW-7		Str K	4.5		
VW-8		5.5	9		
VW-9	\forall	11	9		
3. Vacuum Pu Before Filter_ 4. Verify Oper Vacuum Near 5. Check Air [6. Inspect Car Line Entering 7. % LEL <u>14</u>	ump Unit Filter in. Hg ration of Demister r Entrance To Dem Dilution Valve Op rbon Adsorbers Primary Carbon	Pump $\underline{}$ ister $\underline{}$ $\underline{}$ ir en Closed $\overline{}$ or B) $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$	After Filter n. Hg osi	Line Entering Seconda	ary Carbon (A orB) <u> </u>
ROUNDWATER 1. Check Leve Set RW-1 <u>4.0</u> 2. Verify Oper	R EXTRACTION els of Submersible Act Set <u>Ч. (</u> RW-2 <u>ら</u> つ ration of Aeration 1	SYSTEM Well Pumps Act Set S.C RW-3 0	RW-	Set Act S 6.1 5.1 RW-5 9	Set Act 5-8 5-8
3. Verify Oper	ration of Chlorine F Amount of Chlorine	eed Pump On 6	Ð	Make Chlorine Yes	3
4. Verify Oper A	ration of Polymer F Amount of Polymer	eed Pump OP Of In Tank <u>15</u> gal.	f	Make Polymer Yes N	0
5. Verify Oper	ration of Wastewat	er Feed Pump	-	146	
6. Check Ba <u>c</u> Filter Set In U Primary Filter	g Filter System se A or B F Pressure 16 ps	ses ilter Type: Set <u>A کلی</u> i	Secondary Fil	H 325- Ter Pressure <u>20</u> psi	Differential Pressure <u>3</u> psi
7. Check Pres Train 1 Train 2 Train 3	ssure in Carbon Ca 1st 2ng 0 1.5 0 1.6 0.5	nisters , 3rd O C	-		

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 12/10193

Initials Izm S

VAPOR EXTRACTION SYSTEM

14/-11		A: 5	1	7	
vveii	Adjustment	AIT FIOW	Vacuum		
	Necessary		(in. Fig)		
		24	1 2 2 6	_	
			12 3.5	-	
				-	
		() v	4 4	-	
VWLE		STOCK	+ <u>19</u> 1	-	
		SILL		-	
		HUCK		-	
VVV-G		Stucic	3.5	-	
V V		Much 11	ye 3.5		
2. Vacuum P Temp (F) 3. Vacuum P Before Filter	$\frac{\text{ump Unit}}{1 \cdot 1 \cdot 5} (On \land A)$ ump Unit Filter $3 \cdot 5 \text{in Ha}$	Off ir Flow (cfm) 213	After Filter	Pressure (psi) <u> </u>	-
Delore Filler				<u> </u>	
4. Verify Ope Vacuum Nea	eration of Demister F Ir Entra nce To Demi	ster	. Hg		
5. Check Air	Dilution Valve Ope	in Closed			
6. Inspect Ca Line Entering	Prim ary Carbon	Гагв)г <u>г</u> р	si	Line Entering Secondary C	Carbon (A or (B)psi
7. % LEL <u>1</u> .	5				
SROUNDWATE 1. Check Lev Set RW-1 <u>4.0</u>	REXTRACTION S rels of Submersible Act Set <u>4.0</u> RW-2 <u>5.4</u>	Well Pumps Act Set	Act	Set Act Set 4 <u>6.2_6.3</u> RW-6 <u>5.8</u>	Act 5.9
2. Verify Ope	ration of Aeration T	ank Blower On C	off		
3. Verify Ope	ration of Chlorine Fo Amount of Chlorine	eed Pump On Of In Tank gal.		Make Chlorine Yes No	
4. Verify Ope	ration of Polymer Fe Amount of Polymer	eed Pump On Of In Tank <u> </u>	f	Make Polymer Yes No	
5. Verify Ope	ration of Wastewate	er Feed Pump	-		
6. Check Ba Filter Set In L Primary Filter	g Filter System Jse A or B Fi Pressure <u>20</u> psi	Iter Type: Set A se	Secondary Fil	れ ふるて ter Pressure <u>18</u> psi	Differential Pressure 🚬 p
7. Check Pre	ssure in Carbon Car 1st 2nd て、 グ・ ず・ ぎ	nisters 3rd O			

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 12/17

Initials Lr45

1. Individual	Air Flow Lines	Air Flow	Magunit	_
AAGII	Adjustment			
	Necessary	(cim)	<u>(in. ⊓gi</u>	-
			<u>(</u>)	-
VVV-2			1	-
V VV-3			4.5	-
			6	_
VW-6			4.5	_
VW-6			5.5	_
VW-7			6	_
VW-8			6	
		Ur	5.5	
Temp (F) 3. Vacuum P Before Filter_ 4. Verify Ope	<u>I70</u> Ai ump Unit Filter <u>S.S</u> in. Hg ration of Demister F	Pump	After Filter	Pressure (psi)
5. Check Air 6. Inspect Ca	Dilution Valve Ope			
7. % LEL	2			
in Check Lev 1. Check Lev Set RW-1 <u>۱.0</u>	REXTRACTION S els of Submersible V Act Set 4.2_RW-2 5.7	SYSTEM Well Pumps Act Se RW-3	t Act	Set Act Set Act 4 <u>(4.2. (4.4)</u> RW-5 <u>5.8 5.8</u>
2. Verify Ope	ration of Aeration Ta	ank Blower	Dff	
3. Verify Ope	ration of Chlorine Fe Amount of Chlorine	eed Pump On (0 In Tank gal.	H _)	Make Chlorine Yes No
4. Verify Ope	ration of Polymer Fe Amount of Polymer	eed Pump On Of In Tank 25 gal.	ff	Make Polymer Yes No
5. Verify Ope	ration of Wastewate	er Feed Pump	-	
6. Check Bay Filter Set In L Primary Filter	g Filter System Ise A or B – Fi Pressure <u>_/0</u> psi	lter Type: Set A	Set B <u>Sm</u> Secondary Fil	ी Iter Pressure <u>है</u> psi Differential Pressureps
7. Check Pres Train 1 Train 2 Train 3	ssure in Carbon Carbon 1st 2nd 70 1.5 0 1.5	nisters 3rd 0.5 6.5	_	

Operations, Maintenance and Monitoring Manual Inspection Log Sheet

Date: 12/30/93

Initials DWK

ID	Adjustment	Air Flow	Vacuum	1
	Necessary	(cfm)	(in. Hg)	
V W-1	-			
VW-2	110			1
VW-3	LTT. L.	\mathbf{b}		
VW-4				1
VWL5	- V V			1
VW-6		-		1
	-			-
VWLA				4
				-
		1	1	
2. Vacuum F Temp (F)) Off sir Flow (cfm)_ <u>23</u>	30	Pressure (psi) 2, 5
Before Filter	$\underline{3,2}$ in. Hg	/	After Filter	<u>3, 2in. Hg</u>
4. Verify Op Vacuum Nee	eration of Dernister ar Entrance To Dern	Pump <u> </u>	. Hg	
5. Check Air	Dilution Valve Op	en Closed		
6. Inspect Ca Line Entering	arbon A dsorbers g Prim ary Carbon (√ Аррг В)р	si	Line Entering Secondary Carbon (A or B)psi
7. % LEL _/	3			
	REXTRACTION	SYSTEM		
		Well Pumps		
1. Check Lev	vels of Submersible			
1. Check Lev Set	vels of Submersible Act Set	Act Set	Act	Set Act Set Act
1. Check Lev Set RW-1 5.5	vels of Submersible Act Set 5,5 RW-2 6,5	Act Set	Act	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0
1. Check Lev Set RW-1 <u>5.5</u>	Act Set 5,5 RW-2 6.5	Act Set	Act <u>DFF</u> RW-	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0
1. Check Lev Set RW-1_ <u>5.5</u> 2. Verify Ope	vels of Submersible Act Set <u>5,5</u> RW-2 <u>6.5</u> eration of Aeration 1	Act Set 6.6 RW-3 0 ank Blower 0n 0	Act 2 <u>FF</u> RW-	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0
1. Check Lev Set RW-1 <u>5.5</u> 2. Verify Ope 3. Verify Ope	vels of Submersible Act Set <u>5,5</u> RW-2 <u>6.5</u> eration of Aeration 1 eration of Chlorine F Amount of Chlorine	Act Set 6.6 RW-3 (ank Blower On O eed Pump On Of In Tank gal.	Act <u>DFF</u> RW- ff	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0 Make Chlorine Yes No
1. Check Lev Set RW-1 <u>5.5</u> 2. Verify Ope 3. Verify Ope 4. Verify Ope	vels of Submersible Act Set <u>5,5</u> RW-2 <u>6.5</u> eration of Aeration 1 eration of Chlorine F Amount of Chlorine eration of Polymer F Amount of Polymer	Act Set 6.6 RW-3 () ank Blower On O eed Pump On Off in Tank gal. eed Pump On Off in Tank gal.	Act <u>DFF</u> RW-	Set Act <u>7.0</u> <u>7.1</u> RW-5 <u>7.0</u> <u>7.0</u> Make Chlorine Yes No Make Polymer Yes No
1. Check Lev Set RW-1 <u>5.5</u> 2. Verify Ope 3. Verify Ope 4. Verify Ope 5. Verify Ope	vels of Submersible Act Set <u>5,5</u> RW-2 <u>6.5</u> eration of Aeration 1 eration of Chlorine F Amount of Chlorine eration of Polymer Amount of Polymer eration of Wastewat	Act Set <u>6.6</u> RW-3 <u>(</u> Tank Blower On O Teed Pump On Off In Tank <u>gal</u> reed Pump On Off In Tank <u>50</u> gal. er Feed Pump <u>(</u>	Act DFF RW-	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0 Make Chlorine Yes No Make Polymer Yes No
 Check Lev Set RW-1 <u>5.5</u> Verify Ope Verify Ope Verify Ope Verify Ope Check Ba Filter Set In I Primary Filte 	vels of Submersible Act Set <u>5,5</u> RW-2 <u>6.5</u> eration of Aeration T eration of Chlorine F Amount of Chlorine eration of Polymer eration of Wastewat ag Filter System Use <u>A</u> or B F or Pressure <u>9</u> ps	Act Set <u>6.6</u> RW-3 <u>(</u> ank Blower On O eed Pump On Off In Tank <u>gal</u> . eed Pump On Off In Tank <u>50</u> gal. er Feed Pump <u>(</u>	Act DFF RW-	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0 Make Chlorine Yes No Make Polymer Yes No Ter Pressurepsi Differential Pressurepsi
 Check Lev Set RW-1 <u>5.5</u> Verify Ope Verify Ope Verify Ope Verify Ope Verify Ope Check Ba Filter Set In I Primary Filte Check Pre 	vels of Submersible Act Set 5,5 RW-2 6.5 eration of Aeration 1 eration of Aeration 1 eration of Chlorine F Amount of Chlorine eration of Polymer F Amount of Polymer F Amount of Polymer eration of Wastewat ag Filter System Use A or B F er Pressureps essure in Carbon Ca 1st 2nd	Act Set <u>6.6</u> RW-3 <u>(</u> ank Blower On O eed Pump On Off in Tank <u>gal</u> . reed Pump On Off in Tank <u>50</u> gal. er Feed Pump <u>(</u> ilter Type: Set A <u>)</u>	Act DFF RW-	Set Act <u>7.0</u> <u>7.1</u> RW-5 <u>7.0</u> <u>7.0</u> Make Chlorine Yes No Make Polymer Yes No Ter Pressure <u>9</u> psi Differential Pressure <u>0</u> psi
 Check Lev Set RW-1 <u>5.5</u> Verify Ope Verify Ope Verify Ope Verify Ope Verify Ope Check Ba Filter Set In I Primary Filte Check Pre 	vels of Submersible Act Set 5,5 RW-2 6.5 eration of Aeration 1 eration of Aeration 1 eration of Chlorine F Amount of Chlorine eration of Polymer F Amount of Polymer F Amount of Polymer eration of Wastewat ag Filter System Use A or B F er Pressure 9 ps essure in Carbon Ca 1st 2nd	Act Set 6.6 RW-3 () ank Blower On O ank Blower O O	Act DFF RW-	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0 Make Chlorine Yes No Make Polymer Yes No Ter Pressurepsi Differential Pressurepsi
 Check Lev Set RW-1 <u>5.5</u> Verify Ope Verify Ope Verify Ope Verify Ope Verify Ope Check Ba Filter Set In I Primary Filte Check Pre Train 1 Train 2 	vels of Submersible Act Set 5,5 RW-2 6.5 eration of Aeration 1 eration of Aeration 1 eration of Chlorine F Amount of Chlorine eration of Polymer F Amount of Polymer F Amount of Polymer eration of Wastewat ag Filter System Use A or B F erssure 9 ps essure in Carbon Ca 1st 2nd 0	Act Set 6.6 RW-3 () ank Blower On O ank Blower O <	Act DFF RW-	Set Act Set Act 7.0 7.1 RW-5 7.0 7.0 Make Chlorine Yes No Make Polymer Yes No Ter Pressurepsi Differential Pressurepsi

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

Before for		MONTH/YEAR: Feb		93			
		Cend of day-		1:45 Pm			
System Parameter		↓ V			k		-
Location		Week:1 2 <u>11</u> 93	View 2 2 j 11 j 93	Wook3 Z 12 93	Week=1 2 j24j93		
RW1	Flowrate (gpm)	0	0	2.6	1.2		
	Total Gallons	64029	64378	64733	90848		
RW2	Flowrate (gpm)	0	()	1.6	~ 0.5		
	Total Gallons	303696	304001	304243	317888		
RW3	Flowrate (gpm)	0	6	2.6	2.4		
	Total Gallons	114383	114394	11:1559	135989		
RW4	Flowrate (gpm)	6	6	3.1	3.0		
	Total Gallons	134386	134804	135253	176063		
RW5	Flowrate (gpm)	Ú	0	2.6	0		
	Total Gallons	101215	101706	102065	115588		
Carbon – Train 1	Flowrate (gpm)	0	0	6.4	3.5		
	Total Gallons	8999820	8000235	8000616	* D33133		
Carbon - Train 2	Flowrate (gpm)	C	6	5.6	0		
	Total Gallons	135 1	1760	2129	28282		
Carbon – Train 3	Flowrate (gpm)	C	0	7	.5		
	Total Gallons	9999615	45	486	34503		
System Effluent	Flowrate (gpm)	0	0				
	Total Gallons	0	-				

10:30 AM Sampling Hatic tair

train 2 temporarily shut

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

		LWes							
System	Parameter	READING							
Location		V Want 1	Viet 2	Week 3	Week 4	Week 5			
		3 1 193	<u>3/4/95</u>	<u>5 11 193</u>	316193	3 126 195			
RW1	Flowrate (gpm)		0.8	0.9	1,0	0.1			
	Total Gallons		105078	113491	119743	128053			
RW2	Flowrate (gpm)		>0	>0	0.1	>0			
	Total Gallons		321184	3211846	321184	321184			
RW3	Flowrate (gpm)		2.1	2.4	2,4	0.1			
	Total Gallons		160924	182413	199504	220312			
RW4	Flowrate (gpm)		2.1	2.0	2.1	D. 1			
	Total Gallons		206452	229989	247772	272557			
RW5	Flowrate (gpm)		1.1	1.0	1.0	0.5			
	Total Gallons		130645	141625	148553	158941			
Carbon - Train 1	Flowrate (gpm)			2.4	2,0	2.0			
	Total Gallons		(3)058254	78476	92122	117796			
Carbon - Train 2	Flowrate (gpm)		1	2. 2	2.6	5.2			
	Total Gallons		18727	63425	7/218	96887			
Carbon - Train 3	Flowrate (gpm)			2.1	2.1	-			
	Total Gallons		60324V	3076328	2087774	0109593			
System Effluent	Flowrate (gpm)								
	Total Gallons								

MONTH/YEAR:

March '93

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR:

Apr. 193

System	Parameter	READING						
Location		Week 1 3 / 29 / 93	Week 2	Week 3 4 5 93	Week 4	Week 5		
RW1	Flowrate (gpm)	0	1	1		उ		
	Total Gallons	131409	137150	141066		155180		
RW2	Flowrate (gpm)	0	1,2	1	_	3,2		
	Total Gallons	321184	325283	329934		342380		
RW3	Flowrate (gpm)	0	0	0		AFT-		
	Total Gallons	220312	-1	<u> </u>		232222		
RW4	Flowrate (gpm)	5.2	2	2	_	OFF		
	Total Gallons	276716	293144	302203		318013		
RW5	Flowrate (gpm)	1.5	1,2	<u> .</u>	—	6		
	Total Gallons	163249	170474	174918		190194		
Carbon – Train 1	Flowrate (gpm)	25	3	2.4	-	3.7		
	Total Gallons	125358	133771	141476	14/3875	161663		
Carbon – Train 2	Flowrate (gpm)	THAT 32	1.5	15	· -	3,2		
	Total Gallons	115272	128166	131479	132481	147459		
Carbon – Train 3	Flowrate (gpm)	30	3	3		4,3		
	Total Gallons	109824	/72033	129283	131371	149255		
System Effluent	Flowrate (gpm)							
	Total Gallons				6993.4			

1 HWO 200 4 ARE Product, Ma

STANT UP

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR:

193 5

System	Parameter	READING							
Location		Week 1 513193	Week 2 5 9 93	Week 3 5 1201 93	Week 4 5127193	Week 5			
RW1	Flowrate (gpm)	J	1.8	1.2	1,0				
	Total Gallons	157252	173134	192673	202718				
RW2	Flowrate (gpm)		1.0	>0	0,5 #				
	Total Gallons	344510	355383	364297	364919				
RW3	Flowrate (gpm)		2.9	2.4	2,2				
	Total Gallons	232344	255180	296345	320439				
RW4	Flowrate (gpm)	1	3.0	1.6	0				
	Total Gallons	320776	348296	392315	399248				
RW5	Flowrate (gpm)		0	0	OFF-				
	Total Gallons	194097	194131	194131	194131				
Carbon – Train 1	Flowrate (gpm)	4	2.6	3.2	2.7				
	Total Gallons	164677	184762	219043	238406				
Carbon – Train 2	Flowrate (gpm)	3	3.6	2.6	23				
	Total Gallons	149241	1664/35	193639	205905				
Carbon – Train 3	Flowrate (gpm)	45	3.6	Z.8	2.1				
	Total Gallons	152766	176397	204070	1213904				
System Effluent	Flowrate (gpm)	-	~	-	_				
	Total Gallons	-	-	_					

* Pleared Pray or 5/26 - Plaged " I dear - Clevel and recent dhe
OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

6/93

MONTH/YEAR:

System	Parameter			READING		
Location		Week 1	Week 2	Week 3 6 1 /6 1 93	Week 4 # _6_1 28_1 93	Week 5
RW1	Flowrate (gpm)	1.0	0.5	>0	1	
	Total Gallons	208938	217094	219459	219586	
RW2	Flowrate (gpm)	0.5	0,2	>0	2	
	Total Gallons	368849	371200	372726	372802	
RW3	Flowrate (gpm)	3.0	1.8	1.8	3.5	
	Total Gallons	336682	361924	370281	397892	
RW4	Flowrate (gpm)	**	1.6	1.5	2.5	
	Total Gallons	398248	421032	435407	466199	
RW5	Flowrate (gpm)	Off	1.1	0.9	1,2	
	Total Gallons	194131	204507	211839	222371	
Carbon – Train 1	Flowrate (gpm)	2.4	2.0	2.2	3.4	
	Total Gallons	2-19815	273156	284355	304755	
Carbon - Train 2	Flowrate (gpm)	2.8	2.9	2.4	2.0	
	Total Gallons	216601	242250	255160	271862	
Carbon — Train 3	Flowrate (gpm)	1.8	1.6	3.0	4.0	
	Total Gallons	1226341	1244099	³ / ₂ 25 3780	- 281680	
System Effluent	Flowrate (gpm)	-				
24	Total Gallons		_			

** - RW4 at set point + punping, but nothing registering on flowmeter. pump was pulled and cleaned on 6/1/93 * 6/28/83 - Septen shut lum on 6/27 for Vapor Phase Carton Chargeret Frederlat on 6/28

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR:

July	1993

System	Parameter	READING						
Location		Week 1	Week 2	Week 3	Week 4	Week 5		
		<u>7 293</u>	<u>93 [2] 7</u>	7 19/43	7/29/93			
RW1	Flowrate (gpm)	<u>O. y</u>	0.2	0.5	<i>].</i> D			
	Total Gallons	21755	229600	231342	239843			
RW2	Flowrate (gpm)	0.6	0.	0.0	O off	i i		
	Total Gallons	375631	379550	379776	380150			
RW3	Flowrate (gpm)	2.4	1.8	1.4	1.6			
	Total Gallons	403766	422817	437838	456679			
RW4	Flowrate (gpm)	2.2	1.3	1.4	1.5			
	Total Gallons	47430 <u>8</u>	497611	515950	537641			
RW5	Flowrate (gpm)	0.3	233674	0.5	0.4			
	Total Gallons	225816	2 O.Y	234737	246924			
Carbon - Train 1	Flowrate (gpm)	Z.1	1.7	1.2	2.4			
	Total Gallons	319837	330732	343466	358730			
Carbon - Train 2	Flowrate (gpm)	1.6	<u>2.4</u>]. B	7.670			
0	Total Gallons	275629	288267	295911	302825			
Carbon – Train 3	Flowrate (gpm)	3.0	3.4	2.0	3.3			
	Total Gallons	288175	1310271	2 326462	2346911			
System Effluent	Flowrate (gpm)	-	1					
	Total Gallons	-	-					

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR:

Aug 1983

System	Parameter			READING		
Location		Week 1	Week 2	Week 3	Week 4	Week 5
		<u> 8 3 3 73</u>	<u> ۲3 ر ۲3 ر ک</u>	<u></u> 53	<u>8 1241 53</u>	
RW1	Flowrate (gpm)	סד	>0	67 000	70	
	Total Gallons	241462	241462	241462	211462	
RW2	Flowrate (gpm)	70	>0	70	>0	
	Total Gallons	581535	381535	381535	381535	
RW3	Flowrate (gpm)	1.6	1.2	1.4	3.1	
	Total Gallons	466871	485043	496073	505195	
RW4	Flowrate (gpm)	1.8	/.0	1.4	1.3	
	Total Gallons	549066	569992	582822	593687	
RW5	Flowrate (gpm)	0.2	> 0	70	70	
	Total Gallons	244577	248783	248783	248783	
Carbon – Train 1	Flowrate (gpm)	1.4	1.0	2.4	1.Z	
	Total Gallons	369711	381689	3879977	394563	
Carbon – Train 2	Flowrate (gpm)	Z. 4	1.5	1.6	1.B	
	Total Gallons	305012	321236	329270	332016	
Carbon - Train 3	Flowrate (gpm)	1.8	2.0	1.4	1.4	
	Total Gallons	235-8631	2376253	2387021	2396431	
System Effluent	Flowrate (gpm)	~		1	-	
	Total Gallons	-		~	_	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR: 9/93

System	Parameter			READING		
Location		Week 1 9 1 2 1 9 3	Week 2 <u>9 8 73</u>	Week 3	Week 4 9124193	Week 5 <u>9</u> 30 / <u>9</u> 3
RW1	Flowrate (gpm)	0.4	0.8	0.5	0.8	Bet 0.6
	Total Gallons	242411	244761	250326	258272	263124
RW2	Flowrate (gpm)	70	<u>M.3</u>	70	70	0.2
	Total Gallons	387249	383422	335313	385996	388585
RW3	Flowrate (gpm)	1.5	1.6	70	70	1.6
	Total Gallons	519769	576100	526208	526208	533471
RW4	Flowrate (gpm)	0.9	1.2	1.4	1.3	1.3
	Total Gallons	611145	617264	630913	650152	661350
RW5	Flowrate (gpm)	0.4	1.0	0.3	0.2	0.1
	Total Gallons	249675	252410	257976	260 788	263659
Carbon – Train 1	Flowrate (gpm)	2.6	2.4	1.4	1.6	1.8
	Total Gallons	409297	414375	422942	434984	441868
Carbon – Train 2	Flowrate (gpm)	7.2	3.0	1.7	1.0	2.0
	Total Gallons	342089	346917	358177	372066	381059
Carbon – Train 3	Flowrate (gpm)	2.6	Z.B	1.7	1.6	2.4
	Total Gallons	9-403011	4407198	3419629	3 433582	3443690
System Effluent	Flowrate (gpm)	—	~	~	-	
	Total Gallons	-	—		_	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR: Oct 1993

System	Parameter	READING					
Location		Week 1 10ן רן 1 <u>9</u> 3	Week 2	Week 3 /2 29 53	Week 4	Week 5	
RW1	Flowrate (gpm)	1.0	>0	1.4			
	Total Gallons	269792	27:3040	273126			
RW2	Flowrate (gpm)	>0	0	1.6			
	Total Gallons	389488	389488	397171			
RW3	Flowrate (gpm)	1.5	OFF	OFF			
	Total Gallons	546964	560082	560082			
RW4	Flowrate (gpm)	1.3	1.2	2.2			
	Total Gallons	676397	691616	731258			
RW5	Flowrate (gpm)	0.1	>02	0,3			
	Total Gallons	263659	263(.59	274082			
Carbon – Train 1	Flowrate (gpm)	1.9	2.1	1,6			
	Total Gallons	-153934	465507	488885			
Carbon – Train 2	Flowrate (gpm)	3	3	2.0			
	Total Gallons	393116	4/09238	435365			
Carbon – Train 3	Flowrate (gpm)	1.8	1.4	1.9			
	Total Gallons	3455857	3464646	3485334			
System Effluent	Flowrate (gpm)			-			
	Total Gallons						

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR:

Nov 93

System	Parameter			READING		
Location		Week 1	Week 2	Week 3	Week 4	Week 5
		1 9 73	<u> </u>	11 17 93	11 29 75	
RW1	Flowrate (gpm)	1.1	1.0	1.0	1.0	
	Total Gallons	281485	291327	298869	308407	
RW2	Flowrate (gpm)	1.0	1.0	Z. O	70	
	Total Gallons	403459	411513	415403	423281	
RW3	Flowrate (gpm)	AEE	OFF	OFF	OFF	
	Total Gallons	560082	57.0082	560082	560082	
RW4	Flowrate (gpm)	1.8	2.3	2.5	2.2	
	Total Gallons	753648	772941	796818	817947	
RW5	Flowrate (gpm)	0.5	0.7	1.6	0.5	
	Total Gallons	276503	282953	287876	296564	
Carbon – Train 1	Flowrate (gpm)	2,0	1.4	2.0	2.0	
	Total Gallons	498658	507 798	518654	531185	
Carbon – Train 2	Flowrate (gpm)	3.0	1.3	3.8	2. (
	Total Gallons	444515	458013	463859	474892	
Carbon – Train 3	Flowrate (gpm)	1.6	1.2	1.(0	2.0	
	Total Gallons	3494379	0503601	05062.82	518365	
System Effluent	Flowrate (gpm)		i <u></u>	~	~	
	Total Gallons		-	-	-	

OPERATIONS, MAINTENANCE AND MONITORING MANUAL

GROUND WATER EXTRACTION SYSTEM – FLOW MONITORING LOG

MONTH/YEAR:

12/93

System	Parameter	9:00	11:00	READING		
Location		Week 1	Week	Week 2	Week	We ek
		123193	12 3 193	12/10/13		12/30/93
RW1	Flowrate (gpm)	1.4	1.5	J.D	70	1.0
	Total Gallons	315410	315553	330268	332244	346148
RW2	Flowrate (gpm)	1.4	1.4	1.6	1.4	1.4
	Total Gallons	431718	431872	448456	465760	493853
RW3	Flowrate (gpm)	ACE	OFF	OFF	OFF	OFF
	Total Gallons	20082	560082	20082	500082	560145
RW4	Flowrate (gpm)	1.8	7.0	2.0	2.4	1.0
	Total Gallons	845500	846138	870 1 BB	895636	933913
RW5	Flowrate (gpm)	1.2	1.3	1.0	0.8	0.5
	Total Gallons	311278	311420	323645	333123	346356
Carbon – Train 1	Flowrate (gpm)	2.6	2.0	2.0	3.0	2.4
	Total Gallons	548263	548427	566 400	583153	609280
Carbon – Train 2	Flowrate (gpm)	0.2	2.5	2.5	2.9	3.4
	Total Gallons	491120	491290	5052!!	519119	544060
Carbon – Train 3	Flowrate (gpm)	3.1	2.0	3.0	2.4	2.0
	Total Gallons	0535874	0536021	0554431	572443	\$ 596303
System Effluent	Flowrate (gpm)	-	-	_		9
	Total Gallons	-	, 			

1993 Columbia Mills IRM Trailer Avg Daily GW System Flow/Month

MONTH

1993 Columbia Mills IRM Trailer Avg Daily Flow On Days Operating

MONTH

COLUMBIA MILLS – TEST PIT 3 AREA IRM 1993 GROUND WATER TREATMENT SYSTEM FLOW DATA

Month	Actual Period	Total Gallons	Total Number	Average Flow	Approx. No. of Days	Avg. Flow on Days
	of Time	Treated	of Days/Period	(gal/day)	System Operating	Operating (gal/day)
February	Feb 11-Mar 4	166,519	21	7929	17	9795
March	Mar 4 – Apr 2	216,665	29	7471	29	7471
April (first half)	Apr 2–Apr 14	74,407	12	6201	10	7441
April (second half)	Apr 15-May 3	0	19	0	0	0
May	May 3-Jun 1	226,073	29	7796	28	8074
June	Jun 1 – Jul 2	191,084	31	6164	30	6369
July	Jul 2–Aug 3	149,513	32	4672	30	4984
August	Aug 3 – Sep 2	121,043	30	4035	30	4035
September	Sep 2-Sep 30	112,220	28	4008	28	4008
October	Sep 30-Oct 29	142,967	29	4930	29	4930
November	Oct 29-Dec 3	165,673	35	4734	35	4734
December	Dec 3-Dec 30	174,386	27	6459	27	6459

GROUND WATER TREATMENT SYSTEM FILTER LOG /993

	Filter Set (A or B)	Date Filow Switched Theorem Filter	Initial System Effluent Totalizer Reading (gallons)	Final System Effluent Totalizer Reading (gallons)	Total Gallons Filtered	NOTES
	A	3/10-11				All Y filters in set new
	A:B	3/76	STARTED THENOUTH "A" SIDE & II AM			CHANGRY 527" on BOTH ONCH
	A	3/17	CALLAD C 6PM Switcome To "2"			
	Ĥ	3/13	Suitcives From TS "A" C 9 Am			Aut 529 In Prumany 525 Sec ,
	A	3/23	Switchis Fun Ts "B" C 9AM			1AI - 20 PSI 527 PAIN BEC - 14 PSI 525 SEC GAL - BASI
flows the d	B	3/26	Surrenes Fren To MB" @ 10Am			529/525
Water solutions	A	3126	Switched flow the 3/280 2:00 pm			new 527+525
tuber gains	B	3/29	Switzen) fliv then 3130 at SIY5AM			527/525 ren 12
	A	3/29	switched and flue this system continues @//AM			527/525 new
	A	3130	Srithi flow the 3/31 @ 7 AM			new 527 012 525
	B	3131				nen 525 } Ghim
	B	ı//2				529/525
	B	4/14				V# 5/525
	A	4/11/				1525
	A:B	53	STARTRIS TALLOW			529 Run. 525 Sec
	B	UKNYDDY 5 26	BUTTERDE TS B'Sto ellam			CHERRIN PODUL

P:\PROJ\MISC\FORMS\F<mark>I</mark>LTERLG.WK1

GROUND WATER TREATMENT SYSTEM

	Filter Set (A or B)	Date Flow Switched Through Filter	Initial System Effluent Totalizer Reading (gallons)	Final System Effluent Totalizer Reading (gallons)	Total Gallons Filtered
replace) 512 NOON	A	<i>5/9/9<mark>3</mark></i> 2:25Am			
ropland 5/9, Noon	$\mathbb B$	5/11/93 3:00 Pm			
18ploce) 5/12	A	5/22/93 33- pm			
mplaced 5/31	B	6/2/9 <mark>3</mark> 6:30 Am			
replaced 612	A	6/4/93 11:00 Pm			
repland 6/5	B				
reptore	A	7/1193			
replaced 7/2	R	allin Spin			
replace c 117	Å	7/7/93 after 520			
replaced 7/8	Z	X10/93 2:30a			
RA7/11 73	A	7/15/93 13:30			
R 8 7/20/93	В	7 149 193 11:00-			
RA7 (21 /93	A	7/21/93 8:05a			0
7 3 7/22/93	B	7/22/93 3:150			
RA 7/23/93	A	7/22/93 6:00P			
KB 7/23/93	ß	7/73/83 4:30a			

P:\PROJMISC\FORMS\FILTERLG.WK1

TEST PIT 3 AREA IRM GROUND WATER TREATMENT SYSTEM FILTER LOG

	Filter Set (A or B)	Date Flow Switched Through Filter	Initial System Effluent Totalizer Reading (gallons)	Final System Effluent Totalizer Reading (gallons)	Total Gallons Filtered	
primery - Palls	Â					
E	B	7/23/93 6:00 pm]
replaced primery fuller - 7/24 sm	A	8/ 19 /93 3:00p				
replaced \$/10/93	B	8/11/93 9:00 a				
replaced 8/11/53 A	A	8/23/93 4:05 p				
B 3mprim	В	8/24/93 8:00P				
Acco sec. TEP. A 0/27/193	A	9/2/93 11:30 mm				
ер В 9/7/53 Зм 3.14	B	9 5/93 11:00 pm				
227 pm rep A 9/7/93 3 mBoth	A	9/8/93 10:30 au				
507 prim Fep 39/8/53 3m 20th.	B	9/10193 2:00am				
rep A 9/13/93 3m prim	A	9/21/93 13:30				
тер В 9/21/93 Jmbsth	B	9/27/95 10:00an				
rep A 9/27/93	A	(012019 <mark>3</mark> 7:30 pm				
Prim 3m Strain SF23 Second	B	11/15/93 12:30 pm				
er A Accolity	14	11/17/93 7:30am				E SP increased
11/17/1933M SEC	B	11/19/93 6:30 fm				5 was too low
rep.1600 11/20 both 3M	A	11/22/93 5:30 cm				SP = 12

Columbia MIIIs Test Pit 3 Area IRM Groundwater Treatment System

FILTER LOG

Current Filter Set (A or B)	Date/Time Flow Switched Through Filter	Date/Time Filter Replaced	Initial Effluent Reading	Final Effluent Reading	Total Gallons Filtered	Initials
B	11/29/93 1:00 Am	11/22 1300 Claim 3m -				
A	12/15/93	11/29 hoth 3m				Lins
R	12/20/93	12/15 523 Both 3m529				lime
Ą	12/21/93 3:00 cm	12/21 523				W.J.
B	manually 12122 10:00 am	12/22. 3m				Drns
A						
B						
A	12/29 3:00 Pm	525/529				DWK
B		12/30/93 529/525				DWK

APPENDIX E Groundwater Elevations

Monitoring Location	RW-1	RW -2	RW-3	RW-4	RW-5	VW -1	VW -2
Meas. Pt. Elev. (FAMSL)	312.9 <mark>3</mark>	311.06	310.19	309.45	313.09	313.58	313.38
BOW (FBMP)	28.9 <mark>1</mark>	33.16	32.66	26.95	27.73	12.35	15.22
BOW Elevation (FAMSL)	284.0 <mark>2</mark>	277.90	277.53	282.50	285.36	301.23	298.16
02/11/93	304.38	303.51	303.39	304.04	304.65	304.46	304.94
02/24/93	290.2 <mark>3</mark>	283.96	283.49	288.25	*298.52	dry	299.93
03/01/93	290.26	283.99	283.42	288.28	291.42	dry	dry
03/03/93	289.06	283.99	283.52	288.28	291.36	dry	dry
03/04/93	289.26	284.29	283.42	288.38	291.30	dry	dry
03/08/93	289.16	283.89	283.47	288.30	291.17	dry	dry
03/10/93	289.01	283.79	283.37	288.08	291.29	dry	dry
05/12/93	291.69	284.22	283.53	288.15	*300.18	dry	300.82
05/20/93	289.83	283.58	283.29	287.75	*299.47	dry	dry
05/28/93	292.73	-	288.99	-	*299.04	dry	dry
06/02/93	289.85	284.37	283.64	288.25	*299.28	dry	dry
06/08/93	289.98	284.06	283.49	288.35	291.39	dry	dry
06/16/93	289.96	283.90	283.35	288.11	291.27	+303.07	+300.36
07/09/93	290.26	284.54	#283.39	287.97	291.30	+302.48	+dry
07/14/93	289.66	285.50	283.61	288.15	291.51	dry	dry
07/20/93	289.77	284.02	283.57	288.01	291.25	dry	drv
07/28/93	289.25	*295.85	283.69	288.25	#294.44	dry	dry
08/03/93	289.55	284.12	284.09	287.61	291.17	dry	dry
08/10/93	290.65	284.54	284.26	288.30	291.19	dry	dry
08/18/93	290.00	283.91	284.32	288.28	291.21	dry	dry
08/24/93	290.29	284.39	284.75	288.22	291.28	dry	dry
09/02/93	290.04	284.24	285.69	288.15	291.41	dry	dry
09/08/93	289.88	284.51	286.28	287.92	291.26	dry	dry
09/14/93	289.73	284.56	286.09	288.05	291.14	dry	dry
09/24/93	290.23	284.71	287.14	288.22	291.43	dry	dry
09/30/93	290.48	285.26	287.69	287.85	291.32	dry	300.19
10/07/93	290.13	284.74	289.19	287.45	291.11	dry	dry
10/14/93	290.28	285.06	*294.27	288.40	291.24	dry	dry
10/29/93	290.23	284.96	*297.09	287.80	291.54	dry	299.80
11/04/93	290.63	285.40	*297.54	288.15	291.33	dry	dry
11/10/93	290.43	285.24	*297.80	287.95	291.35	dry	300.39
11/17/93	290.87	#289.14	*299.03	287.97	291.13	dry	300.80
11/24/93	290.37	285.24	*297.57	287.55	291.33	dry	299.94
12/01/93	291.13	293.74	*298.77	288.05	291.29	dry	302.40
12/10/93	290.09	285.68	*299.45	288.27	291.19	+303.35	+302.58
12/30/93	291.59	286.58	*_	289.07	292.39	dry	300.42

GROUND WATER ELEVATIONS/TEST PIT 3 AREA

Monitoring Location	VW-3	VW-4	VW-5	VW-6	VW-7	VW -8	VW -9
Meas. Pt. Elev. (FAMSL)	312.41	311.61	310.34	312.53	316.52	314.11	316.05
BOW (FBMP)	16.7 <mark>6</mark>	16.37	15.92	18.56	19.40	16.97	18.75
BOW Elevation (FAMSL)	295.6 <mark>5</mark>	295.24	294.42	293.97	297.12	297.14	297.30
02/11/93	303.31	302.88	303.25	304.25	304.80	305.09	304.28
02/24/93	dry	dry	294.56	296.23	297.87	299.98	298.22
03/01/93	dry	dry	294.59	295.84	297.42	298.76	297.75
03/03/93	dry	dry	294.61	295.79	297.42	298.60	297.66
03/04/93	dry	dry	294.61	295.81	297.41	298.49	297.62
03/08/93	dry	dry	294.61	295.78	297.40	298.19	297.53
03/10/93	dry	dry	294.62	295.77	297.38	298.12	297.51
05/12/93	dry	dry	295.26	296.83	299.56	300.99	298.35
05/20/93	dry	dry	295.22	296.45	298.75	300.45	297.98
05/28/93	dry	dry	294.99	295.78	298.27	300.03	297.71
06/02/93	dry	dry	294.96	295.95	298.49	300.20	297.68
06/08/93	dry	dry	294.89	295.28	297.44	298.66	dry
06/16/93	+299.59	+299.25	294.86	295.51	dry	298.13	+300.25
07/09/93	+299.41	+dry	+299.04	+297.14	+297.71	+298.47	+300.76
07/14/93	dry	dry	294.60	295.27	297.39	298.17	dry
07/20/93	dry	dry	dry	295.25	dry	dry	dry
07/28/93	dry	dry	dry	294.95	dry	dry	dry
08/03/93	dry	dry	dry	294.99	dry	dry	dry
08/10/93	dry	dry	dry	294.94	dry	dry	dry
08/18/93	dry	dry	dry	294.88	dry	dry	dry
08/24/93	dry	dry	dry	294.86	dry	dry	dry
09/02/93	dry	dry	dry	294.62	dry	dry	dry
09/08/93	dry	dry	294.85	294.82	297.43	dry	dry
09/14/93	dry	dry	dry	294.96	297.40	dry	dry
09/24/93	dry	dry	dry	294.66	dry	dry	dry
09/30/93	dry	dry	dry	294.87	dry	dry	dry
10/07/93	dry	dry	dry	294.89	dry	298.33	dry
10/14/93	dry	dry	dry	294.79	dry	298.51	dry
10/29/93	dry	dry	297.21	295.95	dry	298.96	dry
11/04/93	dry	dry	297.44	296.53	dry	301.17	dry
11/10/93	dry	dry	297.70	296.87	297.59	300.77	dry
11/17/93	dry	298.89	299.39	298.31	299.48	301.13	299.63
11/24/93	dry	dry	297.49	296.99	297.38	300.31	dry
12/01/93	dry	298.32	298.98	299.01	299.38	301.17	299.35
12/10/93	+300.14	+301.79	+299.53	+300.71	+299.38	+301.75	+304.46
12/30/93	dry	298.97	299.26	298.97	299.38	301.11	dry

Monitoring Location	W-1	B-3S	B-3D	B-12S	B-13S	B-13D	B-14S
Meas. Pt. Elev. (FAMSL)	313.18	309.65	310.74	310.58	313.30	313.42	310.10
BOW (FBMP)	29.9 <mark>8</mark>	14.56	28.08	12.54	15.09	31.77	11.61
BOW Elevation (FAMSL)	283.2 <mark>0</mark>	295.09	282.66	298.04	298.21	281.65	298.49
02/11/93	304.40	303.53	303.56	303.90	304.80	304.74	304.23
02/24/93	296.08	-	-	-	-	-	-
03/01/93	295.21	dry	293.04	298.43	299.29	299.82	dry
03/03/93	295.30	-	=	-	-	-	-
03/04/93	295.30	-	293.02	dry	299.25	299.85	dry
03/08/93	295.27	-	-	-	-	-	-
03/10/93	295.39	-	293.11	298.23	299.25	300.19	-
05/12/93	297.76	294.89	293.84	300.63	301.07	301.67	299.14
05/20/93	-	-	-	-	-	-	-
05/28/93	_	-	-	-	-	-	-
06,02,93	297.25	-	-	-	-	-	-
06/08/93	296.23	dry	293.29	dry	299.67	300.29	dry
06/16/93	296.11	-	-	-	-	-	-
07/09/93	295.84	dry	293.54	dry	299.26	299.57	dry
07/14/93	295.62	_	-	-	-	-	-
07/20/93	295.44	-	-	-	-	-	-
07/28/93	295.63	-	-	-	-	-	-
08/03/93	295.30	-	-	-	-	-	-
08/10/93	295.28	dry	293.18	dry	299.35	299.01	dry
08/18/93	295.13	-	-	-	-	-	-
08/24/93	295.09	-	-	-	-	-	-
09/02/93	295.33	-	-	-	-	-	-
09/08/93	296.41	-	-	-	-	-	-
09/14/93	295.86	-	-	-	-	-	-
09/24/93	295.43	dry	293.22	dry	299.16	299.05	dry
09/30/93	296.40	-	-	-	-	-	-
10/07/93	296.50	-	-	-	-	-	-
10/14/93	296.16	-	-	-	-	-	-
10/29/93	297.04	-	-	_	-	-	-
11/04/93	297.66	296.92	296.96	300.08	299.92	300.89	dry
11/10/93	297.95	-	-	-	-	-	-
11/17/93	299.63	-	-	-	-	-	-
11/24/93	297.88	-	-	-	-	-	-
12/01/93	-	-	-	-	-	-	-
12/10/93	299.64	-	-	-	-	_	-
12/30/93	299.44	-	-	-	-	-	-

Monitoring Location	B-16S	B-17S	B-27D	BP-1	BP-2	BP-3	BP-4
Meas. Pt. Elev. (FAMSL)	310.86	310.54	313.00	311.17	313.02	312.03	312.79
BOW (FBMP)	12.60	13.05	41.78	14.05	14.82	15.05	14.49
BOW Elevation (FAMSL)	298.2 <mark>6</mark>	297.49	271.22	297.12	298.20	296.98	298.30
02/11/93	302.01	302.45	304.62	303.54	304.84	304.68	304.58
02/24/93	-	-		-	-	-	-
03/01/93	300.17	300.37	299.19	dry	dry	298.21	dry
03/03/93	-	-	-	-	-	-	-
03/04/93	300.06	300.03	299.29	-	-	297.98	-
03/08/93	-	-	-	-	-	297.72	-
03/10/93	300.02	300.38	299.76	-	-	297.77	_
05/12/93	301.64	300.91	301.20	dry	299.87	300.47	dry
05/20/93	-	-	-		-	-	_
05/28/93	-	-	-	-	-	-	-
06/02/93	-	-		-	-		-
06/08/93	299.61	299.36	300.06	dry	299.05	300.17	dry
06/16/93	-	-	-	- I	-	-	Ĺ
07/09/93	dry	298.39	299.53	dry	dry	298.11	dry
07/14/93	-	-	-	-		_	<u> </u>
07/20/93	-	-	-	-	-	-	-
07/28/93	-	-	-	-	-	-	-
08/03/93	-	-	-	-	-	-	-
08/10/93	dry	dry	299.05	dry	dry	dry	dry
08/18/93	-	-	-	-	-	-	-
08/24/93	-	-	-	-	_	_	-
09/02/93	-	-	-	-	-	-	-
09/08/93	-	-	-	-	-	_	-
09/14/93	-	-	-	-	-	-	-
09/24/93	drv	dry	299.23	dry	299.45	drv	drv
09/30/93	-	-	-	-	-	-	-
10/07/93	-	-	_	_	-	_	-
10/14/93	-	-	-	-	-	-	-
10/29/93	-	-	-	_	_	_	-
11/04/93	drv	301.20	301.42	drv	299.86	299.88	drv
11/10/93	17 -	-1	_		_	-	ź
11/17/93	_	-	-	-	-	-	
11/24/93		-	-	_	_	-	-
12/01/93	-	-	-	-	-	_	-
12/10/93	_	_	_	_	_	10 m 22 h	1
12/30/93	-	-			-	- 100	-

Meas. Pt. Elev. (PAMSL) 313.20 313.63 311.80 313.03 313.02 313.11 311.37 BOW (FBMP) 13.99 14.87 14.31 12.56 17.72 16.95 17.75 BOW Elevation (FAMSL) 299.21 298.76 297.49 300.47 295.30 296.16 293.62 02/11/93 305.03 304.85 305.74 305.04 304.87 303.90 02/24/93 - 295.54 299.76 297.75 03/03/93 - - - - - - - - - - - - - - - - - - - </th <th>Monitoring Location</th> <th>BP-5</th> <th>BP-6</th> <th>BP-8</th> <th>BP-9</th> <th>BP-10</th> <th>BP-11</th> <th>BP-12</th>	Monitoring Location	BP-5	BP-6	BP-8	BP-9	BP-10	BP-11	BP-12
BOW (FBMP) 13.99 14.87 14.31 12.56 17.72 16.95 17.75 BOW Elevation (FAMSL) 299.21 298.76 297.49 300.47 295.30 296.16 293.62 02/14/93 305.03 304.85 305.74 305.00 304.54 304.87 303.09 02/24/93 -	Meas. Pt. Elev. (FAMSL)	313.20	313.63	311.80	313.03	313.02	313.11	311.37
BOW Elevation (FAMSL) 299.21 298.76 297.49 300.47 295.30 296.16 293.62 02/11/93 305.03 304.85 305.74 305.00 304.54 304.87 303.09 02/24/93 -	BOW (FBMP)	13.99	14.87	14.31	12.56	17.72	16.95	17.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BOW Elevation (FAMSL)	299.21	298.76	297.49	300.47	295.30	296.16	293.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02/11/93	305.03	304.85	305.74	305.00	304.54	304.87	303.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02/24/93	_	-					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03/01/93	299.51	dry	301.74	dry	295.58	300.00	297.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03/03/93		-	-	2 — 2	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/04/93	dry	-	301.35	-	295.48	299.76	297.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03/08/93	-	-	-	-	295.39	-	297.67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03/10/93	299.47	-	302.84	-	295.36	299.58	297.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05/12/93	301.50	300.30	305.51	301.61	298.03	301.81	298.82
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05/20/93	-	-	-	_	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05/28/93		-	-	-	-	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06/02/93	-	-	-	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	06/08/93	299.54	299.70	-	dry	296.20	300.30	297.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06/16/93	4	_		Ĺ	_	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07/09/93	drv	drv	299.84	drv	296.22	299.32	297.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07/14/93	<u>1</u>	<u> </u>	_	<u> </u>	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07/20/93		-	-		_	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07/28/93	-	-	-	-	-	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08/03/93	_	_	_	_	-	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08/10/93	drv	299.26	299.07	drv	295.32	297.84	296.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08/18/93				-	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08/24/93	4	-	-	-	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/02/93	_	-	-		-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	09/08/93	_	_	-	_	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	09/14/93	_	-	-		_	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/24/93	dry		299 34	drv	295 65	297 68	296 57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/30/93		_					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10/07/93			_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10/14/93	_		_		_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10/29/93							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/04/93	dry	299.65	305 53	dry	297.66	299.66	298.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/10/93	ary _	277.05	505.55		257.00	277.00	270.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/17/03			-				1999-1997-1997-1997-1997-1997-1997-1997
	11/1////	_		_	_	_	_	
	12/04/33		_	_				
	12/01/23	_	_		_	_		
	12/20/02				_	_		

Monitoring Location	BP-13	BP-14	BP-15	VP-6S	VP-6D	VP-7	VP-8
Meas. Pt. Elev. (FAMSL)	310. <mark>1</mark> 6	309.02	313.07	310.24	310.51	309.35	309.41
BOW (FBMP)	17.90	18.48	17.87	8.99	15.26	15.02	14.84
BOW Elevation (FAMSL)	292. <mark>2</mark> 6	290.54	295.20	301.25	295.25	294.33	294.57
02/11/93	301.18	304.10	304.80	303.77	303.37	303.98	304.04
02/24/93	-	1 	-	-	-		
03/01/93	297.71	294.44	295.87	dry	295.95	dry	dry
03/03/93		294.38	-	-	-	-	
03/04/93	297.62	294.27	295.65	-	dry	-	dry
03/08/93	297.62	294.27	295.48	-	-	-	-
03/10/93	297.85	294.41	295.47	-	dry	-	-
05/12/93	298.41	296.95	299.70	dry	296.47	296.61	296.92
05/20/93	-	-	-	<u> </u>	-	-	-
05/28/93	-	-	-	-	-	-	-
06/02/93		-	-	-	-	-	-
06/08/93	297.45	294.74	296.29	dry	dry	dry	dry
06/16/93	_	_	_	Ĺ		<u> </u>	i na internationalista de la companya de la company
07/09/93	296.92	294.71	296.53	drv	284.54	drv	287.97
07/14/93		_	-	Ĺ.	-	-	-
07/20/93	_	-	-	-	-	-	
07/28/93	11 - 1	-	-	-	-	_	-
08/03/93	_	-	_	_	-	-	
08/10/93	295.39	294.08	drv	drv	drv	drv	drv
08/18/93		_		-	_		
08/24/93	4		-	-	_	_	-
09/02/93	_	_	_	-	_	_	
09/08/93	_	_	-	-	_	_	_
09/14/93	_	–	_	-	-1		-
09/24/93	295.08	294.30	295.54	drv	dry	drv	drv
09/30/93					-		
10/07/93		-	-				
10/14/93	_	_		-	-		
10/29/93	_		_	_	_	_	_
11/04/93	298.21	297.23	297.16	drv	297.34	297.17	296.74
11/10/93			_				
11/17/93			-		_	••••••••••••••••••••••••••••••••••••••	
11/24/93		_	_	-	_		_
12/01/93	_	_	_		_	-	_
12/10/93		_	_	_	_	_	
12/30/93	_	-	_		_	-	_

Monitoring Location	VP-9	VP-10S	VP-10D	VP-11S	VP-11D	VP-12
Meas. Pt. Elev. (FAMSL)	313.47	313.70	313.64	312.11	311.99	312.78
BOW (FBMP)	15.27	9.40	15.34	9.13	15.01	14.58
BOW Elevation (FAMSL)	298.20	304.30	298.30	302.98	296.98	298.20
02/11/93	304.89	304.65	304.40	304.70	304.90	304.64
02/24/93	_	-	-	-	-	-
03/01/93	dry	dry	dry	302.79	298.02	298.18
03/03/93	-	-	-	_	_	-
03/04/93	-	-	-	dry	297.70	dry
03/08/93	-	-	-	-	dry	-
-03/10/93	-	-	-	1	dry	298.13
05/12/93	dry	dry	dry	302.90	299.63	300.50
05/20/93	· · · -	-	-	-	-	-
05/28/93	-	-	_	-	-	-
06/02/93	-	-	-	I	-	-
06/08/93	dry	dry	dry	dry	298.14	298.23
06/16/93	-	-	-	1	-	-
07/09/93	dry	dry	dry	dry	dry	dry
07/14/93	-	-	-	-	_	-
07/20/93	-	-	-	-	-	-
07/28/93	-	-	-	-	-	-
08/03/93	-	-	-	-	-	-
08/10/93	dry	dry	dry	dry	dry	dry
08/18/93	-	-	-	-	-	-
08/24/93	-	l	-	1	-	-
09/02/93	-	-	-	-	-	-
09/08/93	-	_	-	-	-	-
09/14/93	-	-	-	-	-	-
09/24/93	dry	dry	dry	dry	dry	dry
09/30/93	-	-	-	-	-	-
10/07/93	-	-	-	-	-	-
10/14/93	-	-	-	-	-	=
10/29/93	-	-	-	-	_	-
11/04/93	dry	dry	dry	dry	dry	dry
11/10/93	-		-	-	_	
11/17/93	-	-	-	-	-	-
11/24/93	-	-	-	-	-	_
12/01/93	-		-	-	-	-
12/10/93	-	_	_	-	_	_
12/30/93			-			

Notes:

•Recovery Well off for this reading

Recovery Well fluctuating for this reading

+ Vacuum Well on for this reading

FAMSLFeet above mean sea level.

BOWBottom of well.

FBMPFeet below measuring point.

dryGround water table below bottom of well screen.

-No measurement was taken.

APPENDIX H

Vapor Carbon Loading/ Percent Removal Calculations

CALCULATIONS VAPOR CARBON LOADING & WEIGHT PERCENT REMOVAL

- 1. Calculations based on difference in apparent density of carbon
- June 28, 1993 Changeout 1182 lbs hydrocarbons/both adsorbers (Report Table 7) primary adsorber – 591 lbs/2000 lbs carbon = 29.6% removal secondary adsorber – 591 lbs/2000 lbs carbon = 29.6% removal
- January 12, 1994 Changeout (Contaminant loading from Report Table 7) primary adsorber – 374 lbs/1628 lbs carbon = 23.0% removal secondary adsorber – 114 lbs/1628 lbs carbon = 7.0% removal

2. Calculations based on carbon influent & effluent concentrations

A) June 28, 1993 Changeout:

Op. Dates	No. of Days	Total Hydrocarbons (ppm)			ppm Adsorbed		Flowrate	bs Hydrocarb	ons Removed
		Prim. In.	Prim. Eff.	Sec. Eff.	Primary	Secondary	(ft3/min)	Primary	Secondary
2/11-3/10	27	27	14	(14)	13	0	240	31.0	0
3/10-3/11	1	(911)	(266)	(266)	645	0	235	55.7	0
3/11-6/8	71	(46)	23	(23)	23	0	240	144.1	0
6/8-6/21	8	149	31	(2)	118	29	220	76.4	18.8
	5	(5000)	3475	1921	1525	1554	220	616.8	628.5
6/21-6/28	7	(27)	(20)	(14)	7	6	230	4.1	3.6
							TOTAL LBS	928.1	650.9

Note: (911) - indicates concentration is estimated

lbs hydrocarbons removed = (ppm Ads.)X(100/24.45)X(lb/453593 mg)X(m3/35.3145 ft3)X(flowrate)X(1440 min/day)X(No.Days) - this assumes a molecular weight of 100

% Weight Removal: primary adsorber-928.1 lbs/2000 lbs carbon = 46.4% removal secondary adsorber-650.9 lbs/2000 lbs carbon = 32.5% removal

CALCULATIONS VAPOR CARBON LOADING & WEIGHT PERCENT REMOVAL

B) January 12, 1994 Changeout:

Op. Dates	No. of Days	Total Hydrocarbons (ppm)			ppm Adsorbed		Flowrate	Ibs Hydrocarb	ons Removed
		Prim. In.	Prim. Eff.	Sec. Eff.	Primary	Secondary	(ft3/min)	Primary	Secondary
6/29-7/5	6	4620	90	(84)	4530	6	210	2098.6	2.8
7/5-7/8	3	(28)	(25)	(20)	3	5	(230)	0.8	1.3
7/8-7/12	4	6890	1065	(105)	5825	960	220	1884.7	310.6
7/12-9/30	80	(28)	(25)	(20)	3	5	240	21.2	35.3
9/30-10/1	1	1018	46	17	972	29	228	81.5	2.4
10/1-12/2	62	28	25	20	3	5	235	16.1	26.8
12/2-12/9	7	312	57	38	255	19	215	141.1	10.5
12/10-12/14	4	(28)	(25)	(20)	3	5	(230)	1.0	1.7
12/14-12/17	3	165	60	27	105	33	200	23.2	7.3
12/17-12/20	3	(28)	(25)	(20)	3	5	(230)	0.8	1.3
12/20-12/23	3	257	62	28	195	34	(230)	49.5	8.6
12/23-1/12/94	20	(28)	(25)	(20)	3	5	230	5.1	8.5
							TOTAL LBS	4323.6	417.1

Note: (28) - indicates concentration is estimated

lbs hydrocarbons removed = (ppm Ads.)X(100/24.45)X(lb/453593 mg)X(m3/35.3145 ft3)X(flowrate)X(1440 min/day)X(No.Days) - this assumes a molecular weight of 100

% Weight Removal: primary adsorber - 4323.6 lbs/1628 lbs carbon = 265.6% removal secondary adsorber - 417.1 lbs/1628 lbs carbon = 25.6% removal

p:\proj\1069079\carbwt%

Apr. 07

1994

9:21AM

P02

Carbon Service Company PHONE Not :

From :

