

October 16, 2012

Mr. Steve Rogers Miller Brewing Co. c/o Operations & Maintenance, Inc. Miller Brewing GWTF 1850 Rt. 57 Riverview Business Park Fulton, New York 13069

Reference: Supplemental Soil Investigation Former Miller Container Site NYSDEC Site # 7-38-029 Fulton, New York

Dear Mr. Rogers:

This letter report documents the findings from the direct push sampling conducted on August 6, 2012 in the northeast corner of the main parking lot at the above referenced site.

The work was undertaken in response to the discovery of soil contaminated with chlorinated compounds (particularly tetrachloroethene-PCE) during an unrelated soil removal activity at the site by Riccelli Fulton, LLC (Riccelli).

The area of concern is shown on the attached Boring Location Plan and is labeled "*Approximate VOC-Impacted Area*." The area nominally measures 40 feet by 20 feet and is immediately adjacent to the paved parking lot on the north side of the facility.

Background

It is reported by Spectra Engineering in January 2012 that during removal of soil in the impacted area photoionization detector (PID) readings indicative of the presence of volatile compounds were recorded. The suspect soil was stockpiled and sampled. The analytical results (copy attached) indicated the presence of PCE at concentrations ranging from 1,300 ug/Kg to 33,000 ug/Kg (the results are qualified with the notation "Outlying QC recoveries were associated with this parameter."). Methylene chloride was also reported present at concentrations of up to 4,300 ug/Kg.

There is an existing network of groundwater monitoring wells at the site. The closest down or cross gradient monitoring well to the impacted area is MW-38S. The presence of chlorinated compounds in the groundwater in this area of the Site has been known since at least 1997 (see previously submitted historic results from monitoring well MW-38S).

PCE concentrations in the range of 600 ug/L to 670 ug/L were reported in the groundwater samples collected from MW-38S in 1997. Since 1997, the concentration of PCE reported in the samples from MW-38S has declined to a range of 150 ug/L to 230 ug/L over the last four years of monitoring.

The historic presence of chlorinated compounds in this area of the Site is further evidenced by the results from the soil gas survey conducted in 1990 and the membrane interface probe (MIP) survey conducted in

Mr. Steve Rogers – Miller Brewing Co. c/o Operations & Maintenance, Inc. Former Miller Container Facility, Fulton, NY NYSDEC Site # 7-38-029 October 16, 2012 Page 2 of 5

2008 - both of which indicated the presence of chlorinated compounds, however not at levels that warranted additional investigation or remediation.

In response to the discovery of chlorinated compounds in the groundwater at the Site, a series of groundwater recovery wells were installed in 1996 as required under the Record of Decision (ROD) and made operational in 1997. The closest recovery wells are RW-2, RW-3 and RW-4, located southwest of the area of concern. A review of capture zone analyses computed by Earth Tech Engineers of New York, P.C. in the Final Engineering Report dated November 1997, indicates that the impacted area and monitoring well MW-38S are within the capture zones of the recovery wells.

Based on the boring log for MW-38S, the soils in the impacted area are predominately fine sand with some silt and clay. The depth to groundwater as reported in MW-38S varies seasonally and is generally 10 to 15 feet below the ground surface.

Scope of Work

The following scope of work was initiated to investigate and better define the lateral and vertical extent of the chlorinated compounds in the soil in the impacted area.

A series of direct push (Geoprobe Model 6620DT) sample probes were advanced in and around the area where the chlorinated compounds were reported to have been discovered.

Continuous soil samples were obtained at each location using a macro-core sampler. The sampler was equipped with single use acetate liners for sample retrieval. The sampling terminated at the water table.

A representative soil sample from each interval was placed in a zip closing plastic bag. At the completion of the sampling at each location, the "bagged samples" were allowed to warm and offgas for a minimum of 15 minutes. The samples were then screened with a PID (MiniREA2000 equipped with a 10.6 eV lamp) for the possible presence of volatile compounds. The PID readings were recorded on the Subsurface Log maintained for each location.

The soil sample from each location exhibiting the highest PID reading was submitted for analysis for the presence of volatile organic compounds using EPA Method 8260.

Consistent with the Work Plan dated May 8, 2012, the first five sampling probes were located at the center of and on each side of the impacted area (see Drawing No. 1).

Since possible evidence of contamination was detected in the 4 to 8 ft. sample from DP-12-4 (PID = 22.1 ppm) located on the northwest side of the area of concern, additional sample probes were advanced in that direction in accordance with the Work Plan.

Generally, the sample probes were advanced to depths of 12 feet below the ground surface. DP-12-1 was advanced to a depth of 16 feet in order to gauge the depth to groundwater at the time the work was completed and DP-12-12 and DP-12-13 were terminated at depths of 4 feet each for reasons outlined in subsequent sections below.

Mr. Steve Rogers – Miller Brewing Co. c/o Operations & Maintenance, Inc. Former Miller Container Facility, Fulton, NY NYSDEC Site # 7-38-029 October 16, 2012 Page 3 of 5

All laboratory samples were analyzed by Life Science Laboratories, Inc. using normal QA/QC protocols. As stated in the Work Plan, Category B deliverables and a Data Usability Summary Report were not provided.

Field equipment was decontaminated using a tap water/Liquinox wash/tap water rinse.

The sample locations were established relative to the existing site features.

Findings

The field work was conducted on August 6, 2012. Personnel on site were Joseph Menzel and Forrest Earl of GeoLogic NY, Inc. and Gary Mullen, Jr. of Operations & Maintenance, Inc.

The soils encountered consisted of a brown silt, sand and gravel fill (in the area previously excavated by Riccelli) overlying a brown fine sand and silt unit (native soils). The fill ranged in depth from 4 to 7 ft. The soil at DP-12-1 became saturated at a depth of 12 feet. The depth to water in piezometer PZ-2 located just northeast of the impacted area was 11.97 feet from the top of the PVC well pipe. Based on the observed moisture content in the soil samples from DP-12-1 and the depth to water measurement in PZ-2, a termination depth of 12 feet was established for the remaining sample locations.

The first five sample locations were at the center (DP-12-1) and on each side of the area of concern (Drawing No. 1). The highest PID reading from each location was:

DP-12-1 – 4.5 ppm (12-16 ft. sample) DP-12-2 – 6.3 ppm (4-8 ft. sample) DP-12-3 – 5.4 ppm (0-4 ft. sample, fill) DP-12-4 – 22.1 ppm (4-8 ft. sample) DP-12-5 – 16.1 ppm (0-4 ft. sample, fill)

After reviewing the field screening results, it was agreed that additional sample probes should be advanced to the northwest of the area of concern as a result of the PID reading from the 4-8 ft. sample from DP-12-4 (22.1 ppm). Thus, eight additional sample probes were advanced to the north and northwest of the area of concern. The highest PID reading from each of the additional locations was:

DP-12-6 – 9.7 ppm (4-8 ft. sample) DP-12-7 – 11.6 ppm (8-12 ft. sample) DP-12-8 – 5.4 ppm (8-12 ft. sample) DP-12-9 – 6.6 ppm (0-4 ft. sample, fill) DP-12-10 – 6.0 ppm (0-4 ft. sample) DP-12-11 – 6.6 ppm (0-4 ft. sample, fill) DP-12-12 – 2.3 ppm (0-4 ft. sample, only sample taken) DP-12-13 – 17.1 ppm (0-4 ft. sample, only sample taken)

After reviewing the field screening results, it was concluded that no additional sampling would be conducted pending the completion of the laboratory analyses. This was concluded based on the fact that no apparent trends in the field screening were observed either vertically or horizontally, nor between native soils versus fill soils and that, the highest PID reading was only 22.1 ppm. The lack of correlation spatially and between soil samples suggested that the field screening method might not be suitable to distinguish the apparent degree of contamination.

Mr. Steve Rogers – Miller Brewing Co. c/o Operations & Maintenance, Inc. Former Miller Container Facility, Fulton, NY NYSDEC Site # 7-38-029 October 16, 2012 Page 4 of 5

All of the samples noted above were submitted for analysis with the exception of DP-12-11. Since the 0-4 ft. sample from DP-12-11 appeared to be fill, and the 4-8 ft. sample exhibited a similar PID reading (5.1 ppm) the 4-8 ft. sample was submitted for analysis in an effort to better compare the field screen results with the laboratory results. Additionally, the samples from DP-12-5, 4-8 ft. and DP-12-9, 8-12 ft. were also submitted for analysis in an attempt to better correlate the PID readings with the laboratory results.

The samples were analyzed by Life Science Laboratories, Inc. using EPA Method 8260B for Target Compound List Volatiles. The results are attached and summarized on Table No. 1. The total reported volatile concentrations for each sample versus the field screening PID readings are presented on Table No. 2.

Note: The tetrachloroethene (PCE) concentration reported in sample DP-12-7, 8-12 ft. is qualified as "E = this result should be considered an estimate because the concentration exceeded the linear range of the instrument." David Pritchard of Life Science Laboratories was contacted regarding the qualifier. Mr. Pritchard stated that the upper end of the linear range was 400 ug/Kg. Because the estimated concentration is within 10% of the upper end of the linear response (estimated concentration of 430 ug/Kg versus upper end response of 400 ug/Kg), laboratory protocol does not require re-analysis of the sample. Mr. Pritchard further stated that in his professional opinion, the estimated concentration is "very accurate."

While volatile organic compounds (VOCs) were reported in many of the samples analyzed, only Acetone in the 0-4 ft. sample from DP-12-5 (130 ug/Kg) exceeded the Soil Clean-up Objective (SCO), 50 ug/Kg for Restricted Use (see 6 NYCRR Part 375 6.8(b)). (Note: the Site specific soil clean-up levels cited in the ROD for the Northern Unit are considerably higher (see page 6 of the ROD).

Furthermore, given that the Acetone was found in the 0 to 4 ft. interval in an area that was said to have been excavated to a depth of five feet and restored as part of the chloride remedial activities, the presence of Acetone would not be attributed to operations associated with Miller Brewing Company, which ceased manufacturing operations at the Site almost 20 years ago. Information provided by John Ciampa of Spectra Engineering (attached) indicates that the location of boring DP-12-5 falls within the area excavated to a depth of five feet.

Although the presence of PCE was reported in the soils excavated by Riccelli, none of the samples analyzed as part of this evaluation had PCE concentrations above the most conservative SCO (see 6 NYCRR Part 375 6.8(b), Protection of Groundwater). The SCO is 1,300 ug/Kg, while the highest concentrations reported in the samples were 430 ug/Kg (E) in the 8 to 12 ft. sample from DP-12-7 and 450 ug/Kg in the 12 to 16 ft. sample from DP-12-1.

A review of Table No. 2 comparing the field screening PID readings versus the total volatile concentrations reported in the laboratory samples indicates there is no direct correlation between the readings. The maximum PID reading of 22.1 ppm yielded a total volatile concentration of 152 ppb, while the highest total volatile concentration of 521 ppb corresponded to a PID reading of 4.5 ppm. The lack of correlation between the field screening readings and the analytical results likely is a product of the relatively low concentrations of volatiles present in the samples (less than 0.5 ppm), the response range of the field instrument (the maximum PID reading recorded was in the lowest 1% of the range of the instrument), the potential influence of moisture in the samples on the response of the field instrument, and the inherent variability associated with the field screening methodology.

Mr. Steve Rogers – Miller Brewing Co. c/o Operations & Maintenance, Inc. Former Miller Container Facility, Fulton, NY NYSDEC Site # 7-38-029 October 16, 2012 Page 5 of 5

GeoLogic

Conclusions & Recommendations

The analytical results provided by Spectra Engineering for the three samples obtained in "VOC-Impacted Area" indicate that the concentrations of tetrachloroethene and methylene chloride exceeded both the site specific Northern Unit Soil Clean-up Levels and the Part 375-6.8(b) SCOs (Protection of Groundwater). None of the samples analyzed as part of this evaluation exceeded either set of criteria. This supports the view that any VOC impacted soils of concern have already been removed.

It is our professional opinion that the data does not warrant the collection and analysis of additional samples. Thirteen sample probes were advanced in and around the "approximate VOC-impacted area" as identified by Spectra Engineering. The highest field screening result was 22.1 ppm and none of the 15 samples submitted for laboratory analysis exceeded the soil clean-up criteria for tetrachloroethene or methylene chloride.

If you have any questions, or need any additional information, please do not hesitate to contact us.

Sincerely;

GeoLogic NY, Inc.

Forrest Earl

President/Principal Hydrogeologist

Enc.: Boring Location Plan, Subsurface Logs, Table No. 1, Table No. 2, Analytical Results, Spectra Engineering Documents

cc: File 212046\Report\Report

SAMPLE LOCATIONS AND SITE FEATURES.

THIS PLAN DOES NOT CONSTITUTE A SURVEY AND IS INTENDED TO CONVEY APPROXIMATE

LEGEND:

+ EXISTING MONITORING WELL LOCATIONS

- EXISTING RECOVERY WELL LOCATIONS

- DIRECT PUSH SAMPLING LOCATION

APPROXIMATE VOC-IMPACTED AREA (As Identified by Spectra Environmental, January 2012

GeoLog1c										
GeoLogi	c NY, Inc., Homer, N	ew York								
BOR	ING LOCATION P	LAN								
MILLEF	R BREWING COM	PANY								
REYNOLDS	CAN PLANT REM	IEDIATION								
FL	ILTON, NEW YOR	K								
DRAWN BY:	SCALE:	PROJECT NO .:								
FCE/SDW	FCE/SDW AS SHOWN 212046									
REVIEWED BY:	DATE: AUG. 2012	DRAWING NO.: 1								

GeoLogic NY, Inc. P.O. Box 350 Homer, New York 13077 (607) 749-5000

Project:

KEY TO SUBSURFACE LOG

Boring No.: B-1 Project No.: 209001 Date Started: 1/31/09 Date Completed: 1/31/09

Sheet 1 of 1 Reference Elevation: 100.0

Locatio	n:							
Depth (ft.)	Sample No.	Type	SPT Blows	N-Value	Recovery (ft.)	PID Reading (ppm)	MATERIAL DESCRIPTION	REMARKS
0 <u>-</u>							Ground Surface	Water level at 2.0' with augers at 7.5'.
1 	1	SS	1 - 2 2	4	2.0	32	Brown SILT, Some fine-coarse Sand, trace clay, moist-loose	At completion water level at 2.2'
 2 	2	3			5		Gray SHALE, medium hard weathered, thin bedded, some fractures 6 7 8	With adgers at 10.0. Run #1: 3.0'-5.0' 95% Recovery, 50% RQD 9 10

TABLE I

Identification of soil type is made on basis of an estimate of particle sizes, and in the case of fine-grained soils also on basis of plasticity.									
Soil Type		Soil Particle							
Boulder		> 12"							
Cobble		12" - 3"							
Gravel	- Coarse	3" - 3/4"	Coarse Grained						
	- Fine	3/4" - #4	(Granular)						
Sand	- Coarse	#4 - #10							
	- Medium	#10 - #40							
	- Fine	#40 - #200							
Silt-Non Plastic	(Granular)	< #200	Fine Grained						
Clay-Plastic (C	ohesive)								

TABLE II

The following terms are used in classifying soils consisting of mixtures of two or more soil types. The estimate is based on weight of total sample.

Term	Percent of Total Sample
"and"	35 - 50
"some"	20 - 35
"little"	10 - 20
"trace"	1 - 10

(When sampling gravelly soils with a standard split spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter.)

TABLE III

Granular Soils Cohesive Soils								
Term	Blows per Foot, N	Term	Blows per Foot, N					
Loose	< 11	Very Soft	< 2					
Firm	11 - 30	Soft	2 - 4					
Compact	31 - 50	Medium	4 - 8					
Very Compact	> 51	Stiff	8 - 15					
		Very Stiff	15 - 30					
		Hard	>30					

F:\TEMPLATE\LOGS\Word Logs\LOGKEY1.DOC

TABLE IV

Stratified Soils				
Descriptive Term	Thickness			
Parting -	0" - 1/16"			
Seam -	· 1/16" - 1/2"			
Layer -	· 1/2" - 12"			
Stratum -	- >12"			
Varved Clay -	Alternating seams or layers of sand, silt & clay			
Pocket -	small, erratic deposit, usually <12"			
Lens -	lenticular deposit			
Occasional ·	one or less per foot of thickness			
Frequent	more than one per foot of thickness			

TABLE V

Rock Classification Terms							
	Term	Mea	Meaning				
Hardness	Soft	Scratched by fingernail					
	Medium Hard	Scratched easily by penknife					
	Hard	Scratched with difficulty by penknife					
	Very Hard	Cannot be scratched by penknife	Cannot be scratched by penknife				
Weathering	Very Weathered	Judged from the relative amounts of disi	Judged from the relative amounts of disintegration,				
	Weathered	iron staining, core recovery, clay seams, etc.					
	Sound						
Bedding	Laminated	Natural breaks in Rock Layers	<1"				
	Thin bedded		1"-4"				
	Bedded		4"-12"				
	Thick bedded		12"-36"				
	Massive		>36"				
	(Fracturing refers to natural bre	eaks in the rock oriented at some angle to the rock laye	rs.)				

GENERAL INFORMATION & KEY TO SUBSURFACE LOGS

The information presented in the following defines some of the procedures and terms used on the Subsurface Logs to describe the conditions encountered.

- 1. The figures in the Depth column define the scale of the Subsurface Log.
- 2. The Sample No. is used for identification on sample containers.
- The sample column shows, graphically, the depth range from which a sample was recovered. (ss split spoon; core rock core; st shelby tube; dp direct push). If not shown as a separate column, the sample type should be referenced in the Remark column or in the footnote.
- 4. Blows on Sampler shows the results of the "Penetration Test", recording the number of blows required to drive a split spoon sampler into the soil. The number of blows required for each six inches of penetration is recorded. The first 6 inches of penetration is considered to be a seating drive. The number of blows required for the second and third 6 inches of penetration is termed the penetration resistance, N. The outside diameter of the sampler, the hammer weight and the length of drop are noted at the bottom of the Subsurface Log.
- 5. Recovery shows the length of the recovered soil sample for the sample device noted.
- 6. All recovered soil samples are reviewed in the office by an experienced technical specialist or geologist, unless noted otherwise. The visual descriptions are made on the basis of a combination of the field descriptions and observations and the sample as received in the office. The method of visual classification is based primarily on the Unified Soil Classification (ASTM D 2487-83) with regard to the particle size and plasticity. (See Table I). Additionally, the relative portion, by weight, of two or more soil types is described for granular soils in accordance with "Suggested Methods of Test for Identification of Soils" by D.M. Burmister, ASTM Special Technical Publication 479, June 1970. (See Table II) The description of the relative soil density or consistency is based upon the penetration records as defined on Table No. III. The description of the soil moisture is based upon the relative wetness of the soil as recovered and is described as damp, moist, wet and saturated. Water introduced in the boring either naturally or during drilling may have affected the moisture condition of the recovered sample. Special terms are used as required to describe materials in greater detail; several such terms are listed in Table IV. When sampling gravelly soils with a standard two-inch diameter split spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders and large gravel is sometimes, but not necessarily, detected by an evaluation of the casing/hollow stem augers and samplers blows or through the "action" of the drill rig.
- 7. The description of the rock shown is based on the recovered rock core and the field observations. The terms frequently used in the description are included in Table V.
- 8. The stratification lines represent the approximate boundary between soil types, and the actual transition may be gradual.
- 9. Miscellaneous observations and procedures noted in the field are shown in this column, including water level observations. It is important to realize the reliability of the water level observations depends upon the soil type (water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the boring may have influenced the observations. The groundwater level typically will fluctuate seasonally. One or more perched or trapped water levels may exist in the ground seasonally. All the available readings should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or monitoring wells.
- 10. The length of core run is defined as the length of penetration of the core barrel. Core recovery is the length of core recovered divided by the core run. The RQD (Rock Quality Designation) is the total pieces of NX core exceeding 4 inches in length divided by the core run. The size of the core barrel used is also noted at the bottom of the subsurface log.

The Subsurface Logs attached to this report present the observations and mechanical data collected at the site, supplemented by classification of material removed from the borings as determined through visual identification. It is cautioned that the materials removed from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. The data presented on the Subsurface Logs together with the recovered samples will provide a basis for evaluating the character of the subsurface conditions relative to the project. The evaluation must consider all the recorded details and their significance relative to each other. Often analyses of boring data indicate the need for additional testing or sampling procedures to more accurately evaluate the subsurface conditions. Any evaluation of the contents of this report and the recovered samples must be performed by knowledgeable Professionals.

GeoLogic			ogic	SUBSURFACE LOG - DIRECT PUSH				
PO Box 350, Homer, NY 13077 607-749-5000 / 607-749-5083 (fax.)							(Page 1 of 1)	
		M Fulto	iller / O n, New	MI / York	Boring No:: DPProject No.:: 21:Date Started:: 08/Date Completed:: 08/	2-12-1 2046 /06/12 /06/12		
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRIPTI	ON	REMARKS	
0-				FILL: Brown SAND	SILT and GRAVEL			
	- 1	3.0	0					
4-	2	3.5	1.2	Brown fine SAND, s	Some Silt, little clay, moist			
	- 3	4.0	0					
	- 4	4.0	4.5	saturated at 12.0'				
16-			•	BORING TERMINA	TED AT 16.0'			
20-	-							
Visuall	/ Clas	sified by	: Geologis	st				
File: 21	File: 212046/tech/DP-12-1							

GeoLogic					SUBSURFACE LOG - DIRECT PUSH				
PO Bo 607-74	35 19-500	0, Home	w. NY 13	077					(Page 1 of 1)
		M Fulto	iller / O n, New	MI [,] York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-2 : 212046 : 08/06/12 : 08/06/12			
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRIF	PTION			REMARKS
0-				FILL: Brown SAND	SILT and GRAVEL				
	- 1	3.0	2.0						
	2	3.5	6.3	Brown fine SAND a	nd SILT, little to trace o	Jay			
	- 3	3.0	5.2						
12-			•	BORING TERMINA	TED AT 12.0'			I	
- 16-	-								
Visually	/ Clas	sified by	: Geologis	t					
File: 21	Visually Classified by: Geologist File: 212046/tech/DP-12-2								

GeoLogic				0210	SUBSURFACE LOG - DIRECT PUSH			
PO B	0x 35	0, Home	w. NY 13	077 O			(Page 1 of 1)	
		M Fulto	iller / O n, New	MI / York	Boring No:: DP-12-3Project No.:: 212046Date Started:: 08/06/12Date Completed:: 08/06/12			
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRIPTION		REMARKS	
0-				FILL: Brown SAND	SILT and GRAVEL			
	- 1	4.0	5.4					
4-				Brown fine SAND a	nd SILT, trace clay, moist			
8-	2	4.0	1.6					
	- 3	4.0	0.9					
12-				BORING TERMINA	TED AT 12.0'			
16-	-							
Visuall	y Clas	sified by	: Geologis	st				
File: 21	2046	/tech/DP	-12-3					

C	3	20	L	ogic	SUBSURFACE LOG - DIRECT PUSH				
PO Box 350, Homer, NY 13077 607-749-5000 / 607-749-5083 (fax)							(Page 1 of 1)		
		Mi Fulto	iller / O n, New	MI / York	Boring No:: DFProject No.:: 21Date Started:: 08Date Completed:: 08	2-12-4 2046 /06/12 /06/12			
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRIPTI	ON	REMARKS		
0-				FILL: Brown SAND	SILT and GRAVEL				
-	- 1	4.0	0.8						
4-				Brown fine SAND a	nd SILT, little to trace clay	, moist			
	2	4.0	22.1						
-	- 3	4.0	13.5						
12-			1	BORING TERMINA	TED AT 12.0'				
	-								
Visually	/ Clas	sified by	: Geologis	st					
File: 21	File: 212046/tech/DP-12-4								

GeoLogic					SUBSURFACE LOG - DIRECT PUSH				
PO B	9-5D	0, Home	H. NY 13	077 O					(Page 1 of 1)
		M Fulto	iller / O n, New	MI / York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-5 : 212046 : 08/06/12 : 08/06/12			
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRI	PTION			REMARKS
0-				FILL: Brown SAND	, SILT and GRAVEL				
· ·	- 1	3.5	16.1						
4-				Brown fine SAND a	nd SILT, little to trace	clay, moist			
	2	3.0	10.1						
	- 3	3.5	3.2						
12-				BORING TERMINA	TED AT 12.0'				
16-	-								
Visually	y Clas	sified by	: Geologis	st					
File: 21	2046	/tech/DP	-12-5						

C	3	20	L	ogic	SUBSURFACE LOG - DIRECT PUSH					
PO Bo 607-74	9-5D	0, Home	w. NY 13 49-5063 (077				(Page 1 of 1)		
		M Fulto	iller / O n, New	MI / York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-6 : 212046 : 08/06/12 : 08/06/12				
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCF	RIPTION		REMARKS		
0-				FILL: Brown SAND	, SILT and GRAVEL					
	- 1	3.0	3.9							
4-				Brown fine SAND a	nd SILT, little to trac	e clay, moist				
	2	3.5	9.7							
-	- 3	4.0	6.0							
12-			1	BORING TERMINA	TED AT 12.0'					
16-	-									
Visually	y Clas	sified by	: Geologis	st						
File: 21	2046	/tech/DP	-12-6							

C	3	20	L	0910	SUBSURFACE LOG - DIRECT PUSH					
PO B	ax 35 19-50	0, Home	49-5063 (077 9			(Page 1 of 1)			
		M Fulto	iller / O n, New	MI / York	Boring No: : Project No.: : Date Started: : Date Completed: :	DP-12-7 212046 08/06/12 08/06/12				
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRIP	TION	REMARKS			
0-				FILL: Brown SAND	, SILT and GRAVEL					
	- 1	4.0	0.8							
4-				Brown fine SAND a	nd SILT, little to trace cl	ay, moist				
8-	- 2	4.0	4.7							
10	- 3	4.0	11.6							
12-				BORING TERMINA	TED AT 12.0'					
	-									
Visuall	y Clas	sified by	: Geologis	st						
File: 2	12046	/tech/DP	-12-7							

C	3	20	L	ogic	SUBSURFACE LOG - DIRECT PUSH					
PO Be 607-74	0x 35 19-50	0, Home	49-5063 (077				(Page 1 of 1)		
		M Fulto	iller / O n, New	MI / York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-8 : 212046 : 08/06/12 : 08/06/12				
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCR	RIPTION		REMARKS		
0-				FILL: Brown SAND	, SILT and GRAVEL					
-	- 1	4.0	3.4							
4-				Brown fine SAND a	nd SILT, little to trace	e clay, moist				
	2	4.0	4.7							
-	- 3	4.0	5.4							
12-				BORING TERMINA	TED AT 12.0'					
- 16-	-									
Visually	y Clas	sified by	: Geologis	st						
File: 21	2046	/tech/DP	-12-8							

C	3	20	L	0210	SUBSURFACE LOG - DIRECT PUSH					
PO B	0x 35 19-500	0, Home	NY 13	077 O					(Page 1 of 1)	
		M Fulto	iller / O n, New	MI / York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-9 : 212046 : 08/06/12 : 08/06/12				
Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCRI	PTION			REMARKS	
0-				FILL: Brown SAND	, SILT and GRAVEL					
	- 1	3.5	6.6							
4-				Brown fine SAND a	ind SILT, little to trace	clay, moist				
8-	2	3.0	5.1							
	- 3	4.0	3.7							
12-			•	BORING TERMINA	TED AT 12.0'					
16-	-									
Visuall	y Clas	sified by	: Geologis	st						
File: 21	2046	/tech/DP	-12-9							

ſ	G	20	eo	L	ogic	SUBSURFACE LOG - DIRECT PUSH					
	PO Bo	0x 35	0, Home	or, NY 13	077					(Page 1 of 1)	
-			M Fulto	iller / O on, New	MI York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-10 : 212046 : 08/06/12 : 08/06/12				
	Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCR	IPTION			REMARKS	
	0-				Topsoil 0.5'						
	-				Brown fine SAND a	ind SILT, little to trace	e clay				
	-	- 1	3.5	6.0							
	4 —										
	-	2	3.5	2.5							
	8-										
ng\TECH\DP-12-10.bor	-	- 3	4.0	4.8							
Brewin	12-			1	BORING TERMINA	TED AT 12.0'					
ROJECTS\2012\212046 - OMI - Miller E	- - 16-	-									
2 P:\PF	Visually	y Clas	ssified by	: Geologis	st						
10-16-2012	File: 21	2046	/tech/DP	-12-10							

	G	3	eo	L	ogic		SUBSI	JRFACE LOG - DIRE	CT PUSH
	PO Bo	9-5D	0, Home	w. NY 13 49-5063 (077 -				(Page 1 of 1)
			Mi Fulto	iller / O n, New	MI [,] York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-11 : 212046 : 08/06/12 : 08/06/12		
	Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCR	IPTION		REMARKS
	0-				FILL: Brown SAND	, SILT and GRAVEL			
	-	- 1	2.5	6.6					
	4 –				Brown fine SAND a	nd SILT, little to trace	clay, moist		-
	- - 8-	2	3.5	5.1					
ig\TECH\DP-12-11.bor	-	- 3	4.0	3.7					
Brewinę	12-				BORING TERMINA	TED AT 12.0'			
OJECTS/2012/212046 - OMI - Miller {	- - 16-	-							
P:\PR(Visually	y Clas	ssified by	: Geologis	t				
10-16-2012	File: 21	2046	/tech/DP·	-12-11					

	G	-	20	L	ogic	SUBSURFACE LOG - DIRECT PUSH					
	PO Bo 607-74	9-5D	0, Home	H. NY 13	077 9				(Page 1 of 1)		
			Mi Fulto	iller / O n, New	MI / York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-12 : 212046 : 08/06/12 : 08/06/12				
	Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCF	IPTION		REMARKS		
	0-				Topsoil 0.5'						
					Brown fine SAND a	ind SILT, little to trac	e clay, damp				
DP-12-12.bor	-	- 1	4.0	2.3	BORING TERMINA	TED AT 4.0'					
ECHUDE					BORING TERMINA	ATED AT 4.0					
OJECTS\2012\212046 - OMI - Miller Brewing\TE											
PRC	Visually	/ Clas	sified by	: Geologis	st						
10-16-2012	File: 21	2046	/tech/DP-	-12-12							

	C	3	eo	L	ogic	SUBSURFACE LOG - DIRECT PUSH					
	PO Bo 607-74	0x 35	0, Home	r. NY 13	077					(Page 1 of 1)	
			M Fulto	iller / O on, New	MI / York	Boring No: Project No.: Date Started: Date Completed:	: DP-12-13 : 212046 : 08/06/12 : 08/06/12				
	Depth (ft)	Sample No.	Recovery (ft)	PID Reading (ppm)		DESCR	IPTION			REMARKS	
	0-				Topsoil 0.5'						
					Brown fine SAND a	ind SILT, trace clay					
DP-12-13.bor	-	- 1	4.0	17.1	BORING TERMINA	νTED AT 4.0'					
ECH/DI					BORING TERMINA	TED AT 4.0					
JECTS\2012\212046 - OMI - Miller Brewing\T											
:\PRO	Visually	y Clas	sified by	: Geoloais	st						
10-16-2012 P	File: 21	2046	/tech/DP	-12-13							

Former Miller Container *TABLE 1* SUPPLEMENTAL SOIL INVESTIGATION SOIL DATA SUMMARY AUGUST 2012 NYSDEC Site No. 7-38-029

Sample Location	6NYCRR	ROD	DP-12-1	DP-12-2	DP-12-3	DP-12-4	DP-12-5	DP-12-5	DP-12-6	DP-12-7	DP-12-8	DP-12-9	DP-12-9	DP-12-10	DP-12-11	DP-12-12	DP-12-13
	Part 375 SCO	Mar-95	12-16'	4-8'	0-4	4-8'	0-4'	4-8'	4-8'	8-12'	8-12'	0-4'	8-12'	0-4'	8-12'	0-4'	0-4'
Parameter	Restricted		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
FPA 8260B TCI	ua/Ka	ua/Ka															
1 1 1-Trichloroethane	<u>680</u>	800	7.4	ND	ND	18.0	ND	ND	4.8	48.0	ND	ND	4.3	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	100,000	000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane	100.000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	270		15.0	ND	ND	8.0	ND	ND	72	18.0	94	ND	7.8	ND	ND	ND	ND
1.1-Dichloroethene	330	400	7.6	ND	ND	49	ND	ND		33.0	77	ND	13.0	ND	ND	ND	ND
1 2 3-Trichlorobenzene	100.000	100	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
1.2.4-Trichlorobenzene	100,000		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	3 600		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-	100.000		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromomethane	100,000					ND					ND			ND	ND	ND	
1 2-Dichlorobenzene	1 100																
1 2-Dichloroethane	20																
1 2-Dichloropropane	100.000																
1 3 5-trimethylbenzene	8 400																
1 3-Dichlorobenzene	2,400																
1 4-Dichlorobenzene	2,400																
1 4-Dioxane	1,000																
2-Butanone (MEK)	120						45.0										
2-Hexanone	100,000						43.0 ND										
4-Methyl-2-pentanone	100,000																
Acetone	100,000	252					120.0										
Benzene	<u> </u>	200															
Bromochloromethane	100.000																
Bromodichloromothana	100,000																
Bromotorm	100,000																
Bromomothano	100,000																
Carbon disulfido	100,000																
Carbon totrachlarida	700,000																
Caldon tetrachionde	1 100										ND						
Chloroothana	1,100																
Chloroform	100,000																
Chloromothana	370																
	100,000										ND			ND	ND		
	100,000		ND					ND		ND	ND		ND	ND	ND	ND	
Dibromochloromothono	100,000		ND					ND		ND	ND		ND	ND	ND	ND	
	100,000																
Dichlorodifluoromethane	100,000	E E00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,000	5,500	ND					ND		ND	ND		ND	ND	ND	ND	
	100,000																
	100,000	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aylenes - Mixed	1600	1200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methyl aceiale	100,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylevelebevere	930		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100,000	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	50	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	0.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,300	2,366	450.0	30.0	ND	34.0	ND	24.0	39.0	*430 E	36.0	ND	170.0	ND	9.1	ND	7.6
I oluene	700	1500	7.1	ND	ND	ND	91.0	ND	ND	ND	ND						
trans-1,3-Dichloropropene	100,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Irichloroethene	470	700	14.0	ND	ND	ND	ND	ND	7.1	9.6	ND	ND	9.4	ND	ND	ND	ND

Sample Location	6NYCRR	ROD	DP-12-1	DP-12-2	DP-12-3	DP-12-4	DP-12-5	DP-12-5	DP-12-6	DP-12-7	DP-12-8	DP-12-9	DP-12-9	DP-12-10	DP-12-11	DP-12-12	DP-12-13
	Part 375 SCO	Mar-95	12-16'	4-8'	0-4	4-8'	0-4'	4-8'	4-8'	8-12'	8-12'	0-4'	8-12'	0-4'	8-12'	0-4'	0-4'
Parameter	Restricted		ug/kg	ug/kg	ug/kg	ug/kg											
EPA 8260B TCL	ug/Kg	ug/Kg															
Trichlorofluoromethane	100,000		ND	ND	ND	ND											
Vinyl chloride	20		ND	ND	ND	ND											
1,2-Dichloroethene, Total	cis-250, trans-190	300	20.0	31.0	ND	87.0	ND	24.0	62.0	37.0	6.7	ND	8.6	ND	ND	ND	ND

Notes:

Highlighted value exceeds site specific Northern Unit Soil Clean-up Level or

6NYCRR Part 375 6.8(b) Soil Cleanup Objective (SCO) for Restricted Use/Protection of Groundwater

*E = Result should be considered an estimate because the concentration exceeded the linear range of the instrument

FORMER MILLER CONTAINER TABLE 2 SUPPLEMENTAL SOIL INVESTIGATION FIELD SCREENING VS. LABORATORY RESULTS AUGUST 2012 NYSDEC SITE NO. 7-38-029

Sample	PID	Total Vols	Highest Individual Concentration
	(ppm)	(ug/Kg)	
DP-12-4, 4-8 ft	22.1	152	87 - 1,2 Dichloroethene
DP-12-13, 0-4 ft	17.1	7	7 - Tetrachloroethene
DP-12-5, 0-4 ft	16.1	265	130 - Acetone
DP-12-7, 8-12 ft	11.6	576	430(E) - Tetrachloroethene
DP-12-5, 4-8 ft	10.1	48	24 - 1,2 Dichloroethene & 24 - Tetrachloroethene
DP-12-6, 4-8 ft	9.7	120	62 - 1,2 Dichloroethene
DP-12-9, 0-4 ft	6.6	ND	
DP-12-2, 4-8 ft	6.3	61	31 - 1,2 Dichloroethene
DP-12-10, 0-4 ft	6.0	ND	
DP-12-3, 0-4 ft	5.4	ND	
DP-12-8, 8-12 ft	5.4	60	36 - Tetrachloroethene
DP-12-1, 12-16 ft	4.5	521	450 - Tetrachloroethene
DP-12-9, 8-12 ft	3.7	213	170 - Tetrachloroethene
DP-12-11, 8-12 ft	3.7	9	9 - Tetrachloroethene
DP-12-12, 0-4 ft	2.3	ND	

Phone: (315) 598-5396

Gary Mullen, Jr. Operations & Maintenance, Inc. 7 Barton Rd. Pennellville, NY 13132 USA

Laboratory Analysis Report For

Operations & Maintenance, Inc.

LSL Project ID: **1212760**

Receive Date/Time: 08/07/12 16:38 Project Received by: RD

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sample(s) submitted for analysis.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

Date:

LSL MidLakes Field Offfice 493 South Main Street Canandaigua, NY 14424 Tel. (585) 728-3320 Fax (585) 728-2711

8/29/12

This report was reviewed by:

Life Science Laboratories.

A copy of this report was sent to:

Page 1 of 16
Date Printed: 8/24/12

LSL Sample ID:

1212760-001

Operations & Maintenance, Inc. Pennellville, NY

Sampled By:

Sample ID: DP-12-1 12-16'

Location:

Sampled:

08/06/12 9:52 Sample Matrix: SHW as Recd

Analytical Method	· · · · · · · · · · · · · · · · · · ·			Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles					9,,49,99,99,999,99,10,10,10,10,00,00,00,00,00,00,00,00,00,	
Acetone	<40	ug/kg			8/8/12	MSV
Benzene	<3	ug/kg			8/8/12	MSV
Bromodichloromethane	<3	ug/kg			8/8/12	MSV
Bromoform	<3	ug/kg			8/8/12	MSV
Bromomethane	<5	ug/kg			8/8/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/8/12	MSV
Carbon disulfide	· · · · <3	ug/kg			8/8/12	MSV
Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
Chlorobenzene	<3	ug/kg			8/8/12	MSV
Chloroethane	<5	ug/kg			8/8/12	MSV
Chloroform	<3	ug/kg			8/8/12	MSV
Chloromethane	<5	ug/kg			8/8/12	MSV
Dibromochloromethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethane	15	ug/kg			8/8/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethene	7.6	ug/kg			8/8/12	MSV
1,2-Dichloroethene, Total	20	ug/kg			8/8/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
Ethyl benzene	<3	ug/kg			8/8/12	MSV
2-Hexanone	<5	ug/kg			8/8/12	MSV
Methylene chloride	<5	ug/kg			8/8/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
Styrene	<3	ug/kg			8/8/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
Tetrachloroethene	450	ug/kg			8/9/12	MSV
Toluene	7.1	ug/kg			8/8/12	MSV
1,1,1-Trichloroethane	7.4	ug/kg			8/8/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
Trichloroethene	14	ug/kg			8/8/12	MSV
Vinyl chloride	<5	ug/kg			8/8/12	MSV
Xylenes (Total)	<3	ug/kg			8/8/12	MSV
Surrogate (1,2-DCA-d4)	75	%R			8/8/12	MSV
Surrogate (Tol-d8)	121	%R			8/8/12	MSV
Surrogate (4-BFB)	111	%R			8/8/12	MSV

Operations & Maintenance, Inc. Pennellville, NY

LSL Sample ID:

1212760-002

Sample ID: Location:

Sampled:

ipicu. 00/

08/06/12 10:12 Sampled By:

DP-12-2 4-8'

Sample Matrix: SHW as Recd

Analy	tical Method				Prep	Analysis	Analyst
	Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA	A 8260B TCL Volatiles		· · · ·	······································			
	Acetone	<40	ug/kg			8/8/12	MSV
	Benzene	<3	ug/kg			8/8/12	MSV
	Bromodichloromethane	<3	ug/kg			8/8/12	MSV
	Bromoform	<3	ug/kg			8/8/12	MSV
	Bromomethane	<3	ug/kg			8/8/12	MSV
	2-Butanone (MEK)	<40	ug/kg			8/8/12	MSV
	Carbon disulfide	<3	ug/kg			8/8/12	MSV
	Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
	Chlorobenzene	<3	ug/kg			8/8/12	MSV
	Chloroethane	<5	ug/kg			8/8/12	MSV
	Chloroform	<3	ug/kg			8/8/12	MSV
	Chloromethane	<5	ug/kg			8/8/12	MSV
	Dibromochloromethane	<3	ug/kg			8/8/12	MSV
	1,1-Dichloroethane	<3	ug/kg			8/8/12	MSV
	1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
	1,1-Dichloroethene	<3	ug/kg			8/8/12	MSV
	1,2-Dichloroethene, Total	31	ug/kg			8/8/12	MSV
	1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
	cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
	trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
	Ethyl benzene	<3	ug/kg			8/8/12	MSV
	2-Hexanone	<5	ug/kg			8/8/12	MSV
	Methylene chloride	<5	ug/kg			8/8/12	MSV
	4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
	Styrene	<3	ug/kg			8/8/12	MSV
	1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
	Tetrachioroethene	30	ug/kg			8/9/12	MSV
	Toluene	<3	ug/kg			8/8/12	MSV
	1,1,1-Trichloroethane	<3	ug/kg			8/8/12	MSV
	1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
	Trichloroethene	<3	ug/kg			8/8/12	MSV
	Vinyl chloride	<5	ug/kg			8/8/12	MSV
	Xylenes (Total)	<3	ug/kg			8/8/12	MSV
	Surrogate (1,2-DCA-d4)	72	%R			8/8/12	MSV
	Surrogate (Tol-d8)	120	%R			8/8/12	MSV
	Surrogate (4-BFB)	101	%R			8/8/12	MSV

LSL Sample ID:

1212760-003

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-3 0-4'

Location:

Sampled:

08/06/12 10:40

Sampled By:

Sample Matrix: SHW as Recd

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						- <u></u>
Acetone	<40	ug/kg			8/8/12	MSV
Benzene	<3	ug/kg			8/8/12	MSV
Bromodichloromethane	<3	ug/kg			8/8/12	MSV
Bromoform	<3	ug/kg			8/8/12	MSV
Bromomethane	<3	ug/kg			8/8/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/8/12	MSV
Carbon disulfide	<3	ug/kg			8/8/12	MSV
Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
Chlorobenzene	<3	ug/kg			8/8/12	MSV
Chloroethane	<5	ug/kg			8/8/12	MSV
Chloroform	<3	ug/kg			8/8/12	MSV
Chloromethane	<5	ug/kg			8/8/12	MSV
Dibromochloromethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethene, Total	<3	ug/kg			8/8/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
Ethyl benzene	<3	ug/kg			8/8/12	MSV
2-Hexanone	<5	ug/kg			8/8/12	MSV
Methylene chloride	<5	ug/kg			8/8/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
Styrene	<3	ug/kg			8/8/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
Tetrachloroethene	<3	ug/kg			8/8/12	MSV
Toluene	<3	ug/kg			8/8/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/8/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
Trichloroethene	<3	ug/kg			8/8/12	MSV
Vinyl chloride	<5	ug/kg			8/8/12	MSV
Xylenes (Total)	<3	ug/kg			8/8/12	MSV
Surrogate (1,2-DCA-d4)	72	%R			8/8/12	MSV
Surrogate (Tol-d8)	119	%R			8/8/12	MSV
Surrogate (4-BFB)	104	%R			8/8/12	MSV

LSL Sample ID:

1212760-004

Operations & Maintenance, Inc. Pennellville, NY

Sampled By:

Sample ID: DP-12-4 4-8

Location:

Sampled:

Sample Matrix: SHW as Recd

08/06/12 10:58

Analysis Analyst **Analytical Method** Prep Prep Date Date & Time Initials Units Result Analyte (1) EPA 8260B TCL Volatiles 8/8/12 MSV Acetone <40 ug/kg 8/8/12 MSV Benzene <3 ug/kg 8/8/12 MSV Bromodichloromethane <3 ug/kg 8/8/12 MSV <3 ug/kg Bromoform 8/8/12 MSV <3 ug/kg Bromomethane 8/8/12 MSV <40 2-Butanone (MEK) ug/kg 8/8/12 MSV Carbon disulfide <3 ug/kg 8/8/12 MSV <3 ug/kg Carbon tetrachloride 8/8/12 MSV Chlorobenzene <3 ug/kg 8/8/12 MSV <5 ug/kg Chloroethane 8/8/12 MSV Chloroform <3 ug/kg 8/8/12 <5 MSV ug/kg Chloromethane 8/8/12 MSV<3 Dibromochloromethane ug/kg 8.0 8/8/12 MSV 1,1-Dichloroethane ug/kg 1.2-Dichloroethane <3 ug/kg 8/8/12 MSV 4.9 8/8/12 MSV 1,1-Dichloroethene ug/kg 87 8/8/12 MSV ug/kg 1,2-Dichloroethene, Total 8/8/12 MSV <3 1,2-Dichloropropane ug/kg <3 8/8/12 MSV cis-1,3-Dichloropropene ug/kg 8/8/12 MSV trans-1,3-Dichloropropene <3 ug/kg Ethyl benzene <3 ug/kg 8/8/12 MSV 8/8/12 MSV <5 2-Hexanone ug/kg 8/8/12 MSV <5 ug/kg Methylene chloride 8/8/12 MSV 4-Methyl-2-pentanone (MIBK) <5 ug/kg 8/8/12 MSV Styrene <3 ug/kg 1,1,2,2-Tetrachloroethane <3 ug/kg 8/8/12 MSV 34 8/8/12 MSV Tetrachloroethene ug/kg MSV 8/8/12 Toluene <3 ug/kg 8/8/12 MSV 18 ug/kg 1,1,1-Trichloroethane 8/8/12 MSV 1,1,2-Trichloroethane <3 ug/kg MSV Trichloroethene <3 ug/kg 8/8/12 <5 8/8/12 MSV Vinyl chloride ug/kg 8/8/12 MSV <3 ug/kg Xylenes (Total) 76 %R 8/8/12 MSV Surrogate (1,2-DCA-d4) 8/8/12 MSV Surrogate (Tol-d8) 121 %R MSV Surrogate (4-BFB) 104 %R 8/8/12

LSL Sample ID:

1212760-005

Operations & Maintenance, Inc. Pennellville, NY

Sampled By:

Sample ID: DP-12-5 0-4' Location:

a 1.

Sampled:

Sample Matrix: SHW as Recd

08/06/12 11:16

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	130	ug/kg			8/8/12	MSV
Benzene	<3	ug/kg			8/8/12	MSV
Bromodichloromethane	<3	ug/kg			8/8/12	MSV
Bromoform	<3	ug/kg			8/8/12	MSV
Bromomethane	<3	ug/kg			8/8/12	MSV
2-Butanone (MEK)	45	ug/kg			8/8/12	MSV
Carbon disulfide	<3	ug/kg			8/8/12	MSV
Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
Chlorobenzene	<3	ug/kg			8/8/12	MSV
Chloroethane	<5	ug/kg			8/8/12	MSV
Chloroform	<3	ug/kg			8/8/12	MSV
Chloromethane	<5	ug/kg			8/8/12	MSV
Dibromochloromethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethene, Total	<3	ug/kg			8/8/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
Ethyl benzene	<3	ug/kg			8/8/12	MSV
2-Hexanone	<5	ug/kg			8/8/12	MSV
Methylene chloride	<5	ug/kg			8/8/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
Styrene	<3	ug/kg			8/8/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
Tetrachloroethene	<3	ug/kg			8/8/12	MSV
Toluene	91	ug/kg			8/8/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/8/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
Trichloroethene	<3	ug/kg			8/8/12	MSV
Vinyl chloride	<5	ug/kg			8/8/12	MSV
Xylenes (Total)	<3	ug/kg			8/8/12	MSV
Surrogate (1,2-DCA-d4)	77	%R			8/8/12	MSV
Surrogate (Tol-d8)	131	%R			8/8/12	MSV
Surrogate (4-BFB)	125	%R			8/8/12	MSV

Operations & Maintenance, Inc. Pennellville, NY

Sampled By:

DP-12-5 4-8'

LSL Sample ID:

1212760-006

Location:

Sampled:

Sample ID:

Sample Matrix: SHW as Recd

08/06/12 11:18

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/8/12	MSV
Benzene	<3	ug/kg			8/8/12	MSV
Bromodichloromethane	<3	ug/kg			8/8/12	MSV
Bromoform	<3	ug/kg			8/8/12	MSV
Bromomethane	<3	ug/kg			8/8/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/8/12	MSV
Carbon disulfide	<3	ug/kg			8/8/12	MSV
Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
Chlorobenzene	<3	ug/kg			8/8/12	MSV
Chloroethane	<5	ug/kg			8/8/12	MSV
Chloroform	<3	ug/kg			8/8/12	MSV
Chloromethane	<5	ug/kg			8/8/12	MSV
Dibromochloromethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethene, Total	24	ug/kg			8/8/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
Ethyl benzene	<3	ug/kg			8/8/12	MSV
2-Hexanone	<5	ug/kg			8/8/12	MSV
Methylene chloride	<5	ug/kg			8/8/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
Styrene	<3	ug/kg			8/8/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
Tetrachloroethene	24	ug/kg			8/8/12	MSV
Toluene	<3	ug/kg			8/8/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/8/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
Trichloroethene	<3	ug/kg			8/8/12	MSV
Vinyl chloride	<5	ug/kg			8/8/12	MSV
Xylenes (Total)	<3	ug/kg			8/8/12	MSV
Surrogate (1,2-DCA-d4)	76	%R			8/8/12	MSV
Surrogate (Tol-d8)	120	%R			8/8/12	MSV
Surrogate (4-BFB)	105	%R			8/8/12	MSV

LSL Sample ID:

1212760-007

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-6 4-8'

Location:

Sampled:

08/06/12 11:48

Sampled By:

Sample Matrix: SHW as Recd J-4t-al Mail . 1

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles			<u> </u>			
Acetone	<40	ug/kg			8/8/12	MSV
Benzene	<3	ug/kg			8/8/12	MSV
Bromodichloromethane	<3	ug/kg			8/8/12	MSV
Bromoform	<3	ug/kg			8/8/12	MSV
Bromomethane	<3	ug/kg			8/8/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/8/12	MSV
Carbon disulfide	<3	ug/kg			8/8/12	MSV
Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
Chlorobenzene	<3	ug/kg			8/8/12	MSV
Chloroethane	<5	ug/kg			8/8/12	MSV
Chloroform	<3	ug/kg			8/8/12	MSV
Chloromethane	<5	ug/kg			8/8/12	MSV
Dibromochloromethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethane	7.2	ug/kg			8/8/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/8/12	MSV
1,2-Dichloroethene, Total	62	ug/kg			8/8/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
Ethyl benzene	<3	ug/kg			8/8/12	MSV
2-Hexanone	<5	ug/kg			8/8/12	MSV
Methylene chloride	<5	ug/kg			8/8/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
Styrene	<3	ug/kg			8/8/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
Tetrachloroethene	39	ug/kg			8/8/12	MSV
Toluene	<3	ug/kg			8/8/12	MSV
1,1,1-Trichloroethane	4.8	ug/kg			8/8/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
Trichloroethene	7.1	ug/kg			8/8/12	MSV
Vinyl chloride	<5	ug/kg			8/8/12	MSV
Xylenes (Total)	<3	ug/kg			8/8/12	MSV
Surrogate (1,2-DCA-d4)	79	%R			8/8/12	MSV
Surrogate (Tol-d8)	119	%R			8/8/12	MSV
Surrogate (4-BFB)	103	%R			8/8/12	MSV

LSL Sample ID:

1212760-008

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-7 8-12'

Location:

Sampled:

08/06/12 12:10

Sampled By:

Sample Matrix: SHW as Recd

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/8/12	MSV
Benzene	<3	ug/kg			8/8/12	MSV
Bromodichloromethane	<3	ug/kg			8/8/12	MSV
Bromoform	<3	ug/kg			8/8/12	MSV
Bromomethane	<3	ug/kg			8/8/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/8/12	MSV
Carbon disulfide	<3	ug/kg			8/8/12	MSV
Carbon tetrachloride	<3	ug/kg			8/8/12	MSV
Chlorobenzene	<3	ug/kg			8/8/12	MSV
Chloroethane	<5	ug/kg			8/8/12	MSV
Chloroform	<3	ug/kg			8/8/12	MSV
Chloromethane	<5	ug/kg			8/8/12	MSV
Dibromochloromethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethane	18	ug/kg			8/8/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/8/12	MSV
1,1-Dichloroethene	33	ug/kg			8/8/12	MSV
1,2-Dichloroethene, Total	37	ug/kg			8/8/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/8/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/8/12	MSV
Ethyl benzene	<3	ug/kg			8/8/12	MSV
2-Hexanone	<5	ug/kg			8/8/12	MSV
Methylene chloride	<5	ug/kg			8/8/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/8/12	MSV
Styrene	<3	ug/kg			8/8/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/8/12	MSV
Tetrachloroethene	430 E	ug/kg			8/8/12	MSV
E = This result should be considered an effective terms of the considered of the considered of the constant	estimate because the co	oncentration	n exceeded the linear rang	ge of the instr	ument.	
Toluene	<3	ug/kg			8/8/12	MSV
1,1,1-Trichloroethane	48	ug/kg			8/8/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/8/12	MSV
Trichloroethene	9.6	ug/kg			8/8/12	MSV
Vinyl chloride	<5	ug/kg			8/8/12	MSV
Xylenes (Total)	<3	ug/kg			8/8/12	MSV
Surrogate (1,2-DCA-d4)	78	%R			8/8/12	MSV
Surrogate (Tol-d8)	122	%R			8/8/12	MSV
Surrogate (4-BFB)	112	%R			8/8/12	MSV
- · · · ·						

LSL Sample ID:

1212760-009

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-8 8-12' Location:

Sampled:

08/06/12 13:21

Sampled By:

Sample Matrix: SHW as Recd 1 /* 134 (1 .

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/9/12	MSV
Benzene	<3	ug/kg			8/9/12	MSV
Bromodichloromethane	<3	ug/kg			8/9/12	MSV
Bromoform	<3	ug/kg			8/9/12	MSV
Bromomethane	<3	ug/kg			8/9/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/9/12	MSV
Carbon disulfide	<3	ug/kg			8/9/12	MSV
Carbon tetrachloride	<3	ug/kg			8/9/12	MSV
Chlorobenzene	<3	ug/kg			8/9/12	MSV
Chloroethane	<5	ug/kg			8/9/12	MSV
Chloroform	<3	ug/kg			8/9/12	MSV
Chloromethane	<5	ug/kg			8/9/12	MSV
Dibromochloromethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethane	9.4	ug/kg			8/9/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethene	7.7	ug/kg			8/9/12	MSV
1,2-Dichloroethene, Total	6.7	ug/kg			8/9/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/9/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
Ethyl benzene	<3	ug/kg			8/9/12	MSV
2-Hexanone	<5	ug/kg			8/9/12	MSV
Methylene chloride	<5	ug/kg			8/9/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/9/12	MSV
Styrene	<3	ug/kg			8/9/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/9/12	MSV
Tetrachloroethene	36	ug/kg			8/9/12	MSV
Toluene	<3	ug/kg			8/9/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/9/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/9/12	MSV
Trichloroethene	<3	ug/kg			8/9/12	MSV
Vinyl chloride	<5	ug/kg			8/9/12	MSV
Xylenes (Total)	<3	ug/kg			8/9/12	MSV
Surrogate (1,2-DCA-d4)	80	%R			8/9/12	MSV
Surrogate (Tol-d8)	132	%R			8/9/12	MSV
Surrogate (4-BFB)	142	%R			8/9/12	MSV

LSL Sample ID:

1212760-010

Operations & Maintenance, Inc. Pennellville, NY

Sampled By:

Sample ID: DP-12-9 0-4' Location:

Locucioni

Sampled:

-

Sample Matrix: SHW as Recd

08/06/12 13:53

Analytical Method Analysis Prep Analyst Analyte Result Units Prep Date Date & Time Initials (1) EPA 8260B TCL Volatiles Acetone <40 8/9/12 ug/kg MSV Benzene <3 ug/kg 8/9/12 MSV Bromodichloromethane <3 ug/kg 8/9/12 MSV <3 Bromoform ug/kg 8/9/12 MSV Bromomethane <3 ug/kg 8/9/12 MSV 2-Butanone (MEK) <40 ug/kg 8/9/12 MSV Carbon disulfide <3 ug/kg 8/9/12 MSV Carbon tetrachloride <3 ug/kg 8/9/12 MSV Chlorobenzene <3 ug/kg 8/9/12 MSV Chloroethane <5 ug/kg 8/9/12 MSV Chloroform <3 ug/kg 8/9/12 MSV Chloromethane <5 8/9/12 ug/kg MSV Dibromochloromethane <3 ug/kg 8/9/12 MSV 1.1-Dichloroethane <3 8/9/12 ug/kg MSV 1,2-Dichloroethane <3 ug/kg 8/9/12 MSV 1,1-Dichloroethene <3 8/9/12 MSV ug/kg 1,2-Dichloroethene, Total <3 8/9/12 ug/kg MSV 1,2-Dichloropropane <3 ug/kg 8/9/12 MSV cis-1,3-Dichloropropene <3 8/9/12 ug/kg MSV trans-1,3-Dichloropropene <3 ug/kg 8/9/12 MSV Ethyl benzene <3 ug/kg 8/9/12 MSV <5 2-Hexanone 8/9/12 ug/kg MSV Methylene chloride <5 ug/kg 8/9/12 MSV 4-Methyl-2-pentanone (MIBK) <5 ug/kg 8/9/12 MSV Styrene <3 ug/kg 8/9/12 MSV 1,1,2,2-Tetrachloroethane <3 ug/kg 8/9/12 MSV Tetrachloroethene <3 ug/kg 8/9/12 MSV Toluene <3 ug/kg 8/9/12 MSV 1,1,1-Trichloroethane <3 ug/kg 8/9/12 MSV 1,1,2-Trichloroethane <3 ug/kg 8/9/12 MSV ug/kg Trichloroethene <3 8/9/12 MSV Vinyl chloride <5 ug/kg 8/9/12 MSV **Xylenes** (Total) <3 ug/kg 8/9/12 MSV Surrogate (1,2-DCA-d4) 85 %R 8/9/12 MSV 130 %R Surrogate (Tol-d8) 8/9/12 MSV Surrogate (4-BFB) 128 %R 8/9/12 MSV

LSL Sample ID:

1212760-011

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-9 8-12'

Location:

Sampled:

08/06/12 13:55

Sampled By:

Sample Matrix: SHW as Recd **Analytical Method**

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						<u></u>
Acetone	<40	ug/kg			8/9/12	MSV
Benzene	<3	ug/kg			8/9/12	MSV
Bromodichloromethane	<3	ug/kg			8/9/12	MSV
Bromoform	<3	ug/kg			8/9/12	MSV
Bromomethane	<3	ug/kg			8/9/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/9/12	MSV
Carbon disulfide	<3	ug/kg			8/9/12	MSV
Carbon tetrachloride	<3	ug/kg			8/9/12	MSV
Chlorobenzene	<3	ug/kg			8/9/12	MSV
Chloroethane	<5	ug/kg			8/9/12	MSV
Chloroform	<3	ug/kg			8/9/12	MSV
Chloromethane	<5	ug/kg			8/9/12	MSV
Dibromochloromethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethane	7.8	ug/kg			8/9/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethene	13	ug/kg			8/9/12	MSV
1,2-Dichloroethene, Total	8.6	ug/kg			8/9/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/9/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
Ethyl benzene	<3	ug/kg			8/9/12	MSV
2-Hexanone	<5	ug/kg			8/9/12	MSV
Methylene chloride	<5	ug/kg			8/9/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/9/12	MSV
Styrene	<3	ug/kg			8/9/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/9/12	MSV
Tetrachloroethene	170	ug/kg			8/9/12	MSV
Toluene	<3	ug/kg			8/9/12	MSV
1,1,1-Trichloroethane	4.3	ug/kg			8/9/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/9/12	MSV
Trichloroethene	9.4	ug/kg			8/9/12	MSV
Vinyl chloride	<5	ug/kg			8/9/12	MSV
Xylenes (Total)	<3	ug/kg			8/9/12	MSV
Surrogate (1,2-DCA-d4)	83	%R			8/9/12	MSV
Surrogate (Tol-d8)	135	%R			8/9/12	MSV
Surrogate (4-BFB)	143	%R			8/9/12	MSV

LSL Sample ID:

1212760-012

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-10 0-4'

Location:

Sampled:

08/06/12 14:21

Sampled By:

Sample Matrix: SHW as Recd 1 /* 135 (1 ,

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/9/12	MSV
Benzene	<3	ug/kg			8/9/12	MSV
Bromodichloromethane	<3	ug/kg			8/9/12	MSV
Bromoform	<3	ug/kg			8/9/12	MSV
Bromomethane	<3	ug/kg			8/9/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/9/12	MSV
Carbon disulfide	<3	ug/kg			8/9/12	MSV
Carbon tetrachloride	<3	ug/kg			8/9/12	MSV
Chlorobenzene	<3	ug/kg			8/9/12	MSV
Chloroethane	<5	ug/kg			8/9/12	MSV
Chloroform	<3	ug/kg			8/9/12	MSV
Chloromethane	<5	ug/kg			8/9/12	MSV
Dibromochloromethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethene, Total	<3	ug/kg			8/9/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/9/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
Ethyl benzene	<3	ug/kg			8/9/12	MSV
2-Hexanone	<5	ug/kg			8/9/12	MSV
Methylene chloride	<5	ug/kg			8/9/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/9/12	MSV
Styrene	<3	ug/kg			8/9/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/9/12	MSV
Tetrachloroethene	<3	ug/kg			8/9/12	MSV
Toluene	<3	ug/kg			8/9/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/9/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/9/12	MSV
Trichloroethene	<3	ug/kg			8/9/12	MSV
Vinyl chloride	<5	ug/kg			8/9/12	MSV
Xylenes (Total)	<3	ug/kg			8/9/12	MSV
Surrogate (1,2-DCA-d4)	92	%R			8/9/12	MSV
Surrogate (Tol-d8)	132	%R			8/9/12	MSV
Surrogate (4-BFB)	131	%R			8/9/12	MSV

LSL Sample ID:

1212760-013

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-11 8-12'

08/06/12 14:50

Location:

Sampled:

Sampled By:

Sample Matrix: SHW as Recd Analytical Method

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/9/12	MSV
Benzene	<3	ug/kg			8/9/12	MSV
Bromodichloromethane	<3	ug/kg			8/9/12	MSV
Bromoform	<3	ug/kg			8/9/12	MSV
Bromomethane	<3	ug/kg			8/9/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/9/12	MSV
Carbon disulfide	<3	ug/kg			8/9/12	MSV
Carbon tetrachloride	<3	ug/kg			8/9/12	MSV
Chlorobenzene	<3	ug/kg			8/9/12	MSV
Chloroethane	<5	ug/kg			8/9/12	MSV
Chloroform	<3	ug/kg			8/9/12	MSV
Chloromethane	<5	ug/kg			8/9/12	MSV
Dibromochloromethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethene, Total	<3	ug/kg			8/9/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/9/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
Ethyl benzene	<3	ug/kg			8/9/12	MSV
2-Hexanone	<5	ug/kg			8/9/12	MSV
Methylene chloride	<5	ug/kg			8/9/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/9/12	MSV
Styrene	<3	ug/kg			8/9/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/9/12	MSV
Tetrachloroethene	9.1	ug/kg			8/9/12	MSV
Toluene	<3	ug/kg			8/9/12	MSV
1,1,1-Trichloroethane	· <3	ug/kg			8/9/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/9/12	MSV
Trichloroethene	<3	ug/kg			8/9/12	MSV
Vinyl chloride	<5	ug/kg			8/9/12	MSV
Xylenes (Total)	<3	ug/kg			8/9/12	MSV
Surrogate (1,2-DCA-d4)	84	%R			8/9/12	MSV
Surrogate (Tol-d8)	128	%R			8/9/12	MSV
Surrogate (4-BFB)	121	%R			8/9/12	MSV

LSL Sample ID:

1212760-014

Operations & Maintenance, Inc. Pennellville, NY

Sampled By:

Sample ID: DP-12-12 0-4' Location:

Sampled:

implea:

Sample Matrix: SHW as Recd

08/06/12 15:10

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/9/12	MSV
Benzene	<3	ug/kg			8/9/12	MSV
Bromodichloromethane	<3	ug/kg			8/9/12	MSV
Bromoform	<3	ug/kg			8/9/12	MSV
Bromomethane	<3	ug/kg			8/9/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/9/12	MSV
Carbon disulfide	<3	ug/kg			8/9/12	MSV
Carbon tetrachloride	<3	ug/kg			8/9/12	MSV
Chlorobenzene	<3	ug/kg			8/9/12	MSV
Chloroethane	<5	ug/kg			8/9/12	MSV
Chloroform	<3	ug/kg			8/9/12	MSV
Chloromethane	<5	ug/kg			8/9/12	MSV
Dibromochloromethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethene, Total	<3	ug/kg			8/9/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/9/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
Ethyl benzene	<3	ug/kg			8/9/12	MSV
2-Hexanone	<5	ug/kg			8/9/12	MSV
Methylene chloride	<5	ug/kg			8/9/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/9/12	MSV
Styrene	<3	ug/kg			8/9/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/9/12	MSV
Tetrachloroethene	<3	ug/kg			8/9/12	MSV
Toluene	<3	ug/kg			8/9/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/9/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/9/12	MSV
Trichloroethene	<3	ug/kg			8/9/12	MSV
Vinyl chloride	<5	ug/kg			8/9/12	MSV
Xylenes (Total)	<3	ug/kg			8/9/12	MSV
Surrogate (1,2-DCA-d4)	101	%R			8/9/12	MSV
Surrogate (Tol-d8)	105	%R			8/9/12	MSV
Surrogate (4-BFB)	124	%R			8/9/12	MSV

LSL Sample ID:

1212760-015

Operations & Maintenance, Inc. Pennellville, NY

Sample ID: DP-12-13 0-4'

Location:

Sampled:

08/06/12 15:15

Sampled By:

Sample Matrix: SHW as Recd Analytical Method

Analytical Method				Prep	Analysis	Analyst
Analyte	Result	Units	Prep	Date	Date & Time	Initials
(1) EPA 8260B TCL Volatiles						
Acetone	<40	ug/kg			8/9/12	MSV
Benzene	<3	ug/kg			8/9/12	MSV
Bromodichloromethane	<3	ug/kg			8/9/12	MSV
Bromoform	<3	ug/kg			8/9/12	MSV
Bromomethane	<3	ug/kg			8/9/12	MSV
2-Butanone (MEK)	<40	ug/kg			8/9/12	MSV
Carbon disulfide	<3	ug/kg			8/9/12	MSV
Carbon tetrachloride	<3	ug/kg			8/9/12	MSV
Chlorobenzene	<3	ug/kg			8/9/12	MSV
Chloroethane	<5	ug/kg			8/9/12	MSV
Chloroform	<3	ug/kg			8/9/12	MSV
Chloromethane	<5	ug/kg			8/9/12	MSV
Dibromochloromethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethane	<3	ug/kg			8/9/12	MSV
1,1-Dichloroethene	<3	ug/kg			8/9/12	MSV
1,2-Dichloroethene, Total	<3	ug/kg			8/9/12	MSV
1,2-Dichloropropane	<3	ug/kg			8/9/12	MSV
cis-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
trans-1,3-Dichloropropene	<3	ug/kg			8/9/12	MSV
Ethyl benzene	<3	ug/kg			8/9/12	MSV
2-Hexanone	<5	ug/kg			8/9/12	MSV
Methylene chloride	<5	ug/kg			8/9/12	MSV
4-Methyl-2-pentanone (MIBK)	<5	ug/kg			8/9/12	MSV
Styrene	<3	ug/kg			8/9/12	MSV
1,1,2,2-Tetrachloroethane	<3	ug/kg			8/9/12	MSV
Tetrachloroethene	7.6	ug/kg			8/9/12	MSV
Toluene	<3	ug/kg			8/9/12	MSV
1,1,1-Trichloroethane	<3	ug/kg			8/9/12	MSV
1,1,2-Trichloroethane	<3	ug/kg			8/9/12	MSV
Trichloroethene	<3	ug/kg			8/9/12	MSV
Vinyl chloride	<5	ug/kg			8/9/12	MSV
Xylenes (Total)	<3	ug/kg			8/9/12	MSV
Surrogate (1,2-DCA-d4)	89	%R			8/9/12	MSV
Surrogate (Tol-d8)	131	%R			8/9/12	MSV
Surrogate (4-BFB)	131	%R			8/9/12	MSV

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

		Water	SHW
Method	Surrogate(s)	Limits, %R	Limits, %R
EPA 504	ТСМХ	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4	70-130	NA
EPA 524.2	Tol-d8, 4-BFB	75-125	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601/602	1,2-DCA-d4	70-130	NA
EPA 601/602	Tol-d8, 4-BFB	75-125	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4	70-130	NA
EPA 624	Tol-d8, 4-BFB	75-125	NA
EPA 625. AE	2-Fluorophenol	21-110	ŇA
EPA 625. AE	Phenol-d5	10-110	NA
EPA 625. AE	2.4.6-Tribromophenol	10-123	NA
EPA 625. BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Eluorobiphenvl	43-116	NA
EPA 625 BN	Terphenyl-d14	33-141	NA
,,	· - · P · · - · · J · · = · ·		
EPA 8010/8020/8021	1.2-DCA-d4	70-130	69-127
EPA 8010/8020/8021	Tol-d8	75-125	72-138
EPA 8010/8020/8021	4-BFB	75-125	53-167
EPA 8081	TCMX DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1 2-DCA-d4	70-130	69-127
EPA 8260	Tol-d8	75-125	72-138
EPA 8260	4-BFB	75-125	53-167
EPA 8270 AF	2-Eluorophenol	21-110	25-121
FPA 8270 AF	Phenol-d5	10-110	24-113
EPA 8270 AF	2 4 6-Tribromophenol	10-123	19-122
EPA 8270 BN	Nitrobenzene-d5	35-114	23-120
EPA 8270 BN	2-Eluorobiohenvl	43-11 4	30-115
EPA 8270 BN	Ternbenyl-d14	33-1/1	18-137
	reiphenyi-art	55-141	10-137
DOH 310-13	Ternhenvi-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34		50 150	40-110 50 150
DOH 313-4	DCB	NA	30-150
8015M GRO	4-BEB	50_150	50-150
8015M_DRO	Ternhenvl-d14	50 150	50-150
		50-150	50-150

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

Intransound Time Normai Produitional Charges Normai Produitional Charges Normai Produitional Charges Normai Produitional Charges Normai Produition of page Additional Charges Match to mark to the mark to the page Date Needed of Popical Instructions: Company: Department to the page Company: Department to the page Additional Charges Match to the page Date Needed of Popical Instructions: Company: Department to the page Company: Department to the page Authorization or P.O. # Match to the page Prosent to the page Containers Analyses Prosent to the page Containers Analyses Prosent to the page Date Sample Type Containers Analyses Prosent to the page Containers Analyses Prosent to the page </th <th></th> <th>LSL Central 5854 Butterr East Syracus Phone: (315 Fax: (315) 44 Email: Islcen</th> <th>Lab nut Drive se, NY 130) 445-1105 15-1301 tral@lsl-ini</th> <th>1 257 N 5 F c.com E</th> <th>Lite Cl SL North Lab 131 St Lawrence A Vaddington, NY 13 Phone: (315) 388-408 Fax: (315) 388-408 Fmail: IsInfo@IsI-in</th> <th>Scie HAIN O 1476 1 c.com</th> <th>PROVIDENTIALS FCUST LSL Finger La 16 North Mair Wayland, NY Phone: (585) Fax: (585) 72 Email: Islfll@l</th> <th>Labo FODY I akes Lab o Street 14572 728-3320 8-2711 sl-inc.com</th> <th>ratori RECORE 30 Eas Cuba, I Phone: Fax: (5 Email:</th> <th>es, Inc. Duthern Tier It Main Stree NY 14727 (585) 968-2 (585) 96</th> <th>5F2</th> <th></th>		LSL Central 5854 Butterr East Syracus Phone: (315 Fax: (315) 44 Email: Islcen	Lab nut Drive se, NY 130) 445-1105 15-1301 tral@lsl-ini	1 257 N 5 F c.com E	Lite Cl SL North Lab 131 St Lawrence A Vaddington, NY 13 Phone: (315) 388-408 Fax: (315) 388-408 Fmail: IsInfo@IsI-in	Scie HAIN O 1476 1 c.com	PROVIDENTIALS FCUST LSL Finger La 16 North Mair Wayland, NY Phone: (585) Fax: (585) 72 Email: Islfll@l	Labo FODY I akes Lab o Street 14572 728-3320 8-2711 sl-inc.com	ratori RECORE 30 Eas Cuba, I Phone: Fax: (5 Email:	es, Inc. Duthern Tier It Main Stree NY 14727 (585) 968-2 (585) 96	5F2	
Street: 12 to C + 5 T R upper line for the formation of the form	Report Address: Name: <u>Company:</u>	Muller	J	<u>uinte</u>		<u> </u>		\$-j	Turnaroun Normal 14 DAY	nd Time Pre-Authorized Next Day* 2-Day * 7-Day*	*Addition may appl	al Charges y
IS Project Number: Client's Sample Identifications Sample Date Sample ime Sample grab/comp Matrix Matrix Preserv Added Containers Analyses Preserv Check LSI. ID # DP-12-1 12-116 $\%/12$ $\%/12$ $G = \omega^{-1}$ G_{11} W_{11} W_{12} G_{12} OO	Street: 18 70 City/State:	<u>R+57</u> <u>24</u> <u>84</u> <u>84</u> <u>85</u> <u>85</u> <u>85</u> <u>85</u> <u>85</u> <u>85</u> <u>85</u> <u>85</u>	391	Imes'il	25. Prin R Z . F . Com	(ip: <u>135</u> ax:	२७५		Authorizat	ed of special instructions: アセン・トナ + 6 Geoboyiu <u>ひょい ハン ③ 900103iu</u> ion or P.O. #	NY, F	·C •
UP-12-1 I2-116 N/1/2 Q:S G-n5 Joil Non I Jun Full 8240 001 DP-12-2 4-8' bitz I I I 002 003 DP-12-3 6-4' bitz I I I 003 003 DP-12-4 4-8' bitz I I I 003 003 DP-12-5 6-4' III.18 III.18 III.18 006 005 DP-12-5 4-8' III.18 III.18 006 007 006 DP-12-6 4-8' III.18 III.18 006 007 006 DP-12-7 8-12' II.18 III.18 006 007 007 DP-12-7 8-12' II.21 III.18 III.18 008 007 007 DP-12-8 X-12' II.21 III.21 III.21 008 007 007 DP-12-9 6-4' 11.53 V V 0 V 010 007 Stuse only: Sam	Client's Sa Identifica	umple tions	Sample Date	Sample Time	Type grab/comp	Matri	Preserv Added	Con #	LSL Projec Itainers size/type	t Number: Analyses	Preserv Check	LSL 1D#
DP-12-2 Q-8' 0:12 000 DP-12-3 G-4' 0:40 003 DP-12-4 4-8' 0:56 003 DP-13-5 G-4' 11:16 004 DP-12-5 4-8' 11:18 006 DP-12-6 4-8' 11:18 006 DP-12-7 8-12' 11:18 006 DP-12-7 8-12' 12:10 007 DP-12-8 8-12' 12:1 007 DP-12-8 8-12' 12:1 007 DP-12-9 6-4' 7 153 000 DP-12-9 6-4' 7 153 000 Stude only: Sampled By: Bac Orndubon 5770 905 Stude only: Reclived By: Bac Orndubon	\mathcal{P}	12-16	8/6/12	4:52	Grab	<u> 501</u>	None	İ	Jun	F_11 8260		001
DP-12-4 U-4' 0.40 003 DP-12-4 U-8' 0.58 004 DP-12-5 0-4' 11.16 005 DP-12-5 U-8' 11.18 005 DP-12-6 U-8' 11.18 006 DP-12-7 N-12' 11.18 006 DP-12-7 N-12' 12.10 007 DP-12-8 N-12' 12.10 007 DP-12-9 O-4' 11.53 006 DP-12-9 O-4' 11.53 007 St use ently: Sampled By: B-4 Oralidan Feedinguished By: B-7/2 Containers this C-0-C Shipment Method: Received By: B-4 Oralidan Relinquished By: B-4 Oralidan Received By: B-4 Oralidan *** All areas of this Chain of Custody Beorand Must to an	DR-12 2	4-8		10:12								002
DP-12-9 9-8 0.58 004 DP-12-5 0-4' 11.16 005 DP-12-5 4-8' 11.18 006 DP-12-6 4-8' 11.18 006 DP-12-7 8-12' 12.10 007 DP-12-7 8-12' 12.10 007 DP-12-7 8-12' 12.10 007 DP-12-8 8-12' 12.10 007 DP-12-9 0-12' 1.53 007 DP-12-9 0-12' 1.53 007 St use only: Sampled By: Custody Trapsfers Date Containers this C-O-C Shipment Method: Received By: But Orallyco Received By: Received By: Sampled Sy: 87.12 *** All areas of this Chain of Custody Report MUST be fluid custod Received Intact: Y N Sample Tempore	DO 17 H	0-4'		10:40								003
D4-12-5 0-4' 0.1'.16 005 D9-12-5 4-8' 0.1.18 006 D9-12-(0, 4-8' 0.1.48 006 D9-12-7 8-12' 12.10 007 D9-12-8 8-12' 12.10 007 D9-12-9 6-4' 1.53 007 D9-12-9 6-4' 1.53 007 D9-12-9 6-4' 1.53 007 St use only: 010 007 St use only: 010 007 Containers this C-0.2 Shipment Method: Received By: Bat Orallon Felinquished By: Bat Orallon 87.12 16.38' *** All areas of this Chaip of Custody Record MUST to study decord MUS	DR. F	4-8		10.58								004
D9-12-5 4-8' 11:18 006 D9-12-(, 4-8' 11:48 006 D9-12-7 8-12' 12:10 007 D9-12-8 8-12' 12:10 008 D9-12-8 8-12' 12:10 008 D9-12-9 6-4' 11:53 009 D9-12-9 6-4' 11:53 010 D9-12-9 6-4' 11:53 010 St use only: Sampled By: Custody Transfers 010 St use only: Sampled By: Received By: Received By: Relinquished By: Red Orallon 8-7/2 9:05 Shipment Method: Received By: Received Intact: Y N 8ample Terms	DA-13-5	0-4'	-	11:16								005
DP-12 - (, 4-8' 11:4% 007 DP-12 - 7 8-12' 12:10 008 DP-12 - 8 8-12' 1:21 008 DP-12 - 9 6-4' 1:53 009 SL use only: Custody Transfers Containers this C-0-C Shipment Method: *** All areas of this Chain of Custody Record MUST to 600-diment Relinquished By: Record MUST to 600-diment	U8-12-5	4-8'		11:18								00/2
DP-12-7 8-12' 12.10 008 DP-12-8 8-12' 121 008 DP-12-9 6-4' 1.53 009 SL use only: Custody Transfers Sampled By: Received By: Relinquished By: Received By: 84 Oraldon Shipment Method: Received Intact: Y N	D9-12-(,	4-8'		11:48								000
DP-12-8 8-12 ¹ 1:21 008 DP-12-9 6-4 ¹ 1:53 009 SL use only: Custody Transfers SL use only: Custody Transfers OIO Date Time Relinquished By: Received By: Containers this C-O-C Shipment Method: Received Intact: Y N *** All areas of this Chain of Custody Record MUST be filled on the fill	DP-12-7	8-12'		12:10								007
DP-12-9 0-4' 1:53 010 SL use only: Custody Transfers 010 Sampled By: Sampled By: Received By: Relinquished By: Received By: Bate Containers this C-0-C Shipment Method: Received Intact: Y N *** All areas of this Chain of Custody Record MUST be filled on the filled on	DP-12-8	8-121		1:21								008
Solution Sampled By: Custody Transfers Date Time Sampled By: Sampled By: Received By: Received By: Date Time Containers this C-O-C Shipment Method: Received Intact: Y N Sample Temp 16-38	DP-12-4	6-4'		1:53	8				10			Q09.
Containers this C-O-C Sampled By: Relinquished By: Received By: Received By: Bac Oralizon B-712 9:05 *** All areas of this Chain of Custody Record MUST be filled and in Received Intact: Y N Sample Temp 10:38	LSL use only:			Samples		A		Custody T	ransfers		Date	010 Time
Containers this C-O-C Shipment Method: Received Intact: Y N *** All areas of this Chain of Custody Record MUST be filled and the fille				Relinqui Relinqui	shed By: Ba	A Doral	L Cer		Received E Received E Rec'd for I	By: By: Ball Ograldson ab By: P. D.	8-712	9:05
	**:	Containers thi All areas of f	s C-O-C t his Ch a	Shipmen	t Method:	ALIST La F	illed and '		Received In	ntact: Y N	Sample Ten	16:38

Reg COC.XLS

LSL	LSL Centra 5854 Butter East Syract Phone: (315 Fax: (315) 4 Email: Islce	al Lab mut Drive use, NY 1309 5) 445-1105 145-1301 ntral@IsI-inc	57 .com	Lite CH LSL North Lab 131 St Lawrence Avi Waddington, NY 136 Phone: (315) 388-44 Fax: (315) 388-4081 Email: IsInfo@IsI-inc.	SCIE AIN OI E 1 194 V 76 F com E	RCC L FCUST SL Finger L: 6 North Mai Vayland, NY Phone: (585) Fax: (585) 72 Fmail: Islfil@	Labc TODY akes Lab n Street 14572 728-3320 8-2711 sl-inc.com	Drator RECOR LSL S 30 Ea Cuba, Phone Fax: (Email	ies, Inc. 2 D 2 Southem Tier Lab 2 ast Main Street 12127 , NY 14727 12127 e: (585) 968-2640 0MI (585) 968-0906 0MI b: Islstl@lsl-inc.com 6084	0 F 60	2
Report Address: Name: Company: Street: City/State: Phone:	vez P	فعرير	1	Zi	p:		ñy	Turnarou Normal 14 DAY Date Need	Ind Time Pre-Authorized Next Day* 2-Day* 3-Day* ded or Special Instructions:	*Additiona may apply	al Charges
Email:				_ Fa:	x:			Authoriza	tion or P.O. #		
Client Project ID/	Client Site ID	· · · ·						LSL Proje	Gt Number:		
Client's S Identifica	ample Itions	Sample Date	Sample Time	Type grab/comp	Matrix	Preserv Added	Co #	ntainers size/type	Analyses	Preserv	
DP-12-4	8-12'	8/6/12	1.55	Grub	Soil	None	ĵ	Jur	FILSTIN	Uneck	LSL ID#
DP-12-10	0-4'	1	2:21	C C	1		r,	1	1-11 0260		011
DP - 17 - 11	5-17)		h · «			┠━┥──	-				012
DQ 17 17	<u> </u>	+	2.30			┠╍┠╍╍	<u> </u>				013
119-12-12	0-4	╂┈┼──	3:10								014
14-12-13	0-4	U.	3:15	J.	6	4		\mathcal{O}			
									¥		015
								- <u> </u>			
	······										
SL use only:							Custody	Transfers			
	•1		Sample	d By: Etan	tin	205	Ú	Received	By:	Date	Time
			Relingu	ished By: 36	No.	1.		Received	By: Bill Doraklyon	8-7-17	205

Reg COC.XLS

E-Mail Exchange between John Ciampa of Spectra and Gary Mullen of Operations and Maintenance, Inc. with attached copy of map

From: John D. Ciampa [mailto:jciampa@spectraenv.com]
Sent: Wednesday, May 09, 2012 1:14 PM
To: Gary Mullen, Jr.
Cc: Templeton, Audrey; Rogers, Steve; John Grathwol; Bill Buchan; Merritt, Dean; bkogut@bsk.com; Robert C. LaFleur; Gary T. Kelder; PSharlow@Gilbertilaw.com
Subject: RE: Riccelli Fulton facility

Gary – I am providing this additional information to clarify our discussion last week regarding the elevated VOCs that were detected during the excavation of salt related compounds at the Riccelli Fulton site.

Elevated VOCs were only encountered in one well defined area, as shown on the attached map. The elevated VOCs were present in the approximate 1 – 5 ft. depth interval. We only excavated to a depth of 5 ft. in this area, based on the salt constituent concentrations. According to field personnel, odors and PID readings as high as 20-60 ppm were detected in soil during the excavation activities in the VOC impacted area. The lateral limits of the excavation did result in negligible or non-detect PID readings in the field. An exception to this was on the south sidewall that bordered the existing asphalt parking lot. Due to the existence of asphalt and the purpose of Riccelli's remedial efforts, excavation did not extend into the asphalt parking lot. There were no other areas encountered during Riccelli's excavation activities that detected either PID readings above 1-2ppm or odors. Some PID readings of 1-2 ppm were detected by field personnel during soil removal from the Retention Basin 1 area. There were also some sporadic PID readings of 1-2ppm elsewhere but nothing was well defined or contained any odors.

With respect to the VOC soil sampling, that was conducted after the soil had been excavated, segregated, stockpiled and covered on the asphalt pad. All samples from the stockpile were collected after digging 1-2 ft. into the pile. During the stockpile sampling, odors were noted. The first 3 samples (S1, S2, S3) collected on 1/31/12 were random grab samples that were analyzed for total VOCs. The second sample (SS-1), collected on March 2, 2012 was selected based upon field screening of the stockpile with a PID at 5 locations. The location with the highest PID reading (based on holding the PID meter in the sampling hole, 3.6 ppm) was submitted for TCLP analysis. Attached are the lab results for the total VOCs and the TCLP testing. The VOC soil pile was taken to Seneca Meadows landfill on April 6, 2012.

Currently, Riccelli is working with DEC on a Consent Order that will include additional soil sampling beneath the asphalt pad, within the natural pond, and just south of the pond. The soil sampling will also include screening for VOCs and possible lab testing for VOCs. The current proposal includes sampling to the top of the water table in the soil

borings and about 4 ft. in the pond. That Consent Order is not yet final but draft maps for the sampling locations are attached to this email. A firm schedule for sampling is not yet established but it may begin during the week of May 21 or May 28 depending upon finalization of the Consent Order.

Regarding the fill material, it was brought to the site only after the excavation and stockpiling of the soil in which elevated VOCs were detected. The fill is clean "virgin" soil from a green-field quarry site. It was not sampled but there was no reason to suspect contamination. A total of about 5 ft. of new soil covers the area where the VOC impacted soil was removed.

Let me know if you have any other questions.

Regards, John Ciampa

From: Gary Mullen, Jr. [mailto:gmullenomi@gmail.com]
Sent: Tuesday, May 01, 2012 10:55 AM
To: John D. Ciampa
Cc: 'Templeton, Audrey'; 'Rogers, Steve'; 'John Grathwol'; 'Bill Buchan'; 'Merritt, Dean'; bkogut@bsk.com
Subject: Riccelli Fulton facility

John:

Thank you for taking the time to return my call. We have been requested to investigate the area that Spectra uncovered the VOC impacted soil at the referenced site. The following summarizes the information that would be helpful in assisting in our investigation.

- 1. Field notes
 - a. Where were the samples (S1, S2 and S3) were collected (location, depth and field screening performed...)
 - b. When the VOC soil was detected and what the action levels were to indicated this soil needed to be segregated?
 - c. Any other areas that may have exhibited VOC contamination but below the action level.
 - d. A more defined drawing of the area that the VOC's were detected.
 - e. Analytical results from the additional testing that the DEC requested for waste characterization (TCLP)
- 2. Schedule of test borings to be performed in the parking lot area?
 - a. When do they anticipate the borings will be performed.
 - b. Drawing of proposed locations
 - c. Anticipated depth of test pits

- 3. Backfill material
 - a. Analytical performed on the material that was placed back into the excavated areas

b. Thickness of the fill in the area where the VOC soil originated Thanks you,

Gary

Gary Mullen, Jr Project Manager Operations & Maintenance Inc. 1850 Route 57 Fulton, NY 13069 Mobile 315-378-5088 Office 315-598-5396 gmullenomi@gmail.com

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206 Albany (518) 459-3134 * Binghamton (607) 239-4413 * Buffalo (716) 972-0371 Rochester (866) 437-0255 * New Jersey (908) 581-4285

Mr. Frank Peduto Spectra Environmental 19 British American Blvd. Latham, NY 12110

Friday, February 03, 2012

RE: Analytical Report: 10234

Order No.: U1201661

Dear Mr. Frank Peduto:

Upstate Laboratories, Inc. received 3 sample(s) on 1/31/2012 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC. *Curthery*, *T*. Scale Anthony J. Scala

President/CEO

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

Analytical Report

CLIENT:	Spectra Environmental
Lab Order:	U1201661
Project:	10234
Lab ID:	U1201661-001

Date: 03-Feb-12

Client Sample ID: S1 Collection Date: 1/31/2012 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
METHOD 8260B 2005 LIST VOLAT	ILES IN SOIL		8260	05 S		Analyst: JKS
1,2,3-Trichlorobenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,2,4-Trichlorobenzene	ND	590	Q	µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,2,4-Trimethylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,2-Dibromo-3-chloropropane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,2-Dibromoethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,2-Dichlorobenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,3,5-Trimethylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,3-Dichlorobenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,4-Dichlorobenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,4-Dioxane	ND	12000		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Bromochloromethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Cyclohexane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Dichlorodifluoromethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Freon-113	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Isopropylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Methyl Acetate	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Methyl tert-butyl ether	ND	590	Q	µg/Kg-dry	100	2/1/2012 7:12:00 PM
Methylcyclohexane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
n-Butylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
n-Propylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
sec-Butylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
tert-Butylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Trichlorofluoromethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Chloromethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Vinyl chloride	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Bromomethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Chloroethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Acetone	ND	1200		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,1-Dichloroethene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Carbon disulfide	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Methylene chloride	600	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
trans-1,2-Dichloroethene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,1-Dichloroethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
2-Butanone	ND	1200		µg/Kg-dry	100	2/1/2012 7:12:00 PM
cis-1,2-Dichloroethene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Chloroform	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,1,1-Trichloroethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Carbon tetrachloride	ND	590		µg/Kg-drv	100	2/1/2012 7:12:00 PM
Benzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM

Approved By:

Qualifiers:

KMA

Date:

Page 1 of 6

Accreditation not offered by NYS DOH for this parameter

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Q Outlying QC recoveries were associated with this parameter

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Z13/12

S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:	Spectra Environmental
Lab Order:	U1201661
Project:	10234
Lab ID:	U1201661-001

Date: 03-Feb-12

Client Sample ID: S1 Collection Date: 1/31/2012 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
METHOD 8260B 2005 LIST VOLATILES I		8260	05 S		Analyst: JKS	
1,2-Dichloroethane	ND	590		μg/Kg-dry	100	2/1/2012 7:12:00 PM
Trichloroethene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,2-Dichloropropane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Bromodichloromethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
4-Methyl-2-pentanone	ND	1200		µg/Kg-dry	100	2/1/2012 7:12:00 PM
cis-1,3-Dichloropropene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Toluene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
trans-1,3-Dichloropropene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,1,2-Trichloroethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
2-Hexanone	ND	1200		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Tetrachloroethene	1300	590	Q	µg/Kg-dry	100	2/1/2012 7:12:00 PM
Dibromochloromethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Chlorobenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Ethylbenzene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
m,p-Xylene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
o-Xylene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Styrene	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
Bromoform	ND	590	Q	µg/Kg-dry	100	2/1/2012 7:12:00 PM
1,1,2,2-Tetrachloroethane	ND	590		µg/Kg-dry	100	2/1/2012 7:12:00 PM
NOTES:						
The reporting limits were raised due to the high	gh concentratio	n of target o	compou	nds.		
PERCENT MOISTURE BY ASTM D2216			PM	IOIST		Analyst: KLS
Percent Moisture	14.8	0.0100		wt%	1	2/3/2012

Approved I	By:	KMA	Date:	2/3/12	Page 2 of 6
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associa	ated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation	or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting	Limit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accep	ted recovery limits

Analytical Report

CLIENT: Spectra Environmental Lab Order: U1201661 **Project:** 10234 Lab ID: U1201661-002

Date: 03-Feb-12

Client Sample ID: S2 Collection Date: 1/31/2012 10:15:00 AM

Matrix: SOIL

Limit Qual Units DF Analyses Result Date Analyzed METHOD 8260B 2005 LIST VOLATILES IN SOIL 8260 05 S Analyst: JKS 580 1,2,3-Trichlorobenzene ND µg/Kg-dry 100 2/1/2012 7:53:00 PM 1,2,4-Trichlorobenzene ND 580 Q 100 2/1/2012 7:53:00 PM µg/Kg-dry 1,2,4-Trimethylbenzene ND 580 µa/Ka-dry 100 2/1/2012 7:53:00 PM 1,2-Dibromo-3-chloropropane ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry 1,2-Dibromoethane ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM ND 580 1,2-Dichlorobenzene 100 µg/Kg-dry 2/1/2012 7:53:00 PM ND 1,3,5-Trimethylbenzene 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM 1,3-Dichlorobenzene ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM 1.4-Dichlorobenzene ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM ND 1,4-Dioxane 12000 µg/Kg-dry 100 2/1/2012 7:53:00 PM Bromochloromethane ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry Cyclohexane ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry Dichlorodifluoromethane ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM Freon-113 ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM ND 580 Isopropylbenzene 100 µg/Kg-dry 2/1/2012 7:53:00 PM Methyl Acetate ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM Methyl tert-butyl ether ND 580 Q µg/Kg-dry 100 2/1/2012 7:53:00 PM Methylcyclohexane ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM n-Butylbenzene ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM n-Propylbenzene ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry sec-Butylbenzene ND 580 2/1/2012 7:53:00 PM µg/Kg-dry 100 ND tert-Butylbenzene 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM Trichlorofluoromethane ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM Chloromethane ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry ND Vinyl chloride 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM ND Bromomethane 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM Chloroethane ND 580 100 µg/Kg-dry 2/1/2012 7:53:00 PM Acetone ND 1200 µg/Kg-dry 100 2/1/2012 7:53:00 PM 1,1-Dichloroethene ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry Carbon disulfide ND 580 100 2/1/2012 7:53:00 PM µg/Kg-dry Methylene chloride ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM trans-1,2-Dichloroethene ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM 1,1-Dichloroethane ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM 2-Butanone ND 1200 µg/Kg-dry 100 2/1/2012 7:53:00 PM 580 cis-1,2-Dichloroethene ND µg/Kg-dry 100 2/1/2012 7:53:00 PM Chloroform ND 580 100 µg/Kg-dry 2/1/2012 7:53:00 PM 1,1,1-Trichloroethane ND 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM ND Carbon tetrachloride 580 µg/Kg-dry 100 2/1/2012 7:53:00 PM Benzene ND 580 100 µg/Kg-dry 2/1/2012 7:53:00 PM

Approved By:

Qualifiers:

KMA

Date: *

Page 3 of 6

Accreditation not offered by NYS DOH for this parameter

** Value exceeds Maximum Contaminant Value Е Value above quantitation range

Analyte detected below quantitation limits J

0

Outlying QC recoveries were associated with this parameter

в Analyte detected in the associated Method Blank

Low Level

2/3/12

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:	Spectra Environmental
Lab Order:	U1201661
Project:	10234
Lab ID:	U1201661-002

Date: 03-Feb-12

Client Sample ID: S2 Collection Date: 1/31/2012 10:15:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
METHOD 8260B 2005 LIST VOLATILES I			8260	05 S		Analyst: JKS
1,2-Dichloroethane	ND	580		μg/Kg-dry	100	2/1/2012 7:53:00 PM
Trichloroethene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
1,2-Dichloropropane	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Bromodichloromethane	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
4-Methyl-2-pentanone	ND	1200		µg/Kg-dry	100	2/1/2012 7:53:00 PM
cis-1,3-Dichloropropene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Toluene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
trans-1,3-Dichloropropene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
1,1,2-Trichloroethane	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
2-Hexanone	ND	1200		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Tetrachloroethene	1400	580	Q	µg/Kg-dry	100	2/1/2012 7:53:00 PM
Dibromochloromethane	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Chlorobenzene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Ethylbenzene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
m,p-Xylene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
o-Xylene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Styrene	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
Bromoform	ND	580	Q	µg/Kg-dry	100	2/1/2012 7:53:00 PM
1,1,2,2-Tetrachloroethane	ND	580		µg/Kg-dry	100	2/1/2012 7:53:00 PM
NOTES:						
The reporting limits were raised due to the hig	h concentratio	on of target o	compou	nds.		
PERCENT MOISTURE BY ASTM D2216			DN/			Analyst: KIS
	40.0	0.0400	1 14	10/		Allaryot. NLO

Descent Meioture 12.9 0.0100						Allaiy	
	Percent Moisture	13.8	0.0100	wt%	1	2/3/2012	

Approved By:		KMA	Date:	2/3/12	Page 4 of 6				
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level					
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank					
	Е	Value above quantitation range	Н	Holding times for preparation	or analysis exceeded				
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting	g Limit				
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accept	oted recovery limits				

Analytical Report

CLIENT:	Spectra Environmental
Lab Order:	U1201661
Project:	10234
Lab ID:	U1201661-003

Date: 03-Feb-12

Client Sample ID: S3 Collection Date: 1/31/2012 10:26:00 AM

Matrix: SOIL

Analyses	Result	Result Limit Qual Units			DF	Date Analyzed			
METHOD 8260B 2005 LIST VOLATI	LES IN SOIL		8260	_05_S		Analyst: JKS			
1,2,3-Trichlorobenzene	ND	2900		μg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,2,4-Trichlorobenzene	ND	2900	Q	µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,2,4-Trimethylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,2-Dibromo-3-chloropropane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,2-Dibromoethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,2-Dichlorobenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,3,5-Trimethylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,3-Dichlorobenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,4-Dichlorobenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,4-Dioxane	ND	57000		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Bromochloromethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Cyclohexane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Dichlorodifluoromethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Freon-113	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
lsopropylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Methyl Acetate	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Methyl tert-butyl ether	ND	2900	Q	µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Methylcyclohexane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
n-Butylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
n-Propylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
sec-Butylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
tert-Butylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Trichlorofluoromethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Chloromethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Vinyl chloride	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Bromomethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Chloroethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Acetone	11000	5700		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,1-Dichloroethene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Carbon disulfide	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Methylene chloride	4300	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
trans-1,2-Dichloroethene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
1,1-Dichloroethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
2-Butanone	ND	5700		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
cis-1,2-Dichloroethene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			
Chloroform	ND	2900		µg/Kg-drv	500	2/1/2012 8:33:00 PM			
1,1,1-Trichloroethane	ND	2900		µg/Kg-drv	500	2/1/2012 8:33:00 PM			
Carbon tetrachloride	ND	2900		µg/Kg-drv	500	2/1/2012 8:33:00 PM			
Benzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM			

Approved By:

Qualifiers:

KMA

Date:

Page 5 of 6

Accreditation not offered by NYS DOH for this parameter
 ** Value exceeds Maximum Contaminant Value

- ** Value exceeds Maximum Contaminant ValueE Value above quantitation range
- J Analyte detected below quantitation limits

Q Outlying QC recoveries were associated with this parameter

* Low Level

2/3/12

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

s spike

Analytical Report

CLIENT:Spectra EnvironmentalLab Order:U1201661Project:10234Lab ID:U1201661-003

Date: 03-Feb-12

Client Sample ID: S3 Collection Date: 1/31/2012 10:26:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed				
METHOD 8260B 2005 LIST VOLATILES II			8260	05 S		Analyst: JKS				
1,2-Dichloroethane	ND	2900		μg/Kg-dry	500	2/1/2012 8:33:00 PM				
Trichloroethene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
1,2-Dichloropropane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Bromodichloromethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
4-Methyl-2-pentanone	ND	5700		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
cis-1,3-Dichloropropene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Toluene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
trans-1,3-Dichloropropene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
1,1,2-Trichloroethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
2-Hexanone	ND	5700		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Tetrachloroethene	33000	2900	Q	µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Dibromochloromethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Chlorobenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Ethylbenzene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
m,p-Xylene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
o-Xylene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Styrene	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
Bromoform	ND	2900	Q	µg/Kg-dry	500	2/1/2012 8:33:00 PM				
1,1,2,2-Tetrachloroethane	ND	2900		µg/Kg-dry	500	2/1/2012 8:33:00 PM				
NOTES:										
The reporting limits were raised due to the hig	h concentratio	on of target o	compou	nds.						
PERCENT MOISTURE BY ASTM D2216			PM	OIST		Analyst: KLS				
Percent Moisture	12.5	0.0100		wt%	1	2/3/2012				

Approved By:		KMA	Date:	2/3/12	Page 6 of 6					
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level						
**		Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank						
E		Value above quantitation range	н	H Holding times for preparation or analysis exce						
J		Analyte detected below quantitation limits	ND	Not Detected at the Reporting	Limit					
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accept	ed recovery limits					

Chain Of Custody Record

Upstate Laboratories, Inc. 6034 Corporate Drive • E. Syracuse, NY 13057-1017 (315) 437 0255 Fax 437 1209

	Client Project # / Project Name														Special Turnaround	Special Turnaround	
	0.0	10734															Time
Spectra Engineerin	154000 #	Site Locativ	on (city/state)		•	Con-											(Lab Notification
Client Contact:	702-0032	T I															required)
John Ciampa	190000	FUL	TON			tain-											- -
Sample Location:	Date	Time	Matrix	Grab or	ULI Internal Use Univ	ers		0	2)		5)	6)	7)	8)	9)	10)	Remarks
			·	Comp.	U.J.O. I.del		1	$\frac{2}{\sqrt{2}}$	UNH	4)	- 3)		<u>.</u> ,				
51	1-31-12	10:00	Soil	Grab		1		(Y)	1-31-	2							
52	1-31-12	10:15	<u> </u>		2	1	X										
53	1-31-12	10:24	$ \vee$		3		L X	\mathbb{V}					····· ,				
						1											
					AP 1	1											
	·				A BRING MATTER												
parameter and method	L	ľ	j sample bottle:	type	size pres.	Samp	Sampled by: (Please Print) ULI Internal Use Only							Internal Use Only			
$\lambda I G G C S T 2 Q I I G$	11.11.1	271	ALDA			$]\mathcal{D}_{i}$	David A-Tyuiillo Delivery (check one)								very (check one). ILI Sampled		
1) VOCS 500040	Method	0200	JEFA			Com	Company:								ickup 🛛 🖸 Dropoff		
2) (Dravist) kut						sp	eċ	frc	, E.	$n(\gamma \wedge$	\ee	·Vi	Ś			.	;c:
	`					Belin	auish	hed b	v: (Si	}	ure)	Date		Time	Э	Rec	eived by: (Signature)
3)							quioi	100 2	J . (-		,						
4)						-											
	(ļ											· · · · · · · · · · · · · · · · · · ·
5)			- <u></u>		· · · · · · · · · · · · · · · · · · ·	Relin	quist	ned b	y: (Si	ignati	ure)	Date	•	Time	Э	Rec	eived by: (Signature)
6)						_		l									
								1									
7)						Relin	quist	ned b	y: (Si	ignati	ure)	Date		Time	Э	Reco	eived by: (Signature)
8)		•				1											
												L					
9)		v		<u> </u>		Relin	quist	neợ b	y: (S	ignati	ure)	Date	<u>م</u>	Time	e	Rec	d for Lab by: (Signature)
10)						- ()()	. ,	/	` <i>\</i> /	0	/	1-3	Md	///	3	-	KIMANDI
Note: The numbered columns above	cross-referenc	e with the nu	mbered columns	in the uppe	a nght-hand comer.	I'/c	Ł		<u>~ r(</u>			l		L		<u> </u>	1- KINY
Syracuse	Ro	chester	Buffalo	כ	Albany	Bin	ighai	mtor	ר		I	^F air l	Lawi	n (N.	I)		