Report. HW. 738034. 2006-05. RI

REPORT

Remedial Investigation South First Street Site Fulton, New York

National Grid

RECEIVED

MAY 5 2006

Remedial Bureau C
Division of Environmental Remediation

May 2006

FINAL REPORT

Remedial Investigation South First Street Site Fulton, New York

National Grid

James R. Heckathorne, P.E. Vice President

May 2006

Contents

List of Tables	. iii
List of Figures	. iii
List of Appendices	. iv
1. Introduction	1
1.1. Project background	1
1.2. Site description and history	
1.3. Regional setting	
1.3.1. Regional geology	
1.3.2. Regional hydrogeology	
1.3.3. Ground water usage in site vicinity	
1.4. Summary of PSA/IRM study	
1.5. Remedial investigation objectives	
1.6. Report organization	
2. RI field activities	
2.1. Surface soil samples	
2.1.1. Area 1	
2.1.2. Area 1 off site	
2.1.3. Area 2	
2.1.4. Area 2 off site	
2.1.5. Background	
2.2. Soil vapor samples	
2.3. Soil borings and subsurface soil samples	
2.4. Ground water investigation	
2.4.1. Monitoring well and piezometer installation	
2.4.2. Ground water sampling and water level and NAPL gaugi	
2.4.3. In situ hydraulic conductivity tests	
2.5. Investigation derived waste management	
2.6. Sediment evaluation	
2.6.1. Sediment probing	
2.6.2. Sediment sampling	
2.7. Sewer line evaluation	
2.8. Cultural resource assessment	
2.9. Ground water user survey	
2.10. Fish and wildlife impact analysis	
2.11. DUSR	. 17
3. Geologic and hydrogeologic conditions	10
3.1. Geology	
3.2. Hydrogeology	
	<u> u</u>

4. Nature and extent of contamination	. 23
4.1. Surface soil	. 23
4.1.1. Background samples	. 23
4.1.2. General	. 24
4.1.3. Area 1	. 25
4.1.4. Area 2	. 25
4.1.5. Area 2 off site	. 26
4.2. Soil vapor	. 26
4.3. Subsurface soil	. 27
4.3.1. Area 1	. 27
4.3.2. Area 1 off site	. 28
4.3.3. Area 2	. 28
4.3.4. Area 2 off site	. 28
4.4. Ground water	. 29
4.5. Sediment	. 31
4.6. Sewer line evaluation	. 31
5. Qualitative exposure assessment	
5.1. Current and future site use	
5.2. Constituents of concern	
5.3. Contaminant transport	
5.4. Potential receptors	
5.5. Potential exposure pathways	
5.5.1. Surface soils	
5.5.2. Subsurface soils	
5.5.3. Ground water	
5.6. Summary	. 36
6. Conclusions	. 37
6.1. Hydrogeologic conditions	
6.2. Nature and extent of contamination	
6.3. Exposure pathways	
7. Recommendations	. 41
Defenences	12

List of Tables

- 2-1 Subsurface soil summary
- 2-2 Monitoring well specifications
- 4-1 Surface soil samples -VOCs
- 4-2 Surface soil samples -SVOCs
- 4-3 Surface soil samples Metals
- 4-4 Surface soil samples Cyanide
- 4-5 Surface soil samples Pesticides/PCBs
- 4-6 Subsurface soil samples VOCs
- 4-7 Subsurface soil samples SVOCs
- 4-8 Subsurface soil samples Metals
- 4-9 Subsurface soil samples Cyanide
- 4-10 Subsurface soil samples Pesticides/PCBs
- 4-11 Ground water samples VOCs
- 4-12 Ground water samples SVOCs
- 4-13 Ground water samples Metals
- 4-14 Ground water samples Cyanide
- 4-15 Ground water samples- Pesticides/PCBs
- 4-16 Sediment samples BTEX
- 4-17 Sediment samples PAHs
- 4-18 Sediment and surface soils TOC
- 4-19 Storm sewer water sampling results

List of Figures

- 1-1 Site location map
- 1-2 Site map
- 1-3 Historical features
- 2-1 Sample locations
- 2-2 Background sediment sample locations
- 2-3 Sediment sample locations
- 3-1 Cross section A-A'
- 3-2 Cross section B-B'
- 3-3 Cross section C-C'
- 3-4 Shallow ground water elevation contours 11/5/05
- 3-5 Shallow ground water elevation contours -3/31/06
- 3-6 Deep ground water elevation contours -3/31/06
- 4-1 Surface soil Area 2 off site
- 4-2 Soil sample locations 0-4 ft bls
- 4-3 Soil sample locations 4-8 ft bls
- 4-4 Soil sample locations 8-12 ft bls
- 4-5 Soil sample locations 12-16 ft bls
- 4-6 Soil sample locations > 16 ft bls
- 4-7 Shallow ground water sample data November 2005
- 4-8 Deep ground water sample data November 2005

List of Appendices

- A Soil boring logs and monitoring well details
- B Ground water sampling logs
- C Hydraulic conductivity test plots
- D Sediment coring logs & photos
- E Cultural resource assessment
- F Ground water user survey summary
- G DUSRs
- H Soil vapor laboratory report
- I Worldwide Geosciences, Inc. Report

1. Introduction

1.1. Project background

The Remedial Investigation (RI) of the South First Street former manufactured gas plant (MGP) Site in Fulton, New York is being conducted by National Grid pursuant to an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC), dated November 2003 (Index # A-0473-0000). The investigative activities at the Site were initiated in 1996 under an earlier Order on Consent dated December 7, 1992 between the NYSDEC and the Niagara Mohawk Power Corporation. The 2003 Order on Consent supersedes the 1992 Order. Niagara Mohawk is now operating as National Grid.

Pursuant to the agreements with NYSDEC noted above, National Grid implemented a Preliminary Site Assessment and Interim Remedial Measures (PSA/IRM) Study at the South First Street Site between July 1996 and September 1996. The results of the PSA did not indicate conditions that would warrant the completion of an interim remedial measure (IRM). However, based on the results of the PSA a Remedial Investigation (RI) was recommended to further evaluate horizontal and vertical extent of chemical constituents.

This RI Report serves to summarize the RI conducted at the South First Street Site. Results of the RI have been integrated with the results of the PSA/IRM Study to provide characterization of Site conditions.

1.2. Site description and history

The South First Street Site, located in Fulton, NY (Figure 1-1), encompasses approximately 1.04 acres. The Site is made up of two areas, Area 1 and Area 2, which are separated by South First Street (Figure 1-2). Both Area 1 and Area 2 are owned by National Grid. Area 1 is located on the northeast side and Area 2 is located on the southwest side of South First Street. Presently, Area 1 is an undeveloped grass covered lot bounded by Conrail railroad tracks to the northeast and residential properties to the northwest and southeast. The topography in this area slopes to the southwest. The railroad tracks are elevated approximately 10 ft above the surface of Area 1.

Area 2 is a vacant, asphalt-paved lot. Within the lot is a concrete slab where the former Crossroads Gospel Tabernacle Ministries Church (CGTMC) building was located. Area 2 is bounded by the Oswego River to the southwest and residential properties to the northwest and southeast. The topography of the Site is generally flat, sloping gently to the southwest toward the Oswego River. The surface water level in the Oswego River is approximately 10 feet below ground surface of Area 2. The surface of Area 2 is approximately four feet above the surrounding properties.

There are a number of properties surrounding the Site as shown on Figure 1-2. Land between Area 2 and the Oswego River is owned by the New York State Canal Corporation. Land to the southwest of Area 2 is owned by the City of Fulton and is used as a park. Land northwest and southeast of Area 2 is owned by private property owners. As with the Area 2 parcel, land between the residential properties and the river is owned by the New York State Canal Corporation.

Prior to construction of the MGP in 1902, the Site was generally vacant land.

The following historical information was developed by National Grid based on review of historical records and maps. This information has been excerpted from the Final Work Plan for the PSA/IRM dated June 1996 as prepared by National Grid. Figure 1-3 depicts Site historical features.

In 1902, the Fulton Fuel and Light Company built the gas plant on South First Street, which began operation on February 20, 1903. The gas plant itself was located on Area 2, west of South First Street. A gas holder and oil tank were located on Area 1, east of South First Street. By 1906, a gas tank was constructed on Area 1 east of the oil tank (Sanborn 1906) (Niagara Mohawk 1996).

By 1911, two additional gas tanks, a coke shed and a small oil house were constructed on Area 2 west of the gas plant (Sanborn 1911). Records also indicate that by 1911, and possibly earlier, a tar well, approximately 4 ft in diameter, was located between the southern corner of the coal shed and the northern corner of the coke shed on a survey map.

A 1924 Sanborn Fire Insurance Map indicates the coke shed was removed in Area 2 and a concentrator house was added east of the coke shed location. In Area 1, a 30,000 cubic foot holder and second gas tank were added between the first holder and the railroad tracks.

In the late 1920's, natural gas was discovered locally and the gas plant was only used to supplement the peak demand periods. By 1932, a pipeline from Syracuse brought natural gas to Fulton and the gas plant ceased operation. A natural gas regulator station was located on Area I until 1984.

In 1947, the southern half of Area 2 was used as a used car lot. From 1958 to 1978 the southern half of Area 2 was used as Foster's Garden Center and Outdoor Power Equipment. In 1980 Area 2 was occupied by Modern Floor Covering (Fulton City Directories 1947-1980). The former Garden Center building was converted and used as the CGTMC. The CGTMC building and property was purchased by National Grid and subsequently demolished in January 1992.

In late July/early August 1993, National Grid cleared debris, and graded and seeded the northeastern half of Area 1 in response to complaints from adjacent landowners regarding the aesthetics of the Site. Prior to initiating the work, the western half of Area 1 was well-maintained lawn. The eastern half of Area 1 was undulating, overgrown, and contained large concrete saddles. The work consisted of the removal of the concrete saddles and general debris; grubbing of vegetation; placement of 102 cubic yards of bank-run gravel to fill low areas; placement of 36 cubic yards of topsoil; and hydro-seeding. Area 1 has subsequently been maintained by periodic mowing of the grass.

Review of historical maps from the Site area at the Friend of Fulton Historical Society indicates that the Oswego Canal was constructed prior to 1827. Excavation and subsequent maintenance of the canal created an island of dredge spoils west of the Site named Yelverton Island. Aerial photograph review indicates that the canal was no longer present in 1938. Presumably, the canal was backfilled to grade prior to 1938. Based on an interview with City of Fulton Water Department representative Roger Parsons, the canal was partially backfilled and the edge of the former canal served as an open drainage ditch. Sections of piping were subsequently added as the ditch was filled in to provide useable land.

1.3. Regional setting

1.3.1. Regional geology

The South First Street Site is located in southwestern Oswego County, along the Oswego River approximately 10 miles south of Lake Ontario and within the glaciated hummocky lowlands of the Lake Ontario lowland (USGS 1982). The Lake Ontario lowland is covered by glacial and lake deposits which are underlain by a series of sandstone and shale formations that dip gently southward at a rate of 50 feet per mile. Unconsolidated overburden deposits overlying bedrock are typically glacial till. Drumlins, which are elongate deposits of lodgment till of varying thickness, overlie bedrock predominantly in the eastern part of the Lake Ontario lowland, and occur to a lesser extent in the western portion of the Lowland. Thinner deposits of till are found between the drumlins. Scattered deposits of sand and gravel, laid down by melt waters flowing away from the ice front, are interspersed throughout the area (USGS 1982). These include kame and outwash deposits, which either overlie the till, or, where no till is present, lie directly on bedrock.

1.3.2. Regional hydrogeology

Regionally, ground water occurs within unconsolidated deposits consisting of lake sand, silt and clay; alluvial silt and sand; swamp deposits; and glacial deposits of low permeability lodgment till. These deposits directly overlie the bedrock surface throughout the area. However, distinct areas of sand and gravel glacial outwash form select segments of the aquifer system that overlies the till.

The regional unconfmed aquifer system in the vicinity of the Site is defined by surface water drainage divides, because the relatively flat Lake Ontario plain contains no lateral bedrock boundaries. Similar to the topography, the water table is relatively flat. Ground water levels rise and fall seasonally in response to fluctuations in recharge or discharge. Regionally, ground water discharges into streams, the Oswego River and into Lake Neatahwanta. Ground water flows toward the Oswego River in a direction roughly parallel to the slope of the land surface.

The Oswego River flows northwest and discharges into Lake Ontario, approximately 10 miles downstream of Fulton. In the Fulton area, which encompasses both sides of the river, ground water is primarily recharged through kame sand and gravels. Well yields in the Fulton area are generally less than 50 gallons per minute (gpm). However, three areas have been defined which contain highly permeable gravel that produces more than 250 gpm from individual wells. These areas include: Fulton Water Works, Lake Neatahwanta Municipal well field, and Great Bear Springs (USGS 1982) and are discussed in Section 1.3.3.

Fulton is located in the vicinity of contact between shale-sandstone bedrock of the Clinton Group and the underlying sandstone bedrock of the Medina Group (Fisher 1970). The median yield of the sandstone-shale unit is 3 gpm, and yields in about 25% of all bedrock wells in this unit are considered inadequate for domestic and farm supplies. The upper 100 feet of bedrock in the vicinity of Fulton is likely to contain salty ground water (Kantrowitz 1970).

1.3.3. Ground water usage in Site vicinity

The South First Street Site is located within a sole source aquifer area. The Fulton Area aquifer serves nearly 22,000 people (USGS 1982). Residents of the City of Fulton receive public water from the Fulton Water Works well field, which taps one of the glacial sand and gravel units. The Fulton Water Works well field is located approximately 0.9 miles upriver (southeast) of the Site (Figure 1-1). A ridge of Pleistoceneage lake silt deposits forms a hydraulic barrier between the river and the aquifer and therefore, pumping does not draw river water into the aquifer (USGS 1982). Ground water flow at the South First Street Site is to the west and northwest away from the Water Works. Based on the Water Works location and on site hydrogeology, there is no potential for the well field to be impacted by the Site.

Other water supply sources in the vicinity of the Site include the Great Bear Springs located approximately 3.5 miles southeast of the Site, the Lake Neatahwanta Municipal Community Water System Well Fields located approximately 1 mile west of the Site, and domestic wells. The Great Bear Springs and South Bay are not affected based on distance from the Site, and the location of the Oswego River between the Site and the well fields. As discussed in Section 2.9, private domestic wells are not located in the Site area.

The same

1.4. Summary of PSA/IRM study

- A Preliminary Site Assessment (PSA) was conducted in accordance with
- 1. the NYSDEC approved Final Work Plan for Preliminary Site Assessment/Interim Remedial Measures (PSA/IRM) Study at the South First Street Site, dated June 1996.
- 2.. Generic Quality Assurance Program Plan (GQAPP) for Site Investigations, Niagara Mohawk, June 1996.
- 3. Generic Field Sampling Plan (GFSP) for Site Investigations, Niagara Mohawk, June 1996.
- 4. Health & Safety Plan (HASP) for PSA/IRM Study for the South First Street Site, City of Fulton, NY, O'Brien & Gere, June 1996.

Pursuant to the 1992 Order on Consent, National Grid implemented a PSA/IRM Study at the South First Street Site between July 1996 and September 1996. The study objective was to collect sufficient environmental data for a preliminary evaluation of the presence and nature of MGP and non-MGP related chemical constituents at the Site. Study activities included completion of four test pits, seven soil borings, five monitoring wells, one piezometer, and the collection of subsurface soil, surface soil and ground water samples for analysis.

Test pits

Four test pits were completed on site to evaluate the presence, integrity, and contents of the former tar well, gas holder foundations, and the oil tank foundation that remain on site. One sample from each test pit was collected and analyzed for MGP-related parameters and total organic carbon (TOC).

Soil borings and subsurface soil sampling

Soil borings were completed and subsurface soil samples were collected to assess the presence of MGP and non-MGP-related constituents in subsurface soils, to provide information regarding the vertical extent of potential residues, and to provide hydrogeologic information pertaining to the Site.

A total of seven borings were completed at the Site. Five of the soil borings were converted into monitoring wells (MW-1 through MW-5) and one was converted to a piezometer (PZ-1). A total of twenty-six subsurface soil samples were collected from the soil borings. One sample

from each of the borings was analyzed for full Target Compound List/Target Analyte List (TCL/TAL) parameters. In addition to chemical analyses, four subsurface soil samples were selected for laboratory hydraulic conductivity testing.

Surface soils

A total of six sample locations, including two background locations, were identified and analyzed for TCL/TAL parameters and cyanide, along with total organic carbon (TOC). Samples were collected from two intervals, 0 to 2 inches and 0 to 24 inches, except at background samples which were sampled from the 0 to 2 inch interval only.

Ground water sampling

Two sets of ground water samples were collected to assess the presence and, if detected, nature of MGP-related constituents in the ground water underlying the former Site. Samples were collected on July 24, 1996 and September 4, 1996. The purpose of collecting the second set of samples was to verify the results obtained during the first sampling event. Both sets of samples were analyzed for TCL/TAL parameters. The TCL/TAL parameter list includes MGP related constituents as well as non-MGP related constituents to identify other possible sources/contributors that may impact ground water quality.

Fish and Wildlife Impact Analysis (FWIA)

In November 1996, as part of the PSA/IRM, Steps I & IIa of a FWIA were conducted for the South First Street Site to evaluate the potential for ecological impacts.

PSA Recommendations

Based on the findings of the PSA/IRM Study, the following recommendations were made:

Area 1

• The concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) and polycyclic aromatic hydrocarbons (PAHs) observed in the soils and ground water in Area 1 of the Site suggested that the impacts from former MGP operations are limited. Depending on the potential risks, it may be necessary to further delineate the extent and determine the form of cyanide found in the surface soil sample SS-2. Otherwise, it may be appropriate to eliminate this portion of the Site from further assessment.

Area 2

- A monitoring well should be installed between the Site and the Oswego River to better evaluate the concentrations of constituents potentially flowing toward the Oswego River. This would further define the horizontal extent of impacts and will enable a better evaluation of potential exposure to fish and wildlife via surface water and sediment.
- Deeper borings/wells should be installed at TP-4 and along the west portion of the Site to assess the quality of ground water and/or soil.

• In situ hydraulic conductivity tests should be performed on existing and proposed monitoring wells to evaluate the horizontal hydraulic conductivity.

In addition, the document recommended that:

- A baseline human health risk assessment should be conducted to identify whether remedial actions are necessary
- Step IIb of the Fish and Wildlife Impact Analysis (FWIA) should be considered to evaluate the effects of chemical exposures on the ecological receptors. (It was later decided that Step IIb was not required.)

1.5. Remedial investigation objectives

The objectives of the RI were to collect sufficient environmental data to address data gaps and implement the recommendations identified in the PSA/IRM Study to allow the nature and extent of contamination associated with the former MGP to be assessed. These objectives were presented in the Remedial Investigation/Feasibility Study Work Plan (O'Brien & Gere 1998). Additional data gaps were also defined in subsequent Correspondence between NYSDEC and National Grid dated December 14, 2003, April 1, 2005, and December 12, 2005.

1.6. Report organization

This RI report is organized into the following sections:

Section 1 - Introduction

Section 2 - RI field investigation activities

Section 3 - Geologic and hydrogeologic conditions

Section 4 - Nature and extent of contamination

Section 5 - Qualitative exposure assessment

Section 6 - Conclusions

2. RI field activities

This section describes the RI activities that were completed at the South First Street Site in Fulton, NY. The RI was conducted in accordance with the Remedial Investigation/Feasibility Study Work Plan dated February 1998 and approved by the NYSDEC. The initial objectives were defined by data gaps identified by the PSA. Additional activities were completed as needed to fill data gaps identified by National Grid or the NYSDEC. Activities were performed in accordance with NYSDEC approved supplemental work plans. These scope additions were documented in correspondence between NYSDEC and National Grid dated December 14, 2003, April 1, 2005, and December 12, 2005. The scope of work included:

- surface soil sampling and analysis
- soil vapor sampling and analysis
- subsurface soil sampling and analysis
- monitoring well installation
- ground water sampling and analysis
- ground water usage survey
- cultural resource assessment.

Field investigation procedures and activities were implemented in accordance with three companion documents previously prepared under the 1992 Order on Consent, specifically for the MGP Site investigations. The documents are listed below:

- 1. Generic Quality Assurance Program Plan (GQAPP) for Site Investigations, Niagara Mohawk, June 1996.
- 2. Generic Field Sampling Plan (GFSP) for Site Investigations, Niagara Mohawk, June 1996.
- 3. Health & Safety Plan (HASP) for PSA/IRM Study for the South First Street Site, City of Fulton, NY, O'Brien & Gere, June 1996.

In general, samples collected during the field efforts were submitted for analysis of the primary constituents of concern related to MGP sites including BTEX, PAHs, and cyanide.

Samples were delivered to O'Brien & Gere Laboratories, Inc. using chain-of-custody procedures outlined in the guidance documents. Analyses were completed in accordance with NYSDEC analytical services protocol (ASP) with Category B Deliverables. Data were reviewed and a Data Usability Summary Report (DUSR) was prepared to verify that data were useable for achieving the RI objectives.

2.1. Surface soil samples

Surface soil samples were collected from 36 on site, off site, and background locations as illustrated in Figure 2-1. As discussed in Section 1, samples SS-1 through SS-6 were collected from the 0 to 2 inch and 0 to 24 inch interval in 1996 as part of the PSA/IRM. Samples SS-7 through SS-9 were collected from the 0 to 24 inch interval as part of the RI activities. Samples SS-10 through SS-32 collected during the RI were from the 0 to 2 inch interval. The following provides a summary of the samples collected from each of the on site and off site areas.

2.1.1. Area 1

Three surface soil samples, SS-1 through SS-3, were collected from Area 1 during the PSA/IRM and analyzed for TCL/TAL parameters and cyanide. The NYSDEC requested additional sampling in the vicinity of SS-2 to investigate an elevated detection of cyanide in the sample collected from the 0 to 24 inches interval. As part of the RI, three samples, SS-7 through SS-9, were collected adjacent to SS-2 from 0 to 24 inches and analyzed for cyanide.

2.1.2. Area 1 off site

Eight samples, SS-10 through SS-17, were collected from off site locations on residential properties adjacent to Area 1 during the RI. These samples were collected from the 0 to 2 inch interval and analyzed for PAHs, BTEX, metals, and cyanide.

2.1.3. Area 2

Due to blacktop cover, surface soil was only collected at location SS-4 in a grass-covered area of Area 2, as part of the PSA/IRM. Samples were collected from both a 0 to 2 inch and 0 to 24 inch depth and analyzed for VOCs, SVOCs, pesticides, PCBs, metals and cyanide.

2.1.4. Area 2 off site

Fourteen samples, SS-23 through SS-32 and SS-24A through SS-24D, were collected from off site locations adjacent to Area 2. The samples were collected from 0 to 2 inches and analyzed for PAHs.

2.1.5. Background

A total of seven samples were collected to evaluate background concentrations of constituents in surficial soils as follows:

 During the PSA/IRM Study, surface soil samples were collected from two locations SS-5 and SS-6. At each location samples were collected from the 0 to 2 inch and 0 to 24 inch interval. These samples were collected from the city park located northwest of the Site and analyzed for VOCs, SVOCs, pesticides, PCBs, metals and cyanide.

• During the RI, five samples, SS-18 through SS-22, were collected from the 0 to 2 inch depth interval along the north side of South First Street. These samples were analyzed for PAHs.

2.2. Soil vapor samples

Three soil vapor samples (SV-1, SV-2, and SV-3) were collected from Area 2 on June 22, 1998 at the locations shown on Figure 2-1 to evaluate the potential for the constituents, if any, to migrate to an adjacent residence within soil vapor. Soil vapor samples were collected at depths 3 ft below surface using stainless steel probes with retractable points. Prior to sampling, probes were decontaminated with Alconox®, nitric acid, methanol, and distilled water rinses. The soil vapor was extracted from the ground and conveyed into Tedlar® bags using a hand held pump, disposable teflon tubing, and a Pelican® sample box. The soil vapor samples were shipped to Performance Analytical Laboratory in Canoga Park, CA where they were analyzed for BTEX by modified CARB method 410 and PAHs by EPA method TO-13.

2.3. Soil borings and subsurface soil samples

Four test pits and seven soil borings were completed during the PSA/IRM and 65 soil borings were completed during the RI. The objectives of these activities were to assess the presence of MGP-related constituents in subsurface soils, to provide information regarding the horizontal and vertical extent of MGP-related contamination at the Site, and to further assess Site geologic characteristics. Some of the soil borings were converted to monitoring wells to provide ground water quality data and assess ground water flow conditions.

Borings were advanced through the shallow unconsolidated deposits utilizing hollow-stem auger drilling techniques as described in Section 5 of the GFSP. Split-spoon samples were collected continuously from each soil boring and screened for the presence of volatile organic constituents using a photoionization detector (PID), and the presence of non-aqueous phase liquid (NAPL) or other indicators of contamination using ultraviolet light (UVL) and/or visual inspection. hydrogeologist selected the number and location of soil samples for analyses at each boring location with the intent of delineating the upper and lower boundaries of affected soils and the constituent concentrations within the soils. Specifically, soil samples were selected for analysis to establish the vertical extent and horizontal extent of impacted soils at soil boring locations where elevated PID readings, positive UVL readings (indicative of the potential presence of MGP-related NAPL), or visual observations indicated possible MGP residuals. At some soil boring locations where evidence indicated possible residuals, an attempt was made to establish the vertical extent of impacted soils through collection of samples from above and below the identified zone but rather were collected from soil samples with no field indicators of contamination to evaluate and confirm the vertical extent of impacts. In these instances soils were not always collected for analysis from within the zone identified as impacted via field screening, based on the assumption that concentrations would likely be above criteria in this zone. Boring logs reflect these observations and are included in Appendix A. Table 2-1 summarizes sample number, depth interval, and types of analyses conducted.

2.4. Ground water investigation

2.4.1. Monitoring well and piezometer installation

Seventeen monitoring wells and seven piezometers were installed during the PSA/IRM and RI at the locations illustrated on Figure 2-1. Wells were installed to evaluate the extent of MGP-related constituents, assess the direction of ground water flow, and to evaluate hydraulic conductivity of the unconsolidated deposits.

Monitoring well installation and development was conducted in accordance with the procedures described in Section 6 of the GFSP. The monitoring wells and piezometers were constructed with 2 inch diameter, flush joint, PVC riser pipe and screens. The only exception is MW-13, which was constructed of 4 inch diameter, flush joint, PVC riser pipe and screen. In addition, wells MW-1 through MW-5 and MW-13 were constructed with sumps at the bottom of the wells. Well construction details are included on the soil boring logs in Appendix A. Monitoring well specifications are summarized in Table 2-2.

The monitoring wells and piezometers were developed to optimize hydraulic connection with the adjacent unconsolidated deposits and to reduce the effects of residual formation silts and clays that could potentially interfere with chemical analysis. The wells were developed using a bottom-loading bailer in accordance with procedures described in Section 6.2 of the GFSP.

2.4.2. Ground water sampling and water level and NAPL gauging

To evaluate the extent of MGP-related compounds in the ground water, ground water samples were collected from the monitoring wells on seven occasions during the investigations as follows:

PSA/IRM

- July 1996: MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6
- September 1996: MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6

RI

- July 1998: MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9S, MW-9D, and MW-10
- August 1999: MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9S, and MW-9D
- May/June 2001: MW-1, MW-4, MW-5, MW-8, MW-9S, and MW-11
- July 2004: MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-7D, MW-8, MW-8D, MW-9S, MW-9D, MW-10, MW-11, MW-12S, and MW-12D
- November 2005: MW-1, MW-2, MW-3 (8.5 ft), MW-3 (12 ft), MW-4 (8 ft), MW-4 (12 ft), MW-5, MW-6, MW-7 (7 ft), MW-7 (11ft), MW-7D, MW-8, MW-8D, MW-9S, MW-9D, MW-10, MW-11 (5 ft), MW-11 (10 ft), MW-12S (8.5 ft), MW-12S (12 ft), and MW-12D.

The most complete and recent set of ground water samples was collected between November 1 and November 3, 2005 from the 16 on site and off site monitoring wells.

Prior to water sampling, water levels were measured in the monitoring wells for use in the assessment of ground water flow conditions at the Site. Measurements of water levels were obtained using an electronic water-level probe.

Conventional bailing techniques were used to collect the ground water samples prior to 2001. The sampling method includes purging three well volumes of water from the well prior to sample collection. If the well went dry during purging, the water level was allowed to recover prior to sample collection. The bailer was inspected for evidence of NAPL prior to purging and sample collection. Temperature, pH, conductivity, and turbidity were measured and recorded on ground water sampling logs.

The ground water sampling method was changed from bailing techniques to low flow techniques in 2001. With this technique, samples were collected using a peristaltic pump with disposable polyethylene tubing. During the purging process, the flow rate did not exceed 0.5 liters/min except during the start up of the pump.

Sampling performed in November 2005 consisted of a combination of low-flow and bailing techniques. Shallow wells were sampled using low flow techniques. Samples were collected from two depth intervals at wells MW-3, MW-4, MW-7, MW-11, and MW-12S to evaluate whether the change in the method of sampling (i.e., use of low-flow sampling methods in 2001 and 2004) may have influenced the concentrations observed. The first sample was collected from the upper portion of the screened interval. The tubing was then replaced and the intake was lowered to the bottom portion of the screen to collect the second sample. Deep wells were sampled using bailing techniques due to low yield of these wells.

Measurements of pH, specific conductivity, temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), turbidity, and flow rate were recorded at regular intervals during low flow purging.

Ground water samples were collected after equilibration of water quality parameters. Equilibration was defined as three consecutive readings of turbidity and DO within 10% of each other, specific conductivity and temperature within 3% of each other, a change in ORP of less than 10 millivolts, and drawdown stabilization. Ground water sampling logs are contained in Appendix B.

Ground water samples collected during the PSA/IRM were analyzed for TCL/TAL parameters. Ground water samples collected during subsequent investigations were analyzed for BTEX and PAHs as MGP indicators with the samples collected during November 2005 also being analyzed for cyanide.

2.4.3. In situ hydraulic conductivity tests

Hydraulic conductivity tests were completed on two separate occasions to evaluate the range of hydraulic conductivity values across the Site. In 1998, tests were conducted on monitoring wells MW-1, MW-6, MW-7, MW-9, and MW-9D. In 2004, hydraulic conductivity tests were conducted on two wells previously tested and six new wells. The tests were completed on monitoring wells MW-3, MW-7, MW-7D, MW-8S, MW-8D, MW-9, MW-12S, and MW-12D.

Hydraulic conductivity testing was conducted in accordance with procedures described in Section 6.3 of the GFSP. The test data were analyzed using the Bouwer and Rice method (Bouwer 1989) for unconfined aquifers contained in Aquifer Win32 ® version 2.36. Results of the hydraulic conductivity test results are included on Table 2-2, and test plots are contained in Appendix C.

2.5. Investigation derived waste management

Investigation derived waste (IDW) was managed in accordance with the procedures described in Section 10 GFSP. Specifically, IDW was containerized and staged on site pending characterization and subsequent disposal off site by National Grid.

2.6. Sediment evaluation

2.6.1. Sediment probing

In a June 29, 1999 letter from NYSDEC, sediment probing was requested to assess the presence or absence of MGP-related contamination in Oswego River sediments proximal to the Site. Accordingly, on August 19, 1999, reconnaissance was conducted along a 120-ft stretch of the shore of the Oswego River near the Site to observe and document the nature of river sediment (i.e., extent of fine-grained sediments, rocks, cobbles, etc.), water depths, and potential evidence of sheens or odors.

Sediment probing was conducted along seven transects spaced 20 ft apart. Along each transect, probing was conducted at the shoreline and at 10 ft and 25 ft from the shore. Two methods were utilized dependent on water depth. A 5-ft steel rod with a pointed tip was used in water less than 4 ft deep. For water greater than 4 ft deep, a 1 inch diameter 10-ft steel pipe was used to probe sediment from an aluminum boat. Observations were recorded in field logs, which are presented in Appendix D.

2.6.2. Sediment sampling

In a letter dated September 18, 2000, NYSDEC requested that sediment samples be collected. In May 2001, nine sediment samples were collected; four from background locations and five from locations near the Site. Background samples were collected from upstream locations as illustrated in Figure 2-2. Background samples BK-1 and BK-2 were collected from the west bank of the river while samples BK-3 and BK-4 were collected from the east bank of the river. Five sediment samples (Figure 2-3) were collected immediately adjacent to and downstream from the Site. Samples were collected from a boat using a standard sediment core sampler. The samples were analyzed for TOC, PAHs, and BTEX

2.7. Sewer line evaluation

In early 2000, a storm sewer line was identified directly west of Area 2 of the South First Street Site as a result of conversations with City of Fulton employee Roger Parsons. Review of maps available at the time suggested that the line ran in a north-south direction and crossed the Site to the west of monitoring well MW-4. According to conversations with City of Fulton employees, the storm sewer reportedly discharges to the Oswego River north (downstream) of the Site.

In April 2001, a remote sensing device was used to locate the sewer line. The device consisted of a transmitter attached to a fiberglass pole. The transmitter was pushed through the sewer line from the manhole located

southwest of Area 2. A receiver was used along the ground surface to trace the movement of the transmitter. The location and depth of the pipe was marked on the surface and subsequently surveyed to tie the location into the Site datum. The sewer line was traced to a point approximately 15 ft north of Area 2 where an obstruction in the line prevented further locating efforts. The sewer is located on the western edge of Area 2, trending in a southeast to northwest direction. The sewer location is shown on Figure 2-1.

In June 2001, water samples from within the sewer line were collected at two locations to assess whether MGP-related constituents were being introduced into the storm sewer in the vicinity of the South First Street Site. One sample was collected from the manhole located 400 ft south of the Site to provide upstream information, and a second sample was collected from the storm grate located 600 ft north of the Site. The samples were analyzed for PAHs and BTEX.

On October 6, 2005 video-inspection of the sewer line was conducted to evaluate the construction, integrity, and degree of infiltration within the sewer. Skanex Pipe Services, Inc. was contracted to conduct the inspection. The inspection was conducted from two directions. Inspection was conducted from a manhole south of the Site behind the residence at 582 South First Street and a manhole north of the Site adjacent to a pump house located in the City park property.

2.8. Cultural resource assessment

In July 1998 a Stage 1A Cultural Resource Assessment (CRA) was performed at the South First Street Site by the Department of Anthropology at the State University of New York (SUNY) at Binghamton. The assessment included Site file checks, a literature review, and a Site inspection. The Stage 1A CRA Report was submitted under separate cover to the New York State Office of Parks, Recreation, and Historic Preservation (SHPO) on December 22, 1998. The CRA Report is included as Appendix E.

2.9. Ground water user survey

A ground water user survey was initiated for the nearest three residences located on either side of Areas 1 and 2 to verify that private domestic wells are not located on the properties. Prior to the survey, the City of Fulton Water Department verified that the twelve closest residences to the Site were connected to the city water system. Respondents to the survey indicated that no domestic ground water wells were located at the residences adjacent to the Site. Specific details of the survey are presented in National Grid correspondence to the NYSDEC dated July 27, 1998. A copy of this correspondence is included in Appendix F.

2.10. Fish and wildlife impact analysis

During the PSA/IRM, steps I and IIa of a FWIA were conducted for the South First Street Site to evaluate the potential for ecological impacts. The FWIA was developed based on information obtained from regulatory agencies, by the study area reconnaissance conducted on November 6, 1996, and information generated under other PSA tasks. The FWIA was conducted in accordance with the NYSDEC Division of Fish and Wildlife guidance document entitled Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (NYSDEC 1994). This document was previously submitted and approved as part of the original PSA/IRM dated January 1997.

2.11. **DUSR**

Laboratory analyses of environmental samples were conducted in accordance with NYSDEC ASP-CLP protocols, and Category B deliverables were provided by the analytical laboratory. For each set of analytical data, a DUSR was prepared by Data Validation Services to establish and document usability of the data for site assessment purposes. The DUSR was prepared by reviewing and evaluating the analytical data packages. The parameters and documentation that were evaluated include chain-of-custody, holding times, instrument print-outs, chromatograms, calibrations, spikes, blanks, control samples, surrogate recoveries, duplicates and sample data. Quality control issues that were identified were then evaluated as to their effect on the usability of the sample data.

In general, the DUSRs prepared for this project concluded that the analytical data were usable. Some of the results were adjusted or qualified as estimated based on matrix interference and other related issues. These qualifiers were added or adjustments were made to the analytical tables as indicated by the DUSR. The DUSRs are included as Appendix G.

3. Geologic and hydrogeologic conditions

3.1. Geology

The subsurface geology in the vicinity of the South First Street Site is illustrated in generalized hydrogeologic cross-sections A-A', B-B', and C-C' (Figure 2-1). Cross Section A-A' (Figure 3-1) extends from southwest to northeast across the Site. Cross-section B-B' (Figure 3-2) extends from southeast to northwest across Area 2 and cross-section C-C' (Figure 3-3) extends across Area 2 from south to north.

The overburden deposits encountered at the Site consist of three units: fill; fluvial deposits composed of silt, sand, gravel and/or clay; and glacial till composed predominantly of fine sand with varying amounts of silt and gravel. Surficial fill materials were found in both Area 1 and Area 2. Fill materials consist of sand, gravel and various debris such as brick fragments, asphalt pieces, cinders, glass and other material. In Area 1, fill materials ranged in thickness from 0.5 ft in the south central end at SB-40 to 8 ft in the northwest portion of Area 1 at SB-16. In Area 2, fill thickness ranged from 1.5 ft at SB-2 to 15 ft at SB-36 and SB-43, which is located on the southwest Site boundary near the Oswego River (Figure 2-1). In general, fill thickness increases towards the river.

Review of historic maps and aerial photographs indicates that the Oswego Canal was filled sometime between 1911 and 1938. Evidence of the former Oswego Canal (e.g., canal bottom and/or walls) was not observed during drilling. Some historic maps indicate that the canal structure ended just north of the Site, such that the segment of the canal adjacent to the Site was not contained within structural walls. It is speculated that the canal channel was filled with several types of material, some similar to native soils. Thus, there is not a distinct subsurface material indicative of canal fill. Dredge spoils were reportedly placed on Yelverton Island and these materials may have also been used for fill in the canal.

The unit underlying the fill is a series of discontinuous layers of silt, silt and fine sand, sand, clay, and gravel. The thickness of this unit and the individual layers varies across the Site (Figures 3-1, 3-2 and 3-3). However, as the unit approaches the river in the vicinity of MW07, composition becomes primarily silt with obvious clay lenses. This unit is the result of historical depositional environments, such as recent processes of the Oswego River or historic streambeds feeding the river.

As noted above, the deposits near the river may actually be local, native material that was placed in the former Oswego canal.

A glacial till unit, consisting primarily of sand, with varying amounts of silt and gravel overlies bedrock at the Site. The density of the till grades from loose at shallow depths to extremely dense with greater depth. The top of till undulates and was observed from 5.3 ft at SB-28 to 26.2 ft at SB-41. The dense till is encountered at depths ranging from at 12 ft in SB-16, SB-17, and SB-18 to 28.5 ft below land surface (bls) at SB-4 and SB-36. The top of the dense till layer slopes down toward the southwest and the river. The unit was fully penetrated at MW-6 where bedrock was encountered at 36.5 ft below grade. At this location the dense till is 17.5 ft thick.

3.2. Hydrogeology

Ground water elevations have been measured on a number of occasions since the 1996 PSA. Recent and historical water elevation data are presented on Table 2-2. The most complete set of water level data was collected on March 31, 2006.

An unconfined overburden water-bearing zone exists beneath the Site. The ground water table was encountered within the fill unit at approximate depths of 1.5 ft in well MW-11 to 8 ft at MW-10. A ground water elevation contour map was developed to illustrate the shallow ground water flow characteristics. These contour maps are provided as Figures 3-4 and 3-5 and present the ground water elevations on November 5, 2005 and March 31, 2006, respectively. As illustrated on these figures, generally ground water flows to the south across Area 1 to Area 2. Ground water flow under Area 2 veers towards the west. Of note, flow contours appear to converge along the axis of the storm sewer line. The hydraulic gradient varies slightly from 0.035 ft/ft in Area 1 to 0.05 ft/ft in Area 2.

The ground water contour convergence observed in the vicinity of PZ-3, PZ-5, and PZ-6 is likely indicative of infiltration of ground water into the storm sewer. Slightly higher ground water elevations are observed at PZ-2 and PZ-4 indicating similar flow convergence near PZ-3. This indicates that the storm sewer and/or the associated bedding intercepts ground water flowing across the Site. The sewer is approximately 20 feet below grade at the Site, and as such is below the river level. As described in Section 4.6, infiltration is apparent as water was observed entering the pipe through fractures as well as through joints in the pipe.

Six deep wells (MW-6, MW-7D, MW-8D, MW-9D, MW-12D, and MW-13) are screened between 20 ft and 37 ft below grade. Wells MW-6, MW-8D, MW-9D and MW-12 D are screened within the till unit. MW-13 is screened within a sand and gravel lense. The screen for well MW-7D extends 1 ft below the top of the dense till unit. However, this well is also screened across a 2 ft thick sand and gravel deposit located adjacent to the river. Therefore it is considered to be in a separate hydrogeologic unit.

Ground water elevations at the deep wells are shown on the shallow ground water contour map (Figure 3-5) to allow for assessment of vertical flow potential at each location because the deep wells are not considered to be installed within a single hydrogeologic unit. Review of ground water elevations between the shallow and deep well pairs suggest that a downward vertical hydraulic gradient ranging from 0.17 ft/ft at MW-12 to 0.07 ft/ft at MW-9 cluster exists in Area 2.

Hydraulic conductivity values in the shallow water-bearing zone above the till at the Site range from 0.49 ft/day in MW-12S to 3.31 ft/day in MW-3 with a geometric mean value of 1 ft/day. Within the till unit, hydraulic conductivity values range from 0.04 ft/day in MW-9D to 1.14 ft/day in MW-12D with a geometric mean of 0.15 ft/day. These values are approximately an order of magnitude less than the shallow materials. Deep well, MW-7D is screened in a deep gravel unit (Figure 3-3). The hydraulic conductivity of this material is significantly higher at 4.39 ft/day. The degree of variation observed in hydraulic conductivity supports the observations of a variety of materials in the overburden soils.

4. Nature and extent of contamination

The following section provides a discussion of the nature and extent of contamination based on findings from the PSA and RI. The evaluation of nature and extent of contamination includes comparison of analytical results with NYSDEC standards and guidance to screen the data for potential constituents of concern. Analytical data for soil samples were screened using NYSDEC's recommended soil cleanup objectives (RSCOs) provided in Technical Administrative Guidance Memorandum #4046 entitled "Determination of Soil Cleanup Objectives and Soil Cleanup Levels" (TAGM 4046 RSCOs). Per NYSDEC correspondence dated May 16, 2005, the TAGM 4046 RSCO of 500 ppm for total SVOCs was used as a screening criterion for the subsurface soil samples. Given that PAHs are considered to be representative of MGP operations and only trace amounts of other SVOCs were detected, the total PAH value was compared to the total SVOCs/TAGM 4046 RSCOs at this Site. Individual VOCs were compared to compound-specific TAGM 4046 RSCOs. For the evaluation of surface soil concentrations from background surface soil sample results were used for comparison, as appropriate.

Ground water sample results were compared to New York State Class GA Ground Water Standards or guidance values as presented in the Division of Water Technical and Operational Guidance Series 1.1.1 entitled Ambient Water Quality Standards and Guidance Values and Ground Water Effluent Limitations – (NYSDEC TOGS).

The following tables present data collected during the PSA/IRM and RI investigations. Tables 4-1 through 4-5 summarize the analytical results for surface soil. Tables 4-6 through 4-10 summarize the analytical results for subsurface soil. Tables 4-11 through 4-15 summarize the analytical results for ground water. Tables 4-16 through 4-17 summarize the analytical results for sediment. Table 4-18 summarizes Total Organic Carbon (TOC) for sediment samples. Table 4-19 summarizes the analytical results for the storm sewer water sampling.

4.1. Surface soil

4.1.1. Background samples

To assess the potential contribution of constituents to surface soil from sources other than historical MGP operations, a total of seven background surface soil samples were collected. These samples are identified as SS-05, SS-06, SS-18, SS-19, SS-20, SS-21, and SS-22. Samples SS-05 and SS-06 were analyzed for VOCs, SVOCs, metals,

cyanide, pesticides, and PCBs. Samples SS-18 through SS-22 were analyzed for PAHs. Results for surface soil samples are provided in Tables 4-1 through 4-5. Concentrations of total PAHs and the following carcinogenic PAHs (CPAHs) were used for developing background concentrations:

- benzo(a)anthracene
- benzo(a)pyrene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- chrysene
- dibenzo[a,h]anthracene
- ideno(1,2,3-cd)pyrene)

Concentrations from the background locations are as follows:

Location	Total PAHs (ppm)	Total CPAHs (ppm)
SS-05	0.119	0.056
SS-06	0.568	0.099
SS-18	19.84	10.94
SS-19	4.65	2.37
SS-20	7.88	4.14
SS-21	24.25	11.24
SS-22	16.20	7.89

Based on this evaluation, background concentrations of total PAHs and total CPAHs of up to 24.25 mg/kg and 11.24 mg/kg, respectively, can be expected in the surficial soil.

4.1.2. General

A total of four potential areas of concern were identified for surface soil. These areas were in the vicinity of samples SS-1, SS-2, SS-4, SS-24. CPAHs were detected above the background concentration, 11.24 parts per million (ppm), in three of the areas. Also, NYSDEC requested additional sampling in the vicinity of sample SS-2 based on cyanide concentrations

Analytical results for metals in surface soil samples are presented in Table 4-4. Metals concentrations detected in Areas 1 and 2 are comparable to background concentrations. Detected constituent concentrations are within an order of magnitude of background samples and are not discussed further.

Trace concentrations of pesticides were detected in samples as indicated in Table 4-5. Similar constituents were detected in Areas 1 and 2 as well as in background samples at concentrations typically in the range of 0.05 ppm. The source of these compounds is likely local use of pesticides on lawns and shrubbery in the area. These compounds are not considered to be a result of historic land use and are not discussed further.

Data collected during the PSA reveal that surface soil samples from both areas of the Site indicated that BTEX compounds, if present, are below the screening criteria.

As previously discussed, surface soil samples were collected from 2 depth intervals in early stages of investigation: 0 to 2 inch and 0 to 24 inch. As the NYSDOH considers the 0 to 2 inch interval to represent the surface soil exposure pathway, only the 0 to 2 inch samples will be discussed within the context of surface soil. The exception being the evaluation of cyanide at SS-2 and associated follow-up samples SS-7 through SS-9.

4.1.3. Area 1

Surficial samples (SS-1 through SS-3, SS-7 through SS-10, and SS-11 through SS-17) were collected from Area 1 and the adjacent properties (Figure 2-1). Samples SS-1, SS-2, and SS-3 were analyzed for VOCs, SVOCs, metals and cyanide during the original investigation. Samples SS-7, SS-8, and SS-9 were collected during follow-up investigations and analyzed for cyanide.

Only SS-1 and SS-2, located in Area 1, had concentrations of total CPAHs above the maximum background CPAH concentration. The CPAH concentrations at the other samples in Area 1, and the surrounding properties, were within the range of background concentrations.

At surface soil sample SS-2, collected during the PSA cyanide was detected at 11 ppm in the 0 to 2 inch interval and 810 ppm in the 0 to 24 inch interval. Upon request from NYSDEC, surface soil samples surrounding SS-2 (SS-7, SS-8, and SS-9) were subsequently collected from the 0 to 24 inch interval to delineate the extent of cyanide detected at SS-2. Cyanide was detected at all three locations, with a highest concentration of 60 ppm at SS-9, which was significantly lower than the 810 ppm identified at SS-2.

No soil RSCO has been developed in TAGM 4046 for cyanide. However, as reference, the USEPA Region 3 Preliminary Remediation Goal (PRG) for cyanide is 1564 ppm and the USEPA Region 9 PRG for cyanide is 1200 ppm. Based on this comparison, the presence of cyanide at the SS-2 location is not considered to be significant. Further, the concentration of cyanide in the 0 to 2 inch interval, which is the interval defined by the NYSDEC and NYSDOH for human health exposure, was only 11 ppm.

4.1.4. Area 2

Only a small segment of Area 2 contains exposed soil. The remainder of the area is covered by asphalt pavement or the concrete building slab.

Sample SS-4, collected from the area of exposed soil, contained total CPAHs above the background concentration criterion.

4.1.5. Area 2 off site

Figure 4-1 presents the Area 2 off site surface soil locations and total PAH and CPAH concentrations. Surface soil sample location SS-24. located on City of Fulton property adjacent to Area 2, was sampled in 2002. SS-24 contained total CPAHs above background concentrations. Subsequently, a total of nine additional samples were collected from locations surrounding SS-24 in two phases to further evaluate the CPAH concentrations in this area. The initial phase of sampling (SS-24A through SS-24D) was focused immediately adjacent to location SS-24. Total CPAHs were detected above background at two of the locations. SS-24C and SS-24D. The second phase of sampling (SS-28 through SS-32) included off site locations on the City property surrounding SS-24, at distances varying from 15 to 60 feet. Total CPAHs were detected above background at one location, SS-32, approximately 60 ft southwest of location SS-24 adjacent to the tree line. Additional surface soil samples were not collected in the tree line as the area is used for general disposal of household debris including included roofing shingles and ashes. PAH concentrations are likely attributable to sources unrelated to the MGP Site. No visible staining or discoloration was observed at the sample locations. Soils contained pieces of coal, clinkers, glass, and brick, indicating it is fill material.

The material in this area was the result of filling of the Oswego Canal sometime in between 1911 (1911 Sanborn Fire Insurance map) and 1938 (aerial photograph dated June 6, 1938) during MGP operation. The source of the fill has not been determined, but is likely comprised predominantly of dredge spoils that had been placed on the former Yelverton Island. Historical records review indicated that in 1912 there were discussions among local officials regarding use of dredge spoils from Yelverton Island, formerly located near the Site between the Oswego River and the former Oswego Canal, to backfill the canal bed (Fulton Times, March 6, 1912). It is, therefore, unclear whether the CPAHs are related to historic MGP operations or are inherent to the fill material.

4.2. Soil vapor

BTEX and PAH constituents were not detected in soil vapor samples collected at locations SV-1, SV-2, and SV-3 during the June 22, 1998 sampling event. The results suggest that soil gas vapor is not a migration pathway for Site-related chemical constituents to the adjacent residence although the detection limits are higher than those obtained using more current technology. The soil vapor laboratory analytical report is included in Appendix H. Per correspondence with NYSDEC, further evaluation of the potential migration of MGP-related constituents in soil vapor will be conducted.

Need a fable, Similar to the in on PRAP.

*

4.3. Subsurface soil

Concentrations of constituents potentially related to MGP operations were used to evaluate impacts to subsurface soil. In addition to analytical data, observation of impacted soil was noted in the drilling and test pit logs. As previously discussed, observations included staining, NAPL droplets, odor, or a positive fluorescence with the UVL. fluorescence is an indicator of the potential presence of residual NAPL. Analytical results for subsurface soil were compared to the NYSDEC TAGM 4046 RSCOs as screening criteria as described in the beginning of this section.

Figures 4-2 through 4-6 provide a visual representation of BTEX and PAHs detected above screening criteria as well as observed impacts for subsurface soils at 4 ft depth intervals beginning at grade. As previously discussed, these screening criteria were the TAGM 4046 RSCO of 500 ppm for total PAHs and individual TAGM 4046 RSCOs for the each of the BTEX compounds. Tables 4-6 through 4-10 present the analytical data and provide a comparison to individual TAGM 4046 RSCOs for individual constituents.

4.3.1. Area 1

In Area 1, one or more BTEX compounds were detected above screening criteria at two locations, SB-15 and SB-38. Total PAHs were detected above 500 ppm at three locations SB-15, SB-38 and SB-46. Staining, residual NAPL, or UV-positive soil was observed at SB-15, SB-35, SB-38, and SB-46 as illustrated in Figures 4-1 through 4-5. In general, impacts are centered at the eastern concrete gas holder pad. The areal extent of impacts generally narrows with depth and impacts are generally limited to the upper 8 ft with some observed impacts reaching 12 ft (Figures 4-2 through 4-5).

The tapering of impacts at depth in tandem with impacts identified in shallow soils suggests that a surface release (e.g., a historic spill) was the source of the impacts observed in Area 1.

Metal concentrations detected during the PSA/IRM are comparable to the background surface soil concentrations. Metal analytical results for subsurface soils are presented in Table 4-3. Subsurface soils were also analyzed for cyanide during the original investigations at two locations (MW-1 and MW-2). Cyanide in subsurface soils was detected at MW-2 in the 6-8 ft interval.

4.3.2. Area 1 off site

Soil borings were completed on the properties adjacent to Area 1. Total PAHs were not detected in subsurface soil above screening criterion at off site locations adjacent to Area 1. Further, there were no indications of MGP-related impacts (NAPL, staining, sheens) on these adjacent properties based on field screening of soil samples (e.g., visual observations, UV fluorescence and odor).

4.3.3. Area 2

BTEX and PAHs were detected above screening criterion at nine locations in Area 2. NAPL or UV positive soil was observed at eight locations. Pesticides were either not detected or detected at concentrations below screening criteria, with the exception of Dieldrin. Dieldrin was detected above the criterion at SB-01 (6-8 ft). Dieldrin is not an MGP-related constituent.

Review of Figures 4-2 through 4-6 indicate that the largest area of impact was observed between 4- and 12 ft bls interval. Evidence of impacts greater than 16 ft bls is primarily limited to the southern property boundary.

The lack of impacts in soil shallower than 4 ft suggests releases below the ground surface, possibly from piping or other underground structures. An alternative explanation may be that the surface of the property was covered with fill after MGP operations ceased.

With the exception of MW-4 (8-10 ft) and MW-5 (8-10 ft), inorganic concentrations in the subsurface soil are comparable to background surface soil concentrations (Table 4-3). Concentrations of arsenic, iron, and lead were elevated at MW-4 (8-10 ft) compared to other subsurface soil samples and an order of magnitude higher than the background surface soil samples. Cyanide was detected at MW-4 (8-10 ft) above USEPA Region 3 PRG and USEPA Region 9 PRG for cyanide. In addition, the lead concentration of 560 ppm in MW-5 (8-10 ft) was also an order of magnitude higher than the background surface soil samples. With the potential exception of cyanide, the inorganics are not considered to be representative of MGP operations; and based on the depth, more likely associated with the fill material.

4.3.4. Area 2 off site

Soil borings were drilled and sampled on the off site properties adjacent to Area 2 to assess whether impacts identified on site extend onto off site areas. Impacts at off site properties appear to be limited to three general areas, as described below.

The first area is the southwestern corner of the paved lot near the retaining wall as identified by borings SB-36, SB-37 and SB-41. As illustrated in Figures 4-2 through 4-5, soils in this area contain elevated PAHs and BTEX that begin around 4 ft and continue to depths beyond

16 ft. In this area, analysis of soil reveal concentrations of PAHs and BTEX above screening criterion to at least 24 ft at SB-36. Although analyses were not completed on soil deeper than 24 ft at this location, no visual evidence of impacts is present below approximately 26 ft. The top of the dense till is located at 28 ft below grade at this location.

Of note, the MW-7 well cluster is located between this area and the river. Impacted soils were not observed at this location suggesting that MGP-related impacts have not migrated toward the river.

The second area is west of the former canal in borings SB-42 and SB-44. Total PAH concentrations are above the screening criterion at this location and are limited to soil less than 4 ft deep (Figure 4-2). Sample descriptions indicate the soil is fill, including various construction debris, coal fragments, etc. Based on historical maps, the area west of the former canal was formerly Yelverton Island, which was built from dredge spoils. These concentrations are potentially a reflection of constituents in the dredge spoil material and are not considered to have migrated from the Site.

The third area is behind the neighboring property to the north of Area 2 at SB-14 and MW-12D. Although PAHs were not detected above screening criterion at this location, staining and NAPL blebs were observed at these locations in soils between 4 ft and 16 ft.

In February 2002, soil boring SB-22 was completed in an area suspected to be within the former canal based on historic mapping. Field screening indicated limited soil impacts (i.e., a light spotty sheen on water in soil sample). A soil sample collected from the 12 to 14 ft depth was submitted to Worldwide Geosciences, Inc., for fingerprint analysis. The sample was analyzed by high resolution capillary gas chromatography to determine the type or types of parent products associated with the sample and to provide an indication of parent product age. The signature characteristics of the sample were determined to be indicative of coal tar as the product type. The complete report is attached in Appendix I. Of note, a portion of this sample was also submitted for analysis of PAHs. The results indicated that the sample contained 0.14 ppm total PAHs. Based on the history and timing of filling in this area (as described previously), it is unlikely MGP constituents migrated to this location. It is likely that this material was placed during filling.

4.4. Ground water

Ground water quality data were compared to NYSDEC TOGS as ground water screening criteria. As previously discussed, the most recent and complete set of ground water samples were collected in November 2005 and analyzed for BTEX and PAHs. These results were used for the following discussion of ground water quality. The ground water analytical results, including a comparison to the ground water screening criteria, are provided on Tables 4-11 through 4-15. Figures 4-7 and 4-8

provide a visual representation of BTEX, PAHs and cyanide detected above ground water screening criteria during the most recent sampling event.

Concentrations of BTEX and PAH compounds that are above the ground water criteria are limited to Area 2. BTEX compounds were detected in several shallow wells and were measured at concentrations above criteria at MW-4 and MW-5. PAHs were also detected in MW-4 and MW-5 at concentrations above the criteria. Additionally, in deep well MW-6, PAHs were also detected at concentrations above the criteria.

Review of historical ground water quality data indicates that concentrations of BTEX compounds and PAHs have decreased over time. As previously discussed, sampling methods changed from bailing techniques to low flow techniques in 2001. To assess whether the change in sampling methods affected the data, during the November 2005 sampling event samples were conducted at two depths from shallow wells MW-3, MW-4, MW-7, MW-11, and MW-12S. The data indicate that concentrations do not vary substantially based on vertical placement of the intake in the screened interval, and thus, the change in sampling method does not appear to affect the quality of the results.

BTEX compounds, when detected, were at concentrations below criteria in deep wells MW-6, MW-8D and MW-12D.

Inorganics (metals and cyanide) were analyzed during the PSA. The concentrations of a number of inorganic constituents were detected above ground water criteria. Several of these are also above the criteria in upgradient well MW-1. Metals concentrations in ground water samples were generally comparable to measured concentrations in samples from Area 1. Some constituents were found to be above ground water standards in downgradient wells but not detected in the upgradient well (see Table 4-13). In these instances, the concentrations only slightly exceed the criteria and can likely be attributed to elevated turbidity. Furthermore, the constituents identified are not considered related to the MGP. Sampling logs are presented in Appendix B.

Cyanide was detected above TOGS in shallow ground water at wells MW-3 and MW-5. Cyanide was detected below TOGS in the remaining wells that were sampled. Cyanide was not detected in upgradient well MW-1.

Trace concentrations of pesticides were detected in the ground water during the PSA/IRM study on July 24, 1996. With the exception of samples from MW-4, the pesticides detected were either also detected in the associated laboratory preparatory blanks or not detected in follow-up sampling event. At MW-4, Endosulfan II was detected in a follow-up sampling event on September 4, 1996. No criterion exists for Endosulfan. Also, PCB Aroclor 1242 was detected in MW-1 during the July 1996 sampling event, however, it was not detected during a second sampling event in September 1996. None of these constituents are considered to be Site-related.

Ground water impacts potentially related to the former MGP (BTEX, PAHs, and cyanide) are limited to Area 2. These areas are proximal to the location of impacted subsurface soil. Impacts were not observed above criteria at sample points between the affected wells and the river or the downgradient locations suggesting that constituents are not migrating from the source area to the Oswego River.

4.5. Sediment

A total of 9 sediment samples were collected from the Oswego River at the approximate locations presented on Figure 2-2. As described in Section 2.6, five samples were collected near and downstream of the Site, and four were collected from upstream areas considered to generally represent background conditions. The sediment samples were analyzed for BTEX, PAHs, and TOC. Analytical results for BTEX, PAHs and TOC are provided in Tables 4-16 through 4-18. BTEX compounds were not detected.

Low levels of PAHs were detected in the river sediments both near the Site and upstream of the Site. The total PAH concentrations in the sediments near and downstream of the Site range from 0.36 to 1.6 mg/kg. This concentration range is similar to the concentrations measured in the upstream areas, which range from not-detected to 1.1 mg/kg. Note that several individual PAH compounds were detected near and downstream of the Site, while only one, benzo(a) pyrene, was detected in the upstream area (Table 4-16).

The detection of PAHs in the Oswego River sediments is not unexpected given the urban nature of the area and historic uses of this river for commercial transportation, and is not indicative of contribution from the former MGP.

4.6. Sewer line evaluation

April 2001 sewer line tracing activities traced the line from the southern manhole to a location adjacent to MW-12S and MW-12D. (Figure 2-1) It was suspected that the line had a blockage or was collapsed at this location. The sewer line is located between 18 and 20 ft below grade. In October 2005 the sewer line was inspected with a remote video camera. The sewer line appeared to be a 24 inch diameter concrete pipe. An initial attempt was made to conduct the video inspection starting from a manhole located approximately 500 feet to northwest of the Site. This inspection progressed 418 feet to a point approximately 60 feet west of the Site, where a concrete block prevented further progress of the video tractor. Subsequently, an attempt was made to conduct the video inspection from a manhole located approximately 210 feet southeast of the Site. This inspection progressed 90 feet to a point approximately 120 feet southeast of the Site, where a rock was encountered and prevented further progress of the video tractor. Several cracks in the concrete sewer

line pipe were also observed and water was observed entering the pipe through these fractures as well as through joints in the pipe.

On June 20, 2001, samples of water from within the storm sewer line were collected upstream and downstream of the Site as discussed in Section 2.7. The following table presents the detected constituents.

Table 4-18: Storm sewer water sampling results

Parameter	Upstream	Downstream
Benzene	<0.50	1.6
Ethylbenzene	<0.50	0.69
Xylene (total)	<0.50	0.68

Results in µg/L (ppb)

As illustrated on this table, low concentrations of benzene, ethylbenzene, and total xylenes were detected in the downstream storm water sample. The compounds detected in the downstream manhole may be contributed from infiltration of contaminated ground water from the Site. However, the downstream location is approximately 600 ft north of the Site and is covered by a grate. Therefore, the compounds detected at this location may be due to contaminated storm water rather than ground water infiltration from Area 2 as this catch basin, and possibly others, collect storm water from the roadways.

< - indicates not detected. Value to right is detection limit.

5. Qualitative exposure assessment

A qualitative assessment of the potential for receptors to be exposed to site-related constituents was completed for the Site. The assessment consisted of characterizing the exposure setting (including the physical environment and potentially exposed human populations), identifying complete and potentially complete exposure pathways, and evaluating contaminant fate and transport. Without an exposure pathway, constituents cannot impact human or ecological receptors. If an exposure pathway is complete, the potential for risk to the receptor depends on the degree and duration of exposure.

5.1. Current and future Site use

The use of the property is the underlying factor that influences the activities and potential for exposure to constituents that are present. The area in which the South First Street Site is located is predominantly residential in nature. The Site is vacant with no restriction to access. National Grid owns this property. Future use of the Site has not been established. The physical characteristics of the property are described in Section 1.2.

Ground water in the area is not used for potable water supplies. Surrounding residential properties are connected to City of Fulton water supply, which is provided by the City of Fulton Water Department. The City of Fulton Water Department receives its water from a well field located adjacent to the Oswego River, approximately one mile upstream from the Site (see Figure 1-1).

5.2. Constituents of concern

The surface soil was found to contain several CPAHs at concentrations above background values in Area 1, Area 2, and an off site location adjacent to Area 2. As previously discussed, it is not clear whether the presence of CPAHs at all locations is related to the former MGP operations.

In subsurface soil, PAHs and BTEX were detected above the screening criteria in several areas of the Site and some off site locations. In general, inorganic concentrations detected during the PSA/IRM are comparable to the background surface soil concentrations. The exceptions are arsenic and iron, which were detected above criteria at one location and lead which was detected above criteria at two locations in Area 2. These constituents are not considered to be associated with former MGP operations. Cyanide was detected in one location above USEPA Region

3 PRG and USEPA Region 9 PRG for cyanide (no TAGM 4046 RSCO has been developed for cyanide).

Current ground water analysis indicates that PAHs and BTEX compounds were detected above ground water criteria. These elevated concentrations are limited to Area 2.

5.3. Contaminant transport

According to the Agency for Toxic Substances and Disease Registry (ATSDR) ToxFAQs® for Polycyclic Aromatic Hydrocarbons, while some PAHs can volatilize to the air to some extent, they most commonly migrate in the air by sorbing to small particles that become entrained in the air as dust. PAHs do not readily dissolve in water. PAHs will attach to soil and sediment particles. In surface water bodies PAHs are typically sorbed to sediment particles and will migrate with the sediments via typical sediment transport mechanisms. Transport in the ground water is limited due to the preference for adsorption of most PAHs to subsurface soil.

BTEX compounds are volatile organic compounds. These compounds volatilize readily and therefore, can migrate via air. The compounds do degrade when exposed to the atmosphere. BTEX compounds can also migrate as vapors through unsaturated soil, and subsequently into outdoor or indoor air. BTEX compounds are also slightly soluble in ground water and can migrate in dissolved form with the ground water.

According to the ATSDR ToxFAQs® for Cyanide, cyanide enters the environment from both natural processes and human industrial activities. If detected in air, cyanide is mainly found as gaseous hydrogen cyanide and in less volatile forms associated with fine dust particles. Some cyanide compounds in soil can form hydrogen cyanide and evaporate while some compounds are transformed into other chemical forms by microorganisms. However, ferric ferrocyanide and other iron cyanide solids are the predominant form of cyanide associated with MGP residuals. These iron cyanides typically dissolve into iron cyanide complexes (Ghosh, etal, 1999) when leached. The rate of dissociation of iron cyanide complexes to free cyanide/hydrogen cyanide is very slow in the subsurface, and thus little if any hydrogen cyanide is expected to be associated with MGP sites. In high concentrations in soil, cyanide can pass through soil into ground water.

Based on the analytical data from sampling programs as presented in Section 4.4, ground water contaminant transport appears to be limited either by rapid degradation and/or interception by the storm sewer. Impacted ground water is isolated to the western portion of Area 2 predominantly in samples from two monitoring wells in Area 2. Data indicate that ground water impacts do not extend beyond these two wells.

Airborne transport of contaminants adhered to dust from Area 1, Area 2, and locations off site from Area 2 is expected to be minimal. Area 1 is covered with grass while the majority of Area 2 is blacktop-covered with the remaining land grass-covered. The majority of locations surrounding Area 2 are grass-covered. These conditions generally reduce or eliminate the potential for dust emissions from the Site. However, there is limited vegetative cover at the off site location to the west of Area 2, on City of Fulton property, where elevated PAH concentrations were observed near the Site. Therefore, this area is potentially susceptible to wind erosion. As noted in Section 4, it is possible that the PAH concentrations in this area are not related to former MGP operations at the Site.

BTEX and PAH constituents were not detected in soil vapor samples collected at the Site. The vapor migration pathway was therefore, not addressed further during the risk evaluation.

Analytical results for the sediment samples did not indicate that Siterelated constituents were present in the river sediments. Therefore this exposure pathway was not addressed further.

5.4. Potential receptors

A potential receptor is the population that is or may be exposed to contaminants at a point of exposure. In the areas of the South First Street Site the following receptors may be present:

Off site

- Local residents (adults and children) using the area of the City park adjacent to the Site or the nearby residential properties
- Utility or contractors working at the off site properties

On site

- Trespassers who walk on the Site
- Utility or construction workers working on the Site

Current and future receptors are considered to be similar.

5.5. Potential exposure pathways

5.5.1. Surface soils

Under existing Site conditions, a potentially complete exposure pathway to exists for Area 1, Area 2, and off site surface soils immediately west of Area 2. Surface soils in Area 2 are limited to the small, unpaved area. The receptor population includes trespassers (adults and children), construction, and utility workers. Routes of exposure include direct dermal contact, inhalation, or accidental ingestion. As discussed above, contaminants in soils west of Area 2 may be unrelated to former MGP operations. Under future conditions, the exposures above would include the same population.

Ost for Sue such 4.

5.5.2. Subsurface soils

A potentially complete exposure pathway exists for on site and limited off site subsurface soils. The receptor population includes trespassers, construction, and utility workers who dig through the grass cover or pavement and come into contact with underlying soils located in Area 1, Area 2, and adjacent to Area 2. Routes of exposure include direct dermal contact, inhalation, or accidental ingestion. Under future conditions, the exposures above would include the same population.

5.5.3. Ground water

A potential exposure pathway exists for construction and utility workers coming into contact with ground water underlying Area 2. However, ground water in this area lies approximately 7 to 8 ft below grade so the exposure potential is reduced. Routes of exposure include direct dermal contact, inhalation, or accidental ingestion. Under future conditions, the exposures above would include the same population.

There are no nearby users of ground water. Although the City of Fulton obtains its drinking water from ground water, the water supply wells are located approximately one mile from the Site and are not impacted by site-related constituents.

5.6. Summary

Based on the qualitative exposure assessment, there are potentially complete exposure pathways for PAHs, BTEX, and cyanide compounds in surface soil, subsurface soil, and/or ground water.

Specifically, a complete exposure pathway was identified for PAHs in surface soil in Area 1, Area 2, and west of Area 2 by direct dermal contact, inhalation, and accidental ingestion.

A potentially complete exposure pathway exists for constituents in Area 1 and Area 2 on site subsurface soils. Area 2 off site surface soils, Area 1 and Area 2 off site subsurface soils, and on site ground water in Area 2 by direct dermal contact, inhalation, and accidental ingestion. This type of exposure would occur only if potential receptors were to dig through the pavement, grass cover, and surface soils and come into contact with subsurface soils or ground water.

Future potential exposures are similar to current exposures and may occur via direct dermal contact and accidental ingestion of on site and off site soils by adult construction and utility workers and trespassers.

6. Conclusions

The following conclusions are drawn based on the data collected during the completion of the PSA/IRM and the RI at the South First Street Site in Fulton, New York.

6.1. Hydrogeologic conditions

The overburden deposits encountered at the Site consist of three units: fill, alluvial deposits consisting of discontinuous lenses of sand, silt, clay and gravel, and sandy glacial till. The till generally becomes more dense with depth. Bedrock was encountered at approximately 36.5 ft below grade at one location.

The water table is positioned within the overburden materials overlying the till at depths ranging from 1.5 to 8 feet deep across the Site.

The geometric mean hydraulic conductivity of the till unit (0.15 ft/d) is an order of magnitude lower than that of the overlying deposits (1.0 ft/d). Thus, lateral ground water flow in the overburden occurs primarily within the deposits above the till.

The top of the till unit comprises the bottom of the upper water-bearing zone. The surface of till unit undulates, but generally slopes downward toward the Oswego River. Although variable, where completely penetrated, the till is approximately 17.5 ft thick.

Shallow ground water flows to the south and west across the Site. At Area 2 the flow contours converge in the vicinity of the storm sewer line that crosses the area indicating that the sewer and/or associated bedding intercepts shallow ground water flowing across the Site. This convergence is likely a localized effect due to leakage into the sewer line. Based on the video inspection, ground water appears to contribute water to the storm sewer. Based on the relatively low hydraulic conductivity of the till unit, the rate of ground water flow through this unit is substantially lower than in the overlying water bearing zone. A slight downward vertical hydraulic gradient exists in Area 2 from the upper water-bearing zone to the till unit.

The City of Fulton ground water supply wells are present adjacent to the Oswego River approximately one mile upstream to the southeast of the Site. Thus, Site ground water is outside the capture zone of these wells. Respondents to the ground water user survey completed as part of the RI indicated that no domestic ground water wells exist at the residences adjacent to the Site.

6.2. Nature and extent of contamination

The following summarizes the evaluation of the nature and extent of site-related impacts.

Surface soil

BTEX compounds detected in surface soils are consistent with background concentrations.

Total CPAH concentrations are elevated in comparison to background concentrations at four areas surrounding SS-1, SS-2, SS-4, and SS-24. Samples SS-1 and SS-2 are located within Area 1. SS-4 is located adjacent to the pavement in Area 2. These three locations are on properties owned by National Grid.

Sample SS-24 is located on property to the west of Area 2. This property is behind a residence and owned by the City of Fulton. Additional sampling defined the northern and western extent of CPAHs above background levels. The southern extent is unclear due to the presence of debris (household debris including roofing shingles and ashes) in the area. Due to historical filling in this area, it is unclear whether the elevated CPAHs are the result of historic MGP operations or constituents within material used to fill the former Oswego Canal which was located in this area.

Concentrations of cyanide in surface soils are below the USEPA Region 3 PRG for cyanide (1,564 mg/kg) and the Region 9 PRG (1200 mg/kg). A TAGM 4046 RSCO has not been established by NYSDEC for cyanide.

Subsurface soil

In Area 1, both analytical and visual evidence of MGP-related impacts were observed in subsurface soil. In general, impacts are centered at the eastern concrete gas holder pad. Impacts generally narrow with depth and are limited to the upper 8 ft with some observed impacts reaching 12 ft in the center of the area. Subsurface soil from the adjacent properties bordering Area 1 did not contain MGP-related constituents above the screening criteria or visual indicators of MGP-tar-related impacts.

In Area 2, analytical and visual impacts were observed in the subsurface soils. Evidence of impacts begins at 4 ft below grade and, in the southern corner of the area, extends to depths up to at least 24 ft below grade. The widest zone of impacted soil was observed between, 4 to 12 ft below grade. The impacted soil extends off the National Grid property to the south and southeast but was not observed adjacent to the Oswego River. The lack of impacted soil shallower than 4 ft suggests that releases

occurred below the ground surface, possibly from piping or other underground structures or, alternatively, fill may have been brought in after MGP operations ceased covering the impacted soil.

Impacted subsurface soil was also observed in two general areas to the west of Area 2. One area is located west of the former Oswego Canal. The second area is located in the vicinity of the sewer line that runs along the southwestern side of Area 2.

In the area west of the former canal concentrations of total PAHs above 500 ppm were generally limited to less than 4 ft below grade. Based on historical maps, the area west of the former canal was formerly Yelverton Island, which was reportedly constructed from dredge spoils. Therefore, these observed impacts are potentially a reflection of constituents in the dredge spoil material and are not considered to represent migration of materials from the former MGP area.

Impacts in soil near the sewer line included visual evidence (e.g., stained soil, NAPL blebs) observed in soils shallower than 16 ft and PAHs greater than criterion shallower than 12 ft.

Ground water

Concentrations of BTEX compounds, PAHs and cyanide above the ground water screening criteria (NYSDEC TOGS) are limited to the shallow ground water beneath Area 2. Constituent concentrations in off site wells, including those between Area 2 and the Oswego River, are below the criteria. Ground water with constituent concentrations above the criteria is likely captured via seepage to the storm sewer located directly southwest of Area 2. Video inspection directly upstream and downstream of the Site did not indicate any visible site-related impacts. Samples from storm sewer manholes located 400 feet upstream and 600 ft downstream of the Site indicated the presence of low concentrations of benzene, ethylbenzene, and total xylenes in the downstream storm water sample. It is unclear whether this is the result of contribution from the property or influent from storm water discharges from nearby roadways or other potential sources.

Sediment

There is no evidence of contribution of site-related constituents to the sediment of the river. PAH compounds were detected below screening criteria at all locations and were consistent with concentrations in background (upstream) samples. BTEX compounds were not detected.

Soil vapor

BTEX and PAH constituents were not detected in soil vapor samples SV-1, SV-2, and SV-3 suggesting that soil gas vapor is not a migration pathway for site-related constituents to the residence to the west of Area 2.

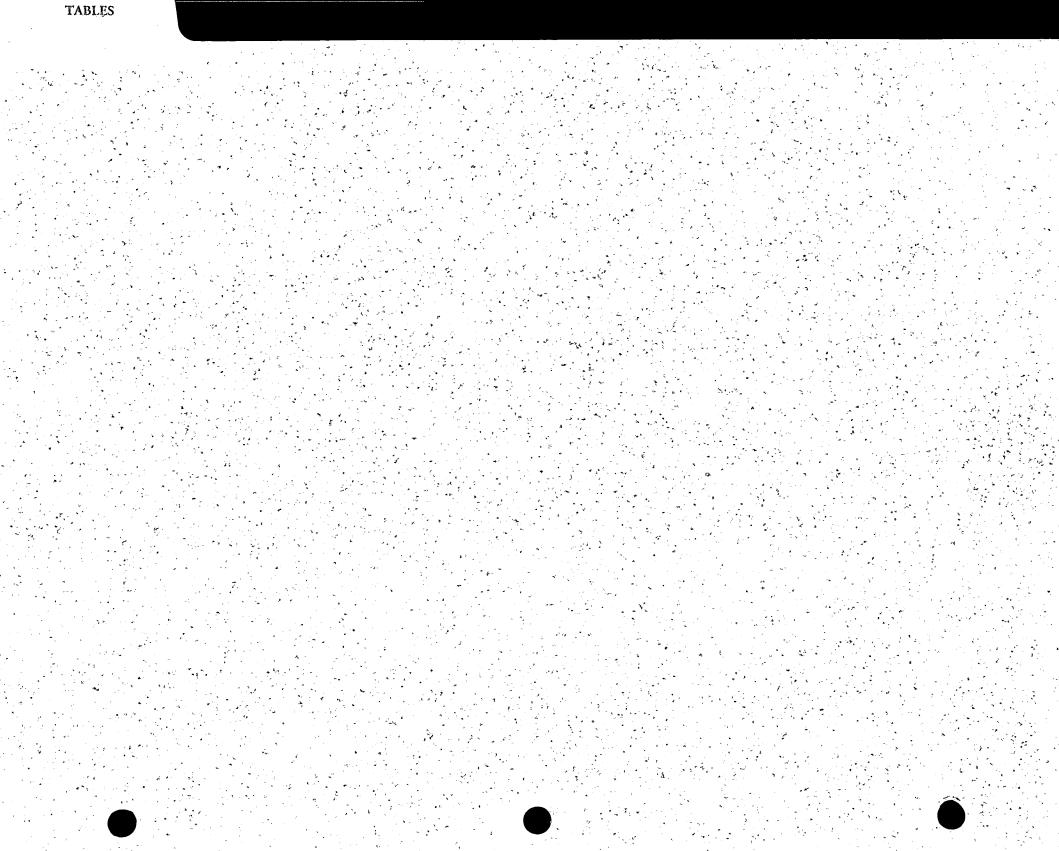
6.3. Exposure pathways

Potential complete pathways exist on Areas 1 and 2 for contact with surface soil and subsurface soil. The ground water exposure pathway is also complete in Area 2. Potential receptors include trespassers, construction, and utility workers.

The off site subsurface soil south of Area 2 and east of Area 1 represents a potential complete exposure pathway to users of the property in this area. Users may include local residents, contractors, and utility workers.

Surface and subsurface soil represents a potential complete exposure pathway in localized areas to the west, southwest, and northwest of Area 2. Users may include local residents, contractors, and utility workers. However, it should be noted that it is not clear whether the constituents identified in these areas are related to the former MGP operations.

7. Recommendations


To date, the nature and extent of MGP-related impacts from the Site to environmental media (surface and subsurface soil, ground water, and sediments) have been evaluated to a degree sufficient to meet the RI objectives, with the exception of potential impact to soil vapor. As described in correspondence with NYSDEC (National Grid's letter to NYSDEC dated June 15, 2005), National Grid plans to develop a supplemental RI Work Plan to evaluate the potential for MGP-related constituents to migrate in soil vapor.

At this time, National Grid has several soil vapor intrusion (SVI) investigations pending at various MGP sites in New York. Because SVI investigations are a relatively recent initiative in New York, NYSDEC and National Grid agreed during an April 12, 2006 meeting to take advantage of the findings and experiences from these initial upcoming SVI studies to develop standard procedures for SVIs at MGP sites, to the extent practical. The standard procedures would address both sampling programs and data evaluation. Accordingly, National Grid plans to postpone the preparation of the work plan for the SVI component of the RI for the Fulton (South First St.) MGP until the standard procedures are developed.

References

- ASTDR. 1997. *Toxicological profiles*. U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry.
- Fisher, D.W., and Rickard, L.V., 1970, Geologic Map of New York: New York State Mus. and Sci. Service, Geologic Survey, Map and Chart Ser. no. 15.
- Fulton Public Library, 1947-1980, Fulton City Directories.
- Fulton Water Works. 1998. Personal communication from Mr. Florek, Telecon 10/1/98 with LA Kobor of O'Brien & Gere.
- Ghosh, R.S., D.A. Dzombak, R.G. Luthy, (1999), Equilibrium Precipitation and Dissolution Behavior of Iron Cyanide Solids, Environmental Engineering Science, 16(4): 293-313.
- Kantrowitz, I.H., Ground-Water Resources in the Eastern Oswego River Basin, New York, prepared for the Eastern Oswego Regional Water Resources Planning Board, State of New York Conservation Department Water Resources Commission, Basin Planning Report ORB-2, 1970.
- Long, E.R., and L.G. Morgan, 1990. The potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National States and Trends Program, National Oceanic Atmospheric Administration (NOAA) Technical Memorandum No. 5, OMA52, NOAA National Ocean Service, Seattle, Washington.
- NYSDEC, 1994. Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (FWIA).
- NYSDEC, 1994. Fish and Wildlife Impact Analysis Guidance (FWIA).
- NYSDEC, 1994. Background Concentrations of 20 Elements in Soils with Regard for New York State. New York State Department of Environmental Conservation, Wildlife Pathology Unit, Delmar, NY.
- NYSDEC, 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Ground water Effluent Limitations.
- NYSDEC, 2002. Draft DER-10 Technical Guidance for Site Investigation and Remediation.

- Niagara Mohawk, 1998a. Remedial Investigation/Feasibility Study, South First Street Site, Fulton, NY.
- Niagara Mohawk, 1998b. Ground Water Well Survey letter report of July 27, 1998 from Mr. Charles Willard of Niagara Mohawk to Mr. Gardiner Cross of the NYSDEC.
- Niagara Mohawk, June 1996a. Final Work Plan for the Preliminary Site Assessment Interim Remedial Measures (PSA/IRM) Study at the South First Street Site, City of Fulton, NY.
- Niagara Mohawk, June 1996b. Generic Quality Assurance Project Plan and Field Sampling Plan for Site Investigations.
- O'Brien & Gere Engineers, Inc., May 1996. Preliminary Site Assessment/Interim Remedial Measure Study Work Plan at the South First Street MGP Site, City of Fulton, NY.
- O'Brien & Gere Engineers, Inc. 1997. Preliminary Site Assessment Interim Remedial Measures (PSA/IRM) Study Report, South First Street, City of Fulton, NY Niagara Mohawk Power Corporation.
- O'Brien & Gere Engineers, Inc. 1998. Revised Investigation/Feasibility Study Work Plan, South First Street, Fulton, New York.
- O'Brien & Gere Engineers, Inc., February 1999a. Remedial Investigation Report, South First Street Site, Fulton, New York.
- O'Brien & Gere Engineers, Inc. November 1999b. Ground Water Sampling Event and Sediment Exploration letter report from Mr. James R. Heckathorne, PE.
- United States Geological Survey, 1982, Atlas of Seven Selected Aquifers in New York State, pgs 215-236.
- West, B. Curtis, Department of Anthropology State University of New York at Binghamton, 1998. Public Archaeology Facility Report Phase 1A Cultural Resource Assessment, South First Street Site Project, Fulton, NY
- John Zambrano/Scott Stoner, 1993. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample	Sample	Sample	Interval				Sample	Analytes		
Location	Date	Start Depth (ft)	End Depth (ft)	BTEX	VOCs	PAHs	SVOCs	Metals	Cyanide	Pesticides / PCBs
MW-01	7/9/1996	6	8		X		X	X	Χ	X
MW-01	7/9/1996	14	16	X		X			X	
MW-01	7/9/1996	24	26	X		X			X	
MW-02	7/9/1996	6 .	8		X		X	X	X	X
MW-02	7/9/1996	14	16	X		X			X	
MW-02	7/10/1996	20	22	X		X			X	
MW-03	7/12/1996	44	6	X		X			X	
MW-03	7/12/1996	8	10	X		•X			X	
MW-03	7/12/1996	18	20	X	<u> </u>	X	ļ		X	
MW-03	7/12/1996	22	24	<u> </u>	X		X	X	X	X
MW-03	7/12/1996	26	28	X		X			X	·
MW-04	7/11/1996	00	6	X		X			X	
MW-04	7/11/1996	8	10		X		X	. X	X	X
MW-04	7/11/1996	18	20	X		X			X	
MW-04	7/11/1996	26	28	X		X			X	
MW-05	7/11/1996	2	4	X		X			X	
MW-05	7/11/1996	8	10		X		X	X	X	X
MW-05	7/11/1996	15.5	16	X		X			X	
MW-06	6/17/1998	6	8	X		X				
MW-06	6/17/1998	10	12	X		X				
MW-06	6/17/1998	16	18	X		X				
MW-06	6/17/1998	24	24.7	X		X				
MW-06	6/18/1998	32	34	X		X	·			
MW-07	6/17/1998	4	6	X		X				
MW-08	6/16/1998	8	10	X		X				L
MW-09D	6/18/1998	18	20	X		X				
MW-09D	6/18/1998	26	26.9	X		X				
MW-09S	6/16/1998	10	12	X		X				
MW-10	6/17/1998	6	8	X	I	X				
MW-10	6/17/1998	12	. 14	X		_x				
MW-11	5/10/2001	2	4	X		X				
MW-11	5/10/2001	6	8	Х		X				
MW-11	5/10/2001	12	14	X		X				
MW-12	6/24/2004	0	4	X		X				
MW-12	6/24/2004	4	8	X		X				
MW-12	6/24/2004	10	12	X		Х				
MW-12	6/24/2004	14	16	X		X				
PZ-01	7/10/1996	6	10		X		X	X	X	X
PZ-01	7/10/1996	14	16	X		X	T -		X	
PZ-01	7/10/1996	24	26	X		X	1		X	Î
SB-01	7/12/1996	2	4	X	1	X		1	X	
SB-01	7/12/1996	6	8	1	X	<u> </u>	X	X	X	Х

-	· · · · · ·				,					
Sample	Sample	Sample 1	Interval			•	Sample	Analytes		
Location	Date	Start Depth (ft)	End Depth (ft)	BTEX	VOCs	PAHs	SVOCs	Metals	Cyanide	Pesticides / PCBs
SB-01	7/12/1996	12	14	X		X			X	
SB-01	7/12/1996	18	20	X		X	,		X	
SB-01	7/12/1996	26	28	X						
SB-01	7/12/1996	28	30			X			X	
SB-02	2/23/2000	2	4			X				
SB-02	2/23/2000	4	6	X		X				
SB-02	2/23/2000	6	8			X	·			·
SB-02	2/23/2000	8	10			X				
SB-02	2/23/2000	10	12		<u> </u>	X				
SB-02 ′	2/23/2000	12	14			X				
SB-03	2/22/2000	6	8			X	<u> </u>			
SB-03	2/22/2000	10	12	X		X				
SB-03	2/22/2000	12	14			X				
SB-03	2/22/2000	14	16			X				
SB-03	2/22/2000	18	- 20			X				
SB-04	2/22/2000	2	4			X				
SB-04	2/22/2000	8	10			X				
SB-04	2/22/2000	10	12			X				
SB-04	2/22/2000	14	16			X				
SB-04	2/22/2000	16	18	X		Х				
SB-04	2/22/2000	18	20			Х				
SB-05	2/21/2000	4	6			Х				
SB-05	2/21/2000	6	8	X		X				
SB-05	2/21/2000	10	12			X				
SB-05	2/21/2000	12	14			X				
SB-05	2/21/2000	14	16			X				
SB-06	2/22/2000	6	8	X		X				
SB-07	2/21/2000	2	4			X				
SB-07	2/21/2000	6	8	X		X				
SB-07	2/21/2000	10	12			X				
SB-07	2/21/2000	12	14			X				
SB-07	2/21/2000	14	16		T -	X		 	1.	
SB-08	2/21/2000	4	6			X				
SB-08	2/21/2000	6	8	X	1	X	 	1		
SB-08	2/21/2000	10	12		1	X				
SB-08	2/21/2000	12	14	1	†	X	 	1	 	†
SB-08	2/21/2000	16	18	1	†	X	1	†	 	†
SB-09	2/23/2000	2	4	X	1	X	 	 	1	
SB-09	2/23/2000	4	6	1		X	 	 	 - 	
SB-09	2/23/2000	8	10	†	†	X	 	 	 	
SB-09	2/23/2000	12	14	1	 	X	 	 	+	
SB-10	2/23/2000	4	6	 	†	$\frac{\lambda}{X}$	 	 	+	

Sample	Sample	Sampla	Intowval		•		Sample	Analytaa		
Location	Date	Sample Start Depth (ft)	End Depth (ft)	BTEX	VOCs	PAHs	SVOCs	Analytes Metals	Cyanide	Pesticides / PCBs
SB-10	2/23/2000	8	10			Х				
SB-10	2/23/2000	10	12			Х				
SB-10	2/23/2000	12	14			Х				
SB-10	2/23/2000	18	20	X		X				-
SB-11	2/23/2000	2	4			X				
SB-11	2/23/2000	4	6	X		Х				
SB-11	2/23/2000	8	10			Х				
SB-11	2/23/2000	14	16	X		X				
SB-12	5/8/2001	4	6	X		X				
SB-12	5/8/2001	8	10	X		X			<u> </u>	
SB-12	5/8/2001	12	14	X		X				
SB-12	5/8/2001	18	20	X		X	<u></u>			
SB-13	5/8/2001	2	4	X		X				
SB-13	5/8/2001	8	10	X		X				
SB-13	5/8/2001	14	16	X		X				
SB-13	5/8/2001	18	20	X		X				
SB-14	5/8/2001	. 2	4	X		X				
SB-14	5/8/2001	8	10	X		X				
SB-14	5/8/2001	12	14	X		X			<u> </u>	
SB-14	5/8/2001	16	18	X		X				
SB-15	5/8/2001	2	4	Х		X				
SB-15	5/8/2001	6	8	X		X				
SB-15	5/8/2001	12	14	X		X				
SB-15	5/8/2001	18 .	20.2	X		X				
SB-16	5/9/2001	2	4	X		X				
SB-16	5/9/2001	4	6	X		X				
SB-16	5/9/2001	8	10	X		X			<u> </u>	
SB-16	5/9/2001	16	16.7	X	<u> </u>	X	<u> </u>			
SB-17	5/9/2001	2	4	X	ļ	X				
SB-17	5/9/2001	6	8	X		X				
SB-17	5/9/2001	_10	12	X	ļ	X	_			<u> </u>
SB-17	5/9/2001	14	14.4	X		X	ļ	ļ	<u> </u>	<u> </u>
SB-18	5/9/2001	0	2	X		X		ļ		
SB-18	5/9/2001	6	8	X	<u> </u>	X	ļ	Ļ	 	
SB-18	5/9/2001	14	14.4	X		X	<u> </u>	<u> </u>		
SB-20	2/11/2002	8	10	\		X	 	 	<u> </u>	
SB-20	2/11/2002	14	16	↓	<u> </u>	X			ļ	<u> </u>
SB-20	2/11/2002	20	22	 		X		ļ		<u> </u>
SB-21	2/11/2002	4	6		<u> </u>	X		<u> </u>		
SB-21	2/11/2002	8	10	<u> </u>	<u> </u>	X		<u> </u>		
SB-21	2/11/2002	16	18	<u> </u>		X			<u> </u>	
SB-22	2/12/2002	6	8		1	X	<u> </u>	1		

Sample	Sample	Sample	Interval				Sample	Analytes		
Location	Date	Start Depth (ft)	End Depth (ft)	BTEX	VOCs	PAHs	SVOCs	Metals	Cyanide	Pesticides / PCBs
SB-22	2/12/2002	12	14			Х				
SB-22	2/12/2002	18	20			X				
SB-23	2/12/2002	4	6			X				
SB-23	2/12/2002	10	12			X				
SB-23	2/12/2002	16	18			X				
SB-24	2/12/2002	4	6			X				
SB-24	2/12/2002	10	12			X				
SB-24	2/12/2002	18	20			X				
SB-25	2/13/2002	4	6			X				
SB-25	2/13/2002	10	12			X				
SB-25	2/13/2002	18	20			X	<u> </u>			
SB-26	2/13/2002	4	6			X				
SB-26	2/13/2002	12	14	<u></u>		X				
SB-26	2/13/2002	18	20			X				
SB-27	2/13/2002	4	6			X				
SB-27	2/13/2002	_12	14			X				
SB-27	2/13/2002	18	20			X				
SB-28	2/14/2002	4	6			X				
SB-28	2/14/2002	12	14			X				
SB-28	2/14/2002	18	20			X				
SB-29	2/14/2002	4	6			X				
SB-29	2/14/2002	10	12			X				
SB-29	2/14/2002	16	18			X				
SB-30	2/14/2002	6	8			X				
SB-30	2/14/2002	12	14			X				
SB-30	2/14/2002	18	20			Х				
SB-31	2/15/2002	4	6			X	1			-
SB-31	2/15/2002	12	14			X				
SB-31	2/15/2002	18	20			X				, -
SB-32	2/15/2002	6.	8 -			X				
SB-32	2/15/2002	12	14			X				
SB-32	2/15/2002	18	20			X				
SB-33	2/15/2002	4	6		T	X				
SB-33	2/15/2002	12	14]	X			Ţ	1
SB-33	2/15/2002	18	20			X	1	1	1	<u> </u>
SB-34	6/6/2003	2	4		1	X			1	
SB-34	6/6/2003	6	8			X	1	1: "	1	
SB-34	6/6/2003	14	16	T .		X		1		
SB-35	6/14/2004	2	4	X		X				
SB-35	6/14/2004	6	8	X		X				1
SB-35	6/14/2004	8	10	X		X		T	1	
SB-36	6/15/2004	8	10	X	T	X	†		†	

										
Sample	Sample	Sample			r		Sample	Analytes		
Location	Date	Start Depth (ft)	End Depth (ft)	BTEX	VOCs	PAHs	SVOCs	Metals	Cyanide	Pesticides / PCBs
SB-36	6/15/2004	14	16	х		X				•
SB-36	6/15/2004	16	18	X		X				
SB-36	6/15/2004	22	24	Х		X				
SB-37	6/15/2004	10	12	X		X				
SB-37	6/15/2004	14	16	Х		X	,			
SB-37	6/15/2004	18	20	Х		X				·
SB-37	6/15/2004	26	28	Х		X				
SB-38	6/16/2004	2	4	X		Х		 -		
· SB-38	6/16/2004	4	8	X		X				
SB-38	6/16/2004	. 8	12	X		X				
SB-39	6/16/2004	0	4	X		X				
SB-39	6/16/2004	6	8	X		X	1			
SB-39	6/16/2004	10	12	X		X				
SB-39	6/16/2004	12	16	X		X				
SB-40	6/17/2004	0	2	X		X				
SB-40	6/17/2004	4	8	X		X		**		· · · · · · · · · · · · · · · · · · ·
SB-40	6/17/2004	10	12	X		x			<u> </u>	
SB-41	6/18/2004	8	12	Х		X				
SB-41	6/18/2004	12	16	Х		х				
SB-41	6/18/2004	16	20	X		X	1		1	
SB-41	6/18/2004	30	34	Х		X			<u> </u>	
SB-42	6/23/2004	0	4	1		X				
SB-42	6/23/2004	4	8.			X				
SB-43	6/23/2004	0 .	4			X				
SB-43	6/23/2004	4	8			X				
SB-44	6/23/2004	0	4			X				
SB-44	6/23/2004	4	. 8			X				
SB-45	6/24/2004	2 .	4	X		Х				
SB-45	6/24/2004	4	8	X		X				
SB-45	6/24/2004	8	12	X		X				
SB-45	6/24/2004	12	16	Х		X			· ·	
SB-46	6/24/2004	0	4	X		X				
SB-46	6/24/2004	4	8	X		x				
SB-46	6/24/2004	8	12	X		X				
TP-01	7/8/1996			X		X			X	
TP-02	7/8/1996			X		X	1		X	
TP-03	7/8/1996			X		X	· · · · · ·		X	
TP-04	7/8/1996		1	X		X			X	

Table 2-2 National Grid Fulton, NY Monitoring Well Specifications

									Gr	ound Wate	r Elevations	(ft)		
		Top of PVC	Well			Hydraulic			<u> </u>	ound Trate	Lievationi	, (10/	1	
	Ground	Casing	Depth	Screen Interval	Sump interval	Conductivity	7/04/4000	0/4/4000	7/46/4000	9/4/4000	E /34 /3004	7/7/2004	11/5/2005	3/31/2006
Well No.	Elevation (ft)	Elevation (ft)	(ft bas)	(ft bas)	(ft bgs)	(ft/day)¹	7/24/1996	9/4/1996	7/16/1998		5/31/2001			
MW-1	367.20	369.69	17	5 - 15	15 - 17	0.54*	365.43	363.91	364.70	363.05	365.03	364.19	365.75	365.65
MW-2	361.00	360.80	15	2.5 - 12.5	13 - 15	-	357.64	356.43	357.05	355.06	357.65	355.77	357.10	357.32
MW-3	358.70	361.13	16	4 - 14	14 - 16	3.31	350.10	349.21	349.73	349.01	350.15	349.57	350.91	350.80
MW-4	360.00	359.74	16	4 - 14	14 - 16	-	351.88	350.92	351.54	350.76	352.14	351.61	352.96	352.72
MW-5	359.70	359.51	16	4 - 14	14 - 16	<u>-</u>	352.53	351.39	352.03	351.65	352.71	352.23	353.28	352.98
MW-6	359.39	359.00	37	27 - 37	NI	0.1*			351.84	351.25	352.16	351.64	352.49	352.19
MW-7	359.00	361.33	14	4 - 14	NI	0.57* and 0.95			352.43	351.99	352.84	352.62	353.74	353.28
MW-7D	358.10	360.13	28	23 - 28	NI	4.39			-			351.82	352.17	352.25
MW-8	358.70	360.78	16	6 - 16	NI	1.23			351.35	350.29	351.94	351.26	353.01	352.64
MW-8D	358.60	360.14	33	28 - 33	NI	0.1	-			-		350.52	351.58	351.37
MW-9	356.10	357.04	16	6 - 16	NI	0.97* and 0.81	-		348.48	347.60	348.67	348.37	349.85	349.72
MW-9D	356.40	358.21	30	20 - 30	NI	0.04*		-	347.64	347.15	347.90	347.70	348.55	348.17
MW-10	359.51	359.15	.15	5 - 15	. NI		-		351.24	350.39	351.46	350.88	351.71	351.48
MW-11	flush	354.41	12.5	2.5 - 12.5	NI		<u> </u>		-	-	352.30	351.61	353.19	352.89
MW-12S	flush	353.91	16	6 - 16	NI	0.49	- :	-				348.67	349.72	349.46
MW-12D	flush	353.34	28	23 - 28	NI	1.14	<u> </u>	-			<u> </u>	346.29	347.31	346.82
MW-13	flush	359.46	26	19 - 24	24 - 26	<u> </u>	<u> </u>		-			-	352.67	352.36
PZ-1	360.19	359.88	16	3.5 - 13.5	NI	<u> </u>	354.49	353.59		353.24	354.49	<u> </u>	354.48	354.38
PZ-2	flush	358.3	14	4 - 14	NI					-	<u> </u>		353.36	353.20
PZ-3	flush	359.06	14	4 - 14	NI		<u> </u>	-	-				353.18	352.93
PZ-4	flush	359.02	14	4 - 14	NI	•	•	-	-	-		-	353.19	352.92
PZ-5	358.3	360.49	14	4 - 14	NI _	•			-			<u> </u>	352.90	352.62
PZ-6	357.2	359.16	16	6 - 16	NI	-	-			<u> </u>	<u> </u>	<u>-</u>	353.13	351.12
PZ-7	357.8	359.67	16	6 - 16	NI	-	<u> </u>		<u>-</u>	_	•	-	350.90	350.73

Notes:

NI - Not installed

Date Printed: 5/1/2006 File: gwelevtable rev 4-5-06.xls

¹⁻ K-tests were performed in 1998 and 2004. Some locations were tested twice. Results from 1998 testing are marked with an asterisks.
- Dash indicates no data collected.

National Grid Fulton, New York

Surface Soil Samples - Volatile Organic Compounds

		Location ID	SS-01	SS-01	S S-02	SS-02	SS-03	SS-03
	TAGM 4046	Sample Date	7/10/96	7/10/96	7/10/96	7/10/96	7/11/96	7/11/96
	Recommended Soil	Start Depth (ft)	0	0	0	0	0	. 0
Chemical Name	Cleanup	End Depth (ft)	0.17	· 2	0.17	2	0.17	2
Benzene	06	mg/kg	. 0.00072 J	0.00087 J	0.00089 J	0.0017 J	"0.012 U	0.012 U
Ethylbenzene	5.5	mg/kg	0.013 U	0.013 U	0.012 U	0.012 U	0.012 U	0.012 U
Toluené	1.5	mg/kg	0:013 U	0.00085 J	0.012 U	0.0013 J	0.012 U	0.012 U
1,1,1-Trichloroethane	.8	mg/kg	0.013 U	0.013 U	0.012 U	0.00082 J	0.012 U	0.012 U
Xylene (total)	1.2	mg/kg	0.013 U	0.013 U	0.012 U	0.00066 J	0.012 U	0.012 U
Total BTEX	NC	mg/kg	0.00072	0.00172	0.00089	0.00366		

•				0.00172	0.00066	0.00366	. 0	0
		Location ID	SS-04	SS-04	SS-10	SS-11	SS-12	SS-13
	TAGM 4046	Sample Date	7/11/96	7/11/96	5/14/01	5/14/01	5/14/01	5/14/01
	Recommended Soil	Start Depth (ft)	0	0 .	0	0	0	0
Chemical Name	Cleanup	End Depth (ft)	0.17	2	0.17	0.17	0.17	0.17
Benzene	.06	mg/kg	0.011 U	. 0.011 U	0:011 U	0.012 U	0.014 U	. 0.012 U
Ethylbenzene	5.5	mg/kg	0.011 U	0.011 U	0.011 U	0.012 U	0.014 U .	0.012 U
Toluene	1.5	mg/kg	0.011 U	0.011 U	0.011 U	0.012 U	0:0008 J	0:012 U
1,1,1-Trichloroethane	.8	mg/kg	0.011 U	0.011 U			•••	
Xylene (total)	1.2	mg/kg	0.011 U	0:011 U	0.011 U	0.012 U	0.014 U	0.012 U
Total BTEX	NC	mg/kg		===			0.0008	

							Backgrou	nd Samples
		Location ID	SS-14	SS-15	SS-16	SS-17	SS-05	SS-06
	TAGM 4046	Sample Date	5/14/01	5/14/01	5/14/01	5/14/01	7/11/96	7/11/96
ļ	Recommended Soil	Start Depth (ft)	0	0	0	0	0	. 0
Chemical Name	Cleanup	End Depth (ft)	0.17	0.17	0.17	0.17	0.17	0.17
Benzene	.06	mg/kg	0.016 U	0.018 U	0.011 U	0.018.0	0.011 U	0.0037 J
Ethylbenzene	5.5	mg/kg	0.016 U	0.018 U	0.011 U	0.013 U	0.011 U	0.012 U
Toluene -	115	mg/kg	0.016 U	0.018 Ú	0.014 U	0.002 J	- 0.011 U	0.0026 J
1,1,1-Trichloroethane	8	mg/kg					0.011 U	0.012 U
Xylene (total)	1.2	mg/kg*	0.016 U	0.018 ∪	0.011 U	0.013 U	9.011 U	0.00077 J
Total BTEX	NC	mg/kg				0.002		0.00707

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

Database: NimoFulton_Chem.mdb (EQuIS)

0.0008

^{*} Exceedances (bold) - concentration above criterion

Fulton, New York Surface Soil Samples - Semivolatile Organic Compounds

		Location ID	SS-01	SS-01	SS-02	SS-02	SS-03	SS-03	SS-04	SS-04	SS-05	SS-06	\$S-10
	TAGM 4046	Sample Date	7/10/1996	7/10/1996	7/10/1996	7/10/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	5/14/2001
	Recommended	Start Depth (ft)	0	0	0	. 0	0	0	0	0	0	0	0
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	2	0.17	2	0.17	2	0.17	2	0.17	0.17	0.17
Acenaphthene	150	mg/kg	° 0.46 U	0.005 J	0.41 U	40.00 U	0.005 J	0.40 U	3.70 U	3.60 U	< 0.97 U	0.39 U	0.056 J
Acenaphthylene	41	mg/kg	0.043 J	0.026 J	0.41	40.00 U	0.004 J	0.014 J	0.08 J	0.19 J	0.37 U	0.39 U	0.38 U
Anthracene:	50	mg/kg	0.039 J	0.028 J	0.034 J	40.00 U.	0:021 J	0.013 J	0.064 J	0.26 J	0.37 Ü	0.39 U	0.14 J
Benzo(a)anthracene**	.224	mg/kg	3 *	1.6 *	2 *	1.6 J*	0.6 *	0.8 *	5.1 *	14 *	0.009 J	0.018 J	0.44 *
Benzo[a]pyrene**	061	mg/kg	4.*	1.9*	3.2 *	2.8 J*	0.63 *	0.96 J*	7.6 J*	19*	0,009 J	0.017 J	0.41 *
Benzo[b]fluoranthene**	.224	mg/kg	6 *	3.4 *	5.6 *	50 * 1	0.88 *	2.2 J*	12 J*	22 *	0.017 J	0.027 J	0.68 *
Benzo[g.h.i]perylene	50	mg/kg	4.7	1.3	4.3	1.8 J	1.4	0.81 J	4.9 J	11	0.018 J	- 0.006.J	0 099 J
Benzo[k]fluoranthene**	.224	· mg/kg	1.6 *	1.1 *	2.1 *	1.9 J*	0.027 J	0.72 J*	0.29 J*	8.2 *	0.005 J	0.011 J	0.21 J
Chrysene**	4	mg/kg	4.5 *	2.1 *	3 🕯	2.6 J*	0.69 *	0.99 *	5.1 *	14*	0.011/J	0.02 J	0.46 *
di-n-Butyl Phthalate	8.1	mg/kg	0.46 U	0.45 U	0.41 U	40.00 U	0.009 J	0.015 J	3.70 U	3.60 U	0.009 J	0.006 J	
Carbazole	NC	mg/kg	0.007 J	0.009 J	0.009 J	40:00 U	0:004 J	0 005 J	3.70 U	0.09 J	0.37 U	0.39 U	
Dibenz[a,h]anthracene**	.014	mg/kg	0.46 U	0.45 U	0.41 U	40.00 U	0.39 U	0.40 UJ	3.70 UJ	3.60 U	0.37 U	0.39 U	0.38 U
Dibenzofuran	6.2	mg/kg	0.46 U	0.006 J	0.007 J	40.00 U	0.39 U	0.40 U	3.70 U	0.062 J	0.37 Ú	0.39 U	—
Fluoranthene	50	mg/kg	5.7	2.2	2.1	2.3 J	1.3	1	7.1	19	0.02 J	0.41	0.9
Fluorene	50	mg/kg	-0.013 J	0.013 J	0.007 J	40.00 U	0.009 J	0.40 U	3:70 U	0.067 J	0.37 U	0.39 U	0.06 J
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	4.4 *	1.2	4.2 *	2.1 J	0.027 J	0.82 J	4.5 *	11 *	0.005 J	0.006 J	0.11 J
2-Methylnaphthalene	36.4	mg/kg	0.005 J	0.45 U	0.013 J	40,00 U	0.39 U	0.005 J	3,70 U	0.059 J	0.37 U	0.39 U	0.38 U
Naphthalene	13	mg/kg	0.016 J	0.007 J	0.035 J	40.00 U	0.39 U	0.011 J	0.091 J	0.16 J	0.37 U	0.39 ∪	0.38 U
Phenanthrene	50	mg/kg	2.1	1.3	1.1	. U.8.0	- 0.81	. 0.51	. 0.22 J	7.9	0.010	0.02 J	0.69
Pyrene	50	mg/kg	8.2	, 3.6	3.2	2.3 J	1.2	1.8	7.6	22	0.015 J	0.033 J	0.99
Total CPAH**	11.24***	11.24	23.5	11.3	20.1	61	2.854	6.49	34,49	88.2	0.056	0.099	2.31
Total PAH	500	500	44.316	19.779	31.299	68.2	7.603	10.653	54.545	148.836	0.119	0.568	5.245

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Biank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

*** Highest Background Value

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Surface Soil Samples - Semivolatile Organic Compounds

		Location ID	SS-11	SS-12	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18	SS-19	SS-20	SS-21
·	TAGM 4046	Sample Date	5/14/2001	5/14/2001	5/14/2001	5/14/2001	5/14/2001	5/14/2001	5/14/2001	4/16/2002	4/16/2002	4/16/2002	4/16/2002
	Recommended	Start Depth (ft)	0	0	0	0	0	0	0	0	0	0	0
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Acenaphthene	50	mg/kg	0.42 U	0.051 J	0.084 J	0.52 U	0.59 U	0.36 U	0.44 U	.056 J	.43 U	2.2 U	14 J
Acenaphthylene	41	mg/kg	0.26 J	0.093 J	0.076 J	0.056 J	0.069 J	0.36 U	0.048 J	.1 J	.43 U	2.2 U	.098 J
Anthracene:	50	mg/kg	0.19 J	0.18 J	0.27 J	0.09 J	0.59 U	0.36 U	0.44 U	3 J	09.0	2.2 ⊍	.44 J
Benzo[a]anthracene**	.224	mg/kg	1.3 *	0.8 *	1.2 *	0.31 J*	0.27 J*	0.069 J	0.14 J	2 *	.41 J*	.67 J*	2 *
Benzolajpyrene**	0611	mg/kg	1.5 *	0.81 *	1.1	0.36 J*	0.26 J*	0.051 J	0.14 J*	2 *	.41 J*	.77 J*	2*
Benzo[b]fluoranthene**	.224	mg/kg	2.6 *	1.4 *	1.9 *	0.61 *	0.41 J*	0.08 J	0.26 J*	2.9 *	.57 *	1.2 J*	3.1 *
Benzo[g,h,i]perylene	50	mg/kg	0.52	0.29 J	0,37 J	0.15 J	0.11 J	0.36 U	0.062 J	0.78	28 J	.35 J	0.83
Benzo[k]fluoranthene**	.224	mg/kg	0.91 *	0.43 J*	0.52 *	0.19 J	0.14 J	0.36 U	0.076 J	1*	.22 J	.33 J*	1 *
Chrysene**	- 4	mg/kg	1.4*	0.93 *	1.2 *	0.37 J	0.31 J	, 0.066 J	0 17 J	2 *	.42 J*	.83 J*	2.1 *
di-n-Butyl Phthalate	8.1	mg/kg											
Carbazole	NC	mg/kg			 1	<u> </u>				 .			_
Dibenz[a,h]anthracene**	.014	mg/kg	0.16 J*	0.1 J*	0.11 J*	. 0.52 U	0.59 U	0.36 U	0.44 U	.26 J*	.079 J*	2.2 U	.24 J*
Dibenzofuran	6.2	mg/kg		 1	-	<u> </u>		 -		#			
Fluoranthene	50	mg/kg	2	1.6	2.1	0.56	0.49 J	0.13 J	0.23 J	3.4	0.81	1.4 J	4.6
Fluorene	50	mg/kg	0.057 J	0 058 J	0.088 J	0.52 U	0.59 U	0.36 Ú	0.44 U	.07 J	.43 U	2.2 U	.15 J
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.55	0.32 J	0.38 J	0.14 J	0.11 J	0.36 U	0.063 J	0.78	.26 J	.34 J	0.8
2-Methylnaphthalene	36.4	mg/kg	0.083 J	0.11 J	0.096 J	0.52 U	0.59 U	0.36 U	0.44 U	048.0	.43 U	2.2 ∪	. 14 J
Naphthalene	13	mg/kg	0.11 J	0.091 J	0.081 J	0.52 U	0.59 U	0.36 U	0.44 U	.048 J	.43 U	2.2 U	.11 J
Phenanthrene	50	mg/kg	0.87	0.93	1.2	0.34 J	0.15 J	0.11J	0.095 J	1.2	.4 J	(1 69 J	2.5
Pyrene	50	mg/kg	3	1.6	2.3	0.75	0.52 J	0.12 J	0.25 J	2.9	0.7	1.3 J	4
Total CPAH**	11,24***	11.24	8.42	4 79	6.41	1.98	1.5	0.266	0.849	10.9	2.37	4.14	11:2
Total PAH	500	500	15.51	9.793	13.075	3.926	2.839	0.626	1.534	19.8	4.65	7.88	24.2

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

*** Highest Background Value

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Surface Soil Samples - Semivolatile Organic Compounds

		Location ID	SS-22	SS-23	SS-24	SS-24A	SS-24B	SS-24C	SS-24D	SS-25	SS-26	SS-27	SS-28
·	TAGM 4046	Sample Date	4/16/2002	4/16/2002	4/16/2002	6/25/2004	6/25/2004	6/25/2004	6/25/2004	4/16/2002	4/16/2002	4/16/2002	12/29/2005
	Recommended	Start Depth (ft)	0	0	0	0	0	0	0	0	0	0	0
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Acenaphthene	50	mg/kg	1 J	13 J	. 18 J	.12 J	.057 J	4.2 U	48 J	45 U	.45 U	056 J	22 J
Acenaphthylene	41	mg/kg	.0 97 J	.41 U	1.4	.14 J	.23 J	2.2 J	5.4	.25 J	.15 J	0.56	.065 J
Anthracene	50	mg/kg	29 J	4 J	.78 J	. 35 J	. 25 J	2 J	3.4 J	18 J	.092 J	38 J	0.53 J
Benzo[a]anthracene**	.224	mg/kg	1.3 *	1.1 *	4.2 *	1.8 *	1.5 *	11 *	22 *	1.1 *	.46 *	1.9 *	1.6 J*
Benzo[a]pyrene**	061	mg/kg	1.4 *	.98*	5.3.*	2 *	1.8 *	12 *	23 *	1,2	.56 *	2.3 *	1.6 J*
Benzo[b]fluoranthene**	.224	mg/kg	2.3 *	1.4 *	8.9 *	2.2 *	1.9 *	14 *	33 *	2.4 *	.98 *	4 *	2.2 J*
Benzo[g.h,i]perylene	50	mg/kg	0.57	37 J	2.7	0.93	1	6.3	. 16	0.59	29 J	1.2	0.831
Benzo[k]fluoranthene**	.224	mg/kg	.68 *	.53 *	3.3 *	2 *	1.7 *	. 13 *	33 *	.64 *	.29 J*	1.3 *	.85 J*
Chrysene**	.4	mg/kg	1.5 *	1.11	4.2*	2 *	1.7 1	12*	25 *	1.3 1	.52 *	2:1 *	1.6 J*
di-n-Butyl Phthalate	8.1	mg/kg											
Carbazole	NC	mg/kg	-		## T			3.5					., 19 J
Dibenz[a,h]anthracene**	.014	mg/kg	.16 J*	.13 J*	.71 J*	.28 J*	.26 J*	1.7 J*	4.1 J*	.17 J*	*L 80.	.28 J*	.22 J*
Dibenzofuran	6.2	mg/kg		<u>-</u> -	-			 -				 .	
Fluoranthene	50	mg/kg	2.8	2.4	6.4	3.4	2.7	20	36	2	0.85	3.3	3.1 J
Fluorene	50	mg/kg	.09 J	. 12 J	.2 J	13 J	.058 J	5 J	.46 J	45 U	45 U	, 1 J	.2.J
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.55	.35 J	2.7	0.88	0.89	6.2 *	16 *	0.61	.28 J	1.1	0.52 J
2-Methylnaphthalene	36.4	mg/kg	15 J	1J	22 J	.089 J	.066 J	97 J	4.5 U	14 J	45 U	078 J	.058 J
Naphthalene	13	mg/kg	.11 J	.071 J	.49 J	.15 J	.15 J	2.4 J	1.4 J	.15 J	.061 J	.13 J	.075 J
Phenanthrene	50	mg/kg	1.5	1.7	2.5	1.8	1.2	8.3	12	0.78	34 J	1.4	2.1 J
Pyrene	50	mg/kg	2.6	2.2	6.5	3.9	3.4	22	40	2	0.91	4	3.4 J
Total CPAH**	11:24***	11.24	7.89	5.59	29.3	11.2	9.75	69.9	156	7.42	3.17	13	8.59
Total PAH	500	500	16.2	13.1	50.7	22.2	18.9	135	271	13.5	5.86	24.2	19.2

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

*** Highest Background Value

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Surface Soil Samples - Semivolatile Organic Compounds

		Location ID	SS-29	SS-30	SS-31	SS-32	
	TAGM 4046	Sample Date	2/29/2005	2/29/2005	2/29/2005	12/29/2005	
	Recommended	Start Depth (ft)	0	0	0	0	
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	0.17	0.17	0.17	
Acenaphthene	50	mg/kg	.19 J	.17 J	.071 J	0.77	
Acenaphthylene	41	mg/kg	.051 J	.22 J	.14 J	0.87	
Anthracene	50	mg/kg	0.5	0.5	.26 J	2.1	
Benzo[a]anthracene**	.224	mg/kg	1.8 *	1.8 *	1.2 *	6.8 J*	
Benzo[a]pyrene**	.061	mg/kg	1.8 J*	1.9 J*	1.2 J*	6.1 J*	
Benzo[b]fluoranthene**	.224	mg/kg	2.8 J*	3.1 J*	2.1 J*	11 J*	
Benzo[g,h,i]perylene	50	mg/kg	0.97 J	1.1 J	0.75 J	4:2 J	
Benzo[k]fluoranthene**	.224	mg/kg	.83 J*	. 1 J*	.66 J*	4 J*	
Chrysene**	.4	mg/kg	1.81	2 *	1.2 *	6.8 J*	
di-n-Butyl Phthalate	8.1	mg/kg					
Carbazole	NC	mg/kg	.15 J	18 J	13 J	0.71	
Dibenz[a,h]anthracene**	.014	mg/kg	.27 J*	.29 J*	.2 J*	1.2 J*	
Dibenzofuran	6.2	mg/kg	- <u>-</u>		200		
Fluoranthene	50	mg/kg .	3.2	3.3	2.2	13	
Fluorene	50	mg/kg	.16 J	17 J	+082 J	0.72	
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.52 J	0.59 J	.38 J	2.5 J	
2-Methylnaphthalene	36.4	mg/kg	.45 U	.063 J	46 U	21 J	
Naphthalene	13	mg/kg	.047 J	.093 J	.06 J	0.53	
Phenanthrene	50 1	mg/kg	1.9	2	1.1	7.3	
Pyrene	50	mg/kg	4.2	4.2	2.7	11 J*	
Total CPAH**	11.24***	11.24	9.82	10.7	6.94	38.4	
Total PAH	500	500	21	22.5	14.3	79.1	

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

*** Highest Background Value

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SS-01	SS-01	SS-02	SS-02	SS-03	SS-03	SS-04	SS-04	SS-10
	TAGM 4046	Sample Date	07/10/96	07/10/96	07/10/96	07/10/96	07/11/96	07/11/96	07/11/96	07/11/96	05/14/01
İ	Recommended	Start Depth (ft)	0	0	0	0	. 0	0	0	0	0
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	2	0.17	2	0.17	· 2	0.17	2	0.17
Aluminum	SB #	mg/kg	7400	9600	6100	3900	7100	7400	5800	5900	6280
Antimony	SB	mg/kg	17 UJ	16 UJ	15 UJ	15 UJ	. 14 UJ	14 UJ	13 UJ	13 UJ	0.24 J
Arsenic	7.5 or SB	mg/kg	5	4	4	9.*	4	6	5	. 6	3.2
Barium	300 or SB	mg/kg	60	70	. 70	100	60	80	60	70	41.2
Beryllium	0.16 (HEAST) of SB	mg/kg	1.01	1.0	1 U	10	1 Ü	10.	1 U	10	0.28 J *
Cadmium	1 or SB	mg/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.23 J
Calcium Metal	SB.	mg/kg	4800 J	2200 J	4100 J	3100 J	4000 0	2000 J	23000 J	20000 1	1520
Chromium	10 or SB	mg/kg	. 9	13 *	10	11 *	9	10	10	. 9 .	8
Cobalt	30 or SB	mg/kg	10 U	10 U	10 ⊍	10 U	10 U	10 U	10 U	10 U	3.2 J
Copper	25 or SB	mg/kg	24	16	32 *	62 *	27 *	35 .*	41 *	42 *	13
Iron	2,000 or SB	mg/kg	15000 J *	14000 J *	16000 J *	24000 J *	13000 J *	16000J*	13000 J *	14000 J *	10600 *
Lead	SB	mg/kg	48 J	27 J	50 J	120 J	69 J	120 J	150 J	90 J	26.6
Magnesium	SB	mg/kg	2400	1500	2400	1200	2300	1400	3000	2900	1400
Manganese	SB	mg/kg	510 J	240 J	420 J	280 J	330 J	· 220 J	400 J	440 J	258
Mercury	0.1	mg/kg	0.2 *	0.1	0.2 *	0.7 *	0.1 U	0.1	1.1 *	0.5 *	0.091.1
Nickel	13 or SB	mg/kg	10 UJ	10 UJ .	10 UJ	10 J	10 UJ	10 UJ	10 J	9]	7.1
Potassium	SB	mg/kg	1400 U	1400 Ü	1200 U	1200 U	1200 U	1200 U	1100 U	1100 U	473 J
Selenium	2 or SB	mg/kg	1	1	2	3 *	1	2	1 U	1 U	0.33 J
Silver	SB	mg/kg	30	3 U	2 U	2 U	2 U	2 U	2 U	2.0	0.083 U*
Sodium	SB	mg/kg	300 U	300 U	200 U	200 U	200 U	200 U	200 U	200 U	45 J
Thallium	SB	mg/kg	1 U)	1 UJ	1/0)	1 UJ	100	1 UJ	, 1 03	1 (1)	1.1.1
Vanadium	150 or SB	mg/kg	10	20	10	-20	10	10	10	10	12.3
Zinc	20 or SB	mg/kg	63] *	53 J *	64 J *	78.1*	74 J *	110 J *	110J*	89J*	47.3 *

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

^{*} Exceedances (bold) - concentration above criterion

								<u> </u>		Background	d Samples
		Location ID	SS-11	SS-12	SS-13	SS-14	SS-15	SS-16	SS-17	SS-05	SS-06
	TAGM 4046	Sample Date	05/14/01	05/14/01	05/14/01	05/14/01	05/14/01	05/14/01	05/14/01	07/11/96	07/11/96
	Recommended	Start Depth (ft)		0	0 .	0	0	0	0	0	0
Chemical Name	Soil Cleanup	End Depth (ft)		0.17	0.17	. 0.17	0.17	0.17	0.17	· 0.17	0.17
Aluminum	SB	mg/kg	7840	8320	6380	9980	10200	3870	12200	5500	6000
Antimony	SB	mg/kg	0.35 J	0.8 J	0.37 J	8.6 J	0.89 J	0.27 J	0.41 J	13 UJ	14 UJ
Arsenic	7.5 or SB	mg/kg	8.9 *	8.6 *	4.3	12.2 *	5.9	2.6	11.2 *	+4	3 -
Barium	300 or SB	mg/kg	79.1	166	72.4	949 *	85.7	38.2	58.8	60	50
Beryllium	0.16 (HEAST) or SB	*********************	0,35 J *	0.44 J *	0.34 J *	0.57 J *	0.491*	0.18 J *	0.52 1 *	1.U	1 U
Cadmium	1 or SB	mg/kg	0.28 J	0.72	0.42 J	1.5 *	0.36 J	0.06 J	0.28 J	1 U	1 U
Calcium Metal	SB	mg/kg	2300	4280	11200	5150	4290	16200	1370	1400 J	1800]
Chromium	10 or SB	mg/kg	9.8	14.1 *	12.6 *	20 *	14.8 *	5.6	14.5 *	7	8
Cobalt	30 or SB	mg/kg	3.3 J	4.3 J	3.4.1	4.2 J	4.2.J	2.6 J	5.9 J	10 U	10 U
Copper	25 or SB	mg/kg	20.2	33.2 *	29.3 *	48.6 *	17.8	19.9	37.1 *	18	22
Iron	2,000 or SB	mg/kg	13300 *	16100 *	13400 *	16000 *	15800 *	9980 * -	19800 *	* 11000J*	9300 J *
Lead	SB	mg/kg	89.8	340	116	2770	91.8	10.8	52.1	22 J	36 J
Magnesium	SB	mg/kg	1500	1850	3050	2070	2030	3110	2550	1700	1400
Manganese	SB	mg/kg	306	454	298	496	178	369	318	310 J	80 J
Mercury	0.1	mg/kg	0.22 *	0.49 *	0,19 *	0.24 *	0.11] *	0.033 U	0.081 J	0.1	0.2 *
Nickel	13 or SB	mg/kg	8.7	11.4	10.7	12.7	11	6.5	13	10 UJ	10]
Potassium	SB	mg/kg	571.1	. 889	679	607 J	587 J	439 J	.1020	1100 U	1200 U
Selenium	2 or SB	mg/kg	0.7	1	0.55 J	1.4	1.8	0.2 U	1	1 U	1 U
Silver	SB	mg/kg	0:092 U	0.16.7	0.09 U	0.11 U,	0.13 U	0.079 U	0.098 U	2 U	2.∪
Sodium	SB	mg/kg	31.5 J	43.1 J	207 J	115 J	140 J	50.8 〕	44.8)	200 U	200 U
Thallium	SB	mg/kg	0.45 U	0.5 U	0.44 U	0.68 J	0.880	0.39 U	0.99)	101	1 03
Vanadium	150 or SB	mg/kg	16.6	25.2	18.6	24.3	20.3	8.7	24.3	10 U	10
Zinc	20 or SB	mg/kg	94.9 *	216 *	93.6 *	3360 *	169 *	44.7 *	75.9 *	34]*	120 J * *

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimate

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold) - concentration above criterion

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

Fulton, New York Surface Soil Samples - Cyanide

		Location ID	SS-01	SS-01	SS-02	SS-02	SS-03	SS-03	
	TAGM 4046	Sample Date	07/10/96	07/10/96	07/10/96	07/10/96	07/11/96	07/11/96	
	Recommended	Start Depth (ft)	0	0	· 0	· · · 0	0	0	
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	2	0.17	2	0.17	. 2	
Cyanide	NC NC	mg/kg	8.3 J	3.30	11)	810 J	0.9 J	2.3 J	

						<u> </u>	· · · · · · · · · · · · · · · · · · ·
	Location ID	SS-04	SS-04	SS-07	SS-08	SS-09	
TAGM 4046	Sample Date	07/11/96	07/11/96	06/22/98	06/22/98	06/22/98	
Recommended	Start Depth (ft)	0	0	0.	. 0	0	1
Chemical Name Soil Cleanup	End Depth (ft)	0.17	2	2	2	2	
Cyanide NC :	mg/kg	1.9 J	5.1 J	15	2.3	60	PP CONTINUE OF A SHIPLE IN

Background Samples

• .
•
•
and the second section is

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold) - concentration above criterion

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

National Grid Fulton, New York

Surface Soil Samples - Pesticides PCBs

		Location ID	SS-01	SS-01	SS-02	SS-02	SS-03	
	TAGM 4046	Sample Date	7/10/1996	7/10/1996	7/10/1996	7/10/1996	7/11/1996	
	Recommended	Start Depth (ft)	0	0	0	0 .	0	
Chemical Name	Soil Cleanup	End Depth (ft)	0.17	2	0.17	2	0.17	
Aldrin	0.041	mg/kg	0.0023 U	0.0023 U	0.02 U	0.0021 U	0.002 U	
alpha-BHC	0.11	mg/kg	0.0023 U	0.0023 U	0.02 U	0.0021 U	0.002 U	
alpha-Chlordane	0.54	mg/kg	2 0.0047 BJ	0.0023 U	0.02 U	0.0021 Ü	0.002 U	The state of the s
4,4'-DDD	2.9	mg/kg	0.0045 U	0.0046 U	0.049 J	0.012 J	0.0031 J	
4.4'-DDE	2.1	mg/kg;	0.0045 U	0.0045 BJ	0.041 U	0:0041 U	0.004 U	
4,4'-DDT	. 2.1	mg/kg	0.0045 U	0.033	0.12 U	0.016 U	0.0079	
Dieldrin	0.044	mg/kg	0.0045 U	0.0046 U	0.04 Ú	0.0041 U	0.004 U	
Endosulfan il	0.9	mg/kg	0.0052 U	0.0096 U	0.04 U	0.013 J	0.004 U	
Endosulfan Sulfate	0.1	mg/kg	0.0045 U	0.0046 U	0:042 J	ט 0.007	0.004 U	
Endrin	0.1	mg/kg	0.046 U	0.046 J	0.32 U	0.0041 U	0.004 U	
Endrin Ketone	NC	mg/kg	0:0045 U	0.024 B	0.087 BJ	0.015 U	0.0025 J	的现在分词
gamma-Chlordane	0.54	mg/kg	0.0023 U	0.01 J	0.034 U	0.0023 U	0.002 U	
Methoxychlor	10	mg/kg	0.0023 U	0.035 U	0.21 U	0.048 J	0.0064 J	constitution of the second

						Background	Samples	
		Location ID	SS-03	SS-04	SS-04	SS-05	SS-06	
	TAGM 4046	Sample Date	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	•
	Recommended	Start Depth (ft)	Ò	0	0	0	. 0	•
Chemical Name	Soil Cleanup	End Depth (ft)	2	0.17	2	0.17	<u>0.</u> 17	
Aldrin	0.041	mg/kg	0.002 U	0.0057 J	0.0026 J	0.0019 U	. 0.002 U	
alpha-BHC	0.11	mg/kg	0.002 U	0.018 J	0.018 U	0.0019 U	0.002 U	
alpha-Chlordane	0.54	mg/kg	0.0018 J	0.018 J	0.061 J	0.0011 J	0:002 U	
4,4'-DDD	2.9	mg/kg	0.0041 U	0.037 U	0.022	0.0037 U	0.0011 J	
4,4'-DDE	2.1	mg/kg	0.0058 J	0.037 U	0.0043.J	0.0013 J	0.00113	The second second second second
4,4'-DDT	2.1	mg/kg	0.012 J	0.043 U	0.046 J	0.0017 J	0.004 U	
Dieldrin	0.044	mg/kg	0.004 U	0.054 U	0.048 *	0.0037 U	0.004 U	
Endosulfan II	0.9	mg/kg	0.00084 J	0.024 J	0.019 J	0.00065 J	∼ 0.004 U	
Endosulfan Sulfate	0.1	mg/kg	0.004 U	0.037 U	0.037 U	0.0037 U	0.004 U	
Endrin :	0.1	mg/kg	0.004 U	0.037 U	0.037 U	0.0037 U	0.004 U	
Endrin Ketone	NC	mg/kg	0.0058 J	0.044 J	0.056	0.0025 J	0.004 U	
gamma-Chlordane	0.54	mg/kg	0.0016 J	0.044	0.072	0.0019 U	0.002 U	
Methoxychlor	10	mg/kg	0.02 U	0.18 U	0.052 J	0.0056 J	0.02 U	

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold) - concentration above criterion

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

Subsurface Soil Samples - Volatile Organic Compounds

		Location ID	MW-01	MW-01	MW-01	MW-02	MW-02	MW-02	MW-03	MW-03	MW-03	MW-03	MW-03	MW-04
· ·	TAGM 4046	Sample Date	7/9/1996	7/9/1996	7/9/1996	7/9/1996	7/9/1996	7/10/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	7/11/1996
	Recommended	Start Depth (ft)	6	14	24	6	14	20	4	8	18	22	26	0
Chemical Name	Soil Cleanup	End Depth (ft)	8	16	26	8	16	22	6	10	20	24	28	6
Benzene	.06	mg/kg	0.012 U	0.0028 U	0.0029 U	0.059.U	0.0028 U	0.0028 U	0.0053	0.0034 U	0 043 J	7 U	0.07 U	0.0028 U
Ethylbenzene	5.5	mg/kg	0.012 U	0.0028 U	0.0029 U	0.059 U	0.0028 U	0.0028 U	0.0029 U	· 0.0034 U	0.044 J	0.11 J	0.07 U	0.0028 U
Methyl ethyl ketone	-3	mg/kg	0.012 U	-	_	0:059 U				<u> </u>	, P.	7.0	-	_
Tetrachloroethene	1.4	mg/kg	0.0026 J			0.059 U		<u> </u>			·	7 U		_
Toluene	1.5	mg/kg	∞ 0.012 U	0.0028 U	0.0029 U	0.059 U	0 0028 U	0.0028 U	0.0087	0.0034 U	0.041 J	7.U	0.07 U	0.0028 U
Xylenes, Total	1.2	mg/kg	0.012 U	0.0028 U	0.0029 U	0.059 U	0.0028 U	0.0028 U	0.012	0.0034 U	0.098 U	7 U	0.07 ป	0.0028 U
Total BTEX	NC NC	mg/kg	_	<u>=10</u>	_		-	-	0.026	-	0.128	0.11	100 m <u></u>	-
						-								

		Location ID	MW-04	MW-04	MW-04	MW-05	MW-05	MW-05	MW-06	MW-06	MW-06	MW-06	MW-06	MW-07
İ.	TAGM 4046	Sample Date	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	6/17/1998	6/17/1998	6/17/1998	6/17/1998	6/18/1998	6/17/1998
•	Recommended	Start Depth (ft)	8	18	26	2	8	15.5	6	10	16	24	32	4
Chemical Name	Soil Cleanup	End Depth (ft)	10	20	28	4	10	16	8	12	18	24.7	34	6
Benzene	.06	mg/kg	0.11 J*	1.8 U	0.0028 U	0.0027 U	. 3.3 U	0.032 J	0.066 *	0,47 J*	0.0112 U	0.012 U	0.002 J	0.012 U
Ethylbenzene	5.5	mg/kg	7.1 J*	1.8 U	0.0028 U	0.0027 U	5.5	0.031 J	0.074	0.034 J	0.011 U	0.012 U	0.011 U	0.012 U
Methyl ethyl ketons	- 3	mg/kg	1.9 🚜	<u> </u>	-	_	0.043 Ĵ	_	_	=		_		<u></u>
Tetrachloroethene	1.4	mg/kg	1.9 UJ	-			3.3 U				·			
Taluene	1.5	mg/kg	< ± 0.016 J	1.8 U	0.0028 U	0.0027 U	0.02 J	0.41.0	0.034	0.15.0	0.011 U	0.012 U	0.002 J	0.012 U
Xylenes, Total	1.2	mg/kg	1.9 UJ	1.8 U	0.0028 U	0.0027 U	12.1 *	0.63	0.39	0.12 J	0.011 U	0.012 U	0.011 U	0.012 U
Total BTEX	NC	mg/kg	7,226		-	_	17.62	0.693	0.564	0.774	-	2	0.004	-

		Location ID	MW-08	MW-09D	MW-09D	MW-09S	MW-10	MW-10	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12
	TAGM 4046	Sample Date	6/16/1998	6/18/1998	6/18/1998	6/16/1998	6/17/1998	6/17/1998	5/10/2001	5/10/2001	5/10/2001	6/24/2004	6/24/2004	6/24/2004
	Recommended	Start Depth (ft)	8	18	26	10	6	12	2	- 6	12	. 0	4	10
Chemical Name	Soil Cleanup	End Depth (ft)	10	20	26.9	12	8	14	4	8	14	4	8_	12
Benzene	06	mg/kg	0.013 U	0.011 U	0,01 1 U	0.012.U	0.012 U	0.012 U	0.001 J	0.77 *	U 8000.0	003 U	003 U	023 U
Ethylbenzene	5.5	mg/kg	0.013 U	0.011 U	0.011 U	0.012 U	0.012 U	0.012 U	0.01 U	0.38	0.011 J	.003 U	.003 U	.023 Ų
Methyl ethyl ketone	3	mg/kg	_	_	_	_	_	_	<u> </u>	<u> </u>	_	_	_	_
Tetrachloroethene	1.4	mg/kg									-		_	
Toluene	1.5	mg/kg	0.013 U k	0.011 U	0.011 U	0.012 U	0.012 U	0.012 U	0.0009 J	0.29	0.004 J	003 U	.003 U	023 U
Xylenes, Total	1.2	mg/kg	0.013 U	- 0.011 U	0.011 U	0.012 U	0.012 U	0.012 U	0.01 U	0.34	0.006 J	.002 J	.003 U	.023 U
Total BTEX	NC NC	mg/kg			# ±	-		<u></u>	0.0019	1.78	0.0218	0.002	-	-

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

B- Blank contamination, --- Not Analyzed/No results.

^{*} Exceedances (bold)

Fulton, New Yor

Subsurface Soil Samples - Volatile Organic Compounds

		Location ID	MW-12	PZ-01	PZ-01	PZ-01	SB-01	SB-01	SB-01	SB-01	SB-01	SB-02	SB-03	SB-04
	TAGM 4046	Sample Date	6/24/2004	7/10/1996	7/10/1996	7/10/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	2/23/2000	2/22/2000	2/22/2000
	Recommended	Start Depth (ft)	14	6	14	24	2	6	12	18	26	4	10	16
Chemical Name	Soil Cleanup	End Depth (ft)	16	. 10	16	26	4	8	14	20	28	6	12	18
Benzene	.06	mg/kg	.003 Ü	1.5 U	0.0029 U	0.0028 U	3.0e-03 U	7:60 UJ	0.07 U	2.9e-03 U	2.7e-03 U	0.12 J*	0.35 J*	. 1.2 J*
Ethylbenzene	5.5	mg/kg	.003 U	0.013 J	0.0029 U	0.0028 ป	3.0e-03 U	0.3 J	0.07 U	2.9e-03 U	2.7e-03 U	1.7	0.15 J	11 *
Methyl ethyl ketone	.3	mg/kg	_	0.043 J	_	_	12	0.13 J	_	12	_	,		= ==
Tetrachloroethene	1.4	mg/kg		1.5 U				7.60 UJ	· -	_	-			
Foluene	1.5	mg/kg	.003 U	15 U	0.0029 U	0.0028 U	3.0e-03 tJ	7.60 UJ	0.07 ∪	2.9e-03 U	2 7e-03 U	1.30 U-	038J	2.8 J*
Xylenes, Total	1.2	mg/kg	.003 U	1.5 U	0.0029 U	0.0028 U	3.0e-03 U	21 J*	0.07 U	2.9e-03 U	2.7e-03 U	1.5 *	0.64 J	24 *
Total BTEX	NC	mg/kg	<u> </u>	0.013	2012	4 - <u>40</u> 0		21.3	3		* * <u>*</u>	3.32	1.52	39

		Location ID	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-11	SB-11	SB-12	SB-12	SB-12	SB-12
	TAGM 4046	Sample Date	2/21/2000	2/22/2000	2/21/2000	2/21/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000	5/8/2001	5/8/2001	5/8/2001	5/8/2001
1	Recommended	Start Depth (ft)	6	6	6	6	2	18	. 4	14	4	8	. 12	18
Chemical Name	Soil Cleanup	End Depth (ft)	. 8	8	8	8	4	20	. 6	16	6	10	14	20
Benzene	06	mg/kg	8.7 *	0.01 U	0.06 U	6.80 U	1.10 U	0.004 J	11 J1	0.01 U	0.007 J	0.002 J	0:01 U	7 0 01 U
Ethylbenzene	5.5	mg/kg	3.8 J	0.01 U	0.06 U	5.3 J	1.10 U	0.003 J	120.00 U	0.01 U	0.0007 J	0.01 U	0.01 U	0.01 U
Methyl ethyl ketone	.3	mg/kg	_	_						_	-		— .	: <u>1</u>
Tetrachloroethene	1.4	mg/kg												
Toluene	1.5	mg/kg	20 *	0.01 U	0.003 J	0.86 J	0.062 J	L 8000.0	17 J*	0.01 U	0.005 J	0 007 J	0.01 U	0.01 U
Xylenes, Total	1.2	mg/kg	. 84 *	0.01 U	0.017 J	20 *	0.091 J	0.004 J	67 J*	0.01 U	Ų 800.0	0.003 J	0.01 U	0.01 U
Total BTEX	NC :	mg/kg	116.5	=	0.02	26.16	0.153	0.0118	95	<u></u>	0.0207	0.012		\pm

		Location ID	SB-13	SB-13	SB-13	SB-13	SB-14	SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15
	TAGM 4046	Sample Date	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001
	Recommended	Start Depth (ft)	2	8	14	18	2	8	12	16	. 2	6	12	18
Chemical Name	Soil Cleanup	End Depth (ft)	· 4	10	16	20	4	10	14	18	4	8	14	20.2
Benzene	.06	mg/kg	0.0007 J	0.01 U	0.01.U	0.01 U	⇒ 0.002 J	a 0.05 U	1.20 U	0.01 U	0.47 J*	120:00 U	0.01 U	0.01 U
Ethylbenzene	5.5	mg/kg	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05 U	0.068 J	0.01 U	2.3	· 60 J*	0.0006 J	0.002 J
Methyl ethyl ketone	.3	mg/kg	_			-	_ =							
Tetrachloroethene	1.4	mg/kg	_		. .		_	_			_		_	
Toluene	1.5	mg/kg	0.001 J	0.01 U	0.01 U	0.01 U	0.003 J	0.05 U	1.20 U	0.01 U	0.14 J	11 🗸	0.01 Ü	0,001 J
Xylenes, Total	1.2	mg/kg	0.01 U	0.01 U	0.01 U	0.01 U	0.001 J	0.05 U	0.064 J	0.01 U	1.6 *	120 *	0.0008 J	0.003 J
Total BTEX	NC NC	mg/kg	0.0017			_	0.006		0.132	-	4.51	191	0.0014	0.006

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimate

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Subsurface Soil Samples - Volatile Organic Compounds

	**	Location ID	SB-16	SB-16	SB-16	SB-16	SB-17	SB-17	SB-17	SB-17	SB-18	SB-18	SB-18	SB-35
	TAGM 4046	Sample Date	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	6/14/2004
•	Recommended	Start Depth (ft)	2	4	8	16	2	6	10	14	0	6	14	2
Chemical Name	Soil Cleanup	End Depth (ft)	4	6	10	16.7	4	8	12	14.4	2	8	14.4	4
Benzene	.06	mg/kg	0.0006 U	0.12 U	0.01 Ü	0:01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	027 U
Ethylbenzene	5.5	mg/kg	0.01 U	0.12 U	0.01 U	0.01 U	0.01 U	0.01 U	0.006 J	0.01 U	0.01 U	0.01 U	0.01 U	0.21
Methyl ethyl ketone	3	mg/kg			 ,	-	3.7 <u>—</u>		<u></u>	-			- <u>-</u>	
Tetrachloroethene	1.4	mg/kg			·	_						-		-
Toluene	1.5	mg/kg	0.002 J	0 12 U	0.01 ป	0.002 J	0.0008 J	0.01 U	0.01 U	0:0009 J	0.01 U	£ 0.01 Ü	0.01 U	022 J
Xylenes, Total	1.2	mg/kg	0.0007 J	0.12 U	0.01 U	0.002 J	0.01 U	0.01 U	0.003 J	0.01 U	0.01 U	0.01 U	0.01 U	0.21
Total BTEX	NC	mg/kg	0.0033		T. 1	0.004	0.0008	_	0.009	0.0009	_	_		0.442
		Location ID	SB-35	SB-35	SB-36	SB-36	SB-36	SB-36	SB-37	SB-37	SB-37	SB-37	SB-38	SB-38
	TAGM 4046	Sample Date		6/14/2004	6/15/2004	6/15/2004	6/15/2004	6/15/2004	6/15/2004	6/15/2004	6/15/2004	6/15/2004	6/16/2004	6/16/2004
	Recommended	Start Depth (ft)	6	. 8	8	14	16	22	10	14	18	26	2	4
Chemical Name	Soil Cleanup	End Depth (ft)	8	10	10	16	18	24	12	16	20	28	4	8
Benzene	.06	mg/kg	025 U	.003 U .	.911	0.036	.024 J_	1.8 J*	2.3 *	007 J		001 J	.082 J*	026 U
Ethylbenzene	5.5	mg/kg	.011 J	0.006	0.99	0.078	0.06	6 3 *	1.5	.031 U	0.022	0.003	0.71	.026 U
Methyl ethyl ketone		mg/kg	-			-		_	_	 		_	_	-
Tetrachloroethene Toluene	1.4 1.5	mg/kg ing/kg	 025 U	.003 U	1.3	0.031	0.046	8.7 *	2.7.*	 .008 J	 .006 J	 U 8000	 15 J	 026 Ü
Xylenes, Total	1.2		.007 J	0.008	13 *	0.031	0.86	120 *	9.8 *	.008 J .024 J	0.045	0.003	2.4 *	.026 U
Total BTEX	NC .	mg/kg mg/kg	0:018	0.008	16.2	0.345	0.88	120	16.3	0.039	0.045	MANAGEMENT TO A STATE OF THE PARTY OF THE PA	2.4	.026 0
TOTAL DILX	_NO	nigrky	. 0.010	. 0.014	10.2	0.0.0	<u> </u>	104,	10.0		0.037	0.0076		
		Location ID	SB-38	SB-39	SB-39	SB-39	SB-39	SB-40	SB-40	SB-40	SB-41	SB-41	SB-41	SB-41
	TAGM 4046	Sample Date		6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/17/2004	6/17/2004	6/17/2004	6/18/2004	6/18/2004	6/18/2004	6/18/2004
	Recommended	Start Depth (ft)	8	0	6	10	12	0	4	10	8	12	16	30
Chemical Name	Soil Cleanup	End Depth (ft)	12	4	8	12	16	2	8	. 12	12	16	20	34
Benzene	.06	mg/kg	.004 U	.003 U	- # .003 U	003 U	.003 U	:003 U	.003.U	.003 U	.62*	.094 *	0.026	003 J
Ethylbenzene	5.5	mg/kg	.002 J	.003 U	.003 U	.003 U	.003 U	.003 U	.003 U	.003 U	1.5	0.24	.016 J	.006 J
Methyl ethyl ketone	3	mg/kg	_	_	_	· · · -	-	_		_	_		-	
Tetrachloroethene	1.4	mg/kg	_		_					-				
Toluene	1.5	mg/kg	004 U	.003 Ü	003 U	.003 U	.003.U	.003 _. U	:003 U	003 U	.26 J	.016 J	.014 J	002 J
Xylenes, Total	1.2	mg/kg	0.005	.001 J	.003 U	.003 U	.003 U	.003 U	.003 U	.003 U	4.7 *	0.26	0.1	0.015

Notes - Data Qualifier Definitions:

Total BTEX NC

NC - No criteria established, U - Not Detected, J - Estimati

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

B- Blank contamination, --- Not Analyzed/No results.

^{*} Exceedances (bold)

Niagara Mohawk Fulton, New York

Subsurface Soil Samples - Volatile Organic Compounds

		Location ID	SB-45	SB-45	SB-45	SB-45	SB-46	SB-46	SB-46	SB-47	SB-47	SB-47	SB-48	SB-48
	TAGM 4046	Sample Date	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	0/14/2005	0/14/2005	0/14/2005	0/14/2005	0/14/2005
	Recommended	Start Depth (ft)	2	. 4	8	12	0	4	. 8	0	2	4	0	2
Chemical Name	Soil Cleanup	End Depth (ft)	4	8	.12	16	4	8	12	2	4	6	2	4
Benzene	.06	mg/kg	.003 U	003 U	003 U	0.012	006 U	003 U	003 U	.0033 U	003 U	1.0031 U	0033 U	0029 U
Ethylbenzene	5.5	. mg/kg	.0006 J	.003 U	.0007 J	0.006	.002 J	.003 U	.003 U	.0033 U	.003 U	.0031 U	.0033 U	.0029 U
Methyl ethyl ketone	3	mg/kg		- 100	1 - 1 - 1	# <u>-</u>	_	_	_	_	_	10 by <u>a</u>	<u> 142</u>	
Tetrachloroethene	1.4	mg/kg	-	-			-							
Toluene	1.5	mg/kg	.003 U	003 Ü	003 Ū	003 U	006 Ü	003 U	003 U	0033 U	003 U	0031 U	0033 U	0029 U
Xylenes, Total	1.2	mg/kg	0.004	.002 J	0.005	0.006	.002 J	.002 J	L 8000.	.0067 U	.006 U	.0062 U	.0066 U	.0058 U
Total BTEX	NC.	mg/kg	0.0046	0.002	0.0057	0.024	0.004	0.002	8000.0	10 10 10 <u>10 10</u>	10 m	* <u>#</u>	<u></u>	- 1 <u>- 2</u> 1

		Location ID	SB-48	
	TAGM 4046	Sample Date	0/14/2005	
·	Recommended	Start Depth (ft)	4	
Chemical Name	Soil Cleanup	End Depth (ft)	6	
Benzene	.06	mg/kg	.003 U	
Ethylbenzene	5.5	mg/kg	.003 U	
Methyl ethyl ketone	. 3	mg/kg	, –	
Tetrachloroethene	1.4	mg/kg		
Toluene	1.5	mg/kg	.003 U	
Xylenes, Total	. 1.2	mg/kg	.006 U	
Total BTEX	NC NC	mg/kg		

Chemical Name	TAGM 4046 Recommended Soil Cleanup	Location ID Sample Date Start Depth (ft) End Depth (ft)
Benzene	.06	mg/kg
Ethylbenzene	5.5	mg/kg
Methyl ethyl ketone	.3	mg/kg
Tetrachloroethene	1.4	mg/kg
Toluene	1.5	mg/kg
Xylenes, Total	1.2	m g/kg
Total BTEX	NC.	mg/kg

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimate B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	MW-01	MW-01	MW-01	MW-02	MW-02	MW-02	MW-03	MW-03	MW-03	MW-03	MW-03	MW-04
	TAGM 4046	Sample Date	7/9/1996	7/9/1996	7/9/1996	7/9/1996	7/9/1996	7/10/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	7/11/1996
	Recommended	Start Depth (ft)	√6 -	14	24	6	14	20	4	8	18	22	26	0
Chemical Name	Soil Cleanup	End Depth (ft)	8	16	26	. 8	16	22	6	10	20	24	28	6
Acenaphthene	. 50	mg/kg	0.41 U ·	0.37 U	0.38 U	0.41 U	0.37 U	0.37 U	300 U	0.42 U	. 70.*	450 *	2.9	0,36 U
Acenaphthylene	41	mg/kg	0.41 U	0.37 U	0.38 U	0.41 U	0.37 U	0.37 U	6.1 J	0.42 U	38 U	2.3 J	0.41	0.36 U
Anthracene	50	mg/kg	0.41 U	0.37 U	0.38 U	0:006 J	0.37 U	0.37 ⊔	340 *	0:007 J	3.3 J	180,1	2.1%	0.36 U
Benzo[a]anthracene**	.224	mg/kg	0.41 U	0.37 U	0.38 U	0.02 J	0.37 U	0.37 U	950 *	0.019 J	3 J*	150 *	2 *	0.015 J
Benzo[a]pyrene**	061	mg/kg	0.41 U	0.37 U	0.38 U	0.52 *	0.006 J	0.37 U	770 *.	0.016 J	2.8 J*	150 *	1.7 *	0.014 J
Benzo[b]fluoranthene**	.224	mg/kg	0.41 U	0.004 J	0.38 U	0.5 *	0.008 J	0.37 U	910 *	0.023 J	2.9 J*	170 *	2.2 *	0.021 J
Benzolg,h,i]perylene	50	mg/kg	0.41 U	0.032 J 0.37 U	0.38 U 0.38 U	0,028 J 0.018 J	0.005 J 0.37 U	0.37 UJ 0.37 U	440 *	0.006 J	1.5 J	63.*	0:61 J	0.008 J
Benzo[k]fluoranthene**	.224 .4	mg/kg	0.41 U 0.41 Ü	0.37 U	0.38 U	0.018 J	0.37 U 0.005 J	0.37 U	410 * 900 *	0.008 J	0.94 J*	73 *	0.74 *	0.008 J
Chrysene** di-n-Butvl Phthalate	8.1	mg/kg	0.41 U	0.37 U	U:30 U	0.027 J 0.015 J	0.0003	U.37 U	1 900	0.02 J	2.7 J*	150 *	2.1 *	0.016 J
Carbazole	NC.	mg/kg	0.41 U			0.015 J						37 U 47		
2-Chloronaphthalene	NC NC	mg/kg mg/kg	0.41 U	0.37 U	0.38 U	0.41 U	0.37 U	0.37 U	300 U	0.42 U	38 U	37 U	0.36 U	0.36 U
Dibenz[a,h]anthracene**	014	mg/kg	0.41 U	0.37 U	0.38 U	0.41 U	0.37 U	0.37 U	300 U	0.42 UJ	38 U	37 U	0.36 U	0.36 UJ
Dibenzofuran	6.2	mg/kg	0.41 U			0.41 U						160 *		
2,4-Dimethylphenol	NC	mg/kg	0.41 U			0:41 U	·			_		37.U		
Fluoranthene	50	mg/kg	0.41 U	0.37 U	0.38 U	0.03 J	0.006 J	0.37 U	1800 *	0.51	110 *	530 *	9.7	0.021 J
Fluorene	50	mg/kg	0.41 Ü ,	0.37 U	0.38 U	0.41 U	0.37 U	0.37 U	11 J '	0.42 U	42	180 *	2	0.36 U
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.41 U	0.37 UJ	0.38 UJ	0.021 J	0.005 J	0.37 UJ	430 *	0.007 J	1.3 J	59 *	0.67	0.007 J
2-Methylnaphthalene	36.4	mg/kg	0:41 U	0.37 U	0.38 U	0.41.U	0.37 🗓	0.37 U	300 U	0.42 U	1.9 J	230 *	1.2	0.36 U
4-Methylphenol	.9	mg/kg	0.41 U			0.41 U						37 U		
2-Methylphenol	1	mg/kg	0.41 U		, -	0.41 U		_	_			- 37 U		
Naphthalene	13	mg/kg	0.41 U	0.37 U	0.38 U	0.41 U	0.37 U	0.37 U	4.9 J	0:42 U	2.6 J	1600 *	2.4	0.36 U
Phenanthrene	50	mg/kg	0.41 U	- 0.37 U	0.38 U	0.013 J	0.005 J	2 0:37 U	870 *	0.027 J	150 *	970 *	13	0.014 J
Pyrene	50	mg/kg	0.41 U	0.37 U	0.38 U	0.79	0.008 J	0.37 U	1600 * .	0.041 J	74 *	430 *	6.6	0.033 J
Total CPAH**	NC	mg/kg		0.004		1.106	0.024		4370	0.093	13.64	752	9,41	0.081
Total PAH	500	mg/kg		0.036		1.973	0.048		9442	0.684	468.94	5387.3	50.33	0.157

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	MW-04	MW-04	MW-04	MW-05	MW-05	MW-05	MW-06	MW-06	MW-06	MW-06	MW-06	MW-07
	TAGM 4046	Sample Date	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	7/11/1996	3/17/1998	3/17/1998	3/17/1998	3/17/1998	3/18/1998	3/17/1998
	Recommended	Start Depth (ft)	8	18	26	2	. 8	15.5	6	10	16	24	32	4
Chemical Name	Soil Cleanup	End Depth (ft)	10	. 20	28	4	10	16	. 8	12	18	24.7	34	6
Acenaphthene	50	mg/kg	670 UJ	2.2	0.36 U	0.016 J	0.32 J	0.43 U	90 J*	7.8	0.18 J	0.39 U	0.37 U	📳 0.39 U 🕟
Acenaphthylene	41	mg/kg	670 UJ	1.9 U	0.36 U	0.75 U	0.36 J	0.004 J	57 J*	1.2 J	0.15 J	0.39 U	0.37 U	0.39 U
Anthracene	50	mg/kg	9.7 J	0.047 J	0.36 U	0.88	-14	0:016 J	200 J*	5.8	0.52	0.045 J	0.37 U	0.39 U
Benzo[a]anthracene**	.224	mg/kg	51 J*	0.1 J	0.36 U	2.2 *	14 *	0.016 J	180 J*	4.9 *	0.51 *	0.055 J	0.37 U	0.39 U
Benzo[a]pyrene**	. 061	mg/kg	28 J*	0.066 J*	0.36 U	1,5 *	13 *	0.013 J	170 J*	4.5 *	0.48 *	0.049 J	0.37 U	0.39 U
Benzo[b]fluoranthene**	.224	mg/kg	44 J*	0.087 J	0.36 U	2.1 *	16 *	0.016 J	170 J*	4.9 *	0.51 *	0.051 J	0.37 U	0.39 U
Benzo[g.h.i]perylene	50	mg/kg	25 J	0.047 J	0.36 UJ	0.059 J	5.1,	0.006 J	110 J*	1.7 J	0.2 J	0.39 U	0.37 Ú	0.39°U
Benzo[k]fluoranthene**	.224	mg/kg	18 J*	0.033 J	0.36 U	0.84 *	6.9 *	0.005 J	62 J*	1.5 J*	0.19 J	0.39 U	0.37 U	0.39 U
Chrysene**	.4	mg/kg	52 J*	0.091 J	0.36 U	1.9 *	13 *	0.014 J	160 J*	3.7 *	0.42 *	0.044 J	0.37 U	0.39 U
di-n-Butyl Phthalate	8.1	mg/kg	670 UJ				4.6 U							
Carbazole	NC	mg/kg	670 UJ				6.2			==		***	. · · · · · · · · · · · · · · · · · · ·	<u> </u>
2-Chloronaphthalene	NC	mg/kg	670 UJ	1.9 U	0.36 U	0.75 U	4.6 U	0.43 U	21 UJ	1.9 U	0.37 U	0.39 U	0.37 U	0.39 U
Dibenz[a,h]anthracene**	.014	mg/kg	670 UJ	1.9 Ú.	0.36.Ú	0.75 U	4.6 U	10.43 U	19 J*	1.9 U	0.37 U	0.39 U	0.37 U	0.39 U
Dibenzofuran	6.2	mg/kg	670 UJ				9.9 *							
2.4-Dimethylphenol	NC NC	mg/kg	670 UJ				0.081 J		-	- 7		-		
Fluoranthene	50	mg/kg	1400 J*	2.4	0.004 J	3.5	33	0.45	450 J*	14	1.4	0.13 J	0.065 J	0.39 U
Fluorene	50	mg/kg	670 UJ	0.11 J	0.36 U	0.028 J	12	0.013 J	130 J*	5.6	0.33 J	0.39 U	0.37 U	0.3910
Indeno[1,2,3-cd]pyrene**		mg/kg	20 J*	0.038 J	0.36 U	0.059 J	5.6 *	0.006 J	85 J*	1.6 J	0.19 J	0.39 U	0.37 U	0.39 U
2-Methylnaphthalene	36.4	mg/kg	670 UJ	0.15 J	0.36 U	0.75 U	20	0.025 J	160 J*	8.8	0.31 J	0.39 U	0.37 U	0.39 U
4-Methylphenol	.9	mg/kg	670 UJ				0.097 J 0.047 J			****				
2-Methylphenol	40	mg/kg	670 UJ		0.36 U	0.75 U	120 *	1.8	730 J*	30 *	0.72	0.056 J		0.0011
Naphthalene	13 50	mg/kg	22 J	11 2.1	0.36 U	2.9	120 39	0.6	730 J*	22	0.72	0.056 J 0.15 J	0.096 J 0.088 J	0.39 U
Phenanthrene Pureza		mg/kg	1500 J*	3.6	0.005 J	4.3	28	0.037 J	590 J*			0.13 J		0.39 U
Pyrene	50 NG	mg/kg	1500 J ²	0.415	U.UUD J	4.3 8.599	20 68.5	0.037 J	590 J- 846	21.1	1.3 2.3	0.13 J 0.199	0.062 J	0.39 U
Total CPAH**	NC FOO	mg/kg	3169.7	22.069	0.009	20.282	340.28	3.021	3973	132	2.3 9.11	0.199	0.244	
Total PAH	500	mg/kg	1 3169.7	22.009	0.009	20.202	340.20	3.021	3973	132	9.11	0.71	0.311	

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	MW-08	MW-09D	MW-09D	MW-09S	MW-10	MW-10	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12
	TAGM 4046	Sample Date	3/16/1998	3/18/1998	3/18/1998	3/16/1998	3/17/1998	3/17/1998	5/10/2001	5/10/2001	5/10/2001	3/24/2004	3/24/2004	3/24/2004
	Recommended	Start Depth (ft)	8	18	26	10	6	12	2	6	12	0	4	10
Chemical Name	Soil Cleanup	End Depth (ft)	10	20	26.9	12	8	14	4	8	14	4	8	12
Acenaphthene:	50	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	4.10 U	2.30 U	0.44 U		and the second second second	0.89
Acenaphthylene	- 41	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	1.4 J	0.75 J	0.44 U	.73 J	.4 U	2.6
Anthracene	50	• mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	1.2 J	0.83 J	0.44 U	18J	. 087 J	1.9
Benzo[a]anthracene**	.224	mg/kg	0.45 U	0.36 U	0.36 U - 0.36 U	0.41 U 0.41 U	0.4 U 0.4 U	0.39 U	13 * 11 *	3.8 *	0.046 J	6.9 J*	.22 J	.34 J*
Benzolajpyrene**	061	mg/kg	0.45 U 0.45 U	0.36 U 0.36 U	0.36 U	0.41 U	0.4 U	0.39 U 0.39 U	11 *	3,5 *	0.44 U	7.5 J	.19 J*.	.24 J*
Benzo[b]fluoranthene**	.224	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	18 -	5 * 2.6	0.053 J 0.44 U	7 J* 3.7 J	.18 J 1 J	.18 J
Benzo[g.h.i]perylene Benzo[k]fluoranthene**	.224	mg/kg mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	6.4 *	2.0 1.9 J*	0.44 U	6.2 J*	.21 J	.1 J
Chrysene**	.224	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	12*	3.4 *	0.44 U	6.2 J*	.21 J	.24 J
di-n-Butvl Phthalate	8.1	mg/kg									0,470	y., y		.313
Carbazole	NC	mg/kg												
2-Chloronaphthalene	NC	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	4.10 U	2.30 ∪	0.44 U	1.9 U	.4 U	.44 U
Dibenzia hianthracene**	014	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	2.5 J*	2.30 U	0.44 U	:39 J*	.4 U	Management and a second and a s
Dibenzofuran	6.2	mg/kg										·		
2.4-Dimethylphenol	NC NC	mg/kg	-	_			*				_	-		
Fluoranthene	50	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	21	5.9	0.066 J	15 J	0.56	2
Fluorene	50	mg/kg	0.45 U	0.36 U	0.36 U	0.41 Ü	0.4 U	0.39 U	4:10 U	0.31 J	0.44 U	.6 J	04 J	3 1
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	9.8 *	2.6	0.44 U	3.4 J*	.093 J	.098 J
2-Methylnaphthalene	36.4	mg/kg	0.45 U.	0:36 U+	0.36 U	0.41 U	0.4 U	0.39 U	4.10 U	0.6 J	0 44 U	29 J	.4 U	.44 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol		mg/kg				,						_	-	
Naphthalene	13	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	4.10 U	13	0.067 J	.66 J	.4 U	.15 J
Phenanthrene	50	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0:39 U	5.1	2.2 J	0.44 U	6.6 U	.39 J	8
Pyrene	50	mg/kg	0.45 U	0.36 U	0.36 U	0.41 U	0.4 U	0.39 U	. 19	5.5	0.061 J	14 J	0.48	1.5
Total CPAH**	NC Foo	mg/kg			· · · · · · · · · · · · · · · · · · ·				72.7	20.2	0.099	38.1	1.11	1.41
Total PAH	500	mg/kg	<u> </u>						130.4	51.89	0.293	82	2.81	21.5

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	MW-12	PZ-01	PZ-01	PZ-01	SB-01	SB-01	SB-01	SB-01	SB-01	SB-02	SB-02	SB-02
	TAGM 4046	Sample Date	3/24/2004	7/10/1996	7/10/1996	7/10/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	7/12/1996	2/23/2000	2/23/2000	2/23/2000
	Recommended	Start Depth (ft)	14	6	14	24	2	6	. 8	12	18	2	4	6
Chemical Name	Soil Cleanup	End Depth (ft)	16	10	16	26	. 4	8	30	14	20	4	6	8
Acenaphthene	. 50	mg/kg	.37 ∪	0.025 J	0.38 U	0.37 U	0.39 U	17.J	0.36 U	0.40 U	0.38 U	0.18 J	15 J	0.66
Acenaphthylene	41	mg/kg	.37 U	0.009 J	0.38 U	0.37 U	0.39 U	16.00 U	0.36 U	0.40 U	0.38 U	2.8 J	22.00 U	0.066 J
Anthracene	50	mg/kg	.37 U	0.036 J	0.38 Ú	0.37 U	0.39 U	1.2 J	0.36 U	0.40 U	0.38 U	1.6 J	9.4 J	0.31 J
Benzo[a]anthracene**	.224	mg/kg	.37 U	0.66 *	0.38 U	0.37 U	0.027 J	0.67 J*	0.36 U	0.40 U	0.38 U	13 *	6.8 J*	0.23 J*
Benzo[a]pyrene**	.061	mg/kg	.37 ∪	0.49 *	0.38 U	0.37 U	0.026 J	0.44 J*	, 0.36 U	0.40 U	0.38 U	30 *	6.7 J**	0,19J*
Benzo[b]fluoranthene**	.224 50	mg/kg	.37 U	0.86 *	0.38 U	0.37 U	0.4 *	0.32 J*	0.36 U	0.40 U	0.38 U	33 *	6.6 J*	0.17 J
Benzo[g,h,i]perylene	.224	mg/kg	.37 U	0.022 J 0.031 J	0.38 UJ 0.38 U	0.37 UJ 0.37 U	0.015 J 0.013 J	16,00 U 16,00 U	0.36 UJ	0.40 UJ	0.38 UJ	18	4.3 J	0.072 J
Benzo[k]fluoranthene** Chrysene**	.224	mg/kg	.37 U	0.0313	0.38 U	0.37 U	0.013 J	elle de la companya della companya d	0.36 U 0.36 U	0.40 U 0.40 U	0.38 U 0.38 U	9.4 *	2.8 J*	0.065 J
di-n-Butvl Phthalate	8.1	mg/kg mg/kg	.a/ U. 	0.39 U	0.30 0	U.S/ U . 		16.00 U		0.40 0	0.30.0	13*	5.4 J*	0.2 J
Carbazole	NC NC	mg/kg		0.021 J				16.00 U	•••					
2-Chloronaphthalene	NC	mg/kg	.37 U	0.39 U	0.38 U	0.37 U	0.39 U	16.00 U	0.36 U	0.40 U	0.38 U	1.70 U	22.00 U	0.39 U
Dibenz[a,h]anthracene**	014	mg/kg	37 ∪	. 0.39 U	0.38 U	0.37 U	0.39 Ü	16.00 Ü	0.36 U	0.40 U	0.38 U	3.2 J*	22.00 U	0.39 Ü
Dibenzofuran	6.2	mg/kg		0.023 J		· · · ·		16.00 U						·
2;4-Dimethylphenol	NC.	• mg/kg		0.39 U		· ·		16.00 U	7 1 <u>9</u> 2		_			-
Fluoranthene	50	mg/kg	.37 U	1.3	0.38 U	0.005 J	0.46	0.91 J	0.009 J	0.005 J	0.38 U	10	18 J	0.53
Fluorene	50	mg/kg	37 U	0.028 J	- 0.38 U	0.37 U	0.39 U	1,5 J	0.36 U	0:004 J	0.38 U	0.34 J1	8.3 J	0.23 J
indeno[1,2,3-cd]pyrene**	3.2	mg/kg	.37 U	0.023 J	0.38 UJ	0.37 UJ	0.015 J	16.00 U	0.36 UJ	0.40 UJ	0.38 UJ	15 *	3.5′J*	0.062 J
2-Methylnaphthalene	36.4	mg/kg	.37 U	0.006 J	0.38 U	0.37 U	0.39 U	86 J*	0.004 J	0.014 J	0.38 U	0.56 J	18 J	0.1 J
4-Methylphenol	.9	mg/kg		0.39 U				16.00 U						
2-Methylphenol	. 1	mg/kg		0.39 U				16.00 U	- :-					
Naphthalene	13	mg/kg	.37 U	0.024 J	0.38 U	0.37 U	0.39 U	92 J*	0.36 U	0.026 J	0.38 U	2 J	190 *	3.4
Phenanthrene	50	mg/kg	37 U	1.3	0.38 U	0.004 J	0.009 J	40 J	0.014 J	0.018 J	0.38 U	2.6 J	32	11
Pyrene	50	mg/kg	.37 U	1.1	0.38 U	0.37 U	0.035 J	1.5 J	0.007 J	0.005 J	0.38 U	23	17 J	0.63
Total CPAH**	NC FOO	mg/kg	-	2.754		0.000	0.511	2.08				116.6	31.8	0.917
Total PAH	500	mg/kg	<u> </u>	6.604		0.009	1.03	242.19	0.034	0.072	***	177.68	343.8	8.015

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-02	SB-02	SB-02	SB-03	SB-03	SB-03	SB-03	SB-03	SB-04	SB-04	SB-04	SB-04
	TAGM 4046	Sample Date	2/23/2000	2/23/2000	2/23/2000	2/22/2000	2/22/2000	2/22/2000	2/22/2000	2/22/2 0 00	2/22/2000	2/22/2000	2/22/2000	2/22/2000
<u> </u>	Recommended	Start Depth (ft)	8	10	12	6	10	12	14	18	2	8	10	14
Chemical Name	Soil Cleanup	End Depth (ft)	10	12	14	8	12	14	16	20	4	10	12	16
Acenaphthene	50	mg/kg	0.094 J	~ 0.39 _. U	0.40 U	0:11 J	42 J	11	1.9 J	0.23 J	0.37 U	25 J	0.22 J	0.42 U
Acenaphthylene	41	mg/kg	0.39 U	0.39 U	0.40 U	0.14 J	68 J*	2.5 J	1.9 J	0.2 J	0.37 U	45 J*	0.51 U	0.048 J
Anthracene.	50	mg/kg	0.39 U	0.39 U	0.40 U	0.35 J	240 *	6.3.J	4.6	0.53	0.054 J	140 *	0.18 J	0.19 J
Benzo[a]anthracene**	.224	mg/kg	0.39 U	0.39 U	0.40 U	0.91 *	220 *	2.7 J*	6.5 *	0.74 *	0.31 J*	120 *	0.18 J	0.19 J
Benzo[a]pyrene**	.061	mg/kg	0.39 U	0.39 U	0.40 U	11	180 *	1.9 J*	6.2	0.6 *	0.33 J*	100*	0.096 J*	0.14 J*
Benzo[b]fluoranthene**	.224	mg/kg	0.39 U	0.39 U	0.40 U	1.4 *	210 *	1.6 J*	8.9 *	0.77 *	0.46 *	110 *	0.16 J	0.17 J
Benzo[g.h;i]perylene	50	mg/kg	0.39 U	0.39 U	0.40 U	0.47	59 J*	0.87 J	2.7 J	0.26 J	0.14 J	55 J*	0.068:J	0.079'U
Benzo[k]fluoranthene**	.224	mg/kg	0.39 U	0.39 U	0.40 U	0.4 *	63 J*	8.00 U	2.1 J*	0.23 J*	0.14 J	45 J*	0.51 U	0.054 J
Chrysene**	.4	mg/kg	0.39 U	0.39 U	0.40 U	0.78 *	170 *	2.2 J*	4.9 *	0.63*	0.3 J	1101	0.17 J	0.18 J
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	, NC	mg/kg	1 - E-1		4-1	<u> </u>					_			
2-Chloronaphthalene	NC	mg/kg	0.39 U	0.39 U	0.40 U	0.38 U	79.00 U	8.00 U	0.41 U	0.42 U	0.37 U	67.00 U	0.51 U	0.42 U
Dibenz[a,h]anthracene**	.014	mg/kg	0.39 U	0.39 U	0.40 U	0.085 J*	18 J*	8.00 ∪	0.74 J*	0.068 J*	* 0.37 U	12 J*	0.51 U	0.42 U
Dibenzofuran	6.2	mg/kg												
2,4-Dimethylphenol	NC	mg/kg		<u> </u>			===0		-	_	-	<u> </u>		
Fluoranthene	50	mg/kg	0.066 J	0.39 U	0.40 U	1.3	520 *	5.5 J	11	1.5	0.51	320 *	0.38 J	0.42 J
Fluorene	50	mg/kg	0.039 J	0.39 U	0.40 U	0.19 J	180 *	7.8 J	3.6	0:4 J	0.37 U	90 *	0.26 J	0.11 J
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.39 U	0.39 U	0.40 U	0.38 J	62 J*	8.00 U	2.6 J	0.24 J	0.12 _. J	47 J*	0.056 J	0.068 J
2-Methylnaphthalene	36.4	mg/kg	0.39 U	.0.39 U	0.40 U	0.22 J	64 J†	28	3 J	0.37 J	0:037 J	39 J*	0.51 U	0.42 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol	1	mg/kg		- -					<u> </u>					
Naphthalene	13	. mg/kg	0.19 J	0.25 J	0.40 U	0.59	51 J*	42 *	3.6	0.55	0.37 U	66 J*	0.42 J	0.066 J
Phenanthrene	50	mg/kg	015J	0.07 J	0.40 U	1.2	670 *	20	13	~*************************************	0.22 J	380 *	0.43 J	0.45
Pyrene	50	mg/kg	0.063 J	0.045 J	0.40 U	2.8	440 *	8.4	17	1.5	0.59	350 *	0.57	0.54
Total CPAH**	NC NC	mg/kg				4.955	923	8.4	31.94	3.278	1.66	544	0.662	0.802
Total PAH	500	mg/kg	0.602	0.365		12.325	3257	140.77	94.24	10.218	3.211	2054	3.19	2.705

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

^{*} Exceedances (bold)

^{**} Carcinogenic PAHs

Fulton, New York

Subsurface Soil Samples - Semivolatile Organic Compounds

	GM 4046									SB-06	SB-07	SB-07	SB-07	SB-07
		Sample Date	2/22/2000	2/22/2000	2/21/2000	2/21/2000	2/21/2000	2/21/2000	2/21/2000	2/22/2000	2/21/2000	2/21/2000	2/21/2000	2/21/2000
	ommended	Start Depth (ft)	16	18	4	6	10	12	14	6	. 2	6	10	12
Chemical Name Soi	l Cleanup	End Depth (ft)	18	20	6	. 8	12	. 14	16	8	4	. 8	12	14
Acenaphthene	50-	mg/kg	0.42 U	0.99	0.085 J	96 J*	41 J	0:086 J	0.38 U	0.39.U	19.00 U	2.6	0.54	0.075 J
Acenaphthylene	41	mg/kg	0.42 U	0.28 J	0.39 U	470 *	160 *	0.093 J	0.04 J	0.39 U	19.00 U	0.4 J	0.088 J	0.40 U
Anthracene:	50	mg/kg	0.06 J	0.82	0.34 J	670,*	200 *	0.23 J	0.07 J	0.39 U	4.9 J	2.2	0.51	0.076 J
Benzo[a]anthracene**	.224	mg/kg	0.062 J	0.4 *	0.73 *	680 *	170 *	0.2 J	0.058 J	0.39 U	30 *	1.8 *	0.32 J*	0.047 J
Benzo[a]pyrene**	.061	mg/kg	0.42 ⊍	0.31 J*	0.65 *	.530 *	140 *	0.16 J*	0.042 J	0.39 U	30 *	1.3 J*	0.25 J*	0.40 U
Benzo[b]fluoranthene**	.224	mg/kg	0.057 J	0.26 J*	0.92 *	630 *	150 *	0.2 J	0.059 J	0.39 U	41 *	1.6 *	0.26 J*	0.40 U
Benzo[g.h;i]perylene	50	mg/kg	0.42 U	0.12 J	0.28 J	170 J*	. 47 J	0.39 U	0.38 U	0.39 U		0.43 J	0.066 J	0.40 U
Benzo[k]fluoranthene**	.224	mg/kg	0.42 U	0.065 J	0.26 J*	250 J*	61 J*	0.08 J	0.38 U	0.39 U	10 J*	0.55 J*	0.11 J	0.40 U
Chrysene;*	4	mg/kg	0.058 J	0.37 J	0.65 *	560 *	140 *	0.15 J	0.047 J	0.39 U	27 *	1.5 J*	0.26 J	0.40 U
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	NC .	mg/kg			0.00.11	400.00.11	~ ~ ~	0.0011			39			
2-Chloronaphthalene	NC	mg/kg	0.42 U	0.38 U	0.39 U	420.00 U 55 J*	94.00 U	0.39 U	0.38 U	0.39 U	19.00 U	1.60 U	0.40 U	0.40 U
Dibenz[a,h]anthracene** Dibenzofuran	014	mg/kg	0.42 ∪	0.38 U	0.068 J*	55 J.	13 J*	0.39 U	0.38 U	0.39 U	3.6 J*	1.60 U	0.40 U	0.40 U
	6.2 NG	mg/kg												
2.4-Dimethylphenol Fluoranthene	50	mg/kg	0.13 J	0.8	1.4	1700 *	430 *	0.49	0.13 J	0.063 J	61 *	4.3	0.00	0.45
Fluorene	50	mg/kg mg/kg	0.13 J	0.8	0.12 J	420 *	430 150 *	0.49 0.17 J	0.13 J	0.063 J 0.39 Ü	19.00 U	4.3 1.9	0.82 0.34.J	0.15 J 0.046 J
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.42 U	0.099 J	0.12 J	190 J*	49 J*	0.04 J	0.38 U	0.39 U	13 J*	0.44 J	0.062 J	0.40 U
2-Methylnaphthalene	36.4	mg/kg	0.42 U	1.2	0.39.U	420	200 *	0.043	0.38 U	0.39 U	19:00 U	0.44 J	0.002 J	0.40 U
4-Methylphenol	.9	mg/kg	U.T. U						0.000	U.OU.U		0.50.0	0.400	0.400
2-Methylphenol	1	mg/kg			·									
Naphthalene	13	mg/kg	0.42 U	1.4	0.1 J	1300 *	570 *	0.13 J	0.082 J	0.39 U	19.00 U	1.9	0.40 U	0.40 U
Phenanthrene	50	mg/kg	0.14 J	2.6	1.2	1900 *	590 *	0.7	0.2 J	0.39 U	18 J	7.7	1.6	0.40 U
Pyrene	50	mg/kg	0.18 J	1.3	1.5	1300 *	350 *	0.46	0.14 J	0.057 J	55 *	4.2	1.1	0.18 J
Total CPAH**	NC	mg/kg	0.177	1.504	3.558	2895	723	0.83	0.206		154.6	7.19	1.262	0.047
Total PAH	500	mg/kg	0.687	11.814	8.583	11341	3461	3.257	0.945	0.12	306.5	33.81	6.326	0.864

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-07	SB-08	SB-08	SB-08	SB-08	SB-08	SB-09	SB-09	SB-09	SB-09	SB-10	SB-10
	TAGM 4046	Sample Date	2/21/2000	2/21/2000	2/21/2000	2/21/2000	2/21/2000	2/21/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000
	Recommended	Start Depth (ft)	14	4	6	10	12	16	. 2	4	8	12	4	8
Chemical Name	Soil Cleanup	End Depth (ft)	16	. 6	8	12	14	18	4	6	10	14	6	10
Acenaphthene :	50	mg/kg	0:37 U	0.40 U	11	6.5 J	3.7 J	0.37 U	0:24 J	0.085 J	0.40 U	0.41 U	0.80 ⊍	0.40 U
Acenaphthylene	41	mg/kg	0.37 U	0.40 U	1.2 J	8.9	10	0.37 U	0.7 J	0.11 J	0.40 U	0.41 U	0.24 J	0.40 U
Anthracene	50	mg/kg	0.37 U	0.40 U	6 J	11	12	0.37 U	1	0.25 J	0.40 U	0.41 U	0.25 J	0.40 U
Benzo[a]anthracene**	.224	mg/kg	0.37 U	0.064 J	5.6 J*	11 *	9.5 *	0.37 U	1.2 *	0.53 *	0.40 U	0.41 U	2.4 *	0.40 U
Benzo[a]pyrene**	.061	mg/kg	0:37 U	0.061 J	4.7 J*	8.8 *	8.5 *	0.37 U	1.1 *	0.49 *	0:40 U	0.41 U	2.6 *	0.40 U
Benzo[b]fluoranthene**	.224	mg/kg	0.37 U	0.15 J	4.7 J*	10 *	8.9 *	0.37 U	1.4 *	0.67 *	0.40 U	0.41 U	3.6 *	0.40 U
Benzo[g,h,i]perylene	50	mg/kg	0.37 U	0:048 J	19 J	3.1 J	3/3 J	0.37 U	0.38 J	0.17 J	0.40 U	0.41 U	1.8	0:40 U
Benzo[k]fluoranthene**	.224	mg/kg	0.37 U	0.054 J	2.1 J*	3.4 J*	3.8 J*	0.37 U	0.46 J* 1.*	0.26 J*	0.40 U	0.41 U	1.3 *	0.40 U
Chrysene** di-n-Butyl Phthalate	4	mg/kg	0.37 U	0.11 J	4.4 J*	8.2 J*	7.1 J*	0.37 U	1.	0.56 1	0.40 U	0:41 U	2.1 *	0.40 U
Carbazole	8.1 NC	mg/kg mg/kg												
2-Chloronaphthalene	NC NC	mg/kg	0.37 U	0.40 U	9.10 U	8.20 U	7.80 U	0.37 U	0.76 U	0.37 U	0.40 U	0.41 U	0.80 U	0.40 U
Dibenz[a,h]anthracene**	.014	mg/kg	0.37 U	0.40 U	- 9.10 U	8.20 U	7.80 U	0.37 U	0.097 J*	0.042 J*	0.40 U	- 0.41 U	0.34 J*	0:40 U
Dibenzofuran	6.2	mg/kg												
2.4-Dimethylphenol	NC	mg/kg		·—										
Fluoranthene	50	mg/kg	0.37 U	0.11 J	13	27	28	0.046 J	3.2	1.4	0.40 U	0.41 U	2.3	0.052 J
Fluorene	50	mg/kg	0.37 U	0.40 U	5 J	10	11	0.37 U	0.9	0.14 J	0.40 U	0.41 U	0.80 U	0.40 Ü
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.37 U	0.042 J	1.9 J	3.2 J	3.2 J	0.37 U	0.4 J	0.18 J	0.40 U	0.41 U	1.4	0.40 U
2-Methylnaphthalene	36.4	mg/kg	0.37 U	0.078 J	9 J	10	6.3 J	0.37 U	0.58.J	0.064 J	0.40 Ú	0.41 U	0.80 U	0.40 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol	1	mg/kg		, <u>, -</u> ,		-				_		_	100	Ψ:
Naphthalene	13	mg/kg	0.37 U	0.098 J	51 *	38 *	16 *	0.37 U	1.2	0.12 J	0.40 U	0.41 U	0.80 U	0.40 U
Phenanthrene	50	mg/kg	0.37 U	0.14 J	17	35	42	0.067 J	3.9	1.3	0.40 U	0.41 U	0.11 J	0.40 U
Pyrene	50	mg/kg	0.37 U	0.12 J	12	21	22	0.047 J	2.7	1.2	0.40 U	0.41 U	4.9	0.049 J
Total CPAH**	NC	mg/kg		0.481	23.4	44.6	41	-	5.657	2.732			13.74	. <u></u>
Total PAH	500	mg/kg		1.075	150.5	215.1	195.3	0.16	20.457	7.571			23.34	0.101

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11	SB-11	SB-12	SB-12	SB-12	SB-12	SB-13
İ	TAGM 4046	Sample Date	2/23/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000	2/23/2000	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001
	Recommended	Start Depth (ft)	10	12	18	2	4	8	. 14	4	. 8	12	18	2
Chemical Name	Soil Cleanup	End Depth (ft)	12	14	20	4	6	10	16	6	10	14_	20	4
Acenaphthene	50	mg/kg	0.41 U	0.41 U	.0.37 U	0.37 U	47 J	0:39 U	0.37 U	- 18.00 U	0.13 J	0.67	0.06 J	0.93 J
Acenaphthylene	41	mg/kg	0.41 U	0.41 U	0.37 U	· 0.75 J	32 J	0.39 U	0.37 U	12 J	0.65 J	0.05 J	0.40 U	1.6 J
Anthracene	50	mg/kg	0.41 U	0.41 U	0.37 U	0:35 J	150 *	0:39 U	0.064 J	48	1.4	0.068 J	0.40 U	3.5
Benzo[a]anthracene**	.224	mg/kg	0.41 U	0.41 U	0.37 U	1.1 *	220 *	0.06 J	0.087 J	75 *	2.5 *	0.078 J	0.072 J	11 *
Benzo[a]pyrene**	.061	mg/kg	0.41 ⊍.	0.41 U	0.37 U	2.3 *	210 *	0.063 J*	0.078 J*	63 *	2.2 *	0.092 J*	0.081 J*	11.*
Benzo[b]fluoranthene**	.224	mg/kg	0.41 U	0.41 U	0.37 U	3.1 *	270 *	0.1 J	0.095 J	74 *	3 *	0.1 J	0.088 J	15 *
Benzo[g;h,i]perylene	50	mg/kg	0.41 U	0.41 U	0.37 U	3.9	74 J*	0.052 J	0.059 J	28	1	0.054 J	0.053 J	4.1
Benzo[k]fluoranthene**	.224	mg/kg	0.41 U	0.41 U 0.41 U	0.37 U 0.37 U°	0.9 * 1 *	88 * 190 *	0.39 U 0.056 J	0.37 U 0.07 J	23 * 71 *	1.2 * 2.2 *	0.41 U	0.40 U	5.4 *
Chrysene** di-n-Butvl Phthalate	.4 8.1	mg/kg	0.41 U	U.41U			190	0.030 3	U.U7.J	/1	2.2	0.075 J	0.067 J	1111
Carbazole	NC	mg/kg mg/kg												
2-Chloronaphthalene	NC NC	mg/kg	0.41 U	0.41 U	0.37 U	0.37 U	79.00 U	0.39 U	0.37 U	18.00 U	0.75 U	0.41 U	0.40 U	1.90 U
Dibenzja,hjanthracene**	014	mg/kg	0.41 U	0.41 U	0.37 U	0.51 *	22 J*	0.39.U	0.37 U	6.6 J*	0.75 J*	0.41 U	0.40 U	1.90 U
Dibenzofuran	6.2	mg/kg	0.41.0								V.ZUU	U.411U	0.400	
2,4-Dimethylphenol	NG.	mg/kg						_		100				
Fluoranthene	50	mg/kg	0.087 J	0.41 U	0.038 J	1	540 *	0.093 J	0.22 J	170 *	4.7	0.17 J	0.12 J	21
Fluorene	50	mg/kg	0.41 U	0.41 U	" 0.37 U	0.057 J	120 *	0.39 U	0.045 J	8.3.J	0.5 J	0.39 J	0.049 J	1.3 J
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.41 U	0.41 U	0.37 U	2.4	76 J*	0.046 J	0.051 J	23 *	0.93	0.049 J	0.045 J	4.1 *
2-Methylnaphthalene	36.4	mg/kg	0.41 U	0.41 U	0.37 U	0.17 J	83 *	0.39 U	0.37 U	3.8 J	0.41 J	. 0.41 U	0.40 U	0.78 J
4-Methylphenol	.9	mg/kg							`					
2-Methylphenol	31	mg/kg	_)	-	_							
Naphthalene	13	mg/kg	0,41 U	0.41 U	0.057 J	0.49	210 *	0.046 J	0.039 J	6.6 J	0.54 J	0.41 U	0.40 U	1.2 J
Phenanthrene	* 50	mg/kg	0.41!U	0.41·U	0.087 J	0.87	590 *	0.088 J	0.22 J	88 *	4.7	0.059 J	0.068 J	13
Pyrene	50	mg/kg	0.088 J	0.41 U	0.37 U	2.7	490 *	0.11 J	0.21 J	270 *	7.8	0.18 J	0.13 J	22
Total CPAH**	NC T	mg/kg				11,31	1076	0.325	0.381	335.6	12.28	0.394	,0.353	58.5
Total PAH	500	mg/kg	0.175		0.182	21.597	3412	0.714	1.238	970.3	34.11	2.035	0.833	127.91

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-13	SB-13	SB-13	SB-14	SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15	SB-16
	TAGM 4046	Sample Date	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/8/2001	5/9/2001
	Recommended	Start Depth (ft)	. 8	14	18	2	8	12	16	2	6	12	18	2
Chemical Name	Soil Cleanup	End Depth (ft)	10	16	20	4	10_	14	18	4	8	14	20.2	4
Acenaphthene	50	mg/kg	0.76 J	0.38 U	0.40 U	3.90 U	1.5 J	. 19	0.37 U	0.14 J	23 J	0.35 U	0.35 U	0.40 U
Acenaphthylene	41	mg/kg	3.4 J	0.38 U	0.40 U	2.6 J	2.2 J	5.3 J	0.37 U	7.5	190 *	0.062 J	0.35 <u>U</u>	0.40 U
Anthracene	50	mg/kg	12	0.054 J	0.40 U	3.6 J	. 17	. 28	0.37 U	0.94	88 J*	0.094 J	0.35 U	0.40 U
Benzo[a]anthracene**	.224	mg/kg	25 *	0.15 J	0.40 U	16 *	16 *	20 *	0.37 U	0.97 *	57 J*	0.079 J	0.35 U	0.13 J
Benzo[a]pyrene**	061	mg/kg	21 *	0.13.J*	0.40 U	19.1	13 *	17 *	0.37 U	12 *	52 J*	0.072 J*	0.35 Ú	0.15 J* '
Benzo[b]fluoranthene**	.224	mg/kg	32 *	0.17 J	0.40 U	25 *	16 *	21 *	0.37 U	8.2 *	41 J*	0.061 J	0.35 U	0.21 J
Benzolg h,ijperylene	50	mg/kg	8	0.078 J	0.40 U 0.40 U	7.7	4.8	6.3 J	0.37 U	. 10	20 J	0.35 U	0.35 U	0.14 J
Benzo[k]fluoranthene** Chrysene**	.224 .4	mg/kg	12 * 23 *	0.069 J 0.14 J	0.40 U	7.8 * 14 *	4.5 * - 14 *	5.6 J* 19 *	0.37 U 0.37 U	1.6 * 1.8 *	16 J* 53 J*	0.35 U 0.078 J	0.35 U	0.076 J
di-n-Butyl Phthalate	8.1	mg/kg mg/kg		U.14 J	0.40 0	14	- 14	. 13	.0.37 0	1.0	33/J	U.U/O J	0:35 U	0.14 J
Carbazole	NC	mg/kg				-								
2-Chloronaphthalene	NC	mg/kg	3.80 U	0.38 U	0.40 U	3.90 U	4.00 U	8.20 U	0.37 U	0.77 U	97.00 U	0.35 U	0.35 U	0.40 U
Dibenzja,hjanthracene**	.014	mg/kg	2.5 J*	0.38 U	0:40 U	2.1 J*	1.3 J*	1.9 J*	0.37.U	1:3 *	97.00 U	0.35 U	0.35 U	0.40 U
Dibenzofuran	6.2	mg/kg					*							
2,4-Dimethylphenol	NC	mg/kg				-		-	· ·		· · ·	_		
Fluoranthene	50	mg/kg	44	0.29 J	0.40 U	23	39	52 *	0.37 Ų	0.56 J	130 *	0.19 J	0.057 J	0.19 J
Fluorene	50	mg/kg	3.3 J	0.38 U	0.40 U	1.1 J	7.4	23	0.37 U 🤋	0:57.J	97 *	0.043 J	0.35 U	'0.40 U
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	8.7 *	0.075 J	0.40 U	7.8 *	4.7 *	6.4 J*	0.37 U	8 *	17 J*	0.35 U	0.35 U	0.13 J
2-Methylnaphthalene	36.4	mg/kg	0.94 J	0.38 U	0.40 U	0,49 J	4.00 U	1.3 J	0:37 U	0.22 J	330*	0.045 J	0.042 J	0.40 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol	1	mg/kg			 -				-			-		
Naphthalene	13	mg/kg	1.3 J	0.38 U	0.40 U	1.4 J	1.9 J	11	0.37 U	3.8	1300 *	0.092 J	0.097 J	0.40 U
Phenanthrene	50	mg/kg	32	0.18 [*] U	0.40 U	9.6	32	80.*	0.37 U	0.35 J	350 *	0,38	0.11 J	0.094 J
Pyrene	50	mg/kg	46	0.26 J	0.40 U	27	38	49	0.37 U	1.6	190 *	0.26 J	0.08 J	0.21 J
Total CPAH**	NC .	mg/kg	124.2	0.734	-	91.7	69.5	90.9		33.87	236	0.29	*	0.836
Total PAH	500	mg/kg	275.9	1.596		168.19	213.3	365.8		59.55	2954	1.456	0.386	1.47

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-16	SB-16	SB-16	SB-17	SB-17	SB-17	SB-17	SB-18	SB-18	SB-18	SB-20	SB-20
	TAGM 4046	Sample Date	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	2/11/2002	2/11/2002
	Recommended	Start Depth (ft)	4	8	16	2	6	10	- 14	0	6	14	8	14
Chemical Name	Soil Cleanup	End Depth (ft)	6	10	16.7	4	88	12	. 14.4	2	8	14.4	10	16
Acenaphthene	50	mg/kg	0.39 U	-0.37-U ·	0.37 U	0.39 Ū	0.41 U	0.5	0.37 U	_ 0.39 U	0.041 J	0.36 U	.45 ⊍	- 55 *
Acenaphthylene	41	mg/kg	0.068 J	0.37 U	0.37 U	0.39 U	0.41 U	1.7	0.37 U	0.51	0.37 U	0.36 U	.092 J	13 J
Anthracene	50	mg/kg	0.076 J	0.37.U	0.37 U	0.39 U	0.41 U	3	0.37 U	0.4	0.37 U	0.36 U	051 J	29 J
Benzo[a]anthracene**	.224	mg/kg	0.12 J	0.37 U	0.37 U	0.39 U	0.41 U	2.3 *	0.37 U	2 *	0.37 U	0.36 U	.12 J	16 J*
Benzo[a]pyrene**	061	mg/kg	0.15 J*	- 10.37 U	≠ 0.37 U ±	0.39 U	0.41 U	2 *	0.37 U	1.8 *	0.37 U	0.36 U	.091 J*	11 J*
Benzo[b]fluoranthene**	.224	mg/kg	0.15 J	0.37 Ų	0.37 U	0.39 U	0.41 U	1.7 *	0.37 U	3.3 *	0.37 U	0.36 U	.084 J	9.7 J*
Benzo[g,h;i]perylene	50	mg/kg	0.093 J	0.37 U	0.37 U	0.39 U	0.41 U	0.88	0.37 U	1.4	0.37 U	0.36 U	.45 U	4.6 J
Benzo[k]fluoranthene**	.224	mg/kg	0.044 J	0.37 U	0.37 U	0.39 U	0.41 U	0.51 *	0.37 U	0.93 *	0.37 U	0.36 U	.45 U	3.6 J*
Chrysene**	.4	mg/kg	0.13 J	0.37 U	0.37 U	0.39 U	0.41 U	2 *	0.37 U	2*	0.37 U	0.36 U	12 J	14 J*
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole -	+ NC	mg/kg		-		 i.				2.2.47	. i. / .			
2-Chioronaphthalene	NC	mg/kg	0.39 U	0.37 U	0.37 U	0.39 U	0.41 U	0.37 U	0.37 U	0.39 U	0.37 U	0.36 U	.45 U	7.6 U
Dibenz[a,h]anthracene**	.014	mg/kg	0'39 U	0.37 U	0.37 U	0.39 U	0.41.U	0.19 J*	0.37 U	0.37 J†	0.37 บ	- 0.36 U	45 U	1.2 J*
Dibenzofuran	6.2	mg/kg												
2,4-Dimethylphenol	NC .	mg/kg			4, 10 mm and 10 mm	-44					<u> </u>			
Fluoranthene	50	mg/kg	0.2 J	0.37 U	0.37 U	0.39 U	0.41 U	5	0.37 U	3.8	0.37 U	0.36 U	.39 J	32
Fluorene	50	mg/kg	0.39 U	0.37 U	0.37 U	0.39 U	0.41 U	1.2	0.37 U	0.092 J	0.37 U	0.36 U	45 U	40
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	0.08 J	0.37 U	0.37 U	0.39 U	0.41 U	0.73	0.37 U	1.3	0.37 U	0.36 U	.45 U	3.7 J*
2-Methylnaphthalene	36.4	mg/kg	0,39 U	0.37 U	0.37 U	0.39 U	0.41 U	0.37 U	0.37 U	0.39 U	0.37 U	-0.36 U	45 U	130.*
4-Methylphenol	.9	mg/kg	ļ 											
2-Methylphenol	.1	_mg/kg												
Naphthalene	13	mg/kg	0.39 U	0.37 U	0.37 U	0.39 U	0.41 U	0.37 U	0.37 U	0.11 J	0.37 U	0.36 U	.45 U	180 *
Phenanthrene	50,	mg/kg	0.26 J	0.37 U	0.37 U	0.39 U	0.41 Ù	9.7	0.37 U	1.5	0.37 U	0.36 U	.074 J	97 *
Pyrene	50	mg/kg	0.36 J	0.37 U	0.37 U	0.39 U	0.41 U	6.6	0.37 U	3.7	0.37 U	0.36 U	0.59	47
Total CPAH**	NC .	mg/kg	0.674	-			 -	9.43		11.7			0.415	59.2
Total PAH	500	mg/kg	1.731					38.01		23.212	0.041		1.61	687

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-20	SB-21	SB-21	SB-21	SB-22	SB-22	SB-22	SB-23	SB-23	SB-23	SB-24	SB-24
	TAGM 4046	Sample Date	2/11/2002	2/11/2002	2/11/2002	2/11/2002	2/12/2002	2/12/2002	2/12/2002	2/12/2002	2/12/2002	2/12/2002	2/12/2002	2/12/2002
	Recommended	Start Depth (ft)	20	4	8	16	6	12	18	4	10	16	4	10
Chemical Name	Soil Cleanup	End Depth (ft)	22	6	10	18	8	14	20	6	12	18	6	12
Acenaphthene	50	mg/kg	2.8	59 *	55 *	.084 J	*.066 J	.37 U	37 U	- 48 Ú	.4.U	38 U	41 U	.41 U
Acenaphthylene	41	mg/kg	0.89	14 J	14	.078 J	.26 J	.37 U	.37 U	.48 U	.4 U	.38 U	.41 U	.41 U
Anthracene	50	mg/kg	1.9	35	32		.23 J	37 U	37 U	.48 U	.4 U	.38.U	41 U	. 41 U
Benzo[a]anthracene**	.224	mg/kg	1.3 *	23 J*	21 J*	.16 J	1.7 *	.37 U	.37 U	.48 U	.4 ∪	.38 U	.41 U	.41 U
Benzo[a]pyrene**	.061	mg/kg	.91 *	17 J*	16 J*	.12.J*	1.3	37 U	.37 U	.48 U	.4 U	38 U	. J41 U	41 U
Benzo[b]fluoranthene**	.224	mg/kg	.73 *	17 J*	16 *	.11 J	3.2 *	.37 U	.37 U	.48 U	.4 ∪	.38 U	.41 U	.41 U
Benzo[g.h.i]perylene	50	mg/kg	.28 J	6.8 J	7 J	045 J	1.3	37 U	37 U	.48 U	4.U	.38 U	41 U	41 U
Benzo[k]fluoranthene**	.224	mg/kg	.29 J*	5.4 J*	4.6 J*	.36 U	.93 *	.37 U	.37 U	.48 U	.4 ∪	.38 U	.41 U	.41 U
Chrysene**	.4	mg/kg	.99*	20 J*	17 J*	. 14 J	1.6 1	.37 U	37 U	.48 U	4 U		- 41 U	.41 U
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	NC	mg/kg						-		17.			377	
2-Chloronaphthalene	NC	mg/kg	.4 U	7.9 U	7.7 U	.36 U	.42 U	.37 U	.37 U	.48 U	.4 U	.38 ∪	.41 U	.41 U
Dibenz[a;h]anthracene**	.014	mg/kg	.078 J*	1.8 J*	1.7 J*	.36 U	.3 J*	37 U	.37 U	.48 U	.4 Ü	.38 U	.41 U	41 U
Dibenzofuran	6.2	mg/kg												
2,4-Dimethylphenol	NC	mg/kg	-							<u> </u>	\pm	-	; ; ;	
Fluoranthene	50	mg/kg	2.4	48	. 48	.33 J	2.6	.038 J	.37 U	.48 U	.4 U	.38 U	.41 U	.41 U
Fluorene *	50	mg/kg	2.4	41	39	16 J		37 U	.37 U	.48 U	.4 U	38 U	.41.U	.41 U
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	.24 J	6.1 J*	5.8 J*	.038 J	1.3	.37 U	.37 U	.48 Ü	.4 U	.38 U	.41 U	.41 U
2-Methylnaphthalene	36.4	mg/kg	3:6	130 *	110 *	.052 J	14.J.	37 U	. 37 U	.48 U	.4 U	38 U	.41 U	41 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol	1	mg/kg								 -				
Naphthalene	13	mg/kg	3.2	200 *	200 *	.053 J	.27 J	.37 U	.37 U	.48 U	.4 U	.38 U	.41 U	.41 U
Phenanthrene	50	mg/kg	5.8	100 *	100 *	0.92	0.92	062 J	.37 U	.48 U	. 4 U	38 U	.41 U	41 U
Pyrene	50	mg/kg	3.9	55 *	54 *	0.44	2.8	.04 J	.37 U	.48 U	.4 U	.38 U	.41 U	.41 U
Total CPAH**	NC .	mg/kg	4.54	90.3	82.1	0.568	10.3					· · · · · · · · · · · · · · · · · · ·		
Total PAH	500	mg/kg	31.7	779	741	2.97	19	0.14						

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

1		Location ID	SB-24	SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-27	SB-27	SB-27	SB-28	SB-28
	TAGM 4046	Sample Date	2/12/2002	2/13/2002	2/13/2002	2/13/2002	2/13/2002	2/13/2002	2/13/2002	2/13/2002	2/13/2002	2/13/2002	2/14/2002	2/14/2002
	Recommended	Start Depth (ft)	18	4	10	18	4	12	18	4	12	18	4	12
Chemical Name	Soil Cleanup	End Depth (ft)	20	6	12	20	6	14	20	6	14	20	- 6	14
Acenaphthene	50 '	mg/kg	,37 U	. 43 U	38 U	.37 ⊔	. 4 U	.38 U	.36 U	.41 U	.39 U	∗.38 U.	.38 U	.37 U. j
Acenaphthylene	41	mg/kg	.37 U	.43 U	.38 U	.37 U	.4 U	.38 U	.36 U	.41 U	.39 ∪	.38 U	.38 U	.37 U
Anthracene	50	mg/kg	. 37 U	.43 U	: .38 U	. 37 U	.4 U	.38 U	36°U	.41.U	39 U	.38 U	38 U	37 U
Benzo[a]anthracene**	.224	mg/kg	.37 ∪	.43 U	.38 U	.37 U	.4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	.37 ∪
Benzo[a]pyrene**	.061	mg/kg	37 U	. 43 U	.38 U	37 U	4 U	38 U	.36 U	.41 U	39 U	.38 U	. 38 U	37 U
Benzo[b]fluoranthene**	.224	mg/kg	.37 U	.43 U	.38 U	.37 U	.4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	.37 ∪
Benzo[g,h,i]perylene	50	mg/kg	.37 U	43 U.	.38 U	. ∄37 U .	.4 U	38 Ur	.36 U	41 U	39 U	* 38 U	38 U	37 U
Benzo[k]fluoranthene**	.224	mg/kg	.37 U	.43 U .43 U	.38 U 38 U	.37 U	.4 U	.38 U 38 U	.36 U	.41 U	.39 U	.38 ∪	.38 U	.37 U
Chrysene** di-n-Butvl Phthalate	.4	mg/kg	37 U	43 U		.37 U	. 4 U	.36 U	.36 U	. 41 U	39 U	38 U	38 U	.37 U
Carbazole	8.1 NC	mg/kg mg/kg												
2-Chloronaphthalene	NC NC	mg/kg	.37 U	.43 U	.38 U	.37 U	.4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	.37 U
Dibenzia,njanthracene**	014	mg/kg	.37 U	.43 U	.38 U	.37 U	.+ U	.38 U	.36 U	.41U	.39 U	.38 U	.36 U	.37 U
Dibenzofuran	6.2	mg/kg												
2.4-Dimethylphenol	NC NC	mg/kg								<u></u>				-
Fluoranthene	50	mg/kg	.37 U	.066 J	.041 J	.049 J	.4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	.37 U
Fluorene	50	mg/kg	.37 Ú	. 43 U	.38 U	.37 U	" A U	38 U	.36 U	41 U	.39 U	.38·U	.38 U	.37 U
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	37 U	.43 U	.38 U	.37 U	.4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	.37 U
2-Methylnaphthalene	36.4	mg/kg	.37 U	.43 U.	.38 U	37 U	4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	37 U
4-Methylphenol	.9	mg/kg		***										
2-Methylphenol	1	mg/kg				_	_							
Naphthalene	13	mg/kg	.37 U	.059 J	.039 J	.37 U	.4 U	.38 U	.36 U	.41 U	.39 U	.38 U	.38 U	.37 U
Phenanthrene	50	mg/kg	37 U	.43 U	041 J	04 J	4 U	.38 U	36 U	41 U	.39 U	. 38 U	38 U	.37 U
Pyrene	50	mg/kg	.37 U	.068 J	.38 U	.042 J	.4 U	.38 U	.36 U	.41 U	.39 U	.38 ∪	.38 U	.37 U
Total CPAH**	NC NC	mg/kg	, , , , , , , , , , , , , , , , , , , 	i —	- j=1	:		Ξ.						4
Total PAH	500	mg/kg		0.193	0.121	0.131								***

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-28	SB-29	SB-29	SB-29	SB-30	SB-30	SB-30	SB-31	SB-31	SB-31	SB-32	SB-32
	TAGM 4046	Sample Date	2/14/2002	2/14/2002	2/14/2002	2/14/2002	2/14/2002	2/14/2002	2/14/2002	2/15/2002	2/15/2002	2/15/2002	2/15/2002	2/15/2002
,	Recommended	Start Depth (ft)	18	4	10	16	6	12	18	4	12	18	6	12
Chemical Name	Soil Cleanup	End Depth (ft)	20	6	12	18	8	14	20_	6	14	20	8	14
Acenaphthene	50	mg/kg	.36 U	.38'U	.38 U	.37 U	.4 U	.37 ⊔		10 U		.:37.∪.	049 J	39 U
Acenaphthylene	41	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 U	5.4 J	.37 U	.37 U	.13 J	.39 U
Anthracene	50	mg/kg	.36 U	.38 U	38 U	37 U	,4 U	.37 U	. 36 U	3.5 J	.37 U	37 U	.23 J	39 U
Benzo[a]anthracene**	.224	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 U	33 *	.37 U	.37 U	.77 *	.041 J
Benzo[a]pyrene**	.061	_mg/kg	36 U	.38 U	. 38 U	. 37 U	, .4 U	37.U	.36 U	29 *	.37 U	.37 U	.55 *	39 U
Benzo(b)fluoranthene**	.224	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 U	54 *	.37 U	.37 U	.67 *	.042 J
Benzo[g.h.i]perylene	50	mg/kg	:36 U	.38 U	.38 U	37 U	.4 U	.37 U	36 U	18	37 U	:37 U	2 J	39 U
Benzo[k]fluoranthene**	.224	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 U	14 *	.37 U	.37 U	.26 J*	.39 ∪
Chrysene**	4	mg/kg	.36 ∪	38 U	38 U	.37 U	4 U	.37 U	. 36 U	31*	37 U	:37 U	.64 *	39 U
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	NC NC	mg/kg											<u>-</u>	± 1
2-Chloronaphthalene	NC	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 U	10 U	.37 U	.37 U	.37 U	.39 U
Dibenz[a,h]anthracene**	014	mg/kg	36 U	.38 U	.38 U	.37 U	4 U	37 U	.36 U	4.6 J*	.37 U	.37 U	.066 J*	39 U
Dibenzofuran	6.2	mg/kg		. 								-		
2:4-Dimethylphenol	NC 50	mg/kg	.36 U	.046 J	 38 U	.37 U	.4 U	.37 U	.36 U	50	.37 U			
Fluoranthene	50 50	mg/kg	.36 U	.046 J .38 U	.30 U	.37 U	.4 U	.37 U	.36 U	10 U	.37 U	.37 U 37 U	1.6 :09 J	.069 J
Fluorene Indeno[1,2,3-cd]pyrene**	3.2	mg/kg mg/kg	.36 U	.38 U	.აი ს .38 U	.37 U	.4 U	.37 U	.36 U	20 *	.37 U	.37 U	.22 J	.39 U .39 U
2-Methylnaphthalene	36.4	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 U	10 U	.37 U	.37 U	.22 J	.39 U
4-Methylphenol	.9	mg/kg mg/kg												
2-Methylphenol		mg/kg												
Naphthalene	13	mg/kg	.36 U	.38 U	.38 U	.37 U	.4 U	.37 U	.36 Ü	3.1 J	.37 U	.37 U	.37 U	.39 U
Phenanthrene	50	mg/kg	- 36 U	38 U	.38 U	37 U	.4 U	: :37 U	.36 U	9.2 J	.37 U	37 U	0.63	.039 J
Pyrene	50	mg/kg	.36 U	.094 J	.38 U	.37 U	.4 U	.084 J	.36 U	51 *	.37 U	.37 U	1.4	.067 J
Total CPAH**	NC NC	mg/kg								186			3.18	0.083
Total PAH	500	mg/kg		0.14				0.084		326			7.51	0.258

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Niagara Mohawk Fulton, New York

Subsurface Soil Samples - Semivolatile Organic Compounds

		Location ID	SB-32	SB-33	SB-33	SB-33	SB-34	SB-34	SB-34	SB-35	SB-35	SB-35	SB-36	SB-36
	TAGM 4046	Sample Date	2/15/2002	2/15/2002	2/15/2002	2/15/2002	6/6/2003	6/6/2003	6/6/2003	3/14/2004	3/14/2004	3/14/2004	3/15/2004	3/15/2004
	Recommended	Start Depth (ft)	18	. 4	12	18	2	6	14	2	6	8	8	14
Chemical Name	Soil Cleanup	End Depth (ft)	20	6	14	20	4	8	16	4	8	10	10	16
Acenaphthene	50	mg/kg	:4 ∪	.38 U	.36 U	.35 U	44 U	.41 U	,38 U	7.2 J	2 J	. 045 J	9.9 J.	.57 J
Acenaphthylene	41	mg/kg	.4 U	.38 U	36 U	.35 U	.44 U	.41 U	.38 U	29	3.9	.19 J	28	1.5
Anthracene	50	mg/kg	. 4 U	.38 U	.36 ∪	35 U	44 U	.41 Ú	.38 U	20	9.5	.32 J	45	2.1
Benzo[a]anthracene**	.224	mg/kg	.4 U	.067 J	.36 U	.35 U	.074 J	.41 U	.38 U	13 J*	6.2 *	.44 *	49 *	1.7 *
Benzo[a]pyrene**	.061	mg/kg	.4 U	041 J	.36 U	.35 U	,074 J*	.41.U	.38 U	11 J*	6.1	.43 *	40 :	1.2 *
Benzo[b]fluoranthene**	.224	mg/kg	.4 U	.06 J	.36 U	.35 U	.13 J	.41 U	.38 U	5.5 J*	3.3 J*	.23 J*	40 *	1*
Benzo[g;h;i]perylene	50	mg/kg	.4 U	38 U	36 U	35 U	.06'J	41 U	38 U	4.8 J	2.5 J		21	48 J.
Benzo[k]fluoranthene**	.224	mg/kg	.4 U	.38 U	.36 U	.35 U	.44 U	.41 U	38 U	7.5 J*	3.9 *	.28 J*	37 *	1.1 *
Chrysene**	-4	mg/kg	.4 U	.05 J	.36 U	35 U	.44 J	.41 U	.38 U	12 J*	6.4 *	.46 *	46 *	1.5.*
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	NC:	mg/kg						44.11		40.11				1
2-Chloronaphthalene	NC	mg/kg	.4 U	.38 U .38 U	.36 U	.35 U 35 U	.44 U	.41 U	.38 U	18 U	3.9 U	.4 U	20 U	.84 U
Dibenz[a;h]anthracene**	014	mg/kg			: .36 U	COLUMN TO COLUMN	.44 U	41 U	.38 U	18 Ú	.51 J°	.4 U	6.4 J*	:15 J1
Dibenzofuran	6.2	mg/kg												
2.4-Dimethylphenol	NC -	mg/kg	.4 U	.13 J	.36 U	.35 U	.1 J	.41 U	.38 U	32	16	0.97	440 *	4.4
Fluoranthene	50 50	mg/kg	.4U	.13 J 38 U	.36 U	.35 U	.13 .44 U	.41 U	.36 U	32 22	2.3 J	0.97 065 J	110 *	4.1 2
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	.4 U	.38 U	.36 U	.35 U	.051 J	.41 U	.38 U	3.9 J*	2.3 J	.15 J	40 · 20 *	.49 J
2-Methylnaphthalene	36.4	mg/kg mg/kg	4 U	.38 U	.36 U	.35 U	.031 3 .44 U	.41 U	.38 U	8.4 J	82 J	.13 J	20 * 53 *	.49 J
4-Methylphenol	.9	mg/kg		.30 0	.300			.41 U	.50.0	0.40	.02.0		93	1.0
2-Methylphenol	.9	mg/kg												
Naphthalene	13	mg/kg	.4 U	.38 U	.36 U	.35 U	.44 U	.41 U	.38 U	89 *	3.7 J	.078 J	180 *	3.9
Phenanthrene	50	mg/kg	.4 U	12 J	.36 U	1:35 U	.049 J	41.0	.38 U	76 *	36	0.81	140 *	6.1
Pyrene	50	mg/kg	.4 U	.097 J	.36 U	.35 U	.13 J	.41 U	.38 U	45	23	1.5	97 *	3.5
Total CPAH**	NC .	mg/kg		0.218			0.329			52.9	28.3	1.99	238	7.14
Total PAH	500	mg/kg		0.565			0.668			386	128	6.17	962	32.9

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-36	SB-36	SB-37	SB-37	S B-37	SB-37	SB-38	S B-38	SB-38	SB-39	SB-39	SB-39
•	TAGM 4046	Sample Date	3/15/2004	3/15/2004	3/15/2004	3/15/2004	3/15/2004	3/15/2004	3/16/2004	3/16/2004	3/16/2004	3/16/2004	3/16/2004	3/16/2004
	Recommended	Start Depth (ft)	16	22	10	14	18	26	2	4	8	0	6	10
Chemical Name	Soil Cleanup	End Depth (ft)	18	24	12	16	20	28	4	8	12	4	8	12
Acenaphthene	50	mg/kg	!51 J	76 *	51 J*	,.083 J.	.057 J	.38 U	26	1.9 U	.51 J	1.9 U	41 U	39 U
Acenaphthylene	41	mg/kg	1.8 J	19 J	270 *	.17 J	.16 J	L 980.	46 *	1.5 J	3	1.3 J	.41 U	.39 U
Anthracene	50	mg/kg	2.8	44	280 *	.29 J	28 J	075 J	-28	3.4	4:2	18 J	.41 U	.39 U
Benzo[a]anthracene**	.224	mg/kg	2.3 *	23 J*	180 J*	.25 J*	.27 J*	.073 J	31 *	4 *	4.3 *	5.4 *	.41 U	.39 U
Benzo[a]pyrene**	.061	mg/kg	1.6 J*	18 J*	150 J*	.23 J*	.23 Jʻ	.063 J*	62 *	3.9 *	4.4 *	5.1 *	.41 U ,	.39 U
Benzo[b]fluoranthene**	.224	mg/kg	1.4 J*	9.6 J*	120 J*	.19 J	.18 J	.043 J	32 *	2 *	3 *	4.9 *	.41 U	.39 U
Benzo[g,h,i]perylene	50	mg/kg	66 J	6.2 J	63 J*	12 J	13 J	.38 U	47	1.9	2.7	3.1	.41 U	.39 U
Benzo[k]fluoranthene**	.224	mg/kg	1.5 J* 2 *	14 J*	130 J* 180 J*	.2 J	.18 J	.056 J	35 *	2.6 *	3.7 *	4.7 *	.41 U	.39 U
Chrysene**	.4	mg/kg		23 J*	180 J*	.22 J	27 J	.073 J	36 *	4.2 *	4.6 *	5.4 *	41 U	.39 U
di-n-Butyl Phthalate	8.1 NC	mg/kg												
2-Chioronaphthalene	NC NC	mg/kg mg/kg	2 U	40 U	230 Ú	.41 R	.44 UJ	.38 U	21 U	1.9 U	1.9 U	1.9 U	.41 U	.39 U
Dibenzia,hjanthracene**	. 014	mg/kg	.21 J*	40 U	230 U	41 R	.44 UJ	.38 U	9.8 J*	.36 J*	***************************************	72 J*	.41 U	.39 U
Dibenzofuran	6.2	mg/kg												
2,4-Dimethylphenol	NC NC	mg/kg							_					<u></u>
Fluoranthene	50	mg/kg	5.9	55 *	510 *	.71 J	.78 J	.23 J	71 *	10	11.	12	.41 U	.39 U
Fluorene	50	mg/kg	2.6	49	220 J*	.21 J	: 18:J	047 J	25	55 J	2 4	74 J	.41 U	.39 U
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	.68 J	5.4 J*	62 J*	.11 J	.11 J	.38 ∪	36 *	1.5 J	2.2	2.8	. 4 1 U	.39 U
2-Methylnaphthalene	36.4	mg/kg	2.6	170*	270 *	27 J	.093 J	38 U	50 *	1.9 U	89 J	46 J	41 U	39 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol	1,	mg/kg	-	<u> </u>				-	<u> </u>	-		-		
Naphthalene	13	mg/kg	8.1	340 *	1400 *	1.6 J	.65 J	.054 J	110 *	1.9 U	1.4 J	.41 J	.41 U	.39 U
Phenanthrene	4 50	mg/kg	8.7	170 *	780 *	82 J	87.J	.3 J	100*	8.8	15	7.5	41 U	. 39 U
Pyrene	50	mg/kg	4.8	70 *	430 *	.56 J	.65 J	.17 J	90 *	14	13	9.9	.41 U	.39 U
Total CPAH**	NC	mg/kg	9.69	93	822	1.2	1.24	0:308	242	18.6	22.7	29		
Total PAH	500	mg/kg	48.2	1090	5100	6.03	5.09	1.22	835	58.7	76.8	66.2		

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Niagara Mohawk Fulton, New York

Subsurface Soil Samples - Semivolatile Organic Compounds

		Location ID	SB-39	SB-40	SB-40	SB-40	SB-41	SB-41	SB-41	SB-41	SB-42	SB-42	SB-43	SB-43
	TAGM 4046	Sample Date	3/16/2004	3/17/2004	3/17/2004	3/17/2004	3/18/2004	3/18/2004	3/18/2004	3/18/2004	3/23/2004	3/23/2004	3/23/2004	3/23/2004
	Recommended	Start Depth (ft)	12	0	4	10	8	12	16	30	. 0	4	0	4
Chemical Name	Soil Cleanup	End Depth (ft)	16	2	8	12	12	16	20	34	4	8	4	8
Acenaphthene	50	 mg/kg 	41 U	4.1 U	. 39 U	.37 U	110 J*	.38 J	.059 J	063 J	17 J	61 J	. 18 J	38 U
Acenaphthylene	41	mg/kg	.41 U	7.7	.057 J	.04 J	540 *	.38 J	.14 J	.21 J	64 *	. 2.5	0.77	.075 J
Anthracene	50	mg/kg	.41 U	3.6 J	39 U	37 U	460 *	0.68	.26 J	0.47	110*	4.8	2.5	.15 J
Benzo[a]anthracene**	.224	mg/kg	.16 J	9.5 *	.082 J	.062 J	290 *	.54 *	.23 J*	.4 *	100 *	5.3 *	4.8 *	.48 *
Benzo[a]pyrene**	1061	mg/kg	.2 J	9.7	.069 J*	.056 J	210 J*	.47 J*	.19 J*	39 *	89 *	4.6 *	3.6.*	.34 J*
Benzo[b]fluoranthene**	.224	mg/kg	.21 J	19 *	.13 J	.099 J	160 J*	.37 J*	.15 J	.28 J*	75 *	4.1 *	8 *	.62 *
Benzo[g,h,i]perylene	50	mg/kg	.22.J	14	.15 J	098 J	73 J*	.24 J	.096.0	.27.J	45	2.1	2.9	35 J
Benzo[k]fluoranthene**	.224	mg/kg	.2 J	17 *	.11 J	.083 J	180 J*	.41 J*	.18 J	.36 J*	79 *	3.9 *	6.4 *	.69 *
Chrysene**	4	mg/kg	.17 J	14 *	.11 J	.079 J	260 *	.49 J*	2 J	0.38	100 *	5 *	5.5 *	.55 *
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	NC.	mg/kg	===		14.		* + 	-	-21					
2-Chloronaphthalene	NC	mg/kg	.41 U	4.1 U	.39 U	.37 U	230 U	.51 U	.42 U	·.37 U	43 U	2 U	.73 U	.38 U
Dibenz[a,h]anthracene**	.014	mg/kg	.41 U	2.7 J*	.39 U	37 U	230 U	.51 U	.42 U	.37 U	11 J*	.52 J*	.86 *	.08 J*
Dibenzofuran	6.2	mg/kg												
2,4-Dimethylphenol	NC	mg/kg		40	40.1	45.1	040 +	4.0	0.50					
Fluoranthene	50	mg/kg	.26 J	16 4.1 U	.16 J 39 U	.15 J .37 U	810 * 490 *	1.6 0.71	0.58 22 J	0.94 .26 J	350 * 76 *	16 2.8	5.6	0.68
Fluorene indeno[1,2,3-cd]pyrene**	50 3.2	mg/kg	.41 U	4.1 U	.39.∪ .13 J	.37.∪ .082 J	490 84 J*	.23 J	.099 J	.20 J .23 J	76 42 J*		21 J	.38 U .35 J
2-Methylnaphthalene	36.4	mg/kg mg/kg	.19 J 41 U	4.1 U	.13 J .39 U	.002 J .37 U	640 *	.23 J 17 J	.099 J .17 J	.23 J 16 J	9.3 J	2 64 J	3.1 22 J	.35 J
4-Methylphenol	.9	mg/kg	,4,0	7.1 U		.J. U					9.53	04.0		Jou .
2-Methylphenol	.5	mg/kg												
Naphthalene	13	mg/kg	.41 U	1.1 J	.39 Ù	.37 U	2100 *	.38 J	0.52	.32 J	11 J	.77 J	.62 J	093 J
Phenanthrene	50	mg/kg		6.4	.061 J	044 J	1300 *	2	0.68	1/1	390 *	17	-2.6	28 J
Pyrene	50	mg/kg	.28 J	25	.24 J	.17 J	580 *	1.2	0.46	0.73	290 *	14	6.2	0.66
Total CPAH**	NC .	mg/kg ^h	1.13	84.9	0.631	0:461	1180	2.51	1.05	2.04	496	25.4	32.3	3.11
Total PAH	500	mg/kg	2	159	1.3	0.963	8290	10.3	4.23	6.56	1860	86.6	54.1	5.4

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-44	SB-44	SB-45	SB-45	SB-45	SB-45	SB-46	SB-46	SB-46	SB-47	SB-47	SB-47
	TAGM 4046	Sample Date	3/23/2004	3/23/2004	3/24/2004	3/24/2004	3/24/2004	3/24/2004	3/24/2004	3/24/2004	3/24/2004	3/14/2005	3/14/2005)/14/2005
	Recommended		0	, 4	2	4	8	12	0	4	. 8	o′	2	4
Chemical Name	Soil Cleanup	End Depth (ft)	4	8	4	8	12	16	4	8	12	2	4	6
Acenaphthene	50	mg/kg	21 U	2.1 U ·	2.U	:4 ∪	:39 U*	,42 U	11 J	.29 J	AND THE RESERVE OF THE PARTY OF	.44 U	.39 U	.41 U
Acenaphthylene	41	mg/kg	10 J	.89 J	2 U	.4 U	.39 U	.42 U	25	0.37	.054 J	17 J	.046 J	.19 J
Anthracene	50	mg/kg	9.5 J	1.2 J	2 U	.4 ∪	39 Ü	42 U	26	0.73	.085 J	1.1	.39 U	:091 J
Benzo[a]anthracene**	.224	mg/kg	70 *	8.3 *	.31 J*	.4 U	.063 J	.054 J	52 *	.98 *	.15 J	.4 J*	.1 J	.19 J
Benzo[a]pyrene**	061	mg/kg	43 *	6.7 *	.34 J*	4∪	:059 J	:049 J	74 *	1*	.14 J*	.48 *	.13 J*	.24 J*
Benzo[b]fluoranthene**	.224	mg/kg	94 *	8.3 *	.23 J*	.4 U	.076 J	.068 J	69 *	.71 *	.11 J	.76 *	.16 J	.53 *
Benzo[g.h.i]perylene	50	mg/kg	48	3.9	.23 J	.40	.048 J	042 J	49	0.64	092 J	33.J	1.12 J	.38 J
Benzo[k]fluoranthene**	.224	mg/kg	100 *	9*	.3 J*	.4 U	.079 J	.061 J	61 *	.88 *	.13 J	.24 J*	.057 J	.17 J
Chrysene**	.4	mg/kg	84 *	8.4 *	.38 J	.4 ∪	.081 J	.064 J	64*	1.1 *	. 17 J	.53 *	.14 J	33 J
di-n-Butyl Phthalate	8.1	mg/kg												
Carbazole	NC	mg/kg					_				25	.063 J	. 39 U	41 U
2-Chloronaphthalene	NC	mg/kg	21 U	2.1 U	2 U	.4 U	.39 U	.42 U	20 U	.35 U	.35 U	.44 U	.39 U	.41 U
Dibenzia.hjanthracene**	014	mg/kg	12 J*	1.1 J*	2U.	4 U		. 42 U	10 J*	.12 J*	1**	.092 J*`	39 U.	.071 J*
Dibenzofuran	6.2	mg/kg												
2:4-Dimethylphenol	NC	mg/kg						 :	2000					
Fluoranthene	50	mg/kg .	110 *	17	.92 J	.043 J	.12 J	.09 J	110 *	2.5	0.37	0.67	.15 J	.32 J
Fluorene	50	mg/kg	21 U	2.1 U	2 U	. 4U	39 U	.42 U	'18 J	0.49	042 J	.44 U	39 U	.41 U
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	50 *	4.3 *	2 U	.4 U 4 Ü	.042 J	.42 U	41 * 8 J	0.52	.07 J	.21 J	.065 J	.2 J
2-Methylnaphthalene	36.4	mg/kg	6.7 J	2.1 U	2 U	2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	.39 Ü	.42 U	8.0	057 J	.35 U	.11 J	39 U	.41 U
4-Methylphenol	.9	mg/kg												
2-Methylphenol	1	mg/kg	4					40.11						
Naphthalene	13	mg/kg	17 J*	.65 J 5:6	2 U 33 J	.4 U	.39 U	.42 _. U	9.3 J 100 *	.04 J 3	.35 U	.097 J	.39 U	.41 U
Phenanthrene	50	mg/kg				4 U	.043 J	42 U			0.37	41 J	.08 J	.15 J
Pyrene	50 NC	mg/kg	110 *	14 46.1	1.1 J 1.56	.4 U	.11 J 0.4	.089 J	150 *	3.4	0.5	0.85	.23 J	0.55
Total CPAH**		mg/kg	453			***************************************		0.296	371	5.31	1.77	2.71	0.652	1.73
Total PAH	500	mg/kg	817	89.3	4.14	0.043	0.721	0.517	884	16.8	3.28	5.45	1.28	3.41

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

		Location ID	SB-48	SB-48	SB-48	
	TAGM 4046	Sample Date)/14/2005	3/14/2005)/14/2005	
	Recommended		0	2	4	
Chemical Name	Soil Cleanup	End Depth (ft)	2	4	6	
Acenaphthene	50	mg/kg	045 J	.39 UJ	39 U	
Acenaphthylene	41	mg/kg	2.3	0.62J	.39 U	
Anthracene	50	mg/kg	0.68	21 J	39 U	
Benzo[a]anthracene**	.224	mg/kg	3.7 *	.63 J*	.39 U	
Benzo[a]pyrene**	.061	mg/kg	5.8 J*	1.2 J*	.39 Û	
Benzo[b]fluoranthene**	.224	mg/kg	8.7 J*	2 J*	.39 U	
Benzo[g.h,i]perylene	50	mg/kg	5.2 J	1.3 J	39 Ü	
Benzo[k]fluoranthene**	.224	mg/kg	2.2 J*	.51 J*	.39 U	
Chrysene**	.4	mg/kg	4.6	.91 J*	.39 U	
di-n-Butyl Phthalate	8.1	mg/kg	14 J	048 J	39 U	
Carbazole	NC NC	mg/kg	.43 U	.39 UJ	.39 U	
2-Chloronaphthalene Dibenzia hjanthracene**	014	mg/kg	.43 U	.39 UJ .22 J*	.39 U	
Dibenzofuran	6.2	mg/kg mg/kg	.50 J	.22 J		
2,4-Dimethylphenol	NC NC	mg/kg				
Fluoranthene	50	mg/kg	4.8	0.87 J	.39 U	
Fluorene	50	mg/kg	2 J	.065 J	39 U	
Indeno[1,2,3-cd]pyrene**	3.2	mg/kg	2.3 J	0.59 J	.39 ∪	
2-Methylnaphthalene	36.4	mg/kg	.11 J	.39 ÚJ	.39 U	
4-Methylphenol	.9	mg/kg				
2-Methylphenol	1	mg/kg*		<u> </u>		
Naphthalene	13	mg/kg	.14 J	.39 UJ	.39 U	
Phenanthrene	50	mg/kg	0.88	.318	.39 U	
Pyrene	50	mg/kg	10	1.7 J	.39 U	
Total CPAH**	NC	mg/kg	. 28.3	6.06 J		
Total PAH	500	mg/kg	52.6	11.1 J		·

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: SOIL-ALL-Format-hits.xls

Subsurface Soil Samples - Metals

	Ť4.014.40.40	Location ID	MW-01	MW-02	MW-03	MW-04	MW-05	PZ-01	SB-01
	TAGM 4046	Sample Date	07/09/96	07/09/96	07/12/96	07/11/96	07/11/96	07/10/96	07/12/96
	Recommended Soil Cleanup	Start Depth	6	6	22	8	8	6	6
Chemical Name		End Depth	. 8	8	24	10	10	10	8
Aluminum	SB	mg/kg	6500	4200	2000	390 J	2000	4800	4600
Antimony	SB	mg/kg	15 U)	15 UJ	13 UJ	25 UJ	17 UJ	14 UJ	14 UJ
Arsenic	7.5 or SB	mg/kg	4	1	2	86J*	3		112
Barium	300 or SB	mg/kg	140	40	60	70 J	90	50	70
Beryllium	0.16 (HEAST) or SB	mg/kg	1 U	1U	1.0	2 UJ	10	1 U	10
Cadmium	1 or SB	mg/kg	1 U	1 U	1 U	2 UJ	1 U	1 U	1 U
Calcium Metal	SB	mg/kg	4100 J	,6100 J	12000 J	2800 J	1900 J	22000 J	4100 J
Chromium	10 or SB	mg/kg	12 *	· 7	4	16 J *	5	8	8
Cobalt	30 or SB	mg/kg	10 U	10 U	10 U	20 ÜÜ	10 U	10 U	10.0
Copper	25 or SB	mg/kg	15	14	5	73 J *	20	18	10
Iron	2,000 or SB	mg/kg	17000 J *	11000 J *	4500 J *	128521.472J*	10000 J *	13000 J *	11000] * *
Lead	SB	mg/kg	43	2.8 J	1.1 J	. 590 J	560 J	4.6 J	2.6 J
Magnesium	SB	mg/kg	3800	3000	2400	400	400	6400	2400
Manganese	SB	mg/kg	330 J	500 J	. 200 J	189.2781 J	60 }	430 J	170 J
Мегсигу	0.1	mg/kg	0.1 U	0.1 U	0.1 U	0.6851 *	0.1 U	0.1 U	0.1 U
Nickel	13 or SB	mg/kg	10 J	. 10 UJ	10 UJ	16 UJ	10 UJ	10 UJ	10 UJ
Potassium	SB	mg/kg	1200 Ú	1200 U	1100 U	2000 UJ	1400 U	1200 U	1200 U
Selenium	2 or SB	mg/kg	. 1U	1 U	1 U	12J*	1 U	1 U	1 U
Silver	- SB	mg/kg	20	2 U	2 U	4 UJ	3 Ü	2 U	2 U =
Sodium	SB	mg/kg	200 U	200 U	200 U	400 UJ	300 U	200 U	200 U
Thallium	SB	mg/kg	נט 1	100	1UJ	2 UJ	1 UJ	100	1'03'
Vanadium	150 or SB	mg/kg	10	10 U	10 U	70 J	10 U	10 U	10 U
Zinc	20 or SB	mg/kg	29 J *	21.1*	10 R	100 J *	37 J *	23 J *	20 J

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

^{*} Exceedances (bold) - concentration above criterion

					· · · · · · · · · · · · · · · · · · ·		-				
		Location ID	MW-01	MW-01	MW-01	MW-02	MW-02	MW-02	MW-03	MW-03	MW-03
	TAGM 4046	Sample Date	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/10/96	07/12/96	07/12/96	07/12/96
	Recommended	Start Depth	6	14	24	6	14	20	4	8	18
Chemical Name	Soil Cleanup	End Depth	8	16	26	. 8	16	22	6	. 10	20
Cyanide	NC	mg/kg	0.6 UJ	0.6 U	0.6 U	30	0.6 U	0.6 U *	0.9	1.1	0.6 U

TAGM 4046 Sample Date 07/12/96 07/12/96 07/11/96	07/11/96	07/11
Chemical Name Soil Cleanup End Depth 24 28 6 10 20 28 4	. 8	1
Cyanide NC mg/kg 0.6.UJ 0.6.U 0.5.U 2000 J 1.7 1 0.6.U	10	

	TAGM 4046	Location ID Sample Date	PZ-01 07/10/96	PZ-01 07/10/96	PZ-01 07/10/96	SB-01 07/12/96	SB-01 07/12/96	SB-01 07/12/96	SB-01 07/12/96	SB-01 07/12/96	
	Recommended	Start Depth	6	14	24	6	12	18	28	2	·
Chemical Name	Soil Cleanup	End Depth	10	16	26	8	14	20	30	4	
Cyanide	NC	mg/kg	0.6 UJ	0.6 U	0,6 U	4.2.3	0.6 U	0.6 U	0.6 U	1.3	

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold) - concentration above criterion

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

Subsurface Soil Samples - Pesticides PCBs

		Location ID	MW-01	MW-02	MW-03	MW-04	MW-05	PZ-01	SB-01
	TAGM 4046	Sample Date	7/9/1996	7/9/1996	7/12/1996	7/11/1996	7/11/1996	7/10/1996	7/12/1996
	Recommended	Start Depth	6	6	22	8	8	6	6
Chemical Name	Soil Cleanup	End Depth	8	8	24	10	10	10	8
Aldrin ;	0.041	mg/kg	0.0021 U	0:0021 UJ	0.019 U	0.34 UJ	0 0036 U	0.002 U	0.02 U
alpha-BHC	0.11	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0.34 UJ	0.0023 U	0.002 U	0.02 U
alpha-Chlordane	0.54	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0.34 UJ	0.0023 U	0.002 U	0.02 U
Aroclor 1260	10	mg/kg	0.041 U	0.041 UJ	0.37 U	6.8 UJ	0.046 U	0.04 U	0.4 U
Aroclor 1254	10	mg/kg	0.041 U	0.041 UJ	0.37 U	6.8 UJ	0.046 U	0.04 U	0.4 U
Aroclor 1221	10	mg/kg	0.082 U	0.083 UJ	0.75 U	14 UJ	0.092 U	0.079 U	0.81 U
Aroclor 1232	10	mg/kg	0:041 U	0.041 UJ	0:37 U	6.8 UJ	0.046 U	0.04 U	0.4 U
Aroclor 1248	10	mg/kg	0.041 U	0.041 UJ	0.37 U	6.8 UJ	0.046 U	0.04 U	0.4 U
Aroclor 1016	10	mg/kg	0.041 U	0.041 UJ	0.37 U	6.8 UJ	0.046 U	0.04 U	0.4 U
Aroclor 1242	10	mg/kg	0.041 U	0.041 UJ	0.37 U	. 6.8 UJ	0.046 U	0.04 U	0.4 U
beta-BHC	0.2	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0.34 UJ	0.0023 U	0.002 U	0.02 U
Camphechlor	NC .	mg/kg	0.21 U	0.21 UJ	1.9 U	34 UJ	0.23 U	0.2 U	2 U
delta-BHC	0.3	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0.34 UJ	0.0023 U	0.002 U	0.02 U
4,4'-DDD	2.9	mg/kg	0.0041 U	0.0041 UJ	0.037 U	0.68 UJ	0.0046 U	0.004 U	0.04 U
4,4'-DDE	2.1	mg/kg	0.0041 U	0.00097 BJ*	0.037 U	0.68 UJ	0.0046 U	0.004 U	0.04 ∪
4,4'-DDT	2.1	mg/kg	0.0041 U	0.0041 UJ	0.047 U	1.5 J	0.0046 U	0.004 U	0.04 U
Dieldrin	0.044	mg/kg	0.0041 U	0.0041 UJ	0.037 ⊔	0.68 UJ	0.0046 U	0.004 U	0.053 J *
Endosulfan I	0.9	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0.34 UJ	0.0023 U	0.002 U	0.02 U
Endosulfan II.	0.9	mg/kg	0.0041 U	0.0041 UJ	0:037 U	1.4 UJ	0.0059 J	0.004 U	0.04 U
Endosulfan Sulfate	0.1	mg/kg	0.0041 U	0.0041 UJ	0.037 U	0.68 UJ	0.0046 U	0.004 U	0.04 U
Endrin	0.1	mg/kg	0.0041 U	0.0041 UJ	0.037 U	0.68 UJ	0.0057 U	0.004 U	0.04 U
Endrin Aldehyde	NC	mg/kg	0.0041 U	0.0041 UJ	0.037 U	0.68 UJ	0.0046 U	0.004 U	0.04 U
Endrin Ketone	NG	mg/kg	0.0041 U	0.0041 UJ	0.037 U	1.3 UJ.	0.0076 U	0.004 U	0.04.U
gamma-Chlordane	0.54	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0.34 UJ	0.0062 J	0.002 U	0.02 U
Heptachlor	0.1	⊮mg/kg	0.0021 U	0.0021 UJ	0.0021 U	0.34 UJ	0.0042 U	0.002 U	0.02 U
Heptachlor Epoxide	0.02	mg/kg	0.0021 U	0.0021 UJ	0.019 U	0,34 UJ	0.0023 U	0.002 U	0.02 U
Lindane	0.06	mg/kg - ,	0.0021 U:	0.0021 UJ	0.019 U	0.34 UJ	- 0.0023 U	0.002 U	0.02.U
Methoxychlor	10	mg/kg	0.021 U	0.021 UJ	0.19 U	4.7 J	0.023 U	0.02 U	0.2 U

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold) - concentration above criterion

Date Printed: 4/28/2006

File: SOIL-ALL-Format-hitsfinal.xls

		Location ID	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-02	MW-02	MW-02	MW-02	MW-02	MW-03	MW-03
	NYS Class	Sample Date	7/24/1996	9/4/1996	7/16/1998	5/31/2001	7/12/2004	11/3/2005	7/24/1996	9/4/1996	7/16/1998	7/12/2004	11/3/2005	7/24/1996	9/4/1996
Chemical Name	GA	Depth													
Benzene	<u> 1.</u>	ug/l	0.7 U	0.7 ∪	10 U	10 U	0.50 U	0.50 Ü	0.7 U :	0.7 U	-10 U	0.50 U	0.50 U	0.7 U	0.77 J
Ethylbenzene	5	ug/l	5 U	· 5 U	10 U	10 U	0.50 U	0.50 U	5 U	5 U	10 U	0.50 U	0.50 U	5 U	20 *
Taluene	5	ug/l	5 U	5 U			==		5 U	5 U,	_			, 5U	5 U
Styrene (monomer)	5	ug/l	5 U	5 U	10 U	10 U	0.50 U	0.50 U	5 U	5 U	10 U	0.50 U	0.50 ∪	5 U	1.4 J
Xylene (total)	5	ug/l	5 U	5 U	10 U	10 U	0:50 U	1.00 U	5 U	5 U	10 U	0.50 ∪	1.00 U	5 U	51.*
Total BTEX	NC	ug/l	ND	ND	ND	ND	ND	· ND	ND	ND	ND	ND	ND ND	ND	73.17

		Location ID	MW-03	MW-03	MW-03	MW-03	MW-03	MW-04	MW-04	MW-04	MW-04	MW-04	MW-04	MW-04	MW-04
ļ	NYS Class	Sample Date	7/16/1998	8/4/1999	7/8/2004	11/3/2005	11/3/2005	7/24/1996	9/4/1996	7/16/1998	8/4/1999	5/31/2001	7/9/2004	11/2/2005	11/2/2005
Chemical Name	GA -	Depth				12 - 12	8.5 - 8.5							8 - 8	12 - 12
Benzene	1	ug/l	10 U	. 10 U	0.50 U	0.50 U	0.50 U	980 *	650 *	450 *	730 *	520 *	380. J*	530 *	734 *
Ethylbenzene	. 5	ug/l	10 U	10 U	0.50 U	0.50 U	0.50 U	690 *	530 *	390 *	570 *	34 0 *	66. J*	228 *	380 *
Toluene	5	ug/l	-21					50 U	25 U				-		
Styrene (monomer)	5	ug/l	. 10 U	10 U	0.50 U	0.50 U	0.50 U	93 *	57 *	60 J*	66 J*	48 J*	19. J*	33.2 *	42.0 *
Xylene (total)	5	ug/l	10 U	10 U	0.50 U	1.00 U	1.00 U	420 *	420 *	350 *	400 *	300 *	120. J*	167 *	268 *
Total BTEX	NC	ug/l	ND	ND	ND	ND	ND	2083	1657	1250	1766	1208	585	958.2	1424

		Location ID	MW-05	MW-05	MW-05	MW-05	MW-05	MW-05	MW-05	MW-06	MW-06	MW-06	MW-06	MW-07	MW-07
	NYS Class	Sample Date	7/24/1996	9/4/1996	7/16/1998	8/4/1999	6/1/2001	³/12/2004	11/2/2005	7/16/1998	8/4/1999	7/9/2004	11/2/2005	7/16/1998	8/5/1999
Chemical Name	GA	Depth													
Benzene	1	ug/l	6.5 J*	23 *	21 J*	10 J*	9 J*,	7. J*	7.20 J*	140 *	7.3*	.4 J	0.92	10 U	. 10 U
Ethylbenzene	5	ug/l	310 *	62 *	230 *	440 *	390 J*	350. J*	243 *	54 *	4 J	.1 J	0.24 J	10 U	10 U
Toluene	. 5	ug/l	25 U	7.3 J*				=	- E	- 1					<u></u>
Styrene (monomer)	5	ug/l	35 *	27 *	13 J*	11 J*	13 J*	9. J*	9.80 J*	91 *	4 J	0.50 U	0.50 U	10 U	10 U
Xylene (total)	5	ug/l	410 *	* 008	550 *	570 *	560 *	-360. J*	483 *	260 *	21.*	0.50 U	1:00 U	10 U	10 U
Total BTEX	NC NC	ug/l	761.5	912	814	1031	972	726	743	545	36	0.5	1.28	ND	ND

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

Niagara Mohawk Fulton, New York

Groundwater Samples - Volatile Organic Compounds

		Location ID	MW-07	MW-07	MW-07D	MW-07D	MW-07S	MW-08	80-WM	MW-08	MW-08	MW-08D	MW-08D	MW-08S	MW-09D
	NYS Class	Sample Date	1/1/2005	11/1/2005	7/9/2004	11/2/2005	7/9/2004	7/16/1998	8/5/1999	5/31/2001	1/1/2005	7/8/2004	11/2/2005	7/8/2004	7/16/1998
Chemical Name	GA	Depth	11 - 11	7 - 7		·									
Benzene	1	ug/l	-0.50 U	0.50 U	1 J	0.50 U	0.50 U	10 U	10 U	10 U	0.50 U	.1.J	0.50 U	0.50 U	10 U
Ethylbenzene	5	ug/l	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	10 U	10 U	10 U	0.50 U	0.50 U	0. 5 0 U	0.50 U	10 U
Taluene	5	ug/l								<u></u>		, T	<u> </u>		F 1 1 12 12 12 12 12 12 12 12 12 12 12 12
Styrene (monomer)	. 5	ug/l	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	10 U	10 U	10 U	0.50 U	.2 J	0.50 U	0.50 U	10 U
Xylene (total)	5	ug/l	1.00 U	1 00 U	4.J	1.00 U	0.50 U	. 10 U -	10 U	. 10 U	1.00 U	0.50 U	1.00 U	0.50 U	10 U
Total BTEX	NC	ug/l	ND	ND	0.5	ND	ND	ND	ND	ND	ND	0.3	ND	ND	ND

		Location ID	MW-09D	MW-09D	MW-09D	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S	MW-10	MW-10	MW-10	MW-11	MW-11
•	NYS Class	Sample Date	8/5/1999	7/8/2004	11/2/2005	7/16/1998	8/5/1999	6/1/2001	7/8/2004	11/3/2005	7/16/1998	7/9/2004	11/1/2005	6/1/2001	7/12/2004
Chemical Name	GA	Depth					•						11 - 11		
Benzene	1	ug/l	10 U	0.50 U	0.50 U	10 U	10 U	10.0	0.50 U	0.50 U	4 10 U	- 0.50 U	0.50 U	2 J*	0.50 U
Ethyibenzene	. 5	ug/l	10 U	0.50 U	0.50 U	10 U	10 U	10 U	0.50 U	0.50 U	10 U	0.50 U	0.50 ∪	6 J*	0.50 U
Toluene	5	ug/l	-						-	-			<u></u> -		4 .
Styrene (monomer)	5	ug/l	10 U	0.50 U	0.50 U	10 U	10 U	10 U	0.50 U	0.50 U	10 U	0.50 U	0.50 U	0.5 J	0.50 U
Xylene (total)	5	ug/l	10 ∪	0.50 U	1.00 U	10 U	10 U	10 U	0.50 U	1.00 U	10 U	0.50 U	1.00 U	2 J	0.50 U
Total BTEX	NC	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.5	ND

		Location ID	MW-11	MW-11	MW-12D	MW-12D	MW-12S	MW-12S	MW-12S	
	NYS Class	Sample Date	1/2/2005	11/2/2005	7/7/2004	11/2/2005	7/7/2004	11/3/2005	11/3/2005	•
Chemical Name	GA	Depth	5 - 5	10 - 10				12 - 12	8.5 - 8.5	
Benzene	1	ug/l	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 ∪	0.50 U	
Ethylbenzene	5	ug/l	0.20 J	0.34 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	
Toluene	5	ug/l	-		-	_	_	_	_	
Styrene (monomer)	5	ug/l	0.50 U	0.50 U	.2 J	0.50 U	0.50 U	0.50 U	0.50 U	
Xylene (total)	5	ug/l	0.14 J	1 00 U	0.50 U	1.00 U	0.50 U	1.00 U	1:00 U	
Total BTEX	NC_	ug/l	0.34	0.34	0.2	ND	ND	ND	ND	

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold)

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

		Location ID	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-02	MW-02	MW-02	MW-02	MW-02	MW-03	MW-03
i	NYS Class	Sample Date	/24/1996	9/4/1996	/16/1998	/31/2001	/12/2004	1/3/2005	/24/1996	9/4/1996	/16/1998	/12/2004	11/3/2005	/24/1996	9/4/1996
Chemical Name	GA	Depth													
Acenaphthene	20	ug/l	10.0	10 Ü	10 U	10 U	10 U	10 U	10 _. U -	11 U	10 U .	10 U	10 U	350 *	460 *
Acenaphthylene	NC	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 Ù	7.6 J	12
Anthracene	50	ug/l	10 U	10 U	10 U	10'U'	10 U	10 U	10 U	11 U	"" 10'U`	10 U	10 U	46	57 *
Benz(a)anthracene	0.002	ug/l	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	11 U	10 U	` 10 ∪	. 10 U	14 *	42 *
Benzo(a)pyrene	D	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 Ų	10 U	10 U	10:U	11	35
Benzo(b)fluoranthene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	14 *	42 *
Benzo(g,h,i)perylene	NC.	ug/l	, 10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	5.8 J	15
Benzo(k)fluoranthene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	3.7 J*	16 *
Chrysene	0.002	ug/l	· · · 10 U	10 U	10 U	10 U	, 10 U	10 U	10 U	11 U	10 U.	, 10 U	10 U	12 *	38*
Carbazole	NC	ug/l	10 U	10 U				10 U	10 U	11 U			10 U	54	73
2-Chloronaphthalene	10	ug/l	5 U	5.1 U	10 U	10 U	10 U	10 U	,5.1 U	5:4 U	10 U	10 U	10 U	5.3 U	5.6 U
Dibenz[a,h]anthracene	NC	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	. 10 U	10 U	11 U	11 U
Dibenzofuran	. NC	ug/l	10 U	. 10 U					Mark : No. 1/2 2000 Announted the Contract of	11·U	-			120	86
2,4-Dimethylphenol	50	ug/l	10 U	10 U					10 U	11 U				11 U	11 U
2,4-Dinitrotoluene	5	ug/l	10 U	10 U					10 U	. 11 U			· · · · · · · · · · · · · · · · · · ·	11'U'	11 U
Fluoranthene	50	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	1.3 J	11 U	10 U	10 U	10 U	70 *	170 *
Fluorene	50	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U/	10 U	120 *	190 *
Indeno (1,2,3-cd)pyrene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	5.4 J*	14 *
2-Methylnaphthalene	NC	ug/l	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	11.0	10 U	10 U	, 10 U	140	280
4-Methylphenol	1	ug/l	10 U	10 U					10 U	11 U				11 U	1.5 J*
2-Methylphenol	1	ug/l	10 U	10 U	40.11	4011	40.11	40.11	10 U	11 U	40.14	40.11	40.11	11 U	11 U
Naphthalene	10	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U 10 U	11 U 11 U	10 U	10 U	10 U	660 J*	2500 J*
Phenanthrene	50	ug/l	10 U	10.04	10 U	10 U	10·U				10 U	10 U	10 U	260 *	410 *
Phenol	1 50	ug/l	1 U 10 U	1 U	 10 U	10 U	10 U	10 Ü	1 U 2.1 J	1.1 U 1.3 J	10:Ú		10 U	1.1 Ü	1.1 U
Pyrene Total CPAH		ug/l	AND DESCRIPTION OF THE PARTY OF	ND	ND	ND	ND	ND	Z. I J ND	I.a J ND	ND	10 U ND	ND	64 *	150 *
	NC	ug/l	ND ND			***				CATALOG BARROLLE BARR	***************************************			60.1	187
Total PAH	NC NC	ug/l	ND	ND.	ND:	ND	ND.	+ ND	3.4	1.3	ND	ND.	ND.	1783.5	4431

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected,

J - Estimated, B- Blank contamination, R -Rejected

--- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

Fulton, New York

Groundwater Samples - Semivolatile Organic Compounds

		Location ID	MW-03	MW-03	MW-03	MW-03	MW-03.	MW-04	MW-04	MW-04	MW-04	MW-04	MW-04	MW-04	MW-04
	NYS Class	Sample Date	/16/1998	8/4/1999	7/8/2004	1/3/2005	1/3/2005	/24/1996	9/4/1996	/16/1998	8/4/1999	/31/2001	7/9/2004	1/2/2005	1/2/2005
Chemical Name	GA	Depth	ļ			12 - 12	8.5 - 8.5							8 - 8	12 - 12
Acenaphthene	20	ug/l	80 *	41 J*	10 U	10 U	10 U	14 J -	29 *	37 J*	27 J*	19 J	23 *	21 J*	19 J
Acenaphthylene	NC	ug/l	5 J	4 J	10 U	10 U	10 U	1 J	8 J	7 J	210 U	100 U	3 J	6.1 J	100 UR
Anthracene	50	ug/l	33	16 J	10 U	10 U	10 U	1J	9.2 J	21 J	31 J	15 J	10 U	17J	100 UR
Benz(a)anthracene	0.002	ug/l	22 *	21 J*	. 10 U	10 U	10 U	53 U	2.5 J*	50 U	210 U	100 U	10 U	10 UR	100 UR
Benzo(a)pyrene	. D	ug/l	28	29 J	:10 U	10 Ü	10 U	53 U	10 U	50 U	210 U	100 U	10 U.	10 UR	100 UR
Benzo(b)fluoranthene	0.002	ug/i	32 *	32 J*	10 U	10 U	10 U	53 U	1.6 J*	50 U	210 U	100 U	10 U	10 UR	100 UR
Benzo(g,h,i)perylene	NC	ug/l	19 J	13 J	*10 U	10 U	10 U	53 U	10 U	50°U	210 U	100 U	10 U	10 UR	100 UR
Benzo(k)fluoranthene	0.002	· ug/l	10 *	13 J*	10 U	10 U	10 U	53 U	10 U	50 U	210 U	100 U	10 U	10 UR	100 UR
Chrysene	0.002	ug/l	20 *	22 J*	10 U	10 U	10'U'	5.7 J*	2.8 J*	50 U	210 U	100 U	10 U	10 UR	. 100 UR 🐇
Carbazole	NC	ug/l				10 U	10 U	5 J	24					22 J	22 J
2-Chloronaphthalene	10 0	ug/l	10·U	10 UJ	10 U	10 U	+ 10 U	26 U	5.1 U	50 U	210 ⊍	100 Ú	10 U	10 UR	100 UR
Dibenz[a,h]anthracene	NC	ug/l	10 U	2 J	10 U	10 U	10 U	53 U	10 U	50 U	210 U	100 U	10 U	10 UR	100 UR
Dibenzofuran	NC .	ug/l						3.1	23						_
2,4-Dimethylphenol	50	ug/l						150 *	97 *						
2,4-Dinitrotoluene	5	ug/l			• • -			53 U	1 J	-		<u></u> -	::::::::::::::::::::::::::::::::::::::	177 <u>114</u> 6	<u>, 19</u> 29
Fluoranthene	50	ug/l	60 *	60 J*	10 U	10 U	10 U	2 J	16	18 J	22 J	100 U	10 U	2.5 J	100 UR
Flüorene	50	ug/l	. 29	13 J	10 U	10 U ,	10 U	59.*	33	57 J*	44 J	27 J	7 J	7.6 J	100 UR
Indeno (1,2,3-cd)pyrene	0.002	ug/l	16 *	13 J*	10 U	10 U	10 U	53 U	10 U	50 U	210 U	100 U	10 U	10 UR	100 UR
2-Methylnaphthalene	NC	ug/l	10 U	10 UJ	10 U	10 U	10 U	3 J	37.	14 J	210 U	16 J	10 U .	3.2 J	100 UR
4-Methylphenol	1	ug/l						5.6 J*	10 U						i-
2-Methylphenol	1	ug/l			<u>-</u>		 -	- 1J	10 Ü	-					-
Naphthalene	10	ug/l	1 J	1 J	10 U	10 U	10 U	2000 *	1100 *	1200 *	1000 *	830 *	140 *	680 J*	750 J*
Phenanthrene	50:	ug/l	140 *	45 J	10 U	10 U	10 U	55 *	. 28	56 J*	. 47 J	26 J	1 J 3	2.6 J	100 UR
Phenol	1	ug/l						24 J*	9.6 J*						
Pyrene	50	ug/l	59 *	55 J*	10 U	.÷ 10 U	10 U	2 J	20	19 J	210 U	100 U	10 U	2.8 J	100 UR
Total CPAH	NC	ug/l	128	132	ND	ND	ND	5.7	6.9	ND	ND	ND	ND	ND	ND
Total PAH	NC	ug/l	554	380	ND	. ND	ND	2132.7	1287.1	1429	1171	933	174	727.5	779

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected,

J - Estimated, B- Blank contamination, R -Rejected

--- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

		Location ID	MW-05	MW-05	MW-05	MW-05	MW-05	MW-05	MW-05	MW-06	MW-06	MW-06	MW-06	MW-07	MW-07
·	NYS Class	Sample Date	/24/1996	9/4/1996	/16/1998	8/4/1999	6/1/2001	/12/2004	1/2/2005	/16/1998	8/4/1999	7/9/2004	11/2/2005	/16/1998	8/5/1999
Chemical Name	GA	Depth						_							
Acenaphthene	20	ug/l	100 U	10 U	19	1000 U	33 J*	29 *	41 *	270 J*	110 *	2 J	22 *	.10 U	10 U+
Acenaphthylene	NC	ug/l	. 4 J	26	61	1000 U	39 J	10	8.2 J	270 J	90 J	10 U	5.8 J	10 U	10 U
Anthracene	50	ug/l	100 U	4.31	5 ป	1000 U	100 Ù	3 J	4:1 J	220 J*	60 J*	, 10 U	9.2 J	10 U.	10 U
Benz(a)anthracene	0.002	ug/l	100 U	10 U	10 U	1000 U	100 U	10 R	10 U	200 J*	34 J*	10 U	3.3 J*	10 U	10 U
Benzo(a)pyrene	D	ug/l	100 U	-10 U	10 U	1000 U	100 U	10 R	10 U	190 J	34 J	10 U	10 Ü	. 10 U	10 U
Benzo(b)fluoranthene	0.002	ug/l	100 U	10 U	10 U	1000 U	100 U	10 R	10 U	190 J*	36 J*	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	ug/l	100 U.	10 U	10 U	1000 U	100 U	10 R	10 U	100 J	200 U	10 Ú	10 U	10 U	10.0
Benzo(k)fluoranthene	0.002	ug/l	100 U	10 U	10 U	1000 U	100 U	10 R	10 U	72 *	200 U	10 U	10 U	10 U	10 U
Chrysene	0.002	ug/l	100 U	10 U	10 U	1000 U	100 U	10 R	10 U	180 J*	35 J*	10 Ü	2.9 J*	10 U	10 U
Carbazole	NC	ug/l	1 J	19					7.7 J				3.4 J		
2-Chloronaphthalene	10	ug/l	52 [.] U	5.1 U	10 U	1000 U	100,U	10 R	10 U	100 U	200 Ü	10 U	10 U	10 U*	10 U
Dibenz[a,h]anthracene	NC	ug/l	100 U	10 U	10 U	1000 U	100 U	10 R	10 U	100 U	200 U	10 U	10 U	10 U	10 U
Dibenzofuran	NC	ug/l	"100 U	14				·					*		
2,4-Dimethylphenol	50	ug/l	1 J	49											
2,4-Dinitrotoluene	5	ug/l	100 U*	10 U		400011						_			_
Fluoranthene	50	ug/l	100 U	3.7 J	2 J	1000 U	100 U	2 J	2.6 J	430 *	100 *	1 J	. 19	10 U	10 U
Fluorene	50	ug/l	100 U	14	34	1000 U 1000 U	35 J	21 10 R	30 10 U	290 J*	100 * 200 U	1 J -	24	10 U	10 U
Indeno (1,2,3-cd)pyrene		ug/l	100 U 8 J	10 U 100	10 U 160 J	140 J	100 U 87 J	10 R	43	110 J*	200 0	10 U 10 U	10 U 10 U	10 U	10 U 10 U
2-Methylnaphthalene	NC 1	ug/l			, jou u	1400	. 01.0	20	43	530	200	- 100	10 U	10 U	10.0
The state of the s			The second secon												
	10	***************************************	Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Car	A STATE OF THE STA	4500 *	4800 ±	2400 *		1000 *	4000 *	900 *	40.00	5 2.1	4011	10 U
TO THE RESIDENCE OF THE PERSON							**************		10000000000000000000000000000000000000				***************************************		10 U
	1	***************										100	92	10.0	100
	50"						100 เป	11	241		R5 *				10 Ü
		********************************	The second second						was and a contract of the					***************	ND
		······		****		warna rannonnon ancientusira comenzaria						4.	TO BE THE REST OF THE PARTY OF		ND:
4-Methylphenol 2-Methylphenol Naphthalene Phenanthrenel Phenol Pyrene Total CPAH Total PAH	1 1 10 50 1 50 ⁹ NC NC	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	100 U 100 U 1900 * 100 U 100 U 100 U ND 1912	23 * 10 U 1600 * 17 1 U 2.9 J ND 1767.9	4500 * 32 2 J ND 4815	4800 * 1000 U 1000 U ND 4940	2100 * 2100 * 37 J 100 U ND 2331	760 * 21 1 J ND 873	 1000 * 34 2:1 J ND 1165	4800 * 680 * 440 J [‡] 942 8972	900 * 240.* 	10 U 10 U 10 U 10 U ND	5.2 J 62.1 	10 U 10 U 10 U 10 U ND ND	

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected,

J - Estimated, B- Blank contamination, R -Rejected

--- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

		Location ID	MW-07	MW-07	MW-07D	MW-07D	MW-07S	MW-08	MW-08	MW-08	MW-08	MW-08D	MW-08D	MW-08S	MW-09D
	NYS Class	Sample Date	1/1/2005	1/1/2005	7/9/2004	1/2/2005	7/9/2004	/16/1998	8/5/1999	/31/2001	1/1/2005	7/8/2004	11/2/2005	7/8/2004	/16/1998
Chemical Name	GA	Depth	11 - 11	7 - 7											
Acenaphthene	20	ug/l	10 U	10 U	10 U,	10 U .	. 10 U	10 U	+ 10 UJ	10 U	- 10 U	10 U s	11 U	10 U	10 U
Acenaphthylene	NC	ug/l	10 U	10 U	10 U	10 _. U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Anthracene :	50	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Benz(a)anthracene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Benzo(a)pyrene	D	ug/l	10 U	10 U	10 U	10 U	10 U .	10 U	10 UJ	10 Ü	10 U	10 Ų	11 U	. 10 U	10 U
Benzo(b)fluoranthene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Benzo(g;h;i)perylene	NC	ug/l	10 U .	10'U	10 ∪	10 U	.10 U	10 U	- 10 UJ	10 U	10 U	10 U	11 U	- 10 U	10 U
Benzo(k)fluoranthene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Chrysene	0.002	ùg/i	10 U	10 U	. 10 Ü	,10 U	, 10 U	10 U	10 UJ	, 10 U	. 10 U	10 U	11 U	. 10 U	10 U
Carbazole	NC	ug/l	10 U	10 U		10 U					10 U		11 U		
2-Chloronaphthalene	10	üg/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U ,	10 U	10 U	11 Ü .	10 U	10 U
Dibenz[a,h]anthracene	NC	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Dibenzofuran	NC:	ug/l				· · · · ·									
2,4-Dimethylphenol	50	ug/l													
2,4-Dinitrotoluene	5	ug/l	a L												
Fluoranthene	50	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	1.3 J	10 U	10 U
Fluorene	50	ug/l	10 U	10 U	10 U .	10 U	10 U	10 U	10 UJ	10 U	10 U	- 10 U	11 U	2 10 U	10 U
Indeno (1,2,3-cd)pyrene	0.002	ug/l	10 U	10 U	10 U	10 U 10 U	10 U 10 Ú	10 U 10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
2-Methylnaphthalene	NC .	ug/l	10 U	10 U	10 U	IV U	10.0	. 100	10 UJ	10 U	10.U	10 U	ַ 11 ט	10 U	10 U
4-Methylphenol	1	ug/l ug/l													
2-Methylphenol	10		10 U	10 U	2 J	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	11 U	10 U	10 U
Naphthalene Phenanthrene	50	ug/l ug/l	100	100	2.3 10:U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	2.7 J	10 U	10 U
Phenol	1	ug/i ug/i					.,, 0, 0		10.00		, U U m		2:1 J	10.0	100
	50	CONTRACTOR OF THE PROPERTY OF			10.11	Secondary and a second	10:1	1011				 10 U	12.1	40.1	40.11
	And the second second second		ALCOHOL: MARKET MARKET MARKET									and the second second			AND TO SEE SEE SEE SEE SEE SEE SEE SEE SEE SE
20020-0000-0000-0000-000-000-000-000-00	Nation and the second				2	***************************************									
Pyrene Total CPAH Total PAH:	50 NC NC	ug/l ug/l ug/l	10 U ND 'ND	10 U ND ND	10 U ND 2	10 U ND ™ND	10 U ND ND	10 U ND ND	10 UJ ND ND	10.U ND ND	10 U ND ND	10 U ND ND	1.2.J ND 5.2	10 U ND ⊩ ND	10 U ND ND

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected,

J - Estimated, B- Blank contamination, R -Rejected

--- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

		Location ID	MW-09D	MW-09D	MW-09D	MW-09 S	MW-09 S	MW-09S	MW-09S	MW-09S	MW-10	MW-10	MW-10	MW-11	MW-11
	NYS Class	Sample Date	8/5/1999	7/8/2004	1/2/2005	/16/1998	8/5/1999	6/1/2001	7/8/2004	1/3/2005	/16/1998	7/9/2004	11/1/2005	6/1/2001	/12/2004
Chemical Name	GA	Depth											11 - 11		
Acenaphthene	- 20	ug/l	. 10 Ü	10 U	10 U	· 10,U	. 10 ∪.	10 U	10 U	- 10 U	10 U	10 U	10 U	10 U	10 ⊎
Acenaphthylene	NC	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Anthracene	50	ug/l	: 10 U	10 U	10 U	10 U	10 U	_10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benz(a)anthracene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U
Benzo(a)pyrene	D	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U
Benzo(b)fluoranthene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	ug/l	10 U	10 U	10 U	10 U	.⊹. 10 U	10 U	10 U	10 U	. 10 U	, 10 U ,	10 U	10 U	10.0
Benzo(k)fluoranthene	0.002	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chrysene	0.002	ug/l	10 U	, 10 U j	10.U	10 U	10 U	_10 U	10 U	10 U	10 ⊍	. 10 U -	10 U	10 U	10 U
Carbazole	NC	ug/l			10 U					10 U			10 U		
2-Chloronaphthalene	10	ug/l	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U.	10 U	- y 10 U	10 U	10 U	10 U
Dibenz[a,h]anthracene	NC	ug/l	10 U	10 U	10 U	10 U	-10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	NC	ug/l										-		·	
2,4-Dimethylphenol	50	ug/l													
2,4-Dinitrotoluene	5	ug/l	-												
Fluoranthene	50	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Fluorene	50	ug/l	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Indeno (1,2,3-cd)pyrene		ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene	NC	ug/l	10 U.	, 10 U	10 U	10 U	/ 10 U	10 U	10 U-	ט 10	10 Ū.	10°U	10 U	10 U	10 U
4-Methylphenol	1	ug/l													
2-Methylphenol	1	ug/I				-						_			
Naphthalene	10	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 J	10 U
Phenanthrene	50	ug/l	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U	10 U	2 J	10 U
Phenol	1	ug/l													
Pyrene	50	ug/l	10 U	10 U	10 U	10 U	10 U	10 U.	10 U	10 U	10.0	10 U	. 10 U	10 U	10 U
Total CPAH	NC	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAH	NC	ug/l	ND:	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	12	ND

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected,

J - Estimated, B- Blank contamination, R -Rejected

--- Not Analyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

		Location ID	MW-11	MW-11	MW-12D	MW-12D	MW-12S	MW-12S	MW-12S
	NYS Class	Sample Date		1/2/2005	7/7/2004	1/2/2005	7/7/2004	1/3/2005	1/3/2005
Chemical Name	GA	Depth	5 - 5	10 - 10			2004	12 - 12	8.5 - 8.5
Acenaphthene	20	ug/l	10 ⊍	11 U	10 U	10 U	2 J		10 U
Acenaphthylene	NC	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	10 U
Anthracene	50	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	10 U
Benz(a)anthracene	0.002	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	D	ug/l	10 Ü	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(g,h;i)perylene	NC	ug/I	10 U	. 11 U	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	10 U
Chrysene	0.002	ug/l	10 U	ש 11 ט	10 U	10 U	10 U	10 U	10 U
Carbazole	NC	ug/l	10 U	11 U		10 U		10 U	10 U
2-Chloronaphthalene	Contract to the second section in the second	ug/l	10 U	11 U	:10 U	10 U	10 U	10 U	- 10 U
Dibenz[a,h]anthracene	NC	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	. 10 U
Dibenzofuran	NC	ug/l	_						
2,4-Dimethylphenol	50	ug/l							
2,4-Dinitrotoluene	5	ug/l	 ,	<u> </u>					
Fluoranthene	50	ug/l	10 U	11 U	10 U	10 U	1 J	10 U	10 U
Fluorene	50	ug/l	10 U	11 U	10 U	10 U	2 J:	10 U	10 U
Indeno (1,2,3-cd)pyrene	0.002	ug/l	10 U	11 U	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene	NC	ug/l	10 ປຸ	11 U	10 U	10.U	10 U	10 U	10 U
4-Methylphenol	1	ug/l		 <u></u>	·				
2-Methylphenol	1	ug/l			40.11	40.11		40.11	40.11
Naphthalene	10 50	ug/l	10 U	11 U 11 U	10 U	10 U	2 J 4 J	10 U 10 U	10 U 10 U
Phenanthrene	50	ug/l	7 10 U		10 U	10 U	4 J	IU Usa	
Phenol	50:-	ug/l ug/l	10 U	11:U	10 U	10 U	 137	10 Ú	 10 U
Pyrene			ND	ND	ND	ND	ND	ND	ND
Total CPAH	NC NC	ug/l	ND ND	ND	ND ND	ND.	12 :	***************************************	ND I
Total PAH	NC -	ug/l	שא	עא	עמ	, טעי	125	שא	שא

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected,

J - Estimated, B- Blank contamination, R -Rejected

--- Not Arialyzed/No results.

* Exceedances (bold)

** Carcinogenic PAHs

Date Printed: 4/28/2006 File: GW-ALL-Format-hits.xls

Groundwater Samples - Metals

	NYS Class	Location ID	MW-01	MW-01	MW-02	MW-02	MW-03	MW-03	MW-04	MW-04	MW-05	MW-05
Chemical Name	GA	Sample Date	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96
Aluminum	NC .	ug/l	37000	11000	44000	170000	110000	68000	140000	130000	27000	38000
Antimony	3	ug/l	60 UJ	60 U								
Arsenic	25	ug/l	26 *	10 U	26 *	100 *	47 *	29 *	72 *	60 *	15	23
Barium	1000	ug/l	800	400	1300 *	4900 *	2400 *	1600 *	3000 *	2700 *	500	700
Beryllium	3 **	ug/l	5 U	1.5 U	5 U.	8 *	5 *	5 U	6 *	6 *	5 U	5.U
Cadmium	5	ug/I	5 U	5 U	7 *	31 *	5 U	5 U	5 U	7 *	5 U	5 U
Calcium Metal	NC	ug/l	130000	86000	240000	570000	500000	330000	380000	370000	140000	210000
Chromium	. 50	ug/l	70 J *	30	90 J *	350 *	170 J *	110 *	290 J *	270 *	50 J	60 *
Cobalt	NC	ug/l	50 U	50 U	50 U	130	60	.50 U	* 80	90	50 U	≥50 U
Copper	200	ug/l	110 J	40	130 J	650 *	200 J	120	440] *	380 *	60 J	100
Iron	300	ug/l	69000 *	22000 *	82000 *	320000 *	170000 *	110000 *	350000 *	310000 *	80000 *	94000 *
Lead	25	ug/l	30 *	12	57 *	260 *	110 *	64 *	370 *	320 *	110 *	120 *
Magnesium	35000	ug/l	43000 *	29000	48000 *	140000 *	110000 *	69000 *	97000 *	90000 *	27000	39000 *
Manganese	3000	ug/l	3200 J *	2100	4500 J *	15000 *	5900 J *	3800 *	7900 J *	7700 *	4600 J *	6600 *
Mercury	0.7	ug/l	.2 UJ	.2 U	.5 J	2.1 *	.2 UJ	.2 U	,6°J	.7	.2 UJ	.2
Nickel	100	ug/l	110	40 U	70	270	140	90	200	180	40 U	60
Potassium	NC NC	ug/l	13000	7000	15000	32000	18000	13000	22000	20000	6000	6000
Selenium	10	ug/i	. 5 U	5 U	5	7	11 *	6	15 *	14 *	5 U	5 U
Silver	50	- ug/l	10 ບຸ	10 U	10 U	10 U	10 U	10:U	10 U	10 U	10 🖤	10 U
Sodium	20000	ug/l	47000 *	38000 *	84000 *	74000 *	43000 *	45000 *	74000 *	67000 *	33000 *	28000 *
Thallium	0.5	ug/l	5 U	10 U	. 5 U	10 U	5 U	10 U	5 U	10 U	5 U	10 U
Vanadium	NC NC	ug/l	60	50 U	70	270	180	110	240	220	50 U	70
Zinc	2000	ug/l	150	60:1	190	800 J	400	250-1	610	510 J	110	150 J

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

Date Printed: 4/28/2006

File: GW-ALL-Format-hits 2-24-05.xls

^{*} Exceedances (bold) - concentration above criterion

	NYS Class	Location ID	MW-01	MW-01	MW-02	MW-02	MW-03	MW-03	MW-04	MW-04	MW-05	MW-05
Chemical Name	GA	Sample Date	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96
Cyanide	200	ug/l	560 J *	601 J *	140 J	190	220 J *	270 *	5300 J *	4400 *	590 J *	660 *

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

Date Printed: 4/28/2006

File: GW-ALL-Format-hits 2-24-05.xls

^{*} Exceedances (bold) - concentration above criterion

Fulton, New York

Groundwater Samples - Pesticides PCBs

	NYS Class	Location ID	MW-01	MW-01	MW-02	MW-02	MW-03	MW-03	MW-04	MW-04	MW-05	MW-05
Chemical Name	GÁ	Sample Date	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96	07/24/96	09/04/96
Aldrin	ND	ug/l	0.051 U	0.056 U	0.053 UJ	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.05 UJ	0.053 U
alpha-BHC	0.01	ug/l	0.051 U	0.056 U	0.053 UJ	0.007 J	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.051 UJ	0.053 U
alpha-Chlordane	NC.	ug/l	0.051 U	. 0.056 U	0.053 U)	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.05 U1	0.053 U
Aroclor 1260	0.09	ug/l	1 U	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 U	1 U)	1.1 U
Aroclor 1254	0.09	ug/l	1.9	1.1 U .	1.1 UJ	1.1 U	1,1 UJ	1.1 U	1.1 UJ	1.1 U	1 UJ.	1.1 U
Aroclor 1221	0.09	ug/l	2 U	2.2 U	2.1 UJ	2.1 U	2.1 UJ	2.1 U	2.2 UJ	2.1 U	2 UJ	2.1 U
Aroclor 1232	0:09	ug/l	10	1,1 U	1.1 U)	1.1 U	1.1 U)	1.10	1.1 U)	1.1 U	- עו 1	1.1 U
Aroclor 1248	0.09	ug/l	1 U	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 U	1 UJ	1.1 U
Arodor 1016	0.09	ug/l	1 U	1.1 U	1.1 U)	1.1 U	1.1 U)	4.1 U	1.1 U)	1.1 U	1 U)	. 1.1 U
Aroclor 1242	0.09	ug/l	1.4 *	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 U	1 UJ	1.1 U
beta-BHC	0.04	ug/l	0.051 U	- 0.056 U	0.053 U0	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0:051 UJ	0:053 U
Camphechlor	0.06	ug/l	5.1 U	5.6 ป	5.3 U	5.3 U	5.3 U)	5.3 U	5.4 UJ	5.4 U	5.1 U)	5.3 U
delta-BHC	0.04	ug/l	0.051 U	0.056 U	0.053 U)	0.053/U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.051 UJ	0.053 U
4,4'-DDD	0.3	ug/l	0.1 U	0.11 U	0.11 UJ	0.11 U	0.11 UJ	0.11 U	0.11 UJ	0.11 U	0.1 UJ	0.11 U
4,4'-DDE	0.2	ug/l	0.1 U	0.11 Ü	0.11 UJ	0.11 U	0.11 UJ	0.013 BJ	0.11 ())	0.11 0	0.1 03	0.11 U
4,4'-DDT	0.2	ug/l	0.1 U	0.11 U	0.008 BJ	0.11 U 0.11 U	0.11 U)	0.11 U	0.11 UJ	0.11 U	0.1 UJ	0.032 J
Dieldrin :	0.004	ug/l	0.1 U	0.11·U 0.056 U	0.11 UJ 0.053 UJ	0.053 U	ປົ 0.053 ປັ	0.015 J *	0.011 UJ	0.11 U	0.1 U)	0.11 U
Endosulfan I	NC NG	ug/l	0.051 U 0.051 U	0.056 U 0.11 U	0.005 OJ	recommendate encommendate and a second contraction of the contraction		0.053 U 0.11 U	0.053 UJ 0.099 J	0.033 J 0.04 J	0.051 UJ	0.053 U
Endosulfan II Endosulfan Sulfate	NC NC		0.051 U	0.11 U	0.000 E3	0.11 U	0.11 UJ	0.11 U 0.11 U	0.11 UJ	0.11 U	0.1 UJ 0.1 UJ	0,038 J 0.11 U
Endrin	ND ND	ug/l ug/l	0.1 U	0.11 U	0.11 UJ	0.11 U	0.11 U)	0.11 U	0.11 UJ 0.22 UJ	0.11 U	0.1 UJ	0.11 U
Endrin Aldehyde	5	ug/l ug/l	0.1 U	0.11 U	0.11 UJ	0.11 U	0.11 UJ	0.11 U	0.22 UJ 0.11 UJ	0.11 U	0.03 UJ 0.1 UJ	0,11 U
Endrin Ketone	5	ug/l	0.1 U	0.11 U	0.11 UJ	0.11 U	0.11 03	0.11 U	0.11 U)	0.11 U	0.1 UJ	0.11 U
gamma-Chlordane	NC	ug/l	0.051 U	0.056 U	0.053 UJ	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.051 UJ	0.053 U
Heptachlor	0.04	ug/l	0.051 U	0.009.3	0.053 UJ	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.051 UJ	0.053 U
Heptachlor Epoxide	0.03	ug/l	0.051 U	0.007 J	0.053 UJ	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.051 J *	0.051 UJ	0.013 BJ
Lindane	0.05	ug/l	0.051 U	0.056 U	0.053 ÜJ	0.053 U	0.053 UJ	0.053 U	0.054 UJ	0.054 U	0.05 UJ	0.053 U
Methoxychlor	35	ug/l	0.51 U	0.56 U	0.53 UJ	0.53 U	0.53 UJ	0.53 U	0.22 J	0.54 U	0.5 UJ	0.53 U

Notes - Data Qualifier Definitions:

NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

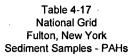
* Exceedances (bold) - concentration above criterion

Date Printed: 4/28/2006

File: GW-ALL-Format-hits 2-24-05.xls Database: NimoFulton_Chem.mdb (EQuIS)

	NYSDEC	Location ID	SD-2-10	SD-2-22	SD-3-25	SD-4-0	SD-7-5	BK-01	BK-02	BK-03	BK-04
	Sediment	Sample Date	5/24/2001	5/24/2001	5/24/2001	5/24/2001	5/24/2001	5/24/2001	5/24/2001	5/24/2001	1 5/24/2001
Chemical Name	Screening Value								-		
Benzene	0.06	mg/kg	0,012 U	0.014 U	0.013 U	0.012 U	0.015 U	0.01 U	0.01 U	0.01 U	0.01 U
Ethylbenzene	5.5	mg/kg	0.012 U	0.014 U	0.013 U	0.012 U	0.015 U	0.01 U	0.01 U	0.01 U	0.01 U
Toluene	1.5	mg/kg	0.012 U	0.014 U	0.013 U	0.012 U	0.015 U	0,01 U	0.01 U	0.01 U	0.01 U
Xylene (total)	1.2	mg/kg	0.012 U	0.014 U	0.013 U	0.012 U	0.015 U	0.01 U	0.01 U	0.01 U	0.01 U
Total BTEX	- NC	mg/kg	ł	**************************************		800 or <u>111</u>	20 m <u>20</u> j				

Notes - Data Qualifier Definitions:


NC - No criteria established, U - Not Detected, J - Estimated,

B- Blank contamination, --- Not Analyzed/No results.

* Exceedances (bold) - concentration above criterion

Date Printed: 5/1/2006

File: SED-ALL-Format-hits 2-24-05.xls
Database: NimoFulton_Chem.mdb (EQuIS)

Sediment data (mg/kg) compared to sediment screening values (ug/gOC).

(0 0)																
Sample ID	Units	Human Health Bioaccumulation	Benthic Aquatic Life Acute Toxicity	Benthic Aquatic Life Chronic Toxicity	SD2-10	sc	SD2-22	sc	SD3-25	SC	SD4-0	SC s	SD7-5	sc	BK1	SC
TOC	mg/kg				6251		5410		6031		12238		17018		8787	
тос	%OC/kg				0.63		0.54		0.60		1.22		1.70		0.88	
foc	gOC/kg				6.25		5.41		6.03		12.24		17.02		8.79	
Benzo[a]anthracene	ug/gOC	1.3	94	12	0,17	27,2	0.059	10.9	0.062	10.3	0.13	10.6	0,088	5.2	ND	
Benzo[a]pyrene	ug/gOC	1.3	94	12	0.15	24.0	0.052	9,6	ND		0.099	8,1	0.083	4.9	1.1	125.2
Benzo[b]fluoranthene	ug/gOC	1.3	94	12	0.19	30.4	0.081	15.0	0.058	9.6	0.14	11.4	0.14	8.2	ND	-
Benzo[g,h,i]perylene	ug/gOC	NC ·	NC	NC	0.087	13.9	ND	-	ND	-	0.067	5.5	0.062	3.6	ND	-
Benzo[k]fluoranthene	ug/gOC	1.3	94	12	0.072	11,5	ND		ND	-	0.054	4.4	ND	-	ND	-
Chrysene	ug/gOC	1.3	94	12	0.16	25.6	0.066	12.2	0.051	8.5	0.12	9.8	0.086	5.1	ND	-
Fluoranthene	ug/gOC	NC	NC	1020	0.26	41.6	0.11	20.3	0.093	15.4	0.25	20.4	0,14	8.2	ND	- 1
Indeno[1,2,3-cd]pyrene	ug/gOC	1.3	94	12	0.078	12.5	ND	•	ND	-	0.061	5.0	0.055	3.2	ND	-
Phenanthrene	ug/gOC	NC	NC	120	0.14	22.4	0.049	9.1	ND	1	0,14	11.4	ND	-	ND	•
Pyrene	ug/gOC	NC	8775	961	0.28	44.8	0.13	24.0	0.092	15,3	0.24	19.6	0.17	10.0	ND	-

Notes

Technical Guidance for Screening Contaminated Sediments, NYSDEC 1999.

Fresh water screenig values used.

SC = screening concentration which normalizes concentration presented in units of ug/gOC consistent with guidance values. For example, to evaluate benzo[a]anthracene in SD2-10, the sample concentration (170 ug/Kg) is divided by the fraction of organic carbon (foc, 6.25 gOC/kg) to obtain a SC of 27 ug/gOC.

TOC = total organic carbon; foc = fraction of organic carbon.

Table 4-18 National Grid Fulton, New York Sediment and Surface Soil Samples - Total Organic Carbon

 	TOO
	TOC
	Concentration
	(ppm)
	8787
	6251
5/24/2001	5410
5/24/2001	6031
5/24/2001	12238
5/24/2001	17018
Surface S	oils
5/14/2001	13629
5/14/2001	62855
5/14/2001	39093
5/14/2001	39538
5/14/2001	56457
5/14/2001	42450
5/14/2001	10332
5/14/2001	26032
4/16/2002	17238
4/16/2002	29299
4/16/2002	22385
	30236
	39434
4/16/2002	15211
4/16/2002	26258
	17801
	23825
	11840
	5/24/2001 5/24/2001 Surface S 5/14/2001 5/14/2001 5/14/2001 5/14/2001 5/14/2001 5/14/2001 5/14/2001 4/16/2002 4/16/2002 4/16/2002 4/16/2002 4/16/2002

Date Printed: 4/28/2006 File: TOC Data Table.xls

Table 4-19 National Grid Fulton, New York Storm sewer water sampling results

	Location ID	Storm - Upgradient	Storm - Downgradient								
Chemical Name	Sample Date		6/20/01								
	Volatile Organ	nic Compounds									
Benzene :	ug/l	<0.50	1.6								
Ethylbenzene	ug/l	<0.50	<0.50								
Toluene	ug/l	< 0.50	0.69								
Xylene (total)	ug/l	<0.50	0.68								
Total BTEX:	ug/l		2.97								
Semivolatile Organic Compounds											
Acenaphthene	ug/l	<10.	<10.								
Acenaphthylene	ug/l	<10.	<10.								
Anthracene	ug/l	<10	<10.								
Benzo[a]anthracene**	ug/l	<10.	<10.								
Benzo[a]pyrene**	ug/l	<10.	<10.								
Benzo[b]fluoranthene**	ug/l	<10.	<10.								
Benzolg.h.ijperylene	ug/l	<10.	<10								
Benzo[k]fluoranthene**	ug/l	<10.	<10.								
Chrysene**:	ug/l	<10	<10.								
Carbazole	ug/l	<10.	<10.								
2-Chloronaphthalene	ug/l	<10.	<10.								
Dibenz[a,h]anthracene**	ug/l	<10.	<10.								
Dibenzofuran	ug/l	<10.	<10.								
2,4-Dimethylphenol	ug/l	<10.	<10.								
2,4-Dinitrotoluene	ug/l	<10	<10.								
Fluoranthene	ug/l	<10.	<10.								
Fluorene:	ug/L	<10.	<10:								
Indeno[1,2,3-cd]pyrene**	ug/l	<10.	<10.								
2-Methylnaphthalene	ug/l	<10	<10								
4-Methylphenol	ug/l	<10.	<10.								
2-Methylphenol	ug/l	<10	<10.								
Naphthalene	ug/l	<10.	<10.								
Phenanthrene	ug/l	<10	<10.								
Phenol	ug/l	<10.	<10.								
Pyrene	ug/l	<10	<10.								
Total CPAH	ug/l	,									
Total PAH	ug/l										

Notes - Data Qualifier Definitions:

NC-No criteria established, U - Not Detected, J - Estimated,

Date Printed: 4/28/2006

File: Table 4-19 Storm sewer water sampling results.xls

B- Blank contamination, --- Not Anaiyzed/No results.

^{*} Exceedances (bold) - concentration above criterion

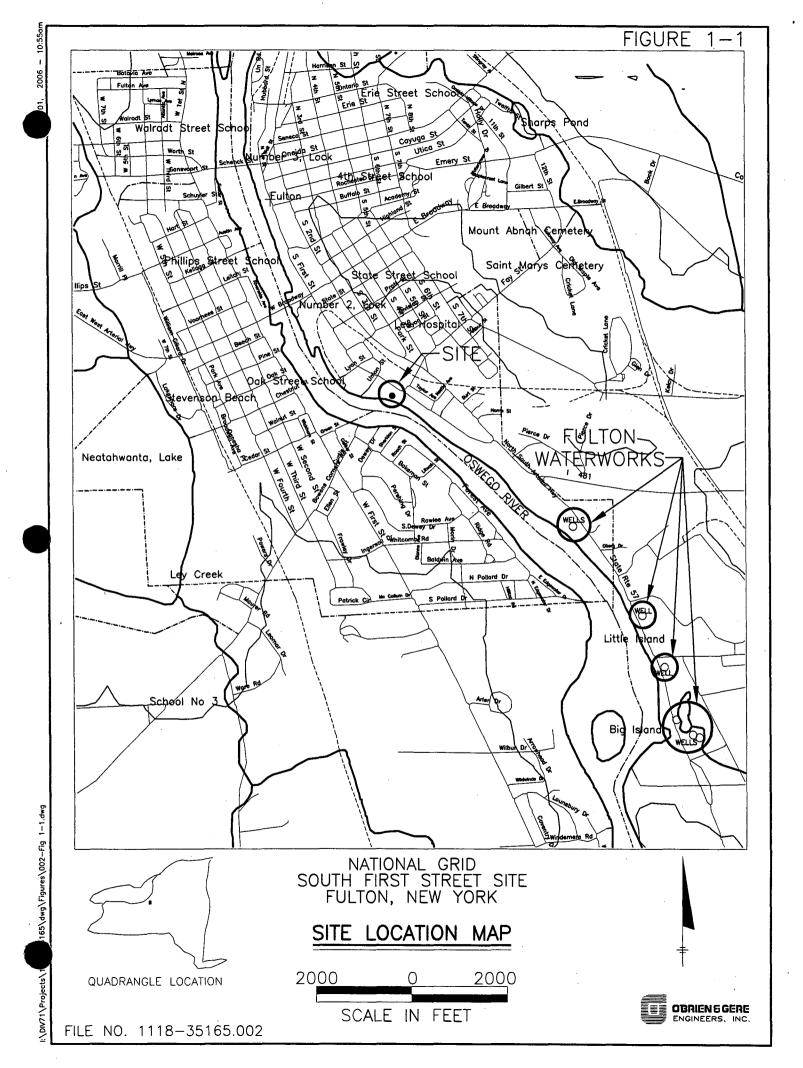


FIGURE 1-3

LEGEND

----- PROPERTY LINES

HISTORICAL STRUCTURES

NATIONAL GRID SOUTH FIRST STREET SITE FULTON, NEW YORK

HISTORICAL FEATURES

FILE NO. 1118.35165.004 FEBRUARY 2005

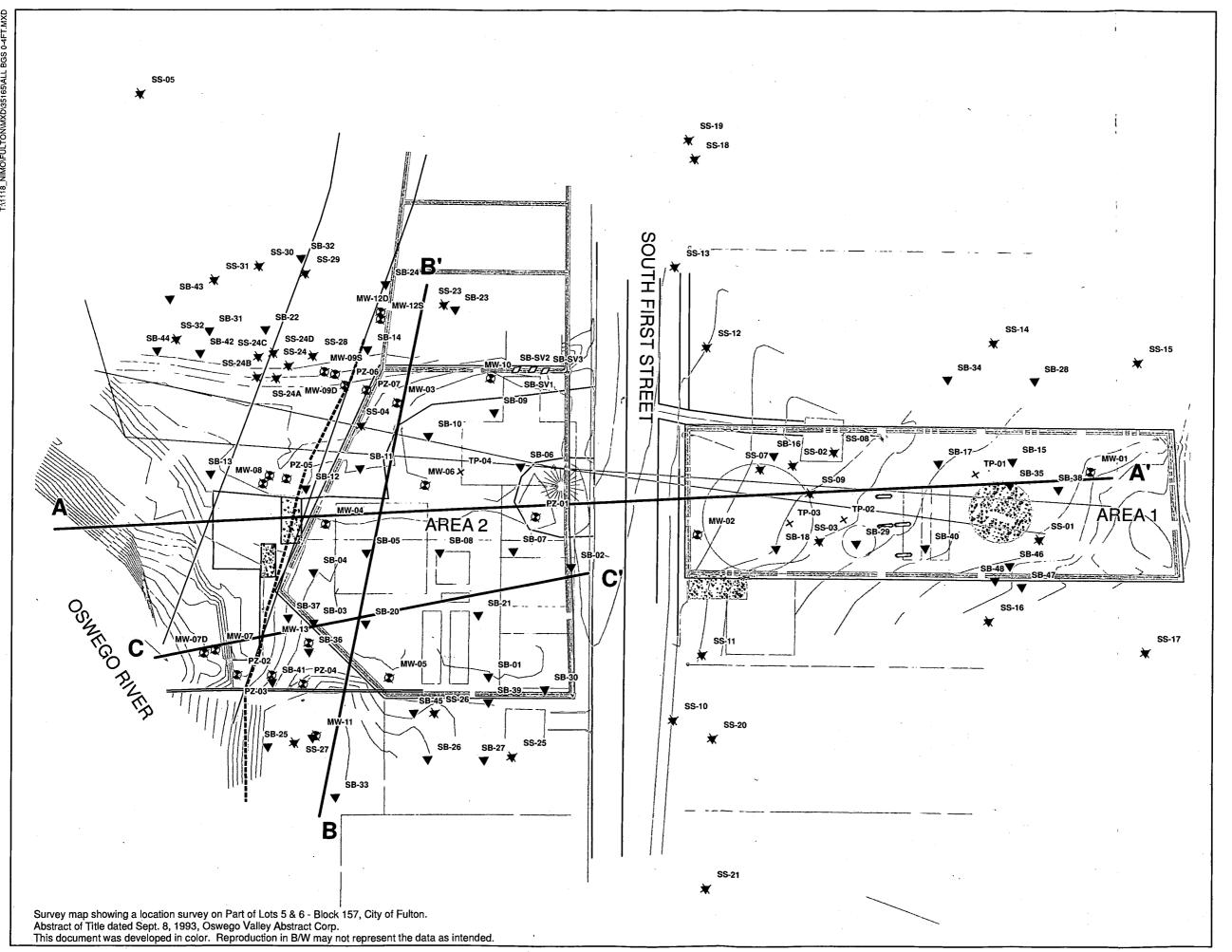
FIGURE 1-2

LEGEND

-P--- PROPERTY LINES

- - AREA BOUNDARIES

RESIDENTIAL PROPERTY OWNERSHIP


NATIONAL GRID SOUTH FIRST STREET SITE FULTON, NEW YORK

SITE MAP

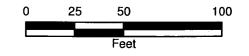
FILE NO. 1118.35165.003 FEBRUARY 2005

FIGURE 2-1

LEGEND

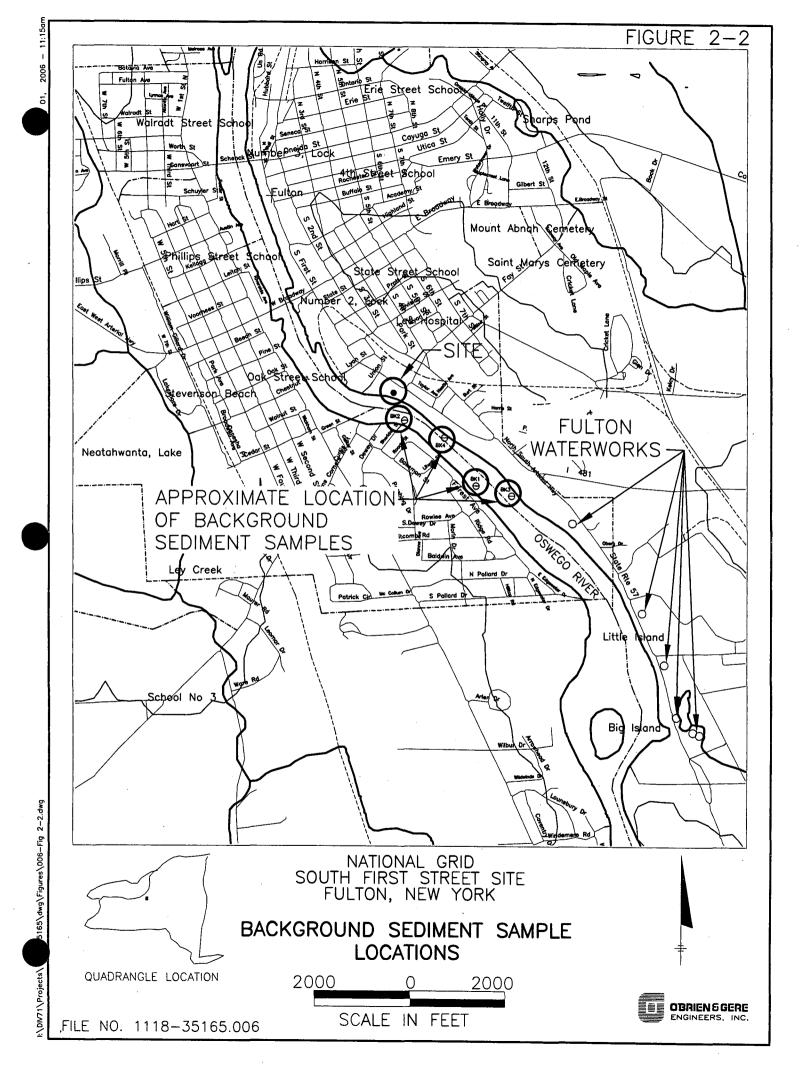
— CROSS SECTION LINES

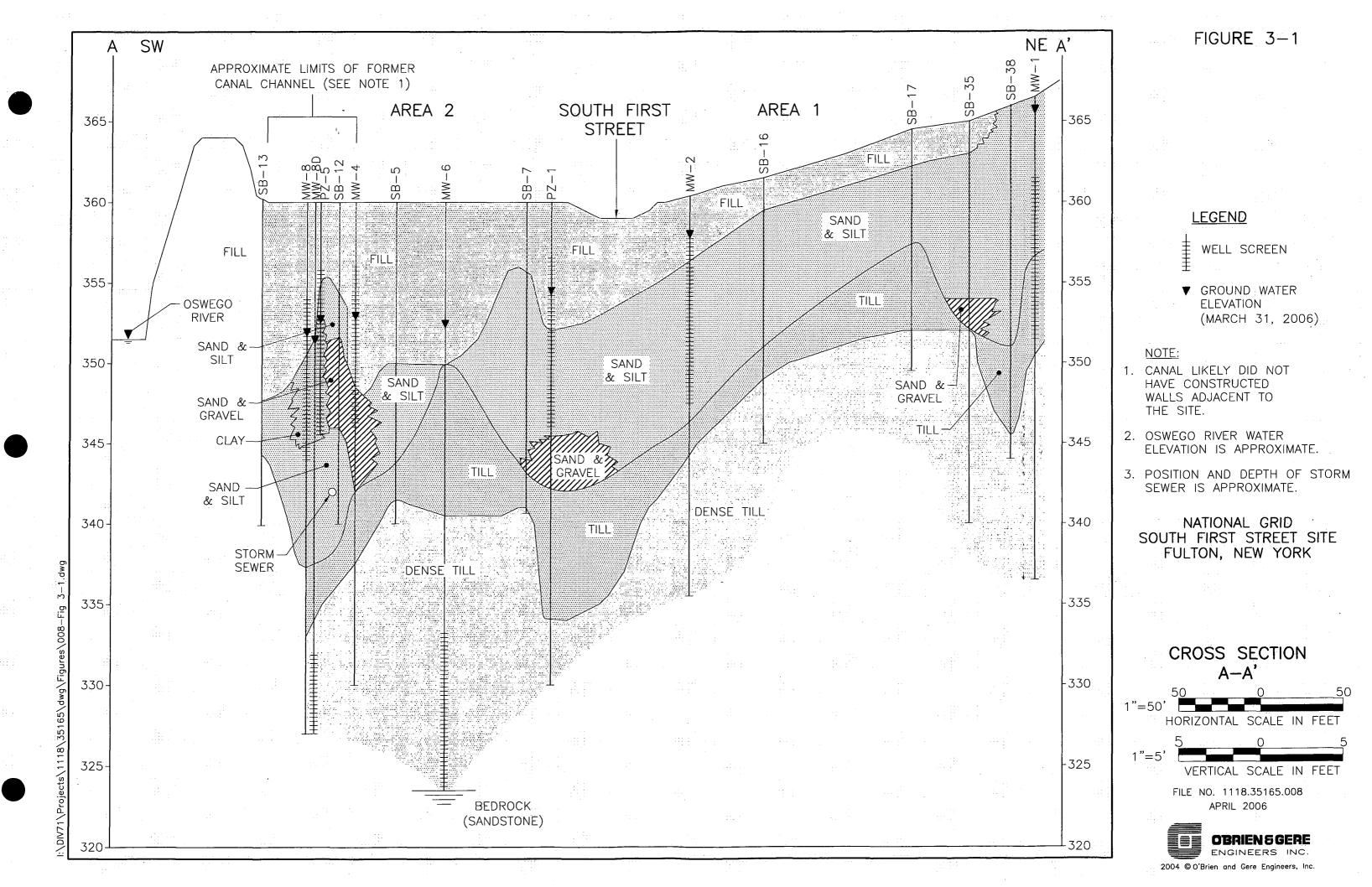
---- APPROX CANAL BOUNDARY

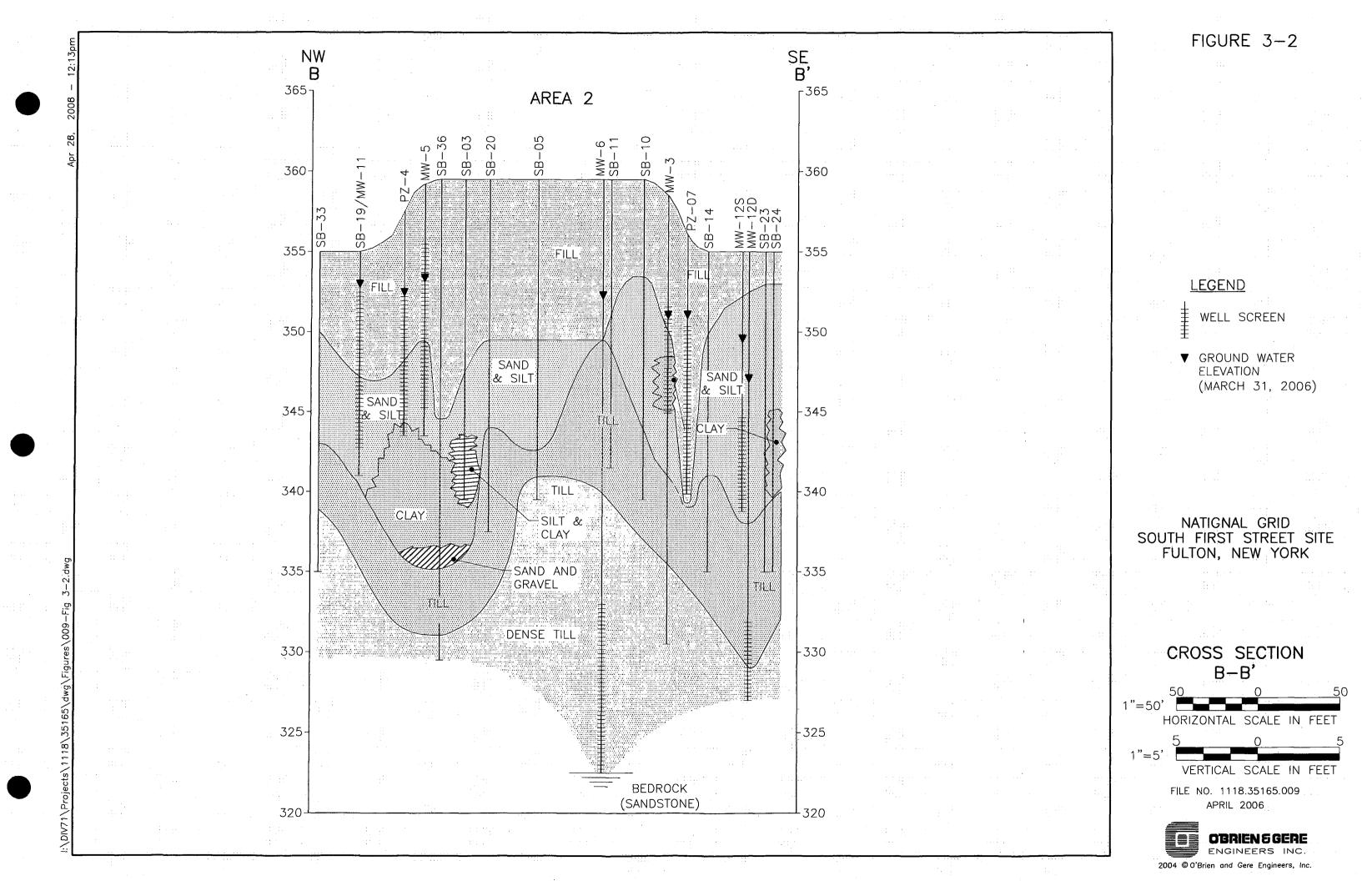

----- SEWER LINE

Sample Locations

- ♦ MONITORING WELL
- ◆ PIEZOMETER
- ▲ SOIL BORING
- ♦ SOIL VAPOR
- ★ SURFACE SOIL
- + TEST PIT


NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

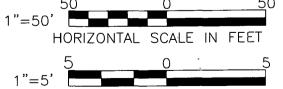

SAMPLE LOCATIONS



MARCH 2005 1118.35165

LEGEND

WELL SCREEN


▼ GROUND WATER ELEVATION (MARCH 31, 2006)

NOTE:

- 1. CANAL LIKELY DID NOT HAVE CONSTRUCTED WALLS ADJACENT TO THE SITE.
- 2. OSWEGO RIVER WATER ELEVATION IS APPROXIMATE.
- 3. POSITION AND DEPTH OF STORM SEWER IS APPROXIMATE.

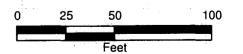
NATIONAL GRID SOUTH FIRST STREET SITE FULTON, NEW YORK

CROSS SECTION C-C'

VERTICAL SCALE IN FEET

FILE NO. 1118.35165.010 APRIL 2006

LEGEND


- MONITORING WELL
- PIEZOMETER
- SOIL BORING
- SOIL VAPOR
- SURFACE SOIL
- F TEST PIT
- APPROX BOUNDARY OF FORMER CANAL
- ---- SEWER LINE
- GROUND WATER CONTOUR
- - GROUND WATER CONTOUR ESTIMATED

NOTE

(365.75) SHALLOW GROUND WATER ELEVATION (FT, NAVD 1988)

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

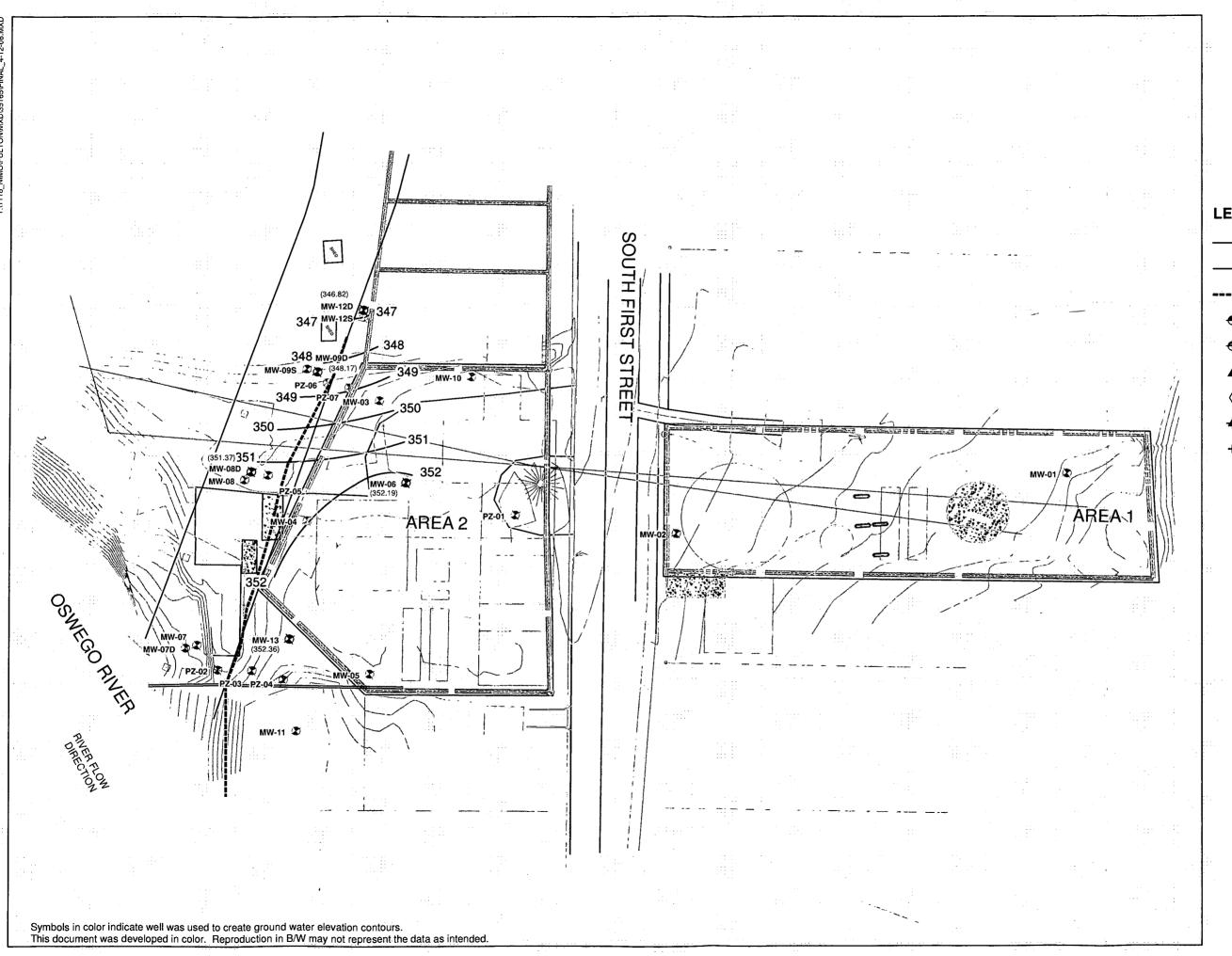
SHALLOW GROUND WATER ELEVATION CONTOURS (11/5/05)

LEGEND

- MONITORING WELL
- PIEZOMETER
- SOIL BORING
- SOIL VAPOR
- SURFACE SOIL
- TEST PIT
- --- APPROX BOUNDARY OF FORMER CANAL
- SEWER LINE
- GROUND WATER CONTOUR
- = = = ESTIMATED GROUND WATER CONTOUR

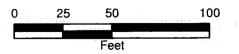
NOTES

(365.75) SHALLOW GROUND WATER ELEVATION (FT, NAVD 1988)

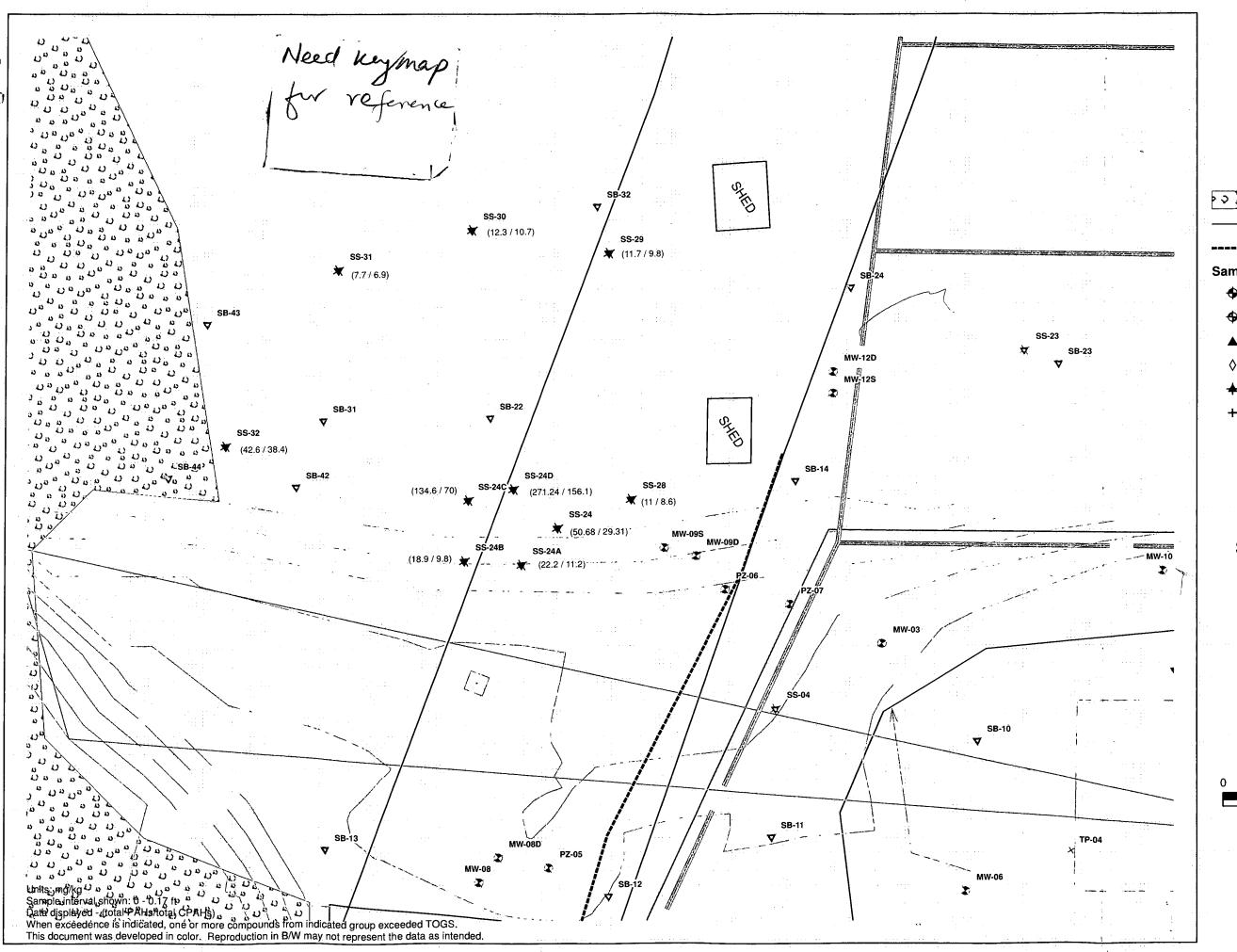

[365.75] DEEP GROUND WATER ELEVATION (FT, NAVD 1988)

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SHALLOW GROUND WATER ELEVATION CONTOURS (3/31/06)



LEGEND


- GROUND WATER CONTOUR
- APPROX BOUNDARY OF FORMER CANAL
- ---- SEWER LINE
 - MONITORING WELL
 - PIEZOMETER
 - ▲ SOIL BORING
 - ♦ SOIL VAPOR
- **★** SURFACE SOIL
- + TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

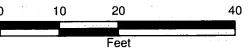
DEEP GROUND WATER ELEVATION CONTOURS (3/31/06)

LEGEND

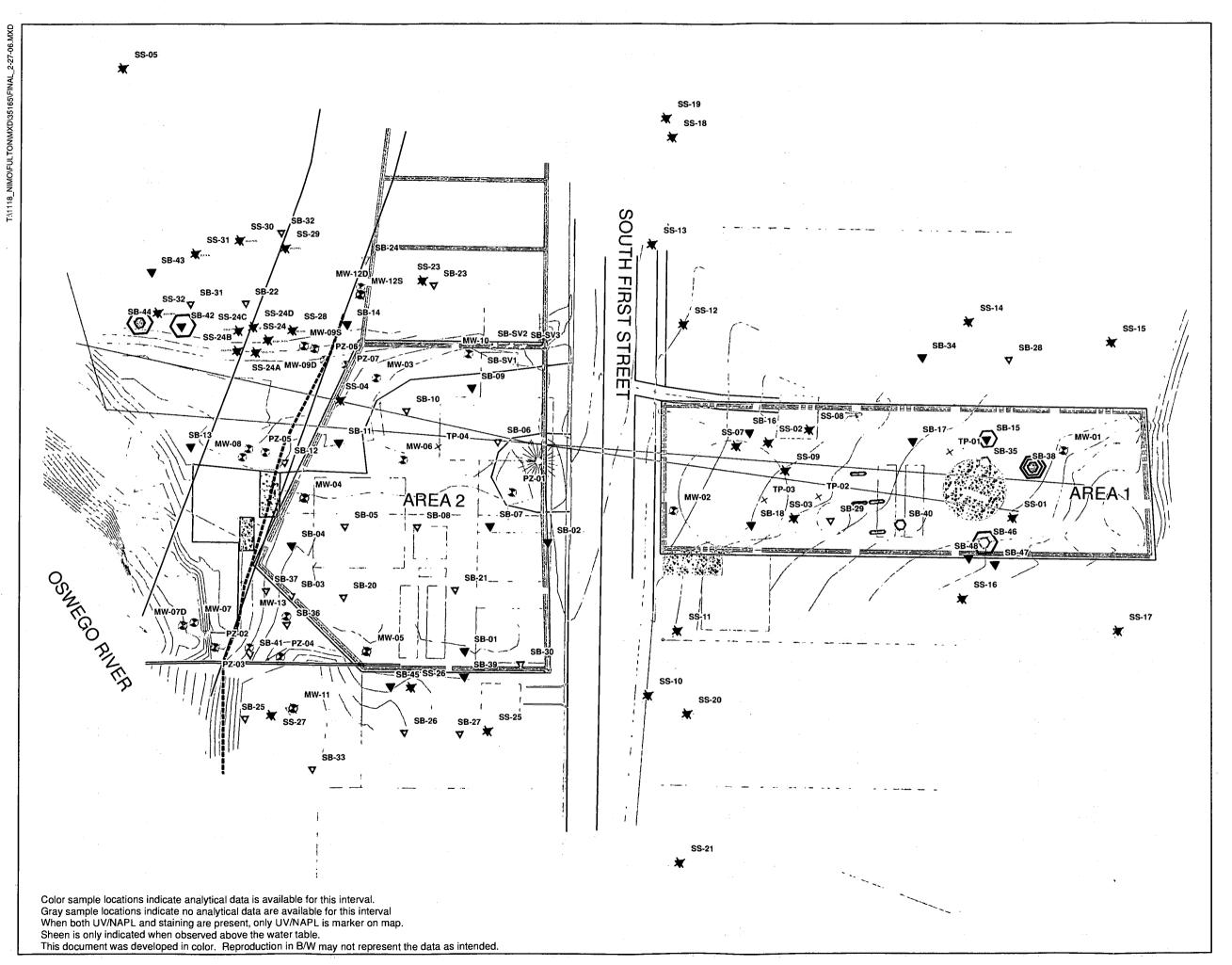
APPROXIMATE TREE LINE

APPROX BOUNDARY OF FORMER CANAL

SEWER LINE


Sample Locations

- MONITORING WELL
- PIEZOMETER
- SOIL BORING
- SOIL VAPOR
- SURFACE SOIL
- + TEST PIT


NOTES: SEE FOOTNOTE

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SURFACE SOIL AREA 2 OFFSITE PAH/CPAH RESULTS

LEGEND

APPROX CANAL BOUNDARY

--- SEWER LINE

PAHs >= 500

BTEX ABOVE CRITERIA

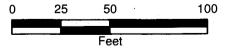
UV POSITIVE OR NAPL

STAIN OR SHEEN

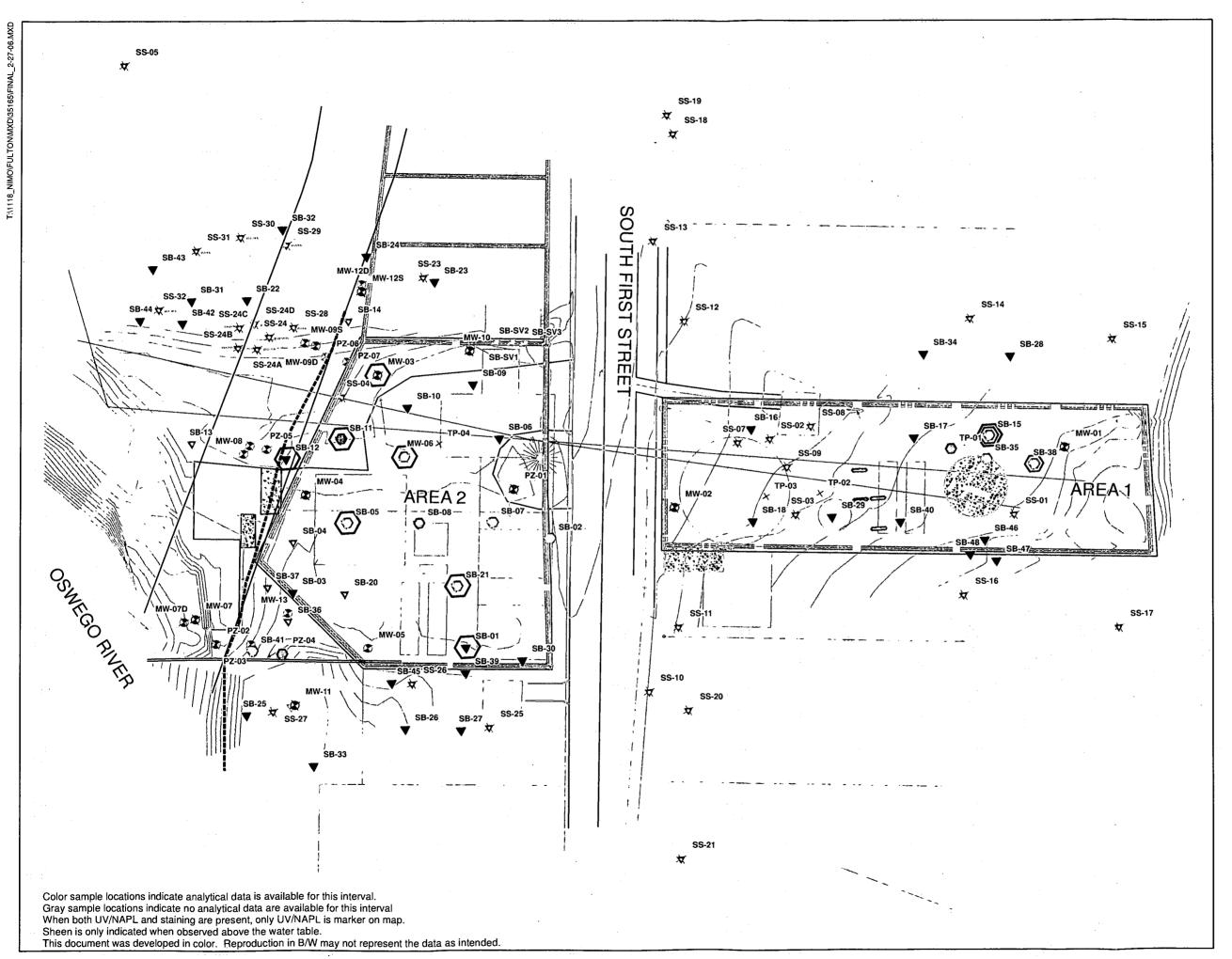
SAMPLE TYPE

MONITORING WELL

PIEZOMETER


SOIL BORING

SURFACE SOIL


TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SOIL SAMPLE LOCATIONS 0-4 FT BGS TOTAL PAHs >= 500 PPM **BTEX ABOVE CRITERIA**

LEGEND

APPROX CANAL BOUNDARY

SEWER LINE

PAHs >= 500

BTEX ABOVE CRITERIA

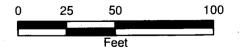
O UV POSITIVE OR NAPL

STAIN OR SHEEN

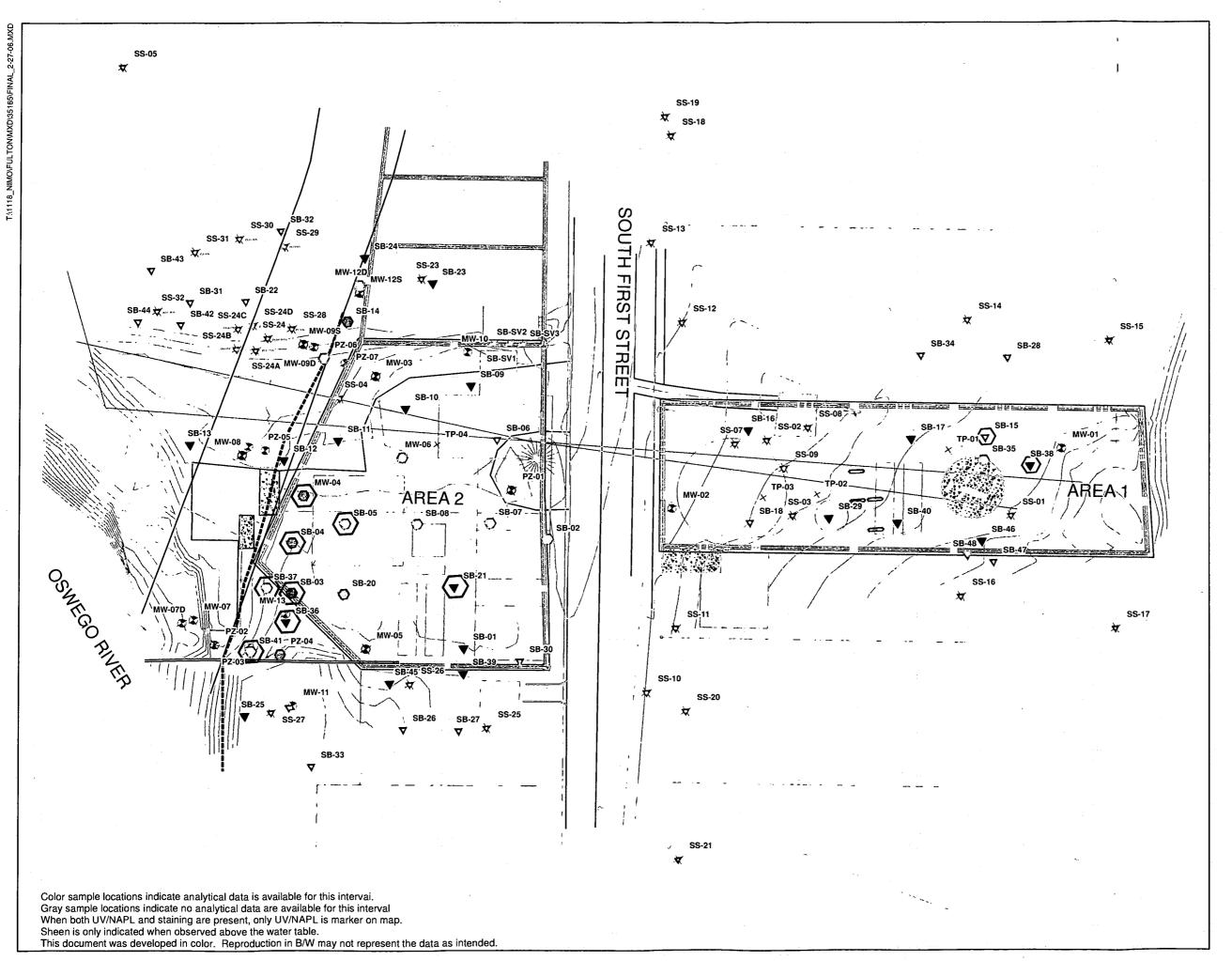
SAMPLE TYPE

♦ MONITORING WELL

◆ PIEZOMETER


▲ SOIL BORING

SURFACE SOIL


+ TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SOIL SAMPLE LOCATIONS 4-8 FT BGS TOTAL PAHs >= 500 PPM BTEX ABOVE CRITERIA

LEGEND

— APPROX CANAL BOUNDARY

SEWER LINE

PAHs >= 500

 \bigcirc

0

BTEX ABOVE CRITERIA

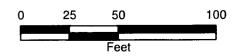
O UV POSITIVE OR NAPL

STAIN OR SHEEN

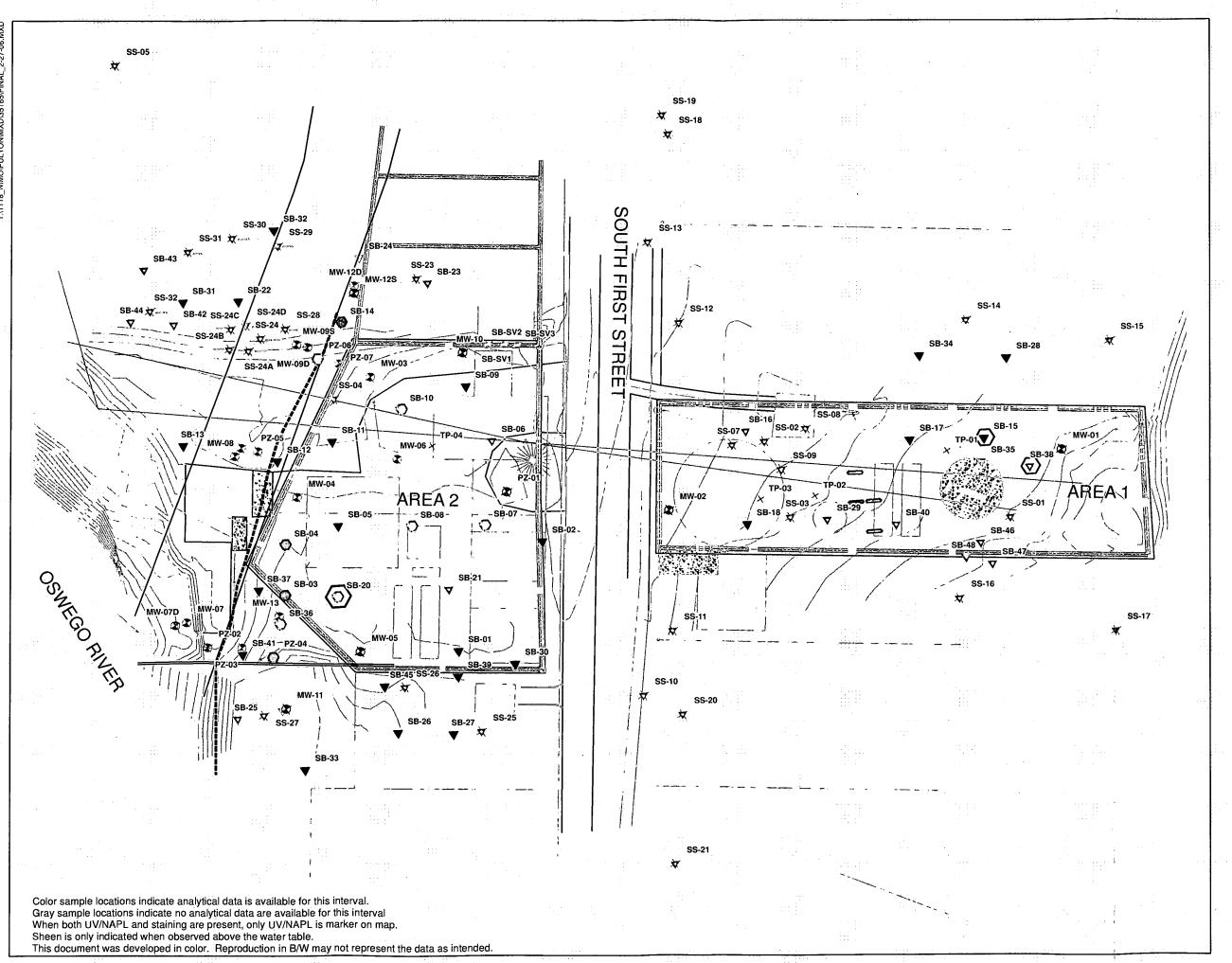
SAMPLE TYPE

♦ MONITORING WELL

PIEZOMETER


▲ SOIL BORING

★ SURFACE SOIL


+ TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SOIL SAMPLE LOCATIONS 8-12 FT BGS TOTAL PAHs >= 500 PPM BTEX ABOVE CRITERIA

LEGEND

APPROX CANAL BOUNDARY

---- SEWER LINE

PAHs >= 500

BTEX ABOVE CRITERIA

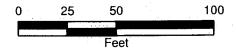
O UV POSITIVE OR NAPL

STAIN OR SHEEN

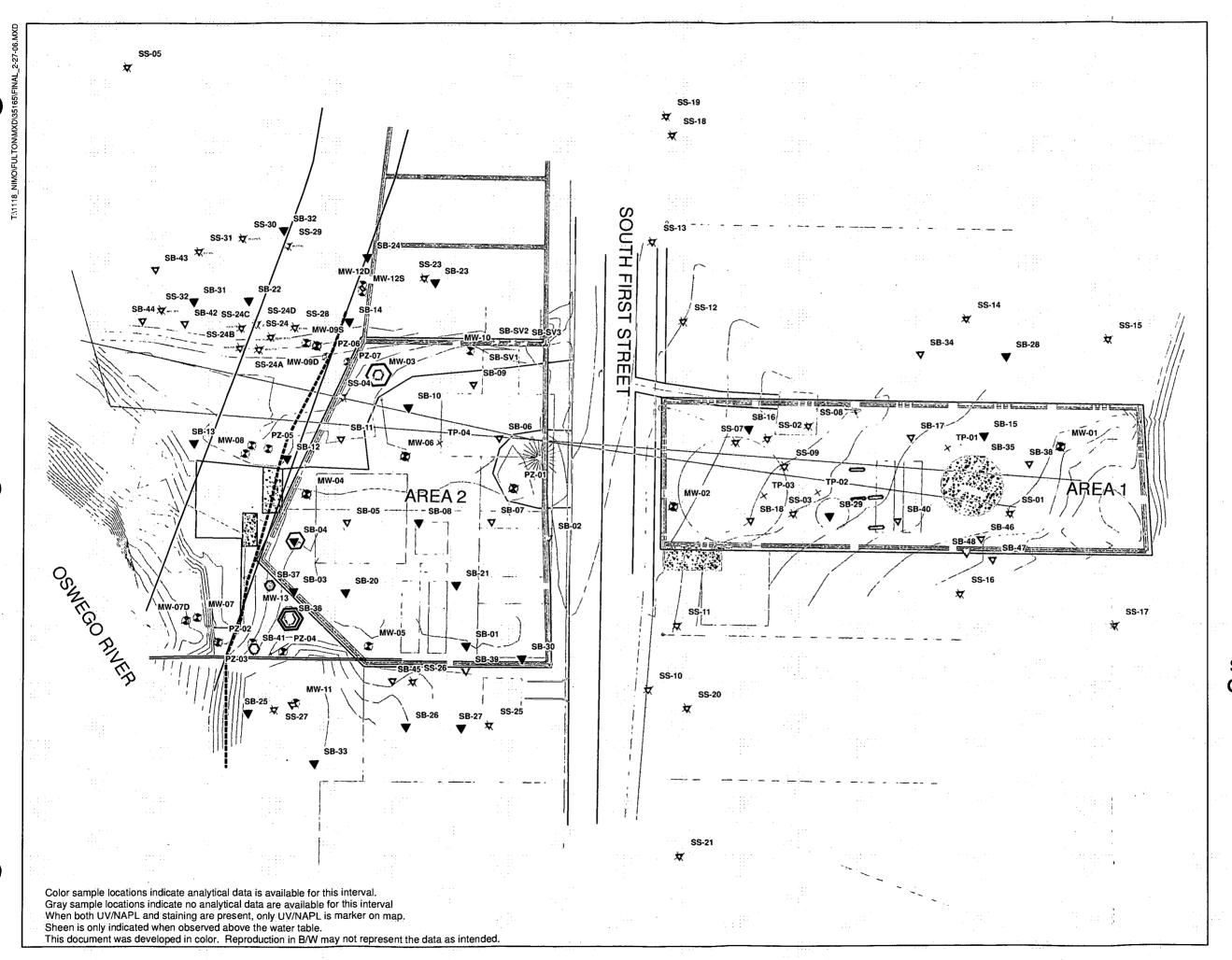
SAMPLE TYPE

♦ MONITORING WELL

◆ PIEZOMETER


▲ SOIL BORING

★ SURFACE SOIL


► TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SOIL SAMPLE LOCATIONS 12-16 FT BGS TOTAL PAHS >= 500 PPM BTEX ABOVE CRITERIA

LEGEND

APPROX CANAL BOUNDARY

-- SEWER LINE

PAHs >= 500

BTEX ABOVE ORITERIA

UV POSITIVE OR NAPL

STAIN OR SHEEN

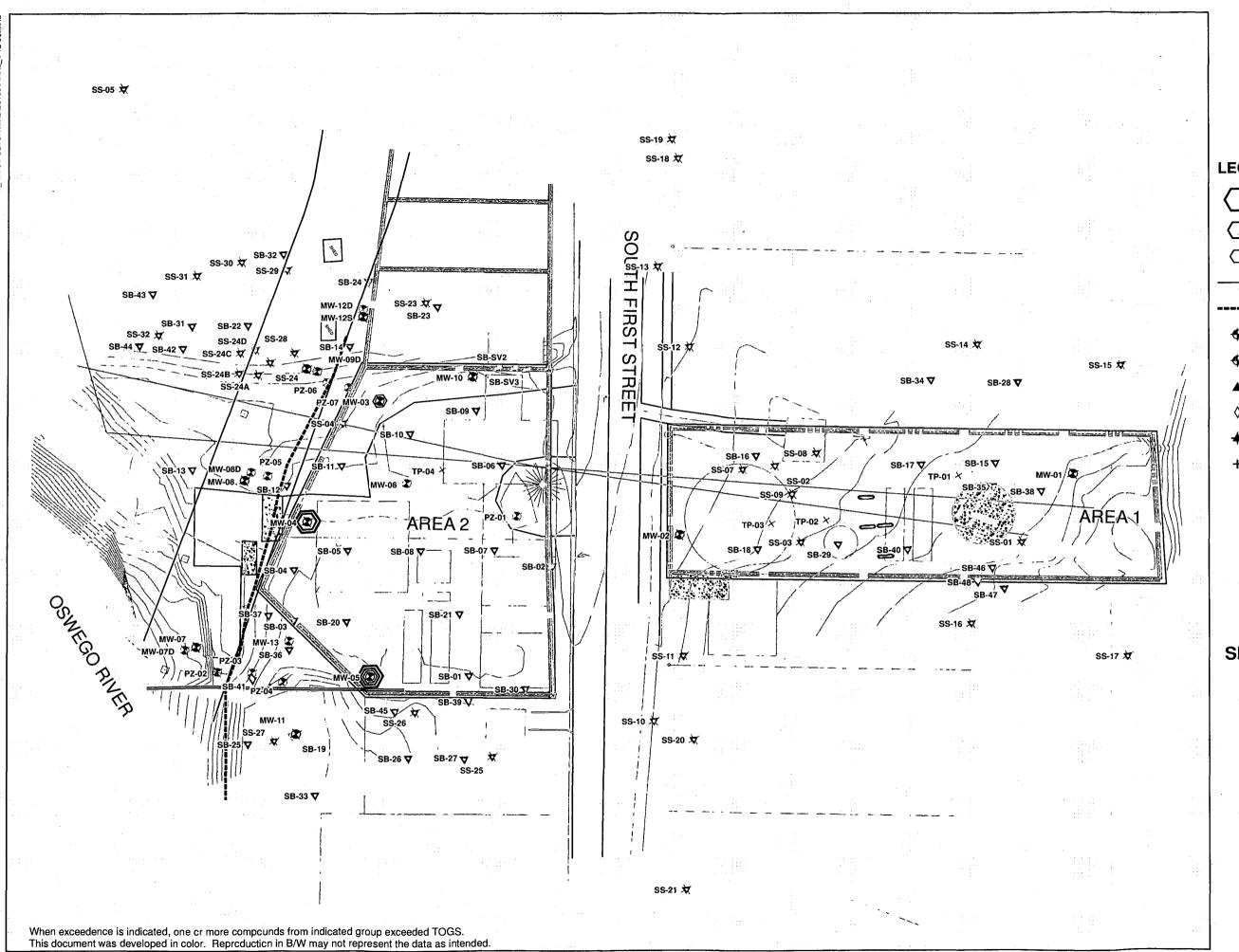
SAMPLE TYPE

MONITORING WELL

PIEZOMETER

SOIL BORING

SURFACE SOIL


TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

SOIL SAMPLE LOCATIONS **GREATER THAN 16 FT BGS** TOTAL PAHs >= 500 PPM **BTEX ABOVE CRITERIA**

LEGEND

ONE OR MORE PAH >= TOGS

BTEX >= TOGS

> CYANIDE >= TOGS

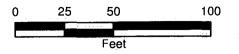
—— APPROX BOUNDARY OF FORMER CANAL

---- SEWER LINE

◆ MONITORING WELL

PIEZOMETER

▲ SOIL BORING


SOIL VAPOR

SURFACE SOIL

+ TEST PIT

NATIONAL GRID SOUTH FIRST STREET EULTON, NEW YORK

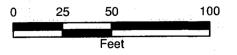
SHALLOW GROUND WATER SAMPLE DATA NOVEMBER 2005 PAHS EXCEEDING TOGS BTEX EXCEEDING TOGS

LEGEND

ONE OR MORE PAH >= TOGS

BTEX >= TOGS

CYANIDE >= TOGS


----- APPROX BOUNDARY OF FORMER CANAL

SEWER LINE


- MONITORING WELL
- PIEZOMETER
- ▲ SOIL BORING
- ♦ SOIL VAPOR
- SURFACE SOIL
- + TEST PIT

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

DEEP GROUND WATER
SAMPLE DATA
NOVEMBER 2005
PAHS EXCEEDING TOGS
BTEX EXCEEDING TOGS

Appendix A

Soil boring logs and monitoring well details

O'BRIE	N &	GERE	ENGINE	ERS, INC.		TEST BORING LOG	REPOR	T OF B		
Client:			Mohawk			Sampler: 2" Split Spoon	Page 1 of 2		<u>'</u>	
	i Los: Eulton NV						Location:			
roj. Lo	. Loc: Fulton, NY					Hammer: 140 lbs				
File No.: 1118.081						 Fall: 30"	Start Date: 7/12/96 End Date: 7/12/96			
Boring (Parratt V	olff, Inc.			Screen = \ Grout			
oremar			Brian Wa				Riser		Sand Pa	
OBG Geologist: Chawn O'Dell						<u> </u>			Bentonit	
Depth					<u>.</u>		Stratum Change		Field Tes	, -
Below		Depth	Blows	Penetr/	"N"	 Sample Description	General	Equip.	1	Jar Head Space
Grade	No.	(feet)	/6"	Recovery	Value		Descript	installed	-	(PPM)
0	1	0-2	-18	1.5'/0.1'	40	Dense, coarse angular GRAVEL, lodged in			0.0	0.0
		<u> </u>	22-5		ļ	split spoon tip				
1				<u> </u>						
2	2	2-4	3-1	2'/1.2'	6	Light brown (5YR 5/6), moist, loose, fine to			0.0	0.0
			5-6			medium SAND			J	
3										i
					ļ. <u> </u>	<u> </u>				[
4	3	4-6	7-7 10-10	2'/0.8'	17	Moderate yellowish brown (10YR 5/4), wet medium dense, fine SAND, little silt, trace			0.0	0.0
5	1	 	10-10		1	medium dense, fine SAND, little silt, trace		1	1	
								1	1	1
6	4	6-8	8-5	2'/1.3'	9	Moderate yellowish brown (10YR 5/4),			65	275
	├ —		4-7			saturated, loose fine to medium SAND, little	1.			
<u>7.</u>	-					silt, strong odor			(Dup-64)	(Dup-272)
8	5	8-10	8-10	2'/1.5'	20	 Moderate yellowish brown (10YR 5/4), sat-			1.5	6.8
	ľ		10-10	2,71.0		urated, medium dense fine SAND, some silt			1.5	0.0
9					-]				
										İ
10	6	10-12	5-7	2'/0,0'	17	No recovery				
11	 	 	10-8		 	-				
						-		1		
12	7	12-14	10-11	2'/1.5'	23	Pale yellowish brown (10YR 6/2), saturated,			0.0	2.2
		ļ	12-10			medium dense, fine SAND, some very fine		1		
13	 	ļ			 	sand, little silt	1	}	1	1
14	8	14-16	6-7	2'/0.8'	18	Light brown (5YR 5/6), wet, medium dense,		İ	0.0	2.9
	Ĭ	1,4-10	11-7	2,0.0		medium to coarse SAND, some subrounded		1	0.0	2.5
15						to subangular fine to medium gravel, little				
	 	ļ <u> </u>	 	 	 	fine sand to silt		1	ł	
16	9	16 19	20-25	2'/1.5	60	Light brown (EVP 5/5) moint to wat				
10	1	16-18	35-29	211.3	100	Light brown (5YR 5/6), moist to wet, extremely dense, fine to medium SAND, some			0.0	0.0
17						subrounded to subangular fine to coarse				
	-			ļ		gravel, little coarse sand and silt		[1	
	1	10	1.0.0-		-	-		1		
18	10_	18-20	12-26 50/0.4'	1.4'/0.9'	50+	Light brown (5YR 5/6), extremely dense, fine to medium SAND, some silt, little fine to			0.0	0.0
19	+	1		 	1	coarse angular gravel, trace coase sand		1		
]			1	
20	11	20-22	27-45	1.97/1.5	50+	Light brown (5YR 5/6), extremely dense,	1		0.0	0.0
	-		49-50/0.4	-	-	fine to medium SAND, some silt, little fine to				
21	+	-	 	 	+	coarse angular gravel, trace coase sand	1	}	1	
	+	 	1	 _	-	1				
	1	1	1	1	1	1				
										
								CPO:ers/4_n	&d/sb-1	

O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk						TEST BORING LOG	REPORT OF BORING SB-1				
						0 0 0 0					
Client:		Niagara	Mohaw	k		Sampler: 2" Split Spoon	Page 2 of 2 Location:				
Proj. Loc: Fulton, NY			Hammer: 140 lbs	Location.							
							Start Date	: 7/12/9	6 -		
File No.: 1118.081						Fall: 30"	End Date:	7/12/9	,		
Boring Company: Parratt Wolff, Inc.							Screen	= _	Grout	_	
Foreman: Brian Waters OBG Geologist: Chawn O'Dell							Riser			Sand Pack Bentonite	
OBG Geologist: Chawn O'Dell				O Dell	·		Stratum			esting	
Depth		Ì	ļ		j		Change]	PID Over		
Below		Depth	Blows	Penetr/	"N"	Sample Description	General	Equip.	Spoon	Space	
Grade	No.		/6"	Recovery	Value		Descript	Installed		(PPM)	
22	12	22-24	5.0/0.2	0.2'/0.2'	50+	Light brown (5YR 5/6), extremely dense,	1		0.0	0.0	
23	-	 	 	 		fine to medium SAND, some silt, little fine to coarse angular gravel, trace coarse sand					
	t	l —	ļ		l	abarae arigular graver, trace evalue saria					
24	13	24-26	50/0.4	0.4'/0.4'	50+	Light brown (5YR 5/6), extremely dense,			0.0	0.0	
	<u> </u>		ļ			fine to medium SAND, some silt, little fine to					
25	 			 	 	coarse angular gravel, trace coarse sand	1				
26	14	26-28	50/0.2	0.2'/0.2'	50+	Light brown (5YR 5/6), extremely dense,	1		0.0	0.0	
	Ė					fine to medium SAND, some sitt, little fine to			(dup	(dup	
27						coarse angular gravel, trace coarse sand			0.0)	0.0)	
	ļ	<u> </u>	 	 							
28	15	28-30	50/0.2	0.2'/0.2'	50+	Light brown (5YR 5/6), extremely dense, fine to medium SAND, some silt, little fine to]		0.0	0.0	
	┼─┈	-	 	 	-	coarse angular gravel, trace coarse sand					
						and an analysis of the second	1				
	<u> </u>]		
			<u> </u>								
	 	├	-	 				1	ĺ		
			<u> </u>				1				
							Ĭ	İ			
	<u> </u>	<u> </u>	 	 	ļ		1 .				
	-		 								
	†	ļ ————				·					
	<u> </u>	ļ	ļ	ļ				1		,	
<u> </u>	┼─		 	 	 		1				
	1	 		 	 						
									}	'	
<u> </u>	 	ļ	ļ		ļ						
		 	<u> </u>	 		·					
 	-		+		 						
							1.				
<u> </u>	↓	-	 	 							
	 	 	 	-	1.	1					
 	1	1	 	 	 						
The boreh	ole was	backfilled	to the surfa	ce with cement	/bentonite	grout. The asphalt was repaired with asphalt pa	tch.				
I											

CPO;ers/4_n&d/sb-1(2)

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-3** Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 02/22/00 File No.: 1118/29192 Fall: 30 inches **End Date:** 02/22/00 Boring Company: Parratt-Wolff, Inc. \ Grout Screen Joe Persey Foreman: Riser Sand Pack Drill Rig: IR Steel 7 **Bentonite OBG Geologist: Peter Bogardus** Stratum Field Depth Change Testing Depth Blows Penetr/ "N" PID **Below** Sample Description General Equip. (feet) Value Grade No. /6" Recovery UV Descript Installed (ppm) 41 0.5 2 40 1.5/1.0 Asphalt 0.037/1.0 0.0 none 29-12 Moderate Brown 10r 4/6, Hard SILT with SAND, and fine to coarse gravel red brick 2 4 14-17 2/1.0 37 Gravish Orange 10 yr 7/4 dense fine to 0.042/1.0 0.0 none 20-20 medium SAND to approx. 3 ft. Red brick -tile encountered to 3.5'. Then moderate brown silt some sand to fine gravel hard drilling to 5' moderate brown silt same for coarse sand to fine gravel hard drilling to 5' concrete 2/NR 15 4 6 9-9 No recovery 0.043/1.0 6-5 2/1.0 Moderate Brown, moist SILT and fine 8 4-2 0.043/1.0 6 0.0 none 10-14 SAND, some fine to moderate gravel (red brick) 10 2/.5 8 R 11-5 Black N3, wet, loose, fine to medium 0.066/1.0 25.0 none 3-2 GRAVEL, little silt, odorous (poor recovery) 2/.5 10 12 1-4 Black N3, wet, loose, fine to medium 0.072/1.0 60.0 none 3-2 GRAVEL, little silt, odorous (poor recovery) 12 14 2-3 2/1.2 8 Light olive gray 5y 6/2 moist to wet, medium 0.073/1.0 30.0 none 5-7 stiff, SILT, some fine sand, little to trace of clay, black streaks throughout, odorous 16 2/1.3 17 Light olive gray 5y 5/2 wet, very stiff SILT, 0.076/1.0 14 5-7 5.5 none 10-9 some fine sand, coarse sand to medium gravel approx. 15.5 - 15.75 black streaks throughout odorous 2/1.5 Light brown 5y 6/4, wet, soft, SILT and 16 18 1-1 0.073/1.0 24.0 none CLAY, little fine sand 1-2 18 20 2/1.5 Similar 1-1 0.073/1.0 1.2

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. SB-4 Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 02/22/00 1118/29192 Fall: 30 inches **End Date:** 02/22/00 File No .: Boring Company: Parratt-Wolff, Inc. Screen = \ Grout Foreman: Joe Persev Riser Sand Pack Drill Rig: IR Steel // Bentonite **OBG Geologist: Peter Bogardus** Stratum Field Depth Change **Testing** "N" Below Depth Blows Penetr/ Sample Description General PID Equip. Grade No. (feet) /6" Recovery Value Descript (ppm) UV Installed 40-42 42 1/.7 Asphalt Brown SAND and GRAVEL, little silt moderate 042/1 0.0 none brown, dense dry, coarse sand to medium gravel, some fine to coarse sand, brick fill 27 2 4 10-12 2/1.5 Moderate yellowish brown 10yr 5/4 medium .037/1 0.0 none 15-8 dense, coarse SAND to fine gravel little fine to coarse sand, little silt (fill) 6 13-9 2/NR 14 3" spoon - Drove cobble .017/.9 6-6 No recovery 6 8 8-5 31 3" spoon - No Recovery .023/.9 26-5Q2 Slight odor in drill cutting approx. 8 ft. 8 10 42-14 2/1.7 21 Cobble to 8.5' then grayish black N2 wet, SILT 0.025/.9 5.0 none 7-7 and fine SAND to 9.5' then black wood chips strong odor MS, MSD, and feild dup collected \ Grayish black, N3, moist fine SAND, some 10 12 2-2 2/1.5 3 silt, odorous wood fragment in nose of spoon 1-3 0.025/.9 1.0 none 12 14 2/1.5 10 4-4 Grayish black, N3, moist to wet silt, some fine 0.015/.7 1.0 none 6-8 sand, little clay 14 16 2/1.0 Olive gray 5 yr 4/1 moist to wet, SILT, some 4-4 3.0 none 3-6 clay, few layers of fine sand (slight odor) 16 18 1-4 2/1.2 8 Olive gray, wet, medium stiff, fine to medium 18.0 none 4-3 SAND, little silt, trace of clay approx .17.5. Then moderate brown 5y 4/4 fine to medium sand little silt embedded with coarse sand to fine gravel 18 20 12-9 2/1.3 17 Moderate brown 5y 4/4 fine to medium 30.0 none 8-5 SAND little silt, embedded with fine to medium gravel

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-5** Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proi. Loc: Fulton, NY Start Date: 02/20/00 File No.: 1118/29192 Fall: 30 inches **End Date:** 02/20/00 Boring Company: Parratt-Wolff, Inc. Grout Screen Foreman: Joe Persey Riser Sand Pack Drill Ria: IR Steel 7/ **Bentonite OBG** Geologist: **Peter Bogardus** Stratum Field Depth Change Testing "N" Below Depth Blows Penetr/ Sample Description General Equip. PID No. Grade (feet) Value /6" Recovery Descript Installed (ppm) UV ō 12-14 1.5/0.5 33 19 Moderate brown 5vr 4/4 moist dense fine 0.051/.9 0.0 none to medium GRAVEL, little medium to coarse sand, trace of silt 2 4 12-8 2/0.5 15 Moderate brown moist stiff SILT, some fine 0.048/.9 0 0 none 7-6 sand, little coarse sand to fine gravel 4 2/.7 6 3-2 Moderate brown moist, loose fine SAND 0.037/.9 0.0 none and SILT, little medium sand, trace of clay 1-3 6 8 5-5 2/1.0 10 Red brick to approx. 7.5'. Then black N4. 0.045/.9 65.0 yes 5-37 hard SAND and SILT, asphalt like material, flexible, odorous 8 10 15-10 2/.5 18 Similar asphalt like material, odorous 0.053/.9 (odor) 62.0 slight 8-6 12 2-1 2/1.2 3 Medium dark gray N4, wet, medium 0.032/.9 20+ yes to 2-1 to coarse SAND, trace of silt, approx. 11' (odor) 11.' medium W5 gray fine sand, little silt, trace of clay odorous 22 14 2/1.0 12 13-11 Medium gray N5, wet, stiff fine SAND, 0.037/.9 5.0 none 11-5 some silt, trace of clay 14 16 2-4 2/1.5 6 Moderate brown 5 yr 4/4, medium stiff, 0.037/.9 0.0 none 2-3 wet fine SAND, little silt embedded with coarse sand to fine gravel. 2/1.4 16 18 5-7 14 Moderate brown, stiff, wet, fine to medium 037/.9 0.0 none 7-12 SAND, little silt, embedded with coarse sand to fine gravel (broken cobble in shoe) 18 20 23-31 2/1.6 69 Similar except dense 0.051/.9 0.0 none 38-42

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-6** Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs 02/20/00 Proj. Loc: Fulton, NY Start Date: Fall: 30 inches File No.: 1118/29192 02/20/00 **End Date:** Boring Company: Parratt-Wolff, Inc. Screen \ Grout Foreman: Joe Persev Riser Sand Pack Steel 7 Drill Rig: IR **Bentonite OBG Geologist:** Peter Bogardus Stratum Field Depth Change Testing "N" Below Depth Blows Penetr/ Sample Description General PID Equip. /6" Recovery |(ppm)|UV Grade No. (feet) **Value Descript** Installed Asphalt, black crushed stone to 1.5' 0 -.5 2 4 3-3 2/1.3 0.023/.9 Moderate brown 5 yr 4/4 moist, medium 0.0 none 4-8 stiff SILT and fine SAND, trace of clay 2/1.3 19 4 6 4-8 Dark yellowish orange 10 yr 6/6 medium 0.024/.9 0.0 none 11-12 dense, moist, fine to medium SAND, little silt, trace of clay 2/1.0 14 Dark yellowish orange, medium dense, 6 8 9-8 0.024/.9 0.0 none 6-4 wet, fine SAND, some silt, trace of coarse sand to fine gravel 10 2/1.5 21 8 13-18 Dark yellowish orange, wet, very stiff, .023/.9 0.0 none SILT and fine, trace of coarse sand to 8-13 gravel. At approx. 9.8 medium light gray silt and clay. 10 12 3-6 2/1.2 14 Medium light gray, stiff, wet SILT and fine 0.025/.9 0.0 none 8-6 SAND 2/1.5 12 12 14 4-5 Dark yellowish orange, wet, SILT and fine .032/1.0 0.0 none 7-9 SAND at approx, 13.2' medium light gray, wet silt, little to trace of clay 16 6-7 2/1.3 15 Moderate brown 5 vr 4/4 wet, medium .032/1.0 14 0.0 none dense fine to medium SAND, some coarse 8-9 sand to fine gravel, little silt 16 18 19-9 2/NR 17 No Recovery 0.0 none 8-6 2/1.5 18 20 4-5 12 Moderate brown, wet, medium dense, fine .034/1.0 0.0 none 7-7 SAND, little silt embedded with coarse sand to fine gravel

O'BRIEN & GERE ENGINEERS, INC.						TEST BORING LOG	REPORT OF BORING SB-7				
(South First Street Site) Proj. Loc: Fulton, NY						3.25 inch HAS Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of 1 Location: Start Date: 02/21/00				
						Fall: 30 inches	Screen = Riser Steel //		I/00 Grout Sand Pack Bentonite		
Depth Below Grade	No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed		eld ting UV	
0		.5-2	20-49 52	1.5/.5	101	Asphalt Grayish brown 5YR3/2 moist, very moist, dense fine to medium GRAVEL, little fine to coarse sand, trace silt (fill)		.062/.9	0.2	neg	
2		4	4-4 2-2	2/.5	6	Grayish brown moist, loose fine to med GRAVEL, little silt, few pieces of black N3 hard asphalt material		.054/.9	0.2	neg	
4		6	2-1 1-7	2/1.6	2	Moderate yellowish brown soft, wet, SILT, some fine sand, trace of clay, few fine sand seams, odor and staining in last 0.5 ft of spoon		.069/.9	0.2	yes inseams	
6		8	4-4 3-2	2/1.7	7	Dark gray N4, loose, wet, fine SAND and SILT, trace of clay		.057/.9	20.0	yes	
		10	2-5 7-11	2/1.6	12	Moderate yellowish brown, stiff, moist to wet, SILT, some fine sand, little to trace of clay (varved) UV in seams		0.59/.9	6.0	yes	
10		12	8-11 8-10	2/1.5	19	Moderate yellowish brown, very stiff SILT, some fine sand, little to trace of clay, trace of subrounded fine gravel		.030/.9	16.0	yes	
12		14	7-10 22-50	2/1.9	32	Similar, broken cobble in shoe		.066/.9	1.3	very slight	
14		16	15-8 8-10	2/1.3	16	Medium brown 5YR4/4, wet, medium dense, medium to coarse GRAVEL, subrounded to subangular, fine and medium coarse sand with fine gravel, silt matrix		.066/.9	0.3	none	
16		18	7-11 26-33	2/1.7	37	Moderate brown, wet, dense, subrounded to subangular, fine med to coarse SAND, some fine to med gravel, little silt			0.0	none	
18		19.3	16-40 50/.3	1.3/1.0	90	Moderate brown, wet, very dense med to coarse sand, some fine to med gravel (subrounded to subangular), little silt, trace of clay			0.0	none	
Boring gr	outed t	to surface				1	<u></u>				

REPORT OF BORING TEST BORING LOG O'BRIEN & GERE ENGINEERS, INC. **SB-8** Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Start Date: Proj. Loc: Fulton, NY February 2000 File No.: 1118/29192 Fall: 30 inches February 2000 **End Date:** Boring Company: Parratt-Wolff, Inc. Screen \ Grout Foreman: Joe Persey Riser Sand Pack Drill Rig: IR Steel 7 Bentonite OBG Geologist: **Peter Bogardus** Stratum Field Depth Change Testing "N" Below Depth Blows Penetr/ Sample Description General PID Equip. Grade /6" Recovery Installed (ppm) UV No. (feet) Value Descript 44-90/.4 100 .042/.9 0 Asphalt 0.0 none Dark gray N3 moist, very dense, fine to med sand, little silt, then red brick 50/.4 2 4 4/.4 Grayish brown 5YR3/2 med to coarse .039/.9 0.0 none SAND and fine to med GRAVEL, trace of silt (auger refusal ~3.5'), move hole ~3' SW Very Dense Asphaltish material, dry, 4 2-1 2/.8 3 Similar (FILL) 6 040/.9 0.0 none 2-1 6 2/.5 8 2-1 3 Dark gray N3, moist, soft, SILT and fine .057/.9 42.0 none 2-2 SAND, trace of clay, root hairs, wood (mothball odor) fragments 8 10 6-7 2/1.2 17 Olive gray 5Y3/2 moist to wet, very 054/.9 12.0 yes 10-12 stiff, SILT, mixed with fine sand, trace of (mothball odor) in clay, few fine to med sand seams seams 10 12 20-14 2/1.5 19 Dark gray N3, wet, very stiff, SILT, little .042/.9 19.0 no 5-10 fine sand, trace of clay, very "soupy in (mothball odor) spoon". 12 14 7-9 1.7/1.2 18 Similar to ~14.5 then moderate brown 043/.9 23.0 yes 9-50/.2 dense med to coarse SAND, little fine to med gravel, trace of silt 14 80/.2 16 NR 032/.9 No recovery 16 18 50 15-23 Moderate brown 5YR4/4 wet, very .043/.9 0.5 no 27-30 dense, fine to med SAND, little to trace of silt, embedded with fine to med gravel 18 20 18-31 Same .055/.9 0.2 no Boring grouted to surface

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-9** Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 02/23/00 File No.: 1118/29192 Fall: 30 inches End Date: 02/23/00 Boring Company: Parratt-Wolff, Inc. Screen Grout Foreman: Joe Persey Riser Sand Pack Drill Rig: IR Steel 7/ Bentonite **OBG Geologist:** Peter Bogardus Stratum Field Depth Change Testina Depth Blows "N" Below PID Penetr/ Sample Description General Equip. No. Grade Value (feet) /6" Recovery (ppm)|UV Descript Installed 0.5 2 14 2/1.0 11 Asphalt - Fill .052/.7 0.0 none 7-4 Grayish Black N3, moist SAND and GRAVEL, little silt, metal pieces 2 4 4-3 2/1.5 5 Moderate brown 5YR3/4, moist loose .055/.7 4.2 none 2-2 fine to coarse GRAVEL, some silt, trace of (slight odor) black asphalt-like material 4 6 8-4 2/.5 10 Moderate yellowish brown 10YR5/4 .047/.7 3.4 none moist, SILT and fine SAND, trace of clay, 6-5 (slight odor) 6 8 25-10 2/1.0 18 Moderate yellowish brown, moist med 0.2 none 8-8 dense, fine SAND, little silt 10 5-5 2/1.4 10 8 Moderate yellowish brown wet med .055/.7 12.0 none 5-5 dense, fine SAND, some silt 12 2-2 2/.3 Dense cobble in nose. Moderate 056/.7 0.2 none 5-2 yellowish brown, wet, med stiff SILT, little fine sand, trace of clay Moderate yellowish brown, wet hard 12 14 14-16 2/1.0 32 .061/.7 0.2 none SILT, some fine sand, trace of clay, 16-12 13.5' moderate brown 5YR4/4 fine to med sand, little silt embedded with ooarse sand to med gravel 2/1.0 31 14 16 20-14 065/.7 Similar, becomes dense 0.0 none 17-17 27 2/0.5 17-18 16 18 Moderate brown, wet med dense, med 068/.7 0.0 none 9-4 to coarse SAND, some fine sand, trace of silt, some gravel embedded 18 20 9-10 2/NR 25 No recovery 15-12

TEST BORING LOG REPORT OF BORING **SB-10** O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs **Start Date:** 02/23/00 Proj. Loc: Fulton, NY 02/23/00 1118/29192 Fall: 30 inches File No.: **End Date:** Boring Company: Parratt-Wolff, Inc. Screen = \ | Grout Joe Persev Sand Pack Foreman: Riser Drill Rig: IR Bentonite Steel 7 **OBG Geologist: Peter Bogardus** Stratum Field Depth Change Testing "N" Below Depth Blows Penetr/ Sample Description General PID Equip. Grade No. (feet) /6" Installed Recovery Value Descript (ppm)|UV 0 Asphalt Concrete 2 4 2/.5 3-1 3 Grayish black N2, moist, very loose med .072/.9 0.4 none 2-1 sand to med gravel, asphalt-like material 4 2/.5 6 2-1 Similar to ~5.5, then moderate yellowish .126/.7 2.0 none brown 10YR5/2 moist SILT and fine SAND 3-7 2/1.0 Grayish brown 5YR3/2 moist to med stiff 063/8 6 8 4-2 5 0.0 none 3-2 SILT, little clay, few fine sand seams throughout 10 2-2 2/1.5 8 8 Dark gray N3, moist, med stiff SILT and .075/.8 0.2 none 6-10 fine SAND, ~9.5' dark yellowish orange 10YR6/6, wet fine sand, trace of silt 10 12 5-6 2/1.3 11 Moderate yellowish brown 10YR5/4 068/.7 1.0 none 5-3 wet, stiff, SILT, some fine sand, trace of (slight odor) clay, few fine sand lenses throughout 2/1.8 12 14 Light olive gray 5YR5/2 wet, very stiff, 5-8 15 .072/.7 16.0 none 7-12 SILT, some clay, little to trace of fine sand 14 16 8-5 2/1.2 19 Olive gray 5YR4/1, wet, very stiff, fine (sheen) 072/.7 0.6 none 14-10 SAND and SILT, Nose of spoon had slight (product) odor and sheen. Sheen and product noted at top of spoon 16 18 12-17 2/1.3 34 Moderate brown wet, dense, fine to 052/.7 30.0 none 21-12 med SAND, some coarse sand to med (odor) gravel, little silt (odorous) 18 20 2/1.3 43 22.0 14-23 Moderate brown, wet, dense, fine to .043/.7 20-10 med SAND, some coarse sand to med gravel, little silt, odorous. (product noted (odor) in wash above sample) 3" spoon

						TEST BORING LOG	REPO	RT OF B	ORING	3	
O'BRI	EN.	& GEF	RE EN	GINEERS,	INC.			SB-11			
(South First Street Site) Proj. Loc: Fulton, NY						3.25 inch HAS Sampler: 2-inch split spoon Hammer: 140 lbs	Location:	Page 1 of 1 Location: Start Date: February 2000			
File No.	.:	1118/29	9192			Fall: 30 inches	End Date:	Febru	ary 200	00	
Boring Company: Parratt-Wolff, Inc. Foreman: Joe Persey Drill Rig: IR OBG Geologist: Peter Bogardus							Riser	Screen = \ Grout Riser Sand Pac			
Depth Below Grade	No.		Blows	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip.		eld sting UV	
0		2	3-4 3-9	2/.7	7	Moderate brown 5YR4/4, moist to wet		.036/.8	0.0	none	
			3-9			med stiff SILT, little fine crushed stone					
2		4	6-7 9-6	2/.7	16	Golden brown moist, med dense, coarse sand to med gravel, little silt, steel rnd, etc. fill		.039/.8	0.0	none	
4		6	3-4 10-30	2/0.5	14	Black N3, hard cinders, slag with odor (very poor recovery)	(odor)	.039/.8	20.0	none	
6		8	9-10 4-2	2/1.5	14	Black N3 med dense, wet, fine to med GRAVEL, some fine to coarse sand (fill, odorous) ~7.5 orange red brick. Then ~7.8' med light gray N6, moist, wet, SILT, some fine sand, little fine gravel	(odor)	.039/.5	1.0	none	
8		10	2-2 1-3	2/1.0	3	Dark yellowish brown, wet soft SILT and fine SAND, little to trace of clay		.039/.8	1.0	none	
10		12	3-7 7-17	2/1.5	14	Light olive gray 5Y6/1, stiff, moist, SILT, little clay, trace of fine sand		.037/.5	0.0	none	
12		14	20-9 6-9	2/1.5	15	Moderate brown 5YR4/4, wet, stiff fine to med, SAND, little silt embedded with fine to med gravel		.033/.5	0.0	none	
14		16	10-12 12-12	2/1.5	24	3" spoon. Moderate brown 5YR4/4 wet, very stiff, fine to med SAND, little silt, embedded with fine to med gravel (field dup collected)		.033/.5	0.0	none	
16		18	5-9 7-20	2/.5	13	Similar			-		
						-					
		<u></u>				1	<u> </u>			<u> </u>	

TEST BORING LOG REPORT OF BORING **SB-11** O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk Power Corporation 3.25 inch HAS Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: February 2000 February 2000 1118/29192 File No.: Fall: 30 inches **End Date:** Boring Company: Parratt-Wolff, Inc. Screen \ Grout Foreman: Joe Persev Riser Sand Pack Drill Rig: IR Steel 7 Bentonite **OBG Geologist: Peter Bogardus** Stratum Field Depth Change Testina "N" Below Depth Blows Penetr/ Sample Description General PID Equip. (ppm)|UV Grade No. (feet) /6" Value Descript Recovery Installed 2/.7 3-4 Moderate brown 5YR4/4, moist to wet 0 7 .036/.8 0.0 none 3-9 med stiff SILT, little fine crushed stone 2 4 2/.7 16 6-7 Golden brown moist, med dense, .039/.8 0.0 none 9-6 coarse sand to med gravel, little silt, steel rnd, etc. fill 3-4 2/0.5 14 4 6 Black N3, hard cinders, slag with odor (odor) .039/.8 20.0 none 10-30 (very poor recovery) 6 8 9-10 2/1.5 14 Black N3 med dense, wet, fine to med 039/.5 1.0 none 4-2 GRAVEL, some fine to coarse sand (fill, odorous) ~7.5 orange red brick. Then (odor) ~7.8' med light gray N6, moist, wet, SILT, some fine sand, little fine gravel 8 10 2-2 2/1.0 3 Dark yellowish brown, wet soft SILT and .039/.8 1.0 none 1-3 fine SAND, little to trace of clay 10 12 3-7 2/1.5 14 Light olive gray 5Y6/1, stiff, moist, SILT, .037/.5 0.0 none 7-17 little clay, trace of fine sand 12 14 20-9 2/1.5 15 Moderate brown 5YR4/4, wet, stiff fine .033/.5 0.0 none 6-9 to med, SAND, little silt embedded with fine to med gravel 14 16 10-12 2/1.5 24 3" spoon. Moderate brown 5YR4/4 wet, .033/.5 0.0 none 12-12 very stiff, fine to med SAND, little silt, embedded with fine to med gravel (field dup collected) 16 18 5-9 2/.5 13 Similar 7-20

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-12** Client: Niagara Mohawk Power Corporation **Drill Method: Hollow Stem Auger** Page 1 of 1 **South First Street Site** Sampler: 2 inch Split Spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 5/08/01 Fall: 30 inches File No.: 1118.081 **End Date:** 5/08/01 Boring Company: Parratt-Wolff, Inc. Screen = Grout Foreman: Glen Lansing Riser Sand Pack **Drill Ria:** CME Steel 7 Bentonite **OBG Geologist:** Chawn O'Dell Stratum Field Depth PID Change Testina "N" Depth Blows Below Penetr/ Sample Description General PID ŪΫ Over Grade No. (feet) /6" Recovery Value Descript Spoon (ppm) Light ō 0-2 4-5 2.0/0.5 11 Pale yellowish brown 10YR 6/2, dry. 0.0 0.1 nea 6-6 medium dense, SILT, little fine gravel (angular), trace fine to coarse sand, trace organic matter Grayish brown 5YR 3/2, damp, loose, 2 2 2-4 4-4 2.0/0.6 0.0 3.6 neg 3-4 fine to medium SAND, some silt, little coarse sand to fine gravel (subangular) 4 3 4-6 4-38 2.0/1.0 50 Grayish brown 5YR 3/2, dense, fine to 12-12 coarse SAND, some silt, little fine to coarse 0.0 3.7 neg gravel (subangular), trace concrete frags 6 4 6-8 12-8 2.0/0.9 14 Dark yellowish brown 10YR 4/2, damp, 0.0 2.1 neg medium, dense, SILT and fine SAND, little 6-7 little fine to coarse gravel (subangular) 8-10 2.0/0.8 8 5 6-4 Dusky yellowish brown 10YR 2/2, saturated, 0.0 0.6 neg 4-4 loose, coarse SAND and fine GRAVEL (subangular), little fine to medium sand 50+ 10 6 10-12 4-7 1.3/0.0 Spoon refusal @ approx. 11.3 ft 50/0.3 No recovery 2.0/2.0 10 12 7 12-14 Dusky yellowish brown 10YR 2/2, saturated, 4-4 0.0 0.1 neg loose, coarse SAND and fine GRAVEL 6-7 (subangular), little fine to medium sand to approx. 13 ft, then moderate yellowish brown, 10 YR 5/4, saturated, stiff, SILT, some clay 14 14-16 3-4 2.0/1.3 9 Light olive gray 5Y 5/2, saturated, loose, 0.0 0.0 neg 5-4 SILT, some clay 16 16-18 2.0/1.0 8 9 5-4 Moderate brown, 5YR 4/4, saturated, 0.0 0.0 neg 4-4 loose, fine SAND, some silt, trace fine gravel (subanguiar) 18 10 18-20 7-6 2.0/2.0 10 Moderate brown, 5YR 4/4, saturated, 0.0 0.0 neg 4-4 loose, fine SAND, some silt, trace fine gravel (subangular) Terminate the borehole at 20 ft Grout the borehole to the surface with cement/ bentonite grout

O'BBI	ENI (= [EEN	CINEEDS	IN C	TEST BORING LOG	REPO		ORING	j
	Niaga	ra Mol		GINEERS, ower Corpor Site		Drill Method: Hollow Stem Auger Sampler: 2 inch Split Spoon Hammer: 140 lbs	Page 1 of Location:	1		
Proj. Lo File No	oc: .: 111	Fulton 8.081	, NY			Fall: 30 inches	Start Date	te: 5/08/01 e: 5/08/01 e: 5/08/01 en =		
Boring Forema Drill Riq OBG G	ın: g:		Glen L CME	-Wolff, Inc. ansing			Screen Riser Steel		Grout Sand P Bentor	
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Over	Field Test PID (ppm)	
0	1	0-2	8-7 6-6	2.0/0.5	13	Dark yellowish brown 10YR 4/2, damp, medium dense, SILT and fine SAND, little			0.0	neg
			0-6			medium derise, SIL1 and fine SAND, little medium to coarse sand, trace fine, trace fine gravel (angular), trace organic matter			·	
2	2	2-4	4-5 5-5	2.0/0.5	10	Grayish brown 5YR 3/2, damp, medium dense, fine to medium SAND, little coarse sand to fine gravel (subangular), little silt,		0.0	0.0	neg
_	-					trace orange brick fragments				
4	3	4-6	6-4 4-5	2.0/0.1	8	Orange BRICK fragments (poor recovery)				
6	4	6-8	3-4 4-5	2.0/0.0	8	No recovery				
8	5	8-10	5-5 3-2	2.0/1.0	8	Grayish brown 5YR 3/2, saturated, loose, fine SAND, some medium to coarse sand, little silt, trace fine gravel (subangular), trace cinder/brick fragments		0.0	0.0	neg
10	6	10-12	2-3 3-3	2.0/0.3	6	Grayish brown 5YR 3/2, saturated, loose, fine SAND, some medium to coarse sand, little silt, trace fine gravel (subangular), trace cinder/brick fragments		0.0	0.0	neg
12	7	12-14	2-2 1-2	2.0/1.2	3	Grayish brown 5YR 3/2, saturated, very loose, SILT and fine SAND, little fine gravel (subangular)		0.0	0.0	neg
14	8	14-16	1-1	2.0/1.5	2	Grayish brown 5YR 3/2, saturated, very loose, SILT and fine SAND, little fine gravel (subangular)		0.0	0.0	neg
16	9	16-18	1-2 2-2	2.0/1.5	4	Grayish brown 5YR 3/2, saturated, loose, fine SAND, some silt		0.0	0.0	neg
18	10	18-20	2-2	2.0/2.0	4	Grayish brown 5YR 3/2, saturated, loose, fine SAND, some silt		0.0	0.0	neg
						Terminate the borehole at 20 ft below grade				
						Grout the borehole to the surface with cement/bentonite grout				
Notes:										

						TEST BORING LOG	DEDO	RT OF B	ODING	
O'BRI	EN 8	GER	E EN(SINEERS,	INC.	TEST BORING LOG	NEFU	SB-14	UKING	'
Client:I	Niaga Sout	ra Moh h First Fulton	awk Po Street	wer Corpor		Drill Method: Hollow Stem Auger Sampler: 2 inch Split Spoon Hammer: 140 lbs	Page 1 of Location: Start Date	1		
File No	.: 111	8.081	•			Fall: 30 inches	End Date:	5/08/01		
Boring Forema Drill Rig OBG G	ın: g:	. •	Glen L CME	Wolff, Inc. ansing ı O'Dell			Screen Riser Steel		Grout Sand P Benton	ite
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	PID Over Spoon	1	
0	1	0-2	2-3	2.0/0.5	5	Dusky brown 5YR 2/2, saturated, loose,		0.0	0.0	neg
2	2	2-4	2-5 2-3 3-6	2.0/1.0	6	SILT, little coarse gravel (subangular) Moderate brown 5YR 4/4, saturated, loose, fine SAND and SILT, little fine to medium gravel (subangular)		0.0	0.0	neg
4	3	4-6	3-5 7-7	2.0/1.0	12	Grayish brown 5YR 3/2, saturated, medium dense, SILT, some fine to coarse sand, little fine gravel (subangular)		0.0	0.0	neg
6	4	6-8	6-7 7-6	2.0/1.7	14	Pale brown 5YR 5/2, saturated, medium dense, SILT, some clay, trace organic matter		0.0	0.0	neg
8	5	8-10	5-11 8-7	2.0/1.8	19	Pale brown 5YR 5/2, saturated, medium dense, SILT, some clay, trace organic matter		0.0	0.0	neg
	6	10-12	2-2 2-8	2.0/1.9	4	Pale brown 5YR 5/2, saturated, loose, SILT and fine SAND, little fine gravel (subangular)	odor staining	0.3	7.4	neg
12	7	12-14	7-8 5-4	2.0/2.0	13	Pale brown 5YR 5/2, saturated, medium dense, SILT and fine SAND, little fine gravel (subangular)	odor staining	1.1	11.3	neg
14	8	14-16	4-6 9-9	2.0/1.0	15	Pale reddish brown 10R 5/4, saturated, medium dense, fine SAND, little medium sand, trace fine gravel (subrounded to subangular)		0.1	1.2	neg
16	9	16-18	3-9 11-12	2:0/1.7	18	Pale reddish brown 10R 5/4, saturated, medium dense, fine SAND, some medium sand, little fine to coarse gravel (subrounded to subangular)		0.0	0.2	neg
18	10	18-20	11-18 21-24	2.0/2.0	39	Pale reddish brown 10R 5/4, saturated, dense, fine SAND, some medium sand, little fine to coarse gravel (subrounded to subangular)		0.0	0.0	neg
No.										

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-15** Client: Niagara Mohawk Power Corporation Drill Method: Hollow Stem Auger Page 1 of 1 South First Street Site Sampler: 2 inch Split Spoon Location: Hammer: 140 lbs Proj. Loc: **Fulton. NY** Start Date: 5/08/01 File No.: 1118.081 Fall: 30 inches End Date: 5/08/01 Boring Company: Parratt-Wolff, Inc. Screen = Grout Foreman: Glen Lansing Riser Sand Pack CME Drill Ria: Steel 7/ Bentonite OBG Geologist: Chawn O'Dell Stratum Field PID Depth Change Testing . "N" PID Below Depth Blows Penetr/ Sample Description General Over UV /6" Spoon Grade No. (feet) Recovery Value Descript Light (ppm) 0-2 4-2 2.0/0.6 Pale yellowish brown 10YR 6/2, dry, loose, 4 0 1 0.0 0.0 neg 2-2 SILT, some fine to medium gravel (subrounded to angular), little fine to coarse sand 2 2 2-4 4-7 2.0/1.5 15 Dark yellowish brown 10YR 4/2, damp, 0.0 0.0 neg 8-11 medium dense, fine sand, little medium to coarse sand 3 4-6 7-11 2.0/2.0 23 4 Dark yellowish brown 10YR 4/2, damp, 0.0 0.0 neg 12-14 medium dense, fine sand, little medium to coarse sand 24 6 4 6-8 12-12 2.0/1.5 Pale reddish brown 10R 5/4, saturated, staining 21.8 351.0 pos 12-12 medium dense, fine SAND, some silt, odor trace fine gravel (subangular) 8 5 8-10 6-4 2.0/2.0 Pale reddish brown 10R 5/4, saturated, neg sheen 6.6 87.1 4-5 loose, fine SAND, some silt, trace fine odor gravel (subangular) 10 10-12 2.0/1.1 13 6 4-6 Pale reddish brown 10R 5/4, saturated. odor 3.2 41.0 nea 7-11 medium dense, fine SAND, some silt, trace fine to coarse gravel (subangular) 12 12-14 14-0.9/0.3 50+ Pale reddish brown 10R 5/4, saturated, odor 20.6 1.7 neg 50/.04 very dense, fine SAND, some silt, trace fine to coarse gravel (subangular) 14-16 14 50/0.3 0.3/0.3 50+ 8 Pale reddish brown 10R 5/4, saturated, 0.1 9.1 neg very dense, fine SAND, some silt, trace fine to coarse gravel (subangular) 16 9 16-18 50/0.2 0.2/0.2 50+ Pale reddish brown 10R 5/4, saturated, 0.0 1.2 neg very dense, fine SAND, some silt, trace fine to coarse gravel (subangular) 18 10 18-20 50/0.2 0.2/0.2 50+ Pale reddish brown 10R 5/4, saturated, 0.0 0.1 neg very dense, fine SAND, some silt, trace fine to coarse gravel (subangular) 20 11 20-22 50/0.2 0.2/0.2 50+ Pale reddish brown 10R 5/4, saturated, 0.0 0.1 neg very dense, fine SAND, some silt, trace fine to coarse gravel (subangular) Terminate the borehole at 20.2 ft Grout the borehole to the surface with cement/bentonite grout Notes:

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-16** Client: Niagara Mohawk Power Corporation **Drill Method: Hollow Stem Auger** Page 1 of 1 South First Street Site Sampler: 2 inch Split Spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 5/09/01 File No.: 1118.081 Fall: 30 inches End Date: 5/09/01 Boring Company: Parratt-Wolff, Inc. Screen = \ Grout Foreman: Glen Lansing Riser Sand Pack CME Drill Ria: Steel 7 Bentonite OBG Geologist: Chawn O'Dell Stratum Field Depth PID Change Testina "N" Depth Blows Below Penetr/ Sample Description General Over PID luv /6" Grade No. (feet) Value Recovery Descript Spoon (ppm) |Light Grayish brown 5YR 3/2, damp, medium 0-2 9-6 2.0/0.3 10 0 0.0 0.0 nea 4-7 dense, SILT, some fine to coarse sand. little fine to medium gravel (angular) trace organic matter roots 2 2 2-4 12-31 2.0/1.2 45 Moderate yellowish brown 10YR 5/4, damp, 0.0 0.0 neg 14-13 dense, SILT, some fine sand, little medium to coarse sand, trace gravel (subrounded to angular) 4 3 4-6 6-5 2.0/1.5 10 Moderate yellowish brown 10YR 5/4, damp odor 5.5 7.1 neg 5-6 to wet, medium dense, SILT, some fine to medium sand, little coarse sand to fine gravel (subrounded to angular) 6 4 6-8 6-5 2.0/0.5 12 Moderate yellowish brown 10YR 5/4, poor 1.2 3.2 neg 7-7 saturated, fine SAND and SILT, little fine to recovery medium gravel (angular) 5 8-10 2.0/1.5 11 8 6-5 Dark yellowish brown 10YR 4/2, saturated, 0.5 1.1 neg 6-6 medium dense, fine SAND, some silt 2.0/1.4 25 10 6 10-12 7-11 Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg 14-25 medium dense, fine SAND, some silt 50+ 12 7 12-12.4 50/0.4 0,4/0,4 Pale reddish brown 10R 5/4, saturated, odor 0.0 0.0 neg very dense, fine SAND, some silt, little fine to medium gravel (subangular) 50+ 14 8 14-14.9 26/50.4 0.9/0.8 Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg dense, fine SAND, some silt, little fine to medium gravel (subrounded to angular) 16 16-16.7 26/50.2 0.7/0.7 50+ Pale reddish brown 10R 5/4, saturated. 0.0 0.0 neg dense, fine SAND, some silt, little fine medium gravel (subrounded to angular) Terminate the borehole at 16.7 ft Grout the borehole to the surface with cement/bentonite grout Notes:

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-17** Client: Niagara Mohawk Power Corporation **Drill Method: Hollow Stem Auger** Page 1 of 1 Sampler: 2 inch Split Spoon South First Street Site Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 5/09/01 Fall: 30 inches File No.: 1118.081 End Date: 5/09/01 Boring Company: Parratt-Wolff, Inc. \ Grout Screen = Glen Lansing Foreman: Riser Sand Pack **Drill Ria: CME** Steel 7/ **Bentonite** OBG Geologist: Chawn O'Dell Stratum Field Depth PID Change Testina "N" Depth Blows **Below** Penetr/ Sample Description General Over PID UV Grade No. (feet) /6" Recovery Value Descript Spoon (ppm) Light 0 1 0-2 6-3 2.0/0.5 5 Dark yellowish brown 10YR 4/2, damp, 0.0 0.0 neg 2-2 loose, SILT, some fine to coarse sand, little fine gravel (subangular) 2 2 2-4 2-2 2.0/1.5 9 Moderate yellowish brown 10YR 5/4, damp, 0.0 0.0 neg 7-12 stiff SILT, little fine sand, trace fine gravel (subangular) 4 3 4-6 10-12 2.0/1.8 24 Moderate yellowish brown 10YR 5/4, 0.0 0.1 neg 12-11 saturated, medium dense, SILT and fine SAND, trace coarse to fine gravel (subangular) 6 4 12-7 2.0/1.5 13 6-8 As above for top 0.5 ft, then pale reddish 0.0 0.2 neg 6-7 brown 10R 5/4; saturated, medium dense. fine SAND, some silt, little fine to medium gravel (subrounded to subangular) 8-10 8 5 7-6 2.0/1.0 11 Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg 5-5 medium dense, fine SAND, some silt, little fine to medium gravel (subrounded to subangular) 10 6 10-12 4-5 2.0/2.0 13 Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg 8-11 medium dense, fine SAND, some silt, little odor fine to medium gravel (subrounded to subangular) 12-12.4 50/0.4 50+ Pale reddish brown 10R 5/4, saturated, 12 0.4/0.4 odor 0.0 0.0 neg very dense, fine SAND, some silt, little fine to medium gravel (subrounded to subangular) 14 14-14.4 50/.4 0.4/0.4 50+ 8 Pale reddish brown 10R 5/4, saturated. 0.0 0.0 neg very dense, fine SAND, some silt, little fine to coarse gravel (subrounded to angular) Terminate the borehole at 14.4 ft Grout the borehole to the surface with cement/bentonite grout Notes:

O'BRII	EN 8	k GER	E ENC	SINEERS,	INC.	TEST BORING LOG	REPO	RT OF B SB-18	ORING	
Client:N	Sout	ra Moh h First Fuiton	Street	ower Corpor Site	ration	Drill Method: Hollow Stem Auger Sampler: 2 inch Split Spoon Hammer: 140 lbs	Page 1 of Location: Start Date			
File No.		8.081	•			Fall: 30 inches	End Date:	5/09/01		
Boring Forema Drill Rig OBG G	n: g:		Glen L CME	Wolff, Inc. ansing O'Dell			Screen Riser Steel		Grout Sand P Benton	
Depth Below Grade	No.	Depth	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	PID Over Spoon	Field Test PID (ppm)	
0	1	0-2	2-3	2.0/2.0	6	Dark yellowish brown 10YR 4/2, damp,		0.0	0.0	neg
			3-3			loose, SILT, little fine gravel (subangular), trace organic matter (roots)				
2	2	2-4	50/.3	0.3/0.1	50+	Concrete pad approx. 2 ft below grade concrete in split spoon tip				
4	3	4-6	12-8 7-7	2.0/1.2	15	Moderate yellowish brown 10YR 5/4, damp, medium dense, SILT and fine SAND, little fine gravel (subangular)		0.0	0.0	neg
6	4	6-8	12-16 16-11	2.0/2.0	32	As above for top 0.7 ft, then pale reddish brown 10R 5/4, saturated, dense, fine SAND, little fine to coarse gravel		0.0	0.0	neg
•	5	8-10	11-10 15-9	2.0/2.0	25	(subangular) Pale reddish brown 10R 5/4, saturated, medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular)		0.0	0.0	neg
10	6	10-12	7-11	2.0/1.0	28	Pale reddish brown 10R 5/4, saturated, medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular)		0.0	0.0	neg
12	7	12-14	27-50/.4	0.9/0.8	50+	Pale reddish brown 10R 5/4, saturated, medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular)		0.0	0.0	neg
14	8	14-16	50/0.4	0.4/0.4	50+	Pale-reddish brown 10R 5/4, saturated, medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular)		0.0	0.0	neg
16	9	16-18	50/0.3	0.3/0.2	50+	Pale reddish brown 10R 5/4, saturated, medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular)		. 0.0	0.0	neg
N						Terminate the borehole at 16.3 ft Grout the borehole to the surface with cement/bentonite grout				
N										

TEST BORING LOG REPORT OF BORING **SB-18** O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk Power Corporation **Drill Method: Hollow Stem Auger** Page 1 of 1 **South First Street Site** Sampler: 2 inch Split Spoon Location: Hammer: 140 lbs Proi. Loc: Fulton, NY Start Date: 5/09/01 Fall: 30 inches File No.: 1118.081 End Date: 5/09/01 Boring Company: Parratt-Wolff, Inc. Screen = Grout Foreman: Glen Lansing Riser Sand Pack CME Steel 7 **Bentonite** Drill Ria: **OBG Geologist:** Chawn O'Dell Stratum Field PID Depth Change **Testina** Depth Blows "N" Below Penetr/ Sample Description General Over PID UV /6" Grade No. (feet) Recovery Value Descript Spoon (ppm) Light 0-2 2-3 2.0/2.0 6 Dark yellowish brown 10YR 4/2, damp, 0 00 0.0 3-3 loose, SILT, little fine gravel (subangular), trace organic matter (roots) 2 2 2-4 50/.3 0.3/0.1 50+ Concrete pad approx. 2 ft below grade concrete in split spoon tip 3 4-6 15 4 12-8 2.0/1.2 Moderate yellowish brown 10YR 5/4, 0.0 0.0 neg 7-7 damp, medium dense, SILT and fine SAND. little fine gravel (subangular) 32 6 4 6-8 12-16 2.0/2.0 As above for top 0.7 ft, then pale reddish 0.0 0.0 nea 16-11 brown 10R 5/4, saturated, dense, fine SAND, little fine to coarse gravel (subangular) 8-10 11-10 2.0/2.0 25 neg 8 5 Pale reddish brown 10R 5/4, saturated. 0.0 0.0 15-9 medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular) 10 10-12 7-11 2.0/1.0 28 6 Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg 17-28 medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular) 12 7 12-14 27-50/.4 0.9/0.8 50+ Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular) 14 8 14-16 50/0.4 0.4/0.4 50+ Pale reddish brown 10R 5/4, saturated, 0.0 0.0 nea medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular) 16 9 16-18 50/0.3 0.3/0.2 50+ Pale reddish brown 10R 5/4, saturated, 0.0 0.0 neg medium dense, fine SAND, some silt, little fine to coarse gravel (subrounded to subangular) Terminate the borehole at 16.3 ft Grout the borehole to the surface with cement/bentonite grout Notes:

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. MW-11/SB-19 Client: Niagara Mohawk Power Corporation **Drill Method: Hollow Stem Auger** Page 1 of 1 **South First Street Site** Sampler: 2 inch Split Spoon Location: Hammer: 140 lbs Proj. Loc: Fuiton, NY Start Date: 5/09/01 File No.: 1118.081 Fall: 30 inches End Date: 5/09/01 Boring Company: Parratt-Wolff, Inc. Screen = \ Grout Foreman: Glen Lansing Sand Pack Riser Drill Rig: CME Steel 7 Bentonite **OBG Geologist:** Chawn O'Dell Stratum Field Depth PID **Testing** Change Below Depth Blows Penetr/ "N" Sample Description PID General Over ΙŪΫ Grade No. /6" Value (feet) Recovery Spoon Descript (maga) Light 2.0/1.0 0 0-2 Grayish brown 5YR 3/2, damp, loose, 1 2-2 4 0.0 0.0 nea 2-2 SILT, little fine to medium sand 3 2 2 2-4 4-2 2.0/1.3 Grayish brown 5YR 3/2 to brownish black. 0.0 0.0 neg 1-1 5YR 2/1, saturated, very loose, SILT and fine SAND, little brick/glass/cinder fragments 4 3 4-6 2-1 2.0/0.3 2 Grayish brown 5YR 3/2 to brownish black 0.7 1.1 neg 1-3 5YR 2/1, saturated, very loose, SILT and fine SAND, little brick/glass/cinder fragments 6 4 6-8 2-2 2.0/0.5 3 Grayish brown 5YR 3/2 to brownish black 1.5 2.1 neg 1-3 5YR 2/1, saturated, very loose, SILT and fine SAND, little brick/glass/cinder fragments 8 8-10 2-2 2,0/0.7 3 Light brownish gray 5YR 6/1, saturated, 5 0.9 1.6 neg 1-2 very soft, SILT, some clay, trace organic matter 2.0/1.3 2 10 6 10-12 1-1 Light olive gray 5Y 6/1, saturated, very loose, 0.1 0.3 neg 1-2 fine SAND, little silt, little clay, trace organic matter, trace shell fragments 0.9/0.8 50+ 12 7 12-14 2-3 Light olive gray 5Y 6/1, saturated, very loose, 0.0 0.1 neg 7-10 fine SAND, little silt, little clay, trace organic matter, trace shell fragments Terminate the borehole at 14 ft Install a monitoring well in the borehole otes:Wells installation: 2 inch x 0.010 inch slotted PVC screen: 12.5 - 2.5 ft; sand pack: 12.5 - 2.0 ft

sand choke: 2.0 - 1.5 ft; bentonite seal: 1.5-0.5 ft (flush mount completion)

TEST BORING LOG REPORT OF BORING **SB-20** O'BRIEN & GERE ENGINEERS, INC. **Hollow Stem Auger** Client: Niagara Mohawk Power Corporation Page 1 of 1 Sampler: 2-inch split spoon Location: (South First Street Site) Hammer: 140 lbs Proj. Loc: Start Date: 2/11/02 Fulton, NY File No.: Fall: 30 inches 1118/29192 End Date: 2/11/02 Boring Company: Parratt-Wolff, Inc. Screen = Grout Foreman: Lee Penrod Riser Sand Pack Steel 7 Drill Ria: CME **Bentonite OBG Geologist:** Chawn O'Dell PID Stratum Depth Change over head "N" Depth Blows UV Below Sample Description Penetr/ General spoon|space /6" Grade Recovery Descript Light No. (feet) Value (ppm) (ppm) 0 1.5/1.5 0-0.5 ft: Concrete slab; then pale brown 0.0 nea 0.0 5YR 5/2, damp, fine SAND, some orange brick (bottom 0.5 ft), little fine to coarse gravel (subangular) 2 2 2.0/1.5 4 Pale brown 5YR 5/2, damp, fine SAND, 0.0 0.2 neg some orange brick fragments (bottom 0.5 ft) 4 2.0/1.5 BRICKS, SLAG, GRAVEL, some fine 6 --nea 0.0 0.2 pale brown sand (damp) As above, saturated at approximately 6 4 8 2.0/1.3 0.0 0.3 nea 6.5 ft below grade 2.0/1.7 8 10 Grayish brown 5YR 3/2, saturated, fine 0.0 0.6 neg SAND, little staining, little slag/brick fragments (top 0.5 ft) 10 6 12 2.0/2.0 Grayish brown 5YR 3/2, saturated, fine -----sheen on neg 1.4 2.1 fine SAND water 2.0/2.0 12 7 14 Moderate yellowish brown 10YR 5/4, ------0.0 0.3 neg saturated, SILT, little fine sand, little clay 14 8 16 2.0/2.0 Pale yellowish brown 10YR 6/2, saturated, free 96.0 neg 48.1 SILT and fine SAND to approximately product 15.5 ft, then fine SAND, little fine to (more medium gravel (subangular). little silt dense) 16 9 18 2.0/1.8 Pale reddish brown 10R 5/4, saturated, sheen on 6.1 32.0 nea fine SAND, little silt, fine gravel water (subrounded to subangular) 18 10 20 2.0/0.0 No Recovery sheen on 22 20 11 Pale reddish brown 10R 5/4, saturated, 2.0/1.6 water 38.2 53.1 nea (probable fine SAND, little fine gravel (subrounded to subangular) dragdown) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

						TEST BORING LOG	REPO	RT OF E	ORING	}
		*******	<u></u>	GINEERS,	**************************************			SB-21		
	(Sou	ıth Firs	t Street	ower Corpor t Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:			
Proj. Lo File No.	.: 1	Fulton 1118/29	9192			Fall: 30 inches	Start Date:	2/11/02		
Boring Forema Drill Rig OBG G	n: g: CM	Lee Pe 1E	enrod	-Wolff, Inc. n O'Dell			Screen Riser Steel	·	Grout Sand F Bentor	Pack
	30109	list.	Cliavi	I O Dell	-		Stratum		PID	
Depth Below Grade	No.		Blows /6"	Penetr/ Recovery	. "N" Value	Sample Description	Change General Descript	UV Light	spoon	head space (ppm)
0	1	2		1.5/1.5		0-0.5 ft: Concrete slab; then brownish	<u> </u>	neg	0.3	0.7
						black 5YR 2/1, fine to coarse SAND, some fine gravel (angular), little brick/slag frag.				
2	2	4		2.0/2.0		Dark yellowish brown 4/2, damp,fine SAND, (bottom 0.5 ft is mostly brick/slag	moderate odor	neg	28.2	39.2
4	3	6		2.0/2.0		Dark yellowish brown 4/2, damp,fine SAND, little silt	moderate odor	neg	20.1	30.2
6	4	8		2.0/2.0		Dark yellowish brown 4/2, saturated, fine SANID, little silt	sheen (free prod.	pos	173.0	361.0
•	5	10		2.0/2.0	•••	Dark yellowsih brown 4/2, saturated, fine SANID, little silt	on water) moderate	neg	221.0	412.0
10	6	12		2.0/0.0		No Recovery				
12	7	14		2.0/0.7		Pale reddish brown 10YR 5/4, saturated, fine SAND, little fine to coarse gravel (subrounded to subangular), coarse gravel lodged in split spoon tip	odor	neg	25.2	61.6
14	8	16		2.0/1.3		Pale reddish brown 10YR 5/4, saturated, fine SAND, little fine to medium gravel (subrounded to subangular)	odor	neg	17.3	25.2
16	9	18		2.0/1.5		Pale reddish brown 10YR 5/4, saturated, fine SAND, little fine to medium gravel (subrounded to subangular)	odor	neg	25.9	36.2
18	10	20		2.0/1.6		Pale reddish brown 10YR 5/4, saturated, fine SAND, little fine to medium gravel (subrounded to subangular)	odor	neg	20.1	30.7
Notes: Tr	ne soil	boring w	ras groute	d to the surface	with cemen	t/bentonite grout.				

TEST BORING LOG REPORT OF BORING **SB-22** O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk Power Corporation Hollow Stem Auger Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 2/12/02 1118/29192 Fall: 30 inches End Date: 2/12/02 File No.: Boring Company: Parratt-Wolff, Inc. Screen = Grout Lee Penrod Riser Sand Pack Foreman: Steel 7 Drill Rig: CME **Bentonite** Chawn O'Dell **OBG Geologist:** Stratum PID Depth Change over head Depth Blows "N" Below Penetr/ Sample Description General UV spoon space /6" Grade No. (feet) Recovery Value Descript Light (ppm) (ppm) Moderate yellowish brown 10YR 5/4, 2..0/1.5 n 0.0 0.0 damp, fine SAND, some silt, little organic matter, trace brick fragments 2 2 4 2.0/1.0 Dark yellowsih orange 10YR 6/6, damp, 0.0 0.0 neq fine SAND, little silt 3 2.0/2.0 4 6 Grayish red 10R 4/2, damp to wet, fine 0.0 0.0 neg SAND, some fine to coarse gravel (subangular) 4 6 8 2.0/1.3 Grayish red 10R 4/2, saturated, fine neg 0.0 0.0 SAND, some fine to coarse gravel (subangular) 10 8 5 2.0/1.0 Dark yellowish brown 10YR 4/2, very light 0.5 1.2 neq saturated, appears very loose, very fine "spotty" SAND, trace fine gravel (subangular) sheen on water 10 6 12 2.0/1.0 Dark vellowish brown 10YR 4/2. nea 0.3 1.2 saturated, appears very loose, very fine SAND, trace fine gravel (subangular) 12 14 2.0/2.0 As above to approximately 13 ft, then 0.0 3.1 nea grayish red 5R 4/2, saturated, fine SAND. some medium to coarse sand, little fine to coarse gravel (subangular to angular) 2.0/2.0 14 8 16 Grayish red 5R 4/2, saturated, fine SAND, 0.0 2.8 -----neg little fine to coarse gravel (subangular) 16 9 18 2.0/2.0 As above to approximately 15 ft, then 0.0 3.4 neq brownish black 5YR 2/1, saturated, ORGANIC MATTER, little shells and shell fragments (PEAT) 18 10 20 2.0/2.0 Pale brown 5YR 5/2, saturated, fine 0.0 3.6 neg SAND, little fine to medium gravel (subangular) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

						TEST BORING LOG	REPO	RT OF E	ORING	•
**********	******			GINEERS,				SB-23		
	(Sou	ıth Firs	st Street	ower Corpor t Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:			
Proj. Lo File No.	.: ′	Fulton 1118/29	9192			Fall: 30 inches	Start Date End Date:	2/12/02		
Boring Forema Drill Rig OBG G	an: g: CM	Lee Pe	enrod	-Wolff, Inc. n O'Dell			Screen Riser Steel		Grout Sand F Bentor	Pack
	10.03	1131.		10 50		T	Stratum		PID	
Depth Below Grade	No.	(feet)	Blows /6"	Recovery	"N" Value	Sample Description	Change General Descript	UV Light	(ppm)	head space (ppm)
0	1	2		2.0/1.6		Dusky yellowish brown 10YR 2/2, damp, SILT, littie fine to coarse sand,		neg	0.0	0.0
						little organic matter, trace orange brick frag				
	<u> </u>	F	<u> </u>			-				
2	2	4		2.0/0.1		Concrete fragment lodged in spilt spoon tip				
				2000		1				
4	3	6		2.0/2.0		Moderate yellowish brown 10YR 5/4, damp, SILT, little fine sand, trace organic matter	<u>.</u>	neg	0.0	0.6
						1				
6	4	8		2.0/1.8		Pale yellowish brown 10YR 6/2, saturated, SILT and fine SAND, little clay, trace organic matter (veg)		neg	0.0	3.6
						1				
8	5	10		2.0/0.7		Dark yellowish brown 10YR 4/2, saturated, SILT, little clay, trace fine sand		neg	0.0	2.9
		<u> </u>				1				
10	6	12		2.0/2.0		Moderate yellowish brown 10YR 5/4, saturated, fine SAND, little silt		neg	0.0	4.1
										į
12	7	14		2.0/2.0	2	Moderate yellowish brown 10YR 5/4, saturated, fine SAND, little silt		neg	0.0	3.9
14	8	16		2.0/2.0		Pale yellowish brown 10YR 6/2, saturated, fine SAND, little fine gravel (subrounded to subangular)		neg	0.0	3.7
						1				
16	9	18		2.0/2.0		Dark reddish brown 10R 3/4, saturated, fine SAND, some fine gravel (subrounded to subangular)		neg	0.0	5.5
						1				
18	10	20		2.0/2.0		Dark reddish brown 10R 3/4, saturated, fine SAND, little fine gravel (subrounded to subangular)		neg	0.0	4.1
O : TI	ne soil	boring w	as groute	d to the surface	with cemen	t/bentonite grout.				
			-	4		-				

TEST BORING LOG REPORT OF BORING **SB-24** O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Start Date: 2/12/02 Fulton, NY Fall: 30 inches End Date: 2/12/02 File No.: 1118/29192 Boring Company: Parratt-Wolff, Inc. Screen = Grout Lee Penrod Sand Pack Foreman: Riser Drill Rig: CME Steel 77 Bentonite Chawn O'Dell **OBG Geologist:** PID Stratum Depth Change over head "N" Depth Blows UV Below Penetr/ Sample Description General spoon|space Grade No. (feet) /6" Value Descript Light Recovery (ppm) (ppm) 2.0/1.0 Dark yellowish brown 10YR 4/2, 0 00 0.1 damp, SILT, some fine to coarse sand, little organic matter, little fine to coarse gravel (angular), trace brick fragments 2 2 4 2.0/0.5 Moderate yellowish brown 10YR 5/4, 0.0 0.6 neq damp, fine to medium SAND, coarse gravel (angular) lodged in split spoon tip 3 4 6 2.0/1.5 Pale reddish brown 10R 5/4, damp to wet, 0.0 4.1 neg fine SAND, some silt, little fine gravel (subangular), trace clay 4 2.0/1.6 6 8 Pale reddish brown 10R 5/4, saturated, neg 0.0 3.9 SILT, some fine sand, trace fine gravel (angular) 8 5 10 2.0/1.8 Pale reddish brown 10R 5/4, saturated, 0.0 4.0 nea fine SAND, little fine to medium gravel (subrounded to subangular) 10 6 12 2.0/2.0 Olive gray 5Y 4/1, saturated, CLAY, 0.0 2.3 neg some silt, trace organic matter, trace shells/shell fragments 12 2.0/2.0 14 Olive gray 5Y 4/1, saturated, CLAY, 0.0 3.2 neg some silt, trace organic matter, trace shells/shell fragments 14 8 16 2.0/2.0 As above to approximately 15 ft, then 0.0 1.6 --neg pale reddish brown 10R 5/4, saturated, fine SAND, little fine to medium gravel 16 9 18 2.0/0.5 Pale reddish brown 10R 5/4, saturated, neg 0.0 1.9 fine SAND, little fine to medium gravel (subrounded to subangular) 10 20 2.0/1.5 18 Pale reddish brown 10R 5/4, saturated, 0.0 0.6 neg fine SAND, little fine to medium gravel (subrounded to subangular) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

O'BRI	EN 8	L GER	E EN	GINEERS,	ING.	TEST BORING LOG	REPO	RT OF B	ORING	;
Client:	Niaga (Sou	ara Mol	hawk Po t Street	ower Corpo		Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location: Start Date			
File No.	.: '	1118/29	9192			Fall: 30 inches	End Date:			,
Boring Forema Drill Ric OBG G	in: g: CM	Lee Pe IE	enrod	-Wolff, Inc. n O'Dell			Screen Riser Steel	= \	Grout Sand F Bentor	
Depth Below Grade	No.		Blows		"N" Value	Sample Description	Stratum Change General Descript	UV Light	PID over spoon (ppm)	head space
0	1	2		2.0/0.0		No Recovery				
2	2	4		2.0/0.3		Dark yellowish brown 10YR 4/2, saturated, fine SAND (poor recovery)		neg	0.0	0.0
4	3	6		2.0/2.0		Olive gray 5Y 3/2, saturated, CLAY, some silt, little organic matter		neg	0.0	0.0
6	4	8		2.0/2.0		Olive gray 5Y 3/2, saturated, CLAY, some silt, little organic matter		neg	0.0	0.0
8	5	10		2.0/2.0		Olive gray 5Y 3/2, saturated, CLAY, some silt, little organic matter		neg	0.0	.0.0
10	6	12		2.0/2.0		As above to approximately 13 ft, then pale reddish brown 10R 5/4, saturated, fine SAND, little fine gravel (subangular)		neg	0.0	0.0
12	7	14		2.0/1.3		Pale reddish brown 10R5/4, saturated, fine SAND, little fine to coarse gravel (subangular)		neg	0.0	0.0
14	8	16		2.0/1.5		Pale reddish brown 10R5/4, saturated, fine SAND, little fine to coarse gravel (subangular)		neg	0.0	0.0
16	9	18		2.0/1.5		Pale reddish brown 10R5/4, saturated, fine SAND, little fine to coarse gravel (subangular)		neg	0.0	0.0
18	10	20		2.0/1.0		Pale reddish brown 10R5/4, saturated, fine SAND, little fine to coarse gravel (subangular)		neg	0.0	0.0
s: Th	ne soil	boring wa	as groute	d to the surface	with cemen	t/bentonite grout.		<u> </u>	·	

REPORT OF BORING TEST BORING LOG O'BRIEN & GERE ENGINEERS, INC. **SB-26** Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 2/13/02 1118/29192 Fall: 30 inches End Date: 2/13/02 File No.: Boring Company: Parratt-Wolff, Inc. Screen = Grout Lee Penrod Foreman: Riser Sand Pack Drill Rig: CME Steel 7/ Bentonite Chawn O'Dell **OBG Geologist:** Stratum PID Depth Change over head "N" Below Depth Blows Penetr/ Sample Description General UV spoon space /6" Grade No. (feet) Recovery **Value** Descript |Light (ppm) (ppm) 2.0/1.0 0 Dark yellowish brown 10YR 4/2, damp, 0.0 0.0 fine SAND some silt, little organic matter 2 2 4 2.0/1.0 Dark yellowish brown 10YR 4/2, 0.0 0.2 neg saturated, fine SAND, some silt, little fine gravel (angular) 4 3 6 2.0/2.0 Moderate yellowish brown 10YR 5/4, 0.0 0.9 neq saturated, fine SAND 4 2.0/2.0 6 8 Moderate yellowish brown 10YR 5/4, neg 0.0 1.0 saturated, fine SAND Moderate yellowish brown 10YR 5/4, 8 10 2.0/2.0 0.0 1.2 nea saturated, fine SAND, some silt, little clay As above with intermittent clay seams 10 6 12 2.0/1.7 0.0 1.6 nea (0.05 ft thick). Bottom of sample: little fine gravel (subrounded to subangular) 12 14 2.0/0.5 Pale reddish brown 10R 4/2, saturated, 0.0 2.1 --neg fine SAND, some fine to coarse gravel (subangular) poor recovery 14 8 2.0/1.0 Pale reddish brown 10R 4/2, saturated, 16 --very nea 0.0 0.9 fine SAND, some fine to coarse gravel dense (subangular to angular) 16 9 18 1.5/1.0 Pale reddish brown 10R 4/2, saturated. verv 0.0 0.0 neg fine SAND, some fine to coarse gravel dense (subangular to angular) 10 18 20 2.0/1.0 Pale reddish brown 10R 4/2, saturated, 0.0 0.0 very neg fine SAND, some fine to medium gravel, dense little coarse gravel (subangular to angular) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

						TEST BORING LOG	REPO	RT OF B	ORING	}
O'BRI	<u>EN 8</u>	& GER	EEN	gineers,	INC.			SB-27		
	(Sou	ara Mol ith First Fulton	t Street	ower Corpo t Site)	ration	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:			
File No.	.: ′	1118/29	9192			Fall: 30 inches	End Date:			
Boring Forema Drill Ric OBG G	Com an: g: CN	Lee Pe //E	enrod	-Wolff, Inc. n O'Dell			Screen Riser Steel	= \\	Grout Sand F Bentor	Pack
	<u> </u>					T	Stratum	Γ	PID	
Depth Below Grade	No.	(feet)	Blows /6"	Recovery	"N" Value	Sample Description	Change General Descript	UV Light	over spoon (ppm)	head space (ppm)
0	1	2		2.0/1.3		Grayish brown 5YR 3/2, damp, SILT,		neg	0.0	0.0
						some fine to coarse sand, little organic matter, trace fine gravel (angular)				
2	2	4		2.0/1.0		Dark yellowish brown 10YR 4/2, damp to wet, fine SAND, some silt		neg	0.0	0.0
4	3	6		2.0/1.5		Moderate yellowish brown 10YR 5/4, saturated, fine SAND, little silt		neg.	0.0	0.0
6	4	8		2.0/2.0		Moderate yellowish brown 10YR 5/4, saturated, SILT, fine SAND, intermittent fine sand lenses (0.05 ft thick)		neg	0.0	0.0
•	5	10		2.0/0.4		Moderate yellowish brown 10YR 5/4, saturated, SILT, fine SAND, intermittent		neg	0.0	0.0
10	6	12		2.0/1.7		fine sand lenses (0.05 ft thick) Moderate yellowish brown 10YR 5/4,		neg	0.0	0.0
12	7	14		20/45		saturated, very fine SAND Moderate vellowish brown 10VP 5/4				
12		14		2.0/1.5		Moderate yellowish brown 10YR 5/4, saturated, very fine SAND; bottom 0.3 ft little fine to medium gravel (angular)		neg	0.0	0.0
14	8	16		2.0/1.5		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (subangular to angular)		neg	0.0	0.0
16	9	18	4444	2.0/1.5		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (subangular to angular)		neg	0.0	0.0
18	10	20		2.0/1.3		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (subangular to angular)		neg	0.0	0.0
	 	+	 	 	 	┥		}		1
th: العصودة	ne soil	boring wa	as groute	d to the surface	with cemen	t/bentonite grout.		<u> </u>		

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-28** Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 1 Sampler: 2-inch split spoon Location: (South First Street Site) Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 2/14/02 File No.: 1118/29192 Fall: 30 inches End Date: 2/14/02 Boring Company: Parratt-Wolff, Inc. Screen = \ Grout Foreman: Lee Penrod Riser Sand Pack Steel 7/ Drill Rig: CME Bentonite **OBG Geologist:** Chawn O'Dell PID Stratum Depth Change over head "N" Below Depth Blows Sample Description UV Penetr/ General spoon|space /6" Descript Grade No. Recovery (feet) Value Light (ppm) (ppm) Moderate yellowish brown 10YR 5/4, 0.0 0 2.0/1.0 0.0 saturated, SILT, little fine sand, little organio matter 2 2.0/1.3 Moderate yellowish brown 10YR 5/4, 0.0 0.0 nea saturated, very fine SAND, little silt, trace organio matter 3 2.0/1.5 4 6 As above to approximately 5.3 ft, then 0.0 0.0 --neg pale reddish brown 10R 4/2, saturated. fine SAND, little fine to medium gravel (subrounded to subangular) 6 8 2.0/1.3 Pale reddish brown 10R 4/2, saturated, 0.0 0.0 nea fine SAND, little fine to medium gravel (subrounded to subangular) 8 5 10 2.0/1.2 Pale reddish brown 10R 4/2, saturated, 0.0 0.0 -----neg fine SAND, little fine to medium gravel (subrounded to subangular) 10 6 Pale reddish brown 10R 4/2, saturated, 12 2.0/1.5 0.0 0.0 -----nea fine SAND, little fine to medium gravel (subrounded to subangular) 12 2.0/2.0 Pale reddish brown 10R 4/2, saturated, 7 14 ---0.0 0.0 neg fine SAND, little fine to medium gravel (subrounded to subangular) 8 2.0/2.0 14 16 Pale reddish brown 10R 4/2, saturated. nea 0.0 0.0 fine SAND, little fine to medium gravel (subrounded to subangular) 16 9 18 2.0/1.4 Pale reddish brown 10R 4/2, saturated, 0.0 0.0 nea fine SAND, little fine to medium gravel (subrounded to subangular) 10 20 18 2.0/2.0 Pale reddish brown 10R 4/2, saturated, neg 0.0 0.0 fine SAND, little fine to medium gravel (subrounded to subangular) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

						TEST BORING LOG	PEDO	RT OF E	OPINIC	
*****************			····	GINEERS,			KLFU	SB-29		
Client: Proj. Lo	(Sou		t Street	ower Corpo : Site)	ration	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:			
File No	.: '	1118/29	192			Fall: 30 inches	End Date:	2/14/02		
Boring Forema Drill Riq OBG G	ın: g: CN	Lee Po	enrod	-Wolff, Inc. n O'Dell			Screen Riser Steel		Grout Sand F Bento	
	50.98						Stratum		PID	
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript	UV Light	spoon	head space (ppm)
0	1	1		1.0/1.0		Grayish brown 5YR 3/2, damp to wet,	Becompt	neg	0.0	0.0
						SILT, some fine gravel (angular), little organic matter				
						1				
1		4				Auger through concrete pad: 1-4 ft				
]].			
						1				
4	2_	6		2.0/2.0		Pale yellowish brown 10YR 6/2, saturated, fine SAND, little silt	low odor	neg	4.2	18.6
						1				
						<u> </u>				
6	3	8		2.0/2.0		Pale brown 5YR 5/2, saturated, fine SAND, little fine gravel (subangular)		neg	2.1	5.3
								N -		
						<u>.</u>				
8	4	10		2.0/2.0		Pale reddish brown 10R 4/2, saturated, fine SAND, little fine to medium gravel		neg	0,1	0.3
						(subrounded to subangular)				
					<u> </u>	1				
10	5	12		2.0/2.0		Pale reddish brown 10R 4/2, saturated, fine SAND, little fine to medium gravel		neg	0.0	0.1
						(subrounded to subangular)				
<u> </u>			<u> </u>	·						
12	6	14		2.0/2.0		Pale reddish brown 10R 4/2, saturated,		neg	0.0	0.0
						fine SAND, little fine to medium gravel (subrounded to subangular)				
-										
14	7	16		2.0/2.0		Pale reddish brown 10R 4/2, saturated,		neg	0.0	0.0
		<u> </u>	<u> </u>			fine SAND, little fine to medium gravel (subrounded to subangular)				
			-			7				
16	8	18		2.0/2.0		Pale reddish brown 10R 4/2, saturated,		neg	0.0	0.0
		-	+-			fine SAND, little fine to medium gravel (subrounded to subangular)				
			-] , ,			•	
18	9	20		2.0/2.0		Pale reddish brown 10R 4/2, saturated,		neg	0.0	0.0
						fine SAND, little fine to medium gravel (subrounded to subangular)	1			
						- Sanding distri				
Notes: T	l ne soil	boring w	l as groute	I d to the surface	with cemen	t/bentonite grout.		<u>L. </u>	<u> </u>	<u> </u>
		-	-			· -	•			

i:\div71\projectc\1118.080\4\boring\nowbor.xlc

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. **SB-30** Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 1 Sampler: 2-inch split spoon (South First Street Site) Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 2/14/02 File No.: 1118/29192 Fall: 30 inches End Date: 2/14/02 Boring Company: Parratt-Wolff, Inc. Screen = \ Grout Foreman: Lee Penrod Riser Sand Pack Drill Rig: CME Steel 77 **Bentonite OBG Geologist:** Chawn O'Dell PID Stratum Depth Change over head "N" Depth Blows UV Below Penetr/ Sample Description General spoon space /6" Grade No. Recovery Descript (feet) Value Light (ppm) (ppm) 2.0/1.5 Grayish brown 5YR 3/2, damp, fine to 0.0 0.0 coarse SAND, little fine to coarse gravel (angular) 2 2 4 2.0/1.7 Dark yellowish brown 10YR 4/2, damp, 0.0 0.0 neg SILT, some fine to coarse SAND, little fine to coarse gravel (angular) 4 3 2.0/2.0 6 Moderate yellowish brown 10YR 5/4, 0.0 --neg 0.0 saturated, fine SAND, little silt 2.0/2.0 6 8 Moderate yellowish brown 10YR 5/4, 0.0 0.0 neg saturated, fine SAND, little silt 8 5 10 2.0/2.0 Moderate yellowish brown 10YR 5/4, 0.0 0.0 --neg saturated, fine SAND, little silt 10 6 12 2.0/2.0 Pale reddish brown 10R 4/2, saturated, ------0.0 0.0 nea fine SAND, little fine to medium gravel (subrounded to subangular) 12 14 2.0/2.0 Pale reddish brown 10R 4/2, saturated, 7 ---0.0 0.0 neg fine SAND, little fine to medium gravel (subrounded to subangular) 14 8 16 2.0/2.0 Pale reddish brown 10R 4/2, saturated, 0.0 0.0 neq fine SAND, little fine to medium gravel (subrounded to subangular) 16 9 18 Pale reddish brown 10R 4/2, saturated, 0.0 2.0/2.0 0.0 neg fine SAND, little fine to medium gravel (subrounded to subangular) 18 10 20 2.0/2.0 Pale reddish brown 10R 4/2, saturated, 0.0 0.0 neg fine SAND, little fine to medium gravel (subrounded to subangular) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

O'BRI	EN 8	L GER	FEN	GINEERS,	INC	TEST BORING LOG	REPO	RT OF E	BORING)
Client:	Niaga (Sou	ara Mol		ower Corpo		Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:	1		
Proj. Lo File No	.: '	Fulton 1118.08	30			Fall: 30 inches	Start Date:			
Boring Forema Drill Rig OBG G	n: g: CN	Lee Pe IE	enrod	-Wolff, Inc.			Screen Riser Steel		Grout Sand F Bentoi	
Depth Below Grade	No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	UV Light	PID over spoon (ppm)	head
0	1	2		2.0/2.0		Dark yellowish brown 10 YR 4/2, damp, SILT, some fine to coarse sand, little fine to coarse gravel (angular), trace concrete fragments		neg	0.0	0.0
2	2	4		2.0/0.7		As above, gravel lodged in split spoon tip		neg	0.0	0.0
4	3	6	-3	2.0/1.4		Dark yellowish brown 10 YR 4/2, saturated, fine SAND, little fine to coarse gravel (subangular to angular)		neg	0.0	0.0
6	4	8		2.0/1.0		Dark yellowish brown 10 YR 4/2, saturated, fine SAND, little fine to coarse gravel (subangular to angular)		neg	0.0	0.0
	5	10		2.0/2.0		As above to approximately 9.5 ft, then Pale reddish brown 10R 4/2, saturated, fine sand, little fine to medium gravel (angular)		neg	0.0	0.0
10	6	12		2.0/2.0		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (angular)		neg	0.0	0.0
12	7	14		2.0/1.5		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (angular); bottom 0.2 ft apparent broken cobble		neg	0.0	0.0
14	8	16		2.0/2.0		Cobble 14.0 - 14.5 ft, then dark yellowish brown 10YR 4/2, saturated, fine SAND, little silt		neg	0.0	0.0
16	9	18		2.0/2.0		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (subrounded to subangular)		neg	0.0	0.0
18	10	20		2.0/2.0		Pale reddish brown 10R 4/2, saturated, fine SAND, some fine to coarse gravel (subrounded to subangular)		neg	0.0	0.0
: TI	l ne soil	L boring w	I as groute	I d to the surface	with cemen	t/bentonite grout.	<u> </u>	1,	<u> </u>	<u></u>

TEST BORING LOG REPORT OF BORING **SB-32** O'BRIEN & GERE ENGINEERS, ING. Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Hammer: 140 lbs Proj. Loc: Fulton, NY Start Date: 2/15/02 1118/29192 Fall: 30 inches End Date: 2/15/02 File No.: Boring Company: Parratt-Wolff, Inc. Screen = Grout Lee Penrod Foreman: Sand Pack Riser Drill Rig: CME Steel 7/ **Bentonite** Chawn O'Dell OBG Geologist: Stratum PID Depth Change over head "N" Below Depth Blows Sample Description General UV Penetr/ spoon|space (feet) /6" Light Grade No. Recovery Value Descript (ppm) | (ppm) 2.0/1.0 Grayish brown 5YR 3/2, damp, SILT, 2 n 0.0 0.0 some fine to coarse gravel, little fine to coarse sand 2 2 4 2.0/1.5 Grayish red 10R 4/2, damp, fine SAND, 0.0 0.0 neq some coarse to fine gravel (angular) 4 3 6 2.0/0.9 Grayish red 10R 4/2, saturated, coarse to 0.0 0.0 boney nea fine GRAVELI (angular), some fine sand augering (cobbles?) 4 8 6 2.0/2.0 Grayish red 10R 4/2, saturated, fine neg 0.0 0.0 SAND, some coarse to fine gravel (angular) 8 10 2.0/1.0 Gravish red 10R 4/2, saturated, fine 0.0 0.0 nea SAND, some coarse to fine gravel (angular); gravel lodged in spoon tip 10 12 2.0/2.0 Grayish red 10R 4/2, saturated, fine 0.0 0.0 nea SAND, some fine to coarse gravel (subanguiar to angular) 12 14 2.0/2.0 Grayish red 10R 4/2, saturated, fine 0.0 0.0 --neg SAND, some fine to coarse gravel (subanguiar to angular) 14 8 16 ---2.0/2.0 ---Grayish red 10R 4/2, saturated, fine 0.0 0.0 neg SAND, some fine to coarse gravel (subangular to angular) 16 9 18 2.0/2.0 Grayish red 10R 4/2, saturated, fine 0.0 0.0 neg SAND, little fine to coarse gravel (subanguiar to angular) 18 10 20 2.0/2.0 Grayish red 10R 4/2, saturated, fine neg 0.0 0.0 SAND, little fine to coarse gravel (subanguiar to angular) Notes: The soil boring was grouted to the surface with cement/bentonite grout.

						TEST BORING LOG	REPO	RT OF E	BORING	;
0.000.000.000.0000.0000.0000.0000.0000.0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			SINEERS,			<u> </u>	SB-33		
	(Sou	th Firs	t Street	ower Corpo Site)	ration	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:			
Proj. Lo File No	.: '	Fultor 1118/29	192			Fall: 30 inches	Start Date End Date:	2/15/02		
Forema Drill Rig	ın: g: CN	Lee Po IE	enrod	-Wolff, Inc.			Screen Riser Steel		Grout Sand F Bentor	
OBG G	eolog	jist:	Chawr	O'Dell		T	Stratum		PID	
Depth Below Grade	No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General	บV Light	over spoon (ppm)	
0	1	2		2.0/1.0		Dark yellowish brown 10YR 4/2, damp		neg	0.0	0.0
						to wet, fine SAND, some silt, little organic matter				
2	2	4	-	2.0/1.3		Dark yellowish brown 10YR 4/2,			0.0	0.0
		-		2.0/1.3		saturated, fine SAND, trace yellow brick fragments		neg	0.0	0.0
4	3	6		2.0/2.0	Bay Marky	As above to approximately 5 ft, then 0.2 ft of brick fragments, followed by		neg	0.0	0.0
						grayish red 10R 4/2, saturated, fine SAND, little fine to coarse gravel (subangular to angular)				
6	4	8		2.0/1.6		Grayish red 10R 4/2, saturated, fine SAND, little fine to coarse gravel		neg	0.0	0.0
						(subangular to angular), trace fine to coarse sand				
8	5	10		2.0/2.0		Grayish red 10R 4/2, saturated, fine SAND, little fine to coarse gravel (subangular to angular), trace fine to coarse sand		neg	0.0	0.0
10	6	12		2.0/2.0		Grayish red 10R 4/2, saturated, fine SAND, little fine to coarse gravel (subangular to angular), trace fine to		neg	0.0	0.0
	 	ļ <u></u>	 			coarse sand	·			ŀ
12	7	14		2.0/2.0		Grayish red 10R 4/2, saturated, fine SAND, some coarse gravel (subangular to angular), little fine to medium gravel		neg	0.0	0.0
14	8	16		2.0/2.0		Grayish red 10R 4/2, saturated, fine		neg	0.0	0.0
						SAND, some coarse gravel (subangular to angular), little fine to medium gravel				
16	9	18		2.0/2.0		Grayish red 10R 4/2, saturated, fine SAND, some coarse gravel (subangular to angular), little fine to medium gravel	very dense	neg	0.0	0.0
18	10	20		2.0/2.0		Grayish red 10R 4/2, saturated, fine SAND, some coarse gravel (subangular to angular), little fine to medium gravel	very dense	neg	0.0	0.0
Notes: TI	he soil	boring w	as groute	d to the surface	with cemen	t/bentonite grout.	<u> </u>			<u> </u>

i:\div71\projects\1118.080\4\boring\newbor.xls

						TEST BORING LOG	REPO	RT OF B	ORING	3
	***********			GINEERS,				SB-34		
Client:	Niaga (Sou	ara Mol th Firs	hawk P t Street	ower Corpo	ration	Sampler: 2-inch split spoon	Page 1 of Location:			ļ
D	·			,		Hammer: 140 lbs			•	
Proj. Lo File No	oc: .:	Fulton 1118/29				Fall: 30 inches	End Date:	e: 06/06/03 : 06/06/03		
Boring Forema		pany:		-Wolff, Inc. y Marshal			Screen Riser		Grout Sand F	Pagk .
Drill Rig	g :		Tripod	i		•	Steel		Bento	
OBG G	eolog	jist:	Chawr	n O'Dell		T	Stratum		PID	
Depth							Change		over	head
Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	General Descript	UV Light		space (ppm)
0	1	4		4.0/3.5					(J- P/	(-
					· · · · · · · · · · · · · · · · · · ·	Brownish Black 5YR2/1, Saturated, SILT, little organic matter to ~1.0'. Then Moderate	2-4 B.D.		0.0	
						Yellowish Brown 10YR5/4, saturated, fine				
						sand, little silt.				
4	2	8		4.0/4.0		Moderate Velleviich Brown 40VD514				
						Moderate Yellowish Brown, 10YR5/4, saturated fine SAND, little silt, trace fine			0.0	
						gravel (subround-subangular).				
8	3	12		4.0/4.0		·				
						Moderate Yellowish Brown 10YR5/4, saturated fine SAND, little silt, trace fine			0.0	
						gravel (subround-subangular)				
12	4	16		4.0/4.0						
						Polo Poddish Pressur 4005/4 and server 5			0.0	
						Pale Reddish Brown 10R5/4, saturated, fine SAND, little silt, little fine gravel, subround.			0.0	
16	5	17.3		1.3/1.0		as above, Refusal at 17.3 ft.				
-10	,	17.3		1,0/1.0		20 2000, Nordon at 17.0 it.		,	0.0	
					——————————————————————————————————————			}		
										
							!			
							. *			
							•			
		•								
							:			
						·				
						·				
Notes:						L		L		· · ·
= . ,										
				· · · · · · · · · · · · · · · · · · ·	i:\div71\p ı	rejects\1118.080\4\bering\newber.xls				

O'BRIE	EN &	GERE	ENGI	NEERS, II	VC.	TEST BORING LOG	REPO	RT OF BO SB-35		
roj. Lo File No. Boring (Forema	Niaga (Sout c: : Comp n:	ra Moha h First S Fulton, 1118/35 any:	awk Po Street S NY 5165 Parrati Lee Pe	wer Corpor ite) -Wolff, Inc.	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs Fall: 30 inches	Page 1 of Location: Start Date End Date: Screen Riser	2 Conc. Pad : 6/14/04		ack
DBG Ge Depth Below Grade	eologi No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip.	Bentor Field Test PID (ppm)	d
2		4	12-9	2.0/1.2	21	7"-5YR6/4 Dusky Yellow, cmf(+) SAND, medium dense, moist, odor 7"-4YR5/2 Pale Brown, cmf(+) SAND, little rnd gravel, medium dense, moist, odor, sheen at tip			11.2	POS
4		6	4-8 6-6	2.0/1.2	14	14"-N2 Grayish Black (5") grading to 10YR6/6 Dark Yellowish Orange (3") to 10YR5/4 Moderate Yellowish Brown, f SAND, medium dense, sat., odor, sheen, some silt last 5"			5.5	POS
6		8	5-6 10-11	2.0/1.4	16	17"-10YR5/4 Moderate Yellowish Brown, f SAND, trace cm sand and rnd gravel, medium dense, sat., sheen, NAPL in sand (black and yellow) oriented horizontally, odor			41.3	POS
8		10	10-9 17-25	2.0/?	26	10YR5/4 Moderate Yellowish Brown, very f SAND, medium dense, sat., odor			4.6	POS
10		11.3	3-19 50/0.3	2.0/1.1	50+	as above grading to cmf SAND and GRAVEL, tight, very dense, saturated, no odor at bottom, slight at top.			2.1	Sligh
12		12.9	38 50/0.4	0.9/0.5	50+	6"-10YR5/4 Pale Reddish Brown, tight f SAND, and little (subrnd-sub ang) gravel, trace silt, very dense, moist-wet, slight odor.			3.8	NEC
14		14.9	25 50/0.4	0.9/0.5	50+	6"-As above, rnd gravel.			2.3	NEC
16		16.8	25 50/0.3	0.8/0.7	50+	8"-As Above			4.2	NEC
18		18.9	38 50/0.4	0.9/0.7	50+	8"-As above, f SAND, little (rnd) gravel, moist, no odor			1.6	NEC
20		20.9	30 50/0.4	0.9/0.7	50+	8"-As above, no gravel	1		1.1	NEC

						TEST BORING LOG	REPO	RT OF BO	RING	
				NEERS, II			:	SB-35		
Client: Proj. Lo	(Sout	ra Moha h First S Fulton,	Street S	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 2 of Location:	2 Conc. Pad	Area 1	
File No.		1118/35				Fall: 30 inches	Start Date End Date:			
Boring (any:		t-Wolff, Inc.		ir an. Ju mones	Screen	= \	Grout	
Forema	n:	•	Lee Pe	enrod			Riser		Sand P	
OBG Ge	ologi	st:	Scott	Tucker	<u> </u>		Stratum		Bentor Field	
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript	Equip. Installed	Test PID (ppm)	ing
22		22.9	35 50/0.4	0.9/0.5	50+	6"-As above, more 5R4/2 Grayish Red			1.1	NEG
24		24.0	33	0.9/0.7	50+	8"-As above				,,,,
		24.9	50/0.4	0.9/0./	+UC	o -As above			1.6	NEG
							ĺ			
						End of Boring at 24.9 ft.		Ì		
									٠	
						,	i			
-						•				
							·			
		,								
										1
						,				
						•		·		
										.
										1
Grouted to	surface		· · · · · · · · · · · · · · · · · · ·						l	

TEST BORING LOG **REPORT OF BORING** O'BRIEN & GERE ENGINEERS, INC. **SB-36** Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 2 (South First Street Site) Sampler: 2-inch split spoon Location: South of SB-3 roj. Loc: Fulton, NY Hammer: 140 lbs Start Date: 6/15/04 File No.: 1118/35165 Fall: 30 inches **End Date:** 6/15/04 **Boring Company:** Parratt-Wolff, Inc. Screen Grout Foreman: Lee Penrod Riser Sand Pack **OBG Geologist: Scott Tucker Bentonite** Stratum Field Depth Change **Testing** Depth Blows "N" Below Penetr/ Sample Description General Equip. PID Recovery Grade No. (feet) /6" Value **Descript** Installed luv (ppm) 0 1.0/0.0 - -- -Blacktop, gravel 1 2 1.0/0.5 6-6 10YR6/6 Dark Yellowish Orange, SILT, - -2.5 NEG stiff, moist, no odor 2 4 11-25 2.0/0.7 49 8"-5YR3/2 Grayish Brown, as above, NEG 0.9 24-20 grading to cmf SAND, some silt, little ang gravel, brick fragments, dense, moist, no odor 4 6 6-9 2.0/0.5 18 4"-As above 0.7 NEG 9-14 10"-10YR6/6 Dark Yellowish Orange. SILT, trace rnd gravel, moist, no odor 4"-10YR4/2 Dark Yellowish Brown, cmf SAND, little silt and ang gravel, medium dense, moist, no odor 6 8 2-2 2.0/0.5 5 As above 0.6 NEG 3-4 8 10 6-9 2.0/0.7 18 8"-N2 Grayish Black and 10YR5/4 NEG 3.6 Moderate Yellowish Brown, cmf SAND 9-11 and f GRAVEL (some silt top 2"), brick fragment, slag/coal fragments (shiny). medium dense, saturated, sheen, odor 2.0/0.1 10 12 12-4 6 2"-As above, some silt, coal fragment 6.3 **NEG** 2-2 12 14 2-3 2.0/1.3 7 3"-As above, sheen NEG 6.5 4-3 13" - N6 Medium Light Gray, SILT, organic (roots?) matter, mottling, some clay, trace sand, firm, moist, odor 14 16 2-2 2.0/1.6 6 10"-As above, gravel and concrete 3.8 NEG 4-4 fragment seam <1" at 6" 5YR7/6 Moderate Yellow mottling 9"-N6 SILT and f SAND, loose, wet, Slight POS 2.0/1.4 16 18 2-3 7 7"-N3 Dark Gray SILT, little clay, loose, 4-4 moist slight odor 2.3 NEG 10"-N3 Dark Gray, f SAND, little silt, organic fragments, loose, wet, slight odor 18 14"-N7 Light Gray, CLAY, very soft, wet, 20 2.0/0.3 2 1-1 1.8 NEG slight odor 1-1 At 4-6 ft. hard drilling Cuttings stop coming to surface at ~10 ft.

						TEST BORING LOG	REPO	RT OF BO	RING	
			. * . * . * . * . * . * . * . * . * . *	NEERS, II	**************			SB-36		
Client: Proj. Lo	(Sout	ara Moha th First S Fulton,	Street S	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs		South of S	B-3	
File No.		1118/35				Fall: 30 inches	Start Date End Date:			•
Boring	Comp		Parrat	t-Wolff, Inc.		1 4111 00 11101100	Screen		Grout	
Forema OBG Ge		st:	Lee Pe	enrod Tucker			Riser		Sand P Benton	
							Stratum		Field	d
Depth Below		Denth	Blows	Penetr/	"N"	Sample Description	Change General	Equip.	Testi PID	ing I
Grade	No.	(feet)	/6"	Recovery	Value	outiple bootifue.	Descript	Installed	(ppm)	υv
20		22	NS	NS		NS				
22		24	10-10 7-7	2/0/1.5	17	6"-As 18'-20', sheen, spotty NAPL 12"-10YR4/2 Dark Yellowish Brown, cmf			241	POS
						SAND and GRAVEL, (rnd gravel), NAPL,				
		,				medium dense, sat., sheen, odor				
24		26	6-6	2.0/0.8	<u> </u>	4"-As above			12.1	POS
		•	4-3			6"-10YR5/4 Moderate Yellowish Brown, cmf(++) SAND, loose, saturated, sheen,				
						odor, rock in shoe				
26		28	6-9	2.0/1.2	24	4"-As above, sheen			9.8	NEG
			15-20							'
						10"-5YR4/4 Moderate Brown, cmf SAND and (rnd-subrnd) GRAVEL, dense (tight),				
						moist, odor, slight sheen (dragdown)				
28		29.9	25-32	1.9/0.6	50+	7"-As above, very dense			6.9	NEG
20		20.0	50/0.4	1.5/0.0		7 -As above, very delibe			0.8	INEG
						Spoon refusal at 29.9 ft				
						Opoon rolusal at 20.0 ft				
										
						•				
			 						ļ	
			 			*	_			
						•				
		-								
						•				
		 		-						
								·		
			-							
						•				(
									·	
									<u></u>	
Grouted to :		ied. Falled	to samp	ole interval after	adding at	uger flights.				

O'BRII	=N &	GFRF	ENGI	NEERS, II	NC	TEST BORING LOG	REPOI	RT OF BO SB-37	RING		
	Niaga (Sout c:	ra Moha h First S Fulton, 1118/35	awk Po Street S NY 5165	wer Corpor	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs Fall: 30 inches	Page 1 of 2 Location: West of SB-3 and 4, between SB-3 and 4 Start Date: 6/15/04 End Date: 6/15/04 Screen = \ Grout				
Forema OBG Ge	n:	•	Lee Pe				Riser	Sand F Bentor	Pack [
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Fiel Test PID (ppm)		
0		1		1.0/0.0		Asphalt, gravel					
1		2	4-7	1.0/0.8		9"-10YR4/2 Dark Yellowish Brown, f SAND, little (rnd) gravel, grading to 10YR6/4 Moderate Yellowish Brown SILT, some clay, trace coal fragments, medium dense, moist, no odor			0.5	NEG	
2		4	16-16 18-17	2.0/0.3	34	2"-10YR4/2 Dark Yellowish Brown, cmf SAND and GRAVEL, trace coal fragments, dense, moist, no odor 2"-10YR5/4 Moderate Yellowish Brown, cmf SAND, little cmf gravel, dense, moist, no odor			0.6	NEG	
4		6	8-8 27-21	2.0/0.2	35	2"-As above, moist			1.7	NEG	
6		8	4-3 1-1	2.0/0.8	4	2"-N2 Grayish Black, f SAND, trace coal fragments, loose, slight odor, wet 8"-10YR5/4 Moderate Yellowish Brown, f SAND, some silt, trace (rnd) gravel, very loose, wet, no odor			0.9	NEG	
8		10	1-1 1-2	2.0/1.3	2	11"-As above, liquefied, light discoloring at bottom, odor, very loose			0.6	NEG	
						4"-N2 Black, GRAVEL, little sand, coal slag, roots, organic fragments, (gold color fragment), very loose, odor			1.3	Slightly	
10		12	1-2 3-2	2.0/0.3	5	3"-As above			1.0	NEG	
12		14	2-2	2.0/1.6	6	3"-As above 16"-N6, Medium Light Gray, SILT, little clay, rust mottles, organic matter (roots), stiff, moist, odor			4.5	NEG	
14		16	2-2 4-5	2.0/1.6	6	16"-As above, moist, odor 3" - N6 Medium Light Gray, f SAND and SILT, loose, moist, odor			1.7	NEG	
16		18	3-3	2.0/1.4	7	17"-As above shell fragments, odors, becoming wet. Grading to (sticky, wet, no odor (clay last 4")			5.1	NEG	

						TEST BORING LOG	REPO	RT OF BO	RING	
O'BRIE	EN &	GERE	ENGI	NEERS, II	NC.			SB-37		
Client:	Niaga	ra Moha	awk Po	wer Corpor	ation	Hollow Stem Auger	Page 2 of		2 004	
Proj. Lo		h First S Fulton,		oite)		Sampler: 2-inch split spoon Hammer: 140 lbs	between S	West of SE B-3 and 4	-s and	*,
		•				Falls 20 inches	Start Date	: 6/15/04	•	
File No. Boring (Compa	1118/35 any:		t-Wolff, Inc.		Fall: 30 inches	End Date: Screen	6/15/04	Grout	
Forema	n:		Lee Pe	enrod			Riser		Sand P	
OBG Ge	ologi	st:	Scott	Tucker			Stratum		Benton Field	
Depth		į				÷	Change		Test	
Below		Depth			"N"	Sample Description	General	Equip.	PID	
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(ppm)	UV
18		20	2-2	2.0/1.3	4	4"-As above			3.0	NEG
			2-2			12"-5YR6/4 Dusky Yellow, SILT, little	·			
						clay,soft, wet, odor				
20		22	3-11	2.0/1.5	22	7"-As above			3.6	NEG
			11-9			4"-10YR6/6 Dark Yellowish Orange, SILT, little clay and gravel, hard, moist, odor,				
·						black stain				
						7"-10YR5/4 Pale Reddish Brown, f SAND, little gravel (cmf rnd), medium				
						dense, wet, odor, black stain				
22		24	3-3	2.0/0.7	5	8"-As above, liquefied odor			5.4	NEG
22		24	2-2	2.0/0.7	5	o -As above, ilqueiled odol			5.4	INEG
0.4		20	4.4	2.0/0.0		ND				
24		26	1-1 8-5	2.0/0.0	9	NR				
									٠	
26		28	10-15 39-43	2.0/1.3	45	16"-10YR5/4 Pale Reddish Brown, cmf(+) SAND, gravel (rnd), becoming extremely			4.6	NEG
						dense, moist, odor,	•			,,_0
							*			
						End of Boring at 28 ft				
		·				4				
· ·									,	
						_				
				****		•				
	<u> </u>						i			
						·		!		
								·		
				-						
									,	
							:			
,1	<u>.</u>									
Grouted to	surface	·.	•							l

						TEST BORING LOG	REPO	RT OF BO	RING	
				NEERS, II				SB-38		
Client:	(Sout	ara Moha th First S Fulton,	Street S	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location: Start Date:	East of SB	-35, Are	a 1
File No.		1118/35		,	- <u></u>	Fall: 30 inches	End Date:			
Boring Forema OBG Ge	an:	•	Lee Pe	t-Wolff, Inc. enrod Tucker	,		Screen Riser	= \	Grout Sand P Benton	nite
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	d :ing
0		2	2/2	2.0/0.8		5" - 10YR5/12 - Dark Yellow Brown, cmf(+) sand, moist, no odor, little (rnd) gravel.			2.8	NEG
						5" - 10YR8/2 - Dark Yellow Brown, cmf(+), sand, trace gravel, moist, no odor				
2		4	2/10 32/23	2.0/0.9		7" - 10YR4/2 Dark Yellow Brown, f SAND, little silt, trace (rnd) gravel, wet, sheen, odor 3" - 5YR6/4 Dusky Yellow, f SAND, dry-			27.3	NEG
						moist, odor, some silt 1" - as above, some gravel, sheen, odor, moist				
4		6	25/19 11/9	2.0/1.2		14" - 10YR6/6 - Dark Yellow Brown, cmf(+) SAND, trace of gravel (rnd), moist, odor, becomes wet and sheen	,		7.6	POS
6		8	10/8	2.0/0.9		at 6" from top 11" - As above, becoming some fine	-		7.6	POS
8		10	7/8	2.0/0.8		NAPL blebs 9"- As above, slight sheen, saturated	1		2.7	NEG
10		12	8/8 10/14 15/20			2" - As above, saturated, poor recovery	_		NA	NEG
12		14	19/21 17/15	2.0/1.3		15" - As above, cmf SAND, little fine (rnd) gravel, saturated slight odor - silt lens ~1" thick, 2" from top becoming light (dense)	•		2.0	NEG
14		15.4	15/40 50/0.4	2.0/1.3		13" - As above, becoming more fine sand, trace fine gravel, moist, more	_		2.6	NEG
						dense, slight odor, becoming 5YR4/4, 2" - 5YR4/4 Medium Brown, CLAY, little silt and fine sand, moist, stiff, no odor				
16		17.3	11/42 50/0.3	2.0/0.6		8" - 10YR5/4 Pale Reddish Brown, CMF(+), SAND, trace (fine (md) gravel, moist, no odor, tight	-		2.4	NEG
18		18.8	14 50/0.3	2.0/0.6		8" - As above, tight	-		2.2	NEG
20		21.4	40/50	2.0/0.8		9" - As above, no odor	1			NEG
		Ι			<u> </u>	EOB - 22'	1	<u> </u>	<u> </u>	
										٠

TEST BORING LOG REPORT OF BORING SB-39 O'BRIEN & GERE ENGINEERS. INC. Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 1 (South First Street Site) Sampler: 2-inch split spoon Location: Adiacent to water and Hammer: 140 lbs MW-7 Proi. Loc: Fulton, NY Start Date: 6/16/04 File No.: 1118/35165 Fall: 30 inches End Date: 6/16/04 **Boring Company:** Parratt-Wolff, Inc. Screen Grout Foreman: Lee Penrod Riser Sand Pack **OBG Geologist: Scott Tucker Bentonite** Field Stratum **Testina** Depth Change Depth Blows "N" Below Penetr/ Sample Description General Equip. PID Grade No. /6" Installed (feet) Recovery Value Descript UV (ppm) 0 2 3-5 2.0/1.3 11 7"-Topsoil 10YR5/4 Medium Yellowish 6-5 Brown 9"-10YR4/2 Dark Yellowish Brown, cmf NEG 0.0 SAND, coal fragments, slag, medium dense, no odor, dry 2 16"-10YR5/4 Moderate Yellowish Brown 4 3-4 2.0/1.3 11 3 NEG 7-7 SAND, medium dense, moist, no odor 4 6 4-6 2.0/1.6 12 19"-As above, bedding, oxidation (rust), NEG 2.5 medium dense, wet, no odor, 6-5 6 8 2.0/1.4 10 17"-As above, grading to some silt, 4-5 2.6 **NEG** 5-6 medium dense, becoming less wet 10 10 8 4-5 2.0/1.1 13"-As above, SILT, intermittent f sand 2.5 NEG 5-4 lenses, stiff, moist, more moist at lenses. no odor 10 12 4-5 2.0/1.3 11 16"-As above, becoming f SAND and SILT, trace f (rnd) gravel, stiff, wet, no NEG 6-6 2.5 odor 12 14 3-3 2.0/1.0 5 6"-As above, f SAND, some silt, no odor 2.5 **NEG** 2-2 6" - 10YR5/4 Pale Reddish Brown, cmf(++) SAND, little f (rnd) gravel, loose, saturated, no odor 14 16 2-2 2.0/0.1 4 2"-10YR5/4 Moderate Yellowish Brown, f. 2.7 NEG SAND, little silt, loose, saturated, no odor 2-2 2.0/1.0 20 16 18 6-6 12"-As above, little cmf(rnd) gravel, 14-20 bedoming dense, saturated, no odor 23 NEG 2.0/0.9 18 20 34-17 52 11"-10YR5/4 Pale Reddish Brown, cmf **NEG** 2.6 35-48 SAND, little cmf (rnd) gravel, very dense, moist-wet, no odor 2.0/0.4 20 20.9 21 50+ 5"-As above, no odor, moist 2.4 NEG 50/0.4 22 23.4 25-43 1.4/0.6 50+ 7"-As above, cmf(+) SAND, moist 2.6 NEG 50/0.4 24 30 2.0/0.2 3"-As above 25 NEG - -2.7 30 End of boring at 25 ft. MS/MSD collected at SB-39 (0-4').

Grouted to surface.

						TEST BORING LOG	REPOR	RT OF BO	RING	
O'BRI	EN&	GERE	ENGI	NEERS, II	NC.			SB-40		
Client: oj. Lo	(Sout	ara Moha th First S Fulton,	Street S	wer Corpor Site)	ration	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location: Start Date	South of C Area 1	oncrete	Pad
File No.		1118/35			<u></u>	Fall: 30 inches	End Date:			
Boring		any:		t-Wolff, Inc.	•		Screen	= \	Grout	
Forema		ist:	Lee Pe	enroa Tucker			Riser		Sand P Benton	
Depth Below Grade	No.	Depth	Blows	Penetr/	"N" Value	Sample Description	Stratum Change General		Field Testi PID	d ing
Grade	NO.	(leet)	10	Recovery	Value	 	Descript	Installed	(ppm)	UV
0		2	1-1	2.0/1.3	3	6"-topsoil				
	 	 	1-2		 	10"-10YR7/4 Grayish orange to 10YR2/2 Dusky Yellowish Brown, cmf SAND, trace			0.0	
	1	 			+	f (rnd) gravel, green mottles, stained,				
					1	very loose, moist-wet, slight odor				'
	 	 	-			4				
2	+	4	10-23	2.0/1.0	39	2"-As above	1		0.0	
			16-10			10"-10YR6/6 Dark Yellowish Orange,				
	 		 	 	 	cmf(++) SAND, trace (rnd) gravel, dense, moist, no odor				
	 	 	 	<u> </u>	 	11101000, 110 0001			1	
4		6	9-5	2.0/1.0	11	As above, 10YR5/4, Moderate Yellowish	1		0.0	
 	┼	 -	6-4		 	Brown, some silt at top grading to trace silt, becoming medium dense, saturated,				
,	\dagger	†	+-		†	no odor				
6		8	6-5	2.0/0.5	19	6"-As above, rock in shoe	1		0.0	
	 	 	14-8	 	 	<u>-</u>	1			
8	+	10	14-18	2.0/0.7	40	9"-As above, organics trace, dense	†		0.0	
	\Box		22-17			1				
10	+	12	4-9	2.0/1.0	24	12"-As above, medium dense, moist, no	-		0.0	
	<u> </u>		15-21			odor				
12		124	50/0.4	0.4/0.0	50+	The sealt in about your dance				<u> </u>
12	+	12.4	50/0.4	0.4/0.0	50+	NR-rock in shoe, very dense			0.2	
14		16	20-10	2.0/0.8	28	10"-As 10-12', medium dense, saturated	1		0.8	
	1	-	18-26			4				
16	+	16.9	14	0.9/0.8	50+	10"-5YR4/4 Moderate Brown, f SAND,	1	1	0.0	ŀ
		‡	50/0.4			very dense, saturated, no odor				
18	+	19.4	2-15	1.4/0.3	50+	4"-10YR5/4 Pale Reddish Brown, cmf(+)	-		0.4	
		10.1	50/0.4	1.5.0.0		SAND, little f (rnd) gravel, very dense,		ľ	0.4	
	—	<u> </u>				moist, no odor 🍇				ļ.
20	+	20.9	10	0.9/0.2	50+	3" - As above	-		0.1	i.
		1	50/0.4			1	•			
22	-	22.9	30	2.0/0.2	50+	3" - As above	-		0.3	
	+		50/0.4		1 30.	1 - V2 apone			0.5	
	1					1				
24	+	25	16-43	1.0/0.1		2" - As above			0.3	
	1		<u> </u>		 		1			
	1		1			End of Boring at 25 ft				
	+-	 	┼	 	 					
<u> </u>				<u></u>			<u> </u>		<u></u>	L
		prepared in due to rain.		h Wegman's D	istilled Wa	ater				
O A DIPITA	HUL USVE	duc to rain.								

O'BRII	EN &	GERE	ENGI	NEERS, I	NC.	TEST BORING LOG	REPOR	RT OF BO SB-41	RING	
	Niaga (Sout		awk Po Street S	wer Corpor		Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs		Southwest	of SB-3	36
File No.	:	1118/35	165			Fall: 30 inches	Start Date:	6/18/04 6/18/04		
Boring (Forema OBG Ge	Compa n:	any:	Parrat Lee Pe	t-Wolff, Inc. enrod Tucker			Screen Riser	= \	Grout Sand P Benton	
Depth Below Grade	No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	ing
0		2		2.0/0.0		Asphalt, gravel				
1		2	5-7	1.0/0.7		9"-10YR4/4, Moderate Brown, SILT, some cmf sand, trace (rnd) f gravel, stiff, moist, no odor			0.3	NEG
2		4	10-12 11-9	2.0/0,1	23	2"-As above Concrete in shoe			1.0	NEG
4		6	5-3 3-2	2.0/0.0	6	NR - spoon not wet			NA	NA
6		8	2-2 2-2	2.0/0.6	4	2"-10YR5/4 Moderate Yellowish Brown, cmf SAND and, some gravel, little silt, loose, moist, no odor 5"-N1 Black, coal fragments, clinker, sheen, loose, wet, slight odor			2.0	POS
8		10	3-2 2-2	2.0/0.3	4	1"-As above, coal tar 2"-N2 Grayish Black, SILT, coal fragments, blebs of NAPL, soft, odor,	-		7.0	NEG
10		12	4-4 6-7	2.0/0.7	10	moist, 9"-As above, organic (roots), blebs of NAPL, stiff, strong odor, moist,			9.6	NEG
12		14	2-2 2-2	2.0/1.1	4	14"-N5 Medium Gray, SILT, some clay, organics (roots), rusty mottles, soft, moist, odor			7.9	NEG
14		16	2-4 2-4	2.0/1.1	6	9"-As above,firm, more moist 5"-5YR4/1 Olive Gray, SILT and f SAND, firm, wet, odor		9	2.5	NEG
16		18	3-4 2-3	2.0/1.3	6	6"- as above 9"-5YR4/2 Oliver Gray, SILT, little f sand, shell fragments, organics, loose, moist, slight odor			2.5	NEG
18		20	3-2 2-4	2.0/1.2	4	6"-SILT, soft 8"-4YR5/7 light olive gray, f SAND, some silt, loose, wet, slight odor			1.1	NEG
20		22	1-2	2.0/1.5	3	11"-As above, SILT, little clay, very soft, odor, wet 7"-5YR5/1 light olive gray, CLAY, wet, soft, moist, odor			2.3	NEG _.
			لــــــا							

						TEST BORING LOG	REPOR	RT OF BO	RING	
				NEERS, II		_		SB-41		
Client:	Niaga	ra Moha h First S	awk Po	wer Corpor	ation	Hollow Stem Auger	Page 2 of		- (0 D (
roj. Lo		Fulton,		one)		Sampler: 2-inch split spoon Hammer: 140 lbs	Location:	Southwest	of SB-3	86
Ten Ma		•					Start Date			
File No.		1118/35		t-Wolff, Inc.		Fall: 30 inches	End Date: Screen	6/18/04	Grout	
Forema		arry.	Lee Pe				Riser		Sand P	ack
OBG Ge	ologi	st:	Scott	Tucker	T			1 1200	Bentor	ite
Depth							Stratum		Field	
Below		Depth	Blows	Penetr/	"N"	Sample Description	Change General	Equip.	Test PID	ing I
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(ppm)	UV
22		24	1-1	2.0/1.7	2	20" As above adar vanication				
		24	1-1	2.0/1.7		20" - As above, odor, very soft, wet, moist			9.8	NEG
24		26	1-1	2.0/0.8	2	10"-5YR6/4 Dusky yellow, SILT, some f sand, very soft, wet, odor			9.6	NEG
			,-,			Jama, very son, wer, odor			9.0	NEG
26		28	4-4	2.0/0.5	7	2"-As above, little f sand	1			
			3-2			<1"-N3 Dark Gray, f SAND, stained,			ļ	
						strong odor, wet 4"-10YR5/4 Pale Reddish Brown, cmf(+)	·			
					<u> </u>	SAND, trace f (rnd) gravel, loose, moist-	İ		1.8	NEG
						wet, strong odor				
 									<u> </u>	
28		29.4	16-38	1.4/0.8	50+	10"-As above, very dense	1	'	2.5	NEG
			50/0.4		-	•	,			
30		30.9	38	0.9/0.5	50+	6"-As above, odor, moist			0.8	NEG
<u> </u>			50/0.4	<u> </u>		1				
32		33.1	38-42	1.1/0.5	80+	6"-As above, extremely dense,				
			50/0.1			odor, moist			0.9	NEG
				!		End of Boring at 33.1 ft	1			
	<u> </u>					1				
 	ļ	<u> </u>				-				
]				
						·				
<u> </u>						1				
]				
		<u> </u>		-		1				
					ļ					
·			_			-				
					 	1				
					ļ] .				
Y						-				
	L	<u>L</u>	1	<u>. </u>	<u></u>	<u> </u>	L	<u> </u>	I	
ſ										

O'BRII	EN &	GERE	ENGI	NEERS, II	NC.	TEST BORING LOG	REPO	RT OF BO SB-42	RING		
Client: Proj. Lo	Niaga , (Sout	ara Moha h First S Fulton,	awk Po Street S NY	wer Corpor	1212111111111111111111	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs Start Date: 6/23/ End Date: 6/23/			4		
File No. Boring Forema OBG G	Comp in:	-	Parrati Lee Pe	t-Wolff, Inc. enrod Tucker	•	Fall: 30 inches	End Date: Screen Riser	Grout Sand F Bentor			
Depth Below Grade	No.		Blows		"N" Value	Sample Description	Stratum Change General Descript	Equip.	Fiel Test PID (ppm)	d ing	
0		2	4-6 6-6	2.0/0.5	12	2"- 10YR2/2 Dusky Yellowish Brown, topsoil 2" - Slag			0.0	NEG	
						2" - 10YR2/2 Dusky Yellowish Brown, cmf sand, some angular gravel, moist, no odor, brick fragments					
2		4	6-10 11-11	2.0/0.7	21	8" - As above, trace clinkers, becoming wet at bottom, no odor			0.1	NEG	
4		6	10-10 13-10	2.0/0.8	23	9" - 5YR4/4 Moderate Brown, coarse GRAVEL (angular), saturated, no odor, little cmf sand			0.1	NEG	
6		8	GP	2.0/0.8	GP	10" - As above, saturated, no odor			0.0	NEG	
8		10	6-7 8-5	2.0/0.8	15	10" - 10YR4/2 Grayish Red, cmf sand and GRAVEL, moist, no odor			0.5	NEG	
10		12	3-11 8-8	2.0/1.3	19	5" - As above, saturated, no odor 8" - 10YR4/2 - Dark Yellowish Brown, cmf (++) SAND, trace fine (rnd gravel), coal fragment, wet, no odor			1.4	NEG	
12		14	15-7 4-6	2.0/0.6	11	7" - As above, N2 Grayish Black, SILT, trace fine sand, shell fragments, moist, no odor, organic fragments, hint of laminations at top			1.5	NEG	
14		16	2-2 2-2	2.0/1.0	4	5YR5/2 Pale Brown, cmf(++) SAND grading to fine SAND, 3" silt lens, 4" from top, wet, no odor			0.0	NEG	
16		18	GP	2.0/0.0	GP	NR - sample, trace of material similar to 14-16' description			NA	NEG	
18		20	9-5 5-10	2.0/0.0	10	NR spoon wet			NA	NEG	
20		22	5-9 22-23	2.0/1.4	31	6" - 5YR3/2 Grayish Brown, cmf(+) SAND, wet, no odor, little fine gravel 11" - 10YR5/4 Pale Reddish Brown, cmf					
						SAND and (ang) GRAVEL, moist, dry, no odor			0.0	NEG	

				NEERS, II		TEST BORING LOG	REPOR	RT OF BO SB-42	RING	
Client: roj. Lo	(Sout	ra Moha h First S Fulton,	Street S	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 2 of Location:	2 East of SB	-31	
File No.	•	1118/35	165			Fall: 30 inches	Start Date: End Date:	6/23/04 6/23/04		
Boring	Comp	any:	Parrat	t-Wolff, Inc.		i un. oo mones	Screen	= \\	Grout	
Forema OBG Ge		st:	Lee Pe	enrod Tucker			Riser		Sand P Benton	ack lite
Depth Below Grade	No.		Blows	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General	Equip.	Field Testi PID	d ing
	140.						Descript	Installed	(ppm)	UV
22		24	GP	2.0/1.0	GP	As above, wet - hard tight (geoprobe)	,		0.0	NEG
24	<u> </u>	26	19-35 33-26	2.0/0.8	68	9" - As above			0.0	NEG
									1	
						End of Boring @ 26'				ŀ
							:	•		
						,	Ì]
		,								
				·		,				
	-		_					<u> </u>		
	<u> </u>	<u> </u>								
					i					
	-									
										,
	ļ	-	<u> </u>			-				
						1	,			
ļ	ļ		<u> </u>							
]				
	-	-								
			<u> </u>							
	<u> </u>				<u> </u>	-				
	ļ	ļ	 							
						·				
						<u> </u>				
7	 									
	<u> </u>	<u> </u>	1		.1.		1	I	<u> </u>	<u></u>
Grouted to	o surfac	e.								

TEST BORING LOG REPORT OF BORING SB-43 O'BRIEN & GERE ENGINEERS, INC. Client: Niagara Mohawk Power Corporation Page 1 of 1 **Hollow Stem Auger** (South First Street Site) Sampler: 2-inch split spoon Location: North of SB-31 Hammer: 140 lbs **Fulton. NY** Proi. Loc: 6/23/04 Start Date: 1118/35165 Fall: 30 inches **End Date:** 6/23/04 File No.: **Boring Company:** Parratt-Wolff, Inc. Screen Grout Foreman: Lee Penrod Riser Sand Pack Bentonite **OBG Geologist: Scott Tucker** Stratum Field Depth Change **Testing** Depth Blows "N" Below Penetr/ Sample Description General Equip. PID /6" Grade No. (feet) Value UV Recovery Descript Instailed (ppm) 0 2 3-7 2.0/0.9 10 4" - topsoil, roots 0.0 NEG 3-2 6" N5 med gray, cmf SAND, little gravel, shale fragments, brick fragments, no odor, dry 2 4 1-2 2.0/0.5 6 6" - 5YR4/4 med brown, cmf SAND and NEG 0.0 GRAVEL (sub-rnd), wet, no odor, coal 4-4 fragments 6 3-3 2.0/0.5 6 6" - as above, brick fragments, slight 4 NEG 0.2 odor, wet 3-3 8 GP 2.0/0.8 GP 10" - as above, wood fragments (5"), sat, 6 NEG 2.6 slight odor, sheen on water from spoon. (interval geoprobed) 2.0/0.4 22 5" - as above, sat, no odor, no sheen 10 5-5 8 2.1 NEG 17-11 observed 12 3-7 2.0/0.8 28 3" - 10YR5/4 mod yellow brown, cmf NEG 10 2.6 21-12 SAND, some (rnd) gravel, sat, no odor 3" - black wood, slight odor 5" - shale rock fragments, sat, no odor GP GP 12 14 2,0/0,3 3"-10YR5/4 mod, yellow brown, fine NEG 29 GRAVEL, little cmf sand, sat, no odor (interval geoprobed) 2.0/1.1 5" - 5YR4/1 olive gray, CLAY, bound by 14 16 6 **NEG** 5-3 1.4 5-17 wood fragments, moist, no odor, soft 8" - 10YR4/2 dark yellow brown, silt and fine SAND, wet, no odor, laminated 16 18 GP 2.0/0.8 GP 8" - 5YR5/2 pale brown, fine SAND, trace 2.3 NEG (ang-rnd) f gravel, rock in shoe, wet, no odor. (interval geoprobed) 18 18.9 11 0.9/0.8 50+ 8" - as above, cmf SAND, trace rnd NEG 2.7 50/0.4 gravel, wet, no odor Spoon refusal at 18.9' Auger refusal @ 19.5' DUP-2 collected at SB-43(0-4') @1230

Notes:

0-4 ft interval sampled twice 6" apart for sample volume

Coal and clinkers not sampled.

TEST BORING LOG **REPORT OF BORING** O'BRIEN & GERE ENGINEERS, INC. **SB-44** Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 2 (South First Street Site) Sampler: 2-inch split spoon Location: West of SB-31 ~15-22' Fulton, NY Hammer: 140 lbs roj. Loc: 6/23/04 Start Date: 1118/35165 File No.: Fall: 30 inches **End Date:** 6/23/04 **Boring Company:** Parratt-Wolff, Inc. Screen Grout Lee Penrod Foreman: Riser -Sand Pack OBG Geologist: **Scott Tucker Bentonite** Stratum Field Depth **Testing** Change "N" Below Depth Blows Penetr/ Sample Description PID General Equip. **Value** Grade No. (feet) /6" Recovery Descript Installed UV (ppm) 2 0 4-1 2.0/1.0 2 6" - N5 Medium Gray, cmf SAND, ash, NA **NEG** 1-1 clinkers, moist, slight odor, black wood fragments, black staining. 6" - topsoil, organics 2 4 11-8 2.0/0.3 14 4" - 10YR5/4 Pale Reddish Brown, omf NA NEG 6-2 SAND, some (ang) mf gravel, moist, wet at bottom, no odor 2.0/1.4 4 6 9-5 3" shale fragments, sat NA NEG 4" - 10YR5/4 Pale Reddish Brown, cmf(+) 5-5 SAND, trace (ang) fine gravel, wet, no 6 8 GP GP 2.0/0.8 10" - as above, saturated, no odor NEG NA (interval geoprobed) 10 2-2 4 10YR5/4 Moderate Yellow Brown, omf 8 2.0/1.0 4.3 NEG 2-2 SAND, some (ang) fine gravel, little silt, saturated, no odor 10 12 3-4 2.0/0.5 8 10YR3/4 Dark Reddish Brown, cm NEG 2.1 4-3 GRAVEL (ang), sat, no odor, some fine sand....(broken rock) 12 14 GP 2.0/0.6 GP 7" -10YR3/4 Dark Reddish Brown, cm NEG 3.9 GRAVEL (ang), saturated, no odor, some fine sand, broken rock fragments. (interval geoprobed) 14 16 2.0/0.9 3 8" N2 Grayish Black, SILT, organics, shell 2-2 4.6 **NEG** fragments, moist, no odor, becoming little 1-2 1" - 10YR5/4 Moderate Yellowish Brown, m SAND, wet, no odor 2" - 10YR4/2 Dark Yellow Brown, SILT, little fine sand, moist, no odor GP GP 16 18 2.0/1.4 8" - as above, laminations(-) trace shell 4.9 **NEG** 9" - 5YR6/4 Light Brown, cmf SAND and (ang) GRAVEL, becoming omf(+), SAND. little fine gravel, wet, no odor. (interval geoprobed) 18 20 GP 2.0/0.8 GP 9" - as above, becoming cmf(++) SAND, **NEG** 4.3 little (rnd) fine gravel, wet, no odor 20 22 2.0/0.6 34 5-12 7" - as above, no odor, moist 4.2 NEG 22-25 0-2 ft and 2-4 ft sampled twice 6" apart for sample volume. Notes:

0-8 ft headspace not available due to volume.

No coal or clinkers sampled.

						TEST BORING LOG	REPOI	RT OF BO	RING	
				NEERS, II				SB-44		
Client: Proj. Lo	(Sout	ara Moha h First S Fulton,	Street S	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 2 of Location:	West of SE	3-31 ~15	-22'
File No.	:	1118/35	5165			Fall: 30 inches	Start Date End Date:			
Boring (any:	Parrat	t-Wolff, Inc.			Screen	= \	Grout	_
Forema OBG Ge		st:	Lee Pe	enrod Tucker	•		Riser		Sand P Benton	
Depth Below Grade	No.	Depth	Blows	Penetr/	"N" Value	Sample Description	Stratum Change General	Equip.	Field Testi PID	d ing
Graue	NO.	(feet)	/6	Recovery	value		Descript	Installed	(ppm)	UV
22		24	GP	2.0/0.6	GP	7"- as above, moist - wet, no odor, tight. (interval geoprobed)			4.7	NEG
24		25.1	19-43	2.0/0.3	93+	3" - as above, tight			4.7	NEG
			50/0.1							
						Spoon refusal @ 25.1 ft				
						E.O.B. @ 25.1 ft	, i	,		
									*	
				-					-	
		, 			1				:	
							·			
								·		
<u> </u>		·						,		
						·				
										ľ
						W.H.				
Grouted to	surface	ı								

						TEST BORING LOG	REPO	RT OF BO	RING	
O'BR	IEN &	GERE	ENGI	NEERS, II	NC.			SB-45		
oj. l	(Sout ₋oc:	th First S Fulton,	Street S NY	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs.	westerly lo Start Date	So. neighbo ocation nea : 6/24/04	ors prop r stump	erty
File N	o.: g Comp	1118/35		t-Wolff, Inc.		Fall: 30 inches	End Date:	6/24/04	I C	
Foren		ally.	Lee Pe		•		Screen Riser	= \\	Grout Sand P	ack
	Geologi	st:		Tucker			(100)	133333	Benton	
							Stratum		Field	
Depth			<u> </u>				Change		Test	ing
Below Grade	1		Blows /6"		"N"	Sample Description	General	Equip.	PID	
Grade	No.	(feet)	/6	Recovery	Value		Descript	Installed	(ppm)	UV
0		2	2-2	2.0/0.9	4	6" - topsoil			0.1	NEG
			2-2			5" - coal fragments, ash clinkers, dry, no				,
						odor		į		
	_			0.014.0				}	į	1
2		4	3-3	2.0/1.6	6	3" - as above			0.3	NEG
		 	3-4		-	6" - 10YR4/3 Dark Yellow Brown, fine SAND, coal fragments, moist, no odor	i	İ	ļ	
	<u> </u>			 	 	10" - 10YR6/6 Dark Yellow Orange, fine		j	İ	
				<u> </u>		SAND grading to fine SAND, some silty,			ļ	ļ
						wet near top (fine sand) becoming moist,				
						no odor, organics				
		<u> </u>		0.044	10	Lon				
4		6	2-3 13-11	2.0/1.1	16	13" - as above, little silt, moist-wet, no odor			1.6	NEG
		 	13-11		 	1				
6	1	8	GP	2.0/1.2	GP	14" - 10YR7/4 Grayish Orange, SILT,	1		5.4	NEG
						trace-little clay, little fine sand, wet, no		1		0
						odor, trace fine gravel (rnd-sub rnd) at				
y						last 3". (interval geoprobed)]		
8		10	2-4	2.0/1.6	8	19" - as above SILT (3"), becoming fine			5.8	NEG
<u> </u>		10	4-5	2.0/1.0	 ° -	SAND, little silt (12"), then becoming		}	5.6	NEG
-	_	<u> </u>	 			SILT, little clay and fine sand, moist-wet,	İ			
					1	no odor				
						·		1		
10		12	1-1	2.0/1.0	4	12" - 10YR6/7 Pale Yellow Brown, fine		Ì	5.1	NEG
<u></u>	_	ļ	3-3			SAND and SILT, trace rnd gravel and cm sand, wet, no odor		l	1	1
-		 	-	<u> </u>	 	Sand, Wet, no odoi			/	
12	_	14	GP	2.0/1.9	GP	20" - N6 Medium Light Gray, SILT, trace	İ		4.4	NEG
						fine sand, sat, sticky, trace clay, inc. to			.,,,	
						little clay				
<u></u>	_	<u> </u>	 		<u> </u>	3" - 5YR4/4 Moderate Brown, cmf(+)				ļ
—		 	1	 	 	SAND, trace silt and subrnd gravel, wet, no odor				
		 	 		 	(interval geoprobed)				
14	+	16	8-5	2.0/0.5	10	6" - as above becoming no silt	1		2.7	NEG
			5-3]				
]	
16		18	GP	2.0/0.8	GP	9" - as above, cmf SAND, some (rnd)			2.3	NEG
 	_			 	 	coarse gravel, saturated, no odor				
18		20	25-4	2.0/0.8	7	(interval geoprobed) 9" - as above becoming little silt, no odor,	-		2.7	NEG
		 	3-3		 	saturated			2.,	'''
20		22	3-4	2.0/0.9	17	11" - as above becoming tight			2.3	NEG
		<u> </u>	13-7			4				
Y _			-		 	1				
Notes:		<u> </u>		L		1.	<u> </u>	L	L	Ц

OBRIEN & GERE ENGINEERS, INC. Client: Niggara Mohawk Power Corporation (South First Street Site)				(6) (6) (6) (6) (6)							
Client: Niagara Mohawk Power Corporation (South First Street Site) Proj. Loc: Fulton, NY File No.: 1118/35165 Boring Company: Parratt-Wolff, Inc. Foreman: Lee Penrod OBG Geologist: Scott Tucker Depth Below Grade No. (feet) Client: Niagara Mohawk Power Corporation (South First Street Site) Fall: 30 inches Fall: 30 inches Fall: 30 inches Fall: 30 inches Screen							IEST BORING LOG	REPO	RT OF BO	RING	
Client: Niagara Mohawk Power Corporation (South First Street Site) Proj. Loc: Fulton, NY File No.: 1118/35165 Boring Company: Parratt-Wolff, Inc. Foreman: Lee Penrod OBG Geologist: Scott Tucker Depth Below Grade No. (feet) Client: Niagara Mohawk Power Corporation (South First Street Site) Fall: 30 inches Fall: 30 inches Fall: 30 inches Fall: 30 inches Screen	O'BRII	EN &	GERE	ENGI	NEERS. II	NC.			SB-45		
Sampler: 2-inch split spoon Location: So. neighbors property Westerly location near stump Start Date: 6/24/04							Hollow Stem Auger	Page 2 of			
Proj. Loc: Fulton, NY File No.: 1118/35165 Boring Company: Parratt-Wolff, Inc. Lee Penrod OBG Geologist: Scott Tucker Depth Below Oracle No. (feet)		(Sout	h First	Street S	Site)			Location	So. neighbo	ors pror	ertv
File No.: 1118/35165 Fall: 30 inches End Date: 6/24/04 Boring Company: Parratt-Wolff, Inc. Lee Penrod OBG Geologist: Scott Tucker Depth Below Grade No. (feet) /6" Recovery Value 22	Proi. Lo	,554t)C:	Fulton	NY	,		Hammer: 140 lbs.	westerly le	ocation nea	r stumn	Zity
File No.: 1118/35165 Fall: 30 inches End Date: 6/24/04 Boring Company: Parratt-Wolff, Inc. Lee Penrod OBG Geologist: Scott Tucker Depth Blows Penetr/ Walue Depth Grade No. (feet) /6" Recovery Value 22 2 4 GP 2.0/1.1 GP 3"- as above 10" -5YR4/4 Moderate Brown, cmf(+) SAND, little gravel, tight, moist, no odor (interval geoprobed) 24 25 3-3 2.0/0.2 6 2"- as above 3.1 NEG										. Gtainp	
Boring Company: Foreman: OBG Geologist: Depth Below Grade No. (feet) Depth Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Depth Selow Grade Descript Descript Descript Descript Descript Descript Descript Descript NEG Descript NEG Descript NEG Descript NEG Descript NEG Descript NEG Descript NEG Descript Descript NEG Descript Descript NEG Descript Descript NEG Descript Descript NEG Descript Descript NEG Descript Descript NEG	File No.	:	1118/35	165			Fall: 30 inches				Ī
Foreman: Depth Below No. (feet)					t-Wolff, Inc.		1			Grout	
OBG Geologist: Scott Tucker Depth Below No. (feet) Depth Grade No. (feet) Depth Grade No. (feet) Depth Grade No. (feet) Depth Grade Depth G	Forema	n:	<i>y</i> •								ack
Depth Below Grade No. (feet) Penetr/ Recovery Value Sample Description Change General Descript Descript Descript PID (ppm) UV 22	OBG G	eoloai	st:				•				
Depth Below Grade No. (feet) Penetr/ Recovery Value Sample Description Grade No. (feet) Penetr/ Recovery Value Sample Description Descript PID (ppm) UV 22 24 GP 2.0/1.1 GP 3"- as above 10" -5YR4/4 Moderate Brown, cmf(+) SAND, little gravel, tight, moist, no odor (interval geoprobed) 24 25 3-3 2.0/0.2 6 2" - as above 3.1 NEG		1		T				Stratum			
Below Grade No. Depth (feet) Blows /6" Penetr/ Recovery "N" Value Sample Description General Descript Equip. Installed PID (ppm) UV 22 24 GP 2.0/1.1 GP 3" - as above 10" -5YR4/4 Moderate Brown, cmf(+) SAND, little gravel, tight, moist, no odor (interval geoprobed) 2.3 NEG 24 25 3-3 2.0/0.2 6 2" - as above 3.1 NEG	Denth										
Grade No. (feet) /6" Recovery Value Descript Installed (ppm) UV 22 24 GP 2.0/1.1 GP 3" - as above 10" -5YR4/4 Moderate Brown, cmf(+) 2.3 NEG 34 25 3-3 2.0/0.2 6 2" - as above 3.1 NEG			Denth	Blows	Panatr/	ייאיי	Sample Description		Equip		,,,,,
22		No								1	₁₀ ,
10" -5YR4/4 Moderate Brown, cmf(+) SAND, little gravel, tight, moist, no odor (interval geoprobed) 24	Grade	NO.	(leet)	/6	Recovery	value		Descript	installed	(ppm)	UV
10" -5YR4/4 Moderate Brown, cmf(+) SAND, little gravel, tight, moist, no odor (interval geoprobed) 24	22		24	GB.	2 0/4 4	GP.	2" as shows	4		1	\ _{\\\\\}
SAND, little gravel, tight, moist, no odor (interval geoprobed) 24 25 3-3 2.0/0.2 6 2" - as above 3.1 NEG		 		GF	2.0/1.1	GP		1		2.3	NEG
Continue	 	 		 				1			
24 25 3-3 2.0/0.2 6 2" - as above 3.1 NEG	 	 	ļ	 			(interval geoprobed)		}		
3-7	24		25	3_3	2 0/0 2			4		2.4	NEC.
			- 23		2.0/0.2		2 - as abuve			3.1	NEG
E.O.B. @ 25 ft		 		3-1				1			
		 		 			E O B @ 25 #	{			
		 					L.O.B. @ 23 IL	1	1		
	<u> </u>					<u> </u>					
	$\vdash \!\!\!\!-$	 									
	-	 					·			·	
	<u> </u>	 						l			
			<u> </u>	 							
		\vdash				<u> </u>					
		 		-			•				
							·	[[
		 									ل
	 	 					·	1			
	 							[1
	 	 								,	
	 	 									
		-									
											
				—			,				
						-	,				
							-				
				·			·				
											
	·						· · ·		İ		l
											ĺ
							·				
							·				
											l
							•] .			
											1
											<u>k</u>
	,										
· · · · · · · · · · · · · · · · · · ·								i			
		·		L							
							*				,

						TEST BORING LOG	REPOR	RT OF BO	RING	
			5500000000000	NEERS, II	1-1-1-1-1-1-1-1-1-1-1			SB-46		
Client: oj. Lo	(Sout	ra Moha h First S Fulton,	Street S	wer Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs		1 Southside Area 1	of Cond	Pad
File No.	: .	1118/35	165			Fall: 30 inches	Start Date End Date:	6/24/04 6/24/04		
Boring (any:		t-Wolff, Inc.			Screen		Grout	_
Forema OBG Ge		st:	Lee Pe	enroa Tucker			Riser		Sand P Benton	
Depth Below Grade	No.		Blows		"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID	d
							Descript	mstaned	(ppiii)	00
0		2	1-1	2.0/1.5	2	10YR4/2 Dark Yellowish Brown (black	·		3.6	NEG
			1-1			stains), cmf (+) SAND, very loose, dry, becoming wet, slight odor				
2		4	2-2 2-2	2.0/1.1	4	8"-As above			155	POS
	-		2-2			5" - N2 Grayish Black, cmf(+) SAND, stained, loose, strong odor, sheen				
4	<u> </u>	6	4-4 5-3	2.0/0.8	9	10"-5YR5/6 Light Brown, cmf(+) SAND, trace (rnd) f gravel, loose, wet, odor			8.2	NEG
			3-3			Trace (ma) i graver, loose, wer, odor				
6		8	GP	2.0/1.2	GP	14"-As above, little f gravel, slight odor	1 .		9.4	NEG
	<u> </u>		ļ			(interval geoprobed)				
8		9.4	30-36	2.0/1.0	80+	As above, little cmf gravel (rnd),	1		9.1	NEG
			50/0.4			extremely dense, moist- wet, slight odor				
10	 	12	19-25	2.0/0.8	42	10"-As above, 10YR5/4 Pale Red Brown,	-		3.1	NEG
			17-16			dense, slight odor, moist-wet			0	
									•	
12	╁──	14	GP	2.0/0.4	GP	5"-As above	-			
						hard drilling				
	ļ	<u> </u>				(interval geoprobed)	-			
	<u> </u>		 			End of Boring at 14 ft				
			-			-				
						·				
	ļ				<u> </u>	4			ļ	
	<u> </u>	-			 	†			i	
			<u> </u>]				
	 				 	-				
						`				
	ļ									
	 	 			 	†				
]				
	-		-			-{				
					<u> </u>					
						<u> </u>				
	-		-	 	ļ	-{				
]	at .		,	
Notas				<u> </u>						<u> </u>
Notes: 0-4 ft inter	rval requ	ired 6 spc	ons for N	AS/MSD sample	e volume.					

						TEST BORING LOG	REPOR	RT OF BO	RING	
. To graph a series of the ser				NEERS, I	NC.	·		SB-47		
Client: Proj. Lo		nal Grid	First St	reet		Tripod Sampler: 2-inch split spoon Hammer: 140 lbs	Area	Southside 1, south of	SB-46.	
File No.		Fulton, 1118/35	5165			Fall: 30 inches	Start Date:	10/14	2005	
Boring Forema	n:	any:	Jim La	t-Wolff, Inc ansing	•		Screen Riser	<u> </u>	Grout Sand P	
Fdrill R OBG G		st:	Tripod Scott	l rig Tucker		, .			Bentor	ite
							Stratum		Field	
Depth Below		Depth	Blows		"N"	Sample Description	Change General	Equip.	Test PID	
Grade 0 ·	No.	(feet)	/6"	2.0/0.7	Value 6	top soil, little clinkers.	Descript	Installed	(ppm)	UV
			2							:
	<u> </u>		. 5						-	neg
2		4	5 6	2.0/1.0	14	2"- coal and clinker fragments. 10"- 10YR6/6 Dark Yellowish Orange,				
			8			f sand.			-	neg
			12			·		i i		
4		6	9	2.0/1.1	23	13"- as above, trace f rnd gravel,				
			10			saturated, no odor.				
			13 24						-	neg
							·	4		
						EOB @ 6 ft.				
	_									
	:									
				_						
<u> </u>										
		,								
								* 1		į
									,	
				<u> </u>						
	· ·									
										À
Notes:	<u></u>	<u>. </u>	L.,				<u>_</u>			
Heavy rain	ì									

						TEST BORING LOG	REPO	RT OF BO	RING	
				NEERS, I	NC.			SB-48		
Client: Proj. Lo File No.	oc: .:	South Fulton,	First St NY 5165			Tripod Sampler: 2-inch split spoon Hammer: 140 lbs Fall: 30 inches	Area 1 Start Date End Date:	Southside , southwest : 10/14	of SB-4 /2005	
Boring Forema Fdrill R OBG G	n: ig:	-	Jim La Tripod				Screen Riser	= \\	Grout Sand P Benton	
Depth Below Grade	No.		Blows /6"	1	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Test PID (ppm)	ing
0		2	-	2.0/1.3	-	14"- topsoil grading to SILT, some f sand, wet, no odor. 2"- 10YR6/6 Dark Yellowish Orange f SAND, little silt, saturated, no odor.			-	neg
2		4	-	2.0/0.6	-	4"- 10YR6/6 Dark Yellowish Orange f SAND, little silt, saturated, no odor. 3"- 10YR6/6 Dark Yellowish Orange f SAND, little silt, trace f gravel,			-	neg
4		6		2.0/0.4	-	saturated, no odor. 10YR6/6 Dark Yellowish Orange f SAND, little silt, trace f gravel, saturated, no odor.			_	neg
						EOB @ 6 ft.				
,						·				
		ired 6 spc		IS/MSD sample					•	•

D'BRIE	N & (GERE E	NGINEE	RS, INC.		TEST BORING LOG	REPOI	MW		
		Mohaw			- nonektöttir	Sampler: 2" Split Spoon	Page 1 of		<u> </u>	
,						campion 2 opin opoon	Location:	2		
roj. Loc	: Fult	on, NY				Hammer: 140 lbs.				•
ile No.:	1110	NR1	•		•	Fall: 30"	Start Date			
			att Wolff, lı	nc.		<u>raii. 30 </u>	End Date: Screen	7/9/96 = \\	Grout	·
		n Waters					Riser	H h	Sand Pa	ck
DBG Geo	logist	: Chawr	O'Dell						Bentonit	
				'			Stratum		Field	Testing
Depth Below		Depth	Plane	Bonets!	UA.III	Samula Danasistica	Change	. .	PID Over	Jar Head
Grade	No.	(feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	General Descript	Equip.	Spoon	Space
0	1,10.	1,000	70	recovery	Value	Augered to 4 ft., due to the test pit	Descript	Installed	I (PPM)	(PPM)
						excavation.				
	1	4-6	3-4	2'/2'	7	Pale moderąte yellowish brown (10YR				ļ · .
			3-8	 		6/2), and medium light gray (N6),	ŀ			
5		-			 	mottling, moist to wet, loose SILT, some fine sand, little medium sand,			0.0	0.0
						well sorted.	·			
	2	6-8	18-50	1.2'/1.2'	50(+)	Pale moderate yellowish brown (10YR	7			,
	<u> </u>		50/0.2			6/2), and medium light gray (N6),		=		
		 			 	mottling, moist to wet, loose SILT,		=	0.0	0.0
		<u> </u>			 	some fine sand, little medium sand,		13.7 = 1		
	3	8-10	21-15	2/0.3'	38	well sorted. Light brownish gray (5YR 6/1),		= =		ļ.
		1	23-25		1	saturated, hard, fine SAND, some		=]
· 10				:		silt, little cobbles. (Cobble driven		= .	0.0 .	0.0
		ļ				with the split spoon - poor recovery).	4	= [(Dup 0.0)	1
	4	10-12	5-10	2'/2'	18	Dark yellowish brown (10YR 4/2),		=		
	 	 	8-9	l.	 -	saturated, medium dense, fine to medium, subrounded to subangular		=		
	t	 	t	<u> </u>	t	SAND, little fine angular gravel, trace			0.0	0.0
						silt.		=		1
	5	12-14	7-8	2'/2'	23	Dark yellowish brown (10YR 4/2),		: =		
	 	<u> </u>	15-14	<u> </u>		saturated, medium dense, fine to		=		
15	 	 		 	 	medium, subrounded to subangular		=	0.0	0.0
	<u> </u>			 	 	SAND, little fine angular gravel, trace silt		=		(Dup 0.0
	6	14-16	13-28	2'12'	72	Dark yellowish brown (10YR 4/2),	7	= =		
			44-51			moist to wet, extremely dense,		=		
		ļ				subrounded to subangular, fine to	•	= =	0.0	0.0
	├—	 	-	ļ. ————	 	coarse SAND, some subangular to		=		1
	 	 	 	<u> </u>	 	subrounded, fine gravel, little silt and				
	7	16-18	24-50/0.4	0.9/0.9'	50(+)	Dark yellowish brown (10YR 4/2),	_			
						wet, extremely dense, subrounded to				· .
			<u> </u>			subangular, medium SAND, some fine	,		0.0	0.0
	 	 	 	 	 	sand, little silt , trace subrounded to				
	8	18-20	27-32	2 0/2 0'	60	subangular gravel.	- .			
		10-20	37-34	2.0/2.0	69	Pale brown (5YR 5/2), saturated, extremely dense, subrounded to				
20						subangular medium SAND, some fine	·			
						sand, little subrounded to subanular			0.0	0.0
	 	<u> </u>		<u> </u>		fine gravel, trace silt and clay.			(Dup 0.0)	(Dup 0.0)
	9	20-22	16-38	2.0/2.0	89	Pale brown (5YR 5/2), saturated,				
	 	 	51-51	 		extremely dense, subrounded to				
	 	 	-	 	1-	subangular fine to medium SAND, some silt, little subrounded to subangular			0.0	0.0
	Η.	1	†		 	fine gravel, trace clay.				
	1									

						TEST BORING LOG	REPOR	RT OF BO		
O'BRIEN	4 & C	ERE E	NGINEE!	rs, inc.			<u> </u>	MW-1		
Client: Ni	iagara	Mohawk		•		Sampler: 2" Split Spoon	Page 2 of 2 Location:	2		
Proj. Loc:	Fulto	on, NY				Hammer: 140 lbs.				
File M	4440 -					F-11. 00#	Start Date:			••
File No.:	1118.0	981	tt Wolff, In			Fall: 30"	End Date: Screen	7/9/96 = \	Grout	
Foreman: OBG Geol	Bria	n Waters		ic.			Riser		Grout Sand Pac Bentonit	
020 000	logiot	01.2011	-		T T		Stratum	***		Testing
Depth							Change		PID Over	Jar Head
Below		Depth	Blows	Penetr/	"N"	Sample Description	General	Equip.	Spoon	Space
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(PPM)	(PPM)
	10	22-24	51-52	1.4/1.4	50(+)	Pale brown (5YR 5/2), saturated,				1
	-				<u> </u>	extremely dense, fine to medium SAND, some silt, little subrounded to			0.0	
25	\vdash				-	subangular fine to medium gravel,	٠.		0.0	0.0
- 20			50/.4		<u> </u>	trace clay.			i	ļ
		24-26	52-50/0.3	0.8/0.8	50(+)	Pale brown (5YR 5/2), saturated,	1			
						extremely dense, fine to medium				1
						SAND, some silt, little fine subrounded			0.0	0.0
	 			ļ	<u> </u>	gravel.	1		,	[
		26-28	68/0.5	0.5/0.5'	50(+)	Pale brown (5YR 5/2), saturated,	1			
	 	-	<u> </u>	 		extremely dense, subrounded to				
						subangular, fine to medium SAND, little silt, trace fine to medium subrounded			0.0	0.0
					 	gravel.	.:			
	-	28-30	89/0.5	0.5/0.5'	50(+)	Pale brown (5YR 5/2), saturated,	1	· •		
						extremely dense, subrounded to				
						subangular, fine to medium	ļ. ·		0.0	0.0
					· .	subrounded gravel.	1			
·		·					1		.	
	<u> </u>	<u> </u>			<u> </u>					
	-		<u> </u>	 	-		·		l	}
-					 -	•	ļ ·			
				· · · · · · · · · · · · · · · · · · ·	 				.	
									1	
							1			
					<u> </u>					
									1	
	<u> </u>			<u> </u>	ļ			İ		
·	<u> </u>	ļ	· · · · · ·		 	·				
· · ·	 	<u> </u>		-]	1	1
	 				 					
	\vdash					· ·		1		· .
		· · · · · ·		 						
]		}	. .
	<u> </u>			<u> </u>		·				
	┞—	 		<u> </u>	ļ	·				
	<u> </u>	 		-		·	:			
		 								
	 									1
	 	<u> </u>	<u> </u>	 	 					
ļ	 	 	•		·	1				
_		-		 	 	·	ł	1		1
				1 '	ı	•		l.	1	1
					-					

i

O'BRIF	N.R.	GERF F	NGINEE	RS, INC.		TEST BORING LOG	REPO			
		a Mohaw			vanad00000000	Sampler: 2" Split Spoon	Page 1 of	MW-:	-	
	· · · · · · · · · · · · · · · · · · ·		••		1	oampier. 2 Opin Opoon	Location:	•		
roj. Lo	c: Fult	on, NY			. 1	Hammer: 140 lbs.			•	
ile No.:	4440	ng4				Fall: 30"	Start Date			
			att Wolff, I	nc.		ran: 30"	End Date:	7/10/96	Grout	
_		ın Water	-	,			Riser	FI b	Sand Pag	:k
BG Ge	ologis	t: Chaw	n O'Dell			·			Bentonite	
							Stratum		Field	Testing
Depth]		<u>.</u> .	Ì]		Change		PID Over	Jar Head
Below Grade	Na.	Depth	Blows /6"	Penetr/	"N"	Sample Description	General	Equip.	Spoon	Space
orage 0	No.	(feet) 0-2	2-4	Recovery 2/1.3'	Value 8	Moderate yellowish brown (10YR	Descript	Installed	(PPM)	(PPM)
<u> </u>	-	0-2	4-2	21.3	ľ	5/4), damp, loose, fine to medim SAND,				
		<u> </u>			 	some sitt, little subrounded to			0.0	0.0
					† <u>-</u>	subangular fine gravel			JO.0	0.0
						-]		. •.	
	2	2-4	2-3	2/1.6	5	Pale yellowish brown (10YR 6/2),				1.
			2-5			damp, loose, SILT and fine SAND,		= 7	0.0	0.0
5	1	<u> </u>	<u> </u>	<u></u>		little medium sand, trace fine angular		= m		1
	 				ļ	gravel, trace asphalt pieces.	4	=		
·	3	4-6	2-2	2/0.2'	4	Dark yellowish brown (10YR 2/2),	!	=		
	-	<u> </u>	2-2	<u> </u>		saturated, loose, medium SAND, little	1	=	1	1
	 			ļ	 	fine sand and silt, trace subrounded		=	0.0	0.0
	1	ļ		014.45	 	gravel:	4	= 7		1
 	4	6-8	1-2	2/1.1'	5.	Pale yellowish brown (10YR 6/2),		=		1
	 	 	3-3	 	 	saturated, loose, SILT and fine SAND,	1 .	=		
	5	8-10	2-4	2/0.5'	11	little medium sand.	-	=	1.3	2.6
10	1-	10-10	7-4	2/0.5	11	Dark yellowish brown (10YR 4/2), saturated, medium dense, fine SAND,		=	(Dup 1.2)	Dup 2.4)
10	+	 	1/-4	 	\vdash	saturated, medium dense, tine SAND, some medium sand, little silt.		=	0.0	1.9
	6	10-12	6-9	2/0.2'	18	Dark yellowish brown (10YR 4/2),	1			
	Ť	<u> </u>	9-7		Ť	saturated, medium dense, fine SAND		= =	0.0	2,9
	1					little subrounded to subanguiar fine	1	-		-"
		·			1	to course gravel.	1	_		
	7	12-14	9-6	2/0.2	13	Dark yellowish brown (10YR 4/2),	1	=		1 .
			7-9			saturated, medium dense, fine SAND,	1	= 2	0.0	1.7
						some medium sand, little subrounded		=		
					ļ	to subangular fine to coarse gravel.				
	8	14-16	10-9	2/17'	25	Moderate yellowish brown (10YR				1.
			16-18	 	 	5/4), saturated, medium dense,	1			1
	-	I	<u> </u>		 	subrounded to subangular fine to	1 .		0.0	2.0
15	 	 			 	medium SAND, little subrounded to				1
	+	 	 	 	 	angular fine to coarse gravel, trace	.[
	 	16 10	40 FOIO 2	0.000	50(4)	Silt.	-			
	9 .	16-18	49-50/0.3	0.8/0.8'	50(+)	Moderate brown (5YR 4/4), saturated,		2.		1
	+	\vdash	 		 	extremely dense, subrounded to angular, fine to coarse SAND and	1		12	1.
	+			 		GRAVEL, little silt.	1		1.2 (Dup 1.1)	1.1
	10	18-20	54-50/0.2	0.7/0.7	50(+)	Moderate yellowish brown (5YR 4/4),	┥		(Dup 1.1)	(Dup 1.0)
	1	1	1	1	1-7-/-	saturated, extremely dense,				1
	1	1			1	subrounded to subangular fine to	'		0.0	0.0
						coarse SAND and GRAVEL.	<u></u>]·]
20	11	20-22	50/0.3	0.3/0.3	50(+)	Moderate brown (5YR 4/4), saturated,	1			1
						extremely dense, fine to medium	1.			1
			· .			SAND, little silt. trace fine angular			0.0	0.0
		1				gravel.	_			į
				<u> </u>		1	1			
					1 "	1 .			_	

CPO:ai/4 n&d?m

						TEST BORING LOG	REPOR	RT OF B	ORING	
O'BRI	EN &	GERE	ENGINE	ERS, INC.				MW-	2	
Client:	Niaga	ra Moha	wk	. •		Sampler: 2" Split Spoon	Page 2 of 2	2		
Proi. Lo	c: Fu	lton, NY		•		Hammer: 140 lbs.	Location:			
oj. EC	u	14 !	•				Start Date:	7/10/96	• .	· ,
File No.			·		· ·	Fall: 30"	End Date:	7/10/96		
		any: Pai an Wate	ratt Wolff,	inc.		ŧ	Screen Riser	-	Grout Sand Pac	9-
			vn O'Dell			•	Kiser		Bentonite	
							Stratum	<u>_</u>	,	Testing
Depth							Change	١	PID Over	Jar Head
Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	General Descript	Equip.		Space (PPM)
·	12	22-14	102/0.5	0.5/0.5	50(+)	Moderate brown (5YR 4/4), saturated,	Descript	mstaned		(FFW)
						extremely dense, fine to medium				
	├					SAND, little silt, trace fine angular			0.0	0.0
,	-	<u> </u>				gravel				
	13	24-26	85/0.4	0.4/0.4'	50(+)	Moderate brown (5YR 4/4), saturated,				
	ļ					extremely dense, fine to medium	'		0.0	0.0
			<u> </u>			SAND, little silt, trace fine angular igravel				
							1		1	
						Angular refusal at 24.5 ft.				
	-									
					_					
										·
	ļ			ļ						
								:		
	 		<u> </u>							
										
								1		
·	 	<u> </u>			<u> </u>			ļ ·		
	 	 								
									•	
-	 		 		 		1			
	t		<u> </u>							
			<u> </u>	ļ			}			,
	\vdash	<u></u>	-		-	.				
	 			 	<u> </u>					
	 		 			,	1			
									· .	,
						·	[.]	
				 		·				
<u> </u>	1	 	ļ	 		ta e e e		1		
						i .		1		
						<u> </u>	<u></u>		<u> </u>	
						n: 12.5-2.5'; riser to 0.5'. Bentonite chips: 24.5' - 16'; s	and pack: 16-2	! ;		
pentonite	chips: 2	:-1'; grout to	00.8. Finishe	ed as a flush mou	nt well.			CPO:s//4_n&d/r	2 <i>m</i> }	
								UPU.894 REGIA	W*4(4)	

שופקיר	N 9	CEDE	NCINE	ERS, INC.		TEST BORING LOG	KEPOR		BORING	
		a Mohaw				Sampley 21 Cult Curry		MW	<i>I-</i> 3	
ment. N	iayar	a Wonaw	'N			Sampler: 2" Split Spoon	Page 1 of 2 Location:			
roj. Loc	: Fulf	on. NY	٠,	1		Hammer: 140 lbs.	Location:			
,		,				140 103.	Start Date:	7/12/96		• .
ile No.:	1118.	.081		•		Fall: 30"	End Date:			
			att Wolff,	Inc.			Screen]= \	Grout	
		n Water					Riser	ΗÈ	Sand Pac	·.
DBG Geo	ologis	t: Chaw	n O'Dell				1	- ₩	Bentonite	
							Stratum	1		Testing
Pepth							Change		PID Over	Jar Head
Below		Depth	Blows	Penetr/	"N"	Sample Description	General	Equip	Spoon	Space
Srade	No.	(feet)	/6"	Recovery	Value		Descript	Installe	(PPM)	(PPM)
0	1	0-2	4-4	2/0.3'	8	Moderate yellowish brown (10YR 5/4),				
		<u> </u>	4-3		ļ	dry, loose, fine to medium SAND, little		$ \mathbf{h} $		i
				ļ	ļ	coarse sand, trace subangular, fine	į]	1
		<u> </u>			ļ	gravel.			0.0	0.0
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	ļ			_l ·	***		
	2	2-4	2-4	2/1.2'	18	Moderate yellowish brown (10YR 5/4),				
		 	14-15	 		moist, medium dense, medium SAND,				
	ļ	 	 	· · · · · · · · · · · · · · · · · · ·	}	some coarse sand, little fine			0.0	0.0
	<u> </u>	 			 	subangular gravel, little ash and asphalt			1	
		 	 			fragments, trace orange brick	ļ ·			1
		 			<u> </u>	fragments.	4			
	3	4-6	3-2	2/0.5'	5	Dusky yellowish brown (10YR 2/2),		= =		
		 	3-2	 	 	moist, loose, asphalt (hard chunks),		=	0.0	0.0
5			 			some fine to coarse sand, little ash.	1	=		
					-		4	=		
	4	6-8	3-2	2/0.3'	4	Dusky yellowish brown (10YR 2/2),		=		
	 	 	2-1	 	 	moist, loose, asphalt (hard chunks),			0.0	0.0
	 	-	 		ļ	some fine to coarse sand, little ash.		=		1
	5	0.40	2 2	24 2	7	Madanta unilardah harria (1000 511)	4 .	=		
	-	8-10	3-3 4-7	2/1.2'	 	Moderate yellowish brown (10YR 5/4),		=		1
		<u> </u>	4-1	-	 	wet, loose, fine SAND, little medium sand, trace clay.		=	0.0	0.0
	 		 	 	 	Isano, nace day.	1	=		
10	6	10-12	5-11	2/1.7'	25	Pale yellowish brown (10YR 6/2),	1			1
			14-15			moist, hard, CLAY, little silt, trace fine			0.0	0.0
	 		11.70			sand.			0.0	0.0
		· · · · · · · · · · · · · · · · · · ·								1 .
	7	12-14	7-10	2/2'	19	Pale yellowish brown (10YR 6/2), moist	1	_		1
			9-14			hard, CLAY, some silt, little fine sand.		=	0.0	0.0
					1		1	=	(Dup. 0.0)	(Dup. 0.0)
	8	14-16	5-6	2/2'	12	Pale yellowish brown (10YR 6/2),	7		(54). 5.5)	(0.0,
15		L	6-7			saturated, medium dense, very fine	1 .		0.0	0.0
						SAND, some silt, little clay.				.
	9	16-18	9-11	2/1.6'	22	Pale yellowish brown (10YR 6/2),	7]	
			11-12			saturated, very fine SAND, some silt,	1		0.0	0.0
						little clay.			1	1
	10	18-20	15-9	2/0.4'	23	Pale brown (5YR 5/2), saturated, medium	1		,	
			14-5			dense, fine to coarse, subrounded to	1	1	5.6	210
		<u> </u>				angular, SAND and GRAVEL. Sheen-		1		
		<u> </u>	ļ	<u> </u>		free product (strong odor).	_			1
20	11	20-22	5-6	2/0.7	16	Pale brown (5YR 5/2), saturated,				
		<u> </u>	10-9	ļ	<u> </u>	medium dense, fine to coarse,			1.	1
		<u> </u>	<u> </u>	ļ		subrounded to angular, SAND and			3.2	270
,	<u> </u>	 	ļ			GRAVEL. (Sheen - strong odor).	_		. J	1
	<u></u>	<u> </u>	<u> </u>							1
·		<u> </u>								1
	<u> </u>	<u></u>		ļ						1
		1	1	1	1 .	1. A second of the second o	i		•	1
	Щ.	<u> </u>		<u> </u>		<u> </u>	<u> </u>			1

O)DDII	-110	orne:	TNOINE	ne we		TEST BORING LOG	REPOR			
		a Mohav		RS, INC.		Sampler: 2" Split Spoon	Page 2 of 2	MW	.3	
						Sample of Space Space	Location:			*
Proj. Lo	c: Ful	ton, NY				Hammer: 140 lbs.	.			
File No.	. 1112	081				Fall: 30"	Start Date: End Date:			•
			ratt Wolff,	nc.		11 an. 30	Screen	= \\	Grout	
Forema	n: Bria	an Water	s				Riser		Sand Pac	k
OBG G	ologis	t: Chaw	n O'Dell	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			Bentonite	
Depth							Stratum Change		Field PID Over	Festing Jar Head
Below		Depth	Blows	Penetri	"N"	Sample Description	General	Equip.		Space
Grade	No.	(feet)	/6"	Recovery	Value		Descript	installed		(PPM)
	12	22-24	12-22	2/1.6	55	Grayish brown (5YR 3/2), saturated				
	+-					extremely dense, medium to coarse SAND, little fine subrounded to				
	 	 	<u> </u>	 	<u> </u>	subangular gravel, trace silt to fine			3.0	279
	•		33-79			sand, strong odor.			Dup. 3.1)	(Dup. 2.75)
	13	24-26	60/0.4	0.4/0.4	50(+)	Light brown (5YR 5/6), saturated				
25	+				<u> </u>	extremely dense, fine to coarse SAND,				
25	1	 	 	† <u>-</u>	 	some silt, little fine to coarse subrounded to angular gravel, trace	[2.1	19.6
						day, slight odor.				1
<u>.</u>	—	ļ					ļ ·			
	14	26-28	50/0.4	0.4/0.4	50(+)	Light brown (5YR 5/6), saturated extremely dense, fine to coarse SAND,				
	†	 				some silt, little fine to coarse			0.6	22
						subrounded to angular gravel, trace				· .
	-	ļ	<u> </u>	<u> </u>	-	day, slight odor.				
	+-			 	-	∤ . `	1			
	 		 	<u> </u>						
		ļ	·							
	+	 -		 	 			· .		
	+	 	1		1		1 1 1 1			
							l		*	
	<u> </u>	<u> </u>	ļ	ļ	<u> </u>					
	╁		 	 	 					
										ļ ,
				·						ł
	-	<u> </u>	<u> </u>		-		1 .		1 .	
	+	 	 	 	 	1			}	
	匸			·			<u> </u>	,		
					ļ					
· · · · · ·	+-	 		<u> </u>]:	
	+-		 	 -	 	1			1	
						1		ľ		
<u>:</u>	1	 	-	 	-				l ·	
	+		-			1			· ·	
	+	 	1	 		1	1.			
ŝ,										
	<u> </u>					·			[
<u>.</u>	 	 	 	 	 				}	
		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	1	<u> </u>	4'; riser to 0.5'; bentonite chips 28-16'; sand pack: 16-2	<u> </u>	<u> </u>	L	<u> </u>

CPO:ai/4 n&d/r

O'BRIEN & GERE ENGINEERS, INC.						TEST BORING LOG	REPORT OF BORING MW-4				
		a Mohav				Sampler: 2" Split Spoon	Page 1 of	2		•	
roj. Loc	: Ful	ton, NY				Hammer: 140 lbs.	Location:			٠.	
ilo No :	4440	004				F-11- 201	Start Date				
ile No.: orina C			ratt Wolff, I	inc.		Fall: 30"	End Date	: 7/11 =	_	Grout	<u> </u>
-	-	an Water	•				Riser	H		Sand Pag	٠.
BG Ge	ologis	t: Chaw	n O'Dell					ш.	1111	Bentonite	
				V			Stratum	T			Testing
epth							Change	1		1	Jar Head
Below		Depth	Blows	Penetr/	"N"	Sample Description	General		-	Spoon	Space
rade	No.	(feet)	/6"	Recovery	Value		Descript	Insta	lled	(PPM)	(PPM)
0	1	0-2	6 4-9	1.5/1.5'	10	Grayish brown (5YR 3/2), damp,		<u> </u>	\		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	4-5	 	 	medium dense, medium to coarse SAND, some angular fine to coarse					
				 		gravel, little silt to fine sand.		1	/	0.0	0.0
						(0-0.5' asphalt and gravel).					
	2	2-4	5-9	2/1.4'	12	Grayish brown (5YR 3/2), moist,	1.				Ì
			3-4			medium dense, medium SAND, some					}
					1	subrounded to anguler, coarse sand	} '			0.0	0.0
					L:	and fine to medium gravel, little					
					L	orange brick fragments.	1				1.
	3	4-6	41-10	2/0.4'	15	Light brown (5YR 6/4), moist, medium	1	=			1
			5-5			dense, fine to coarse subrounded to		=		0.0	0.0
				<u></u>		angular SAND and GRAVEL, some	1	=			
<u> </u>					<u></u>	orange brick fragments.	1 .	=		,	
	4	6-8	47-100/0.3	0.8/0.5'	100+	Moderate reddish brown (10YR 4/6),	1 .	=			· ·
		 	0.3	 	ļ	damp, extremely dense BRICKS.	1	=		0.0	2.1
	5	8-10	12-4	2/1.6'	7	Grayish black (N2), saturated, loose,	1 .	=			
		_	3-4	 	 	fine to coarse, subrounded to		=			
	 			 	-	angular SAND and GRAVEL, little	1	=		14.3	19.4
				 	 	silt , trace brick and concerete	1	=		(Dup. 14.1)	(Dup. 18.9)
 	6	10.42	2-3	0/4 5	40.	fragments, strong odor.	-	=			
	<u> </u>	10-12	7-6	2/1.5'	10	Brownish black (5YR 2/1), saturated,	1	=			1
	 	<u> </u>	1-0	 	 	medium dense, SILT and fine SAND, little medium sand, trace clay		=		45.0	
	 			 		moderate odor.		_		15.2	21.2
	7	12-14	10-11	2/1.3'	26	Brownish gray (5YR 4/1), saturated,	1			2	
	<u> </u>	<u> </u>	15-27			medium dense, subrounded to angular,]				
						fine, 'to coarse SAND and GRAVEL, little				6.1	8.3
		<u> </u>		T		silt, moderate odor.	1	=			
	8	14-16	3-7	2/0.6'	44	Brownish gray (5YR 4/1), saturated,	1	=			1
			37-49			dense, subrounded to angular, fine to					
						coarse SAND and GRAVEL, little silt,				5.2	7.6
						moderate odor.]				
	9	16-18'	50/0.2	0.2/0.0	ļ	No Recovery.	1			N.A	N/A
<u></u>	10	18-20	3-5	2'/1.2'	17	Light brownish gray (5YR 6/1),				[v "	
	<u> </u>		12-12			saturated; extremely dense, medium	1 .			1.3	3.2
	├	 	<u> </u>	<u> </u>	 	to coarse SAND, some fine to	1				1
	1	90			 	angular gravel, little silt. slight odor.	4				
	11	20-22	21-42	2/0.9'	79	Light brownish gray (5YR 6/1),	1.				
		 	37-46	 	 	saturated, extremely dense, medium				1.7	3.6
	 	 	 	 	 	to coarse SAND, some fine to	1.			(Dup. 1.5)	(Dup. 3.6)
	12	22-24	5.0/0.4	0.4/0.4	50(+)	angular gravel, little silt, slight odor.	1				
	12	24-24	3.0/0.4	0.4/0.4	30(+)	Brownish black (5YR 2/1), saturated,					
	 	 	 	 	 	extremely dense, fine to coarse					
	 		 	 	†	subangular to angular SAND and				0.8	1.2
	 	<u> </u>		1	 	GRAVEL, little silt, slight odor.	1				

						TEST BORING LOG	REPOR	T OF B	ORING	
O'BRIE	N &	GERE I	NGINEE	RS, INC.				MW-	4	
Client: 1	Niagar	a Mohaw	/k			Sampler: 2" Split Spoon	Page 2 of 2	1		
Desido		ham MV		•		Hammer: 140 lbs.	Location:			
Proj. Lo	s: run	ton, N 1		•		mammer: 140 lbs.	Start Date:	7/11/96		•
File No.:	1118	.081			•	Fall: 30"	End Date:		•	
			att Wolff, I	nc.			Screen	= \	Grout	
Foremar							Riser		Sand Pac	:k
OBG Ge	ologis	t: Chaw	n O'Dell						Bentonit	
D	1	1					Stratum			Testing
Depth Below	ļ	Depth	Blows	Penetr/	"N"	Sample Description	Change General	Equip.	PID Over Spoon	Jar Head Space
Grade	No.	(feet)	/6"	Recovery	Value	Cample Description	Descript	Installed		(PPM)
	13	24-26	50/0.4	0.4/0.4	50(+)	Moderate brown (5YR 4/4), saturated,				V · ····
						extremely dense, subrounded to				
	<u> </u>		ļ			angular,medium to coarse SAND, some			0.0	0.6
25	├					fine sand, little fine, angular gravel.	1			
	14	26-28	33-57	2/1.4'	113	No apparent odor. Moderate brown (5YR 4/4), saturated,	1			
	 '-	20-20	56-59	7.7	1.13	extremely dense, subrounded to			·	
						angular, fine to coarse SAND, some			0.0	0.3
						subrounded to angular gravel, little	,			ŀ
	<u> </u>			<u> </u>		silt, no apparent odor.				
	15	28-30	48-50/0.2	0.7/0.2'	50(+)	Moderate brown (5YR 4/4), saturated,			*	
30	 	├	 		 	extremely dense, subrounded to angular, fine to coarse SAND, some			0.0	0.0
- 30	 		<u> </u>			subrounded to angular gravel, little			0.0	0.0
						silt, no apparent odor.				
	ļ	<u> </u>			ļ					
····	-	 	<u> </u>	 	 -	,				
	╁			 	 				İ	
	†			1		1				
]			į.	
	<u> </u>									
	 	<u> </u>	<u> </u>	 	 			·		
		 		 	<u> </u>				,	
	-	 -		 	 					
		 		<u> </u>	ļ. ———	1				,
]		[. ·		·
				ļ:						
 	ऻ—			 	 	4]	1	
 	1	<u> </u>	<u> </u>	 	-]	1	
	1-	 	 	 	 	1	}			ļ
	L							,		
	1			<u> </u>			<u> </u>			
				 	 			1		
 	+	 	 	<u> </u>	 	1		 	1	ļ
	 		 	 		· ·		[
	1	 			·			Ī	}	
]]]	
] .		1		
						4				
	 	<u> </u>	<u></u>	ļ	ļ	-	'	1		
<u> </u>	 	<u> </u>		ļ		1]	
Mell in sta	lation: '	Summi 40 4	41: 2" 40 040"	slotted BVC	non: 4.4.4"	iner A.O.S. hontonite chine 20.481 and and a chine 30.	<u> </u>	<u> </u>	<u> </u>	<u>. </u>
				sioπed PVC scr ned as a flush m		iser: 4-0.5', bentonite chips 30-18', sand pack 18-2';	٠.			

a Mohaw ton, NY .081 .ny: Parr an Waters t: Chawi Depth (feet) 0-2	k att Wolff, i	Penetr/ Recovery 2/2'	"N" Value 13	Sampler: 2" Split Spoon Hammer: 140 lbs. Fall: 30" Sample Description Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp, loose, fine SAND, some medium sand,		Page 1 of Location: Start Date: Screen Riser Stratum Change General Descript	1 : 7/11/) \ ip.	Grout Sand Pa Bentonit Field Tes PID Over Spoon (PPM)	e
Depth (feet) 2-4 4-6 8-10	att Wolff, is n O'Dell Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	Penetr/ Recovery 2/2' 2/2'	Value 13 10	Hammer: 140 lbs. Fall: 30" Sample Description Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Start Date End Date: Screen Riser Stratum Change General	: 7/11/ 7/11/ = Equ) \ ip.	Sand Pa Bentonit Field Tes PID Over Spoon (PPM)	e Jar Head Space (PPM)
.081 .my: Parran Waters t: Chawn Depth (feet) 0-2 2-4 4-6 6-8 8-10	Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	Penetr/ Recovery 2/2' 2/2'	Value 13 10	Sample Description Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Start Date End Date: Screen Riser Stratum Change General	7/11/5) \ ip.	Sand Pa Bentonit Field Tes PID Over Spoon (PPM)	e Jar Head Space (PPM)
Depth (feet) 0-2 2-4 4-6 8-10	Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	Penetr/ Recovery 2/2' 2/2'	Value 13 10	Sample Description Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		End Date: Screen Riser Stratum Change General	7/11/5) \ ip.	Sand Pa Bentonit Field Tes PID Over Spoon (PPM)	e Jar Head Space (PPM)
Depth (feet) 0-2 2-4 4-6 8-10	Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	Penetr/ Recovery 2/2' 2/2'	Value 13 10	Sample Description Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Screen Riser Stratum Change General	Equ	ip.	Sand Pa Bentonit Field Tes PID Over Spoon (PPM)	e Jar Head Space (PPM)
Depth (feet) 0-2 2-4 4-6 8-10	Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	Penetr/ Recovery 2/2' 2/2'	Value 13 10	Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Riser Stratum Change General	, .	ip.	Sand Pa Bentonit Field Tes PID Over Spoon (PPM)	e Jar Head Space (PPM)
Depth (feet) 0-2 2-4 4-6 8-10	Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2' 2/2' 2/2'	Value 13 10	Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Stratum Change General	, .	ip.	Bentonit Field Tes PID Over Spoon (PPM)	e Jar Head Space (PPM)
Depth (feet) 0-2 2-4 4-6 6-8 8-10	Blows /6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2' 2/2' 2/2'	Value 13 10	Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Change General	, .	ip.	Field Tes PID Over Spoon (PPM)	Jar Head Space (PPM)
(feet) 0-2 2-4 4-6 6-8 8-10	/6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2' 2/2' 2/2'	Value 13 10	Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Change General	, .	ip.	PID Over Spoon (PPM)	Jar Head Space (PPM)
(feet) 0-2 2-4 4-6 6-8 8-10	/6" 5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2' 2/2' 2/2'	Value 13 10	Grayish brown (5YR 3/2), damp, medium dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,	.	General	, .	ip.	Spoon (PPM)	Space (PPM)
0-2 2-4 4-6 6-8 8-10	5 8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2'	13	dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		Descript	Insta	lled \		
2-4 4-6 6-8 8-10	8-8 4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2'	10	dense, fine to coarse SAND, little fine angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,			<u>\</u>	\	0.0	0.0
2-4 4-6 6-8 8-10	4-4 6-5 2-1 8-11 3-2 2-2 4-1	2/2'		angular gravel. Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		• . •			0.0	0.0
4-6 6-8 8-10	6-5 2-1 8-11 3-2 2-2 4-1	2/2'		Pale yellowish brown (10YR 6/2), damp, medium dense, fine SAND, some medium sand, little silt. Moderate brown (5YR 4/4), damp,		· .				
4-6 6-8 8-10	2-1 8-11 3-2 2-2 4-1		9	some medium sand, little silt. Moderate brown (5YR 4/4), damp,		-			1	t
6-8 8-10	8-11 3-2 2-2 4-1		9	Moderate brown (5YR 4/4), damp,		-	8000000		0.0	0.0
6-8 8-10	8-11 3-2 2-2 4-1		9	7]		I	_		
8-10	3-2 2-2 4-1	2/0.0'		Jioose, line SAND, some medium sand,			=			
8-10	2-2 4-1	2/0.0'		little silt, staining at tip of spoon. Metal	1		=		1.2	2.3
8-10	2-2 4-1	2/0.0'	<u> </u>	fragements.			=			
	4-1		4	No recovery. Coarse gravel lodged in			=		N/A	N/A
		<u> </u>	ļ	spoon tip.		•	=			
10-12	1-2	2/1.5'	2	Grayish brown (5YR 3/2), saturated,		•	=			1
10-12			 	very loose, fine SAND, little silt, strong odor, black staining.			=		5.5	110
	6-7	2/2'	12	Pale yellowish brown (10YR 6/2),			=			
	5-5			saturated, medium dense, fine SAND,			=			
<u> </u>			<u> </u>	some silt. Odor and elevated PlD			=		12.1	130
 		<u> </u>	,	reading at approximately 10.3'. (no			=			
12-14	3-3	2/2'	9	odor 10.5' -12.0'.) Pale yellowish brown (10YR 6/2),		·	=			
1	6-6		ľ	saturated, loose, very fine SAND,					0.0	35
				some silt, trace clay, no odor.			=		(Dup. 0.0)	(Dup. 33)
14-16	8-5	2/1.7'	10	Pale yellowish brown (10YR 6/2),			=			
 	5-3	 	 	saturated, stiff, SILT, little fine sand to					0.0	0.0
 		 	 	7						
			1	one to to.		1		Gladi.		<u>†</u>
]					1	
<u> </u>	<u> </u>	<u> </u>	 				1.		l	1
} -				-{]				
 				†						
				<u> </u>			1			1
]						1
 	ļ <u>. </u>	ļ				·			}	1 .
 	<u> </u>			4		ļ	1			1
 			1	†						1
<u>† </u>							1		1	
						•	1		1.	
ļ	ļ			<u>.</u>				•	ļ	
 	 	ļ	 	-					Į	
 	-	 	+	+						
<u> </u>		 	 	1					1	
							1		1	1
						<u></u>			<u></u>	
	ation 2°F	ation: 2" PVC sump: 1			approximately 1.5', then CLAY, little silt 15-16'.	approximately 1.5', then CLAY, little sitt 15-16'.	approximately 1.5', then CLAY, little sitt 15-16'.	approximately 1.5', then CLAY, little sitt 15-16'.	approximately 1.5°, then CLAY, little silt 15-16°.	approximately 1.5', then CLAY, little

Depth Depth Blows Penetr/ "N" Sample Description Space (ppm) Installed (ppm) Sample Description (ppm) Installed (ppm) Sample Description (ppm) Installed (ppm)	rid Pac ntonite Field Testing
South Fulton Street Site Proj. Loc: Fulton, NY Hammer: 140 lbs Start Date: 6/17/98 End Date: 6/18/98 Boring Company Parratt/Wolff, Inc. Foreman: Glen Lansing Orill Rig: Inger Soll-Rand A-300 Depth Blows Penetr/ Below Depth Blows Penetr/ Grade No. (feet) /6" Recovery Value 22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular)	Field Testing UV Neg.
Start Date: 6/17/98 Start Date: 6/17/98 Start Date: 6/17/98 Start Date: 6/17/98 Start Date: 6/17/98 Start Date: 6/18/98	Field Testing UV Neg.
Start Date: 6/17/98 End Date: 6/18/98 En	Field Testing UV Neg.
Fall: 30 inches End Date: 6/18/98 Soring Company Parratt/Wolff, Inc. Screen	Field Testing UV Neg.
Boring Company Parratt/Wolff, Inc. Foreman: Glen Lansing Inger Soll-Rand A-300 DBG Geologist: Chawn O'Dell Depth Blows Penetr/ "N" Sample Description Grade No. (feet) /6" Recovery Value 22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0	Field Testing UV Neg.
Foreman: Glen Lansing Inger Soll-Rand A-300 Depth Blows Penetr/ "N" Sample Description Grade No. (feet) /6" Recovery Value 22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) 26 14 28-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine (subangular) 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Field Testing UV Neg.
Depth Blows Penetr/ "N" Sample Description Space (ppm) Installed (ppm) Installed (ppm) Installed (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) 26 14 28-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 26 14 28-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular)	Field Festing UV M Ligh Neg.
Depth Blows Penetr/ "N" Sample Description Space (ppm) Installed (ppm) Install	Field esting UV m Ligh Neg.
Depth Blows Penetr/ "N" Sample Description Space (ppm) Installed (ppm) 22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	resting UV m Ligh Neg
Depth Blows Penetr/ "N" Sample Description Head Space Equip. PlE Space Installed Installed Space Installed Installed Space Installed I	resting UV m Ligh Neg
Second Depth Blows Penetr/ "N" Sample Description Space Equip. Plicated No. (feet) /6" Recovery Value Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 0.0	M Ligh Neg.
Carade No. (feet) 16" Recovery Value (ppm) Installed (ppm) 22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 0.0	M Ligh Neg. Neg.
22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium gravel (subangular) 0.0 23 (subangular) (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) 0.0 25 (subangular) (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine one 0.0 0.0	Neg.
22 12 22-24 32-60 1.0/0.8 92+ Light brown (5YR 6/4), saturated, extremely dense, fine to medium SAND, little silt, little fine to medium gravel (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium gravel (subangular) 25	Neg.
23 (subangular) 24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine 0.0 0.2 to medium SAND, little silt, little fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0	
24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium SAND, little silt, little fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0	
24 13 24-26 29-50/ 0.7/0.6 79+ Light brown (5YR 6/4), saturated, very dense, fine to medium SAND, little silt, little fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0	
to medium SAND, little silt, little fine to medium gravel (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine	
0.2 to medium SAND, little silt, little fine to medium gravel (subangular) 26	
25 (subangular) 26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0 0.0	Nea
26 14 26-26.8 52-50/ 0.8/0.8 102+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0	Nea
	Nea
0.3 to medium SAND, little silt, little fine to medium gravel	""
27 (subangular)	1.
28 15 28-28.5 100 0.5/0.5 100+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.2 = 0.0	Neg
to medium SAND, little fine to coarse gravel (sub-	iveg
29 angular, little silt)	1
arguin, nice sni)	
30 16 30-30.5 63 0.5/0.5 63+ Light brown (5YR 6/4), saturated, very dense, fine 0.2 = 2 0.0	Nan
to medium SAND, little fine to coarse gravel (sub-	Neg
31 angular, little silt)	ł
arigular, indee sitt)	
32 17 32-34.0 8-20 2.0/.1.8 51 Light brown (5YR 6/4), saturated, very dense, fine to 0.1 = 0.0	
	Neg
31-37 medium SAND, some silt, little fine to coarse gravel = (subangular) intermittent clay seams (~0.05 thick) =	-
34 18 34-34.4 50/0.4 0.4/0.4 50+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.0 = 0.0	.
	Neg.
to medium SAND, some silt, little fine to medium gravel	1
35 (subangular), intermittent clay seams (~0.05 thick)	
36 10 36 36 4 50/0 4 0 4/0 4 50 4 Light hours (EVD C/4) asturated external days (EVD C/4)]
36 19 36-36.4 50/0.4 0.4/0.4 50+ Light brown (5YR 6/4), saturated, extremely dense, fine 0.2 = 010	Neg.
to medium SAND, some silt, little fine to medium	
gravel (subangular), intermittent clay seams (~0.05 thick	
spoon refusal at 36.4 ft, advance augers to approx.	
36.9 ft, auger refusal	
37 20 86,9-37. 50/0.1 0.1/0.05 50+ Grayish black (N2), fine grained SANDSTONE 0.0 = 0.0	Neg
	
Bottom of boring at 37 ft)
	1
Notes: Well Installatic 2-inch x 0.020 inch slotted PVC Screen: 37- 27 ft Bentonite Seal: 24-22 ft Finished as a flush mount v	ell
Sand Pack (1 Mone): 37-25 ft Sand Choke (00 Mone): 22-21 ft	
Sand Choke (00 Morie): 25-24 Grout: to 0.5 ft	

O'BRIE	N & C	SERE E	NGINEE	RS, INC.		TEST BORING LOG	REPOR	MW-6		•
Client: I	Niaga	ra Mohav		Corporation		Drill Method: Hollow Stem Auger Sampler: 2-inch Split Spoon	Page 1 of 2 Location:			
Proj. Loc		Fulton, I			1	Hammer: 140 lbs	Location.			
File No.:		1118.081	I	i		Fall: 30 inches	Start Date: End Date:	6/17/98 6/18/98		
Boring Co	ompai	ny:	Parratt/We	olff, Inc.			Screen		Grout	
Foreman:	:	•	Glen Lans	ing	ì		Riser		Sand Pa	ack
Drill Rig:	•		Inger Soll-	Rand A-300			Steel	<i>y</i>	Bentoni	
OBG Geo	logist		Chawn O'	Dell						•
						·	PID		Field	<u></u>
Depth	Į	1					Head		Testi	ng
Below		Depth	Blows	Penetr/	"N"	Sample Description	Space	Equip.	PID	Ūν
Grade	No.	(feet)	/6"	Recovery	Value		(ppm)	Installed	(ppm)	light
_ 0	1	0.5-2	6	1.5/1.3	10	Brownish black (5YR 2/1), damp, medium dense, coarse	0.0		0.0	Neg
			- 4-3			to fine SAND, some fine gravel (subangular), little slag/		k I k	ĺ	
1				1 1		coal/brick fragments		k l k l	l	
							İ		ĺ	1
2	2	2-4	3-3	2.0/1.0	6	Brownish black (5YR 2/1), damp, loose, coarse to fine	0.8		0.0	Neg
			3-2			SAND, some fine gravel (subangular), little slag/			1	""
3					1	coal/brick fragments			İ	} .
						4			Í	
4	3	4-6	3-5	2.0/1.6	11	Grayish black (N2), medium dense, damp to wet, fine	2.9	K I K I	0.0	Pos
		``	6-2			to coarse SLAG fragments (subangular), little brick/	2.5		0.0	108
5			<u> </u>			coal fragments to approx. 5.7 ft, then moderate yellowish				
					 	1				1
6	4	6-8	3-4	2.0/1.4	12	brown (10YR 5/4), wet, loose, fine SAND, little silt Brownish gray (5YR 4/1), saturated, medium dense,				
-			8-8	2.0/1.4	15	1	38		0.8	Pos
					 	fine SAND, some silt, trace wood fragments			1	
7			 	···	 	1	1			1
_		0.40		2045	45	Drawich care (EVD 4/4) actuated to the				1_
8	5	8-10	6-8	2.0/1.5	15	Brownish gray (5YR 4/1), saturated, medium dense,	74		1.2	Pos.
	· ·		7-9	···	 	fine SAND, some silt, trace wood fragments		ין דין	}	1
9					 			1 1 1		
		45:45	 		 	1		1 1 1	Į	1
10	6	10-12	3-1	2.0/1.3	11_	Moderate reddish brown (10R 4/6), saturated, medium	58		1.0	Neg.
		,	10-20		 	to dense, fine to medium SAND, little fine to coarse				1
11			 		 	gravel (subangular)	- 1		1	1
			 		 			1 1 1	İ	ł
12	7	12-14	15-23	2.0/1.2	44	Moderate reddish brown (10R 4/6), saturated, dense,	75	 	0.5	Neg.
			21-22		 	SAND, little fine to coarse gravel (subangular)		N N	1.	1
13			 		 	4		<u> </u>	İ	
	<u> </u>		 -,-,- 		1	1				
. 14	8	14-16	13-15	2,0/1,5	25	Moderate reddish brown (10R 4/6), saturated, medium	23	11 1	0.2	Neg
	 	 _	10-11		 	dense, fine SAND, some silt, little fine gravel		4:14	1	
15	<u> </u>	ļ		· ·	-	(subangular)	*		1	.[
<u> </u>		 -			+	4			1	1
16	9	16-18	7-11	2.0/1.3	26	Moderate reddish brown (10R 4/6), saturated, medium	5.7	1 1 1	0.0	Neg.
	 	<u> </u>	15-22		1	dense, fine SAND, some silt, little fine gravel				1
17	 	<u> </u>			 	(subangular)				1
	 	 	ļ		 	4	1			1
18	10	18-20	15-21	1.7/1.2	44	Moderate reddish brown (10 R 4/6), saturated, dense,	2.3	 	0.0	Neg.
	├		23-50/		 	fine SAND< little fine to medium gravel (subangular),		14 1		
19	 		0.2		 	trace silt				
	<u> </u>	<u> </u>	ļ		 	4		11 1	l	1
20	11	20-22	31-50/3	0.8/0.8	50+	Moderate reddish brown (10 R 4/6), saturated, very	1.2	1 4	0.0	Neg.
			ļ			dense, fine SAND, little fine to medium gravel			.]	
21	ļ			,		(subangular) trace silt			4	
	L				<u> </u>					
	"	L	<u> </u>		L				3	
				l "	1	1	I .	D6064 1998	4	1
			<u> </u>						<u> </u>	┸

						TEST BORING LOG	REPOR	T OF BOI		
	_			ERS, INC.				MW-7		_
Client:	-			Corporation		Drill Method: Hollow Stem Auger	Page 1 of 1			
Duc!			Street Site	9		Sampler: 2-inch Split Spoon	Location:			_
Proj. Lo	; ;	Fulton,	N T			Hammer: 140 lbs	Start Date:	6147160		
Eile Ne -		1118.08				Fall: 30 inches	Start Date: End Date:	6/17/98 6/17/98		
File No.: Boring (olff, Inc.		Fall: 30 inches	Screen	T T T	Grout	
Foremar		ny.					Riser	H 555	-	
Drill Rig			Glen Lan	I-Rand A-300			Steel	<u> </u>	Sand Pack Bentonite	
OBG Ge		••	Chawn O			•	Steel	<i>™</i>	Dentonite	
ODO GE	Ologis		Silawii O				PID		Field	_
Depth							Head		Testing	
Below		Depth	Blows	Penetr/	"N"	Sample Description	Space	Equip.		V
Grade	No.	(feet)	/6"	Recovery	Value		(ppm)	Installed		
0	1	0-2	3-12	2.0/1.2	19	Moderate brown (5YR 4/4), damp, medium dense, SILT	0.0		0.0 Neg	
			7-4			to fine SAND, some medium to coarse sand, little fine				,-
1						gravel (subangular), trace organics		$\mathbf{k} + \mathbf{k}$		
				·				\mathbb{N}	ļ	
2	2	2-4	4-4	2.0/1.5	8	Moderate brown (5YR 4/4), damp, loose, fine to coarse	0.0	h 1 h 1	0.0 Neg) .
			4-7			SAND, some fine to coarse gravel (subangular), little				
3						silt, trace brick fragments				
<u> </u>	ļ						1			
4	3	4-6	4-11	2.0/1.5	18	Moderate brown (5YR 3/4), saturated at ~6 ft, medium		=	0.0 Neg] .
	<u> </u>		7-5	ļ		dense, fine SAND, some medium to coarse sand,		=	. 1	
5	<u> </u>	·	ļ			little fine to medium gravel (subangular)	j.	=		
	ļ				L		ł	=		
6	4	6-8	3-4	2.0/0.7	12	Light olive gray (5Y 5/2), saturated, stiff, CLAY, some	0.0	=	0.0 Neg	J.
	ļ		8-5	 		silt, trace organic matter	,		ļ	
7						4	1		, l	
8	5	0.40	3-3	2046	- -	Olive conv. (5) (0 m) to provide house (5) (D 0 m)				
	-	8-10		2.0/1.6	5	Olive gray (5Y 3/2) to grayish brown (5YR 3/2), sat-	0.0		0.0 Neg). —
9			2-4			urated, firm, SILT, some fine sand, little clay				
-	 									•
10	6	10-12	3-2	2.0/1.7	8	Olive gray (5Y 3/2), to dusky yellowish brown (10YR 2/2)	0.0		0.0 Neg	
	-	-,,,,,	6-8		<u> </u>	saturated, stiff, SILT, some clay, little fine sand, trace)		U.O ITON	J -
11						organics	1	=		
								=	. 1	
12	7	12-14	7-6	2.0/2.0	. 11	Light olive gray (5Y 5/2), saturated, stiff, CLAY, some	0.0	=	0.0 Neg	,
			5-5			silt, little fine sand, fine sand lense, approx. 12.6 to		=		
13						12.8 ft		=		
	<u> </u>			<u> </u>	<u> </u>			=		
14						Bottom of boning at 14 ft		 = ₩		
	<u> </u>	ļ						1 1		
	<u> </u>	<u> </u>	· · · · · ·		ļ	4			,	
		<u> </u>	 			4				
		 	 		 -					
	-	 	ļ.,	 	ļ. —	4			: ·	
	-				 	1			, ,	
	\vdash	ļ	 	<u> </u>		1		'-		
	 	 	 	 	 	1	İ	1.		
	 	 	 	 	 	1				
	 				-	1	1	1 (
	 	 	1		-	1			1.	
	\vdash	 	 	 	 		1			
	 	 	 	<u> </u>	 	1	1.			
	1	 		 		1	<u> </u>			
	 	-	 			1				
	1	l	<u> </u>			1	1			
Notes:	Well In	stallation:	2-inch x 0.0	020 Inch slotted P	VC Scree	n: 14 to 4 ft		 .		
•				(1 Morie): 14 to 3		Grout: 3-0 ft			Ì	
<u> </u>				e (00 Morie); 3.5		Finished as a sickup well	_CPO:ers/div76	6/4 notes/borin	igs/mw-7	

						TEST BORING LOG	REPOR	RT O	F BC	RING	
				NEERS, II				N	/IW-7	D	
Client: oj. Lo	(Sout	ra Moha h First S Fulton,	Street S	wer Corpor lite)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:	rive	r.		d
File No.		1118/35	165			Fall: 30 inches	Start Date End Date:	:		/2004 /2004	•
Boring	Comp		Parrat	t-Wolff, Inc.	,		Screen	E	7	Grout	
Forema		st:	Lee Pe	enrod Fucker			Riser			Sand P Bentor	
Depth					T		Stratum	Ī		Fiel	d
Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript		uip. alled	Test PID (ppm)	UV
0		2	11-13	2.0/0.3	22	7"-Topsoil, coal fragments(-), dry,	- Joseph	1	1	0.2	NEG
			9-6		· ·	no odor	٠.	\\	\ \		
:	 	***				5"-10YR6/6 Dark Yellowish Orange, f SAND, trace f (rnd) gravel, medium		$ \cdot $	\		
						dense, moist, ho odor		$ \mathbf{i} $	l i		
2	 	4	5-3 4-5	2.0/1.0	7	13" -As above, cmf(+) SAND, little f (rnd) gravel, root structures, loose, wet at		$ \cdot $	\ \	0.0	NEG
<u> </u>	 		4-0		-	bottom of spoon, no odor		$\left\{ \left\langle \cdot \right\rangle \right\}$	'		
								1	i j		
4		6 .	2-1 2-2	2.0/0.7	3	8"-As above, wet, 10YR5/4 Moderate Yellowish Brown, coal fragment(-) gravel,			',	0.0	NEG
		<u> </u>				coarse and rnd on rollerbit, very loose	,		1,		
								$ \cdot $	1		
6		8	1-1 1-2	2.0/0.8	2	10"-N2 Grayish Black, CLAY, some silt, little organic fragments, olive green		$ \cdot $	',	0.1	NEG
	 -		1-2		┼─╌	mottles, very soft, no odor, moist,	·	$ \cdot $	'	1	
									\[\i		1
8	 	10	1-1 2-3	2.0/0.9	3	11"-N6 Medium Light Gray, SILT, some clay, soft, moist, no odor		[\]	1,	0.0	NEG
	<u> </u>					Joseph Sort, Moist, No odoi		$ \cdot $	\ \		
		45		2.04.2		144 A	ļ		\\	4	,
10	-	12	1-2 3-5	2.0/1.2	.5	14"-As above, SILT, little clay, firm, moist, no odor			1,	0.0	NEG
		<u> </u>				1		[i]	1		
12		14	3-6	2.0/1.3	12	15"-As above, SILT, tight, rust mottles,]	\	,		NEO
12	 	14	6-9	2.0/1.3	12	organics (roots) moist, stiff, no odor, little		$ \cdot $	'	0.0	NEG
, , , , , , , , , , , , , , , , , , , ,						clay			,		
14	ļ	16	1-1	2.0/0.9	3	11"-As above	-	[\	1		NEG
	<u> </u>		2-3	2.070.3		1.7.5 45070		$ \cdot $	'	0.0	""
			<u> </u>					[]	\		
16	1	18	3-2	2.0/1.5	4	6"-As above, moist, no odor	1	$\left[\cdot \right]$	1	l .	NEG
			2-2			12"-5GYR4/1 Dark Greenish Gray, SILT,		$ \dot{i} $	\	1	
	1				<u> </u>	little clay, shell fragments, soft, moist, no odor.		[] [,	1	
18	 	20	2-2	2.0/1.3	3	6"-As above, gravel at interface	1	$ \cdot $	'	0.0	NEG
			1-2			9"-N7 Light Gray, SILT, soft, saturated,	1		Ĺ		
	 	-	<u> </u>		 	no odor	{				
20		22	1-1	2.0/1.3	2	15"-As above, becomes varved last 2"	 			0.0	NEG
			1-1]			(1) (1) (1)		
	 	-	-			-					
22		. 24	1-1	2.0/1.0	2	12" -As above becomes 5YR5/1 Light	1			0.0	NEG
			1-1			Olive Gray, no odor					
	 		+			4			=		
						1			=		
Well set a	at 28 ft	2" schedu	le 40 PV	C. 5' 0.010" slo	t screen (23-28'), 7' sand, 2' bentonite seal, grout to s	urface stick-i	in prote	ective ca	esina	

				NE-DA		TEST BORING LOG	REPOI	RT OF BO		
				NEERS, I		Hallani Stam A.	Dans O	MW-70)	
Proj. Lo	(Sout	ara Mon h First : Fulton,	Street S	wer Corpoi Site)	ration	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 2 of Location:	; 2 Between M river.	W-7 and	d
							Start Date	: 6/22/		
File No. Boring		1118/35		t-Wolff, Inc.		Fall: 30 inches	End Date: Screen			
Forema		any.	Lee Po			·	Riser		Grout Sand P	ack
OBG G		st:		Tucker					Benton	
Depth Below		Depth	Blows		"N"	Sample Description	Stratum Change General	Equip.	Field Testi PID	
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(ppm)	UV
24		26	13-10	2.0/0.0	20	NR- cmf gravel in shoe, saturated		=		
			10-8					=		
								=		
26		28	7-10	2.0/1.3	33	16"-10YR4/6 Moderate Reddish Brown,	•	=	0.0	NEG
			23-32		 	cmf SAND, some cmf (rnd) gravel, little silt, dense, moist, no odor		=		
						,		=		
						5-1-68-1-1-55				
	<u> </u>	<u>.</u>				End of Boring at 28 ft.				
· .			<u> </u>							
								ļ		
				<u> </u>	 -	2		·		
						• •				
			<u> </u>							
									İ	·
									l	
		·								
						1				
						e e				
								*		
				· · · · · · · · · · · · · · · · · · ·	<u> </u>				·	
								,		
		-	<u> </u>		ļ					
			<u> </u>							
							,			
-						•				
									Ì	
,				· - · · · · · · · · · · · · · · · · · ·			,			
									ĺ	
										1
		<u> </u>					<u> </u>			
			•							

						TEST BORING LOG	REPOR	T OF BO				
				ERS, INC.			MW-8					
Client:	_			r Corporation	•	Drill Method: Hollow Stem Auger	Page 1 of 1					
Desi Lov			Street Site			Sampler: 2-inch Split Spoon	Location:			1		
Proj. Loc	S:	Fulton, I	NY			Hammer: 140 lbs	Date:	-140 io i	-			
Eile No	_	4449 09				P-H. Bothalan	Start Date:	6/16/98		!		
File No.:		1118.08				Fall: 30 inches	End Date:	6/16/98		/		
Boring C	-	ny:	Parratt/W	•			Screen		Grout			
Foreman			Glen Lan	-	_		Riser	H	Sand P			
Drill Rig:		. 4	-	II-Rand A-300)	,	Steei	<i>II</i>	Benton	ite		
OBG Ge	Ologis	<u>(:</u>	Chawn O	Deii	т	T			· ·			
	'	1	1 !	.t	1		PID		Field			
Depth	'	Danish '		Domasted		, manager 1	Head	1 !	Testi	1 "		
Below Grade		Depth	Blows	Penetr/	"N"	Sample Description	Space	Equip.	1	UV		
	No.	(feet)	/6"	Recovery	Value		(ppm)	Installed		Light		
. 0	1 1	0-2	2-3	2.0/0.4	4	Dark yellowish brown (10YR 4/2), damp, loose, SILT,	0.0		0.0	Neg		
 	├ ──	 	1-1		├──	little fine to coarse gravel (subrounded), trace fine to	1	1 1 1	1	!		
1	├		 	 	 	medium sand, trace organic matter	1	1 1	1	'		
لـــــا	 -	 	لــــــــــا	<u> </u>		4			1	1 1		
2	2	2-4	1-3	2.0/0.3	8	(Poor recovery) Grayish brown (5YR 3/2), damp, loose,	0.0		0.0	Neg		
	 '	<u> </u>	5-11		—	fine to medium SAND, little silt, little coarse to fine			1	1 . 1		
3	└	<u> </u>	<u> </u>	<u> </u>	<u> </u>	gravel (subrounded), trace brick fragments		$ \mathbf{h} = \mathbf{h} ^{T}$	Í	1		
	<u> '</u>	<u> </u>	<u> </u> '	<u> </u>	<u></u>				1	1 1		
4	3	4-6	5-6	2.0/0.4	13	(Poor recovery) Grayish brown (5YR 3/2), damp to wet	0.0		0.0	Neg.		
!	'		7-11			(~5 ft), medium dense, coarse to fine cobble, brick			i	1		
5			<u></u>			fragments (subangular) little silt to coarse sand			4	\ '		
						1			4	1 !		
6	4	6-8	5-11	2.0/0.7	47	Grayish brown (5YR 3/2), damp to wet, dense, fine to	0.0		0.0	Neg.		
			36-8			coarse GRAVEL/COBBLE FRAGMENTS (subrounded			1	1,00		
7			<u> </u>		<u> </u>	to subangular), little fine to coarse sand, trace brick			4	1		
	<u> </u>		 		 	fragments	1		1	'		
8	5	8-10	3-2	2.0/1.5	5	Dusky brown (5YR 2/2), saturated, loose, Slt,T, little	0.0		0.0	Non .		
<u> </u>	1	<u> </u>	3-5	£	+-	organics, trace fine sand	0.0		J ^{0.0}	Neg		
9	 	 	 		 	Jurganius, Bace line sailu			4	. !		
<u> </u>		 	 		 	-			4			
10	6	10-12	4-4	2.0/1.8	12	Moderate yellowish brown (10YR 5/4), and dark gray			1.	l !		
<u> </u>	1	10-12-	8-8	2.0(1.0	15	-1	0.0		0.0	Neg.		
11	┼	t	1 6-6			(N3) mottling, wet, stiff CLAY, some silt, little very	-		4	1		
- ''-	+		 	 	 	Time sand			1.			
12	7	12.14	+	2.0/1.7	18	- LAND EM and dark arms	\		1	1		
14	+	12-14	4-9	2.0/1./	18	Moderate yellowish brown (10YR 5/4), and dark gray	0.0		0.0	Neg.		
	 		9-11	· · ·	 	(N3) mottling, wet, hard CLAY, some silt, little very		-	4 .			
13	 		 	 		fine sand	İ	- -	A			
 	+	 	 		+				4			
14	8	14-16	3-4	2.0/1.8	8	Moderate yellowish brown (10YR 5/4), and dark gray	0.0		0.0	Neg.		
<u> </u>	┼	+	4-4	 	 	(N3) mottling, wet, stiff CLAY, some silt, little very			4			
15	+		 	 	 	fine sand to approx. 15 ft, then olive gray (5Y 4/1),			d .	Ì		
L	 	—	 	 	 	saturated, stiff, silt and fine sand, little organic	Ì		4			
16	 		 	 	1	matter, little shells/shell fragments		=	4.			
<u> </u>	 	 	 		 	┧ .		=	4			
	↓	 	 		↓	Boftom of boring at 16 ft		=	1			
	 	↓	<u> </u>	<u> </u>		<u></u>		1	1			
<u> </u>	—	 	<u> </u>	<u> </u>	 			1	1			
<u> </u>	↓	ـــــــ	<u> </u>	<u> </u>	1	1			1	1		
<u> </u>	↓				 			1	1	1		
	↓		<u> </u>	<u> </u>	 			1	1			
<u> </u>	<u> </u>			<u> </u>					1			
	↓		<u> </u>	<u> </u>]			1	-		
<u> </u>	<u> </u>								1			
]		1	1			
						1		1	1	1		
						1 .		1	1]		
Notes:	Well Ir	nstallation:	2-linch x 0	.020 inch slotted F	VCScree	en: 16-6 ft Bentonite Seal: 5-4.5 ft	Finished as a s	etickup well	<u> </u>	ш		
i				(1 Morie): 6-5.5 ft		Sand Choke (00 Morie): 4.5 -4 ft	1000000	700nop				
ı				ke (00 <u>Morie</u>): 5.5-		Grout to surface	CPO:ers/div76	NA notes/hori	mae/M/M/Af	٥		

						TEST BORING LOG	REPOR	RT OF BO	RING					
		.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,		NEERS, II				MW-80						
Client: Proj. Lo	(Sout	ara Moha th First S Fulton,	Street S	ower Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of 2 Location: North 5' of MW-8							
File No.	:	1118/35	5165			Fall: 30 inches	Start Date: End Date:	6/16/04						
Boring G Forema OBG Ge	n:	•	Lee Pe	tt-Wolff, Inc. enrod Tucker	,		Screen Riser		Grout Sand P Benton					
Depth Below Grade	No.		Blows /6"		"N" Value	Sample Description	Stratum Change General Descript	Equip.	Field Testi PID (ppm)	d ing				
0		2		·		See log MW-8 dated 6/16/98 for description.								
2		4												
. 4		6												
6		8				Piece of pottery on auger flights								
		·												
8		10				SEE MW-8 Log Dated 6/16/98		,						
								·						
10		12				Piece of plastic on auger flight till 16'								
12		14			,									
14		16												
16		18	6-6	2.0/0.5		6"- 10YR5/4 Pale reddish brown cmf			1.0					
			13-10			(++)SAND, little silt and clay, little gravel, wet, no odor				Neg				
18		20	6-6 4-8	2.0/0.5	10	6"- as above, liquified			NA	NEG				
20		22	4-7 6-7	2.0/0.0		No Recovery - Rock in shoe, trace cmf SAND in shoe			0.4	NEG				
Notes:	0-4 # b	onev auger	ring						·					

10 gallons used to flush sand from 21.5 to 24.5 ft bgs 2" PVC well set at 33', 5' 0.010" slot screen (28-33')', sand to 26' bentonite to 24', grout to grade.

O'BRII	EN&	GERE	ENGI	NEERS, II	VC.	TEST BORING LOG REPORT OF BORING MW-8D								
Client: roj. Lo	(Sout	h First S Fulton,	Street S NY	wer Corpor Site)	ation.	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 2 of 2 Location: North of property on City property. South of SB-24 Start Date: 6/16/04							
File No.		1118/35				Fall: 30 inches	End Date:							
Boring		any:		t-Wolff, Inc.			Screen	= _\	Grout	Prout				
Forema OBG G		et·	Lee Pe	enroa Tucker			Riser		Sand P Benton					
0000	 	5t.		l doko:			Stratum		Field					
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript	Equip. Installed	Test PID (ppm)	ing				
22		23.6	18-31	2.0/1.5	75	10YR5/4 Pale Reddish Brown, cmf(+)			0.4					
	<u> </u>		44-50/0.1			SAND, trace mf gravel, moist-wet, no odor, tight, trace silt				NEG				
24		26	35-43	2.0/1.4	90	17" as above			0.4					
			47-49				-			NEG				
26		26.9	40 50/0.4	2.0/0.4	50+	5" as above	· -		0.5	NEG				
28		28.4	50/0.4	2.0/0.3	50+	3" as above			0.0	NEG				
30		30.4	50/0.4	2.0/0.3	50+	3" as above			0.0	NEG				
32		32.1	50/0.1	2.0/0.2	50+	2" as above			0.0	NEG				
						Auger refusal at 33'	1		ļ					
						· · · ·	1			i				
					·	·		·						
	 	<u> </u>			,	-								
	1													
· · · · · · · · · · · · · · · · · · ·	ļ		<u> </u>											
	•			,										
	-		ļ			-								
			<u> </u>		<u> </u>									
<u> </u>			ļ			{								
]								
	ł								٠,					
		<u> </u>												
ļ			 			·			,					
						<u>'</u>								
	 													
	1					1								
	-	ļ	 			-								
]								
	.	ļ			<u> </u>	-								
							<u></u>	<u> </u>	<u> </u>	<u> </u>				
							- 4							

						TEST BORING LOG	REPOR	T OF BO		
				ERS, INC.		Detail Made and a like in the Common of the	5 4 44	MW-9		· .
Client:	_		iwk Powe Street Sit	r Corporation		Drill Method: Hollow Stem Auger Sampler: 2-inch Split Spoon	Page 1 of 1 Location:			
Proj. Lo		Fulton,		e		Hammer: 140 lbs	Location:			
oj. 20	٠.	· uitoii,		•		140 103	Start Date:	6/16/98		
File No.:	:	1118.08	1			Fall: 30 inches	End Date:	6/16/98		
Boring (Compa	ný:	Parratt/V	Volff, Inc.			Screen	= \	Grout	
Forema	n:		Glen Lar	nsing			Riser		Sand P	ack
Drill Rig			Inger So	II-Rand A-300			Steel	<i>H</i>	Benton	ite
OBG Ge	ologis	t:	Chawn C)'Dell						
L	l			1		·	PID		Field	
Depth					l		Head		Testi	ng
Below	N	Depth	Blows	Penetr/	"N"	Sample Description	Space		PID	
Grade ·	No.	(feet)	/6"	Recovery	Value	Describe and CVD 400 days 1 and 5	(ppm)	Installed		
0	1	0-2	4-3 2-9	2.0/0.5	5	1	0.0	<u> </u>	0.0	Neg
1		· · · · · · ·	2-3	<u> </u>		SAND, some silt, little fine to medium gravel (sub- angular), trace brick fragments, trace organics				
	1				<u> </u>	angular), have brick fragments, have organics				
2	2	2-4	14-8	2.0/0.6	17	Grayish brown (5YR 3/2), damp, medium dense, fine to	0.0		0.0	Neg
	Ī -		9-9			coarse SAND, little fine to medium gravel (subangular),		[5.0	
3						trace brick fragments				
]		$ \mathbf{x} = \mathbf{x} $		
• 4	3	4-6	4-4	2.0/1.8	8	Dark yellowish brown (10YR 4/2), damp to wet, loose,	0.0		0.0	Neg.
	ļ <u> </u>		4-4			fine to medium SAND, little fine to medium gravel				
5			<u> </u>	·						
				ļ						
- 6	4	6-8	2-2	2.0/.2.0	6	Moderate yellowish brown (10YR 5/4), damp, firm,	0.0	 - 	0.0	Neg.
			4-6	,		SILT, some clay, trace fine sand		=		
7	1							=		
8	5	0.40	2.4	2000		Madasta sellendah bassa (40)/D 5(4)				
<u>°</u>	3	8-10	2-4 5-8	2.0/2.0	9	1	0.0	=	0.0	Neg.
9			3-6			(N3) mottling, damp to wet, stiff, CLAY, some silt	. ,			
						·				
10	6	10-12	2-3	2.0/1.5	7	Moderate yellowish brown (10YR 5/4), and dark gray	0.0	=	0.0	Neg.
			4-4			(N3) mottling, damp to wet, firm, CLAY, some silt to		 - 		
11						approx 11.8 ft, then olive gray (5Y 4/1), saturated, firm,				ı
						SILT and fine SAND, little organics matter, little shells/		=	-	
						shell fragments		=		
12	7	12-14	4-6	2.0/2.0	12	, ,	0.0	=	0.0	Neg.
			6-9			dense, fine to medium SAND, little coarse sand to fine		=		
13						gravel (subangular)		=		
		44:5	4-5	0.075	_]	# [#]		
14	8	14-16		2.0/2.0	9	Moderate reddish brown (10R 4/6), saturated, loose, fine	υ.υ		U.O	Neg.
15	\vdash		4-4			to medium SAND, little coarse sand to fine gravel (subangular))= -		
	-					\ <i></i>				
16	9	16-18	WOH-WOH	2.0/2.0	7	Grayish red (10R 4/2), saturated, loose, fine SAND,	0.0	=	0.0	Neg.
			7-9			trace fine gravel (subangular)		=		
17								=		
		-					0.0	=		
18						Bottom of boring at 18 ft		=		
						. · ·				ı
										ľ
						.		ļ		ŀ
							1			
										i
								1		1
Notes:	Well in:	stallation:	2-inch x 0.0	20 inch slotted PV	C Screen:	16-6 ft Bentonite Seal: 5-4.5 ft		' -		
			Sand Pack	(1 Morie); 16-5,5 f	t	Grout to surface				- 1
			Sand Choke	e (00 Morie): 5.5-4	ft	Finished as a stickup well	CPO:ers/div76/4	notes/borine	gs/mw-9	

						TEST BORING LOG	REPO	RT OF E	301	RING	
				NEERS, II		·		MW-	<u>9D</u>		
ent: Proj. Lo		gar a Mo Fulton, l		ower Corpoi	ration	Drill Method: Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page Location:	1 of	1	٠.	
File No.		1118.08				Fall: 30 inches	Start Date End Date:		6/	/18/1998 /18/1998	
File No. Boring (Forema Drill Rig Geologi) :	any:	Glen Langerson	t Wolff, Inc. ansing oll Rand A-3 n O'Dell	00		Screen Riser	=	***	Grout Sand P Benton	
Depth Below Grade	No.	Depth (feet)	Blows	Penetr/ Recovery	"N" Value	Sample Description	PID Head Space (ppm)	Equip.		Field Testi PID (ppm)	
		(100-)				See log for MW-9S for soil description	0.0	Instance	Ή	0.0	Neg.
					<u> </u>	dee jog for MAA-20 for and deadifferen	·				
18	1	18-20	11-15 50/0.4	1.4/1.4	65+	Moderate Reddish Brown (10R4/6), saturated, extremely dense, fine to medium SAND, little fine to coarse gravel, (subangular)	0.0			0.0	Neg.
20	2	20-22	27-30 51-	1.5/1.4	81+	Moderate Reddish Brown (10R4/6), saturated, extremely dense, fine to medium SAND, little fine to coarse gravel, (subangular)	0.0	= = =		0.0	Neg.
22	3	22-24	43	0.9-0.9	100+	gravei, (subangular) As above		=			
	3	22-24	50/0.4	0.5-0.5	100+	As above	0.0	=		0.0	Neg.
					<u> </u>			=			
24	4	24-26	22-52	1.0/0.8	100+	As above		=			
	<u> </u>							=			
			<u> </u>]		=			
26	5	26-28	50/0.4	0.9-0.9	100+	As above		=			
		<u> </u>	 			1		=			
28	6	28-30	14-44	1.3/1.3	100+	As above		=			
			50/0.3		<u> </u>	Bottom of borehole at 30 ft.		=			
						_					
		<u> </u>				_					
			<u> </u>			}					
						1					
			-		-	1					
	_		1			1					
			1			1					
Notes:	well in	stallation:		0.020 inch slot ck (1 morie): 30-		Screen: 30-20 ft	Bentonite Se				<u></u>
i				oke (00 Morie): 30-		ut to Surface	Sand Choke ((

								•						
NDD!		oene.	FNONE	EDG ING		TEST BORING LOG		REPOR	RT C					
lient:				ERS, INC. Corporation		Drill Method: Hollow Stem Auger		Page 1 of 1	1	MV	V-1	0		
	South	r Fulton	Street Site			Sampler: 2-inch Split Spoon		Location:						
roj. Lo	C:	Fulton,	NY .			Hammer: 140 lbs		Start Date:		6/17	7/98	3		
ile No.		1118.08				Fall: 30 inches		End Date:	_	6/1		3		
oring (orema		iny:	Parratt/W Glen Lan	-				Screen Riser	=	١.	\ 	Grout Sand P	ack	
rill Rig	:		Inger Sol	I-Rand A-300)			Steel	11			Benton		
BG Ge	ologis	t:	Chawn O	'Deli				PID	Т			Field	1	
epth	<u> </u>							Head				Testi	ng	
elow rade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description		Space (ppm)				PID (ppm)	UV Light	
0	1	0-2	34-45	2.0/1.2	60	Light brown (5YR 5/6), to pale yellowish brown (10YR		0.0	١		<u>\</u>	0.0	Neg	
1			15-7		<u> </u>	6/2), damp, very dense, fine to medium SAND, some brick fragments, little fine to medium gravel (angular),			\		1			
<u> </u>						trace silt/organics			((
2	2	2-4	3-2 1-1	2.0/1.4	3	Grayish brown (5YR 3/2), damp, very loose, fine to		0.0	١,		١,	0.0	Neg.	
3			1-1		<u> </u>	coarse SAND, little fine gravel/brick fragments, trace slag			[,]		\ \ \			
									5000		3330			
4	3	4-6	3-1 1-4	2.0/2.0	2	Grayish brown (5YR 3/2), damp, very loose, fine to coarse SAND, little fine gravel/brick fragments, trace		0.0		,		0.0	Neg	
5						slag to approx. 4.5 ft, then dark yellowish brown				=				
						(10YR 4/2), to moderate yellowish brown (10YR 5/4), damp, very loose, fine SAND, little silt				=				
6	4	6-8	6-7	2.0/1.7	14	Moderate yellowish brown (10YR 5/4), saturated,		0.0		=		0.0	Neg	
7			7-11_			medium dense, fine SAND, little silt				= -				
							•			=				
8	5	8-10	2-4 5-7	2.0/2.0	9	Moderate yellowish brown (10YR 5/4), saturated, loose silt and fine SAND, trace clay, trace fine gravel (angular)		0.0		=		0.0	Neg	
9			<u> </u>			and the SAND, trace day, trace line graver (aligurar)				=		·		
10	6	10-12	WOH-9	2.0/1.4	17	Moderate reddish brown (10R 4/6), saturated, medium				=		0.0		
10	- 0	10-12	8-4	2.0/1.4	17	dense, fine SAND, little fine to medium gravel (sub-		0.0		=		0.0	Neg	
11						angular), trace silt				=				
12	7	12-14	7-6	2.0/1.7	11	Moderate reddish brown (10R 4/6), saturated, medium		0.0		=		0.0	Neg.	
42			5-3			dense, fine SAND, some silt, little fine to coarse				=				
13						gravel (angular)				= =				
14	8 ·	14-16	6-4	2.0/2.0		Moderate reddish brown (10R 4/6), saturated, loose		0.0		=		0.0	0.0	
15			3-3			fine SAND, some silt, little fine to coarse gravel (angular)				=				
		. '								=				
16						Bottom of borehole at 16 ft				=	3233			
						•								
				· · · · · · · · · · · · · · · · · · ·										
			·											
						· .							:	
		<u></u>												
	10/-11	tallette	2 inch : 2 C	10 inst -1-21 - 1 - 21	/C S	45.54 Postosite Cost: 4.0.5.5		<u> </u>	l					
es:	vveilins	ialiation:		20 inch slotted P\ 1 Morie): 15-4.5 (15-5 ft Bentonite Seal: 4-3.5 ft Grout: 3.5-0.5 ft								
	i			(00 Morie): 4.5-4		Finished as a flush mount well		CPO:ers/div76	/4 nc	tes/b	orin	gs/mw-10		
	•										,			
									•					
								•						

						TEST BORING LOG	;	RT OF BO					
				INEERS.			M	W-11/SB	-19				
Client:N	liaga Sout	ra Moh h First	awk Po Street	wer Corpor Site	ation	Drill Method: Hollow Stem Auger Sampier: 2 inch Split Spoon Hammer: 140 lbs	Page 1 of Location:	1					
roj. Lo		Fuiton	, NY				Start Date						
ile No.				W-165-1	<u> </u>	Fall: 30 inches	End Date: 5/09/01						
soring Forema			Parraπ. Glen L	Wolff, Inc.	• .		Screen = \ Grout						
Orill Rig			CME	arismy		•	Riser Sand Pac						
OBG G				O'Dell		ϵ_{i}	0.00.		- Doniton				
							Stratum		Field				
Depth		D41-	DI	Damatut		Commis Decemention	Change	PID	Testi				
Below Brade	No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	General Descript	Over		UV			
0	1	0-2	2-2	2.0/1.0	Value 4	Grayish brown 5YR 3/2, damp, loose,	Describe	0.0	(ppm) 0.0	Ligh neg			
			2-2	2.0/1.0	<u> </u>	SILT, little fine to medium sand	1.	0.0	0.0	lieg			
								·					
						1	1 .		[
2	2 .	2-4	4-2	2.0/1.3	3	Grayish brown 5YR 3/2 to brownish black		0.0	0.0	neg			
			1-1			5YR 2/1, saturated, very loose, SILT and fine SAND, little brick/glass/cinder fragments				l			
	 	 	 			The orange independent in agricults		1					
	<u> </u>]	1						
4	3	4-6	2-1	2.0/0.3	2	Grayish brown 5YR 3/2 to brownish black		0.7	1.1	neg			
			1-3			5YR 2/1, saturated, very loose, SILT and	ļ		l .	į.			
	ļ		ļ			fine SAND, little brick/glass/cinder fragments	'	ľ	1				
· ·	}	 				-	1		1]			
6	4	6-8	2-2	2.0/0.5	3	Grayish brown 5YR 3/2 to brownish black	\ .	1.5	2.1	neg			
			1-3			5YR 2/1, saturated, very loose, SILT and	1.		1	"			
						fine SAND, little brick/glass/cinder fragments		1	Ì]			
	ļ	 	ļ			4	1	ľ	1				
8	5	8-10	2-2	2.0/0.7	3	Light brownish gray 5YR 6/1, saturated,	1.	0.9	1.6	neg			
	 	1 510	1-2	2.0/0./	 	very soft, SILT, some clay, trace	1	0.5	'.0	1 110			
	1_		<u> </u>			organic matter	[·						
							1						
	<u> </u>		ļ <u> </u>			- I take the same of the same			1	1			
10	6	10-12	1-1	2.0/1.3	2	Light olive gray 5Y 6/1, saturated, very loose, fine SAND, little silt, little clay, trace		0.1	0.3	ne			
	+	1	1-2		 	organic matter, trace shell fragments		,	1				
	1		 	 		- James Grand Gran	1			1			
						3				1.			
12	7	12-14	2-3	0.9/0.8	50+	Light olive gray 5Y 6/1, saturated, very loose,		0.0	0.1	ne			
	 	 	7-10		<u> </u>	fine SAND, little silt, little clay, trace organic matter, trace shell fragments							
	╂	╅	 			Torganic maker, trace shell fragments	1						
	+ -	 	1		 	†			1				
		1				3				'			
						Terminate the borehole at 14 ft			1				
	 	1		<u> </u>	1	-		1					
	┥	 	 	<u> </u>	 	Install a monitoring well in the borehole	1						
	+	 	 	 	+	Thistail a monitoring well in the potentie		1					
· · · · · · · · · · · · · · · · · · ·	1-	1	1	 	1								
							.			1			
					ļ	_		•	1				
	 	 	 		ļ	-							
<u> </u>	-			 	- 	-1		•	1				
		1		1	1	i e	£ -	t .	1	1			

						TEST BORING LOG	REPO	RT OF BO	RING	
		*****		NEERS, II	<u> </u>			MW-12	2S	
Client: Proj. Lo	(Sout	ara Mohath First S Fulton,	Street S	ower Corpor Site)	ration	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:	1 South 5' fro	om MW-	-12D
File No.	.:	1118/35	5165	1 127 - 125 m.a.		Fall: 30 inches	Start Date End Date:	10-14		
Boring (Forema OBG Ge	n:		Lee Pe	t-Wolff, Inc. enrod Tucker	•,		Screen Riser		Grout Sand P Benton	
Depth Below Grade	No.		Blows /6"		"N" Value	Sample Description	Stratum Change General Descript	Equip.	Field Testi PID (ppm)	d ing
0		2								
2		4								
						See log MW-12D dated 6/21/2004 for description.				
4		6								
6		8 .								
-										
8		10								
10		12								
12		14		·						. :
								-		
14		16	-	2.0/0.0		No Recovery - Sand/gravel on basket wet spoon, spot of sheen			NA	NA
						EOB at 16 ft				
										,
·				,						
		1								
Notes:	0-4 ft b	oney auge	erina	10-12 ft UV Lig	aht not wo	rking				

^{2&}quot; PVC well set at 16 ft, 10 ft. of 0.010" slot screen (6-16'), sand to 4 ft., bentonite to 3 ft, grout to surface. Flushmount finish. 10 gallons used to remove bridge

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS. INC. MW-12D Client: Niagara Mohawk Power Corporation **Hollow Stem Auger** Page 1 of 2 (South First Street Site) Sampler: 2-inch split spoon Location: North of property on roi. Loc: **Fulton, NY** Hammer: 140 lbs City property, south of SB-24 Start Date: 6/21/04 File No.: 1118/35165 Fall: 30 inches End Date: 6/21/04 **Boring Company:** Parratt-Wolff, Inc. Screen Grout Foreman: Lee Penrod Riser Sand Pack **OBG Geologist: Scott Tucker Bentonite** Stratum Field Depth Change **Testing** Below Depth Blows Penetr/ "N" Sample Description PID General Equip. (feet) Grade No. /6" Recovery Value Descript UV Installed (ppm) ō 2.0/0.3 2 8-13 53 5YR3/4 Moderate Brown, topsoil, dry, no NEG 40-10 odor 2.0/0.5 4 30 2 7-15 Brick concrete and rock fragments 0.0 NEG 15-8 2" 10YR2/2 Dusky Yellowish Brown. SILT, trace (ang) coarse gravel, very organic, moist, no odor. 4 6 10-43 2.0/0.9 60 5YR3/4 Moerate Brown, cmf SAND. NEG 0.0 17-7 some (ang-subrnd) gravel, dry, no odor, 6 8 3-4 2.0/1.0 9 5B7/1 Light Bluish Gray, SILT, little clay, 0.0 NEG rusty mottles, peat seam <1" at 4" from 5-5 bottom, moist, wet seam vertical parting. no odor, stiff 10 as above, grading to 5GY4/1 Dark R 2-3 2.0/1.2 POS 3.0 4-4 Greenish Gray, SILT, varved, soft, shell fragments, blebs of NAPL, vertical root filled fractures, wet-moist, odor 10 12 3-4 2.0/0.3 8 5YR3/4 Moderate Brown, SILT, some cmf 0.6 4-6 sand, trace (subrnd) gravel, wet, slight odor. 12 14 2-3 2.0/0.6 5"- 5YR4/1Brownish Gray and 5Y4/1 13 4-3 Olive Gray, SILT, little clay, moist-wet, slight odor. 3"- 10R4/6 Moderate Reddish Brown, NEG cmf(+) SAND, little silt, wet, odor. 2.0/1.5 14 16 5-4 9 as above, some silt, little rnd gravel, fine 0.7 seams of f sand, wet, slight odor 5-6 NEG 2.0/1.1 16 18 8-12 29 As above, wet, no odor 1.2 17-21 NEG 18 20 15-21 2.0/0.4 46 5" - as above, wet, no odor 0.9 25-32 NEG 20 22 2.0/0.1 23-17 44 As above 0.6 27-29 NEG 22 22.8 26 2.0/0.2 50+ As above - rock in shoe 0.5 50/0.3 NEG 0-4 ft boney augering 10-12 ft UV Light not working

2" PVC well set at 28 ft, 5 ft. of 0.010" slot screen (23-28 ft), sand to 21 ft., bentonite to 19 ft, grout to surface. Flushmount finish,

O'BRIEN & G				TEST BORING LOG	r ja	RT OF BO MW-12		
Client: Niagara (South Proj. Loc: F	a Mohawk P First Street Fulton, NY	ower Corpor Site)	ation	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs	Page 2 of Location: City prope Start Date	North of pr	operty of of SB-24	on 4
File No.: 1 Boring Compai Foreman: OBG Geologist	Lee F	tt-Wolff, Inc. Penrod : Tucker		Fall: 30 inches	End Date:		Grout Sand P Benton	
Depth Below	Depth Blow (feet) /6"		"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	d ing
24	26 11-9 13-17		22	20" - As above, cmf(++) SAND, silt clasts, wet, no odor, loose	•		0.3	NEG
26	28 33-37 31-28		68	As above, cmf SAND, tight, some silt			0.8	NEG
28	28 50/0.0	0	50+	NR - Spoon refusal			-	-
				Auger refusal E.O.B. at 28 ft				
					•			
						·		
				·				
			-		·	·		
							·	

						TEST BORING LOG	REPO	RT OF BC	RING	
	EN &			NEERS, II	VC.			MW-1	3	
Client:		Nationa		•		Direct Push Drill	Page	1 of 1		
Proj. Lo	c:	South F Fulton,		eet		Sampler: 2-inch dia split spoon	Location:		th of SB	
File No. Boring		3DV:		8/35273 -Wolff Inc.			Start Date End Date:	1	0/14/200 0/14/200	
Forema Drill Rig	n: :	any.	Jim La IR	nsing			Screen Riser		Grout Sand P Benton	
Geologi	st:		Scott 1	ucker	,				····	<u>-</u> .
Depth Below		Depth	Blows	Penetr/	"N"	Sample Description	Stratum Change General	Equip.	Field Test PID	
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(ppm)	UV
						0 - 16 ft See boring log for SB-36 for geologic details (hard drilling at 14 ft)				
16		18	:			8"- 10Y6/2 Pale Olive, CLAY, stiff, moist. 4"- 10Y6/2 Pale Olive, SILT, little f sand,			10.3	neg
40		200				shells, wood fragments, saturated, strong odor.				licg
18		20				3"- as above, little clay, strong odor. 5"- N6 Medium Light Gray, SILT, wet, strong odor.		=	6	neg
20		22				6"- as above, some c-m round gravel, NAPL, sheen, strong odor.		=	75.9	pos
22		24	·			9"- N3 Dark Gray, cmf SAND and rnd-	1	= =		
				<u> </u>		subrnd GRAVEL, saturated, NAPL, sheen, strong odor.		= 2	426	pos
						6"- 5YR6/4 Light Brown, cmf SAND and rnd GRAVEL, sheen, strong odor.		=		
24		26				9"- 5Y6/4 Light Brown, f SAND, trace f rnd gravel, sheen (dragdown), slight odor.		=	3.6	neg
						EOB @ 26 ft				
						·				
						·				
Notes:	Sump:	: 19 - 24 ft 24 - 26 ft).5 - 19 ft		Bentonite: 24-3 Bentonite Seal PVC Material:	: 2-17 ft	.020" slot screen		•		

						TEST BORING LOG	REPOR	T OF BO	ORING	
O'BRII	N &	GERE	ENGINE	ERS, INC.				PZ-1		
Client:		Niagara	Mohawk			Sampler: 2" Split Spoon	Page 2 of 2			
Proj. Lo	٠.	Fulton,	NV			Hammer: 140 lbs	Location:			
r roj. Eo	.	. ruiton,	14.1			riaminer. 140 ibs	Start Date:	7/10/9	16	
File No.	:	1118.08	1			Fall: 30"	End Date:	7/10/9		
Boring (Compa	any:		Volff, Inc.			Screen	= \	Grout	
Forema			Brian Wa				Riser	∭ ك	Sand Pag	
OBG Ge	ologis	st:	Chawn C)'Dell		T	Stratum		Bentonit	
Depth							Change			Testing Jar Head
Below	l	Depth	Blows	Penetr/	"N"	Sample Description	General	Equip.		Space
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed		(PPM)
22	12	22-24	30-39	2'/1.7'	76	Moderate brown (5YR 4/4), saturated,			0.0	0.0
			37-49		ļ	extremely dense, medium SAND, some				
23		-		-	ļ	coarse sand, little fine subangular gravel, little fine sand to silt	·			
						into inte saire to site				
24	13	24-26	28-25	2'/1.6'	58	Moderate brown (5YR 4/4), saturated,			0.0	0.0
			33-38	 	ļ	extremely dense, medium SAND some coarse				
25	 	 -	 -		 	sand, little fine subangular gravel, little fine sand				
		 -		,	 	Janu				
26	14	26-28	50/0.2	0.2'/0.2'	50+	Poor recovery. Coarse angular gravel			0.0	0.0
27	ļ	<u> </u>	. T		ļ					
28	15	28-30	50/0.1	0.11/0.01	50+	No recovery				
20	ا ا	26-30	30/0.1	0.170.0	304	ING recovery	-		N/A	N/A
	ļ			·						
						·				·
					 	•		•		
			-							
								•		
								,		
					 	·		ł		
	Ŀ	•							*	•
						_				
								ļ		
								i		
						·		·		
										i
					-					
						·		İ		
								- 1		
							*	l		i
A (- 4) 2				41.00.0000			1		i	
						reen: 13.5-3.5'; Riser 3.5'-0.5', Bentonite chips: 30-17'; sand p	ack: 17 to 2!			ŀ
Deritorine (лц э : 2-	i, giout: 1	-v.o iinisned	d as a flushmount	WEII.					i

O'BRIE	N &	GERE	ENGINE	ERS, INC.			REPORT OF BORING PZ-1							
Client:			Mohawk			Sampler: 2" Split Spoon	Page 1 of 2		- 1					
Proi Los		Fulton,	•				Location:							
Proj. Loc	. .	ruiton,	IN T			Hammer: 140 ibs	Start Date: 7/10/96							
File No.:		1118.08	1			Fall: 30"	Start Date: 7/10/96 End Date: 7/10/96							
Boring C		any:		Volff, Inc.	3		Screen	=	1	Grout				
Foreman			Brian Wa	7			Riser			Sand Pa	ick			
OBG Ge	ologis	st:	Chawn C)'Dell		· · · · · · · · · · · · · · · · · · ·			***	Bentoni				
Depth					i		Stratum				Testing			
Below		Depth	Riows	Blows Penetr/	Penetr/ "N"	Sample Description	Change General	Equip		PID Over				
Grade	No.	(feet)	/6"	Recovery	Value	- Campie Bescription	Descript	Install		Spoon	Space (PPM)			
0		0-2	3-10	2'/1.3'	17	Dusky yellowish brown (10YR 2/2), medium	Descript	mstan		0.0	0.0			
			7-7			dense, fine to medium SAND, some silt, little		$ \cdot $	Ι	0.0	0.0			
1						course sand, trace orange brick fragments.			·					
2	2	2-4	8-10	2'/1.5'	18 .	Moderate reddish brown (10R 4/6), moist to				0.0	0.0			
	<u> </u>		8-3			wet, medium dense, medium subrounded					1			
3					ļ	to subangular SAND and orange brick								
					ļ	fragments, little fine sand, trace coarse sand		=			}			
					ļ			=						
4	3	4-6	13-50/	0.7/0.3	50+	Moderate reddish brown (10R 4/6), damp,		-		0.0	0.0			
			0.2			extremely dense, bricks and brick fragments		=			1			
5				 	 -	1		=						
	4	6.8	40.0	01/0 6/	-			=						
6	4	6-8	10-3	2'/0.6'	6	Brown gray (5YR 4/1), saturated, loose, SILT		=		5.3	9.6			
7	-		3-4		-	and fine SAND, little clay, trace fine, sub-		=						
7	 		 		 	rounded gravel		=						
8	5	8-10	4-9	2'/1.7'	18	Light brownish gray (EVD 4/4) setument		=			_			
-		0-10	9-10	2/1./	10	Light brownish gray (5YR 4/1), saturated, medium dense, fine SAND, some silt, little clay		=		1.3	3.7			
9			3-10		 	Interior dense, line SAND, some sitt, little clay		=						
<u> </u>				 	 	1		∭ -		٠.				
10	6	10-12	4-8	2'/1.2'	20	Light brownish gray (5YR 4/1), saturated,		<u> </u>		0.0	1.2			
			12-9			medium dense, fine SAND, some SILT, little		<u> </u>		0.0	'-2			
11				·		day, trace fine subrounded to subangular		=						
						gravel		-			ļ			
								=						
12	7 .	12-14	9-10	2'/1.5'	21	Light brownish gray (5YR 4/1), saturated,		=		0.0	0.0			
-			11-14			medium dense, fine SAND, some silt, little		=			1			
13	 				ļ	clay, trace subrounded to subangular fine		=						
·	—				ļ	gravel		=						
	<u> </u>		ļ	ļ	1	4					1			
14	8	14-16	16-14	2'/1.9'	26	Moderate brown (5YR 4/4), saturated,				0.0	0.0			
			12-10	<u> </u>	 	medium dense, fine to coarse subrounded to								
15	 		 	ļ	·	subangular SAND and GRAVEL								
16		16 10	60	2''0'	21	Moderate brown (EVP 444)								
16	9	16-18	12 17	2'/2'	21	Moderate brown (5YR 4/4), saturated,				0.0	0.0			
17	\vdash		12-17	 		medium dense, fine to coarse subrounded to		\$3355 ·						
5 F			 		 	subangular SAND and GRAVEL								
18	10	18-20	12-18	2'/1.6'	35	Moderate brown (5YR 4/4), saturated, dense,				0.0	0.0			
	i -		17-15		1	subrounded to subangular, medium to coarse				5.0	0.0			
19						SAND, some fine gravel, little silt to fine sand								
	1		1			, g g g								
20	11	20-22	12-18	2'/0.5'	38	Moderate brown (5YR 4/4), saturated, dense,				0.0	0.0			
			20-17			medium to coarse SAND, some fine sub-				(Dup	(Dup			
21						rounded to angular gravel, little fine sand	1			0.0)	0.0)			
] ′			
			<u> </u>											
								-						

						TEST BORING LOG	REPO	RT OF BO	RING	
O'BRII	EN &	GERE	ENGI	NEERS, II	NC.	·		PZ-2		
Client: Proj. Lo	oc:	Nationa South F Fulton,	irst Stre	eet	-	Hollow Stem Auger Sampler: 2-inch dia split spoon Hammer: 140 lbs	Page Location:		of MW-7	
File No. Boring		anv:		8/35273 -Wolff Inc.		Fall: 30 inches	Start Date End Date: Screen)/13/200)/13/200 Grout	
Forema Drill Rig Geolog	n: ::	ally.	Mark E iR Scott 7	Eaves			Riser		Sand P Benton	
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip.	Field Test PID (ppm)	ing I
0		2	5 5 8	2.0/ 0.7	13	3" - topsoil 5"- 10YR5/4 Moderate Yellowish Brown, damp, mf(+) SAND, trace f rnd,			0	
			8			gravel, coal fragment, no odor.			U	neg
2		4	5 7 4	2.0/1.1	11	as above, becoming 5YR5/6 Light Brown, damp, no odor.			0	neg
			4							
4		6	16 3 3	2.0/1.0	6	9"- 10 YR5/4 Moderate Yellowish Brown, SILT, trace clay, wet, no odor, roots.		= =	0	neg
6		8	2	2.0/1.3	3	3"- 5Y6/1 Light Olive Gray, SILT, little clay, wet, no odor. 7"- 10YR4/3 Dark Yellowish Brown,	:	= =	·,	_
			1 2	2.0/1.3		SILT, trace f sand, orange & gray mottling, no odor, wet.		= =	0	neg
			10			8"- 10YR4/3 Dark Yellowish Brown, f SAND, saturated, trace roots at top, no odor.		= = =	: : i	
8		10	1 2	2.0/1.2	3	as above, little silt and clay, roots, becoming no clay, trace rnd-ang c-f gravel, saturated, no odor.		= =	0	neg
		,	1					= =		
10		12	2 2 3	2.0/1.0	5	5"- 10YR2/2 Dusky Yellowish Brown, CLAY, moist, no odor, trace organics. 7"- 10YR5/4 Light Olive and 5B6/3 Pale		= =		neg
			4	0.0/0.0		Blue, CLAY, trace silt, moist, organics, mottling?, no odor.		=		
12		14	3 3 4	2.0/0.8	7	as above, no odor, moist.		= =	0	neg
			6		-			= =		
						EOB @ 14 ft.				
						**\.	i	,		
Notes:	Riser: 0	: 4 - 14 ft).5 - 4 ft 3 - 14 ft		Bentonite: 1.5 PVC Material: flush mount		.010" slot screen				

						TEST BORING LOG	REPOR	RT OF BO	RING	
_	EN &			NEERS, IN	VC.	·		PZ-3		
Client: Proj. Lo	oc:	Nationa South F Fulton,	irst Stre	eet		Hollow Stem Auger Sampler: 2-inch dia split spoon Hammer: 140 lbs	Page Location:	1 of 1 Between F	PZ-2 and	
File No.				8/35273		Fall: 30 inches	Start Date End Date:	10	0/14/200 ! 0/14/200 !	
Boring Forema Drill Rig	n:	any:	Parratt Mark E IR	t-Wolff Inc. Eaves			Screen Riser		Grout Sand Pa Benton	
Geolog		1	Scott T	[u c ker	1 .	·	<u> </u>		~	
Depth Below Grade	No.	(feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	ng
0		2								
2		4				See boring log for SB-41 for geologic details (did not sample, augered to depth)				
4		6						=		
								= =		
6		8				<u> </u>		= =		
						<u>.</u>]		= = =		
8		10]		= = =		1
						1		= = =		
10		12				1		= =		
						1		= =		
12		14 .				1 - -		=		
						1		= =		
						-				
						<u></u>				
	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>			L
Notes:	Riser:	n: 4 - 14 ft 0.5 - 4 ft		Bentonite: 1.5 PVC Material:		0.010" slot screen	-			

						TEST BORING LOG	REPO	RT OF BC	RING	
O'BRI	EN &	GERE	ENG	NEERS, I	NC.			PZ-4		
Client: Proj. Lo	oc:	lational (South F Fulton,	irst Str	agara Moha eet	wk)	Hollow Stem Auger Sampler: 2-inch split spoon Hammer: 140 lbs		1 of 1 east of SB	41	
File No.	.:		. 111	8/35273		Fall: 30 inches	Start Date End Date:		0/13/200 0/13/200	
Boring Forema Drill Rig	ın: g:	any:	Mark E				Screen Riser		Grout Sand F Bentor	Pack
Geolog	ist:		Scott 7	lucker	1	г 	Stratum		Fiel	.
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript	Equip. Installed	Test PID (ppm)	ing
0		0.5	-	-		Augered through blacktop.				
0.5		2	3 3 4	1.5/0.6	6	10YR5/4 Moderate Yellowish Brown, cmf(+) SAND, little rnd gravel, trace coal fragments, damp, no odor.			0	neg
2		4	8 3 2 3	2.0/0.8	5	as above, cmf SAND, some rnd m-f gravel, coal fragements, moist, no odor.			0	neg
4		6	8 4 5	2.0/0.4	9	as above, 10YR4/2 Dark Yellowish Brown, red brick fragments, moist, no odor.		= =	0	neg
	-		4					=		
6		8	6 4 3	2.0/0.3	7	N2 Grayish Black, coarse SAND and GRAVEL, coal fragments, saturated, no odor.		= =	0.3	neg
			2					, =	0.5	lieg
8		10	1 1 2	2.0/0.3	3	N1 Black, wood, little c sand and gravel, strong odor, wet, sheen.		= = = =	16.8	neg
			2					=		
10		12	2	2.0/0.6	3	2"- as above, sheen		= =		
			1 2			5"- N1 Black, SILT, little f SAND, moist, strong odor		=	19.1	
			1			inoist, strong odor.		=	19.1	neg
12		14	3	2.0/1.0	6	6"- as above 6"- 10Y5/4 Light Olive, and 5B6/2 Pale		= =		
			3			Blue, CLAY, mottled, hint of varving, organics, moist, possible odor (dragdown?)		= =	18.5	neg
		·				EOB @ 14 ft	·	=		
									<u> </u>	
								·		
Notes:	Riser: 0	: 4 - 14 ft).5 - 4 ft 3 - 14 ft		Bentonite: 1.5 PVC Material: flush mount		.010" slot screen		I	<u> </u>	

TEST BORING LOG REPORT OF BORING O'BRIEN & GERE ENGINEERS, INC. PZ-5 Client: National Grid (Niagara Mohawk) **Hollow Stem Auger** Page 1 of Proj. Loc: South First Street Sampler: 2-inch split spoon Location: east of MW-8 Fulton, NY Hammer: 140 lbs Start Date: 10/14/2005 File No.: 1118/35273 Fall: 30 inches **End Date:** 10/14/2005 **Boring Company:** Parratt-Wolff Inc. Screen Grout Foreman: Mark Eaves Riser Sand Pack Drill Rig: IR **Bentonite** Geologist: Scott Tucker Stratum Field Depth Change **Testing** "N" **Below** Depth Blows Penetr/ Sample Description General Equip. PID /6" Grade No. (feet) Recovery Value Descript Installed (ppm) UV 2.0/1.0 0 2 2 7"- 10YR5/4 Moderate Yellowish 2 Brown, SAND and SiLT, trace angular 3 0 neg 5 5"- Shingle fragments. 2 4 3 2.0/? 10YR5/4 Moderate Yellowish Brown, 3 f SAND, little siit, trace wood fragments 0 neg 3 3 6 2 2.0/1.3 2 9"- 10YR5/4 Moderate Yeiiowish 1 Brown, f SAND, wet, no odor. 1 7"- 10YR6/2 Pale Yellowish Brown, 0 neg 2 f SAND and SILT, little clay, trace rnd coarse gravel, no odor, wet. = 6 8 2 2.0/1.0 9"- 10YR6/2 Pale Yellowish Brown and = 5YR5/2 Pale Brown, CLAY, little silt, = 0 neg 2 wet, no odor. = 5 3"- 5YR5/2 Pale Brown, cm(+)f SAND. = some mf ang gravel, moist, no odor. = 2.0/0.2 8 10 2 10YR6/2 Pale Yellowish Brown, CLAY, 3 very stiff, slight odor, spoon saturated. 3 0 neg 5 = = 10 2.0/0.2 10YR5/4 Moderate Yellowish Brown to 2 11 = N4 Medium Dark Gray, CLAY, hint of 4 = varving top 5", very stiff, moist, = 0 neg 9 no odor. = = 2.0/1.7 12 14 6 15 as above, very stiff, trace roots. 6 9 = 0 neg 11 = EOB @ 14 ft Notes: Screen: 4 - 14 ft Bentonite: 1.5 -3 ft Riser: 0.5 - 4 ft PVC Material: 2" dia. - 0.010" slot screen Sand: 3 - 14 ft flush mount

						TEST BORING LOG	REPO	RT OF BO	RING	
O'BRIE	EN &			NEERS, II	NC.	·		PZ-6		
Client: Proj. Lo		Nationa South F Fulton,	irst Stre	eet		Hollow Stem Auger Sampler: 2-inch dia split spoon Hammer: 140 lbs	Page Location: Start Date	1 of 1 between se MW-9D	wer line	
File No.				8/35273		Fall: 30 inches	End Date:		0/14/200	
Boring (Forema Drill Rig Geologi	n: :	any:	Parratt Mark E IR Scott T				Screen Riser	[=\ []	Grout Sand P Bentor	
Geologi	St.		SCOLLI	uckei			Stratum	T	Field	d
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript	Equip.	Test PID (ppm)	1
0		2	2	2.0/0.0.6	6	2"- topsoil			,	
		_	4			5"- 10YR5/4 Moderate Yellowish Brown, f SAND and rnd-ang c-m			0.4	neg
			6			GRAVEL, brick and coal fragments,				
2		4	32	2.0/0.5	11	damp, no odor. concrete fragemtns				
			6	21010.0		consists and services			0.3	neg
			5 5				· ,			ŀ
4		6	4	2.0/0.7	5	Gravel, coal and clinker fragments,	ļ [.]			
			3			no odor.				
		_	2						8.0	neg
						•				
6		8	3	2.0/1.4	4	5"- as above 12"- 5Y4/1 Olive Gray, SILT and		=	0.7	
			1			f SAND, roots last 7", wet, no odor.		=	0.7	neg
			1					=		'
8	-	10	1	2.0/1.1	4	5GY5/2 Dusky Yellow Green, CLAY,		=		
		10	2	2.0/1.1		little silt, trace f sand ad f rnd gravel,		=		
		*	2			sand is 10R6/6 Moderate Reddish	,	=	1.2	slight
			1			Orange, roots, odor, wet.		=		pos
10		12	3	2.0/1.3		as above, shells at 6" from bottom,		=		
			2			intermittent layering, slight sheen in		=	46.6	
			1			random locations, odor, wet.		=	16.6	pos
								=		
12		14	3	2.0/1.7	6	as above, shells, NAPL blebs in clay, strong odor, wet.				
			3	,	-	strong odor, wet.		=	29.5	pos
			3					=		Ì
14		16		2.0/0.3	_	N5 Medium Gray, SILT, little f sand,		= =		
			-			some coarse md gravel, NAPL blebs in		=		
			-			SILT, sheen, saturated, odor.	·	=	7.8	pos
								=		
						EOB @ 16 ft				
						•				
		: 6 - 16 ft		Bentonite: 2 - 4						
	Riser: 0 Sand: 4)-6 ft (stick I - 16 ft	-up)	PVC Material:	2" dia 0	.010" slot screen				

ı												
	O'BRIE	-N &	GFRE	ENGI	NEERS, II	NC:	TEST BORING LOG	REPO	RT OF I		RING	
J		38863			Maral Votali	3.9 0			PZ			·
	Client:		Nationa		+		Hollow Stem Auger	Page	1 of	1		
1	Proj. Lo	C:	South F		eet		Sampler: 2-inch dia.split spoon Hammer: 140 lbs	Location:	betweer) se	wer line	and
			Fulton,	IN T			riammer: 140 lbs	C44 D-4-	ΜV			_
	File No.:			111	8/35273		Fall: 30 inches	Start Date			0/14/200	
	Boring (2011:		-Wolff Inc.		Fair: 30 inches	End Date: Screen	·	7(0/14/200	5
	Forema		ally.	Mark E				Riser		\ 22222	Grout	I-
	Drill Rig			IR	-aves			Riser			Sand P Benton	
	Geologi			Scott T	Tucker	,					Denion	iile
1	Ocologi	<u> </u>		1	I GORCI	· · · · · · · · · · · · · · · · · · ·		Stratum			Field	
1	Depth						ł	Change			Test	
	Below		Denth	Blows	Penetr/	"N"	Sample Description	General	Equip.		PID	ing i
ı	Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installe			υv
I	0	110.	2	1	2.0/0.7	5	4"- Topsoil	Descript	IIIStalie	u 18888	(bhiii)	UV
1				1	2.0/0.7	- —	4"- Angular gravel, coal fragments					
1				4	 	 	- Angular graver, coar magnicines				0.6	neg
1				3			1				0.0	lilea
1						 	† ·	1				-
	2		4	3	2.0/0.7	4	4"- SILT, little f sand, saturated, odor.					
				2			4"- coal fragments				0.8	neg
ı				2			Ĭ					
1				2				1				
							<u>1 </u>					
	4		6	-	2.0/0.3	-	3" angular gravel, brick and porcelain	1]
1				-			fragments, wet, slight odor.	1				
l				<u> </u>]	Ĭ			1.1	neg
				-			4	1				
						<u> </u>		_}				
N	6		8	<u> </u>	NR	<u> </u>	No Recovery	Į.	=			
		<u> </u>				 	4		=			
			<u> </u>	<u> </u>		ļ	4	1	=		-	-
1				<u> </u>	ļ	ļ	-		=			
١	8		10		NR	 	No Recovery	4				
	<u> </u>		- 10	 	INIX.	 	The Recovery					
				 -	 		†				_	_
1				 - -		 	1		=			1
1							1	1	=			ł
Ī	10		12	5	2.0/1.6	8	5"- N4 Medium Dark Gray, SILT, trace	1	=			
				4		<u> </u>	f SAND, roots, wet, no odor.		=			İ
1				4			3"-5GY5/2 SILT, little clay, wet, no odor		=		1.3	neg
				1]11"- N8 Very Light Gray, SILT, tight,		=			
							no odor	_	=			
ı	12		14	2	2.0/0.8	5	10YR6/6 Dark Yellowish Orange and	1	=			
				2			N6 Medium Light Gray, CLAY, little silt		=			1
				3	ļ		and f sand, trace roots, moist, no odor.		=		1.1	neg
			ļ	5		ļ	4		=			
		<u> </u>	 	 _	0.610.5		150V5/0.D. V 0 0 0 0	4	=			Į
	14	<u> </u>	16	3	2.0/0.5	9	5GY5/2 Dusky Yellow Green, SILT,	1	=			
				4		├	trace f sand, shells, wood and coal		=			
			 	5 7		 	fragments.				1	neg
		 	 	 '-			-{					
		 		 	 	 	 	1			1	}
,	<u> </u>	 	 	 	 	 	EOB@ 16 ft					
		 	 	 		 	1 00000 10 11		ŀ		1	
		 		 	 	 	1					
	· · · · · · · · · · · · · · · · · · ·			 	1	 	1	1	1		1	1
Ì				 	1	 	7		-		ļ.	1
				†		 	1		İ		1	
	Notes:	Screen	: 6 - 16 ft	<u> </u>	Bentonite: 2 -	4 ft		1			L	1
		Riser:	stick-up				0.010" slot screen		•			
		Sand:	4 - 16 ft									

						TEST BORING LOG	REPOR	T OF BO	RING	
O'BRIL	:N &		Mohawk	ERS, INC.		Sampler: Backhoe	Page 1 of 1	TP-1		-
Onenc.		Magara	MOHENK			Dackiloe	Location:			
Proj. Lo	c:	Fulton,	New York			Hammer: NA				
File No.:		1118.08	4			Fall: NA	Start Date:	7/8/96		- 1
Boring (Parratt-V	Volff		jran. NA	End Date: Screen	7/8/96	Grout	
Foremai	n:		Brian Wa	aters			Riser		Sand Pa	
OBG Ge	ologis	t:	Chawn C)'Dell	· · · · · · · · · · · · · · · · · · ·		2: 1		Bentonii	<u>:e</u>
Depth			,				Stratum Change		Field Testin	, I
Below		Depth	Blows	Penetr/	"N"	Sample Description	General	Equip.	PID	⁹ .
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(ppm)	
-						Brownish black (5YR 2/1), moist, medium dense, fine to medium SAND, some silt, little				
						fine to medium gravel to approximately 3 ft,			0.0	
						then grayish orange (10YR 7/4), wet to			l	
						saturated, dense SILT, some fine sand to				
	 					approximately 5 ft. Stained soil (moderate odor) encountered at approximately 5 ft			0.0	I
						below grade				ı
						Test pit dimensions: approximately 5 ft deep by 5 ft long by 2 ft wide				
				******		e, o kilong e, z k wide				
•	ļ					Intact concrete structure located				
··				<u> </u>		approximately 5 ft below the surface				
							:			
										ı
			<u> </u>							
										I
									. [ı
						}	į			ı
									ŀ	ı
									ĺĺ	1
									.	
										ı
					,			. :		
							. ,			
										.]
										1
				<u>'</u>						1
										`
										.
						. •				j
he test pit	was ba	ckfilled witt	excavated	soils.					L	
*										j
								CPO:ers/div7	76/4 n&d/TF	2-1

OJEDJI		OFDE	ENONE	TOO INO		TEST BORING LOG	REPOR	T OF BO		
O'BRIE	-N &		ENGINE Mohawk	ERS, INC.		Sampler: Backhoe	Dome 4 of 4	TP-2		
Chent.		Mayara	Williaws			Sampler: Backnoe	Page 1 of 1 Location:			
Proj. Lo	c:	Fulton,	New York	.	-	Hammer: NA				
							Start Date:	7/8/96		•
File No.:		1118.08				Fall: NA	End Date:	7/8/96		
Boring (ıny:	Parratt-W			·	Screen		Grout	
Foremai OBG Ge		-4+	Brian Wa Chawn O				Riser		Sand Pa	
UBG GE	Ologia	[Chawno	Dell	Γ		Stratum	Τ 🐰	Bentoni Field	
Depth	'	1	'	'	1		Change		Testi	
Below	1	Depth	Blows	Penetr/	"N"	Sample Description	General	Equip.	PID	ly l
Grade	No.	(feet)	/6"	Recovery	Value		Descript	installed		-
						Moderate yellowish brown (10YR 5/4),				
<u> </u>		<u></u>	'	<u> </u>	<u> </u>	damp, medium dense, SILT, some fine to			!	1
	↓	↓	<u> </u>	<u> </u>		medium sand, little subrounded to angular			0.0	
	igaplus		<u> </u> '	 '		coarse sand to fine gravel to approximately	1		. '	
<u> </u>	┼—	├ ──	 '	 '	 	3 ft then, grayish orange (10YR 7/4) wet			1	
	┼	 	 '	 '	 	to saturated, dense SILT and fine SAND,	}		1 '	
 	+	 	 	 '	 	little medium to coarse sand, trace sub-	l l	1	0.0	
 	+	 	 			rounded to angular gravel to approximately			'	
 	+	 	 '	 	 	5 ft below grade.	- 1		'	
	+	 	+	 	 	Test pit dimensions: approximately 5 ft deep	1		'	
i——	+		+			by 7 ft long by 2 ft wide			'	
	+	 	 	 						
	<u> </u>	 	<u> </u>			Edge of intact concrete structure located			.	
	1_		†			approximately 4.5 ft below grade				
	<u></u>].			
]				
	\square] . '	1	1		
	<u> </u>	<u></u>	Γ	<u> </u>]		1	l .	
 	 	<u> </u>	<u> </u>	<u> </u>		_		1.		
<u> </u>	 	↓	 			.				1
L	—	 			 	4				
	+-	 		 _	 	4				1
	+-	 	 	 	 	4 '				
	+	 	 	 	 	┪		ļ	1	1
	+	 	+	1	 	† .		1	1	
	+-	 	 		 	1	1 .			1
	 	<u> </u>	T			1				1
	†	†	†			1				
	<u> </u>		—			†			1	
						1			1	
]				
] ,				
	I_							1		1
	1	↓	<u> </u>		<u> </u>	_				
<u> </u>	↓			<u> </u>			.	-		
<u> </u>		 	—			<u> </u>		1		
 	┼—	 	 	1		4			1	
<u> </u>	+		 	 	 	4			1	
⊢—	+	 	+	 	 	-				
 	+-	+	+	.		4]	
├──	+	+	+			4		,	1.	
 	+	 	+	 	+	4				
 	+-	+	+	+		4			1	
	+	+	+	 	 	4	*			
The test r	-it was h	LLw	ith excavated					ــــــــــــــــــــــــــــــــــــــ		<u></u>
1116 1601 2	Il Was c	dunines	UI CAGGVAICE	1 50115.		•				
								CBO:om/di	v76/4 n&d/	ian o

<u> </u>				-na		TEST BORING LOG	REPOR	T OF BO	RING	
O'BRII Client:	.N &			ERS, INC.		Sampler: Backhoe	Page 4 of 4	TP-3		
onent:		iviagara	Mohawk			Sampler: Dacknoe	Page 1 of 1 Location:			
Proj. Lo	c:	Fulton,	New York			Hammer: NA				
			_				Start Date:	7/8/96		
File No. Boring (Commo	1118.08	1 Parratt-V	Volff		Fall: NA	End Date:	7/8/96	0	
Forema	n:	iny.	Brian Wa				Screen Riser		Grout Sand Pa	ack
OBG Ge		t:	Chawn C				74.007		Benton	
<u>.</u>							Stratum		Field	1
Depth Below	,	Depth	Blows	Penetr/	"N"	Sample Description	Change		Testi	ng I
Grade	No.	(feet)	/6"	Recovery	Value	Sample Description	General Descript	Equip. Installed	PID (ppm)	
						Brownish black (5YR 2/1), damp, loose to	-	- Industries	(PP1117	
	ļ		<u> </u>			medium dense, fine to medium SAND, some				
				· · · · · · · · · · · · · · · · · · ·		silt, little subrounded to subangular coarse			0.0	
	-					sand to fine gravel to approximately 3 ft, then dark yellowish orange (10YR 6/6), wet		l		
						to saturated, medium dense, medium sand				
						some fine sand to silt, little coarse sand,			0.0	
						trace subrounded to subangular fine gravel				
	 			-	 	Test pit dimensions: approximately 6 ft deep				
						by 8 ft long by 4 ft wide				
								•		
	-					Structure hot encountered. Excavation			·	
	 					terminated due to close proximatey to marked underground gas pipeline.				
						a gu an a pipellile,				
										·
	 					•				
						1				
						,				
							'			
	 									Ì
						·			'	
			· .		 -					
	-					·				
						· · ·				
							` i			İ
		•					,			
		•				·				
						·		,		
										ļ
						:		}		.
	-								Ì	I
The test pit	was ba	ckfilled with	excavated	soils.	· · · · · · · · · · · · · · · · · · ·	;			L	
										l
								CPO:ers/div7	6/4 n&d/T	P-3

;

O'BRIE	N &	GERE I	ENGINEI	ERS, INC.		TEST BORING LOG		T OF BO TP-4		
Client:			Mohawk			Sampler: Backhoe	Page 1 of 1			
Proj. Lo	c:	Fulton,	New York			Hammer: NA	Location:			
ile No.:		1118.08	1			 Fall: NA	Start Date: End Date:	7/8/96 7/8/96		
Boring (Parratt-W	/olff		Trans.	Screen		Grout	
Foremai			Brian Wa				Riser		Sand Pa	
OBG Ge	DIOGIS	t:	Chawn O	Dell		1	Stratum	· · · · · · · · · · · · · · · · · · ·	Benton Field	
Depth Below		Depth	Blows	Penetr/	"N"	Sample Description	Change General	Equip.	Testi	
Grade	No.	(feet)	/6"	Recovery	Value		Descript	Installed	(ppm)	┖
				·		Moderate yellowish brown (10YR 5/4), damp to saturated, medium dense, fine to coarse,				
						subrounded sand, iittle SILT and CLAY, some			0.0	
~~				· · · · · · · · · · · · · · · · · · ·		concrete and brick fragments				
	 					Test pit dimensions: approximately 5 ft long				
						by 4 ft deep by 3 ft wide			0.0	
		<u> </u>	- -			Intact brick/ceramic foundation, round and				
						holding water located approximately 3 ft				
						below grade.		1		
						1				
						<u>.</u>				
	<u> </u>	-		<u> </u>						
	-									
				·		4				
										ł
		<u> </u>								
		<u> </u>		·		4				
	-					,				
]				
		 	 		!	4			ļ	
]				
						1				
·	 	 				-				
				·]				
	ļ	 				-		1		
	<u> </u>	 				1 -				-
						· · · ·				
		-								
	 	-		· · · · · · · · · · · · · · · · · · ·		+				
		 	1			†		1		1

						TEST BORING LOG	REPO	RT OF BO	RING		
O'BRI	EN &	GERE	ENGI	NEERS, I	NC.			SB-2			
	_	*		wer Corp ulton, NY		Drill Method: 3.25 inch HAS Sampler: 2-inch split spoon Hammer: 140 lbs	Page 1 of Location:	1			
File No.					· ·	Fall: 30-inches	Start Date End Date:	: 02/23/00 '02/23/00		- `	
Boring Forema Drill Rig OBG Ge	n: Jo j: I.R	e Perse	y .	olff, Inc. rdus			Screen Riser Steel	= \ Grout Sand Pack			
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Test PID (ppm)		
0		2				Fill - asphalt to 0.5'					
						Sand and gravel, old asphalt to 1.5'				ļ	
	<u> </u>		ļ			then brownish red moist silt, little clay					
2		4	28-17 27-12	2/1.0	44	Dark yellowish brown 10YR4/2 SILT, some fine sand, strong odor			3.1	neg	
4		6	2-1	2/1.2	2 .	Olive gray 5Y4/1, moist, rich soft SILT,			45	UV	
			1-1			some fine sand, strong odor			"		
6		8	2-1	2/1.3	7	Moderate yellowish brown 10YR			17.5	UV	
	<u> </u>		6-9			5/4 wet medium stiff SILT and fine					
						SAND, (DNAPL) (slight odor)					
8		10	5-6	2/1.3	13	Modium group NE stiff wat fine CAND			27		
- °		. 10	7-9	2/1.3		Medium gray N5, stiff wet fine SAND and SILT, trace of gravel (slight odor)			37	neg	
						Product noted on rods when plug					
						removed					
10-		40		0// 0	40	01 T 17	•				
10		12	2-8 '8-6	2/1.0	16	Medium gray, very stiff wet SILT, little fine sand, trace of clay			1.2	nea	
			0-0	· ·		Time sand, trace of diay	1		1.2	neg	
12		14	8-7	2/1.2	13	Moderate yellowish brown wet stiff					
			6-8			SILT, little fine sand			0.2	neg	
14		16	4-10	2/1.3	18	Moderate brown 5YR 3/4, medium					
			8-10			dense, wet medium to coarse SAND.		ļ	•		
						Some fine to medium gravel			0	neg	
16.		18	16-12	2/1.3	22	Similar					
. 10.		10	10-12	2/1.0	- 22	Similar			0	neg	
				,							
18		20	10-10	2/NR	20	No recovery					
			11-12	-	-				:		
						<i>z</i>]		
						✓	1 .				

Appendix B

Ground water sampling logs

O'Brien & Gere Engin	eers, Inc.		Standard Groun	nd Water Samplii	ng Log
Date July 16, 1998				_	
Site Name Niagara Mohawk	· · · · · · · · · · · · · · · · · · ·		Weather	SUNNY 90	٠.
ocation Fulton, NY		•	Well #	MW - 1	
Project No 1118.081.013.130				ttom Loading Stainless	
Personnel James A. Moore				ttom Loading Stainless	
			Camping Mealod Do	atom coading stainless	Steel Dallel
Vell Information: Depth of Well *	19.13	ft. Water \	Volume /ft. for:		·
Depth to Water *	4,99	ft. x	2" Diameter Well = 0.	163 Y LWC	.
ength of Water Column	14.14	n.	_2 Diameter Well = 0.0	1.	
/olume of Water in Well	2.30	gal.(s)	_4 Diameter Well = 0.0		
X Volume of Water in Well	6.90		O Diameter Well = 1.4	469 X LVVC	*
ox volume of vvaler in vveii			e removed b efore samp Il go dry?	oling 4	gal.(s)
* Measurements taken from	X	Well Casing	Protective Ca	asing	(Other, Specify)
nstrument Calibration;		1			
	pH Buffer Readings 4.0 Standard	4.50	Conductivity Standard 84 S Standard	Readings	
•	7.0 Standard	7.01	1413 S Standard	1470 \$ 270	
٠.	10.0 Standard	9.99		11110	
Water parameters:					
		, 		· · · · · · · · · · · · · · · · · · ·	
Gallons Removed	Temperature Readings	pH Readii		onductivity eadings uS/cm	Turbidity Readings NTU
, tomovou					readings in o
1	20.0		. 1	100	1-1
initial <u>G.5</u>	initial <u>23,2</u>		94 initial		tial 654
2	16.8		.81	672	1/52
74	16.2		1.76	687	1000
		- . 	 ,		
			<u></u>		
		·			·
•					
Water Sample: Time Collected	1530		r		
			[Dhysical Ans	occordo et Semalia	
Physical Appearance at Star	기		Friysical App	pearance at Sampling	一 / / /
Color	Colenie	<u>55_</u>	Color	•—————	- Trul Brus
Odor	10mby	<u> </u>	Odor		News
Turbidity (> 100 NTU)	65.4	·	Turbidity (>	100 NTU)	TWOO
Sheen/Free Product	pour	<u> </u>	Sheen/Free	Product	Nows.
Samples collected:				<u> </u>	
Container Size	Container Type		Field Filtered	Preservative	Container pH
40m	GASS	3	μ	cont	
**************************************		S 2	l W	Nont	j .
UTUL	AmBicas		<u> </u>	7070	
· · · · · · · · · · · · · · · · · · ·	AMISICUIR		W	70.0	

O'Brien & Gere Engir	neers, Inc.		Standard Groun	d Water Samplii	ng Log
Date <u>July 16, 1998</u>				, E	•.
Site Name <u>Niagara Mohawk</u>			Weather	SUNNY 90-F	_
Location Fulton, NY	·		Well #	MW - 2	
Project No 1118.081.013.130			Evacuation Metho Bot	tom Loading Stainless	Steel Bailer
Personnel James A. Moore			Sampling Method Bot	tom Loading Stainless	Steel Bailer
Well Information:					
Depth of Well *	/3,38 ft.	Water	Volume /ft. for:		
Depth to Water *	ft.	×	2" Diameter Well = 0.1	63 X LWC	
Length of Water Column	9,63 ft.		4" Diameter Well = 0.6	53 X LWC	
Volume of Water in Well	1,57 gal.(s)	6" Diameter Well = 1.4	69 X LWC	• *
3X Volume of Water in Well	4.7/ gal.(·
		Volume	e removed before sampl Il go dry?	$\frac{3}{N}$	gal.(s)
* Measurements taken from	xWell	Casing	Protective Case	sing	(Other, Specify)
Instrument Calibration:					
	pH Buffer Readings	<i>al</i> .	Conductivity Standard	Readings	•
		7.00	84 S Standard		
•	7.0 Standard	7.01	1413 S Standard	4700 2700	
	10.0 Standard	9:91			
Water parameters:					<u> </u>
Collogo	Temperature	рН		nductivity	Tombielia.
Gallons Removed	Readings	Readir		adings uS/cm	Turbidity Readings NTU
		•	•		•
initial 0.5	initial 228	initial 6	SI, initial	1032 init	ial 37. 8
2	20,5		84	7/124	1089
4	19.8		97	1071	11000
	19.6		95	1064	>1000
				1067	
	·				
					. ———
Water Sample:					
Time Collected	500			•	
Physical Appearance at Start	1	•	Physical Appe	earance at Sampling	
Color	Corocuss		Color	•	Tan
Odor	Sweet	-	Odor		SWIT
Turbidity (> 100 NTU)	27.8		Turbidity (> 10		>100G
Sheen/Free Product	Nowo		Sheen/Free P		Kus
Samples collected:			Oncom rec r		
		T. 4			
		# Collected	Field Filtered	Preservative	Container pH
Container Size				, , , , , , ,	
Container Size	G1A83	3	М	None	
Container Size				None	
Container Size	G1A83	3	М		

D'Brien & Gere Engir	neers, Inc.		Standard Groun	d Water Samplin	g Log
Date July 16, 1998 Site Name Niagara Mohawk Cocation Fulton, NY Project No 1118.081.013.130 Personnel James A. Moore			Well # Evacuation Metho Bot	SWWY 90°F MW - 3 tom Loading Stainless Stainless S	
Vell Information:					
Depth of Well *	18.93 ft	Water	Volume /ft. for:		
epth to Water *	11.40 ft		2" Diameter Well = 0.1	63 X I WC	
ength of Water Column	7.53 ft		4" Diameter Well = 0.6	. 1	
/olume of Water in Well		al.(s)	6" Diameter Well = 1.4		
3X Volume of Water in Well	· · · · · · · · · · · · · · · · · · ·	al.(s)		/	
		Volume	e removed before samp III go dry?	ling 4 14s	gal.(s)
Measurements taken from	xv	Vell Casing	Protective Ca	sing	(Other, Specify)
nstrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard	4.00	Conductivity Standard 84 S Standard 1413 S Standard	Readings	
	10.0 Standard	999			
Water parameters:					A
Gallons Removed	Temperature Readings	pH Readi		nductivity adings uS/cm	Turbidity Readings NTU
initial 0.6 1.5 25 4	initial 19,1 16,8 16,10 16,5		.69 initial 1.16 1.14 7.12	840 initi 877 776 812	1,130 1645 1549
Water Sample: Time Collected Physical Appearance at Star	1100		Physical App	earance at Sampling	-1 :
					→
Color Odor	Lowers	<u>' </u>	Color Odor		Blenta
Turbidity (> 100 NTU)	35.6		Turbidity (> 1	00 NTU)	1,549
Sheen/Free Product	hone		Sheen/Free I		Neuro
Samples collected:					
Cbntainer Size	_: Container Type =	# Collected	Field Filtered	Preservative	Container pH
	ars	3	w	Kent	
40mL					
LITOR	GLASS	2	ניע	ALWE	

Site Name Niagara Mohawk Location Fullon, NY Project No. 1118.081013.130 Personnel James A. Moore Well Information: Depth of Well: Seph to Water ' Seph to Water ' Seph to Water ' Seph to Water in Well 3.81 Sal (s) Volume of Water in Well 3.81 Sal (s) Volume of Water in Well 4.0 Standard 7.0 Standard	O'Brien & Gere Engin	eers, Inc.		Standard Groun	d Water Samplin	g Log
Site Name Niagara Mohawk Location Fulton, NY Project No 1118 1801 1013 130 Personnel James A. Moore Well Information: Oepth of Well* Depth to Water* Sampling Method Bottom Loading Stainless Steel Bailer Wall Information: Oepth of Well* Septh to Water* Septh to Water* Septh to Water* Septh to Water Column Volume of Water in Well Septh to Color Septh to Water in Well Septh to Water in Well Septh to Color Septh to Water in Well Septh	Date July 16, 1998					
Project No. 118.081.013.130 Evacuation Method Bottom Loading Stainless Steel Bailer				Weather<	SUNNY 90-+	
Sampling Method Bottom Loading Stainless Stoel Bailer	Location Fulton, NY	<u> </u>				
Sampling Method Bottom Loading Stainless Stoel Bailer	Project No 1118.081.013.130		•	Evacuation Metho Bot	tom Loading Stainless S	Steel Bailer
Well Information: Depth of Well *			•			_
Depth of Well *			· · · · · · · · · · · · · · · · · · ·			
Depth to Water *		15.98 ft	Wate	er Volume Ift for		·
Length of Water Column Volume of Water in Well 3.91 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume removed before sampling Did well go dry? Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Volume removed before sampling Conductivity Standard Readings 84 S Standard 1413 S					62 X 1 140	
Volume of Water in Well 3.91 gal.(s) 3.91 gal.(s) Well Casing Protective Casing Protective Casing Protective Casing Instrument Calibration:	•				· · · · · · · · · · · · · · · · · · ·	
3X Volume of Water in Well 3.91 gal.(s) Volume removed before sampling Did well go dry? Volume removed before sampling Did well go dry? (Other, Specify) Measurements taken from X Well Casing Protective Casing (Other, Specify) Instrument Calibration: pH Buffer Readings	,	/ 07			1	
Volume removed before sampling Did well go dry? *Measurements taken from X Well Casing Protective Casing (Other, Specify) Instrument Calibration: PH Buffer Readings	'			6" Diameter Well = 1.4	69 X LWC	,
**Measurements taken from x Well Casing Protective Casing Instrument Calibration: Ph Buffer Readings	3X Volume of Water in Well	ga	Volu	me removed before sampli vell go dry?		_gal.(s) _
**Measurements taken from x Well Casing Protective Casing Instrument Calibration: Ph Buffer Readings		•				(Other Specify)
PH Buffer Readings 4.00 National and 14.13 S Standard 14.13	* Measurements taken from	X	/ell Casing	Protective Cas	sing	(Guici, opedity)
A.0 Standard 7.0 84 S Standard 7.0 1413 S Standard 7.0 127 7.0 10.0 Standard 7.0 1413 S Standard 7.0		all Deffer Described	•	04	Dandin d	
Water parameters: Gallons Removed Temperature Readings R			400		Readings	
Water parameters: Gallons Removed Readings PH Readings Solution Readings NTU initial 0.5 initial 334 initial 6.91 initial 93.3 initial 32.0 1/5 19.1 6.49 1.130 694 3 18.0 6.37 1/100 812 4 17.9 6.13 Water Sample: Time Collected 12.45 Physical Appearance at Start Physical Appearance at Sampling Color Odor Succer Odor Succer Turbidity (> 100 NTU) 6.15 Sheen/Free Product 100 NTU) 5.5 Sheen/Free Product 100 NTU) 6.15 Samples collected: Container Size Container Type # Collected Field: Filtered Preservative Container pH Home 6.485 3 ND Home		The state of the s			70/0 2700	
Gallons Removed Readings PH Readings Readings us/cm Readings NTU		10.0 Standard	999			
Gallons Removed Readings PH Readings Readings us/cm Readings NTU	Water paramèters:					
Readings Readings						
initial 0.5 initial 33.4 initial 6.91 initial 93.3 initial 320 1.5 9.1 6.47 1.70 694 3 8.0 6.37 1/100 612 4 7.79 6.40 1,116 613 Water Sample: Time Collected 1245 Physical Appearance at Start Physical Appearance at Sampling Color Godor Godor Odor Sweet Odor Sweet Odor Sweet Sample: Turbidity (> 100 NTU) 220 Turbidity (> 100 NTU) 613 Sheen/Free Product Now Sheen/Free Product Now Sheen/Free Product Now Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH Com And And And And And And And And And And	1 1					
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH ### Collected #### 1/30 #### 8/35 #### 1/30 ###################################	Kemoved	Readings	·	ings Rec	dings dozeni	Readings 1410
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size: Container Type # Collected Field Filtered Preservative Container pH # Collected Field Filtered Preservative Container pH # Collected		/			C	
Water Sample: Time Collected Physical Appearance at Start Color Odor Suver Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size: Container Type # Collected Field Filtered Preservative Container pH # Simu ANSS AND AND ANN ANN ANN ANN AN	initial <u>0.5</u>		initial	initial		1 220
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size Container Size Container Type # Collected Field Filtered Preservative Container pH ### Collected #### Collected #### Collected #### Collected #### Collected ###################################	1.5			6.49	,	694
Water Sample: Time Collected Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size Container Type # Collected	3		6			
Time Collected 1245 Physical Appearance at Start Color Gure Gure Gure Gure Gure Gure Gure Gur			£	1,40	,110	613
Time Collected 1245 Physical Appearance at Start Color Gure Gure Gure Gure Gure Gure Gure Gur		·	·		·	
Time Collected 1245 Physical Appearance at Start Color Gure Gure Gure Gure Gure Gure Gure Gur						·
Time Collected 1245 Physical Appearance at Start Color Gure Gure Gure Gure Gure Gure Gure Gur						
Color Odor Odor Subst Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size: Container Type # Collected Field Filtered Preservative Container pH Home Was A Was Was	Water Sample: Time Collected 12	.45				
Odor Turbidity (> 100 NTU) Sheen/Free Product Nowls. Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Nowls. Sheen/Free Product N	Physical Appearance at Start			Physical Appe	arance at Sampling	
Odor Turbidity (> 100 NTU) Sheen/Free Product Nowls. Sheen/Free Product Samples collected: Container Size: Container Type # Collected Field Filtered Preservative Container pH Hom GABS S NO Now Now Container Type Lim GABS S NO Now Now Container PH	Color	Yalm		Color	. Ra	ww
Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH CMS CMS CMS CMS CMS CMS CMS CM		- 22				
Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH Command Com	Turbidity (> 100 NTU)	228		Turbidity (> 10		
Container Size: Container Type # Collected Field Filtered Preservative Container pH 43m 6488 3 ND NM 11m 6488 2 ND NM						
45m GASS 3 NO NONE - UTUN GASS 2 NO NEW	Sampies collected:		·			
45m GASS 3 NO NOW - UTUR GASS 2 NO MINT				Field Filtered	Preservative	Container pH
	Home				None	
	Un	GUASS	2	NO	pent	
	f 				 	<u> </u>
notes:	Notes:					

Brien & Gere Engin	eers, Inc.		Stan	dard Gro	ound Wate	er Samplir	ng Log
ate <u>July 16, 1998</u>						0	
ite Name Niagara Mohawk			* Weath	er	OVUNCAS	7 900 P	• •
ocation Fulton, NY			Well#		MW -	5	
roject No 1118.081.013.130						ding Stainless	 Steel Bailer
ersonnel James A. Moore						ding Stainless	
/ell Information:					<u></u>		
epth of Well *	15.81	ft.:	Water Volume	/ft. for:			
epth to Water *	7.48	ft.	x 2" Dia	meter Well:	= 0.163 X LW	c	
ength of Water Column	8.33	 ft.			= 0.653 X LW	ľ	
olume of Water in Well	1.36	 gal.(s)			= 1.469 X LW		
X Volume of Water in Well	4.08	gal.(s) gal.(s)	U Dia	HEREI AACH	1.705 X LVV	<u>~</u>	•
	,,,,,	yai.(ə)	Volume remov Did well go dry		ampling	2/3 	gal.(s)
Measurements taken from	X	Well Casing		Protectiv	e Casing		(Other, Specify)
nstrument Calibration:							
	pH Buffer Readin	gs ,	Condu	uctivity Stan	dard Reading	s	
	4.0 Standard	4.00	84	S Standard			
	7.0 Standard	7.01	1413	S Standard	14700	2700	
•	10.0 Standard	299	<u>-</u>	-			
Vater parameters:							
	Famous		la L	- 7	Conducti		T
Gallons Removed	Temperatu Readings		pH Readings		Conductivi Readings u		Turbidity Readings NTU
1,011,0104	<u>99</u>						
•	• • •				رسے د	_	150
initial <i>0.5</i>	initial <u>2/.8</u>	initia		initia			tial //
1.5	<u> 18, 1</u>		6.67		78		_347
3	16.9		6.59		88		698
4.5	16.8	_ .	6.54		907		752
<u> </u>		<u></u>		<u>_</u>		·	
					-		
		· .	~ ~ ~				· ————
Nater Sample:	1		·			and the second s	
Time Collected	466		,				
Physical Appearance at Start	7			Physical	Appearance	at Sampling	 7 /
				1		<u> </u>	-
Color	730			Colo			m/Bur
Odor	SWEET	·		Odd			3487
Turbidity (> 100 NTU)	172			•	(> 100 NTU)		752
Sheen/Free Product	Novis		•	Sheen/F	ree Product		Aorde
Samples collected:							
Container Size	Container Type	# Co	llected Fie	ld Filtered	Prese	ervative	Container pH
40mc	CALASS		3	10 10		nono	
LITTURE	GASS_		<u> </u>	<u> </u>		heur	
	i	i	. 1		1		t .
				·	`		

O'Brien & Gere Engir	eers, Inc.		Standard Grou	nd Water Samplin	g Log
Date July 16, 1998 Site Name Niagara Mohawk Location Fulton, NY Project No 1118.081.013.130 Personnel James A. Moore			 -	SUNWY 90°F MW - 6 ottom Loading Stainless softom Loading Stainless s	_
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	36.62 ft. 7.16 ft. 29.46 ft. 4,80 gal.	(s) X Yolume	Volume /ft. for: 2" Diameter Well = 0. 4" Diameter Well = 1. 6" Diameter Well = 1. e removed before sampling go dry?	653 X LWC 469 X LWC	gal.(s)
* Measurements taken from	xWel	l Casing	Protective Ca	asing	(Other, Specify)
Water parameters: Gallons Removed initial 8.5	7.0 Standard			d Readings /476 & 270 Onductivity eadings uS/cm 447 initia 463	Turbidity Readings NTU al 39.7 760
Water Sample:					
Time Collected Physical Appearance at Start	130		Physical Ann	pearance at Sampling	· ¬
Color Odor Turbidity (> 100 NTU) Sheen/Free Product			Color Odor Turbidity (> 1	DILK SU SU 100 NTU)	W SUET
Samples collected:				The spinished supplies the spinished supplies to the spinished supplie	Shepresons
Container Size Yom Litur	Container Type GASS GLASS	# Collected	Field Filtered	Preservative Numb	Container pH
Notes:					

D'Brien & Gere Engir	neers, Inc.	Star	dard Groun	d Water Samplir	ng Log
Date July 16, 1998				0	
ite Name <u>Niagara Mohawk</u>		Weath	ner <u></u>	SAWRY 900	
ocation Fulton, NY		Well 		мw - 7	
Project No <u>1118.081.013.130</u>		Evacı	ation Metho Bot	tom Loading Stainless	Steel Bailer
Personnel James A. Moore	· ·	Samp	ling Method Bot	tom Loading Stainless	Steel Bailer
Vell Information:	11.1.6				
epth of Well *	16.44ft.	Water Volume	:/ft. for:		•
epth to Water *	<u> </u>	2" Dia	meter Well = 0.1	63 X LWC	
ength of Water Column	ft.	4" Dia	meter Well = 0.6	53 X LWC	
olume of Water in Well		6" Dia	meter Well = 1.4	69 X LWC	
X Volume of Water in Well	3.69gal.(s)		_		
	• ·	Volume remov Did well go dr	ved before samply?	ling 4	gal.(s)
Measurements taken from	x Well Cas	sing	Protective Ca	sing	(Other, Specify)
nstrument Calibration:		· · · · · · · · · · · · · · · · · · ·			
	pH Buffer Readings	Cond	uctivity Standard	Readings	
	4.0 Standard 4.0 7.0 Standard 7.0		S Standard	1000	
	10.0 Standard 1999		S Standard/	4700 2700	•.
Notes page motores					
Nater parameters:					
Gallons	Temperature	pH		nductivity	Turbidity
Removed	Readings	Readings		adings uS/cm	Readings NTU
				+	
initial <u>0-5</u>	initial $9/9$ i	nitial <u>6-63</u>	initial		tial/2 <u>-3</u>
15		6.70		672	
	<u></u>	6.71		729	422
	_17.5	6.76	<u>.</u> ′, <u></u>	707	701
			<u> </u>		-
·					
•					
Water Sample: Time Collected	/ <u>33</u> 5				·
Physical Appearance at Star			Physical App	earance at Sampling	\Box / \Box
Color	Coroeuss		Color	-	Tow pround
Odor	SULHSWEET	·	Odor	S	16HT SWOET
Turbidity (> 100 NTU)	123	•	Turbidity (> 1	00 NTU)	701
Sheen/Free Product	Nowo		Sheen/Free I	Product	Now.
Samples collected:					
•	Container Type #	Collected Fie	ld Filtered	Preservative	Container pH
Container Size		u 1	NO	More	·
yom	FIASS	/			
	GASS BASS	6	NO	rens	

Bileir & Gold Eligin	eers, Inc.		Standard Groun	nd Water Samplir	ng Log
ate <u>July 16, 1998</u>					
te Name <u>Niagara Mohawk</u>			Weather	SUNNY 850F MW-8	<u></u>
ocation Fulton, NY			Well #	MW - &	
roject No 1118.081.013.130				ttom Loading Stainless	Steel Bailer
ersonnel James A. Moore			Sampling Method Bo	ttom Loading Stainless	Steel Bailer
ell Information:		·	· · · · · · · · · · · · · · · · · · ·		
epth of Well *	18.02 ft.	Water V	olume /ft. for:	.]	
•	9.43 ft.		•	163 V I WO	
epth to Water *			2" Diameter Well = 0.	1	
ength of Water Column	<u>8.59</u> ft.	1	4" Diameter Well = 0.6	. 1	
olume of Water in Well			6" Diameter Well = 1.4	469 X LWC	•
Volume of Water in Well	4, <u>2o</u> gal	Volume	removed before samp go dry?	oling 45	gal.(s)
Measurements taken from	xWe	ell Casing	Protective Ca	asing	(Other, Specify)
strument Calibration:					
	pH Buffer Readings		Conductivity Standard	Readings	•
•	4.0 Standard	4.00	84 S Standard	use land	
	7.0 Standard	7.01 9.99	1413 S Standard	1470 62700	
				· · · · · · · · · · · · · · · · · · ·	
/ater parameters:					
Gallons	Temperature	pH		nductivity	Turbidity
Removed	Readings	Readin		adings uS/cm	Readings NTU
	initial 18.0		4g initial	loa	
initial 0,3					tial 13.2
	16.6	_6.0		689	46.9
		_ les!	9	696	34.7
4.5	15.4	6.2		702	36.8
			•		· · · · · · · · · · · · · · · · · · ·
Vater Sample: ime Collected	980				
		·			•
hysical Appearance at Start	1		Physical App	earance at Sampling	
Color	Counciss		Color	10	duels
Odor	Must		Odor		aous
urbidity (> 100 NTU)	15.2		Turbidity (> 1	00 NTU)	36.6
heen/Free Product	Nink		Sheen/Free I		jes
amples collected:					
ontainer Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
	GASS	\$6.	NO NO	Naus	Containerpa
4 M	1 1200013				
- 4 M Litin	AUSS	Bull	10	None	

Neter July 16, 1988 Site Name Niagara Mchaewk Cocation Fulton, NY Project No 1118.081.013.130 Personnel James A. Moore Sampling Method Bottom Loading Stainless Steel Bailer Sampling Method Bottom Loading Stainless Steel Bailer Sampling Method Bottom Loading Stainless Steel Bailer Sampling Method Bottom Loading Stainless Steel Bailer Veil Information: Pepth to Weil * Septh to Water Column Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water * Septh to Water Column Septh to Water * Septh)'Brien & Gere Engin	eers, Inc.	Stan	dard Grour	nd Water Sam	pling Log
Secretion Fulton, NY Second Section	ate July 16, 1998					
Secretion Fulton, NY Second Section	ite Name Niagara Mohawk		Weath	er	SUMMY 850	
Evacuation Metho Bottom Loading Stainless Steel Bailer	ocation Fulton, NY	·	Well #	·		
Sampling Method Bottom Loading Stainless Steel Bailer	roject No 1118.081.013.130		Evacu	ation Metho Bo		ess Steel Bailer
Water Volume /ft. for: Septin of Water Sep						
Pepth of Well Pepth of Water Pepth			Camp	ing incured <u>bo</u>	ttom Loading Stair	ess Oteel Ballel
Depth to Water B.56 ft. x 2" Diameter Well = 0.163 x LWC 4" Diameter Well = 0.853 x LWC 4" Diameter Well = 1.469 x LWC		10 nd	NA (-1	/A		• •
ength of Water Column Colume of Water in Well 1.53			ľ			•
## Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Additional Column of Water in Well Casing Additional Column of Water Readings Additional Column of Water Readings Additional Column of Water Parameters: Ph Buffer Readings	epth to Water *		2" Dia	meter Well = 0.1	163 X LWC	
Volume of Water in Well Yes gal.(s) Volume removed before sampling Gal.(s) Volume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Goldwell go dry? Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed before sampling Yolume removed Yolume remov	ength of Water Column	<u>9.48 </u>	4" Dia	meter Well = 0.6	653 X LWC	•
Volume removed before sampling Did well go dry? Measurements taken from x Well Casing Protective Casing (Other, Specify)	olume of Water in Well		6" Dia	meter Well = 1.4	469 X LWC	
Measurements taken from X Well Casing Protective Casing Other, Specify	X Volume of Water in Well	4,65 gal.(s)				
Measurements taken from X Well Casing Protective Casing Cother, Specify Instrument Calibration: PH Buffer Readings					oling	gal.(s)
Measurements taken from x Well Casing Protective Casing			- ;			(Other Consist)
PH Buffer Readings 4	Measurements taken from	x Well Cas	sing	Protective Ca	asing	(Other, Specify)
A.0 Standard A.0	nstrument Calibration:					
7.0 Standard 10.0 Standard 7.0					l Readings	
Water parameters: Gallons Removed Readings PH Readings Readings uS/cm Readings NTU initial 0.5 initial 20.6 initial 6.93 initial 791 initial 84 4 10.4 6.88 849 4114 5 16.1 6.89 807 837 Water Sample: Time Collected 1000 Physical Appearance at Start Physical Appearance at Sampling Color MULLY Color NULLY Odor NULLY Odor Number Sheen/Free Product Num					1:1- 1/220	
Conductivity Readings NTU	•			s Standard	470 621	
Gallons Removed Readings PH Readings Conductivity Readings NTU initial 0.5 initial 20.6 initial 6.93 initial 791 initial /8/ 2 17.4 6.88 849 4/1/4 5 16.4 6.94 8.14 9.46 5 16.1 6.89 80.7 831 Water Sample: Time Collected pool Physical Appearance at Start Physical Appearance at Sampling Color Multy Color Removed Color Multy Odor Now Color Now						• .
Removed Readings Readings Readings Scm Readings NTU initial 0.5 initial 20.6 initial 6.93 initial 791 initial 184 2 17.4 6.88 849 4114 3 18.4 6.84 814 946 5 18.1 6.80 807 831 Water Sample: Time Collected 1000 Physical Appearance at Start Physical Appearance at Sampling Color MILLY Color Telephone Odor North Od	Vater parameters:		:	:		
Removed Readings Readings Readings Scm Readings NTU initial 0.5 initial 20.6 initial 6.93 initial 791 initial 184 2 17.4 6.88 849 411.4 3 18.4 6.85 807 831 Water Sample: Time Collected 1000 Physical Appearance at Start Physical Appearance at Sampling Color MILLY Color Readings NTU Physical Appearance at Start Physical Appearance at Sampling Color Odor Now Odor Now Odor North	Collone	Temperature	To H		nductivity	Turbidity
initial 0.5 initial 20.6 initial 6.93 initial 791 initial /8/ 2 17.4 6.86 849 414 946 5 16.1 6.80 807 831 Water Sample: Time Collected 1000 Physical Appearance at Start Physical Appearance at Sampling Color MKLKY Color Dodor Now Odor Now Odor Now Odor Turbidity (> 100 NTU) 184 Turbidity (> 100 NTU) 23.1 Sheen/Free Product Now Sheen/Free Product Now Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH 40m CASS 3 NO Now Container Type Container pH	1 · ·					
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Now Container Type # Collected Container Type # Collected Field Filtered Preservative Container pH Hom CASS Jan Hil4 1946 6.88 849 Hil4 946 946 831 Physical Appearance at Sampling Color Odor Turbidity (> 100 NTU) 831 Sheen/Free Product White Container pH Hom CASS Jan Now Container pH						<u> </u>
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Now Container Type # Collected Container Type # Collected Field Filtered Preservative Container pH # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Container pH # Collected # Collected # Container pH # Collected # Collected # Collected # Collected # Container pH # Collected # Container pH # Collected # Container pH # Collected		20.6			701	10/
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Now Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH Lom Container Type # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Container DH Lom CASS J M Mat Type # Collected # Collected # Container PH Lom CASS J M Mat Type # Collected # Collected # Container PH Lom CASS J M Mat Type # Container PH Lom CASS J M Mat Type # Container PH Lom CASS J M Mat Type # Container PH Lom CASS J M Mat Type # Container PH Lom CASS J M Mat Type # Container PH Lom CASS J M Mat Type # Container PH Lom CASS J M Mat Type # Container PH Lom Cass J M Mat Type # Container PH Lom Cass J M M M M M M M M M M M M	initial <u>0.5</u>	initial 40.8 ir	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	initial <u></u>		initial 189
Water Sample: Time Collected DODD Physical Appearance at Start Physical Appearance at Sampling Color MULLY Color Reunname Odor Mount Odor Nount Turbidity (> 100 NTU) 184 Turbidity (> 100 NTU) 83 I Sheen/Free Product Nount Sheen/Free Product Nount Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container ph				_ ,		4114,
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Container Type # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Collected # Container DH # Collected # Container DH # Collected				_		1946
Time Collected 10003 Physical Appearance at Start Physical Appearance at Sampling Color Color Physical Appearance at Sampling Color Odor Odor Now Odor Turbidity (> 100 NTU) 164 Turbidity (> 100 NTU) 231 Sheen/Free Product Now Sheen/Free Product Now. Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH Hom GASS 3 ND Now Now Now Now Now Now Now Now Now Now		<u> </u>	6.80	<u>.</u> ′ . <u></u>	807	831
Time Collected 10003 Physical Appearance at Start Physical Appearance at Sampling Color Color Physical Appearance at Sampling Color Odor Odor Now Odor Turbidity (> 100 NTU) 164 Turbidity (> 100 NTU) 231 Sheen/Free Product Now Sheen/Free Product Now. Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH Hom GASS 3 ND Now Now Now Now Now Now Now Now Now Now						
Time Collected 1000 Physical Appearance at Start Physical Appearance at Sampling Color MULLY Color Reun Odor Odor Nour Odor Nour Turbidity (> 100 NTU) 164 Turbidity (> 100 NTU) 83 1 Sheen/Free Product Nour Sheen/Free Product Nour Container Size Container Type # Collected Field Filtered Preservative Container pH Hom GASS 3 ND Nour Nour Container pH Hom GASS 3 ND Nour Color Reun Color Reun Color Reun Color Reun Color Reun Color Nour Color Reun Color Nour Color Color Nour Color Color Color Nour Color		· .			· .	
Time Collected 1000 Physical Appearance at Start Physical Appearance at Sampling Color MULLY Color Reun Odor Odor Nour Odor Nour Turbidity (> 100 NTU) 164 Turbidity (> 100 NTU) 83 1 Sheen/Free Product Nour Sheen/Free Product Nour Container Size Container Type # Collected Field Filtered Preservative Container pH Hom GASS 3 ND Nour Nour Container pH Hom GASS 3 ND Nour Color Reun Color Reun Color Reun Color Reun Color Reun Color Nour Color Reun Color Nour Color Color Nour Color Color Color Nour Color				<u></u> -		
Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size Container Type # Collected Physical Appearance at Sampling Color Turbidity (> 100 NTU) Sheen/Free Product Container Type # Collected Field Filtered Preservative Container pH CASS J Whith Container pH CASS J Whith Container pH Container DH CASS J Whith Container DH CASS J Whith Container DH CASS J Whith Container DH CASS J Whith Container DH CASS J Whith Container DH CASS J Whith Container DH Contain	Nater Sample:				The second of th	
Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size Container Type # Collected Color Rewn Odor Now Sheen/Free Product Sheen/Free Product Container Type # Collected Field Filtered Preservative Container pH Hom CASS D What Container pH	Time Collected	<u> </u>			•	
Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size Container Type # Collected Color Rewn Odor Now Sheen/Free Product Sheen/Free Product Field Filtered Preservative Container pH Hom CASS D Whit	Physical Appearance at Start	- 		Dhysical An-	and a Comple	
Odor Now Odor Now Carried Steen/Free Product Now Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH 40m CASS 3 NO Now Container PH	rnysical Appearance at Start	٠		Priysical App	bearance at Sampii	ng)
Turbidity (> 100 NTU) Sheen/Free Product Now Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH Hom GASS D Whit	Color	MLKY		Color		Benin
Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Field Filtered Freservative Container pH Hom GASS J W What	Odor	Nour		Odor		Nowe
Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH ###################################	Turbidity (> 100 NTU)	184		Turbidity (> 1	100 NTU)	831
Container Size Container Type # Collected Field Filtered Preservative Container pH 46m CASS 3 ND Nint	Sheen/Free Product	Nau		Sheen/Free	Product	
40m GASS 3 NO NONE	Samples collected:					
40m GASS 3 NO NONE	Container Size	Container Type #	Collected Fie	ld Filtered	Preservative	Container pH
	Hom					
			2		Wass	

O'Brien & Gere Engir	eers, Inc.		Standard Groun	d Water Samplin	g Log
Date July 16, 1998					•
Site Name Niagara Mohawk			Weather	SNAWY 900 F	. 7
Location Fulton, NY			Well#	MW- 90	
Project No 1118.081.013.130	<u> </u>		Evacuation Metho Bot	tom Loading Stainless	Steel Bailer
Personnel James A. Moore	· ·		Sampling Method Bot	tom Loading Stainless	Steel Bailer
Well Information:		·	·		
Depth of Well *	31.80 ft.	Water	Volume /ft. for:		·
Depth to Water *	10.57 ft.	x		63 X I WC	
Length of Water Column	21.23 ft.		4" Diameter Well = 0.6	1.	٠.
Volume of Water in Well	3,46 gal.(s	,	6" Diameter Well = 1.4	ŀ	
3X Volume of Water in Well	10.38 gal.(s		O Diameter VVCII - 1.4		
ox voiding of vyater in vvoii	gun	Volume	e removed before samp Il go dry?	ling 10:5	gal.(s) (Noteon)
* Measurements taken from	xWell	Casing	Protective Ca	sing	(Other, Specify)
Instrument Calibration:					
	pH Buffer Readings		Conductivity Standard	Readings	
	4.0 Standard	1.00	84 S Standard	1470 82700	
 -	7.0 Standard F	9.97	1413 S Standard	19 10 6 210	
Water parameters:					
Gallons Removed	Temperature Readings	pH Readir		ndu cti vity adin gs u S/cm	Turbidity Readings NTU
initial <u>0.5</u> <u>3</u> <u>7</u> /0.5	initial 19.2 15.8 15.3 15.1		.61 initial	1,162 initi 1,380 1,516 2,360	316. 647
Water Sample: Time Collected	131				
Physical Appearance at Start]	•	Physical Appe	earance at Sampling	_
Color	Corveross		Color	-	Beenso
Odor	war.	-	Odor		www
Turbidity (> 100 NTU)	4.44		Turbidity (> 10		647
Sheen/Free Product	Kens	_ _	Sheen/Free P	· ————	levo.
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40m	EMSS	3	10	Noul	
	GIASS	2	M	rent	
		1	 	 	+
Notes:					

O'Brien & Gere Engin	eers, Inc.		Standard Groun	d Water Sampli	ng Log
Date <u>July 16, 1998</u>	···			-	,
Site Name Niagara Mohawk		•	Weather	Siway 900 F.	•••
Location Fulton, NY			Well#	MW- 10	
Project No 1118.081.013.130	· .		Evacuation Metho Bot	tom Loading Stainles	s Steel Bailer
Personnel James A. Moore			Sampling Method Bot		
		 			
Well Information: Depth of Well *	/492 ft.	10/2422	/olume /ft. for:		
•					
Depth to Water *	7.91 ft.	×	2" Diameter Well = 0.1		·
Length of Water Column	<u>701</u> ft.		4" Diameter Well = 0.6		•
Volume of Water in Well	gal.i	· .,	6" Diameter Well = 1.4	169 X LWC	
3X Volume of Water in Well	<u>3,4/2</u> gal.	Volume	e removed before samp	ling $\frac{34}{N}$	gal.(s)
·	w e		, 3 - , ,	<u></u> _	
* Measurements taken from	xWel	l Casing	Protective Ca	sing	(Other, Specify)
Instrument Calibration:		· · · · · · · · · · · · · · · · · · ·			
	pH Buffer Readings	400	Conductivity Standard 84 S Standard	Readings	
	4.0 Standard	7.01	1413 S Standard	שידיב ל מדל	
		9.99	<u></u>	imer_	
Water parameters:					
Gallons Removed	Temperature Readings	pH Readir		nductivity adings uS/cm	Turbidity Readings NTU
initial <u>0.5</u> 	initial <u>20.1</u>	$\frac{7}{7}$	7,31 initial	2060 ii 2050 2060 2,070	948 389 266
Water Sample:	0.				
Time Collected	215			· · · · · ·	
Physical Appearance at Start			Physical App	earance at Sampling	
Color	Oolaluss		Color		Benin
Odor	Nun		Odor		MONT
Turbidity (> 100 NTU)	19.7		Turbidity (> 1	00 NTU)	266 5
Sheen/Free Product	NOW5		Sheen/Free		Mans.
Samples collected:					
Samples collected: Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
Container Size	GLARS	# Collected	Field Filtered	puns	Container pH
Container Size					Container pH
Container Size	GLARS		Ab	puns	Container pH

Odor Odor	gal (s) (Other, Specify)	Well # Mw - 3 Evacuation Metho disposable polyethy Sampling Method disposable polyethy Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC			Site Name NMPC South First Street Location Fulton, NY Project No 1118.081 Personnel Chawn O'Dell Well Information:
Cocation Futton, NY Well # Multi- Service Project No. 1118.081 Sampling Method disposable polyethylene Sampling Method disposable polyethy	gal (s) (Other, Specify)	Well # Mw - 3 Evacuation Metho disposable polyethy Sampling Method disposable polyethy Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC			Personnel Chawn O'Dell Well Information:
Project No. 1118.081 Personnel Chawn O'Dell Well Information: Depth of Welt * Depth of Water * Depth of Water in Well X Volume	gal (s) (Other, Specify)	Well # Mw - 3 Evacuation Metho disposable polyethy Sampling Method disposable polyethy Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC			Project No 1118.081 Personnel Chawn O'Dell Well Information:
Project No 1118.081 Evacuation Metho disposable polyethylene Sampling Method disposable polyethylene Sampling Method disposable polyethylene Method Net Information:	3.5 gal.(s) wo (Other, Specify)	Evacuation Metho disposable polyethy Sampling Method disposable polyethy Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC			Project No 1118.081 Personnel Chawn O'Dell Well Information:
Sampling Method disposable polyethylene Mell Information; Mell Information; Mell Information; Mell Information; Mell Me	3.5 gal.(s) wo (Other, Specify)	Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC		18.97 n.	Personnel Chawn O'Dell Well Information:
Depth of Well * Depth to Water * Length of Water Column Colume of Water in Well A Diameter Well = 0.163 X LWC A Diamete	3.5 gal.(s) Wo (Other, Specify)	_2" Diameter Well = 0.163 X LWC _4" Diameter Well = 0.653 X LWC		18.97 n	
Depth to Water *	3.5 gal.(s) Wo (Other, Specify)	_2" Diameter Well = 0.163 X LWC _4" Diameter Well = 0.653 X LWC		/ <i>8,9</i> / ft.	>
Length of Water Column //olume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume of Water in Well 3X Volume removed before sampling Volume removed before sampling Did well go dry? * Measurements taken from X Well Casing Protective Casing Protective Casing Protective Casing Protective Casing Protective Casing Conductivity Standard Readings 84 S Standard 1413 S Standa	3.5 gal.(s) Wo (Other, Specify)	_4" Diameter Well = 0.653 X LWC	;		Tebri of Aveil
Volume of Water in Well 3.3 C gal.(s) Volume of Water in Well 3.3 C gal.(s) Volume removed before sampling Volume removed before sampling Did well go dry? Volume removed before sampling Volume removed before sampling Volume removed before sampling Did well go dry? Volume removed before sampling Volume removed before sampling Protective Casing Protective Casing Protective Casing Protective Casing Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling Conductivity Standard Readings 84 S Standard 14/3 s flux Volume removed before sampling 6* Did well go dry? Conductivity Standard Readings 84 S Standard 14/3 s flux 14/3 s flux Volume removed before sampling 6* Did well go dry? Conductivity Standard Readings 84 S Standard 14/3 s flux	3.5 gal.(s) COther, Specify)	- .	-	12,12 ft.	Depth to Water *
AX Volume of Water in Well 3.3	gal.(s) wo (Other, Specify)	C1 Diameter Mell = 4 400 X 1340		6,85 n	_ength of Water Column
Volume removed before sampling Did well go dry? Protective Casing Instrument Calibration: Instrument Calibration	(Other, Specify)	6" Diameter vveil = 1.469 X LVVC	(s)	gal.	Volume of Water in Well
Instrument Calibration: PH Buffer Readings 4.0 Standard 7.	Han		Vol	3,36 gal.	3X Volume of Water in Well
PH Buffer Readings 4.0 Standard 4.0 Standard 7.00 7.0 Standard 14.13 S Standa	ten			X	* Measurements taken from
A.0 Standard A.0	ten	<u> </u>			Instrument Calibration:
Water parameters: Gallons Removed Readings PH Readings US/cm initial 0.29 initial 16.3 % initial 7,24 initial 1022 US/cm 1.25 15.8 7,03 1026 2.25 15.3 7,01 95 3.50 15.5 7,03 963 Water Sample: Time Collected 120 Physical Appearance at Start Physical Appearance at Samplin Color Odor Turbidity (> 100 NTU) >100 n fu Sheen/Free Product Samples collected: Samples collected: Container Size Container Type # Collected Field Filtered Preservative 40 ml voa 3 no HCL		84 S Standard	00	4.0 Standard	<u>рн</u> 4.
Conductivity Readings PH Readings Readings Readings uS/cm				·	
initial 0.2 g initial 6.3 e initial 7.34 initial 10.2 usland 10.2 g 10.3					Water parameters:
1.25	· ·				
Time Collected Physical Appearance at Start Physical Appearance at Sampling	15/Cm	3 <u>1026</u> 995	\overline{Z}	initial 16,3 °C. 15,8 15,3 15,5	1.25 2.25
Time Collected Physical Appearance at Start Physical Appearance at Sampling			.: <u>-</u>		
Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size Container Type Voa 3 no HCL			•		Time Collected
Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size 40 ml Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Type # Collected Field Filtered Preservative A0 ml Voa 3 no HCL	it Sampling	Physical Appearance at Sar			Physical Appearance at Start
Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size 40 ml Container Type Voa Contain	Blown Gray		y	1/0.	
Container Size Container Type # Collected Field Filtered Preservative 40 ml voa 3 no HCL	7100 n f 4	Turbidity (> 100 NTU)			Turbidity (> 100 NTU)
40 ml voa 3 no HCL				 	Samples collected:
40 ml voa 3 no HCL	rvative Container pH		# Collect	Container Type	Container Size Co
quart amber glass 2 no none	HCL <2	Field Filtered Preservativ			
	none ~7		3		40 ml
		no HC	3	amber glass	

O'Brien & Gere Engineers, Inc.	S	tandard Ground	Water Sampling Lo	og -
Date 08/04/99			•	
Site Name NMPC South First Street	. w	eather Lt. Ta	10°P	·
cation Fulton, NY		eli#	un 180°F	1
Project No 1118.081			_/	
· · · · · · · · · · · · · · · · · · ·			sable polyethylene bailer	
Personnel Chawn O'Dell	S	ampling Method dispo	sable polyethylene bailer	1
Well Information: Depth of Well * 16,03				
Depth of Well *ft.	Water Vol	ume /ft. for:	• •	
Depth to Water *ft.	X 2	Diameter Well = 0.16	3 X LWC	
Length of Water Column	4	Diameter Well = 0.65	3 X LWC	
Volume of Water in Well gal.(s)		Diameter Well = 1.469		·
3X Volume of Water in Well 3.45 gal.(s)	<u> </u>			
		emoved before samplin	ig	al.(s)
	Did well g	o dry?	No	·
	• • • • • •		((Other, Specify)
Measurements taken from X Well Casi	ing [Protective Casi	ng	
Instrument Calibration:		<u> </u>		
pH Buffer Readings // _	, 10	Conductivity Standard F	Readings	
4.0 Standard <u>4.0</u> 3		84 S Standard		
7.0 Standard <u>7.00</u>		413 S Standard 14	13 45/Cm	
10.0 Standard	2			
Water parameters:	•			
<u> </u>				: .
Gallons Temperature Removed Readings	pH Reading		ductivity dings uS/cm	•
Teadings	ircading	is [Nea	ungs uorem	•
11700	171			
initial 0.25 initial 16.3 °C Ir	nitial 6///	initial <u>/</u>	155 47 Cm	
1.25 16.9	6.36	<u></u>	69	
2.50 16.7	6.01		66	
3.75 /7.0	6.57	/3	8Z	
			•	•
			•	
				•
	· · ·		·	
Water Sample: Time Collected 1340	•			
		· · ·		•
Physical Appearance at Start		Physical App	earance at Sampling	
Color <u>Color hear</u>		Color	Gran	-Brown
Odor Yes		Odor	Vel	
Turbidity (> 100 NTU)		Turbidity (> 1	00 NTU) 7/00	atu
Sheen/Free Product 1/0	•	Sheen/Free F		a VP5 - Shee
Samples collected:				
	# Collected	Field Filtered	Preservative	Container pH
40 ml voa	3	no	HCL	< <u>2</u>
quart amber glass	2.	no	none	~/
		1		1
	•			

O'Brien & Gere Engine	ers, h.c.	Sta	ndard Ground V	Vater Sampling I	Log
Date <u>08/04/99</u>				1-11	
Site Name NMPC South First S	treet	Wea	ther OVER	CAST. 183°F	
Location Fulton, NY		Well	# MA	y-5	
Project No 1118.081		. Evac	cuation Metho disposa	ble polyethylene baile	
Personnel Chawn O'Dell				ble polyethylene baile	
Well Information:	1/0/				
Depth of Well *	15,85 ft.	Water Volum	e /ft. for:		
Depth to Water *	<u>7,86</u> ft.	X 2" D	iameter Well = 0.163	KLWC	
Length of Water Column	7.99 ft.	4" D	iameter Well = 0.653	KLWC	.)
Volume of Water in Well	1,30 gal.(s)	6" D	iameter Well = 1.469	K LWC	·
3X Volume of Water in Well	3,9 gal.(s)		oved before sampling	1/1	gal.(s)
		Did well go o	lry?	NO	
* Measurements taken from	X Well Ca	sing	Protective Casing		(Other, Specify)
Instrument Calibration:		·			
	pH Buffer Readings		ductivity Standard Re	adings	·
	4.0 Standard 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0		4 S Standard 4/	3 45/Cm	
	10.0 Standard 10.0			2475	
Water parameters:					
Gallons Removed	Temperature Readings	pH Readings		nctivity ngs uS/cm	
initial 0.25 7.25 2.75 4,0	initial 17.5 16.7 16.4 16,2	initial <u>6,96</u> 6,59 6,51 6,49	initial	94 45/En 57 1	
Water Sample: Time Collected	15				
Physical Appearance at Start			Physical Appear	ance at Sampling]
Color	Colorless	•	Color	Jellon .	v-Gran
Odor	Yes		Odor	Ves Ves	
Turbidity (> 100 NTU)	<100nty		Turbidity (> 100		onty
Sheen/Free Product	No	. ,	Sheen/Free Pro		10
Samples collected:					
Container Size	Container Type		ield-Filtered	Preservative	Container pH
40 ml	voa	3	no	HCL	<2
quart	amber glass	2	no	none	~7
` .					
Notes: Collect	+ blind Dupl.	cata			

Sampling Mo Water Volume /ft. for X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S Sta	Mw-6 Metho disposable posethod disposable pose	c c ga	al.(s) Other, Specify)
Well # Evacuation I Sampling Me Water Volume /ft. for X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S Stata 1413 S Stata	Mw-6 Metho disposable posethod disposable posethod disposable posethod disposable posethod disposable posethod disposable posethod well = 0.163 X LWC Well = 0.653 X LWC Well = 1.469 X LWC fore sampling otective Casing y Standard Reading	olyethylene bailer olyethylene bailer c c c c c c (0	al.(s)
Well # Evacuation I Sampling Me Water Volume /ft. for X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S Stata 1413 S Stata	Mw-6 Metho disposable posethod disposable posethod disposable posethod disposable posethod disposable posethod disposable posethod well = 0.163 X LWC Well = 0.653 X LWC Well = 1.469 X LWC fore sampling otective Casing y Standard Reading	olyethylene bailer olyethylene bailer c c c c c c (0	al.(s)
Evacuation I Sampling Me Water Volume /ft. for X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S Stata 1413 S Stata	well = 0.163 X LWC Well = 0.653 X LWC Well = 1.469 X LWC fore sampling stective Casing	c c ga	· ·
Sampling Mo Water Volume /ft. for X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S State 1413 S State	well = 0.163 X LWC Well = 0.653 X LWC Well = 1.469 X LWC fore sampling stective Casing	c c ga	· ·
Water Volume /ft. for X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivit 84 S Sta 1413 S Sta	Well = 0.163 X LWG Well = 0.653 X LWG Well = 1.469 X LWG fore sampling otective Casing y Standard Reading	C C C G G G G G G G G G G G G G G G G G	· ·
X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S Sta 1413 S Sta	Well = 0.163 X LWC Well = 0.653 X LWC Well = 1.469 X LWC fore sampling stective Casing y Standard Reading		· ·
X 2" Diameter 4" Diameter 6" Diameter Volume removed be Did well go dry? Conductivity 84 S Sta 1413 S Sta	Well = 0.163 X LWC Well = 0.653 X LWC Well = 1.469 X LWC fore sampling stective Casing y Standard Reading		· ·
4" Diameter 6" Diameter Volume removed be Did well go dry? Pro Conductivit 84 S Sta 1413 S Sta	Well = 0.653 X LWG Well = 1.469 X LWG fore sampling stective Casing y Standard Reading		· ·
6" Diameter Volume removed be Did well go dry? Pro Conductivity 84 S State 1413 S State	Well = 1.469 X LWG fore sampling ptective Casing y Standard Reading	c // O ga yes (C	· ·
Volume removed be Did well go dry? Pro Conductivity 84 S State 1413 S State	otective Casing y Standard Reading	// O ga	· ·
Volume removed be Did well go dry? Pro Conductivity 84 S State 1413 S State	otective Casing y Standard Reading	// O ga	· ·
Conductivit 84 S Sta 1413 S Sta	otective Casing y Standard Reading	yes (C	· ·
Conductivit 84 S Sta 1413 S Sta	y Standard Reading	is	Other, Specify)
Conductivit 84 S Sta 1413 S Sta	y Standard Reading	is	Other, Specify)
Conductivit 84 S Sta 1413 S Sta	y Standard Reading	is	
_ 84 S Sta _ 1413 S Sta	indard	-	
_ 84 S Sta _ 1413 S Sta	indard	-	
_ 84 S Sta _ 1413 S Sta	indard	-	
1413 S Sta	ndard <u>14/34</u>	s/len	
_		,	
•			
pH	Conductivi	ty	•
Readings			
•			•
. 195	· · 11/7	h	
1,13	initial 71247		
7.75	3/0	·	
8.01	348	<u> </u>	•
MY	URY	· · · · · · · · · · · · · · · · · · ·	•
			•
	<u> </u>		
	. :		
	•	•	
P	hysical Appearance	at Sampling	
•		boon	
•			- 1
	• •		onou
S	heen/Free Product		No
			
	·	· <u>. </u>	
			Container pH
			<2
n	10	none	~7
1			<u> </u>
	Readings 17,95 7,93 8,01 PRY Sollected Field F	Readings Readings 1795 initial 4/2us/ 7793 375 870 345 Physical Appearance Color Odor Turbidity (> 100 NTU Sheen/Free Product Dilected Field Filtered Pres no 2 no	Readings Readings uS/cm 1795

)'Brien & Gere Engineers, Inc.	Standard Ground Water Sampling Log
pate 08/0 5/99	Weather Party Sunny ~75 F Well # Mu-1
ite Name NMPC South First Street	Weather with Sunny 1
ocation Fulton, NY	Well #
roject No 1118.081	Evacuation Metho disposable polyethylene bailer
Personnel Chawn O'Dell	Sampling Method disposable polyethylene bailer
Vell Information:	
Depth of Well *ft.	Water Volume /ft. for:
Depth to Water • 934ft.	X 2" Diameter Well = 0.163 X LWC
ength of Water Column 7./4 ft.	4" Diameter Well = 0.653 X LWC
/olume of Water in Wellgal.(s)	6" Diameter Well = 1.469 X LWC
BX Volume of Water in Well 3,57 gal.(s)	
	Volume removed before sampling 9,0 gal.(s)
	Did well go dry?
hat the same of th	(Other, Specify)
Measurements taken from X Well Ca	sing Protective Casing
Instrument Calibration:	
pH Buffer Readings	Conductivity Standard Readings
4.0 Standard 4.0 3 7.0 5	
10.0 Standard 10.0	
Water parameters:	
Gallons Temperature	pH Conductivity
Removed Readings	Readings uS/cm
	1 71 1 1
initial 0.25 initial 16.6 °C	initial 6,84 initial 820 Uslen
7.25 16.0	6.71 809
2,50 15.1	6.56 191
40 74.5	650 778
	
Water Sample: 0945	
Physical Appearance at Start	Physical Appearance at Sampling
color Colortes	Color BRain
Odor Vo	Odor NO
Turbidity (> 100 NTU) <	Turbidity (> 100 NTU) > 106 n f u
Sheen/Free Product	Sheen/Free Product
Samples collected:	
Container Size Container Type	#Collected Filtered Preservative Container pH
40 ml voa	3 no HCL <2
quart amber glass	2 no none ~7

O'Brien & Gere Engineers, Inc.	Standard Ground Water Sampling Log
Date 08/05/99 Site Name NMPC South First Street	Weather Portly Sunny ~ 70%
ation Fulton, NY	Well# Mu-8
Project No 1118.081	Evacuation Metho disposable polyethylene bailer
Personnel Chawn O'Dell	Sampling Method disposable polyethylene bailer
Well Information: Depth of Well * 19.06 ft.	
10 110	Water Volume /ft. for:
Depth to Water *ft.	X 2" Diameter Well = 0.163 X LWC
Length of Water Column // 3 7 ft.	4" Diameter Well = 0.653 X LWC
Volume of Water in Well 123 gal.(s)	
3X Volume of Water in Well. 3, 69 gal.(s)	Volume removed before sampling Did well go dry? gal.(s)
* Measurements taken from X Well Ca	Casing Protective Casing (Other, Specify)
Instrument Calibration:	
pH Buffer Readings	Conductivity Standard Readings .
	00 1413 S Standard (4/3.us/cm
	00 .
Water parameters:	
Gallons Removed Temperature Readings	pH Conductivity Readings Readings uS/cm
initial $\frac{0.29}{1.25}$ initial $\frac{14.6 \text{ °C}}{13.5}$ $\frac{12.8}{12.5}$	initial 6,75 initial 976 4560. 8 6,84 898 893 6,77 891
Water Sample:	
Time Collected <u>UB43</u>	
Physical Appearance at Start	Physical Appearance at Sampling
Color Colorless.	Color Brown
Odor //a	Odor No
Turbidity (> 100 NTU) 2100 wf4	Turbidity (> 100 NTU) >/00 Mt 4
Sheen/Free Product	Sheen/Free Product
Samples collected:	•
Container Size Container Type	# Collected Field Filtered Preservative Container pH
40 ml voa	3 no HCL <2 2 no none ~7
quart amber glass	2 no none ~7
Notes: Collect Motion Spile	Matrix SPike Diplicate

D'Brien & Gere Enginee	rs, Inc.	Stan	dard Ground V	Vater Sampling	Log
Oate 08/05/99 Site Name NMPC South First Streen.ocation Fulton, NY Project No 1118.081	<u>→</u> <u>>et</u> —	Weath Well # Evacu		Swary 275 g Mw-9'5 able polyethylene baile	
Personnel Chawn O'Dell	· · ·	Sampl	ing Method dispose	able polyethylene baile	er
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	18,07 ft. 9,44 ft. 8,33 ft. 1,41 gal.(s) 4,23 gal.(s)	4" Dia 6" Dia	meter Well = 0.163 meter Well = 0.653 meter Well = 1.469 ved before sampling	x LWC	gal.(s)
* Measurements taken from	X Well Ca	Did well go do	γ? ☑Protective Casin	- <i>Avo</i>	(Other, Specify)
		84	uctivity Standard Re S Standard S Standard/4/	adings 3 us/len	
Gallons Removed initial 0.25 1.50 3,00	Temperature Readings itial 17,0 °C 15.5 15.7 15.7	pH Readings initial 7,01 7,17 7,29 7,35	Readi	activity ngs uS/cm 2 us/cm	
Water Sample: 103					
Physical Appearance at Start Color Odor Turbidity (> 100 NTU)	(o/olesa NO ~100nty	·	Physical Appear Color Odor Turbidity (> 100	Ance at Sampling	oonfu
Sheen/Free Product	<i>N</i> 0		Sheen/Free Pro	duct	No
Samples collected:	Godzina dayon		ald. Eibara	Proconcerno	Container of
40 mi	Container Type voa amber glass	# Collected Fig. 3	eld: Filtered	Preservative HCL	Container pH <2 ~7
quart	munca Alass		no	none	
Notes:					

O'Brien & Gere Engineers, Inc.	Standard Ground Wa	ater Sampling Lo	og
Date 08/05/99			
Site Name NMPC South First Street	Weather Poully	Juny: ~ 75%	<i>E</i>
ation Fulton, NY	Well# Mu-	900	
Project No 1118.081	Evacuation Metho disposab	le polvethylene bailer	
Personnel Chawn O'Dell	Sampling Method disposab		
	eampling mealed alopeous	ne polyeutylene baller	
Well Information:			
Depth of Well * 3/83 ft. W	Vater Volume /ft. for:		1
Depth to Water*ft.	X 2" Diameter Well = 0.163 X	LWC	
Length of Water Columnft.	4" Diameter Well = 0.653 X	LWC	
Volume of Water in Well	6" Diameter Well = 1.469 X	LWC	
3X Volume of Water in Well $\frac{10/7}{2}$ gal.(s)		115	
	/olume removed before sampling	70.0 gs	al.(s)
L	Did well go dry?	<u>NO-16</u>	4
		(0	Other, Specify)
Measurements taken from X Well Casing	Protective Casing		
Instrument Calibration:			
pH Buffer Readings	Conductivity Standard Read	dings	•
4.0 Standard $\frac{402}{}$	84 S Standard		
7.0 Standard 7.00	1413 S Standard	uslen	
10.0 Standard		·	. •
Water parameters:			
	pH Conduc Readings Readin	gs uS/cm	
Kemoreu	readings	ga doreinj	
226 170	6 39 initial 2	29 2320	
initial 0.25 initial 17.8 initial	6, 07 initial 6 C	779	
3.5 14.4	7.19 203	<u>80</u>	
7,0 14.2	7.24 232	0	
10.5 14.7	<u>7.33 </u>	0	•
			•
		•	•
Water Sample: 1/7.0			
Time Collected //30			
Color Color Mo	Physical Appeara	ince at Sampling	
Color Cilarless	Color	1300	un
Odor NO	Odor	No	
Turbidity (> 100 NTU)	Turbidity (> 100 l		swoa
Sheen/Free Product	Sheen/Free Prod		10
Samples collected:		•.	•
	lected Filtered	Preservative ****	Container pH
Container Size # Coll	icorco ritered		
40 ml voa 3	no no	HCL	<2
40 ml voa 3		HCL none	<2 ~7
40 ml voa 3	3 no		

Date S/3 O1		& Gere Engin	CC13, 1110.		<u> LOW 1</u>	iow Groun	u mater Ot	and of	
Sine Location Fution, NY	Date	5/3 /01	Perso	nnel	C. O'Dell		Weather	1110stly Claa	1,255°F
Veal information: 19,42 n. 19,42 n.	Site Name	NMPC - South First	St. Evacı	uation Method	peristaltic (pump	_ Well #	MW-1	<u> </u>
Depth of Well 19,4/2 1,	Site Location	Fulton, NY	Samp	ling Method	peristaltic	pump	Project #	1118.08/	
Depth to Water Column	Well informat	tion:				<u> </u>		***************************************	
A ster parameters: Lower submersible pump slowly through stagnant water column Postition pump in center of screened interval & maximum pumping rate of 0.5 iters/minute Collect readings at every three minute intervals Depth To Depth To To To To To To To T	Depth of Well	19	,4 <u>2</u> ft.		* Measure	ments taken from	1		
Cother, Specify Water parameters: Lower submersible pump slowly through stagnant valer column Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute Collect readings at every three minute intervals Collect readings at every three minutes Collect readings at every three minutes Collect readings at every three minutes Collect readings at every three minutes Co	Depth to Wate	er* 4	,66 ft.			· x	Top of Well Cas	sing	
Water parameters: Lower submerable pump slowly through stagnant water column Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute Collect readings at every three minute intervals	Length of Wat	er Column	ft.				Top of Protectiv	e Casing	
Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute		•					(Other, Specify)		
Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute	Mater param	eters: Lower subm	areible numn elowly	through stagn:	ant writer column	<u> </u>			
Collect readings at every three minute intervals Depth To Temperature PH Conductivity Reduction Oxygen (mg/li) (NTU) Rate (ml/min).	Trace param						s/minute		
Elapsed To Water Temperature pH Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Potential Conductivity Reduction Conductivity Reduction Potential Conductivity Reduction Conductivity C		•				•	-		
Time Water Temperature pH Conductivity Potential (mg/ll) (NTU) Rate (ml/min). O		Depth				Oxidation	Dissolved		
0 4/65 4 6/32 350 6 6/3.94 III.01 7.25 708.0 2/0.2 3.63 46.2 350 9 7.53 II.04 7.25 702.0 2/15.9 3.03 47.1 290 12 8.06 II.30 7.24 704.0 2/9.8 3.03 47.1 290 15 8.58 II.56 7.24 710 220.4 3.08 46.5 290 18 8.72 (I.80 7.22 712 22/14 3.08 47.1 220 21 9.87 11.89 7.20 72.6 22.46 3.22 40.2 220 21 8.91 II.84 7.20 7/4 22.4 3.30 20.1 220 27 8.99 II.85 7.20 7/0 28.88 3.35 I/49 220 23 9.08 II.84 7.20 708 231.5 3.38 I/3.8 220 35 9.08 II.85 7.23 705 2.34/1 <td< td=""><td>Elapsed</td><td>To ′</td><td></td><td></td><td></td><td>Reduction</td><td>Oxygen</td><td>Turbidity</td><td>Flow</td></td<>	Elapsed	To ′				Reduction	Oxygen	Turbidity	Flow
Y	Time	 	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
Y	0	4.65					,	<u>.</u>	
1.5	_ y								350
1.5	6	1:304	11.01	7.25	708.0	210.7	3,63	462	
12								47.1	
	12			7				46.5	
18			11 21	7711			+	1 / 5 -	
2			11.36	7,29				40,2	
24 8.9	10			 	112	221.4		4/1/	220
27 8.99 11,85 720 710 228,8 3.35 14,9 220 30 9.04 11,84 7.20 709 230,2 3,37 14,6 220 33 9.08 11,84 7.20 708 231,5 3.38 13.8 220 34 9.20 11,85 7,23 705 234,1 3.51 11,6 220 39 9.27 11,85 7.24 704 235,8 3,55 70,1 79,22 42 9.30 11,86 7.23 703 236,1 3.57 9,2 790 45 9.31 11,91 7.24 703 236,6 3.62 70,1 790 48 9.31 11,92 7.24 702 234,7 3.63 70,6 700 51 9.31 11,92 7.24 702 236,9 3,63 70,1 790 Water sample: Time collected: 250 236,9 3,63 70,1 790 Water sample: Time collected: 250 250 250 250 250	2)		11.89	7,20	726	224,6		40,2	220
27 8,99 11,85 7,20 710 2,28,8 3,35 14,9 2,20 30 9,04 11,84 7,20 709 2,30,2 3,37 14,6 2,20 35 9,08 11,84 7,20 708 231,5 3,38 13,8 2,20 36 9,20 11,85 7,23 705 2,34,1 3,51 11,6 2,20 39 9,27 11,85 7,24 704 2,35,8 3,55 70,1 79,2,2 42 9,30 11,86 7,23 703 236,1 3,57 9,2 790 45 9,31 11,91 7,24 703 236,6 3,62 10,1 190 48 9,31 11,92 7,24 702 236,7 3,63 10,6 190 51 9,31 11,92 7,24 702 236,9 3,63 10,1 190 Water sample: Time collected: 12,50	24	8.91	11.86	7.20	714	2261	3,30	20,1	220
30 9,04 11,84 7,20 709 230,2 3,37 14,6 220 33 9,08 11,84 7,20 708 231,5 3,38 13.8 220 34 9,20 11,85 7,23 705 234,1 3,51 11,6 220 39 9,27 11,85 7,24 704 235,8 3,55 70,1 792,22 42 9,30 11,86 7,23 703 236,6 3,57 9,2 790 45 9,31 11,91 7,24 702 236,7 3,63 10,6 190 48 9,31 11,92 7,24 702 236,7 3,63 10,6 190 51 9,31 11,92 7,24 702 236,9 3,63 10,1 190 Water sample: Time collected:	27	8.99	11.85	7.20	710	228,8		14.9	220
33 9.08 11.84 7.20 708 231.5 3.38 13.8 220 36 9.20 11.85 7.23 705 234.1 3.51 11.6 220 39 9.27 11.85 7.24 704 235.8 3.55 10.1 792.22 42 9.30 11.86 7.23 703 236.1 3.57 7.2 190 45 9.31 11.91 7.24 702 232.7 3.63 10.6 190 51 9.31 11.92 7.24 702 232.7 3.65 10.5 190 51 9.31 11.92 7.24 702 232.9 3.63 10.1 190 Water sample: Time collected:	30	9.04	11.84	7,20	709			14.6	220
36 9,20 11,85 7,23 705 234 3.5 11,6 220 39 9,27 11,85 7,24 704 235,8 3,55 70,1 792,22 42 9,30 11,86 7,23 703 236,1 3,57 9,2 190 45 9,31 11,91 7,24 702 236,7 3,63 10,6 190 51 9,31 11,92 7,24 702 236,7 3,63 10,6 190 51 9,31 11,92 7,24 702 236,9 3,63 10,1 190 Water sample: Time collected: 1250	33	9.08		7.20		231.5			220
39 9,27 11,85 7,24 704 235.8 3,55 70,7 79,22 790 42 9,30 11,86 7,23 703 236,7 3,57 9,2 790 45 9,31 11,91 7,24 702 236,7 3,63 10,6 190 51 9,31 11,92 7,24 702 236,7 3,63 10,6 190 51 9,31 11,92 7,24 702 236,9 3,63 10,7 190 51 9,31 11,92 7,24 702 236,9 3,63 10,7 190 Water sample: Time collected: 1250				723		1241		111	
12 9,30 1/,86 7,23 703 236,6 3,57 9,2 190 15 9,31 1/,92 7,24 702 236,7 3,63 10,6 190 5 9,31 1/,93 7,23 704 237/ 3,65 10,5 190 5 9,31 1/,92 7,24 702 236,9 3,63 10,1 190 Water sample: Time collected: 1250		027		1774	1 /	9750			
1		9,21		7777	707			+1 - · · · · · · · · · · · · · · · · · ·	
18 9.3				1443	103			116	
1				1.24		1. 67.82	3.62		
Water sample: Time collected: 1250 Physical appearance at start Color Odor Sheen/Free Product Container Size Container Type # Collected Field Filtered Praservative Container pil		1707	111/2	1661	170	20077	100	17070	
Sumples collected: 250 11,92 7,24 702 236,9 3,63 10,1 190	51	9,31			704	237/	3.65	10,5	190
Water sample: Time collected: 1250 Physical appearance at start Color GRA/ Odor NO Sheen/Free Product Samples collected: Container Size Container Type # Collected Field Fiftered Preservative Container Pt	54	9.31	11.92	7,24	10Z	236,9	3,63	10,1	190
Time collected: 1250 Physical appearance at start Color Odor No Sheen/Free Product Container Type # Collected Total volume of purged water removed: Physical appearance at sampling Color Odor No Sheen/Free Product Color Odor No Sheen/Free Product Container Size Container Type # Collected Field Fiftered Preservative Container pH									
Physical appearance at start Color Odor NO Sheen/Free Product Container Type # Collected Physical appearance at sampling Color Odor NO Sheen/Free Product Color Odor NO Sheen/Free Product Preservative Container pH		e:							
Color Color	Time collected	1: 1250			Total volume of	purged water ren	noved:	···	
Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Preservative Container Type # Collected Field Filtered Preservative Container pH	Physical appe	arance at start			•	Physical appear	ragice at sampling	111	
Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Preservative Container Type # Collected Field Filtered Preservative Container pH		Color GRAY				•			·
Samples collected: Container Size Container Type # Collected Field Fiftered Preservative Container pH		Odor	·		•	<u>.</u>			·
Container Size Container Type # Collected Field Filtered Preservative Container pH	Sheen/Free Pi	roduct NO				Sheen/Fro	ee Product	<u>~0</u>	· .
Container Size Container Type # Collected Field Filtered Preservative Container pH	Samples coll	ected:	•						
		***************************************	ner Type	# Collected	Field Filter	red	Preservative	Contai	ner pH

	x Gere Enginee				iow Ground		amping Log	
ate .	5/3 (101	Perso	nnel	C. O'Dell		Weather	clear; ~	60°F
ite Name	NMPC - South First St.	Evacu	ation Method	peristaltic	pump .	Well#	MW-4	
ite Location	Fulton, NY	Samp	ling Method	peristaltic	pump	Project #		
Vell informat	ion:			· · · · · · · · · · · · · · · · · · ·				
epth of Well	*	ft.		* Measure	ments taken from			
epth to Wate	r* <u> </u>	ft.		•	Х	Top of Well Cas	sing	*
ength of Wate	er Column	ft.				Top of Protectiv	e Casing	•
						(Other, Specify))	
Vater parame	•	ible pump slowly t	-					
		n center of screer at every three mi		maximum pumpii	ng rate of 0.5 liters	/minute		
	Depth				Oxidation	Dissolved		
lapsed	То			1	Reduction	Oxygen	Turbidity	Flow
ime	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/mi
0	7.61					· .		
9	8.06	12.56	6,28	1262	- 85.8	0.74	79.5	350
8	8.17	12,98	6.23	1228	- 73,3	0.72	76,1	350
<u> </u>	8.21	13.14	6,22	1227	-69.0	0.60	69.1	320
14	8.24	13.41	6.19	1230	-69,2	0.48	44.4	3/0
1-1	 		1/10		_ 57.CC			
1/		13,35	6.18	1230	1-17/	0,36	21,2	3/0
20	8.32	13,33	6.18	123/	- 75.9	0,33	10,6	3/0
23	8,32	13.30	6,16	123/	-76, d	0.30	8,93	270
26	8.31	13,34.	6,17	123/	-76.8	0.32	8.70	270
29	8.31	13,35	616	1230	-76,9	0.31	8.56	270
			1	<u> </u>		<u> </u>		1
		 	 		 			1
		 		<u> </u>	 			
		ļ	ļ · ·			<u> </u>		
	.							
							·	
			1	<u> </u>	†	 		1
Water sampl	le:				<u></u>			
Time collected				Total volume of	f purged water rem	loved:		
Physical appe	earance at start / ,	·		•	Physical appear	agce at samplin	9 1 / /	
	Color Colorles	\(\)			• • •	Color	Color/eas	
	Odor <u>yes</u>					Odor	<u>yes</u>	
Sheen/Free P	Product yes				Sheen/Fre	e Product	<u> </u>	
Samples col	lected:							
Container Siz	***************	я Туре	# Collected	Field Fift	ered	Preservative	Contai	ner pH
MALIOTIC STATE								
CONTROLLISION CONC								
			 			ļ		

i:\71\projects\forms\microlog.xls

Ferrous Iron-4.4 mg/l Iron-5(+) mg/L Mangana-Omo/L

April 25, 1997

Sampling Method Peristaltic pump Well # MW-5		L I in				low Groun		ampling Lo	<u>u</u>
Vell information: Putton, NY Sampling Method Peristatilic pump Project #	Date	b / /01			C. O'Dell	 	_ Weather	MALIZ	
Value Information: Information					· 			1110-3	
Pepth of Well * ft.	Site Location	Fulton, NY	Samp	ling Method	peristaltic	pump	Project #		***
Top of Well Casing Top of Protective Casing Cother, Specify	Well informa	ition:							·
Top of Protective Casing (Other, Specify) Top of Protective Casing (Other, Specify)	Depth of Wel	1*	ft.		* Measure	ements taken from	<u> </u>		
Cother, Specify	-		ft.			X	Top of Well Ca	sing	
Vater parameters: Lower submersible pump slowly through stagnant water column Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute Collect readings at every three minute intervals Depth To Reduction Dissolved Reduction Water Temperature pH Conductivity Potential (mg/l) (NTU) Rate (ml/ml) 7.22 12 40 6.45 68/17/. 0.97 19.6 420 10 7.3.5 12.41	ength of Wa	ter Column	ft.				-4 '	=	
Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute Collect readings at every three minute intervals Depth To					•	L	(Other, Specify) .	
Position pump in center of screened interval & maximum pumping rate of 0.5 liters/minute Collect readings at every three minute intervals Depth To	Vater param	neters: Lower subme	ersible pump slowly t	through stagn	ant water column				
Collect readings at every three minute intervals Depth To Water Temperature pH Conductivity Potential Dissolved Oxygen Turbidity Flow Rate (ml/m Potential Mg/l) (NTU) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Potential Mg/l) Rate (ml/m Mg/l) Rat	, ,			_			s/minute		
To Water Temperature pH Conductivity Potential (mg/l) (NTU) Rate (ml/m Rate (•		•	•
line Water Temperature pH Conductivity Potential (mg/l) (NTU) Rate (ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/m		Depth				Oxidation	Dissolved		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elapsed	То		1	i .	Reduction	Oxygen	Turbidity	Flow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	6.87						***	\$20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	7.22	12 40	6.45	681.	-17/	0.97		420
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	725	1241	C 11	1	-11.7	101/0		420
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 	12 25	C Un			1-2-2	 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17		18.55	6.70	652,0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 / 1	12,69	6,34	5 70			17.3	350
15 7.65 13.08 6.30 539 -43.6 0.28 2.78 230 28 7.66 13.10 6.29 538 -46.2 0.25 2.51 230 31 7.66 13.11 6.28 538 -47.4 0.24 2.26 230 34 7.66 13.13 6.27 534 -50.2 0.24 2.3/ 230		1.63	12.91		550	1-40,/	1,32	6,10	1270
28 7.66 13.10 6.29 538 -46.2 0.25 2.51 230 31 7.66 13.11 6.28 538 -47.4 0.24 2.26 230 34 7.66 13.13 6.27 534 -50.2 0.24 2.31 230	22	7,65	13,04	6,3/	540	1-43.3	0.29	13,35	250
28 7.66 13.10 6.29 538 -46.2 0.25 2.51 230 31 7.66 13.11 6.28 538 -47.4 0.24 2.26 230 34 7.66 13.13 6.27 534 -50.2 0.24 2.3/ 230	25	7.65	13,08	6,30	539	-43.6	0.28	7.78	7 30
31 7.66 13.11 6.28 538 -47.4 0.24 2.26 230 34 7.66 13.13 6.27 534 -50.2 0.24 2.3/ 230		-2//		1 29	 	-41 2	 	1251	
34 7.66 13.13 6.27 534 -50.2 0.24 2.3/ 230		777	1	170	 	1172			
				100		1-4/17			
31 1.66 (3.14 6.27 5.32 -5/) 0.23 2.28 250		7//				· · · ·			
	31_	1:106	13,14	6,61	5 34	5/1/	0.23	12,28	250
						1			
	•					·			
						·		†	
				 	 	 	 	- 	
	 			 	 	-	 		
				<u> </u>			 		
							<u> </u>		
					<u> </u> -	1	<u> </u>		
					Total volume of	purged water ren	noved:		
ime collected: 1200 Total volume of purged water removed:	hysical appe				·	Physical appear		0/6	_
Physical appearance at start , Physical appearance at sampling 2 C /							Color	(0/0/189	<u> </u>
Physical appearance at start Color Color Color Cos	Dh / F		<u>'S</u>			Ot #=		<u> </u>	
Physical appearance at start Color Color /ess Odor Yes Odor Yes Physical appearance at sampling Color Color Color Ges Odor Yes	oneen/rree F	Toduct				Sneen/Fro	ee Product	100	
Physical appearance at start Color Color Color Cos	Samples col	lected:							
Physical appearance at start Color Odor Ves Sheen/Free Product Physical appearance at sampling Color Odor Ves Sheen/Free Product Physical appearance at sampling Color Odor Ves Sheen/Free Product No		THE PERSON AND THE PE	ner Type	# Collected	Field Filte	red	Preservative	Centai	ner pH
Physical appearance at start Color Odor Yes Cheen/Free Product Samples collected: Physical appearance at sampling Color Color Odor Yes Sheen/Free Product Physical appearance at sampling Color Color Odor Yes Sheen/Free Product Physical appearance at sampling Color Color Odor Yes Sheen/Free Product									
Physical appearance at start Color Odor Yes Cheen/Free Product Samples collected: Physical appearance at sampling Color Color Odor Yes Sheen/Free Product Physical appearance at sampling Color Color Odor Yes Sheen/Free Product Physical appearance at sampling Color Color Odor Yes Sheen/Free Product									
Physical appearance at start Color Odor Yes Cheen/Free Product Samples collected: Physical appearance at sampling Color Color Odor Yes Sheen/Free Product Physical appearance at sampling Color Color Odor Yes Sheen/Free Product Physical appearance at sampling Color Color Odor Yes Sheen/Free Product							:	j.	
Physical appearance at start Color Odor Yes Sheen/Free Product Completed: Container Type # Sollected Field Filtered Physical appearance at sampling Color Odor Yes Sheen/Free Product Color Odor Fes Sheen/Free Product Freservative Gentainer pH									
Physical appearance at start Color Odor Yes Sheen/Free Product Completed: Container Type # Sollected Field Filtered Physical appearance at sampling Color Odor Yes Sheen/Free Product Color Odor Fes Sheen/Free Product Freservative Gentainer pH									

i:\71\projects\forms\microlog.xls

IRON-5mg/1 (t) Ferrous Iron-3,2mg/1 Manganese-0.5mg/1

April 25, 1997

O. Rueu	& Gere Engine	<u>ers, Inc.</u>		<u>Low F</u>	Iow Ground	d Water Sa	ampling Lo	g
Date	5/3 /01	Perso	nnel	C. O'Dell		Weather		/
Site Name	NMPC - South First S	t. Evacu	ation Method	peristaltic	pump	Well#	MW-8	?
Site Location	Fulton, NY	Samp	ling Method	peristaltic	pump	Project#		
Vell informat	tion:		-					
Depth of Well	. /8	,06 ft.		* Measure	ments taken from			
Depth to Wate	er* 8	,06 ft. ,84 ft.		Weasure	X	Top of Well Cas	eina	
ength of Wat		ft.			 	Top of Protectiv	-	
		···		· v	<u> </u>	(Other, Specify)		
								
Nater param		sible pump slowly to in center of screer				Junios de		
		gs at every three mi			ng rate of 0.5 itters	minute		
	Depth	T		1	Oxidation	Dissolved		
Elapsed	То			}	Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/mir
0	8,85							,
7	9.12	12,61	6,55	762	-20.8	5.59	30,1	160
10	9,25	11.10	6.51	747	-19.2	5,79	27,2	160
13	9,39	10.72	6 49	742	1-17	5.67	741	220
$\frac{1}{1}$	9,49	1/077	6.49	743	-12,6	577	18.7	220
10	9.58	10.72	1110	7/1/	-183	5.84		300
/}	9.71		103//	744	1 / 5		15.9	300
11		16,66	177	746	-26.6	5.82	15.1	
<u>25</u>	9.81	10.79	6.52	750	-37,4	6.02	8.72	220
<u> 28 </u>	9.89	10.83	6.52	152	-38,3	6.09	5.98	220
31	9.95	10.81	6.53	754	-40.6	6,17	5.62	220
34	10.00	1/1.83	6.54	75/	-43.0	6.25	3.84	220
37	10.02	10.84	6.54	757	-46.Z	6.//	3.62	
40	10.03	19,83	6.54	956	-47.6	606	3.7/	
43	10.03	10,32	6.54	756	-49.1	6.03	352	
46	10.03	10.83	6.54	756	-49.5	6,02	3,49	220
	70,00	1/9/	10, 1	1, , ,	1			
			1	 		-		
			 	.27	1	 		
		 		 	 	 		
	 		 	1.	 	 	- 	· -
Water samp	<u> </u>			<u> </u>			<u> </u>	
Time collecte		, pe		Total volume of	f purged water rem	noved:		
	earance at start					rance at samplin	g	
ططف سود.د ۱۰۰	Color Color	less			and a source and the source	Color	Colorles	K
		0			•	Odor	NO	
Sheen/Free I	Product /	0		•	Sheen/Fr	ee Product	NO	
				· · · · · · · · · · · · · · · · · · ·				
Samples co	CONTRACTOR OF THE CONTRACTOR O		# 6 - # - 4	Cala eu	orost.	Cercania.	,	enor nU
Container St	ce Contail	nar Type	# Collected	Field Fills	el e C	Preservative	Lonia	imer pH
i						 	· .	
							. , ,	
							, ,	

Ferrous Iron-2,5 mg/l Iron-5(+) mg/l Managnes 0.3 mall

O'Brien	<u>& Gere Enginee</u>	ers, Inc.		<u>Low F</u>	<u>low Groun</u>	<u>d Water Sa</u>	mpling Log					
Date	b / /01	Persor	nnel	C. O'Dell		Weather						
Site Name	NMPC - South First St.	Evacua	ation Method	peristaltic	oump	- Well#	MW-95					
Site Location	Fulton, NY	Sampli	ing Method	peristaltic		Project #						
					***************************************	•						
Well information: Depth of Well * ft. * Measurements taken from												
Depth to Wate		ft.		ivieasurei	X	Top of Well Cas	ina '	1				
Length of Wat		ft.				Top of Protective						
		-				(Other, Specify)		•				
N/-4	-4	bla manna alaubatt				- 						
Water param		ble pump slowly the n center of screen			ing rate of 0.5 liters	/minuto						
		at every three mir		·	9 14.0 01 0.0 11.010							
	Depth				Oxidation	Dissolved						
Elapsed	То				Reduction	Oxygen	Turbidity	Flow				
Time	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).				
<u> </u>	8,38	·										
6	9,02	10.6/	6,58	751	180.2	2.02	13.6	325				
9	9.19	10.55	6,49	751	195,6	1.46	12,1	325				
12	9.30	10.54	6.48	751	196,7	1.35	10,85	325				
15	9,35	10.54	647	751	195.7	1.30	10,13	325				
18	9,36	10,54	6.46	75/	197.1	1,27	9.26	260				
21	9.36	10,60	6.43	757	205,9	1.16	993	260				
24	9.36	10.63	641	75/	2017	1.13	827	260				
21	9.36			751	2001							
U	1,50	10.63	6.40	/5/	208.7	1.//	8.13	260				
			1				 	·				
· · · · · · · · · · · · · · · · · · ·							•					
· . · . · · · · ·							<u> </u>					
				<u> </u>			·					
<u> </u>												
·							<u> </u>	***				
		· .			ļ.							
						,						
Water sample												
Time collected	1: 1000			Total volume of	purged water rem							
Physical appe	arance at start			•	Physical appear	ce at sampling	~ (1)					
	Color Colorless					Color	NO COLOVIC	5				
Sheen/Free P	Odor <u>No</u> roduct No				Sheen/Fre	Odor e Product	1/0	-				
Officer for 1	75 U				Officerorie	e i ioduot						
Samples coll		·										
Container Size	Container	Туре	# Collected	Field Fifter	ed	Preservative	Containe	pH				
					· · · · · · · · · · · · · · · · · · ·		·					
			 			1.						
						 						
Natara			•									
Notes:	····			07	sea //							

i:\71\projects\forms\microlog.xls

Iron-0.2 mg// Mangenes-0.1 mg// Ferro is Iron-Omoj//

April 25, 1997

	« Gere Enginee			Low Flow Ground Water Sampling Log						
Date	<u>\$1 / 101</u>	Person		C. O'Dell		Weather				
Site Name	NMPC - South First St.	Evacu	ation Method	peristaltic	pump	Well#	MW-//	·		
Site Location	Fulton, NY	Samp	ling Method	peristaltic	pump	Project #				
Vell informa	tion:		·							
Depth of Well		ft.		* Measure	ments taken from	•				
Depth to Wate		ft.	•		X	Top of Well Cas	-			
ength of Wa	ter Column	ft.				Top of Protectiv	- ·			
						(Other, Specify))			
Water param		ble pump slowly to center of screer			ng rate of 0.5 liters	/minute				
:		at every three mi	nute intervals							
	Depth		ļ.,		Oxidation	Dissolved				
Elapsed	То				Reduction	Oxygen	Turbidity	Flow		
<u> Fime</u>	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/mi)		
<u> </u>	2.15		<u> </u>		<u> </u>			300		
5	2.16	14,25	6,79	597	-25,7	1.58	49,6	300		
B	2.16	14.20	6.75	590	-21.2	1,50	41.7	300		
11	2,16	1414	6.71	583	-17.8	1.34	30,8	300		
14	2.16	13.55	6.58	577	1-11,5	0.55	15,Z	300		
17	2.16	13 40	1 /	572	-7,3		13.1	300		
11	211	13,38	6,54	<u> </u>		0,36				
20	2.16		6,53	57/	5,1	0,29	11,9	300		
<u>23 </u>	2.16	13,37	6.53	570	-4.3	0,26	10,6	300		
26	2,16	13,38	6,53	568	-3,9	0,24	10,1	300		
29	2.16	13,35	6,53	565	-3.5	0,22	8,3	300		
31	2.16	13,35	6.53	564	-3,3	0,20	8.1	300		
34	2.16	13,32	4,53	564	-3,Z	0,19	7,6	300		
31	0 1/	13.30	6,53		13,1	0.19	7.2	300		
<u> </u>	2.16	17.30	10,2	563	1,27	0119	1,2	300		
<u> </u>	<u> </u>	ļ	 	ļ		ļ		<u> </u>		
					£					
			T			T .	·			
			1		1		1			
	 	 -	 	 	 	 	 			
Water samp	le /	<u> </u>			1	<u></u>				
Time collecte	17117			Total volume o	f purged water rem	noved:				
	earance at start		•		Physical appear	微		· · · · · · · · · · · · · · · · · · ·		
, manarapp	Color Color/	ess .			i iiyələdi appedi	Color	Colorles	5		
	Odor Ve:					Odor	Ses			
Sheen/Free I	Product // D				Sheen/Fre	ee Product	No	·		
				 						
Samples co	**************************************	**	4							
Container St	ze Containe	и туре	# Collected	Field Fill	Bet	Preservative	Conta	iner pH		
4			 		 :-	-				
						+				
			1	1		i '	. I'			
						<u>'</u>				

i:\71\projects\forms\microlog.xls

Forrous Iron-3,2 Mg// Manganese-0, ZMg//

April 25, 1997

<u>O'Brien</u> (<u>& Gere Engine</u>	<u>ers, Inc.</u>		Low F	low Ground	<u>d Water Sa</u>	mpling Log	<u> </u>	
Date	7/12/04	Perso	nnel	Scott Tuck	(er	Weather	overast 17	5-6	
Site Name	NIMO - Fulton	Evacu	ation Method	Low Flow		Well#	MW-1		
Site Location	S. 1st Ft, Fulton, NY	Samp	ling Method	Low Flow		Project #	35165		
Well informa									
Depth of Well				* Measure	ments taken from	1			
Depth to Wate					X	Top of Well Cas	-		
Length of Wa	ter Column 14.) 4ft.			·	Top of Protective	e Casing	.•	
		•			<u> </u>	(Other, Specify)	·	/	
Water param	eters: Lower submers	sible pump slowly	through stagr	nant water colun	nn				
•		in center of scree			ping rate of 0.5 li	ters/minute			
	Depth (3.3	37.			Oxidation	Dissolved		1.	
Elapsed	To		10.1	3%	Reduction ± 13	Oxygen 10%	Turbidity 10%.	Flow	
Time	Water	Temperature		Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).	
1213	5,84	63.2	7,44	0,384	88	1.65	19	95	
1216	5,93	61.6	7.42	0.380	90	0.78	15	85	
1219	6.08	61.9	7.42	0.393	93	0,67	8.8	80	
1997	6.19	61.5	7.43	0.378	94	0,53	10	80	
1225	6,30	60.1	7,42	0.386	96	0.49	10	80	
	6.33	 			97				
1938		60.0	7.42	0.384		0.45	8,5	85	
1231	6.36	60.4	7,43	188,0	98	0,42	8.3	85	
1234	6.38	60.1	7.42	0.385	99	0.41	9,5	85	
	·								
· ·								·	
				V				1	
					:				
			-						
· · · · · · · · · · · · · · · · · · ·		 	 						
			 			·	 	 	
·								ļ	
					,				
						,	<u> </u>		
							<u> </u>	·	
Water sampl	10 と			.013				1	
Time collecte	ed: 1950			Total volume of	purged water rer	moved:	10,59	a 1/	
Physical appe	earance at start	(1	ı	•	Physical appear	rance at sampling	10,5g		
		Hotulomt? blac	*			Color		nt black?	
Sheen/Free F	Odor <u>Av</u>		•		Chan-/F	Odor	<u> </u>	<u> </u>	
oneen/riee F	Product				Sneen/Fre	ee Product	No	-	
Samples col	lected:		- 		· ·				
Container Siz		er Type	# Collected	Field Filte	red	Preservative	Containe	er pH	
Curitainer Siz			100	1		1 /			
40ml	9/655		3	10		1401			
	9/655		1	No		nove.			

Brien 8	<u> Gere Engine</u>	ers, Inc.		Low FI	ow Grour	id Water Sa	mpling Log	
ate	7/10/04	Person	nel	Scott Tuck	er	Weather	Overcast	عيم <u>جو</u> د
ame	NIMO - Fulton	Evacua	ation Method	Low Flow		Well#	6-mm	
te Location	S. 1st Ft, Fulton, NY	. Sampli	ng Method	Low Flow		Project #	35165	
ell informa	tion: 🕹 🖇							
epth of Well				* Measure	nents taken fro		· ·	
epth to Wate					<u> </u>	Top of Well Cas		
ength of Wa	ter Column 8,70	5ft.				Top of Protective	Casing	
i		·				(Other, Specify)		
/ater param	eters: Lower submers	sible pump slowly t	through stag	nant water colum	ın			
		in center of screer		· · · · · · · · · · · · · · · · · · ·	ping rate of 0.5	liters/minute		
		s at every three m	inute interva	ls	0.14-11	T 5:		T
امدمدا	Depth				Oxidation Reduction	Dissolved	To and a list of	Flow
lapsed ime	To Water	Temperature	рН	Conductivity	Potential	Oxygen (mg/l)	Turbidity (NTU)	Rate (ml/min).
(3/6	- valei	66.1	7.01	0.984			(11.0)	Trace (minima)
	1102	65.4		0.988	-91	1.58	65	130
1319	4.83		6.98			0.83		
1329	4,90	65,7	6.96	0.997	~ (6	0.66	35	100
1325	4.95	60.1	6.94	h001	-4	0,55	14	/00
1398	4.98	66.4	6.94	Pr 005	1	0.57	8.8	75
1331	5.04	67.0	6.94	1,000	4	0,56	6.8	80
1334	5,09	6711	6.94	1.004	7	0,53	7.3	20
				- 4			-	
	 			1		:		
	 		 					
								
 							,	
•		 			<u> </u>			
		ļ	<u> </u>	<u> </u>	 \			<u> </u>
•					1			
				<u> </u>	<u> </u>			
<u> </u>			ļ					
					<u> </u>			
			<u> </u>	·	<u>. </u>	·	•	
Nater samp				. •				
Time collect	ed: 1350			Total volume o	f purged water i	(in)	·	
Physical app	pearance at start		i.	•	Physical appe	earance at samplin	g	
	Color Clear	<u> </u>	•		* · ·	Color Odor	Clear	
Sheen/Free	Odor No			•	Sheen/l	Free Product	ns ns	- •
	- Todaçı	·						
Samples co								
Container S	ize Contair	ner Type	# Collected			Preservative	Contain	er pH
40,		ú 9 5	3	1.0		GE!		
			1	1 2/9		43	· I	
au			 ' -	7-				

		ers, Inc.					Vater Sampling Log			
Date _	<i>48/04</i>	Perso	nnel	Scott Tucl	(er	Weather	^			
Site Name	NIMO - Fulton	Evacı	uation Method	Low Flow		_ Well #	MW-3_			
Site Location S	S. 1st Ft, Fulton, NY	Samp	ling Method	Low Flow	Low Flow		35165			
Vell informati		A								
epth of Well *				* Measure	ments taken from		12			
Depth to Water	. ———					Top of Well Cas	-			
ength of Wate	er Column	<u>1</u> ft.		•		Top of Protective (Other, Specify)	e Casing			
·										
Vater parame	•	ible pump slowly								
		in center of scree	•		nping rate of 0.5	liters/minute				
·		s at every three r	1		Oxidation t _{lo}	Dissolved		T		
Elapsed	Depth すいろ	3%	±0.1	3%	Reduction	Oxygen lobb	Turbidity /%	Flow		
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)		
1650	(1.25	69.8	6,89	0.677	400	0.96	60	10		
1655	11.26	65.0	6.84	0.680	425	0.54	38	90		
165 Mar	11,26	65,0	6.84	F83.0	438	0.48	27	95		
1703	11.06	64.7	6.84	0,688	442	0.51	32	95		
1706	11.27	64.3	6.84	0.688	446	0.55	45	85		
	11.27	64.3	6.84	0,688	449	0,59	36	90		
17.09		64.6	7	0.691			30			
	11.27	T .	6.85		451	0.58		80		
1715	11,27	64,5	6.86	0,697	453	0,60	24			
1718	11.27	64.2	6.86	0.690	458	0.72	15	80		
1721	11,27	64.4	6.86	0.691	459	0,95	13	75		
1724	11,27	64.4	6.86	0,688	461	1,05	9,4	70		
17)7	11.27	64.0	6,86	0,687	464	1,19	6,2	80		
1730	11.27	63.1	6.86	0.686	467	1,24	_			
1733	11,27	63.6	6.86	0,688	444	1,00	7.1	80		
1736	11,27	62.9	6.86	0,687	449	1,33	3,7	86		
1739	11.27	62.7	6.85	0,688	451	1,41	3.4	10		
1742	11,27	62.7	6.85	0,687	452	1,47	9.3	80		
17.45	11.27	62.7	6.86	0,685	454	1.45	2.3	80		
1748	11.27	62.7	6.80	0.683	455	1.42 .	2.0	80		
		1000	1-10	-	1		1			
Water sample	:	. ·								
Time collected	1: 1815			Total volume of	of purged water re	emoved:	~ D.D 99	//.		
	arance at start		٠		Physical appe	arance at samplin	g			
	Color <u>Clear</u>					Color	clear	_		
Sheen/Free P	Odor <u>no</u>	····			Sheen/E	Odor ree Product	<u>Clear</u> no			
Sheelin lee P	- VIO		<u> </u>			TOE FIOURUL				
Samples coll	ected:									
Container Size			# Collected			Preservative	Contain	erpH		
	9/45	5	32.W	3 no	· ·	HY	<u></u>			
40ml	11		35	n		none				

<u> Brien 8</u>	<u> Gere Engine</u>	ers, mc.		LUW F	ow Ground	i water Sai	npinig Log	
ate	7/9/04	Persor	inel	Scott Tuck	er	Weather		
ame	NIMO - Fulton	Evacua	ation Method	Low Flow		Well #	MW 4	
te Location	S. 1st Ft, Fulton, NY	Sampl	ing Method	Low Flow		Project #	35165	
ell informat	ion: 15 %							
epth of Well		D ft.		* Measure	ments taken from			
epth to Wate		ft.		•		Top of Well Casi		
ength of Wat	er Column 8.3	<u>4ft.</u>				Top of Protective	Casing	
	·				<u> </u>	(Other, Specify)		
ater parame	eters: Lower submer							
	· · · · · · · · · · · · · · · · · · ·	in center of scree			nping rate of 0.5 lif	ers/minute		
	Depth 2	3%	£0.1	3%	Oxidation	Dissolved	10%	
lapsed	To £ 0,3	1.	-	-	Reduction Tio	Oxygen 10%	Turbidity	Flow .
ime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
1330	7,89	65.5	6,49	0.886	-36	1:28	36	115
1733	7,89	64,4	6.46	0.889	-26	0.72	3i	80
1236	7,90	65,9	6.46	0.875	-25	0.57	37	80
1239	7.91	66.1	6.45	0.886	-27	0.53	37	85
1343	7.92	66.6	6.45	0.893	-30	0.48	35	80
1245	7.93	66,4	6.45	0.908	-34	0.48	30	80
1248	7.93	66.7	6,46	0.911	-37	0.44	31	80
		66.6	1.7					85
7521	7,95		6,45	0,918	-38	0,40	30-28	
454	7.96	66,4	6.45	0.9.22	-40	0.38	24	90
1257	7.96	66.5	6,46	0.928	-42	0.40	24	80
731300	7.96	67.0	6.46	0.927	-43	0.36	90	80
1303	7,96	66.8	6.46	0,933	-44	0.37	20	80
1306	7.96	66.8	6,46	0.938	-45	0,37	18	80
					 			
· .		·	· ·			 		
· · · · · · · · · · · · · · · · · · ·			-	-		 		
		-	 	 	· ·			
Water samp	le·			. 6863		.637	1	
Time collecte		•			of purged water re	-		
	earance at start		,			arance at samplir		-
	Color Clear			÷		Color	clear	
	Odor <u>no</u>					Odor	Slight ye	<u> </u>
Sheen/Free	Product <u>no</u>		•		Sheen/F	ree Product	<u> </u>	<u> </u>
Samples co	llected:	**************************************						
Container Si		пег Туре	# Collecte	d Field Fil	tered	Preservative	Contai	ner pH
4001	ql	455	3	no		1401		ander versieren bereit (1900)
2L		11	1 7	n	٠ <u>٠</u> ٠٠. ا	17ores		
7								

	<u> & Gere Engine</u>	ers, ille.		LOWI	IOW GIOUII	u Water Sa	Sampling Log		
Date	7/12/04	Perso	nnel	Scott Tuc	ker	Weather	overcust 7	of F	
Site Name	NIMO - Fulton	Evac	uation Method	Low Flow		Well#	MW-5	<u> </u>	
Site Location	S. 1st Ft, Fulton, NY	_ Samp	oling Method	Low Flow		Project #	35165	· · · · · · · · · · · · · · · · · · ·	
Vell informat									
Depth of Well				* Measure	ments taken fron	3	•		
Depth to Wate		<u>名</u> ft.			<u> </u>	Top of Well Cas	-		
ength of Wat	er Column 8.8	ft.				Top of Protectiv	-		
						(Other, Specify)			
Nater param	eters: Lower submer	sible pump slowly	through stag	nant water colu	mn				
	• •	in center of screens		-		ters/minute		•	
	Depth 3	310	40.1	3/.	Oxidation	Dissolved	10%		
Elapsed	To 403	J 510	1 1		Reduction	Oxygen 10%	Turbidity	Flow	
Time	Water	Temperature		Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)	
0911	7,16	73.9	6.47	0,709	8-70	1,09	15	80	
0914	7,80	70.1	6.44	0.706	-55	0.61	11	85	
0917	7.24	69.1	6.43	0.703	-52	6,54	ID	85	
0920	下的下	69.3	6.43	8.707	-51	0,50	12	85	
0983	7,28	69.7	6,44	0,700	-50	0.46	11	80	
0926	7.31	69.6	6,43	0,694	-49	6,42	13	80	
0929	7.34	69.7	6.43	01694	-49	0,40	12	80	
0932	7.36	69.7	6.44	0.63	-48	0.33	13	80	
<u> </u>	1.76		0.11		1		'3	100	
		<u> </u>	 			<u> </u>			
		-	- 33		 				
	·				-			-	
<u>-</u>	<u>.</u>				<u> </u>				
· · · · · · · · · · · · · · · · · · ·		· ·	· ·		<u> </u>				
					ļ			· · · · ·	
		·						<u></u>	
	,	<u> </u>		,					
35									
Water sampl		2		160,	•				
Time collecte	d: 0945			Total volume o	f purged water re	moved:	~00	9911	
Physical appe	arance at start				Physical appear	rance at sampling			
	Color <u>Clear</u>			•		Color	clear	· 	
Sheen/Free P	roduct No				Sheen/Fre	Odor ee Product	<u> </u>		
oncentrice P	10duct		<u>.</u>		Sileeli/Fit	SE FIUUUU	sheen.		
Samples coll									
Container Siz		er Type	# Collected		red	Preservative	Conta	ainer pH	
HOAL	Glass	· · · · · · · · · · · · · · · · · · ·	3	100		HU			
<u> </u>	, "		1 (No		Nov.	1		

'Brien &	<u> Gere Enginee</u>	ers, Inc.		Low F	low Ground	Water Sampling Log		
ate	7/9/04	Person	nel	Scott Tuck	er	Weather	Duescast 77	orF
lame	NIMO - Fulton	Evacua	ation Method	Low Flow		Well#	MW-6	
te Location	S. 1st Ft, Fulton, NY	Sampli	ng Method	Low Flow		Project #	35165	
ell informat	tion:							
pth of Well				* Measure	ments taken from			
pth to Wate					×	Top of Well Casi	•	
ngth of Wat	er Column <u>29.9</u>	<u>'5</u> ft.	•			Top of Protective	Casing	
		·				(Other, Specify)	-	
ater param	eters: Lower submers	ible pump slowly	through stag	nant water colur	nn			
		in center of scree			ping rate of 0.5 li	ters/minute		
		s at every three m	ninute interva		10.31.0			
apsed	Depth To ± 0.3	t 0,13%	±0-1	± 3%	Oxidation + to	Dissolved Oxygen ± 10%	±/0% Turbidity	Flow
me	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (mi/min).
1041	7,84	61.0	8.00	0,374	116	0.83	5,5	120
1044	8.11	60.5	7,98	0.375	~ 199 110	0,63	4.9	
1047	8.40	61.8			-119			80
			7.98	0.373		0.56	5.3	85
1050	8.69	61.9	7,96	67270	<u> -116 </u>	0,52	3.8	80
1053	9,06	62.4	7,97	0,343	-111	0.51	5.2	
1056	9.24	62.0	7,97	0.372	טוו־	0.51	5.8	85
1059	9,50	61.1	7,97	0,373	-/07	0,50	4,6	80
1103	9,75	61.2	7,99	0,313	-111	0.49	4.9	75
.05	9,98	61,7	7.97	0,373	-//2	0,49	3.7	_
1108	10,21	63.6	7,96	0,373	-104	0,55	4.2	80
1111	10.43	62.6	7,95	0.371	-90	6,57	4.2	75
1114	10.62	62.7	7,95	0,370	-84	0.63	6.2	-
1117	10.80	62.9	7,97	0.371	-86	0.59	5,0	75
1120	i1,00	62,7	7.98	0,34	-93	0,60	5,1	75
1/23	11.24	62.7	7.99	0.370	-97	0.55	4.9	75
1196	11.39	62.8	7,99	0,370	-97	0.56	3.8	75
1129	11.58	62.6	7,99	0.371	-97	0,60	4,4	75
1132	11,75	63,0	8,00	0,371	-98	0,58	5,5	75
1135	11.88	63.2	8,00	0.370	-98	0.60	3,9	75
	1	1			1			
Vater samp		1.857		0,011				-
Time collect	ed: 1150			Total volume	of purged water re	emoved:	1.5	
Physical app	pearance at start	•		•	Physical appea	arance at samplir		
	Color <u>clear</u>					Color	Cleur	
Sheen/Free	Odor <u>I/\ o</u> Product \(\text{II o } \)			,	Shoon/E	Odor ree Product	<u> 5144</u> 90	
JIICCIM ICC	. 104400	· · · · · · · · · · · · · · · · · · ·			Sileeil/F	ice i ioduct		_ .
Samples co								
Container S	المات بين الإستان المستان المستان المستان المستان المستان المستان المستان المستان المستان المستان المستان المست	ner Type	# Collecte		1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Preservative	Contai	nerpH
40 m 1	9/05/5		3	<u> </u>		HCI		•
b.r.					J.	hone.		

J Brien	& Gere Engine	ers, <u>inc.</u>		LOW F	low Ground	a water Sa	inpling Lo	<u>g</u>
ate	7/9/04	Person	nnel	Scott Tuc	(er	Weather		
ite Name	NIMO - Fulton	_ Evacu	ation Method	Low Flow		Well#	MW-	7 S
ite Location	S. 1st Ft, Fulton, NY	_ Sampl	ling Method	Low Flow		Project #	35165	
Vell informa		<i>-</i> ,						
epth of Well	·	51 n.		* Measure	ments taken from		0	
epth to Wat		65 ft.		•	7	Top of Well Cas		
ength of Wa	ter Column	ft.				Top of Protectiv	-	
			,		<u> </u>	(Other, Specify)		
Vater param	Position pum	rsible pump slowly p in center of scree	ened interval	s Maximum pun		iters/minute		
		ngs at every three n	ninute interva	ıls I	10	I 5	1	
Elapsed	Depth To	3%	to.1	3%	Oxidation Reduction	Dissolved Oxygen	(u /. Turbidity	Flow
Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
1527	8,90	58.6	6.83	0,626	-34	0,69	1 1	(00
1595	8.96	59.8	6.84	0,66	-36	0,55	4.1	95
1508	9.00	60,1	6,85	0,617	-37	0.52	3.6	95
1531	9,05	60,3	6.85	0,613	~39	0,50	4.2	95
					4			
								·
			1					
	 				 		1	
	<u> </u>			<u> </u>	 	 		
				<u> </u>			 	
	 		 	<u> </u>		<u>'</u>		
<u> </u>			 	ļ	<u> </u>			
			 					· ·
			<u> </u>	<u> </u>				
								·
`								
					1			
Water samp								
Time collect	ed: <i>154</i> 5			Total volume	of purged water re	emoved:	ng clear	nall
Physical app	pearance at start				Physical appea	arance at sampli	ng ,	
	Color Clea			•		Color .		
Sheen/Free	Odor <u>Non</u>				Shoon/E	Odor ree Product	Slight	
OHERTH 166	Product //Ls/A	<u> </u>				iee i iouudi		
Samples co	llected:						•	
Container S		iner Type	# Collecte		<u></u>	Preservative	Cont	ainer pH
ADWI	9(0	55	13	No		HCI		
AL.		1	+	<u> </u>	<u> </u>	None.		· · .
	I		1			ı	l l	

Brien &	Gere Engine	eers, Inc.		Low F	low Grour	<u>id Water Sa</u>	l Water Sampling Log			
ate	7/9/04	Persor	inel	Scott Tuck	(er	Weather		· ·		
lame _	NIMO - Fulton	Evacua	ation Method	Low Flow	·	Well#	Well# MW-70			
te Location	S. 1st Ft, Fulton, NY	Sampl	ing Method	Low Flow						
ell informati		1								
epth of Well 1		1,04 ft.		* Measure	ments taken fro					
epth to Wate		<u>∂6</u> ft. 78 ft.			<u>×</u>	Top of Well Cas				
ength of Wate	er Column	<u> </u>			<u> </u>	Top of Protective (Other, Specify)	-			
							<u> </u>			
ater parame		ersible pump slowly						-		
•		p in center of scree	,	•	nping rate of 0.5	iliters/minute				
1	Depth	ngs at every three n	inute interva	IS	Oxidation	Dissolved	<u> </u>			
lapsed	To	•			Reduction	Oxygen	Turbidity	Flow		
ime	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
1400	8.41	62.9	8:30	0,809	1 6-1	2.43	100	100		
1403	8,41	61,0	8,29	61810	-4	1,37	130	80		
1406	8.49	61,3	8.29	0.808	-5	1,31	120	90		
1409	8.46	61,3	8,29	618'0	-6	1.18	130	85.90		
<u> </u>	8.44	60.9	8.39	0,830	-9	1.37	140	85		
1415	8:43	61.5	8,30		 - -		130			
1418				0.811		1.08		<u>85</u> 85		
	8:43	61.4	8,39	01811	- 5	1,03	140			
1491	8,44	61,3	8,26	0.815		1.03	180	90		
24	8.45	61.9	7.87	0.831	-109	0.85	180	90		
1427	8,48	62,4	7,56	0.856	~\39	0.64	160	90		
1430	8.46	62.5	7,50	0.869	-133	0.58	130	75		
1433	8.44	63,2	7.48	0,866	~122	0.58	120	75		
1436	8,43	63,7	7.46	0,867	191	0,51	110	75		
1439	8,43	62.9	7.46	0.873	-191	0.47	1/0	75		
1442	8,43	63.0	7.44	0.873	-190	0.46	95	75		
1445	8.44	61.8	7,44	0.874	-190	0,46	92	75		
				1			1			
	:									
	<u> </u>									
				 	 					
Water samp) le:			<u> </u>						
Time collecte	ed: 1500			Total volume	of purged water	removed:		5 gall.		
Physical app	earance at start			•	Physical app	earance at sampl	ing			
٠.	Color Yellow					Color		ruky		
Shaanii Taan I	Odor <u>VC5</u> heen/Free Product /10			•	Chaan	Odor	Sluft			
Sneen/Free i	Product	<u> </u>		•	Sneen	/Free Product	none	<u> </u>		
Samples co	llected:						·			
Container Si	ze Conta	ainer Type	# Collecte	d Field Fi	tered	Preservative	Сот	ntainer pH		
40M1	gla	.55	13	cro		HCI				
a L		· · · · · · · · · · · · · · · · · · ·		No		none.				
										

	<u> & Gere Engine</u>	ers, Inc. 🌞		<u> LOW I I</u>	ow Glouis	d Water Sa	mpinig Ec	<u>u</u>
ate	7/8/04	Person	inel	Scott Tuck	er	Weather		
ite Name	NIMO - Fulton	Evacua	ation Method	Low Flow		Well#	WA-3	MW-85
ite Location	S. 1st Ft, Fulton, NY	Sampli	ing Method	Low Flow		Project #	35165	· · · · · · · · · · · · · · · · · · ·
Vell information				 				
epth of Well			•	* Measure	nents taken from	•	.01. 6	
epth to Wate				,		Top of Well Cas	•	•
ength of Wat	ter Column g, 8	7ft.	•			Top of Protective	e Casing	
						(Other, Specify)		
Vater param	eters: Lower submer	sible pump slowly	through stagi	nant water colum	ın			
		in center of screen		•	ping rate of 0.5 li	iters/minute		
	Donth	+ 390	40.1	+ 3%	Oxidation + to	Dissolved	+ 10%	
lapsed	To to.3	1 - 7 10		270	Reduction	Oxygen 10%	Turbidity	Flow
ime	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
0918	9.46	58.7	6.57	0.666	170	1.17	80	105
921	9.49	58.1	6.56	0.669	170	0.75	90	. 105
2924	9.57	57.9	6.55	0.667	170	0.56	75	125
0927	9.62	57.4	6.54	0.664	168	0.46	55	
930	9.67	58.0	6.55	0.655	166	0.45	40	110
	9,69	57.9	 	Calent, Ob.			 	
0933			6.55	0,647	162	0.41	34	100
0936	9,70	58.3	6.55	0.634	156	0.41	3)	100
0939	9,76	58.4	6,55	0,635	150	0,38	98	105
0947	9.87	58,4	6.5	0,618	145	0.40	35	_
0945	9.85	58.1	6.35	0,612	141	0.39	26	115
0948	9,89	. 58.2	6.55	0,607	138	0.38	29	115
0951	7.93	58.2	6.55	0,604	135	0.38	30	
0954	9.95	58.0	6,55	0,604	133	0,38	23	110
0957	9,98	58.7	6,55	0,604	131	0137	20	100
0100	9.98	58.7	6.55	0,600	130	0,39	14	95
		· · · · · · · · · · · · · · · · · · ·	6,56		129		12	
/003	10.00	59.1	1-:	0,603		0.38		95
/006	10,00	59,2	6,56	0,604	129	0,35	13	95
1009	10,0[59.0	6.56	0,604	(98	0,36	19	100
·					ļ	<u> </u>	<u> </u>	
			<u> </u>			<u> </u>	1	
Water samp		1.7		+ 0(9	, ,	, 038	7.55	<i>II</i> .
Time collecte			•	i otal volume o	purged water re	(let	2.6 99	110+3
-nysicai app	earance at start Color Clear of	ringe Floculation	1,		rnysical appea	arance at samplin Color	clear	
	Odor <u>creat for</u>	- IOCH INTO	V - F		•	Odor	no	· ·
Sheen/Free I					Sheen/Fr	ree Product	กง	
Samples co	llected:		·					
Container Si		ег Туре	# Collected	Field Filte	red	Preservative	Con	tainer pH
40 ml	sla		3	10	- Landra de Landry de la Pariza de Santa de Santa de Santa de Santa de Santa de Santa de Santa de Santa de Santa	1401		
ንር	(1)			ทอ		no		
	1		f			ł	1	

Brien 6	Gere Engine	ers, inc.	·	LUWF	iow Groun	id water S	ampling Log		
ate	7/8/04	Persor	nnel	Scott Tuck	er	Weather	Overast ~75	<u>, </u>	
lame _	NIMO - Fulton	_ Evacu	ation Method	Low Flow	· · · · · · · · · · · · · · · · · · ·	_ Well #	18-WM		
te Location	S. 1st Ft, Fulton, NY	Sampl	ing Method	Low Flow		Project #	35165	·	
ell informati									
epth of Well 1				* Measure	ments taken fro	om_			
epth to Water			F	:	<u> </u>	Top of Well Ca	• •		
ength of Wate	er Column	5ft.			<u> </u>	Top of Protecti	_		
			<u>.</u>		<u> </u>	(Other, Specify	<i>)</i>	<u> </u>	
ater parame	ters: Lower submer	sible pump slowly	through stag	nant water colur	ทก		_ 		
		in center of scree			nping rate of 0.5	liters/minute			
		gs at every three r	ninute interva	ls					
	Depth -				Oxidation	Dissolved	1	\	
lapsed	To Water	T	pH:	0	Reduction	Oxygen	Turbidity	Flow	
ime		Temperature		Conductivity	Potential	(mg/l)	(NTU) 70	Rate (ml/min).	
1041	9:52 10:15	59.4	7.71	0,733	33	1.93		/00	
1044	10.64	57.8	न,म	0.725	-34	0.66	75	105	
1047	10.97	57.2	7.71	0.726	-145	0,51	80	1/0	
1050	11.39	57.3	7,71	0,725	-183	0.47	110	100	
1053	11.77	57.5	7.71	0,726	-/66	0.45	80	105	
1056	12.16	57.8	7,71	0.726	-149	0.40	45	100	
1659	12.63	57.8	7.71	0,726	-137	0,39	30	-	
103	12.86	58.3	7,72	0,725	-131	0.40	27	95	
15	(3,8)	58.0	7.72	0,727	-130	0.37	26	100	
1108	13.58	58,3	7.72	0.729	-127	0,36	27	100	
1111	/3,93	58.1	7.72	0.729	-129	0.33	26	100	
1114	14,40	57,9	7,71	0,730	- 124	0,34	30	1	
M18,	14.96	57,9	7,73	0,747	-116	0.33	28	95	
/lɔ̞ɪ		57.7	7,72	0.730		0,34	30	12	
1134	15,14	57.5	7,72	0.730	-107 -86	0,39	30	/ 20	
	·							130	
1127	15,79	57,6	7.72	0,729	-68	0.47	36	100	
1130	16.33	57.6	7,72	6.731	-49	0,59	45	100	
1133	16.48	57.8	7,73	0.725	-33	0,63	55	105	
1136	16,90	57.0	7,73	167.0	-105	0,44	60	<u>→ /∪</u>	
1139	17,21	566	7,73	0.726	-81	0.46	50	100	
Water samp Time collecte		- ,		Total valuma	of purged water	romented.	75.	. 1,	
				Total volume	. •	194	7, 79	/a 11.	
Pnysicai app	earance at start Color				Physical app	pearance at samp Color	3.50 oling <u>clear</u>		
	Odor NO					Odor	no		
Sheen/Free I					Sheen	/Free Product	no		
Samples co	llected:					· 			
Container Si		iner Type	# Collecte	d Field Fi	tered	Preservative	Con	tainer pH	
40ml	91	æ55	3	10		40			
3 L			Î	n		llong			
_				[

	<u> Gere Engine</u>				<u>low Grour</u>			1
ate _	7/8/04	Perso	nnel	Scott Tuc	ker	Weather		
ite Name	NIMO - Fulton	Evacu	ation Method	Low Flow		Well#	MW-80 com	tinued.
ite Location	S. 1st Ft, Fulton, NY	Samp	ling Method	Low Flow	Low Flow		35165	
Vell informat								
epth of Well		ft.		* Measure	ements taken fro			
epth to Wate ength of Wat		ft. ft.				Top of Well Casi		
engui oi wa				•		(Other, Specify)	Casing	
				<u> </u>				
Vater parame	•	sible pump slowly in center of scree	-			: litoro/minuto		
•	•	gs at every three r		•	iping rate or 0.5	illers/minute	•	:
	Depth	3%	T	3%	Oxidation	Dissolved b	60%	
lapsed	То	316		.3 (0	Reduction	Oxygen / o / e	Turbidity	Flow
ime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min
1142	17.60	56.9	7.73	0,724	-51	0.58	55	105
1145	18.84	56.8	7,73	0,724	~38	0.65	50	105
1148	18.42	57,4	7.74	0,726	-37	0.66	45	1/0
1151	18.65	56.9	7,73	0.724	-39	0.71	45	
1154	18,98	56,9	7,74	0,725	-41	0,71	55	100
1157	19.26	56.8	7,74	0,723	-40	0.70	50	105
1901	19,73	56.6	7.75	0,726	-38	0.76	5U	80
1304	19,99	57.1	7,75	0.705	-36	0.80	50	85
								05
1207	39,90	57.0	7,76	0,735	-34	0,80	50	-
1319	30.46	57,4	7,76	0.739	-44	0.70	55	65
1315	20,67	57.8	7.76	0,724	-43	0,74	\$0	60
1918	30.86	57,9	7,76	0.727	-42.	0.76	50	
1999	21,00	58,0	7,77	6.727	-42	0.77	50	60
1996	21.19	57.9	7,77	0,736	-45	0,74	60	60
1889	21.33	57.9	7,77	0.788	-48	0,73	55	60
1939	21.46	57.9	7,77	0,728	-46	0.73	55	60
					·			
								and the same of th
Water samp				(ن.				
Time collecte	ed: 1245			Total volume	of purged water	164	3,5 gu	<u>(I</u>
Physical app	earance at start				Physical app	earance at samplin	3,5qu e clear	
-	Odor ND					Color Odor		
Sheen/Free I	7.0			•	Sheen/	Free Product	110	
	710				J.ICCIW			
Samples col	The second secon						***	
Container Siz		ner Type	# Collected		ered	Preservative	Cont	iner pH
Home	glass		1 3	No		me HC1		
31								

'Brien 8	& Gere Engineers, Inc.			<u>Low Fl</u>	ow Ground	<u>l Water Sa</u>	l Water Sampling Log		
ate	7/8/04	Persor	nnel	Scott Tuck	er	Weather	Overcust.		
lame	NIMO - Fulton	Evacu	ation Method	Low Flow		Well#	MW-95		
e Location	S. 1st Ft, Fulton, NY	Sampl	ing Method	Low Flow		Project #	35165		
ell informat	ion:	<u> </u>							
epth of Well	18.0)4 <u>f</u> t.		* Measure	ments taken from	i			
epth to Wate		ft.			X	Top of Well Cas			
ength of Wat	er Column	ft.				Top of Protective	_		
					<u> </u>	(Other, Specify)			
ater parame	Position pump	ible pump slowly in center of scree s at every three n	ned interval	& maximum pum		iters/minute			
	Depth 6.3	3%	0.1	3°1°	Oxidation ±lo	Dissolved		T T	
lapsed	To 70.7	> 10	0.'	510	Reduction 210	Oxygen (0)	Turbidity ^い ろ	Flow	
ime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).	
1318	8,72	59.8	6,78	0,710	374	1,96	40	80	
1331	8.76	59.7	6.78	0,712	389	1,59	31	80	
1324	8.81	59.7	6.78	0.713	400	1,60	31	90	
1327	8.84	59.6	6.78	0.712	407	1.60	[9		
1330	8,90	59.1	6.78	0,712	410	1158	17	90	
1333	8.92	59.0	6.78	0.713	414	1,48	13	85	
1336	8,94	60.1	6.78	0,713	415	1,35	13	_	
1339	8,97	59.6	6.78	0,713	417	1.28	13	85	
343	8.99	59.4	6.78	0,713	490	1,32	19	90	
1346	9.03	59.1	6.78	0.713	423	1,31	12	90	
1349	9,03	59.0	6.78	0.713	423	1.31	13	90	
1271	110>	31.0	10/10	0.713	1 182	16.91	13	 10 /-	
				<u> </u>					
						 		- 	
<u> </u>							<u> </u>		
	<u> </u>	<u> </u>		 	 		<u> </u>	. 	
		 			<u> </u>				
					<u> </u>		-		
		 				<u> </u>		 	
• •	 	<u> </u>		 					
	<u> </u>	<u> </u>				1	<u></u>		
Water samp Time collect	ne: ed: 1400	•		Total volume	of purged water r	emoved:	0.5		
	pearance at start 7	,		., ., ., ., ., ., ., ., ., ., ., ., ., .		arance at sampli			
Juruur upp		on Hoculant		•		Color	clear	<u>. </u>	
	Odor NO					Odor	10		
Sheen/Free	Product NO	· · · · · · · · · · · · · · · · · · ·	-		Sheen/f	Free Product	NO	<u> </u>	
Samples co	ollected:								
Container S	ize Contai	ner Type	# Collecte	ed Field Fi	tered	Preservative	Conta	iner pH	
MOM	9/955		3	10		HCI			
26	- jlass			no		none,		·	
<u> </u>								<u> </u>	
L									

O Brien &	Gere Engine	<u>ers, inc.</u>		<u>Low F</u>	w Flow Ground Water Sampling Log					
Date	7/8/04	Perso	nnel	Scott Tuc	ker	Weather				
Site Name	NIMO - Fulton	Evacu	uation Method	Low Flow		Well#	MW-91)		
Site Location 5	S. 1st Ft, Fulton, NY	Samp	oling Method	Low Flow		Project #	35165	<u> </u>		
Well informati										
Depth of Well *			•	* Measure	ments taken from	7				
Depth to Water	1/0	<u>.4∂</u> ft.			X	Top of Well Cas	-	•		
ength of Wate	er Column	ft.		•	<u> </u>	Top of Protective (Other, Specify)	e Casing			
:				·		J(Other, Opecity)		· · · · · · · · · · · · · · · · · · ·		
Water parame		sible pump slowly				194 Ann t A-				
• •		in center of scree is at every three i		•	nping rate of 0.5	iiters/minute				
	Depth 0.3	1 .	1	3%	Oxidation, (o	Dissolved	انگاه			
Elapsed	То	3%	0.1	J /3	Reduction	Oxygen 10%	Turbidity	Flow		
Time	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
1430	11071	56.6	7.55	1,470	62	0,59	9,9	100		
1433	12.20	58.2	7,56	1,470	64	0.58	10	110		
1436	12.37	58.6	7,56	1,470	67	0,59	10	85		
1439	12.66	59.4	7.56	1,470	71	0.64	8.4	80		
1442	12.91	59.6	7,57	1,470	74	0.75	9.0	80		
1445	13.18	59.6	7.57	1,470	75	0.77	8.2	75		
1448 -	13/10	59.2			1,3		0.0	(57		
	12 -		7.57	1,470		1,64	// 0			
1454	13.53	63.0	7.61	1,424	57	1.92	4,8	65		
1457	/3.75	61.4	7,60	1,459	49	08.0	2,4	70		
1500	14.05	59.8	7,59	1,458	46	0.50	<u>ब्रेंग्</u>	95		
1503	14.34	59.3	15.23	1,462	44	0.43	3.9	90		
1506	14.56	59.2	7.59	1.468	44	0.44	3.1	70		
1509	14,75	60.8	7.60	1.465	43	0,39	2.1	70		
1512	14.94	60.8	7.60	1.460	44	0.41	3.3	65		
1515	15.13	61.4	7,60	1.460	44	0.38	3.2	-		
1518	15.31	61.0	7,59	1.456	45	0,38	2.2	80		
1521	15,53	60,6	7,57	1,448	47	0.33	212	80		
1524	15,78	59.8	7.58	1,457	49	0.39	3,0	80		
1527	15.95	59.7	7,57	1,453	51	0.44	3,5	70		
1530	16.14	60.0	7.56	1,448	55	0.49	3.1	70		
Water sample				(044	<u> </u>					
Time collected	1: 1615				of purged water re	emoved:	ndge	211		
Physical appe	arance at start			4	Physical appe	arance at samplin	g ,			
• •	Color Clear	·				Color	Clear	·		
Choon/Eros D	Odor 10		٠		Chass #	Odor	no no	 .		
Sheen/Free P	roduct //v				Sneen/F	ree Product	<u>no</u>			
Samples coll	ected:									
Container Size			# Collected	Field Filt	ered	Preservative		ainer pH		
you	form glass		3	ho		+one H				
	at //			no		non				

O'Brien 8	& Gere Engine	ers, Inc.		Low F	low Ground	l Water Sai	mpling Lo	9
ate	7/8/04	Person	nel	Scott Tuck	er	Weather		
lame	NIMO - Fulton	Evacua	ation Method	Low Flow		Well#	MW-90 (ontinued
ite Location	S. 1st Ft, Fulton, NY	Sampli	ng Method	Low Flow		Project #	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Vell informa	tion:							
epth of Well	*	ft.		* Measure	ments taken from			
epth to Wat		ft.		•		Top of Well Casi	-	·.
ength of Wa	ter Column	ft.				Top of Protective	Casing	
			·			(Other, Specify)		
Vater param	•	sible pump slowly				14 M		
		in center of screen		-	ping rate of 0.5 life	ters/minute		
·	Donale	s at every three m	inute interva		Oxidation	Dissolved	i ogi	
Elapsed	To 5.3	30/2	pol	390	Oxidation Reduction	Oxygen /b ^o /,		Flow
Гime	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
1533	16.33	60.2	7,55	1,444	57	0,55	3.4	75
1536	16,53	60,9	7.55	1,439	58	0.53	3.2	80
1539	16.70	60.6	7,54	1.430	60	0.55	3.1	75
1542	16,92	59.8	7.52	1,425	64	0.60	3.1	75
1545	17.10	59.2	7.52	1.425	65	0,64	3,0	70
1548	17.22	6011	7.51	1,423	64	0.59	3.1	70
		1-			1			
				 	 	· · · · · · · · · · · · · · · · · · ·		
			 					
		 	 	1	1			
	1	<u> </u>	 					
· · · · · · · · · · · · · · · · · · ·	<u> </u>		 		 		 	
		 	ļ	 		<u> </u>	 	
			 	 		 		
			 	 -	-	 	 	
					<u> </u>		 -	
				- 		 		
<u> </u>			<u> </u>	<u> </u>				
Water sam	l le:	<u> </u>	<u> </u>	1	<u> </u>			
Time collect		. 11 1		-	of purged water re	emoved:		
1	pearance at start					arance at samplir	ng	
	Color		•			Color		
61	Odor				O	Odor	 	· .
Sheen/Free	Product				Sneen/F	ree Product		
Samples co	ollected:						· · · · · ·	
Container S		ner Type	# Collecte	d Field Fil	tered	Preservative	Con	tainer pH
		,						
	· · · · · · · · · · · · · · · · · · ·		-		· · · · · · · · · · · · · · · · · · ·	 		·
-			 			- -		
		-						

O'Brien 8	Gere Engine	ers, Inc.		Low FI	ow Ground	d Water Sa	mpling Log	
Date	7/9/04	Persor	nnel	Scott Tuck	er `	Weather	Overes 270°F	
Site Name	NIMO - Fulton	Evacu	ation Method	Low Flow		Well#	MW-10	<u> </u>
Site Location	S. 1st Ft, Fulton, NY	Sampl	ing Method	Low Flow	3 m 15	Project #	35165	
Vell informat		· ·						
Depth of Well				* Measurer	ments taken from	?		
Depth to Wate					<u>×</u>	Top of Well Cas		
ength of Wat	er Column 7.1	<u>4</u> _ft.				Top of Protective	e Casing	
		·				(Other, Specify)		
Water param	eters: Lower submers	sible pump slowly	through stag	nant water colum	nn .			
•		in center of scree		•	ping rate of 0.5 li	iters/minute		
	D45	s at every three n			low-detien	Discoling		
Elapsed	Depth to 7	3%	+1	3%	Oxidation ± (o	Dissolved Oxygen /O	Turbidity 10 /6	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min
0911	7.91	58.5	6.77	1,085	157	6.74	17	75
0914	7.90	57.9	6,77	1,080	161	6.51	11	140
0917	7.10	57.8	6.77	1'038	163	6.44	9,2	740
0920	7.93	58.0	6.78	1.094	164	6.09	9,2	95
0923	7.95	58.1	6.00	1.034	166	6,03	8.3	1
		58.1		1				95
0926	7.95	 	6.78	110 33	167	6.03	8,5	85
6939	7,96	58.6	6.78	1.041	169	5,93	7.3	80
0933	7.96	58.7	6,79	1,090030		5.79	6.3	
0935	7.99	58.1	6,79	1.044	172	5,71	6.9	85
0938	8,00	57.8	6.78	1.187	174	4.38	6.5	100
0941	8.03	57.4	6.78	1.190	176	4,29	4,6	105
0944	8.04	58.0	6,79	1.189	177	4.37	9.4	105
0947	8,05	58.3	6,79	1.187	178	4.33	2,9	105
0950	8.06	58.3	6.80	1,186	179	4,46	1.6	105
0953	8,08	58.5	6.80	1,181	181	4,56	0.55	100
0956	8.09	58.7	6,80	1.178	182	4,62	0,65	100
- 120			1		1.00	1	10105	
							 	
	<u> </u>	<u> </u>				1		
		 	1	 	 	 		
Water samp	<u></u>				<u> </u>	<u> </u>	<u> </u>	
Time collecte				Total volume of	f purged water re	emoved:	1,5901	1.
Physical app	earance at start					arance at samplin		
	Color <u>deac</u>					Color	cleur	 -
	Odor <u>ho</u>					Odor	Slight	
Sheen/Free I	Product	·			Sheen/Fr	ree Product	no	
Samples co	lected:							
Container Siz		er Type	# Collected	d Field Filte	red	Preservative	Contair	ner pH
40ml	Om1 9/045		3	No		HC		*
77	1 10	<u>:</u>	1	w		none	, ,	
25	7(1)		1					
_			1					

<u>O'Brien</u>	<u>& Gere Engine</u>	<u>ers, Inc.</u>		Low Flow Ground Water Sampling Log						
Date	7/13/04	Perso	nnel	Scott Tuck	er	Weather		,		
me	NIMO - Fulton			Low Flow		Well#	Mw-11			
Site Location	S. 1st Ft, Fulton, NY			Low Flow		Project #	35165			
Vell informa	tion:							·		
Depth of Well	11.9	ft.		* Measure	ments taken from	1				
Pepth to Wat		(6/5 ft.	·		X	Top of Well Ca	sing PVC			
ength of Wa	ter Column 9.	∂Gft.	*			Top of Protectiv	_			
		·			L.	(Other, Specify				
Vater param	eters: Lower submer	sible pump slowly	through stag	nant water colun	nn					
•	Position pump	in center of scree	ened interval	& maximum pum		ters/minute		•		
	T	gs at every three r	ninute interva		lo-ideti	Discolused	7	T		
Elapsed	Depth To ャゥック	31.	101	31	Oxidation Reduction	Dissolved	/ピン Turbidity	Flow		
Time	Water	Temperature	рН	Conductivity	Potential	Oxygen _{/δ} γ. (mg/l)	(NTU)	Rate (ml/min).		
1017	2.65	68,9	6.62	0,571	24	1,50	1100			
1017	a.66	67.6	111	0,574	-93	0,67	750	95		
			6.61							
1030	2.66	68.0	6,63	0.578	23	0.48	450	95		
1023	2,66	69.0	6,61	0.558	25	0,46	310	95		
1026	3,66	69.5	6,60	0,553	98	0.42	140	85		
1029	2.66	69.8	6.59	0,540	28	64,0	45	85		
1032	2.66	70.1	6.58	0,5533	33	0,40	22	85		
435	2.66	70.3	6.58	0.530	36	0.37	11	85		
38	2.66	70,2	6.58	0,528	38	0.39	8.0	85		
1041	2.66	70,2	6.58	0.527	40	0.38	5.9	85		
1044	2,66	70.3	6.58	0.526	42	0.36	5,3			
1047	2,66	69.7	6.58	0,525	43	0.34	4.3	85		
		69.7	6:58	1 4	44	6,33		80 80		
1050	2,66			6,535		0.34	3.6			
1053	3.66	69,5	6.58	0.525	45		3,4	80		
1056	2,66	69.5	6.58	0,524	47	0,34	2.5	80		
<u> 1059</u>	2.66	69.5	6.58	0,533	48	0.34	3.0	80		
				<u> </u>		<u> </u>				
			<u> </u>							
			1							
Water samp				:316			. /	,		
Time collect	ed: //15			Total volume of	f purged water re	26	Igall			
Physical app	earance at start	SIAL			Physical appea	rance at samplii				
		flowbant				Color Odor	clear			
Sheen/Free					Sheen/Fr	ee Product	ho	· ·		
										
Samples co	The second secon									
Container Si		ier Type	# Collected		ered	Preservative	Contair	ner pH		
1/00/1	glass	· · · · · · · · · · · · · · · · · · ·	1 3	No		HU				
dL	2L 1		 '-	10		none.				
	1		1	ſ		ī	t t			

<u>O'Brien 8</u>	Gere Engine	ers, Inc.		Low F	low Groun	d Water Sa	mpling Log	
Date	7/7/04	Person	nnel	Scott Tuc	(er	Weather		
Site Name	NIMO - Fulton	Evaçu	ation Method	Low Flow		Well#	MW-125	
ite Location	S. 1st Ft, Fulton, NY	Sampl	ling Method	Low Flow		Project#	35165	
Vell informat	ion:		 					
Depth of Well				* Measure	ments taken fron	<u>n</u>		
Depth to Wate					X	Top of Well Cas	_	•
ength of Wat	er Column /D.3	6 ft.				Top of Protective	e Casing	
		·			L	(Other, Specify)		
Nater parame	eters: Lower submer	sible pump slowly	through stag	nant water colu	nn	ν.		
•	Position pump	in center of scree	ned interval &	& maximum pun		liters/minute		
	Collect reading	ninute interva 士のし	± 3%	Oxidation+10	Dissolved	p/		
Elapsed	Depth + p.3	± 3 %	1""	1 7 7	Reduction	Oxygen ± (3%	/o% Turbidity	Flow
Time	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (mi/min).
1340	5.72	64.9	6.76	0.626	0,636370	1.83	3.3	100
1343	5.68	61.6	6.71	0.629	95]	0.62	2,7	100
1346	5,72	61.8	6.71	0.630	247	0,49	1.7	115
1349	5,79	61.8	6,71	0.629	246	0.43	1.5	-
1352	5.85	61.6	6,71	0.629	248	0,39	22	130
1355	5,90	61.5	6,71	0,630	247	0,40	16	100
	5,94		 					700
1358		62.5	6.72	0,638	248	0,49	15	
1401	6,01	62.0	6,73	0.628	247	0,44	10	/00
1404	6,04	62.0	6,73	0.628	244	0,43	8.1	
1407	6.07	62.3	6.74	0.630	243	0.43	8.4	90
1410	6,10	62.5	6,74	0,629	240	0.43	7.4	90
1413	6.13	62.5	6,75	0,632	237	0,42	7,2	900
1416	6,15	62.4	6,75	0,631	<i>a</i> 35	0.44	6.6	90/00
1419	6.20	62.6	6.75	0.634	332	0.43	6,3	100
1499	6.24	62.2	6,75	0,634	231	0.45	6.3	100
		<u> </u>						
								N N
								1
					·			·
Water sampl		1,5		, 218		,54	1.5	
Time collecte	d: 1455			Total volume	of purged water re	South	~190/	· .
Physical appe	earance at start				Physical appea	arance at samplin	- 1	
	Odor Op	<u> </u>	•			Color Odor	dear	
Sheen/Free P		<u>·</u>		· .	Sheen/F	ree Product	no no	
					Ollectol.		<u></u>	
Samples col				Organization Production of the				
Container Siz		er Type	# Collected		ered	Preservative	Contai	ner pH
40ml	glas	3	79	No.	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	HCI		·
***	DLDL 101		 	no	·	none		
1						1	. 1	

D'Brien &	<u> Gere Engine</u>	<u>ers, Inc.</u>		Low FI	Low Flow Ground Water Sampling Log						
ate	7/7/04	Person	nel	Scott Tuck	er	Weather	Overcost ~	80°F			
lame	NIMO - Fulton	Evacua	ation Method	Low Flow		Well#	MW-12B				
ite Location	S. 1st Ft, Fulton, NY	Sampli	ing Method	Low Flow		Project#	35165				
/ell informat	lion:					3					
epth of Well	* 37	83 ft.		* Measure	nents taken fron						
epth to Wate			•		<u> </u>	Top of Well Cas					
ength of Wat	ter Column <u>30.7</u>	- <u>P</u> ft.			•	Top of Protectiv	=				
	·					(Other, Specify)	·				
Vater param	Position pump	rsible pump slowly in center of scree gs at every three n	ned interval &	k maximum pum		iters/minute		:			
	Depth	±3%		24	Oxidation + 10	Dissolved	1.0	T			
lapsed	To \$03	oF.	2.1	M5/cm = 310	Reduction	Oxygen 18%	10%	Flow			
ime	Water	Temperature	рH	Conductivity	Potential	(mg/i)	(NTU)	Rate (ml/min)			
1199		67.0	7.54	0,660	337	2.86	23	135			
1126 -	8.17	59.7	7.49	0,701	334	3.03	26	195			
1139	8.56	58.9	7,48	0.705	329	2.86	26	100			
1132	8.76	60.0	7,49	0.707	396	2.93	27	110			
1135	8.96	60,6	7.50	0,703	327	2.71	26	100			
138	9.18	60.3	7,50	0.703	328	2.66	29	110			
1141	9,32	60.1	7.50	0.703	329	2.77	28	125			
1144	9,40	60.0	7,51	0,69)	327	2,55	28	120			
3 4	9,54	60.3	7,52	0.699	324	2.43	32	110			
1150	9,59	60,5	7,51	0,690	320	2.44	30	110			
1163	9.66	60,9	7,51	0.693	316	2.40	31	//0			
1156	9.70	62.5	7.53	0,687	31)	2.32	26	100			
1159	9.75	63,1	7,53	0,682	307	2.25	22				
1203	9.79	63.3	7,53	0,677	304	2.15	24	85			
1205	9,90	62,4	7,53	0.681	299	2,14	22	100			
8061	9,92	62,5	7,53	0,674	295	2.16	25	105			
1911	9.95	62.1	7,54	0,676	290	2,12	28	110			
				•							
	pearance at start Color <u>Clear</u>			ು∋ Total volume d	of purged water r Physical appe	arance at sampl Color	clear	·			
Sheen/Free					Sheen/f	Odor Free Product	no no				
Samples co Container S		iner Type	# Collecte	d Field Filt	ered	Preservative	in in the second	iner pH			
LOM!			# Collecte			H(Conta	iner Mi			
aL) a	n		nove.					

O'Brien &	& Gere Engine	ers, Inc.		Low FI	ow Groun	d Water Sa	ampling Lo	<u></u>	
Date	11/3/05	Person	nnel	Scott Tucker	/Jay Kavanaugh	Weather	Windy ~6	(10) - (10)	
Site Name	South First Street	Evacu	ation Method	Low Flow		Well#	mw-1	(10') (10'	
Site Location	Fulton, NY	Samp	ling Method	Low Flow		Project #	1118/35165		
Vell informa	tion:								
Depth of Well	ı*	ft.		* Measurer	ments taken from	<u>m</u>			
epth to Wate	er* <u>3</u> 3	<u>37 </u>	•		X X	Top of Well Ca	-		
ength of Wa	ter Column	ft.				Top of Protecti			
						Other, Specify	() 		
Vater param	· ·	rsible pump slowly				liters/minute		· · · · · · · · · · · · · · · · · · ·	
	· ·	igs at every three r			·, •				
	Depth		,	3	Oxidation	Dissolved			
Elapsed	То			4	Reduction	Oxygen	Turbidity	Flow	
Time '	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)	
54	4,47	14,100	7.86	1,68	151	5,85		150	
59	5.11	14,000	7.92	Ø ,762	151	4,64	3.69	150	
04	5,39	13,9	7,98	not working	/53	3.63	3,53	150	
09	5,48	14.0	8:04	1	153	4,40	5,30	50x00 /25	
14	5,49	14.2	8.07		/53	4.06	5,36	150	
19	5,65	14.0	8,09		153	4,08	48,54	125	
24	5:67	14.1	8,08		159	3.99	4,31	125	
29	5,65	14.2	1		155	4,14	4,50	125	
अन	2,62	1710	8:08		120	1117	7, 50	133	
	<u> </u>		ļ	ļ		-			
			<u> </u>			<u> </u>			
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	 	<u> </u>		-			
			ļ						
				·					
			<u></u>						
- w.									
			†			- 	+		
				<u> </u>					
				<u> </u>					
Water samp	le:		<u> </u>	L	<u> </u>		1.		
Time collecte				Total volume of	purged water re	emoved:	~1.5	<u>yulluns</u>	
	earance at start				-	arance at sampli	na /	/ /	
yo	Color color	655			, 0.00. uppo	Color	colorle	55	
	Odor NO					Odor	NO		
Sheen/Free F	Product // D	100			Sheen/F	ree Product	เลโกอ		
Samples col	llected:	· · · · · · · · · · · · · · · · · · ·			·		·		
Container Siz	****************	ner Type	# Collected	Field Filte	red	Preservative	Conta	iner pH	
	Soniae			- seems tout			SSIIIA		
		-	<u></u>			<u> </u>			
lotes:				$-t\epsilon$	o'Samol	المداء			

'Brien	<u> Gere Engine</u>	<u>ers, Inc.</u>	 	Low Flow Ground Water Sampling Log						
ate	110305	Perso	nnel	Scott Tucker	/Jay Kavanaugh	Weather	Sugar / windy +	70°F		
lame	South First Street	Evacu	ation Method	Low Flow		Well#	MW-2-11030	<u> </u>		
te Location	Fulton, NY	Sampling Method		Low Flow		Project #	1118/35165			
	Depth				Oxidation	Dissolved		T		
apsed	To	土3% Temperature		±3%	Reduction	Oxygen	Turbidity	Flow		
me	Water ± 0,3		pH. ±.1		Potential 10	(mg/l)±10%	(NTU)£1つる	Rate (ml/min).		
5	6,79 Ft	14.70	7,29	0,993 km		9.47	112	200		
1438	6.78	14.5	7.39	0,994	-40	5.34	101.8	200		
<u>[441 </u>	6.83	14.2	7.35	0.992	-39	4,27	115	200		
444	6,97	14.2	7,30	0.989	-36	3,69	96.7	200		
447	6,92	14.1	7,27	6.984	-35	3,48	73,4	200		
456	6.95	14.0	7.23	0.982	-32	3.37	69.9	260		
1453	6.99	14.6	7.21	0.981	-36	3,29	57.7	200		
1456	6.99	14.0	7.19	0.978	-28	3,24	46.9	206		
1459	7,01	14.0	7.18	0.975	~25	3,19	90,3	260		
DY 1502	7.03	13.9	7,15	0.974	-23	3.17	32.9	200		
1505	7.05	13,9	7.14	0,971	-21	3.13	29.5	200		
1508	7.09	13.9	7.14	0,971	-21	3,06	36.1	700		
1511 .	7.10	13.9	7.13	0.966	-21	3.06	28.3	ZGO		
1514	7, 10	13.9	7.12	0.968	-20	3,03	27.6	200		
517	7:12	13.8	7.11	0.966	-17	3.03	24.7	200		
320	7.15	13.8	7.10	0.964	-15	3.02	21.5	700		
1523	7.15	13,8	7.10	0,966	-16	3,03	22.0	200		
1526	7,16	13,4	7.10	0,963	- j4	3.62	20,4	200		
1529	7,17	13.8	7.09	0,962	-12	3,15	18.5	200		
1532						,				
1535										
				·						
Vater samp		e4	• Î	,03	10	04	2.5	//		
	ed: 1538			Total volume o	of purged water re		2.79	allons		
hysical app	earance at start Color <u>Color less</u>				Physical appea	arance at sampli Color	ng colo-less			
•	Odor //	<u> </u>				Odor	N			
Sheen/Free	Product N/N	· · · · · · · · · · · · · · · · · · ·			Sheen/F	ree Product	NIN			
Samples co Container S	***************************************	er Type	# Collecte	d Field Fift	ered	Preservative	Contair	ner nH		
-Unamprod	Condi		Journelle	in element			Contail	ici pit		
		· · · · · · · · · · · · · · · · · · ·								

O'Brien	<u>& Gere Engine</u>	<u>ers, Inc.</u>		Low FI	ow Ground	d Water Sa	mpling Log	
Date	11/3/05	Perso	nnel	Scott Tucker	/Jay Kavanaugh	Weather	Sunny Breezy	50°F
Site Name	South First Street	Evacu	ation Method	Low Flow			MW-3-82+455+	
Site Location	Fulton, NY	Samp	ling Method	Low Flow		Project #	1118/35165	Jage
Well informa	tion:							
Depth of Well	* <u>/8.7</u>	7 <i>6</i> ft.		* Measure	ments taken from	! .	•	
Depth to Wat	er* <u>9.9</u>	<i>6</i> ft.			X	Top of Well Cas	ing	
ength of Wa	ter Column 💹 🦧 🥞	ft.				Top of Protective	_	
						(Dther, Specify)		
Nater param	Position pump	sible pump slowly in center of scree gs at every three r	ened interval &	k maximum pum		ters/minute		
· · · · · · · · · · · · · · · · · · ·	Depth			Υ.	Oxidation	Dissolved		
Elapsed	То	8 +3%	±.1	±3%	Reduction	Oxygen	Turbidity	Flow
Time	Water±.3	Temperature	рН	Conductivity	Potential I/O	(mg/l) ± 10%	(NTU) ±1096	Rate (ml/min
0	10.04	15,1	6,44	.686	20 3	7,62	35,0	200
0845	10.06	15.2	6.48	.696	208	6,04	19,9	200
0848	10.06	15.2	6.47	5K076.702	217	4.84	9.93	200
085i	10.05	15.2	6.47	.703	221	4,53	7.73	zco
0154	10.05	15.2	6.47	.707	226	4.21	4,67	zoc
0851	10.05	15.2	6.48	:708	229	4.05	4.46	200
0900	10,05	15.2	6,49	,709	231	3,92	341	200
0903	10,05	15.2	6.49	.769	233	3.82	3,45	200
0966	10.05	15.2	6,49	,709	234	3.77	3.66	200
0909	10.05	15,3	6,50	,71.2	234	3.77	3.47	200
0912			<u> </u>		7.7	7:2		
0915								
0119			†	·				
		1				<u>. </u>		
		-	1		<u> </u>			
		<u> </u>	 				·	
		<u> </u>	 					· ·
		1	<u> </u>			,		
-		,	+					
	-	 	-		 	1.		<u> </u>
Water sampl	le: 3	ـــــــــــــــــــــــــــــــــــــ	, t	·02	16	-5	. g	<u> </u>
Time collecte	حن ا	e 3	• •		<i>l o</i> purged water re	_	2.5 m	<i>†</i>
	earance at start				•	rance at sampling	9	
,	Color Colorle	55			. ,,	Color	<u>Color less</u>	· •
A. *** -	Odor				.	Odor	N	-
Sheen/Free F	roduct//	<u>-</u>			Sheen/Fre	ee Product	_ <i>N/N</i>	-
Samples col	lected:							
Container Siz		er Type	# Collected	Field Filte	red	Preservative	Contain	er pH
			 					
			1					
- 	<u> </u>		<u> </u>				<u> </u>	

O'Brien	& Gere Engine	ers, Inc.		Low F	low Ground	d Water Sa	mpling Log	
)ate	///o7/o5 South First Street	Person	nel Ition Method		r/Jay Kavanaugh	Weather Well #	Sunny 70 Mw-3 12fg	
Site Location		•	ng Method	Low Flow		Project #	1118/35165	
Vell informa								
epth of Wel		76 ft.		* Measure	ments taken from	1		
epth to Wat	•				X	Top of Well Cas	sing	
ength of Wa	iter Column 8.7					Top of Protectiv	e Casing	
				• • • • • • •		(Other, Specify)		
Vater paran	Position pump	sible pump slowly in center of screen as at every three m	ned interval a	& maximum pun		ters/minute		
	Depth	s at every timee in	midle milerve	7	Oxidation	Dissolved	F	<u> </u>
Elapsed	_	£7G		± 390	Reduction	Oxygen	Turbidity	Flow
Time	Water ± . 6:3	Temperature 6	pH 🚁 🥴	Conductivity	Potential Lia	(mg/1)过10%	(NTU) I 10%	Rate (ml/min)
0	10.00	16.5 15.3	6.53	0.747	223	5.93	26,4	220
1033	10.04	15,4	6.50	0:738	228	4.69	13.1	200
1036	16.65	15.5	6,48	6,729	235	4.34	9.64	200
1039	10.05	15.6	6.48	0.725	240	4,26	10.97	200
1042	10.05	15.6	6.49	0.724	242	4.14	4.31	200
1045	10.05	15.6	6.48	0:726	244	40/4	8.00	200
1048	10105	15.6	6,49	0.728	246	4,04	2.92	200
1051	10.05	15.5	649	0.729	249	3.90	2.79	200
254	10.05	15.5	6.48	0.730	250	3.81	2.60	200
1057	10.05	15.5	6.49	0.726	251	3.76	2,34	200
1100		·						
					`			
							· ·	
				·				
								
						·		
						_		
Water samp		<u>*5</u>	٠ĺ	062	ıG	04	i.i	<u></u>
	ed: 1165	•		Total volume	of purged water re		2 gal	 ·
Physical ap	pearance at start Color Colocidas				Physical appea	arance at samplin Color	•	_
	Odor A	<u> </u>				Odor	Lolo(les)	2
Sheen/Free	Product/N				Sheen/F	ree Product	N/N	_
Samples co	llected:							
Container S	***************************************	er Type	# Collecte	field Filt	ered	Preservative	Contair	er pH
		·						
<u> </u>			 	<u> </u>		 		
			<u> </u>					

O'Brien	& Gere Engine	ers, Inc.	 <u></u>	Low F	ow Flow Ground Water Sampling Log				
Date	11/3/05	Persor	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Sanny	45.0F	
Site Name	South First Street	Evacu	ation Method	d Low Flow		- Well#	MW4 (944)		
Site Location		- _ Sampl	ing Method	Low Flow		- Project #	1118/35165		
Well informa	tion:					- . 			
Depth of Well		9 it.		* Measure	ments taken fror	n			
Depth to Wate		/ / ft.			1	Top of Well Ca	asing		
Length of Wa		ft.				Top of Protect	-		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•		Other, Specif	y)		
Water param	Position pump	sible pump slowly in center of scree gs at every three n	ned interval	& maximum pun		liters/minute			
_	Depth	İ		1.	Oxidation	Dissolved			
Elapsed	To Water F∤	Temperature	рН	MS/CM Conductivity	Reduction Potential	Oxygen	Turbidity	Flow	
Time O	6.59	/6. L	7,05	0.97	~ G G	(mg/l)	(NTU)	Rate (ml/min).	
1245	6,95	1		0.96	-100	6.88	151	200	
1248	6.99	16.2	7.07		-108	6.34	95,6	200	
1240	7,00	16,2	7.06	0.96	 	5,84	58.2	200	
1251	7.01	16.2	7.06 7.05	0.95	-10Z	5.76	41.7	260	
		16.1	7.05	0.95			30,8	Z00 Z00	
1257	7.01	16,2	1	0,93	-103	5.64	23.3	200.	
1300	7.02	16.2	7.05	0.95		5,49	18.6		
1303		16.2	7.04	0,96	-105	5,40	18.1	7.00	
1366	7.64	16.2	7.05	0.46	-107	5,32	14,6	200	
1369	7.04	16.7	7.05	0.96	-107	5,25	14,8	200	
130.2	7.05	16,2	7.07	0.96	-109	5,21	13.5	26G	
1315	7.05	16.2	7.05	0.96	7/16	5.14	14,2	260	
1318	7.06		7.06	0.97		5,08	/2:/	200	
1321	7.66	16,2	+	6,97	~ <i>j</i> [<i>j</i>	4,98	11,2	200	
1324	7,07	16.1	7.06	0.97	-111	4.95	10:26	200	
1327	7,08	16.2	7.66	0.98	-112	4.86	8.93	200	
1330	7.09	16.2	7,07	0.98	-112	4,79	8,86	700 200	
1333	7,01 7.10		7,68	0.98		4,74	8:26	- 	
1336	7.10	16.1	7.07	0.98	-112	4.68	7,49	200	
Water sample		16.2	17107	10:99	1-113	.5	7.22	1 200	
Time collecte				Total volume o	f purged water re		690		
I .	earance at start				Physical appea	arance at sampl	ing		
1	Color Colories	<u> </u>				Color	Unione	<u> </u>	
Sheen/Free F	Odor // Product // //				Sheen/Fi	Odor ree Product	MEP		
Silverin fee f	N/W	······································			Oneen/Fi	- I IOGGOL	11/10		
Samples col	*************								
Container Sta	e Contain	er Type	# Collected	Field Filte	red	Preservative	Conta	iner pH	
			 			-			
	·								
I.	Dunk	~ ».							

Name South First Street Evacuation Method Low Flow Well # Mw + (5 + 1) Site Location Fulton, NY Sampling Method Low Flow Project # 1118/35165 Depth To Oxidation Oxygen Turbidity Flow	O'Brien & Gere Engineers, Inc. Low Flow Ground Water Sampling Log									
Depth To Temperature pH Conductivity Dissolved Turbidity Flow Flow Turbidity Flow Flow Turbidity Flow Flow Turbidity Flow		South First Street	Evacı	uation Method	Low Flow	r/Jay Kavanaugh	- Well#	MW4 184	<u>40°/</u> 24)	
	=====			T	T	Ovidation	<u> </u>	1110/33103		
# 1342 7.10 6.7 7.07 0.98 -113 4.53 7.01 200 1345 7.10 16.1 7.06 6.99 -113 4.53 6.27 200 1348 7.10 16.1 7.06 6.99 -113 4.47 5.78 200 1354 7.11 16.2 7.06 6.99 -113 4.46 5.55 200 1354 7.11 16.2 7.06 6.99 -113 4.46 5.77 200 1357 7.11 16.2 7.05 6.99 -113 4.41 5.77 200 1357 7.11 16.2 7.05 6.99 -113 4.47 5.72 200 23 pteo 7.11 16.2 7.05 6.99 -113 4.28 5.26 200 24 pteo 7.11 16.2 7.05 6.99 -113 4.28 5.26 200 24 pteo 7.11 16.2 7.05 6.99 -114 4.25 4.52 200 24 pteo 7.12 16.2 7.05 6.99 -114 4.25 4.52 200 24 pteo 7.12 16.2 7.05 6.99 -114 4.25 4.52 200 24 pteo 7.12 16.2 7.05 6.99 -114 4.25 4.52 200 24 pteo 7.12 16.2 7.05 6.99 -114 4.18 4.44 200 24 pteo 7.13 16.2 7.05 6.99 -114 4.18 4.44 200 24 pteo 7.13 16.2 7.05 6.99 -114 4.18 4.44 200 24 pteo 7.13 7.13 7.13 7.13 7.15	Elapsed Time	То	Temperature	pl≇	Conductivity	Reduction	Oxygen	1 -	1	
1345 7.10 16.1 7.06 6.99 -i13 41.53 6.27 200 1348 7.10 16.1 7.06 6.99 -i13 41.47 5.78 200 1351 7.11 16.1 7.06 6.99 -i13 41.47 5.78 200 1351 7.11 16.2 7.06 6.99 -i13 41.41 5.77 200 1357 7.11 16.2 7.05 6.99 -i13 41.41 5.77 200 1357 7.11 16.2 7.05 6.99 -i13 41.36 47.72 200 1400 7.11 16.1 7.05 6.99 -i13 41.36 47.72 200 1401 7.11 16.2 7.05 6.99 -i14 41.23 41.57 200 1402 7.12 16.2 7.05 6.99 -i14 41.23 41.57 200 1409 7.12 16.2 7.05 6.99 -i14 41.23 41.57 200 1419 7.12 16.2 7.05 6.99 -i14 41.19 41.49 200 1419 7.12 16.2 7.05 6.99 -i14 41.19 41.49 200 1419 7.12 16.2 7.05 6.99 -i14 41.19 41.49 200 1419 7.12 16.2 7.05 6.99 -i14 41.19 41.49 200 1419 7.12 16.2 7.05 6.99 -i14 41.19 41.19 41.49 200 1419 7.12 7.15 7	A 1342	7:10	16.7	7.07	0.98	-113				
3 44		7.10	T	7.06	1	-113				
13.5 7.1 16.1 7.06 6.99 -113 4.46 5.55 200		7,10				-113	1		200	
1364 7.11	1351	7.11	T	7.06					260	
1357 7,11 16,2 7,05 0,99 -113 4,36 5,21 200 231400 7,11 16,1 7,05 0,99 -113 4,36 4,72 260 4703 7,11 16,2 7,05 0,99 -113 4,28 5,26 200 4704 7,12 16,2 7,05 0,99 -114 4,23 4,57 200 4709 7,12 16,2 7,05 0,99 -114 4,20 4,61 200 4712 7,13 16,2 705 0,99 -114 4,18 4,44 200 4715 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,44 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,49 200 4716 17,13 16,2 7,05 0,99 -114 4,18 4,49 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4,19 4,19 200 4716 17,13 16,2 7,05 0,99 -114 4,19 4			·· I	7.06						
### ### ### ### ### #### #### ########			1	7.05		~ i/3				
				7						
1406 7, 1										
1909 7,12 16,2 7,05 C,-49 -114 4,18 4,44 200			1			-114				
141 2 7.13 16.2 705 0.99 -114 4.19 4.44 200 141 5			1						200	
Water sample: Time collected: HZC Physical appearance at start Color (clorless Odor W Sheen/Free Product N/N Samples collected: Container Type # Collected Field Fillered Preservative Container pH			1							
Water sample: Time collected: H2O Physical appearance at start Color (clarless Odor W Sheen/Free Product W/W Samples collected: Cortainer Size Container Type # Collected Field Fillered Preservative Container pH										
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH										
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH		<u> </u>								
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH		 								
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH										
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH							+	 		
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH										
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH		1								
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH		 		 - ;	 	 				
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH				 						
Water sample: Time collected: 1420 Physical appearance at start Color (olocless Odor W) Sheen/Free Product M/N Samples collected: Container Type # Collected Field Filtered Preservative Container pH			-							
Water sample: Time collected: 1/20 Physical appearance at start Color (clorless Odor W) Sheen/Free Product Samples collected: Container Type # Collected: Field Filtered Preservative Container ph			_	 	 		+			
Time collected: H2G Physical appearance at start Color Col						 	<u>'</u>			
Time collected: H2G Physical appearance at start Color Col		<u> </u>			- -	- 				
Time collected: H2G Physical appearance at start Color Col		<u> </u>								
Time collected: H2G Physical appearance at start Color Col			<u> </u>			 	<u> </u>			
Sheen/Free Product N/N Sheen/Free Product N/N	Time collect	red: 1426 pearance at start			Total volume			oling	ns	
Container Size Container Type # Collected Field Filtered Preservative Container pH	Sheen/Free	Odor W	55			Sheen/F	Odor			
Container Size Container Type # Collected Field Filtered Preservative Container pH	Samples co	ollected:						<u> </u>		
	***************************************	······································	n er Type	# Callecte	ed Field Fil	ered	Preservative	Cont	ainer pH	
										
	 					· · · · · · · · · · · · · · · · · · ·	+			
1=1-1								L		

ate	11/2/25	Persor	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	SURRY/BIERRY 400F	
ite Name	11/2/05	_	ation Method		May Kavanaugii	- Well #	mw-4 /1	/
	South First Street					-	1118/35165	· ·
ite Location	Fulton, NY	Sampi	ing Method	Low Flow	<u> </u>	Project #	1110/30100	
Vell informa								
epth of Well		5.79 ft.		* Measure	ments taken from	٦.		
epth to Wat	er *	**, &4 ft. 1: 95° ft.			<u>X</u>	Top of Well Ca	-	
ength of Wa			9. <i>3</i> 4		ļ	Top of Protecti (Other, Specify	-	
		145 X3-6	1,17					
Vater param	eters: Lower subme	ersible pump slowly	through stag	nant water colur	nn			
		p in center of scree			ping rate of 0.5	liters/minute		
		ngs at every three n	ninute interva T	ils ,	Out delt	T Disaskust	<u></u>	· ·
lapsed	Depth To			,	Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow
iapseu Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
()	6.89	15.2	6,90	1.10	-90	6.70	101.3	<i>20</i> 0
	· · · · · · · · · · · · · · · · · · ·			1.13	 	4,22	62.7	
1507	6.99	15.5	6.91		- 97			<u> 2</u> 00
1510	7.00	15.7	6.92	1.15	- 102	3,81	47.1	200
1513	7.06	15.8	6.96	1.16	-/06	3.63	33.9	ZCO
1516	7.01	15.9	6.97	1.16	-109	3,48	30,2	2 <i>6</i> G
1519	7.01	15.9	6.99	1.15	-110	3,40	32,0	200
1522	7.03	15.9	7.01	1.12	~111	3.35	36,1	200
1525	7.03	16.0	7.01	1,08	-110	3,29	34.5	200
1528	7.03	15,9	7.01	1.67	-/10	3.28	29,5	200
1531	7.03	15.9	7.01	1,06	-110	3,27	24.7	200
1534	7.03	15.9	7.ci	1.05	-116	3,26	21.4	200
	1	15.9	7.02	1.04	-110	3.23		
1537	7,03				-110		15.2	200
1540	7.64	15.9	7.02	1.04		3.22	/3.0	200
1543	7,04	15.9	7.02	1.04	-116	3,20	10,23	200
1546	7.04	15.9	7.02	1.03	-110	3,20	7.51	200
1549	7.64	16.0	7.02	1.03	-111	3,19	7.55	200
1552	7.64	15.9	7.01	1,63	-111	3.19	6,23	200
1555	7.64	15.9	7.01	1.03	-111	3.17	5,60	200
1558	7.04	15.9	7.61	1.03	-110	3.16	4.49	260
Mg 1601		15.9	7.01	1.03	-110	3:16	4.101	200
Water samp	le:						.755	
Time collecte	ed: 1620			Total volume of	of purged water re	emoved:	3,56	allons
Physical app	pearance at start				Physical appe	arance at sampl		•
		ljes	•		•	Color	Colorle	<u> 5</u> 5
	Odor MPG Product N/N				Shoon/E	Odor ree Product	MPG Y/N	_
Sheen/Free	Product ///	<u> </u>						
Samples co	illected:			· · · · · · · · · · · · · · · · · · ·				
Container S	PROGRAMMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSES	ilner Type	# Collecte	j Fæld F##	ered	Preservative	Contail	ner pH
								·
								
<u> </u>		<u></u>						
1	ssible sheen							

O'Brien	<u>& Gere Engine</u>	<u>ers, Inc.</u>		<u>Low F</u>	Low Flow Ground Water Sampling Log					
Date	11/02/05	Perso	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Sunny/B	recey 40°F		
Name	South First Street	Evacı	uation Method	Low Flow		Well #	MW-4-11	<u>'eczy 40°F</u> 2'}		
Site Location	Fulton, NY	Samp	ling Method	Low Flow		Project #	1118/35165			
	Depth		T		Oxidation	Dissolved	1	T		
Elapsed	То		}		Reduction	Oxygen	Turbidity	Flow		
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
1604	7.04	16.0	7.01	1.02	~ 110	3.19	4,64	200		
1607	7.04	16,0	7.01	1.02	-110	3,14	4.82	200		
·			<u> </u>							
			<u></u>							
								·		
	•					<u> </u>				
	 				<u> </u>					
	 	<u> </u>	 	 		 				
			 		 	 				
	<u> </u>		 		 	<u> </u>	 			
				 						
	 		-	 		 				
			 		 					
				 	- 		···			
					 	ļ				
						ļ				
				 	<u> </u>	<u> </u>				
			<u> </u>	<u> </u>						
		·								
							•			
Water samp	-J V - A									
4	ed: 14626 1620			Total volume	of purged water r		3.56			
Physical app	oearance at start Color				Physical appe	earance at samp Color	ling <u>Lolo(le 53</u>			
}	Color Miles					Odor	<u></u>	<u> </u>		
Sheen/Free					Sheen/F	ree Product	YIN	 .		
			 							
Samples co	***************************************	iner Type	# Callecte	d Field Fil	ered	Preservative	le	ainer pH		
E-S. Hamiler S	coma		Someth	i i crossii		1.162E148R46	CONG	arries en i		
 		A . 64			·			<u>-</u>		
Notes: Por	sible sheen	from ATh	inckal							

	<u> & Gere Enginee</u>	LOW I	Low Flow Ground Water Sampling Log					
ate	1/02/05	Person	nel	Scott Tucker	/Jay Kavanaugh	Weather	Night Colm 640F MW-5 Colompice	
lame	South First Street	Evacua	tion Method	Low Flow		Well #	mw-5	Cathopix 10
ite Location	Fuiton, NY	Sampli	ng Method	Low Flow	-	Project #	1118/35165	
ell informa	tion:							****
epth of Well		<u>58</u> ft.		* Measure	nents taken fron	1		
epth to Wate	er* <u> </u>	<u>03</u> ft.			يحر	Top of Well Cas	ing	
ength of Wat	ter Column	ft.				Top of Protectiv	_	
						(Other, Specify)		
/ater param		ible pump slowly t				iters/minute		· · · · · · · · · · · · · · · · · · ·
		s at every three m			ping rate or e.e ii	ito o minuto		
	Depth		<i>i</i> 1	4	Oxidation	Dissolved		
lapsed	To £ 3%	23%	I ol	13%	Reduction	Oxygen	Turbidity	Flow
ime		Temperature	рн 🥨	Conductivity	Potential 40	(mg/I) 16%	(NTU) 10%	Rate (ml/min).
0	6.03	14.5	6,87	.639	-60	5.17	45.5	150
01718	6.18	14.8	6:74	0.628	-65	3.89	41.9	200
1721	6.20	14.9	6.76	0.615	-68	3.64	41.9	200
1724	6,20	15,0	6.79	0.610	-70	3,50	41,5	200
727	6,22	15.1	6,81	6.609	-73	3.37	34,4	200
730	6,22	15,2	6,83	0.603	-75	3,30	29.8	200
733	6,23	15.2	6,84	0,600	-77	3,23	24,1	200
73 6	6,23	15.3	6,85	0,600	-78	3,21	15.3	200
39	6.27	15,2	6.88	0.594	-80	3.19	13,6	200
741	6.23	15,2	688	0591	-80	3,17	11,4	200
174	C.24	15.3	6.90	0.603	-81	3,10	10,94	ZCC
1747	6.29	15.3	6.90	0.592	-82	3.10	8,82	200
1750	C,24	15,3	6,89	0.588	-83	3,10	7,13	700
1753	6.24	15,2	6.90	0.591	-83	3.11	7.13	·200
1756	6,24	15,1	6,90	0,590	-84	3,10	5,92	200
1759	6,25	15.2	6.90	0.590	-84	3,66	5,33	200
1802	6.25	15.1	6,91	0,588	-85	3,06	32499	<i>20</i> G
1805	6.25	15,2	6,92	0.588	-85	3,06	5.21	ZOC
				<u></u>	1	<u> </u>		
Nater samp		• 5	,01	e O Z	f purged water re	n 4		
	ed: 1815	•		Total Volume			2 Ga	·
nysicai app	pearance at start Color <i>Lolocies</i>	6			Physical appe	arance at sampli Color	ng Inlanded	
	Odor MPG					Odor	MPC	
Sheen/Free					Sheen/F	ree Product	Sligh Sheen	Zw.
Samples co	llected:							
Container Si	WOMEN AND ADDRESS OF THE PARTY	er Type	# Collecte	d Field Filt	ered	Preservative	Contair	ier pH
_			1			1		
			+					

<u>ס פווס ע</u>	<u>& Gere Engine</u>	LOWF	low Groun	u vvater S	amping Lo	<u>u</u>		
Date	11/2/05	Person	nnel	Scott Tucke	r/Jay Kavanaugh	Weather		
ite Name	South First Street	Evacu	ation Metho	d Low-Flew	bailer	Well#		·
Site Location	Fulton, NY	Sampl	ing Method	Low Flow	builer	Project #	1118/35165	
Vell informa	tion:	0.1	·					
epth of Well		tlo n.		* Measure	ments taken from	~		
epth to Wate	er *	31 ft.				Top of Well Ca	=	
ength of Wat		45 ft.				Top of Protect	_	
	<u> </u>	01=3455	3001-	10,5515	<u> </u>	(Other, Specif	y) 	
Vater param	Position pum	rsible pump slowly p in center of scree ngs at every three n	ned interval	& maximum pum		liters/minute		
	Depth	l ar every amount	I		Oxidation	Dissolved		
Elapsed	To			mslam	Reduction	Oxygen	Turbidity	Flow
rime	Water	Temperature	pt∄	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
initual		15=1	7.59	0.373	152	7,94		
5		12.9	4,02		-79	7.04		
	<u> </u>			0,366\$	 			
10	N &	12.3	8,93	0,425	1 127	6,17		
15	Dry at	12 gallon	<u> </u>	· · · · · · · · · · · · · · · · · · ·	ļ		<u> </u>	
	/	/ '						
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>			- 	
		· ·	ļ			<u> </u>		
		<u> </u>	<u> </u>	· ·			_	
			<u> </u>					
					1.			
·			 			1		· · · · · · · · · · · · · · · · · · ·
			ļ	+	+	 		
<u> </u>	<u> </u>		· ·		 		- 	· ·
	ļ				ļ			
	ļ	_						
						-		
						<u> </u>		
	earance at start Color Colore Odor No	IN TO		Total volume o		arance at samp Color Odor	10/0/1	es brown Detroleum
Sheen/Free F	Product <u>パン/い</u> む	<i></i>			Sheen/F	ree Product	<u> </u>	
Samples col	lected:		· ··········				, , , , , , , , , , , , , , , , , , ,	
Container Siz		ner Type	# Collecte	d Field Filte	ered.	Preservative	Cont	ainer pH
								

O'Brien &	& Gere Engine	ers, Inc.		Low F	ow Flow Ground Water Sampling Log					
Date	South First Street	Persor Evacu	nnel ation Method	Scott Tucke	r/Jay Kavanaugh	Weather Well#	overcast mw7 (1)	55.°F		
Site Location	Fulton, NY	Sampl	ing Method	Low Flow	1	Project #	1118/35165	<u> </u>		
Well information of Well Depth to Water	*	02 ft. 22 ft.		* Measure	ements taken from	n Top of Well Ca	asina			
_ength of Wat		ft.				Top of Protect	ive Casing			
Water param	Position pump	rsible pump slowly o in center of scree gs at every three n	ned interval 8	k maximum pun		liters/minute				
Elapsed Time	Depth To Water	Temperature	рĦ	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
0	8.22	15,83	6,41	0.422	-41	6,00	4.9	200		
1156	8,40	15.68	6,75	0:417	-80	0,00	8,6	200		
1159	9.42	15.60	6,74	0,415	-74	0,00	6,7	200		
145 1202		15.64	6.72	0,413	1-71	0,00	5.6	200		
1205	8,47	15.59	6.71	0,413	1-71	0.60	4.5	200		
12.06	4,56	15,62	6.71	0.412	-69	6.00	4.1	200		
12(1	8:51	15,60	6.70	0.413	~70	0.60	4.1	200		
14	8:52	15.61	6.72	0,412	-7 <i>i</i>	0.00	3.9	200		
217	8.53	15.66	6.73	0,41	-71	0.00	3.7	200		
1220	6.55	15,51	6.7H	0.411	-73	0,00	4.3	700		
1223	8.60	15.52	6.76	0,409	-77	0,00	3.3	200		
1226	8.60	15,51	6.74	0.409	-77	0.60	3.3	260		
1229	8,66	15,57	6.79	0,409	-78	0.00	2.6	200		
1232	8.6G	15.51	6.78	0,469	-78	6.00	2.7	200		
							·			
			<u> </u>							
						1				
Water samp				Total volume	of purged water i	removed: earance at samp				
Sheen/Free	Color / joic Odor Sul	(1055 Eur N				Color Odor Free Product	Color le Salfi N/N	<u> </u>		
Samples co	******************					····				
Container SI	ze Contai	ner Type	# Collected	Field Filt	ered	Preservative	Con	tainer pH		
			-							
			-							
					`č		L			

O'Brien	<u>& Gere Engine</u>	ers, Inc.		Low F	<u>low Groun</u>	<u>d Water S</u>	Sampling Log			
Date	11/1/05	Persor			r/Jay Kavanaugh	- Weather	Partiy Liandy	Breezy 55°		
Site Name	South First Street	Evacu	ation Method	Low Flow		- Well #	10 W.7 (3F+)		
Site Location	Fulton, NY	Sampl	ing Method	Low Flow		Project #	1118/35165			
Well informa	ition:									
Depth of Wel		6, 62 ft.	Ł	* Measure	ments taken from	7				
Depth to Wat		- 31 7.67 ft.		v	<u>X</u>	Top of Well C	_			
Length of Wa	iter Column	ft.		* •		Top of Protect (Other, Speci-	-			
			<u> </u>			J(Outer, opeci	'7/			
Water param		rsible pump slowly								
	-	p in center of scree ngs at every three n	•	-	ping rate of 0.5	liters/minute				
- 	Depth	igs at every timee in	Timule interva	1.	Oxidation	Dissolved	<u> </u>			
Elapsed	То	°c		M5/cm	Reduction	Oxygen	Turbidity	Flow		
Time	Water	Temperature	pH·	Conductivity	Potential	(mg/l) 4	(NTU)	Rate (ml/min		
0	7.67	15,67	6.67	0.432	-400	0.98	35	250		
1037	7.68	15.50	6.61	0.43/	-46	0.00	20	200		
1040	8.09	15,44	6.59	0,426	-65	0,00	16	200		
1043	4.15	1549	6.57	0.423	-63	0.60	9.8	200		
1046	8,21	15,51	6.56	0.422	-73	0,00	7.4	250		
1649	4.26	15,60	6.58	0.423	-79	0.00	× 3,0	250		
1052	4.30	15.62	6,58	0.424	-83	0.60	5.8	250		
1055	9.32	15.61	6:60	6.424	-84	0,00	5.7	200		
1058	6,35	15.75	6.62	0.424	-88	0.00	5.5	200		
1001	46.40	15.71	6.63	0.425	- 49	0.00	2.8	200		
11011	841	15.75	6.64	0.426	-91	6.00	5,9	zod		
1107	8.47	15.71	6.65	0.423	-91	0,00	5.6	200		
lifo	8.56	15.69	6.65	0,400	-91	0,00	4.2	700		
1113	4.60	15.53	6.65	0,415	-91	0.00	5,6	266		
1/16	a:60	15.71	6.65	0.415	-91	6.00	6.0	200		
1119	8.61	15,67	6.65	0.415	-91	6.60	6,6	200		
		17,67	100			0,00	10,0			
			†	·						
·			<u> </u>			 	· · · · · · · · · · · · · · · · · · ·			
			 		 					
Water samp	le:				-1		**************************************			
Time collecte	ed: 113 1 (13			Total volume o	f purged water re	emoved:	4 Gal	lons		
Physical app	earance at start				Physical appea	arance at samp	oling <u>Golocles</u>	• •		
	Color <u>Lolosle</u>	55				Color		3		
Shoon/Eroo I	Odor N				Chanle	Odor	- Sulfur			
Sheen/Free I	Product	· · · · · · · · · · · · · · · · · · ·			Sneen/F	ree Product				
Samples co	llected:									
Container Si	ze Contai	ner Type	# Collected	Field Filte	red	Preservative	Con	ainer pH		
			ļ			 				
			-		· · · · · · · · · · · · · · · · · · ·					
		······································	1			+		···		
	l	·	<u>.t.</u>			<u> </u>	1,,,,			

D'Brien	& Gere Engine	ers, Inc.		Low F	Low Flow Ground Water Sampling Log					
Date	11/2/05	Person	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Swany /Bre	ezy 50°		
lame	South First Street	Evacu	ation Method	Low Plow	bailer	Well# γ	<u>Sunny/Bas</u> NW-70	/		
Site Location	Fulton, NY	Sampl	ling Method	Low Flow	banler	Project #	1118/35165			
Well informa	tion:	,								
Depth of Well		<i>;71</i> ft.		* Measure	ments taken fro	m				
Depth to Wat		5ft.			X	Top of Well Ca	-			
Length of Wa	ter Column <u>23,</u>	<u>√</u> ft.				Top of Protective	_			
	13				<u> </u>	(Other, Specify	·			
Water param	Position pum	rsible pump slowly p in center of scree ngs at every three r	ened interval	& maximum pun		liters/minute				
	Depth		I I I I I I I I I I I I I I I I I I I	7	Oxidation	Dissolved		T		
Elapsed	То	6			Reduction	Oxygen	Turbidity	Flow		
Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
0	7.5	14.67	7.38	0.434	-77	3,30				
4		12.60	7.11	0.4289	-131	3,41		R		
8		12.11	7.GU	0.477	-141+	3,42		24,/		
12		12.03	7.05	0,469	-145	3,41	132	Contraction		
	 	1-2:05	12.05	0/16/	1 10	100	1			
•	<u> </u>		 	 	 			- 		
				 			 	-		
·		- 			ļ			•		
	_									
		<u> </u>								
			1	 						
			-		+					
	,									
	 			<u> </u>			 			
		-					<u> </u>			
	ļ			-						
	<u> </u>						.			
Water samp	and the second s			T .4.11			: 15	11		
ľ	red: 1035	·		i otal volume	of purged water		1200	allons		
Physical ap	pearance at start Color (**,io**)	1			Physical app	earance at sampl Color	ing Loiosles	: <i>:</i>		
	Color <u>Color</u>	1637				Odor		2_		
Sheen/Free	Product N/A	/			Sheen/	Free Product	NIN			
Samples co	ollected:									
Container S	****************	iner Type	# Collecte	d Field Fill	ered	Preservative	Conta	iner pH		
				ł			1			

10/1

O'Brien	& Gere Engin	eers, Inc.		Low F	low Ground	d Water Sampling Log			
Date	11/1/05	Person	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Overand, windy	lightrain ~55	
Site Name	South First Street	Evacu	ation Method	Low Flow		Well#	mw-8		
Site Location	Fulton, NY	Samp	ling Method	Low Flow	<u> </u>	Project #	1118/35165		
Well informa	tion:				·				
Depth of Well		ft.		* Measure	ments taken fron	1		•	
Depth to Wat			e e		<u>X</u>	Top of Well Ca	=		
Length of Wa	ter Column	ft.				Top of Protection (Other, Specify	-		
		<u> </u>				(Outer, Opecing	,		
Water param		ersible pump slowly np in center of scree			,	ters/minute			
	•	ings at every three r		•	iping rate of 0.5 ii	icis/milote			
	Depth			\$	Oxidation	Dissolved			
Elapsed	То				Reduction	Oxygen	Turbidity	Flow	
Time	Water	Temperature	pH / / Ø	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).	
1456	6F.F	/3,71	6.69	0,299	13,71-74	0.63	44.3	250	
59	7	13.68	6.48	0,300	-60		11/3)50	
03	7,93	13,65	6,45	0,300	-61		41.3	250	
05	8.00	13.64	6.44	0.301	-62		380	250	
08	8,01	13.43	6.45	0,301	-63		35./	350	
	8,03	13.62	6,45	0,302	-67		29,0	250	
14	8,07	13,54	6,46	0,300	-71		21.4	250	
17	8.09	13.59	6,48	0,303	-75		16,06	200	
20	810	13.57	648	0,303	7-76		14.0	300	
AS	8:11	13.70	6.48	1302	-81) .	10.96	150	
3/	8,20	13,62	6,48	703	-8a	<u> </u>	8.31	175	
34	8,18	13.42	6,50	6.303	-84		7.86	150	
37	8,19	13,49	6.51	757303	-85	4 1	6,94	150	
40	8,19	13,46	6.51	302	85	ger -	5,97	150	
43,	8,21	13.49	6.52	342	-86		5, 24		
46	8172	13,51.	6.53	303	七子		5,47		
,	· ·								
; ·	·				1, 3, 4		. <u>Mariti</u>		
						<u> </u>	<u> </u>		
					<u> </u>	<u> </u>			
Water samp	and the same of th			Total volume o	f purged water re	moved:	23	allone	
	earance at start,	•	a*	· · · · · · · · · · · · · · · · · · ·	· -	rance at sampli	ing 7	<u> </u>	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Color Color	och	•			Color	coloness	_	
	Odor no					Odor	N	.	
Sheen/Free F	Product ///	<i>N</i>		•	Sheen/Fr	ee Product	NIN	-	
Samples col	lected:								
Container Siz	ze Gonta	iner Type	# Collected	Field Filte	ered	Preservative	Contain	er pH	
			 		3	 	- :	<u></u>	
			 						
Notes:	:		-				<u></u>		

Date	on:	Persor Evacua Sample ft. ft. ft.	nel ation Method ng Method	Scott Tucker Low Elgw Low Plow	Jay Kavanaugh	Weather Well # Project #	Mpling Loc SviMy 2 45 MW-&A 1118/35165	
Ame She Location If Well information Depth of Well Depth to Water Length of Water	South First Street Fulton, NY on: 33, 7* er Column /ve	Evacua Sampli U ft. G ft.	ation Method	Low Plow	bowler	Well#		<u>', Lindy</u>
Vell information of Well of Well of Water to Water tength of W	Fulton, NY on:	Sampli		Low Plow		•		 .
Vell informati Depth of Well * Depth to Water Length of Water	on:	10 ft.	ng Method		baile	Project #	1118/35165	
Depth of Well *Depth to Water ength of Water	33, 7.9 er Column 25.	g ft.		* Measure				
Depth to Water ength of Water	7.9 er Column 25. /vo	g ft.		* Measure				
ength of Wate	er Column 25.	ft.			nents taken fror	ņ		
	/v:				<u> </u>	Top of Well Ca	-	
Vater parame				. 21		Top of Protectiv	_	
Vater parame	ters. Lower submer	1 = 4.1 3	vol = 12.	3		(Other, Specify		
	ters. Lower submer	sible pump slowly	through stag	nant water colum	n			/ .
		in center of scree			ping rate of 0.5	iters/minute		
		gs at every three n	inute interva	als		1	·	
	Depth T-	9		ş.	Oxidation	Dissolved	7	1
Elapsed Time	To Water ⊮	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
initial	77466	13,61	7.48	0,440	50	847	(1110)	Trace (IIII)
		11,83	7.00		798		-	
4.1	+ 7		たりし	0,462	10	2.78	 	
8.3	Dig at to	i allous			<u> </u>		<u>F</u> r3	
19.3	<u> </u>				·			
		1						
		<u> </u>				—		
		 	 	 		<u> </u>	_	
			 	 		··		
			<u> </u>	<u> </u>				
	<u> </u>	- 		-	<u> </u>	<u> </u>	-	
	·	- 		1				
			ļ			ļ		
				<u> </u>				
		·	1.				·	
								•
						1		
Water sample	e:						1 .1	· · · · · · · · · · · · · · · · · · ·
Time collected	t: 1305			Total volume o	f purged water r	emoved:	Foullons	
Physical appe	earance at start				Physical appe	arance at sampli	ing	
	Color (VIV 1955)					Color	brown/d	<u>erk</u> broon
Ch / E	Product 170 /	7.7.			Shaan/F	Odor ree Product	10(4.45 1)	nuck
Sheen/Free P	roduct 110/1	10			Sneen/F	ree Product	<u> </u>	
Samples coll	ected:							
Container Siz		ner Type	# Collecte	d Field Filte	red	Preservative	Conta	ainer pH
			 		· · · · · · · · · · · · · · · · · · ·			
			1		 		L	

10/7

O'Brien 8	Gere Engine	ers, Inc.	· ,	Low FI	ow Ground	d Water Sai	npling Log	
Date	11/165	Persor	nel	Scott Tucker	Jay Kavanaugh	Weather	Rainu 40	5°F
Site Name	South First Street	Evacua	ation Method	LOWFLOW	Adder		MW-8D	
Site Location	Fulton, NY	Sampl	ing Method	Low-Flew	peller	Project #	1118/35165	
Well informat	ion:							
Depth of Well	P3	/ ft.		* Measurei	nents taken fron	n	•	
Depth to Wate					X	Top of Well Casi	ng	
Length of Wat						Top of Protective	e Casing	
	25,0	9×0163=4	,124 ×3	= 12.4		(Other, Specify)		
Water parame		sible pump slowly			ın			
	• •	in center of screen		•	ping rate of 0.5 I	iters/minute		
		s at every three m	ninute interva		0.11.6			
Elapsed	Depth To	C		*	Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow
Time	Water	Temperature	pŀ₹	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
0	7,81	12.4	6.90	.092	29	13.82	411	200
	10.41	12.2	7,38	0.848	-8	10,46	220	200
1422	11.14		747	0.849	20°	9.67	103.5	700
1425	, , , , , , , , , , , , , , , , , , , ,	12.2	7.44	0.840	0	3 8.79		
1428 1431	12.91	12.7	7.43	0.337	-3	8.43	43.6	200
1434		12.0	7.13		-i ë	8.02	1146	200
1437	14:35	12.0	7.59	0,836	-22	7.02	426	700
					-29		4 4 4	200
11112	15.21	17.0	7.56	I	-41	7.33	47.	200
1443	15.8	12,0	7.63	0.330		7.10	38.1	700
१५५६ १५५५	16.37	12.0	7.64	0.829	-46	6.84	37.7	700
-	16.67	11.9	7:69	0,829	-52	6,62	39.3	200
1452	17.38	11.9	7.72	0.130	-58	6.40	38.2	700
1455	17.96	11:9	TA:	0.328	-64	6.24	39.3	200
1453	18.23	11.9	7.60	1.528	-067	6.04	36.7	<u> 200</u>
1501	19,21	11.4	7.36		7,71	5.39	34.6	200
1504	19.51	11.7	7.17	0.527	-76	5.65	300	200
WW 1501	20:Pl 9	11.7	7.35	0-327	-30	5.99	34, 9	200
	- 1							
					<u></u>			
		<u> </u>		<u> </u>	<u> </u>			
Water sample Time collecte				Total volume of	purged water re	emoved:		
	earance at start	•				arance at samplin		
i ilysical app	Color Color	less			у с	Color		
	Odor N					Odor		-
Sheen/Free F	Product N/N				Sheen/F	ree Product		-
Samples col	lected:		<u> </u>					
Container Siz	······································	ner Type	# Collected	Field Filte	red	Preservative	Contain	er pH
						•		
 								
			 			 		
Notos				1				
Notes:				<u> </u>				

O'Brien	<u>& Gere Engine</u>	<u>ers, Inc.</u>		Low FI	ow Groun	d Water Sa	mpling Log	
Date	11/2/05	Persor	nnel	Scott Tucker	/Jay Kavanaugh	Weather		
lame	South First Street	Evacu	ation Method	l Ow Flow)	_ Well #	MW-8D	
Site Location	Fulton, NY	_ Sampi	ling Method	Low Flow		Project #	1118/35165	
	Depth		T T		Oxidation	Dissolved		
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	р Н	Conductivity	Potential	(mg/l)	(NTÙ)	Rate (ml/min).
1512	21.00	liz	7.99	0.827	-97	5.10	340	200
1515	21.41	11.7	7.91	0.826	-87	5,06	36,3	200
15,18	22.17	M.7	7.91	0.826	-88	4.88	3't, 8	200
15,21	22,44	11,6	793	0.824	-91	4.88	32,E	200
1524	23,25	11.6	7.94	0.354	- 93	4085	249	200
1527	23,58	11.7	7.97	0,324	495	4.78	31,2	200
1530	23/85	11.C	7.27	O/12	-23	4.76	35.5	200
1533	23.98	Il.C.	120	0.93	· screp	47.5	53.2	200
1536	24.42	11.5	7.99	0.325	-101	11.37	30.5	200
1539	25.31	11.6	3.00	0.325	-103	4.77	32.7	200
1542	25,65	11.4	7.44	0.927	-99	4574	32.0	60
1545	25.81	11.3	799	0.323	-103	4.56	351	50
1548	26.01	11.3	3.00	0.331	-106	443	32.6	120
1551	i6:03	11-3	7 (2)	0331	- 112	193	72.0	60
554	26,16	11:2	309	0453	-715	470	335	60
1558	26,18	11.1	300	0.335	-113	11.140	233.7	60
1603								
							:	
		,		•				
					<u> </u>	` ; ;		
			,					:
			`					
	·		<u> </u>					
	<u> </u>		·		<u> </u>			
					<u> </u>	<u></u>	<u> </u>	
Water sam	•			Total volume o	of purged water r	emoved:		Ý
1	pearance at start		. •	Total Volume (, · · · · ·	arance at sampli	10	
i ilysicai ap	Color				, , , , , , , , , , , , , , , , , , ,	Color	.9	_
	Odor			ng di Mag	0,	Odor		<u>-</u>
Sheen/Free	Product	<u> </u>		Bank of	Sheen/F	ree Product		-
Samples c	ollected:				J_{ij}	ott. W	i	
Container S	Size Conta	iner Type	# Coffects	ed Field Fift	ered	Preservative	Contain	er pH
—		· · · · · · · · · · · · · · · · · · ·				+		
T-								
								·
Notes:		·	• •				· <u>-</u>	

30/3

<u>O'Brien</u>	<u>& Gere Engine</u>	<u>ers, Inc.</u>		Low F	low Groun	<u>d Water Sa</u>	<u>impling Lo</u>	<u>g</u> .
Date Site Name	11/2/05	Person	nnel ation Method		er/Jay Kavanaugh	Weather	Antio Al D	
	South First Street	•				_ Well #	MW-8D	
Site Location	Fulton, NY	- Sampi	ing Method	Low Flow		Project #	1118/35165	
Elapsed Time	Depth To Water	Temperature	рН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
1603	26,21	11,1	8.65	0.835	-120	4.82	34.5	60
1607	26.10	11.0	9,06	0,840	-125	4.80	34.9	60
1610	26,24							
	i							
			<u> </u>					
		1						
	1 1		1					
		1					<u> </u>	
		11	1117		<u> </u>		<u> </u>	
		 	hrv.	 			 	
-				<u> </u>	 	MU	 	
			 	1	 	 		
				1	n +0	 		
		 	1	Jow			<u> </u>	
		 	W					
	· · · · · · · · · · · · · · · · · · ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000	<u> </u>				
·				<u> </u>				
			ļ					
			<u> </u>	ļ				
					<u> </u>			
`								
		·		T				
					1		 	
		- · · - · · · · · · · · · · · · · · · · · · ·				 		
Water samp	le:				<u> </u>	<u> </u>		
Time collecte				Total volume o	f purged water re	moved:		
Physical app	earance at start		•		Physical appea	rance at samplir	ng	
	Color					Color		
Sheen/Free f	Odor				Shoon/Er	Odor ee Product	•	
One entrice i					SheemFi	ee Fiouucl		
Samples co			x 1000000000000000000000000000000000000					
Container Siz	ze Containe	er Type	# Callected	Field Filte	ređ	Preservative	Conta	iner pH
							<u></u>	
			-					
Notes:								

<u>O'Brien</u>	& Gere Engine	ers, Inc.		<u>Low F</u>	low Groun	<u>d Water Sa</u>	mpling Log	
Date	11/03/05	Persor	nel	Scott Tucke	r/Jay Kavanaugh	Weather	SURMY/BEEZ	4 70°F
ame	South First Street	Evacua	ation Method	Low Flow		Well#	MW-95	
Site Location	Fulton, NY	. Sampli	ing Method	Low Flow		Project #	1118/35165	
Well informa	ation:							
Depth of Wel				* Measure	ments taken from	<u>n</u>		
Depth to Wat	ter* 6.4				<u>×</u>	Top of Well Cas	-	
Length of Wa	ater Column <u> </u>	7 <u>4 </u> ft.			ļ	Top of Protective	•	
					<u> </u>	(Other, Specify)		· · · · · · · · · · · · · · · · · · ·
Water paran		sible pump slowly						
	• •	in center of screen		•	ping rate of 0.5 I	iters/minute		•
	Depth Depth	s at every three m	inute interva	is :	Oxidation	Dissolved		T
Elapsed				+3%	Reduction	Oxygen	Turbidity	Flow
Time	Water # 0.3	Temperature	pH ± .1	Conductivity	Potential 10	(mg/I)±10	(NTU) ± 10%	Rate (ml/min).
	1	1	6.51	<u> </u>	215			250
52.0	7,65	14.2	6.56	0.944	218	6.30	4G,1	
1230		14.3		ľ	Z19	4,28		200
1233	7,63	14,2	6.56	0.946	 	3.91	260	200
1236		192	6.57	6.946	220	1	18.9	700
1239	7:66		6.57	0.946	221	3.54	15.0	200
1242	7.7/	14.1	6,58	0.946	221	3.43	12.8	200
1245	7.75	14.	6.58	0.946	221	3, 36	10,27	200
#8	7.80	14,2	6,58	0.946	222	3,3/	10.86	200
7251	7.82	14.2	6.59	0.946	222	3,27	9,32	200
1254	7.83	14,0	6,59	0.945	222_	3,24	8,78	200
1257	7,43	14.2	6.59	0.944	222_	3,18	9,78	200
1300	7.63	14.2	6,60	0.943	222	3,19	9,00	∑ C0
						<u> </u>		<u></u>
							<u> </u>	
	<u> </u>							
								· .
						-		
Water samp	• •	.4	-iI	0.03	10	r H	1.5	
Time collect	ed: /3/0	•		Total volume o	f purged water re	moved:	3 gall	· · ·
Physical app	pearance at start				Physical appea	rance at samplin	9	
	Color <u>Color les</u>	<u> </u>				Color Odor	<u>Colosess</u>	-
Sheen/Free					Sheen/Fr	ee Product	NIN	-
					·····	-		-
Samples co								
Container S	ize Containe	ar Type	# Collected	Field Filte	red	Preservative	Contains	и рн
		•						
Notes:								

O'Brien	<u>& Gere Engine</u>	<u>ers, Inc.</u>		<u>Low F</u>	low Groun	d Water S	ampling Lo	g			
Date	11/2/05	Perso	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Overcast	40°F			
Site Name	South First Street	Evacu	ation Method	Low Flow	bailer	Well#	MW 90				
Site Location	Fulton, NY	Samp	ling Method	LOW Flow	cowflow benler		1118/35165				
Vell informa	ation:										
epth of Wel	n* <u>31.</u>	56ft.		* Measure	ments taken fror	n	1.7				
epth to Wat		21ft.			X	Top of Well Ca	-				
_	ater Column 22;	3 <u>5 </u> ft.			ļ	Top of Protect	-				
Volume X3	3,6	_	(Other, Specify)								
Vater paran	Position pump	rsible pump slowly in center of scree gs at every three r	ened interval &	& maximum pun		liters/minute					
	Depth	gs at every timee i	I III I I I I I I I I I I I I I I I I	,	Oxidation	Dissolved	T:				
lapsed	То	1	1		Reduction	Oxygen	Turbidity	Flow			
riapseu Fime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min			
6	9.21	12,64	5,95	0.769	-19	4.92	E				
3.6		12.48	6.83	0.785	- 103	3,67	·	R			
7.2		12.02	7.15	0.772	-121	1.75		19,1ed			
11		11.83	7.24	0.811	-120	1.59	Er3				
<u>, 7.1</u>		''' '''			1						
		-	 		1			- 			
	<u> </u>	-			 	 					
	 	<u> </u>	 				 				
	<u> </u>					ļ					
			ļ		<u> </u>						
					-						
					·		1				
· · · · · · · · · · · · · · · · · · ·						· · · · · · · ·					
	<u> </u>					1					
	 					· · · · · ·	 				
			 	<u> </u>	<u> </u>	-	- 				
		 	-		 	1					
Water samp		1	.1	1	1						
vvater samp Time collect				Total volume of	of purged water re	emoved:	11/2	Mors.			
	pearance at start	•				arance at sampl	ing /	Mors.			
J. J. Lan app	Color	255		2 * *	,	Color	Brown				
	Odor <u>N</u>					Odor					
Sheen/Free	Product N/A/	·			Sheen/F	ree Product	N/N				
Samples co	ollected:	<u> </u>					· · · · · · · · · · · · · · · · · · ·				
Container Si		ner Type	# Collected	Field Filt	ered	Preservative	Con	ainer pH			
			1								
·			 					· · · · · · · · · · · · · · · · · · ·			

VIDrian (Coro Engine	oro Ino	· · · · · · · · · · · · · · · · · · ·	l ov El		I Mata Ca		12
	& Gere Engine						mpling Log	· \
ate	11/1/05	_ Persor			Jay Kavanaugh	Weather	Rainy 40	F
	South First Street		ation Method		*	Well#	MW10 1	15-7
ite Location	Fulton, NY	Sampl	ing Method	Low Flow ,		Project #	1118/35165	
/ell informa	tion:	.47 n.			_			
epth of Well		- i a 1		* Measurer	nents taken from			
epth to Wate		74 ft.				Top of Well Cast Top of Protective	•	
ingui oi vva						(Other, Specify	•	
/ater param	eters: Lower subme	rsible pump slowly	through stag	nant water colum	· · · · · · · · · · · · · · · · · · ·			
ater param		p in center of scree				ters/minute		
	Collect readii	ngs at every three n	ninute interva	ıls				
•	Depth			4.	Dxidation	Dissolved		
lapsed	То		ļ		Reduction	Oxygen	Turbidity	Flow
ime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
0	4,14	14,8	6.76	0,721	125	7,74	118	200
700	7.40	14.9	6,66	0.696	132	6.50	115	-200
103	7,42	14:9	6,65	0.714	133	6,39	45,6	200
1706	7.43	15,0	6,62	0.689	141	6.08	54.4	700
1709	7.47	15.0	6.61	0,654	147	6.33	13.8	200
7/2	7:49	15:1	6.60	0.653	151	6.34	13,8	200
715	7.50	15.1	6,59	0.633	156	6.31	9,49	200
	7,50	151	6,59	0.635	160	6.35	7,50	200
18	7.51	15.1	6,58	0,630	163	6,72	5,82	200
1724	7.51	1612	6157	0,632	166	7,03	6.07	200
17,27	7.53	15,2	6.57	0.634	1170170,	7	5,84	200
1730	7.54	15.2	6,56	0,635	172.0	6,28	6.20	200
1733	7,54	15.3	6,56	Q.62 /31		6,28	6,24	ZGO
1736	7.55	15.3	6.56	C628	177	6.25	6,22	200
1739	7,55	15.3	6:55	0,633	179179	6,29	6.56	200
	7.57	15,3	6,55	0.626	181	6.18	6,50	200
1742			6,55	1	1	1	6,36	200
1748	7.57	15,3	6,55	0,629	184	6.18	4.47	200
				0,628	185	6:16		ZOO
1751	7.58	15.3 16.3	6,55	0,625	187	6.16	3,63	200
// 5 7 Water samp		11010	10//7	1-102-	17.57	10.78	1 - 1 9 3	1,
•	ed: <i>1815</i>	•		Total volume of	f purged water re	emoved:	5.79	110719
	pearance at start				Physical appea	rance at sampli	ing . ;	
•	Color Color/	955				Color	colorless	
	Odor N				<u>.</u>	Ddor	N	-
Sheen/Free	Product /////				Sheen/Fi	ree Product	NIN	
Samples co	ollected:		· · · · · · · · · · · · · · · · · · ·					
Container S	MARKANAMANANAN AGAMAMANANANANANANANANANANANANANANANANAN	iner Type	# Collecte	d Field Fifte	red	Preservative	Conta	iner pH
						!		
Notes								
Notes:			•					

20/2

O'Brien	<u>& Gere Engine</u>	<u>ers, Inc.</u>		<u>Low F</u>	<u>low Groun</u>	<u>d Water Sa</u>	ampling Llog	
Date	11/03	Person	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Rainy 400 F MW 10 1	
Site Name	South First Street	Evacu	ation Method	Low Flow		Well#	MW 10 1	1F+
Site Location	Fulton, NY	- Sampl	ling Method	Low Flow	,	Project #	1118/35165	
				1	louidation	-		
Elapsed	Depth To				Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow
Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
1758	7.61	15.4	6.55	6.35	189			
	1.1	1307	8,75	6:55	101	6:11	4,23	200
1801	Notes				<u> </u>	<u> </u>		
	10063		<u> </u>		-			
				<u> </u>				
			<u></u>			1	ļ	
			<u> </u>					
		-						
·		 		 	 	+		
	•	 			<u> </u>			
		 	 	<u> </u>			1	<u> </u>
			1					
			ļ					
			1					
							·	
					†			
	<u> </u>	<u> </u>		 	+	 		
			 	<u> </u>				
· · · · · · · · · · · · · · · · · ·				<u> </u>				<u> </u>
				ļ		·		_
					<u> </u>			
				<u> </u>	1			
,								
				1			,	
·			1	1	1		<u> </u>	
			 	<u> </u>	 	-	 	
	٠.		 	ļ	ļ	 		
				<u> </u>	1			
Water sampl					_			
Time collecte				Total volume o	f purged water re			·
Physical appe	earance at start				Physical appea	arance at sampli	ng	
	Color					Color Odor		
Sheen/Free F		,			Sheen/F	ree Product		
Samples col	***************							
Container Siz	e Containe	ег Туре	# Collected	Field Filte	ared	Preservative	Contair	ner pH
			 			 	·	
		 	 					
			 			 		
			1	1				
Notes:	Turbidity begin		1 .,				1- 4	

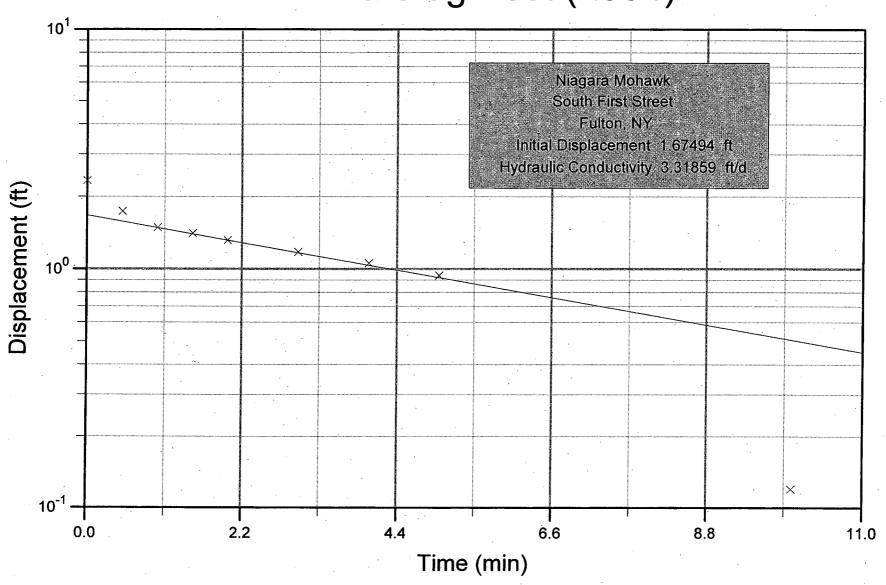
(

ame site Location	11 2 o 5 South First Street Fulton, NY	-	nnel ation Method ing Method	Scott Tucke Low Flow		Weather Well # Project #	p-sunny, windy, ~45°F MW-11=60 (5') 1118/35165			
Vell informat	ion.			7		<u>-</u>				
Depth of Well	i i /). 1 n.		* Measure	ements taken fro	m				
epth to Wate		\$ 1.0 ft.			X	Top of Well Ca	sina			
ength of Wat		91 ft.		•		⊣ '	Top of Protective Casing			
	1	vol= 1,8	3001= 5	4		Other, Specify	·)	•		
Vater parame		rsible pump slowly			mn					
,	Position pump	in center of scree	ned interval &	k maximum pun		liters/minute				
	Collect readin Depth	gs at every three r	ninute interva	is ,	Oxidation	Dissolved	1	1		
lapsed	То				Reduction	Oxygen	Turbidity	Flow		
Time	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
· 27	1,04	12,92	600	0,257	29	0.00	41,1	200		
30	1.04	12.87	611	0,257	32	0.00	47.7	200		
33	1.04	12.81	6,06	0,354	34	0.00	37.1	200		
36	1.04	13.86	6,03	0.254	33	0.00	34.1	350 24		
39	1.04	12.85	6,03	0.353	34		37.8	750 20		
43	1,04	12.89	1	0,353	32	0,00	38.0			
			6.03			0,00		<u> </u>		
45	1,04	12.74	6.04	0.350	33	0,00	30.7	200		
118	1,04	12.84	6.03	0,757	39	0,00	18.8	300		
	1,64	12.81	6.04	0,349	28	0,00	16.0	300		
54	1.04	19,78	6.05	0.250	27	0.00	17.1	<u> </u>		
57	1,04	12.84	6.05.	0,248	98	0.00	16.8	200		
· · · · · · · · · · · · · · · · · · ·	<u> </u>		 	ļ						
					 	1 .				
		_	<u> </u>							
			<u> </u>					·		
Water sampl	11 17	•		T-4-11	. f d t		2) 54/1	,		
Time collecte				i otal volume o	of purged water			<u>~</u>		
Physical app	earance at start Color(b or e	٠ د ۲			Priysical appe	earance at samp	ung Coloriess			
	Odor nb			•	•	Odor	no			
Sheen/Free F	Product No/	10	•		Sheen/l	Free Product	10/M 0			
Samples col	llected:		····							
Container Siz		ner Type	# Collected	Field Fift	ered	Preservative	Cont	ainer pH		

	& Gere Engin				Low Flow Ground Scott Tucker/Jay Kavanaugh				
ate	11/3/04/	Person	nel	Scott Tucker	/Jay Kavanaugh	Weather	Clear, Mo	, 1	
te Name	South First Street	Evacua	tion Method	Low Flow		_ Well #	mw-11-	101)	
te Location	Fulton, NY	Sampli	ng Method	Low Flow		Project #	1118/35165		
ell informa		<i>a</i>)							
epth of Wel		<u>91</u> ft.		* Measure	ments taken fro	<u> </u>			
epth to Wat		1,04 ft.			- 	Top of Well Car	-		
engtn of vva	iter Column	10.8+ ft.			 	Top of Protective (Other, Specify	_	•	
 			· · · · · ·				<u>, </u>		
ater paran		ersible pump slowly to np in center of screet				liters/minute			
		ings at every three m			ping rate or 0.0	iner 3/11iii lute			
	Depth	<u> </u>		9	Oxidation	Dissolved		T	
lapsed	То				Reduction	Oxygen	Turbidity	Flow	
ime	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)	
16	1.04	13.60	6.15	0,249	21	0.00	59.2	300	
19	1.04	13.49	6.12	0,246	21	0.00	47.8	300	
37	1.04	13.36	6.12	0,245	20	0.00	37.9	300	
33	1,04	13.34	6,12	0.344	19	0,00	33.2	200	
2 9	1.04	13,23	6.13	0,244	17	0.00	87.6	200	
<u>3</u> 2	1,04	13,16			15	0.00	24.7	200	
	 	13.07	6.14	0,244					
35	1.04		6,14	0,343		0.00	22.9	200	
39	1.04	13,16	6.16	0.243	11	0.00	211	300	
42	1,04	13.15	6,17	0,243	io	0,00	20,5	200	
45	1.04	13.09	6,17	0,341	٦ .	0.00	16,4	300	
48	1.04	13.11	6.18	0.240	8	0,00	14,7	200	
51	1.04	13.08	6.18	0,240	6	0.00	13.3	200	
54	1,04	13.04	6,18	0,340	5	0,00	12.4	300	
57	1.04	13.06	6.18	0,240	4	0.00	11.3	300	
00	1,04	13,03	6:19	0,340	4	0.00	11.2	200	
03	1.04	13.06	6,19	0,339	3		8,93	 	
06	, , , , , , , , , , , , , , , , , , , ,	13,03	6,19	0.239	3	0.00	8,54	300	
09	1.04				- ox	0,00		300	
04	1,04	13.05	6.19	0,239		0,00	8.84	200	
						1.			
Vater samp	ole:		1	<u></u>	1				
ime collect	3 ~ 1 11			Total volume o	f purged water r	emoved:	95-3 sall.	m5.	
hysical app	pearance at start ,	•			Physical appe	arance at sampli	10lode		
•	. .	rle55				Color	lolode	ટ ડ	
	Odor NO		4 1			Odor	no		
heen/Free	Product				Sheen/F	ree Product	Seenules	_	
Samples co	ollected:		- 						
Container S	CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE	ainer Type	# Collected	Field Filte	red	Preservative	Contain	er pH	
			ļ			ļ			
	ı		1	ı		1	ı		

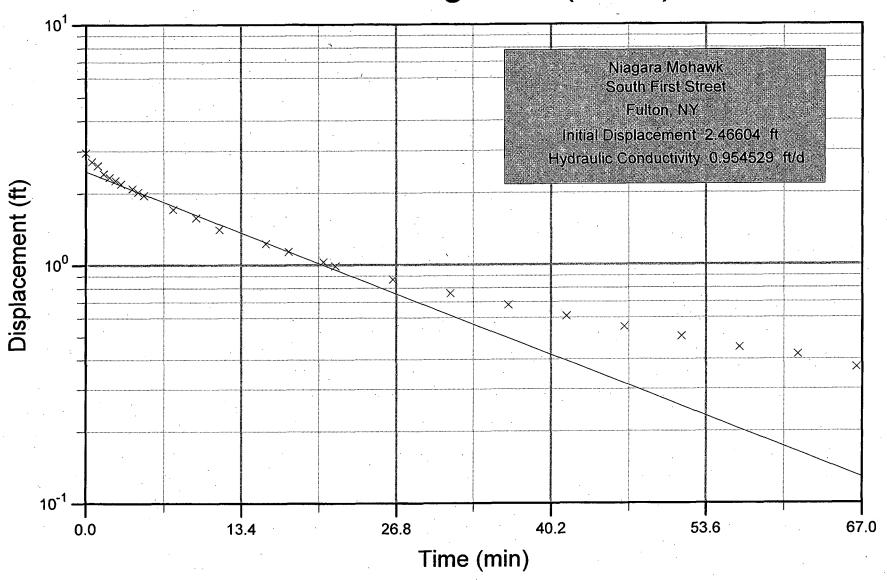
O'Brien 8	<u> Gere Enginee</u>	rs, Inc.		Low Fl	<u>ow Ground</u>	<u>l Water Sa</u>	mpling Log		
Date	11/3/05	Person	nel	Scott Tucker	Jay Kavanaugh	Weather	Sunny ~ C	,5°F	
Name	South First Street	Evacua	ation Method	Low Flow		Well #	MW-125	(12')	
Site Location		Sampl	ing Method	Low Flow		Project #	1118/35165		
Well informat									
Depth of Well	· <u>15.</u>	<u>53 </u>		* Measurer	nents taken fron	1	•		
Depth to Wate	r* <u>4,</u>	3.7ft.			Top of Well Casing				
Length of Wate	er Column <u>I / i</u>	<u> 6 </u>				Top of Protectiv			
		·				(Other, Specify)			
Water parame	eters: Lower submers	ible pump slowly	through stagr						
		in center of scree		-	ping rate of 0.5 I	iters/minute			
₁		s at every three n	ninute interva	IS	Oxidation	Dissolved	T	T	
Elapsed	Depth To	·		*	Reduction	Oxygen	Turbidity	Flow	
Elapsed Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min	
	4.54				211				
		14.8	6.93	0,479	`	7.33	11.3	150	
45 Stw	5,47	 	7.04	0.745	908	6,21	6,17	150	
	town, cell		7.22	115	0011	7 10/-	5-10	11.	
53		14.8	7 7	1:13	204	7,05	5.18	160	
58	5,82	14.9	7.21	nutworking	705	7,27	4.16	100	
03	5,83	15.0	7725	V 27,5	205	8,40	4,04	192	
08	5,79	14.9	7.23		205	8.39	3,59	192	
13	5,65	15,0	7.26		204	8.36	394	75	
8	5.63	15,0	7,24		206	7,87	2.96	125	
33	5,63	14,9	7.26		206	7.84	2.97	125	
28	5.71	15.0	7,26		209	7,94	2.78	125	
MA	ms from	Mah	11-21		00012/nx	Lan	alo) Pi	imp newer	
-New	mys from	10000	4 0	3/10	1	3, 500.	Tu	nest off	
44		14.5	6.61	01730	210	8,20		125	
49	L	14,5	6.61	0,730	208	6,72		125	
54	_	14.5	6.62	0,730		6,42	-	125	
								· · · · · ·	
						-			
Water sampl	le:						11000	// ^	
Time collecte				Total volume o	f purged water r		~1.5 - de	allon S	
Physical appo	earance at start Color Color	Dr. 6			Physical appe	arance at sampli			
	O.1-	((Color Odor	colorless	_	
Sheen/Free F		^	-		Sheen/F	ree Product	10 no	 .	
35011111001		<u></u>							
Samples col	THE TAXABLE PARTY OF THE PARTY		600 50000000000000000000000000000000000						
1 A 1000 (100) (1000 (1000 (1000 (100) (1000 (1000 (1000 (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (100) (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (100) (100) (1000 (100) (100) (100) (1000 (100) (100) (100) (100) (100) (1000 (100) (10	re Contain	er Type	# Collected	Field Fitte	ered	Preservative	Contai	ner pH	
Container Sta	L.						i		
Contamer Sta									
Container Sta									

	O'Brien 8	R Gere Engine	ers, Inc.	<u>:</u>	<u>Low F</u>	low Groun	d Water Sa	mpling Log	5] <i>d</i>
ľ	Date	11/3/05	Person	nnel	Scott Tucke	r/Jay Kavanaugh	Weather	Sunsy 160°	'F
	Site Name	South First Street	– Evacu	ation Method	Low Flow		- Weli #	mw-125	(8.5)
	Site Location		 Sampl	ling Method	Low Flow	v Project #		1118/35165	
ŀ	Well informat	tion:	-		· ·				
- 1	Depth of Well		5 7 ft.		* Measure	ments taken fror	n		
- 1	Depth to Wate					X	Top of Well Cas	sing	•
١	Length of Wat		ft.				Top of Protectiv	e Casing	
l							Other, Specify	•	
	Water paramo	Position pump	rsible pump slowly o in center of scree gs at every three n	ned interval	& maximum pun		iters/minute	A.	
Ī		Depth			у	Oxidation	Dissolved	·	
	Plapsed*	То				Reduction	Oxygen	Turbidity	Flow
. ŀ	Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
)	24	5.40	14.5	6.90	1001	127	4112	16,6	200
	27	5,74	14.5	6.96	89.4	140	3,83	10,6	200
١	3 0	5,89	14.5	7.07	53.1	145	3.84	9,34	150
	33	5,95	14.5	7.09	31.3	156	3.75	7,27	/75
Ī	36	6,03	14.6	£115	41.6	165	3,05	6.283	<u>२</u> ००
	39	6,12	14.6	7,16	24:2	171	3,19	5.74	200
١	42	6.18	14,7	7.18	19.1	174	3,84	4,25	200
1	45	6.26	14,7	7,22	14.6	177	3,10	3,48	200
		6.42	14,8	7.24	3,97	1	3.11		
	4850 5+53	6.51	14,8	7	4,13	178	3,27	3,66	225
		6,59	14.8	7,26		175		····	300
	56			7.26	2,83		3.25	3.83	200
	59	6,64	14.8	7.29	3.19	171	3,63	3,96	200
	00	6.75	14,8	7.31	3,00	169	3,73	3.87	900
ij		6,95	14.9	7.33	2,06	167	3,45	5,79	<u> 200</u>
	10	7.02	14,9	7,41	2,25	164	3,39	7,70	195
	17	7,04	14.9	7,40	h50	/77	3,70	7.19	125
	วว	7,10	14,9	7.41	1.47	185	4,17	5,74	125
	27	7.11	15.0	7,41	1,68	190	4,10	4,99	125
	32	7.08	15.0	7,45	2.13	192	4166	4,78	125
	37	7,00	15.0	7.47	J.BO	196	5.05	4,57	172
	Water sampl Time collecte Physical appe	earance at start Color <u>colodes</u>	<u> </u>		Total volume o	of purged water re Physical appea	arance at samplir Color	Julodess	Mors.
	Sheen/Free F					Sheen/F	Odor ree Product	nolus	_
	Samples col Container Siz	00-40-00-000-0000 00-000000000000000000	ner Type	# Collected	Field Filte	ered	Preservative	Contain	er pH
			, , ,	1 -1	:		1	<u>_</u>	
	Natas. Q.	7~ /~ . 1	' 1 1.	114-11	" /l.				

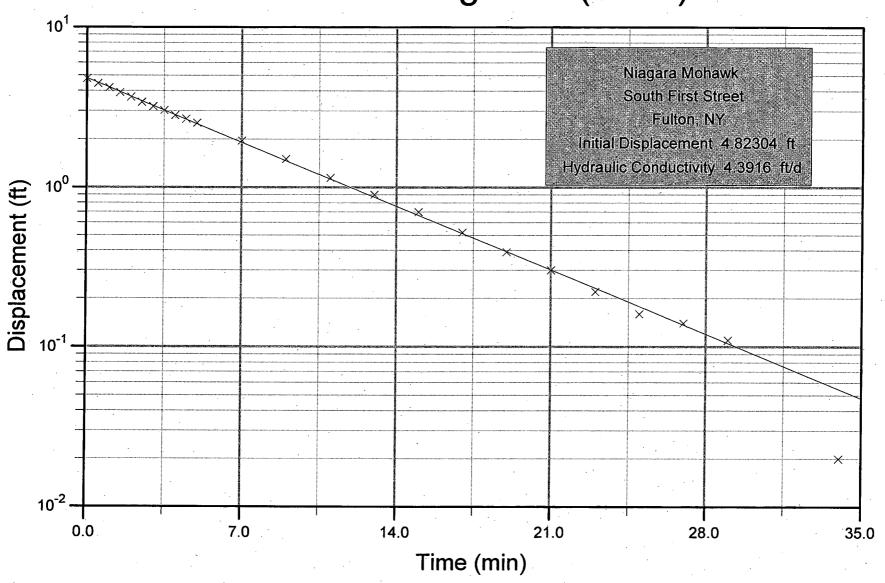

Elapsed 7 6 47 6 52 6 57 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Depth To Water T, 94 1,81 1,78	Samplin Temperature (5,0 (4,9 (4,9	pH 7,50	Low Flow	Oxidation Reduction Potential	Weather Well # Project # Dissolved Oxygen	Sunny ~609 MW-135 (1118/35165 Turbidity	8,5') Flow
SQ 6 Care	To Water T ,.94 ,.81 ,.78	15.0 14.9 14.9	7,50		Reduction	Oxygen	Turbidity	Flow
47 6 52 6 57 6 62 6	.81 .78 .7 ₀	14,9 14,9		5.06		(mg/l)	(NTU)	Rate (ml/min).
47 6 52 6 57 6 62 6	.81 .78 .7 ₀	14,9 14,9			200	5,99	3,89	125
52 6 57 6 02 6	,78 ,7 ₀	14.9		8,03	ે ૦ ૦	7,40	3,22	125
57 6 02 6	.72		7.53	21.9	505	7.35	2.77	125
62 6		14.9	7,51	prose not	303	7,64	2.65	125
	,67	14.9	7.50	working	203	7.84	3,66	125
	upling.							
							·	
				:			·	
				·				
Water sample: Time collected: (04) Physical appearance Color Odor Sheen/Free Product				Total volume o		moved: rance at samplir Color Odor ee Product	1 4,5 ga (distess no no Ino	
Samples collected: Container Size	Container	Туре	# Collected	Field Filte	red	Preservative	Contail	ner pH
	,							
Notes: 57	- Cond=53:6	07-68.7	Condach	with pobe poss	ubly not accom	king due to	erratic reading	15. will secold

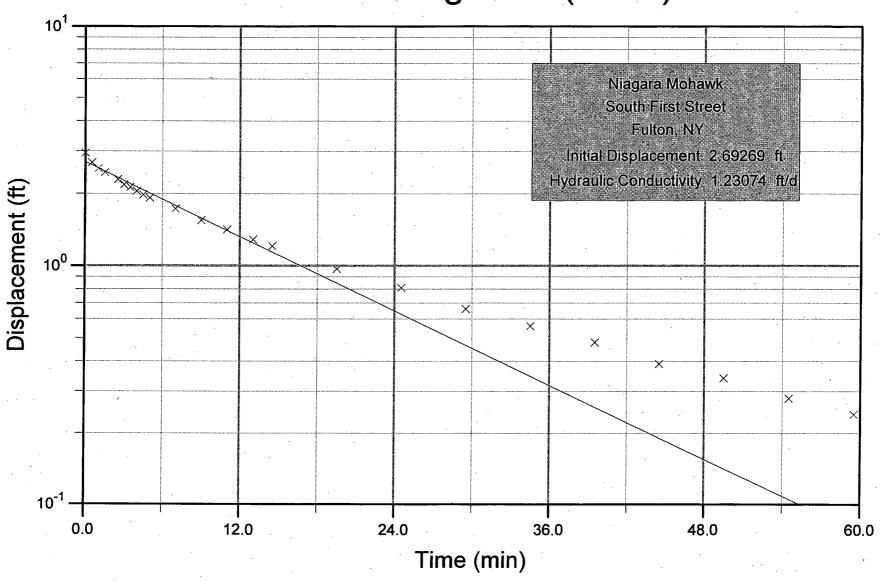
O'Brien 8	<u>Gere Engine</u>	ers, Inc.		Low F	low Groun	d Water S	<u>ampling Lo</u>	g	
Date	1) 3 05	Person	nnel	Scott Tucke	er/Jay Kavanaugh	Weather			
Site Name	South First Street	Evacu	ation Method	Low-Flew	bailer	- Well#	MM-19V		
Site Location	Fulton, NY	Sampl	ling Method	Low Flow	buler	Project #	1118/35165		
Well informat									
Depth of Well				* Measure	ments taken fro	_		•	
Depth to Wate		ft.			<u> </u>	Top of Well C			
Length of Wate						Top of Protect	-		
	Ivol 3	361 3V	8.181			Other, Specif	у)		
Water parame		sible pump slowly in center of scree s at every three n	ned interval	& maximum pun		liters/minute			
	Depth	s at every timee in	initate interv	als. ,	Oxidation	Dissolved			
Elapsed	To				Reduction	Oxygen	Turbidity	Flow	
Time	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)	
[nitin]		// /	630	0.817	227	11.47	1	1.2.0 ()	
3,70 gal		11 3	6,94	T					
	· · · · · · · · · · · · · · · · · · ·			0,859	156	6,99			
7,2		11.5	7.43	0,778	38	6.36	Er3		
10.8	Dry at 8	5 gallons	<u> </u>			<u> </u>			
	<u> </u>		ļ						
					·				
					_				
					-				
	<u></u>								

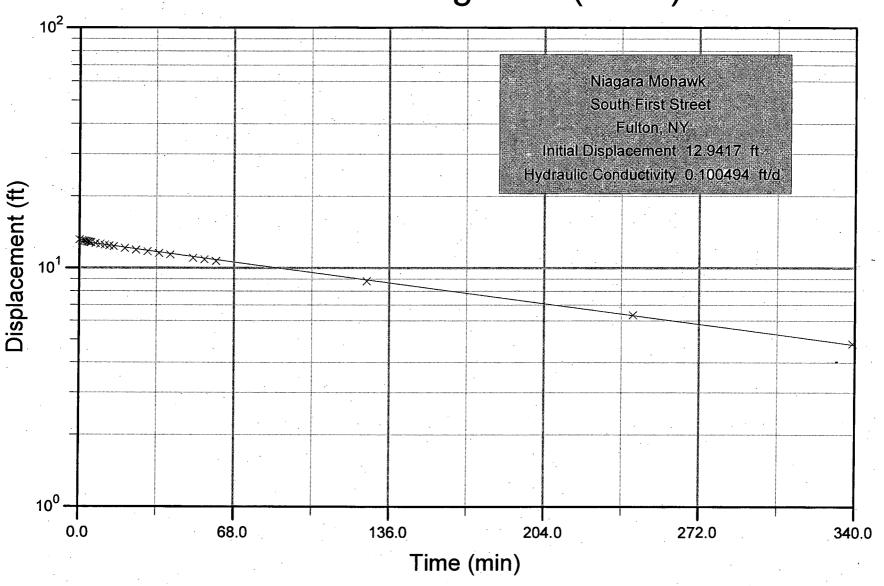
			<u> </u>		ļ	<u> </u>			
			 	ļ					
·			1						
				1					
								•	
			 			 . 			
			 	 				- 	
			1	 					
			 	 		 			
				<u> </u>	1:-	<u> </u>			
Water sample	~ ~ ~ -			-			8 = v		
Time collected				i otal volume o	f purged water r		8,5 gallo	<u>~~~</u>	
	arance at start Color () eoc				Physical appe	arance at sampl	ing bown		
	Odor Clear					Color Odor	NO		
Sheen/Free P				f	Sheen/F	ree Product	- NO INO		
									
Samples coll			S 000000000000000000000000000000000000			·			
Container Size	a Containe	er Type	# Collected	Field Fitte	ered	Preservative	Conta	iner pH	
			 						
			 						
			<u> </u>					· ······· ·····	
			*				1		

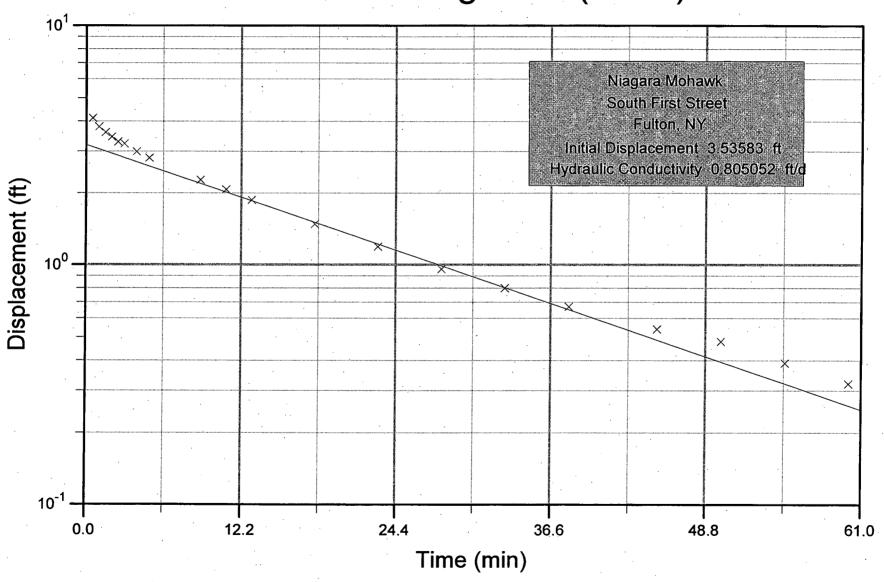

Appendix C

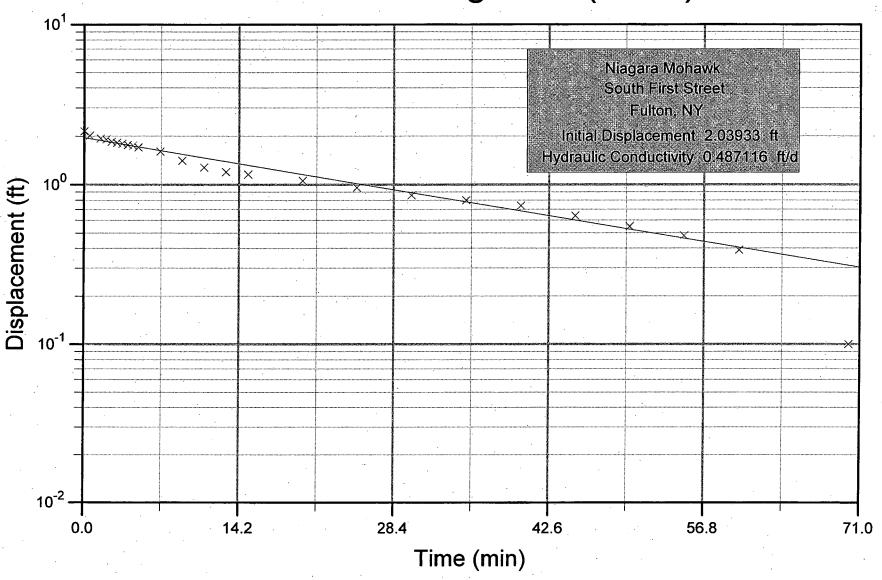
Hydraulic conductivity test plots

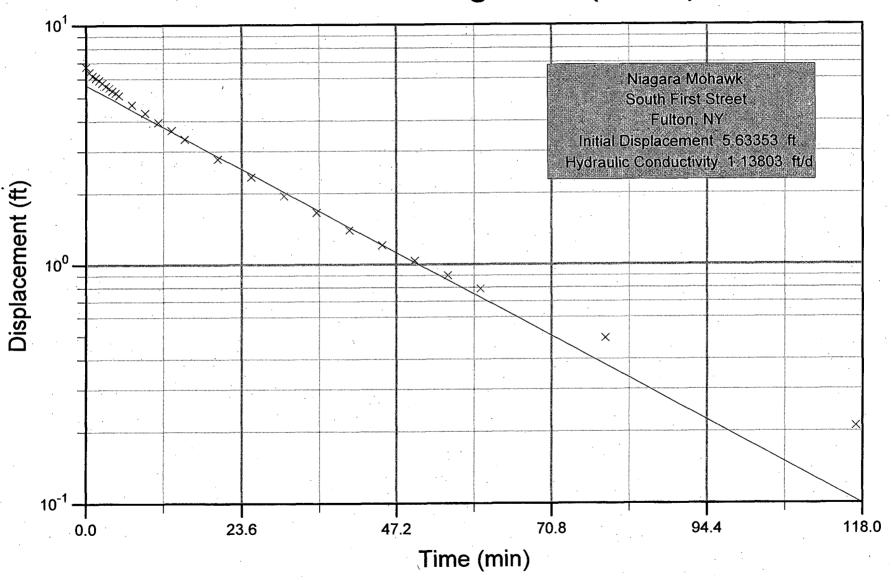

MW-3 Slug Test (2004)

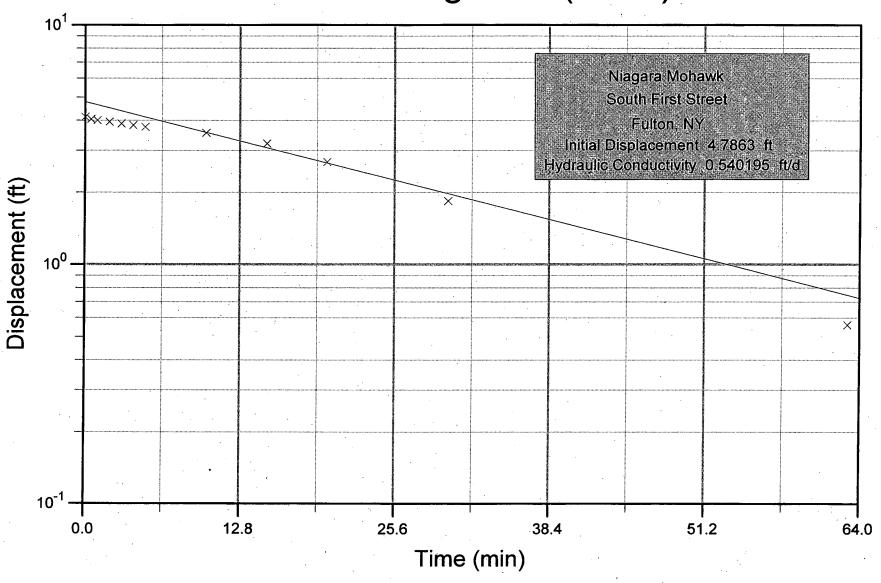

MW-7 Slug Test (2004)

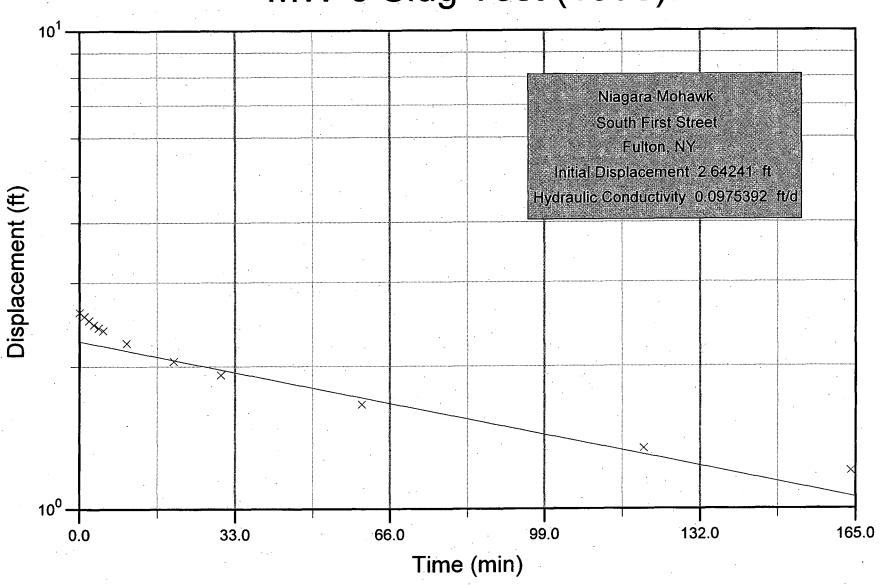

MW-7D Slug Test (2004)

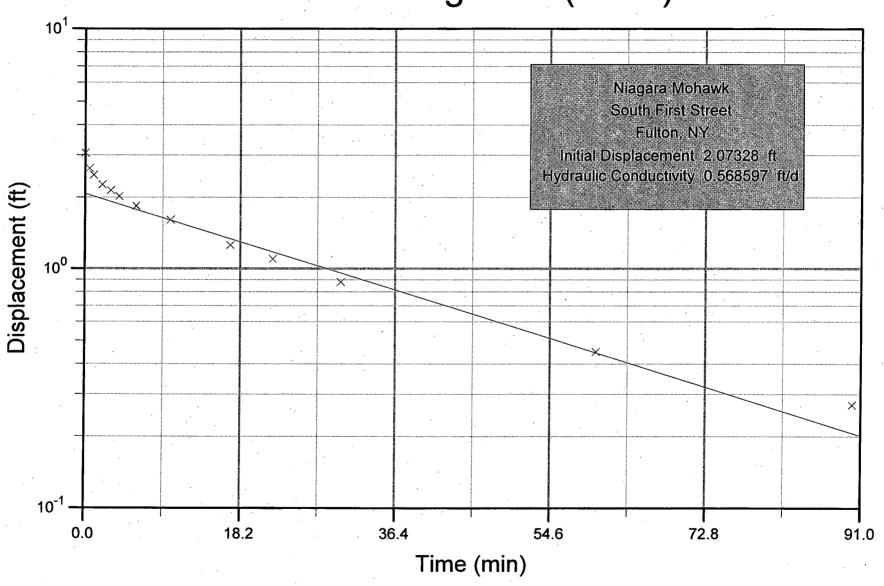

MW-8 Slug Test (2004)

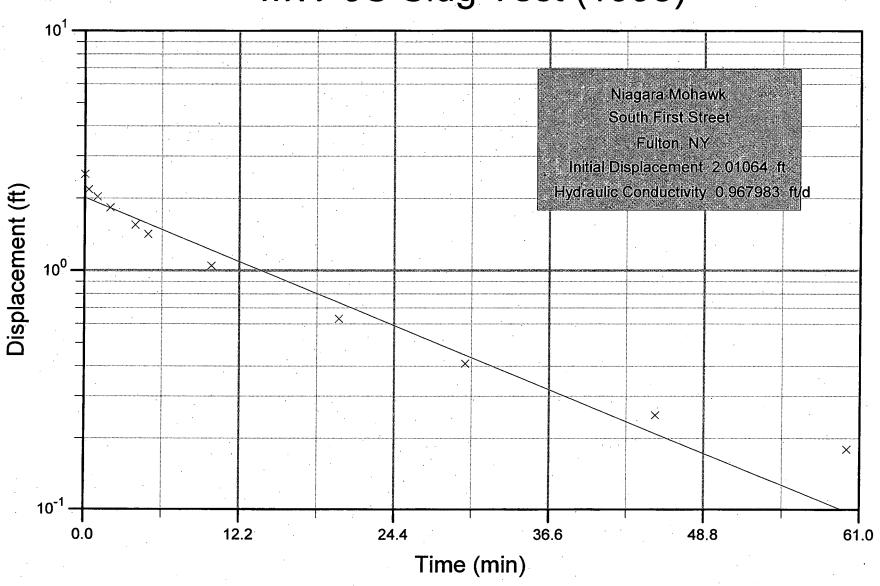

MW-8D Slug Test (2004)

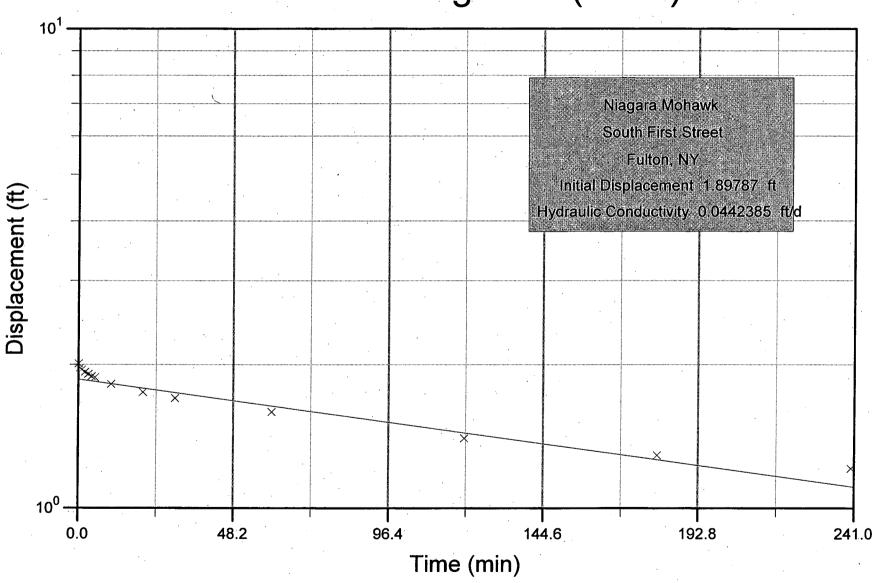

MW-9S Slug Test (2004)


MW-12S Slug Test (2004)

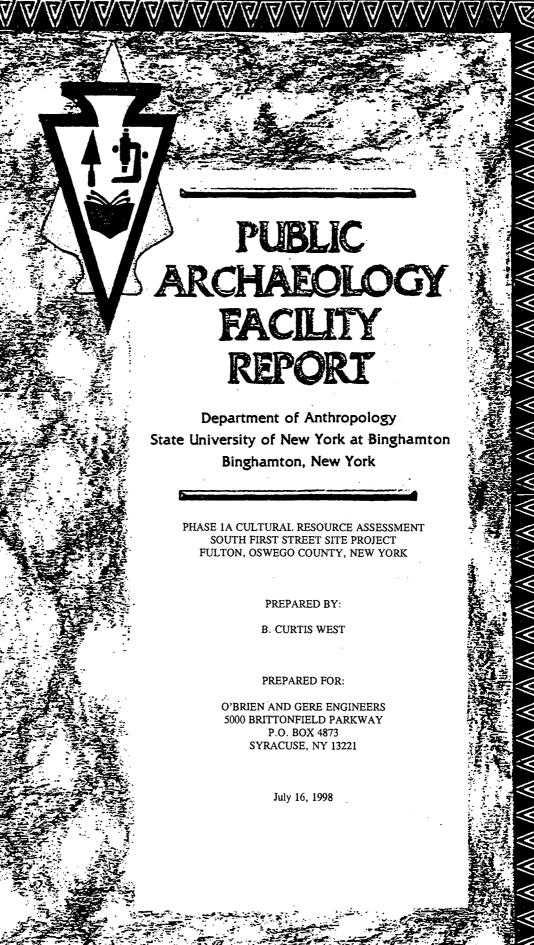

MW-12D Slug Test (2004)


MW-1 Slug Test (1998)


MW-6 Slug Test (1998)


MW-7 Slug Test (1998)

MW-9S Slug Test (1998)



MW-9D Slug Test (1998)

Appendix D

Cultural resource assessment

PHASE 1A CULTURAL RESOURCE ASSESSMENT SOUTH FIRST STREET SITE PROJECT FULTON, OSWEGO COUNTY, NEW YORK

Permit Applicant:

O'Brien and Gere Engineers, Inc.

Permit Number:

Location: Fulton (C), Oswego County (MCD 07541)

Report prepared by:

B. Curtis West

Date:

July 15, 1998

Affiliation: Public Archaeology Facility

Binghamton University

Binghamton, New York 13902-6000

(607) 777-4786

PROJECT SUMMARY

A Phase 1A cultural resource assessment was requested for the proposed South First Street Site project in the City of Fulton, Oswego County. The area consists of a vacant lot on the east side of South First Street, and a church property on the west side of the street, which contains a portion of the towpath of the Oswego Canal and abuts the Oswego River. The surrounding area is mixed residential and commercial. Fulton lies on the edge of the generally flat Erie-Ontario Lake Plain. The city is located atop a small escarpment through which cuts the Oswego River on its course to Lake Ontario. Background research into the prehistory of the surrounding area indicated that the parcel is situated in a zone of high prehistoric sensitivity. Twelve known prehistoric sites are located along and near this portion of the Oswego River. Background research into the history of the surrounding area indicated that the parcel is situated in a zone of high historic sensitivity, as it has been heavily used as a transportation route from colonial exploration through the development of the railroad. Four known historic sites are located within 3.2 km (2 mi) of the project area, ranging from a mid 18th century British fort to 19th century industrial sites. Fulton served as an important commercial and industrial center for the county during the 19th and into the 20th century.

The South First Street Site is located near to or at the location of the upper landing of the portage route around the Oswego Falls, and is considered to be an area of high sensitivity for both prehistoric and early historic archaeological sites associated with the river and the portage location. An archaeological reconnaissance including subsurface testing is recommended in the western parcel to identify the presence of these potential archaeological resources within the project area.

Part 1: DOCUMENTARY RESEARCH ADDENDUM SITE IDENTIFICATION

- A. Documentary Research Addendum
- 1. ..X.. Local site inventory checked (specify)
 Public Archaeology Facility
 - ..X.. Division for Historic Preservation

 National Register of Historic Places
 - ..X.. New York State Museum
- 2. Informants interviewed (name, address, specialty)
- 3. ..X.. Other sources checked (specify)
- Beauchamp, William M. Aboriginal Occupation of New York in *Bulletin of the New York State Museum*, No. 32, Vol. 7. University of the State of New York, Albany.
- 1866 Child, Hamilton Child's Gazetteer and Business Directory of Oswego County, N. Y 1866-67. Oswego Daily Commercial Advertising Office, Oswego, NY.
- 1895 Churchill, John C. (editor) Landmarks of Oswego County, New York.. Albany, NY.
- 1877 Everts, L. H. & CO. History of Oswego County, New York. Philadelphia,, PA
- 1949 French, M. J. Champlain's Incursion Against the Onondaga. Ann Arbor, MI.
- 1993 Funk, Robert E. Archaeological Investigations in the Upper Susquehanna Valley, New York State. Persimmon Press, Buffalo.
- 1997 Hohman, Christopher D. *The Archaeology of the Niagara House Block, City of Niagara Falls, New York.*Public Archaeology Facility, Binghamton University, Binghamton.
- 1873 Hough, Franklin B. Gazetteer of the State of New York. New York, NY.
- 1996 Mann, Rob Archaeological Excavations at the Ehler Site (12-HU-1022) An Early 19th Century Miami Indian Habitation Site Near the Forks of the Wabash, Huntington County, Indiana. Prepared by Landmark Archaeological and Environmental Services, Inc. for the Indiana Department of Transportation.
- 1853-1883 O'Callaghan, E. B. Editor, Documents Relative to the Colonial History of New York. Albany, NY.
- Parker, Arthur C. The Archaeological History of New York in *The New York State Museum Bulletin*, Nos. 237, 238. The University of the State of New York, Albany.
- Riordan, Timothy B. "An Equal Space on Each Side of Your House;" A Brief Survey of the Potential for Archaeological Research in an Urban Setting. *Proceedings of the Symposium on Ohio Valley Urban and Historic Archaeology*. University of Louisville, Louisville, KY.

- 1980 Ritchie, William. The Archaeology of New York State.
- 1968 Snyder, Charles M. Oswego: From Buckskins to Bustles Empire Historical Publications Series No. 56
- 1970 Stewart, Alexander M. French Pioneers in the Eastern Great Lakes Area 1609-1791. The New York State Archeological Association, Rochester, NY.
- 1939 Soil Conservation Service. Soil Survey of Oswego County, New York.
- 1867 Stone, C. K. Atlas of Oswego County, New York
- 1987 Tanner, Helen Hornbeck Atlas of Great Lakes Indian History University of Oklahoma Press, Norman, OK.
- 1971 Tuck, James Onondaga Iroquois Prehistory, A Study in Settlement Archaeology. Syracuse University Press, Syracuse, NY.
- 1955 USGS. 7.5 minute, Fulton quadrangle.
- 1991 West, Bryan C. First Light on Anthony Wayne's Headquarters of Greene Ville: The Historic Archaeology of the Headquarters of the Legion of the United States (1793 to 1796). Ball State University, Muncie, IN.
- Wright, J. Leitch Jr. Britian and the American Frontier 1783-1815 University of Georgia Press, Athens, GA.
- Wurst, Louann and Nina Versaggi. *Under the Asphalt: The Archaeology of the Binghamton Mall Project.* Prepared for the The City of Binghamton Urban Renewal Agency by the Public Archaeology Facility, Binghamton University, Binghamton.

Results of Documentary Research: ENVIRONMENT AND SOILS

The project is located in the City of Fulton on the east side of the Oswego River. The project lies on the glaciated Ontario Erie Lake Plain. The topography is flat to gently rolling. The elevation of the present project area is approximately 110 m (350 ft) ASL.

The project area for the proposed South First Street Site project was used historically for the last two centuries. This use may have started with camps for travelers taking the portage around the Oswego Falls and continued through to the development of the commercial use of the area with the construction of the Oswego Canal. The area has been in mixed residential and commercial use throughout the 20th century. The present surface of the lot on the eastern side of First Street is covered by grass. The lot to the west is covered in grass and asphalt, and a metal building stands on the southern portion of this lot. To the rear of the western lot are the remains of the towpath of the Oswego Canal.

The soils of the entire project area are classified as "urban land" and are not typed by the USDA Soils Conservation Service. Subsurface testing of the site will be necessary to determine the existing soil profile, as well as to determine the potential for deep testing of buried alluvial deposits.

Results of Documentary Research: PREHISTORY

The prehistory of New York State began about 10,000 B.C., when Paleo-indian hunting bands migrated into the area pursuing big game such as mammoth and mastodon. These animals became extinct around 8000 B.C. and an extended period of small game hunting, fishing and gathering of wild plants started within localized territories. Archaeologists believe that these small bands of people moved their camps seasonally along the rivers, tributary streams, lakes and swamps of New York. By 1000 A.D., prehistoric groups practiced horticulture, mainly the planting of corn, beans and squash. Sedentary villages replaced the nomadic hunting camps, and in some areas ceremonial sites including mound building and other earthen structures were constructed. Although land use tended to become more sedentary in the Woodland period, groups still went out on hunting and fishing trips lasting several days to several months. Resource areas such as the rivers on the great lakes were popular for abundant seasonal fish and ell runs, as was noted by early explorers at the Oswego Falls (Stewart 1970).

The proposed project is located on the east side of the Oswego River, an area that has a long history of land use during prehistory. Ritchie notes that paleo-indian points have been found along the Oswego River and other water resources in Oswego County (1971). Ritchie also notes that sites through the Archaic and Woodland periods have been found along the rivers that flow into Oneida Lake, which is situated approximately 24 km (15 mi) to the southeast of the project area (Ritchie 1971).

A site files search was conducted at the New York State Museum, and the Office of Parks and Recreation in Albany (see Attachment F), and at the Public Archaeology Facility at SUNY Binghamton. The site files note at least 12 known sites ranging from the Paleo-Indian through the Contact time periods (9000 B.C. - A.D. 1760) within 3.2 km (2 mi) of the project area. The sites range from isolated point finds to large, multicomponent villages. Parker (1920) notes that several of these sites (OSWG-7, and OSWG-7B and OSWG-9), both prehistoric villages and mound sites, are identified along the Oswego River. The project area lies on the eastern bank of the Oswego River (see site files correspondence, Attachment F).

The area adjacent to the Oswego River was used heavily throughout prehistory. Given the project's proximity to the river and its location near known prehistoric sites, the potential for prehistoric cultural deposits from ephemeral (campsites, processing locations) sites to villages is considered to be high.

Results of Documentary Research: HISTORY

The Oswego River and Falls have long been a conduit for travel from Lake Ontario, inland, to central New York State. This route was frequented by Native Americans and by those who wished to do business with them. The portage around the falls passed directly through the City of Fulton and was the primary reason for the settlement at this location.

The first European travelers to record the Oswego Falls in 1654 were Father Simon Le Moyne and his French Jesuit mission traveling to meet with the Oneida Indians (Churchill 1895) following the French and Iroquois Peace of 1653 (Stewart 1970). The River may have been the route of an earlier, and more famous Frenchman, Sieur Samuel de Champlain in 1615 (French, 1949). In that year, Champlain and a dozen Frenchmen accompanied a small army of Hurons in an attack against the Onondaga Iroquois (Stewart 1970). This raid on a fortified village of the Onondaga is argued by French to have been located on Lake Onondaga at modern Syracuse with the route up the Oswego River being the most direct way for an attack party coming from Lake Ontario. Others have argued that the objective was a fort on Nicholas Pond in Madison County to the north (Stewart 1970).

War between the French and the English led to the surrender of New France by Champlain in 1629, only to be given back over to France again in 1633. From 1634 into the 1640s, the French busied themselves with reestablishing their empire and missions among the Hurons, precluding the French from making inroads with the New York Iroquois (Stewart 1970).

The French had decided to create a Mission to the Onondaga, and to do so meant traversing the Oswego route from Lake Ontario to Lake Onondaga. Aside from the occasional explorer and war party, Le Moyne's 1654 trip was the first intended to establish a European colony in the area of the Onondaga (Stewart 1970). In 1656, twenty canoe loads of French colonists arrived in present-day New York in the area of the Salmon River. They followed the coast line to the mouth of the Oswego which they ascended to Lake Onondaga, reportedly stopping to camp at the portage at the Oswego Falls (Stewart 1970). The initial Onondaga Mission lasted for only twenty months, but from here other missions were made to the Cayuga, Oneida, and the Seneca (Stewart 1970).

Growing British influence with the Mohawk, following their conquest of the Dutch holdings along the Hudson river, led them to attempt expansion of trade to other Nations of the Iroquois. By the early 1700s, the British had established trade at the mouth of the Oswego River. A permanent presence was set up by Albany traders in 1720 and by 1722 they had established a military presence at the site named Fort Oswego (Snyder 1968).

During the French and Indian War, battles were waged off of Lake Ontario and along the Oswego River, with the military resources of the Northern colonies and the British army traveling to Oswego via the portage route at Oswego Falls (now Fulton). During the war, a post was built at the lower portage point, called Fort Bradstreet or Fort Oswego Falls (Everts 1877).

The trade route on the Oswego was to remain important between the French and Indian Wars and the Revolutionary War and still proved an important military artery between the Mohawk Valley and Lake Ontario (Everts 1877; Snyder 1968). During the Revolutionary War, the British and the colonists fought a number of battles at Fort Ontario (located at the confluence of Lake Ontario and the Oswego River). In 1782, an American assault was unsuccessful against the fort, stopping along the way to the fort at the upper portage at Oswego Falls to build siege ladders for the assault (Snyder 1968).

Between the revolution and the British surrender of the Fort at Oswego, American settlers began to make inroads along the Oswego River, and particularly at the portage. Lawrence Van Valfenburg maintained a tavern for river traffic at the Upper Portage at the Oswego Falls on the East bank of the river near Velverton Island (Everts 1877). Many Loyalists passed through the portage on their way to new lands in Canada, and many American settlers also passed this route on their journey to Northern Ohio with General Moses Cleveland (Snyder 1968). The salt trade from the salt springs on lake Onondaga became an important part of river commerce during the 1790s and would be a driving factor in the development of canal plans in the early 19th century (Everts 1877).

The Oswego River would once again become a contested site between the Americans and the British in the War of 1812. The Americans utilized the port at Oswego to harass Canadian shipping on the lake during 1812 and 1813. In 1814 the British, under General Drumond, attacked and burned the post and the town. The Americans fell back to Fulton to defend the river route and the towns of the interior; however, the British did not press the battle down the river (Snyder 1968; Wright 1975).

The Canal Era developed along the Oswego as a continuation of the flat boat trade, but traffic increased in 1794 with the completion of the Western Inland Navigation Company's canal and lock system that opened keel boat travel from Schenectady to Oswego Falls. The Falls were to be an obstacle on the river and the portage of goods was necessary until 1828, when the Oswego Canal locks were completed. This continued portage insured that a settlement

would grow at Fulton (Everts 1877; Snyder 1968).

Water power at the falls ushered in an era of industrial development within Fulton by the mid 19th century. As the area grew, plank roads, railroads and, later, highways enhanced the area's transportation access and eventually replaced the importance of the canal and river transport systems.

Within the 19th century, little is known about the property on which the project area is located. Prior to 1867, the project area was probably used for farming or was woodlands. In 1867, although the properties along South First Street are subdivided, there are no structures located on them (Stone 1867, Appendix D.1). The Canal is noted adjacent to the Oswego River to the west of the parcel located on the west side of South First Street.

By 1911, the parcels on both sides of South First Street are owned by Fulton Fuel and Light Company. Within the parcel on the east side of South First Street, much of the property by 1911 and through 1924 is covered by two large gas holders (30,000 and 50,000 cubic ft), as well as an oil tank and gas tanks. By 1951, the structures have all been removed and the lot is noted as vacant. Within the parcel on the west side of South First Street, the eastern 15-24 m (50-80 ft) of the property is covered by 1911 and through 1924 by a coal shed and building related to the development of the fuel products by the Fulton Fuel and Light Company. By 1951, the buildings have been removed. In the southern end of the lot, in the vicinity of the present Cross Road Tabernacle building, a farm implement store has been constructed, which has since been removed (Appendices D.2-D.4).

Documentary Summary

..... no sites reported
...X.. sites reported (describe briefly)

At least 12 prehistoric sites are noted within 3.2 km (2 mi) of the project area with the sites largely being located along the Oswego River. These sites range from the Paleo-Indian period through the Archaic, and Woodland periods. Historic sites within 3.2 km (2 mi) include the Colonial period site of the fort at Oswego Falls on the lower landing of the portage at Fulton, historic 19th century features such as the remnants of the Oswego Canal, as well as 19th century industrial/commercial archaeological sites.

Potential for Archaeological Resources

As has been established in the archaeological literature of the past twenty years, urban settings have yielded important archaeological information. This information is frequently buried beneath the construction spoil of succeeding generations, especially during the 19th century and early 20th century (Riordan 1983; Wurst and Versaggi 1993; Hohman 1997). In areas along elevated river banks earlier deposits, especially those of 18th century occupations, can be buried intact by as much as two meters (6.6 ft) of urban fill or more (West 1991). The fill of the levee/canal towpath on the extreme western portion of the project is likely to have capped the 18th century surface existing at the time of canal construction. The fill associated with present lot on the west side of South First Street may also have served to cap an earlier land surface. This fill extends from the central portion of the lot to the edge of the levee/towpath to the western portion of the site. This fill is evident on this property only, as the elevation of the adjacent properties is considerably lower to the north and to the south of this parcel. In the vicinity of the project area Lawrence Van Valfenburg is reported to have maintained a tavern (during the late 18th century) for river traffic at the Upper Portage of the Oswego Falls on the East bank of the river near Velverton Island (Everts 1877). If any portion of this site is located of the western lot, the presence of the fill and the levee/towpath would potentially serve to preserve archaeological materials associated with the tavern or the upper portage site in general. This portion of the parcel is

therefore considered to have a high sensitivity for intact historic resources and a moderate sensitivity for buried prehistoric or resources.

Although much of the project area on the west side of South First Street is under asphalt or built up fill, the known history and prehistory of the area suggest that the potential for buried intact archaeological deposits on the western portion of the parcel is high. In addition, a portion of the towpath of the Oswego Canal remains intact at the western edge of the parcel on the west side of South First Street. The Canal system in New York has been determined to be National Register eligible. Although the towpath itself may have limited archaeological information, it may serve to cover earlier archaeological materials. The features associated with the filled in canal would likewise need to be mapped and photographed due to the thematic NRHP eligibility of these canal structures.

On the east side of South First Street (and on the eastern half of the lot on the west side of South First Street) the former location of the gas storage tanks and gas and oil tanks, suggests that these portions of the parcel have been disturbed by the excavation and construction of the fuel tanks, as well as the demolition of the structures in the mid 20th century. Therefore, these portions of the parcel are considered to have a low sensitivity for any intact prehistoric or historic resources.

END PART 1

If site evaluation is not completed at this time, proceed to Part 3.

PART 3: SUPPORTIVE DATA

Reports should include the items listed below. Bracketed information is optional. Put a check next to each item appended.

PLEASE NOTE: Most attachments listed below often provide precise locational and compositional data on archaeological sites. This information is confidential to protect the resource from vandalism. All attachments with site specific information should be omitted from report copies which will be available to the general public.

8 F	
A	qualifications of the principal investigator(s)
B	Topographic map with project area noted
C	map(s) of test locations, field inspection, and areas of cultural material; maps must have title, legend, bar scale, and directional arrow.
••••	record of soil stratigraphy in each test unit.
••••	artifact catalog
.D	copies of relevant, supplemental historic maps
.E	photographs of the project area
.F	site files correspondence
For reports on should be inclu-	surveys which include Site Evaluation and Definition (Part 2 above), the following items ded:

..... project area map with site boundaries delineated (mark "Confidential: For Office Use

site inventory forms (mark "Confidential: For Office Use Only")

.... soil profiles

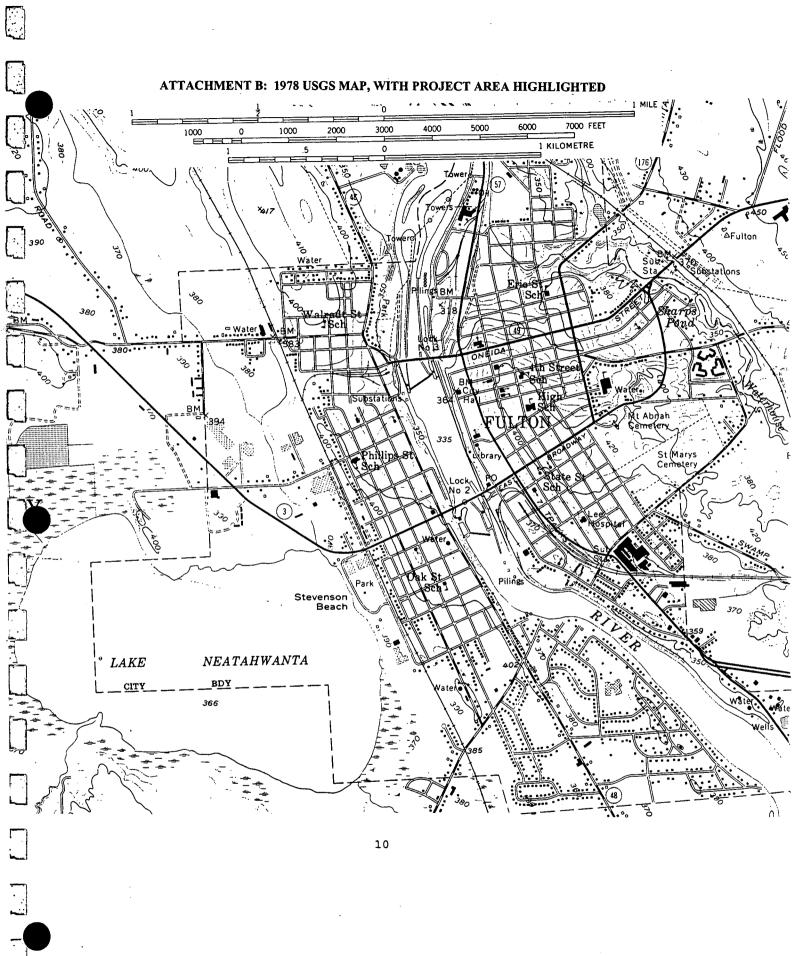
..... photographs, as appropriate, characterizing project area and documenting salient cultural remains.

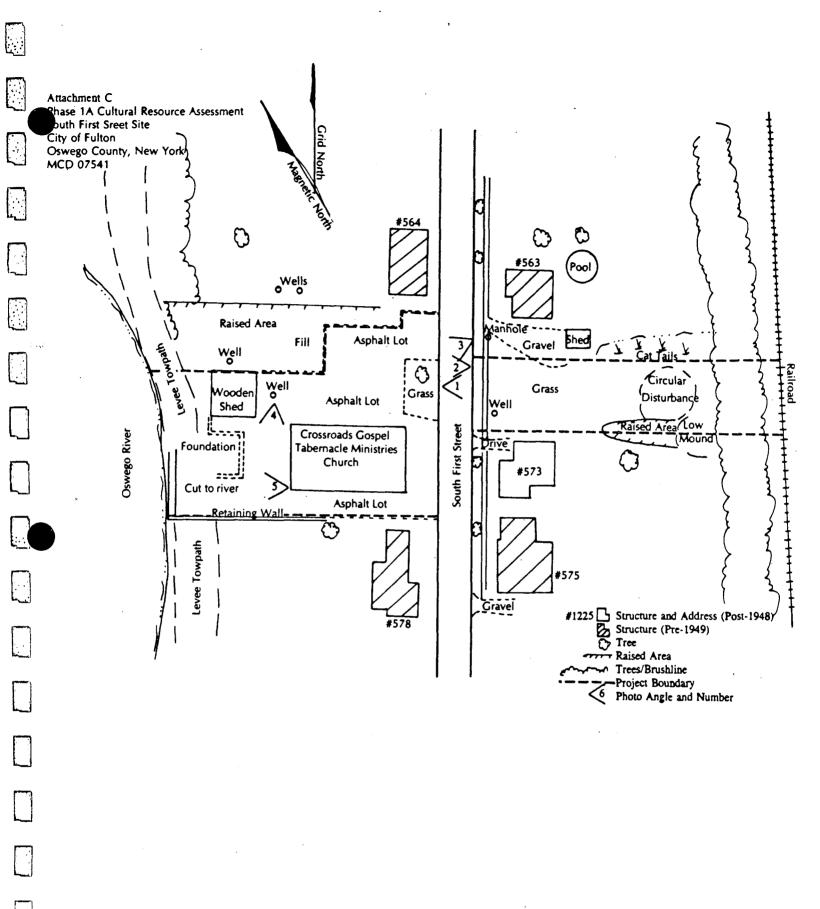
.... recommendations

Certification: I certify that I directed the cultural resource investigation reported here, that my observations and methods are fully reported, and that this report is complete and accurate to the best of my knowledge.

July 16, 1998

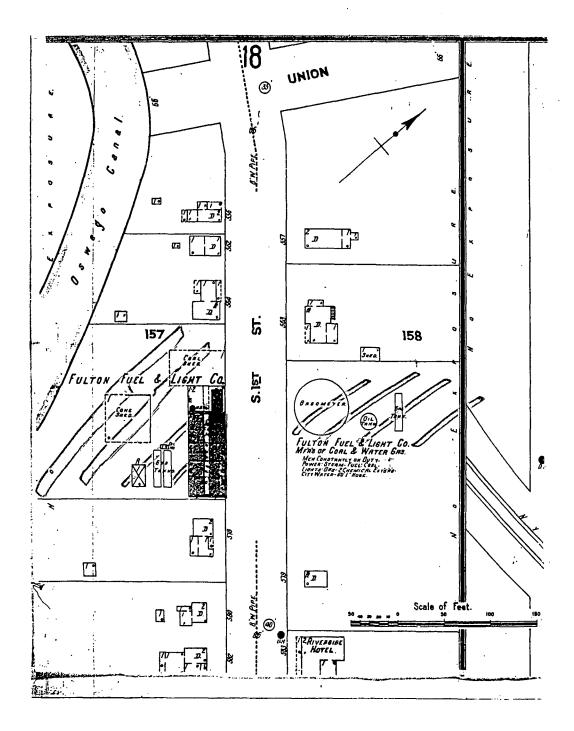
B. Curtes West/signature of preparer NV

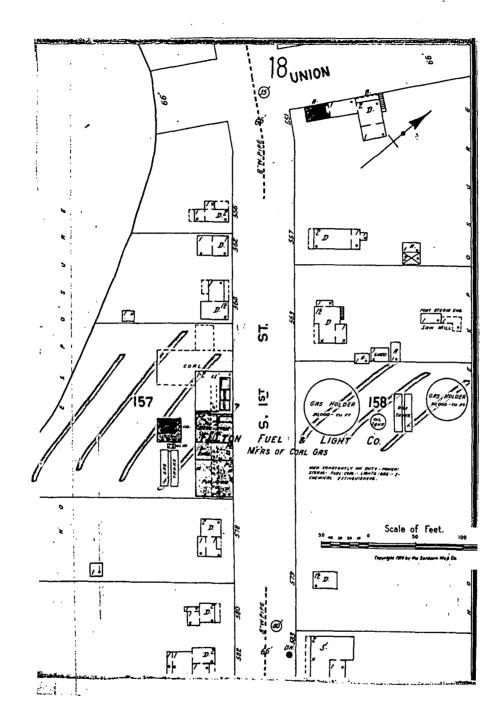

ATTACHMENT A.1: QUALIFICATIONS OF THE PRINCIPAL INVESTIGATOR and PROJECT DIRECTOR

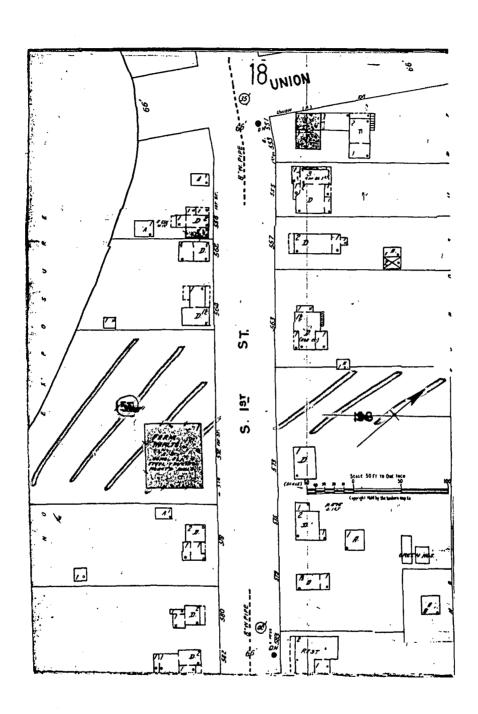

Dr. Nina M. Versaggi Director and Principal Investigator, Public Archaeology Facility

Versaggi received her doctorate in Anthropology from SUNY-Binghamton in 1988, her MA from SUNY University at Binghamton in 1976 and her BA from Rutgers University in 1974. She has been active in professional archaeology since 1972. Professional positions held include Director of the Public Archaeology Facility since 1988, Partner in Compliance Survey Associates for 6 years, Guest Curator at the Roberson Museum and Science Center, and Post-doctoral Fellow at the Hartwick College Museums. She serves as principal investigator for all current and past projects of the Public Archaeology Facility whose recent projects include the Rainbow Plaza Data Recovery in Niagara Falls and the state-wide highway subcontract with the New York State Museum and NYSDOT. She has authored "Hunter to Farmer: 10,000 Years of Susquehanna Valley Prehistory," "Prehistoric Hunter-Gatherer Settlement Models: Interpretating the Upper Susquehanna Valley," and "Upland Foraging Sites in the Northeast: Engendering Prehistory," which are based on NYSDOT and pipeline prehistoric data. She is a member of the board for the Preservation Association of the Southern Tier, and for the New York Archaeological Council she chairs the Professional Survey and Report Standards Committee. She serves as an Adjunct Associate Professor at Binghamton University.

B. Curtis West Project Director, Public Archaeology Facility


West received his MA in Anthropology from Ball State University in 1991 and his B S in Anthropology, History, and Geography from Ball State University 1987. He has worked in professional archaeology since 1986 and in 1998 joined the staff of the Public Archaeology Facility. He has served as project director and coordinator on many transportation and pipeline corridor projects in New York, Connecticut, Pennsylvania, Ohio West Virginia, Indiana, Georgia, and Oregon. Mr. West has also served as Principal Investigator in his own private consulting business in West Virginia. He has served as project director on a wide range of site examinations and surveys, as well as historic and prehistoric site Data Recoveries. His research interests include Late Colonial and Federal Era Historic Archaeology, Past Landscape Studies, Eastern North American prehistory, and Cultural Resource Management Law. The author of numerous cultural resource management reports, he currently directs projects for PAF's statewide highway contract with the State Museum and other projects in New York State and Pennsylvania.




ATTACHMENT D.2: 1911 SANBORN MAP, WITH PROJECT AREA HIGHLIGHTED

ATTACHMENT D.3: 1924 SANBORN MAP, WITH PROJECT AREA HIGHLIGHTED

ATTACHMENT D.4: 1951 USGS MAP, WITH PROJECT AREA HIGHLIGHTED

ATTACHMENT E: PROJECT AREA PHOTOGRAPHS

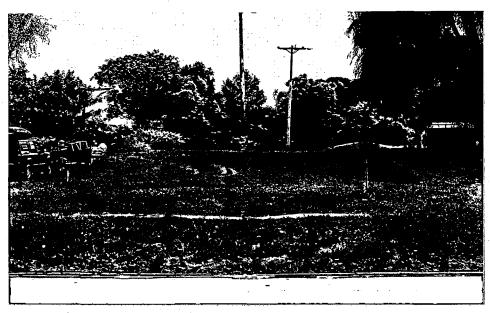


Photo 1. Facing east, grassy parcel on east side of South First Street.

Photo 2. Facing west, asphalt parking area in parcel on west side of South First Street.

Photo 3. Facing southwest, asphalt parking and post-1948 Crossroads Tabernacle Church structure.

Photo 4. Facing south, Oswego Canal towpath to the south of the parcel on the west side of South First Street.

Photo 5. Facing west, asphalt parking area adjacent to canal towpath and Oswego River.

ATTACHMENT F: SITE FILES CORRESPONDENCE

CONFIDENTIAL

OFFICE OF PARKS, RECREATION AND HISTORIC PRESERVATION Field Services Bureau Files Search

DATE: 4/2/98

CONDUCTED BY: B. Ross

Project: Niagara Mohawk Gasline, South First Street
Minor Civil Division: city of Fulton (07541), town of Volney

County: Oswego

USGS Quadrangle: Fulton

1. Archaeological Sites (within 3.2 km/2 mi radius of project area):

Refer to attached table.

2. Projects and Surveys within or adjacent minor civil division (MCD):

Unnumbered, 92PR0227. Includes survey of James R. Fairgrieve School, 07541.000017 on South Seventh Street - determined not eligible, 6/92.

Unnumbered, 98PR0561. Handicapped Access for NR listed South First Street, Fulton post office.

Unnumbered, 95PR1285. Cultural Resource Assessment of Sealright Property Feasibility Study, South First Street and East Broadway, City of Fulton, Hartgen Archaeological Associates, 8/94. Stage IA recorded no sites. Includes building 07541.000019 at 314 South First Street for the Oswego River Valley Industrial Interpretive Center.

OPR Report #2. Cultural Resource Survey of PIN 3750.55, Oneida Street Bridge, city of Fulton, towns of Volney and Granby, Oswego County, NY, SUNY Binghamton PAF, 9/78. Seven sites identified within Stage 1B for DOT. A07541.0000009-15 (9 & 13 prehistoric, 12, 14 & 15 historic and 11 unidentified). This includes Item 1, Sites 2-7 within 3.2 km of current project area. AND 1980 supplemental survey by Gordon DeAngelo recorded no sites.

OPR Report #10. City of Fulton Stage LA Cultural Resource Survey Wastewater Treatment and Collection Facilities 201 Wastewater Facilities Plan, City of Fulton, C-36-1009, Pratt & Pratt, 10/77 for EPA. Nine prehistoric sites recorded. A07505.000002-8 includes Item 1, Sites 1 and 10 and A07541.000007 (Item 1, Site 9) within 3.2 km of current project area. AND Stage IB, 8/78, did not identify any sites. Surveys on east side of city.

OPR Report #15. Cultural Resource Literature Search and Site Inventory for Oswego Basin, DACW 49-80-C-0029, Deborah Swartz, 10/80. Multi-MCD survey along Lake Ontario, Oneida and Oswego Rivers.

OPR Report #19. Stage IA Cultural Resoruce Survey, Oswego County Energy Recovery Facility, town of Volney, Stephen Oberon, 8/82. No sites recorded in project area near CR 57 and Walkins Road. AND Stage IB, 9/82; no sites.

OPR Report #26. Stage IB Cultural Resource Survey of the Fulton Hydro Station, city of Fulton, Neil Johnson, 4/83 for FERC. No sites identified within project area near CR 57 near Volney town line.

OPR Report #30. A Cultural Resource Survey Report, Dutch Ridge Road/Route 481, PIN 3107.05, towns of Volney and Scriba, Syracuse University, 10/86 for DOT. No sites identified within 66.8 acres surveyed.

Niagara Mohawk Project, city of Fulton

OPR Report #35. Stage IA/B Cultural Resource Survey of PIN 3751.21, BIN 2-20939-0, North Sixth Street over Conrail, City of Fulton, NYSM, 12/88 for DOT. No sites identified within 5.2 acres surveyed.

OPR Report #49. Stage IA/B Cultural Resource Survey of PIN 3107.09.101, Route 481, northern Fulton city line to Route 57, town of Volney, NYSM, 1/90 for DOT. No sites identified within 48 acres surveyed.

OPR Report #50. Stage IA/B Cultural Resource Survey of PIN 3107.10.101, Route 481, Dutch Ridge Road to Oswego City Boundary, town of Fulton, NYSM, 2/90 for DOT. No sites identified within 21.8 acres surveyed. OPR Report #52. Stage I Cultural Resource Survey of the Fulton City School District, NW Quadrant Elementary School, town of Granby, Oswego County, Pratt and Pratt, 8/89. No sites identified within 57 acres surveyed near Melrose Road.

OPR Report #56. Stage IA/B Cultural Resource Survey of the First Ward Sewer and Water Project, City of Fulton, 11/90. No sites identified within 15.1 acres surveyed near the railroad at the western end of the city.

OPR Report #57. Cultural Resource Survey of the Fulton YMCA Project, city of Fulton, Pratt & Pratt, 10/90. No sites identified within four acres surveyed near Tannery Creek on west side of city.

3. State/National Register Listed and Eligible Properties (within or adjacent to project area):

Only NR property within the city is the US post office at 214 South First Street. NR2156, 90THM004, 07541.000016. Listed 5/11/89 as part of thematic listing for USPO in NYS built between 1858 and 1943.

All NR listed properties within adjacent town of Volney are barn, house, tavern related to an early settler and family, the Van Burens.

4. Structure Inventories within or adjacent to project area:

07541.000001

115 South First Street

Dewitt W. Gardner House

07541.000005

177 South First Street

Pratt House

The following do not have inventory forms.

cht

OUT

07541.000016

214 South First Street

US Post Office

NR listed, 98PR0561

で入 07541.000019

314 South First Street

Sealright Building

95PR1285 project

07541.000015

Oswego Canal

5. National Register Staff Comments and Concerns:

None.

CONFIDENTIAL OPRHP/NYSM Site Files Fulton Niagara Mohawk Gasline Project

Item 1. Archaeological Sites, page 1 of 2. Fulton Quadrangle

SITE NUMBER	SITENAME	DIST. From Project/Dist. From water	Elevation/Slope	Cultural Affiliation/Site Type	Testing/Type/interval Artifacts	Report
A07505.000002 NYSM 2164 1) prehistoric	Indian Point Site FLT 5-3	0.8 km (0.5 mi) N / 46 m (150 ft) E of Oswego River	113 m (370 ft) amsl; gentle slope	Paleoindian to Late Woodland camps?	stps & units by landowners in 1960s stps (1977) during survey	OPR Report #10 & RMSC files
A07541,000010 2) historic	Oswego Falls Fort	1.9 km (1.2 mi) N/30 m (100 ft) E of river	98 m (320 ft) amsl; gentle slope	1756-1759 fort site	no visible evidence	documented in OPR Report 2
A07541.000011 NYSM 4419 & 6887 3) prehistoirc	ACP OSWG - 7, 7B, 8 Beauchamp 3	1.6 km (1 mi) NW / 488 m (1600 ft) W of Oswego River	122 m (400 ft) amsl; gentle slope	bone hill at Oswego Falls may be extension of A07541.000007	no visible evidence	
A07541.000012 4) historic	Perkins Seal-Right Factory Site	0.6 km (0.4 mi) N / 122 m (400 ft) E of river	113 m (370 ft) amsl; gentle slope	19th century ? factory site	no visible evidence	
A07541,000013 May be same as NYSM 1258 and 1259 5) prehistoric	ACP OSWG - 7 Perkins Site	1.6 km (1 mi) W / mouth of creek at north side of Lake Neatahwanta	113 m (370 ft) anssl; flat	Late Archaic; Laurentian or Point Pennisula	no visible evidence	
A07541.000014 6) historic	SUBi-881 A - I	1.4 km (0.9 mi) N / 46 m (150 ft) E of river	110 m (360 ft) amsl; gentle slope	mill complex (19 th century?)	under urban renewal project parking lot	
A07541.000015 7) historic	SUBi-882 Oswego Canal	!	1	19 th century canal	1	1
A07541.000007 NYSM 6887 8) prehistoric	probably ACP OSWG - 7B	1.8 km (1.1 mi) NW / 46 m (150 ft) W of Oswego River	104 m (340 ft) amsl; gentle slope	Late Woodland burial mounds (described by Parker as burial place) May be extension of A07541.000011	no visible evidence	documented in OPR Report #10
A07541.000008 9)historic		1.1 km (0.7 mi) S / 61 m (200 ft) E of river	107 m (350 ft) amsl; gentle slope	Indian settlement of four to five cabins, c. 1743	no visible evidence	Pratt report C- 36-732
A07505.000008 NYSM 1260 10) prehistoric	Candee Site FLT 3-5	1.9 km (1.2 mi) S / adj. to Ley Creek & 61 m from Lake Neatahwanta	113 m (370 ft) amsl; flat	Late Archaic	landowner excavation and collection	documented in OPR Report #10
NYSM 4449 11) prehistoric	ACP OSWG	covers large area including project area; south 1.6 km and north 3.2 km /along east side Oswego River	101 - 122 m (330 - 400 ft) amsl; gentle slope	unidentified prehistoric camp	 	Refer to Parker 1922
NYSM 4421 12) prehistoric	ACP OSWG - 9	1.4 km (0.9 mi) S / 457 m (1500 ft) W of river	113 - 116 m (370 - 380 ft) amsl; gentle slope	unidentified prehistoric village	 	

CONFIDENTIAL OPRHP/NYSM Site Files Fulton Niagara Mohawk Gasline Project

Item 1. Archaeological Sites, page 2 of 2. Fulton Quadrangle

SITE NUMBER	SITE NAME	DIST. From Project/Dist. From water	Elevation/Slope	Cultural Affiliation/Site Type	Testing/Type/interval Artifaets	Report
NYSM 4420 13) prehistoric	ACP OSWG - 8	covers large area from 1.3 - 4 km (0.8 - 2.5 mi) W surrounding Lake Neatahwanta	113 m (370 ft) anisi; flat to gentle slope	unidentified scattered camps around the lake	 	Refer to Parker 1922
NYSM 7370 14) prehistoric		2.6 km (1.6 mi) S covering large area 30 - 1 91 m (100 - 300 ft) E of Oswego Ríver	, , ,	unidentified prehistoric	1	! !
NYSM 1258 15) prehistoric	FLT 1-3, RMSC 1-5, Case Farm Site	1.6 km (1 mi) W / west side of creek at mouth of Lake Neatahwanta	113 m (370 ft) amsl; gentle slope	may be associated with A07541.000013 & NYSM 1259 transitory prehistoric site with at least two cultures		
NYSM 1259 16) prehistoric	FLT 2-3, Lysack Site	same, but on east side of creek	 	may be associated with A07541.000013 & NYSM 1258 I transitory site of multiple cultures I likely a fishing village		

Appendix E

Ground water user survey summary

NIAGARA MOHAWK POWER CORPORATION/300 ERIE BOULEVARD WEST, SYRACUSE, N.Y. 13202/TELEPHONE (315) 474-1511

July 27, 1998

Mr. Gardiner Cross
Division of Environmental Remediation
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, New York 12233-7010

RE: Groundwater Well Survey Fulton (S. First St.) Site

Dear Mr. Cross:

Niagara Mohawk has substantially completed the monitoring well survey of property owners adjacent to the Fulton (S. First St.) Site as required by the focused RI/FS work plan. The purpose of the well survey was to determine if any domestic wells exist on the closest 12 properties adjacent to the site. A summary of the survey activities and the survey results are presented below:

- The City of Fulton Water Department was contacted on April 8, 1998. Mr. Roger Parsons confirmed that all 12 adjacent properties are connected to the city water supply.
- A well survey questionnaire was sent to the 12 property owners on May 26, 1998. Seven property owners responded to the questionnaire. Copies of the responses are attached. All seven owners indicated that a well did not exist on their property.
- A second letter was sent to property owners and tenants on June 10, 1998. The letter presented the preliminary results of the questionnaire and provided responses to property owner comments.
- On June 29, Mr. Gary Robinson of the NYS Department of Health and I attempted to interview the five property owners that did not respond to the questionnaire. The property owners of 555 and 562 South First St. were interviewed and indicated that no well was present on their property. A vacancy notice was posted at the residence at 575 South First Street. Following the interviews, Mr. Robinson indicated that the remaining two property owners could be interviewed by telephone.
- The telephone numbers for the two remaining residences are not published in the telephone directory. The property at 580 South First St. is located two lots away from the site on the East (upgradient) Side of South First Street. The property owner resides in Davenport, Iowa. The property at 557 South First St. is located on the West Side of South First Street three lots

away from the site. This residence is located on the opposite side (south) of the site from the former canal bed.

• Mr. Gary Robinson was verbally provided the results of the well survey on July 27, 1998 and expressed his satisfaction with the survey results.

Please contact me (315)428-5015 if you have any questions or comments regarding the results of the well survey.

Janoon V

Charles Willard

Environmental Affairs Department

cc: Mr. Gary Robinson (NYSDOH, Syracuse)

Ms. D. Wright (OBG)
Internal Distribution List

Neighbor: Ray LaFrate Residence: 579 S. First St., Fulton, NY 13069
The City of Fulton Water Department has advised Niagara Mohawk that your residence is connected to the city water supply system. Please indicate if you operate a groundwater well at your residence by marking the appropriate box below:
YES, I operate a well at my residence in addition to receiving my city-supplied water.
NO, I do not operate a well at my residence in addition to receiving my city-supplied water
I would feel more comfortable speaking to you in person to provide my response. Please contact me to arrange a personal interview.
If you have any comments or concerns regarding this questionnaire, please provide them in the space below, or attach an additional sheet if needed:
Would this in any way affect
Would this in any way affect our drinking water - or any water That we use?
that we use?

Neighbor: Rev. John Coleman Residence: 2578 Co Rt 57, Fulton, NY 13069; as owner of 578 S. First St., Fulton, NY 13069 The City of Fulton Water Department has advised Niagara Mohawk that your residence is connected to the city water supply system. Please indicate if you operate a groundwater well at your residence by marking the appropriate box below: YES, I operate a well at my residence in addition to receiving my city-supplied water. NO, I do not operate a well at my residence in addition to receiving my city-supplied water. I would feel more comfortable speaking to you in person to provide my response. Please contact me to arrange a personal interview. If you have any comments or concerns regarding this questionnaire, please provide them in the space below, or attach an additional sheet if needed:

Neighbor: The Crossroads Tabernacle Church Residence: 576 S. First St., Fulton, NY 13069

The City of Fulton Water Department has advised Niagara Mohawk that your residence is connected to the city water supply system. Please indicate if you operate a groundwater well at your residence by marking the appropriate box below: YES, I operate a well at my residence in addition to receiving my city-supplied water. NO, I do not operate a well at my residence in addition to receiving my city-supplied water. I would feel more comfortable speaking to you in person to provide my response. Please contact me to arrange a personal interview. If you have any comments or concerns regarding this questionnaire, please provide them in the space below, or attach an additional sheet if needed:

_	Neighbor: Nick Taranto Residence: 556 S. First St., Fulton, NY 13069										
to the	city wa	ater sup	ply sys		ease ind		liagara Mol ou operate				
	YES,	I opera	ate a w	eli at my	y reside	nce in ad	dition to re	ceiving my	city-sup	plied w	ater.
	NO, 1	I do not	operat	te a well	l at my i	residence	in addition	to receivi	ng my city	y-suppl	ied water.
					_	aking to	you in pers	on to prov	ide my re	sponse	. Please
				or conce nal shee			s questionn	aire, please	e provide	them ir	the space
			•						•		
	٠									٠.	
• ,		•									

Neighbor: Joseph or Judy Catalone Residence: 573 S. First St., Fulton, NY 13069

The City of Fulton Water Department has advised Niagara Mohawk that your residence is connected to the city water supply system. Please indicate if you operate a groundwater well at your residence by marking the appropriate box below: YES, I operate a well at my residence in addition to receiving my city-supplied water. NO, I do not operate a well at my residence in addition to receiving my city-supplied water. I would feel more comfortable speaking to you in person to provide my response. Please contact me to arrange a personal interview. If you have any comments or concerns regarding this questionnaire, please provide them in the space below, or attach an additional sheet if needed:

Neighbor: Paul Lewchanin

interview.

Residence: 562 S. First St., Fulton, NY 13069 The City of Fulton Water Department has advised Niagara Mohawk that your residence is connected to the city water supply system. Please indicate if you operate a groundwater well at your residence by marking the appropriate box below: YES, I operate a well at my residence in addition to receiving my city-supplied water. NO, I do not operate a well at my residence in addition to receiving my city-supplied water. I would feel more comfortable speaking to you in person to provide my response. Please contact me to arrange a personal interview. If you have any comments or concerns regarding this questionnaire, please provide them in the space below, or attach an additional sheet if needed:

Neighbor: George Ashby

The City of Fulton Water Department has advised Niagara to the city water supply system. Please indicate if you ope by marking the appropriate box below: YES, I operate a well at my residence in addition NO, I do not operate a well at my residence in add I would feel more comfortable speaking to you in contact me to arrange a personal interview. If you have any comments or concerns regarding this questions and the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the concerns regarding the contact me to a strange and the	to receiving my city-supplied water dition to receiving my city-supplied water a person to provide my response. Please
NO, I do not operate a well at my residence in additional and the speaking to you in contact me to arrange a personal interview. If you have any comments or concerns regarding this questions.	dition to receiving my city-supplied water. a person to provide my response. Please
I would feel more comfortable speaking to you in contact me to arrange a personal interview. If you have any comments or concerns regarding this ques	a person to provide my response. Please
contact me to arrange a personal interview. If you have any comments or concerns regarding this ques	
	tionnaire nlesse provide them in the space
below, or attach an additional sheet if needed:	informatio, picase provide them in the space
No COMMENTS, Th	ANK YOU
	·
	· · · · · · · · · · · · · · · · · · ·

Appendix F

DUSRs

Data Validation Services

Cobble Creek Road P. O. Box 208
North Creek, N. Y. 12853
Phone 518-251-4429

November 22, 1996

Chawn O'Dell O'Brien & Gere Engineers 5000 Brittonfield Parkway Syarcuse, NY 13221

RE: Data Usability Summary Report for NMPC-Fulton South First St. Site Data Packages OBG Labs data packages for samples collected 7-8-96 through 9-4-96

Dear Mr. O'Dell:

Review has been completed for the data packages generated by O'Brien and Gere Laboratories, pertaining to samples collected at the Niagara Mohawk Fulton Site. Nineteen soil and twelve aqueous field samples were analysed for full TCL CLP, twenty four soil field samples were analysed for BTEX/PAH/CN (MGP Indicators), three samples were analysed for TCLP (volatiles, semivolatiles, metals), and two samples were analysed for TCLP benzene. Matrix spikes/duplicates, and equipment/trip blanks were also processed. Methodologies utilized are those of the 1991 NYSDEC ASP/SW846.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with some review of associated raw data. Full validation has not been performed; however, the reported summary tables have been reviewed for application of validation qualifiers per USEPA Region II SOPs HW-2 and HW-6. All conclusions are based upon assumption of accurate reported values on the summary forms, and compliance in sample processing.

The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance

Those items listed above which show deficiency are discussed within the text of this narrative, and on the attached Qualification Summary. All other items were determined to be acceptable.

Attached to this narrative is a summary of the validation qualifiers resulting from the review. Resubmission communcations, copies of laboratory case narratives and laboratory NYSDEC Sample Preparation and Analysis Summary Forms are attached to this text, and should be reviewed in conjunction with this report.

The following text discusses quality issues of concern.

In summary, most sample results are were generated with acceptable quality of processing, and are usable with some modifications/qualifications.

Major items of concern are:

- a) Many responses reported as pesticides are evaluated to be interferences, and are not considered sample pesticide components (detailed later in text).
- b) Tentatively Identified Compound values were incorrectly reported (corrections requested and provided under separate cover).
- c) Reported volatile and semivolatile detection limits for those samples analysed for CLP TCL are recommended for adjustment to bring into compliance with the protocol and QAPP. Some minor qualifications for reported values as estimated are indicated by quality parameter values. These are detailed in the attached Qualification Summary. Most result from typical processing or matrix effects.

DELIVERABLES

Although data package deliverables were to be consistent with the ASP Category B, these data packages were not. The packages contained most of the information required for full validation, but the information was not properly summarized; in most cases it was available in the raw data.

SOIL SAMPLES

General

Volatile and semivolatile samples, which were processed under the ASP 91-1 and 91-2 protocols, were reported with lower detection limits (CRDLs) that are not consistent with protocol requirements. The ASP protocols provide for sample CRDLs that correspond to the lowest concentration standards; therefore detection at, and linearity to, those levels are ensured and defensible.

Therefore, in keeping with the requirements of the project QAPP and protocols, recommendations are made herein (see Qualification Summary) to adjust upward the reported CRDLs for most volatile and semivolatile compounds processed by 91-1 and 91-2. In most cases, the CRDLs reported by laboratory are between one fifth or one half of the QAPP CRDL values (and lowest standard concentrations). Some compounds were reported at one tenth of the CRDL. Detected values below the adjusted CRDLs are considered estimated because linearity is not established to those levels.

Although these recommendations for adjustment of the reported CRDLs are made, it is noted that the instrumentation does show good sensitivity, and detection below the adjusted CRDLs is probable. Without system evaluation, accurate values for possible lower CRDLs are not known.

Results Report Forms do not contain all required information such as solids/moisture content, receive date and dilution factor. Sample weights/volumes were omitted or incorrect in some instances.

Client Sample IDs were not indicated on certain of the summary forms and in some of the raw data (the deliverables clearly require more complete identification incorporating the Client Sample ID). Because these were not readily available, the laboratory ID numbers are therefore used and are often referenced within this DUSR report in lieu of the Client Sample ID.

Field duplicate correlations were performed:

Blind Dup #1 is the field duplicate of SB1(6-8) (TCL/TAL) Blind Dup #2 is the field duplicate of SB1(12-14) (MGP Indicators)

Most showed generally good correlation, outliers are denoted within this text.

Per client instruction, holding time evaluations have been performed in accordance with the 1995 updates of the NYSDEC ASP.

Accuracy and precision evaluations were performed on MW4(8-10), TP-2, SS4(0-24), and MW3(8-10).

Volatile Analyses

Multiple dilution analyses on given samples were not reported individually, but were combined onto single report forms.

No summaries for surrogate recoveries (Forms 2) or instrument tunes (Forms 5) were provided. The omitted surrogate summary forms were requested and provided under separate cover for future data reviews. Raw data includes forms to show proper tune performance; log pages show analysis times usually found on the Forms 5.

As noted in the case narrative, certain samples were overly diluted due to responses of nontarget analytes, resulting in elevated detection limits. These samples should have been reanalysed at lower dilution, even if done outside holding time. As it stands, the technical holding time would have been met.

Accuracy and precision values were primarily within recommended ranges. Some slightly outlying values were noted, but reported results are unaffected.

Field duplicate correlation was acceptable.

The same blank was reported for low and medium level analyses on 7/18/96. The medium level analysis blank should differ from the low due to addition of methanol, and should also have been reported with medium level values. Sample results are not recommended for qualification due to this processing.

Semivolatile Analyses

Multiple dilution analyses on given samples were not reported individually, but were combined onto single report forms.

No summaries for surrogate recoveries (Forms 2) or instrument tunes (Forms 5) were provided. The omitted surrogate summary forms were requested and provided under separate cover for future data reviews. Raw data includes forms to show proper tune performance; log pages show analysis times usually found on the Forms 5.

Certain of the accuracy and precision values were slightly out of recommended range, including duplicate correlations for matrix spike analytes also present in the unspiked sample. Some others were diluted out of detection due to sample compound levels. The variances were not of magnitude for qualification of sample results.

With the exception of that of samples SB1(6-8) and MW-4, field duplicate correlation was good. The variance observed in SB1(6-8) (detailed in the qualification section) indicate caution for possible nonhomogeneity in samples of similar matrix with high level detections of PAHs.

The attached Qualification Summary lists many BNA compounds for qualification due to standard responses. Most of the standard compound responses, while greater than the action level of 25%Difference, were below 40% Difference, thereby not showing a great bias to the reported results. The laboratory was not required to take corrective action.

The 91-2 protocol requires that samples submitted for BNA analysis be screened in order to determine the proper extraction level prior to expiration of the required holding time. This was not performed, and all extractions were done as low level. This results in an inability to evaluate surrogate recoveries (and therefore extraction efficiency) in those samples which should have been extracted at medium level. Due to high levels of the target compounds, many of those samples would have required dilution even at the medium level which would also have prohibited surrogate evaluation. No qualifications are recommended based upon this noncomplaint processing. It should be noted that in cases where excessive dilution is required (i.e. greater than 1:100), the extracting solvent may become saturated, and loss of analyte recovery may occur. Those sample showing very high detection limits (indicating strong dilution) may have falsely low reported values and detection limits.

Some sample exhibited repeated matrix effects causing depression of internal standard responses. The associated compounds have been recommended for qualification.

Pesticide/PCB Analyses

Certain analytes produced dual column percent differences exceeding 25%. These have been flagged as "P" by the laboratory. Those with values between 25%D and 50%D should be considered with estimated quantitations ("J" flag); those from 50%D to 90%D should be considered estimated, and tentative in indentification ("N"); those with variances exceeding 90%D should be rejected as qualitative identification, and reported values edited to reflect nondetection at the CRDL or at the originally reported value, whichever is greater. These are detailed in the qualification summary.

Accuracy and precision (when not diluted beyond evaluation), and field duplicate correlation were acceptable. The reported value of 37 ppb for endrin in the matrix spikes of SS4(0-24) should have been nondetection at that level (due to inability to resolve this compound from sample interferences).

Method blanks reported detections, most of which were less than the reported IDL for the lab processing, and represent system "noise." These exhibited high %D values, as discussed above. Sample reported detections were also observed to be integrations of system baseline background. This has been incorporated into the final pesticide evaluations in the qualification summary.

TCLP Analyses

The ZHE TCLP extract of SB1(6-8) was performed at 13 days from receipt, beyond the allowable 7 day holding time. Results are recommended for qualification.

Batch QC was reported in most cases for accuracy and precision, which were generally acceptable.

Metals/CN Analyses

Metals data were not properly flagged with laboratory QC flags (i.e. N, *, E)

Those equipment blanks which show detections of certain analytes are outlined in the Qualification Summary. The associated sample analytes with detected values at levels similar to those of the blank are to be considered a result of contamination and are therefore rejected. These are denoted on the attached qualifier summary, and are to be flagged as "R" (per SOP HW-2). However, it is appropriate to consider results for these sample analytes which are elevated detection limits corresponding to the originally reported values. Although the reported detections may be from contamination, it can be said that the analytes are not present at higher levels than those reported.

Those matrix spike recoveries, duplicate correlations, and field duplicate correlation outliers requiring qualification are listed on the attached qualification summary. These results were generally within acceptable ranges. Serial dilution of SS4(0-24), MW8(8-10) and Blind Dup#1 were also primarily acceptable.

Thallium standard recoveries associated with the soil analyses were elevated above allowable limits; these results are already qualified as estimated due to matrix spike recoveries.

AQUEOUS SAMPLES

General

Volatile and semivolatile samples, which were processed under the ASP 91-1 and 91-2 protocols, were reported with lower detection limits (CRDLs) that are not consistent with protocol requirements. The ASP protocols provide for sample CRDLs that correspond to the lowest concentration standards; therefore detection at, and linearity to, those levels are ensured and defensible.

Therefore, in keeping with the requirements of the project QAPP and protocols, recommendations are made herein (see Qualification Summary) to adjust upward the reported CRDLs for most volatile and semivolatile compounds processed by 91-1 and 91-2. In most cases, the CRDLs reported by laboratory are between one fifth or one half of the QAPP CRDL values (and lowest standard concentrations). Some compounds were reported at one tenth of the CRDL, including benzene, which was reported with a CRDL of 0.7 ug/L (lowest calibration standard is 10 ug/L). Detected values below the adjusted CRDLs are considered estimated because linearity is not established to those levels.

Although these recommendations are made, it is noted that the instrumentation does show good sensitivity, and detection below the adjusted CRDLs is probable. Without system evaluation, accurate values for possible lower CRDLs are not known. See the attached communication regarding the 0.7 ug/L benzene standard analysis which was requested, and performed successfully.

Results Report Forms do not contain all required information such as receive date and dilution factor. Sample weights and volumes were omitted or incorrect in some instances.

Client Sample IDs were not indicated on certain of the summary forms and in some of the raw data (the deliverables clearly require more complete identification incorporating the Client Sample ID). Because these were not readily available, the laboratory ID numbers are therefore used and are often referenced within this DUSR report in lieu of the Client Sample ID.

Accuracy and precision determinations were performed on MW-4 (first round) and MW-1 (second round).

Field duplicates were performed on MW-3 for both rounds.

Per client instruction, holding time evaluations have been performed in accordance with the 1995 updates of the NYSDEC ASP.

Volatile Analyses

No summaries for surrogate recoveries (Forms 2) or instrument tunes (Forms 5) were provided. The omitted surrogate summary forms were requested and provided under separate cover for future data reviews. Raw data includes forms to show proper tune performance; log pages show analysis times usually found on the Forms 5.

Accuracy and precision evaluations were acceptable.

Field duplicate correlation was acceptable.

Semivolatile Analyses

Multiple dilution analyses on given samples were not reported individually, but were combined onto single report forms.

No summaries for surrogate recoveries (Forms 2) or instrument tunes (Forms 5) were provided. The omitted surrogate summary forms were requested and provided under separate cover for future data reviews. Raw data includes forms to show proper tune performance; log pages show analysis times usually found on the Forms 5.

Matrix spike recoveries, and laboratory and field duplicate correlation was acceptable.

The attached Qualification Summary lists many BNA compounds for qualification due to standard responses. Most of the standard compound responses, while greater than the action level of 25%Difference, were below 40% Difference, thereby not showing a great bias to the reported results. The laboratory was not required to take corrective action.

Pesticide/PCB Analyses

Certain analytes produced dual column percent differences exceeding 25%. These have been flagged as "P" by the laboratory. Those with values between 25%D and 50%D should be considered with estimated quantitations ("J" flag); those from 50%D to 90%D should be considered estimated, and tentative in indentification ("N"); those with variances exceeding 90%D should be rejected as qualitative identification, and reported values edited to reflect nondetection at the CRDL or at the originally reported value, whichever is greater. These are detailed in the qualification summary.

Method blanks reported detections, most of which were less than the reported IDL for the lab processing, and represent system "noise." These exhibited high %D values, as discussed above. Sample reported detections were also observed to be integrations of system baseline background. This has been incorporated into the final pesticide evaluations in the qualification summary.

Field duplicate correlation was acceptable.

Metals/CN Analyses

Metals data were not properly flagged with laboratory QC flags (i.e. N, *, E)

The equipment blank for the second round of groundwaters shows detections of certain analytes. The associated sample analytes with detected values at levels similar to those of the blank are to be considered a result of contamination and are therefore rejected. These are denoted on the attached qualifier summary, and are to be flagged as "R" (per SOP HW-2). However, it is appropriate to consider results for these sample analytes which are elevated detection limits corresponding to the originally reported values. Although the reported detections may be from contamination, it can be said that the analytes are not present at higher levels than those reported.

Field duplicate correlation was acceptable, but the laboratory duplicate evaluation showed numerous outliers, although most were not of sufficient magnitude to warrrent qualification.

Accuracy and serial dilution evaluations were acceptable.

QUALIFICATION SUMMARY

Volatiles ASP91-1

The solids content of MW4(8-10) was just below the action limit of 50%, at 48.9%. Due to possible nonhomogeneity from low solids content, the reported results for this sample should be considered estimated.

Due to outlying holding time, the volatile TCLP results for SB1(6-8) should be considered estimated.

Volatile <u>TICs</u> are misreported for most samples (see attached resubmission communications). In some instances dilution factors were not incorporated, soil values were not corrected for moisture content, improper compounds were reported (i.e. BNA TCLs), none are properly labeled with the "B" flag to indicate contamination rather than sample constituency, and some errors exist in values. Per agreement with OBG, the laboratory is supplying, under separate cover, copies of the TIC "report forms", with correction factors indicated for application to sample values. This report does not incorporate those corrections, nor review for application of the "B" qualifier. In keeping with the intent of the required protocol (ASP 91-1), which requires linearity determinations down to the reported detection limits, all sample results should be edited/qualified to meet those CRDLs outlined in the method and project QAPP. The laboratory can provide corrected results for each sample, incorporating dilution factors, moisture content, and weights not evident on the summary report forms.

In addition, those detected values below the adjusted CRDLs should be considered estimated ("J" flag) because they are below the established linearity.

These edits do not apply to BTEX or TCLP analyses, which are reported with acceptable limits per the required method EPA-8240.

The sample detected methylene chloride and acetone results should be edited to reflect nondetection at either the CRDL or at the originally reported value, whichever is greater. In addition, the same edits pertain to reported results for xylene in PZ1(6-10), MW4(8-10), MW3(22-24), MW4(18-20), and MW3(18-20); to 2-butanone in MW4(8-10) and Potwater, and to tetrachloroethene in all soil samples except MW1(6-8).

Tentatively Identified Compounds (TICs) which are named siloxanes and/or those flagged as "B" by the laboratory should not be considered sample components ("R" flag).

7. Due to standard responses, the following analyte results in the denoted samples should be considered estimated ("Inflag):

a. acetone, carbon tetrachloride, and 1,2-dibromo-3-chloropropane in Z6034, Z6035, and Z6036, Z6037

b. acetone in Z7714 and Z7713

Semivolatiles

- 1. The solids content of MW4(8-10) was just below the action limit of 50%, at 48.9%. Due to possible nonhomogeneity from low solids content, the reported results for this sample should be considered estimated.
- 2. Semivolatile TICs are misreported for most samples (see attached resubmission communications). In some instances dilution factors were not incorporated, soil values were not corrected for moisture content, improper compounds were reported (i.e. VOA TCLs), none are properly labeled with the "B" flag to indicate contamination rather than sample constituency, "A" flags (to indicate extraction artifacts) were not applied, and some errors exist in values. Per agreement with OBG, the laboratory is supplying, under separate cover, copies of the TIC "report forms", with correction factors indicated for application to sample values. This report does not incorporate those corrections, nor review for application of the "B" or "A" qualifiers. Tentatively Identified Compounds (TICs) which are flagged "A" and/or "B" should be disregarded as sample components. ("R" flag)
- 3. In keeping with the intent of the required protocol (ASP 91-2), which requires linearity determinations down to the reported detection limits, all sample results should be edited/qualified to meet those CRDLs outlined in the method and project QAPP. The laboratory can provide corrected results for each sample, incorporating dilution factors, moisture content, and weights not evident on the summary report forms.
 - In addition, those detected values below the adjusted CRDLs should be considered estimated ("J" flag) because they are below the established linearity.
 - These edits do not apply to PAH or TCLP analyses, which are reported with acceptable limits per the required method EPA-8270.
- 4. Several of the soil samples produced outlying responses for internal standards, and results of associated compounds in those samples should be considered estimated:
 - a. di-n-octylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in Z6215DL and Z6214
 - b. benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in Z6537 and Z6230
 - c. nitrobenzene and hexachlorobutadiene in the TCLP extract Z6481
- 5. The field duplicate correlation of SB1(6-8) and Blind Dup#1 was poor for detected analytes. Values differed by as much as a factor of ten (naphthalene values were 92,000 ppb and 300,000 ppb; acenaphthene values were 17,000 ppb and 140,000 ppb; etc). Sample nonhomogeneity is suspected. Detected values for these two sample should be considered estimated. All soil semivolatile data should be used with caution in this respect.
- 6. The first and second round of groundwaters showed poor field duplicate correlation for naphthalene in MW-3. The reported naphthalene result in MW-3 and in the field duplicate should therefore be considered estimated.
- 7. Due to copresence in the blanks, reported detections of bis(2-ethylhexyl)phthalate are rejected, and results edited to reflect nondetection at the CRDL.

- 8. Due to standard responses, the following analyte results in the denoted samples should be considered estimated ("J"flag):
 - a. 2,2-oxybis(1-chloropropane) hexachlorobutadiene hexachlorocyclopentadiene 2,4-dinitrophenol, 4-nitrophenol, 4-dinitro-2-methylphenol, pentachlorophenol, and bis(2-ethylhexyl)phthalate in Z6026,Z6027,Z6030,Z6029
 - b. 2,4-dinitrophenol, bis(2-ethylhexyl)phthalate and di-n-octylphthalate in Z6028RE and Z6031RE
 - c. indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene in Z6541,Z6542,Z6543,Z6544 Z6040,Z6043,Z6044,Z6042, Z6039,Z6041,Z6540, and Z6539
 - d. 2,4,-dinitrophenol in Z6222 and Z6481
 - e. benzo(g,h,i)perlyene in Z6232,Z6235,Z5677,and Z6230
 - f. benzoic acid, hexachlorocyclopentadiene, 2,4-dinitrophenol, bis(2-ethylhexyl)phthalate and di-n-octylphthalate in Z6230RE
 - g. hexachlorocyclopentadiene, 2,4-dinitrophenol, benzo(g,h,i)perylene in Z6220, Z6479, and Z6481RE
 - h. hexachlorocyclopentadiene and di-n-octylphthalate in Z7708,Z7709,Z7710,Z7712 and Z7714
 - i. 1,2-dichlorobenzene and bis(2-chloroethoxy)methane in B2620,B2617,B2618,B2623 and B2619
 - j. di-n-octylphthalate in B2622 and B2621

Pesticide/PCBs

- 1. The solids content of MW4(8-10) was just below the action limit of 50%, at 48.9%. Due to possible nonhomogeneity from low solids content, the reported results for this sample should be considered estimated.
- Following USEPA Region II guidelines for evaluating identification of pesticides, most reported detections for this project involved %D values greater than 90%D (often greater than 1000%D), and are rejected as sample constituents. Those will not be enumerated herein. The following list outlines those pesticides not rejected due to %D, or due to presence in the associated blank, or due to background/baseline intergration. Only those identifications to be retained as reported pesticides will be listed below. All others should be edited to reflect nondetection at either the analyte CRDL or at the originally reported value, whichever is greater:

Sample ID	Analyte A	dditional Qualifier, if applicable
MW1 (lst)	Aroclor 1242	
MW2 (lst)	Endosulfan II	J
	4,4'-DDT	· J
MW4 (lst)	Endosulfan II	NJ
, ,	Methoxychlor	NJ
MW-2 (2nd)	a-BHC	NJ
MW-3 (2nd)	4,4'DDE	J
MW-4 (2nd)	Heptachlor epox	cide
,	Endosulfan I	J
	Endosulfan II	

Sample ID	Analyte Additional Qu	alifier, if applicable
MW-5 (2nd)	Heptachlor Epoxide	· · · · · · · · · · · · · · · · · · ·
	Endosulfan II	J
	4,4'-DDT	
BlindDupe (2nd)	Lindane	
MW2(6-8)	4,4'-DDE	J
,	Endosulfan sulfate (from -DI	.)
SS1(0-2)	Endrin	NJ
. *	4,4'-DDT	
	g-chlordane	NJ
•	4,4'-DDE (from -DL)	J
	Endrin ketone (from -DL)	
SS1(0-24)	a-chlordane	J
SS2(0-2)	Lindane	J
	Endosulfan II	NJ
	4,4-DDD	J
	Methoxychlor	NJ
SS2(0-24)	4,4'-DDD	NJ
	Endosulfan sulfate	J
	Endrin ketone (from -DL)	J
MW4(8-10)	4,4'-DDT	NJ
	Methoxychlor	J ,
SS3(0-2)	4,4'-DDD	NJ
	4,4'-DDT (from -DL)	•
	Methoxychlor	NJ
•	Endrin ketone	J .
SS3(0-24)	4,4'-DDE	
	4,4'-DDD	
	4,4'-DDT (from -DL)	
	Endrin ketone	J
•	Endosulfan II	NJ
SS4(0-2)	Aldrin	NJ
	Endosulfan II	\mathbf{J}_{\cdot}
	Endrin ketone	NJ
	g-chlordane	
SS4(0-24)	4,4'-DDE	NJ
	Endosulfan II	NJ
	4.,4'-DDT	NJ
	Endrin ketone	
	a-chlordane	NJ
	g-chlordane	
	g-chlordane	

Sample ID	Analyte	Additional Qualifier, if applicable
SS5(0-2)	4,4'-DDE	, 1
	Endosulfan II	NJ
	4,4'-DDT	
	Methoxychlor	
	Endrin ketone	
•	a-chlordane	NJ
SS6(0-2)	4,4'-DDE	J
	4,4'-DDD	J
MW5(8-10)	Endosulfan II	NJ
	g-chlordane	
Equipblk	a-BHC	NJ
SB1(6-8)	Dieldrin	J
BlindDup Z6478	4,4'-DDT	J
Potwater	Lindane	J
	Endosulfan I	J

3. Surrogate recoveries for the following samples were low, indicating consideration for all reported results as estimated:

MW2(6-8), B2619, MW-2 (1st round), MW-3(1st round), MW-4 (1st round), MW-5 (1st round)

- 4. Surrogate recoveries of MW5(8-10) was elevated, indicating consideration for reported results of **detected** analytes as estimated:
- 5. Heptachlor epoxide in B2622 (second round MW-4) should not be flagged as "B".

Metals/CN

- 1. The solids content of MW4(8-10) was just below the action limit of 50%, at 48.9%. Due to possible nonhomogeneity from low solids content, the reported results for this sample should be considered estimated.
- 2. The cyanide fractions of the first round of groundwaters were not preserved until lab receipt the day following collection. These cyanide values should be considered estimated due to possible loss of analyte.
- 3. Due to copresence in the associated equipment blank/drill water, the following sample detections are at such a level as to be considered contamination and are therefore rejected ("R" flag):

Zinc in MW3(22-24)

4. Field duplicate correlation outliers indicate that reported results for those analytes for all samples of the same matrix be considered estimated ("J" flag):

Matrix	Analtye
Aqueous-1st round	Copper
TCL Soil	Calcium and cvanide*

^{*} pertain to samples submitted for full TAL metals. The cyanide correlation for the indicator samples was acceptable.

5. Matrix spike recovery values show that the following sample values be considered estimated ("J" flag) (applies to all samples of a given matrix except TCLP leachates):

Matrix

Analyte

Aqueous -1st round

Antimony and mercury

TCL Soil

Antimony, lead, nickel, manganese, and thallium

6. Laboratory duplicate correlation outliers show that the following sample values be considered estimated ("J" flag) (applies to all samples in given SDG):

Matrix

Analyte

TCL Soil

Calcium

- 7. Serial dilution outliers result in the following analytes qualified as "J":
 - Iron and zinc in all soil samples
 - b. Chromium and Manganese in all the first round of groundwater samples.
 - Zinc in all the second round of groundwater samples. C.

TCLP

The holding time for the volatile analysis of the leachate of Z6526 was exceeded (performed at 13 1. days from leaching). The results should therefore be considered estimated.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours.

Judy Harry

Att.

DATA QUALIFIER DEFINITIONS.

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
- The analyte was not detected above the reported sample quantitation limit.

 However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- The sample results are rejected due to serious deficiences in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone and Fax (518) 251-4429

Facsimile Transmission

TO:

Chawn O'Dell

COMPANY:

OBG

FAX NUMBER:

315 463 7554

FROM:

Judy Harry

DATE:

9-23-96

No. of pages (including cover):

1

COMMENTS:

RE: Nimo Fulton Site Project

Review is underway for the abovementioned data packages

Please request that the laboratory forward to me the volatile Instrument Detection Limit summaries (IDLs) which are applicable to the groundwater analyses for this project (method 91-1 with 5 mL purge, on the proper instrument). Those present in the data package are for a different methodology (8260 with 25 mL purge) and cannot be applied to these samples. This is especially important for this project because the laboratory has reported extremely low detection limits (for some compounds) relative to the method and the standards processed.

Thank you.

Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone and Fax (518) 251-4429

October 22, 1996

Monica Santucci O'Brien & Gere Laboratories 5000 Brittonfield Parkway Syracuse, NY 13221

RE: OBG-- Niagara Mohawk Fulton Site (South 1st St.) Project

Dear Monica:

Review of the abovementioned data packages is in progress. As we discussed, there are some issues for which clarification and/or correction is needed prior to completion of the review.

- 1. As we discussed, the "report forms" submitted for volatile Tentatively Identified Compounds (TICs) do not accurately reflect dilution factors in the values reported for those samples for which dilution was performed.

 Please review all reported TIC results for the diluted volatile samples and re-report with the corrected TIC values. Also please edit these "forms" to remove the "CO2-solvent peak" as a reported result (per protocol requirements).
- 2. Please provide a calculation for the semivolatile results for naphthalene in aqueous sample MW-4 (Z7711). Although the documentation provided by the laboratory does not show final extract volume, the protocol required volume of 1 mL (supported by surrogate recovery calculations) was utilized in my following calculation, which does not match the reported result:

utilized in my following calculation, which does not match the reported result:

$$\frac{9933061}{1629859} \qquad \qquad (D.F.) (final volume)$$

$$\frac{1612724}{1736955} \times \frac{40 \text{ ng}}{50.5} \times \frac{40 \text{ ng}}{2 \text{ mL}} \times \frac{5 \times 1000 \text{ mL}}{1000 \text{ mL}} \times \frac{1 \text{ ng}}{1000 \text{ ng}} = 8600 \text{ ng}$$

$$\frac{11736955}{11736955} \times \frac{1000 \text{ mL}}{$$

- If there is truly an error in the reported compound value above, please address any corrective action the lab will take to ensure other sample reported results are also not in error. This is critical for this project because full validation is not being performed; only a summary level review was to occur (with no verification of reported results from raw data).
- 4. No "E" flags are observed on the semivolatile reported results for compounds which exceed the calibration range (80 ppb) of the standards. Please resubmit report forms for any sample compounds which fall into this category. This is necessary in order to reference which compound values are to be either replaced by dilution values, or to be considered estimated (in those cases such as MW-4 where dilution was not properly performed.
- 5. Please produce the required surrogate summary forms (Forms 2A and 2B) for the volatile and semivolatile samples in this project.

- 6. The volatile report forms for medium level soil extraction indicate that a sample weight of 5g is used. The prep logs do not indicate sample weight. Protocol requires a 4g weight. Please clarify.
- 7. Please clarify the notations for the volatile BTEX soil analyses performed on 7/19/96 on G (i.e. Z6535, etc). These were evidently performed as 25 mL purge volumes rather than the 5 mL required for medium level analyses. The instrument log and data files show "25 X", and the reported results indicate a dilution factor of 25. Yet the normal methanol volume of 100 uL was used (into the 25 mL). It is observed that the surrogate values on the quant report do support the five-fold variance in purge, and therefore a 5X dilution factor. Does this "25X" in the sample data therefore also refer to the fact that the instrument is calibrated five times lower (hence fivefold lower detection limits than the five mL purge)?
- 8. The preparation logs for the TCLP leaching do not show sample weight used. Please provide a statement as to that quantity.
- 9. Please comment on the fact that the response factor for phenol is only about one-half that for deuterated phenol. These compounds should have almost identical relative responses.

Please provide response at your earliest convenience. Please also foward copies of all communications to Debra Wright at OBG Engineers. Thank you.

Very truly yours,

Judy Harry

cc: Debra Wright

Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone and Fax (518) 251-4429

Facsimile Transmission

TO:

Monica Sontuaci

COMPANY:

(B)

FAX NUMBER:

315 463 7554

FROM:

Judy Harry

DATE:

10.02 got pm

No. of pages (including cover):

COMMENTS:

RE: my request of earlier regarding Nimo - Fulton

I have observed (since my larlies fox) that multiple dilution suns exist for certain of the BNA samples. Those Adata explan the observed variance in the naphthalene reported value for mw-4. The required report forms for each analysis (Initral & delution) were not provided. evidently a single combined report has been made. Please therefore provide an explanation/assurance that as to which compound values are used from

Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone and Fax (518) 251-4429

Facsimile Transmission/Resubmission Request

TO:

Monika Santucci

COMPANY:

OBG

FAX NUMBER:

315 463 7554

FROM:

Judy Harry

DATE:

10-28-96

No. of pages (including cover):

1

COMMENTS:

RE: OBG Niagara Mohawk -Fulton Site

The following observations have been made regarding the Tentatively Identified Compounds (TICs) reported for this project. Please resubmit corrected "Forms 1" for the TICs discussed below:

A. Volatile TICs

- 1. Values are not corrected for dilution factors (previously requested).
- 2. Values are not correct in cases where the quant report "multiplier" has been manually corrected (i.e. Z6023 and others).
- 3. TICs are not flagged with the associated "B" flags
- 4. Soil values are not corrected for moisture content.
- 5. VOA and BNA Target analytes (i.e. toluene and naphthlalene) should not be reported as TICs of the alternate analysis (per protocol).
- B. Police as Thes of the alternate analysis (per protocol).
 Soil values do not reflect the matrix (i.e. difference in 1L versus 30g sample volume).
 - 2. Soil values are not corrected for moisture content.
 - 3. TICs are not flagged with the associated "B" flags
 - 4. VOA and BNA Target analytes (i.e. toluene and naphthlalene) should not be reported as TICs of the alternate analysis (per protocol).
 - 5. Aldol compounds should be flagged as "A".

Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone and Fax (518) 251-4429

Facsimile Transmission/Resubmission Request

TO: Monika Santucci

COMPANY: OBG

FAX NUMBER: 315 463 7554

·· FROM: Judy Harry

DATE: 11-22-96

No. of pages (including cover):

COMMENTS: RE: OBG Niagara Mohawk -Fulton Site

In keeping with the project QAPP requirements and the 91-1 and 91-2 requirements, I will be recommending that the reported CRDLs for the samples processed under those protocols be edited to be consistent with those requirements. This produces detection limits that are at the level of the lowest concentration standard, and are therefore detection and linearity are ensured and defensible. Detected values below those limits will be qualified as J. I will be commenting on the sensitivity of the instruments and your 0.7 ppb benzene standard.

The conversion to adjusted CRDLs will be recommended as, i.e. "10 ug/L x Dilution Factor", or divide by percent solids, etc. With the required ASP Cat. B. deliverables, all information necessary to do those conversions is present on the Forms 1. However, your report "Form 1"s do not show dilution factor, solids content, accurate weights, etc. Therefore I request that you provide a listing to the project engineers that has either the protocol required CRDLs, or a conversion factor for this adjustment (including dilution factor and solids information) for each sample. You may wish to discuss this with Chawn or Debra.

Please call me if you want to talk about this issue. Thanks.

cc: Chawn O'Dell

September 26, 1996

Ms. Judy Harry
Data Validation Services
Cobble Creek Road
P.O. Box 208
North Creek, NY 12853

Re:

Niagara Mohawk-Fulton Site Project

Volatile Organics-IDL

File:

1118.081.517

Dear Judy:

The purpose of this letter is to respond to your request for Volatile Organic Instrument Detection Limit Summaries (IDLs) which apply to the groundwater analysis for the above referenced program. You stated that the IDL summary provided in the data package which is based on a 25 mL purge volume is not applicable to these samples and you would require IDL summaries based on a 5 mL purge volume. It is not currently the policy of OBG Labs to analyze 5 mL IDLs for the GC/MS Volatile Organics analysis. Our 5 mL IDL is determined by multiplying the 25 mL IDL (which was provided in the data package) by five. Since the purge efficiency for a 25 mL purge is lower than the purge efficiency for a 5 mL purge, our IDLs are biased slightly high. Also, please note that IDLs and MDLs are the same for the volatile organics since there is no prep procedure performed on the sample prior to purging.

If you have any questions concerning the above explanation, please do not hesitate to contact me.

Very truly yours,

O'BRIEN & GERE LABORATORIES, INC.

Monika Santucci

Supervisor

C:\PROGRAM\NIMO\DATAVALI.LET

Nonka Salher

cc:

Deborah Wright-O'Brien & Gere Engineers, Inc.

Chawn O'Dell-O'Brien & Gere Engineers, Inc.

Mark Vanderwarker-O'Brien & Gere Laboratories, Inc.

Coleen Burke-O'Brien & Gere Laboratories, Inc.

October 11, 1996

Ms. Judy Harry
Data Validation Services
Cobble Creek Road
P.O. Box 208
North Creek, NY 12853

Re: Niagara Mohawk-Fulton Site Project

Volatile Organics-Benzene Standard

File: 1118.081.517

Dear Judy:

The purpose of this letter is to submit to you the Quant Report, Total Ion Chromatogram and Extracted Ion Currant Profile (EICP) of a 0.7 ppb benzene standard as requested. This standard was analyzed using a 5 ml purge volume as required for 91-1 methods. The result of 0.84 ppb should support our report limiting of 0.7 ppb as requested by the client for the Niagara Mohawk Ground Water program. This low reporting limit was requested by the client to meet New York State Ground Water Standards.

If you have any questions or need additional information, please do not hesitate to contact me.

Very truly yours, O'BRIEN & GERE LABORATORIES, INC.

Monika Santucci Supervisor

C:\PROGRAM\NIMO\BENZENE.LET

Minke fartucci

cc: Deborah Wright-O'Brien & Gere Engineers, Inc.

Mark Vanderwarker-O'Brien & Gere Laboratories, Inc.

Coleen Burke-O'Brien & Gere Laboratories, Inc.

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

October 27, 1999

Deborah Wright O'Brien & Gere Engineers 5000 Brittonfield Parkway Syracuse, NY 13221

RE: Data Usability Summary Report for NMPC-Fulton Site Data Package

OBG Labs data packages for samples collected August 1999

Dear Ms. Wright:

Review has been completed for the data packages generated by O'Brien and Gere Laboratories, pertaining to samples collected 8/04/99 and 8/05/99 at the Niagara Mohawk Rome Fulton Site. Nine aqueous field samples were analysed for BTEX and PAH. Matrix spikes/duplicates, and a trip blank were also processed. Methodologies utilized are those of the 1995 NYSDEC ASP/SW846.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and some review of associated QC raw data. Full validation has not been performed; however, the reported summary tables have been reviewed for application of validation qualifiers, as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance

Those items listed above which show deficiency are discussed within the text of this narrative All other items were determined to be acceptable.

In summary, BTEX sample results are were generated with acceptable quality of processing, and are usable as reported. The PAH detected results were initially reported with incorrect quantitative values; resubmitted report forms are attached. The PAH data for two samples are also considered biased slightly low due to extended holding time.

Copies of the laboratory case narrative, laboratory NYSDEC Sample Analytical Requirement Summary Forms, resubmission communications, and revised report forms are attached to this text, and should be reviewed in conjunction with this report. All included in this submission are client tables which have been edited to reflect the validation qualifiers.

The following text discusses quality issues of concern.

AOUEOUS SAMPLES

General

Accuracy and precision determinations were performed on MW-8, and were acceptable for both fractions.

A blind field duplicate of MW-5 showed good correlation for both fractions.

Per NYSDEC ASP Category B deliverables requirements, the case narrative should have included the "verbatim" statement.

BTEX Analyses by EPA 8260

Sample processing was performed in compliance with protocol requirements. No validation qualifications were indicated. Sample results are usable as reported.

The summary Forms 4 and 5 should not have denoted a heated purge for these analyses.

PAH Analyses by EPA 8270

Please see the revised report forms for all samples, which have been edited to lower all detected values by a factor of two.

Samples MW-3 and MW-8 were reextracted one day beyond the allowable technical holding time. Results for these two samples are considered estimated ("J") qualifier. Based upon the characteristics of the target analytes, the level of bias is not expected to be great.

Certain of the samples exhibited elevated concentrations of analytes which required dilution analyses. In some cases, multiple analyses were reported. Reported results for those analytes reported with the "E" flag should be derived from the dilution analysis. Unless noted specifically within this text, all other values can be derived from the initial analysis.

Some of the samples requiring dilution were reported using only the dilution analysis. Therefore, the lower level concentrations of compounds detected in the undiluted analysis were not reported, due to elevated detection limits resulting from the dilution. This information is available in the raw data if it is of concern.

Sample processing (other than holding time and calculation) was compliant.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Att.

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

September 30, 2004

Scott Tucker O'Brien & Gere Engineers 5000 Brittonfield Parkway Syracuse, NY 13221

RE: Data Usability Summary Report for NMPC-South First St. Fulton, NY Data Package OBG Laboratory SDG Nos. 8186,8187,8208,8280,8294 and 8375,8384,8390

Dear Ms. Wright:

Review has been completed for the data packages generated by O'Brien & Gere Laboratories that pertain to samples collected 6/14/04 through 7/12/04 at the Niagara Mohawk Rome South First St. Fulton, NY site. Thirty-eight soil samples and sixteen aqueous samples (including field duplicates) were analyzed for BTEX by method EPA 8260B and PAH by method 8270C. Twelve additional soil samples were analyzed for PAHs. Equipment/trip blanks and matrix spikes/duplicates were also processed. Analytical methodologies used are those of the 1995 NYSDEC ASP/USEPA SW846.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the QC summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary tables have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, most sample results are usable as reported. However, nondetected PAH analytes are not usable in two samples. The specifics are noted below.

Copies of the laboratory case narratives and laboratory NYSDEC Sample Analytical Requirement Summary Forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this submission are client results tables with validation qualifiers and edits applied in red ink. These tables will be referenced in this report.

The following text discusses quality issues of concern.

General

Blind field duplicate evaluations were performed on aqueous sample MW-12D and soil samples MW-12(0-4), SB-38(4-8), SB-43(0-4), and SS-24A. Correlations were acceptable, with the exception of those for the semivolatiles in MW-12(0-4). Results for detected analytes in that field duplicate are between four and nine times higher than that parent sample. Results for detected PAHs in the sample MW-12(0-4) and DUP-3 are qualified estimated ("J").

BTEX Analyses by EPA 8260B

The three trip blanks submitted with the aqueous samples were dated more than two weeks prior to sample collection. Therefore, holding times for analysis of those blanks were missed, and those results are qualified as estimated, with a possible low bias.

Results for detected compounds in MW-4 and MW-5 are qualified as estimated due to elevated recovery of one surrogate standard (122% for both, above 114% limit). It is noted that the surrogate also produced similarly elevated recoveries in three associated method blanks, indicating that the outliers are not due to matrix.

Equipment, trip, and method blanks show no contamination. Sample holding times were met. Instrumental tunes were compliant. Calibration standards met protocol and validation requirements.

Internal standard d4-1,4-dichlorobenzene responded below the 50% limit in one sample, but there are no target analytes associated with this standard. Sample results are unaffected.

Matrix spikes were performed on aqueous sample MW-12S and low level soil samples SB-39(0-4), SB-46(0-4), and SB-46(4-8). Accuracy and precision were acceptable. There were no medium level soil matrix spikes analyzed.

Nine soil samples (identifications are specified in the laboratory case narrative) were analyzed at dilution due to non-target sample components. Therefore, higher reporting limits were reported.

PAH Analyses by EPA 8270C

Samples MW-5 and SB-37(14-16) failed to recover surrogate standard d5-nitrobenzene upon initial extraction. SB-37(14-16) was reextracted successfully, but well beyond the allowable holding time (43 days from VTSR, beyond the allowable 10 days). Sample MW-5 was not reextracted. Results for nondetected analytes in both samples are rejected ("R") and not usable. The detected values for both samples are qualified as estimated ("J"), with a possible low bias. The soil reextraction results should be used preferentially over the initial. The reason for that surrogate failure is not evident chromatgraphically.

Results for SB-37(18-20) are qualified as estimated ("J" and "UJ") due to low recoveries for two surrogate standards.

Results for analytes initially reported with the "E" flag are to be derived from dilution analyses. They include the following:

Sample ID	Analyte	Result, ppb
MW-5	Naphthalene	760
MW-12(10-12)	Phenanthrene	8000

Matrix spikes of aqueous sample MW-12S and soil samples SB-39(0-4) and MW-12 (14-16) show acceptable accuracy and precision for all eleven analytes evaluated. The spikes for SB-46(0-4) could not be evaluated due to high sample concentrations and the subsequent required dilution.

Internal standards, instrument tunes, and calibration standards meet protocol/validation requirements.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

February 18, 2005

Scott Tucker O'Brien & Gere Engineers 5000 Brittonfield Parkway Syracuse, NY 13221

RE:

Data Usability Summary Report for NMPC-South First St. Fulton, NY Data Package OBG Laboratory SDG Nos. 8894, 8925, 8957, 9060/9091, 1240/1254/1264/1303, 1823, and 5554

Dear Mr. Tucker:

Review has been completed for the data packages generated by O'Brien & Gere Laboratories that pertain to samples collected 5/08/01 through 6/01/01, 2/11/02 through 4/16/02, and 6/06/03 at the Niagara Mohawk Rome South First St. Fulton, NY site. One hundred and ten soil samples (including field duplicates) were analyzed for PAHs. Fifty-one of these were also analyzed for BTEX, and nine of those were processed for TAL metals. Seven aqueous samples were processed for BTEX and PAHs. Equipment/trip blanks and matrix spikes/duplicates were also processed. Analytical methodologies used are those of the 1995 NYSDEC ASP/USEPA SW846 8260B, 8270C, 6010B, and 7471.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the QC summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary tables have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, samples were processed in accordance with protocol/QAPP requirements, and sample results are usable as reported or usable with minor qualification as estimated.

Copies of the laboratory case narratives and laboratory NYSDEC Sample Analytical Requirement Summary Forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this submission are sample report forms with validation qualifiers and edits applied in red ink. These tables will be referenced in this report.

The following text discusses quality issues of concern.

General

Blind field duplicate evaluations were performed on aqueous sample MW-4 and on soil samples SB-18(18-20), SB-19-(12-14), SS-14, SB-22(18-20), SB-30(12-14), and SB-34(2-4). Correlations were acceptable, with the exception of those for the semivolatiles in SS-14. Results for detected analytes in that field duplicate are about twenty times higher than that parent sample. Results for detected PAHs in the sample SS-4 and its associated blind duplicate are qualified estimated ("J").

BTEX Analyses by EPA 8260B

Equipment and trip blanks show no contamination. Method blanks reported in SDG 8925 show low concentrations of xylene, and one of the blanks (5/15/01) also shows a low level of toluene. Associated sample results should have been flagged as "B" by the laboratory. Low level detections in those samples that are within fivefold concentration of the blanks have been edited to nondetection at the CRDL.

Internal standard d4-1,4-dichlorobenzene responded below the 50% limit in three samples, but there are no target analytes associated with this standard. Sample results are unaffected.

Matrix spikes were performed on aqueous sample MW-8 and low level soil samples SB-14(16-18), SS-17, and BK-1. Accuracy and precision were acceptable.

The result for xylene in SB-15(6-8) is qualified as estimated, as the response is below the established linear range for those combined compounds.

Sample holding times were met. Instrumental tunes were compliant. Calibration standards met protocol and validation requirements. Several soil samples were analyzed only at dilution, resulting in higher reporting limits. In some cases, matrix interferences are not apparent on the dilution chromatograms.

PAH Analyses by EPA 8270C

Internal standard d12-perylene responded below the 50% limit in the following samples, and the six associated compounds are therefore qualified as estimated. Initial analyses are preferable unless noted otherwise: SB-15(2-4) and SB-12(8-10), SS-10, SS-11, SS-14 (use reanalysis),

Internal standards d12-chrysene and d12-perylene responded below the 50% limit in the undiluted analysis of SS Blind Duplicate. The dilution analysis was acceptable, and results from that are to be used from the dilution for the six compounds associated with d12-perylene. Results for this sample are already qualified as estimated due to field duplicate correlations.

Results for analytes initially reported with the "E" flag are to be derived from dilution analyses.

Matrix spikes of aqueous sample MW-8 and soil samples SB-14(16-18), SB-18(6-8), SS-17, SB-23(10-12), SB-29(10-12), BK-1, SS-24, and SB-34(14-16) show acceptable accuracy and precision for the sixteen PAHs evaluated.

Calibration standards meet validation guidelines, with the following exceptions of elevated responses, detected results for which are qualified as estimated in the indicated samples:

- o Indeno(1,2,3-cd)anthracene and dibenz(a,h)anthracene (21%D and 22%D) (affected detected results are already qualified as estimated due to values below CRDL)
- o Dibenz(a,h)anthracene and benzo(g,h,i)perylene (22%D to 23%D) detected values reported in SDG 1823

Detected results for benzo(b)fluoranthene and benzo(k)fluoranthene in samples reported in SDG 1241 are qualified as estimated due to lack of resolution of the isomers.

Holding times were met, and surrogate recoveries are within required limits. Instrument tunes meet protocol/validation requirements.

TAL Metals by 6010B

Matrix spikes and duplicate evaluations were performed on SS-17. The following element exhibited matrix spike recoveries outside the validation action ranges, indicating either a matrix effect on recovery of analytes from the samples, or a nonhomogenous matrix. Project sample results are qualified as estimated ("J" or "UJ"):

Element	%Recoveries
antimony	39 and 39
arsenic	52 and 66
manganese	142 and 72
selenium	82 and 68 (PDS 69%)

ICP serial dilution evaluation was performed on SS-17, and showed outlying correlations for beryllium (13%D), iron (11%D), and sodium (20%D). Results for these three elements are therefore qualified as estimated in the project samples.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
 The associated value is an estimated quantity.
- R The data are unusable. (Note: Analyte may or may not be present.)
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

February 22, 2006

Scott Tucker O'Brien & Gere Engineers 5000 Brittonfield Parkway Syracuse, NY 13221

RE: Data Usability Summary Report for NMPC-South First St. Fulton, NY Data Package Life Sciences Laboratory SDG Nos. 510084, 511023/511034, and 512206

Dear Mr. Tucker:

Review has been completed for the data packages generated by O'Brien & Gere Laboratories that pertain to samples collected 1014/05 through 12/29/05 at the Niagara Mohawk Rome South First St. Fulton, NY site. Twenty-two aqueous and seven soil samples (including a total of three field duplicates) were analyzed for BTEX and PAHs. The aqueous samples were also analyzed for cyanide. Six additional soil samples (including a field duplicate) were processed for PAHs. Equipment/trip blanks and matrix spikes/duplicates were also processed. Analytical methodologies used are those of the 1995 NYSDEC ASP/USEPA SW846 8260B, 8270C, and 9012.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the QC summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary tables have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, samples were primarily processed in accordance with protocol/QAPP requirements, and most sample results are usable as reported or usable with minor qualification as estimated. However, results for non-detected PAH analytes in three aqueous samples are not usable due to surrogate failure. Because those samples were not re-processed by the laboratory, it is not known whether recollection of the samples could result in usable data.

Copies of the laboratory case narratives and laboratory NYSDEC Sample Analytical Requirement Summary Forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this submission are sample report forms with validation qualifiers and edits applied in red ink. These tables will be referenced in this report.

The following text discusses quality issues of concern.

General

Blind field duplicate evaluations were performed on aqueous samples MW-4-110205-(8FT) and MW-3-110305-(8.5 FT), and on soil samples SS-29-122905 and SB-48-101405(2-4). Correlations were acceptable, with the exception of those for the PAHs in SB-48-101495(2-4). Results for detected analytes in that field duplicate are about ten times higher than those in its parent sample. Results for detected PAHs in the sample SB-48-101495(2-4) and its associated blind duplicate are qualified estimated ("J").

The report forms for the equipment and trip blanks incorrectly report soil units of "ug/kg."

BTEX Analyses by EPA 8260B

Due to presence in the associated trip blank, the result for toluene in MW-6-110205 is considered external contamination and edited to be non-detection. Equipment and method blanks show no contamination.

Internal standard d4-1,4-dichlorobenzene responded below the 50% limit in two samples, but there are no target analytes associated with this standard. Sample results are unaffected.

Matrix spikes were performed on soil sample SB-48-101405(0-2) and aqueous samples MW-2-110305 and MW-11-110205. Accuracy and precision were within laboratory and validation guidelines.

Sample holding times were met. Instrumental tunes were compliant. Calibration standards met protocol and validation requirements.

PAH Analyses by EPA 8270C

Samples MW-4-110205 (8 FT), MW-4-110205(12FT), and DUPE-1-110205 produced no recovery of d5-nitrobenzene. The samples were not re-extracted, so it is unknown whether the cause of the failures was due to sample matrix or to laboratory processing. The results for analytes not detected in those three samples are therefore rejected ("R"), and detected values are qualified as estimated, with a probable low bias.

Internal standard d12-perylene responded below the 50% limit in the undiluted analyses of the following samples, and the six associated compounds are therefore qualified as estimated if derived from the undiluted analyses: SB-48-101405(0-2), SS-29-122905, SS-30-122905, SS-31-122905, SS-32-122905, and DUP-1-122905.

Sample SS-32-122905 and DUP-1-122905 also show low responses for internal standard d12-chrysene, and the three associated compounds are also qualified as estimated in those two samples.

Results for analytes initially reported with the "E" flag are to be derived from dilution analyses.

Matrix spikes of aqueous sample MW-11-110205 and soil sample SB-48-101405(0-2) were acceptable, with the exception of the recoveries of indeno(1,2,3-cd)pyrene in the soil. Results for that analyte in parent sample SB-48-101405(0-2) are already qualified as estimated due to internal standard responses.

The matrix spikes (MS/MSD) of SS-28-122905 show inconsistencies in recoveries and were noted during analysis as differing in color and viscosity. Although the chromatograms of the MS and the parent sample look similar, the MS is at much higher concentrations of response, and was analyzed at a tenfold dilution. The chromatogram of the MSD does not resemble those of the parent and MS. All results for the parent sample are qualified as estimated due to potential non-homogenous matrix.

Calibration standards meet validation guidelines. Equipment and method blanks show no contamination. Holding times were met, and instrument tunes meet protocol/validation requirements.

Wet Chemistry Analyses-Cyanide

Review was conducted for method compliance, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable unless noted specifically within this text.

Matrix spikes of MW-11-110205 (5FT) and MW-2-110305 were acceptable.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Hsarry

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL SUMMARY

		Analytical Requirements					
Customer Sample	Laboratory Sample	VOA	BNA	VOA	PEST		
Code	Code	GC/MS Method#	GC/MS Method#	GC Method#	PCBs Method#	METALS	OTHER
DUP-1-101405	0510084-001	8260B	8270C				
SB-47-101405 (0-2')	0510084-002	8260B	8270C				
SB-47-101405 (2-4')	0510084-003	8260B	8270C		·	,	
SB-47-101405 (4-6')	0510084-004	8260B	8270C				
SB-48-101405 (0-2')	0510084-005	8260B	8270C				
SB-48-101405 (0-2')	0510084-005MS	8260B	8270C				
SB-48-101405 (0-2')	0510084-005MSD	8260B	8270C				
SB-48-101405 (2-4')	0510084-006	8260B	8270C				
SB-48-101405 (4-6')	0510084-007	8260B	8270C				
EB-1-10140105	0510084-009	8260B	8270C				
TB-1-101405	0510084-010	8260B					
					-		
					_		
	,						
							

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND

ANALYTICAL SUMMARY

		Analytical Requirements					
Customer Sample Code	Laboratory Sample Code	VOA GC/MS Method#	BNA GC/MS Method#	VOA GC Method#	PEST PCBs Method#	METALS	OTHER
MW-7-11105-(7FT)	0511023-001	8260B	8270G				SW9012A
MW-7-11105-(11FT)	0511023-002	8260B	8270G				SW9012A
MW-8-11105	0511023-003	8260B	8270C	4			SW9012A
MW-10-11105-(11FT)	0511023-004	8260B	8270C		4. 14.	7.1	SW9012A
MW-4-110205-(8FT)	0511023-005	8260B	8270C				SW9012A
MW-4-110205-(12FT)	0511023-006	8260B	8270C				SW9012A
MW-5-110205	0511023-007	8260B	8270C				SW9012A
OUPE-1-110205	0511023-008	8260B	8270C				SW9012A
MW-6-110205	0511023-009	8260B	8270C				SW9012A
MW-7D-110205	0511023-010	8260B	8270C				SW9012A
/W-8D-110205	0511023-011	8260B	8270C				SW9012A
/W-9D-110205	0511023-012	8260B	8270C				SW9012A
MW-11-110205-(5FT)	0511023-013	8260B	8270C				SW9012A
MW-11-110205-(5FT)	0511023-013MS/MSD	8260B	8270C				* .
/W-11-110205-(10FT)	0511023-014	8260B	8270C			. 9	SW9012A
/W-12D-110205	0511023-015	8260B	8270C				SW9012A
ГВ-110205	0511023-016	8260B		٧			
/W-1-110305	0511038-001	8260B	8270C				SW9012A
AW-2-110305	0511038-002	8260B	8270C				SW9012A
/W-2-110305	0511038-002MS/MSD	8260B	8270C				
/W-3-110305 (8.5FT)	0511038-003	8260B	8270C				SW9012A
/W-3-110305 (12FT)	0511038-004	8260B	8270C				SW9012A
AW-9S-110305	0511038-005	8260B	8270C				SW9012A
(W-12S-110305 (8.5FT)	0511038-006	8260B	8270C				SW9012A
/W-12S-110305 (12FT)	0511038-007	8260B	8270C				SW9012A
OUP-2-110305	0511038-008	8260B	8270C				SW9012A
TB-2-110305	0511038-009	8260B					

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND

ANALYTICAL SUMMARY

		Analytical Requirements					
Customer Sample Code	Laboratory Sample Code	VOA GC/MS Method#	BNA GC/MS Method#	VOA GC Method#	PEST PCBs Method#	METALS	OTHER
SS-28-122905	0512206-001A		8270C				
SS-28-122905	0512206-001AMS/MSD		8270C				
SS-29-122905	0512206-002A		8270C				
SS-30-122905	0512206-003A		8270C				
SS-31-122905	0512206-004A		8270C				
SS-32-122905	0512206-005A		8270C				
DUP-1-122905	0512206-006A		8270C				

NARRATIVE

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for O'Brien & Gere Engineers, Inc. samples from the Niagara Mohawk Power Corporation—South First Street—Fulton, NY. New York State Department of Environmental Conservation forms are included in the Laboratory Report Package.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage and custody inconsistencies. Chain of custodies documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperature was 2.4°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	8260B	1
Semivolatile Organics	8270C	1
Percent Total Solids	2540-G	2

- 1) New York State Department of Environmental Conservation Analytical Services Protocol, October 1995.
- 2) Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992

QUALITY CONTROL

QA/QC results are summarized in the Laboratory Report Package.

RAW DATA

The raw data is organized according to the New York State Department of Environmental Conservation Analytical Services Protocol Category "B" order of data requirements.

QA/QC:	galagutte	Date:	12-8-05
	00		
		Total # of pages in	this report: 513

GC/MS Volatile Organics Case Narrative

Client:

OBG

Project/Order:

NIMO -South First St - Fulton, NY

Work Order #:

0510084

Methodology:

8260B

Analyzed/Reviewed by (Initials/Date):

(10) [(-27-65

Supervisor/Reviewed by (Initials/Date):

11-22.05

QA/QC Review (Initials/Date):

ogy 11.30-05

File Name:

G:\Narratives\MSVoa\0510084msvnar.doc

GC/MS Volatile Organics

The GC/MS Volatile instruments used a Restek Rtx-VMS, $40 \text{ m} \times 0.18 \text{ mm ID}$ capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD/MSB

All spike recovery and RPD data met method and/or project specific QC criteria.

Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

Internal Standards

Internal standard 1,4-Dichlorobenzene-d4 exceeded the lower control limit for samples 0510084-002A [SB-47 (0-2')] and 0510084-003A [SB-47 (2-4')]. No compounds of interest are associated with this internal standard, therefore no corrective action is required.

Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

GC/MS Semi-Volatile Organics Case Narrative

Client ID:

OBG-MS

Proj./Ord.:

NIMO-South First St-Fulton, NY

W.O. #:

0510084

Methodology:

8270C

Analyzed/Reviewed by (Initials/Date): MC

QA/QC Review (Initials/Date):

977 11.30.05

File Name:

C:\Documents MS5\Templates\0510084svnar.doc

GC/MS Semi-Volatile Organics

The GC/MS Semi-volatile instruments used a Zebron ZB-5, 30 m x 0.25 mm ID capillary column.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD/MSB

The following compound(s) did not meet matrix spike/matrix spike duplicate percent recovery and/or RPD criteria:

Sample	,				Corrective
Description	Sample #	Compound	% REC	RPD	Action
SB-48-101405(0-2')	0510084-005B	several	X		1

The recovery for this compound in the associated LCS and/or MSB was within acceptance limits. The concentration of the analyte in the sample was much greater than the concentration of the analyte spiked, which may bias recoveries. No corrective action was taken.

Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

Internal Standards

The internal standard area for the following sample(s) did not meet abundance criteria:

Sample Description	Sample #	Internal Standard	Corrective Action
SB-48-101405(0-2')	0510084-005B	Perylene-d12	1
SB-48-101405(0-2')MS	0510084-005BMS	Perylene-d12	1
SB-48-101405(0-2')MSD	0510084-005BMSD	Perylene-d12	1

GC/MS Semi-Volatile Organics Case Narrative - Page 2

Client ID:

OBG-MS

Proj./Ord.:

NIMO-South First St-Fulton, NY

W.O.#:

0510084

Methodology:

8270C

1 The recovery was confirmed by similar sample, MS, and MSD results. No corrective action was taken.

Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Appendix G

Soil vapor laboratory report

Performance Analytical Inc.

Air Quality Laboratory

LABORATORY REPORT

Client:

O'BRIEN & GERE ENGINEERS, INC.

Date of Report:

07/10/98

Address:

5000 Brittonfield Parkway

Date Received:

06/23/98

Syracuse, NY 13221

PAI Project No:

P9801041

Contact:

Mr. Tim Eddy

Purchase Order:

Verbal

Client Project ID: Niagara Mohawk Power Corporation

New York ELAP ID: #11221

Four (4) Tedlar Bag Samples labeled:

"SV-1"

"SV-2"

"SV-3"

"Blind Duplicate"

Five (5) PUF/XAD-2 Samples labeled:

"SV-1"

"SV-2"

"SV-3"

"Blind Duplicate"

"Trip Blank"

The samples were received at the laboratory under chain of custody on June 23, 1998. The samples were received intact. The dates of analyses are indicated on the attached data sheets.

BTEX Analysis

The Tedlar bags were analyzed for Benzene, Toluene, Ethylbenzene and total Xylenes according to modified CARB Method 410 using a gas chromatograph equipped with a photoionization detector.

Polynuclear Aromatic Hydrocarbons Analysis

The PUF/XAD-2 cartridges were analyzed for polynuclear aromatic hydrocarbons (PAHs) using combined gas chromatography/mass spectrometry (GC/MS) according to the methodology outlined in EPA Method TO-13 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA 600/4-84-041, U.S. Environmental Protection Agency, Research Triangle Park, NC, April, 1984. The analyses were performed using a Hewlett-Packard Model 5890 Series II gas chromatograph/ Model 5971 mass selective detector equipped with a Model 7673A robot arm autoinjector. A 5% Phenyl/95% Dimethylpolysiloxane capillary column (RT_x-5, Restek Corporation, Bellefonte, PA) was used to achieve chromatographic separation.

The results of analyses are given on the attached data sheets.

Data Release Authorization:

Reviewed and Approved:

Nelyn Quitoviera

Analytical Chemist

Michael Tuday Laboratory Director

Performance Analytical Inc.

Air Quality Laboratory

RESULTS OF ANALYSIS

PAGE 1 OF 1

Client

: O'Brien & Gere Engineers, Inc.

Client Sample ID:

SV-1

PAI Sample ID: P9801041-001A

Test Code: Modified CARB Method 410

Date Sampled:

6/22/98

Analyst: J. Dan Taliaferro

Date Received:

6/23/98 6/23/98

Instrument: HP5890/PID #2

Date Analyzed:

Matrix: Tedlar Bag

Volume(s) Analyzed:

1.00 ml

D.F. = 1.00

CAS#	COMPOUND	RESULT	REPORTING	RESULT	REPORTING
			LIMIT		LIMIT
		mg/m³	mg/m³	ppm	ppm
71-43-2	Benzene	ND	0.16	ND	0.050
108-88-3	Toluene	ND	0.19	ND	0.050
100-41-4	Ethylbenzene	ND	0.22	ND	0.050
1330-20-7	m- & p-Xylenes	ND	0.22	ND	0.050
95-47-6	o-Xylene	ND	0.22	ND	0.050

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by:

Performance Analytical Inc.

Air Quality Laboratory

RESULTS OF ANALYSIS

PAGE 1 OF 1

Client

: O'Brien & Gere Engineers, Inc.

Client Sample ID:

SV-2

PAI Sample ID: P9801041-002A

Test Code: Modified CARB Method 410

Date Sampled:

6/22/98

Analyst: J. Dan Taliaferro

Date Received:

6/23/98

Instrument: HP5890/PID #2

Date Analyzed:

6/23/98

Matrix: Tedlar Bag

Volume(s) Analyzed:

1.00 ml

D.F. = 1.00

CAS#	COMPOUND	RESULT	REPORTING	RESULT	REPORTING
			LIMIT		LIMIT
,		mg/m³	mg/m³	ppm	ppm
71-43-2	Benzene	ND	0.16	ND	0.050
108-88-3	Toluene	ND	0.19	ND	0.050
100-41-4	Ethylbenzene	ND	0.22	ND	0.050
1330-20-7	m- & p-Xylenes	ND	0.22	ND	0.050
95-47-6	o-Xylene	ND	0.22	ND	0.050

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by: R(-

RESULTS OF ANALYSIS PAGE 1 OF 1

Client : O'Brien & Gere Engineers, Inc.

Client Sample ID: SV-3

PAI Sample ID: P9801041-003A

Test Code: Modified CARB Method 410

Date Sampled:

6/22/98

Analyst: J. Dan Taliaferro

Date Received:

6/23/98

Instrument: HP5890/PID #2

Date Analyzed:

6/23/98

Matrix: Tedlar Bag

Volume(s) Analyzed:

1.00 ml

D.F. = 1.00

		RESULT	REPORTING	RESULT	REPORTING
CAS#	COMPOUND	·	LIMIT		LIMIT
		mg/m³	mg/m³	ppm	ppm
71-43-2	Benzene	ND	0.16	ND	0.050
108-88-3	Toluene	ND	0.19	ND	0.050
100-41-4	Ethylbenzene	ND	0.22	· ND	0.050
1330-20-7	m- & p-Xylenes	ND	0.22	ND	0.050
95-47-6	o-Xylene	ND	0.22	ND	0.050

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by: 12

RESULTS OF ANALYSIS

PAGE 1 OF 1

: O'Brien & Gere Engineers, Inc.

Client Sample ID: **Blind Duplicate** PAI Sample ID: P9801041-004A

Test Code: Modified CARB Method 410

6/22/98

Analyst: J. Dan Taliaferro

Date Sampled: Date Received:

6/23/98

Instrument: HP5890/PID #2

Date Analyzed:

6/23/98

Matrix: Tedlar Bag

Volume(s) Analyzed:

1.00 ml

D.F. = 1.00

	·	RESULT	REPORTING	RESULT	REPORTING
CAS#	COMPOUND		LIMIT		LIMIT
		mg/m³	mg/m³	ppm	ppm
71-43-2	Benzene	ND	0.16	ND	0.050
108-88-3	Toluene	ND	0.19	ND	0.050
100-41-4	Ethylbenzene	ND	0.22	ND	0.050
1330-20-7	m- & p-Xylenes	ND	0.22	ND	0.050
95-47-6	o-Xylene	ND	0.22	ND	0.050

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by:

RESULTS OF ANALYSIS PAGE 1 OF 1

Client : O'Brien & Gere Engineers, Inc.

Client Sample ID: Blind Duplicate

PAI Sample ID: P9801041-004A (Laboratory Duplicate)

Test Code: Modified GARB Method 410

Date Sampled: Analyst: J. Dan Taliaferro Date Received:

6/23/98 Instrument: HP5890/PID #2 Date Analyzed: 6/23/98

Matrix: Tedlar Bag Volume(s) Analyzed: 1.00 ml

D.F. = 1.00

6/22/98

		RESULT	REPORTING	RESULT	REPORTING
CAS#	COMPOUND		LIMIT		LIMIT
		mg/m³	mg/m³	ppm	ppm
71-43-2	Benzene	ND	0.16	ND	0.050
108-88-3	Toluene	ND	0.19	ND	0.050
100-41-4	Ethylbenzene	ND	0.22	ND	0.050
1330-20-7	m- & p-Xylenes	ND	0.22	ND	0.050
95-47-6	o-Xylene	ND	0.22	ND	0.050

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by: R(=

Performance Analytical Inc.

Air Quality Laboratory

RESULTS OF ANALYSIS

PAGE 1 OF 1

Client

: O'Brien & Gere Engineers, Inc.

Client Sample ID:

N/A

PAI Sample ID: PAI Method Blank

Test Code: Modified CARB Method 410

Date Sampled:

N/A

Analyst: J. Dan Taliaferro

Date Received:

N/A

6/23/98

Instrument: HP5890/PID #2

Date Analyzed:

Matrix: Tedlar Bag

Volume(s) Analyzed:

1.00 ml

D.F. = 1.00

		RESULT	REPORTING	RESULT	REPORTING
CAS#	COMPOUND		LIMIT		. LIMIT
		mg/m³	mg/m³	ppm	ppm
71-43-2	Benzene	ND	0.16	ND	0.050
108-88-3	Toluene	ND	0.19	ND	0.050
100-41-4	Ethylbenzene	ND	0.22	ND	0.050
1330-20-7	m- & p-Xylenes	ND	0.22	ND	0.050
95-47-6	o-Xylene	ND	0.22	ND	0.050

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by:

RESULTS OF ANALYSIS

PAGE 1 OF 1

Client : O'Brien & Gere Engineers, Inc.

Client Sample ID: SV-1

PAI Sample ID : P9801041-001B

Test Code: Modified EPA TO-13 Date Sampled: 6/22/98
Analyst: Nelyn Quitoviera Date Received: 6/23/98
Instrument: HP5890II/MSD Date Extracted: 6/23/98
Matrix: PUF/XAD-2 Date Analyzed: 6/24/98

D.F. = 1.00

		RESULT	REPORTING
CAS#	COMPOUND		LIMIT
		μg/Sample	μg/Sample
91-20-3	Naphthalene	ND	0.25
208-96-8	Acenaphthalene	ND	0.25
83-32-9	Acenaphthene	ND	0.25
86-73-7	Fluorene	ND	0.25
85-01-8	Phenanthrene	: ND	0.25
120-12-7	Anthracene	ND	0.25
206-44-0	Fluoranthene	. ND	0.25
129-00-0	Pyrene	ND	0.25
56-55-3.	Benzo(a)anthracene	ND	0.25
218-01-9	Chrysene	ND	0.25
205-99-2	Benzo(b)Fluoranthene	ND	0.25
207-08-9	Benzo(k)Fluoranthene	ND	0.25
50-32-8	Benzo(a)Pyrene	ND	0.25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25
53-70-3	Dibenzo(a,h)anthracene	ND	0.25
191-24-2	Benzo(g,h,i)perylene	ND	0.25

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by :	RG
---------------	----

Date: 7898

RESULTS OF ANALYSIS

PAGE 1 OF 1

Client : O'Brien & Gere Engineers, Inc.

Client Sample ID: SV-2

PAI Sample ID : P9801041-002B

Test Code: Modified EPA TO-13

Analyst: Nelyn Quitoviera

Instrument: HP5890II/MSD

Matrix: PUF/XAD-2

Date Sampled: 6/22/98

6/23/98

Date Extracted: 6/25/98

Date Analyzed: 6/26/98

D.F. = 1.00

		RESULT.	REPORTING
CAS#	COMPOUND		LIMIT
		μg/Sample	μg/Sample
91-20-3	Naphthalene	ND	0.25
208-96-8	Acenaphthalene	ND	0.25
83-32-9	Acenaphthene	ND	0.25
86-73-7	Fluorene	ND	0.25
85-01-8	Phenanthrene	ND	0.25
120-12-7	Anthracene	ND	0.25
206-44-0	Fluoranthene	ND	0.25
129-00-0	Pyrene	ND	0.25
56-55-3	Benzo(a)anthracene	ND	0.25
218-01-9	Chrysene	ND	0.25
205-99-2	Benzo(b)Fluoranthene	ND	0.25
207-08-9	Benzo(k)Fluoranthene	ND	0.25
50-32-8	Benzo(a)Pyrene	ND	0.25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25
53-70-3	Dibenzo(a,h)anthracene	ND	0.25
191-24-2	Benzo(g,h,i)perylene	ND	0.25

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by:	RC-
--------------	-----

Date: 7/9/98

RESULTS OF ANALYSIS PAGE 1 OF 1

Client : O'Brien & Gere Engineers, Inc.

Client Sample ID: SV-3

PAI Sample ID: P9801041-003B

Test Code: Modified EPA TO-13 Date Sampled: 6/22/98
Analyst: Nelyn Quitoviera Date Received: 6/23/98
Instrument: HP5890II/MSD Date Extracted: 6/25/98
Matrix: PUF/XAD-2 Date Analyzed: 6/26/98

D.F. = 1.00

		RESULT	REPORTING
CAS#	COMPOUND		LIMIT
		μg/Sample	μg/Sample
91-20-3	Naphthalene	ND	0.25
208-96-8	Acenaphthalene	ND	0.25
83-32-9	Acenaphthene	ND	0.25
86-73-7	Fluorene	ND	0.25
85-01-8	Phenanthrene	ND	0.25
120-12-7	Anthracene	ND	0.25
206-44-0	Fluoranthene	ND	0.25
129-00-0	Pyrene	ND	0.25
56-55-3	Benzo(a)anthracene	ND	0.25
218-01-9	Chrysene	ND	0.25
205-99-2	Benzo(b)Fluoranthene	ND	0.25
207-08-9	Benzo(k)Fluoranthene	ND	0.25
50-32-8	Benzo(a)Pyrene	ND	0.25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25
53-70-3	Dibenzo(a,h)anthracene	ND	0.25
191-24-2	Benzo(g,h,i)perylene	ND	0.25

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by:	2(-
--------------	-----

Date: 7/8/98

Performance Analytical Inc.

Air Quality Laboratory

RESULTS OF ANALYSIS

PAGE 1 OF 1

Client

: O'Brien & Gere Engineers, Inc.

Client Sample ID : Blin

Blind Duplicate

PAI Sample ID : P9801041-004B

Test Code: Modified EPA TO-13
Analyst: Nelyn Quitoviera
Instrument: HP5890II/MSD
Matrix: PUF/XAD-2

Date Sampled: 6/22/98

Date Received: 6/23/98

Date Extracted: 6/25/98 Date Analyzed: 6/26/98

D.F. = 1.00

		RESULT	REPORTING
CAS#	COMPOUND		LIMIT
•		μg/Sample	μg/Sample
91-20-3	Naphthalene	ND	0.25
208-96-8	Acenaphthalene	ND	0.25
83-32-9	Acenaphthene	ND	0.25
86-73-7	Fluorene	; ND	0.25
85-01-8	Phenanthrene	ND	0.25
120-12-7	Anthracene	ND	0.25
206-44-0	Fluoranthene	ND	0.25
129-00-0	Pyrene	ND .	0.25
56-55-3	Benzo(a)anthracene	ND	0.25
218-01-9	Chrysene	ND	0.25
205-99-2	Benzo(b)Fluoranthene	ND	0.25
207-08-9	Benzo(k)Flnoranthene	ND	0.25
50-32-8	Benzo(a)Pyrene	ND	0.25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25
53-70-3	Dibenzo(a,h)anthracene	ND	0.25
191-24-2	Benzo(g,h,i)perylene	ND	0.25

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by:	RG	·
	JIMIC O	

Performance Analytical Inc.

Air Quality Laboratory

RESULTS OF ANALYSIS PAGE 1 OF 1

Client

O'Brien & Gere Engineers, Inc.

Trip Blank Client Sample ID: P9801041-005 PAI Sample ID:

Test Code: Modified EPA TO-13

Date Sampled:

6/22/98

Analyst: Nelyn Quitoviera Instrument: HP5890II/MSD

Date Received: Date Extracted: 6/23/98 6/25/98

Matrix: PUF/XAD-2

Date Analyzed:

6/26/98

D.F. = 1.00

		RESULT	REPORTING
CAS.#	COMPOUND		LIMIT
		μg/Sample	μg/Sample
91-20-3	Naphthalene	ND	0.25
208-96-8	Acenaphthalene	ND	0.25
83-32-9	Acenaphthene	ND	0.25
86-73-7	Fluorene	ND ND	0.25
85-01-8	Phenanthrene	ND ND	0.25
120-12-7	Anthracene	ND	0.25
206-44-0	Fluoranthene	ND	0.25
129-00-0	Pyrene	ND	0.25
56-55-3	Benzo(a)anthracene	. ND	0.25
218-01-9	Chrysene	ND	0.25
205-99-2	Benzo(b)Fluoranthene	ND	0.25
207-08-9	Benzo(k)Fluoranthene	ND	0.25
50-32-8	Benzo(a)Pyrene	ND	0.25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25
53-70-3	Dibenzo(a,h)anthracene	ND	0.25
191-24-2	Benzo(g,h,i)perylene	ND	0.25

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by: K5

RESULTS OF ANALYSIS PAGE 1 OF 1

: O'Brien & Gere Engineers, Inc.

Client Sample ID: N/A

PAI Sample ID: PAI Method Blank

Test Code: Modified EPA TO-13 Analyst: Nelyn Quitoviera Instrument: HP5890II/MSD

Date Sampled:

N/A

Date Received: Date Extracted:

N/A 6/23/98

Matrix: PUF/XAD-2

6/24/98

Date Analyzed:

D.F. = 1.00

0.25

RESULT REPORTING CAS# **COMPOUND** LIMIT µg/Sample μg/Sample 0.25 91-20-3 Naphthalene ND ND 0.25 208-96-8 Acenaphthalene 0.25 83-32-9 Acenaphthene ND 86-73-7 0.25 Fluorene ND 0.25 85-01-8 Phenanthrene ND 0.25 120-12-7 Anthracene ND Fluoranthene 0.25 206-44-0 ND 0.25 129-00-0 Pyrene ND 0.25 Benzo(a)anthracene ND 56-55-3 0.25 218-01-9 ND Chrysene 205-99-2 Benzo(b)Fluoranthene ND 0.25 0.25 207-08-9 Benzo(k)Fluoranthene ND Benzo(a)Pyrene 0.25 50-32-8 ND 0.25 193-39-5 Indeno(1,2,3-cd)pyrene ND 53-70-3 Dibenzo(a,h)anthracene 0.25 ND

TR = Detected Below Indicated Reporting Limit

Benzo(g,h,i)perylene

ND = Not Detected

191-24-2

Verified by: R(-

ND

RESULTS OF ANALYSIS PAGE 1 OF 1

Client : O'Brien & Gere Engineers, Inc.

Client Sample ID: N/A

PAI Sample ID: PAI Method Blank

Test Code: Modified EPA TO-13 Date Sampled: N/A
Analyst: Nelyn Quitoviera Date Received: N/A
Instrument: HP5890II/MSD Date Extracted: 6/25/98
Matrix: PUF/XAD-2 Date Analyzed: 6/26/98

D.F. = 1.00

		RESULT	REPORTING
CAS#	COMPOUND		LIMIT
		μg/Sample	μg/Sample
91-20-3	Naphthalene	ND	0.25
208-96-8	Acenaphthalene	ND	0.25
83-32-9	Acenaphthene	ND	0.25
86-73-7	Fluorene	. ND	0.25
85-01-8	Phenanthrene	ND	0.25
120-12-7	Anthracene	ND	0.25
206-44-0	Fluoranthene	ND	0.25
129-00-0	Pyrene	ND	0.25
56-55-3	Benzo(a)anthracene	ND	0.25
218-01-9	Chrysene	ND	0.25
205-99-2	Benzo(b)Fluoranthene	ND	0.25
207-08-9	Benzo(k)Fluoranthene .	ND	0.25
50-32-8	Benzo(a)Pyrene	· ND	0.25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25
53-70-3	Dibenzo(a,h)anthracene	ND	0.25
191-24-2	Benzo(g,h,i)perylene	. ND	0.25

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified by: RC+	
------------------	--

Date: 7/8/98

Performance Analytical Inc.

Air Quality Laboratory

20954 Osborne Stre. Canoga Park, California 91304 Phone 818 709-1139 Fax 818 709-2915

Chain of Custody Record Analytical Services Request

		Fax 818 709-2915		Alialytical Services Request										
Client/Project Name		Address/Phone	TTONFIELD USE, NY, 7431-6100	PKWY 13.22	/	,	A	NAL	YSES	/	Al Project No.			
VORTEN & GERE Eng	WELLS, I	he,	Client Project N	7 431-6100							/	P98	0765	//
Project Location NIAGARA SUNTH FIRST	MUKKUK KI ST ST. S	iver CORP. SITE	1118,		/	/								
Contact Tim EDDY	Complete (or Press)	ODell	7	P.O. No.	$\overline{}$	14	/ \\\/	/	/ /	/ /	/ /			
Sample Identification No.	Date	Time	Lab Sample No.	Type of Sample	$\sqrt{\ell_{\chi}}$						Expected Turnaround Time		Remari	κ s ·
SV-1	6/22/98	1000	/	GRAB	X	X					Routine	-001		
5V-2 (MS/MS)	//	1025	2	GRAB	Y	X						MATEIX	RIKEMA	TRIK SAL
SV-3		1055	3	GRAB	X	X						2003		
BLIND Duplicate			4	GRAB	1	x						-604		
TRIPBLANK	V		5	GRAB		X					<u> </u>	-005		
									_				<u></u>	·
														- -
														·
Relinguished by: (Signature)		<u> </u>	Date	Time	Receive	d by: (S	ilgnatu	re)	<u></u>		•	Date	Time	
Chaun Olly			422/98	1700hrs.			lw		1/2			6-23		1:30
Relinquished by: (Signature)		<i>'</i> .	Date	Time	Receive	d' by: (S	ignatu	re)				Date	Time	÷
Relinquished by: (Signature)		•	Date	Time	Receive	d by: (S	ignatu	re)				Date	Time	
Disposal Method			L		Whi	te Copy	 , :	Accom	panies S	Sample			L	
Disposed by: (Signature)			Date	Time	1	ow Cop		Sample					٠.	

Appendix H

Sediment coring logs & photos

		•	
Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	A. I	05/24/01	overcast &
	BKI	0945	light rain
Water Depth	Core Type		
2.51	Augen		
Penetration Depth	Length Recovered	GPS Coo	ordinates
6"	~6°	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
0-6	Medium brown Silt and t of Unknown	Gilt W/Some li race gravel. L material observ	gho brown bute flect
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	photo 11
		-	
	10 ft from show at upstroum by deck d	shore of river Marker buoy 75 SAMPLE CALL END Clump of and of for for brown house do e in mural on	mapie tres White house in stram,
	** \$	**	photo 12

als: WAR KRH

Sampler Initials:

			·
Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	Bxz	05/24/01	Overcest
Water Depth	Core Type		<u> </u>
3 fr	Progen		
Penetration Depth	Length Recovered	GPS Co	ordinates
0.5'	u 0.51	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
0-1"	Surfuer consist	s of grave)	
1-6	medium frown Some fine Samo Flecks 4 twice	silt w/ , trace white	photo 13
	flecks 4 twi) .	,
		·	
		·	
, l	·	,	
		·	
	Location Descrip	otion:	
	~10 from south	h shore at whole	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	marker tag	madk of photo	Photo 14
		·	
		·	

Sampler Initials: WAR / KI

•			-
Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	BK3	05/24/01	overcast light breas
Water Depth	Core Type		1
7	Auger		
Penetration Depth	Length Recovered	GPS Co	ordinates
0.5'	-0.5	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
Surf.	Surface b rowns	117 w, twigs	pHoto 16
1-6"	Surface b rowns firm gray da material.	, with root	•
	·		
			_
	Cocano Descrip North shore in crean house U	front of bue trim	PHOTO 15
	LAND FORTIN	g river. ed at left of ph	oto (tagged)

Sampler Initials: WAR/KRN

Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	BK4	05 24/01	OVERCOST/ SOME CLEARING
Water Depth	Core Type		
14	AUGER		
Penetration Depth	Length Recovered	GPS Co	ordinates
0.5	0.5	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
Surf.	surface = grave	SAND WY SOME	•
~1-4	brown madium 3	THUD MY Some	gravel
5urf. ~1-4 4-6	brown clay		No photo
	TREES LOCATION	2ft from showed approximate to approximate to approximate to approximate how as upstream, but	poplaz downstream

Sampler Initials: WAR/KRH

S	ampling Progr	ram	Sample ID	Number	1	ate/Time		Weather Conditions
	502-10			 	24/01	405	SUNNY	
	Water Depth	1	Core T	ype			<u> </u>	
	3 <i>f</i> ₁	·	Aug			·		
P	enetration De	pth .	Length Rec	overed		GP	S Coordi	nates
	0.5}	1	~8.5	4	Northing/La			
Col	re Section Inte	rval	Visual Desc	ription				Comments
	0-6		Geover/ Brown	ROCKS SAN	And	MEDIUM	~	PHOTO 18
	·		rocks of Sample 1	elocat	from ed @	Shore n8f4	From .	slore
	. •							
								· .
				·				

Sampler Initials: WAR/KRH

Sampling Program	Sample ID Number	Date/Time	Weather Conditions
Water Depth	502 - 22 Core Type	05/24/01	SUNNY SI BREEZY
Water Deptu	Core Type		
7.5 fr	Augier		
Penetration Depth	Length Recovered	GPS Coo	rdinates
0.581	~ 0.5 ft was	Northing/Lat. = Easting/Long. =	
Core Section Interval	· Visual Description		Comments
0-5"	rocks and grader dark brown	ve) W/ Some	
Ø5-l°	MATERIALS (R	sets a twigs)	
	Composite of	THREE GRA	3 ₉

Sampler Initials: WAA/KRA

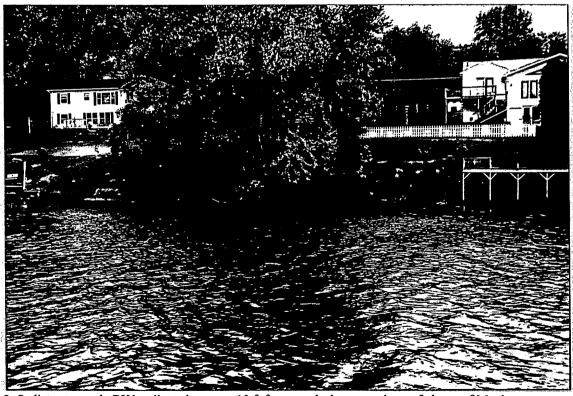
		•	•
Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	5p3·25	05/24/01	SUN & BREE
Water Depth	Core Type		<u> </u>
7.0 fr	Augor		
Penetration Depth	Length Recovered	GPS Coo	ordinates
0.5 fg	40.3.0.5A	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description	,	Comments
0.0-0.5ft	MIXTURE OF G	W, SOME	PHOTO 20
	Rocks twiss Trace sheen during colle	, roots, Shells observed in Sam etlow of Sample	ple bowl
	Composive	of Two Grass	
(

Sampler Initials: WMA/KRH

		•	
Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	504-0	05/24/01	SIN & BREE
Water Depth	Core Type	1,320	
~1fr	Auger		
Penetration Depth	Length Recovered	GPS Coo	ordinates
0.5 A	0.5 fs	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
0-0.5'		AND gravel rganic metter	Pheto 21
	BLIND DUPL AS SEPAR	ICATE COLLEC	TED

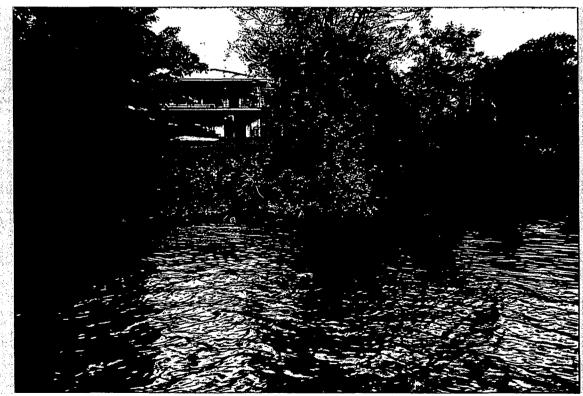
Sampler Initials: WAA (KRH

Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	507-5 507-5WAN	05/24/01	Sun & BREEZ
Water Depth	Core Type		
1.5 fr	Auber		
Penetration Depth	Length Recovered	GPS Coo	rdinates
0.5 fr	0.5 fr	Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
0-0.5	Brown SAND W/ Some Ro Shell Fragmen	et Genec	PHOTO 22
	Shell Fragman	ts, twigs	
		••	


Sampler Initials: WAA/ICRH

Sampling Program	Sample ID Number	Date/Time	Weather Conditions
	EGBL	05/24/01	SUN & BREEZ
Water Depth	Core Type		
Penetration Depth	Length Recovered	GPS Co	ordinates
		Northing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description		Comments
	RINSE SAM	ple of two Sta	aless
	Steel bowls	ple of two Stars, 2 5,25poors, 2	Auger,
		·	
			·
		`	• ,
	·	·	
	·		

Sampler Initials: WMA/KRH


1. Sediment sample BK1.

2. Sediment sample BK1 collected approx. 10 ft from south shore near base of clump of Maple trees.


3. Sediment sample BK2.

4. Sediment sample BK2 collected approximately 10 ft from south shore in near clearing at center of photo.

5. Sediment sample BK3.

6. Sediment location BK 3 collected near flagging located at left of photo.

7. Sediment sample BK4 located approximately 2 ft from north shore perpendicular to middle Poplar Tree.

8. Sediment sample SD2-10.

9. Sediment sample SD2-22.

10. Sediment sample SD3-25.

11. Sediment sample SD4-0.

12. Sediment sample SD7-5.

13. Sediment auger with polycarbonate tubing used to collect sediment samples (file photograph).

Appendix I

Worldwide Geosciences, Inc. Report

WORLDWIDE GEOSCIENCES, INC.

6100 Corporate Drive Suite 320 Houston, Texas 77036 Phone: 713 / 988-9401

FAX: 713 / 988-8784

April 29, 2002

Mr. Chawn O'Dell O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway Syracuse, NY 15057

Dear Mr. O'Dell:

Enclosed is our report on the soil sample submitted from your NIMO Fulton site. Please refer to the report summary for a condensed statement of our findings.

If there are any questions please do not hesitate to contact me. We appreciate being of service.

Sincerely yours,

Neil F. Petersen

WORLDWIDE GEOSCIENCES, INC.

6100 Corporate Drive Suite 320 Houston, Texas 77036 Phone: 713 / 988-9401 FAX: 713 / 988-8784

CHARACTERIZATION OF A SOIL SAMPLE NMPC - SOUTH FIRST STREET FULTON, NY SITE

PREPARED FOR O'BRIEN & GERE ENGINEERS, INC. APRIL, 2002

CHARACTERIZATION OF A SOIL SAMPLE NMPC – SOUTH FIRST STREET – FULTON, NY SITE

SUMMARY

A soil sample, identified as SB-22 (12-14'), was analyzed by high resolution capillary gas chromatography to determine the type or types of parent products associated with this sample and to provide any indications of parent product age. The signature characteristics of the SB-22 (12-14') sample are indicative of coal tar as the product type.

INTRODUCTION

Three soil samples from the NMPC Fulton site were received at the offices of Worldwide Geosciences, Inc. on February 25, 2002 via Federal Express delivery. Sample SB-20 (14-16') was contained in a single, eight ounce, glass jar. Each of the remaining two samples was contained in duplicate, four ounce, glass jars. All three samples were packed in an insulated cooler with ice used as a preservative. Sample identifications as per the attached chain of custody form and their assigned laboratory numbers are as follows:

Sample ID	Lab No.
SB-22 (12-14')	20301002
SB-22 (18-20')	20301003
SB-20(14-16')	20301004

Worldwide Geosciences was requested to hold both the SB-22 (18-20') and the SB-20 (14-16') soil samples on a contingency basis and these samples were not analyzed.

Thirty grams of the SB-22 (12-14') soil sample were extracted with 90 milliliters of methylene chloride solvent. The extraction was carried out by sonication. After separating the solvent and the soil, the solvent was reduced in volume to two milliliters to increase the concentration level of the extracted hydrocarbons in the solvent. The solvent was spiked with androstane as an internal standard. The concentration level of the internal standard relative to the weight of soil extracted is 3.4 parts per million. The spiked solvent containing the extracted hydrocarbons was then analyzed by high resolution, capillary gas chromatography using a 30 meter DB1 column and a flame ionization detector. A Perkin-Elmer Autosystem was utilized. The analysis procedure is a modification of ASTM method D-3328. The modifications allow for the analysis of hydrocarbons in solvent and improve the resolution of the lighter hydrocarbons. Two procedural methods are routinely used for product in solvent characterization. One provides better resolution of the gasoline range hydrocarbons but has a more limited carbon number range. This is Method 3 as defined in the

procedural description provided in Appendix II. The second method is routinely used to characterize product in solvents heavier than gasoline. The gasoline range hydrocarbons are compressed as a result of a more rapid increase in column temperature. This is Method 4 as described in Appendix II. The extract obtained on this sample was run under Method 3 conditions on March 1, 2002.

The only difference in operating conditions between Methods 1 and 2, which are used for actual product samples, and between Methods 3 and 4 is in the injection conditions. When products are run neat, or as received, a split injection method is used and if the hydrocarbons are in solvent phase a splitless injection system is used.

Display copies of the chromatograms, both labeled and unlabeled, are incorporated into the report as Appendix I. A full-scale display in which all the peaks have been kept onscale for accurate visualization of the relative proportions of the hydrocarbons present is provided. Also included in Appendix I is a table listing the abbreviations used to identify peaks on the chromatograms and their corresponding names.

RESULTS

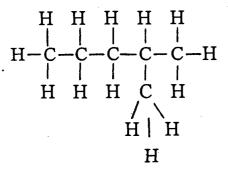
In discussing the compositional characteristics of the sample analyzed and analog signatures, the various peaks present in the chromatograms will be referred to in terms of the hydrocarbons they represent. As a general aid to visualizing the types of hydrocarbons involved, Figure 1 is provided to illustrate the structural characteristics of the main classes of hydrocarbons.

Figure 2 compares the chromatographic signature of the SB-22 (12-14') soil sample with the signature of a gasoline. The gasoline signature shown is that of American Petroleum Institute petroleum standard 6 (API PS6). As shown by the API PS6 signature, aromatics and branched chain or isoparaffins with nine carbon atoms or less are the predominant hydrocarbon types in gasoline. Both the overall hydrocarbon distribution of the SB-22 (12-14') soil sample, which extends significantly beyond the limits of gasoline, and the prominence of polynuclear aromatic peaks in the SB-22 (12-14') sample signature indicates the parent product associated with this sample is not gasoline.

The next higher group of standard petroleum products is collectively referred to as middle distillates. Kerosenes, diesels, and fuel oils are the most common middle distillate products. Standard (#2) grade fuel oil and diesel are similar products. Figure 3 provides a comparison of the chromatographic signatures of a kerosene product sample and a diesel/fuel oil product sample. The normal paraffins are the most prominent individual hydrocarbon type in middle distillate products. The normal paraffins are straight chain molecules in which all the carbon atoms are attached to one another in an end to end manner. The structure of normal hexane in Figure

FIGURE I TYPES OF HYDROCARBONS

SATURATES


CARBON ATOMS CONNECTED BY SINGLE BONDS

PARAFFINS OR ALKANES

NORMAL PARAFFINS OR ALKANES STRAIGHT CHAINS

NORMAL HEXANE (NC6)

ISO-PARAFFINS OR ALKANES
BRANCHED CHAIN PARAFFINS

2METHYL PENTANE (2MP)

NAPTHENES OR CYCLOPARAFFINS OR CYCLOALKANES RING OR CYCLIC STRUCTURE

CYCLOPENTANE (CCP)

CYCLOHEXANE (CH) METHYLCYCLOHEXANE (MCH)

C-H

FIGURE 1 (CONT.) TYPES OF HYDROCARBONS

UNSATURATES

HAVE ONE OR MORE CARBON DOUBLE BONDS

OLEFINS OR ALKENES

CAN BE STRAIGHT CHAIN, BRANCHED CHAIN, OR CYCLIC

NORMAL HEXENE

AROMATICS

BENZENE

NAPHTHALENE

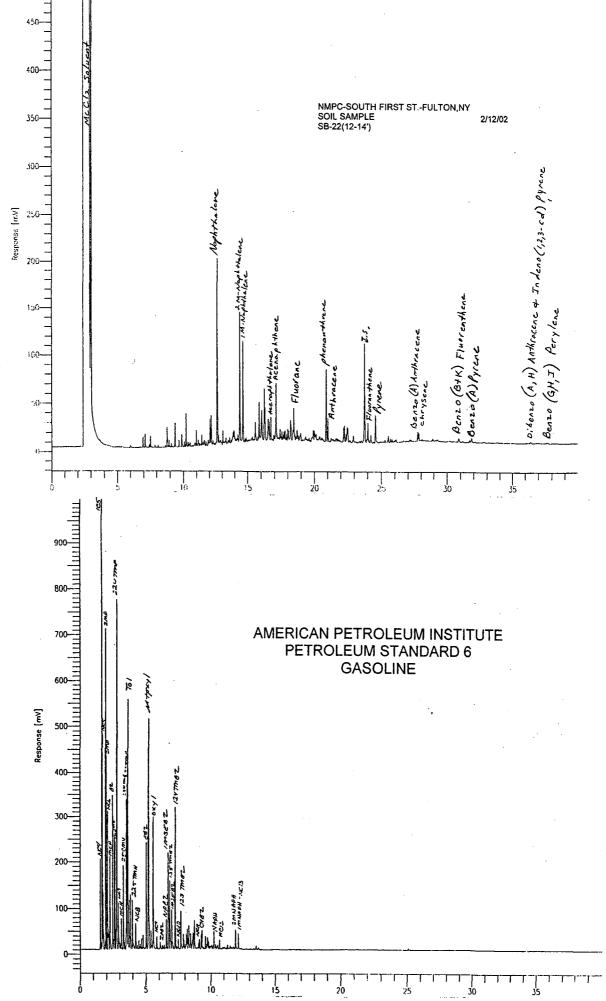


FIGURE 2: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-22 (12-14') SOIL SAMPLE AND API PS6 GASOLINE

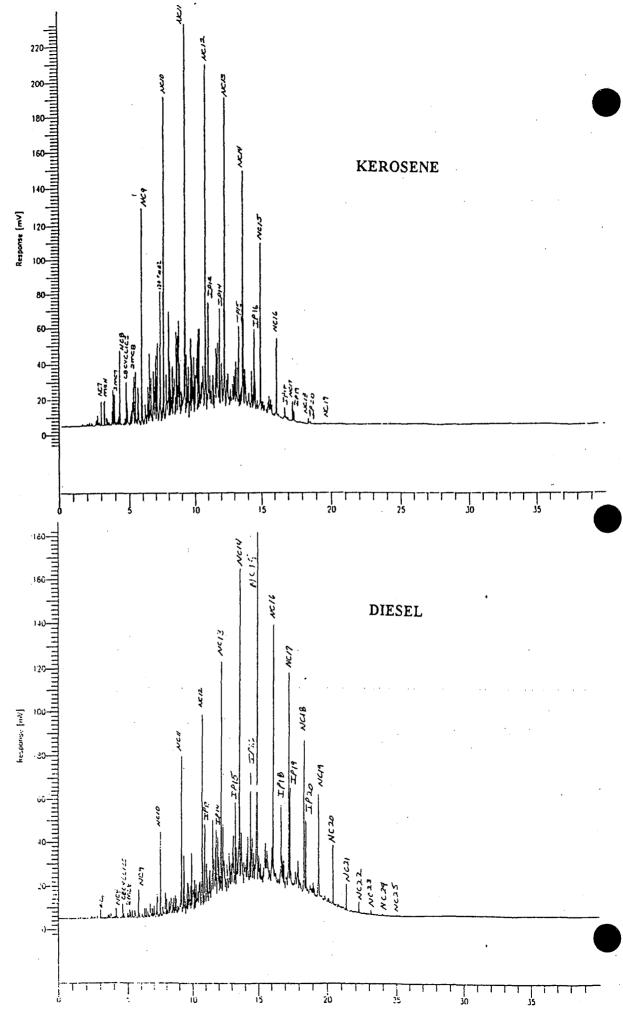


FIGURE 3: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF A KEROSENE


1 is an example of a normal paraffin. The normal paraffins are annotated on the chromatograms with a NP designation followed by the number of carbon atoms in the molecule. The overall carbon number range and normal paraffin distribution of diesels and fuel oils extends to higher carbon numbers than in kerosenes.

Diesels and fuel oils also can be differentiated from kerosene products on the basis of their isoprenoid proportions. The isoprenoids are the second most prominent individual hydrocarbon type in middle distillate products. The isoprenoids are a unique type of branched chain or isoparaffin in which a side methyl (CH3) group is attached to every fourth carbon atom of the main carbon chain. The structure of methylpentane in Figure 1 is an example of an isoparaffin with a single, side, methyl group. The isoprenoids are annotated on the chromatograms with an IP designation followed by the number of carbon atoms in the molecule. In kerosenes, the lower carbon number isoprenoids (IP13, IP14, IP15, and IP16) significantly exceed the higher carbon number isoprenoids (IP18, IP19, and IP20). In diesels and fuel oils, the higher carbon number isoprenoids are present at more comparable proportions to the lower carbon number isoprenoids, and in some instances may exceed the lower carbon number isoprenoids.

With increasing exposure time, the normal paraffins are preferentially reduced compared to the isoprenoid peaks and ultimately lost Figure 4 illustrates the effects of as a result of biodegradation. biodegradation on a kerosene product sample. In Figure 4, the chromatogram of a kerosene product sample is shown. The same signature is then shown artificially biodegraded by whiting out the normal paraffins. Figure 5 provides a similar comparison for a diesel/fuel oil product sample. As the vertically prominent normal paraffin peaks are lost, the underlying baseline rise or hump becomes an increasingly prominent feature of the chromatographic signature. The baseline rise or hump represents a complex mixture of individual hydrocarbons, which are not present in sufficient individual abundance to elute as discrete peaks. Biodegraded diesels and fuel oils can be distinguished from biodegraded kerosene products on the basis of the carbon number limits of baseline rise or hump and the proportions of the isoprenoids.

Figure 6 compares the chromatographic signature of the SB-22 (12-14') soil sample with the signature of a kerosene product sample. Figure 7 provides a similar comparison with a diesel/fuel oil product sample. The absence of a baseline rise, a sequence of normal paraffin peaks, and a sequence of isoprenoid peaks in the SB-22 (12-14') signature indicates this hydrocarbon assemblage is not related to either a kerosene or a diesel/fuel oil product, either fresh or biodegraded.

Heavy or residual grade, such as #6 grade, fuel oils have more extensive carbon number distributions than #2 grade fuel oil or diesel. Figure 8 compares the chromatographic signature of the SB-22 (12-14') soil sample with a residual grade fuel oil signature. Residual grade fuel oil signatures also are characterized by a baseline rise or hump underlying the

ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

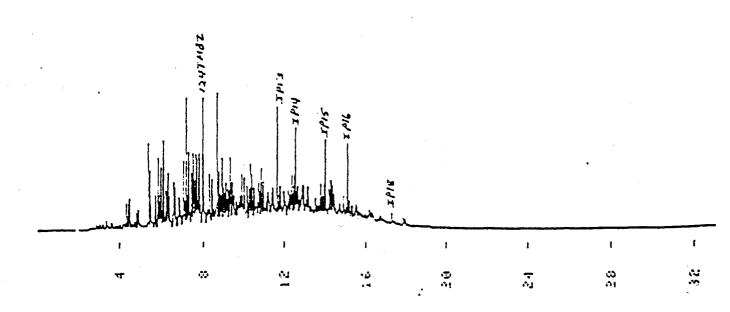


FIGURE 4: CHROMATOGRAPHIC SIGNATURE OF A KEROSENE PRODUCT AS ANALYZED AND ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

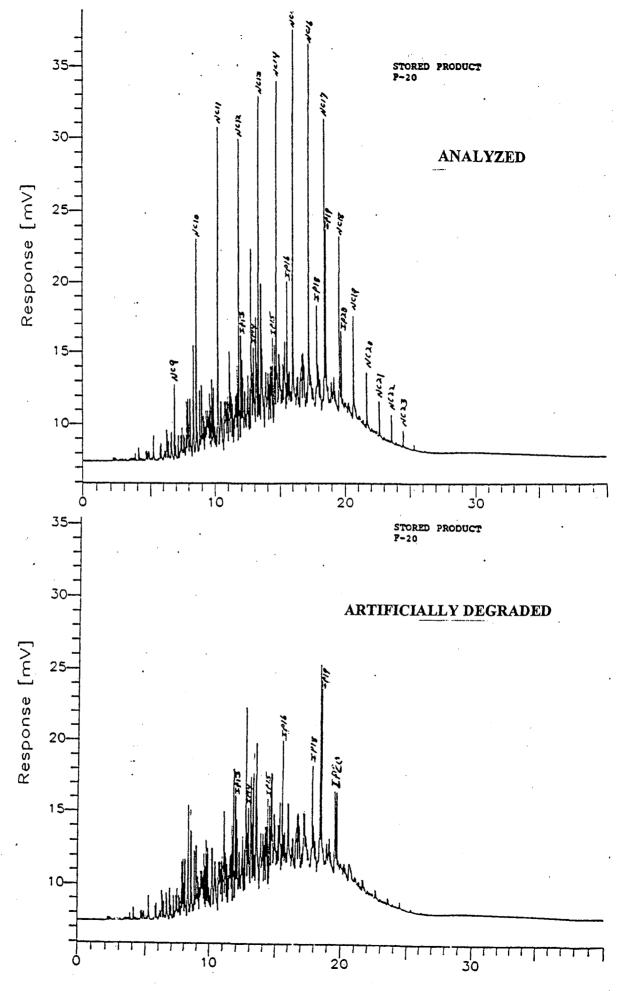


FIGURE 5: CHROMATOGRAPHIC SIGNATURE OF THE STORED DIESEL AS ANALYZED AND ARTIFICIALLY DEGRADED

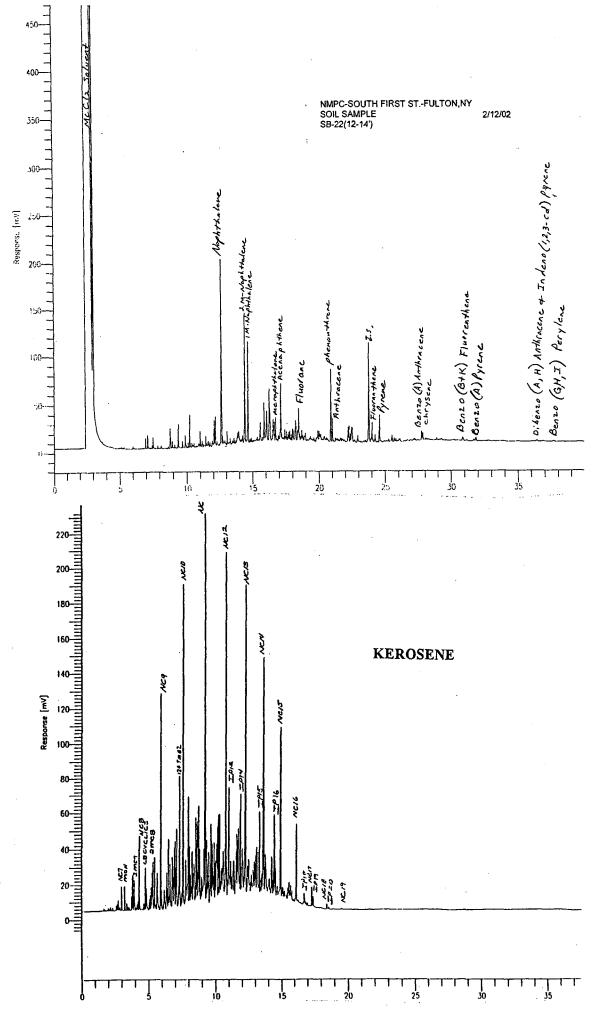


FIGURE 6: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-22 (12-14') SOIL SAMPLE AND A KEROSENE PRODUCT SAMPLE

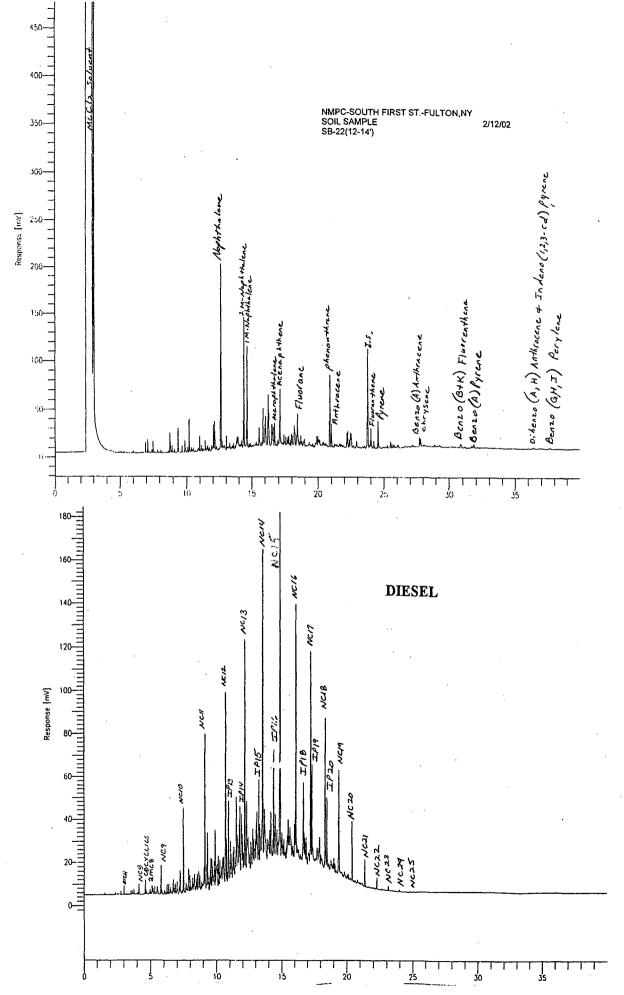


FIGURE 7: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-22 (12-14') SOIL SAMPLE AND A DIESEL/FUEL OIL PRODUCT SAMPLE

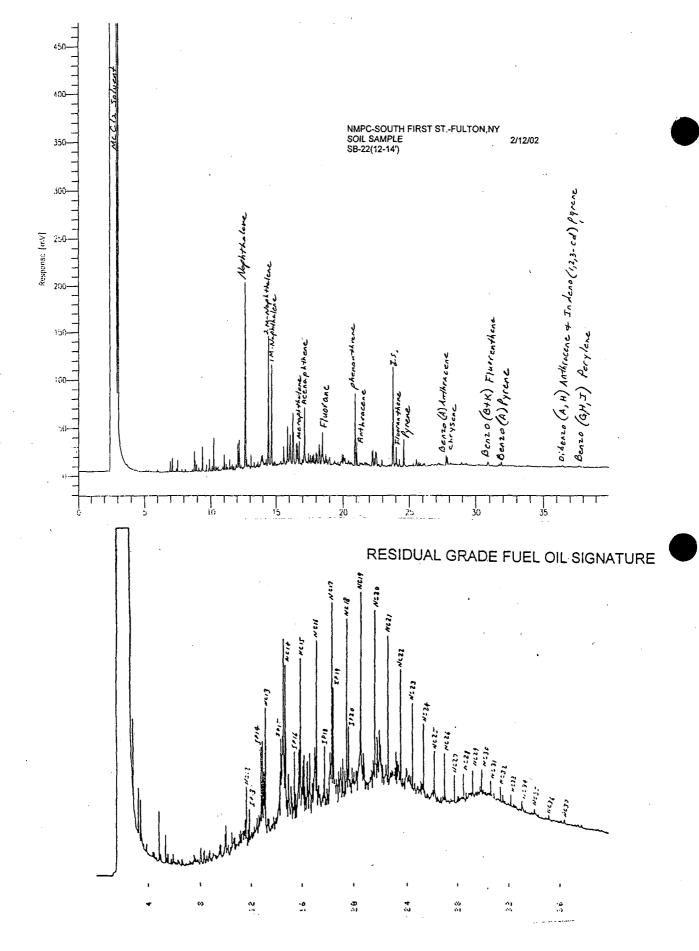


FIGURE 8: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-22 (12-14') SOIL SAMPLE AND A RESIDUAL GRADE FUEL OIL

resolved peaks, and a peak sequence that consists predominantly of normal paraffins and isoprenoids. The absence of a baseline rise, a sequence of normal paraffin peaks, and a sequence of isoprenoid peaks in the SB-22 (12-14') signature indicates this hydrocarbon assemblage is not related to a residual grade fuel oil product, either fresh or biodegraded.

The dominant signature characteristic of lubricant type products is a pronounced baseline rise or hump. The dominant carbon number range of the baseline rise or hump is between twenty and forty carbon atoms. Figure 9 compares the chromatographic signature of the SB-22 (12-14') soil sample with a motor oil, which is used as a lubricant type product example. The absence of a baseline rise or hump in the C20 to C40 range, and the predominance of resolved peaks in the less than C20 range of the SB-22 (14-16') sample signature indicates the hydrocarbon assemblage associated with this sample is not lubricant related.

Figure 10 compares the chromatographic signature of the SB-22 (14-16') soil sample with the signature of a coal tar sample. The SB-22 (14-16') and the coal tar signature show similar dominances of individual polynuclear aromatic peaks and do not show a prominent baseline rise or hump. Neither the SB-22 (14-16') sample signature not the coal tar signature show sequences of normal paraffin or isoprenoid peaks either.

The signature characteristics of the SB-22 (14-16') soil sample are indicative of coal tar as the parent product.

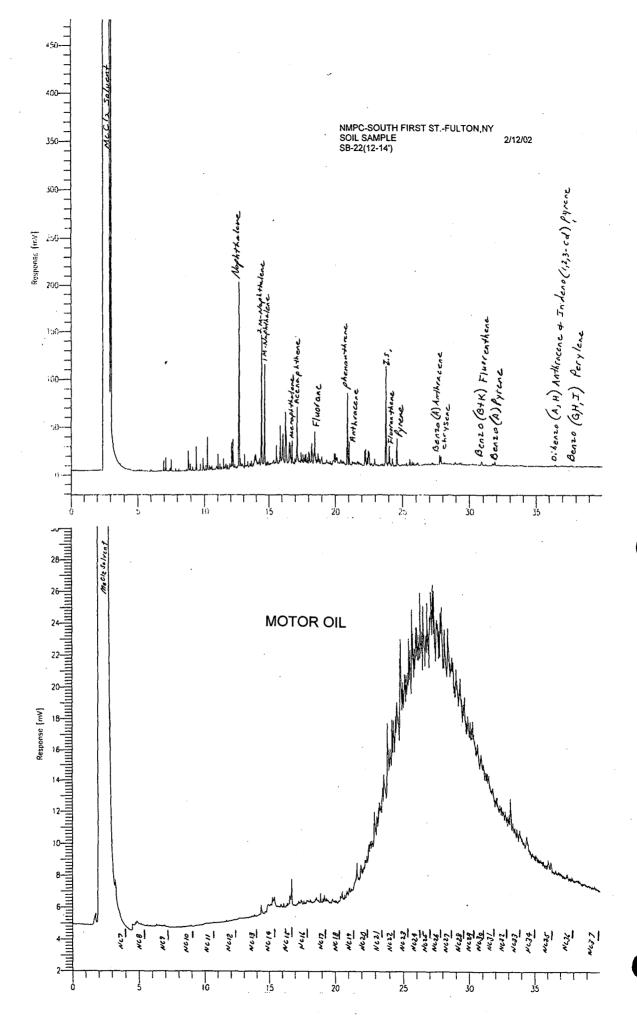


FIGURE 9: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-22 (12-14') SOIL SAMPLE AND A MOTOR OIL

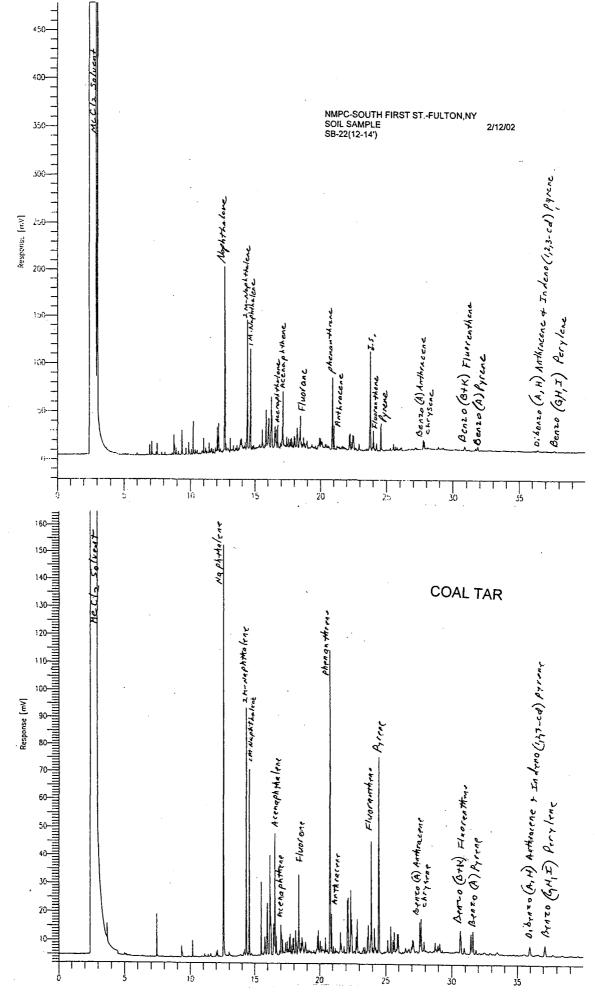


FIGURE 10: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-22 (12-14') SOIL SAMPLE AND A COAL TAR

O'BRIEN & GERE ENGINEERS, INC.

Office: Syracuse, NY
Address: 5000 Brittonfield Parkway
Phone: (315) 437-6100

Job No.	29192	
Sheet No.	1 of 1	

CHAIN OF CUSTODY

CLIENT:	Niagara Mohawk Power Corporation			COLLECTED BY: Chawn O'Dell			
LOCATION:	South First Street, Fulton, NY			(Signature) Churn UDdf			
Sample				Sample	Sample	No. of	
		Date	Time	Matrix (1)	Type (2)	Containers	Analysis Requested
SB-221	12-14Fb)	2/12/02	0850	Soil	composite	11	Fingerprint
SB-22(1	8-20FA)	2/12/12	0915	Soil	composite	1	HOLD
SB-201	14-16Fb)	2/11/02	1130	Soil	composite	1	HOLD - for use as reference
		, ,					
	:			-			
				· · · · · · · · · · · · · · · · · · ·			
		:					
					· ·		
			·				
			· · · · · · · · · · · · · · · · · · ·				

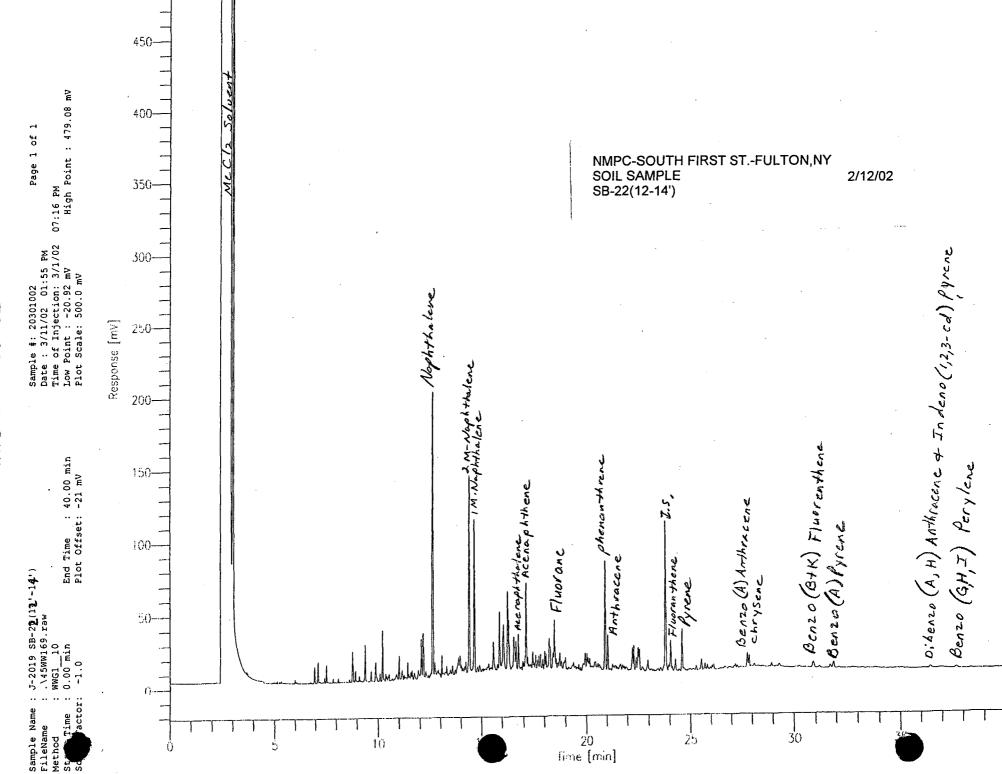
(1) Matrix = water, wastewater, air, sludge, sediment, etc.

(2) Type = grab, composite

Relinquished by:	Date	Time	Received by	Date	Time
of:		·	of:		
Use this space if shipped Via courier (e.g. Fed	Ex.)		*attached delivery/courier receipt to Chain of C	ustody	
Relinquished by: Chur Old	Date	Time	Courier Name: Federal Express	Date	Time
of: O'Brien & Gere Engineers, Inc.	2/22/02	1500	tracking #: <i>928370375900</i>	7/22/02	1500
Relinquished by: <u>Fed</u> &	Date	Time	Received by: Colore	2∕ Date	Time
of:	2/25/02	10:50	of: WWC5	2/25/02	1050

Notes:

APPENDIX I DISPLAY CHROMATOGRAMS


ABBREVIATIONS USED TO IDENTIFY PEAKS

ABBREVIATION	HYDROCARBON	
<u>C1</u>	METHANE	
C2	ETHANE	
C3	PROPANE	
IC4	ISOBUTANE	
NC4	NORMAL BUTANE	
ETH	ETHANOL	
22C3	2 2 DIMETHYL PROPANE	
IC5	ISOPENTANE	
NC5	NORMAL PENTANE	
MeCl2	METHYLENE CHLORIDE	
22DMB	2 2 DIMETHYL BUTANE	
23DMB	2 3 DIMETHYL BUTANE	
2MP	2 METHYLPENTANE	
3MP	3 METHYLPENTANE	
NC6	NORMAL HEXANE	
22DMP	2,2 DIMETHYLPENTANE	
MCP	METHYLCYCLOPENTANE	
24DMP	2,4 DIMETHYLPENTANE	
BZ	BENZENE	
CH	CYCLOHEXANE	
2MH	2 METHYLHEXANE	
23DMP	2,3 DIMETHYLPENTANE	
3MH	3 METHYLHEXANE	
T13DMCP	T13DIMETHYLCYCLOPENTANE	
C13DMCP	C13DIMETHYLCYCLOPENTANE	
224TMP	2,2,4 TRIMETHYLPENTANE (PRINCIPAL ISO-OCTA	(NIE)
NC7	NORMAL HEPTANE	MIL
234TMP	2,3,4 TRIMETHYLPENTANE (ISO-OCTANE)	
233TMP	2,3,3 TRIMETHYLPENTANE (ISO-OCTANE)	
MCH	METHYLCYCLOHEXANE	
TOL	TOLUENE	
23DMH 2MC7	2,3,DIMETHYLHEXANE 2METHYLHEPTANE	
	3METHYLHEPTANE	
3MC7		
224TMH	2,2,4 TRIMETHYLHEXANE	
223TMH	2,2,3 TRIMETHYLHEXANE NORMAL OCTANE	
NC8		
EBZ	ETHYL BENZENE	
M+P XYL	META AND PARA XYLENES	
2MC8	2METHYLOCTANE	
3MC8	3METHYLOCTANE	
O XYL	ORTHO XYLENE	
NC9	NORMAL NONANE	
IPBZ	ISOPROPYLBENZENE	
NPBZ	NORMAL PROPYL BENZENE	
1M3EBZ	1METHYL3ETHYLBENZENE	
135TMBZ	1,3,5 TRIMETHYLBENZENE	

ABBREVIATIONS USED TO IDENTIFY PEAKS (cont.)

ABBREVIATION	HYDROCARBON
1M2EBZ	1METHYL2ETHYLBENZENE
124TMBZ	1,2,4 TRIMETHYLBENZENE
NC10	NORMAL DECANE
123TMBZ	1,2,3 TRIMETHYLBENZENE (TERT BUTYL BENZENE
	CO-ELUTES AT THIS POSITION)
C4BZ	TETRAMETHYLBENZENE
NAPH	NAPHTHALENE
2M. NAPH	2METHYL NAPHTHALENE
1M. NAPH	1METHYL NAPHTHALENE

NC() Normal paraffin with number of carbon atoms in molecule shown IP() Isoprenoid iso-paraffin with number of C atoms in molecule shown

APPENDIX II OPERATING CONDITIONS

GC OPERATING CONDITIONS

Instrument: Perkin-Elmer Autosystem

Column: 30m*0.25mm ID*0.25u Methyl Silicon, Restek Rtx-1

(Cat# 10138, Fused Silica Column; Bonded,

Non-Polar, Silicone Based Polymer Liquid Phase)

Carrier Gas: Helium

Linear Velocity = 30 cm/sec Column Pressure 16.9 psig.

Injection Port: Split/Splitless Type

Temperature 300 deg C

Detector: Flame Ionization Type

Temperature 300 deg C

Range 1, Attn.4

	Method 1	Method 2	Method 3	Method 4
Injection Type	Split	Split	Splitless	Splitless
Acronym	5/s	10/s	5/s1	10/sl
Split Vent	On	On	Off	Off
Split Vent Time,min			0.5	0.5
Split Rate ml/min	100	100	100	100
Initial Temp, deg C	30	30	30	30
Initial Time, min	5	1	5	1
Ramp Rate, deg C/min	5	10	5	10
Final Temp, deg C	300	300	300	300
Final Time, min	0	15	0	15
Run Time, min	40	40	40	40

Sample Name : METHOD BLANK

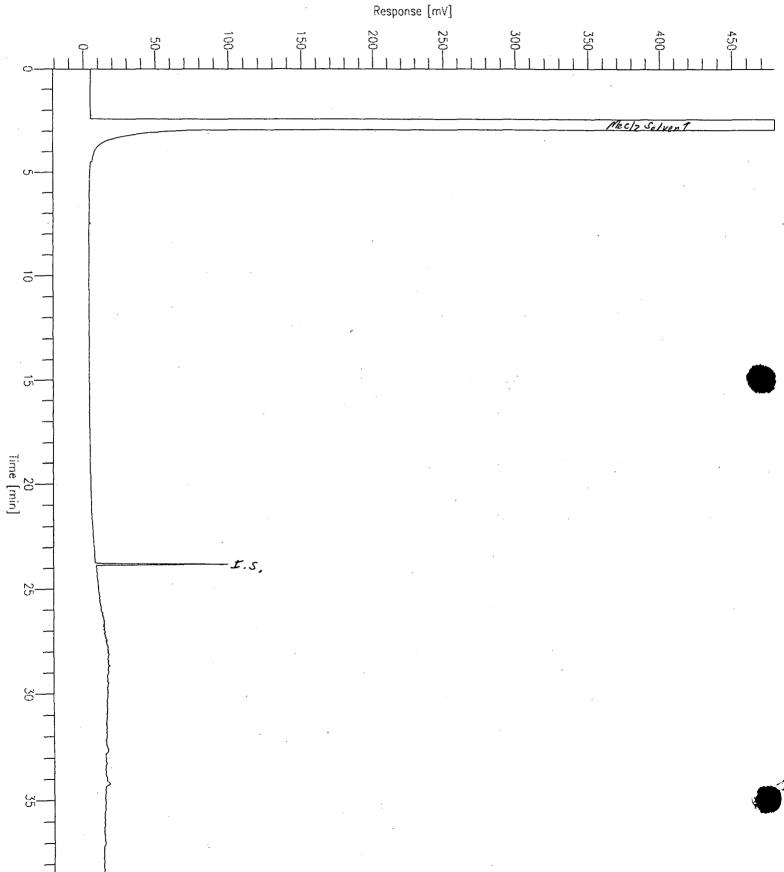
FileName : .\45WW167.raw

Method : WWG1_10
Start Time : 0.00 min
Scale Factor: -1.0

End Time : 40.00 min Plot Offset: -21 mV

Sample #: BLANK

Page 1 of 1


Date: 3/11/02 01:55 PM

Time of Injection: 3/1/02 05:31 PM Low Point: -21.07 mV High P

High Point: 478.93 mV

Plot Scale: 500.0 mV

WORLD WIDE GEOSCIENCES

Sample Name : D2 DIESEL

FileName Method : C:\TC4\45WW\45WW168.RAW

: WWG.MTH

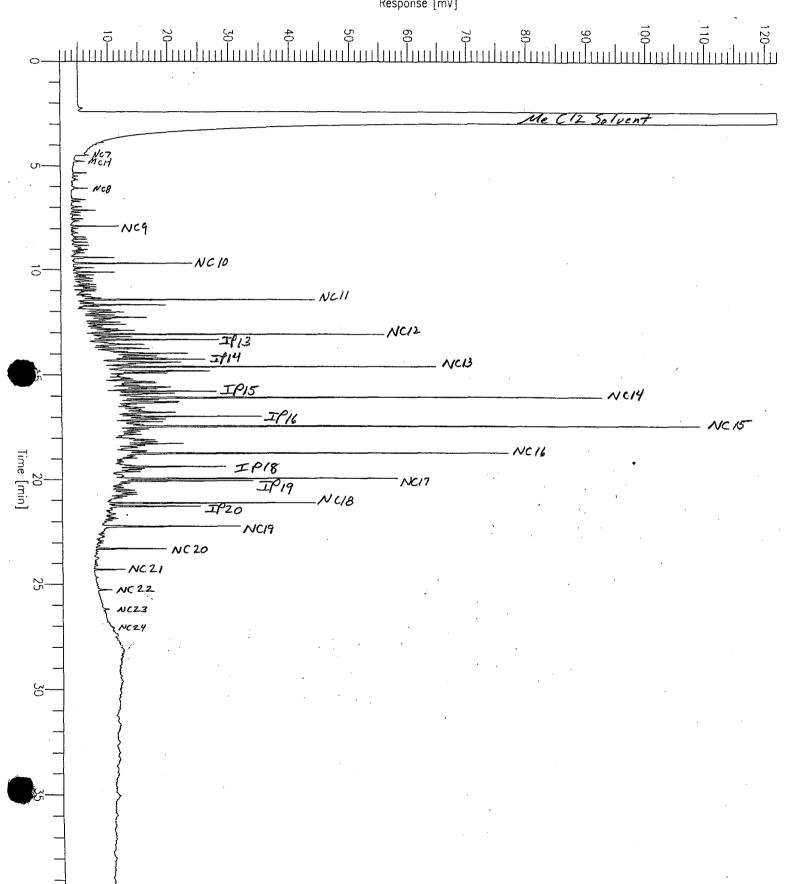
Time : 0.00 min Factor: 0.0

End Time : 40.00 min Plot Offset: 2 mV

Sample #: STANDARD .

Date: 3/11/02 02:10 PM

Page 1 of 1


Time of Injection: 3/1/02 06:24 PM

Low Point : 2.00 mV

High Point : 122.00 mV

Plot Scale: 120.0 mV

Response [mV]

WORLD WIDE GEOSCIENCES - I

Sample Name : D-2 DIESEL STANDARD

: C:\TC4\45WW\45WW149.RAW FileName

Method Start Time : 0.00 min

: WWG.MTH

Scale Factor: 0.0

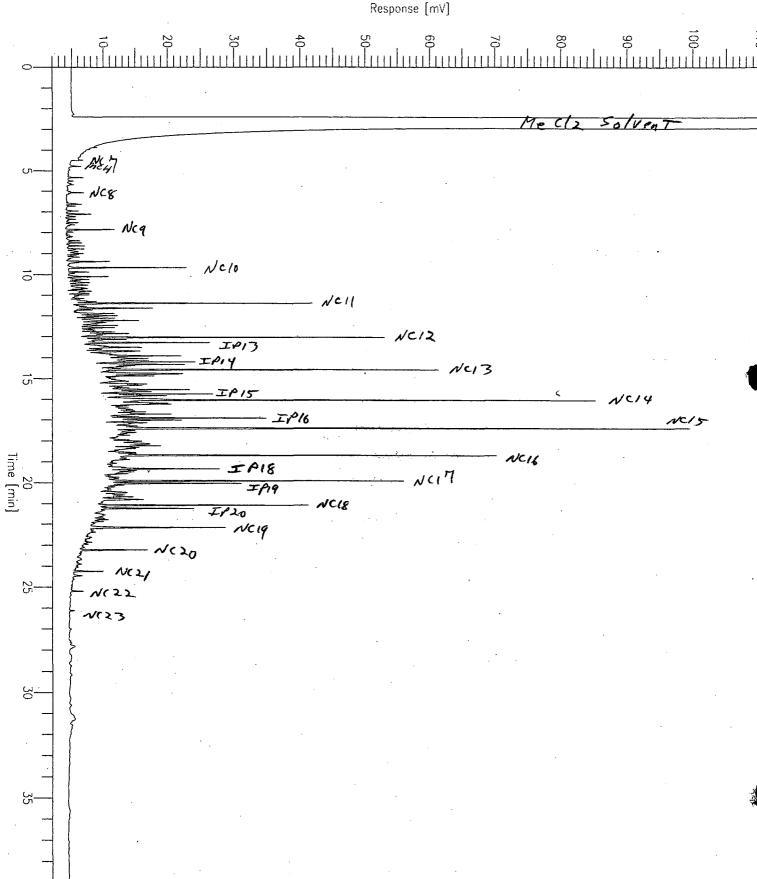
: 40.00 min End Time

Plot Offset: 2 mV

Sample #: STANDARD

Date: 3/4/02 09:49 AM

Time of Injection: 2/27/02 05:53 PM


Low Point : 2.00 mV

High Point : 112.00 mV

Page 1 of 1

Plot Scale: 110.0 mV

WORLD WIDE GEOSCIENCES

Sample Name : PAH STANDARD

: C:\TC4\45WW\45WW148.RAW

: WWG.MTH

FileName

Time : 0.00 min Factor: 0.0

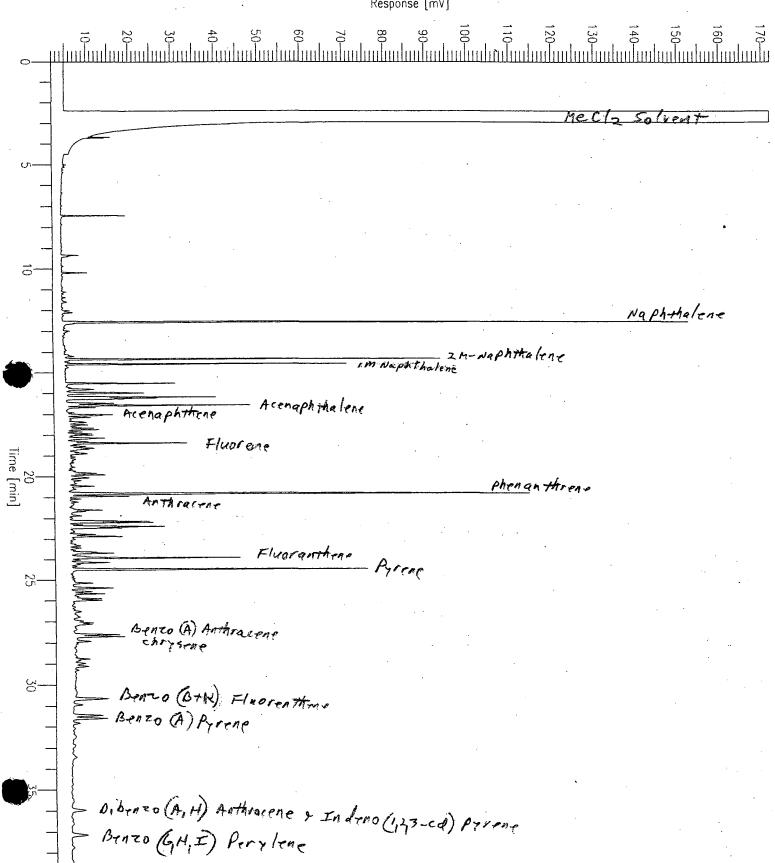
: 40.00 min End Time

Plot Offset: 2 mV

Sample #: STANDARD

Date: 3/4/02 09:49 AM

Time of Injection: 2/27/02 05:02 PM


Low Point : $2.00\ mV$

High Point : 172.00 mV

Page 1 of 1

Plot Scale: 170.0 mV

Response [mV]

