

February 23, 2011

Mr. Richard Dana Engineering Geologist 2 Division of Environmental Remediation N.Y.S. Department of Environmental Conservation 625 Broadway Albany, NY 12233-7014

> RE: Final Design Report, Former Fulton MGP Site, Fulton, New York, Site No. 738034 FILE: 1118/44581 #2

Dear Mr. Dana:

This letter transmits the Final Design Report for the Former Manufactured Gas Plant Site in Fulton, New York, which incorporates responses presented in the August 20, 2010 letter to the Department as approved by the Department's December 20, 2010 letter to O'Brien & Gere. The Final Design Report is being submitted on behalf of National Grid in accordance with Order on Consent Index No. A4-0473-0000 between National Grid and the New York State Department of Environmental Conservation and the New York State Department of Environmental Conservation and the State Department of Environmental Conservation approved Remedial Design Work Plan for this site.

Please contact Steven Stucker representing National Grid if you have any comments or questions.

Very truly yours, O'BRIEN & GERE ENGINEERS, INC.

Stephen W. Amagnust

Stephen W. Anagnost, P.E. Senior Managing Engineer

cc: Julia Kenney – New York State Department of Health Steven Stucker, C.P.G. – National Grid Deborah Wright, C.P.G. – O'Brien & Gere Al Farrell, P.E. – O'Brien & Gere

333 West Washington Street, Syracuse, NY 13221-4873 | p 315-956-6100 | f 315-463-7554 | www.obg.com

REPORT

Final Design Remedial Action Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

nationalgrid

Date February 2011

Final Design Report Remedial Action

Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

Prepared for:

nationalgrid

JAMES R. HECKATHORNE, P.E. O'BRIEN & GERE ENGINEERS, INC.

TABLE OF CONTENTS

1. Introduction	
1.1. General	1
1.2. Site History	1
1.3. Purpose and Objectives	2
1.4. Site Description	2
1.4.1. Geology	2
1.4.2. Hydrogeology	3
2. Existing Information	
2.1 Pre-design Investigation	4
2.2 Area 1	5
2.2.1 Structures	5
2.2.2 Surface Soil	5
2.2.3 Subsurface soil	5
2.3Area 2	5
2.3.1 Structures	5
2.3.2 Surface Soil	6
2.3.3 Subsurface soil	6
2.5 Groundwater	7
3. Remedial Actions	
3.1 Excavation AREAS	8
3.1.1 Area 1	8
3.1.2 Area 2	9
3.2. Excavation Limits	9
3.3 Excavation Considerations	
3.4. Management of Excavated Materials	
3.5. Backfill and Cover	
3.6. Groundwater Treatment	
3.7. Storm Sewer Rehabilitation	
4. Remedial Design Support Plans	
4.1. Stormwater Pollution Prevention Plan	
4.2. Construction Quality Assurance Project Plan	
References	

TABLES

- 1 Baseline Groundwater Quality Summary
- 2 Estimated Excavation Volumes

FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3 Alternative 2 Limited Excavation Cover and Sewer Rehabilitation
- 4 Pre-Design Investigation Locations
- 5 Design-Phase Investigation Locations

APPENDICES

- A. Pre-Design Boring Logs
- B. Groundwater Quality Laboratory Reports
- C. Final Design Drawings
- D. Technical Specifications
- E. Waste Management Plan (WMP)
- F. ORC Advanced[™] Product Data and Application Instructions
- G. Storm Water Pollution Prevention Plan (SWPPP)
- H. Construction Quality Assurance Project Plan (CQAPP)
- I. Draft Site Management Plan

1. INTRODUCTION

1.1. GENERAL

This document is the Final Design Report (FDR) for the former Fulton Manufactured Gas Plant (MGP) Site (Site No. 738034). This FDR has been prepared on behalf of National Grid in accordance with an Order on Consent between National Grid and the New York State Department of Environmental Conservation (NYSDEC) (Order on Consent Index No. A4-0473-0000 effective November 2003).

1.2. SITE HISTORY

The Former MGP Site occupies approximately 1.04 acres in a residential section of the City of Fulton, Oswego County, New York (Figure 1). The Site operated as an MGP site producing manufactured gas from 1903 to 1932. The manufacturing process involved heating coal and petroleum products to produce combustible gas. The gas was cooled, purified and then piped to the end users. The former MGP facility included a gas holder, gas tank, oil tank, oil house, coke shed, tar well, and concentrator house (Figure 2). In general, Area 2 of the Fulton Site contained the gas production facilities and Area 1 contained facilities for storing and distributing the gas. As the gas was cooled and purified prior to distribution, a dark oily liquid known as coal tar condensed and accumulated in various gas plant structures. Tar leaking from the holders and other structures impacted soil and groundwater in the vicinity of the former MGP.

A Record of Decision (ROD) was issued by the NYSDEC in March 2009. As presented in the ROD, the remediation goals for the Site are to prevent, eliminate or reduce to the extent practicable:

- Ingestion/direct contact with contaminated soil;
- Inhalation of contaminants volatilizing from contaminated soil;
- Eliminate through removal, treatment and/or containment source areas in soil;
- Migration of contaminants into the adjacent surface water;
- Eliminate through removal, treatment and/or containment, the impact of soil to groundwater;
- Potential infiltration of chemicals of concern (COCs) into the storm sewer adjacent to Area 2 of the Site.

To meet these goals, the ROD presents the NYSDEC-selected remedy that includes the following elements:

- Implementation of a Remedial Design program.
- Excavation and removal to their full depth of all former MGP related structures and foundations in Areas 1 and 2 that contain MGP related contaminated materials. Impacted soil in the immediate vicinity of the structures will be removed to the extent practicable.
- Excavation of approximately 2,822 cubic yards of soil grossly contaminated with MGP wastes. Materials will be excavated to depths of up to 7 feet below ground surface (bgs) or to the extent practicable due to dewatering limitations. The material to be excavated will include soil containing visible coal tar or separate phase materials. The actual depth of removal will be based on visual observations in the field with the concurrence of the NYSDEC. A visible demarcation barrier will be installed at the bottom of the excavation to mark the extent of soil removal prior to backfilling.
- Excavation areas will be backfilled with clean soil from off-site locations that meet NYSDEC's backfill criteria for intended site use. Excavated soil may be used to backfill the lower portions of the excavation if they meet NYSDEC criteria.
- Installation and maintenance of a soil cover over Areas 1 and 2. The soil cover will consist of a minimum of 2 feet of clean material meeting NYSDEC's backfill criteria. National Grid may propose to use other cover materials such as asphalt or other paving material to meet the next intended use of the property subject to NYSDEC approval. The type and nature of soil cover to be installed will be determined pursuant to 6 NYCRR Part 375.

- Groundwater treatment through the introduction of oxygen (or other nutrients, if necessary) in Areas 1 and 2 to enhance aerobic biodegradation of contaminants in groundwater *in-situ*.
- Rehabilitation of the storm sewer adjacent to and west of Area 2 to reduce groundwater infiltration into the storm sewer and prevent off-site migration of impacted groundwater. Measures to reduce migration of groundwater through soil bedding under the sewer line will be implemented.
- Imposition of institutional controls in the form of an environmental easement.
- Development of a Site Management Plan (SMP).

The remainder of this section outlines the purpose and objectives of this FDR, and presents a Site description.

1.3. PURPOSE AND OBJECTIVES

This FDR performs the following functions:

- Presents a summary of the site investigations performed, including pre-design and design-phase investigations, to support the proposed Remedial Design. Appendix A provides pre-design boring logs and Appendix B provides baseline groundwater quality data. The baseline groundwater data is summarized in Table 1.
- Presents the basis for establishing the volume of material to be excavated.
- Describes the approach to excavation including anticipated methods for excavation support and on-site staging and testing. Requirements for using excavated material as backfill in the lower portions of the excavation are outlined.
- Presents the approach to assessing the need for enhanced *in situ* aerobic biodegradation of residual contaminants in groundwater.
- Describes the soil cover to be installed over Areas 1 and 2 following excavation and backfill.
- Presents the approach to rehabilitating the sewer and reducing migration of groundwater through the bedding.

Also, a Construction Quality Assurance Project Plan (CQAPP) outlining quality assurance procedures and protocols to be implemented during construction, and draft Site Management Plan (SMP) for post-construction activities are provided as appendices to the FDR.

1.4. SITE DESCRIPTION

The Site is bordered on the west by the Oswego River which, at this point, is also a branch of the New York State Barge Canal. South First Street passes through the Site dividing it into two parcels referred to as Area 1 and Area 2 lying to the east and west, respectively, of South First Street (Figure 2). Areas 1 and 2 are currently vacant and both are owned by National Grid.

1.4.1. Geology

Geology at the Site consists, from the surface down, of four primary geologic units:

- Fill
- Sand and silt
- Sand and gravel
- Till

Fill materials consist of sand, gravel and various debris such as brick fragments, asphalt pieces, cinders, glass and other material. In Area 1, fill materials range in thickness from 0.5 ft in the south central end to 8 ft in the northwest portion of Area 1. In Area 2, fill thickness ranges from 1.5 ft on the northwest side to 15 ft on the southwest Site boundary near the Oswego River. In general, fill thickness increases towards the river.

Review of historic maps and aerial photographs indicates that the Oswego Canal was filled sometime between 1911 and 1938. Evidence of the former Oswego Canal (e.g., canal bottom and/or walls) was not observed during drilling performed as part of the Remedial Investigation (O'Brien & Gere, 2009a). Some historic maps indicate that the canal structure ended just north of the Site, such that the segment of the canal adjacent to the Site was not contained within structural walls. It is speculated that the canal channel was filled with several types of material, some similar to native soils. Thus, there is not a distinct subsurface material indicative of canal fill. Dredge spoils were reportedly placed on Yelverton Island (located between the canal and the Oswego River) and these materials may have also been used for fill in the canal.

The unit underlying the fill is a series of discontinuous layers of silt, silt and fine sand, sand, clay, and gravel. The thickness of this unit and the individual layers varies across the Site. However, as the unit approaches the river, the composition becomes primarily silt with obvious clay lenses. This unit is the result of historical depositional environments, such as recent processes of the Oswego River or historic streambeds feeding into the river. As noted above, the deposits near the river may actually be local, native material that was placed in the former Oswego canal.

A glacial till unit, consisting primarily of sand with varying amounts of silt and gravel, overlies bedrock at the Site. The density of the till varies from loose at shallow depths to extremely dense with greater depth. The top of the till undulates and was observed from 5.3 ft on the northeast side of Area 1 to 26.2 ft near the river. Similarly, the top of the dense till is encountered at depths ranging from 12 ft on Area 1 and to 28.5 ft below land surface (bls) near the river. The top of the dense till layer slopes down toward the southwest and the river. The unit was fully penetrated in the center of Area 2 where bedrock was encountered at 36.5 ft below grade. At this location the dense till is 17.5 ft thick.

1.4.2. Hydrogeology

Shallow groundwater at the Site occurs between 1.5 ft below grade on Area 1 to 8 ft below grade to the southwest of Area 2. The resulting groundwater flow direction is to the south and west, ultimately discharging into the Oswego River. The local sand deposits have been designated as a Principal Aquifer by the NYSDEC. The aquifer is used by the City of Fulton for a public water supply but the nearest public supply wells are located approximately one mile upgradient (south) of the Site, outside the area subject to impact from the Site. There are no private water supply wells within that distance of the Site.

2. EXISTING INFORMATION

Evidence of past MGP practices was observed during field investigations performed at the Site between 1998 and 2005. Specifically, MGP-impacted material characterized by observations of odor, sheen, or blebs is noted in boring logs across the Site. Grossly impacted material, characterized by observations of non-aqueous phase liquid (NAPL) and NAPL-saturated soil, or a combination of heavy sheens and staining, was also noted in some borings at the Site. MGP-related constituents of concern (COCs) (benzene, toluene, ethylbenzene and xylene (BTEX), semivolatile organic compounds (SVOCs) summarized as total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and total PAHs, and the inorganic compound cyanide) were detected in samples from various media at the Site.

The Feasibility Study Report (O'Brien & Gere, 2009b) presents a summary of the nature and extent of MGPrelated material observed at the Site as summarized in this section. A detailed description of the nature and extent of contamination is presented in the Remedial Investigation (RI) Report (O'Brien & Gere, 2009a).

The remedy as discussed in the ROD and summarized in Section 1 includes removal of MGP-related structures and foundations determined to contain grossly impacted MGP related materials to their full depth and grossly impacted soil in the immediate vicinity of these structures to the extent practicable, excavation of additional grossly impacted soils to depths of up to 7 ft, excavation of selected surface soils containing constituents of concern above criteria, rehabilitation of the sewer line that crosses the western side of Area 2, and enhancement of the natural attenuation process for groundwater, if appropriate. Grossly impacted soils as identified in the ROD are those soils containing visible coal tar or separate-phase material. A graphic representation of the selected remedy is included as Figure 3.

2.1 PRE-DESIGN INVESTIGATION

A pre-design investigation was completed during October and November 2009 to further assess areas to be addressed by the remedy. The scope of the pre-design investigation was described in the Remedial Design Work Plan (RDWP) dated August 2009 (O'Brien & Gere, 2009c), which was approved by NYSDEC in a letter dated August 18, 2009. The pre-design efforts included:

- A ground-penetrating radar (GPR) survey completed to identify subsurface structures and utility lines present at the Site.
- Eleven borings (SB-49 to SB-59) completed on Areas 1 and 2 to evaluate potential impacts to soil and assess whether concrete slabs were present in potential structures identified by the GPR survey.
- Completion of a property boundary and topographic survey including locations of utilities and structures identified by the GPR and soil borings completed as part of the pre-design investigation.

The RDWP also described that pre-design investigation of the shallow soils would be conducted on the neighboring property to the northwest of Area 2 using shallow borings. This work was completed on September 13, 2010 after the owner granted access to the property, and is described separately in Section 2.4.

The GPR, soil borings, and survey activities completed in Areas 1 and 2 during 2009 were completed in accordance with the procedures outlined in the RDWP. Logs of the completed borings are included in Appendix A. Information obtained during the pre-design investigation was submitted to NYSDEC via email on January 27, 2010. The results of the pre-design investigation were discussed with NYSDEC in a conference call on February 4, 2010.

The following presents a summary of the media of concern at each of the two areas of the Site that have been identified in the ROD to be addressed during the remedial program. This summary is based on the information generated during the Remedial Investigation (O'Brien & Gere, 2009a) and the pre-design investigation.

2.2 AREA 1

2.2.1 Structures

There are several former MGP structures located on Area 1, including two circular holders and two sets of tank cradles that formerly supported horizontal above-ground storage tanks (ASTs). As shown on Figure 4, the GPR survey identified two angular anomalies that had not been identified previously. The angular shape and GPR signatures of these anomalies suggest that a solid surface such as a foundation slab might be present at a shallow depth.

To investigate whether the possible slab structures identified by the GPR survey are present and, if so, whether the structures have grossly impacted soils associated with them, borings SB-51, SB-52, SB-56, and SB-59 (Figure 4) were completed within the two angular slabs thought to be present on Area 1. No solid slab structure was encountered in any of these borings, so the GPR signature in these areas may represent more dense soil underlying the former AST cradles located in this area. Also, no visually impacted soil was identified in these borings.

2.2.2 Surface Soil

As described in the ROD, two surface soil samples located in Area 1, SS-01 and SS-02, were identified during the RI as containing total PAH and/or total cPAH (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)-fluoranthene, chrysene, dibenzo[a,h]anthracene, and ideno(1,2,3-cd)pyrene) at concentrations that were considered elevated in comparison to background concentrations. Soil in the vicinity of these samples will be addressed as part of the remedy (Figure 4).

In addition to PAHs, cyanide was detected in the 0 to 2-inch and 0 to 24-inch intervals of surface soil sample SS-02 at concentrations ranging from 11 mg/kg to 810 mg/kg. Further sampling in the vicinity of SS-02 indicated that the extent of cyanide is limited to the immediate vicinity of SS-02; however, concentrations of cyanide at SS-09 were found to be 60 mg/kg. These concentrations are above the Restricted Residential Soil Cleanup Objective of 27 mg/kg. As outlined in the ROD, the concentrations of cyanide at SS-02 and SS-09 from the surface to 24 inches bgs will be addressed during the remedy.

2.2.3 Subsurface soil

Both analytical and visual evidence of grossly impacted material was observed in subsurface soil at two locations within Area 1. One area is located around SB-40 where stained soil was observed in the upper 4 ft. The second area is located in the vicinity of the northeastern concrete gas holder pad as shown on Figure 4. Subsurface soil from the adjacent properties bordering Area 1 did not exhibit MGP-impacted material. However, because of the proximity of this area to the property boundary, additional borings were completed as part of the pre-design investigation.

Two borings were originally proposed as part of the pre-design investigation to evaluate the extent of grossly impacted soil to the northwest of the large holder pad on Area 1. Boring SB-50 encountered a cobble with a thin (1/4") lens of NAPL at 8 ft below grade and some visible, pin-sized blebs of NAPL with coal tar odors between 8 and 9.7 ft. This boring is located approximately 6.5 ft from the property boundary and 20 ft from SB-15, where sheens, stained soils and odors were noted from 6 ft to approximately 8 ft below grade. The second boring, SB-49, did not encounter any impacted soil and the material beginning at 2.2 ft was dense native silt with clay.

An additional boring, SB-57, was completed on Area 1 during the pre-design investigation to further evaluate the potential southwestern extent of grossly impacted soil identified for removal. This boring is located approximately 12 ft south of SB-50 and did not encounter impacted soil. The area identified for excavation as shown on Figure 4 was developed based on information generated during the RI and augmented by the information obtained from the pre-design borings.

2.3AREA 2

2.3.1 Structures

The main production area of the former MGP was located on Area 2. The foundations associated with these former structures are outlined on Figure 4. In addition, a building that most recently served as a church was

located on the southeast side of Area 2. This structure was demolished in 1992. However, the slab for this structure is still present and visible at the surface at the location shown in Figure 2.

The GPR survey identified portions of the foundation walls of the known former structures. However, the GPR signatures of the materials used for construction of the foundations were similar to that of the surrounding fill material such that the presence or absence of the individual structures could not be clearly confirmed in many instances. The survey did identify a deeper (approximately 10 ft) filled depression in the vicinity of the former tar well in the center of Area 2. In addition, the GPR survey identified one angular structure that was not previously known to have been present based on review of historical Sanborn maps. As shown on Figure 4, this structure is located on the west central portion of Area 2. As with the Area 1 structures, the GPR signature for this structure, as well as a small square area of a previously identified structure on the northwest corner of the area, suggested that a solid surface such as a foundation slab was present at a shallow depth.

Borings SB-53, SB-54, SB-55, and SB-58 were added to investigate the structures identified by the GPR survey as shown on Figure 4. The findings are as follows:

- SB-53 was completed on the western side of Area 2 near the exposed foundation wall where the GPR suggested a slab was present. This boring encountered crushed concrete and brick fill material with no visible impacts associated with MGP waste. A slab was not encountered.
- SB-54, completed in the area of the slab structure in the center of Area 2, encountered a 6-inch layer of concrete just below the asphalt. Concrete was also observed in boring SB-16 completed during the RI on the western end of the GPR anomaly, suggesting that this is a foundation with a slab. No visually impacted soil was encountered in SB-54 or SB-16.
- Borings SB-55 and SB-58 were completed in the vicinity of the suspected tar well based on the identification of a deeper, filled depression in the area during the GPR survey. NAPL-containing soil and associated sheens were encountered, however, no discrete pocket of NAPL or tar was observed.

2.3.2. Surface Soil

SS-4 is located adjacent to the pavement in Area 2 on the property owned by National Grid (Figure 4). This surface soil was found to contain cPAHs in excess of the background concentrations in the area and will be addressed during the remedy.

2.3.3 Subsurface soil

In Area 2, analytical and visual evidence of grossly MGP-impacted material was reported in subsurface soil in several areas. The observations generally begin 4 ft below grade and, in the southern corner of the area, extend to depths of up to at least 28 ft below grade. The widest zone of observed grossly MGP-impacted material was between 4 ft and 12 ft below grade. The MGP-impacted material extends off the National Grid property and onto the Canal Corporation property to the south, but was not observed adjacent to the Oswego River.

Impacted material was reported in subsurface soil in two additional off-site areas to the west of Area 2. One area, located west of the former Oswego Canal (vicinity of SB-43 and SB-44), was considered to be from cinders and other fill material known to be present and therefore, did not require remedial action. The second location was in the vicinity of the sewer line that runs along the southwestern side of Area 2 (vicinity of SB-14 and PZ-06). Although the materials observed were potentially MGP-related, the impacted materials may be associated with dredge spoils or canal sediments placed on, or relocated to, this area rather than migration of NAPL from Area 2, and therefore, were not identified as requiring remediation by the ROD.

2.4 NEIGHBORING PROPERTY NORTHWEST OF AREA 2

Pre-design field investigations were conducted on the neighboring property northwest of Area 2 in accordance with the RDWP (O'Brien & Gere, 2009c) on September 13, 2010, as documented in the September 27, 2010 letter to the NYSDEC. The fieldwork included six borings (SB-60 to SB-65) completed to a depth of 20 ft below grade at locations established in the field (Figure 5).

The subsurface geology encountered was consistent with that previously observed on the Fulton Former MGP Site and consists of fill, sand and silt, and sand and gravel. On average the bottom of the fill material was found between 1.5 and 4 feet below ground surface (bgs). No evidence of MGP impacts in the form of odors, sheen, staining, or NAPL was encountered in any of the borings completed on the adjacent property. Therefore, no remedial activities are necessary on the neighboring property.

2.5 GROUNDWATER

Concentrations of BTEX compounds, PAHs, and cyanide above the groundwater screening criteria (NYSDEC TOGS) are limited to the shallow groundwater beneath Area 2. Constituent concentrations in off-site wells, including those between Area 2 and the Oswego River, are below the screening criteria. Groundwater with constituent concentrations above the criteria is likely captured via seepage to the storm sewer located directly southwest of Area 2. Video inspection directly upstream and downstream of the Site did not indicate any visible Site-related impacts. Samples from storm sewer manholes located 400 ft upstream and 600 ft downstream of the Site indicated the presence of low concentrations of benzene, ethylbenzene, and total xylenes in the downstream storm water sample. It is unclear whether this is the result of contribution from the property or influent from storm water discharges from nearby roadways or other potential sources.

Groundwater downgradient of Area 1 (MW-02) is not impacted. Although a slight sheen was noted on the saturated soil samples in the area of SB-15 and the recent boring, SB-50 (Figure 4), the lack of constituents of concern in MW-02 suggests that soil impacts are localized and not mobile.

In accordance with the RDWP (O'Brien & Gere, 2009c), groundwater samples were collected from monitoring wells MW-2, and MW-3, MW-4, MW-5, MW-7, MW-11 and MW-12S which have been selected to represent conditions within and downgradient of Area 2, as part of the pre-design investigation to assess the potential for use of Oxygen Release Compound (ORC) or other additives, and to establish a baseline for comparing future groundwater data following the remedial action. The groundwater samples to establish the baseline were collected during May 2010 using low-flow sampling methods and analyzed for VOCs, SVOCs, and natural attenuation parameters including methane, iron and manganese (total and dissolved), nitrate, nitrite, sulfate, 5-day biological oxygen demand (BOD5), chemical oxygen demand (COD), dissolved organic carbon, and alkalinity (as CaCO₃). Sampling protocols and analytical methods were presented in the Sampling and Analysis Plan (SAP) included as Appendix A to the RDWP (O'Brien & Gere, 2009c). The results of the analyses are summarized in Table 1 and the laboratory reports provided as Appendix B.

3. REMEDIAL ACTIONS

This section describes the elements of the RD developed to meet the NYSDEC selected remedy described in the ROD. Design drawings are provided in Appendix C that graphically present the remedial action areas and components. These drawings identify the remedial construction work based on Alternative 2 of the ROD and the findings of the RI, and pre-design and design-phase investigations. Technical specifications to implement the RD that describe the conditions under which the work is to be constructed, the materials and equipment to be incorporated into the work, and the standards of acceptance for components of construction are included as Appendix D.

The ROD indicated that 2,822 cubic yards of grossly impacted material was anticipated to be removed during implementation of the remedy. Based on the defined areas presented on Design Drawings G-5 and G-6, it is estimated that there are approximately 7,110 cubic yards of grossly impacted soil and foundation material. This volume of material is generally consistent with the information presented in the ROD. The sources of the quantities are listed in the following table:

	Material Removed	Estimated Volume (cy)
	Tank Slab (2 ft thick)	150
AREA 1	Grossly Impacted Soil Areas (to limits as discussed)	550
	2 ft Soil Removal (required for soil cover)	1,350
AREA 2	Structures and Surrounding Grossly Impacted Soil (to 7 ft)	4,500
AREA Z	2 ft Soil Removal (required for soil cover)	560
	TOTAL	7,110

TABLE 2: ESTIMATED EXCAVATION VOLUMES

The following sections describe the basis for execution of the physical elements of the remedy.

3.1 EXCAVATION AREAS

3.1.1 Area 1

Only one MGP-related structure is designated for removal on Area 1. This structure is the concrete pad associated with the former above-grade holder. Based on information obtained during the RI, grossly impacted soil is present under the northwest side of this structure. Based on the GPR survey completed as part of the predesign investigation, structures relating to the smaller gas holder and the horizontal ASTs are not present. The holder structure is identified on Design Drawing G-6.

In addition to the structure, several areas of localized grossly impacted subsurface soil requiring removal in accordance with the ROD are also shown on the drawings. One of these areas is identified on the northwest side of the holder on Area 1. The pre-design investigation indicated that a lens of impacted soil was present at a depth of approximately 8 ft in SB-50. Although this is a thin lens and at a depth greater than the 7 ft identified in the ROD, it likely represents the endpoint of a lens that may originate in the main area of grossly impacted soil identified near the former holder pad. Therefore, the extent of excavation in this area has been expanded to include this boring location. A second area to be excavated is located southwest of the holder near the area where the former horizontal ASTs were located. Impacted soils are present to a depth of approximately 4 ft in this area.

Two smaller areas containing COCs above criteria in surface soil were also identified for removal in the ROD. As shown on Design Drawing G-6, one area is located northeast of the former holder pad. This soil contained cPAHs at concentrations that would require removal to a depth of 1 ft. However, since the cPAHs are at levels consistent with or lower than those to remain in subsurface soil, this area will be managed with the removal of the surficial 2 ft of soil that is needed prior to placement of the soil cover as discussed in Sections 3.4 and 3.5. This soil may be used as backfill into the deeper portions of the excavations as space allows.

The second area is located in the southwest corner of Area 1 and contains cyanide in excess of the criteria to a depth of 2 ft. Specifically, the cyanide concentration in the 0 to 2 ft depth at the SS-02 location is 810 mg/kg and the concentration of cyanide in the 0 to 2 ft depth at SS-02 is 60 mg/kg. These concentrations are higher than the Restricted Residential Soil Cleanup Objective of 27 mg/kg. Horizontal limits for the area containing cyanide that will be removed have been established by drawing a boundary approximately 5 ft from the two surface soil samples found to contain elevated concentrations. Soil from this area will be excavated to a depth of 2 ft and the excavated material will be disposed off-site.

3.1.2 Area 2

As shown on Design Drawing G-5 (Appendix C), there are several structures in Area 2 with some extending to or just beyond the property line onto land owned by the City of Fulton. Most of the structures were previously identified and presented within the area of excavation in the ROD. However, based on the pre-design investigation, the excavation area in Area 2 has been modified from that presented in the ROD as follows:

- One additional foundation, located on the western corner of the proposed excavation area, was discovered by the GPR survey.
- The suspected location of the former tar well area in the center of the Site was added to the excavation area. Although an intact structure was not observed, this area was included based on the observations of grossly impacted soil.
- As shown on Drawing G-5, the foundation located on the northwest end of Area 2 near the adjoining residence is not included in the area to be excavated as no impacted soil was found to be present and the westernmost wall of the foundation is within 4 ft of the residential structure. Since the soil in this area does not appear to be impacted, removal is not warranted.
- A tall power pole owned by National Grid is located on the northwest corner of Area 2. Due to stability considerations, an area 7 ft by 7 ft around the pole has been designated where excavation will not occur. Logs for borings SB-06 and PZ-01, located closest to the pole, indicate that impacted soil is not present at these locations, suggesting that grossly impacted soil is likely not present in the area surrounding the pole.
- It is unknown whether all of the structures within Area 2 contain grossly impacted MGP materials as defined in the ROD. Therefore, if grossly impacted materials are not identified during construction, the structures will be left in place. Decisions regarding the need for cleanout/removal of the structures will be made in the field during construction activities with concurrence by NYSDEC.

In addition to the structures, one surface soil sample collected southwest of the pavement in Area 2 contained cPAHs above NYSDEC criteria as shown on Design Drawing G-5 (Appendix C). Similar to Area 1, soil in this area will be managed by removing soil to facilitate placement of the soil cover as discussed in Sections 3.4 and 3.5.

3.2. EXCAVATION LIMITS

The surface soil from Area 1 and Area 2 will be excavated to a depth of 2 ft over the entire Site to accommodate placement of the soil cover described in Section 3.5. Horizontal limits for excavations to be made deeper than 2 ft bgs for those areas containing grossly impacted soil as defined in the ROD are shown on Design Drawings G-5 and G-6 (Appendix C). These limits were estimated based on borings drilled during site investigations (including the pre-design investigation). The actual horizontal limits will be based on field observations of grossly impacted soil as defined in the ROD made during excavation and with the concurrence of the NYSDEC. As previously discussed, the limits of excavation of the shallow soils containing elevated concentrations of cyanide will be based on verification sampling.

As outlined in the ROD, the deeper excavations will extend to 7 ft or to the extent practicable depending on groundwater encountered. No dewatering of the excavations will occur. The actual depth of removal will be based on field conditions, with the concurrence of the NYSDEC. The limits of the excavation will subsequently be surveyed to prepare Record Drawings.

3.3 EXCAVATION CONSIDERATIONS

Due to the anticipated depth of the excavations and the subsurface conditions encountered, it is not anticipated that excavation support systems will be necessary. Excavations utilizing conventional sloping and benching techniques in accordance with local, state and federal regulations should accommodate the anticipated excavation depths. In addition, foundations of the adjacent residences on the northern and southern sides of Area 2 are in close proximity to the excavation. The presence of overhead utility lines would also create difficulties for cranes or other sheeting/shoring equipment if utilized at the Site.

It may be necessary, however, for the Contractor to utilize trench boxes or similar methods at the perimeter of the excavation areas near the property boundaries. This would allow for the excavation to extend to the property boundaries while providing support for adjacent structures and/or utilities.

Because of the proximity of the excavation to neighboring residential properties, the contractor will be required to prepare a Vapor/Odor Management Plan that will detail methods to be implemented to control vapors and odors emanating from excavations and stockpiles, as identified in the Technical Specification Section 02242 – Tar Excavation and Off-Site Disposal (Appendix D). The primary measure to minimize the generation of vapors and odors will be to minimize, to the extent practical, the exposed surface of waste material and contaminated soil. Secondary measures will include the use of products such as RUSMAR Foaming Agents, as approved by National Grid and NYSDEC, to mask objectionable odors.

3.4. MANAGEMENT OF EXCAVATED MATERIALS

As outlined in the ROD, excavated MGP structures and the grossly impacted soil adjacent to them will be removed during the remedial program. The foundation materials and asphalt will be segregated and broken up as necessary to allow them to be transported to and received at a permitted construction debris (C&D) landfill. Prior to shipping the asphalt or concrete off-site, grossly contaminated soil adhering to the surface will be removed, as necessary, by scraping, brushing, or other means approved by the Engineer. Associated grossly impacted soil will be transported off-site for treatment (if necessary) and disposed of in accordance with applicable regulations.

As appropriate, separate stockpiles of soil will be established during the construction; those with soil containing visible coal tar or separate phase materials, and others with soil not exhibiting visible signs of NAPL. To the extent that space allows, surface soil removed for grading purposes and soil that does not contain visible coal tar or separate phase material may be reused on site as excavation backfill beneath the cover with concurrence of NYSDEC in accordance with the Waste Management Plan (WMP) prepared for the Site (Appendix E).

3.5. BACKFILL AND COVER

In general, the Site will be restored to the grades existing prior to the initiation of construction. As discussed in Section 3.4, soil excavated from the Site that is not visually contaminated will be used to fill the excavations at depths in excess of 2 ft below grade. If soil is brought in from an off-site source for use as backfill, it will meet NYSDEC criteria for restricted residential use as identified in Appendix 5 of the NYSDEC document Guidance for Site Investigation and Remediation (DER-10). Off-site fill material will be characterized for the parameters and frequency based on volume as identified in Table 5.4 of the DER-10. A visible demarcation layer will be placed on top of soils left in place.

As outlined in the ROD, a soil cover consisting of a minimum of 2 feet of clean material meeting the DER-10 criteria for restricted residential use will be placed over Areas 1 and 2. The final grade of the cover surface will approximate the current ground surface to maintain existing drainage patterns, as shown on Design Drawings G-9 and G-10. As described in Section 3.2, the current surface soil from Area 1 and Area 2 will be excavated to a depth of 2 ft over the entire Site to accommodate placement of the soil cover. The 2-ft thick cover will consist of 18 inches of soil satisfying the requirements for embankment material as specified in Technical Specification Section 02223 – Embankment (Appendix D), placed in lifts not greater than 6 inches and compacted to 90% maximum density, and 6 inches of topsoil satisfying the requirements specified in Technical Specification Section 02981 – Topsoil and Seeding (Appendix D). The final surface will be seeded with a mixture of quick growing annual and perennial grasses, of variety typical for the region, and fertilized.

3.6. GROUNDWATER TREATMENT

Groundwater within Area 2 was found to contain constituents of concern above groundwater criteria, but constituents of concern have not been observed in Area 1 nor off-site above the groundwater criteria. Although the groundwater samples collected from Area 1 did not contain constituents of concern at concentrations above groundwater criteria, sheens were observed in areas of Area 1 where impacted soil is present, suggesting that localized groundwater impacts may be present but plume development and migration is not occurring.

The ROD identifies that groundwater treatment through the introduction of oxygen (or other nutrients, if necessary) in Areas 1 and 2 will be completed as part of the remedy to enhance *in situ* aerobic biodegradation of contaminants in groundwater. The addition of oxygen will be completed by placing a slow-release oxygen compound, such as Regenesis's bioremediation product Oxygen Release Compound-Advance formulation (ORC Advanced[™]) or similar product, into the base of the excavations as part of the backfilling operations. Information about ORC Advanced[™] is provided in Appendix F.

Groundwater sampling was conducted during May 2010 to evaluate groundwater characteristics as they relate to the potential for natural attenuation to be occurring. Based on the data summarized in Table 1 and included in Appendix B, it has been estimated by Regenesis that application of approximately 3,500 lbs of ORC Advanced[™] across 1 to 3 feet of backfill at the bottom of the excavation would be appropriate to treat an area of approximately 12,500 SF. As an alternative, Regenesis identifies that application of a lesser amount of ORC (2,500 lbs) could be applied with RegenOx Part A (1,500 lbs) across the same interval to treat the target area.

The groundwater data was also reviewed for availability of nutrients, and the addition of nutrients should not be necessary for natural attenuation to occur.

3.7. STORM SEWER REHABILITATION

Shallow groundwater flows to the south and west across the Site. To the southwest of Area 2 the flow contours converge in the vicinity of the storm sewer line that crosses the area. This indicates that the sewer and/or its associated bedding intercepts shallow groundwater flowing across the Site. The location of the storm sewer is shown on Design Drawing G-8 - Sewer Rehabilitation Plan (Appendix C).

The storm sewer is approximately 24 inches in diameter, located between 18 ft and 25 ft below ground surface, and discharges to the Oswego River, approximately 0.4 miles north of the Site. A closed-circuit television (CCTV) inspection of the sewer was conducted during October 2005 but was only able to examine 500 ft of approximately 950 ft of sewer because of debris obstructing the camera travel beyond 418 ft from the downstream manhole and 90 ft from the upstream manhole. The partially completed inspection found the sewer pipe to be generally intact but revealed groundwater leaking into the sewer at the joints and some cracks. Analysis of water collected from the storm sewer also detected compounds that could be attributed to the former MGP site, although the same compounds might also be from roadway surface drainage.

To address the infiltration of groundwater, the existing 24-inch diameter storm sewer will be cleaned and relined in place between manholes labeled "A" and "B" on Design Drawing G-8, in accordance with the Technical Specification Section 02623 – Cured in Place Pipe (Appendix D). Since the sewer pipe is presently believed to be structurally sound, the relining will only serve to prevent infiltration and not to structurally support the pipe.

During the construction phase, the following sewer rehabilitation actions will be performed:

- The storm sewer will be cleared of debris, mineral deposits, and roots between manholes labeled "A" and "B" on Design Drawing G-8 (Appendix C).
- Once cleared of debris, the storm sewer will be examined by CCTV to document the existing condition of the storm sewer and verify its location and depth.
- A bypass will be installed, or the upstream contributing sewer will be temporarily plugged, to isolate the section of sewer pipe between manholes "A" and "B" during the installation and curing of the pipe-liner.
- The pipe-liner will be installed and cured. After curing, the sewer will be re-examined by CCTV to document the condition of the sewer following rehabilitation to verify that the installation of pipe-liner was successful.

I:\National-Grid.1118\44581.Fulton-Remedial\Docs\Reports\100% Design Report\Final Dsgn Report.doc

• Once the work is accepted by the Engineer as being complete, the bypass or temporary plugs used during the rehabilitation will be removed and normal sewer flow allowed.

Design Drawing G-8 and Technical Specification Section 02623 – Cured in Place Pipe were provided for review to Mr. Ronald Edick of the City of Fulton Department of Public Works on October 26, 2010. Mr. Edick sent an email to O'Brien & Gere on November 2, 2010 indicating that the City of Fulton had no comments to provide, and that the plan and specification for the sewer relining were acceptable.

The potential for groundwater flow through the storm sewer bedding material will also be addressed at the downstream property line by jet grouting around the sewer. The purpose of this effort will be to reduce the transmissivity of bedding material to reduce the potential for preferential flow of groundwater along the utility. Multiple overlapping jet grouted columns will be installed in the storm sewer bedding. Jet grouting in this manner will minimize the potential for flow along the bedding of the sewer.

4. REMEDIAL DESIGN SUPPORT PLANS

4.1. STORMWATER POLLUTION PREVENTION PLAN

A Stormwater Pollution Prevention Plan (SWPPP) prepared in substantive compliance with Phase II of the NYSDEC State Pollutant Discharge Elimination System (SPDES), General Permit for Stormwater Discharges Associated with Construction Activity (Permit No. GP-0-10-001) is included as Appendix G. The SWPPP includes:

- 1. An erosion and sediment control plan and details prepared in accordance with the "New York Standards and Specifications for Erosion and Sediment Control" published by the NYSDEC (NYSDEC 2005).
- 2. Design of permanent stormwater management facilities in accordance with Chapter 9 "Redevelopment Projects" of the NYSDEC's "New York State Stormwater Management Design Manual", since the project involves site remediation and stabilization without a change in perviousness.

Neither a Notice of Intent nor MS4 SWPPP Acceptance Form is included because they are not required for projects under an Order on Consent.

4.2. CONSTRUCTION QUALITY ASSURANCE PROJECT PLAN

A Construction Quality Assurance Project Plan (CQAPP) is included as Appendix H outlining quality assurance procedures and protocols to be implemented during construction, based on the detailed procedures presented in the specifications. The CQAPP presents the following:

- Responsibility and Authority: The responsibility and authority of organizations and key personnel involved in regulating, design, and construction of the remedial systems is presented. Appropriate lines of communication between involved parties are delineated.
- Construction Quality Assurance (CQA) Personnel Qualifications: The qualifications of the CQA officer and supporting CQA personnel are presented in the CQAPP in terms of training and experience. The CQA officer will be required to operate independently of the contractor.
- Sampling and Testing Methods: Sampling and testing methods, frequencies, acceptance and rejection criteria, and corrective measures are outlined.
- On-Site Observations: The observations and tests that will be used to document that the construction meets the design criteria, plans, and specifications are detailed. This information will be utilized to prepare the certification of the work.
- Record Drawings: The requirements to maintain records for the preparation of record drawings are presented.

4.3. SITE MANAGEMENT PLAN

A draft Site Management Plan is provided as Appendix I, recognizing that this Plan will be finalized following construction. The Site Management Plan includes:

- Requirements for management of the final cover system to restrict excavation,
- Procedures for soil characterization, handling, health and safety, and disposal in the event that excavation is necessary.
- A discussion of groundwater monitoring requirements. Samples will be periodically collected from monitoring wells MW-2 (background), MW-3, MW-4, MW-5, MW-7, MW-11 and MW-12S which have been selected to represent conditions within and downgradient of Area 2 to evaluate the effectiveness of natural attenuation following removal of materials from Area 2.
- Property use restrictions.
- An Operation and Maintenance Plan describing procedures to inspect and maintain the elements of the Remedial Action.

4.4. INSTITUTIONAL CONTROLS

The ROD calls for the imposition of an environmental easement requiring:

- Limiting the use and development of the property to restricted residential use (which also permits industrial use).
- Restricting the use of groundwater at the Site.
- Compliance with an approved Site Management Plan.
- Periodic certification by National Grid of the institutional and engineering controls.

National Grid will prepare the environmental easement and record it on the property deed filed with the local government offices as required.

REFERENCES

O'Brien & Gere Engineers, Inc., 1996, Preliminary Site Assessment Interim Remedial Measures (PSA/IRM) Study Report, May 1996.

O'Brien & Gere Engineers, Inc., 2007, Soil Vapor Sampling Report (letter), October 19, 2007.

O'Brien & Gere Engineers, Inc., 2008, Soil Vapor Sampling Results (letter), September 15, 2008.

O'Brien & Gere Engineers, Inc., 2009a, Remedial Investigation Report May 2006, revised March 2009.

O'Brien & Gere Engineers, Inc., 2009b, Feasibility Study Report, February 2009.

O'Brien & Gere Engineers, Inc., 2009c, Remedial Design Work Plan (RDWP), August 2009

National Grid, 1996. Generic Quality Assurance Project Plan (GQAPP) for Site Investigations, June 1996.

National Grid, 2008. Statement of Work, National Grid, April 16, 2008.

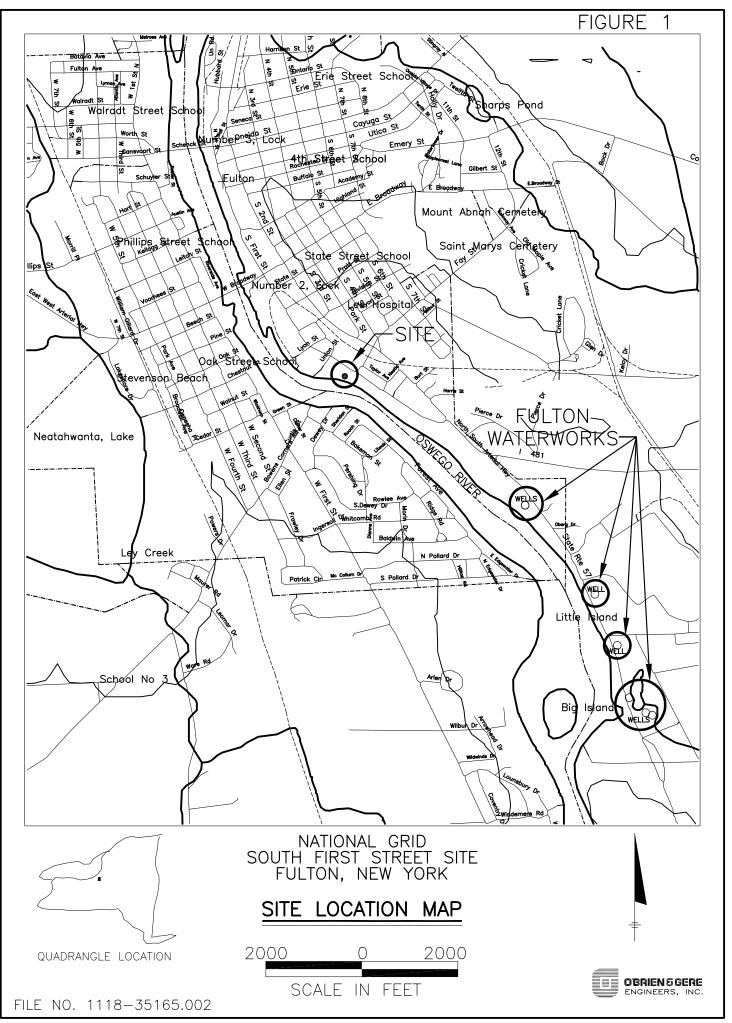
NMPC, 2002. Niagara Mohawk Generic Field Sampling Plan for Site Investigations Manufactured Gas Plant, Niagara Mohawk Power Corporation, 2002.

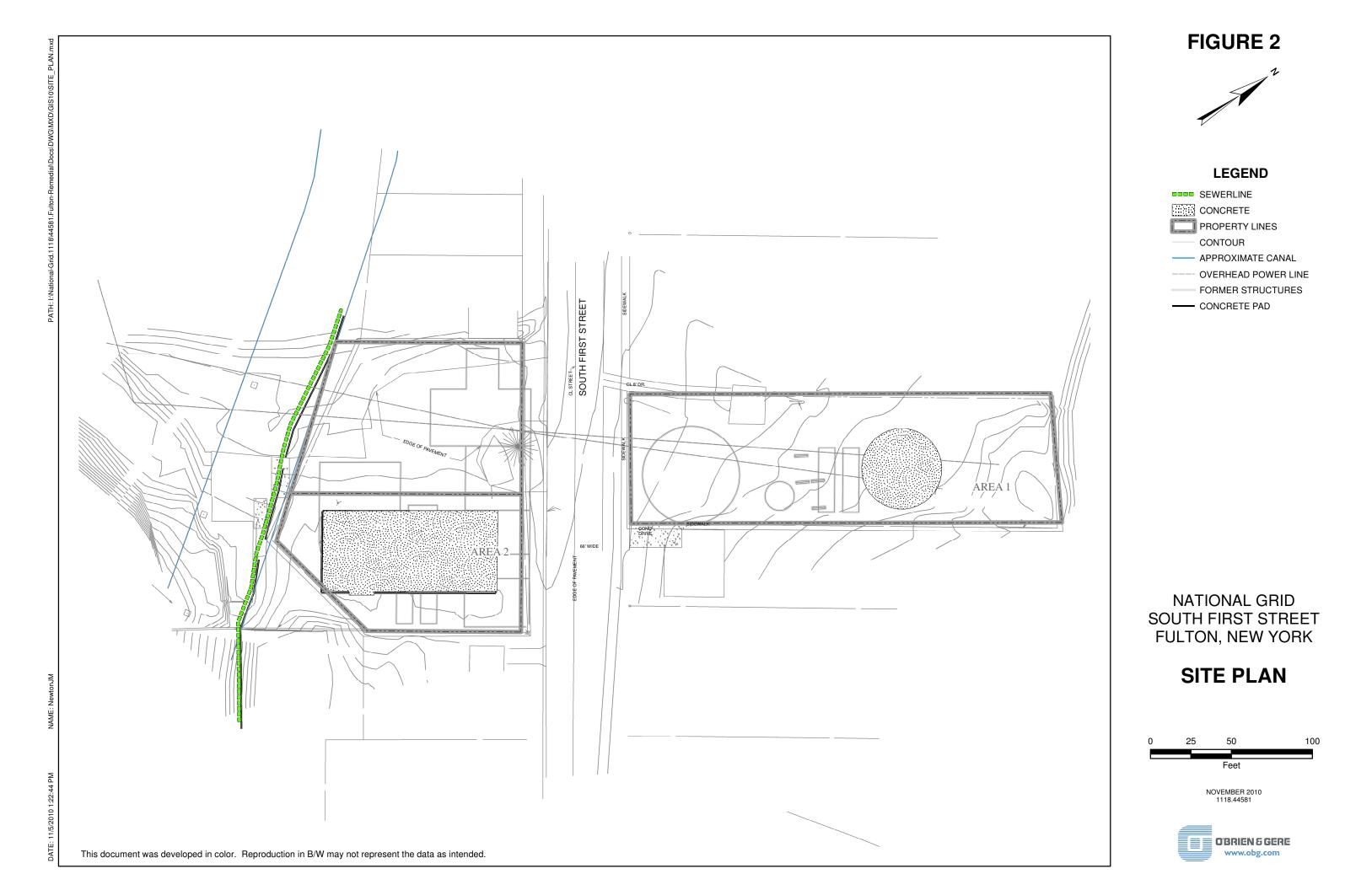
NYSDEC, 1990. Guidance on Expediting Remedial Design and Remedial Action, New York State Department of Environmental Conservation, August 1990.

NYSDEC, 2009. Record of Decision, New York State Department of Environmental Conservation, March 2009.

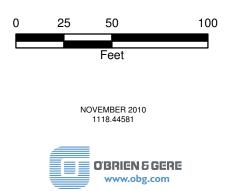
USEPA, 1986. Superfund Remedial Design and Remedial Action Guidance, United States Environmental Protection Agency, June 1986.

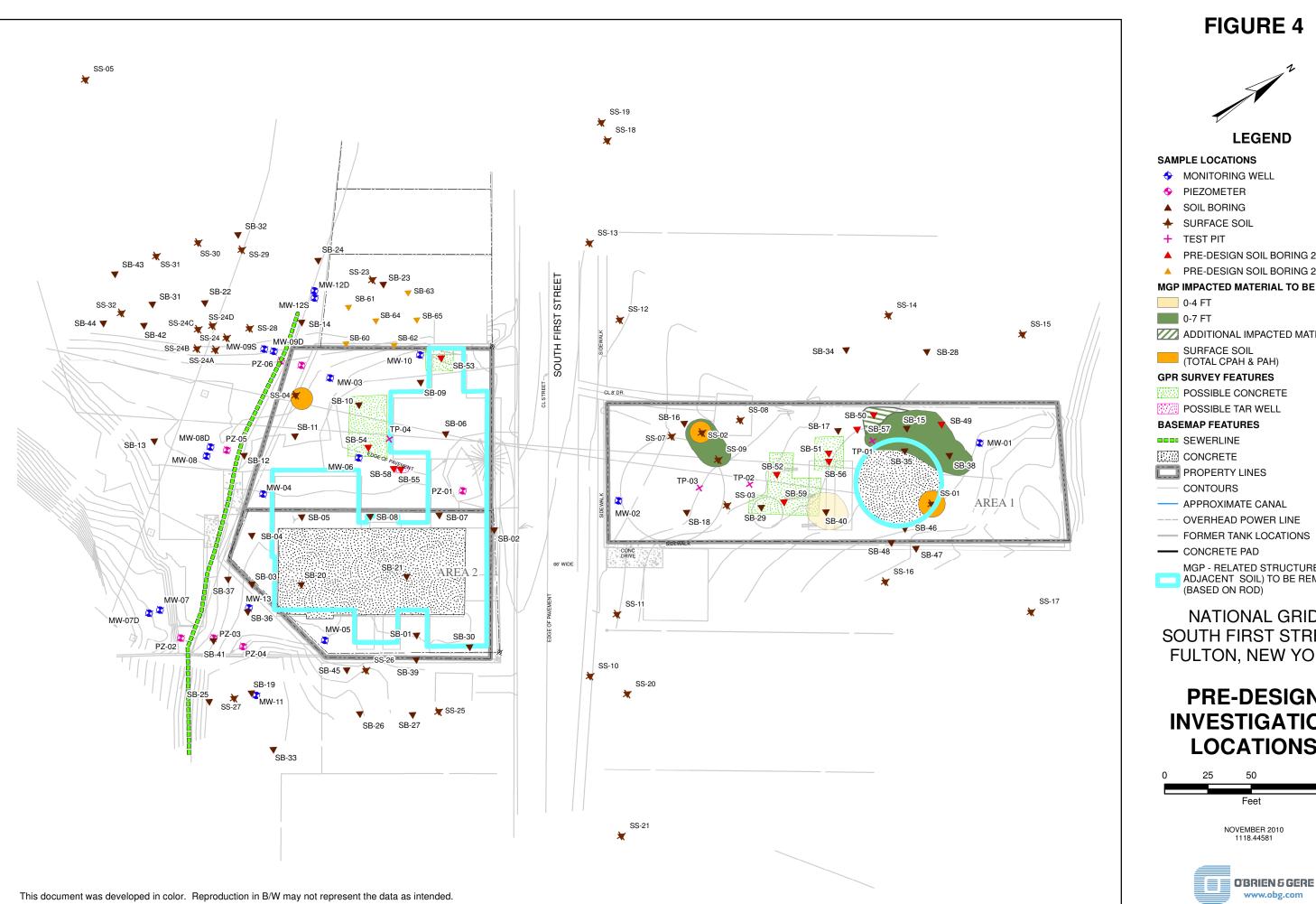
USEPA, 1990. Guidance on Oversight of Remedial Design and Remedial Actions performed by Potentially Responsible Parties, United States Environmental Protection Agency, April 1990.


Table 1 - Baseline MNA Analysis Results South First St Fulton Site National Grid


PARAMETER	MW-4	MW-5	MW-7	MW-3	MW-2	MW-12S	MW-11	MW-12S-Dup
VOCs (ug/L)								
M&P Xylene	283	368	<1	<1	<1	<1	<1	<1
o-Xylene	243	193	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene	752	8.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	<10	12.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	79.4	11.4	<0.5	<0.5	<0.5	0.37	<0.5	0.41
Ethylbenzene	315	303	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
Xylenes Total	526	561	<1	<1	<1	<1	<1	<1
Isopropylbenzene	8.8	97	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
SVOCs (ug/L)								
2,4 Dimethylphenol	260	<10	<11	<10	<10	<11	<10	<10
2-methylnaphthalene	4.7	43	<11	<10	<10	<11	<10	<10
2-methylphenol	15	<10	<11	<10	<10	<11	<10	<10
Acenaphthene	45	40	<11	<10	<10	<11	<10	<10
Acenaphthylene	9	6.5	<11	<10	<10	<11	<10	<10
Anthracene	0.83	3.5	<11	<10	<10	<11	<10	<10
bis(2-ethylhexyl)phthalate	0.69	0.78	<11	0.57	0.47	0.46	<10	0.41
carbazole	19	4.7	<11	<10	<10	<11	<10	<10
Dibenzofuran	16	21	<11	<10	<10	<11	<10	<10
Fluoranthene	0.5	2	<11	<10	<10	<11	<10	<10
Fluorene	12	27	<11	<10	<10	<11	<10	
Naphthalene	850	960	<11	<10	<10	<11	<10	<10
Phenanthrene	3.5	31	<11	<10	<10	<11	<10	<10
Pyrene	0.53	1.6	<11	<10	<10	<11	<10	<10
OTHER (mg/L)								
Methane	1.9	0.63	1.6	<0.002	0.0015	<0.002	0.016	< 0.002
Total Iron	73	26	14	0.66	4	3.7	6.2	4.4
Diss Iron	68	26	13	0.19	0.16	0.29	7.3	0.29
Total manganese	0.6	2.7	2.9	0.69	0.15	0.21	0.25	0.22
Diss Manganese	0.57	2.6	2.7	0.0038	0.02	0.052	0.26	0.055
Nitrate	<0.1	<0.1	<0.1	0.84	<0.1	0.23	<0.1	0.15
Nitirite	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
Sulfate (SO4)	4.4	1.2	<1	32	25	25	9.9	
BOD5	<200	<80	<200	<200	<200	<200	<200	
COD	61	55	21	14	16	38	10	
Diss Organic Carbon	11	18	6.4	6	4.4	5.7	5.3	4
Alkalinity (CaCO3)	380	230	250	260	270	300	180	310
FIELD MEASUREMENTS								
рН	6.33	6.32	6.76	6.72	6.77	6.71	6.46	na
ORP (mV)	-74.8	-74.8	-64.6	162.6	81.9	154.9	-51	na
DO (mg/L)	0	0	0.5	3	1	4	1	na
Diss Ferrous Iron (mg/L)	4	2	2.7	0	0	0	4	
Diss manganese (mg/L)	0	0	2.4	0	0	0		

Notes: Samples collected May 3 to 5, 2010.





NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

ALTERNATIVE 2 LIMITED EXCAVATION **COVER AND SEWER** REHABILITATION

INVEST PATH: I:

NAME:

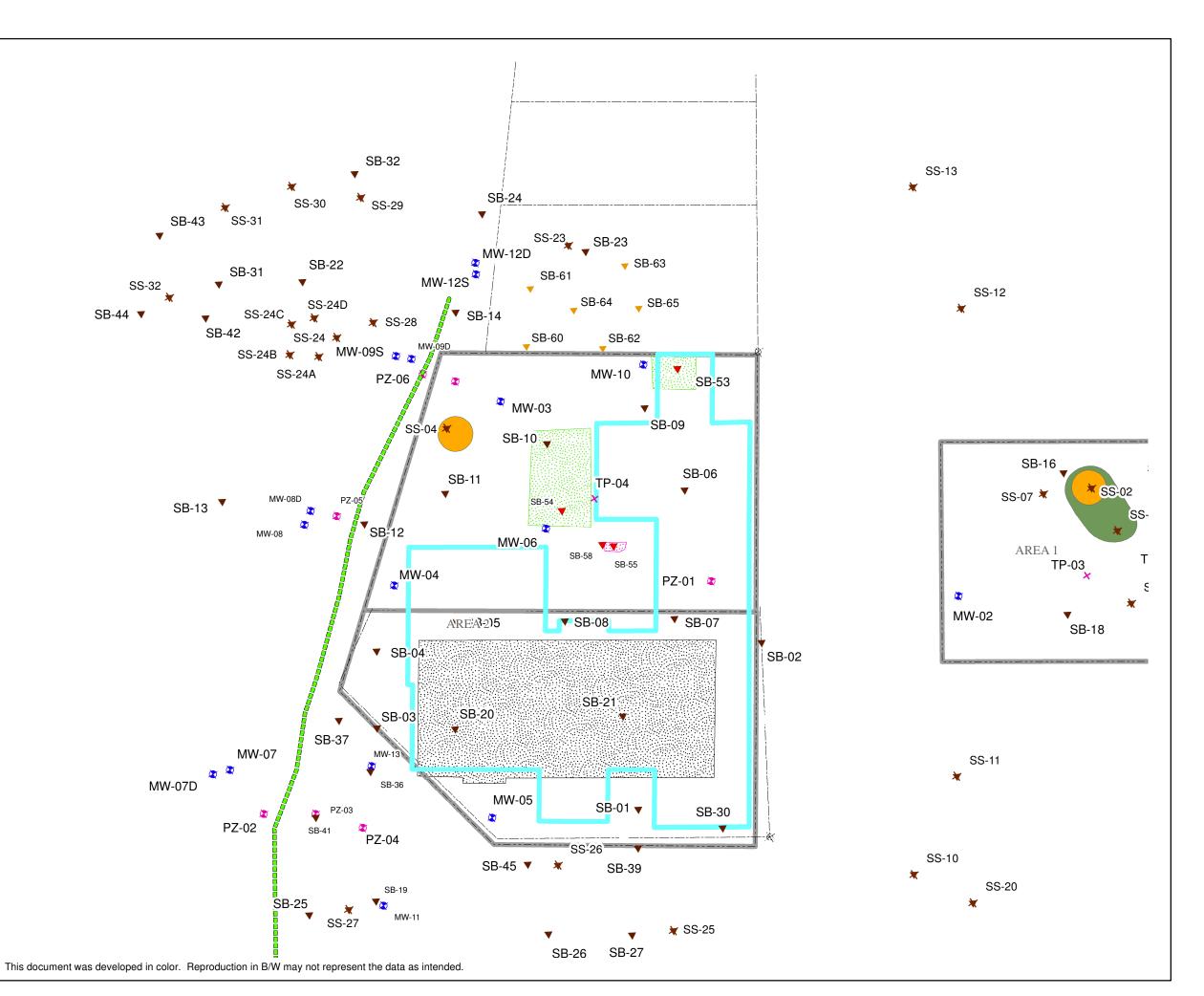
N DATE

- ▲ PRE-DESIGN SOIL BORING 2009
- ▲ PRE-DESIGN SOIL BORING 2010

MGP IMPACTED MATERIAL TO BE REMOVED

ADDITIONAL IMPACTED MATERIAL

- MGP RELATED STRUCTURE (AND ADJACENT SOIL) TO BE REMOVED


NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

PRE-DESIGN INVESTIGATION LOCATIONS

100

www.obg.com

PATH: I:National-Grid.1118/44581.Fulton-Remedia/Docs/DWG/MXD/GIS10/DP_INVEST_LOC

FIGURE 5

LEGEND

SAMPLE LOCATIONS

- MONITORING WELL
- PIEZOMETER
- ▲ SOIL BORING
- ✦ SURFACE SOIL
- + TEST PIT
- ▲ PRE-DESIGN SOIL BORING 2009
- A PRE-DESIGN SOIL BORING 2010

MGP IMPACTED MATERIAL TO BE REMOVED

	0-4 FT
	0-7 FT
	ADDITIONAL IMPACTED MATERIAL
	SURFACE SOIL (TOTAL CPAH & PAH)
GPR	SURVEY FEATURES
	POSSIBLE CONCRETE
ere en	

POSSIBLE TAR WELL

BASEMAP FEATURES

- PROPERTY LINES
- ---- PROPERTY-LINE

MGP - RELATED STRUCTURE (AND ADJACENT SOIL) TO BE REMOVED (BASED ON ROD)

NATIONAL GRID SOUTH FIRST STREET FULTON, NEW YORK

DESIGN PHASE INVESTIGATION LOCATIONS

0 12.5 25 50

Feet

NOVEMBER 2010 1118.44581

O'BRIEN & GERE www.obg.com

Pre-Design Boring Logs

						SOIL BORING LOG	R	EPORT C		ING	
			E ENGINEE	RS, INC.				SB-	49		
Client:			al Grid	Sito		Sampler: 4' Macrocore	Location	South Fi	ret Straat	,	
Proi_1	00:	(South Fulton	h First Street	Sile)		Hammer: Auto Hammer		Area 1 (rst Street West of N	IW-01)	
-							Start Date	e: 11/23	/2009	,	
File No).: 	1118 / ·	44581			Fall: NA	End Date: Screen		3/2009		
Forem	an:	Mickey	Parratt-Wo				Riser		Grout Sand Pa		
OBG G		ogist:	Nate Vogan	l T		T	Strate		Bentonit		
Depth	ļ				l		Stratum Change			eld ting	
lhu	ļ		1	Penetr/	l				165		
Below	ţ	Depth		Recovery	"N"	Sample Description	General	Equip.	PID	Time	
Grade		(feet)	/6''	(in ft)	Value		Descript	Installed	(ppm)		
0	1	4	NA	3.5/4.0	NA	0-0.5 ft. TOPSOIL (PT); mostly silt and fine sand; moderate brown (5YR 4/4), moist, medium dense to dense, organic odor.			0.0	945	
	 		<u> </u>			0.5-1.2 ft. FINE SAND and SILT (SM);		!	ł	ļ	
	1					nonplastic, 50% fines, dark yellowish arange	ļ İ				
					ļ	(10YR 6/6), little medium subrounded gravel, moist, medium dense, no odor.					
			L								
						1.2-1.4 ft. CRUSHED BRICK.				i	
		1				1.4-2.2 ft. SANDY SILT (ML); ~10% fine sand, little clay and root matter, dusky brown (5YR					
						2/2), organic odor.	ļ				
						2.2-3.5 ft. SILT (ML); ~20% clay, trace fine sand,			1		
						dark yellowish orange (10YR 6/6), moist, very dense, stiff, no odor.	ļ İ				
4	2	8	NA	3.4/4.0	NA	0-4.0 ft. SILT (ML); ~20% clay, trace fine sand,			0.0	950	
		ļi				dark yellowish orange (10YR 6/6), moist, very					
				├ ──── 		dense, stiff, no odor.					
						End of Boring at 8 ft.					
			Ì			Cuttings back filled and bentonite chipped to			ļ		
 		ļi		┞─────┤		grade					
				· · · · · · · · · · · · · · · · · · ·		1.					
				└─── ─		ļ i					
				ļ		1					
						1					
• • • • • • • • • • • • • • • • • • • •	_					1					
				ļ]							
	-+				<u> </u>						
	-+					ļ į	L				
						ļ					
	-		ļ								
				├	———————————————————————————————————————						
						ļ					
[]										
	-+					1					
	-+			ŀ	——						
						Ì				ļ	
				· · · · · · · · · · · · · · · · · · ·							
	_1										
Notes:				L							
10108:											

÷

.

.

-

						SOIL BORING LOG	R	EPORT C		NG
			e enginee	RS, INC.				SB-	50	
Client:		Nation	al Grid First Street			Sampler: 4' Macrocore	Location:	South Fi	rst Street	
Proj. L	oc:	Fulton,	NY	Silej		Hammer: Auto Hammer		Area 1		
							Start Date End Date:			
File No	Cor	<u>1118 / 4</u>	44581 Parratt-Wo	1#		Fall: NA		= 1	Grout	
Forem	an:	Mickey	,				Riser		Sand Pa	
OBG G	eolo	gist:	Nate Vogan				Stratum		Bentonit Fi	eld
Depth							Change			ting
Copul				Penetr/			•			
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time
Grade 0		(feet) 4	/6" NA	(in ft) 2.1/4.0	Value NA	0-0.9 ft. FINE SAND and SILT (SM); ~40% silt,	Descript	Installed	(ppm) 0.0	1003
U	1	4	NA	2. 1/4.0		little clay and crushed red brick, dark yellowish brown (10YR 6/2), moist, soft to medium dense, no odor.				
						0.9-1.1 ft. METAL SLAG and GRAVEL; partially cemented, black (N1), dry, very dense, no odor.				: I
						1.1-2.1 ft. SILT (ML); ~20% fine sand, little clay, trace crushed brick, moderate brown (5YR 3/4), moist, medium dense.				
4	2	8	NA	3.3/4.0	NA	0-4.0 ft. SILT (ML); ~15% clay, moderate yellowish brown (10YR 5/4), moist, dense, stiff. Rock lodged in nose of spoon with a small (1/4") coating of NAPL on rock surface, strong coal tar odor.			0.1	1005
8	3	10	NA	0.0/2.0	NA	No recovery, will resample down to 12 ft.			NA	1007
8	4	12	NA	4.0/4.0	NA	0-4.0 ft. FINE SAND (SP); ~30% medium sand, little silt, moderate brown (5YR 4/4), wet, medium dense to loose, soft. Sheen on outside of sample from 0-1.7 ft, some pin sized blebs of NAPL at 1.6 ft with coal tar odor.			0.6	1010
						End of Boring at 12 ft.				
			<u></u>			Borehole backfilled with cuttings and bentonite chipped.				
-										
			· ·	· · · · ·		•				
					· ·	1				
			<u> </u>		<u> </u>					
		<u> </u>				1				
						1				
					<u> </u>	1				
]				
						4				
						4				
Notes:	•	•	t			· · · · · · · · · · · · · · · · · · ·				

a solution of the

.

-

. •

						SOIL BORING LOG	R	EPORT C	F BORI	NG
O'BRI	EN (K GER	E ENGINEE	RS, INC.				SB-	51	
Client:		Nation	al Grid			Sampler: 4' Macrocore				-
Duel I		(South	First Street	Site)		Hammer: Auto Hammer	Location:	South Fin Area 1	rst Street	
Proj. L	0C:	Fulton	, N 1				Start Date	: 11/23		
File No	.:	1118/	44581			Fall: NA	End Date:			
Boring	Cor	npany:	Parratt-Wo	lff			Screen Riser		Grout Sand Pa	ck
Forema OBG G		mickey	Nate Vogan					16588	Bentonit	
		3.00		····			Stratum			eld
Depth							Change		Tes	ting
			:	Penetr/				m		There
Below		Depth	Blows	Recovery	"N"	Sample Description	Generai Descript	Equip.	PID (nnm)	Time
Grade 0	<u>No.</u> 1	(feet) 4	/6" NA	(in ft) 4.0/4.0	Value NA	0-0.8 ft. SILT (ML); little clay, trace fine sand,	Descript	mataneu	(ppm) 0.0	1015
Ŭ		4		4.0/4.0	114	moderate brown (5YR 3/4), moist, medium dense, stiff.				
						0.8-1.2 ft. MEDIUM SAND (SP); ~20% coarse				
						sand, some silt, some metal slag, light brown (5YR 5/6) with a seam of dusky yellow green				
						(5GY 5/6), no odor.				
						1.2-2.2 ft. SILT (ML); little clay, trace fine sand,				
						moderate brown (5YR 3/4), moist, medium dense, stiff.				
						делse, stin. 2.2-4.0 ft, SILT (ML); little clay, trace fine sand;				
						dark yellowish orange (10YR 6/6) moist, dense, stiff, no odor.				
4	2	8	NA	3.0/4.0	NA	0-4.0 ft. SILT (ML); little clay, trace fine sand;			0.0	1018
						dark yellowish orange (10YR 6/6) moist, dense, stiff, no odor.				
						End of Boring at 8 ft.				
			•••			Cuttings backfilled into borehole, chipped to				
					ļ	grade.				
						•				
						-				
		~				-				
				<u> </u>		4				
	· · ·					1				
					·	1				
			**			4				
		<u> </u>				4				
		<u> </u>	·	<u>~</u>		4				
	<u> </u>			· · · · · · · · · · · · · · · · · · ·		۰ ، ۱				
						1	:			
]				
						1				
						4				
<u> </u>				. <u> </u>		4				
		<u> </u>				1				
	<u> </u>					1				
		<u> </u>		·		1	-			
]				
					-]				
						4				
	L		l	<u> </u>	ł	L	ļ			
Notes:										

_

-

						SOIL BORING LOG	REPORT OF BORING				
O'BRI	EN .	& GER	E ENGINEE	RS, INC.				SB-	52		
Client:		Nation	al Grid			Sampler: 4' Macrocore					
Proj. L	<u> </u>	(South	First Street	Site)		Hammer: Auto Hammer	Location:	South Fi Area 1			
F I VJ. L	00.	Fullon	,				Start Date	e: 11/23	/2009		
File No).:	1118 /				Fall: NA	End Date:		/2009		
Boring	∣ Coi an•	mpany: Micke	Parratt-Wo	эπ			Screen Riser		Grout Sand Pa	ck	
OBG G		gist:	Nate Vogan	I					Bentonit	e	
							Stratum			eld	
Depth				Penetr/			Change		les	sting	
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time	
Grade	No.		/6"	(in ft)	Value		Descript		(ppm)	_	
0	1	4	NA	2.7/4.0	NA	0-1.0 ft. FINE SAND (SM); ~40% silt, some			0.0	1030	
						medium and coarse subrounded gravel, some roots, moderate brown (5YR 4/4) moist, loose to medium dense, no odor.					
						1.0-2.7 ft. SILT (ML); ~40% fine sand, little brown					
						vegetative pieces; dark yellowish orange (10YR 6/6), moist, dense, no odor.					
4	2	8	NA	4.0/4.0	NA	0-1.0 ft. SILT (ML); ~40% fine sand, little clay;			0,0	1035	
						dark yellowish orange (10YR 6/6), moist, dense, по odor.					
 						1.0-4.0 ft. MEDIUM SAND (SP); ~20% coarse					
						sand, little silt and subrounded fine gravel, trace coal tar odor.					
				<u></u>		End of boring at 8 ft. Cuttings backfilled into borehole, chipped to					
						grade.					
			-								
					· · · · ·						
			<u></u>								
						4					
						1					
						· · ·					
					<u> </u>						
		<u>.</u> .									
		:									
Notes:									···		

a to a the she

11 · · · · · · · · · · · ·

L

.

-

-

• .

						SOIL BORING LOG	REPORT OF BORING SB-53					
O'BRI Client:			E ENGINE	KS, INC.		Sampler: 4' Macrocore	 	SB-	-53			
F		(South	First Street	: Site)			Location:	South Fi		ł		
Proj. L	.oc:	Fulton	, NY	-		Hammer: Auto Hammer		Area 2				
File No) .:	1118/	44581			Fall: NA	Start Date		/2009			
Boring	I Col	mpany:	Parratt-We	olff		•	Screen	= \	Grout			
Forem OBG 0	an:	Mickey	/ Nate Vogar				Riser		Sand Pa Bentonii	ck 'e		
			India Pogui	•			Stratum	•		eld		
Depth							Change		Tes	sting		
L .				Penetr/						_		
Below Grade		Depth (feet)	Blows /6''	Recovery (in ft)	"N" Value	Sample Description	General Descript	Equip.	PID (ppm)	Time		
	1	4	NA NA	1.2/4.0		FILL; crushed brick, concrete, and cemented	Descript	Instancu	0.0	1100		
						pale yellowish orange (10YR 8/6) coarse sand, dry, loose, no odor.						
4	2	8	NA	3.1/4.0	NA	0-0.6 ft. FILL; crushed brick, concrete, and cemented pale yellowish orange (10YR 8/6)			0.0	1103		
						coarse sand, dry, loose, no odor. 0.6-3.1 ft. MEDIUM SAND (SP); little silt and fine						
						sand, moderate yellowish brown (10 YR 5/4), wet, medium dense, soft, no odor.						
8	3	10	NA	1.6/2.0	NA	MEDIUM SAND (SP); little silt and fine sand, little			0.0	1107		
						coarse subrounded gravel, moderate yellowish brown (10 YR 5/4), wet, medium dense, soft, no						
						odor.						
						End of Boring at 10 ft. Cuttings backfilled into borehole.						
						· · · ·						
			· · ·									
				· · · · ·								
								ĺ				
		<u> </u>										
Notes:												

.

-

.

-

-

-

						SOIL BORING LOG	REPORT OF BORING				
			E ENGINEE	RS, INC.				SB-	54		
Client:		Nation		011.1		Sampler: 4' Macrocore	Location	South Fi	of Street		
Proj. L	001	(South	First Street	Site)		Hammer: Auto Hammer	Location.	Area 2	st Sheet		
	00.	Fullon	, 14 1				Start Date	: 11/23			
File No	.:	1118/	44581	172		Fall: NA	End Date:	11/23	2009 Grout		
Boring Forem	Cor	npany: Mickow	Parratt-Wo	olff			Screen Riser		Sand Pa	ck	
OBG G	ieolo	mickey	Nate Vogan					0000	Bentonit		
		<u> </u>					Stratum			eld	
Depth							Change		Tes	ting	
				Penetr/			0	Fault	PID	Time	
Below		Depth		Recovery	"N"	Sample Description	General Descript	Equip.	(ppm)	INNE	
Grade 0		(feet) 4	/6"	(in ft) 1.4/4.0	Value NA	1 inch ASPHALT followed by 6 in CONCRETE,	Descript	mstaneu	0.0	1145	
U U	1	4		1.4/4.0		then METAL SLAG; black (N1), dry, loose, no			•••		
						odor.					
4	2	8	NA	2.2/4.0	NA	0-0.4 ft. ASPHALT and METAL SLAG; black (N1), dry, loose, no odor.			0.0	1150	
			<u> </u>			0.4-2.2 ft. FINE SAND (SM); some silt, moderate					
						brown (5YR 4/4), some black mottling (seems					
						organic), wet, medium dense, no odor.					
						· · · · · · · · · · · · · · · · · · ·					
		<u> </u>		<u> </u>		End of boring at 8 ft.					
		· · · ·				Cuttings backfilled into borehole.					
-						1 -					
]					
						4					
						•					
				·		-					
						1					
						. · · ·					
				·		1					
		<u> </u>	<u> </u>			1					
						1					
]					
						4					
						4					
		<u> </u>				4					
						1					
						1					
						1					
]					
						1					
			L		<u> </u>	4					
						4					
			<u> </u>			1					
						1	}				
——	— •		·			1					
						1	1				
]					
						ļ					
							L	Ļ			

The second second

•

. •

-

-

I

Notes:

(ibb)	E NI	t CED	E ENGINEI	RS INC		SOIL BORING LOG	R	REPORT OF BORING SB-55				
Client:		Nation	al Grid			Sampler: 4' Macrocore						
Proj. L	oc:	(South Fulton	First Street	: Site)		Hammer: Auto Hammer			Tar Well)			
File No). :	1118 /	44581			Fall: NA	Start Date: 11/23/2009 End Date: 11/23/2009					
Boring Forem OBG G	an:	Mickey	Parratt-Wo / Nate Vogan				Screen = \ Grout Riser _ Sand Pack Bentonite					
		-giou	Nate regar	•			Stratum			eld		
Depth				Penetr/			Change		Tes	ting		
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time		
Grade	No.		/6"	(in ft)	Value			Installed	(ppm)			
0	1	4	NA	2.9/4.0	NA	0-2.1 ft. CRUSHED ASPHALT; trace crushed bricks and crushed rock, little metal slag, moist, dense.		c.	0.0	1112		
						2.1-2.9 ft. FINE SAND (SM); ~40% silt, trace clay, dark yellowish orange (10YR 6/6), wet, medium dense, faint coal tar odor. Seam of black metal slag at 2.6-2.8 ft.						
4	2	8	NA	3.8/4.0	NA	0-1.5 ft. FINE SAND (SM); ~20% silt, some fine subrounded gravel, wet, dense, dusky brown (5YR 2/2), some sheen, black staining with sheen, strong coal tar odor.			1.3	1116		
						1.5-2.4 ft. FINE SAND (SM); ~20% silt, wet, dense, dusky brown (5YR 2/2), some sheen, black staining with sheen, strong coal tar odor.						
						2.4-3.8 ft. FINE SAND (SM); ~20% silt, moderate yellowish brown (10YR 5/4), some patches of black staining, wet, dense, coal tar odor.						
8	3	12	NA	3.8/4.0	NA	0-2.4 ft. FINE SAND (SM); ~20% silt, moderate yellowish brown (10YR 5/4), some patches of <u>black staining</u> , wet, dense, coal tar odor. Tar saturated material from 0-1.1 ⁻⁷ ft, likely sluff.			0.0	1120		
						2.4-3.0 ft. MEDIUM SAND (SW); some subrounded gravel, light brown (5YR 6/4), wet, medium dense, coal tar odor.						
						Refusal at 11.5 ft.						
						Cuttings backfilled into borehole.						
			·····									
Notes:				I	·		I		I			

1.000

-

-

.

_

O'BRI	FN.	8 GER	E ENGINEE	RS. INC.		SOIL BORING LOG	R	EPORT C SB-		NG
Client: Proj. L		Nation (South	al Grid First Street			Sampler: 4' Macrocore Hammer: Auto Hammer	Location: Start Date	South Fi Area 1	rst Street Next to S	iB-51)
File No	.:	1118/	44581			Fall: NA	End Date:	: 11/23	/2009	
Boring	Coi an:	npany: Mickey	Parratt-Wo			••••••••••••••••••••••••••••••••••••••	Screen Riser		Grout Sand Pa Bentonit	ck e
		yrat.	Thate rogan			T	Stratum		Fi	eld
Depth Below Grade		Depth (feet)	Blows /6''	Penetr/ Recovery (in ft)	"N" Value	Sample Description	Change General Descript	Equip. Installed	Tes PID (ppm)	ting Time
0	1	4	NA	3.6/4.0	NA	0-2.0 ft. SILT (ML); little clay, trace fine sand, moderate brown (5YR 3/4), moist, medium dense, stiff.			0.0	1200
						2.0-3.6 ft. SILT (ML); little clay, trace fine sand; dark yellowish orange (10YR 6/6) moist, dense, stiff, no odor.				
		-								
						End of Boring at 4 ft. Cuttings backfilled into borehole.				
						1				
	-					-				
·						1				
						4				
						-				
						1				
						4				
						}				
		. <u></u>		· · · ·		1				
					-	1				
		<u> </u>				1				
	[ļ		4				
						1				
		· ·]				
				<u> </u>						
						<u>1</u>				
		[4				
Notes:		L	L	1	I	<u></u>	I	I		

-

-

:

-

						SOIL BORING LOG	R	EPORT	of Bor	NG
O'BRI	EN (& GER	E ENGINEE	RS, INC.				SB	-57	
Client:		Nation	al Grid			Sampler: 4' Macrocore				
Proj. L		(South	First Street	Site)		Hammer: Auto Hammer	Location:	South F	Next to S	B-50)
Proj. L	00:	Fullon	, 191				Start Date	e: 11/2:	3/2009	
File No	.:	1118/	44581			Fall: NA	End Date:		3/2009	
Boring	Cor	npany: Mickey	Parratt-Wo	olff			Screen Riser	= \	Grout Sand Pa	ck
OBG G		niickey	Nate Vogan						Bentonit	
							Stratum			eld
Depth							Change		Tes	ting
Ľ.				Penetr/		O-main Description	Comoral	Eauin	PID	Time
Below	N	Depth	Blows /6''	Recovery	"N" Value	Sample Description	General Descript	Equip. Installed	(ppm)	IIIIA
Grade 0	NO. 1	(feet) 4	NA	(in ft) 3.1/4.0		0-1.8 ft. FINE SAND (SM); ~25% silt, litte	Descript	Instandu	0.0	1205
ľ	,	4		0.174.0		medium to fine subrounded gravel, race clay,				
						moderate brown (5YR 4/4), moist, dense, no				
L						odor. 1.8-3.1 ft. SILT (ML); ~25% fine sand, trace clay,				
						yellowish orange (10YR 6/6), moist, dense, no				
L						odor.				
4	2	8	NA	4.0/4.0		0-2.6 ft. SILT (ML); ~25% fine sand, trace clay,			0.0	1210
·						yellowish orange (10YR 6/6), moist, dense, no lodor.				
┣───						2.6-4.0 ft. FINE SAND (SM); ~20% silt, trace fine				
						gravel, light brown (5YR 6/4), wet dense, no				
						odor.				
						End of boring at 8 ft.				
		<u> </u>				Cuttings backfilled into boring.				
<u> </u>			<u></u>							
					•••					
		Ļ								
<u> </u>			<u> </u>	·	<u>k</u>					
			_						·	
			<u>_</u>							
 			<u>.</u>							
						1				
		· ·								
		<u> </u>	<u>. </u>							
Notes:		L.,	Ļ,_	I		l	I <u> </u>	L	L	
INULUS:										
1										

-

10.0000

10 - H - H - H

-

-

-

-

-

						SOIL BORING LOG	R	EPORT C	OF BOR	NG
O'BRI	EN .	& GER	E ENGINEE	RS, INC.				SB-	58	
Client:			al Grid			Sampler: 4' Macrocore		0		
Proj. L	oc:	(South Fulton	First Street , NY	Site)		Hammer: Auto Hammer	Start Date	South Fi Area 2 (11/23:	Tar Well)	
File No	.:	1118/	44581			Fall: NA	End Date:			
Boring Forem	Cor an:	npany: Mickey	Parratt-Wo			• • • • • • • • • • • • • • • • • • • •	Screen Riser		Grout Sand Pa	
OBG G	eolo	ogist:	Nate Vogan	l <u></u>		1 ·····	Stratum		Bentonit	eld
Depth							Change			ting
Debru				Penetr/						J
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time
Grade	No.	(feet)	/6"	(in ft)	Value		Descript	Installed	(ppm)	1000
0	1	4	NA	2.9/4.0	NA	0-1.3 ft. DRIED TAR and METAL SLAG; some crushed asphalt and stone, black (N1), dense to loose, dry, tar odor.			0.3	1220
						1.3-2.9 ft. MEDIUM SAND (SP); ~25% fine sand, some silt, light brown (SYR 5/6), moist, dense, faint coal tar odor.				
4	2	8	NA	3.5/4.0	NA	MEDIUM SAND (SP); ~25% fine sand, some silt, light brown (5YR 5/8), wet dense, black staining, sheen, and strong coal tar odor throughout. Some coarse metal slag and ciders saturated with NAPL from 1.1-1.6 ft.			0.9	1225
8	3	12	NA	2.6/4.0	NA	0-1.5 ft. MEDIUM SAND (SP); ~25% fine sand, loose, wet, NAPL saturated, strong sheen, and coal tar odor. Possible sluff.			11.7	1230
						1.5-2.6 ft. MEDIUM SAND (SP); ~25% fine sand, moderate brown (5YR 4/4), medium dense, wet, some black staining in upper 3 in., coal tar odor throughout.				
						Refusal at 11'				
						Cuttings backfilled into borehole.				
	<u></u>									
~~										
			· · · · · · · · · · · · · · · · · · ·							
					<u> </u>					
					<u> </u>	ł				
		ļ	. <u></u>							
			h							
			ļ	<u> </u>	<u> </u>					
		<u> </u>	<u></u>							
					<u></u>					
		l	l	,		L	t		<u>_</u>	
Notes:										

. .

· · · · ·

-

_

						SOIL BORING LOG	R	EPORT C		NG
			E ENGINEE	RS, INC.				SB-	59	<u></u>
Client:		Nation	al Grid	014-2		Sampler: 4' Macrocore		Could F!	nat Street	
Proj. L	00:	(South	First Street	Site)		Hammer: Auto Hammer	Location:	South Fi Area 1	Next to	SB-52)
							Start Date	e: 11/23	/2009	,
File No		1118 /	44581 Parratt-Wo			Fall: NA	End Date: Screen	= 11/23	/2009 Grout	<u> </u>
Forema	an:	Mickey	1				Riser		Sand Pa	
OBG G	eolo	ogist:	Nate Vogan						Bentonit	
Danath							Stratum Change			eld ting
Depth				Penetr/			Change		104	ung
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time
Grade	No.		/6''	(in ft)	Value		Descript	Installed	(ppm)	
0	1	4	NA	3.1/4.0	NA	0-1.2 ft. FINE SAND (SM); ~40% silt, some medium and coarse subrounded gravel, some			0.0	1245
						roots, moderate brown (5YR 4/4) moist, loose to				
						medium dense, no odor.				
						1.0-3.1 ft. SILT (ML); ~40% fine sand, little brown vegetative pieces; dark yellowish orange (10YR				
						6/6), moist, dense, no odor.				
					ļ	End of boring at 4 ft.				
				-		Cuttings backfilled into borehole.				
					- · · ·					
			<u>_</u>							
				••						
L		;								
	<u> </u>			. <u></u>	<u>. </u>					
	. <u> </u>									
					·					
			<u>-</u>							
	·	<u> </u>		i						
										1
					<u> </u>					
Notes:		L		L						

A REAL PROPERTY OF A REAL PROPER

.

: .

.

.

=

O'BRI	EN 8	& GERI	EENGINEE	RS. INC.		SOIL BORING LOG	R	EPO		т с 68-	F BORI 60	NG
Client:		Nation		<u></u>		Sampler: 4' Macrocore						
		(South Fulton	First Street	Site)		Hammer: Auto Hammer	Location:		outh ea		rst Street	
-							Start Date	:	09	/13	/2010	
File No Boring		1118//	44581 Parratt-Wo	lff		Fall: NA	End Date: Screen	=	09		/2010 Grout	
Forema OBG G	an:	Jim La	nsing Nate Vogan				Riser			•	Sand Pac Bentonite	
							Stratum					əld
Depth				Penetr/			Change				Tes	ting
Below		Depth	Blows	Recovery	"N"	Sample Description	General	F	quip		PID	Time
Grade	No.	(feet)	/6"	(in ft)	Value			Ins			(ppm)	
0	1	4	NA	1.4/4.0		0-0.6 ft SILT (FILL); silt, some fine sand, trace	Fill		١		0.0	
						clay and vegetation; moist, slightly cohesive, dark brown, no odor. 0.6-1.1 ft. SILT (FILL); silt, some crushed stone, little fine sand; moist to dry, medium dense, moderate reddish brown, no odor. 1.1-1.4 ft. SILT (FILL); silt, some fine sand; moist, medium dense, slightly cohesive, grayish brown, no odor.						
4	2	8	NA	2.2/4.0		0-0.2 ft. CRUSHED BRICK (FILL); crushed brick; wet, loose, no odor. 0.2-2.2 ft. SILT (ML); silt, some clay, trace fine sand and organics; wet, dense, slightly cohesive, moderate brown to light orange brown, organics are found in moderate brown layers, no odor.	4.01		١		0.0	
8	3	12	NA	3.7/4.0	NA	SILT (ML); silt, some fine sand, little clay; wet, dense, slightly cohesive, light olive gray to light brown, no odor.	4.2' Silt & Fine Sand		N		0.0	
12	4	16	NA	4.0/4.0	NA	SAND (SM); fine sand, some silt, trace fine rounded gravel; wet, medium dense to loose, moderate yellowish brown (10YR 5/4), no odor.	12'		۰ ۱		0.0	
16	5	20	NA	4.0/4.0	NA	SAND (SM); fine sand, little fine to coarse subrounded to angular gravel; wet, loose, pale reddish brown (10R 5/4), no odor.	Fine Sand & Gravel		١		0.0	1000
						End of Boring at 20 ft bgs Bentonite chip to grade						
]						
						4						
						1						
						1						
						4						
						4						
						1						
						1						
Nate												
Notes:												
L												

						SOIL BORING LOG	R	EPO		OF BORI	NG
			ENGINEE	RS, INC.					SE	3-61	
Client:		Nationa (South	al Grid First Street	Site)		Sampler: 4' Macrocore	Location:	Sc	outh I	First Street	
Proj. L	oc:	Fulton,	NY	0110)		Hammer: Auto Hammer		Ar	ea	2	
File No	.:	1118/4	14581			Fall: NA	Start Date End Date:			3/2010 3/2010	
Boring	Cor	npany:	Parratt-Wo	olff			Screen	=	1	Grout	
OBG G	an: eolc	Jim Laı aist:	nsing Nate Vogan	1			Riser			Sand Pa Bentonit	
		Ĭ	<u>v</u>				Stratum				eld
Depth				Penetr/			Change			Tes	ting
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Ec	uip.	PID	Time
Grade	No.	(feet)	/6"	(in ft)	Value		Descript		talled		
0	1	4	NA	1.9/4.0	NA	SAND (FILL); fine sand, some silt, little angular	Fill		١	0.0	
						crushed stone; moist, medium dense, dark reddish brown (10R 3/4) to grayish brown (5YR					
4	2	8	NA	1.8/4.0	NA	3/2), no odor.			,	0.0	
4	Z	0	NA	1.0/4.0	INA	SILT (ML); silt, some fine sand, little coarse			١	0.0	
						gravel, trace clay, trace woody fibers in nose of					
						spoon; wet, medium dense, moderate brown (5YR 3/4) to grayish brown (5YR 3/2), no odor.	4'				
8	3	12	NA	3.9/4.0	NA	SILT (ML); silt, some clay, little fine sand; wet,	Silt & Fine				
						dense, slightly cohesive, stiff, pale brown (5YR 5/2) to moderate yellowish brown (10YR 5/4), no	Sand				
						odor.			١	0.0	
12	4	16	NA	4.0/4.0	NA	SILT (ML); silt, some fine sand, little to trace clay; wet, dense, stiff, slightly cohesive, pale brown					
						(5YR 5/2), no odor.	18.6'		١	0.0	
16	5	20	NA	3.4/4.0	NA		Fine Sand & Gravel				
						0-2.6 ft. SILT (ML); silt, some fine sand, little to trace clay; wet, dense, stiff, slightly cohesive, pale					
						brown (5YR 5/2), no odor. 2.6-3.4 ft. SAND (SM);					
						medium to fine sand, some coarse angular gravel; wet, loose to medium dense, pale reddish brown					
						(10R 5/4), no odor.			١	0.0	1055
						End of boring at 20 ft bgs					
						Bentonite chip to grade					
						4					
						1					
						4					
						1					
						1					
						1					
Notes:											
l											

Client: National Grid (South First Street Site) Sampler: 4' Macrocore Location: South First Street Proj. Loc: Fulton, NY Hammer: Auto Hammer Location: South First Street File No.: 1118 / 44581 Fall: NA End Date: 09/13/2010 Boring Company: Parratt-Wolff Fall: NA Screen = \ Grout Foreman: Jim Lansing OBG Geologist: Nate Vogan Bentonite Bentonite Depth Penetr/ Penetr/ Penetr/ Stratum Field	O'BRII	EN 8	& GERE		RS. INC.		SOIL BORING LOG	R	EPORT C SB-		NG
File No.: 1118 / 44581 Fall: NA End Date: 09/13/2010 Boring Company: Parratt-Wolff Grout Stratum Crout Stratum Particle 9/13/2010 Stratum	Client:		Nationa (South	al Grid First Street			-		South Fi Area 2	rst Street	
OBG Geologist: Nate Vogan Bentonite Depth Penetr/ Penetr/ Stratum Change Field Below Depth Blows (in ft) Value Stratum Change Penetr/ 0 1 4 NA 1.6/4.0 NA StLT (FILL): sit and fine sand, some crushed brick, little coal fragments; most, medium dense, dusky brown (5YR 2/2), no odor. Fill V 0.0 4 2 8 NA 3.8/4.0 NA O.0.5 ft. SILT (FILL): sit and fine sand, some crushed brick, little coal fragments; most, medium dense, dusky brown (5YR 2/2), no odor. Fill V 0.0 4 2 8 NA 3.8/4.0 NA O.0.5 ft. SILT (FILL): sit and fine sand, some crushed brick, little coal fragments; modum dense, dusky brown (5YR 2/2), no odor. 4.5' 8 3 12 NA 4.0/4.0 NA SILT (ML): sit, some fine sand, little clay; wet, dense, siff, slightly cohesite, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. Sit & Fine Sand V 0.0 12 4 16 NA 1.0/4.0 NA O.1.5 ft. SILT (ML): sit, some fine sand, little clay; wet, dense, siff, slightly cohesite, lighth Sit & Fine Sand & Gravel	Boring	Cor	npany:	Parratt-Wo	olff		Fall: NA	End Date: Screen	09/13	/2010 Grout	ck
Below Grade Depth (feet) Blows /6" Penett/ Recovery (in ft) "N" Value Sample Description General Descript Full (nstalled (ppm) PID (ppm) 0 1 4 NA 1.6/4.0 NA SILT (FILL); silt and fine sand, some crushed dusky brown (5YR 2/2), no odor. Fill Imatelled 0.0 4 2 8 NA 3.8/4.0 NA 0.0 5ft SILT (FILL); silt and fine sand, some crushed brick, little coal fragments; moist, medium dense, dusky brown (5YR 2/2), no odor. Fill Imatelled 0.0 8 3 12 NA 4.0/4.0 NA SILT (ML); silt, some fine sand, little clay; wet, dense, silt, lightly cohesive, light brown (5YR 5/6), no odor. 4.5' 12 4 16 NA 4.0/4.0 NA O.15.th SILT (ML); silt, some fine sand, little clay; wet, dense, silt, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 5.11 & Fine Sand Silt & Fine Sand Imatelled Sand 0.0 12 4 16 NA 4.0/4.0 NA Poor recovery. SILT (ML); silt, some fine sand, little clay; wet, dense, sift, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 13.5' 0.0 16 5 20<	OBG G			Nate Vogan				Stratum		Bentonit Fi	e eld
Grade No. (feet) /6" (in ft) Value Descript Installed (ppm) 0 1 4 NA 1.6/4.0 NA SILT (FILL); silt and fine sand, some crushed bick, little coal fragments; moist, medium dense, dusky brown (5YR 2/2), no odor. Fill 1 1 0.0 4 2 8 NA 3.8/4.0 NA -0.5 ft. SILT (FILL); silt and fine sand, some crushed bick, little coal fragments; moist, medium dense, dusky brown (5YR 2/2), no odor. Fill 1 1 0.0 4 2 8 NA 3.8/4.0 NA -0.5 ft. SILT (FILL); silt and fine sand, some crushed brick, little coal fragments; moist, medium dense, dusky brown (SYR 2/2), no odor. -4.5' 0.0 8 3 12 NA 4.0/4.0 NA SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (GYR 5/6), no odor. -4.5' 112 4 16 NA 4.0/4.0 NA SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (GYR 5/6) to moderate yellowish brown (10YR 5/4), no odor. -1.5 ft. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (10YR 5/4), no odor. -1.5.5 NA -0.0 -1.5/4.0 ft. S	-		Denth	Blows		"N"	Sample Description		Equip		ting Time
0 1 4 NA 1.6/4.0 NA SILT (FILL): silt and fine sand, some crushed brick, little coal fragments; moist, medium dense, dusky brown (SYR Z2), no odor. Fill 1 0.0 4 2 8 NA 3.8/4.0 NA 0-0.5 ft. SILT (FILL); silt and fine sand, some crushed brick, little coal fragments; moist, medium dense, dusky brown (SYR Z2), no odor. 5-3.8 1 0.0 8 3 12 NA 4.0/4.0 NA SILT (ML); silt, some fine sand, bittle clay; wet, dense, silf, slightly cohesive, light brown (SYR 5/6) to moderate yellowish brown (SYR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 5/16 to moderate yellowish brown (SYR 5/6) for sand, bittle clay; wet, dense, stiff, slightly cohesive, light brown (SYR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 0.0 12 4 16 NA 4.0/4.0 NA 0.1.5 ft. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (SYR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 13.5' 0.0 16 5 20 NA 1.2/4.0 NA Poor recovery. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (10YR 5/4), no odor. 13.5' 0.0 16 5 20 NA 1.2/4.0 NA End of boring at 20 f		No.			-						THIC
a a a crushed brick, little coal fragments; moist, medium dense, dusky brown (GYR 2/2), no odor. 0.5-3.8, tr. SAND (SM); fine sand, some sitil, little clay; wet, dense, light brown (SYR 5/6), no odor. 4.5' 8 3 12 NA 4.0/4.0 NA SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (SYR 5/6), no odor. 5ilt & Frine 12 4 16 NA 4.0/4.0 NA O.1.5 tt. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (SYR 5/4), no odor. Silt & Frine 12 4 16 NA 4.0/4.0 NA 0.1.5 tt. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (DYR 5/4), no odor. 5ilt & Frine 16 5 20 NA 1.2/4.0 NA 16 5 20 NA 1.2/4.0 NA 10/Y 6.5/4), no odor. . . 13.5' \ 10 5 20 NA 1.2/4.0 NA Poor recovery. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (YR 76/6), no odor. 13.5' \ 0.0 116 5 20 NA 1.2/4.0 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>brick, little coal fragments; moist, medium dense,</td> <td></td> <td>\</td> <td></td> <td></td>		1					brick, little coal fragments; moist, medium dense,		\		
8 3 12 NA 4.0/4.0 NA SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. Silt & Fine Sand Sand \\ 0.0 12 4 16 NA 4.0/4.0 NA O.1.5 ft. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (10YR 5/4), no odor. Sand \\ 0.0 12 4 16 NA 4.0/4.0 NA O.1.5 ft. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. Silt & Fine Sand & Sand 16 5 20 NA 1.2/4.0 NA Poor recovery. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (10YR 5/4), no odor. Fine Sand & Gravel 16 5 20 NA 1.2/4.0 NA Poor recovery. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (10YR 5/6) to moderate yellowish brown (10YR 5/6), no odor. Fine Sand & Gravel \ 0.0 16 5 20 NA 1.2/4.0 NA End of boring at 20 ft bgs Fine Sand & Gravel \ 0.0 <td>4</td> <td>2</td> <td>8</td> <td>NA</td> <td>3.8/4.0</td> <td>NA</td> <td>crushed brick, little coal fragments; moist, medium dense, dusky brown (5YR 2/2), no odor. 0.5-3.8 ft. SAND (SM); fine sand, some silt, little clay;</td> <td></td> <td>١</td> <td>0.0</td> <td></td>	4	2	8	NA	3.8/4.0	NA	crushed brick, little coal fragments; moist, medium dense, dusky brown (5YR 2/2), no odor. 0.5-3.8 ft. SAND (SM); fine sand, some silt, little clay;		١	0.0	
Image: Second	8	3	12	NA	4.0/4.0	NA	dense, stiff, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no	Silt & Fine		0.0	
16 5 20 NA 1.2/4.0 NA Poor recovery. SILT (ML); silt, some fine sand, little clay; wet, dense, stiff, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 1.5-4.0 ft. SAND (SP); fine sand, little coarse gravel; wet, loose, soft, pale reddish brown (10R 5/4), no odor. Fine Sand & Gravel Image: Comparison of the sand intervent of the sand i	12	4	16	NA	4.0/4.0	NA	clay; wet, dense, stiff, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 1.5-4.0 ft. SAND (SP); fine sand, little coarse gravel; wet, loose, soft, pale				
End of boring at 20 ft bgs	16	5	20	NA	1.2/4.0	NA	little clay; wet, dense, stiff, slightly cohesive, light brown (5YR 5/6) to moderate yellowish brown (10YR 5/4), no odor. 1.5-4.0 ft. SAND (SP); fine sand, little coarse gravel; wet, loose, soft, pale	Fine Sand &	•		
										0.0	
Notes:	Notes:		I								

						SOIL BORING LOG	R	EPO			OF BORI	NG
O'BRI		& GERI		R5, INC.		Complex: // Meereeere			3	B-	63	
Proj. L		(South Fulton,	First Street	Site)		Sampler: 4' Macrocore Hammer: Auto Hammer	Location: Start Date	Ar :	ea 09	2 /13/	/2010	
File No Boring		1118/	44581 Parratt-Wo	lff		Fall: NA	End Date: Screen	=	09		/2010 Grout	
Forema OBG G	an:	Jim La	nsing Nate Vogan				Riser			<u>`</u>	Sand Pac Bentonit	
							Stratum					eld
Depth				Develo			Change				Tes	ting
Below		Depth	Blows	Penetr/ Recovery	"N"	Sample Description	General	Ec	luip		PID	Time
Grade	No.	-	/6"	(in ft)	Value	Sample Description		Inst			(ppm)	TIME
0	1	4	NA	2.7/4.0	NA	0-1.3 ft. SILT (FILL); silt, some fine sand, little crushed stone and coal fragments; dry, loose, grayish brown (5YR 3/2), no odor. 1.3-2.7 ft. SAND (SM); fine sand, some silt, trace organics; moist, medium dense to loose, moderate brown (5YR 4/4), no odor.	Fill		١		0.0	1242
4	2	8	NA	2.5/4.0	NA	0-1.1 ft. SAND (SM); fine sand, some silt, trace organics; moist, medium dense to loose, moderate brown (5YR 4/4), no odor. 1.1-2.5 ft. SILT (ML); silt, little fine sand and clay, trace fine gravel in last 3 in.; wet, medium dense, moderate yellowish brown (10YR 5/4), no odor.	1.3'		١		0.0	
8	3	12	NA	3.8/4.0	NA	SAND (SP); fine sand, little medium to coarse angular gravel; wet, loose, soft, pale reddish brown (10R 5/4), no odor.	Fine Sand & Silt		١		0.0	
12	4	16	NA	2.6/4.0	NA	SAND (SP); fine sand, some medium to coarse angular gravel; wet, loose, soft, pale reddish brown (10R 5/4), no odor.	8'		١		0.0	
16	5	20	NA	2.8/4.0	NA	SAND (SP); fine sand, little rounded medium to coarse gravel; wet, very dense, pale reddish brown (10R 5/4), no odor.	Fine Sand & Gravel		١		0.0	1310
						End of boring at 20 ft bgs						
						Benonite chip to grade						
						4						
						1						
						4						
]						
]						
Notes:												
10105.												

0.0000000000000000000000000000000000000	EN 8		ENGINE	RS, INC.		SOIL BORING LOG	R	EPORT C SB-		NG
Client: Proj. Lo File No		Nationa (South Fulton, 1118 / 4	First Street NY	Site)		Sampler: 4' Macrocore Hammer: Auto Hammer Fall: NA	Location: Start Date End Date:		/2010	
Boring	Cor an:	npany: Jim Laı	Parratt-W		1		Screen Riser		Grout Sand Pae Bentonit	е
Depth				Penetr/			Stratum Change			eld sting
Below Grade	No.	Depth (feet)	Blows /6"	Recovery (in ft)	"N" Value	Sample Description	General Descript	Equip. Installed	PID (ppm)	Time
0	1	4	NA	2.5/4.0	NA	SILT (FILL); silt, some fine sand, little crushed stone and coal fragments; moist, loose to medium dense, dusky brown (5YR 2/2), no odor.	Fill		0.0	1314
4	2	8	NA	3.1/4.0	NA	0-0.9 ft. SAND (SM); fine sand, little silt; wet, soft, moderate yellowish brown (10YR 5/4), no odor. 0.9-1.5 ft. SILT (ML); silt, some fine sand and organics; moist, medium dense, dusky brown (5YR 2/2), no odor. 1.5-3.1 ft. SILT (ML); silt, some clay; wet, dense, stiff, cohesive, light brown (5YR 5/6) with pale yellowish brown (10YR 6/2) mottling, no odor.	4	X	0.0	
8	3	12	NA	3.0/4.0	NA	SILT (ML); silt, some clay, little medium to fine angular gravel; wet, dense, stiff, moderate yellowish brown (10YR 5/4), no odor.	4' Fine Sand & Silt		0.0	
12	4	16	NA	4.0/4.0	NA	0-0.3 ft. SILT (ML); silt, some clay, little medium to fine angular gravel; wet, dense, stiff, moderate yellowish brown (10YR 5/4), no odor. 0.3-4.0 ft. SAND (SP); fine sand, little coarse subrounded gravel; wet, medium dense to dense, pale reddish brown (10R 5/4), no odor.				
16	5	20	NA	2.9/4.0	NA	SAND (SP); fine sand, little coarse subrounded to angular gravel; wet, soft to medium dense, pale reddish brown (10R 5/4), no odor.	12.3' Fine Sand & Gravel		0.0	1340
						End of boring at 20 ft bgs Benonite chip to grade				
Notes:				·	•					

						SOIL BORING LOG	R	EPC			F BORI	NG
	******			RS, INC.		Annual and Al Manual and			S	B-(65	
Client:		Nationa (South	First Street	Site)		Sampler: 4' Macrocore	Location:				st Street	
Proj. L	DC:	Fulton,	, NY			Hammer: Auto Hammer	Start Date		ea 09/		2010	
File No	.:	1118/	44581			Fall: NA	End Date:			/13/	2010	
Boring	Con an:	npany: Jim La	Parratt-Wo	olff			Screen Riser	=	Ň		Grout Sand Pad	:k
OBG G			Nate Vogan			r			*		Bentonite	e
Depth							Stratum Change				Fie Tes	eld
Deptil				Penetr/			Change				163	ung
Below		Depth	Blows	Recovery	"N"	Sample Description	General		luip.		PID	Time
Grade	No.	(feet)	/6"	(in ft)	Value			Inst	talle	d	(ppm)	4 4 4 5
0	1	4	NA	2.1/4.0	NA	0-1.2 ft. SILT (FILL); silt, some fine sand, little clay and crushed brick, trace organics; moist, medium dense, dusky brown (5YR 2/2), no odor. 1.2-2.1 ft. SAND (SM); fine sand, some silt; wet, medium dense, soft, moderate yellowish brown (10YR 5/4), no odor.	Fill		\ \		0.0	1415
4	2	8	NA	4.0/4.0	NA	0-1.8 ft. SILT (ML); silt, some fine sand, little organics; moist, soft, dusky brown (5YR 2/2), no odor. 1.8-3.2 ft. SAND (SP); fine sand, little medium to coarse angular gravel; wet, loose to medium dense, soft, moderate yellowish brown (5YR 4/4), no odor. 3.2-4.0 ft. SAND (SP); fine sand, little medium to coarse angular gravel; wet, loose to medium dense, soft, pale reddish brown (10R 5/4), no odor.	1.2'		١		0.0	
8	3	12	NA	0.0/4.0	NA	No recovery, flowing sand.	Fine Sand & Silt		١		0.0	
12	4	16	NA	1.6/4.0	NA	SAND (sp); fine sand, some medium to coarse angular to subrounded gravel; wet, loose, becoming dense in last 3 in., pale reddish brown (10R 5/4), no odor.	5.8'		\ \		0.0	
16	5	20	NA	4.0/4.0	NA	SAND (SP); fine sand, some coarse angular gravel; wet, very dense, pale reddish brown (10R 5/4), no odor.	Fine Sand & Gravel		١		0.0	1440
						End of boring at 20 ft bgs Benonite chip to grade						
						1						
						•						
						1						
Notes:				1		1	1	1				

Groundwater Quality Laboratory Reports

5854 Butternut Drive East Syracuse, NY 13057

(315) 445-1105

Friday, June 04, 2010

Deborah Wright O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway PO Box 4873 Syracuse, NY 13221-4873

TEL: (315) 437-6100

Project: NATIONAL GRID - FULTON, NY RE: Analytical Results

Order No.: K1005028, K1005034 K1005042

Dear Deborah Wright:

Life Science Laboratories, Inc. received sample(s) on 5/4/2010 and 5/5/2010 for the analyses presented in the following report. Sample results relate only to the samples as received by the laboratory.

Very truly yours, Life Science Laboratories, Inc.

JAtus

Pamela J. Titus Project Manager

CC: Scott Tucker

Analytical Results

F	Cast Syracuse, NY 130	57 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engin National Grid - Fulton			Lab ID: Client Sample ID:	K1005028-001A MW-4-050310
W Order: Matrix:	K1005028 WATER			Collection Date: Date Received:	05/03/10 12:40 05/04/10 8:31
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9060.D
Col Type:					

Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE C	RGANIC COMPOUND	S BY GC/MS			SW826	0B	
(m+p)-Xylene		283	20.0	4.00	µg/L	20	05/13/10 15:07
o-Xylene		243	10.0	2.00	µg/L	20	05/13/10 15:07
Dichlorodifluoro	omethane	ND	20.0	2.00	µg/L	20	05/13/10 15:07
Chloromethane		ND	20.0	6.60	µg/L	20	05/13/10 15:07
Vinyl chloride		ND	20.0	6.60	µg/L	20	05/13/10 15:07
Bromomethane		ND	20.0	6.60	µg/L	20	05/13/10 15:07
Chloroethane		ND	20.0	6.60	µg/L	20	05/13/10 15:07
Trichlorofluoror	nethane	ND	20.0	2.00	µg/L	20	05/13/10 15:07
1,1-Dichloroeth	iene	ND	10.0	3.20	μg/L	20	05/13/10 15:07
1,1,2-Trichloro-	-1,2,2-trifluoroethane	ND	10.0	2.00	μg/L	20	05/13/10 15:07
Acetone		ND	200	20.0	μg/L	20	05/13/10 15:07
Carbon disulfid	e	ND	10.0	2.20	μg/L	20	05/13/10 15:07
Methyl acetate		ND	100	20.0	µg/L	20	05/13/10 15:07
Methylene chlo	ride	ND	40.0	3.20	µg/L	20	05/13/10 15:07
trans-1,2-Dichl		ND	10.0	2.00	µg/L	20	05/13/10 15:07
Methyl tert-buty		ND	20.0	3.20	µg/L	20	05/13/10 15:07
1,1-Dichloroeth		ND	10.0	2.00	µg/L	20	05/13/10 15:07
cis-1,2-Dichlor		ND	10.0	2.00	µg/L	20	05/13/10 15:07
2-Butanone		ND	200	20.0	µg/L	20	05/13/10 15:07
Chloroform		ND	10.0	2.00	µg/L	20	05/13/10 15:07
1,1,1-Trichloro	ethane	ND	10.0	2.00	µg/L	20	05/13/10 15:07
Cyclohexane		ND	10.0	2.00	μg/L	20	05/13/10 15:07
Carbon tetrach	loride	ND	10.0	2.00	µg/L	20	05/13/10 15:07
Benzene		752	10.0	2.00	µg/L	20	05/13/10 15:07
1,2-Dichloroeth	nane	ND	10.0	3.20	μg/L	20	05/13/10 15:07
Trichloroethen	e	ND	10.0	2.00	µg/L	20	05/13/10 15:07
Methylcyclohex	ane	ND	10.0	2.00	µg/L	20	05/13/10 15:07
1,2-Dichloropro		ND	10.0	3.20	µg/L	20	05/13/10 15:07
Bromodichloro	•	ND	10.0	2.00	μg/L	20	05/13/10 15:07
cis-1,3-Dichlor	opropene	ND	10.0	3.20	µg/L	20	05/13/10 15:07
4-Methyl-2-per	• •	ND	100	20.0	μg/L	20	05/13/10 15:07
Toluene		79.4	10.0	2.00	µg/L	20	05/13/10 15:07
trans-1,3-Dich	loropropene	ND	10.0	3.20	µg/L	20	05/13/10 15:07
1,1,2-Trichloro		ND	10.0	3.20	µg/L	20	05/13/10 15:07
Qualifiers:	* Value exceeds Maxim	um Contaminant Leve	:1	B Analyte	detected in the	associated N	Iethod Blank
Quantiers:	E Value exceeds the inst	rument calibration ran	ge	H Holding	times for prepa	aration or an	alysis exceeded
	J Analyte detected below	v the PQL		ND Not Dete	ected at the Pra	ectical Quant	itation Limit (PQL)
	P Prim./Conf. column %	•	nit	S Spike Re	ecovery outside	e accepted re	covery limits

P Prim./Conf. column %D or RPD exceeds limit

508759

Print Date: 05/18/10 6:03

Project Supervisor: Pamela J. Titus

Analytical Results

~

E	Cast Syracuse, NY 1305	57 (315)	445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005028-001A MW-4-050310
W Order: Matrix:	K1005028 WATER			Collection Date: Date Received:	05/03/10 12:40 05/04/10 8:31
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9060.D
Col Type:			_		

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUN	DS BY GC/MS			SW826)B	
Tetrachloroethene	ND	10.0	2.00	µg/L	20	05/13/10 15:07
Dibromochloromethane	ND	10.0	2.00	µg/L	20	05/13/10 15:07
1,2-Dibromoethane	ND	10.0	3.20	µg/L	20	05/13/10 15:07
Chlorobenzene	ND	10.0	2.00	µg/L	20	05/13/10 15:07
Ethylbenzene	315	10.0	2.00	µg/L	20	05/13/10 15:07
Xylenes (total)	526	20.0	6.00	µg/L	20	05/13/10 15:07
Styrene	ND	10.0	2.00	µg/L	20	05/13/10 15:07
Bromoform	ND	20.0	6.60	µg/L	20	05/13/10 15:07
Isopropylbenzene	8.80 J	10.0	2.00	µg/L	20	05/13/10 15:07
1,1,2,2-Tetrachloroethane	ND	10.0	2.00	µg/L	20	05/13/10 15:07
1,3-Dichlorobenzene	ND	10.0	2.00	µg/L	20	05/13/10 15:07
1,4-Dichlorobenzene	ND	10.0	3.20	µg/L	20	05/13/10 15:07
1,2-Dichlorobenzene	ND	10.0	2.00	µg/L	20	05/13/10 15:07
1,2-Dibromo-3-chloropropane	ND	100	20.0	µg/L	20	05/13/10 15:07
1,2,4-Trichlorobenzene	ND	20.0	2.00	µg/L	20	05/13/10 15:07
Surr: 1,2-Dichloroethane-d4	100	75-128	3.20	%REC	20	05/13/10 15:07
Surr: Toluene-d8	100	75-125	2.00	%REC	20	05/13/10 15:07
Surr: 4-Bromofluorobenzene	99	75-125	2.00	%REC	20	05/13/10 15:07

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quamiters.	Е	Value exceeds the instrument calibration range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 05/18/10 6:03 508759 Project Supervisor: Pamela J. Titus

Analytical Results

E	ast Syracuse, NY 1305	(315)	445-1105	5	stateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005028-002A MW-5-050310
W Order: Matrix:	K1005028 WATER			Collection Date: Date Received:	05/03/10 15:20 05/04/10 8:31
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9061.D
Col Type:			_		

Analyte		Result Qua	I PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY		S BY GC/MS			SW826	0B	
(m+p)-Xylene		368	20.0	4.00	µg/L	20	05/13/10 15:40
o-Xylene		193	10.0	2.00	µg/L	20	05/13/10 15:40
Dichlorodifluoro	methane	ND	20.0	2.00	µg/L	20	05/13/10 15:40
Chloromethane		ND	20.0	6.60	µg/L	20	05/13/10 15:40
Vinyl chloride		ND	20.0	6.60	µg/L	20	05/13/10 15:40
Bromomethane		ND	20.0	6.60	μg/L	20	05/13/10 15:40
Chloroethane		ND	20.0	6.60	µg/L	20	05/13/10 15:40
Trichlorofluoron	nethane	ND	20.0	2.00	μg/L	20	05/13/10 15:40
1.1-Dichloroeth	ene	ND	10.0	3.20	μg/L	20	05/13/10 15:40
,	1,2,2-trifluoroethane	ND	10.0	2.00	µg/L	20	05/13/10 15:40
Acetone	- ,_ ,	ND	200	20.0	µg/L	20	05/13/10 15:40
Carbon disulfid	e	ND	10.0	2.20	μg/L	20	05/13/10 15:40
Methyl acetate	-	NÐ	100	20.0	µg/L	20	05/13/10 15:40
Methylene chlor	ride	ND	40.0	3.20	µg/L	20	05/13/10 15:40
trans-1,2-Dichl		ND	10.0	2.00	µg/L	20	05/13/10 15:40
Methyl tert-buty		ND	20.0	3.20	µg/L	20	05/13/10 15:40
1,1-Dichloroeth		ND	10.0	2.00	µg/L	20	05/13/10 15:40
cis-1,2-Dichlor		ND	10.0	2.00	μg/L	20	05/13/10 15:40
2-Butanone		ND	200	20.0	µg/L	20	05/13/10 15:40
Chloroform		ND	10.0	2.00	µg/L	20	05/13/10 15:40
1,1,1-Trichloro	ethane	ND	10.0	2.00	µg/L	20	05/13/10 15:40
Cyclohexane		ND	10.0	2.00	µg/L	20	05/13/10 15:40
Carbon tetrach	loride	ND	10.0	2.00	µg/L	20	05/13/10 15:40
Benzene		8.80 J	10.0	2.00	μg/L	20	05/13/10 15:40
1,2-Dichloroeth	ane	ND	10.0	3.20	µg/L	20	05/13/10 15:40
Trichloroethen		ND	10.0	2.00	µg/L	20	05/13/10 15:40
Methylcyclohe		12.2	10.0	2.00	µg/L	20	05/13/10 15:40
1,2-Dichloropro		ND	10.0	3.20	µg/L	20	05/13/10 15:40
Bromodichloro		ND	10.0	2.00	µg/L	20	05/13/10 15:40
cis-1,3-Dichlor		ND	10.0	3.20	µg/L	20	05/13/10 15:40
4-Methyl-2-per		ND	100	20.0	µg/L	20	05/13/10 15:40
Toluene	Ranono	11.4	10.0	2.00	μg/L	20	05/13/10 15:40
trans-1,3-Dich	loropropene	ND	10.0	3.20	μg/L	20	05/13/10 15:40
1,1,2-Trichloro	• •	ND	10.0	3.20	µg/L	20	05/13/10 15:40
Qualifiers:	* Value exceeds Maxim	um Contaminant Level		B Analyte	detected in the	associated N	Aethod Blank
Quanners:		rument calibration rang		H Holding	times for prep	aration or an	alysis exceeded
	J Analyte detected below			ND Not Det	ected at the Pra	actical Quant	titation Limit (PQL)
	~	D or RPD exceeds lim	it	S Spike R	ecovery outsid	e accepted re	covery limits

Print Date: 05/18/10 6:03 508760 Project Supervisor: Pamela J. Titus

E	ast Syracuse, NY 1305	57 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005028-002A MW-5-050310
W Order: Matrix:	K1005028 WATER			Collection Date: Date Received:	05/03/10 15:20 05/04/10 8:31
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9061.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNI	DS BY GC/MS			SW826	0B	
Tetrachloroethene	ND	10.0	2.00	µg/L	20	05/13/10 15:40
Dibromochloromethane	ND	10.0	2.00	µg/L	20	05/13/10 15:40
1,2-Dibromoethane	ND	10.0	3.20	µg/L	20	05/13/10 15:40
Chlorobenzene	ND	10.0	2.00	µg/L	20	05/13/10 15:40
Ethylbenzene	303	10.0	2.00	µg/L	20	05/13/10 15:40
Xylenes (total)	561	20.0	6.00	µg/L	20	05/13/10 15:40
Styrene	ND	10.0	2.00	µg/L	20	05/13/10 15:40
Bromoform	ND	20.0	6.60	µg/L	20	05/13/10 15:40
Isopropylbenzene	97.0	10.0	2.00	µg/L	20	05/13/10 15:40
1,1,2,2-Tetrachloroethane	ND	10.0	2.00	µg/L	20	05/13/10 15:40
1.3-Dichlorobenzene	ND	10.0	2.00	µg/L	20	05/13/10 15:40
1,4-Dichlorobenzene	ND	10.0	3.20	µg/L	20	05/13/10 15:40
1,2-Dichlorobenzene	ND	10.0	2.00	µg/L	20	05/13/10 15:40
1,2-Dibromo-3-chloropropane	ND	100	20.0	µg/L	20	05/13/10 15:40
1,2,4-Trichlorobenzene	ND	20.0	2.00	μg/L	20	05/13/10 15:40
Surr: 1,2-Dichloroethane-d4	89	75-128	3.20	%REC	20	05/13/10 15:40
Surr: Toluene-d8	110	75-125	2.00	%REC	20	05/13/10 15:40
Surr: 4-Bromofluorobenzene	105	75-125	2.00	%REC	20	05/13/10 15:40

	·••	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Qualifiers:	E	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
		Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. 5854 Butternut Drive

E	Cast Syracuse, NY 13	057 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engi National Grid - Fulto			Lab ID: Client Sample ID:	K1005028-003A Trip Blank
W Order: Matrix:	K1005028 WATER Q	~	10. 1	Collection Date: Date Received:	05/03/10 12:40 05/04/10 8:31
Inst. ID: ColumnID Revision:	MS01_11 Rtx-VMS 06/04/10 13:49	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9059.D
Col Type:		Testeouer			

Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyze
VOLATILE ORGANIC COMPOUNDS BY		UNDS BY GC/MS			SW8260B		
(m+p)-Xylene		ND	1.00	0.20	µg/L	1	05/13/10 14:34
o-Xylene		ND	0.50	0.10	µg/L	1	05/13/10 14:34
Dichlorodifluor	omethane	ND	1.00	0.10	µg/L	1	05/13/10 14:34
Chloromethane	9	ND	1.00	0.33	µg/L	1	05/13/10 14:34
Vinyl chloride		ND	1.00	0.33	µg/∟	1	05/13/10 14:34
Bromomethan	9	ND	1.00	0.33	µg/L	1	05/13/10 14:34
Chloroethane		ND	1.00	0.33	µg/L	1	05/13/10 14:34
Trichlorofluoro	methane	ND	1.00	0.10	µg/L	1	05/13/10 14:34
1,1-Dichloroeth	nene	ND	0.50	0.16	µg/L	1	05/13/10 14:34
1,1,2-Trichloro trifluoroethane		ND	0.50	0.10	µg/L	1	05/13/10 14:34
Acetone		ND	10.0	1.00	µg/L	1	05/13/10 14:34
Carbon disulfic	le	ND	0.50	0.11	µg/L	1	05/13/10 14:34
Methyl acetate	•	ND	5.00	1.00	μg/L	1	05/13/10 14:34
Methylene chlo	oride	ND	2.00	0.16	µg/L	1	05/13/10 14:34
trans-1,2-Dich	loroethene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
Methyl tert-but	yl ether	ND	1.00	0.16	µg/L	1	05/13/10 14:34
1,1-Dichloroet	hane	ND	0.50	0.10	µg/L	1	05/13/10 14:34
cis-1,2-Dichlor	oethene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
2-Butanone		ND	10.0	1.00	µg/L	1	05/13/10 14:34
Chloroform		ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,1,1-Trichlord	bethane	ND	0.50	0.10	µg/L	1	05/13/10 14:34
Cyclohexane		ND	0.50	0.10	µg/L	1	05/13/10 14:34
Carbon tetrach	nloride	ND	0.50	0.10	µg/L	1	05/13/10 14:34
Benzene		ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,2-Dichloroet	hane	ND	0.50	0.16	µg/L	1	05/13/10 14:34
Trichloroether	e	ND	0.50	0.10	µg/L	1	05/13/10 14:34
Methylcyclohe	exane	ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,2-Dichloropr	opane	ND	0.50	0.16	µg/L	1	05/13/10 14:34
Bromodichloro	omethane	ND	0.50	0.10	µg/L	1	05/13/10 14:34
cis-1,3-Dichlo	ropropene	ND	0.50	0.16	µg/L	1	05/13/10 14:34
4-Methyl-2-pe	ntanone	ND	5.00	1.00	µg/L	1	05/13/10 14:34
Toluene		ND	0.50	0.10	µg/L	1	05/13/10 14:34
trans-1,3-Dich	lloropropene	ND	0.50	0.16	µg/L	1	05/13/10 14:34
Qualifiers:	* Value exceeds	Maximum Contaminant Le	/el	B Analyte	e detected in the	e associated	Method Blank
~~~~~~~	E Value exceeds	the instrument calibration ra	inge	H Holdin	g times for prep	paration or a	nalysis exceeded
	J Analyte detected	ed below the PQL		ND Not De	tected at the Pr	actical Quan	titation Limit (PQL)
	-	lumn %D or RPD exceeds I	mit		Recovery outsid		

	East Syracuse, NY 1305	7 (315) 445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,	-	Lab ID: Client Sample ID:	K1005028-003A Trip Blank
W Order: Matrix:	K1005028 WATER Q	Seconda Sizza 10 mJ	Collection Date: Date Received: PrepDate:	05/03/10 12:40 05/04/10 8:31
Inst. ID: ColumnID Revision:	MS01_11 Rtx-VMS 06/04/10 13:49	Sample Size: 10 mL %Moisture: TestCode: 8260W OLM42	BatchNo:	R19934 1-SAMP-T9059.D
Col Type:				

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUN	DS BY GC/MS			SW826	)B	
1,1,2-Trichloroethane	ND	0.50	0.16	µg/L	1	05/13/10 14:34
Tetrachloroethene	ND	0.50	0.10	μg/L	1	05/13/10 14:34
Dibromochloromethane	ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/13/10 14:34
Chlorobenzene	ND	0.50	0.10	μg/L	1	05/13/10 14:34
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/13/10 14:34
Styrene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
Bromoform	ND	1.00	0.33	µg/L	1	05/13/10 14:34
Isopropylbenzene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,4-Dichlorobenzene	ND	0.50	0.16	µg/L	1	05/13/10 14:34
1,2-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 14:34
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	1	05/13/10 14:34
1,2,4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	05/13/10 14:34
Surr: 1,2-Dichloroethane-d4	99	75-128	0.16	%REC	1	05/13/10 14:34
Surr: Toluene-d8	103	75-125	0.10	%REC	1	05/13/10 14:34
Surr: 4-Bromofluorobenzene	101	75-125	0.10	%REC	1	05/13/10 14:34

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Q	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Col Type:

#### **Analytical Results**

	ast Syracuse, NY 1305	7 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,	ers, Inc.		Lab ID: Client Sample ID:	K1005034-001A MW-7-050410
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:	05/04/10 11:20 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9062.D

**Date Analyzed** Units DF MDL **Result Qual PQL** Analyte SW8260B VOLATILE ORGANIC COMPOUNDS BY GC/MS 05/13/10 16:14 µg/L 1 0.20 1.00 ND (m+p)-Xylene 05/13/10 16:14 0.10 µg/L 1 ND 0.50 o-Xylene 1 05/13/10 16:14 µg/L 1.00 0.10 ND Dichlorodifluoromethane 05/13/10 16:14 1 µg/L 0.33 1.00 ND Chloromethane 05/13/10 16:14 1 µg/L 0.33 ND 1.00 Vinvl chloride 05/13/10 16:14 1 uq/L 0.33 1.00 ND Bromomethane 1 05/13/10 16:14 µg/L 0.33 1.00 ND Chloroethane 05/13/10 16:14 1 µg/L 0.10 1.00 ND Trichlorofluoromethane 1 05/13/10 16:14 µg/L 0.50 0.16 ND 1,1-Dichloroethene 05/13/10 16:14 1 0.10 µg/L 0.50 ND 1,1,2-Trichloro-1,2,2-trifluoroethane 05/13/10 16:14 1 µg/L 1.00 10.0 1.80 J Acetone 05/13/10 16:14 1 µg/L 0.11 0.50 ND Carbon disulfide 05/13/10 16:14 1 µg/L 1.00 5.00 ND Methyl acetate 05/13/10 16:14 µg/L 1 0.16 ND 2.00 Methylene chloride 05/13/10 16:14 1 0.10 µg/L 0.50 ND trans-1,2-Dichloroethene 05/13/10 16:14 µg/L 1 1.00 0.16 ND Methyl tert-butyl ether 05/13/10 16:14 1 µg/L 0.10 0.50 ND 1.1-Dichloroethane 05/13/10 16:14 µg/L 1 0.10 ND 0.50 cis-1,2-Dichloroethene 05/13/10 16:14 1 µg/L 1.00 10.0 ND 2-Butanone 05/13/10 16:14 1 0.10 µg/L 0.50 ND Chloroform 05/13/10 16:14 1 0.10 µg/L ND 0.50 1.1.1-Trichloroethane 05/13/10 16:14 µg/L 1 0.50 0.10 ND Cyclohexane 05/13/10 16:14 1 0.10 µg/L ND 0.50 Carbon tetrachloride 05/13/10 16:14 μg/L 1 0.10 ND 0.50 Benzene 05/13/10 16:14 1 0.16 µg/L 0.50 ND 1,2-Dichloroethane 05/13/10 16:14 1 0.10 µg/L 0.50 ND Trichloroethene 05/13/10 16:14 µg/L 1 0.10 0.50 ND Methylcyclohexane 05/13/10 16:14 0.16 µg/L 1 0.50 ND 1.2-Dichloropropane 05/13/10 16:14 µg/L 1 0.10 ND 0.50 Bromodichloromethane 05/13/10 16:14 1 µg/L 0.16 0.50 ND cis-1,3-Dichloropropene 05/13/10 16:14 1 µg/L 1.00 5.00 ND 4-Methyl-2-pentanone 05/13/10 16:14 1 0.10 µg/L 0.50 ND Toluene 05/13/10 16:14 µg/L 1 0.16 0.50 ND trans-1,3-Dichloropropene 05/13/10 16:14 1 µg/L 0.16 ND 0.50 1,1,2-Trichloroethane Analyte detected in the associated Method Blank В Value exceeds Maximum Contaminant Level * Holding times for preparation or analysis exceeded **Qualifiers:** Η Value exceeds the instrument calibration range E Not Detected at the Practical Quantitation Limit (PQL) Analyte detected below the PQL ND J Spike Recovery outside accepted recovery limits S Prim./Conf. column %D or RPD exceeds limit P

Project Supervisor: Pamela J. Titus 508761

Print Date: 05/18/10 6:02

### **Analytical Results**

	ast Syracuse, NY 1305	7 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project: W Order:	O'Brien & Gere Engine National Grid - Fulton, K1005034	ers, Inc.		Client Sample ID:	<b>K1005034-001A</b> <i>MW-7-050410</i> 05/04/10 11:20 05/05/10 8:30
Matrix: Inst. ID: ColumnID: Revision:		Sample Size %Moisture: TestCode:		PrepDate: BatchNo:	R19934 1-SAMP-T9062.D

Col Type:				Tinite	DF	Date Analyzed
Analyte	Result Qu	al PQL	MDL	Units		Date Maij 200
VOLATILE ORGANIC COMPOUN	SW8260	B				
	ND	0.50	0.10	µg/L	1	05/13/10 16:14
Tetrachloroethene	ND	0.50	0.10	µg/L	1	05/13/10 16:14
Dibromochloromethane	ND	0.50	0.16	μg/L	1	05/13/10 16:14
1,2-Dibromoethane	ND	0.50	0.10	µg/L	1	05/13/10 16:14
Chlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:14
Ethylbenzene		1.00	0.30	μg/L	1	05/13/10 16:14
Xylenes (total)	ND	0.50	0.10	μg/L	1	05/13/10 16:14
Styrene	ND		0.33	μg/L	1	05/13/10 16:14
Bromoform	ND	1.00	0.10	μg/L	1	05/13/10 16:14
Isopropylbenzene	ND	0.50	0.10	μg/L	1	05/13/10 16:14
1,1,2,2-Tetrachloroethane	ND	0.50			1	05/13/10 16:14
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:14
1,4-Dichlorobenzene	ND	0.50	0.16	µg/L	1	05/13/10 16:14
1.2-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:14
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	1	05/13/10 16:14
1,2,4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	05/13/10 16:14
Surr: 1,2-Dichloroethane-d4	97	75-128	0.16	%REC	1	
Surr: Toluene-d8	100	75-125	0.10	%REC	1	05/13/10 16:14
Surr: 4-Bromofluorobenzene	99	75-125	0.10	%REC	1	05/13/10 16:14

		Value exceeds Maximum Contaminant Level		Analyte detected in the associated Method Blank
Qualifiers:		Value exceeds the instrument calibration range		Holding times for preparation or analysis exceeded
		Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
		Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits
	P			

Print Date: 05/18/10 6:02 508761 Project Supervisor: Pamela J. Titus

**Analytical Results** 

E	ast Syracuse, NY 1305	i (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005034-002A MW-3-050410
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:	05/04/10 13:50 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9063.D
Col Type:					

Analyte	Result Qua	al PQL	MDL	Units	DF	Date Analyze
VOLATILE ORGANIC COM	POUNDS BY GC/MS			SW826	0B	
(m+p)-Xylene	ND	1.00	0.20	µg/L	1	05/13/10 16:47
p-Xylene	ND	0.50	0.10	μg/L	1	05/13/10 16:47
Dichlorodifluoromethane	ND	1.00	0.10	μg/L	1	05/13/10 16:47
Chloromethane	ND	1.00	0.33	μg/L	1	05/13/10 16:47
Vinyl chloride	ND	1.00	0.33	µg/L	1	05/13/10 16:47
Bromomethane	ND	1.00	0.33	μg/L	1	05/13/10 16:47
Chloroethane	ND	1.00	0.33	μg/L	1	05/13/10 16:47
Trichlorofluoromethane	ND	1.00	0.10	µg/L	1	05/13/10 16:47
1,1-Dichloroethene	ND	0.50	0.16	μg/L	1	05/13/10 16:47
, 1,1,2-Trichloro-1,2,2-trifluoroethan	e ND	0.50	0.10	μg/L	1	05/13/10 16:47
Acetone	1.37 J	10.0	1.00	μg/L	1	05/13/10 16:47
Carbon disulfide	ND	0.50	0.11	µg/L	1	05/13/10 16:47
Methyl acetate	ND	5.00	1.00	µg/L	1	05/13/10 16:47
Methylene chloride	ND	2.00	0.16	µg/L	1	05/13/10 16:47
rans-1,2-Dichloroethene	ND	0.50	0.10	μg/L	<u></u> 1	05/13/10 16:47
Methyl tert-butyl ether	ND	1.00	0.16	µg/L	1	05/13/10 16:47
1,1-Dichloroethane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
cis-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
2-Butanone	ND	10.0	1.00	µg/L	1	05/13/10 16:47
Chloroform	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,1,1-Trichloroethane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Cyclohexane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Carbon tetrachloride	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Benzene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,2-Dichloroethane	ND	0.50	0.16	µg/L	1	05/13/10 16:47
Trichloroethene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Methylcyclohexane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,2-Dichloropropane	ND	0.50	0.16	µg/L	1	05/13/10 16:47
Bromodichloromethane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
cis-1,3-Dichloropropene	ND	0.50	0.16	µg/L	1	05/13/10 16:47
4-Methyl-2-pentanone	ND	5.00	1.00	µg/L	1	05/13/10 16:47
Toluene	ND	0.50	0.10	μg/L	1	05/13/10 16:47
trans-1,3-Dichloropropene	ND	0.50	0.16	μg/L	1	05/13/10 16:47
1,1,2-Trichloroethane	ND	0.50	0.16	µg/L	1	05/13/10 16:47
* Value exceed	ls Maximum Contaminant Leve	1	B Analyte	detected in the	associated N	1ethod Blank
Qualifiers: Value exceed E Value exceed	ls the instrument calibration ran	ge	H Holding	g times for prepa	aration or an	alysis exceeded
	cted below the PQL	-	ND Not Det	tected at the Pra	ctical Quant	itation Limit (PQL)
,	column %D or RPD exceeds lim				e accepted re	coverv limits

Print Date: 05/18/10 6:02 508762 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

E	ast Syracuse, NY 1305	7 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005034-002A MW-3-050410
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:	05/04/10 13:50 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9063.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNI			SW826	рв		
Tetrachloroethene	ND	0.50	0.10	μg/L	1	05/13/10 16:47
Dibromochloromethane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/13/10 16:47
Chlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/13/10 16:47
Styrene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
Bromoform	ND	1.00	0.33	µg/L	1	05/13/10 16:47
Isopropylbenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,4-Dichlorobenzene	ND	0.50	0.16	µg/L	1	05/13/10 16:47
1,2-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 16:47
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	μg/L	1	05/13/10 16:47
1,2,4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	05/13/10 16:47
Surr: 1.2-Dichloroethane-d4	100	75-128	0.16	%REC	1	05/13/10 16:47
Surr: Toluene-d8	100	75-125	0.10	%REC	1	05/13/10 16:47
Surr: 4-Bromofluorobenzene	101	75-125	0.10	%REC	1	05/13/10 16:47

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 05/18/10 6:02 508762 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

E	ast Syracuse, NY 1305	7 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005034-003A MW-2-050410
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:	05/04/10 15:30 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9064.D
Col Type:					

Analyte		Result Qua	I PQL	MDL	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUNDS BY GC/MS				SW8260B			
(m+p)-Xylene		ND	1.00	0.20	µg/L	1	05/13/10 17:21
o-Xylene		ND	0.50	0.10	µg/L	1	05/13/10 17:21
Dichlorodifluoro	methane	ND	1.00	0.10	µg/L	1	05/13/10 17:21
Chloromethane		ND	1.00	0.33	µg/L	1	05/13/10 17:21
Vinyi chloride		ND	1.00	0.33	µg/L	1	05/13/10 17:21
Bromomethane		ND	1.00	0.33	µg/L	1	05/13/10 17:21
Chloroethane		ND	1.00	0.33	µg/L	1	05/13/10 17:21
Trichlorofluoron	nethane	ND	1.00	0.10	µg/L	1	05/13/10 17:21
1.1-Dichloroeth		ND	0.50	0.16	µg/L	1	05/13/10 17:21
1	1,2,2-trifluoroethane	ND	0.50	0.10	µg/L	1	05/13/10 17:21
Acetone		2.79 J	10.0	1.00	µg/L	1	05/13/10 17:21
Carbon disulfid	2	ND	0.50	0.11	µg/L	1	05/13/10 17:21
Methyl acetate	6	ND	5.00	1.00	µg/L	1	05/13/10 17:21
Methylene chloi	ride	ND	2.00	0.16	μg/L	1	05/13/10 17:21
trans-1,2-Dichl		ND	0.50	0.10	µg/L	1	05/13/10 17:21
Methyl tert-buty		ND	1.00	0.16	µg/L	1	05/13/10 17:21
1,1-Dichloroeth		ND	0.50	0.10	µg/L	1	05/13/10 17:21
cis-1,2-Dichloro		ND	0.50	0.10	μg/L	1	05/13/10 17:21
2-Butanone	Jethene	ND	10.0	1.00	μg/L	1	05/13/10 17:21
Chloroform		ND	0.50	0.10	μg/L	1	05/13/10 17:21
	othane	ND	0.50	0.10	μg/L	1	05/13/10 17:21
1,1,1-Trichloro		ND	0.50	0.10	μg/L	1	05/13/10 17:21
Cyclohexane Carbon tetrach	lorido	ND	0.50	0.10	μg/L	1	05/13/10 17:21
Benzene	Dilde	ND	0.50	0.10	µg/L	1	05/13/10 17:21
	200	ND	0.50	0.16	μg/L	1	05/13/10 17:21
1,2-Dichloroeth		ND	0.50	0.10	μg/L	1	05/13/10 17:21
Trichloroethen		ND	0.50	0.10	μg/L	1	05/13/10 17:21
Methylcyclohe		ND	0.50	0.16	µg/L	1	05/13/10 17:21
1,2-Dichloropro		ND	0.50	0.10	µg/L	1	05/13/10 17:21
Bromodichloro		ND	0.50	0.16	μg/L	1	05/13/10 17:21
cis-1,3-Dichlor		ND	5.00	1.00	µg/L	1	05/13/10 17:21
4-Methyl-2-per	lanone	ND	0.50	0.10	µg/L	1	05/13/10 17:21
Toluene		ND	0.50	0.16	µg/L	1	05/13/10 17:21
trans-1,3-Dich 1,1,2-Trichlord		ND	0.50	0.16	μg/L	· 1	05/13/10 17:21
	* Value exceeds Maxi	num Contaminant Leve	1	B Analyte	detected in the	associated 1	Method Blank
Qualifiers:		strument calibration ran					
	J Analyte detected bel		-	<ul> <li>H Holding times for preparation or analysis exceeded</li> <li>ND Not Detected at the Practical Quantitation Limit (PQL)</li> </ul>			
	2	%D or RPD exceeds lim	it		ecovery outsid	e accepted re	ecovery limits
				•	-	-	

Print Date: 05/18/10 6:02 508763 Project Supervisor: Pamela J. Titus

/

**Analytical Results** 

E	ast Syracuse, NY 1305	7 (315)	445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005034-003A MW-2-050410
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:	05/04/10 15:30 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 5:57	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9064.D
Col Type:					

DF **Date Analyzed** MDL Units **Result Qual PQL** Analyte SW8260B **VOLATILE ORGANIC COMPOUNDS BY GC/MS** 05/13/10 17:21 0.10 µg/L 1 ND 0.50 Tetrachloroethene µg/L 1 05/13/10 17:21 0.10 ND 0.50 Dibromochloromethane 05/13/10 17:21 1 ND 0.50 0.16 µg/L 1,2-Dibromoethane 05/13/10 17:21 µg/L 1 0.10 ND 0.50 Chlorobenzene 05/13/10 17:21 0.10 µg/L 1 ND 0.50 Ethylbenzene 05/13/10 17:21 1 0.30 µg/L ND 1.00 Xylenes (total) 05/13/10 17:21 0.10 µg/L 1 ND 0.50 Styrene 05/13/10 17:21 1 μg/L ND 1.00 0.33 Bromoform 05/13/10 17:21 ND 0.50 0.10 µg/L 1 Isopropylbenzene 05/13/10 17:21 µg/L 1 0.10 ND 0.50 1,1,2,2-Tetrachloroethane 05/13/10 17:21 0.10 µg/L 1 ND 0.50 1,3-Dichlorobenzene 05/13/10 17:21 0.16 μg/L 1 ND 0.50 1,4-Dichlorobenzene µg/L 1 05/13/10 17:21 0.50 0.10 ND 1.2-Dichlorobenzene 05/13/10 17:21 ND 5.00 1.00 μg/L 1 1,2-Dibromo-3-chloropropane 0.10 µg/L 1 05/13/10 17:21 1.00 ND 1,2,4-Trichlorobenzene 05/13/10 17:21 %REC 1 91 75-128 0.16 Surr: 1,2-Dichloroethane-d4 %REC 1 05/13/10 17:21 75-125 0.10 111 Surr: Toluene-d8 %REC 05/13/10 17:21 1 106 75-125 0.10 Surr: 4-Bromofluorobenzene

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank	
Quanners:	Е	Value exceeds the instrument calibration range	H Holding times for preparation or analysis exceed		
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)	
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits	

Print Date: 05/18/10 6:02 508763 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

E	ast Syracuse, NY 130	57 (315)	445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engin National Grid - Fulton			Lab ID: Client Sample ID:	K1005034-004A Trip Blank
W Order: Matrix:	K1005034 WATER Q		10	Collection Date: Date Received: PrepDate:	05/04/10 15:30 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 8:16	Sample Size %Moisture: TestCode:		BatchNo:	R19935 1-SAMP-T9082.D
Col Type:			_		

Analyte		Result Qua	al PQL	MDL	Units	DF	Date Analyze
VOLATILE O	RGANIC COMPOUND	S BY GC/MS			SW826	0B	
(m+p)-Xylene		ND	1.00	0.20	µg/L	1	05/14/10 9:33
o-Xylene		ND	0.50	0.10	µg/L	1	05/14/10 9:33
Dichlorodifluoro	methane	ND	1.00	0.10	µg/L	1	05/14/10 9:33
Chloromethane		ND	1.00	0.33	µg/L	1	05/14/10 9:33
vinyl chloride		ND	1.00	0.33	µg/L	1	05/14/10 9:33
Bromomethane		ND	1.00	0.33	µg/L	1	05/14/10 9:33
Chloroethane		ND	1.00	0.33	µg/L	1	05/14/10 9:33
Trichlorofluoron	nethane	ND	1.00	0.10	µg/L	1	05/14/10 9:33
1.1-Dichloroeth	ene	ND	0.50	0.16	µg/L	1	05/14/10 9:33
,	1,2,2-trifluoroethane	ND	0.50	0.10	µg/L	1	05/14/10 9:33
Acetone	, ,	ND	10.0	1.00	µg/L	1	05/14/10 9:33
Carbon disulfide	9	ND	0.50	0.11	μg/L	1	05/14/10 9:33
Methyl acetate	-	ND	5.00	1.00	µg/L	1	05/14/10 9:33
Methylene chlor	ide	ND	2.00	0.16	μg/L	1	05/14/10 9:33
trans-1,2-Dichlo		ND	0.50	0.10	µg/L	1	05/14/10 9:33
Methyl tert-buty		ND	1.00	0.16	μg/L	1	05/14/10 9:33
1.1-Dichloroeth		ND	0.50	0.10	μg/L	1	05/14/10 9:33
cis-1,2-Dichloro		ND	0.50	0.10	μg/L	1	05/14/10 9:33
2-Butanone		ND	10.0	1.00	μg/L	1	05/14/10 9:33
Chloroform		ND	0.50	0.10	µg/L	1	05/14/10 9:33
1,1,1-Trichloroe	ethane	ND	0.50	0.10	μg/L	1	05/14/10 9:33
Cyclohexane		ND	0.50	0.10	µg/L	1	05/14/10 9:33
Carbon tetrachi	oride	ND	0.50	0.10	μg/L	1	05/14/10 9:33
Benzene		ND	0.50	0.10	μg/L	1	05/14/10 9:33
1,2-Dichloroeth	ane	ND	0.50	0.16	µg/L	1	05/14/10 9:33
Trichloroethene		ND	0.50	0.10	μg/L	1	05/14/10 9:33
Methylcyclohex		ND	0.50	0.10	µg/L	1	05/14/10 9:33
1,2-Dichloropro		ND	0.50	0.16	µg/L	1	05/14/10 9:33
Bromodichloror	•	ND	0.50	0.10	μg/L	1	05/14/10 9:33
cis-1,3-Dichlor		ND	0.50	0.16	μg/L	1	05/14/10 9:33
4-Methyl-2-pen	• •	ND	5.00	1.00	µg/L	1	05/14/10 9:33
Toluene		ND	0.50	0.10	µg/L	1	05/14/10 9:33
trans-1,3-Dichl	oropropene	ND	0.50	0.16	μg/L	1	05/14/10 9:33
1,1,2-Trichloro		ND	0.50	0.16	µg/L	1	05/14/10 9:33
0	* Value exceeds Maxim	um Contaminant Leve	1	B Analyte	detected in the	associated N	Aethod Blank
Qualifiers:	E Value exceeds the inst	rument calibration ran	ge	H Holding	times for prepa	aration or an	alysis exceeded
	J Analyte detected belo		-	ND Not Det	ected at the Pra	ctical Quant	itation Limit (PQL)
		6D or RPD exceeds lim	it		ecovery outsid		

Print Date: 05/18/10 8:19 508787 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

E	ast Syracuse, NY 130	(315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engir National Grid - Fultor			Lab ID: Client Sample ID:	K1005034-004A Trip Blank
W Order: Matrix:	K1005034 WATER Q	a 1.6.	10	Collection Date: Date Received: PrepDate:	05/04/10 15:30 05/05/10 8:30
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 8:16	Sample Size %Moisture: TestCode:		BatchNo:	R19935 1-SAMP-T9082.D
Col Type:			_		

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND			SW826	)B		
Tetrachloroethene	ND	0.50	0.10	µg/L	1	05/14/10 9:33
Dibromochloromethane	ND	0.50	0.10	μg/L	1	05/14/10 9:33
1,2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/14/10 9:33
Chlorobenzene	ND	0.50	0.10	μg/L	1	05/14/10 9:33
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/14/10 9:33
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/14/10 9:33
Styrene	ND	0.50	0.10	µg/L	1	05/14/10 9:33
Bromoform	ND	1.00	0.33	µg/L	1	05/14/10 9:33
Isopropylbenzene	ND	0.50	0.10	µg/L	1	05/14/10 9:33
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/14/10 9:33
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/14/10 9:33
1,4-Dichlorobenzene	ND	0.50	0.16	µg/L	1	05/14/10 9:33
1,2-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/14/10 9:33
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	1	05/14/10 9:33
1,2,4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	05/14/10 9:33
Surr: 1,2-Dichloroethane-d4	108	75-128	0.16	%REC	1	05/14/10 9:33
Surr: Toluene-d8	98	75-125	0.10	%REC	1	05/14/10 9:33
Surr: 4-Bromofluorobenzene	100	75-125	0.10	%REC	1	05/14/10 9:33

<b>Oualifiers</b> :	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanners.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 05/18/10 8:19 508787 Project Supervisor: Pamela J. Titus

**Analytical Results** 

F	ast Syracuse, NY 1305	<b>37</b> ( <b>315</b> )	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005042-001A MW-125-050510
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 10:30 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 8:16	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19935 1-SAMP-T9084.D
Col Type:					

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOL	JNDS BY GC/MS			SW826	0B	
(m+p)-Xylene	ND	1.00	0.20	µg/L	1	05/14/10 10:39
o-Xylene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Dichlorodifluoromethane	ND	1.00	0.10	µg/L	1	05/14/10 10:39
Chloromethane	ND	1.00	0.33	µg/L	1	05/14/10 10:39
Vinyl chloride	ND	1.00	0.33	µg/L	1	05/14/10 10:39
Bromomethane	ND	1.00	0.33	µg/L	1	05/14/10 10:39
Chloroethane	ND	1.00	0.33	µg/L	1	05/14/10 10:39
Trichlorofluoromethane	ND	1.00	0.10	µg/L	1	05/14/10 10:39
1.1-Dichloroethene	ND	0.50	0.16	μg/L	1	05/14/10 10:39
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Acetone	3.20 J	10.0	1.00	µg/L	1	05/14/10 10:39
Carbon disulfide	ND	0.50	0.11	μg/L	1	05/14/10 10:39
Methyl acetate	ND	5.00	1.00	μg/L	1	05/14/10 10:39
Methylene chloride	ND	2.00	0.16	μg/L	1	05/14/10 10:39
trans-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Methyl tert-butyl ether	ND	1.00	0.16	µg/L	1	05/14/10 10:39
1,1-Dichloroethane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
cis-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
2-Butanone	ND	10.0	1.00	μg/L	1	05/14/10 10:39
Chloroform	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1,1,1-Trichloroethane	ND	0.50	0.10	μg/L	1	05/14/10 10:39
Cyclohexane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Carbon tetrachloride	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Benzene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1.2-Dichloroethane	ND	0.50	0.16	µg/L	1	05/14/10 10:39
Trichloroethene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Methylcyclohexane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1.2-Dichloropropane	ND	0.50	0.16	µg/L	1	05/14/10 10:39
Bromodichloromethane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
cis-1,3-Dichloropropene	NĎ	0.50	0.16	µg/L	1	05/14/10 10:39
4-Methyl-2-pentanone	ND	5.00	1.00	µg/L	1	05/14/10 10:39
Toluene	0.37 J	0.50	0.10	µg/L	1	05/14/10 10:39
trans-1,3-Dichloropropene	ND	0.50	0.16	µg/L	1	05/14/10 10:39
1,1,2-Trichloroethane	ND	0.50	0.16	µg/L	1	05/14/10 10:39
• Value exceeds M	laximum Contaminant Level		B Analyte	detected in the	associated N	1ethod Blank
Qualifiers.	e instrument calibration rang					alysis exceeded
J Analyte detected			ND Not Det	ected at the Pra	actical Quant	itation Limit (PQL)
<b>v</b>	mn %D or RPD exceeds lim	it	S Spike R	ecovery outsid	e accepted re	covery limits

Project Supervisor: Pamela J. Titus Print Date: 05/19/10 13:16 508788

# LSL 5854 Butternut Drive

E	ast Syracuse, NY 1305	7 (315)	445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005042-001A MW-125-050510
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 10:30 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/18/10 8:16	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19935 1-SAMP-T9084.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW826	)B		
Tetrachloroethene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Dibromochloromethane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1,2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/14/10 10:39
Chlorobenzene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/14/10 10:39
Styrene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
Bromoform	ND	1.00	0.33	µg/L	1	05/14/10 10:39
Isopropylbenzene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/14/10 10:39
1.4-Dichlorobenzene	ND	0.50	0.16	μg/L	1	05/14/10 10:39
1,2-Dichlorobenzene	ND	0.50	0.10	μg/L	1	05/14/10 10:39
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ND	5.00	1.00	μg/L	1	05/14/10 10:39
	ND	1.00	0.10	μg/L	1	05/14/10 10:39
1,2,4-Trichlorobenzene Surr: 1,2-Dichloroethane-d4	104	75-128	0.16	%REC	1	05/14/10 10:39
,	10-	75-125	0.10	%REC	1	05/14/10 10:39
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	98	75-125	0.10	%REC	1	05/14/10 10:39

	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Qualifiers:	Е	Value exceeds the instrument calibration range	н	Holding times for preparation or analysis exceeded
		Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

F	Cast Syracuse, NY 130	57 (315)	445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engin National Grid - Fulton			Lab ID: Client Sample ID:	K1005042-002A MW-11-050510
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 12:30 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/19/10 13:15	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19949 1-SAMP-T9109.D
Col Type:					

Analyte	Result Qua	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC C	OMPOUNDS BY GC/MS			SW826	0B	
(m+p)-Xylene	ND	1.00	0.20	μg/L	1	05/18/10 12:33
o-Xylene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Dichlorodifluoromethane	ND	1.00	0.10	µg/L	1	05/18/10 12:33
Chloromethane	ND	1.00	0.33	μg/L	1	05/18/10 12:33
Vinyl chloride	ND	1.00	0.33	µg/L	1	05/18/10 12:33
Bromomethane	ND	1.00	0.33	µg/L	1	05/18/10 12:33
Chloroethane	ND	1.00	0.33	µg/L	1	05/18/10 12:33
Trichlorofluoromethane	ND	1.00	0.10	µg/L	1	05/18/10 12:33
1.1-Dichloroethene	ND	0.50	0.16	µg/L	1	05/18/10 12:33
1,1,2-Trichloro-1,2,2-trifluoroe	ethane ND	0.50	0.10	µg/L	1	05/18/10 12:33
Acetone	1.35 J	10.0	1.00	µg/L	1	05/18/10 12:33
Carbon disulfide	ND	0.50	0.11	µg/L	1	05/18/10 12:33
Methyl acetate	ND	5.00	1.00	µg/L	1	05/18/10 12:33
Methylene chloride	ND	2.00	0.16	µg/L	1	05/18/10 12:33
trans-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Methyl tert-butyl ether	ND	1.00	0.16	µg/L	1	05/18/10 12:33
1,1-Dichloroethane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
cis-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
2-Butanone	ND	10.0	1.00	µg/L	1	05/18/10 12:33
Chloroform	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1,1,1-Trichloroethane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Cyclohexane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Carbon tetrachloride	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Benzene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1.2-Dichloroethane	ND	0.50	0.16	µg/L	1	05/18/10 12:33
Trichloroethene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Methylcyclohexane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1,2-Dichloropropane	ND	0.50	0.16	μg/L	1	05/18/10 12:33
Bromodichloromethane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
cis-1,3-Dichloropropene	ND	0.50	0.16	µg/L	1	05/18/10 12:33
4-Methyl-2-pentanone	ND	5.00	1.00	µg/L	1	05/18/10 12:33
Toluene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
trans-1,3-Dichloropropene	ND	0.50	0.16	μg/L	1	05/18/10 12:33
1,1,2-Trichloroethane	ND	0.50	0.16	µg/L	1	05/18/10 12:33
Oualifiers: * Value e	exceeds Maximum Contaminant Level	1	B A	nalyte detected in the	associated	Method Blank
Quanners.	exceeds the instrument calibration rang		н н	olding times for prep	aration or a	nalysis exceeded
	e detected below the PQL		ND N	ot Detected at the Pra	actical Quar	utitation Limit (PQL)
	Conf. column %D or RPD exceeds lim	ut	S SI	oike Recovery outsid	e accepted r	ecovery limits

# LSL 5854 Butternut Drive

E	ast Syracuse, NY 1305	7 (315)	445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005042-002A MW-11-050510
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 12:30 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/19/10 13:15	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19949 1-SAMP-T9109.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUN	DS BY GC/MS			SW8260	0B	
Tetrachioroethene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Dibromochloromethane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1.2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/18/10 12:33
Chlorobenzene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/18/10 12:33
Styrene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
Bromoform	ND	1.00	0.33	µg/L	1	05/18/10 12:33
Isopropylbenzene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1,4-Dichlorobenzene	ND	0.50	0.16	µg/L	1	05/18/10 12:33
1,2-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/18/10 12:33
1.2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	1	05/18/10 12:33
1,2,4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	05/18/10 12:33
Surr: 1,2-Dichloroethane-d4	107	75-128	0.16	%REC	1	05/18/10 12:33
Surr: Toluene-d8	96	75-125	0.10	%REC	1	05/18/10 12:33
Surr: 4-Bromofluorobenzene	100	75-125	0.10	%REC	1	05/18/10 12:33

	ds the instrument calibration range		Holding times for preparation or analysis exceeded
J Analyte dete	ected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
P Prim./Conf.	column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

# LSL 5854 Butternut Drive

Analytical	Results
------------	---------

E	ast Syracuse, NY 130	57 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engin National Grid - Fulton			Lab ID: Client Sample ID:	K1005042-003A X-1-050510
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 0:00 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/19/10 13:15	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19949 1-SAMP-T9110.D
Col Type:					

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMP	OUNDS BY GC/MS			SW826	0B	
(m+p)-Xylene	ND	1.00	0.20	µg/L	1	05/18/10 13:06
o-Xylene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Dichlorodifluoromethane	ND	1.00	0.10	µg/L	1	05/18/10 13:06
Chloromethane	ND	1.00	0.33	μg/L	1	05/18/10 13:06
Vinyl chloride	ND	1.00	0.33	µg/L	1	05/18/10 13:06
Bromomethane	ND	1.00	0.33	µg/L	1	05/18/10 13:06
Chloroethane	ND	1.00	0.33	µg/L	1	05/18/10 13:06
Trichlorofluoromethane	ND	1.00	0.10	μg/L	1	05/18/10 13:06
1,1-Dichloroethene	ND	0.50	0.16	μg/L	1	05/18/10 13:06
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	0.10	μg/L	1	05/18/10 13:06
Acetone	1.47 J	10.0	1.00	μg/L	1	05/18/10 13:06
Carbon disulfide	ND	0.50	0.11	μg/L	1	05/18/10 13:06
Methyl acetate	ND	5.00	1.00	µg/L	1	05/18/10 13:06
Methylene chloride	ND	2.00	0.16	µg/L	1	05/18/10 13:06
trans-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Methyl tert-butyl ether	ND	1.00	0.16	µg/L	1	05/18/10 13:06
1,1-Dichloroethane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
cis-1,2-Dichloroethene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
2-Butanone	ND	10.0	1.00	µg/L	1	05/18/10 13:06
Chloroform	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,1,1-Trichloroethane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Cyclohexane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Carbon tetrachloride	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Benzene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,2-Dichloroethane	ND	0.50	0.16	µg/L	1	05/18/10 13:06
Trichloroethene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Methylcyclohexane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,2-Dichloropropane	ND	0.50	0.16	µg/L	1	05/18/10 13:06
Bromodichloromethane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
cis-1,3-Dichloropropene	ND	0.50	0.16	µg/L	1	05/18/10 13:06
4-Methyl-2-pentanone	ND	5.00	1.00	µg/L	1	05/18/10 13:06
Toluene	0.41 J	0.50	0.10	µg/L	1	05/18/10 13:06
trans-1,3-Dichloropropene	ND	0.50	0.16	µg/L	1	05/18/10 13:06
1,1,2-Trichloroethane	ND	0.50	0.16	µg/L	1	05/18/10 13:06
* Value exceeds	Maximum Contaminant Level		B Analyte	detected in the	associated N	Iethod Blank
Quanners;	s the instrument calibration range					alysis exceeded
	ted below the PQL	,	ND Not Det	tected at the Pra	actical Quant	itation Limit (PQL)
•	olumn %D or RPD exceeds lim	i+		ecovery outsid		

Project Supervisor: Pamela J. Titus 509157 Print Date: 05/19/10 13:16

E	ast Syracuse, NY 130	57 (315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engin National Grid - Fulton	-		Lab ID: Client Sample ID:	K1005042-003A X-1-050510
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 0:00 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11 Rtx-VMS 05/19/10 13:15	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19949 1-SAMP-T9110.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUN	DS BY GC/MS			SW826	ЭB	
Tetrachioroethene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Dibromochloromethane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/18/10 13:06
Chlorobenzene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/18/10 13:06
Styrene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
Bromoform	ND	1.00	0.33	µg/L	1	05/18/10 13:06
Isopropyibenzene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1.3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,4-Dichlorobenzene	ND	0.50	0.16	µg/L	1	05/18/10 13:06
1,2-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/18/10 13:06
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	1	05/18/10 13:06
1,2,4-Trichlorobenzene	ND	1.00	0.10	μg/L	1	05/18/10 13:06
Surr: 1,2-Dichloroethane-d4	104	75-128	0.16	%REC	1	05/18/10 13:06
Surr: Toluene-d8	.01	75-125	0.10	%REC	1	05/18/10 13:06
Surr: 4-Bromofluorobenzene	103	75-125	0.10	%REC	1	05/18/10 13:06

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanners:	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

### Life Science Laboratories, Inc. 5854 Butternut Drive

Project: N W Order: K	D'Brien & Gere Engine National Grid - Fulton, K1005042	-	Lab ID: Client Sample ID: Collection Date:	<b>K1005042-004A</b> <i>Drum-050510</i> 05/05/10 14:00
			<b>Collection Date:</b>	05/05/10 14:00
in the training of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	WATER		Date Received:	05/05/10 16:18
ColumnID R	MS01_11 Rtx-VMS 05/24/10 14:41	Sample Size: 10 mL %Moisture: TestCode: 8260W OLM42	PrepDate: BatchNo: FileID:	R19949 1-SAMP-T9108.D

Analyte	Result Qu	Result Qual PQL MDL		Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNE	DS BY GC/MS			SW8260	)B	
Benzene	29.0	5.00	1.00	µg/L	10	05/18/10 12:01
Toluene	4.40 J	5.00	1.00	µg/L	10	05/18/10 12:01
Ethylbenzene	22.9	5.00	1.00	µg/L	10	05/18/10 12:01
Xylenes (total)	41.4	10.0	3.00	μg/L	10	05/18/10 12:01
Surr: 1,2-Dichloroethane-d4	107	75-128	1.60	%REC	10	05/18/10 12:01
Surr: Toluene-d8	100	75-125	1.00	%REC	10	05/18/10 12:01
Surr: 4-Bromofluorobenzene	93	75-125	1.00	%REC	10	05/18/10 12:01

<b>Oualifiers:</b>	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
<b>X</b>	E	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

# LSL 5854 Butternut Drive

#### **Analytical Results**

E	ast Syracuse, NY 1305	(315)	445-1105	S	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005042-005A Trip Blank
W Order: Matrix:	K1005042 WATER Q			Collection Date: Date Received:	05/05/10 10:30 05/05/10 16:18
Inst. ID: ColumnID: Revision:	MS01_11	Sample Size %Moisture: TestCode:		PrepDate: BatchNo: FileID:	R19934 1-SAMP-T9066.D
Col Type:					

Analyte		Result Qua	l PQL	MDL	Units	DF	Date Analyzed
	RGANIC COMPOUND	S BY GC/MS			SW826	0B	
(m+p)-Xylene		ND	1.00	0.20	µg/L	1	05/13/10 18:28
o-Xylene		ND	0.50	0.10	µg/L	1	05/13/10 18:28
Dichlorodifluoror	nethane	ND	1.00	0.10	µg/L	1	05/13/10 18:28
Chloromethane		ND	1.00	0.33	µg/L	1	05/13/10 18:28
Vinyl chloride		ND	1.00	0.33	µg/L	1	05/13/10 18:28
Bromomethane		ND	1.00	0.33	µg/L	1	05/13/10 18:28
Chloroethane		ND	1.00	0.33	µg/L	1	05/13/10 18:28
Trichlorofluorom	ethane	ND	1.00	0.10	µg/L	1	05/13/10 18:28
1,1-Dichloroethe		ND	0.50	0.16	µg/L	1	05/13/10 18:28
	1,2,2-trifluoroethane	ND	0.50	0.10	µg/L	1	05/13/10 18:28
Acetone	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	1.03 J	10.0	1.00	μg/L	1	05/13/10 18:28
Carbon disulfide	2	ND	0.50	0.11	µg/L	1	05/13/10 18:28
Methyl acetate	•	ND	5.00	1.00	µg/L	1	05/13/10 18:28
Methylene chlor	ide	0.16 J	2.00	0.16	µg/L	1	05/13/10 18:28
trans-1,2-Dichlo		ND	0.50	0.10	µg/L	1	05/13/10 18:28
Methyl tert-butyl		ND	1.00	0.16	µg/L	1	05/13/10 18:28
1.1-Dichloroetha		ND	0.50	0.10	µg/L	1	05/13/10 18:28
cis-1,2-Dichloro		ND	0.50	0.10	µg/L	1	05/13/10 18:28
2-Butanone		ND	10.0	1.00	μg/L	1	05/13/10 18:28
Chloroform		ND	0.50	0.10	μg/L	1	05/13/10 18:28
1,1,1-Trichloroe	thane	ND	0.50	0.10	µg/L	1	05/13/10 18:28
Cyclohexane		ND	0.50	0.10	µg/L	1	05/13/10 18:28
Carbon tetrach	oride	ND	0.50	0.10	μg/L	1	05/13/10 18:28
Benzene		ND	0.50	0.10	µg/L	1	05/13/10 18:28
1,2-Dichloroeth	ane	ND	0.50	0.16	µg/L	1	05/13/10 18:28
Trichloroethene		ND	0.50	0.10	µg/L	1	05/13/10 18:28
Methylcyclohex		ND	0.50	0.10	µg/L	1	05/13/10 18:28
1,2-Dichloropro		ND	0.50	0.16	μg/L	1	05/13/10 18:28
Bromodichloror		ND	0.50	0.10	µg/L	1	05/13/10 18:28
cis-1,3-Dichlore		ND	0.50	0.16	µg/L	1	05/13/10 18:28
4-Methyl-2-pen		ND	5.00	1.00	μg/L	1	05/13/10 18:28
Toluene	lanone	ND	0.50	0.10	µg/L	1	05/13/10 18:28
trans-1,3-Dichl	oronronene	ND	0.50	0.16	μg/L	1	05/13/10 18:28
1,1,2-Trichloro		ND	0.50	0.16	µg/L	1	05/13/10 18:28
	* Value exceeds Maxin	um Contaminant Leve	1	B Analyte	detected in the	associated N	Method Blank
Qualifiers:		trument calibration ran					alysis exceeded
	J Analyte detected belo		~				titation Limit (PQL)
		6D or RPD exceeds lim	nit		covery outsid		

Print Date: 05/19/10 13:16 508765 Project Supervisor: Pamela J. Titus

# LSL 5854 Butternut Drive

Analytical	Results
------------	---------

Project:National Grid - Fulton, NYClient Sample ID:Trip BlankW Order:K1005042Collection Date:05/05/10 10:30Matrix:WATER QDate Received:05/05/10 16:18Inst. ID:MS01_11Sample Size 10 mLPrepDate:ColumnID:Rtx-VMS%Moisture:BatchNo:R19934	20. di	ast Syracuse, NY 1305	57 (315)	445-1105	S	StateCertNo: 10248
W Order:K1003042Concention 2 andMatrix:WATER QDate Received:05/05/10 16:18Inst. ID:MS01_11Sample Size 10 mLPrepDate:ColumnID:Rtx-VMS% Moisture:BatchNo:R19934	CLIENT Project:					
Inst. ID:MS01_11Sample Size 10 mLPrepDate:ColumnID:Rtx-VMS%Moisture:BatchNo:R19934	W Order: Matrix:					
	Inst. ID:	MS01_11	-		BatchNo:	

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUN	DS BY GC/MS			SW826	0B	
Tetrachloroethene	ND	0.50	0.10	µg/L	1	05/13/10 18:28
Dibromochloromethane	ND	0.50	0.10	µg/L	1	05/13/10 18:28
1.2-Dibromoethane	ND	0.50	0.16	µg/L	1	05/13/10 18:28
Chlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 18:28
Ethylbenzene	ND	0.50	0.10	µg/L	1	05/13/10 18:28
Xylenes (total)	ND	1.00	0.30	µg/L	1	05/13/10 18:28
Styrene	ND	0.50	0.10	µg/L	1	05/13/10 18:28
Bromoform	ND	1.00	0.33	µg/L	1	05/13/10 18:28
Isopropylbenzene	ND	0.50	0.10	µg/L	1	05/13/10 18:28
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	1	05/13/10 18:28
1.3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	05/13/10 18:28
1,4-Dichlorobenzene	ND	0.50	0.16	μg/L	1	05/13/10 18:28
1,2-Dichlorobenzene	ND	0.50	0.10	μg/L	1	05/13/10 18:28
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	μg/L	1	05/13/10 18:28
1,2,4-Trichlorobenzene	ND	1.00	0.10	μg/L	1	05/13/10 18:28
Surr: 1,2-Dichloroethane-d4	102	75-128	0.16	%REC	1	05/13/10 18:28
Surr: Toluene-d8	102	75-125	0.10	%REC	1	05/13/10 18:28
Surr: 1 oluene-do Surr: 4-Bromofluorobenzene	101	75-125	0.10	%REC	1	05/13/10 18:28

0 1.6	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Qualifiers:	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
		Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
		Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Project Supervisor: Pamela J. Titus Print Date: 05/19/10 13:16 508765

# Life Science Laboratories, Inc. LSL 5854 Butternut Drive

**Analytical Results** 

E	ast Syracuse, NY 1305	7 (315) 445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engine National Grid - Fulton,		Lab ID: Client Sample ID:	K1005028-001B MW-4-050310
W Order:	K1005028		<b>Collection Date:</b>	05/03/10 12:40
Matrix:	WATER		Date Received:	05/04/10 8:31
Inst. ID:	MS06 40	Sample Size: 980 mL	PrepDate:	05/05/10 12:00
ColumnID:		%Moisture:	BatchNo:	11176/R19855
Revision:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7423.D
Col Type:				

Analyte	Result Qua	I PQL	MDL Units		DF	Date Analyzed	
SEMIVOLATILE ORGANIC COMPO	OUNDS BY GC/MS			SW827	oc	(SW3520C)	
1,2,4-Trichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 9:29	
1,2-Dichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 9:29	
1,3-Dichlorobenzene	ND	. 10	0.41	µg/L	1	05/07/10 9:29	
1,4-Dichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 9:29	
2,4,5-Trichlorophenol	ND	51	0.41	µg/L	1	05/07/10 9:29	
2,4,6-Trichlorophenol	ND	10	0.41	µg/L	1	05/07/10 9:29	
2,4-Dichlorophenol	ND	10	0.41	µg/L	1	05/07/10 9:29	
2,4-Dimethylphenol	250 E	10	0.41	µg/L	1	05/07/10 9:29	
2,4-Dinitrophenol	ND	51	20	µg/L	1	05/07/10 9:29	
2,4-Dinitrotoluene	ND	10	0.41	µg/L	1	05/07/10 9:29	
2,6-Dinitrotoluene	ND	10	0.41	µg/L	1	05/07/10 9:29	
2-Chloronaphthalene	ND	10	0.41	µg/L	1	05/07/10 9:29	
2-Chlorophenol	ND	10	0.41	µg/L	1	05/07/10 9:29	
2-Methylnaphthalene	4.7 J	10	0.41	µg/L	1	05/07/10 9:29	
2-Methylphenol	15	10	0.41	µg/L	1	05/07/10 9:29	
2-Nitroaniline	ND	51	0.41	µg/L	1	05/07/10 9:29	
2-Nitrophenol	ND	10	0.41	µg/L	1	05/07/10 9:29	
3,3 [°] -Dichlorobenzidine	ND	20	0:41	µg/L	1	05/07/10 9:29	
3-Nitroaniline	ND	51	0.41	µg/L	1	05/07/10 9:29	
4,6-Dinitro-2-methylphenol	ND	10	2.0	µg/L	1	05/07/10 9:29	
4-Bromophenyl phenyl ether	ŃD	10	0.41	µg/L	- 1	05/07/10 9:29	
4-Chloro-3-methylphenol	ND	10	0.41	µg/L	1	05/07/10 9:29	
4-Chloroaniline	ND	10	0.41	µg/L	1	05/07/10 9:29	
4-Chlorophenyl phenyl ether	ND	10	0.41	µg/L	1	05/07/10 9:29	
4-Methylphenol	ND	10	0.41	μg/L	1	05/07/10 9:29	
4-Nitroaniline	ND	51	0.41	µg/L	1	05/07/10 9:29	
4-Nitrophenol	ND	51	2.0	µg/L	1	05/07/10 9:29	
Acenaphthene	45	10	0.41	µg/L	1	05/07/10 9:29	
Acenaphthylene	9.0 J	10	0.41	µg/L	1	05/07/10 9:29	
Anthracene	0.83 J	10	0.41	µg/L	1	05/07/10 9:29	
Benzo[a]anthracene	ND	10	0.41	µg/L	1	05/07/10 9:29	
Benzo[a]pyrene	ND	10	0.41	μg/L	1	05/07/10 9:29	
Benzo[b]fluoranthene	ND	10	0.41	μg/L	1	05/07/10 9:29	
Benzo[g,h,i]perylene	ND	10	0.41	µg/L	1	05/07/10 9:29	
Value exceeds Maxi	mum Contaminant Lev	el a constanta	B Analyte detected in the associated Method Blank				
Quanners:	strument calibration ra		H Holding times for preparation or analysis exceeded				
J Analyte detected bel			0	ND Not Detected at the Practical Quantitation Limit (PQL)			
2	%D or RPD exceeds lin	nit			-	recovery limits	

Project Supervisor: Pamela J. Titus 

#### **Analytical Results**

E	East Syracuse, NY 13	057 (315) 445-1105	StateCertNo: 10248				
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto		Lab ID: Client Sample ID:	K1005028-001B MW-4-050310			
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: 980 mL %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 12:40 05/04/10 8:31 05/05/10 12:00 11176/R19855 1-SAMP-K7423.D			

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyze
SEMIVOLATILE ORGA	NIC COMPOUNDS BY GC/MS			SW8270	C	(SW3520C)
Benzo[k]fluoranthene	ND	10	0.41	µg/L	1	05/07/10 9:29
ois(2-Chloroethoxy)methar	ne ND	10	0.41	µg/L	1	05/07/10 9:29
ois(2-chloroethyl)ether	ND	10	0.41	µg/L	1	05/07/10 9:29
ois(2-chloroisopropyl)ether	ND	10	0.41	µg/L	1	05/07/10 9:29
bis(2-Ethylhexyl)phthalate	0.69 J	10	0.41	µg/L	1	05/07/10 9:29
Butyl benzyl phthalate	ND	10	0.41	µg/L	1	05/07/10 9:29
Carbazole	19	10	0.41	µg/L	1	05/07/10 9:29
Chrysene	ND	10	0.41	μg/L	1	05/07/10 9:29
Di-n-butyl phthalate	ND	10	1.2	μg/L	1	05/07/10 9:29
Di-n-octyl phthalate	ND	10	0.41	μg/L	1	05/07/10 9:29
Dibenz[a,h]anthracene	ND	10	0.41	μg/L	1	05/07/10 9:29
Dibenzofuran	16	10	0.41	µg/L	1	05/07/10 9:29
Diethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 9:29
Dimethyl phthalate	ND	10	0.41	μg/L	1	05/07/10 9:29
Fluoranthene	0.50 J	10	0.41	µg/L	1	05/07/10 9:29
Fluorene	12	10	0.41	µg/L	1	05/07/10 9:29
Hexachlorobenzene	ND	<b>10</b>	0.41	µg/L	1	05/07/10 9:29
Hexachlorobutadiene	ND	10	5.1	µg/L	1	05/07/10 9:29
Hexachlorocyclopentadien	e ND	51	10	µg/L	1	05/07/10 9:29
Hexachloroethane	ŇD	10	2.0	µg/L	1	05/07/10 9:29
Indeno[1,2,3-cd]pyrene	ND	10	0.41	µg/L	1	05/07/10 9:29
Isophorone	ND	10	0.41	µg/L	1	05/07/10 9:29
N-Nitroso-di-n-propylamine	e ND	10	0.41	µg/L	1	05/07/10 9:29
Naphthalene	1300 E	10	0.41	µg/L	1	05/07/10 9:29
Nitrobenzene	ND	10	0.41	μg/L	1	05/07/10 9:29
Pentachlorophenol	ND	51	2.0	µg/L	1	05/07/10 9:29
Phenanthrene	3.5 J	10	0.41	µg/L	1	05/07/10 9:29
Phenol	ND	10	0.41	µg/L	1	05/07/10 9:29
Pyrene	0.53 J	10	0.41	μg/L	1	05/07/10 9:29
Surr: 2,4,6-Tribromophe	enol 167 S	46-149	0.41	%REC	1	05/07/10 9:29
Surr: 2-Fluorobiphenyl	105	42-130	0.41	%REC	1	05/07/10 9:29
Surr: 2-Fluorophenol	96	26-130	0.41	%REC	1	05/07/10 9:29
Surr: Nitrobenzene-d5	84	42-130	0.41	%REC	1	05/07/10 9:29
Surr: Phenol-d5	90	21-134	0.41	%REC	1	05/07/10 9:29
* Value	e exceeds Maximum Contaminant Leve		B Analyte d	letected in the	associated	l Method Blank
Quanners:						
	5	eeds the instrument calibration range H Holding times for preparation o steeted below the PQL ND Not Detected at the Practical Q				•
	yte detected below the PQL					
P Prim	/Conf. column %D or RPD exceeds lin	nit	S Spike Re	covery outside	accepted	recovery limits

Print Date: 05/10/10 13:18 507598 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

<b>5854 Butternut Drive</b> East Syracuse, NY 13057 (315) 445-1105		an an an an an an an an an an an an an a	StateCertNo: 10248				
CLIENT: Project: V Order: Aatrix: nst. ID: ColumnID: Revision: Col Type:	O'Brien & Gere Engine National Grid - Fulton, K1005028 WATER MS06_40 DB-5MS 05/10/10 13:18		Lab ID: Client Samp Collection I Date Receiv PrepDate: BatchNo: FileID:		<b>50310</b> 12:40 3:31 2:00 9855		
Analyte		<b>Result Qual PQL</b>	MDL	Units DF	Date Analyze		
EMIVOLAT	ILE ORGANIC COMPO	OUNDS BY GC/MS		SW8270C	(SW3520C)		
Surr: Terphe	enyl-d14	104 24-147	0.41	%REC 1	05/07/10 9:29		
		x					
			and the second second second second second second second second second second second second second second second				
			1999 - A.				
		and the second second second second second second second second second second second second second second second	$\left\{ \left[ \partial \delta_{i} , \phi \right] \right\}_{i=1, \dots, n}$				
			$A_{2} = A_{1} + \cdots + A_{n}$	1999 - 19 <u>9</u>			
				9 <b>.</b>			
			$(1,\ldots,n) = \int dr dr = \int dr dr$				
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · · · · · · · · · · · · · · · · ·				
		and the second second second second second second second second second second second second second second second	en en en en en en en en en en en en en e	···· . · ·			
		and the second second second second second second second second second second second second second second second	م م محمد رو مرد				
			1. j. e				
			$(r_{i})_{i=1,\dots,n}$				
				S.			
			2				
		a de la construcción de la construcción de la construcción de la construcción de la construcción de la constru La construcción de la construcción d					
			۴ ⁻¹	та. По се стало се се стало се стало се стало се стало се стало се стало се стало се стало се стало се стало се ст			
			r -				
			بالمعارفة فرودورات المراقي				
	* Value exceeds Maxi	mum Contaminant Level		detected in the associa	ted Method Blank		
Qualifiers:	<ul><li>E Value exceeds the ir</li><li>J Analyte detected below</li></ul>	strument calibration range	H Holding ND Not Det	times for preparation of	or analysis exceeded quantitation Limit (PQL)		

Print Date: 05/10/10 13:18 507598 Project Supervisor: Pamela J. Titus

**Analytical Results** 

E	ast Syracuse, NY 130	57 (315) 445-1105		StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engine National Grid - Fulton,		Lab ID: Client Sample ID:	K1005028-001BDL MW-4-050310
W Order: Matrix: Inst. ID: ColumnID:		Sample Size: 980 mL %Moisture: TestCode: 8270W TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 12:40 05/04/10 8:31 05/05/10 12:00 11176/R19855 1-DL-K7435.D
Revision: Col Type:	05/10/10 13:18	TestCode: 8270W_TCL	TheiD.	1 DE IN 133.0

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANIC CO	OMPOUNDS BY GC/MS			SW827	0C	(SW3520C)	
1,2,4-Trichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:12	
1,2-Dichlorobenzene	ND	260	10	μg/L	25	05/07/10 17:12	
1,3-Dichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:12	
, 1,4-Dichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:12	
2,4,5-Trichlorophenol	ND	1300	10	µg/L	25	05/07/10 17:12	
2,4,6-Trichlorophenol	ND	260	10	µg/L	25	05/07/10 17:12	
2,4-Dichlorophenol	ND	260	10	μg/L	25	05/07/10 17:12	
2,4-Dimethylphenol	260	260	· 10 · · · ·	µg/L	25	05/07/10 17:12	
2,4-Dinitrophenol	ND	1300	510	μg/L	25	05/07/10 17:12	
2,4-Dinitrotoluene	ND	260	10	μg/L	25	05/07/10 17:12	
2,6-Dinitrotoluene	ND	260	10	µg/L	25	05/07/10 17:12	
2-Chloronaphthalene	ND	260	10	µg/L	25	05/07/10 17:12	
2-Chlorophenol	ND	260	10	µg/L	25	05/07/10 17:12	
2-Methylnaphthalene	ND	260	10	µg/L	25	05/07/10 17:12	
2-Methylphenol	ND	260	10	µg/L	25	05/07/10 17:12	
2-Nitroaniline	ND	1300	10	µg/L	25	05/07/10 17:12	
2-Nitrophenol	ND	260	10	μg/L	25	05/07/10 17:12	
3.3'-Dichlorobenzidine	ND	510	10	µg/L	25	05/07/10 17:12	
3-Nitroaniline	ND	1300	10	μg/L	25	05/07/10 17:12	
4,6-Dinitro-2-methylphenol	ND	260	51	µg/L	25	05/07/10 17:12	
4-Bromophenyl phenyl ether	ND	260	10	μg/L	25	05/07/10 17:12	
4-Chloro-3-methylphenol	ND	260	10	µg/L	25	05/07/10 17:12	
4-Chloroaniline	ND	260	10	μg/L	25	05/07/10 17:12	
4-Chlorophenyl phenyl ether	ND	260	10	µg/L	25	05/07/10 17:12	
4-Methylphenol	ND	260	10	μg/L	25	05/07/10 17:12	
4-Nitroaniline	ND	1300	10	µg/L	25	05/07/10 17:12	
4-Nitrophenol	ND	1300	51	µg/L	25	05/07/10 17:12	
Acenaphthene	38 J	260	10	μg/L	25	05/07/10 17:12	
Acenaphthylene	ND	260	10	µg/L	25	05/07/10 17:12	
Anthracene	ND	260	10	μg/L	25	05/07/10 17:12	
Benzo[a]anthracene	ND	260	10	μg/L	25	05/07/10 17:12	
Benzo[a]pyrene	ND	260	10	μg/L	25	05/07/10 17:12	
Benzo[b]fluoranthene	ND	260	10	μg/L	25	05/07/10 17:12	
Benzo[g,h,i]perylene	ND	260	10	µg/L	25	05/07/10 17:12	
	- Marine Contantinant T		B Analyte	detected in th	e accoriata	d Method Blank	
Quanners:	s Maximum Contaminant Lev						
	s the instrument calibration ra	ige	ę	H Holding times for preparation or analysis exceeded ND Not Detected at the Practical Quantitation Limit (PQL)			
	ted below the PQL				-	recovery limits	
P Prim./Conf. c	olumn %D or RPD exceeds lin	nit	S Spike R	ecovery outsic	ie accepted	recovery minus	

Print Date: 05/10/10 13:18

507606

Project Supervisor: Pamela J. Titus

14 A.

### **Analytical Results**

	East Syracuse, NY 13	057 (315) 445-1105		StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto	-	Lab ID: Client Sample ID:	K1005028-001BDL MW-4-050310
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005028 WATER MS06_40 : DB-5MS 05/10/10 13:18	Sample Size: 980 mL %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 12:40 05/04/10 8:31 05/05/10 12:00 11176/R19855 1-DL-K7435.D

Analyte	<b>Result Qual P</b>	QL	MDL	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANIC COM	OUNDS BY GC/MS			SW8270	С	(SW3520C)	
Benzo[k]fluoranthene	ND 2	60	10	µg/L	25	05/07/10 17:12	
bis(2-Chloroethoxy)methane	ND 2	60	10	µg/L	25	05/07/10 17:12	
bis(2-chloroethyl)ether	ND 2	60	10	μg/L	25	05/07/10 17:12	
bis(2-chloroisopropyl)ether	ND 2	60	10	µg/L	25	05/07/10 17:12	
bis(2-Ethylhexyl)phthalate	ND 2	60	10	μg/L	25	05/07/10 17:12	
Butyl benzyl phthalate	ND 2	60	10	μg/L	25	05/07/10 17:12	
Carbazole	18 J 2	60	10	µg/L	25	05/07/10 17:12	
Chrysene	ND 2	60	10	μg/L	25	05/07/10 17:12	
Di-n-butyl phthalate	ND 2	60	31	μg/L	25	05/07/10 17:12	
Di-n-octyl phthalate	ND 2	60	10	μg/L	25	05/07/10 17:12	
Dibenz[a,h]anthracene	ND 2	60	10	µg/L	25	05/07/10 17:12	
Dibenzofuran	14 J 2	60	10	µg/L	25	05/07/10 17:12	
Diethyl phthalate	ND 2	60	10	μg/L	25	05/07/10 17:12	
Dimethyl phthalate	ND 2	60	10	μg/L	25	05/07/10 17:12	
Fluoranthene	ND 2	60	10	μg/L	25	05/07/10 17:12	
Fluorene	11.J 2	260	10	μg/L	25	05/07/10 17:12	
Hexachlorobenzene	ND 2	260	10	μg/L	25	05/07/10 17:12	
Hexachlorobutadiene	ND 2	260	130	μg/L	25	05/07/10 17:12	
Hexachlorocyclopentadiene	ND 1	300	260	µg/L	25	05/07/10 17:12	
Hexachloroethane	ND 2	260	51	µg/L	25	05/07/10 17:12	
Indeno[1,2,3-cd]pyrene	ND 2	260	10	μg/L	25	05/07/10 17:12	
Isophorone	ND 2	260	10	µg/L	25	05/07/10 17:12	
N-Nitroso-di-n-propylamine	ND 2	260	10	μg/L	25	05/07/10 17:12	
Naphthalene	850 2	260	10	µg/L	25	05/07/10 17:12	
Nitrobenzene	ND 2	260	10	μg/L	25	05/07/10 17:12	
Pentachlorophenol	ND	1300	51	µg/L	25	05/07/10 17:12	
Phenanthrene	ND 2	260	10	µg/L	25	05/07/10 17:12	
Phenol	ND	260	10	μg/L	25	05/07/10 17:12	
Pyrene	ND	260	10	µg/L	25	05/07/10 17:12	
Surr: 2,4,6-Tribromophenol	135	46-149	10	%REC	25	05/07/10 17:12	
Surr: 2-Fluorobiphenyl	84	42-130	10	%REC	25	05/07/10 17:12	
Surr: 2-Fluorophenol	76	26-130	10	%REC	25	05/07/10 17:12	
Surr: Nitrobenzene-d5	88	42-130	10	%REC	25	05/07/10 17:12	
Surr: Phenol-d5	80	21-134	10	%REC	25	05/07/10 17:12	
Qualificanse * Value exceeds Ma	ximum Contaminant Level		B Analy	te detected in the	associate	d Method Blank	
Qualifiers: Value exceeds the	instrument calibration range					analysis exceeded	
J Analyte detected b			ND Not D				
<b>,</b>	in %D or RPD exceeds limit		S Spike	Recovery outside	accented	recovery limits	

Print Date: 05/10/10 13:18

Project Supervisor: Pamela J. Titus

it Sup

507606

CLIENT: O'Brien & Gere Engine Project: National Grid - Fulton W Order: K1005028 Matrix: WATER Inst. ID: MS06_40 ColumnID: DB-5MS Revision: 05/10/10 13:18 Col Type:				Lab ID: Client Sa Collectio Date Rec PrepDat BatchNo FileID:	K1005028-001BDL : <i>MW-4-050310</i> 05/03/10 12:40 05/04/10 8:31 05/05/10 12:00 11176/R19855 1-DL-K7435.D				
Analyte			Result Qua	I PQL	MDL	Un	its	DF	Date Analyzed
SEMIVOLAT Surr: Terpho			DUNDS BY GC/MS 80	24-147	10	<b>SW</b> %R	<b>8270</b> EC	C 25	(SW3520C) 05/07/10 17:12
			- <b>6</b>						
				na an an an an an an an an an an an an a					
Qualifiers:	* E J		imum Contaminant Lev nstrument calibration ran low the PQL	el	H Hol	ding times fo	r prepa	ration or	1 Method Blank analysis exceeded untitation Limit (PQL)

#### **Analytical Results**

5854	<b>Butternut Drive</b>	
------	------------------------	--

East Syracuse, NY 13057 (315) 445-1105 StateCertNo: 10248

CLIENT:	O'Brien & Gere Eng	ineers, Inc.	Lab ID:	K1005028-002B
Project:	National Grid - Fult	on, NY	<b>Client Sample ID:</b>	MW-5-050310
W Order:	K1005028		<b>Collection Date:</b>	05/03/10 15:20
Matrix:	WATER		Date Received:	05/04/10 8:31
Inst. ID:	MS06 40	Sample Size: 980 mL	PrepDate:	05/05/10 12:00
ColumnID:		%Moisture:	BatchNo:	11176/R19855
Revision:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7424.D
Col Type:		—		

Analyte		<b>Result Qual</b>	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATI	LE ORGANIC COMPO	OUNDS BY GC/MS			SW827	00	(SW3520C)
1,2,4-Trichlorob		ND	10	0.41	µg/L	1	05/07/10 10:07
1,2-Dichloroben	zene	ND	10	0.41	µg/L	1	05/07/10 10:07
1,3-Dichloroben	zene	ND	10	0.41	μg/L	1	05/07/10 10:07
1,4-Dichloroben	zene	ND	10	0.41	µg/L	1	05/07/10 10:07
2,4,5-Trichlorop	henol	ND	51	0.41	µg/L	1	05/07/10 10:07
2,4,6-Trichlorop	henol	ND	10	0.41	µg/L	1	05/07/10 10:07
2,4-Dichlorophe	nol	ND	10	0.41	µg/L	1	05/07/10 10:07
2,4-Dimethylph	enol	ND	10	0.41	µg/L	1	05/07/10 10:07
2,4-Dinitrophen	ol	ND	51	20	⊧∘i µg/L	1	05/07/10 10:07
2,4-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 10:07
2,6-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 10:07
2-Chloronaphth		ND	10, .	0.41	µg/L	1	05/07/10 10:07
2-Chlorophenol		ND	10	0.41	µg/L	1	05/07/10 10:07
2-Methylnaphth		43	10	0.41	µg/L	1	05/07/10 10:07
2-Methylphenol		ND	10	0.41	µg/L	1	05/07/10 10:07
2-Nitroaniline		ND	51	0.41	µg/L	1	05/07/10 10:07
2-Nitrophenol		ND	10	0.41	µg/L	1	05/07/10 10:07
3,3'-Dichlorobe	nzidine	ND	20	0.41	μg/L	1	05/07/10 10:07
3-Nitroaniline		ND	51	0.41	μg/L	1	05/07/10 10:07
4,6-Dinitro-2-m	ethvlphenol	ND	10	2.0	μg/L	1	05/07/10 10:07
4-Bromophenyl		ND	10	0.41	μg/L	1	05/07/10 10:07
4-Chloro-3-met		ND	10	0.41	μg/L	1	05/07/10 10:07
4-Chloroaniline		ND	10	0.41	μg/L	1	05/07/10 10:07
4-Chlorophenyl	phenvl ether	ND	10	0.41	µg/L	1	05/07/10 10:07
4-Methylphenol		ND	10	0.41	µg/L	1	05/07/10 10:07
4-Nitroaniline		ND	51	0.41	μg/L	1	05/07/10 10:07
4-Nitrophenol		ND	51	2.0	µg/L	1	05/07/10 10:07
Acenaphthene		40	10	0.41	µg/L	1	05/07/10 10:07
Acenaphthylen	e	6.5 J	10	0.41	µg/L	1	05/07/10 10:07
Anthracene	•	3.5 J	10	0.41	µg/L	1	05/07/10 10:07
Benzo[a]anthra	icene	ND	10	0.41	μg/L	1	05/07/10 10:07
Benzo[a]pyren		ND	10	0.41	µg/L	1	05/07/10 10:07
Benzo[b]fluora		ND	10	0.41	μg/L	[·] 1	05/07/10 10:07
Benzo[g,h,i]pe		ND	10	0.41	μg/L	1	05/07/10 10:07
Denzo[g,n,i]per	lylene				10		
Qualifiers:	* Value exceeds Max	imum Contaminant Level		B Analyte	detected in the	e associate	d Method Blank
Quanners:		nstrument calibration ran		H Holding	times for prep	paration or	analysis exceeded
	J Analyte detected be			ND Not Det	ected at the Pr	actical Qu	antitation Limit (PQL)
	•	Nor RPD exceeds lim	it	S Spike R	ecovery outsid	le accepted	l recovery limits

Print Date: 05/10/10 13:18

507599

**Analytical Results** 

#### LSL 5854 Butternut Drive

East Syracuse, NY 13057 (315) 445-1105 StateCertNo: 10248 K1005028-002B O'Brien & Gere Engineers, Inc. Lab ID: **CLIENT:** Client Sample ID: MW-5-050310 National Grid - Fulton, NY **Project: Collection Date:** 05/03/10 15:20 W Order: K1005028 Date Received: 05/04/10 8:31 WATER Matrix: 05/05/10 12:00 **PrepDate:** MS06 40 Sample Size: 980 mL Inst. ID: **BatchNo:** 11176/R19855 ColumnID: DB-5MS %Moisture: TestCode: 8270W_TCL FileID: 1-SAMP-K7424.D 05/10/10 13:18 **Revision:** Col Type:

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyze
SEMIVOLATILE ORGANIC O	OMPOUNDS BY GC/MS		·	SW8270	С	(SW3520C)
Benzo[k]fluoranthene	ND	10	0.41	µg/L	1	05/07/10 10:07
bis(2-Chloroethoxy)methane	ND	10	0.41	μg/L	1	05/07/10 10:07
bis(2-chloroethyl)ether	ND	10	0.41	µg/L	1	05/07/10 10:07
bis(2-chloroisopropyl)ether	ND	10	0.41	μg/L	1	05/07/10 10:07
bis(2-Ethylhexyl)phthalate	0.78 J	10	0.41	μg/L	1	05/07/10 10:07
Butyl benzyl phthalate	ND	10	0.41	µg/L	1	05/07/10 10:07
Carbazole	4.7 J	10	0.41	µg/L	1	05/07/10 10:07
Chrysene	ND	10	0.41	μg/L	1	05/07/10 10:07
Di-n-butyl phthalate	ND	10	1.2	μg/L	1	05/07/10 10:07
Di-n-octyl phthalate	ND	10	0.41	μg/L	1	05/07/10 10:07
Dibenz[a,h]anthracene	ND	10	0.41	µg/L	1	05/07/10 10:07
Dibenzofuran	21	10	0.41	µg/L	1	05/07/10 10:07
Diethyl phthalate	ND	10	0,41	µg/L	1	05/07/10 10:07
Dimethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 10:07
Fluoranthene	2.0 J	10	0.41	µg/L	1	05/07/10 10:07
Fluorene	27		0.41	μg/L	1	05/07/10 10:07
Hexachlorobenzene	ND	10	0.41	μg/L	1	05/07/10 10:07
Hexachlorobutadiene	ND	10	5.1	μg/L	1	05/07/10 10:07
Hexachlorocyclopentadiene	ND	51	10	µg/L	1	05/07/10 10:07
Hexachloroethane	ND	10	2.0	μg/L	1	05/07/10 10:07
Indeno[1,2,3-cd]pyrene	ND	10	0.41	µg/L	1	05/07/10 10:07
Isophorone	ND	10	0.41	µg/L	1	05/07/10 10:07
N-Nitroso-di-n-propylamine	ND	10	0.41	µg/L	1	05/07/10 10:07
Naphthalene	1400 E	10	0.41	µg/L	1	05/07/10 10:07
Nitrobenzene	ND	10	0.41	µg/L	1	05/07/10 10:07
Pentachlorophenol	ND	51	2.0	µg/L	1	05/07/10 10:07
Phenanthrene	31	10	0.41	µg/L	1	05/07/10 10:07
Phenol	ND	10	0.41	µg/L	1	05/07/10 10:07
Pyrene	1.6 J	10	0.41	μg/L	1	05/07/10 10:07
Surr: 2,4,6-Tribromophenol	166 S	46-149	0.41	%REC	1	05/07/10 10:07
Surr: 2-Fluorobiphenyl	104	42-130	0.41	%REC	1	05/07/10 10:07
Surr: 2-Fluorophenol	116	26-130	0.41	%REC	1	05/07/10 10:07
Surr: Nitrobenzene-d5	74	42-130	0.41	%REC	1	05/07/10 10:07
Surr: Phenol-d5	81	21-134	0.41	%REC	1	05/07/10 10:07
Qualifiers: * Value excee	ds Maximum Contaminant Leve	<u>.</u>	B Analyte	detected in the	associate	i Method Blank
E Value excee	ds the instrument calibration rar	ige	H Holding	g times for prepa	aration or	analysis exceeded
	cted below the PQL		ND Not De	tected at the Pra	ctical Qua	intitation Limit (PQL)
•	column %D or RPD exceeds lir	nit	S Spike R	ecovery outside	accented	recovery limits

507599

#### **Analytical Results**

CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	O'Brien & Gere Engi National Grid - Fultor K1005028 WATER MS06_40 DB-5MS 05/10/10 13:18	n, NY Sample Size: 98 %Moisture:	0 mL 70W_TCL	Lab ID: Client Sampl Collection Da Date Receive PrepDate: BatchNo: FileID:		50310 5:20 31 2:00 855
Analyte		Result Qua	I PQL	MDL	Units DF	Date Analyzed
SEMIVOLA Surr: Terph	FILE ORGANIC COMF enyl-d14	POUNDS BY GC/MS 92	24-147	0.41	<b>SW8270C</b> %REC 1	(SW3520C) 05/07/10 10:07
			. t 2			
		e Alexandre			2.1	
				a an taon a Taon Taon		
			1. N. 1.			
				́.		
			j, esterni interneti interneti interneti interneti interneti interneti interneti interneti interneti interneti Interneti interneti int			
				an Sharan Sharan br>Sharan Sharan		
				• . •		
				52		
Qualifiers:	<ul><li>E Value exceeds the</li><li>J Analyte detected b</li></ul>	kimum Contaminant Lev instrument calibration ra elow the PQL n %D or RPD exceeds lin	el nge	H Holding ti ND Not Detec	tected in the associate mes for preparation or and at the Practical Qu overy outside accepted	analysis exceeded antitation Limit (PQL)

Print Date: 05/10/10 13:18 507599 Project Supervisor: Pamela J. Titus

**Analytical Results** 

E	ast Syracuse, NY 13	057 (315) 445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton		Lab ID: Client Sample ID:	K1005028-002BDL MW-5-050310
W Order:	K1005028		<b>Collection Date:</b>	05/03/10 15:20
Matrix:	WATER		Date Received:	05/04/10 8:31
Inst. ID:	MS06 40	Sample Size: 980 mL	PrepDate:	05/05/10 12:00
ColumnID:		%Moisture:	BatchNo:	11176/R19855
Revision:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-DL-K7436.D
Col Type:		_		

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyze
SEMIVOLATILE ORGANIC COMPOUNDS BY GC/MS				SW8270C (SW352		
1,2,4-Trichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:51
1,2-Dichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:51
1,3-Dichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:51
1,4-Dichlorobenzene	ND	260	10	µg/L	25	05/07/10 17:51
2,4,5-Trichlorophenol	ND	1300	10	µg/L	25	05/07/10 17:51
2,4,6-Trichlorophenol	ND	260	10	µg/L	25	05/07/10 17:51
2,4-Dichlorophenol	ND	260	10	µg/L	25	05/07/10 17:51
2,4-Dimethylphenol	ND	260	10	μg/L	25	05/07/10 17:51
2,4-Dinitrophenol	ND	1300	510	μg/L	25	05/07/10 17:51
2,4-Dinitrotoluene	ND	260	10	μg/L	25	05/07/10 17:51
2,6-Dinitrotoluene	ND	260	10	µg/L	25	05/07/10 17:51
2-Chloronaphthalene	ND	260	10	µg/L	25	05/07/10 17:51
2-Chlorophenol	ND	260	10	μg/L	25	05/07/10 17:51
2-Methylnaphthalene	43 J	260	10	µg/L	25	05/07/10 17:51
2-Methylphenol	ND	260	10	µg/L	25	05/07/10 17:51
2-Nitroaniline	ND	1300	10	µg/L	25	05/07/10 17:51
2-Nitrophenol	ND	260	10	μg/L	25	05/07/10 17:51
3,3'-Dichlorobenzidine	ND	510	10	µg/L	25	05/07/10 17:51
3-Nitroaniline	ND	1300	10	µg/L	25	05/07/10 17:51
4,6-Dinitro-2-methylphenol	ND	260	51	µg/L	25	05/07/10 17:51
4-Bromophenyl phenyl ether	ND	260	10	µg/L	25	05/07/10 17:51
4-Chloro-3-methylphenol	ND	260	10	μg/L	25	05/07/10 17:51
4-Chloroaniline	ND	260	10	µg/L	25	05/07/10 17:51
4-Chlorophenyl phenyl ether	ND	260	10	µg/L	25	05/07/10 17:51
4-Methylphenol	ND	260	10	µg/L	25	05/07/10 17:51
4-Nitroaniline	ND	1300	10	µg/L	25	05/07/10 17:51
4-Nitrophenol	ND	1300	51	µg/L	25	05/07/10 17:51
Acenaphthene	37 J	260	10	µg/L	25	05/07/10 17:51
Acenaphthylene	ND	260	10	µg/L	25	05/07/10 17:51
Anthracene	ND	260	10	μg/L	25	05/07/10 17:51
Benzo[a]anthracene	ND	260	10	µg/L	25	05/07/10 17:51
Benzo[a]pyrene	ND	260	10	μg/L	25	05/07/10 17:51
Benzo[b]fluoranthene	ND	260	10	μg/L	25	05/07/10 17:51
Benzo[g,h,i]perylene	ND	260	10	µg/L	25	05/07/10 17:51
Qualifiers: * Value exceeds Ma	aximum Contaminant Leve		B Analyte	e detected in the	e associated	i Method Blank
Quanners.	e instrument calibration rat		H Holding times for preparation or analysis exc			analysis exceeded
J Analyte detected		-	ND Not De	tected at the Pr	actical Qua	intitation Limit (PQL)
•	nn %D or RPD exceeds lir			Spike Recovery outside accepted recovery limits		

#### **Analytical Results**

	East Syracuse, NY 130	(315) 445-1105		StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton	· ·	Lab ID: Client Sample ID:	K1005028-002BDL MW-5-050310
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005028 WATER MS06_40 : DB-5MS 05/10/10 13:18	Sample Size: 980 mL %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 15:20 05/04/10 8:31 05/05/10 12:00 11176/R19855 1-DL-K7436.D

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyze
SEMIVOLATILE ORGANIC COMPO	OUNDS BY GC/MS	;		SW8270	C	(SW3520C)
Benzo[k]fluoranthene	ND	260	10	µg/L	25	05/07/10 17:51
bis(2-Chloroethoxy)methane	ND	260	10	µg/L	25	05/07/10 17:51
bis(2-chloroethyl)ether	ND	260	10	µg/L	25	05/07/10 17:51
bis(2-chloroisopropyl)ether	ND	260	10	µg/L	25	05/07/10 17:51
bis(2-Ethylhexyl)phthalate	ND	260	10	µg/L	25	05/07/10 17:51
Butyl benzyl phthalate	ND	260	10	µg/L	25	05/07/10 17:51
Carbazole	ND	260	10	µg/L	25	05/07/10 17:51
Chrysene	ND	260	10	µg/L	25	05/07/10 17:51
Di-n-butyl phthalate	ND	260	31	µg/L	25	05/07/10 17:51
Di-n-octyl phthalate	ND	260	10	µg/L	25	05/07/10 17:51
Dibenz[a,h]anthracene	ND	260	10	µg/L	25	05/07/10 17:51
Dibenzofuran	19 J	260	10	μg/L	25	05/07/10 17:51
Diethyl phthalate	ND	260	10	µg/L	25	05/07/10 17:51
Dimethyl phthalate	ND	260	10	µg/L	25	05/07/10 17:51
Fluoranthene	ND	260	10	µg/L	25	05/07/10 17:51
Fluorene	24 J	260	. 10	µg/L	25	05/07/10 17:51
Hexachlorobenzene	ND	260	10	µg/L	25	05/07/10 17:51
Hexachlorobutadiene	ND	260	130	µg/L	25	05/07/10 17:51
Hexachlorocyclopentadiene	ND	1300	260	µg/L	25	05/07/10 17:51
Hexachloroethane	ND	260	51	µg/L	25	05/07/10 17:51
Indeno[1,2,3-cd]pyrene	ND	260	10	µg/L	25	05/07/10 17:51
Isophorone	ND	260	10	μg/L	25	05/07/10 17:51
N-Nitroso-di-n-propylamine	ND	260	10	µg/L	25	05/07/10 17:51
Naphthalene	960	260	10	µg/L	25	05/07/10 17:51
Nitrobenzene	ND	260	10	µg/L	25	05/07/10 17:51
Pentachlorophenol	ND	1300	51	μg/L	25	05/07/10 17:51
Phenanthrene	27 J	260	10	µg/L	25	05/07/10 17:51
Phenol	ND	260	10	μg/L	25	05/07/10 17:51
Pyrene	ND	260	10	µg/L	25	05/07/10 17:51
Surr: 2,4,6-Tribromophenol	122	46-149	10	%REC	25	05/07/10 17:51
Surr: 2-Fluorobiphenyl	80	42-130	10	%REC	25	05/07/10 17:51
Surr: 2-Fluorophenol	66	26-130	10	%REC	25	05/07/10 17:51
Surr: Nitrobenzene-d5	84	42-130	10	%REC	25	05/07/10 17:51
Surr: Phenol-d5	71	21-134	10	%REC	25	05/07/10 17:51
Qualifiers: * Value exceeds Maxi	mum Contaminant Lev	el	B Analyte detected in the associated Method Blank			d Method Blank
E Value exceeds the in	nstrument calibration ra	nge	H Holding times for preparation or analysis exceeded			
J Analyte detected be	low the PQL		ND Not De	tected at the Pra	ctical Qua	antitation Limit (PQL)
	%D or RPD exceeds li	mit	S Spike Recovery outside accepted recovery limi			recovery limits

CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	O'Brien & Gere Engine National Grid - Fulton, K1005028 WATER MS06_40 DB-5MS 05/10/10 13:18	Grid - Fulton, NY 8 ) Sample Size: 980 mL %Moisture:			Lab ID:       K1005028-002         Client Sample ID:       MW-5-050316         Collection Date:       05/03/10 15:20         Date Received:       05/04/10 8:31         PrepDate:       05/05/10 12:00         BatchNo:       11176/R19855         FileID:       1-DL-K7436.D			
Analyte		Result Qua	l PQL	MDL	Units	DF	Date Analyzed	
SEMIVOLAT	TILE ORGANIC COMPO				SW827		(SW3520C)	
Surr: Terph	enyl-d14	71	24-147	10	%REC	25	05/07/10 17:51	
				a de la composition de la composition de la composition de la composition de la composition de la composition d				
				a a				
				1 - 19 2				
				· .				
				4 .				
			e og til er skrift og	ange og state				
			л. С	•				
		* * * * * *						
				÷ ,				
				Ŧ				
Qualifiers:	<ul><li>E Value exceeds the ins</li><li>J Analyte detected below</li></ul>	num Contaminant Lev strument calibration ran w the PQL %D or RPD exceeds lin	nge	H Holding ti ND Not Detect	mes for prep ted at the Pr	aration or actical Qua	d Method Blank analysis exceeded antitation Limit (PQL) recovery limits	

Print Date: 05/10/10 13:18 507607 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

a 1	Cast Syracuse, NY 130	057 (315) 445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engir National Grid - Fultor		Lab ID: Client Sample ID:	K1005034-001B MW-7-050410
W Order: Matrix: Inst. ID: ColumnID: Revision:	K1005034 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: 950 mL %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/04/10 11:20 05/05/10 8:30 05/05/10 12:00 11176/R19855 1-SAMP-K7425.D

Analyte		Result Qual	PQL	MDL	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANIC COMPOUNDS BY GC/MS				SW827	oc	(SW3520C)		
1,2,4-Trichlorobe		ND	11	0.42	µg/L	1	05/07/10 10:46	
1,2-Dichlorobenz		ND	11	0.42	µg/L	1	05/07/10 10:46	
1,3-Dichlorobenz		ND	11	0.42	µg/L	1	05/07/10 10:46	
1,4-Dichlorobenz		ND	11	0.42	μg/L	1	05/07/10 10:46	
2,4,5-Trichloroph		ND	53	0.42	μg/L	1	05/07/10 10:46	
2,4,6-Trichloroph		ND	11	0.42	μg/L	1	05/07/10 10:46	
2,4-Dichloropher		ND	11	0.42	μg/L	1	05/07/10 10:46	
2,4-Dimethylphe		ND	11	0.42	µg/L	1	05/07/10 10:46	
2,4-Dinitropheno		ND	53	21	µg/L	1	05/07/10 10:46	
2,4-Dinitrotoluen		ND	11	0.42	μg/L	1	05/07/10 10:46	
2,6-Dinitrotoluen		ND	11	0.42	μg/L	1	05/07/10 10:46	
2-Chloronaphtha		ND	11	0.42	µg/L	1	05/07/10 10:46	
2-Chlorophenol		ND	11	0.42	µg/L	1	05/07/10 10:46	
2-Methylnaphtha	lene	ND	11	0.42	µg/L	1	05/07/10 10:46	
2-Methylphenol		ND	11	0.42	µg/L	1	05/07/10 10:46	
2-Nitroaniline		ND	53	0.42	µg/L	1	05/07/10 10:46	
2-Nitrophenol		ND	11	0.42	µg/L	1	05/07/10 10:46	
3,3'-Dichlorober	zidine	ND	21	0.42	⊢µg/L	1	05/07/10 10:46	
3-Nitroaniline		ND	53	0.42	μg/L	1	05/07/10 10:46	
4,6-Dinitro-2-me	thylphenol	ND	11	2.1	µg/L	1	05/07/10 10:46	
4-Bromophenyl	• •	ND	11	0.42	μg/L	1	05/07/10 10:46	
4-Chloro-3-meth		ND	11	0.42	µg/L	1	05/07/10 10:46	
4-Chloroaniline	<i>.</i>	ŃĎ	11	0.42	μg/L	1	05/07/10 10:46	
4-Chlorophenyl	phenvl ether	ND	11	0.42	µg/L	1	05/07/10 10:46	
4-Methylphenol		ND	11	0.42	μg/L	1	05/07/10 10:46	
4-Nitroaniline		ND	53	0.42	µg/L	1	05/07/10 10:46	
4-Nitrophenol		ND	53	2.1	µg/L	1	05/07/10 10:46	
Acenaphthene		ND	11	0.42	µg/L	1	05/07/10 10:46	
Acenaphthylene	2	ND	11	0.42	µg/L	1	05/07/10 10:46	
Anthracene		ND	11	0.42	µg/L	1	05/07/10 10:46	
Benzo[a]anthrac	cene	ND	11	0.42	µg/L	1	05/07/10 10:46	
Benzo[a]pyrene		ND	11	0.42	μg/L	1	05/07/10 10:46	
Benzo[b]fluoran		ND	11	0,42	μg/L	1	05/07/10 10:46	
Benzo[g,h,i]per		ND	11	0.42	µg/L	1	05/07/10 10:46	
Qualifiana	* Value exceeds Maxin	mum Contaminant Level	· · · ·	B Analyte	e detected in the	e associate	d Method Blank	
Qualifiers:		strument calibration ran		H Holding	g times for prep	aration or	analysis exceeded	
	J Analyte detected bel		-	ND Not De	tected at the Pr	actical Qu	antitation Limit (PQL)	
	•	%D or RPD exceeds lim	it	S Spike F				

Print Date: 05/10/10 13:23

⁵⁰⁷⁶⁰⁰ 

#### **Analytical Results**

t Drive

	ast Syracuse, NY 130	57 (315) 445-1105	S	StateCertNo: 10248
CLIENT:	O'Brien & Gere Engine		Lab ID:	K1005034-001B
Project:	National Grid - Fulton,		Client Sample ID:	MW-7-050410
W Order:	K1005034	i	Collection Date:	05/04/10 11:20
Matrix:	WATER		Date Received:	05/05/10 8:30
Inst. ID:	MS06_40	Sample Size: 950 mL	PrepDate:	05/05/10 12:00
ColumnID:	DB-5MS	%Moisture:	BatchNo:	11176/R19855
Revision:	05/10/10 13:18	TestCode: 8270W TCL	FileID:	1-SAMP-K7425.D
Col Type:	05/10/10 15.10			

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COMPOUNDS BY GC/MS				SW8270	C	(SW3520C)
Benzo[k]fluoranthene	ND	11	0.42	μg/L	1	05/07/10 10:46
bis(2-Chloroethoxy)methar	ie ND	11	0.42	µg/L	1	05/07/10 10:46
bis(2-chloroethyl)ether	ND	11	0.42	µg/L	1	05/07/10 10:46
bis(2-chloroisopropyl)ether	ND	11	0.42	µg/L	1	05/07/10 10:46
bis(2-Ethylhexyl)phthalate	ND	11	0.42	µg/L	1	05/07/10 10:46
Butyl benzyl phthalate	ND	11	0.42	μg/L	1	05/07/10 10:46
Carbazole	ND	11	0.42	µg/L	1	05/07/10 10:46
Chrysene	ND	11	0.42	μg/L	1	05/07/10 10:46
Di-n-butyl phthalate	ND	11	1.3	μg/L	1	05/07/10 10:46
Di-n-octyl phthalate	ND	11	0.42	µg/L	1	05/07/10 10:46
Dibenz[a,h]anthracene	ND	11	0.42	μg/L	1	05/07/10 10:46
Dibenzofuran	ND	11	0.42	µg/L	1	05/07/10 10:46
Diethyl phthalate	ND	11	0.42	μg/L	1	05/07/10 10:46
Dimethyl phthalate	ND	. 11.	0.42	µg/L	1	05/07/10 10:46
Fluoranthene	ND	11	0.42	µg/L	1	05/07/10 10:46
Fluorene	. ND	1.1	0.42	µg/L	1	05/07/10 10:46
Hexachlorobenzene	ND	11,	0.42	µg/L	1	05/07/10 10:46
Hexachlorobutadiene	ND	11	5.3	μg/L	1	05/07/10 10:46
Hexachlorocyclopentadien	e ND	53	11	µg/L	1	05/07/10 10:46
Hexachloroethane	ŃĎ	11	2.1	µg/L	1	05/07/10 10:46
Indeno[1,2,3-cd]pyrene	ND	11	0.42	µg/L	1	05/07/10 10:46
Isophorone	ND	. 11	0.42	µg/L	1	05/07/10 10:46
N-Nitroso-di-n-propylamine	e ND	11	0.42	µg/L	1	05/07/10 10:46
Naphthalene	ND	11	0.42	µg/L	1	05/07/10 10:46
Nitrobenzene	ND	11	0.42	μg/L	1	05/07/10 10:46
Pentachlorophenol	ND	53	2.1	µg/L	1	05/07/10 10:46
Phenanthrene	ND	11	0.42	µg/L	1	05/07/10 10:46
Phenol	ND	11	0.42	µg/L	1	05/07/10 10:46
Pyrene	ND	11	0.42	μg/L	1	05/07/10 10:46
Surr: 2,4,6-Tribromophe	enol 148	46-149	0.42	%REC	1	05/07/10 10:46
Surr: 2-Fluorobiphenyl	102	42-130	0.42	%REC	1	05/07/10 10:46
Surr: 2-Fluorophenol	84	26-130	0.42	%REC	1	05/07/10 10:46
Surr: Nitrobenzene-d5	92	42-130	0.42	%REC	1	05/07/10 10:46
Surr: Phenol-d5	81	21-134	0.42	%REC	1	05/07/10 10:46
			Ď. Analyza	detected in the	associato	d Method Blank
Quanners.	e exceeds Maximum Contaminant Le					
	e exceeds the instrument calibration r	ange	-			analysis exceeded
	yte detected below the PQL	• •, •	1			antitation Limit (PQL)
P Prim	/Conf. column %D or RPD exceeds l	imit	S Spike R	ecovery outside	e accepted	recovery limits

507600

### Life Science Laboratories, Inc. Analytical Results

	354 Butternut Drive ast Syracuse,NY 1305	<b>(315) 445-1105</b>	. *		StateCertNo:	10248	
CLIENT: roject:	• • • •			Lab ID:         K1005034-001B           Client Sample ID:         MW-7-050410			
V Order: Iatrix: nst. ID: columnID: evision:	K1005034 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: 950 mL %Moisture: TestCode: 8270W_7	Dat Pre Bat	lection Date: e Received: pDate: chNo: ID:	05/04/10 11: 05/05/10 8:3 05/05/10 12: 11176/R198 1-SAMP-K7	0 00 55	
Col Type:		. 4		х. 			
nalyte		Result Qual PQL	M	DL Un	its DF	Date Analyze	
SEMIVOLAT	ILE ORGANIC COMPC	DUNDS BY GC/MS 117 24-14	0.4		<b>V8270C</b> REC 1	(SW3520C) 05/07/10 10:46	
		، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	te de				
		general de sur Se					
				and a straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight			
			1	al _{da e} ngeneration Setter de la solation Setter			
				,			
			5 5	ξβ ¹¹ π γ απο			
Qualifiers:	<ul><li>E Value exceeds the in</li><li>J Analyte detected below</li></ul>	num Contaminant Level strument calibration range ow the PQL %D or RPD exceeds limit	B H ND S	Not Detected at	or preparation or a	nalysis exceeded ttitation Limit (PQL)	

## Life Science Laboratories, Inc. 5854 Butternut Drive

#### **Analytical Results**

E	East Syracuse,NY 130	57 (315) 445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton		Lab ID: Client Sample ID:	K1005034-002B MW-3-050410
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005034 WATER MS06_40 : DB-5MS 05/10/10 13:18	Sample Size: 980 mL %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/04/10 13:50 05/05/10 8:30 05/05/10 12:00 11176/R19855 1-SAMP-K7426.D

Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyze
SEMIVOLATI	LE ORGANIC COMF		SW827	0C	(SW3520C)		
1,2,4-Trichlorob		ND	10	0.41	µg/L	1	05/07/10 11:24
1,2-Dichlorober		ND	10	0.41	µg/L	1	05/07/10 11:24
, 1,3-Dichlorober		ND	10	0.41	μg/L	1	05/07/10 11:24
, 1,4-Dichlorober		ND	10	0.41	µg/L	1	05/07/10 11:24
2,4,5-Trichlorop	henol	ND	51	0.41	µg/L	1	05/07/10 11:24
2,4,6-Trichlorop	henol	ND	10	0.41	μg/L	1	05/07/10 11:24
2,4-Dichlorophe		ND	10	0.41	µg/L	1	05/07/10 11:24
2,4-Dimethylph		ND	10	0.41	µg/L	1	05/07/10 11:24
2,4-Dinitrophen		ND	51	20	μg/L	1	05/07/10 11:24
2,4-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 11:24
2,6-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 11:24
2-Chloronaphth		ND	10	0.41	μg/L	1	05/07/10 11:24
2-Chlorophenol		ND	10	0.41	μg/L	1	05/07/10 11:24
2-Methylnaphth		ND	10	0.41	µg/L	1	05/07/10 11:24
2-Methylphenol		ND	10	0.41	μg/L	1	05/07/10 11:24
2-Nitroaniline		ND	51	0.41	µg/L	1	05/07/10 11:24
2-Nitrophenol		ND	10	0.41	µg/L	1	05/07/10 11:24
3,3´-Dichlorobenzidine		ND	20	0.41	μg/L	1	05/07/10 11:24
3-Nitroaniline		ND	51	0.41	µg/L	1	05/07/10 11:24
4,6-Dinitro-2-methylphenol		ND	10	2.0	µg/L	1	05/07/10 11:24
4-Bromopheny		ND	10	0.41	µg/L	1	05/07/10 11:24
4-Chloro-3-met	• •	ND	10	0.41	µg/L	1	05/07/10 11:24
4-Chloroaniline	• •	ND	10	0.41	µg/L	1	05/07/10 11:24
4-Chloropheny		ND	10	0.41	μg/L	1	05/07/10 11:24
4-Methylpheno		ND	10	0.41	μg/L	1	05/07/10 11:24
4-Nitroaniline		ND	51	0.41	μg/L	1	05/07/10 11:24
4-Nitrophenol		ND	51	2.0	μg/L	1	05/07/10 11:24
Acenaphthene		ND	10	0.41	μg/L	1	05/07/10 11:24
Acenaphthylen	e	ND	10	0.41	μg/L	1	05/07/10 11:24
Anthracene	-	ND	10	0.41	µg/L	1	05/07/10 11:24
Benzo[a]anthra	acene	ND	10	0.41	μg/L	1	05/07/10 11:24
Benzo[a]pyren		ND	10	0.41	µg/L	1	05/07/10 11:24
Benzo[b]fluora		ND	10	0.41	μg/L	1	05/07/10 11:24
Benzo[g,h,i]pe		ND	10	0.41	µg/L	1	05/07/10 11:24
Qualifiers:		ximum Contaminant Lev instrument calibration ra		<ul> <li>B Analyte detected in the associated Method Blank</li> <li>H Holding times for preparation or analysis exceeded</li> </ul>			
	J Analyte detected b				• • •		antitation Limit (PQL)
	•	n %D or RPD exceeds I	imit				recovery limits

Print Date: 05/10/10 13:23

**Analytical Results** 

F	East Syracuse, NY 13	057 (315) 445-1105		StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton		Lab ID: Client Sample ID:	K1005034-002B MW-3-050410
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005034 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: 980 mL %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/04/10 13:50 05/05/10 8:30 05/05/10 12:00 11176/R19855 1-SAMP-K7426.D

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COI			SW8270	C	(SW3520C)	
Benzo[k]fluoranthene	ND	10	0.41	μg/L	1	05/07/10 11:24
bis(2-Chloroethoxy)methane	ND	10	0.41	µg/L	1	05/07/10 11:24
bis(2-chloroethyl)ether	ND	10	0.41	μg/L	1	05/07/10 11:24
bis(2-chloroisopropyl)ether	ND	10	0.41	µg/L	1	05/07/10 11:24
bis(2-Ethylhexyl)phthalate	0.57 J	10	0.41	μg/L	1	05/07/10 11:24
Butyl benzyl phthalate	ND	10	0.41	µg/L	1	05/07/10 11:24
Carbazole	ND	10	0.41	µg/L	1	05/07/10 11:24
Chrysene	ND	10	0.41	µg/L	1	05/07/10 11:24
Di-n-butyl phthalate	ND	10	1.2	μg/L	1	05/07/10 11:24
Di-n-octyl phthalate	ND	10	0.41	μg/L	1	05/07/10 11:24
Dibenz[a,h]anthracene	ND	10	0.41	µg/L	1	05/07/10 11:24
Dibenzofuran	ND	10	0.41	µg/L	1	05/07/10 11:24
Diethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 11:24
Dimethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 11:24
Fluoranthene	ND	10	0.41	µg/L	1	05/07/10 11:24
Fluorene	ND	.10	0.41	µg/L	1	05/07/10 11:24
Hexachlorobenzene	ND	10	0.41	µg/L	1	05/07/10 11:24
Hexachlorobutadiene	ND	10	5.1	µg/L	1	05/07/10 11:24
Hexachlorocyclopentadiene	ND	51	10	µg/L	1	05/07/10 11:24
Hexachloroethane	ND	10	2.0	µg/L	1	05/07/10 11:24
Indeno[1,2,3-cd]pyrene	ND	10	0.41	µg/L	1	05/07/10 11:24
Isophorone	ND	10	0.41	µg/L	1	05/07/10 11:24
N-Nitroso-di-n-propylamine	ND	10	0.41	µg/L	1	05/07/10 11:24
Naphthalene	ND	10	0.41	µg/L	1	05/07/10 11:24
Nitrobenzene	ND	10	0.41	μg/L	1	05/07/10 11:24
Pentachlorophenol	ND	51	2.0	µg/L	1	05/07/10 11:24
Phenanthrene	ND	10	0.41	μg/L	1	05/07/10 11:24
Phenol	ND	10	0.41	µg/L	1	05/07/10 11:24
Pyrene	ND	10	0.41	µg/L	1	05/07/10 11:24
Surr: 2,4,6-Tribromophenol	123	46-149	0.41	%REC	1	05/07/10 11:24
Surr: 2-Fluorobiphenyl	101	42-130	0.41	%REC	1	05/07/10 11:24
Surr: 2-Fluorophenol	62	26-130	0.41	%REC	1	05/07/10 11:24
Surr: Nitrobenzene-d5	86	42-130	0.41	%REC	1	05/07/10 11:24
Surr: Phenol-d5	67	21-134	0.41	%REC	1	05/07/10 11:24
Qualifiers: * Value exceeds M	Maximum Contaminant Level		B Analyte	detected in the	associate	d Method Blank
Quanners.	he instrument calibration rang	ge -				analysis exceeded
	d below the PQL		ND Not Det	ected at the Pra	ctical Qua	ntitation Limit (PQL)
,	umn %D or RPD exceeds lim	t	S Spike R	ecoverv outside	e accepted	recovery limits

#### Print Date: 05/10/10 13:23

507601

Project Supervisor: Pamela J. Titus

an the second second second second second second second second second second second second second second second

#### LSL Life Science Laboratories, Inc. 5854 Butternut Drive East Syracuse, NY 13057 (315) 445-1105

	East Syracuse, NY 13057 (315) 445-1105				StateCertNo: 10248			
LIENT: roject:	-			Lab ID:         K1005034-002B           Client Sample ID:         MW-3-050410				
Order:	K1005034				ction Date: Received:	05/04/10 1 05/05/10 8		
atrix:	WATER	G	20T	Prepl		05/05/10 1		
ist. ID:	MS06_40	Sample Size: 98 %Moisture:	SU ML	Batch		11176/R19		
olumnID: evision:	05/10/10 13:18		270W_TCL	FileIl		1-SAMP-K		
col Type:	05/10/10 15.10	Testeouer of						
		Result Qua	N POI	MD	L Uni	ts DF	Date Analyzed	
nalyte						8270C	(SW3520C)	
Surr: Terphe		124	<b>2</b> 4-147	0.41	%RI		05/07/10 11:24	
Sun. reipin	Silyi-Gitt							
		,						
		r 2						
		, 1947 - L		1				
				an de Sector				
				1 8 J				
				4. A.				
				1.21	· · · · ·			
				. v (41				
		an An the second	n Aller in					
		- 						
			an an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair an thair					
				цт.,				
Qualifiers:		ximum Contaminant Lev		В	Analyte detected		ed Method Blank	
		instrument calibration ra	inge				r analysis exceeded	
	J Analyte detected b		mit		Not Detected at fl Spike Recovery c		antitation Limit (PQL)	
	P Prim./Conf. colum	in %D or RPD exceeds li	11111	S	spike Recovery c	utside accepte	a recovery minus	

## LSL 5854 Butternut Drive East Syracuse NV 13057 (315) 445-1105

**Analytical Results** 

F	East Syracuse, NY 13	057 (315) 445-1105	\$	StateCertNo: 10248
CLIENT:	O'Brien & Gere Engin	-	Lab ID:	K1005034-003B
Project:	National Grid - Fultor		Client Sample ID:	MW-2-050410
W Order:	K1005034		Collection Date:	05/04/10 15:30
Matrix:	WATER		Date Received:	05/05/10 8:30
Inst. ID:	MS06_40	Sample Size: 970 mL %Moisture:	PrepDate:	05/05/10 12:00
ColumnID:	DB-5MS		BatchNo:	11176/R19855
Revision: Col Type:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7427.D

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COM		SW827	0C	(SW3520C)		
1,2,4-Trichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 12:03
1,2-Dichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 12:03
1,3-Dichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 12:03
1,4-Dichlorobenzene	ND	10	0.41	µg/L	1	05/07/10 12:03
2,4,5-Trichlorophenol	ND	52	0.41	µg/L	1	05/07/10 12:03
2,4,6-Trichlorophenol	ND	10	0.41	µg/L	1	05/07/10 12:03
2,4-Dichlorophenol	ND	10	0.41	µg/L	1	05/07/10 12:03
2,4-Dimethylphenol	ND	10	0.41	µg/L	1	05/07/10 12:03
2,4-Dinitrophenol	ND	52	21	µg/L	1	05/07/10 12:03
2,4-Dinitrotoluene	ND	10	0.41	µg/L	1	05/07/10 12:03
2,6-Dinitrotoluene	ND	10	0.41	µg/L	1	05/07/10 12:03
2-Chloronaphthalene	ND	10	0.41	µg/L	1	05/07/10 12:03
2-Chlorophenol	ND	10	0.41	µg/L	1	05/07/10 12:03
2-Methylnaphthalene	ND	10	0.41	µg/L	1	05/07/10 12:03
2-Methylphenol	ND	10	0.41	µg/L	1	05/07/10 12:03
2-Nitroaniline	ND	52	0.41	µg/L	1	05/07/10 12:03
2-Nitrophenol	ND	10	0.41	µg/L	1	05/07/10 12:03
3,3'-Dichlorobenzidine	ND	21	0.41	µg/L	1	05/07/10 12:03
3-Nitroaniline	ND	52	0.41	µg/L	1	05/07/10 12:03
4,6-Dinitro-2-methylphenol	ND	10	2.1	µg/L	1	05/07/10 12:03
4-Bromophenyl phenyl ether	ND	10	0.41	μg/L	1	05/07/10 12:03
4-Chloro-3-methylphenol	ND	10	0.41	μg/L	1	05/07/10 12:03
4-Chloroaniline	ND	10	0.41	μg/L	1	05/07/10 12:03
4-Chlorophenyl phenyl ether	ND	10	0.41	µg/L	1	05/07/10 12:03
4-Methylphenol	ND	10	0.41	µg/L	1	05/07/10 12:03
4-Nitroaniline	ND	52	0.41	µg/L	1	05/07/10 12:03
4-Nitrophenol	ND	52	2.1	μg/L	1	05/07/10 12:03
Acenaphthene	ND	10	0.41	µg/L	1	05/07/10 12:03
Acenaphthylene	ND	10	0.41	µg/L	1	05/07/10 12:03
Anthracene	ND	10	0.41	µg/L	1	05/07/10 12:03
Benzo[a]anthracene	ND	10	0.41	μg/L	1	05/07/10 12:03
Benzo[a]pyrene	ND	10	0.41	μg/L	1	05/07/10 12:03
Benzo[b]fluoranthene	ND	10	0.41	μg/L	1	05/07/10 12:03
Benzo[g,h,i]perylene	ND	10	0.41	µg/L	1	05/07/10 12:03
Oualifiers: * Value exceeds M	faximum Contaminant Level	· · ·	B Analyte	Analyte detected in the associated Method Blank		
	e instrument calibration rang	ge	H Holding	g times for prep	aration or	analysis exceeded
J Analyte detected	below the PQL		ND Not De	tected at the Pra	actical Qua	ntitation Limit (PQL)
P Prim./Conf. colu	mn %D or RPD exceeds lim	it	S Spike F	Recovery outsid	e accepted	recovery limits

## Life Science Laboratories, Inc. 5854 Butternut Drive

#### **Analytical Results**

E	ast Syracuse, NY 130	57 (315) 445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton		Lab ID: Client Sample ID:	K1005034-003B MW-2-050410
W Order:	K1005034		<b>Collection Date:</b>	05/04/10 15:30
Matrix:	WATER		Date Received:	05/05/10 8:30
Inst. ID:	MS06 40	Sample Size: 970 mL	PrepDate:	05/05/10 12:00
ColumnID:		%Moisture:	BatchNo:	11176/R19855
Revision:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7427.D
Col Type:		_		

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC	COMPOUNDS BY GC/MS		SW8270C (SW3520C		(SW3520C)	
Benzo[k]fluoranthene	ND	10	0.41	µg/L	1	05/07/10 12:03
bis(2-Chloroethoxy)methane	ND	10	0.41	µg/L	1	05/07/10 12:03
bis(2-chloroethyl)ether	ND	10	0.41	µg/L	1	05/07/10 12:03
bis(2-chloroisopropyl)ether	ND	10	0.41	µg/L	1	05/07/10 12:03
bis(2-Ethylhexyl)phthalate	0.47 J	10	0.41	µg/L	1	05/07/10 12:03
Butyl benzyl phthalate	ND	10	0.41	µg/L	1	05/07/10 12:03
Carbazole	ND	10	0.41	µg/L	1	05/07/10 12:03
Chrysene	ND	10	0.41	µg/L	1	05/07/10 12:03
Di-n-butyl phthalate	ND	10	1.2	µg/L	1	05/07/10 12:03
Di-n-octyl phthalate	ND	10	0.41	µg/L	1	05/07/10 12:03
Dibenz[a,h]anthracene	ND	10	0.41	µg/L	1	05/07/10 12:03
Dibenzofuran	ND	10	0.41	µg/L	1	05/07/10 12:03
Diethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 12:03
Dimethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 12:03
Fluoranthene	ND	10	0.41	µg/L	1	05/07/10 12:03
Fluorene	ND .	10	0.41	µg/L	1	05/07/10 12:03
Hexachlorobenzene	ND	10	0.41	µg/L	1	05/07/10 12:03
Hexachlorobutadiene	ND	10	5.2	µg/L	1	05/07/10 12:03
Hexachlorocyclopentadiene	ND	52	10	µg/L	1	05/07/10 12:03
Hexachloroethane	ND	10	2.1	µg/L	1	05/07/10 12:03
Indeno[1,2,3-cd]pyrene	ND	10	0.41	µg/L	1	05/07/10 12:03
Isophorone	ND	10	0.41	µg/L	1	05/07/10 12:03
N-Nitroso-di-n-propylamine	ND	10	0.41	µg/L	1	05/07/10 12:03
Naphthalene	ND	10	0.41	µg/L	1	05/07/10 12:03
Nitrobenzene	ND	10	0.41	µg/L	1	05/07/10 12:03
Pentachlorophenol	ND	52	2.1	µg/L	1	05/07/10 12:03
Phenanthrene	ND	10	0.41	µg/L	1	05/07/10 12:03
Phenol	ND	10	0.41	µg/L	1	05/07/10 12:03
Pyrene	ND	10	0.41	µg/L	1	05/07/10 12:03
Surr: 2,4,6-Tribromophenol	148	46-149	0.41	%REC	1	05/07/10 12:03
Surr: 2-Fluorobiphenyl	101	42-130	0.41	%REC	1	05/07/10 12:03
Surr: 2-Fluorophenol	80	26-130	0.41	%REC	1	05/07/10 12:03
Surr: Nitrobenzene-d5	91	42-130	0.41	%REC	1	05/07/10 12:03
Surr: Phenol-d5	78	21-134	0.41	%REC	1	05/07/10 12:03
Qualifiers: * Value exc	eeds Maximum Contaminant Level	· · ·	B Analyte de	ected in the	associated	I Method Blank
	eeds the instrument calibration rang	e	H Holding tir	nes for prepa	aration or	analysis exceeded
J Analyte d	etected below the PQL		ND Not Detect	ed at the Pra	ctical Qua	ntitation Limit (PQL)
P Prim./Cor	nf. column %D or RPD exceeds limi	t	S Spike Reco	very outside	accepted	recovery limits

507602

Sample Size: 970 mL

TestCode: 8270W_TCL

**Result Qual PQL** 

24-147

121

с. ₁₉2

%Moisture:

#### **Analytical Results**

05/05/10 12:00

11176/R19855

DF

1

1-SAMP-K7427.D

**Date Analyzed** 

05/07/10 12:03

(SW3520C)

LOL	5854 Butternut Drive	
	East Syracuse, NY 13057	(315) 445-1105
CLIENT: Project:	O'Brien & Gere Engineers, Inc. National Grid - Fulton, NY	
W Order:	K1005034	

WATER

MS06 40

05/10/10 13:18

SEMIVOLATILE ORGANIC COMPOUNDS BY GC/MS

Matrix:

Inst. ID:

Revision: Col Type:

Analyte

ColumnID: DB-5MS

Surr: Terphenyl-d14

# 45-1105 StateCertNo: 10248 Lab ID: K1005034-003B Client Sample ID: MW-2-050410 Collection Date: 05/04/10 15:30 Date Received: 05/05/10 8:30

Units

%REC

SW8270C

**PrepDate:** 

**BatchNo:** 

FileID:

MDL

0.41

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 05/10/10 13:23 507602 Project Supervisor: Pamela J. Titus

#### **Analytical Results**

StateCertNo: 10248

		5854	Butternut	Drive
--	--	------	-----------	-------

East Syracuse, NY 13057 (315) 445-1105

CLIENT:	O'Brien & Gere Engin	eers, Inc.	Lab ID:	K1005042-001B
Project:	National Grid - Fulton	, NY	<b>Client Sample ID:</b>	MW-125-050510
W Order:	K1005042		<b>Collection Date:</b>	05/05/10 10:30
Matrix:	WATER		Date Received:	05/05/10 16:18
Inst. ID:	MS06 40	Sample Size:	PrepDate:	05/06/10 14:45
ColumnID:		%Moisture:	BatchNo:	11183/R19855
	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7428.D
Col Type:				

Analyte		Result Qua	I PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATI	LE ORGANIC COMP	OUNDS BY GC/MS			SW827	0C	(SW3520C)
1,2,4-Trichlorob		ND	11	0.43	µg/L	1	05/07/10 12:42
1,2-Dichlorober	zene	ND	11	0.43	μg/L	1	05/07/10 12:42
1,3-Dichlorober	zene	ND	. 11	0.43	µg/L	1	05/07/10 12:42
1,4-Dichlorober	zene	ND	11	0.43	µg/L	1	05/07/10 12:42
2,4,5-Trichlorop	henol	ND	53	0.43	µg/L	1	05/07/10 12:42
2,4,6-Trichlorop	henol	ND	11 ,	0.43	µg/L	1	05/07/10 12:42
2,4-Dichlorophe	enol	ND	11	0.43	µg/L	1	05/07/10 12:42
2,4-Dimethylph	enol	ND	11	0.43	µg/L	1	05/07/10 12:42
2,4-Dinitrophen	ol	ND	53	21	µg/L	1	05/07/10 12:42
2,4-Dinitrotolue	ne	ND	11	0.43	µg/L	1	05/07/10 12:42
2,6-Dinitrotolue	ne	ND	11	0.43	µg/L	1	05/07/10 12:42
2-Chloronaphth	alene	ND	11	0.43	µg/L	1	05/07/10 12:42
2-Chlorophenol		ND	11	0.43	µg/L	1	05/07/10 12:42
2-Methylnaphth	alene	ND	11	0.43	µg/L	1	05/07/10 12:42
2-Methylpheno		ND	11	0.43	µg/L	1	05/07/10 12:42
2-Nitroaniline		ND	53	0.43	µg/L	1	05/07/10 12:42
2-Nitrophenol		ND	11	0.43	µg/L	1	05/07/10 12:42
3,3'-Dichlorobe	nzidine	ND	21	0.43	µg/L	1	05/07/10 12:42
3-Nitroaniline		ND	53	0.43	µg/L	1	05/07/10 12:42
4,6-Dinitro-2-m	ethylphenol	ND	11	2.1	µg/L	1	05/07/10 12:42
4-Bromopheny	phenyl ether	ND	11	0.43	µg/L	1	05/07/10 12:42
4-Chloro-3-met	hylphenol	ND	11 .	0.43	µg/L	1	05/07/10 12:42
4-Chloroaniline		ND	11	0.43	µg/L	1	05/07/10 12:42
4-Chloropheny	I phenyl ether	ND	11	0.43	µg/L	1	05/07/10 12:42
4-Methylpheno	1	ND	11	0.43	µg/L	1	05/07/10 12:42
4-Nitroaniline		ND	53	0.43	µg/L	1	05/07/10 12:42
4-Nitrophenol		ND	53	2.1	µg/L	1	05/07/10 12:42
Acenaphthene		ND	11	0.43	µg/L	1	05/07/10 12:42
Acenaphthylen	e	ND	11	0.43	µg/L	1	05/07/10 12:42
Anthracene		ND	11	0.43	µg/L	1	05/07/10 12:42
Benzo[a]anthra	acene	ND	11	0.43	µg/L	1	05/07/10 12:42
Benzo[a]pyren	e	ND	11	0.43	µg/L	1	05/07/10 12:42
Benzo[b]fluora	nthene	ND	11	0.43	µg/L	1	05/07/10 12:42
Benzo[g,h,i]pe	rylene	ND	11	0.43	µg/L	1	05/07/10 12:42
Qualifiers:	* Value exceeds Max	timum Contaminant Lev	el	B Analyte de	tected in th	e associate	d Method Blank
Qualiner 5:		nstrument calibration rat		H Holding tir	nes for prej	paration or	analysis exceeded
	J Analyte detected be			ND Not Detect	ed at the Pr	ractical Qua	antitation Limit (PQL)
	•	n %D or RPD exceeds lin	nit	S Spike Reco	overy outsid	te accepted	recovery limits

507603

#### **Analytical Results**

	ast Syracuse, NY 1		5	StateCertNo: 10248
CLIENT:	O'Brien & Gere Eng	· ·	Lab ID:	K1005042-001B
Project:	National Grid - Fult		Client Sample ID:	MW-125-050510
W Order:	K1005042		Collection Date:	05/05/10 10:30
Matrix:	WATER		Date Received:	05/05/10 16:18
Inst. ID:	MS06_40	Sample Size:	PrepDate:	05/06/10 14:45
ColumnID:		%Moisture:	BatchNo:	11183/R19855
Revision: Col Type:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7428.D

. . . .

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANIC COM	POUNDS BY GC/MS			SW8270	)C	(SW3520C)	
Benzo[k]fluoranthene	ND	11	0.43	µg/L	1	05/07/10 12:42	
bis(2-Chloroethoxy)methane	ND	11	0.43	µg/L	1	05/07/10 12:42	
bis(2-chloroethyl)ether	ND	11	0.43	μg/L	1	05/07/10 12:42	
bis(2-chloroisopropyl)ether	ND	11`	0.43	μg/L	1	05/07/10 12:42	
bis(2-Ethylhexyl)phthalate	0.46 J	11	0.43	µg/L	1	05/07/10 12:42	
Butyl benzyl phthalate	ND	11	0.43	µg/L	1	05/07/10 12:42	
Carbazole	ND	11	0.43	µg/L	1	05/07/10 12:42	
Chrysene	ND	11	0.43	μg/L	1	05/07/10 12:42	
Di-n-butyl phthalate	ND	11	1.3	µg/L	1	05/07/10 12:42	
Di-n-octyl phthalate	ND	11	0.43	μg/L	1	05/07/10 12:42	
Dibenz[a,h]anthracene	ND	<b>1</b> 1	0.43	µg/L	1	05/07/10 12:42	
Dibenzofuran	ND	11	0.43	µg/L	1	05/07/10 12:42	
Diethyl phthalate	ND	11	0.43	µg/L	1	05/07/10 12:42	
Dimethyl phthalate	ND	11	0.43	µg/L	1	05/07/10 12:42	
Fluoranthene	ND	11	0.43	µg/L	1	05/07/10 12:42	
Fluorene	and ND state	11,	.0.43	μ <b>g/L</b>	1	05/07/10 12:42	
Hexachlorobenzene	ND	11	0.43	µg/L	1	05/07/10 12:42	
Hexachlorobutadiene	ND	×11 · · · · · · · · ·	5.3	μg/L	1	05/07/10 12:42	
Hexachlorocyclopentadiene	ND	53	<b>11</b> ¹	μg/L	1	05/07/10 12:42	
Hexachloroethane	ND	11	2.1	µg/L	1	05/07/10 12:42	
Indeno[1,2,3-cd]pyrene	ND	11	0.43	µg/L	1	05/07/10 12:42	
Isophorone	ND	11	0.43	μg/L	1	05/07/10 12:42	
N-Nitroso-di-n-propylamine	ND	11	0.43	µg/L	1	05/07/10 12:42	
Naphthalene	ND	11	0.43	µg/L	1	05/07/10 12:42	
Nitrobenzene	ND	11	0.43	μg/L	1	05/07/10 12:42	
Pentachlorophenol	ND	53	2.1	μg/L	1	05/07/10 12:42	
Phenanthrene	ND	11	0.43	µg/L	1	05/07/10 12:42	
Phenol	ND	11	0.43	µg/L	1	05/07/10 12:42	
Pyrene	ND	11	0.43	µg/L	1	05/07/10 12:42	
Surr: 2,4,6-Tribromophenol	149	46-149	0.43	%REC	1	05/07/10 12:42	
Surr: 2-Fluorobiphenyl	110	42-130	0.43	%REC	1	05/07/10 12:42	
Surr: 2-Fluorophenol	90	26-130	0.43	%REC	1	05/07/10 12:42	
Surr: Nitrobenzene-d5	97	42-130	0.43	%REC	1	05/07/10 12:42	
Surr: Phenol-d5	85	21-134	0.43	%REC	1	05/07/10 12:42	
Quanners.	ximum Contaminant Level		•	detected in the		d Method Blank	
E Value exceeds the	instrument calibration ran	ge				analysis exceeded	
J Analyte detected b P Prim./Conf. colum	elow the PQL in %D or RPD exceeds lim	it .	a 5	ND Not Detected at the Practical Quantitation Limit (PQL) Spike Recovery outside accepted recovery limits			
P Prim./Coni. colum	m 70D or KPD exceeds hm	11					

Print Date: 05/10/10 13:28

507603

#### **Analytical Results**

CLIENT: Project: W Order: Matrix: (nst. ID: ColumnID: Revision: Col Type:	O'Brien & Gere Engin National Grid - Fulton K1005042 WATER MS06_40 DB-5MS 05/10/10 13:18		Lab ID: Client Samp Collection D Date Receive PrepDate: BatchNo: FileID:		-050510 0:30 6:18 4:45 855
Analyte		<b>Result Qual PQL</b>	MDL	Units DF	Date Analyzed
SEMIVOLA Surr: Terph	FILE ORGANIC COMP enyl-d14	OUNDS BY GC/MS 88 24-147	0.43	<b>SW8270C</b> %REC 1	(SW3520C) 05/07/10 12:42
				1	
		nder der State der State der State der State der State der State der State der State der State der State der St State der State der St State der State der St			
Qualifiers:	<ul><li>E Value exceeds the in</li><li>J Analyte detected be</li></ul>	imum Contaminant Level nstrument calibration range low the PQL 1 %D or RPD exceeds limit	H Holding t ND Not Dete	letected in the associate times for preparation or cted at the Practical Qu covery outside accepted	analysis exceeded antitation Limit (PQL)

Print Date: 05/10/10 13:28 507603 Project Supervisor: Pamela J. Titus

**Analytical Results** 

E	Cast Syracuse, NY 130	057 (315) 445-1105	50 S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fultor		Lab ID: Client Sample ID:	K1005042-002B MW-11-050510
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005042 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 12:30 05/05/10 16:18 05/06/10 14:45 11183/R19855 1-SAMP-K7429.D

Analyte		Result Qua	I PQL	MDL	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANIC COMPOUNDS BY GC/MS				SW827	)C	(SW3520C)		
1,2,4-Trichlorob		ND	10	0.41	µg/L	1	05/07/10 13:20	
1,2-Dichloroben	zene	ND	10	0.41	µg/L	1	05/07/10 13:20	
1,3-Dichloroben		ND	10	0.41	µg/L	1	05/07/10 13:20	
1,4-Dichloroben		ND	10	0.41	µg/L	1	05/07/10 13:20	
2,4,5-Trichlorop		ND	51	0.41	µg/L	1	05/07/10 13:20	
2,4,6-Trichlorop		ND	10,	0.41	μg/L	1	05/07/10 13:20	
2,4-Dichlorophe		ND	10	0.41	μg/L	1	05/07/10 13:20	
2,4-Dimethylph		ND	10	0.41	µg/L	1	05/07/10 13:20	
2,4-Dinitrophen		ND	51	20	µg/L	1	05/07/10 13:20	
2,4-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 13:20	
2,6-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 13:20	
2-Chloronaphth		ND	10	0.41	μg/L	1	05/07/10 13:20	
2-Chlorophenol		ND	10	0.41	µg/L	1	05/07/10 13:20	
2-Methylnaphth	alene	ND	10	0.41	μg/L	1	05/07/10 13:20	
2-Methylphenol		ND	10	0.41	μg/L	1	05/07/10 13:20	
2-Nitroaniline		ND	51	0.41	µg/L	1	05/07/10 13:20	
2-Nitrophenol		ND	10	0.41	μg/L	1	05/07/10 13:20	
3.3'-Dichlorobe	nzidine	ND	20	0.41	⊢µg/L	1	05/07/10 13:20	
3-Nitroaniline		ND	51	0.41	µg/L	1	05/07/10 13:20	
4,6-Dinitro-2-m	ethvinhenol	ND	10	2.0	μg/L	1	05/07/10 13:20	
4-Bromophenyl		ND	10	0.41	µg/L	1	05/07/10 13:20	
4-Chloro-3-met		ND	10	0.41	μg/L	1	05/07/10 13:20	
4-Chloroaniline	nyiphenoi	ND	10	0.41	µg/L	1	05/07/10 13:20	
4-Chlorophenyl	nhenvl ether	ND	10	0.41	μg/L	1	05/07/10 13:20	
4-Methylphenol		ND	10	0.41	µg/L	1	05/07/10 13:20	
4-Methylphenol 4-Nitroaniline		ND	51	0.41	μg/L	1	05/07/10 13:20	
4-Nitrophenol		ND	51	2.0	µg/L	1	05/07/10 13:20	
•		ND	10	0.41	μg/L	1	05/07/10 13:20	
Acenaphthene	-	ND	10	0.41	μg/L	1	05/07/10 13:20	
Acenaphthylen	e	ND	10	0.41	μg/L	1	05/07/10 13:20	
Anthracene		ND	10	0.41	µg/L	1	05/07/10 13:20	
Benzo[a]anthra		ND	10	0.41	μg/L	1	05/07/10 13:20	
Benzo[a]pyren		ŇĎ	10	0.41	μg/L	1	05/07/10 13:20	
Benzo[b]fluora					• •	1	05/07/10 13:20	
Benzo[g,h,i]pe	ryiene	ND	10	0.41	µg/L	I	03/07/10 13.20	
Qualifiers:	* Value exceeds Max	kimum Contaminant Leve	əl	B Analyte	detected in the	associate	d Method Blank	
~~~~~~	E Value exceeds the	instrument calibration rar	ıge	H Holding	, times for prep	aration or	analysis exceeded	
	J Analyte detected be	elow the PQL		ND Not Det	ected at the Pra	actical Qua	antitation Limit (PQL)	
	P Prim./Conf. colum	n %D or RPD exceeds lir	nit	S Spike R	S Spike Recovery outside accepted recovery limits			

Print Date: 05/10/10 13:28

507604

Life Science Laboratories, Inc. 5854 Butternut Drive

Analytical Results

F	Last Syracuse, NY 13	3057 (315) 445-1105		StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto		Lab ID: Client Sample ID:	K1005042-002B MW-11-050510
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005042 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 12:30 05/05/10 16:18 05/06/10 14:45 11183/R19855 1-SAMP-K7429.D

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS			SW8270	C	(SW3520C)
Benzo[k]fluoranthene	ND	10	0.41	µg/L	1	05/07/10 13:20
bis(2-Chloroethoxy)methane	ND	10	0.41	µg/L	1	05/07/10 13:20
bis(2-chloroethyl)ether	ND	10	0.41	µg/L	1	05/07/10 13:20
bis(2-chloroisopropyl)ether	ND	10	0.41	μg/L	1	05/07/10 13:20
bis(2-Ethylhexyl)phthalate	ND	10	0.41	µg/L	1	05/07/10 13:20
Butyl benzyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:20
Carbazole	ND	10	0.41	μg/L	1	05/07/10 13:20
Chrysene	ND	10	0.41	µg/L	1	05/07/10 13:20
Di-n-butyl phthalate	ND	10	1.2	µg/L	1	05/07/10 13:20
Di-n-octyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:20
Dibenz[a,h]anthracene	ND	10	0.41	µg/L	1	05/07/10 13:20
Dibenzofuran	ND	10	0.41	μg/L	1	05/07/10 13:20
Diethyl phthalate	ND	10	0.41	μg/L	1	05/07/10 13:20
Dimethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:20
Fluoranthene	ND	10	0.41	µg/L	1	05/07/10 13:20
Fluorene	ND	. 10	0.41	. µg/L	1	05/07/10 13:20
Hexachlorobenzene	ND	10	0.41	µg/L	1	05/07/10 13:20
Hexachlorobutadiene	ND	10	5.1	μg/L	1	05/07/10 13:20
Hexachlorocyclopentadiene	ND	51	10	µg/L	1	05/07/10 13:20
Hexachloroethane	ND	10	2.0	µg/L	1	05/07/10 13:20
Indeno[1,2,3-cd]pyrene	ND	10	0.41	µg/L	1	05/07/10 13:20
Isophorone	ND	10	0.41	µg/L	1	05/07/10 13:20
N-Nitroso-di-n-propylamine	ND	10	0.41	µg/L	1	05/07/10 13:20
Naphthalene	ND	10	0.41	µg/L	1	05/07/10 13:20
Nitrobenzene	ND	10	0.41	µg/L	1	05/07/10 13:20
Pentachlorophenol	ND	51	2.0	µg/L	1	05/07/10 13:20
Phenanthrene	ND	10	0.41	µg/L	1	05/07/10 13:20
Phenol	ND	10	0.41	µg/L	1	05/07/10 13:20
Pyrene	ND	10	0.41	μg/L	1	05/07/10 13:20
Surr: 2,4,6-Tribromophenol	155 S	46-149	0.41	%REC	1	05/07/10 13:20
Surr: 2-Fluorobiphenyl	100	42-130	0.41	%REC	1	05/07/10 13:20
Surr: 2-Fluorophenol	86	26-130	0.41	%REC	1	05/07/10 13:20
Surr: Nitrobenzene-d5	91	42-130	0.41	%REC	1	05/07/10 13:20
Surr: Phenol-d5	80	21-134	0.41	%REC	1	05/07/10 13:20
Qualifiers: * Value exceeds	Maximum Contaminant Lev	el ·				d Method Blank
E Value exceeds	the instrument calibration rat	nge				analysis exceeded
J Analyte detecte	ed below the PQL					antitation Limit (PQL)
P Prim./Conf. co	lumn %D or RPD exceeds lin	nit	S Spike F	Recovery outside	e accepted	recovery limits

507604

Ea	st Syracuse, NY 13057 (315) 445-1105 StateCertNo: 10248				
	O'Brien & Gere Engin National Grid - Fulton		Lab ID: Client Sample ID:	K100504	
Matrix: Inst. ID: ColumnID:	K1005042 WATER MS06_40 DB-5MS 05/10/10 13:18	Sample Size: %Moisture: TestCode: 8270W_TCL	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 05/05/10 05/06/10 11183/R19 1-SAMP-I	16:18 4:45 9855
Analyte		Result Qual PQL	MDL Un	its DF	Date Analyzed

SEMIVOLATILE ORGANIC COMPOUNDS E	BY GC/MS	i		SW8270	C	(SW3520C)
Surr: Terphenyl-d14	122	24-147	0.41	%REC	1	05/07/10 13:20

Oualifiers:	*	Value exceeds Maximum Contaminant Level	B	Analyte detected in the associated Method Blank
Quannoi Si	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 05/10/10 13:28 Project Supervisor: Pamela J. Titus 507604

Life Science Laboratories, Inc. 5854 Butternut Drive Fast Surgeuse NV 13057 (315) 445-1105

Analytical Results

E	ast Syracuse, NY 13	057 (315) 445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto	-	Lab ID: Client Sample ID:	K1005042-003B X-1-050510
W Order:	K1005042		Collection Date:	05/05/10 0:00
Matrix:	WATER		Date Received:	05/05/10 16:18
Inst. ID:	MS06 40	Sample Size:	PrepDate:	05/06/10 13:01
ColumnID:	—	%Moisture:	BatchNo:	11183/R19855
Revision:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7430.D
Col Type:				

Analyte		Result Qual	Result Qual PQL MDL		Units	DF	Date Analyzed
SEMIVOLAT	LE ORGANIC COMP	OUNDS BY GC/MS		SW827	C	(SW3520C)	
1,2,4-Trichlorol		ND	10	0.41	µg/L	1	05/07/10 13:59
1,2-Dichlorober	nzene	ND	10	0.41	µg/L	1	05/07/10 13:59
1,3-Dichlorober	nzene	ND	10	0.41	µg/L	1	05/07/10 13:59
1,4-Dichlorobe	nzene	ND	10	0.41	µg/L	1	05/07/10 13:59
2,4,5-Trichloro	ohenol	ND	52	0.41	µg/L	1	05/07/10 13:59
2,4,6-Trichloro	phenol	ND	10	0.41	µg/L	1	05/07/10 13:59
2,4-Dichloroph	enol	ND	10	0.41	µg/L	1	05/07/10 13:59
2,4-Dimethylph	enol	ND	10	0.41	µg/L	1	05/07/10 13:59
2,4-Dinitropher	ol	ND	52	21	µg/L	1	05/07/10 13:59
2,4-Dinitrotolue	ene	ND	10	0.41	µg/L	1	05/07/10 13:59
2,6-Dinitrotolue		ND	10	0.41	µg/L	1	05/07/10 13:59
2-Chloronaphth	halene	ND	10	0.41	µg/L	1	05/07/10 13:59
2-Chloropheno	t.	ND	10	0.41	µg/L	1	05/07/10 13:59
2-Methylnaphtl		ND	10	0.41	µg/L	1	05/07/10 13:59
2-Methylpheno		ND	10	0.41	µg/L	1	05/07/10 13:59
2-Nitroaniline		ND	52	0.41	µg/L	1	05/07/10 13:59
2-Nitrophenol		ND	10	0.41 µg/L		1	05/07/10 13:59
3,3'-Dichlorobe	enzidine	ND	21	0.41	μg/L	1	05/07/10 13:59
3-Nitroaniline		ND	52	0.41	µg/L	1	05/07/10 13:59
4,6-Dinitro-2-m	ethylphenol	ND	10	2.1	µg/L	1	05/07/10 13:59
4-Bromopheny	I phenyl ether	ND	10	0.41	µg/L	1	05/07/10 13:59
4-Chloro-3-me	thylphenol	ND	10	0.41	μg/L 1		05/07/10 13:59
4-Chloroaniline	;	ND	10	0.41	μg/L	1	05/07/10 13:59
4-Chloropheny	I phenyl ether	ND	10	0.41	µg/L	1	05/07/10 13:59
4-Methylphend	1	ND	10	0.41	µg/L	1	05/07/10 13:59
4-Nitroaniline		ND	52	0.41	μg/L	1	05/07/10 13:59
4-Nitrophenol		ND	52	2.1	µg/L	1	05/07/10 13:59
Acenaphthene		NĎ	10	0.41	µg/L	1	05/07/10 13:59
Acenaphthyler	ie	ND	10	0.41	μg/L	1	05/07/10 13:59
Anthracene		ND	10	0.41	µg/L	1	05/07/10 13:59
Benzo[a]anthr	acene	ND	10	0.41	µg/L	1	05/07/10 13:59
Benzo[a]pyren		ND	10	0.41	µg/L	1	05/07/10 13:59
Benzo[b]fluoranthene		ND	10	0.41	µg/L	1	05/07/10 13:59
Benzo[g,h,i]pe	rylene	ND	10	0.41	μg/L	1	05/07/10 13:59
Qualifiers:	* Value exceeds Max	imum Contaminant Level	··· ·		e detected in the	associated	l Method Blank
~uunition bi	E Value exceeds the i	nstrument calibration rang	ge i i i i i	H Holdin	g times for prep	aration or	analysis exceeded
	J Analyte detected be	elow the PQL		ND Not De	tected at the Pra	actical Qua	ntitation Limit (PQL)
	P Prim./Conf. column	n %D or RPD exceeds limi	it ¹	S Spike I	Recovery outsid	e accepted	recovery limits

Analytical Results

E	ast Syracuse, NY 13	057 (315) 445-1105	· •	StateCertNo: 10248
CLIENT:	O'Brien & Gere Engir	-	Lab ID:	K1005042-003B
Project:	National Grid - Fultor		Client Sample ID:	X-1-050510
W Order:	K1005042		Collection Date:	05/05/10 0:00
Matrix:	WATER		Date Received:	05/05/10 16:18
Inst. ID:	MS06_40	Sample Size:	PrepDate:	05/06/10 13:01
ColumnID:	DB-5MS	%Moisture:	BatchNo:	11183/R19855
Revision: Col Type:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7430.D

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyze	
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/M		SW8270C (SW3520C)				
Benzo[k]fluoranthene	ND	10	0.41	µg/L	1	05/07/10 13:59	
bis(2-Chloroethoxy)methane	ND	10	0.41	μg/L	1	05/07/10 13:59	
ois(2-chloroethyl)ether	ND	10	0.41	µg/L	1	05/07/10 13:59	
ois(2-chloroisopropyl)ether	ND	10 * *	0.41	µg/L	1	05/07/10 13:59	
ois(2-Ethylhexyl)phthalate	0.41 J	10	0.41	µg/L	1	05/07/10 13:59	
Butyl benzyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:59	
Carbazole	ND	10	0.41	µg/L	1	05/07/10 13:59	
Chrysene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Di-n-butyl phthalate	ND	10	1.2	μg/L	1	05/07/10 13:59	
Di-n-octyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:59	
Dibenz[a,h]anthracene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Dibenzofuran	ND	10	0.41	µg/L	1	05/07/10 13:59	
Diethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:59	
Dimethyl phthalate	ND	10	0.41	µg/L	1	05/07/10 13:59	
Fluoranthene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Fluorene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Hexachlorobenzene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Hexachlorobutadiene	ND	10	5.2	μg/L	1	05/07/10 13:59	
Hexachlorocyclopentadiene	ND	52	10	µg/L	1	05/07/10 13:59	
Hexachloroethane	ND	10	2.1	μg/L	1	05/07/10 13:59	
Indeno[1,2,3-cd]pyrene	NĎ	10	0.41	µg/L	1	05/07/10 13:59	
Isophorone	ND	10	0.41	µg/L	1	05/07/10 13:59	
N-Nitroso-di-n-propylamine	ND	10	0.41	µg/L	1	05/07/10 13:59	
Naphthalene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Nitrobenzene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Pentachlorophenol	ND	52	2.1	μg/L	1	05/07/10 13:59	
Phenanthrene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Phenol	ND	10	0.41	μg/L	1	05/07/10 13:59	
Pyrene	ND	10	0.41	µg/L	1	05/07/10 13:59	
Surr: 2,4,6-Tribromophenol	114	46-149	0.41	%REC	1	05/07/10 13:59	
Surr: 2-Fluorobiphenyl	106	42-130	0.41	%REC	1	05/07/10 13:59	
Surr: 2-Fluorophenol	83	26-130	0.41	%REC	1	05/07/10 13:59	
Surr: Nitrobenzene-d5	96	42-130	0.41	%REC	1	05/07/10 13:59	
Surr: Phenol-d5	80	21-134	0.41	%REC	1	05/07/10 13:59	
Oualifiers: * Value exceeds M	Maximum Contaminant Lev	vel .	B Analyte	e detected in the	associated	Method Blank	
	he instrument calibration ra	inge	H Holding times for preparation or analysis exceeded ND Not Detected at the Practical Quantitation Limit (PQL)				
J Analyte detected	d below the PQL						
P Prim./Conf. col	umn %D or RPD exceeds li			S Spike Recovery outside accepted recovery limits			

₽^kr c

LSL Staternut Drive Analytical Results

S 5854 Butternut Drive	ive
-------------------------------	-----

	854 Butternut Drive ast Syracuse,NY 130	057 (315) 445-1105	с. 1974 г. – С. С. С. С. С. С. С. С. С. С. С. С. С.	StateCertNo: 10248
CLIENT:	O'Brien & Gere Engin	eers, Inc.	Lab ID:	K1005042-003B
Project:	National Grid - Fulton		Client Sample ID:	X-1-050510
W Order:	K1005042		Collection Date:	05/05/10 0:00
Matrix:	WATER		Date Received:	05/05/10 16:18
Inst. ID:	MS06 40	Sample Size:	PrepDate:	05/06/10 13:01
ColumnID :	_	%Moisture:	BatchNo:	11183/R19855
Revision:	05/10/10 13:18	TestCode: 8270W_TCL	FileID:	1-SAMP-K7430.D
Col Type:				

Analyte			Result Qual	PQL	MI	DL	Units	DF	Date Analyze
	ILE (ORGANIC COMPOUND	S BY GC/MS				SW8270)C	(SW3520C)
Surr: Terphe			98	24-147	0.4	1	%REC	1	05/07/10 13:59
	•								
					19 A.				
			:						
					1 (K. 4) 1 (K. 4)	ta i			
							· *		
			1		1.11	tan tan sa	1. 1. 1. ¹ .		
				4. 1	1.1				
			an an an an an an an an an an an an an a						
				· .					
Qualifiers:	*	Value exceeds Maximum C	ontaminant Level		В	Analyte	detected in the	associated	Method Blank
Yuunner 5.	Ē	Value exceeds the instrume	nt calibration rang	;e	Н	Holding	times for prepa	aration or a	analysis exceeded
	J	Analyte detected below the			ND				ntitation Limit (PQL)
	Р	Prim./Conf. column %D or	RPD exceeds limit	t	S	Spike Re	ecovery outside	e accepted	recovery limits

Print Date: 05/10/10 13:28 507605 Project Supervisor: Pamela J. Titus

Life Science Laboratories, Inc. **Analytical Results** 5854 Butternut Drive NI. East Syracuse, NY 13057 (315) 445-1105 StateCertNo: 10248 K1005028-001E CLIENT: O'Brien & Gere Engineers, Inc. Lab ID: Client Sample ID: MW-4-050310 National Grid - Fulton, NY **Project:** Collection Date: 05/03/10 12:40 W Ord 121005030 N

DISSOLVED GASES BY GC/FID		8	015M/I	RSK175M	/I (RSK 175)	
Analyte	Result Qual PQL	MDL U	nits	DF	Date Analyzed	
Col Type:						
Revision: 05/13/10 15:26	TestCode: 8015W_RSK17	5 FileID:	1-S	AMP-E:\	Osimay10\E051205.	
ColumnID: Alumina	%Moisture:	BatchNo:		19/R199		
Inst. ID: GCOS_17E	Sample Size: 32 mL	PrepDate:		12/10 12:		
Matrix: WATER		Date Received:		04/10 8:3		
W Order: K1005028		Collection Date:		03/10 12		

0.14

0.20

1.9

Methane

mg/L 100 05/12/10 15:06

Oualifiers:	*	Value exceeds Maximum Contaminant Level	в	Analyte detected in the associated Method Blank
Quanners	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

	ast Syracuse, NY 1305	57 (315)	445-1105	S	StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engine National Grid - Fulton,			Lab ID: Client Sample ID:	K1005028-002E MW-5-050310
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER GCOS_17E Alumina 05/13/10 15:26	Sample Size: %Moisture: TestCode:	32 mL 8015W_RSK175	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 15:20 05/04/10 8:31 05/12/10 12:43 11219/R19902 1-SAMP-E:\Osimay10\E051207

Analyte	Result Qual PQL		MDL	Units	DF	Date Analyzed
DISSOLVED GASES BY GC/FID				8015M	RSK175	M (RSK 175)
Methane	0.63	0.020	0.014	mg/L	10	05/12/10 15:28

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim/Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY 13	5057 (315)	445-1105		StateCertNo: 10248
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto			Lab ID: Client Sample ID:	K1005034-001E <i>MW-7-050410</i>
W Order:	K1005034			Collection Date:	05/04/10 11:20
Matrix:	WATER			Date Received:	05/05/10 8:30
Inst. ID:	GCOS 17E	Sample Size:	32 mL	PrepDate:	05/12/10 12:43
ColumnID:	—	%Moisture:		BatchNo:	11219/R19902
Revision:	05/13/10 15:26	TestCode:	8015W_RSK175	FileID:	1-SAMP-E:\Osimay10\E051209
Col Type:					

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
DISSOLVED GASES BY GC/FID				8015M/	RSK175	MI (RSK 175)
Methane	1.6	0.20	0.14	mg/L	100	05/12/10 15:50

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quannersi	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

	ast Syracuse, NY 130	57 (315)	445-1105	5	StateC	ertNo:	10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton	•		Lab ID: Client Sample ID:		05034-0 /- <i>3-050</i>	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005034 WATER GCOS_17E Alumina 05/13/10 15:26	Sample Size %Moisture: TestCode:		Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05 05/12 1121	4/10 13:5 5/10 8:30 2/10 12:4 9/R1990 MP-E:\C	3
Analyte	1	Result (Dual POL	MDL Uni	its	DF	Date Analyzed

Analyte	Result Qu		MDL	Omto	DI	<i></i>
DISSOLVED GASES BY GC/FID	·			8015M/	RSK175M	I (RSK 175)
Methane	ND	0.0020	0.0014	mg/L	1	05/12/10 16:02

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
E E		Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

East Sy	vracuse, NY 1305'	7 (315)	445-1105		Stat	eCertNo:	10248
	ien & Gere Enginee onal Grid - Fulton, 1			Lab ID: Client Sample II		1005034- W-2-050	
Matrix: WA' Inst. ID: GCC ColumnID: Alur	DS_17E	Sample Size: %Moisture: TestCode:		Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 112	/04/10 15: /05/10 8:3 /12/10 12: 219/R1990 SAMP-E:\/	0 43
Analyte		Result Q	Jual PQL	MDL U	nits	DF	Date Analyzed
DISSOLVED GAS Methane	ES BY GC/FID	0.0015 J	0.0020		0 15M/ g/L	/ RSK175M 1	1 (RSK 175) 05/12/10 16:26

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
C	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

	ast Syracuse, NY 13	(515)	445-1105		StateCertNo: 10248
CLIENT:	O'Brien & Gere Engi	ineers, Inc.		Lab ID:	K1005042-001E
Project:	National Grid - Fulto	on, NY		Client Sample ID:	<i>MW-125-050510</i>
W Order:	K1005042			Collection Date:	05/05/10 10:30
Matrix:	WATER			Date Received:	05/05/10 16:18
Inst. ID:	GCOS 17E	Sample Size:	32 mL	PrepDate:	05/12/10 12:43
ColumnID:	_	%Moisture:		BatchNo:	11219/R19903
Revision:	05/13/10 15:27		8015W_RSK175	FileID:	1-SAMP-E:\Osimay10\E051302
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
DISSOLVED GASES BY GC/FID				8015M/	RSK175	VI (RSK 175)
Methane	ND	0.0020	0.0014	mg/L	1	05/13/10 11:26

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanners.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

	ast Syracuse, NY 1305	67 (315) 445-1105	S	StateCertNo:	10248
CLIENT: Project:	O'Brien & Gere Engine National Grid - Fulton,	-	Lab ID: Client Sample ID:	K1005042- MW-11-05	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005042 WATER GCOS_17E Alumina 05/13/10 15:27	Sample Size: 32 mL %Moisture: TestCode: 8015W_RSK	Collection Date: Date Received: PrepDate: BatchNo: (175 FileID:	05/05/10 12: 05/05/10 16: 05/12/10 12: 11219/R1990 1-SAMP-E:\	18 43
Analyte		Result Qual PQL	MDL Un	its DF	Date Analyzed

DISSOLVED GASES BY GC/FID				8015M/	RSK175M	(RSK 175)
Methane	0.16	0.0020	0.0014	mg/L	1	05/13/10 11:36

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
E E	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

a 4	ast Syracuse, NY 13		445-1105		State	eCertNo:	10248
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto			Lab ID: Client Sample ID		005042- 1-05051	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005042 WATER GCOS_17E Alumina 05/13/10 15:27	Sample Size: %Moisture: TestCode:		Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 112	05/10 0:0 05/10 16 12/10 12: 219/R1990 AMP-E:\	18 43
Analyte		Result (Jual PQL	MDL U	nits	DF	Date Analyzed

1 thulj to						
DISSOLVED GASES BY GC/FID				8015M/	RSK175	1 (RSK 175)
Methane	ND	0.0020	0.0014	mg/L	1	05/13/10 11:46

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank		
L	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded		
	J.	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)		
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits		

LSL ⁵	Life Science 854 Butternut Drive ast Syracuse, NY 13		ries, In 45-1105	с.		alyti eCertNo	cal Results
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton			Lab ID: Client Sample		005028 <i>W-4-05</i>	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER ICAP 61E	Sample Size: 5 %Moisture:	50 mL 5010W05	Collection Dat Date Received PrepDate: BatchNo: FileID:	e: 05/ 05/ 05/ 111	/03/10 12 /04/10 8:: 06/10 0:(84/R199 AMP-13	::40 31 00 112
Analyte		Result Qu	ial PQL	MDL	Units	DF	Date Analyzed
T OTAL ME Iron Manganese	TALS BY ICP	73 0.60	0.050 0.050	0.010 0.0010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 15:37 05/14/10 15:37

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank		
Quanner 5.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)		
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits		

LSL 5	Life Science 854 Butternut Drive			с.		•/	cal Results
<u> </u>	Cast Syracuse, NY 13	057 (315) 4	45-1105			eCertNo	
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto			Lab ID: Client Sample		1005028 <i>W-4-05</i>	-001D <i>0310 (FF)</i>
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	0 mL 010W05	Collection Data Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 111	/03/10 12 /04/10 8:: 06/10 0:(184/R199 SAMP-13	31 00 12
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME [®] Iron Manganese	TALS BY ICP	68 0.57	0.050 0.050	0.010 0.0010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 15:55 05/14/10 15:55

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
•	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL ⁵	L ife Science 1854 Butternut Drive East Syracuse, NY 13		ries, In 45-1105	с.		nalyti eCertNo	a 10248
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto	•		Lab ID: Client Sample		1005028 <i>W-5-05</i>	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER ICAP 61E : 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Da Date Received PrepDate: BatchNo: FileID:	05/ 05/	/03/10 15 /04/10 8:: /06/10 0:(184/R199 SAMP-13	31 00 112
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME [®] Iron Manganese	TALS BY ICP	26 2.7	0.050 0.050	0.010 0.0010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 16:01 05/14/10 16:01

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank		
Quanners	E	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)		
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits		

LSL ⁵	Life Science 854 Butternut Drive ast Syracuse, NY 130	c. Analytical Resul StateCertNo: 10248					
CLIENT: Project:	O'Brien & Gere Engir National Grid - Fultor			Lab ID: Client Sample I		1005028 W-5-05	-002D 0310 (FF)
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 111	/03/10 15 /04/10 8:: /06/10 0:0 184/R199 SAMP-13	31 00 112
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME Iron Manganese	TALS BY ICP	26 2.6	0.050 0.050	0.010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 16:05 05/14/10 16:05

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank		
· ·	Е	E Value exceeds the instrument calibration range		Holding times for preparation or analysis exceeded		
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQ		
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits		

_

LSL 5	Life Science 854 Butternut Drive Cast Syracuse, NY 130		ries, In	c.		alyti CertNo:	cal Results
CLIENT: Project:	O'Brien & Gere Engir National Grid - Fultor			Lab ID: Client Sample]		005034 W-7-05	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005034 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 111	04/10 11 05/10 8:: 06/10 0:0 .84/R199 AMP-13	30)0 112
Analyte		Result Qu	ial PQL	MDL	Units	DF	Date Analyzed
TOTAL ME Iron Manganese	TALS BY ICP	14 2.9	0.050 0.050	0.010	SW6010 mg/L mg/L	0 B 1 1	(SW3005A) 05/14/10 16:08 05/14/10 16:08

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanners.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL]5	L ife Science 854 Butternut Drive East Syracuse, NY 13		ries, In 45-1105	с.		nalyti eCertNo	ical Results 10248
CLIENT: Project:	O'Brien & Gere Eng National Grid - Fulto	•		Lab ID: Client Sample		1005034 <i>W-7-05</i>	-001D 0410 (FF)
W Order: Matrix: Inst. ID: ColumnID: Revision:	K1005034 WATER ICAP 61E : 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 11	/04/10 11 /05/10 8: /06/10 0:0 184/R199 SAMP-13	30 00 012
Col Type: Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME Iron Manganese	TALS BY ICP	13 2.7	0.050 0.050	0.010 0.0010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 16:23 05/14/10 16:23

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quantitiersi	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL]5	Life Science 854 Butternut Drive Cast Syracuse, NY 130		ries, In 45-1105	с.		alyti eCertNo:	cal Results
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton	-		Lab ID: Client Sample		005034 <i>W-3-05</i>	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005034 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 111	/04/10 13 /05/10 8:: 06/10 0:(84/R199 AMP-13	30)0 112
Analyte		Result Qu	ial PQL	MDL	Units	DF	Date Analyzed
TOTAL ME Iron Manganese	TALS BY ICP	0.66 0.69	0.050 0.050	0.010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 16:27 05/14/10 16:27

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
E J	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL ⁵	Life Science 854 Butternut Drive Cast Syracuse, NY 130		-	е.		nalyti eCertNo:	ical Results 10248
CLIENT: Project:	O'Brien & Gere Engin National Grid - Fulton	· · ·		Lab ID: Client Sample		1005034 <i>W-3-05</i>	-002D 0410 (FF)
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005034 WATER ICAP 61E 05/17/10 16:19	Sample Size: 50 %Moisture: TestCode: 60	0 mL 010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 111	/04/10 13 /05/10 8:: /06/10 0:(184/R199 SAMP-13	30 00 012
Analyte		Result Qua	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME Iron Manganese	TALS BY ICP	0.19 0.0038 J	0.050 0.050		SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 16:31 05/14/10 16:31

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank		
Quanners.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)		
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits		

	Life Science 5854 Butternut Drive	Laborato	ries, In	c.	Ar	nalyti	ical Results
F	East Syracuse, NY 1.	3057 (315) 4	45-1105		State	eCertNo	: 10248
CLIENT: Project:	O'Brien & Gere Eng National Grid - Fulto	-		Lab ID: Client Sample I		1005034 <i>W-2-05</i>	
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005034 WATER ICAP 61E : 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 11	/04/10 15 /05/10 8:: /06/10 0:0 184/R199 SAMP-13	30 00 112
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME ⁻ Iron Manganese	TALS BY ICP	4.0 0.15	0.050 0.050	0.010	SW601 mg/L mg/L	0B 1 1	(SW3005A) 05/14/10 16:34 05/14/10 16:34

Oualifiers:	*	Value exceeds Maximum Contaminant Level	B Analyte detected in the associated Method Blan				
2	Е	Value exceeds the instrument calibration range	н	Holding times for preparation or analysis exceededNot Detected at the Practical Quantitation Limit (PQL)			
	J	Analyte detected below the PQL	ND				
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits			

Print Date: 05/18/10 12:25 508651 Project Supervisor: Pamela J. Titus

LSL ⁵	Life Science 854 Butternut Drive East Syracuse, NY 130		C. Analytical Resu StateCertNo: 10248				
CLIENT: Project:	O'Brien & Gere Engir National Grid - Fultor	·		Lab ID: Client Sample		005034 W-2-05	-003D 0410 (FF)
W Order: Matrix:	K1005034 WATER			Collection Date Date Received:	05/	/04/10 15 /05/10 8::	30
Inst. ID: ColumnID: Revision:	ICAP 61E : 05/17/10 16:19	Sample Size: %Moisture: TestCode:	50 mL 6010W05	PrepDate: BatchNo: FileID:	11	06/10 0:0 84/R199 AMP-13	12
Col Type:	05/17/10 10:19	TestCode:	6010 005	FlielD.	1-0	AMI ⁻¹⁵	1007
Analyte		Result Q	Qual PQL	MDL	Units	DF	Date Analyzed
TOTAL ME	TALS BY ICP	0.16	0.050		SW601 mg/L	0 B 1	(SW3005A) 05/14/10 16:38

0.050

0.0010

1

mg/L

05/14/10 16:38

0.020 J

Manganese

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank		
¥	Ε	Value exceeds the instrument calibration range	Н	H Holding times for preparation or analysis exceeded		
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)		
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits		
Print Date: (5/1	R/10.12:25 508652 Project Super	wison Dom	ala I. Titua		

E	ast Syracuse, NY 13	3057 (315) 4	45-1105		Stat	eCertNo	: 10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto	,		Lab ID: Client Sample		1005042 <i>W-125-</i>	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	0 mL 010W05	Collection Dat Date Received PrepDate: BatchNo: FileID:	: 05/ 05/ 11	/05/10 10 /05/10 16 /06/10 0:0 184/R199 SAMP-13	5:18 00 012
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL MET	TALS BY ICP				SW601	0B	(SW3005A)
Iron		3.7	0.050	0.010	mg/L	1	05/14/10 16:42
Manganese		0.21	0.050	0.0010	mg/L	1	05/14/10 16:42

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
2	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

R – A	Cast Syracuse, NY 13	3057 (315) 4	45-1105		State	eCertNo	: 10248
CLIENT Project:	O'Brien & Gere Engi National Grid - Fulto			Lab ID: Client Sample I		005042 W-125-	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	0 mL 010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 111	/05/10 10 /05/10 16 06/10 0:0 84/R199 AMP-13	5:18 00 012
Analyte	· · · · · · · · · · · · · · · · · · ·	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
	TALS BY ICP				SW601		(SW3005A)
Iron Manganese		0.29 0.052	0.050 0.050		ng/L ng/L	1 1	05/14/10 16:45 05/14/10 16:45

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quantitation	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. 5854 Butternut Drive

	ast Syracuse, NY 13	3057 (315) 4	45-1105		State	eCertNo	: 10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto			Lab ID: Client Sample		1005042 <i>W-11-0</i>	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	0 mL 010W05	Collection Dat Date Received PrepDate: BatchNo: FileID:	: 05/ 05/ 111	/05/10 12 /05/10 16 /06/10 0:(184/R199 SAMP-13	5:18 00 112
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME	TALS BY ICP				SW601	0B	(SW3005A)
Iron Manganese		6.2 0.25	0.050 0.050	0.010 0.0010	mg/L mg/L	1 1	05/14/10 16:49 05/14/10 16:49

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanners.	Е	Value exceeds the instrument calibration range	H	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY 1	StateCertNo: 10248					
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto	, ,		Lab ID: Client Sample I		1005042 W-11-0	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date Date Received: PrepDate: BatchNo: FileID:	05/ 05/ 11	/05/10 12 /05/10 16 /06/10 0:0 184/R199 SAMP-13	5:18 00 112
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME	TALS BY ICP				SW601	0B	(SW3005A)
Iron		7.3	0.050	0.010	ng/L	1	05/14/10 16:53
Manganese		0.26	0.050	0.0010 1	ng/L	1	05/14/10 16:53

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
2	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY 13	3057 (315) 4	45-1105		Stat	eCertNo	: 10248
CLIENT Project:	O'Brien & Gere Engi National Grid - Fulto	•		Lab ID: Client Sample		1005042 1-0505	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Da Date Received PrepDate: BatchNo: FileID:	l: 05/ 05/ 111	/05/10 0:4 /05/10 16 /06/10 0:6 184/R199 SAMP-13	5:18 00 012
Analyte		Result Qu	al PQL	MDL	Units	DF	Date Analyzed
TOTAL ME	TALS BY ICP				`SW601	0B	(SW3005A)
Iron		4.4	0.050	0.010	mg/L	1	05/14/10 16:57
Manganese		0.22	0.050	0.0010	mg/L	1	05/14/10 16:57

		Holding times for preparation or analysis exceeded
detected below the PQL 1	ND	Not Detected at the Practical Quantitation Limit (PQL)
onf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits
	 	~

Life Science Laboratories, Inc. LSL 5854 Butternut Drive

F	ast Syracuse, NY 1	StateCertNo: 10248					
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult	· · · ·		Lab ID: Client Sample I		1005042 - <i>1-0505</i>	
W Order: Matrix: Inst. ID: ColumnID Revision: Cot Type:	K1005042 WATER ICAP 61E 05/17/10 16:19	Sample Size: 5 %Moisture: TestCode: 6	50 mL 5010W05	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05 05/ 11	/05/10 0: /05/10 16 /06/10 0:(184/R199 SAMP-13	5:18 00 012
Analyte		Result Qu	al PQL	MDL U	J nits	DF	Date Analyzed
TOTAL ME	TALS BY ICP			S	W601	0B	(SW3005A)
Iron		0.29	0.050		ng/L	1	05/14/10 17:11
Manganese		0.055	0.050	0.0010 r	ng/L	1	05/14/10 17:11

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Z	E	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL	Life Science 854 Butternut Drive ast Syracuse, NY 13	Laboratories			Analytica	al Results
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto	•		Lab ID: Client Sample ID:	K1005028-00 MW-4-050310	1F
W Order: Matrix: Inst. ID: ColumnID: Revision: Col Type:	K1005028 WATER Dionex IC2 05/24/10 14:13	Sample Size: NA %Moisture: TestCode 300.0W		Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 12:40 05/04/10 8:31 R20005 1-SAMP-	
Analyte		ResultQual	PQL	Units	DF	Date Analyzed
INORGANIO Nitrate (as N) Nitrite (as N) Sulfate (as S		ND ND 4.4	0.10 0.10 1.0	EPA 300.0 mg/L mg/L mg/L	1 1 1	05/04/10 15:30 05/04/10 15:30 05/04/10 15:30

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit		Spike Recovery outside accepted recovery limits

Analytical Results

1

1 0

E	East Syracuse, NY 1	3057 (315) 445-1105	<u></u>	StateCertNo: 1024
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult		Lab ID: Client Sample ID:	K1005028-001F <i>MW-4-050310</i>
W Order: Matrix:	K1005028 WATER		Collection Date: Date Received:	05/03/10 12:40 05/04/10 8:31
Inst. ID: ColumnID Revision:	DO Meter 06/03/10 12:19	Sample Size: NA %Moisture: TestCode: BODSM5210B	PrepDate: BatchNo: FileID:	R19930 1-SAMP-
Col Type:	00/03/10 12:19	TestCode: BODSIM5210B	r neiD.	1-5AWI -

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
BIOCHEMICAL OXYGEN DEMAN	SM 18-	20 5210	В			
Biochemical oxygen demand (BOD5)	ND	200	2.0	mg/L	1	05/05/10 10:40

NOTES:

This result should be considered an estimate due to low oxygen depletion.*As per NELAC regulation disclosure of the following condition is required; The result of the laboratory control sample was less than the established limit.

				10
Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
•	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Analytical Results

E	ast Syracuse, NY 1	3057 (315) 445-1105	S	StateCertNo:	10248
CLIENT Project:	O'Brien & Gere En National Grid - Ful		Lab ID: Client Sample ID:	K1005028- MW-4-0503	
W Order: Matrix: Inst. ID: ColumnID Revision:	K1005028 WATER HACH4000 05/26/10 9:43	Sample Size: NA %Moisture: TestCode COD410.4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 12 05/04/10 8:3 R19849 1-SAMP-	
Col Type: Analyte		Result Qual PQL	Units	DF	Date Analyze
COD Chemical Ox	ygen Demand	61 10	EPA 410.4 mg/L	1	05/07/10 17:04

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
2	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J Analyte detected below the PQL		ND Not Detected at the Practical Quantitation Limit (
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

 $\widehat{}$

CLIENT Project:	O'Brien & Gere Eng National Grid - Fult	· ·	Lab ID: Client Sample ID:	K1005028- MW-4-0503	
W Order: Matrix: Inst. ID: ColumnID Revision:	K1005028 WATER TOC-5000A 05/26/10 11:56	Sample Size: NA %Moisture: TestCode DOC5310B	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 12:- 05/04/10 8:3 R20035 1-SAMP-	-
Col Type: Analyte		Result Qual PQL	Units	DF	Date Analyze

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
£	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J Analyte detected below the PQL		ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Analytical Results

E	ast Syracuse, NY 1	3057 (315) 445-1105		StateCertNo: 1024
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult	F	Lab ID: Client Sample ID:	K1005028-0011 MW-4-050310
W Order: Matrix: Inst. ID:	K1005028 WATER Buret Type A	Sample Size: NA	Collection Date: Date Received: PrepDate:	05/03/10 12:40 05/04/10 8:31
ColumnID Revision: Col Type:	06/03/10 14:33	%Moisture: TestCode: ALKT 232	BatchNo: 0B FileID:	R19848 1-SAMP-

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed	1
ALKALINITY, AS CACO3				SM 18-	20 2320 8	В	
Alkalinity, as CaCO3	380	10	10	mg/L	1	05/07/10	
						10 10 10 10 10 10 10 10 10 10 10 10 10 1	

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanner 5.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND Not Detected at the Practical Quantitation Limit	
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL ⁵	L ife Science 854 Butternut Drive East Syracuse, NY 13	Laboratories	,		Analytica StateCertNo: 10	al Results
CLIENT: Project:	O'Brien & Gere Eng National Grid - Fulto			Lab ID: Client Sample ID:	K1005028-00 MW-5-050310	2F
W Order: Matrix: Inst. ID: ColumnID: Revision:	K1005028 WATER Dionex IC2 05/24/10 14:13	Sample Size: NA %Moisture: TestCode 300.0W		Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 15:20 05/04/10 8:31 R20005 1-SAMP-	
Col Type: Analyte		ResultQual	PQL	Units	DF	Date Analyzed
INORGANI Nitrate (as N Nitrite (as N) Sulfate (as S		ND ND 1.2	0.10 0.10 1.0	EPA 300.0 mg/L mg/L mg/L	1 1 1	05/04/10 15:44 05/04/10 15:44 05/04/10 15:44

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
-	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Analytical Results

鬑

2

÷.

	ast Syracuse, NY 13	057 (315)) 445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Engin National Grid - Fulto	-		Lab ID: Client Sample ID:	K1005028-002F MW-5-050310
W Order: Matrix:	K1005028 WATER			Collection Date: Date Received:	05/03/10 15:20 05/04/10 8:31
Inst. ID: ColumnID	DO Meter	Sample Size %Moisture:		PrepDate: BatchNo: FileID:	R19930 1-SAMP-
Revision: Col Type:	06/03/10 12:19	TestCode:	BODSM5210B	Flield.	1-5AWI -

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
BIOCHEMICAL OXYGEN DEMAN	ID (BOD5)			SM 18-	20 5210 1	8
Biochemical oxygen demand (BOD5)	ND	80	2.0	mg/L	1	05/05/10 10:40

NOTES:

This result should be considered an estimate due to low oxygen depletion. *As per NELAC regulation disclosure of the following condition is required; The result of the laboratory control sample was less than the established limit.

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
2	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY 1	3057 (315) 445-1105		StateCertNo:	10248
CLIENT Project:	O'Brien & Gere En National Grid - Ful		Lab ID: Client Sample ID:	K1005028- MW-5-0503	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005028 WATER HACH4000 05/26/10 9:43	Sample Size: NA %Moisture: TestCode COD410.4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/03/10 15: 05/04/10 8:3 R19849 1-SAMP-	
Analyte		Result Qual PQI	units	DF	Date Analyze
COD	vgen Demand	55 10	EPA 410.4 mg/L	1	05/07/10 17:04

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quannersi	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Analytical Results

CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto	•		~ .	Lab ID: Client Sample ID:	K1005028-002 MW-5-050310	2H
W Order:	K1005028				Collection Date:	05/03/10 15:20	
Matrix:	WATER				Date Received:	05/04/10 8:31	
Inst. ID:	TOC-5000A	Sample Size: N	JA		PrepDate:		
ColumnID		%Moisture:			BatchNo:	R20035	
Revision:	05/26/10 11:56	TestCode DOG	C5310B		FileID:	1-SAMP-	
Col Type:							
Analyte		Result	Qual P	QL	Units	DF	Date Analyzed
DISSOLVE	D ORGANIC CARBO	N (DOC)			SM 18-20 531	0 B	
	ganic carbon (DOC)	18	1.	0	ma/L	1	05/26/10 9:00

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Z	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

,~

Analytical Results Life Science Laboratories, Inc. 5854 Butternut Drive StateCertNo: 10248 East Syracuse, NY 13057 (315) 445-1105 K1005028-002I CLIENT O'Brien & Gere Engineers, Inc. Lab ID: Client Sample ID: MW-5-050310 **Project:** National Grid - Fulton, NY **Collection Date:** 05/03/10 15:20 W Order: K1005028 05/04/10 8:31 Date Received: Matrix: WATER **PrepDate:** Sample Size: NA Inst. ID: Buret Type A R19848 ColumnID %Moisture: **BatchNo:** TestCode: ALKT 2320B FileID: 1-SAMP-**Revision:** 06/03/10 14:33

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
ALKALINITY, AS CACO3				SM 18-	20 2320	В
Alkalinity, as CaCO3	230	10	10	mg/L	1	05/07/10

Col Type:

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
~	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL ⁵	L ife Science 854 Butternut Drive Cast Syracuse, NY 13	Laboratories	,		Analytica	
CLIENT: Project:	O'Brien & Gere Engi National Grid - Fulto	neers, Inc.		Lab ID: Client Sample ID:	K1005034-001	
W Order: Matrix: Inst. ID:	K1005034 WATER Dionex IC2	Sample Size: NA		Collection Date: Date Received: PrepDate:	05/04/10 11:20 05/05/10 8:30	
ColumnID: Revision: Col Type:	05/24/10 14:13	%Moisture: TestCode 300.0W		BatchNo: FileID:	R20005 1-SAMP-	
Analyte		ResultQual	PQL	Units	DF	Date Analyzed
INORGANI Nitrate (as N Nitrite (as N) Sulfate (as S		ND ND ND	0.10 0.10 1.0	EPA 300.0 mg/L mg/L mg/L	1 1 1	05/05/10 11:15 05/05/10 11:15 05/05/10 11:15

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit		Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. 5854 Butternut Drive

Analytical Results

1.5

٦.

E	ast Syracuse, NY 13	3057 (315) 445-1105	\$	StateCertNo: 1	0248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto		Lab ID: Client Sample ID:	K1005034-0 MW-7-0504	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005034 WATER DO Meter 06/03/10 12:19	Sample Size: NA %Moisture: TestCode: BODSM5210B	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/04/10 11:20 05/05/10 8:30 R19930 1-SAMP-	
Analyte		Result Qual PQL	MDL Un	its DF	Date Analyzed
			SM	18-20 5210 B	

BIOCHEMICAL OXYGEN DEMAND (BOD	20 5210 B	1 - É.				
Biochemical oxygen demand (BOD5)	ND	200	200	mg/L	1	05/05/10 10:40
NOTES						s ir

NOTES:

This result should be considered an estimate due to low oxygen depletion. *As per NELAC regulation disclosure of the following condition is required; The result of the laboratory control sample was less than the established limit.

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank	: 's
Quanners.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded	ò
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)	
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits	е: 14

LSL 5	L ife Science 854 Butternut Drive Cast Syracuse, NY 1		c. Analytical Resul StateCertNo: 10248					
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult		Lab ID: Client Sample ID:	K1005034 MW-7-05				
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005034 WATER HACH4000 06/03/10 12:23	Sample Size: NA %Moisture: TestCode: COD410.4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/04/10 11 05/05/10 8: R19849 1-SAMP-				
Analyte		Result Qual PQL	MDL Un	its DF	Date Analyzed			
000			FD	Δ 410 4				

COD				EPA 41	10.4	· · · · · · · · · · · · · · · · · · ·
Chemical Oxygen Demand	21	10	5.0	mg/L	1	05/07/10 17:05

Analyte detected in the associated Method Blank Value exceeds Maximum Contaminant Level В * Qualifiers: Value exceeds the instrument calibration range H Holding times for preparation or analysis exceeded Е ND Not Detected at the Practical Quantitation Limit (PQL) J Analyte detected below the PQL 10.00 P Prim./Conf. column %D or RPD exceeds limit S Spike Recovery outside accepted recovery limits

a de la composición de la composición de la composición de la composición de la composición de la composición d

 $\langle \cdot \rangle$

ĝ.

の数

LSL 5	L ife Science 1854 Butternut Drive East Syracuse, NY 13		. Analytical Results StateCertNo: 10248				
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto		Lab ID: Client Sample ID:	K1005034-00 MW-7-050410			
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:	05/04/10 11:20 05/05/10 8:30)		
Inst. ID: ColumnID	TOC-5000A	Sample Size: NA %Moisture:	PrepDate: BatchNo: FileID:	R20035 1-SAMP-			
Revision: Col Type:	05/26/10 11:56	TestCode DOC5310B	FlielD:	I-SAMF-			
Analyte		Result Qual PQL	Units	DF	Date Analyzed		
DISSOLVE	D ORGANIC CARBO	N (DOC)	SM 18-20 531	0 B			
Dissolved or	ganic carbon (DOC)	6.4 1.0	mg/L	1	05/26/10 9:12		

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
、	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Analytical Results

1

F	ast Syracuse, NY 1	3057 (315)) 445-1105		State	eCertNo:	10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult			Lab ID: Client Sample ID		005034-0 W-7-050	
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:		04/10 11:2 05/10 8:3	
Inst. ID: ColumnID	Buret Type A	Sample Size %Moisture:		PrepDate: BatchNo:		9848	
Revision: Col Type:	06/03/10 14:33	TestCode:	ALKT 2320B	FileID:	1-S	AMP-	
Analyte		Result (Qual PQL	MDL U	nits	DF	Date Analyzed

ALKALINITY, AS CACO3			SM 18-2	0 2320 B		
Alkalinity, as CaCO3	250	10	10	mg/L	1	05/07/10

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
¥	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

.

East Syracuse,	NY 13057 (315) 445-1	StateCertNo: 10248				
CLIENT: O'Brien & Ger Project: National Grid	e Engineers, Inc. - Fulton, NY		Lab ID: Client Sample ID:	K100503 MW-3-05		
W Order: K1005034 Matrix: WATER			Collection Date: Date Received:	05/04/10 05/05/10		
Inst. ID: Dionex IC2 ColumnID: Revision: 05/24/10 14:13 Col Type:	Sample Size: NA %Moisture: 3 TestCode 300.0W		PrepDate: BatchNo: FileID:	R20005 1-SAMP-		
Analyte	ResultQua	al PQL	Units	DF	Date Analyzed	
INORGANIC ANIONS BY I	C		EPA 300.0			
Nitrate (as N)	0.84	0.10	mg/L	1	05/05/10 11:30	
Nitrite (as N)	ND	0.10	mg/L	1	05/05/10 11:30	
Sulfate (as SO4)	32	1.0	mg/L	1	05/05/10 11:30	

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit		

Analytical Results

nter jonen Sil SC:

125 (1435) (141) (141)

E E	ast Syracuse, NY 1	3057 (315) 445-1105		State	CertNo:	10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult	, ,		Lab ID: Client Sample ID		005034- V-3-05(
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005034 WATER DO Meter 06/03/10 12:19	Sample Size %Moisture TestCode:		Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/0 R19	04/10 13: 05/10 8:3 930 AMP-	
Analyte		Result	Qual PQL	MDL U	nits	DF	Date Analyzed

BIOCHEMICAL OXYGEN DEMAND (BOD5)				SM 18-2	0 5210 B	
Biochemical oxygen demand (BOD5)	ND	200	200	mg/L	1	05/05/10 10:40

NOTES:

This result should be considered an estimate due to low oxygen depletion. *As per NELAC regulation disclosure of the following condition is required; The result of the laboratory control sample was less than the established limit.

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quannersi	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

[LSL]₅	L ife Science 1854 Butternut Drive Cast Syracuse, NY 1			Analyt StateCertNo	ical Results 0: 10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult		Lab ID: Client Sample ID:	K1005034 MW-3-050	
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:	05/04/10 1 05/05/10 8	
Inst. ID: ColumnID	HACH4000	Sample Size: NA %Moisture:	PrepDate: BatchNo:	R19849	
Revision: Col Type:	05/26/10 9:43	TestCode COD410.4	FileID:	1-SAMP-	
Analyte		Result Qual PQL	Units	DF	Date Analyzed
COD Chemical Ox	kygen Demand	14 10	EPA 410.4 mg/L	1	05/07/10 17:05

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quantity	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

[LSL]₅	L ife Science 1854 Butternut Drive East Syracuse, NY 13	Laboratories, Inc 057 (315) 445-1105		Analytic	eal Results
CLIENT Project:	O'Brien & Gere Engi National Grid - Fulto		Lab ID: Client Sample ID:	K1005034-(
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:	05/04/10 13:5	50
Inst. ID: ColumnID	TOC-5000A	Sample Size: NA %Moisture:	PrepDate: BatchNo:	R20035	
Revision: Col Type:	05/26/10 11:56	TestCode DOC5310B	FileID:	1-SAMP-	
Analyte		Result Qual PQL	Units	DF	Date Analyzed
DISSOLVE		N (DOC)	SM 18-20 53 ⁻	10 B	
	ganic carbon (DOC)	6.0 1.0	mg/L	1	05/26/10 9:23

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
2	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. 5854 Butternut Drive

E	ast Syracuse, NY 1	3057 (315) 445-1105	5	StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult	• · ·	Lab ID: Client Sample ID:	K1005034-002I MW-3-050410
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:	05/04/10 13:50 05/05/10 8:30
Inst. ID: ColumnID	Buret Type A	Sample Size: NA %Moisture:	PrepDate: BatchNo: FileID:	R19848 1-SAMP-
Revision: Col Type:	06/03/10 14:33	TestCode: ALKT 2320B	FICID.	I-SAIVII -
				to DE Data Analy

Analyte	Result Qua	al PQL	MDL	Units	DF	Date Analyzed
ALKALINITY, AS CACO3				SM 18-2	20 2320 E	3
Alkalinity, as CaCO3	260	10	10	mg/L	1	05/07/10

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	P Prim./Conf. column %D or RPD exceeds limit		S Spike Recovery outside accepted recovery limits	

E	ast Syracuse, NY 1	3057 (315) 445-11	StateCertNo: 10248				
CLIENT: Project:	O'Brien & Gere Eng National Grid - Fult	-		Lab ID: Client Sample ID:	K1005034-00 MW-2-050410	3F	
W Order: Matrix:	K1005034 WATER			Collection Date: Date Received:	05/04/10 15:30 05/05/10 8:30		
Inst. ID: ColumnID: Revision:	Dionex IC2 05/24/10 14:13	Sample Size: NA %Moisture: TestCode 300.0W	%Moisture:		R20005 1-SAMP-		
Col Type: Analyte		Result Qual	POL	Units	DF	Date Analyzed	
	CANIONS BY IC			EPA 300.0		Date Analyzee	
Nitrate (as N) Nitrite (as N)		ND ND	0.10 0.10	mg/L mg/L	1 1	05/04/10 11:45 05/04/10 11:45	
Sulfate (as SC	D4)	25	1.0	mg/L	1	05/04/10 11:45	

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit		Spike Recovery outside accepted recovery limits

Analytical Results

1

5 4

F	East Syracuse, NY 1.	3057 (315) 445-1105		State	CertNo:	10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto		Lab ID: Client Sample ID:		005034-0 V-2-050	
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:)4/10 15:3)5/10 8:3	
Inst. ID: ColumnID Revision:	DO Meter 06/03/10 12:19	Sample Size: NA %Moisture: TestCode: BODSM5210B	PrepDate: BatchNo: FileID:	R19 1-S#	930 AMP-	
Col Type: Analyte		Result Qual PQL	MDL Un	its	DF	Date Analyzed

BIOCHEMICAL OXYGEN DEMAND (BOD		SM 18-	20 5210	В		
Biochemical oxygen demand	ND	200	200	mg/L	1	05/05/10 10:40
(BOD5)						

NOTES:

This result should be considered an estimate due to low oxygen depletion. *As per NELAC regulation disclosure of the following condition is required; The result of the laboratory control sample was less than the established limit.

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanner 5.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL Life Science Laboratories, Inc. 5854 Butternut Drive East Syracuse, NY 13057 (315) 445-1105			StateCertNo: 10248				
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult		Lab ID: Client Sample ID:	K1005034 MW-2-050			
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005034 WATER HACH4000 05/26/10 9:43	Sample Size: NA %Moisture: TestCode COD410.4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/04/10 1 05/05/10 8 R19849 1-SAMP-			
Analyte		Result Qual PQL	Units	DF	Date Analyzed		
COD Chemical Ox	kygen Demand	16 10	EPA 410.4 mg/L	1	05/07/10 17:05		

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL 5	L ife Science 854 Butternut Drive Cast Syracuse, NY 13	Laboratories, Inc 057 (315) 445-1105		Analytical Results StateCertNo: 10248			
CLIENT Project:	O'Brien & Gere Engi National Grid - Fulto		Lab ID: Client Sample ID:	K1005034-0 MW-2-05041			
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:	05/04/10 15:3 05/05/10 8:30	-		
Inst. ID: ColumnID	TOC-5000A	Sample Size: NA %Moisture:	PrepDate: BatchNo:	R20035			
Revision: Col Type:	05/26/10 11:56	TestCode DOC5310B	FileID:	1-SAMP-			
Analyte		Result Qual PQL	Units	DF	Date Analyzed		
DISSOLVE		I (DOC)	SM 18-20 531	10 B			
	ganic carbon (DOC)	4.4 1.0	mg/L	1	05/26/10 9:46		

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

F	ast Syracuse, NY 1.	3057 (315) 445-1105		StateCertNo: 10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fulto	-	Lab ID: Client Sample ID:	K1005034-003I MW-2-050410
W Order: Matrix:	K1005034 WATER		Collection Date: Date Received:	05/04/10 15:30 05/05/10 8:30
Inst. ID: ColumnID	Buret Type A	Sample Size: NA %Moisture:	PrepDate: BatchNo: FileID:	R19848 1-SAMP-
Revision: Col Type:	06/03/10 14:33	TestCode: ALKT 2320B	гиену.	1-5AIVII -
A		Denuit Quel DOI		ita DE Data Analy

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed
ALKALINITY, AS CACO3				SM 18-2	20 2320 E	3
Alkalinity, as CaCO3	270	10	10	mg/L	1	05/07/10

Quanners:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded	
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL ⁵	Life Science 854 Butternut Drive Cast Syracuse, NY 13	Analytical Results StateCertNo: 10248				
CLIENT: Project:	O'Brien & Gere Eng National Grid - Fulto	ineers, Inc.		Lab ID: Client Sample ID:	K1005042-	·001F
W Order: Matrix:	K1005042 WATER			Collection Date: Date Received:	05/05/10 10: 05/05/10 16:	
Inst. ID:Dionex IC2ColumnID:05/24/10 14:13Col Type:05/24/10 14:13		Sample Size: NA %Moisture: TestCode 300.0W		PrepDate: BatchNo: FileID:	R20005 1-SAMP-	
Analyte		ResultQual	PQL	Units	DF	Date Analyzed
INORGANI Nitrate (as N Nitrite (as N) Sulfate (as S		0.23 ND 25	0.10 0.10 1.0	EPA 300.0 mg/L mg/L mg/L	1 1 1	05/06/10 12:56 05/06/10 12:56 05/06/10 12:56

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Analytical Results

CLIENT	O'Brien & Gere Eng	gingers Inc	Lab ID:	K1005042-	001F
Project:	National Grid - Ful		Client Sample ID:		
W Order:	K1005042		Collection Date:	05/05/10 10:	30
Matrix:	WATER		Date Received:	05/05/10 16:	18
Inst. ID:	DO Meter	Sample Size: NA	PrepDate:	DQQQQ	
ColumnID		%Moisture:	BatchNo:	R20008	
Revision:	05/27/10 11:23	TestCode BODSM5210B	FileID:	1-SAMP-	
Col Type:					
Analyte	•	Result Qual PQL	Units	DF	Date Analyzed
BIOCHEMI	CAL OXYGEN DEMA	AND (BOD5)	SM 18-20 521	0 B	
	oxygen demand (BOD5	· · ·	mg/L		05/07/10 8:01

NOTES:

This result should be considered an estimate due to low oxygen depletion.

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	E	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY	13057	(315) 445-11	.05	StateCertNo: 10248			
CLIENT Project:	O'Brien & Gere En National Grid - Ful	0 /	nc.		Lab ID: Client Sample ID:	K1005042 MW-125-0		
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER HACH4000 05/26/10 9:43	%N	nple Size: NA Aoisture: atCode COD410.	4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 10:30 05/05/10 16:18 R19849 1-SAMP-		
Analyte			Result Qual	PQL	Units	DF	Date Analyzed	
COD Chemical Ox	ygen Demand		38	10	EPA 410.4 mg/L	1	05/07/10 17:08	

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

CLIENT Project:	O'Brien & Gere Eng National Grid - Fult				Lab ID: Client Sample ID:	K1005042 MW-125-05	
W Order:	K1005042				Collection Date:	05/05/10 10	:30
Matrix:	WATER				Date Received:	05/05/10 16	:18
Inst. ID:	TOC-5000A	Samp	le Size: NA		PrepDate:		
ColumnID		%Mo	isture:		BatchNo:	R20035	
Revision:	05/26/10 11:56	TestC	ode DOC5310)B	FileID:	1-SAMP-	
Col Type:							
Analyte			Result Qual	PQL	Units	DF	Date Analyze
DISSOLVE	D ORGANIC CARBO	N (DOC)			SM 18-20 531	10 B	
	panic carbon (DOC)	()	5.7	1.0	mg/L	1	05/26/10 9:54

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY	(315) 445-1105		StateCertNo: 10248				
CLIENT Project:	O'Brien & Gere En National Grid - Ful	<u> </u>	Lab ID: Client Sample II	K1005042 D: <i>MW-125-0</i>				
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER Buret Type A 05/10/10 8:45	Sample Size: NA %Moisture: TestCode ALKT 2320]	Collection Date: Date Received: PrepDate: BatchNo: 3 FileID:	05/05/10 10 05/05/10 10 R19848 1-SAMP-				
Analyte		Result Qual P	QL Units	DF	Date Analyze			
ALKALINIT	Y, AS CACO3		SM 18-20 2	320 B				
Alkalinity, as	CaCO3	300 1) mg/L	1	05/07/10			

Oualifiers :	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quantitation	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

LSL	Life Science 854 Butternut Drive Cast Syracuse, NY 13		Analytical Results StateCertNo: 10248			
CLIENT: Project: W Order:	O'Brien & Gere Engi National Grid - Fulto K1005042	neers, Inc.		Lab ID: Client Sample ID: Collection Date:	K1005042-0	02F 10
Matrix: Inst. ID: ColumnID: Revision: Col Type:	WATER Dionex IC2 05/24/10 14:13	Sample Size: NA %Moisture: TestCode 300.0W	%Moisture:		05/05/10 16:18 R20005 1-SAMP-	
Analyte		ResultQual	PQL	Units	DF	Date Analyzed
INORGANI Nitrate (as N) Nitrite (as N) Sulfate (as S		ND ND 9.9	0.10 0.10 1.0	EPA 300.0 mg/L mg/L mg/L	1 1 1	05/06/10 13:10 05/06/10 13:10 05/06/10 13:10

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range		Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit		

Analytical Results

East Syracuse, NY 13057 (315) 445-1105				StateCertNo: 10248				
CLIENT Project:	O'Brien & Gere Engine National Grid - Fulton	•		Lab ID: Client Sample ID:	K1005042-00 MW-11-05051			
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER DO Meter 05/27/10 11:23	Sample Size: NA %Moisture: TestCode BODSM5	210B	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 12:30 05/05/10 16:18 R20008 1-SAMP-			
Analyte		Result Qual	PQL	Units	DF	Date Analyzed		
	CAL OXYGEN DEMANI oxygen demand (BOD5)) (BOD5) ND	200	SM 18-20 521 mg/L	0 B 1	05/07/10 8:03		

This result should be considered an estimate due to low oxygen depletion.

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
X	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

East Syracuse, NY 13057 (315) 445-1105				05	StateCertNo: 10248				
CLIENTO'Brien & Gere EngirProject:National Grid - Fultor			nc.		Lab ID: Client Sample ID:	K1005042-002G MW-11-050510			
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER HACH4000 05/26/10 9:43	%N	aple Size: NA Aoisture: tCode COD410.4	4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 12:30 05/05/10 16:18 R19849 1-SAMP-			
Analyte			Result Qual	PQL	Units	DF	Date Analyze		
COD Chemical Ox	ygen Demand		10	10	EPA 410.4 mg/L	1	05/07/10 17:09		

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
2		Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. 5854 Butternut Drive

CLIENT	O'Brien & Gere Eng	ineers In			Lab ID:	K1005042-	00211
Project:	National Grid - Fult		ic.		Client Sample ID:		
W Order:	K1005042	,			Collection Date:	05/05/10 12:	30
Matrix:	WATER				Date Received:	05/05/10 16:	18
Inst. ID:	TOC-5000A	Sam	ple Size: NA		PrepDate:		
ColumnID		%M	oisture:		BatchNo:	R20035	
Revision:	05/26/10 11:56	Test	Code DOC531	0B	FileID:	1-SAMP-	
Col Type:							
Analyte			Result Qua	PQL	Units	DF	Date Analyze
DISSOLVE	D ORGANIC CARBO	N (DOC)			SM 18-20 531	0 B	
	ganic carbon (DOC)	,	5.3	1.0	mg/L	1	05/26/10 10:08

Oualifiers :	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
L	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

CLIENT Project:	O'Brien & Gere En National Grid - Ful		Lab ID: Client Sample ID:	K1005042- MW-11-050	
W Order: Matrix:	K1005042 WATER		Collection Date: Date Received:	05/05/10 12: 05/05/10 16:	
Inst. ID: ColumnID Revision:	Buret Type A 05/10/10 8:45	Sample Size: NA %Moisture: TestCode ALKT 2320B	PrepDate: BatchNo: FileID:	R19848 1-SAMP-	
Col Type: Analyte		Result Qual POL	Units	DF	Date Analyze

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. **Analytical Results S** 5854 Butternut Drive East Syracuse, NY 13057 (315) 445-1105 StateCertNo: 10248 **CLIENT:** O'Brien & Gere Engineers, Inc. Lab ID: K1005042-003F **Project:** National Grid - Fulton, NY Client Sample ID: X-1-050510 W Order: K1005042 **Collection Date:** 05/05/10 0:00 Matrix: WATER Date Received: 05/05/10 16:18 Inst. ID: Dionex IC2 Sample Size: NA **PrepDate:** ColumnID: %Moisture: **BatchNo:** R20005 **Revision:** 05/24/10 14:13 TestCode 300.0W FileID: 1-SAMP-Col Type: Analyte **ResultQual PQL** Units DF **Date Analyzed**

INORGANIC ANIONS BY IC			EPA 300.0		
Nitrate (as N)	0.15	0.10	mg/L	1	05/06/10 13:24
Nitrite (as N)	ND	0.10	mg/L	1	05/06/10 13:24
Sulfate (as SO4)	26	1.0	mg/L	1	05/06/10 13:24

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value exceeds the instrument calibration range		
	J	Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit		Spike Recovery outside accepted recovery limits

Analytical Results

CLIENT Project:	O'Brien & Gere Engin National Grid - Fulton	•		Lab ID: Client Sample ID:	K1005042-0 X-1-050510	03F
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER DO Meter 05/27/10 11:23	Sample Size: NA %Moisture: TestCode BODSN	15210B	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 0:00 05/05/10 16:1 R20008 1-SAMP-	
Analyte		Result Qua	al PQL	Units	DF	Date Analyzed
	CAL OXYGEN DEMAN oxygen demand (BOD5)	D (BOD5) ND	200	SM 18-20 521 mg/L	0 B 1	05/07/10 8:05

This result should be considered an estimate due to low oxygen depletion.

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Quanner s.	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

E	ast Syracuse, NY	(315) 445-11	05	5	StateCertNo	: 10248
CLIENT Project:	O'Brien & Gere En National Grid - Ful			Lab ID: Client Sample ID:	K1005042 X-1-05051	
W Order: Matrix: Inst. ID: ColumnID Revision: Col Type:	K1005042 WATER HACH4000 05/26/10 9:43	Sample Size: NA %Moisture: TestCode COD410.	4	Collection Date: Date Received: PrepDate: BatchNo: FileID:	05/05/10 0: 05/05/10 10 R19849 1-SAMP-	
Analyte		Result Qual	PQL	Units	DF	Date Analyzed
COD Chemical Ox	ygen Demand	41	10	EPA 410.4 mg/L	1	05/07/10 17:10

Oualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
C	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

	Cast Syracuse, NY 1	3057	(315) 445-1	105		StateCertNo:	10248
CLIENT Project:	O'Brien & Gere Eng National Grid - Fult		IC.		Lab ID: Client Sample ID:	K1005042 - <i>X-1-050510</i>	
W Order:	K1005042				Collection Date:	05/05/10 0:0	0
Matrix:	WATER				Date Received:	05/05/10 16:	:18
Inst. ID:	TOC-5000A	Sam	ple Size: NA		PrepDate:		
ColumnID			Ioisture:		BatchNo:	R20035	
Revision:	05/26/10 11:56	Test	tCode DOC53	10B	FileID:	1-SAMP-	
Col Type:							
Analyte			Result Qua	I PQL	Units	DF	Date Analyzed
DISSOLVE	D ORGANIC CARBO	N (DOC)			SM 18-20 531	0 B	
Dissolved org	ganic carbon (DOC)	. ,	4.0	1.0	mg/L	1	05/26/10 10:19

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
-	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

CLIENT Project:	O'Brien & Gere En National Grid - Ful	2 ,	Lab ID: Client Sample ID:	K1005042- X-1-050510	
W Order: Matrix: Inst. ID: ColumnID	K1005042 WATER Buret Type A	Sample Size: NA %Moisture:	Collection Date: Date Received: PrepDate: BatchNo:	05/05/10 0:0 05/05/10 16: R19848	0
Revision: Col Type:	05/10/10 8:45	TestCode ALKT 2320B	FileID:	1-SAMP-	
Analyte		Result Qual PQL	Units	DF	Date Analyze
ALKALINIT	Y, AS CACO3		SM 18-20 232	0 B	
Alkalinity, as	CaCO3	310 10	mg/L	1	05/07/10

Oualifiers :	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
-	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Life Science Laboratories, Inc. Central Lab

5854 Butternut Drive East Syracuse, New York 13057 (315) 445-1105

Chain of Custody

						1				<u> </u>				
Client: D'BRIEN & GERE	INC.								Ar	alysis	/Meth	od	A	
Project: National Calid	FUT.	017,1	NY			/		' /	× /	- S^ /	' /	/		
Sampled by:								/ /	Hi Di	S'	<u>v/</u>			
Client Contact: Deb Wight	Phone #	43-	7-612	00				n / 5	5	30/1	0 6))))))	. /		
Sample Des							5 Ver C.	10	2/2 1	00				
Sample Location	Date	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers	120	15	53	Contraction of a	12	1	/	Comments	
MiW-4-050310		12010	-	6	il	X	×	X	X	X	X		NISSOLUCE Mercilst FOC	FREE
MW-5-050310	5-3-10		VATES	6	11	×	×	X	×	×	X		prosolund Pretector + TOC	Ficto
Thip blank	5-3-10	-	Wester	~	1	X								
													*	
											1			
							1	<u> </u>						
					<u> </u>	<u> </u>	ļ							
						1								
		<u> </u>				<u> </u>			<u> </u>			oto: #	1 /4/ (2) Time: 08	12
Relinquished by: C. YVri Juli			> Time				>607	1.	cher			·····,		
Relinquished by: Scott Tucker	Da	ite: 5/4/	o Time						×-/	,		ate:	Time:	
Relinquished by:	Da	ite:	Time):	Receive	ed by La	b.	<u> Me</u>	Z_		D)	ate: 5-04-	Time: - <u>10 고용·31 곳</u> ር	Vð
Shipment Method:					Airbill N	lumber:								

Turnaround Time Required: Routine Comments:

Rush ____ Cooler Temperature: 2,2° C 20 100

Original - Laboratory Copy - Client

Sample Receipt Checklist

Client Name: OBG-MS	i	Date and Time Received:	5/4/2010 8:31:00 AM
Work Order Number: K1005028	I	Received by: ads	
Checklist completed by:	115	Reviewed by:	5141D Date
Delivery Method:	Hand Delivered		
Shipping container/cooler in good condition?	Yes 🗹	No 🗌 Not Present	
Custody seals intact on shipping container/cooler?	Yes	No 🗌 Not Present 🗹	
Custody seals intact on sample bottles?	Yes	No 🗌 Not Applicable 🗹	
Chain of custody present?	Yes 🗹	No 🗔	
Chain of custody signed when relinquished and received?	Yes 🗹	Νο	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗹	No 🗌	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗹	No	
All samples received within holding time?	Yes 🔽	Νο	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	
Water - VOA vials have zero headspace?	Yes 🗹	No C No VOA vials submitted	
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌 Not Applicable 🗌	

pН	Preservative	pH Acceptable	Sample ID
>12	NaOH	Yes 🗌 N 🗍 NA 🗹	
<2	HNO3	Yes 🗹 N 🗌 NA 🗌	
<2	HSO4	Yes 🗹 N 🗌 NA 🗌	
<2	1:1 HCL	Yes 🗹 N 🗌 NA 🗌 T	oc
5-9	Pest/PCBs (608/8081)	Yes 🗌 N 🗌 NA 🗹	

Volume of Preservative added in Lab.

Comments:

Corrective Action:

LSL

Life Science Laboratories, Inc. Central Lab

5854 Butternut Drive East Syracuse, New York 13057 (315) 445-1105

Chain of Custody

Client: O'RELEN & GERE INC							An	alysis	/Meth	bd			
Project: National	GERE ING Grid		······································				/	/	2	1 Ne	7	/	
Sampled by:										50			
Client Contact:	Phone #					. / .	, / .	, / ·	CThang	Co Co	P / 7	۲/	
Sa	mple Description						SWOC,	2 2 Charles	24	en o	P A		
Sample Location	Date Collected	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers		15	1200	2 20	$\left(\begin{array}{c} v \\ v \end{array} \right)$			Comments
MW-7-050410	5-4-12		Water	6	11	X	×	X	X	X	X		DISSOLVED TOG FOOT
MW-3-050410	5-4-10	1350	watel	6		X	×	×	X	メ	<u>x</u>))
MW-2-050410	5-4-10	1530	water	6	1	X	X	×	×	X	X		11
Trip blank	5-4-10	-	water	-	1	X							
												1	
· · · · · · · · · · · · · · · · · · ·				<u> </u>		<u> </u>		 				ļ	
						<u> </u>		·	<u> </u>				
						<u> </u>			منبرتين منبرتين		<u> </u>		THERE
Relinquished by: C. Yusi Ve			ک Time		Receive	and the second sec	200	KIC-	Contraction of the second second second second second second second second second second second second second s			1	5/10 Time: 0813
Relinquished by:	Da	te: $5/2$	5/CoTime	:0830				A	<u>A</u>			ate:	Time:
Relinquished by:	Da	ite:	Time):	Receive	ed by La	0:-7	K	The	\leq		ate:	Time:
Shipment Method:					Airbill N	lumber:			/	0C		0.0.0	5-10 08:30 🦾 🗤

Turnaround Time Required: Routine ____X Comments:

Routine <u>×</u> Rush

Cooler Temperature:

Sample Receipt Checklist

Client Name: OBG-MS		Date and Ti	me Received:	5/5/2	010 8:30:00 AM
Work Order Number: K1005034		Received by	y: hg		
Checklist completed by:	5/10 ate	Reviewed	by: Initials	?YX	5/5/10 Date
Delivery Meth	od: Hand Delivered	<u>I</u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present		
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗀	Not Present	\checkmark	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Applicable		
Chain of custody present?	Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?	Yes 🔽	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌		··· · · ·	
Sample containers intact?	Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌			
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌			
Water - VOA vials have zero headspace?	Yes 🔽	No 🗔	No VOA vials su	Ibmitted	
Water - pH acceptable upon receipt?	Yes 🗹	No	Not Applicable	•	

рH	Preservative	pH Acceptable	Sample ID
>12	NaOH	Yes 🗌 N 🗌 NA 🗹	
<2	HNO3	Yes 🗹 N 🗌 NA 🗌	
<2	HSO4	Yes 🗹 N 🗌 NA 🗌	
<2	1:1 HCL	Yes 🗹 N 🗌 NA 🗌 T	oc
5-9	Pest/PCBs (608/8081)	Yes 🗌 N 🗌 NA 🗹	

Volume of Preservative added in Lab.

Comments:

Life Science Laboratories, Inc. Central Lab

[LSL]

Cooler Temperature:_

5854 Butternut Drive East Syracuse, New York 13057 (315) 445-1105

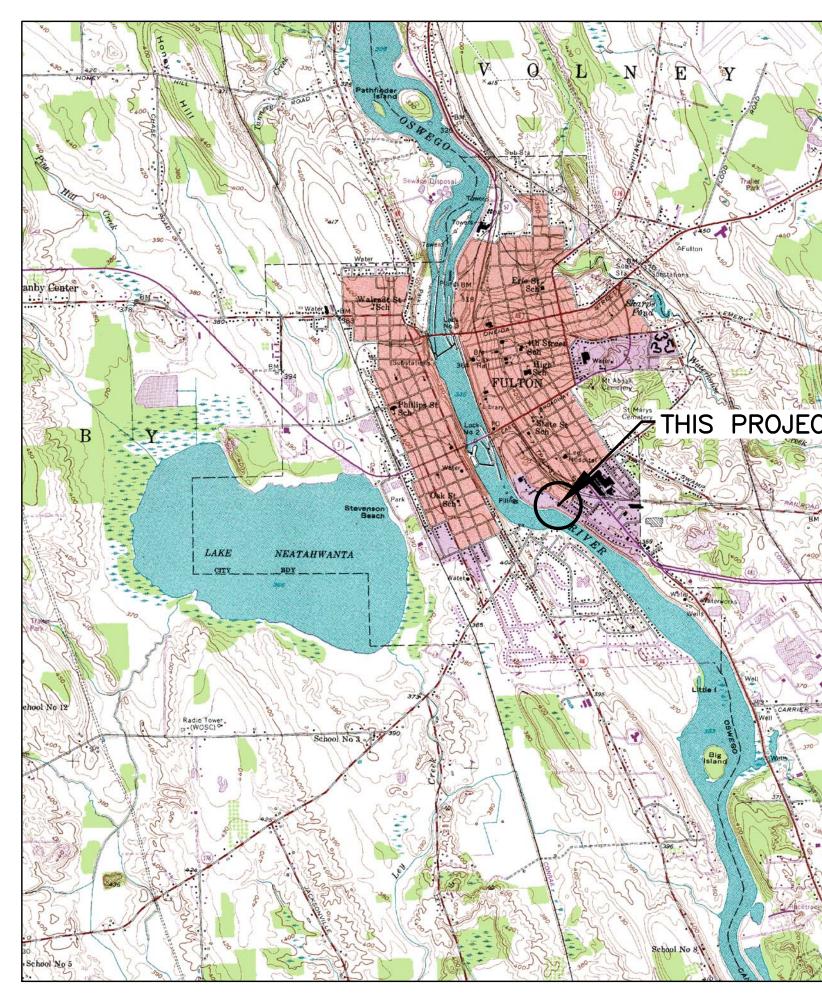
Chain of Custody

Client: $\rho' BR(E_A) \neq GEPE$	1.07								Ar	nalysis	/Meth	od	
Client: O'BRIEN & GERE Project: National Glid	INC					- /	/	/	1 5	100		/	
							/		Ver /		/	/	
Sampled by: CYV	Dhana #	2 2 2 5		~			/ .	$\sqrt{2}$	137 a 10	2) / K	$\frac{v}{n}$		
Client Contact: Deb Wright	Phone #	93 t.	- 612	0		1 oc	SUDC	Mc Tals d	6/5	$\tilde{\mathcal{O}} / \tilde{\mathcal{O}}$	TAL	=	
Sample Do	escription) 		·····		/ ୍ତ	13	10 4) <u>R</u>	`/	
Sample Location	Date Collected	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers		/ 1/	15 7	1/20	<u> </u>	<u> </u>	/	Comments
MW-125-050510		1030		G	11	X	\times	×	X	X	X	ļ	Dissolved Mestuls \$ Tol Filter
MW-11-050510		1230	1			*	×	×	×	X	X	1	li'
X-1-050518	5-5-12	-			11	X	×	X			<u>X</u>	 	11
Drum - 050510	5-5-10	1400			2	X			<u> </u>			<u> </u>	BTEX ONLY
Trip blank	5-5-12		V	↓	2	X							
										<u> </u>	_		
	_							<u> </u>					
						<u> </u>							
						<u> </u>			_				
						<u> </u>							
					<u> </u>								
		*											
Relinquished by: C. Yuti Veuiz	Da	ate: <u>55</u> -	NO Tim	e:16 <i>00</i>	Receive	ed by:						Date:	Time:
Relinquished by:	Da	ate:	Tim	e:	Receive	ed by:	6	2	10	1		Date:	Time:
Relinquished by:	Da	ate:	Tim	e:	Receive	ed by La	b.	V	for 1	/	[Date5 –	05-10 Time:18 RCV
Shipment Method:	· · · · · · · · · · · · · · · · · · ·				Airbill N	lumber:	~~~		$\mathbf{\nabla}_{\mathbf{r}}$				16:18
													(DI)
Turnaround Time Required:	Comment	S:											· •
Routine Rush													Original - Laboratory
Cooler Temperature: 13.2°C	NU ICE	100°											Copy - Client

Copy - Client

Sample Receipt Checklist

Client Name: OBG-MS	I	Date and Time Received:	5/5/2010 4:18:00 PM
Work Order Number: K1005042	I	Received by: ads	
Checklist completed by:	6/10	Reviewed by:	5/6/10 Date
Delivery Method:	Hand Delivered		
Shipping container/cooler in good condition?	Yes 🗹	No 🗌 Not Present 🗌	
Custody seals intact on shipping container/cooler?	Yes	No 🗌 Not Present 🗹	
Custody seals intact on sample bottles?	Yes	No 🗌 Not Applicable 🗹	
Chain of custody present?	Yes 🔽	No 🗌	
Chain of custody signed when relinquished and received?	Yes 🗹	Νο	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗹	No 🗌	
Sample containers intact?	Yes 🔽	Νο	
Sufficient sample volume for indicated test?	Yes 🗹	Νο	
All samples received within holding time?	Yes 🗹	No 🗌	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	
Water - VOA vials have zero headspace?	Yes 🗹	No 🗌 No VOA vials submittee	1
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌 Not Applicable 🗌	

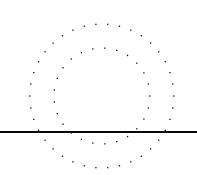

рH	Preservative	pH Acceptable Sam	ple ID
>12	NaOH	Yes 🗌 N 🗌 NA 🗹	
<2	HNO3	Yes 🗹 N 🗌 NA 🗍	
<2	HSO4	Yes 🗹 N 🗌 NA 🗌	
<2	1:1 HCL	Yes 🗹 N 🗌 NA 🗍 TOC	
5-9	Pest/PCBs (608/8081)	Yes 🗌 N 🗌 NA 🗹	

Volume of Preservative added in Lab.

Comments:

Final Design Drawings

PROJECT LOCATION PLAN NOT TO SCALE



nationalgrid

FULTON, NEW YORK

FEBRUARY 2011

IT IS A VIOLATION OF LAW FOR AN' PERSON UNLESS ACTING UNDER TH DIRECTION OF A LICENSED PROFESSIONA ENGINEER TO ALTER THIS DOCUMEN

OSWEGO COUNTY, NEW YORK

INDEX TO DRAWINGS

TITLE SHEET

- GENERAL NOTES AND LEGEND G-1
- G-2 EXISTING SITE PLAN
- SITE PREPARATION PLAN
- EROSION & SEDIMENT CONTROL PLAN
- AREA 2 EXCAVATION PLAN
- AREA 1 EXCAVATION PLAN
- MISCELLANEOUS DETAILS G-7
- SEWER REHABILITATION PLAN G-8
- AREA 2 FINAL SITE RESTORATION PLAN G-9 G-10 AREA 1 - FINAL SITE RESTORATION PLAN

N	LIMINARY OT FOR STRUCTION
DATE:	2/25/11

WELLS T	S TO BE MAINTA	INED OR REPL	ACED		
Well No.	Ground	Top of PVC Casing	Well Depth	Screen interval	Sump i
Well No. MW-1	No. Elevation (ft) 367.20	Elevation (ft) 369.69	(ft bgs) 17	(ft bgs) 5 - 15	(ft l 15
MW-2	361.00	360.80	15	2.5 - 12.5	13
MW-3	358.70	361.13	16	4 - 14	14 -
MW-4 MW-5	360.00 359.70	359.74 359.51	16 16	4 - 14 4 - 14	14 - 14 -
MW-10		359.15	15	5 - 15	+1 1
PZ-7	357.8	359.67	16	6 - 16	N
WELLST	S TO BE ABAND				
MW-6	359.39	359.00	37	27 - 37	N
PZ-1	360.19	359.88	16	3.5 - 13.5	N
WELLS T MW-14	S TO BE INSTAL	LED TBD	17	5 - 15	15 -
MW-7 MW-7D		361.33 360.13	14 28	4 - 14 23 - 28	N N
MW-8	358.70	360.78	16	6 - 16	N
MW-8D		360.14	33	28 - 33	N
MW-9 MW-9D		357.04 358.21	16 30	6 - 16 20 - 30	N N
MW-9D MW-11		358.21	30 12.5	20 - 30 2.5 - 12.5	N N
MW-12S		353.91	12.0	6 - 16	N
MW-12D		353.34	28	23 - 28	1
MW-13 PZ-2	3 flush flush	359.46 358.3	26 14	19 - 24 4 - 14	24
PZ-2 PZ-3	flush	358.3	14	4 - 14	
PZ-4	flush	359.00	14	4 - 14	
PZ-5	358.3	360.49	14	4 - 14	
PZ-6	357.2	359.16	16	6 - 16	
Notes:	NI - Not insta	lled			
RES MON MON	VELLS TO BE MA RESTORATION DET MONITORING WELL MONITORING WELL MAINTAINED. VELLS TO BE AE GROUNDWATER M	AIL" SHT. G-7 . REPAIR AND .S DISTURBED ANDONED - RI	AND SP REPLACEI DURING (EFER TO LL ABAN	PECIFICATION 02 MENT" FOR RES CONSTRUCTION SPECIFICATION NDONEMENT" FO	151 " STORAT SCHEL 0214 R MO
"GR ABA		STALLED – REF		RATION DETAIL"	•
"GR ABA 3. WEL SHC SPE REP 4. WEL RES	ABANDONMENT RE WELLS TO BE IN: SHOWN HERE, "M SPECIFICATION 02 REPLACEMENT" F WELLS NOT TO E RESTORATION DET MONITORING WELL	IONITORING WEL 2151 "GROUND OR MONITORING E DISTURBED TAIL" SHT. G-7	WATER MG WELL IN - REFER AND SP	ONITORING WELI NSTALLATION RE TO MONITORII PECIFICATION 02	_ REPAIR QUIREME NG WELL 151 "GR
"GR ABA 3. WEL SHC SPE REP 4. WEL RES MON FOR 5. ALL	WELLS TO BE IN SHOWN HERE, "M SPECIFICATION 02 REPLACEMENT" F WELLS NOT TO E RESTORATION DET MONITORING WELL FOR WELLS DISTU	IONITORING WEL 2151 "GROUND OR MONITORING E DISTURBED TAIL" SHT. G-7 REPAIR REPL JRBED DURING GED, DESTROYE	WATER MG WELL IN REFER AND SP ACEMENT CONSTRU	ONITORING WELI NSTALLATION RE TO "MONITORII PECIFICATION 02 "FOR RESTORA UCTION. ISTURBED DURIN	- REPAIF QUIREME 1G WELL 151 "GF TION RE
"GR ABA 3. WEL SHC SPE REP 4. WEL RES MON FOR 5. ALL ACT REP	WELLS TO BE IN SHOWN HERE, "M SPECIFICATION 02 REPLACEMENT" F WELLS NOT TO E RESTORATION DET MONITORING WELL FOR WELLS DISTU	IONITORING WEL 2151 "GROUND OR MONITORING E DISTURBED AIL" SHT. G-7 REPAIR REPL JRBED DURING GED, DESTROYE CHEDULED TO PECIFICATION C	WATER MG WELL IN AND SP ACEMENT CONSTRU ED OR DI BE ABAN 02151 AT	ONITORING WELI NSTALLATION RE ECIFICATION 02 FOR RESTORA UCTION. ISTURBED DURIN IDONED, SHALL NO COST TO	- REPAI QUIREM 151 "G TION R IG CON BE REI THE OV

Point	Northing	Easting	Elevation	Description
1	1207031.214	866964.745	359.23	N-1
2	1206843.159	867231.2619	365.34	HYD-2 Top of spindle
265	1206936.569	866967.2	359.13	N-265
279	1207207.192	866652.533	357.99	HYD-279 Top of spindle
1412	1206847.766	866883.2126	358.9	MN-1412

WELL WATER TO BE

WELL

WATER MENTS

SURVEY NOTES:

- 1. THE HORIZONTAL AND VERTICAL DATUMS ARE NAD 1983 AND NAVD 1988.
- 2. THE BOUNDARY SURVEY WAS PERFORMED WITHOUT THE BENEFIT OF AN ABSTRACT OF TITLE.

<u>GENERAL NOTES – ALL DRAWINGS:</u>

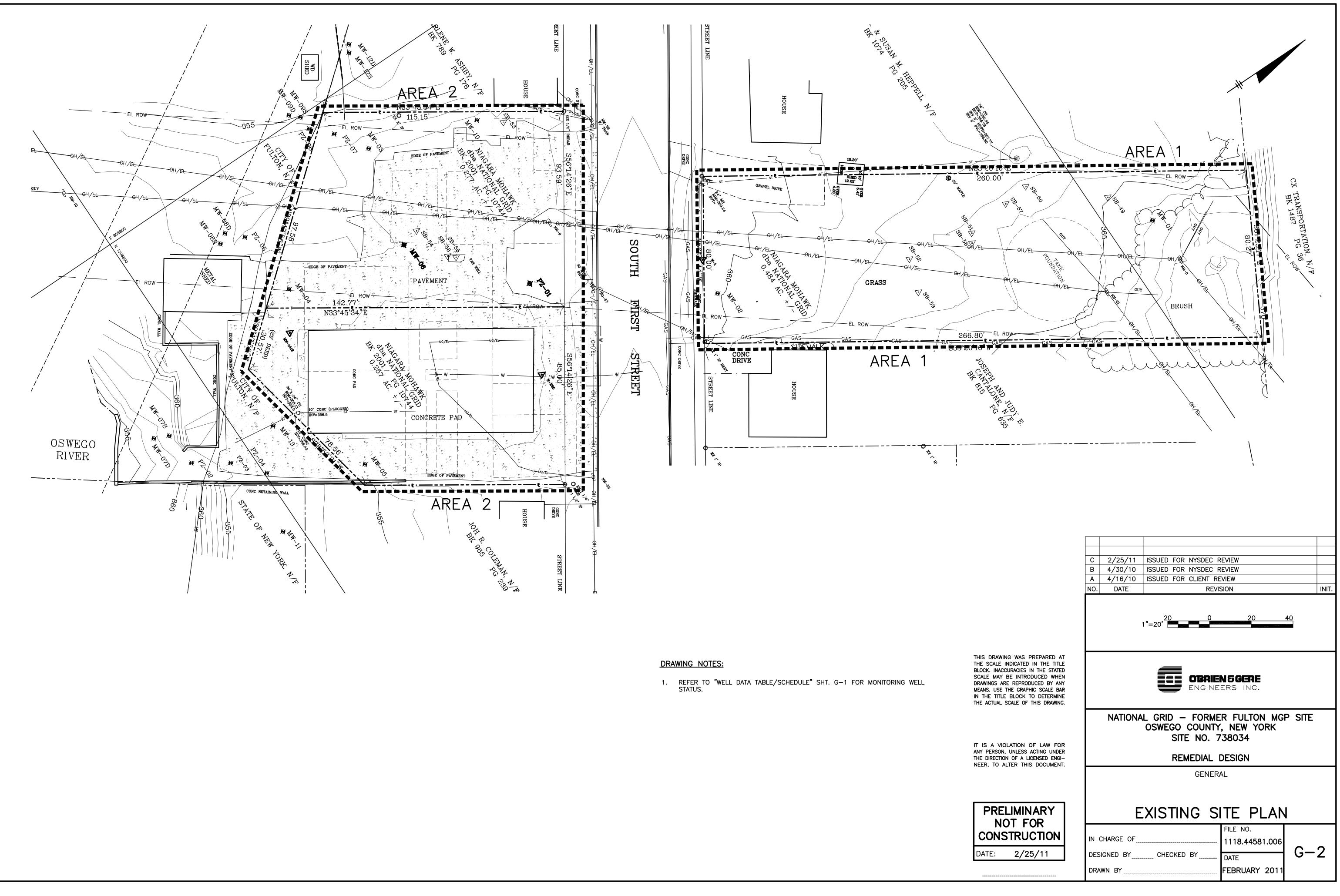
- 1. EXISTING SITE SURVEY INFORMATION PRESENTED HERE WAS ADOPTED FROM A SURVEY MAP ENTITLED "LANDS OF NATIONAL GRID, N/F PART OF BLOCKS 157 AND 158, CITY OF FULTON, OSWEGO COUNTY, NEW YORK" DATED DECEMBER 2, 2009 PREPARED BY RICHARD M. RYBINSKI, L.S. 8236 INDIAN HILL ROAD MANLIUS, NEW YORK 13104 (315) 682-4852.
- 2. EXACT DIMENSIONS AND LOCATIONS OF ALL STRUCTURES AND UTILITIES ARE CONSIDERED APPROXIMATE ONLY AND SHALL BE VERIFIED AS REQUIRED IN THE FIELD BY THE CONTRACTOR.
- 3. OTHER UTILITIES MAY EXIST, THE LOCATIONS, DEPTHS AND EXTENT OF WHICH ARE UNKNOWN. THE CONTRACTOR SHALL DETERMINE THE LOCATION AND ELEVATION OF ALL UTILITIES IN THE FIELD AS IT MAY PERTAIN TO THE CONTRACTORS WORK PRIOR TO CONSTRUCTION.
- 4. THE CONTRACTOR IS RESPONSIBLE FOR THE PROTECTION OF ALL UNDER AND ABOVE GROUND UTILITIES DURING CONSTRUCTION UNLESS OTHERWISE NOTED.
- 5. FOR INFORMATION: DIG SAFELY NEW YORK PHONE NUMBER: 1-800-962-7962. WEBSITE: WWW.DIGSAFELYNEWYORK.COM
- 6. THE CONTRACTOR SHALL COORDINATE WITH THE APPROPRIATE UTILITY COMPANIES FOR THE TEMPORARY DE-ENERGIZING, OR INTERRUPTION OF SERVICE, REMOVAL, RELOCATION, REPLACEMENT OF ANY UTILITIES POLES, GUY WIRES, UNDERGROUND UTILITIES AND/OR OVERHEAD WIRES WITHIN THE LIMITS OF WORK, OR THAT COULD OTHERWISE INTERFERE WITH THE CONSTRUCTION.
- 7. THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF DIFFERENCES BETWEEN THE BASE MAP INFORMATION PROVIDED AND ACTUAL SITE CONDITIONS.
- 8. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ESTABLISHING AND MAINTAINING SURVEY CONTROL DURING THE PERFORMANCE OF WORK AND VERIFYING EXISTING GRADES. THE OWNER WILL PROVIDE THE CONTRACTOR WITH THE CONTRACT DRAWINGS IN ELECTRONIC FORMAT FOR THE CONTRACTORS USE.
- 9. THE CONTRACTOR SHALL FURNISH AND PLACE PROPER GUARDS FOR PREVENTION OF ACCIDENTS, PROVIDE ALL TRENCH SHORING, SCAFFOLDING, SHIELDING, DUST/FUME PROTECTION, MECHANICAL/ELECTRICAL PROTECTION, SPECIAL GROUNDING, SAFETY RAILINGS, BARRIERS, OR OTHER SAFETY FEATURES REQUIRED.
- 10. THE CONTRACTOR SHALL RESTORE TO PRECONSTRUCTION CONDITIONS, OR BETTER, ALL SUPPORT AREAS THAT ARE IMPACTED BY REMEDIAL ACTIVITIES, INCLUDING BUT NOT LIMITED TO, EQUIPMENT AND MATERIAL STORAGE AREAS, MATERIAL LOADING AND STAGING AREAS, PARKING AREAS, AND LOCATIONS OF OFFICE TRAILERS, UNLESS OTHERWISE NOTED.
- 11. ALL SURFACES DAMAGED OR DESTROYED AS A RESULT OF WORK PERFORMED BY THE CONTRACTOR SHALL BE RESTORED TO PRECONSTRUCTION CONDITIONS OR BETTER IN A TIMELY MANNER AND PRIOR TO CONTRACTOR DEMOBILIZATION.
- 12. ALL EQUIPMENT OPERATED WITHIN THE LIMITS OF WORK SHALL BE CLEANED IN ACCORDANCE WITH SPECIFICATION 02241 "OFF-SITE TRANSPORTATION AND DISPOSAL" PRIOR TO TRANSPORT OFFSITE AND/OR TRANSPORTING/HANDLING CLEAN BACKFILL MATERIALS.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STABILIZATION, CHARACTERIZATION, LOADING, TRANSPORTATION, AND OFFSITE DISPOSAL OF WASTE MATERIAL GENERATED AS A RESULT OF EXCAVATION ACTIVITIES AT A DISPOSAL FACILITY APPROVED BY THE OWNER.
- 14. THE CONTRACTOR SHALL MAINTAIN EXISTING DRAINAGE CHANNELS AT ALL TIMES. WORK SHALL BE CONDUCTED IN SUBSTANTIVE COMPLIANCE WITH NYSDEC SPDES GP-0-10-001 AND PURSUANT TO THE PROJECT STORMWATER POLLUTION PREVENTION PLAN, EROSION AND SEDIMENT CONTROL PLAN, AND SPECIFICATION 02270 "EROSION AND SEDIMENT CONTROL. DRAINAGE SHALL BE MAINTAINED AT ALL TIMES.
- 15. ALL INTRUSIVE GROUND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND NATIONAL GRID'S "PART 753 PROTECTION OF UNDERGROUND FACILITIES".
- 16. ROADWAYS ARE TO REMAIN OPEN AT ALL TIMES.

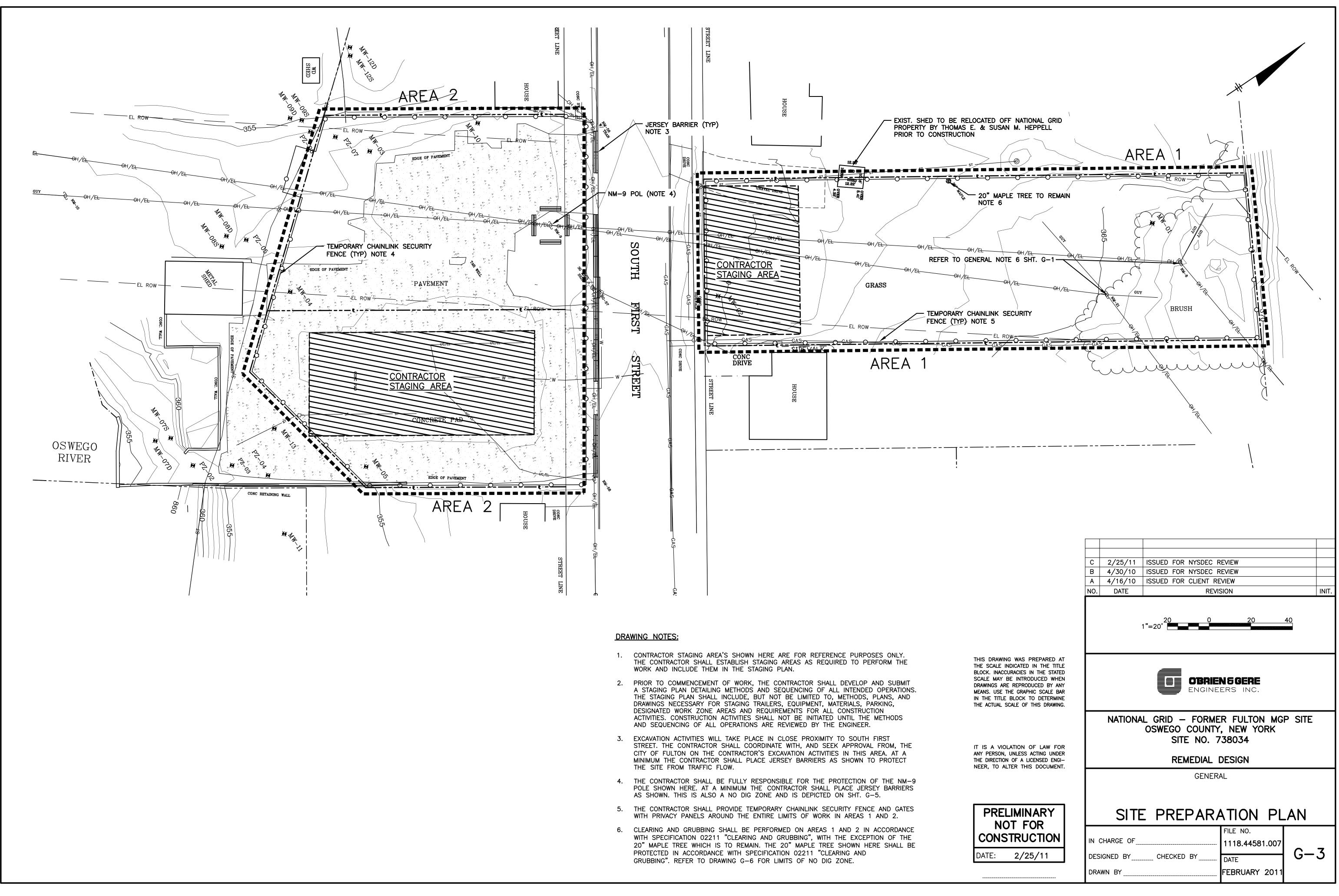
LEGEND:

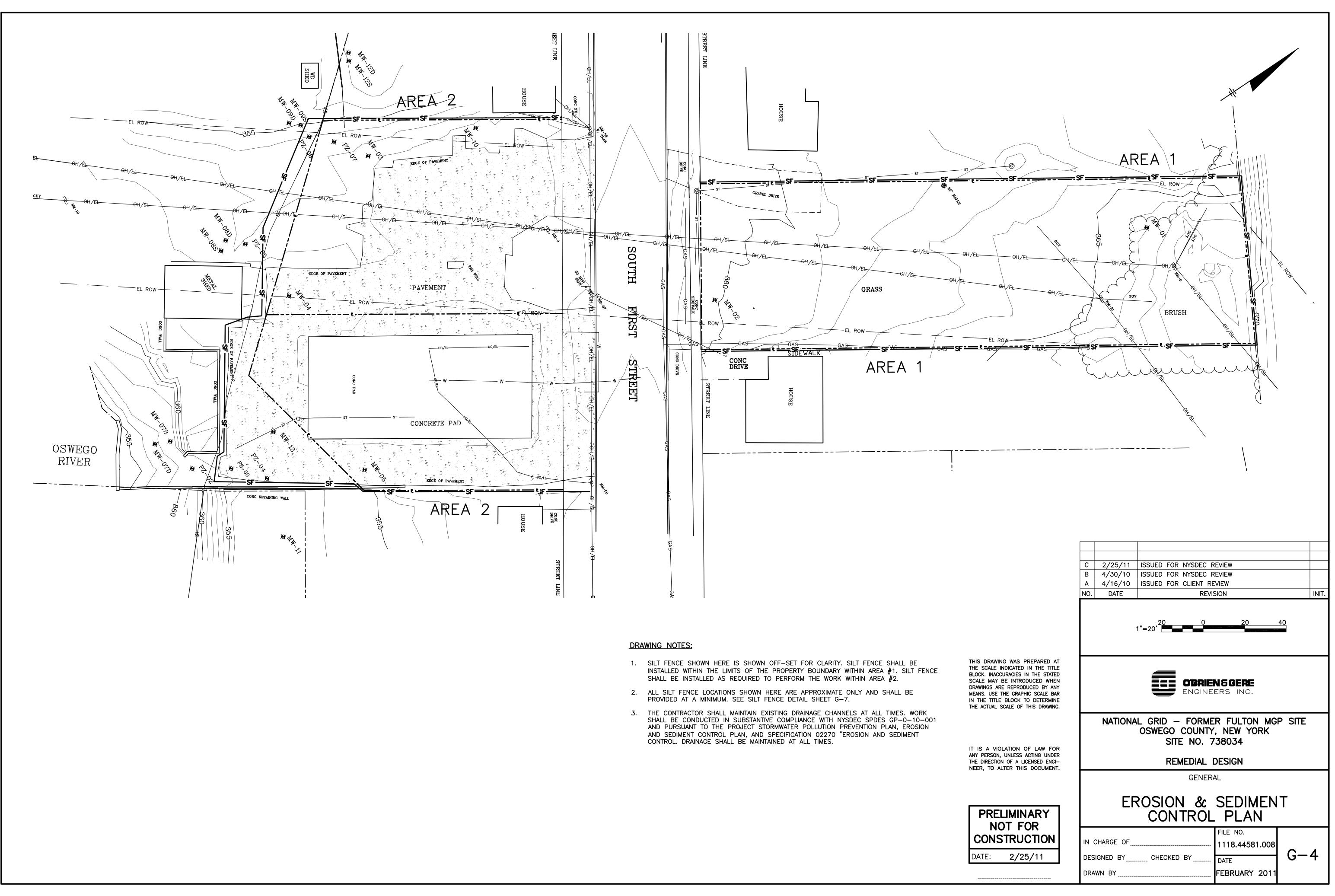
GAS	-	GAS LINE
— UG/EL —	-	UNDERGROUND ELECTRIC
— OH/EL —	-	OVERHEAD ELECTRIC
— EL ROW—	_	ELECTRIC RIGHT OF WAY
—— w ——	-	WATER
— SAN —	-	SANITARY SEWER
ST	-	STORM SEWER
	-	PROPERTY BOUNDARY
355	-	EXIST. CONTOUR ELEVATION
	_	PROPOSED FINAL CONTOUR ELEVATION
	_	UTILITY POLE
SB-55 ▲	-	SOIL BORING
MM−05	-	EXISTING MONITORING WELL
^{MW−14}	-	PROPOSED MONITORING WELL
	_	FORMER MGP STRUCTURE
SF	_	SILT FENCE
, ^ζ / [∠] / _ζ , ζξ (<,	_	ASPHALT PAVEMENT
	_	LIMITS OF WORK
AREA 2	_	AREA DESIGNATION
Δ^{N-1}	-	SURVEY BENCHMARK

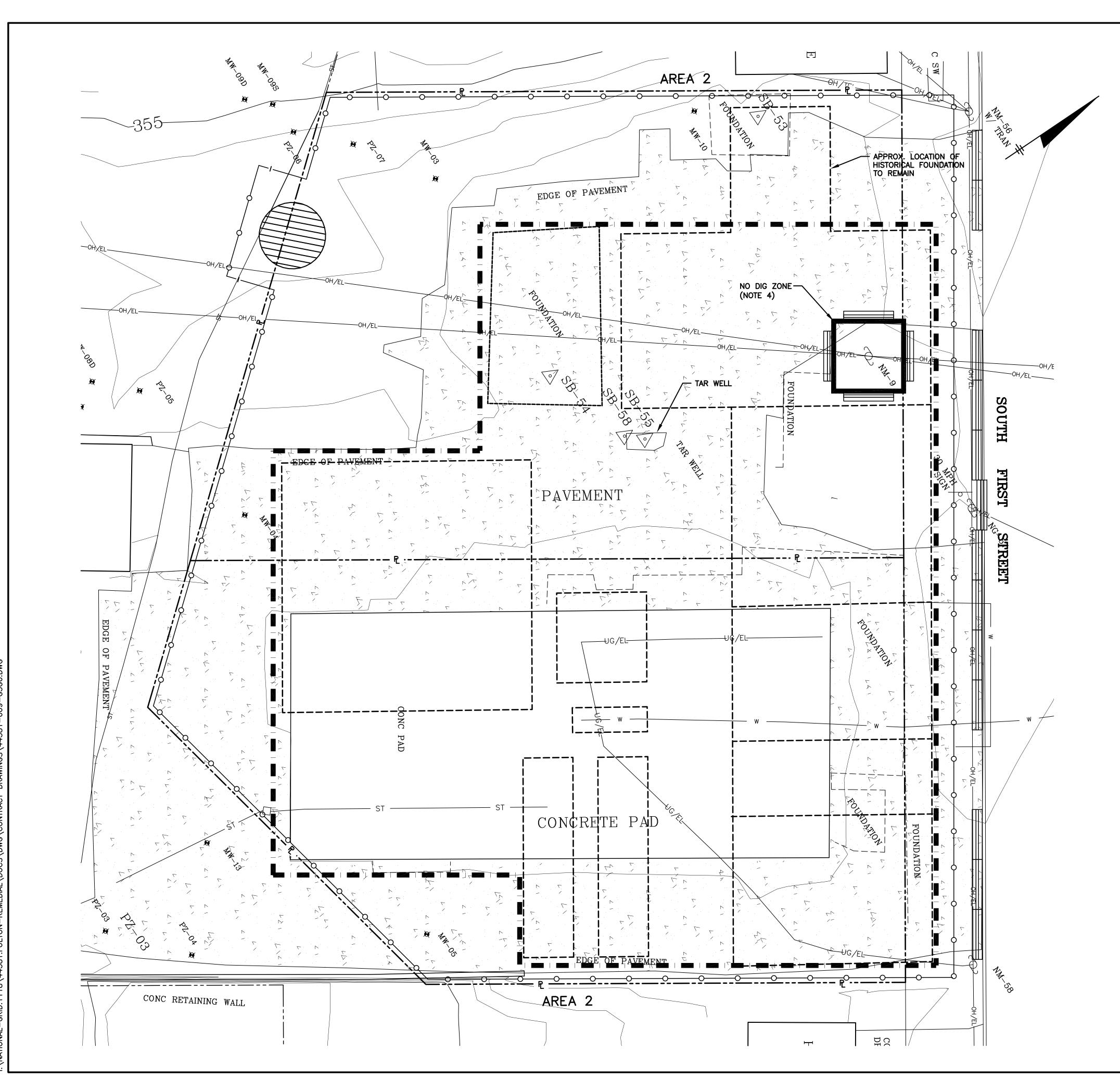
С	2/25/11	ISSUED FOR NYSDEC REVIEW	
В	4/30/10	ISSUED FOR NYSDEC REVIEW	
Α	4/16/10	ISSUED FOR CLIENT REVIEW	
NO.	DATE	REVISION	INIT.

	NOT TO SCALE					
THIS DRAWING WAS PREPARED AT THE SCALE INDICATED IN THE TITLE BLOCK. INACCURACIES IN THE STATED SCALE MAY BE INTRODUCED WHEN DRAWINGS ARE REPRODUCED BY ANY MEANS. USE THE GRAPHIC SCALE BAR IN THE TITLE BLOCK TO DETERMINE THE ACTUAL SCALE OF THIS DRAWING.	OBRIEN 5 GERE Engineers inc.					
IT IS A VIOLATION OF LAW FOR	NATIONAL GRID – FORMER FULTON MGP SITE OSWEGO COUNTY, NEW YORK SITE NO. 738034					
ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED ENGI- NEER, TO ALTER THIS DOCUMENT.	REMEDIAL DESIGN					
MEN, TO ALTEN THIS DOCUMENT.	GENERAL					
	GENERAL NOTES AND					
PRELIMINARY	LEGEND					
NOT FOR CONSTRUCTION	FILE NO. IN CHARGE OF 1118.44581.005					
DATE: 2/25/11	DESIGNED BY CHECKED BY G-1					

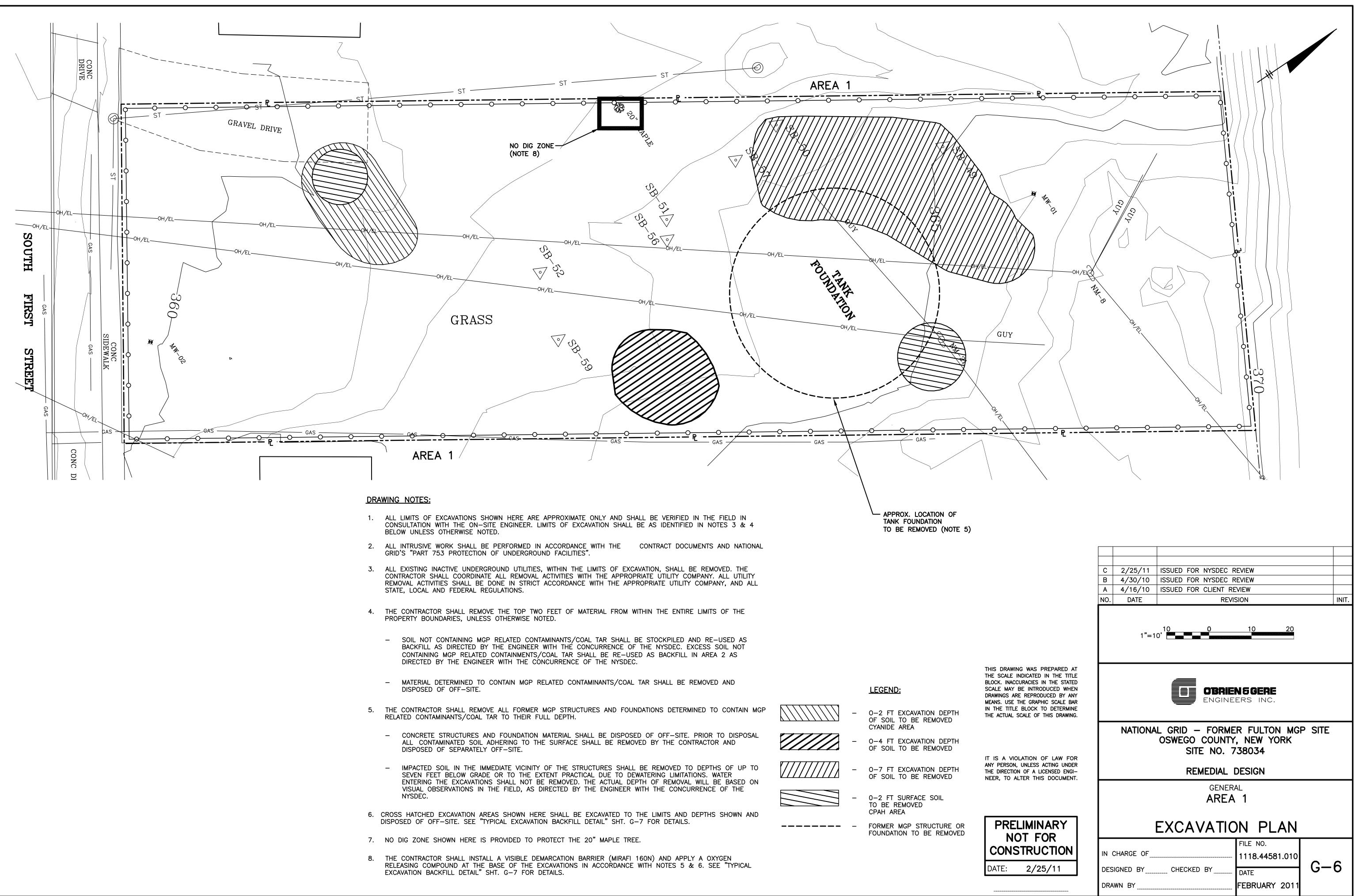

CHECKED BY

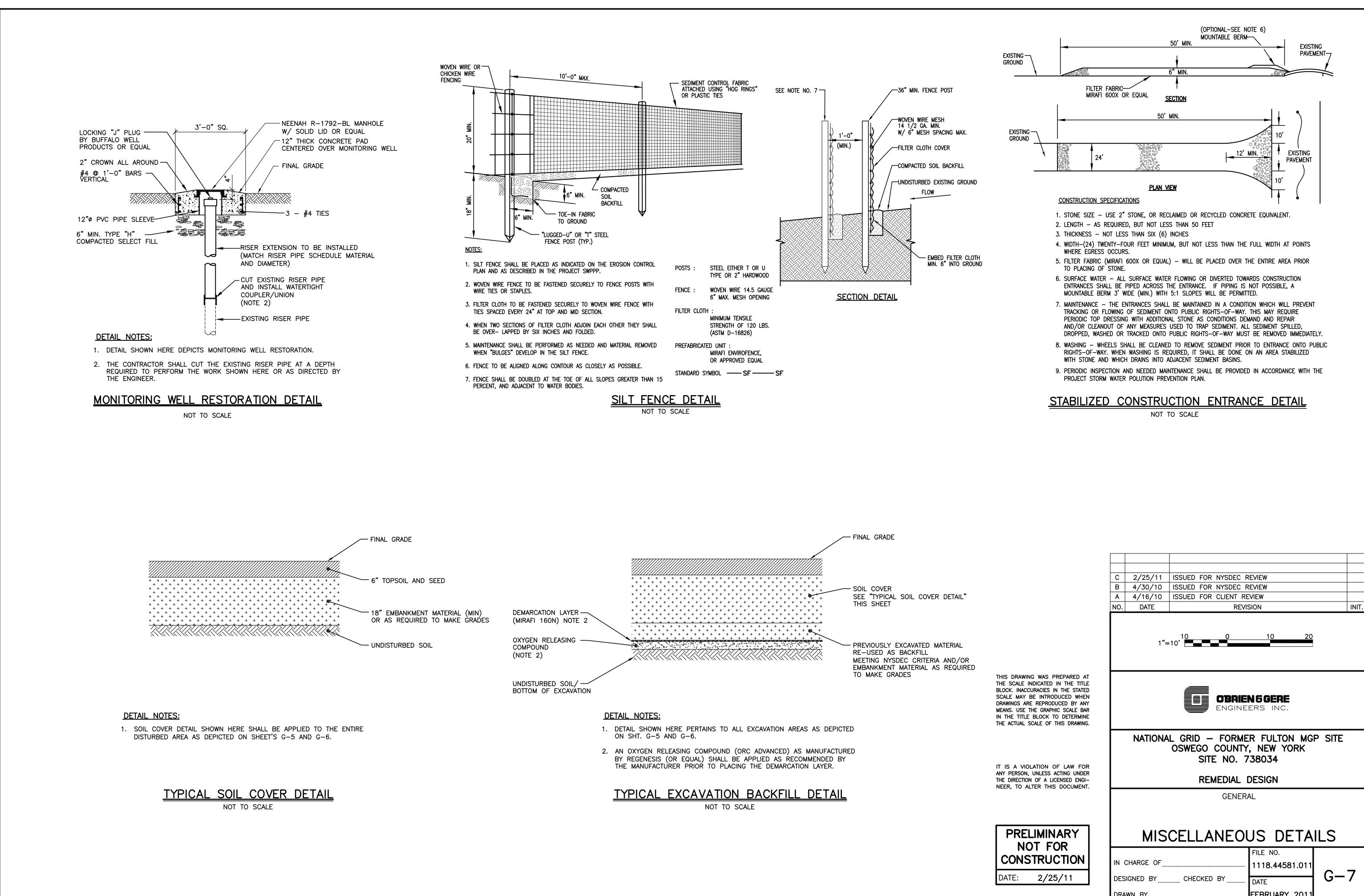

DATE

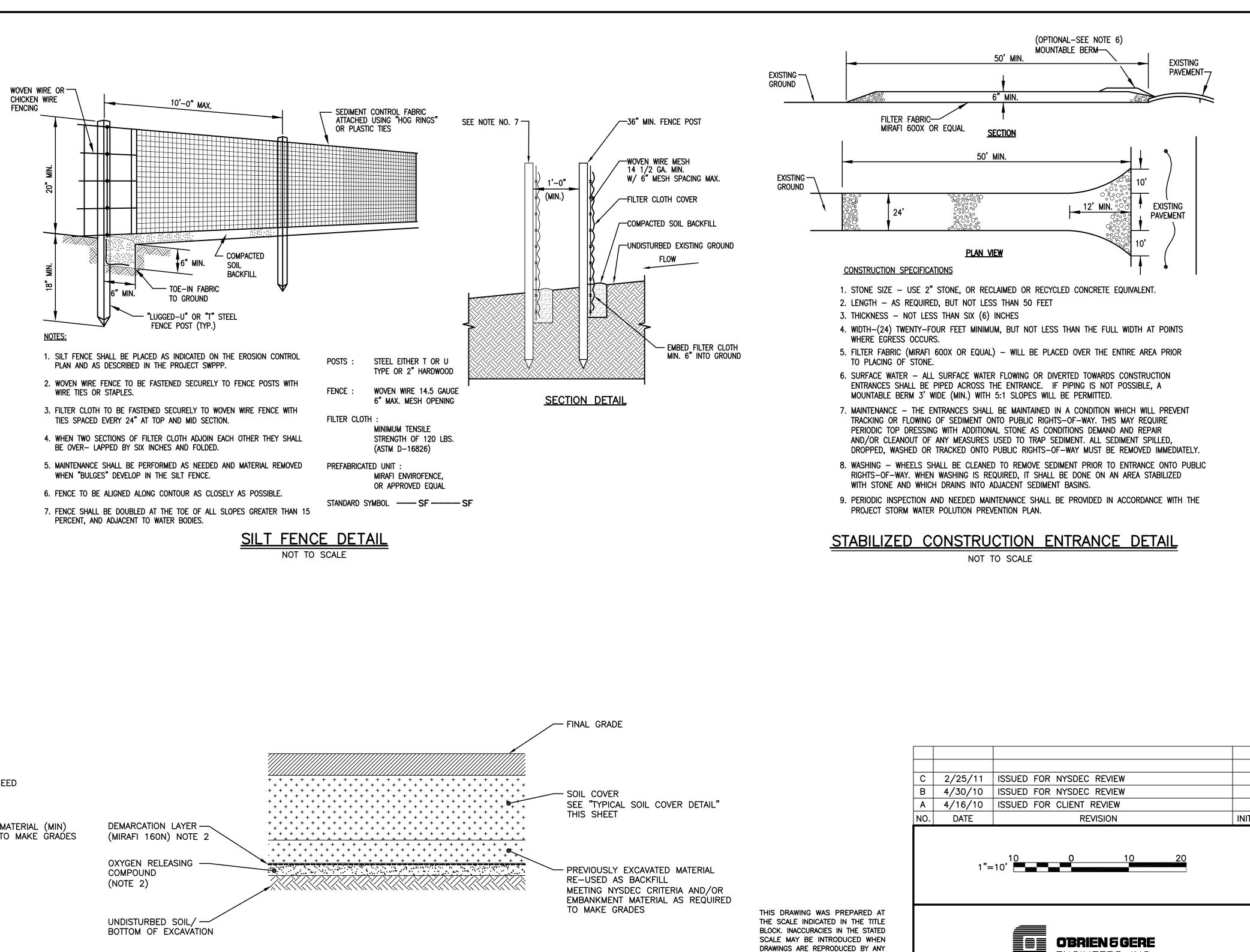

FEBRUARY 2011


DRAWN BY

N	LIMINARY OT FOR STRUCTION
DATE:	2/25/11


DRAWING NOTES:


- 1. ALL LIMITS OF EXCAVATIONS SHOWN HERE ARE APPROXIMATE ONLY AND SHALL BE VERIFIED IN THE FIELD IN CONSULTATION WITH THE ON-SITE ENGINEER. LIMITS OF EXCAVATION SHALL BE AS IDENTIFIED IN NOTES 5 & 6 BELOW UNLESS OTHERWISE NOTED.
- 2. ALL INTRUSIVE WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND NATIONAL GRID'S "PART 753 PROTECTION OF UNDERGROUND FACILITIES".
- 3. ALL EXISTING INACTIVE UNDERGROUND UTILITIES, WITHIN THE LIMITS OF EXCAVATION, SHALL BE REMOVED. THE CONTRACTOR SHALL COORDINATE ALL REMOVAL ACTIVITIES WITH THE APPROPRIATE UTILITY COMPANY. ALL UTILITY REMOVAL ACTIVITIES SHALL BE DONE IN STRICT ACCORDANCE WITH THE APPROPRIATE UTILITY COMPANY, AND ALL STATE, LOCAL AND FEDERAL REGULATIONS.
- 4. DUE TO STABILITY CONSIDERATIONS OF THE EXISTING POWER POLE, EXCAVATION ACTIVITIES SHALL NOT OCCUR WITHIN THE 7 FT BY 7 FT AREA SHOWN HERE.
- 5. THE CONTRACTOR SHALL REMOVE THE TOP TWO FEET OF MATERIAL FROM WITHIN THE ENTIRE LIMITS OF THE PROPERTY BOUNDARIES, UNLESS OTHERWISE NOTED.
 - SOIL NOT CONTAINING MGP RELATED CONTAINMENTS/COAL TAR SHALL BE STOCKPILED AND RE-USED AS BACKFILL AS DIRECTED BY THE ENGINEER WITH THE CONCURRENCE OF THE NYSDEC. MATERIAL DETERMINED TO CONTAIN MGP RELATED CONTAMINANTS/COAL TAR SHALL BE REMOVED AND DISPOSED OF OFF-SITE.
 - ASPHALT PAVEMENT SHALL BE REMOVED AND DISPOSED OF OFF-SITE IN ACCORDANCE WITH SPECIFICATION 02241 "OFF-SITE TRANSPORTATION AND DISPOSAL".
 - CONCRETE PADS SHALL BE REMOVED, BROKEN UP INTO SIZES ACCEPTABLE FOR OFF-SITE TRANSPORTATION AND DISPOSAL AND DISPOSED OFF OFF-SITE IN ACCORDANCE WITH SPECIFICATION 02241 "OFF-SITE TRANSPORTATION AND DISPOSAL".
- 6. THE CONTRACTOR SHALL REMOVE ALL FORMER MGP STRUCTURES AND FOUNDATIONS DETERMINED TO CONTAIN MGP RELATED CONTAMINANTS/COAL TAR TO THEIR FULL DEPTH.
- CONCRETE STRUCTURES AND FOUNDATION MATERIAL SHALL BE DISPOSED OF OFF-SITE. PRIOR TO DISPOSAL ALL CONTAMINATED SOIL ADHERING TO THE SURFACE SHALL BE REMOVED BY THE CONTRACTOR AND DISPOSED OF SEPARATELY OFF-SITE.
- IMPACTED SOIL IN THE IMMEDIATE VICINITY OF THE STRUCTURES SHALL BE REMOVED TO DEPTHS OF UP TO _ SEVEN FEET BELOW GRADE OR TO THE EXTENT PRACTICAL DUE TO DEWATERING LIMITATIONS. WATER ENTERING THE EXCAVATIONS SHALL NOT BE REMOVED. THE ACTUAL DEPTH OF REMOVAL WILL BE BASED ON VISUAL OBSERVATIONS IN THE FIELD, AS DIRECTED BY THE ENGINEER WITH THE CONCURRENCE OF THE NYSDEC.
- THE CONTRACTOR SHALL INSTALL A VISIBLE DEMARCATION BARRIER (MIRAFI 160N) AND APPLY A OXYGEN RELEASING COMPOUND AT THE BASE OF THE EXCAVATION. SEE "TYPICAL EXCAVATION BACKFILL DETAIL" SHT. G-7 FOR DETAILS.


LEGEND:

0–2 FT SURFACE SOIL TO BE REMOVED

		CPAH AR	REA	
			MGP STRUCTURE OF ION TO BE REMOVED	
		– NO DIG	ZONE (NOTE 4)	
		STRUCTU	LIMITS OF FORMER RE OR FOUNDATION (NOTE 6)	
	$\frac{\zeta_1}{\zeta_1} = \frac{\zeta_1}{\zeta_1} = \frac{\zeta_1}{\zeta_1}$	- ASPHALT	PAVING	
	C 2/25/11	ISSUED FOR NYSDEC F	REVIEW	
	B 4/30/10	ISSUED FOR NYSDEC F		
	A 4/16/10	ISSUED FOR CLIENT RE	EVIEW	
	NO. DATE	REVI	SION	INIT.
	1"=	10 0 =10' 	10 20	
THIS DRAWING WAS PREPARED AT THE SCALE INDICATED IN THE TITLE BLOCK. INACCURACIES IN THE STATED SCALE MAY BE INTRODUCED WHEN DRAWINGS ARE REPRODUCED BY ANY MEANS. USE THE GRAPHIC SCALE BAR IN THE TITLE BLOCK TO DETERMINE THE ACTUAL SCALE OF THIS DRAWING.		=-=	NSGERE Ters inc.	
T IS A VIOLATION OF LAW FOR NY PERSON, UNLESS ACTING UNDER HE DIRECTION OF A LICENSED ENGI- NEER, TO ALTER THIS DOCUMENT.	NATIONA	AL GRID — FORME OSWEGO COUNTY SITE NO. 7 REMEDIAL	7, NEW YORK 738034	P SITE
		GENER AREA		
PRELIMINARY NOT FOR		EXCAVATIO	ON PLAN	
CONSTRUCTION	IN CHARGE OF		FILE NO. 1118.44581.009	• -
DATE: 2/25/11	DESIGNED BY	CHECKED BY	DATE	G-5
			DATE	

MISCELLANEOUS DET/

	FILE NO.	
IN CHARGE OF	1118.44581.011	
DESIGNED BY CHECKED BY	DATE	G-7
DRAWN BY	FEBRUARY 2011	

N	LIMINARY OT FOR STRUCTION
DATE:	2/25/11

DRAWING NOTES:

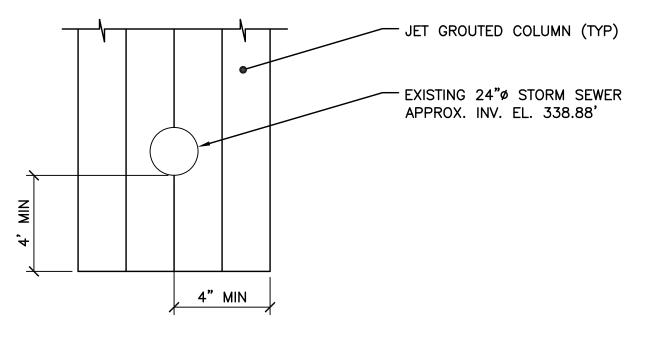
- "CURED-IN-PLACE PIPE".

- VERIFY ITS LOCATION AND DEPTH.

1. INFORMATION SHOWN HERE IS CONSIDERED APPROXIMATE ONLY AND IS NOT THE RESULT OF AN INSTRUMENT SURVEY. THE CONTRACTOR SHALL FIELD VERIFY ALL INFORMATION AS REQUIRED TO PERFORM THE WORK.

2. EXISTING STORM SEWER SHALL BE REHABILATATED FROM MH-A TO MH-B AS SHOWN HERE, IN ACCORDANCE WITH SPECIFICATION 02623

3. THE CONTRACTOR SHALL COORDINATE ALL STORM SEWER REHABILATION WORK WITH THE CITY OF FULTON.

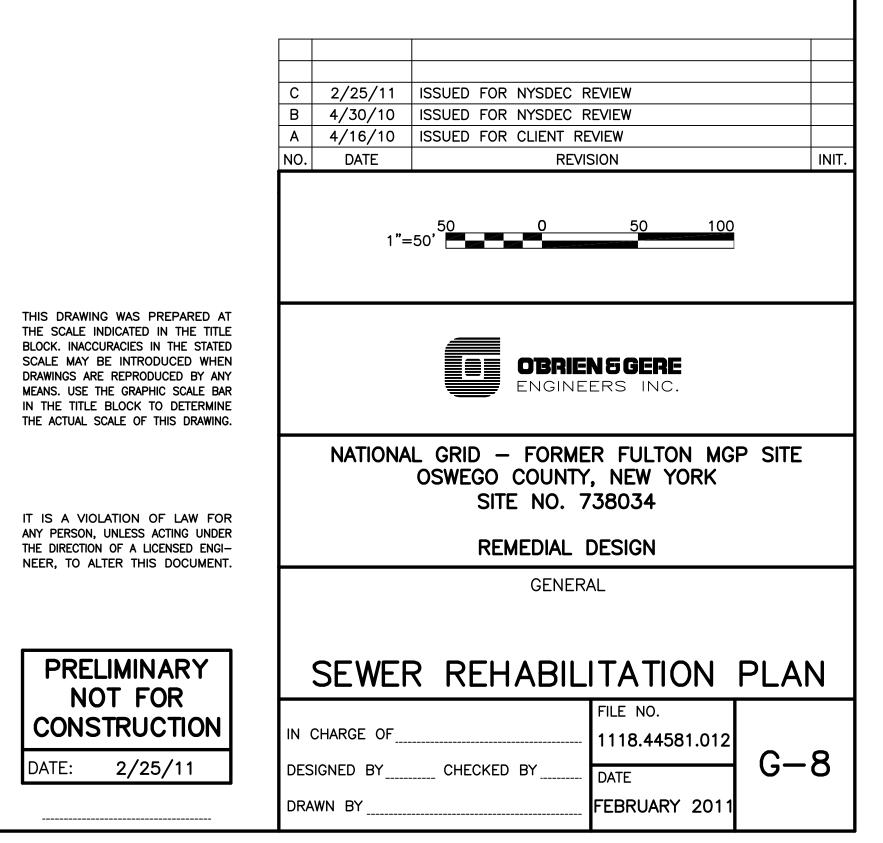

4. THE STORM SEWER WILL BE CLEARED OF DEBRIS, MINERAL DEPOSITS, AND ROOTS BETWEEN MANHOLES LABELED "A" AND "B". 5. ONCE CLEARED OF DEBRIS, THE STORM SEWER WILL BE EXAMINED BY CCTV TO DOCUMENT THE EXISTING CONDITION OF THE STORM SEWER AND

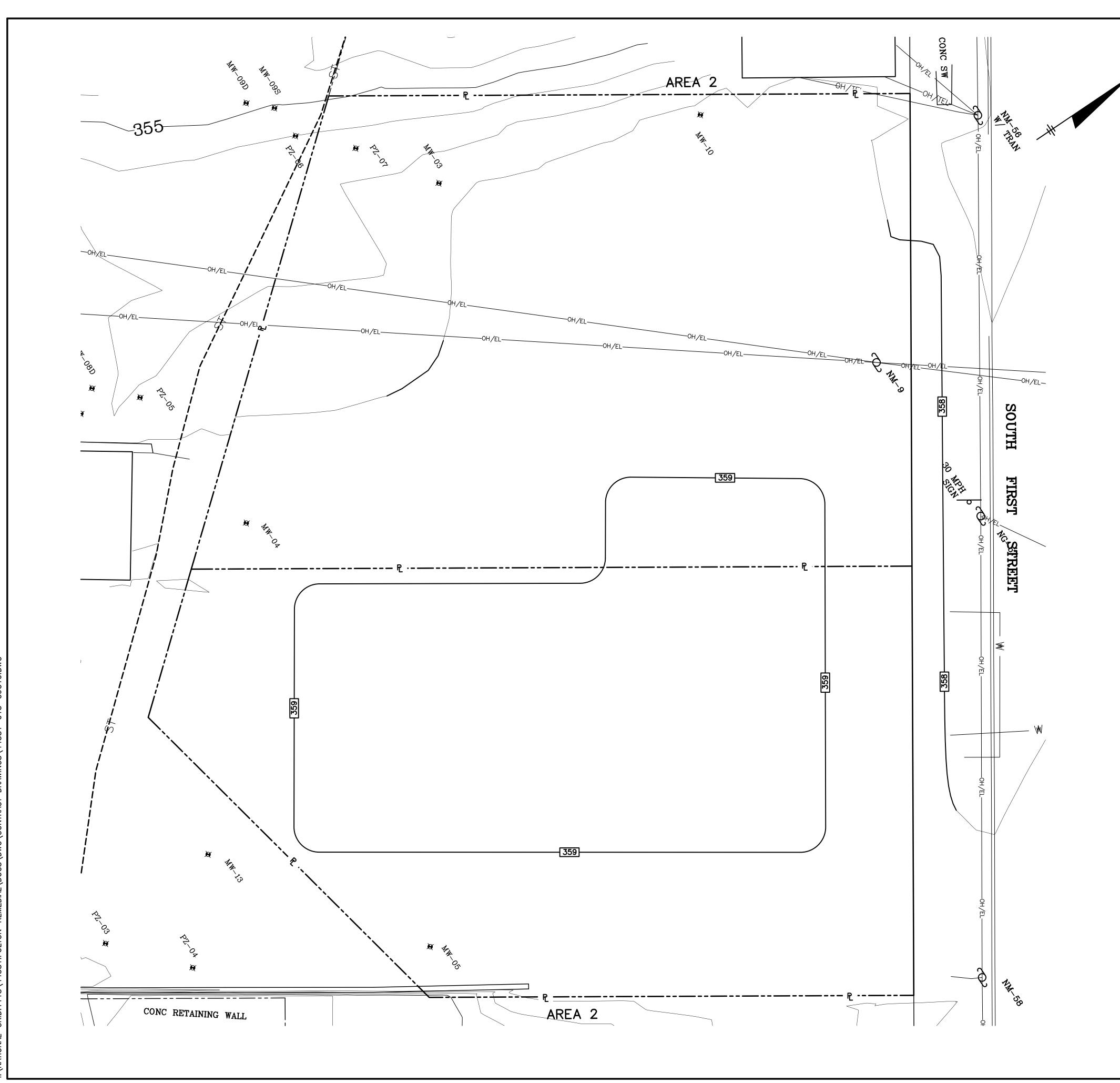
6. A BYPASS WILL BE INSTALLED, OR THE UPSTREAM CONTRIBUTING SEWER WILL BE TEMPORARILY PLUGGED, TO ISOLATE THE SECTION OF SEWER PIPE BETWEEN MANHOLES "A" AND "B" DURING THE INSTALLATION AND CURING OF THE PIPE-LINER.

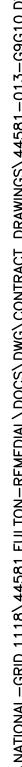
7. THE PIPE-LINER WILL BE INSTALLED AND CURED. AFTER CURING, THE SEWER WILL BE RE-EXAMINED BY CCTV TO DOCUMENT THE CONDITION OF THE SEWER FOLLOWING REHABILITATION TO VERIFY THAT THE INSTALLATION OF PIPE-LINER WAS SUCCESSFUL.

8. ONCE THE WORK IS ACCEPTED BY THE ENGINEER AS BEING COMPLETE, THE BYPASS OR TEMPORARY PLUGS USED DURING THE REHABILITATION WILL BE REMOVED AND NORMAL SEWER FLOW ALLOWED.

9. THE CONTRACTOR SHALL VERIFY THE LOCATION OF AND PERFORM JET GROUTING AROUND THE 24" STORM SEWER AT THE LOCATION SHOWN HERE IN ORDER TO ELIMINATE THE POTENTIAL FOR GROUNDWATER FLOW THROUGH THE STORM SEWER BEDDING. REFER TO "JET GROUTED BARRIER DETAIL" THIS SHEET FOR DETAILS.




DETAIL NOTES:


- 1. JET GROUTING SHALL BE INSTALLED SUCH THAT IT EXTENDS A MINIMUM OF FOUR FEET IN ALL DIRECTIONS FROM THE EXISTING 24"Ø STORM SEWER.
- 2. THE APPROXIMATE INVERT ELEVATION OF THE EXISTING 24"Ø STORM SEWER IS 338.88'.
- 3. JET GROUTING SHALL BE INSTALLED IN ACCORDANCE WITH SPECIFICATION 02402 "JET GROUTING".

JET GROUTED BARRIER DETAIL

NOT TO SCALE

DRAWING NOTES:


- ALL AREAS PREVIOUSLY EXCAVATED OR OTHERWISE DISTURBED SHALL BE RESTORED WITH TOPSOIL AND SEED. REFER TO "SOIL COVER DETAIL" SHT. G-7 FOR RESTORATION OF AREAS WITHIN THE LIMITS OF THE PROPERTY. REFER TO SPECIFICATION 02503 "RESTORATION OF SURFACES" FOR ALL OTHER AREAS DISTURBED.
- 2. REFER TO "MONITORING WELL RESTORATION DETAIL" SHT. G–7 FOR WELL RESTORATION DETAILS.

_	- / / / /			
C B	2/25/11	ISSUED FOR NYSDEC REVIEW		
A	4/30/10 4/16/10	ISSUED FOR NISDEC REVIEW		
NO.	DATE	REVISION	INIT	
	1 " =	10 0 10 20		
OBRIEN 5 GERE Engineers inc.				
	NATIONA	L GRID – FORMER FULTON MGP OSWEGO COUNTY, NEW YORK SITE NO. 738034	P SITE	
	NATIONA	OSWEGO COUNTY, NEW YORK	P SITE	
		OSWEGO COUNTY, NEW YORK SITE NO. 738034	P SITE	

THIS DRAWING WAS PREPARED AT THE SCALE INDICATED IN THE TITLE BLOCK. INACCURACIES IN THE STATED SCALE MAY BE INTRODUCED WHEN DRAWINGS ARE REPRODUCED BY ANY MEANS. USE THE GRAPHIC SCALE BAR IN THE TITLE BLOCK TO DETERMINE THE ACTUAL SCALE OF THIS DRAWING.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED ENGI-NEER, TO ALTER THIS DOCUMENT.

N	LIMINARY OT FOR STRUCTION
DATE:	2/25/11

Technical Specifications

SPECIAL PROVISIONS

- SP-1 General Construction Sequence
- SP-2 Work Schedule
- SP-3 Contract Work Area Security
- SP-4 Notices
- SP-5 NYSDEC Review
- SP-6 Odor Control
- SP-7 Progress and Coordination Meetings
- SP-8 Emergency Calls
- SP-9 Existing Utilities
- SP-10 Dust Monitoring and Control Program
- SP-11 Contractor's Construction Quality Control Plan
- SP-12 Borrow Materials
- SP-13 Retention of Records
- SP-14 Reporting Requirements
- SP-15 Emergency Response
- SP-16 Staging Plan
- SP-17 Utilization of On-Site Materials
- SP-18 Supplemental Information
- SP-19 Construction Water Management
- SP-20 Potential to Treat by Low Temperature Thermal Desorption
- SP-21 Pre-Construction Inspection
- SP-22 Noise Control

TECHNICAL SPECIFICATIONS

DIVISION 1 – GENERAL REQUIREMENTS

- Section 01300 Surveys
- Section 01700 Health and Safety
- DIVISION 2 SITEWORK
- Section 02003 Field Office Trailer
- Section 02007 Perimeter Air Monitoring and Dust Control Plan
- Section 02009 Project Photographs
- Section 02110 Storm Water Pollution Prevention
- Section 02141 Construction Water Management
- Section 02145 Groundwater Monitoring Well Abandonment
- Section 02151 Groundwater Monitoring Well Repair and Replacement
- Section 02211 Clearing and Grubbing
- Section 02221 Earthwork
- Section 02223 Embankment
- Section 02225 Structural Excavation, Backfill, and Compaction
- Section 02229 Rock Removal
- Section 02231 Select Fill
- Section 02241 Off-Site Transportation and Disposal
- Section 02242 Tar Excavation and Off-Site Disposal
- Section 02278 Geotextile Filter Fabric

DIVISION 2 - SITEWORK - CON'T

- Section 02270 Erosion and Sediment Control
- Section 02402 Jet Grouting
- Section 02503 Restoration of Surfaces
- Section 02623 Cured-in-Place Pipe
- Section 02981 Topsoil and Seeding

SPECIAL PROVISIONS

SP-1 GENERAL CONSTRUCTION SEQUENCE

- A. Prior to commencement of work, the Contractor shall develop and submit methods and sequence of all intended operations, hereafter referred to as the Staging Plan. The Staging Plan shall include, but not be limited to, methods, plans, and drawings necessary for staging trailers, equipment, materials, parking, designated work zones areas and requirements for all construction activities. Construction activities shall not be initiated until the methods and sequencing of all operations are reviewed by the Engineer.
- B. The Contractor will be solely responsible for scheduling and coordinating completion of the Work in an effective and efficient manner, and for protecting the work completed by them or others during the project, in accordance with the requirements of the Contract Documents. However, in general it is anticipated that construction of the work will be completed in the following sequence:
 - 1. The Contractor shall set up temporary office facilities, soil stockpile and equipment staging areas, erosion and sediment controls, and other apparatus required for the execution of the work.
 - 2. The Contractor shall commence excavation activities to the limits shown on the Contract Drawings or as specified by the Engineer.
 - 3. Backfill of excavations and restoration of surfaces as shown on the Contract Drawings or as specified by the Engineer.
 - 4. On completing all the work required to be performed under the Contract, the Contractor shall demobilize their equipment and facilities from the Site. At the Contractor's own expense, the areas outside the excavations altered or damaged as a consequence of their actions shall be restored to a condition equivalent to those existing prior to the work.

SP-2 WORK SCHEDULE

A. The work of this Contract shall be scheduled in a manner mutually acceptable to the owner, owner's representative, engineer and the contractor. Unless otherwise especially permitted, no work shall be done between the hours of 5:00 p.m. and 7:00 a.m., nor on Sundays, July 4 (or designated holiday for July 4); Thanksgiving Day and the day after; and the Monday designated holidays for Memorial Day and Labor Day, except as necessary for the proper care and protection of work already performed. The Contractor will be allowed to work on Saturdays only with approval from the Owner and Engineer. If it shall become absolutely necessary to perform work at night, the Engineer shall be informed a reasonable time in advance of the beginning of performance of such work. Only such work shall be done at night as can be done satisfactorily and in a safe manner. Good lighting and all other necessary facilities for carrying out and inspecting the work shall be provided and maintained at all points where such work is being done. Minimum permissible illumination intensities are identified in 29 CFR 1910.120. All

Contractor requests to perform night, Saturday, Sunday or Holiday work shall be made in writing to the Engineer.

SP-3 CONTRACT WORK AREA SECURITY

- A. The Contractor shall provide all elements of work area security necessary to prevent the unauthorized entry of persons onto the site, including but not limited to providing a 6-ft tall temporary chain link fence around the perimeters of Area 1 and Area 2 (collectively making the "Site") and including areas designated for excavation where extending off-site. Gates for access to the Site shall be installed as deemed appropriate by the Contractor to complete the work, but minimally shall include a 24-ft wide vehicle/equipment access gate to each Area, the locations of which shall be selected by the Contractor and identified in their Staging Plan. The fence shall include provision of a visual barrier (slot strips or fabric) to shield view of the Site from the public.
- B. All roads entering and adjacent to the Site shall be kept open at all times unless prior arrangements for temporary closing are made with the appropriate authorities. The Contractor shall be responsible for all cost associated with installation, maintenance and removal of:
 - 1. A stabilized construction entrance and decontamination pad for each access point to the Site,
 - 2. Jersey barriers parallel to the public right-of-way of South First Street on the border of Area 2,
 - 3. Work area security measures instituted during the various phases of construction.

SP-4 NOTICES

A. Whenever, under the terms of this Contract, written notice is required to be given by the Contractor to the Owner, it shall be directed to:

> Steven Stucker, CPG National Grid Corporation 300 Erie Boulevard West Syracuse, New York 13202 Attention: Steven Stucker

A copy shall be provided to the Engineer as well.

SP-5 NYSDEC REVIEW

A. The Contractor's Staging Plan, Community Air Monitoring Plan (CAMP) including a Particulate Emission Response Plan, Health and Safety Plan (HASP), Erosion and Sediment Control Plan (ESCP) in order to comply with the Stormwater Pollution Prevention Plan (SWPPP) prepared by the Engineer and approved by the NYSDEC, Odor Control Plan, and Quality Assurance Project Plan (QAPP) may be subject to the review of the NYSDEC prior to acceptance by the Engineer. The Contractor is advised that they should allow up to 20 days time for review and comment on each draft of the CAMP including Particulate Emission Response Plan, HASP, ESCP, Odor Control Plan, and QAPP submitted for review. No additional payment or extension of time shall be provided to the Contractor for failure by the Contractor to satisfactorily address specified requirements.

- B. An electronic PDF copy of each of the documents (Staging Plan, Particulate Emission Response Plan, HASP, ESCP, Odor Control Plan, and QAPP) shall be provided to the Engineer. After review and approval by the Engineer, a final PDF copy and three printed copies shall be provided to the Engineer.
- C. No work shall be started until the Staging Plan, Particulate Emission Response Plan, HASP, ESCP, Odor Control Plan, and QAPP have been reviewed and accepted by the Engineer. If conditions change during construction, the Contractor may be required to submit a revised document for review as directed by the Engineer.
- D. The Health and Safety Plan and the CAMP shall be submitted to the NYSDEC for review.
- E. Daily site perimeter air monitoring readings shall be submitted to the agencies via e-mail during construction.

SP-6 ODOR CONTROL

- A. The Contractor shall prepare an Odor Control Plan that describes provisions that will be implemented to control odor emanating from excavations and stockpiles of MGP waste material and contaminated soil. Primary measures shall be implemented to minimize generation of odor by minimizing, to extent practicable, exposed surface of waste material and contaminated soil. Secondary measures shall include use of products, approved by the Engineer, to mask objectionable odors. The Engineer shall be the sole judge as to whether or not an odor is perceptible and objectionable and requires control measures. No additional payment shall be made to the Contractor to control odors from the excavations or waste material stockpiles.
- B. Depending upon specific circumstances, field observations, and air monitoring results, the following dust and odor control measures may be used:
 - Odor suppression foams
 - Bio-Solve
 - Water Spray
 - Polyethylene sheeting (for covering excavation faces, material stockpiles, etc.)

Minimally, the Contractor shall have immediately available on site the following items to minimize odor, and to reduce odor in the event that additional odor control is deemed necessary by the Owner's Representative:

1. An adequate supply of 20 mil LLDPE liner to cover all Contractor

stockpiles each day. All stockpiles shall be covered by the Contractor at the conclusion of each work day, or whenever a stockpile is not actively being worked during a given day.

- 2. Bio-Solve and equipment to spray it on surfaces emitting odor.
- 3. One fully operational Rusmar foam (or equivalent) machine including operator for use during removal of material with high odors. Minimally, Rusmar foam (or equivalent) shall be sprayed in excavations made deeper than 2 ft bgs where NAPL or MGP tar is present and the Owner's Representative deems it necessary to mitigate odor at the end of each work day and on weekends to minimize the potential for objectionable odor from the open excavation. Rusmar foam polymer shall be available on site.

SP-7 PROGRESS AND COORDINATION MEETINGS

- A. Progress and coordination meetings shall be held every week, or as otherwise directed by the Owner's Representative, with the Contractor's supervisory representatives, with decision-making authority, in attendance. Representatives of the Owner, NYSDEC, and the Engineer may also attend the progress and coordination meetings.
- B. Meeting minutes will be prepared by the Owner's Representative and distributed to all attendees and others affected by decisions or actions from each meeting.

SP-8 EMERGENCY CALLS

A. The Contractor shall provide the Owner with the phone numbers of at least three (3) responsible persons, to be used during non-working hours and weekends, who shall be in a position to dispatch personnel and equipment to the project in the event of an emergency.

SP-9 EXISTING UTILITIES

- A. Special precautions shall be observed to not cause interference or damage to any existing utilities, unless the existing utility is to be abandoned as shown on the Contract Drawings or specified. Where an existing utility is to be abandoned, the Contractor shall complete the work in accordance with the technical specifications and requirements of the owning Utility.
- B. The Contractor shall notify the proper utility companies at least seventy-two (72) hours before construction is started adjacent to such utilities. Proof of such notification shall be filed with the Engineer. Failure to provide such proof shall be cause for an automatic cessation of the work. Utilities shall be protected in the manner prescribed by the utility company. No additional compensation other than stated in the Payment Items will be made for coordination or requirements of others relative to existing utilities.

SP-10 DUST MONITORING AND CONTROL PROGRAM

- A. Control of fugitive dust created as a result of this project shall be the obligation of the Contractor. Notwithstanding the requirements of the Contract Documents, the Contractor shall also comply with the requirements of OSHA 29 CFR 1910.1000. A Dust Monitoring and Control Program shall be prepared and implemented by the Contractor and shall include, but not be limited to, the following:
 - (1) Preparation of a Dust Monitoring and Control Plan including mitigation measures, control of operations, emergency measures to be used, monitoring requirements, action levels, etc.
 - (2) Required particulate monitoring.
 - (3) Implementation of mitigation efforts, including reasonable suppression techniques.
 - (4) Proposed remedial actions when particulate action levels are breached.
 - (5) Quality assurance/quality control (QA/QC) to assure accuracy of monitoring program.
- B. The Plan may be subject to review by the NYSDEC prior to acceptance by the Engineer or Owner.
- C. The results of monitoring for dust shall be provided to the Engineer on a daily basis.

SP-11 CONTRACTOR'S CONSTRUCTION QUALITY CONTROL PLAN

- A. The Contractor shall prepare and implement a Construction Quality Control (CQC) Plan for the work of this Contract. The plan shall include, as a minimum, the following:
 - (1) Description of the CQC organization, including chart showing lines of authority and acknowledgment that the CQC staff shall be in addition to the job supervisory staff.
 - (2) Names, qualifications, duties, responsibilities and authorities of each person assigned a CQC function.
- B. The Contractor's CQC Geotechnical Laboratory shall be an independent laboratory not owned by the Contractor and/or subcontractors or owned by a subsidiary or affiliate of the Contractor and/or his subcontractors. The Geotechnical Laboratory shall have an internal QC plan to confirm that laboratory procedures conform to applicable standards. The laboratory shall follow the internal QC procedures. The laboratory shall allow National Grid, NYSDEC, Engineer, and Installer to observe sample preparation, testing procedures, record-keeping procedures, and some or all tests at any time, either announced or unannounced.

- C. The Contractor's CQC Analytical Laboratory shall be an independent laboratory not owned by the Contractor and/or subcontractors or owned by a subsidiary or affiliate of the Contractor and/or subcontractors. The Analytical Laboratory shall have an internal QC plan to confirm that laboratory procedures conform to applicable standards. The laboratory shall follow the internal QC procedures. The laboratory shall allow National Grid, NYSDEC, Engineer, and Installer to observe sample preparation, testing procedures, record-keeping procedures, and some or all tests at any time, either announced or unannounced.
- D. The Contractor's CQC Plan shall be subject to acceptance by the Engineer prior to commencement of construction activities. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Engineer shall reserve the right to require the Contractor to make changes to his CQC Plan and operations as necessary to obtain the quality specified.
- E. Following acceptance of the CQC Plan, the Contractor shall notify the Engineer in writing of any proposed changes. Proposed changes are subject to acceptance by the Engineer.

SP-12 BORROW MATERIALS

- A. Contractor shall submit an affidavit from the owner of the source of each type of borrow material stating that to the best of their knowledge, the site of the source material was never used as a dump site for chemical, toxic, hazardous or radioactive materials and it is not now nor ever has been listed as a suspected depository for chemical, toxic, hazardous or radioactive materials by any Federal, State or governmental agency, department, or bureau.
- The Contractor shall sample each different type of off-site material incorporated Β. into the work at the location or locations identified by the Engineer. The Contractor shall perform analyses for Target Analyte List (TAL) volatile organic compounds (VOCs), TAL semi-volatile organic compounds (SVOCs), TAL metals, cyanide (total and amenable), PCBs, herbicides and pesticides for one composite sample of each source. Laboratory data shall be submitted to the Engineer for review, on Owner's behalf, immediately upon receipt and prior to use of the material on-site. The Engineer shall be the sole judge as to what constitutes each different type of material; however the definition of "different" shall include, but is not necessarily limited to, variances in the physical properties of the same material, as well as the same material derived from separate borrow sources or separate areas in the same borrow pit. The analytical results will be compared to the cleanup objectives set forth in 6 NYCRR Part 375 and must satisfy the soil cleanup objectives for the lower of the protection of groundwater or the protection of public health - residential. If the materials are found to be unacceptable by the Engineer, the Contractor shall remove and properly dispose of the materials in accordance with all applicable Federal, State and local laws and regulations at the Contractor's expense and liability.

SP-13 RETENTION OF RECORDS

A. Contractor and its agents and subcontractors shall preserve all documents, records,

and information of whatever kind, nature or description relating to the performance of the Work for ten (10) years after Substantial Completion, as defined in the Contract Documents.

SP-14 REPORTING REQUIREMENTS

- Contractor shall submit to Engineer and Owner written progress reports, monthly A. or less frequently if less frequent submission is approved in writing by the Owner that: (a) describe the Work that has been performed during the previous month; (b) include a summary of all results of sampling and tests and all other data received or generated by Contractor or its subcontractors or agents in the previous month; (c) identify all work plans, plans and other deliverables completed and submitted during the previous month; (d) describe all actions, including, but not limited to, data collection and implementation of work plans, which are scheduled for the next six weeks and provide other information relating to the progress of construction, including but not limited to bar charts; (e) include information regarding percentage of completion, unresolved delays encountered or anticipated that may affect the future schedule for implementation of the Work, and a description of efforts made to mitigate those delays or anticipated delays; and (f) include any modifications to the work plans or other schedules that O'Brien & Gere or the Owner has proposed to NYSDEC or that have been approved by NYSDEC. Contractor shall submit these progress reports to the Owner by the fifth day of every month following the commencement of the Work.
- B. Contractor shall notify Engineer and the Owner of any change in the schedule described in the monthly progress report for the performance of any activity, including, but not limited to, data collection and implementation of work plans, no later than twelve days prior to the performance of the activity.

SP-15 EMERGENCY RESPONSE

A. In the event of any action or occurrence during the performance of the Work which causes or threatens a release of waste material from the Site that constitutes an emergency situation or may present an immediate threat to public health or welfare or the environment, Contractor shall immediately take all appropriate action to prevent, abate, or minimize such release or threat of release and shall immediately notify the Engineer, Owner, and NYSDEC's Project Coordinator. The term "waste material" as used in this section shall mean: (1) any "hazardous substance" under Section 101(14) of CERCLA. 42 U.S.C. §9601(14); (2) any pollutant or contaminant under Section 101(33) of CERCLA. 42 U.S.C. §9601(33); and (3) any "solid waste" under Section 1004(27) of RCRA. 42 U.S.C. §6903(27).

SP-16 STAGING PLAN

A. Prior to commencement of work, the Contractor shall develop and submit methods and sequencing of all intended operations hereinafter referred to as the Staging Plan. The Staging Plan shall include, but not be limited to, methods, plans, and drawings necessary for staging trailers and equipment, stockpiling materials, and designating work zones, temporary construction access roads and parking, and requirements for other construction activities. Construction activities

shall not be initiated until the methods and sequencing of all operations has been reviewed and approved by the Engineer.

SP-17 UTILIZATION OF ON-SITE MATERIALS

A. The Contractor is not permitted to utilize on-site material for purposes of meeting Contractor's material requirements, unless written approval to do so is first provided by the Engineer based on the acceptance by the Owner of the Contractor's proposed use of uncontaminated material.

SP-18 SUPPLEMENTAL INFORMATION

- A. Certain site and chemical information may be shown on separate sheets or made available by the Owner or Engineer to Bidders, Contractors, and other interested parties. Neither such information nor the documents on which it may be shown shall be considered a part of the Contract Documents or Contract Drawings, it being understood that such information is made available only as a convenience, without express or implied representation, assurance, or guarantee that the information is adequate, complete, or correct, that it represents a true picture of the site and chemical conditions to be encountered, or that all pertinent site and chemical data in the possession of the Owner or Engineer has been furnished.
- B. It shall be the Contractor's responsibility to satisfy the Contractor as to the nature, character, quality and quantity of conditions likely to be encountered. Any reliance upon the site information and chemical data available shall be at the Contractor's risk. The Contractor agrees that he shall neither have nor assert against the Owner or Engineer any claim for damages for extra work or otherwise or for relief from any obligation for this Contract based upon the failure by the Owner or Engineer to obtain or to furnish all site or chemical information in the Owner's or Engineer's possession or based upon any inadequacy or inaccuracy of the information furnished; provided, however that the Contractor may be entitled to an adjustment in the contract price under the circumstances and to the extent provided in the Contract.

SP-19 CONSTRUCTION WATER MANAGEMENT

- A. No dewatering of excavations below the static groundwater level shall be required. However, the Contractor is responsible for management of Construction Water that may enter the excavation (above the static groundwater level) or which may drain from or otherwise come into contact with MGP-impacted soils removed from the excavation.
 - 1. Construction Water shall be defined as the following:
 - a. Surface water resulting from precipitation during construction which has come in contact with potentially contaminated soils, fill, or debris.
 - b. Water or other liquids drained from or which have come into contact with potentially contaminated soils or debris, in addition to that resulting from precipitation.

- c. Equipment and vehicle decontamination liquid.
- d. Exempt from the definition of Construction Water for the Fulton Street MGP project is groundwater collected from below the static groundwater level.
- 2. Minimization of Construction Water
 - a. The Contractor shall make every effort to minimize the generation of Construction Water and associated sediments and sludges. Methods to minimize generation of Construction Water include, but are not limited to:
 - 1) Erection of temporary berms to prevent surface water entering the excavations.
 - 2) Use of low permeability tarpaulin or suitable means to cover exposed contaminated areas and materials.
 - 3) Limiting the amount of exposed contaminated areas.
 - 4) Grading to control run-on and run-off.
 - 5) Engineering controls on construction activities to minimize contact of personnel and equipment with contaminated areas thus minimizing the amount of decontamination required and other appropriate methods.
- 3. Treatment and/or Disposal of Construction Water
 - a. The Contractor shall collect, treat and dispose all Construction Water in accordance with the Technical Specification Section 02141 - Construction Water Management.
- B. The Contractor shall perform excavation activities to the depths as shown, directed or until contact with groundwater takes place, at which time excavation activities will cease unless directed otherwise by the Owner's Representative.

SP-20 POTENTIAL TO TREAT BY LOW TEMPERATURE THERMAL DESORPTION

A. Dependent on the results of the waste characterization activities, the soil excavated from the Site may be treated/disposed in a manner consistent with the NYSDEC program policy, Technical and Administrative Guidance Memorandum (TAGM) 4061, Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants (NYSDEC, 2002). The policy outlines criteria wherein soil that has been contaminated with coal tar waste from MGPs exhibiting only the hazardous waste toxicity characteristic for benzene (D018) may be excluded from the requirements of 6 NYCRR Parts 370-374 and 376 when they are destined for permanent thermal treatment.

B. In the event that any characterization results or field observations indicate that certain soils are unsuitable for off-site low temperature thermal desorption (LTTD) treatment/disposal, as determined by the Owner or Engineer, in consultation with the treatment facility, the Contractor shall arrange for off-site incineration and/or disposal at a National Grid-approved facility in accordance with applicable rules and regulations. The Contractor shall coordinate with the facility prior to initiating excavation activities to minimize potential work delays if such material is encountered.

SP-21 PRE - CONSTRUCTION INSPECTION

A. Prior to the start of any construction activities, the Contractor and the Engineer shall make a joint condition survey of the structures adjacent to the property to document the condition of the structures prior to construction. The condition survey shall be performed using a video camera in DVD format and digital photography. During the video survey, the Construction Manager and Contractor and Engineer will verbally document any pre-existing damage and the location of the damage as well as provide a drawing with conditions identified. Damage includes cracks, spalling, signs of settlement, flooding and leaking.

SP-22 NOISE CONTROL

- A. It shall be the responsibility of the Contractor to take adequate measures for keeping noise levels, as produced by construction equipment, to safe and tolerable limits as set forth by the Occupational Safety and Health Administration (OSHA), and as set forth by other applicable federal, state, and local regulations. All Contractor machinery and equipment presenting a potential noise nuisance, as determined by the Engineer, shall be provided with noise muffling devices or be replaced at no additional cost to the Owner.
- B. The Contractor shall submit a Noise Minimization and Monitoring Plan describing the means and methods to be utilized for the monitoring of noise to adjacent property owners during construction activities. The Construction activities associated with any activity that may induce vibrations to the soils shall not be initiated until the Noise Minimization and Monitoring Plan is reviewed and accepted by the Owner and the Engineer.

* * * * *

SECTION 01300

SURVEYS

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes furnishing all labor, material, and equipment required to perform and provide complete surveys, as specified herein or as specified by the Engineer.

1.2 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Surveyor Qualifications: Prior to the start of any survey work, submit the name, address, State registration number, and telephone number of the surveyor and other persons proposed for survey-related duties to the Engineer for approval.
 - 2. All project submittals shall be signed by a surveyor licensed in New York State.
 - 3. Provide periodic survey calculations required to support requests for payments and verification of volumes and areas.
 - 4. Record Drawings
 - A. Topographic maps prepare and submit:
 - 1. Prior to disturbance of site.
 - 2. After excavation showing excavation depths (elevation data) and horizontal limits of each excavation.
 - 3. After backfill and replacement of topsoil, asphalt and site features, and prior to final inspection.
 - 5. Submit the following with each record drawing submittal.
 - A. Records
 - 1. AutoCad 2002 (or newer) electronic files on CD-ROM
 - 2. Field Data
 - 3. Coordinate List

1.3 QUALITY ASSURANCE

- A. All work in this section shall be performed by a surveyor licensed in New York State.
- B. Mapping shall conform to the National Map Accuracy Specifications and shall bear the seal of a licensed land surveyor registered in New York State. The surveyor shall also have a minimum of two years experience in construction surveying, and layout and maintenance of record construction drawings, with a record of performing horizontal and vertical control requirements as stated in this section.

PART 2 PRODUCTS

2.1 SUPPLEMENTAL RECORD DRAWINGS

- A. Contractor shall provide a reproducible base map at a scale of 1 inch = 40 ft with 1-ft elevation contours upon which the Contractor shall plot the required survey information for each required submittal.
- B. Map shall contain a title block with the name and address of the Contractor and the signature of the registered surveyor.
- C. Drawings shall include:
 - 1. Labeled contour lines
 - 2. Property line locations
 - 3. Horizontal grid systems
 - 4. Cross sections and details modified to show "as-built" conditions
 - 5. Utility pipe invert elevations and locations
 - 6. Details and cross sections not on original drawings
 - 7. Field changes of elevations, dimensions, and details
- D. Indicate on drawings locations of all physical features on site, including utilities, buildings, roadways, catch basins, manholes, utility poles, fences, gates, drainage ditches, monitoring wells, light poles, trees, and bench marks.
- E. Indicate excavation limits on drawings for both the proposed limits (based on Contract Drawings) and completed limits.

2.2 FIELD DATA

- A. Field survey notes
 - 1. Copy of field notes, notations, and descriptions or total station electronic files used and compiled during the field survey

2.3 COORDINATE LIST

A. Final coordinate list of all survey points with specific coordinates and elevations.

PART 3 EXECUTION

3.1 INSPECTION

- A. The surveyor/Contractor shall verify site conditions within the project area and locations of site reference and survey control points prior to starting work. The surveyor/Contractor shall promptly notify the Engineer of any discrepancies discovered.
- B. The surveyor/Contractor shall locate all utilities in the work area. The surveyor/Contractor shall verify the elevations of existing piping, utilities, and any type of underground obstruction not indicated or specified to be removed but indicated or discovered during work.

3.2 HORIZONTAL AND VERTICAL CONTROL

- A. The Contractor shall take all reasonable measures to protect site reference points prior to starting and during site work.
- B. Immediately notify the Engineer of loss, damage, or destruction of any reference point, or any relocation required because of changes in grade or other reasons.
- C. X, Y, and Z coordinates of bench marks and control points shall be determined and recorded with a maximum permissible error of 0.01 ft vertical and 0.001 ft horizontal.
- D. The Contractor shall provide control points at each location of work using closed traverse and leveling loops.
- E. The Contractor shall provide grade and offset stakes to control the location and depth of excavation and backfill.
- F. The Contractor shall survey the location and elevation of all excavation and backfill limits to document the areas remediated.
- G. The Contractor shall provide survey control as required to properly complete and document the work.
- H. Lack of adequate survey control or improperly maintained "as-builts" will be the basis for rejection of the Contractor's application for payment until corrected.

3.3 COORDINATE LIST

- A. The Contractor shall compute the coordinates of each surveyed point on the New York State Plane Coordinate System using the 1983 North American Datum (NAD).
- B. The elevations shall be on the National Geodetic Vertical Datum (NGVD) 1927.

3.4 SURVEY NOTES

A. The Contractor shall record all fieldwork in a clear, legible, and complete manner.

- B. The Field Survey Book(s) shall contain a complete description of the nature and location of the new and existing points. The record shall also include a sketch of the point locations, and the monument witness points.
- C. The Contractor shall maintain survey notes on-site for review and use by Engineer.

3.5 UTILITIES

- A. The Contractor shall locate all utilities in the work area.
- B. The Contractor shall verify the elevations of existing piping, utilities, and any type of underground obstruction not indicated or specified to be removed but indicated or discovered during work.
- C. The Contractor shall record elevations of all encountered buried piping and utilities exposed, and all structures left in place during the course of the project for incorporation in the project record documents.

* * * * *

SECTION 01700

HEALTH AND SAFETY

I. PART GENERAL

1.1 SUMMARY

- A. Contractor shall be solely responsible for the protection of the personnel working on the site and the residents living in the vicinity of the site from exposure to onsite contaminants generated or released as a result of the Contractor's work on site.
- B. Contractor shall prepare, submit to Engineer, and implement a site-specific health and safety plan (HASP) to protect the personnel working on the site and the residents living in the vicinity of the site from exposure to on-site contaminants encountered, generated, or released as a result of the Contractor's work on site.
- C. Contractor shall subcontract a third-party firm, independent from the Contractor, to monitor compliance with the Community Air Monitoring Plan (CAMP) and site-specific HASP prepared by the Contractor. The third-party firm shall have a qualified health and safety professional present on site each workday to perform worker health and safety surveillance, community air monitoring, conduct toolbox safety meetings, and document compliance with the HASP. The health and safety professional shall have no other assignment other than monitoring compliance with the CAMP and HASP, and performing air monitoring.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. 02007 – Perimeter Air Monitoring and Dust Control

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards and specifications, except where more stringent requirements have been specified herein:
 - 1. National Institute for Occupational Safety and Health (NIOSH), United States Department of Health and Human Services
 - a. 85-115 Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities
 - b. NIOSH Manual of Analytical Methods analysis for total particulate (ug/m³) method 0500
 - 2. Code of Federal Regulations (CFR)
 - a. 29 CFR 1910 and 1926 OSHA Safety and Health Standards, and citations adopted by reference

- b. OSHA Analytical Methods Manual, Part I, Volume 3, Methods 55 -80 for Polynuclear Aromatic Hydrocarbons
- c. 49 CFR Parts 171-178 Department of Transportation (DOT) Hazardous Materials Regulations
- 3. Unites States Environmental Protection Agency (USEPA)
 - a. Standard Operating Safety Guides
 - b. EPA Analytical Method TO-15 (mini cans)
- 4. American Conference of Governmental Industrial Hygienists (ACGIH)
 - a. ACGIH Threshold Limit Values and Biological Exposure Indices
- 5. New York State Department of Health Generic Community Air Monitoring Plan (Appendix 1A to DER-10)
- 6. Health and Safety Plan prepared for Pre-Design Field Investigation at Former Manufactured Gas Plant Site in Fulton, NY dated August 2009.

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Site Specific Health and Safety Plan including, but not limited to:
 - a. Contractor Organizational Chart
 - b. Results of Health and Safety Risk Analysis performed by the Contractor
 - c. Employee and Community Protection Plan
 - d. Employee and Community Air Monitoring Plan
 - e. Vapor Emission Response Plan
 - f. Employee Training and Experience
 - g. Summary of Medical Surveillance Program
 - h. List of Standard Operating Procedures incorporated into the HASP
 - i. A method to monitor entry and exit from the work site
 - j. Personnel and Equipment Decontamination Procedures

Health and Safety

- k. A Spill Containment Program
- Emergency Response Plan and Emergency Reporting Procedures
 Fire Emergency Protection Plan
- n. Confined Space Entry Procedures
- 2. Certificates of completion of Health and Safety Training as required by 29 CFR 1910.120(e).
- 3. Resumes of the Contractor's Project Manager, Field Supervisor, and of the health and safety staff expected to work at this site.
- 4. Evidence of coordination for emergency response with local police, fire, medical, and hazardous materials responders.
- 5. Air monitoring results.
- 6. Name and location of proposed permitted off-site disposal facility for used personal protective equipment (PPE).

PART 2 PRODUCTS

- 2.1 GENERAL
 - A. The responsibility for development, implementation, and enforcement of the Health and Safety Plan (HASP) lies with the Contractor and his health and safety personnel.
 - B. Prior to commencement of on-site activities, the Contractor shall prepare a sitespecific HASP, which shall be implemented during performance of the work. The HASP shall be prepared and administered by a Certified Industrial Hygienist (C.I.H.). All pertinent aspects of applicable regulations shall be addressed. The protective measures in the HASP shall be consistent with applicable protocols and provisions of the OSHA regulations and other applicable regulations. The HASP developed by the Contractor shall include, but not be limited to, employee air monitoring, programs for accident prevention, personnel protection, and emergency response/contingency planning. A corporate safety and health manual may be furnished along with the HASP but this shall not satisfy the site-specific HASP requirement.
 - C. At least one copy of the HASP shall be present at the site at all times

PART 3 EXECUTION

3.1 ORGANIZATIONAL RESPONSIBILITIES

- A. Key Personnel and Organizational Chart. The lines of authority, responsibility and communication shall be presented in the HASP. The Contractor must provide an organization chart and resumes of the Contractor's key personnel involved in all phases of the Site construction activities. This chart must include Senior-Level Management, Project Manager, CIH, third-party Site Health and Safety Officer (HSO), Field Supervisor, and Foreman Personnel. Resumes are required for the Project Manager, Field Supervisor, Health and Safety Officer, and Health and Safety Staff.
- B. Site Health and Safety Officer (HSO). The Contractor's C.I.H. must identify and subcontract an independent third-party Site Health and Safety Officer (HSO) for the project. That individual must be responsible to the Contractor's C.I.H. and have the authority and knowledge necessary to implement the site Health and Safety Plan (HASP) and verify compliance with applicable safety and health requirements.
 - 1. The HSO shall have the following responsibilities and authority to perform the following functions:
 - a. Be present during site operations.
 - b. Have the authority to enforce the HASP and stop operations if personnel safety and health may be jeopardized.
 - c. Evaluate health monitoring data and make necessary field decisions regarding safety and health.
 - d. Initiate evacuation of the site if necessary.
 - 2. The HSO shall meet the following minimum qualifications:
 - a. HSO shall possess a sound working knowledge of State and Federal occupational safety and health regulations and shall have formal educational training in occupational safety and health. Documentation shall be provided that the HSO has completed the 40 hr. OSHA Training Course, the 8 hr. OSHA Supervisor's Training Course and met the field experience requirements.
 - b. Have documented experience that the HSO has worked on two (2) projects similar in nature to this one.

3.2 RISK ANALYSIS

- A. Health and Safety Evaluation. The Contractor shall perform and provide in the HASP the results of a health and safety risk analysis for each location and operation to be performed.
- B. The risk analysis shall be based upon the best information available regarding the contaminants and conditions present at the site as well as the practices and tools to be applied in the operation and shall include but not be limited to the following:
 - 1. Overview of the following information:
 - a. Location, site topography, accessibility, and size of the site.
 - b. Description of the site operation and tasks to be performed.
 - c. Approximate duration of the operation and of each task.
 - d. Chemical and physical properties of the known or suspected hazardous substances and health hazards.
 - e. Known or potential safety hazards associated with each task.
 - f. Known or suspected pathways of hazardous substance dispersion pertinent to the operation and tasks performed.
 - 2. An evaluation of the known or suspected contaminants and conditions that may pose inhalation, skin absorption/contact or ingestion hazards. A copy of the Material Safety Data Sheet (MSDS), chemical fact sheet, or other relevant information shall be included in the Site-specific HASP prepared by the Contractor.
 - 3. An evaluation of known or potential safety and health hazards associated with each task on the site.
 - 4. An evaluation of engineering and work practice controls to be applied to minimize potential harm to the community and employees on site from hazardous substances and activities during completion of the task.
 - a. Engineering and Work Practice Controls. The Contractor must consider the need to apply engineering and/or work practice controls as a means of protecting the community and personnel in the performance of site specific tasks.
 - 1) When practicable, engineering controls shall be implemented to reduce and maintain community and employee exposures to or below acceptable levels for those tasks with known or suspected hazards.

- 2) Work practice controls shall be applied when engineering controls are deemed impractical and shall be incorporated as site-specific standard operating procedures (SOP) for personal precautions and routine operations.
- 5. An evaluation of the status and capabilities of emergency response teams.

3.3 MEANS TO CONTROL EMPLOYEE AND COMMUNITY EXPOSURE

- A. Employee and Community Protection Plan
 - 1. The Contractor shall prepare and implement an Employee and Community Protection Plan (ECPP) in accordance with 29 CFR 1910.120(h). The ECPP shall be developed to specify and evaluate the engineering and work practice controls to be implemented to minimize exposure of employees working on the site, residents living in the vicinity of the site, and the environment to contaminants generated or released as a result of work on the site. The ECPP shall be incorporated into the site HASP as a separate section of that document.
- B. Employee and Community Air Monitoring Plan
 - 1. The Contractor shall prepare and implement an Employee and Community Air Monitoring Plan (ECAMP) to identify times of elevated airborne contaminant concentrations, to determine the level of the concentrations relative to background, and to respond to elevated levels. The Contractor shall provide the personnel, instruments, and materials necessary to perform such air monitoring and to implement the response. The identity of the individual responsible for administering the program shall be included in the site organization chart. In addition to the odor control requirements specified in the Special Provisions, the Contractor shall define specific air monitoring methods, sampling media, and sample analyses to be implemented during construction of the remedial action at the Site. The ECAMP shall include proposed responses to levels above the Contractor's action levels. The ECAMP shall be incorporated into the site HASP as a separate section of that document.
 - 2. When work is performed within 20 feet of potentially exposed populations or occupied structures, the Contractor shall continuously monitor the location for VOCs. Any particulates must represent the nearest potentially exposed individual and the location of ventilation system intakes for occupied structures. The Contractor shall use special ventilation devices or controls, when advised to do so by the Engineer, in order to control dust and odors and to prevent exposure from work related activities.
 - 3. The level of particulate matter less than 10 micrometers in diameter, (PM-10), leaving the downwind side of the site shall be maintained below 150 $\mu g/m^3$ above the upwind particulate level, based on a 15 minute averaging period.

- 4. The level of volatile organic compounds (VOCs) leaving the downwind side of the site shall be maintained below 5 ppm above background.
- 5. The Contractor shall, at a minimum, perform the following items and address these items in the ECAMP:
 - a. Daily monitoring of wind direction and velocity for each day that soil handling or excavation activities occur.
 - b. Real-time continuous monitoring for VOCs (i.e. photoionization detector) and for particulate (i.e. real time aerosol monitor) within the work zone, and at three locations on the perimeter of the exclusion zone of the work zone (one upwind, two downwind) during all ground intrusive activities. Ground intrusive activities include, but are not limited to soil/waste excavation and handling, test pitting or trenching.
 - c. Periodic monitoring for VOCs during non-intrusive activities (i.e., such as the collection of soil) shall be addressed.
 - d. Combustible gas monitoring within the work zone using an oxygen and explosive gas meter. Lower explosive limit (LEL) percent shall not exceed 1% of the LEL prior to initiating work activities and shall not exceed 10% of the LEL during work activities.
 - e. Establish VOC and particulate response levels and subsequent actions to be taken if exceeded.
 - f. Other additional sampling and analyses necessary to minimize exposure of employees working on the site and residents living in the vicinity of the site from the airborne particulate and vapor hazards of the site.
- 6. Air monitoring results shall be recorded daily in a logbook and available for review by Owner, Engineer, and New York State Department of Environmental Conservation (NYSDEC).
- C. Vapor Emission Response Plan
 - 1. The Contractor shall prepare and implement a Vapor Emission Response Plan (VERP) to identify VOC levels that may pose a threat to the health and safety of the surrounding population. The VERP shall be incorporated into the site ECAMP as a separate section of that document and shall, at a minimum, address the following:
 - a. VOC levels exceeding 5 ppm above background at the perimeter of the work area will require that work activities be halted, and actions initiated to reduce the VOC emissions from the work area. At that time, air monitoring shall be implemented to measure the vapor emission levels in the work zone and at 200 feet downwind of the

work area or at half the distance to the nearest residential or commercial structure. If VOC levels in the work zone or downwind location are below or decrease to below 5 ppm over background, work activities can resume with continued monitoring.

- b. If the VOC level at the perimeter of the work area is above 25 ppm, activities must be shutdown and actions taken to reduce VOC levels at the perimeter of the work zone to below 5 ppm above background.
- c. If efforts to abate the emission source do not lower the VOC levels below 5 ppm at the downwind sampling location or if elevated levels persist for more than 30 minutes within 20 feet of the perimeter of the nearest residential or commercial structure (20foot zone), a Major Vapor Emission Response Plan shall be implemented.
- D. Particulate Emission Response Plan
 - 1. The Contractor shall prepare and implement a Particulate Emission Response Plan (PERP) to identify particulate levels that may pose a threat to the health and safety of the surrounding population. The PERP shall be incorporated into the site ECAMP as a separate section of that document and shall, at a minimum, address the following:
 - a. Particulate levels exceeding 150 ug/m^3 above the upwind particulate level (*e.g.* background) at the perimeter of the work area will require that work activities be halted, and actions initiated to reduce the particulate emissions from the work area. At that time, air monitoring shall be implemented to measure the particulate emission levels in the work zone and at 200 feet downwind of the work area or at half the distance to the nearest residential or commercial structure. If particulate levels in the work zone or downwind location are below or decrease to below 150 ug/m^3 over background, work activities can resume with continued monitoring.
 - b. If efforts to abate the emission source do not lower the particulate levels below 150 ug/m³ 200 feet downwind of the work area, or if elevated levels persist for more than 30 minutes within 20 feet of the perimeter of the nearest residential or commercial structure (20-foot zone), a Major Particulate Emission Response Plan shall be implemented.
- E. Major Vapor Emission Response Plan
 - 1. The Contractor shall specify and implement a Major Vapor Emission Response Plan (MVERP) to identify responses to downwind VOC levels above the action levels specified in Section 3.3.C. The MVERP shall be

incorporated into the site ECAMP as a separate section of that document and shall, at a minimum, include the following:

- a. Provisions for contacting emergency response personnel to advise them of the vapor situation.
- b. Provisions for coordinating with local officials to arrange for notification and evacuation, if required, of the surrounding community.
- c. Provisions for conducting air monitoring at 30 minute intervals within 20 feet of the perimeter of the nearest residential or commercial structure (20-foot zone).
- F. Major Particulate Emission Response Plan
 - 1. The Contractor shall specify and implement a Major Particulate Emission Response Plan (MPERP) to identify responses to downwind particulate levels above the action levels specified in Section 3.3.D. The MPERP shall be incorporated into the site ECAMP as a separate section of that document and shall, at a minimum, include the following:
 - a. Provisions for contacting emergency response personnel to advise them of the particulate emission situation.
 - b. Provisions for coordinating with local officials to arrange for notification and evacuation, if required, of the surrounding community.
 - c. Provisions for conducting air monitoring at 30 minute intervals within 20 feet of the perimeter of the nearest residential or commercial structure (20-foot zone).

3.4 TRAINING

- A. Training Requirements for On-Site Personnel
 - 1. The Contractor will ensure that all employees engaged in on-site activities which expose or potentially expose them to hazardous substances and/or health hazards have satisfied the general and site specific training requirements of 29 CFR 1910.120 prior to the start of the employee's activities at the site.
 - 2. Employees who have not received the required training prior to the start of the employee's site operations are not to engage in site operations until such training has been completed.
 - 3. The Contractor shall provide written certification of completed training and acquired experience for all employees requiring training and/or experience. Such certification shall be supplied prior to the start of the employee's site operations.

- B Personal Protective Equipment and Levels of Protection (LOP)
 - 1. The Contractor shall provide and use, under each item of work requiring such protection, personal protective equipment (PPE) under the provisions of 29 CFR 1910.132 and 29 CFR 1910.120.
 - 2. The Contractor shall include in the HASP a list of components for each protective ensemble, the LOP selected for each task, the rationale for each task-specific selection, any contaminant action levels to be followed in LOP decision making.
 - 3. All used PPE shall be properly disposed of by the Contractor at a permitted off-site facility approved by Owner. Used PPE shall not be disposed of on Site nor shall it be burned. The Contractor shall be responsible for characterizing used PPE, decontamination (as necessary), temporary storage, transportation, and disposal of used PPE in accordance with applicable Federal, State, and local regulations.

3.5 MEDICAL SURVEILLANCE

- A. Medical Surveillance Program. The Contractor shall show evidence of a medical surveillance program (MSP) for employees engaged in on-site operations, consistent with 29 CFR 1910.120(f).
 - 1. The MSP shall include physical examinations supervised or administered by a board certified physician familiar with occupational medicine. The Contractor shall include the name and business address of the certified physician in the HASP.
 - 2. The Contractor shall address the need for personal exposure monitoring and post exposure medical screening in the HASP and include a summary of applicable monitoring and screening.
- B. Personnel Certification
 - 1. The Contractor shall provide written approval by a certified physician of the medical fitness for work of all employees designated to engage in onsite operations, prior to the employee's start of those operations.
- C. Employee Heat and Cold Stress Prevention
 - 1. As dictated by seasonal conditions, the Contractor shall implement an employee heat or cold stress prevention program during site operations and shall incorporate the program into the site HASP.

3.6 SITE STANDARD OPERATING PROCEDURES

A. The Contractor shall be responsible for developing and implementing necessary standard operating procedures (SOP) for site operations.

3.7 SITE CONTROL

- A. Work Zones
 - 1. The Contractor shall be responsible for conducting operations at the site in such a controlled fashion as to minimize the possibility of employee and community contact with contaminants present on the site and to prevent the removal of contaminants generated on the site by personnel or equipment leaving the site.
 - 2. The Contractor shall delineate work zones in which specific operations or tasks will occur and shall institute specific site entry, and decontamination procedures at Contractor designated control points in accordance with provisions set forth in 29 CFR 1910.120 and HWR 89-4031. At a minimum, three (3) work zones will be established to perform this work an exclusion/contamination zone, a contamination reduction zone, and a support/clean zone. A map or diagram showing the work zones and a description of the site control plan shall be included in the HASP.
- B. Routine and Emergency Communications
 - 1. The Contractor shall incorporate plans for routine and emergency communications appropriate for the site and project in the HASP.
- C. Daily Visitor Log
 - 1. The Contractor, in accordance with his security plan shall keep a daily visitor log, copies to be provided to Owner/Engineer upon request. A time clock shall be used to record the arrival and departure times. This log shall include:
 - a. Person visiting the site
 - b. Affiliation
 - c. Date
 - d. Arrival time
 - e. Departure time
 - f. Purpose of visit

- D. Personnel
 - 1. The Contractor shall provide Owner and Engineer a list of all Contractor and subcontractor personnel who are authorized to enter the site prior to the start of operations, updating the list as necessary. No unauthorized persons shall be permitted to enter the site.
- E. Other
 - 1 The Contractor shall be responsible for conducting operations in accordance with Federal, State and local regulations and requirements for storage of the Contractor's hazardous materials (*i.e.* gasoline, lube oils, etc.) on-site, including locating staging areas, labeling/signage, etc.
 - 2. The Contractor shall use a "buddy system" as required.

3.8 DECONTAMINATION

- A. The Contractor shall develop and implement personnel and equipment decontamination procedures appropriate for site specific locations and activities and include those procedures in the HASP. The procedures shall include, but not necessarily be limited to, the necessary equipment and personnel and the steps to achieve contractor's specified level of decontamination, provisions for any personnel protection, and a discussion or diagram outlining the steps or stations in the procedures. The procedures must include containment and removal of any decontamination solutions and spent disposable protective apparel.
- B. Decontamination shall be conducted in accordance with 29 CFR 1910.120 (k) and shall minimize employee contact with hazardous substances or with equipment that has contacted hazardous substances as well as minimize off-site transport of contamination. The Contractor shall clean roadways as necessary to prevent contamination being transported from the work areas into other parts of the plant or off-site by construction or plant traffic.
- C. The Contractor shall provide provisions to facilitate personal hygiene at breaks and following daily operations.

3.9 SPILL CONTAINMENT

A. The Contractor shall incorporate a spill containment program prepared in accordance with 29 CFR 1910.120 in the HASP.

3.10 CONTINGENCY PLANNING

A. Emergency Response Plan. Prior to the start of site operations, the Contractor shall develop and implement an emergency response plan (ERP) to handle potential onsite emergencies. The ERP shall be incorporated into the site HASP as a separate section of that document and shall be periodically reviewed and, as necessary, amended to keep it current with new or changing site conditions or information.

- 1. The Contractor shall address the following requirements:
 - a. Prior to the start of site operations, the Contractor shall attend any and all meetings necessary with local officials and/or those responsible for local emergency management and public safety (to include fire, police, hazardous material response teams, hospitals, and local health officials) for the purpose of coordinating the sitespecific ERP with any emergency response efforts that would be performed by such agencies.
 - b. The Contractor shall contact the local medical facility selected for inclusion into the HASP and the ERP to ensure that said facility is willing and is capable of providing that medical support necessary to satisfy those anticipated hazards and emergencies detailed in the HASP and the ERP. Written verification of such contact, including the name of the individual contacted, shall be furnished to Owner and Engineer prior to the start of site operations.
- B. Accident and Exposure Reports
 - 1. The Contractor shall notify the Engineer of all on-site accidents at the time of occurrence and follow up in writing within 24 hours. This notification shall include, but not be limited to, the date, time and identity of individual(s) involved in the accident, witnesses to the accident, the nature of the accident, the actions taken to treat the victim(s), and the steps taken to prevent recurrence.
 - 2. The Contractor shall notify the Engineer of all person(s) exposed at levels exceeding OSHA standards at the time of occurrence or determination and follow up in writing within 24 hours. This notification shall include, but not be limited to, the date, time, and identity of individual(s) involved in the exposure, witnesses to the exposure, the nature of the exposure episode, what the individual(s) were exposed to, the personal protective equipment worn during the exposure, and the steps taken to prevent recurrence.
 - 3. The Contractor shall notify the Engineer of all environmental air measurements exceeding NYSDEC standards. This notification shall include, but not be limited to, the date, time, and identity of individual(s) involved in the exposure, witnesses to the exposure, the nature of the exposure episode, what the individual(s) were exposed to, the personal protective equipment worn during the exposure, and the steps taken to prevent recurrence.

3.11 FIRE PREVENTION AND PROTECTION

A. The Contractor shall develop procedures for handling and responding to small and large fires. This Fire Protection Plan (FPP) shall be included in the HASP as a separate document. The FPP shall include procedures for requesting emergency

assistance and notifying Owner and Engineer of the incident. The Contractor shall insure that fire traffic lanes are available (not blocked) and all fire exits are properly marked.

3.12 CONFINED SPACE OPERATIONS

- A. Standard Operating Procedures
 - 1. Should site operations include activities within confined spaces, the Contractor shall develop and implement SOPs in accordance with 29 CFR 1910.146 and shall incorporate them in the HASP as a separate section of that document.

3.13 DRUM AND CONTAINER HANDLING OPERATIONS

- A. Standard Operating Procedures
 - 1. Should site operations include activities requiring the handling of drums and containers, (both encountered on-site and brought on-site), the Contractor shall develop and implement SOP's in accordance with 29 CFR 1910.120(j) and incorporate them in the HASP.

3.14 OPERATIONS WITHIN AND ADJACENT TO POWER LINES

- A. Standard Operating Procedures
 - 1. Should site operations include activities requiring the operation of cranes or derricks within or adjacent to power lines, the Contractor shall develop and implement SOP's in accordance with 29 CFR 1926.550(a) Cranes and Derricks and incorporate them in the HASP.

3.15 OPERATIONS NEAR EXISTING UTILITIES

- A. Standard Operating Procedures
 - 1. In advance of the work, the Contractor shall identify and locate buried utilities in the area of work.
 - 2. Special precautions shall be observed to not cause interference or damage to any existing utilities.
 - 3. The Contractor shall notify the proper utility companies at least seventytwo (72) hours before construction is started adjacent to such utilities. Utilities shall be protected in the manner prescribed by the utility company.

* * * * *

SECTION 02003

FIELD OFFICE TRAILER

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of a separate field office trailer for the exclusive use of the Engineer and his assistants, as specified herein, or as directed by the Engineer.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. 02503 – Restoration of Surfaces

1.3 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Proposed layout of the trailer
 - 2. Proposed method of furnishing the utilities

PART 2 PRODUCTS

- 2.1 GENERAL
 - A. The field office trailer shall be not less than 8 feet by 20 feet.
 - 1. Built-in Items
 - a. Full width double desk on each end with two-drawer file cabinets, pencil drawers and overhead shelves
 - b. Drafting table, minimum 36 inch by 72 inch double storage below
 - c. Forced air heat
 - d. One air conditioning unit not less than 8,000 BTU
 - e. Storage closet

2. Movable Items

- a. Four office chairs
- b. Two large waste baskets

- c. One drafting stool
- d. One four-drawer, fire-proof, legal size, filing cabinet with lock
- e. One eight place plan rack

B. Telephone Service

- 1. Install an individual direct line telephone for the exclusive use of the Engineer.
- 2. Include the cost of all local and long distance calls necessary to the work.

PART 3 EXECUTION

- 3.1 INSTALLATION
 - A. The trailer shall be located on an approved site convenient to the work.
 - 1. The field office trailer shall be ready for occupancy prior to starting work in the field.
 - 2. The office shall be furnished and maintained until the acceptance of the Contract.
 - 3. Relocate once, if directed, during the period of the Contract.
 - 4. Upon the completion and acceptance of the Contract, the Contractor shall remove the field office trailer and restore the area in accordance with the Section "Restoration of Surfaces."

3.2 MAINTENANCE

- A. The maintenance of the trailer shall include but not be limited to:
 - 1. Adequate heating and cooling including a continual supply of fuel
 - 2. Electric power and lights
 - 3. Water supply and sewer service
 - 4. Telephone service
 - 5. Snow removal in winter
 - 6. Janitorial services not less than weekly
- B. Should sanitary and potable water services not be available on or near the site, portable facilities shall be provided by the Contractor.

* * * * *

PERIMETER AIR MONITORING AND DUST CONTROL PLAN

PART 1 GENERAL

1.1 SUMMARY

- A. This Section includes the furnishing of all labor, material, and equipment required in the preparation, submission, and implementation of an acceptable Perimeter Air Monitoring and Dust Control Plan as part of the Community Air Monitoring Plan (CAMP), as specified herein and in accordance with all provisions of the Contract Document.
- B. Contractor shall subcontract a third-party firm, independent from the Contractor, to monitor compliance with the CAMP including perimeter air monitoring and dust control plan. The third-party firm shall have a qualified health and safety professional present on site each workday to perform community air monitoring and document compliance with the CAMP including perimeter air monitoring and dust control plan. The health and safety professional shall have no other assignment other than monitoring compliance with the CAMP and Health and Safety Plan (HASP), and performing air monitoring.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. 01700 – Health and Safety

1.3 APPLICABLE PUBLICATIONS, CODES, STANDARDS, AND SPECIFICATIONS

- A. 29 CFR 1910.1000, Air Contaminants
- B. New York State Department of Health Generic Community Air Monitoring Plan (Appendix 1A of DER-10)
- C. New York State Fugitive Dust and Particulate Monitoring Plan (Appendix 1B of DER-10)

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Perimeter Air Monitoring and Dust Control Plan
 - 2. Shop Drawings for Air Monitoring Equipment

PART 2 PRODUCTS

2.1 GENERAL

- A. Perimeter Air Monitoring and Dust Control Plan
 - 1. The Perimeter Air Monitoring and Dust Control Plan shall describe in detail the Contractor's plan of operation, means and methods of construction, proposed locations, air monitoring instruments, record keeping procedures and response procedures.
 - 2. The Perimeter Air Monitoring and Dust Control Plan shall describe in detail the Contractor's plan for implementing volatile organic compound (VOC) and dust control measures should the action levels specified herein be exceeded.
- B. Number and Location of Stations
 - 1. At a minimum, four air monitoring stations (three downwind and one upwind) of each Area shall be established by the Contractor to collect data to document the amount, if any, of VOCs and particulate matter less than 10 microns in diameter (PM10) leaving the former manufactured gas plant (MGP) Site (the Site). Each of the perimeter air monitoring stations shall be located so that it is not shielded or otherwise obstructed from collecting samples representative of the air leaving the Site. The perimeter air monitoring stations shall be established upwind, at, and downwind of the active work area.
- C. Duration of Perimeter Air Monitoring
 - 1. Air monitoring shall be continuous during activities in the active work area. Air monitoring shall begin at least 30 minutes before work begins in the active work area and continue for at least 60 minutes after work ceases. These times are intended to allow for background levels to be established before generation of potential air contaminants and for materials generated during active work to reach the sampling locations.
- D. Equipment
 - 1. Air monitoring at each station shall be conducted with direct reading instruments for particulates.
 - a. Air monitoring particulate detecting instruments shall be a portable aerosol monitor (TSI 8520 DustTrak or equivalent) equipped with a cyclone adapter to evaluate the presence and concentration of airborne dusts during Site activities.
 - b. Real-time continuous monitoring for VOCs (i.e. photoionization detector)

- c. Combustible air monitoring within the work area shall be performed using an oxygen and explosive gas meter in accordance with Technical Specification 01700 Health and Safety.
- 2. One wind direction monitoring and recording device shall be maintained on the work area. The device shall include a wind direction indicator (wind sock or weathervane) that is visible from all positions of the site or active work area.
- 3. If the Contractor does not provide an AC power source to air monitoring stations and the wind direction station, the Contractor shall maintain a sufficient supply of charged spare batteries or charged spare units, such that a minimum of three perimeter stations are always in service.
- E. Records
 - 1. The readings of the air monitoring instruments shall be recorded at least every 30 minutes during instrument operation. The record of the monitoring shall be available for inspection by the Engineer, the Owner and NYSDEC at the end of the monitoring period.
 - 2. Records of calibration, according to the instrument manufacturer's instructions, shall be maintained by the Contractor and shall be available for inspection by the Engineer, the Owner and NYSDEC.

2.2 ACTION LEVELS

- A. If the downwind PM10 level exceeds 150 micrograms above background of PM10 per cubic meter of air (150 μ g/m³) for more than 15 minutes, dust control activities at the active site shall be initiated to reduce the level at the perimeter to below 100 μ g/m³ within 15 minutes.
- B. The level of volatile organic compounds (VOCs) leaving the downwind side of the site shall be maintained below 5 ppm above background.

PART 3 EXECUTION

3.1 GENERAL

- A. The Contractor shall implement the Perimeter Air Monitoring and Dust Control Plan.
- B. The Contractor shall make every effort to minimize the generation of VOC emissions and dust. Appropriate methods to minimize the generation of VOC emissions, odor, and dust include, but are not limited to:
 - 1. Use of tarpaulin, foam or other suitable means to cover exposed contaminated areas and materials.
 - 2. Use embankment material to cover exposed contaminated areas.
 - 3. Limiting the amount of exposed contaminated areas.

- 4. Water spray. If water spray is used, run-off must be collected and managed as Construction Water if it comes into contact with relocated soils.
- 5. The use of chloride or petroleum containing compounds for dust control is prohibited.
- C. The Contractor shall update the accepted Perimeter Air Monitoring and Dust Control Plan as necessary to incorporate changes in site conditions, equipment and potentially hazardous materials identified during site activities. The Contractor's Perimeter Air Monitoring and Dust Control Plan shall include alternate monitoring locations and relocation procedures to accommodate site construction activities.

PROJECT PHOTOGRAPHS

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, materials, and equipment as required to provide the services of a professional photographer to provide color photographs of the progress of the project.

PART 2 PRODUCTS

2.1 GENERAL

- A. The photographs shall be printed as 4" x 6" and four (4) sets of each taking shall be furnished to the Engineer within two (2) weeks.
 - 1. All photographs and negatives shall be consecutively numbered.
 - 2. Each print shall have the photograph number, date taken, project name and number and photographer's name clearly marked on the back.

PART 3 EXECUTION

3.1 GENERAL

- A. Twenty four photographs shall be taken each month for the duration of the Contract at the time and locations as directed by the Engineer.
 - 1. Only a one day notice shall be required for any photographs to be taken.
- B. A minimum of 48 photographs shall be taken of preconstruction and final construction. The final photographs shall be taken from the same locations as the preconstruction photographs.
- C. Upon the completion of the project, the Contractor shall submit a complete file of the negatives for the project photographs to the Engineer.

STORMWATER POLLUTION PREVENTION

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, materials, and equipment required in the preparation, submission, and implementation of an acceptable Storm Water Pollution Prevention Plan (SWPPP), as specified herein, and in accordance with all provisions of the Contract Documents.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02241 Off-Site Transportation and Disposal
- B. 02242 Tar Excavation and Off-Site Disposal

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the project SWPPP and the latest revisions of the following codes, standards, and specifications, except where more stringent requirements have been specified herein:
 - 1. 40 CFR 122 U.S. Environmental Protection Agency (USEPA) Administered Permit Programs: The National Pollutant Discharge Elimination System
 - 2. 40 CFR 123 State Program Requirements
 - 3. 40 CFR 124 Procedures for Decision Making
 - 4. NYSDEC State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activities, Permit No. GP-0-08-001.
 - 5. NYSDEC Standards and Specifications for Erosion and Sediment Control (NYSDEC 2005).
 - 6. New York State Stormwater Management Design Manual (the design Manual) prepared by the Center for Watershed Protection for the NYSDEC (2003; last revised 2008).

1.4 SPECIAL REQUIREMENTS

A. Erosion control shall consist of operations performed to minimize erosion of soils into drainage channels and lands adjacent to or affected by the Work, to prevent storm water run-on onto work areas, and to prevent potentially contaminated storm water run-off (including soils and sediment) from leaving the site without appropriate treatment.

- B. Erosion control measures to be implemented shall be in accordance with this specification, the project SWPPP, and as may be required by the NYSDEC or local agency having jurisdiction. In the event of discrepancies between requirements of this specification or government agency, the more stringent requirements shall govern.
- C. Construction procedures shall include protection of the environment in accordance with all pertinent federal, State and local regulations. Construction procedures that are prohibited in association with this project include, but are not limited to:
 - 1. Pumping of silt-laden water from excavations into any surface waters, stream corridors, stormwater conveyances, or sanitary sewers.
 - 2. Damaging vegetation beyond the extent necessary for the work of this project.
 - 3. Dumping of spoil material into unspecified or unapproved locations.
- D. The Engineer shall have the authority to limit the surface area exposed by clearing, grubbing and excavation, and to direct the Contractor, at no additional cost to the Owner, to implement additional erosion, run-off and run-on control measures as the Engineer deems necessary.
- E. The Contractor shall provide all means, methods, equipment, facilities, and personnel required to implement and maintain the SWPPP.

PART 2 PRODUCTS

NOT USED

PART 3 EXECUTION

- A. Clearing and Site Preparation
 - 1. Only those portions of the site necessary and essential to be cleared for work shall be cleared. Clearing schedules shall be formulated to provide minimum practical exposure of soils. Local run-on/run-off control measures shall be implemented as conditions warrant. The Contractor shall make every reasonable effort so as to not unduly disturb the ecological or environmental quality of the area.
- B. Erosion and Sediment Control
 - 1. During the land disturbance period of this project, the following construction schedule shall be adhered to:
 - a. Clearing and grubbing of those areas necessary for installation of perimeter controls.
 - b. Construction of perimeter controls including, but not necessarily limited to, the installation and maintenance of silt fencing along the downgradient perimeter beyond the outer limits of potential set-up and work areas.

- c. Remaining clearing and grubbing.
- d. Excavation, providing temporary stabilization/erosion/run-off/run-on controls as required.
- e. Final grading and permanent stabilization.
- f. Removal of perimeter controls.
- 2. Erosion and sediment control measures may include silt fences, earth dikes, stone outlet sediment traps, stabilized construction entrances, rip rap, stone check dams, seeding/sodding, properly anchored mulch, and/or other measures as required.
- 3. Erosion and sediment control measures shall be properly maintained and function adequately. Any existing measures that are damaged shall be immediately repaired.
- 4. Excavated material shall be protected from erosion by using appropriate devices or stabilization.
- 5. Trapped sediment shall be removed from the area of deposition and disposed of in accordance with the Section "Off-Site Transportation and Disposal".
- 6. Silt fencing shall be placed along the down gradient perimeter of the site at the approximate limit of the work or as directed by the Engineer.
- C. Maintenance of Site Drainage during Construction
 - 1. The Contractor shall provide and maintain slopes, crowns and ditches in or around all excavations to insure satisfactory surface drainage at all times. Ditches and other drainage facilities necessary to remove ponded water shall be constructed as soon as practical to have the work area dry during the progression of work. All existing culverts and drainage systems shall be maintained in satisfactory operating condition throughout the course of the work unless otherwise directed by the Engineer. If it is necessary to interrupt existing surface drainage, then temporary drainage facilities shall be provided until the permanent drainage work is complete.
 - 2. The maintenance of the drainage facilities is to include removal of accumulated silt, removal of mulch damming and removal of all drainage facility obstructions as determined by the Engineer.

CONSTRUCTION WATER MANAGEMENT

PART 1 GENERAL

1.1 SUMMARY

- A. The Contractor shall develop and implement an acceptable Construction Water Management Plan detailing the handling, storage, treatment (if necessary), and disposal of all construction water and associated residuals (e.g. spent GAC, filter bags, etc) generated during construction in accordance with all applicable Federal, State, and local regulations.
- B. The Contractor is to obtain (if necessary) and operate within all required Federal, State, and local permits and requirements necessary to implement the proposed Construction Water Management Plan. Any and all civil, criminal, and monetary penalties associated with non-compliance in any regard shall be the sole responsibility of the Contractor.
- C. The Contractor shall provide all labor, materials, and equipment required for handling, storage, treatment, and disposal of construction water in accordance with the approved Construction Water Management Plan.
- D. The Contractor shall perform all specified and necessary sampling and analyses to insure compliance with required permits and applicable laws and regulations or as directed by Engineer.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02110 Storm Water Pollution Prevention
- B. 02241 Off-Site Transportation and Disposal
- C. 02242 Tar Excavation and Off-Site Disposal
- D. 02623 Cured-in-Place Pipe

1.3 APPLICABLE CODES, STANDARDS, AND SPECIFICATIONS

A. The Contractor shall comply with applicable Federal, State and local codes, ordinances, regulations, statutes and standards.

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Construction Water Management Plan
 - 2. Shop drawings and test results used in design of the method of handling construction water.

- 3. Process and instrumentation drawings (P&IDs) and schematic of proposed construction water collection, storage, and treatment process.
- 4. Implementation schedule for the dewatering operation and the proposed construction water treatment and discharge.
- 5. Results of all analytical work and final report of dewatering activities completed.
- 6. Name, location, and contact information of any Contractor proposed off-site treatment facility.

1.5 DEFINITIONS

- A. <u>Construction Water</u>. Construction water shall be defined as the following:
 - 1. Surface water resulting from precipitation during construction which has come in contact with potentially contaminated soils, fill, or debris.
 - 2. Water or other liquids drained from or which have come into contact with potentially contaminated soils or debris, in addition to that resulting from precipitation.
 - 3. Equipment and vehicle decontamination liquid.

Exempt from the definition of Construction Water for the Fulton Street MGP project is groundwater collected from the excavation below the static groundwater level since dewatering of the excavation below the static groundwater level is not required for the Removal Action.

PART 2 PRODUCTS

2.1 GENERAL

- A. Construction Water Management Plan
 - 1. The Contractor shall submit to the Engineer a plan for managing construction water. The plan shall include, but not be limited to, the Contractor's proposed method of handling, sampling, analyses, storage (if necessary), treatment, and disposal of construction water generated during construction.
 - 2. The acceptable methods of disposal of construction water are limited to collection and:
 - a. Treated discharge to surface water channel, subject to the requirements of a permit issued by the New York State Department of Environmental Conservation (NYSDEC), after appropriate treatment.
 - b. Off-site disposal at an approved treatment, storage, or disposal facility (TSDF).
 - 3. The acceptable methods of handling sludge and sediments generated by the Contractor's management of construction water are limited to:

- a. Collection, dewatering and disposal in accordance with Section "Off-Site Transportation and Disposal".
- b. Collection, analytical testing, transport, off-site treatment, and disposal shall be in accordance with all applicable Federal, State and local regulations.

B. Facilities

1. The Contractor shall provide methods, means, and facilities required to manage construction water and residuals generated during construction water management.

C. Equipment

1. The Contractor shall provide equipment and personnel to manage construction water.

PART 3 EXECUTION

3.1 GENERAL

- A. It shall be the responsibility of the Contractor to investigate and comply with all applicable Federal, State, and local laws and regulations governing the handling, storage and disposal of construction water. All construction water shall be disposed of in a manner which meets applicable permit requirements, laws, and regulations.
- B. The Contractor shall obtain all required permits, manifests, and approvals required for the handling, storage, transport, treatment and disposal of construction water and residuals generated during construction water management.
- C. Any sampling and analyses necessary to protect the health and welfare of the Contractor's employees and/or agents and/or to characterize collected water, treated water, or residuals shall remain the sole responsibility of the Contractor.
- D. Construction water shall be handled using equipment compatible with anticipated contaminants that may be present.

3.2 DISCHARGE TO NEARBY STORM WATER CONVEYANCE

- A. No construction water shall be discharged to any storm water conveyance unless it meets all Federal and New York State surface water quality standards. The Contractor shall include specific discharge criteria in the Construction Water Management Plan.
- B. All testing required for discharge to any storm water conveyance shall be the responsibility of the Contractor.

3.3 OFF-SITE DISPOSAL OF WASTES

A. Contractor shall characterize construction water related wastes and any settled solids or other residuals as necessary for off-site disposal.

- B. No Contractor proposed facility for off-site disposal shall be utilized without prior approval by the Engineer. For all wastes disposed of off-site, Contractor is responsible for characterization of such material and arranging for proper temporary storage, transportation and disposal in accordance with all applicable Federal, State and local regulations at no additional cost to the Owner.
- C. Contractor shall dispose of wastes designated for off-site disposal within 90 days of filling the container.
- D. Contractor shall mark, label, placard, package and manifest wastes in accordance with applicable codes, regulations, and statutes.

3.4 MINIMIZATION OF CONSTRUCTION WATER

- A. The Contractor shall make every effort to minimize the generation of construction water and associated sediments and sludges. Methods to minimize generation of construction water include, but are not limited to:
 - 1. Erection of temporary berms.
 - 2. Use of low permeability tarpaulin or suitable means to cover exposed contaminated areas and materials.
 - 3. Limiting the amount of exposed contaminated areas.
 - 4. Grading to control run-on and run-off.
 - 5. Engineering controls on construction activities to minimize contact of personnel and equipment with contaminated areas thus minimizing the amount of decontamination required and other appropriate methods.

GROUNDWATER MONITORING WELL ABANDONMENT

PART 1 GENERAL

1.1 SUMMARY

- A. This Section includes the furnishing of all labor, material, equipment and performing all operations required in the abandonment of the groundwater monitoring wells, as specified herein, shown on the Contract Drawings or as specified by the Engineer.
 - 1. Monitoring Wells to be Abandoned: MW-06 and PZ-01
- B. Abandonment of any groundwater monitoring wells damaged during the work as directed by the Engineer.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02151 Groundwater Monitoring Well Repair and Replacement
- B. 02241 Off-Site Transportation and Disposal
- C. 02242 Tar Excavation and Off-Site Disposal

1.3 APPLICABLE CODES, STANDARDS AND SPECIFICATIONS

- A. The publications listed below form a part of the specifications to the extent referenced. The publications are referred to in the text by basis designation only.
 - 1. American Society of Testing and Materials (ASTM)
 - a. ASTM C150 Type 1 Portland cement
 - b. ASTM D5299 Decommissioning of Groundwater Wells, Vadose Zone Monitoring Devices, Boreholes, and other Devices for Environmental Activities
 - 2. New York State Department of Environmental Conservation (NYSDEC)
 - a. NYSDEC CP-43 Commissioner's Policy on Groundwater Monitoring Well Decommissioning (May 2010).

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Proposed grouting materials and methods.

2. Well abandonment logs shall be submitted.

PART 2 PRODUCTS

2.1 GROUT

- A. There are two types of grout mixes that may be used to seal wells: a standard mix and a special mix. Both mixes use Type 1 Portland cement and four percent bentonite by weight. However, the special mix uses a smaller volume of water and is used in situations where excessive loss of the standard grout mix is possible (e.g. highly-fractured bedrock or coarse gravels).
- B. Standard Grout Mixture
 - 1. Unless otherwise necessary, the following standard mixture shall be used:
 - a. One 94-lb bag Type I Portland Cement
 - b. 3.9 lbs powdered bentonite
 - c. 7.8 gals potable water
 - 2. This mixture results in a grout with a bentonite content of four percent by weight, and shall be used in all cases except in boreholes where excessive use of grout is anticipated. In these cases, a special mixture shall be used.
- C. Special Mixture
 - 1. In cases where excessive use of grout is anticipated, such as high permeability formations and highly fractured or cavernous bedrock formations, the following special mixture shall be used:
 - a. One 94-lb bag type I Portland Cement
 - b. 3.9 lbs powdered bentonite
 - c. 1 lb calcium chloride
 - d. 6.0 7.8 gallons potable water (depending on desired thickness)
 - 2. The special mixture results in a grout with a bentonite content of four percent by weight. It is thicker than the standard mixture because it contains less water. This grout is expected to set faster than the Standard Grout Mixture. The least amount of water that can be added for the mixture to be readily pumpable is six gallons per 94-lb bag of cement.
 - 3. In cases where the penetration of the sandpack is critical, such as bedrock wells with screens that transect multiple water-bearing zones, the following alternate mixture shall be used:
 - a. One 94-lb bag Type III Portland Cement

- b. 3.9 lbs powdered bentonite
- c. 7.8 gals potable water

2.2 BENTONITE

- A. Baroid Ben Seal
- B. Approved equal

PART 3 EXECUTION

3.1 GENERAL

- A. No monitoring well abandonment, repair or replacement activities shall commence without acceptance of the Engineer.
- B. All monitoring well abandonment shall be performed in accordance with the requirements of this Section and to the satisfaction of the Engineer.
- C. Water generated and/or encountered during well abandonment activities shall be collected, analyzed and transported off-site in accordance with all applicable Federal, State and local regulations.
- D. Soil cuttings shall be disposed of in accordance with the Section "Off-Site Transportation and Disposal." All other material shall be disposed of off-site in accordance with applicable Federal, State and local regulations.
- E. The Contractor shall restore the area in the vicinity of each well location as directed by the Engineer.
- F. Following drilling activities, the Contractor shall decontaminate equipment as specified in Section 3.3.
- G. If the well to be abandoned is constructed within a bedrock formation, the screened or the open hole portion of the well shall be grouted to the top of the bedrock. Prior to initiating any grouting procedure, the depth of the well shall be measured to determine if any silt or debris infilling has plugged the well. If plugging has occurred, the well shall be flushed with an appropriately sized roller bit or drill rods to remove or suspend the obstruction in the water column. The borehole shall then be tremie grouted from the bottom of the well to the top of bedrock to insure a continuous grout column. Note that if the bedrock well is cased, the screen should be perforated to the top of the rock if the inside diameter of the casing is 4-inches or larger. Furthermore, if the screened interval transects multiple water bearing zones, the special grout mix discussed in Part 2 shall be used to ensure penetration of the sand pack. After the rock hole is grouted, the overburden portion of the well shall be decommissioned in accordance with the following sections.

3.2 ABANDONMENT

- A. Removing the Protective Casing
 - 1. Removal of the protective casing of a well must not interfere with or compromise the integrity of decommissioning activities performed at the well.
 - 2. Prior to Sealing the Well Bore
 - a. The protective casing must be removed unless the drilling tools have an inside diameter larger than the protective casing. An acceptable protective casing removal method involves breaking up the concrete seal surrounding the casing and jacking or hoisting the casing out of the ground. A check should be made during pulling to insure that the inner well casing is not being hoisted with the protective casing. If this occurs, the well casing shall be cut off after the base of the protective casing is lifted above the land surface.

B. Overdrilling

- 1. An overdrilling method of well abandonment shall be used to prevent crosscontamination. The overdrilling method used shall:
 - a. Follow the original well bore.
 - b. Create a borehole of the same or greater diameter than the original boring.
 - c. Removal of all the well construction materials.
- 2. Acceptable methods for overdrilling include the following:
 - a. Using conventional augering (i.e., a hollow stem auger fitted with a plug). The plug cutter shall grind the well construction materials, which shall be brought to the well surface by the auger.
 - b. Using a conventional cable tool rig to advance casing having a larger diameter than the original boring. The cable tool kit shall be advanced within the casing to grind the well construction materials and soils, which are periodically removed with large diameter bailer. This method is not applicable to bedrock wells.
 - c. Using an over-reaming tool with a pilot bit nearly the same size as the inside diameter of the casing and a reaming bit slightly larger than the original borehole diameter. This method can be used for wells with steel casings. Using a hollow-stem auger with outward facing carbide cutting teeth having a diameter two to four inches larger than the casing. Outward-facing cutting teeth should prevent severing the casing and drifting off center.

- d. Using a hollow-stem auger with a steel guide pipe inside. The casing guides the cutter head and remains inside the auger. The guide pipe should be firmly attached to the inside of the casing by use of a packer or other type of expansion or friction device.
- 3. Prior to overdrilling, an expandable J-plug or other suitable well cap shall be used to prevent the introduction of soil or cuttings into the well, thereby ensuring a continuous grout column for wells that are grouted in place.
- 4. In all cases above, overdrilling shall advance through the original bore depth by a distance of 0.5 feet to ensure complete removal of the construction materials. When the overdrilling is complete, the casing and screen should be retrieved from the center of the auger (American Society for Testing and Materials, Standard D 5299), if one of the hollow stem auger methods described above is employed.
- 5. Subsequent to overdrilling at flush mount well locations where it may be impractical to remove well materials from inside the augers, a 1-2 foot deep area shall be excavated by hand around the flush-mount well to facilitate a conventional well removal while tremie-grouting inside the well. Alternatively, the soil within the annular space may be removed by raising the augers to allow the soil to fall out and re-advance the augers to the original target depth. Grout shall then be tremied within the annular space between the augers and well casings. The grout level in the borehole shall be maintained as the drilling equipment and well materials are sequentially removed.
- 6. After overdrilling is completed, the borehole shall be grouted and the upper five feet of borehole shall be restored.
- D. Grout Placement
 - 1. Grout shall be placed in the borehole from the bottom to the top using a tremie pipe of not less than 1-inch diameter. Grout shall then be pumped into the borehole until the grout appears at the land surface (when grouting open holes in bedrock, the grout level only needs to reach above the bedrock surface). Any groundwater displaced during grout placement shall be collected, analyzed and transported off-site in accordance with all applicable Federal, State and local regulations.
 - 2. When the grout level stabilizes, casing or augers shall be removed from the hole. As each section is removed, grout shall be added to keep the level between 0-feet and 5-feet below land surface. If the grout level drops below the land surface to an excessive degree, an alternate grouting method must be used.
 - 3. Upon completion of grouting, the Contractor shall insure that the final grout level is approximately five feet below land surface. A ferrous metal marker shall be embedded in the top of the grout to indicate the location of the former monitoring well.

E. Backfilling

1. The uppermost five feet of the borehole at the land surface shall be filled with a material physically similar to the natural soils.

3.3 EQUIPMENT DECONTAMINATION REQUIREMENTS

- A. To avoid cross-contamination, equipment shall be decontaminated after operations at each well location are complete.
- B. The drilling and excavation equipment (i.e., drill rigs, cutting bits, and associated equipment) shall be cleaned at a constructed decontamination facility.
- C. The drilling and excavation equipment shall be prepared before it is brought to the decontamination facility and then cleaned at the facility. Preparation includes removing gross soil/rock from the equipment to minimize losses during movement to the decon pad. At the decontamination facility, the equipment shall be steam cleaned or washed using phosphate-free detergent then rinsed. The equipment shall be inspected by the Engineer's field representative after cleaning.
- D. All solid waste materials generated during the decommissioning process shall be disposed of properly.

GROUNDWATER MONITORING WELL REPAIR AND REPLACEMENT

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, material, equipment and performing all operations required in the repair of or replacement of the groundwater monitoring wells which may have been damaged during the construction activities as specified herein, shown on the Contract Drawings or as specified by the Engineer.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02145 Groundwater Monitoring Well Abandonment
- B. 02241 Off-Site Transportation and Disposal
- C. 02242 Tar Excavation and Off-Site Disposal

1.3 REFERENCES

- A. The publications listed below form a part of the specifications to the extent referenced. The publications are referred to in the text by basis designation only.
 - 1. American Society of Testing and Materials (ASTM)
 - a. ASTM C150 Type 1 Portland Cement
 - b. ASTM A778 Welded Unannealed Austentic Stainless Steel
 - c. ASTM A139 Electric-fusion (Arc)-Welded Steel Pipe
 - d. ASTM D1586 Test Method for Penetration Test and Split-Barrel Sampling of Soils
 - 2. United States Environmental Protection Agency (USEPA) guidance documents

a.	EPA 530/R-93/001	RCRA Ground-Water Monitoring: Draft Technical Guidance
b.	EPA 600/4-79/020	Methods for Chemical Analysis of Water and Wastes

1.3 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Proposed monitoring well construction procedures.

- 2. Borehole logs of proposed soil borings.
- 3. Proposed monitoring well installation diagrams.
- 4. Proposed monitoring well survey data.
- 5. Proposed monitoring well development records.

PART 2 PRODUCTS

2.1 GROUT

- A. There are two types of grout mixes that may be used to seal wells: a standard mix and a special mix. Both mixes use Type 1 Portland cement and four percent bentonite by weight. However, the special mix uses a smaller volume of water and is used in situations where excessive loss of the standard grout mix is possible (e.g. highly-fractured bedrock or coarse gravels).
- B. Standard Grout Mixture
 - 1. Unless otherwise necessary, the following standard mixture shall be used:
 - a. One 94-lb bag Type I Portland Cement
 - b. 3.9 lbs powdered bentonite
 - c. 7.8 gals potable water
 - 2. This mixture results in a grout with a bentonite content of four percent by weight, and shall be used in all cases except in boreholes where excessive use of grout is anticipated. In these cases, a special mixture shall be used.
- C. Special Mixture
 - 1. In cases where excessive use of grout is anticipated, such as high permeability formations and highly fractured or cavernous bedrock formations, the following special mixture shall be used:
 - a. One 94-lb bag type I Portland Cement
 - b. 3.9 lbs powdered bentonite
 - c. 1 lb calcium chloride
 - d. 6.0 7.8 gallons potable water (depending on desired thickness)
 - 2. The special mixture results in a grout with a bentonite content of four percent by weight. It is thicker than the standard mixture because it contains less water. This grout is expected to set faster than the Standard Grout Mixture. The least amount of water that can be added for the mixture to be readily pumpable is six gallons per 94-lb bag of cement.

- 3. In cases where the penetration of the sandpack is critical, such as bedrock wells with screens that transect multiple water-bearing zones, the following alternate mixture shall be used:
 - a. One 94-lb bag Type III Portland Cement
 - b. 3.9 lbs powdered bentonite
 - c. 7.8 gals potable water

2.2 BENTONITE

- A. Baroid Ben Seal
- B. Equal
- 2.3 GRANULAR MATERIAL
 - A. The granular material used to backfill the annular space between the well screen and the boring hole shall be a silica sand, Morre size 00 or similar sand as approved by the Engineer.

2.4 DRILLING FLUIDS/GROUT MIXES

- A. Drilling fluid shall be bentonite grout drilling fluid.
- B. The bentonite or grout material shall be Saline Seal 100 as manufactured by American Colloid Company, M-179 as manufactured by DOW Chemical Company, Dowell Division, or an approved equal.

2.5 ACCEPTABLE STAINLESS STEEL RISER PIPE

A. Type 304 stainless steel conforming to ASTM A778

2.6 ACCEPTABLE CARBON STEEL RISER PIPE

A. Carbon steel casing conforming to ANSI/ASTM A139

2.7 WELL CAPS AND MANHOLES

- A. Royer Quality Castings Inc.
- B. Approved Equal

PART 3 EXECUTION

- 3.1 GENERAL
 - A. No monitoring well repair or replacement shall commence without acceptance of the Engineer.

- B. All monitoring well repair or replacements shall be performed in accordance with the requirements of this Section and to the satisfaction of the Engineer. Monitoring wells damaged during the Work, which the Engineer determines cannot be satisfactorily repaired, shall be abandoned by the Contractor in accordance with the specification "Groundwater Monitoring Well Abandonment" and shall be replaced as directed by the Engineer. Construction of replacement wells shall be in accordance with this section. No additional payment shall be made to the Contractor for monitoring wells damaged by the Work requiring repair, abandonment, or replacement.
- C. The Contractor shall restore the area in the vicinity of each well location as directed by the Engineer.
- D. Following well construction activities, the Contractor shall decontaminate equipment and well materials. Well materials removed during the abandonment activities will be disposed of in accordance with applicable local, State, and Federal regulations.

3.2 MONITORING WELL CONSTRUCTION

- A. General
 - 1. Materials delivery, storage and handling
 - a. All riser pipe and well screens supplied under this Contract shall be shipped, stored and handled in accordance with the recommendations of the manufacturer.
 - b. All riser pipe shall be high pressure steam cleaned prior to installation.
 - 2. Materials Inspection
 - a. Prior to well installation, all riser pipe, well screens and granular material shall be inspected by the Contractor in the presence of the Engineer for conformance with the standards and specifications.
- B. Borehole Drilling
 - 1. The Contractor shall install the new monitoring wells in the proposed cap area after the placement of excavated soil but before the placement of the geomembrane.
 - 2. The Contractor shall drill the replacement monitoring wells at the locations and depths directed by the Engineer.
 - 3. The Contractor shall utilize hollow stem auger methods or other method approved by the Engineer to drill the boreholes.
 - 4. The Contractor shall obtain continuous soil samples during drilling in accordance with ASTM-D-1586 unless otherwise directed by the Engineer.

- 5. The Contractor will be responsible for retaining a representative portion of each sample in a one pint glass jar labeled with: site, boring number, interval sample/interval preserved, date and time of sample collection.
- 6. The Contractor shall thoroughly clean all augers, samplers, rods and subs, and other necessary appurtenances used in the drilling of each monitoring well prior to and following use. Cleaning shall consist of high pressure steam cleaning.
- 7. The Contractor shall collect all cuttings and drilling fluids. Cuttings shall be disposed of in accordance with the Section "Off-Site Transportation and Disposal". All fluids shall be collected, analyzed and transported off-site in accordance with all applicable Federal, State and local regulations. All other material shall be disposed of off-site in accordance with applicable local, State, Federal regulations. No additional payment shall be made, however, to the Contractor for disposal of wastes generated as a consequence of well abandonment and replacement activities.

C. Installation

- 1. The monitoring wells shall be constructed as detailed below:
- 2. The Contractor shall drill a hole which shall permit the driving, sinking and placement of an outer casing to a depth specified below. Following the installation of the outer casing, the inside of the outer casing shall be cleaned of debris such that the monitoring well screen and casing assembly may be installed.
- 3. The well screen and connecting riser pipe shall be lowered into the outer casing, if required, to the prepared screening level and permanently positioned so that the riser will project a minimum of 2 feet above finished grade. Appropriate centering guides shall be placed as directed by the Engineer no greater than 10 feet apart along the length of the well screen and the riser pipe.
- 4. After the screen and riser pipe have been properly positioned, the placement of granular backfill and simultaneous retrieval of the outer casing, if installed, shall begin. These operations should be coordinated such that the level of granular backfill placed should be no higher than three feet above the bottom of any given temporary position of the outer casing. The placement of granular backfill shall stop when the stabilized level of granular material is a minimum of two (2) feet above top of the well screen.
- 5. A solid bentonite plug shall be placed on top of the granular material to a level of two (2) feet above the granular material. The removal of the outer casing, if required, may then proceed with the simultaneous placement of a cement/bentonite grout into the annular space between the riser pipe and the borehole from the elevation of the top of the bentonite plug to two (2) feet below grade. The cement/bentonite grout shall be composed of the specific bentonite mixed with clean off-site water and Portland cement to a grout consistency approved by the Engineer.
- 6. Wellheads shall be completed as shown on the Contract Drawings.

3.3 DEVELOPMENT OF THE MONITORING WELLS

- A. The Contractor shall be responsible for developing the replacement monitoring wells installed by a method accepted by the Engineer. Monitoring well development shall be conducted to remove fine-grained sediments from the well and filter pack. During development, the contractor shall be responsible for measuring and recording the pH, temperature, specific conductivity, and turbidity of the discharge water subsequent to the removal of each well volume. Development will continue until the pH, temperature, specific conductivity, and turbidity stabilize within 10% over three successive readings.
- B. All liquid wastes collected during development shall be collected, analyzed and transported off-site in accordance with all applicable Federal, State and local regulations.

3.4 ACCEPTANCE

- A. If at any time during the installation of a monitoring well the Engineer determines that it has not been installed to the standards of this Section, the Contractor will abandon the hole as directed by the Engineer and initiate construction of a new well at a location determined by the Engineer at no cost to the Owner.
- B. Upon completion of a monitoring well, the Contractor shall demonstrate to the Engineer that the full depth of the well is free from any obstructions and clear of any formation materials and that the well will produce clean sediment-free water, otherwise the monitoring well will be deemed unacceptable and will be abandoned as discussed in "A" above.

3.5 SURVEY

A. The Contractor shall survey the location and elevation of each monitoring well, modified, extended, or replaced as part of the Contract. The vertical location of the ground surface and the mark made on top of the monitoring well riser shall be accurately measured to the nearest 100th foot.

3.6 RECORDS

- A. The Contractor will provide the Engineer with a typed, legible copy of a boring log for each monitoring well as follows:
 - 1. A record of the soil materials penetrated and the depth to which they were encountered, including soil type, color, percent recovery, moisture content, odor, and miscellaneous observations for replacement wells installed.
 - 2. A record showing lengths of each diameter of casing and screen used and the location of packers, plugs and seals for all wells installed or modified by the Contractor.
 - 3. Static groundwater level.

CLEARING AND GRUBBING

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes clearing and grubbing by removal or destruction of trees, underbrush, logs, stumps, decayed or growing organic matter above the surface of the ground. This section also includes the removal of snow and ice which interfere with construction or landscaping.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02241 Off-Site Transportation and Disposal
- C. 02242 Tar Excavation and Off-Site Disposal

PART 2 PRODUCTS

- 2.1 GENERAL
 - A. Contractor shall protect existing trees outside of the excavation limits and trees surrounding the excavations required to complete the remedial actions with suitable stakes or protective measures.

PART 3 EXECUTION

3.1 GENERAL

- A. Only those portions of the site necessary and essential to be cleared for work shall be cleared.
- B. Tree protection
 - 1. Trees located outside of the excavation limits shall not be disturbed unless necessary to complete the excavations required as part of the remedial actions.
 - 2. Any tree, which will not, in the opinion of the Engineer, hinder construction or landscaping, shall be protected.
 - 3. Special care shall be exercised to minimize injury to trees that will not be removed. Careful digging will be performed to minimize root damage. Roots may be cut and removed up to 25 percent of the estimated root area. If more

than 25 percent is required to be cut, the Engineer shall decide whether the tree shall be removed. Straggling roots shall be pruned.

- 4. Any tree that is trimmed during construction shall be cut cleanly outside of the branch collar.
- C. Removal of brush, trees and spoil
 - 1. Contractor may chip brush and tree limbs. The Contractor shall dispose of all brush, trees, wood chips, logs, cut limbs and similar material off-site at an Owner-approved facility.
 - 2. The cutting of trees and shrubs shall be six inches above the ground surface for clearing in the known contaminated areas. Anything below this height should be considered grubbing, and associated soils shall be handled as contaminated soils and handled in accordance with the Sections titled "Off-site Transportation and Disposal."
 - 3. No brush, trees, peat or other organic material shall be placed on site or used as backfill in any excavations.

EARTHWORK

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, material, and equipment as required to perform excavation and backfilling activities including the loosening, removing, refilling, transporting, storage and disposal of all materials classified as "earth" necessary to be removed for the construction and completion of all work under the Contract, and as shown on the Contract Drawings, specified or directed.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02141 Construction Water Management
- B. 02223 Embankment
- C. 02225 Structural Excavation, Backfill and Compaction
- D. 02231 Select Fill
- E. 02241 Off-Site Transportation and Disposal
- F. 02242 Tar Excavation and Off-Site Disposal
- G. 02503 Restoration of Surfaces
- H. 02981 Topsoil and Seeding

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards, and specifications, except where more stringent requirements have been specified herein:
 - 1. American Society for Testing and Materials (ASTM)
 - a. A328 Specification for Steel Sheet Piling
 - b. D698 Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³) (600 kNm/m³)
 - c. D1556 Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
 - D1557 Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2,700 kNm/m³)
 - e. D1760 Specification for Pressure Treatment of Timber Products
 - f. D2922 Test Methods for Density of Soil and Soil Aggregate in Place by Nuclear Methods (Shallow Depth)

1.4 DEFINITIONS

- A. Excavation (or Trenching)
 - 1. Grubbing, stripping, removing, storing and rehandling of all materials of every name and nature necessary to be removed for all purposes incidental to the construction and completion of all the work under construction.
 - 2. All sheeting, sheetpiling, bracing and shoring, and the placing, driving, cutting off and removing of the same.
 - 3. All diking, ditching, fluming, cofferdamming, pumping, bailing, draining, well pointing, or otherwise disposing of water.
 - 4. The removing and disposing of all surplus materials from the excavations in the manner specified.
 - 5. The maintenance, accommodation and protection of travel and the temporary paving of highways, roads and driveways.
 - 6. The supporting and protecting of all tracks, rails, buildings, curbs, sidewalks, pavements, overhead wires, poles, trees, vines, shrubbery, pipes, sewers, conduits or other structures or property in the vicinity of the work, whether over- or underground or which appear within or adjacent to the excavations, and the restoration of the same in case of settlement or other injury.
 - 7. All temporary bridging and fencing and the removing of same.
- B. Earth
 - 1. All materials such as sand, gravel, clay, loam, ashes, cinders, pavements, muck, roots or pieces of timber, soft or disintegrated rock, not requiring blasting, barring, or wedging from their original beds, and specifically excluding all ledge or bedrock and individual boulders or masonry larger than one-half cubic yard in volume.
- C. Backfill
 - 1. The refilling of excavation and trenches to the line of filling indicated on the Contract Drawings or as directed using materials suitable for refilling of excavations and trenches; and the compacting of all materials used in filling or refilling by rolling, ramming, watering, puddling, etc., as may be required.
- D. Spoil
 - 1. Surplus excavated materials not required or not suitable for backfills or embankments.

E. Embankments

- 1. Fills constructed above the original surface of the ground or such other elevation as specified or directed.
- F. Limiting Subgrade
 - 1. The underside of the pipe barrel for pipelines
 - 2. The underside of footing lines for structures
- G. Excavation Below Subgrade
 - 1. Excavation below the limiting subgrades of structures or pipelines.
 - 2. Where materials encountered at the limiting subgrades are not suitable for proper support of structures or pipelines, the Contractor shall excavate to such new lines and grades as required.

PART 2 PRODUCTS

2.1 MATERIALS AND CONSTRUCTION

- A. Wood Sheeting and Bracing
 - 1. Shall be sound and straight; free from cracks, shakes and large or loose knots; and shall have dressed edges where directed.
 - 2. Shall conform to National Design Specifications for Stress Grade Lumber having a minimum fiber stress of 1200 pounds per square inch.
 - 3. Sheeting and bracing to be left-in-place shall be pressure treated in accordance with ASTM D1760 for the type of lumber used and with a preservative approved by the Engineer.
- B. Steel Sheeting and Bracing
 - 1. Shall be sound
 - 2. Shall conform to ASTM A328 with a minimum thickness of 3/8 inch.
 - 3. Shall be in accordance with technical specification 02400 Steel Sheet Piling.

PART 3 EXECUTION

3.1 UNAUTHORIZED EXCAVATION

A. Whenever excavations are carried beyond or below the lines and grades shown on the Contract Drawings, or as given or directed by the Engineer, all such excavated space shall be refilled with special granular materials, concrete or other materials as

the Engineer may direct. All refilling of unauthorized excavations shall be at the Contractor's expense.

B. All material which slides, falls or caves into the established limits of excavations due to any cause whatsoever, shall be removed and disposed of at the Contractor's expense and no extra compensation will be paid the Contractor for any materials ordered for refilling the void areas left by the slide, fall or cave-in.

3.2 STORAGE OF MATERIALS

- A. Sod
 - 1. Any sod cut during excavation shall be removed and stored during construction so as to preserve the grass growth. Sod damaged while in storage shall be replaced in like kind at the sole expense of the Contractor.
- B. Topsoil
 - 1. Topsoil suitable for final grading shall be removed and stored separately from other excavated material.
- C. Excavated Materials
 - 1. All excavated materials shall be stored in locations so as not to endanger the work, and so that easy access may be had at all times to all parts of the excavation. Stored materials shall be kept neatly piled and trimmed, so as to cause as little inconvenience as possible to public travel or to adjoining property holders.
 - 2. Special precautions must be taken to permit access at all times to fire hydrants, fire alarm boxes, police and fire department driveways, and other points where access may involve the safety and welfare of the general public.

3.3 DISPOSAL OF MATERIALS

- A. Spoil Material
 - 1. All spoil materials shall be disposed of as specified under section 02241 "Off-Site Transportation and Disposal".
 - 2. The surface of all spoil areas shall be graded and dressed and no unsightly mounds or heaps shall be left on completion of the work.

3.4 SHEETING AND BRACING

- A. Installation
 - 1. The Contractor shall furnish, place and maintain such sheeting, bracing and shoring as may be required to support the sides and ends of excavations in such manner as to prevent any movement which could, in any way, injure the pipe, structures, or other work; diminish the width necessary for

construction; otherwise damage or delay the work of the Contract; endanger existing structures, pipes or pavements; or cause the excavation limits to exceed the right-of-way limits.

- 2. In no case will bracing be permitted against pipes or structures in trenches or other excavations.
- 3. Sheeting shall be driven as the excavation progresses, and in such manner as to maintain pressure against the original ground at all times. The sheeting shall be driven vertically with the edges tight together, and all bracing shall be of such design and strength as to maintain the sheeting in its proper position. Seepage which carries fines through the sheeting shall be plugged to retain the fines.
- 4. Where breast boards are used between soldier piles, the boards shall be back packed with soil to maintain support.
- 5. The Contractor shall be solely responsible for the adequacy of all sheeting and bracing.
- B. Removal
 - 1. In general, all sheeting and bracing, whether of steel, wood or other material, used to support the sides of trenches or other open excavations, shall be withdrawn as the trenches or other open excavations are being refilled. That portion of the sheeting extending below the top of a pipe or structural foundation shall not be withdrawn, unless otherwise directed, before more than 6 inches of earth is placed above the top of the pipe or structural foundation and before any bracing is removed. The voids left by the sheeting shall be carefully refilled with selected material and rammed tight with tools especially adapted for the purpose or otherwise as may be approved.
 - 2. The Contractor shall not remove sheeting and bracing until the work has attained the necessary strength to permit placing of backfill.
- C. Left in Place
 - 1. If, to serve any purpose of his own, the Contractor files a written request for permission to leave sheeting or bracing in the trench or excavation, the Engineer may grant such permission, in writing, on condition that the cost of such sheeting and bracing be assumed and paid by the Contractor.
 - 2. The Contractor shall leave in place all sheeting, shoring and bracing which are shown on the Contract Drawings or specified to be left in place or which the Engineer may order, in writing, to be left in place. All shoring, sheeting and bracing shown or ordered to be left in place will be paid for under the appropriate item of the Contract. No payment allowance will be made for wasted ends or for portions above the proposed cutoff level which are driven down instead of cut-off.

3. In the event that sheeting is left in place permanently, it shall be cut off or driven down as directed so that no portion of the same shall remain within 12 inches of the street subgrade or finished ground surface.

3.5 BACKFILLING

- A. General
 - 1. All excavations shall be backfilled to the original surface of the ground or to such other grades as may be shown, specified or directed.
 - 2. Backfilling shall be done with suitable excavated materials which can be satisfactorily compacted during refilling of the excavation. In the event the excavated materials are not suitable, Special Backfill as specified or ordered by the Engineer shall be used for backfilling.
 - 3. Any settlement occurring in the backfilled excavations shall be refilled and compacted.
- B. Unsuitable Materials
 - 1. Stones, pieces of rock or pieces of pavement greater than 1 cubic foot in volume or greater than 1.5 feet in any single dimension shall not be used in any portion of the backfill.
 - 2. All stones, pieces of rock or pavement shall be distributed through the backfill and alternated with earth backfill in such a manner that all interstices between them shall be filled with earth.
 - 3. Frozen earth shall not be used for backfilling.
- C. Compaction and Density Control
 - 1. The compaction shall be as specified for the type of earthwork, i.e., structural, trenching or embankment.
 - a. The compaction specified shall be the percent of maximum dry density.
 - b. The compaction equipment shall be suitable for the material encountered.
 - 2. Where required, to assure adequate compaction, in-place density test shall at the expense of the Contractor be made by an approved testing laboratory.
 - a. The moisture-density relationship of the backfill material shall be determined by ASTM D1557.
 - 1) Compaction curves for the full range of materials used shall be developed.

- b. In-place density shall be determined by the methods of ASTM D1556 or ASTM D2922 and shall be expressed as a percentage of maximum dry density.
- 3. Where required, to obtain the optimum moisture content, the Contractor shall add, at his expense, sufficient water during compaction to assure the specified maximum density of the backfill. If, due to rain or other causes, the material exceeds the optimum moisture content, it shall be allowed to dry, assisted if necessary, before resuming compaction or filling efforts.
- 4. The Contractor shall be responsible for all damage or injury done to pipes, structures, property or persons due to improper placing or compacting of backfill.

3.6 OTHER REQUIREMENTS

- A. Drainage
 - 1. All material deposited in roadway ditches or other water courses shall be removed immediately after backfilling is completed and the section, grades and contours of such ditches or water courses restored to their original condition, in order that surface drainage will be obstructed no longer than necessary.
- B. Unfinished Work
 - 1. When, for any reason, the work is to be left unfinished, all trenches and excavations shall be filled and all roadways, sidewalks and watercourses left unobstructed with their surfaces in a safe and satisfactory condition. The surface of all roadways and sidewalks shall have a temporary pavement.
- C. Hauling Material on Streets
 - 1. When it is necessary to haul material over the streets or pavements, the Contractor shall provide suitable tight vehicles so as to prevent deposits on the streets or pavements. In all cases where any materials are dropped from the vehicles, the Contractor shall clean up the same as often as required to keep the crosswalks, streets and pavements clean and free from dirt, mud, stone and other hauled material.
- D. Dust Control
 - 1. It shall be the sole responsibility of the Contractor to control the dust created by any and all of the Contractor's operations to such a degree that it will not endanger the safety and welfare of the general public.
 - 2. Calcium chloride and petroleum products shall not to be used for dust control.

<u>02221-8</u> 1118/44581

- E. Test Pits
 - 1. For the purpose of obtaining detail locations of underground obstructions, the Contractor shall make excavations in advance of the work. Payment for the excavations ordered by the Engineer will be made under an appropriate item of the Contract and shall include sheeting, bracing, pumping, excavation and backfilling.

EMBANKMENT

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, material, and equipment required in the construction of earth embankments constructed to established lines and grades at the locations shown on the Contract Drawings and as directed by the Engineer.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02211 Clearing and Grubbing
- B. 02221 Earthwork
- C. 02241 Off-Site Transportation and Disposal
- D. 02242 Tar Excavation and Off-Site Disposal
- E. 02503 Restoration of Surfaces
- F. 02981 Topsoil and Seeding

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards and specifications, except where more stringent requirements have been specified herein:
 - 1. American Society for Testing and Materials (ASTM)
 - a. D698 Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³) (600 kN- m/m^3)
 - b. D1556 Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
 - c. D1557 Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2,700 kNm/m³)
 - d. D2922 Test Methods for Density of Soil and Soil Aggregate in Place by Nuclear Methods (Shallow Depth)

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Proposed testing laboratory.

- 2. Source of off-site materials.
- 3. Compaction curves for all materials to be used.
- 4. Particle size distribution curves for all materials to be used.
- 5. Certification from Owner of source testing in accordance with the Special Provisions.
- 6. Location of samples collected within borrow areas for laboratory testing.
- 7. Results of field tests.
- 8. All mining and borrow permits required by local, state and federal agencies.

1.5 TESTING

A. All testing, including field and laboratory services, shall be at the Contractor's expense without additional compensation, except where separate payment is specified.

PART 2 PRODUCTS

- 2.1 GENERAL
 - A. Embankment material shall be free from frost, stumps, trees, roots, sods, muck, marl, vegetable matter or other unsuitable material and shall be suitable for compaction as described in the following provisions. Where embankments are to be placed underwater only acceptable granular materials shall be used unless otherwise specified.
 - B. Embankment materials shall be obtained from acceptable soils on the site, or approved off-site sources.

PART 3 EXECUTION

3.1 PREPARATION OF SUBGRADE

- A. The entire surface to be covered with embankment shall be grubbed and stripped of all grass, vegetation, topsoil, rubbish, or other unsuitable materials before any embankment material is placed.
 - 1. Topsoil shall be stockpiled or placed as designated.
 - 2. Other grubbed and stripped materials shall be removed as spoil.
- B. Stripped or excavated surfaces on which embankments are to be placed shall be compacted to the required density of the embankment prior to any fill being placed.

3.2 PLACEMENT AND COMPACTION

- A. Materials shall be placed in lifts not greater than 8 inches of thickness unless greater thicknesses are allowed by the Engineer upon demonstration by the Contractor that the materials and compaction efforts are adequate to obtain the required density.
- B. Material shall be placed in a uniform lift and thoroughly compacted by compaction equipment suitable for the material encountered to obtain the required density prior to the placement of succeeding lift.
 - 1. Each lift shall be tested for proper compaction before successive lifts are applied.
- C. Stones shall not exceed 6 inches in greatest dimension and shall be well distributed throughout the soil mass. Stone shall be defined as rock material either in its natural or broken state.
- D. Stones not well mixed with soil material shall not be used in earth embankments unless the stone material is sufficiently deteriorated or friable so as to be compactable to achieve minimum voids and required density.
- E. If the required density is not obtained, compaction of the embankment shall continue until specified densities are obtained, before any additional embankment is placed. Improperly compacted embankment shall be removed.
- F. Where required, the Contractor shall, at his expense, add sufficient water during the compaction effort to assure proper density. If, due to rain or other causes, the material exceeds the optimum moisture content for satisfactory compaction, it shall be allowed to dry, assisted by discing or harrowing, if necessary, before compaction or filling effort is resumed.
- G. The Contractor shall be required to seal the working surface at the close of each day's operation and when practical prior to rainfall. Sealing shall be accomplished by rolling the surface with a smooth wheel steel roller.
- H. Compaction or consolidation achieved by traveling trucks, machines and other equipment will not be accepted unless such procedures are approved by the Engineer and proper compaction density is achieved.
- I. Hand tamping shall be required around buried utility lines or other subsurface features that could be damaged by mechanical compaction equipment.
- J. Embankments shall be constructed to such elevations as to make allowance for any settlement that may occur. Prior to the construction of any structure, roadway or other ground feature and before final acceptance of the contract, the Contractor shall regrade the embankments to conform to the established lines and grades.

3.3 DENSITY CONTROL

A. Embankments shall be compacted to 90% of maximum dry density as determined by the density tests designated in ASTM D1557.

- 1. Compaction curves for the full range of soil materials to be used in the embankment shall be developed by an approved independent testing laboratory.
- B. Field control samples shall be taken and tested by the testing laboratory as required to assure that adequate compaction of the embankment material is being achieved.
- C. A minimum of one (1) in-place density test shall be made for every (10,000) square feet of compacted area per lift.
 - 1. In-place density of soils shall be determined by the methods described in ASTM D1556 or ASTM D2922 and expressed as a percentage of the maximum dry density.

STRUCTURAL EXCAVATION, BACKFILL AND COMPACTION

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, material, and equipment as required to perform excavation and backfill activities for the construction of structures in accordance with the applicable provisions of the Section entitled "Earthwork" unless modified herein.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02223 Embankment
- C. 02231 Select Fill
- D. 02503 Restoration of Surfaces
- E. 02981 Topsoil and Seeding

PART 2 PRODUCTS

NOT USED

PART 3 EXECUTION

3.1 LIMITS OF EXCAVATION

- A. Excavations shall be made to the elevations or subgrades specified and shall be only of sufficient size to allow suitable room for the proper construction of structures and appurtenances, including allowances for sheeting, dewatering, and other similar work necessary for completion of the Contract.
- B. Normal subgrade for structures shall be the underside of footing lines or mud mats, if installed.
- C. In no case will undercutting excavation faces be permitted.

3.2 SUBSURFACE REINFORCEMENT

- A. Where an unstable subgrade is encountered and subject to the approval of the Engineer, select fill may be used for subgrade reinforcement if satisfactory results can be obtained thereby. Such material shall be applied in thin layers, each layer being entirely embedded in the subsoil by thorough tamping.
- B. All excess material shall be removed to compensate for the displacement by the select fill and the finished elevation shall not be above the specified subgrade.

C. Where subgrade reinforcement is unsatisfactory, a concrete mud mat of sufficient thickness to withstand subsequent construction operations shall be installed below the specified elevation and the structural concrete deposited thereon.

3.3 SUBSURFACE

A. Subsurface for all concrete structures shall be undisturbed original earth or, mud mat on undisturbed original earth, or where excavation below subgrade is ordered, it shall be thoroughly compacted special backfill or concrete mudmat as specified or directed and shall be sufficiently stable to remain firm and intact during the preparation for the placing of concrete thereon.

3.4 REMOVAL OF WATER

A. No water entering the excavations shall be removed. The Contractor shall perform all excavation activities to the depths as shown, directed or until contact with groundwater takes place, at which time excavation activities will cease.

3.5 BACKFILLING

- A. Backfilling shall be with suitable excavated materials which can be compacted as specified. In the event the excavated materials are not suitable, special backfill as specified or ordered by the Engineer shall be used for backfilling.
- B. Backfilling around structures shall not be commenced before the structure has developed sufficient strength to withstand the loads applied. No backfill material shall be allowed to fall directly on a structure until at least 12 inches of material has been hand-placed and compacted, nor shall any material be pushed directly against a structure in backfilling.
- C. Backfill shall be deposited in horizontal layers and at no greater thickness than can be compacted to obtain the specified minimum densities.

3.6 COMPACTION

- A. Where structures, driveways, sidewalks or other features are to be constructed on the backfilled area the entire backfill shall be compacted to obtain 95% maximum density. Other areas shall be compacted to obtain 90% maximum density.
- B. The density shall be determined as set forth in the Section entitled "Earthwork".

ROCK REMOVAL

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, material, and equipment as required for the removal to the widths and depths shown on the Contract Drawings or as directed by the Engineer, including the loosening, removing, transporting, storing and disposal of all materials requiring barring, or wedging for removal from their original beds, and backfill of rock excavations with acceptable materials.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02225 Structural Excavation, Backfill and Compaction
- C. 02242 Tar Excavation and Off-Site Disposal

1.3 **DEFINITIONS**

- A. Rock
 - 1. All pieces of ledge or bedrock, boulders or masonry larger than one-half cubic yard in volume.
 - 2. Any material requiring barring or wedging for removal from its original bed.

PART 2 PRODUCTS

NOT USED

PART 3 EXECUTION

3.1 BLASTING

- A. General
 - 1. No blasting shall be permitted.
- B. Rock Clearance in Trenches
 - 1. Ledge rock, boulders and large stones shall be removed from the sides and bottom of the trench to provide clearance for the specified embedment of each pipe section, joint or appurtenance, steel sheet piling, or jet grouting; but in no instance shall the clearance be less than 6 inches. Additional clearance at the pipe bell or joint shall be provided to allow for the proper make-up of the joint.

- 2. At the transition from an earth bottom to a rock bottom the minimum bottom clearance shall be 12 inches for a distance of not less than 5 feet.
- C. Rock Clearance at Structures
 - 1. Concrete for structures shall be placed directly on the rock and the excavation shall be only to the elevations and grades shown on the Contract Drawings.

3.2 EXCAVATION AND BACKFILL

- A. Rock removal and backfilling shall be performed in accordance with the applicable provisions of the Section entitled "Earthwork".
- B. The rock excavated which cannot be incorporated into the backfill material, as specified, shall be disposed of as spoil and shall be replaced with the quantity of acceptable material required for backfilling.

SELECT FILL

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes select fill materials used in either embedment or special backfill, as specified or as directed by the Owner.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02223 Embankment
- C. 02225 Structural Excavation, Backfill and Compaction
- D. 02503 Restoration of Surfaces

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards, and specifications, except where more stringent requirements have been specified herein:
 - 1. American Society for Testing and Materials (ASTM)
 - a. D422 Method for Particle-Size Analysis of Soil

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. The name and location of the source of the material.
 - 2. Samples and test reports of the material.

1.5 DEFINITIONS

- A. Embedment or Lining
 - 1. Any type granular material specified or directed placed below an imaginary line drawn one foot above the inside diameter of the pipe and within the trench limits.
- B. Special Backfill
 - 1. Pipelines

- a. Any select fill material specified or directed placed above an imaginary line drawn one foot above the inside diameter of the pipe and within the trench limits.
- 2. Structures
 - a. Any select fill material specified or directed placed within the excavation limits, either in, under or adjacent to the structure.
- C. Special Granular Material
 - 1. Special granular material shall mean any of the granular materials listed below or other materials ordered by the Owner.

PART 2 PRODUCTS

2.1 MATERIALS

- A. Type A
 - 1. Crushed Gravel
 - a. Thoroughly washed crushed, durable, sharp angled fragments of gravel free from coatings. Crushed particles shall be a minimum of 85% by weight of the particles with at least two fractured faces. The total area of each fractional face shall exceed 25% of the maximum cross-sectional area of the particle.
 - b. Crushed gravel shall have the following gradation by weight:

<u>% Passing</u>	Sieve
100%	1 ¹ /2-inch
0-25%	³ ⁄ ₄ -inch
0-5%	1/2-inch

- B. Type B
 - 1. Crushed Stone
 - a. Thoroughly washed clean, sound, tough, hard crushed limestone or approved equal free from coatings. Gradation for crushed stone shall be the same as specified for Type A material.
- C. Type C
 - 1. Crushed Stone
 - a. Thoroughly washed, clean, sound, tough, hard, crushed limestone or approved equal free from coatings. It shall have a gradation by weight of 100% passing a 1-inch square opening and 0 15% passing a ¹/₄-inch square opening.

D. Type D

- 1. Washed Sand
 - a. Washed coarse sand having the following gradation by weight:

<u>% Passing</u>	Sieve
100	3/8 inch
95 - 100	No. 4
80 - 100	No. 8
50-85	No. 16
25 - 60	No. 30
10 - 30	No. 50
2 - 10	No. 100

b. The D10 shall be equal to or greater than 0.65 mm

E. Type E

- 1. Run-of-Bank Gravel
 - a. Run-of-bank gravel or other acceptable granular material free from organic matter with a gradation by weight of 100% passing a 1¹/₂-inch square opening, 30 to 65% passing a ¹/₄-inch square opening and not more than 10% passing a No. 200 mesh sieve as determined by washing through the sieve in accordance with ASTM D422.

F. Type F

- 1. Run-of-crusher Stone
 - a. Run-of-crusher hard durable limestone or approved equal having the following gradation by weight:

<u>% Passing</u>	Sieve
100	1½- inch
95 – 100	1
65 - 80	1/2
40 - 60	1/4
0 – 10	#200 Sieve

- G. Type G
 - 1. A mixture of Type E material and Portland cement mixed in a ratio of 15:1 and placed and compacted in a dry state.

<u>02231-4</u> 1118/44581

- H. Type H
 - 1. Graded Aggregate
 - a. Use graded aggregate base material of uniform quality throughout, substantially free from vegetable matter, shale, lumps and clay balls, and having a Limerock Bearing Ratio value of not less than 100. Use material retained on the No. 10 [2.00 mm] sieve composed of aggregate meeting the following requirements:

Use graded aggregate base material meeting the following gradation:

<u>% Passing</u>	Sieve
100	2-inch
95 - 100	1 1/2
65 – 90	3/4
45 - 75	3/8
35 - 60	#4 Sieve
25 - 45	#10 Sieve
5 - 25	#50 Sieve
0 - 10	#200 Sieve

PART 3 EXECUTION

3.1 INSTALLATION

A. Special backfill where specified or directed shall be placed in accordance with the backfilling provisions of the Section titled "Earthwork".

3.2 DISPOSAL OF DISPLACED MATERIALS

A. Materials displaced through the use of Select Fill shall be wasted or disposed of by the Contractor and the cost of such disposal shall be included in the unit price bid for each of the materials.

3.3 SETTLEMENTS

A. Any settlements in the finished work shall be made good by the Contractor.

OFF-SITE TRANSPORTATION AND DISPOSAL

PART 1 GENERAL

1.1 SUMMARY

A. The Contractor shall properly transport and dispose of all items, including solid and liquid wastes removed from the site, to appropriate disposal facilities in accordance with the Waste Management Plan for the Remedial Action for Former Fulton Manufactured Gas Plant Site (February 2011) and this specification. This includes former manufactured gas plant (MGP) wastes as well as construction debris and other waste material (*e.g.* trees and brush removed from the areas of excavation) generated by the Contract work. The Contractor shall be responsible and will be held accountable for assuring that all sampling, analysis, transportation, and disposal requirements of the Treatment, Storage, and Disposal Facility (TSDF), Solid Waste Management Facility (SWMF), and/or Publicly Owned Treatment Works (POTW) are complied with as applicable, and that Federal, State, and local government requirements are complied with.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02223 Embankment
- C. 02242 Tar Excavation and Off-Site Disposal

1.3 DOCUMENTS MADE PART OF SPECIFICATION BY REFERENCE

A. Waste Management Plan for the Remedial Action for Former Fulton Manufactured Gas Plant Site (February 2011)

1.4. SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Transportation Plan: The Contractor shall submit a Transportation Plan to the Engineer prior to the start of work for review. This shall include:
 - a. Type and number of vehicles used
 - b. Travel routes and times
 - c. Copies of transportation permits
 - 2. Disposal Facilities: Prior to the disposal of any waste, the Contractor shall submit to the Engineer information regarding proposed facilities for disposal of each type of waste. All proposed facilities must be permitted. Information submitted shall include, but not be limited to:

- a. Name
- b. Owner
- c. Type of facility/permit
- d. Contact person, phone number
- e. Location
- f. Hours of operation
- g. Copies of permits

1.5 PERMITS AND REGULATIONS

- A. The Contractor shall comply with all Federal, State, and local regulations regarding transportation and disposal of wastes. These include, but are not limited to:
 - 1. Trucks used for transportation of wastes shall be permitted for such use;
 - 2. Vehicle operator possession of a commercial driver's license with hazardous waste materials endorsement (if applicable);
 - 3. Registration of vehicle as a hazardous waste carrier (if applicable);
 - 4. Utilization of shipping papers and/or hazardous waste manifest (if applicable);
 - 5. Proper marking and placarding of vehicles;
 - 6. Placement of emergency response procedures and emergency telephone numbers in vehicle, and operator familiarity with emergency response procedures; and
 - 7. Compliance with load height and weight regulations.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

- A. All equipment supplied shall be in good working condition. Equipment and machinery delivered to the site, including haul trucks that have visible oil or hydraulic fluid leaks, will not be allowed on site until satisfactorily repaired. The Contractor is responsible for the cleanup of any oil or hydraulic fluid spills at the Contractor's expense.
- B. The Contractor shall not allow soil to be tracked off site at any time during the project. Visible soil tracks on streets will not be allowed. The Contractor shall take sufficient precautions to prevent loose soils from adhering to tire treads, wheel wells, etc. Any loose soil spread shall be cleaned up.

C. Trucks used for transportation of material for off-site disposal shall be water tight. The disposal vehicles shall be equipped with solid covers (*e.g.* tightly woven fabric, no mesh covers) that shall be utilized during the transportation of wastes from the Site to the disposal facility. Trucks carrying waste material are not permitted to leave the Site without the waste being covered.

PART 3 EXECUTION

3.1 DECONTAMINATION

A. Transport vehicles shall be decontaminated upon leaving the Exclusion Zone at the site and again at the disposal facility as required.

3.2 TRANSPORTATION

A. Materials shall be transported only at the times and by the routes indicated in the approved Transportation Plan, unless permission is received by the Engineer to do otherwise. The Contractor shall observe the legal load limits.

Prior to shipment of wastes off the site, the Contractor shall confirm by written communication from the designated TSDF that it is authorized, has the capacity, and will provide or assure that the ultimate disposal method is followed for the particular waste on the manifest. Additionally, the Contractor shall confirm by written communication from the designated transporter(s) that they are authorized to deliver the manifested waste to the designated TSDF or SWMF.

3.3 SAMPLING

A. The Contractor shall be responsible for all cost associated with sampling of wastes to be disposed of as may be required by the disposal facility.

3.4 MANIFESTING

A. The Contractor shall complete all required manifest forms and Bill of Lading forms for the Owner for proper transportation and disposal of materials off site. The Contractor shall be responsible and will be held accountable for assuring that all sampling, analysis, transportation, and disposal requirements of the TSDF, SWMF, POTW, Federal, State, and local governments are complied with and properly documented.

TAR EXCAVATION AND OFF-SITE DISPOSAL

PART 1 GENERAL

1.1 SUMMARY

- A. Tar shall be defined as visually identifiable tar, which includes tar mixed with soil, slag, ash, or a combination of fill materials and soils.
- B. This Section includes excavation and backfilling including the loosening, and removing, of all tar to be removed and disposed of off-site and refilling of the resulting excavation.
- C. Excavation of tar to be disposed of off-site to the widths, depths and grades shown on the Contract Drawings, or as directed by the Engineer.
- D. The approximate location and limits of tar to be excavated and disposed of off-site are indicated on the Contract Drawings.
- E. The tar shall be staged in the water-tight containers. The Contractor is responsible for all handling and processing of the tar material.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 01700 Health and Safety
- B. 02221 Earthwork
- C. 02223 Embankment
- D. 02241 Off-Site Transportation and Disposal
- E. 02270 Erosion and Sediment Control
- F. 02503 Restoration of Surfaces

1.3 DOCUMENTS MADE PART OF SPECIFICATION BY REFERENCE

A. Waste Management Plan for the Remedial Action for Former Fulton Manufactured Gas Plant Site (February 2011)

1.4 APPLICABLE CODES, STANDARDS, AND SPECIFICATIONS

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards and specifications, except when more stringent requirements have been specified herein:
 - 1. American Society for Testing and Materials (ASTM)
 - a. ASTM D698 Test Method for Laboratory Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³) (600 kNm/m³)

- b. ASTM D1557 Test method for Laboratory Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2,700 kN-m/m³)
- c. ASTM D2922 Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
- d. ASTM D3017 Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)
- e. USEPA Method 9095 Paint Filter Test

1.5 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. A description, submitted for Engineer review, of the manner in which the tar or excavation spoils removed from the site will be dewatered, if required, for transportation to an off-site disposal facility. The description shall identify the materials/admixtures that will be utilized, if any, and indicate the anticipated quantity (tons) of admixtures that will be utilized.
 - 2. A plan, submitted for Engineer review, depicting the proposed layout of equipment to be utilized for tar or excavation spoils dewatering and showing the proposed locations of any material stockpiles.
 - 3. A Vapor/Odor Management Plan that will detail methods to be implemented to control vapors and odors emanating from excavations and stockpiles.
 - a. The primary measure to minimize the generation of vapors and odors shall be to minimize, to the extent practical, the exposed surface of waste material and contaminated soil.
 - b. Secondary measures shall include the use of products such as RUSMAR Foaming Agents, as approved by National Grid and NYSDEC, to mask objectionable odors.
 - 4. Paint filter procedure to be performed.

PART 2 PRODUCTS

NOT USED

PART 3 EXECUTION

3.1 TAR EXCAVATION

- A. Excavation of tar in the locations shown on the Contract Drawings, specified as approximate areas to be excavated and disposed of off site, to the extent shown on the Contract Drawings or as directed by the Engineer. All tar excavated within the areas shall be disposed of off-site in accordance with the Waste Management Plan for the Remedial Action for Former Fulton Manufactured Gas Plant Site (February 2011) and as specified.
- B. The Contractor shall excavate all tar designated for off-site disposal and stage at location approved by the Engineer. The Contractor shall sample tar designated for off-site disposal and analyze for the requirements of the disposal facility. At minimum, the impacted soil to be disposed of off-site will be sampled at a frequency of 1 composite sample per 1000 tons, made of 5 grab samples representative of the waste, and each composite sample will be analyzed for RCRA characteristics of flammability, ignitability, toxicity, and corrosivity. Also, each composite sample will be analyzed for reactive cyanide and sulfide.
- C. The Contractor shall transport all tar designated to be disposed of off-site to the water-tight containers.
- D. The Contractor shall contain all excavated tar that cannot be excavated and disposed of within one day, in covered water-tight containers or in piles lined and covered with 40-mil thick plastic sheeting (either singularly or layered). Appropriate erosion controls shall also be placed in accordance with the Section Erosion and Sediment Control.
- E. The Contractor shall excavate tar utilizing appropriate procedures and equipment. Normal earthwork excavation shall be used wherever possible.
- F. The Contractor shall utilize approved procedures and equipment to mitigate odors and vapors resulting from tar excavation.

3.2 DEBRIS PROCESSING

A. The potential exists for encountering concrete or brick foundation material, abandoned piping, and other debris at the site. It is the Contractor's responsibility to render the materials into manageable size (i.e., less than ½ cubic yard volume or 10-foot lengths of pipe) as directed by the Engineer. Prior to shipping the debris or concrete off-site, grossly contaminated soil adhering to the surface will be removed, as necessary, by scraping, brushing, or other means approved by the Engineer. Associated grossly impacted soil will be transported off-site for treatment (if necessary) and disposed of in accordance with the Waste Management Plan for the Remedial Action for Former Fulton Manufactured Gas Plant Site (February 2011) and applicable regulations.

B. As appropriate, separate stockpiles of soil will be established during the construction; those with soil containing visible coal tar or separate phase materials, and others with soil not exhibiting visible signs of NAPL. To the extent that space allows, surface soil removed for grading purposes and soil that does not contain visible coal tar or separate phase material may be reused on site as excavation backfill beneath the cover with concurrence of the Engineer and NYSDEC.

3.3 MATERIAL SEGREGATION

A. The Contractor shall segregate materials as directed by the Engineer during the excavation of soils for material handling activities including (if necessary): gravity dewatering, mixing, stabilizing, and characterizing.

3.4 PRETREATMENT AND MIXING

- A. The Contractor shall be responsible for the pretreatment and mixing of excavated materials (as necessary to meet selected off-site disposal facility requirements) to render the materials suitable for off-site disposal. The pretreatment and off-site transportation of excavated tar will be conducted concurrently with the soil excavation activities in a manner to complete the project in an effective and efficient manner. The Contractor should be aware that very limited space beyond the limits of excavation is available for the pretreatment and mixing of materials. Due to the limited on-site area for the staging of large quantities of materials, pretreatment and mixing of tar shall be performed in such a manner such that the means and methods of pretreatment and mixing of materials does not impact the rate of production necessary to complete excavation activities within the scheduled timeframe. At a minimum, the Contractor shall be responsible for the following:
 - 1. The Contractor shall be responsible for stabilizing/amending the excavated materials as necessary to remove free liquids or otherwise render the materials suitable for disposal, prior to off-site treatment and/or disposal (as directed by the Owner's representative). The Contractor shall be responsible for the determination of means and methods for the stabilization of excavated materials (e.g., by amending tar with on-site soils or clean dry soil by means of mixing materials within the excavation, gravity dewatering, and/or mixing materials adjacent to the excavation area, or mixing materials within lined dump trailers). The contractor shall be prohibited from using quick lime and/or lime kiln dust containing greater than 50% Ca/MgO for the purpose of amending tar impacted soil.
- B. The Contractor shall be responsible for developing the means, methods, and rates of pretreatment and mixing of the excavated tar to render them suitable for off-site disposal. The means, method, and rates of pretreatment and mixing of the excavated tar shall be submitted to the Engineer for approval. The Contractor may not blend more material than required to meet requirements for the off-site disposal facility as determined by the Engineer or not as ordered by the Engineer.

3.5 BACKFILL AND COMPACTION

- A. The tar excavation areas located within the limits of the Site shall be backfilled with compacted embankment material as specified in the Contract Documents.
- B. The Contractor shall compact all backfill to a minimum 90% modified density and tested in accordance with the following:

Test	Standard	Minimum Frequency	Criteria
Compaction	ASTM	Once per 5000 cubic	Develop
Characteristics	D1557	yards or a minimum	compaction
		of one, whichever is greater	characteristics
In-Place	ASTM	Five (5) per acre per	Monitor
Moisture	D3017	lift or a minimum of	compaction
Content		one, whichever is greater	-
In-Place Density	ASTM	Five (5) per acre per	Minimum 90% of
	D2922	lift or a minimum of one, whichever is greater	maximum density in accordance with ASTM D1557

- C. The Contractor shall make all reasonable efforts to grade cut areas in a manner to achieve the required subgrade following compaction of the said cut areas.
- D. Any areas of soils not meeting the criteria shall be reworked by the Contractor to meet the criteria at no additional cost to the Owner.
- E. Additional testing may be required at the request of the Engineer.

3.6 TRANSPORTATION AND STAGING

- A. All tar to be disposed of off-site shall pass the paint filter test prior to being transported from the limits of the Site.
- B. The Contractor shall transport all tar to be disposed of off-site in a water-tight container. The disposal vehicles shall be equipped with solid covers (*e.g.* tightly woven fabric, no mesh covers) that shall be utilized during the transportation of wastes from the Site to the disposal facility. Trucks carrying waste material are not permitted to leave the Site without the waste being covered.
- C. The Contractor shall be responsible for storing the tar to be disposed off-site in watertight containers. Precipitation shall not be allowed to come in contact with the tar to be disposed of off-site.
- D. The Contractor shall load all tar to be disposed of off site on the transportation vehicles.
- E. The Contractor shall utilize preprinted manifests provided by National Grid.

F. The Owner's representative will maintain characterization and disposal records for all waste materials generated as a direct result of construction activities.

3.7 COVER OF DISTURBED AREAS AND PLACED MATERIALS

- A. The portion of the site within the limits of work, as shown on the Contract Drawings shall be restored as specified under Section 02503 "Restoration of Surfaces" or as shown on the Contract Drawings.
- B. To control release of dust and to minimize the generation of construction water, the Contractor shall avoid excessive disturbance of the excavated tar.

3.8 **RESTORATION**

- A. No backfilling activities shall be performed without acceptance of the Engineer.
- B. Excavated areas within the limits of the Site shall be backfilled with embankment material as shown on the Contract Drawings, specified or directed.

EROSION AND SEDIMENT CONTROL

PART 1 GENERAL

1.1 SUMMARY

- A. This Section includes erosion and sediment control performed to minimize erosion of soils and sediments into drainage channels, and lands adjacent to or affected by the Work, and to prevent storm water run-on onto work areas and to prevent potentially contaminated storm water run-off (including soils and sediment) from leaving the site without appropriate treatment.
- B. Erosion and sediment control measures to be implemented shall be in accordance with this specification, and as may be required by the New York State Department of Environmental Conservation (NYSDEC). In the event of discrepancies between this Specification and the NYSDEC requirements, the NYSDEC requirements shall govern.
- C. Erosion and sediment controls shall be constructed at additional locations as ordered by the Engineer and without additional cost when the Engineer is of the opinion that additional measures may be required to provide adequate erosion and sediment control.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02241 Off-Site Transportation and Disposal
- B. 02242 Tar Excavation and Off-Site Disposal

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards, and specifications, except where more stringent requirements have been specified herein:
 - 1. 40 CFR 122 EPA Administered Permit Programs: The National Pollutant Discharge Elimination System
 - 2. 40 CFR 123 State Program Requirements
 - 3. 40 CFR 124 Procedures for Decision Making

1.4 SUBMITTALS

A. In addition to those submittals identified in the Supplemental Conditions and prior to initiation of any site work, the Contractor shall prepare an Erosion and Sediment Control Plan (ESCP) which shall satisfactorily address, at minimum, the following criteria:

- 1. Construction schedule and work sequencing. The plan shall clearly describe for each major construction activity the appropriate erosion, sediment, run-off and run-on control measures that will be implemented and the timing for implementation. (For example, perimeter controls for one portion of the site will be installed after the clearing and grubbing necessary for installation of the measure, but before the clearing and grubbing for the remaining portions of the site. Perimeter controls shall be actively maintained until final stabilization of those portions of the site upward of the perimeter control. Temporary perimeter controls shall be removed after final stabilization).
- 2. Locations of temporary and permanent (if proposed) measures.
- 3. Vegetative erosion and sediment control measures (*i.e.*, seed, mulch, etc.).
- 4. Structural erosion and sediment control measures (*i.e.*, traps, silt fences, sedimentation basins, etc.).
- 5. Stabilized construction entrance, including provisions for wheel washdown.
- 6. Storm water (run-on and run-off) management including methods to direct clean storm water away from the work area and to contain and minimize the amount of storm water entering the work area which may require treatment, provisions for containment/holding prior to treatment, etc.

1.5 SPECIAL REQUIREMENTS

- A. In addition to appropriate permit and ESCP requirements, construction procedures shall include protection of the environment in accordance with all pertinent Federal, State and local regulations. Construction procedures that are prohibited in the undertaking of work associated with this project include, but are not limited to:
 - 1. Indiscriminate, arbitrary, or capricious operation of equipment in any stream corridors, wetlands, or within the 100-year floodplain of any surface waters.
 - 2. Pumping of silt-laden water from trenches or other excavations into any surface waters, or any stream corridors, or wetlands.
 - 3. Damaging vegetation beyond the extent necessary for the work of this project.
 - 4. Disposal of trees, brush, and other debris in any stream corridors, wetlands, or within the 100-year floodplain of any surface waters.
 - 5. Dumping of spoil material into any stream corridor, surface waters, or at any unspecified or unapproved locations.
 - 6. Open burning of any debris.

- B. Upon approval of the ESCP, the Contractor shall implement and maintain the Plan. In addition, the Contractor shall place silt fence along the downgradient perimeter of the work areas or as directed by the Engineer.
- C. The Engineer shall have the authority to limit the surface area exposed by clearing, grubbing and excavation, and to direct the Contractor to implement additional erosion, run-off and run-on control measures as he deems necessary with no additional consideration for payment being made to the Contractor in this regard.

PART 2 PRODUCTS

NOT USED

PART 3 EXECUTION

- 3.1 GENERAL
 - A. Clearing schedules shall be formulated to provide minimum practical exposure of soils. Local run-on/run-off control measures shall be implemented as conditions warrant. The Contractor shall make every reasonable effort so as to not unduly disturb the ecological or environmental quality of the area.

3.2 EROSION AND SEDIMENT CONTROL

- A. During the land disturbance life of this project, the following sequence shall be adhered to:
 - 1. Clearing and grubbing for those areas necessary for installation of perimeter controls.
 - 2. Construction of perimeter controls including, but not necessarily limited to the installation and maintenance of silt fencing along the entire downgradient perimeter beyond the outer limits of potential set-up and work areas.
 - 3. Remaining clearing and grubbing.
 - 4. Trenching and excavation, providing temporary stabilization/erosion/runoff/run-on controls as required.
 - 5. Final grading and permanent stabilization.
 - 6. Removal of perimeter controls.
- B Sediment and erosion control measures may include straw bale dikes, silt fences, earth dikes, stone outlet sediment traps, stabilized construction entrances, rip rap, seeding/sodding, properly anchored mulch, and/or other measures as required.
- C. Sediment and erosion control measures shall be properly maintained and adequately functioning. Any existing measures that are damaged shall be immediately repaired.

- D. Excavated material shall be protected from erosion by using appropriate devices or stabilization.
- E. Trapped sediment shall be removed from the area of deposition and disposed of in accordance with the Section "Off-Site Transportation and Disposal."
- F. As soon as possible after disturbance of a graded area, slope stabilization through the use of mulches (wood chips or straw anchored appropriately) or matting shall be provided.
- G. Storm water that has come into contact with potentially contaminated sources shall be directed to the excavation.

GEOTEXTILE FILTER FABRIC

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes the furnishing of all labor, material, and equipment and performing all operations required for testing, furnishing, hauling, and placing geotextile, complete as specified herein and as shown on the Contract Drawings or specified by the Engineer.

1.2 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards and specifications, except where more stringent requirements have been specified herein:
 - 1. American Society for Testing and Materials (ASTM)
 - a. ASTM D3786 Test Methods for Hydraulic Bursting Strength of Knitted Goods and Nonwoven Fabric-Diaphragm Bursting Strength Tester Method
 - b. ASTM D4355 Test Method for Deterioration of Geotextiles from Exposure to Ultraviolet Light and Water (Xenon-Arc Type Apparatus)
 - c. ASTM D4491 Test Methods for Water Permeability of Geotextiles by Permittivity
 - d. ASTM D4533 Test Method for Trapezoid Tearing Strength of Geotextiles
 - e. ASTM D4632 Test Method for Grab Breaking Load and Elongation of Geotextiles
 - f. ASTM D4751 Test Method for Determining the Apparent Opening Size of a Geotextile
 - g. ASTM D4833 Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Products
 - h. ASTM D5101 Test Method for Measuring Soil-Geotextile System Clogging Potential (By the Gradient Ratio)

1.3 SUBMITTALS

A. In addition to those submittals identified in the Supplemental Conditions, the Contractor shall submit manufacturer's certification that all materials furnished are in compliance with the applicable requirements of the referenced standards and this specification.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. The following manufacturers are named to establish a standard of quality necessary for the project:
 - 1. TC Mirafi 1120N
 - 2. Approved equal

2.2 GEOTEXTILE FILTER FABRIC

- A. The geotextile filter fabric shall consist of a long-chain geosynthetic polymer composed of at least 85 percent by weight of propylene, ethylene, ester, amids, or vinylidene-chloride, and shall contain stabilizers and/or inhibitors added to the base plastic to make the filaments resistant to deterioration due to ultra-violet and heat exposure. The geotextile shall also be mildew and rot resistant, insect and rodent resistant, and inert to chemicals and hydrocarbons.
- B. The geotextile filter fabric shall be a nonwoven, needle-punched geotextile.
- C. The geotextile filter fabric shall conform to the following minimum average roll physical strength requirements:

Property	Standard	Criteria
Mass Per Unit	ASTM D5261	Minimum 12.0 oz/yd ²
Permittivity	ASTM D4491	Minimum 0.8 sec ⁻¹
Grab Tensile Strength	ASTM D4632	Minimum 300 lbs
Grab Tensile Elongation	ASTM D4632	Minimum 50%
Trapezoid Tear Strength	ASTM D4533	Minimum 115 lbs
Puncture Strength	ASTM D4833	Minimum 175 lbs
Mullen Burst Strength	ASTM D3786	Minimum 585 psi
UV Resistance	ASTM D4355	70% strength retained
Apparent Opening Size	(after 500 hours) ASTM D4751	Maximum No. 100 U.S. Sieve

- D. During all periods of shipment and storage, the geotextile shall be protected from adverse weather, heavy winds or precipitation, direct sunlight, ultraviolet light, temperatures greater than 140°F, mud, dirt, dust, debris, and vandals. To the extent possible, the geotextile shall be maintained wrapped in a heavy duty protective covering. In the event of damage, the Contractor shall immediately make all repair and replacements at no additional cost to the Owner.
- E. All geotextile testing services as specified herein necessary for the Contractor to obtain an approved geotextile material and thread shall be provided by the Contractor. All testing including laboratory and field services required during installation of the geotextile shall be provided by the Contractor.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Prior to installation of the geotextile filter fabric, the surface material on which the filter fabric is to be installed will be free of organic matter, irregularities, protrusions, and any abrupt changes in grade that could damage the filter fabric. The surface will be maintained in a smooth and uniform condition during installation of the filter fabric. The surface on which the geotextile is to be placed shall be inspected and accepted by the Engineer prior to placement of the geotextile filter fabric.
- B. The geotextile shall be placed in manner and at the locations shown on the Contract Drawings. At the time of the installation, the geotextile shall be rejected if it has defects, rips, holes, flaws, deterioration, or damage incurred during manufacture, transportation, or storage.
- C. The geotextile shall be placed with the long dimension perpendicular to the center line of trench, unless otherwise approved by the Engineer, and shall be laid smooth and free of tension, stress, folds, wrinkles, or creases. The geotextile shall be placed to provide minimum overlaps of 1.5 feet.
- D. The geotextile shall be protected at all times during construction from damage by surface runoff and construction activities, and any geotextile so damaged shall be removed and replaced with undamaged geotextile. Any damage to the geotextile during its installation or during placement of soil layers or other activities shall be replaced by the Contractor at the Contractor's expense.
- E. The Work shall be scheduled so that the covering of the geotextile (i.e. backfilling) with the specified material is accomplished within 5 days after placement of the geotextile. Failure to comply shall require replacement of geotextile.
- F. The geotextile shall be protected from damage due to the placement of materials by limiting the height of drop of the material to less than 1 foot unless otherwise accepted by Engineer.

JET GROUTING

PART 1 GENERAL

1.1 SUMMARY

- A. The work covered by this section shall consist of all labor, equipment, supplies and materials for the installation, monitoring and testing of jet grouting within the limits indicated on the Contract Drawings.
- B. It shall be the jet grouting Contractor's responsibility to determine and implement the systems and criteria to ensure that specified improvement is achieved.

1.2. RELATED WORK SPECIFIED ELSEWHERE

A. 02221 – Earthwork

1.3 STANDARDS AND REFERENCES

- A. All work shall be performed in compliance with the Contract Documents unless otherwise approved in writing by the Engineer.
- B. Materials and installation shall be in accordance with the latest revisions of the following codes, standards, and specifications, except where more stringent requirements have been specified herein:
 - 1. Amerian Society for Testing and Materials (ASTM) Standards (latest revisions):
 - C39 Test Method for Compressive Strength of Cylindrical Concrete Specimens
 - b. C150 Portland Cement
 - c. C494 Chemical Admixtures for Concrete
 - C618 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete
 - e. C1017 Chemical Admixtures for Use in Producing Flowing Concrete
 - f. D2488 Description and Identification of Soils (Visual Manual Procedure)

1.4 DEFINITIONS

A. Jet grouting: The process of creating soilcrete in place with stabilizing fluids delivered at high velocity through nozzle(s) at the end of a monitor inserted in a borehole. The soilcrete is created by rotating and lifting the monitor defined above at slow, smooth, constant speeds, eroding the soil with fluid (water or grout slurry) and air, and, if using water as the erosion media, tremie feeding an engineered grout slurry through the base of the monitor to achieve more thorough mixing and a consistent continuous geometry and quality.

B. Monitor: A single, double, or triple-phase fluid drill pipe designed to deliver one to three elements of the jet grouting process: air, water, and grout. The monitor has one or more injection points. The nozzle(s) injects fluid at high velocity into the soil to erode and mix it with cementitious slurry. The cutting action of the fluids is enhanced by surrounding it with a concentric collar of compressed air.

1.5 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. A list of at least five previously completed projects of similar scope and purpose for approval by the Engineer. The list shall include a description of the project, relative size, and contact person with phone number.
- B. The following shall be submitted to the Engineer by the grouting Contractor two weeks prior to the start of the work:
 - 1. Resumes of the management, supervisory, and key personnel, for approval by the Engineer.
 - 2. A ground movement monitoring plan, as detailed in section 3.3 of these specifications.
 - 3. A mix design for the project indicating sources and types of grout materials, with volumetric proportions, and field test data from previous projects indicating compressive strength achieved. If the grouting Contractor intends to deviate from the material provided in Section 2.2 of this specification, it shall submit, with the bid, evidence of satisfactory use of the proposed material from past projects with similar soil conditions.
 - 4. Work procedures, sequence, and control criteria (including parameters for each stage).
 - 5. A general Work Procedures Plan outlining the spacing, location, depth and quantity of grout to achieve the specified criteria detailed in Section 3.2 of this specification. Grout hole locations shall be dimensionally referenced to the contract drawings.
- C. The following shall be submitted to the Engineer by the grouting Contractor during the work:
 - 1. Accurate daily records of all jet grouting locations, depths of treatment, start and stop times, all jetting parameters, and grout injected for each location.
 - 2. Any change in the predetermined grouting program necessitated by a change in the subsurface conditions.

1.6 QUALITY ASSURANCE

- A. The jet grouting program shall be performed by a specialist grouting Contractor with at least ten continuous years of documented experience in jet grouting.
- B. The grouting Contractor shall provide experienced management, supervisory and key personnel as required to implement the jet grouting program, as follows:

- 1. The project manager shall have at least five years of continuous experience in jet grouting, with at least the last two years in the full-time employment of the grouting Contractor.
- 2. The superintendent shall have at least five years of experience in jet grouting.
- 3. As detailed in Section 1.4 of these specifications, the grouting Contractor shall provide:
 - a. Evidence of previous jet grouting project experience.
 - b. Evidence of management, supervisory and key personnel experience.
- C. The On-site representative will ensure that procedures and documentation conform to these specifications.

PART 2 PRODUCTS

2.1 EQUIPMENT

- A. GENERAL:
 - 1. All equipment used for drilling boreholes; lowering, raising and rotating jet monitors; mixing grout; supplying pressurized grout and air-water to jet monitors; and jet monitors used to perform the seepage barrier shall have proven performance records for use in jet grouting work.
 - 2. Spare parts and equipment shall be available on site to maintain jet grouting equipment in satisfactory operation condition at all times during execution of the jet grouting work.

B. DRILLING EQUIPMENT:

1. Use drilling equipment of a type and capacity suitable for drilling required hole diameters and depths, and lowering, raising, and rotating jet grout monitors to the depths and at the rates required to perform the work as shown on the Contract Drawings and as specified herein.

C. JET GROUTING MONITORS:

1. Use jet grouting monitors as described in Section 1.3.B of this specification having capacity suitable for producing soilcrete columns of the size and depth shown on the Contract Drawings and as specified herein.

D. GROUT MIXING AND INJECTION EQUIPMENT:

1. Use grout mixers and holding tanks, water tanks, air compressors, and pumps of sufficient capacity to ensure adequate supply of grout, air, and water at required pressure to the jet grouting monitors during a full work shift to produce grout columns of the quality and dimensions necessary.

E. QUALITY CONTROL

1. Have available acceptable soilcrete sampling devices to collect and cast samples as required in section 3.3.

2.2 GROUT MATERIALS

- A. The grout slurry may consist of any of the following materials:
 - 1. Cement, Portland, ASTM C 150, Type I.
 - Mineral Fillers used as a replacement for a portion of the cement shall be fly ash, composed of finely divided siliceous residue in accordance with ASTM C 618, Class F. The maximum amount of fly ash shall not exceed 30 percent of the cement by weight.
 - 3. Water shall be fresh, clean, potable, and free of soil, acid, salt, alkali, sewage, or phosphates.
 - 4. Admixtures as approved by the engineer. Admixtures are materials other than water, cement, sand, or mineral fillers added to the mixture immediately before or during mixing to alter its chemical or physical properties to a desired characteristic during its fluid or plastic state. Admixtures shall conform to ASTM D 494. Flowing concrete admixtures shall conform to ASTM C 1017, Type I.

PART 3 EXECUTION

3.1 SITE EXAMINATION

A. Underground utilities have been shown on the Contract Drawings where known. Other underground utilities may exist, the extent of which is unknown. Exact dimensions of all structures and utilities are considered approximate only and shall be verified as required by the Contractor in the field prior to construction.

3.2 JET GROUTING

- A. Jet grouting shall be performed in accordance with the approved grout injection area layout scheme to achieve the following acceptance criteria in the in situ soil within the work area:
 - 1. Volume coverage of a minimum of 100% of the quantity shown on the drawings.
 - 2. The proportion and injection of the jet grout mix shall create jet grouted columns with a minimum 28-day unconfined compressive strength of 250 psi and a minimum 3-day unconfined compressive strength of 125 psi when tested in accordance with ASTM C 39.
- B. Install soilcrete columns, ensuring that continuous spoil return up the borehole annulus is achieved during all work.
- C. At completion of daily jet grouting operations, thoroughly clean site and dispose of all spoil debris, water, and spilled material. Spoil stockpiling overnight is permitted prior to transfer to a predetermined waste or fill location.

3.3 FIELD QUALITY CONTROL

- A. All jet grouting shall be performed under the inspection of the Engineer.
- B. Monitoring and logging of jet grouting operations for both test areas and production work shall be done by the grouting Contractor and Engineer.
- C. Any jet grout hole lost or damaged as the result of mechanical failure of equipment, inadequacy of grout, air, or water supplies, or improper drilling or injection procedures shall be backfilled with cement grout and replaced by another hole, drilled and injected by the Contractor at no additional cost to the Owner.
- D. Grout injection, rotation, and extraction rates shall be sufficient to produce grout columns meeting the diameter, depth, overlap, and material property requirements specified herein and on the Contract Drawings.
- E. Proportion and inject grout mix so that the soilcrete column produced meets the requirements specified in section 3.2.
- F. Equipment for mixing, holding, and pumping grout shall be in a secure location and shall be operated to minimize spillage of material. No material will be allowed to enter storm drains or other drainage courses.
- G. As detailed in section 1.4, daily records shall be maintained by the grouting Contractor and submitted to the Engineer.
- H. Ensure continuous spoil return during all jet grouting operations.
- I. The grouting Contractor will monitor nearby structures and utilities during jet grouting operations such that they are not damaged or moved during construction.

3.4 TESTING AND INSPECTION

- A. To evaluate the Contractor's proposed methods and the grout mix's ability to produce soilcrete columns meeting the depth, diameter, overlapping and material property requirements shown on the Contract Drawings and specified herein, construct a test section of the jet-grouted soilcrete columns/panels in a location near the proposed jet grouting area and approved by the Engineer, prior to starting jet grouting production work at the site. The effectiveness of the jet grouting will be verified as follows:
 - 1. The Owner may retain a soil testing firm or ask the jet grouting Contractor to perform the in situ testing as directed by the Owner's engineer. Test sections will be performed before and during production work, as follows:
 - a. Test section locations will be agreed upon by the (Engineer/grouting Contractor) within the treatment area. A test section shall consist of a single module comprising at least three grout injection points. Tests will be performed at the center of the module prior to and after grouting. Spacing and diameter of elements shall be proposed by the jet grouting Contractor.

- b. All testing to determine specification compliance will be provided by an independent testing agency retained by the Contractor. Regardless of the method selected, the same test method shall be utilized both before and after the soil improvement work in order to provide the most accurate assessment of the degree of improvement obtained.
- c. The method of installation of the test section shall comply with Section 3.2 of this specification and shall be performed using the same grout line sizes, drilling and grouting equipment and procedures as that to be used for production work.
- d. Prior to commencement of production grouting, one test section shall be performed. If the pre-production test sections indicate that the required ground improvement has not been achieved, the grouting Contractor shall revise the Work procedure Plan and re-test.

RESTORATION OF SURFACES

PART 1 GENERAL

1.1 SUMMARY

- A. This Section includes restoration and maintenance of all types of surfaces, sidewalks, curbs, gutters, culverts and other features disturbed, damaged or destroyed during the performance of the work under or as a result of the operations of the Contract.
- B. The quality of materials and the performance of work used in the restoration shall produce a surface or feature at least equal to the condition of each before the work began.

1.2. RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02223 Embankment
- C. 02225 Structural Excavation, Backfill and Compaction
- D. 02231 Select Fill
- E. 02981 Topsoil and Seeding

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards and specifications, except where more stringent requirements have been specified:
 - 1. American Society for Testing and Materials (ASTM)
 - a. D698 Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³) (600 kN-m/m³)

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. A schedule of restoration operations. After an accepted schedule has been agreed upon it shall be adhered to unless otherwise revised with the approval of the Engineer.

PART 2 PRODUCTS

NOT USED

PART 3 EXECUTION

3.1 GENERAL

- A. In general, permanent restoration of paved surfaces will not be permitted until one month's time has elapsed after excavations have been completely backfilled as specified.
- B. The replacement of surfaces at any time, as scheduled or directed, shall not relieve the Contractor of responsibility to repair damages by settlement or other failures.

3.2 TEMPORARY PAVEMENT

- A. Immediately upon completion of refilling of the excavation, the Contractor shall place a temporary pavement over all disturbed areas of streets, driveways, sidewalks, and other traveled places where the original surface has been disturbed as a result of his operations.
- B. Unless otherwise specified or directed, the temporary pavement shall consist of compacted run-of-crusher limestone to such a depth as required to withstand the traffic to which it will be subjected.
- C. Where concrete pavements are removed, the temporary pavement shall be surfaced with "cold patch." The surface of the temporary pavement shall conform to the slope and grade of the area being restored.
- D. For dust prevention, the Contractor shall treat all surfaces, not covered with cold patch, as frequently as may be required.
- E. The temporary pavement shall be maintained by the Contractor in a safe and satisfactory condition until such time as the permanent paving is completed. The Contractor shall immediately remove and restore all pavement as shall become unsatisfactory.

3.3 PERMANENT PAVEMENT REPLACEMENT

- A. The permanent and final repaying of all streets, driveways and similar surfaces where pavement has been removed, disturbed, settled or damaged by or as a result of performance of the Contract shall be repaired and replaced by the Contractor, by a new and similar pavement, as specified elsewhere or as directed by the Engineer.
 - 1. The top surface shall conform to the grade of existing adjacent pavement and the entire replacement shall meet the current specifications of the local community for the particular types of pavement.
 - 2. Where the local community has no specification for the type of pavement, the work shall be done in conformity with the State Department of Transportation Standard which conforms closest to the type of surfacing being replaced, as determined by the Engineer.

3.4 PREPARATION FOR PERMANENT PAVEMENT

- A. When scheduled and within the time specified, the temporary pavement shall be removed and a base prepared, to the same thickness as the base prior to the work, to receive the permanent pavement.
 - 1. The base shall be brought to the required grade and cross-section and thoroughly compacted before placing the permanent pavement.
 - 2. Any base material that has become unstable for any reason shall be removed and replaced with compacted base materials.
- B. Prior to placing the permanent pavement all service boxes, manhole frames and covers and similar structures within the area shall be adjusted to the established grade and cross-section.
- C. The edges of existing asphalt pavement shall be cut a minimum of 1 foot beyond the excavation or disturbed base, whichever is greater.
 - 1. All cuts shall be parallel or perpendicular to the centerline of the street.

3.5 ASPHALT PAVEMENT

- A. The permanent asphalt pavement replacement for streets, driveways and parking area surfaces shall be replaced with bituminous materials of the same depth and kind as the existing unless specified elsewhere or as directed by the Engineer.
- B. Prior to placing of any bituminous pavement, a sealer shall be applied to the edges of the existing pavement and other features.
- C. The furnishing, handling and compaction of all bituminous materials shall be in accordance with the State Department of Transportation Standards.

3.6 CONCRETE PAVEMENT AND PAVEMENT BASE

- A. Concrete pavements and concrete bases for asphalt, brick or other pavement surfaces shall be replaced with Class "B" Concrete, air-entrained.
- B. Paving slabs or concrete bases shall be constructed to extend 1 foot beyond each side of the trench and be supported on undisturbed soil. Where such extension of the pavement will leave less than 2 feet of original pavement slab or base, the repair of the pavement slab or base shall be extended to replace the slab to the original edge of the pavement or base unless otherwise indicated on the Contract Drawings.
- C. Where the edge of the pavement slab or concrete base slab falls within the excavation, the excavation shall be backfilled with Special Backfill compacted to 95% maximum dry density as determined by ASTM D 698 up to the base of the concrete.
- D. The new concrete shall be of the same thickness as the slab being replaced and shall contain reinforcement equal to the old pavement.

1. New concrete shall be placed and cured in accordance with the applicable provisions of the State Department of Transportation Standards.

3.7 STONE OR GRAVEL PAVEMENT

- A. All pavement and other areas surfaced with stone or gravel shall be replaced with material to match the existing surface unless otherwise specified.
 - 1. The depth of the stone or gravel shall be at least equal to the existing.
 - 2. After compaction the surface shall conform to the slope and grade of the area being replaced.

3.8 CONCRETE WALKS, CURBS AND GUTTER REPLACEMENT

- A. Concrete walks, curbs and gutters removed or damaged in connection with or as a result of the construction operations shall be replaced with new construction.
 - 1. The minimum replacement will be a flag or block of sidewalk and 5 feet of curb or gutter.
- B. Walks shall be constructed of Class "B" concrete, air-entrained with stone aggregate on a 4-inch base of compacted gravel or stone.
 - 1. The walk shall be not less than 4 inches in thickness or the thickness of the replaced walk where greater than 4 inches, shall have construction joints spaced not more than 25 feet apart, shall have expansion joints spaced not more than 50 feet apart, and shall be sloped at right angles to the longitudinal centerline approximately 1/8 inch per foot of width.
- C. 2-inch expansion joint material shall be placed around all objects within the sidewalk area as well as objects to which the new concrete will abut, such as valve boxes, manhole frames, curbs, buildings and others.
- D. Walks shall be hand-floated and broom-finished, edged and grooved at construction joints and at intermediate intervals matching those intervals of the walk being replaced.
 - 1. The intermediate grooves shall be scored a minimum of 1/4 of the depth of the walk.
 - 2. The lengths of blocks formed by the grooving tool, and distances between construction and expansion joints shall be uniform throughout the length of the walk in any one location.
- E. The minimum length of curb or gutter to be left in place or replaced shall be 5 feet. Where a full section is not being replaced, the existing curb or gutter shall be sawcut to provide a true edge.
 - 1. The restored curb or gutter shall be the same shape, thickness and finish as being replaced and shall be built of the same concrete and have construction and expansion joints as stated above for sidewalks.

F. All concrete shall be placed and cured as specified in the Section for concrete pavement.

3.9 LAWNS AND IMPROVED AREAS

- A. The area to receive topsoil shall be graded to a depth of not less than 4 inches or as specified, below the proposed finished surface.
- B. The furnishing and placing of topsoil, seed and mulch shall be in accordance with the Section entitled "Topsoil and Seeding."
- C. When required to obtain germination, the seeded areas shall be watered in such a manner as to prevent washing out of the seed.
- D. Any washout or damage that occurs shall be regraded and reseeded until a good sod is established.
- E. The Contractor shall maintain the newly seeded areas, including regrading, reseeding, watering and mowing, in good condition.

3.10 OTHER TYPES OF RESTORATION

- A. Fence or gates damaged or destroyed as a result of the construction operations shall be replaced in like material and type.
- B. Culverts destroyed or removed as a result of the construction operations shall be replaced in like size and material, and shall be replaced at the original location and grade. When there is minor damage to a culvert and with the consent of the Engineer, a repair may be undertaken, if satisfactory results can be obtained.

3.11 MAINTENANCE

A. The finished products of restoration shall be maintained in an acceptable condition for and during a period of one year following the date of Substantial Completion or other such date as set forth elsewhere in the Contract Documents.

* * * * *

SECTION 02623

CURED-IN-PLACE PIPE

PART 1 GENERAL

1.1 SUMMARY

This section includes all material, labor and equipment necessary for the installation of storm sewer lining, including but not limited to:

- A. Coordination with the City of Fulton, the Owner of the sewer pipe.
- B. Mobilization and demobilization.
- C. Preparation of existing storm sewer to permit proper installation and curing of the liner, including:
 - 1. Sewer cleaning, debris removal and proper disposal.
 - 2. Mineral deposit and root removal and proper disposal.
- D. Initial television inspection.
- E. Flow control including bypass pumping.
- F. Lining calculations, lining installation, curing, and testing.
- G. Opening all active storm sewer laterals if encountered.
- H. Sealing the entrance and exit at the manholes.
- I. Final television inspection of completed work.
- J. Final cleanup and restoration of surfaces.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 01700 Health and Safety
- B. 02141 Construction Water Management

1.3 REFERENCES

A. ASTM D638 - Test methods for tensile properties of plastics.

- B. ASTM D790 Test methods for flexible properties of unreinforced and reinforced plastics and electrical insulating materials.
- C. ASTM F1216 Standard Practice for Rehabilitation of Existing Pipelines and conduits by the Inversion and Curing of a Resin-Impregnated Tube.
- D. ASTM F 1743 Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-in-Place Thermosetting Resin Pipe.

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Provide product data describing conformance to ASTM codes of the pipe liner material.
 - 2. Manufacturer will perform design calculations for the liner thickness for each manhole to manhole section. The liner provided shall meet the design thickness calculations.
 - a. Calculations shall be prepared in accordance with ASTM F1216, using the following parameters:
 - 1) Fully deteriorated gravity pipe condition
 - 2) Factor of safety = 3.0
 - 3) Groundwater elevation equal to the surface elevation in each section
 - 4) Long Term modulus of elasticity based upon 50 years of continuous loading
 - b. Manufacturer shall provide flexural properties from a minimum of five previous projects to show that the flexural modulus obtained in the field matches that used in the design calculations.
 - c. Manufacturer shall provide third party verification of long term modulus value used in design calculations at time of submittal.
 - d. The Contractor will keep these calculations on file and submit a letter to the Engineer certifying that the proposed liner meets the minimum structural requirements.

- 3. The Contractor shall calculate the original design flow capacity of the section of sewer to be lined under this Contract using the field survey information obtained by the Contractor's New York State Professional Land Surveyor and a minimum Mannings "n" value of no less than 0.010. The Contractor will keep these calculations on file and will submit a letter certifying that the rehabilitated sewer has a non-surcharged capacity equal to or greater than existing pipe.
- 4. Provide manufacturer's detailed installation procedures. The Contractor shall abide by these procedures for the installation of the liner.
- 5. Detailed Flow Bypass Plan including pump and force main size, location and capacity.
- 6. Detailed Project Schedule.
- 7. Maintenance and Protection of Traffic Plan.
- 8. Health & Safety Plan (HASP) and Combined Space Entry Procedures.

1.5 PROJECT RECORDS

A. Television inspection color video tapes, typewritten logs and report.

1.6 QUALITY ASSURANCE

- A. Certification Installation of the sewer lining system shall be performed by an experienced Contractor licensed and/or certified by the lining process manufacturer as being qualified to perform such work.
 - 1. The Contractor shall furnish, prior to use of the materials, written certification of his compliance with the manufacturer's standards for all materials and conformance with the methods of the lining process.

1.7 REGULATORY REQUIREMENTS

A. Conform to regulatory agencies having jurisdiction over the work.

1.8 FIELD MEASUREMENTS

A. Prior to construction start, verify by field measurements that existing conditions are as shown on Drawings. The Contractor shall notify the Engineer of specific differences.

1.9 COORDINATION

A. Coordinate field work including maintenance of traffic including site access, and emergency vehicle access.

B. Coordinate work with local utility companies (private and municipal) for location of existing utilities and protection thereof.

1.10 CONFERENCES

A. The Contractor will be required to certify after initial television inspection that the product supplied is suitable for use in the sewer segment in question. Any items (i.e., pipe restrictions) which may cause problems during the insertion or restrictions in full pipe capacity after lining will be brought to the attention of the Engineer in writing 72 hours prior to the start of the lining procedure.

PART 2 PRODUCTS

2.1 MATERIALS - SEWER LINER

- A. The liner shall be polyester fiber felt tubing lined on the inside with polyurethane impregnated with a thermal-setting resin to seal against the internal circumference of the sewer.
- B. The liner shall be fabricated from materials which, when cured, will be chemically resistant to storm water and traces of external exposure to soil bacteria and any chemical attack which may be due to materials in the surrounding ground or typically associated with urban run-off (*e.g.*, oil, grease, road salt).
- C. When cured, liner shall extend over the entire length of pipe, manhole to manhole, in a continuous and mechanically locked tight fitting watertight pipe within a pipe.
- D. Liners shall be designed to withstand internal and/or external pressures for the specific field conditions. Where special conditions, strength requirements, etc., require, additional liner thickness shall be added in increments of 2.0 mm as determined by design calculations.
- E. The reinforcing material of the liner tubing shall be of a needle interlocked polyester felt or other material approved by the Engineer, formed into sheets of required thickness.
 - 1. Tubing shall not be less than 1/2-inch thick.
 - 2. The felt content shall be determined by the Contractor to ensure that the cured liner is the required thickness.
- F. The cured liner shall meet the following initial structural properties:

Flexural Strength (ASTM D790)	
Flexural Modulus (ASTM D790)	

G. The liner shall be fabricated to a size which will neatly fit the internal circumference of the sewer and shall allow for longitudinal and circumferential stretching of the liner during

insertion in accordance with the manufacturer's requirements. The Contractor shall verify all inside dimensions of the sewers to be lined.

H. The finished liner will maintain the flow carrying capacity of the original pipe.

2.2 CLEANING REQUIREMENTS

A. Records in printed form shall be kept of all cleaning performed and shall include the name of the Owner, date, manhole section cleaned, manhole section location, line size, length of section, type of cleaning performed, any special remarks concerning the condition of the line, and amount of and nature of material removed and disposal location.

2.3 TELEVISION INSPECTION REQUIREMENTS

- A. A continuous video tape recording with audio of the entire length of the pipe inspected shall be made both before and after lining on permanent color VHS cassettes and shall include location of each section, direction of camera travel, and locations of opened and unopened laterals.
- B. A television inspection log shall be kept of all sections inspected.
 - 1. Log shall include the number of both upstream and downstream manholes in the particular section, direction of camera travel, and the direction of flow.
 - 2. Location and angular orientation of all lateral connections, both opened and unopened, shall be logged with respect to the upstream manhole.
 - 3. The speed of the camera shall not exceed one-half foot per second.

2.4 TELEVISION INSPECTION EQUIPMENT

- A. The work covered by this section of the specifications consists of furnishing all labor, supervision, equipment, appliances, materials and performing all operations in connection with the televising of sewer lines.
- B. No sewer lines shall be televised until they have been cleaned and the flow is controlled.
- C. Television equipment shall at least include the following items:
 - 1. A sealed sewer camera, video monitor, control unit and necessary camera cable.
 - a. The camera used shall be specifically designed and constructed for color sewer line inspection work (converted studio cameras will not be acceptable) and shall be comprised of controlled beam, reflector seeded lamps with an automatic light compensator. The camera shall have the ability to pan and tilt to view up in the laterals.

- b. Lighting system shall be capable of supplying light intensities for adequate observation of the sewer line.
- 2. The closed circuit television equipment shall provide a continuous picture with a minimum resolution of 600 lines showing the entire periphery of the pipe with such resolution the joints, root intrusions, open joints laterals and sewer line deposits may be discerned and identified by the City of Fulton public works department.
 - a. To insure picture stability and impeded operation, the equipment shall be constructed to withstand the shocks and vibrations encountered during operations.
 - b. Clear and understandable voice recordings of visual observations during video monitoring shall be provided.
- 3. The unit shall be equipped with remote reading footage counter mounted over the television monitor.
- 4. The footage counter shall be accurate to within 12 inches, plus or minus, per 400 feet, and shall be calibrated for accuracy prior to commencement of the project and thereafter periodically checked for accuracy.
- 5. Portable winches with sufficient cable or rods to permit inspection of all specified sewer sections with accurate (12 inches, plus or minus) distance measuring equipment.
- 6. A communication system.
- 7. Videotape recording equipment.

PART 3 EXECUTION

3.1 EXAMINATION

A. The Contractor shall have complete responsibility to prepare the sewer line in a manner adequate for his operations, shall furnish a liner and compound designed specifically for the field conditions and carrying fluid in the sewer.

3.2 PREPARATION

- A. Cleaning
 - 1. It shall be the responsibility of the Contractor to clear the line of obstructions such as solids, mineral deposits, roots, grease, etc. that will prevent the liner installation.
 - 2. Provide all equipment, tools, labor and materials necessary to satisfactorily clean and remove all visible obstructions, dirt, sand, sludge, roots, gravel, stones, grease, etc.,

from the designated sewers and manholes such that all existing interior pipe surfaces and joints are visible when televised.

- 3. The Contractor shall clean the sewer by either hydraulic or mechanical means, or combination of such methods. Other methods may be acceptable following review by the Engineer.
- 4. The Contractor shall maintain clean sewer conditions within each section while the lining installation in that section is completed.
- 5. The Contractor shall maintain all flows within the sewer system during cleaning by pumping, diversion or whatever other means as reviewed by the Engineer.
- 6. The Contractor shall take care in cleaning the sewer in order to prevent damage to the pipe. All solids or semi-solid material removed from a section shall be removed in that section and shall not be passed from section to section.
 - a. Adequate precaution shall be taken to prevent solid or semi-solid material removed from a section from entering downstream sections.
 - b. Solids removed from the sewer cleaning operations must be disposed of in an off-site landfill permitted to receive waste of the type encountered. It is the Contractor's responsibility to provide the disposal site.
- 7. Precautions shall be taken to ensure that water pressure created during cleaning does not cause any damage or flooding to public or private property being serviced by the manhole section involved.
 - a. Any damage occurring due to the Contractor's operations shall be repaired at no additional expense to National Grid.
- B. It is the Contractor's responsibility to supply the water necessary to perform the cleaning and liner installation work.
 - 1. The Contractor shall be required to obtain formal authorization from the local water authority to take water from the water system prior to the start of work.
 - 2. Water supplied from fire hydrants shall be at the expense of the Contractor.
 - 3. No fire hydrant shall be obstructed in case of a fire in the area served by the hydrant nor shall a hydrant be used for the purpose described unless a vacuum break is provided.
 - 4. The Contractor shall be required to make good any damages resulting from the improper use of the water supply system.

C. If the liner installation requires the modification of a manhole, the Contractor will be responsible for all costs associated with the modifications and repairs. Repair costs shall be included in the price for cured-in-place sewer lining.

3.3 STORM WATER FLOW CONTROL

- A. The Contractor shall be responsible for current flow diversion in accordance with all applicable regulations.
- B. There shall be no interruption in the flow of storm water during the Contractor's work operations. To accomplish this, the Contractor shall provide, maintain, and operate all temporary facilities including but not limited to dams, plugs, pumping equipment, conduit and all other equipment necessary to handle the storm water or infiltration or inflow before it reaches points where it would interfere with their work, convey it past the work, and return it to the appropriate facilities downstream of their work.
- C. In all cases, the Contractor shall take whatever means necessary including rescheduling of work, to maintain continuous flow of storm water and to avoid damage to new or existing structures during periods of elevated flow. At no time shall storm water be allowed to enter an open trench.
- D. The Contractor shall have no claim for additional compensation by reason of delay or inconvenience in adapting his operation to the need for continuous flow of storm water, inflow or infiltration.

3.4 INSTALLATION

- A. By beginning the installation of the liner, the Contractor implies, by his actions, the line is acceptable for his needs.
- B. It is the intent of this Article of the specification to provide for the lining of sewer lines by the installation of a resin impregnated flexible felt tube, inverted into the existing sewer line utilizing a vertical inversion standpipe and hydrostatic head.
- C. Curing shall be accomplished by circulating hot water or other proven method to cure the resin into a hard impermeable pipe liner.
- D. The wet out liner shall be inserted through an existing manhole by means of an inversion process and the application of a hydrostatic head sufficient to fully extend it to the next designated manhole.
 - 1. The liner shall be inserted into the vertical inversion standpipe with the impermeable plastic membrane side out.
 - 2. At the lower end of the inversion standpipe, the liner shall be turned inside out and attached to the standpipe so that a leakproof seal is created.

- 3. The inversion head will be adjusted to be of sufficient height to cause the impregnated liner to invert from manhole to manhole and hold the tube tight to the pipe wall, produce dimples at side connections and flared ends at the manholes.
- E. The Contractor may elect to use a top inversion. In this method, the liner is pre-inverted to a distance that corresponds to the required inversion head and instead of attaching to an elbow at the base of the vertical inversion standpipe, it is attached to a top ring and the standpipe is formed from the liner itself.
- F. After inversion is completed, the Contractor shall supply a suitable heat source and water recirculation equipment at his expense.
 - 1. The equipment shall be capable of delivering hot water throughout the section by means of a perforated pre-strung hose to uniformly raise the water temperature above the temperature required to effect a cure of the resin.
 - 2. This temperature shall be determined by the resin/catalyst system employed, as recommended by the resin manufacturer.
 - 3. The heat source shall be fitted with suitable monitors to gauge the temperature of the incoming and outgoing water supply.
 - 4. Another such gauge shall be placed between the impregnated liner and the pipe invert at the remote manhole to determine the temperatures during cure.
 - 5. Care shall be taken during the elevated curing temperature so as not to over stress the felt fiber.
 - 6. Initial cure shall be deemed to be completed when the exposed portions of the liner appear to be hard and sound during inspection, and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm.
 - 7. The cure period shall be of a duration recommended by the resin manufacturer, as modified for the lining process, during which time the recirculation of the water and cycling of the heat exchanger continues to maintain the temperature.
- G. The hardened liner shall be cooled to a temperature below 100 degrees F before relieving the static head in the inversion standpipe.
 - 1. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace heated water.
 - 2. Care shall be taken in the release of the static head so that a vacuum will not be developed that could damage the newly installed liner.
- H. The finished liner shall be continuous over the entire length of an inversion run and free from visual defects such as folds, foreign inclusions, dry spots, pinholes, and delamination.

I. Any defect which the Engineer determines will affect, in the foreseeable future, the flow channel, capacity, integrity or strength of the liner shall be repaired or the entire liner replaced at the Contractor's expense.

3.5 LATERAL CONNECTIONS

- A. During initial television inspection, each service connection shall be tested by flushing, dye testing, or other approved means to determined whether or not it is active.
- B. If, prior to lining, a determination is made that due to misalignments or other characteristics within the existing pipe, the connection cannot be reinstated by an internal cutter, then a point repair excavation to reinstate the service connection shall be performed at no expense to the Owner.
- C. After the liner has been inserted and is cured, the Contractor shall use a television camera and internal cutting device or other approved means to open each active service connection.
 - 1. The cutting device shall re-establish the service connection to not less than 90 percent of its original size.
- D. An inspection shall be made of each lateral connection once it is fully reopened. If any infiltration is observed entering the newly lined sewer from the joint between the liner pipe and host lateral pipe, the Contractor shall seal that joint with a material compatible to the liner pipe.

3.6 INSPECTION/TESTING

- A. Field samples of each inversion shall be taken in accordance with Section 8.1 of ASTM F1216. The Contractor shall conduct third party testing of each sample, per the requirements of Section 8.1. Test results shall be submitted to the Engineer to show conformance of each liner section to the strength requirements of these Specifications.
- B. Gravity pipe leakage testing shall be conducted for each inversion per the requirements of ASTM F1216.
- C. If the liner fails to make a watertight seal at any manhole openings, laterals, or any other point in the sewer line, it will be the Contractor's responsibility to effectively seal and grout the openings at no additional cost to the Owner. The seal shall be of a resin mixture compatible with the liner pipe.
- D. Liners which fail to meet the test requirements listed in this section will be considered defective.

* * * * *

SECTION 02981

TOPSOIL AND SEEDING

PART 1 GENERAL

1.1 SUMMARY

A. This Section includes topsoil, fertilizer, seed, mulch anchorage, and associated work to be placed in the unpaved areas of excavation. These requirements also apply to other disturbed areas.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. 02221 Earthwork
- B. 02223 Embankment
- C. 02225 Structural Excavation, Backfill and Compaction
- D. 02503 Restoration of Surfaces

1.3 REFERENCES

- A. Materials and installation shall be in accordance with the latest revisions of the following codes, standards and specifications, except where more stringent requirements have been specified herein:
 - 1. American Society of Testing and Materials (ASTM)
 - a. ASTM D422 Method for Particle-Size Analysis of Soils
 - b. ASTM D2974 Test Method for Moisture, Ash, and Organic Matter of Peat and other Organic Materials
 - c. ASTM D4972 Standard Test Method for pH of Soils
 - d. ASTM D5268 Specification for Topsoil Used for Landscaping Purposes

1.4 SUBMITTALS

- A. In addition to those submittals identified in the Supplemental Conditions, the following items shall be submitted:
 - 1. Documentation giving location of properties from which the topsoil will be obtained, names and addresses of the owners, and depth to be stripped.

- 2. Documentation giving the seed vendor's certified statement for the grass seed mixture required, stating common name, scientific name, percentage by weight, and percentages of purity and germination.
- 3. Documentation giving data concerning hydroseeding equipment (if used), including all material application rates.
- 4. Documentation regarding test results for particle size, acidity, fertility, and texture performed on representative samples of soil.
- 5. Each bag of fertilizer shall bear the manufacturer's guaranteed statement of analysis.

PART 2 PRODUCTS

2.1 TOPSOIL

- A. The topsoil shall be unfrozen, natural, fertile, friable, clayey loam soil characteristic of productive soils in the vicinity and shall comply with ASTM D5268. No admixtures of subsoil shall be allowed. Topsoil must be uniform in composition and texture, clean and free from clay lumps, stones, weeds, sticks, brush, stumps, roots, toxic substances, and debris or similar substances 2-inches or more in greatest dimension.
- B. Prior to and during installation of the topsoil layer, material from the borrow source shall be tested in accordance with the following standards and frequencies:

Parameter	Standard	Minimum Frequency	Criteria
Topsoil Particle Size	ASTM D422	Once per 1500 cy	Monitoring consistency of borrow source
Topsoil pH	ASTM 4972	Once per 1500 cy	pH in the range of 5.5 and 7.6
Topsoil Organic Content	ASTM 2974	Once per 1500 cy	Not less than 5% nor more than 20%

2.2 GRASS SEED

- A. Seed mixtures shall be of commercial stock of the current season's crop and shall be delivered in unopened containers bearing the guaranteed analysis of the mix.
- B. Seed Mixture: Pounds Per Acre

Common Name	% by Weight	<u>% Purity</u>	% Germination
Timothy	30	90	90
Clover	20	90	90
Perennial Ryegrass	40	90	90
Annual Ryegrass	10	90	90

2.3 FERTILIZER

A. Fertilizer shall be a standard quality commercial carrier of available plant food elements. A complete prepared and packaged material containing a minimum of 10% nitrogen, 10% phosphoric acid and 10% potash.

2.4 MULCH

- A. Mulch shall be unrotted stalks of oats, wheat, rye or other approved crops which are free from noxious weeks, salt, mold, or other objectionable material.
- B. Other sources of mulch may be utilized if approved by the Engineer.

PART 3 EXECUTION

3.1 INSTALLATION

- A. The areas of excavation on site in unpaved areas shall be graded to a depth of not less than 6 inches below the proposed finished surface. If the depth of topsoil existing prior to construction was greater than 4 inches, the topsoil shall be replaced not less than the greater depth.
 - 1. All debris and inorganic material shall be removed and the surface loosened for a depth of 2 inches prior to the placing of the topsoil.
 - 2. The topsoil shall not be placed until the subgrade is in suitable condition and shall be free of excessive moisture and frost.
 - 3. All topsoil shall be free from stones, roots, sticks and other foreign substances and shall not be placed in a frozen or muddy condition.
 - 4. The finished surface shall conform to the lines and grades of the area before disturbed or as shown on the Contract Drawings. Any irregularities shall be corrected before the placement of fertilizer and seed.
- B. The fertilizer shall be applied uniformly at the rate of 20 pounds per 1000 square feet.
 - 1. Following the application of the fertilizer and prior to application of the seed, the topsoil shall be scarified to a depth of at least 2 inches with a disc or other suitable method traveling across the slope if possible.
- C. When the topsoil surface has been fine graded, the seed mixture shall be uniformly applied upon the prepared surface with a mechanical spreader at a rate of not less than 10 pounds per 1000 square feet.
 - 1. The seed shall be raked lightly into the surface and rolled with a light hand lawn roller.
 - 2. Seeding and mulching shall not be done during windy weather.

- D. The mulch shall be hand or machine spread to form a continuous blanket over the seed bed, approximately 2 inches uniform thickness at loose measurement. Excessive amounts or bunching of mulch will not be permitted.
 - 1. Mulch shall be anchored by an acceptable method.
 - 2. Unless otherwise specified, mulch shall be left in place and allowed to disintegrate.
 - 3. Any anchorage or mulch that has not disintegrated at time of first mowing, shall be removed. Anchors may be removed or driven flush with ground surface.
- E. Seeded areas shall be watered as often as required to obtain germination and to obtain and maintain a satisfactory sod growth. Watering shall be in such a manner as to prevent washing out of seed.
- F. Hydroseeding may be accepted as an alternative method of applying fertilizer, seed and mulch. The Contractor shall submit all data regarding materials and application rates to the Engineer for review.
- G. The stand of grass resulting from the seeding shall not be considered satisfactory until accepted by the Engineer. An acceptable lawn shall have a minimum of 90% of the area covered with plants of the specified seed mix and no areas greater than one foot square of bare surface. If areas are determined to be unacceptable, the remaining mulch will be removed and all areas shall be reseeded, refertilized and remulched as per the above application procedures at the Contractor's expense.

* * * * *

Waste Management Plan

REPORT

Waste Management Plan for Remedial Action at Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

nationalgrid

Date February 2011

Waste Management Plan for Remedial Action

Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

Prepared for:

nationalgrid

JAMES R. HECKATHORNE, P.E. O'BRIEN & GERE ENGINEERS, INC.

TABLE OF CONTENTS

List of Tablesii	
List of Tablesii List of Figuresii	
1. Introduction	
1.1. General1	
1.2. Site History	
1.2. Site History 1 1.3. Removal Action (RA) Requirements 1	
1.3.1 Area 1 Excavations	
1.3.2. Area 2 Excavations	
1.4. Resultant Waste Streams	
1.4.1. Construction & demolition (C&D) wastes4	
1.4.2. Excavated soil, potentially suitable for use as backfill4	
1.4.3. Excavated soil requiring disposal off-site4	
1.4.4. Tar or NAPL-containing waste5	
1.4.5. Construction water	
1.4.6. General Contractor wastes	
1.5. Transportation and disposal plan	

LIST OF TABLES

- 1. Estimated Excavation Volumes (in text)
- 2. Proposed Transporters and Disposal Facilities (in text)
- 3. RCRA transporter identification numbers (end of report)
- 4. RCRA disposal facility numbers (end of report)

LIST OF FIGURES

- 1. Site Location Map
- 2. Site Plan

1. INTRODUCTION

1.1. GENERAL

This document is the Waste Management Plan (WMP) for the former Fulton Manufactured Gas Plant (MGP) Site (Site No. 738034) located on South First Street in Fulton, New York (Site). This WMP has been prepared on behalf of National Grid to describe requirements for the handling, transportation, and disposal of wastes resultant from the Removal Action (RA) to be completed at the Site in accordance with an Order on Consent between National Grid and the New York State Department of Environmental Conservation (NYSDEC) (Order on Consent Index No. A4-0473-0000 effective November 2003).

1.2. SITE HISTORY

The Former MGP Site occupies approximately 1.04 acres in a residential section of the City of Fulton, Oswego County, New York (Figure 1). The Site operated as an MGP site producing manufactured gas from 1903 to 1932. The manufacturing process involved heating coal and petroleum products to produce combustible gas. The gas was cooled, purified and then piped to the end users. The former MGP facility included a gas holder, gas tank, oil tank, oil house, coke shed, tar well, and concentrator house (Figure 2). In general, Area 2 of the Fulton Site contained the gas production facilities and Area 1 contained facilities for storing and distributing the gas. As the gas was cooled and purified prior to distribution, a dark oily liquid known as coal tar condensed and accumulated in various gas plant structures. Tar leaking from the holders and other structures impacted soil and groundwater in the vicinity of the former MGP.

1.3. REMOVAL ACTION (RA) REQUIREMENTS

A Record of Decision (ROD) was issued by the NYSDEC in March 2009. The ROD presents the NYSDEC-selected remedy that includes among other things the following RA elements:

- Excavation and removal to their full depth of all former MGP-related structures and foundations in Areas 1 and 2 that contain MGP-related contaminated materials. Impacted soil in the immediate vicinity of the structures will be removed to the extent practicable.
- Excavation of soil grossly contaminated with MGP wastes. Materials will be excavated to depths of up to 7 feet below ground surface (bgs) or to the extent practicable due to dewatering limitations. The material to be excavated will include soil containing visible coal tar or separate phase materials. The actual depth of removal will be based on visual observations in the field with the concurrence of the NYSDEC. A visible demarcation barrier will be installed at the bottom of the excavation to mark the extent of soil removal prior to backfilling.
- Excavation areas will be backfilled with clean soil from off-site locations that meet NYSDEC's backfill criteria for intended site use. Excavated soil may be used to backfill the lower portions of the excavation if they meet NYSDEC criteria.
- Installation and maintenance of a soil cover over Areas 1 and 2. The soil cover will consist of a minimum of 2 feet of clean material meeting NYSDEC's backfill criteria. The type and nature of soil cover to be installed will be determined pursuant to 6 NYCRR Part 375.

The following sections describe the RA proposed by the final design to achieve the ROD requirements.

1.3.1. Area 1 Excavations

Only one MGP-related structure is designated for removal on Area 1. This structure is the concrete pad associated with the former above-grade holder. Based on information obtained during the Remedial Investigation, grossly impacted soil is present under the northwest side of this structure. Based on the ground penetrating radar (GPR) survey completed as part of the pre-design investigation, structures relating to the

I:\National-Grid.1118\44581.Fulton-Remedial\Docs\Reports\100% Design Report\WMP text.doc

^{1 |} DRAFT: FEBRUARY 11, 2011

smaller gas holder and the former horizontal aboveground storage tanks (ASTs) are not present. The holder structure is identified on Design Drawing G-6.

In addition to the structure, several areas of localized grossly impacted subsurface soil requiring removal in accordance with the ROD are also shown on the design drawings. One of these areas is identified on the northwest side of the holder on Area 1. The pre-design investigation indicated that a lens of impacted soil was present at a depth of approximately 8 ft in soil boring SB-50. Although this is a thin lens and at a depth greater than the 7 ft identified in the ROD as the vertical limit of excavation, it likely represents the endpoint of a lens that may originate in the main area of grossly impacted soil identified near the former holder pad. Therefore, the extent of excavation in this area has been expanded to include this boring location. A second area to be excavated is located southwest of the holder near the area where the former horizontal ASTs were located. Impacted soils are present to a depth of approximately 4 ft in this area.

Two smaller areas containing contaminants of concern (COCs) above criteria in surface soil were also identified for removal in the ROD. As shown on Design Drawing G-6, one area is located northeast of the former holder pad. This soil contained carcinogenic polynuclear aromatic hydrocarbons (cPAHs) at concentrations that would require removal to a depth of 1 ft. However, since the cPAHs are at levels consistent with or lower than those to remain in subsurface soil, this area will be managed with the removal of the surficial 2 ft of soil that is needed prior to placement of the soil cover. This soil may be used as backfill into the deeper portions of the excavations as space allows.

The second area is located in the southwest corner of Area 1 and contains cyanide in excess of the criteria to a depth of 2 ft. Specifically, the cyanide concentration in the 0 to 2 ft depth at the SS-02 location is 810 mg/kg and the concentration of cyanide in the 0 to 2 ft depth at SS-02 is 60 mg/kg. These concentrations are higher than the Restricted Residential Soil Cleanup Objective of 27 mg/kg. Horizontal limits for the area containing cyanide that will be removed have been established by drawing a boundary approximately 5 ft from the two surface soil samples found to contain elevated concentrations. Soil from this area will be excavated to a depth of 2 ft and the excavated material will be disposed off-site.

1.3.2. Area 2 Excavations

As shown on Design Drawing G-5, there are several structures in Area 2 with some extending to or just beyond the property line onto land owned by the City of Fulton. Most of the structures were previously identified and presented within the area of excavation in the ROD. However, based on the pre-design investigation, the excavation area in Area 2 has been modified from that presented in the ROD as follows:

- One additional foundation, located on the western corner of the proposed excavation area, was discovered by the GPR survey.
- The suspected location of the former tar well area in the center of the Site was added to the excavation area. Although an intact structure was not observed, this area was included based on the observations of grossly impacted soil.
- As shown on Drawing G-5, the foundation located on the northwest end of Area 2 near the adjoining residence is not included in the area to be excavated as no impacted soil was found to be present and the westernmost wall of the foundation is within 4 ft of the residential structure. Since the soil in this area does not appear to be impacted, removal is not warranted.

It is unknown whether all of the structures within Area 2 contain grossly impacted MGP materials as defined in the ROD. Therefore, if grossly impacted materials are not identified during construction, the structures will be left in place. Decisions regarding the need for cleanout/removal of the structures will be made in the field during construction activities with concurrence by NYSDEC.

In addition to the structures, one surface soil sample collected southwest of the pavement in Area 2 contained cPAHs above NYSDEC criteria as shown on Design Drawing G-5. Similar to Area 1, soil in this area will be managed by removing soil to facilitate placement of the soil cover as discussed in Section 1.3.1.

1.4. RESULTANT WASTE STREAMS

The RA described above is expected to generate the following waste streams:

- Construction & demolition (C&D) wastes including removed asphalt pavement, concrete (slabs & foundations), and abandoned utilities (existing buried pipe & conduit).
- Excavated soil, suitable for use as subsurface backfill (greater than 2 ft bgs). This soil must exhibit concentrations of MGP-parameters (if any are detected) less than the values indicated in the NYSDEC document Guidance for Site Investigation and Remediation (DER-10) for restricted residential use (6 NYCRR Part 375), and must not contain visible coal tar or other non-aqueous phase liquid (NAPL).
- MGP-impacted soil, as non-hazardous waste. This excavated soil would exhibit concentrations of MGPparameters above the values indicated in DER-10 for restricted residential use (6 NYCRR Part 375), but would not exhibit visible coal tar or NAPL nor characteristics of hazardous waste as established by 6 NYCRR Parts 370-374 and 376.
- MGP-impacted soil, as hazardous waste. This excavated soil would exhibit characteristics of hazardous waste as established by 6 NYCRR Parts 370-374 and 376. It is not expected that soil exhibiting characteristics of hazardous waste will be generated during the RA, but it is identified here as possible as a contingency.
- Tar or NAPL-containing waste. This would be coal tar or other MGP-related NAPL, recovered either as free product or contained in a grossly contaminated soil matrix.
- <u>Construction water including surface water resulting from precipitation which has come in contact with</u> potentially contaminated soils, fill, or debris; water or other liquids drained from potentially contaminated soils or debris; and equipment and vehicle decontamination liquid. Not included in the definition of Construction Water for the Fulton Street MGP project is groundwater collected from below the static groundwater level since no dewatering of excavations below the static groundwater level will be required during the RA.
- General Contractor wastes including common trash (e.g. office wastes) and used personal protective equipment (PPE) (if any). Also, sanitation wastes from temporary facilities set-up for the use of field personnel during the RA.

Based on the defined areas presented on Design Drawings G-5 and G-6 and described above, it is estimated that there are approximately 7,110 cubic yards (CY) of grossly impacted soil and foundation material that will be disposed of off-site. This volume of material is generally consistent with the information presented in the ROD. The sources of the quantities are listed in the following table:

	Material to be Removed	Estimated Volume (cy)		
	Tank Slab (2 ft thick)	150		
AREA 1	Grossly Impacted Soil Areas (to limits as discussed)	550		
	2 ft Soil Removal (required for soil cover)	1,350		
	Structures and Surrounding Grossly Impacted Soil (to 7 ft bgs)	4,500		
AREA 2	2 ft Soil Removal (required for soil cover)	560		
	TOTAL	7,110		

TADLE 4 COTINANTED EVENINATION VOLUNAE

The following sections describe the waste characterization (if applicable), handling, transportation, and disposal requirements for each of the waste streams listed above.

1.4.1. Construction & demolition (C&D) wastes

Asphalt, concrete, and other C&D wastes shall be disposed of at Bristol Hill Landfill operated by the Oswego County Department of Solid Waste in Volney, New York. Prior to shipping C&D wastes to the landfill, the debris shall be inspected for soil or MGP-material adhered to the surface. Soil and MGP-material shall be removed from the surface by means of brushing or pressure washing. Once MGP-material has been removed from the surface, the C&D waste shall be reduced in size and otherwise processed (e.g. protruding reinforcement bar cut off) as necessary for the material to be transported off-site in accordance with State and local laws and ordinance, and so to be received and accepted by the landfill.

1.4.2. Excavated soil, potentially suitable for use as backfill

Soil that does not contain visible coal tar, NAPL, or otherwise appear to be MGP-impacted shall be excavated from the surface (up to a depth of 2 ft bgs) and stockpiled on Site for potential use as subsurface backfill (greater than a depth of 2 ft bgs). The stockpiles shall not be larger than 1,000 tons in size, and shall be placed on either a paved surface (concrete or asphalt) or above a temporary liner (no less than 40-mils in thickness singularly or combined) to prevent contact with the underlying material. Also, stockpiles shall be covered while not being worked to minimize the potential for dusts and generation of Construction Water.

To determine if a stockpile of soil can be used as backfill below a depth of 2 ft bgs, five grab samples shall be collected from each stockpile and then a composite sample shall be prepared representative of the stockpiled soil. The composite sample shall be analyzed by a certified laboratory for:

- Volatile organic compounds (VOCs) (total and TCLP)
- Semi-volatile organic compounds (SVOCs) (total and TCLP)
- Resource Conservation and Recovery Act (RCRA) metals and mercury (total and TCLP)
- Cyanide (total and RCRA characteristic of reactivity)

The results of the analyses for totals will be compared to the criteria listed in DER-10 for restricted residential use (6 NYCRR Part 375) to determine if the material can be used as backfill on site below a depth of 2 ft.

Soil deemed by the Engineer as not suitable for use as backfill shall be disposed of off-site in accordance with Section 1.4.3.

1.4.3. Excavated soil requiring disposal off-site

Soil designated for disposal off-site, either because it exceeds the criteria listed in Table 1 or exhibits visible MGP-impact, shall be stockpiled on Site or direct-loaded into trucks. The stockpiles shall not be larger than 1,000 tons in size, and shall be placed on either a paved surface (concrete or asphalt) or above a temporary liner (no less than 40-mils in thickness singularly or combined) to prevent contact with the underlying material. Also, stockpiles shall be covered while not being worked to minimize the potential for dusts and generation of Construction Water.

Each stockpile shall be sampled (unless previously sampled under Section 1.4.2) to determine if the material can be disposed of off-site as non-hazardous waste. Five grab samples shall be collected from each stockpile designated for off-site disposal and then a composite sample shall be prepared representative of the stockpiled soil. The composite sample shall be analyzed by a certified laboratory for:

- Volatile organic compounds (VOCs) (total and TCLP)
- Semi-volatile organic compounds (SVOCs) (total and TCLP)
- Resource Conservation and Recovery Act (RCRA) metals and mercury (total and TCLP)

Cyanide (total and RCRA characteristic of reactivity)

The results will be compared to the criteria listed in 6 NYCRR Parts 370-374 and 376 to determine if the material is non-hazardous.

<u>Non-hazardous soil and waste material</u> shall be disposed of at the following landfill in accordance with Oswego County flow-control ordinance:

Bristol Hill Landfill in Volney, New York Operated by: Oswego County Department of Solid Waste 3125 State Route 3 Fulton, New York 13069 (315) 591-9200

<u>Hazardous soil and waste material</u> (if any), that is not eligible for potential off-site low temperature thermal desorption (LTTD) treatment/disposal (Section 1.4.4), shall be disposed of at the following landfill:

Model City Landfill in Model City, New York Operated by: CWM Chemical Services, LLC 1550 Balmer Road Model City, New York 14107

As appropriate, based on the results of the waste characterization analyses, each shipment of waste from the Site shall be placarded, as appropriate. A Bill of Lading will be provided documenting the disposal of each shipment. Also, if the material is characteristically hazardous as defined by 6 NYCRR Part 371, a RCRA hazardous waste manifest will be prepared and signed by a representative of National Grid as required to document disposal of the material.

Only transporters appropriately licensed to ship the material of the particular characteristic (non-hazardous or hazardous waste, as applicable) will be used, and each will provide written proof to National Grid documenting that their license and insurance is current and valid. Prior to shipping wastes off-site in accordance with Federal, State and local laws and ordinance, the wheels and vehicle will be inspected for soil/waste adhering to the surfaces and the truck will be decontaminated by means of brushing or pressure washing as necessary to prevent deposit of soil or waste material on the public roads. Vehicles used to transport material for off-site disposal shall be water tight and equipped with solid covers (e.g. tightly woven fabric, no mesh covers) that shall be utilized during the transportation of wastes from the Site to the disposal facility. All waste soil leaving the Site shall be covered.

1.4.4. Tar or NAPL-containing waste

Dependent on the results of the waste characterization activities, the soil excavated from the Site may be treated/disposed in a manner consistent with the NYSDEC program policy, Technical and Administrative Guidance Memorandum (TAGM) 4061, *Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants* (NYSDEC, 2002). The policy outlines criteria wherein soil that has been contaminated with coal tar waste from MGPs exhibiting only the hazardous waste toxicity characteristic for benzene (D018) may be excluded from the requirements of 6 NYCRR Parts 370-374 and 376 when they are destined for permanent thermal treatment, however requirements of 6 NYCRR Parts 360 and 364 would still pertain.

For tar or NAPL-containing waste to be eligible for potential off-site LTTD treatment/disposal, the material must not contain any listed waste nor exhibit a characteristic of a hazardous waste (except for TCLP benzene). Also, to be eligible for potential off-site LTTD treatment/disposal, the material must not contain a significant quantity of purifier wastes. Materials that contain a discernable amount of purifier material must be tested for the following parameters, in addition to those listed in Section 1.4.3:

- Hazardous characteristic of reactivity
- Total cyanides, and
- Total sulfur

In the event that any characterization results or field observations indicate that certain soils are unsuitable for off-site LTTD treatment/disposal, as determined by National Grid or Engineer, in consultation with the treatment facility, the Contractor shall arrange for off-site incineration and/or disposal at a National Grid-approved facility in accordance with applicable rules and regulations. The Contractor shall coordinate with the facility prior to initiating excavation activities to minimize potential work delays if such material is encountered.

1.4.5. Construction water

Dewatering of the excavation below the static groundwater level is not required by the RA being implemented under the ROD. As such, the quantity of construction water to be generated should be minimal. The Contractor is required to make effort to minimize the generation of construction water and associated sediments and sludges, utilizing methods such as:

- Berms or ditches around the excavation to prevent flow of storm water into the excavation
- Use of low permeability tarpaulin or other suitable means to cover exposed contaminated areas and material stockpiles
- Limiting the amount of exposed contaminated areas
- Grading to control run-on and run-off
- Engineering controls on construction activities to minimize contact of personnel and equipment with contaminated areas thus minimizing the amount of decontamination required and other appropriate methods

The Contractor is required to prepare a Construction Water Management Plan (CWMP) for review and approval by the Engineer. The CWMP must describe the Contractor's proposed means for minimization, collection, treatment, and disposal of construction water. Since the volume of construction water should be minimal, it is anticipated that the Contractor may opt to collect and store the construction water generated during the RA for disposal by them off-site at a permitted waste treatment facility, rather than setting up an on-site treatment system for construction water.

1.4.6. General Contractor wastes

General Contractor wastes including, but not necessarily limited to, common trash and sanitation wastes shall be handled and disposed of in accordance with State and local laws and ordinance at Bristol Hill Landfill (solid wastes) or the municipal waste water treatment facility (waste waters), as applicable.

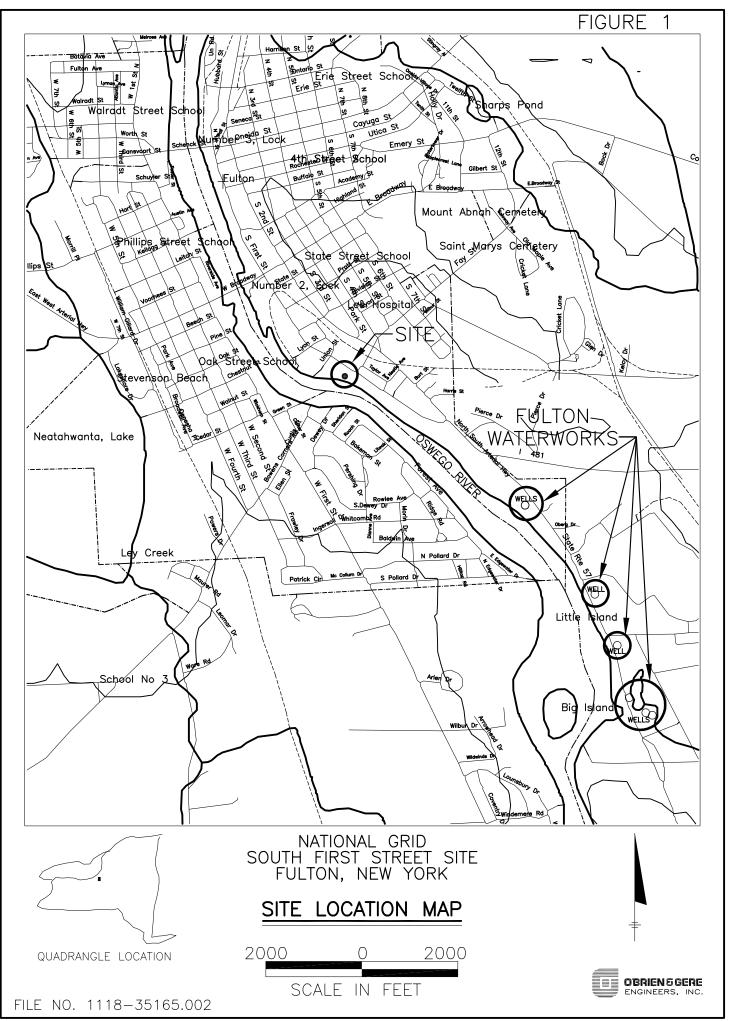
1.5. TRANSPORTATION AND DISPOSAL PLAN

This Section presents the transportation and disposal plan necessary to implement the RA, and includes identification of the proposed disposal facilities for the C&D wastes, MGP-impacted soil, and coal tar/NAPL (if any). The transporters and disposal facilities identified in the table below are tentative, subject to approvals to transport or receive the waste once characterization sampling and analyses are performed.

Table 2. PROPOSED TRANSPORTERS AND DISPOSAL FACILITIES					
Waste Stream or Imported MaterialTransporterDisposal Facility					
Soil & waste material disposed as non-hazardous waste	TBD from list provided in Table 4	Bristol Hill Landfill Volney, New York			
Soil & waste material disposed as hazardous waste	TBD from list provided in Table 4	Model City Landfill Model City, New York			
Coal tar & NAPL saturated soil for LTTD treatment & disposal	TBD from list provided in Table 4	ESMI of New York Fort Edward, New York			
Source: O'Brien & Gere					

Note: TBD – To be determined

Tables 3 and 4 (at the end of report) provide RCRA transporter and disposal facility identification numbers for each proposed transporter and disposal company, respectively. Provided as exhibits to this WMP is documentation of the current permit status provided by each transportation and disposal company listed.



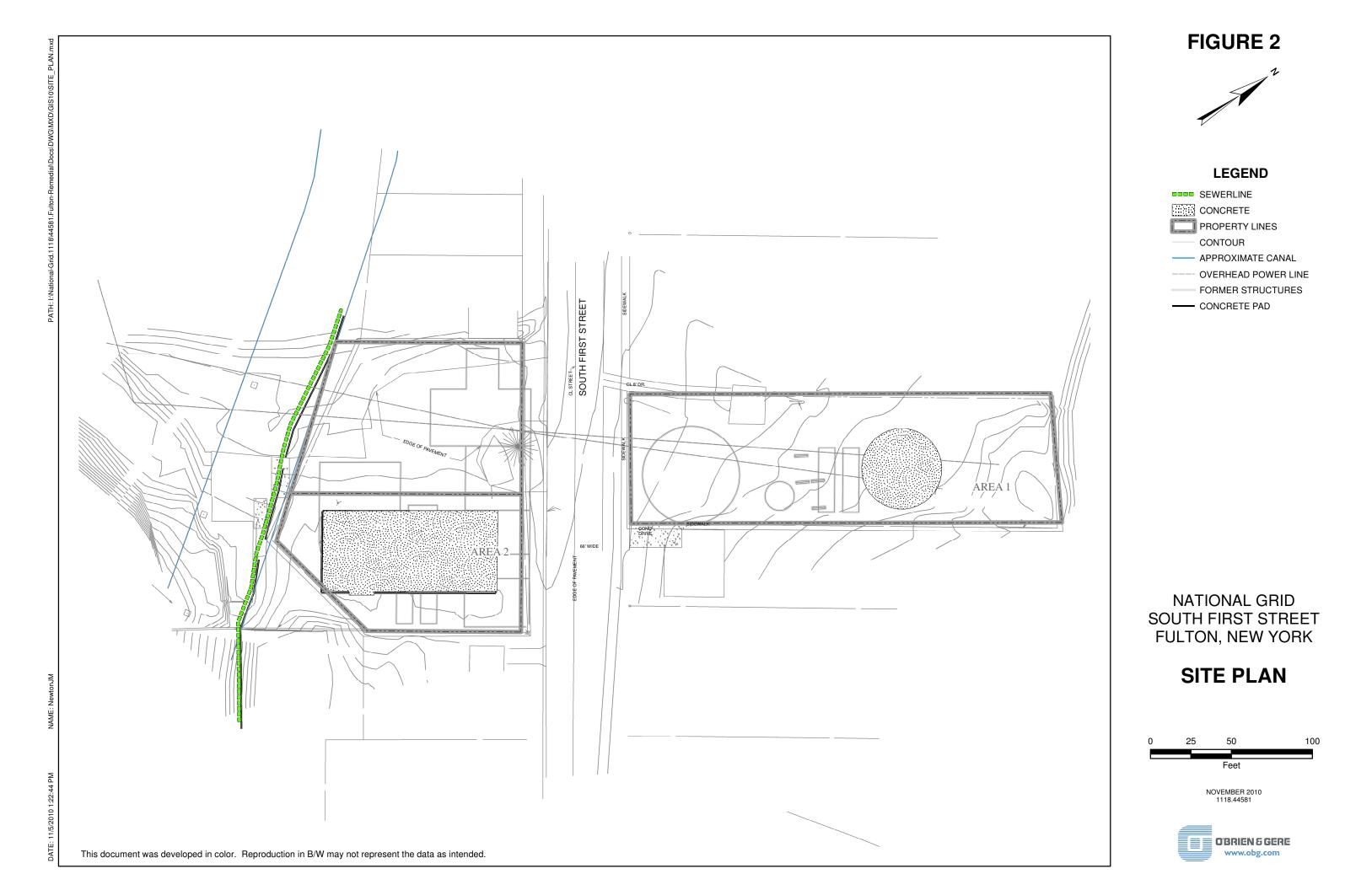

Table 3 - RCRA Transporter Information for the Former Fulton MGP Site Waste Management Plan								
NAME	ADDRESS	СІТҮ	STATE	ZIP	EPA ID #	BULK SOILS	BOX TRUCK/ DRUMS	
BUFFALO FUELS CORP	4870 PACKARD RD	NIAGARA FALLS	NY	14304-1510	NYR000045724	Y	Y	
TONAWANDA TANK TRANSPORT SERV	1140 MILITARY RD	BUFFALO	NY	14217	NYD097644801	Y	Y	
FREEHOLD CARTAGE	825 STATE ROUTE 33	FREEHOLD	NJ	07728-8431	NJD054126164	Y	Y	
HAZMAT ENVIRONMENTAL	60 COMMERCE DRIVE	BUFFALO	NY	14218-1040	NYD980769947	Y	Y	

Table 4 - RCRA Disposal Facilities Information for the Former Fulton MGP Site Waste Management Plan							
NAME	ADDRESS	СІТҮ	STATE	ZIP	EPA ID #	DATE OF LAST INSPECTION	PERMIT LIMITATIONS (See Exhibit 1 if "yes" indicated)
CWM Chemical Services, LLC	1550 Balmer Road	Model City	NY	14107	NYD049836679	June 30, 2010	No

ORC Advanced[™] Product Data and Application **Instructions**

December 27, 2010

Deborah Wright, CPG O'BRIEN & GERE 333 West Washington Street | P.O. Box 4873 Syracuse, NY 13221- 4873 *p* 315-956-6100 | *f* 315-463-7554 <u>deborah.wright@obg.com</u>

Subject: Full-Scale Application of Regenesis's Bioremediation Product Oxygen Release Compound (ORC Advanced[™]) to Accelerate the Degradation of Hydrocarbons at the National Grid site located in Fulton, NY

Dear Ms. Wright:

Thank you for your interest in Regenesis and our bioremediation product Oxygen Releasing Compound-Advanced formulation (ORC Advanced[™]). We have reviewed the information that you provided for the above-referenced site. In the following sections of this proposal we discuss the use of ORC Advanced, design and cost information, delivery of ORCA to the subsurface and the performance goals for this particular project. RegenOx Part A is also considered as an additive to promote bioremediation in one of the options presented.

Product Description: ORC-Advanced®

Advanced formula Oxygen Release Compound (ORC Advanced) is a patented formulation of phosphate-intercalated calcium peroxide that is a timed-released source of oxygen. ORC Advanced releases oxygen in the dissolved-phase when it is hydrated. Numerous studies have shown that the lack of oxygen can limit the ability of naturally occurring microorganisms (aerobes) to degrade certain compounds. ORC Advanced provides terminal electron acceptors to support the oxidative biodegradation of many types of aerobically degradable compounds including but not limited to: petroleum-based hydrocarbons (e.g. Toluene) and chlorinated hydrocarbons (e.g. Vinyl Chloride). ORC Advanced is manufactured as a fine powder that can be installed in the subsurface in the following ways: (1) mixed with water to form a slurry that can be injected into both the saturated and unsaturated zones (2) added as a soil amendment to the backfill material used in excavation applications. The use of oxygen sources such as ORC Advanced is recognized as a sensible strategy for engineering accelerated bioattenuation at project sites contaminated with aerobically degradable compounds.

Product Description: RegenOx™

19 Belmont Road~ Wakefield, MA 01880 ~ TELEPHONE: 781 245-1320 ~ FAX: 781 245-1329

RegenOx[™] is a proprietary (patent-applied-for) in *situ* chemical oxidation process using a solid oxidant complex (sodium percarbonate/catalytic formulation) and an activator complex (a composition of ferrous salt embedded in a micro-scale catalyst gel). RegenOx[™] with its catalytic system has very high activity, capable of treating a very broad range of soil and groundwater contaminants including both petroleum hydrocarbons and chlorinated solvents. Additionally, RegenOx[™] has significant longevity in the subsurface allowing for both the initial contaminant degradation and the continued treatment of contaminants desorbing from the matrix. Most importantly, RegenOx, when handled appropriately, is safe and easy to apply to the contaminated subsurface without the health and safety concerns and lingering environmental issues that that have become associated with other chemical oxidation technologies.

The RegenOx Pat A, when used without activator can provide oxygen to enhance aerobic biodegradation. RegenOx Part A is a percarbonate based product and will slowly release hydrogen peroxide and uncatalyzed will break down to oxygen and water. The Part A is expected to remain active for 2-3 months. The Regenox Part A can be blended with ORCA for a bioremediation application.

Data and Assumptions Used to Design this Bioremediation Application

Assumptions: Excavation Area: 12,500ft2 Thickness – for treatment : 5 feet Application across 1-2 feet Contaminant levels: total: VOC/semiVOC approximately 2mg/L COD 61mg/L Dissolved iron: 68mg/L

Two estimates are presented in the following table – one using ORCA only and another using a combination of ORCA and RegenOx Part A. The ORCA estimate was prepared based on target VOC/Semi VOC and dissolved iron data. A total of approximately 2mg/L VOCs and 68g/L dissolved iron was input for an excavation treatment area of 12,500ft². The total estimate ORCA is 3500lbs.

The oxygen/ORCA requirement based on a COD value of 61mg/L was also estimated (as an independent calculation) and results are 3031 lbs ORCA. The ORCA required to meet demand associated with COD is less than estimate ORCA based on target compounds, so the more conservative estimate of 3500lbs ORCA is recommended by Regenesis.

The second estimate option splits assumes the oxygen demand estimate for ORCA but splits the source of oxygen between ORCA an Regenox part A.

Enough RegenOx Part A will be added to meet the demand associated with the estimated COD. The assumption is the RegenOx A will be used to rapidly establish aerobic conditions and react with readily available "COD" such as dissolved iron and as well at BTEX present in roundwater. A RegenOx application rate of 0.4g/L is the estimated quantity required to degrade 61mg/L COD in Area 1. That is equivalent to 1125lbs RegenOx Part A and 1500lbs Regenox Part A is proposed for Area A. The RegenOx Part A is expected to remain active for 1-2 months where

the ORCA is used to support long term bioremediation and is expected to remain active for 9-12 months.

Option 1: ORCA Excavation Application						
Specification						
5 feet						
Approximately 12,500ft ²						
Apply across 1-3 feet of backfill. It is important that the ORCA is applied into or at the water table						
3500lbs (equivalent to 595lbs O ₂)						

Design Feature	Specification
Thickness requiring treatment	5 feet
Treatment Area	Approximately 12,500ft ²
Excavation Application	Apply across 1-3 feet of backfill. It is important that the ORCA is applied into or at the water table
Application 1 RegenOx Part A/ ORCA blend	2500lbs ORCA & 1500lbs RegenOx Part A Oxygen: from ORCA 425lbs + RegenOx Part A 195lbs O2= 620lbs

The total cost of this chemical oxidation/accelerated bioremediation project can be estimated using the following items:

- Material, shipping fees, and sales tax
- Fieldwork costs associated with installation (customers are responsible for selecting the drilling subcontractor that will be used for the project)
- Groundwater/Soil sampling as needed to properly monitor the performance of the project
- All fieldwork and laboratory analysis associated with periodic monitoring
- Consultant oversight and report generation

Recommended Groundwater Monitoring Program for ORCA

Monitoring of selected wells should be conducted to validate the enhancement of bioremediation processes. After delivery of ORC to the subsurface, samples can be collected every 2 to 3 months. After the initial biodegradation and geochemical trends have been identified, the monitoring frequency can be decreased to a semiannual or annual program. The monitoring program should employ low flow groundwater sampling techniques and include the measurement of the following field/chemical parameters:

- all contaminants of concern
- field redox parameters: ORP, pH, conductivity, dissolved oxygen, and ferrous (or dissolved) iron
- chemical oxygen demand at selected wells within treatment area

Groundwater Monitoring Locations

The following table outlines the suggested locations and significance of monitoring wells used to monitor the progress of a RegenOx Part A and ORC *Advanced* -based project.

Location	Significance
Background (Outside the groundwater plume)	Allows for the changes in natural attenuation conditions induced by addition of RegenOx/ORC <i>Advanced</i> to be compared to background levels
Upgradient of treatment zone	Provides a measure of contaminant and competing electron acceptor flux entering treatment zone
Inside treatment zone	Provides information on how RegenOx/ORC <i>Advanced</i> is affecting the aquifer conditions and contaminant concentrations
Downgradient of treatment zone	Provides information on the effect RegenOx/ORC <i>Advanced</i> is having on the biodegradation rates of contaminants and on aquifer conditions and confirms the mitigation migration

Regenesis appreciates the opportunity to provide this information for your project. Please contact me at 781.245.1320 (e-mail at <u>mdooley@regenesis.com</u>) with any questions.

Sincerely,

Maureen Doslan

Maureen Dooley Northeast Region Manager

dvanced Desig	gn Soft	ware for Exca	vation Applic	ations		Aug 2006
ORC ADVANCED is Technical Support:	USA (949	9) 366-8000		www.regenesis	.com	
OXYGEN RELEASE		,				
COMPOUND						
Consultant: o'brien gere						
stimated Plume Requiring Treatment lanned Excavation:	M/idt	h of planned excavation	100	7		
anneo Excavation.		h of planned excavation	250	ft ft =	25,000	ft ²
Thickness		d zone to be excavated		ft	25,000	ft ³
				7		
W Plume: Width of	plume area	containing contaminant	100	ft		
		containing contaminant	250	ft =	25,000	ft ²
Thickne	ess of conta	minated saturated zone	6	ft	150,000	ft ³
Nominal aquifer so	il (gravel sa	Total porosity (nd, silty sand, silt, clay)	0.3 silty sand	-		
	ii (gravei, se	Plume pore volume		ft ³ =	336,645	gallons
Click for unknown contaminant concentations			· · · · ·		·	Ŭ
			0.1.1.0	<u> </u>	0	
issolved Phase Oxygen Demand (Based on GW Plume Di Idividual species that represent oxygen demand	mensions)		Contaminant Conc. (mg/L)	Contaminant Mass (lb)	Stoichiometry (wt/wt) O ₂ /contaminant	ORC-Adv Dose (lb)
enzene			(mg/L) 0.00	(dl) 0.0	3.1	(dl) 0
oluene			0.08	0.0	3.1	4
thylbenzene			0.30	0.8	3.2	16
ylenes			0.60	1.7	3.2	32
ITBE			0.00	0.0	2.7	0
ap Is a sublad, a dat staiskis sa stris da sa a data sud Kas (a sa sull dav			1.00	2.8	3.0	50
Iser added, add stoichiometric demand and Koc (see pull-dow educed metals: Fe+2 and Mn+2	/n)		0.00 68.00	0.0 190.9	0.0	0 113
1,2,3-trimethylbenzene		-		150.5	0.1	115
			<- pull-down menu			
leasures of total oxygen demand otal Petroleum Hydrocarbons (see pull-down for Koc)			5.00	14.0	3.1	257
iological Oxygen Demand (BOD)			0.00	0.0	1.0	0
hemical Oxygen Demand (COD)			61.00	171.2	1.0	1010
Parameters for Sorbed Phase Oxygen Demand:				٦.		
Soil bulk density			1.76	$g/cm^3 =$		lb/cf
raction of organic carbon (foc)			0.003	range: 0.0001 to 0.0	01	
Estimated using sorbed phase = foc*Koc*Cgw)		Koc	Contaminant Conc.	Contaminant Mass	Stoichiometry (wt/wt)	ORC-Adv Dose
Adjust Koc as necessary to provide realistic estimates)		(L/kg)	(mg/kg)	(lb)	O ₂ /contaminant	(lb)
Senzene		123	0.00	0.0	3.1	0
oluene		267	0.06	0.9	3.1	16
thylbenzene		327	0.29	4.0	3.2	76
ylenes		298	0.54	7.4	3.2	139
ITBE		12	0.00	0.0	2.7	0
ap Iser added, add stoichiometric demand and Koc (see pull-dow	<i>(</i> n)	<u> </u>	3.00 0.00	41.2 0.0	3.0 0.0	<u>729</u> 0
leasures of total oxygen demand	(1)	0	0.00	0.0	0.0	0
otal Petroleum Hydrocarbons		373	5.60	76.8	3.1	1405
ummary of Estimated ORC-Adv Requirements		Dissolved Phase	Sorbed Phase	Additional Demand		
		ORC-Adv Demand	ORC-Adv Demand	Factor	ORC-Adv Demand	ORC-Adv Cost
otal BTEX, MTBE, etc.	C	(lb) 214	(lb) 961	(1 to 10x) 3.0	(lb) 3,495	
otal Petroleum Hydrocarbons	č	214	1,405	2.0	3,324	
iological Oxygen Demand (BOD)		0	0	2.0	0	
hemical Oxygen Demand (COD)		1,010	1,010	1.5	3,031	
equired ORC-Adv quantity (in 25 lb increments)		>			3,500	pounds ORC-Adv
lurry Mixing Volume						
lesign solids content for spraying into excav. (20-40% by wt.)		30%				
otal water for mixing slurry (gal)		979	gallons			

(Excavation Applications)

SAFETY:

Pure ORC is shipped to you as a fine powder, which is rated at -325 mesh (passes through a 44 micron screen). It is considered to be a mild oxidizer and as such should be handled with care while in the field. Field personnel should take precautions while applying the pure ORC. Typically, the operator should work up wind of the product as well as use appropriate safety equipment. These would include eye, respiratory protection and gloves as deemed appropriate by exposure duration and field conditions.

Although two options are discussed, application of ORC should never be applied by personnel within the tank excavation, unless proper shoring or sidewall cutback is in place.

GENERAL GUIDELINES:

ORC can be applied in a dry powder form or as a slurry. Field conditions dictate which form of ORC can be used most effectively.

Installation of ORC should be within the tank excavation floor and/or in an adequate backfill section thickness to account for the anticipated groundwater "smear zone".

Maximum treatment effect is obtained when ORC is mixed as thoroughly as possible within the backfill material. The more dispersed the ORC slurry/powder within the excavation backfill, the more effective the treatment.

The quantity of ORC to be used is generally calculated prior to moving into the field for installation. Generally it is applied at a rate of between 0.1% and 1.0% by weight of the soil matrix. The following illustrates a dilute application rate calculation:

Use a weight/weight percent of ORC/backfill material to ensure distribution of the ORC into the desired aquifer section. For example: a 0.15% weight of ORC to weight of backfill for the standard ORC weight (30 pounds) per container calculates as follows: 30 lb. ORC/0.15% = 20,000 lbs. of soil matrix. Thus, to achieve a 0.15% mixture of ORC in the backfill material, 30 lb. of pure ORC should be mixed into 10 tons (20,000 lbs. \div 2,000 lbs./ton) of backfill, or approximately 7 - 10 cubic yards of soil depending on field conditions. Professional judgment should be used to select the appropriate soil mass per cubic yard for designing each site treatment.

CHOOSING THE FORM OF INSTALLATION:

Pure ORC is shipped to you in a powder form. Weather conditions (especially wind) may have a direct effect on the application of ORC as a tank backfill amendment.

Application of the dry powder may be difficult in windy conditions. To counter the effects of wind (and the subsequent potential loss of ORC), Regenesis recommends that a water source or a spray tank be on-site to wet down the ORC and the backfill material as ORC is applied.

Application of ORC in a slurry format is a very effective method and eliminates the wind issue.

Four somewhat different installation conditions can be encountered in the field:

- ORC in a pea gravel back-fill. ("Type 1")
- ORC in a soil back-fill. ("Type 2")
- ORC mixed in native soil in the bottom of a tank pit. ("Type 3")
- ORC installed in soil under standing water in the bottom of a tank pit. ("Type 4")

A single tank pit excavation can include more than one of these conditions, depending on the site and extent of treatment. Instructions for each condition are discussed separately in the following sections. After the installation instructions are detailed instructions for mixing the slurry, if that is the option chosen.

INSTALLATION INSTRUCTIONS:

"Type 1," ORC in a Pea Gravel Back-fill

The easiest method for installing ORC in pea gravel back-fill is to mix the ORC in the material in a backhoe or skiploader bucket before placing it in the excavation.

• Dry Powder method

Into each scoop of back-fill material add the appropriate portion of ORC being installed. Generally, it is advisable to moisten the material in the bucket to reduce wind blown ORC loss. Excessive winds make this method not feasible.

After mixing the dry powder in the bucket, it is dumped into the bottom of the excavation. The backhoe bucket can be used for further mixing in the excavation.

Slurry method

Mix a 63% solids slurry of ORC and water (see "Steps to make ORC slurry). This relatively thick slurry is used to help keep the ORC dispersed through the pea gravel, even when it contacts water in the bottom of the excavation during installation. It is generally desirable to avoid having the ORC run down through the pea gravel and collect in the bottom of the excavation. The thick slurry addresses this issue.

In each scoop of back-fill material, add the appropriate amount of ORC slurry. Pre-mix the materials in the backhoe bucket After mixing, dump the slurry and back-fill into the bottom of the excavation. The backhoe bucket can be used for further mixing in the

excavation.

If the slurry method is being used, observe the physical behavior of the ORC in the fill material. If the ORC collects at the bottom of the back-fill material, increase the percent solids content by reducing the amount of water being used to make the slurry.

"Type 2," ORC in a Soil Back-fill

Follow the instructions for the pea gravel back-fill method, except:

If the slurry method is being used, the solids content should be reduced. Typically a 50% solids is appropriate, although soil conditions sometimes dictate lower solids contents (see "Steps to make ORC slurry").

<u>"Type 3," ORC Mixed in Native Soil in the Bottom of the Tank Pit</u>

When ORC is added to the bottom of a tank pit it may be done by backhoe or injection. <u>CAUTION</u>: Personnel should never work within the tank excavation, unless proper shoring or sidewall cutback is in place.

Backhoe method

A skilled backhoe operator can distribute the ORC around the bottom of the tank excavation and, using the bucket, mix it thoroughly. If there are no winds, it may be possible to:

- 1. Put the dry ORC powder in the backhoe bucket,
- 2. Lower it to the bottom of the pit,
- 3. Gently deposit the ORC evenly on the remaining soil,
- 4. Use the bucket to mix the powder into the soil,
- 5. To mitigate dusting, if necessary, spray water into the excavation during the process.

An alternative backhoe method is to use a 50% (or less) solids ORC slurry (see "Steps to make ORC slurry) in place of the dry powder. This eliminates the dusting problem, and in some cases enhances the even distribution of ORC into the soil. Observe the slurry mixing behavior in the bottom of the excavation, and adjust the water content of the slurry to optimize mixing, if necessary.

Injection method

If available, a pump and root feeder may be used to inject an ORC slurry into the excavation floor. This may require a more dilute slurry mix, and care should be taken to assure that the solids do not settle out of the slurry prior to injection.

"Type 4." ORC installed in standing water in the bottom of a tank pit

Application of ORC into tank excavations with standing water requires the operator apply ORC in a slurry form. ORC powder application in this scenario is not advised because a portion of the ORC particle fraction is not likely to pass through the surface tension of the standing water. <u>Caution</u>: Personnel should never work within the tank excavation, unless proper shoring or sidewall cutback is in place.

• Backhoe method

A skilled backhoe operator can distribute the ORC slurry within the excavation, and mix it into the soil underlying the standing water with the bucket. Steps for installation:

- 1. Mix a high solids content ORC slurry (63% solids). See ("Steps to make ORC slurry").
- 2. Pour slurry into the backhoe bucket.
- 3. Lower the bucket to the standing water level in the excavation, and deposit the slurry as evenly as possible across the excavation floor. The dense slurry (63% solids is 1.6 grams per ml) will tend to make the majority of the slurry sink quickly to the bottom of the water layer.
- 4. Use the bucket to mix the slurry into the soil.
- 5. Water in the vicinity of the ORC slurry will often turn white and milky, since some of the ORC is dispersed within the standing water. This provides additional dispersion within the standing water and back-fill material as it is added to the excavation.

Injection method

If available, a pump and root feeder may be used to inject an ORC slurry into the soil in an excavation. This may require a more dilute slurry mix, and care should be taken to assure that the solids do not settle out of the slurry prior to injection.

MIXING ORC SLURRY:

ORC powder is shipped to you in pre-measured batches. Each batch is contained in a plastic bag which is shipped in a 5-gallon bucket.

Remove the pre-measured ORC bag from the 5-gallon bucket and open Measure and pour the appropriate amount of water from the following table into the 5 gallon bucket

Slurry Solids Content (%)	Pounds of ORC	Gallons of Water
63%	30 lbs.	2.1 gal. (2 gal. + 2 cups)
50%	30 lbs.	3.6 gal. (3 gal + 2 1/2 qts.)

Add the entire ORC pre-measured bag to the water (30 pounds). If the slurry solids contents of less than 50% are desired, the quantity of ORC per batch mixed in the bucket must be reduced. For example, a bucket containing four gallons of water would require 22.4 pounds of ORC to make a 40% solids slurry, and 16.6 pounds of ORC to make a 33% slurry.

Use an appropriate mixing device to thoroughly mix ORC and water. Regenesis

recommends use of a 0.5 Horsepower (minimum) hand held drill with a "jiffy mixer" or stucco mixer. A common paint paddle can be used to scrape the bottom and sides of the container to ensure thorough mixing. Standard environmental slurry mixers may also be used.

After mixing, small amounts of water can be added to adjust the consistency of the slurry.

When slurries are used, the early batches should be observed in the process of mixing with the soil. Each site can vary, due to soil type and moisture content. Based on professional judgment, additional water can be added to subsequent slurry batches.

ORC slurry should be used ASAP; if the ORC slurry has been standing more than 15 minutes, it should be remixed immediately before using. <u>Do not let stand</u> more than 30 minutes without stirring. Otherwise, the slurry will begin to harden into a weak cement.

For direct assistance or answers to any questions you may have regarding these instructions, contact Regenesis Technical Services at 949-366-8000.

REGENESIS, 2002 www.regenesis.com

Stormwater Pollution Prevention Plan (SWPPP)

STORMWATER POLLUTION PREVENTION PLAN

Remedial Action Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

nationalgrid

Date February 2011

SPDES Notice of Intent

NOTICE OF INTENT

New York State Department of Environmental Conservation

Division of Water

625 Broadway, 4th Floor

Albany, New York 12233-3505

Stormwater Discharges Associated with <u>Construction Activity</u> Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-08-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-

RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator Information	\backslash						
Owner/Operator (Company Name/Private Owner Name/Municipality Name)							
Owner/Operator Contact Person Last Name (NOT CONSULTANT)							
Owner/Operator Contact Person First Name							
Owner/Operator Mailing Address							
City							
State Zip							
Phone (Owner/Operator) Fax (Owner/Operator) - -							
Email (Owner/Operator)	_						
FED TAX ID (not required for individuals)							

Project Site Informa	tion						
Project/Site Name							
Street Address (NOT P.O. BOX)							
Side of Street							
○ North ○ South ○ East ○ West							
City/Town/Village (THAT ISSUES BUILDING PERMIT)							
State Zip County	DEC Region						
Name of Nearest Cross Street							
Distance to Nearest Cross Street (Feet)	Project In Relation to Cross Street O North O South O East O West						
Tax Map Numbers Section-Block-Parcel	Tax Map Numbers						

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you **must** go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site go to the dropdown menu on the left and choose "Get Coordinates". Click on the center of your site and a small window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

х	Coc	rdi	nate	es (Eas	ting	J)

ΥC	loor	dina	(N	ortł	ning)	

3.	Select	the	predominant	land	use	for	both	pre	and	post	development	conditions.
SI	ELECT ON	NLY (ONE CHOICE F	OR EAG	СН							

Pre-Development Existing Land Use	Post-Development Future Land Use
○ FOREST	○ SINGLE FAMILY HOME Number of Lots
\bigcirc PASTURE/OPEN LAND	○ SINGLE FAMILY SUBDIVISION
○ CULTIVATED LAND	\bigcirc TOWN HOME RESIDENTIAL
\bigcirc SINGLE FAMILY HOME	○ MULTIFAMILY RESIDENTIAL
\bigcirc SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
\bigcirc TOWN HOME RESIDENTIAL	\bigcirc INDUSTRIAL
○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
\bigcirc INSTITUTIONAL/SCHOOL	○ MUNICIPAL
\bigcirc INDUSTRIAL	○ ROAD/HIGHWAY
○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD
○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL
○ RECREATIONAL/SPORTS FIELD	\bigcirc LINEAR UTILITY (water, sewer, gas, etc.)
○ BIKE PATH/TRAIL	O PARKING LOT
\bigcirc LINEAR UTILITY	○ CLEARING/GRADING ONLY
○ PARKING LOT	\bigcirc DEMOLITION, NO REDEVELOPMENT
O OTHER	O OTHER
4. Will future use of this site be an agricul by the NYS Agriculture and Markets Law ?	tural property as defined \bigcirc Yes \bigcirc No
5. Is this a project which does not require c Permit (e.g. Project done under an Individua department approved remediation)?	
6. Is this property owned by a state authorit government?	y, state agency or local \bigcirc Yes \bigcirc No
	urbed and the future impervious area
8. Do you plan to disturb more than 5 acres o	of soil at any one time? \bigcirc Yes \bigcirc No
9. Indicate the percentage of each Hydrologic A B B B B B B B C B D B B	Soil Group(HSG) at the site.

10. Is this a phased project?

11. Enter the planned start and end dates of the disturbance activities.	Image: mate date date date date date date date d
12. Identify the nearest, <u>natural</u> , surface wa runoff will discharge.	terbody(ies) to which construction site
Name	
12a. Type of waterbody identified in Question 12?	
○ Wetland / State Jurisdiction On Site (Answ	ver 12b)
\bigcirc Wetland / State Jurisdiction Off Site	
\bigcirc Wetland / Federal Jurisdiction On Site (Ar	nswer 12b)
\bigcirc Wetland / Federal Jurisdiction Off Site	
🔾 Stream / Creek On Site	
\bigcirc Stream / Creek Off Site	
O River On Site	
○River Off Site	12b. How was the wetland identified?
○ Lake On Site	○ Regulatory Map
○ Lake Off Site	○ Delineated by Consultant
\bigcirc Other Type On Site	\bigcirc Delineated by Army Corps of Engineers
O Other Type Off Site	O Other (identify)

13. Has the surface waterbody(ies) in question 12 been identified as a \bigcirc Yes \bigcirc No 303(d) segment in Appendix E of GP-0-08-001?

	project of GP-0-(in	one	of	the	Watersheds	identified	in	\bigcirc Yes	\bigcirc No

15. Is the project located in one of the watershed areas		
associated with AA and AA-S classified waters? If no,	\bigcirc Yes	\bigcirc No
skip question 16.		

6967554732
<pre>16. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed? If Yes, what is the acreage to be disturbed?</pre>
17. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent area? \bigcirc Yes \bigcirc No
18. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? O Yes O No O Unknown (If No, skip question 19)
19. What is the name of the municipality/entity that owns the separate storm sewer system?
20. Does any runoff from the site enter a sewer classified as a Combined Sewer?
21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards O Yes O No and Specifications for Erosion and Sediment Control (aka Blue Book) ?
22. Does this construction activity require the development of a SWPPP that includes Water Quality and Quantity Control components (Post-Construction Stormwater Management Practices) (If No, skip questions 23 and 27-35)
23. Have the Water Quality and Quantity Control components of the SWPPP been developed in comformance with the current NYS Stormwater Management \bigcirc Yes \bigcirc No Design Manual ?

7627554736
24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:
\bigcirc Professional Engineer (P.E.)
\bigcirc Soil and Water Conservation District (SWCD)
O Registered Landscape Architect (R.L.A)
\bigcirc Certified Professional in Erosion and Sediment Control (CPESC)
O Owner/Operator
Other Image: I
SWPPP Preparer
Contact Name (Last, Space, First)
Mailing Address
State Zip
Phone Fax

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-08-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First	Nam	e									MI
Last 3	Name	1									
Sig	natu	ire		 	·	 	-				
											Date

25. Has a construction sequence schedule for the planned management $$\odot$ Yes O No$

26. Select **all** of the erosion and sediment control practices that will be employed on the project site:

Temporary Structural

- \bigcirc Check Dams
- Construction Road Stabilization
- \bigcirc Dust Control
- \bigcirc Earth Dike
- \bigcirc Level Spreader
- Perimeter Dike/Swale
- \bigcirc Pipe Slope Drain
- Portable Sediment Tank
- \bigcirc Rock Dam
- \bigcirc Sediment Basin
- \bigcirc Sediment Traps
- \bigcirc Silt Fence
- \bigcirc Stabilized Construction Entrance
- \bigcirc Storm Drain Inlet Protection
- Straw/Hay Bale Dike
- Temporary Access Waterway Crossing
- \bigcirc Temporary Stormdrain Diversion
- \bigcirc Temporary Swale
- Turbidity Curtain
- \bigcirc Water bars

Biotechnical

- \bigcirc Brush Matting
- Wattling

Other

Vegetative Measures

- Brush Matting
- \bigcirc Dune Stabilization
- \bigcirc Grassed Waterway
- \bigcirc Mulching
- \bigcirc Protecting Vegetation
- Recreation Area Improvement
- \bigcirc Seeding
- \bigcirc Sodding
- Straw/Hay Bale Dike
- \bigcirc Streambank Protection
- \bigcirc Temporary Swale
- \bigcirc Topsoiling
- \bigcirc Vegetating Waterways

Permanent Structural

- \bigcirc Debris Basin
- \bigcirc Diversion
- \bigcirc Grade Stabilization Structure
- \bigcirc Land Grading
- Lined Waterway (Rock)
- Paved Channel (Concrete)
- \bigcirc Paved Flume
- Retaining Wall
- Riprap Slope Protection
- \bigcirc Rock Outlet Protection
- \bigcirc Streambank Protection

Γ		_																		
			 														 	 		L C

Post-Construction Stormwater Management Practices 27. Indicate all Stormwater Management Practice(s) that will be installed/constructed on this site: Ponds Wetlands O Micropool Extended Detention (P-1) ○ Shallow Wetland (W-1) ○ Wet Pond (P-2) ○ Extended Detention Wetland (W-2) ○ Wet Extended Detention (P-3) ○ Pond/Wetland System (W-3) ○ Multiple Pond System (P-4) ○ Pocket Wetland (W-4) ○ Pocket Pond (P-5) Infiltration ○ Infiltration Trench (I-1) Filtering ○ Surface Sand Filter (F-1) ○ Infiltration Basin (I-2) ○ Underground Sand Filter (F-2) ○ Dry Well (I-3) ○ Perimeter Sand Filter (F-3) ○ Underground Infiltration System ○ Organic Filter (F-4) Open Channels ○ Bioretention (F-5) ○ Dry Swale (0-1) \bigcirc Other \bigcirc Wet Swale (0-2) Verified Proprietary Practice Alternative Practice ○ Rain Garden ○ Hydrodynamic \bigcirc Cistern ○ Wet Vault \bigcirc Green Roof ○ Media Filter ○ Stormwater Planters O Permeable Paving (Modular Block)

Water Quality and Quantity Control

if response to Question 22 is No.

Completion of Questions 27-35 is not required

3250554734

Important:

28. Describe other stormwater management practices not listed above or explain any deviations from the technical standards.

29. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed? O Yes O No If Yes, Identify the entity responsible for the long term Operation and Maintenance

30. Provide the total water quality volume required and the total provided for the site.

WQv Required WQv Provided	feet
31. Provide the following Unified Stormwater Sizing Criteria for the site <u>Total Channel Protection Storage Volume (CPv)</u> - Extended detention post-developed 1 year, 24 hour storm event	
CPv Required CPv Provided	2:
Total Overbank Flood Control Criteria (Qp) - Peak discharge rate for the series of	
Total Extreme Flood Control Criteria (Qf) - Peak discharge rate for the post-development Pre-Development Post-development 	ne 100 year storm
31b. The need to provide for flood control has been waived because: O Site discharges directly to fourth order stream or la O Downstream analysis reveals that flood control is not	
<u>IMPORTANT</u> : For questions 31 and 32, impervious area should be calculated project site and all offsite areas that drain to the post-construction s management practice(s). (Total Drainage Area = Project Site + Offsite a	stormwater
32. Pre-Construction Impervious Area - As a percent of the <u>Total</u> <u>Drainage Area</u> enter the percentage of the existing impervious areas before construction begins.	00
33. Post-Construction Impervious Area - As a percent of the <u>Total</u> <u>Drainage Area</u> , enter the percentage of the future impervious areas that will be created/remain on the site after completion of construction.	⊘
34. Indicate the total number of post-construction stormwater management practices to be installed/constructed.	
35. Provide the total number of stormwater discharge points from the site. (include discharges to either surface waters or to separate storm sewer systems)	

1912554737

36. Identify other DEC permits tha	t are required for this project. DEC Permits
\bigcirc Air Pollution Control	🔿 Navigable Waters Protection / Article 15
\bigcirc Coastal Erosion	○ Water Quality Certificate
\bigcirc Hazardous Waste	🔾 Dam Safety
\bigcirc Long Island Wells	○ Water Supply
\bigcirc Mined Land Reclamation	○ Freshwater Wetlands/Article 24
\bigcirc Other SPDES	\bigcirc Tidal Wetlands
\bigcirc Solid Waste	\bigcirc Wild, Scenic and Recreational Rivers
\bigcirc None	\bigcirc Stream Bed or Bank Protection / Article 15
O 0ther	
37. Does this project require a US Permit? If Yes, Indicate Size of Impact.	Army Corps of Engineers Wetland O Yes O No
38. Is this project subject to the traditional land use control MS4? (If No, skip question 39)	requirements of a regulated, \bigcirc Yes \bigcirc No
	form been signed by the principal ed official and submitted along with \bigcirc Yes \bigcirc No
	for the purpose of continuing coverage under a ff from construction activities, please indicate
I have read or been advised of the permit understand that, under the terms of the p that this document and the corresponding aware that there are significant penaltic fine and imprisonment for knowing violati will be identified in the acknowledgment be as long as sixty (60) business days as submitting this NOI, I am acknowledging t	C/Operator Certification c conditions and believe that I understand them. I also bermit, there may be reporting requirements. I hereby certify documents were prepared under my direction or supervision. I am as for submitting false information, including the possibility of ons. I further understand that coverage under the general permit that I will receive as a result of submitting this NOI and can s provided for in the general permit. I also understand that, by that the SWPPP has been developed and will be implemented as the ing to comply with all the terms and conditions of the general tted. MI
Print Last Name	
Owner/Operator Signature	
	Date

Erosion and Sediment Control Specification

SECTION 02270 - EROSION AND SEDIMENT CONTROL

02270 – 1 GENERAL

This Section includes temporary erosion and sediment control measures intended to minimize erosion of soils and sedimentation of lands adjacent to or affected by the proposed Remedial Design of the Former Fulton Manufactured Gas Plant (MGP) Site being performed on behalf of National Grid (Owner) pursuant to an Order on Consent between National Grid and the New York State Department of Environmental Conservation (NYSDEC) (Order on Consent Index No. A4-0473-0000 effective November 2003).

02270 – 1.01 REFERENCES

All work shall be performed in substantive compliance with the NYSDEC State Pollutant Discharge Elimination System (SPDES) General Permit No. GP-0-10-001 for Stormwater Discharges from Construction Activities (Permit No. GP-0-10-001). Materials and installation shall be in accordance with the latest revisions of the NYSDEC Standards and Specifications for Erosion and Sediment Control (NYSDEC, 2005).

Excavation and removal to their full depth of all former MGP related structures and foundations in Areas 1 and 2 that contain MGP related contaminated materials is being performed to remove impacted soils and structures to the extent practicable within the site area. The actual depth of removal will be based on visual observations made in the field with the concurrence of the NYSDEC. The project is expected to maintain stormwater runoff from the MGP Site under developed conditions. In accordance with Permit No. GP-0-10-001, projects that involve ground disturbance that will not result in an increase in impervious surface area are not required to install permanent facilities to manage the water quality and quantity volumes from the project area.

02270 - 1.02 SUBMITTALS

Submittals will include shop drawings of silt fencing and filter fabric.

02270 – 2 MATERIALS

02270 - 2.01 GENERAL

Supervision, labor, equipment and materials will be provided as needed to perform the specified work.

Materials will include silt fence, vegetation, stone, filter fabric, and other manufactured products to reduce erosion and control sedimentation.

02270 – 2.02 SILT FENCE

Posts will be steel (either T or U type) or 2-inch square hardwood with 10-foot spacing. Wire fence backing will be woven wire, 14.5 gauge, with 6-inch maximum mesh opening.

Geotextile filter cloth sizing will be as recommended by the manufacturer. The material will have a minimum tensile strength of 120 pounds (test procedure ASTM D1682).

02270 – 2.03 STABILIZED CONSTRUCTION ENTRANCE

Stone used for stabilized construction entrances will be a minimum of 2-inch stone.

Equivalent material (*i.e.*, reclaimed concrete) may be used with approval from the Engineer.

Geotextile bedding will consist of Mirafi 600X.

02270 – 2.04 TEMPORARY VEGETATION

Seed mixtures will be of commercial stock of the current season's crop and will be delivered in unopened containers bearing the guaranteed analysis of the mix. Seed will meet the standards of germination and purity set by the State of the Association of Official Seed Certifying Agencies (AOSCA).

Seed Mixtures*:

Timothy – 30 Clover – 20 Perennial Ryegrass – 40 Annual Ryegrass - 10 *% by weight

When the final soil surface has been fine graded in accordance with the Final Design Report, the seed mixture will be uniformly applied upon the prepared surface with a mechanical spreader at a rate of not less than 10 pounds per 1000 square feet.

- 1. Seed will be raked lightly into the surface and rolled with a light hand lawn roller
- 2. Seeding and mulching will not be done during windy weather.

Hydroseeding may be utilized as an alternative method of applying fertilizer, seed and mulch.

02270 – 3 CONSTRUCTION DETAILS

02270 - 3.01 SEQUENCE

A temporary stabilized construction entrance will be installed in the ingress and egress locations that are agreed to by the Engineer. If needed, vehicles/equipment will be washed on the entrance prior to leaving the site. Periodic top dressing of the entrance will be performed as necessary as material accumulates in an effort to prevent tracking of material onto off-site roads.

Silt fencing will be installed along toes of embankments, on downgradient portions of the MGP site perimeter, and around staging areas.

Staging areas for construction vehicles, equipment, and supplies will be established in areas approved by National Grid.

Areas of the MGP site to be cleared and grubbed will be within the limits of work only. Cleared vegetation, soil, and other debris will be stockpiled in approved areas for disposal at an approved location.

Stockpiled soil will be covered using temporary polyethylene sheets and exposed soil will be stabilized, seeded, and mulched in accordance with the Final Design Report at the conclusion of implementation of the Remedial Design.

Upon stabilization of the project area and approval of the final inspection, temporary Erosion and Sediment Control measures will be removed.

02270 - 3.02 STABILIZATION

Stabilization measures will be initiated in accordance with the NYSDEC Standards and Specifications for Erosion and Sediment Control (NYSDEC 2005) as soon as practicable. For locations where soil disturbance activities have temporarily or permanently ceased, stabilization measures will be implemented within 14 days of the conclusion of activities or within 7 days if authorized to exceed 5 acres of disturbance at one time. This requirement does not apply if the installation of stabilization measures is precluded by snow cover or frozen ground conditions; however measures will be implemented as soon as practicable.

02270 – 3.03 ADDITIONAL STORMWATER CONTROLS

Listed below is a description of additional controls and measures that will be implemented to minimize pollutant transport.

Proper precautions will be taken so materials do not spill onto public thoroughfares. If materials are dropped onto these areas they will be removed as soon as practicable so that they do not enter surface and subsurface drainage systems.

Sediment laden water (if any) from excavation dewatering operations will be collected for pretreatment (if necessary) and proper disposal either on or off site.

Dust control measures will be employed before dust migrates off-site, and may include water application or mulching but will not include use of chemical additives.

Planting materials will be properly stored and/or contained.

Chemicals with spill potential (if any) will have appropriate secondary containment.

02270 – 3.04 MAINTENANCE

Construction period operation and maintenance:

- 1. Clean and/or repair or replace silt fences as necessary.
- 2. Stabilized construction entrances will be resurfaced as necessary.
- 3. Debris and litter will be removed on a weekly basis, or more frequently if necessary.

Post-construction operation and maintenance:

- 1. Seed and mulch will be spread within the project area at the conclusion of implementation of the Remedial Design and will be maintained until the vegetation is at least 80% established to protect against erosion.
- 2. Sloughing or erosion of embankments will be repaired.

02270 – 3.05 INSPECTION DURING CONSTRUCTION

General

The Owner will be responsible to provide a Qualified Inspector¹ to inspect the proposed erosion and sediment control measures and disturbed areas for compliance with the SWPPP. These inspections will be completed at least once every seven calendar days. There will be a minimum of two full calendar days between inspections. A typical Inspection Report Form for conducting the inspections is included in the SWPPP.

The inspection report will include the inspector's name, date, and findings of the inspections, notes, and actions taken to repair/replace defective control measures. A map indicating locations of areas of concern and drainage pathways will be included. Based on the results of the inspection, the pollution prevention measures identified herein will be revised and implemented as appropriate within one business day and completed within seven calendar days following the date of the inspection. Deficiencies noted during any inspection will be corrected as soon as practicable within the 7 days from the inspection. Further mitigation measures will be implemented if warranted. Each inspection report is to remain on file at the project area as part of the SWPPP until the MGP site and restored staging areas are stabilized and the SPDES Notice of Termination (NOT) is submitted to the NYSDEC.

Prior to construction, O'Brien & Gere will identify at least one Trained Contractor² that will be responsible for implementation of the SWPPP and inspection of the erosion and sediment controls in accordance with the New York State Standards and Specifications for Erosion and Sediment Control (NYSDEC 2005). O'Brien & Gere will provide that at least one Trained Contractor is present at the project area on a daily basis while soil disturbance activities are being performed.

Temporary Construction Shutdown (Winter Conditions)

When soil-disturbing activities have been temporarily suspended (*e.g.*, winter shutdown) and temporary stabilization measures have been applied to disturbed areas, the Trained Contractor may suspend daily inspections. However, the Qualified Inspector must perform an inspection of the project area at least once every 30 calendar days. The Owner will notify the NYSDEC in writing prior to reducing the inspection frequencies. The Owner will resume inspections by the trained individual and qualified inspector in accordance with this Section as soon as soil disturbance activities resume.

Final Site Inspection

The Qualified Inspector will perform a final inspection to certify that:

- construction is complete and disturbed areas have been stabilized
- temporary erosion and sediment control facilities have been removed
- permanent stormwater management practices have been installed and are in operation and on-line.

Upon satisfactory completion of the final inspection, the Qualified Inspector will sign the appropriate sections of the NOT form.

¹ Qualified Inspector includes persons knowledgeable in the principles and practices of erosion and sediment controls, such as a licensed professional engineer, Certified Professional in Erosion and Sediment Control (CPESC), licensed Landscape Architect or other NYSDEC endorsed individual. It also means someone working under the direct supervision of the licensed Professional Engineer or licensed Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control.

² Trained Contractor means an employee from a contracting (construction) firm that has received four hours of training that has been endorsed by the NYSDEC (*i.e.*, Soil and Water Conservation District, CPESC, Inc., or other NYSDEC endorsed entity), in proper erosion and sediment control principles no later than two years from the date the general permit was issued. After receiving the initial training, the Trained Contractor shall receive four hours of training every three years. This individual will be responsible for implementation of the SWPPP.

02270 - 3.06 NON-STORMWATER DISCHARGES

Areas of the site dedicated for construction vehicle transit or equipment staging will be visually inspected, and where necessary runoff will be controlled.

Decontamination of construction vehicles and equipment will occur in designated staging/lay down areas. Chemicals and detergents will not be used.

Water used for dust control measures will be applied using proper quantities and equipment to avoid runoff to the extent practicable. No chemical additives will be used.

02270 - 3.07 SPILL PREVENTION

The following spill prevention measures will be performed:

- Materials with potential for spillage will be stored at the project area in a neat, orderly manner in their appropriate containers and in secondary containment.
- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the substance manufacturer.
- Whenever possible, product will be used up or packages resealed before proper disposal of contents and containers off site.
- Manufacturers' recommendations for proper use and disposal will be followed.
- Inspection will be made for proper use and disposal of materials.
- On-site vehicles will be monitored for leaks and receive regular preventative maintenance to reduce the chance of leakage of petroleum products. Petroleum products will be stored in closed containers which are clearly labeled. Used oils will be disposed of properly.
- Materials will be brought to the project area in the minimum quantities required to limit such storage.
- Refueling of vehicles and equipment will occur no closer than 50-feet from streams and wetlands.

02270 – 3.08 SPILL CONTROL PRACTICES

Spills of petroleum, toxins, or hazardous material will be reported to the Respondents immediately, regardless of size. The Project Coordinator will notify the appropriate State or local government agencies following notification to the Owner. Spills will be cleaned up immediately after discovery.

Manufacturers' recommended methods for spill cleanup will be clearly posted and appropriate personnel will be made aware of the procedures and the location of the information and cleanup supplies.

Materials and equipment necessary for spill cleanup will be kept in material storage area at the project location. Equipment and materials will include but not be limited to shovels, rags, gloves, goggles, spill control materials, sand, sawdust, and trash containers specifically for this purpose.

The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.

A spill report will be completed and will include a description of the spill, what caused it, and the corrective measures taken.

02270 – 3.09 CERTIFICATIONS

Contractor Certification - Each responsible Contractor will understand and sign a form containing

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during an inspection. I also understand that the Respondents or operator must comply with the terms and conditions of the New York State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings. I also certify that I have received a copy of the SWPPP and will retain a copy of such SWPPP at the project area during construction."

Prior to construction, the Owner will identify at least one qualified inspector who will understand and sign a form containing the following certification statement:

"I hereby certify that I meet the criteria set forth in the General Permit to conduct inspections for this project and that the appropriate erosion and sediment controls described in the SWPPP and as described in the Pre-construction Site Assessment Checklist have been adequately installed or implemented, ensuring overall preparedness for the commencement of construction."

02270 – 3.10 NOTICE OF INTENT/TERMINATION

National Grid (Owner) will be responsible for submitting the SPDES General Permit No. GP-0-10-001 Notice of Intent (NOI) to the NYSDEC, after it has been signed, prior to initiation of construction activities. The Notice of Termination (NOT) will be submitted to the NYSDEC by the Owner upon completion of construction and stabilization of the project area.

Instructions to Owner/Operator or Respondents/Contractor

- 1. The Owner and Contractor shall read this Stormwater Pollution Prevention Plan (SWPPP) document to become familiar with all aspects of Stormwater Pollution Prevention associated with this project. This document shall be kept on file at the work site at all times (*i.e.*, in the work trailer).
- 2. The Owner and Contractor shall read the New York State Department of Environmental Conservation SPDES General Permit for Storm Water Discharges from Construction Activities GP-0-10-001. This SWPPP has been prepared on behalf of the Respondents to assist the Contractor with compliance with GP-0-10-001. The Contractor shall follow the SWPPP and understand that this document constitutes the minimum standards for compliance with GP-0-10-001.
- 3. In the event of a transfer of responsibility for stormwater runoff, the original Owner shall notify the new Owner/Operator or Respondents in writing of the requirement to obtain permit coverage by submitting a new Notice of Intent (NOI). Once the new Owner/Operator or Respondents obtains permit coverage, the original Owner shall submit a completed Notice of Termination (NOT) with the name and permit identification number of the new Owner/Operator or Respondents. If the original Owner/Operator or Respondents maintains ownership of a portion of the construction activity and will disturb soil, they shall obtain their coverage under GP-0-10-001. Permit coverage for the new Owner/Operator or Respondents will be effective as of the date a completed NOI is sent and an acknowledgement letter is received, provided the original Respondents were not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new Owner/Operator or Respondents.
- 4. Prior to commencing construction activities, National Grid shall complete and submit the forms and certifications herein. This information shall be kept updated.
- 5. All enclosed certifications shall be completed and each one of the Contractors shall complete their portion of the certification. Each certification to be completed by one of the Contractors shall be signed by a president, treasurer or vice president or any person who performs similar policy or decision making functions and by the on-site individual having responsibility for the firm and each one of the Contractors implementing erosion control measures.

I. PRE-CONSTRUCTION MEETING DOCUMENTS

Project Name	
Permit No.	Date of NYSDEC Authorization
Name of Respondent	
Prime Contractor	
Contractors	

a. Preamble to Assessment and Inspections

The following information to be read by all persons involved in the construction of stormwater related activities:

The Owner agrees to have a Qualified Inspector¹ conduct an assessment of the project area prior to the commencement of construction². The Owner shall certify in this inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed and implemented to ensure overall preparedness of the project area for the commencement of construction.

When construction starts, the Qualified Inspector shall conduct at least one inspection of the project area every seven calendar days. There should be a minimum of two full calendar days between inspections. The Owner shall maintain a record of all inspection reports at the project area which shall be made available to the permitting authorities upon request.

Prior to submitting the Notice of Termination or the end of permit term, the Owner shall have a Qualified Inspector perform a final inspection of the project area. The Qualified Inspector shall certify that the project area has undergone final stabilization³ using either vegetative or structural stabilization methods and that all temporary erosion and sediment controls (such as silt fencing) not needed for long-term erosion control have been removed.

¹ "Qualified Inspector means a person knowledgeable in the principles and practices of erosion and sediment controls, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), licensed Landscape Architect, or other Department endorsed individual. It also means someone working under the direction and supervision of a licensed Professional Engineer or licensed Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control.

² "Commencement of construction" means the initial disturbance of soils associated with clearing, grading or excavation activities or other construction activities that disturb or expose soils such as demolition or stockpiling of fill material.

³ "Final stabilization means that all soil-disturbance activities at the project area have ceased and uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established or equivalent stabilization measures such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

I:\National-Grid.1118\44581.Fulton-Remedial\Docs\Reports\100% Design Report\SWPPP\Att 3 pre-construction requirements.doc

Pre-construction Site Assessment Checklist (NOTE: Provide comments below as necessary)

1. Notice of Intent, SWPPP, and Contractors Certification: Yes No NA

Yes	No	NA	
[]	[]	[]	Has a Notice of Intent been filed with an acknowledgement letter received from the
			NYS Department of Environmental Conservation?
[]	[]	[]	Has MS4 Approval Letter (if needed) been received?
[]	[]	[]	Is the SWPPP at the project location? Where?
[]	[]	[]	Is the Plan current? What is the latest revision date?
[]	[]	[]	Is a copy of the NOI (with brief description) at the project location: Where?
[]	[]	[]	Have all Contractors involved with the stormwater related activities signed a
			Contractor's Certification?
[]	[]	[]	Has Contractors stabilization/construction sequence been received?

2. Resource Protection

Yes	No	NA	
[]	[]	[]	Are construction limits clearly flagged or fenced?
[]	[]	[]	Important trees and associated rooting zones, on-site septic system absorption fields,
			existing vegetated areas suitable for filter strips, especially in perimeter areas, have
			been flagged for protection.
[]	[]	[]	Creek crossings installed prior to land-disturbing activity, including clearing and
			blasting.

3. Surface Water Protection Yes No NA

Yes	No	NA	
[]	[]	[]	Clean stormwater runoff has been diverted from areas to be disturbed.
[]	[]	[]	Bodies of water located either on-site or in the vicinity of the site have been
			identified and protected.
[]	[]	[]	Appropriate practices to protect on-site or downstream surface water are installed.
[]	[]	[]	Are clearing and grading operations divided into areas <5 acres?

4. Stabilized Construction Entrance

Yes	No	NA	
[]	[]	[]	A temporary construction entrance for the purpose of capturing mud and debris
			from construction vehicles before they enter the public highway has been installed.
[]	[]	[]	Other access areas (entrances, construction routes, and equipment parking areas) are
			stabilized immediately as work takes place with gravel or other cover.
[]	[]	[]	Sediment tracked onto public streets is removed or cleaned on a regular basis.

5. Perimeter Sediment Controls

Yes	No	NA					
[]	[]	[]	Silt fence material and installation comply with the standard drawing and				
			specifications.				
[]	[]	[]	Silt fences are installed at appropriate spacing intervals.				
[]	[]	[]	Sediment/detention basin was installed as first land disturbing activity.				
[]	[]	[]	Sediment traps and barriers are installed.				

6. Pollution Prevention for Waste and Hazardous Materials			
Yes	No	NA	
[]	[]	[]	The Respondents or their designated representative has been assigned to implement the spill prevention avoidance and response plan.
[] []	[] []	[] []	The plan is contained in the SWPPP on pageAppropriate materials to control spills are at the project location. Where?

b. Qualified Inspector's Credentials and Certification

"I hereby certify that I meet the criteria set forth in the General Permit to conduct inspections for this project and that the appropriate erosion and sediment controls described in the SWPPP and as described in the following Pre-construction Site Assessment Checklist have been adequately installed or implemented, ensuring overall preparedness for the commencement of construction"

Name (please print):		
Title:		Date:
Address:		
Phone:	Email:	
Signature:		

CONTRACTOR'S CERTIFICATION STATEMENT

(Each Contractor shall sign the certification statement prior to working on-site).

I.	SITE INFORMA Construction Site Site Location:					
II.	CONTRACTORS INFORMATION Contracting Firm					
		Contracting Firm Address				
	Telephone Number(s)					
		1) 2) 3)				
	Name(s) of Trained Contractor(s) that will be responsible from Contractor's company for implementing the SWPPP:					
	Name		Title			
	Name					

A Trained Contractor is an employee of the contracting company that has received four (4) hours of training, which has been endorsed by the Department from a Soil and Water Conservation District, CPESC, Inc. or other Department endorsed entity in proper erosion and sediment control principles no later than two (2) years from the date this general permit is issued. After receiving the initial training, the Trained Contractor shall receive four (4) hours of training every three (3) years.

III. STORMWATER MEASURES

Contractor shall implement and maintain the following stormwater measures:

- 1. 2.
- 3.
- 4.

IV. CERTIFICATION

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during an inspection. I also understand that the Respondents or operator must comply with the terms and conditions of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings. I also certify that I have received a copy of the SWPPP and will retain a copy of such SWPPP at the project area during construction."

V. SIGNATURE: _____ DATE

Name (print): _____ Title:

Inspection Forms

FIELD RECORD COPY

Former Fulton Manufactured Gas Plant Site SWPPP MAINTENANCE INSPECTION FORM

Inspection Location:

Name of Inspector:

Inspection #: _____

Date/Time of Inspection:

Soil Conditions: WET /DRY /SATURATED (Circle One)

Weather Conditions:_____

Type of Inspection	Yes	No			
1. Initial Inspection					
2. Weekly/Biweekly Inspection					
3. Construction Shutdown Inspection					
4. Final Inspection:					
a. Has the Site undergone final stabilization?					
b. Have all temporary erosion controls been removed?					
(Edit Checklist below for Project Specifics)					
Project Checklist (indicate Areas of concern on the	attach	ed map)	Yes	No	N/A
Erosion and Sediment Controls:					
1. Is there any evidence of sediment leaving the site?					
2. Are silt fences in good condition and free from visible signs	s of ero	sion			
(% sediment buildup)?					
3. Are sediment traps in good condition (% sediment buil	dup)?				
4. Are construction access/egress points stabilized?					
5. Are vehicles and equipment being washed down in a stabilized area?					
6. Are dust control measures being applied as needed?					
Stabilization Practices:					
7. Have all disturbed portions of the site where earth disturbing activities have					
ceased and will not resume within 14 days been temporarily stabilized by covering			ering		
with plastic, mulching, or by mulching and seeding?					_
8. Have all disturbed portions of the site where earth disturbing activities have			•		
permanently ceased been stabilized with topsoil and permanent	ent see	d?			
Additional Stormwater Controls:					
9. Are material storage / handling/stockpile areas properly sta	abilized	?			
10. Are concrete disposal areas being properly utilized?					_
11. Is there any evidence of spills or leaks from vehicles/equi	pment?				

List Disturbed Areas	Stabilized Yes No	
1.		
2.		
3.		
4.		
5.		

FIELD RECORD COPY

FIELD RECORD COPY Former Fulton Manufactured Gas Plant Site SWPPP MAINTENANCE INSPECTION FORM

Work Performed Since Last Inspection & Effectiveness of Corrective Actions:

Comments on General Site Conditions:

Remarks/Recommendations*:

* Please make a distinction between deficiencies to the SWPPP and normal maintenance items.

Condition of Runoff at Discharge Points (Photos Attached):

PLEASE SEE ATTACHED MAP FOR LOCATIONS

IF ALL QUESTIONS ARE ANSWERED "YES" OR "N/A", THEN SIGNATURE BELOW ACKNOWLEDGES COMPLIANCE WITH THE EXISTING STORMWATER POLLUTION PREVENTION PLAN AND NYSDEC SPDES PERMIT (GP-0-10-001).

Inspector:

Signature of Inspector

Date:

Reviewed: ____

Date:

Qualified Professional

FIELD RECORD COPY

Contract Documents (bound separately)

FORMER FULTON MGP SITE OSWEGO COUNTY, NEW YORK

SITE NO. 738034 REMEDIAL DESIGN

SPECIAL PROVISIONS

- SP-1 General Construction Sequence
- SP-2 Work Schedule
- SP-3 Contract Work Area Security
- SP-4 Notices
- SP-5 NYSDEC Review
- SP-6 Odor Control
- SP-7 Progress and Coordination Meetings
- SP-8 Emergency Calls
- SP-9 Existing Utilities
- SP-10 Dust Monitoring and Control Program
- SP-11 Contractor's Construction Quality Control Plan
- SP-12 Borrow Materials
- SP-13 Retention of Records
- SP-14 Reporting Requirements
- SP-15 Emergency Response
- SP-16 Staging Plan
- SP-17 Utilization of On-Site Materials
- SP-18 Supplemental Information
- SP-19 Construction Water Management
- SP-20 Potential to Treat by Low Temperature Thermal Desorption
- SP-21 Pre-Construction Inspection
- SP-22 Noise Control

TECHNICAL SPECIFICATIONS

- Section 01300 Surveys
- Section 01700 Health and Safety
- Section 02003 Field Office Trailer
- Section 02007 Perimeter Air Monitoring and Dust Control Plan
- Section 02009 Project Photographs
- Section 02110 Stormwater Pollution Prevention
- Section 02145 Groundwater Monitoring Well Abandonment
- Section 02151 Groundwater Monitoring Well Repair and Replacement
- Section 02211 Clearing and Grubbing
- Section 02221 Earthwork
- Section 02223 Embankment
- Section 02225 Structure Excavation, Backfill and Compaction
- Section 02229 Rock Removal
- Section 02231 Select Fill
- Section 02241 Off-Site Transportation and Disposal
- Section 02242 Tar Excavation and Off-site Disposal
- Section 02270 Erosion and Sediment Control
- Section 02278 Geotextile Filter Fabric

TECHNICAL SPECIFICATIONS (continued)

- Section 02402 Jet Grouting
- Section 02503 Restoration of Surfaces
- Section 02623 Cured-in-Place Pipe
- Section 02981 Topsoil and Seeding

CONTRACT DRAWINGS

Title Sheet

- G-1 General Notes and Legend
- G-2 Existing Site Plan
- G-3 Site Preparation Plan
- G-4 Erosion & Sediment Control Plan
- G-5 Area 2 Excavation Plan
- G-6 Area 1 Excavation Plan
- G-7 Miscellaneous Details
- G-8 Sewer Rehabilitation Plan
- G-9 Area 2 Final Site Restoration Plan
- G-10 Area 1 Final Site Restoration Plan

Construction Quality Assurance Plan (CQAPP)

REPORT

Construction Quality Assurance Project Plan for Remedial Action at Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

nationalgrid

Date January 2011

Construction Quality Assurance Project Plan for Remedial Action

Former Fulton Manufactured Gas Plant Site Fulton, New York Site Number 738034

Prepared for:

nationalgrid

JAMES R. HECKATHORNE, P.E. O'BRIEN & GERE ENGINEERS, INC.

TABLE OF CONTENTS

FIGURESii
1 Introduction1
2 Project Organization and Responsibilities2
2.1 Project Organization and Responsibilities2
2.2 Personnel Qualifications
2.3 Lines of Communication
2.4 Meetings
3 CQA/CQC and MQA/MQC8
3.1 In-Situ Lining of Storm Sewer
3.1.1 Manufacturing Quality Control8
3.1.2 Construction Quality Assurance
3.2 Jet Grouting9
3.2.1 Construction Quality Control
3.2.2 Construction Quality Assurance10
3.3 Excavated Soil Sampling10
3.4 Demarcation Layer Fabric10
3.5 Select Fill, Embankment, and Topsoil11
3.5.1 Construction Quality Control11
4 Documentation
4.1 Problem Identification and Corrective Measure Reports12
4.2 Meeting Minutes
4.3 Photographs12
4.4 Record Drawings12
4.5 Storage and Disposition of Records12

FIGURES

1 Lines of Communication

1 INTRODUCTION

This document has been prepared as a means of providing guidelines and procedures for Construction Quality Assurance and Construction Quality Control (CQA/CQC) and Manufacturing Quality Assurance and Manufacturing Quality Control (MQA/MQC) during the Remedial Action (RA) at the Fulton Former Manufactured Gas Plant (MGP) Site.

CQA means a planned system of activities that provides assurance that the facility was constructed as specified in the design. CQA refers to measures taken by the CQA organization to assess if the installer or contractor is in compliance with the plans and specifications and permits for the project. This may also include quality control for those actions taken before construction to evaluate if materials chosen and workmanship comply with agency approved engineering plans and specifications.

CQC means a planned system of inspections that are used to directly monitor and control the quality of a construction project. CQC includes those actions normally performed by the installer to achieve high quality in the constructed or installed system. CQC refers to measures taken by the installer or contractor to determine compliance with the requirements for materials and workmanship as stated in the plans and specifications for the project.

MQA is defined as a planned system of activities which provides assurance that materials were manufactured as specified in the contract documents. MQA includes manufacturing facility inspections, verifications, audits and evaluation of the quality of manufactured materials. MQA refers to measures taken by MQA organization to determine if the manufacturer is in compliance with the product certification and contract plans for a project.

MQC is defined as a planned system of inspections that is used to directly monitor and control the manufacture of a material that is factory originated. MQC is usually performed by the manufacturer of the materials and is necessary to ensure minimum (or maximum) specified values in the manufactured product. MQC refers to measures taken by the manufacturer to determine compliance with the requirements for materials and workmanship as stated in certification documents and contract documents.

This CQA/CQC Plan outlines the responsibilities of each of the entities associated with the project. This includes a delineation of the appropriate lines of communication between the Owner, Contractor, inspection personnel and design personnel associated with construction activities. Also provided is a description of the required level of experience and training for the Contractor and CQA/CQC inspectors in sufficient detail to determine that personnel permitted to be involved with the project have the necessary qualifications to properly complete the work in accordance with the methods and procedures specified. In addition to personnel requirements, a description of the CQA/CQC protocols to be utilized for documenting construction activities and compliance with the specifications is provided.

2 PROJECT ORGANIZATION AND RESPONSIBILITIES

An important facet of construction management is CQA/CQC and MQA/MQC during construction of the project. In this section, organizations involved in CQA/CQC and MQA/MQC for this project along with their responsibilities and qualifications are discussed. Lines of communication are presented, along with procedures for submission of CQA/CQC and MQA/MQC information.

2.1 PROJECT ORGANIZATION AND RESPONSIBILITIES

Several organizations are involved in CQA/CQC and MQA/MQC prior to, during, and following construction. These include the following:

- New York State Department of Environmental Conservation (NYSDEC) as the regulatory agency
- National Grid as the Owner
- O'Brien & Gere Engineers, Inc. as the Design Engineering Firm
- Engineer (to be determined) as the organization or individuals engaged by the Owner for the project to monitor that work is constructed in accordance with the approved plans and specifications
- Construction Contractor (Contractor) (to be determined)
- Owner's Representative (to be determined)
- Testing laboratories (to be determined)
- Manufacturers and fabricators (to be determined)
- Installers (to be determined).

The responsibilities of these organizations are delineated in the following subsections.

Regulatory agency responsibilities. As the regulatory agency, the NYSDEC will perform the following functions:

- Review and approve original designs
- Review project submittals for compliance with regulations
- Issue approval to construct the project once an approved design has been submitted
- Review and approve major design modifications or requests for variances from the regulatory conditions during construction.

Owner responsibilities. The Owner will:

- Bear responsibility for the design, construction, construction inspection and operation of the project
- Comply with NYSDEC requirements to obtain approvals and/or permits
- Bear responsibility for all communications with the NYSDEC
- Bear responsibility for providing CQA/CQC and MQA/MQC documentation to the NYSDEC that construction activities associated with the project are proceeding in accordance with the approved design (and approved design modifications)
- Select organizations charged with design, CQA/CQC, MQA/MQC, and construction activities
- Accept or reject design plans and specifications, CQA/CQC plan, reports and recommendations of the design engineer, and the materials and workmanship of the Contractor

Bear responsibility for providing the Construction Completion Report to the NYSDEC for review and acceptance.

Design engineer's responsibilities. As the Design Engineering Firm, O'Brien & Gere Engineers will perform the following:

- Provide a project design that fulfills the performance requirements of the NYSDEC
- Prepare this CQA/CQC Plan
- Prepare necessary design modifications during construction if necessitated by unexpected site conditions or required changes in construction methodology.

Engineer's responsibilities. The Engineer will oversee the CQA/CQC and MQA/MQC activities required by this plan. The Engineer will perform the following:

- Review design plans and specifications
- Coordinate the review of the Contractor's shop drawing submittals
- Observe each construction activity
- Confirm the Contractor's CQC Plan is in accordance with the CQA/CQC Plan
- Accept methods employed by the Contractor to perform CQC testing services
- Confirm that regular calibration of testing equipment is properly conducted and recorded
- Confirm that testing laboratories conform to CQA/MQA requirements and procedures and sample custody procedures are followed
- Confirm that testing equipment, personnel, and procedures do not change over time, or if changes are made, monitor that any changes do not adversely impact inspection processes
- Confirm that test data inspection reports are accurately recorded and maintained
- Provide the Owner with reports on testing and inspection results
- Notify the Contractor of deficiencies based on results of field inspections, CQA/CQC and/or MQA/MQC results
- Schedule and attend project CQA/CQC meetings during construction
- Provide daily on-site inspection of the work in progress to assess compliance with design plans and specifications
- Visually inspect materials brought to the Site for conformance with the specifications and for variations from material that was tested
- Observe field sampling and testing performed by the Contractor and review the results
- Observe whether materials are being properly handled and stored on-site
- Conduct day to day interaction with the Contractor
- Conduct day to day interaction with the Owner's Representative
- Attend job meetings as required
- Certify that the facility was constructed in accordance with the plans and specifications approved by the regulatory agency
- Oversee the preparation of the Construction Completion Report and Record Drawings

3 | DRAFT: January 10, 2011

Construction contractor's responsibilities. The general Contractor selected by the Owner will perform the following:

- Construct the project in accordance with the design plans and specifications using appropriate construction procedures and techniques
- Retain and oversee qualified subcontractors to perform specialized components of construction
- Develop a CQC implementation plan for CQC to assure compliance with the design plans, specifications and this CQA/CQC Plan
- Schedule and coordinate CQA/CQC and MQA/MQC inspection and testing activities
- Retain testing laboratories to provide CQC testing services
- Submit required reports, results, shop drawings, etc. to the Design Engineer for distribution for review and acceptance
- Prepare a construction activity schedule using the Critical Path Method (CPM) or a bar graph and update it monthly
- Provide the Engineer marked-up drawings for Record Drawing preparation

Owner's Representative. As the third party person or corporation hired by the Owner, independent from the Contractor or Engineer, the Owner's Representative will perform the following:

- Observe and document activities related to the quality control of remedial activities from delivery of materials through installation
- Review contract documents
- Recommend to the Engineer changes in the CQA Plan and in the contract documents
- Communicate directly with the Owner
- Prepare weekly reports

Testing laboratory responsibilities. The testing laboratory utilized will meet the following requirements:

- Have an internal CQC plan in-place to confirm that laboratory procedures conform to the appropriate United States Environmental Protection Agency (USEPA) analysis methods, American Society for Testing and Materials (ASTM) standards, or other applicable standards and methods
- Follow internal CQC procedures
- Maintain sample chain-of-custody records
- Report results of testing

The testing laboratory will be required to allow the Owner, the regulatory agency, the Design Engineer, the CQC Inspector, the Installer, the Engineer, and the Owner's Representative to observe sample preparation, testing procedures, or record-keeping procedures upon request. The Owner, the NYSDEC, the Design Engineer, the Owner's Representative, and/or the Installer will be allowed to observe some or all tests on a particular job at any time, either announced or unannounced.

Manufacturer and fabricator responsibilities. The manufacturers and fabricators of material and equipment required for construction of the project will:

- Certify that materials manufactured or fabricated meet the specifications
- Provide MQC steps taken during manufacturing or fabrication
- Allow the Owner, the regulatory agency, the Design Engineer, the Engineer, the Owner's Representative, and the Installer to observe the manufacturing and fabrication process and MQC procedures

The manufacturer or fabricator should have an MQC officer designated to be in charge of the MQC program. The MQC officer will be the individual to contact with questions regarding MQC and for arranging site visits to inspect MQC procedures and fabrication procedures. The MQC Officer will also be responsible for directing personnel in charge of MQC.

Installer's responsibilities. The Installer is the contractor or subcontractor that installs manufactured and fabricated products, such as the sewer pipe liner. The Installer's responsibilities include the following:

- Maintaining a CQC Plan in-place for handling, storing, placing, and installing materials
- Handling, storage, placement, and installation of manufactured and fabricated materials
- Following CQC procedures
- Informing the Engineer of the schedule for installation of manufactured or fabricated materials

2.2 PERSONNEL QUALIFICATIONS

To confirm that the project is constructed in accordance with the approved design plans and specifications, it is important that organizations and personnel involved in implementing the remedy possess suitable qualifications to perform the work. This includes personnel responsible for CQA/MQA as well as the Contractor and the Contractor's CQC personnel. The following sections describe qualifications and minimum acceptable experience for positions identified in the CQA/CQC Plan.

Engineer. The Engineer will be required to be or work under the direction of a licensed professional engineer in the State of New York with demonstrated competency in similar projects. The Engineer will be responsible for observation of construction activities and will have a thorough familiarity with the project and testing requirements. The Engineer will also have experience in testing and inspection of earthwork, granular materials, geosynthetic materials, concrete, and site improvements.

Contractor. The general Contractor selected to construct this project will be required to present evidence of having experience in constructing projects of similar size and scope, including, but not limited to, projects requiring material excavation and off-site transportation/disposal of non-hazardous special wastes and hazardous wastes, construction water management, protection of utilities, bypass pumping, *in situ* lining of sewer pipe, and jet grouting.

CQC geotechnical laboratory. The CQC Geotechnical Laboratory will be an independent laboratory approved by the Engineer. The CQC Geotechnical Laboratory will not be owned by the Contractor and/or subcontractors or owned by a subsidiary of the Contractor and/or his subcontractors.

The laboratory will be qualified to perform geotechnical testing presented in the specifications and have a minimum of five years experience in testing soil properties required for the project. The laboratory will be required to submit references from three other similar projects. All laboratory test results will be certified by a Laboratory Manager with a minimum of two years of soils testing experience.

CQC analytical laboratory. The CQC analytical laboratory will be an independent laboratory approved by the Engineer. The CQC analytical laboratory will not be owned by the Contractor and/or subcontractors or owned by a subsidiary of the Contractor and/or his subcontractors.

The CQC analytical laboratory will be qualified to perform the analytical testing presented in the specifications. The laboratory will be required to submit references from three other similar projects. All laboratory tests will be certified by a Laboratory Manager with a minimum of two years of testing experience.

Manufacturers and fabricators. Manufacturers and fabricators of the pipe liner and geosynthetics will be required to have experience in manufacturing or fabricating similar materials for a minimum of five completed facilities of equivalent or larger scope. The manufacturers and fabricators will each be required to submit the list of facilities to the Engineer.

Installers. Installers of specified equipment and materials will be required to demonstrate experience in projects of similar size and nature as requested by the Engineer. Installers responsible specifically for the installation of the sewer pipe liner will be trained and qualified to install and test the pipe liner. *In situ* pipe liner installers will be required to demonstrate experience in installing the liner by inversion method or other approved method at a minimum of five completed facilities. The pipe liner installer will be required to submit the list of facilities to the Engineer.

2.3 LINES OF COMMUNICATION

An important component to the successful completion of any project is effective communication between the parties involved. The lines of communication shown in Figure 1 will be followed on this project.

The Engineer will notify the Owner's Representative when deficiencies in the work are noted based on field inspections, CQA/CQC or MQA/MQC results. The Engineer will notify the Owner' Representative and, if appropriate, order corrective measures or recommend work stoppage. Formal communications related to submittals and changes or modifications of work shall be made in accordance with the terms of the Contract Documents.

2.4 MEETINGS

To strengthen responsibility and authority, enhance communications, and maintain the progress of the work in an orderly and efficient manner, scheduled on-site construction and project management meetings will be held prior to and throughout the course of construction.

Pre-construction meeting. After award of the contract, a pre-construction meeting will be held. Attendees at this meeting may include:

- Regulatory representative (NYSDEC)
- Design Engineer (O'Brien & Gere Engineers)
- Engineer
- Owner's Representative
- Contractor

Representatives of the Owner may also attend this meeting.

The meeting will cover contractual obligations, scheduling, and construction details. Important objectives of the meeting directly related to construction quality will be to:

- Provide each organization with all relevant CQA/CQC and MQA/MQC documents and supporting information
- Familiarize all entities with this CQA/CQC Plan and its role relative to the plans and specifications
- Determine any changes to the CQA/CQC Plan that are needed to monitor that the Project will be constructed to meet or exceed the specified design

^{6 |} DRAFT: January 10, 2011

- Review the responsibilities of each organization
- Review lines of authority and communication
- Discuss the established procedures or protocol for observations and tests including sampling strategies
- Discuss CQC/MQC proposed by Contractors and Installers
- Discuss established procedures or protocol for handling construction deficiencies, repairs, and retesting
- Review methods for documenting and reporting inspection data
- Review methods for distributing and storing documents and reports
- Review work area security and safety protocols
- Discuss procedures for the location, storage, and protection of construction materials and for the prevention of damage to the materials from inclement weather or other adverse events
- Conduct a site walk to review the project site layout, construction material and inspection equipment storage locations.

Minutes of the pre-construction meeting will be kept by the Owner's Representative and distributed to all attendees.

Weekly construction meetings. Construction meetings will be held weekly to discuss project progress and scheduling. Attendees at the meeting may include the NYSDEC representative, Engineer, Owner's Representative, Contractor, and CQC Inspector (if applicable). The Owner may also attend. Items of discussion will include:

- The progress of the work to date
- The schedule to accomplish upcoming work tasks
- Problems encountered or anticipated during construction.

The Owner's Representative will keep minutes of the weekly progress meetings and distribute the minutes to all attendees and others affected by decisions or actions from each meeting.

Work deficiency meetings. In the event that problems or recurring work deficiencies arise or are foreseen during construction, a special meeting will be held to define and resolve the problems or deficiencies. At a minimum, attendees at the meetings should include a representative of the Contractor with decision making authority, the Engineer, and the Owner's Representative. It may also be necessary to have a representative of the Design Engineer attend. The meeting will be conducted in the following manner:

- Define the problem and discuss it among the attendees
- Propose and review alternate plans for solving the problem
- Implement the plan selected to resolve the problem or deficiency.

Minutes of the meeting will be kept by the Owner's Representative and distributed to all attendees.

3 CQA/CQC AND MQA/MQC

This CQA/CQC Plan will provide the basis for CQA/CQC and MQA/MQC activities associated with the remedial action at the Fulton Former MGP Site. Detailed information, including the frequency of inspection, field testing methods, sampling requirements for laboratory testing, testing procedures and equipment to be used, criteria for acceptance/failure, and a description of the corrective actions to be initiated upon test failure are also presented in the Technical Specifications, bound separately, and provided as part of the project's Contract Documents.

3.1 IN-SITU LINING OF STORM SEWER

The storm sewer will be cleaned, inspected, and relined in accordance with the Technical Specification Section 02623 - Cured-In-Place Pipe.

3.1.1 Manufacturing Quality Control

The liner for the pipe shall be polyester fiber felt tubing lined on the inside with polyurethane impregnated with a thermal-setting resin to seal against the internal circumference of the sewer. The liner shall be fabricated from materials which, when cured, will be chemically resistant to storm water and exposure to soil bacteria and any chemical attack which may be due to materials in the surrounding ground or typically associated with urban run-off (*e.g.*, oil, grease, road salt). The reinforcing material of the liner tubing shall be of a needle interlocked polyester felt or other material approved by the Engineer, formed into sheets of required thickness.

When cured, the liner shall extend over the entire length of pipe, manhole to manhole, as a continuous and mechanically locked tight fitting watertight pipe within a pipe. Liners shall be designed to withstand internal and/or external pressures for the specific field conditions. Where special conditions, strength requirements, etc., require, additional liner thickness shall be added in increments of 2.0 mm as determined by design calculations. Tubing shall not be less than 1/2-inch thick. The felt content shall be determined by the Contractor to ensure that the cured liner is the required thickness.

The cured liner shall meet the following initial structural properties:

- Flexural Strength (ASTM D790) 4,500 psi min.
- Flexural Modulus (ASTM D790) 250,000 psi min.

The Contractor will provide the Engineer with certified copies of the factory and laboratory test results prior to arrival of material on-site. In addition, the Contractor will provide the manufacturer's certification that the pipe lining material meets the chemical, physical, and manufacturing requirements.

Prior to procurement of any material, the Engineer will review and verify submittal and sample information from the Contractor. The information will be reviewed to evaluate compliance with the Contract Documents. The Engineer will return the submittals to the Contractor, and depending on the review (acceptance or non-acceptance), the Contractor will proceed with ordering the materials. Upon delivery of the pipe liner, the Engineer will visually inspect the material.

3.1.2 Construction Quality Assurance

A continuous video tape recording with audio of the entire length of the pipe inspected shall be made both before and after lining. It shall be the responsibility of the Contractor to clear the line of obstructions such as solids, mineral deposits, roots, grease, etc. that will prevent the liner installation.

During installation of the pipe liner, the Engineer will monitor that the liner is installed in accordance with the requirements of the manufacturer instructions, and the Contract Documents and Contract Drawings.

During the installation phase (inversion run), the liner will be visually inspected over the entire length of a run to verify it as being free from visual defects such as folds, foreign inclusions, dry spots, pinholes, and delamination. Any imperfections, such as those noted above, will be immediately repaired by the Contractor and reinspected.

Field samples of each inversion shall be taken in accordance with Section 8.1 of ASTM F1216. The Contractor shall conduct third party testing of each sample, per the requirements of Section 8.1 of ASTM F1216. Test results shall be submitted to the Engineer to show conformance of each liner section to the strength requirements of the specifications.

Also, gravity pipe leakage testing shall be conducted for each inversion per the requirements of ASTM F1216. If the liner fails to make a watertight seal at any manhole openings, laterals, or any other point in the sewer line, it will be the Contractor's responsibility to effectively seal and grout the openings at no additional cost to the Owner. The seal shall be of a resin mixture compatible with the liner pipe.

Liners which fail to meet the test requirements listed above will be considered defective.

3.2 JET GROUTING

Jet grout will be used to seal the bedding material of the storm sewer at the property line to minimize the potential for channeling of groundwater trough the sewer bedding. Installation requirements for the jet grouted bedding are described in Specification Section 02402-Jet Grouting.

3.2.1 Construction Quality Control

The Contractor will be required to review the Contract Documents for material and installation requirements to jet grout the buried utility bedding. Prior to ordering any materials, the Contractor shall review the Contract Documents and make all required submittals to the Engineer.

Submittals will typically include, but not be limited to, the following information:

- Contractor's work experience, where applicable.
- Resumes of the management, supervisory, and key personnel, for approval by the Engineer.
- A ground movement monitoring plan.
- A mix design for the project indicating sources and types of grout materials, with volumetric proportions, and field test data from previous projects indicating compressive strength achieved.
- Work procedures, sequence, and control criteria (including parameters for each stage).
- A general Work Procedures Plan outlining the spacing, location, depth and quantity of grout to achieve the specified criteria detailed in the technical specification.
- Accurate daily records of all jet grouting locations, depths of treatment, start and stop times, all jetting parameters, and grout injected for each location.
- Any change in the predetermined grouting program necessitated by a change in the subsurface conditions.

The Contractor will be fully familiar with the material and installation requirements of the jet grouted barrier and provide personnel to ensure that the correct material is handled and installed in the correct manner to provide a complete operating system in accordance with the separately bound Contract Documents and Contract Drawings.

The Contractor will be required to review the Contract Documents to determine the project survey and stakeout requirements for the installation of the jet grouted barrier at the locations shown or specified.

I:\National-Grid.1118\44581.Fulton-Remedial\Docs\Reports\100% Design Report\CQAPP\CQAPP draft.doc

^{9 |} DRAFT: January 10, 2011

3.2.2 Construction Quality Assurance

Prior to the Contractor ordering any materials, the Engineer will review the shop drawings to evaluate compliance with the Contract Documents. The Engineer will return the shop drawings to the Contractor and depending on the review (acceptance or non-acceptance); the Contractor will proceed with ordering the materials.

The Engineer will observe and report to the Owner whether the Contractor is in general compliance with the accepted shop drawing submittals, including the use of correct materials and correct installation and testing.

The Engineer will inform the Contractor of all modifications to design, whether a change in layout, materials or installation.

3.3 EXCAVATED SOIL SAMPLING

The excavated soil will be segregated, to the extent practicable, into piles of soil visibly stained or containing visible tar or non-aqueous phase liquid (NAPL), and piles of soil appearing based on visual and olfactory observation to be potentially "clean". Soil appearing to be clean may potentially be used as backfill below a depth of 2 ft below ground surface (bgs), with concurrence of the Engineer and NYSDEC.

The piles of MGP-impacted soil will be disposed of off-site at an appropriate landfill permitted to receive the material, based on tests performed to characterize the material in accordance with Resource Conservation and Recovery Act (RCRA) requirements and those of the disposal facility. At minimum, the impacted soil to be disposed of off-site will be sampled at a frequency of 1 composite sample per 1000 tons, made of 5 grab samples representative of the waste, and each composite sample will be analyzed for RCRA characteristics of flammability, ignitability, toxicity, and corrosivity. Also, each composite sample will be analyzed for reactive cyanide and sulfide.

3.4 DEMARCATION LAYER FABRIC

A visible demarcation layer will be placed on top of soils left in place or backfill that potentially contains chemical concentrations exceeding 6NYCRR Part 375 Restricted Residential Use SCOs. The geotextile filter fabric will consist of a nonwoven, needle-punched geotextile. Prior to the work, the Contractor will be required to document that the physical properties of the geotextile filter fabric to be used to demark the extent of excavation comply with the requirements of Technical Specification Section 02278 – Geotextile Filter Fabric. The Contractor will provide the Engineer with certified copies of the factory and laboratory test results prior to arrival of material on-site. In addition, the Contractor will provide the manufacturer's certification that the geotextile filter fabric meets the chemical, physical, and manufacturing requirements.


Construction quality assurance. Prior to procurement of any material and during construction, the Engineer will review and verify submittal and sample information from the Contractor. The information will be reviewed to evaluate compliance with the Contract Documents. The Engineer will return the submittals to the Contractor, and depending on the review (acceptance or non-acceptance), the Contractor will proceed with ordering the materials. Upon delivery of the rolls of geotextile filter fabric, the Engineer will visually inspect the material.

During installation of the geotextile filter fabric, the Engineer will monitor that the geotextile filter fabric is installed in accordance with the requirements of the Contract Documents and as shown on the Contract Drawings.

During the installation phase, the geotextile filter fabric will be visually inspected for the following:

- Defects
- Rips

10 | DRAFT: January 10, 2011

- Holes
- Flaws
- Deterioration
- Damage

Any imperfections, such as those noted above, will be immediately repaired by the Contractor and reinspected.

3.5 SELECT FILL, EMBANKMENT, AND TOPSOIL

3.5.1 Construction Quality Control

No material shall be imported to the site for use as backfill in the excavation or for other purpose until the results of tests have been accepted by the Engineer as complying with the project criteria.

The Contractor shall submit an affidavit from the owner of the source of each type of borrow material to be imported to the site stating that to the best of his knowledge, the site of the source material was never used as a dump site for chemical, toxic, hazardous or radioactive materials and it is not now, or ever has been, listed as a suspected depository for chemical, toxic, hazardous, or radioactive materials by any federal, state, or other governmental agency, department, or bureau. Also, the Contractor shall sample each different type of off-site material to be incorporated into the work at the location or locations identified by the Engineer. The Contractor shall perform analyses for Target Analyte List (TAL) volatile organic compounds (VOCs), TAL semi volatile organic compounds (SVOCs), TAL metals, cyanide (total and amenable), and polychlorinated biphenyls (PCBs), pesticides and herbicides for one composite sample of each source. Laboratory data shall be submitted to the Engineer for review, on Owner's behalf, immediately upon receipt and prior to use of the material on-site. The Engineer shall be the sole judge as to what constitutes each different type of material; however the definition of "different" shall include, but is not necessarily limited to, variances in the physical properties of the same material, as well as the same material derived from separate borrow sources or separate areas in the same borrow pit. The analytical results will be compared to the cleanup objectives set forth in 6 NYCRR Part 375 and must satisfy the soil cleanup objectives for the lower of the protection of groundwater or the protection of public health - residential. If the materials are found to be unacceptable by the Engineer, the Contractor shall remove and properly dispose of the materials in accordance with all applicable Federal, State and local laws and regulations at the Contractor's expense and liability.

The Contractor also will be required to collect samples of proposed select fill (if acceptable based on chemical analyses) and submit the samples to the CQC Geotechnical Laboratory for gradation and geotechnical testing in accordance with the Technical Specification Sections 02223 – Embankment, 02231 – Select Fill, and 02981 – Topsoil as applicable for the material shown on the Contract Drawing or specified for use by the Engineer, as applicable. Results of the tests will be provided to the Engineer for acceptance.

Construction quality assurance. Prior to procurement of any material and during construction, the Engineer will review and verify submittals and sample information from the Contractor. The information will be reviewed to evaluate compliance with the Contract Documents. The Engineer will return the submittals to the Contractor, and depending on the review (acceptance or non-acceptance), the Contractor will proceed with ordering the materials.

The material delivered to the site will be visually and continuously inspected by the Engineer to monitor that the submitted materials are used during construction. If changes in material occur prior to acceptance of the material by the Engineer, the material will be tested and evaluated with respect to the requirements of the Contract Documents. Any material not meeting the requirements will be removed from the site and replaced by the Contractor at no cost to the Owner.

4 DOCUMENTATION

This section describes the recordkeeping that will be used to document the CQA/CQC and MQA/MQC activities performed during construction of this project. The documentation will comprise the final records of the project, with the results of material and installation inspections and tests.

4.1 PROBLEM IDENTIFICATION AND CORRECTIVE MEASURE REPORTS

In the event that the Engineer determines that material or workmanship does not meet the requirements of the plans, specifications or CQA/CQC Plan, or if an obvious defect in material or workmanship is noted, the Engineer will complete a problem identification and corrective measures report.

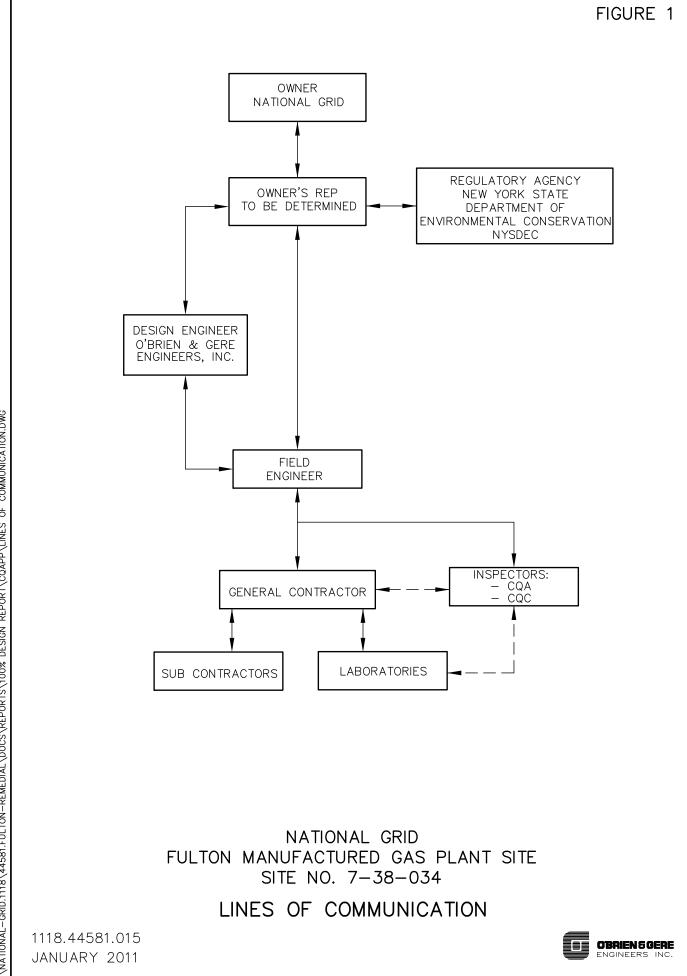
4.2 MEETING MINUTES

Documentation of all meetings described in Section 2.4 of this plan will be maintained by the Owner's Representative in the form of written minutes or, for daily progress meetings, diary notes. Formal minutes of weekly meetings will be circulated by the Owner's Representative to all meeting attendees, the Engineer, the Contractor, and the Owner for review and comment.

4.3 PHOTOGRAPHS

All photographs taken by the Contractor will be recorded on a photo log which will include, at a minimum, the date, time, location, and description of the work.

4.4 RECORD DRAWINGS


At the completion of the project, all as-built information will be transferred to a reproducible set of final record drawings by the Contractor to document site conditions.

4.5 STORAGE AND DISPOSITION OF RECORDS

During construction of this project, the Contractor will be responsible for all facility CQA/CQC and MQA/MQC documents. This includes a copy of the design criteria, Contract Documents and Drawings, the CQA/CQC Plan, and the originals of all the data sheets and reports. Duplicate records may be kept at other locations to avoid loss of this information if the originals are destroyed.

Copies of the documents shall be provided to the Engineer and Owners Representative, and the original documents will be stored in a manner that will allow for easy access while still protecting them from damage. All documentation will be maintained through the post-closure (30 years) monitoring period of the facility.

Draft Site Management Plan

Former Manufactured Gas Plant Site South First Street, Fulton OSWEGO, NEW YORK

Site Management Plan

NYSDEC Site Number: 738034

Prepared for:

National Grid, Inc. 300 Erie Boulevard West Syracuse, NY 13202

Prepared by: O'Brien & Gere Engineers, Inc. 333 West Washington Street Syracuse, NY 13221-4873

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date
0	2/15/11	Draft Pre-Construction Submittal for NYSDEC	
		Review	

FEBRUARY 2011

TABLE OF CONTENTS

TABLE OF CONTENTS II
LIST OF TABLES V
LIST OF FIGURES
LIST OF APPENDICES VII
SITE MANAGEMENT PLAN 1
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM 1
1.1 INTRODUCTION
1.1.1 General 1 1.1.2 Purpose 2 1.1.3 Revisions 3
1.2 SITE BACKGROUND
1.2.1 Site Location and Description31.2.2 Site History41.2.3 Geologic Conditions6
1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS
1.3.1. Area 1 8 1.3.2. Area 2 10 1.3.3. Groundwater 12
1.4 SUMMARY OF REMEDIAL ACTIONS 12
1.4.1 Removal of Contaminated Materials from the Site

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	16
2.1 INTRODUCTION	16
2.1.1 General 2.1.2 Purpose	
2.2 ENGINEERING CONTROLS	17
2.2.1 Engineering Control Systems2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems	
2.3 INSTITUTIONAL CONTROLS	18
2.3.1 Excavation Work Plan	20
2.3.2 Soil Vapor Intrusion Evaluation	
2.4 INSPECTIONS AND NOTIFICATIONS	21
2.4.1 Inspections	21
2.4.2 Notifications	22
2.5 CONTINGENCY PLAN	23
2.5.1 Emergency Telephone Numbers	23
2.5.2 Map and Directions to Nearest Health Facility	
2.5.3 Response Procedures	
3.0 SITE MONITORING PLAN	27
3.1 INTRODUCTION	27
3.1.1 General	27
3.1.2 Purpose and Schedule	
3.2 SOIL COVER SYSTEM MONITORING	28
3.3 MEDIA MONITORING PROGRAM	29
3.3.1 Groundwater Monitoring	
3.3.2 Sampling Protocol	
3.3.3 Analyses Protocol	
3.3.4 Monitoring Well Repairs, Replacement and Decommissioning	32

3.4 SITE-WIDE INSPECTION	2
3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL	3
3.6 MONITORING REPORTING REQUIREMENTS	1
4.0 OPERATION AND MAINTENANCE PLAN	5
4.1 INTRODUCTION	5
5. INSPECTIONS, REPORTING AND CERTIFICATIONS	7
5.1 SITE INSPECTIONS	7
5.1.1 Inspection Frequency375.1.2 Inspection Forms, Sampling Data, and Maintenance Reports375.1.3 Evaluation of Records and Reporting37	7
5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS	
	3
5.3 PERIODIC REVIEW REPORT)
5.4 CORRECTIVE MEASURES PLAN)
APPENDIX A – EXCAVATION WORK PLAN 41	l
REFERENCES	2

LIST OF TABLES

Remedial Investigation Soil Contamination Summary Remedial Investigation Groundwater Contamination Summary Remedial Investigation Soil Vapor Data Soil Cleanup Objectives for the Site Summary of Remaining Soil Contamination Above Unrestricted Levels Summary of Remaining Soil Contamination Above Site-Specific Action Levels

Criteria for On-site Re-use of Excavated Material

Criteria for Imported Soils

Monitoring/Inspection Schedule

Schedule of Monitoring/Inspection Reports

Emergency Contact Numbers

Other Contact Numbers

LIST OF FIGURES

Figure of Site and Site Boundaries

Geologic Cross Section(s)

Groundwater Flow Figure

Remedial Investigation Soil Contamination Summary

Remedial Investigation Groundwater Contamination Summary

Remedial Investigation Soil Vapor Data

Extent of Remedial Excavation Performed

Location of Remedial Treatment Systems

Location of Remaining Soil Contamination Above Unrestricted Levels

Location of Remaining Soil Contamination Above Site-Specific Action Levels

Location of Cover System Types

Truck Transport Routes

Area of Soil Vapor Intrusion Concern

Groundwater Monitoring Well Network

Baseline Post-Remediation Groundwater Quality

Map of Route from Site to Hospital

LIST OF APPENDICES

Excavation Work Plan

Metes and Bounds

Environmental Easement

Health and Safety Plan and Community Air Monitoring Plan

Stormwater Pollution Control Plan

Monitoring Well Boring and Construction Logs

Groundwater Monitoring Well Sampling Log Form

Field Sampling Plan

Quality Assurance Project Plan

Site-wide Inspection Form

EC As-Built Drawings

EC System Component Manual(s)

EC System Inspection Checklist(s)

EC Trouble Shooting Guide

EC Maintenance Schedules

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at Former Fulton Manufactured Gas Plant Site, South First Street, Fulton, New York (hereinafter referred to as the "Site") under the New York State (NYS) Environmental Restoration Program (ERP) administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Order on Consent Index A4-0473-0000 (effective November 2003) for Site # 738034.

1.1.1 General

National Grid, Inc. entered into an Order on Consent with the NYSDEC to remediate a 1.04 acre property located on South First Street in Fulton, New York (Figure 1). This Order on Consent required the Remedial Party, National Grid, to investigate and remediate contaminated media at the Site.

The Site is bordered on the west by the Oswego River which, at this point, is also a branch of the New York State Barge Canal. South First Street passes through the Site dividing it into two parcels referred to as Area 1 and Area 2 lying to the east and west, respectively, of South First Street (Figure 2). Areas 1 and 2 are currently vacant and both are owned by National Grid.

The boundaries of the Site are more fully described in the metes and bounds site description that is part of the Environmental Easement.

After completion of the remedial work described in the Remedial Action Final Design (O'Brien & Gere, February 2011), some contamination was left in the subsurface

1

at this Site, which is hereafter referred to as 'remaining contamination." This Site Management Plan (SMP) was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by O'Brien & Gere Engineers, Inc., on behalf of National Grid, in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated June 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the Site.

1.1.2 Purpose

The Site contains contamination left after completion of the Remedial Action (RA). Engineering Controls have been incorporated into the Site remedy to control exposure to remaining contamination during the use of the Site to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Oswego County Clerk, will require compliance with this SMP and all ECs and ICs placed on the Site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs required by the Environmental Easement for contamination that remains at the Site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the Site after completion of the RA, including: (1) implementation and management of all Engineering and Institutional Controls; (2) media monitoring; (3) operation and maintenance of all treatment, collection, containment, or recovery systems; (4) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (5) defining criteria for termination of treatment system operations (when applicable).

2

To address these needs, this SMP includes three plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; (3) an Operation and Maintenance Plan for maintenance of containment.

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

- This SMP details the Site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement, which is grounds for revocation of the Certificate of Completion (COC);
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the Order on Consent (Index #A4-0473-0000; Site #738034) for the Site, and thereby subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the Site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The Site is located in City of Fulton in Oswego County, New York and is identified as Block xxxx and Lot xxx on the [Municipality or County Name] Tax Map. The Site is an approximately 1.04-acre area bordered on the west by the Oswego River. South First Street passes through the Site dividing it into two parcels referred to as Area 1 and Area 2 lying to the east and west, respectively, of South First Street (Figure 2). Areas 1 and 2 are currently vacant and both are owned by National Grid. The boundaries of the Site are more fully described in Appendix [x] – Metes and Bounds.

SMP Template: March 2010

1.2.2 Site History

The Site operated as a manufactured gas plant (MGP) site producing manufactured gas from 1903 to 1932. The manufacturing process involved heating coal and petroleum products to produce combustible gas. The gas was cooled, purified and then piped to the end users. The former MGP facility included a gas holder, gas tank, oil tank, oil house, coke shed, tar well, and concentrator house (Figure 2). In general, Area 2 of the Fulton Site contained the gas production facilities and Area 1 contained facilities for storing and distributing the gas. As the gas was cooled and purified prior to distribution, a dark oily liquid known as coal tar condensed and accumulated in various gas plant structures. Tar leaking from the holders and other structures impacted soil and groundwater in the vicinity of the former MGP.

A Record of Decision (ROD) was issued by the NYSDEC in March 2009. As presented in the ROD, the remediation goals for the Site are to prevent, eliminate or reduce to the extent practicable:

- Ingestion/direct contact with contaminated soil;
- Inhalation of contaminants volatilizing from contaminated soil;
- Eliminate through removal, treatment and/or containment source areas in soil;
- Migration of contaminants into the adjacent surface water;
- Eliminate through removal, treatment and/or containment, the impact of soil to groundwater;
- Potential infiltration of chemicals of concern (COCs) into the storm sewer adjacent to Area 2 of the Site.

To meet these goals, the ROD presents the NYSDEC-selected remedy that includes the following elements:

- Implementation of a Remedial Design program.
- Excavation and removal to their full depth of all former MGP related structures and foundations in Areas 1 and 2 that contain MGP related contaminated materials.

4

Impacted soil in the immediate vicinity of the structures will be removed to the extent practicable.

- Excavation of approximately 2,822 cubic yards of soil grossly contaminated with MGP wastes. Materials will be excavated to depths of up to 7 feet below ground surface (bgs) or to the extent practicable due to dewatering limitations. The material to be excavated will include soil containing visible coal tar or separate phase materials. The actual depth of removal will be based on visual observations in the field with the concurrence of the NYSDEC. A visible demarcation barrier will be installed at the bottom of the excavation to mark the extent of soil removal prior to backfilling.
- Excavation areas will be backfilled with clean soil from off-site locations that meet NYSDEC's backfill criteria for intended site use. Excavated soil may be used to backfill the lower portions of the excavation if they meet NYSDEC criteria.
- Installation and maintenance of a soil cover over Areas 1 and 2. The soil cover will consist of a minimum of 2 feet of clean material meeting NYSDEC's backfill criteria. National Grid may propose to use other cover materials such as asphalt or other paving material to meet the next intended use of the property subject to NYSDEC approval. The type and nature of soil cover to be installed will be determined pursuant to 6 NYCRR Part 375.
- Groundwater treatment through the introduction of oxygen (or other nutrients, if necessary) in Areas 1 and 2 to enhance aerobic biodegradation of contaminants in groundwater *in-situ*.
- Rehabilitation of the storm sewer adjacent to and west of Area 2 to reduce groundwater infiltration into the storm sewer and prevent off-site migration of impacted groundwater. Measures to reduce migration of groundwater through soil bedding under the sewer line will be implemented.
- Imposition of institutional controls in the form of an environmental easement.

1.2.3 Geologic Conditions

Geology at the Site consists, from the surface down, of four primary geologic units:

- Fill
- Sand and silt
- Sand and gravel
- Till

Fill materials consist of sand, gravel and various debris such as brick fragments, asphalt pieces, cinders, glass and other material. In Area 1, fill materials range in thickness from 0.5 ft in the south central end to 8 ft in the northwest portion of Area 1. In Area 2, fill thickness ranges from 1.5 ft on the northwest side to 15 ft on the southwest Site boundary near the Oswego River. In general, fill thickness increases towards the river. A geologic section is shown in Figure [x].

Review of historic maps and aerial photographs indicates that the Oswego Canal was filled sometime between 1911 and 1938. Evidence of the former Oswego Canal (e.g., canal bottom and/or walls) was not observed during drilling performed as part of the Remedial Investigation (O'Brien & Gere, 2009a). Some historic maps indicate that the canal structure ended just north of the Site, such that the segment of the canal adjacent to the Site was not contained within structural walls. It is speculated that the canal channel was filled with several types of material, some similar to native soils. Thus, there is not a distinct subsurface material indicative of canal fill. Dredge spoils were reportedly placed on Yelverton Island (located between the canal and the Oswego River) and these materials may have also been used for fill in the canal.

The unit underlying the fill is a series of discontinuous layers of silt, silt and fine sand, sand, clay, and gravel. The thickness of this unit and the individual layers varies across the Site. However, as the unit approaches the river, the composition becomes primarily silt with obvious clay lenses. This unit is the result of historical depositional environments, such as recent processes of the Oswego River or historic streambeds

SMP Template: March 2010

feeding into the river. As noted above, the deposits near the river may actually be local, native material that was placed in the former Oswego canal.

A glacial till unit, consisting primarily of sand with varying amounts of silt and gravel, overlies bedrock at the Site. The density of the till varies from loose at shallow depths to extremely dense with greater depth. The top of the till undulates and was observed from 5.3 ft on the northeast side of Area 1 to 26.2 ft near the river. Similarly, the top of the dense till is encountered at depths ranging from 12 ft on Area 1 and to 28.5 ft below land surface (bls) near the river. The top of the dense till layer slopes down toward the southwest and the river. The unit was fully penetrated in the center of Area 2 where bedrock was encountered at 36.5 ft below grade. At this location the dense till is 17.5 ft thick.

Shallow groundwater at the Site occurs between 1.5 ft below grade on Area 1 to 8 ft below grade to the southwest of Area 2. The resulting groundwater flow direction is to the south and west, ultimately discharging into the Oswego River. A groundwater flow figure is shown in Figure [x]. The local sand deposits have been designated as a Principal Aquifer by the NYSDEC. The aquifer is used by the City of Fulton for a public water supply but the nearest public supply wells are located approximately one mile upgradient (south) of the Site, outside the area subject to impact from the Site. There are no private water supply wells within that distance of the Site.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. The results of the RI and other investigations are described in detail in the following reports:

- Preliminary Site Assessment Interim Remedial Measures (PSA/IRM) Study Report, May 1996 (O'Brien & Gere, 1996)
- Soil Vapor Sampling Report (letter), October 19, 2007 (O'Brien & Gere, 2007)
- Soil Vapor Sampling Results (letter), September 15, 2008 (O'Brien & Gere, 2008)

- Remedial Investigation Report May 2006, revised March 2009 (O'Brien & Gere, 2009a)
- Feasibility Study Report, February 2009 (O'Brien & Gere, 2009b)

Evidence of past MGP practices was observed during field investigations performed at the Site between 1998 and 2005. Specifically, MGP-impacted material characterized by observations of odor, sheen, or blebs is noted in boring logs across the Site. Grossly impacted material, characterized by observations of non-aqueous phase liquid (NAPL) and NAPL-saturated soil, or a combination of heavy sheens and staining, was also noted in some borings at the Site. MGP-related constituents of concern (COCs) (benzene, toluene, ethylbenzene and xylene (BTEX), semivolatile organic compounds (SVOCs) summarized as total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and total PAHs, and the inorganic compound cyanide) were detected in samples from various media at the Site.

The Feasibility Study Report (O'Brien & Gere, 2009b) presents a summary of the nature and extent of MGP-related material observed at the Site as summarized in this section. A detailed description of the nature and extent of contamination is presented in the Remedial Investigation (RI) Report (O'Brien & Gere, 2009a). The following presents a summary of the media of concern at each of the two areas of the Site that have been identified in the ROD. This summary is based on the information generated during the Remedial Investigation (O'Brien & Gere, 2009a) and the pre-design investigation.

1.3.1. Area 1

Structures

There were several former MGP structures located on Area 1, including two circular holders and two sets of tank cradles that formerly supported horizontal above-ground storage tanks (ASTs).

Surface Soil

As described in the ROD, two surface soil samples located in Area 1, SS-01 and SS-02, were identified during the RI as containing total PAH and/or total cPAH (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)-fluoranthene, chrysene, dibenzo[a,h]anthracene, and ideno(1,2,3-cd)pyrene) at concentrations that were

considered elevated in comparison to background concentrations. Soil in the vicinity of these samples was addressed as part of the remedy.

In addition to PAHs, cyanide was detected in the 0 to 2-inch and 0 to 24-inch intervals of surface soil sample SS-02 at concentrations ranging from 11 mg/kg to 810 mg/kg. Further sampling in the vicinity of SS-02 indicated that the extent of cyanide is limited to the immediate vicinity of SS-02; however, concentrations of cyanide at SS-09 were found to be 60 mg/kg. These concentrations are above the Restricted Residential Soil Cleanup Objective of 27 mg/kg. As outlined in the ROD, the concentrations of cyanide at SS-02 and SS-09 from the surface to 24 inches bgs was addressed during the remedy.

Subsurface Soil

Both analytical and visual evidence of grossly impacted material was observed in subsurface soil at two locations within Area 1. One area is located around SB-40 where stained soil was observed in the upper 4 ft. The second area is located in the vicinity of the northeastern concrete gas holder pad as shown on Figure 4. Subsurface soil from the adjacent properties bordering Area 1 did not exhibit MGP-impacted material. However, because of the proximity of this area to the property boundary, additional borings were completed as part of the pre-design investigation.

Two borings were originally proposed as part of the pre-design investigation to evaluate the extent of grossly impacted soil to the northwest of the large holder pad on Area 1. Boring SB-50 encountered a cobble with a thin (1/4") lens of NAPL at 8 ft below grade and some visible, pin-sized blebs of NAPL with coal tar odors between 8 and 9.7 ft. This boring is located approximately 6.5 ft from the property boundary and 20 ft from SB-15, where sheens, stained soils and odors were noted from 6 ft to approximately 8 ft below grade. The second boring, SB-49, did not encounter any impacted soil and the material beginning at 2.2 ft was dense native silt with clay.

An additional boring, SB-57, was completed on Area 1 during the pre-design investigation to further evaluate the potential southwestern extent of grossly impacted soil identified for removal. This boring is located approximately 12 ft south of SB-50 and did not encounter impacted soil. The area identified for excavation as shown on Figure 4 was developed based on information generated during the RI and augmented by the information obtained from the pre-design borings.

1.3.2. Area 2

Structures

The main production area of the former MGP was located on Area 2. The foundations associated with these former structures are outlined on Figure 4. In addition, a building that most recently served as a church was located on the southeast side of Area 2. This structure was demolished in 1992. However, the slab for this structure is still present and visible at the surface at the location shown in Figure 2.

The GPR survey identified portions of the foundation walls of the known former structures. However, the GPR signatures of the materials used for construction of the foundations were similar to that of the surrounding fill material such that the presence or absence of the individual structures could not be clearly confirmed in many instances. The survey did identify a deeper (approximately 10 ft) filled depression in the vicinity of the former tar well in the center of Area 2. In addition, the GPR survey identified one angular structure that was not previously known to have been present based on review of historical Sanborn maps. As shown on Figure 4, this structure is located on the west central portion of Area 2. As with the Area 1 structures, the GPR signature for this structure, as well as a small square area of a previously identified structure on the northwest corner of the area, suggested that a solid surface such as a foundation slab was present at a shallow depth.

Borings SB-53, SB-54, SB-55, and SB-58 were added to investigate the structures identified by the GPR survey as shown on Figure 4. The findings are as follows:

- SB-53 was completed on the western side of Area 2 near the exposed foundation wall where the GPR suggested a slab was present. This boring encountered crushed concrete and brick fill material with no visible impacts associated with MGP waste. A slab was not encountered.
- SB-54, completed in the area of the slab structure in the center of Area 2, encountered a 6-inch layer of concrete just below the asphalt. Concrete was also observed in boring SB-16 completed during the RI on the western end of the GPR anomaly, suggesting that this is a foundation with a slab. No visually impacted soil was encountered in SB-54 or SB-16.

Borings SB-55 and SB-58 were completed in the vicinity of the suspected tar well based on the identification of a deeper, filled depression in the area during the GPR survey. NAPL-containing soil and associated sheens were encountered, however, no discrete pocket of NAPL or tar was observed.

Surface Soil

SS-4 is located adjacent to the pavement in Area 2 on the property owned by National Grid (Figure 4). This surface soil was found to contain cPAHs in excess of the background concentrations in the area and was addressed during the remedy.

Subsurface Soil

In Area 2, analytical and visual evidence of grossly MGP-impacted material was reported in subsurface soil in several areas. The observations generally begin 4 ft below grade and, in the southern corner of the area, extend to depths of up to at least 28 ft below grade. The widest zone of observed grossly MGP-impacted material was between 4 ft and 12 ft below grade. The MGP-impacted material extends off the National Grid property and onto the Canal Corporation property to the south, but was not observed adjacent to the Oswego River.

Impacted material was reported in subsurface soil in two additional off-site areas to the west of Area 2. One area, located west of the former Oswego Canal (vicinity of SB-43 and SB-44), was considered to be from cinders and other fill material known to be present and therefore, did not require remedial action. The second location was in the vicinity of the sewer line that runs along the southwestern side of Area 2 (vicinity of SB-14 and PZ-06). Although the materials observed were potentially MGP-related, the impacted materials may be associated with dredge spoils or canal sediments placed on, or relocated to, this area rather than migration of NAPL from Area 2, and therefore, were not identified as requiring remediation by the ROD.

1.3.3. Groundwater

Concentrations of BTEX compounds, PAHs, and cyanide above the groundwater screening criteria (NYSDEC TOGS) are limited to the shallow groundwater beneath Area 2. Constituent concentrations in off-site wells, including those between Area 2 and the Oswego River, are below the screening criteria. Groundwater with constituent concentrations above the criteria is likely captured via seepage to the storm sewer located directly southwest of Area 2. Video inspection directly upstream and downstream of the Site did not indicate any visible Site-related impacts. Samples from storm sewer manholes located 400 ft upstream and 600 ft downstream of the Site indicated the presence of low concentrations of benzene, ethylbenzene, and total xylenes in the downstream storm water sample. It is unclear whether this is the result of contribution from the property or influent from storm water discharges from nearby roadways or other potential sources.

Groundwater downgradient of Area 1 (MW-02) is not impacted. Although a slight sheen was noted on the saturated soil samples in the area of SB-15 and the recent boring, SB-50 (Figure 4), the lack of constituents of concern in MW-02 suggests that soil impacts are localized and not mobile.

1.4 SUMMARY OF REMEDIAL ACTIONS

The Site was remediated in accordance with the NYSDEC-approved Remedial Design dated [month, year].

The following is a summary of the Remedial Actions performed at the Site:

- Excavation and removal to their full depth of all former MGP related structures and foundations in Areas 1 and 2 that contained MGP related contaminated materials.
 Impacted soil in the immediate vicinity of the structures was removed to the extent practicable.
- Excavation of approximately <u>cubic yards</u> of soil grossly contaminated with MGP wastes. Materials were excavated to depths of up to 7 feet below ground surface (bgs) or to the extent practicable due to dewatering limitations. The material excavated

included soil containing visible coal tar or separate phase materials. The depth of excavation was based on visual observations in the field with the concurrence of the NYSDEC. A visible demarcation barrier was installed at the bottom of the excavation to mark the extent of soil removal prior to backfilling.

- Excavated soil from the Site satisfying NYSDEC's backfill criteria was used to backfill the lower portions (greater than a depth of 2 ft bgs) of the excavation. Where necessary, additional clean soil from off-site locations satisfying NYSDEC's backfill criteria for intended site use was imported to the Site to backfill the excavations.
- Placed a soil cover over Areas 1 and 2. The soil cover consists of a minimum of 2 feet of clean material meeting NYSDEC's backfill criteria imported from off-site.
- Groundwater treatment through the introduction of oxygen (or other nutrients, if necessary) in Areas 1 and 2 to enhance aerobic biodegradation of contaminants in groundwater *in-situ*.
- Rehabilitation of the storm sewer adjacent to and west of Area 2 to reduce groundwater infiltration into the storm sewer and prevent off-site migration of impacted groundwater. Measures to reduce migration of groundwater through soil bedding under the sewer line were also implemented.
- Imposition of institutional controls in the form of an Environmental Easement

Remedial activities were completed at the Site in [month, year].

1.4.1 Removal of Contaminated Materials from the Site

This section should describe:

- Soil cleanup objectives used for the site.
- Materials removed.
- Quantities removed.
- Locations of material removed:
 - o Figures of excavation and materials removed
 - Figures of backfill areas.

The following text should be included somewhere in this section:

A list of the soil cleanup objectives (SCOs) for the primary contaminants of concern (COCs) and applicable land use for this Site is provided in Table [x].

A figure showing areas where excavation was performed is shown in Figure [x]. Provide a contour figure showing the thickness of cut and backfill if available.

1.4.2 Remaining Contamination

This section should provide a sufficient summary of contamination remaining at the Site that anyone performing future excavations at the Site can anticipate the environmental conditions they will encounter.

- A narrative description of the remaining contamination, including:
 - A description of the demarcation layer;
 - A description of the depths at which the demarcation layer or surface of remaining contamination will be encountered, and at which contamination is no longer expected. If the upper surface of the remaining contamination zone varies due to differing cover types, a figure showing the elevations of top of remaining contamination zone should be included. Similarly the thickness of the remaining contamination zone may be shown on a figure.
 - If certain areas of the Site contain source areas or higher levels of contamination than others, these should be described.
 - If active utility lines or other subsurface infrastructure are present at the Site, contaminant levels in these areas must be described, so that future maintenance activities can be properly planned.
 - If contamination was not remediated due to the presence of buildings or critical infrastructure, and the decision document required this contamination to be removed if such infrastructure is replaced, this must be discussed. Alternatively, if this contamination is not to be remediated, this should also be identified.
- A summary of all contaminated soil and structures left on-site after remedy is complete. Include the following as applicable:

- Table of exceedances of applicable/relevant Track 1 SCOs (Part 375-6) after Remedial Action;
- Figure of exceedances of applicable/relevant Track 1 SCOs (Part 375-6) after Remedial Action (i.e., below the cover system);
- Figure of areas complying with unrestricted SCOs (Part 375-6) after Remedial Action;

The following text should be included somewhere in this section:

Table [x] and Figure [x] summarize the results of all soil samples remaining at the Site after completion of Remedial Action that exceed the Track 1 (unrestricted) SCOs.

Figure **[x]** summarizes the results of all soil samples remaining at the Site after completion of Remedial Action that meet the SCOs for unrestricted use of the Site.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining contaminated soil and groundwater/soil vapor exists beneath the Site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the Site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the Site;
- The basic implementation and intended role of each EC/IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

Engineering controls at the Site include:

- Lining the storm sewer to prevent infiltration and conveyance of groundwater
- Jet grout injected into the sewer bedding at the property border to minimize the potential for channeling groundwater flow
- Utilization of an oxygen releasing compound to promote natural attenuation of the residual MGP compounds at the base of the excavation
- 2-ft thick soil cover satisfying the NYCRR Part 375 requirements for the intended site use placed above the backfilled excavations.

2.2.1.1 Storm Sewer Lining

The storm sewer pipe was lined in place using a polyester fiber felt tube, impregnated with a thermal-setting resin to seal against the internal circumference of the sewer. The liner was fabricated from materials which, when cured, are chemically resistant to storm water and traces of external exposure to soil bacteria and chemical attack which may be due to materials in the surrounding ground or typically associated with urban run-off (*e.g.*, oil, grease, road salt). The liner extends over the entire length of pipe from manholes MH-A to MH-B (Drawing G8) in a continuous and mechanically locked tight fitting watertight pipe within a pipe.

2.2.1.2 Soil Cover

Exposure to remaining contamination in soil/fill at the Site is prevented by a demarcation layer placed at the floor of excavation where MGP-impacted soil soil cover system placed over the Site. This cover system is comprised of a minimum of 24 inches of clean soil. The Excavation Work Plan that appears in Appendix A outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

2.2.2.1 Monitored Natural Attenuation

Groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards or have become asymptotic at an acceptable level over an extended period. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

2.3 INSTITUTIONAL CONTROLS

A series of Institutional Controls is required by the ROD to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the Site to restricted residential uses only. Adherence to these Institutional Controls on the Site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;

• Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP;

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential or recreational use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area noted on Figure [x], and any potential impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the property are prohibited;
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that

NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 Excavation Work Plan

The Site [has been, will be] remediated for restricted residential or recreational use. Any future intrusive work that will penetrate the soil cover, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover soil will be performed in compliance with the Excavation Work Plan (EWP) that is attached as Appendix A to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the Site. A sample HASP is attached as Appendix [x] to this SMP that is in current compliance with DER-10, and 29 CFR 1910, 29 CFR 1926, and all other applicable Federal, State and local regulations. Based on future changes to State and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification provided in Section A-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP and CAMP, and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 5).

The Site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The Site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the engineering controls described in this SMP.

2.3.2 Soil Vapor Intrusion Evaluation

Prior to the construction of any enclosed structures located over areas that contain remaining contamination and the potential for soil vapor intrusion (SVI) has been identified (see Figure [x]), an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the

proposed structure. Alternatively, an SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive sub-slab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the Site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive sitewide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- Sampling and analysis of appropriate media during monitoring events;

- If site records are complete and up to date; and
- Changes, or needed changes, to the remedial or monitoring system;

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the Order on Consent, 6NYCRR Part 375, and/or Environmental Conservation Law.
- 7-day advance notice of any proposed ground-intrusive activities pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other Engineering Controls and likewise any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls in place at the Site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the Order on Consent, and all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to [qualified environmental professional]. These emergency contact lists must be maintained in an easily accessible location at the Site.

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480(3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222
Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362

Table [x]: Emergency Contact Numbers

Table [x]: Contact Numbers

[qualified environmental professional:]	[phone]

* Note: Contact numbers subject to change and should be updated as necessary

2.5.2 Map and Directions to Nearest Health Facility

Site Location: [insert information]

Nearest Hospital Name: [insert information]

Hospital Location: [insert information]

Hospital Telephone: [insert information]

Directions to the Hospital:

- 1. [insert information]
- 2.
- 3.

Total Distance: [insert information]

Total Estimated Time: [insert information]

Map Showing Route from the site to the Hospital:

[insert map]

2.5.3 Response Procedures

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan (Table [x]).

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, the soil cover system, and all affected site media identified below. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of groundwater;
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards;
- Assessing achievement of the remedial performance criteria.
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Annual monitoring of the performance of the remedy and overall reduction in contamination on-site will be conducted for the first 5 years. The frequency thereafter will be determined by NYSDEC. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in Table [x] and outlined in detail in Sections 3.2 and 3.3 below.

Monitoring Program	Frequency*	Matrix	Analysis

Table [x]: Monitoring/Inspection Schedule

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.2 SOIL COVER SYSTEM MONITORING

Inspection of the soil cover will occur quarterly for the first year following construction or until such time that the NYDEC and National Grid agree that a sufficient grass cover has been established to prevent erosion. Following establishment of vegetation, routine inspection of the Site will be performed on an annual basis.

Additionally, an inspection of the Site will occur within one week after a 5-year storm event during the first year following construction. After the first year, inspection of the Site after a 5-year storm event may occur if prior to the storm event thinning of vegetation is noted. If thinning of vegetation is noted, the area will be re-seeded with a seed mixture of commercial stock appropriate for planting in New York State and fertilized.

The NYSDEC will be informed of the inspections, except those occurring after a storm event. The inspector will observe the condition of the Site for areas of thinning vegetation or other signs of vegetation stress, burrowing animals, settlement, erosion, or other damage to the soil cover.

Also, the drainage features on site will be inspected at the same frequency for accumulation of debris which may inhibit flow, ponds of water which might indicate settlement or scouring in or around structures, and for excessive scouring which may erode swales.

3.3 MEDIA MONITORING PROGRAM

3.3.1 Groundwater Monitoring

Groundwater monitoring will be performed on a periodic basis to assess the performance of the remedy. Groundwater samples will be collected from 9 wells (Figure X) to represent conditions upgradient, within, and downgradient of soil-removal areas within Area 1 and Area 2, as follows:

MW-1	MW-4	MW-11
MW-2	MW-5	MW-12S
MW-3	MW-7	MW-14

Monitoring well construction logs are included in Appendix [x].

3.3.2 Sampling Protocol

All monitoring well sampling activities will be recorded in a field book and a groundwater-sampling log presented in Appendix [x]. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

Groundwater samples will be collected using low-flow sampling methods. The samples will be collected using a bladder pump with dedicated tubing. In accordance with the USEPA guidance, the flow rate for sampling shall not exceed 0.5 liters/min.

Measurements of temperature, pH, specific conductance, dissolved oxygen, redox potential (ORP), and turbidity will be taken in the field at the time of sample collection using a flow-through cell and turbidity meter. Measurements will be recorded on the sampling log at time intervals sufficient to evacuate the volume of the flow-through cell.

The sample will be collected after equilibration of water quality parameters. Equilibrated trends are generally obvious and usually follow either an exponential decay or asymptotic trend during purging. The equilibration guidelines are as follows:

Temperature	\pm 3% of measurement
pH	± 0.1 pH units
Specific conductance	\pm 3% of measurement
ORP	$\pm 10 \text{ mV}$
DO	$\pm 10\%$ of measurement
Turbidity	± 10% of measurement

If the indicator field parameters have not equilibrated within the above specified limits after 4 hours of purging, then one of the following options may be taken: 1) continue purging until stabilization is achieved; or 2) discontinue purging and collect samples (document attempts to achieve stabilization). The total volume of water purged and purging time will be recorded on the sampling log for future reference.

At the time the sample is collected, additional field analyses will be completed for ferrous iron and dissolved oxygen using field titration kits. These results will be recorded on the sampling log.

3.3.3 Analyses Protocol

The collected samples will be delivered under chain-of-custody documentation to a laboratory for analysis. The laboratory selected will have ELAP certification for completion of analyses in accordance with the New York State Contract Laboratory Protocol (CLP) using the NYSDEC Analytical Services Protocol (ASP), if available. The analyses to be completed include the following:

Parameter	Analysis method
Volatile Organic Compounds (VOCs)	8260
Semivolatile Organic Compounds (SVOCs)	8270
Sulfide	SM 4500 S2 E
Methane	8015
Total Organic Carbon (TOC)	SM 5310 B
Chemical Oxygen Demand (COD)	410.4
Alkalinity	SM 2320 B
Sulfate	375.4
Nitrate	353.2
Nitrite	353.2
Dissolved Oxygen	Field Test
Dissolved Ferrous Iron	Field Test
Total & Dissolved Iron	6010
Total & Dissolved Manganese	6010

Samples will be analyzed using conventional laboratory methods and internal quality assurance and quality control (QA/QC) procedures. A blind duplicate and a trip blank (VOCs only) will be used for QA/QC purposes. The laboratory will be requested to provide Level I (data only) results. The data will not be validated.

3.3.4 Monitoring Well Repairs, Replacement and Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Site-wide inspections will also be performed after all severe weather conditions that may affect Engineering Controls or monitoring devices. During these inspections, an inspection form will be completed (Appendix [x]). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that site records are up to date.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site (Appendix [x]). Main Components of the QAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC ASP requirements.
 - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody;
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
 - The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures;
- Internal QC and Checks;
- QA Performance and System Audits;
- Preventative Maintenance Procedures and Schedules;
- Corrective Action Measures.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. The report will include, at a minimum:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected (e.g., groundwater);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized in Table [x] below.

Task	Reporting Frequency*

Table [x]: Schedule of Monitoring/Inspection Reports

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC

4.0 OPERATION AND MAINTENANCE PLAN

4.1 INTRODUCTION

The Site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

5. INSPECTIONS, REPORTING AND CERTIFICATIONS

5.1 SITE INSPECTIONS

5.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedule provided in Section 3 Monitoring Plan of this SMP. At a minimum, a site-wide inspection will be conducted annually. Inspections of remedial components will also be conducted whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

A general site-wide inspection form will be completed during the site-wide inspection (see Appendix [x]), subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented;
- The site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP and FER.

5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed to practice in New York State will prepare the following certification:

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program; and
- The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A"

misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] for the site.

The signed certification will be included in the Periodic Review Report described below.

5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the Department every year, beginning eighteen months after the Certificate of Completion or equivalent document (eg., Satisfactory Completion Letter, No Further Action Letter, etc.) is issued. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix B (Metes and Bounds). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format;
- Groundwater data summary tables and graphical representations of contaminants of concern, which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A site evaluation, which includes the following:

- The compliance of the remedy with the requirements of the site-specific ROD;
- Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
- The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central Office, Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation.

5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

APPENDIX A – EXCAVATION WORK PLAN

Future excavation on site will not be allowed without first receiving written approval from National Grid and the NYSDEC. If excavation is necessary, an Excavation Work Plan will be required to be prepared and provided to National Grid and the NYSDEC describing the reason for excavation, proposed limits of excavation (horizontal and vertical), and detailing how material (e.g. soil, construction water, etc) will be managed and if necessary disposed.

Any excavation on site deeper than a depth of 2 ft bgs must be made and supervised by individuals having been 40-hour trained in accordance with 29 CFR 1910. If soil is removed from below the demarcation fabric and depth of 7 ft bgs, that soil must be handled as potentially MGP impacted material, tested and analyzed for MGP parameters including volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), metals, ammonia and cyanide (total and amenable).

Soils excavated from a depth below 7 ft bgs shall be stockpiled in a dedicated material staging area for subsequent transportation to an off-site treatment/disposal facility on National Grid's approved waste transportation and disposition vendor list (Attachment X).

The Contractor shall be responsible for all stabilization and dewatering activities associated with excavated soils prior to the transportation of such materials to the approved off-site treatment/disposal facility. The means and methods of stabilization/dewatering shall be in accordance with the Remedial Design. At a minimum, excavated soils must pass Paint Filter testing procedures prior to the transportation of such materials to the approved offsite treatment/disposal facility.

The Contractor shall complete and submit a waste profile to the approved treatment/disposal facility, and appropriately containerize (i.e., completely line and cover waste hauling vehicles), label, and transport the soils to the off-site treatment/disposal facility in accordance with applicable rules and regulations. The Contractor will be responsible for preparing all waste profiling and manifest forms. National Grid will

review and approve waste profiles and draft manifests prior to off-site disposition of materials and will sign all waste manifests/bills of lading as long as it owns the Site.

Dependent on the results of the waste characterization activities, the soil excavated from below 7 ft bgs may be treated/disposed in a manner consistent with the NYSDEC program policy, Technical and Administrative Guidance Memorandum (TAGM) 4061, *Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants* (NYSDEC, 2002). The policy outlines criteria wherein soil that has been contaminated with coal tar waste from MGPs exhibiting only the hazardous waste toxicity characteristic for benzene (D018) may be excluded from the requirements of 6 NYCRR Parts 370-374 and 376 when they are destined for permanent thermal treatment.

A-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

[Name of Regional Hazardous Waste Remediation Engineer] Regional Hazardous Waste Remediation Engineer [Address of Regional Office where the site is located]

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,

- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,
- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix [x] of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

A-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil.

A-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

A-4 MATERIALS EXCAVATION AND LOAD OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

A-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the site. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Truck transport routes are as follows: [describe route and provide map]. All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport; [(g) community input [where necessary]]

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

A-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class

of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

A-7 MATERIALS REUSE ON-SITE

Chemical criteria for on-site reuse of material have been approved by NYSDEC and are listed in DER-10 for restricted residential use (6 NYCRR Part 375). The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below a demarcation layer or impervious surface, and will not be reused within a cover soil layer (from ground surface to 2 ft bgs), within landscaping berms, or as backfill for subsurface utility lines.

Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

A-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

A-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the Remedial Action Final Design and Record of Decision. The demarcation layer, consisting of a geotextile filter fabric specified in the final design or equivalent material, will be replaced to provide a visual reference to the top of the 'Remaining Contamination Zone', the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

A-10 BACKFILL FROM OFF-SITE SOURCES

This section should describe all methods to be followed for the import, handling and placement of backfill material from off-site. The following topics should be covered:

- Source area approval process
 - Sources of backfill material
 - Past use of site
 - Source area background check
 - DOT Certification
 - Chemical sampling
 - Analytes
 - Frequency
 - Imported Soil Chemical Quality Standards
 - Applicability of protection of groundwater SCOs
 - Applicability of protection of ecological resources SCOs
- Procedure for determining if reuse is appropriate
 - Sampling (methods and analytical)
- Stockpile procedures for imported backfill material
 - Size of stockpiles, cover, etc.

The following text should be included somewhere in this section:

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table [x]. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

A-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are

accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

A-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

A-13 COMMUNITY AIR MONITORING PLAN

This section should provide all details of the Community Air Monitoring Plan. Guidance can be obtained in Appendix 1A of DER-10, Generic Community Air Monitoring Plan. At a minimum, this section must include:

- Details of the perimeter air monitoring program;
- Action levels to be used;
- Methods for air monitoring ;
- Analytes measured and instrumentation to be used;

A figure of the location(s) of all air monitoring instrumentation. A figure showing specific locations must be presented for monitoring stations based on generally prevailing wind conditions, with a note that the exact locations to be monitored on a given day will be established based on the daily wind direction.
 The following text should be included somewhere in this section:

A figure showing the location of air sampling stations based on generally prevailing wind conditions is shown in Figure [x]. These locations will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and at least two downwind monitoring stations. If a sensitive receptor, such as a school, day care or residential area is adjacent to the site, a fixed monitoring station should be located at that site perimeter, regardless of wind direction, and discussed in the text.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

A-14 ODOR CONTROL PLAN

NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work if necessary, is the responsibility of the property owner's remediation Contractor, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

A-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

A-16 OTHER NUISANCES

A plan will be developed and utilized by the Contractor for all remedial work to ensure compliance with local noise control ordinances.

REFERENCES

NYSDEC, 2009. Record of Decision, New York State Department of Environmental Conservation, March 2009.

O'Brien & Gere Engineers, Inc., 1996, Preliminary Site Assessment Interim Remedial Measures (PSA/IRM) Study Report, May 1996.

O'Brien & Gere Engineers, Inc., 2007, Soil Vapor Sampling Report (letter), October 19, 2007.

O'Brien & Gere Engineers, Inc., 2008, Soil Vapor Sampling Results (letter), September 15, 2008.

O'Brien & Gere Engineers, Inc., 2009a, Remedial Investigation Report May 2006, revised March 2009.

O'Brien & Gere Engineers, Inc., 2009b, Feasibility Study Report, February 2009.