SITE CHARACTERIZATION REPORT FOR THE CNY CAR CRUSHERS SITE (NYSDEC SITE 738048) HASTINGS, OSWEGO COUNTY, NEW YORK

Prepared for:

New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 12th Floor
Albany, NY 12233-7012

Prepared by:

301 Plainfield Road, Suite 350 Syracuse, New York 13212

SEPTEMBER 2018

TABLE OF CONTENTS

		<u>Page</u>								
SECTION 1 INTR	ODUCTION	1								
SECTION 2 PRO.	JECT BACKGROUND AND OBJECTIVES	1								
SECTION 3 SITE	CHARACTERIZATION METHODS AND RESULTS	1								
3.1 2018 SIT	TE CHARACTERIZATION SCOPE OF WORK	1								
3.2 ANALYTIC	CAL SERVICES	1								
3.3 GEOPHYS	SICAL INVESTIGATION	1								
3.4 TEST PIT	INVESTIGATION	1								
3.5 SUBSUR	3.5 SUBSURFACE INVESTIGATION									
3.5.1 Soil	Borings	3								
	Installation									
3.5.3 Grou	undwater Sampling and Analysis	3								
	SOIL INVESTIGATION									
3.7 SITE SUR	RVEY	4								
3.8 WASTE C	HARACTERIZATION	4								
3.9 CONCLUS	SIONS AND RECOMMENDATIONS	4								
SECTION 4 REFE	ERENCES	1								
	LIST OF TABLES									
Table 1	2018 Test Pit Data - Detected Compound Summary									
Table 2	2018 Soil Boring Data - Detected Compound Summary									
Table 3	2018 Groundwater Data - Detected Compound Summary									
Table 4	2018 Surface Soil - Detected Compound Summary									
	LIST OF FIGURES									
Figure 1	Site Location Map									
Figure 2	Sample Location Map									
Figure 3	Test Pit Sample Results									
Figure 4	Soil Boring Sample Results									
Figure 5	Groundwater Sample Results									
Figure 6	Groundwater Contours July 2018									
Figure 7	Surface Soil Sample Results									

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

Appendix A Boring and Well Development Logs

Appendix B Groundwater Sampling Logs

Appendix C Topographical Survey Information

LIST OF ACRONYMS

ASR Automobile shredder residue

bgs Below ground surface

DER Division of Environmental Remediation

ELAP Environmental Laboratory Accreditation Program

IDW Investigation-derived waste

NYCRR New York State Codes, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

PCB Polychlorinated biphenyl

PFAS Per- and polyfluoroalkyl substances

PID Photoionization detector

ppm parts per million

SVOC Semi-volatile organic compound

TAL Target Analyte List

TP Test pit

VOC Volatile organic compound

SECTION 1 INTRODUCTION

This Site Characterization Report presents the methods employed for and results from the site characterization conducted at the CNY Car Crushers Site in Hastings, New York. Polychlorinated biphenyls (PCBs), cadmium, lead and mercury had previously been identified at the site, part of which is adjacent to a residential area.

Parsons completed the site characterization during April and May 2018 under Work Assignment #34 of Contract No. D007623 with the New York State Department of Environmental Conservation (NYSDEC). Sampling and analyses were conducted pursuant to a work scope that had been approved by the NYSDEC (Parsons 2017). Data obtained during the site characterization have been compiled and evaluated and are summarized in this report.

SECTION 2 PROJECT BACKGROUND AND OBJECTIVES

The CNY Car Crushers site is within an undeveloped parcel on Hogs Back Road in the Town of Hastings, Oswego County, New York (Figure 1). The parcel is partially open fields and partially wooded. It is bound to the north by Hogs Back Road, to the west by US Route 11, to the east by Delta Road, and to the south by Belva Boulevard. The CNY Car Crushers site is in the northeastern corner of the parcel, with residences adjacent to the north and east of the site's waste disposal area. The area of concern that was characterized occupies approximately 6.5 acres of the 23-acre parcel. The NYSDEC site number is 738048.

The property was wholly owned by CNY Car Crushers. CNY Car Crushers formerly used the site to dispose of automobile shredder residue (ASR).

The primary contaminants of concern identified at the site are PCBs, cadmium, lead and mercury. These were first identified in soil and waste samples collected by InteGreyted Consultants on October 17, 2002. PCBs were present in concentrations up to 700 parts per million (ppm). Elevated concentrations of metals such as mercury, lead, and chromium were also detected in these samples.

The purpose of this site characterization was to determine the physical extent of the ASR waste, whether contamination is present in surface and subsurface soils, and if groundwater quality is being impacted.

Residences in the immediate vicinity of the site receive drinking water supplied by the Onondaga County Water Authority with water sourced from Lake Ontario. Municipal water is available to all surrounding residences, but it is not confirmed if all have hooked up to the supply or if there are still private wells being utilized in the area.

SECTION 3 SITE CHARACTERIZATION METHODS AND RESULTS

The 2018 site characterization scope of work, field methods and results are described in the following subsections.

3.1 2018 SITE CHARACTERIZATION SCOPE OF WORK

The scope of work for the 2018 site characterization consisted of the following activities:

- 1. Geophysical investigation to locate subsurface utilities
- 2. Test pit excavations to identify the lateral and vertical limits of the ASR fill material
- 3. Subsurface soil investigation
- 4. Surface soil investigation
- 5. Monitoring well installations and groundwater sampling
- 6. Determination of coordinates and elevations of the sample locations

Field activities were conducted in accordance with the Scope of Work (Parsons 2017) and the generic Health and Safety Plan (Parsons and OBG 2011b) prepared and approved for Parsons' contract D007623 with NYSDEC. Site-specific elements and specific job safety analyses for test pit excavations, soil sampling, and monitoring well installation were added to the Health and Safety Plan.

3.2 ANALYTICAL SERVICES

Analytical services for water, soil, and waste samples were provided by TestAmerica Laboratories of Buffalo, New York (TestAmerica). TestAmerica is accredited under the National Environmental Laboratory Approval Program and Department of Defense Environmental Laboratory Accreditation Program (ELAP) and is a New York State Department of Health ELAP-certified laboratory (Lab ID 11522).

3.3 GEOPHYSICAL INVESTIGATION

A geophysical survey was performed at the site to locate subsurface utility lines before subsurface borings and test pit excavations were begun. A combination of electrical tracing and magnetic techniques was used. No subsurface utilities were found at the site.

3.4 TEST PIT INVESTIGATION

As shown on Figures 2 and 3, 21 tests pits (TP-01 to TP-21) were excavated to visually identify automobile shredder fluff and determine the extent of the waste. Test pit locations were selected based on the site topography, which suggested the placement of waste was within an elevated area in the northeast corner of the property. Test pits were dug with a mini-excavator on April 9, 2018. Observations from visual inspection of the test pit excavations are summarized below:

TP-01 through TP-09 were completed along the toe of the slope of the elevated area thought to be the
primary ASR disposal area. Samples were collected at TP-01 and TP-08 for analysis to characterize the
waste. These samples were analyzed for PCBs and Target Analyte List (TAL) metals.

- Test pits TP-01 through TP-04 were completed along the south side of the slope. They consisted of shredder fluff immediately below the surface with medium brown sand underlying the shredder fluff at the bottom of the slope. The shredder fluff consisted of dark brown material containing wires, metal, plastic, and textiles.
- TP-05 was completed on a mound next to the eastern toe of the slope. It consisted of medium brown sand with no shredder fluff. The purpose of this location was to assess whether numerous mounds in the area were waste or soil piles.
- TP-06 and TP-07 were completed along the east toe of the slope. TP-06 consisted of household trash, including cans, bottles and tires. TP-07 contained dark brown shredder fluff in the top few inches, underlain by medium brown soil.
- TP-08 and TP-09 were completed along the southwest toe of the slope and contained shredder fluff underlain by light brown soil.
- TP-10 was completed east of the slope, beyond the expected limits of the waste. No shredder fluff was found at this location.
- TP-11 through TP-14 were completed along the northeast portion of the fill, near the back yards of neighboring residences. Waste samples were collected for analysis at TP-11, TP-12, and TP-14. In test pits TP-11, TP-12, and TP-14, shredder fluff and mixed debris was found to extend more than 2 feet below ground surface (bgs). TP-13 contained soil and cobbles with no shredder fluff.
- TP-15 was completed on a large mound in the center of the ASR waste mass. The test pit contained medium brown sand with no automobile shredder fluff.
- TP-16 through TP-18 were completed along the northwest portion of the fill, near the back yards of neighboring residences. TP-16 consisted of medium brown sand from 0 to 5 feet bgs, underlain by shredder fluff and tires. TP-17 and TP-18 consisted of soil with no waste.
- TP-19 was completed along the western edge of the waste area. The test pit had 1 foot of clean soil
 underlain by shredder fluff. The test pit was stopped at 3 feet bgs. The bottom of the ASR waste was
 not encountered.
- TP-20 and TP-21 were completed west of the expected fill area. Neither test pit contained shredder fluff.

In general, the extent of the ASR waste is defined by elevated topography on the south, southeast and southwest sides of the waste mass. It is very close to the northern property line and adjacent to residential back yards. The waste appears to have been placed on top of the ground surface and covered with a layer of soil with varying thickness. Due to the limited reach of the mini-excavator, it was not possible to determine the lower extent of the waste in test pits excavated on top of the waste mass.

Table 1 summarizes the validated laboratory results. Test pit samples were analyzed for PCBs and TAL metals. Total PCBs exceeded Part 370-6.8(a) criteria for unrestricted and residential use in all sample locations. Additionally, concentrations of cadmium, chromium, copper, lead, mercury, nickel and zinc were above unrestricted and/or residential use criteria in all test pit samples. Various test pit sample concentrations exceeded unrestricted and/or residential use criteria for arsenic, barium, manganese, and silver. Note that the soil samples were analyzed for total chromium and there is no NYSDEC soil quality criterion for total chromium. To screen the sample results, the total chromium concentrations were compared to the hexavalent chromium unrestricted and residential use criteria. Sample concentrations for total chromium that exceed the hexavalent chromium criteria suggest further characterization may be warranted.

3.5 SUBSURFACE INVESTIGATION

3.5.1 SOIL BORINGS

As shown on Figure 4, six soil borings were drilled on site to assess the vertical extent of the ASR within the waste mass and to collect subsurface soil samples to characterize the presence of PCBs and TAL metals contamination. Borings were advanced with hollow-stem augers, and soil samples were collected using a 2-foot split spoon sampler. Soil from each sample was evaluated for moisture content, grain size and color. The sample headspace was screened using a photoionization detector (PID). Boring logs are included in Appendix A.

Two soil samples were collected from each boring and submitted for chemical analyses. One sample was collected from the waste, and one sample was collected from near the bottom of the boring, beneath the waste, to assess whether contamination from the waste is migrating from the waste downward through the soil column.

Table 2 summarizes the laboratory analytical results. Soil and waste samples were analyzed for PCBs and TAL metals. PCB concentrations in waste samples collected at all boring locations were higher than the unrestricted and residential use soil quality criteria. The PCB concentration in the soil sample collected at SB-02 at 14 to 15 feet bgs, beneath the waste, exceeded the unrestricted but not residential use soil quality criterion.

Several metals concentrations in each waste sample exceeded the applicable soil quality criteria. However, the soil samples collected from beneath the waste did not exceed any soil quality criteria. All borings had concentrations of cadmium, chromium copper, lead, mercury, nickel, and zinc that exceeded the unrestricted and/or residential soil quality criteria. In some samples, concentrations of arsenic, barium, selenium, and silver also exceeded soil quality criteria.

3.5.2 WELL INSTALLATION

As shown in Figure 5, three monitoring wells were installed to assess groundwater quality impacts at the site. Monitoring well locations were selected along the northern property line, close to the nearest residences, and on the southeast and southwest sides of the waste area. The borings for the monitoring wells were drilled with hollow-stem augers. The wells were constructed with 2-inch inside-diameter polyvinyl chloride casing with a 10-foot long, 10-slot screen. Following installation, the monitoring wells were developed to remove material that may have settled in and around the well screen and sand pack. Development water was contained in drums and stored on site for waste characterization. Well construction and development logs are included in Appendix A.

3.5.3 GROUNDWATER SAMPLING AND ANALYSIS

Once well installation and development was complete, the three new monitoring wells were sampled on May 14, 2018, using low-flow sampling techniques. Groundwater sampling logs are included in Appendix B. Prior to sampling, water levels were measured in each well. Those water level depths were converted to elevations and plotted to determine the groundwater flow direction. Figure 6 depicts the groundwater flow pattern for the July 2018 sampling event. Groundwater flow was in a northeasterly direction, toward the residences on Hogsback Road.

Groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), PCBs, TAL metals, and per- and polyfluoroalkyl substances (PFAS). The analytical program used the data quality objectives and quality assurance objectives described in Section 3.2. Groundwater analytical results were compared to New York State groundwater quality standards and guidance values. Table 3 summarizes concentrations of detected organic compounds and metals in groundwater. The concentration of manganese and the combined concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in

the sample from MW-1 were the only cases in which NYSDEC Class GA Groundwater standards or guidance values were exceeded. MW-1 is located within the waste mass on the downgradient edge.

3.6 SURFACE SOIL INVESTIGATION

As shown in Figure 7, 10 surface soil samples were collected to assess surface soil quality. The sample locations were selected to characterize the waste mass and surrounding area.

Table 4 summarizes the analytical results. Soil samples were analyzed for PCBs and TAL metals. The analytical program used the data quality objectives and quality assurance objectives described in Section 3.2.

S6 was the only sample with a total PCB concentration that was higher than both the unrestricted and residential use soil quality criteria. Samples S1, S2, S3, S5, S7, S8, and S10 all had total PCB concentrations above the unrestricted use criterion, but all were below the residential use criterion. PCBs were not detected in samples S4 and S9.

S6, S8, and S10 were the only samples with metals concentrations exceeding soil quality criteria. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc in samples S6 and S8 exceeded the unrestricted and/or residential land use criteria. In S1,0 the concentration of mercury was above the unrestricted use criterion but below the residential criterion.

3.7 SITE SURVEY

Following the site characterization fieldwork, the coordinates and elevations of the sample points, wells and test pits were determined by a subcontracted licensed surveyor. Horizontal survey data were based on the North American Datum of 1983 New York State Plane (Central Zone) coordinate system (in feet). Elevations were based on the North American Vertical Datum of 1988. Site survey information from the 2018 field effort is included in Appendix C.

3.8 WASTE CHARACTERIZATION

Investigation-derived waste (IDW), including excess soils, well development water and purge water, were placed in Department of Transportation-approved, 55-gallon, 17-H type drums. The IDW was evaluated as nonhazardous based on characterization sample results and will be disposed of in accordance with applicable NYSDEC regulations.

3.9 CONCLUSIONS AND RECOMMENDATIONS

The waste area of the CNY Car Crushers site appears to be concentrated in the northeast portion of the property, on and above the slope. No evidence of automobile shredder waste was found below the toe of the slope or in the mounds of soil scattered around the site.

All test pit and subsurface soil samples had PCB concentrations higher than either unrestricted or residential use soil quality criteria. There were also several metals concentrations above unrestricted or residential use soil quality criteria. Samples taken at the bottom of the borings (between 7 and 15 feet bgs) were less impacted. PCB and metals data show elevated concentrations throughout the waste area rather than concentrated areas of contamination.

The concentration of manganese and the combined concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in the sample from MW-1 exceeded the NYSDEC Class GA Groundwater

standards. MW-1 is within the waste mass, downgradient of MW-2 and MW-3. No other exceedances of Class GA standards or guidance values were detected in MW-1, MW-2 or MW-3.

All surface soil samples except for S4 and S9 had PCB concentrations above unrestricted or residential use soil quality criteria. Both S4 and S9 are outside the expected waste disposal area; however, they are not the only locations outside the area. S1, S8, and S10 are also outside the expected waste area. S6 and S8 had the highest number of parameters with concentrations above unrestricted or residential use soil quality criteria.

SECTION 4 REFERENCES

Cited References

- Parsons. 2017. Scope of Work (Schedule 1) for: Site Characterization For the CNY Car Crushers Site. Prepared for the New York State Department of Environmental Conservation. October.
- Parsons and OBG. 2011b. Generic/Site-Specific Health and Safety Plan. Prepared for the New York State Department of Environmental Conservation, Albany, NY. May.

Related References

- NYSDEC. 2006. 6 NYCRR¹ Part 375 Environmental Remediation Programs. Subparts 375-1 to 375-4 & 375-6. New York State Department of Environmental Conservation. September.
- NYSDEC. 2010. DEC Program Policy DER²-10 / Technical Guidance for Site Investigation and Remediation. New York State Department of Environmental Conservation. May.
- Parsons and OBG. 2011a. Generic Quality Assurance Project Plan. Prepared for the New York State Department of Environmental Conservation, Albany, NY. May.

¹ NYCRR - New York State Codes, Rules and Regulations

² DER – Division of Environmental Remediation

TABLES

Table 1 2018 Test Pit Data Detected Compound Summary

NYSDEC-Car	Crusher Site			Location ID:	7-CAR-001-TP-01	7-CAR-001-TP08	7-CAR-001-TP-11	7-CAR-001-TP-12
2018 Site Inve	estigation			Sample ID:	7-CAR-001-06	7-CAR-001-05	7-CAR-001-02	7-CAR-001-01
Test Pit Data				Lab Sample Id	480-133903-6	480-133903-5	480-133903-2	480-133903-1
SDG: 480-133	3903			Depth:	3 - 5 ft	3 - 5 ft	2 - 7 ft	2 - 7 ft
Detected Com	pound Summary	Part 375-6.8(a)	Part 375-6.8(a)	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
	,	Unrestricted Use	Residential Use	SDG:	4801339031	4801339031	4801339031	4801339031
		Soil Cleanup	Soil Cleanup	Matrix:	SO	SO	\$O	\$O
		1 : 1	l :	1 1				
		Objectives ¹	Objectives ²	Sampled:	4/9/2018 15:45	4/9/2018 15:30	4/9/2018 12:00	4/9/2018 11:27
				Validated:				
CAS NO.	COMPOUND			UNITS:				
	PCBs							
53469-21-9	PCB-1242 (Aroclor 1242)			mg/kg	ND	ND	ND	66
12672-29-6	PCB-1248 (Aroclor 1248)			mg/kg	180	1.6	20	ND
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	ND	2.6	32	45
	T. Inch		_		400			444
	Total PCBs	0.1	1	mg/kg	180	4.2	52	111
7420 00 5	METALS	NC	NC		0070 T	4700	5.450	2600
7429-90-5	Aluminum	NS NG	NS NG	mg/kg	9860 T 63.6 T	4700 7.5 J	5450 16.6 J	3690 9.2 J
7440-36-0	Antimony	NS	NS	mg/kg	19.8			9.2 J 22.2
7440-38-2 7440-39-3	Arsenic	13 350	16 350	mg/kg	19.8 939	4.6 262	14.7 787	862
7440-39-3	Barium			mg/kg		0.15 J	0.21 J	0.16 J
	Beryllium Cadmium	7.2 2.5	14 2.5	mg/kg	0.24 J 192 T	21.9	42.8	66.6
7440-43-9 7440-70-2		NS	NS	mg/kg		9400	13800	18500
7440-70-2	Calcium Chromium, Total*	NS 1*	NS 22*	mg/kg	33100 310 T	36.1	13800	18500
7440-47-3	Cobalt	NS	NS	mg/kg	130 T	9.2	31.2	28.1
7440-48-4	Copper	50	270	mg/kg	28600 T	223	2130	378
7439-89-6	Iron	NS	NS	mg/kg mg/kg	189000 BT	37900 B	73500 B	150000 B
7439-92-1	Lead	63	400	mg/kg	5980	37300 B	1850	2050
7439-92-1	Magnesium	NS	NS	mg/kg	5110 T	1780 B	7520	5730
7439-96-5	Manganese	1600	2000	mg/kg	1920 B	455 B	487 B	802 B
7439-90-5	Mercury	0.18	0.81	mg/kg	39.2 T	0.92	3.4	3.1
7440-02-0	Nickel	30	140	mg/kg	1120	50.6	208	395
7440-02-0	Potassium	NS	NS	mg/kg	901	744	374	511
7782-49-2	Selenium	3.9	36	mg/kg	2.3 J	ND	ND	1.8 J
7440-22-4	Silver	2	36	mg/kg	52.2 T	0.57 J	4.6	3.8 J
7440-23-5	Sodium	NS	NS	mg/kg	1750 BT	138 BJ	263 B	351 B
7440-62-2	Vanadium	NS	NS	mg/kg	19.5	10.2	11.3	12.1
7440-66-6	Zinc	109	2200	mg/kg	9760 T	1380	3690	5990

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.
NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

Table 1 2018 Test Pit Data Detected Compound Summary

NYSDEC-Ca 2018 Site Inve				Location ID: Sample ID:	7-CAR-001-TP-12 7-CAR-001-04	7-CAR-001-TP-14 7-CAR-001-03
Test Pit Data				Lab Sample Id	480-133903-4	480-133903-3
SDG: 480-13	3903			Depth:	2 - 7 ft	3 - 6.5 ft
Detected Com	npound Summary	Part 375-6.8(a)	Part 375-6.8(a)	Source:	TALBUFF	TALBUFF
		Unrestricted Use	Residential Use	SDG:	4801339031	4801339031
		Soil Cleanup	Soil Cleanup	Matrix:	SO	SO
		·	Objectives ²			
		Objectives ¹	Objectives	Sampled: Validated:	4/9/2018 0:00	4/9/2018 13:27
CAS NO.	COMPOUND			UNITS:		
CAS NO.	PCBs			UNIIS.		
53469-21-9	PCB-1242 (Aroclor 1242)	+		mg/kg	ND	ND
12672-29-6	PCB-1248 (Aroclor 1248)			mg/kg	43	5.8
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	46	7.6
11057 05 1	T CB 123 ((Mocioi 123 i)			mg/kg	10	7.0
	Total PCBs	0.1	1	mg/kg	89	13.4
	METALS					
7429-90-5	Aluminum	NS	NS	mg/kg	4120	5880
7440-36-0	Antimony	NS	NS	mg/kg	36.9	19.5
7440-38-2	Arsenic	13	16	mg/kg	18.6	10.3
7440-39-3	Barium	350	350	mg/kg	1740	629
7440-41-7	Beryllium	7.2	14	mg/kg	0.18 J	0.28
7440-43-9	Cadmium	2.5	2.5	mg/kg	58.6	18.8
7440-70-2	Calcium	NS	NS	mg/kg	23100	19000
7440-47-3	Chromium, Total*	1*	22*	mg/kg	118	58.5
7440-48-4	Cobalt	NS	NS	mg/kg	23.5	14.5
7440-50-8	Copper	50	270	mg/kg	645	210
7439-89-6	Iron	NS	NS	mg/kg	133000 B	53300 B
7439-92-1	Lead	63	400	mg/kg	2460	1160
7439-95-4	Magnesium	NS	NS	mg/kg	5080	8160 B
7439-96-5	Manganese	1600	2000	mg/kg	701 B	644 B
7439-97-6	Mercury	0.18	0.81	mg/kg	3.7	1.8
7440-02-0	Nickel	30	140	mg/kg	403	121
7440-09-7	Potassium	NS	NS	mg/kg	589	1060
7782-49-2	Selenium	3.9	36	mg/kg	1.5 J	ND
7440-22-4	Silver	2	36	mg/kg	2 J	0.67 J
7440-23-5	Sodium	NS	NS	mg/kg	585 B	192 B
7440-62-2	Vanadium	NS	NS	mg/kg	13	14.5
7440-66-6	Zinc	109	2200	mg/kg	6120	1950

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

Table 2 2018 Soil Boring Data Detected Compound Summary

NYSDEC-Car	· Crusher Site			Location ID:	7-CAR-001-SB-01	7-CAR-001-SB-01	7-CAR-001-SB-02	7-CAR-001-SB-02
2018 Site Inve				Sample ID:	7-CAR-001-002-01	7-CAR-001-002-02	7-CAR-001-002-03	7-CAR-001-002-04
Soil Borings	C			Lab Sample Id:	480-134200-1	480-134200-2	480-134200-3	480-134200-4
SDG: 480-13	4200	Part 375-6.8(a)	Part 375-6.8(a)	Depth:	5 - 7 ft	15 - 16 ft	6 - 7 ft	14 - 15 ft
	pound Summary	Unrestricted Use	Residential Use	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
Detected Con	pound Summary	Soil Cleanup	Soil Cleanup	SDG:	4801342001	4801342001	4801342001	4801342001
			·					
		Objectives ¹	Objectives ²	Matrix:	SO	SO	SO	SO
	Too			Sampled:	4/11/2018 9:15	4/11/2018 9:45	4/11/2018 11:30	4/11/2018 11:45
CAS NO.	COMPOUND			UNITS:				
	PCBs	4		_	4.00			0.40.7
12674-11-2	PCB-1016 (Aroclor 1016)			mg/kg	120		16	0.18 J
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	83		11	0.17 J
	Total PCBs	0.1	1	mg/kg	203		27	0.35
	METALS	0.1	1	mg/kg	203		21	0.55
7429-90-5	Aluminum	NS	NS	mg/kg	5720 T	3180	4670	3920
7440-36-0	Antimony	NS	NS	mg/kg	17.3 J	ND	10.5 J	ND
7440-38-2	Arsenic	13	16	mg/kg	12.7 T	1 J	4.2	0.95 J
7440-39-3	Barium	350	350	mg/kg	741	42.2	257	39.2
7440-41-7	Beryllium	7.2	14	mg/kg	0.2 JT	0.12 J	0.18 J	0.15 J
7440-43-9	Cadmium	2.5	2.5	mg/kg	66.5 T	ND	16.3	0.27
7440-70-2	Calcium	NS	NS	mg/kg	22000 BT	796 B	4600 B	887 B
7440-47-3	Chromium, Total*	1*	22*	mg/kg	1050	3.6	26	4.9
7440-48-4	Cobalt	NS	NS	mg/kg	36.5 T	2.1	10	2.5
7440-50-8	Copper	50	270	mg/kg	1790 T	4.8	844	26.6
7439-89-6	Iron	NS	NS	mg/kg	112000 B	5790 B	28800 B	6720 B
7439-92-1	Lead	63	400	mg/kg	1900	1.3	451	10.1
7439-95-4	Magnesium	NS	NS	mg/kg	3890	1300	2100	1430
7439-96-5	Manganese	1600	2000	mg/kg	812 T	185 B	405 B	188 B
7439-97-6	Mercury	0.18	0.81	mg/kg	7.5	ND	0.81	0.17
7440-02-0	Nickel	30	140	mg/kg	255 T	4.3 J	62	6 J
7440-09-7	Potassium	NS	NS	mg/kg	701 T	857	816	930
7782-49-2	Selenium	3.9	36	mg/kg	3.7 J	ND	1.8 J	ND
7440-22-4	Silver	2	36	mg/kg	15 T	ND	1.6	ND
7440-23-5	Sodium	NS	NS	mg/kg	353 B	35.6 BJ	249 B	45.9 BJ
7440-62-2	Vanadium	NS	NS	mg/kg	57.6 T	6.5	9.6	7.8
7440-66-6	Zinc	109	2200	mg/kg	5290	10.3	1150	32.1

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

Table 2 2018 Soil Boring Data Detected Compound Summary

NYSDEC-Car	· Crusher Site	1		Location ID:	7-CAR-001-SB-03	7-CAR-001-SB-03	7-CAR-001-SB-04	7-CAR-001-SB-04
2018 Site Inve				Sample ID:	7-CAR-001-002-05	7-CAR-001-002-06	7-CAR-001-002-07	7-CAR-001-002-08
Soil Borings	ostigution			Lab Sample Id:	480-134200-5	480-134200-6	480-134200-7	480-134200-8
SDG: 480-13	4200	Part 375-6.8(a)	Part 375-6.8(a)	Depth:	8 - 9 ft	10 - 11 ft	5 - 6 ft	12 - 14 ft
	apound Summary	Unrestricted Use	Residential Use	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
Detected Con	ipound Summary							
		Soil Cleanup	Soil Cleanup	SDG:	4801342001	4801342001	4801342001	4801342001
		Objectives ¹	Objectives ²	Matrix:	SO	SO	SO	SO
				Sampled:	4/11/2018 13:00	4/11/2018 13:10	4/11/2018 14:20	4/11/2018 14:25
CAS NO.	COMPOUND			UNITS:				
	PCBs							
12674-11-2	PCB-1016 (Aroclor 1016)			mg/kg	5.1		1.8	
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	7.8		5.6	
				l .				
	Total PCBs	0.1	1	mg/kg	12.9		7.4	
	METALS			_	• • • •	27.40	4000	4040
7429-90-5	Aluminum	NS	NS	mg/kg	2660	3740	4880	4210
7440-36-0	Antimony	NS	NS	mg/kg	20.3 J	ND	85.2	ND
7440-38-2	Arsenic	13	16	mg/kg	13.5			1.7 J
7440-39-3	Barium	350	350	mg/kg	1480	13.7	1110	18
7440-41-7	Beryllium	7.2	14	mg/kg	0.097 J	0.16 J	0.18 J	0.17 J
7440-43-9	Cadmium	2.5	2.5	mg/kg	26.7	ND	35.8	ND
7440-70-2	Calcium	NS	NS	mg/kg	24300 B	933 B	14100 B	2750 B
7440-47-3	Chromium, Total*	1*	22*	mg/kg	142	4.3	135	5.9
7440-48-4	Cobalt	NS	NS	mg/kg	17.9	2.3	19.9	3
7440-50-8	Copper	50	270	mg/kg	504	6.7	858	10.7
7439-89-6	Iron	NS	NS	mg/kg	122000 B	6170 B	101000 B	8340 B
7439-92-1	Lead	63	400	mg/kg	1950	2.4	24200	2.2
7439-95-4	Magnesium	NS	NS	mg/kg	10000	1350	4540	2010
7439-96-5	Manganese	1600	2000	mg/kg	685	291 B	797	326 B
7439-97-6	Mercury	0.18	0.81	mg/kg	2.1	ND	2.1	ND
7440-02-0	Nickel	30	140	mg/kg	216	5.1 J	210	6.5
7440-09-7	Potassium	NS	NS	mg/kg	531	1030	656	990
7782-49-2	Selenium	3.9	36	mg/kg	ND	ND	1.3 J	ND
7440-22-4	Silver	2	36	mg/kg	1.2 J	ND	2.7	ND
7440-23-5	Sodium	NS	NS	mg/kg	593 B	52.7 BJ	227 B	38.8 BJ
7440-62-2	Vanadium	NS	NS	mg/kg	12.5	7.6	14	9.3
7440-66-6	Zinc	109	2200	mg/kg	4340	13.5	3600	16.7

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

Table 2 2018 Soil Boring Data Detected Compound Summary

MADEC C	G 1 G':	1		Ir v m I	7 CAP 001 CP 05	7 CAP 001 CP 05	7 CAD 001 CD 06	7 CAD 001 CD 06
NYSDEC-Car				Location ID:	7-CAR-001-SB-05	7-CAR-001-SB-05	7-CAR-001-SB-06	7-CAR-001-SB-06
2018 Site Inve	estigation			Sample ID:	7-CAR-001-002-09	7-CAR-001-002-10	7-CAR-001-002-11	7-CAR-001-002-12
Soil Borings			()	Lab Sample Id:	480-134200-9	480-134200-10	480-134200-11	480-134200-12
SDG: 480-13		Part 375-6.8(a)	Part 375-6.8(a)	Depth:	10 - 10.5 ft	15 - 16 ft	4 - 5 ft	7 - 9 ft
Detected Con	npound Summary	Unrestricted Use	Residential Use	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
		Soil Cleanup	Soil Cleanup	SDG:	4801342001	4801342001	4801342001	4801342001
		Objectives ¹	Objectives ²	Matrix:	SO	SO	SO	SO
			,	Sampled:	4/12/2018 8:35	4/12/2018 8:50	4/12/2018 9:45	4/12/2018 9:55
CAS NO.	COMPOUND			UNITS:				
	PCBs							
12674-11-2	PCB-1016 (Aroclor 1016)			mg/kg	10		15	
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	20		20	
	Total PCBs	0.1	1	mg/kg	30		35	
	METALS							
7429-90-5	Aluminum	NS	NS	mg/kg	1980	5520	4890	4560
7440-36-0	Antimony	NS	NS	mg/kg	32 J	ND	10.6 J	ND
7440-38-2	Arsenic	13	16	mg/kg	13.3	1.7 J	18.1	1.9 J
7440-39-3	Barium	350	350	mg/kg	1850	16.9	1540	17.6
7440-41-7	Beryllium	7.2	14	mg/kg	0.098 J	0.21 J	0.22 J	0.17 J
7440-43-9	Cadmium	2.5	2.5	mg/kg	37.9	ND	64.1	ND
7440-70-2	Calcium	NS	NS	mg/kg	28200 B	822 B	19600 B	697 B
7440-47-3	Chromium, Total [*]	1*	22*	mg/kg	134	6.4	150	5.4
7440-48-4	Cobalt	NS	NS	mg/kg	20.1	3.8	23.3	3.1
7440-50-8	Copper	50	270	mg/kg	311	14.6	624	9.1
7439-89-6	Iron	NS	NS	mg/kg	146000 B	10700 B	132000 B	8500 B
7439-92-1	Lead	63	400	mg/kg	1910	2.7	1770	2
7439-95-4	Magnesium	NS	NS	mg/kg	5160	2510	4560	1960
7439-96-5	Manganese	1600	2000	mg/kg	832	622 B	786	460 B
7439-97-6	Mercury	0.18	0.81	mg/kg	3.9	ND	6.9	ND
7440-02-0	Nickel	30	140	mg/kg	192	8.4	294	6.3
7440-09-7	Potassium	NS	NS	mg/kg	343	1160	658	1170
7782-49-2	Selenium	3.9	36	mg/kg	ND	ND	30.9	ND
7440-22-4	Silver	2	36	mg/kg	1.5 J	ND	1.2 J	ND
7440-23-5	Sodium	NS	NS	mg/kg	379 B	34.8 BJ	269 B	26 BJ
7440-62-2	Vanadium	NS	NS	mg/kg	12	10.9	17.2	9.6
7440-66-6	Zinc	109	2200	mg/kg	6010	21.9	4140	17.1

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

Table 3 2018 Groundwater Data Detected Commpound Summary

NYSDEC-Car	Crusher Site		Location ID:	7-CAR-001-MW-01	7-CAR-001-MW-02	7-CAR-001-MW-02	7-CAR-001-MW-03
2018 Site Inve	estigation		Sample ID:	7-CAR-001-003-01	7-CAR-001-003-03	7-CAR-001-003-04	7-CAR-001-003-05
Groundwater I	Data	NYSDEC	Lab Sample Id:	480-135867-1	480-135867-3	480-135867-4	480-135867-5
SDG: 480-13:	5867	Class GA	Depth:	21 - 26 ft	9 - 14 ft	9 - 14 ft	12 - 19 ft
Detected Com	pound Summary	Groundwater	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
		Standards/Guidance	SDG:	4801358671	4801358671	4801358671	4801358671
		Values (1)	Matrix:	WATER	WATER	WATER	WATER
			Sampled:	5/14/2018 8:45	5/14/2018 11:30	5/14/2018 0:00	5/14/2018 14:30
			Validated:	0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0, - , - 0 0 0 0	0, 0, 1, 2000	
CAS NO.	COMPOUND		UNITS:				
	VOLATILES						
	NONE DETECTED						
	SEMIVOLATILES						
121-14-2	2,4-Dinitrotoluene	5	ug/l	2 J	ND	ND	ND
606-20-2	2,6-Dinitrotoluene	5	ug/l	1.7 J	ND	ND	ND
	PCBs						
	NONE DETECTED						
	METALS						
7440-39-3	Barium	1	mg/l	0.18	0.0059	0.0059	0.0078
7440-70-2	Calcium	NS	mg/l	103	27.7	28.3	5.3
7440-48-4	Cobalt	0.3	mg/l	0.0013 J	ND	ND	ND
7439-89-6	Iron	0.3	mg/l	0.042 J	0.052	0.035 J	ND
7439-95-4	Magnesium	35 (G)	mg/l	13.1	3.7	3.6	0.51
7439-96-5	Manganese	0.3	mg/l	4.4 B	0.016 B	0.016 B	0.0098 B
7440-02-0	Nickel	NS	mg/l	0.0059 J	ND	ND	ND
7440-09-7	Potassium	NS	mg/l	3.1	0.81 B	0.8 B	0.4 BJ
7440-23-5	Sodium	20	mg/l	10.6 B	1.1 B	1 B	1 B
7440-66-6	Zinc	2 (G)	mg/l	0.028	ND	ND	0.0016 J
	PFAs						
375-22-4	PERFLUOROBUTYRIC ACID (PFBA)		ng/l	260	2.4	2.5	ND
307-24-4	PERFLUOROHEXANOIC ACID (PFHxA)		ng/l	5	ND	ND	ND
375-85-9	PERFLUOROHEPTANOIC ACID (PFHpA)		ng/l	5	0.67 J	0.74 J	ND
335-67-1	PERFLUOROOCTANOIC ACID (PFOA)		ng/l	30	2.2	2	ND
375-95-1	PERFLUORONONANOIC ACID		ng/l	0.69 J	ND	ND	ND
375-73-5	PERFLUOROBUTANESULFONIC ACID		ng/l	2.3	0.62 J	0.72 J	ND
355-46-4	PERFLUOROHEXANESULFONIC ACID		ng/l	6.1 B	0.62 BJ	0.62 BJ	0.36 BJ
375-92-8	PERFLUOROHEPTANE SULFONATE (PFHpS)		ng/l	0.69 J	ND	ND	ND
1763-23-1	PERFLUOROOCTANE SULFONIC ACID (PFOS)		ng/l	44	2.2	2.3	0.84 J
27619-97-2	SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)		ng/l	ND	ND	ND	2.9 J
	PFOA + PFOS	70	ng/l	74	4.4	4.3	0.84

¹Criteria are Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitation for the protection of drinking water (Water Class - GA), June 1998.

Indicates concentration exceeds standard or guidance value.

(G) Indicates guidance value.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample.

NYSDEC-Ca	r Crusher Site			Location ID:	7-CAR-001-S1	7-CAR-001-S10	7-CAR-001-S2	7-CAR-001-S3
2018 Site Inv	estigation			Sample ID:	7-CAR-001-004-01	7-CAR-001-004-10	7-CAR-001-004-02	7-CAR-001-004-03
Surface Soil I	Data			Lab Sample Id:	480-135920-1	480-135920-10	480-135920-2	480-135920-3
SDG: 480-13	35920			Depth:	0 - 0.1 ft			
Detected Con	npound Summary	Part 375-6.8(a)	Part 375-6.8(a)	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
		Unrestricted Use	Residential Use	SDG:	4801359201	4801359201	4801359201	4801359201
			Soil Cleanup	Matrix:	\$O	SO	SO	\$O
		Soil Cleanup	•					
		Objectives ¹	Objectives ²	Sampled:	5/15/2018 9:00	5/15/2018 9:45	5/15/2018 9:05	5/15/2018 9:10
				Validated:				
CAS NO.	COMPOUND			UNITS:				
	PCBs							
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	0.23 J	ND	0.12 J	ND
11096-82-5	PCB-1260 (Aroclor 1260)			mg/kg	ND	0.16 J	ND	0.2 Ј
	Total PCBs	0.1	1	mg/kg	0.23	0.16	0.12	0.2
	METALS							
7429-90-5	Aluminum	NS	NS	mg/kg	4540 T	5820	6510	7460
7440-36-0	Antimony	NS	NS	mg/kg	0.67 J	0.78 J	3.5 J	0.7 J
7440-38-2	Arsenic	13	16	mg/kg	1.7 J	2.5	2 J	2.4 J
7440-39-3	Barium	350	350	mg/kg	39.7	36.1	123	49.6
7440-41-7	Beryllium	7.2	14	mg/kg	0.13 J	0.21 J	0.14 J	0.16 J
7440-43-9	Cadmium	2.5	2.5	mg/kg	1.1	0.57	0.87	1.2
7440-70-2	Calcium	NS	NS	mg/kg	1100 B	937 B	7580 B	1110 B
7440-47-3	Chromium, Total*	1*	22*	mg/kg	6.5	8.7	7.9	8.1
7440-48-4	Cobalt	NS	NS	mg/kg	2.6	3.4	2.6	3.2
7440-50-8	Copper	50	270	mg/kg	25.9	31	19.6	24.4
7439-89-6	Iron	NS	NS	mg/kg	9230	13400	9590	10800
7439-92-1	Lead	63	400	mg/kg	42.1	39.1	22.3	31
7439-95-4	Magnesium	NS	NS	mg/kg	1300	1910	1770	1340
7439-96-5	Manganese	1600	2000	mg/kg	345 B	292 B	761 B	554 B
7439-97-6	Mercury	0.18	0.81	mg/kg	0.032	0.32	0.028	0.061
7440-02-0	Nickel	30	140	mg/kg	7.8 T	9.8	6.9	8.1
7440-09-7	Potassium	NS	NS	mg/kg	436 T	643	583	529
7440-22-4	Silver	2	36	mg/kg	ND	ND	ND	ND
7440-23-5	Sodium	NS	NS	mg/kg	16.9 J	24.8 J	29.6 J	25 J
7440-62-2	Vanadium	NS	NS	mg/kg	8.9	11.8	13.3	14.4
7440-66-6	Zinc	109	2200	mg/kg	104 T	93.9	71.2	96

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

NYSDEC-Ca	r Crusher Site	T		Location ID:	7-CAR-001-S4	7-CAR-001-S5	7-CAR-001-S6	7-CAR-001-S7
2018 Site Inv				Sample ID:	7-CAR-001-004-04	7-CAR-001-004-05	7-CAR-001-004-06	7-CAR-001-004-07
Surface Soil I	•			Lab Sample Id:		480-135920-5	480-135920-6	480-135920-7
SDG: 480-13				Depth:	0 - 0.1 ft			
	npound Summary	Part 375-6.8(a)	Part 375-6.8(a)	Source:	TALBUFF	TALBUFF	TALBUFF	TALBUFF
Detected Con	ipound Summary	Unrestricted Use	Residential Use	SDG:	4801359201	4801359201	4801359201	4801359201
		Soil Cleanup						
			Soil Cleanup	Matrix:	SO	SO	SO	SO
		Objectives ¹	Objectives ²	Sampled:	5/15/2018 9:15	5/15/2018 9:20	5/15/2018 9:25	5/15/2018 9:30
				Validated:				
CAS NO.	COMPOUND			UNITS:				
	PCBs							
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	ND	0.12 J	1.3	0.14 J
11096-82-5	PCB-1260 (Aroclor 1260)			mg/kg	ND	ND	ND	ND
	Total PCBs	0.1	1	mg/kg	ND	0.12	1.3	0.14
	METALS							
7429-90-5	Aluminum	NS	NS	mg/kg	6200	5490	4300	3570
7440-36-0	Antimony	NS	NS	mg/kg	ND	0.58 J	21.2 J	0.6 J
7440-38-2	Arsenic	13	16	mg/kg	1.7 J	1.8 J	7.5	1.3 J
7440-39-3	Barium	350	350	mg/kg	29.8	26.9	157	23.1
7440-41-7	Beryllium	7.2	14	mg/kg	0.12 J	0.16 J	0.14 J	0.14 J
7440-43-9	Cadmium	2.5	2.5	mg/kg	0.39	0.92	25.1	0.69
7440-70-2	Calcium	NS	NS	mg/kg	1010 B	1160 B	970 B	1130 B
7440-47-3	Chromium, Total*	1*	22*	mg/kg	5.7	7.1	67.5	5.1
7440-48-4	Cobalt	NS	NS	mg/kg	2.1	3.9	14.3	3
7440-50-8	Copper	50	270	mg/kg	7.5	12.5	270	12.5
7439-89-6	Iron	NS	NS	mg/kg	7940	11900	85900	7990
7439-92-1	Lead	63	400	mg/kg	12.9	13.4	350	24
7439-95-4	Magnesium	NS	NS	mg/kg	979	2190	1520	1630
7439-96-5	Manganese	1600	2000	mg/kg	449 B	422 B	876 B	299 B
7439-97-6	Mercury	0.18	0.81	mg/kg	0.037	0.041	0.24	0.034
7440-02-0	Nickel	30	140	mg/kg	4.2 J	9.1	154	6.6
7440-09-7	Potassium	NS	NS	mg/kg	359	470	452	542
7440-22-4	Silver	2	36	mg/kg	ND	ND	1.8	ND
7440-23-5	Sodium	NS	NS	mg/kg	17.8 J	17.7 J	42.6 J	22 J
7440-62-2	Vanadium	NS	NS	mg/kg	11.8	10.9	11.6	7.5
7440-66-6	Zinc	109	2200	mg/kg	38.3	77.7	964	48

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.

B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

NYSDEC-Car	r Crusher Site			Location ID:	7-CAR-001-S8	7-CAR-001-S9
2018 Site Inv				Sample ID:	7-CAR-001-004-08	7-CAR-001-004-09
Surface Soil I	•			Lab Sample Id:		480-135920-9
SDG: 480-13				Depth:	0 - 0.1 ft	0 - 0.1 ft
	npound Summary	Part 375-6.8(a)	Part 375-6.8(a)	Source:	TALBUFF	TALBUFF
Detected Con	ipound Summary	Unrestricted Use	Residential Use	SDG:	4801359201	4801359201
		Soil Cleanup	Soil Cleanup	Matrix:	SO	SO
		Objectives ¹	Objectives ²	Sampled:	5/15/2018 9:35	5/15/2018 9:40
				Validated:		
CAS NO.	COMPOUND			UNITS:		
	PCBs					
11097-69-1	PCB-1254 (Aroclor 1254)			mg/kg	ND	ND
11096-82-5	PCB-1260 (Aroclor 1260)			mg/kg	0.49	ND
	Total PCBs	0.1	1	mg/kg	0.49	ND
	METALS					
7429-90-5	Aluminum	NS	NS	mg/kg	7130	5320
7440-36-0	Antimony	NS	NS	mg/kg	3.2 J	0.66 J
7440-38-2	Arsenic	13	16	mg/kg	5.9	2.2
7440-39-3	Barium	350	350	mg/kg	158	30
7440-41-7	Beryllium	7.2	14	mg/kg	0.49	0.19 J
7440-43-9	Cadmium	2.5	2.5	mg/kg	6	0.49
7440-70-2	Calcium	NS	NS	mg/kg	7890 B	534 B
7440-47-3	Chromium, Total*	1*	22*	mg/kg	16.3	6.7
7440-48-4	Cobalt	NS	NS	mg/kg	8.1	3.9
7440-50-8	Copper	50	270	mg/kg	93.9	22.5
7439-89-6	Iron	NS	NS	mg/kg	22900	11700
7439-92-1	Lead	63	400	mg/kg	368	16.1
7439-95-4	Magnesium	NS	NS	mg/kg	3200	1750
7439-96-5	Manganese	1600	2000	mg/kg	620 B	532 B
7439-97-6	Mercury	0.18	0.81	mg/kg	0.19	0.037
7440-02-0	Nickel	30	140	mg/kg	41.6	8.4
7440-09-7	Potassium	NS	NS	mg/kg	616	510
7440-22-4	Silver	2	36	mg/kg	ND	ND
7440-23-5	Sodium	NS	NS	mg/kg	89.9 J	28.6 J
7440-62-2	Vanadium	NS	NS	mg/kg	14.1	10.9
7440-66-6	Zinc	109	2200	mg/kg	713	46.3

¹Criteria is 6 NYCRR PART 375-6.8(a) Unrestricted Use Soil Cleanup Objective, 2006.

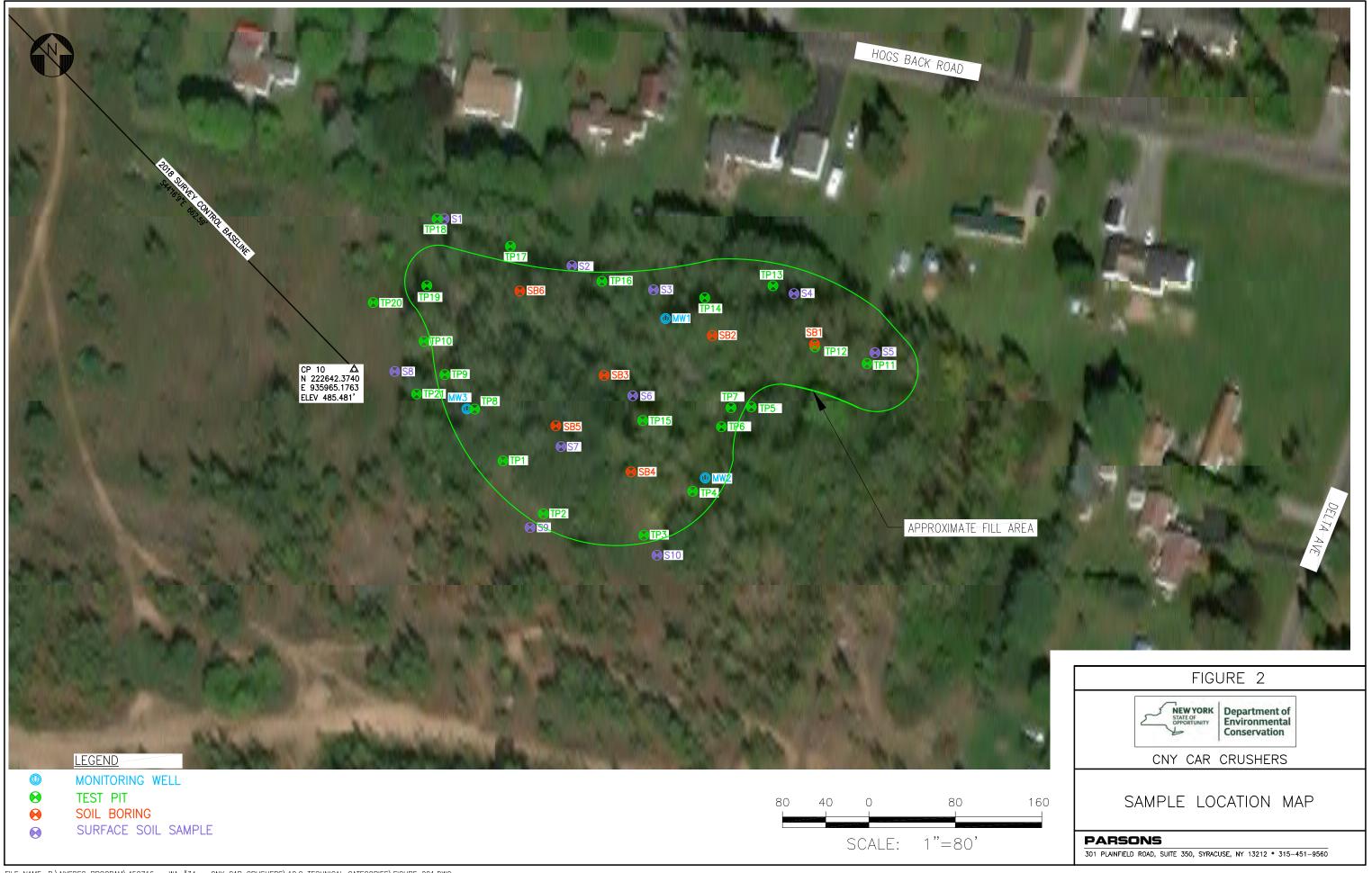
Indicates concentration exceeds Unrestricted Use criteria.

Bold Indicates concentration exceeds Unrestricted Use and Residential criteria.

ND Indicates compound was not detected.

NS No standard or guidance value available.

J Indicates an estimated concentration.


B Compound was found in the blank and sample

²Criteria is 6 NYCRR PART 375-6.8(b) Restricted Use Soil Cleanup Objective, 2006.

^{*}Data are compared to hexavalent chromium: unrestricted use is 1 mg/kg, residential use is 22 mg/kg

FIGURES

APPENDIX A

BORING LOGS AND WELL DEVELOPMENT LOGS

1							T		
								Page 1 of 1	
Contract	or: Norths	tar Drilling					WELL NO. SB-0		
Driller:	Steve L	aramee & Jo Ftesko & Pet	oe Menzel	huardt	-		Location Description	1:	
Rig Type	c CME	TESKU & FEI	e Sulai iSu	iwaut	-	PROJECT NAME: CNY Car Crushers PROJECT Location: Hastings, NY			
1119 1790		OWATER O		TONC	-		Location		
	GROUNL	JWA TER O	BSERVAI	IONS	ft bls		Location Plan		
					ft bls	Date/Time Start: 4/11/18 0900	i idii		
Total Dep	th of Borin	g:		17	ft bls	Date/Time Finish: 4/11/18 1000			
Additiona	l Comment	S:							
							SCHEMATIC	COMMENTS	
Sample		Recovery	PID	USCS					
Type	SPT	(%)	(PPM)	Symbol	(ft bls)	FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale		
					1				
					'				
					2				
HC					3	Automobile fluff			
					4				
				<u> </u>	4				
SS	6-14-36-10	25%	0.0	SP	5	Moist, medium dense,dark brown, F SAND, with some F Gravel, and some waste			
					6				
00	2 25 42 50	050/	0.0		7	Maile dad because black MA OTE CIL with such as and asset			
SS	3-25-43-59	25%	0.0		/	Moist, dark brown-black WASTE fill with rubber and metal			
					8				
SS	12-10-8-8	5%	0.0		9	Moist, dark brown, WASTE fill with fabric, rubber, and metal			
					10	Maria dada karana MA OTE SII da O Es			
					10	Moist, dark brown, WASTE fill, to 9.5ft Moist, medium dense medium brown , C-M SAND, with subrounded C-F			
SS	9-14-15-14	60%	2.1	SW	11	GAVEL from 9.5 to 11ft			
					12				
00	6-7-7-11-12	1000/		CVA	10	Dur. Jacob mod harring and ME CDAVEL with some ME Cond			
SS	0-/-/- - 2	100%		GW	13	Dry, Ioose, med brown-red, MF GRAVEL, with some MF Sand.			
					14				
SS	12-12-11-1 ⁻	0%			15				
				CIAI	16	Moist, loose, med brown, M SAND, with some med gray Gravel from 15-15.25ft			
				SW	16	Moist, loose med brown-gray, F SAND, with some Silt from 15.25-15.5ft			
SS	6-7-11-12	100%		SW	17	Moist, medium dense, med brown, M SAND, with little SIt			
	SAMPLIN	IG METHO	D	<u> </u>	<u> </u>	COMMENTS			
		leared (post hol							
	SS= Split Spo				=				

1							DODING:	
Contract	or: Nami	tor Drilling				PARSONS DRILLING RECORD	BORING/ WELL NO. SB-	Page 1 of 1
Contract	Norths	arames & 1	ne Menzel			DRILLING RECORD	Location Description	
Oversigh	it: Casev	_aramee & Jo Ftesko & Pet	e Scharfsc	hwerdt	-	PROJECT NAME: CNY Car Crushers	Location Description	лі.
Rig Type	: CME				-	PROJECT Location: Hastings, NY		
	GROUNI	DWATER O	BSERVA1	TIONS			Location	
Apparent	Borehole D	TW:			ft bls		Plan	
Measured	d Water Levoth of Borin	el:		l	ft bls	Date/Time Start: 4/11/17 1045		
Total De	oth of Borin al Comment	g		16	ft bls	Date/Time Finish: 4/11/17 1135		
Addition	ai Comment	15.						
	1	1					SCHEMATIC	COMMENTO
Sample		Recovery	PID	USCS	Depth		SCHEMATIC	COMMENTS
Type	SPT	(%)	(PPM)	Symbol	(ft bls)	FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale	
					1			
					2			
					_			
					3			
НС					4	Automobilefluff		
					5	Mails and investigated and become TM CANID with some M Consul to a		
SS	10-11-8-10	50%	0.0	SW	6	Moist, medium dense, med brown, FM SAND, with some M Gravel, trace organics		
			0.0					Foam blocking shoe
					7			
SS	4-3-2-2	0%			8			
	4022	070			- 0			
				SW	9	Moist, loose, med-dark brown, FM SAND, with some Waste		
ec e	4-4-4-26	50%		SW	10	Moist Joseph and brown grow FM CAND		
SS	4-4-4-20	50%		SVV	10	Moist, loose, med brown-gray, FM SAND		
					11			
	0 10 15 14	F00/		OW	40	Maintenanting days and beauty FM CANID with a second to second the second time second to second the second the second to second the s		
SS	9-12-15-14	50%		SW	12	Moist, medium dense, med brown, FM SAND, with some MC Gravel, trace waste		
				SW	13	Moist, medium dense, med brown, M SAND, with some MC Gravel		
SS	10-10-7-4	25%		SW	14	Moist, loose, light brown-gray, FM SAND		Debris from inside
					15			auger captured in
								spoon, slight chemical
SS	6-7-6-7	30%			16	Moist, loose, light brown-grat, FM SAND		odor.
						•		
	[
	SAMPLIN	IG METHO)D	•	•	COMMENTS:	·	
		cleared (post hol	e)					
	SS= Split Spo	oon			=			

						PARSONS	BORING/ Page 1 of 1	
Contract	or: Norths Steve L	tar Drilling				DRILLING RECORD	WELL NO. SB-03	
Driller:	Steve L	.aramee & Jo	oe Menzel		_		Location Description:	
Oversigh	t: Casey l	Ftesko & Pet	e Scharfsc	hwerdt	_	PROJECT NAME: CNY Car Crushers		
Rig Type	pe: CME				_	PROJECT Location: Hastings, NY		
GROUNDWATER OBSERVATIONS						·	Location	
Annarent	Borehole D	TW·	DOLITORI	10.10	ft bls		Plan	
Measured	Apparent Borehole DTW: Measured Water Level: Total Depth of Boring: ft bls 13ft ft bls					Date/Time Start: 4/11/18 1235	T Carr	
Total Der	oth of Borin	u.		13ft	ft bls	Date/Time Finish: 4/11/18 1309		
Additiona	al Comment	S:		1011	11 5.0			
, taartione		<u>. </u>						
							SCHEMATIC COMMENTS	
Sample		Recovery	PID	USCS	Depth	FIELD IDENTIFICATION OF MATERIAL		
Type	SPT	(%)	(PPM)	Symbol	(ft bls)	FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale	
					1			
					2			
					_			
-					3			
					4			
					4			
НС					5	Automobile fluff		
110					3	/ tatomoshic fluir	 	
					6			
SS	29-28-49-2 ⁻	0%			7			
	20 20 10 2	070						
					8	Moist, dark-med brown WASTE fill, metal and plastic		
SS	14-15-37-49	100%	0.1	SW	9	Moist, dense, med brown, M SAND, with some FC Gravel		
					10	Moist, dark brown, WASTE		
SS	20-14-10-10	100%	0.7	SW	11	Moist, med dense, light brown- gray, FM SAND		
					12			
SS	3-4-5-7	100%		SM	13	Moist, loose, It brown - gray, FM SAND, with some Silt		
<u> </u>				1			⊣	
 				 				
 				1			 	
						<u> </u>		
				1				
				Ì				
	SAMPLIN	IG METHO	DD	<u>-</u>		COMMENTS:		
		leared (post hol						
	SS= Split Spc	on			=			

-									
. .							BORING/ Page 1 of 1		
	or: Norths					DRILLING RECORD	WELL NO. SB-0		
Driller:	Steve L	.aramee & Jo Ftesko & Pet	oe Menzel	bu vor -li	-	DDO IECT NAME: CNIV Cor Court :::	Location Description	n:	
Rig Type		ruesko & Pet	e Scriansc	nwerat	-	PROJECT NAME: CNY Car Crushers PROJECT Location: Hastings, NY			
GROUNDWATER OBSERVATIONS							Location		
Apparent	Borehole D		DOEKVAI	IONS	ft bls	†	Location Plan		
Measured	Water Lev	el:			ft bls	Date/Time Start: 4/11/17 1400	i idii		
Total Dep	oth of Borin	g		16	ft bls	Date/Time Finish: 4/11/18 1450			
Additiona	al Comment	S:							
							SCHEMATIC	COMMENTS	
Sample	COT	Recovery	PID	USCS			Drawing Not to Cools		
Type	SPT	(%)	(PPM)	Symbol	(TT DIS)	FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale		
					1				
					2	•			
					2				
					3	+			
НС					4	Automobile fluff			
					5	Moist, med-dark brown, WASTE, from 4-4.25ft, Moist, dark brown WASTE, from			
	0 14 11 11	1000/	0.0	CA		Maint mad dance mad braum M CAND with some MI Owned for 55.00			
SS	8-14-11-11	100%	0.0	SW	6	Moist, med dense, med brown, M SAND, with some ML Gravel, from 5.5-6ft			
					7				
SS	3-5-4-3	5%			8	Moist, dark brown-black WASTE			
					9				
SS	4-2-3-6	25%			10	Moist, dark brown- black, WASTE, mostly foam			
						Moist, dark brown- black, WASTE, from 10-10.6ft, Moist, med dense, med			
				SW	11	brown, M SAND, with some FC Gravel from 10.6-11ft			
SS	26-26-25-19	100%		SW	10	Maist med dense It brown area, EM CAND from 11 12ft			
- 33	20-20-23-1	100%		SVV	12	Moist, med dense, It brown-gray, FM SAND from 11-12ft			
					13				
SS	7-3-3-4	50%		SW	14	moist, Ioose, It brown-gray, M SAND, with trace M gravel			
					15				
					13				
SS	4-4-2-4	100%		SM	16	Moist, very loose, med brown-gray, F SAND, with SILT, and little day			
ļ									
	1								
SAMPLING METHOD						COMMENTS:			
		leared (post hol	e)						
	SS= Split Spc	on			=				
						1			

-									
	N	D.::!!!					BORING/ Page 1 of 1		
Contract		tar Drilling	00 Max=-'				WELL NO. SB-05		
Driller:	Steve L	<u>-aramee & J</u> Ftesko & Pel	De Menzel	hwardt	-	PROJECT NAME: CNY Car Crushers	Location Description	n:	
	: Casey	i conu ox re	.c cuidi i SC	iwaul	=	PROJECT Location: Hastings, NY			
9 . , р		DWATER O	DCED\/AT	IONE	•		Location		
Apparent	Borehole D		BOERVAI	IONS	ft bls		Plan		
Measured	d Water Lev	el:			ft bls	Date/Time Start: 4/12/18 0820			
Total Dep	d Water Levoth of Borin	ıg		14	ft bls	Date/Time Finish: 4/12/18 0855			
Addition	al Comment	ts:							
							SCHEMATIC	COMMENTS	
Sample		Recovery	PID	USCS		FIELD IDENTIFICATION OF MATERIAL	Danish a Natas Coals		
Type	SPT	(%)	(PPM)	Symbol	(ft dis)	FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale		
					1				
					2				
					_				
					3				
НС					4	Automobile fluff			
110						Additionic Hull			
					5				
SS	11-8-7-5	30%	0.0ppm		6	Moist, dark brown, WASTE			
					7				
					/				
SS	3-3-3-4	0%			8				
					9				
00	11 14 15 0	750/	0.0	OM	10	Moist, dark brown-black with some red, WASTE 8-9.5ft Moist, med dense,		Chemical odor	
SS	11-14-15-3	75%	0.3ppm	SW	10	brown, M SAND, with some M Gravel from 9.5-10ft			
					11				
						Moist, medium dense, medium brown, M SAND, with some FM Gravel, 10-			
SS	21-26-19-1	100%		SW	12	11.6ft, Moist, medium dense, It brown, F SAND, trace C gravel, bottlon 11.6-12ft.			
					10	Maint way Jacob It hyperys E CAND from 10 10 Fft			
					13	Moist, very loose, It brown, F SAND from 12-12.5ft			
SS	4-3-3-4	50%		МН	14	Wet, soft, It brown, SILT, with some F Sand from 13-13.5ft			
				 		 			
				İ					
		1							
		 				1			
		1							
				<u> </u>					
		NG METHO				COMMENTS			
	SS= Split Spo	Cleared (post hol	e)						
					=				

Driller: Oversigh Rig Type Apparent Measured Total Dep	Steve L Casey CME	el: g:	e Scharfsc		ft bls ft bls	PROJECT NAME: CNY Car Crushers PROJECT Location: Hastings, NY Date/Time Start: 4/12/18 0925 Date/Time Finish: 4/12/18 0950	BORING/ Page 1 of 1 WELL NO. SB-06 Location Description: Location Plan		
Sample Type	SPT	Recovery (%)	PID (PPM)	USCS Symbol	Depth (ft bls)	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC Drawing Not to Scale	COMMENTS	
нс					2	Automibile fluff		Cobble stuck in shoe	
SS	8-8-7-22	50%	2.8	SW	6	Moist, medium brown-black, WASTE, Moist, dark brown-black WASTE from 5-5.5ft, Moist, med dense, med brown, SAND with some FC Gravel, from 5.5-6ft Moist, very stiff, yellow-gray, SILT from 6-6.1ft, Moist, med dense, It brown-		preventing recovery	
SS	9-19-16-14 6-4-6-4	100%		SW	8	gray, F SAND, from 6.1-7ft Moist, loose, It brown-gray, FM Sand	-		
							-		
		NG METHO			=	COMMENTS:	1		

Contractor: Northstar Drilling							PARSONS	BORING/ Page 1 of 2
State Contract C	Contracto	or: Norths	tar Drilling					
PROJECT Location: Heatings, NY				oe Menzel		_		
CACUNDWATER CISSERVATIONS			Ftesko & Pet	e Scharfsc	hwerdt	_		
Apparent Bordone DTN:	Rig Type					-	PROJECT Location: Hastings, NY	
Measured Water Level: 2,00 1 to 15 1 to 15 2	•			BSERVAT		6		
Total Depth of Well: 28th 15 15 15 15 15 15 15 1	• •				1		DataTime Start: April 12 2019/0010	Pian
Sample SPT Recovery PID (PPM) Symbol (fit bids FIELD IDENTIFICATION OF MATERIAL Drawing Not to Scale Countries Countri								1
Sample Sept Roow Pip Sept					20.1	11 210	7. Jan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sample Sept Roow Pip Sept								
Sample Sept Roow Pip Sept								
SPT (%) (PM) Symbol (ft big) FIELD IDENTIFICATION OF MATERIAL			_			_		SCHEMATIC COMMENTS
Comment Comm		SPT					FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale
Moist, loose, It brown, FSAND Moist, loose, It brown, FSAN								Concrete Pad w/ stick up
HC						1		Grout (0-15 ft bls)
HC						2		
HC 3.3 5 Moist, loose, dark brown-black, WASTE fill 7 8 8 9 9 9 9 9 9 9 9								
HC						3		
HC								
Sampling METHOD Sampling M						4		
Noist, loose, lt brown, FSAND SM	HC			3.3		5	Moist, loose, dark brown-black, WASTE fill	
Noist, loose, lt brown, FSAND SM								
Sampling Methods Sampling Me						6		
SM						7		
SM								
10						8		
Moist, loose, med-brown, M SAND, with some F-M Gravel, from 11-11.25, Wet, loose, lt brown - gray, F SAND, with low plasticity SILT, from 11-25-11.5' SS 2-2-3-6 50% 2.2 SW 12 Wet, loose, lt brown F SAND, from 11.5-12' SS 4-8-6-5 75% SW 14 Moist, loose, lt brown with some rust color, F SAND SS 4-5-8-8 60% SW 16 Moist, loose, lt brown, F SAND SS 5-6-5-6 50% SW 18 Moist, loose, lt brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAMPLING METHOD HC = Hand Cleared (post hole) COMMENTS Monitoring well constructed using 10-ft of 2' diameter PVC creen, and 18-ft						9		
Moist, loose, med-brown, M SAND, with some F-M Gravel, from 11-11.25, Wet, loose, lt brown - gray, F SAND, with low plasticity SILT, from 11-25-11.5' SS 2-2-3-6 50% 2.2 SW 12 Wet, loose, lt brown F SAND, from 11.5-12' SS 4-8-6-5 75% SW 14 Moist, loose, lt brown with some rust color, F SAND SS 4-5-8-8 60% SW 16 Moist, loose, lt brown, F SAND SS 5-6-5-6 50% SW 18 Moist, loose, lt brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAMPLING METHOD HC = Hand Cleared (post hole) COMMENTS Monitoring well constructed using 10-ft of 2' diameter PVC creen, and 18-ft								
SM 11 loose, It brown - gray, F SAND, with low plasticity SLT, from 11.25-11.5 SS 2-2-3-6 50% 2.2 SW 12 Wet, loose, It brown F SAND, from 11.5-12' SS 4-8-6-5 75% SW 14 Moist, loose, It brown with some rust color, F SAND SS 4-5-5-8 60% SW 16 Moist, loose, It brown, F SAND SS 4-5-5-8 60% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet Sand (17-28th bis) Sand (17-28th bis) SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAMPLING METHOD HC = Hand Cleared (post hole) COMMENTS Monitoring well sequent with a stick up and concrete part.							Maria II MONID III EMO LA 4440EWA	
SS 2-2-3-6 50% 2.2 SW 12 Wet, loose, lt brown F SAND, from 11.5-12					SM			
SS 4-8-6-5 75% SW 14 Moist, loose, It brown with some rust color, F SAND Bentonite (15-17th bits) SS 4-5-5-8 60% SW 16 Moist, loose, It brown, F SAND SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet Sand (17-28th bits) SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAMPLING METHOD HC = Hand Cleared (post hole) Monitoring well constructed using 10-ft of 2" diameter PVC sireen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well constructed using 10-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well constructed using 10-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite					-		,	
SS 4-8-6-5 75% SW 14 Moist, loose, It brown with some rust color, F SAND SS 4-5-8 60% SW 16 Moist, loose, It brown, F SAND Bentonite (15-17ft bits) SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19	SS	2-2-3-6	50%	2.2	SW	12	Wet, loose, It brown F SAND, from 11.5-12'	
SS 4-8-6-5 75% SW 14 Moist, loose, It brown with some rust color, F SAND SS 4-5-8 60% SW 16 Moist, loose, It brown, F SAND Bentonite (15-17ft bits) SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19						12		
SS 4-5-5-8 60% SW 16 Moist, loose, It brown, F SAND SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND COMMENTS Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix monitoring well sequent with a stick up and concrete part						13		
SS 4-5-5-8 60% SW 16 Moist, loose, It brown, F SAND 17 SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well secured with a stick up and concrete part.	SS	4-8-6-5	75%		SW	14	Moist, loose, It brown with some rust color, F SAND	
SS 4-5-5-8 60% SW 16 Moist, loose, It brown, F SAND 17 SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well secured with a stick up and concrete part.						45		
SS 4-5-5-8 60% SW 16 Moist, loose, It brown, F SAND 17 SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND COMMENTS Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequred with a stick up and concrete part						15		Bentonite (15-17ft bls)
SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequred with a stick up and concrete part	SS	4-5-5-8	60%		SW	16	Moist, Ioose, It brown, F SAND	
SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequred with a stick up and concrete part								
SS 5-6-5-6 50% SW 18 Moist, loose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet 19 SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAMPLING METHOD HC = Hand Cleared (post hole) COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequence with a stick up and concrete part						17		0147.00011)
SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAM PLING METHOD HC = Hand Cleared (post hole) COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequent with a stick up and concrete part	SS	5-6-5-6	50%		SW	18	Moist, Ioose, It brown - gray, F-M SAND, with trace F Gravel, bottom 6in wet	Sand (17-28ft bis)
SS 3-2-3-2 50% 4.8 SW 20 Wet, very loose, med brown, F SAND SAM PLING METHOD HC = Hand Cleared (post hole) COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequent with a stick up and concrete part								
SAMPLING METHOD HC = Hand Cleared (post hole) COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequent with a stick up and concrete part						19		
SAMPLING METHOD HC = Hand Cleared (post hole) COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite mix Monitoring well sequent with a stick up and concrete part	SS	3-2-3-2	50%	4.8	SW	20	Wet, very loose, med brown, F SAND	
HC = Hand Cleared (post hole) Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC riser. Grout composed of Portland cement and bentonite								
mix Monitoring well segured with a stick un and concrete pad								r Crout composed of Dottland compat and hamtenit
			**	e)				r. Grout composed or Portrand cement and bentofilte
	=	-5 Opin Opi				=		

Oversight Rig Type: Apparent I Measured Total Dept	Contractor: Northstar Drilling Oriller: Steve Laramee & Joe Menzel Oversight: Casey Ftesko & Pete Scharfschwerdt CME GROUNDWATER OBSERVATIONS Opparent Borehole DTW: 18.4ft ft bls Reasured Water Level: 20.06ft ft bls otal Depth of Well: 28ft ft bls dditional Comments:			10NS 18.4ft 20.06ft	ft bls	PROJECT NAME: CNY Car Crushers PROJECT Location: Hastings, NY Date/Time Start: April 13, 2018/0910 Date/Time Finish: April 13, 2018/1200	BORING/ Page 2 of 2 WELL NO. MW-1 Location Description: Location Plan
Sample Type	SPT	Recovery (%)	PID (PPM)	USCS Symbol	Depth (ft bls)	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC COMMENTS Drawing Not to Scale
SS	R-H-1-2	50%		SW	21 22 23	Wet, very loose, med brown, F SAND Wet, very loose, med brown, F SAND	
1		NG METHO cleared (post hol			:	COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 18-ft of 2" diameter PVC mix. Monitoring well secured with a stick up and concrete pad	iser. Grout composed of Portland cement and bentonite

						PARSONS	BORING/	Page 1 of 1
	Norths					DRILLING RECORD	WELL NO. MW	
Driller: Oversight		.aramee & Jo Ftesko & Pet		nwerdt		PROJECT NAME: CNY Car Crushers	Location Description	1:
Rig Type:		I LESKU OL FEL	e scriairsci	waut	•	PROJECT Location: Hastings, NY		
		DWATER O	RQED\/AT	SIONS		- Hoolings, TV	Location	
Annarent	Borehole D	TW.	BOERVAI	5ft	ft bls		Plan	
	Water Lev			7.94ft	ft bls	Date/Time Start: April 16, 2018	<u>.</u>	
Total Dep	th of Well:			14ft	ft bls	Date/Time Finish: April 16, 2018	1	
Additional	Comments	S:						
		•						
Sample		Recovery	PID	USCS	Denth		SCHEMATIC	COMMENTS
Type	SPT	(%)	(PPM)	Symbol		FIELD IDENTIFICATION OF MATERIAL	Drawing Not to Scale	
					1			Concrete Pad w/ stick up Grout (0-2ft bls)
					'			Bentonite (2-3ft bls)
					2			
								Sand (3-14 ft bls)
					3			
					,			
					4			
НС					5	Moist, It brown, F SAND		
					_		1 1	
					6			
SS	2-3-3-3	50%	0.2	SW	7	Wet, very loose, It-med brown, F SAND		
				SW	8	Mat vanulaana It brawn E SAND		
				SVV	٥	Wet, very loose, It brown, F SAND		
SS	3-2-3-4	100%	0.2	ML	9	Wet, soft, It brown SILT, with some F Sand		
						,		
					10			
SS	1-1-1-2	0%			11			
				SM	12	Wet, very loose, It brown, F SAND from 11.0-11.5, Wet, soft It brown, fine SAND,		
				0		, 100, 100, 100, 100, 100, 100, 100, 10		
SS	4-6-6-7	100%	0.0	ML	13	Wet, very soft, It brown, low plasticity, SILT, with some F Sand		
					14	Wet, very loose, It brown, F-M SAND		
SS	R-R-3-3	100%	0.0		15	Wet, very loose, It brown, F SAND, with low plasticity SILT		
	1111-0-0	10070	0.0		.0		1	
							<u> </u>	
	SAMPLIN	I IG METHO	D	<u> </u>		COMMENTS:	<u> </u>	
		Cleared (post hol				Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 4-ft of 2" diameter PVC rises	r. Grout composed of Portla	nd cement and bentonite
	SS= Split Spc		,			mix. Monitoring well secured with a stick up and concrete pad		
<u> </u>					•			

Contractor Driller: Oversight Rig Typex Apparent I Measured Total Depi Additional	Steve L Casey I CME GROUNI Borehole D Water Lev	el:	e Scharfsc		ft bls ft bls ft bls	PROJECT NAME: PROJECT Location: CNY Car Crushers Hastings, NY Date/Time Start: April 16, 2018 April 16, 2018	BORING/ Pa WELL NO. MW-3 Location Description:	age 1 of 1
Sample Type	SPT	Recovery (%)	PID (PPM)	USCS Symbol	Depth (ft bls)	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC Drawing Not to Scale	COMMENTS
HC SS	3-4-4-5 4-5-4-4 3-4-2-5 4-3-5-6 H-1-2-2 2-3-4-4	75% 80% 100% 100%	0.0	sw sw sw sw	6 7 8 9 10 11 12 13 14 15 16 17	Moist, Ioose, It brown, F SAND Moist, Ioose, It brown, F SAND Moist, very loose, It brown, F SAND Wet, very loose, It brown, F SAND Wet, loose, med brown, F SAND Wet, very loose, med brown, F SAND		Concrete pad with stick up Grout (0-7 ft bls_ Bentonite (7-9ft bls) Sand (9-20ft bls)
1		NG METHC			:	COMMENTS: Monitoring well constructed using 10-ft of 2" diameter PVC screen, and 10-	C riser. Grout composed of Portland of	cement and bentonite

		<u>WE</u>	LL DEVI	ELOPMENT	LOG		Well ID:	MW-1
Date	4/17/18	Field F	Personnel	<u>CF, P</u>		Weather	37°, Light S	Snow
Site Name	CNY Car Crushers	Contra	actor		tar Drilling	Project No.	450716	
Site Location	Hastings NY	Evacu	ation Method	, <u>Waterr</u>	a Pump	i		
Well informat	ion:							
Depth to Botto	m (Initial) *28.03	ft.	Date(s) Inst	talled 4/13		Date(s) Develo	oped <u>4/17/18</u>	
Depth to Botto	' '	ft.	Driller	Northstar	Drilling	Development	Time Start: 1	050
Depth to Wate		ft.	Well Diame		in.		Stop: 1	
Depth to Wate	r (Final)* <u>20.64</u>	ft.	Casing Volu	ume <u>4.574</u>	gal.	i	Total:	120 minutes
* Measuring po	pint		Pump settir (intake)	ng*				
	Volume of					Approximate	Depth to	Appearance
Well	Water Removed	Temperature °C	рН	Conductivity	Turbidity	Flow Rate	Water	of
Volumes	(Gallons)		s.u	mS/cm	(NTU) 	(gal/min)	(ft.)	Water
1.5	2					0.40	20.8	Brown
6.15	8	7.24	7.35	0.557	193	0.40	20.63	Brown
14.6	19	7.70	7.18	0.569	443	0.40	20.67	Brown
17.69	23	8.38	7.02	0.568	237	0.40	20.64	Light Brown
21.5		8.13	7.03	0.0558	179	0.40		Mostly Clear
25.38	33	8.30	7.11	0.552	148	0.40		Mostly Clear
29.2	38	8.12	7.02	0.552	104	0.40		Clear
33.1	43				84	0.40		Clear
36.9	48				59	0.40	20.63	Clear
	•						•	
=	Water Characteristics:							
	of Development water rea	moved: 48 Gall	lons					
Physical appea					Physical appear		Clear	
	Color Brown Odor Slight Chemica	l Odor					None	_
Sheen/Free Pr					Shee	n/Free Product		_
NOTES:	Water was clear after	38 gallons with tr	ne exception	of small amounts	of fine sand.			
				Geologis	t Signature: Ca	asey Fetsko		

		<u>WE</u>	LL DEV	ELOPMENT	LOG		Well ID:	MW-2
Date	4/17/18	Field I	Personnel	CF, P	S	Weather	37°, Light S	Snow
Site Name	CNY Car Crushers	Contra	actor		tar Drilling	Project No.	450716	
Site Location	Hastings NY	Evacu	ation Method	d Waterr	a Pump			
Well informati	ion:							
Depth to Bottor		ft.	Date(s) Ins	talled 4/13		Date(s) Develo	oped 4/17/18	
Depth to Bottor		ft.	Driller	Northstar	Drilling	Development 7	· —	810
Depth to Water		ft.	Well Diame		in.		Stop: 1	045
Depth to Water	r (Final)* <u>9.07</u>	ft.	Casing Vol	ume <u>2.656</u>	gal.		Total: :	2hr35min
* Measuring po	oint		Pump settir (intake)	ng*				
	Volume of					Approximate	Depth to	Appearance
Well	Water Removed	Temperature °C	pН	Conductivity	Turbidity	Flow Rate	Water	of
Volumes	(Gallons)	+	s.u	mS/cm	(NTU)	(gal/min)	(ft.)	Water
2.2	3	5.13	4.55	0.338	E-3	0.21		Brown
4.4	6	5.08	6.29	0.307	E-3	0.21	8.86	Brown
10.3	14	5.45	6.89	0.216	601	0.21	9.0	Brown
17.6	24	5.31	7.10	0.246	198	0.21	9.52	Light Brown
22.0	30	5.66	7.09	0.238	130	0.21	9.52	Almost Clear
27.9	38	5.85	7.17	0.203	87	0.21	9.06	Almost Clear
31.5	43	5.16	7.42	0.235	298	0.21	9.07	Almost Clear
34.5	47				193			Almost Clear
04.0	7/							
							<u> </u>	
-								+
=	Water Characteristics							
	f Development water re	emoved: 47 G	allons		Dhara's all assessment			
Physical appea	arance at start Color Brown				Physical appear	ance at end Color	Clear	
	Odor None					Odor	None	_
Sheen/Free Pro					Shee	n/Free Product	None	-
NOTES:	Turbidity was di	ropping then slight	ly increased	again, well may n	ot become cleare	er. Decision was	made to stop at 4	7 gallons.
				Geologia	t Signature: Ca	asev Fetsko		
	<u></u>			Goologis				

		WE	LL DEVI	ELOPMENT	LOG		Well ID:	MW-3
Date Site Name Site Location	4/17/18 CNY Car Crushers Hastings NY	Field F	Personnel	CF, P Norths		Weather Project No.	37°, Light 9	Snow
Well informat Depth to Botto Depth to Botto Depth to Wate Depth to Wate * Measuring po	m (Initial) * 22.02 m (Final) * 22.02 er (Initial) * 11.97 er (Final) * 12.00	ft. ft. ft. ft.	Date(s) Inst Driller Well Diame Casing Volu	Northstar 2 ume 3.658	Drilling in. gal.	Date(s) Development	Time Start: 0	
Well Volumes 1.8	Volume of Water Removed (Gallons)	Temperature °C 6.91	pH s.u 6.79	Conductivity mS/cm	Turbidity (NTU) E-3	Approximate Flow Rate (gal/min)	Depth to Water (ft.)	Appearance of Water Brown
4.9 7.9 12.2	8 13 20	5.45 5.90 6.49	6.89 7.42 7.56	0.216 0.198 0.117	100 270 87	0.37 0.37 0.37	11.86 12.05	Light Brown Light Brown Clear
16.5 18.9 22.6	27 31 37	5.96 5.94 	7.36 7.60	0.186 0.183	42 41 	0.37 0.37 0.37	12.00	Clear Clear Clear
Total volume of	Water Characteristics of Development water re arance at start Color Brown Odor None roduct None	07.0	Sallons		Physical appear	Color	None	- - -
NOTES:				Geologis	s t Signature : Ca	asey Fetsko		

APPENDIX B

GROUNDWATER SAMPLING LOGS

			Low Flow Ground V	Vater Sampling L	Log			
Date	14-M	lav	Personnel	PRS, N	1GC	Weather	7!	5°F, sunny
Site Name	Car Crush		Evacuation Method	Peri Pu		Well #		MW-01
Site Location	Hasting		Sampling Method	Peri Pu	-	Project #		0716.02000
Well information	:							
Depth of Well	28.04	ft.		*Measurements t	taken from:			
Depth to Water	21.09	ft.			\times	Top of Well (Casing	
H_{wc}	6.95	ft.				Top of Prote	ctive Casing	
Depth to Intake	26.04	ft.				(Other, Speci	fy)	
Start Purge Time:	0812							
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
Flores d Times		Tamananatuus		Canadinatinitan	Oxidation	Dissolved	Touchielie.	Flow Rate
Elapsed Time (min)	Depth to Water (ft)	Temperature (celsius)	рН	Conductivity (ms/cm)	Reduction Potential	Oxygen (mg/L)	Turbidity (NTU)	(mL/min)
0	21.13	15.95	7.21	0.697	165	1.69	97.1	250
5	21.12	10.91	6.2	0.693			87.5	260
10	21.12	10.45	6.12	0.695			53.5	260
15	21.12	10.35	6.09	0.69			35.3	260
20	21.12	10.31	6.07	0.681			24.8	260
25	21.12	10.23	6.06	0.696			17.6	260
30	21.12	10.24	6.09	0.693	1	1	13.3	260
35	21.12	10.23	6.06	0.696	1	1	11.5	260
40	21.12	10.31	6.06	0.697	184		9.3	260
45	21.12	10.39	6.07	0.691	182		6.7	260
50	21.12	10.37	6.07	0.692	179		5.2	260
55	21.12	10.46	6.08	0.691		+	4.6	260
60 65	21.12 21.12	10.34 10.31	6.08	0.695 0.686		1	4.2 3.6	260 260
03	21.12	10.31	0.03	0.080	173	0	3.0	200
End Purge Time: (0930							
Water Sample								
Time Collected:	5/14/2018 8:45		Total vo	lume of purged w	ater removed:	6		(gallons)
Physical appearar	nce at start:			Physical appearar	nce at start:			
	Color				Color	clear	<u>-</u>	
	Odor	none			Odor	none	<u>-</u>	
	Sheen/Free Product	none		Sheen	n/Free Product	none	• 	
Field Test Results	s: ssolved ferrous iron:	n/a						
	Dissolved total iron:	•						
	ed total manganese:	•						
Sample	Containe	r Type	# Collected	Field Filtered	Presei	rvative	Co	ntainer pH
TAL Metals, Hg	250 mL F	Plastic	1	no	HN	103	30	-
TCL PCBs VOCs	250 cc A 40 mL VO		<u>2</u> 3	no no		one ICI		-
TCL SVOA	250 mL A		2	no		ne		-
PFAs,	250 mL F	Plastic	2	no	no	ne		-
1,4-Dioxane	1 L Am	ber	2	no	no	ne		-

			Low Flow Ground W	/ater Sampling L	.og			
Date	14-M	lav	Personnel	PRS, N	iec	Weather	71	5°F, sunny
Site Name	Car Crush	•	Evacuation Method	Peri Pu		Well#		MW-02
Site Location	Hasting		Sampling Method	ımp	Project #		0716.02000	
Well information	:							
Depth of Well	16	ft.		*Measurements t	aken from:			
Depth to Water	8.76	ft.			\sim	Top of Well C	Casing	
H _{wc}	7.24					Top of Protec		
Depth to Intake	14					(Other, Speci		
Start Purge Time:	1355							
		100/	0.4	201	40.1/	100/	100/	100 500 1/ :
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
Elapsed Time (min)	Depth to Water (ft)	Temperature (celsius)	рН	Conductivity (ms/cm)	Oxidation Reduction Potential	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Flow Rate (mL/min)
0	8.92	14.56	6.96	0.2	169	· - ·	13.8	300
5	8.97	11.5	6.54	0.183	201		40.3	200
10	8.94	11.28	6.44	0.183	210		30.3	200
15	8.94	11.28	6.44	0.193	210		50.7	200
20	8.94 8.94	10.45	6.38	0.188	218		41.1	125
25	8.94	10.45	6.38	0.197	218		10.4	200
30	8.94 8.94	10.78	6.4	0.204	220		2.2	200
35	8.94 8.94	10.81	6.38	0.198	221		0.8	200
40					221		0.8	
	8.94	10.84	6.36	0.196				200
45	8.94	10.69	6.36	0.194	224	2.98	0	200
						•		
End Purge Time: 1	1215							
Water Sample								
Time Collected:	5/14/2018 11:30		Total vo	lume of purged w	ater removed:	3.5		(gallons)
Physical appearan	nce at start:			Physical appearar	nce at start:			,
	Color	clear		,	Color	clear		
		none				none		
	Sheen/Free Product			Sheer	/Free Product			
Field Test Results	:							
Dis	ssolved ferrous iron:	n/a						
	Dissolved total iron:	n/a						
Dissolve	ed total manganese:	n/a						
Sample	Containe	r Type	# Collected	Field Filtered	Preser	vative	Со	ntainer pH
TAL Metals, Hg	250 mL F	Plastic	3	no	HN	103		-
TCL PCBs VOCs	250 cc A 40 mL VO		<u>6</u> 9	no		ne Cl		-
TCL SVOA	250 mL A		6	no no		ne		-
PFAs,	250 mL F		6	no		ne		-
1,4-Dioxane	1 L Am	ber	6	no	no	ne		-

			Low Flow Ground V	Vater Sampling L	.og			
Date	14-M	lay	_Personnel	PRS, N	IGC	Weather	75	°F, sunny
Site Name Site Location	Car Crush Hasting		Evacuation Method Sampling Method	Peri Pu Peri Pu	•	Well # Project #		MW-03 716.02000
Well information	<u> </u>							
Depth of Well	21.61	ft.		*Measurements t	aken from:			
Depth to Water	12.47	ft.			\sim	Top of Well C	Casing	
H _{wc}	9.14	ft.				Top of Protec	ctive Casing	
Depth to Intake	19.61	ft.				(Other, Speci	J	
Start Purge Time	: 1355							
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
Elapsed Time (min)	Depth to Water (ft)	Temperature (celsius)	рН	Conductivity (ms/cm)	Oxidation Reduction Potential	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Flow Rate (mL/min)
0		24.87		0.031	174		55	200
5	_	17.49		0.033	228		27.4	200
10		15.72	5.52	0.033	243		30.7	200
15		14.58		0.033	249		23.8	200
20		14.08		0.038	259		14.9	200
25	12.5	13.91	5.48	0.04	255		13.6	200
30		14.06		0.039	258	+	12.3	200
35 40		14.01	5.43 5.43	0.038	261 263	+	12.2	200
40		13.75 13.69		0.038 0.038	266		9.7 8	200
50		13.89	5.41	0.038	268		6.8	200
55		13.38		0.037	269		6.1	200
60		13.53	5.41	0.038	269		5.8	200
65	12.51	13.47	5.41	0.038	271	3.73	4.4	200
70		13.48		0.039	271	3.6	3.6	200
75		13.7		0.038	272	+	3.2	200
80		13.57		0.04	274	1	2.2	200
85		12.24		0.04	277	4.01	1.1	200
90	12.51	11.98	5.4	0.039	278	4.41	1.1	200
95	12.51	11.7	5.41	0.038	280	3.93	0.8	200
End Purge Time:	1550							
Water Sample								
Time Collected:	5/14/2018 14:30		Total vo	lume of purged w		6		(gallons)
Physical appeara		.1		Physical appearar		.1		
	Color		-			clear		
	Sheen/Free Product	none none	<u>-</u> -	Sheer	Odor Free Product/	none		
Field Test Result	s:							
	ssolved ferrous iron: Dissolved total iron:	•	-					
	ed total manganese:	•	- -					
Sample	Containe		# Collected	Field Filtered		rvative	Cor	ntainer pH
TAL Metals, Hg TCL PCBs	250 mL F 250 cc A		1 2	no no		iO3 one		-
VOCs	40 mL VO	A vials	3	no	Н	Cl		-
TCL SVOA PFAs,	250 mL A 250 mL F		2 2	no		one one		-
1173,	230 IIIL F	IUJUL		no	TIC	110	1	

1,4-Dioxane

no

none

1 L Amber

APPENDIX C

TOPOGRAPHICAL SURVEY INFORMATION

CNY CAR CRUSH SITE

TOWN OF HASTINGS, OSWEGO COUNTY, NEW YORK

HORZ. DATUM: NAD 83(2011) - NEW YORK STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE

VERT. DATUM: NAVD 88

UNITS: U.S. SURVEY FEET

POINT ID	NORTHING	EASTING	GROUND ELEV.	CASING ELEV.	RISER ELEV.
MW1	1222689.4	936253.5	484.35	487.44	487.34
MW2	1222541.8	936290.1	473.24	476.38	476.30
MW3	1222605.8	936069.5	478.58	481.76	481.56
B1	1222665.8	936391.3	484.59	N/A	N/A
B2	1222673.6	936296.6	484.99	N/A	N/A
В3	1222636.8	936196.5	485.24	N/A	N/A
B4	1222547.5	936221.5	485.90	N/A	N/A
B5	1222590.1	936151.9	487.58	N/A	N/A
В6	1222715.0	936118.6	484.48	N/A	N/A
S1	1222781.8	936048.6	487.60	N/A	N/A
S2	1222738.5	936166.9	484.53	N/A	N/A
S3	1222716.1	936242.4	484.11	N/A	N/A
S4	1222712.6	936372.3	484.39	N/A	N/A
S 5	1222657.8	936447.3	483.39	N/A	N/A
S6	1222618.1	936222.9	485.09	N/A	N/A
S7	1222570.9	936156.6	488.04	N/A	N/A
S8	1222640.4	936002.8	483.90	N/A	N/A
S9	1222496.0	936128.0	475.93	N/A	N/A
S10	1222470.3	936245.5	474.68	N/A	N/A
TP1	1222557.7	936102.9	477.47	N/A	N/A