

Supplemental Remedial Investigation Report

Hadco Corporation Owego, New York

November 1993

BLASLAND & BOUCK ENGINEERS, P.C. BLASLAND, BOUCK & LEE

ENGINEERS & SCIENTISTS

6723 Towpath Road Syracuse, New York 13214 (315) 446-9120

Table of Contents

		<u>Page</u>
SECTI	ON 1.0 INTRODUCTION	1
1 1	General	. 1
	Background	1
	Supplemental Investigation Objectives	4
SECTI	ON 2.0 SUPPLEMENTAL INVESTIGATION ACTIVITIES	5
2.1	General	5
2.2	Supplemental Source Area Characterization	5
2.3	Additional Ground-Water Sampling and Analysis	6
2.4	Phase II Vapor Extraction Pilot Test	7
2.5	Wetland Sampling and Analysis	7
SECTI	ON 3.0 SUMMARY OF INTERIM REMEDIAL MEASURES	9
3.1	General	9
3.2	Development of the IRM Work Plan and Conceptual Design	9
3.3	Preparation of Design Drawings and Specifications	9
3.4	IRM Construction and Startup	10
3.5	Initial IRM System Monitoring	11
SECTI	ON 4.0 RESULTS OF SUPPLEMENTAL INVESTIGATION	13
4.1	General	13
4.2	Results of the Supplemental Source Area Characterization	13
4.3	Results of Additional Ground-Water Sampling and Analysis	14
4.4	Results of the Phase II Vapor Extraction Pilot Test	15
4.5	Results of Wetland Sampling and Analysis	17
SECTI	ON 5 CONCLUSIONS	18
5.1	General	18
5.2	Conclusions Regarding Potential Source Areas	18
5.3	Conclusions Regarding Ground-Water Quality	19
5.4	Conclusions Regarding Surface Water Quality	20

Table of Contents

TABLES

- Summary of Analytical Results, Phase II Source Area Characterization December 1992 Volatile Organic Compounds in Soil
- 2 Summary of Analytical Results, Phase II Source Area Characterization December 1992 Inorganics in Soil
- 3 Summary of TCLP Analytical Results, Phase II Source Area Characterization Volatile Organic Compounds
- 4 Summary of TCLP Analytical Results, Phase II Source Area Characterization Inorganics
- 5 Summary of Ground-Water Elevation Data
- 6 Summary of Ground-Water Analytical Results Volatile Organic Compounds, June 1993
- 7 Summary of Ground-Water Analytical Results Inorganics, June 1993
- 8 Summary of Field Measurements Vapor Extraction Pilot Test
- 9 Summary of Soil Vapor Analytical Results Phase II Vapor Extraction Pilot Test
- 10 Summary of Analytical Results Wetlands Sediment Samples, Volatile Organic Compounds
- 11 Summary of Analytical Results Wetlands Sediment Samples, Inorganics

FIGURES

- 1 Site Location Map
- 2 Site Vicinity Map
- 3 Monitoring Well Location Map
- 4 Former Chemical Storage Area Location Map
- 5 Wetland Sampling Location Map
- 6 Total VOCs Isoconcentration Map in Former Chemical Storage Area
- 7 Shallow Overburden Ground-Water Contour Map June 28, 1993
- 8 Deep Overburden Ground-Water Contour Map June 28, 1993
- 9 Bedrock Ground-Water Contour Map June 28, 1993

APPENDICES

- A Boring Logs and Well Construction Details
- B Initial IRM Monitoring Data
- C Laboratory Analytical Reports (Submitted Under Separate Cover)

1

SECTION 1.0 INTRODUCTION

1.1 General

This Supplemental Remedial Investigation (RI) Report presents the results of the additional investigation activities performed by Blasland & Bouck Engineers, P.C. (Blasland & Bouck) for the Hadco Corporation (Hadco) at their facility located in Owego, New York. This report also presents a summary of the activities performed in connection with the development and implementation of the Interim Remedial Measure (IRM), which was designed to initiate the containment and recovery of the ground-water contamination identified at this site.

The investigation activities presented in this document have been implemented to augment the site characterization data already generated through Blasland & Bouck's previous remedial investigation activities. The results of the previous investigation activities are presented in the Remedial Investigation Report, dated December 1992.

1.2 Background

The Hadco Corporation facility is located at 1200 Taylor Road in the Town of Owego, New York (Figure 1). The facility comprises approximately 17.3 acres, and is bordered to the south by a municipal sewage treatment plant. The land to the west of the site is undeveloped, while the land to the north and east has been developed for industrial use. The facility immediately east of the Hadco facility (the Broadway Building) is leased by IBM Corporation (IBM). In addition, IBM owns and operates a large facility further to the east of the Hadco property. A complex of buildings, referred to as the Victory Plaza, is located northeast of the Hadco site. Previous investigations performed at the Victory Plaza and at the IBM Facility have shown the presence of dissolved organic constituents in the ground water underlying these sites. In addition, testing of the former septic system at the Broadway Building has identified the presence of trichloroethylene. Given their location hydraulically upgradient of the Hadco site, these facilities are potential off-site contributors to the dissolved constituents observed underlying the Hadco site. The location of the Hadco site in relation to these surrounding facilities is illustrated on the Site Vicinity Map, presented as Figure 2.

The original property was subdivided from the Taylor family farm in 1956 and sold to Mr. George Warneke. He then sold the property to the Owego Development Company, which developed this and surrounding properties for industrial use. The property was then leased to Mutual Design, which operated the first manufacturing operation at the facility through 1970. Robintech, Incorporated (Robintech) owned and operated this facility from 1970 through 1979, and expanded the facility in 1975 and again in 1977. The Robintech facility and the original 3.6-acre parcel of land it occupied were purchased by Hadco in 1979. The site was increased to its current size of 17.3 acres through the purchase of two adjacent parcels of land in 1981 (4.5 acres) and in 1984 (9.2 acres). Since acquiring the site, Hadco has expanded the facility five

times, including two expansions in 1983, an addition in 1984, another in 1985, and most recently in 1990/1991. A separate building was also constructed south of the main facility to house an on-site biological wastewater treatment system.

Several previous investigations were implemented at the site prior to the initiation of this RI. These previous investigations included: a Preliminary Site Evaluation; a Phase I Hydrogeologic Investigation; a Phase II Hydrogeologic Investigation; a Supplementary Hydrogeologic Investigation; and the performance of an initial RI task to establish a site-specific Project Compound List (PCL). As part of these previous programs, the original network of 16 monitoring wells (MW-1 through MW-15, and MW-17) was installed at the location indicated on Figure 3. The analytical results of these previous investigations have shown dissolved volatile organic constituents (VOCs) in the ground water underlying this site.

The scope of the initial RI activities involved installation and testing of 16 additional monitoring wells, including four shallow overburden wells (MW-19, MW-25, MW-31, and MW-33); eight deep overburden wells (MW-18, MW-23, MW-24, MW-26, MW-27, MW-29, MW-30, and MW-32); and four bedrock wells (MW-20, MW-21, MW-22, and MW-28). The initial RI activities also included 18 soil borings to evaluate the nature and extent of contamination within the suspected source areas; collection of nine surface soil samples in the vicinity of selected monitoring wells; surface water and sediment sampling of Barnes Creek; the performance of a vapor extraction pilot test near the former chemical storage area; the installation and pump testing of the recovery well PW-3; and the performance of a risk assessment. The results of the initial RI activities are detailed in the "Remedial Investigation Report, Hadco Corporation, Owego, New York," dated December 1992.

The risk assessment performed during the RI was composed of a human health risk assessment and an ecological assessment reflecting NYSDEC guidelines for Fish and Wildlife Impact Assessments (FWIA) Steps I and IIA.

The human health risk assessment involved:

- The identification of constituents of concern;
- Development of potential exposure scenarios;
- Calculation of exposure concentrations;
- Establishment of reference toxicity values; and
- Characterization of both carcinogenic and non-carcinogenic risks.

The constituents identified as chemicals of concern at this site included all compounds detected in ground water or soil above detection limits, with the exception of essential nutrients. In addition, compounds for which insufficient toxicity criteria is available were also excluded from the chemicals of concern.

The exposure assessment identified only two potential exposure pathways including off-site residential use of ground water and the possibility for exposure of a future excavation worker to soil in the source area. Based on the analytical data developed during the RI, reasonable maximum exposure (RME) concentrations were calculated for each chemical of interest. The reference toxicity values established were then used in conjunction with the exposure scenarios to characterize carcinogenic and non-carcinogenic risks associated with each potential exposure pathway for each of the chemicals of concern.

For hypothetical on-site excavation workers under future use conditions, all of the pathway-specific carcinogenic risks, as well as the sum of the carcinogenic risks for all pathways, are below USEPA's target range for acceptable risk at Superfund sites. The carcinogenic risk associated with hypothetical ingestion of ground water by residents is 6 x 10⁻⁴. This risk is due primarily to the presence of beryllium (estimated risk of 3 x 10⁻⁴) and 1,1-dichloroethene (estimated risk of 3 x 10⁻⁴). The RME concentration of beryllium (0.005 mg/L) also exceeds the federal proposed MCL of 0.001 mg/L and the NYSDEC TOGS guidance value of 0.003 mg/L. The RME concentration for 1,1-dichloroethene (0.04 mg/L) exceeds both the Federal MCL (0.007 mg/L) and the NYSDEC Class GA ground water value (0.005 mg/L).

The non-carcinogenic risks, expressed as hazard indices, were calculated for each exposure pathway. The Hazard Index for the ingestion/dermal contact route for hypothetical on-site excavation workers is less than 1. The Hazard Index for inhalation exposure of these receptors to dust from soils at the site yields a Hazard Index of 4.0, which is greater than one, due solely to chromium.

The Hazard Index for hypothetical ingestion of ground water by off-site residents is 7 when exposure concentrations are based on the concentrations of chemicals detected in downgradient monitoring wells at the property boundary. The elevated Hazard Index for this pathway is primarily due to the presence of arsenic and manganese with significant contributions also from trichloroethene, 1,1-dichloroethene, cadmium, copper, and nickel. The upper 95 percent confidence limit concentration for arsenic exceeds the federal MCL and NYSDEC TOGS value for Class GA waters. A Hazard Index associated with ingestion of ground water, based solely on the detected volatile organic chemicals would be less than 1.

It should be noted that the estimated risks for hypothetical ingestion of ground water was calculated in accordance with EPA's previous requirement that beryllium be considered a human carcinogen. However, in a recent re-evaluation of water quality criteria proposed under the Clean Water Act, USEPA finally agreed that derivation of a cancer-based criterion for beryllium is not specifically defensible (Federal Register, Vol. 57, No. 246, December 22, 1992). Because USEPA's classification of beryllium as an oral carcinogen lacks scientific defensibility, and because USEPA has recently agreed that there is no scientific basis for classifying beryllium as an oral carcinogen, we recommend that estimated carcinogenic risks associated with ingestion of beryllium be ignored in this risk assessment. Therefore, the total carcinogenic risks associated with the hypothetical investigation of gorund water would be reduced to approximately half of the value presented in the RA.

1.3 Supplemental Investigation Objectives

The specific objectives of the supplemental RI activities include the following:

- Sufficiently delineate the extent of the contamination identified in the unsaturated zone soil associated with the former chemical storage area to support the selection of an appropriate remedial alternative for the source area;
- Provide a basis for evaluating the effectiveness of the IRM to contain and recover dissolved groundwater contamination observed to be migrating from the source area;
- Develop the additional data needed to evaluate the potential effectiveness of vapor extraction as a source area remediation technology; and
- Evaluate the potential for the site to have impacted the wetland area located downgradient of the Hadco facility.

SECTION 2.0 SUPPLEMENTAL INVESTIGATION ACTIVITIES

2.1 General

To accomplish the supplemental investigation objectives, the following additional tasks were completed at the Hadco facility:

- Task 1 Supplemental Source Area Characterization
- Task 2 Additional Ground-Water Sampling and Analysis
- Task 3 Phase II Vapor Extraction Pilot Test
- Task 4 Wetlands Sampling and Analysis

The activities implemented at the Hadco site since the completion of the initial RI activities have also included the design, construction, and start-up of an Interim Remedial Measure (IRM). The activities performed in connection with the IRM are summarized in Section 3 of this Report.

2.2 Supplemental Source Area Characterization

To further characterize the extent of constituents of concern in the soil underlying the former chemical storage area, a total of eight additional shallow soil borings were drilled, including borings CRB-13 through CRB-19 and VE-2, as presented on Figure 4. The additional borings are located to the east of the original boring locations, since the extent of the observed soil contamination was not adequately defined in this direction.

The soil borings were drilled by Parratt-Wolff, Inc., using a customized "T" stand rig that had been equipped with an electric cat head to facilitate operation inside the building. The compact design of the "T" stand rig allowed the borings to be completed within the clean room portion of Hadco's facility which had only 8 feet of clearance.

Split-spoon soil samples were obtained continuously in each boring from immediately below the floor slab of the building to either the water table or until refusal was encountered. The split-spoon samples were decontaminated between each use by: washing with a detergent and water solution; rinsing successively with potable water, methanol, and nitric acid; then triple rinsing with distilled water; and allowing the samples to air dry. The headspace of each sample was screened for total concentration of VOCs using a MicroTip photoionization detector (PID).

Each sample was also classified according to color, grain size, density, and relative moisture content of the materials encountered. This information was recorded in the field and is summarized on the boring logs presented in Appendix A.

Based on the results of the field screening and observations, selected soil samples were submitted to RECRA Environmental, Inc. to be analyzed for Target Compound List (TCL) VOCs in accordance with the New York State Department of Environmental Conservation's (NYSDEC) ASP 91-1, and selected inorganics including beryllium, chromium, copper, lead, and zinc. A total of 11 soil samples were selected to be analyzed for these constituents.

To evaluate the potential leachability of the VOCs and inorganic constituents observed in the source area soil, a total of three soil samples were submitted for TCLP analyses for the VOCs and selected inorganics. The samples selected for the TCLP analyses included the 6 to 8 foot sample from boring CRB-14, the 4 to 6 foot sample from boring CRB-17, and the 4 to 6 foot sample from boring VE-2.

Although the Supplemental Source Area Characterization program was intended to include only seven additional soil borings, the field screening of the soil samples in the eastern-most borings suggested that the eastern horizontal extent of VOCs had not been delineated. Therefore, an additional soil boring (CRB-19) was drilled just beyond the eastern limits of the clean room areas overlying the source area.

2.3 Additional Ground-Water Sampling and Analysis

An additional round of ground-water samples was collected from 17 selected monitoring wells on June 28 and 29, 1993. This additional round of sampling was performed to provide baseline data on ground-water quality prior to initiation of the IRM. The wells sampled during this supplemental round included MW-2, MW-6, MW-11, MW-15, MW-17, MW-19, MW-23, MW-24, MW-25, MW-26, MW-27, MW-29, MW-30, MW-31, MW-32, MW-33, and PW-3.

Each well was purged of at least three well volumes prior to sample collection. The ground-water samples were collected using disposable dedicated bailers and a length of new polypropylene line. The samples were placed immediately into laboratory-provided sample containers that had been appropriately labeled. The sample containers were placed in coolers and maintained at approximately 4°C until delivery to the laboratory. A chain of custody was initiated for each sample and maintained through delivery to RECRA Environmental, Inc. The samples were submitted to be analyzed for TCL VOCs and selected inorganic constituents, including chromium, copper, and zinc.

A complete round of water level measurements was performed prior to initiation of the ground-water sampling activities. The depth to ground water recorded for each well and the calculated ground-water elevations are summarized on Table 1.

2.4 Phase II Vapor Extraction Pilot Test

The results of the initial vapor extraction pilot test performed during August 1992 were inconclusive as to the potential effectiveness of this remedial technology. Although the previous vapor extraction test indicated that the use of extraction wells located adjacent to the building would not be effective in drawing soil vapor from the source area soil located under the building, the possibility of utilizing extraction wells located within the source area soils still represented a potential remedial approach.

To evaluate the effectiveness of the vapor extraction remedial alternative, Blasland & Bouck performed a Phase II Vapor Extraction Pilot Test on September 25, 1993. The extraction point used for this test was the vapor extraction well VE-2, which was installed in the center of the source area during the Supplemental Source Area Characterization activities (Figure 4). This well was constructed by installing a five-foot length of 2-inch diameter, 0.04 slot PVC well screen from 6 feet to one foot below the base of the floor slab. An appropriate length of riser pipe was used to extend the screen to the surface. A coarse, rounded pea gravel was placed around the well screen as a filter pack, and a hydrated bentonite seal was installed above the filter pack. The well was completed flush with the floor within a 4-inch diameter valve box. The boring log and well construction detail for VE-2 is presented in Appendix A.

The three existing vapor probes, VP-1 through VP-3, installed for the previous vapor extraction pilot test, were used as monitoring points for the Phase II pilot test. The probes were equipped with a magnehelic gauge that monitored the vacuum induced in the subsurface as a result of the vacuum applied to the extraction well. The location of the vapor probe in relation to the extraction well VE-2 is illustrated on Figure 4.

A 5 horsepower regenerative blower was used as the vacuum source. The vacuum applied to the extraction well VE-2 and the induced vacuum observed at each of the three vapor probes were recorded at 5-minute intervals throughout the test. The rate at which vapor was extracted was also monitored and recorded throughout the test.

The pilot test was performed in two steps. The applied vacuum was maintained at approximately 16 inches of water during the first step, then increased to approximately 68 inches of water during the second step of the test.

To evaluate the potential VOC removal rates associated with soil vapor extraction, a total of two vapor samples were collected from the extracted vapor, including one vapor sample collected at the end of each step of the test. The vapor samples were submitted to Target Laboratories, Inc. (Target) to be analyzed by a direct air injection GC Method for chlorinated VOCs using an electron capture detector.

2.5 Wetland Sampling and Analysis

To evaluate the potential for the site to have impacted the wetland area located to the south and southwest of the site, Blasland & Bouck performed a Wetland Sampling and Analysis program.

In accordance with the NYSDEC's letter of February 3, 1993, the wetland sampling program was intended to include the collection of both surface water and sediment samples from two locations within the wetland downgradient of the site. On October 3, 1993, the wetland area was surveyed to select appropriate sampling locations.

A thorough reconnaissance was performed of the entire wetland area located between the Town of Owego Publicly-Owned Treatment Works (POTW) property and the railroad tracks (which are parallel to Route 17C) and extending approximately 1,500 feet toward the west. However, no surface water was observed to be present in the wetland area downgradient of the site. Therefore, the wetland sampling performed was limited to the collection of sediment samples.

A total of two sediment samples were collected from the locations indicated on Figure 5. Each sample was collected from a depth of 0 to 6 inches using a dedicated stainless steel sampling spoon. Upon collection, the samples were placed directly into laboratory-provided containers and placed on ice in a cooler for delivery to the laboratory. The sediment samples were submitted to RECRA Environmental, Inc. to be analyzed for VOCs and selected inorganics including chromium, copper, and zinc. In addition, the sediment samples were analyzed for total organic carbon.

SECTION 3.0 SUMMARY OF INTERIM REMEDIAL MEASURES

3.1 General

An Interim Remedial Measure (IRM) was initiated at the Hadco facility to begin remediating the dissolved organic constituents observed in the ground water downgradient of the former chemical storage area. The rapid initiation of this IRM also serves to begin reducing the potential for off-site migration of these dissolved constituents. To accomplish these objectives, the IRM has involved the construction and operation of an interim ground-water recovery and treatment system. The principle components of this system included a submersible ground-water recovery pump installed in the existing recovery well PW-3 and a shallow tray-type air stripper ground-water treatment system.

The activities implemented in connection with the IRM program at this site have included:

- Development of IRM Work Plan and Conceptual Design;
- Preparation of Final Design Drawings and Specifications;
- Construction and Startup of IRM System;
- Initial IRM System Monitoring.

A summary of each of these activities is presented below.

3.2 Development of the IRM Work Plan and Conceptual Design

The first activities implemented in connection with the IRM was the development of the IRM Work Plan, dated March 1993, which proposed the conceptual design of the IRM system. This Work Plan presented a description of the specific activities to be performed in association with the design and operation of the system as well as the basis for design of the system.

The Order on Consent (Index #A701518809) between Hadco and the NYSDEC was modified in March 1993 to incorporate the IRM Work Plan.

3.3 Preparation of Design Drawings and Specifications

Upon approval of the conceptual design of the IRM, a detailed set of design drawings and technical specifications for the recommended ground-water recovery and treatment system was prepared by Blasland & Bouck. The design drawings and technical specifications included the following:

- 1) Site plan;
- 2) Process equipment layout;
- 3) Recovery well details;
- 4) Pipe trench details;
- 5) Process and instrumentation diagram;
- 6) Enclosure floor plan;
- 7) Enclosure section and details;
- 8) Structural details;
- 9) Electrical one-line diagram; and
- 10) Miscellaneous piping details.

The design drawings and technical specifications were signed and sealed by a licensed professional engineer registered in New York State and were submitted to the NYSDEC for review. The NYSDEC approved the design drawings and specifications without modification in their letter of June 21, 1993.

3.4 IRM Construction and Startup

Construction of the IRM was performed by New York Environmental Construction, Inc. between August and October 1993. The construction of the IRM consisted of the installation of the following facilities:

- 1) A ground-water collection/pumping system;
- 2) A low-profile air stripper; and
- 3) A water discharge pipe to the existing sanitary sewer.

An on-site construction observer was provided by Blasland & Bouck on a part-time basis throughout the construction activities. The responsibilities of the construction observer included periodic construction observation to: verify that construction work was in general accordance with the design drawings; record unusual circumstances observed; and obtain a photographic log of construction activities. Blasland & Bouck also reviewed contractor submittals (i.e., shop drawings) to determine general conformance with the contract documents.

The ground-water collection/pumping system was designed for the purpose of collecting and pumping ground water to the low-profile air stripper. In general, the ground-water collection/pumping system consisted of an existing ground-water pumping well, a new well pump, two new pre-cast concrete manholes (MH-1 and MH-2), piping, electrical equipment and conduits, and instrumentation.

The low-profile air stripper was installed to remove VOCs from the ground water to meet the Town of Owego sanitary sewer discharge limits in accordance with the IRM Work Plan. The shallow tray-type air stripper was furnished by Northeast Environmental Products, Inc. (NEEP) and consists of an influent spray nozzle and three vertically stacked trays. Influent water is sprayed into the inlet chamber through a spray nozzle. Water then flows over a flow distribution weir and through the baffled aeration trays. VOCs are then stripped from the water by an air flow provided by a blower mounted next to the low-profile air stripper. The air exhausts through an 8-inch diameter stainless steel stack located on the top of the unit, which extends vertically through the roof of the Biological Treatment Plant Building.

The water discharged from the low-profile air stripper is directed to an existing sanitary sewer system manhole located southeast of the Biological Treatment Building via a 3-inch diameter CPVC pipe installed for this system.

The startup of the IRM system was initiated in accordance with the IRM System Startup Plan submitted to the NYSDEC on September 17, 1993. The activities performed prior to startup of the system included a review of the installation by a representative of the air stripper manufacturer and operation training.

An As-Built Construction Report, Ground Water Interim Remedial Measure, will be prepared presenting a detailed set of record drawings which will document the as-built location of the low-profile air stripper, manholes, piping, and other appurtenances constructed at the Hadco facility.

3.5 Initial IRM System Monitoring

Following the startup of the IRM system, Hadco initiated the IRM monitoring program in accordance with the Operation Monitoring Plan submitted to the NYSDEC on September 17, 1993.

As per this plan, Hadco personnel have inspected the system at least three times per day since commencement of the system's operation. These inspections include a general inspection of the equipment to identify operational problems (i.e., leaks, alarms, equipment shutdown, etc.). In addition, system operation data including date and time of inspection, name of inspector, influent flow rate, influent pressure, and air pressure are recorded in an IRM Operation Monitoring Log. A copy of the initial entries in this log are presented in Appendix B.

To evaluate the effectiveness of the air stripper in achieving its performance objectives, two sets of effluent samples have been collected. The first sample was collected on October 14, 1993, approximately 48 hours after startup of the system. This effluent sample was analyzed for volatile organic compounds by Method 8240 as well as for other parameters limited under Hadco's POTW discharge permit, including: oil and grease, copper, nickel, lead, tin, and TSS. The results of this sample showed no detectable levels of any

volatile organic compounds. The observed levels of oil and grease (1.8 mg/L) and copper (0.02 mg/L) were both below their respective permit limits. No nickel, lead, tin, or TSS were detected in the sample. A second sample was collected from the treatment system effluent on October 21, 1993 and submitted for volatile organic analysis. Although no volatile compounds were observed at a concentration above the contract required detection limit, methylene chloride was detected at an estimated concentration of 0.8 ug/L, which is below the detection limit. Copies of the laboratory analytical reports for both of the IRM system effluent samples are presented in Appendix B.

The continuation of the IRM monitoring program for this site will include the collection of monthly ground-water samples from selected wells for the first six months that this system is operational. This data will be used to evaluate the effectiveness of the monitoring program.

SECTION 4.0 RESULTS OF SUPPLEMENTAL INVESTIGATION

4.1 General

This section presents the results of the Supplemental RI performed to augment the site characterization results generated through the previous RI activities. The additional data developed through the performance of these supplemental activities include both additional physical site characterization information as well as further data to delineate the nature and extent of the environmental impacts associated with the site.

4.2 Results of the Supplemental Source Area Characterization

The Supplemental Source Area Characterization activities were performed to further delineate the extent of the soil contamination associated with the former chemical storage area. These activities involved drilling eight additional soil borings at the locations identified as CRB-13 through CRB-19 and VE-2 (Figure 4). A total of 11 soil samples were selected from these borings to be submitted for laboratory analysis. Each of these samples was analyzed for TCL VOCs and selected inorganics, including beryllium, chromium, copper, lead, and zinc.

One soil sample was selected for laboratory analysis from each boring on the basis of the field screening of relative concentrations of total VOCs using a MicroTip PID. The results of the field screening of each soil sample are presented on the boring logs included in Appendix A. These field screening results indicated that the highest levels of VOCs were predominantly observed in the soil zone at a depth of approximately 6 to 8 feet below the building's floor slab. This zone correlated to the soil immediately above the water table. Relatively few VOCs were present in the shallow soil zone extending from immediately below the building to approximately 4 to 6 feet. This may be attributable to the effects of regrading activities on the near surface soil prior to construction of the new addition to the facility which was built in the former chemical storage area by Robintech in 1975. To confirm the apparent vertical distribution of the contamination within the soil of the source area, an additional soil sample was selected for laboratory analysis from a depth of 2 to 4 feet from each of three borings, including VE-2, CRB-14, and CRB-17.

The results of the VOC analyses performed on the soil samples collected during this Supplemental Investigation are summarized on Table 1. The high concentrations of VOCs were observed in the soil samples from boring VE-2, which was located at the approximate center of the source area. The boring VE-2 was also used to construct the vapor extraction well for the Phase II Vapor Extraction Pilot Test. Although the VOC observed in the highest concentration was trichloroethene (TCE), several other compounds were observed at concentrations exceeding one part per million (ppm), including tetracholorethene, toluene, 1,1,1-trichloroethane, and xylenes. An isoconcentration map illustrating the distribution of total VOCs detected in the soil underlying the former chemical storage area is presented as Figure 6. This figure incorporates the analytical results from the previous borings, CRB-1 through CRB-12,

with the analytical results from the supplemental borings, CRB-13 through CRB-19. As illustrated by this figure, the extent of the soil contamination associated with the former chemical storage area has now been adequately delineated.

The analytical results of the shallow soil samples collected from borings VE-2, CRB-14, and CRB-17 indicate the presence of only relatively low concentrations of VOCs. This confirms the results of the field screening, which suggests that the shallow soil immediately underlying the building contains relatively little contamination while the soil zone immediately above the water table represents the principle source of VOC contamination.

The results of the inorganic analyses performed on the soil samples collected during the Supplemental Source Area Characterization are summarized on Table 2. The results of these analyses show no detectable levels of beryllium in any of the samples, and concentrations of zinc are consistent with the normal background concentrations that would be anticipated in the site vicinity. However, the ranges in concentrations of both chromium (18.8 to 3,490 milligrams per kilogram [mg/kg]) and copper (18.8 to 2,460 mg/kg) were observed to extend above the background levels that would be anticipated. These two inorganic constituents were also observed at elevated concentrations in soil samples previously collected from borings CRB-1 through CRB-12 in this source area.

Three soil samples were selected during the Additional Source Area Characterization activities to be submitted for laboratory analysis by the TCLP for VOCs and selected inorganics. The samples selected for TCLP analysis included the 4 to 6 foot samples from CRB-17 and VE-2 as well as the 6 to 8 foot sample from CRB-14. The results of the VOC analyses of the TCLP extracts are summarized on Table 3. These results demonstrate the leachable concentrations of TCE in the source area soil. The observed concentrations of TCE in the TCLP extracts also indicate that these soils, if excavated, would have to be addressed as a characteristic hazardous waste. The results of the inorganic analyses of the TCLP extracts are summarized on Table 4. Although none of the inorganic concentrations exceeded the criteria for a characteristic hazardous waste, the concentrations of both chromium and copper in at least one of the samples were observed to exceed NYSDEC's ground-water quality standards.

4.3 Results of Additional Ground-Water Sampling and Analysis

To provide baseline data regarding the existing ground-water quality across the site prior to startup of the IRM ground-water recovery and treatment system, Blasland & Bouck collected an additional round of ground-water samples from selected monitoring wells. A total of 17 existing monitoring wells were selected for this additional round of testing, including: MW-2, MW-6, MW-11, MW-15, MW-17, MW-19, MW-23, MW-24, MW-25, MW-26, MW-27, MW-29, MW-30, MW-31, MW-32, MW-33, and PW-3. The locations of these wells are indicated on Figure 3.

Prior to purging and sample collection, a complete round of water level measurements was recorded from the existing wells at the site. A summary of the ground-water elevation data recorded on June 28, 1993, is presented on Table 5. This table also presents a summary of the historical ground-water elevation data for the wells at the site. The current ground-water elevation data has been used to develop contour maps for

each of the three zones monitored by the existing wells at the site. The ground-water elevation contour maps for the shallow overburden wells, deep overburden wells, and bedrock wells are presented as Figures 7, 8, and 9, respectively. The direction of ground-water flow indicated by these figures is generally toward the southwest, which is consistent with the previous ground-water elevation contour maps presented in the RI Report.

The results of the VOC analyses preformed on the ground-water samples collected for this additional round of testing are summarized on Table 6. To evaluate any apparent changes in ground-water quality, these analytical results have been compared with the ground-water quality data previously generated for this RI. The VOCs observed in the highest concentrations included trichloroethene, 1,1,1-trichloroethane, 1,1-dichloroethene, and toluene. This is consistent with the previous data. While the bedrock monitoring well MW-17 experienced a relatively large reduction in the observed concentration of the VOCs, the concentrations of these compounds were observed to increase in several of the deep overburden wells, including MW-23, MW-24, and MW-27. However, the observed concentrations of VOCs in most of the wells remained generally unchanged.

The results of the inorganic analyses performed on the ground-water samples are summarized on Table 7. A comparison of the recent data with the previously generated ground-water quality data for inorganics indicates that the concentrations of all three of these constituents of concern (chromium, copper, and zinc) were observed to decrease in wells located near the downgradient property boundary (MW-11) and the former chemical storage area (MW-19). In fact, the concentration of chromium in MW-11 declined from a high of 5.86 mg/L in October 1991 to only 1.0 mg/L in June of 1993. The concentration of copper in this well declined from 1.44 mg/L to 0.58 mg/L over the same period. The concentration of zinc in MW-11 was also observed to decline from 1.63 mg/L to 0.53 mg/L between October 1991 and June 1993. The concentrations of these inorganics in the monitoring well MW-19, located closest to the former chemical storage area also show considerable reduction between October 1991 and June 1993. Chromium was observed to decline from 17.6 mg/L to 6.7 mg/L; the copper concentration was reduced from 22.5 mg/L to 14.1 mg/L; and zinc concentrations decreased from 0.87 mg/L to 0.52 mg/L. However, the most recent concentrations of chromium, copper, and zinc detected in both of these wells still exceed NYSDEC's ground-water quality standards.

4.4 Results of the Phase II Vapor Extraction Pilot Test

The Phase II Vapor Extraction Pilot Test involved the use of a regenerative blower to apply a vacuum to the vapor extraction well VE-2, which had been installed near the center of the source area in which VOC contamination of the soil had been identified.

The information recorded during the implementation of the vapor extraction pilot test included measurements of the vacuum applied to the extraction well, the rate of flow at which soil vapor was extracted, and the induced vacuum at each of three existing vapor probes resulting from the applied vacuum. These measurements were recorded at 5-minute intervals throughout the course of the pilot test and are summarized on Table 8.

During the first step of the pilot test, the vacuum applied to the extraction well was maintained between 15.5 and 16 inches of water. This resulted in a soil vapor extraction rate of approximately 19 standard cubic feet per minute (SCFM). The initial response to this applied vacuum was observed almost immediately at the vapor probe P-1, located approximately 10 feet from the extraction well VE-2. The time from the start of the test required to observe an initial response at vapor probes VP-2 and VP-3 was approximately 2 minutes and 10 minutes, respectively. The observed vacuum in all three of the vapor probes had stabilized within 10 to 15 minutes of the test startup. At the end of the first step of the Phase II Vapor Extraction Pilot Test, the observed vacuum in the three vapor probes ranged from 0.01 to 0.03 inches of water (Table 8). The first soil vapor sample (VE-2-1) was collected from the sampling port of the vapor extraction pilot unit at the end of the first step of the test. The analytical results of this sample are summarized on Table 9. As anticipated, trichloroethene (23,108 micrograms per liter [ug/L]) and 1,1,1-trichloroethane (2,064 ug/L) were the compounds detected in the highest concentrations in this sample. Two other compounds, 1,1-dichloroethene and tetrachloroethene, were also observed at concentrations in excess of 100 ug/L. Trace concentrations of four more compounds, including chloroform, methylene chloride, cis 1,2-dichloroethene, and trans 1,2-dichloroethene, were also detected in this sample.

At the start of the second step of the pilot test, the vacuum applied to the extraction well was increased to approximately 68 inches of water. This resulted in an increase in the vapor extraction rate to approximately 38 SCFM. The vacuum applied to the extraction well by the pilot test unit gradually decreased from 68 inches of water to 62 inches of water over the duration of the second step of the test. However, the vapor flow rate remained generally constant at approximately 38 SCFM. The response to the increase in applied vacuum was noted immediately in vapor probes VP-1 and VP-2. Vapor probe VP-3 did not respond to the increase in applied vacuum until 10 minutes into the second step of the test. At the conclusion of the second step of the vapor extraction pilot test, the observed vacuum in the vapor probe ranged from 0.015 to 0.09 inches of water. The second soil vapor sample was collected immediately prior to the conclusion of the second step of the test. The analytical results for this sample are also summarized on Table 9. Trichloroethene and 1,1,1-trichloroethane were detected in this sample at concentrations of 30,881 ug/L and 1,757 ug/L, respectively. These concentrations, as well as the concentrations of the other VOCs detected were generally consistent with the first vapor sample.

Based on the average concentration of total VOCs detected in the soil vapor samples collected during this pilot test (29,327 ug/L) and the rate of vapor withdrawal during the second portion (38 SCFM), the average rate at which volatile compounds were removed during the Phase II Vapor Extraction Pilot Test was approximately 1.6 grams per day (g/day).

The results of the Phase II pilot test indicate that properly located and constructed extraction wells can achieve significant contaminant removal rates. However, the relatively low response observed in the vapor probes in terms of the induced vacuum indicates that the effective zone of influence around the vapor extraction point is very limited.

4.5 Results of Wetland Sampling and Analysis

The area hydraulically downgradient of the site includes a wetland area identified in a topographical depression, located south of the site and extending approximately 5,000 feet toward the northwest. To evaluate whether the downgradient wetland area exhibits any indication of impacts, Blasland & Bouck collected two sediment samples from the locations indicated on Figure 5. These samples were submitted to RECRA Environmental, Inc. to analyze for VOCs and selected inorganics, including, chromium, copper, and zinc. In addition, these samples were analyzed for total organic carbon (TOC). Although Blasland & Bouck had also intended to collect surface water samples from the same location, no standing water was present throughout the wetland area downgradient of the site.

The results of the VOC analyses performed on the sediment samples are summarized on Table 10. These results show no indication of any VOCs being present in the sediment. The results of the inorganic analyses and TOC analyses are presented on Table 11. These results show concentrations of chromium ranging from 683 to 790 mg/kg, copper ranging from 8.3 to 162 mg/kg and zinc ranging from 48 to 102 mg/kg. TOC concentrations were observed at 786 micrograms per gram (ug/g) to 1,430 ug/g.

The observed concentrations of both chromium and copper were elevated in comparison to the range of concentrations found in background soil. The source of these inorganics has yet to be identified. Potential sources located in the vicinity of these wetlands include the Town of Owego POTW property, the Broadway Building located to the northeast, as well as the Hadco facility located north of the POTW property.

SECTION 5 CONCLUSIONS

5.1 General

This section presents Blasland & Bouck's conclusions based on the Supplemental RI results presented herein as well as the previous RI results presented in the RI Report for Hadco Corporation dated December 1992. The following conclusions are presented according to the investigation objectives that they address.

5.2 Conclusions Regarding Potential Source Areas

The following conclusions have been developed based on the available data regarding the potential on-site and off-site sources of the constituents observed in the subsurface at this site:

- 1. The principle source of the VOCs observed in the subsurface appears to be the former chemical storage area. The horizontal extent of the residual soil contamination in this area has been delineated toward to the north, west, and south by the original RI results. The extent of residual contamination toward the east has also been demonstrated through the Supplemental Source Area Investigation results.
- 2. The former Robintech septic leach field, which was also identified as a potential source area, does not appear to be acting as a source of chemical constituents to the subsurface.
- 3. Dissolved TCE continues to be observed in the overburden ground-water monitoring wells located upgradient of the Hadco facility. This demonstrates that an off-site source of dissolved TCE exists upgradient of the Hadco site. The apparent contribution of this off-site source is relatively small in comparison to the concentrations of TCE and other organics observed emanating from the vicinity of the former chemical storage area.
- 4. Although VOCs were previously demonstrated to be present in the septic system of the Broadway Building located immediately east of the site, the investigations performed to date do not provide an adequate basis for evaluating the relative contributions of dissolved constituents from this source area to the ground water underlying the Hadco site.
- 5. The presence of chromium and copper concentrations above background levels in the soil samples from the former chemical storage area suggests that this area may act as a contributing source of the dissolved chromium and copper observed in ground water downgradient of the area.
- 6. The analytical results of the soil samples collected to evaluate potential sources of the dissolved inorganics observed in wells MW-3, MW-7, and MW-11 did not indicate the presence of a source area in the vicinity of these wells.

7. The Phase II Vapor Extraction Pilot Test demonstrated that reasonable VOC removal rates could be achieved with vapor extraction remedial methods. However, the limited zone of influence indicated by the pilot test results also suggest that the extraction points of a full-scale system would have to be spaced at intervals of approximately 10 feet or less.

5.3 Conclusions Regarding Ground-Water Quality

The following conclusions are related to the investigation objectives regarding ground-water quality issues:

- 1. The dissolved constituents in the ground water underlying the Hadco site appears to include a number of halogenated VOCs (principally TCE, TCA, and DCE) and several aromatic hydrocarbons (including toluene, ethylbenzene, and xylenes).
- 2. Several inorganic constituents (including chromium, copper, lead, and zinc) were identified in ground-water samples at concentrations that exceed their respective NYSDEC Guidance Values by an order of magnitude or more, and that are not indicative of background conditions. The presence of chromium and copper in the soil of the former chemical storage area suggests this area is a contributing source of these inorganic constituents in ground water. The source(s) of the other inorganics not attributable to background conditions has not been identified.
- 3. The horizontal distribution of the dissolved VOCs observed in the shallow overburden aquifer extends the length of the site. The concentrations observed in the upgradient wells were consistently low. The highest concentrations of VOCs were observed immediately downgradient of the former chemical storage area. These high concentrations were observed to attenuate downgradient of the source area.
- 4. The groundwater analytical results show that dissolved VOCs have migrated vertically into the deeper zones of the overburden aquifer. The concentrations observed in the deep overburden wells near the former chemical storage area may suggest the movement of dense, non-aqueous phase liquids (DNAPLs) through the subsurface in this vicinity.
- 5. The analytical results of the ground-water samples from the new off-site well clusters located downgradient of the site show the attenuation of the dissolved constituents of concern to relatively low concentrations.
- 6. The results of the initial RI data suggest that the impact to ground water in the bedrock downgradient of the site is limited to only low concentrations of VOCs; however, increased concentration of VOCs were observed in the bedrock well at the downgradient property boundary during both of the subsequent rounds of ground-water sampling from this well.

5.4 Conclusions Regarding Surface Water Quality

The results of the surface water and wetland investigation activities implemented as part of the Supplemental RI support the following conclusions:

- 1. The analytical results of the surface water samples show no indication of any adverse impacts to the Barnes Creek from the Hadco site. However, the upstream water samples did indicate the presence of trace concentrations of TCE from some upstream source.
- 2. The results of both the VOC and inorganic analyses performed on the sediment samples collected from Barnes Creek also showed no indication of adverse impacts associated with the site.
- 3. The results of the wetland sediment sample showed no indication that the VOCs observed at the site have had any adverse impact on the wetland area. However, elevated levels of both chromium and copper were detected in the sediment samples. Potential sources of these inorganics in the vicinity of the wetlands include the Town of Owego POTW property, the Broadway Building, and the IBM facilities located to the northeast as well as the Hadco facility located north of the POTW property.

Respectfully Submitted:

Tyler & Gass, C.P.G., PHg

Officer

Prepared by: William T. McCune

Tables

TABLES

TABLE 1

PHASE II SOURCE AREA CHARACTERIZATION – DECEMBER 1992 VOLATILE ORGANIC COMPOUNDS IN SOIL SUMMARY OF ANALYTICAL RESULTS

HADCO CORPORATION OWEGO, NEW YORK

SAMPLE DEPTH)	CRB-13 (6 to 8 ft.)	CRB-14 (2 to 4 ft.)	CRB-14 (6 to 8 ft.)	CRB-15 (4 to 6 ft.)	CRB-16 (6 to 8 ft.)	CRB-17 (2 to 4 ft.)	(4 to 6 ft.)	(4 to 6 ft.)	(4 to 6 ft.)	CRB-20* (4 to 6 ft.)	VE-2 (2 to 4ft.)	VE-2 (4 to 6 ft
Compound												
Acetone	1	!	1	!	!	-	!	1	1		!	
Benzene		!	!	1	!	!		-	!	!		
Bromomethane	-	-			!		!		1	1		
Bromodichloromethane	1	!	!	1	!	!			1	1	1	
Bromoform	!		!		!	I		-		1		
2-Butanone	!	!	!	!	!	!	!			1		
Carbon Disulfide	!	-					!				-	
Carbon Tetrachloride	!	-	ļ			!	!			!		
Chlorobenzene	!	-	!		!	!	1		1	-		
Chloroethane	-		!		!	!	1					
Chloroform			!		!		!		!	!		
Chloromethane	!	!	!		1	!			!	1	-	
Dibromochloromethane	!		!		!	-	1		;	!		
1,1-Dichloroethane	-				-		ļ		!	1		
1,2-Dichloroethane	!	!	I		1					1		
1,1-Dichloroethene		I		-	i		1	!		1		
1,2-Dichloroethene (total)	!	!				-	i			1		
1,2-Dichloropropane	-	!	!							1	!	
cis-1,3-Dichloropropene	!	!			1	!	1		-	!	-	
trans-1,3-Dichloropropene	!	!	!		-	1	1		ļ			
Ethylbenzene	!	!	850 J			-	1		!	!		
2-Hexanone	1	!	470 J						1	-	-	
Methylene Chloride		11	1			1.				!	-	
4-Methyl-2-Pentanone	!	!	610		!		-	-		!	!	
Styrene	!	!	1		1	!	!		1		!	
1,1,2,2- Tetrachloroethane			110 J		1	1	1	•				
Tetrachloroethene	170 J	1.	23,000		27	1	۲ .		0.9 J			110,000
Toluene	1001	2 J	7,600	1001	!	!	3 J	1	-		1	46,000 J
1,1,1-Trichloroethane	!	1	2,800		25	}	5 5		1	1	!	170,000
1,1,2-Trichloroethane	!	!	360 J	1	2 3	}	-	'	;	!	1	
Trichloroethene	2,500	170	360,000 D	2	3,300 D	Г 6	200 D		P 9	006'6	13	5,300,000 D
Vinyl Chloride	!	!	!			!			-	-	-	
Xylene (total)	110 J	!	2,000	!	-	-	!	!	!	!	}	13,000 J
Total VOCe	2 880	175	400.800	5.780	3.354	10	215	216	7	10.589	13	5 630 000

Notes:
All concentrations reported in ug/kg, dry weight (ppb).
B = Compound determined to be present in the blanks as well as in the sample.
J = Estimated value; concentration less than the quantitation limit but greater than zero.

D = Coumpounds identified at a secondary dilution factor.

-- = Not detected.
 Total VOCs is the sum of the concentrations for the volatile organic compounds listed.
 *CRB-20 is a duplicate of CRB-15 (4 to 6 feet).

TABLE 2

PHASE II SOURCE AREA CHARACTERIZATION - DECEMBER 1992 SUMMARY OF ANALYTICAL RESULTS **INORGANICS IN SOIL**

HADCO CORPORATION OWEGO, NEW YORK

ANALYTE						SAMF	SAMPLE I.D.					
	CRB-13 (6 to 8 ft)	CRB-14 (2 to 4 ft)	CRB-14 (6 to 8 ft)	CRB-15 (4 to 6 ft)	CRB-16 (6 to 8 ft)	CRB-17 (2 to 4 ft)	CRB-17 (4 to 6 ft)	CRB-18 (4 to 6 ft)	CRB-19 (4 to 6 ft)	CRB-20* (4 to 6 ft)	VE-2 (2 to 4 ft)	VE-2 (4 to 6 ft)
Beryllium	1.0 U	1.1 U	1.1 U	1,1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.2 U
Chromium	419	295	1810	1220	2700	18.8	1590	1800	998	1270	2670	3490
Copper	238	220	438	385	268	18.8	143	830	117	543	2460	524
Lead	230	489	477	989	498	3.7	155	1570	108	299	268	625
Zinc (total)	81.8	35.1	32.3	27.5	37.5	73.3	37.0	12.7	18.0	15.6	56.6	16.2

All concentrations reported in mg/kg (ppm).

B - Compound determined to be present in the blanks as well as in the sample.

U - Compound was analyzed for but not detected. * Duplicate sample of CRB-15 (4 to 6 feet).

TABLE 3

SUMMARY OF TCLP ANALYTICAL RESULTS PHASE II SOURCE AREA CHARACTERIZATION VOLATILE ORGANIC COMPOUNDS

HADCO CORPORATION OWEGO, NEW YORK

SAMPLE ID (SAMPLE DEPTH)	CRB-14 (6 to 8 ft.)	CRB-17 (4 to 6 ft.)	VE-2 (4 to 6 ft.)
Compound			
Benzene	!	!	8
2-Butanone	!	1	1
Carbon Tetrachloride	!	!	!
Chlorobenzene	;	1	4 کا
Chloroform	!	!	i
1,2-Dichloroethane	!	1	1
1,1-Dichloroethene	1	1	
Tetrachloroethene	120	4 ک	880
Trichloroethene	2,500 D	270	43,000 D
Vinyl Chloride	1	1	1

Notes:

All concentrations reported in ug/L.

J = Estimated value; concentration less than the quantitation limit but greater than zero.

D = Coumpounds identified at a secondary dilution factor.

-- = Not detected.

TABLE 4

SUMMARY OF TCLP ANALYTICAL RESULTS PHASE II SOURCE AREA CHARACTERIZATION INORGANICS

HADCO CORPORATION OWEGO, NEW YORK

SAMPLE ID	CRD-14	CRD-17	VE-2
(SAMPLE DEPTH)	6'-8'	4'-6'	4'-6'
Compound			
Arsenic	4.0 U	4.0 U	4.0 U
Barium	230	440	550
Beryllium	5.0 U	5.0 U	5.0 U
Cadmium	0.40 B	0.30 B	0.40 B
Chromium	1030	100	3110
Copper	. 1780	198	3880
Lead	660	15.0 U	900
Mercury	0.23	0.20 U	0.20
Selenium	4.0 U	4.0 U	4.0 L
Silver	1.0 U	1.0 U	1.0 L
Zinc	71.0	72.0	53.0

Notes:

Concentrations reported in ug/L.

U = Not detected.

D = Indicates a value greater than the instrument detection limit but less than the contract required detection limit.

TABLE 5

SUMMARY OF GROUND-WATER ELEVATION DATA

HADCO CORPORATION OWEGO, NEW YORK

			10/3	19/30/91	8/3	8/31/92	/OT	10/21/92	6/2	6/28/93
Well I.D.	Water Bearing Zone Monitored	Reference Elevation*	Depth to Water	Ground Water Elevation						
MW-1	Shallow Overburden	842.22	7.69	834.53			9.66	832.56	8.32	833.90
MW-2	Shallow Overburden	841.13	11.53	829.60	1	-	10.25	830.88	10.99	830.14
MW-3	Shallow Overburden	853.80	16.29	837.51	15.44	838.36	14.63	839.17	13.71	840.09
MW-4	Shallow Overburden	855.11	14.26	840.85	13.55	841.56	12.93	842.18	15.19	839.92
MW-5	Shallow Overburden	848.75	7.74	841.01	-	1	06.9	841.85	8.68	840.07
MW-6	Shallow Overburden	841.25	99.6	831.59	1	!	8.33	832.92	8.89	832.36
MW-7	Shallow Overburden	843.43	14.75	828.68	14.82	828.61	13.53	829.90	13.83	829.60
MW-8	Shallow Overburden	830.07	16.24	813.83	12.46	817.61	12.30	817.77	1220	817.87
MW-9	Shallow Overburden	857.75	20.40	837.35	19.02	838.73	18.25	839.50	19.98	837.77
MW-10	Shallow Overburden	845.68	8.36	837.32		ļ	7.67	838.01	8.78	836.90
MW-11	Shallow Overburden	821.33	19.08	802.25	12.35	808.98	10.25	811.08	13.00	808.33
MW-12	Shallow Overburden	844.59	7.90	836.69		-	8.06	836.53	8.92	835.67
MW-13	Shallow Overburden	840.81	21.88	818.93	18.69	822.12	18.79	822.02	18.15	822.66
MW-14	Deep Overburden	827.65	16.21	811.44	11.70	815.95	11.50	816.15	12.17	815.48
MW-15	Deep Overburden	822.03	23.73	798.30	18.83	803.20	18.00	804.03	18.02	804.01
MW-17	Bedrock	840.38	9.88	830.50	8.88	831.50	8.49	831.89	8.90	831.48
MW-18	Deep Overburden	829.35	13.94	815.41	10.59	818.76	10.53	818.82	10.25	819.10
MW-19	Shallow Overburden	841.26	9.12	832.14	6.89	834.37	6.67	834.59	7.27	833.99
MW-20	Bedrock	829.41	14.35	815.06	10.80	818.61	10.55	818.86	10.18	819.23
MW-21	Bedrock	854.85	16.65	838.20	14.30	840.55	13.96	840.89	15.90	838.95
MW-22	Bedrock	819.39	22.55	796.84	19.46	799.93	17.70	801.69	17.19	802.20
MW-23	Deep Overburden	841.32	8.31	833.01	7.29	834.03	7.06	834.26	7.90	833.42
MW-24	Deep Overburden	840.65	9.84	830.81	9.00	831.65	8.75	831.90	9.39	831.26
MW-25	Shallow Overburden	837.67	12.33	825.34	11.67	826.00	11.57	826.10	12.22	825.45
MW-26	Deep Overburden	837.73	13.67	824.06	12.53	825.20	12.45	825.28	12.90	824.83
MW-27	Deep Overburden	840.96	9.40	831.56	8.42	832.54	8.25	832.71	8.70	832.26
MW-28	Bedrock	837.91	88.38	749.53		-	37.05	800.86	25.78	812.13
MW-29	Deep Overburden	820.63	Z	Z	19.20	Z	18.70	801.93	18.74	801.89
MW-30	Deep Overburden	815.13	Z	Z	23.42	Z	22.14	792.99	22.04	793.09
MW-31	Shallow Overburden	815.25	Z	Z	7.84	Z	6.95	808.30	8.24	807.01
MW-32	Deep Overburden	816.17	Z	Z	17.20	Z	16.68	799.49	16.06	800.11
MW-33	Shallow Overburden	815.77	Z	Z	7.31	Z	6.40	809.37	7.42	808.35
PW-1	Overburden	842.09	11.52	830.57		1	10.73	831.36	11.00	831.09
PW-2	Overburden	839.71				-	1	1	8.80	830.91
PW-3	Deep Overburden	836.96	!!		11.69	Z	11.60	825.36	12.00	824.96

^{* =} Elevations are referenced to plant datum.
--- = Depth to water not recorded; ground-water evaluation not calculated.
NI = Well not installed at time of measurement.

SUMMARY OF GROUND-WATER ANALYTICAL RESULTS - VOLATILE ORGANICS JUNE 1993 TABLE 6

HADCO CORPORATION OWEGO, NEW YORK

	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	300000000000000000000000000000000000000			WEIGHT WITH THE PARTY OF THE PA	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000					
WW	MW-2 MV	MW-6 MV	V-11	MW-11 MW-15 MW-17		MW-18	MW-28	WW-23 MW-24 MW-25 MW-26 MW-27 MW-39 MW-30 MW-31 MW-32 MW-33	N-88	W-26	W-27	¥-38	W-30	MW-31	MW-32	MW-33	PW-3
Compound																	
Acetone	1	1	;	1	1	1		1	;	1	!	1	ł		}	-	-
Benzene	:	!	;	!	!	!		!	!	;	;	1	1	!	1	19	I
Bromomethane	-	!	1	!	!	!		1	1	1	1	-	ļ	1	1	1	1
Bromodichloromethane	-	!	1	!	1	!		;	!	!	1	1	ł	!	!	1	1
Вготобогт	1	!	1	!	!	!		1	1	!	!	1	!	i	!	i	1
2-Butanone		!	1	1		!		!	1	!	1	!	i	!	!	1	1
Carbon Disulfide	:	!	!	1	1	1		i	ŀ	!	1	1	i	1		!	1
Carbon Tetrachloride	-	!	;	!	!	!		1	1	1		i	;	1	i		I I
Chlorobenzene	1	;	ŀ	;	!	!	1	1	1	!	1	1	ŀ	i	!	-	1
Chloroethane	;	!	;	1	1	-		i	1		!	1	i	1	!	1	1
Chloroform		!	;	1	1	!		!	-	1	!	1	1	1	!	-	1
Chloromethane	1	-	;	I	1			ł	1	1	!	!	!	!	ł		!
Dibromochloromethane	-	-	1	-	1	!		1	!	!		-		-	1	!	1
1,1-Dichloroethane	7	25 D	14 D	11	5700 D	!		26 DJ	8 DJ	210 DJ	!	14	1	1		4	480 D
1,2-Dichloroethane		-	!	-	1	!		!	ļ	ì	1	!	1	!	1	1	!
1,1-Dichloroethene	3 J	15 DJ	13 D	S	1	14000 DJ		1	7 DJ	220 DJ	1	25	1	1	2 3	1	210 DJ
otal)	22	260 D	51 D	12	1600 DJ	!		46 DJ	63 D	410 D	94 DJ	69	!	1	4 J	7	360 D
1,2-Dichloropropane	1	!	ł	1	!	i		!	1	!	!	!	1	i	1	!	i
cis-1,3-Dichloropropene	:	!	1	1	1	!		!		ŀ	ĺ	1	i	i	1	-	1
trans-1,3-Dichloropropene	-	1	!	1	1	!		!	!	!	1	1	ł	ì	i	!	1
Ethylbenzene	-	!	!	1	1200 DJ	!			1	1	1	!		i	1	1 ,	1
2-Hexanone	1	1	ŀ	1	1	;		!	1	1	!	1	1	ı	!	1	
Methylene Chloride	:	;	ŀ	1	1	3900 DJ		;	-	!	t I	;	ļ		1	ł	1
4-Methyl-2-Pentanone	1	1	1	1	-	!		!	!	!		-	1	!	1	1	
Styrene	!	!	!	1	1	!			1	!		-				-	ı
1,1,22-Tetrachloroethane	-	•	;	-	-	Î		!	!	!	i	-	;	1	!	!	1
Tetrachloroethene	-	!	1	0.5 J	!	2200 DJ		!	1	1	1	1	1	I	1	0.8 J	-
			1	1	6400 D	20000 D		1	!	-	1	!	!	i	!	0.6 J	
1,1,1-Trichloroethane	12	18 DJ	84 D	9	31000 D	140000 D		1200 D	43 D	2500 D	39 DJ	100	!	1	22	S	5800 D
1,1,2-Trichloroethane	1	1	!	1	1	!		;	1	1	1	ŀ	i	i	ŀ	!	i
Trichloroethene		620 D	350 D	120	37000 D	500000 D		1100 D	320 D	4600 D	3200 D	370	i	i	i	52	6400 D
Vinyl Chloride	٦ ا	94 D	!	1	1	!		 -	!	1	1	1	ļ	1	!	1	!
Xylene (total)	:	<u> </u>	1	-	810 DJ	¦		1		!	i I	1	i	1	0.9 J	50	
Total VOCs	172 1	1032	512	151.5	83810	680100	118000	2372	144	7940	3333	578	0	0	28.9	109.4	13250

Notes:
All concentrations reported in ug/L (ppb).

B = Compound determined to be present in the blanks as well as in the sample.
J = Estimated value; concentration less than the quantitation limit but greater than zero.
D = Coumpounds identified at a secondary dilution factor.
-- = Not detected.
Total VOCs is the sum of the concentrations for the volatile organic compounds listed.

TABLE 7

SUMMARY OF GROUND-WATER ANALYTICAL RESULTS INORGANICS JUNE 1993

HADCO CORPORATION OWEGO, NEW YORK

WELL NUMBER:	MW-2	MW-6	MW-11	MW-15	MW-17 N	W-19	MW-23	MW-24	MW-25
ANALYTE									
Chromium	0.013	2.7	-	0.53	0.010 U	6.7	0.087	0.030	0.20
Copper	0.011	8.9	0.58	0.12	0.011	14.1	0.097	0.016	0.077
Zinc	0.075	0.65	0.53	0.50	0.14	0.52	0.10	0.056	0.034

WELL NUMBER:	MW-26	MW-27	MW-29	MW-30 I	MW-31	MW-32 N	MW-33	PW-3
ANALYTE								
Chromium	0.019	0.38	0.022		0.041	0.010 U	0.20	0.049
Copper	0.023	0.12	0.011	0.018	0.067	0.018	0.11	0.10
Zinc	0.073	0.20	0.020 U		0.59	0.093	0.15	0.36

Notes:

All concentrations reported in mg/L. ${\sf U-Compound\ was\ analyzed\ for\ but\ not\ detected\ at\ the\ detection\ limit\ indicated. }$

1593840LOE

TABLE 8

SUMMARY OF FIELD MEASUREMENTS VAPOR EXTRACTION PILOT TEST

HADCO CORPORATION OWEGO, NEW YORK

		SEPTEMBE	R 25. 1992		
	Applied Vacuum		Obs	erved Vacuu	<u>m</u>
Time	VE-2	Flow	VP-1	VP-2	VP-3
11:00:00	0	0	0	0	0
11:00:30	15.5	19	0.02		
11:02:00	15.5	19	0.02	0.01	0
11:03:00	15.5	19	0.02	0.01	0
11:05:00	16	19	0.02	0.02	0
11:10:00	16	19	0.02	0.02	0.01
11:15:00	16	19	0.03	0.02	. 0.01
11:20:00	16	19	0.03	0.02	0.01
11:25:00	16	19	0.03	0.02	0.01
		End of S	tep One		
11:30:00	68	38	0.07	0.04	
11:30:30	66	38	0.09	0.04	0.01
11:35:00	64	38	0.09	0.04	0.01
11:40:00	64	38	0.09	0.045	0.015
11:45:00	63	38	0.09	0.045	0.015
11:50:00	62	38	0.09	0.045	0.015
11:55:00	62	38	0.09	0.04	0.015
12:00:00	62	38	0.09		
		End of S	tep Two		
		END OF PI	OT TEST		

Notes:

Vacuum measured in inches of water.

Flow measured in standard cubic feet per minute (SCFM).

-- = Measurement not taken.

TABLE 9

SUMMARY OF SOIL VAPOR ANALYTICAL RESULTS PHASE II VAPOR EXTRACTION PILOT TEST

HADCO CORPORATION OWEGO, NEW YORK

	Soil Vapor Sa	mple Identification
Compound	VE-2-1	VE-2-2
Chloroform	4.4	3.8
1,1-Dichloroethene	222	136
1,1-Dichloroethane	<1.0	<1.0
1,1,1-Trichloroethane	2,064	1,757
1,1,2-Trichloroethane	<1.0	6.4
Methylene chloride	45	36
cis 1,2-Dichloroethene	1.2	<1.0
trans 1,2-Dichloroethene	8.1	4.9
Carbon tetrachloride	<1.0	<1.0
Tetrachloroethene	196	180
Trichloroethene	23,108	30,881

Notes:

Concentrations reported in ug/l.

The concentration of 1,1-dichloroethene represent a sum of this compound and 1,1,2-trichlorotrifloroethane, as these compounds coelute.

TABLE 10

SUMMARY OF ANALYTICAL RESULTS WETLANDS SEDIMENT SAMPLES VOLATILE ORGANIC COMPOUNDS

HADCO CORPORATION OWEGO, NEW YORK

SAMPLE ID	SS-1-93	SS-2-93
(SAMPLE DEPTH)	0-6*	0-6*
Compound		
Acetone		
Benzene		
Bromomethane		
Bromodichloromethane		
Bromoform		
2-Butanone		
Carbon Disulfide		
Carbon Tetrachloride		
Chlorobenzene		
Chloroethane		
Chloroform		
Chloromethane		
Dibromochloromethane		
1,1 – Dichloroethane		
1,2-Dichloroethane		
1,1 – Dichloroethene		
1,2-Dichloroethene (total)		
1,2-Dichloropropane		
cis-1,3-Dichloropropene		
trans-1,3-Dichloropropen		
Ethylbenzene	e	
	-	
2-Hexanone		
Methylene Chloride		
4-Methyl-2-Pentanone Styrene		
1,1,2,2—Tetrachloroethane		
Tetrachloroethene	-40	- -
Toluene		2 / II
1,1,1—Trichloroethane		
1,1,2—Trichloroethane		
Trichloroethene		
Vinyl Chloride		
Xylene (total)		
Total VOCs	143	

Notes:

All concentrations reported in ug/kg, dry weight (ppb).

TABLE 11

SUMMARY OF ANALYTICAL RESULTS WETLANDS SEDIMENT SAMPLES INORGANICS

HADCO CORPORATION OWEGO, NEW YORK

SAMPLE ID	SS-1-93	SS-2-93
(SAMPLE DEPTH)	0"-6"	0"-6"
Analyte		
Chromium	683	790
Copper	162	8.3
Zinc	102	48.3
TOC	1,430	786

Notes:

Concentrations reported in mg/kg dry weight. TOC = Total Organic Carbon (ug/g)

Figures

OWEGO, NEW YORK

CONTOUR INTERVAL = 10 FEET

SITE LOCATION MAP

SCALE: 2000 2000'

SOURCE: USGS 71/2 MINUTE TOPOGRAPHIC QUADRANGLE: APALACHIN, NEW YORK, 1973

ENGINEERS & GEOSCIENTISTS

LEGEND

INTERMITTENT STREAM WITH TOP OF STREAM BANKS SHOWN

- SHALLOW OVERBURDEN MONITORING WELL
- DEEP OVERBURDEN MONITORING WELL
- BEDROCK MONITORING WELL
- SURFACE WATER SAMPLE
- Δ VAPOR EXTRACTION WELL

HADCO CORPORATION OWEGO, NEW YORK

MONITORING WELL LOCATION MAP

SCALE 200' 0 200'

LEGEND

- SHALLOW OVERBURDEN MONITORING WELL
- DEEP OVERBURDEN MONITORING WELL
- BEDROCK MONITORING WELL
- SURFACE WATER SAMPLE
- ▲ VAPOR PROBE LOCATION
- ▲ SOIL BORING
- Δ VAPOR EXTRACTION WELL

HADCO CORPORATION OWEGO, NEW YORK

FORMER CHEMICAL STORAGE AREA LOCATION MAP

LEGEND

- SHALLOW OVERBURDEN MONITORING WELL
- DEEP OVERBURDEN MONITORING WELL
- BEDROCK MONITORING WELL
- SURFACE WATER SAMPLE
- ▲ VAPOR PROBE LOCATION
- SOIL BORING
- △ VAPOR EXTRACTION WELL
- (9.35) TOTAL VOCs CONCENTRATION (ppm)

10 — TOTAL VOCS CONCENTRATION CONTOUR LINE (ppm)

HADCO CORPORATION OWEGO, NEW YORK

TOTAL VOCS ISOCONCENTRATION MAP IN FORMER CHEMICAL STORAGE AREA

INTERMITTENT STREAM WITH TOP OF STREAM BANKS SHOWN

- SHALLOW OVERBURDEN MONITORING WELL
- DEEP OVERBURDEN
 MONITORING WELL
- BEDROCK MONITORING WELL
- SURFACE WATER SAMPLE
- Δ VAPOR EXTRACTION WELL

(829.60') GROUND-WATER ELEVATION

GROUND-WATER CONTOUR LINE, DASHED WHERE INFERRED

HADCO CORPORATION OWEGO, NEW YORK

SHALLOW OVERBURDEN
GROUND-WATER
CONTOUR MAP
JUNE 28, 1993

FENCE FENCE ⊕ MW-32 TOWN OF OWE MW-33

FIGURE 9

LEGEND

INTERMITTENT STREAM WITH TOP OF STREAM BANKS SHOWN

- SHALLOW OVERBURDEN MONITORING WELL
- DEEP OVERBURDEN MONITORING WELL
- BEDROCK MONITORING WELL
- SURFACE WATER SAMPLE
- △ VAPOR EXTRACTION WELL

(819.23') GROUND-WATER ELEVATION

820'-

GROUND-WATER CONTOUR LINE, DASHED WHERE INFERRED

HADCO CORPORATION OWEGO, NEW YORK

BEDROCK GROUND-WATER CONTOUR MAP JUNE 28, 1993

APPENDIX A

Boring Logs and Well Construction Details

					1/11	S, P.	.C.	CLAS	SIFIED BY:			BORING CRB-13	3
			MITION		100 101			PROJ		HADCO CORF	PORATION	PROJECT NO.: 263.05	
UAIL	81	ARTEL		71.00	/28/9		200	LOCA	TION:	Duego, NY		PAGE: 1 of 1	
OEPTH (FT)	SAMPLES	SAMPLE/RUN NO.	E	BLOWS/6 IN.	B	# RECOVERY NO		AVERAGE RATE (MIN./FT)	WELL COLUMN	GEOLOGIC COLUMN	SUBSURFACE LOG		BOOK EFATIBES
0		1 2	1.8	48 47 50 43 50 57	11.7							oarse GRAVEL and fine to coarse t, trace Clay, compact, maist.	
-5 Z		3	0.5	52	13.6						Grades to some to -Wet at 7.5' Bottom of boring	•	
-10											NOTES: Concrete floor coring bit drawing advance 2 in X 2 ft e	r cored through with a diamond iven by a mounted industrial driff. ed with a tripod rig and Standard plit spoon samplers. d to surface upon completion submitted to	
-20													
													-

			ATION		5(81	[11]	i, P	.C.	CLAS	SIFIED BY:		DODA TTOM	BORING CRB-14
	_	ARTED			/28/92					ECT:	Duego, NY	PORATION	PROJECT NO.: 263.05 PAGE: 1 of 1
				IL DA			OCK [ATA		1000			
OEPTH (FT)	53	SAMPLE/RUN NO.		BLOWS/6 IN.			RECOVERY		AVERAGE RATE (MIN./FT)	WELL	GEOLOGIC COLUMN	SUB	SURFACE LOG
TA30 5	SAMPLES	SAMPL	RECOV	BLOW	PID	FROM/TO	× REC	× RO	AVER		, A	SOIL/RO	CK CLASSIFICATION
									17	3			
												CONCRETE.	
										111111	10' 10'	Gray medium GRAVE	L, loose, dry.
- 0	/		0.8	28 31	53.8				73 - 14 C			Brown fine to med moist.	ium GRAVEL, some Clay, compact,
		3	1.3	40	21.6	A						loose, moist.	EL, trace fine Sand and Silt,
	-	4	1.8	20 27 24 36	>2500			5 85				Brown fine to coo GRAVEL, trace Cla	ree SAND and fine to course y, loose, moiet.
5			1 150	68	158110						OF COP		
		5	1.1		>2500						CE CE	ii .	
V				39 107 42								-Het at 7.5'	
i N						-7.9						Bottom of boring	at 8.0 feet.
				1	20.0								
10		3										NOTES:	į
												coring bit driv Boring advanced 2 in X 2 ft ept Boring grouted Sample no. 4 an	cored through with a diamond en by a mounted industrial drill. with a tripod rig and Standard it spoon samplers. to surface upon completion ad 5 submitted to
15								ra v				laboratory for	andiyete.
					18.8			3,17					
79											144 5		
20												2013	
		100								1			
								11				1.75	
								100		1		2-2 5	14
1			100	K.						1			
	1					3.5	7 (3)	27.			1940		

1	SLAND & BOUCK ENGINEERS, P.C.						S P	.G.	CLAC	SIFIED BY:	12/29/92 DHL/TRO	BORING CRB-15	7
										ECT:	HADCO COR		
ATE	ST	ARTED	:	12	/29/92	2			LOCA	TION:	Duego, NY	PAGE: 1 of 1	
			SO	IL DA	ATA	R	OCK (ATA		7			1.5
(1.1)	LES	SAMPLE/RUN NO.	RECOVERY (FT)	BLOWS/6 IN.	PID HEADSPACE (PPM)	TD	X RECOVERY	0	AVERAGE RATE (MIN./FT)	HELL COLUMN	GEOLOGIC COLUMN	SUBSURFACE LOG	
5	SAMPLES	SAMP	RECO	BLOW	PIO	FROM/TO	**	X ROD	AVER		Alk	SOIL/ROCK CLASSIFICATION	1000
				99			87						
		P-/-8											
0							97			//////	16'16'	CONCRETE.	2.00
	/	1	NR	57 27 17								Brown fine to coarse SAND and fine to medium GRAVEL, little Silt, compact, moist.	
	1	2	0.8	12 10 5	111.6	114	4		9.2				
	1	3	2.0	5 10 27	>2500			7.119					
3				50 37 70								-Net at 5.8'	•
-												Bottom of baring at 6.0 feet.	
0	*											NOTES:	•
												Concrete floor cored through with a diamond coring bit driven by a mounted industrial drill. Boring advanced with a tripod rig and Standard	
												3 in X 2 ft eplit spoon samplers. Boring grouted to surface upon completion Sample no. 3 submitted to	
5												laboratory for analysis.	
3													
							25 7						

	200	Section 100	and the latest terms of		1/11		-	.v.		SIFIED BY:			BORING CRB-18
			MTION					1111		ECT:	HADCO COR		PROJECT NO.: 263.05
DATE	81	ARTE	3:	12	/28/9	2			LOCA	TION:	Duego, NY		PAGE: 1 of 1
Œ	63	SAMPLE/RUN NO.	E	BLOWS/6 IN. P	뭥		* RECOVERY 30		AVERAGE RATE (MIN./FT)	WELL COLUMN	GEOLOGIC COLUMN	SUE	BSURFACE LOG
DEPTH (FT)	SAMPLES	SAMPL	RECOV	BLOWS	PIO H	FROM/TO	X REC	× ROD	AVERA			SOIL/RO	OCK CLASSIFICATION
- 0		1	0.7	18 18 18	5.7						/ / / / / / / / / / / / / / / / / / /	CONCRETE. Brown fine to con Gravel, trace Si	aree SAND, some fine to medium It, trace Clay, compact, moist.
· · · · · · ·		3	1.2	26 41 13 18 25 21 24	20.5								
10												coring bit dri	cored through with a diamond ven by a mounted industrial drill. d with a tripod rig and Standard
15												2 in X 2 ft sp	lit spoon samplers. to surface upon completion ubmitted to
20											T		

PRILET: HOCO DEPONTION PROJECT NO. 253.05 MRE STATED: LEZE/SE LOCATION: Deeps, NT PASE: 1 of 1 SUBSURFACE LOG SUBSURFACE LOG CONCRETE. SOIL/ROCK CLASSIFICATION CONCRETE. SOIL/ROCK CLASSIFIC						E)(FI	111	R P	.C.	CLAS	COMPLETED SIFIED BY:	DHL/TRO	BORING CRB-1
SUBSURFACE LOG SOIL /ROCK CLASSIFICATION SOIL /ROCK CLASSIFICATION NOTES:						/28/92	,						
SUBSURFACE LOG SUBSURFACE LOG			101.54		T. 197	1012		OCK D	ATA	184		Value of the last	BEAUTIFUL STATES AND S
CONDETE. Brown fine to coarse GRAVEL and fine to coarse SAND, some Clay, trace Silt, compact, moist: 1 1.6 32 0.0 Brown fine to coarse GRAVEL and fine to coarse SAND, some Clay, trace Silt, compact, moist: 2 1.7 54 11.7 Bit 14.7 Bit 1	H (FT)	E8	3	E	z					AGE RATE IN./FT)	HELL		SUBSURFACE LOG
1 1.6 22 0.0 1 1.6 32 0.0 1 38 1 43 2 1.7 54 11.7 1 51 51 52 0.0 1 55			SAMP	RECO	B'B	PIO	FROM	×	× B	AVER			SOIL/ROCK CLASSIFICATION
1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.7 54 11.7 1 1.7 54 11.7 1 1.8 11 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 2 1.8 12 2 1.8 12 3 1.8 2 7 4 polit spoon samplers. 3 and 3 subsitted to laboratory for analysis.						78	23 077	1					
1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.6 2 0.0 1 1.7 54 11.7 1 1.7 54 11.7 1 1.7 55 11.7 1 1.8 11 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 12 2 1.7 54 11.7 1 1.8 11 2 1.8 12 2 1.7 54 11.7 2 1.8 12 2 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 3 1.8 12 4 1.8 12 5 1.8 12													
1 1.6 2 0.0 1 1.6 32 0.0 1 1.6 32 0.0 1 1.6 32 0.0 1 1.6 32 0.0 1 1.7 54 11.7 1 1.7 54 11.7 1 1.8 11 1 1.9 1												10.	
The state of the s	. 0			1		Page 1				1	/////	10' 10'	
NOTES: Once Part		1		10.00	48 68 43								
NOTES: Concrete floor cared through with a diamond coring bit driven by a mounted industrial drill. Baring advanced with a triped rig and Standard 3 in X 2 ft eplit epoon samplers. Boring grouted to surface upon completion Sample no. 2 and 3 submitted to laboratory for analysis.		N			B1 64								
NOTES: Concrete floor cored through with a diamond coring bit driven by a mounted industrial drill. Baring advanced with a tripod rig and Standard 3 in X 2 ft eplit epoon eamplers. Boring grouted to surface upon completion Sample no. 2 and 3 submitted to laboratory for analysis.	1725	1	3	0.9	1113	238							
NOTES: Concrete floor cored through with a diamond coring bit driven by a mounted industrial drill. Boring advanced with a tripod rig and Standard 3 in X 2 ft epilit epoon complete. Boring grouted to surface upon completion Sample no. 2 and 3 submitted to laboratory for analysis.	Y.												-Het at 5.5'
													Concrete floor cored through with a diamond coring bit driven by a mounted industrial drill. Boring advanced with a tripod rig and Standard 3 in X 2 ft eplit epoon samplers. Boring grouted to surface upon completion Sample no. 2 and 3 submitted to

			ATION	Comment of the last of the las	3/41	(11)	1 , '	.6.	CLAS	BIFIED BY:	DAL/TRO HADOG COR	CODATTON	BORING CRB-18	3
DATE					/28/92	2				TION:	Duego, NY	-CHAN LTON	PROJECT NO.: 263.05	明
5.4				IL DA			OCK I	DATA		7 - 0. 353				1000
OEPTH (FT)	63	SAMPLE/RUN NO.	E		PID HEADSPACE (Ppm)		X RECOVERY		AVERAGE RATE (MIN./FT)	WELL COLUMN	GEOLOGIC COLUMN	SUE	BSURFACE LOG	新作業の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
EPTH 2	SAMPLES	SAMPL	RECOVERY	BLOWS	PIOI	FROM/TO	X REC	X ROD	AVERA			SOIL/RO	OCK CLASSIFICATION	が一般を変形を
	-								8					STATE OF
	t								100					100 ASSESSED
	t	77.7	13	C.				-						official
	E		36									C. Carrier V.		Scillabbeo
	F									mm	A A A	CONCRETE.		SENSON S
0	1	1	0.8	13	0.0			7,0%				Brown fine to coo Silt, compact, ac	aree SAND, some Gravel, trace	SCHOOL S
	1		,E	10		1	100					arit, compact, an	//31.	100 100 100
1	1	2	1.2	9	36.9							10.00		
	1			9										0.00
		3	1.6	В	-				14				30	1000
-5			- 0	4										-69/10St
		4	0.2	8	-									SECTION.
V	N			8								-Het at 7.5'		980,000
				8				4 4			1000000	Bottom of boring	et C C Feet	
	F							A THAN				BOTTOM OF DOFFING	or o.b reer.	1
-10	-											Norma		S. Alla
	-					pd 4 3						NOTES:		
	1								E.		2,1	coring bit driv	cored through with a diamond ven by a mounted industrial drill.	1
	1							4.5				Boring advanced 2 in X 2 ft ep	d with a triped rig and Standard lit epoon eamplere. to eurface upon completion	100
	1						1					Boring grouted Somele no. 3 or	to surface upon completion nd 4 submitted to	199
	-		100									laboratory for	analysis.	788801
-15	F						nie.			La pendro	1000	en en		SC38
	F								9086	. 6				
	-									A 10				100
	1													AL PARTY
												C propos		
-20	-	- 9	1											
1										205				
	-													
	-								150					-
	-	- 1	14.8											
	1		10/16	-							pertina.	and the second		

	5		E EL	LX.	3(1	11	s, P	.C.		SIFIED BY:	12/29/92 DHL/TRO	BORING CRB	-19	
SURF	ACE	ELEV	ATION	l:	Part .	14			PRO.	ECT:	HADCO CORI			
DATE	ST	ARTED	1	12	2/29/9	2			LOCA	TION:	Duego, NY	PAGE: 1 of 1	N. T.	
			SO	IL D			OCK	DATA					7	
DEPTH (FT)	SAMPLES	SAMPLE/RUN NO.	RECOVERY (FT)	BLOWS/6 IN.	PID HEADSPACE (ppm)	FROM/TO	X RECOVERY	9	AVERAGE RATE (MIN./FT)	WELL	GEOLOGIC COLUMN	SUBSURFACE LOG	1	
430 5	SAM	SAM	REC	BLO	PID	FROP	*	* Rab	AVE			SOIL/ROCK CLASSIFICATION		
			100				e e							
									2					
0										//////	AD AD	CONCRETE.		
٥		1	1.1	7	1.7							Brown fine to course SAND, some Gravel, trace Silt, compact, moist.		
	1			14										
		2	1.7	38 22	3.3									
		3	1.6	41	3.5									
-5				37 27				2.4						
V		4	0.8	29 14	0.0			131				-Het at 6.5'		
	1			13 9 15					25					
										77777		Bottom of boring at 8.0 feet.		
-10							(A)	7.46			183		47	
							100					NOTES:		
												Concrete floor cored through with a diamond coring bit driven by a mounted industrial dr Boring advanced with a tripod rig and Standa	ill.	
									14			2 in X 2 ft split spoon samplers. Boring grouted to surface upon completion Sample no. 3 submitted to		
-15									1		higa ms	laboratory for analysis.		
100						- 1	N. E.				ST.			
-20														
											1134	No.		
		la constitution of the									4-12			
F 5		18						e la re						
00		Server.		E 2			il.							

H	3	MD	\$ H	K	1 H	H	S P	G			12/29/92		EXTRACTION POINT VE-2	
	_	_	ATION	_			-			ECT:	HADCO CORE	DODATTON		
	_	ARTE			/29/9	,	Te Va			TION:	Duego, NY	אַעדו עאַיי	PROJECT NO.: 263.05 PAGE: 1 of 1	
J411E	1	- TITLE		-						HITM4.	Liveryo, NT		FFIOL: 1 OF 1	
E	S	/RUN ND.	RECOVERY (FT) 89	IL D	PID HEADSPACE =		OCK I		AVERAGE RATE (MIN./FT)	WELL	GEOLOGIC COLUMN	SUE	BSURFACE LOG	
DEPTH (FT)	SAMPLES	SAMPLE/RUN	RECOVE	BLOWS/6 IN.	PID HE	FROM/TO	* RECOVERY	× ROD	AVERAG			SOIL/R	OCK CLASSIFICATION	
									7	24 B 22	10'10'	CONCRETE.		
- 0		2	1.4	80 61 40 27 19 10	8.8					**************************************		Brown fine to co compact, moist.	arse SAND, some Gravel, trace Silt,	
		3	1.3	19 12 26 14 32	>2500	22						Wet at 5.8'	6.0 Feet.	
10												3 in x 2 ft ap	nd with tripod rig and olit epoon eamplere. o 2 and 3 submitted for analysis.	
15 -								2 1				-	12 FE SE	
20											5	HELL CONSTRUCTION DETAILS 2-inch diameter schedule 40 PVC riser 1.0' - 0.0' 2-inch diameter, SCH 40 PVC 0.040 inch slot screen 6.0' - 1.0' Rounded, washed pea grave! Filter pack 6.0' - 0.5'		
												Filter pack 6.0' - 0.5' Hydrated/bentonite seal 0.5' - 0.0' Well completed with a 4-inch diameter flush mount cover and a press-on cap on top of riser (All measurments for vapor extraction well, taken from bottom of concrete)		

APPENDIX B

Initial IRM Monitoring Data

IRM OPERATION MONITORING LOG

DATE	TIME	TECH.	FLOW (GPM)	FLOW (GPD)	INF PRESS. (PSI)	AIR PRESS. (IN. H2O)	COMMENTS
10/2/53	3:00 AM	P. Wolter.	11.20	51750	//	10	*
		>.Air			ending p	4:30 PM	
* A	Ljurted	done	in blo.	wer to	a readi	5 of 10"	of water.
This	10 sultea	in ou	oil y	Bu 10	de of 1	235 6FM	
	4						
,		P. Lilotter	12.	5773			holell pump
V 2 4		A	10.				by level>
,		1 1	1 10 10 10	1		located o	
		Control	parel.	27 .	t, topa	I purp be	ack in Auto
	orition		111111			0.0	
		P. Leto Her	1		i. H.	29.5	
10/8	4:45 PM		11.64		11.	29.5	/ hatolown
1-	FERGUSE SECTIONS	nit for					
10/12	PER TRESIDENCE TO A TURN THE	el unit	-		61	~9.5	
10/12		P. Wolter		11 11 11 11 11 11 11	11	29.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101	F. T. S. S. S. S. S. S. S. S.	197	1900 - 10 TO	1	12	10	
10/12	The second secon	M. Hower			/2	3.25	Apprex. 5 min. after start
10/13		1 Sowka			12	10	up from Training . Viewing
10/14	12: 55 Am	^ .		36068	12	10	
10/10		Schner		35217	12	11	-
10/14	8:00Am	,	10000	41080	12.5	10	effl. Dample pulled for
' 1	12:10 PM	R. Millard	11.830	44045	12.5	10	11 11 11 11 11
1, /	4123 Am	Ed.	11.895	47139	12.5	10	h n y n
, ,	4-10	KOTAWELL					

IRM OPERATION MONITORING · LOG

			RATE	Total		Magnehelic	
DATE	TIME	TECH:	FLOW (GPM)	FLOW (GPD)	INF PRESS. (PSI)	AIR PRESS. (IN. H2O)	COMMENTS
10/5/83	12:15-40	G)	11.855	52614	12.5	10	
10/15	4:05 Ar	7	11.960	55305	13.5	10	
10/15	9:00AM	E. Hill	11.960	58814	12.5	10	
10-15	12:11 PM	m. H	12.025	61127	12.5	10	
10/15	6:10 pm	J.S	11.895	65348	12.5	10	
10/16	12:30 Am	55	11.895	69833	12.5	10	
10/18	4:418 An	22	11.960	72941	12.5	10	
0/16	8:20 Am	R.M.	11.505	75474	12.75	10	
10-16	11:11 AM	MH	11960	77468	12.5	10	
10-16	4:10-1:21	KBIANELL	11.960	81053	12.5	10	
1-17	2:55 m	PARLING	12.025	88712	12.5	10	
10-17	1:10 PM	MH	12.090	96088	12.5	10	
10-17	5:45 pm	R. Williams	12.025	99298	12.5	10	
10/18	12.10 AM	Thron	12.025	104021	12.5	10	
0/15	4:25 Am	Schrun	12.098	107032	12.5	10	
10-18	8:36 AM	HIH	11.960	1/0051	12.5	10	
10/18	1:12 PM	R.M.	11.960	113366	12.75	10	
10/18	Sio i pm	JS	12.025	16/132	12.5	10	
10/19	12:23 Am	.55	12.025	121350	12.5	10	100
10/19	4:27 Am	27	12.025	24265	12.5	10	
10/19	11:55 Am	R.M.	12.900	129400	12.75	10	
101	torram	Ed	11.960	133368	12.5	6	
10/20	1:10:30sec	5.7	11,961	139115	1.3	10	
10/20	8:25 Am	C. Hill	12,025	144297	13	10	and the second s
0/20	1:00pm	-JK	11.5	147604	12.5	10	
.0/20	6:30 pm	JS	11.960	151554	12.5	10	

IRM OPERATION MONITORING LOG

					Gusqe	Magnificalia.	
DATE	TIME	TECH.	FLOW (GPM)	FLOW (GPD)	INF PRESS. (PSI)	AIR PRESS. (IN. H2O)	COMMENTS
10/21/93	13:10 Am	A :	12:09	155663	13	10	
10/21	4:15 AM	A	1209	158618	13	10	
10/21	9:31Appi	14111	12.025	162338	12.5	10	
10/21	12:18 PM	@. H.11	12.090	164348	12.5	10	
10/21	4100Pm	12 %.	12.090	170773	12.5	10	
10/20	12:55 Am	55	12.450	173408	12.5	10	
10/22	4:40 Am	55	12.025	176131	12.5	10	
10-22	8:50 fim	1411	12.025	179118	12.5	10	
10/22/93	1:00 Pm	R.M.	12.090	1821740	12.75	10	
when	5:30 PM	Ed.	12.025	185408	12.5	10	
10/23	12:45 Am	55	12.025	190569	12.5	10	
10/23	4:15 Am	25	12.025	195102	12.5	D	
10-23	7;25AM	MH	12.0 25	196822	12.5	10	
10-23	12:10PM	HIH	12.0%	198187	12,5	10	Alama and a second a second and
6/13	4:49Fm	Ed.	12.026	205737	12 5	10.	
10/25	12:38 Am	55	12.025	224896	12.5	10	
10/25	5:04Am	5.5	12.090	228086	12.5	10	
10-25	9:15AM	MIN	12.025	23106	12.5	ID	112
10/25	1:10 Pm	R.M.	12.090	233935	12.75	10	
10/25	6.15 pm	JS	121090	2376254	12,75	1012	
10/35	7.48 pin	JS	12.025	238.799	12.75	1017	
	11:50 Pm	77	12.075	241618	12.5	10.7	
,	4:10 An	12	12,625	244727	12.5	10:2	
10/26	9:00 km	R-M.	12.090	2482270	12.75	10.2	
10/21	7:00 pm	15	12.025	255417	12:15	10.2	9
10/26	4:15 Pm	1.0	12040	256493	12.75	10	

IRM OPERATION MONITORING · LOG

DATE	TIME	TECH.	FLOW (GPM)	FLOW (GPD)	INF PRESS. (PSI)	AIR PRESS. (IN. H2O)	COMMENTS
19/27/93	12:20 Am	2.5	12.090	259203	1.2.5	10.2	
10/27/	4:15Am	55	12.025	261984	12.5	10.2	
10-27	8:39 AM	part !		265142	12.5	10.25	
10-2	11:21 Am	my	12.040	26.7076	12.5	10.10	
10/27	A 6:SOPn	Ed.	12.080	272484	12.5	10	Autiod 500 m Vois
10/29	9:10 Pm	Ed.		374161	125	10	
10/28	12:10 AM	可.P.	12025	276297	13	10	
10/28	3:354-	36	12.025	身份和	13	10	
10/20	9:30 &	R.M.	2.090	282782	12.75	10.2	
10/28	11:30 A	P.M.	12.090	284466	12.75	10.2	
10/28	4:17 FM	C. 4:11	12.025	287873	12.75	10.10	
40/25	9.40 Pm	22	12.025	291 73	12.75	10.1	
10/29	12:15 Am	55	122025	293625	12.75	10.1	·
10/29	3:35 Am	5	12960	295995	12.75	10.1	
10-29	2:1720	11711	12.025	300070	1275	10.1	
10-29	11:28 4)4	try h	12.025	30:633	12.80	10.1	
10-20	9:40 Pm	5	12.025	308983	13.75	10.1	
10/30	5 32/5 AM	5	R.025	314777	12.75	10.1	
10/30	5:18 Am	R.m.	12.025	317305	12.75	10.1	But I was 1993
10/30	1:00 Pm	R.M.	12.090	320105	12.75	10.1	
10/30	5130 pm	11	12.025	323270	12.75	10.1	
1. /31	1:25 Am	The.	12.025	328832	12.75	10.0	
10/31	3:43 m	KUB	12025	339851	13.	10,0	
1431	546m	DLD	12.09	341190	13.	10.0	
11/1	111:20 pm	JS	12.285	345318	13.2	10.1	
11/1	7:06 RM	C. H:1(12:350	348573	12.5	8.0	Pump doron have

IRM OPERATION MONITORING.LOG

DATE	TIME	TECH	FLOW (GPM)	FLOW (GPD)	INF PRESS. (PSI)	AIR PRESS. (IN. H2O)	COMMENTS
11-11-93	9125Am	!m!	12.285	348778	ja.5	9.9	
11/1/93	1:00 Pm	R.M.	12.220	351463	13.0	10.0	
1//1	5:31Pm	17d.	12.285	354726	13.25	10.0	
11/1	9:09Pm	Ed.	12.185	35739/	13.25	10	
11/2	12'.55/Am	33	12.255	360101	13.25	10	
11/2	4:15 Am	55	12,255	362578	13.25	10	
11-2	8:50 Airi	MH	12,285	365921	13.25	10.1	
	1:05 PM	R.M.	12.285	369034	13.25	10.0	
	5:20 pm	JS	12.285	372272	13.00	10.2	
11/3	1:20 pm	75	12.220	378039	13.	10.2	
	4:35 Am	22	12,220	380360	13	10. 2	
- 1	8:50AM	MH	12.320	333443	13.0	10.1	
	11:08 AM	H11-5	12.285	385730	13,0	10.2	
11/3	2:00 PM	C. H:11	12.285	387268	13.0	10.2	Pulled Infl EFFI
1.8-	4:20 pm	15	12,220	388985	13.0	10.2	,
11/3	8:32Pm	1ºd.	12.285	392035	13.0	10	
11/4)	12:20 Am	7	12,220	394777	13	10	
	4:20 Am	7	12,285	397709	13	10	
	8:29 AM	MH	12.155		, 13	10,2	Late of the second
	2:30819	Thist	t/ed/	chred.	I in flue	+ ball a	who to
	mainta	in flow	late .	ر الم	12 60/11	+ ball 2	b /
		3/11/92 /	Variety of				
		SEATE TO LESS		The state of	30)		
				Nafale.			
					1400		

ORGANIC DATA COMMENT PAGE

Laboratory Name RECRA ENVIRONMENTAL, INC.

USEPA Defined Organic Data Qualifiers:

- U Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method.
- L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method.
- T This flag is used when the analyte is found in the associated TCLP extraction as well as in the sample.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the Form I and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldolcondensation product.

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory:

Recra Environmental, Inc. -

RECNY Matrix: Aqueous

ab Job No:

A93-3486

Dilution Factor:

Sample Date: Analysis Date: 10/15/03 10/18/93

ab Sample ID: AS047421 Client Sample ID: AIR STRIPPER INFL

Parameter Units = UG/L Result Q Acetone 10 U Benzene J 4 Promodichloromethane Ŭ 5 Bromoform 5 ŢŢ bromomethane 10 U U 2-Butanone 10 Carbon Disulfide 5 U Carbon Tetrachloride 5 U Chlorobenzene 5 U Chloroethane U 10 Chloroform 2 J Chloromethane 10 U Dibromochloromethane U 5 1,1-Dichloroethane 300 E 1,2-Dichloroethane 1,1-Dichloroethene 340 E ,2-Dichloroethene (Total) 650 E U 1,2-Dichloropropane 5 cis-1,3-Dichloropropene 5 U 5 U trans-1,3-Dichloropropene 5 U Ethyl benzene 10 Ŭ 2-Hexanone Methylene chloride 5 U 10 U 4-Methyl-2-pentanone 5 U Styrene 5 U 1,1,2,2-Tetrachloroethane Tetrachloroethene 10 Toluene U E 1,1,1-Trichloroethane 2000 1,1,2-Trichloroethane U 2300 Trichloroethene E 10 U Vinyl acetate 54 Vinyl chloride 5 U Total Xylenes

METHOD 8240 - TCL VOLATILE ORGANICS

_aboratory: Lab Job No: Recra Environmental, Inc. -

Matrix:

Aqueous

A93-3486

Dilution Factor: 40

Lab Sample ID:

AS047421DL

Sample Date:

10/15/93

Client Sample ID: AIR STRIPPER INFL DL

Analysis Date:

10/18/93

Parameter	Units = UG/L	Result	Q
Acetone		400	U
Benzene		200	U
Bromodichloromethane		200	l u
Bromoform		200	Ū
Bromomethane		400	U
2-Butanone		400	U
Carbon Disulfide		200	Ū
arbon Tetrachloride		200	Ū
Chlorobenzene		200	Ū
Chloroethane	· •	400	Ū
Chloroform		200	Ū
Chloromethane		400	ΙŪ
bromochloromethane		200	U
,1-Dichloroethane		300	D
,2-Dichloroethane		200	υ
,1-Dichloroethene		320	D
,2-Dichloroethene (Total)		660	D
,2-Dichloropropane		200	ט
is-1,3-Dichloropropene		200	טן
rans-1,3-Dichloropropene		200	Ū
thyl benzene		200	U
-Hexanone		400	U
Methylene chloride		200	Ū
-Methyl-2-pentanone		400	U
tyrene		200	U
,1,2,2-Tetrachloroethane		200	7,7
eurachioroethene		200	Ū
oluene		200	U
,1,1-Trichloroethane		2900	D
,1,2-Trichloroethane		200	ט
richloroethene		5000	D
inyl acetate		400	U
inyl chloride		400	U
Cotal Xylenes		200	ט

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory: Lab Job No:

Recra Environmental, Inc. -

RECNY Matrix:

Aqueous

A93-3486

Dilution Factor: 1

Lab Sample ID:

AS047422

Sample Date:

Client Sample ID: AIR STRIPPER EFFL

Analysis Date:

10/15/93 10/18/93

Parameter Units - U	G/L Result	Q
Acetone	10	U
Benzene	5	U
Bromodichloromethane	5	Ū
Bromoform	5	Ū
Bromomethane	10	Ū
2-Butanone	10	Ū
Carbon Disulfide	. 5	Ū
Carbon Tetrachloride	5	Ü
Chlorobenzene	5	Ü
Chloroethane	10	ט ו
Chloroform	5	ט
Chloromethane	10	ט ו
Dibromochloromethane	5	Ü
1,1-Dichloroethane	1 5	Ü
1,2-Dichloroethane	5	ט
1,1-Dichloroethene	. 5	ש
1,2-Dichloroethene (Total)	5	ŭ
1,2-Dichloropropane	5	Ü
cis-1,3-Dichloropropene	5	ש
trans-1,3-Dichloropropene	5	ט
Ethyl benzene	5	ŭ
2-Hexanone	10	Ü
Methylene chloride	5	ū
4-Methyl-2-pentanone	10	U
Styrene	5	U
1,1,2,2-Tetrachloroethane	5	n
Tetrachloroethene	5	U
Toluene	5	ū
1,1,1-Trichloroethane	5	U
1,1,2-Trichloroethane	5	1 -
Trichloroethene	5	U
Vinyl acetate	10	ŭ
Vinyl chloride	10	U
Total Xylenes	5	U

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory:

Recra Environmental, Inc. -

RECNY Matrix: Aqueous

Lab Job No:

A93-3486

Dilution Factor: 1

Lab Sample ID:

AS047423

Sample Date:

Client Sample ID: TRIP BLANK

Analysis Date:

10/15/93 10/18/93

Parameter	Units $=$ UG/L	Result	Q
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Dichloroethene 2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl benzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes		10555500555555555555555555555555555555	ממממממממממממממממממממממממממממ

INORGANIC DATA COMMENT PAGE

Laboratory Name RECRA ENVIRONMENTAL, INC.

USEPA Defined Inorganic Data Qualifiers:

- B Indicates a value greater than or equal to the instrument detection limit but less than the contract required detection limit.
- U Indicates element was analyzed for but not detected. Report with the detection limit value (e.g., 100).
- E Indicates a value estimated or not reported due to the presence of interference.
- S Indicates value determined by Method of Standard Addition.
- N Indicates spike sample recovery is not within control limits.
- * Indicates duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for method of standard addition is less the 0.995.
- M Indicates duplicate injection results exceeded control limits.
- W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.

Total Metals Analysis

RECOH

Recra Environmental, Inc. -Laboratory:

Lab Job No:
Lab Sample ID: CS006310
Client Sample ID: AIR STRIPPER BFF.

Sample Date: Matrix:

Aqueous 10/15/93

Н Dilution Factor:

			The second secon	The second name of the second na		
. Parameter	Units = MG/L	Method	Digestion Date	Analysis Date	Result	Ø
Copper - Total		7210	10/18/93	10/19/93	0.020	
Lead - Total		7421	10/18/93	10/19/93	0.0030	ח
Nickel - Total		6010	10/18/93	10/19/93	0.040	ח
Tin - Total		0109	10/18/93	10/20/93	0.20	n
	Contraction of the Contract of					

Wet Chemistry Analysis

HADCO

Laboratory:
Lab Job No:
Lab Sample ID:
Client Sample ID:

	10000	154
	ø	n
Aqueous 10/15/93 r: 1	Result	1.0
Matrix: Sample Date: Dilution Factor:	182 183	
Matrix: Sample Date: Dilution Fac	Analysis Date	10/16/93
	Method	160.2 9070
	Units of Method	MG/L MG/L
Laboratory: Recra Environmental, Inc RECOR Lab Job No: C33-0582 Lab Sample ID: C3006310 Client Sample ID: AIR STRIPPER EFF.	Parameter	Residue (103°C) le Oil & Grease
laboratory: lab Job No: lab Sample ID: Client Sample ID:		Non-Filterable Residue (103°C) Total Recoverable Oil & Grease

Chemical and Environmental Analysis Services

October 29, 1993

Read 153

Mr. Perry Walter Hadco Corporation 1160 Taylor Road Owego, NY 13827

Dear Mr. Walter:

Please find enclosed results concerning the analyses of the samples recently submitted by your firm. The Pertinent Information regarding these analyses is listed below:

Ouote #: NY93-493

Project Name: Air Stripper

Matrix: Aqueous

Samples Received: 10/22/93

Sample Date: 10/21/93

If you have any questions concerning these data, please contact Ms. Michele Streif, Associate Program Manager at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide Hadco Corporation with Environmental Testing Services. We look forward to serving you in the future.

Sincerely,

RECRA ENVIRONMENTAL, INC.

Michele M. Streif

Associate Program Manager 7. Steady for RKW

Robert K. Wyeth

Laboratory Director

MMS/RKW/mms

I.D.#A93-3567 NY4A4775

ANALYTICAL RESULTS

Prepared For

Hadco Corporation 1160 Taylor Road Owego, NY 13827

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14228-2298

METHODOLOGIES

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to one of the following U.S. Environmental Protection Agency references

* U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste-Physical/Chemical Methods." Office of Solid Waste and Emergency Response. November 1986, SW-846, Third Edition.

COMMENTS

Comments pertain to data on one or all pages of this report.

Quality control analysis was performed on a batch basis. All results were within acceptable limits.

The enclosed data has been reported utilizing data qualifiers (Q) as defined on the Organic Data Comment Page.

METHOD 8240

Sample Air Stripper Influent was initially analyzed at a dilution factor of 40 (forty).

Laboratory Name RECRA ENVIRONMENTAL, INC.

USEPA Defined Organic Data Qualifiers:

- U Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method.
- L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method.
- T This flag is used when the analyte is found in the associated TCLP extraction as well as in the sample.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the Form I and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldolcondensation product.

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory: Recra Environmental, Inc. - RECNY Matrix: Aqueous

Tab Job No: A93-3567 Dilution Factor: 40

ab Sample ID: AS047822 Sample Date: 10/21/93

client Sample ID: AIR STRIP. INFL. Analysis Date: 10/21/93

Parameter Units	= UG/L Result	Q
Acetone	400	U
Benzene	200	U.
Bromodichloromethane	200	U
Bromoform	200	U
Bromomethane	400	U
2-Butanone	400	U
Carbon Disulfide	200	U
Carbon Tetrachloride	200	U
Chlorobenzene	200	U
Chloroethane	400	ן ט
Chloroform	200	υ
Chloromethane	400	υ
Dibromochloromethane	200	υ
1,1-Dichloroethane	230	
1,2-Dichloroethane	200	υ
1,1-Dichloroethene	310	- 1
1,2-Dichloroethene (Total)	610	İ
1,2-Dichloropropane	200	lυ
cis-1,3-Dichloropropene	200	υ
trans-1,3-Dichloropropene	200	υ
Ethyl benzene	200	υ
2-Hexanone	400	υ
Methylene chloride	200	ן ט
4-Methyl-2-pentanone	400	υ
Styrene	200	υ
1,1,2,2-Tetrachloroethane	200	ט
Tetrachloroethene	200	ט
Toluene	200	υ
1,1,1-Trichloroethane	2100	
1,1,2-Trichloroethane	200	υ
Trichloroethene	4300	
Vinyl acetate	400	υ
Vinyl chloride	400	U
Total Xylenes	200	U

U

U

U

U

IJ

J

U

U

U

U

U

U

U

U

U U

5

5

5

5

0.8

10

10

5

5

5

5

5

5

10

10

HADCO

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory: Recra Environmental, Inc. - RECNY Matrix: Aqueous

Lab Job No: A93-3567 Dilution Factor: 1

l b Sample ID: AS047823 Sample Date: 10/21/93 Lient Sample ID: AIR STRIP. EFFL. Analysis Date: 10/25/93

Result Parameter Units = UG/L Q Acetone 10 IJ 5 Benzene U Bromodichloromethane 5 U 5 Bromoform U Bromomethane 10 U 2-Butanone 10 U Carbon Disulfide 5 U Carbon Tetrachloride 5 U Chlorobenzene 5 U Chloroethane 10 U Chloroform U 5 Chloromethane 10 U Dibromochloromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 5 1,1-Dichloroethene U 5 1,2-Dichloroethene (Total) U

1,2-Dichloropropane cis-1,3-Dichloropropene

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl acetate

Total Xylenes

Vinyl chloride

4-Methyl-2-pentanone

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Ethyl benzene

2-Hexanone

Styrene

Toluene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory: Lab Job No: Recra Environmental, Inc. - RECNY Matrix: Aqueous

Dilution Factor: 1

Tab Job No: A93-3567 ab Sample ID: AS047824 10/21/93 Sample Date: client Sample ID: TRIP BLANK Analysis Date: 10/25/93

Parameter	Units = UG/L	Result	Q
Acetone		10	U
Benzene		5	ט
Bromodichloromethane		5	ט
Bromoform		5	ט
Bromomethane		10	ט
2-Butanone		10	ט
Carbon Disulfide		5	ט
Carbon Tetrachloride		5	ט
Chlorobenzene		5	ט
Chloroethane		10	ט
Chloroform		5	ט
Chloromethane		10	υ
Dibromochloromethane		5	Ū
1,1-Dichloroethane		5	U
1,2-Dichloroethane		5	ט
1,1-Dichloroethene		5	Ū
1,2-Dichloroethene (Total)		5	Ū
1,2-Dichloropropane		5	Ū
cis-1,3-Dichloropropene		5	Ū
trans-1,3-Dichloropropene		5	Ū
Ethyl benzene		5	Ū
r 2-Hexanone		10	Ū
Methylene chloride		5	U
4-Methyl-2-pentanone		10	Ū
Styrene		5	Ū
1,1,2,2-Tetrachloroethane		5	U
Tetrachloroethene	•	. 5	Ū
Toluene		5	Ū
1,1,1-Trichloroethane		5	U
1,1,2-Trichloroethane		5	Ū
Trichloroethene		5	Ū
Vinyl acetate		10	Ū
Vinyl chloride		10	Ū
Total Xylenes		5	Ū
		_	

METHOD 8240 - TCL VOLATILE ORGANICS

Laboratory: Tab Job No: Recra Environmental, Inc. - RECNY Matrix: Aqueous

Dilution Factor: 1 A93-3567

ab Sample ID: Sample Date: AM003394

Client Sample ID: VBLK66 Analysis Date: 10/25/93

Parameter	Units = UG/L	Result	Q
Acetone Benzene		10 5	n n
Bromodichloromethane		5	l ü
Bromoform		5	l ü
Bromomethane		10	Ü
2-Butanone		10	ا ت ا
Carbon Disulfide		5	ľΰ
Carbon Tetrachloride		5	ŪΙ
Chlorobenzene		5	ן ט ן
Chloroethane		10	ע
Chloroform	•	5	ן ט ן
Chloromethane		10	ט
Dibromochloromethane		5	ן די
1,1-Dichloroethane		5	ן ט
1,2-Dichloroethane	_	5	ן די
1,1-Dichloroethene		5	ן ט
1,2-Dichloroethene (Total)		5	ן ט
1,2-Dichloropropane		5	ע
cis-1,3-Dichloropropene		5	ן ט
trans-1,3-Dichloropropene		5	U
Ethyl benzene		5	ע
2-Hexanone		10	U
Methylene chloride		5	ן ש
4-Methyl-2-pentanone		10	ŭ
Styrene		5	U
1,1,2,2-Tetrachloroethane	•	5	U
Tetrachloroethene		5 5	ן ט
Toluene 1,1,1-Trichloroethane		5	ū
1,1,2-Trichloroethane		5	U
Trichloroethene		. 5	Ū
Vinyl acetate		10	ប
Vinyl acecate Vinyl chloride		10	Ŭ
Total Xylenes		5	ប៊
Total Mytomes			
	The second secon		

METHOD 8240 - TCL VOLATILE ORGANICS WAITER SURROGATE RECOVERY HADOO

- RECNY Recra Environmental, Inc. A93-3567 Laboratory: Lab Job No:

Client Sample ID	Lab Sample ID	S1 TOL #	S2 BFB #	S3 DCE
AIR STRIP. EFFL. AIR STRIP. INFL. TRIP BLANK VBLK66	ASO47823 ASO47822 ASO47824 AMO03394	96 95 98 97	8 8 8 6 6 6	9 9 9 8

OC Limits

(88 - 110) (86 - 115) (76 - 114)

p-Bramofluorobenzene 1,2-Dichloroethane-D4 BFB S1 S2 S3

Toluene-D8

JQI

Column to be used to flag recovery values Values outside of contract required QC limits # * O

Surrogates diluted out

METHOD 8240 - TCL VOLATILE ORGANICS WAITER INTERNAL STANDARDS RECOVERY HADOO

- RECNY Recra Environmental, Inc. A93-3567 Laboratory: Lab Job No:

Client Sample ID	Lab Sample ID	IS1 BOM #	IS2 DFB #	IS3 CBZ	#
	AS047823	105	104	108	
AIR STRIP. INFL.	AS047822	103	103	107	
TRIP BLANK	AS047824	104	105	108	
VBLK66	AM003394	101	102	104	

OC Limits

(50 - 200) (50 - 200) (50 - 200)

1,4-Difluorobenzene Branochloramethane

BCM DFB CBZ

IS1 IS2 IS3

Chlorobenzene-D5

Column to be used to flag recovery values Values outside of contract required QC limits # *

RECRA ENVIRONMENTAL, INC.

CHAIN OF CUSTODY RECORD

A PARTIES SCHANUSE. TANGER ONE THE COMP GAR STAINER TANDOLOGATON TANGER ONE THE COMP GAR STAINER TANDOLOGATON TANGER ONE THE STAINER TANDOLOGATON A PAPER OF THE STAINER TANDOLOGATON A PAPER ONE THE STAINER TANDOLOGATON A PAPER ONE THE STAINER TANDOLOGATON TALE BELINDUISHED BY ISCHALUSE. TALE BY IS	PROJECT NO	0	3 1		HAIXO COKP. OWCCO, N.Y. 138	NO NO	- Amer	//	//	
AN STRIPPER TURINEST 2 X TRIP BLANKS TRIP BLANKS 22 X TRIP BLANKS 23 X TRIP BLANKS 24 X TRIP BLANKS 25 X TRIP BLANKS 26 X TRIP BLANKS DATE: TIME RECEIVED BY SIGNATURE: DATE: TIM	SAMPLERS	SIGNATURE	iegs	-		CON. TAINER		//		REMARKS
AND STRIPPER TWALLESST 2 X TRIP BLAWKS 22 X TRIP BLAWKS 22 X OATE-TIME RECEIVED BY ISIGNATURE) DATE-TIME RECEIVED BY ISIGNATURE)	STATION	ATE TIME CO		RAB	STATION LOCATION					200
TRIP BLANKS 2, X TRIP BLANKS 2, X TRIP BLANKS DATE: TIME RECEIVED BY ISIGNATURE: DATE: TIME RECEIVED BY ISIGNATURE: DATE: TIME RECEIVED BY ISIGNATURE: DATE: TIME RECEIVED FOR LYONADON BY ISIGNATURE: DATE: TIME RECEIVED FOR LYO	1 10	12.10pm		P 17	AIR STRIPPER INFLUENT	N	×			
DATE-TIME RECEIVED BY ISIGNATURE) DATE-TIME RECEIVED BY ISIGNATURE) DATE-TIME RECEIVED FOR UNDANISHED BY ISIGNATURE)		12/9312:15pm			Air strupper Emensor	4	×			
DATE TIME RECEIVED BY SIGNATURE) DATE TIME RECEIVED FOR LARONARY BY DATE TIME RECEIVED FOR LARONARY BEAMARKS		11/99	1		TRIP BLANKS	4	×			
DATE.TIME RECEIVED BY (SIGNATURE) DATE.TIME RECEIVED BY (SIGNATURE) DATE.TIME RECEIVED BY (SIGNATURE) DATE.TIME RECEIVED FOR LABORATORE)										
DATE.TIME RECEIVED BY (SIGNATURE) DATE.TIME RECEIVED FOR LABORATOR BY (SIGNATURE)							5.4			100
DATE-TIME RECEIVED BY ISIGNATURE)						*				4
DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED FOR LABORATORE)									1/17 2/2 2/3 2/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3	
DATE-TIME RECEIVED BY ISIGNATURE) DATE-TIME RECEIVED BY ISIGNATURE) DATE-TIME RECEIVED BY ISIGNATURE) DATE-TIME RECEIVED FOR LANGORANDER DATE-TIME RECEIVED FOR LANGORANDE				3.5				7		37
DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED FOR LABORATOR BY DATE TIME RECEIVED DATE TIME RECEIVED FOR LABORATOR BY DATE TIME BEMARKS										
DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED FOR LAFORD BY (SIGNATURE)										
DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED BY ISIGNATURE) DATE TIME RECEIVED FOR LABORAD BY ISIGNATURE) DATE TIME RECEIVED FOR LABORAD BY ISIGNATURE) DATE TIME RECEIVED FOR LABORAD BY INTO THE BEMARKS		*	4.4							
DATE/TIME RECEIVED BY ISIGNATURE) DATE/TIME RECEIVED BY ISIGNATURE) DATE/TIME RECEIVED FOR LABORADORY BY										
DATE/TIME RECEIVED BY (SIGNATURE) DATE/TIME RECEIVED BY (SIGNATURE) DATE/TIME RECEIVED FOR LAPORATORS										
DATE/TIME RECEIVED BY ISIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME DATE/TIME RECEIVED FOR LANORAND BY DATE/TIME BEMARKS (SIGNATURE)	RELIGIOUS	HED BY IGIGN	ATURE)		RECEIVED BY	JRE)	RELINQUISH			RECEIVED
DATE/TIME RECEIVED FOR LABORATORY BY DATE/TIME (SIGNATURE)	RELINQUIS	HED BY (SIGNA	ATURE)		RECEIVED BY	JRE)	RELINGUISH	IED BY (SIGNAT		
	RELINQUIS	HED BY (SIGNA	(TURE)		RECEIVED FOR LAS		1050/971	1		

APPENDIX C

Laboratory Analytical Reports (Submitted Under Separate Cover)