

AECOM 1 John James Audubon Parkway Suite 201 Amherst, NY 14228 aecom.com

March 31, 2022

Mr. Douglas MacNeal Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 11th Floor Albany, NY 12233

Groundwater Monitoring Event Report - 2021 Q4 Ithaca Court Street Former MGP Site - OU-2 Ithaca, New York NYSDEC Site: 7-55-008

Dear Mr. MacNeal,

On behalf of New York State Electric and Gas (NYSEG), AECOM USA, Inc. (AECOM) is pleased to present this Groundwater Monitoring Event (GME) report for the former Ithaca Court Street Manufactured Gas Plant (MGP) Operable Unit 2 (OU-2) site in Ithaca, New York (the "Site"). **Figure 1** attached shows the Site Location Plan.

This correspondence documents the findings of the GME completed over the period December 6 – 9, 2021 (2021 Q4 GME) which was undertaken in accordance with the Draft Site Management Plan (SMP; AECOM, 2019). In addition, Site engineering controls were assessed during the Annual Inspection completed at the time of the 2021 Q4 GME.

Results from the 2021 Q4 GME will be incorporated into the ongoing groundwater monitoring dataset in accordance with the requirements of the Draft SMP.

1. Background

The NYSEG Ithaca site is divided into two operable units (OUs). Operable Unit 1 (OU-1) consists of the former MGP parcel, surrounding sidewalks, and the location of the former tar duct structures under West Court Street from the site to North Meadow Street. Operable Unit 2 (OU-2) consists of any areas outside of the OU-1 boundary that may have been impacted by the migration of MGP residuals directly from OU-1 historical operations.

The primary constituents of concern at the Site are benzene, toluene, ethylbenzene, and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and cyanide. The Site has undergone extensive remedial investigation and numerous interim remedial measures and remedial actions including excavations and historical structure removal have been completed. A history of the remedial investigations and actions completed at the Site is provided in the Draft SMP.

The Draft SMP was submitted to the New York State Department of Environmental Conservation (NYSDEC) in October 2019 and is pending approval. The Draft SMP outlines the monitoring requirements for the Site which include quarterly groundwater monitoring for 15 locations across the Site for two years (September 2020 – September 2022) to establish baseline conditions and to evaluate the potential for seasonal fluctuations in constituent concentrations. From year three through year five (October 2022 – October 2025), only wells containing MGP-related constituents at concentrations greater than the applicable water quality standards and guidance values will be sampled quarterly. The remaining wells will be sampled annually.

The 2021 Q4 GME is the fifth GME to be completed since submission of the Draft SMP to NYSDEC in October 2019.

2. Scope of Work

The scope of work completed for the 2021 Q4 GME included the following:

- On December 6, 2021, Site-wide water level gauging was completed at the wells specified for monitoring by the
 Draft SMP and all additional well locations where access was possible. This effort was to assess water levels
 across the broader monitoring well network. Groundwater monitoring well locations are presented in Figure 2
 attached.
- Each well was gauged for the presence of non-aqueous phase liquid (NAPL) using an oil-water interface probe.
- Over the period December 7 9, 2021, a total of 15 groundwater monitoring wells (MW-C11, MW-C12, MW-C16, MW-22S, MW-23S, MW-24S, MW-25S, MW-28S, MW-31S, MW-33S, MW-40, MW-45S, MW-46S, MW-47S, and MW-48S) were sampled in accordance with the Draft SMP. It is noted that monitoring well MW-33S was incorrectly labeled MW-36S on the purge forms, chain of custody, and laboratory reports.
- The following groundwater sampling activities were conducted:
 - Water level measurements were taken at each well prior to purging and sampling.
 - Each well was purged and sampled using low-stress (low flow) groundwater sampling methods by use of a
 peristaltic pump. Select wells ran dry during the purging process, namely, MW-25S, MW-45S, and MW47S. These wells were each left for various amounts of time to recharge and were then sampled upon the
 field team's return.
 - Field parameters, including temperature, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP),
 specific conductivity, drawdown, and turbidity, were monitored and documented prior to sample collection.
 The following stabilization criteria were met for each parameter before sampling:
 - Temperature ±3%
 - pH ±1.0 unit
 - DO ±10%
 - ORP ±10mV
 - Specific Conductivity ±3%
 - Drawdown <0.3 feet
 - Groundwater purge and sampling forms are provided in Appendix A.
 - All wastewater generated during sampling (purge water and decontamination fluids) was containerized in 55-gallon steel drums for off-Site disposal.
- Quality control samples were collected including one for every 20 field samples taken. Quality control samples
 consisted of a field duplicate, a matrix spike, a matrix spike duplicate, and an equipment blank. Based on the
 number of wells to be sampled (15), one set of quality control samples were required. A trip blank was sent daily
 with each set of VOC samples. Quality control samples were analyzed for BTEX, PAHs and total cyanide.
- Groundwater samples were shipped on December 7 and 8, 2021 via courier to Eurofins TestAmerica in Buffalo, New York for laboratory analysis. On December 9, 2021 groundwater samples were dropped off by AECOM at the Eurofins Test America service center in Albany, New York, to be shipped to Eurofins Test America in Buffalo, New York for laboratory analysis.

All activities were conducted in accordance with the SMP (AECOM, 2019) and Work Plan (AECOM, 2020a) that was submitted to, and approved by, the NYSDEC on September 1, 2020.

Further to the above, in response to the recommendation provided in the AECOM document titled *Subject:* Groundwater Monitoring Event Report – September/October 2020 Ithaca Court Street Former MGP Site – OU-2, Ithaca, New York, dated December 17, 2020 (AECOM, 2020b) regarding the removal of sediments and residual solids to the extent practicable in select wells, this was completed following sampling at monitoring wells MW-45S and MW-48S.

The Annual Inspection of engineering controls was also completed at the time of the 2021 Q4 GME. Refer **Section 3.0** for details.

3. Annual Inspection

3.1 Engineered Cover System

OU-1 Gas Plant site areas, OU-1 Markles Flats area, OU-1 Wooden Duct Removal area, OU-2 Washington Street IRM area, OU-2 Wooden Duct removal areas west of North Meadow Street, OU-2 Excavation Area 1A, and OU-2 Excavation Area 1B were excavated and backfilled with certified clean fill and/or clean gravel. Portions of these excavation areas were also restored with impermeable paving. The combination of paving and the clean fill cover, referred to as an engineered cover system, act as a barrier between the remaining contamination that may be present at depths below the remedial excavation extent. The engineered cover system prevents direct exposure of humans and ecology to the remaining contamination. This cover system is comprised of a minimum of 24 inches of clean soil and/or asphalt pavement and concrete-covered sidewalks.

The cover system was inspected during the 2021 Q4 GME for any indication of breach. Visual inspection revealed no signs of excavation or intrusive work within the footprint of the engineered cover system.

3.2 Monitored Natural Attenuation

Groundwater monitoring activities to assess natural attenuation have been conducted on a quarterly basis, as determined by the NYSDEC in consultation with New York State Department of Health (NYSDOH), beginning in the fourth quarter of 2020 to document if residual groundwater concentrations are found to be consistently below ambient water quality standards, the Site Standards, Criteria and Guidance (SCGs), or have become asymptotic at an acceptable level over an extended period. As required under the SMP, during the first two years, all monitoring wells will be sampled quarterly to establish baseline conditions and to evaluate the potential for seasonal fluctuations in contaminant concentrations.

Results of each event are provided to the NYSDEC under separate reports for each event. Groundwater monitoring will continue as defined in the SMP. Results, discussion and trend analysis is presented in **Section 6.0**.

4. Groundwater Gauging and Sampling Observations

A total of 38 groundwater wells were gauged, and 15 wells sampled. Well gauging data is provided in **Table 2** attached. A summary of observations is provided below:

- The general direction of groundwater flow in the shallow portion of the aquifer was to the northwest, and
 comparable to previous sampling events. Figure 3 attached presents the shallow aquifer inferred groundwater
 surface contours. Groundwater elevation ranged from 380.70 ft (MW-23S) to 389.40 ft (MW-13S) in the shallow
 aquifer. The groundwater table was lower in elevation compared to the previous gauging event completed in
 September 2021.
- No measurable NAPL was identified in any of the gauged wells.

The following is noted regarding odors and sheen at the time of the 2021 Q4 GME:

- A product-like odor was noted when purging at well MW-23S. Sheen has been noted at this well before, which
 may be attributed to the noted odor.
- An organic-like odor (i.e., decaying material) was noted at well MW-24S while purging. Organic-like odor has been noted at this well during previous sampling events. Trace amounts of sheen was observed on the purge water surface.
- A sulfur-like odor was noted at well MW-28S while purging. During the previous Q3 2021 sampling event, a damp (decomposing) odor was noted, which is assumed to be similar.

- A product-like odor and sheen were both noted at well MW-46S while purging. Sheen and product-like odors
 have been noted at this well during previous sampling events.
- A metallic-like odor was noted at well MW-48S while purging. Various odors have been noted at this well previously.

The following additional observations were made:

- White flecks were observed in the purge water at well MW-23S and MW-31S. White flecks have not previously been observed in the purge water at these wells.
- Well MW-40 was noted to be in poor condition. The concrete pad around the curb box is broken and heaved above ground surface.

5. Analytical Laboratory Analyses

All groundwater samples were analyzed for:

- BTEX: United States Environmental Protection Agency (USEPA) SW846 Method 8260C
- PAHs: USEPA SW846 Method 8270D Low Level and USEPA SW846 Method 8270E in Selected Ion Monitoring (SIM) Mode
- Total cyanide: USEPA SW846 Method 9012B
- Monitored Natural Attenuation (MNA) parameters:
 - Nitrate and Nitrite: MCAWW Method 353.2 (Nitrate by calculation)
 - Ammonia: USEPA MCAWW Method 350.1
 - Total Iron: USEPA SW846 Method 6010C
 - Ferrous Iron: Standard Method 3500-Fe D
 - Sulfate: USEPA MCAWW Method 300.0
 - Methane: USEPA Method RSK-175
 - Total Alkalinity: Standard Method 2320B

The laboratory prepared a complete NYSDEC ASP Category B data delivery package for the requested analysis. **Appendix B** contains the full laboratory report obtained from Eurofins Test America Laboratory.

6. Discussion of Analytical Results

Samples were collected from all 15 wells as required by the Draft SMP. The groundwater sample results were validated by an AECOM chemist, and all data have been determined to be usable and no data points were rejected. A full copy of the Data Usability Summary Report (DUSR) is provided in **Appendix C**.

Results of analysis have been screened against the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 *Ambient Water Quality Standards and Guidance Values* (AWQS/GV) for water class GA. **Table 3** and **Table 4** attached provides a summary of the analytical results screened against the AWQS/GV. Also included in **Table 3** and **Table 4** are the results of the previous analyses for reference.

Observed MGP-constituent trends are either stable or unable to be determined with the exception of:

- Ethylbenzene at monitoring well MW-48S which is noted to have a decreasing trend, and at monitoring well MW-23S with a probable decreasing trend.
- Toluene at monitoring well MW-48S which is noted to have a decreasing trend.
- Total xylenes at monitoring well MW-48S which is noted to have a probable decreasing trend.

Refer to **Section 7.0** for additional discussion regarding trends.

An overview of the groundwater analytical results from this GME is provided below, and **Figure 4** summarizes groundwater exceedances for BTEX, PAHs and total cyanide.

6.1 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

A total of four out of 15 sampled wells (MW-C12, MW-23S, MW-46S and MW-48S) reported concentrations of BTEX above the AWQS/GV for at least one compound.

Monitoring well MW-C12, located on North Plain Street in the vicinity of the in-situ chemical oxidation (ISCO) remedial action area, reported a benzene exceedance. The other three wells reporting BTEX compounds above the AWQS/GV are located to the west of the Site in the Washington Street area. The extent of BTEX impacts across the monitoring well network is consistent with the previous GME with the addition of a toluene exceedance at monitoring well MW-46S.

On comparison with the data obtained at the time of the previous GME, the following is noted:

- Reported benzene and ethylbenzene concentrations at monitoring well MW-C12 were lower compared to the previous GME.
- Reported BTEX concentrations at monitoring well MW-23S were lower compared to the previous GME.
- Reported BTEX concentrations at monitoring well MW-46S have increased since the previous GME.
- Reported benzene, ethylbenzene, and xylene concentrations at monitoring well MW-48S were comparable to the previous GME.
- Monitoring wells MW-C11, MW-C16, MW-22S, MW-24S, MW-25S, MW-28S, MW-31S, MW-33S, MW-40S, MW-45S, and MW-47S continue to report BTEX concentrations below the AWQS/GV consistent with previous monitoring events.

6.2 Polycyclic Aromatic Hydrocarbons (PAHs)

A total of seven out of 15 sampled wells reported concentrations of PAHs above the AWQS/GV for at least one compound, namely; MW-C12 (acenaphthene), MW-C16 (benzo(a)anthracene), MW-23S (acenaphthene, naphthalene, benzo(a)anthracene), MW-40 (benzo(a)anthracene), MW-46S (naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene), MW-47S (benzo(a)anthracene, benzo(b)fluoranthene), and MW-48S (acenaphthene, naphthalene, benzo(a)anthracene).

Two of the wells with exceedances are located in the North Plain Street ISCO area (MW-C12 and MW-C16), and the other wells (MW-23S, MW-40, MW-46S, MW-47S, and MW-48S) are located to the west of the Site in the Washington Street area. The extent of PAH impacts and detectable PAH constituents across the monitoring well network is consistent with the previous GME.

On comparison with the data obtained at the time of the previous GME, the following is noted where concentrations are reported above the AWQS/GV at the time of this current GME:

- Acenaphthene concentrations:
 - Decreased at monitoring wells MW-C12 and MW-23S.
 - Increased at monitoring wells MW-46S and MW-48S.
- Naphthalene concentrations:
 - Decreased at monitoring well MW-40.
 - Increased at monitoring wells MW-23S, MW-46S, and MW-48S.

AECOM

- Benzo(a)anthracene concentrations:
 - Decreased at monitoring wells MW-C16 and MW-48S.
 - Increased at monitoring well MW-46S.
 - Not detected at monitoring wells MW-23S, MW-40, MW-47S during previous GME; however, the reporting limit was greater than the reported concentration this GME.
- Benzo(a)pyrene concentration was only reported above the AWQS/GV this GME at monitoring well MW-46S and at a higher concentration then the previous GME.
- Benzo(b)fluoranthene concentration was only reported above the AWQS/GV this GME at monitoring wells MW-46S and MW-47S. At MW-46S the reported concentration was higher than the previous GME and at MW-47S the reported concentration was lower than the previous GME.
- Concentrations of benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene were only reported above the AWQS/GV this GME at monitoring well MW-46S. The reported concentrations were higher than the previous GME.

PAHs were either not detected above the laboratory reporting limit or detected at concentrations below applicable AWQS/GV at monitoring wells MW-C11, MW-22S, MW-24S, MW-25S, MW-28S, MW-31S, MW-33S, and MW-45S.

6.3 Total Cyanide

The reported concentration of total cyanide at monitoring well MW-22S was above the AWQS/GV at the time of the 2021 Q4 GME. Total cyanide has previously been reported above the AWQS/GV at this location. Since the previous GME, the reported total cyanide concentration at MW-22S decreased from 0.47 milligrams/Liter (mg/L) to 0.38 mg/L.

Total cyanide was not detected above the laboratory reporting limit or reported at concentrations below the AWQS/GV at all other monitoring well locations.

6.4 Monitored Natural Attenuation (MNA) Parameters

Several groundwater parameters including sulfate, ammonia, nitrate, alkalinity, ferrous iron and methane were analyzed to inform the assessment of MNA. **Table 4** presents the MNA results, and the following is noted:

- Sulphate concentrations ranged from <2mg/L (MW 46S) to 2,910 mg/L (MW-C11).
- Ammonia concentrations ranged from <0.02 mg/L (MW-22S) to 7.3 mg/L (MW-C11).
- Nitrate concentrations ranged from 0.025 mg/L (MW-C11) to 6.7 mg/L (MW-22S).
- Alkalinity concentrations ranged from 170 mg/L (MW-40) to 840 mg/L (MW-C11).
- Ferrous iron concentrations ranged from 0.088 mg/L (MW-C11) to 0.29 mg/L (MW-47S).
- Methane concentrations ranged from <4.0 mg/L) MW-25S) to 17,000 mg/L (MW-46S).
- Consistent with the previous GME:
 - Sulphate was reported at concentrations above the AWQS/GV at MW-C11 and MW-C16.
 - Ammonia was reported above the AWQS/GV at monitoring wells MW-C11, MW-46S and MW-47S.
 - Iron was detected at all locations at concentrations higher than the AWQS/GV, excluding monitoring wells MW-22S, MW-24S and MW-25S. Iron is not a constituent of concern at the Site, and these concentrations are likely naturally occurring.
 - Methane was detected across the groundwater monitoring well network which may indicate the presence of biological activity at the Site. The presence of methane at concentrations above concentrations reported at wells that are not impacted (i.e., MW-24S) further indicates the occurrence for biological activity.
- ORP ranged from -122.2 MeV (MW-48S) to 230.5 MeV (MW-24S) and DO ranged from 0.16 mg/L (MW-C12 and MW-48S) to 5.05 mg/L (MW-25S).

On average across all sampled wells, ORP and DO concentrations increased from 16.7 MeV to 58.8 MeV and 0.53 mg/L to 0.96 mg/L respectively. As ORP increases as MNA parameters are depleted from the system, the noted increase in ORP (and DO) may be indicative of the presence of an oxidating agent and a decrease in pollution in the environment.

7. Mann-Kendall Analysis

Mann-Kendall trend analysis has been completed for constituents of concern, namely, benzene, ethylbenzene, toluene, xylenes, acenaphthene, naphthalene and total cyanide at MW-C11 (ISCO remediation area), MW-C12 (ISCO remediation area), MW-C16 (ISCO remediation area), MW-22S (down-inferred hydraulic gradient of source area), MW-23S (down-inferred hydraulic gradient of source area) and MW-48S (down-inferred hydraulic gradient of source area).

Mann-Kendall trend analysis has also been completed for select MNA parameters, namely, sulfate, methane, nitrate, and dissolved oxygen. Data obtained from GMEs completed since June 2016 are included in the dataset. For the purpose of the Mann-Kendall analysis, where analytes were reported as not detected, the concentration has been entered as the laboratory reporting limit.

Table 1 below provides an overview of the Mann-Kendall analysis.

Table 1. Mann-Kendall Analysis Overview

Parameter	Mann-Kendall Analysis
Benzene	 Concentrations at MW-23S and MW-48S are stable. Concentrations at MW-C12 are decreasing. No trend observed at MW-C11, MW-C16, MW-22S, and MW-46S.
Ethylbenzene	 Concentrations at MW-23S and MW-48S is decreasing. No trend was observed at MW-C11, MW-C12, MW-C16, MW-22S, and MW-46S.
Toluene	 Concentration at MW-48S is decreasing. Concentrations at MW-C12, MW-23S and MW-46S are stable. No trend observed at MW-C11, MW-C16, and MW-22S.
Total xylenes	 Concentration at MW-22S and MW-48S are stable. Concentrations at MW-23S are decreasing. No trend observed at MW-C11, MW-C12, MW C-16 and MW-46S.
Acenaphthene	 Concentrations atMW-22S and MW-23S are stable. Concentrations at MW-C11 are probably decreasing. No trend observed at MW-C12, MW-C16, MW-46S, and MW-48S.
Naphthalene	 Concentrations at MW-22S are stable. Concentrations at MW-C11 are decreasing. No trend observed at MW-C12, MW-C16, MW-23S, MW-46S and MW-48S
Total cyanide	 Concentrations at MW-C11, MW-C12, and MW-22S are stable. No trend observed at MW-C16, MW-23S, MW-46S and MW-48S.
Total sulfate	 Concentrations at MW-C16, MW-22S, and MW-48S are stable. Concentrations at MW-C12 are decreasing. Concentrations at MW-46S are probably decreasing. No trend observed at MW-C11 and MW-23S.
Methane	 Concentrations at MW-48S are decreasing. Concentrations at MW-C12 and MW-23S are stable. No trend observed at MW-C11, MW-C16, MW-22S and MW-46S.
Nitrate	 Concentrations at MW-C16, MW-22S, and MW-23S are stable. No trend observed at MW-C11, MW-C12, MW-46S, and MW-48S.
Dissolved oxygen	 Concentration at MW-23S is decreasing. Concentrations at MW-C11, MW-C12, MW-C16, and MW-22S are stable.

Parameter	Mann-Kendall Analysis
	No trend is observed at MW-46S and MW-48S.

Mann-Kendall analysis for constituents of concern and MNA parameters are provided in Appendix D.

8. Removal of Sediment and Residual Solids

Monitoring wells MW-45S and MW-48S were subject to additional pumping following sampling to remove sediment and residual solids to the extent practicable. This was undertaken in response to the recommendation provided in AECOM, 2020b to improve the hydraulic connection between the well and the surrounding geological material.

A peristaltic pump was deployed in each well and each well was surged and pumped until dry. Approximately 1.0 and 2.0 gallons were removed from MW-45S and MW-48S, respectively. No odor or sheen was observed during this additional pumping. Sedimentation observed during pumping was initially high and progressively decreased until the water was observed to have very little sediment.

As a result of the additional pumping, no additional depth was gained at monitoring well MW-45S and 0.03 feet was gained in monitoring well MW-48S.

It is noted that this activity was undertaken following sampling as use of the peristaltic pump prior to sampling may disturb the water column and potentially impact analytical results.

Conclusions and Recommendations

Based on the results of the 2021 Q4 GME, the following conclusions are provided:

- Consistent with the previous GME, MGP-related constituents were either not detected above the laboratory reporting limit or detected at concentrations below applicable AWQS/GV at MW-C11, MW-24S, MW-25S, MW-28S, MW-31S, MW-33S, and MW-45S.
- Select MGP-related constituents were reported above the applicable AWQS/GV at MW-C12, MW-C16, MW-22S, MW-23S, MW-40, MW-46S, MW-47S and MW-48S.
- Whilst both decreasing and increasing concentrations of select MGP-related constituents were reported at
 locations with concentrations above the AWQS/GV, namely, MW-C12, MW-C16, MW-22S, MW-23S, MW-40,
 MW-46S, MW-47S and MW-48S, the extent of impact and constituent signature across the monitoring well
 network is consistent with the previous GME.
- Based on the Mann-Kendall analysis dataset, benzene at MW-C12, ethylbenzene at MW-23S and MW-48S, naphthalene at MW-C11, total xylenes at MW-23S, and toluene at MW-48S are noted to have decreasing trends. Acenaphthene at MW-C11 exhibits probable decreasing trend. All other observed MGP-constituent trends are either stable or unable to be determined.

The following is recommended:

- In accordance with the Draft SMP, it is recommended that additional data be collected to further assess seasonal
 fluctuations and inform an appraisal of MGP-constituent concentrations and MNA trends at the Site.
 Groundwater sampling at the 15 specified well locations will continue to be monitored on the schedule outlined in
 the Draft SMP.
- The concrete collar at MW-40 be repaired as soon as practicable.

Should you have any questions regarding this correspondence, please contact Melissa Saunders at melissa.saunders@aecom.com.

Sincerely,

Melissa Saunders AECOM

M: 206-502-7914

E: Melissa.Saunders@aecom.com

Matthew Thorpe, P.E

Mouhen of Thouse

AECOM M: 518-428-4383

E: Matthew.Thorpe@aecom.com

CC:

Project File 60615225/60673276 Tracy Blazicek, NYSEG Tamara Raby, AECOM

Enclosures

Figures

Figure 1: Site Location Plan

Figure 2: Monitoring Well Location Plan

Figure 3: Shallow Aquifer Groundwater Contour Plan - December 2021

Figure 4: Groundwater Exceedance Plan - BTEX, PAHs and Total Cyanide - December 2021

Tables

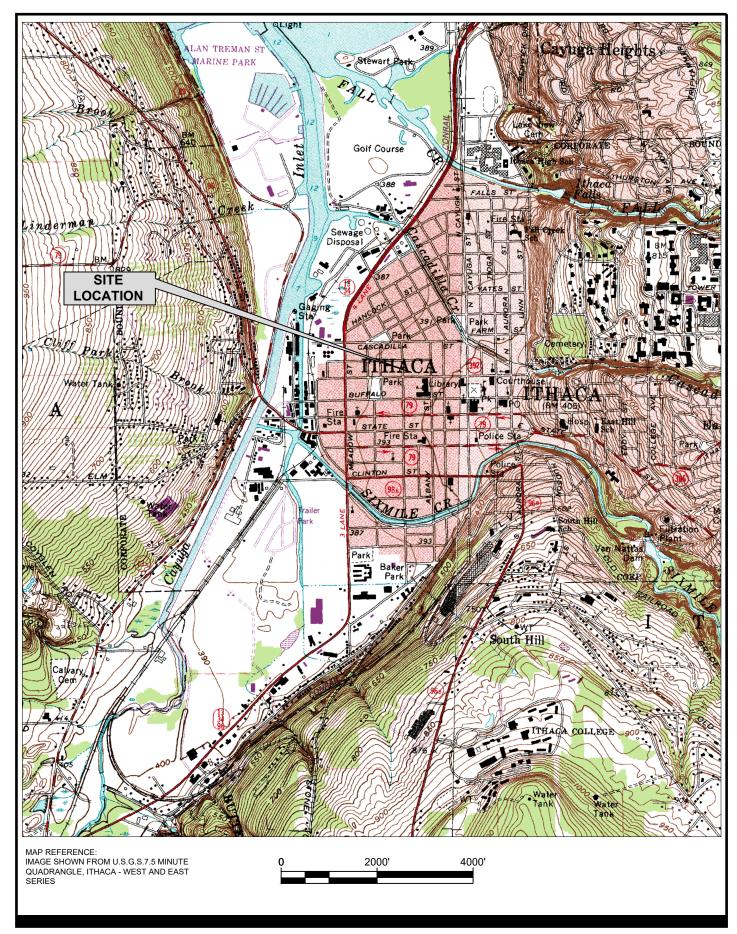
Table 2: Groundwater Gauging Details Table 3: BTEX, PAHs and Total Cyanide

Table 4: Monitored Natural Attenuation and Field Parameters

Appendices

Appendix A: Groundwater Sampling Purge Forms Appendix B: Analytical Laboratory Report Appendix C: Data Usability Summary Report Appendix D: Mann-Kendall Analysis

References


AECOM, 2019. Site Management Plan, Ithaca Court Street Former MGP Site, Ithaca, Tompkins County, New York, NYSDEC Site #7-55-008.

AECOM, 2020a. Work Plan, Groundwater Monitoring Event, September 2020, Ithaca Court Street Former MGP Site-OU-2, Ithaca New York.

AECOM, 2020b. Subject: Groundwater Monitoring Event Report – September/October 2020 Ithaca Court Street Former MGP Site – OU-2, Ithaca, New York.

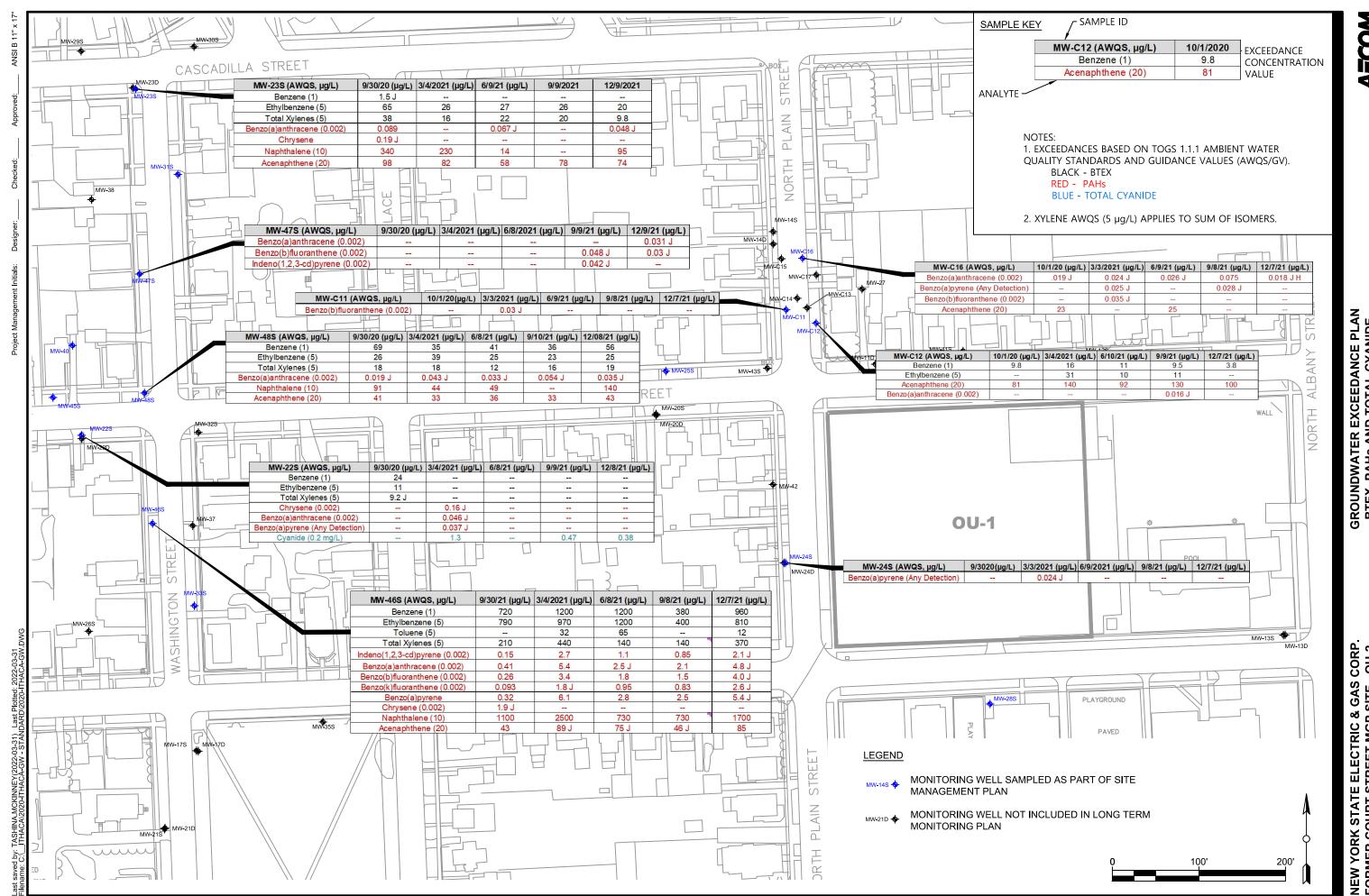
Figures

NEW YORK STATE ELECTRIC & GAS CORP. FORMER COURT STREET MGP SITE - OU-2 ITHACA, NEW YORK

Project No.: 60615225 Date: MARCH 2022

SITE LOCATION PLAN

Figure: 1


A\(\begin{align*}
\text{COM}
\end{align*} Figure: 2

NEW YORK STATE ELECTRIC & GAS CORP.
FORMER COURT STREET MGP SITE - OU-2
ITHACA, NEW YORK
Project No.: 60615225 Date: MARCH 2022

A\(\in\) Figure: 3

SHALLOW AQUIFER GROUNDWATER CONTOUR PLAN - DECEMBER 2021

NEW YORK STATE ELECTRIC & GAS CORP.
FORMER COURT STREET MGP SITE - OU-2
ITHACA, NEW YORK
Project No.: 60615225 Date: MARCH 2022

GROUNDWATER EXCEEDANCE PLAN BTEX, PAHS AND TOTAL CYANIDE DECEMBER 2021

GAS CORP. SITE - OU-2 Date: MARCH 2022

RIC & MGP

Tables

Table 2: Groundwater Gauging Details 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Inspection and Sampling Notes
MP Monito	ring Plan Locat	`	ed and Sampled							
	9/28/2020	17.30	17 - 15	15 - 10	5.01	5.53	NA	N	NA	Full of water, cracked road box; Gray cloudy water initially noted during purging.
	3/2/2021	17.23	17 - 15	15 - 10	5.14	5.66	386.00	N	NA	Well in good condition. Water observed to be tinted and a gasoline (petroleum-like) odor was noted during purging. No sheen was observed. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry
MW - C11	6/7/2021	17.21	17 - 15	15 - 10	5.39	5.66	385.75	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021	17.28	17 - 15	15 - 10	5.35	5.87	385.79	N	NA	Well in good condition. Lots of mud underneath the well cap. Purge water clear, and no odor or sheen noted.
	12/6/2021	15.38	17 - 15	15 - 10	4.96	5.48	386.18	N	NA	Fine condition, no odor or sheen observed. Was scheduled to be redeveloped at the end of the GME, but a vehicle was parked over it and access was restricted.
	9/28/2020	17.21	17 - 15	15 - 10	6.64	6.85	385.56	N	NA	Good condition; Water clear during purging.
	3/2/2021	17.62	17 - 15	15 - 10	5.65	5.86	386.55	N	NA	Well in good condition. Water observed to be tinted and a gasoline/sweet (petroleum-like) odor noted during purging. No sheen observed.
MW - C12	6/7/2021	17.22	17 - 15	15 - 10	6.09	6.30	386.11	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021	17.22	17 - 15	15 - 10	6.14	6.35	386.06	N	NA	Good condition. No sheen observed. Sulfur-like odor was noted during well purging. YSI technical difficulties, so team purged 3 well volumes before sampling. MS+MSD collected.
	12/6/2021	17.21	17 - 15	15 - 10	5.98	6.19	386.22	N	NA	Fine condition, no odor or sheen observed.
	9/28/2020	15.98	16 - 14	14 - 9	6.65	6.87	384.66	N	NA	Well surface seal cracked, very hard to open, rusted bolts; Slight MGP odor noted during sampling, black sludge in bottom of we at commencement of purging and became clear, slight sheen observed on purge water.
MW - C16	3/2/2021	15.95	16 - 14	14 - 9	3.54	3.76	387.77	N	NA	Dedicated tubing was rusty (likely iron accumulation). Purged water was tinted yellow/brown. No odor or sheen noted. Dedicated tubing to be replaced.
	6/7/2021	15.94	16 - 14	14 - 9	4.62	4.84	386.69	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021	15.87	16 - 14	14 - 9	5.16	5.38	386.15	N	NA	Good condition. Faint MGP-like odor noted during gauging and purging. Black specs seen in purge water. No sheen observed.
	12/6/2021 9/29/2020	16.07 13.10	16 - 14 	14 - 9 14 - 4	4.64 5.10	4.86 5.51	386.67 382.05	N N	NA NA	Fine condition, no odor or sheen observed. Good condition; Water clear during purging.
	3/2/2021	13.64		14 - 4	2.84	2.43	383.90	N	NA	Well located in a flower bed and in good condition. Purge water clear, and no odor or sheen noted.
MW - 22S		13.61		14 - 4	4.08	4.49	382.66	N	NA	Well located in a flower bed and in good condition. Purge water clear with slight particulate suspension, and no odor or sheen noted.
	9/7/2021 12/6/2021	13.68 13.65		14 - 4 14 - 4	4.20 3.73	4.61 4.14	382.54 383.01	N N	NA NA	Good condition. No odor or sheen noted. Fine condition, no odor or sheen observed.
	9/29/2020	13.70		14 - 4	6.80	7.40	380.22	N	NA	Good condition; Water clear during purging, solvent-like odor noted during sampling.
	3/2/2021 6/7/2021	13.69 13.65		14 - 4 14 - 4	6.22 6.34	6.82 6.94	380.80 380.68	N N	NA NA	Well in good condition. Purge water clear, and no odor or sheen noted. Well in good condition. Purge water clear, and no odor or sheen noted. Well has very good recharge.
MW - 23S	9/7/2021	13.68		14 - 4	6.41	7.01	380.61	N	NA	Good condition. No odor noted. Small amount of sheen observed on the surface of purge water. YSI technical difficulties, so tear purged 3 well volumes before sampling.
	12/6/2021	13.67		14 - 4	6.32	6.92	380.70	N	NA NA	Fine condition. White flakes observed in the purged water. Product-like odor observed while purging.
	9/28/2020 3/2/2021	13.50 13.71		14 - 4 14 - 4	7.23 5.54	NC NC	NC NC	N N	NA NA	Top of PVC casing bent/crushed; Water clear during purging. Well in good condition. Purge water clear, and no odor or sheen noted.
MW - 24S	6/7/2021	13.66		14 - 4	6.31	NC	NC	N	NA	Well in good condition. Purge water cleared up, faint organic odor detected, no sheen detected.
IVIVV - 243	9/7/2021	13.45		14 - 4	6.77	NC	NC	N	NA	Located in garden in roadside verge, access restricted due to vegetation. Poor condition, missing bolts and PVC bent. Organic-lik odor noted during gauging and purging. No sheen observed.
	12/6/2021 9/28/2020	13.98 9.40		14 - 4 10 - 3	6.56 7.12	NC 7.34	NC 384.10	N N	NA NA	Fine Condition. No sheen observed. Odor of decaying material observed while purging. Partially overgrown with grass, good condition; Water clear during purging.
	3/2/2021	9.72		10 - 3	5.29	5.51	385.93	N	NA	Purge water initially tinted brown and became clear. No odor or sheen noted. Well ran dry on 3/3/21, allowed to recharge before being sampled 3/4/21.
MW - 25S	6/7/2021	9.71		10 - 3	6.43	6.65	384.79	N	NA	Purge water clear, no sheen or odors detected. Well has very poor recharge. Short spikes in tubidity were seen throughout the sampling process, possibly due to low water level. Good condition. Only one bolt. No odor or sheen noted. Well ran dry during purging and was allowed to recharge prior to
	9/7/2021	9.70		10 - 3	6.53	6.75	384.69	N	NA	sampling.
	12/6/2021	9.73		10 - 3	6.19	6.41	385.03	N	NA NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time.
	9/28/2020 3/2/2021	19.80 19.65		20 - 7 20 - 7	8.23 7.65	8.77 8.19	386.94 387.52	N N	NA NA	Good condition; Water clear during purging. Well in good condition. Purge water clear, and no odor or sheen noted.
MW - 28S	6/7/2021	19.50		20 - 7	7.78	8.32	387.39	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021	19.55		20 - 7	7.78	8.32	387.39	N	NA	Good condition. Damp (decomposing) odor noted when gauging. No odor or sheen noted during purging.
	12/6/2021 9/29/2020	19.54 11.30		20 - 7 12 - 4	7.79 7.45	8.33 7.76	387.38 380.47	N N	NA NA	Fine condition, sulfur-like odor observed while purging. No sheen observed. Good condition; Gray cloudy water initially noted during purging.
MW - 31S	3/2/2021	11.34		12 - 4	6.61	6.92	381.31	N	NA	Well in good condition. Initial heavy silt during purging and became clear. No odor or sheen noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
	6/7/2021	11.53		12 - 4	6.81	7.12	381.11	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021 12/6/2021	11.55 11.62		12 - 4 12 - 4	6.95 6.79	7.26 7.10	380.97 381.13	N N	NA NA	Good condition. No odor or sheen noted. YSI technical difficulties, so team purged 3 well volumes before sampling.
	9/29/2020	9.52		12 - 4 10 - 2.5	6.89	7.10	381.13	N N	NA NA	Fine condition. White flakes observed in the purged water. No odor noted. Good condition; Rust-colored water initially noted during purging.
MW - 33S*	3/2/2021	9.51		10 - 2.5	2.08	2.35	385.47	N	NA	Well in good condition. Very rusty water (likely iron accumulation) near bottom of screen and no odor or sheen noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
	6/7/2021 9/7/2021	9.48 9.47		10 - 2.5 10 - 2.5	4.33 4.33	4.60 4.60	383.22 383.22	N N	NA NA	Well in good condition. Purge water initially tan and cleared towards end of purge, no odor or sheen noted. Good condition. Rust-like substance on the well casing and tubing. No sheen or odor noted.
	12/6/2021	9.47 9.51		10 - 2.5	3.60	3.87	383.22	N N	NA NA	Fine condition, no odor or sheen observed.

Table 2: Groundwater Gauging Details 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Inspection and Sampling Notes
	9/29/2020	8.30		9 -3	6.71	7.11	380.28	N	NA	Good condition; Light brown cloudy water initially noted during purging.
MW - 40	3/2/2021	8.39		9 -3	3.09	3.49	383.90	N	NA	Well in good condition. Purge water initially brown and then clear. A 'cleaning supply' (chemical-like) odor was noted and no shee observed. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry
10100 - 40	6/7/2021	9.38		9 - 3	4.99	5.39	382.00	N	NA	Concrete pad loose. Purge water clear, and no odor or sheen noted.
	9/7/2021	8.36		9 - 3	5.05	5.45	381.94	N	NA	Located in driveway of private property. Concrete collar is broken. No odor or sheen noted. Repair concrete collar as soon as practicable.
	12/6/2021	8.37		9 - 3	4.28	4.68	382.71	N	NA	Poor condition, no odor or sheen observed.
	9/29/2020	17.00	15 - 14	14 - 4	5.25	5.56	381.45	N	NA	Good condition; Gray cloudy water initially noted during purging.
	3/2/2021	14.72	15 - 14	14 - 4	3.39	3.70	383.31	N	NA	Well in good condition. Purge water initially brown and then clear. Some rusty particulate (likely iron accumulation) was observed minutes into purging. No odor or sheen noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
MW - 45S	6/7/2021	14.68	15 - 14	14 - 4	4.74	5.05	381.96	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Approx. 3.5 gallons were purged for redevelopment at the end of the sampling event.
	9/7/2021	14.85	15 - 14	14 - 4	4.55	4.86	382.15	N	NA	Good condition. No odor or sheen noted. Very poor recharge rate, ran dry during purging and allowed to recharge prior to completion of sampling. Re-developed following sampling, 0.07 feet of depth gained (14.78 - 14.85 ft bTOC). Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time. An attempt to removed sediments and
	12/6/2021	19.80	15 - 14	14 - 4	4.15	4.46	382.55	N	NA	residual solids was made at the end of the GME, no additional depth was gained.
	9/29/2020	16.70		18 - 8	5.01	5.38	382.60	N	NA	Good condition; Water clear during purging.
	3/2/2021	17.02		18 - 8	3.66	4.03	383.55	N	NA	Well in good condition. Purge water tinted light brown and rust particulate (likely iron accumulation) observed. Slight sulfur odor noted. No sheen noted.
MW - 46S	6/7/2021	16.78		18 - 8	4.13	4.50	383.08	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021	16.88		18 - 8	4.34	4.71	382.87	N	NA	Good condition. A brown substance was left of the interface probe after gauging. Slight organic/product-like odor observed during gauging and sampling. Sheen was observed in purge water. Dup-1 collected.
	12/6/2021	16.88		18 - 8	3.80	4.17	383.41	N	NA	Fine condition. Product like odor indicated during gauging. Sheen observed on purge water
	9/29/2020	14.50		15 - 5	5.01	5.33	382.44	N	NA	Good condition; Gray cloudy water initially noted during purging.
	3/2/2021	14.69		15 - 5	3.87	4.19	383.58	N	NA	Well head rusted. Purge water was clear with rust particulates (likely iron accumulation). No odor or sheen was noted. Well in good condition. Purge water clear, no odor detected, sheen was noted during purging for one interval, and was not
MW - 47S	6/7/2021	14.64		15 - 5	4.67	4.99	382.78	N	NA	observed again.
	9/7/2021	14.65		15 - 5	4.75	5.07	382.70	N	NA	Good condition. Black particulates observed in purge water. No odor noted. YSI technical difficulties, so team purged 3 well volumes before sampling. Well went dry and was allowed to recharge before sampling.
	12/6/2021	14.86		15 - 5	4.33 4.12	4.65 4.42	383.12 382.73	N N	NA NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time.
	9/29/2020 3/2/2021	14.30 13.24	15 - 14 15 - 14	14 - 4 14 - 4	3.51	3.81	382.73	N N	NA NA	Good condition; Gray/black cloudy water initially noted during purging and odor noted during sampling. Well in good condition. Purge water initially cloudy and then clear. A slight sulfur odor was noted at the commencement of purging. No sheen was noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual
MW - 48S	6/7/2021	13.20	15 - 14	14 - 4	3.98	4.28	382.87	N	NA	solids^ before well ran dry. Well in good condition. Purge water clear, and no odor or sheen noted. Approx. 2.5 gallons were purged for redevelopment at the end of the sampling event.
	9/7/2021	13.38	15 - 14	14 - 4	3.88	4.18	382.97	N	NA	Good condition. Faint organic-like (clay) odor noted during gauging. Product-like odor observed during first few minutes of purging. No sheen observed. Re-developed following sampling, 0.09 feet of depth gained. (13.39 - 13.48 ft bTOC).
	12/6/2021	13.52	15 - 14	14 - 4	3.78	4.08	383.07	N	NA	Fine condition, sheen observed. Metallic-like odor observed during purging. An attempt to remove sediments and residual solids was made at the end of the GME, 0.03ft of depth was gained.
Additional L	ocations - Gau	ged Only	1				ı			wae made at the one of the one of the one of the games.
	9/28/2020	14.39	16 - 14	14 - 9	7.46	7.87	383.63	N	NA	Good condition
MW - C13	3/2/2021	15.98	16 - 14	14 - 9	5.21	5.62	385.88	N N	NA	Good condition
	9/7/2021 12/6/2021	15.94 14.00			5.53 5.56	5.94 5.97	385.56 385.53	N N	NA NA	Well collar sunk and full of sediment. Well collar sunk and full of sediment.
	3/2/2021	17.84			5.29	5.52	385.79	N	NA	Good condition
MW - C15	6/7/2021	17.79		16 - 11	4.98	5.21	386.10	N	NA	Good condition
	9/7/2021 12/6/2021	17.80 17.74		16 - 11 16 - 11	5.20 4.60	5.43 4.83	385.88 386.48	N N	NA NA	Good condition. Lots of mud buildup under the well cap. Good condition. Lots of mud buildup under the well cap.
	3/2/2021	15.13			3.89	4.08	388.12	N N	NA NA	Good condition. Lots of find buildup under the well cap. Good condition
MW - C17	6/7/2021	17.11		15 - 10	5.40	5.59	386.61	N	NA	Good condition
10100 - 017	9/7/2021	10.00		15 - 10	5.78	5.97	386.23	N	NA	Good condition.
	12/6/2021 9/28/2020	17.03 14.39		15 - 10 15 - 5	5.08 7.46	5.27 7.78	386.93 388.68	N N	NA NA	Good condition. In grass along curb, good condition
	3/2/2021	13.46		15 - 5	6.79	7.11	389.45	N	NA NA	Good condition
MW - 13S	6/7/2021	14.33		15 - 5	6.75	7.07	389.49	N	NA	Good condition
	9/7/2021	14.42		<u> 15 - 5</u>	6.88	7.20	389.36	N	NA NA	Good condition. Bolt holes stripped.
	12/6/2021 6/7//2021	14.46 39.79		15 - 5 40 - 30	6.84 6.19	7.16 6.61	389.40 389.95	N N	NA NA	Good condition. Bolt holes stripped. Good condition
MW - 13D	9/7/2021	39.75		40 - 30	6.20	6.62	389.94	N	NA NA	Grown over by grass.
	12/6/2021	39.74		40 - 30	6.03	6.45	390.11	N	NA	Grown over by grass.
	9/28/2020	9.59		10 - 3	7.56	NC NC	NC NC	N	NA	Good condition
MW - 14S	3/2/2021 6/7/2021	9.46 9.47		10 - 3 10 - 3	4.24 4.46	NC NC	NC NC	N N	NA NA	Good condition Good condition
17177 - 170	9/7/2021	9.47		10 - 3	5.93	NC	NC	N	NA NA	Good condition.
	12/6/2021	9.50		10 - 3	5.15	NC	NC	N	NA	Good condition.
	3/2/2021	33.31			4.76	NC NC	NC NC	N	NA NA	Good condition
MW - 14D	6/7/2021 9/7/2021	33.84 33.25		34 - 24	4.83 4.83	NC NC	NC NC	N N	NA NA	Good condition Good condition.
140		33.18		34 - 24	4.59	NC NC	NC NC	N	NA NA	Good condition. Good condition.
1VIVV - 14D	12/6/2021									
IVIVV - 14D	3/2/2021	8.35			1.08	1.53	386.77	N	NA	PVC shifted, difficult to remove plug and measure. PVC under steel collar.
MW - 17S				9 - 4 9 - 4	1.08 2.87 2.60	1.53 3.32 3.05	386.77 384.98 385.25	N N N	NA NA NA	PVC shifted, difficult to remove plug and measure. PVC under steel collar. PVC shifted, difficult to remove plug and measure. PVC under steel collar. PVC is bent and stuck under steel collar. No ability to seal the PVC with a plug.

Table 2: Groundwater Gauging Details 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

Well ID	Date Gauged		Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness	Well Inspection and Sampling Notes
	3/2/2021	(ft bTOC) 29.48		(π ΒΤΟΟ)	1.87	2.17	386.04	N	(ft) NA	PVC shifted, difficult to remove plug and measure. PVC under steel collar.
MW - 17D	6/7/2021	29.46		30 - 20	2.79	3.09	385.12	N	NA	PVC shifted, difficult to remove plug and measure. PVC under steel collar.
WW - 17D	9/7/2021	8.37		30 - 20	2.69	2.99	385.22	N	NA	PVC is bent and stuck under steel collar. No ability to seal the PVC with a plug.
	12/6/2021	29.55		30 - 20	2.04	2.34	385.87	N	NA	PVC is bent and stuck under steel collar. No ability to seal the PVC with a plug.
	9/28/2020 3/2/2021	14.47 14.49		15 - 5 15 - 5	6.40 5.28	NC NC	NC NC	N N	NA NA	Good condition Good condition, slight sulfur odor noted.
MW - 20S	6/7/2021	14.49		15 - 5	5.78	NC NC	NC NC	N N	NA NA	Good condition, slight sulfur odor noted. Good condition, slight sulfur odor noted during gauging.
	9/7/2021	14.42		15 - 5	5.91	NC	NC	N	NA	Good condition, product-like odor.
	12/6/2021	14.42		15 - 5	5.68	NC	NC	N	NA	Good condition, product-like odor.
	9/28/2020	18.29		34 - 24	5.72	NC	NC	N	NA	Good condition
MW - 20D	3/2/2021 6/7/2021	33.45 33.36		34 - 24 34 - 24	4.60 4.87	NC NC	NC NC	N N	NA NA	Good condition Good condition
10100 - 200	9/7/2021	33.37		34 - 24	4.65	NC NC	NC NC	N N	NA NA	Good condition.
	12/6/2021	33.38		34 - 24	5.45	NC	NC	N	NA	Good condition.
	9/29/2020	9.35		10 - 5	5.21	5.56	383.10	N	NA	Good condition
NAVA 040	3/2/2021	9.47		10 - 5	3.30	3.65	385.01	N	NA	Good condition
MW - 21S	6/7/2021 9/7/2021	9.46 9.42		10 - 5 10 - 5	3.80 3.71	4.15 4.06	384.51 384.60	N N	NA NA	Good condition Good condition.
	12/6/2021	9.42		10 - 5	3.51	3.86	384.80	N N	NA NA	Good condition. Good condition.
	9/29/2020	29.68		30 - 20	4.40	4.95	NA	N	NA	Good condition
	3/2/2021	29.42		30 - 20	2.11	2.66	386.03	N	NA	Good condition
MW - 21D	6/7/2021	29.42		30 - 20	3.13	3.68	385.01	N	NA	Good condition
	9/7/2021	29.47		30 - 20	2.95	3.50	385.19	N	NA	Good condition.
	12/6/2021 3/2/2021	29.51 29.08		30 - 20	2.48 2.99	3.03 2.51	385.66 383.72	N N	NA NA	Good condition. Well located in flower bed. Good condition
	6/7/2021	29.72		30 - 20	3.61	4.09	383.10	N	NA NA	Well located in flower bed, good condition.
MW - 22D	9/7/2021	29.02		30 - 20	3.58	4.06	383.13	N	NA	Good condition.
	12/6/2021	29.03		30 - 20	3.31	3.79	383.40	N	NA	Good condition.
	3/2/2021	29.34			3.86	6.25	386.67	N	NA	Good condition
MW - 23D	6/7/2021	29.33		30 - 20	4.96	5.35	387.57	N	NA	Good condition
	9/7/2021	29.35 29.27		30 - 20 30 - 20	4.86 5.65	5.25 6.04	387.67 386.88	N	NA NA	Good condition.
	12/6/2021 3/2/2021	32.65		<u>30 - 20</u> 	4.29	NC	NC	N N	NA NA	Good condition. Cover not bolted down. Good condition
0.15	6/7/2021	32.68			4.58	NC NC	NC NC	N	NA NA	Cover not bolted down, good condition
MW - 24D	9/7/2021	32.68		34 - 24	4.37	NC	NC	N	NA	Located in garden in roadside verge, access restricted due to vegetation.
	12/6/2021	32.69		34 - 24	4.12	NC	NC	N	NA	Located in garden in roadside verge, access restricted due to vegetation.
	9/28/2020	8.86		10 - 3	7.22	7.66	384.56	N	NA	Directly in front of garage, good condition
MW - 27	3/2/2021	8.87 8.86		10 - 3	2.14	2.58	389.64	N	NA NA	Good condition
IVIVV - 21	6/7/2021 9/7/2021	8.85		10 - 3 10 - 3	5.64 5.50	6.08 5.94	386.14 386.28	N N	NA NA	Good condition Good condition. Located on private property.
	12/6/2021	NM		10 - 3	NM	NM	NA	N	NA NA	Property Owner not home to grant access.
	9/29/2020	12.06			8.15	8.47	379.19	N	NA	Good condition
	3/2/2021	12.08			4.42	4.74	382.92	N	NA	Good condition
MW - 29S	6/7/2021	12.01			6.70	7.02	380.64	N	NA	Good condition
	9/7/2021 12/6/2021	12.03 12.04		12 - 2.5 12 - 2.5	5.71 6.42	6.03 6.74	381.63 380.92	N N	NA NA	Good condition. Good condition.
	9/29/2020	9.81		12 - 2.5	7.00	7.23	381.01	N N	NA NA	Good condition. Good condition
	3/2/2021	9.95		12 - 2.5	4.89	5.12	383.12	N	NA NA	Good condition
MW - 30S	6/7/2021	9.96		12 - 2.5	5.55	5.78	382.46	N	NA	Good condition
	9/7/2021	9.92		12 - 2.5	5.59	5.82	382.42	N	NA	Good condition.
	12/6/2021	9.94		12 - 2.5	5.20	5.43	382.81	N	NA	Good condition.
	9/29/2020 3/2/2021	9.59 9.47		<u></u>	5.40 3.15	5.81 3.56	381.61 383.86	N N	NA NA	Only 1 bolt Good condition
MW - 32S	6/7/2021	9.47		10 - 4	3.94	4.35	383.07	N N	NA NA	Good condition
020	9/7/2021	9.57		10 - 4	3.88	4.29	383.13	N	NA NA	Good condition.
	12/6/2021	9.56		10 - 4	3.49	3.90	383.52	N	NA	Good condition.
·	9/29/2020	9.80			7.35	7.77	381.96	N	NA	Good condition
NAVA 040	3/2/2021	9.64			2.96	3.38	386.35	N	NA	Good condition
MW - 34S	6/7/2021	9.52 9.62		10. 2	4.48 4.74	4.90 5.16	384.83 384.57	N N	NA NA	Good condition
	9/7/2021 12/6/2021	9.62		10 - 3 10 - 3	4.74	4.54	384.57	N N	NA NA	Good condition. Good condition.
	9/29/2020	4.00		8 - 3	Dry	Dry	NA NA	N	NA NA	Good condition, well dry, note reduced well depth from initial 8ft
	3/2/2021	4.16		8 - 3	2.52	3.07	386.28	N	NA	Good condition
MW - 35S	6/7/2021	4.28		8 - 3	4.27	4.82	384.53	N	NA	Good condition; Reduced well depth compared to original installation depth.
	9/7/2021	NM		8 - 3	4.10	4.65	384.70	N	NA	Unable to measure depth of well due to a suspected bend in the PVC.
	12/6/2021	4.30		8 - 3	3.50 2.37	4.05	385.30	N	NA NA	Suspected blockage in well at about 4.30 feet bgs
	3/2/2021 6/7/2021	7.80 7.80		8 - 3	3.59	2.96 4.18	384.72 383.50	N N	NA NA	Good condition Good condition
MW - 37	9/7/2021	7.78		8 - 3	3.50	4.09	383.59	N N	NA NA	Good condition.
	12/6/2021	7.82		8 - 3	3.23	3.82	383.86	N	NA NA	Good condition.
	6/7/2021	14.18		8 - 3	7.64	7.96	380.52	N	NA	Good condition
MW - 38S	9/7/2021	NM		8 - 3	NM	NM	NA	N	NA	Not accessed as resident was not contactable at the time of gauging to obtain permission to access.
	12/6/2021	NM		8 - 3	NM	NM	NA	N	NA	Not accessed as resident was not contactable at the time of gauging to obtain permission to access.
	6/7/2021	16.82		9 - 3	6.68	7.00	386.16	N	NA	Good condition
1 11 1 1 1 1	9/7/2021	10.8		9 - 3	6.68	7.00	386.16	N	NA	Good condition. Located on private property.
MW - 41S	12/6/2021	NM		9 - 3	NM	NM	NA	N	NA	Vehicle located on well, owner of property refused to move the vehicle.

Table 2: Groundwater Gauging Details 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Inspection and Sampling Notes
	9/28/2020	14.20			7.26	7.73	385.12	N	NA	Good condition
	3/2/2021	14.11			5.89	6.36	386.49	N	NA	Good condition
MW - 42	6/7/2021	11.27			6.80	7.27	385.58	N	NA	Good condition
	9/7/2021	11.25		12 - 3	6.70	7.17	385.68	N	NA	Good condition.
	12/6/2021	NM		12 - 3	NM	NM	NA	N	NA	Owner of property not home to grant access
	9/28/2020	14.30		15 - 5	6.71	7.12	384.82	N	NA	Good condition
	3/2/2021	14.29		15 - 5	5.82	6.23	385.71	N	NA	Good condition
MW - 43S	6/7/2021	14.26		15 - 5	6.32	6.73	385.21	N	NA	Good condition
	9/7/2021	14.47		15 - 5	6.33	6.74	385.20	N	NA	Good condition.
	12/6/2021	14.31		15 - 5	6.20	6.61	385.33	N	NA	Good condition.

- Notes:

 * MW-33S was mislabeled as MW-36S during the 2021 Q4 GME on field forms, chain of custody, and lab report.

 1. Measured at the time of gauging

 2. ft bTOC- feet below top of casing

 3. ft bgs feet below ground surface

 4. NM Not measured

 5. -- Information not available.

 6. NC Not calculated as ground surface elevation data not available

 7. NA Not applicable

Table 3: BTEX, PAHs and Total Cyanide 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

Part	itnaca, new fork				ВТЕ	EX μg/L										PAHs μg/L								Cyanide (mg/L)
	OI- ID	Laboratory	Carralla Data	Danasas			Videor Tetal	Accomplete	Accompleted	Austhanson	Character	Elveronthone	El	Manhéhalana	Dhanashaana		Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g,h,i)	Benzo(k)	Dibenzo(a,h)	Indeno(1,2,3-	
March Marc	Sample ID		Sample Date	Benzene	Etnylbenzene	loluene	Xylenes, Lotal	Acenaphthene	Acenaphtnylene		Chrysene	Fluorantnene	Fluorene	Napnthalene	Phenanthrene	Pyrene	anthracene	pyrene	fluoranthene	perylene	fluoranthene	anthracene	cd)pyrene	Cyanide, Total
				1														•						
	M/M/ C11					11.1																		
Control Cont	IVIVV-C11					4 11																		
Part	DUP (MW-C11)																							
	, ,	185822	6/9/2021	2 U	2 U	2 U	4 U	1.5 J	6 U	10 U	10 U	10 U		20 U	4 U	10 U	0.05 UJ	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U	
Fig. 1.50																								
	MW-C11					2 0																		
						1 1														_				
						1 11								_										
1	MW-C12					1 11																		
Property																								
Fig.						1 11									·									
						1 U																		
Fig.				0.82 J	2 U	2 U	4 U			9.5 U				_						0.05 U				
Fig.	1000	181652	3/3/2021	4 U	4 U	4 U	8 U	15	6 U	10 U	10 U	10 U	2.7 J	20 U	4 U	10 U	0.024 J	0.025 J	0.035 J	0.05 U	0.05 UJ	0.05 U	0.05 U	0.010
Fig.	MVV-C16	185822	6/9/2021	2 U	2	2 U	4 U	25	6 U	10 U	10 U	10 U	6 J	20 U	4 U	10 U	0.026 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0077 J
March Marc		189279	9/8/2021	2 U	2 U	2 U	4 U	16		0.17 J	2.5 U	0.61 J		_	· · · · · · · · · · · · · · · · · · ·					_				
March Marc				2 U	2 U	2 U	4 U																	
	MW-22S			1 U	1 U	1 U	3 U					0												
	DUP (MW-22S)																							
	DOI (IVIVV-223)																							
March Marc		185758	6/8/2021	1 U	1	1	2	0.48 U	0.29 U	0.48 U	0.48 U	0.48 U	0.48 U	0.068 J	0.19 U	0.48 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.06 J
March Marc						<u> </u>																		
	MW-22S																							
Marcha M																								
Minor Mino																1								
Minor Mino	MW-23S						_																	
Minor Mino																				_				
Part																								
17994 1799				1 U	1 U	1 U	3 U		1.7 U					1.7 U										
Marcia M		175904	10/1/2020	1 U	1 U	1 U	2 U	0.046 J	0.29 U	0.48 U	0.48 U	0.48 U	0.48 U	0.96 U	0.19 U	0.48 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
March Marc		181652	3/3/2021	1 U	1 U	1 U	2 U	0.5 U	0.3 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.2 U	0.5 U	0.05 U	0.024 J	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.010 U
Second	MW-24S	185822	6/9/2021	1 U	1 U	1 U	2 U	0.5 U	0.3 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.2 U	0.5 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0091 J
		189279	9/8/2021	1 U	1 U	1 U	2 U	0.48 U	0.29 U	0.48 U	0.48 U	0.48 U	0.48 U	0.95 U	0.19 U	0.48 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0100 U
17960 1796		193156	12/7/2021	1 U	1 U	1 U	2 U	0.49 U	0.29 U	0.49 U	0.49 U	0.49 U	0.49 U	0.98 U	0.2 U	0.49 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.0100 U
14 15 15 15 15 15 15 15		2149634		1 U	1 U	1 U	, , ,							_							_			
Minipage						1 U																		
March Marc	MW-25S				0.3 U	0.3 U	0.5 U							+										
1911 1912 1912 1912 1913	200				1 U	1 U	1 U													_				
Part						1 U										1								
Mary Sees 1998 1999 19				_		2 U																		
Mary						1 U	, ,							_						_				
1892 68022 1 U 1 U 1 U 1 U 2 U 0.5 U 0.05	MM/ 000				1	1 0								+										
May	MVV-28S				1 0	1 0								<u> </u>										
DUP (MW-288) 193196					1 1	1 1								+										
MW-31S 1819S 1972021 1 U 1 U 1 U 1 U 2 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.55 U	DLIP (MW-285)					1 11																		
MW-31S						1 11																		
MW-31S	10107-200			_			3 11																	
MW-31S 181652 34/2021 1 U 1 U 1 U 1 U 0.5 U 0.05 U 0.0							2 U																	
EBST8 BBZ021 1 U 1 U 1 U 1 U 2 U 0.48 U 0.29 U 0.48 U 0.48 U 0.48 U 0.48 U 0.95 U 0.95 U 0.95 U 0.95 U 0.05	MW-31S	181652	3/4/2021	1 U	1 U	1 U	2 U	0.5 U	0.3 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.2 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U		
MW-31S		185758	6/8/2021	1 U	1 U	1 U	2 U	0.48 U	0.29 U	0.48 U				0.95 U					0.05 U	0.010 U				
MW-31S	DUP (MW-31S)																							
MW-31S	, ,					1 U														_				
MW-30S*	MW-31S	193210	12/8/2021	1 U	1 U	1 U	2 U	0.51 U	0.31 U	0.51 U	0.51 U	0.51 U	0.51 U	1 U	0.200 U	0.51 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.005 J
HW-335* H81652 H81652 H81678 H81679 H8167		2150102	6/9/2016	1 U	1 U	1 U				1.4 U		1.4 U		1.4 U	1.4 U					_	_			0.005 U
MW-43S*														_										
189279 9/8/2021 1 U 1 U 1 U 1 U 2 U 0.48 U 0.29 U 0.48 U 0.50 U 0	WW-336*													_										
HW-40 H93156 12/7/2021 1 U 1 U 1 U 1 U 1 U 1 U 1 U 2 U 0.25 J 0.33 U 0.095 J 0.54 U 0.11 J 0	19199-000																							
MW-40																				_				
MW-40 17829 9/30/2020 1 U 1 U 1 U 1 U 2 U 0.48 U 0.29 U 0.48 U																								
MW-40 18652 3/4/2021 1 U 1 U 1 U 1 U 2 U 0.5 U 0.05 U 0.0														_						_				
MW-40 18578 6/8/2021 1 U 1 U 1 U 2 U 0.48 U 0.29 U 0.48 U 0.29 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.5 U 0.5 U 0.5 U 0.05 U 0.0														_						_	_			
189373 9/9/2021 1 U 1 U 1 U 2 U 0.5 U 0.6 U 0.05 U 0.06 U 0.06 U	MW-40				1															_				
														_						_				
ן 1. ער פריים לייניים ליינים לייניים לייניים לייניים ליינים																				_				
		193210	12/0/2021	ı U	1 0	_ ' '	ı ∠ U	U.O U	U.S U	υ. ο	v.ə U	0.0 0	0.0 U	1 1 0	U.Z U	U.bU	0.03/ J	U.UO U	U.U0 U	U.00 U	U.UO U	U.UO UJ	U.U0 UJ	U.U1UU U

Table 3: BTEX, PAHs and Total Cyanide 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

,				BTE	X μg/L										PAHs μg/L								Cyanide (mg/L)
Sample ID	Laboratory Report Number	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	Acenaphthene	Acenaphthylene	Anthracene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Dibenzo(a,h) anthracene	Indeno(1,2,3- cd)pyrene	Cyanide, Total
	2150484	6/9/2016	1 U	1 U	1 L	J 3 U	J 1.4 U	J 1.4 U	1.4 U	1.4 U	1.4 U	1.4 L	J 1.4 U	1.4 U	1.4 L	J 1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.005 U
	175829	9/30/2020	1 U	1 U	1 L	J 2 U	0.0360 J	0.29 U	0.48 U	0.48 U	0.48 U	0.48 L	J 0.20 J	0.19 U	0.10 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.007 J
MW-45S	181652	3/3/2021	1 U	1 U	1 L	J 2 U	J 0.5 L	J 0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 1 L	0.2 U	0.5 L	J 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
IVIVV-455	185758	6/8/2021	1 U	1 U	1 L	J 2 U	J 0.48 L	J 0.29 U	0.48 U	0.48 U	0.48 U	0.48 L	J 0.95 L	0.19 U	0.48 L	J 0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0100 U
	189373	9/9/2021	1 U	1 U	1 L	J 2 U	J 0.5 L	J 0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 1 L	0.2 U, bl	0.5 L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0077 J
	193309	12/9/2021	1 U	1 U	1 L	J 2 U	0.1 J	0.3 U	0.067 J	0.5 U	0.08 J	0.058 J	J 1 L	0.24	0.12 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.0063 J
	2150102	6/9/2016	358	428	29.5	307	34.9	3.2	1.8	1.5 U	1.5 U	8.3	954	7.1	1.9	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.005 U
MW-46S	175829	9/30/2020	720	790	20 L	210	43	2.8 J	2.2 J	1.9 J	2.3 J	9.7	1100	7.6	3.8 J	0.41	0.32	0.26	0.15	0.093	0.045 J	0.15	0.010 U
10100-403	181652	3/4/2021	1200	970	32	440	89 J	12 J	8.2 J	100 U	100 U	20 J	2500	14 J	22 J	5.4	6.1	3.4	2.6	1.8 J	0.95	2.7	0.010 U
	185758	6/8/2021	1200	1200	65	580	75 J	57 U	95 U	95 U	95 U	16 J	J 2200	38 U	95 L	2.5 J	2.8	1.8	1.1	0.95	0.34	1.1	0.012 J+
	189373	9/9/2021	380 J	400 J	20 L	140	46 J	30 U	6.5 J	50 U	50 U	14 J	730	20 U, bl	50 L	2.1	2.5	1.5	0.95	0.83	0.29	0.85	0.010 U
DUP (MW-46S)	189373	9/9/2021	550 J	550 J	20 L	170	61	30 U	4.7 J	50 U	50 U	16 J	J 890	20 U, bl	50 L	2.2	2.6	1.5	0.89	0.95	0.19	0.85	0.010 U
MW-46S	193156	12/7/2021	960	810	12	370	85	8.6 J	56 U	56 U	56 U	19 J	1700	22 U	14 J	4.8 J	5.4 J	4.0 J	2.4 J	2.6 J	0.58 J	2.1 J	0.0066 J
	2150484	6/9/2016	1 U	1 U	1 L	J 3 U	J 1.6 L	J 1.6 U	1.6 U	1.6 U	1.6 U	1.6 L	J 1.6 U	1.6 U	1.6 L	J 1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.005 UJ
	175829	9/30/2020	1 U	1 U	1 L	J 2 U	0.75 J	1.5 U	2.5 U	2.5 U	2.5 U	2.5 L	J 1.6 J	1.0 U	2.5 L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
104/470	181652	3/4/2021	1 U	1 U	1 L	J 2 U	0.91 J	1.5 U	2.5 U	2.5 U	2.5 U	2.5 L	J 5.0 L	1.00 U	2.5 L	J 0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.010 U
MW-47S	185758	6/8/2021	1 U	1 U	1 L	J 2 U	0.84 J	1.4 U	2.4 U	2.4 U	2.4 U	2.4 L	J 4.8 L	0.95 U	2.4 L	0.016 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 J+
	189373	9/9/2021	1 U	1 U	1 L	J 2 U	0.81	0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 0.096 J	0.20 U	0.5 L	J 0.05 U	0.053 U	0.048 J	0.048 J	0.05 U	0.05 U	0.042 J	0.010
	193309	12/9/2021	1 U	1 U	1 L	J 2 U	1.1	0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 0.11 J	0.20 U	0.5 L	0.031 J	0.05 U	0.03 J	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.012
	2150102	6/9/2016	174	275	5 L	31.7	32.7	1.6 U	1.6	1.6 U	1.6 U	7.6	16.4	6.9	1.6 L	J 1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.005 U
	175829	9/30/2020	69	26	2 L	18	41	1.5	1.4	0.48 U	0.72	3.9	91	4.6	0.90	0.019 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
	181652	3/3/2021	35	39	2 L	18	33	1.4	1.4	0.5 U	0.61	4	44	5.1	0.76	0.043 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
MW-48S	185758	6/8/2021	41	25	1 L	12	36	1.3 J	1.7 J	4.8 U	0.8 J	3.7 J	J 49	5.5	0.83 J	0.033 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
	189429	9/10/2021	36	23	1 L	16	33	0.66 J	1.3 J	5.0 U	0.88 J	4.4 J	J 10 U	3.1	0.94 J	0.054	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
	193210	12/8/2021	56	25	1 L	19	43	1.3 J	1.5 J	5.1 U	5.1 U	4.7 J	140	5.4	0.83 J	0.035 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.0054 J
	175904	10/1/2020	1 U	1 U	1 L	J 2 U	J 0.49 L	J 0.29 U	0.49 U	0.49 U	0.49 U	0.49 L	J 0.97 U	0.2 U	0.49 L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
	181652	3/3/2021	1 U	1 U	1 L	J 2 U	J 0.5 L	J 0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 1 L	0.2 U	0.5 L	J 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
Equipment Blank	185894	6/10/2021	1 U	1 U	1 L	J 2 U	J 0.5 L	J 0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 1 L	0.2 U	0.5 L	J 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0055 J
	189373	9/9/2021	1 U	1 U	1 L	J 2 U	J 0.5 L	J 0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 1 L	0.2 U	0.5 L	J 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 U
	193210	12/8/2021	1 U	1 U	1 L	J 2 U	J 0.5 L	J 0.3 U	0.5 U	0.5 U	0.5 U	0.5 L	J 1 L	0.2 U	0.5 L	J 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.010 U
	181652	3/3/2021	1 U	1 U	1 (J 2 U	J NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	185758	6/8/2021	1 U	1 U	1 L	J 2 U	J NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	185822	6/9/2021	1 U	1 U	1 l	J 2 U	J NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	189279	9/8/2021	1 U	1 U	1 1	J 2 U	J NA	NA NA	NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA NA
Trip Blank	189373	9/9/2021	1 U	1 U	1 1] 2 11	J NA	NA NA	NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA NA
	189429	9/10/2021	1 U	1 11	1 1	J 2 U	J NA	NA NA	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	193156	12/7/2021	1 U	1 U	1 1	J 2 U	J NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	193210	12/8/2021	1 U		1 1	1 2 11	J NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	190210	12/0/2021	1 0	, 0	, ,	, , ,	/ INA	INA	INA	11/7	INA	INA	INA	INA	14/5	INA	INA	INA	INA	INA	11/7	IVA	INA

- Notes:

 * MW-33S was mislabled as MW-36S during the 2021 Q4 GME.

 1. Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (AWQS/GV) for water class GA.

 2. Bold- Analyte was detected in laboratory analysis

 3. Highlight- Analyte was detected above the AWQS/GV

 4. Xylene AWQS (5 µg/L) applies to the sum of isomers

 5. NS No Standard

 6. U Not detected above laboratory reporting limit.

 7. J Result is estimated, detection was below the reporting limit but above the method detection limit.

 8. UJ- The analyte was analyzed for, but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.

 9. J+ The result is an estimated quantity and may be biased high.

 10. NA Not Analyzed

 11. *+ LCS and/or LCSD is outside acceptance limits, high biased.

 12. F1 MS and/or MSD recovery exceeds control limits.

 13. F2 MS/MSD RPD exceeds control limits

 14. b1 laboratory blank contamination

 15. B Compound was found in the blank and sample.

 16. H Sample was prepped or analyzed beyond the specified holding time.

Table 4: Monitored Natural Attenuation and Field Parameters 2021 Q4 Groundwater Monitoring Event Ithaca Court Street Former MGP Site - OU2 Ithaca, New York

							MNA Parameter	s						Field Parameters	5	
Sample ID	Laboratory Report Number	Sample Date	Sulfate (mg/L)	Ammonia (mg/L)	Nitrate + Nitrite as N (mg/L)	Nitrite as N (mg/L)	Nitrate as N (mg/L)	Alkalinity, Total (mg/L)	Ferrous Iron (mg/L)	Iron (mg/L)	Methane (µg/L)	pH (pH units)	Turbidity (NTU)	ORP (MeV)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)
	AWQS/GV ¹		250	2	10	1	10	NS	NS	0.3	NS	NS	NS	NS	NS	NS
	175904	10/1/2020	121	0.54	0.024 J	0.05 U	0.024 J	404	0.10 U	4.7	98	6.93	9.81	-87.9	2.29	0.2
	181652	3/3/2021	1880	3.4			0.05 U	700	0.17 J	13.6	460	6.68	42.1	-109.4	7.333	0.39
MW-C11	185822	6/9/2021	3300	6.9			0.024 J	830	0.08 J	26.8	380	7.10	7.81	-164.4	7.9	0.11
	189279	9/8/2021	979	1.7			0.027 J	616	0.10 UJ, h	9.7	150	10.31	1.8	-26.9	4.53	0.31
	193156	12/7/2021	2910	7.3			0.025 J	840	0.088 J	24.4	470	7.07	8.49	-115.2	5.83	0.19
	175904	10/1/2020	238	2.5	0.05 U	0.05 U	0.05 U	605	0.10 U	2.8	1000	7.11	5.00	-108.5	1.72	0.21
	181652	3/4/2021	214	1.5			0.05 U	538	0.10 UJ	2.1	820	6.98	4.76	-109.4	1.116	0.39
MW-C12	185894	6/10/2021	237	1.6			0.023 J	502	0.10 UJ	2.5	620	7.30	1.06	-138.9	1.28	0.12 J+
	189373	9/9/2021	198	1.1			0.025 J	493	0.10 UJ, h	2.0	770	10.60	9.61	-50.1	1.241	0.22
	193156	12/7/2021	171	1.4			0.078	481	0.10 U	1.6	740	7.27	2.34	-83.4	1.15	0.16
	175904	10/1/2020	1320	0.77	0.055	0.021 J	0.034 J	563	0.28 J	25.8	380	6.94	15.9	-124.3	3.57	0.4
	181652	3/3/2021	1470	0.58			0.05 U	615	0.10 UJ	25.8	11	6.93	61.8	-75.2	3.914	1.4
MW-C16	185822	6/9/2021	1650	1.1			0.041 J	625	0.27 J	32.9	20	7.06	25	-156.6	3.63	0.35
	189279	9/8/2021	1240 1200	0.5 0.47			0.038 J 0.023 J	499 532	0.088 J 0.15	22.9 23.6	11 26	6.93	14.8	-72	2.81	0.46
	193156	12/7/2021				0.05.11						7.01	22.9	-117.0	3.23	0.24
	175829	9/30/2020	10 U	3.4	0.025 J	0.05 U	0.025 J	343 190	0.37 J	7.7	7500	6.77	1.40	-73.1	0.85	0.39
MW 226	181652	3/4/2021	58.3 46.7	0.02 U 0.02 U			18.8	209	0.10 UJ 0.10 UJ	0.73 0.27	4.0 U	6.52	3.72	14.5	0.731	5.62
MW-22S	185758	6/8/2021	22.6	0.02 U			9.2 3.2	266	0.10 UJ, h	0.27	4.0 U 96.0	8.66	2.75	222.1	0.73	3.05
	189373	9/9/2021	40.7	0.02 U			6.7	269	0.10 UJ	0.26	6.1	6.61	5.28	279.8	0.81	1.62
	193210		4.1 J	1.1	0.36	0.05 U	0.36	238	0.19 J	1.8	3100	6.51 6.87	4.28 6.95	197.3 -63.7	0.738 0.69	0.79 1.08
	175829 181652	9/30/2020	5.8 J	1.1			0.33	234	0.19 J	1.9	2900	7.02	9.17	-53.1	0.666	0.81
MW-23S	185822	6/9/2021	7.5 J	0.54			0.33	228	0.10 UJ	1.3	2500	6.73	0.28	-29.5	0.99	0.66
10100-233	189373	9/9/2021	6.4	0.65		<u></u>	0.26	236	0.10 UJ, h	1.1	2000	8.35	4.13	-20.9	0.693	0.36
	193309	12/9/2021	5.3 J	0.88			0.25	255	0.10 UJ	1.6	4600	6.80	9.03	-75.7	0.940	0.38
	175904	10/1/2020	0.87 J	2.7	0.30	0.021 J	0.28	301	0.12 J	29.4	1400	6.91	45.9	-135.6	0.95	0.32
	181652	3/3/2021	39.6	0.02 U			1.8	317	0.10 UJ	1.8	4.0 U	7.10	34.3	79.8	0.986	6.85
MW-24S	185822	6/9/2021	37.5	0.03			0.13	352	0.10 UJ	0.24	4.0 U	7.72	3.21	82.4	1.28	0.72
	189279	9/8/2021	38	0.02 U			0.65	358	0.10 UJ, h	0.19	4.0 U	6.87	6.24	126.1	1.23	0.68
	193156	12/7/2021	37.2	0.047			0.11	383	0.10 U	0.24	680	7.19	12.8	230.5	1.101	0.84
	175904	10/1/2020	121	0.52	0.05 U	0.020 J	0.05 U	550	0.15 J	6.5	30	6.89	5.05	-40.6	3.51	0.3
	181652	3/4/2021	206	0.02 UJ			0.12	616	0.10 UJ	1.5	4.0 U	6.83	5.97	29.1	3.183	2.97
MW-25S	185822	6/9/2021	171	0.02 U			0.055	566	0.10 UJ	48.9	4.0 U	7.15	1.46	94.0	3.68	1.2
	189279	9/8/2021	133	0.39			0.041 J	545	0.10 UJ, h	1.3	25.0	7.95	13	-30.4	3.843	0.53
	193210	12/8/2021	184	0.067			0.22	568	0.10 UJ	0.25	4.0 U	6.93	29.4	230.1	3.19	5.05
	175904	10/1/2020	10 U	0.88	0.031 J	0.022 J	0.050 U	271	0.10 J	1.8	4000	7.47	0.76	-134.4	0.79	0.28
	181652	3/3/2021	14.4	0.88			0.13	260	0.10 UJ	1.5	3900	7.58	8.80	-91.8	0.692	0.37
MW-28S	185822	6/9/2021	9.5 J	0.67			0.32	275	0.10 UJ	1.8	3000	7.56	2.69	-129.7	0.97	0.13
	189279	9/8/2021	9.3 J	0.82			0.07	259	0.10 UJ, h	1.6	3900	7.58	2.18	-95.2	0.71	0.28
	193156	12/7/2021	9.7	0.86			0.099	269	0.10 U	1.7	3300	7.73	6.88	108.5	0.737	1.41
	175829	9/30/2020	10.2	0.096	0.025 J	0.05 U	0.025 J	303	0.086 J	1.5	580	6.52	10.1	-11.4	0.67	0.52
	181652	3/4/2021	16.3	0.051			0.18	258	0.10 UJ	0.39	36	6.91	21.2	18.3	0.549	0.98
MW-31S	185758	6/8/2021	17.9	0.014 J			0.025 J	260	0.12 J	0.27	130	6.92	0.97	9.2	0.54	0.27
	189429	9/10/2021	14.5	0.045 J+, bl			0.021 J	281	0.17 J,h	0.44	230	7.7	2.04	-20.4	0.681	0.34
	193210	12/8/2021	10.3	0.078			0.05 U	293	0.10 UJ	0.49	320	6.83	4.24	-3.4	0.510	0.34

	175829	9/30/2020	21.2	3.9	0.049 J	0.022 J	0.027 J	421	0.64 J	20.9	190	6.88	4.23	-108.2	0.92	0.77
	181652	3/4/2021	44.9	0.09			0.22	364	0.10 UJ	0.97	1.7 J	7.33	57.2	55.1	0.849	7.16
MW-33S*	185758	6/8/2021	43.4	0.83			0.02 J	407	0.10 UJ	1.8	16	9.38	4.74	-29.6	1.02	1.15
	189279	9/8/2021	21.9	1.1			0.05 U	419	0.10 UJ, h	8.6	78	6.82	5.42	-23.3	1.46	0.3
	193156	12/7/2021	34.3	0.50			0.060	456	0.10 U	4.2	30	7.22	15.4	198.0	1.445	0.88
	175829	9/30/2020	3.6	10.1	0.14	0.05 U	0.14	217	0.13 J	20.4	950	6.44	60.1	-70.1	0.376	0.44
	181652	3/4/2021	13.9	0.11			0.52	147	0.10 UJ	2.5	5.5	6.39	4.99	28.6	0.314	1.12
MW-40	185758	6/8/2021	9.3	0.45		-	0.05 U	156	0.10 U UJ	2.3	110	6.70	0.91	-25.5	0.304	0.11
	189373	9/9/2021	9	0.2		-	1	194	0.13 J, h	1.1	29	6.31	2.61	22.2	0.325	0.82
	193210	12/8/2021	6.3	0.18			0.05 U	170	0.10 UJ	2.4	150	6.35	8.1	217.1	0.282	0.23
	175829	9/30/2020	10 U	3.4	0.098	0.05 U	0.098	377	0.21 J	30.1	5800	6.70	57.2	-81.7	1.08	0.5
	181652	3/3/2021	11.2	0.44	NA	0.055	0.055	365	0.10 UJ	10.4	24	6.72	53.2	-20.5	0.861	1.39
MW-45S	185758	6/8/2021	6.9 J	0.85			0.05 U	405	0.10 UJ	10.7	370	6.98	26.3	-37.6	1.21	0.37
	189373	9/9/2021	4.2 J	1.5			0.05 U	484	0.10 UJ, h	18.9	1300	6.81	9.76	-98.7	1.26	0.47
	193309	12/9/2021	10.9	4			0.12	429	0.10 UJ	4.2	3400	6.32	145	230.1	1045	2.30
	175829	9/30/2020	12.7	3.6	0.049 J	0.05 U	0.049 J	342	0.086 J	7.0	7900	6.75	4.72	-89.9	1.06	0.32
	181652	3/4/2021	10 U	5			0.05 U	356	0.20 J	10.7	13000	6.78	54.3	-89.9	0.60	0.49
MW-46S	185758	6/8/2021	10 U	3.3			0.05 U	336	0.10 UJ	8.3	11000	7.08	8.00	-155.6	0.68	0.18
	189373	9/9/2021	10 U	5.3			0.05 U	321	0.10 UJ, h	6.9	12000	6.88	12.90	-94	0.73	0.22
	193156	12/7/2021	2 U	4.3			0.05 U	325	0.19	8.7	17000	7.22	15.8	119.5	0.690	1.12
	175829	9/30/2020	17.8	7.6	0.14	0.05 U	0.14	305	0.092 J	40.6	8300	6.47	47.8	-114.1	0.84	0.12
	181652	3/4/2021	7.5 J	4.6			0.05 U	292	0.10 UJ	14.8	12000	7.07	33.2	-131.8	0.819	0.52
MW-47S	185758	6/8/2021	10 U	8.5			0.05 U	303	0.10 UJ	15.4	13000	6.79	78.2	-144.7	0.75	0.01
	189373	9/9/2021	5.8 J	6.6			0.05 U	246	0.12 J, h	5.8	2600	9.43		-43.5	0.84	1.2
	193309	12/9/2021	12.8	3.4			_{0.05} U	295	0.29 J	6.1	3400	7.16	156	-131.7	0.760	0.28
	175829	9/30/2020	40 U	2.7	0.05 U	0.05 U	0.05 U	396	0.10 U J	6.9	5000	7.08	10	-114.6	3.33	0.38
	181652	3/3/2021	12.1 J	1.4			0.036 J	376	0.10 U J	3.4	3100	7.21	7.67	-83.3	1.678	0.84
MW-48S	185758	6/8/2021	40 U	1.4			0.050 U	338	0.10 UJ	5.8	3000	8.41	9.8	-135.1	3.32	7.7
	189429	9/10/2021	20 U	1.7			0.050 U	373	0.10 UJ, h	4.5	2800	7.02	3.19	-102.8	3.89	0.21
	193210	12/8/2021	20 U	1.9			0.050 ∪	396	0.10 UJ	4.5	1900	7.27	3.07	-122.2	2.54	0.16

Notes:

- * MW-33S was mislabled as MW-36S during the 2021 Q4 GME.
- 1. Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (AWQS/GV) for water class GA.
- 2. **Bold-** Analyte was detected in laboratory analysis
- 3. Highlight- Highlight- Analyte was detected above the AWQS/GV
- 4. NS No Standard
- 5. -- Not Analyzed
- 6. U- Not detected above laboratory reporting limit.
- 7. J Result is estimated, detection was below the reporting limit but above the method detection limit.
- 8. UJ- The analyte was analyzed for, but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.
- 9. MNA Monitored Natural Attenuation
- 10. ORP Oxidation Reduction Potential
- 11. J+ The result is an estimated quantity but may be biased high.
- 12. HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.
- 13. ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
- 14. bl laboratory blank contamination
- 15. h Holding times
- 16. B Compound was found in the blank and sample.
- 17. F1 MS and/or MSD recovery exceeds control limits.

Appendix A - Groundwater Sampling Purge Forms

N	/lonitoring	g Well Pur	rging / Sa	mpling F	orm			
Project Name and Number:								
Project Name and Number.			thaca - 606152					
Monitoring Well Number:		MW-C)		Date:		12/7/21		
Samplers:			Chri.	5 Frenc	<u>h</u>			
Sample Number:		MW-CII	120721	QA/Q	C Collected?	M	15/nsD	
Purging / Sampling Method:			V/ dedicated to					
 L = Well Depth: D = Riser Diameter (I.D.): W = Depth to Water: C = Column of Water in Well: V = Volume of Water in Well: 3(V) = Target Purge Volume 		9)(0.5D) ² (7.4	×	15,38 0.17 5,64 9,74 1.59 4,76	_ _feet _feet	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collect	ed Using	NTU + YSI						
Parameter	Units		·		dings	1	1	1
Time	24 hr	1505	1207	1212	1217	1777	1227	1222
Water Level (0.33)	feet	5.64	6.08	6.12	6.16	6,20	6,22	('55
Volume Purged	gal	0	0.35	0.70	A.1.0	1.3	1.6	1.85
Flow Rate	mL/min	225	555	225	225	225	225	252
Turbidity (+/- 10%)	NTU	305	287	32.5	19,2	14.5	8.68	8.98
Dissolved Oxygen (+/- 10%)	%	13.5	10.0	1.7	2.2	2.0	1.7	1.7
Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	mg/L MeV	1.45	1.06	0.19	0.22	0.70	0.18	0.17
	MeV mS/cm ^c	-27.7	-28.7	-94.9	-101.5	-104.9 7.91	-/08.7	-107.9
Specific Conductivity (+/- 3%)	mS/cm ^c	0,70	0.77	\$8.35	3.19 6.39		7.71	7.98
Conductivity (+/- 3%) pH (+/- 0.1)	mS/cm	0.57	0.56	€ 6.5 Z	-	6.17	6.02	200
PH (+/- 0.1) Temp (+/- 0.5)	pH unit	8.0)	7.68	7.06	7.07	7.12	7.08	7.00
Color	Visual	Dup Grey	13.0	and	Bout Pecks		12.6 Bluk fleeks	13.6
Odor	Olfactory	none	none org	nove	black leeks	none	some none	Black flecks
Comments: Sompled (

		y Well Pui	0 0				
Project Name and Number:		NYSEG - It	haca - 60615	225			
Monitoring Well Number:		Mu-CI		Date:	12/	7/21	
Samplers:			(Jhnis/Fi	rench		
Sample Number:		NW-CII I	וגלע	QA/Q	C Collected?		45/150
Purging / Sampling Method:		Low flow W	// dedicated t	tubing			
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4		15.38 0.17 5.64 9.74 21.59 24,79	feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
o. 5(v) – Target Purge volume					_gal determine \		0.30
		D (in aboa)	1:		D 1 b	A imah	Cinch
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collecto	ed Using						
	ed Using Units	V (gal / ft)		0.163			
Parameter Time		V (gal / ft) NTU + YSI /237	0.041	0.163	0.37		
Parameter Time Water Level (0.33)	Units	V (gal / ft) NTU + YSI 1237 6.22	0.041	Rea 247 6.22	0.37		
Parameter Time Water Level (0.33)	Units 24 hr	V (gal / ft) NTU + YSI /237 6.22 2.1	0.041 1242 6.22 2.35	Rea 1247 6.22 2.7	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	V (gal / ft) NTU + YSI 1237 6.22 2.1 225	0.041	Rea 247 6.22 2.7 225	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal	V (gal / ft) NTU + YSI /237 6.22 2.1	0.041 1242 6.22 2.35	Rea 747 6.22 2.7 225 8.49	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.5	0.041 1242 6.22 2.35 225 8.68 1.8	Rea 247 6.22 2.7 225 8.49 1.9	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) NTU + YSI /237 6.22 2.1 225 8.26	0.041 1242 6.22 2.35 225 8.68 1.8 0.18	Rea 747 6.22 2.7 225 8.49	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.5	0.041 1242 6.22 2.35 225 8.68 1.8	Rea 247 6.22 2.7 225 8.49 1.9	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.5 0.19 -111.5 7.39	0.041 1242 6.22 2.35 225 8.68 1.8 0.18	Rea 247 6.22 2.7 225 8.49 1.9 0.19	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.6 0.19 -111.5	0.041 1242 6.22 2.35 225 8.68 1.8 0.18	Rea 247 6.22 2.7 2.5 8.49 1.9 0.19 -115.7	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.5 0.19 -111.5 7.39	0.041 1242 6.22 2.35 225 8.68 1.8 0.18 -113.4 7.48	Rea 747 6.22 2.7 225 8.49 1.9 0.19 -115.7 7.47	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.6 0.19 -111.5 7.39 5.77	0.041 1242 6.22 2.35 225 8.68 1.8 0.18 •113.4 7.48 5.83	Rea 247 6.22 2.7 2.5 9.49 1.9 0.19 -115.7 7.47 5.13	0.37		
Water Quality Readings Collector Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc pH unit	V (gal / ft) NTU + YSI 1237 6.22 2.1 225 8.26 1.6 0.19 -111.5 7.39 5.77 7.05	0.041 1292 6.22 2.35 225 8.68 1.8 0.18 -113.9 7.48 5.83 7.07	Rea 247 6.22 2.7 225 8.49 1.9 0.19 -115.7 7.47 5.13 7.07	0.37		

Page 7 of 2

4

Monitoring Well Purging / Sampling Form

Project Name and Number:

NYSEG - Ithaca - 60615225

Monitoring Well Number:

MATO MW-C12

Date:

12/7/21

Samplers:

Chris French

Sample Number:

MW-C12 - 120721

QA/QC Collected?

No

Purging / Sampling Method:

Low flow W/ dedicated tubing

1. L = Well Depth:

2. D = Riser Diameter (I.D.):

3. W = Depth to Water:

4. C = Column of Water in Well:

5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$

6. 3(V) = Target Purge Volume

17.21	feet
0.14	feet
07	foot

647 feet 1.75 gal

5.25 gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using

NTU + YSI

Parameter	Units			Read	lings			
Time	24 hr	21425	1430	1435	1440	1445	150	1455
Water Level (0.33)	feet	6.47	6.55	6.61	6.65	6.62	6,70	6.70
Volume Purged	gal	0	0.7	6.55	0.75	1.0	1.25	1.5
Flow Rate	mL/min	190	190	170	190	190	190	190
Turbidity (+/- 10%)	NTU	5.87	4.93	5.33	5.53	2.86	2.24	7.51
Dissolved Oxygen (+/- 10%)	%	8.8	5.0	5.4	5.2	2.7	2.1	01.7
Dissolved Oxygen (+/- 10%)	mg/L	0.90	0.52	0.56	0.53	0.78	0.22	0.18
Eh / ORP (+/- 10)	MeV	-89.7	-78.9	-72.4	- 69.3	- 74.3	-77.5	-80.2
Specific Conductivity (+/- 3%)	mS/cm ^c	2.36	1.97	1.65	1.57	1.54	1.98	1. 47
Conductivity (+/- 3%)	mS/cm	184	1.54	1.30	1.26	1.21	1.17	1.15
pH (+/- 0.1)	pH unit	7.20	7.23	7. 3	7.30	7.27	7.27	7.27
Temp (+/- 0.5)	C.	13.6	13.6	13.8	13.9	13.8	13.9	13.8
Color	Visual	Clear	class	Clair	Clear	Can	clear	Clear
Odor	Olfactory	none	none	none	none	rone	none	none

Comments:

Sompled @ 1505

Project Name and Number:		NYSEG - Itl	haca - 60615	225			
Monitoring Well Number:	MU-C	12	Date: 12/7/21				
Samplers:			Chri.	5 Frenc	L		
Sample Number:		M-42	120771	. QA/QC	C Collected?	<u> </u>	10
Purging / Sampling Method:		Low flow W	// dedicated t	ubing			
 L = Well Depth: D = Riser Diameter (I.D.): W = Depth to Water: C = Column of Water in Well V = Volume of Water in Well 3(V) = Target Purge Volume)(0.5D) ² (7.4		17.21 0.17 C.47 10.74 1.73 \$.25	feet feet feet gal gal determine	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect	ed Using		1-inch	the state of the s		-	
Water Quality Readings Collect Parameter	Units	V (gal / ft)	1-inch 0.041	0.163		-	
Parameter Time	Units 24 hr	V (gal / ft) NTU + YSI /500	1-inch 0.041	0.163	0.37	-	
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft) NTU + YSI /SOO (.70	1-inch 0.041	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft) NTU + YSI /SO 0 (.70	1-inch 0.041	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI /SOO (.70	1-inch 0.041 1505 6.70 2.0 190	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU	/SUO (.70 190 2.61	1-inch 0.041 1505 6.70 2.04	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	/SOO (.70 2.61	1-inch 0.041 1505 6.70 190 7.24 1.5	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L	/SOO (.70 2.61 1.6 0.17	1-inch 0.041 1505 6.70 2.0 170 2.04 1.5 0.16	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L MeV	/500 (.70 2.61 1.6 0.17	1-inch 0.041 1505 6.70 2.04 1.5 0.16 -83.4	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cm ^c	/SOO (.70 2.61 1.6 0.17 -80.8	1-inch 0.041 1505 6.70 2.04 1.5 0.16 -83.4 1.46	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	/SUO (.70 2.61 1.6 0.17 -80.8 1.46	1-inch 0.041 1505 6.70 2.04 1.5 0.16 -83.4 1.46 1.15	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	/SOO (.70 2.61 1.6 0.17 _80.8 1.15 7.27	1-inch 0.041 1505 6.70 2.04 1.5 0.16 -83.4 1.46 1.15	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C*	/SOO (.70 2.61 1.6 0.17 -80.8 1.46 1.15 7.27	1-inch 0.041 1505 6.70 2.04 1.5 0.16 -83.4 1.46 1.15 7.27 13.9	0.163	0.37	-	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	/SOO (.70 2.61 1.6 0.17 _80.8 1.15 7.27	1-inch 0.041 1505 6.70 2.04 1.5 0.16 -83.4 1.46 1.15	0.163	0.37	-	

	Monitoring	g Well Pur	ging / Sa	impling F	-orm					
Project Name and Number:		NYSEG - It	haca - 60615	5225						
Monitoring Well Number:		MW-C	MW-C16 Date: 12/7/21							
Samplers:			C	hris Fr	ench					
Sample Number:		MW-C16	12	QA/Q	C Collected?		No			
Purging / Sampling Method:		Low flow W	// dedicated	tubing						
 L = Well Depth: D = Riser Diameter (I.D.): W = Depth to Water: C = Column of Water in Wel V = Volume of Water in Wel 3(V) = Target Purge Volume 		9)(0.5D) ² (7.4		(.07 0.17 4.89 1.18 1.82 5,47	_ feet _ feet _ feet _ feet _ gal _ gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50			
Water Quality Readings Collect	ted Using	D (inches) V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5]		
Parameter	Units			Rea	dings					
Time	24 hr	0935	0940	0945	0953	0955	1000	1005		
Water Level (0.33)	feet	4.89	5.88	6.72	7.05	7.32	7.61	7.77		
Volume Purged	gal	0	0.2	0.35	0.5	0.7	0.25	00 1.0		
Flow Rate	mL/min	185	185	130	130	130	130	130		
Turbidity (+/- 10%)	NTU	86.6	68.8	170	160	150	132	/14		
Dissolved Oxygen (+/- 10%)	%	5.1	3.4	3.4	2.4	3.3	3.3	3.3		
Dissolved Oxygen (+/- 10%)	mg/L	0.53	0.34	0.35	0.35	ن.34	0.34	0.34		
Eh / ORP (+/- 10)	MeV	-144,2	-126.1	-103.5	-97.9	-94.5	-93.5	-94.4		
Specific Conductivity (+/- 3%)	mS/cm ^c	6.00	4.23	P2.12	1.99	1.98	8 2.09	2.16		
Conductivity (+/- 3%)	mS/cm	4.61	2.30	1.64	1.54	1.53	1.62	1.69		
pH (+/- 0.1)	pH unit	7.31	7.11	7.13	7.17	7.09	7.07	7.07		
Temp (+/- 0.5)	C.	13.7	ד.כו	13.3	13.3	13.7	15.2	13.4		
Color Odor	Visual Olfactory	None	Black fleek	never never	none	nove	Greg	Grey		
	impled (nuve			

Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) MEV Secific Conductivity (+/- 3%) Physical	M	onitorinç	g Well Pur	ging / Sa	mpling F	orm			
Sample Number: Indicated tubing Indicated tub	Project Name and Number:		NYSEG - It	haca - 60615	225				
Sample Number: Indicated tubing Indicated tub	onitoring Well Number:Mu-Cl				_ Date:	:1	2/7/21		
Purging Sampling Method: Low flow W dedicated tubing	Samplers:			Chri	5 Frenc	h			
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. 3(V) = Target Purge Volume Conversion factors to determine V given C Readings NTU + YSI Parameter Units Readings NTU + YSI Parameter Units Readings NTU + YSI Parameter Units Readings 1	Sample Number:		MW-C16 1	20721	QA/Q	C Collected?	•	No	
2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well = C(3.14159)(0.5D)²(7.48) 6. 3(V) = Target Purge Volume Conversion factors to determine V given C D (inches)	Purging / Sampling Method:		Low flow W	// dedicated	tubing				
3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. 3(V) = Target Purge Volume Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using NTU + YSI Water Level (0.33) feet 2.4 hr (0.10 1015 1070 0.15 1070 1075 107	1. L = Well Depth:				16.07	feet	D (inches)	D (feet)	1
3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. 3(V) = Target Purge Volume Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using NTU + YSI Parameter Units Readings	2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08	1
4. C = Column of Water in Well: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. 3(V) = Target Purge Volume Conversion factors to determine V given C	3. W = Depth to Water:					feet	2-inch	0.17	1
S. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48)	4. C = Column of Water in Well:					_	3-inch	0.25	1
Conversion factors to determine V given C D (inches)	5. V = Volume of Water in Well	= C(3.14159	3)(0.5D) ² (7.4	8)		_			1
Conversion factors to determine V given C D (inches)	6. 3(V) = Target Purge Volume					_	6-inch	0.50	1
V (gal / ft) 0.041 0.163 0.37 0.65 1.5				Conversion	n factors to	determine	V given C		
Water Quality Readings Collected Using NTU + YSI Readings Time 24 hr t/t/t00 t/t/t5 t/t/t00			D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1
Parameter Units Readings			V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
Water Level (0.33) feet \$.06 \$.36 \$.81 7.10 9.72 9.50 9.49 Volume Purged gal 1.2 1.4 1.7 2.0 2.7 2.45 2.75 Flow Rate mL/min 130 180					Rea	dings	<u> </u>	. L	
Water Level (0.33) feet \$.06 \$.36 \$.81 9.10 9.72 9.50 9.49 Volume Purged gal 1.2 1.4 1.7 2.0 2.7 2.45 2.75 Flow Rate mL/min 130 180	Time	24 hr	1010	1015	1050	1075	1030	1035	1040
Volume Purged Sal 1.2 1.4 1.7 2.0 2.7 2.45 2.75	Water Level (0.33)	feet	8.06	8.36	8.8	9.10	9.72	9.50	
Flow Rate ML/min 130 18	Volume Purged	gal	1.2	1.4	The second secon	2.0		2.45	
Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) MeV Specific Conductivity (+/- 3%) Physical Physica	Flow Rate	mL/min	130	180	180	180	180		
Dissolved Oxygen (+/- 10%)	Turbidity (+/- 10%)	NTU	1000	28.6		64.7	59.4	58.3	
Dissolved Oxygen (+/- 10%) mg/L 0.77 0.30 0.79 0.79 0.78 0.28 0.76 Eh / ORP (+/- 10) MeV -36.6 -38.9 -107.1 -109.8 -106.6 -108.8 -111.7 Specific Conductivity (+/- 3%) mS/cm 2.71 2.89 2.88 2.11 3.27 3.56 Conductivity (+/- 3%) mS/cm 1.79 1.97 2.79 2.78 2.47 2.59 2.83 pH (+/- 0.1) pH unit 7.06 7.04 7.03 7.03 7.07 7.03 7.07 Temp (+/- 0.5) C 13.5 13.9 19.0 (4.1) (4.1) 19.1 Color Visual Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	Dissolved Oxygen (+/- 10%)	%	3.1	2.9	2.3		2.3	2.7	
Eh / ORP (+/- 10) MeV -36.6 -38.9 -102.1 -104.8 -106.6 -108.8 -111.7 Specific Conductivity (+/- 3%) mS/cm 2.2) 2.34 2.89 2.88 2.11 3.27 3.56 Conductivity (+/- 3%) mS/cm 1.79 1.97 2.29 2.28 2.47 2.57 2.53 pH (+/- 0.1) pH unit 7.06 7.04 7.03 7.03 7.07 7.03 7.07 Temp (+/- 0.5) C' 13.5 13.7 14.0 Cloudy	Dissolved Oxygen (+/- 10%)	mg/L	0.57	0.30		0.79	0,78	0.28	0.76
Specific Conductivity (+/- 3%) mS/cm ^c 2.7) 2.99 2.88 3.11 3.27 3.56 Conductivity (+/- 3%) mS/cm 1.79 1.97 2.79 2.78 2.47 2.57 2.83 pH (+/- 0.1) pH unit 7.06 7.09 7.03 7.03 7.07 7.03 7.07 Temp (+/- 0.5) C ^c 13.5 13.9 19.0 (9.1 19.1 19.1 19.2 Color Visual Condy Cloudy Cl	Eh / ORP (+/- 10)			-98.9	-107.1			-108.8	-111.3
Conductivity (+/- 3%) mS/cm l.79 l.97 z.29 z.28 z.47 z.5) z.2.3 pH (+/- 0.1) pH unit 7.66 7.04 7.03 7.03 7.07 7.03 7.07 7.03 7.07 7.07 Color Visual Condy	Specific Conductivity (+/- 3%)	mS/cm ^c			2.89			3.27	3.56
pH (+/- 0.1) pH unit 7.06 7.04 7.03 7.07 7.03 7.07 7.03 7.07 Temp (+/- 0.5) C 13.5 13.7 14.0 (4.1 14.1 14.7 Color Visual cloudy		mS/cm				2.28			
Temp (+/- 0.5) C 13.5 13.7 19.0 (9.1 19.1 19.1 19.2 Color Visual cloudy	pH (+/- 0.1)	pH unit		7.04	7.03		7.07		1
Color Visual cloudy cloudy cloudy cloudy cloudy cloudy cloudy	Temp (+/- 0.5)	C.		12.9		14.1			
	Color	Visual	cloudy	1.5	durch	Claroly			
	Odor	Olfactory						none	

Page 2 of 3

Project Name and Number: NYSEG - Ithaca - 60615225							
Monitoring Well Number:	MM.CI	Ь	Date:	12/7	21		
Samplers:			Chris F	reach	•		
Sample Number:		VM-C1P	120721	QA/Q0	C Collected?	-	No
Purging / Sampling Method:	ubing						
1. L = Well Depth:				16.07	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08
3. W = Depth to Water:				4.8.2	feet	2-inch	0.17
4. C = Column of Water in Well	:			11.18	feet	3-inch	0.25
5. V = Volume of Water in Well))(0.5D) ² (7.4	8)	1.87	gal	4-inch	0.33
6. 3(V) = Target Purge Volume	,	,, ,,		5.47	gal	6-inch	0.50
					-		
			Conversion	n factors to	dotormina	V given C	
			CONVENSION	i lactors to	uetermine	A PLACIL C	
			2-1			,	
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
		V (gal / ft)	1-inch	2-inch 0.163	3-inch 0.37	4-inch	
Parameter	Units	V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	1.5
Parameter Time	Units 24 hr	V (gal / ft) NTU + YSI /095	1-inch 0.041	2-inch 0.163 Read	3-inch 0.37 dings	4-inch 0.65	1.5
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft) NTU + YSI /095 9.49	1-inch 0.041	2-inch 0.163 Read	3-inch 0.37 dings //00 7.49	4-inch 0.65	1.5
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft) NTU + YSI /045 9.49 3.0	1-inch 0.041	2-inch 0.163 Read /055 9.49 2.5	3-inch 0.37 dings // 00 // 1.49	4-inch 0.65	1.5 1110 9.43.
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI /095 9.49 2.0 /2.0	1-inch 0.041	2-inch 0.163 Read /055 9.49 3.5 /80	3-inch 0.37 dings 1100 2.49 3.7 180	4-inch 0.65	1.5 1110 9.99. 4.3 130
Water Quality Readings Collect Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Overen (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) NTU + YSI /095 9.49 2.0 /2.4	1-inch 0.041 1050 9.49 3.7 180	2-inch 0.163 Read 1055 9.49 5.5 180 28.4	3-inch 0.37 dings 1100 7.49 3.7 180 24.7	4-inch 0.65	1.5 1110 9.43. 130 22.9
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	V (gal / ft) NTU + YSI /095 9.49 3.0 12.0 42.4 2.5	1-inch 0.041 1050 9.49 3.7 180 35.8 2.4	2-inch 0.163 Read /055 9.49 3.5 180 28.4 2.4	3-inch 0.37 dings 1100 7.49 3.7 180 24.7 2.4	4-inch 0.65 1105 9.49 4.0 24.0 2.4	1.5 1110 9.43. 130 22.9 2.4
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L	V (gal / ft) NTU + YSI 1045 9.49 3.0 12.0 42.4 2.5 6.26	1-inch 0.041 1050 9.49 3.7 180 35.8 2.4	2-inch 0.163 Read /055 9.49 2.5 /80 28.4 2.4	3-inch 0.37 dings 1100 7.49 3.7 180 24.7 2.4	4-inch 0.65	1.5 1110 9.43. 130 22.9 2.4
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 1095 9.49 2.0 12.0 42.4 2.5 6.26 -112.0	1-inch 0.041 1050 9.49 3.7 180 35.8 2.4 0.25 -1/3.7	2-inch 0.163 Read 1055 9.49 2.5 180 28.4 2.4 0.24 -119.7	3-inch 0.37 dings 1100 9.49 3.7 180 24.7 2.4 0.24 -115.5	4-inch 0.65 1105 9.99 4.0 24.0 2.9 0.29	1.5 1110 9.43 130 22.9 2.4 4.3
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) NTU + YSI 1095 9.49 3.0 12.0 42.4 2.5 6.12.0 367	1-inch 0.041 10.50 9.49 3.7 180 35.8 2.4 0.25 -113.3 3.87	2-inch 0.163 Read 1055 9.49 2.5 180 28.4 2.4 0.24 -1147 3 4.04	3-inch 0.37 dings 1100 7.49 3.7 180 24.7 2.4 0.24 -115.5 405	4-inch 0.65 1105 9.49 4.0 24.0 2.4 0.24 -116.7 4.05	1.5 1110 9.49. 4.3 180 22.9 2.4 4.74 -117.0 4.06
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) NTU + YSI 1095 9.49 3.0 12.0 42.4 2.5 6.12.0 367 2.93	1-inch 0.041 1050 9.49 3.7 180 35.8 2.4 0.25 -113.7 3.87 3.07	2-inch 0.163 Read /055 9.49 2.5 /80 28.4 2.4 0.24 -/147 3.72	3-inch 0.37 dings 1100 7.49 3.7 180 24.7 2.4 0.24 -115.5 405 3.27	4-inch 0.65 9.49 4.0 24.0 2.4 0.24 -116.7 4.05 3.27	1.5 1110 9.43 130 22.9 2.4 1.70 4.06 3.23
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft) NTU + YSI 1095 9.49 2.0 120 42.4 2.5 0.26 -112.0 267 2.93 7.01	1-inch 0.041 1050 9.49 3.7 180 35.8 2.4 0.25 -113.7 3.87 3.07	2-inch 0.163 Read 1055 9.49 3.5 180 28.4 2.4 0.24 -1147 3.72 7.01	3-inch 0.37 dings 1100 9.49 3.7 180 24.7 2.4 0.24 -115.5 405 3.22 7.01	4-inch 0.65 1105 9.49 4,0 24,0 24,0 2.4 0.24 -116.7 4.05 3.27 7.01	1.5 1110 9.43 130 22.9 2.4 4.3 1.70 4.06 3.23 7.01
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C*	V (gal / ft) NTU + YSI 1095 9.49 3.0 12.0 42.4 2.5 6.12.0 367 7.01 19.7	1-inch 0.041 1050 9.49 3.7 180 3.8 2.4 0.25 -113.7 3.87 3.07 7.01 14.3	2-inch 0.163 Read 1055 9.49 2.5 180 28.4 2.4 0.24 -1147 3.72 7.01 14.3	3-inch 0.37 dings 1100 7.49 3.7 180 24.7 2.4 0.24 -115.5 405 3.22 7.01 14.7	4-inch 0.65 1105 9.49 4,0 24,0 2.4 0.24 -116.7 4.05 3.27 7.01 14.2	1.5 1110 9.43 130 22.9 2.4 1.70 4.06 3.23 7.01 14.7
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft) NTU + YSI 1095 9.49 2.0 120 42.4 2.5 0.26 -112.0 267 2.93 7.01	1-inch 0.041 1050 9.49 3.7 180 35.8 2.4 0.25 -113.7 3.87 3.07	2-inch 0.163 Read 1055 9.49 3.5 180 28.4 2.4 0.24 -1147 3.72 7.01	3-inch 0.37 dings 1100 9.49 3.7 180 24.7 2.4 0.24 -115.5 405 3.22 7.01	4-inch 0.65 1105 9.49 4,0 24,0 24,0 2.4 0.24 -116.7 4.05 3.27 7.01	1.5 1110 9.43 130 22.9 2.4 4.3 1.70 4.06 3.23 7.01

Monitoring Well Purging / Sampling Form

Project Name and Number:

NYSEG - Ithaca - 60615225

Monitoring Well Number:

Mw-225

Date: 12/8/21

Samplers:

PM

Sample Number:

Mw · 225 - 120821 QA/QC Collected?

Purging / Sampling Method:

Low flow W/ dedicated tubing

1. L = Well Depth:

2. D = Riser Diameter (I.D.):

3. W = Depth to Water:

4. C = Column of Water in Well:

5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$

6. 3(V) = Target Purge Volume

15.65	feet
8,17	feet
3.83	feet
4.82	feet

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using

NTU + YSI

Parameter	Units			Rea	dings			6
Time	24 hr	0815	0820	0825	0870	0833	0840	0845
Water Level (0.33)	feet	3, 83	2.90	4.02	4.05	4.10	4,10	4.//
Volume Purged	gal	D	0.15	0.30	0.50	0.75	1.00	1.25
Flow Rate	mL/min	150	150	150	150	158	150	150
Turbidity (+/- 10%)	NTU	6.77	6.38	5.92	4.01	3.25	3.53	4.28
Dissolved Oxygen (+/- 10%)	%	72.6	20.7	16.1	9.8	8.0	7.7	1.0
Dissolved Oxygen (+/- 10%)	mg/L	7.47	218	1,08	0.94	D. 85	0.72	0.79
Eh / ORP (+/- 10)	MeV	231.9	213.2	207.8	205.8	202.4	\$199.5	197.3
Specific Conductivity (+/- 3%)	mS/cm ^c	1.039	0-191	0.577	0.977	B. 978	10.730	6.977
Conductivity (+/- 3%)	mS/cm	6.751	0.741	0.734	0.735	6.737	0.977	0.738
pH (+/- 0.1)	pH unit	5. 71	6.25	6,37	6.45	6.47	6.50	6.51
Temp (+/- 0.5)	C.	16.1	11.8	11,5	12.0	12.1	12.2	12.2
Color	Visual	Claus	cler	clar	clec	Clark	Clar	1/40
Odor	Olfactory			/	/			

Comments: Jump " C 08/0

Senfial 08/45

J-235 /7 ow flow W/	ZO92 / dedicated t	Date: Chn: S QA/QC subing 0.17 6.33	feet feet feet gal gal		D (feet) 0.08 0.17 0.25 0.33	
J~23 5 /3 ow flow W/ 0.5D) ² (7.48	ZU92 dedicated t	QA/QC ubing	feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
ow flow W/ 0.5D) ² (7.48	ZO92 / dedicated t	QA/QC	feet feet feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
ow flow W/ 0.5D) ² (7.48	ZO92 / dedicated t	QA/QC	feet feet feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
).5D) ² (7.48	3)	0.17 6.33	feet feet feet gal	1-inch 2-inch 3-inch 4-inch	0.08 0.17 0.25 0.33	
(•	6.33	feet feet feet gal	1-inch 2-inch 3-inch 4-inch	0.08 0.17 0.25 0.33	
(•	6.33	feet feet gal	1-inch 2-inch 3-inch 4-inch	0.08 0.17 0.25 0.33	
(•	6.33	feet feet gal	2-inch 3-inch 4-inch	0.17 0.25 0.33	
(•		feet gal	3-inch 4-inch	0.25 0.33	
(•		•	4-inch		1
	Conversion		•			
	Conversion				0.50	
	Conversion					•
(inches)		n factors to	determine \	/ given C		
(inches)	4 1 1	0: 1				1
(gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
222	0975			aksa	1865	0900
						6.39
- 1-						1.6
						200
		1				9.68
						3.9
						0.37
						-77.4
						1.26
1.5%		1.04	1.01	80098		·
	1.05		7.01		U.75	0.95
1.10	6.80				6.79	6.28
6.65	6.80	6.81	6.80	6.20	6.79	6.78
1.10		6.81	6.80	6.80	6.79	
(08.30 6.37 0 22.5 78.0 9.2 1.06 14.4	0836 0835 6.37 6.37 0 0.3 225 225 78.0 40.7 9.2 4.3 1.06 0.46 14.4 0-84.7	Read 08.30 08.35 08.90 6.37 6.37 6.37 0 0.3 0.5 225 225 200 78.0 40.7 29.6 9.2 4.3 3.6 1.06 0.46 0.39 14.4 \$-84.7 -88.6	Readings 08.30 08.35 08.40 08.45 6.37 6.37 6.37 6.37 0 0.3 0.5 0.8 225 225 200 200 78.0 40.7 29.6 24.0 9.1 4.3 3.6 3.4 1.06 0.46 0.39 0.36 14.4 9-24.7 -88.6 -86.9	Readings 08.30 08.35 08.90 08.95 08.50 6.37 6.37 6.37 6.37 6.37 0 0.3 0.5 0.8 1.05 225 225 200 200 200 78.0 40.7 29.6 24.0 16.8 9.2 4.3 3.6 3.4 3.5 1.06 0.46 0.39 0.36 0.38 14.4 0-84.7 -88.6 -86.9 -83.7	Readings 08.30 08.35 08.90 08.95 08.50 08.55 6.37 6.37 6.37 6.37 6.39 6.39 0 0 3 0.5 0.8 1.05 1.3 225 225 200 200 200 200 78.0 40.7 29.6 24.0 16.8 11.8 9.1 4.3 3.6 3.4 3.5 3.6 1.06 0.46 0.39 0.36 0.38 0.39 14.4 0-4.7 -88.6 -86.9 -83.7 -79.4

Project Name and Number: Monitoring Well Number: Samplers: Sample Number: Purging / Sampling Method: 1. L = Well Depth: 2. D = Riser Diameter (I.D.):		NW-25	thaca - 60615								
Samplers: Sample Number: Purging / Sampling Method: 1. L = Well Depth: 2. D = Riser Diameter (I.D.):			35				· · · · · · · · · · · · · · · · · · ·				
Sample Number: Purging / Sampling Method: 1. L = Well Depth: 2. D = Riser Diameter (I.D.):				Nu-235 Date: 12/9/21							
Purging / Sampling Method: 1. L = Well Depth: 2. D = Riser Diameter (I.D.):			NW-235 Date: 12/9/21 Chris French								
1. L = Well Depth: 2. D = Riser Diameter (I.D.):		MW-235 12092 QA/QC Collected? - No									
2. D = Riser Diameter (I.D.):	Purging / Sampling Method:			Low flow W/ dedicated tubing							
3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume))(0.5D) ² (7.4	18)	<u>417</u> 6.23	feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50				
		D (inches)	Conversior 1-inch	factors to	determine '	V given C	6-inch				
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5				
Parameter Time	Units 24 hr	0905	0910	Read	lings						
	C .										
Water Level (0.33)	feet	6.37	6. 37								
	gal	1.85	2.								
Volume Purged			1								
Volume Purged Flow Rate	gal	1.85	2. 200								
Volume Purged Flow Rate Turbidity (+/- 10%)	gal mL/min	1.85 200 9.21	2.								
Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	gal mL/min NTU	1.85 200 9.31 3.6	2. 200								
Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	gal mL/min NTU % mg/L MeV	1.85 200 9.21	2. 200 9.03 3.5								
Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	gal mL/min NTU % mg/L	1.85 200 9.31 3.6 6.39 -7(.6	2. 200 9.03 3.5 0.38								
Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	gal mL/min NTU % mg/L MeV	1.85 200 9.21 3.6 6.39	2. 200 9.03 3.5 0.38 -75.7 1.25								
Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	gal mL/min NTU % mg/L MeV mS/cm ^c	1.85 200 9.31 3.6 6.39 -7(.6	2. 200 9.03 3.5 0.38 -75.7								
Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	gal mL/min NTU % mg/L MeV mS/cmc mS/cmc	1.85 200 9.21 2.6 6.39 -7(.6 1.26 6.94	2.1 200 9.03 3.5 0.38 -75.7 1.25								
Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	1.85 200 9.31 3.6 6.39 -7(.6 1.26 6.94 (.80	2.1 200 9.03 3.5 0.38 -75.7 1.25 0.94 6.80								

Monitoring Well Purging / Sampling Form Project Name and Number: NYSEG - Ithaca - 60615225 MW-245. Monitoring Well Number: Samplers: MW- 145 - 120721 QA/QC Collected? Sample Number: Purging / Sampling Method: Low flow W/ dedicated tubing 1. L = Well Depth: D (inches) D (feet) 2. D = Riser Diameter (I.D.): 0.08 1-inch 3. W = Depth to Water: 0.17 2-inch 4. C = Column of Water in Well: 3-inch 0.25 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 6. 3(V) = Target Purge Volume 6-inch 0.50 Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5

Water Quality Readings Collected Using

NTU + YSI

Parameter	Units	Readings							
Time	24 hr	0940	0945	0950	0955	1000	1005	1010	
Water Level (0.33)	feet	6.76	7.33	2.82	8.13	8.25	8.65	8.70	
Volume Purged	gal	0	6.10	0.25	0.40	0.75	1,00	(.25	
Flow Rate	mL/min	150	150	150	150	150	150	158	
Turbidity (+/- 10%)	NTU	31.4	48.6	19.8	121	14.5	16.4	13.7	
Dissolved Oxygen (+/- 10%)	%	66.1	E886	41.2	34.6	27.6	20.3	16.2	
Dissolved Oxygen (+/- 10%)	mg/L	6.65	4.90	4.15	3,53	2.81	2.07	1.63	
Eh / ORP (+/- 10)	MeV	1970	820,4	225.7	226.2	270,8	226.6	228.6	
Specific Conductivity (+/- 3%)	mS/cm ^c	1.250	1,303	1.327	1.330	1.336	1,346	1.356	
Conductivity (+/- 3%)	mS/cm	6.957	10.46	1.65 8	1.057	1,063	1.072	1.025	
pH (+/- 0.1)	pH unit	7.57	7.40	7.29	7.28	7.26	7.24	721	
Temp (+/- 0.5)	C.	14.4	14.6	14.4	14.2	14.3	14.3	14.5	
Color	Visual	Cloudy	Clady	Cloudy	(lan-	Clar	Clar	clas	
Odor	Olfactory	· Cery							

Comments: purp or C 0935
- Smell of decaying makeral had theys " noted @ 0940

Monitoring Well Purging / Sampling Form Project Name and Number: NYSEG - Ithaca - 60615225 Mw-245, Date: 12/7/2/ Monitoring Well Number: Samplers: M13.2115 - 120721 QA/QC Collected? Sample Number: Purging / Sampling Method: Low flow W/ dedicated tubing 1. L = Well Depth: feet D (inches) D (feet) 2. D = Riser Diameter (I.D.): feet 1-inch 0.08 3. W = Depth to Water: feet 2-inch 0.17 4. C = Column of Water in Well: feet 3-inch 0.25 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 4-inch gal 0.33 6. 3(V) = Target Purge Volume 6-inch 0.50 gal Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using NTU + YSI Parameter Readings Units 1030 Time 1015 1025 24 hr 1020 4.81 Water Level (0.33) feet 8.95 9.10 9.15 Volume Purged 01.50 2.00 2.25 1.35 gal Flow Rate mL/min 150 150 150 158 Turbidity (+/- 10%) NTU 12.6 12.8 11.6 12.2 12.8 Dissolved Oxygen (+/- 10%) % 10.3 9.4 8.3 Dissolved Oxygen (+/- 10%) 1.30 1.04 mg/L 0.75 0.84 727.8 Eh / ORP (+/- 10) 230.5 MeV 228.2 228.4 1.356 mS/cm^c 1.360 13.65 1369 Specific Conductivity (+/- 3%) Conductivity (+/- 3%) mS/cm 1:083 1.087 1.076 1.101 7,21 pH (+/- 0.1) 7.20 7.17 pH unit 7.20 Temp (+/- 0.5) C° 14.4 1.4.5 14.7 14.7.

Comments: Small amont of Shen

Gampled C 1030

Color

Odor

obload

Visual

Olfactory

Clear

11.0

e

(/vy

1020 on Surface of

cuy

Page est.

Page 2 of Z

	Monitoring	g Well Pu	rging / Sa	impling i	Form			
Project Name and Number:		NYSEG - I	thaca - 60615	<u>52</u> 25				
Monitoring Well Number:		MW-2	55	Date	:	12/7/21		
Samplers:				French				
Sample Number:		NN-256			C Collected?		Na	
Purging / Sampling Method:			V/ dedicated		o comedica.			
orging / Sumpling Method.		LOW HOW V	v/ dedicated	tuomg				
1. L = Well Depth:				9.73	feet	D (inches) D (feet)	1
2. D = Riser Diameter (I.D.):				0.17	_ feet	1-inch	0.08	1
3. W = Depth to Water:				GNIF	feet	2-inch	0.17	
4. C = Column of Water in Wel	l:			3.76	– feet	3-inch	0.25	
5. $V = Volume of Water in Well$	I = C(3.14159	9)(0.5D) ² (7.4	18) 7	0.53	_ gal	4-inch	0.33	
6. 3(V) = Target Purge Volume			ス	1.60	gal	6-inch	0.50	
			Conversion	n factors to	determine	V given C		
								_
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch]
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collec	ted Using		1	ACTOR OF THE RESIDENCE AND		-	-]
Parameter	ted Using Units	V (gal / ft)	1	0.163		-	-]
Parameter Time		V (gal / ft)	0.041	0.163	0.37	-	-	0835
Parameter Time Water Level (0.33)	Units	V (gal / ft) NTU + YSI ひ&ひ く, 4 7	0.041	0.163 Rea	0.37	0.65	1.5	0835
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr	V (gal / ft) NTU + YSI aⓈ	0.041	0.163 Rea	0.37	0.65	1.5	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	V (gal / ft) NTU + YSI ひ&ひ く, 4 7	0.041	Rea	0.37 dings 28 20 7.65	0.65 0.25 8.03	1.5	8.63
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal	V (gal / ft) NTU + YSI ひ&ひぶ く, 4 7	0.041 0.87 0.2	0.163 Rea 215 7.27 6.6	0.37 dings 2.65 6.75	0.65	1.5 2.27	8.63
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI ひ&ひ 5 く, 4 7 つ 」 「	0.041 0.80 6.87 0.2	Rea \$\sigma \text{US} \\ 7.37 \\ 6.6 \\ \(\text{YGD} \) \$\sigma \text{JS.O} \\ 19.3 \end{array}	0.37 dings 28 20 7.65 6.75	0.65 0.25 8.03 1.1 210 9.35	1.5 0.630 8.27 1.4 210	8.63
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) NTU + YSI ひ&ひ S く, 4 7 つ ISロ /9.1	0.041 0.87 0.2 175 16.3	0.163 Rea 0.163 0.163	0.37 dings 7.65 6.75 210 19.2	0.65 0.25 8.03 1.1 210 9.35	1.5 8.27 1.4 210 3.13 7.7	8.63 1.75 220 57.4 8.1
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	V (gal / ft) NTU + YSI OBUS 4,47 O 150 19.1 マキ・3	0.041 0.87 0.2 175 16.3 20.0	Rea \$\sigma \text{US} \\ 7.37 \\ 6.6 \\ \(\text{YGD} \) \$\sigma \text{JS.O} \\ 19.3 \end{array}	0.37 dings 7.65 6.75 210 19.2	0.65 0.25 8.03 1.1 210 9.35	1.5 8.27 1.4 210 3.13 7.7 0.7&	8.63 1.75 220 57.4 8.1 0.52
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L	USUS (.47 O 150 19.1 29.3 2.51	0.041 0.87 0.2 175 16.3 20.0 2.02 189.)	Rea 185 7.37 6.6 200 15.0 19.3 1.46 165.6	0.37 dings 7.65 6.75 210 19.2 10.0 1.02	0.65 0.65 0.25 8.03 1.1 210 9.35 9.0 0.92 153.7	1.5 8.27 1.4 210 3.13 7.7 0.7& 155.7	8.63 1.75 220 57.4 8.1 0.52 60.0
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 0805 6,47 0 150 19.1 29.3 2.51 186.3 4.36	0.041 0.87 0.2 175 16.3 20.0 2.02 189.1 4.40	Rea 285 7.27 6.6 200 15.0 19.3 1.46 165.6 9.47	0.37 dings 7.65 6.75 210 19.2 10.0 1.02 148.0 9.91	0.65 0.825 8.03 1.1 210 9.35 9.0 0.92 153.7 4.90	1.5 8.27 1.4 210 3.13 7.7 0.7& 155.7 4.39	8.63 1.75 220 57.4 8.1 0.52 60.0 4.40
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) NTU + YSI UBUS 6, 47 0 150 19.1 29.3 2.51 186.3	0.041 0.87 0.2 175 16.3 20.0 2.02 189.)	Rea 285 7.37 6.6 200 15.0 19.3 1.46 165.6 9.47 3.48	0.37 dings 28 20 7.65 6.75 210 19.2 10.0 1.02 148.0 9.91 3.95	0.65 0.825 8.03 1.1 210 9.35 9.0 0.92 153.7 4.90 3.98	1.5 8.27 1.4 210 3.13 7.7 0.7& 1.55,7 4.39 3.48	8.63 1.75 220 57.9 8.1 0.52 60.0 4.90 3.49
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) NTU + YSI OBUS (, 47 O 150 /9.1 29.3 2.51 /86.3 4.36 3.41 6.97	0.041 0.40 6.87 0.2 175 16.3 2.02 189.1 4.40 3.45	Rea 285 7.37 6.6 200 15.0 19.3 1.46 165.6 9.47 3.48 6.98	0.37 dings 28 29 7.65 6.75 210 19.2 10.0 1.02 148.0 9.91 3.98 6.97	0.65 0.65 8.03 1.1 210 9.35 9.0 0.92 153.7 4.40 2.48 6.97	1.5 8.27 1.4 210 3.13 7.7 0.7& 155.7 4.39 3.48 6,77	8.63 1.75 220 57.4 8.1 0.52 60.0 4.40 3,49 6.96
Parameter Time Water Level (0.33)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc pH unit	V (gal / ft) NTU + YSI 0805 6,47 0 150 19.1 29.3 2.51 186.3 4.36 3.41	0.041 0.040 6.87 0.2 175 16.3 20.0 2.02 189.1 4.40 3.45 6.99	Rea 285 7.37 6.6 200 15.0 19.3 1.46 165.6 9.47 3.48	0.37 dings 28 20 7.65 6.75 210 19.2 10.0 1.02 148.0 9.91 3.95	0.65 0.825 8.03 1.1 210 9.35 9.0 0.92 153.7 4.90 3.98	1.5 8.27 1.4 210 3.13 7.7 0.7& 1.55,7 4.39 3.48	8.63 1.75 220 57.4 8.1 0.52 60.0 4.40 3.49

		Well Pur	ging / Sa	inipinig F	OIIII			
Project Name and Number:		NYSEG - It	haca - 6061:	5225	1 7 5			Ļ
Monitoring Well Number:		NW-25	5	Date:		12/7/21		
Samplers:			Ch	Date:	h			
Sample Number:		MW-255	120821	_ QA/QC	Collected?		No	
Purging / Sampling Method:		Low flow W	// dedicated	tubing			10.0	
1. L = Well Depth:				973	feet	D (inches)	D (foot)	
2. D = Riser Diameter (I.D.):				G I-T	feet	D (inches)		
3. W = Depth to Water:				6.47	-	1-inch 2-inch	0.08	
4. C = Column of Water in Well				3.76		3-inch	0.17	
5. V = Volume of Water in Well		N(0 5D) ² (7 4	8)	20.53	gal	4-inch	0.23	
6. 3(V) = Target Purge Volume	- C(3.14133	7,(0.30) (7.4	-	21.60	gal	6-inch	0.50	
			L .					
			Conversion	n factors to	determine	V given C		
			Conversio					
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) NTU + YSI				4-inch 0.65	6-inch 1.5	
	ed Using Units	V (gal / ft)	1-inch	2-inch	3-inch 0.37			38
Parameter Time	Units 24 hr	V (gal / ft)	1-inch	2-inch 0.163	3-inch 0.37			
Parameter Time Water Level (0.33)	Units	V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37			
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr	V (gal / ft) NTU + YSI のあなっ	1-inch 0.041	2-inch 0.163	3-inch 0.37			- PE
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	V (gal / ft) NTU + YSI のありの ラ. 0 1 2. 0 こっちょう	1-inch 0.041 0.845 9.57	2-inch 0.163 12/s/v:Read 0800 7.49	3-inch 0.37			8
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal	V (gal / ft) NTU + YSI 0840 9.01 2.0	1-inch 0.041 0.845 9.57 2.3	2-inch 0.163	3-inch 0.37			
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI 0840 9.01 2.0 220 220 3.74	1-inch 0.041 0.845 9.57 7.3	2-inch 0.163 12/8/vRead 0800 7.49 0 N/A 24.4 45.7	3-inch 0.37			*
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) NTU + YSI の840 うっし 2.0 220 220	2845 9.57 2.3 21°	2-inch 0.163 12/2/12 Read 0800 7.49 0 N/A 24.4 45.5 5.05	3-inch 0.37			
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 0840 9.01 2.0 220 220 274 9.0 0.91	1-inch 0.041 0.845 9.57 2.3 21° 23.8 8,9 0.87 70.1	2-inch 0.163 12/8/uRead 0800 7.49 0 N/A 29.4 95.05 230.1	3-inch 0.37			*
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L	V (gal / ft) NTU + YSI 0840 9.01 2.0 220 220 220 210 2.0	1-inch 0.041 0.845 9.57 2.3 21° 23.5 8.9 0.87	2-inch 0.163 12/8/vRead 0800 7.49 0 N/A 24.4 45.5 5.05 230.1 4.44	3-inch 0.37			*
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 0840 9.01 2.0 220 220 274 9.0 0.91	1-inch 0.041 0.845 9.57 2.3 21° 23.8 8,9 0.87 70.1	2-inch 0.163 12/8/vRead 0800 7.49 0 N/A 24.4 45.3 5.05 230.1 4.44 3.17	3-inch 0.37			
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft) NTU + YSI 0840 9.01 2.0 220 220 3.74 9.0 0.91 91.2 4.39	1-inch 0.041 0.845 9.57 2.3 22.8 8.9 0.89 70.1 4.36	2-inch 0.163 12/2/12 Read 0800 7.49 0 N/A 14.4 45.5 5.05 230.1 4.44 3.17 6.93	3-inch 0.37			*
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) NTU + YSI 0840 9.01 2.0 220 220 210 91.2 4.39 3.49	1-inch 0.041 0.845 9.57 2.3 220 23.8 9.9 0.89 70.1 4.36 5.48	2-inch 0.163 12/8/vRead 0800 7.49 0 N/A 24.4 45.3 5.05 230.1 4.44 3.17	3-inch 0.37			*
Water Quality Readings Collect Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft) NTU + YSI 0840 9.01 2.0 2.0 2.5 3.74 9.0 0.91 91.2 4.39 3.49 6.97	1-inch 0.041 0.845 9.57 2.3 21° 23.8 8.9 0.87 70.1 4.36 3.48 6.97	2-inch 0.163 12/2/12 Read 0800 7.49 0 N/A 14.4 45.5 5.05 230.1 4.44 3.17 6.93	3-inch 0.37			

N	lonitoring	Well Pu	rging / Sa	mpling F	orm	***		
Project Name and Number:		NYSEG - I	thaca - 60615	5225	1			
Monitoring Well Number:		MW-21	85	Date:	12/7	1/21		
Samplers:		pn		,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Sample Number:	MW-	285 - 12	0721	QA/Q0	C Collected?	0.	p-1	
Purging / Sampling Method:		Low flow V	V/ dedicated	tubing		110	59.WC-12	
 L = Well Depth: D = Riser Diameter (I.D.): W = Depth to Water: C = Column of Water in Well V = Volume of Water in Well 3(V) = Target Purge Volume))(0.5D) ² (7.4	2	19.54 0.17 7.75 11.79 1.92 5.77 n factors to	feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5]
Parameter	Units			Rea	dings			
Time	24 hr	08/0	0815	0820	0825	0830	0835	0840
Water Level (0.33)	feet	7.75	7.80	7.85	7.85	7.85	7.83	1785
Volume Purged	gal	0	0.10	0.25	0.38	0.50	0.60	6.75
Flow Rate	mL/min	150	150	150	150	150	150	150
Turbidity (+/- 10%)	NTU	6.95	6.82	6.85	6.72	6.16	6.86	6.88
Dissolved Oxygen (+/- 10%)	%	60.6	29.5	15.5	14.7	13.7	13.6	13.9
Dissolved Oxygen (+/- 10%)	mg/L	5.15	3.00	1.57	1.48	1.38	1.37	1,41
Eh / ORP (+/- 10)	MeV	211.5	1960	158.7	198.7	124.3	116.4	101.5
Specific Conductivity (+/- 3%)	mS/cm ^c	0. 895	6.900	0.503	0,904	0.907	8.91/	0.921
Conductivity (+/- 3%)	mS/cm	0.705	6.715	0.720	0.721	0.727	0.730	0.737
pH (+/- 0.1)	pH unit	7.63	7.63	7.68	7,71	7.72	7.72	27.5%
Temp (+/- 0.5)	C*	14.0	14.7		14.5	14.6	14.6	7.73
Color	Visual	Clar		14.4	(12.		(14.5	
Odor	Olfactory	Salfai	Class	1-1	(/2"	Class.	(/	(125
Comments: fund on C 081 Supplied C 08								

A Dup-1 - 120721

here

Page /of /

Project Name and Number:		NYSEG - It	haca - 60615	225				
						- 10/21		
Monitoring Well Number:		<u>NW-3</u>	12	- Date:		12/8/21		
Samplers:		CF						
Sample Number:		MW-31	5 120821	QA/QC Collected?		-	No	
Purging / Sampling Method:		Low flow W	// dedicated t	ubing				
1. L = Well Depth:				11.62	feet	D (inches)	D (feet)	1
2. D = Riser Diameter (I.D.):				0.17	feet			ł
3. W = Depth to Water:					feet	1-inch 2-inch	0.08	1
4. C = Column of Water in Well				685	feet	3-inch	0.17	
5. V = Volume of Water in Well		2)/0 5D) ² /7 4	د ۱۵	0.78	•	4-inch	0.23	1
6. 3(V) = Target Purge Volume	- C(3.1413	(0.50) (7.4		2.33	gal gal	6-inch	0.50	1
o. S(v) = ranger range volume				61))	Bai	0-111011	0.50	ı
						/ given C		
			Conversion	i tactore to	notormino i			
			Conversion	ractors to	aetermine	A BIAGU C		
		D (inches)					6-inch	1
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collect Parameter	ed Using Units	V (gal / ft)	1-inch	2-inch 0.163	3-inch 0.37	4-inch		
Parameter		V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	1.5	1702
Parameter Time	Units	V (gal / ft) NTU + YSI //37	1-inch	2-inch 0.163	3-inch 0.37 lings	4-inch 0.65	1.5	1702
Parameter Time Water Level (0.33)	Units 24 hr	V (gal / ft)	1-inch 0.041 #37 6.15	2-inch 0.163 Read	3-inch 0.37 lings 1147 6.85	4-inch 0.65	1.5 //57 6.85	6.85
	Units 24 hr feet	V (gal / ft) NTU + YSI 1137 6.25	1-inch 0.041	2-inch 0.163 Read 1142 6.35	3-inch 0.37 lings 1147 6.85 0.6	4-inch 0.65	1.5 1.57 6.35 • 1.05	6.85
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal	V (gal / ft) NTU + YSI 1137 6.85	1-inch 0.041 1137 6.15 0.25	2-inch 0.163 Read	3-inch 0.37 lings 1147 6.85 0.6 150	4-inch 0.65	1.57 6.35 • 1.05	6.85 1.3 175
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI 1/37 6.85 250	1-inch 0.041 1/37 6.15 0.25 200 53.7	2-inch 0.163 Read 1142 6.35 0.45 150 42.0	3-inch 0.37 lings 1147 6.25 0.6 150 72.7	4-inch 0.65 1157 6.85 0.8 150 9.41	1.57 6.35 • 1.05 175 27.46	6.85 1.3 175 4.95
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU %	V (gal / ft) NTU + YSI 1137 6.85 O 200 110 6.5	1-inch 0.041 1137 6.15 0.25	2-inch 0.163 Read 1142 6.35 0.45 1150 42.0 3.7	3-inch 0.37 lings 1147 6.&\$5 0.6 150 72.7 3.1	4-inch 0.65 1157 6.85 0.8 150 9.41 3.7	1.57 6.35 1.05 1.75 2.7.46 3.2	6.85 1.3 175 4.95 2.7
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) NTU + YSI 1/37 6.85 0 260 110	1-inch 0.041 1137 6.15 0.25 200 53.7 3.3	2-inch 0.163 Read 1142 6.35 0.45 130 42.0 3.7 0.35	3-inch 0.37 lings 1147 6.85 0.6 150 72.7 3.1 0.34	4-inch 0.65 1157 6.85 0.8 150 9.41	1.57 6.55 1.05 1.75 7.46 3.2 0.35	6.85 1.3 175 4.95 2.7 0.75
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L	V (gal / ft) NTU + YSI 1/37 6.85 O 250 1/0 6.5 O.71 -25:0	1-inch 0.041 0.041 1/37 6.15 0.25 200 52.7 3.3 0.35 -12.2	2-inch 0.163 Read 1142 6.35 0.45 130 42.0 3.7 0.35 -6.5	3-inch 0.37 lings 1147 6.25 0.6 150 72.7 3.1 0.34 - 0.5	4-inch 0.65 1157 6.85 0.8 150 9.91 3.7 0.90	1.57 6.85 1.05 1.75 7.46 3.7 0.35	6.85 1.3 175 4.95 2.7 0.75 -2.0
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 1137 6.85 O 250 110 6.5 0.71 -250 0.72	1-inch 0.041 1137 6.15 0.25 200 53.7 3.3 0.35 -12.2 0.69	2-inch 0.163 Read 1142 6.35 0.45 120 47.0 3.7 0.35 -6.5 0.68	3-inch 0.37 lings 1147 6.\$\$\int 5\$ 0.6 150 72.7 3.1 0.34 -0.5 0.68	4-inch 0.65 1157 6.85 0.8 150 9.41 3.7 0.40 0.9 0.68	1.57 6.35 1.05 1.75 7.46 3.7 0.35 9-1.4	6.85 1.3 175 4.95 2.7 0.75 -2.0 0.68
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) NTU + YSI 1/37 6.35 0 240 1/0 6.5 0.71 -250 0.72 0.52	1-inch 0.041 1137 6.15 0.25 200 53.7 3.3 0.35 -12.2 0.69 0.5]	2-inch 0.163 Read 1192 6.35 0.45 130 42.0 3.7 0.35 -6.5 0.68 0.51	3-inch 0.37 lings 1147 6.85 0.6 150 72.7 3.1 0.34 -0.5 0.68 0.51	4-inch 0.65 1157 6.85 0.8 150 9.41 3.7 0.40 0.9 0.68 0.68	1.57 6.35 1.05 1.75 7.46 3.7 0.35 9-1.4 0.6\$ 0.5]	6.85 175 4.95 2.7 0.75 -2.0 0.68 0.51
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) NTU + YSI 1137 6.85 O 250 110 6.5 0.71 -250 0.72	1-inch 0.041 1137 6.15 0.25 200 53.7 3.3 0.35 -12.2 0.69	2-inch 0.163 Read 1142 6.35 0.45 130 47.0 3.7 0.35 -6.5 0.68 0.51 6.38	3-inch 0.37 lings 1147 6.\$\$\int 5\$ 0.6 150 72.7 3.1 0.34 -0.5 0.68	4-inch 0.65 1157 6.85 0.8 150 9.41 3.7 0.40 0.9 0.68 0.51 6.84	1.57 6.55 1.05 1.75 2.7.46 3.2 0.35 21.4 0.6\$ 0.51 6.84	6.85 1.3 175 4.95 2.7 0.75 -2.0 0.68
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit	V (gal / ft) NTU + YSI 1/37 6.85 0 250 1/0 6.5 0.71 -250 0.72 0.52 7.13 1.2	1-inch 0.041 137 6.15 0.25 200 53.7 3.3 0.35 -12.2 0.69 0.59 6.91	2-inch 0.163 Read 1192 6.35 0.45 130 42.0 3.7 0.35 -6.5 0.68 0.51	3-inch 0.37 lings 1147 6.25 0.6 150 72.7 3.1 0.34 -0.5 0.68 0.51 6.86 11.7	4-inch 0.65 1157 6.85 0.8 150 9.41 3.7 0.40 0.9 0.68 0.68	1.57 6.35 1.05 1.75 7.46 3.7 0.35 9-1.4 0.6\$ 0.5]	6.85 1.3 175 4.95 2.2 0.75 -2.0 0.68 0.51 6.83

N	Monitorin _e	g Well Pu	rging / Sa	mpling F	orm		
Project Name and Number:		NYSEG - I	thaca - 60615	225			
Monitoring Well Number:		<u> </u>	315	Date:	17	18/21	
Samplers:				Chris F	French		
Sample Number:		MU-315					Jo
Purging / Sampling Method:		Low flow W	V/ dedicated	ubing			
 L = Well Depth: D = Riser Diameter (I.D.): W = Depth to Water: C = Column of Water in Well V = Volume of Water in Well 3(V) = Target Purge Volume 		9)(0.5D) ² (7.4	•	11.62 0.17 6.85 4.77 6.78 2.34	feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
			Conversion	factors to	determine \	/ given C	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect	ed Using	NTU + YSI	= " =				
Parameter	Units			Read	lings		
Time	24 hr	1207	1515				
Water Level (0.33)	feet	6.85	6.85				
Volume Purged	gal	1.5	1.75				
Flow Rate	mL/min	180	180				
Turbidity (+/- 10%)	NTU	4.62	4.24				
Dissolved Oxygen (+/- 10%)	%	3.2	3.1				
Dissolved Oxygen (+/- 10%)	mg/L	u.35	0.34				
Eh / ORP (+/- 10)	MeV	-3.7	-3.4				
Specific Conductivity (+/- 3%)	mS/cm ^c	0.6%	0.68				
Conductivity (+/- 3%)	mS/cm	اک.ن	0.51				
pH (+/- 0.1)	pH unit	6.82	6.83				
Temp (+/- 0.5)	C.	11.8	11.8				
Color	Visual	Clear	clean				
Odor	Olfactory	nure	nune				
Comments: Sampled @	1212						

Page a of 2

Monitoring Well Purging / Sampling Form Project Name and Number: NYSEG - Ithaca - 60615225 MW-365 Monitoring Well Number: TMR - This is monitoring well MW-33S. Samplers: MW-365-120721 QA/QC Collected? Sample Number: Purging / Sampling Method: Low flow W/ dedicated tubing 1. L = Well Depth: D (inches) D (feet) 2. D = Riser Diameter (I.D.): feet 0.08 1-inch 3. W = Depth to Water: feet 0.17 2-inch 4. C = Column of Water in Well: feet 3-inch 0.25 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ gal 4-inch 0.33 6. 3(V) = Target Purge Volume 6-inch 0.50 gal Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using NTU + YSI

									II .
Parameter	Units			Rea	dings				
Time	24 hr	1305	YSF	13/0	1315	1320	1325	1330	1335
Water Level (0.33)	feet	3.70	Problems	4.32	4.58	4.68	4.79	4.96	5.00
Volume Purged	gal	8		0.50	975	1.00	1.25	1.50	2.00
Flow Rate	mL/min	260		200	200	200	201	Cos	205
Turbidity (+/- 10%)	NTU	57.0		48.3	31.6	23.7	21.5	18.2	16.0
Dissolved Oxygen (+/- 10%)	%	16.7		12.0	12.7	19.6	12.8	8.8	7.8
Dissolved Oxygen (+/- 10%)	mg/L	1.81		1.21	1.36	2. //	1.26	0.95	0.82
Eh / ORP (+/- 10)	MeV	238.7		29.0	227.5	218.8	211.8	2035	■198
Specific Conductivity (+/- 3%)	mS/cm ^c	1.770		1.933	1.942	1.937	1.937	1.948	1.936
Conductivity (+/- 3%)	mS/cm	1.276		1,433	1.1135	1,440	1.448	1.444	1442
pH (+/- 0.1)	pH unit	7.34		7.21	7.27	7.25	7.24	7.22	7.23
Temp (+/- 0.5)	C.	11.1		11.9	11.4	11.5	11.6	11.6	11.6
Color	Visual			Char	clas	Clear	Cler	CIA	cher
Odor	Olfactory		V						

Comments: purp and 1300

45I wasn't worly properly = 1307 had to shortdawn and Lestert.

ml	NYSEG - Ith		5225			
ml	PM	365				
ml	PM		Date:	12/7/	21	
m		TI	MR - This	is monito	oring well	MW-33S.
•	3-365-1	70721	QA/QC	Collected?	·-	
	Low flow W/	dedicated t	tubing			
= C(3.14159			0.17 3.80 5.71 0.93 2.80	feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
		Conversior	n factors to	determine \	V given C	
	D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
d Using	NTU + YSI		Dood	*	•	
	1346		Read	ings		
NTU						
	8.1		1 1			
%	8.1					
% mg/L	8.1					
% mg/L MeV	8.1 6.39 6.79					
mg/L MeV mS/cm ^c	8.1 6.89 1988 1.934					
mg/L MeV mS/cm mS/cm	8.1 6.89 6.984 1.984 1.445					
mg/L MeV mS/cmc mS/cm pH unit	8.1 8.89 6.988 1.934 1.445 7.22					
mg/L MeV mS/cm mS/cm	8.1 6.89 6.984 1.984 1.445					
		D (inches) V (gal / ft) d Using NTU + YSI Units 24 hr	D (inches) 1-inch V (gal / ft) 0.041 d Using NTU + YSI Units	C(3.14159)(0.5D) ² (7.48) Conversion factors to conversion fac	C(3.14159)(0.5D) ² (7.48) Conversion factors to determine	C 7 feet 2-inch

Monitoring Well Purging / Sampling Form Project Name and Number: NYSEG - Ithaca - 60615225 Date: 12/8/21 Monitoring Well Number: MW-40 Samplers: M-40-120871 Sample Number: QA/QC Collected?

Purging / Sampling Method:

6. 3(V) = Target Purge Volume

Low flow W/ dedicated tubing

₹.37. feet 1. L = Well Depth: 2. D = Riser Diameter (I.D.): **6.17** feet 3. W = Depth to Water: feet 4. C = Column of Water in Well: feet 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using

NTU + YSI

Parameter	Units			Rea	dings			
Time	24 hr	1225	1230	1235	1240	1245	1250	1255.
Water Level (0.33)	feet	4.29	4.69	4.70	4.70	4.70	4.70.	4.71
Volume Purged	gal	10	0.15	0.30	0.45	0.75	1.00	1.50
Flow Rate	mL/min	150	021	150	150	150	150	150
Turbidity (+/- 10%)	NTU	180	60.0	20.3	14.3	12.5	10.2	3.1
Dissolved Oxygen (+/- 10%)	%	4.8	2.6	3.1	2.5	2.3	2.7	2.1
Dissolved Oxygen (+/- 10%)	mg/L	0.44	0.29	0.35	0.28	0,26	0.27	0.23
Eh / ORP (+/- 10)	MeV	164.7	180.6	201.6	207.7	213.3	214.0	2/7.1
Specific Conductivity (+/- 3%)	mS/cm ^c	0.4916	0.451	0.402	6.40)	0.794	0.743	0.385
Conductivity (+/- 3%)	mS/cm	0.328	0.327	0.797	0.29/	0. 284	0.296	6.282
pH (+/- 0.1)	pH unit	6.93	6.67	6.65	6.47	641	6.48	6-35.
Temp (+/- 0.5)	C.	10.8	10.6	10.6	10.6	16.7	76.9	10.6
Color	Visual	Cloudy	Cloudy	Cloudy	Clear	cles-	CIN	44
Odor	Olfactory			/			/	

Comments: Por C

1220 Soupled @ 1255

Orginat Name and Number		, went a	ging / Sa	ilihilili L	orm			
Project Name and Number:		NYSEG - Itl				<u> Jij</u>		
Monitoring Well Number:		MW-45 Pr- MW-455	5	Date:	12	/8/21		
Samplers:		pr		*				
Sample Number:	/	16-455	- 12097	QA/Q0	Collected?			
Purging / Sampling Method:		Low flow W	// dedicated t	ubing				
1. L = Well Depth:					feet	D (inches)	D (feet)	
2. D = Riser Diameter (I.D.):					feet	1-inch	0.08	
3. W = Depth to Water:				4.29	feet	2-inch	0.17	
4. C = Column of Water in Well:					feet	3-inch	0.25	
5. V = Volume of Water in Well =	= C(3.14159)(0.5D) ² (7.4	8)		gal	4-inch	0.33	
6. 3(V) = Target Purge Volume					gal	6-inch	0.50	
			S	ftous he	latarania a 1	/ =! C		
			Conversion	i factors to	determine \	V given c		
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
					1	0.65	1.5	
Water Quality Readings Collecte	d Using	V (gal / ft) NTU + YSI	0.041	0.163	0.37	0.03	1.5	
Water Quality Readings Collecte Parameter	ed Using Units	NTU + YSI			dings			
, ,	_	NTU + YSI	1035	Rea 1040	dings	1656	1055	1100
Parameter Time Water Level (0.33)	Units	NTU + YSI 1030 4.28	1035	Real 1040 5.98	dings 1045 6.55	1056	1055 7.56	81.8
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	NTU + YSI 1030 4.18	1035 5,25 0-15	Rea 1040 5.98 6.46	dings 1045 6.55 0.60	1056 6.83 0.75	1055 7.56 1.00	8.18
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	NTU + YSI 1030 4.28 0 150	1035 5,25 0-15 150	Rea 1040 5.98 6.46 136	dings 1045 6.55 0.60 155	1056 6.83 6.75	1055 7.56 1.00 150	8.18 1.25
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU	NTU + YSI 1030 4.28 0 150 25.3	1035 5,25 0-15 150 24.4	Rea 1040 5.98 6.46 156 23.5	dings 1045 6.55 0.60 158 22.7	1056 6.83 0.75 150	1055 7.56 1.00 150 20.2	8.18 1.25 150 20.2
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	NTU + YSI 1030 4.28 0 150 25.3 19.1	1035 5,25 0-15 150 24.4 7.7	Real 1040 5.98 6.46 136 23.5 5.5	dings 1045 6.55 0.60 158 22.2 5.1	1056 6.83 0.75 150 70,4	1055 7.56 1.00 150 20.2 4.5	8.18 1.25 150 20.2 4.2
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.72	1035 5,25 0-15 150 24.4 7.7 6.80	Real 1040 5.98 6.46 156 23.5 5.5 0.57	dings 1045 6.55 0.60 158 22.7 5.1 0.53	1056 6.83 0.75 150 70,4 4.6 6,41	1055 7.56 1.00 150 70.2 4.5 0.46	8.18 1.25 150 20.2 4.2 0.43
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L MeV	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.77 199.6	1035 5,25 0-15 150 24.4 7.1 6.80 207.4	Real 1040 5.98 6.46 156 23.5 5.5 0.57 217.0	dings 1045 6.55 0.60 158 22.7 5.1 0.53 718.1	1056 6.83 0.95 150 70,4 4.6 6,49 216,5	1055 7.56 1.00 150 20.2 4.5 0.46 217.3	8.18 1.25 150 20.2 4.2 0.43 203.3
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.72 199.6 1.4/8	1035 5,25 0-15 150 24.4 7.1 6.80 207.4	Real 1040 5.98 6.46 156 23.5 5.5 0.57 217.0 1,462	dings 1045 6.55 0.60 155 22.2 5.1 0.53 218.1 1459	1056 6.83 0.75 150 70,4 4.6 6,47 216,5 1453	10 55 7.56 1.00 150 20.2 4.5 0.46 217.3 1453	8.18 1.25 150 20.2 4.2 0.43 2023 1448
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.77 199.6 1.4/8 1.098	1035 5,25 0-15 150 24.4 7.3 6.80 209.4 1455 1132	Real 1040 5.98 0.46 136 23.5 5.5 0.57 217.8 1,467 11,39	dings 1045 6.55 0.60 158 22.2 5.1 0.53 718.7 1457 1186	1056 6.83 6.83 0.75 150 70,4 4.6 6.41 216,5 1453 [13]	1055 7.56 1.00 150 20.2 4.5 0.46 217.3 1453 1132	8.18 1.25 150 20.2 4.2 0.43 203.3 1448
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.77 199.6 1.418 1.098 6.75	1035 5,25 0-15 150 24.4 7.1 6.80 207.4 1455 1132 C.71	Real 1040 5.98 6.46 156 23.5 5.5 0.57 217.8 1,467 1,39 6.71	dings 1045 6.55 0.60 158 22.2 5.1 0.53 218.1 1459 1186 6.71	1056 6.83 0.75 150 70,4 4.6 6.47 216,5 1453 [13]	10 55 7.56 1.00 150 20.2 4.5 0.46 217.3 1453 1137 6.71	8.18 1.25 158 20.2 4.2 0.43 2033 1448 1/29 6.72
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C*	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.72 199.6 1.4/8 1.098 6.75 13.0	1035 5,25 0-15 150 24.4 7.7 6.80 207.4 1455 1132 C.71 13.3	Real 1040 5.98 6.46 136 23.5 5.5 0.57 217.0 1,462 1,39 6.71 13.4	dings 1045 6.55 0.60 155 22.2 5.1 0.53 218.7 1457 1136 6.71 13.4	1056 6.83 0.75 150 70,4 4.6 6,47 216,5 1453 (13) 6.72 13.5	10 55 7.56 1,00 150 20.2 4.5 0.40 217.3 1453 1453 1137 6.71	8.18 1.25 158 20.2 4.2 0.43 203.3 1448 1/29 6.72 13.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	NTU + YSI 1030 4.28 0 150 25.3 19.1 1.77 199.6 1.418 1.098 6.75	1035 5,25 0-15 150 24.4 7.1 6.80 207.4 1455 1132 C.71	Real 1040 5.98 6.46 156 23.5 5.5 0.57 217.8 1,467 1,39 6.71	dings 1045 6.55 0.60 158 22.2 5.1 0.53 218.1 1459 1186 6.71	1056 6.83 0.75 150 70,4 4.6 6.47 216,5 1453 [13]	10 55 7.56 1.00 150 20.2 4.5 0.46 217.3 1453 1137 6.71	8.18 1.25 150 20.2 4.2 0.43 203.3 1448 1/29 6.72

N	Monitoring	Well Pur	ging / Sa	mpling F	orm			
Project Name and Number:		NYSEG - It	haca - 60615	5225				
Monitoring Well Number:		M13-45	5	Date:	12/8	721		
Samplers:								
Sample Number:	m	- 455 -1	20921	QA/Q0	C Collected?			
Purging / Sampling Method:		Low flow W	// dedicated	tubing				
1. L = Well Depth:					feet	D (inches)	D (feet)	1
2. D = Riser Diameter (I.D.):					- feet	1-inch	0.08	1
3. W = Depth to Water:				4.28	feet	2-inch	0.17	1
4. C = Column of Water in Well	•			-7. 0	feet	3-inch	0.25	1
5. V = Volume of Water in Well	= C(3.14159	9)(0.5D) ² (7.4	8)		gal	4-inch	0.33	1
6. 3(V) = Target Purge Volume	•	,, ,,	•	5.7	gal	6-inch	0.50	1
		D (inches)	Conversion	n factors to	determine	V given C	6-inch	,
			-					
٠		V (gal / ft)	0.041	0.163	0.37	0.65	1.5	1
Water Quality Readings Collect Parameter	ed Using Units	NTU + YSI		Reac	dings	-		
Time	24 hr	1205	1/10	1215	1120	1/25	1130	1135
Water Level (0.33)	feet	8.77.	5.18	9.66.	9.84	10.52	10.85	22-11.34
Volume Purged	gal	1.50	1.35.	7.00	2.25	250	2.75	2.00
Flow Rate	mL/min	150	150	156	150	160	130	200
Turbidity (+/- 10%)	NTU	50.6	234	98.2	127	148	163	146
Dissolved Oxygen (+/- 10%)	%	3.7	3,6	3.6	3.6	3.7	3.7	4.2
Dissolved Oxygen (+/- 10%)	mg/L	0,4	0.38	0.37	0.36	0.36	038	0.43
Eh / ORP (+/- 10)	MeV	9,005	00/51	1938	185.6	172.2	169.5	165.8
Specific Conductivity (+/- 3%)	mS/cm ^c	1453	1460	1463	1470	1486	1498	1507
Conductivity (+/- 3%)	mS/cm	1134	1142	1146	1154	1170	1/80	1192
pH (+/- 0.1)	pH unit	6.71	6.72	6.72	6.71	671	6.70	4.68
Temp (+/- 0.5)	C.	135	12.6	127	13.8	13.9	13.7	14.1
Color	Visual	Clark	Clast.	Clade	Clarky	class	clash	cind
Odor	Olfactory						C	
Comments:								
							Page ¹ of	3

	/lonitoring	Well Pur	rging / Sa	mpling F	orm	v		
		,	aa	ba	0			
Project Name and Number:		NYSEG - It	thaca - 60615	225				
Monitoring Well Number:		NO-459	\$	Date:	12/8	7/21		
Samplers:								
Sample Number:	سر	w. 455	12092	• OA/OC	C Collected?	1		
	•				, cometite.			
Purging / Sampling Method:		Low flow W	V/ dedicated	tubing				
1. L = Well Depth:					feet	D (inches)	D (feet)	
2. D = Riser Diameter (I.D.):					feet	1-inch	0.08	
3. W = Depth to Water:					feet	2-inch	0.17	
4. C = Column of Water in Well	:				feet	3-inch	0.25	
5. V = Volume of Water in Well))(0.5D) ² (7.4	8)		gal	4-inch	0.33	
6. 3(V) = Target Purge Volume	-1	///	-,		gal	6-inch	0.50	
					-0			
			Conversion	n factors to	determine	V given C		
		4						
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
		i-n						
Water Quality Readings Collect	ed Using	NTU + YSI			-			in his
							on 12	19/21
Parameter	Units	T a at	A STATE OF THE STA		dings	6800-		
Time	24 hr	1240	1241	1250	1755	Children of the Control of the Contr		
Water Level (0.33)	feet	11.89	12.75	1		4.35		
Volume Purged	gal	3.25	350	3.65		0		
Flow Rate	mL/min	780	Zod	200		CORPORATE IN		
Turbidity (+/- 10%)	NTU	205	282		1	145	ļI	
Dissolved Oxygen (+/- 10%)		4. 7		~ .				
	%	4.2	4,1	3.3		20.3		
	mg/L	0.48	4,1 6.72	0.38		20.3 2,30		
Eh / ORP (+/- 10)	mg/L MeV	0.42 158.1	4,1	0.33		2,32 2,32 230,1		
Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	mg/L MeV mS/cm ^c	0.42 158.1 1508	4,1 6.72 145,2 1519	149:0		2,30 2,30 230,1		
Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	mg/L MeV mS/cm ^c mS/cm	158.1 1508 1200	4,1 6,72 148,2 15/9 1 769	0.38 149.0 15/6 1709		20.3 2,30 030.1 1515 1045		
Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	mg/L MeV mS/cm ^c mS/cm pH unit	158.1 1508 1200 6.70	4,1 6.72 145,2 15/9 1 705 6.74	0.33 149:0 15/6 1709 6.70		20.3 2,30 230.1 1515 1045 6.32		
Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	mg/L MeV mS/cmc mS/cm pH unit C*	0.48 158.1 1508 1200 6.70	4,1 6.72 149,2 1519 1709 6.74 14.3	0.78 149:0 15/6 1709 6.70		2,30 2,30 230, 1515 1045 6,32 88		
Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	mg/L MeV mS/cmc mS/cm pH unit C* Visual	158.1 1508 1200 6.70	4,1 6.72 145,2 15/9 1 705 6.74	0.33 149:0 15/6 1709 6.70		20.3 2,30 230.1 1515 1045 6.32		
Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor	mg/L MeV mS/cmc mS/cm pH unit C* Visual Olfactory	0.48 158.1 1508 1200 6.70 14.3	4,1 6.72 149,2 1519 1709 6.74 14.3	0.78 149:0 15/6 1709 6.70 14.4 (land)	1	2,30 2,30 230, 1 1515 1045 6,32 88 Clark		
	mg/L MeV mS/cmc mS/cm pH unit C* Visual Olfactory	0.48 158.1 1508 1200 6.70 14.3	4,1 6.72 149,2 1519 1709 6.74 14.3	0.78 149:0 15/6 1709 6.70 14.4 (land)		2,30 2,30 230, 1515 1045 6,32 88		

Monitoring Well Purging / Sampling Form Project Name and Number: NYSEG - Ithaca - 60615225 MW-465 Date: 12/7/21 Monitoring Well Number: Samplers: MW- \$65 - 120721 QA/QC Collected? -Sample Number: Purging / Sampling Method: Low flow W/ dedicated tubing 1. L = Well Depth: 16.88 feet D (inches) D (feet) 2. D = Riser Diameter (I.D.): 17 feet 1-inch 0.08 3. W = Depth to Water: 4.30 feet 2-inch 0.17 4. C = Column of Water in Well: 58 feet 0.25 3-inch 5. $V = Volume of Water in Well = C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 6. 3(V) = Target Purge Volume 6-inch 0.50 gal Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch 0.041 V (gal / ft) 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using NTU + YSI U Parameter Units Readings 1135 24 hr Time 1150 1155 1200 1140 1145 1205 Water Level (0.33) 4-30 4.36 4.38 4.38 4.38 4.38 feet 4.38 1,50 0 6,50 Volume Purged 0.25 1,00 1.75 gal 1.25 Flow Rate 250 250 mL/min 250 250 250 250 250 40.8 Turbidity (+/- 10%) 25.7 20.0 16.4 NTU 32.6 17.2 15.8 7.5 Dissolved Oxygen (+/- 10%) SZ 5. 6 12.1 11-0 4.4 13.0 0.78 Dissolved Oxygen (+/- 10%) 0.54 0.60 mg/L 0.45 1.37 1.22 1.12 151,2 143.0 159.5 Eh / ORP (+/- 10) MeV 147.3 187.6 127.6 122.4 0-834 0.876 6.930 0.764 0. 877 Specific Conductivity (+/- 3%) mS/cm^c 0.844 0. 884 Conductivity (+/- 3%) 0,649 0650 0.672 0.686 mS/cm 0,658 0.684 0.650 7.36 pH (+/- 0.1) pH unit 7.43 7.27 7.25 7.30 7.24 7.22 Temp (+/-0.5)C° ROBISS 13,6 12.5 13.4 13.6 13.5 135 Color Sheen Visual Sheen Cloudy Clas chy Sheen Clear Produt. 1 while Odor andid. prote.

Comments: part) or @ 44/130

There Organic/product like along heavy Sheen's absenced

(4 willed @ 1205)

Page of

Project Name and Number: Monitoring Well Number:					orm			
Monitoring Well Number:		NYSEG - It	haca - 60615	225				
		MJ-4	75"	Date:		12/2/21		
Samplers:		<u> </u>	75" is Fren	ch				
Sample Number:		Mw-475	170971	QA/Q0	C Collected?	- No		
Purging / Sampling Method:		Low flow W						
		2011101111		<u></u>				
1. L = Well Depth:					feet	D (inches)	D (feet)	
2. D = Riser Diameter (I.D.):					feet	1-inch	0.08	
3. W = Depth to Water:					feet	2-inch	0.17	
4. C = Column of Water in Well	:				feet	3-inch	0.25	
5. V = Volume of Water in Well	= C(3.14159)(0.5D) ² (7.4	8)		gal	4-inch	0.33	
6. 3(V) = Target Purge Volume				- 100	gal	6-inch	0.50	
					19			
			Conversion	n factors to	determine	V given C		
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
		C (11.01.22)			-		1.5	
Water Quality Readings Collect	ed Using	V (gal / ft) NTU + YSI	0.041	0.163	0.37	0.65	1.5	
Parameter	Units	NTU + YSI	4	Rea	dings			
Parameter Time	Units 24 hr	NTU + YSI	1420	Rea	dings	1935	1990	1995
Parameter Time Water Level (0.33)	Units 24 hr feet	NTU + YSI -/415	1920	Rea 1425	dings	1975	1940	9.53
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	NTU + YSI /YI \$ 9:69	1920 562 03	Rea 1425 6.42	dings 1'55 7.37	1,975	1940 8.65	9.53
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	NTU + YSI /YI 5 9:69 0 250	/\$20 \$62 03 250	Rea 1925 6.42 0.75	dings ()	1,925	1940 8.65 1-35 175	9.53
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU	NTU + YSI 14.5 4.69 0 250 64.7	/\$20 \$.62 0.3 2.50 32.3	Rea 1425 6.42 0.75 0.75	dings 1/30 7.37 1.1 256	1,25 1,25 1,25 1,25 1,25	1940 8.65 1-35 175 176	9.53 1.6 150 130
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	NTU + YSI 1415 4:69 0 250 64.2 1.3	1420 \$12 03 250 32.3	Rea 1425 6.42 0.75 22.4	dings 1/30 7.37 11 256 35.0	1,925 1,25	1940 8.65 1.35 175 176 2.6	9.53 1.6 150 130 2.4
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L	NTU + YSI 1415 4:69 0 250 64.7 1.3 0.14	1420 \$62 03 2.50 32.3 61 0.11	Rea 1925 6.42 0.75 254 22.4	dings 1/30 7.37 1 256 35.0 5.5 0.15	1975 125 125 125 128 1.7 0.25	1990 8.65 1.35 175 176 2.6 0.28	9.53 1.6 150 130 2.4 0.25
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L MeV	1415 4:69 0 250 64.2 1.3 0.19 -101.5	/\$20 \$62 03 250 32.7 6.1 5.11 -/17.3	Rea 1425 6.42 0.75	dings 1/30 7.37 11 256 35.0 1.5 0.15	1,975 1,25	1940 8.65 1.35 175 176 2.6 0.28 -125,3	9.53 1.6 150 130 2.4 0.75 -129.3
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	NTU + YSI 1415 4:69 0 250 64.7 1.3 0.14 -101.5 0.87	1420 5.62 0.3 2.50 32.3 6.1 0.11 -117.3 0.70	Rea 1425 6.42 0.75 253 224 14 0.14 -121.2 0.91	dings 1/30 7.37 11 256 35.0 1.5 0.15 -122.5 0.97	1975 125 125 128 1.7 0.20 -127.5 0.75	1940 8.65 1.35 175 176 2.6 0.28 -125.3	9.53 1.6 150 130 2.4 0.25 -129.3 0.99
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	1415 9:69 0 250 64.2 1.3 0.14 -101.5 0.87 0.66	1920 \$12 03 22.3 61 0.10 0.70	Rea 1425 6.42 0.75 22.4 1.4 0.14 -121.2 0.91 0.70	dings 1/30 7.37 61 256 35.0 6.5 0.15 -122.5 0.71	1.975 1.25 1.25 1.28 1.7 0.20 -127.5 0.72	1940 8.65 1.35 175 176 2.6 0.28 -125.3 0.37	9.53 1.6 150 130 2.4 0.25 -129.3 0.99 0.76
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc pH unit	NTU + YSI 1415 4:69 0 250 64.7 1.3 0.14 -101.5 0.87 0.66 7.72	1920 \$62 03 250 32.3 61 0.70 0.87 7.16	Rea 1425 6.42 0.75 22.4 1.4 0.14 -121.2 0.91 0.70 7.15	dings 1/00 7.37 11 256 35.0 1.5 0.15 -122.5 0.71 7.10	1975 125 125 128 1.7 0.20 -127.8 0.72 0.72 7.12	1940 8.65 1-35 175 176 2.6 0.28 -125,3 0.37 0.74 7.13	9.53 1.6 150 130 2.4 0.75 -129.3 0.99 0.76 7.15
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm pH unit C°	NTU + YSI 1415 4:69 0 250 64.7 1.3 0.14 -101.5 0.87 0.66 7.72 R.4	1420 5.62 0.3 2.50 32.3 6.1 0.10 0.67 7.16 12.9	Rea 1925 6.42 0.75 32.4 1.4 0.14 -121.2 0.91 0.70 7.15 1.3.1	dings 1/30 7.37 1.1 256 35.0 1.5 0.15 -122.5 0.77 7.13 122	1,25 1,25 1,25 1,25 1,25 1,25 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1940 8.65 1.35 175 176 2.6 0.28 -125,3 0.37 0.74 7.13 12.7	9.53 1.6 150 130 2.4 0.25° -129.3 0.99 0.76 7.15 12.7
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc pH unit	NTU + YSI 1415 4:69 0 250 64.7 1.3 0.14 -101.5 0.87 0.66 7.72	1920 \$62 03 250 32.3 61 0.70 0.87 7.16	Rea 1425 6.42 0.75 22.4 1.4 0.14 -121.2 0.91 0.70 7.15	dings 1/00 7.37 11 256 35.0 1.5 0.15 -122.5 0.71 7.10	1975 125 125 128 1.7 0.20 -127.8 0.72 0.72 7.12	1940 8.65 1-35 175 176 2.6 0.28 -125,3 0.37 0.74 7.13	9.53 1.6 150 130 2.4 0.25 -129.3 0.99 0.76 7.15

Page 1 of 2

Project Name and Number:		NYSEG - It						
Monitoring Well Number:		AU-475		_ Date:	Date:		12/8/21	
Samplers:		-	Chris	French		1		
Sample Number:		NW-47.			No			
Purging / Sampling Method:		Low flow W	// dedicated	tubing				
1. L = Well Depth:					feet	D (inches)	D (feet)	
2. D = Riser Diameter (I.D.):					feet	1-inch	0.08	
3. W = Depth to Water:					feet	2-inch	0.17	
4. C = Column of Water in Well	:				feet	3-inch	0.25	
5. V = Volume of Water in Well)(0.5D) ² (7.4	8)	E Yo	gal	4-inch	0.33	
6. 3(V) = Target Purge Volume	,	,, , , , , , , , , , , , , , , , , , , ,			gal	6-inch	0.50	
0 0 0					_ ~			
			Conversio	n factors to	determine	V given C		
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) NTU + YSI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
	ed Using Units	V (gal / ft) NTU + YSI		0.163				
Parameter		V (gal / ft)		0.163	0.37		1.5	
Water Quality Readings Collect Parameter Time Water Level (0.33)	Units	V (gal / ft) NTU + YSI	0.041	0.163 Rea	0.37 dings 1505		1.5	
Parameter Time	Units 24 hr	V (gal / ft) NTU + YSI	0.041	0.163 Rea	0.37		1.5	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet	V (gal / ft) NTU + YSI 1450 /4.28	0.041	0.163 Rea 1500 h.05	0.37 dings 1505		1.5	
Parameter Time Water Level (0.33)	Units 24 hr feet gal	V (gal / ft) NTU + YSI 1450 /4.28 20 750	0.041	0.163 Rea 1500 h.05 2.5	0.37 dings 1505 /3.14 2.5		1.5	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft) NTU + YSI 1450 /4.28 20 250 133	0.041 1955 11.21 2.7 250 135	0.163 Rea 500 h.05 2.5 126	0.37 dings 1505 /3.14 2.5 250 156		1.5	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	V (gal / ft) NTU + YSI 1450 /4.18 20 750 133 2.3	0.041 1955 1135 2.7	Rea 1500 N. 05 2.5 126 2.4	0.37 dings 1505 /3.14 2.5 250 156 2.6		1.5	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) NTU + YSI 1450 /4.28 20 250 133 2.3 0.34	0.041 1155 1131 2.3 2.5 135 2.7 0.23	Rea 1500 h. 05 2.5 2.5 126 2.4 0.35	0.37 dings 1505 /3.14 2.8 250 156 2.6 0.26		1.5	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) NTU + YSI 1450 /4.26 2.0 250 133 2.3 0.34 -(31.7	0.041 1955 11.21 2.3 250 135 2.7 0. 23 -123.7	Rea 1500 N. 05 2.5 2.5 126 2.4 0.35 -133.0	0.37 dings 1505 /3.19 2.8 250 156 2.6 0.26 -/31.7		1.5 12/9 0900 9.68 100 34.2	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) NTU + YSI 1450 /4.28 20 250 133 2.3 0.24 -(31.7 0.99	0.041 1955 11.21 2.7 250 135 2.7 0.27 -122.7 0.77	0.163 Rea 500 h.05 2.5 126 2.4 0.35 - 37.0	0.37 dings 1505 /3.14 2.5 2.5 156 2.6 0.26 0.26 -/31.7		1.5 12/9 0900 4.68 100 34.2 3.88	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) NTU + YSI 1450 /4. 78 20 750 133 2.3 0.34 -(31.7 0.99 0.77	0.041 1155 1135 2.3 250 135 2.7 0.23 -122.7 0.79 0.7)	0.163 Rea 500 1.05 2.5 2.6 2.4 0.35 - 33.6 0.29 0.77	0.37 dings 1505 13.14 2.8 2.6 2.6 2.6 2.7 2.75		1.5 12/9 0900 4.68 100 34.2 3.85 1.347 0.967	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) NTU + YSI 1450 /4.28 2.0 750 133 2.3 6.34 -(31.7 6.99 6.77 7./7	0.041 1155 11.71 2.3 250 135 2.7 0.23 -122.7 0.77 2.77	Rea 500 1.05 2.5 2.6 2.4 0.35 - 37.6 0.77 7./7	0.37 dings 1505 /3.14 2.8 2.6 0.26 0.26 -/31.7 0.76 7.16		1.5 12/9 0900 4.68 100 34.2 3.88	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C°	V (gal / ft) NTU + YSI 1450 /4. 78 2.0 750 133 77 0. 24 -(2).7 0.99 2.77 7./7 /3.3	0.041 1955 11.21 2.7 250 135 2.7 0.23 -122.7 0.77 2.77 12.2	0.163 Rea 1500 h.05 2.5 126 2.4 0.35 -137,0 0.99 0.77 7./7 /3.4	0.37 dings 1505 /3.14 2.5 156 2.6 0.26 0.26 -/31.7 0.95 0.76 7.16 12.4		1.5 12/9 0900 4.68 100 34.2 3.89 1.347 0.967 6.9	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit	V (gal / ft) NTU + YSI 1450 /4.28 2.0 750 133 2.3 6.34 -(31.7 6.99 6.77 7./7	0.041 1155 11.71 2.3 250 135 2.7 0.23 -122.7 0.77 2.77	Rea 500 1.05 2.5 2.6 2.4 0.35 - 37.6 0.77 7./7	0.37 dings 1505 /3.14 2.8 2.6 0.26 0.26 -/31.7 0.76 7.16		1.5 12/9 0900 2/.68 100 34.2 3.85 1.347 0.967 €.33	

	Monitoring	Well Pu	rging / Sa	mpling F	orm				
Project Name and Numbe	r:	NYSEG - It	haca - 60615	5225					
Monitoring Well Number:		MW-48	5	_ Date:	12/8				
Samplers:		-		Franc					
Sample Number:		MW-485	120821	QA/Q0	C Collected?		No		
Purging / Sampling Metho	d:	Low flow W/ dedicated tubing							
1. L = Well Depth:				13.49	feet	D (inches)	D (feet)]	
2. D = Riser Diameter (I.D.)):			0.17	feet	1-inch	0.08		
3. W = Depth to Water:				3.78	feet	2-inch	0.17		
4. C = Column of Water in				9.21	feet	3-inch	0.25		
5. V = Volume of Water in	Well = C(3.14159	9)(0.5D) ² (7.4	8)	1,58	gal	4-inch	0.33		
6. 3(V) = Target Purge Volu	ıme		2	4.7多	gal	6-inch	0.50]	
5-7-1			Conversion	n factors to	determine	V given C			
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1	
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5		
Water Quality Readings Co	ollected Using	NTU + YSI				_			11.5
Parameter	Units			Rea	dings				
Time	24 hr	0930	0975	0940	0345	0950	0955	1000	1005
Water Level (0.33)	feet	3.78	3.95	3.99	9:00	4.02	4.02	4.02	4.02
Volume Purged	gal	0	0.75	C.5 6.5	0.75	1.0	1.25	1.5	1.75
Flow Rate	mL/min	225	225	225	255	200	200	200	200
Turbidity (+/- 10%)	NTU	13.6	11.)	9.25	6.74	9.45	3,46	2.50	3.07
L						1		10	-

Parameter	Units			Read	dings					
Time	24 hr	0930	0975	0940	0345	0950	0955	1000	1005	
Water Level (0.33)	feet	3.78	3.95	3.99	9:00	4.02	4.02	4.02	4.02	
Volume Purged	gal	0	0.35	٥.5 ومن	0.75	1.0	120	1.5	1.75	
Flow Rate	mL/min	225	225	225	252	२००	200	200	200	
Turbidity (+/- 10%)	NTU	13.6	11.)	9.25	6.74	4.45	3,46	2.50	3.07	
Dissolved Oxygen (+/- 10%)	%	2.8	1.7	1.5	1.6	2.1	1.6	1.5	1.5	
Dissolved Oxygen (+/- 10%)	mg/L	0.30	0.19	0.16	0.17	0.22	017	21,0	D.16	
Eh / ORP (+/- 10)	MeV	-109.5	-114.0	-116.3	-117.3	-120.3	-121.4	-171.9	-122.7	
Specific Conductivity (+/- 3%)	mS/cm ^c	2.86	2.91	202730		3.20	3.25	3.27	3.37	
Conductivity (+/- 3%)	mS/cm	2.14	2.20	2.27	2.32	2.46	2.50	2.51	2.54	
pH (+/- 0.1)	pH unit	7.27	7.24	7.25	7.26	7.76	7.27	7.27	7.27	
Temp (+/- 0.5)	C°	11.9	12.2	12,4	12.4	12.9	12.8	12.8	12.9	
Color	Visual	Cler	Car	Cleur	Clear	Cher	Char	Chan	Class	
Odor	Olfactory	none	hore	none	nere	nelalic	Medullic	mofilia	nekllic	

Comments: Sempled @ 1005

Appendix B – Analytical Laboratory Reports

Appendix C - Data Usability Summary Report

Data Usability Summary Report

NYSEG/Ithaca Court Street Former MGP Site Groundwater Sampling Event

NYSEG

Project number: 606732676

February 16, 2022

Quality information

Prepared by

Verified by

Ann Marie Kropovitch Chemist George E. Kisluk Senior Chemist

Prepared for:

NYSEG Binghamton, NY

Prepared by:

AECOM

1 John James Audubon Parkway, Suite 210 Amherst, NY

Prepared for: NYSEG AECOM

Table of Contents

Exec	utive S	Summary	ES-1
1.	Benz	ene, Toluene, Ethyl Benzene, and Total Xylenes	<i>*</i>
	1.1	Reporting and Detection Limits	<i>*</i>
2.	Polyr	nuclear Aromatic Hydrocarbons	2
	2.1	Holding Time:	2
	2.2	Blank Contamination:	2
	2.3	Matrix Spike Recoveries:	2
	2.4	Reporting and Detection Limit	2
	2.5	Surrogate Recoveries:	2
	2.6	Calibration:	3
3.	Meth	ane	∠
	3.1	Dilutions	∠
4.	Total	Iron	5
5.	Gene	eral Chemistry	6
	5.1	Holding Time:	6
	5.2	Matrix Spike Recoveries:	6
	5.3	Dilutions:	6
6.	Field	Duplicate Precision	7
7.	Notes	S	8
App	oend	lices	
Appe	ndix A	Glossary of Data Qualifiers and Reason Codes	
	A.1	Glossary of Data Qualifiers	
	A.2	Glossary of Data Qualifiers Reason Codes	
Appe	ndix B	Data Qualification Summaries	

Tables

Appendix C Support Documentation

Table 1 Sample Submittals – NYSEG/Ithaca Former MGP Groundwater ES-2

Executive Summary

Overview

Data validation was performed by Ann Marie Kropovitch of AECOM-Buffalo on three data packages from Eurofins TestAmerica (ETA-Buffalo), 10 Hazelwood Drive, Amherst, NY 14228-2298 for the analysis of groundwater samples collected on December 7-9, 2021 at the NYSEG/Ithaca Court Street former manufactured gas plant (MGP) site.

The following analytical methods were requested on the chain-of-custody (CoC) records.

- Benzene, Toluene, Ethylbenzene and Total Xylenes (BTEX) by USEPA SW-846 Method 8260C
- Polynuclear Aromatic Hydrocarbons (PAHs) by USEPA SW-846 Method 8270D Low-Level and USEPA SW-846 Method 8270E in Selected Ion Monitoring (SIM) Mode
- Methane by USEPA Method RSK-175
- Total Iron by USEPA SW-846 Method 6010C
- **General Chemistry**
 - Total Cyanide by USEPA SW-846 Method 9012B
 - Sulfate by USEPA MCAWW Method 300.0
 - Ammonia by USEPA MCAWW Method 350.1
 - Nitrate and Nitrite by MCAWW Method 353.2 (Nitrate by Calculation)
 - Total Alkalinity by Standard Method 2320B
 - Ferrous Iron by Standard Method 3500 FE D

The PAH determinations using GC/MS in SIM mode were performed at the ETA-Edison, NJ facility. The data were evaluated for conformance to method specifications and qualifiers were applied using the

USEPA Region 2 SOPs and the validation criteria set forth in the USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005, November 2020 and USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-542-R-20-006, November 2020, as they apply to the analytical methods employed.

Field duplicate relative percent difference (RPD) review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996 and USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, June 1988.

The samples were processed, and the results were reported under three SDGs 480-193156-1, 480-189210-1, and 480-193309-1. Table 1 provides a sample submittal list with the field IDs cross-referenced with the ETA- Buffalo IDs.

Sample MW-33S-120721 was mislabeled as MW-36S-120721 by the field sampler. The sample ID has been corrected in this DUSR and on the laboratory forms.

Prepared for: NYSEG **AECOM**

Table 1 Sample Submittals – NYSEG/Ithaca Former MGP Groundwater

Field ID	Laboratory ID	QC	Matrix	Date Sampled
MW-46S-120721	480-193156-1		Groundwater	12/07/21 12:05
MW-24S-120721	480-193156-2		Groundwater	12/07/21 10:30
MW-28S-120721	480-193156-3		Groundwater	12/07/21 08:40
DUP-1-120721	480-193156-4	MW-28S-120721	Groundwater (QC)	12/07/21 08:40
MW-33S-120721	480-193156-5		Groundwater	12/07/21 13:40
MW-C16-120721	480-193156-6		Groundwater	12/07/21 11:10
MW-C11-120721	480-193156-7	MS/MSD	Groundwater	12/07/21 12:47
MW-C12-120721	480-193156-8		Groundwater	12/07/21 15:05
TRIP BLANK-120721	480-193156-9	trip blank	Aqueous (QC)	12/07/21 00:00
MW-40-120821	480-193210-1		Groundwater	12/08/21 12:55
MW-31S 120821	480-193210-2		Groundwater	12/08/21 12:12
MW-48S 120821	480-193210-3		Groundwater	12/08/21 10:05
MW-25S 120821	480-193210-4		Groundwater	12/08/21 08:00
MW-22S 120821	480-193210-5		Groundwater	12/08/21 08:45
EQUIP.BLANK- 120821	480-193210-6	rinsate blank	Aqueous (QC)	12/08/21 14:15
TRIP BLANK-120821	480-193210-7	trip blank	Aqueous (QC)	12/08/21 00:00
MW-45S-120921	480-193309-1		Groundwater	12/09/21 08:00
MW-47S-120921	480-193309-2		Groundwater	12/09/21 09:00
MW-23S-120921	480-193309-3		Groundwater	12/09/21 09:10
	The state of the s			

Summary

Data quality for the organic analyses was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance standards, internal standards, initial and continuing calibrations, matrix spike/matrix spike duplicates (MS/MSD), surrogate recoveries, laboratory control standards (LCSs), laboratory blanks, laboratory and field duplicates, compound identification, and compound quantitation.

Inorganic data quality was evaluated by reviewing the following parameters: holding times, matrix spikes, initial calibrations, continuing calibration verification standard recoveries, contract required detection limit standard recoveries, laboratory control samples, ICP interference check sample recoveries, ICP serial dilution results, field and laboratory duplicates, laboratory blanks, and analyte quantitation.

All data have been determined to be useable for the purpose of assessing the presence/absence and quantitative concentrations of the compounds and analytes in the media tested (i.e., groundwater) with the qualifications described below. No data points were rejected. Completeness of 100% was achieved for this data set. This is within the goal of 90-100% and is acceptable.

A glossary of data qualifier and reason code definitions are included in Appendix A of this report. The data qualifier summaries are attached as Appendix B of this report.

Each noncompliance with specific data usability criteria that required data qualification is discussed below. Support documentation for data qualifications was included in Appendix C of this report.

Prepared for: NYSEG AECOM ES-2

Benzene, Toluene, Ethyl Benzene, and Total Xylenes 1.

1.1 **Reporting and Detection Limits**

Samples MW-C11-120721, MW-C16-120721, and MW-25S-120821 required analysis at an initial two-fold dilution to minimize the matrix interference that caused purge and trap foaming to occur. The initial dilution elevated reporting limits (RLs) and method detection limits (MDLs). The surrogate recoveries were within the quality control limits. No data qualifications were required.

Samples MW-46S-120721 and MW-23S-120921 required analysis at an initial dilution to bring the target compound concentration(s) into the calibration range. The initial dilution elevated the RLs and MDLs. The surrogate recoveries were within the quality control limits. No data qualifications were required.

Prepared for: NYSEG **AECOM**

2. Polynuclear Aromatic Hydrocarbons

2.1 Holding Time:

The following samples were extracted outside of the holding time for the 8270 SIM analysis due to a Fedex shipping delay: MW-46S-120721, MW-24S-120721, MW-28S-120721, DUP-1-120721, MW-33S-120721, MW-C16-120721, MW-C11-120721, and MW-C12-120721. All SIM results in these samples have been qualified 'J' or 'UJ' due to the HT exceedance.

2.2 Blank Contamination:

Naphthalene was detected in the low-level method blank MB 480-608154/1-A at an estimated concentration of 0.0654 J μ g/L. The naphthalene results for associated samples MW-C11-120721 and MW-33S-120721 were less than the RL and were qualified 'U', as undetected at the RL, because of laboratory contamination. The other associated samples were either non-detect for naphthalene or had a result that exceeded the RL, no qualification was required for those samples.

Phenanthrene was detected in the low-level method blank MB 480-608429/1-A at an estimated concentration of 0.0774 J μ g/L. The phenanthrene results for associated sample MW-47S-120921 was less than the RL and was qualified 'U,' as undetected at the RL, because of laboratory contamination. The remaining associated samples were greater than the RL and did not required qualification.

2.3 Matrix Spike Recoveries:

Sample MW-C11-120721 was designated in the field to be processed as a quality control sample, that is, as the MS/MSD. The %R of dibenzo(a,h)anthracene in the 8270 SIM analysis was slightly below the lower QC limit in the MS/MSD. All %Rs were acceptable in the laboratory control sample (LCS). No qualification has been added to the sample results.

2.4 Reporting and Detection Limit

Sample MW-46S-120721 for SIM analysis was analyzed at a dilution of 5x due to elevated levels of the target compounds. The RLs and MDLs were elevated as required.

Several low-level GC/MS samples required analysis at an initial dilution to bring the target compound concentration(s) into the calibration range as identified below. The RLs and MDLs were elevated as required.

Sample ID	Dilution
MW-46S-120721	100
MW-C12-120721	20
MW-23S-120921	20
MW-C16-120721	5
MW-48S 120821	10

2.5 Surrogate Recoveries:

The %R of surrogate 2-fluorobiphenyl in the 8270 SIM analysis was greater than the upper QC limit in the following samples: MW-24S-120721, MW-28S-120721, DUP-1-120721, MW-33S-120721, MW-C11-120721, MW-C12-120721, MW-40-120821, MW-31S-120821, MW-48S-120821, MW-25S120821, MW-22S-120821, MW-45S-120921, MW-47S-120921, and EQUIP BLANK-120821. The USEPA National Functional Guidelines permit one surrogate per fraction (i.e., base/neutral, or organic acid) to be nonconforming, so long as the recovery was greater than 10%. No data qualification was required.

Prepared for: NYSEG AECOM

2.6 Calibration:

The percent differences (%D) between the initial calibration (ICAL) average relative response factors (RRF) and the RRFs in the 8270 SIM continuing calibration (CCAL) standards were greater than 20% for SVOCs indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene and showed a decreasing response (low bias). Since associated samples MW-46S-120721, MW-24S-120721, MW-28S-120721, DUP-1-120721, MW-33S-120721, MW-C16-120721, MW-C11-120721, and MW-C12-120721 were previously qualified J or UJ due to the holding time exceedance, no further qualification was added to the sample results.

The %D between the ICAL average RRF and the RRFs in the 8270 SIM CCAL standards were greater than 20% for SVOCs indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene and showed a decreasing response (low bias). The results for these compounds in associated samples EQUIP.BLANK-120821, MW-22S 120821, MW-25S 120821, MW-31S 120821, MW-40-120821, MW-48S 120821, MW-45S-120921, MW-47S-120921, and MW-23S-120921 have been qualified 'UJ'

Prepared for: NYSEG **AECOM**

Project number: 606732676

3. Methane

3.1 Dilutions

Samples MW-24S-120721, MW-28S-120721, MW-46S-120721, MW-C11-120721, MW-C12-120721, MW-48S 120821, MW-23S-120921, MW-45S-120921, and MW-47S-120921 required analysis at an initial dilution to bring the methane concentration into the calibration range. The initial dilution elevated the RLs and MDLs. No data qualifications were required.

Prepared for: NYSEG AECOM

4. **Total Iron**

No QC deviations were identified in the data packages. No data qualification was required.

AECOM 5 Prepared for: NYSEG

5. General Chemistry

5.1 Holding Time:

Ferrous iron samples MW-22S-120821, MW-25S-120821, MW-31S-120821, MW-40-120821, MW-48S-120821, MW-45S-120921, MW-47S-120921, and MW-23S-120921 were analyzed beyond the method holding time of 24 hours. Ferrous iron should be performed as a field test. The detected ferrous iron results were qualified 'J,' and the non-detects were qualified 'UJ' due to the holding time exceedance.

5.2 Matrix Spike Recoveries:

The % R of ammonia was less than the lower QC limit in the MS performed on sample MW-36S-120721. Since the %R was within the acceptable limits in the validation guidelines (i.e., 80-120%) no qualification has been added to the sample results.

5.3 Dilutions:

Samples MW-C11-120721, MW-C12-120721, MW-C16-120721, MW-31S 120821, MW-48S 120821, MW-25S 120821, and MW-22S 120821 were diluted for sulfate (Method 300.0) to bring the results into the calibration range or sample matrix effects (presence of non-target compounds). The dilution elevated the RLs and MDLs.

Prepared for: NYSEG AECOM

Project number: 606732676

6. **Field Duplicate Precision**

A field duplicate (FD) sample was collected at MW-28S-120721. All compounds were non-detect in the sample and field duplicate.

The laboratory did not analyze the FD for all the parameters that the parent sample was analyzed for. The FD was only analyzed for VOCs, SVOCs, and total cyanide. The laboratory indicated the bottles for the other parameters (i.e., alkalinity, ammonia, ferrous iron, methane, nitrate, and sulfate) were not received for the field duplicate sample.

Prepared for: NYSEG

7. Notes

Matrix spike and matrix spike duplicates, laboratory duplicates, and ICP serial dilutions that were performed on non-project samples were not evaluated because matrix similarity to project samples could not be assumed.

Positive results less than the RL, but greater than the MDL were qualified "J," as estimated concentrations, due to increased uncertainty near the detection limit. These "J" qualifiers were maintained in the data validation. Sample results reported between the MDL and RL are usable as estimated values with an unknown directional bias.

Sample Custody: Sample identifications, sample dates, and sample times on the chain of custody matched those found in the laboratory data package. The chain of custody was signed and dated, and proper chain of command was followed from field to laboratory with the following exception.

The laboratory did not receive all of the sample bottles as indicated on the COC for the field duplicate sample.

Prepared for: NYSEG AECOM

Appendix A Glossary of Data Qualifiers and Reason Codes

A.1 Glossary of Data Qualifiers

- U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.
- J+ The result is an estimated quantity but may be biased high. J- The result is an estimated quantity but may be biased low.
- R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N (Organics) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
- NJ (Organics) The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.

A.2 Glossary of Data Qualifiers Reason Codes

a Tracer recovery (radiochemical data only)
bc Breakdown check standard issue
be Equipment blank contamination
bf Field blank contamination
bl Laboratory blank contamination
bm Missing Blank Information
bt Trip Blank contamination

c Calibration issue

cl Clean-up standard recovery

cp Insufficient in growth (radiochemical data only)

cr Chromatographic resolution

d Reporting limit raised due to chromatographic interference

e Ether interference fd Field duplicate RPDs

g Chromatographic pattern match issue h Holding times

i Internal standard areas

ii Injection internal standard area or retention time exceedance

k Estimated Maximum Possible Concentrations

I LCS recoveries

Ic Labeled compound recovery

Id Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD)

m Matrix spike recovery

nb Negative laboratory blank contamination (nondetect results only)

p False positive due to contamination during shipping

q Quantitation issue r Dual column RPD

rp Re-extraction precision issue [PAHs only]

Prepared for: NYSEG

Project number: 606732676

rt	SIM ions not within + 2 seconds

(Air/Soil Gas) Residual vacuum pressure less than 1" Hg. rv

Surrogate recovery s

Sample preparation issue sp Evidence of ion suppression su Temperature Preservation Issue t

High combined sample result uncertainty (radiochemical data only) u

Compound identification issue ٧

Low % solids Х

Serial dilution results У

Prepared for: NYSEG **AECOM**

Appendix B Data Qualification Summaries

Prepared for: NYSEG **AECOM**

Project number: 606732676

Client Sample Results

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-46S-120721

Lab Sample ID: 480-193156-1 Date Collected: 12/07/21 12:05 **Matrix: Water**

Date Received: 12/08/21 08:00

Method: 8260C - Volatile O Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	960	Qualifier	10		ug/L	=	Trepared	12/08/21 18:13	1
Ethylbenzene	810		10		ug/L			12/08/21 18:13	1
Toluene	12		10		ug/L			12/08/21 18:13	1
Xylenes, Total	370		20		ug/L			12/08/21 18:13	
	0/ 8000000	Ovelifier	Limits				Duamawad	A	Dil Fa
Surrogate 1,2-Dichloroethane-d4 (Surr)		Quaimer	77 - 120				Prepared	Analyzed 12/08/21 18:13	DII Fa
4-Bromofluorobenzene (Surr)	104		77 - 120 73 - 120					12/08/21 18:13	1
Dibromofluoromethane (Surr)	103		75 - 120 75 - 123					12/08/21 18:13	1
Toluene-d8 (Surr)	99		80 - 120					12/08/21 18:13	1
Mathadi 9270D II Samiy	olotilo Organio	Compour	do by CC/MS	e Low-l	Lovel				
Method: 8270D LL - Semive Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	85		56	4.0	ug/L		12/09/21 09:18	12/09/21 23:42	10
Acenaphthylene	8.6	J	33		ug/L		12/09/21 09:18	12/09/21 23:42	10
Anthracene	ND		56		ug/L		12/09/21 09:18	12/09/21 23:42	10
Chrysene	ND		56		ug/L		12/09/21 09:18	12/09/21 23:42	10
Fluoranthene	ND		56		ug/L		12/09/21 09:18	12/09/21 23:42	10
Fluorene	19	J	56		ug/L		12/09/21 09:18	12/09/21 23:42	10
Naphthalene	1700		110		ug/L		12/09/21 09:18	12/09/21 23:42	10
Phenanthrene	ND		22		ug/L		12/09/21 09:18	12/09/21 23:42	10
Pyrene	14	J	56		ug/L		12/09/21 09:18	12/09/21 23:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	113		37 - 120				12/09/21 09:18	12/09/21 23:42	10
Nitrobenzene-d5 (Surr)	76		26 - 120				12/09/21 09:18	12/09/21 23:42	10
p-Terphenyl-d14	100		64 - 127				12/09/21 09:18	12/09/21 23:42	10
Method: 8270E SIM - Semi	volatile Organi	c Compou	nds (GC/MS	SIM)					
Amaluta	D 14					D	Prepared	Analyzed	Dil Fa
Analyte	Result	Qualifier	RL	MDL	Unit	D	•	·, · · ·	Diria
		Qualifier J	RL 0.050	MDL 0.035		5	12/15/21 19:33		Diria
Benzo[g,h,i]perylene	2.				ug/L	=			
Benzo[g,h,i]perylene	2.	l J S J	0.050	0.035	ug/L ug/L			12/16/21 19:37 12/16/21 19:37	
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene	2.4 2.5 0.5	l J S J	0.050 0.050	0.035 0.028	ug/L ug/L ug/L	<u></u>	12/15/21 19:33 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37	
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene	2.4 2.5 0.5	1 J 2 J 1 J	0.050 0.050 0.050	0.035 0.028 0.020	ug/L ug/L ug/L	<u></u>	12/15/21 19:33 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37	
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate	2. 2. 0.5 2. %Recovery	1 J 2 J 1 J	0.050 0.050 0.050 0.050	0.035 0.028 0.020	ug/L ug/L ug/L		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37	Dil Fa
Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl	2. 2. 0.5 2. %Recovery	J J J J Qualifier	0.050 0.050 0.050 0.050 <i>Limits</i>	0.035 0.028 0.020	ug/L ug/L ug/L		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed	
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	2. 2. 0.5 2. %Recovery 156 88	J S J J J Qualifier S1+	0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134	0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L	<u></u>	12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37	Dil Fa
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: 8270E SIM - Semin	2.0 2.0 0.5 2. **Recovery 156 88 volatile Organi	Qualifier S1+ C Compou Qualifier	0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134 nds (GC/MS	0.035 0.028 0.020 0.036 SIM) - D	ug/L ug/L ug/L ug/L Unit	<u>b</u>	12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37	Dil Fa
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: 8270E SIM - Seminalyte	2.0 2.0 0.5 2. **Recovery 156 88 volatile Organi	Qualifier S1+	0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134 nds (GC/MS	0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L Unit		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37 12/16/21 19:37	Dil Fa
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: 8270E SIM - Seminalyte Benzo[a]anthracene	2 2 0.5 2 <u>%Recovery</u> 156 88 volatile Organi Result	Qualifier S1+ C Compou Qualifier	0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134 nds (GC/MS	0.035 0.028 0.020 0.036 SIM) - D MDL 0.078 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37 12/16/21 19:37	Dil Fa
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: 8270E SIM - Seminalyte Benzo[a]anthracene Benzo[a]pyrene	2 2 0.5 2. %Recovery 156 88 volatile Organi Result 4.8	Qualifier S1+ C Compou Qualifier J	0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134 nds (GC/MS RL 0.25	0.035 0.028 0.020 0.036 SIM) - D MDL 0.078 0.11	ug/L ug/L ug/L ug/L ug/L		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37 12/16/21 19:37	Dil Fa
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: 8270E SIM - Seminalyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Surrogate	2.0 2.1 0.5 2.1 756 88 volatile Organi Result 4.8 5.4	Qualifier S1+ C Compou Qualifier J J	0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134 ands (GC/MS) RL 0.25 0.25 0.25 0.25	0.035 0.028 0.020 0.036 SIM) - D MDL 0.078 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37 12/16/21 19:37 Analyzed 12/17/21 00:40 12/17/21 00:40 12/17/21 00:40 Analyzed	Dil Fa
Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate	2.0 0.5 2.0 %Recovery 156 88 volatile Organi Result 4.8 5.4 4.0	Qualifier S1+ C Compou Qualifier J J	0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134 ands (GC/MS) RL 0.25 0.25 0.25	0.035 0.028 0.020 0.036 SIM) - D MDL 0.078 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 12/16/21 19:37 Analyzed 12/16/21 19:37 12/16/21 19:37 12/16/21 00:40 12/17/21 00:40 12/17/21 00:40	Dil Fa

Client Sample Results

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-46S-120721 Lab Sample ID: 480-193156-1

Date Collected: 12/07/21 12:05 **Matrix: Water**

Date Received: 12/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	17000		1800	440	ug/L			12/10/21 11:20	440
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	8.7		0.050	0.019	mg/L		12/08/21 12:15	12/08/21 22:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		2.0	0.35	mg/L			12/13/21 22:43	1
Ammonia	4.3		0.10	0.045	mg/L			12/09/21 07:47	5
Cyanide, Total	0.0066	J	0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:02	1
Nitrate as N	ND		0.050	0.020	mg/L			12/08/21 14:21	1
Alkalinity, Total	325		5.0	0.79	mg/L			12/14/21 14:00	1
Ferrous Iron	0.19		0.10	0.075	m a/l			12/08/21 19:00	1

Client Sample ID: MW-24S-120721

Lab Sample ID: 480-193156-2 Date Collected: 12/07/21 10:30 **Matrix: Water**

Date Received: 12/08/21 08:00

p-Terphenyl-d14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/08/21 18:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/08/21 18:36	1
Toluene	ND		1.0	0.51	ug/L			12/08/21 18:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/08/21 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			-		12/08/21 18:36	1
4-Bromofluorobenzene (Surr)	105		73 - 120					12/08/21 18:36	1
Dibromofluoromethane (Surr)	114		75 - 123					12/08/21 18:36	1
Toluene-d8 (Surr)	97		80 - 120					12/08/21 18:36	1

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.49	0.035	ug/L		12/09/21 09:18	12/10/21 00:09	1
Acenaphthylene	ND	0.29	0.055	ug/L		12/09/21 09:18	12/10/21 00:09	1
Anthracene	ND	0.49	0.033	ug/L		12/09/21 09:18	12/10/21 00:09	1
Chrysene	ND	0.49	0.073	ug/L		12/09/21 09:18	12/10/21 00:09	1
Fluoranthene	ND	0.49	0.078	ug/L		12/09/21 09:18	12/10/21 00:09	1
Fluorene	ND	0.49	0.057	ug/L		12/09/21 09:18	12/10/21 00:09	1
Naphthalene	ND	0.98	0.063	ug/L		12/09/21 09:18	12/10/21 00:09	1
Phenanthrene	ND	0.20	0.061	ug/L		12/09/21 09:18	12/10/21 00:09	1
Pyrene	ND	0.49	0.075	ug/L		12/09/21 09:18	12/10/21 00:09	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	114	37 - 120				12/09/21 09:18	12/10/21 00:09	1
Nitrobenzene-d5 (Surr)	90	26 - 120				12/09/21 09:18	12/10/21 00:09	1

12/09/21 09:18 12/10/21 00:09

64 - 127

Client Sample Results

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-24S-120721

Lab Sample ID: 480-193156-2 Date Collected: 12/07/21 10:30 **Matrix: Water**

Date Received: 12/08/21 08:00

Acenaphthylene

Anthracene

Method: 8270E SIM - Semivola Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene			0.050	0.016		=	12/15/21 19:33	12/16/21 19:58	
Benzo[a]pyrene	ND	UJ	0.050	0.022	•			12/16/21 19:58	
Benzo[b]fluoranthene	ND		0.050	0.024	•			12/16/21 19:58	
Benzo[g,h,i]perylene		UJ	0.050	0.035	.			12/16/21 19:58	
Benzo[k]fluoranthene	ND		0.050	0.028	-			12/16/21 19:58	
Dibenz(a,h)anthracene			0.050	0.020	Ü			12/16/21 19:58	
ndeno[1,2,3-cd]pyrene		UJ	0.050	0.036				12/16/21 19:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Fluorobiphenyl	151	S1+	25 - 131				12/15/21 19:33	12/16/21 19:58	
litrobenzene-d5 (Surr)	99		54 - 134				12/15/21 19:33	12/16/21 19:58	
Method: RSK-175 - Dissolved	Gases (GC)							
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
lethane	680		88	22	ug/L			12/10/21 11:39	22
Method: 6010C - Metals (ICP)									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ron	0.24	,	0.050	0.019	mg/L		12/08/21 12:15	12/08/21 22:22	
General Chemistry									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ulfate	37.2		2.0	0.35	mg/L			12/13/21 22:57	
mmonia	0.047		0.020	0.0090	mg/L			12/09/21 06:44	
yanide, Total	ND		0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:04	
litrate as N	0.11		0.050	0.020	mg/L			12/08/21 15:14	
Alkalinity, Total	383		5.0	0.79	mg/L			12/14/21 14:08	
errous Iron	ND		0.10	0.075	mg/L			12/08/21 19:00	
lient Sample ID: MW-28S	5-120721					La	b Sample	ID: 480-193	156-3
ate Collected: 12/07/21 08:40 ate Received: 12/08/21 08:00								Matrix	: Wate
			0/110						
Method: 8260C - Volatile Orga Analyte	-	unds by G Qualifier	C/IVIS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.0	0.41	ug/L			12/08/21 18:59	
Ethylbenzene	ND		1.0		ug/L			12/08/21 18:59	
oluene	ND		1.0		ug/L			12/08/21 18:59	
			2.0		ug/L			12/08/21 18:59	
	ND								
(ylenes, Total Gurrogate	ND <i>%Recovery</i>	Qualifier	Limits				Prepared	Analyzed	Dil Fa
(ylenes, Total Surrogate		Qualifier	Limits 77 - 120				Prepared	Analyzed 12/08/21 18:59	
Surrogate ,2-Dichloroethane-d4 (Surr)	%Recovery	Qualifier					Prepared		
Surrogate ,2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr)	%Recovery	Qualifier	77 - 120				Prepared	12/08/21 18:59	
Sylenes, Total Surrogate , 2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	%Recovery 105 98	Qualifier	77 - 120 73 - 120				Prepared	12/08/21 18:59 12/08/21 18:59	
Surrogate ,2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	%Recovery 105 98 110		77 - 120 73 - 120 75 - 123 80 - 120	S - Low	Level		Prepared	12/08/21 18:59 12/08/21 18:59 12/08/21 18:59	
Kylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 1-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Foluene-d8 (Surr) Method: 8270D LL - Semivolat	%Recovery 105 98 110 91 tile Organic		77 - 120 73 - 120 75 - 123 80 - 120	S - Low MDL		D	Prepared Prepared	12/08/21 18:59 12/08/21 18:59 12/08/21 18:59	
Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D LL - Semivolate Analyte Acenaphthene	%Recovery 105 98 110 91 tile Organic	Compoun	77 - 120 73 - 120 75 - 123 80 - 120 ds by GC/M		Unit	<u>D</u>	Prepared	12/08/21 18:59 12/08/21 18:59 12/08/21 18:59 12/08/21 18:59	Dil Fac

Eurofins TestAmerica, Buffalo

12/09/21 09:18 12/10/21 00:37

12/09/21 09:18 12/10/21 00:37

0.33

0.54

0.061 ug/L

0.037 ug/L

ND

ND

1

1

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-28S-120721

Lab Sample ID: 480-193156-3

Date Collected: 12/07/21 08:40 **Matrix: Water** Date Received: 12/08/21 08:00

Method: 8270D LL - Semivolatile	Organic Compo	unds by GC/MS	- Low Level (Co	ontinued)	
Analyto	Posult Qualifier	•	MDI Unit	D Propared	

Analyte	Result Quaimer	KL	MIDL	Unit	U	Prepared	Analyzed	DII Fac
Chrysene	ND	0.54	0.080	ug/L		12/09/21 09:18	12/10/21 00:37	1
Fluoranthene	ND	0.54	0.087	ug/L		12/09/21 09:18	12/10/21 00:37	1
Fluorene	ND	0.54	0.063	ug/L		12/09/21 09:18	12/10/21 00:37	1
Naphthalene	ND	1.1	0.070	ug/L		12/09/21 09:18	12/10/21 00:37	1
Phenanthrene	ND	0.22	0.067	ug/L		12/09/21 09:18	12/10/21 00:37	1
Pyrene	ND	0.54	0.083	ug/L		12/09/21 09:18	12/10/21 00:37	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	114		37 - 120	12/09/21 09:18	12/10/21 00:37	1
Nitrobenzene-d5 (Surr)	94		26 - 120	12/09/21 09:18	12/10/21 00:37	1
p-Terphenyl-d14	110		64 - 127	12/09/21 09:18	12/10/21 00:37	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene N	D UJ	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 14:19	1
Benzo[a]pyrene N	D UJ	0.050	0.022	ug/L		12/15/21 19:33	12/16/21 14:19	1
Benzo[b]fluoranthene	D UJ	0.050	0.024	ug/L		12/15/21 19:33	12/16/21 14:19	1
Benzo[g,h,i]perylene N	D UJ	0.050	0.035	ug/L		12/15/21 19:33	12/16/21 14:19	1
Benzo[k]fluoranthene	D UJ	0.050	0.028	ug/L		12/15/21 19:33	12/16/21 14:19	1
Dibenz(a,h)anthracene N	D UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 14:19	1
Indeno[1,2,3-cd]pyrene N	D UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 14:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	138	S1+	25 - 131	12/15/21 19:33	12/16/21 14:19	1
Nitrobenzene-d5 (Surr)	98		54 - 134	12/15/21 19:33	12/16/21 14:19	1

Method:	RSK-175	- Dissolved	Gases	(GC)
wictilou.	11011-170	- DISSUIVEU	Ouses	1001

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methane	3300	88	22 ug/L			12/10/21 11:58	22

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	1.7	0.050	0.019 mg/L		12/08/21 12:15	12/08/21 22:26	1

General Chemistry

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	9.7	2.0	0.35	mg/L			12/13/21 23:11	1
Ammonia	0.86	0.020	0.0090	mg/L			12/09/21 06:45	1
Cyanide, Total	ND	0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:05	1
Nitrate as N	0.099	0.050	0.020	mg/L			12/08/21 15:16	1
Alkalinity, Total	269	5.0	0.79	mg/L			12/14/21 14:14	1
Ferrous Iron	ND	0.10	0.075	mg/L			12/08/21 19:00	1

Client Sample ID: DUP-1-120721

Lab Sample ID: 480-193156-4 FD of MW-28S-120721-20211207 Date Collected: 12/07/21 08:40 **Matrix: Water**

Date Received: 12/08/21 08:00

Method: 8260C - Volatile Organ	nic Compounds by GC	/MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1.0	0.41 ug/L			12/08/21 19:22	1
Ethylbenzene	ND	1.0	0.74 ug/L			12/08/21 19:22	1

Eurofins TestAmerica, Buffalo

Page 16 of 1813

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sam	ple ID:	DUP-1	 -120721
------------	---------	-------	-----------------

Lab Sample ID: 480-193156-4 Date Collected: 12/07/21 08:40 **Matrix: Water**

Date Received: 12/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0	0.51	ug/L			12/08/21 19:22	
Xylenes, Total	ND		2.0	0.66	ug/L			12/08/21 19:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					12/08/21 19:22	
4-Bromofluorobenzene (Surr)	104		73 - 120					12/08/21 19:22	
Dibromofluoromethane (Surr)	110		75 - 123					12/08/21 19:22	
Toluene-d8 (Surr)	96		80 - 120					12/08/21 19:22	
Method: 8270D LL - Semi	volatile Organic	Compour	ids by GC/M	S - Low I	Level				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.48	0.034	ug/L		12/09/21 09:18	12/10/21 01:04	-
Acenaphthylene	ND		0.29	0.053	ug/L		12/09/21 09:18	12/10/21 01:04	
Anthracene	ND		0.48	0.032	ug/L		12/09/21 09:18	12/10/21 01:04	
Chrysene	ND		0.48	0.070	ug/L		12/09/21 09:18	12/10/21 01:04	
Fluoranthene	ND		0.48	0.076	ug/L		12/09/21 09:18	12/10/21 01:04	
Fluorene	ND		0.48	0.055	ug/L		12/09/21 09:18	12/10/21 01:04	
Naphthalene	ND		0.95	0.061	ug/L		12/09/21 09:18	12/10/21 01:04	
Phenanthrene	ND		0.19	0.059	ug/L		12/09/21 09:18	12/10/21 01:04	
Pyrene	ND		0.48	0.072	ug/L		12/09/21 09:18	12/10/21 01:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	119		37 - 120				12/09/21 09:18	12/10/21 01:04	
Nitrobenzene-d5 (Surr)	94		26 - 120				12/09/21 09:18	12/10/21 01:04	
p-Terphenyl-d14	112		64 - 127				12/09/21 09:18	12/10/21 01:04	
Method: 8270E SIM - Sem	ivolatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	ND		0.050	0.016	_		12/15/21 19:33	12/16/21 14:40	
Benzo[a]pyrene	ND	UJ	0.050	0.022	Ü		12/15/21 19:33	12/16/21 14:40	
Benzo[b]fluoranthene	ND	UJ	0.050	0.024			12/15/21 19:33	12/16/21 14:40	
Benzo[g,h,i]perylene	ND	UJ	0.050	0.035	_		12/15/21 19:33	12/16/21 14:40	
Benzo[k]fluoranthene	ND	UJ	0.050	0.028	ug/L		12/15/21 19:33	12/16/21 14:40	
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020			12/15/21 19:33	12/16/21 14:40	
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 14:40	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
		S1+	25 - 131				12/15/21 19:33		
			54 - 134				12/15/21 19:33	12/16/21 14:40	
2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	94								
Nitrobenzene-d5 (Surr) General Chemistry									
Nitrobenzene-d5 (Surr)		Qualifier	RL 0.010	MDL 0.0050	Unit	D	Prepared 12/10/21 11:24	Analyzed 12/10/21 12:09	Dil Fac

Client Sample ID: MW-33S-120721

Date Collected: 12/07/21 13:40

Date Received: 12/08/21 08:00

Method: 8260C - Volatile Orga	nic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND —	1.0	0.41 ug/l			12/08/21 19:45	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-193156-5

Page 17 of 1813

Matrix: Water

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-33S-120721

Lab Sample ID: 480-193156-5

Date Collected: 12/07/21 13:40 **Matrix: Water**

Analyte	-	unds by G Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0		ug/L	=		12/08/21 19:45	
Toluene	ND		1.0		ug/L			12/08/21 19:45	
Xylenes, Total	ND		2.0		ug/L			12/08/21 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					12/08/21 19:45	
4-Bromofluorobenzene (Surr)	104		73 - 120					12/08/21 19:45	1
Dibromofluoromethane (Surr)	110		75 - 123					12/08/21 19:45	1
Toluene-d8 (Surr)	95		80 - 120					12/08/21 19:45	1
Method: 8270D LL - Semivol	atile Organic	Compour	nds by GC/MS	S - Low I	Level				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.25	J	0.54	0.039	ug/L		12/09/21 09:18	12/10/21 01:31	1
Acenaphthylene	ND		0.33	0.061	ug/L		12/09/21 09:18	12/10/21 01:31	1
Anthracene	0.095	J	0.54	0.037	ug/L		12/09/21 09:18	12/10/21 01:31	1
Chrysene	ND		0.54	0.080	ug/L		12/09/21 09:18	12/10/21 01:31	1
Fluoranthene	0.11	J	0.54	0.087	ug/L		12/09/21 09:18	12/10/21 01:31	1
Fluorene	0.11	J	0.54	0.063	ug/L		12/09/21 09:18	12/10/21 01:31	1
Naphthalene	ND U		1.1	0.070	ug/L		12/09/21 09:18	12/10/21 01:31	1
Phenanthrene	0.27		0.22	0.067	ug/L		12/09/21 09:18	12/10/21 01:31	1
Pyrene	0.12	J	0.54	0.083	ug/L		12/09/21 09:18	12/10/21 01:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	107		37 - 120				12/09/21 09:18	12/10/21 01:31	-
Nitrobenzene-d5 (Surr)	86		26 - 120				12/09/21 09:18	12/10/21 01:31	1
p-Terphenyl-d14	98		64 - 127				12/09/21 09:18	12/10/21 01:31	1
Method: 8270E SIM - Semivo			inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND	UJ	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 15:01	1
Benzo[a]pyrene	ND	UJ	0.050	0.022	ug/L		12/15/21 19:33	12/16/21 15:01	1
Benzo[b]fluoranthene	ND	UJ	0.050	0.024	ug/L		12/15/21 19:33	12/16/21 15:01	1
Benzo[g,h,i]perylene	ND	UJ	0.050	0.035	ug/L		12/15/21 19:33	12/16/21 15:01	1
Benzo[k]fluoranthene	ND	UJ	0.050	0.028	ug/L		12/15/21 19:33	12/16/21 15:01	1
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 15:01	1
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	137	S1+	25 - 131				12/15/21 19:33	12/16/21 15:01	-
Nitrobenzene-d5 (Surr)	93		54 - 134				12/15/21 19:33	12/16/21 15:01	1
Method: RSK-175 - Dissolve	d Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	30		4.0	1.0	ug/L			12/09/21 17:59	1
	\								
Method: 6010C - Metals (ICP)								
Analyte	•	Qualifier	RL	MDL 0.019		D	Prepared	Analyzed	Dil Fac

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-33S-120721

Lab Sample ID: 480-193156-5 Date Collected: 12/07/21 13:40

Matrix: Water

Date Received: 12/08/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	34.3		2.0	0.35	mg/L			12/13/21 23:26	1
Ammonia	0.50		0.020	0.0090	mg/L			12/09/21 06:50	1
Cyanide, Total	ND		0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:11	1
Nitrate as N	0.060		0.050	0.020	mg/L			12/08/21 15:17	1
Alkalinity, Total	456		5.0	0.79	mg/L			12/14/21 14:23	1
Ferrous Iron	ND		0.10	0.075	mg/L			12/08/21 19:00	1

Client Sample ID: MW-C16-120721 Lab Sample ID: 480-193156-6

Date Collected: 12/07/21 11:10 Date Received: 12/08/21 08:00 **Matrix: Water**

Method: 8260C - Volatile Organic Compounds by GC/MS

motriour office	Tolatilo Organio Compo	undo by com							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.82	ug/L			12/08/21 20:08	2
Ethylbenzene	ND		2.0	1.5	ug/L			12/08/21 20:08	2
Toluene	ND		2.0	1.0	ug/L			12/08/21 20:08	2
Xylenes, Total	ND		4.0	1.3	ug/L			12/08/21 20:08	2

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		2/08/21 20:08	2
4-Bromofluorobenzene (Surr)	104	73 - 120	1	2/08/21 20:08	2
Dibromofluoromethane (Surr)	111	75 - 123	1	2/08/21 20:08	2
Toluene-d8 (Surr)	95	80 - 120	1	2/08/21 20:08	2

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	16		2.6	0.18	ug/L		12/09/21 09:18	12/10/21 01:58	5
Acenaphthylene	0.33	J	1.5	0.29	ug/L		12/09/21 09:18	12/10/21 01:58	5
Anthracene	ND		2.6	0.17	ug/L		12/09/21 09:18	12/10/21 01:58	5
Chrysene	ND		2.6	0.38	ug/L		12/09/21 09:18	12/10/21 01:58	5
Fluoranthene	0.41	J	2.6	0.41	ug/L		12/09/21 09:18	12/10/21 01:58	5
Fluorene	2.2	J	2.6	0.30	ug/L		12/09/21 09:18	12/10/21 01:58	5
Naphthalene	ND		5.1	0.33	ug/L		12/09/21 09:18	12/10/21 01:58	5
Phenanthrene	0.33	J	1.0	0.32	ug/L		12/09/21 09:18	12/10/21 01:58	5
Pyrene	0.56	J	2.6	0.39	ug/L		12/09/21 09:18	12/10/21 01:58	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	111		37 - 120	12/09/21 09:18	12/10/21 01:58	5
Nitrobenzene-d5 (Surr)	84		26 - 120	12/09/21 09:18	12/10/21 01:58	5
p-Terphenyl-d14	83		64 - 127	12/09/21 09:18	12/10/21 01:58	5

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.018 J	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 15:22	1
Benzo[a]pyrene	ND UJ	0.050	0.022	ug/L		12/15/21 19:33	12/16/21 15:22	1
Benzo[b]fluoranthene	ND UJ	0.050	0.024	ug/L		12/15/21 19:33	12/16/21 15:22	1
Benzo[g,h,i]perylene	ND UJ	0.050	0.035	ug/L		12/15/21 19:33	12/16/21 15:22	1
Benzo[k]fluoranthene	ND UJ	0.050	0.028	ug/L		12/15/21 19:33	12/16/21 15:22	1
Dibenz(a,h)anthracene	ND UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 15:22	1
Indeno[1,2,3-cd]pyrene	ND UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 15:22	1

Eurofins TestAmerica, Buffalo

Page 19 of 1813

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-C16-120721

Lab Sample ID: 480-193156-6

Date Collected: 12/07/21 11:10 **Matrix: Water** Date Received: 12/08/21 08:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	130		25 - 131				12/15/21 19:33	12/16/21 15:22	1
Nitrobenzene-d5 (Surr)	90		54 - 134				12/15/21 19:33	12/16/21 15:22	1
Method: RSK-175 - Dissolve	ed Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	26		4.0	1.0	ug/L			12/10/21 12:17	1
Method: 6010C - Metals (ICF	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	23.6		0.050	0.019	mg/L		12/08/21 12:15	12/08/21 22:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	1200		40.0	7.0	mg/L			12/13/21 23:40	20
Ammonia	0.47		0.020	0.0090	mg/L			12/09/21 06:53	1
Cyanide, Total	0.011		0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:12	1
Nitrate as N	0.023	J	0.050	0.020	mg/L			12/08/21 14:28	1
Alkalinity, Total	532		5.0	0.79	mg/L			12/14/21 14:31	1
Ferrous Iron	0.15		0.10	0.075	ma/l			12/08/21 19:00	1

Client Sample ID: MW-C11-120721 Lab Sample ID: 480-193156-7

Date Collected: 12/07/21 12:47 **Matrix: Water**

Date Received: 12/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.82	ug/L			12/08/21 20:31	2
Ethylbenzene	ND		2.0	1.5	ug/L			12/08/21 20:31	2
Toluene	ND		2.0	1.0	ug/L			12/08/21 20:31	2
Xylenes, Total	ND		4.0	1.3	ug/L			12/08/21 20:31	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					12/08/21 20:31	2
4-Bromofluorobenzene (Surr)	103		73 - 120					12/08/21 20:31	2
Dibromofluoromethane (Surr)	112		75 - 123					12/08/21 20:31	2
Toluene-d8 (Surr)	97		80 - 120					12/08/21 20:31	2

Method: 8270D LL - Semi	ivolatile Organic	Compoun	ds by GC/MS	S - Low I	_evel				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.2		0.49	0.035	ug/L		12/09/21 09:18	12/09/21 23:14	1
Acenaphthylene	0.15	J	0.29	0.055	ug/L		12/09/21 09:18	12/09/21 23:14	1
Anthracene	ND		0.49	0.033	ug/L		12/09/21 09:18	12/09/21 23:14	1
Chrysene	ND		0.49	0.073	ug/L		12/09/21 09:18	12/09/21 23:14	1
Fluoranthene	ND		0.49	0.078	ug/L		12/09/21 09:18	12/09/21 23:14	1
Fluorene	ND		0.49	0.057	ug/L		12/09/21 09:18	12/09/21 23:14	1
Naphthalene	ND	U	0.98	0.063	ug/L		12/09/21 09:18	12/09/21 23:14	1
Phenanthrene	ND		0.20	0.061	ug/L		12/09/21 09:18	12/09/21 23:14	1
Pyrene	ND		0.49	0.075	ug/L		12/09/21 09:18	12/09/21 23:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	96		37 - 120				12/09/21 09:18	12/09/21 23:14	1
Nitrobenzene-d5 (Surr)	80		26 - 120				12/09/21 09:18	12/09/21 23:14	1

Eurofins TestAmerica, Buffalo

Page 20 of 1813 12/20/2021

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-C11-120721

Lab Sample ID: 480-193156-7 Date Collected: 12/07/21 12:47

Matrix: Water

Date Received: 12/08/21 08:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	86		64 - 127	12/09/21 09:18	12/09/21 23:14	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND	UJ	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 11:30	1
Benzo[a]pyrene	ND	UJ	0.050	0.022	ug/L		12/15/21 19:33	12/16/21 11:30	1
Benzo[b]fluoranthene	ND	UJ	0.050	0.024	ug/L		12/15/21 19:33	12/16/21 11:30	1
Benzo[g,h,i]perylene	ND	UJ	0.050	0.035	ug/L		12/15/21 19:33	12/16/21 11:30	1
Benzo[k]fluoranthene	ND	UJ	0.050	0.028	ug/L		12/15/21 19:33	12/16/21 11:30	1
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 11:30	1
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 11:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	133	S1+	25 - 131	12/15/21 19:33	12/16/21 11:30	1
Nitrobenzene-d5 (Surr)	96		54 - 134	12/15/21 19:33	12/16/21 11:30	1

Method: RSK-175 - Dissolved Gases (GC)

Analyte	Result Qualif	fier RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Methane	470	88	22 ι	ug/L			12/09/21 18:36	22

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	24.4	0.050	0.019 mg/L		12/08/21 12:15	12/08/21 22:49	1

General Chemistry

P	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
S	Sulfate	2910		40.0	7.0	mg/L			12/14/21 01:05	20
1	Ammonia	7.3		0.10	0.045	mg/L			12/09/21 07:48	5
(Cyanide, Total	0.024		0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 11:58	1
1	Nitrate as N	0.025	J	0.050	0.020	mg/L			12/08/21 14:29	1
1	Alkalinity, Total	840		5.0	0.79	mg/L			12/14/21 14:44	1
F	Ferrous Iron	0.088	J	0.10	0.075	mg/L			12/08/21 19:00	1

Client Sample ID: MW-C12-120721

Lab Sample ID: 480-193156-8 Date Collected: 12/07/21 15:05 **Matrix: Water**

Date Received: 12/08/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	3.8	1.0	0.41	ug/L			12/08/21 20:55	1
Ethylbenzene	0.91 J	1.0	0.74	ug/L			12/08/21 20:55	1
Toluene	ND	1.0	0.51	ug/L			12/08/21 20:55	1
Xylenes, Total	ND	2.0	0.66	ug/L			12/08/21 20:55	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120	_		12/08/21 20:55	1
4-Bromofluorobenzene (Surr)	102		73 - 120			12/08/21 20:55	1
Dibromofluoromethane (Surr)	112		75 - 123			12/08/21 20:55	1
Toluene-d8 (Surr)	97		80 - 120			12/08/21 20:55	1

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-C12-120721

Lab Sample ID: 480-193156-8 Date Collected: 12/07/21 15:05 **Matrix: Water**

Date Received: 12/08/21 08:00

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	100		10	0.74	ug/L		12/09/21 09:18	12/10/21 02:25	- 2
Acenaphthylene	1.2	J	6.2	1.2	ug/L		12/09/21 09:18	12/10/21 02:25	2
Anthracene	ND		10	0.70	ug/L		12/09/21 09:18	12/10/21 02:25	2
Chrysene	ND		10	1.5	ug/L		12/09/21 09:18	12/10/21 02:25	2
Fluoranthene	ND		10	1.6	ug/L		12/09/21 09:18	12/10/21 02:25	2
Fluorene	13		10	1.2	ug/L		12/09/21 09:18	12/10/21 02:25	2
Naphthalene	ND		21	1.3	ug/L		12/09/21 09:18	12/10/21 02:25	2
Phenanthrene	ND		4.1	1.3	ug/L		12/09/21 09:18	12/10/21 02:25	2
Pyrene	ND		10	1.6	ug/L		12/09/21 09:18	12/10/21 02:25	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
P-Fluorobiphenyl	115		37 - 120				12/09/21 09:18	12/10/21 02:25	
Nitrobenzene-d5 (Surr)	76		26 - 120				12/09/21 09:18	12/10/21 02:25	2
o-Terphenyl-d14	100		64 - 127				12/09/21 09:18	12/10/21 02:25	2
Method: 8270E SIM - Semivol	atile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	ND	UJ	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 15:44	
Benzo[a]pyrene	ND	UJ	0.050	0.022	ug/L		12/15/21 19:33	12/16/21 15:44	
Benzo[b]fluoranthene	ND	UJ	0.050	0.024	ug/L		12/15/21 19:33	12/16/21 15:44	
Benzo[g,h,i]perylene	ND	UJ	0.050	0.035	ug/L		12/15/21 19:33	12/16/21 15:44	
Benzo[k]fluoranthene	ND	UJ	0.050	0.028	ug/L		12/15/21 19:33	12/16/21 15:44	
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 15:44	
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 15:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2-Fluorobiphenyl	154	S1+	25 - 131				12/15/21 19:33	12/16/21 15:44	
Nitrobenzene-d5 (Surr)	100		54 - 134				12/15/21 19:33	12/16/21 15:44	
Method: RSK-175 - Dissolved	Gases (GC)							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Methane	740		180	44	ug/L			12/09/21 18:55	4
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
ron	1.6		0.050	0.019	mg/L		12/08/21 12:15	12/08/21 22:53	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Sulfate	171		10.0		mg/L			12/14/21 01:19	
Ammonia	1.4		0.020	0.0090	-			12/09/21 06:55	
Cyanide, Total	0.014		0.010	0.0050			12/08/21 11:36	12/08/21 13:45	
Nitrate as N	0.078		0.050	0.020	-			12/08/21 14:33	
Alkalinity, Total	481		5.0		mg/L			12/14/21 14:52	
Ferrous Iron	ND		0.10	0.075	ma/l			12/08/21 19:00	

Client: AECOM Job ID: 480-193156-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: TRIP BLANK-120721

Lab Sample ID: 480-193156-9 Date Collected: 12/07/21 00:00 **Matrix: Water**

Date Received: 12/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/08/21 21:18	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/08/21 21:18	1
Toluene	ND		1.0	0.51	ug/L			12/08/21 21:18	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/08/21 21:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		77 - 120					12/08/21 21:18	1
4-Bromofluorobenzene (Surr)	104		73 - 120					12/08/21 21:18	1
Dibromofluoromethane (Surr)	112		75 - 123					12/08/21 21:18	1
Toluene-d8 (Surr)	101		80 - 120					12/08/21 21:18	1

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-40-120821 Lab Sample ID: 480-193210-1

Date Collected: 12/08/21 12:55 Matrix: Water

Date Received: 12/09/21 08:00

	•	unds by G	C/MS						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.0	0.41	•			12/10/21 03:48	
Ethylbenzene	ND		1.0	0.74	ug/L			12/10/21 03:48	
Toluene	ND		1.0		ug/L			12/10/21 03:48	
Xylenes, Total	ND		2.0	0.66	ug/L			12/10/21 03:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					12/10/21 03:48	
4-Bromofluorobenzene (Surr)	98		73 - 120					12/10/21 03:48	
Dibromofluoromethane (Surr)	115		75 - 123					12/10/21 03:48	
Toluene-d8 (Surr)	100		80 - 120					12/10/21 03:48	
Method: 8270D LL - Semivol	_	-	-						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.50	0.036	•		12/10/21 09:27	12/13/21 15:16	
Acenaphthylene	ND		0.30	0.056	•		12/10/21 09:27	12/13/21 15:16	
Anthracene	ND		0.50	0.034	ug/L		12/10/21 09:27	12/13/21 15:16	
Chrysene	ND		0.50	0.074	ug/L		12/10/21 09:27	12/13/21 15:16	
Fluoranthene	ND		0.50	0.080	ug/L		12/10/21 09:27	12/13/21 15:16	
Fluorene	ND		0.50	0.058	ug/L		12/10/21 09:27	12/13/21 15:16	
Naphthalene	ND		1.0	0.064	ug/L		12/10/21 09:27	12/13/21 15:16	
Phenanthrene	ND		0.20	0.062	ug/L		12/10/21 09:27	12/13/21 15:16	
Pyrene	ND		0.50	0.076	ug/L		12/10/21 09:27	12/13/21 15:16	
Curre mate	%Recovery	Ovalifian					Branarad	A l	Dil Fa
Surrogate	%Recovery	Quaimer	Limits				Prepared	Analyzed	DII Fa
2-Fluorobiphenyl		Quaimer	37 - 120					12/13/21 15:16	
		Quaimer					12/10/21 09:27		
2-Fluorobiphenyl	111	Quanner	37 - 120				12/10/21 09:27 12/10/21 09:27	12/13/21 15:16	
2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	111 87 104		37 - 120 26 - 120 64 - 127	SIM)			12/10/21 09:27 12/10/21 09:27	12/13/21 15:16 12/13/21 15:16	
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14	111 87 104 Diatile Organi Result	c Compou Qualifier	37 - 120 26 - 120 64 - 127	SIM) MDL	Unit	D	12/10/21 09:27 12/10/21 09:27	12/13/21 15:16 12/13/21 15:16	
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo	111 87 104 Diatile Organi	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS			<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte	111 87 104 Diatile Organi Result	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL	MDL	ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 12/13/21 15:16	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene	111 87 104 Diatile Organi Result 0.037	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050	MDL 0.016	ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene	111 87 104 Diatile Organi Result 0.037 ND	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050	MDL 0.016 0.022	ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	blatile Organi Result 0.037 ND	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	blatile Organi Result 0.037 ND ND	c Compou Qualifier J	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[y,h,i]perylene Benzo[k]fluoranthene	Diatile Organi Result 0.037 ND ND ND	c Compou Qualifier J	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene	Diatile Organi Result 0.037 ND	C Compou Qualifier J UJ UJ Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene	Diatile Organi Result 0.037 ND	C Compou Qualifier J	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene	Diatile Organi Result 0.037 ND	C Compou Qualifier J UJ UJ Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[y,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolve	## 1111 87 104	UJ UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.1050 0.1050 0.1050 0.1050 0.1050 0.1050	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L		12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolve Analyte	Dlatile Organi Result 0.037 ND	UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 1.050 0.1050 0	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 Analyzed 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[y,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolve	## 1111 87 104	UJ UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.1050 0.1050 0.1050 0.1050 0.1050 0.1050	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L		12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26	Dil Fa
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolve Analyte	## 1111 87 104	UJ UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 1.050 0.1050 0	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		12/10/21 09:27 12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 15:16 12/13/21 15:16 12/13/21 15:16 Analyzed 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 12/16/21 16:26 Analyzed 12/16/21 16:26	Dil Fac

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-40-120821

Lab Sample ID: 480-193210-1 Date Collected: 12/08/21 12:55 **Matrix: Water**

Date Received: 12/09/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	6.3		2.0	0.35	mg/L			12/09/21 19:11	1
Ammonia	0.18		0.020	0.0090	mg/L			12/10/21 09:30	1
Cyanide, Total	ND		0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:14	1
Nitrate as N	ND		0.050	0.020	mg/L			12/09/21 13:58	1
Alkalinity, Total	170		5.0	0.79	mg/L			12/14/21 14:59	1
Ferrous Iron	ND	UJ	0.10	0.075	mg/L			12/17/21 15:00	1

Client Sample ID: MW-31S 120821 Lab Sample ID: 480-193210-2 **Matrix: Water**

Date Collected: 12/08/21 12:12

Date Received: 12/09/21 08:00

l	Method: 8260C	- volatile Organic	Compounds by GC/MS	
н				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/10/21 04:11	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/10/21 04:11	1
Toluene	ND		1.0	0.51	ug/L			12/10/21 04:11	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/10/21 04:11	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120		2/10/21 04:11	1
4-Bromofluorobenzene (Surr)	99		73 - 120	1	2/10/21 04:11	1
Dibromofluoromethane (Surr)	113		75 - 123	1	2/10/21 04:11	1
Toluene-d8 (Surr)	94		80 - 120	1	2/10/21 04:11	1

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.51	0.037	ug/L		12/10/21 09:27	12/13/21 15:43	1
Acenaphthylene	ND		0.31	0.057	ug/L		12/10/21 09:27	12/13/21 15:43	1
Anthracene	ND		0.51	0.035	ug/L		12/10/21 09:27	12/13/21 15:43	1
Chrysene	ND		0.51	0.076	ug/L		12/10/21 09:27	12/13/21 15:43	1
Fluoranthene	ND		0.51	0.082	ug/L		12/10/21 09:27	12/13/21 15:43	1
Fluorene	ND		0.51	0.059	ug/L		12/10/21 09:27	12/13/21 15:43	1
Naphthalene	ND		1.0	0.065	ug/L		12/10/21 09:27	12/13/21 15:43	1
Phenanthrene	ND		0.20	0.063	ug/L		12/10/21 09:27	12/13/21 15:43	1
Pyrene	ND		0.51	0.078	ug/L		12/10/21 09:27	12/13/21 15:43	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	101		37 - 120	12/10/21 09:27	12/13/21 15:43	1
Nitrobenzene-d5 (Surr)	83		26 - 120	12/10/21 09:27	12/13/21 15:43	1
p-Terphenyl-d14	97		64 - 127	12/10/21 09:27	12/13/21 15:43	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.050	0.016	ug/L		12/15/21 19:33	12/16/21 16:47	1
Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 16:47	1
Benzo[b]fluoranthene	ND		0.050	0.024	ug/L		12/15/21 19:33	12/16/21 16:47	1
Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 16:47	1
Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 16:47	1
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 16:47	1
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 16:47	1

Eurofins TestAmerica, Buffalo

Page 13 of 1503

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-31S 120821

Date Collected: 12/08/21 12:12

Date Received: 12/09/21 08:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	138	S1+	25 - 131				12/15/21 19:33	12/16/21 16:47	1
Nitrobenzene-d5 (Surr)	97		54 - 134				12/15/21 19:33	12/16/21 16:47	1
Method: RSK-175 - Dissolved	Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	320		4.0	1.0	ug/L			12/09/21 15:47	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.49		0.050	0.019	mg/L		12/10/21 08:20	12/10/21 19:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	10.3		4.0	0.70	mg/L			12/09/21 19:30	2
Ammonia	0.078		0.020	0.0090	mg/L			12/10/21 09:31	1
Cyanide, Total	0.0050	J	0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:15	1
Nitrate as N	ND		0.050	0.020	mg/L			12/09/21 13:59	1
Alkalinity, Total	293		5.0	0.79	mg/L			12/14/21 15:18	1
Ferrous Iron	ND	UJ	0.10	0.075	mg/L			12/17/21 15:00	1

Client Sample ID: MW-48S 120821

Date Collected: 12/08/21 10:05

Date Received: 12/09/21 08:00

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	56		1.0	0.41	ug/L			12/10/21 04:34	1
Ethylbenzene	25		1.0	0.74	ug/L			12/10/21 04:34	1
Toluene	ND		1.0	0.51	ug/L			12/10/21 04:34	1
Xylenes, Total	19		2.0	0.66	ug/L			12/10/21 04:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					12/10/21 04:34	1
4-Bromofluorobenzene (Surr)	109		73 - 120					12/10/21 04:34	1
Dibromofluoromethane (Surr)	104		75 - 123					12/10/21 04:34	1

80 - 120

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	43		5.1	0.37	ug/L		12/10/21 09:27	12/13/21 16:11	10
Acenaphthylene	1.3	J	3.1	0.57	ug/L		12/10/21 09:27	12/13/21 16:11	10
Anthracene	1.5	J	5.1	0.35	ug/L		12/10/21 09:27	12/13/21 16:11	10
Chrysene	ND		5.1	0.76	ug/L		12/10/21 09:27	12/13/21 16:11	10
Fluoranthene	ND		5.1	0.82	ug/L		12/10/21 09:27	12/13/21 16:11	10
Fluorene	4.7	J	5.1	0.59	ug/L		12/10/21 09:27	12/13/21 16:11	10
Naphthalene	140		10	0.65	ug/L		12/10/21 09:27	12/13/21 16:11	10
Phenanthrene	5.4		2.0	0.63	ug/L		12/10/21 09:27	12/13/21 16:11	10
Pyrene	0.83	J	5.1	0.78	ug/L		12/10/21 09:27	12/13/21 16:11	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	99		37 - 120				12/10/21 09:27	12/13/21 16:11	10
Nitrobenzene-d5 (Surr)	78		26 - 120				12/10/21 09:27	12/13/21 16:11	10

Eurofins TestAmerica, Buffalo

12/10/21 04:34

Lab Sample ID: 480-193210-2

Lab Sample ID: 480-193210-3

Matrix: Water

Matrix: Water

Page 14 of 1503

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-48S 120821

Lab Sample ID: 480-193210-3

Date Collected: 12/08/21 10:05 **Matrix: Water** Date Received: 12/09/21 08:00

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - I	Low Level (Continued)
--	-------------	------------

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	83		64 - 127	12/10/21 09:27	12/13/21 16:11	10

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzo[a]anthracene	0.035	J	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 17:08	1
	Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 17:08	1
	Benzo[b]fluoranthene	ND		0.050	0.024	ug/L		12/15/21 19:33	12/16/21 17:08	1
١	Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 17:08	1
	Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 17:08	1
	Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 17:08	1
ı	Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 17:08	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	144	S1+	25 - 131	12/15/21 19:33	12/16/21 17:08	1
Nitrobenzene-d5 (Surr)	92		54 - 134	12/15/21 19:33	12/16/21 17:08	1

Method: RSK-175 - Dissolved Gases (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	1900		88	22	ug/L			12/09/21 16:05	22

Method: 6010C - Metals (ICP)

Analyte	Result Qual		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4.5	0.050	0.019	mg/L		12/10/21 08:20	12/10/21 19:46	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		20.0	3.5	mg/L			12/09/21 19:50	10
Ammonia	1.9		0.020	0.0090	mg/L			12/10/21 09:32	1
Cyanide, Total	0.0054	J	0.010	0.0050	mg/L		12/10/21 11:24	12/10/21 12:17	1
Nitrate as N	ND		0.050	0.020	mg/L			12/09/21 14:04	1
Alkalinity, Total	396		5.0	0.79	mg/L			12/14/21 15:25	1
Ferrous Iron	ND U	IJ	0.10	0.075	mg/L			12/17/21 15:00	1

Client Sample ID: MW-25S 120821

Lab Sample ID: 480-193210-4 Date Collected: 12/08/21 08:00 **Matrix: Water** Date Received: 12/09/21 08:00

Method: 8260C - Volatile Organic Compounds by GC/MS

	gaine compounds by co						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	2.0	0.82 ug/L			12/10/21 04:57	2
Ethylbenzene	ND	2.0	1.5 ug/L			12/10/21 04:57	2
Toluene	ND	2.0	1.0 ug/L			12/10/21 04:57	2
Xylenes, Total	ND	4.0	1.3 ug/L			12/10/21 04:57	2

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		12/10/21 04:57	2
4-Bromofluorobenzene (Surr)	101	73 - 120		12/10/21 04:57	2
Dibromofluoromethane (Surr)	104	75 - 123		12/10/21 04:57	2
Toluene-d8 (Surr)	96	80 - 120		12/10/21 04:57	2

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-25S 120821

Lab Sample ID: 480-193210-4 Date Collected: 12/08/21 08:00 **Matrix: Water**

Date Received: 12/09/21 08:00

Method: 8270D LL - Semivola Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.51	0.036	ug/L		12/10/21 09:27	12/13/21 16:39	
Acenaphthylene	ND		0.30	0.057	ug/L		12/10/21 09:27	12/13/21 16:39	
Anthracene	ND		0.51	0.034	ug/L		12/10/21 09:27	12/13/21 16:39	
Chrysene	ND		0.51	0.075	ug/L		12/10/21 09:27	12/13/21 16:39	
Fluoranthene	ND		0.51	0.081	ug/L		12/10/21 09:27	12/13/21 16:39	
Fluorene	ND		0.51	0.059	ug/L		12/10/21 09:27	12/13/21 16:39	
Naphthalene	ND		1.0	0.065	ug/L		12/10/21 09:27	12/13/21 16:39	
Phenanthrene	ND		0.20	0.063	ug/L		12/10/21 09:27	12/13/21 16:39	
Pyrene	ND		0.51	0.077	ug/L		12/10/21 09:27	12/13/21 16:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	103		37 - 120				12/10/21 09:27	12/13/21 16:39	
Nitrobenzene-d5 (Surr)	79		26 - 120				12/10/21 09:27	12/13/21 16:39	
p-Terphenyl-d14	76		64 - 127				12/10/21 09:27	12/13/21 16:39	
Method: 8270E SIM - Semivol	atile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	ND		0.050	0.016	ug/L		12/15/21 19:33	12/16/21 17:29	
Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 17:29	
Benzo[b]fluoranthene	ND		0.050	0.024	ug/L		12/15/21 19:33	12/16/21 17:29	
Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 17:29	
Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 17:29	
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 17:29	
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 17:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	153	S1+	25 - 131				12/15/21 19:33	12/16/21 17:29	
Nitrobenzene-d5 (Surr)	92		54 - 134				12/15/21 19:33	12/16/21 17:29	
Method: RSK-175 - Dissolved	Gases (GC)							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Methane	ND		4.0	1.0	ug/L			12/09/21 16:24	
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
ron	0.25		0.050	0.019	mg/L		12/10/21 08:20	12/10/21 19:50	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	184		20.0		mg/L			12/09/21 20:09	1
Ammonia	0.067		0.020	0.0090	_			12/10/21 09:33	
Cyanide, Total	0.022		0.010	0.0050			12/10/21 11:24	12/10/21 12:18	
Nitrate as N	0.22		0.050	0.020	mg/L			12/09/21 17:02	
Alkalinity, Total	568		5.0	0.79	mg/L			12/14/21 15:34	
Ferrous Iron	ND	H.I	0.10	0.075	ma/l			12/17/21 15:00	

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-22S 120821

Lab Sample ID: 480-193210-5

Date Collected: 12/08/21 08:45 **Matrix: Water** Date Received: 12/09/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.0	0.41	ug/L			12/10/21 05:20	
Ethylbenzene	ND		1.0	0.74	ug/L			12/10/21 05:20	
Toluene	ND		1.0	0.51	ug/L			12/10/21 05:20	
Xylenes, Total	ND		2.0	0.66	ug/L			12/10/21 05:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					12/10/21 05:20	1
4-Bromofluorobenzene (Surr)	101		73 - 120					12/10/21 05:20	1
Dibromofluoromethane (Surr)	102		75 - 123					12/10/21 05:20	1
Toluene-d8 (Surr)	93		80 - 120					12/10/21 05:20	
Method: 8270D LL - Semiv				S - Low I	Level				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.52	0.037	ug/L		12/10/21 09:27	12/13/21 17:06	1
Acenaphthylene	ND		0.31	0.058	ug/L		12/10/21 09:27	12/13/21 17:06	1
Anthracene	ND		0.52	0.035	ug/L		12/10/21 09:27	12/13/21 17:06	1
Chrysene	ND		0.52	0.076	ug/L		12/10/21 09:27	12/13/21 17:06	1
Fluoranthene	ND		0.52	0.082	ug/L		12/10/21 09:27	12/13/21 17:06	1
Fluorene	ND		0.52	0.060	ug/L		12/10/21 09:27	12/13/21 17:06	1
Naphthalene	ND		1.0	0.066	ug/L		12/10/21 09:27	12/13/21 17:06	1
Phenanthrene	ND		0.21	0.064	ug/L		12/10/21 09:27	12/13/21 17:06	1
Pyrene	0.10	J	0.52	0.078	ug/L		12/10/21 09:27	12/13/21 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	7011CCOVERY	<u></u>	Lillits						
2-Fluorobiphenyl	109		37 - 120				12/10/21 09:27	12/13/21 17:06	1
2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	109 89		37 - 120 26 - 120				12/10/21 09:27	12/13/21 17:06	1
2-Fluorobiphenyl	109		37 - 120				12/10/21 09:27		1
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semi	109 89 86 volatile Organi	c Compou	37 - 120 26 - 120 64 - 127 nds (GC/MS				12/10/21 09:27 12/10/21 09:27	12/13/21 17:06 12/13/21 17:06	1
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte	109 89 86 volatile Organi Result		37 - 120 26 - 120 64 - 127 nds (GC/MS RL	MDL		<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared	12/13/21 17:06 12/13/21 17:06 Analyzed	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene	volatile Organic Result	c Compou	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050	MDL 0.016	ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semi Analyte Benzo[a]anthracene Benzo[a]pyrene	volatile Organi Result ND ND	c Compou	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050	MDL 0.016 0.022	ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	volatile Organi Result ND ND ND	c Compou	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u> </u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	109 89 86 volatile Organi Result ND ND ND	c Compou	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050	MDL 0.016 0.022 0.024 0.035	ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene	volatile Organi Result ND ND ND	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028	ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	109 89 86 volatile Organi Result ND ND ND	c Compou	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51	Dil Face 11 11 11 11 11 11 11
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene	volatile Organi Result ND ND ND ND ND	c Compou Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate	nog 89 86 volatile Organi Result ND	C Compou Qualifier UJ UJ Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semiral Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl	nose se s	C Compou Qualifier UJ UJ	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 Analyzed 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate	nog 89 86 volatile Organi Result ND	C Compou Qualifier UJ UJ Qualifier	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolv	## 109	UJ UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L	=	Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 Analyzed 12/16/21 17:51 12/16/21 17:51	Dil Fac
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolv Analyte	volatile Organi Result ND	UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	12/10/21 09:27 12/10/21 09:27 Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 Prepared 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 Analyzed 12/16/21 17:51	Dil Face Dil Face Dil Face Dil Face
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semiral Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolvanalyte Methane	## 109 ## 89 ## 86 Volatile Organi	UJ UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L	=	Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 Analyzed 12/16/21 17:51 12/16/21 17:51	Dil Face Dil Face Dil Face
2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 Method: 8270E SIM - Semir Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) Method: RSK-175 - Dissolv Analyte	## 109 ## 89 ## 86 Volatile Organi	UJ UJ UJ Qualifier S1+	37 - 120 26 - 120 64 - 127 nds (GC/MS RL 0.050 0.050 0.050 0.050 0.050 0.050 0.050 Limits 25 - 131 54 - 134	MDL 0.016 0.022 0.024 0.035 0.028 0.020 0.036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	=	Prepared 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33 12/15/21 19:33	12/13/21 17:06 12/13/21 17:06 Analyzed 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 12/16/21 17:51 Analyzed 12/16/21 17:51	Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-22S 120821

Lab Sample ID: 480-193210-5 Date Collected: 12/08/21 08:45

Matrix: Water

Date Received: 12/09/21 08:00

Analyzed	Dil Fac
12/09/21 20:29	2
12/10/21 09:34	1
24 12/10/21 12:19	1
12/09/21 17:03	1
12/14/21 15:41	1
12/17/21 15:00	1
	12/09/21 20:29 12/10/21 09:34 11:24 12/10/21 12:19 12/09/21 17:03 12/14/21 15:41

Client Sample ID: EQUIP.BLANK-120821 Lab Sample ID: 480-193210-6

Date Collected: 12/08/21 14:15 Date Received: 12/09/21 08:00

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

meane and end of game									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/10/21 05:43	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/10/21 05:43	1
Toluene	ND		1.0	0.51	ug/L			12/10/21 05:43	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/10/21 05:43	1

Surrogate	%Recovery Quali	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		12/10/21 05:43	1
4-Bromofluorobenzene (Surr)	105	73 - 120		12/10/21 05:43	1
Dibromofluoromethane (Surr)	108	75 - 123		12/10/21 05:43	1
Toluene-d8 (Surr)	99	80 - 120		12/10/21 05:43	1

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.50	0.036	ug/L		12/10/21 09:27	12/13/21 17:34	1
Acenaphthylene	ND	0.30	0.056	ug/L		12/10/21 09:27	12/13/21 17:34	1
Anthracene	ND	0.50	0.034	ug/L		12/10/21 09:27	12/13/21 17:34	1
Chrysene	ND	0.50	0.074	ug/L		12/10/21 09:27	12/13/21 17:34	1
Fluoranthene	ND	0.50	0.080	ug/L		12/10/21 09:27	12/13/21 17:34	1
Fluorene	ND	0.50	0.058	ug/L		12/10/21 09:27	12/13/21 17:34	1
Naphthalene	ND	1.0	0.064	ug/L		12/10/21 09:27	12/13/21 17:34	1
Phenanthrene	ND	0.20	0.062	ug/L		12/10/21 09:27	12/13/21 17:34	1
Pyrene	ND	0.50	0.076	ug/L		12/10/21 09:27	12/13/21 17:34	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	103		37 - 120	12/10/21 09:27	12/13/21 17:34	1
Nitrobenzene-d5 (Surr)	81		26 - 120	12/10/21 09:27	12/13/21 17:34	1
p-Terphenyl-d14	93		64 - 127	12/10/21 09:27	12/13/21 17:34	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

			•	,					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.050	0.016	ug/L		12/15/21 19:33	12/16/21 18:12	1
Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 18:12	1
Benzo[b]fluoranthene	ND		0.050	0.024	ug/L		12/15/21 19:33	12/16/21 18:12	1
Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 18:12	1
Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 18:12	1
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 18:12	1
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 18:12	1

Eurofins TestAmerica, Buffalo

Page 18 of 1503

Client: AECOM Job ID: 480-193210-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: EQUIP.BLANK-120821

Lab Sample ID: 480-193210-6 Date Collected: 12/08/21 14:15

Matrix: Water

Analyzed

Date Received: 12/09/21 08:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	146	S1+	25 - 131	12/15/21 19:33	12/16/21 18:12	1
Nitrobenzene-d5 (Surr)	90		54 - 134	12/15/21 19:33	12/16/21 18:12	1
General Chemistry						

RL

0.010

MDL Unit

0.0050 mg/L

Client Sample ID: TRIP BLANK-120821

Lab Sample ID: 480-193210-7

12/10/21 11:24 12/10/21 12:21

Prepared

Date Collected: 12/08/21 00:00 Date Received: 12/09/21 08:00

Analyte

Cyanide, Total

Matrix: Water

Dil Fac

Result Qualifier

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/10/21 06:06	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/10/21 06:06	1
Toluene	ND		1.0	0.51	ug/L			12/10/21 06:06	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/10/21 06:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surroyale	Mecovery Qualifier	LIIIIII	riepaieu	Allalyzeu	DII Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		12/10/21 06:06	1
4-Bromofluorobenzene (Surr)	101	73 - 120		12/10/21 06:06	1
Dibromofluoromethane (Surr)	107	75 - 123		12/10/21 06:06	1
Toluene-d8 (Surr)	94	80 - 120		12/10/21 06:06	1

Client: AECOM Job ID: 480-193309-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client S	Sample:	ID: MV	V-45S- 1	20921
----------	---------	--------	-----------------	-------

Lab Sample ID: 480-193309-1 Date Collected: 12/09/21 08:00 **Matrix: Water**

Date Received: 12/10/21 10:30

Method: 8260C - Volatile On Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.0		ug/L			12/11/21 18:13	
Ethylbenzene	ND		1.0		ug/L			12/11/21 18:13	
Toluene	ND		1.0		ug/L			12/11/21 18:13	
Xylenes, Total	ND		2.0		ug/L			12/11/21 18:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	107		77 - 120					12/11/21 18:13	
4-Bromofluorobenzene (Surr)	108		73 - 120					12/11/21 18:13	
Dibromofluoromethane (Surr)	97		75 - 123					12/11/21 18:13	
Toluene-d8 (Surr)	104		80 - 120					12/11/21 18:13	
Method: 8270D LL - Semivo	olatile Organic	Compoun	ds by GC/MS	S - Low I	Level				
Analyte	_	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.10	J	0.50	0.036	ug/L		12/10/21 14:09	12/13/21 22:12	
Acenaphthylene	ND		0.30	0.056	ug/L		12/10/21 14:09	12/13/21 22:12	
Anthracene	0.067	J	0.50	0.034	ug/L		12/10/21 14:09	12/13/21 22:12	
Chrysene	ND		0.50	0.074	ug/L		12/10/21 14:09	12/13/21 22:12	
Fluoranthene	0.080	J	0.50	0.080	ug/L		12/10/21 14:09	12/13/21 22:12	
Fluorene	0.058	J	0.50	0.058	ug/L		12/10/21 14:09	12/13/21 22:12	
Naphthalene	ND		1.0	0.064	ug/L		12/10/21 14:09	12/13/21 22:12	
Phenanthrene	0.24		0.20	0.062	_		12/10/21 14:09	12/13/21 22:12	
Pyrene	0.12	J	0.50	0.076	ug/L		12/10/21 14:09	12/13/21 22:12	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	117		37 - 120				12/10/21 14:09	12/13/21 22:12	
Nitrobenzene-d5 (Surr)	93		26 - 120				12/10/21 14:09	12/13/21 22:12	
p-Terphenyl-d14	134	S1+	64 - 127				12/10/21 14:09	12/13/21 22:12	
Method: 8270E SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	ND		0.050	0.016	ug/L		12/15/21 19:33	12/16/21 18:33	
Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 18:33	
Benzo[b]fluoranthene	ND		0.050	0.024	ug/L		12/15/21 19:33	12/16/21 18:33	
Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 18:33	
Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 18:33	
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 18:33	
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 18:33	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	146	S1+	25 - 131				12/15/21 19:33	12/16/21 18:33	
Nitrobenzene-d5 (Surr)	96		54 - 134				12/15/21 19:33	12/16/21 18:33	
Method: RSK-175 - Dissolv	ed Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methane	3400		88	22	ug/L			12/13/21 01:41	2:
Method: 6010C - Metals (IC	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	4.2		0.050	0.019			12/15/21 08:44	12/15/21 18:14	

Client: AECOM Job ID: 480-193309-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-45S-120921

Lab Sample ID: 480-193309-1 Date Collected: 12/09/21 08:00 **Matrix: Water**

Date Received: 12/10/21 10:30

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	10.9		10.0	1.7	mg/L			12/14/21 16:30	5
Ammonia	4.0		0.10	0.045	mg/L			12/13/21 12:28	5
Cyanide, Total	0.0063	J	0.010	0.0050	mg/L		12/13/21 13:27	12/13/21 14:27	1
Nitrate as N	0.12		0.050	0.020	mg/L			12/10/21 16:20	1
Alkalinity, Total	429		5.0	0.79	mg/L			12/14/21 17:49	1
Ferrous Iron	ND	UJ	0.10	0.075	mg/L			12/17/21 15:00	1

Client Sample ID: MW-47S-120921 Lab Sample ID: 480-193309-2

Date Collected: 12/09/21 09:00

Matrix: Water Date Received: 12/10/21 10:30

Method: 8260C - Volatile Org	anic Compounds by GC/MS
------------------------------	-------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D Pi	repared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/11/21 18:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/11/21 18:36	1
Toluene	ND		1.0	0.51	ug/L			12/11/21 18:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/11/21 18:36	1

Surrogate	%Recovery Qua	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		2/11/21 18:36	1
4-Bromofluorobenzene (Surr)	101	73 - 120	1	2/11/21 18:36	1
Dibromofluoromethane (Surr)	95	75 - 123	1	2/11/21 18:36	1
Toluene-d8 (Surr)	100	80 - 120	1	2/11/21 18:36	1

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepa	red	Analyzed	Dil Fac
Acenaphthene	1.1		0.50	0.036	ug/L		12/10/21	14:09	12/13/21 22:40	1
Acenaphthylene	ND	(0.30	0.056	ug/L		12/10/21	14:09	12/13/21 22:40	1
Anthracene	ND	(0.50	0.034	ug/L		12/10/21	14:09	12/13/21 22:40	1
Chrysene	ND	(0.50	0.074	ug/L		12/10/21	14:09	12/13/21 22:40	1
Fluoranthene	ND	(0.50	0.080	ug/L		12/10/21	14:09	12/13/21 22:40	1
Fluorene	ND	(0.50	0.058	ug/L		12/10/21	14:09	12/13/21 22:40	1
Naphthalene	0.11	J	1.0	0.064	ug/L		12/10/21	14:09	12/13/21 22:40	1
Phenanthrene	ND	U (0.20	0.062	ug/L		12/10/21	14:09	12/13/21 22:40	1
Pyrene	ND	(0.50	0.076	ug/L		12/10/21	14:09	12/13/21 22:40	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	103		37 - 120	12/10/21 14:09	12/13/21 22:40	1
Nitrobenzene-d5 (Surr)	77		26 - 120	12/10/21 14:09	12/13/21 22:40	1
p-Terphenyl-d14	121		64 - 127	12/10/21 14:09	12/13/21 22:40	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

	_		•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.031	J	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 18:54	1
Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 18:54	1
Benzo[b]fluoranthene	0.030	J	0.050	0.024	ug/L		12/15/21 19:33	12/16/21 18:54	1
Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 18:54	1
Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 18:54	1
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 18:54	1
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 18:54	1

Eurofins TestAmerica, Buffalo

Page 13 of 1600

Client: AECOM Job ID: 480-193309-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-47S-120921

Lab Sample ID: 480-193309-2 Date Collected: 12/09/21 09:00

Matrix: Water

Date Received: 12/10/21 10:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	145	S1+	25 - 131				12/15/21 19:33	12/16/21 18:54	1
Nitrobenzene-d5 (Surr)	92		54 - 134				12/15/21 19:33	12/16/21 18:54	1
Method: RSK-175 - Dissolved	Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	3400		88	22	ug/L			12/13/21 02:00	22
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	6.1		0.050	0.019	mg/L		12/15/21 08:44	12/15/21 18:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	12.8		10.0	1.7	mg/L			12/14/21 16:49	5
Ammonia	3.4		0.040	0.018	mg/L			12/13/21 12:29	2
Cyanide, Total	0.012		0.010	0.0050	mg/L		12/13/21 13:27	12/13/21 14:30	1
Nitrate as N	ND		0.050	0.020	mg/L			12/10/21 15:25	1
Alkalinity, Total	295		5.0	0.79	mg/L			12/14/21 17:56	1
Ferrous Iron	0.29	J	0.10	0.075	mg/L			12/17/21 15:00	1

Client Sample ID: MW-23S-120921

Lab Sample ID: 480-193309-3 Date Collected: 12/09/21 09:10 **Matrix: Water**

Date Received: 12/10/21 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.0	1.6	ug/L			12/11/21 18:58	4
Ethylbenzene	20		4.0	3.0	ug/L			12/11/21 18:58	4
Toluene	ND		4.0	2.0	ug/L			12/11/21 18:58	4
Xylenes, Total	9.8		8.0	2.6	ug/L			12/11/21 18:58	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		77 - 120			-		12/11/21 18:58	4
4-Bromofluorobenzene (Surr)	100		73 - 120					12/11/21 18:58	4
Dibromofluoromethane (Surr)	102		75 - 123					12/11/21 18:58	4
Toluene-d8 (Surr)	98		80 - 120					12/11/21 18:58	4

Method: 8270D LL - Sem	ivolatile Organic Compoun	ds by GC/MS	Use Results from dilut	Jse Results from dilution			
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac	
Acenaphthene	XX E	0.50	0.036 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Acenaphthylene	NOX	0.30	0.056 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Anthracene	XX	0.50	0.034 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Chrysene	NOX	0.50	0.074 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Fluoranthene	XX	0.50	0.080 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Fluorene	XXE	0.50	0.058 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Naphthalene	XX E	1.0	0.064 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Phenanthrene	XXE	0.20	0.062 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Pyrene	XX	0.50	0.076 ug/L	12/10/21 14:09	12/13/21 23:08	1	
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	100	37 - 120		12/10/21 14:09	12/13/21 23:08	1	
Nitrobenzene-d5 (Surr)	76	26 - 120		12/10/21 14:09	12/13/21 23:08	1	

Eurofins TestAmerica, Buffalo

Page 14 of 1600 12/20/2021

Client: AECOM Job ID: 480-193309-1

Project/Site: NYSEG - Former MGP Site - Ithaca, NY

Client Sample ID: MW-23S-120921

Lab Sample ID: 480-193309-3 Date Collected: 12/09/21 09:10 **Matrix: Water**

Date Received: 12/10/21 10:30

ı	Method: 8270D LL	Somivolatilo	Organic Com	nounde by	CC/MS - I	ow Lovel (Continued)
ı	WELLIOU. 02/UD LL	- Semiooname	Organic Com	poullus by	GC/IVIS - L	.ow Levei (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	125		64 - 127		12/10/21 14:09	12/13/21 23:08	1
Mothod: 9270D LL	Comivolatila Organia	Compour	ada by CC/MC I	ow Lovel DI			

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	74		10	0.72	ug/L		12/10/21 14:09	12/14/21 15:21	20
Acenaphthylene	ND		6.0	1.1	ug/L		12/10/21 14:09	12/14/21 15:21	20
Anthracene	3.9	J	10	0.68	ug/L		12/10/21 14:09	12/14/21 15:21	20
Chrysene	ND		10	1.5	ug/L		12/10/21 14:09	12/14/21 15:21	20
Fluoranthene	2.4	J	10	1.6	ug/L		12/10/21 14:09	12/14/21 15:21	20
Fluorene	17		10	1.2	ug/L		12/10/21 14:09	12/14/21 15:21	20
Naphthalene	95		20	1.3	ug/L		12/10/21 14:09	12/14/21 15:21	20
Phenanthrene	20		4.0	1.2	ug/L		12/10/21 14:09	12/14/21 15:21	20
Pyrene	2.7	J	10	1.5	ug/L		12/10/21 14:09	12/14/21 15:21	20

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	104		37 - 120	12/10/21 14:09	12/14/21 15:21	20
	Nitrobenzene-d5 (Surr)	65		26 - 120	12/10/21 14:09	12/14/21 15:21	20
l	p-Terphenyl-d14	111		64 - 127	12/10/21 14:09	12/14/21 15:21	20

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.048	J	0.050	0.016	ug/L		12/15/21 19:33	12/16/21 19:16	1
Benzo[a]pyrene	ND		0.050	0.022	ug/L		12/15/21 19:33	12/16/21 19:16	1
Benzo[b]fluoranthene	ND		0.050	0.024	ug/L		12/15/21 19:33	12/16/21 19:16	1
Benzo[g,h,i]perylene	ND		0.050	0.035	ug/L		12/15/21 19:33	12/16/21 19:16	1
Benzo[k]fluoranthene	ND		0.050	0.028	ug/L		12/15/21 19:33	12/16/21 19:16	1
Dibenz(a,h)anthracene	ND	UJ	0.050	0.020	ug/L		12/15/21 19:33	12/16/21 19:16	1
Indeno[1,2,3-cd]pyrene	ND	UJ	0.050	0.036	ug/L		12/15/21 19:33	12/16/21 19:16	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	129		25 - 131	12/15/21 19:33	12/16/21 19:16	1
Nitrobenzene-d5 (Surr)	83		54 - 134	12/15/21 19:33	12/16/21 19:16	1

Method: RSK-175 - Dissolved Gases (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Р	repared	Analyzed	Dil Fac
Methane	4600		88	22	ug/L				12/13/21 02:19	22

Method: 6010C - Metals (ICP)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1.6		0.050	0.019	mg/L		12/15/21 08:44	12/15/21 18:22	1

General Chemistry

Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate 5.3	J	10.0	1.7	mg/L			12/14/21 17:07	5
Ammonia 0.88		0.020	0.0090	mg/L			12/13/21 09:16	1
Cyanide, Total ND		0.010	0.0050	mg/L		12/13/21 13:27	12/13/21 14:33	1
Nitrate as N 0.25		0.050	0.020	mg/L			12/10/21 16:22	1
Alkalinity, Total 255		5.0	0.79	mg/L			12/14/21 18:03	1
Ferrous Iron ND	UJ	0.10	0.075	mg/L			12/17/21 15:00	1

Appendix C Support Documentation

AECOM 12 Prepared for: NYSEG

Project number: 606732676

Eurofins TestAmerica, Buffalo

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

Controlled Information (State Cartest Lab) Controlled Informat			Sampler:			Lab PM	<u></u>				Carrier	Carrier Tracking No(s):	COC No:		
Sample Colored Col		Client Information (Sub Contract Lab)				Scho	ve, Joh	R.				,	480-6847	76.1	
Company Comp		Client Contact:	Phone:			E-Mail					State of	Origin:	Page:		
Control Cont		Shipping/Receiving				John	Schove	@Eurol	inset.con	-	New Y	ork	Page 1 o	f 2	
Table Tabl		Company: TestAmerica Laboratories Inc					Accredita	ions Req	uired (See r	iote):			Job #:		
Transfer Durinam Read; Statement of Control Transfer Durinam Read;		δ.					5	A DA	400		!		480-193	156-1	
Charge C		Address. 777 New Durham Road,	Due Date Requested 12/21/2021		ĺ				∢	nalysis F	equeste	ъ	Preservat	ion Codes:	:
Name - 2 Name - 2		City: Edison	TAT Requested (days	÷									B - NaOH		- Hexane - None
Process Proc		State, Zip: NJ, 08817											D - Nitric A E - NaHSC		- ASNAO2 - Na2O4S - Na2SO3
Final		49-3900(Tel)	PO #:				(ıalytes					G - Amchk		- Na2S2O3 - H2SO4 TSD Dodoochudeeb
National Health Project Hame P		Email:	 *:					A MIS					 		- Acetone - MCAA
Sample Americation - Client ID (Lab ID) Sample Date Time G=grab) Frozen-archon Code Frozen-archon		Project Name: NYSEG - Former MGP Site - Ithaca, NY	Project #: 48022675					SAOC					 5 To 5 T	Χ ζ	- pH 4-5 - other (specify)
Sample Identification - Client ID (Lab ID) Sample Date Sample Identification - Client ID (Lab ID) Sample G=G=Comp. Occurred. ID (G=Comp.) Matrix occurred. ID (G=Comp.) M		Site:	SSOW#:					ς ⁻ ΓΛΙ							
MW-24S-120721 (480-193156-2) 127721 Fastern Eastern (480-193156-2) Vater (480-193156-2) X <td>Pa</td> <td>Sample Identification - Client ID (Lab ID)</td> <td></td> <td>e de</td> <td></td> <td>Matrix (W=water, S=solid, O=waste/oll, T=Tissue, A=Air)</td> <td></td> <td>012E/MIS_30728</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>ecial Instru</td> <td>uctions/Note:</td>	Pa	Sample Identification - Client ID (Lab ID)		e de		Matrix (W=water, S=solid, O=waste/oll, T=Tissue, A=Air)		012E/MIS_30728	-					ecial Instru	uctions/Note:
MW-46S-120721 (480-193156-1) 127721 12:05 Eastern (1480-193156-2) Vater (1480-193156-2) X Peastern (1480-193156-2) X Peastern (1480-193156-3) Peastern (1480-193156-3) X Peastern (1480-193156-3)	ne.			X	Preservat	ion Code:	X						X		
MW-24S-120721 (480-193156-2) 1277/21 Eastlern OB-40 Water X Water X Pastlern OB-40 Water X Pastlern OB-40 Water X Pastlern OB-40 Water X Pastlern OB-1-120721 (480-193156-4) Pastlern OB-1-120721 (480-193156-5) X Pastlern OB-1-120721 (480-193156-5) X Pastlern OB-1-120721 (480-193156-5) X Pastlern OB-1-120721 (480-193156-7MS) Pastlern OB-1-120721 (480-193156-7MS) X Pastlern OB-1-120721 (480-193156-7MS) Pastlern OB-1-120721 (480-193156-7MS	181	MW-46S-120721 (480-193156-1)		12:05 Eastern		Water		×					2		
MW-28S-120721 (480-193156-3) 1277/21 DB:40 bit asitem Water X R A B	10 o	MW-24S-120721 (480-193156-2)		10:30 Eastern		Water		×					2		
DUP-1-120721 (480-193156-4) 127721 Eastern Fastern Eastern Eastern MW-36S-120721 (480-193156-5) X P MW-C16-120721 (480-193156-7) 127721 Eastern Fastern Eastern Eastern MW-C11-120721 (480-193156-7MS) X X P MW-C11-120721 (480-193156-7MS) 127721 Eastern Fastern Fastern MS X P P MW-C11-120721 (480-193156-7MSD) 127721 Eastern Fastern Fastern Fastern MS X P P	f 18	MW-28S-120721 (480-193156-3)		08:40 Eastern		Water		×					2		
127/21 Eastern Water X	13	DUP-1-120721 (480-193156-4)		08:40 Eastern		Water		×					2		
12/7/21 Eastern Water X 12/7/21 Eastern Water X 12/7/21 Eastern X 12/7/21 Eastern X 12/7/21 Eastern X 12/7/21 Eastern X		MW-36S-120721 (480-193156-5)		13:40 Eastern		Water		×					2		
12/7/21 12:47 Water X 12/7/21 12:47 MS Water X 12/7/21 Eastern MSD Water X		MW-C16-120721 (480-193156-6)		11:10 Eastern		Water		×					2		
12/7/21 12:47 MS Water X 12/7/21 Eastern MSD Water X		MW-C11-120721 (480-193156-7)		12:47 Eastern		Water		×					2		
12/7/21 12:47 MSD Water X		MW-C11-120721 (480-193156-7MS)		12:47 Eastern	MS	Water		×					24		
		MW-C11-120721 (480-193156-7MSD)	12/7/21	12:47 Eastern	MSD	Water		×					2		

maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.

Possible Hazard Identification	ication				Sample Disnosal (A fee may be assessed if samples are retained Jones than 1	amples are retained longer than	month
						ampies are retained folliger tilair r	monary
Unconfirmed					Return To Client Disposal By Lab	ab Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	, II, III, IV, Other (spe		Primary Deliverable Rank: 2	(J)	Requ		
Empty Kit Relinquished by:	.yc		Date:	Time:		Method of Shipment:	
Relinquished by:	MKow	0) 00/01	Date/Time: (7 [017 1 + co	Company	Received by:	Visted Saled Time /14/21 17:50 Company ETA	Company
Relinquished by:			Date/Time:	Company	Received by:	Date/Time:	Company
Relinquished by:			Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	Custody Seal No∷				Cooler Temperature(s) °C and Other Remarks: 10 # 9-2.7-2, 6/1.5-2/	0#9-2.7-2,	125:1/9

Chain of Custody Record

eurofins Environment Testing America

Chain

Eurofins TestAmerica, Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

	Sampler	Md de I		Carrier Tracking Mo(e)	
Client Information (Sub Contract Lab)		Schove,	e, John R		480-68476.2
Client Contact: Shipping/Receiving	Phone:	E-Mail: John.	E-Mail: John.Schove@Eurofinset.com	State of Origin: New York	Page: Page 2 of 2
Company: TestAmerica Laboratories, Inc.			Accreditations Required (See note): NELAP - New York		Job#: 480-193156-1
Address: 777 New Durham Road	Due Date Requested:				Preservation Codes:
City College C	12/2 1/2021		Analysis	Analysis Requested	
Edison	i A i Kequested (days):				B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: NJ, 08817		**************************************			
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	PO #:				F - MeOH R - Na2S203 G - Amchlor S - H2SO4
Email.	WO#:		(0)	1	H - Ascorbic Acid
Project Name: NYSEG - Former MGP Site - Ithaca, NY	Project #: 48022675		A 10 8	alnera	K - EDTA L - EDA
Site:	SSOW#:		SD (Ye	or conf	Other:
Sample Identification - Client ID (Lab ID)	Sample Date Time (Sample (W-water, S-soile, C=Comp, G=grab) 81-71ssue, A-atr)	Field Filtered : Perform MS/M S270E_SIM:3510	vedmuN [630]	Special Instructions (Moto.
	X	ation Code:	X		
MW-C12-120721 (480-193156-8)	12/7/21 15:05 Fastern	Water	×	2	
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwards chair-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	a places the ownership of method, anal being analyzed, the samples must be sidate, return the signed Chain of Custod	yte & accreditation compliand hipped back to the Eurofins T attesting to said complicand	e upon out subcontract laboratories. This sestAmerica laboratory or other instructions e to Eurofins TestAmerica.	ample shipment is forwarded under chain-oi will be provided. Any changes to accreditati	of-custody. If the laboratory does not currently should be brought to Eurofins
Possible Hazard Identification			Sample Disposal (A fee may l	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month	ned longer than 1 month)
Unconfirmed			Return To Client	\Box Disposal By Lab \Box Arct	Archive For Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements		
Empty Kit Relinquished by:	Date:		Time:	Method of Shipment:	
Relinquished by:	Date/Time:	Company	Received by:	Victor Date/Time: //u/	71 17 & Company ETA
	Date/Time:	Company	Received by:	4	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: A Yes A No			Cooler Temperature(s) °C and Other Remarks:	1 Remarks: 10#9-2	7-2.6/1.5=1.4
					Ver: 06/08/2021

Job Narrative 480-193156-1

Comments

No additional comments.

Receipt

The samples were received on 12/8/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.9° C, 2.0° C, 2.1° C and 2.2° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-46S-120721 (480-193156-1). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-C16-120721 (480-193156-6), MW-C11-120721 (480-193156-7[MS]) and MW-C11-120721 (480-193156-7[MSD]). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D LL: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-46S-120721 (480-193156-1), MW-C16-120721 (480-193156-6) and MW-C12-120721 (480-193156-8). Elevated reporting limits (RLs) are provided.

Method 8270D LL: The following samples required a dilution due to the abundance of target analyte(s): MW-46S-120721 (480-193156-1) and MW-C12-120721 (480-193156-8). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270E SIM: Due to a delay in the Fed Ex delivery, the following samples were prepped and analyzed outside of hold time: MW-46S-120721 (480-193156-1), MW-24S-120721 (480-193156-2), MW-28S-120721 (480-193156-3), DUP-1-120721 (480-193156-4), MW-33S-120721 (480-193156-5), MW-C11-120721 (480-193156-7) and MW-C12-120721 (480-193156-8).

Method 8270E SIM: The continuing calibration verification (CCV) analyzed in batch 460-819147 was outside the method criteria for the following analyte(s): Dibenz(a,h)anthracene and Indeno[1,2,3-cd]pyrene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270E SIM: The surrogate recovery for the blank associated with preparation batch 460-819075 and analytical batch 460-819147 was outside the upper control limits.

Method 8270E SIM: Surrogate recovery for the following samples were outside the upper control limit: MW-24S-120721 (480-193156-2), MW-28S-120721 (480-193156-3), DUP-1-120721 (480-193156-4), MW-33S-120721 (480-193156-5), MW-C11-120721 (480-193156-7) and MW-C12-120721 (480-193156-8). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 8270E SIM: Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: MW-46S-120721 (480-193156-1). These results have been reported and qualified.

Method 8270E SIM: The continuing calibration verification (CCV) analyzed in batch 460-819281 was outside the method criteria for the following analyte(s): Indeno[1,2,3-cd]pyrene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-C16-120721 (480-193156-6), MW-C11-120721 (480-193156-7) and MW-C12-120721 (480-193156-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-C11-120721 (480-193156-7) and MW-C12-120721 (480-193156-8). Elevated reporting limits (RLs) are provided.

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range:

MW-46S-120721 (480-193156-1), MW-24S-120721 (480-193156-2) and MW-28S-120721 (480-193156-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-46S-120721 (480-193156-1), MW-24S-120721 (480-193156-2), MW-28S-120721 (480-193156-3), MW-33S-120721 (480-193156-5), MW-C16-120721 (480-193156-6), MW-C11-120721 (480-193156-7) and MW-C12-120721 (480-193156-8).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job	No.:	480-193156-1	
SDG	No.: _				-			

Matrix: Water Level: Low

GC Column (1): Rtxi-5Sil M ID: 0.25(mm)

Client Sample ID	Lab Sample ID	NBZ #	FBP #
MW-46S-120721	480-193156-1	88	156 S1+
MW-46S-120721 DL	480-193156-1 DL	81	59
MW-24S-120721	480-193156-2	99	151 S1+
MW-28S-120721	480-193156-3	98	138 S1+
DUP-1-120721	480-193156-4	94	140 S1+
MW-33S-120721	480-193156-5	93	137 S1+
MW-C16-120721	480-193156-6	90	130
MW-C11-120721	480-193156-7	96	133 S1+
MW-C12-120721	480-193156-8	100	154 S1+
	MB 460-819075/1-A	96	145 S1+
	LCS 460-819075/2-A	94	125
	LCSD 460-819075/3-A	99	134 S1+
MW-C11-120721 MS	480-193156-7 MS	95	145 S1+
MW-C11-120721 MSD	480-193156-7 MSD	96	125

NBZ = Nitrobenzene-d5 (Surr)

FBP = 2-Fluorobiphenyl

QC LIMITS 54-134 25-131

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: Eurofins TestAme	erica, Edison	Job No.: 480-1	193156-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: h	n269810.d
Lab ID:	LCS 460-819075/2-2	A	Client ID:	

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Benzo[a]anthracene	0.800	0.688	86	52-143	
Benzo[a]pyrene	0.800	0.752	94	43-150	
Benzo[b]fluoranthene	0.800	0.621	78	46-150	
Benzo[g,h,i]perylene	0.800	0.555	69	51-150	
Benzo[k]fluoranthene	0.800	0.814	102	44-150	
Dibenz(a,h)anthracene	0.800	0.411	51	48-150	
Indeno[1,2,3-cd]pyrene	0.800	0.419	52	44-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 8270E SIM

Lab Name	e: Eurofins TestAme	erica, Edison	Job No.: 480-193156-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: h269811.d	
Lab ID:	LCSD 460-819075/3	-A	Client ID:	

	SPIKE LCSD LCSD		0	QC LIMITS		,,	
	ADDED	CONCENTRATION	용	용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Benzo[a]anthracene	0.800	0.751	94	9	30	52-143	
Benzo[a]pyrene	0.800	0.793	99	5	30	43-150	
Benzo[b]fluoranthene	0.800	0.670	84	8	30	46-150	
Benzo[g,h,i]perylene	0.800	0.589	74	6	30	51-150	
Benzo[k]fluoranthene	0.800	0.888	111	9	30	44-150	
Dibenz(a,h)anthracene	0.800	0.444	55	8	30	48-150	
Indeno[1,2,3-cd]pyrene	0.800	0.450	56	7	30	44-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 8270E SIM

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Edison Job No.: 480-193156-1

SDG No.:

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 h269813.d

 Lab ID:
 480-193156-7 MS
 Client ID:
 MW-C11-120721 MS

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC	QC LIMITS REC	#
Benzo[a]anthracene	0.800	ND	0.647	81	52-143	Н
Benzo[a]pyrene	0.800	ND	0.644	80	43-150	Н
Benzo[b]fluoranthene	0.800	ND	0.548	69	46-150	Н
Benzo[g,h,i]perylene	0.800	ND	0.514	64	51-150	Н
Benzo[k]fluoranthene	0.800	ND	0.698	87	44-150	Н
Dibenz(a,h)anthracene	0.800	ND	0.368	46	48-150	H F1
Indeno[1,2,3-cd]pyrene	0.800	ND	0.377	47	44-150	Н

[#] Column to be used to flag recovery and RPD values FORM III 8270E SIM

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name:	Eurofins TestAmerica,	Edison	Job No.:	480-193156-1
SDG No.:				

Instrument ID: CBNAMS13 Start Date: 12/16/2021 16:54

Analysis Batch Number: 819281 End Date: 12/17/2021 00:40

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCVIS 460-819281/2		12/16/2021 16:54	1	C12216.D	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:43	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:03	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:24	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:45	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:06	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:27	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:48	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 20:08	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 20:29	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 20:50	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 21:11	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/17/2021 00:20	1		Rtxi-5Sil MS 0.25(mm)
480-193156-1 DL	MW-46S-120721 DL	12/17/2021 00:40	5	C12231.D	Rtxi-5Sil MS 0.25(mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 480-193156-1

SDG No.:

Lab Sample ID: CCVIS 460-819281/2 Calibration Date: 12/16/2021 16:54

Instrument ID: CBNAMS13 Calib Start Date: 12/08/2021 09:35

GC Column: Rtxi-5Sil MS ID: 0.25(mm) Calib End Date: 12/08/2021 11:23

Lab File ID: C12216.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5124	0.5396		211	200	5.3	20.0
N-Nitrosodimethylamine	Ave	0.6696	0.6940		104	100	3.6	20.0
Bis(2-chloroethyl)ether	Ave	1.235	1.268	0.7000	20.5	20.0	2.7	20.0
Naphthalene	Ave	1.027	1.027	0.7000	20.0	20.0	0.0	20.0
Acenaphthylene	Ave	1.854	1.798	0.9000	19.4	20.0	-3.0	20.0
Acenaphthene	Ave	1.198	1.192	0.9000	19.9	20.0	-0.6	20.0
Fluorene	Ave	1.325	1.395	0.9000	21.1	20.0	5.3	20.0
4,6-Dinitro-2-methylphenol	Ave	0.0296	0.0261	0.0100	176	200	-12.0	20.0
Hexachlorobenzene	Ave	0.2888	0.2881	0.1000	20.0	20.0	-0.2	20.0
Pentachlorophenol	QuaF		0.0379*	0.0500	65.6	100	-34.4*	20.0
Phenanthrene	Ave	1.144	1.079	0.7000	18.9	20.0	-5.7	20.0
Anthracene	Ave	0.9549	0.9692	0.7000	20.3	20.0	1.5	20.0
Fluoranthene	Ave	1.056	1.102	0.6000	20.9	20.0	4.3	20.0
Pyrene	Ave	1.577	1.599	0.6000	20.3	20.0	1.4	20.0
Benzo[a]anthracene	Ave	1.332	1.276	0.8000	19.2	20.0	-4.2	20.0
Chrysene	Ave	1.426	1.412	0.7000	19.8	20.0	-0.9	20.0
Benzo[b]fluoranthene	Ave	1.332	1.397		21.0	20.0	4.8	20.0
Benzo[k]fluoranthene	Ave	1.514	1.367	0.7000	18.1	20.0	-9.7	20.0
Benzo[a]pyrene	Ave	1.109	1.027	0.7000	18.5	20.0	-7.4	20.0
Indeno[1,2,3-cd]pyrene	Ave	1.272	0.9832	0.5000	15.5	20.0	-22.7*	20.0
Dibenz(a,h)anthracene	Ave	1.307	1.077	0.4000	16.5	20.0	-17.6	20.0
Benzo[g,h,i]perylene	Ave	1.422	1.188	0.5000	16.7	20.0	-16.5	20.0
Nitrobenzene-d5 (Surr)	Ave	0.2707	0.2994		442	400	10.6	20.0
2-Fluorobiphenyl	Ave	1.818	1.769		389	400	-2.7	20.0
2,4,6-Tribromophenol	Ave	0.1212	0.1463		483	400	20.7*	20.0
Terphenyl-d14	Ave	1.107	1.156		418	400	4.4	20.0

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Edison Job No.: 480-193156-1

SDG No.:

Instrument ID: CBNAMS9 Start Date: 12/16/2021 09:44

Analysis Batch Number: 819147 End Date: 12/16/2021 19:58

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCVIS 460-819147/2		12/16/2021 09:44	1	h269807.d	Rtxi-5Sil MS 0.25(mm)
MB 460-819075/1-A		12/16/2021 10:27	1	h269809.d	Rtxi-5Sil MS 0.25(mm)
LCS 460-819075/2-A		12/16/2021 10:48	1	h269810.d	Rtxi-5Sil MS 0.25(mm)
LCSD 460-819075/3-A		12/16/2021 11:09	1	h269811.d	Rtxi-5Sil MS 0.25(mm)
480-193156-7	MW-C11-120721	12/16/2021 11:30	1	h269812.d	Rtxi-5Sil MS 0.25(mm)
480-193156-7 MS	MW-C11-120721 MS	12/16/2021 11:51	1	h269813.d	Rtxi-5Sil MS 0.25(mm)
480-193156-7 MSD	MW-C11-120721 MSD	12/16/2021 12:12	1	h269814.d	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:34	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:55	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 13:37	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 13:58	1		Rtxi-5Sil MS 0.25(mm)
480-193156-3	MW-28S-120721	12/16/2021 14:19	1	h269820.d	Rtxi-5Sil MS 0.25(mm)
480-193156-4	DUP-1-120721	12/16/2021 14:40	1	h269821.d	Rtxi-5Sil MS 0.25(mm)
480-193156-5	MW-33S-120721	12/16/2021 15:01	1	h269822.d	Rtxi-5Sil MS 0.25(mm)
480-193156-6	MW-C16-120721	12/16/2021 15:22	1	h269823.d	Rtxi-5Sil MS 0.25(mm)
480-193156-8	MW-C12-120721	12/16/2021 15:44	1	h269824.d	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:05	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:26	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:47	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:08	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:29	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:51	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:12	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:33	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:54	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:16	1		Rtxi-5Sil MS 0.25(mm)
480-193156-1	MW-46S-120721	12/16/2021 19:37	1	h269835.d	Rtxi-5Sil MS 0.25(mm)
480-193156-2	MW-24S-120721	12/16/2021 19:58	1	h269836.d	Rtxi-5Sil MS 0.25(mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 480-193156-1

SDG No.:

Lab Sample ID: CCVIS 460-819147/2 Calibration Date: 12/16/2021 09:44

Instrument ID: CBNAMS9 Calib Start Date: 12/03/2021 15:16

GC Column: Rtxi-5Sil MS ID: 0.25 (mm) Calib End Date: 12/03/2021 17:02

Lab File ID: h269807.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Lin2		0.5143		195	200	-2.5	20.0
N-Nitrosodimethylamine	Ave	0.6104	0.6363		104	100	4.2	20.0
Bis(2-chloroethyl)ether	Ave	1.096	1.145	0.7000	20.9	20.0	4.4	20.0
Naphthalene	Ave	1.062	1.028	0.7000	19.4	20.0	-3.2	20.0
Acenaphthylene	Ave	2.235	2.325	0.9000	20.8	20.0	4.0	20.0
Acenaphthene	Ave	1.077	1.073	0.9000	19.9	20.0	-0.4	20.0
Fluorene	Ave	1.081	1.072	0.9000	19.8	20.0	-0.8	20.0
4,6-Dinitro-2-methylphenol	Ave	0.0709	0.0769	0.0100	217	200	8.4	20.0
Hexachlorobenzene	Ave	0.4250	0.4236	0.1000	19.9	20.0	-0.3	20.0
Pentachlorophenol	Lin1		0.1872	0.0500	101	100	0.9	20.0
Phenanthrene	Ave	1.831	1.588	0.7000	17.3	20.0	-13.3	20.0
Anthracene	Ave	1.406	1.555	0.7000	22.1	20.0	10.6	20.0
Fluoranthene	Ave	1.406	1.482	0.6000	21.1	20.0	5.4	20.0
Pyrene	Ave	1.585	1.586	0.6000	20.0	20.0	0.0	20.0
Benzo[a]anthracene	Ave	1.361	1.305	0.8000	19.2	20.0	-4.1	20.0
Chrysene	Ave	1.472	1.364	0.7000	18.5	20.0	-7.4	20.0
Benzo[b]fluoranthene	Ave	1.574	1.288		16.4	20.0	-18.2	20.0
Benzo[k]fluoranthene	Ave	1.388	1.378	0.7000	19.9	20.0	-0.7	20.0
Benzo[a]pyrene	Ave	1.206	1.073	0.7000	17.8	20.0	-11.0	20.0
Indeno[1,2,3-cd]pyrene	Ave	1.464	1.036	0.5000	14.2	20.0	-29.2*	20.0
Dibenz(a,h)anthracene	Ave	1.553	1.064	0.4000	13.7	20.0	-31.5*	20.0
Benzo[g,h,i]perylene	Ave	1.533	1.277	0.5000	16.7	20.0	-16.7	20.0
Nitrobenzene-d5 (Surr)	Ave	0.3494	0.3646		417	400	4.3	20.0
2-Fluorobiphenyl	Ave	1.424	2.037		572	400	43.0*	20.0
2,4,6-Tribromophenol	Ave	0.3457	0.3763		435	400	8.9	20.0
Terphenyl-d14	Ave	0.9675	1.106		457	400	14.3	20.0

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-193156-1
SDG No.:	
Lab File ID: W10018498.d	Lab Sample ID: MB 480-608154/1-A
Matrix: Water	Date Extracted: 12/09/2021 09:18
Instrument ID: HP5973W	Date Analyzed: 12/09/2021 21:26
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB		
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALY	ZED
	LCS 480-608154/2-A	W10018499.d	12/09/2021	21:53
MW-C11-120721 MS	480-193156-7 MS	W10018500.d	12/09/2021	22:20
MW-C11-120721 MSD	480-193156-7 MSD	W10018501.d	12/09/2021	22:48
MW-C11-120721	480-193156-7	W10018502.d	12/09/2021	23:14
MW-46S-120721	480-193156-1	W10018503.d	12/09/2021	23:42
MW-24S-120721	480-193156-2	W10018504.d	12/10/2021	00:09
MW-28S-120721	480-193156-3	W10018505.d	12/10/2021	00:37
DUP-1-120721	480-193156-4	W10018506.d	12/10/2021	01:04
MW-33S-120721	480-193156-5	W10018507.d	12/10/2021	01:31
MW-C16-120721	480-193156-6	W10018508.d	12/10/2021	01:58
MW-C12-120721	480-193156-8	W10018509.d	12/10/2021	02:25

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-193156-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 480-608154/1-A
Matrix: Water	Lab File ID: W10018498.d
Analysis Method: 8270D LL	Date Collected:
Extract. Method: 3510C	Date Extracted: 12/09/2021 09:18
Sample wt/vol: 1000(mL)	Date Analyzed: 12/09/2021 21:26
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 608229	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	ND		0.50	0.036
208-96-8	Acenaphthylene	ND		0.30	0.056
120-12-7	Anthracene	ND		0.50	0.034
218-01-9	Chrysene	ND		0.50	0.074
206-44-0	Fluoranthene	ND		0.50	0.080
86-73-7	Fluorene	ND		0.50	0.058
91-20-3	Naphthalene	0.0654	J	1.0	0.064
85-01-8	Phenanthrene	ND		0.20	0.062
129-00-0	Pyrene	ND		0.50	0.076

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	119		37-120
4165-60-0	Nitrobenzene-d5 (Surr)	95		26-120
1718-51-0	p-Terphenyl-d14	121		64-127

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-193156-1

SDG No.:

Matrix: Water

Method	Lab Sample ID	Analyte	Result	C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit) , Q
Batch	ID: 608669 D	ate: 12/13/2021 23	3:54						
300.0	480-193156-6	Sulfate	1200	mg/L					
300.0	480-193156-6 MS	Sulfate	2067	mg/L	1000	87	80-120		
Batch	ID: 608125 D	ate: 12/09/2021 06	6:51						
350.1	480-193156-5	Ammonia	0.50	mg/L					F1
350.1	480-193156-5 MS	Ammonia	0.668	mg/L	0.200	82	90-110		F1
Batch	ID: 608047 D	ate: 12/08/2021 13	3:46 Prep Batch	i: 60800	4 Date: 1	L2/08/2	021 11:36		
9012B	480-193156-8	Cyanide, Total	0.014	mg/L					
9012B	480-193156-8 MS	Cyanide, Total	0.108	mg/L	0.100	94	90-110		
Batch	ID: 608396 D	ate: 12/10/2021 11	1:59 Prep Batch	ı: 60838	5 Date: 1	L2/10/2	021 11:24		
9012B	480-193156-7	Cyanide, Total	0.024	mg/L					
9012B	480-193156-7 MS	Cyanide, Total	0.120	mg/L	0.100	96	90-110		
Batch	ID: 608111 D	ate: 12/08/2021 19	9:00						
SM 3500 FE D	480-193156-1	Ferrous Iron	0.19	mg/L					HF
SM 3500 FE D	480-193156-1 MS	Ferrous Iron	1.04	mg/L	1.00	84	70-130		
Batch	ID: 608111 D	ate: 12/08/2021 19	9:00						
SM 3500 FE D	480-193156-6	Ferrous Iron	0.15	mg/L					HF
SM 3500 FE D	480-193156-6 MS	Ferrous Iron	1.17	mg/L	1.00	101	70-130		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Eurofins TestAmerica, Buffalo

Eurofins TestAmerica, Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

eurofins Environment Testing America

	Sampler			I ah DM				2000	Comment Transfer		ľ		
Client Information (Sub Contract Lab)				Schove,	e, John R	~		5	Security Sec	Ġ		480-68479.1	
Chert Contact: Shipping/Receiving	Phone:			E-Mail: John.S	chove(E-Mail: John.Schove@Eurofinset.com	E	State of Origin: New York	Origin: ork			Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.				∢∠	creditation ELAP -	Accreditations Required (See note): NELAP - New York	note):					Job #:	
Address: 777 New Durham Road.	Due Date Requested: 12/22/2021	ij					1 .9		,			Preservation Codes	des:
City:	TAT Requested (days):	ys):			18		Alidiysis r	palsanbau	<u></u>	F	F	A - HCL	
Edison State, Zip: NJ, 08817												B - NaOH C - Zn Acetate D - Nitric Acid F - NaHSO4	
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	PO#				FIRE	and:						F-MeOH G-Amchlor	R - Na2S2O3 S - H2SO4
Email:	**			JN 30	(0)							n - Ascorbic Acid I - Ice J - DI Water	
Project Name: NYSEG - Former MGP Site - Ithaca, NY	Project #: 48022675			J	10 86	00:5						K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	:#MOSS				A) as							Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp,	Matrix (wwwater, Sasolid, Owwasheloll, BITTISSUE, Analy) ILL	Perform MS/M	Nagaris -					TedmuN Isto	1000	Concist Institutetions (Mixto)
	\bigvee	X	a		X				10		×	Opecial	istinctions/note.
MW-40-120821 (480-193210-1)	12/8/21	12:55 Eastern		Water	×						2		
MW-31S 120821 (480-193210-2)	12/8/21	12:12 Eastern		Water	×						2		
MW-48S 120821 (480-193210-3)	12/8/21	10:05 Eastern		Water	×					L	2		
MW-25S 120821 (480-193210-4)	12/8/21	08:00 Eastern		Water	×						2		
MW-22S 120821 (480-193210-5)	12/8/21	08:45 Eastern		Water	×						2		
EQUIP.BLANK-120821 (480-193210-6)	12/8/21	14:15 Eastern		Water	×						2		
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not turn maintain accreditation in the State of Origin listed above for analysis/fiests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	i places the ownershii being analyzed, the sa late, return the signec	of method, an mples must be Chain of Cust	nalyte & accredit shipped back to ody attesting to	ation compliance the Eurofins Tesaid complicance	stAmerica to Eurofi	t subcontract labo a laboratory or oth ns TestAmerica.	ratories. This s ier instructions v	ample shipm vill be provide	ent is forwar ed. Any cha	ded under nges to aco	chain-of-c creditation	custody. If the labor	method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currenty es must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins ain of Custody attesting to said complicance to Eurofins TestAmerica.
Possible Hazard Identification Unconfirmed					Samp	le Disposal (A f	A fee may b	e assesse	d if samp	les are	retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	ble Rank: 2			Specie	Special Instructions/QC Requirements	OC Require	Disposal by Lab	ву гар		Archi	Archive For	Months
Empty Kit Relinquished by:		Date:			- Limb			W	Method of Shipment				
11/1/	Date/Time:	oanc.		Company		Received by:		1	and or some	merii.			
Relinquished by:) Date/Time:	1710)	7	+ Nomband	0	Boreived by:	7/7	Sed	2	12/	2/41	05:21 1	
Relinquished by:	Date/Time.		5 6	in the same		ceived by.			C Ca	Date/Time:			
			5	Corripariy	, T	Received by:			Da	Date/Time:			Company
Custody Seal No∷ △ Yes △ No					გ	Cooler Temperature(s) °C and Other Remarks:	(s) °C and Othe	Remarks:	1040	6	2.7	7=2.6/	1.5=1.4
													Ver: 06/08/2021

Job Narrative 480-193210-1

Comments

No additional comments.

Receipt

The samples were received on 12/9/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.4° C, 2.8° C and 3.0° C.

GC/MS VOA

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: MW-25S 120821 (480-193210-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D LL: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-48S 120821 (480-193210-3). Elevated reporting limits (RLs) are provided.

Method 8270D LL: QC Samples for Preparation batch 480-608366 were not spiked for acid surrogates: Phenol-d5 (Surr), 2-Fluorophenol (Surr) and 2,4,6-Tribromophenol (Surr). These surrogates are not associated with any target analytes for the associated job, therefore the data has been reported.

Method 8270E SIM: The continuing calibration verification (CCV) analyzed in batch 460-819147 was outside the method criteria for the following analyte(s): Dibenz(a,h)anthracene and Indeno[1,2,3-cd]pyrene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270E SIM: The surrogate recovery for the blank associated with preparation batch 460-819075 and analytical batch 460-819147 was outside the upper control limits.

Method 8270E SIM: Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: MW-40-120821 (480-193210-1), MW-31S 120821 (480-193210-2), MW-48S 120821 (480-193210-3), MW-25S 120821 (480-193210-4), MW-22S 120821 (480-193210-5) and EQUIP.BLANK-120821 (480-193210-6). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted due to the nature of the sample matrix: MW-31S 120821 (480-193210-2). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-48S 120821 (480-193210-3), MW-25S 120821 (480-193210-4) and MW-22S 120821 (480-193210-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-48S 120821 (480-193210-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-40-120821 (480-193210-1), MW-31S 120821 (480-193210-2), MW-48S 120821 (480-193210-3), MW-25S 120821 (480-193210-4) and MW-22S 120821 (480-193210-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-608366.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.	

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job	No.:	480-193210-1	
SDG	No.:							

Matrix: Water Level: Low

GC Column (1): Rtxi-5Sil M ID: 0.25(mm)

Client Sample ID	Lab Sample ID	NBZ #	FBP #
MW-40-120821	480-193210-1	91	133 S1+
MW-31S 120821	480-193210-2	97	138 S1+
MW-48S 120821	480-193210-3	92	144 S1+
MW-25S 120821	480-193210-4	92	153 S1+
MW-22S 120821	480-193210-5	90	132 S1+
EQUIP.BLANK-120821	480-193210-6	90	146 S1+
	MB 460-819075/1-A	96	145 S1+
	LCS 460-819075/2-A	94	125
	LCSD 460-819075/3-A	99	134 S1+

NBZ = Nitrobenzene-d5 (Surr)

FBP = 2-Fluorobiphenyl

QC LIMITS 54-134 25-131

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name:	Eurofins TestAmerica,	Edison	Job No.:	480-193210-1
SDG No.:				

Instrument ID: CBNAMS9 Start Date: 12/16/2021 09:44

Analysis Batch Number: 819147 End Date: 12/16/2021 19:58

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCVIS 460-819147/2		12/16/2021 09:44	1	h269807.d	Rtxi-5Sil MS 0.25(mm)
MB 460-819075/1-A		12/16/2021 10:27	1	h269809.d	Rtxi-5Sil MS 0.25(mm)
LCS 460-819075/2-A		12/16/2021 10:48	1	h269810.d	Rtxi-5Sil MS 0.25(mm)
LCSD 460-819075/3-A		12/16/2021 11:09	1	h269811.d	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 11:30	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 11:51	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:12	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:34	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:55	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 13:37	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 13:58	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 14:19	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 14:40	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 15:01	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 15:22	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 15:44	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:05	1		Rtxi-5Sil MS 0.25(mm)
480-193210-1	MW-40-120821	12/16/2021 16:26	1	h269826.d	Rtxi-5Sil MS 0.25(mm)
480-193210-2	MW-31S 120821	12/16/2021 16:47	1	h269827.d	Rtxi-5Sil MS 0.25(mm)
480-193210-3	MW-48S 120821	12/16/2021 17:08	1	h269828.d	Rtxi-5Sil MS 0.25(mm)
480-193210-4	MW-25S 120821	12/16/2021 17:29	1	h269829.d	Rtxi-5Sil MS 0.25(mm)
480-193210-5	MW-22S 120821	12/16/2021 17:51	1	h269830.d	Rtxi-5Sil MS 0.25(mm)
480-193210-6	EQUIP.BLANK-120821	12/16/2021 18:12	1	h269831.d	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:33	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:54	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:16	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:37	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:58	1		Rtxi-5Sil MS 0.25(mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 480-193210-1

SDG No.:

Lab Sample ID: CCVIS 460-819147/2 Calibration Date: 12/16/2021 09:44

Instrument ID: CBNAMS9 Calib Start Date: 12/03/2021 15:16

Lab File ID: h269807.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Lin2		0.5143		195	200	-2.5	20.0
N-Nitrosodimethylamine	Ave	0.6104	0.6363		104	100	4.2	20.0
Bis(2-chloroethyl)ether	Ave	1.096	1.145	0.7000	20.9	20.0	4.4	20.0
Naphthalene	Ave	1.062	1.028	0.7000	19.4	20.0	-3.2	20.0
Acenaphthylene	Ave	2.235	2.325	0.9000	20.8	20.0	4.0	20.0
Acenaphthene	Ave	1.077	1.073	0.9000	19.9	20.0	-0.4	20.0
Fluorene	Ave	1.081	1.072	0.9000	19.8	20.0	-0.8	20.0
4,6-Dinitro-2-methylphenol	Ave	0.0709	0.0769	0.0100	217	200	8.4	20.0
Hexachlorobenzene	Ave	0.4250	0.4236	0.1000	19.9	20.0	-0.3	20.0
Pentachlorophenol	Lin1		0.1872	0.0500	101	100	0.9	20.0
Phenanthrene	Ave	1.831	1.588	0.7000	17.3	20.0	-13.3	20.0
Anthracene	Ave	1.406	1.555	0.7000	22.1	20.0	10.6	20.0
Fluoranthene	Ave	1.406	1.482	0.6000	21.1	20.0	5.4	20.0
Pyrene	Ave	1.585	1.586	0.6000	20.0	20.0	0.0	20.0
Benzo[a]anthracene	Ave	1.361	1.305	0.8000	19.2	20.0	-4.1	20.0
Chrysene	Ave	1.472	1.364	0.7000	18.5	20.0	-7.4	20.0
Benzo[b]fluoranthene	Ave	1.574	1.288		16.4	20.0	-18.2	20.0
Benzo[k]fluoranthene	Ave	1.388	1.378	0.7000	19.9	20.0	-0.7	20.0
Benzo[a]pyrene	Ave	1.206	1.073	0.7000	17.8	20.0	-11.0	20.0
Indeno[1,2,3-cd]pyrene	Ave	1.464	1.036	0.5000	14.2	20.0	-29.2*	20.0
Dibenz(a,h)anthracene	Ave	1.553	1.064	0.4000	13.7	20.0	-31.5*	20.0
Benzo[g,h,i]perylene	Ave	1.533	1.277	0.5000	16.7	20.0	-16.7	20.0
Nitrobenzene-d5 (Surr)	Ave	0.3494	0.3646		417	400	4.3	20.0
2-Fluorobiphenyl	Ave	1.424	2.037		572	400	43.0*	20.0
2,4,6-Tribromophenol	Ave	0.3457	0.3763		435	400	8.9	20.0
Terphenyl-d14	Ave	0.9675	1.106		457	400	14.3	20.0

Jany

#224

Eurofins TestAmerica, Buffalo Amherst, NY 14228-2298

10 Hazelwood Drive

Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

Environment Testing

💸 eurofins

TSP Dodecahydrate Special Instructions/Note: Z - other (specify) P - Na2O4S Q - Na2SO3 R - Na2S2O3 S-H2SO4 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) COC No: 480-168295-34652.1 Preservation Codes 6 480-193309 Chain of Custody H - Ascorbic Acid Page: I - Ice J - DI Water G - Amchlor - MeOH Archive For 3 Total Number of containers 5/21 4 Method of Shipment State of Origin: Sarrier Tracking No(s): 500_FE_D - Iron, Ferrous Disposal By Lab 3350B - Alkalinity Analysis Requested Cooler Temperature(s) °C and Other Remarks SSK_175 - Methane Special Instructions/QC Requirements 300.0_28D - Sulfate Return To Client E-Mail: John Schove@Eurofinset.com BUTZB - Cyanide, Total Lab PM: Schove, John R STOD_SIM - SVOC SIM Analytes 5 \rightarrow 2 2 Perform MS/MSD (Yes or No) 3 BT=Tissue, A=Air Water Preservation Code Water Water Water Water Zwater Water Water Water Water Radiological G=grab) 218-929- 716C Sample (C=comp Type PWSID: TAT Requested (days): Shurlas Pat Meituge 700 335 0250 260 0310 Sample Date Unknown Due Date Requested: ompliance Project: 12/9/21 12/0/21 Sample Date 4505522361 Project #: 48022675 SSOW#: 60615225 Poison B かか Skin Irritant Deliverable Requested 1, II, III, IV, Other Specify) Custody Seal No. NYSEG - Former MGP Site - Ithaca, NY 126021 125021 - Sth-MW 12/221 Flammable essible Hazard Identification New York State Electric & Gas Empty Kit Relinquished by: Custody Seals Intact:

Δ Yes Δ No ruspantini@nyseg.com Client Information Sample Identification Client Contact: Mr. John Ruspantini MW-455 235 585-484-6839(Tel) Non-Hazard 18 Link Drive City: Binghamton 45. State, Zip: NY, 13902

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

_	_	-	
=			
		Ξ	
Ē			
	=	=	
			Ī
≡	=		≣
=			
፷	1		
=	-		
		_	=
	=	_	
		-	
	-		
	=		
	=		
_	_	_	-

eurofins Environment Testing America

	Sampler			Lab PM:					Carrier	Carrier Tracking No(s):	No(s):		COC No.				Г
Client Information (Sub Contract Lab)				Scho	Schove, John R	œ							480-68509.1	3509.1			_
Criteri Contact. Shipping/Receiving	Phone:			E-Mail: John.	Schove@	E-Mail: John.Schove@Eurofinset.com	et.com		State o	State of Origin: New York			Page: Page 1 of 1	1 of 1			
Company: TestAmerica Laboratories, Inc.					AELAP -	ins Require New Yor	Accreditations Required (See note) NELAP - New York						Job #:	Job #:			
Address:	Due Date Requested:	ig:											Preser	Preservation Codes	dec.		T
777 New Durham Road,	12/23/2021						Ana	Analysis Re	Requested	pa				Vation Co		9	
Crty. Edison	TAT Requested (days):	ys):			E III					_	_		B S S	- E	N - None	e (
State, Zip: NJ, 08817	ı												D - Nitr	O - ZII Acelate D - Nitric Acid E - NaHSO4	P - Na20 Q - Na2S	03 4S 52	
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	PO #:												G - Amchlor	F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S. S - H2SO T - TSP D	R - Na2S2O3 S - H2SO4 T - TSP Dodecahudrate	
Email:	:#OM				(0)									Vater	U - Acetone V - MCAA	ne de la company	
Project Name: NYSEG - Former MGP Site - Ithaca, NY	Project #: 48022675				10 88								tainen K-EDTA L-EDA	۷.	W - pH 4-5 Z - other (specify)	5 specify)	
Site:	:ROOW#:				y) as								of con				
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (wwater, S=solid, O=waste/oil, BT=Tissue, A=Air)	Field Filtered: Perform MS/M 8270E_SIM/3510								TedmuM IstoT	Special Ir	Special Instructions/Note	Note.	1
	\bigvee	\bigvee	Preservation Code:	on Code:	X	413 134 137 138 138 138								Λ			
MW-45S-120921 (480-193309-1)	12/9/21	08:00 Eastern		Water	×					_			2				
MW-47S-120921 (480-193309-2)	12/9/21	09:00 Eastern		Water	×					-			2				T -
MW-23S-120921 (480-193309-3)	12/9/21	09:10 Fastern		Water	×					-		-	2				T-
										-							
										-							1
																	T
																	Т .
													19.23				1
										_							
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica.	a places the ownership being analyzed, the sa date, return the signed	o of method, ar imples must be Chain of Cust	nalyte & accredii shipped back to ody attesting to	tation compliane to the Eurofins 1 said complican	estAmerica	t subcontract a laboratory ns TestAm	ct laboratorie or other ins	s. This sar tructions wil	nple shipm I be provic	ent is for led. Any	warded u	inder cha to accred	n-of-custody itation status	. If the labor	ratory does r prought to Eu	not currently rofins	
Possible Hazard Identification					Samp	le Dispo	sal (A fee	may be	assess	ed if sa	mples	are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	yer than	(month)		T
Unconnirmed]	Return To Client	o Client		Disposal By Lab	al By La	9]	Archive For		Months	, s	
Deliverable Requested: I, III, IV, Other (specify) A	Primary Deliverable	ible Rank: 2			Specie	al Instruci	Special Instructions/QC Requirements	Requirem	ents:								
Empty Kit Relinquished by:		Date:			Time:		1	,	2	Method of Shipment:	Shipmen						T
Relinquished by: [Mach [Kol 6]	2	10/11	3	Company	Re	Received by	X	1/2/0	ateltx	TX	Date/Time	7/4	121	05:1	Company	ETA	T
Reinquished by:	Date/Time:		0	Company	Re	Received by:					Date/Time	ne:			Company		T
Relinquished by:	Date/Time:		0	Company	S.	Received by:					Date/Time:	ne:			Company		T
Custody Seals Intact: Custody Seal No.: △ Yes △ No	7				රී	oler Tempe	Cooler Temperature(s) °C and Other Remarks.	and Other F	Remarks:	12	49	12	7.	19.2	1.5=	5,7	T
										1					Ver: 06/08/202	08/2021	7

Job Narrative 480-193309-1

Comments

No additional comments.

Receipt

The samples were received on 12/10/2021 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.8° C and 3.2° C.

GC/MS VOA

Method 8260C: The following sample was diluted due to the nature of the sample matrix: MW-23S-120921 (480-193309-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D LL: Three surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: MW-45S-120921 (480-193309-1). These results have been reported and qualified.

Method 8270D LL: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-23S-120921 (480-193309-3). Elevated reporting limits (RLs) are provided.

Method 8270D LL: The following sample required a dilution due to the abundance of target analytes: MW-23S-120921 (480-193309-3). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270D LL: The continuing calibration verification (CCV) analyzed in batch 480-608800 was outside the method criteria for the following analyte(s): Phenol-d5 (Surr). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270E SIM: The continuing calibration verification (CCV) analyzed in batch 460-819147 was outside the method criteria for the following analyte(s): Dibenz(a,h)anthracene and Indeno[1,2,3-cd]pyrene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270E SIM: The surrogate recovery for the blank associated with preparation batch 460-819075 and analytical batch 460-819147 was outside the upper control limits.

Method 8270E SIM: Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: MW-45S-120921 (480-193309-1) and MW-47S-120921 (480-193309-2). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-45S-120921 (480-193309-1), MW-47S-120921 (480-193309-2) and MW-23S-120921 (480-193309-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-45S-120921 (480-193309-1), MW-47S-120921 (480-193309-2) and MW-23S-120921 (480-193309-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-45S-120921 (480-193309-1), MW-47S-120921 (480-193309-2) and MW-23S-120921 (480-193309-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic PrepNo analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab Name:	Eurofins TestAmerica,	Edison	Job No.:	480-193309-1	
SDG No.:					

Matrix: Water Level: Low

GC Column (1): Rtxi-5Sil M ID: 0.25(mm)

Client Sample ID	Lab Sample ID	NBZ #	FBP #
MW-45S-120921	480-193309-1	96	146 S1+
MW-47S-120921	480-193309-2	92	145 S1+
MW-23S-120921	480-193309-3	83	129
	MB 460-819075/1-A	96	145 S1+
	LCS 460-819075/2-A	94	125
	LCSD 460-819075/3-A	99	134 S1+

NBZ = Nitrobenzene-d5 (Surr)

FBP = 2-Fluorobiphenyl

QC LIMITS 54-134 25-131

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab	Name:	Eurofins	TestAmerica,	Edison	Job No.:	480-193309-1
SDG	No.:					

Instrument ID: CBNAMS9 Start Date: 12/16/2021 09:44

Analysis Batch Number: 819147 End Date: 12/16/2021 19:58

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
CCVIS 460-819147/2		12/16/2021 09:44	1	h269807.d	Rtxi-5Sil MS 0.25(mm)
MB 460-819075/1-A		12/16/2021 10:27	1	h269809.d	Rtxi-5Sil MS 0.25(mm)
LCS 460-819075/2-A		12/16/2021 10:48	1	h269810.d	Rtxi-5Sil MS 0.25(mm)
LCSD 460-819075/3-A		12/16/2021 11:09	1	h269811.d	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 11:30	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 11:51	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:12	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:34	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 12:55	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 13:37	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 13:58	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 14:19	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 14:40	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 15:01	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 15:22	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 15:44	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:05	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:26	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 16:47	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:08	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:29	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 17:51	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 18:12	1		Rtxi-5Sil MS 0.25(mm)
480-193309-1	MW-45S-120921	12/16/2021 18:33	1	h269832.d	Rtxi-5Sil MS 0.25(mm)
480-193309-2	MW-47S-120921	12/16/2021 18:54	1	h269833.d	Rtxi-5Sil MS 0.25(mm)
480-193309-3	MW-23S-120921	12/16/2021 19:16	1	h269834.d	Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:37	1		Rtxi-5Sil MS 0.25(mm)
ZZZZZ		12/16/2021 19:58	1		Rtxi-5Sil MS 0.25(mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 480-193309-1

SDG No.:

Lab Sample ID: CCVIS 460-819147/2 Calibration Date: 12/16/2021 09:44

Instrument ID: CBNAMS9 Calib Start Date: 12/03/2021 15:16

Lab File ID: h269807.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Lin2		0.5143		195	200	-2.5	20.0
N-Nitrosodimethylamine	Ave	0.6104	0.6363		104	100	4.2	20.0
Bis(2-chloroethyl)ether	Ave	1.096	1.145	0.7000	20.9	20.0	4.4	20.0
Naphthalene	Ave	1.062	1.028	0.7000	19.4	20.0	-3.2	20.0
Acenaphthylene	Ave	2.235	2.325	0.9000	20.8	20.0	4.0	20.0
Acenaphthene	Ave	1.077	1.073	0.9000	19.9	20.0	-0.4	20.0
Fluorene	Ave	1.081	1.072	0.9000	19.8	20.0	-0.8	20.0
4,6-Dinitro-2-methylphenol	Ave	0.0709	0.0769	0.0100	217	200	8.4	20.0
Hexachlorobenzene	Ave	0.4250	0.4236	0.1000	19.9	20.0	-0.3	20.0
Pentachlorophenol	Lin1		0.1872	0.0500	101	100	0.9	20.0
Phenanthrene	Ave	1.831	1.588	0.7000	17.3	20.0	-13.3	20.0
Anthracene	Ave	1.406	1.555	0.7000	22.1	20.0	10.6	20.0
Fluoranthene	Ave	1.406	1.482	0.6000	21.1	20.0	5.4	20.0
Pyrene	Ave	1.585	1.586	0.6000	20.0	20.0	0.0	20.0
Benzo[a]anthracene	Ave	1.361	1.305	0.8000	19.2	20.0	-4.1	20.0
Chrysene	Ave	1.472	1.364	0.7000	18.5	20.0	-7.4	20.0
Benzo[b]fluoranthene	Ave	1.574	1.288		16.4	20.0	-18.2	20.0
Benzo[k]fluoranthene	Ave	1.388	1.378	0.7000	19.9	20.0	-0.7	20.0
Benzo[a]pyrene	Ave	1.206	1.073	0.7000	17.8	20.0	-11.0	20.0
Indeno[1,2,3-cd]pyrene	Ave	1.464	1.036	0.5000	14.2	20.0	-29.2*	20.0
Dibenz(a,h)anthracene	Ave	1.553	1.064	0.4000	13.7	20.0	-31.5*	20.0
Benzo[g,h,i]perylene	Ave	1.533	1.277	0.5000	16.7	20.0	-16.7	20.0
Nitrobenzene-d5 (Surr)	Ave	0.3494	0.3646		417	400	4.3	20.0
2-Fluorobiphenyl	Ave	1.424	2.037		572	400	43.0*	20.0
2,4,6-Tribromophenol	Ave	0.3457	0.3763		435	400	8.9	20.0
Terphenyl-d14	Ave	0.9675	1.106		457	400	14.3	20.0

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-193309-1				
SDG No.:					
Lab File ID: W10018569.d	Lab Sample ID: MB 480-608429/1-A				
Matrix: Water	Date Extracted: 12/10/2021 14:09				
Instrument ID: HP5973W	Date Analyzed: 12/13/2021 15:48				
Level: (Low/Med) Low					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB		
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED	
	LCS 480-608429/2-A	W10018570.d	12/13/2021 16:16	5
MW-45S-120921	480-193309-1	W10018583.d	12/13/2021 22:12	2
MW-47S-120921	480-193309-2	W10018584.d	12/13/2021 22:40)
MW-23S-120921	480-193309-3	W10018585.d	12/13/2021 23:08	3
MW-23S-120921 DL	480-193309-3 DL	W10018593.d	12/14/2021 15:21	

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo					
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 480-608429/1-A				
Matrix: Water	Lab File ID: W10018569.d				
Analysis Method: 8270D LL	Date Collected:				
Extract. Method: 3510C	Date Extracted: 12/10/2021 14:09				
Sample wt/vol: 1000(mL)	Date Analyzed: 12/13/2021 15:48				
Con. Extract Vol.: 1(mL)	Dilution Factor: 1				
Injection Volume: 2(uL)	Level: (low/med) Low				
% Moisture:	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 608593	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	ND		0.50	0.036
208-96-8	Acenaphthylene	ND		0.30	0.056
120-12-7	Anthracene	ND		0.50	0.034
218-01-9	Chrysene	ND		0.50	0.074
206-44-0	Fluoranthene	ND		0.50	0.080
86-73-7	Fluorene	ND		0.50	0.058
91-20-3	Naphthalene	ND		1.0	0.064
85-01-8	Phenanthrene	0.0774	J	0.20	0.062
129-00-0	Pyrene	ND		0.50	0.076

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	105		37-120
4165-60-0	Nitrobenzene-d5 (Surr)	83		26-120
1718-51-0	p-Terphenyl-d14	119		64-127

Kropovitch, Ann

Fischer, Brian < Brian. Fischer@Eurofinset.com> From:

Friday, February 04, 2022 8:56 AM Sent: . T

Kropovitch, Ann

Schove, John

ü

[EXTERNAL] RE: Question 480-193156 Ithaca report Subject:

Hi Ann Marie,

There is a note in the job that we only received 8 of 17 bottles for the duplicate, MS, and MSD. Missing RSK vials and unpreserved plastics.

Thanks,

Brian Fischer

Phone: 716-504-9835

E-mail: Brian.Fischer@eurofinset.com

From: Kropovitch, Ann <ann.marie.kropovitch@aecom.com>

Sent: Thursday, February 3, 2022 5:51 PM

To: Fischer, Brian <Brian.Fischer@Eurofinset.com>

Subject: FW: Question 480-193156 Ithaca report

EXTERNAL EMAIL*

Hi Brian,

Can someone take a quick look at this and let me know. Wondering if it didn't get logged in for the same parameters or volume/bottle issue?

Thanks, Ann Marie From: Kropovitch, Ann

Sent: Thursday, February 03, 2022 5:48 PM

To: John Schove < John. Schove@Eurofinset.com>

Subject: Question 480-193156 Ithaca report

Hi John,

methane and most of the wet chem. Do you know why it wasn't analyzed for the same parameters as the other samples? It looks like the COC was checked for all. Can you check For the NYSEG Ithaca report 480-193156 it looks like the field duplicate 480-193156-4 (DUP-1-120721) didn't get analyzed for all the parameters. I seem to be missing into this and let me know.

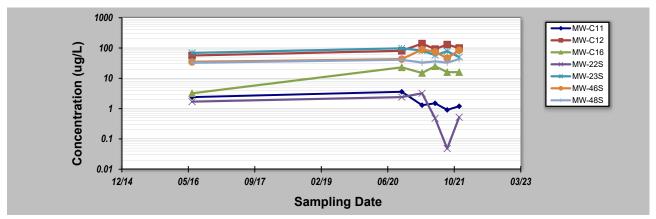
Thanks, Ann Marie * WARNING - EXTERNAL: This email originated from outside of Eurofins Environment Testing America. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

AECOM 1 John James Audubon Parkway, Suite 210 Amherst, NY

Appendix D - Mann Kendall Analysis

Evaluation Date: December 2021

Facility Name: NYSEG - Ithaca Court Street

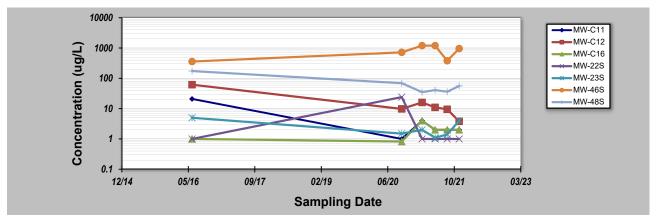

Conducted By: Renata Porter

Job ID: 60615225

Constituent: Acenaphthene

Concentration Units: ug/L

Samı	Sampling Point ID:		MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S
Sampling Event	Sampling Date			ACENAPHT	HENE CONCENTR	ATION (ug/L)		
1	6/7/2016	2.4	56.7	3.2	1.7	68.8	34.9	32.7
2	10/1/2020	3.6	81.0	23.0	2.4	98.0	43.0	41.0
3	3/3/2021	1.3	140.0	15.0	3.2	82.0	89.0	33.0
4	6/9/2021	1.5	92.0	25.0	0.5	58.0	75.0	36.0
5	9/8/2021	0.91	130	16.0	0.048	78.0	46.0	33.0
6	12/7/2021	1.2	100	16.0	0.52	50.0	85.0	43.0
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
Coefficien	t of Variation:	0.55	0.31	0.47	0.90	0.24	0.38	0.12
	II Statistic (S):	-9	7	4	-5	-7	7	6
	dence Factor:	93.2%	86.4%	70.3%	76.5%	86.4%	86.4%	81.5%
Concen	tration Trend:	Prob. Decreasing	No Trend	No Trend	Stable	Stable	No Trend	No Trend

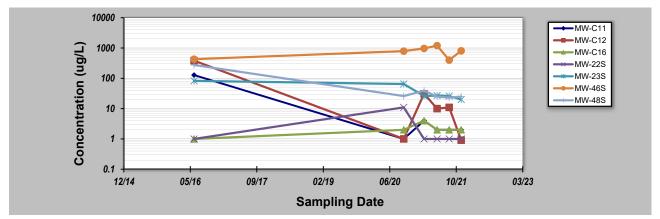


Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021		Job ID:	60615225	
Facility Name: NYSEG - Ithaca	Court Street	Constituent:	Benzene	
Conducted By: Renata Porter		Concentration Units:	ug/L	
· · · · · · · · · · · · · · · · · · ·				

Samı	Sampling Point ID:		MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S
Sampling Event	Sampling Date		BENZENE CONCENTRATION (ug/L)					
1	6/7/2016	20.9	61.6	1.0	1.0	5.0	358	174
2	10/1/2020	1.0	9.8	0.82	24.0	1.5	720	69.0
3	3/3/2021	4.0	16.0	4.0	1.0	2.0	1200	35.0
4	6/9/2021	2.0	11.0	2.0	1.0	1.1	1200	41.0
5	9/8/2021	2.0	9.5	2.0	1.0	1.4	380	36.0
6	12/7/2021	2.0	3.8	2.0	1.0	4.0	960	56.0
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
	t of Variation:	1.45	1.15	0.57	1.94	0.64	0.47	0.78
Mann-Kendal	II Statistic (S):	-4	-11	4	-3	-3	4	-5
Confi	dence Factor:	70.3%	97.2%	70.3%	64.0%	64.0%	70.3%	76.5%
Concen	tration Trend:	No Trend	Decreasing	No Trend	No Trend	Stable	No Trend	Stable



Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021	Job ID: 60615225
Facility Name: NYSEG - Ithaca Court Street	Constituent: Ethylbenzene
Conducted By: Renata Porter	Concentration Units: ug/L

Samı	oling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		ETHYLBENZENE CONCENTRATION (ug/L)							
1	6/7/2016	128	383	1.0	1.0	82.4	428	275		
2	10/1/2020	1.0	1.0	2.0	11.0	65.0	790	26.0		
3	3/3/2021	4.0	31.0	4.0	1.0	26.0	970	39.0		
4	6/9/2021	2.0	10.0	2.0	1.0	27.0	1200	25.0		
5	9/8/2021	2.0	11.0	2.0	1.0	26.0	400	23.0		
6	12/7/2021	2.0	0.91	2.0	1.0	20.0	810	25.0		
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
	t of Variation:	2.22	2.09	0.45	1.53	0.63	0.40	1.47		
Mann-Kenda	I Statistic (S):	-4	-7	3	-3	-12	3	-10		
Confi	dence Factor:	70.3%	86.4%	64.0%	64.0%	98.2%	64.0%	95.2%		
Concen	Concentration Trend:		No Trend	No Trend	No Trend	Decreasing	No Trend	Decreasing		

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021

Facility Name: NYSEG - Ithaca Court Street

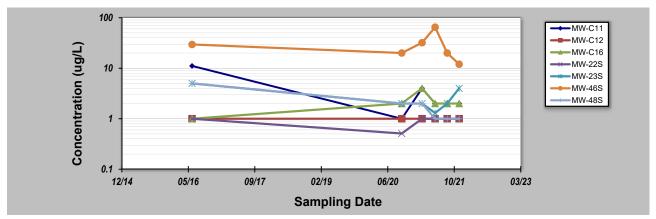
Conducted By: Renata Porter

Job ID: 60615225

Constituent: Naphthalene

Concentration Units: ug/L

Samp	oling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		NAPHTHALENE CONCENTRATION (ug/L)							
1	6/7/2016	111	180	1.4	1.7	1.4	954	16.4		
2	10/1/2020	4.8	0.19	19.0	0.8	340.0	1100	91.0		
3	3/3/2021	20.0	0.35	20.0	1.0	230.0	2500	44.0		
4	6/9/2021	20.0	20.0	20.0	0.068	14.0	2200	49.0		
5	9/8/2021	1.0	20.0	5.0	0.097	5.2	730	10.0		
6	12/7/2021	0.32	21	5.1	1.0	48	1700	140		
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
	Coefficient of Variation:		1.72	0.75	0.79	1.35	0.47	0.84		
Mann-Kendal	I Statistic (S):	-10	4	2	-4	-1	1	3		
Confi	dence Factor:	95.2%	70.3%	57.0%	70.3%	50.0%	50.0%	64.0%		
Concen	Concentration Trend:		No Trend	No Trend	Stable	No Trend	No Trend	No Trend		

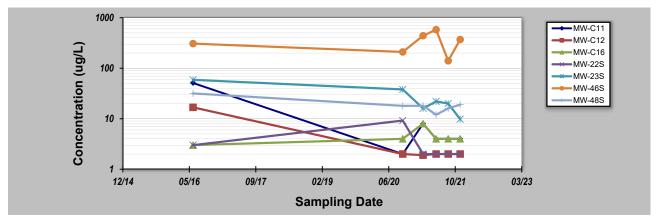


Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021	Job ID: 60615225
Facility Name: NYSEG - Ithaca Court Street	Constituent: Toluene
Conducted By: Renata Porter	Concentration Units: ug/L
· ·	

Samı	pling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		TOLUENE CONCENTRATION (ug/L)							
1	6/7/2016	11.1	1.0	1.0	1.0	5.0	29.5	5.0		
2	10/1/2020	1.0	1.0	2.0	0.51	2.0	20.0	2.0		
3	3/3/2021	4.0	1.0	4.0	1.0	2.0	32.0	2.0		
4	6/9/2021	2.0	1.0	2.0	1.0	1.3	65.0	1.0		
5	9/8/2021	2.0	1.0	2.0	1.0	2.0	20.0	1.0		
6	12/7/2021	2.0	1.0	2.0	1.0	4.0	12.0	1.0		
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20	1									
Coefficien	Coefficient of Variation:		0.00	0.45	0.22	0.53	0.63	0.77		
Mann-Kenda	II Statistic (S):	-4	0	3	3	-2	-4	-11		
Confi	dence Factor:	70.3%	39.3%	64.0%	64.0%	57.0%	70.3%	97.2%		
Concen	Concentration Trend:		Stable	No Trend	No Trend	Stable	Stable	Decreasing		



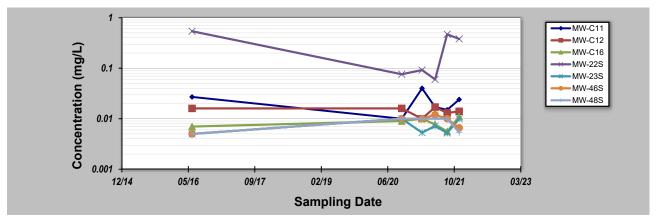
Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021	Job ID: 60615225
Facility Name: NYSEG - Ithaca Court Street	Constituent: Xylenes, Total
Conducted By: Renata Porter	Concentration Units: ug/L

Samı	Sampling Point ID:		MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		XYLENES, TOTAL CONCENTRATION (ug/L)							
1	6/7/2016	51.0	16.8	3.0	3.0	58.9	307	31.7		
2	10/1/2020	2.0	2.0	4.0	9.2	38.0	210	18.0		
3	3/3/2021	8.0	1.9	8.0	2.0	16.0	440	18.0		
4	6/9/2021	4.0	2.0	4.0	2.0	22.0	580	12.0		
5	9/8/2021	4.0	2.0	4.0	2.0	20.0	140	16.0		
6	12/7/2021	4.0	2.0	4.0	2.0	9.8	370	19.0		
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficien	Coefficient of Variation:		1.36	0.39	0.86	0.66	0.47	0.35		
Mann-Kenda	II Statistic (S):	-4	-3	3	-7	-11	1	-4		
Confi	idence Factor:	70.3%	64.0%	64.0%	86.4%	97.2%	50.0%	70.3%		
Concen	Concentration Trend:		No Trend	No Trend	Stable	Decreasing	No Trend	Stable		

Notes


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

Evaluation Date: December 2021	Job ID: 60615225
Facility Name: NYSEG - Ithaca Court Street	Constituent: Total Cyanide
Conducted By: Renata Porter	Concentration Units: mg/L

Samp	oling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		TOTAL CYANIDE CONCENTRATION (mg/L)							
1	6/7/2016	0.027	0.016	0.007	0.540	0.005	0.005	0.005		
2	10/1/2020	0.010	0.016	0.009	0.076	0.010	0.010	0.010		
3	3/3/2021	0.040	0.010	0.010	0.092	0.005	0.010	0.010		
4	6/9/2021	0.017	0.017	0.0077	0.060	0.0072	0.012	0.010		
5	9/8/2021	0.015	0.013	0.0056	0.47	0.0052	0.010	0.010		
6	12/7/2021	0.024	0.014	0.011	0.38	0.01	0.0066	0.0054		
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficien	t of Variation:	0.48	0.18	0.24	0.81	0.33	0.29	0.30		
Mann-Kendal	I Statistic (S):	-1	-2	3	-1	4	2	1		
Confi	dence Factor:	50.0%	57.0%	64.0%	50.0%	70.3%	57.0%	50.0%		
Concen	Concentration Trend:		Stable	No Trend	Stable	No Trend	No Trend	No Trend		

Notes

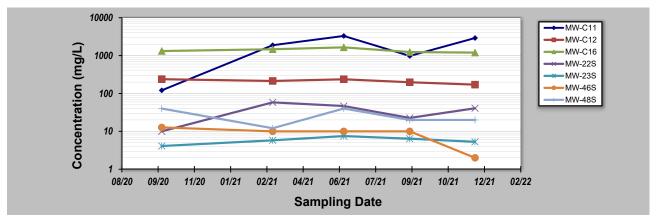
- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

Evaluation Date: December 2021

Facility Name: NYSEG - Ithaca Court Street


Conducted By: Renata Porter

Job ID: 60615225

Constituent: Sulfate

Concentration Units: mg/L

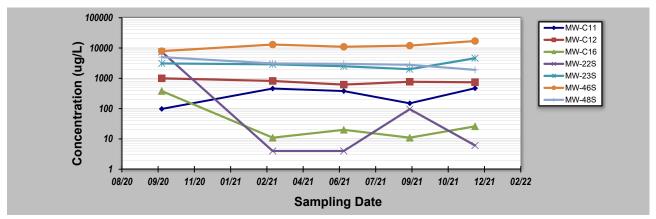
Sam	pling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		SULFATE CONCENTRATION (mg/L)							
1	10/1/2020	121	238	1320	10.0	4.1	12.7	40.0		
2	3/3/2021	1880	214	1470	58.3	5.8	10.0	12.1		
3	6/9/2021	3300	237	1650	46.7	7.5	10.0	40.0		
4	9/8/2021	979	198	1240	22.6	6.4	10.0	20.0		
5	12/7/2021	2910	171	1200	40.7	5.3	2.0	20.0		
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficier	Coefficient of Variation:		0.13	0.13	0.54	0.22	0.45	0.48		
Mann-Kenda	II Statistic (S):	4	-8	-4	0	2	-7	-2		
Confi	dence Factor:	75.8%	95.8%	75.8%	40.8%	59.2%	92.1%	59.2%		
Concer	Concentration Trend:		Decreasing	Stable	Stable	No Trend	Prob. Decreasing	Stable		

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021

Facility Name: NYSEG - Ithaca Court Street

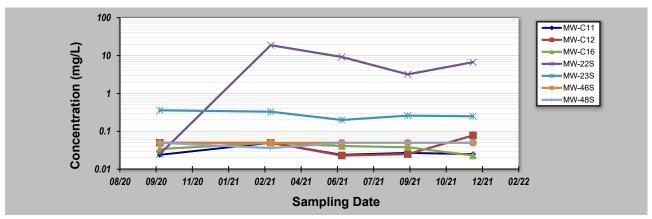

Conducted By: Renata Porter

Job ID: 60615225

Constituent: Methane

Concentration Units: ug/L

Sam	pling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		METHANE CONCENTRATION (ug/L)							
1	10/1/2020	98.0	1000	380	7500	3100	7900	5000		
2	3/3/2021	460	820	11.0	4.0	2900	13000	3100		
3	6/9/2021	380	620	20.0	4.0	2500	11000	3000		
4	9/8/2021	150	770	11.0	96.0	2000	12000	2800		
5	12/7/2021	470	740	26.0	6.1	4600	17000	1900		
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficier	nt of Variation:	0.56	0.18	1.81	2.20	0.32	0.27	0.36		
Mann-Kenda	II Statistic (S):	4	-6	-1	-1	-2	6	-10		
Confi	idence Factor:	75.8%	88.3%	50.0%	50.0%	59.2%	88.3%	99.2%		
Concer	Concentration Trend:		Stable	No Trend	No Trend	Stable	No Trend	Decreasing		



Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

			_	_			
Evaluation Date:	December 2021			Job ID:	60615225		
Facility Name:	NYSEG - Ithaca Court Stree	t	Constituent: Nitrate as N				
Conducted By:	Renata Porter		(Concentration Units:	mg/L		
_							

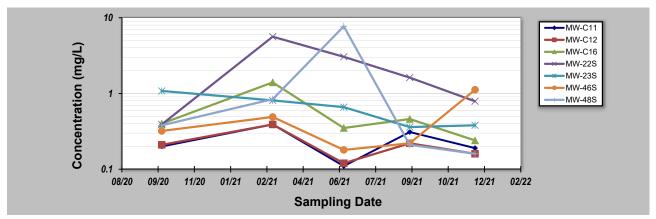
Sam	pling Point ID:	MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S		
Sampling Event	Sampling Date		NITRATE AS N CONCENTRATION (mg/L)							
1	10/1/2020	0.024	0.050	0.0340	0.025	0.360	0.049	0.050		
2	3/3/2021	0.050	0.050	0.0500	18.8	0.330	0.050	0.036		
3	6/9/2021	0.024	0.023	0.0410	9.20	0.200	0.050	0.050		
4	9/8/2021	0.027	0.025	0.0380	3.20	0.260	0.050	0.050		
5	12/7/2021	0.025	0.078	0.0230	6.70	0.250	0.050	0.050		
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficier	nt of Variation:	0.37	0.50	0.27	0.95	0.23	0.01	0.13		
Mann-Kenda	II Statistic (S):	1	1	-4	0	-6	4	2		
Conf	idence Factor:	50.0%	50.0%	75.8%	40.8%	88.3%	75.8%	59.2%		
Concer	Concentration Trend:		No Trend	Stable	Stable	Stable	No Trend	No Trend		

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: December 2021

Facility Name: NYSEG - Ithaca Court Street


Conducted By: Renata Porter

Job ID: 60615225

Constituent: Dissolved Oxygen

Concentration Units: mg/L

Sampling Point ID:		MW-C11	MW-C12	MW-C16	MW-22S	MW-23S	MW-46S	MW-48S
Sampling Event	Sampling Date	DISSOLVED OXYGEN CONCENTRATION (mg/L)						
1	10/1/2020	0.20	0.21	0.40	0.39	1.08	0.32	0.38
2	3/3/2021	0.39	0.39	1.40	5.62	0.81	0.49	0.84
3	6/9/2021	0.11	0.12	0.35	3.05	0.66	0.18	7.70
4	9/8/2021	0.31	0.22	0.46	1.62	0.36	0.22	0.21
5	12/7/2021	0.19	0.16	0.24	0.79	0.38	1.12	0.16
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
Coefficier	Coefficient of Variation:		0.47	0.83	0.92	0.46	0.83	1.76
Mann-Kendall Statistic (S):		0.46 -2	-2	-4	-2	-8	2	-4
Confidence Factor:		59.2%	59.2%	75.8%	59.2%	95.8%	59.2%	75.8%
Concentration Trend:		Stable	Stable	Stable	Stable	Decreasing	No Trend	No Trend

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.