

August 31, 2023 Project 2202159

VIA EMAIL: <u>Oliver.Wolfe@dec.ny.gov</u>

Consulting Engineers and Scientists

Mr. Oliver Wolfe NYSDEC 625 Broadway Albany, NY 12233-7014

Re: Q2 2022 Groundwater Monitoring Report NYSEG Ithaca – Court Street Former MGP Site, OU2 Ithaca, NY

Dear Mr. Wolfe:

This letter presents to you our report on groundwater sampling for the Second Quarter of 2022 at Operable Unit 2 (OU2) of the Ithaca – Court Street former manufactured gas plant site (MGP). This report describes the work performed, field observations, analytical results, and a discussion of the findings. This work was performed according to the Draft Site Management Plan dated October 2019.

Work Performed

Sampling was performed on June 28 to 30, 2022.

The following 15 wells were sampled:

- MW-C11
- MW-C12
- MW-31S
- MW-C16
- MW-22S
- MW-23S
- MW-24S
- MW-25S

- MW-13S
- MW-33S
- MW-40
- MW-45S
- MW-46S
- MW-47S
- MW-48S

Note that well MW-13S was substituted for background well MW-28S, which was slated for abandonment to make way for construction at the city-owned parcel on which it was situated. The location of these wells on the site is provided on Figure 1.

Groundwater Sampling.

Groundwater sampling was performed on June 28 to 30 by Breanna Pabst and Jordan DesRosiers from GEI's Ithaca, NY office.

Depth-to-water measurements to the nearest 0.01-foot from the top of the well casings were made on all the wells to be sampled on the morning of June 28, prior to the start of sampling. The results of the groundwater gauging are presented in Table 1. Using this information and the reference elevations for the wells, the water table elevations were calculated and plotted on Figure 2. Based on these elevations the surface of the water table was contoured, and the direction of inferred groundwater flow shown.

Groundwater sampling began immediately after the first well was gauged. Purging and sampling of each well was performed by low-flow sampling techniques. Dedicated tubing in each well connected to a peristaltic pump, and the water discharged through a flow-through cell equipped with a Horiba Multiparameter meter. The following field parameters were measured during purging and sampling:

- Temperature
- pH
- Dissolved Oxygen (DO)
- Specific Conductance
- Oxidation-Reduction Potential (ORP)
- Turbidity

The field measurements are presented in well purging and sampling records, provided as Attachment 1. Purging was performed until the field parameters varied 10% or less between successive measurements. The flow-through cell was then disconnected from the outlet to the pump and the laboratory-supplied sampling bottle were filled directly from the out tubing. Purge water at each well location was collected in 5-gallone buckets, covered, and transferred to 55-gallon drums staged within a secure fenced area on the NYSEG-owned property at 420 North Plain Street, Ithaca, NY.

During this sampling wells MW-24S, MW-25S, MW-40, MW-45S, and MW-47S went dry during purging. These wells were allowed to recharge and were purged a second time. Upon recovery the samples were then obtained. Wells MW-24S, MW-25S, and MW-45S were purged dry on June 28 and samples were collected on June 29. Methane samples were taken from MW-24S before the well went dry. MW-40 was purged dry on June 29 and was sampled on June 30. MW-47S was purged dry on June 30 at 0700, the well was allowed to recharge, and samples were collected the same day at 1240.

Samples were placed in coolers on-ice and picked-up from the site by a laboratory courier under chain-of-custody procedures. The samples were delivered to Pace Analytical of Melville, NY.

Laboratory Analysis and Data Validation

BTEX		USEPA SW 846 Method 8260
PAHs		USEPA SW 846 Method 8270 SIM
Total Cyanide		USEPA SW 846 Method 9012
	Methane	USEPA Method RSK-175
	Iron	USEPA SW-846 Method 6010
Monitoring Natural	Sulfate	USEPA Method 300
Attenuation (MNA)	Ammonia	USEPA Method 350.1
Parameters	Nitrate	EPA Method 353.2
	Alkalinity	USEPA Method SM 2320
	Ferrous Iron	USEPA Method SM 3500 Fe

The groundwater samples were analyzed for the following:

A NYS ASP Level IV data package was prepared for the sample delivery groups. Note that the data package for the June 2022 sampling event was not submitted to GEI by laboratory until May 2023.

Several deviations from the work plan were encountered by the laboratory:

- The laboratory was not able to achieve the detection limits for several of the PAHs, including Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, and Indeno(1,2,3-cd)pyrene. Generally, the detection limits for these compounds were one order of magnitude above the NYSDEC guidance values (there are no groundwater standards for these compounds).
- Due to laboratory errors the ferrous iron analyses were not performed.

The implications for these lab errors are discussed below in the Results section.

The laboratory data package was reviewed by a GEI chemist and a Data Usability Summary Report was prepared according to NYSDEC's DER-10 requirements (Attachment 2). Additional laboratory requirements were added to the Data Summary Table (Table 2)

The laboratory provided an electronic data delivery (EDD) to GEI using an EQuIS format. The EDD has been modified to meet NYSDEC's requirements for submittal to the NYSDEC data portal. The data will be uploaded to the portal upon NYSDEC review and approval of the data provided in this report.

Monitoring Well Assessment and Field Issues

GEI field staff, Breana Pabst and Jordan DesRosiers, performed monitoring well condition assessments on September 19, 2022, to determine well conditions and any necessary repairs. No repairs were made and a summary of damages and issues with the monitoring wells is provided in Table 1.

Monitoring Results

The following observations are apparent for the Q2 2022 quarterly groundwater monitoring event:

- A potentiometric surface map of groundwater elevations for the site is provided on Figure 2. Groundwater generally flows west toward Washington Street and the site has a low hydraulic gradient of around .0003, meaning the water table is relatively flat.
- A summary of groundwater analytical data for the Quarterly Sampling event is available in Table 2. The compounds that were measured in exceedance of New York groundwater standard or guidance values are shown on Figure 3.
- BTEX compounds were in exceedance in 4 wells: MW-23S, MW-46S, MW-48S, and MW-C12
- PAH compounds were detected in all but three of the samples taken, MW-45S, MW-C24S, and MW-C25S. 5 Wells and the duplicate had concentrations of PAH compounds which exceeded groundwater standard or guidance values: MW-23S, MW-46S, MW-48S, MW-C12, MW-C16, and DUP MW-C16.
- One sample, MW-22S, showed an exceedance of Total Cyanide concentration of 560 ug/L.
- The following "Monitored Natural Attenuation" parameters were reviewed to assess whether intrinsic biological breakdown of BTEX and PAHs is occurring. The laboratory analytes were:
 - o Iron
 - o Ammonia
 - o Sulfate
 - o Nitrate
 - Alkalinity
 - o Methane

The next quarterly groundwater sampling event is planned for September 2023.

The MNA parameters were reviewed and found to be consistent with the conclusion that intrinsic biodegradation of organic compounds is occurring within the monitored area.

If you have any questions, please feel free to contact Bruce Coulombe at 607-216-8959.

Sincerely,

GEI CONSULTANTS, INC., P.C.

Joshensbergan

Josh Prygon Environmental Engineer

June Coulombe

Bruce Coulombe Project Manager

JP/BC:tc Enclosures

Table 1. Water Level Measurements
Table 2. Groundwater Analytical Results
Figure 1. Sampling Locations
Figure 2. Water Table Map
Figure 3. Exceedances of Groundwater Standards
Attachment 1 – Field Sampling Records
Attachment 2 – Data Usability Summary Report
Attachment 3 – Laboratory Report

c: Levia Terrell - NYSEG

Document1

Tables

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Inspection and Sampling Notes
	9/28/2020	17.30	17 - 15	15 - 10	5.01	5.53	NA	N	NA	Full of water, cracked road box; Gray cloudy water initially noted during purging.
	3/2/2021	17.23	17 - 15	15 - 10	5.14	5.66	386.00	N	NA	Well in good condition. Water observed to be tinted and a gasoline (petroleum-like) odor was noted during purging. No sheen was observed. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
	6/7/2021	17.21	17 - 15	15 - 10	5.39	5.66	385.75	N	NA	gailons removed post-sampling to remove previously noted sedimentation/residual solids" before well ran dry. Well in good condition. Purge water clear, and no odor or sheen noted.
MW - C11	9/7/2021	17.28	17 - 15	15 - 10	5.35	5.87	385.79	N	NA	Well in good condition. Lots of mud underneath the well cap. Purge water clear, and no odor or sheen noted.
	12/6/2021	15.38	17 - 15	15 - 10	4.96	5.48	386.18	N	NA	Fine condition, no odor or sheen observed. Was scheduled to be redeveloped at the end of the GME, but a vehicle was parked over it and access was restricted.
	6/28/2022	12.41	17 - 15	15 - 10	5.42	5.94	385.72	N	NA	Roadbox flooded; sludge surrounding inner casing.
	9/28/2020	17.21	17 - 15	15 - 10	6.64	6.85	385.56	N	NA	Good condition; Water clear during purging.
	3/2/2021	17.62	17 - 15	15 - 10	5.65	5.86	386.55	N	NA	Well in good condition. Water observed to be tinted and a gasoline/sweet (petroleum-like) odor noted during purging. No sheen observed.
	6/7/2021	17.22	17 - 15	15 - 10	6.09	6.30	386.11	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
MW - C12	9/7/2021	17.22	17 - 15	15 - 10	6.14	6.35	386.06	N	NA	Good condition. No sheen observed. Sulfur-like odor was noted during well purging. YSI technical difficulties, so team purged 3 well volumes before sampling. MS+MSD collected.
	12/6/2021	17.21	17 - 15	15 - 10	5.98	6.19	386.22	N	NA	Fine condition, no odor or sheen observed.
	6/28/2022	17.21	17-15	15 - 10	6.25	6.46	385.95	N	NA	Sulphur-like odor during sampling.
MW - 13S	6/28/2022	14.40		15 - 5	6.97	NC	NC	N	NA	Top is at an angle and cap doesn't fit with lid.
	9/28/2020	15.98	16 - 14	14 - 9	6.65	6.87	384.66	N	NA	Well surface seal cracked, very hard to open, rusted bolts; Slight MGP odor noted during sampling, black sludge in bottom of well at commencement of purging and became clear, slight sheen observed on purge water.
	3/2/2021	15.95	16 - 14	14 - 9	3.54	3.76	387.77	N	NA	Dedicated tubing was rusty (likely iron accumulation). Purged water was tinted yellow/brown. No odor or sheen noted. Dedicated tubing to be replaced.
MW - C16	6/7/2021	15.94	16 - 14	14 - 9	4.62	4.84	386.69	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	9/7/2021	15.87	16 - 14	14 - 9	5.16	5.38	386.15	N	NA	Good condition. Faint MGP-like odor noted during gauging and purging. Black specs seen in purge water. No sheen observed.
	12/6/2021 6/28/2022	16.07 16.13	16 - 14 16 - 14	14 - 9 14 - 9	4.64	4.86 4.57	386.67 386.96	N	NA	Fine condition, no odor or sheen observed. Well box flooded, plug not fully sealed, sludge surrounding inner casing, and missing one bolt. Dark sediment observed at tip of probe and initially mistaken
	9/29/2020	13.10		14 - 4	5.10	5.51	382.05	N	NA	for NAPL. Good condition; Water clear during purging.
	3/2/2020	13.10		14 - 4	2.84	2.43	383.90	N	NA	Well located in a flower bed and in good condition. Purge water clear, and no odor or sheen noted.
MW - 22S	6/7/2021	13.61		14 - 4	4.08	4.49	382.66	N	NA	Well located in a flower bed and in good condition. Purge water clear with slight particulate suspension, and no odor or sheen noted.
WW - 220	9/7/2021	13.68		14 - 4	4.20	4.61	382.54	N	NA	Good condition. No odor or sheen noted.
	12/6/2021	13.65		14 - 4	3.73	4.14	383.01	N	NA	Fine condition, no odor or sheen observed.
	6/28/2022	13.60	_	14 - 4	4.70	5.11	382.04	N	NA	No bolts on roadbox cover; no odor or sheen observed.
	9/29/2020	13.70		14 - 4	6.80	7.40	380.22	N	NA	Good condition; Water clear during purging, solvent-like odor noted during sampling.
	3/2/2021 6/7/2021	13.69		14 - 4 14 - 4	6.22	6.82 6.94	380.80 380.68	N	NA NA	Well in good condition. Purge water clear, and no odor or sheen noted.
MW - 23S	9/7/2021	13.65 13.68		14 - 4	6.34 6.41	7.01	380.68	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Well has very good recharge. Good condition. No odor noted. Small amount of sheen observed on the surface of purge water. YSI technical difficulties, so team
	12/6/2021	13.67		14 - 4	6.32	6.92	380.70	N	NA	purged 3 well volumes before sampling. Fine condition. White flakes observed in the purged water. Product-like odor observed while purging.
	6/28/2022	13.70 13.50		14 -4	6.56	7.16	380.46	N	NA	Missing two bolts on roadbox cover; no odor or sheen observed.
	9/28/2020 3/2/2021	13.50		14 - 4 14 - 4	7.23 5.54	NC NC	NC NC	N N	NA NA	Top of PVC casing bent/crushed; Water clear during purging. Well in good condition. Purge water clear, and no odor or sheen noted.
	6/7/2021	13.66		14 - 4	6.31	NC	NC	N	NA	Well in good condition. Purge water cleared up, faint organic odor detected, no sheen detected.
MW - 24S	9/7/2021	13.45		14 - 4	6.77	NC	NC	N	NA	Located in garden in roadside verge, access restricted due to vegetation. Poor condition, missing bolts and PVC bent. Organic-like odor noted during gauging and purging. No sheen observed.
	12/6/2021	13.98		14 - 4	6.56	NC	NC	N	NA	Fine Condition. No sheen observed. Odor of decaying material observed while purging.
	6/28/2022	13.49	_	14 - 4	6.85	NC	NC	N	NA	Bulge on side of casing; no bolts present; purged dry on 6/28; methane samples collected on 6/28; remaining samples collected on 6/29.
	9/28/2020	9.40		10 - 3	7.12	7.34	384.10	N	NA	Partially overgrown with grass, good condition; Water clear during purging.
	3/2/2021	9.72		10 - 3	5.29	5.51	385.93	N	NA	Purge water initially tinted brown and became clear. No odor or sheen noted. Well ran dry on 3/3/21, allowed to recharge before being sampled 3/4/21.
MW - 25S	6/7/2021	9.71		10 - 3	6.43	6.65	384.79	N	NA	Purge water clear, no sheen or odors detected. Well has very poor recharge. Short spikes in tubidity were seen throughout the sampling process, possibly due to low water level.
	9/7/2021	9.70		10 - 3	6.53	6.75	384.69	N	NA	Good condition. Only one bolt. No odor or sheen noted. Well ran dry during purging and was allowed to recharge prior to sampling.
	12/6/2021	9.73		10 - 3	6.19	6.41	385.03	N	NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time.
	6/28/2022	NM	-	10 - 3	6.74	6.96	384.48	N	NA	Missing one bolt; plug not on and doesn't fit with lid; removed lock; purged dry on 6/28/22 and sampled on 6/29/22.
	9/28/2020	19.80		20 - 7	8.23	8.77	386.94	N	NA	Good condition; Water clear during purging.
MW - 28S	3/2/2021 6/7/2021	19.65 19.50		20 - 7 20 - 7	7.65 7.78	8.19 8.32	387.52 387.39	N N	NA NA	Well in good condition. Purge water clear, and no odor or sheen noted. Well in good condition. Purge water clear, and no odor or sheen noted.
10100 - 200	9/7/2021	19.50		20 - 7	7.78	8.32	387.39	N	NA	Good condition. Damp (decomposing) odor noted when gauging. No odor or sheen noted during purging.
	12/6/2021	19.54		20 - 7	7.79	8.33	387.38	N	NA	Fine condition, sulfur-like odor observed while purging. No sheen observed.
	9/29/2020	11.30		12 - 4	7.45	7.76	380.47	N	NA	Good condition; Gray cloudy water initially noted during purging. Well in good condition. Initial heavy silt during purging and became clear. No odor or sheen noted. Approx. 5 gallons removed post-sampling to remove previously noted
MW - 31S	3/2/2021 6/7/2021	11.34 11.53		12 - 4	6.61	6.92	381.31	N	NA	sedimentation/residual solids^ before well ran dry.
010	9/7/2021	11.53		12 - 4 12 - 4	6.81 6.95	7.12 7.26	381.11 380.97	N N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Good condition. No odor or sheen noted. YSI technical difficulties, so team purged 3 well volumes before sampling.
	12/6/2021	11.62		12 - 4	6.79	7.10	381.13	N	NA	Fine condition. White flakes observed in the purged water. No odor noted.
	6/28/2022	11.59	_	12 - 4	7.52	7.83	380.40	N	NA	Good condition; rusted lock removed.

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Inspection and Sampling Notes
	9/29/2020	9.52		10 - 2.5	6.89	7.16	380.66	N	NA	Good condition; Rust-colored water initially noted during purging.
	3/2/2021	9.51		10 - 2.5	2.08	2.35	385.47	N	NA	Well in good condition. Very rusty water (likely iron accumulation) near bottom of screen and no odor or sheen noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
MW - 33S*	6/7/2021	9.48		10 - 2.5	4.33	4.60	383.22	N	NA	Well in good condition. Purge water initially tan and cleared towards end of purge, no odor or sheen noted.
	9/7/2021	9.47		10 - 2.5	4.33	4.60	383.22	N	NA	Good condition. Rust-like substance on the well casing and tubing. No sheen or odor noted.
	12/6/2021	9.51		10 - 2.5	3.60	3.87	383.95	N	NA	Fine condition, no odor or sheen observed.
	6/28/2022	9.48	-	10 - 2.5	5.12	5.39	382.43	N	NA	Good condition; rusted lock on plug; iron bacteria on probe.
	9/29/2020	8.30		9 -3	6.71	7.11	380.28	N	NA	Good condition; Light brown cloudy water initially noted during purging.
	3/2/2021	8.39		9 -3	3.09	3.49	383.90	N	NA	Well in good condition. Purge water initially brown and then clear. A 'cleaning supply' (chemical-like) odor was noted and no sheen observed. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
MW - 40	6/7/2021	9.38		9 - 3	4.99	5.39	382.00	N	NA	Concrete pad loose. Purge water clear, and no odor or sheen noted.
	9/7/2021	8.36		9 - 3	5.05	5.45	381.94	N	NA	Located in driveway of private property. Concrete collar is broken. No odor or sheen noted. Repair concrete collar as soon as practicable.
	12/6/2021	8.37		9 - 3	4.28	4.68	382.71	N	NA	Poor condition, no odor or sheen observed.
	6/28/2022	8.39	-	9 - 3	5.52	5.92	381.47	N	NA	Well heaving; concrete cracked and raised; no bolts present; concrete around lock on plug; well purged dry on 6/29/22; sampled on 6/30/22.
	9/29/2020	17.00	15 - 14	14 - 4	5.25	5.56	381.45	N	NA	Good condition; Gray cloudy water initially noted during purging.
	3/2/2021	14.72	15 - 14	14 - 4	3.39	3.70	383.31	N	NA	Well in good condition. Purge water initially brown and then clear. Some rusty particulate (likely iron accumulation) was observed 5 minutes into purging. No odor or sheen noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
MW - 45S	6/7/2021	14.68	15 - 14	14 - 4	4.74	5.05	381.96	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Approx. 3.5 gallons were purged for redevelopment at the end of the sampling event
	9/7/2021	14.85	15 - 14	14 - 4	4.55	4.86	382.15	Ν	NA	Good condition. No odor or sheen noted. Very poor recharge rate, ran dry during purging and allowed to recharge prior to completion of sampling. Re-developed following sampling, 0.07 feet of depth gained (14.78 - 14.85 ft bTOC).
	12/6/2021	19.80	15 - 14	14 - 4	4.15	4.46	382.55	Ν	NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time. An attempt to removed sediments and residual solids was made at the end of the GME, no additional depth was gained.
	6/28/2022	14.90	15 - 14	14 - 4	5.10	5.41	381.60	N	NA	Missing one bolt; purged dry on 6/28/22; sampled on 6/29/22.
	9/29/2020	16.70		18 - 8	5.01	5.38	382.60	N	NA	Good condition; Water clear during purging.
	3/2/2021	17.02		18 - 8	3.66	4.03	383.55	Ν	NA	Well in good condition. Purge water tinted light brown and rust particulate (likely iron accumulation) observed. Slight sulfur odor noted. No sheen noted.
MW - 46S	6/7/2021	16.78		18 - 8	4.13	4.50	383.08	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
100	9/7/2021	16.88		18 - 8	4.34	4.71	382.87	Ν	NA	Good condition. A brown substance was left of the interface probe after gauging. Slight organic/product-like odor observed during gauging and sampling. Sheen was observed in purge water. Dup-1 collected.
	12/6/2021	16.88		18 - 8	3.80	4.17	383.41	N	NA	Fine condition. Product like odor indicated during gauging. Sheen observed on purge water
	6/28/2022	16.84	_	18 - 8	4.53	4.90	382.68	Y	0.1	Plug not on casing; NAPL-like odor; sheen on purge water; trace of NAPL on probe.
	9/29/2020	14.50		15 - 5	5.01	5.33	382.44	N	NA	Good condition; Gray cloudy water initially noted during purging.
	3/2/2021	14.69		15 - 5	3.87	4.19	383.58	N	NA	Well head rusted. Purge water was clear with rust particulates (likely iron accumulation). No odor or sheen was noted.
MW - 47S	6/7/2021	14.64		15 - 5	4.67	4.99	382.78	Ν	NA	Well in good condition. Purge water clear, no odor detected, sheen was noted during purging for one interval, and was not observed again.
10100 - 473	9/7/2021	14.65		15 - 5	4.75	5.07	382.70	Ν	NA	Good condition. Black particulates observed in purge water. No odor noted. YSI technical difficulties, so team purged 3 well volumes before sampling. Well went dry and was allowed to recharge before sampling.
	12/6/2021	14.86		15 - 5	4.33	4.65	383.12	N	NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time.
	6/28/2022	15.00		15 - 5	4.95	5.27	382.50	N	NA	Missing one bolt; purged dry during sampling on 6/30/22; samples slightly murky.
	9/29/2020	14.30	15 - 14	14 - 4	4.12	4.42	382.73	N	NA	Good condition; Gray/black cloudy water initially noted during purging and odor noted during sampling.
	3/2/2021	13.24	15 - 14	14 - 4	3.51	3.81	383.34	Ν	NA	Well in good condition. Purge water initially cloudy and then clear. A slight sulfur odor was noted at the commencement of purging. No sheen was noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
MW - 48S	6/7/2021	13.20	15 - 14	14 - 4	3.98	4.28	382.87	Ν	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Approx. 2.5 gallons were purged for redevelopment at the end of the sampling event.
	9/7/2021	13.38	15 - 14	14 - 4	3.88	4.18	382.97	N	NA	Good condition. Faint organic-like (clay) odor noted during gauging. Product-like odor observed during first few minutes of purging. No sheen observed. Re-developed following sampling, 0.09 feet of depth gained. (13.39 - 13.48 ft bTOC).
	12/6/2021	13.52	15 - 14	14 - 4	3.78	4.08	383.07	N	NA	Fine condition, sheen observed. Metallic-like odor observed during purging. An attempt to remove sediments and residual solids was made at the end of the GME, 0.03ft of depth was gained.
	6/28/2022	13.42	15 - 14	14 - 4	4.10	4.40	382.75	N	NA	NAPL-like odor when sampling; sheen on purge water.

Notes:

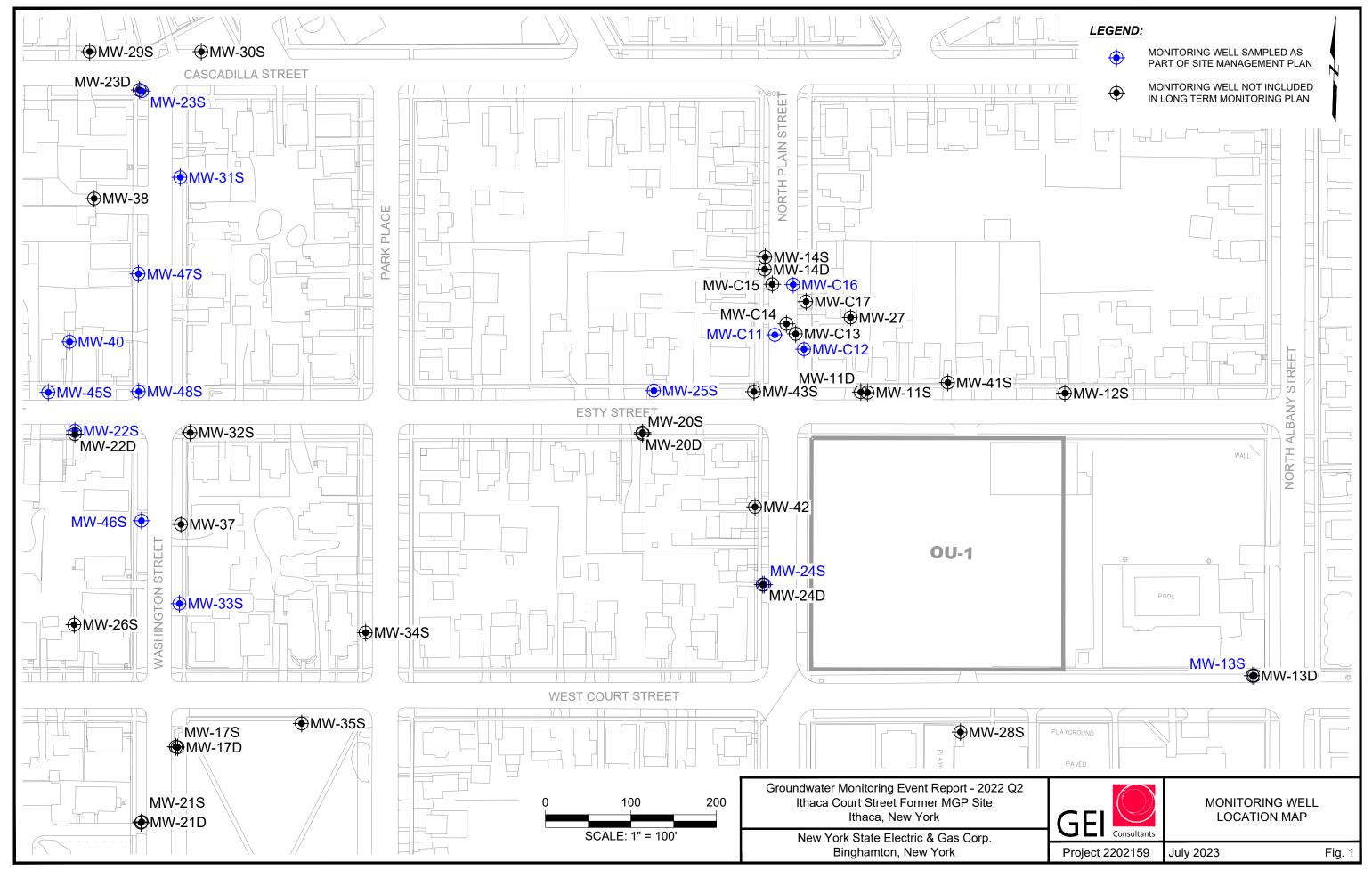
* - MW-33S was mislabeled as MW-36S during the 2021 Q4 GME on field forms, chain of custody, and lab report.

1. Measured at the time of gauging

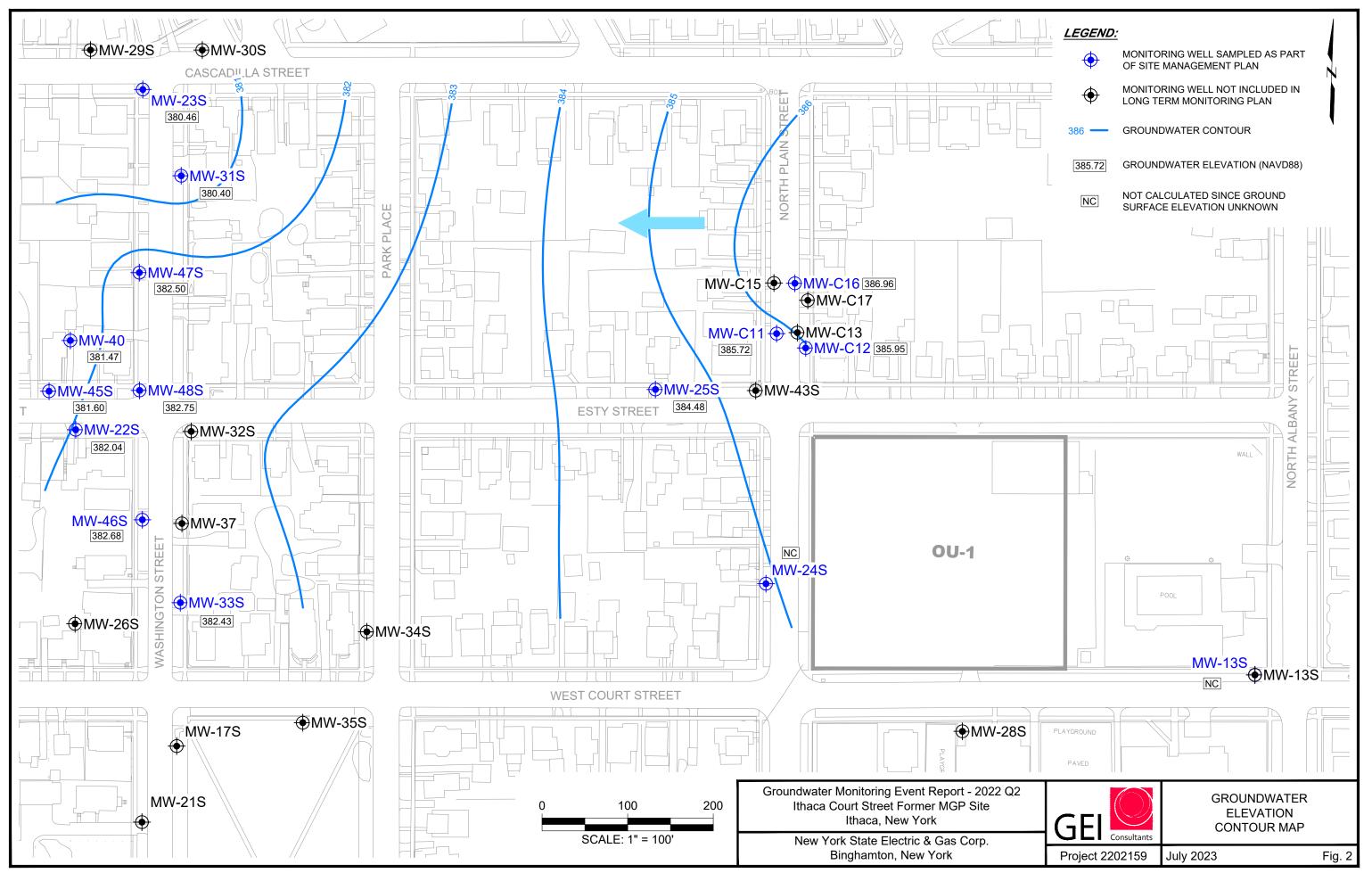
2. ft bTOC- feet below top of casing
 3. ft bgs - feet below ground surface

4. NM - Not measured

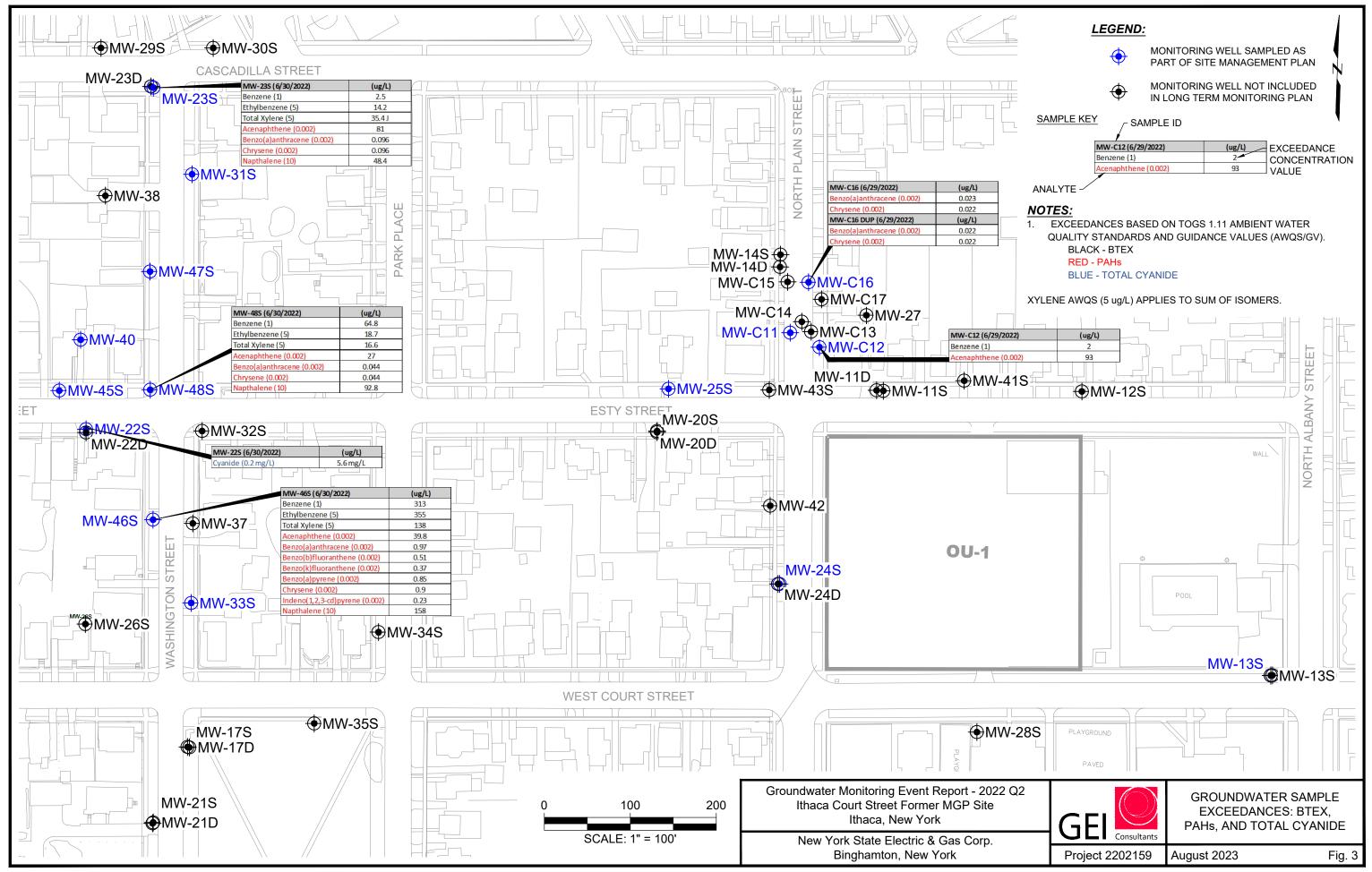
5. -- Information not available.


6. NC - Not calculated as ground surface elevation data not available

7. NA - Not applicable


Table 2. Ithaca Court Street-June 2022Groundwater Anaylsis ResultsNYSEG - Ithaca, NY

			Sample Name Sample Date Parent Sample	MW-13S 6/29/2022	MW-22S 6/30/2022	MW-23S 6/30/2022	MW-31S 6/30/2022	MW-33S 6/30/2022	MW-40 6/30/2022	MW-45S 6/28/2022	MW-46S 6/30/2022	MW-47S 6/30/2022	MW-48S 6/30/2022	MW-C11 6/29/2022	MW-C12 6/29/2022	MW-C16 6/29/2022	DUP 01 6/29/2022 MW-C16	MW-C24S 6/29/2022	MW-C25S 6/29/2022
Analyte	Units	CAS No.	NYS AWQS																
BTEX	ug/L																		1
Benzene	Ŭ	71-43-2	1	1 U	1 U	2.5	1 U	1 U	1 U	1 U	313	1 U	64.8	1 U	2	1 U	1 U	1 U	1 U
Toluene		108-88-3	5	1 U	1 U	3	1 U	1 U	1 U	1.1	3.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene		100-41-4	5	1 U	1 U	103	1 U	1 U	1 U	1 U	355	1 U	18.7	1 U	1.4	1 U	1 U	1 U	1 U
Total Xylene		1330-20-7	5	3 U	3 U	69.2	3 U	3 U	3 U	3 U	138	3 U	16.6	3 U	3 U	3 U	3 U	3 U	3 U
Total BTEX (ND=0)			NE	ND	ND	177.7	ND	ND	ND	1.1	809.8	ND	100.1	ND	3.4	ND	ND	ND	ND
PAH16	ug/L																		
Acenaphthene	Ŭ	83-32-9	20*	0.031	0.019 U	81	0.022	0.02 U	0.02 U	0.02 UJ	39.8	0.95	27	0.81	93	13.7	11.8	0.019 U	0.023 U
Acenaphthylene		208-96-8	NE	0.021 U	0.019 U	1.5	0.02 U	0.02 U	0.02 U	0.02 UJ	1.7	0.031	0.94	0.11	0.83	0.22	0.23	0.019 U	0.023 U
Anthracene		120-12-7	50*	0.021 U	0.019 U	3.9	0.02 U	0.02 U	0.02 U	0.02 UJ	2.2	0.02 U	1.3	0.019 U	0.071	0.044	0.045	0.019 U	0.023 U
Benzo(a)anthracene		56-55-3	0.002*	0.021 U	0.019 U	0.096	0.02 U	0.02 U	0.02 U	0.02 UJ	0.97	0.02 U	0.044	0.019 U	0.02 U	0.023	0.022	0.019 U	0.023 U
Benzo(b)fluoranthene		205-99-2	0.002*	0.021 U	0.019 U	0.019 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.51	0.02 U	0.02 U	0.019 U	0.02 U	0.02 U	0.02 U	0.019 U	0.023 U
Benzo(k)fluoranthene		207-08-9	0.002*	0.021 U	0.019 U	0.019 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.37	0.02 U	0.02 U	0.019 U	0.02 U	0.02 U	0.02 U	0.019 U	0.023 U
Benzo(g,h,i)perylene		191-24-2	NE	0.021 U	0.019 U	0.019 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.28	0.02 U	0.02 U	0.019 U	0.02 U	0.02 U	0.02 U	0.019 U	0.023 U
Benzo(a)pyrene		50-32-8	ND	0.021 U	0.019 U	0.019 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.85	0.02 U	0.02 U	0.019 U	0.02 U	0.02 U	0.02 U	0.019 U	0.023 U
Chrysene		218-01-9	0.002*	0.021 U	0.019 U	0.096	0.02 U	0.02 U	0.02 U	0.02 UJ	0.9	0.02 U	0.044	0.019 U	0.02 U	0.022	0.022	0.019 U	0.023 U
Dibenz(a,h)anthracene		53-70-3	NE	0.021 U	0.019 U	0.019 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.1	0.02 U	0.02 U	0.019 U	0.02 U	0.02 U	0.02 U	0.019 U	0.023 U
Fluoranthene		206-44-0	50*	0.021 U	0.019 U	2	0.02 U	0.02 U	0.02 U	0.02 UJ	1.6	0.02 U	0.56	0.024	0.029	0.54	0.58	0.019 U	0.020 U
Fluorene		86-73-7	50*	0.021 U	0.019 U	19.8	0.02 U	0.02 U	0.02 U	0.02 UJ	9.8	0.039	3.1	0.019 U	13	1.6	1.7	0.019 U	0.023 U
Indeno(1,2,3-cd)pyrene		193-39-5	0.002*	0.021 U	0.019 U	0.019 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.23	0.02 U	0.02 U	0.019 U	0.02 U	0.02 U	0.02 U	0.019 U	0.020 U
Naphthalene		91-20-3	10*	0.021 U	0.019 U	48.4	0.08	0.027	0.088	0.02 UJ	158	0.17	92.8	0.019 U	0.067	0.031	0.037	0.019 U	0.020 U
Phenanthrene		85-01-8	50*	0.021 U	0.010 U	16.7	0.02 U	0.02 U	0.02 U	0.02 UJ	6.5	0.02 U	4.2	0.010 U	0.58	0.1	0.13	0.019 U	0.020 U
Pyrene		129-00-0	50*	0.021 U	0.019 U	2.9	0.02 U	0.02 U	0.02 U	0.02 UJ	2.7	0.02 U	0.77	0.027	0.029	0.75	0.82	0.019 U	0.020 U
Total PAH (16) (ND=0)		120 00 0	NE	0.031	ND	176.392	0.102	0.027	0.088	ND	226.51	1.19	130.758	0.971	107.606	17.03	15.386	ND	0.020 C
Total Metals	ug/L			0.001	ND	110.002	0.102	0.021	0.000	ND	220.01	1.10	100.700	0.071	107.000	17.00	10.000	ND	
Iron	ug/L	7439-89-6	300	266	254	2520	198	8930	4100	2290	5600	21700	5300	2980	1250	11100	13900	395	377
Cyanides	ug/L	1100 00 0	000	200	204	2020	100	0000	4100	2230	0000	21/00	0000	2000	1200	11100	10000	000	
Total Cyanide	ug/L	57-12-5	200	10 U	560	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	12.3	10 U	10 U	10 U	24.2
Other		07-12-0	200	10.0	500	10.0	100	100	100	10.0	10.0	10.0	10.0	100	12.5	10.0	10 0	100	24.2
Carbonate Alkalinity as Calcium carbonate	mg/L	CO3	NE	302	257	260	285	416	180	116	315	311	354	547	449	510	534	338	608
Ammonia	mg/L	7664-41-7	2000	0.1 UJ	0.1 UJ	1.5 J	0.1 UJ	1.3 J	0.47 J	3.3 J	2.5 J	4.2 J	1.4 J	0.88 J	0.83 J	0.23 J	0.33 J	0.16 J	0.1 UJ
Methane	ug/L	74-82-8	NE	24.3 J	137	2050	104	81.1	447	1410	6650	6250	7610	76.1	273	5.1	3.8	127	3.6
Nitrate as Nitrogen	mg/L	14797-55-8	10000	1.3 J	6.8	0.05 U	0.068	0.05 U	0.58	74.5 J	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.095 J	0.06 J	0.082 J	0.05 UJ
Nitrite as Nitrogen	mg/L	14797-65-0	1000	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U										
Total Nitrogen	mg/L	7727-37-9	NE	1.3 J	6.8	0.05 U	0.050	0.05 U	0.05 0	74.5 J	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 0	0.03 0	0.05 U	0.05 0	0.05 UJ
Sulfate	mg/L	1121-01-9	250000	35.9	40.9	5 U	16.5	24.9	5.5	5 U	5 U	5.1	5 U	5 U	130	5 U	5 U	17.8	163
Field Measurements	mg/∟		200000	55.5	-0.3	50	10.0	24.3	5.0	50	50	J.1	50	50	130	50	50	17.0	- 105
Temp	°C			20.14	21.01	15.31	12.84	13.57	16.56	19.03	15.44	14.04	18.68	10.35	14.11	21.83		15.18	14.6
Specific Conductivity	mS/cm			20.14	0.681	0.974	0.842	1.75	0.392	19.03	0.943	0.954	3.83	3.63	14.11	21.03		1.54	4.24
DO				0.71	1.29	0.974	0.842	0.86	1.04	0.79	0.943	0.954	0.65	0.68	1.4	2.50		2.46-3.25	4.24
DO PH	mg/L			6.92	6.39	6.72	6.61	6.66	6.68	6.7	6.92	0.83 6.91	6.95	6.9	6.9	6.78			6.82
рн ORP	S.U. mV			-92	6.39 248	-90	-80	-164	6.68 -71	-69	-208	-174	-220	-161	-208	-151		7.22	-93
																			-9.5


Figures

EDDY, DEREK \\geiconsultants.com\Data\Data_Storage\Working\NYSEG\2202159 Ithaca Court St Groundwater Monitoring\00_CAD\Figures\GW\1-3 2202159-GW.dwg - 11/10/2022

TORRES, MIGUEL B:\Working\NYSEG\2202159 Ithaca Court St Groundwater Monitoring\00_CAD\Figures\GWMER 2022 Q2\1-3 2202159-GW.dwg - 7/25/2023

EDDY, DEREK B:\Working\NYSEG\2202159 Ithaca Court St Groundwater Monitoring\00_CAD\Figures\GWMER 2022 Q2\1-3 2202159 2022 Q2 - GW.dwg - 8/10/2023

Field Sampling Records

						Low-	Flow Groundw	vater Sampling Form	*	
er and name	- it	0516	g NYS	EG THrew	ica. Earth	Sampling p	ersonnel –	5 Nesharra	Sample date6/d9/	Ld well IDMM C22
uction r ement point	it.	L"	teréc	Initial depth to Sample intak Pump type an	o water e depth nd ID w rate	<u>Geopmp</u> 005790	A Hariba			Depth to water:
		Temp. (°C) 5 to 15 16. 38 16. 59 16. 41 16. 41 16. 41 16. 55	Sp. Cond. (mS/cm) 0.05 to 5 3.24 3.53 3.73 4.30 3.65 3.63	D.O. (mg/L) 0 to 4).03 1 · 48 1 · 04 0.78 0.78 0.58	рн (s.u.) 5,407 6.51 6.83 6.93 6.93 6.93 6.93	ORP (mV) -100 to +500 -144 -155 -163 -163 -164 -164 -164 -164 -164 -164 -164 -164	Turb. (NTU) aim for <10 28 48 48 5, 4 4, 1 3, 3 	Sample Time: Color: Turbidity: Field Filtered YES / Filter type: Odor/Sheen/NAPL Duplicate Collected YES / If yes, duplicate ID: Purge water disposal? Guidance: 1 Position tubing at midp 2 Minimize drop in water 3 Disconnect flow thru co 4 Call Project Manager if well goes dry, odd data	29:00 Analyses: NA Analyses: NA Analyses: NA A boot of saturated screened in r level and purge until parame ell during sampling f issues arise (e.g. stabilizatio a).	eters are stable on takes more than 2 hrs,
	Samp	e can	RINGS					5 For VPH and VOC sample	es, if stabilization flow rate is less	than 200 ml/min, contact PM
	description: action r ement point dition nterval Volume (gal) ndwater Valu	volume Values	description: description:	description: West Jide action 10^{11} ment point 10^{11} 10^{15} 10^{16} 1	description: description: Me_{3} J_{1} J_{2}	description: West Jide Sampling Information action 1 Initial depth to water ampling information 1 Pump type and ID action 1 Stabilized flow rate action 10.0 Stabilized flow rate action 10.15 Stabilized flow rate action 10.0 pH (gal) (ms/cm) (mg/L) action 10.23 Stabilized flow rate action 10.23 Stabilized flow rate action 10.23 Stabilized flow action 10.35 Stabilized flow	er and name 402169 $NUE6$ H_{1200} $Ear Sampling products and prove the second stampling products and t$	er and name 402.169 $NYEG H_{CCA} Ear V sampling personnel$ description: $NCA + Si dar action 1sample intake depth S, S, S $	description: West 51 dec Sampling information S. 51 Time: Samples Collected cition 1 1 Initial depth to water Submits depth SVOC8 8200 VOC8 8200 standing of the standard depth 10	er and name JOD 167 ME6 THeck Each Sampling personnel Samples Collected Field values at time of standard optimes at time of standard optimes of the standard optimestandord optimes

		Low-Flow Ground	dwater Sampling F	orm		10		
Project number and name	Ithaca court St	Sampling personnel	B. Pab	st	Sample date	0/29	Well ID	MW-CIZ
Well location description: E	Sampling Information			Samples Collected	Field valu	ies at time of sam	ple collectio	en:
of plain st.	Initial depth to water	<u></u>	8:24	VOCs 8260	Time:	900		Depth to water:
Well Construction	Sample intake depth	~12		SVOCs 8270	Sp.Cond.	1.40	mS/cm	7.65
Vell diameter 2	Pump type and ID	Geopung +		VPH	DO	1.07	mg/L	
Vell measurement point TIC	Stabilized flow rate	~ 380 my/m	n	EPH	ORP	-208	mV	
Roadbox condition	Stabilized flow rate = flow	v rate with no further drawdo	own	Metals	рН	690	s.u.	
Vell screen interval				PCBs	Temp.	19-11	_°C	
Well depth				Other	Turb.	0-0		

Cumulative	Volume	Water	Temp.	Sp.Cond.	D.O.	pН	ORP	Turb.
Time (min.)	(gal)	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)
Typical Groun	ndwater Valu		5 to 15	0.05 to 5	0 to 4	5 to 7	-100 to +500	aim for <10
825		G.99	21.33	1.39	2.85	6.84	-194	00
830		7.22	19,56	1.38	1.21	6.84	-707	0.0
835		7-34	18.27	1.38	1.02	6.83	-200	4.7
840		7.45	17.19	1.40	0.96	6.84	-200	7.7
845		7.53	16.46	1.40	0.99	C.87	-7.02	6.3
850		1,58	15.99	1.38	0.98	6.88	-205	3.5
855		7.61	15.71	1.32	1.05	6.8F	-205	6.8
900	3.5	7.65	14.11	1.40	1.07	6.90	-208	0.0
				_			_	
			,					
Notes: 5	nlphur	- Irke	odor	in pr	ge v	ater		

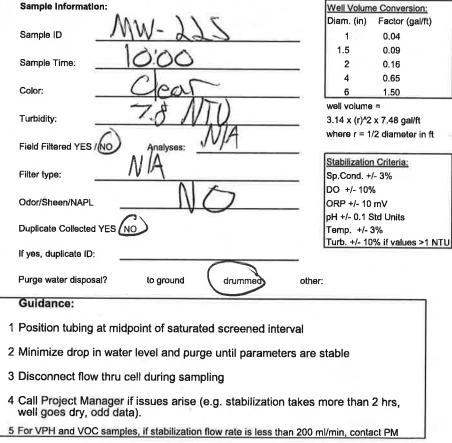
3.5 gal / 35 min = 0.1 gal/min = ~ 300 my mm

Sample Informatio	n:	Well Volum	e Conversion:
Sample ID	MW-CIZ	Diam. (in)	Factor (gal/ft) 0.04
	900	1.5	0.09
Sample Time:	100	2	0.16
	Clack	4	0.65
Color: -	Clear	6	1,50
Turbidity:	GO NTH	well volume	
i urbiaity.	0.0 10.0		x 7.48 gal/ft
Field Filtered YES	NO) Analyses: N/A	where r = 1	/2 diameter in f
		Stabilization	n Criteria:
Filter type:	N/A	Sp.Cond. +	/- 3%
	Culat Maria	DO +/- 109	6
Odor/Sheen/NAPL	Sulphur-like oder	ORP +/- 10	
	\sim	pH +/- 0.1 \$	
Duplicate Collected	YES	Temp. +/- :	
If yes, duplicate ID:	N/A	[]unb. +/- 10)% if values >1
Purge water disposa	al? to ground drummed	other:	
Guidance:			
1 Position tubing	at midpoint of saturated screened inte	rval	
2 Minimize drop ir	water level and purge until paramete	rs are stable	
3 Disconnect flow	thru cell during sampling		
	nager if issues arise (e.g. stabilization	takes more than	2 hrs,
4 Call Project Mar well goes dry, o	dd data).		

								ter Sampling Form
oject number and nam	1e <u>2</u> 2	02159	NYSEG	Ithread	artst.	Sampling p	ersonnel 🔟	Sample date 6/29/22 Well ID MILC/6
Il location description	1, bag	innar cosi my IC, 1-12/	ins	Sampling Ini Initial depth to Sample intak Pump type ar Stabilized flow	o water e depth nd ID w rate	5.58 Geopum ~211 rate with no f	p > Hoiba	Samples Collected Field values at time of sample collection: VOCs 8260 Time: 1.00 SVOCs 8270 Sp.Cond. 2.68 VPH DO 0.51 mg/L VPH ORP 153 mV Metals PH 6.79 s.u. PCBs Temp. 3.2 °C Work Turb. 4.0 NTU
Imulative (gal) pical Groundwater Val pical Groundwater Val (gal) pical Groundwater Val (gal) (Water depth (ft) Ues 558 718 743 743 743 743 743 743 743 743	Temp. (°C) 5 to 15 3 3 11 7 1 13 2 1 6 3 2 1 6 3 1 6	Sp.Cond. (mS/cm) 0.05 to 5 3 63 3 53 2 76 2 76 2 76 2 76 2 76 2 76 2 76 2 76	D.O. (mg/L) 0 to 4 1, 14 0, 75 7, 53 0, 51 0, 51 0, 51	pH (s.u.) 5 to 7 6 91' 6 84 6 84 6 78	ORP (mV) -100 to +501 ~154 ~154 ~154 ~125 ~125 ~151	Turb. (NTU) aim for <10 20.7 24.1 258 5.8 3.7 4.4	Sample Information: MW-C16 Sample ID MW-C16 Sample Time: If 00 Color: Clear Turbidity: U.O Field Filtered YES (NO Analyses: N/A Stabilization Criteria: Sp.Cond, +/-3% DO Odor/Sheen NAPL Analyses: Duplicate Collected YES (NO If yes, duplicate ID: Analyses: Purge water disposal? to ground Purge water disposal? to ground If yes, duplicate ID: Analyses: Purge water disposal? to ground If yes, duplicate ID: Analyses: Purge water disposal? to ground drummed other: Guidance: 1 Position tubing at midpoint of saturated screened interval 2 Disconnect flow thru cell during sampling 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data).
2 gallons			50571	Sul/men		210 ml	(~~)	5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

					Low-F	low Groundw	ater Sampling	Form				
Project number and name	220215	9		_	Sampling pe	rsonnel	B. Pabst		Sample date	6129/22	Well ID	MW-135
Well location description:	N STO	le	Sampling Inform	nation				Samples Collected	Field v	lues at time of samp	ole collectio	on:
of court st.	near pr	100	Initial depth to wa	ater	6.95	Time:	12:28	_VOCs 8260	Time:	1300		Depth to water:
Well Construction	.1		Sample intake de	pth	~12 f	-1		SVOCs 8270	Sp.Con	1. 2.02	mS/cm	_C-98
Well diameter	Z"		Pump type and I	c	Geopu	und 140	riba	VPH	DO	0.71	_mg/L	2210
	TC		Stabilized flow rat	te	~25	50mL/1	n:n	_EPH	ORP	-92	_mV	
Roadbox condition		win rol	Stabilized flow rat	te = flow	rate with no fu	rther drawdow	'n	Metals	рН	6.92	s.u.	
Well screen interval	5-15',							PCBs	Temp.	20.14	°C	
Well depth	14 40'							Other	Turb.	0.0	_NTU .	
to be an interest of the second se	/ater Temp oth (ft) (°C)	· · ·	1 1	pH (a.u.)	ORP	Turb.	Sam	ple information:				ell Volume Conversion:
Time (min.) (gal) dep		(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)	0		MW-135		Di	am. (in) Factor (gal/ft)

ime (min.)	(gal)	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)
ypical Grour	ndwater Valu		5 to 15	0.05 to 5	0 to 4	5 to 7	-100 to +500	aim for <10
230		6.98	22.83		1.94	7.28	-213	0.0
1235		6.97	21.25	2.22	0.99	7.12	-185	0.0
240		6.98	21.05	2.13	0.87	7.07	-154	6.0
1245		6.98	20.91	2.09	0.88	6.89	-121	6.0
1250		6.98	20.38	2.04	6.74	6.87	-95	0.0
nss		G.98	70.38	2.02	0.68	6.87	-91	0.0
300	2 gal	6.98	20.14	2.02	0.71	6.92	-92	0,0
	_							
								_
	_							_
								_
	-		C145 1		iande			


Sample Information:	Well Volum	e Conversion:
Samula ID MW-135	Diam. (in)	Factor (gal/ft)
Sample ID	1 1	0.04
Sample Time: 1300	1.5	0.09
Sample Time: 900	2	0.16
	4	0.65
Color: <u>Clear</u>	6	1,50
	well volume	9 =
Turbidity: 0.0. NTU	3.14 x (r)^2	2 x 7.48 gal/ft
Field Filtered YES / 😥 Analyses:	where r = 1	/2 diameter in ft
Filler type: N/A	Stabilization	n Criteria:
Filter type: N/H	Sp.Cond, +	-/- 3%
Odor/Sheen/NAPL None	DO +/- 109 ORP +/- 10	mV
Duplicate Collected YES / NO NS / MS D	pH +/- 0.1 : Temp. +/-	3%
If yes, duplicate ID: MS - NW - IBS + MSD_MWI	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0% if values >1 NTU
Purge water disposal? to ground outried othe	er:	

Guidance:

- 1 Position tubing at midpoint of saturated screened interval
- 2 Minimize drop in water level and purge until parameters are stable
- 3 Disconnect flow thru cell during sampling
- 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data).
- 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

144 B		Low-Flow Ground	water Sampling F	orm				
Project number and name <u>add01159</u> <u>DHbca</u>	Cart St	Sampling personnel	Sila	(Loviers	Sample date	6/20/22	_Well ID	MW-225
Well location description: Mar comer	Sampling Information	4,841 Time:	09:40	Samples Collected	Field val	ues at time of samp	le collection	n: De <u>oth</u> to water:
Well Construction	Sample intake depth			SVOCs 8270	Sp.Cond.	A (DA	mS/cm	5.32
Well diameter &	Pump type and ID	Geopemp + Hon		VPH	DO	1.20	_mg/L	
Roadbox condition No bolts	-Stabilized flow rate Stabilized flow rate = flow	rate with no further drawdov		_EPH Metals	ORP	6,24	_mV s.u.	
Well screen interval9-141				PCBs	Temp.	20.62	°C	
Well depth			A		Turb.	7.8	_NTU	
Cumulative Volume Water Temp. So.Cond.	DO DH	ORP	Same	ale information:			[V-1

Cumulative	Volume	Water	Temp.	Sp.Cond.	D.O.	pН	ORP	Turb.
Time (min.)	(gal)	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)
Typical Groun	dwater Valu	ies	5 to 15	0.05 to 5	0 to 4	5 to 7	-100 to +500	aim for <10
09:40		4.84	14.03	0691	2.11	705	159	6.7
7,75		5.13	22.44	0.668	1.59	6.63	219	5.2
9:50		5.20	91.01	0.6%6	1.39	643	140	59
7.66		211	ALGI	0.681	1.27	6.39	248	6.9
								· · · · ·
								·
						1		······································
						J		
_								
Notes: To	tal	Volum	call	etch	= 2 civil	44)		
					0			
7	- 291 /	20 mi	$\gamma = 0$	1 961/	min =	380"	Ymin	

		-				Low-	Flow Groundwat	ter Sampling Form		
Project number and name		I PELLC	three C	Altro		_Sampling pe	ersonnel	Destaka	Sample date 6/30/2	
Well location description Well Construction Well diameter Well measurement poin Roadbox condition Well screen interval Well depth	3 Wash	ner of astorist immer of a both 1-14 5.71	Cratico	Sampling Inf Initial depth to Sample intake Pump type ar Stabilized flow	o water e depth nd ID w rate				d Field values at time of same Time: 3'25 Sp.Cond. 6'76 DO 0.59 ORP 38 pH 6'74 Temp. 15.39 Turb. 1	mple collection: mS/cm Depth to water: mg/L mg/L s.u. °C NTU
Cumulative Volume Time (min.) (gal) Typical Groundwater Va	depth (ft)	Temp. (°C) 5 to 15 15.50 15.14 15.20 15.31	Sp.Cond. (mS/cm) 0.05 to 5 1.050 0.991 0.940000000000	D.O. (mg/L) 0 to 4 0.65 0.59 0.59 0.59	pH (s.u.) 5 to 7 6.34 6.71 6.71	ORP (mV) -100 to +500 -64 -77 -90	Turb. (NTU) aim for <10 1.6 (.3 (.3 (.3)	Sample Time:	to ground drummed	
Notes: total U		leated	1	C. C.				well goes dry, odd d	r if issues arise (e.g. stabilizatior ata). ples, if stabilization flow rate is less th	

				Groundwater Samplin	g Form		Sheet 1/2
roject number and name	2262 159	NYSEG Itmp Cant St	Sampling person	el B, Pabet	J. Des Rosse	Sample date 0/28	122 Well ID MW-245
Vell location description:	W. side of plange	C Sampling Info	GOI BM) _Time:_ <u>11.55</u>	Samples Collected	Field values at time Time: 다니	of sample collection; -IS Depth to water:
ell Construction		Sample intake	depth ~10!	5¥1	SVOCs 8270	Sp.Cond.	
Vell diameter	2″	Pump type and	D Greeking	+ Honba	VPH	DO 2.	72 ms/cm 9.21 with 72 mg/L # 2 STEN Scm Collected th went dry
Vell measurement point	Top of inner	17 17 18 18 1		ml/mm	ЕРН		7' mv collected th
oadbox condition	stips of we		rate = flow rate with no further	The Carlot Car	Metals	рн 7.1	5 s.u. went on (9)
/ell screen interval	4.14				PCBs		39 °c
/eli depth	13.49'				Other	Turb, 2-	
					+ see co	30	
umulative Volume me (min.) (gal)	Water Temp. depth (ft) (°C)	Sp.Cond. D.O.			mple Information:		Well Volume Conversion:
pical Groundwater Valu		(mS/cm) (mg/L) 0.05 to 5 0 to 4	(s.u.) (mV) (N 5 to 7 -100 to +500 aim f	1 TU) or<10 Sa	mple iD M	W-245	Diam. (in) Factor (ga//ti)
155	7.22 20,81	(,57 1.74	7:57 - 27 1	7			1.5 0.09
200	7.65 19.12	1.56 1.69		2 G.43p + Sa	mple Time;	145	2 0.16
210	8.19 19.10	1.52 1.70	6.91 15 4		ior: Cl	row	4 0.65 6 1.50
215	8.47 19.47	1,51 1.54	6. 25 -9 2	112	1	8 NTU	well volume =
220	996 1897	1.52 1.73		.7. Tu	rbidity:	NIVI	3,14 x (r)^2 x 7,48 gal/ft where r ≈ 1/2 diameter in ft
230	4,29 18.55	1.53 1.4	6.81 -23 4	.6 Fie	eld Filtered YES	Analyses: N/A	
235	9.40 18.63	153 1.40		UND Fil	ter type:	N/A	Stabilization Criteria: Sp.Cond. +/- 3%
195 3	9.60 19.31		8.75 -39	5 - Fulling) FI			DO +/- 10%
weil wer	It dry			Oc	lor/Sheen/NAPL	None	ORP +/- 10 mV
	· · · · · · · · · · · · · · · · · · ·			Du	plicate Collected YES	Ø	pH +/- 0_1 Std Units Temp. +/- 3%
					es, duplicate ID:	NIA	Turb. +/- 10% if values >1 NTU
				Pu	rge water disposal?	to ground drummer	other:
				G	uidance:		
				1 P(sition tubing at mid	point of saturated screene	d interval
						r level and purge until para	
						ell during sampling	
				4 Ca	all Project Manager ell goes dry, odd dat	if issues arise (e.g. stabiliż a).	zation takes more than 2 hrs,
ell went dry	at 12:48			1526 44			ess than 200 ml/min, contact PM
~3 9011	ions collection	cd. 2 125		1.14 salling Methane	3V= 3.4 samples co		128. Well went
	COMON	0.03450AL	3 *				128. Well Went On G/29 6/15/2011 (Flow (low stress) choortswater Sampling - Attachment A 2

	Low-Flow	v Groundwater Sampling	Form		*	sheet 2/2
Project number and name 2202159 In	narca Court St. Sampling person	nnel <u>B</u> , Pabs	+	_Sample date(5/29/27_Well ID	MW-24-3
Vell location description: W. State of	Sampling Information		Samples Collected	Field value	s at time of sample collection	n:
Plain St.	Initial depth to water 7.39		VOCs 8260	Time:	705	Depth to water:
Vell Construction	Sample intake depth			Sp.Cond.	1.50 mS/cm	7.97'
Vell diameter <u>2</u> "	Pump type and ID	ver thorbas	VPH	DO		
rell measurement point Top in Nes Casing	Stabilized flow rate	win.	EPH	ORP	-89 mv	
oadbox condition 5505 of weer	Stabilized flow rate = flow rate with no furthe	er drawdown	Metals	рН	1.00 s.u.	
/ell screen interval			PCBs	Temp.	15.30 °C	
Vell depth13.49 '			Other	Turb.	<u>6.0</u> _{NTU}	
Cumulative Volume Water Temp. Sp.Con	d. D.O. pH ORP	Turb. Sa	nple Information:	5. Auto	We	Il Volume Conversion:
me (min.) (gal) depth (ft) (°C) (mS/cm	i) (mg/L) (s.u.) (mV) ((NTU)			Dia	m. (in) Factor (gal/ft)

			iemp.	op.cond.	D.0,	hu		Turp.	sample mormation;	well volume Conversion:
ne (min.)	(gal)	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)	11. N. O.1. C	Diam. (in) Factor (gal/ft)
ical Groun	dwater Valu	es	5 to 15	0.05 to 5	0 to 4	5 to 7		aim for <10	Sample ID MW-245	1 0.04
33			15.10	1.54	3.25	7.22	- 89	0.0.		1.5 0.09
									Sample Time: 705	2 0.16
										4 0.65
									Color: <u>clear</u>	6 1,50
										well volume =
										3.14 x (r)^2 x 7.48 gal/ft
										where r = 1/2 diameter in ft
									Field Filtered YES (NO) Analyses: N/A	
										Stabilization Criteria:
									Filter type:	Sp.Cond, +/- 3%
	_								A 10.00	DO +/- 10%
									Odor/Sheen/NAPL	ORP +/- 10 mV
-										pH +/- 0.1 Std Units
								·	Duplicate Collected YES	Temp. +/- 3% Turb. +/- 10% if values >1 I
									If yes, duplicate ID: N/A	
									Purge water disposal? to ground (drummed)	other:
									Guidance:	
									1 Position tubing at midpoint of saturated screened interva	
									I i obtion tabing at mapoint of batarated solecited interva	
									2 Minimize drop in water level and purge until parameters a	are stable
	_		_							
									3 Disconnect flow thru cell during sampling	
									4 Call Project Manager if issues arise (e.g. stabilization tak	res more than 2 hrs
									well goes dry, odd data).	
15: + M	ethin	e Scu	mples	COlle	cted a	on (6128		5 For VPH and VOC samples, if stabilization flow rate is less than 2	00 ml/min_contact RM
he	namin	s co	liche	Colz	9			-	L or or or or thank voo aampies, it stabilization now fate is less than z	
well	ewar	a de		6128	A					

oject number and nan	1 1							vater Sampling Form		9/29		
	ne <u>AN</u>	02159	NYSE	6 Ithace	Cart St	Sampling per	sonnel	5 Derlain	Sample date	3/28	Well ID	Mw-255
ell location description	n: <u>N</u>	star		Sampling In	formation			Samples Collected	Field value	es at time of samp	ole collect	ion:
OF EST	y st.			Initial depth t	o water	C.76	Time:	2:07 VOCs 8260	Time:	10.25		Depth to water:
Il Construction		λ"		Sample intak	e depth	280		8 5 F SVOCs 8270	Sp.Cond.	4.24	mS/cm	7.89
ell diameter	-	<u>a</u>		Pump type ar	nd ID	Geopun	10 31	onbavph	DO	1.14	mg/L	
ell measurement point	top of	inner a	20105	Stabilized flow	w rate		mim	с Ерн	ORP	-93	mV	
adbox condition	Condition	¥/-	A 30-1	Stabilized flow	w rate = flow i	rate with no fur	ther drawdo	n Metals	рН	6.82		
ell screen interval	3	-10'	5					PCBs	Temp.	14.60	 °C	
ell depth	1	Ha'	SO D'	id not u	vels			Other	Turb,	0.0	– NTU	
	2		· · · · · · · · · · · · · · · · · · ·	~~~~~	deet			* 900 80	C III		_1110	
mulative Volume	Water	Temp.	Sp.Cond.	D.O.	pH	ORP	Turb.	Sample Information:			Īv	/ell Volume Conversion;
ne (min.) (gal)	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)					iam. (in) Factor (gal/ft)
NO ICAL Groundwater Val	7.32	5 to 15 16.92	0.05 to 5	0 to 4	5 to 7	-100 to +500a	aim for <10	Sample ID	MW-255	_	-	1 0.04 1.5 0.09
415	7.53	14.85	4.32	2.07	6.68	-12	0.0	Sample Time:)C	125			1.5 0.09 2 0.16
120 125 39ai	7.81	15.58	2/34	3.84	56.74	M-CE	5.11	az	200			4 0.65
30	Wens	And		ances	diry .	1-650	2.4	Color:	ecr			<u>6 1.50</u> ell volume =
129/22		- /	1	0	1			Turbidity: 🔶 🙆	UNTU.			.14 x (r)^2 x 7.48 gal/ft
020	7.81	15.41	4114	2.91	G.84	- 92	60	Field Filtered YES /	Analyses;	SIG	W	here $r = 1/2$ diameter in ft
25		14.60	4.24	1.14	6.82	-93	0,0			57.9	s	tabilization Criteria:
								Filter type:	A		_	p.Cond. +/- 3%
								Odor/Sheen/NAPL	None			O +/- 10% RP +/- 10 mV
									5		p	H +/- 0.1 Std Units
								Duplicate Collected YES /				emp. +/- 3% urb. +/- 10% if values >1 N1
								If yes, duplicate ID:	NIA	~	_	
								Purge water disposal?	to ground	drummed	other:	
					ļ			Guidance:			_	
								1 Position tubing at midp	oint of saturated	screened interv	/al	
		_						2 Minimize drop in water	level and purge	until parameters	s are sta	ble
								3 Disconnect flow thru ce	ell during samplin	g		
								4 Call Project Manager if well goes dry, odd data	issues arise (e.g	. stabilization t	akes mo	re than 2 hrs,
es: VOlume =	allow E:	5 2	1420	s on	6/28			5 For VPH and VOC sample		w rate is less than	1 200 ml/r	nin, contact PM
went dr	y at	end	of s	ampling	- 100020	d unt	1	harged to finis				
	3501/15					UNIVI-		the this	(J.)			

GEI Consultants, Inc.

Carl

.....

		Low-Flow Groun	dwater Samplin	g Form				
Project number and name 22.0215	Picor Cloy	Sampling personnel	Breen	Pabot	Sample date	6/30	Well ID	MW-315
Well location description:	S+- Sampling information			Samples Collected	Field val	ues at time of sar	nple collectio	n:
Washington: St.	Initial depth to water	1-13 Time	640	VOCs 8260	Time:	720		Depth to water:
Well Construction	Sample intake depth	~10 ft		SVOCs 8270	Sp.Cond	0.84	2 mS/cm	7.18
Well diameter <u>2''</u>	Pump type and ID	Geopling /	Honog	VPH	DO	0.99	mg/L	
Well measurement point	Stabilized flow rate	~ 315 50	- ml/m	EPH	ORP	- 80	mV	
Roadbox condition	Stabilized flow rate = flow	rate with no further drawd	lown	Metals	рН	6.61	s.u.	
Well screen interval <u>4-12</u>				PCBs	Temp.	12-84	°C	
Well depth 6 15: 11.59	<u>*</u>			Other	Turb.	6.7	NTU	
				# see coc				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diam. (in) Factor
C50 T. 17 12.83 0.870 2.01 0.12 -39 2.7 Sample Time: 3 C55 T. 18 12.83 0.850 1.77 C.56 -55 7.1 Color: Clor:	1 0.04
700 3.18 12.83 0.960 1.51 0.54 -08 7.2 705 7.18 12.83 0.845 1.07 0.53 -74 0.9 710 7.18 12.83 0.845 1.07 0.53 -74 0.9 710 7.18 12.83 0.845 1.07 0.53 -74 0.9 710 7.18 12.83 0.845 0.07 0.644 -80 0.055 720 7.18 12.83 0.845 0.07 0.644 -80 0.055 720 7.18 12.84 0.842 0.943 0.041 -80 0.165 720 7.18 12.84 0.842 0.943 0.441 -80 0.165 0.165 720 7.18 12.84 0.842 0.943 0.441 -80 0.165 1.17 720 7.18 12.84 0.842 0.943 0.441 -80 0.17 1.18 0.165 721 7.10 12.84 0.8412 0.943 0.161 1.18 <td>20</td>	20
The 12.81 0.845 1.07 0.53 -74 0.9 The 12.83 0.942 1.07 0.64 -01 0.05 Turbidity: Turbidity: C.7 Turbidity: C.7 C.7 C.64 -01 0.05 Turbidity: C.7 C.64 -01 0.05 00 Turbidity: C.7 C.64 -01 0.05 0.07 Turbidity: C.7 C.7 C.7 C.7 C.7 C.7 Turbidity: C.7 C.7 C.7 C.7 C.7 C.7 C.7 Color C.7 C.7 C.7 C.7 C.7 C.7 C.7 C.7 Color Color C.7 C.7 C.7	
The T	NT G 3.14 x (r)^2 x 7.48 g
Image: Constraint of the second se	Analyses: N/A
Image: Constraint of the second se	A Stabilization Criteria Sp.Cond. +/- 3% DO +/- 10%
Image: Constraint of the second se	ОСР +/- 10% ОСР +/- 10 mV рН +/- 0.1 Std Units
Image: Sector of the sector	Temp. +/- 3%
Guidance:	to ground drummed other:
1 Position tubing at mid	point of saturated screened interval
2 Minimize drop in wate	r level and purge until parameters are stable
3 Disconnect flow thru o	ell during sampling
well goes dry, odd dat	f issues arise (e.g. stabilization takes more than 2 hrs, a).
Notes: well volume = $3.14 \times (0.16/2)^2 \times 7.48 \times (12-7.13.44)$ 5 For VPH and VOC sample = 0.73 94/102	es, if stabilization flow rate is less than 200 ml/min, contact PM

Well Volume Conversion:

3.14 x (r)^2 x 7.48 gal/ft 3 🛪 👆

Turb. +/- 10% if values >1 NTU

where r = 1/2 diameter in ft

Factor (gal/ft) -

							Low-	Flow Ground	iwater Samp	ling Form					
roject number a	and name	220	52159	Tithao	acourt	SJ.	Sampling pe	rsonnel	Briana	Pakit		Sample date_	0/30	Well ID	MW-33
Vell location des			neer i	f Court	Sampling Infe		5.21		818		Collected	Field v	alues at time of sa	mple collecti	on:
Vell Constructi		met	ner	St.	Initial depth to Sample intake		~7 1/2		0.0	VOCs 82 SVOCs 8		Time: Sp.Con	847	mS/cm	Depth to water:
/ell diameter		2"			Pump type an		1.00	mr / 1+	toniba	070030		DO		mg/L	
'ell measureme	nt point	TI			Stabilized flow			00 m		EPH		ORP	-ic s	mV	
adbox condition	on 🚽	2 bolt	s upor	Good	abilized flow	rate = flow i				Metals		рн	6.60	s.u.	
ell screen inter	val	25-								PCBs		Temp.	13,53		
ell depth		9.4	³	-						Other	see co	Turb.	2.6	NTU	
mulative V	/olume (gal)	Water depth (ft)	Temp. (°C)	Sp.Cond. (mS/cm)	D.O. (mg/L)	рН (s.u.)	ORP (mV)	Turb. (NTU)		Sample Inform					ell Volume Conversion;
oical Groundw		S	5 to 15	0.05 to 5	0 to 4	5 to 7	-100 to +500	aim for <10		Sample ID	M	W-335			am. (in) Factor (gal/ft) 1 0.04
520 525		5.58 5.08 5.92	13:78	170	3.55	6.53 6.00	-108 -116 -134	13.4		Sample Time:		47			1.5 0.09 2 0.16
536		G.11	13.62	1.76	1.04	Car Col	-150	3.6	5	Color:		lor			4 0.65 6 1.50
340	2	6.25 6.47	3.57	1.75	0.89	G.64 G.66	-158	3.8		Turbidity:	26	NTU S	speces in st	u we	ell volume = 14 x (r)^2 x 7.48 gal/ft
										Field Filtered YE	~		NIA		here r = 1/2 diameter in ft
										Filter type:	N/A			Sp	<u>abilization Criteria:</u>).Cond. +/- 3% D +/- 10%
									1	Odor/Sheen/NA	PL	0		OF	RP +/- 10 mV
										Duplicate Collec				Te	l +/- 0.1 Std Units mp. +/- 3% rb. +/- 10% if values >1 N
										lf yes, duplicate	ID:	SA			
										Purge water dis	oosal?	to ground	drummed	other:	
										Guidance:					_
									1	Position tubir	ng at midpo	int of saturate	ed screened into	erval	
									2	Minimize dro	p in water l	evel and purg	e until paramet	ers are stal	ble
									3	Disconnect fl	ow thru cel	l during samp	ling		
									4	Call Project I well goes dry	Manager if i /, odd data)	ssues arise (e.g. stabilizatior	n takes moi	re than 2 hrs,
es: ບ່ອນ	JOU	ume=	3.Hx	10.161	2)2 ×7.4	8 LIO.	- 5.21)				· · ·		flow rate is less th	an 200 ml/m	in, contact PM
31	5= 7	16 9	0.7 Glipps	2 gall	ůn										
Iron		to on													

1								Low-I	Flow Groundw	ater Sampling Form		
F	Project numbe	ar and name	790	52159	MASEG	Ilmer C	teta.	Sampling pe	ersonnel	I Deskorn	Sample dateSample date	emer WW- dC
	Nell location of	tescription: $\psi St.$	Ee	bic tex	<u>e</u>	Sampling Inf		5.65	Time:	Samples Collected VOCs 8260	Field values at time of sam	ple collection: Depth to water:
v	Nell Constru	ction				Sample intak	e depth	-	-81	SVOCs 8270	Sp.Cond. 0.349	ms/cm 6,04
v	Vell diameter			2.,		Pump type ar	nd ID	Groom	10 3 Hoil	VPH	DO7	_mg/L
v	Vell measure	ment point	top of	inner ce	pake	Stabilized flow	v rate	unth	ann	EPH	ORP -82	mV
F	Roadbox cond	lition	Poor Los	right che	Habit rea	Stabilized flow	v rate ≂ flow i	rate with no fu	urther drawdow	n Metals	рн <u>6.66</u>	s,u,
v	Vell screen in	terval	3	-9						PCBs	Temp16.56	_°C
v	Vell depth	3	d.:	391						Assec Loc		NTU
	Cumulative Fime (min.)	Volume (gal)	Water depth (ft)	Temp. (°C)	Sp.Cond. (mS/cm)	D.O. (mg/L)	pH (s.u.)	ORP (mV)	Turb. (NTU)	Sample Information: $\Lambda /$	And the	Well Volume Conversion: Diam. (in) Factor (gal/ft)
NOT.	ypical Groun	dwater Value	BS 6 5	5 to 15	0.05 to 5	0 to 4	5 to 7	-100 to +500	aim for <10	Sample ID	IW-405	1 0.04
- -	14:05	0,05	5.88	17,97	CO	8.79	5.39	78	470	Sample Time:	11:30	1.5 0.09 2 0.16
2	19:15		5.78	18.02	0001	8.56	5.33	90	348	Color	Clear	4 0.65
-	H:20		5.10	7.48	100.0	8.36	5.20	95	294	Color:	P	6 1.50 well volume =
-	14:25	_	6.20	12:53	0.001	8:44	5.29	97	253	Turbidity:	34	3.14 x (r)^2 x 7.48 gal/ft
I	4:35		nen		- pr		107	-21-		Field Filtered YES (NO)	Analyses:/V/A	where r = 1/2 diameter in f
_	~					3				Filter type:	NA	Stabilization Criteria: Sp.Cond. +/- 3%
_ م	11:52	0.5	5.84	16.56	0.392	1.04	6.68	171	12.5		NO	DO +/- 10%
1										Odor/Sheen/NAPL	110	ORP +/- 10 mV pH +/- 0.1 Std Units
										Duplicate Collected YES / N	0	Temp. +/- 3% Turb. +/- 10% if values >1
Ę.										If yes, duplicate ID:		
										Purge water disposal?	to ground drummed	other:
-										Guidance:		
										1 Position tubing at midp	point of saturated screened inter	val
-										2 Minimize drop in water	r level and purge until paramete	rs are stable
-						0				3 Disconnect flow thru co	ell during sampling	
			-1				0 C			4 Call Project Manager in well goes dry, odd data	f issues arise (e.g. stabilization a).	takes more than 2 hrs,
N	lotes: To	V hot	slume (Collect	es =	15.90	allens [6/29)			es, if stabilization flow rate is less that	n 200 ml/min, contact PM
-	Purgeo	l on	6/29	8	+		gallons (e					

6/15/2011 H:WPROC\ADMIN\SOP\Updaled JUNE 2011\SOP for Intranet\Section 8 - Groundwater (GW)\Attachment\GW-003 Low Flow (low stress) Groundwater Sampling - Attachment A 2

			<u> </u>	1		Low	-Flow Groundwate	r Sampling Form		6 raco, resuma	d paging 0/29/12
roject number and	name <u>d</u>	907 h	59 N	SEGI	thosa	131. _Sampling p	personnel	Deskoiro	Sample date	4th	_well ID 4BS
vell location descrip	ion: <u>E</u>	astsid	×c_	Sampling In		51	Time:	Samples Collect		values at time of sam 1305	
/ell Construction	57-51	, 11		Initial depth t Sample intak		~	9.94	VOCs 8260 SVOCs 8270	Time: Sp.Co	105	mS/cm
/ell diameter		2		Pump type a	nd ID	Geopur	10 3 Horiba	VPH	DO	0.84	mg/L
/ell measurement p				<u>Stabilized</u> flow	w rate	2190	mymm fic	Derry EPH	ORP	-59	mV
adbox condition	Missing		<u>r</u>	Stabilized flor	w rate = flow	rate with no	further drawdown	Metals	рН	6.50	S.u.
ell screen interval		4-141						PCBs	Temp.		°C
ell depth	1	4.9"	0					A See COC	Turb.	8.8	NTU
mulative Volu ne (min.) (ga	-	Temp. (°C)	Sp.Cond. (mS/cm)	D.O.	рН	ORP	Turb.	Sample Information:			Well Volume Conversion:
pical Groundwater	Values	5 to 15	0.05 to 5	(mg/L) 0 to 4	(s.u.) 5 to 7		(NTU) Caim for <10	Sample ID	MW-L	155	Diam. (in) Factor (gal/ft) 1 0.04
:45	6.19	1993	1.19	1.17	2.08	-110	6.4	Sample Time:	13:05		1.5 0.09 2 0.16
155	5.72	17.53	1.21	0.91	6.49	~65	2.9		Clear		2 0.16 4 0.65
.05	2.07	16.66	1.18	0.95	8.33	-82	4.5	Color:	A st	N.	6 1.50 well volume =
5.15	8.46 Went	16.24	- 00	ex.	6.1P	-86	3.2	Turbidity:	88 N	10	3.14 x (r)^2 x 7.48 gal/ft
<u>ago</u>		29.80	-tax	500	1-			Field Filtered YES 😡	Analyses:	N/A	where r = 1/2 diameter in f
UUS	5.73	23.98	1.06	0.88	7.41	-121-92	35	Filter type:	N/A		Stabilization Criteria; Sp.Cond. +/- 3%
50	2.03	2013	1.0.3	8.64 0.71 0.79	6.90	-8 <u>)</u> -74 -69	8.9	Odor/Sheen/NAPL	NC)	DO +/- 10% ORP +/- 10 mV
tota=	1 1							Duplicate Collected YES	NO		pH +/- 0.1 Std Units Temp. +/- 3%
								lf yes, duplicate ID:		~~~	Turb. +/- 10% if values >1
								Purge water disposal?	to ground	drummed	other:
	_							Guidance:			
								1 Position tubing at m	nidpoint of satura	ted screened inte	rval
								2 Minimize drop in wa	ater level and pur	ge until paramete	ers are stable
	_							3 Disconnect flow thr	u cell during sam	pling	
								4 Call Project Manage	er if issues arise	(e.g. stabilization	takes more than 2 hrs,
- 1/1	Lallons	(6/28		1 Sallon	/20 m			well goes dry, odd o	lata).		

6/29

Low-Flow Groundwater Sampling Form								
Project number and name 2202159		Sampling personnel	Breany	Palast	Sample date	6130/22	Well ID	MW-465
Well location description: W Side OF	Sampling Information			Samples Collected	Field valu	es at time of sample	e collection	1:
Washinston Street	Initial depth to water	<u>4.75</u> Time	100	VOCs 8260	Time:	1130	0.948	Depth to water:
Well Construction	Sample intake depth	~13.Ft		SVOCs 8270	Sp.Cond.	0.60	mS/cm	5.26
Well diameter <u>2"</u>	Pump type and ID	Geogung 1.	toriba		DO	0.60	mg/L	
Well measurement pointC	Stabilized flow rate	~380 m4,	non	EPH	ORP	-207	mV	
Roadbox condition	Stabilized flow rate = flow	v rate with no further drawd	own	Metals	рН	6.88	s.u.	
Well screen interval +14 8-18				PCBs	Temp.	15.34	°C	
Well depth [6.84]				Other	Turb.	0.0	NTU	
				+ see coc				

	urb. S ITU)
5 to 5 0 to 4 5 to 7 -100 to +500 aim	
	0.0
989 0.90 G84 -190 C	.0
955 075 6.80 -193 0	0.0
937 0.67 6.85 -200 0	20 0
943 0.62 0.92 -208 0	0.0
1.4	F
	F
	(
	C
	F
	1 F
	21
	30
	4 (
rough tubing at the	V
rough roomy of the	5 F

ample Information: Well Volume Conversion: Diam. (in) Factor (gal/ft) MW-465 ample ID 0.04 1 0.09 1.5 1130 ample Time: 2 0.16 clear - flocking black specs 0.65 4 1.50 olor: 6 well volume = GO NTU urbidity: 3.14 x (r)^2 x 7.48 gal/ft where r = 1/2 diameter in ft ield Filtered YES / 100 Analyses: N/A Stabilization Criteria: NA Iter type: Sp.Cond. +/- 3% DO +/- 10% NAPL-like oder, sheen on dor/Sheen/NAPL ORP +/- 10 mV top of purse water NAPL on PObe pH +/- 0.1 Std Units plicate Collected YES / 100 Temp. +/- 3% Turb. +/- 10% if values >1 NTU NA yes, duplicate ID: urge water disposal? to ground drummed other: uidance: osition tubing at midpoint of saturated screened interval linimize drop in water level and purge until parameters are stable isconnect flow thru cell during sampling all Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, ell goes dry, odd data). or VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

			Low-Flow Groundwater	Sampling Form
Project number and name	SYCORRI NAPER	i Ithaca Cart St.	_Sampling personnel	Sample date 43000 well ID MW-475
	t. 2" bpofimer cosure Missing 2 boit 5-15' 15	2	5.36 Time: 062 101 Geoptop Harba ~250 m/~1 p rate with no further drawdown	Samples Collected Field values at time of sample collection: 15 VOCs 8260 Time: 07.01 Dapth to water: SVOCs 8270 Sp.Cond. 0.978 mS/cm Dotto water: VPH DO 0.70 mg/L EPH ORP 170 mV Metals PH 0.899 s.u. PCBs Temp. 14.03 °C Other Turb. 13.9 NTU
Cumulative Time (min.) (gal) Typical Groundwater Value GU 5 GSO GSO CUS CUS CUS CUS CUS CUS CUS CUS	depth (ff) (°C) (m es 5 to 15 0.0 5, 15 14, 73 0.4 6, 12 14, 13 0.4 6, 12 14, 13 0.4	D.Cond. D.O. pH (mg/L) (s.u.) 05 to 5 0 to 4 5 to 7 1 1 1.7 G 6.79 117 1.1 L 0.87 1.7 0.83 6.92 1.5H 0.83 6.91 1.5H 0.83 6.91 1.5H 0.83 6.91	ORP (mV) Turb. (NTU) -100 to +500 aim for <10	Sample Information: MW-47S Sample ID MW-47S Sample Time: 07.0S Color: Sightly murkly Turbidity: 3.9 MTV Field Filtered YES / O Analyses: N/A 0.4 1.5 0.09 Priled Filtered YES / O Analyses: N/A 0.4 1.5 0.09 Sample Time: 3.9 MTV Sample Turbidity: N/A Filter type: N/A Odor/Sheen/NAPL N/A Duplicate Collected YES / O Analyses: M/A MA Purge water disposal? to ground drummer other: Visional
Notes: total vol Ment any C of the P .El Consultants Inc. SOML N C		the SOOmL pla	stic unpreserved	Guidance: 1 Position tubing at midpoint of saturated screened interval 2 Minimize drop in water level and purge until parameters are stable 3 Disconnect flow thru cell during sampling 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data). 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM edatt = 12:35 filedatt = 12:40 6/15/2011 ted JUNE 2011/SOP for Intranet/Section 8 - Groundwaler (GW)/Attachment/GW-003 Low Flow (low stress) Groundwaler Sampling - Attachment A 2

÷

Low-Flow Groundwater Sampling Form								
Project number and name 2202159		Sampling personnel	Breena	Pariss 2	Sample date	G130122	_Well ID	MW-485
Well location description:	Sampling Information			Samples Collected	Field valu	ies at time of samp	le collectio	n:
Esty & Washington St.	Initial depth to water	4,22 Tim	. 9:57	VOCs 8260	Time:	1020	_	Depth to water:
Well Construction	Sample intake depth	~9ft		SVOCs 8270	Sp.Cond.	3.83	mS/cm	4,55
Well diameter <u>2</u> "	Pump type and ID	Geopump/	Honba	VPH	DO	0,65	_mg/L	
Well measurement pointC	Stabilized flow rate	~ 380 ml/,	~ t~	EPH	ORP	-220	mV	
Roadbox condition	Stabilized flow rate = flow	rate with no further draw	down	Metals	рН	6.95	s.u.	
Well screen interval				PCBs	Temp.	18.68	°C	
Well depth 13.42				Other	Turb.	0,0	NTU	

umulative ime (min.)	Volume (gal)	Water depth (ft)	Temp. (°C)	Sp.Cond, (mS/cm)	D.O. (mg/L)	рН (s.u.)	ORP (mV)	Turb. (NTU)
ypical Grou	ndwater Valu		5 to 15	0.05 to 5	0 to 4	5 to 7	-100 to +500	aim for <10
1000		4.52	18.71	3,69	1.39	6.79	-205	6.0
1005		4.55	18.45	3.74	1.06	C.86	-210	6.0
1010		4.58	18.38	3.79	0.71	6,95	-218	0.0.
1015		4.55	18.60	3.81	0.70	6.95	=119	60
1020	2	4.55	1868	3.83	0.65	6.95	-720	0.0
		1						
	_							
4								

Sample Informat	ion:	Well Volume Conversion:
Sample ID	MW-4BS	Diam. (in) Factor (gal/ft) 1 0.04
Sample Time:	1020	1.5 0.09 2 0.16
Color:	clear	4 0.65 6 1.50
Turbidity:	0.0 NTU	well volume ≕ 3.14 x (r)^2 x 7.48 gal/ft
Field Filtered YES	Analyses: N7A	where r = 1/2 diameter in ft
Filter type:	N/A	Stabilization Criteria: Sp.Cond. +/- 3%
Odor/Sheen/NAP	NARL-ITKE odor, prose water	DO +/- 10% ORP +/- 10 mV pH +/- 0.1 Std Units
Duplicate Collecte	d YES /	Temp. +/- 3%
If yes, duplicate IE	NV0	Turb. +/- 10% if values >1 NTU
Purge water dispo	sal? to ground drummed othe	r:
Guidance:		
1 Position tubing	g at midpoint of saturated screened interval	
2 Minimize drop	in water level and purge until parameters are	stable
3 Disconnect flo	w thru cell during sampling	
4 Call Project M well goes dry,	anager if issues arise (e.g. stabilization takes odd data).	more than 2 hrs,

5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

Attachment 2

Data Usability Summary Report

Site:	Ithaca Court Street
Laboratory:	Pace Analytical
Report Number:	70220351
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	May 22, 2023

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
MW-C11	70220351-01	BTEX, PAH, Iron, Methane, General Chemistry
MW-C12	70220351-02	BTEX, PAH, Iron, Methane, General Chemistry
MW-C16	70220351-03	BTEX, PAH, Iron, Methane, General Chemistry
MW-C24S*	70220351-04	BTEX, PAH, Iron, Methane, General Chemistry
MW-C25S*	70220351-05	BTEX, PAH, Iron, Methane, General Chemistry
MW-13S	70220351-06	BTEX, PAH, Iron, Methane, General Chemistry
MW-45S	70220351-07	BTEX, PAH, Iron, Methane, General Chemistry
DUP 01	70220351-08	BTEX, PAH, Iron, Methane, General Chemistry
MW-22S	70220351-09	BTEX, PAH, Iron, Methane, General Chemistry
MW-23S	70220351-10	BTEX, PAH, Iron, Methane, General Chemistry
MW-31S	70220351-11	BTEX, PAH, Iron, Methane, General Chemistry
MW-33S	70220351-12	BTEX, PAH, Iron, Methane, General Chemistry
MW-40	70220351-13	BTEX, PAH, Iron, Methane, General Chemistry
MW-46S	70220351-14	BTEX, PAH, Iron, Methane, General Chemistry
MW-47S	70220351-15	BTEX, PAH, Iron, Methane, General Chemistry
MW-48S	70220351-16	BTEX, PAH, Iron, Methane, General Chemistry
* Field IDs MW	-24S and MW-25S or	n chain of custody.

Associated QC Samples:

Field Duplicate pair: MW-C16/DUP 01

The above-listed aqueous samples were collected on June 28, 29, and 30, 2022 and were analyzed for BTEX volatile organic compounds (VOCs) by SW-846 method 8260C, polynuclear aromatic hydrocarbon (PAH) semivolatile organic compounds (SVOCs) by SW-846 method 8270E, dissolved gases (methane) by RSK 175 method, iron by SW846 method 6010C, and general chemistry parameters which included alkalinity by Standard methods SM22 2320B, sulfate by EPA method 300.0, nitrate and nitrite by EPA method 353.2, ammonia by SM22 4500 NH3 H, and total cyanide by SW-846 method 9014. The data validation was performed based on the following USEPA Region 2 Documents: SOP HW-33A (Revision 1) *Low/Medium Volatile Data Validation* (September 2016), Standard Operating Procedure (SOP) HW-35A (Revision 1) *Semivolatile Data Validation* (September 2016), and SOPs HW-31a and 3c (Revision 1), *SOP for the Evaluation of Metals and Cyanide for the Contract Laboratory Program* (September 2016), as well as by the methods referenced by the data package and professional and technical judgment.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations

- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS)/LCS Duplicate (LCSD) Results
- Internal Standards
- Field Duplicate Results
- ICP Serial Dilution Results
- Quantitation Limits
- Sample Quantitation and Compound Identification

All data appear usable as reported or usable with minor qualification due to hold time exceedance and matrix spike recovery outliers. These results were considered valid; even though some were qualified as discussed below.

The validation findings were based on the following information.

Data Completeness

The data package was complete as received by the laboratory with the following exception: It should be noted that ferrous iron was requested on the chain of custody, but due to a laboratory error the analysis was not performed.

Holding Times and Sample Preservation

All hold time and sample preservation criteria were met except where noted below.

Sample	Parameter	Hold Time Exceedance	Required Hold Time	Validation Action/Bias
	Nitrate	< 24 hours	2 days	Estimate (J/UJ) the positive and nondetect results for nitrate
MW-45S	Nitrite	< 24 hours	2 days	and nitrite in this sample; Low bias.
	РАН	Extraction 1 day	7 days	Estimate (J/UJ) the positive and nondetect results for this sample; Low bias.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All initial and continuing calibration criteria were met.

<u>Blanks</u>

Contamination was not detected in the laboratory instrument and method blank samples except where noted below.

Analyte	Blank ID/Associated samples	Highest Concentration Detected	2X Level	10X Level	Validation Actions
Nitrite	7/1 Instrument blanks: MW-C11, MW- C12, MW-C16, MW-C24S, MW-C25S, MW-13S, MW-45S, DUP 01	0.031 mg/L	0.062 mg/L	0.31 mg/L	Validation actions were not required.
Alkalinity	7/5- 7/6 Instrument blanks: MW-C11, MW-C12, MW-C16, MW-C24S, MW- C25S, MW-13S, MW-45S, DUP 01, MW-22S, MW-23S, MW-31S, MW-33S, MW-40, MW-46S, MW-47S, MW-48S	-2.2 mg/L	(-)4.4 mg/L	(-) 22 mg/L	Validation actions were not required.

Blank Actions:

If the sample result is $\leq 2x$ blank contamination detected or $\leq RL$; professional judgment was taken to report the result as nondetect (U) at the reported sample level or RL.

If the sample result is $\geq 2x$ Blank Level (or RL) and < 10x Blank Level; professional judgment was taken to report the sample result as estimated (J); biased high.

If the sample result is nondetect or > 10x Blank Level; validation action was not required.

Surrogate Recoveries

All surrogate recovery criteria were met.

MS/MSD Results

MS/MSD analyses were performed on sample MW-13S for BTEX, PAH, and methane and MS analyses were performed on sample MW-13S for iron, sulfate, ammonia, alkalinity, cyanide, nitrate, and nitrite. Additional MS analyses were performed on sample MW-47S for nitrite and samples MW-45S and MW-47S for nitrate. All recovery and precision criteria were met, for sample levels less than four times the spike, except where noted below.

Analyte	MS/MSD	RPD	QC Limits	Validation Actions				
	Recovery (%)	(%)	(%)					
			MS Sample N	MW-138				
	VOCs							
Toluene	124, 125	-	76-123	Validation action was not required as toluene was not detected in sample MW-13S and therefore was not affected by the potential high bias.				
			Metha	ne				
Methane	203, 192	-	10-185	Estimate (J) the positive result for methane in sample MW-13S; High bias.				
- Criteria met	·		•	-				

MS Sample	Analyte	MS Recovery (%)	QC Limits (%)	Validation Actions			
MW-13S	Nitrate	85	90-110	Estimate (J/UJ) the positive and nondetect results for nitrate and combined nitrate/nitrite in the associated samples; Low bias.			
Associated samp	Associated samples: MW-C11, MW-C12, MW-C16, MW-C24S, MW-C25S, MW-13S, DUP 01						
MW-13S	Ammonia	56	75-125	Estimate (J/UJ) the positive and nondetect results for ammonia in the associated samples; Low bias.			
Associated samples: MW-C11, MW-C12, MW-C16, MW-C24S, MW-C25S, MW-13S, MW-45S, DUP 01, MW-22S, MW-23S, MW-31S, MW-33S, MW-40, MW-46S, MW-47S, MW-48S							
- Criteria met							

Laboratory Duplicate Results

A laboratory duplicate analysis was performed on sample MW-13S for iron, sulfate, alkalinity, cyanide, nitrate, nitrite, and ammonia, sample MW-45S for VOC, sample MW-48S for methane, sample MW-47S for nitrite, and samples MW-45S and MW-47S for nitrate. All precision criteria were met.

LCS/LCSD Results

All LCS/LCSD recovery and precision criteria were met except where noted below.

Analyte	LCS (%)	LCSD (%)	RPD (%)	Control Limits	Validation Action/Bias
РАН					
Naphthalene	97	-	-	22-95	Validation actions were not taken as recovery was slightly above control limits and well within reasonable recovery criteria.
LCS 1333528/1333529: MW-47S, MW-48S					
- Criteria met					

Internal Standards

All criteria were met.

Field Duplicate Results

Samples MW-C16 and DUP01 were submitted as the field duplicate pair with this sample group. The following table summarizes the relative percent differences (RPDs) of the detected analytes in the field duplicate pair, which were within the acceptance criteria.

Analyte	MW-C16 (ug/L)	DUP 01 (ug/L)	RPD (%)
Acenaphthene	13.7	11.8	14.9
Acenaphthylene	0.22	0.23	4.4

Analyte	MW-C16 (ug/L)	DUP 01 (ug/L)	RPD (%)
Anthracene	0.044	0.045	2.2
Benzo(a)anthracene	0.023	0.022	4.4
Chrysene	0.022	0.022	0
Fluoranthene	0.54	0.58	7.1
Fluorene	1.6	1.7	6.1
Naphthalene	0.031	0.037	17.6
Phenanthrene	0.10	0.13	26.1
Pyrene	0.75	0.82	8.9
Methane	5.1	3.8	29.2
Iron	11100	13900	22.4
Analyte	MW-C16 (mg/L)	DUP 01 (mg/L)	RPD (%)
Alkalinity	510	534	4.6
Nitrate	0.095	0.060	45.2, Within 2xRL
Nitrogen, Ammonia	0.23	0.33	35.7, Within 2xRL
	NC-Not ca a: When both results are \geq 5 , the absolute difference be 2xR	ix the RL, RPDs must be tween the original and fie	<30%. Id duplicate results must be <

Serial Dilution Results

A serial dilution analysis was performed on sample MW-13S. Criteria were met.

Quantitation Limits

Results were reported down to the quantitation limit/reporting limit (RL) only.

The following table lists the sample dilutions which were performed.

Sample	Analysis	Dilution Reported	
MW-C11	Methane	The sample was analyzed at a 43-fold dilution.	
MW-C12	РАН	The sample was analyzed undiluted and at a 20-fold dilution. Results were combined to report all results within the calibration range and the lowest reporting limits.	
	Sulfate	The sample was analyzed at a 5-fold dilution.	
MW-C16	РАН	The sample was analyzed undiluted and at a 10-fold dilution. Results were combined to report all results within the calibration range and the lowest reporting limits.	
MW-C25S	Sulfate	The sample was analyzed at a 5-fold dilution.	
MW-45S	Methane	The sample was analyzed at a 215-fold dilution.	
MW-22S	Sulfate	The sample was analyzed at a 5-fold dilution.	
MW-23S	РАН	The sample was analyzed undiluted and at a 50-fold dilution. Results were combined to report all results within the calibration range and the lowest reporting limits.	

Site: Ithaca Court Street Report Number: 70220351 Date: May 22, 2023

Sample	Analysis	Dilution Reported
	VOC	The sample was analyzed undiluted and at a 10-fold dilution. Results were combined to report all results within the calibration range and the lowest reporting limits.
MW-46S	РАН	The sample was analyzed undiluted and at 20 and 50-fold dilutions. Results were combined to report all results within the calibration range and the lowest reporting limits.
	Methane	The sample was analyzed at a 510-fold dilution.
MW 495	РАН	The sample was analyzed undiluted and at a 50-fold dilution. Results were combined to report all results within the calibration range and the lowest reporting limits.
MW-48S	Methane	The sample was analyzed at a 510-fold dilution.

Sample Quantitation and Compound Identification

Calculations were spot-checked. Compound identification criteria were met.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Sample: MW-C11	Lab ID: 7023	20351001	Collected:	06/29/2	2 09:00	Received: 06	/30/22 10:45 N	latrix: Water	
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	Analytical Meth			tion Meth	od: RSK	(-175			
	Pace Analytica	Services -	Melville						
Methane, Dissolved	76.1	ug/L		43.0	43	07/01/22 08:44	07/01/22 14:15	74-82-8	
5010 MET ICP	Analytical Meth	od EPA 60	10C Prena	ration Me	thod F	PA 3005A			
	Pace Analytica		1973 XXVI, 2000 ****		Sector Sector				
ron	2980	ug/L		100	4	07/05/22 06:56	07/07/22 19:40	7439-89-6	
270E MSSV PAH by SIM	Analytical Meth	od: EPA 82	TOE SIM P	reparatio	n Metho	d: EPA 3510C			
	Pace Analytica			1000		See Teacres			
	and the second se			(Instance)	13	00122022012002	0.0000000000000000000000000000000000000	10000000	
Acenaphthene	0.81	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	83-32-9	
Acenaphthylene	0.11	ug/L		0.019	9	07/06/22 17:28	07/07/22 19:40	208-96-8	
Anthracene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	120-12-7	
Benzo(a)anthracene	<0.019	ug/L		0.019	1	07/06/22 17:28		56-55-3	
Benzo(a)pyrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	50-32-8	
3enzo(b)fluoranthene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	205-99-2	
Benzo(g,h,i)perylene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	191-24-2	
Benzo(k)fluoranthene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	207-08-9	
Chrysene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	218-01-9	
)ibenz(a,h)anthracene	<0.019	ug/L		0,019	1	07/06/22 17:28	07/07/22 19:40	53-70-3	
luoranthene	0.024	ug/L	1	0.019	1	07/06/22 17:28	07/07/22 19:40	206-44-0	
Fluorene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40		
ndeno(1,2,3-cd)pyrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	193-39-5	
Naphthalene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40		
Phenanthrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	85-01-8	
³ yrene	0.027	ug/L		0.019	1	07/06/22 17:28	07/07/22 19:40	129-00-0	
Surrogates		38		3557475		2010/05/2017-2017-2	STREET,	10.512	
Fluoranthene-d10 (S)	86	%		40-112	1	07/06/22 17:28	07/07/22 19:40	93951-69-0	
-Methyinaphthalene-d10 (S)	64	%		44-146	1	07/06/22 17:28	07/07/22 19:40	7297-45-2	
260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C	8					
	Pace Analytica	Services -	Melville						
Benzene	<1.0	ug/L		1.0	1		07/08/22 12:44	71-43-2	
	<1.0	ug/L		1.0	1		07/08/22 12:44		
Ethylbenzene	<1.0	ug/L		1.0	1		07/08/22 12:44		
Toluene Yulono (Totol)	<3.0	ug/L		3.0	4		07/08/22 12:44		
Xylene (Total) Surrogates	\$3.05	ngir		3.0	62		1100822 18.44	1000-60-1	
1,2-Dichloroethane-d4 (S)	98	%		81-122	1		07/08/22 12:44	17060-07-0	
4-Bromofluorobenzene (S)	101	%		79-118	1		07/08/22 12:44		
Toluene-d8 (S)	89	%		82-122	1		07/08/22 12:44		
2320B Alkalinity	Analytical Met	nod SM22	2320B						
	Pace Analytica								
	1 add renary but	- was muld							

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pecelabs.com

Sample: MW-C11	Lab ID:	702203	351001	Collected:	06/29/2	22 09:00	Received: (06/30/22 10:45	Matrix: Water	
Parameters	Results		Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Pace Analy									
Sulfate	<5.0	F.	mg/L		5.0			07/12/22 16:1	7 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Pace Analy									
Nitrate as N	<0.050	VJ	mg/L		0.050	1		07/01/22 02:0	2 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	UT	mg/L		0.050	1		07/01/22 02:0	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Pace Analy									
Nitrite as N	<0.050)	mg/L		0.050	1		07/01/22 02:5	6 14797-65-0	
4500 Ammonia Water	Analytical Pace Analy			4500 NH3 H Melville						
Nitrogen, Ammonia	0.88	J	, mg/L		0.10	1		07/04/22 13:4	4 7664-41-7	
9014 Cyanide, Total	Analytical Pace Anal				anide Pi	reparation	n Method: EPA	9010C		
Cyanide	<10.0		ug/L		10.0	1	07/11/22 14:2	0 07/11/22 17:5	9 57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Parameters	Results	Units	Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases	Analytical	Method: RSK-1	75 Preparat	ion Meth	od: RSK	-175			
	Pace Anal	ytical Services	- Melville						
Methane, Dissolved	27:	3 ug/L		43.0	43	07/01/22 08:44	07/01/22 14:25	74-82-8	
6010 MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Me	thod: El	PA 3005A			
		ytical Services							
Iron	1250	0 ug/L		100	1	07/05/22 06:56	07/07/22 19:42	7439-89-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA 8	270E SIM P	reparatio	n Metho	d: EPA 3510C			
		ytical Services		and a second					
Acenaphthene	93.0	ug/L		0.40	20	07/06/22 17:28	07/11/22 16:54	83-32-9	
Acenaphthylene	0.83			0.020	1		07/07/22 20:12		
Anthracene	0.07			0.020	1		07/07/22 20:12		
Benzo(a)anthracene	<0.020	C-5 175016		0.020	1		07/07/22 20:12	일 18일에는 영향 / ^ /	
Benzo(a)pyrene	<0.020	7. THE ST.		0.020	1		07/07/22 20:12	2017년 관리 2017년 11년 11년 11년 11년 11년 11년 11년 11년 11년	
Benzo(b)fluoranthene	<0.020			0.020	1		07/07/22 20:12		
Benzo(g,h,i)perviene	<0.020	- 4		0.020	1		07/07/22 20:12		
Benzo(k)fluoranthene	<0.020	- D		0.020	1		07/07/22 20:12		
Chrysene	<0.02	200 - Reference		0.020	1	이 집안 가슴 것을 알았는 것이 같아요.	07/07/22 20:12		
Dibenz(a,h)anthracene	<0.020			0.020	+	101123333345553100335555		2.53473725556772	
Fluoranthene	0.02		-	0.020	1		07/07/22 20:12		
Fluorene	13.0			0.40	20		07/07/22 20:12	(1) (2010) (2010) (1) (10) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
Indeno(1,2,3-cd)pyrene	<0.020	-0		Contraction of the			07/11/22 16:54		
Naphthalene	0.06	22		0.020	1		07/07/22 20:12		
Phenanthrene	0.5			0.020	4		07/07/22 20:12	1991.0091.001.001	
Pyrene	0.029	E.S		0.020			07/07/22 20:12		
Surrogates	0.023	9 ug/L		0.020	1	07/06/22 17:28	07/07/22 20:12	129-00-0	
Fluoranthene-d10 (S)	96	6 %		40-112	¥.	07/00/00 17:00	07/07/22 20:12		
2-Methylnaphthalene-d10 (S)	7			44-146	1	시작 가슴에서 이번째 지지 않았다.	07/07/22 20:12		
	1 22 22 4			44-140	1	07306/22 11.26	VII01122 20.12	1291-40-2	
8260C Volatile Organics	Analytical	Method: EPA 8:	260C/5030C						
	Pace Anal	vtical Services	- Melville						
Benzene	2.0	0 ug/L		1.0	1		07/07/22 15:57	71-43-2	
Ethylbenzene	1.4			1.0	1		07/07/22 15:57		
Toluene	<1.0	0.0		1.0	1		07/07/22 15:57		
Xylene (Total)	<3.0	502 (C.M.) (C.M.)		3.0	1		07/07/22 15:57		
Surrogates		o Byr		0.0			01101128-10201	1000-20-1	
1,2-Dichloroethane-d4 (S)	9,	4 %		81-122	1		07/07/22 15:57	17060-07-0	
4-Bromofluorobenzene (S)	10:			79-118	1		07/07/22 15:57		
Toluene-d8 (S)	8	201		82-122	1		07/07/22 15:57		
2320B Alkalinity	Analytical	Method: SM22	2320B						
2320B Alkalinity		vtical Services							
		Sea conserve	A Section of the		12		0705100 47.44		
Alkalinity, Total as CaCO3	44	9 mg/L		1.0	1		07/05/22 17:41		

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pscelabs.com

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C12	Lab ID:	702203	51002	Collected:	06/29/2	2 09:00	Received:	06/30/22 10:45	Matrix: Water	
Parameters	Results		Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Pace Anal									
Sulfate	130)	mg/L		25.0	5		07/13/22 21:4	5 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Pace Anal									
Nitrate as N Nitrate-Nitrite (as N)		UJ.	1102310		0,050 0,050	1		07/01/22 02:0 07/01/22 02:0	THE REPORT OF THE PARTY OF THE	
353.2 Nitrogen, NO2	Analytical Pace Anal									
Nitrite as N	<0.05	0	mg/L		0.050	1		07/01/22 02:5	7 14797-65-0	
4500 Ammonia Water	Analytical Pace Anal			4500 NH3 H Melville						
Nitrogen, Ammonia	0.8	3 J.	mg/L		0.10	1		07/04/22 13:4	6 7664-41-7	
9014 Cyanide, Total	Analytical Pace Anal			2 7 1 CO 10 C A S 4 B	inide Pr	eparatio	n Method: EP	A 9010C		
Cyanide	12.	3	.ug/L		10.0	1	07/11/22 14:	20 07/11/22 18:0	0 57-12-5	

REPORT OF LABORATORY ANALYSIS

Pace Analytical[®]

Qual

ANALYTICAL RESULTS

	Lab ID: 702	20351003	Conected	06/29/2	2 11:00	Received: 0	6/30/22 10:45 N	fatrix: Water
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.
SK 175 Dissolved Gases	Analytical Met			tion Meth	od: RS	K-175		
	Pace Analytica		Melville					
fethane, Dissolved	5.1	ug/L		1.0	1	07/01/22 08:44	07/01/22 12:35	74-82-8
010 MET ICP	Analytical Meth Pace Analytica			iration Me	ethod: E	PA 3005A		
ron	11100	ug/L		100	1	07/05/22 06:56	07/07/22 19:45	7439-89-6
270E MSSV PAH by SIM	Analytical Meth Pace Analytica			reparatio	n Meth	od: EPA 3510C		
cenaphthene	13.7		entarente.	0.20	10	07102100 17.00	07/44/00 40:00	00.00.0
kcenaphthylene	0.22	ug/L ug/L		0.020	10	07/06/22 17:28	 COM, S. SATETI D. DICENSIO 	200 0-0-1
Inthracene	0.044			0.020		07/06/22 17:28	2 - TON TONITE BURNING	00000000000
lenzo(a)anthracene	0.023	ug/L		0.020	14	07/06/22 17:28		120124225
Senzo(a)pyrene	<0.020	ug/L ug/L		0.020		07/06/22 17:28	C 28.0233077777778787	31567705525
Benzo(b)fluoranthene	<0.020	ug/L		0.020	4	07/06/22 17:26	한 이 것이 많은 것 이가 영화가 있는 것	
lenzo(g,h,i)perviene	<0.020	ug/L		0.020		07/06/22 17:28	8 900 TAMPIDESANE	. 202020204040
Senzo(k)fluoranthene	<0.020	ug/L		0.020	14	07/06/22 17:28	Property of the second second	15210710.77
Chrysene	0.022	ug/L		0.020	4	07/06/22 17:28		2003/2002/1
Jibenz(a,h)anthracene	<0.020	ug/L		0.020	4	07/06/22 17:28		Contraction and Contraction
luoranthene	0.54	ug/L	1	0.020		07/06/22 17 28		500 C 72 C -
luorene	1.6	ug/L		0.020	3	07/06/22 17:28		
ndeno(1.2.3-cd)pyrene	<0.020	ug/L		0.020		07/06/22 17:28	- 7347411008757708	이 이에와 아프랑아이 네트를
aphthalene	0.031	ug/L		0.020	4	07/06/22 17:28	2	N. 25 C 10 - 2 - 7 - 1
henanthrane	0.10	ug/L		0.020	1	07/06/22 17:28		
Pyrene	0.75	ug/L		0.020	1	07/06/22 17:28		
Surrogates	100 I I I I I I I I I I I I I I I I I I	100		-22336	5	200220003000	2000/00/2003	1000000
Fluoranthene-d10 (S)	92	26		40-112	1	07/06/22 17:28	07/07/22 20:43	93951-69-
-Methylnaphthalene-d10 (S)	69	%		44-146	1	07/06/22 17:28	8 07/07/22 20:43	7297-45-2
260C Volatile Organics	Analytical Met	hod: EPA 8	260C/50300	2				
	Pace Analytica	Services	Melville					
Benzene	<1.0	ug/L		1.0	1		07/07/22 16:18	71-43-2
Ethylbenzene	<1.0	ug/L		1.0	4		07/07/22 16:18	
foluene	<1.0	ug/L		1.0	4		07/07/22 16:18	100000000000000000000000000000000000000
(ylene (Total)	<3.0	ug/L		3.0	1		07/07/22 16:18	11111222072
Surrogates								
2-Dichloroethane-d4 (S)	95	%		81-122	1		07/07/22 16:18	17060-07-
-Bromofluorobenzene (S)	101	%		79-118	1		07/07/22 16:18	460-00-4
loluene-d8 (S)	88	%		82-122	1		07/07/22 16:18	2037-26-5
2320B Alkalinity	Analytical Met	hod: SM22	2320B					
	Pace Analytica	al Services	- Melville					
Alkalinity, Total as CaCO3	510	mg/L		1.0	1		07/05/22 18:02	est.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: NYSEG ITHACA COURT STREET 6/29 3

Sample: MW-C16	Lab ID:	70220351003	Collected: 06/29/2	2 11:0	0 Received: 06	3/30/22 10:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	55 min (* 78 min) mi	Method: EPA 30 /tical Services -				SII		
Sulfate	<5.0) mg/L	5.0	1		07/12/22 16:44	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		Method: EPA 35 /tical Services -						
Nitrate as N	0.095	🛨 • mg/L	0,050	1		07/01/22 02:12	14797-55-8	
Nitrate-Nitrite (as N)	0.11	J . mg/L	0.050	1		07/01/22 02:12	7727-37-9	
353.2 Nitrogen, NO2	000 H 0100 H 010 H 19	Method: EPA 35 /tical Services -	AT AT A A A A A A A A A A A A A A A A A					
Nitrite as N	<0.050	mg/L	0.050	1		07/01/22 03:18	14797-65-0	
4500 Ammonia Water		Method: SM22 / /tical Services -						
Nitrogen, Ammonia	0.23	J. mg/L	0.10	1		07/04/22 13:47	7664-41-7	
9014 Cyanide, Total		Method: EPA 90 /tical Services -	114 Total Cyanide Pr Melville	eparati	ion Method: EPA 9	010C		
Cyanide	<10.0) ug/L	10.0	1	07/11/22 14:20	07/11/22 18:01	57-12-5	

REPORT OF LABORATORY ANALYSIS

Sample: MW-C24S	Lab ID:	70220351004	Collected:	06/29/2	22 07:05	Received: 06	6/30/22 10:45	Matrix: Water	
Parameters	Results	Units	Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases		Method: RSK-1		ion Meth	od: RSK	-175			
	Pace Analy	tical Services -	Melville						
Methane, Dissolved	127	ug/L		43.0	43	07/01/22 08:44	07/01/22 14:35	74-82-8	
6010 MET ICP	Analytical (Method: EPA 60	10C Prena	ration M	thor Fi	PA 3005A			
		tical Services -							
Iron	395			100	ï	07/05/22 06:56	07/07/22 19:47	7439-89-6	
8270E MSSV PAH by SIM	Architical			000000000000000000000000000000000000000	a a a a a a a a a a a a a a a a a a a		1/200/201/000011/20140	010100000000000	
DETUE MOOV PAR BY SIM		Method: EPA 82		reparatio	n Metho	d: EPA 3510C			
	Pace Analy	/tical Services -	Melville						
Acenaphthene	<0.019	-0		0.019	1	07/06/22 17:28	07/07/22 21:15	83-32-9	
Acenaphthylene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	208-96-8	
Anthracene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	120-12-7	
Benzo(a)anthracene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	56-55-3	
Benzo(a)pyrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	50-32-8	
3enzo(b)fluoranthene	<0.019	ug/L		0.019	1.	07/06/22 17:28	07/07/22 21:15	205-99-2	
Benzo(g,h,i)perylene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	191-24-2	
Benzo(k)fluoranthene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	207-08-9	
Chrysene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	218-01-9	
Dibenz(a,h)anthracene	<0.019	ug/L	1	0.019	1	07/06/22 17:28	07/07/22 21:15	53-70-3	
Fluoranthene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	206-44-0	
luorene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	86-73-7	
ndeno(1,2,3-cd)pyrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	193-39-5	
Naphthalene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	91-20-3	
² henanthrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/07/22 21:15	85-01-8	
Pyrene	<0.019	ug/L		0.019	1		07/07/22 21:15		
Surrogates									
Fluoranthene-d10 (S)	97			40-112	1	07/06/22 17:28	07/07/22 21:15	93951-69-0	
-Methylnaphthalene-d10 (S)	74	%		44-146	1	07/06/22 17:28	07/07/22 21:15	7297-45-2	
260C Volatile Organics	Analytical I	Method: EPA 82	60C/5030C						
	Pace Analy	tical Services -	Melville						
Benzene	<1.0	ug/L		1.0	1		07/07/22 16:40	71-43-2	
Ethylbenzene	<1.0	10 March 10		1.0	1		07/07/22 16:40		
Toluene	<1.0			1.0	-		07/07/22 16:40		
(viene (Total)	<3.0			3.0	1		07/07/22 16:40		
Surrogates	1.1.1.1.1	sign=		Sile	-70		anne ne ne ne		
1,2-Dichloroethane-d4 (S)	98	i %		81-122	1		07/07/22 16:40	17060-07-0	
-Bromofluorobenzene (S)	101	%		79-118	1		07/07/22 16:40	460-00-4	
foluene-d8 (S)	89	9 %		82-122	1		07/07/22 16:40		
2320B Alkalinity	Analytical	Method: SM22 2	2320B						
NAMES AND A CONTRACT OF A REAL	17 L S L T D 17 19 19	tical Services -							
	and a starting	COMPANY AND A DESCRIPTION OF	A COMPANY AND A COMPANY						

REPORT OF LABORATORY ANALYSIS

Date: 10/27/2022 12:56 PM

Pace Analytical www.pacelabs.com

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C24S	Lab ID:	7022035100	4 Collected:	06/29/3	22 07:05	Received:	06/30/22 10:45	Matrix: Water	1
Parameters	Results	Unit	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days		Method: EPA lytical Service	AND						
Sulfate	17.	8 mg/l		5.0	1		07/12/22 16:5	8 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		Method: EPA							
Nitrate as N Nitrate-Nitrite (as N)	0.08 0.1	2 J - mg/l 0 J. mg/l		0.050 0.050	1		07/01/22 01:4 07/01/22 01:4		
353.2 Nitrogen, NO2	- 00 (F) (C. 50 (F) (F)	Method: EPA lytical Service							
Nitrite as N	<0.05	0 mg/l	A A A A A A A A A A A A A A A A A A A	0.050	1		07/01/22 00:5	1 14797-65-0	
4500 Ammonia Water		Method: SM2 lytical Service	2 4500 NH3 H s - Melville						
Nitrogen, Ammonia	0.1	6 J. mg/l	5	0.10	1		07/04/22 13:5	0 7664-41-7	
9014 Cyanide, Total		Method: EPA	9014 Total Cya s - Melville	anide P	reparatio	n Method: EP/	4 9010C		
Cyanide	<10.	0 ug/l	01450000000	10.0	1	07/11/22 14:2	0 07/11/22 18:0	2 57-12-5	

REPORT OF LABORATORY ANALYSIS

Project NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C25S	Lab ID:	70220351005	Collected:	06/29/2	2 10:25	Received: 06	/30/22 10:45 N	Aatrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	Analytical	Method: RSK-1	75 Preparat	ion Meth	od: RSK	-175			
	Pace Anal	ytical Services -	Melville						
Methane, Dissolved	3.	6 ug/L		1.0	1	07/01/22 08:44	07/01/22 12:54	74-82-8	
6010 MET ICP	Analytical	Method: EPA 60	10C Prena	ration Me	thod: Ei	24 30054			
		ytical Services		dion are		100001			
Iron	37	7 ug/L		100	1	07/05/22 06:56	07/07/22 19:50	7439-89-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA 82	70E SIM P	reparatio	n Metho	d: EPA 3510C			
	Pace Anal	ytical Services	Melville						
Acenaphthene	<0.02	3 ug/L		0.023	1	07/06/22 17:28	07/07/22 21:47	83-32-9	
Acenaphthylene	<0.02	3 ug/L		0.023	1	07/06/22 17:28	07/07/22 21:47	208-96-8	
Anthracene	<0.02	3 ug/L		0.023	1	07/06/22 17:28	07/07/22 21:47	120-12-7	
Benzo(a)anthracene	<0.02	3 ug/L		0.023	1	07/06/22 17:28	07/07/22 21:47	56-55-3	
Benzo(a)pyrene	<0.02	3 ug/L		0.023	1	07/06/22 17:28	07/07/22 21:47	50-32-8	
Benzo(b)fluoranthene	<0.02	619 E E E E E E E E E E E E E E E E E E E		0.023	1		07/07/22 21:47		
Benzo(g,h,l)perviene	<0.02	11 M		0.023	1		07/07/22 21:47		
Benzo(k)fluoranthene	<0.02			0.023	1		07/07/22 21:47		
Chrysene	<0.02			0.023	1	0.59340.9347576.05165056	07/07/22 21:47	NOT 201 NOT 2010	
Dibenz(a,h)anthracene	<0.02	202 T		0.023	1		07/07/22 21:47		
Fluoranthene	<0.02	23. 30 % -74		0.023	1	FEED CONSTRUCTION	07/07/22 21:47	0.070303030303	
Fluorene	<0.02	집 영양 전 영양 전 문	1	0.023	4		07/07/22 21:47		
Indeno(1,2,3-cd)pyrene	<0.02			0.023	4	111 B C C C C C C C C C C C C C C C C C	07/07/22 21:47		
Naphthalene	<0.02	3/)		0.023	1		07/07/22 21:47	2012 C 13050 C	
Phenanthrene	<0.02	12.1		0.023	1		07/07/22 21:47		
Pyrene	<0.02	STOL 10 10 10 10 10 10 10 10 10 10 10 10 10		0.023	4	네 관련을 가장한 것 같아. 이 집 방법 것은	07/07/22 21:47	0.0000000000	
Surrogates	-0.02	a nAvit		0.025	13	01100/22 17:20	01101122 21.31	(20-00-0	
Fluoranthene-d10 (S)	8	5 %		40-112	4	07/06/22 17:28	07/07/22 21:47	93951-69-0	
2-Methylnaphthalene-d10 (S)	2	1 %		44-146	1	[- 704] 위험 것입니다. 위해야 !	07/07/22 21:47	그는 아이에 가지 않는 것이 없어요.	
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C						
		lytical Services							
Benzene	<1.	0 ug/L		1.0	1		07/07/22 17:01	71-43-2	
Ethylbenzene	<1.	0 ug/L		1.0	1		07/07/22 17:01	100-41-4	
Toluene	<1.	0 ug/L		1.0	1		07/07/22 17:01	108-88-3	
Xylene (Total)	<3.	17 July 18 Jul		3.0	1		07/07/22 17:01	1330-20-7	
Surrogates	1.00			- 5576					
1,2-Dichloroethane-d4 (S)	9	5 %		81-122	1		07/07/22 17:01	17060-07-0	
4-Bromofluorobenzene (S)	10	0 %		79-118	1		07/07/22 17:01	460-00-4	
Toluene-d8 (S)	8	9 %		82-122	1		07/07/22 17:01	2037-26-5	
2320B Alkalinity	Analytical	Method: SM22	2320B						
	Pace Ana	lytical Services	- Melville						
	60	18 mg/L		1.0	1		07/05/22 20:42		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical "

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C25S	Lab ID:	7022035100	5 Collected:	06/29/2	2 10:25	Received:	06/30/22 10:45	Matrix: Water	-
Parameters	Results	Unit	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days		Method: EPA ytical Service							
Sulfate	16	3 mg/l		25.0	5		07/13/22 21:59	9 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		Method: EPA ytical Service							
Nitrate as N Nitrate-Nitrite (as N)	<0.05 <0.05	0 UJ - mg/l 0 UJ ,mg/l		0.050 0.050	1		07/01/22 02:09 07/01/22 02:09	9 14797-55-8 9 7727-37-9	
353.2 Nitrogen, NO2	이것 위험 안정 안정 같은 것	Method: EPA ytical Service							
Nitrite as N	<0.05	0 mg/l		0.050	1		07/01/22 03:03	3 14797-65-0	
4500 Ammonia Water		Method: SM: ytical Service	2 4500 NH3 H s - Melville						
Nitrogen, Ammonia	<0.1	0 UJ.mg/		0.10	1		07/04/22 13:5:	2 7664-41-7	
9014 Cyanide, Total		Method: EPA ytical Service	9014 Total Cya s - Melville	anide Pr	eparatio	n Method; EPA	49010C		
Cyanide	24.	2 ug/l		10.0		07/11/22 14:2	0 07/11/22 18:03	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Parameters	Results	114.00							
		Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
Fourier products Politician Index (1)		Method: RSK-1		on Meth	od: RSK	-175			
T SAME A STATE TO THE SECOND CONTRACTOR IN	Pace Analy	tical Services -	Melville						
lethane, Dissolved	24.3	J . ug/L		5.0	5	07/01/22 08:44	07/01/22 13:14	74-82-8	M1
010 MET ICP	Analytical M	Aethod: EPA 60	10C Prepar	ation Me	thod: El	PA 3005A			
		tical Services -		2014050105	10000-051	1.455.7733.49			
ron	266	ug/L	0.0762/070	100	1	07/05/22 06:56	07/07/22 19:52	7439-89-6	
270E MSSV PAH by SIM	Acchelical	follow CDA D	705 000 0		1999519				
210C M33V FAR by SIM		Method: EPA 82		eparatio	n Metho	d: EPA 3510C			
	Pace Analy	tical Services -	Melville						
cenaphthene	0.031	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	83-32-9	
cenaphthylene	<0.021	ug/L		0.021	1		07/07/22 22:18		
Inthracene	<0.021	ug/L		0.021	1		07/07/22 22:18		
lenzo(a)anthracene	<0.021	ug/L		0.021	1		07/07/22 22:18		
lenzo(a)pyrene	<0.021	ug/L		0.021	1		07/07/22 22:18		
enzo(b)fluoranthene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	205-99-2	
lenzo(g,h,i)perylene	<0.021	ug/L		0.021	1		07/07/22 22:18		
lenzo(k)fluoranthene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	207-08-9	
Chrysene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	218-01-9	
Nbenz(a,h)anthracene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	53-70-3	
luoranthene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	206-44-0	
luorene	<0.021	ug/L		0.021	1		07/07/22 22:18		
ndeno(1,2,3-cd)pyrene	<0.021	ug/L_		0.021	1	07/06/22 17:28	07/07/22 22:18	193-39-5	
laphthalene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	91-20-3	
henanthrene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	85-01-8	
yrene	<0.021	ug/L		0.021	1	07/06/22 17:28	07/07/22 22:18	129-00-0	
urrogates		842400		and the second			1.2925000 - 6227/0317-202		
luoranthene-d10 (S)	102	%		40-112	1		07/07/22 22:18		
-Methylnaphthalene-d10 (S)	82	%	1.1	44-146	1	07/06/22 17:28	07/07/22 22:18	7297-45-2	
260C Volatile Organics	Analytical M	Aethod: EPA 82	60C/5030C						
		tical Services -							
lenzene	- Andrewsky				56				
thylbenzene	<1.0			1,0	1		07/07/22 17:22		
oluene	<1.0	101003000		1,0	1		07/07/22 17:22	18. J. CONCERNS.	1
(Viene (Total)	<3.0			1.0	1		07/07/22 17:22		M1
Surrogates	\$3.0	ug/L		3.0	0 ti - >0		07/07/22 17:22	1330-20-7	
,2-Dichloroethane-d4 (S)	95	%	1.1	81-122	Ť		07/07/22 17:22	17060-07-0	
-Bromofluorobenzene (S)	101			79-118	1		07/07/22 17:22		
oluene-d8 (S)	88			82-122	1		07/07/22 17:22		
320B Alkalinity	Analytical M	Aethod: SM22 :	2320B						
and a state of the	10 million (10 mil	tical Services -							
lkalinity, Total as CaCO3	302			1.0	1		07/05/22 20:56	a	M1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Sample: MW-13S-MS/MSD-	Lab ID:	702203	51006	Collected:	06/29/2	2 13:00	Received: 0	6/30/22 10:45	Matrix: Water	
Parameters	Results	, I	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Pace Analy		Souther strate							
Sulfate	35.9)	mg/L		5.0	1		07/12/22 17:25	5 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Pace Analy									
Nitrate as N Nitrate-Nitrite (as N)	1.3 1.3		mg/L mg/L		0.050 0.050	1 1		07/01/22 01:58 07/01/22 01:58		M1
353.2 Nitrogen, NO2	Analytical Pace Analy									
Nitrite as N	<0.050	0	mg/L		0.050	1		07/01/22 02:50	14797-65-0	
4500 Ammonia Water	Analytical Pace Analy			4500 NH3 H Melville						
Nitrogen, Ammonia	<0.10	UJ	mg/L		0.10	1		07/04/22 13:55	7664-41-7	M1
9014 Cyanide, Total	Analytical Pace Analy				inide Pre	paration	n Method: EPA	9010C		
Cyanide	<10.0	0	ug/L		10.0	1	07/11/22 14:20	07/11/22 18:04	57-12-5	

REPORT OF LABORATORY ANALYSIS

Sample: MW-45S	Lab ID:	70220351007	Collected:	06/28/2	2 13:05	Received: 06	i/30/22 10:45 N	fatrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	5 Y Q (1 / La (3 (1 x) 1 y (2 x)	Method: RSK-1 /tical Services -		ion Meth	od: RSK	-175			
Methane, Dissolved	1410) ug/L		215	215	07/01/22 08:44	07/01/22 14:44	74-82-8	
6010 MET ICP		Method: EPA 60 dical Services -		ation Me	thod: El	PA 3005A			
Iron	2290	ug/L		100	1	07/05/22 06:56	07/07/22 20:09	7439-89-6	
8270E MSSV PAH by SIM		Vethod: EPA 82 /tical Services -		reparatio	n Metho	d: EPA 3510C			
Acenaphthene	<0.020	UT ug/L		0.020	1	07/06/22 17:28	07/07/22 19:08	83-32-9	H2
Acenaphthylene	<0.020			0.020	1	100-2010 000 000 000 000 000 000 000 000 000	07/07/22 19:08		H2
Anthracene	<0.020			0.020	1		07/07/22 19:08	4 (T.S.T.) 7 E.C.	H2
Benzo(a)anthracene	<0.020) ug/L		0.020	1		07/07/22 19:08		H2
Benzo(a)pyrene	<0.020	14 1825005		0.020	1		07/07/22 19:08	2.7.70.78807.5	H2
Benzo(b)fluoranthene	<0.020	0.100 to 1		0.020	1		07/07/22 19:08		H2
Benzo(g,h,i)perylene	<0.020			0.020	1	50,70 MCR 12-525	07/07/22 19:08		H2
Benzo(k)fluoranthene	<0.020	2.6 7 90 7 10		0.020	4		07/07/22 19:08	요즘 영화님께 집안하였다.	H2
Chrysene	<0.020	21. A 10 10 10 10 10 10 10 10 10 10 10 10 10		0.020	1		07/07/22 19:08	CONTRACTOR OF THE OWNER	H2
Dibenz(a,h)anthracene	<0.020	0.0000000		0.020	1		07/07/22 19:08		H2
Fluoranthene	<0.020	100000		0.020	1	2 TH USE AND THE ACCESS	07/07/22 19:08		H2
Fluorene	<0.020			0.020	1		07/07/22 19:08		H2
Indeno(1,2,3-cd)pyrene	<0.020	10 (CH)		0.020	1		07/07/22 19:08		H2
Naphthalene	<0.020			0.020	1		07/07/22 19:08		H2
Phenanthrene	<0.020	0 0.0055		0.020	4		07/07/22 19:08		H2
							. 말 같은 것 같이 있다.	(1978) (1974) (1976) (1978) (1974) (1976)	
Pyrene Surrogates	<0.020	UJ ug/L		0.020	1	0//06/22 1/:28	07/07/22 19:08	129-00-0	H2
Fluoranthene-d10 (S)	97	%		40-112	4	07/06/22 17:20	07/07/22 19:08	0.00 + 3000	
2-Methylnaphthalene-d10 (S)	75			44-146	1		07/07/22 19:08		
8260C Volatile Organics	Analutical	Method: EPA 82	0600/60300		6	2025-940 QIMC	0.764(3.8)(360))) (= 3835	essan mesa	
ozooo volatile organica		tical Services -							
Benzene	<1.0	ug/L		1.0	1		07/06/22 20:24	71-43-2	
Ethylbenzene	<1.0	J ug/L		1.0	1		07/06/22 20:24	100-41-4	
Toluene	1.1	이 건강지?		1.0	1		07/06/22 20:24	108-88-3	
Xylene (Total)	<3.0			3.0	1 -		07/06/22 20:24	1330-20-7	
Surrogates	-								
1,2-Dichloroethane-d4 (S)	95	5 %		81-122	1		07/06/22 20:24	17060-07-0	
4-Bromofluorobenzene (S)	102	2 %		79-118	1		07/06/22 20:24	460-00-4	
Toluene-d8 (S)	89			82-122	1		07/06/22 20:24	2037-26-5	
2320B Alkalinity		Method: SM22							
	Pace Anal	vtical Services	- Melville						

REPORT OF LABORATORY ANALYSIS

Date: 10/27/2022 12:56 PM

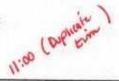
Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-45S	Lab ID:	702203	51007	Collected:	06/28/2	2 13:05	Received:	06/30/22 10:45	Matrix: Water	112.3
Parameters	Results	_	Units	Report	t Llmit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Pace Anal									
Sulfate	<5.	D	mg/L		5.0	1		07/12/22 18:0	5 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Pace Anal			22222						
Nitrate as N Nitrate-Nitrite (as N)	74. 74.	5 J.	mg/L mg/L		2.5 2.5	50 50		07/01/22 01:4 07/01/22 01:4		H1
53.2 Nitrogen, NO2	Analytical Pace Anal									
Nitrite as N	<0.05	J.	mg/L		0.050	1		07/01/22 00:4	5 14797-65-0	H1
1500 Ammonia Water	Analytical Pace Anal			4500 NH3 H Melville						
Nitrogen, Ammonia	3.3	3 Ј.	mg/L		0.10	1		07/04/22 13:55	7664-41-7	
0014 Cyanide, Total	Analytical Pace Anal				nide Pre	paration	1 Method: EPA	9010C		
Cyanide	<10.0)	ug/L	www.cov	10.0	াৰ 🛛	07/11/22 14:20	0 07/11/22 18:08	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.


Pace Analytical "

Parameters						- 비사망 옷 지배 있었다. 눈물 것	\$/30/22 10:45		
	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	Analytical Me		Self-Ferry Contractor in a	ion Meth	od: RSK	(-175	22	1111	1
	Pace Analytic	cal Services -	Melville						
Methane, Dissolved	3.8	ug/L		1.0	1	07/01/22 08:44	07/01/22 14:0	5 74-82-8	
6010 MET ICP	Analytical Me Pace Analytic			ration Me	athod; E	PA 3005A			
ron	13900	ug/L		100	1	07/05/22 06:56	07/07/22 20:11	7439-89-6	
8270E MSSV PAH by SIM	Analytical Me Pace Analytic			reparatio	n Metho	d: EPA 3510C			
Acenaphthene	11.8	ug/L		0.20	10	07/06/22 17:28	07/09/22 05:5	2 83-32-9	
Acenaphthylene	0.23	ug/L		0.020	1	07/06/22 17:28			
Anthracene	0.045	ug/L		0.020	1	07/06/22 17:28			
Benzo(a)anthracene	0.022	ug/L		0.020	1	07/06/22 17:28	07/08/22 17:39	9 56-55-3	
Benzo(a)pyrene	<0,020	ug/L		0.020	1	07/06/22 17:28	07/08/22 17:3	9 50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L		0.020	1	07/06/22 17:28	07/08/22 17:39	9 205-99-2	
Benzo(g,h,i)perylene	<0.020	ug/L		0.020	1	07/06/22 17:28	07/08/22 17:39	9 191-24-2	
Benzo(k)fluoranthene	<0.020	ug/L		0.020	1	07/06/22 17:28	07/08/22 17:39	9 207-08-9	
Chrysene	0.022	ug/L		0.020	1		07/08/22 17:39		
Dibenz(a,h)anthracene	<0.020	ug/L		0.020	1	STATISTICS STATISTICS	07/08/22 17:39		
Fluoranthene	0.58	ug/L		0.020	1		D7/08/22 17:3		
Fluorene	1,7	ug/L		0.020	1	07/06/22 17:28			
ndeno(1.2,3-cd)pyrene	<0.020	ug/L		0.020	1		07/08/22 17:3		
Naphthalene	0.037	ug/L		0.020	1		07/08/22 17:39		
Phenanthrene	0.13	ug/L		0.020	1	문화 이 가지 않는 것은 것 모두 있었다.	07/08/22 17:3		
Pyrene	0.82	ug/L		0.020	1	07/06/22 17:28			
Surrogates		9 m () = 1					99799956783791/1956/	er than books	
Fluoranthene-d10 (S)	90	%		40-112	1	07/06/22 17:28	07/08/22 17:3	9 93951-69-0	
2-Methylnaphthalene-d10 (S)	77	%		44-146	1	07/06/22 17:28	07/08/22 17:3	9 7297-45-2	
8260C Volatile Organics	Analytical Me	sthod: EPA 8	260C/5030C						
	Pace Analytic	cal Services -	Melville						
Benzene	<1.0	ug/L		1.0	1		07/07/22 17:4	4 71-43-2	
Ethylbenzene	<1.0	ug/L		1.0	4		07/07/22 17:4	가슴의 사망가지 않는 것이다.	
Toluene	<1.0	ug/L		1.0	1		07/07/22 17:4	15 JORNELLE	
Xylene (Total)	<3.0	ug/L		3.0	1		07/07/22 17:4	1. 2000 (2003) 2	
Surrogates		09-1		4.10	12				
1,2-Dichloroethane-d4 (S)	96	%		81-122	9		07/07/22 17:4	4 17060-07-0	
4-Bromofluorobenzene (S)	103	%		79-118	1		07/07/22 17:4	4 460-00-4	
Toluene-d8 (S)	91	%		82-122	1		07/07/22 17:4		
2320B Alkalinity	Analytical M	ethod: SM22	2320B						
AN CONTRACTOR AND A CONTRACTOR OF A	Pace Analyti	cal Services	Melville						
	534	mg/L		1.0	- 9j - 1		07/05/22 21:5	õ	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NYSEG ITHACA COURT STREET 6/29 Pace Project No .: 70220351 Sample: DUP 01 Lab ID: 70220351008 Collected: 06/29/22 00:00 Received: 06/30/22 10:45 Matrix: Water Parameters. Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Pace Analytical Services - Melville Sulfate <5.0 mg/L 5.0 1 07/12/22 19:00 14808-79-8 353.2 Nitrogen, NO2/NO3 unpres Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrate as N 0.060 J . mg/L 0.050 07/01/22 01:44 14797-55-8 1 Nitrate-Nitrite (as N) 0.085 J. mg/L 0.050 1 07/01/22 01:44 7727-37-9 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 07/01/22 00:48 14797-65-0 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 0.33 T , mg/L 0.10 1 07/04/22 14:00 7664-41-7 Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C 9014 Cyanide, Total Pace Analytical Services - Melville Cyanide <10.0 07/11/22 14:20 07/11/22 18:07 57-12-5 ug/L 10.0 1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

	Lab ID.	70220351009	Collected:	06/30/2	2 10:00	Received: 07	/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases		Method: RSK-1		ion Meth	od: RSM	(-175	West and the second		
	Pace Anal	vtical Services -	Melville						
Methane, Dissolved	133	/ ug/L		43.0	43	07/01/22 11:44	07/05/22 13:20	74-82-8	
6010 MET ICP	Analytical	Method: EPA 60	10C Prepa	ration Me	thod: E	PA 3005A			
		vtical Services -							
Iron	254			100	8	07/05/22 06:56	07/07/22 20:13	7439-89-6	
8270E MSSV PAH by SIM	Applutical	Method: EPA 82	THE SIM D						
and a most rainey sim				reparatio	n Metho	0. EPA 35100			
E STREAM LEAST		vtical Services -	mennine						
Acenaphthene	<0.019			0.019	1	07/06/22 17:28	07/08/22 18:11	83-32-9	
Acenaphthylene	<0.019			0.019	1	07/06/22 17:28	07/08/22 18:11	208-96-8	
Anthracene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	120-12-7	
Benzo(a)anthracene	<0.019	9 ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	56-55-3	
Benzo(a)pyrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	50-32-8	
Benzo(b)fluoranthene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	205-99-2	
Benzo(g.h.i)perylene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	191-24-2	
Benzo(k)fluoranthene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	207-08-9	
Chrysene	<0.019	ug/L		0.019	1		07/08/22 18:11		
Dibenz(a,h)anthracene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	53-70-3	
Fluoranthene	<0.019	ug/L	1	0.019	1	07/06/22 17:28	07/08/22 18:11	206-44-0	
Fluorene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	193-39-5	
Naphthalene	<0.019	ug/L		0.019	1	07/06/22 17:28	07/08/22 18:11	91-20-3	
Phenanthrene	<0.019	ug/L		0.019	1		07/08/22 18:11		
Pyrene	<0.019	ug/L		0.019	15	07/06/22 17:28	07/08/22 18:11	129-00-0	
Surrogates		252							
Fluoranthene-d10 (S)	86	9%		40-112	1	07/06/22 17:28	07/08/22 18:11	93951-69-0	
2-Methylnaphthalene-d10 (S)	72	%		44-146	1	07/06/22 17:28	07/08/22 18:11	7297-45-2	
8260C Volatile Organics	Analytical I	Method: EPA 82	60C/5030C						
	Pace Analy	tical Services -	Melville						
Benzene	<1.0) ug/L		1.0	Ŧ		07/07/22 18:05	71_49.2	
Ethylbenzene	<1.0			1.0	4		07/07/22 18:05	R. S. I. M. S. S. S	
Toluene	<1.0			1.0	1		07/07/22 18:05		
Xylene (Total)	<3.0			3.0	1		07/07/22 18:05		
Surrogates		adire		-9.00				1000 60 1	
1.2-Dichioroethane-d4 (S)	91	7 %		81-122	1		07/07/22 18:05	17060-07-0	
4-Bromofluorobenzene (S)	100			79-118	1		07/07/22 18:05		
Taluene-d8 (S)	89			82-122	1		07/07/22 18:05		
2320B Alkalinity	Analytical	Method: SM22 3	2320B						
available finaliting	D1650	vtical Services -							
	race Anal	Anogi Octanogs -	(indianity)						

REPORT OF LABORATORY ANALYSIS

NYSEG ITHACA COURT STREET 6/29 Pace Project No.: 70220351

Sample: MW-22S	Lab ID: 7	0220351009	Collected	06/30/2	2 10:00	Received: I	07/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	230 V. V. V.	1ethod: EPA 30 tical Services -							61.0==
Sulfate	40.9	mg/L		5.0	1		07/17/22 19:2	6 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		lethod: EPA 35 lical Services -							
Nitrate as N Nitrate-Nitrite (as N)	6.8 6.8	mg/L mg/L		0.25 0.25	5 5		07/02/22 04:2 07/02/22 04:2	방송도 한 사람 감독 민준이가 같아.	
353.2 Nitrogen, NO2	· · · · · · · · · · · · · · · · · · ·	Method: EPA 35 tical Services -							
Nitrite as N	<0.050	mg/L		0.050	1		07/02/22 01:3	1 14797-65-0	
4500 Ammonia Water	ACT CAS MU	fethod: SM22 fical Services -							
Nitrogen, Ammonia	<0.10	UJ.mg/L		0.10	1		07/04/22 14:1	3 7664-41-7	
9014 Cyanide, Total		fethod: EPA 90 tical Services -	지, 이 영상 중 200 100 100 100 100 100 100 100 100 100	nide Pr	eparatio	n Method: EPA	9010C		
Cyanide	560	ug/L		50.0	5	07/13/22 19:2	0 07/13/22 21:1	6 57-12-5	

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pacelabs.com

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-23S	Lab ID: 702	20351010	Collected:	06/30/2	22 08 25	Received: 07	/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qu
RSK 175 Dissolved Gases	Analytical Met	hod: RSK-1	75 Preparat	ion Meth	od: RSK	-175			
	Pace Analytica	Services -	Melville						
Methane, Dissolved	2050	ug/L		215	215	07/01/22 11:44	07/05/22 13:50	74-82-8	
6010 MET ICP	Analytical Met	hod: EPA 60	010C Prepa	ration Me	ethod: El	PA 3005A			
	Pace Analytica								
Iron	2520	ug/L		100	1	07/05/22 06:56	07/07/22 20:16	7439-89-6	
8270E MSSV PAH by SIM	Analytical Met	hod: EPA 82	270E SIM P	reparatio	in Metho	d: EPA 3510C			
	Pace Analytica								
Acenaphthene	81.0	ug/L		0.95	50	07/06/22 17:28	07/09/22 06:54	83-32-9	
Acenaphthylene	1.5	ug/L		0.019	1		07/08/22 18:42	Contraction of the state of the	
Anthracene	3.9	ug/L		0.95	50	· · · · · · · · · · · · · · · · · · ·	07/09/22 06:54	110000000000000000000000000000000000000	
Benzo(a)anthracene	0.096	ug/L		0.019	1		07/08/22 18:42	C	
Benzo(a)pyrene	<0.019	ug/L		0.019	1		07/08/22 18:42		
Benzo(b)fluoranthene	<0.019	ug/L		0.019	1	1921 P. W. & M. & W. & W. & W. & W. & W. & W.	07/08/22 18:42		
Benzo(g,h,i)perylene	< 0.019	ug/L		0.019	1		07/08/22 18:42	1 EDS12 - EDS12	
Benzo(k)fluoranthene	<0.019	ug/L		0.019	1	* SOLO 0550 (EEU) COUST 6	07/08/22 18:42	1 (0.10) (10) (10)	
Chrysene	0.096	ug/L		0.019	1		07/08/22 18:42	CC02000000	
Dibenz(a,h)anthracene	<0.019	ug/L	-	0.019	1	(94) (10) (13) (10) (17)	07/08/22 18:42		
Fluoranthene	2.0	ug/L		0.019	1		07/08/22 18:42	3.537 DA.C.G.S.U.	
Fluorene	19.8	ug/L		0.95	50		07/09/22 06:54		
Indeno(1,2,3-cd)pyrene	<0.019	ug/L		0.019	1		07/08/22 18:42		
Naphthalene	48.4	ug/L		0.95	50		07/09/22 06:54		
Phenanthrene	16.7	ug/L		0.95	50		07/09/22 06:54		
Pyrene	2.9	ug/L		0.019	1		07/08/22 18:42	MARKED AND AND AND AND AND AND AND AND AND AN	
Surrogates	- 0.77	off-re		0.010	18	01100/22 17.20	01100/22 10.42	125-00-0	
Fluoranthene-d10 (S)	82	%		40-112	1	07/06/22 17:28	07/08/22 18:42	93951-69-0	
2-Methylnaphthalene-d10 (S)	85	%		44-146	1		07/08/22 18:42		
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C						
ana ana mana ang ang ang ang ang ang ang ang ang	Pace Analytica	I Services -	Melville						
Benzene	2.5	ug/L		1.0	1		07/07/22 18:26	71-43-2	
Ethylbenzene	103	ug/L		1.0	1		07/07/22 18:26	100-41-4	
Toluene	3.0	ug/L		1.0	1		07/07/22 18:26	108-88-3	
Xylene (Total)	69.2	ug/L		3.0	1		07/07/22 18:26	1330-20-7	
Surrogates		1974:5							
1,2-Dichloroethane-d4 (S)	94	%		81-122	1		07/07/22 18:26	17060-07-0	
4-Bromofluorobenzene (S)	104	%		79-118	1		07/07/22 18:26	460-00-4	
Toluene-d8 (S)	92	%		82-122	1		07/07/22 18:26	2037-26-5	
2320B Alkalinity	Analytical Met	hod; SM22	2320B						
LINERS D. CONTRACTOR DE LE	Pace Analytica	al Services	- Melville						
	1 TUTO 200 S 20 S 20 S 20 S 20 S 20 S								

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

-

Pace Analytical www.pacelabs.com

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No. 70220351

Sample: MW-23S	Lab ID:	70220351010	Collected:	06/30/2	22 08:25	Received: (07/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Réport	Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	2100.6222 2622.00	Method: EPA 30 /tical Services -							
Sulfate	<5.0	mg/L		5.0	1		07/16/22 03:2	0 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	10	Method: EPA 35 /tical Services -							
Nitrate as N Nitrate-Nitrite (as N)	<0.050 <0.050			0.050 0.050	1 1		07/02/22 03:5 07/02/22 03:5	일은 198,257,0127,724~~~~	
353,2 Nitrogen, NO2	- 101 (1970) (1940)	Method: EPA 38 /tical Services -	N. Z. D. L. F.						
Nitrite as N	<0.050	mg/L		0.050	1		07/02/22 01:2	7 14797-65-0	
4500 Ammonia Water		Method: SM22 /tical Services -							
Nitrogen, Ammonia	1.5	J - mg/L		0.10	1		07/04/22 14:14	4 7664-41-7	
9014 Cyanide, Total		Method: EPA 90 /tical Services -		nide Pr	eparation	n Method: EPA	9010C		
Cyanide	<10.0) ug/L		10.0	1	07/13/22 19:2	0 07/13/22 20:4	4 57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Sample: MW-31S	Lab ID: 702	20351011	Collected: 06/3	/22 07:2	0 Received: 07	//01/22 10:40 N	Aatrix: Water	1.0
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases	Analytical Met Pace Analytica		75 Preparation Me Melville	thod: RS	SK-175			
Methane, Dissolved	104	ug/L	43.) 43	07/01/22 11:44	07/05/22 13:41	74-82-8	
6010 MET ICP	Analytical Met Pace Analytica		10C Preparation	Aethod:	EPA 3005A			
Iron	198	ug/L	10	1	07/05/22 06:56	07/07/22 20:18	7439-89-6	
8270E MSSV PAH by SIM	Analytical Met Pace Analytica		270E SIM Prepara Melville	ion Meth	nod: EPA 3510C			
Acenaphthene	0.022	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	83-32-9	
Acenaphthylene	<0.020	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	208-96-8	
Anthracene	<0.020	ug/L	0,02	1	07/06/22 17:28	07/08/22 19:14	120-12-7	
Benzo(a)anthracene	<0.020	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	56-55-3	
Benzo(a)pyrene	<0.020	ug/L	0.02) 1	07/06/22 17:28	07/08/22 19:14	50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L	0,02	1	07/06/22 17:28	07/08/22 19:14	205-99-2	
Benzo(g,h,i)perylene	<0.020	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	191-24-2	
Benzo(k)fluoranthene	<0.020	ug/L	0.02	1 1	07/06/22 17:28	07/08/22 19:14	207-08-9	
Chrysene	<0.020	ug/L	0.02	1 1	07/06/22 17:28	07/08/22 19:14	218-01-9	
Dibenz(a,h)anthracene	<0.020	ug/L	0.02) 1	07/06/22 17:28	07/08/22 19:14	53-70-3	
Fluoranthene	<0.020	ug/L	0,02	1 1	07/06/22 17:28	07/08/22 19:14	206-44-0	
Fluorene	<0.020	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	193-39-5	
Naphthalene	0.080	ug/L	0.02) 1	07/06/22 17:28	07/08/22 19:14	91-20-3	
Phenanthrene	<0.020	ug/L	0.02) 1	07/06/22 17:28	07/08/22 19:14	85-01-8	
Pyrene	<0.020	ug/L	0.02	1	07/06/22 17:28	07/08/22 19:14	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	87	9/1	40-11	2 1	07/06/22 17:28	07/08/22 19:14	93951-69-0	
2-Methylnaphthalene-d10 (S)	71	%	44-14	3 1	07/06/22 17:28	07/08/22 19:14	7297-45-2	
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	I Services -	Melville					
Benzene	<1.0	ug/L	1.			07/07/22 18:48	71.49.0	
Ethylbenzene	<1.0	ug/L	12			07/07/22 18:48		
Toluene	<1.0	ug/L	1			07/07/22 18:48		
Xylene (Total)	<3.0	ug/L	3.	10 U U U U		07/07/22 18:48		
Surrogates		0B	0.			UTIONICE IGING	1000-201	
1,2-Dichloroethane-d4 (S)	96	%	81-12	2 1		07/07/22 18:48	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-11			07/07/22 18:48	460-00-4	
Toluene-d8 (S)	90	%	82-12	2 1		07/07/22 18:48	2037-26-5	
2320B Alkalinity	Analytical Met	hod: SM22	2320B					
Sector Contraction	Pace Analytica							
Alkaliaity Tatal at CaCO2	285		1.	0 1		07/06/22 12:33		
Alkalinity, Total as CaCO3	203	mg/L	. 6	63 - N		UTIONAL TEIDO		

REPORT OF LABORATORY ANALYSIS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-31S	Lab ID:	70220351011	Collected:	06/30/2	22 07:20	Received: C	7/01/22 10:40	Matrix: Water	-
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days		Method: EPA 3 ytical Services							
Sulfate	16.	s mg/L		5.0	1		07/16/22 03:34	4 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	vtical Services	Melville						
Nitrate as N Nitrate-Nitrite (as N)	0.068	C CONTRACTOR		0.050 0.050	1 1		07/02/22 03:57		
353.2 Nitrogen, NO2	2010/02/2010/2010/2010/2010/2010/2010/2	Method: EPA 3 tical Services	252242						
Nitrite as N	<0.050	mg/L		0.050	15		07/02/22 01:26	6 14797-65-0	
4500 Ammonia Water		Method: SM22 /tical Services -							
Nitrogen, Ammonia	<0.10	UJ.mg/L		0.10	1		07/04/22 14:16	5 7664-41-7	
9014 Cyanide, Total		Method: EPA 90 /tical Services -		nide Pr	eparation	Method: EPA			
Cyanide	<10.0	ug/L		10.0	1 9	07/13/22 19:20	07/13/22 20:45	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

-

Pace Analytical www.pacelabs.com

		220351012	Collected: 06	130/22	00.41	Received: 07	/01/22 10:40 N	latrix: Water	
Parameters	Results	Units	Report Lir	nit	DF	Prepared	Analyzed	CAS No.	Qu
RSK 175 Dissolved Gases			75 Preparation	Method	: RSK	-175			
	Pace Analytic		Melville						
Methane, Dissolved	81.1	ug/L	4	3.0	43	07/01/22 11:44	07/05/22 14:00	74-82-8	
6010 MET ICP	Analytical Me	thod: EPA 60	10C Preparatio	n Meth	nod: EF	PA 3005A			
	Pace Analytic				08600/FE	0.077.879.590 ().			
Iron	8930	ug/L	anto maren	100	1	07/05/22 06:56	07/07/22 20:21	7439-89-6	
8270E MSSV PAH by SIM	Application Me	thad EDA 8	TOE PINE Deres						
sector mooth and by sim			70E SIM Prepa	auon	Metho	0. EPA 35100			
	Pace Analytic	a Services -	wieiville						
Acenaphthene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	83-32-9	
Acenaphthylene	<0.020	ug/L	0.0	020	1		07/08/22 19:45		
Anthracene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	120-12-7	
Benzo(a)anthracene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	56-55-3	
Benzo(a)pyrene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	205-99-2	
3enzo(g,h,i)perylene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	191-24-2	
Benzo(k)fluoranthene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	207-08-9	
Chrysene	<0.020	ug/L	0.0	020	1		07/08/22 19:45		
Dibenz(a,h)anthracene	<0.020	ug/L	0.0	020	1	07/06/22 17:28	07/08/22 19:45	53-70-3	
luoranthene	<0.020	ug/L	0.0	020	4		07/08/22 19:45		
Fluorene	<0.020	ug/L	0.0	020	a 👘		07/08/22 19:45		
ndeno(1,2,3-cd)pyrene	<0.020	ug/L	0.0	020	1		07/08/22 19:45		
Naphthalene	0.027	ug/L	0.0	020	1		07/08/22 19:45		
Phenanthrene	<0.020	ug/L	0.0	020	4		07/08/22 19:45	85-01-8	
Pyrene	<0.020	ug/L		020	4		07/08/22 19:45	A22397333754	
Surrogates						48.999.637.7591.0E59	ASSESSMENT MELTON		
Fluoranthene-d10 (S)	93	%	40-1	112	1	07/06/22 17:28	07/08/22 19:45	93951-69-0	
2-Methylnaphthalene-d10 (S)	76	%	44-1	146	1	07/06/22 17:28	07/08/22 19:45	7297-45-2	
8260C Volatile Organics	Analytical Me	thod: EPA 82	60C/5030C						
	Pace Analytic	al Services -	Melville						
Benzene	<1.0	ug/L		1.0	1		07/07/22 19:09	71-43-2	
Ethylbenzene	<1.0	ug/L			- F		07/07/22 19:09	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Toluene	<1.0	ug/L		0.3230	ો		07/07/22 19:09		
Kylene (Total)	<3.0	ug/L		3.0	4		07/07/22 19:09		
Surrogates	5.5	-9					enternee totoo	1000 20 1	
.2-Dichloroethane-d4 (S)	95	%	81-1	122	1		07/07/22 19:09	17060-07-0	
-Bromofluorobenzene (S)	100	%	79-		1		07/07/22 19:09		
Toluene-d8 (S)	90	9⁄1	82-1		1		07/07/22 19:09		
2320B Alkalinity	Analytical Me	thod SM22	2320B						
toros Andriny	5 C								
	Pace Analytic	Lal Services -	IN BIAING						

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pacelabs.com

Project:

NYSEG ITHACA COURT STREET 6/29

ANALYTICAL RESULTS

Sample: MW-33S	Lab ID: 7023	20351012	Collected:	06/30/2	2 08:47	Received: 07	1/01/22 10:40 M	Aatrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica	Colores and services	Sector and the sector of the s					101	
Sulfate	24.9	mg/L		5.0	1		07/16/22 03:47	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N Nitrate-Nitrite (as N)	<0.050 <0.050	mg/L mg/L		0.050 0.050	1		07/02/22 03:59 07/02/22 03:59		
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	31		07/02/22 01:29	14797-65-0	
4500 Ammonia Water	Analytical Meth Pace Analytica								
Nitrogen, Ammonia	1.3]	ng/L		0.10	9		07/04/22 14:29	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytica			nide Pri	eparatio	n Method: EPA 9	9010C		
Cyanide	<10.0	ug/L		10.0	4	07/13/22 19:20	07/13/22 20:48	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical "

Sample: MW-40	Lab ID: 702	20351013	Collected:	06/30/2	22 11:30	Received: 07	/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Répo	rt Limit	DF	Prepared	Analyzed	CAS No.	Que
RSK 175 Dissolved Gases	Analytical Meth	nod: RSK-1	75 Preparat	tion Meth	od: RSk	(-175			10-
	Pace Analytica	i Services -	Melville						
Methane, Dissolved	447	ug/L		43.0	43	07/01/22 11:44	07/05/22 14:10	74-82-8	
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Prepa	ration Me	thod: E	PA 3005A			
	Pace Analytica	I Services -	Melville						
Iron	4100	ug/L		100	1	07/05/22 06:56	07/07/22 20:23	7439-89-6	
8270E MSSV PAH by SIM	Analytical Meti	nod: EPA 82	70E SIM P	reparatio	n Metho	d: EPA 3510C			
	Pace Analytica								
Acenaphthene	<0.020	ug/L		0.020	1	07/06/22 17:28	07/08/22 20:17	83-32-9	
Acenaphthylene	<0.020	ug/L		0.020	4		이 가슴이 걸려져야 한 것을 가 있었다.	2122000000000000	
Anthracene	<0.020	ug/L		0.020	1		07/08/22 20:17		
Benzo(a)anthracene	<0.020	ug/L		0.020	1		07/08/22 20:17		
Benzo(a)pyrene	<0.020	ug/L		0.020	1		(97));;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
Benzo(b)fluoranthene	<0.020	ug/L		0.020	1	07/06/22 17:28	07/08/22 20:17	1. C. S. C. S. C	
Benzo(g,h,i)perylene	<0.020	ug/L		0.020	1		07/08/22 20:17	1000 000 000 000 000 000 000 000 000 00	
Benzo(k)fluoranthene	<0.020	ug/L		0.020	1		07/08/22 20:17		
Chrysene	<0.020	ug/L		0.020	.1		07/08/22 20:17		
Dibenz(a,h)anthracene	<0.020	ug/L	1	0.020	1		07/08/22 20:17	1 ST 200 ST 200 ST	
Fluoranthene	<0.020	ug/L		0.020	4		07/08/22 20:17		
Fluorene	<0.020	ug/L		0.020	1		07/08/22 20:17		
ndeno(1.2.3-cd)pyrene	<0.020	ug/L		0.020	1		영상 전 화양을 가 만들었다. 같이 많이 나는 것이 없다.	1977 C	
Naphthalene	0.088	ug/L		0.020	1		07/08/22 20:17		
Phenanthrene	<0.020	ug/L		0.020	1		07/08/22 20:17		
Pyrene	<0.020	ug/L		0.020	14	07/06/22 17:28	07/08/22 20:17		
Surrogates	-0.020	n Bur		0.020	1.1	01/00/22 11.20	01100122 20.11	128-00-0	
Fluoranthene-d10 (S)	95	9/2		40-112	4	07/06/22 17:28	07/08/22 20:17	93951-69-0	
2-Methylnaphthalene-d10 (S)	78	%		44-146	1		07/08/22 20:17	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
8260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C						
AMERICAN CONTRACTOR OF TRACTOR OF	Pace Analytica	I Services -	Melville						
Benzene	<1.0	ug/L		1.0	1		07/07/22 19:30	71-43-2	
Ethylbenzene	<1.0	ua/L		1.0	1		07/07/22 19:30		
Toluene	<1.0	ug/L		1.0	1		07/07/22 19:30		
Kylene (Total)	<3.0	ug/L		3.0	1		07/07/22 19:30	1330-20-7	
Surrogates	02220						13/18/07E 75/55	211/035200R0	
1,2-Dichloroethane-d4 (S)	97	%		81-122	1		07/07/22 19:30	17060-07-0	
4-Bromofluorobenzene (S)	101	%		79-118	1		07/07/22 19:30	460-00-4	
Toluene-d8 (S)	90	%		82-122	1		07/07/22 19:30	2037-26-5	
2320B Alkalinity	Analytical Met	hod: SM22 :	2320B						
NORMATTI REPORTANCE CITA	Pace Analytics	I Services -	Melville						
	CONTRACTOR OF						07/06/22 13:40		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical[®]

Project: NYSEG ITHACA COURT STREET 6/29 Pace Project No.: 70220351

Sample: MW-40	Lab ID:	70220351013	Collected: 06/30/2	22 11:30	Received: 07	//01/22 10:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days		Method: EPA 30 rtical Services						
Sulfate	5.5	mg/L	5.0	1		07/16/22 04:01	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	1174213/112/1223	Vethod: EPA 3 tical Services						
Nitrate as N	0.58	mg/L	0.050	1		07/02/22 04:04	14797-55-8	
Nitrate-Nitrite (as N)	0.59	mg/L	0.050	1		07/02/22 04:04	1 7727-37-9	
353.2 Nitrogen, NO2	- 66 20 M M M M M M M M M M M M M M M M M M	Method: EPA 3 /tical Services -						
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:33	3 14797-65-0	
4500 Ammonia Water		Viethod: SM22 /tical Services	1555567836555					
Nitrogen, Ammonia	0.47	J. mg/L	0,10	1		07/04/22 14:20	7664-41-7	
9014 Cyanide, Total	변화 전 전철 같은 것은 것	Vethod: EPA 90 /tical Services	014 Total Cyanide Pr - Melville	eparatio	n Method: EPA 9	1010C		
Cyanide	<10.0	ug/L	10.0	- 1	07/13/22 19:20	07/13/22 20:49	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

.

ace Analytical www.pacelabs.com

Project:

NYSEG ITHACA COURT STREET 6/29

Qual

ANALYTICAL RESULTS

Sample: MW-46S	Lab ID:	70220351014	Collected:	06/30/2	22 11:30	Received: 0	7/01/22 10:40	Matrix: Water
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.
RSK 175 Dissolved Gases	Analytical M	Method: RSK-1	75 Preparat	ion Meth	od: RSI	K-175		
	Pace Analy	tical Services -	Melville					
Methane, Dissolved	6650	ug/L		510	510	07/01/22 11:44	07/06/22 11:31	74-82-8
6010 MET ICP	Analytical M	Vethod: EPA 60	10C Prepa	ration Me	thod: E	PA 3005A		
		tical Services -		0.0000000000000000000000000000000000000	08/17/2017	17/17/20/202013)		
Iron	5600	ug/L		100	1	07/05/22 06:56	07/07/22 20:30	7439-89-6
8270E MSSV PAH by SIM	Analytical M	Aethod FPA 83	TOF SIM P	reparatio	n Methy	d: EPA 3510C		
		tical Services -		sparaco	to Michael	a. EPA 33 100		
Acenaphthene			CALMON DUM S	0.40				
11.122 (11.122) [1.122] [1.122] [1.122]	39.8			0.40	20		07/11/22 17:26	
Acenaphthylene	1.7	- 48° -		0.020	1		07/08/22 20:48	0.0000000000000000000000000000000000000
Anthracene	2.2			0.020	1		07/08/22 20:48	
Benzo(a)anthracene	0.97			0.020	1		07/08/22 20:48	
Benzo(a)pyrene	0.85	11000		0.020	1		07/08/22 20:48	방송은 감독 등 방송 관계 전 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
Benzo(b)fluoranthene	0.51			0.020	1	07/06/22 17:28	07/08/22 20:48	205-99-2
Benzo(g.h.i)perylene	0.28			0.020	1	07/06/22 17:28	07/08/22 20:48	191-24-2
Benzo(k)fluoranthene	0.37			0.020	1	07/06/22 17:28	07/08/22 20:48	207-08-9
Chrysene	0.90	1. S. M. M.		0.020	1	07/06/22 17:28	07/08/22 20:48	218-01-9
Dibenz(a,h)anthracene	0.10	ug/L		0.020	1	07/06/22 17:28	07/08/22 20:48	53-70-3
Fluoranthene	1.6	ug/L	1	0.020	1	07/06/22 17:28	07/08/22 20:48	206-44-0
Fluorene	9.8	ug/L		0.40	20	07/06/22 17:28	07/11/22 17:26	86-73-7
Indeno(1,2,3-cd)pyrene	0.23	ug/L		0.020	1	07/06/22 17:28	07/08/22 20:48	193-39-5
Naphthalene	158	ug/L		1.0	50	07/06/22 17:28	07/09/22 07:26	91-20-3
Phenanthrene	6.5	ug/L		0.40	20	07/06/22 17:28	07/11/22 17:26	85-01-8
Pyrene	2.7			0.020	1		07/08/22 20:48	
Surrogates	236				(5)			120.00.0
Fluoranthene-d10 (S)	92	%.		40-112	1	07/06/22 17:28	07/08/22 20:48	93951-69-0
2-Methylnaphthalene-d10 (S)	77	%		44-146	1		07/08/22 20:48	
8260C Volatile Organics	Analytical M	Method: EPA 82	260C/5030C					
	Pace Analy	tical Services -	Melville					
Benzene	313	ug/L		10.0	10		07/08/22 13:27	71-43-2
Ethylbenzene	355			10.0	10		07/08/22 13:27	
Toluene	3.8			1.0	1		07/07/22 19:51	
Xylene (Total)	138	0.580		3.0			07/07/22 19:51	2 1 J.Q.T. 23 (5 (7 k))
Surrogates	156	cial e		0.0				
1.2-Dichloroethane-d4 (S)	96	%		81-122	1		07/07/22 19:51	17060-07-0
4-Bromofluorobenzene (S)	101			79-118	÷.		07/07/22 19:51	
Toluene-d8 (S)	89	111500		82-122	1		07/07/22 19:51	

Analytical Method: SM22 2320B Pace Analytical Services - Melville

mg/L

315

07/06/22 13:56

REPORT OF LABORATORY ANALYSIS

1 1.0

Date: 10/27/2022 12:56 PM

2320B Alkalinity

Alkalinity, Total as CaCO3

Pace Analytical[®]

Project: NYSEG ITHACA COURT STREET 6/29 20351

Pace	Project No.:	7022

Sample: MW-46S	Lab ID: 7	0220351014	Collected: 06/30/2	2 11:30	Received: 07	/01/22 10:40 M	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days		lethod: EPA 300 lical Services -						
Sulfate	<5.0	mg/L	5.0	1		07/16/22 04:14	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		lethod: EPA 35 lical Services -						
Nitrate as N Nitrate-Nitrite (as N)	<0.050 <0.050	mg/L mg/L	0.050 0.050	1		07/02/22 04:09 07/02/22 04:09		
353.2 Nitrogen, NO2		lethod: EPA 35 lical Services -						
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:37	14797-65-0	
4500 Ammonia Water		tical Services -						
Nitrogen, Ammonia	2.5	J- mg/L	0.10	1		07/04/22 14:22	7664-41-7	
9014 Cyanide, Total	2011/08/2/08/16/20	fethod: EPA 90 tical Services -	14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	1010C		
Cyanide	<10.0	ug/L	10.0	1	07/13/22 19:20	07/13/22 20:49	57-12-5	

REPORT OF LABORATORY ANALYSIS

ace Analytical w nacelahs con

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No. 70220351 Sample: MW-47S Lab ID: 70220351015 Collected: 06/30/22 07:05 Received: 07/01/22 10:40 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **RSK 175 Dissolved Gases** Analytical Method: RSK-175 Preparation Method: RSK-175 Pace Analytical Services - Melville Methane, Dissolved 6250 ug/L 510 510 07/01/22 11:44 07/06/22 11:21 74-82-8 6010 MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3005A Pace Analytical Services - Melville Iron 21700 ug/L 100 1 07/05/22 06:56 07/07/22 20:32 7439-89-6 Analytical Method: EPA 8270E SIM Preparation Method: EPA 3510C 8270E MSSV PAH by SIM Pace Analytical Services - Melville Acenaphthene 0.95 ug/L 0.020 07/07/22 23:32 07/08/22 21:51 83-32-9 1 Acenaphthylene 0.031 ug/L 0.020 07/07/22 23:32 07/08/22 21:51 208-96-8 Anthracene <0.020 ug/L 0.020 t 07/07/22 23:32 07/08/22 21:51 120-12-7 Benzo(a)anthracene <0.020 ug/L 0.020 Ť 07/07/22 23:32 07/08/22 21:51 56-55-3 Benzo(a)pyrene <0.020 ug/L 0.020 07/07/22 23:32 07/08/22 21:51 50-32-8 Benzo(b)fluoranthene <0.020 ug/L 0.020 07/07/22 23:32 07/08/22 21:51 205-99-2 ÷, Benzo(g.h,i)porylene <0.020 ug/L 0.020 1 07/07/22 23:32 07/08/22 21:51 191-24-2 Benzo(k)fluoranthene <0.020 0.020 ug/L 1 07/07/22 23:32 07/08/22 21:51 207-08-9 Chrysene <0.020 ug/L 0.020 1 07/07/22 23:32 07/08/22 21:51 218-01-9 Dibenz(a,h)anthracene <0.020 ug/L 0.020 07/07/22 23:32 07/08/22 21:51 53-70-3 1 Fluoranthene <0.020 0.020 ug/L 07/07/22 23:32 07/08/22 21:51 206-44-0 1 Fluorene 0.039 ug/L 0.020 生 07/07/22 23:32 07/08/22 21:51 86-73-7 Indeno(1,2,3-cd)pyrene <0.020 ug/L 0.020 07/07/22 23:32 07/08/22 21:51 193-39-5 1 Naphthalene 0.17 ug/L 0.020 4 07/07/22 23:32 07/08/22 21:51 91-20-3 1 Phenanthrene <0.020 ug/L 0.020 1 07/07/22 23:32 07/08/22 21:51 85-01-8 Pyrene <0.020 ua/L 0.020 1 07/07/22 23:32 07/08/22 21:51 129-00-0 Surrogates Fluoranthene-d10 (S) 40-112 BB 1% 07/07/22 23:32 07/08/22 21:51 93951-69-0 2-Methylnaphthalene-d10 (S) 78 44-146 % 07/07/22 23:32 07/08/22 21:51 7297-45-2 8260C Volatile Organics Analytical Method: EPA 8260C/5030C Pace Analytical Services - Melville Benzene <1.0 ug/L 1.0 07/08/22 13:06 71-43-2 1 Ug/L Ethylbenzene <1.0 1.0 07/08/22 13:06 100-41-4 1 ug/L Toluene <1.0 1.0 07/08/22 13:06 108-88-3 Xylene (Total) <3.0 3.0 07/08/22 13:06 1330-20-7 ug/L Surrogates 07/08/22 13:06 17060-07-0 1,2-Dichloroethane-d4 (S) 96 ч. 81-122 ï 4-Bromofluorobenzene (S) 100 % 79-118 07/08/22 13:06 460-00-4 Toluene-d8 (S) 89 % 82-122 07/08/22 13:06 2037-26-5 2320B Alkalinity Analytical Method: SM22 2320B Pace Analytical Services - Melville 07/06/22 14:10 1 Alkalinity, Total as CaCO3 311 mg/L 1.0

REPORT OF LABORATORY ANALYSIS

Pace Analytical

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-47S	Lab ID:	702203	51015	Collected:	06/30/2	22 07:05	Received:	07/01/22 10:40	Matrix: Water	
Parameters	Results		Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Pace Anal									
Sulfate	5.	1	mg/L		5.0	1		07/16/22 04:2	8 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Pace Anal									
Nitrate as N Nitrate-Nitrite (as N)	<0.05 <0.05	500 S	mg/L mg/L		0.050 0.050	1		07/02/22 03:5 07/02/22 03:5	3 14797-55-8 3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Pace Anal									
Nitrite as N	<0.05	0	mg/L		0.050	1		07/02/22 01:2	3 14797-65-0	
4500 Ammonia Water	Analytical Pace Anal			4500 NH3 H Melvilla						
Nitrogen, Ammonia	4.	2 J.	mg/L		0,10	1		07/04/22 14:2	3 7664-41-7	
9014 Cyanide, Total	Analytical Pace Anal			이 이 것 같이 말했던 것 같아? 한 것	inide Pr	reparation	n Method: EP/	A 9010C		
Cyanide	<10.	0	ug/L		10.0	1	07/13/22 19:2	20 07/13/22 20:5	0 57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

~

Pace Analytical www.pacelabs.com

Parameters RSK 175 Dissolved Gases	Results							
RSK 175 Dissolved Gases		Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Que
		lethod: RSK-1 lical Services -	75 Preparation Meth Melville	od: RS	K-175	******		а.
Methane, Dissolved	7610	ug/L	510	510	07/01/22 11:44	07/06/22 11:40	74-82-8	
5010 MET ICP	Analytical M	lethod: EPA 60	10C Preparation Me	thod: E	PA 3005A			
		tical Services -						
ron	5300	ug/L	100	1	07/05/22 06:56	07/07/22 20:35	7439-89-6	
8270E MSSV PAH by SIM	AREAN PRAY PRAY 113		270E SIM Preparatio	n Meth	od: EPA 3510C			
	Pace Analy	tical Services -	Melville					
Acenaphthene	27.0	ug/L	1.0	50	07/07/22 23:32	07/09/22 07:57	83-32-9	
Acenaphthylene	0.94	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	208-96-8	
Anthracene	1.3	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	120-12-7	
Benzo(a)anthracene	0.044	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	56-55-3	
3enzo(a)pyrene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	205-99-2	
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	191-24-2	
Benzo(k)fluoranthene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	207-08-9	
Chrysene	0.044	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	218-01-9	
Dibenz(a,h)anthracene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	53-70-3	
Fluoranthene	0.56	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	206-44-0	
Fluorene	3.1	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	86-73-7	
ndeno(1.2.3-cd)pyrene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	193-39-5	
Naphthalene	92.8	ug/L	1.0	50		07/09/22 07:57	CONTROL ON THE	4
Phenanthrene	4.2	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	85-01-8	1
Pyrene	0.77	ug/L	0.020	1	07/07/22 23:32	07/08/22 22:23	129-00-0	
Surrogates		8174 F						
Pluoranthene-d10 (S)	89	%	40-112	1	07/07/22 23:32	07/08/22 22:23	93951-69-0	
2-Methylnaphthalene-d10 (S)	76	%	44-146	1	07/07/22 23:32	07/08/22 22:23	7297-45-2	
8260C Volatile Organics	Analytical N	Nethod: EPA 83	260C/5030C					
	Pace Analy	tical Services -	Melville					
Benzene	64.8	ug/L	1.0	1		07/07/22 20:34	71-43-2	
Ethylbenzene	18.7	100003	1.0	1		07/07/22 20:34		
Toluene	<1.0		1.0	1		07/07/22 20:34		
Xviene (Total)	16.6	2400	3.0	4		07/07/22 20:34		
Surrogates								
1.2-Dichloroethane-d4 (S)	98	%	81-122	1		07/07/22 20:34	17060-07-0	
4-Bromofluorobenzene (S)	103		79-118	1		07/07/22 20:34	460-00-4	
Toluene-d8 (S)	88		82-122	1		07/07/22 20:34	2037-26-5	
2320B Alkalinity	Analytical M	Method: SM22	2320B					
ASSANCES MASSING STR	Pace Analy	tical Services	- Melville					
Alkalinity, Total as CaCO3	354		1.0	. 1		07/06/22 14:27	e la ser	

REPORT OF LABORATORY ANALYSIS

Pace Analytical *

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-48S	Lab ID:	7022035101	6 Collected:	06/30/2	2 10:20	Received:	07/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	and see a	Method: EPA yfical Service							
Sulfate	<5.	0 mg/L		5.0	1		07/16/22 04:4	1 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	200000000000000000000000000000000000000	Method: EPA ytical Service							
Nitrate as N	<0.05	0 mg/L		0.050	1		07/02/22 04:0	3 14797-55-8	
Nitrate-Nitrite (as N)	<0.05	0 mg/l		0.050	1		07/02/22 04:0	3 7727-37-9	
353.2 Nitrogen, NO2		Method: EPA ytical Service							
Nitrite as N	<0.05	mg/L		0.050	1		07/02/22 01:3	2 14797-65-0	
4500 Ammonia Water		Method: SM2 ytical Service	2 4500 NH3 H s - Melville						
Nitrogen, Ammonia	1,	4 丁 . mg/L		0.10	1		07/04/22 14:2	4 7664-41-7	
9014 Cyanide, Total	1942 N. 2010 Catholic St. 9	Method: EPA ytical Service	9014 Total Cya s - Melville	inide Pre	sparatio	n Method: EP/	A 9010C		
Cyanide	<10.	ug/L		10.0	3	07/13/22 19:2	20 07/13/22 20:5	1 57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

-

Section A Required	Crace Submitting a sample via this cha dian internation	n of custody constitutes, acts Section B Required Project Information: Resert To	constitut set infor	es ackr mation:	pwledgr	The C	The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields ent and acceptance of the Pace Terms and Conditions found at https://info acceptance information: acceptor of Terms Information:	Custod Custod arice of the Se Inv	ody is a LEGAL L of the Pate Terms a Section C Invoice Information	e Termito	A BOC	CHAIN-OF-CUSTOUT / Analytical Keques The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields and acceptance of the Pare Tarms and Conditions found at https://mio Beetlan C Invoice Information.	UC3 4T All ris fou	roley:	ant fie	the state	2	2203	22						
Address	Sindsh	Copy To	C Fallen		50.00	いろこ	Seconsultarile Com		Company Name	Name									-						
nie N. 3	Suire N. Shara. NY 14830 Final	COUNDER!	2 33		North Co	+ 4	Artscarn + waabsta	San Sa	Address: Nace Qubb											Classes a	The set	Regulatory Agency	ory Age	NON	LE MU
Phone:	53	Project Name	SAN D		ICA COURT	RT STRE	STREET WELLS	5 Pa	Pace Prolect Manager	ed Man	1996	sophia	sophia sparkes@panelabs.com	es@ba	celabis.	cotti				2011	a la faith	State/	State / Eocation	c	Inte Service
														190	R	edutes	Requested Analysis	alysis.	Fistered (Y/N)	(10.5)	A SPECT	Contraction of the	10.00	-talk	New York
	NATAN				COLLE	COLLECTED		NO		Pre	Preservatives	lives	-	N/A	_										
	SAMPLE ID	858.88	the second second second	START	87	(D)	END	Course of the local sectors in the				1011		teat a	391)	CARAC AD			010		-	(N/A) euj			
# WB11	Core Character per box, we a (A-2, 0-9 / -, -) a Sample Ida must be unique resur		39971 BJ9MAR	DATE	TIME	DATE	TIME	WATE TEMP	perversion	HRO3	HOPN IOH	EO2S28N	Olher Melhandi	Analyson 0311 X376	RSTO SAM PAP	abiney0	waxie ,mallue omme, erevel	energetti XSA. 8 va opti HatoT	Ferrous tran			ioint) IenbieeA			411
-	MW-C11	-	WT (CUZY	900	1	1		_	-				×	×	×	×	×××	×	-			0	00	
2	ANVA-C: 52	-	WT (6/24	Sec.	1	1	-		-				ĸ	×	×	×	×	×				2	003	
Ang.	MW.C16		WT C	129	8	1	1	-					_	×	×	×	×	×	×	-			~	21	~
+	AND TO BE AND TO		-un					+		-	1		-	×	×	×	×	×	1×	-	+			1	1
S	500 J044		WF	T	1									×	×	×	×	x x	×	-	-		1		
College of the	34/4/2/45	~	WT C	628	She	0129	SOF					-		×	×	×	×	x x	*	-	-	_	3	K A	11
7	- SSC MARK		Wr. C	6/24	0.25	1	ì.					_	-	×	×	×	×	×	×			-	314	Series Contra	RALL
00	SEI-WH TERMA	~	WT S	6129	1300	1	1	+			-		-	×	×	×	×	×	×						8
1	any are	-	144	T				++	1		+	+		×	×	XX	×	×	×	H	+		11		
-10	SSEAMA		114	1				-			+	1		×	×	×	×	×	×	H	1	1		1	
1-	Resource	2	11/1					+			-			×	×	××	×	××	×		-				
12	SERVIN	~	WT C	6/20	1368	4	1			-				×	×	×××	×	X X	×					ð	R
	ADDITIONAL COMMENTS	REI	RELINGUISHED BY LA	ED BY LA	FILLATION	V.S.S.	CATE	SAL EN	TIME	1		ACCEP	ACCEPTED BY LAFFILIA (ION	LAFFILI	ATION		NIN SAL	DATE	3	TIME	A.C.	5	SAMPLE CONDITIONS	COMPCIANC CONTRACT	SNIS -
ר ואישו	14 ASP COA B deliverable	Bireana Papish	Ner P	1240	· / 66-	H	6217		15/22	120	à	2						6/29		25:21	-				_
E J	Ferreus iron suberst to Price NF	a	Z				6/25	-	17/00		2	Sa	3		1	10		State 1	0	1045	12	57	10	>-	7-
1	8				and the		And the second and second second	- union	- COM	-	and the second	a contra	100	- CONS	A DOUGH	ACON DO	- Contraction	Sector Sector	Section 1		-	-			-
	ge 77 of i				PRIN	T Name I	PRINT Name of SAMPLER	ER R	Breann		12420	45		-	DATE	DATE Signed		1.1.0		129		eceived on	INU.	oojet rejool rejool	sajdilles N/A

MPLE ID skilling compare skilling compare skilling compare skilling compare arrester per bax 2. 0.91.1 Mul - 13.5 Mul	Jornalting a sample via this cha	in of custody constitutes ack Bection B Required Project Information: Report To Mallory Smith	constitutes a geet informati Mallory Smith	ackhowerug	Disp wodel		Section C Invoice In Attendore	Section C Invoice Information Attension	ion:					CLIENT:]: GEI-I	7			
Image Image <th< th=""><th></th><th>unu Tri-</th><th>ALLON CUNION</th><th></th><th></th><th></th><th>Compa</th><th>ing Name.</th><th></th><th></th><th></th><th></th><th></th><th>Γ</th><th></th><th></th><th>And the</th><th></th><th></th></th<>		unu Tri-	ALLON CUNION				Compa	ing Name.						Γ			And the		
							Addres	1 and						100	1000	Rego	latory Age	hoy	
Подат Подат <t< th=""><th></th><th>Achase Order oject Name:</th><th>e </th><th>1923</th><th>UR1 STRE</th><th>ET WELLS</th><th>Pace P</th><th>reject Man</th><th></th><th>peds skido</th><th>es@pace</th><th>intos, ccam,</th><th></th><th></th><th>in loss of the</th><th>Sta</th><th>to / Localit</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>North Mark</th></t<>		Achase Order oject Name:	e	1923	UR1 STRE	ET WELLS	Pace P	reject Man		peds skido	es@pace	intos, ccam,			in loss of the	Sta	to / Localit	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	North Mark
Mile Mile <t< td=""><td></td><td>ojaci A</td><td></td><td></td><td></td><td></td><td>Pace P</td><td>rolle #</td><td>9816</td><td></td><td>and a second</td><td>Rothing</td><td>ated An</td><td>theis Filts</td><td>(MIA) par</td><td>Standard R</td><td>N</td><td>COLUMN STREET</td><td>101 - 101</td></t<>		ojaci A					Pace P	rolle #	9816		and a second	Rothing	ated An	theis Filts	(MIA) par	Standard R	N	COLUMN STREET	101 - 101
MME ED media	Contract.	-	1010/001	COL	COTED			d	eservativ	th th	N/A							「「「「	
алистичена и и и и и и и и и и и и и и и и и и и		1999 (1999 1990) 1991	and the second second	STAHT							Jest :	10) i		-		9801	(Auri Tauri		
With With X × X × X × X × X × X × X × X × X × X ×	1		3441 31dWvS	1			¥ ОЕ СОИТИИЕ	POSCH	M ^B OH HCI	Methanek	and the second se			8 yd nori lissoT	1010 80000-1			1.50	And a
Mile Mail			1A				+			-	×	10.1	-	k				,	
Mul-13-3 Mr C/19/13-3 Mr C/19/13-3 Mr C/19/13-3 Mul-13-3 Mr C/19/13-3 Mr C/19/13-3 A X × X × X × X × X × X A A Mul-13-3 Mr C/19/13-3 Mr C/19/13-3 A A A A X × X × X × X × X × X A A A A A A X × X × X × X × X × X × X × X A A A A A A A A A A A A X × X × X × X × X × X × X × X × X × X ×			AF-							+	×	-11	× ×	×		1	1	1	
Multilizity Inr. C/29/1305 Inr. K x x x x x x x x x K x x x x x x x K x x x x x x x K x x x x x x x Multilizity			4.14	-					-	+	×		1	×				1	1
MUL 132 MUL 132 MUL 133 MUL	Mul 121			01160						1	×	-	-	×			t	0	sp
Min LU13 L <thl< th=""> L L L <thl< td=""><td>MW-135</td><td></td><td></td><td>23 130</td><td>0</td><td></td><td></td><td>-</td><td></td><td></td><td>×</td><td></td><td></td><td>×</td><td></td><td></td><td>Ą</td><td>t</td><td>かい</td></thl<></thl<>	MW-135			23 130	0			-			×			×			Ą	t	かい
TICH ALLO RUE RAME AD SUMMER SAME EXMANDED TICH PAGE NE RAME AD SUMMER SAME EXMANDED SAME EXMANDD SAME EXMANDED SAME EXMANDD SAME EXMANDED SAME EXMANDED SAME EXMANDED SAME EXMANDED SAME EXMANDD SAME EXMANDD SAME SAME EXMANDD SAME EXMANDD SAME EXMANDD SAME SAME EXMANDD SAME	61	8			1	J		-			×			*		-	Ţ	Ă	8
Antipestical and a second a s			-	-						-	Salar Col			10	-	-			
Controlation converts activities on the control of																-			0.000
DEDITIONAL CONVENTS RELINCUSIES OF LAFTLATOR. DEDITIONAL CONVENTS RELINCUSED OF LAFTLATOR. ARLINGUSED OF LAFTLATOR. A														-		-			
CONTINUAL CONVENTS CONTINUAL CONVENTS RELINCUSSINGED BY AFFILIATION OATE THE ACCEPTED BY THE ACCEPTED BY AFFILIATION I IC T A CONTINUE A CONTINIE A CONTINU							-		-	-			-	-	+				
DOTTORAL COMPANY TIC TI TIC TIC REAL MARCH 17:00 B. 20 P. K. 12:22 TIC TIC TIC REAL CLASS 2. P. K. 12:22 P. F. O. B. C. N.E. R. 17:00 B. 17:00		a	1 NOT SELECT	BY LAFFILLS	TIDK	DATE	and a second	ALC: NO	10000	COEPTED 8	N L REFELLE	THON	A CONTRACT	DATE	TIME		STANKAS	CONDITION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The management of the second o	ADDITIONAL COMPENIE		3	i uch	U	Glan	7		10	11				5 C12.0	1	22			
LECINC PATE State of Contract	to Pace		X	0	13	2		30	Artes	28	1			434	-	5 2.4	X	X	X
representation of the second o																-	_		
				SAUP	LER NAME ROLT Name	AND SIGNA of SAMPLE	R Br	Song	Part	34			C278000	The second		o u an		ojet sjed snogě	yoe saidwe

C In

TWII

Pace Submitting a sample vis this cha					Contraction of the local division of the loc	
	CHA The Co custody constitutes acknowledgment and	CHAIN-OF-CU: The Chain-of-Custody I and and acceptance of the	PH: STS CLIENT: GET-I	Due Date: 07/15/22	2 courately -standard-terms pdf	ne pot Day 3
	Section B Required Project Information:	Section	a to do to the second to	all the second shall be	Page :	ei i Of
Comparing and Action and Action and Actions and Action	Report To History British - 2014 FCSC ON OLDA D		Attention: Company Mame:			
man barber age article	Contromited of curved layts car + typobst 2)		ole		H	Regulatory Agency
Fac.	od Name: NYSEG- (THACA COURT STREET WELLS		lanager	sopha sparkes@pacelats.com,	の日本のないなどの	State / Location
Radueteo Due Date	Frank 22.62/59	Pace Profile #.	ofile #. 9816	Requested Analysis Fillered (Y/N	ared (Y/N)	W
	(ya) ny s		Preservatives	N/A		新学校の
11	(0+08A6 0+			tat Bistin (di Bistin		(N/A) avi
	22 25 25 25 25 25 25 25 25 25 25 25 25 2	T M B B C C C C C C C C C C C C C C C C C	Oluie Welpeuor MS2SSO3 MSOH HCL HCL HSO3 HSSO4	Analysian A Sitex stee Hay Miz 70 Suffate, Alkalin Suffate, Alkalin Suffate, Alkalin Suffate, Alkalin Suffate	HOREPOLE .	റഡ്ര ത്രെങ്കും
4 AMAGIN	wr			x x x x x x x		
10-33	WT			XXXXXXX	+	
	MT			x x x x x x x		
1.146	WT 6130 1000 -	- 10		x x x x x x x	×	
10000	wr 6/30 825 -	- 40		x x x x x x x		
1	WF N			X X X X X X X		
Section 1	wr			x x x x x x		
-8	WT			X X X X X X X		
. 9. P.	wr (5/30720 -	1		x x x x x x x		
10 MW-335	WT 6130 847	1		x x x x x x x	×	
5500	WT (130 130) _	<u>0</u>		x x x x x x x		
12 Invitation	WI			X X X X X X X		
1399	RELINQUISHED BY / AFTERATION	CATE TIME	ACCEPTED BY APPLIATION			SAMPLE CONDITIONS
Level 4 Asp Cat B duiverable	Brenne Portstlett	6/30 1310 6/30 1700	re la	PIRE Juch 21/10-	1, 1320 - 10.540	
P			A DECEMBER OF THE DECEMBER OF	A CONTRACT OF	and a second and	
age 80 of 8	DAMPLIER SUDE PRINT Name SIGNATURE	PRINT NAME OF SAMPLER.	rena paper	DATE Signed: 6130	/22	TEMP In C

Одновности общество Одновности	. 0 1	lient Information: Section B Required Project Information & C. Marce & C. C. T. Anoles Information: GEI Consultants Report To Matery Samin & G. C. S. M. Remin. C. Marcellon: GEI Consultants	Section B Required Project Information Report To Makany Smith 2 C	Meter In	yest Information	Dati	d inte	ecitros enderes	Est.	Invoice It Attention	archan control Invoice Information: Attention: Attention:	vation:								ГТ		Pa	Page :	24		ы
Половидуа Половида	Address 1301.7N. Surie N. Ihaoa Mr. 140	umensburg Fid	Diffet	543	1000	800	A CON	COS	100-54	Address	the state										1000		Regul	Mory A	pency	
Particle	11 automatication 101-215	consultants con DPurDy)	Purchase O Project Nam	rder a	YSEG- 0	THACA CI	DURT ST	REET WE	STIS:	Pace P	roject M	anager	006	hin spac	Nesdao	ecelabe	'uou'			1		Contraction of the	State	1 Loce	tion	11. N.
Market Balance Market	Hequesled Due Date		Preper #	220	215	4				Pace P	ratile #	9816			-		Reques	sted Ar	alysis	Filtere	(MIA) D	all all		AN	1986	and a second
AMALE ID AMALE ID Image ID Image ID Image ID Image ID Image ID Image ID Image ID Image ID	-				Lunos	co	LECTED		N		u.	Dresen	vatives		N/A	-							3000			
Отиснование и соло Отисно	1S					TART		END	אז כמענבכדוס	58 88				10-1	test :	त्म							(NUL) BUI	i sinter		
Notes Wr (132) N.2 N.2<	17EM # Bampi								and the second data and the se	and the second s	POSCH			72.75.85	Charles and the second states		abiney0		eciectie M 358				idina leubiseR			(A.)
Invitile Mini (280 Holds)	13 MW-465			M	613		1	1		2							×	-		~			-			
ModelS Wr O(30 IO20 IO IX X × X × X × X × X X × X × X × X × X X × X × X × X × X × X N with with with with with with with with	1			WT.	Cultu		1	1	-	2		_	_		_	-			-				1			
Mill Mill X X X X X X X X X X X X X X X X X X X	1.11			WT	C13		1	1		0		-		-	_		×	-		~	-		T			
MI M	16 145			IM	-	-	+	-	+				+	+		++			1	×	H		11	1	1	
ALLER MARE AND BOOMTON. ALLER MARE AND BOOMTO				WT				1	+		=		+	1	T		*	×	-	-		1	-	1		1
ADDUCTORIAL CONTENTS OF A DUCTOR OF A DUCT	18. DUE			14		-		-	+-		1		+	1	1	××	*	*	×	1	1	1	+	1	1	6
ADDUCTION OF THE ADDUCT	19			-	-	-	-	-	-			-	-	-	1				-	+			-			
ADDITIONAL CONVERTS ADDITIONAL CONVERTS ADDITI	20				-	-	-	-	-		-		-		-	-		-		+	-		T			
ADDITIONAL CONNENTS ADDITIONAL CONNENTS ADDITI	21			-		-		-						-		-		-		+	-		1			
ADDITIONLY CONVENTS ADDITIONLY CONVENTS ADDITI	8 8			-											1	-							TT			
Recence Public (CEC (120 1320 20 20 1914 6/30 1320 1320 100 1320 20 20 100 100 1320 100 100 100 100 100 100 100 100 100 1	4	ADDITIONAL COMMENTS	ALC: NO DECISION	RELINOL	IISHED BY	CT AFFRUA	NON	0	ATE	1911 - C			ACC	EPTED B	TY I ASE	ILIATIO		21/0	8	TIE	TIMI			SAMP	LE CON	DITIONS
ALA THE CRA TOM MEET, THE AT A A A A A A A A A A A A A A A A A A			3	100	Se	Patro		4	120	1	0	1	R	5	P.C.	in			6/3	0	1321	6			-	H
SAMPLER NAME AND SIONATURE				Jr.	2	RC			22		8	M	101	\backslash	-		1		311	100	14	D				
SAMPLER NAME AND SIONATURE		at some set of the						-		1	1															
	Page 8					SAMP	LER NAM	TE AND S	NPLER.	CRE	UP		0		1		100			143		1	0.H	us pa	A	50

Laboratory Report

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

October 27, 2022

Bruce Coulombe GEI Consultants 1301 Trumansburg Rd Ithaca, NY 14850

RE: Project: NYSEG ITHACA COURT STREET 6/29 Pace Project No.: 70220351

Dear Bruce Coulombe:

Enclosed are the analytical results for sample(s) received by the laboratory between June 30, 2022 and July 01, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Matthew Numeter

Matthew T. Nemeth for Sophia Sparkes sophia.sparkes@pacelabs.com (631)694-3040 Project Manager

Enclosures

cc: Breana Pabst, GEI Consultants

CERTIFICATIONS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158 New York Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340 Virginia Certification # 460302

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method:RSK-175Description:RSK 175 Dissolved GasesClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for RSK-175 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with RSK-175 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 263170

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70220351006

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1329591)
 - Methane, Dissolved
 - MSD (Lab ID: 1329592)
 - Methane, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method: EPA 6010C

Description:6010 MET ICPClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method:	EPA	8270E	SIM
mounoai		02102	•

Description:8270E MSSV PAH by SIMClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for EPA 8270E SIM by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

• MW-45S (Lab ID: 70220351007)

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 263941

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCSD (Lab ID: 1333529)
 - Naphthalene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method: EPA 8260C/5030C

Description:8260C Volatile OrganicsClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 263876

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70220351006

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1334141)
 - Toluene
 - MSD (Lab ID: 1334142)
 - Toluene

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method: SM22 2320B

Description:2320B AlkalinityClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 263539

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70220351006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1331106)
 - Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method: EPA 353.2

Description:353.2 Nitrogen, NO2/NO3 unpresClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H1: Analysis conducted outside the EPA method holding time.
 - DUP 01 (Lab ID: 70220351008)
 - MW-45S (Lab ID: 70220351007)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 263140

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70220351006,70220351007

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1329004)
 - Nitrate-Nitrite (as N)

QC Batch: 263331

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30502092001,70220351015

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1329986)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method:	EPA 353.2
Description:	353.2 Nitrogen, NO2
Client:	GEI Consultants
Date:	October 27, 2022

General Information:

16 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H1: Analysis conducted outside the EPA method holding time.
 - DUP 01 (Lab ID: 70220351008)
 - MW-45S (Lab ID: 70220351007)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 263137

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70220405001,70220495010

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1328994)
 - Nitrite as N
 - MS (Lab ID: 1329949)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method: SM22 4500 NH3 H

Description:4500 Ammonia WaterClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 263383

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70220351006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1330339)
 - Nitrogen, Ammonia

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Method: EPA 9014 Total Cyanide

Description:9014 Cyanide, TotalClient:GEI ConsultantsDate:October 27, 2022

General Information:

16 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-C11	Lab ID: 7	70220351001	Collected: 06/29/2	2 09:00	Received: 06	5/30/22 10:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	-		75 Preparation Metho	od: RSK	-175			
	Pace Analy	tical Services -	Melville					
Methane, Dissolved	76.1	ug/L	43.0	43	07/01/22 08:44	07/01/22 14:15	74-82-8	
6010 MET ICP	-	/lethod: EPA 60 tical Services -	10C Preparation Me Melville	thod: Ef	PA 3005A			
Iron	2980	ug/L	100	1	07/05/22 06:56	07/07/22 19:40	7439-89-6	
8270E MSSV PAH by SIM	-	/lethod: EPA 82 tical Services -	70E SIM Preparation Melville	n Metho	d: EPA 3510C			
Acenaphthene	0.81	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	83-32-9	
Acenaphthylene	0.11	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	208-96-8	
Anthracene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	120-12-7	
Benzo(a)anthracene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	56-55-3	
Benzo(a)pyrene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	50-32-8	
Benzo(b)fluoranthene	<0.019	ug/L	0.019	1		07/07/22 19:40		
Benzo(g,h,i)perylene	<0.019	ug/L	0.019	1		07/07/22 19:40		
Benzo(k)fluoranthene	<0.019	0	0.019	1	07/06/22 17:28	07/07/22 19:40	207-08-9	
Chrysene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	218-01-9	
Dibenz(a,h)anthracene	<0.019	0	0.019	1		07/07/22 19:40		
Fluoranthene	0.024	ug/L	0.019	1		07/07/22 19:40		
Fluorene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.019	0	0.019	1		07/07/22 19:40		
Naphthalene	<0.019	0	0.019	1		07/07/22 19:40		
Phenanthrene	<0.019	0	0.019	1		07/07/22 19:40		
Pyrene	0.027	ug/L	0.019	1	07/06/22 17:28	07/07/22 19:40	129-00-0	
Surrogates		0/	10 110		07/00/00 47 00	07/07/00 40 40	00054 00 0	
Fluoranthene-d10 (S)	86		40-112	1		07/07/22 19:40		
2-Methylnaphthalene-d10 (S)	64	%	44-146	1	07/06/22 17:28	07/07/22 19:40	7297-45-2	
8260C Volatile Organics	•	/lethod: EPA 82 tical Services -						
Benzene	<1.0	ug/L	1.0	1		07/08/22 12:44	71-43-2	
Ethylbenzene	<1.0	0	1.0	1		07/08/22 12:44		
Toluene	<1.0	ug/L	1.0	1		07/08/22 12:44		
Xylene (Total)	<3.0	-	3.0	1		07/08/22 12:44		
Surrogates		- 5-					-	
1,2-Dichloroethane-d4 (S)	98	%	81-122	1		07/08/22 12:44	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-118	1		07/08/22 12:44	460-00-4	
Toluene-d8 (S)	89	%	82-122	1		07/08/22 12:44	2037-26-5	
2320B Alkalinity	-	/lethod: SM22 2 tical Services -						
Alkalinity, Total as CaCO3	547	mg/L	1.0	1		07/05/22 17:21		
	1			•				

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No .:	70220351
1 400 1 10 00 1 10	10220001

Sample: MW-C11	Lab ID: 702	220351001	Collected:	06/29/2	2 09:00	Received: 06	6/30/22 10:45	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Me Pace Analytic								
Sulfate	<5.0	mg/L		5.0	1		07/12/22 16:17	7 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me Pace Analytic								
Nitrate as N	<0.050	mg/L		0.050	1		07/01/22 02:02	2 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		07/01/22 02:02	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Me Pace Analytic								
Nitrite as N	<0.050	mg/L		0.050	1		07/01/22 02:56	6 14797-65-0	
4500 Ammonia Water	Analytical Me Pace Analytic								
Nitrogen, Ammonia	0.88	mg/L		0.10	1		07/04/22 13:44	1 7664-41-7	
9014 Cyanide, Total	Analytical Me Pace Analytic			anide Pr	eparatio	n Method: EPA	9010C		
Cyanide	<10.0	ug/L		10.0	1	07/11/22 14:20	07/11/22 17:59	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-C12	Lab ID: 7	70220351002	Collected: 06/29/2	22 09:00	Received: 06	5/30/22 10:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	•		75 Preparation Meth	od: RSk	(-175			
	Pace Analy	tical Services -	Melville					
Methane, Dissolved	273	ug/L	43.0	43	07/01/22 08:44	07/01/22 14:25	74-82-8	
6010 MET ICP	-	/lethod: EPA 60 tical Services -	10C Preparation Me Melville	ethod: El	PA 3005A			
Iron	1250	ug/L	100	1	07/05/22 06:56	07/07/22 19:42	7439-89-6	
8270E MSSV PAH by SIM	-	/lethod: EPA 82 tical Services -	70E SIM Preparatio Melville	n Metho	d: EPA 3510C			
Acenaphthene	93.0	ug/L	0.40	20	07/06/22 17:28	07/11/22 16:54	83-32-9	
Acenaphthylene	0.83	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	208-96-8	
Anthracene	0.071	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	120-12-7	
Benzo(a)anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	56-55-3	
Benzo(a)pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	205-99-2	
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	191-24-2	
Benzo(k)fluoranthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	207-08-9	
Chrysene	<0.020		0.020	1	07/06/22 17:28	07/07/22 20:12	218-01-9	
Dibenz(a,h)anthracene	<0.020		0.020	1	07/06/22 17:28	07/07/22 20:12	53-70-3	
Fluoranthene	0.029	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	206-44-0	
Fluorene	13.0	ug/L	0.40	20	07/06/22 17:28	07/11/22 16:54	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	193-39-5	
Naphthalene	0.067	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	91-20-3	
Phenanthrene	0.58	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	85-01-8	
Pyrene	0.029	ug/L	0.020	1	07/06/22 17:28	07/07/22 20:12	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	96		40-112	1		07/07/22 20:12		
2-Methylnaphthalene-d10 (S)	71	%	44-146	1	07/06/22 17:28	07/07/22 20:12	7297-45-2	
8260C Volatile Organics	•	/lethod: EPA 82 tical Services -						
Benzene	2.0	ug/L	1.0	1		07/07/22 15:57	71-43-2	
Ethylbenzene	1.4	0	1.0	1		07/07/22 15:57		
Toluene	<1.0	0	1.0	1		07/07/22 15:57		
Xylene (Total)	<3.0	0	3.0	1		07/07/22 15:57		
Surrogates			5.0					
1,2-Dichloroethane-d4 (S)	94	%	81-122	1		07/07/22 15:57	17060-07-0	
4-Bromofluorobenzene (S)	103	%	79-118	1		07/07/22 15:57	460-00-4	
Toluene-d8 (S)	89	%	82-122	1		07/07/22 15:57	2037-26-5	
2320B Alkalinity	•	/lethod: SM22 2 tical Services -						
Alkalinity, Total as CaCO3	449	mg/L	1.0	1		07/05/22 17:41		

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C12	Lab ID: 702	220351002	Collected:	06/29/2	2 09:00	Received: 0	6/30/22 10:45	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0						
	Pace Analytic	al Services -	Melville						
Sulfate	130	mg/L		25.0	5		07/13/22 21:4	5 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 35	53.2						
	Pace Analytic	al Services -	Melville						
Nitrate as N	<0.050	mg/L		0.050	1		07/01/22 02:03	3 14797-55-8	
Nitrate-Nitrite (as N)	0.051	mg/L		0.050	1		07/01/22 02:03	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 35	53.2						
	Pace Analytic	al Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		07/01/22 02:5	7 14797-65-0	
4500 Ammonia Water	Analytical Me	thod: SM22	4500 NH3 H						
	Pace Analytic	al Services -	Melville						
Nitrogen, Ammonia	0.83	mg/L		0.10	1		07/04/22 13:40	6 7664-41-7	
9014 Cyanide, Total	Analytical Me Pace Analytic			inide Pr	eparatior	n Method: EPA	9010C		
Cyanide	12.3	ug/L		10.0	1	07/11/22 14:20	07/11/22 18:00) 57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-C16	Lab ID:	70220351003	Collected: 06/29/2	2 11:00	Received: 06	5/30/22 10:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases			75 Preparation Metho	od: RSK	-175			
	Pace Anal	tical Services -	Melville					
Methane, Dissolved	5.1	l ug/L	1.0	1	07/01/22 08:44	07/01/22 12:35	74-82-8	
6010 MET ICP	-		010C Preparation Me	thod: El	PA 3005A			
	Pace Analy	tical Services -	Melville					
Iron	11100) ug/L	100	1	07/05/22 06:56	07/07/22 19:45	7439-89-6	
8270E MSSV PAH by SIM	-		270E SIM Preparation	n Metho	d: EPA 3510C			
	Pace Anal	tical Services -	Melville					
Acenaphthene	13.7	/ ug/L	0.20	10	07/06/22 17:28	07/11/22 16:23	83-32-9	
Acenaphthylene	0.22	0	0.020	1		07/07/22 20:43		
Anthracene	0.044		0.020	1	07/06/22 17:28	07/07/22 20:43	120-12-7	
Benzo(a)anthracene	0.023		0.020	1	07/06/22 17:28	07/07/22 20:43	56-55-3	
Benzo(a)pyrene	<0.020	-	0.020	1	07/06/22 17:28	07/07/22 20:43	50-32-8	
Benzo(b)fluoranthene	<0.020	-	0.020	1	07/06/22 17:28	07/07/22 20:43	205-99-2	
Benzo(g,h,i)perylene	<0.020	-	0.020	1	07/06/22 17:28	07/07/22 20:43	191-24-2	
Benzo(k)fluoranthene	<0.020	0	0.020	1		07/07/22 20:43		
Chrysene	0.022	-	0.020	1	07/06/22 17:28	07/07/22 20:43	218-01-9	
Dibenz(a,h)anthracene	<0.020		0.020	1		07/07/22 20:43		
Fluoranthene	0.54	-	0.020	1	07/06/22 17:28	07/07/22 20:43	206-44-0	
Fluorene	1.6	-	0.020	1	07/06/22 17:28	07/07/22 20:43	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020	-	0.020	1		07/07/22 20:43		
Naphthalene	0.031		0.020	1	07/06/22 17:28	07/07/22 20:43	91-20-3	
Phenanthrene	0.10	-	0.020	1	07/06/22 17:28	07/07/22 20:43	85-01-8	
Pyrene	0.75	0	0.020	1	07/06/22 17:28	07/07/22 20:43	129-00-0	
Surrogates		0						
Fluoranthene-d10 (S)	92	2 %	40-112	1	07/06/22 17:28	07/07/22 20:43	93951-69-0	
2-Methylnaphthalene-d10 (S)	69) %	44-146	1	07/06/22 17:28	07/07/22 20:43	7297-45-2	
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
	Pace Anal	tical Services -	Melville					
Benzene	<1.0) ug/L	1.0	1		07/07/22 16:18	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		07/07/22 16:18	100-41-4	
Toluene	<1.0	-	1.0	1		07/07/22 16:18	108-88-3	
Xylene (Total)	<3.0	0	3.0	1		07/07/22 16:18		
Surrogates		- 3-						
1,2-Dichloroethane-d4 (S)	95	5 %	81-122	1		07/07/22 16:18	17060-07-0	
4-Bromofluorobenzene (S)	10 ²	%	79-118	1		07/07/22 16:18	460-00-4	
Toluene-d8 (S)	88	3 %	82-122	1		07/07/22 16:18	2037-26-5	
2320B Alkalinity	Analytical	Method: SM22	2320B					
-	Pace Anal	tical Services -	Melville					
Alkalinity, Total as CaCO3	510	·	1.0	1		07/05/22 18:02		
	510	, my/c	1.0			01/00/22 10.02		

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C16	Lab ID: 702	220351003	Collected: 06	6/29/2	2 11:00	Received: 0	6/30/22 10:45 I	Matrix: Water	
Parameters	Results	Units	Report Li	imit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0						
	Pace Analytic	al Services -	Melville						
Sulfate	<5.0	mg/L		5.0	1		07/12/22 16:44	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 35	3.2						
	Pace Analytic	al Services -	Melville						
Nitrate as N	0.095	mg/L	0.	.050	1		07/01/22 02:12	14797-55-8	
Nitrate-Nitrite (as N)	0.11	mg/L	0.	.050	1		07/01/22 02:12	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 35	3.2						
	Pace Analytic	al Services -	Melville						
Nitrite as N	<0.050	mg/L	0.	.050	1		07/01/22 03:18	14797-65-0	
4500 Ammonia Water	Analytical Me	thod: SM22 4	1500 NH3 H						
	Pace Analytic	al Services -	Melville						
Nitrogen, Ammonia	0.23	mg/L	(0.10	1		07/04/22 13:47	7664-41-7	
9014 Cyanide, Total	Analytical Me	thod: EPA 90	14 Total Cyanic	de Pre	eparatior	Method: EPA	9010C		
	Pace Analytic	al Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	07/11/22 14:20	07/11/22 18:01	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-C24S	Lab ID:	70220351004	Collected:	06/29/2	22 07:05	Received: 06	6/30/22 10:45	Matrix: Water	
Parameters	Results	Units	Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases		Method: RSK-1		ion Meth	iod: RSK	-175			
		ytical Services -	weiville						
Methane, Dissolved	12	7 ug/L		43.0	43	07/01/22 08:44	07/01/22 14:3	5 74-82-8	
6010 MET ICP	•	Method: EPA 60 ytical Services -		ration Me	ethod: El	PA 3005A			
Iron	39	5 ug/L		100	1	07/05/22 06:56	07/07/22 19:4	7 7439-89-6	
8270E MSSV PAH by SIM	-	Method: EPA 82 ytical Services -		reparatio	on Metho	d: EPA 3510C			
Acenaphthene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 83-32-9	
Acenaphthylene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 208-96-8	
Anthracene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 120-12-7	
Benzo(a)anthracene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 56-55-3	
Benzo(a)pyrene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 50-32-8	
Benzo(b)fluoranthene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 205-99-2	
Benzo(g,h,i)perylene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 191-24-2	
Benzo(k)fluoranthene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 207-08-9	
Chrysene	<0.01	-		0.019	1	07/06/22 17:28	07/07/22 21:1	5 218-01-9	
Dibenz(a,h)anthracene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 53-70-3	
Fluoranthene	<0.01	-		0.019	1	07/06/22 17:28	07/07/22 21:1	5 206-44-0	
Fluorene	<0.01	-		0.019	1	07/06/22 17:28	07/07/22 21:1	5 86-73-7	
ndeno(1,2,3-cd)pyrene	<0.01	9 ug/L		0.019	1	07/06/22 17:28	07/07/22 21:1	5 193-39-5	
Naphthalene	<0.01	-		0.019	1	07/06/22 17:28	07/07/22 21:1	5 91-20-3	
Phenanthrene	<0.01	•		0.019	1	07/06/22 17:28			
Pyrene	<0.01	0		0.019	1	07/06/22 17:28	07/07/22 21:1	5 129-00-0	
Surrogates		0							
Fluoranthene-d10 (S)	9.	7 %		40-112	1	07/06/22 17:28	07/07/22 21:1	5 93951-69-0	
2-Methylnaphthalene-d10 (S)	74	4 %		44-146	1	07/06/22 17:28	07/07/22 21:1	5 7297-45-2	
3260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C						
	Pace Anal	ytical Services -	Melville						
Benzene	<1.0	0 ug/L		1.0	1		07/07/22 16:4	0 71-43-2	
Ethylbenzene	<1.0	•		1.0	1		07/07/22 16:4	0 100-41-4	
Toluene	<1.	•		1.0	1		07/07/22 16:4	0 108-88-3	
(ylene (Total)	<3.	-		3.0	1		07/07/22 16:4		
Surrogates		- 0						-	
I,2-Dichloroethane-d4 (S)	9	6 %		81-122	1		07/07/22 16:4	0 17060-07-0	
I-Bromofluorobenzene (S)	10	1 %		79-118	1		07/07/22 16:4	0 460-00-4	
Toluene-d8 (S)	8			82-122	1		07/07/22 16:4	0 2037-26-5	
2320B Alkalinity	Analytical	Method: SM22	2320B						
	Pace Anal	ytical Services -	Melville						
Alkalinity, Total as CaCO3	33	B mg/L		1.0	1		07/05/22 20:1	6	
	00				•			-	

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.:

o.: 70220351

Sample: MW-C24S	Lab ID:	70220351004	Collected:	06/29/2	22 07:05	Received: 06	6/30/22 10:45 N	Aatrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	-	Method: EPA 3 ytical Services							
Sulfate	17.	8 mg/L		5.0	1		07/12/22 16:58	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		Method: EPA 3 ytical Services							
Nitrate as N	0.08	2 mg/L		0.050	1		07/01/22 01:47	14797-55-8	
Nitrate-Nitrite (as N)	0.1	0 mg/L		0.050	1		07/01/22 01:47	7727-37-9	
353.2 Nitrogen, NO2	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Melville						
Nitrite as N	<0.05	0 mg/L		0.050	1		07/01/22 00:51	14797-65-0	
4500 Ammonia Water		Method: SM22 ytical Services							
Nitrogen, Ammonia	0.1	6 mg/L		0.10	1		07/04/22 13:50	7664-41-7	
9014 Cyanide, Total	-	Method: EPA 9 ytical Services	-	anide Pr	eparatio	n Method: EPA S	9010C		
Cyanide	<10.	0 ug/L		10.0	1	07/11/22 14:20	07/11/22 18:02	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

RSK 175 Dissolved Gases Analytical Method: RSK-175 Preparation Method: RSK-175 Pace Analytical Services - Melville 3.6 ug/L 1.0 1 07/01/22 08:44 07/01/22 12:54 74-82-8 8010 MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3005A Pace Analytical Services - Melville 74-82-8 8270E MSSV PAH by SIM Analytical Method: EPA 8270E SIM Preparation Method: EPA 3510C Pace Analytical Services - Melville 74-39-89-6 Acenaphthene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 208-96-8 Acenaphthylene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 208-96-8 Analytical Method: EPA 8270E SIM Ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 208-96-8 Acenaphthylene 0.023 1 07/08/22 17:28 07/07/22 21:47 20-2-3 Benzo(a)pyrene 0.023 1 07/08/22 17:28 07/07/22 17:47 191-2-4-2	Sample: MW-C25S	Lab ID:	70220351005	Collected:	06/29/2	2 10:25	Received: 06	6/30/22 10:45	Matrix: Water	
Pace Analytical Services - Metiville I.o. I.o. <thi.o.< th=""> I.o. I.o.</thi.o.<>	Parameters	Results	Units	Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
Methane, Dissolved 3.6 ug/L 1.0 1 07/01/22 08:44 07/01/22 12:54 74-82-8 So 10 MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3005A Barco 377 ug/L 100 1 07/05/22 06:56 07/07/22 11:45 7439-89-6 Bazzon 377 ug/L 0.023 1 07/06/22 07:28 07/07/22 11:47 83-32-9 Acenaphthisen <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 11:47 208-96-8 Anthracene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 11:47 10-12-7 Benzo(a)prene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 11:47 10-12-7 Benzo(a)prene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 11:47 10-12-7 Benzo(a)prene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 11:47 10-12-7 Benzo(hu/fuoranthene <0.023	RSK 175 Dissolved Gases	-			ion Metho	od: RSK	-175			
Pace Analytical Vervices - Melville Iron 377 ug/L 10 7/05/22 0:55 0/7/07/22 1:50 7/438-89-6 B270E MSSV PAH by SIM Analytical Method: EPA S270E SIM Preparation Vervice EPA 3510C Prevenantic EPA 3510C Accenaphthene 0.023 ug/L 0.023 1 0/706/22 17:28 0/707/22 21:47 83-32-9 Accenaphthylene 0.023 ug/L 0.023 1 0/706/22 17:28 0/707/22 21:47 83-32-9 Actinatione 0.023 ug/L 0.023 1 0/706/22 17:28 0/707/22 21:47 10-2-7 Benzo(a)phrene 0.023 ug/L 0.023 1 0/706/22 17:28 0/707/22 1:47 10-2-7 Benzo(a)phrene 0.023 ug/L 0.023 1 0/706/22 17:28 0/707/22 1:47 10-2-7 Benzo(a)phrene 0.023 ug/L 0.023 1 0/706/22 17:28 0/707/22 1:47 10-4	Methane, Dissolved				1.0	1	07/01/22 08:44	07/01/22 12:5	4 74-82-8	
Barton	6010 MET ICP	-			ration Me	thod: EF	PA 3005A			
Pace Analytical Services - Melville Acenaphthene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 208-96-8 Anthracene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 208-96-8 Anthracene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 56-55-3 Benzo(a)prome 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 205-99-2 Benzo(b)fluoranthene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 205-99-2 Benzo(b)fluoranthene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 21:47 21:47 Benzo(b)fluoranthene 0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47 21:47<	Iron	377	′ ug/L		100	1	07/05/22 06:56	07/07/22 19:5	0 7439-89-6	
Acenaphthylene <0.023	8270E MSSV PAH by SIM	-			reparatio	n Metho	d: EPA 3510C			
Anthracene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 1 20-12-7 Benzo(a)privne -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 50-55-3 Benzo(a)privne -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 50-53-3 Benzo(a)privne -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 50-32-8 Benzo(b)fluoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 121-24-2 Benzo(k)fluoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 206-40-0 Chrysene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 206-44-0 Fluoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 206-44-0 Fluoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 91-20-3 Prene -0.023 ug/L 0.023 1 07	Acenaphthene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 83-32-9	
Benzo(a)anthracene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 56-55-3 Benzo(a)pyrene -0.003 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 205-99-2 Benzo(b)fuoranthene -0.003 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 205-99-2 Benzo(b)fuoranthene -0.003 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 218-01-9 Dibenz(a,h)anthracene -0.003 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 26-4-0 Dibenz(a,h)anthracene -0.0023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 86-73-7 Fluoranthene -0.0023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 86-73-7 Naphthalene -0.0023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 85-01-8 Pyrene -0.0023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47	Acenaphthylene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 208-96-8	
Benzo(a)pyrene <0.023	Anthracene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 120-12-7	
Benzolp/Inuranthene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 19:24-2 Benzo(k)fluoranthene <0.023	Benzo(a)anthracene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 56-55-3	
Benzo(g,h,i)perylene <0.023	Benzo(a)pyrene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 50-32-8	
Benzo(k/Itoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 207-08-9 Chrysene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 218-01-9 Dibenz(a,h)anthracene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 206-44-0 Fluoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 206-44-0 Fluoranthene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 1:47 206-44-0 Privene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 1:47 207-03 Phenanthrene -0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 1:47 193-91-59 Surrogates - - - 0.023 ug/L 0.023 1 07/07/22	Benzo(b)fluoranthene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 205-99-2	
Chrysene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 218-01-9 Dibenz(a,h)anthracene <0.023	Benzo(g,h,i)perylene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 191-24-2	
Dibenz(a,h)anthracene <0.023	Benzo(k)fluoranthene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 207-08-9	
Fluoranthene <0.023	Chrysene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 218-01-9	
Fluoranthene <0.023	Dibenz(a,h)anthracene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 53-70-3	
Fluorene <0.023	Fluoranthene	<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 206-44-0	
Indeno(1,2,3-cd)pyrene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 121:21 193-39-5 Naphthalene <0.023	Fluorene	<0.023	-		0.023	1	07/06/22 17:28	07/07/22 21:4	7 86-73-7	
Naphthalene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 91-20-3 Phenanthrene <0.023	ndeno(1,2,3-cd)pyrene	<0.023	-		0.023	1	07/06/22 17:28	07/07/22 21:4	7 193-39-5	
Phenanthrene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 85-01-8 Pyrene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 93951-69-0 Surrogates 07/06/22 17:28 07/07/22 21:47 93951-69-0 07/07/22 21:47 93951-69-0 Purene Analytical Method: EPA 8260C/5030C 07/07/22 17:28 07/07/22 17:21 07/07/22 17:21 7297-45-2 Benzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Ethylbenzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Surrogates <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Benzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Ethylbenzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Surrogates <1.0 ug/L 1.0 1 07/07/22 17:01 100-41-4 Toluene<		<0.023			0.023	1	07/06/22 17:28	07/07/22 21:4	7 91-20-3	
Pyrene <0.023 ug/L 0.023 1 07/06/22 17:28 07/07/22 21:47 129-00-0 Surrogates 10 07/06/22 17:28 07/07/22 21:47 93951-69-0 Purce Analytical Method: EPA 8260C/5030C 21.0 07/06/22 17:28 07/07/22 17:01 71-43-2 Benzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Ethylbenzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Stylene (Total) ug/L 1.0 1 07/07/22 17:01 71-43-2 Stylene (Total) <3.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Stylene (Total) <3.0 ug/L 1.0 1 07/07/22 17:01 100-41-4 Stylene (Total) <3.0 ug/L 3.0 1 07/07/22 17:01 1330-20-7 Stylene (Total) <3.0 ug/L 3.0 1 07/07/22 17:01 17060-07-0 Stylene (Total) <3.0 95 % 81-122		<0.023	ug/L		0.023	1	07/06/22 17:28	07/07/22 21:4	7 85-01-8	
Surrogates 85 % 40-112 1 07/06/22 17:28 07/07/22 21:47 93951-69-0 2-Methylnaphthalene-d10 (S) 71 % 44-146 1 07/06/22 17:28 07/07/22 21:47 7297-45-2 8260C Volatile Organics Analytical Method: EPA 8260C/5030C Pace Analytical Services - Melville 07/07/22 17:01 71-43-2 Benzene <1.0	Pyrene	<0.023	-		0.023	1	07/06/22 17:28	07/07/22 21:4	7 129-00-0	
2-Methylnaphthalene-d10 (S) 71 % 44-146 1 07/06/22 17:28 07/07/22 21:47 7297-45-2 8260C Volatile Organics Analytical Method: EPA 8260C/5030C Pace Analytical Services - Melville Pace Analytical Services - Melville Benzene <1.0 ug/L 1.0 1 07/07/22 17:01 71-43-2 Ethylbenzene <1.0 ug/L 1.0 1 07/07/22 17:01 100-41-4 Toluene <1.0 ug/L 1.0 1 07/07/22 17:01 108-88-3 Xylene (Total) <3.0 ug/L 3.0 1 07/07/22 17:01 108-88-3 Surrogates 3.0 1 07/07/22 17:01 1330-20-7 Surrogates 3.0 1 07/07/22 17:01 17060-07-0 At-Bromofluorobenzene (S) 95 % 81-122 1 07/07/22 17:01 460-00-4 Toluene-d8 (S) 99 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 2320B Pace Analytical Services - Melville SM22	Surrogates		0							
Backborn Analytical Method: EPA 8260C/5030C Pace Analytical Services - Melville Benzene <1.0	Fluoranthene-d10 (S)	85	%		40-112	1	07/06/22 17:28	07/07/22 21:4	7 93951-69-0	
Pace Analytical Services - Melville Benzene <1.0	2-Methylnaphthalene-d10 (S)	71	%		44-146	1	07/06/22 17:28	07/07/22 21:4	7 7297-45-2	
Benzene <1.0	8260C Volatile Organics									
Line Line <thline< th=""> Line Line</thline<>		Pace Analy	tical Services -	Melville						
Ethylbenzene <1.0	Benzene	<1.0	ua/L		1.0	1		07/07/22 17:0	1 71-43-2	
Toluene <1.0 ug/L 1.0 1 07/07/22 17:01 108-88-3 Xylene (Total) <3.0 ug/L 3.0 1 07/07/22 17:01 1330-20-7 Surrogates 3.0 1 07/07/22 17:01 1330-20-7 1,2-Dichloroethane-d4 (S) 95 % 81-122 1 07/07/22 17:01 17060-07-0 4-Bromofluorobenzene (S) 100 % 79-118 1 07/07/22 17:01 460-00-4 Toluene-d8 (S) 89 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 2320B Pace Analytical Services - Melville Visual Services - Melville			0							
Kylene (Total) <3.0 ug/L 3.0 1 07/07/22 17:01 1330-20-7 Surrogates 1,2-Dichloroethane-d4 (S) 95 % 81-122 1 07/07/22 17:01 17060-07-0 4-Bromofluorobenzene (S) 100 % 79-118 1 07/07/22 17:01 460-00-4 Toluene-d8 (S) 89 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 2320B Pace Analytical Services - Melville Helville Survices - Melville	•		0							
Surrogates 81-122 1 07/07/22 17:01 17060-07-0 1,2-Dichloroethane-d4 (S) 95 % 81-122 1 07/07/22 17:01 17060-07-0 4-Bromofluorobenzene (S) 100 % 79-118 1 07/07/22 17:01 460-00-4 Toluene-d8 (S) 89 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 2320B Pace Analytical Services - Melville Face Analytical Services - Melville 5			-							
1,2-Dichloroethane-d4 (S) 95 % 81-122 1 07/07/22 17:01 17060-07-0 4-Bromofluorobenzene (S) 100 % 79-118 1 07/07/22 17:01 460-00-4 Foluene-d8 (S) 89 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 SM22 2320B Pace Analytical Services - Melville Face Analytical Services - Melville 5			~ .		0.0	•				
4-Bromofluorobenzene (S) 100 % 79-118 1 07/07/22 17:01 460-00-4 Foluene-d8 (S) 89 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 SM22 2320B Pace Analytical Services - Melville 79-118 1		95	%		81-122	1		07/07/22 17:0	1 17060-07-0	
Toluene-d8 (S) 89 % 82-122 1 07/07/22 17:01 2037-26-5 2320B Alkalinity Analytical Method: SM22 SM22 2320B Pace Analytical Services - Melville Face Analytical Services - Melville Face Analytical Services - Melville Face Analytical Services - Melville Difference Difference <t< td=""><td></td><td>100</td><td>%</td><td></td><td>79-118</td><td>1</td><td></td><td></td><td></td><td></td></t<>		100	%		79-118	1				
Pace Analytical Services - Melville										
Alkalinity, Total as CaCO3 608 mg/L 1.0 1 07/05/22 20:42	2320B Alkalinity									
	Alkalinity, Total as CaCO3	608	s mg/L		1.0	1		07/05/22 20:4	2	

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-C25S	Lab ID: 702	20351005	Collected:	06/29/2	2 10:25	Received: 06	6/30/22 10:45	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
	Pace Analytic	al Services -	Melville						
Sulfate	163	mg/L		25.0	5		07/13/22 21:59	9 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2						
	Pace Analytic	al Services -	Melville						
Nitrate as N	<0.050	mg/L		0.050	1		07/01/22 02:09	9 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		07/01/22 02:09	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 35	53.2						
	Pace Analytic	al Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		07/01/22 03:03	3 14797-65-0	
4500 Ammonia Water	Analytical Met	hod: SM22	4500 NH3 H						
	Pace Analytic	al Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		07/04/22 13:52	2 7664-41-7	
9014 Cyanide, Total	Analytical Met	hod: EPA 90)14 Total Cya	inide Pr	eparation	n Method: EPA	9010C		
	Pace Analytic	al Services -	Melville						
Cyanide	24.2	ug/L		10.0	1	07/11/22 14:20	07/11/22 18:03	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-13S MS/MSD	Lab ID: 702	20351006	Collected: 06/2	9/22 13:0	0 Received: 06	6/30/22 10:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases	Analytical Meth Pace Analytica		75 Preparation Me Melville	thod: RS	K-175			
Methane, Dissolved	24.3	ug/L	5.	05	07/01/22 08:44	07/01/22 13:14	74-82-8	M1
6010 MET ICP	Analytical Meth Pace Analytica		10C Preparation Melville	Method: E	EPA 3005A			
Iron	266	ug/L	10	D 1	07/05/22 06:56	07/07/22 19:52	7439-89-6	
8270E MSSV PAH by SIM	Analytical Meth Pace Analytica		70E SIM Prepara Melville	tion Meth	od: EPA 3510C			
Acenaphthene	0.031	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	83-32-9	
Acenaphthylene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	208-96-8	
Anthracene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	120-12-7	
Benzo(a)anthracene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	56-55-3	
Benzo(a)pyrene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	50-32-8	
Benzo(b)fluoranthene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	205-99-2	
Benzo(g,h,i)perylene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	191-24-2	
Benzo(k)fluoranthene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	207-08-9	
Chrysene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	218-01-9	
Dibenz(a,h)anthracene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	53-70-3	
Fluoranthene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	206-44-0	
Fluorene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	193-39-5	
Naphthalene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	91-20-3	
Phenanthrene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	85-01-8	
Pyrene	<0.021	ug/L	0.02	1 1	07/06/22 17:28	07/07/22 22:18	129-00-0	
Surrogates		-						
Fluoranthene-d10 (S)	102	%	40-11	2 1	07/06/22 17:28	07/07/22 22:18	93951-69-0	
2-Methylnaphthalene-d10 (S)	82	%	44-14	61	07/06/22 17:28	07/07/22 22:18	7297-45-2	
8260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C					
	Pace Analytica	l Services -	Melville					
Benzene	<1.0	ug/L	1.	D 1		07/07/22 17:22	71-43-2	
Ethylbenzene	<1.0	ug/L	1.	D 1		07/07/22 17:22	100-41-4	
Toluene	<1.0	ug/L	1.	D 1		07/07/22 17:22	108-88-3	M1
Xylene (Total)	<3.0	ug/L	3.	D 1		07/07/22 17:22	1330-20-7	
Surrogates	05	%	81-12	7 1		07/07/22 17:22	17060 07 0	
1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S)	95 101	%	79-11			07/07/22 17:22		
Toluene-d8 (S)	88	%	82-12			07/07/22 17:22		
2320B Alkalinity	Analytical Meth Pace Analytica							
Alkalinity, Total as CaCO3	302	mg/L	1.	D 1		07/05/22 20:56		M1

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.:

.: 70220351

Sample: MW-13S MS/MSD	Lab ID:	70220351006	Collected:	06/29/2	22 13:00	Received: 0	6/30/22 10:45 I	Matrix: Water	
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days		Method: EPA ytical Services							
Sulfate	35.	9 mg/L		5.0	1		07/12/22 17:25	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres		Method: EPA ytical Services							
Nitrate as N	1.	3 mg/L		0.050	1		07/01/22 01:58	14797-55-8	
Nitrate-Nitrite (as N)	1.	3 mg/L		0.050	1		07/01/22 01:58	7727-37-9	M1
353.2 Nitrogen, NO2	2	Method: EPA ytical Services							
Nitrite as N	<0.05	0 mg/L		0.050	1		07/01/22 02:50	14797-65-0	
4500 Ammonia Water		Method: SM2 ytical Services							
Nitrogen, Ammonia	<0.1	0 mg/L		0.10	1		07/04/22 13:55	7664-41-7	M1
9014 Cyanide, Total	-	Method: EPA ytical Services	•	anide Pr	reparatio	n Method: EPA	9010C		
Cyanide	<10.	0 ug/L		10.0	1	07/11/22 14:20	07/11/22 18:04	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-45S	Lab ID.	70220351007	Collected: 06/28/2	2 13:05	Received: 06	/30/22 10:45	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases		Method: RSK-1	75 Preparation Meth	od: RSK	-175			
Methane, Dissolved	1410		215	215	07/01/22 08:44	07/01/22 14:44	74-82-8	
6010 MET ICP	•	Method: EPA 60 /tical Services -	10C Preparation Me Melville	thod: El	PA 3005A			
Iron	2290	ug/L	100	1	07/05/22 06:56	07/07/22 20:09	7439-89-6	
8270E MSSV PAH by SIM	-	Vethod: EPA 82 /tical Services -	70E SIM Preparation Melville	n Metho	d: EPA 3510C			
Acenaphthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	83-32-9	H2
Acenaphthylene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	208-96-8	H2
Anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	120-12-7	H2
Benzo(a)anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	56-55-3	H2
Benzo(a)pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	50-32-8	H2
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	205-99-2	H2
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	191-24-2	H2
Benzo(k)fluoranthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	207-08-9	H2
Chrysene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	218-01-9	H2
Dibenz(a,h)anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	53-70-3	H2
Fluoranthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	206-44-0	H2
Fluorene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	86-73-7	H2
Indeno(1,2,3-cd)pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	193-39-5	H2
Naphthalene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	91-20-3	H2
Phenanthrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	85-01-8	H2
Pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/07/22 19:08	129-00-0	H2
Surrogates								
Fluoranthene-d10 (S)	97		40-112	1		07/07/22 19:08		
2-Methylnaphthalene-d10 (S)	75	5 %	44-146	1	07/06/22 17:28	07/07/22 19:08	7297-45-2	
8260C Volatile Organics	-	Vethod: EPA 82 /tical Services -						
Benzene	<1.0	ug/L	1.0	1		07/06/22 20:24	71-43-2	
Ethylbenzene	<1.0	0	1.0	1		07/06/22 20:24		
Toluene	1.1	0	1.0	1		07/06/22 20:24		
Xylene (Total)	<3.0	0	3.0	1		07/06/22 20:24	1330-20-7	
Surrogates		- 0-					-	
1,2-Dichloroethane-d4 (S)	95	5 %	81-122	1		07/06/22 20:24	17060-07-0	
4-Bromofluorobenzene (S)	102	2 %	79-118	1		07/06/22 20:24	460-00-4	
Toluene-d8 (S)	89	%	82-122	1		07/06/22 20:24	2037-26-5	
2320B Alkalinity	-	Method: SM22 2						
	Pace Analy	tical Services -	Melville					

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-45S	Lab ID:	70220351007	Collected: 06/28/	22 13:05	Received: 0	6/30/22 10:45 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical I	Method: EPA 30	0.0					
	Pace Analy	tical Services -	Melville					
Sulfate	<5.0) mg/L	5.0	1		07/12/22 18:06	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical I	Method: EPA 35	53.2					
	Pace Analy	tical Services -	Melville					
Nitrate as N	74.5	i mg/L	2.5	50		07/01/22 01:40	14797-55-8	
Nitrate-Nitrite (as N)	74.5	i mg/L	2.5	50		07/01/22 01:40	7727-37-9	H1
353.2 Nitrogen, NO2	Analytical I	Method: EPA 35	53.2					
	Pace Analy	tical Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		07/01/22 00:46	14797-65-0	H1
4500 Ammonia Water	Analytical I	Method: SM22	4500 NH3 H					
	Pace Analy	tical Services -	Melville					
Nitrogen, Ammonia	3.3	s mg/L	0.10	1		07/04/22 13:59	7664-41-7	
9014 Cyanide, Total	Analytical I	Method: EPA 90	14 Total Cyanide F	reparatio	n Method: EPA	9010C		
	Pace Analy	/tical Services -	Melville					
Cyanide	<10.0	ug/L	10.0	1	07/11/22 14:20	07/11/22 18:06	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: DUP 01	Lab ID:	70220351008	Collected: 06/29/2	2 00:00	Received: 06	5/30/22 10:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	-		75 Preparation Metho	od: RSK	-175			
	·	vtical Services -						
Methane, Dissolved	3.8	B ug/L	1.0	1	07/01/22 08:44	07/01/22 14:05	74-82-8	
6010 MET ICP	-	Method: EPA 60 ytical Services -	010C Preparation Me Melville	thod: Ef	PA 3005A			
Iron	1390) ug/L	100	1	07/05/22 06:56	07/07/22 20:11	7439-89-6	
8270E MSSV PAH by SIM	-	Method: EPA 82 ytical Services -	270E SIM Preparation Melville	n Metho	d: EPA 3510C			
Acenaphthene	11.8	3 ug/L	0.20	10	07/06/22 17:28	07/09/22 05:52	83-32-9	
Acenaphthylene	0.23	3 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	208-96-8	
Anthracene	0.04	5 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	120-12-7	
Benzo(a)anthracene	0.022	2 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	56-55-3	
Benzo(a)pyrene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	50-32-8	
Benzo(b)fluoranthene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	205-99-2	
Benzo(g,h,i)perylene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	191-24-2	
Benzo(k)fluoranthene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	207-08-9	
Chrysene	0.022	2 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	218-01-9	
Dibenz(a,h)anthracene	<0.020		0.020	1	07/06/22 17:28	07/08/22 17:39	53-70-3	
Fluoranthene	0.5	B ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	206-44-0	
Fluorene	1.7	7 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	193-39-5	
Naphthalene	0.037	7 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	91-20-3	
Phenanthrene	0.13	3 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	85-01-8	
Pyrene	0.82	2 ug/L	0.020	1	07/06/22 17:28	07/08/22 17:39	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	90) %	40-112	1	07/06/22 17:28	07/08/22 17:39	93951-69-0	
2-Methylnaphthalene-d10 (S)	77	7 %	44-146	1	07/06/22 17:28	07/08/22 17:39	7297-45-2	
8260C Volatile Organics	-	Method: EPA 82 ytical Services -						
Benzene	<1.0) ug/L	1.0	1		07/07/22 17:44	71-43-2	
Ethylbenzene	<1.0	0	1.0	1		07/07/22 17:44		
Toluene	<1.0	0	1.0	1		07/07/22 17:44		
Xylene (Total)	<3.0	0	3.0	1		07/07/22 17:44		
Surrogates			210					
1,2-Dichloroethane-d4 (S)	96	6 %	81-122	1		07/07/22 17:44	17060-07-0	
4-Bromofluorobenzene (S)	103	3 %	79-118	1		07/07/22 17:44		
Toluene-d8 (S)	9	1 %	82-122	1		07/07/22 17:44	2037-26-5	
2320B Alkalinity	•	Method: SM22 : ytical Services -						
Alkalinity, Total as CaCO3	534	4 mg/L	1.0	1		07/05/22 21:50)	
.,								

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351								
Sample: DUP 01	Lab ID: 7022	20351008	Collected: 06/29	9/22 00:0	0 Received: 06	6/30/22 10:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytica	I Services -	Melville					
Sulfate	<5.0	mg/L	5.) 1		07/12/22 19:00	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2					
	Pace Analytical	I Services -	Melville					
Nitrate as N	0.060	mg/L	0.05) 1		07/01/22 01:44	14797-55-8	
Nitrate-Nitrite (as N)	0.085	mg/L	0.05) 1		07/01/22 01:44	7727-37-9	H1
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2					
	Pace Analytica	I Services -	Melville					
Nitrite as N	<0.050	mg/L	0.05) 1		07/01/22 00:48	14797-65-0	H1
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytica	I Services -	Melville					
Nitrogen, Ammonia	0.33	mg/L	0.1) 1		07/04/22 14:00	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		014 Total Cyanide Melville	Preparat	ion Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.) 1	07/11/22 14:20	07/11/22 18:07	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-22S	Lab ID: 7	70220351009	Collected: 06/30/2	2 10:00	Received: 07	7/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	•		75 Preparation Metho	od: RSK	-175			
	Pace Analy	tical Services -	Melville					
Methane, Dissolved	137	ug/L	43.0	43	07/01/22 11:44	07/05/22 13:20	74-82-8	
6010 MET ICP	-	/lethod: EPA 60 tical Services -	10C Preparation Me Melville	thod: EF	PA 3005A			
Iron	254	ug/L	100	1	07/05/22 06:56	07/07/22 20:13	7439-89-6	
8270E MSSV PAH by SIM		/lethod: EPA 82 tical Services -	70E SIM Preparation Melville	n Metho	d: EPA 3510C			
Acenaphthene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	83-32-9	
Acenaphthylene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	208-96-8	
Anthracene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	120-12-7	
Benzo(a)anthracene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	56-55-3	
Benzo(a)pyrene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	50-32-8	
Benzo(b)fluoranthene	<0.019	ug/L	0.019	1		07/08/22 18:11		
Benzo(g,h,i)perylene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	191-24-2	
Benzo(k)fluoranthene	<0.019	0	0.019	1	07/06/22 17:28	07/08/22 18:11	207-08-9	
Chrysene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	218-01-9	
Dibenz(a,h)anthracene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	53-70-3	
Fluoranthene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	206-44-0	
Fluorene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	193-39-5	
Naphthalene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	91-20-3	
Phenanthrene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	85-01-8	
Pyrene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:11	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	86		40-112	1		07/08/22 18:11		
2-Methylnaphthalene-d10 (S)	74	%	44-146	1	07/06/22 17:28	07/08/22 18:11	7297-45-2	
8260C Volatile Organics	•	/lethod: EPA 82 tical Services -						
Benzene	<1.0	ug/L	1.0	1		07/07/22 18:05	71-43-2	
Ethylbenzene	<1.0	0	1.0	1		07/07/22 18:05		
Toluene	<1.0	0	1.0	1		07/07/22 18:05		
Xylene (Total)	<3.0	0	3.0	1		07/07/22 18:05		
Surrogates		- 5-					-	
1,2-Dichloroethane-d4 (S)	97	%	81-122	1		07/07/22 18:05	17060-07-0	
4-Bromofluorobenzene (S)	100	%	79-118	1		07/07/22 18:05	460-00-4	
Toluene-d8 (S)	89	%	82-122	1		07/07/22 18:05	2037-26-5	
2320B Alkalinity		/lethod: SM22 2 tical Services -						
Alkalinity, Total as CaCO3	257	mg/L	1.0	1		07/06/22 12:05		
	201	····ə/ =						

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-22S	Lab ID: 702	20351009	Collected: 06	6/30/22	2 10:00	Received: 0	7/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Report Li	mit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0						
	Pace Analytica	I Services -	Melville						
Sulfate	40.9	mg/L		5.0	1		07/17/22 19:26	6 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	3.2						
	Pace Analytica	I Services -	Melville						
Nitrate as N	6.8	mg/L	C	0.25	5		07/02/22 04:25	5 14797-55-8	
Nitrate-Nitrite (as N)	6.8	mg/L	C	0.25	5		07/02/22 04:25	5 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2						
	Pace Analytica	I Services -	Melville						
Nitrite as N	<0.050	mg/L	0.	.050	1		07/02/22 01:31	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22 4	1500 NH3 H						
	Pace Analytica	I Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L	(0.10	1		07/04/22 14:13	3 7664-41-7	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	14 Total Cyanid	de Pre	paratior	Method: EPA	9010C		
	Pace Analytica	I Services -	Melville						
Cyanide	560	ug/L	5	50.0	5	07/13/22 19:20	07/13/22 21:16	6 57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-23S	Lab ID: 7	0220351010	Collected: 06/30/2	2 08:25	Received: 07	7/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	Analytical M	ethod: RSK-1	75 Preparation Meth	od: RSK	-175			
	Pace Analyt	ical Services -	Melville					
Methane, Dissolved	2050	ug/L	215	215	07/01/22 11:44	07/05/22 13:50	74-82-8	
6010 MET ICP	•		10C Preparation Me	thod: El	PA 3005A			
	Pace Analyt	ical Services -	Meiville					
Iron	2520	ug/L	100	1	07/05/22 06:56	07/07/22 20:16	7439-89-6	
8270E MSSV PAH by SIM	Analytical M	ethod: EPA 82	70E SIM Preparation	n Metho	d: EPA 3510C			
	Pace Analyt	ical Services -	Melville					
Acenaphthene	81.0	ug/L	0.95	50	07/06/22 17:28	07/09/22 06:54	83-32-9	
Acenaphthylene	1.5	ug/L	0.019	1		07/08/22 18:42		
Anthracene	3.9	ug/L	0.95	50		07/09/22 06:54		
Benzo(a)anthracene	0.096	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:42	56-55-3	
Benzo(a)pyrene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:42	50-32-8	
Benzo(b)fluoranthene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:42	205-99-2	
Benzo(g,h,i)perylene	<0.019	ug/L	0.019	1		07/08/22 18:42		
Benzo(k)fluoranthene	<0.019	ug/L	0.019	1		07/08/22 18:42		
Chrysene	0.096	ug/L	0.019	1		07/08/22 18:42		
Dibenz(a,h)anthracene	<0.019	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:42	53-70-3	
Fluoranthene	2.0	ug/L	0.019	1		07/08/22 18:42		
Fluorene	19.8	ug/L	0.95	50		07/09/22 06:54		
Indeno(1,2,3-cd)pyrene	<0.019	ug/L	0.019	1		07/08/22 18:42		
Naphthalene	48.4	ug/L	0.95	50		07/09/22 06:54		
Phenanthrene	16.7	ug/L	0.95	50		07/09/22 06:54		
Pyrene	2.9	ug/L	0.019	1	07/06/22 17:28	07/08/22 18:42	129-00-0	
Surrogates		- 3-						
Fluoranthene-d10 (S)	82	%	40-112	1	07/06/22 17:28	07/08/22 18:42	93951-69-0	
2-Methylnaphthalene-d10 (S)	85	%	44-146	1	07/06/22 17:28	07/08/22 18:42	7297-45-2	
8260C Volatile Organics	Analytical M	ethod: EPA 82	60C/5030C					
	Pace Analyt	ical Services -	Melville					
Benzene	2.5	ug/L	1.0	1		07/07/22 18:26	71-43-2	
Ethylbenzene	103	ug/L	1.0	1		07/07/22 18:26		
Toluene	3.0	ug/L	1.0	1		07/07/22 18:26		
Xylene (Total)	69.2	ug/L	3.0	1		07/07/22 18:26		
Surrogates	00.2	ug/L	5.0	•		51/01/22 10.20	1000 20-1	
1,2-Dichloroethane-d4 (S)	94	%	81-122	1		07/07/22 18:26	17060-07-0	
4-Bromofluorobenzene (S)	104	%	79-118	1		07/07/22 18:26		
Toluene-d8 (S)	92	%	82-122	1		07/07/22 18:26		
2320B Alkalinity	Analytical M	ethod: SM22 2	2320B					
-		ical Services -						
Alkalinity, Total as CaCO3	260	mg/L	1.0	1		07/06/22 12:18		
Anamily, Iolal as CaCOS	200	mg/∟	1.0			01/00/22 12.10		

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-23S	Lab ID: 702	20351010	Collected:	06/30/2	2 08:25	Received: 07	//01/22 10:40	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Met Pace Analytica								
Sulfate	<5.0	mg/L		5.0	1		07/16/22 03:20	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met Pace Analytica								
Nitrate as N	<0.050	mg/L		0.050	1		07/02/22 03:58	8 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		07/02/22 03:58	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Method: EPA 353.2 Pace Analytical Services - Melville								
Nitrite as N	<0.050	mg/L		0.050	1		07/02/22 01:27	14797-65-0	
4500 Ammonia Water	Analytical Met Pace Analytica								
Nitrogen, Ammonia	1.5	mg/L		0.10	1		07/04/22 14:14	7664-41-7	
9014 Cyanide, Total	Analytical Met Pace Analytica			anide Pr	eparatio	n Method: EPA 9	010C		
Cyanide	<10.0	ug/L		10.0	1	07/13/22 19:20	07/13/22 20:44	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-31S	Lab ID: 702	220351011	Collected: 06/30/22	2 07:20	Received: 07	7/01/22 10:40 N	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
RSK 175 Dissolved Gases	-		5 Preparation Metho	od: RSK	-175						
	Pace Analytic	al Services - I	Melville								
Methane, Dissolved	104	ug/L	43.0	43	07/01/22 11:44	07/05/22 13:41	74-82-8				
6010 MET ICP	Analytical Me Pace Analytic		10C Preparation Met Melville	thod: Ef	PA 3005A						
Iron	198	ug/L	100	1	07/05/22 06:56	07/07/22 20:18	7439-89-6				
8270E MSSV PAH by SIM	-	Analytical Method: EPA 8270E SIM Preparation Method: EPA 3510C Pace Analytical Services - Melville									
Acenaphthene	0.022	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	83-32-9				
Acenaphthylene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	208-96-8				
Anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	120-12-7				
Benzo(a)anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	56-55-3				
Benzo(a)pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	50-32-8				
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Benzo(k)fluoranthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	207-08-9				
Chrysene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Dibenz(a,h)anthracene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Fluoranthene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Fluorene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	86-73-7				
Indeno(1,2,3-cd)pyrene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Naphthalene	0.080	ug/L	0.020	1		07/08/22 19:14					
Phenanthrene	<0.020	ug/L	0.020	1		07/08/22 19:14					
Pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:14	129-00-0				
Surrogates	07	0/	10,110		07/00/00 47 00	07/00/00 40 44	00054 00 0				
Fluoranthene-d10 (S)	87	%	40-112	1		07/08/22 19:14					
2-Methylnaphthalene-d10 (S)	71	%	44-146	1	07/06/22 17:28	07/08/22 19:14	7297-45-2				
8260C Volatile Organics	Analytical Me Pace Analytic										
Benzene	<1.0	ug/L	1.0	1		07/07/22 18:48	71-43-2				
Ethylbenzene	<1.0	ug/L	1.0	1		07/07/22 18:48					
Toluene	<1.0	ug/L	1.0	1		07/07/22 18:48					
Xylene (Total)	<3.0	ug/L	3.0	1		07/07/22 18:48	1330-20-7				
Surrogates		U U									
1,2-Dichloroethane-d4 (S)	96	%	81-122	1		07/07/22 18:48	17060-07-0				
4-Bromofluorobenzene (S)	101	%	79-118	1		07/07/22 18:48	460-00-4				
Toluene-d8 (S)	90	%	82-122	1		07/07/22 18:48	2037-26-5				
2320B Alkalinity	Analytical Me Pace Analytic										
Alkalinity, Total as CaCO3	285	mg/L	1.0	1		07/06/22 12:33					
	200			•							

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-31S	Lab ID: 702	20351011	Collected: 06/30/	22 07:20	Received: 07	7/01/22 10:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Sulfate	16.5	mg/L	5.0	1		07/16/22 03:34	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica							
Nitrate as N	0.068	mg/L	0.050	1		07/02/22 03:57	14797-55-8	
Nitrate-Nitrite (as N)	0.073	mg/L	0.050	1		07/02/22 03:57	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth							
	Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:26	14797-65-0	
4500 Ammonia Water	Analytical Meth Pace Analytica							
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/04/22 14:16	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytica		14 Total Cyanide P Melville	reparatio	n Method: EPA S	0010C		
Cyanide	<10.0	ug/L	10.0	1	07/13/22 19:20	07/13/22 20:45	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-33S	Lab ID: 7	70220351012	Collected: 06/30/2	2 08:47	Received: 07	7/01/22 10:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases	-		75 Preparation Metho	od: RSK	-175			
	Pace Analy	tical Services -	Melville					
Methane, Dissolved	81.1	ug/L	43.0	43	07/01/22 11:44	07/05/22 14:00	74-82-8	
6010 MET ICP	-	/lethod: EPA 60 tical Services -	10C Preparation Me Melville	thod: El	PA 3005A			
Iron	8930	ug/L	100	1	07/05/22 06:56	07/07/22 20:21	7439-89-6	
8270E MSSV PAH by SIM	-	/lethod: EPA 82 tical Services -	70E SIM Preparation Melville	n Metho	d: EPA 3510C			
Acenaphthene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	83-32-9	
Acenaphthylene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	208-96-8	
Anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	120-12-7	
Benzo(a)anthracene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	56-55-3	
Benzo(a)pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1		07/08/22 19:45		
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1		07/08/22 19:45		
Benzo(k)fluoranthene	<0.020	0	0.020	1	07/06/22 17:28	07/08/22 19:45	207-08-9	
Chrysene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	218-01-9	
Dibenz(a,h)anthracene	<0.020	ug/L	0.020	1		07/08/22 19:45		
Fluoranthene	<0.020	ug/L	0.020	1		07/08/22 19:45		
Fluorene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020	0	0.020	1		07/08/22 19:45		
Naphthalene	0.027	ug/L	0.020	1		07/08/22 19:45		
Phenanthrene	<0.020	ug/L	0.020	1		07/08/22 19:45		
Pyrene	<0.020	ug/L	0.020	1	07/06/22 17:28	07/08/22 19:45	129-00-0	
Surrogates		0/	10,110		07/00/00 47 00	07/00/00 40 45	00054 00 0	
Fluoranthene-d10 (S)	93		40-112	1		07/08/22 19:45		
2-Methylnaphthalene-d10 (S)	76	%	44-146	1	07/06/22 17:28	07/08/22 19:45	7297-45-2	
8260C Volatile Organics	•	/lethod: EPA 82 tical Services -						
Benzene	<1.0	ug/L	1.0	1		07/07/22 19:09	71-43-2	
Ethylbenzene	<1.0	0	1.0	1		07/07/22 19:09		
Toluene	<1.0	ug/L	1.0	1		07/07/22 19:09		
Xylene (Total)	<3.0	-	3.0	1		07/07/22 19:09		
Surrogates		- 5-					-	
1,2-Dichloroethane-d4 (S)	95	%	81-122	1		07/07/22 19:09	17060-07-0	
4-Bromofluorobenzene (S)	100	%	79-118	1		07/07/22 19:09	460-00-4	
Toluene-d8 (S)	90	%	82-122	1		07/07/22 19:09	2037-26-5	
2320B Alkalinity	-	/lethod: SM22 2 tical Services -						
Alkalinity, Total as CaCO3	416	mg/L	1.0	1		07/06/22 13:29		

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-33S	Lab ID: 702	220351012	Collected:	06/30/2	22 08:47	Received: 0	7/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Met Pace Analytic								
Sulfate	24.9	mg/L		5.0	1		07/16/22 03:4	7 14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met Pace Analytic								
Nitrate as N	<0.050	mg/L		0.050	1		07/02/22 03:5	9 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		07/02/22 03:5	9 7727-37-9	
353.2 Nitrogen, NO2	Analytical Met Pace Analytic								
Nitrite as N	<0.050	mg/L		0.050	1		07/02/22 01:2	9 14797-65-0	
4500 Ammonia Water	Analytical Met Pace Analytic								
Nitrogen, Ammonia	1.3	mg/L		0.10	1		07/04/22 14:2	9 7664-41-7	
9014 Cyanide, Total	Analytical Met Pace Analytic			anide Pr	reparatio	n Method: EPA	9010C		
Cyanide	<10.0	ug/L		10.0	1	07/13/22 19:20	07/13/22 20:4	8 57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-40	Lab ID:	70220351013	Collected: 06/30/2	2 11:30	Received: 07	7/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases		Method: RSK-1 ytical Services -	75 Preparation Meth	od: RSK	-175			
Methane, Dissolved	447	7 ug/L	43.0	43	07/01/22 11:44	07/05/22 14:10	74-82-8	
6010 MET ICP	-	Method: EPA 60 ytical Services -	010C Preparation Me Melville	thod: El	PA 3005A			
Iron	410) ug/L	100	1	07/05/22 06:56	07/07/22 20:23	7439-89-6	
8270E MSSV PAH by SIM	-	Method: EPA 82 ytical Services -	270E SIM Preparation Melville	n Metho	d: EPA 3510C			
Acenaphthene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	83-32-9	
Acenaphthylene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	208-96-8	
Anthracene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	120-12-7	
Benzo(a)anthracene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	56-55-3	
Benzo(a)pyrene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	50-32-8	
Benzo(b)fluoranthene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	205-99-2	
Benzo(g,h,i)perylene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	191-24-2	
Benzo(k)fluoranthene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	207-08-9	
Chrysene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	218-01-9	
Dibenz(a,h)anthracene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	53-70-3	
Fluoranthene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	206-44-0	
Fluorene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	193-39-5	
Naphthalene	0.08	3 ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	91-20-3	
Phenanthrene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	85-01-8	
Pyrene	<0.020) ug/L	0.020	1	07/06/22 17:28	07/08/22 20:17	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	98		40-112	1		07/08/22 20:17		
2-Methylnaphthalene-d10 (S)	78	3 %	44-146	1	07/06/22 17:28	07/08/22 20:17	7297-45-2	
8260C Volatile Organics	-	Method: EPA 82 ytical Services -						
Benzene	<1.0) ug/L	1.0	1		07/07/22 19:30	71-43-2	
Ethylbenzene	<1.0	0	1.0	1		07/07/22 19:30		
Toluene	<1.0	0	1.0	1		07/07/22 19:30		
Xylene (Total)	<3.0	0	3.0	1		07/07/22 19:30	1330-20-7	
Surrogates			A4 465			07/07/00 10 00	47000 07 0	
1,2-Dichloroethane-d4 (S)	97		81-122	1		07/07/22 19:30		
4-Bromofluorobenzene (S)	10 ⁻		79-118	1		07/07/22 19:30		
Toluene-d8 (S)	90		82-122	1		07/07/22 19:30	2037-26-5	
2320B Alkalinity	-	Method: SM22 : ytical Services -						
Alkalinity, Total as CaCO3	180) mg/L	1.0	1		07/06/22 13:40	1	
•		0						

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-40	Lab ID: 7022	20351013	Collected: 06/30/2	2 11:30	Received: 07	7/01/22 10:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytical	Services -	Melville					
Sulfate	5.5	mg/L	5.0	1		07/16/22 04:01	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2					
	Pace Analytical	Services -	Melville					
Nitrate as N	0.58	mg/L	0.050	1		07/02/22 04:04	14797-55-8	
Nitrate-Nitrite (as N)	0.59	mg/L	0.050	1		07/02/22 04:04	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2					
	Pace Analytical	Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:33	14797-65-0	
4500 Ammonia Water	Analytical Meth Pace Analytical							
Nitrogen, Ammonia	0.47	mg/L	0.10	1		07/04/22 14:20	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pro Melville	eparatio	n Method: EPA 9	010C		
Cyanide	<10.0	ug/L	10.0	1	07/13/22 19:20	07/13/22 20:49	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-46S	Lab ID: 70	220351014	Collected: 06/30/2	2 11:30	Received: 07	7/01/22 10:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Dissolved Gases	•		75 Preparation Metho	od: RSK	(-175			
	Pace Analytic	al Services -	Melville					
Methane, Dissolved	6650	ug/L	510	510	07/01/22 11:44	07/06/22 11:31	74-82-8	
6010 MET ICP	Analytical Me Pace Analytic		10C Preparation Me Melville	thod: El	PA 3005A			
Iron	5600	ug/L	100	1	07/05/22 06:56	07/07/22 20:30	7439-89-6	
8270E MSSV PAH by SIM	Analytical Me Pace Analytic		70E SIM Preparatior Melville	n Metho	d: EPA 3510C			
Acenaphthene	39.8	ug/L	0.40	20	07/06/22 17:28	07/11/22 17:26	83-32-9	
Acenaphthylene	1.7	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	208-96-8	
Anthracene	2.2	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	120-12-7	
Benzo(a)anthracene	0.97	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	56-55-3	
Benzo(a)pyrene	0.85	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	50-32-8	
Benzo(b)fluoranthene	0.51	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	205-99-2	
Benzo(g,h,i)perylene	0.28	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	191-24-2	
Benzo(k)fluoranthene	0.37	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	207-08-9	
Chrysene	0.90	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	218-01-9	
Dibenz(a,h)anthracene	0.10	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	53-70-3	
Fluoranthene	1.6	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	206-44-0	
Fluorene	9.8	ug/L	0.40	20	07/06/22 17:28	07/11/22 17:26	86-73-7	
Indeno(1,2,3-cd)pyrene	0.23	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	193-39-5	
Naphthalene	158	ug/L	1.0	50	07/06/22 17:28	07/09/22 07:26	91-20-3	
Phenanthrene	6.5	ug/L	0.40	20	07/06/22 17:28	07/11/22 17:26	85-01-8	
Pyrene	2.7	ug/L	0.020	1	07/06/22 17:28	07/08/22 20:48	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	92	%	40-112	1	07/06/22 17:28	07/08/22 20:48	93951-69-0	
2-Methylnaphthalene-d10 (S)	77	%	44-146	1	07/06/22 17:28	07/08/22 20:48	7297-45-2	
8260C Volatile Organics	Analytical Me Pace Analytic							
Benzene	313	ug/L	10.0	10		07/08/22 13:27	71-43-2	
Ethylbenzene	355	ug/L	10.0	10		07/08/22 13:27		
Toluene	3.8	ug/L	1.0	1		07/07/22 19:51		
Xylene (Total)	138	ug/L	3.0	1		07/07/22 19:51		
Surrogates		5					-	
1,2-Dichloroethane-d4 (S)	96	%	81-122	1		07/07/22 19:51	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-118	1		07/07/22 19:51	460-00-4	
Toluene-d8 (S)	89	%	82-122	1		07/07/22 19:51	2037-26-5	
2320B Alkalinity	Analytical Me Pace Analytic							
Alkalinity, Total as CaCO3	315	mg/L	1.0	1		07/06/22 13:56		
	010	ing,∟	1.0			01/00/22 10:00		

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-46S	Lab ID: 70	220351014	Collected: 06/30/2	22 11:30	Received: 07	7/01/22 10:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 30	0.0					
	Pace Analytic	cal Services -	Melville					
Sulfate	<5.0	mg/L	5.0	1		07/16/22 04:14	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	ethod: EPA 35	53.2					
	Pace Analytic	cal Services -	Melville					
Nitrate as N	<0.050	mg/L	0.050	1		07/02/22 04:09	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		07/02/22 04:09	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	ethod: EPA 35	53.2					
	Pace Analytic	cal Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:37	14797-65-0	
4500 Ammonia Water	Analytical Me	ethod: SM22	4500 NH3 H					
	Pace Analytic	cal Services -	Melville					
Nitrogen, Ammonia	2.5	mg/L	0.10	1		07/04/22 14:22	7664-41-7	
9014 Cyanide, Total	Analytical Me	ethod: EPA 90	014 Total Cyanide P	eparatio	n Method: EPA 9	010C		
	Pace Analytic	cal Services -	Melville					
Cyanide	<10.0	ug/L	10.0	1	07/13/22 19:20	07/13/22 20:49	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-47S	Lab ID: 70	220351015	Collected: 06/30/2	2 07:05	Received: 07	/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases	Analytical Me Pace Analytic		75 Preparation Metho Melville	od: RSK	-175			
Methane, Dissolved	6250	ug/L	510	510	07/01/22 11:44	07/06/22 11:21	74-82-8	
6010 MET ICP	Analytical Me Pace Analytic		10C Preparation Me Melville	thod: EF	PA 3005A			
Iron	21700	ug/L	100	1	07/05/22 06:56	07/07/22 20:32	7439-89-6	
8270E MSSV PAH by SIM	Analytical Me Pace Analytic		70E SIM Preparatior Melville	n Metho	d: EPA 3510C			
Acenaphthene	0.95	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	83-32-9	
Acenaphthylene	0.031	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	208-96-8	
Anthracene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	120-12-7	
Benzo(a)anthracene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	56-55-3	
Benzo(a)pyrene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	50-32-8	
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	205-99-2	
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	191-24-2	
Benzo(k)fluoranthene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	207-08-9	
Chrysene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	218-01-9	
Dibenz(a,h)anthracene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	53-70-3	
Fluoranthene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	206-44-0	
Fluorene	0.039	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	193-39-5	
Naphthalene	0.17	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	91-20-3	L1
Phenanthrene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	85-01-8	
Pyrene	<0.020	ug/L	0.020	1	07/07/22 23:32	07/08/22 21:51	129-00-0	
Surrogates								
Fluoranthene-d10 (S)	88	%	40-112	1	07/07/22 23:32	07/08/22 21:51	93951-69-0	
2-Methylnaphthalene-d10 (S)	78	%	44-146	1	07/07/22 23:32	07/08/22 21:51	7297-45-2	
8260C Volatile Organics	Analytical Me Pace Analytic							
Benzene	<1.0	ug/L	1.0	1		07/08/22 13:06	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		07/08/22 13:06		
Toluene	<1.0	ug/L	1.0	1		07/08/22 13:06		
Xylene (Total)	<3.0	ug/L	3.0	1		07/08/22 13:06		
Surrogates							-	
1,2-Dichloroethane-d4 (S)	96	%	81-122	1		07/08/22 13:06	17060-07-0	
4-Bromofluorobenzene (S)	100	%	79-118	1		07/08/22 13:06	460-00-4	
Toluene-d8 (S)	89	%	82-122	1		07/08/22 13:06	2037-26-5	
2320B Alkalinity	Analytical Me Pace Analytic							
Alkalinity, Total as CaCO3	311	mg/L	1.0	1		07/06/22 14:10		

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-47S	Lab ID: 7	70220351015	Collected: 06/30	/22 07:05	Received: 07	7/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 30	0.0					
	Pace Analy	tical Services -	Melville					
Sulfate	5.1	mg/L	5.0	1		07/16/22 04:28	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical M	lethod: EPA 35	53.2					
	Pace Analy	tical Services -	Melville					
Nitrate as N	<0.050	mg/L	0.050	1		07/02/22 03:53	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		07/02/22 03:53	7727-37-9	
353.2 Nitrogen, NO2	Analytical M	lethod: EPA 35	53.2					
	Pace Analy	tical Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:23	14797-65-0	
4500 Ammonia Water	Analytical M	/lethod: SM22	4500 NH3 H					
	Pace Analy	tical Services -	Melville					
Nitrogen, Ammonia	4.2	mg/L	0.10	1		07/04/22 14:23	7664-41-7	
9014 Cyanide, Total	Analytical M	lethod: EPA 90)14 Total Cyanide F	Preparatio	n Method: EPA	9010C		
	Pace Analy	tical Services -	Melville					
Cyanide	<10.0	ug/L	10.0	1	07/13/22 19:20	07/13/22 20:50	57-12-5	

Project: NYSEG ITHACA COURT STREET 6/29

Sample: MW-48S	Lab ID: 70	0220351016	Collected: 06/30/2	2 10:20	Received: 07	7/01/22 10:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Dissolved Gases	Analytical M	ethod: RSK-17	75 Preparation Metho	od: RSK	-175			
	Pace Analyti	cal Services -	Melville					
Methane, Dissolved	7610	ug/L	510	510	07/01/22 11:44	07/06/22 11:40	74-82-8	
6010 MET ICP	-	ethod: EPA 60 cal Services -	10C Preparation Me Melville	thod: Ef	PA 3005A			
Iron	5300	ug/L	100	1	07/05/22 06:56	07/07/22 20:35	7439-89-6	
8270E MSSV PAH by SIM	Analytical M	ethod: EPA 82	70E SIM Preparation	n Metho	d: EPA 3510C			
2	-	cal Services -						
Acenaphthene	27.0	ug/L	1.0	50	07/07/22 23:32	07/09/22 07:57	83-32-9	
Acenaphthylene	0.94	ug/L	0.020	1		07/08/22 22:23		
Anthracene	1.3	ug/L	0.020	1		07/08/22 22:23		
Benzo(a)anthracene	0.044	ug/L	0.020	1		07/08/22 22:23	-	
Benzo(a)pyrene	<0.020	ug/L	0.020	1		07/08/22 22:23		
Benzo(b)fluoranthene	<0.020	ug/L	0.020	1		07/08/22 22:23		
Benzo(g,h,i)perylene	<0.020	ug/L	0.020	1		07/08/22 22:23		
Benzo(k)fluoranthene	<0.020	ug/L	0.020	1		07/08/22 22:23		
Chrysene	0.044	ug/L	0.020	1		07/08/22 22:23		
Dibenz(a,h)anthracene	<0.020	ug/L	0.020	1		07/08/22 22:23		
Fluoranthene	0.56	ug/L	0.020	1		07/08/22 22:23		
Fluorene	3.1	ug/L	0.020	1		07/08/22 22:23		
Indeno(1,2,3-cd)pyrene	<0.020	ug/L	0.020	1		07/08/22 22:23		
Naphthalene	92.8	ug/L	1.0	50		07/09/22 07:57		L1
Phenanthrene	4.2	ug/L	0.020	1		07/08/22 22:23		
Pyrene	0.77	ug/L	0.020	1		07/08/22 22:23		
Surrogates	0111	49/2	0.020	•	01/01/22 20:02	01/00/22 22:20	120 00 0	
Fluoranthene-d10 (S)	89	%	40-112	1	07/07/22 23:32	07/08/22 22:23	93951-69-0	
2-Methylnaphthalene-d10 (S)	76	%	44-146	1		07/08/22 22:23		
8260C Volatile Organics	Analytical M	ethod: EPA 82	60C/5030C					
-	Pace Analyti	cal Services -	Melville					
Benzene	64.8	ug/L	1.0	1		07/07/22 20:34	71-43-2	
Ethylbenzene	18.7	ug/L	1.0	1		07/07/22 20:34		
Toluene	<1.0	ug/L	1.0	1		07/07/22 20:34		
Xylene (Total)	16.6	ug/L	3.0	1		07/07/22 20:34		
Surrogates	10.0	49/L	0.0	•		51, 51, <u>22</u> 20.0 4	1000 20 7	
1,2-Dichloroethane-d4 (S)	98	%	81-122	1		07/07/22 20:34	17060-07-0	
4-Bromofluorobenzene (S)	103	%	79-118	1		07/07/22 20:34		
Toluene-d8 (S)	88	%	82-122	1		07/07/22 20:34		
2320B Alkalinity	Analytical M	ethod: SM22 2	2320B					
	Pace Analyti	cal Services -	Melville					
Alkalinity, Total as CaCO3	354	mg/L	1.0	1		07/06/22 14:27		

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Sample: MW-48S	Lab ID: 70	220351016	Collected: 06/30	/22 10:20	Received: 07	7/01/22 10:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 30	0.0					
	Pace Analytic	cal Services -	Melville					
Sulfate	<5.0	mg/L	5.0	1		07/16/22 04:41	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 35	3.2					
	Pace Analytic	al Services -	Melville					
Nitrate as N	<0.050	mg/L	0.050	1		07/02/22 04:03	3 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		07/02/22 04:03	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	ethod: EPA 35	3.2					
	Pace Analytic	cal Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		07/02/22 01:32	2 14797-65-0	
4500 Ammonia Water	Analytical Me	ethod: SM22 4	4500 NH3 H					
	Pace Analytic	cal Services -	Melville					
Nitrogen, Ammonia	1.4	mg/L	0.10	1		07/04/22 14:24	1 7664-41-7	
9014 Cyanide, Total	Analytical Me Pace Analytic		14 Total Cyanide I Melville	Preparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	07/13/22 19:20	07/13/22 20:51	57-12-5	

Project:			RT STREET 6/2	29								
Pace Project No.:	702203	51										
QC Batch:	26317	0		Analys	is Method:	R	RSK-175					
QC Batch Method:	RSK-1	75		Analys	is Descriptio	on: R	RSK 175 HEA	DSPACE				
				Labora	itory:	Р	Pace Analytic	al Services	- Melville			
Associated Lab Sar		70220351001, 70220351008	70220351002,	70220351	003, 702203	351004, 7	70220351005	, 7022035	1006, 7022	20351007,		
METHOD BLANK:	132919	3		Ν	latrix: Wate	r						
Associated Lab Sar		70220351001, 70220351008	70220351002,	70220351	003, 702203	351004, 7	70220351005	, 7022035	1006, 7022	20351007,		
				Blank	Re	porting						
Parar	meter		Units	Result	t l	_imit	Analyz	ed	Qualifiers			
Methane, Dissolved	t		ug/L		<1.0	1.0	07/01/22	10:57				
LABORATORY CO	NTROL S	AMPLE: 132	29194									
				Spike	LCS		LCS	% Rec				
Parar	meter		Units	Conc.	Result		% Rec	Limits	Qı	ualifiers		
Methane, Dissolved	Ł		ug/L	10.2		3.7	37	1	0-93			
·												
MATRIX SPIKE & N			ATE: 132959)1		1329592						
	MATRIX S	PIKE DUPLIC	ATE: 132959)1 MS	MSD	1329592						
	MATRIX S		ATE: 132959 70220351006			1329592 MS	MSD	MS	MSD	% Rec		
	-			MS	MSD		MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	NYSEG I 7022035		JRT STREET 6/2	29				
QC Batch:	263419			Analysis M	ethod:	RSK-175		
QC Batch Method:	203419 RSK-17			Analysis De		RSK 175 HEA		
QC Batch Method.	NON-17	5		Laboratory	•		Il Services - Mel	villo
Associated Lab Sar		0220351009	9, 70220351010, S	-		,		
METHOD BLANK:	1330646			Matri	x: Water			
Associated Lab Sar		0220351009	9, 70220351010, S	70220351011,	70220351012	2, 70220351013,	70220351014,	70220351015,
				Blank	Reporting	I		
Parar	neter		Units	Result	Limit	Analyze	ed Qualif	iers
Methane, Dissolved	1		ug/L	<1.()	1.0 07/05/22 1	2:33	
LABORATORY COI	NTROL SA	MPLE: 13	330647					
				Spike	LCS	LCS	% Rec	
Paran	neter		Units	Conc.	Result	% Rec	Limits	Qualifiers
Methane, Dissolved	1		ug/L	10.2	3.2	32	10-93	
SAMPLE DUPLICA	.TE: 1332	2860						
				70220351016	Dup			
Parar	neter		Units	Result	Result	RPD	Qualifier	S
Methane, Dissolved	ł		ug/L	7610	73	390	3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	NYSE0 702203	-	COURT STREET 6/2	29							
QC Batch:	26339	99		Analysis I	Metho	d:	EPA 6010C				
QC Batch Method:	EPA 3	3005A		Analysis I	Descri	ption:	6010 MET Wate	r			
				Laborator	y:		Pace Analytical	Services - Mel	ville		
Associated Lab San	nples:	70220351	001, 70220351002, 008, 70220351009, 015, 70220351016								
METHOD BLANK:	133058	34		Mat	rix: W	ater					
Associated Lab San	nples:	70220351	001, 70220351002, 008, 70220351009, 015, 70220351016								
				Blank		Reporting					
Paran	neter		Units	Result		Limit	Analyzed	Quali	fiers		
Iron			ug/L	<10	00	10	07/07/22 19:	33			
LABORATORY COM		SAMPLE:	1330585								
Daran	ootor		Linito	Spike	LC	-	LCS	% Rec	Qualifiers		
Paran	heter		Units	Conc.	Res		% Rec	Limits	Qualifiers	_	
Iron			ug/L	12500		12500	100	80-120			
MATRIX SPIKE SAM	MPLE:		1330587								
				702203510	006	Spike	MS	MS	% Rec		
Paran	neter		Units	Result		Conc.	Result	% Rec	Limits	Qualif	iers
Iron			ug/L		266	5000	5050	ç	96 75-	125	
SAMPLE DUPLICA	TE: 13	30586									
				7022035100	6	Dup					
Paran	neter		Units	Result		Result	RPD	Qualifier	S		
Iron			ug/L	20	56	26	57	0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.:	70220351
-------------------	----------

QC Batch:	2636	59		Analysis Meth	nod: EF	PA 8260C/5030C	
QC Batch Method:	EPA	8260C/5030C		Analysis Dese	cription: 82	260 MSV	
				Laboratory:	Pa	ace Analytical Servi	ces - Melville
Associated Lab Sar	nples:	70220351007					
METHOD BLANK:	13318	18		Matrix:	Water		
Associated Lab Sar	nples:	70220351007					
				Blank	Reporting		
Parar	neter		Units	Result	Limit	Analyzed	Qualifiers
Benzene			ug/L	<1.0	1.0	07/06/22 12:14	
Ethylbenzene			ug/L	<1.0	1.0	07/06/22 12:14	
Toluene			ug/L	<1.0	1.0	07/06/22 12:14	
Xylene (Total)			ug/L	<3.0	3.0	07/06/22 12:14	
1,2-Dichloroethane-	-d4 (S)		%	99	81-122	07/06/22 12:14	
4-Bromofluorobenzo	ene (S)		%	99	79-118	07/06/22 12:14	
Toluene-d8 (S)			%	91	82-122	07/06/22 12:14	

LABORATORY CONTROL SAMPLE: 1331819

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Faidilletei				// Kec		Quaimers
Benzene	ug/L	50	51.3	103	78-117	
Ethylbenzene	ug/L	50	49.9	100	79-115	
Toluene	ug/L	50	57.1	114	80-114	
Xylene (Total)	ug/L	150	154	103	80-118	
1,2-Dichloroethane-d4 (S)	%			95	81-122	
4-Bromofluorobenzene (S)	%			101	79-118	
Toluene-d8 (S)	%			92	82-122	

MATRIX SPIKE SAMPLE:	1332844						
_		70220616016	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	8.5	50	63.7	110	70-130	
Ethylbenzene	ug/L	<1.0	50	49.9	100	70-126	
Toluene	ug/L	3.2	50	63.2	120	76-123	
Xylene (Total)	ug/L	3.3	150	158	103	78-123	
1,2-Dichloroethane-d4 (S)	%				101	81-122	
4-Bromofluorobenzene (S)	%				104	79-118	
Toluene-d8 (S)	%				89	82-122	

SAMPLE DUPLICATE: 1332347

Parameter	Units	70220351007 Result	Dup Result	RPD	Qualifiers
Benzene	ug/L	<1.0	<1.0		
Ethylbenzene	ug/L	<1.0	<1.0		
Toluene	ug/L	1.1	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

SAMPLE DUPLICATE: 1332347					
		70220351007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Xylene (Total)	ug/L	<3.0	<3.0		
1,2-Dichloroethane-d4 (S)	%	95	96		
4-Bromofluorobenzene (S)	%	102	103		
Toluene-d8 (S)	%	89	89		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.:	70220351
-------------------	----------

	2638	76	Analys	is Metho	od: E	PA 8260C/50	30C	
QC Batch Method:	EPA 8	3260C/5030C	Analys	is Descr	iption: 8	260 MSV		
			Labora	atory:	P	ace Analytica	l Services - Mel	ville
Associated Lab Sam	ples:	70220351002, 70220 70220351010, 70220						70220351009,
METHOD BLANK:	133302	20	Ν	Aatrix: V	/ater			
Associated Lab Sam	ples:	70220351002, 70220 70220351010, 70220	351011, 70220351	012, 702	20351013, 7			70220351009,
_			Blank		Reporting			
Param	eter	Uni	ts Resul	t	Limit	Analyze	d Qualit	iers
Benzene		ug/	L	<1.0	1.0	07/07/22 1	1:51	
Ethylbenzene		ug/	L	<1.0	1.0	07/07/22 1	1:51	
Toluene		ug/	L	<1.0	1.0	07/07/22 1	1:51	
Xylene (Total)		ug/	L	<3.0	3.0	07/07/22 1	1:51	
1,2-Dichloroethane-d	• •	%		99	81-122		-	
4-Bromofluorobenzer	ne (S)	%		103	79-118		-	
Toluene-d8 (S)		%		89	82-122	2 07/07/22 1 [/]	1:51	
LABORATORY CON	TROLS	SAMPLE: 1333021						
			Spike	LC	CS	LCS	% Rec	
Param	eter	Uni	ts Conc.	Re	sult	% Rec	Limits	Qualifiers
Benzene		ug/	L 50		53.9	108	78-117	
		ug/	L 50		49.5	99	79-115	
Ethylbenzene					56.6	113	80-114	
•		ug/	L 50					
Toluene		ug/ ug/			152	102	80-118	
Toluene Xylene (Total)	I4 (S)	ug/ %	L 150		152	102 100	80-118 81-122	
Ethylbenzene Toluene Xylene (Total) 1,2-Dichloroethane-d 4-Bromofluorobenzer	• •	ug/	L 150		152	-		

	702	220351006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	<1.0	50	50	54.8	55.0	110	110	70-130	0	
Ethylbenzene	ug/L	<1.0	50	50	52.2	51.5	104	103	70-126	1	
Toluene	ug/L	<1.0	50	50	61.8	62.4	124	125	76-123	1 N	11
Xylene (Total)	ug/L	<3.0	150	150	162	160	108	106	78-123	1	
1,2-Dichloroethane-d4 (S)	%						101	104	81-122		
4-Bromofluorobenzene (S)	%						104	101	79-118		
Toluene-d8 (S)	%						90	89	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

QC Batch: 2	64080		Analysis Meth	nod: EF	PA 8260C/5030C	
QC Batch Method: E	PA 8260C/503	0C	Analysis Deso	cription: 82	260 MSV	
			Laboratory:	Pa	ace Analytical Servi	ces - Melville
Associated Lab Sample	es: 7022035 [°]	1001, 70220351015				
METHOD BLANK: 1334247			Matrix:	Water		
Associated Lab Sample	es: 7022035 [,]	1001, 70220351015				
			Blank	Reporting		
Paramete	er	Units	Result	Limit	Analyzed	Qualifiers
Benzene		ug/L	<1.0	1.0	07/08/22 11:03	
Ethylbenzene		ug/L	<1.0	1.0	07/08/22 11:03	
Toluene		ug/L	<1.0	1.0	07/08/22 11:03	
Xylene (Total)		ug/L	<3.0	3.0	07/08/22 11:03	
1,2-Dichloroethane-d4	(S)	%	96	81-122	07/08/22 11:03	
4-Bromofluorobenzene	(S)	%	102	79-118	07/08/22 11:03	
Toluene-d8 (S)		%	90	82-122	07/08/22 11:03	

LABORATORY CONTROL SAMPLE: 1334248

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	50	51.8	104	78-117	
Ethylbenzene	ug/L	50	47.4	95	79-115	
Toluene	ug/L	50	55.6	111	80-114	
Xylene (Total)	ug/L	150	150	100	80-118	
1,2-Dichloroethane-d4 (S)	%			99	81-122	
4-Bromofluorobenzene (S)	%			105	79-118	
Toluene-d8 (S)	%			91	82-122	

MATRIX SPIKE SAMPLE

MATRIX SPIKE SAMPLE:	1335261						
		70220789002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	<0.58	50	55.2	110	70-130	
Ethylbenzene	ug/L	1.6	50	51.2	99	70-126	
Toluene	ug/L	1.7	50	60.4	117	76-123	
Xylene (Total)	ug/L	10.5	150	164	102	78-123	
1,2-Dichloroethane-d4 (S)	%				103	81-122	
4-Bromofluorobenzene (S)	%				101	79-118	
Toluene-d8 (S)	%				91	82-122	

SAMPLE DUPLICATE: 1335260

Parameter	Units	70220789001 Result	Dup Result	RPD	Qualifiers
Benzene	ug/L	<0.58	<1.0		
Ethylbenzene	ug/L	1.8	1.8	2	
Toluene	ug/L	2.1	2.2	5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

SAMPLE DUPLICATE: 1335260					
		70220789001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Xylene (Total)	ug/L	7.9	8.0	2	
1,2-Dichloroethane-d4 (S)	%	92	98		
4-Bromofluorobenzene (S)	%	100	101		
Toluene-d8 (S)	%	90	89		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NYSEG ITHACA COURT STREET 6/29

ug/L

ug/L

ug/L

ug/L

ug/L ug/L

ug/L

ug/L

ug/L

ug/L

%

%

Pace Project No.:	70220351
-------------------	----------

Benzo(g,h,i)perylene Benzo(k)fluoranthene

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Fluoranthene-d10 (S)

2-Methylnaphthalene-d10 (S)

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

QC Batch:	2636	97		Analysis Me	ethod:	EPA 8270E S	IM		
QC Batch Method:	EPA	3510C		Analysis De	escription:	8270E Water	PAH by SIM MS	SSV	
				Laboratory:		Pace Analytic	al Services - Me	elville	
Associated Lab San	nples:	70220351001	, 70220351002,	, 70220351003,	70220351004	70220351005	6, 70220351006	, 70220351007,	3
		70220351008	, 70220351009,	, 70220351010,	70220351011,	70220351012	, 70220351013	, 70220351014	
METHOD BLANK:	13319	97		Matrix	: Water				
Associated Lab San	nples:			, 70220351003, , 70220351010,			,	· · ·	i
				Blank	Reporting				
Paran	neter		Units	Result	Limit	Analyz	ed Qual	ifiers	
Acenaphthene			ug/L	<0.020	0.0	20 07/07/22	18:04		
Acenaphthylene			ug/L	<0.020	0.02	20 07/07/22	18:04		
Anthracene			ug/L	<0.020	0.02	20 07/07/22	18:04		
Benzo(a)anthracene	e		ug/L	<0.020	0.02	20 07/07/22	18:04		
Benzo(a)pyrene			ug/L	<0.020	0.02	20 07/07/22	18:04		
Benzo(b)fluoranther	ne		ug/L	<0.020	0.02	20 07/07/22	18:04		

<0.020

<0.020

< 0.020

<0.020

<0.020

<0.020

<0.020

<0.020

<0.020

<0.020

78

101

0.020 07/07/22 18:04

0.020 07/07/22 18:04

0.020 07/07/22 18:04

0.020 07/07/22 18:04

0.020 07/07/22 18:04

0.020 07/07/22 18:04 0.020 07/07/22 18:04

0.020 07/07/22 18:04

0.020 07/07/22 18:04

0.020 07/07/22 18:04

44-146 07/07/22 18:04

40-112 07/07/22 18:04

LABORATORY CONTROL SAMPLE 1331998

LABORATORT CONTROL SAMPLE.	1221990					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/L	1	0.78	78	33-102	
Acenaphthylene	ug/L	1	0.78	78	35-104	
Anthracene	ug/L	1	0.81	81	41-109	
Benzo(a)anthracene	ug/L	1	0.90	90	39-127	
Benzo(a)pyrene	ug/L	1	0.88	88	40-126	
Benzo(b)fluoranthene	ug/L	1	0.94	94	39-144	
Benzo(g,h,i)perylene	ug/L	1	0.91	91	41-140	
Benzo(k)fluoranthene	ug/L	1	0.86	86	35-131	
Chrysene	ug/L	1	0.89	89	40-117	
Dibenz(a,h)anthracene	ug/L	1	0.92	92	42-139	
Fluoranthene	ug/L	1	0.87	87	43-117	
Fluorene	ug/L	1	0.80	80	38-102	
ndeno(1,2,3-cd)pyrene	ug/L	1	0.96	96	39-139	
Naphthalene	ug/L	1	0.72	72	22-95	
Phenanthrene	ug/L	1	0.82	82	41-111	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

LABORATORY CONTROL SAMPLE:	1331998					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Pyrene	ug/L	1	0.89	89	38-116	
2-Methylnaphthalene-d10 (S)	%			81	44-146	
Fluoranthene-d10 (S)	%			99	40-112	

MATRIX SPIKE & MATRIX SPIKE	E DUPLICAT	E: 13319	99		1332000						
			MS	MSD							
	702	220351006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Acenaphthene	ug/L	0.031	1	1	0.77	0.77	71	71	31-98	0	
Acenaphthylene	ug/L	<0.021	1	1	0.77	0.77	75	74	41-114	1	
Anthracene	ug/L	<0.021	1	1	0.79	0.80	76	77	43-126	1	
Benzo(a)anthracene	ug/L	<0.021	1	1	0.90	0.91	86	88	36-143	2	
Benzo(a)pyrene	ug/L	<0.021	1	1	0.85	0.83	82	80	34-141	2	
Benzo(b)fluoranthene	ug/L	<0.021	1	1	0.93	0.83	90	81	32-160	11	
Benzo(g,h,i)perylene	ug/L	<0.021	1	1	0.90	0.84	87	81	33-151	6	
Benzo(k)fluoranthene	ug/L	<0.021	1	1	0.83	0.85	80	82	29-143	2	
Chrysene	ug/L	<0.021	1	1	0.87	0.84	84	81	34-134	3	
Dibenz(a,h)anthracene	ug/L	<0.021	1	1	0.92	0.85	89	82	34-154	8	
Fluoranthene	ug/L	<0.021	1	1	0.85	0.84	82	81	38-134	2	
Fluorene	ug/L	<0.021	1	1	0.78	0.79	75	76	41-122	1	
Indeno(1,2,3-cd)pyrene	ug/L	<0.021	1	1	0.94	0.87	91	84	28-156	8	
Naphthalene	ug/L	<0.021	1	1	0.73	0.85	70	82	27-117	15	
Phenanthrene	ug/L	<0.021	1	1	0.80	0.80	78	77	39-122	1	
Pyrene	ug/L	<0.021	1	1	0.87	0.87	84	84	33-114	0	
2-Methylnaphthalene-d10 (S)	%						75	81	44-146		
Fluoranthene-d10 (S)	%						98	97	40-112		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

QC Batch:	263941	Analysis Method:	EPA 8270E SIM
QC Batch Method:	EPA 3510C	Analysis Description:	8270E Water PAH by SIM MSSV
		Laboratory:	Pace Analytical Services - Melville
Associated Lab Sam	ples: 70220351015, 70220351016		
METHOD BLANK:	1333527	Matrix: Water	
Associated Lab Sam	ples: 70220351015, 70220351016		

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/L	<0.020	0.020	07/08/22 15:32	
Acenaphthylene	ug/L	<0.020	0.020	07/08/22 15:32	
Anthracene	ug/L	<0.020	0.020	07/08/22 15:32	
Benzo(a)anthracene	ug/L	<0.020	0.020	07/08/22 15:32	
Benzo(a)pyrene	ug/L	<0.020	0.020	07/08/22 15:32	
Benzo(b)fluoranthene	ug/L	<0.020	0.020	07/08/22 15:32	
Benzo(g,h,i)perylene	ug/L	<0.020	0.020	07/08/22 15:32	
Benzo(k)fluoranthene	ug/L	<0.020	0.020	07/08/22 15:32	
Chrysene	ug/L	<0.020	0.020	07/08/22 15:32	
Dibenz(a,h)anthracene	ug/L	<0.020	0.020	07/08/22 15:32	
Fluoranthene	ug/L	<0.020	0.020	07/08/22 15:32	
Fluorene	ug/L	<0.020	0.020	07/08/22 15:32	
Indeno(1,2,3-cd)pyrene	ug/L	<0.020	0.020	07/08/22 15:32	
Naphthalene	ug/L	<0.020	0.020	07/08/22 15:32	
Phenanthrene	ug/L	<0.020	0.020	07/08/22 15:32	
Pyrene	ug/L	<0.020	0.020	07/08/22 15:32	
2-Methylnaphthalene-d10 (S)	%	74	44-146	07/08/22 15:32	
Fluoranthene-d10 (S)	%	90	40-112	07/08/22 15:32	
2-Methylnaphthalene-d10 (S) Fluoranthene-d10 (S)			-		

LABORATORY CONTROL SAMPLE	& LCSD: 1333528	3	13	33529						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Acenaphthene	ug/L	1	0.79	0.82	79	82	33-102	4	30	
Acenaphthylene	ug/L	1	0.80	0.83	80	83	35-104	4	30	
Anthracene	ug/L	1	0.81	0.85	81	85	41-109	5	30	
Benzo(a)anthracene	ug/L	1	0.90	0.86	90	86	39-127	4	30	
Benzo(a)pyrene	ug/L	1	0.85	0.84	85	84	40-126	1	30	
Benzo(b)fluoranthene	ug/L	1	0.87	0.90	87	90	39-144	4	30	
Benzo(g,h,i)perylene	ug/L	1	0.85	0.84	85	84	41-140	1	30	
Benzo(k)fluoranthene	ug/L	1	0.86	0.84	86	84	35-131	3	30	
Chrysene	ug/L	1	0.81	0.85	81	85	40-117	5	30	
Dibenz(a,h)anthracene	ug/L	1	0.85	0.84	85	84	42-139	0	30	
Fluoranthene	ug/L	1	0.83	0.87	83	87	43-117	5	30	
Fluorene	ug/L	1	0.80	0.84	80	84	38-102	5	30	
Indeno(1,2,3-cd)pyrene	ug/L	1	0.87	0.87	87	87	39-139	1	30	
Naphthalene	ug/L	1	0.91	0.97	91	97	22-95	6	30 L	.1
Phenanthrene	ug/L	1	0.80	0.85	80	85	41-111	6	30	
Pyrene	ug/L	1	0.86	0.88	86	88	38-116	3	30	
2-Methylnaphthalene-d10 (S)	%				88	91	44-146			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

LABORATORY CONTROL SAMPLE &	LCSD: 1333528		1	333529						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Fluoranthene-d10 (S)	%				96	100	40-112			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	NYSEG ITHACA (OURT STREET 6/2	29						
Pace Project No.:	70220351								
QC Batch:	263503		Analysis Me	thod:	SM	122 2320B			
QC Batch Method:	SM22 2320B		Analysis De	scription:	232	20B Alkalinity			
			Laboratory:		Pa	ce Analytical S	Services - Melv	rille	
Associated Lab Samp	oles: 70220351	001, 70220351002,	70220351003,	70220351007	•				
METHOD BLANK:	1330886		Matrix	Water					
Associated Lab Samp	oles: 70220351	001, 70220351002,	70220351003,	70220351007	,				
			Blank	Reporting					
Parame	eter	Units	Result	Limit		Analyzed	Qualifi	ers	
Alkalinity, Total as Ca	CO3	mg/L	<1.0	1	1.0	07/05/22 14:	28		
LABORATORY CON	TROL SAMPLE:	1330887							
			Spike	LCS		LCS	% Rec		
Parame	eter	Units	Conc.	Result	%	6 Rec	Limits	Qualifiers	
Alkalinity, Total as Ca	CO3	mg/L	25	27.0		108	85-115		
MATRIX SPIKE SAM	PLE:	1330889							
			70220433005	5 Spike		MS	MS	% Rec	
Parame	eter	Units	Result	Conc.		Result	% Rec	Limits	Qualifiers
Alkalinity, Total as Ca	CO3	mg/L	10	6.4 50)	70.0	107	7 75-125	
SAMPLE DUPLICATI	E: 1330888		70220433005	Dur					
Parame	eter	Units	Result	Dup Result		RPD	Qualifiers		
Alkalinity, Total as Ca	.CO3	mg/L	16.4	16	6.7		2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	NYSEG ITHACA	COURT STREET 6/2	29					
Pace Project No.:	70220351							
QC Batch:	263539		Analysis Me	thod:	SM22 2320B			
QC Batch Method:	SM22 2320B		Analysis De	scription:	2320B Alkalinity	,		
			Laboratory:		Pace Analytical	Services - Melvi	lle	
Associated Lab Sam	ples: 70220351	004, 70220351005,	70220351006,	70220351008				
METHOD BLANK:	1331103		Matrix	Water				
Associated Lab Sam	ples: 70220351	004, 70220351005,	70220351006,	70220351008				
			Blank	Reporting				
Param	neter	Units	Result	Limit	Analyzed	I Qualifie	ers	
Alkalinity, Total as Ca	aCO3	mg/L	<1.0	1	.0 07/05/22 18	:24		
LABORATORY CON	ITROL SAMPLE:	1331104						
			Spike	LCS	LCS	% Rec		
Param	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Alkalinity, Total as Ca	aCO3	mg/L	25	25.5	102	85-115		
MATRIX SPIKE SAM	IPLE:	1331106						
			70220351006	6 Spike	MS	MS	% Rec	
Param	eter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as Ca	aCO3	mg/L	3	502 50	328	52	75-12	25 M1
SAMPLE DUPLICAT	E: 1331105		7000054666	-				
Param	otor	Units	70220351006 Result	Dup Result	RPD	Qualifiers		
			302					
Alkalinity, Total as Ca	acos	mg/L	302	29	97	2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	NYSEG ITHA	CA COURT STREET 6/2	29					
Pace Project No .:	70220351							
QC Batch:	263595		Analysis Me	thod:	SM22 2320B			
QC Batch Method:	SM22 2320	В	Analysis Des	scription:	2320B Alkalinit	ty		
			Laboratory:		Pace Analytica	I Services - Melv	ille	
Associated Lab San	nples: 7022	0351009, 70220351010,	70220351011					
METHOD BLANK:	1331531		Matrix:	Water				
Associated Lab San	nples: 7022	0351009, 70220351010,	70220351011					
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	ed Qualifi	ers	
Alkalinity, Total as C	aCO3	mg/L	<1.0	1	.0 07/06/22 0	9:10		
LABORATORY CON	NTROL SAMP	LE: 1331532						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Alkalinity, Total as C	aCO3	mg/L	25	27.6	110	85-115		
MATRIX SPIKE SAM	MPLE:	1331534						
			70220717001	Spike	MS	MS	% Rec	
Paran	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as C	aCO3	mg/L	89	0.3 50	13	4 90	75-125	
SAMPLE DUPLICAT	TE: 1331533	i						
-		11.5	70220717001	Dup	000	o 111		
Paran		Units	Result	Result	RPD	Qualifiers		
Alkalinity, Total as C	aCO3	mg/L	89.3	88	3.6	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	NYSEG ITHACA 70220351	COURT STREET 6	6/29					
QC Batch:	263648		Analysis Me	thod:	SM22 2320B			
QC Batch Method:	SM22 2320B		Analysis Des	scription:	2320B Alkalinity			
			Laboratory:		Pace Analytical	Services - Melvi	lle	
Associated Lab San	nples: 7022035	51012, 7022035101	3, 70220351014, 7	70220351015,	70220351016			
METHOD BLANK:	1331758		Matrix:	Water				
Associated Lab San	nples: 7022035	51012, 7022035101	3, 70220351014, 7	70220351015,	70220351016			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifie	ers	
Alkalinity, Total as C	aCO3	mg/L	<1.0	1.	0 07/06/22 13:	02		
LABORATORY CON	NTROL SAMPLE:	1331759						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Alkalinity, Total as C	aCO3	mg/L	25	27.0	108	85-115		
MATRIX SPIKE SAM	MPLE:	1331761						
Dama		11-20-	70220847001		MS	MS	% Rec	0
Paran		Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as C	aCO3	mg/L	3	3.6 50	53.6	100) 75-125	
SAMPLE DUPLICAT	TE: 1331760							
_			70220847001	Dup				
Paran	neter	Units	Result	Result	RPD	Qualifiers		
Alkalinity, Total as C	aCO3	mg/L	3.6	3.	8	3		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Project No.: 70220351 QC Batch: 264268 Analysis Method:: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 1C Anions Laboratory: Pace Analytical Services - MelVille Associated Lab Samples: 70220351001, 70220351002, 70220351003, 70220351005, 70220351006, 70220351007, 7	Project:	NYSEG	ITHACA C	OURT STREET 6/	29								
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Melville Associated Lab Samples: 70220351001, 70220351002, 70220351002, 70220351004, 70220351005, 70220351006, 70220351007, 70220331006 Matrix: Water Associated Lab Samples: 70220351001, 70220351002, 70220351002, 70220351004, 70220351005, 70220351006, 70220351007, 70220331006 Matrix: Water Associated Lab Samples: 70220331006, 70220351002, 70220351002, 70220351004, 70220351005, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006 Qualifiers Sulfate Units Result Reporting Imits Analyzed 0712/22 12:40 Qualifiers MATRIX SPIKE SAMPLE: 1335176 Spike LCS % Rec Limits Qualifiers Sulfate mg/L 10 10.6 106 90-110 Qualifiers MATRIX SPIKE SAMPLE: 1335176 702203570001 Spike MS MS % Rec Parameter Units 70220351006 Spike MS MS % Rec Sulfate mg/L 21.7 10 31.0 93 90-110	Pace Project No.:	702203	51										
DC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Melville Associated Lab Samples: 70220351001, 70220351002, 70220351002, 70220351004, 70220351005, 70220351006, 70220351007, 70220351007, 70220351001, 70220351002, 70220351002, 70220351005, 70220351006, 70220351007, 70220351006 Matrix:: Water Associated Lab Samples: 70220351001, 70220351002, 70220351002, 70220351003, 70220351005, 70220351006, 70220351007, 70220351006 Qualifiers WETHOD BLANK: 1335174 Matrix:: Water Analyzed Qualifiers Associated Lab Samples: 70220351002, 70220351002, 70220351004, 70220351005, 70220351006, 70220351007, 70220351006 Qualifiers Qualifiers Sulfate mg/L <	QC Batch:	26426	8		Analysis	Metho	d:	EPA 300	0.0				
Associated Lab Samples: 70220351001, 70220351002, 70220351003, 70220351004, 70220351006, 70220351006, 70220351007, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351008, 70220351007, 70220351007, 70220351008, 70220351007, 70220351007, 70220351008, 70220351007, 70220351007, 70220351007, 70220351007, 70220351008, 70220351007, 7022035100, 702203510, 7022035100, 70220351		EPA 3	00.0		-			300.0 IC	Anions				
70220351008 METHOD BLANK: 1335174 Matrix: Water Associated Lab Samples: 70220351001, 70220351002, 70220351005, 70220351005, 70220351006, 70220351007, 70220351007, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006, 70220351007, 70220351006, 70220351006, 70220351007, 70220351006, 702020351006, 702020351006, 702004111615					Laborato	ry:		Pace An	alytical S	Services - Me	lville		
Associated Lab Samples: 70220351001, 70220351002, 70220351003, 70220351004, 70220351005, 70220351006, 70220351007, 70220351008 Parameter Units Result Reporting Analyzed Qualifiers Sulfate mg/L <5.0	Associated Lab Sar				, 7022035100	3, 702	20351004	l, 7022038	51005, 7	0220351006,	70220	351007,	
Blank Reporting Limit Analyzed Qualifiers Sulfate mg/L <5.0	METHOD BLANK:	1335174	4		Mat	trix: W	ater						
ParameterUnitsResultLimitAnalyzedQualifiersSulfatemg/L<5.0	Associated Lab Sar					-			51005, 7	0220351006,	70220	351007,	
Sulfate mg/L <5.0 5.0 07/12/22 12:40 LABORATORY CONTROL SAMPLE: 1335175 Spike LCS % Rec Limits Qualifiers Sulfate mg/L 10 10.6 106 90-110 Qualifiers MATRIX SPIKE SAMPLE: 1335176 70220570001 Spike MS MS % Rec Limits Qualifiers Sulfate mg/L 21.7 10 31.0 93 90-110 Qualifier MATRIX SPIKE SAMPLE: 1335176 70220570001 Spike MS MS % Rec Limits Qualifier Sulfate mg/L 21.7 10 31.0 93 90-110 Qualifier MATRIX SPIKE SAMPLE: 1335178 70220351006 Spike MS MS % Rec Limits Qualifier Sulfate mg/L 70220570001 Dup % Rec Limits Qualifier SAMPLE DUPLICATE: 1335177 70220570001 Dup Result RPD Qualifiers SAMPLE DUPLICATE: 1335179 70220351006 D	5										~		
LABORATORY CONTROL SAMPLE: 1335175 Spike LCS % Rec Limits Qualifiers Parameter Units mg/L 10 10.6 106 90-110 MATRIX SPIKE SAMPLE: 1335176 70220570001 Spike MS % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 1335176 70220570001 Spike MS % Rec Limits Qualifier Sulfate mg/L 21.7 10 31.0 93 90-110 90-110 MATRIX SPIKE SAMPLE: 1335178 70220351006 Spike MS % Rec Limits Qualifier MATRIX SPIKE SAMPLE: 1335178 70220351006 Spike MS % Rec Limits Qualifier Sulfate mg/L 35.9 10 45.7 98 90-110 90-110 SAMPLE DUPLICATE: 1335177 70220570001 Pup Result RPD Qualifiers SAMPLE DUPLICATE: 1335179 70220351006 Result RPD Qualifiers SAMPLE DUPLICATE: 1335179 70220351006 Resul	Paran	neter		Units	Result		Limit	A	nalyzed	Quali	fiers		
ParameterUnitsSpike Conc.LCS ResultLCS % Rec% Rec LimitsQualifiersSulfatemg/L1010.610690-110MATRIX SPIKE SAMPLE:133517670220570001 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifiersSulfatemg/L21.71031.09390-110MATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS Result% Rec LimitsQualifierMATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS Result% Rec LimitsQualifierMATRIX SPIKE SAMPLE:133517870220351006 ResultSpike ResultMS Result% Rec MS % Rec LimitsQualifierSulfatemg/L70220351006 ResultSpike ResultMS Result% Rec ResultQualifiers % Rec LimitsQualifierSAMPLE DUPLICATE:1335179 mg/L70220351006 ResultDup ResultRPD ResultQualifiers gualifiersSAMPLE DUPLICATE:1335179 mg/L70220351006 	Sulfate			mg/L	<	5.0		5.0 07/1	2/22 12:	40			
ParameterUnitsConc.Result% RecLimitsQualifiersSulfatemg/L1010.610690-110MATRIX SPIKE SAMPLE:133517670220570001 ResultSpike Conc.MS ResultMS % Rec% Rec LimitsQualifiersMATRIX SPIKE SAMPLE:133517670220570001 ResultSpike Conc.MS Result% Rec % RecQualifiersMATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifierMATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifierMATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS ResultMS % Rec LimitsQualifierSulfatemg/L70220570001 ResultDup ResultMS ResultMS Result% Rec ResultQualifiersSAMPLE DUPLICATE:133517970220570001 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD ResultQualifiers	LABORATORY COI	NTROL S	AMPLE:	1335175									
MATRIX SPIKE SAMPLE: 1335176 70220570001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifier Sulfate mg/L 21.7 10 31.0 93 90-110 MATRIX SPIKE SAMPLE: 1335178 70220351006 Spike MS MS % Rec Parameter Units 70220351006 Spike MS MS % Rec Limits Qualifier Sulfate mg/L 35.9 10 45.7 98 90-110 90-110 SAMPLE DUPLICATE: 1335177 70220570001 Dup Result RPD Qualifiers Sulfate mg/L 70220570001 Result Result RPD Qualifiers SAMPLE DUPLICATE: 1335179 70220570001 Result RPD Qualifiers SAMPLE DUPLICATE: 1335179 70220351006 Dup RPD Qualifiers SAMPLE DUPLICATE: 1335179 70220351006 Dup RPD Qualifiers	Parar	neter		Units							Qua	lifiers	
ParameterUnits70220570001 ResultSpike Conc.MS ResultMS % RecMS LimitsQualifierSulfatemg/L21.71031.09390-110MATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS ResultMS % RecMS LimitsQualifierMATRIX SPIKE SAMPLE:133517870220351006 ResultSpike Conc.MS ResultMS % Rec% Rec LimitsQualifierSulfatemg/L35.91045.79890-110SAMPLE DUPLICATE:1335177 mg/L70220570001 ResultDup ResultRPD ResultQualifiersSalfatemg/L21.723.6890SAMPLE DUPLICATE:1335179 Mg/L70220351006 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:1335179 Mg/L70220351006 ResultDup ResultRPD ResultQualifiersParameterUnits70220351006 ResultDup ResultRPD ResultQualifiers	Sulfate			mg/L	10		10.6		106	90-110			
ParameterUnitsResultConc.Result% RecLimitsQualifierSulfatemg/L21.71031.09390-110MATRIX SPIKE SAMPLE:133517870220351006Spike ResultMS Conc.MS Result% Rec LimitsQualifierSulfatemg/L70220351006Spike ResultMS Result% Rec % Rec LimitsQualifierSAMPLE DUPLICATE:133517770220570001 ResultDup ResultRPD ResultQualifiersSaufatemg/L21.723.688SAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD ResultQualifiersParameterUnits70220351006 ResultDup ResultRPD ResultQualifiers	MATRIX SPIKE SAI	MPLE:		1335176									
Sulfatemg/L21.71031.09390-110MATRIX SPIKE SAMPLE:133517870220351006SpikeMSMS% RecLimitsQualifierParameterUnits70220351006SpikeMS% RecLimitsQualifierSulfatemg/L35.91045.79890-110SAMPLE DUPLICATE:133517770220570001DupResultRPDQualifiersSulfatemg/L21.723.688SAMPLE DUPLICATE:133517970220351006DupRPDQualifiersSAMPLE DUPLICATE:133517970220351006DupResultRPDQualifiersSAMPLE DUPLICATE:133517970220351006DupResultRPDQualifiers													
MATRIX SPIKE SAMPLE: 1335178 Parameter Units 70220351006 Spike MS MS % Rec Sulfate mg/L 35.9 10 45.7 98 90-110 SAMPLE DUPLICATE: 1335177 70220570001 Dup Parameter Units 70220570001 Dup Sameter Units 70220570001 Dup Sulfate mg/L 21.7 23.6 8	Parar	neter		Units	Result		Conc.	Res	sult	% Rec		Limits	Qualifiers
ParameterUnits70220351006 ResultSpike Conc.MS ResultMS % Rec% Rec LimitsQualifierSulfatemg/L35.91045.79890-110SAMPLE DUPLICATE:133517770220570001 ResultDup ResultRPD ResultQualifiersSulfatemg/L21.723.68SAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD ResultQualifiers	Sulfate			mg/L		21.7	1	0	31.0	9	93	90-110	
ParameterUnitsResultConc.Result% RecLimitsQualifierSulfatemg/L35.91045.79890-110SAMPLE DUPLICATE:133517770220570001Dup ResultDup ResultRPDQualifiersSulfatemg/L21.723.688SAMPLE DUPLICATE:133517970220351006Dup ResultRPDQualifiersSAMPLE DUPLICATE:133517970220351006Dup ResultRPDQualifiers	MATRIX SPIKE SAI	MPLE:		1335178									
Sulfatemg/L35.91045.79890-110SAMPLE DUPLICATE:133517770220570001 ResultDup ResultRPD QualifiersQualifiersSulfatemg/L21.723.68SAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD QualifiersQualifiersSAMPLE DUPLICATE:133517970220351006 ResultDup ResultRPD QualifiersQualifiers	5												0 110
SAMPLE DUPLICATE: 1335177 Parameter Units Result Result Result RPD Qualifiers Sulfate mg/L 21.7 23.6 8		neter			Result								Qualifiers
ParameterUnits70220570001 ResultDup ResultRPDQualifiersSulfatemg/L21.723.68SAMPLE DUPLICATE:133517970220351006 ResultDup ResultDup ResultRPDQualifiers	Sulfate			mg/L		35.9	1	0	45.7	9	98	90-110	
ParameterUnitsResultResultRPDQualifiersSulfatemg/L21.723.68SAMPLE DUPLICATE:1335179ParameterUnits70220351006 ResultDup ResultRPDQualifiers	SAMPLE DUPLICA	TE: 133	35177		7000057000								
SAMPLE DUPLICATE: 1335179 70220351006 Dup Parameter Units Result Result RPD Qualifiers	Parar	neter		Units		J1	•	F	RPD	Qualifier	S		
70220351006 Dup Parameter Units Result RPD Qualifiers	Sulfate			mg/L	2'	1.7	2	3.6		8	_		
Parameter Units Result Result Qualifiers	SAMPLE DUPLICA	TE: 133	35179										
	-			11.2)6		-		0 ""			
Sulfate mg/L 35.9 36.0 0	Paran	neter									S		
	Sulfate			mg/L	35	5.9	3	6.0		0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Sulfatemg/L40.91050.910090-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike ResultMS ResultMS % Rec LimitsQualifier QualifierSulfatemg/L17.71027.710090-110SAMPLE DUPLICATE:133866070220351009 ResultDup ResultRPD ResultQualifiersSulfatemg/L70220351009 ResultDup ResultRPD ResultQualifiersSulfatemg/L70220351009 ResultDup ResultRPD ResultQualifiersSulfatemg/L70220351009 ResultDup ResultRPD ResultQualifiersSulfatemg/L70221384001 ResultDup ResultRPD ResultQualifiers	Project:	NYSEG	ITHACA CO	URT STREET 6/2	29							
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Melville Associated Lab Samples: 70220351010, 70220351011, 70220351012, 70220351013, 70220351013, 70220351014, 70220351015, 70220351016 Matrix: Water METHOD BLANK: 1338657 Matrix: Water Associated Lab Samples: 70220351010, 70220351011, 70220351012, 70220351013, 70220351014, 70220351015, 70220351016 Coulifiers Parameter Units Result Reporting Analyzed Qualifiers Sulfate mg/L <5.0 5.0 07/15/22 23:16 Qualifiers MATRIX SPIKE SAMPLE: 1338658 Spike LCS LCS MS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 10 10.9 10 90-110 Qualifiers MATRIX SPIKE SAMPLE: 1338659 70220351009 Spike MS MS % Rec Sulfate mg/L 40.9 10 50.9 100 90-110 SAMPLE DUPLICATE: 13	Pace Project No.:	7022035	1									
2C Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Melville Associated Lab Samples: 70220351010, 70220351011, 70220351012, 70220351013, 70220351014, 70220351015, 70220351015, 70220351016, 70220351017, 70220351012, 70220351013, 70220351014, 70220351015, 70220351015, 70220351016, 70220351016, 70220351017, 70220351014, 70220351015, 70220351016, 70220351016, 70220351017, 70220351012, 70220351012, 70220351014, 70220351015, 70220351016, 70220351016, 70220351012, 70220351012, 70220351014, 70220351015, 70220351016, 70220351012, 70220351014, 70220351015, 70220351016, 70220351012, 70220351012, 70220351014, 70220351015, 70220351015, 70220351016, 70220351012, 70220351014, 70220351015, 70220351015, 70220351012, 70220351014, 70220351015, 70220351015, 70220351012, 70220351012, 70220351014, 70220351015, 70220351012, 70220351014, 70220351015, 70220351014, 70220351015, 70220351012, 70220351012, 70220351014, 70220351015, 70220351015, 70220351012, 70220351016, 70220351012, 70220351012, 70220351014, 70220351015, 70220351014, 70220351015, 70220351014, 70220351015, 70220351012, 70220351014, 70220351015, 70220351014, 70220351015, 70220351014, 70220351015, 70220351014, 70220351015, 70220351012, 70220351014, 70220351015, 70220351014, 70220351015, 70220351014, 70220351015, 70220351012, 70220351012, 70220351012, 70220351014, 70220351015, 70220351014, 701, 90-110 MATRIX SPIKE SAMPLE: 1338661 Parameter Units Sulfate mg/L Total 70221384001 Spike MS Result % Rec Limits Qualifier Sulfate mg/L Total 70220351009 SAMPLE DUPLICATE: 1338	QC Batch:	264889)		Analysis	Metho	d:	EPA 30	00.0			
Associated Lab Samples: 70220351009, 70220351010, 70220351011, 70220351012, 70220351013, 70220351014, 70220351015, 70220351016 WETHOD BLANK: 1338657 Matrix: Water Associated Lab Samples: 70220351019, 70220351010, 70220351011, 70220351012, 70220351013, 70220351014, 70220351014, 70220351015, 70220351014, 70220351014, 70220351015, 70220351016 Parameter Units Result Reporting Analyzed Qualifiers Sulfate mg/L <5.0	QC Batch Method:	EPA 30	0.0		-			300.0	IC Anions			
70220351016 METHOD BLANK: 1338657 70220351019, 70220351010, 70220351011, 70220351012, 70220351013, 70220351014, 70220351015, 70220351019, 70220351010, 70220351011, 70220351013, 70220351014, 70220351015, 70220351019 Concent of the second sec					Laborato	ry:		Pace A	Analytical S	Services - Melv	ville	
Associated Lab Samples: 70220351009, 70220351010, 70220351011, 70220351012, 70220351013, 70220351014, 70220351015, 70220351016 Parameter Units Result Limit Analyzed Qualifiers Sulfate mg/L <5.0	Associated Lab Sar				7022035101	1, 7022	20351012	2, 70220	351013, 7	0220351014,7	70220351015,	
Blank Reporting Limit Analyzed Qualifiers Sulfate mg/L <5.0	METHOD BLANK:	1338657			Mat	trix: W	ater					
ParameterUnitsResultLimitAnalyzedQualifiersSulfatemg/L<5.0	Associated Lab Sar								351013, 7	0220351014, 7	70220351015,	
Sulfate mg/L <5.0 5.0 07/15/22 23:16 LABORATORY CONTROL SAMPLE: 1338658 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 10 10.9 109 90-110 Matrix MATRIX SPIKE SAMPLE: 1338659 70220351009 Spike MS MS % Rec Limits Qualifiers Sulfate mg/L 40.9 10 50.9 100 90-110 Qualifier MATRIX SPIKE SAMPLE: 1338661 70221384001 Spike MS MS % Rec Limits Qualifier MATRIX SPIKE SAMPLE: 1338661 70221384001 Spike MS MS % Rec Limits Qualifier Sulfate mg/L 70220351009 Result Conc. Result % Rec Limits Qualifier Sulfate mg/L 17.7 10 27.7 100 9	_									0		
LABORATORY CONTROL SAMPLE: 1338658 Spike LCS LCS % Rec Limits Qualifiers Sulfate mg/L 10 10.9 109 90-110 09 90-110 MATRIX SPIKE SAMPLE: 1338659 70220351009 Spike MS % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 1338661 70220351009 Spike MS % Rec Limits Qualifier Sulfate mg/L 40.9 10 50.9 100 90-110 MATRIX SPIKE SAMPLE: 1338661 70221384001 Spike MS % Rec Limits Qualifier MATRIX SPIKE SAMPLE: 1338661 70221384001 Spike MS % Rec Limits Qualifier Sulfate mg/L 17.7 10 27.7 100 90-110 SAMPLE DUPLICATE: 1338660 Parameter Units 70220351009 Pup Parameter Units 70220351009 Result RPD Qualifiers SAMPLE DUPLICATE: 1338662 70221384001 RPD Qualifiers SAMPLE DUPLICATE: 1338662 70221384001 Result RPD Qualifiers	Paran	neter		Units	Result		Limit		-		ers	
ParameterUnitsSpike Conc.LCS ResultLCS % Rec% Rec LimitsQualifiers QualifiersSulfatemg/L1010.910990-110MATRIX SPIKE SAMPLE:133865970220351009 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifierSulfatemg/L40.91050.910090-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS Result% Rec LimitsQualifierMATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS Result% Rec 	Sulfate			mg/L	<5	5.0		5.0 07	/15/22 23:	16		
ParameterUnitsConc.Result% RecLimitsQualifiersSulfatemg/L1010.910990-110MATRIX SPIKE SAMPLE:133865970220351009 ResultSpike Conc.MS ResultMS % Rec% Rec LimitsQualifiersSulfatemg/L40.91050.910090-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS Result% Rec % RecQualifiersMATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS Result% Rec % RecQualifiersMATRIX SPIKE SAMPLE:133866170220351009 ResultSpike ResultMS Result% Rec % Rec LimitsQualifiersSulfatemg/L70220351009 ResultDup ResultMS Result% Rec % Rec LimitsQualifiersSAMPLE DUPLICATE:133866270220351009 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPD ResultQualifiers	LABORATORY COI	NTROL SA	MPLE: 1	338658								
MATRIX SPIKE SAMPLE: 1338659 Parameter Units 70220351009 Result Spike MS MS % Rec Sulfate mg/L 40.9 10 50.9 100 90-110 MATRIX SPIKE SAMPLE: 1338661 70221384001 Result Spike Conc. MS MS % Rec MATRIX SPIKE SAMPLE: 1338661 70221384001 Result Spike Conc. MS MS % Rec Sulfate mg/L 17.7 10 27.7 100 90-110 SAMPLE DUPLICATE: 1338660 70220351009 Result Dup Result RPD Qualifiers Sulfate mg/L 40.9 41.2 1 1	Parar	neter		Units							Qualifiers	
ParameterUnits70220351009 ResultSpike Conc.MS ResultMS % Rec LimitsQualifierSulfatemg/L40.91050.910090-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS ResultMS % Rec Limits00-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS ResultMS % Rec Limits00-110SulfateUnits70220351009 ResultDup Result% Rec Result00-110SAMPLE DUPLICATE:133866070220351009 ResultDup ResultRPD ResultQualifiersSulfatemg/L70220351009 	Sulfate			mg/L	10		10.9		109	90-110		
ParameterUnits70220351009 ResultSpike Conc.MS ResultMS % Rec LimitsQualifierSulfatemg/L40.91050.910090-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS ResultMS % Rec Limits00-110MATRIX SPIKE SAMPLE:133866170221384001 ResultSpike Conc.MS ResultMS % Rec Limits00-110SulfateUnits70220351009 ResultDup Result% Rec Result00-110SAMPLE DUPLICATE:133866070220351009 ResultDup ResultRPD ResultQualifiersSulfatemg/L70220351009 40.9Dup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPD ResultQualifiers	MATRIX SPIKE SAI		1'	338659								
ParameterUnitsResultConc.Result% RecLimitsQualifierSulfatemg/L40.91050.910090-11090-110MATRIX SPIKE SAMPLE:133866170221384001SpikeMSMS% RecLimitsQualifierSulfateUnits70221384001SpikeMS% RecLimitsQualifierSulfatemg/L17.71027.710090-110SAMPLE DUPLICATE:133866070220351009DupResultRPDQualifiersSulfatemg/L40.941.211SAMPLE DUPLICATE:133866270221384001DupRPDQualifiersSAMPLE DUPLICATE:133866270221384001DupRPDQualifiersParameterUnits70221384001DupRPDQualifiers				550055	70220351	009	Spike		MS	MS	% Rec	
MATRIX SPIKE SAMPLE: 1338661 Parameter Units 70221384001 Spike MS MS % Rec Sulfate mg/L 17.7 10 27.7 100 90-110 SAMPLE DUPLICATE: 1338660 Parameter Units 70220351009 Dup Parameter Units 70220351009 Dup Parameter Units 70220351009 Result RPD Qualifiers Sulfate mg/L 40.9 41.2 1	Paran	neter		Units	Result			R	lesult	% Rec	Limits	Qualifiers
ParameterUnits70221384001 ResultSpike Conc.MS ResultMS % Rec LimitsQualifier QualifierSulfatemg/L17.71027.710090-110SAMPLE DUPLICATE:1338660ParameterUnits70220351009 ResultDup ResultRPD 41.2QualifiersSulfatemg/L70220351009 ResultDup ResultRPD 41.2QualifiersSulfatemg/L70221384001 ResultDup ResultRPD ResultQualifiersSAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPD ResultQualifiers	Sulfate			mg/L		40.9	1	0	50.9	10	0 90-110	
ParameterUnitsResultConc.Result% RecLimitsQualifierSulfatemg/L17.71027.710090-110SAMPLE DUPLICATE:133866070220351009 ResultDup ResultRPDQualifiersParameterUnits70220351009 ResultRPDQualifiersSulfatemg/L40.941.21SAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPDQualifiersParameterUnits70221384001 ResultDup ResultRPDQualifiers	MATRIX SPIKE SAI	MPLE:	1:	338661								
Sulfatemg/L17.71027.710090-110SAMPLE DUPLICATE:1338660ParameterUnits70220351009 ResultDup ResultRPDQualifiersSulfatemg/L40.941.21SAMPLE DUPLICATE:133866270221384001 ResultDup ResultRPDQualifiersParameterUnits70221384001 ResultDup ResultRPDQualifiers					70221384	001	Spike		MS		% Rec	
SAMPLE DUPLICATE: 1338660 Parameter Units Result RPD Qualifiers Sulfate mg/L 40.9 41.2 1	Paran	neter		Units	Result		Conc.	R	lesult	% Rec	Limits	Qualifier
ParameterUnits70220351009 ResultDup ResultRPDQualifiersSulfatemg/L40.941.21SAMPLE DUPLICATE:133866270221384001 ResultDup ResultDup ResultParameterUnits70221384001 ResultDup ResultRPDQualifiers	Sulfate			mg/L		17.7	1	0	27.7	10	0 90-110	
ParameterUnitsResultResultRPDQualifiersSulfatemg/L40.941.21SAMPLE DUPLICATE:1338662ParameterUnits70221384001 ResultDup ResultRPDQualifiers	SAMPLE DUPLICA	TE: 1338	3660									
SAMPLE DUPLICATE: 1338662 70221384001 Dup Parameter Units Result Result RPD Qualifiers	Paran	neter		Units)9	•		RPD	Qualifiers	;	
70221384001 Dup Parameter Units Result Result RPD Qualifiers	Sulfate			mg/L	40).9	4	1.2		1		
Parameter Units Result Result RPD Qualifiers	SAMPLE DUPLICA	TE: 1338	3662									
	Deres	notor		Lipito		01				Qualification		
Sulfate mg/L 17.7 17.7 0		neter									•	
	Sulfate			mg/L	17	7.7	1	7.7		0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NYSEG ITHACA Pace Project No.: 70220351	COURT STREET 6/2	29					
QC Batch: 263136		Analysis Metho	d. E	EPA 353.2			
QC Batch Method: EPA 353.2		Analysis Descri		53.2 Nitrite, Un	ores		
20 Daton Method. ETA 555.2		Laboratory:		Pace Analytical S		lle	
Associated Lab Samples: 7022035	1001, 70220351002,	•					
METHOD BLANK: 1328986		Matrix: W	/ater				
Associated Lab Samples: 7022035	1001, 70220351002,	70220351004, 702	20351005, 7	70220351006, 7	0220351007, 7	0220351008	
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Nitrite as N	mg/L	<0.027	0.027	7 07/01/22 00:4	40		
ABORATORY CONTROL SAMPLE:	1328987						
-		Spike LC		LCS	% Rec	A	
Parameter	Units	Conc. Re	sult	% Rec	Limits	Qualifiers	
Nitrite as N	mg/L	1	0.98	98	90-110		
MATRIX SPIKE SAMPLE:	1328988						
Parameter	Units	30499228001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrite as N	mg/L	0.069	0.5	0.55	97	90-110	H3
MATRIX SPIKE SAMPLE:	1328998						
		70220351006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0.5	0.53	101	90-110	
SAMPLE DUPLICATE: 1328989							
Parameter	Units	30499228001 Result	Dup Result	RPD	Qualifiers		
Nitrite as N	mg/L	0.069	0.063	3	9 H3		
SAMPLE DUPLICATE: 1328999							
		70220351006	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 263137		Analysis Metho	d· F	PA 353.2			
QC Batch Method: EPA 353.2		Analysis Descri		53.2 Nitrite, Un	ores.		
		Laboratory:			Services - Melville	Э	
Associated Lab Samples: 7022035	51003			-			
METHOD BLANK: 1328992		Matrix: W	ater				
Associated Lab Samples: 7022035	51003						
5			Reporting		o ""		
Parameter	Units	Result	Limit	Analyzed	Qualifiers	S	
Nitrite as N	mg/L	<0.027	0.027	07/01/22 03:	07		
ABORATORY CONTROL SAMPLE:	1328993						
_		Spike LC		LCS	% Rec		
Parameter	Units	Conc. Res		% Rec		Qualifiers	
Nitrite as N	mg/L	1	1.0	104	90-110		
ATRIX SPIKE SAMPLE:	1328994						
		70220405001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
litrite as N	mg/L	<0.050	0.5	0.36	68	90-110) M1
ATRIX SPIKE SAMPLE:	1329949						
-		70220495010	Spike	MS	MS	% Rec	o 117
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
litrite as N	mg/L	0.096	0.5	0.50	80	90-110) M1
SAMPLE DUPLICATE: 1328995							
5	Linite	70220405001	Dup	חחח	Qualifiant		
	Units	Result <0.050	Result	RPD	Qualifiers	-	
Parameter		20050	< 0.050	J			
	mg/L						
Nitrite as N	mg/L						
SAMPLE DUPLICATE: 1329950 Parameter	mg/L	70220495010 Result	Dup Result	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	NYSEG	ITHACA C	OURT STREET 6	6/29						
Pace Project No.:	702203	51								
QC Batch:	26332	4		Analysis M	lethod	l: E	PA 353.2			
QC Batch Method:	EPA 3			Analysis D			53.2 Nitrite, Ung	ores.		
				Laboratory			ace Analytical S		rille	
Associated Lab Sar	nples:	702203510 702203510	009, 7022035101(016	0, 70220351011	7022	20351012, 7	0220351013, 70	0220351014, 7	0220351015,	
METHOD BLANK:	132995	1		Matri	x: Wa	ater				
Associated Lab Sar	nples:	702203510 702203510	009, 70220351010 016	0, 70220351011			0220351013, 70	0220351014, 7	70220351015,	
_				Blank	F	Reporting				
Parar	neter		Units	Result		Limit	Analyzed	Qualifi	ers	
Nitrite as N			mg/L	<0.02	7	0.027	07/02/22 01:	20		
LABORATORY CO	NTROL S	AMPLE:	1329952							
Paran	neter		Units	Spike Conc.	LC: Res		LCS % Rec	% Rec Limits	Qualifiers	
Nitrite as N			mg/L	1		1.0	103	90-110		
MATRIX SPIKE SAI	MPLE:		1329953							
				702203510	15	Spike	MS	MS	% Rec	
Paran	neter		Units	Result		Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N			mg/L	<0	.050	0.5	0.51	10	1 90-110	
MATRIX SPIKE SAI	MPLE:		1329955							
_				305020920	01	Spike	MS	MS	% Rec	o ""
Paran	neter		Units	Result		Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N			mg/L		ND	0.5	0.55	10	6 90-110	
SAMPLE DUPLICA	TE: 132	29954		700005101		.				
Parar	neter		Units	70220351015 Result)	Dup Result	RPD	Qualifiers		
Nitrite as N			mg/L	<0.05	0	<0.050)			
	TE: 132	29956								
SAMPLE DUPLICA				30502092001		Dup				
SAMPLE DUPLICA						•		o		
SAMPLE DUPLICA			Units mg/L			Result <0.050	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	NYSEG		OURT STREET 6/	29						
Pace Project No.:	702203	51								
QC Batch:	26314	10		Analysis I	Nethod	d:	EPA 353.2			
QC Batch Method:	EPA 3	53.2		Analysis [Descrip	ption:	353.2 Nitrate, U	npres.		
				Laborator	y:		Pace Analytical	Services - Mel	lville	
Associated Lab Sar	nples:	70220351 70220351	001, 70220351002, 008	, 70220351003	3, 7022	20351004,	70220351005, 7	70220351006,	70220351007,	
METHOD BLANK:	132900	0		Mat	rix: Wa	ater				
Associated Lab Sar	nples:	70220351 70220351	001, 70220351002, 008	, 70220351003	3, 7022	20351004,	70220351005, 7	70220351006,	70220351007,	
_				Blank	I	Reporting		• "	<i>.</i>	
Paran	neter		Units	Result		Limit	Analyzed	Quali	fiers	
Nitrate-Nitrite (as N))		mg/L	<0.03	37	0.03	7 07/01/22 01:	:38		
ABORATORY CO	NTROL S	SAMPLE:	1329001							
Paran	notor		Linita	Spike Conc.	LC Res		LCS % Rec	% Rec Limits	Qualifiers	
			Units		Res		·		Quaimers	
Nitrate-Nitrite (as N))		mg/L	1		1.0	103	90-110		
MATRIX SPIKE SAI	MPLE:		1329002						_	
Parar	notor		Units	702203510 Result	007	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
				Kesuit	74.5					
litrate-Nitrite (as N))		mg/L		74.5	25	97.2	· · · · ·	91 90-11	U H1
MATRIX SPIKE SAI	MPLE:		1329004							
Doron	notor		Units	702203510 Result	006	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Paran				Result	1.3					
Nitrate-Nitrite (as N))		mg/L		1.5	0.5	1.7	č	35 90-11	UIMII
SAMPLE DUPLICA	TE: 13	29003		700005400	7	Dur				
Parar	neter		Units	7022035100 Result	<i>(</i>	Dup Result	RPD	Qualifier	S	
Nitrate-Nitrite (as N))		mg/L	74	.5	74.	4	0 H1		
SAMPLE DUPLICA	TE: 13	29005								
SAMPLE DUPLICA				7022035100	6	Dup				
						_ · ·		a		
Parar Vitrate-Nitrite (as N			Units mg/L	Result	.3	Result	RPD	Qualifier	S	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	NYSEC	G ITHACA C	COURT STREET	6/29						
Pace Project No.:	702203	351								
QC Batch:	2633	31		Analysis Me	Analysis Method:					
QC Batch Method: EPA 353.2				Analysis De	escription:	353.2 N	itrate, Ur	npres.		
				Laboratory:				Services - Melv	ville	
Associated Lab San	nples:	70220351 70220351	009, 7022035101 016	0, 70220351011,	702203510	2, 702203	51013, 7	0220351014, 7	70220351015,	
METHOD BLANK:	132998	32		Matrix	: Water					
Associated Lab San	nples:	70220351 70220351	009, 7022035101 016	0, 70220351011,	702203510	2, 702203	51013, 7	0220351014, 7	70220351015,	
_				Blank	Reporti	-				
Paran	neter		Units	Result Limit		A	nalyzed	Qualifi	ers	
Nitrate-Nitrite (as N)		mg/L	<0.037	<0.037 0.0		37 07/02/22 03:51				
LABORATORY COM	NTROL	SAMPLE:	1329983							
5			11.5	Spike	LCS	LCS		% Rec	Qualif	
Parameter			Units	Conc	Result	% Rec		Limits	Qualifiers	
Nitrate-Nitrite (as N))		mg/L	1	1.0		102	90-110		
MATRIX SPIKE SAI	MPLE:		1329984							
Paran	notor		Units	7022035101 Result	5 Spike Conc		IS sult	MS % Rec	% Rec Limits	Qualifiers
Parameter).5		10		
Nitrate-Nitrite (as N))		mg/L	<0.1	050).5	0.51	10	2 90-110	
MATRIX SPIKE SAI	MPLE:		1329986							
Doromotor		Units	3050209200 Result	1 Spike Conc		IS sult	MS % Rec	% Rec Limits	Qualifiers	
Parameter										
Nitrate-Nitrite (as N))		mg/L		2.1	2.5	5.5	11	1 90-110	M1
SAMPLE DUPLICA	TE: 13	29985		7000054045	Dur					
Parameter		Units	70220351015 Result	Dup Resul		RPD	Qualifiers	i		
Nitrate-Nitrite (as N)		mg/L	<0.050) <(.050					
SAMPLE DUPLICA	TE: 13	29987								
			Units	30502092001	Dup			Qualif		
-			Linite	Result	Resul		RPD	Qualifiers		
Paran Nitrate-Nitrite (as N)			mg/L	2.7		2.7		0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	NYSEG ITHACA 70220351	COURT STREET 6	/29						
QC Batch:	263382		Analysis Met	hod:	SM22 4500 NH3 H				
QC Batch Method:	SM22 4500 NH	3 H	Analysis Des	scription:	4500 Ammonia				
			Laboratory:		Pace Analytical	ille			
Associated Lab San	nples: 7022035	1001, 70220351002	2, 70220351003, 7	0220351004,	70220351005				
METHOD BLANK:	1330333		Matrix:	Water					
Associated Lab San	nples: 7022035	1001, 70220351002	2, 70220351003, 7	0220351004,	70220351005				
			Blank	Reporting					
Paran	neter	Units	Result	Limit	Analyzed	Qualifie	ers		
Nitrogen, Ammonia		mg/L	<0.050	0.05	0 07/04/22 13:	19			
LABORATORY COM	NTROL SAMPLE:	1330334							
_				LCS	LCS	% Rec	0 111		
Paran	neter	Units	Conc. F	Result	% Rec	Limits	Qualifiers		
Nitrogen, Ammonia		mg/L	1	0.95	95	90-110			
MATRIX SPIKE SAI	MPI F:	1330335							
		1000000	70220667001	Spike	MS	MS	% Rec		
Paran	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers	
Nitrogen, Ammonia		mg/L	27	2.7 20	49.1	107	75-125		
SAMPLE DUPLICA	TE: 1330336								
			70220667001	Dup					
Paran	neter	Units	Result	Result	RPD	Qualifiers			
Nitrogen, Ammonia		mg/L	27.7	23.	2 1	7			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	NYSEG	ITHACA COU	RT STREET 6/2	29						
Pace Project No.:	702203	51								
QC Batch:	QC Batch: 263383				Analysis Method:			Н		
QC Batch Method:	SM22	4500 NH3 H		Analysis Description:			1500 Ammonia			
				Laboratory		F	Pace Analytical S	Services - Melv	ville	
Associated Lab Sam				70220351008, 70220351015,			70220351010, 7	0220351011,	70220351012,	
METHOD BLANK:	133033	7		Matrix	: Water					
Associated Lab Sam				70220351008, 70220351015,			70220351010, 7	0220351011,	70220351012,	
				Blank	Reporti	ng				
Parameter			Units	Result	Limit		Analyzed	Qualif	iers	
Nitrogen, Ammonia			mg/L	<0.050) (.050	0 07/04/22 13:	53		
LABORATORY CON	NTROL S	AMPLE: 13	30338							
				Spike	LCS		LCS	% Rec		
Param	neter		Units	Conc.	Result		% Rec	Limits	Qualifiers	
Nitrogen, Ammonia			mg/L	1	0.91		91	90-110		
MATRIX SPIKE SAM	MPLE:	133	30339							
				7022035100	6 Spike	•	MS	MS	% Rec	
Param	neter		Units	Result	Conc		Result	% Rec	Limits	Qualifiers
Nitrogen, Ammonia			mg/L	<0	.10	1	0.66	5	6 75-12	25 M1
SAMPLE DUPLICAT	TE: 133	30340								
Parameter			Units	70220351006 Result	Dup Resul		RPD	Qualifiers	5	
Nitrogen, Ammonia			mg/L	<0.10) <	0.10)			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:			OURT STREET 6/2	29					
Pace Project No.:	702203						<u> </u>		
QC Batch:	26426			Analysis M		EPA 9014 Total	•		
QC Batch Method:	EPA 9	010C		Analysis D	escription:	9014 Cyanide,	Total		
				Laboratory	r:	Pace Analytical	Services - Mel	ville	
Associated Lab Sar	nples:	702203510 702203510	01, 70220351002, 08	70220351003	, 7022035100	4, 70220351005,	70220351006,	70220351007,	
METHOD BLANK:	133516	8		Matri	x: Water				
Associated Lab Sar	mples:	702203510 702203510	01, 70220351002, 08	70220351003	, 7022035100	4, 70220351005,	70220351006,	70220351007,	
				Blank	Reporting	9			
Parar	neter		Units	Result	Limit	Analyze	d Quali	fiers	
Cyanide			ug/L	<10.0	0 1	0.0 07/11/22 17	2:58		
LABORATORY CO	NTROLS	SAMPLE:	1335169						
Parar	neter		Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Cyanide			ug/L	75	75.0	100	85-115		
MATRIX SPIKE SA	MPLE:		1335170						
				7022035100	06 Spike	MS	MS	% Rec	
Parar	neter		Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cyanide			ug/L	<	10.0 10	0 100) (75-125	
SAMPLE DUPLICA	TE: 13	35171							
				70220351006					
_									
Parar	neter		Units	Result	Result	RPD	Qualifier	S	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

· , · · ·	ITHACA COURT STREET 6/2	29					
Pace Project No.: 7022035	1						
QC Batch: 264507	,	Analysis Methe	bd: l	EPA 9014 Total C	Syanide		
QC Batch Method: EPA 90	10C	Analysis Desc	ription:	9014 Cyanide, To	otal		
		Laboratory:	I	Pace Analytical S	Services - Melv	rille	
	70220351009, 70220351010, 70220351016	70220351011, 702	220351012,	70220351013, 70	0220351014, 7	0220351015,	
METHOD BLANK: 1336581		Matrix: V	Vater				
	70220351009, 70220351010, 70220351016	70220351011, 702	220351012,	70220351013, 70	0220351014, 7	0220351015,	
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifi	ers	
Cyanide	ug/L	<10.0	10.	0 07/13/22 20:3	36		
LABORATORY CONTROL SA	AMPLE: 1336582	0	~~	1.00	04 D		
Parameter	Units		CS esult	LCS % Rec	% Rec Limits	Qualifiers	
Cyanide	ug/L	75	77.8	104	85-115		
MATRIX SPIKE SAMPLE:	1336583						
		70220495010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cyanide	ug/L	10.2	100	100	90	75-125	
SAMPLE DUPLICATE: 1336	6584						
		70220495010	Dup				
		D			0		
Parameter	Units	Result	Result	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- H1 Analysis conducted outside the EPA method holding time.
- H2 Extraction or preparation conducted outside EPA method holding time.
- H3 Sample was received or analysis requested beyond the recognized method holding time.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70220351001	MW-C11	RSK-175	263170	RSK-175	263839
70220351002	MW-C12	RSK-175	263170	RSK-175	263839
0220351003	MW-C16	RSK-175	263170	RSK-175	263839
0220351004	MW-C24S	RSK-175	263170	RSK-175	263839
0220351005	MW-C25S	RSK-175	263170	RSK-175	263839
0220351006	MW-13S MS/MSD	RSK-175	263170	RSK-175	263839
0220351007	MW-45S	RSK-175	263170	RSK-175	263839
0220351008	DUP 01	RSK-175	263170	RSK-175	263839
0220351009	MW-22S	RSK-175	263419	RSK-175	263840
0220351010	MW-23S	RSK-175	263419	RSK-175	263840
0220351011	MW-31S	RSK-175	263419	RSK-175	263840
0220351012	MW-33S	RSK-175	263419	RSK-175	263840
0220351013	MW-40	RSK-175	263419	RSK-175	263840
0220351014	MW-46S	RSK-175	263419	RSK-175	263840
0220351015	MW-47S	RSK-175	263419	RSK-175	263840
0220351016	MW-48S	RSK-175	263419	RSK-175	263840
0220351001	MW-C11	EPA 3005A	263399	EPA 6010C	263529
0220351002	MW-C12	EPA 3005A	263399	EPA 6010C	263529
0220351003	MW-C16	EPA 3005A	263399	EPA 6010C	263529
0220351004	MW-C24S	EPA 3005A	263399	EPA 6010C	263529
0220351005	MW-C25S	EPA 3005A	263399	EPA 6010C	263529
0220351006	MW-13S MS/MSD	EPA 3005A	263399	EPA 6010C	263529
0220351007	MW-45S	EPA 3005A	263399	EPA 6010C	263529
0220351008	DUP 01	EPA 3005A	263399	EPA 6010C	263529
0220351009	MW-22S	EPA 3005A	263399	EPA 6010C	263529
0220351010	MW-23S	EPA 3005A	263399	EPA 6010C	263529
0220351011	MW-31S	EPA 3005A	263399	EPA 6010C	263529
0220351012	MW-33S	EPA 3005A	263399	EPA 6010C	263529
0220351013	MW-40	EPA 3005A	263399	EPA 6010C	263529
0220351013	MW-46S	EPA 3005A	263399	EPA 6010C	263529
0220351014	MW-400 MW-47S	EPA 3005A	263399	EPA 6010C	263529
0220351015	MW-48S	EPA 3005A	263399	EPA 6010C	263529
0220351001	MW-C11	EPA 3510C	263697	EPA 8270E SIM	263737
0220351002	MW-C12	EPA 3510C	263697	EPA 8270E SIM	263737
0220351003	MW-C16	EPA 3510C	263697	EPA 8270E SIM	263737
0220351003	MW-C24S	EPA 3510C	263697	EPA 8270E SIM	263737
0220351005	MW-C25S	EPA 3510C	263697	EPA 8270E SIM	263737
0220351005	MW-0250 MW-13S MS/MSD	EPA 3510C	263697	EPA 8270E SIM	263737
0220351000	MW-135 MS/MSD MW-45S	EPA 3510C	263697	EPA 8270E SIM	263737
0220351007	DUP 01	EPA 3510C	263697	EPA 8270E SIM	263737
0220351008	MW-22S	EPA 3510C EPA 3510C		EPA 8270E SIM	
			263697		263737
0220351010	MW-23S	EPA 3510C	263697	EPA 8270E SIM	263737
0220351011	MW-31S	EPA 3510C	263697	EPA 8270E SIM	263737
0220351012	MW-33S	EPA 3510C	263697	EPA 8270E SIM	263737
0220351013	MW-40	EPA 3510C	263697	EPA 8270E SIM	263737
0220351014	MW-46S	EPA 3510C	263697	EPA 8270E SIM	263737
70220351015	MW-47S	EPA 3510C	263941	EPA 8270E SIM	263950

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Analytical QC Batch Lab ID **QC Batch Method** Batch Sample ID **Analytical Method** 70220351016 **MW-48S** EPA 3510C 263941 EPA 8270E SIM 263950 70220351001 **MW-C11** EPA 8260C/5030C 264080 70220351002 **MW-C12** EPA 8260C/5030C 263876 70220351003 **MW-C16** EPA 8260C/5030C 263876 MW-C24S 70220351004 EPA 8260C/5030C 263876 70220351005 MW-C25S EPA 8260C/5030C 263876 70220351006 MW-13S MS/MSD EPA 8260C/5030C 263876 70220351007 **MW-45S** EPA 8260C/5030C 263659 70220351008 **DUP 01** EPA 8260C/5030C 263876 70220351009 **MW-22S** EPA 8260C/5030C 263876 70220351010 **MW-23S** EPA 8260C/5030C 263876 70220351011 **MW-31S** EPA 8260C/5030C 263876 70220351012 **MW-33S** EPA 8260C/5030C 263876 70220351013 MW-40 EPA 8260C/5030C 263876 70220351014 **MW-46S** EPA 8260C/5030C 263876 70220351015 **MW-47S** EPA 8260C/5030C 264080 70220351016 **MW-48S** EPA 8260C/5030C 263876 70220351001 **MW-C11** SM22 2320B 263503 70220351002 **MW-C12** SM22 2320B 263503 70220351003 **MW-C16** 263503 SM22 2320B 70220351004 MW-C24S SM22 2320B 263539 70220351005 MW-C25S 263539 SM22 2320B 70220351006 MW-13S MS/MSD SM22 2320B 263539 263503 70220351007 **MW-45S** SM22 2320B 70220351008 **DUP 01** SM22 2320B 263539 70220351009 **MW-22S** SM22 2320B 263595 70220351010 **MW-23S** SM22 2320B 263595 70220351011 MW-31S SM22 2320B 263595 70220351012 **MW-33S** SM22 2320B 263648 70220351013 MW-40 263648 SM22 2320B 70220351014 **MW-46S** 263648 SM22 2320B 70220351015 **MW-47S** SM22 2320B 263648 70220351016 **MW-48S** SM22 2320B 263648 70220351001 **MW-C11** EPA 300.0 264268 70220351002 **MW-C12** EPA 300.0 264268 70220351003 **MW-C16** EPA 300.0 264268 70220351004 MW-C24S EPA 300.0 264268 70220351005 MW-C25S EPA 300.0 264268 70220351006 MW-13S MS/MSD EPA 300.0 264268 70220351007 **MW-45S** 264268 EPA 300.0 70220351008 **DUP 01** EPA 300.0 264268 70220351009 **MW-22S** EPA 300.0 264889

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Analytical QC Batch **QC Batch Method** Batch Lab ID Sample ID **Analytical Method** 70220351010 **MW-23S** EPA 300.0 264889 70220351011 **MW-31S** EPA 300.0 264889 70220351012 **MW-33S** EPA 300.0 264889 70220351013 MW-40 264889 EPA 300.0 70220351014 **MW-46S** EPA 300.0 264889 **MW-47S** 70220351015 EPA 300.0 264889 **MW-48S** 70220351016 EPA 300.0 264889 70220351001 **MW-C11** EPA 353.2 263140 70220351002 MW-C12 EPA 353.2 263140 263140 70220351003 **MW-C16** EPA 353.2 70220351004 MW-C24S EPA 353.2 263140 70220351005 MW-C25S EPA 353.2 263140 70220351006 MW-13S MS/MSD 263140 EPA 353.2 70220351007 MW-45S EPA 353.2 263140 263140 70220351008 **DUP 01** EPA 353.2 70220351009 **MW-22S** EPA 353.2 263331 70220351010 **MW-23S** EPA 353.2 263331 70220351011 **MW-31S** EPA 353.2 263331 70220351012 **MW-33S** EPA 353.2 263331 70220351013 MW-40 EPA 353.2 263331 70220351014 **MW-46S** EPA 353.2 263331 70220351015 **MW-47S** EPA 353.2 263331 70220351016 **MW-48S** 263331 EPA 353.2 70220351001 MW-C11 EPA 353.2 263136 70220351002 **MW-C12** EPA 353.2 263136 70220351003 **MW-C16** EPA 353.2 263137 70220351004 MW-C24S EPA 353.2 263136 70220351005 MW-C25S EPA 353.2 263136 70220351006 MW-13S MS/MSD EPA 353.2 263136 70220351007 **MW-45S** EPA 353.2 263136 70220351008 **DUP 01** EPA 353.2 263136 70220351009 **MW-22S** EPA 353.2 263324 70220351010 **MW-23S** EPA 353.2 263324 70220351011 **MW-31S** EPA 353.2 263324 70220351012 **MW-33S** EPA 353.2 263324 70220351013 MW-40 EPA 353.2 263324 70220351014 **MW-46S** EPA 353.2 263324 70220351015 **MW-47S** EPA 353.2 263324 70220351016 **MW-48S** EPA 353.2 263324 70220351001 **MW-C11** SM22 4500 NH3 H 263382 70220351002 **MW-C12** SM22 4500 NH3 H 263382 70220351003 **MW-C16** SM22 4500 NH3 H 263382 70220351004 MW-C24S SM22 4500 NH3 H 263382 70220351005 MW-C25S SM22 4500 NH3 H 263382 MW-13S MS/MSD 70220351006 SM22 4500 NH3 H 263383

Project: NYSEG ITHACA COURT STREET 6/29

Pace Project No.: 70220351

Analytical Lab ID **QC Batch Method** QC Batch Batch Sample ID **Analytical Method** 70220351007 **MW-45S** SM22 4500 NH3 H 263383 70220351008 **DUP 01** SM22 4500 NH3 H 263383 70220351009 **MW-22S** SM22 4500 NH3 H 263383 70220351010 **MW-23S** 263383 SM22 4500 NH3 H 70220351011 **MW-31S** SM22 4500 NH3 H 263383 **MW-33S** SM22 4500 NH3 H 70220351012 263383 MW-40 70220351013 SM22 4500 NH3 H 263383 70220351014 **MW-46S** SM22 4500 NH3 H 263383 70220351015 **MW-47S** SM22 4500 NH3 H 263383 70220351016 **MW-48S** SM22 4500 NH3 H 263383 70220351001 **MW-C11** EPA 9010C 264267 EPA 9014 Total Cyanide 264353 70220351002 **MW-C12** EPA 9010C 264267 EPA 9014 Total Cyanide 264353 70220351003 **MW-C16** EPA 9010C 264267 EPA 9014 Total Cyanide 264353 70220351004 MW-C24S EPA 9010C 264267 EPA 9014 Total Cyanide 264353 70220351005 MW-C25S EPA 9010C 264267 EPA 9014 Total Cyanide 264353 MW-13S MS/MSD EPA 9014 Total Cyanide 70220351006 EPA 9010C 264267 264353 70220351007 **MW-45S** EPA 9010C 264267 EPA 9014 Total Cyanide 264353 70220351008 **DUP 01** EPA 9010C 264267 EPA 9014 Total Cyanide 264353 70220351009 **MW-22S** EPA 9010C 264507 EPA 9014 Total Cyanide 264789 70220351010 **MW-23S** EPA 9010C 264507 EPA 9014 Total Cyanide 264789 70220351011 **MW-31S** EPA 9010C 264507 EPA 9014 Total Cyanide 264789 264789 70220351012 **MW-33S** EPA 9010C 264507 EPA 9014 Total Cyanide 70220351013 MW-40 EPA 9010C 264507 EPA 9014 Total Cyanide 264789 70220351014 **MW-46S** EPA 9010C 264507 EPA 9014 Total Cyanide 264789 EPA 9014 Total Cyanide **MW-47S** 264789 70220351015 EPA 9010C 264507 **MW-48S** 70220351016 EPA 9014 Total Cyanide 264789 EPA 9010C 264507

			1	1				1000				ſ				-1		50	0		1			100	Γ		1			(N/A)	1
					1000000	100 million (100 million)	10000	the seal of							0	•		2-	S				R	s.		11	~		Se	Sampli Intact	
					NAM 2		18. 18	The state				-	2	8.			\$	Conterne	0				0	SAMPLE CONDITIONS		>	~			Sealed Cooler (Y/V)	
70220351					Regulatory Agency	Concerning of the	cation	Carl and				8	005	ð		l	Z	3/4						APLE CO		W			^	Custoo (Y/N) Cee	
е е					ulatory		State / Location NY	The second	1041	(N/A) ə	Residual Chlorin					Ц		9		+	4			SAM	-		-	-	uo pə	viəcely	
E N					Reg	and the second	5	The state																		2.0			J ni	9M9T	
					Trues.	and the second se	1000	(7)																TIME	2222	SHO			100	2	
					No. of Concession, Name	and the second se	Control March	Requested Analysis Filtered (Y/N			Ferrous Iron	×	×	×	×	×	×	×	×	×	×	×	×		12	$\frac{1}{n}$		_		9 12	
*		refozzo			-			Is Filte		01	Total Iron by 60.	×	-	×	×	×	×	-	×	×	×	×	-	비민	6/25	R	x:			2	
								Inalys			RSK Methane	×	×	×	×	×		-	×	×	×	×		CREW .	19	01	-	_		3	
<u> </u>	=;	<						stad A	-		Sulfate, Alkalinit	×	×	×	×××	* *	×	×	×	×	×	×	1	115				10000		:pau	
SS SS	цo		1				com	seque			Syanide	×	×	×	×	×	×	×	×	×	×	×				0		10.00	1	DATE Signed:	
/ Analytical Reques	ttps://						sophia sparkes@pacelabs.com	語では	-	ls	1 HA9 MI2 0728	×		×	×	×			×	×	×	×	-	ACCEPTED BY / AFFILIATION			÷			DAT	
eleva B	d at h						s@pac		N/A	Test	BTEX 8260	×	×	×	×		×	×	×	×	×	×		AFFIL		1		1000		-	
Allr	found					ŀ	parke	Γ			Other													D BY /		. 2		1			
ENT.	itions					:	phia s				lonshisM													CEPTE	1	3			AL.	2	
vna cum	Cond						S		ative		Na2S203 NaOH			-	-		-			+				ACI	7	Lul			a h Cl	5	
	and	:uc					ager. 9816		Preservatives		HCI						1			+					A	X	5		00	0	
DY GAL	lermo	rmatio		ame:		E V			Pre		EONH															3				5	
	ace	Invoice Information	:uo	Company Name:	ss:	Race Quote:	Pace Profile #:				H2SO4 Unpreserved	-		_	-		-		_	-				TIME	22	3			Leo an	Bre	
is the	The Pace	Invoid	Attention:	Comp	Address:	Pace (Pace		-	ls	# OF CONTAINER				+					+				Ē	15	1		and the second se	E C	50	
Dusto Custo	Ice of		_					1	N		A 9MBLE TEMP A														5				NATU LER:	ER:	
AIN-OF-CUSTODY / Analytical Request	ceptai		Coto o	é é	Co-tsapoda	erenow how sup	KEEI WELLS				TIME	T	1				SOF	T.					1	DATE	612	6/25		and the second se	IE AND SIGNATURE	E of SAMPLER	
L Cha	and ac		SOC	141	00	29400				END	<u> </u>						1900	1		+			-								
H ^a	ment		295	29	٤	H L			COLLECTED		DAT	<u> </u>	1	1			3	1	1				1	NO	GET			100	PLER NAN PRINT Nar	SIGNATUR	
1	wiedgi		east regrandata a	30	orteo		CACO		COLI	RT	TIME	900	960	8		A	1445 612	22:0(1400				1305	FILIATI	\sim				SAMPLER NAM PRINT Nan	SIG	
-	Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info Sertion R				Ithaca. NY 14850 Section of the boulon be second to be a constrained to be constrained to constrained to be a constrained to b	i.	Project Name: NYSEG-11 HACA COURT STI			START	DATE		6/29	67/5			648	G129)	Ġ129	T			0/20 1305	RELINQUISHED BY / AFFILIATION	Paber			Ī			Ļ
	Istitute:	Inform	Report To: -Melliony Smith-		S gei	LOXA	0 2 I		(awo:	D=D 8495=0.	AMPLE TYPE				+					+				auishei		2					
	ay cor	roject	Hold-		20m	rder #	22		(file) of a	see valid codes) BOOD XIRTAM	Ž	ž	M	IM	M	۲¥	Å	Ň	IAA	1	TW	ž	RELIN	èr.e	N					
	In of custo Section R	uired F	iort To:	Copy To:	Could	chase C	8C1 #:		CODF	N N N N N N N N N N N N N N N N N N N	AR AR OT TS														Breina	6	U I				
	o nier Seg	Rec	Rep	8	2	Pure	D OL																	20.00		\sim					
					houron				AATRIX	Drinking Water Water Waste Water Product Soil/Solid	Vipe Nir Other issue													i a	بو ا	Subject					
	e vla				the last	155																		語	deriverable	ĝ,	T.				
	sampi					150																		Ś	el?	3	14				
						201	š			Δ	One Character per box. (A-2, 0-9 / , -) Sample Ids must be unique													ADDITIONAL COMMENTS			Y				
				g Rd		arcom				Щ	per b /, -) t be u								SCI					IL CON	5	LON LON					
	no	:uo	tants	1301 Trumansburg Rd		Puttern	8			SAMPLE ID	racter 2, 0-9 s mus								MW-13					TION	Cet	Ľ	2				
ice		ormati	GEI Consultants	Trums	4850	CO OF	e Date:			SAN	e Cha (A-3 iple Id								ž				8	ADD	3		4				
Pace		nt Infc	GELC	1301	η. NY 1	anh@d	e Date			0)	Sarr	C11	C12	C16	22S	235	24S	25S	SBC-WH	916	335	40	45S	1000	Asp	5	Æ				
N	A	d Clie	X		Ithaca	19960	ed Du					MW-C11	MW-C12	MW-C16	SCC-IMA	MVV-235	MW-24S	MW-25S	1	ANAV-846	SEE-WW	MVV-40	MW-45S		L V	لال		Pa	age 77	of 82	,
	Section A	Required Client Information:	Company	Address:	uile N,	Email: meemilh@gueews	Requested Due Date				# MƏTI	3150	2	ы	Ŧ	5	9	7	œ	4	10	F	12	10.8	Level	Ferreus	04		-90 I I	01 02	
	ő	ΩŶ.	Ú	∢ [ú I	ΠĮΟ)œ					1.24	21	N 22			-	10	1937			(EQP)	PE 5	301	-		-				

_	07/15/22			A la factor of the	ACCESSION OF THE OWNER OWNER OWNER OF THE OWNER OWNE	The second second second										006	006	205							ITIONS		>		ز	Coole (Y/N) Samp Intact (Y/N)
JO#: 70220351	te:			100	gency	tion						1				4	đ	2						1	SAMPLE CONDITIONS	_	>	+		(V/Y) Custo Sealed
20	Due Date:				Regulatory Agency	Ctata / aration	NY	D CHARLE	にあって	(N/X) əu	Residual Chlor	4	Ц	4		þ	Q.	ϕ						_	SAMF		*-		ио рал	
NO	<u> </u>				Reg	Ū.	5	- Trying				Ħ	П	1												~	24	+) in C	TEMF
~	110		1		NOT SALES	Turitant.		(NIA				Ħ													TIME	2:51	104S			
苦	PM: STS		T					Requested Analysis Filtered (Y/N)			Total Iron by 60 Ferrous Iron	×		×	×	×	×	×							DATE	E 6/25	20/22			0
X	- Md							ysis I		00	RSK Methane	×		× ×	×	×	×	×			-	-	-	-	DA	2	3			01291
		,						Anal		Bìr	Nitrate, Ammor	×		×	×	×	×	×												
C	מית ב							ested		ity, Nitrite	Sulfate, Alkalin	*	-	×	×	×	×	×												DATE Signed:
-	est elds (info.						1000	Requ			Cyanide	×	-	×	×	×	×	×		_		_	_	_	Z					TESi
	que int fie ttps://					adata	Subla	The second		tsil	HA9 MI2 0728	×		××	×	×	×	×				-	-	-	IATIO		1		145	DA
5 d	eleva				ŝ	0000	uno.eustananimeeustaneeusta		N/A	1691	BTEX 8260	X	H	× [×	×	×	×							ACCEPTED BY / AFFILIATION				1	
-	All re ound					action	ai vas	100	- NAX		Other	+	Ħ	Т	T										1 78 0		1			
4	NT NT ions f						10.51				Nethanol														EPTEI	2	4		1	
							000		ives		Na2S203		4												ACC	2	Z		15.0KD	2
<	A O P					4	9816		Preservatives		HOBN			+		-					_		-	-		N	1 A		De	3
	AL C ms a	ation				anana	86		rese		HCI HNO3	-	\mathbb{H}	+		-		-				+	-	-	E C		Z			-
	LEG C	form		Name	j	le:	ile #:		щ		POSCH	+	H	╈												7	3			5
F	is a Pac	Section C Invoice Information:	Attention:	Company Name:	Address:	Pace Quote: Pace Project Manager	Pace Profile #:				Unpreserved														TIME	2	ŝ		Breas	2
ā	a to C	Sec	Atte	Col	Add	Lac Dar	Pac			SE	# ОЕ СОИТАІИЕ		Ц	_									_		1147-	50		_	ure 	20
Ļ	Cust Cust					0	3		N	T COLLECTIO	A 9MƏT ƏJ9MAS		\square	-					_				-	_	믭	S	S		PLER	PLER
	ain-of-					CTDEFT WELLS				END	TIME							1							DATE	3	6/2		NAME AND SIGNATURE	of SAM
	CHAIN-OF-CUSIOUT / Analytical Request D The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu ent and acceptance of the Pace Terms and Conditions found at https://info.pace								CTED		DATE							1							2	5			R NAME T Name	SIGNATURE of SAMPLER: DULA
	vledgme	,							COLLECTED	E.	TIME				1	1300	1300	1							FILIATIO	3/15			SAMPLER	SIGN
	s acknov	ation:	£				111-5			START	DATE				1	6/29	6/29 1	C129							RELINQUISHED BY / AFFILIATION	RCIESI			0	
	titutes	lform	Mallory Smith			L'UNIT	N OF		(awo:))=0 8499=0)	SAMPLE TYPE	-	╟		+	~	()	5				-		-	UISHE	3	X			
	cons	ject I	Mallo		4	¥			-		MATRIX CODE	M		\$	5	Ň	ž	ΓŇ							ELING	Ş	N			
	custody	Section B Required Project Information:	't To:	To:	C	Purchase Order #:	Project #:		300	N T W T N O	¢ α ⊢ α														æ	Sec	5			
	in of o	Section B Required	Report To:	Copy To:		Purch	Projec													1 1					T		.\			
	this chai								MATRIX	Drinking Water Water Wasle Water Product Soil/Solid	Wipe Air Other Tissue														ALL COLLEGE		NF			
(CHAIN-OF-CUSTOUT / Analytical Request U The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields mu Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pace	Section A Required Client Information:	GEI Consultants	1301 Trumansburg Rd	Suite N. Ithaca, NY 14850	mssmith@geiconsultants.com	Requested Due Date:			SAMPLE ID	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique 1	Sar WW	0	WW-47S	Set AN	2.51 - MM - SM	MSD - MW-133	DUP 🔥 🛙							ADDITIONAL COMMENTS	evicus liron	Unloved to Pace			
	_	Section A Required C	Company	Address.	Suile N. Ilh	Email ms	Requested				# MƏTI	A St		14 - 14	15 W	16	17	18	19	20	21	22	23	24		11	С°.	P	age 78 (of 82

5)	Sa	ample (Conditio	n Upon Red	Ceiptonte	:7022	0351
/PaceAnalytical	-Client-N	2)(m)(0;		Proj			Date: 07/15/22
// 4007	GIERUN				PM: STS		Date
Courier: Fed Exerves USPS Client		ercial 🖸	ace 🗇 the	ſ	CL.IENT :	GEI-1	
racking # 7772 6487 \$	720						
Custody Seal on Cooler/Box Present: Dre	NO	Seals in	tact: 🗆 Yes	No N/A			esent: Yes No
Packing Material: 🗌 Bubble Wrap 🔲 Bubble	Bags 1	Źiploc 🗂	None (10th	ner		of Ice: 😡 BI	
Thermometer Used: $\frac{1409175}{5148}$	Correct	ion Factor	+,0	ζ			process has begun
Cooler Temperature(°C): 2.4	Cooler 1	Temperatu	re Correcto	ed(°C): 2.6	Date/	Time 5035A kits	placed in freezer
emp should be above freezing to 6.0°C	-			100 C			A10 - 10
JSDA Regulated Soil ($\square N / A$, water sample)				Date and Initial	s of person ex	amining conten	ts: SAR6/30
Did samples originate in a quarantine zone wi		Inited State	S AL AR CA	FL GA ID LA MS.	NC. Did sa	mples orignate fr	om a foreign source
JUS Samples originate in a quarantine zone wi		s 🗆 No			includ	ing Hawaii and Pu	Jerto Rico)? 🛛 Yes 🕅 No
IM, NY, DK, OR, SC, TN, TX, or VA (check map)? f Yes to either question, fill out a Regulate		nocklist (F-		nd include with S	CURTCOC pap	erwork.	<i>x</i>
Thes to either question, his out a keyware						COMMENTS:	
Chain of Custody Present:	Difes	⊡No		1.			
Chain of Custody Filled Out:	Tayes	DNo		2.			
Chain of Custody Relinquished:	aves			3			
Sampler Name & Signature on COC:	Pres		DN/A	4		2. 8	
Samples Arrived within Hold Time:	Dives	⊡No		5.			
Short Hold Time Analysis (<72hr):	E Yes			6.			
Rush Turn Around Time Requested:	⊡Yes	DNO		7.			
Sufficient Volume: (Triple volume provided for		⊡No		8.			
Correct Containers Used:	Difes	ΠNο		9			
-Pace Containers Used:	Ves	DNo					
Containers Intact:	DYES	DNo		10.			
iltered volume received for Dissolved tests	□Yes	⊡No	DN/A-	11. Note	e if sediment is	visible in the diss	olved container.
Sample Labels match COC:	Caves	⊡No		12.			
-Includes date/time/ID/Matrix: SI						£	
All containers needing preservation have bee		⊡No	DN/A	13. 🗆 HI	$NO_3 \Box H_2$	SO4 🗆 NaOH	
checked?							
pH paper Lot # 116281827				Comple #			
All containers needing preservation are foun				Sample #			
in compliance with method recommendation							
(HNO ₃ , H_2SO_4 , HCl, NaOH>9 Sulfide,	Pres	⊡No	DN/A				
NAOH>12 Cyanide)							12
Exceptions: VOA, Coliform, TOC/DOC, Oil and (Grease,			Initial when con		of added	Date/Time preservative
DRO/8015 (water).						ervative:	added:
Per Method, VOA pH is checked after analysi		⊡No	DINTA	14.	prose		
Samples checked for dechlorination:	⊡Yes		Lanter	110			
KI starch test strips Lot #				Positi	ve for Res. Chlo	orine? Y N	12
Residual chlorine strips Lot # SM 4500 CN samples checked for sulfide?	Dies	⊡No	ON/A	15.			
	Pres	CINO			ve for Sulfide?	Y N	
Lead Acetate Strips Lot # <u>SLD125</u> Headspace in VOA Vials (>6mm):	⊡Yes	No	DN/A	16.			
Trip Blank Present:	Difes	DNO	DN/A	17			
Trip Blank Presenc Trip Blank Custody Seals Present	⊡Yes		DH /A				100
Pace Trip Blank Lot # (if applicable):		head (S.M.)	Testers		×		
Client Notification/ Resolution:	ACCOUNTS OF THE OWNER OF			Field Data Requ	uired?	Y / N	
Person Contacted:					e/Time:		
Comments/ Resolution:							

• PM (Project Manager) review is documented electronically in LIMS

4

ENV-FRM-MELV-0024-01

Dite Ditation Difficient Distribution Distrestribution Distribution		ccurately. Standard-terms.pdf.	Page: 1 Of 2	Regulatory Agency	State / Location	AN .			(V\Y) en	inolnO IsubiseЯ													TIME SAMPLE CONDITIONS , .	320	10% (D	cr ubjes ojec zroqA (N) V) Wb IV C	Ree Sea Cos Cos Cos Cos Cos Cos Cos
CG CHAN-CF-CUS (0) Science and according a sample value chain of caracty constitutes a chronologiment and according to action a sample value chain of caracty constitutes a chronologiment and according to miles. The Change present of the caracty constitutes a chronologiment and according to action a section a section a section a section a section a section a section multice. The Change present of the caracty constitutes a chronologiment and according to the caracty constitutes according to the caracter according to the caracter according to the constitutes according to the caracter according t	#: 70220351	Due Date: GEI-I			11	and the second se			ر العر المرادي afinite	Va2S503 Methanol Jiher Olher BTEX 8260 BTEX 8260 BTEX 8260 BUFate, Arkalin Ultate, Alkalin Ultate, Alkalin Ultate, Alkalin SY Methano Vande SY Methano Cotal Ion by 60	x x x x x	× × × ×	< < < <	× : × : × : × : × :	< < < < <	× × × × ×	× × × × × ×	x x x x x x	× × × × × ×	× × × × ×	× × × × ×	x x x x x	中国の日本	PHB 61	the second	DATE Sinned:	105.19
CC Submitting a sample via this cha mation: onsultants frumansburg Rd B650 B660menterna com betwort agut or any bie da must be unique fie. 8955 Fax ADDITIONAL COMMENTS ADDITIONAL COMMENTS		CHAIN-OF-CU: PM: The Chain-of-Custody i CLI	Contraction of the sector invoice invo	+ topolosta	STREET WELLS Pace Project Mana	Pace Profile #:		NOI		HNO3 PHO3 Phofeserved H2SO4 Ampleserved H2SO4 H2			1	1 - X2	3				OZE	847 - 1	1130 1		DATE	Porbst/GET GI30 1	CHE 6/30 1	0	ALLES THE THE ALLES ALLE
	8'		s nim Rd	1.00 Transacting rvc Ca, NY 14850 Landra Martinet PC 2004 D 90 Control and the Control of the file	16-8955 Fax		-	al ol sab MOS VO	Water WT 00 Waste Water WW 10 Product P V 11 Solifisolid St. 90 Oil	Wipe Other Other Tissue TS TS TS MATRIX CODE				WT TW					WT	WT	ΜŢ			Asp Cat B duiverable	re		

			Regulatory Agency		inager: sophia sparkes@pacelabs.com, State / Location 8416 NY NY	Requested Analysis Filtered (Y/N)	Preservatives	HCI NaOH NaOH Methanol Other BTEX 8260 S270 SIM PAH Itst Cyanide Suffate, Alkalinity, Nitrite Mittale, Alkalinity, Nitrite Mittale, Alkalinity, Nitrite Fremous Iton Total Iron by 6010 Total Iron by 6010 Total Iron by 6010 Total Iron by 6010		X X X X X X			× × × ×					1117 151 151	Marca Hills 1940		
ADDITION Client Information. Client Information. Client Information. CEE Consultantian (SEE Consultantian (SEE Consultantiantiantiantiantiantiantiantiantiant	I-OF-CUSTODY -of-Custody is a LEGAl septance of the Pace Term Section C		_	_				Т н ж ор соителея Спрезегуед	0	0	0						10		-	D SIGNATURE	
ADDITION ADDITIONAL ADDI	CHAIN The Chain Inter acknowledgment and acc	supersmith Doctorsalter	-D get contra thank con		NYSEG- ITHACA COURT STREET		COLL COLL	секве сесте (секве селати с Спорта селати селати Спорта селати селати Спорта селати	6130 130 -	Cuiso	0/30							1/scart	5	SAMPLER NAME AN	
ADDITION ADDITION ADDITION ADDITION ADDITION ADDITIONAL ADDITION ADDITIONAL A	nple via this chain of custody cc Section B Required Projec	Report To:			Project #: 7		CODE	UW VV AR AR SI TS TS	3	3	3	S	3	B				5 2	5	1	
	Pace Submitting a sam		haca NY 14850	meanin geiconsultants, com bowbs	16-8955			SAMPLE ID One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique	MVV-46S	MVV-47S	MVV-48S	WS	GSW	ano							

5)	Sa	ample (Conditio	<u>in Upon Re</u>	WO#:	70220)351
Pace Analytical	-Client-N	<u></u>		Pre	PM: STS		Date: 07/15/22
	CHERCIN	ame.			CLIENT: (
ourier: 🕞 ed Ex 🗆 UPS 🗖 USPS 🔲 Client	Comm	ercial 🗌	ace Dine	۱۲	CLIENT: V	21=3 - A	
racking #: 7777 7 (87	949	5					
ustody Seal on Cooler/Box Present:				s No N/A			esent: Yest No
acking Material: 🗆 Bubble Wrap 😱 Bubble	Bags 🔎	Ziploc 🗌	yone ⊡Oti	ner		f Ice: Web Blu	
hermometer Used: JH10917A148	Correct	ion Factor	+, 0	2			process has begun
ooler Temperature(°C):	Cooler	Temperati	ure Correct	ed(°C): 1.3	Date/T	ime 5035A kits p	laced in freezer
emp should be above freezing to 6.0°C SDA Regulated Soil (🕼 A, water sample)				Date and Initia	ls of person exa	mining content	s: K/ AFI. les
id samples originate in a quarantine zone wi		Inited State	es: AL, AR, CA	, FL, GA, ID, LA, MS,	, NC, Did san	nples orignate fre	om a foreign source
IM NY OK OP SC TN TY or VA (check man)?	🗌 Ye	s 🗆 No			includir	ng Hawaii and Pu	erto Rico)? 🗆 Yes 🕅 No
Yes to either question, fill out a Regulat e	d Soil Ch	necklist (F	-LI-C-010} a	nd include with S	SCURÍCOC pape	rwork.	55a
						COMMENTS:	
hain of Custody Present:	Pres	⊡No		l _e			
chain of Custody Filled Out:	Pres	⊡No		2.	N		
Chain of Custody Relinquished:	AYes	ΠNο		3.		541	
ampler Name & Signature on COC:	ØYes	⊡No	⊡N/A	4.			
amples Arrived within Hold Time:	P Yes	DNo		5.			
Short Hold Time Analysis (<72hr):	ØYes	⊡No		6.			
Rush Turn Around Time Requested:	□Yes	ENO		7.			
Sufficient Volume: (Triple volume provided for	J ØYes	۵No		8.			
Correct Containers Used:	Pres	□No		9.			
-Pace Containers Used:	ElYes	ΠNο					
Containers Intact:	⊠Yes	⊡No	~	10.	**	· ** (Ladeostojoor
iltered volume received for Dissolved tests	□Yes	⊡No	/IN/A		e if sediment is v	risible in the disso	lived container.
Sample Labels match COC: 🦳 🚽	LYES	□No		12.		1	
-Includes date/time/ID, Matrix: SL_WT)	OIL			17	NO3 DH2SC	D₄ □NaOH	
All containers needing preservation have bee	n t Zi Yes	⊡No	⊡N/A	13. 🗆 H	$NO_3 \square H_2SC$		
	/						
pH paper Lot # HCS81877 All containers needing preservation are found	to he			Sample #			
in compliance with method recommendation							
$(HNO_3, H_2SO_4, HCl, NaOH>9$ Sulfide,	Yes	⊡No	⊡N/A				
NAOH>12 Cyanide)	P			(a)			54 ⁻
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	Grease,						
DR0/8015 (water).				Initial when cor		of added	Date/Time preservative
Per Method, VOA pH is checked after analysis	;				preser	vative:	added:
Samples checked for dechlorination:	Ves	⊡No	⊡N/A	14.			
KI starch test strips Lot # 14-860							
Residual chlorine strips Lot #	-	1			ive for Res. Chlor	ine? Y N	
SM 4500 CN samples checked for sulfide?	PYes	⊡No	DN/A	15.		v A	8
Lead Acetate Strips Lot # Scopes					ive for Sulfide?	<u>Y (N)</u>	
Headspace in VOA Vials (>6mm):	□Yes	ZNO		16.			
Trip Blank Present:	⊡Yes	PNO		17.			220
Trip Blank Custody Seals Present	⊡Yes	ΩNo	PN/A		£.		
Pace Trip Blank Lot # (if applicable):				Field Data Regu	uicod2	Y / N	
Client Notification/ Resolution:					/	·	
				Dat			
Comments/ Resolution:							

* PM (Project Manager) review is documented electronically in LIMS

ENV-FRM-MELV-0024 01