

August 18, 2023 Project 2202159

VIA EMAIL: lterrell@nyseg.com

Consulting
Engineers and
Scientists

Ms. Levia Terrell NYSEG 18 Link Drive Binghamton, NY 13904

Re: Q1 2023 Groundwater Monitoring Report

NYSEG Ithaca – Court Street Former MGP Site, OU2

Ithaca, NY

Dear Ms. Terrell:

This letter presents to you our report on groundwater sampling for the First Quarter of 2023 at Operable Unit 2 (OU2) of the Ithaca – Court Street former manufactured gas plant site (MGP). This report describes the work performed, field observations, analytical results, and a discussion of the findings. This work was performed according to the Interim Site Management Plan (SMP), which was issued to the NYSDEC in May 2023.

Work Performed

Sampling was performed on March 22 to 23, 2023.

The following 8 wells were sampled:

• MW-C11

• MW-C12

• MW-C16

• MW-22S

MW-23S

• MW-13S

MW-46S

• MW-48S

Note that well MW-13S was substituted for background well MW-28S, which was abandoned in December 2022 to make way for construction at the city-owned parcel on which it was situated. The locations of these wells on the site are provided on Figure 2.

Groundwater Sampling.

Groundwater sampling was performed on March 22 to 23 by Breanna Pabst and Jordan DesRosiers from GEI's Ithaca, NY office. Depth-to-water measurements to the nearest 0.01-foot from the top of the well casings were made on all the wells to be sampled on the morning of March 22, prior to the start of sampling. The results of the groundwater gauging and well condition observations are presented in Table 1. Using this information and the reference elevations for the wells, the water table elevations were calculated and plotted on Figure 1. Based

on these elevations the surface of the water table was contoured, and the direction of inferred groundwater flow shown.

Groundwater sampling began immediately after the first well was gauged. Purging and sampling of each well was performed by low-flow sampling techniques. Dedicated tubing in each well connected to a peristaltic pump, and the water discharged through a flow-through cell equipped with a Horiba Multiparameter meter. The following field parameters were measured during purging and sampling:

- Temperature
- pH
- Dissolved Oxygen (DO)
- Specific Conductance
- Oxidation-Reduction Potential (ORP)
- Turbidity

The field measurements are presented in well purging and sampling records, provided as Attachment 1. Purging was performed until the field parameters varied 10% or less between successive measurements. The flow-through cell was then disconnected from the outlet to the pump and the laboratory-supplied sampling bottle were filled directly from the out tubing. None of the wells went dry during purging and sampling during this sampling event. Purge water at each well location was collected in 5-gallon buckets, covered, and transferred to 55-gallon drums staged within a secure fenced area on the NYSEG-owned property at 420 North Plain Street, Ithaca, NY.

Samples were placed in coolers on-ice and picked-up from the site by a laboratory courier under chain-of-custody procedures. The samples were delivered to Alpha Analytical of Westborough, Massachusetts.

Laboratory Analysis and Data Validation

The groundwater samples were analyzed for the following:

BTEX	USEPA SW 846 Method 8260
PAHs	USEPA SW 846 Method 8270 SIM
Total Cyanide	USEPA SW 846 Method 9012

Note that per the Interim SMP, for long-term groundwater monitoring the MNA laboratory parameters have been removed from the analytical program, as a sufficient basis of information has been obtained to indicate that intrinsic biodegradation of site contaminants is occurring. Field measurements of dissolved oxygen will provide sufficient information to indicate that whether anaerobic conditions are being sustained that support a native anaerobic bacterial population capable of degrading the organic site contaminants.

Despite using SIM analysis, the laboratory was not able to achieve the detection limits for several of the PAHs, including Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, and Indeno(1,2,3-cd)pyrene. The reasons for the elevated detection limits are likely to be due to matrix interference in the groundwater samples, and dilutions needed for impacted samples. Generally, the detection limits for these compounds were one order of magnitude above the NYSDEC groundwater standards.

Both a standard laboratory report and a NYS ASP Level IV data package was prepared for the sample delivery groups. These reports are provided as Attachment 3. The laboratory data package was reviewed by a GEI chemist and a Data Usability Summary Report (DUSR) was prepared according to NYSDEC's DER-10 requirements (Attachment 2). Additional data qualifiers were added to the Data Summary Table (Table 2) as necessary. All data were found to be usable, with only minor qualifications added during the validation process.

The laboratory provided an electronic data delivery (EDD) to GEI using an EQuIS format. The EDD has been modified to meet NYSDEC's requirements for submittal to the NYSDEC data portal. The data will be uploaded to the portal upon NYSDEC review and approval of the data provided in this report.

Monitoring Results

The following observations are apparent for the Q1 2023 quarterly groundwater monitoring event:

- No significant changes were observed in the results of the Q1 2023 sampling over previous results.
- A potentiometric surface map of groundwater elevations for the site is provided on Figure 2. Groundwater generally flows west toward Washington Street and the site has a low hydraulic gradient of around .0006, meaning the water table is relatively flat.
- A summary of groundwater analytical data for the Quarterly Sampling event is available in Table 2. The compounds that were measured in exceedance of New York groundwater standard or guidance values are shown on Figure 3.
- BTEX compounds were in exceedance in 4 of the 8 wells: MW-23S, MW-46S, MW-48S, and MW-C12
- PAH compounds exceeding groundwater standard or guidance values were detected in 5 of the 8 wells samples: MW-23S, MW-46S, MW-48S, MW-C12, and MW-C16.
- One sample, MW-22S, showed a slight exceedance of the Total Cyanide standard.
- The distribution of dissolved oxygen indicates that wells showing BTEX and/or PAH impacts have depleted concentrations. This is consistent with the previous observations that intrinsic bioremediation is occurring within the impacted area.

The next quarterly groundwater sampling event is to be performed in June 2023.

If you have any questions, please feel free to contact Bruce Coulombe at 607-216-8959.

Sincerely,

GEI CONSULTANTS, INC., P.C.

Joshenbezgan

Josh Prygon

Environmental Engineer

Bruce Coulombe

June Coulombe

Project Manager

JP/BC:tc

Enclosures Table 1. Q1 2023 Water Level Measurements and Well Condition Summary

Table 2. Q1 2023 Groundwater Analytical Results

Figure 1. Sampling Locations Figure 2. Water Table Map

Figure 3. Exceedances of Groundwater Standards

Attachment 1 – Field Sampling Records

Attachment 2 – Data Usability Summary Report

Attachment 3 – Laboratory Report

c:

Document1

Tables		

Table 1. Q1 2023 Water Level Measurements and Well Condition Summary NYSEG - Ithaca Court Street MGP Ithaca, NY

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Difference between bTOC & bgs (ft)	Elevation of TOC (ft)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Condition and Sampling Notes
	9/28/2020	17.30	17 - 15	15 - 10	0.52	391.14	5.01	5.53	NA	N	NA	Full of water, cracked road box; Gray cloudy water initially noted during purging.
	3/2/2021	17.23	17 - 15	15 - 10	0.52	391.14	5.14	5.66	386.00	N	NA	Well in good condition. Water observed to be tinted and a gasoline (petroleum-like) odor was noted during purging. No sheen was observed. Approx. 5 gallon
			-									removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry
	6/7/2021	17.21	17 - 15	15 - 10	0.52	391.14	5.39	5.66	385.75	N	NA NA	Well in good condition. Purge water clear, and no odor or sheen noted.
1004	9/7/2021	17.28	17 - 15	15 - 10	0.52	391.14	5.35	5.87	385.79	N	NA	Well in good condition. Lots of mud underneath the well cap. Purge water clear, and no odor or sheen noted. Fine condition, no odor or sheen observed. Was scheduled to be redeveloped at the end of the GME, but a vehicle was parked over it and access was
MW - C11	12/6/2021	15.38	17 - 15	15 - 10	0.52	391.14	4.96	5.48	386.18	N	NA	The condition, in out of sheen observed, was scheduled to be redeveloped at the end of the GME, but a vehicle was parked over it and access was restricted.
	6/28/2022	12.41	17 - 15	15 - 10	0.52	391.14	5.42	5.94	385.72	N	NA	Roadbox flooded; sludge surrounding inner casing.
	9/19/2022	16.95	17 - 15	15 - 10	0.52	391.14	5.39	5.91	385.75	N	NA	Roadbox flooded; missing one bolt and threads in collar, dark black sediment on bottom; slight sulphur-like odor.
	12/19/2022	17.00	17 - 15	15 - 10	0.52	391.14	5.34	5.86	385.80	N	NA	Roadbox flooded; missing one bolt; one inner thread broken; yellow and black sludge in roadbox.
	3/22/2023	17.10	17 - 15	15 - 10	0.52	391.14	5.52	6.04	385.62	N	NA	Roadbox flooded; missing one bolt; hanger broken; black sludge on probe.
	9/28/2020	17.21	17 - 15	15 - 10	0.21	392.20	6.64	6.85	385.56	N	NA	Good condition; Water clear during purging.
	3/2/2021	17.62	17 - 15	15 - 10	0.21	392.20	5.65	5.86	386.55	N	NA	Well in good condition. Water observed to be tinted and a gasoline/sweet (petroleum-like) odor noted during purging. No sheen observed.
	6/7/2021	17.22	17 - 15	15 - 10	0.21	392.20	6.09	6.30	386.11	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	. = :000 /											Good condition. No sheen observed. Sulfur-like odor was noted during well purging. YSI technical difficulties, so team purged 3 well volumes before sampling
MW - C12	9/7/2021	17.22	17 - 15	15 - 10	0.21	392.20	6.14	6.35	386.06	N	NA	MS+MSD collected.
IVIVV = C12	12/6/2021	17.21	17 - 15	15 - 10	0.21	392.20	5.98	6.19	386.22	N	NA	Fine condition, no odor or sheen observed.
	6/28/2022	17.21	17-15	15 - 10	0.21	392.20	6.25	6.46	385.95	N	NA	Sulphur-like odor during sampling.
	9/20/2022	17.30	17-15	15 - 10	0.21	392.20	6.23	6.44	385.97	N	NA	Good condition; chemical-like odor during sampling.
	12/19/2022	17.16	17-15	15 - 10	0.21	392.20	5.93	6.14	386.27	N	NA	Good condition; faint NAPL-like odor.
	3/22/2023	17.19	17-15	15 - 10	0.21	392.20	5.81	6.02	386.39	N	NA	Good condition.
	6/28/2022	14.40		15 - 5	NM	NM	6.97	NC	NC	N	NA	Top is at an angle and cap doesn't fit with lid.
MW - 13S	9/19/2022	14.43		15 - 5	NM	NM	7.01	NC	NC	N	NA	Cover is at an angle and the cap doesn't fit with the cover on; missing one bolt.
11111	12/19/2022	14.42		15 - 5	NM	NM	7.79	NC	NC	N	NA	Cover is at an angle and the cap doesn't fit with the cover on; missing one bolt; not sampled during this event.
	3/22/2023	14.39		15 - 5	NM	NM	6.72	NC	NC	N	NA	Cover is at an angle and the cap doesn't fit with the cover on; missing one bolt.
	9/28/2020	15.98	16 - 14	14 - 9	0.22	391.31	6.65	6.87	384.66	N	NA	Well surface seal cracked, very hard to open, rusted bolts; Slight MGP odor noted during sampling, black sludge in bottom of well at commencement of
												purging and became clear, slight sheen observed on purge water.
	3/2/2021	15.95	16 - 14	14 - 9	0.22	391.31	3.54	3.76	387.77	N	NA NA	Dedicated tubing was rusty (likely iron accumulation). Purged water was tinted yellow/brown. No odor or sheen noted. Dedicated tubing to be replaced.
	6/7/2021	15.94	16 - 14	14 - 9	0.22	391.31	4.62	4.84	386.69	N	NA NA	Well in good condition. Purge water clear, and no odor or sheen noted.
MW - C16	9/7/2021	15.87	16 - 14	14 - 9	0.22	391.31	5.16	5.38	386.15	N	NA NA	Good condition. Faint MGP-like odor noted during gauging and purging. Black specs seen in purge water. No sheen observed.
IVIVV - C TO	12/6/2021	16.07	16 - 14	14 - 9	0.22	391.31	4.64	4.86	386.67	N	NA	Fine condition, no odor or sheen observed. Well have fooded pluggest fully coaled cludge currounding inner coains, and missing one helt. Dark codiment changed at the of probe and initially mistaken for
	6/28/2022	16.13	16 - 14	14 - 9	0.22	391.31	4.35	4.57	386.96	N	NA	Well box flooded, plug not fully sealed, sludge surrounding inner casing, and missing one bolt. Dark sediment observed at tip of probe and initially mistaken fo
	9/19/2022	16.08	16 - 14	14 - 9	0.22	391.31	5.62	5.84	385.69	N	NA	Missing one bolt; chemical-like odor during sampling; black sludge on bottom.
	12/19/2022	15.95	16 - 14	14 - 9	0.22	391.31	4.73	4.95	386.58	N	NA	Missing one bolt; wing on plug broken.
	3/22/2023	16.03	16 - 14	14 - 9	0.22	391.31	4.11	4.33	387.20	N	NA	Roadbox flooded; Missing one bolt; Black sediment on bottom.
	9/29/2020	13.10		14 - 4	0.41	386.74	5.10	5.51	382.05	N	NA	Good condition; Water clear during purging.
	3/2/2021	13.64		14 - 4	0.41	386.74	2.84	2.43	383.90	N	NA	Well located in a flower bed and in good condition. Purge water clear, and no odor or sheen noted.
	6/7/2021	13.61		14 - 4	0.41	386.74	4.08	4.49	382.66	N	NA	Well located in a flower bed and in good condition. Purge water clear with slight particulate suspension, and no odor or sheen
										17		noted.
MW - 22S	9/7/2021	13.68		14 - 4	0.41	386.74	4.20	4.61	382.54	N	NA	Good condition. No odor or sheen noted.
	12/6/2021	13.65		14 - 4	0.41	386.74	3.73	4.14	383.01	N	NA NA	Fine condition, no odor or sheen observed.
	6/28/2022	13.60 13.60	_	14 - 4 14 - 4	0.41 0.41	386.74 386.74	4.70 4.89	5.11 5.30	382.04 381.85	N N	NA NA	No bolts on roadbox cover; no odor or sheen observed. No bolts on roadbox cover.
	9/19/2022 12/19/2022	13.58	_	14 - 4	0.41	386.74	3.53	3.94	383.21	N N	NA NA	No bolts on roadbox cover.
	3/22/2023	14.59	-	14 - 4	0.41	386.74	3.35	3.76	383.39	N	NA NA	No bolts on roadbox cover. No bolts on roadbox cover.
	9/29/2020	13.70	-	14 - 4	0.6	387.02	6.80	7.40	380.22	N	NA NA	Good condition; Water clear during purging, solvent-like odor noted during sampling.
	3/2/2021	13.69		14 - 4	0.6	387.02	6.22	6.82	380.80	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	6/7/2021	13.65		14 - 4	0.6	387.02	6.34	6.94	380.68	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Well has very good recharge.
		12.60		44 4	0.6	207.00	6.44	7.04	200.64	N	NIA	Good condition. No odor noted. Small amount of sheen observed on the surface of purge water. YSI technical difficulties, so team
MW - 23S	9/7/2021	13.68		14 - 4	0.6	387.02	6.41	7.01	380.61	IN	NA	purged 3 well volumes before sampling.
10100 - 233	12/6/2021	13.67		14 - 4	0.6	387.02	6.32	6.92	380.70	N	NA	Fine condition. White flakes observed in the purged water. Product-like odor observed while purging.
	6/28/2022	13.70		14 -4	0.6	387.02	6.56	7.16	380.46	N	NA	Missing two bolts on roadbox cover; no odor or sheen observed.
	9/19/2022	13.64	_	14 -4	0.6	387.02	6.79	7.39	380.23	N	NA	Missing two bolts and threads on collar; NAPL-like odor during sampling.
	12/19/2022	13.66	_	14 -4	0.6	387.02	6.37	6.97	380.65	N	NA	Missing two bolts; missing two threads on collar.
	3/22/2023	14.62		14 -4	0.6	387.02	6.23	6.83	380.79	N	NA NA	Missing two bolts; missing two threads on collar.
	9/28/2020	13.50		14 - 4	NM	NM	7.23	NC NC	NC NC	N	NA NA	Top of PVC casing bent/crushed; Water clear during purging.
	3/2/2021	13.71		14 - 4	NM	NM	5.54	NC NC	NC NC	N N	NA NA	Well in good condition. Purge water clear, and no odor or sheen noted.
	6/7/2021	13.66		14 - 4	NM	NM	6.31	NC	NC	N	NA	Well in good condition. Purge water cleared up, faint organic odor detected, no sheen detected.
MW - 24S	9/7/2021	13.45		14 - 4	NM	NM	6.77	NC	NC	N	NA	Located in garden in roadside verge, access restricted due to vegetation. Poor condition, missing bolts and PVC bent. Organic-like odor noted during gauging and purging. No sheen observed.
IVIVV - 245	12/6/2021	13.98		14 - 4	NM	NM	6.56	NC	NC	N	NA	Fine Condition. No sheen observed. Odor of decaying material observed while purging.
	6/28/2022	13.49	==	14 - 4	NM	NM	6.85	NC NC	NC NC	N N	NA NA	Bulge on side of casing; no bolts present; purged dry on 6/28; methane samples collected on 6/28; remaining samples collected on 6/29.
	9/19/2022	13.50	_	14 - 4	NM	NM	6.81	NC NC	NC NC	N	NA NA	Bulge in PVC casing; missing bolts; plug doesn't fit with cover; purged dry on 9/19 and sampled on 9/20; odor of decaying material.
	12/19/2022	13.45	_	14 - 4	NM	NM	6.11	NC NC	NC NC	N	NA NA	PVC casing indented; no bolts; plug doesn't fit with cover; well went dry during sampling on 12/20; let recharge before collecting remaining samples
	12/10/2022	10.70		1-7	14191	1 4101	Ų.11	140	110	14	14/7	1. Committee and the series, the series, the series, the series and desired series and the series concerning containing samples

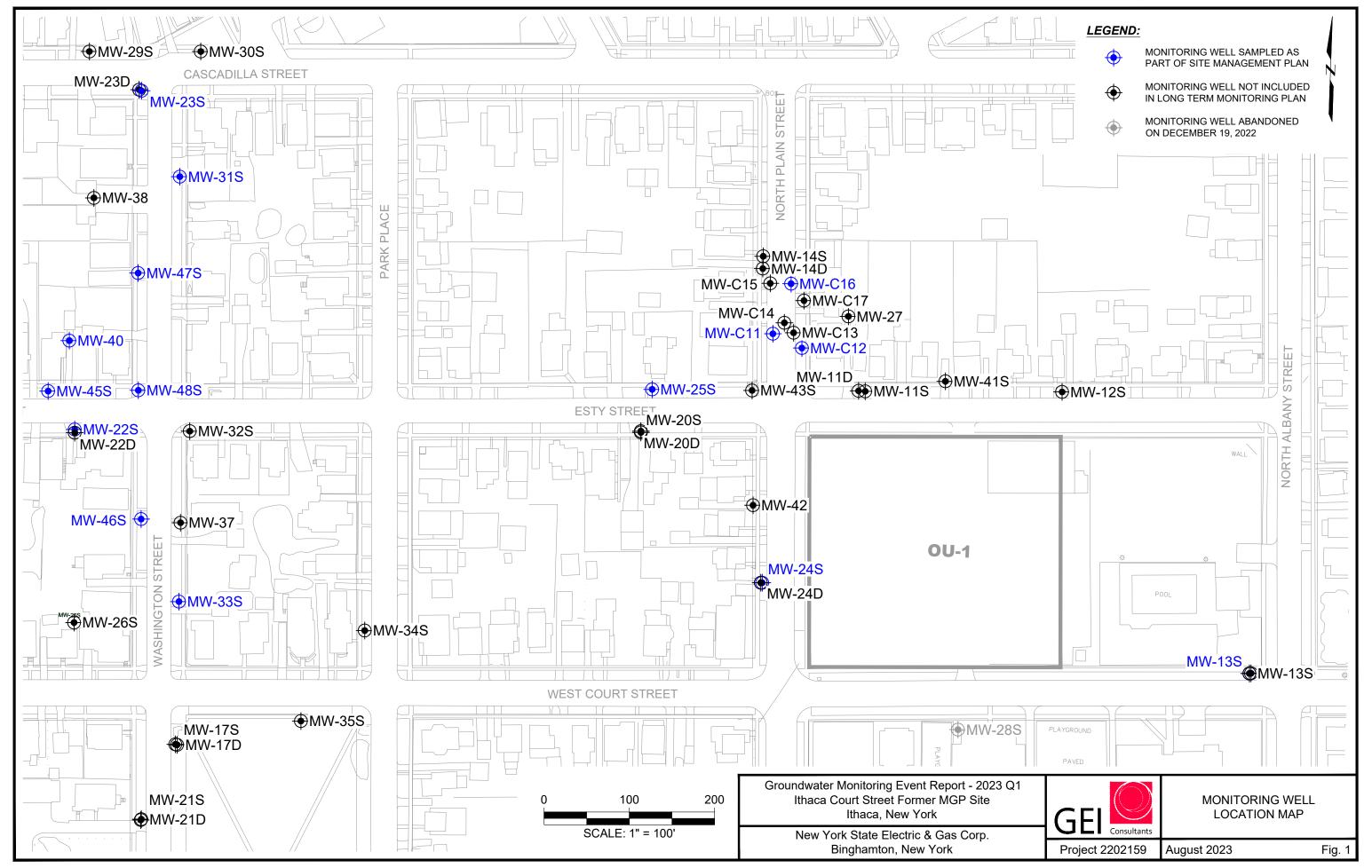
Table 1. Q1 2023 Water Level Measurements and Well Condition Summary NYSEG - Ithaca Court Street MGP Ithaca, NY

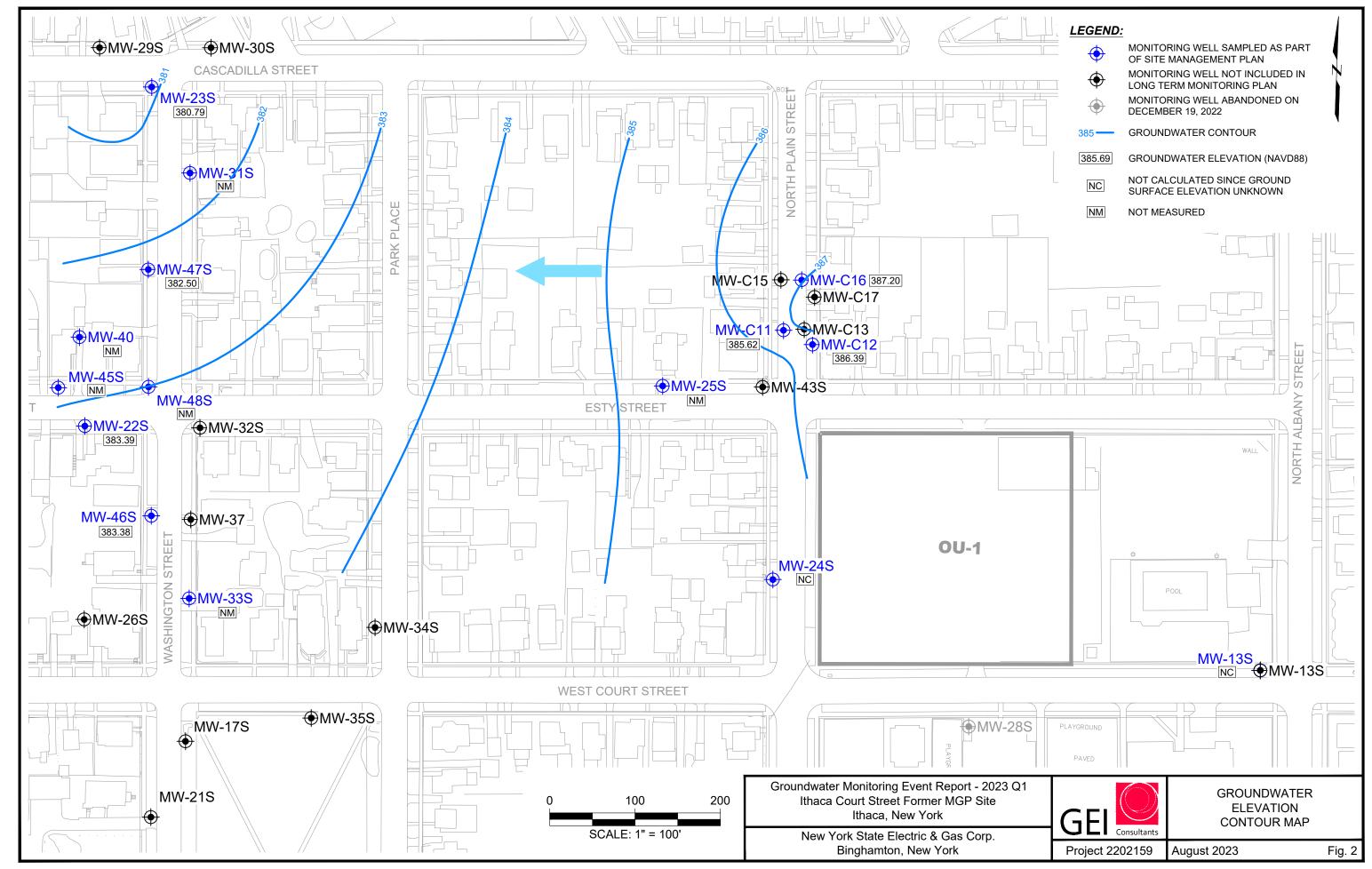
1907 9 9 9 9 9 9 9 9 9	Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Difference between bTOC & bgs (ft)	Elevation of TOC (ft)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Condition and Sampling Notes
1972 1972 1973 1974 1975		9/28/2020			10 - 3		391 22	7 12	7 34	384 10	N	NA	Partially overgrown with grass, good condition: Water clear during purging
Month Miles Mile												NΔ	Purge water initially tinted brown and became clear. No odor or sheen noted. Well ran dry on 3/3/21, allowed to recharge before
1992 1.5 19.3 19.2 19.2 19.5 19.	MW 250	6/7/2021	9.71		10 - 3	0.22	391.22	6.43	6.65	384.79	N	NA	
1982 1982 1983 1983 1983 1982 1983 1985 19	IVIVV - 255	9/7/2021	9.70		10 - 3		391.22	6.53	6.75	384.69	N	NA	
March Marc											**		·
19-70. 19-80 19-80 - 12-7 19-6 19-80 19-7 7.50 19-9 19-7 1		9/19/2022	9.70	-	10 - 3	0.22	391.22	6.67	6.89	384.55	N	NA	Missing one bolts; purged dry on 9/20/22; grab sample collected on 9/21/22
97 - 19 9.00		9/28/2020	19.80		20 - 7	0.54	395.17	8.23	8.77	386.94	N	NA	Good condition; Water clear during purging.
1.00001 13.5													
1957 1956 -	MW - 28S												
Math				1									
## 1907-191 15 -								_			• • • • • • • • • • • • • • • • • • • •		
MAY - 150		9/29/2020	11.30		12 - 4	0.31	387.92	7.45	7.76	380.47	N	NA NA	
Miles 1979													previously noted sedimentation/residual solids^ before well ran dry
1890/2012 1168	MW - 31S					1							
Control Cont													, 10
### 1992/22 1.90 1.91 1.92 1.93 1.93 1.94 0.31 39/32 7.50 7.51 396.72 N. P.A. N. P.A. Coord procedure, single MAPS, lies offer during carrieging. ### 1992/22 0.52 - 10.2.5 0.27 39/55 1.98 7.51 396.74 N. P.A. N. P.A. No processing the second control processing and participation of the control processing and participation of													1 9
1999/000 9-22 -				_									
May 1897 -													
MW - 367 9-362 9-36 10 - 25 0.27 387.55 4.33 4.60 383.22 N NA Will improve condition. Purps water mobile under oder of drongs, no core or dever noted.		3/2/2021	9.51		10 - 2.5	0.27	387.55	2.08	2.35	385.47	N	NA	Well in good condition. Very rusty water (likely iron accumulation) near bottom of screen and no odor or sheen noted. Approx. 5
MW - 388* 677(22) 9.47		6/7/2021	9.48		10 - 2.5	0.27	387.55	4.33	4.60	383.22	N	NA	
6/89/07/2	MW - 33S*	9/7/2021	9.47		10 - 2.5	0.27	387.55	4.33	4.60	383.22	N	NA	Good condition. Rust-like substance on the well casing and tubing. No sheen or odor noted.
99190202 9.50 - 10-26 0.27 38755 0.38 6.62 38120 N NA Good contribut, related lock on plug, signific viernal or our during sampling. 171807020 8.50 - 10-26 0.27 38755 0.38 6.62 38120 N NA Good contribution, related lock on plug, signific viernal close or plug. 99190200 8.50 - 0-3 0.40 38599 5.50 1.71 7.11 380.28 N NA Good contribution, related lock on plug sampling. 171807021 8.38 - 0-2 0.3 0.40 38599 5.50 3.40 839.30 N NA NA Good contribution view initially prome the during purpling. 171807021 8.38 - 0-2 0.3 0.40 38599 5.50 5.56 381.64 N NA Concrete part Stone. Purply water closer, and no device of above noted and no threen observed. 171807021 8.38 - 0-3 0.40 386.99 5.50 5.56 381.64 N N NA Concrete part Stone. Purply water closer, and no device of above noted and no threen observed. 171807021 8.37 - 0-5 0.40 386.99 5.50 5.50 5.50 381.64 N N NA Concrete part Stone. Purply water closer, and no device of above noted and no threen observed. 171807022 8.37 - 0-5 0.40 386.99 5.50 5.50 5.50 381.64 N N NA Concrete part Stone. Purply water closer, and no device of above noted and no threen observed. 171807022 8.37 - 0-5 0.40 386.99 5.50 5.50 5.50 381.64 N N NA Concrete part Stone. Purply water closer, and no device of above noted and no threen observed. 171807022 8.41 - 0-5 0.5 0.40 386.99 5.50 5.50 5.50 381.64 N N NA Port Controller, no doubt or diverse observed. 171807022 8.41 - 0-5 0.5 0.40 386.99 5.50 5.50 5.50 381.64 N N NA NA Concrete part Stone. Purply water closer, and no doubt purply and purpled day on 0709222 sempted on 050022 and 170 0.15 1.44 1.44 0.51 386.70 5.50 386.70 5.50 381.64 N N NA Concrete part Stone. Purple water closer, and no doubt purple day on 0709222 sempted on 050022 and 170 0.15 1.44 1.44 0.51 386.70 5.50 386.70 5.50 381.64 N N NA Concrete part Stone. Purple water closer, and no doubt purple day on 0709222 sempted on 050022 and 170 0.15 1.44 1.44 0.51 386.70 5.50 386.70 5.50 381.64 N N NA Concrete part Stone. Purple water closer, and no doubt purple day on 0709222 sempted on 05002		12/6/2021	9.51		10 - 2.5		387.55	3.60	3.87		N	NA	Fine condition, no odor or sheen observed.
1719/2022 3.49 - 10-2 0.27 0.87 5.51 3.76 38.40 N NA NA Coord controllers Light brown could be complying (inclinity) purping		6/28/2022		-	10 - 2.5						N	NA	Good condition; rusted lock on plug; iron bacteria on probe.
PS-20200 8-30				-									
## 3/2/2021 8.39 - 9.3 0.40 386.99 3.00 3.40 383.90 N NA Well impost condition. Purge water initially brown and then clear. A 'cleaning' (chemical-like) old var an older or already observed and only or already clear part of old													. 10
## A PACACT 6-39 9-3 0.40 396.99 4.99 5.39 382.00 N NA palies removed post-sampling to remove provisually noded sedimentation/residual solidity before well and dy ## A PACACT 6-39 9-3 0.40 386.99 4.99 5.39 382.00 N NA ## A PACACT 8-38 9-3 0.40 386.99 5.05 5.45 381.94 N NA ## A PACACT 8-38 9-3 0.40 386.99 5.05 5.45 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.45 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.45 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.45 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.45 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.55 5.55 381.14 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.55 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 5.05 5.55 381.94 N NA ## A PACACT 8-37 9-3 0.40 386.99 3.80 4.20 383.19 N NA ## A PACACT 8-37 9-3 0.40 386.99 3.80 4.20 383.19 N NA ## A PACACT 8-37 9-3 0.40 386.99 3.80 4.20 383.19 N NA ## A PACACT 8-37 9-3 0.40 386.90 3.80 3.80 4.20 383.19 N NA ## A PACACT 8-37 9-3 0.40 386.90 3.8		9/29/2020	8.30		9 -3	0.40	386.99	6.71	7.11	380.28	N	NA	
MW - 40 97/2021 8.36 9.3 0.40 386.99 5.05 5.45 381.94 N N N N N Secretary of private property. Concrete collar is broken. No odor or sheen noted. Repair concrete collar as soon as particulate. 1.05/2021 8.37 9.3 0.40 386.99 4.28 4.68 382.71 N N N N Well have proceed and material, no odor or sheen noted. Repair concrete collar as soon as particulate. 1.05/2022 8.14 9.3 0.40 386.99 5.52 5.52 381.47 N N N N Well have proceed of an arised, no obstite present concrete around lock on plug. well purged dry on 6/20/22; sampled on 6/30/22 8.14 9.3 0.40 386.99 5.60 0.00 381.30 N N N N Cover and casing replaced since last monitoring event: rusted lock on plug. well purged dry on 6/20/22; sampled on 6/30/22 3.29 3.20													gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry
MW - 48		6/7/2021	9.38		9 - 3	0.40	386.99	4.99	5.39	382.00	N	NA	
6/28/2012 8.3	MW - 40										• •		practicable.
MW - 458													
12/19/2022 5.14 - 9.3 0.40 386.99 3.80 4.20 333.19 N NA Good condition, Plug broken, young purple, and then clear. Some unstyle purpling.													
PSY20202				+		1							
MW + 458													
MW-4SS M													. , , , , , , , , , , , , , , , , , , ,
MW-458 Fire Condition		3/2/2021	14.72	15 - 14	14 - 4	0.31	386.70	3.39	3.70	383.31	N	NA	
MW - 45S 9/1/2021 14.85 15 - 14 14 - 4 0.31 386.70 4.55 4.86 362.15 N NA completion of sampling, Re-developed following sampling, D/7 feet of depth galer (14.78 - 14.85 ft DTOC). 12/6/2021 19.80 15 - 14 14 - 4 0.31 386.70 4.15 4.46 382.55 N NA Fine condition, no odor or sheen observed. Ran dry and was sampled at later time. An attempt to removed sediments and residual solids was made at the end of the GME, no additional depth was gained for 6/29/22. 14.90 15 - 14 14 - 4 0.31 386.70 5.29 5.60 381.41 N NA Missing one bolt; purged dry on 6/28/22; ampled on 6/29/22. 14.76 15 - 14 14 - 4 0.31 386.70 5.29 5.60 381.41 N NA Missing one bolt; purged dry on 6/28/22; ampled on 6/29/22. 14.76 15 - 14 14 - 4 0.31 386.70 3.96 4.27 382.74 N NA Good condition; silt on bottom 9/29/2020 16.70 18 - 8 0.37 387.21 5.01 5.38 382.60 N NA Good condition. Purge water furthed light brown and rust particulate (likely iron accumulation) observed. Slight sulfur odor noted. 6/7/2021 16.78 18 - 8 0.37 387.21 4.13 4.50 383.08 N NA Well in good condition. Purge water clear, and no odor or sheen noted. 9/7/2021 16.88 18 - 8 0.37 387.21 4.34 4.71 382.87 N NA Good condition. A brown substance was left of the interface probe after gauging. Slight organic/product-like odor observed during gauging and sampling. Sheen was observed in purge water. Dup-1 collected. 9/7/2022 16.85 18 - 8 0.37 387.21 4.88 5.25 382.33 Y 0.1 Good condition; NAP-like odor sheen on purge water; NAP-Like odor while sampling; trace NAP-Li n bottom of well. 12/9/2022 16.84 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not condition; NAP-Like odor sheen on purge water; NAP-Like odor sheen purg		6/7/2021	14.68	15 - 14	14 - 4	0.31	386.70	4.74	5.05	381.96	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Approx. 3.5 gallons were purged for redevelopment at the end of the sampling event.
1/20/201 19.0 15-14 14-4 0.31 366.70 4.15 4.46 362.55 N NA residual solids was made at the end of the GME, no additional depth was gained	MW - 45S	9/7/2021	14.85	15 - 14	14 - 4	0.31	386.70	4.55	4.86	382.15	N	NA	
6/28/2022 14.90 15-14 14-4 0.31 386.70 5.10 5.41 381.60 N NA Missing one bolt; purged dry on 6/28/22; sampled on 6/29/22.		12/6/2021	19.80	15 - 14	14 - 4	0.31	386.70	4.15	4.46	382.55	N	NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time. An attempt to removed sediments and
9/19/2022 14.82 15-14 14-4 0.31 386.70 5.29 5.60 381.41 N NA Missing one bolt; samples had a slight yellow tint with brown flecks.		6/28/2022	14.90	15 - 14	14 - 4	0.31	386.70	5.10	5.41	381.60	N	NA	
9/29/2020 16.70 18 - 8 0.37 387.21 5.01 5.38 382.60 N NA Good condition; Water clear during purging. 3/2/2021 17.02 18 - 8 0.37 387.21 3.66 4.03 383.55 N NA Well in good condition. Purge water tinted light brown and rust particulate (likely iron accumulation) observed. Slight sulfur odor noted. No sharp to the interface probe after gauging. Slight organic/product-like odor observed during gauging and sampling. Sheen was observed in purge water. Dup-1 collected. 18 - 8 0.37 387.21 4.34 4.71 382.87 N NA Fine condition. Product like odor indicated during gauging. Sheen observed on purge water. Sheen was observed in purge water. Dup-1 collected. 18 - 8 0.37 387.21 4.88 5.25 382.33 Y 0.1 Good condition; water clear during purging. 18 - 8 0.37 387.21 4.88 5.25 382.33 Y 0.1 Plug not on casing. NAPL-like odor while sampling trace of NAPL in probe. 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not on casing. NAPL-like odor, sheen on purge water; trace of NAPL on probe. 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not on casing. NAPL-like odor, sheen while sampling.		9/19/2022	14.82	15 - 14	14 - 4	0.31	386.70	5.29	5.60	381.41	N	NA	
17.02			14.76	15 - 14	14 - 4	0.31	386.70				N	NA	
MW - 46S MW - 46S		9/29/2020	16.70		18 - 8	0.37	387.21	5.01	5.38	382.60	N	NA	Good condition; Water clear during purging.
HW - 46S		3/2/2021	17.02		18 - 8	0.37	387.21	3.66	4.03	383.55	N	NA	
MW - 46S 9/7/2021 16.88 18 - 8 0.37 387.21 4.34 4.71 382.87 N NA Good condition. A brown substance was left of the interface probe after gauging. Slight organic/product-like odor observed during gauging and sampling. Sheen was observed in purge water. Dup-1 collected. 12/6/2021 16.88 18 - 8 0.37 387.21 3.80 4.17 383.41 N NA Fine condition. Product like odor indicated during gauging. Sheen observed on purge water. 9/19/2022 16.85 _ 18 - 8 0.37 387.21 4.88 5.25 382.33 Y 0.1 Good condition; sheen on purge water; NAPL-like odor while sampling; trace NAPL in bottom of well. 6/28/2022 16.84 _ 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not on casing; NAPL-like odor; sheen on purge water; trace of NAPL on probe. 12/19/2022 16.81 _ 18 - 8 0.37 387.21 3.89 4.26 383.32 N NA Good condition; NAPL-like odor and sheen while sampling.		6/7/2021	16.78		18 - 8	0.37	387.21	4.13	4.50	383.08	N	NA	
12/6/2021 16.88 18 - 8 0.37 387.21 3.80 4.17 383.41 N NA Fine condition. Product like odor indicated during gauging. Sheen observed on purge water 9/19/2022 16.85 _ 18 - 8 0.37 387.21 4.88 5.25 382.33 Y 0.1 Good condition; sheen on purge water; NAPL-like odor while sampling; trace NAPL in bottom of well. 6/28/2022 16.84 _ 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not on casing; NAPL-like odor; sheen on purge water; trace of NAPL on probe. 12/19/2022 16.81 _ 18 - 8 0.37 387.21 3.89 4.26 383.32 N NA Good condition; NAPL-like odor and sheen while sampling.	MW - 46S												Good condition. A brown substance was left of the interface probe after gauging. Slight organic/product-like odor observed during
9/19/2022 16.85 _ 18 - 8 0.37 387.21 4.88 5.25 382.33 Y 0.1 Good condition; sheen on purge water; NAPL-like odor while sampling; trace NAPL in bottom of well. 6/28/2022 16.84 _ 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not on casing; NAPL-like odor; sheen on purge water; trace of NAPL on probe. 12/19/2022 16.81 _ 18 - 8 0.37 387.21 3.89 4.26 383.32 N NA Good condition; NAPL-like odor and sheen while sampling.		12/6/2021	16.88		18 - 8	0.37	387.21	3.80	4.17	383.41	N	NA	
6/28/2022 16.84 18 - 8 0.37 387.21 4.53 4.90 382.68 Y 0.1 Plug not on casing; NAPL-like odor; sheen on purge water; trace of NAPL on probe. 12/19/2022 16.81 18 - 8 0.37 387.21 3.89 4.26 383.32 N NA Good condition; NAPL-like odor and sheen while sampling.													
12/19/2022 16.81 18 - 8 0.37 387.21 3.89 4.26 383.32 N NA Good condition; NAPL-like odor and sheen while sampling.											Y		
		12/19/2022					387.21				N	NA	Good condition; NAPL-like odor and sheen while sampling.
3/22/2023 16.81 _ 18 - 8 0.37 387.21 3.83 4.20 383.38 N NA Good condition; NAPL-like odor and sheen while sampling.		3/22/2023	16.81		18 - 8	0.37	387.21	3.83	4.20	383.38	N	NA	Good condition; NAPL-like odor and sheen while sampling.

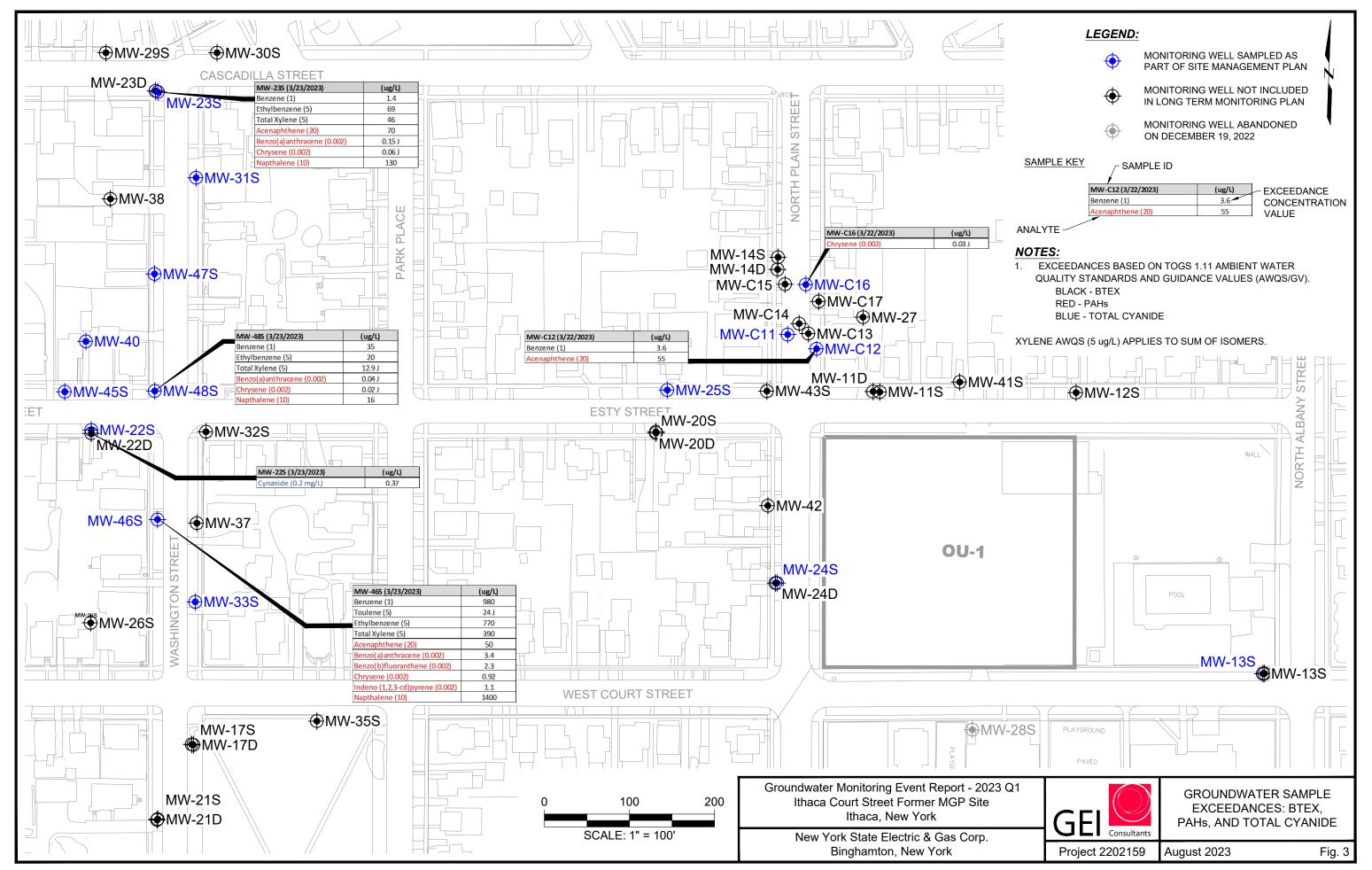
Table 1. Q1 2023 Water Level Measurements and Well Condition Summary NYSEG - Ithaca Court Street MGP Ithaca, NY

Well ID	Date Gauged	Total Depth ¹ (ft bTOC)	Sump Interval (ft bTOC)	Screen Interval (ft bTOC)	Difference between bTOC & bgs (ft)	Elevation of TOC (ft)	Depth to Water (ft bTOC)	Depth to Water (ft bgs)	Water Elevation	NAPL Observed (Y/N)	NAPL Thickness (ft)	Well Condition and Sampling Notes
	9/29/2020	14.50		15 - 5	0.32	387.45	5.01	5.33	382.44	N	NA	Good condition; Gray cloudy water initially noted during purging.
	3/2/2021	14.69		15 - 5	0.32	387.45	3.87	4.19	383.58	N	NA	Well head rusted. Purge water was clear with rust particulates (likely iron accumulation). No odor or sheen was noted.
	6/7/2021	14.64		15 - 5	0.32	387.45	4.67	4.99	382.78	N	NA	Well in good condition. Purge water clear, no odor detected, sheen was noted during purging for one interval, and was not observed again.
MW - 47S	9/7/2021	14.65		15 - 5	0.32	387.45	4.75	5.07	382.70	N	NA	Good condition. Black particulates observed in purge water. No odor noted. YSI technical difficulties, so team purged 3 well volumes before sampling. Well went dry and was allowed to recharge before sampling.
	12/6/2021	14.86		15 - 5	0.32	387.45	4.33	4.65	383.12	N	NA	Fine condition, no odor or sheen observed. Ran dry and was sampled at a later time.
	6/28/2022	15.00		15 - 5	0.32	387.45	4.95	5.27	382.50	N	NA	Missing one bolt; purged dry during sampling on 6/30/22; samples slightly murky.
	9/19/2022	14.93		15 - 5	0.32	387.45	5.37	5.69	382.08	N	NA	Missing one bolt; rubber gasket on plug broken; purged dry on 9/20; sampled on 9/21; samples slightly cloudy and suspended particles visible in samples.
	12/19/2022	15.90		15 - 5	0.32	387.45	4.20	4.52	383.25	N	NA	Missing one bolt.
	9/29/2020	14.30	15 - 14	14 - 4	0.30	386.85	4.12	4.42	382.73	N	NA	Good condition; Gray/black cloudy water initially noted during purging and odor noted during sampling.
	3/2/2021	13.24	15 - 14	14 - 4	0.30	386.85	3.51	3.81	383.34	N	NA	Well in good condition. Purge water initially cloudy and then clear. A slight sulfur odor was noted at the commencement of purging. No sheen was noted. Approx. 5 gallons removed post-sampling to remove previously noted sedimentation/residual solids^ before well ran dry.
	6/7/2021	13.20	15 - 14	14 - 4	0.30	386.85	3.98	4.28	382.87	N	NA	Well in good condition. Purge water clear, and no odor or sheen noted. Approx. 2.5 gallons were purged for redevelopment at the end of the sampling event.
MW - 48S	9/7/2021	13.38	15 - 14	14 - 4	0.30	386.85	3.88	4.18	382.97	N	NA	Good condition. Faint organic-like (clay) odor noted during gauging. Product-like odor observed during first few minutes of purging. No sheen observed. Re-developed following sampling, 0.09 feet of depth gained. (13.39 - 13.48 ft bTOC).
	12/6/2021	13.52	15 - 14	14 - 4	0.30	386.85	3.78	4.08	383.07	N	NA	Fine condition, sheen observed. Metallic-like odor observed during purging. An attempt to remove sediments and residual solids was made at the end of the GME, 0.03ft of depth was gained.
	6/28/2022	13.42	15 - 14	14 - 4	0.30	386.85	4.10	4.40	382.75	N	NA	NAPL-like odor when sampling; sheen on purge water.
	9/19/2022	13.46	15 - 14	14 - 4	0.30	386.85	4.12	4.42	382.73	N	NA	Good condition; NAPL-like odor when sampling.
	12/19/2022	15.42	15 - 14	14 - 4	0.30	386.85	3.68	3.98	383.17	Y	Trace	Good condition; trace of NAPL on probe during gauging.
	3/22/2023	13.42	15 - 14	14 - 4	0.30	386.85	3.69	3.99	383.16	N	NA	Good condition; NAPL-like odor when sampling.

- Notes:


 * MW-33S was mislabeled as MW-36S during the 2021 Q4 GME on field forms, chain of custody, and lab report.
- 1. Measured at the time of gauging
- 2. ft bTOC- feet below top of casing3. ft bgs feet below ground surface
- 4. NM Not measured
- 5. -- Information not available.
- 6. NC Not calculated as ground surface elevation data not available


Information for observations before June 2022 provided by AECOM


Table 2. Q1 2023 Groundwater Analytical Results **NYSEG - Ithaca Court Street MGP** Ithaca, NY

			Sample Name Sample Date Parent Sample	MW-13S 3/22/2023	DUP 3/22/2023 MW-13S	MW-22S 3/23/2023	MW-23S 3/23/2023	MW-46S 3/23/2023	MW-48S 3/23/2023	MW-C11 3/22/2023	MW-C12 3/22/2023	MW-C16 3/22/2023
Analyte	Units	CAS No.	NYS AWQS									
BTEX	ug/L									•	•	
Benzene		71-43-2	1	0.5 U	0.5 U	0.5 U	1.4	980	35	0.5 U	3.6	0.5 U
Toluene		108-88-3	5	2.5 U	2.5 U	2.5 U	2.3 J	24 J	2.5 U	2.5 U	2.5 U	2.5 U
Ethylbenzene		100-41-4	5	2.5 U	2.5 U	2.5 U	69	770	20	2.5 U	2.1 J	2.5 U
o-Xylene		95-47-6	5	2.5 U	2.5 U	2.5 U	36	230	11	2.5 U	2.5 U	2.5 U
m/p-Xylene		179601-23-1	5	2.5 U	2.5 U	2.5 U	10	160	1.9 J	2.5 U	2.5 U	2.5 U
Total BTEX (ND=0)			NE	ND	ND	ND	118.7	2164	67.9	ND	5.7	ND
PAH17	ug/L											
Acenaphthene		83-32-9	20*	0.1 U	0.1 U	0.1 U	70	50	18	0.38	55	9.3
Acenaphthylene		208-96-8	NE	0.1 U	0.1 U	0.1 U	1.5	4.4	0.51	0.06 J	0.58	0.21
Anthracene		120-12-7	50*	0.1 U	0.1 U	0.1 U	3.8	2.8	0.6	0.1 U	0.05 J	0.04 J
Benzo(a)anthracene		56-55-3	0.002*	0.1 U	0.1 U	0.1 U	0.15 J	3.4	0.04 J	0.1 U	0.1 U	0.1 U
Benzo(b)fluoranthene		205-99-2	0.002*	0.1 U	0.1 U	0.1 U	0.5 U	2.3	0.1 U	0.1 U	0.1 U	0.1 U
Benzo(k)fluoranthene		207-08-9	0.002*	0.1 U	0.1 U	0.1 U	0.5 U	0.92	0.1 U	0.1 U	0.1 U	0.1 U
Benzo(g,h,i)perylene		191-24-2	NE	0.1 U	0.1 U	0.1 U	0.5 U	1.1	0.1 U	0.1 UJ	0.1 U	0.1 U
Benzo(a)pyrene		50-32-8	ND	0.1 U	0.1 U	0.1 U	0.5 U	3.4	0.1 U	0.1 U	0.1 U	0.03 J
Chrysene		218-01-9	0.002*	0.1 U	0.1 U	0.1 U	0.06 J	3.1	0.02 J	0.1 U	0.1 U	0.03 J
Dibenz(a,h)anthracene		53-70-3	NE	0.1 U	0.1 U	0.1 U	0.5 U	0.38	0.1 U	0.1 UJ	0.1 U	0.1 U
Fluoranthene		206-44-0	50*	0.1 U	0.1 U	0.1 U	1.5	3.6	0.28	0.1 U	0.04 J	0.28
Fluorene		86-73-7	50*	0.1 U	0.1 U	0.1 U	19	13	1.4	0.1 U	8.1	0.83
Indeno(1,2,3-cd)pyrene		193-39-5	0.002*	0.1 U	0.1 U	0.1 U	0.5 U	1.1	0.1 U	0.1 UJ	0.1 U	0.1 U
2-Methylnaphthalene		91-57-6	NE	0.1 U	0.1 U	0.1 U	94	220	1.7	0.1 U	0.1 U	0.1 U
Naphthalene		91-20-3	10*	0.1 U	0.1 U	0.1 U	130	1400	16	0.1 U	0.1 U	0.07 J
Phenanthrene		85-01-8	50*	0.1 U	0.1 U	0.1 U	17	11	2	0.1 U	0.44	0.14
Pyrene		129-00-0	50*	0.1 U	0.1 U	0.1 U	2	6.2	0.37	0.02 J	0.04 J	0.42
Total PAH (17) (ND=0)			NE	ND	ND	ND	339.01	1726.7	40.92	0.46	64.25	11.35
Cyanides	mg/L											
Total Cyanide		57-12-5	0.2	0.005 U	0.005 U	0.37	0.005	0.005 U	0.002 J	0.011	0.004 J	0.005
Field Measurements												
Temp	°C			11.48		9.67	9.63	11.34	10.03	12.75	13.41	14.76
Specific Conductivity	mS/cm			2.29		0.717	1.39	0.861	2.25	5.11	1.27	4.16
DO	mg/L			2.39		3.61	0.83	0.76	0.74	0.8	0.57	0.83
рН	S.U.			6.77		6.51	6.52	6.67	6.82	6.65	6.89	6.75
ORP	mV			149		63	-49	-143	-96	-177	-139	-191
Turbidity	NTU			1.3		1.1	1.9	4	7.8	21.5	2.9	144

Figures

Attachment 1

Field Sampling Records

						Low	-Flow Groundw	ater Sampling Form	1 A			¥
Project number and nan		02159	1	کر -		_Sampling p	ersonnel	I Newboier	Sample date 3	12773	Well ID	MW-135
cancro	t VIV	1)				_	-	- Christian 2		1	WOII ID	11111113
Well location description	1 67 1	loony		Sampling In	formation		7,1	Samples Collected_	Field value	s at time of sample	collection	:
_ W Car	L 21	/_		Initial depth t	o water	6.1	Time:	1.30_vocs 8260	Time:	10:79		Depth to water:
Well Construction	•	11		Sample intak	e depth	-	The	SVOCs 8270	Sp.Cond.	7.29	mS/cm	NM
Well diameter		7		Pump type ar	nd ID	Perip	cmo3 the	ber VPH	DO	2 2 04	mg/L	-
Well measurement point		IIC		Stabilized floo	w rate	_0:0	242	EPH	ORP	140	mV	
Roadbox condition miss	-	oop or	go.	Stabilized flov	w rate = flow	rate with no	further drawdowr	Metals	рН	G.77	s.u.	
Well screen interval	5-15							PCBs	Temp.	11.48	°C	
Well depth		.391	- 2					A S Other	Turb.	1,3	NTU	
				~				M Sec COC				
Cumulative Volume	Water	Temp.	Sp.Cond.	D.O.	pН	ORP	Turb.	Sample Information:			Well	Volume Conversion:
Time (min.) (gal) Typical Groundwater Va	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	(NTU)		1111-12	e		n. (in) Factor (gal/ft)
9.30 000		5 to 15	0.05 to 5	201.59	5 to 7	1/1 1/1	00aim for <10	Sample ID	111112-)		
9:35 DIE		9.61	784	940	201	16.8	63.9	Sample Time:	0:20		يُلسل	
9146 85		10.31	780	C.87	6.91	183	49.5	10	11 21 30	-5		
9:50 - 80	1	10.70	7-50	9.39	6,89	153	19.6	Color:	CIONEN	clear	6	
9:45 11:05		11.19	2.66	4	5.88	199	939	Turbidity:	3 NTU			/olume = x (r)^2 x 7.48 gal/ft
10:00 1:15		11-71	1 52	9.39	6.87	1,03	65	\rightarrow		11/1		e r = 1/2 diameter in ft
0:05 50		11.28 1Un	7 47	3.58	6.85	144	FU.7	Field Filtered YES(NO)	Analyses:	NIV	I	
10.15	190501	गिर्धेर्र	2.34	1.84	6.86	147	127	Filter type:	NIA			lization Criteria: ond. +/- 3%
10:50 20710) 2	11,48	993	1.39	6.77	149	117					+/- 10%
	+					1		Odor/Sheen/NAPL	No			+/- 10 mV
								Duplicate Collected YESV NO			1.	/- 0.1 Std Units b. +/- 3%
								\bigcirc	MIL			+/- 10% if values >1 NTU
								If yes, duplicate ID:	201			
	-							Purge water disposal?	to ground	drummed)	other:	
								Guidance:				
								1 Position tubing at midpo	oint of saturated s	creened interval	ĺ	
								2 Minimize drop in water I	evel and purge u	ntil narameters a	are stable	_
7								3 Disconnect flow thru cel		-	"O Stable	´
						,		4 Call Project Manager if well goes dry, odd data)	issues arise (e.g.).	stabilization tak	es more	than 2 hrs,
Notes:		J-SF	R= vol	iome colle	ited 5°	mit (h	e min	5 For VPH and VOC samples		rate is less than 20	00 ml/min,	contact PM
	20					/	C 3					
,—————		VA	lumeligat	<u> </u>	7.10							
GEI Consultants, Inc.	5FR=	-	-1002	<	50		lawenee:					6/15/2011
, , , , , , , , , , , , , , , , , , , ,		+,	we (win			1	1::WPROCIADMINISO	P\Updaled JUNE 2011\SOP for Intranet\Section 8 - Gro	oundwaler (GW)\Attachment\	3W-003 Low Flow (low stres	s) Groundwate	r Sampling - Attachment A 2

		Low-Flow Groundw	ater Sampling Form		
Project number and name	ECS	Sampling personnel	J. Deskoices	Sample date 3/22/23	Well ID
Well location description: Northot List St Well Construction Well diameter Well measurement point Roadbox condition Well screen interval Well depth On NPlainSt II A VIII NASING both III NASING both Well screen interval	Sampling Information Initial depth to water Sample Intake depth Pump type and ID Stabilized flow rate Stabilized flow rate = flow	Time:	EPH	Field values at time of san Time: 4.16 Sp.Cond. 7.83 ORP 191 pH 6.75 Temp. 14.76 Turb. 14.4	mple collection: Depth to water: ms/cm mg/L mV s.u. °C NTU
Cumulative Time (min.) (gal) depth (ft) (°C) (mS/cn (mS))))))))))))))))))))))))))))))))))))	n) (mg/L) (s.u.) 5 0 to 4 5 to 7	ORP (mV) (NTU) -100 to +500 aim for <10 C(O)	Sample Time: Color: Turbidity: Field Filtered YES NO Filter type: Odor/Sheen/NAPL. Duplicate Collected YES NO If yes, duplicate ID: Purge water disposal? Guidance: 1 Position tubing at midpo 2 Minimize drop in water I 3 Disconnect flow thru cel	Analyses: Analyses:	rs are stable
Notes: 3 gal	. J		140-04 90.000 2040 ·	, if stabilization flow rate is less tha	n 200 ml/min, contact PM

	0.0		Low-Flow Ground	dwater Sampling Form
Project number and nam		ics	Sampling personnel	Sample date 3/21/23 Well ID MW-C
Well location description: Well Construction Well diameter Well measurement point Roadbox condition Well screen interval Well depth	17.10	Sampling Information Initial depth to water Sample intake depth Pump type and ID Stabilized flow rate Stabilized flow rate = flow	Der pmp 0.056 s v rate with no further drawdow	SVOCs 8270 Sp.Cond. 5.11 mS/cm VPH DO
Cumulative Volume		Cond. D.O. pH	ORP Turb,	
Time (min.) (gal) Typical Groundwater Value 13, 0 0.15 13, 10 0.50 13, 15 0.75 13, 10 10 13, 15 40 13, 15 40 13, 15 40 13, 15 40	es 5 to 15	25 1.10 6.73 57 0.90 6.73 13 8.44 6.71 10 0.31 6.71 7 1.60 6.69 4 0.79 6.68	18 10 -81 239 -125 292 -106 392 -159 2930 -165 2830 -171 25.7 -177 21.5	Sample Information: Sample ID
Notes:				Guidance: 1 Position tubing at midpoint of saturated screened interval 2 Minimize drop in water level and purge until parameters are stable 3 Disconnect flow thru cell during sampling 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data). 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

0 300 100	Low-Flow	Groundwater Sampling Form
Project number and name	Sampling person	nnel Jakaica Sample date 3/12/23 Well ID 1/1/C/2
Well location description: Well Construction Well diameter Well measurement point Roadbox condition Well screen interval Well depth	Sampling Information Initial depth to water Sample intake depth Pump type and ID Stabilized flow rate Stabilized flow rate = flow rate with no further	Samples Collected Field values at time of sample collection: 15:30 Depth to water:
Cumulative Volume Water Temp. Sp.Cond		Turb. Sample Information: 8J Well Volume Conversion:
Time (min.) (gal) depth (ft) (°C) (mS/cm) Typical Groundwater Values 5 to 15 0.05 to 5 TYPICAL GROUNDWATER VALUES 5 to 15 0.05 to 5 TYPICAL GROUNDWATER VALUES 5 to 15 0.05 to 5 TYPICAL GROUNDWATER VALUES 5 to 15 0.05 to 5 TYPICAL GROUNDWATER VALUES 5 to 15 0.05 to	0 to 4 5 to 7 -100 to +500 aim 3 02 7.33 -63 10 1 0 8 7.27 .75 12 .73 7.05 .85 .66 6 95 .95 .64 6 92 -105 .62 6 91 -115 .69 6 90 -124 .58 6.89 -132	Dlam. (in) Factor (gal/ft)
23		Odor/Sheen/NAPL ORP +/- 10 mV PH +/- 0.1 Std Units Duplicate Collected YES(NO) Temp. +/- 3%
		If yes, duplicate ID: Purge water disposal? to ground drummed other:
		Guidance: 1 Position tubing at midpoint of saturated screened interval 2 Minimize drop in water level and purge until parameters are stable
Notes:		3 Disconnect flow thru cell during sampling 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data). 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

		Low-Flow Grounds	water Sampling Form
Project number and name 2202159	TC3	Sampling personnel	Sample date 3/22 Well ID MW-23
Washington #1 + Cascadilla St	Sampling Information Initial depth to water	6.22 Time:	Samples Collected Field values at time of sample collection: Time: 9:35 Depth to water:
Well Construction 2 ¹¹	Sample intake depth	17.	svocs 8270sp.Cond1.39ms/cm6.27 &-
Well diameter	Pump type and ID	Peripun	
Well measurement point	Stabilized flow rate	0.049 00	min EPH ORP -49 mV
Roadbox condition	Stabilized flow rate = flow	rate with no further drawdov	vn Metals pH 6.52 s.u.
Well screen interval			PCBs Temp. 9.63 °c
Well depth	disphedayon	oxidation reduction potential	Scc. COC Turb. 1.9 NTU
Cumulative Volume Water Temp. Sp.Conc		ORP Turb.	
Time (min.) (gal) depth (ft) (°C) (mS/cm		(mV) (NTU)	Sample Information: Well Volume Conversion: Diam. (in) Factor (gal/ft)
Typical Groundwater Values 5 to 15 0.05 to 5		-100 to +500 aim for <10	Sample ID $\frac{MW - 23S}{1000}$ Diam. (in) Factor (gal/ft)
\$10 005 625 949 135 \$15 040 627 981 1.28	1.08 7.02	95 2.1	Sample Time: 9:35 1.5 0.09 2 0.16
9:00 4.60 6.27 9.73 1.29 9:05 .90 6.26 9.68 1.31	0.91 6.82	36 2.6	Color: 4 0.65 6 1.50
9:10 1.00 6.27 9.69 1.33	-97 6.64	12 1.8	well volume =
9:15 1.25 6.30 9.65 1.33		-10 1.9	3.14 X (1)*2 X 7.46 gai/it
9:25 1.6 6,27 9.06 1.36	- 87 G.55	-35 1.9	Field Filtered YES / NO. Analyses: Where r = 1/2 diameter in ft
9:30 2.0 6.26 9.67 1.37 9:35 2.2 6.27 9.63 1.39	.84 6.54	-44 2.0	Stabilization Criteria:
1 3 2 2 1 1 1 3 1	1 63 0,32	1.7	Filter type: Sp.Cond. +/- 3% DO +/- 10%
			Odor/Sheen/NAPL ORP +/- 10 mV
	 		Duplicate Collected YES /NO Temp. +/- 3%
			Turb. +/- 10% if values >1 i
		<u> </u>	If yes, duplicate ID:
			Purge water disposal? to ground drummed other:
			Guidance:
			1 Position tubing at midpoint of saturated screened interval
			Minimize drop in water level and purge until parameters are stable
			3 Disconnect flow thru cell during sampling
			Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data).
Notes:			5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

-							Low	Flow Ground	dwater Sampling Fptym
Project numi	ber and name	е	4703	,59_	iĆS		_Sampling p	ersonnel	Sample date 3/23/23 Well ID MW-48S
20 March 10 CO	description:		ner of		Sampling Inf	ormation			Samples Collected Field values at time of sample collection:
W)ashina	gton St	+ Etsy	st		Initial depth to	water	3.87	+ Time:	LD: OO AM VOCs 8260 Time: Depth to water:
Well Constr	uction	U	N		Sample intake	e depth		13'	SVOCs 8270 Sp.Cond. 2.25 mS/cm 3.7/
Well dlamete	er		<u></u>		Pump type an	id iD	_ Pe	a hour	
Well measure	ement point		TI		Stabilized flow	v rate	0.	05 60	MIN EPH ORP -96 mV
Roadbox cor	ndition	9000			Stabilized flow	v rate = flow	rate with no f	urther drawdo	
Well screen i	interval	78	-18,						PCBs Temp. 10.03 °C
Well depth		- 3	7.47.					9	Decolher Turb. NTU
Cumulative	Volume	Water	Temp.	Sp.Cond.	D.O.	pН	ORP		
Time (min.)	(gal)	depth (ft)	(°C)	(mS/cm)	(mg/L)	(s.u.)	(mV)	Turb. (NTU)	Sample Information: Well Volume Conversion; Diam. (in) Factor (gal/ft)
Typical Groun	ndwater Valu	3.90	5 to 15	0.05 to 5	0 to 4	5 to 7		aim for <10	Sample ID 1 0.04
10:05	.4	3.90	9,88	1,98	1,11	6.63	-24	8.7	Sample Time: 1.5 0.09 2 0.16
10:10	.75	3.93	9.95	2.13	.88	6.74	-54	8.0	Sample Time: 2 0.16 4 0.65
10:30	13	3.9	9.98	2.18	,80	6.79	-78	8.0	6 1.50
101as	1.35	3.91	10.03	2.35	,74	6.82	-96	7.8	well volume = 3.14 x (r)^2 x 7.48 gal/ft
									Field Filtered YES / NO Analyses: where r = 1/2 diameter in ft
									Filter type: Sp.Cond. +/- 3%
									Odor/Sheen/NAPL
									pH +/- 0.1 Std Units
									Duplicate Collected YES (No Temp. +/- 3% Turb. +/- 10% if values >1 NT
-									If yes, duplicate ID:
									Purge water disposal? to ground drummed other:
									Guidance:
									1 Position tubing at midpoint of saturated screened interval
									2 Minimize drop in water level and purge until parameters are stable
									3 Disconnect flow thru cell during sampling
									4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs
Notes:									well goes dry, odd data). 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM
									Total to 10 10 10 10 10 10 10 10 10 10 10 10 10

Low-Flow Groundwater Sampling Form 1201160 ICS Project number and name Sample date 3/23/23 MW-225 Sampling personnel Well ID Well location description: Sampling Information Samples Collected Field values at time of sample collection: 346 Time: 10:50 Initial depth to water VOCs 8260 Time: Depth to water: **Well Construction** 3.88 4 Sample intake depth SVOCs 8270 Sp.Cond. mS/cm Well dlameter Pump type and ID **VPH** DO mg/L Well measurement point Stabilized flow rate EPH ORP Roadbox condition Stabilized flow rate = flow rate with no further drawdown 6.51 Metals Well screen interval **PCBs** Temp. Well depth Other Turb. NTU Cumulative Volume Water Temp. Sp.Cond. D.O. pН ORP Turb. Sample Information: Well Volume Conversion: Time (min.) (gai) depth (ft) (°C) (mS/cm) (mg/L) (s.u.) (mV) (NTU) Diam. (in) Factor (gal/ft) Typical Groundwater Values MW-22S 5 to 15 0.05 to 5 0 to 4 5 to 7 100 to +500 aim for <10 Sample ID 0.04 10:50 0.05 0.734 7.2 4.05 -41 2.2 1.5 0.09 10:55 0.65 9.37 72 6.8 4.0 -17 Sample Time: 0.16 11:00 0.720 3.84 6.61 1.2 0.65 719 6.54 20 Color: 1.50 6.51 34 well volume = 75 3.88 3 0. 6.48 MU Turbidity: 3.14 x (r)^2 x 7.48 gal/ft 11:20 2.10 3.88 9.53 0.718 3.90 0.9 6.47 56 where r = 1/2 diameter in ft 3.88 0.717 3.61 Field Filtered YES //NO Stabilization Criteria: Filter type: Sp.Cond. +/- 3% DO +/- 10% Odor/Sheen/NAPL ORP +/- 10 mV pH +/- 0.1 Std Units Duplicate Collected YES NO Temp. +/- 3% Turb. +/- 10% if values >1 NTU If yes, duplicate ID: Purge water disposal? to ground drummed other: Guidance: 1 Position tubing at midpoint of saturated screened interval 2 Minimize drop in water level and purge until parameters are stable 3 Disconnect flow thru cell during sampling 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data). Notes: 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM

GEI Consultants, Inc.

Low-Flow Groundwater Sampling Form MW-46S 2202159 Sample date 3/23/23 Jordan Well ID Sampling personnel Project number and name Field values at time of sample collection: Well location description: Samples Collected phour South Sampling Information 3.8ft Time: 11:45 am vocs 8260 12:45 intersection Depth to water: Time: Initial depth to water mS/cm SVOCs 8270 Sp.Cond. **Well Construction** Sample intake depth DO mg/L **VPH** Well diameter Pump type and ID TTC Stabilized flow rate ORP Well measurement point Stabilized flow rate = flow rate with no further drawdown рΗ O.DAC Metals Roadbox condition 11.34 °C **PCBs** Temp Well screen interval 4.0 * See COC Turb. NTU Other Well depth Sample Information: Well Volume Conversion: Water D.O. ORP Turb. Cumulative Volume Temp. Sp.Cond. pH Diam. (in) Factor (gal/ft) (mV) (NTU) (gal) depth (ft) (°C) (mS/cm) (mg/L)(s.u.) Time (min.) 100 to +500 aim for <10 0.04 Typical Groundwater Values 5 to 15 0.05 to 5 0 to 4 5 to 7 Sample ID 0.09 0.15 4.06 10.93 2.57 IID 0.16 29 7.6 0.25 60.60 Sample Time: 0.65 0.50 12,604 6.1 17:00 1.50 5,4 0,100 Color: 4-7 well volume = 00 3.14 x (r)^2 x 7.48 gal/ft 1.29 806 Turbidity: where r = 1/2 diameter in ft :20 Field Filtered YES/ NO 0.825 51 .09 Stabilization Criteria: 0.841 4.2 0.77 Sp.Cond. +/- 3% 7.00 Filter type: DO +/- 10% 2.25 4.15 0.861 4.0 None ORP +/- 10 mV 0.861 0.76 -1434.0 Odor/Sheen/NAPL 12:45 2.40 6.67 pH +/- 0.1 Std Units Duplicate Collected YES (NO Temp. +/- 3% Turb. +/- 10% if values >1 NTU If yes, duplicate ID: drummed Purge water disposal? to ground Guidance: 1 Position tubing at midpoint of saturated screened interval 2 Minimize drop in water level and purge until parameters are stable 3 Disconnect flow thru cell during sampling 4 Call Project Manager if issues arise (e.g. stabilization takes more than 2 hrs, well goes dry, odd data). 5 For VPH and VOC samples, if stabilization flow rate is less than 200 ml/min, contact PM Notes: 18.7

Attachment 2

Data Usability Summary Report

Site: Ithaca Court Street Laboratory: Alpha Analytical

Report Number: L2315690

Reviewer: Lorie MacKinnon/GEI Consultants

Date: April 25, 2023

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
MW-13S	L2315690-01	BTEX, PAH, Cyanide
MW-C16	L2315690-02	BTEX, PAH, Cyanide
MW-C11	L2315690-03	BTEX, PAH, Cyanide
MW-C12	L2315690-04	BTEX, PAH, Cyanide
MW-23S	L2315690-05	BTEX, PAH, Cyanide
MW-48S	L2315690-06	BTEX, PAH, Cyanide
MW-22S	L2315690-07	BTEX, PAH, Cyanide
MW-46S	L2315690-08	BTEX, PAH, Cyanide
DUP	L2315690-09	BTEX, PAH, Cyanide

Associated QC Samples:

Field Duplicate pair: MW-13S/DUP

The above-listed aqueous samples were collected on March 22 and 23, 2023 and were analyzed for BTEX volatile organic compounds (VOCs) by SW-846 method 8260D, polynuclear aromatic hydrocarbon (PAH) semivolatile organic compounds (SVOCs) by SW-846 method 8270E-SIM, and total cyanide by SW-846 method 9012B. The data validation was performed based on the following USEPA Region 2 Documents: SOP HW-33A (Revision 1) *Low/Medium Volatile Data Validation* (September 2016), Standard Operating Procedure (SOP) HW-35A (Revision 1) *Semivolatile Data Validation* (September 2016), and SOP 3c (Revision 1), *SOP for the Evaluation of Cyanide for the Contract Laboratory Program* (September 2016), as well as by the methods referenced by the data package and professional and technical judgment.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS)/LCS Duplicate (LCSD) Results
- Internal Standards
- Field Duplicate Results
- Quantitation Limits
- Sample Quantitation and Compound Identification

All data appear usable as reported or usable with minor qualification due to laboratory blank contamination, matrix spike recovery outliers, and uncertainty for levels below the reporting limit. These results were considered valid; even though some were qualified as discussed below.

The validation findings were based on the following information.

Data Completeness

The data package was complete as received by the laboratory.

Holding Times and Sample Preservation

All hold time and sample preservation criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All initial and continuing calibration criteria were met.

Blanks

Contamination was not detected in the laboratory instrument and method blank samples, except where noted below.

Analyte	Blank ID/Associated samples	Concentration Detected	2X Level	10X Level	Validation Actions		
PAH							
Benzo(a)anthracene	Method WG17598424-1/ MW- 13S, MW-C16, MW- C11, MW-C12, DUP	0.03 ug/L	0.06 ug/L	0.3 ug/L	Qualify the result for benzo(a)anthracene as nondetect (U) at the RL in samples MW-C16 and MW-C12.		
Benzo(b)fluoranthene		0.02 ug/L	0.04 ug/L	0.2 ug/L	Qualify the results for benzo(b)fluoranthene and		
Benzo(k)fluoranthene		0.02 ug/L	0.04 ug/L	0.2 ug/L	benzo(k)fluoranthene as nondetect (U) at the RL in sample MW-C16.		
Benzo(ghi)perylene		0.03 ug/L	0.06 ug/L	0.3 ug/L	Validations actions were not		
Indeno(123-cd)pyrene		0.02 ug/L	0.04 ug/L	0.3 ug/L	required.		

Blank Actions:

If the sample result is <2x blank contamination detected or <RL; professional judgment was taken to report the result as nondetect (U) at the reported sample level or RL.

If the sample result is $\geq 2x$ Blank Level (or RL) and < 10x Blank Level; professional judgment was taken to report the sample result as estimated (J); biased high.

If the sample result is nondetect or > 10x Blank Level; validation action was not required.

Surrogate Recoveries

All surrogate recovery criteria were met except where noted below.

Sample	Surrogate	Recovery (%)	Control Limits (%)	Validation Actions
			PA	Н
MW-23S	Nitrobenzene-d5	121		Validation actions were not required as one surrogate was
MW-22S	Nitrobenzene-d5	125	23-120	outside of control limits as is acceptable per the method.
MW-46S	Nitrobenzene-d5	130		

MS/MSD Results

MS/MSD analyses were performed on sample MW-C11 for BTEX, PAH, and cyanide. All recovery and precision criteria were met, for sample levels less than four times the spike, except where noted below.

Analyte	MS/MSD	RPD	QC Limits	Validation Actions
	Recovery (%)	(%)	(%)	
		I	MS Sample M	W-C11
			PAH	
Benzo(ghi)perylene	26, 20	-		Estimate (UJ) the nondetect results for
Dibenzo(ah)anthracene	28, 21	-	40-140	benzo(ghi)perylene, dibenzo(ah)anthracene, and
Indeno(123-cd)pyrene	30, 23	-		indeno(123-cd)pyrene in sample MW-C11; Low bias.
- Criteria met				

Laboratory Duplicate Results

MSD analyses were performed in lieu of laboratory duplicate analyses.

LCS/LCSD Results

All recovery and precision criteria were met.

Internal Standards

All criteria were met.

Field Duplicate Results

Samples MW-13S and DUP were submitted as the field duplicate pair with this sample group. All results were nondetect in these samples.

Quantitation Limits

Results were reported which were below the quantitation limit/reporting limit (RL) and above the method detection limit (MDL). These results were qualified as estimated (J) by the laboratory.

The following table lists the sample dilutions which were performed.

Sample	Analysis	Dilution Reported
MW-23S	РАН	The sample was analyzed at a 5-fold dilution. RLs were elevated in this sample.
MW-46S	PAH	The sample was analyzed undiluted and at a 5-fold dilution. Results were combined to report all results within the calibration range and the lowest reporting limits.
	BTEX	The sample was analyzed at a 10-fold dilution. All results were detected.

Sample Quantitation and Compound Identification

Calculations were spot-checked. Compound identification criteria were met.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Lab Number:

L2315690

Report Date:

Date Collected:

Date Received:

Field Prep:

03/31/23

03/22/23 10:20

Not Specified

03/24/23

Project Number:

2202159

SAMPLE RESULTS

Lab ID:

L2315690-01

NYSEG ITHACA COURT STREET

Client ID:

MW-13S

Sample Location:

Project Name:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method:

1,8260D

Analytical Date:

03/29/23 09:02

Analyst:

PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	*
p/m-Xylene	ND		ug/l	2.5	0.70	1:
o-Xylene	ND		ug/l	2.5	0.70	#
Surrogate		*	% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			108		7	70-130
Toluene-d8			100		7	70-130
4-Bromofluorobenzene			98		7	70-130
Dibromofluoromethane			102		7	70-130

Project Name:

NYSEG ITHACA COURT STREET

Project Number:

2202159

Lab Number:

L2315690

Report Date:

Date Collected:

Date Received:

Field Prep:

03/31/23

03/22/23 12:30

Not Specified

03/24/23

SAMPLE RESULTS

Lab ID:

L2315690-02

Client ID:

MW-C16

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method:

1,8260D

Analytical Date:

03/29/23 09:23

Analyst:

PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab	a Skalue				
Benzene	ND		ug/I	0.50	0.16	1:
Toluene.	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1:
p/m-Xylene	ND		ug/l	2.5	0.70	1
a-Xylene	ND		ug/l	2.5	0.70	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4		14	103	70-130		70-130
Toluene-d8			103	70-130		70-130
4-Bromofluorobenzene			100	70-130		70-130
Dibromofluoromethane			105	70-130		

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

Project Number:

Project Name:

2202159

Lab ID:

L2315690-03

NYSEG ITHACA COURT STREET

Client ID:

MW-C11

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method:

1,8260D

Analytical Date:

03/29/23 09:44

Analyst:

PID

Date Collected: 03/22/23 14:00 Date Received: 03/24/23

Date Received: Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL D	ilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Benzene	ND		ug/l	0.50	0.16	1.
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	t
Surrogate			% Recovery	Qualifier	Accepta Criteri	
1,2-Dichloroethane-d4			112		70-1	30
Toluene-d8			101		70-1	30
4-Bromofluorobenzene			97		70-1	30
Dibromofluoromethane			106		70-1	30

NYSEG ITHACA COURT STREET

Lab Number:

L2315690

Project Name: Project Number:

2202159

Report Date:

03/31/23

Lab ID:

SAMPLE RESULTS

Date Collected:

Field Prep:

03/22/23 15:30

Client ID:

L2315690-04 MW-C12

Sample Location:

ITHACA NY

Date Received:

03/24/23 Not Specified

Sample Depth:

Matrix:

Water

Analytical Method:

1,8260D

Analytical Date:

03/29/23 10:05

Analyst:

PID

Parameter	Result	Qualifier	Units	RL	MDL I	Ollution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Benzene	3.6		ug/l	0.50	0.16	12
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	2.1	3 -	ug/I	2.5	0.70	18
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	10
Surrogate			% Recovery	Qualifier	Accepta Criter	
1,2-Dichloroethane-d4			100		70-	30
Toluene-d8			100		70-	130
4-Bromofluorobenzene			95		70-	130
Dibromofluoromethane	20		106		70-	130

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

2202159

Lab ID:

L2315690-05

NYSEG ITHACA COURT STREET

Client ID:

Project Name:

Project Number:

MW-23S

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water 1,8260D

Analytical Method: Analytical Date:

03/29/23 10:26

Analyst:

PID

Date Collected:

03/23/23 09:35

Date Received:

03/24/23

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS	- Westborough Lab	1/10//10	0			
Benzene	1.4		ug/l	0.50	0.16	1
Toluene	2.3	1 -	ug/l	2.5	0.70	1
Ethylbenzene	69		ug/l	2.5	0,70	1
o/m-Xylene	10		ug/l	2.5	0.70	1
o-Xylene	36		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	106	70-130	

Lab Number:

L2315690

Report Date:

03/31/23

2202159

SAMPLE RESULTS

Lab ID:

L2315690-06

NYSEG ITHACA COURT STREET

Client ID:

Project Name:

Project Number:

MW-48S

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date:

1,8260D 03/29/23 10:46

Analyst:

PID

Date Collected:

03/23/23 10:25

Date Received:

03/24/23

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL D	illution Factor
Volatile Organics by GC/MS - West	borough Lab		NEVERSE BUILDING	(注: 18-3)		III, MIRZONS, S
Benzene	35		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	20		ug/l	2.5	0.70	1
p/m-Xylene	1.9	J	ug/l	2.5	0.70	1
o-Xylene	11		ug/l	2.5	0.70	1
Surrogate			% Recovery	Qualifier	Accepta Criter	
1,2-Dichloroethane-d4			100		70-1	30
Toluene-d8			99		70-1	30
4-Bromofluorobenzene			96		70-1	30
Dibromofluoromethane			104		70-1	30

Lab Number: NYSEG ITHACA COURT STREET

L2315690 Project Name: Report Date: 03/31/23 Project Number: 2202159

SAMPLE RESULTS

03/23/23 11:25 Date Collected: Lab ID: L2315690-07 Date Received: 03/24/23 MW-22S Client ID: Field Prep: Not Specified Sample Location: ITHACA NY

Sample Depth:

Water Matrix: Analytical Method: 1,8260D 03/29/23 11:07 Analytical Date:

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/I	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
o/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND:		ug/l	2.5	0.70	1
Surrogate			% Recovery	Qualifier	Acceptance lifter Criteria	
1,2-Dichloroethane-d4			106		70-130	
Toluene-d8			100		70-130	
4-Bromofluorobenzene			101		70-	-130
Dibromofluoromethane			104		70-130	

Lab Number:

L2315690

Report Date:

03/31/23

2202159

SAMPLE RESULTS

Lab ID:

L2315690-08

NYSEG ITHACA COURT STREET

D

MW-46S

Client ID: Sample Location:

ITHACA NY

Sample Depth:

Project Name:

Project Number:

Matrix:

Water

Analytical Method: Analytical Date:

1,8260D 03/29/23 11:28

Analyst:

PID

Date Collected:

03/23/23 12:45

Date Received:

03/24/23

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Benzene	980		ug/l	5.0	1.6	10
Toluene	24	1 3	ug/l	25	7.0	10
Ethylbenzene	770		ug/I	25	7.0	10
p/m-Xylene	160		ug/l	25	7.0	10
o-Xylene	230		ug/l	25	7.0	10
Surrogate			% Recovery	Qualifier	Acceptance fier Criteria	
1,2-Dichloroethane-d4		98		7	70-130	
Toluene-d8			101	70-130		
4-Bromofluorobenzene			97 70-130		70-130	
Dibromofluoromethane			103 70-130			

Lab Number:

L2315690

Report Date:

Date Collected:

Date Received:

Field Prep:

03/31/23

03/22/23 00:00

Not Specified

03/24/23

Project Number: 2202159

SAMPLE RESULTS

Lab ID:

L2315690-09

Client ID:

DUP

Sample Location:

Project Name:

ITHACA NY

NYSEG ITHACA COURT STREET

Sample Depth:

Matrix:

Water

Analytical Method:

1,8260D

Analytical Date:

03/29/23 11:49

Analyst:

PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0,70	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4			108			70-130
Toluene-d8			101			70-130
4-Bromofluorobenzene			102			70-130
Dibromofluoromethane			109			70-130

Project Name: NYSEG ITHACA COURT STREET

SAMPLE RESULTS

Lab Number:

L2315690

Project Number:

2202159

Report Date:

03/31/23

Lab ID:

L2315690-01

Client ID:

MW-13S

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date:

1,8270E-SIM 03/28/23 13:14

Analyst:

DV

Date Collected:

03/22/23 10:20

Date Received:

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date: 03/27/23 15:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	740
2-Chloronaphthalene	ND		ug/l	0,20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	10
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1.
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1:
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/I	0.10	0.02	1
Dibenzo(a;h)anthracene	ND		ug/l	+ 0.10	0.01	1
indeno(1,2,3-cd)pyrene	ND		ug/I	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	110		23-120	
2-Fluorobiphenyl	68		15-120	
4-Terphenyl-d14	68		41-149	

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

SAMPLE RESULTS

(75) (11-185) (12-23-14-12-14-12-1

Lab ID: Client ID: L2315690-02 MW-C16

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date: 1,8270E-SIM 03/28/23 13:30

Analyst:

DV

Serial_No:03312313:30

Lab Number:

L2315690

Report Date:

03/31/23

Date Collected:

03/22/23 12:30

Date Received:

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date:

03/27/23 15:51

Parameter	Result	Qualifier	Units	RL	MDL Diluti	on Factor
Semivolatile Organics by GC/MS	-SIM - Westborough Lab					
Acenaphthene	9.3		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/i	0.20	0.02	1
Fluoranthene	0.28		ug/l	0.10	0.02	1
Naphthalene	0.07	J	ug/l	0.10	0.05	1
Benzo(a)anthracene	-0.05- 0.10L) - +	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	-0.03 O. IOU	4	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.01- 0.100		ug/l	0.10	0.01	1
Chrysene	0.03	J	ug/l	0,10	0.01	1
Acenaphthylene	0.21		ug/I	0.10	0.01	1
Anthracene	0.04	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0,10	0.01	1
Fluorene	0.83		ug/l	0.10	0.01	51
Phenanthrene	0.14		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	0.42		ug/l	0.10	0.02	13
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Surrogate			% Recovery	Qualifier	Acceptance Criteria	

Surrogate	% Recovery Qu	Acceptance ualifier Criteria
Nitrobenzene-d5	113	23-120
2-Fluorobiphenyl	68	15-120
4-Terohenyl-d14	65	41-149

Lab Number:

L2315690

Report Date:

03/31/23

NYSEG ITHACA COURT STREET

Project Name: Project Number:

2202159

SAMPLE RESULTS

Lab ID:

L2315690-03

Client ID:

MW-C11

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method:

1,8270E-SIM 03/28/23 13:47

Analytical Date: Analyst:

DV

Date Collected:

03/22/23 14:00

Date Received:

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date: 03/27/23 15:51

Parameter	Result	Qualifier	Units	RL	MDL Diluti	on Factor
Semivolatile Organics by GC/MS-S	IM - Westborough Lab	N/B/S				
Acenaphthene	0.38		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	35
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	.1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	DN		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	.1
Chrysene	ND		ug/l	0.10	0.01	ĵį.
Acenaphthylene	0.06	J	ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND U	Γ,	ug/l	0.10	0.01	1
Fluoreno	ND	100	ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND US	Γ -	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene		J.	ug/l	0.10	0.01	1
Pyrene	0.02	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Surrogate			% Recovery	Qualifier	Acceptance Criteria	•

102

61

58

23-120

15-120

41-149

Nitrobenzene-d5

2-Fluorobiphenyl

4-Terphenyl-d14

NYSEG ITHACA COURT STREET Lab Number:

L2315690

Report Date:

03/31/23

Lab ID:

2202159

SAMPLE RESULTS

L2315690-04 Client ID:

Sample Location:

MW-C12 ITHACA NY

Sample Depth:

Project Name:

Project Number:

Matrix:

Water

Analytical Method: Analytical Date:

1,8270E-SIM 03/28/23 14:36

Analyst:

DV

Date Collected: 03/22/23 15:30 Date Received:

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date:

03/27/23 15:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	SIM - Westborough Lab					
Acenaphthene:	55		ug/l	0.10	0.01	1
2-Chipronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.04	J	ug/l	0.10	0.02	1
Vaphthalene	ND		ug/l	0.10	0.05	1
Senzo(a)anthracene	-0.02 0,10V	+	ug/l	0.10	0.02	1
šenzo(a)pyrene	ND		ug/l	0.10	0.02	1
enzo(b)fluoranthene	ND		ug/l	0.10	0.01	Ť.
enzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0,10	0.01	*
cenaphthylene	0.58		ug/l	0,10	0.01	10
nthracene	0.05	J.	ug/l	0.10	0.01	1
enzo(ghl)perylene	ND		ug/l	0.10	0.01	1:
luorene	8.1		ug/l	0.10	0.01	1
henanthrene	0.44		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
ndeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	0.04	J.,	ug/l	0.10	0.02	ĭ
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	85		23-120	
2-Fluorobiphenyl	53		15-120	
4-Terphenyl-d14	62		41-149	

Project Name:

NYSEG ITHACA COURT STREET

D

Project Number:

2202159

Lab ID:

L2315690-05

Client ID: Sample Location: MW-23S ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date:

1,8270E-SIM 03/30/23 13:54

Analyst:

RP

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

03/23/23 09:35

L2315690

03/31/23

Date Received:

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date: 03/28/23 11:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough L	ab				
Acenaphthene	70		ug/l	0.50	0.07	5
2-Chloronaphthalene	ND		ug/l	1.0	0.09	5
Fluoranthene	1.5		ug/l	0.50	0.10	5
Naphthalene	130		ug/l	0.50	0.24	5
Benzo(a)anthracene	0.15	J .	ug/l	0.50	0.10	5
Benzo(a)pyrene	ND		ug/l	0.50	80.0	5
Benzo(b)fluoranthene	ND		ug/l	0.50	0.06	5
Benzo(k)fluoranthene	ND		ug/l	0.50	0.04	5
Chrysene	0.06	J.	ug/l	0.50	0.06	5
Acenaphthylene	1.5		ug/l	0.50	0.06	5
Anthracene	3.8		ug/l	0.50	0.07	5
Benzo(ghi)perylene	ND		ug/l	0.50	0.07	5
Fluorene	19		ug/l	0.50	0.07	5
Phenanthrene	17		ug/l	0.50	0.12	5
Dibenzo(a,h)anthracene	ND		ug/l	0.50	0.06	5
Indeno(1,2,3-cd)pyrene	ND		ug/I	0.50	0.06	5.
Pyrene	2.0		ug/l	0.50	0,10	5
2-Methylnaphthalene	94		ug/l	0.50	0.11	5

% Recovery

121

79

90

Acceptance

Criteria

23-120

15-120

41-149

Qualifier

Q

Surrogate

Nitrobenzene-d5

2-Fluorobiphenyl

4-Terphenyl-d14

NYSEG ITHACA COURT STREET

Lab Number:

L2315690

Project Name: Project Number:

2202159

Report Date:

03/31/23

Lab ID:

L2315690-06

Client ID:

MW-48S

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method:

1,8270E-SIM

Analytical Date:

03/29/23 13:26

Analyst:

RP

Date Collected: Date Received: 03/23/23 10:25

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C Extraction Date:

03/28/23 11:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough L	ab				
Acenaphthene	18		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.28		ug/I	0.10	0.02	t
Naphthalene	16		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.04	2 -	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	0.02	J.	ug/l	0.10	0.01	1
Acenaphthylene	0.51		ug/l	0.10	0.01	1
Anthracene	0.60		ug/l	0.10	0.01	1 -
Benzo(ghi)perylene	NO		ug/l	0.10	0.01	4
Fluorene	1.4		ug/l	0.10	0.01	1
Phenanthrene	2,0		ug/l	0.10	0.02	-1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0,10	0.01	- 1
Pyrene	0.37		ug/l	0.10	0.02	1
2-Methylnaphthalene	1.7		ug/l	0.10	0.02	(1

SAMPLE RESULTS

Lab Number:

L2315690

Report Date:

03/31/23

Lab ID:

2202159

SAMPLE RESULTS

Client ID:

L2315690-07

Sample Location:

Project Name:

Project Number:

MW-22S ITHACA NY

NYSEG ITHACA COURT STREET

Sample Depth:

Matrix:

Water

Analytical Method:

1,8270E-SIM

Analytical Date:

03/29/23 13:43

Analyst:

RP

Date Collected: 03/23/23 11:25 03/24/23 Date Received: Field Prep: Not Specified

Extraction Method: EPA 3510C

Extraction Date: 03/28/23 11:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0:10	0.02	1
Benzo(a)pyrene	ND		ug/I	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/I	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND:		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	31
Dibenzo(a,h)anthracene	ND.		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	61
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	(1)
Surrogate			% Recovery	Qualifier	Accep Crit	

125

75

79

Q

23-120

15-120

41-149

Nitrobenzene-d5

2-Fluorobiphenyl

4-Terphenyl-d14

Lab Number:

L2315690

Report Date:

03/31/23

2202159

SAMPLE RESULTS

Lab ID:

L2315690-08

NYSEG ITHACA COURT STREET

Client ID:

MW-46S

Sample Location:

Project Name:

Project Number:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method:

1,8270E-SIM

Analytical Date:

03/29/23 13:59

Analyst:

RP

03/23/23 12:45 Date Collected: Date Received: 03/24/23 Not Specified Field Prep:

Extraction Method: EPA 3510C Extraction Date: 03/28/23 11:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab				
Acenaphthene	50		ug/l	0.10	0.01	8
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	3.6	2 2	ug/l	0.10	0.02	1
Naphthalene	—1200— I	400 E-	ug/l	0.10	0.05	+25
Benzo(a)anthracene	3.4		ug/l	0.10	0.02	
Benzo(a)pyrene	3.4		ug/l	0.10	0.02	্ৰ
Benzo(b)fluoranthene	2.3		ug/I	0.10	0.01	1
Benzo(k)fluoranthene	0.92		ug/l	0.10	0.01	- 11
Chrysene	3.1		ug/l	0.10	0.01	1
Acenaphthylene	4.4		ug/l	0.10	0.01	81
Anthracene	2.8		ug/l	0.10	0.01	77
Benzo(ghi)perylene	1.1		ug/l	0.10	0.01	2300
Fluorene	13		ug/l	0.10	0.01	1
Phenanthrene	.11		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.38		ug/l	0.10	0.01	34
Indeno(1,2,3-cd)pyrene	1.1		ug/l	0.10	0.01	1
Pyrene	6.2		ug/l	0.10	0.02	1
2-Methylnaphthalene	-210 2	20 -	ug/l	0.10	0.02	-1 25

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	130	Q	23-120	
2-Fluorobiphenyl	74		15-120	
4-Terphenyl-d14	73		41-149	

Lab Number:

L2315690

Report Date:

03/31/23

D

NYSEG ITHACA COURT STREET

Project Name: Project Number:

2202159

SAMPLE RESULTS

Lab ID: Client ID:

L2315690-08

MW-46S

Sample Location:

ITHACA NY

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date: 1,8270E-SIM 03/30/23 15:42

Analyst:

RP

Date Collected:

03/23/23 12:45

Date Received:

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date:

03/28/23 11:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/M	S-SIM - Westborough La	b					
Naphthalene	1400		ug/l	2.5	1.2	25	
2-Methylnaphthalene	220		ug/l	2.5	0.55	25	

Lab Number:

L2315690

Report Date:

03/31/23

Lab ID:

2202159

SAMPLE RESULTS

L2315690-09

Client ID:

DUP

Sample Location:

Project Name:

Project Number:

ITHACA NY

NYSEG ITHACA COURT STREET

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date:

1,8270E-SIM 03/28/23 14:53

Analyst:

DV

Date Collected: Date Received: 03/22/23 00:00

03/24/23

Field Prep:

Not Specified

Extraction Method: EPA 3510C

Extraction Date:

03/27/23 15:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ib	Holly H			
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/I	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	30
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1:
Indeno(1,2,3-cd)pyrene	ND		ug/l	0,10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0,02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	99		23-120	
2-Fluorobiphenyl	63		15-120	
4-Terphenyl-d14	68		41-149	

Project Name:

NYSEG ITHACA COURT STREET

Lab Number:

L2315690

Project Number: 2202159

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-01

Client ID:

MW-13S

Sample Location: ITHACA NY

Date Collected:

03/22/23 10:20

Date Received:

03/24/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Date

Dilution Date Analytical Factor Prepared Method Parameter Result Qualifier Units RL MDL Analyzed Analyst General Chemistry - Westborough Lab Cyanide, Total ND 0.005 0.001 mg/l 03/30/23 12:20 03/30/23 18:18 1,9010C/9012B JER

Project Name:

NYSEG ITHACA COURT STREET

Lab Number:

L2315690

Project Number: 2202159

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-02

Client ID:

MW-C16

Sample Location: ITHACA NY

Date Collected:

03/22/23 12:30

Date Received:

03/24/23

Sample Depth:

Matrix:

Water

Not Specified Field Prep:

Dilution Date Analytical Date Method Factor Prepared Analyzed Result Qualifier Units RL MDL Analyst Parameter General Chemistry - Westborough Lab Cyanide, Total 0.005 mg/l 0.005 0.001 03/30/23 12:20 03/30/23 17:11 1,9010C/9012B **JER**

Project Name:

NYSEG ITHACA COURT STREET

Lab Number:

L2315690

Project Number: 2202159

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-03

Client ID:

MW-C11

Sample Location: ITHACA NY

Date Collected:

03/22/23 14:00

Date Received:

03/24/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab						TO SANGER		32UT18
Cyanide, Total	0.011	mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 18:19	1,9010C/9012B	JER

Project Name:

NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-04

Client ID:

MW-C12

Sample Location:

ITHACA NY

Date Collected:

03/22/23 15:30

Date Received:

03/24/23

Field Prep:

Sample Depth:

Matrix:

Water

Not Specified

Analytical Method Dilution Date Date Factor Prepared Analyzed MDL Analyst Result Qualifier Units RL. Parameter General Chemistry - Westborough Lab 03/30/23 12:20 03/30/23 17:17 1,9010C/9012B **JER** 0.005 0.001 0.004 J 1 Cyanide, Total mg/l

Project Name:

NYSEG ITHACA COURT STREET

Result Qualifier Units

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

MDL

Lab ID:

L2315690-05

Client ID:

MW-23S

Sample Location: ITHACA NY

Date Collected:

03/23/23 09:35

Date Received:

03/24/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Parameter

Water

Dilution Date Date Analytical Factor Prepared Analyzed Method Analyst

General Chemistry - Westborough Lab

Cyanide, Total 0.005

0.005 mg/l 0.001

RL

1

03/30/23 12:20 03/30/23 17:18 1,9010C/9012B

JER

Project Name:

NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-06

Client ID:

MW-48S

Sample Location:

ITHACA NY

Date Collected:

03/23/23 10:25

Date Received:

03/24/23

Field Prep:

Sample Depth:

Matrix:

Water

Not Specified

Dilution Date Date Analytical Parameter Result Qualifier Units Factor RL MDL Prepared Analyzed Method Analyst General Chemistry - Westborough Lab Cyanide, Total 0.002 J mg/l 0.005 0.001 1 03/30/23 12:20 03/30/23 17:19 1,9010C/9012B JER

Project Name:

NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-07

Client ID:

MW-22S

Sample Location: ITHACA NY

Date Collected:

03/23/23 11:25

Date Received:

03/24/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Dilution Analytical Method Date Date Factor Parameter Prepared Result Qualifier Units RL MDL Analyzed Analyst General Chemistry - Westborough Lab Cyanide, Total 0.370 mg/l 0.005 0.001 1 03/30/23 12:20 03/30/23 17:20 1,9010C/9012B **JER**

Project Name:

NYSEG ITHACA COURT STREET

Lab Number:

L2315690

Project Number: 2202159

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-08

Client ID:

MW-46S

Sample Location: ITHACA NY

Date Collected:

03/23/23 12:45

Date Received:

03/24/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab				No. 10 P		AND AND THE REAL PROPERTY.	ARSON DIVE	a de Mai Maria	N. O. O.
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 18:21	1,9010C/9012B	JER

03/31/23 04:00 03/31/23 11:40 1,9010C/9012B

Project Name:

NYSEG ITHACA COURT STREET

mg/l

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

SAMPLE RESULTS

Lab ID:

L2315690-09

Client ID:

DUP

Sample Location: ITHACA NY

Date Collected:

03/22/23 00:00

Date Received:

03/24/23

Field Prep:

Not Specified

JER

Sample Depth:

Matrix:

Cyanide, Total

Water

ND

Parameter Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab		33550			HE WALLES		AND LASE	SECTION S	MAX BOT

0.001

1

0.005

1,2315 690		Disposal Site Information	Please identify below location of	applicable disposal facilities.	Disposal Facility.	≥ >> ≥ (Sample I-litration		Lab to do Preservation		(Bleece Sneeth helper)	(acuan fanado acesa)	Sample Specific Comments	9	9	9	9	9	9	0	Dx.	9	0	Please print clearly, legibly and completely. Samples can	turnaround time clock will not	start until any ambiguities are	THIS COC. THE CLIENT	HAS READ AND AGREES	(3)	(See revorse side.)
selas	A ASP-B S EQUIS (4 File)	-	NY Part 375	□ NY CP-51	Other		aŭ.																					F	2/2/123 13st	39593 004	
Date Rec'd 5 25 33	Development ASP-A EQuis (1 File) Other	Regulatory Requirement	NY TORS	AWO Standards	NY Restricted Use	NY Unrestricted Use	NYC Sever Discharge	ANALYSIS	NY T	TO	L-{ V	/th/ 878		AE)	7 7 6	7	2 4 3	2 4 3	2 4 3	2 T 3	2 2 3	7 7 3	6.1.	6 7 7	APV	DIT	\neg	Received By:	Will Court	No. of the	Control of the contro
Page 1	street												1	Matrix Initials	N. MS	SW WO	SW WR	187	R	P	8	A	34	N P	Tantal Stalk	Preservative	200000000000000000000000000000000000000	ne , R	3.56 January	66 + Comp.	
37, Suite S y or Ave, Suite 105	My Cart		- admedice			Due Date:	# of Days:						1	Date Time	0000	04.01.50	नि ।५००	103 15.30	13915	13 10:35	11.35	M3 12:45	1	14" D/H. 10	35			Diste/Try	Kelitie >	20/28 12 Parks	1
tney er Wa	Project Information Project Location: These Project Location: These Project # 2,202 159	ectn	Project Manager Angr		Turn-Around Time	Standard	Rush (only if pre approved)	ed by Alpha	nents:					Sample ID D	1/2		CT C	7	200	FT/E	1303	383	3/1	ANS /MIN-CIA_NSD	Westboro: Certification No: MA835 Mansfield: Certification No: MA015			Rejnquished By:	NS PAR	Made Tong	
CHAIN OF CUSTODY	American, MA 02040 220 Forber Blood TEL. 508-822-930 FAX: 518-422-3268	That Inc	marker al	5	16-89Ca		ocoulom be (Second bate	een previously analyz	requirements/comn			or TAL.		S	AN 141-43C	W. W. CAR	MINITORY N	ELU-MW	NW-225	NW-U8S	SER-MIN	S9H-MIN	PUD	MW-C11	Scottainer Code P = Plastic A = Amber Glass	N = V	G = Gaderia Cup	C = Oube	E = Encore	D = BCO boxe	A. Same, 2011
Дсена	Westboreugh, MA 91581 8 Washop Dr. THU. 508-698-9720 FAX: 508-898-9183 Offent Hitometion	Chert GET CAN	15	THE T	C-CO3 enemal	Fax	Email: bxcoxloin bi	These samples have been previously analyzed by Alpha	Other project specific requirements/comments:			Please specify Metals or TAL.		ALPHA Lab ID	151,90-01	200	03	28	20	00	たの	80	60	63	Preservative Code N. M. Container Code A = None P = Plastic B = HCi	C=HNO,	D = H ₂ SO ₂ E = N ₂ OH	F = MeOH	G = NaHSO, H = Na ₂ S ₂ O ₃	K/E = Zn AoNaOH O = Other	Form No. 04.04 HC (ray 30-Sarst-2013)

Attachment 3

Laboratory Report

ANALYTICAL REPORT

Lab Number: L2315690

Client: GEI Consultants

1301 Trumansburg Road

Suite N

Ithica, NY 14850

ATTN: Bruce Coulombe Phone: (607) 216-8959

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159
Report Date: 03/31/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

 Lab Number:
 L2315690

 Report Date:
 03/31/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2315690-01	MW-13S	WATER	ITHACA NY	03/22/23 10:20	03/24/23
L2315690-02	MW-C16	WATER	ITHACA NY	03/22/23 12:30	03/24/23
L2315690-03	MW-C11	WATER	ITHACA NY	03/22/23 14:00	03/24/23
L2315690-04	MW-C12	WATER	ITHACA NY	03/22/23 15:30	03/24/23
L2315690-05	MW-23S	WATER	ITHACA NY	03/23/23 09:35	03/24/23
L2315690-06	MW-48S	WATER	ITHACA NY	03/23/23 10:25	03/24/23
L2315690-07	MW-22S	WATER	ITHACA NY	03/23/23 11:25	03/24/23
L2315690-08	MW-46S	WATER	ITHACA NY	03/23/23 12:45	03/24/23
L2315690-09	DUP	WATER	ITHACA NY	03/22/23 00:00	03/24/23

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690
Project Number: 2202159 Report Date: 03/31/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:NYSEG ITHACA COURT STREETLab Number:L2315690Project Number:2202159Report Date:03/31/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics by SIM

L2315690-05D: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Ashaley Moynihan

Authorized Signature:

Title: Technical Director/Representative

ANALYTICAL

Date: 03/31/23

ORGANICS

VOLATILES

L2315690

03/31/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

SAMPLE RESULTS

D (0 II (1 00/00/00 40 00

Lab Number:

Report Date:

Lab ID:L2315690-01Date Collected:03/22/23 10:20Client ID:MW-13SDate Received:03/24/23Sample Location:ITHACA NYField Prep:Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 09:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	102	70-130	

L2315690

03/31/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2315690-02 Date Collected: 03/22/23 12:30

Client ID: MW-C16 Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 09:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	105	70-130	

L2315690

03/31/23

Project Name: NYSEG ITHACA COURT STREET Lab Number:

Project Number: 2202159

SAMPLE RESULTS

D + 0 || + 1 | 00/00/00 + 4 00

Report Date:

Lab ID:L2315690-03Date Collected:03/22/23 14:00Client ID:MW-C11Date Received:03/24/23Sample Location:ITHACA NYField Prep:Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 09:44

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	106	70-130	

L2315690

03/31/23

Project Name: NYSEG ITHACA COURT STREET

L2315690-04

ITHACA NY

MW-C12

Project Number: 2202159

SAMPLE RESULTS

Date Collected: 03/22/23 15:30

Lab Number:

Report Date:

Date Received: 03/24/23
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 10:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
Benzene	3.6		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	2.1	J	ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	106	70-130	

L2315690

03/31/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

Lab ID: L2315690-05 03/23/23 09:35 Client ID: Date Received: 03/24/23 MW-23S Sample Location: Field Prep: ITHACA NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/29/23 10:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Benzene	1.4		ug/l	0.50	0.16	1	
Toluene	2.3	J	ug/l	2.5	0.70	1	
Ethylbenzene	69		ug/l	2.5	0.70	1	
p/m-Xylene	10		ug/l	2.5	0.70	1	
o-Xylene	36		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	106	70-130	

L2315690

Project Name: NYSEG ITHACA COURT STREET

L2315690-06

ITHACA NY

MW-48S

Project Number: 2202159

SAMPLE RESULTS

Date Collected: 03/23/23 10:25

Report Date: 03/31/23

Lab Number:

Date Received: 03/24/23
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 10:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Benzene	35		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	20		ug/l	2.5	0.70	1	
p/m-Xylene	1.9	J	ug/l	2.5	0.70	1	
o-Xylene	11		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	104	70-130	

L2315690

03/31/23

Project Name: NYSEG ITHACA COURT STREET

L2315690-07

ITHACA NY

MW-22S

Project Number: 2202159

SAMPLE RESULTS

Date Collected: 03/23/23 11:25

Lab Number:

Report Date:

Date Collected: 03/23/23 11:25

Date Received: 03/24/23

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 11:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	104	70-130	

03/31/23

Report Date:

Project Name: NYSEG ITHACA COURT STREET L2315690

Project Number: 2202159

SAMPLE RESULTS

Lab ID: L2315690-08 D Date Collected: 03/23/23 12:45

Client ID: MW-46S Date Received: 03/24/23
Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 11:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	980		ug/l	5.0	1.6	10	
Toluene	24	J	ug/l	25	7.0	10	
Ethylbenzene	770		ug/l	25	7.0	10	
p/m-Xylene	160		ug/l	25	7.0	10	
o-Xylene	230		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

L2315690

03/31/23

Not Specified

03/24/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

SAMPLE RESULTS

Date Collected: 03/22/23 00:00

Lab Number:

Report Date:

Date Received:

Lab ID: L2315690-09

Client ID: DUP

Sample Location: ITHACA NY Field Prep:

iple Location. THIACA IVI

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/29/23 11:49

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	109	70-130	

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/29/23 08:21

Analyst: PID

Parameter	Result Q	ualifier Units	RL	MDL	
olatile Organics by GC/MS - We	estborough Lab fo	r sample(s): 01-09	Batch:	WG1760701-5	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	106		70-130	

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

Parameter	%F	LCS Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/	MS - Westborough Lab	Associated	sample(s):	01-09	Batch:	WG1760701-3	WG1760701-4				
Benzene		100			100		70-130	0		20	
Toluene		100			100		70-130	0		20	
Ethylbenzene		100			110		70-130	10		20	
p/m-Xylene		105			110		70-130	5		20	
o-Xylene		100			105		70-130	5		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	99	70-130
Toluene-d8	103	104	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	100	102	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date: 03/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-C11	Westborough I	Lab Assoc	iated sample(s	s): 01-09 QC	Batch ID: \	WG17607	01-6 WG1760	701-7	QC Sample	: L2315	690-03	Client ID:
Benzene	ND	10	11	110		11	110		70-130	0		20
Toluene	ND	10	10	100		10	100		70-130	0		20
Ethylbenzene	ND	10	11	110		11	110		70-130	0		20
p/m-Xylene	ND	20	21	105		21	105		70-130	0		20
o-Xylene	ND	20	21	105		21	105		70-130	0		20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	95	111	70-130	
4-Bromofluorobenzene	97	99	70-130	
Dibromofluoromethane	96	100	70-130	
Toluene-d8	99	101	70-130	

SEMIVOLATILES

Project Name: Lab Number: NYSEG ITHACA COURT STREET L2315690

Report Date: **Project Number:** 2202159 03/31/23

SAMPLE RESULTS

Lab ID: Date Collected: L2315690-01 03/22/23 10:20

Date Received: Client ID: 03/24/23 MW-13S Sample Location: Field Prep: ITHACA NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 03/27/23 15:51 Analytical Method: 1,8270E-SIM Analytical Date: 03/28/23 13:14

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough Lab)				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	110		23-120	
2-Fluorobiphenyl	68		15-120	
4-Terphenyl-d14	68		41-149	

Project Name: NYSEG ITHACA COURT STREET L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-02 Date Collected: 03/22/23 12:30

Client ID: MW-C16 Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 03/27/23 15:51
Analytical Date: 03/28/23 13:30

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM	Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	9.3		ug/l	0.10	0.01	1				
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1				
Fluoranthene	0.28		ug/l	0.10	0.02	1				
Naphthalene	0.07	J	ug/l	0.10	0.05	1				
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1				
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01	1				
Chrysene	0.03	J	ug/l	0.10	0.01	1				
Acenaphthylene	0.21		ug/l	0.10	0.01	1				
Anthracene	0.04	J	ug/l	0.10	0.01	1				
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1				
Fluorene	0.83		ug/l	0.10	0.01	1				
Phenanthrene	0.14		ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1				
Pyrene	0.42		ug/l	0.10	0.02	1				
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	113	23-120	
2-Fluorobiphenyl	68	15-120	
4-Terphenyl-d14	65	41-149	

Project Name: NYSEG ITHACA COURT STREET L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-03 Date Collected: 03/22/23 14:00

Client ID: MW-C11 Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 03/27/23 15:51
Analytical Date: 03/28/23 13:47

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough Lab)				
Acenaphthene	0.38		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	0.06	J	ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	0.02	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	102		23-120	
2-Fluorobiphenyl	61		15-120	
4-Terphenyl-d14	58		41-149	

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-04 Date Collected: 03/22/23 15:30

Client ID: MW-C12 Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 03/27/23 15:51
Analytical Date: 03/28/23 14:36

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	/I - Westborough La	b				
Acenaphthene	55		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.04	J	ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	0.58		ug/l	0.10	0.01	1
Anthracene	0.05	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	8.1		ug/l	0.10	0.01	1
Phenanthrene	0.44		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	0.04	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	85		23-120	
2-Fluorobiphenyl	53		15-120	
4-Terphenyl-d14	62		41-149	

Project Name: Lab Number: NYSEG ITHACA COURT STREET L2315690

Project Number: Report Date: 2202159 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-05 D Date Collected: 03/23/23 09:35

Date Received: Client ID: MW-23S 03/24/23 Sample Location: Field Prep: ITHACA NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 03/28/23 11:23 Analytical Method: 1,8270E-SIM Analytical Date: 03/30/23 13:54

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	Л - Westborough La	ıb					
Acenaphthene	70		ug/l	0.50	0.07	5	
2-Chloronaphthalene	ND		ug/l	1.0	0.09	5	
Fluoranthene	1.5		ug/l	0.50	0.10	5	
Naphthalene	130		ug/l	0.50	0.24	5	
Benzo(a)anthracene	0.15	J	ug/l	0.50	0.10	5	
Benzo(a)pyrene	ND		ug/l	0.50	0.08	5	
Benzo(b)fluoranthene	ND		ug/l	0.50	0.06	5	
Benzo(k)fluoranthene	ND		ug/l	0.50	0.04	5	
Chrysene	0.06	J	ug/l	0.50	0.06	5	
Acenaphthylene	1.5		ug/l	0.50	0.06	5	
Anthracene	3.8		ug/l	0.50	0.07	5	
Benzo(ghi)perylene	ND		ug/l	0.50	0.07	5	
Fluorene	19		ug/l	0.50	0.07	5	
Phenanthrene	17		ug/l	0.50	0.12	5	
Dibenzo(a,h)anthracene	ND		ug/l	0.50	0.06	5	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.50	0.06	5	
Pyrene	2.0		ug/l	0.50	0.10	5	
2-Methylnaphthalene	94		ug/l	0.50	0.11	5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	121	Q	23-120
2-Fluorobiphenyl	79		15-120
4-Terphenyl-d14	90		41-149

Project Name: NYSEG ITHACA COURT STREET L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

 Lab ID:
 L2315690-06
 Date Collected:
 03/23/23 10:25

 Client ID:
 MW-48S
 Date Received:
 03/24/23

Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 03/28/23 11:23
Analytical Date: 03/29/23 13:26

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough Lal	b				
Acenaphthene	18		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.28		ug/l	0.10	0.02	1
Naphthalene	16		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	0.02	J	ug/l	0.10	0.01	1
Acenaphthylene	0.51		ug/l	0.10	0.01	1
Anthracene	0.60		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	1.4		ug/l	0.10	0.01	1
Phenanthrene	2.0		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	0.37		ug/l	0.10	0.02	1
2-Methylnaphthalene	1.7		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	108		23-120	
2-Fluorobiphenyl	66		15-120	
4-Terphenyl-d14	74		41-149	

Project Name: Lab Number: NYSEG ITHACA COURT STREET L2315690

Project Number: Report Date: 2202159 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-07 Date Collected: 03/23/23 11:25

Date Received: Client ID: MW-22S 03/24/23 Sample Location: Field Prep: ITHACA NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 03/28/23 11:23 Analytical Method: 1,8270E-SIM Analytical Date: 03/29/23 13:43

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	SIM - Westborough Lat)				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	125	Q	23-120
2-Fluorobiphenyl	75		15-120
4-Terphenyl-d14	79		41-149

Project Name: Lab Number: NYSEG ITHACA COURT STREET L2315690

Project Number: Report Date: 2202159 03/31/23

SAMPLE RESULTS

03/29/23 13:59

Lab ID: L2315690-08 Date Collected: 03/23/23 12:45

Client ID: Date Received: MW-46S 03/24/23 Field Prep: Sample Location: ITHACA NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 03/28/23 11:23 Analytical Method: 1,8270E-SIM Analytical Date:

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	50		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	3.6		ug/l	0.10	0.02	1	
Naphthalene	1200	Е	ug/l	0.10	0.05	1	
Benzo(a)anthracene	3.4		ug/l	0.10	0.02	1	
Benzo(a)pyrene	3.4		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	2.3		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.92		ug/l	0.10	0.01	1	
Chrysene	3.1		ug/l	0.10	0.01	1	
Acenaphthylene	4.4		ug/l	0.10	0.01	1	
Anthracene	2.8		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	1.1		ug/l	0.10	0.01	1	
Fluorene	13		ug/l	0.10	0.01	1	
Phenanthrene	11		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	0.38		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	1.1		ug/l	0.10	0.01	1	
Pyrene	6.2		ug/l	0.10	0.02	1	
2-Methylnaphthalene	210	Е	ug/l	0.10	0.02	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	130	Q	23-120
2-Fluorobiphenyl	74		15-120
4-Terphenyl-d14	73		41-149

Lab Number: **Project Name:** NYSEG ITHACA COURT STREET L2315690

Project Number: Report Date: 2202159 03/31/23

SAMPLE RESULTS

Lab ID: D Date Collected: 03/23/23 12:45 L2315690-08

Client ID: Date Received: MW-46S 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 03/28/23 11:23 Analytical Method: 1,8270E-SIM Analytical Date:

Analyst: RP

03/30/23 15:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westb	orough Lab					
Naphthalene	1400		ug/l	2.5	1.2	25
2-Methylnaphthalene	220		ug/l	2.5	0.55	25

Project Name: Lab Number: NYSEG ITHACA COURT STREET L2315690

Report Date: **Project Number:** 2202159 03/31/23

SAMPLE RESULTS

03/28/23 14:53

Lab ID: Date Collected: 03/22/23 00:00 L2315690-09

Date Received: Client ID: DUP 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 03/27/23 15:51 Analytical Method: 1,8270E-SIM

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough Lab)				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	99		23-120	
2-Fluorobiphenyl	63		15-120	
4-Terphenyl-d14	68		41-149	

L2315690

Lab Number:

Project Name: NYSEG ITHACA COURT STREET

Report Date:

Project Number: 2202159 03/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 03/28/23 08:49

Analyst: DV Extraction Method: EPA 3510C 03/27/23 15:51 Extraction Date:

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/N	/IS-SIM - Westbo	orough Lab	for sample	e(s): 01-04,09	Batch:	WG1759424-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
Nitrobenzene-d5	100	23-120
2-Fluorobiphenyl	61	15-120
4-Terphenyl-d14	68	41-149

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date: 03/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 03/29/23 12:53

Analyst:

03/29/2 RP Extraction Method: EPA 3510C Extraction Date: 03/28/23 11:23

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS-	SIM - Westbo	rough Lab	for sample(s):	05-08	Batch: \	NG1759764-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	

		Acceptance			
Surrogate	%Recovery Qu	ualifier Criteria			
		·			
Nitrobenzene-d5	100	23-120			
2-Fluorobiphenyl	62	15-120			
4-Terphenyl-d14	77	41-149			

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number: L2315690

Report Date: 03/31/23

Parameter	LCS %Recovery		CSD covery G	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - We	estborough Lab A	ssociated sample(s):	01-04,09 B	Batch:	WG1759424-2	WG1759424-3		
Acenaphthene	56		60		40-140	7		40
2-Chloronaphthalene	54		58		40-140	7		40
Fluoranthene	62		66		40-140	6		40
Naphthalene	53		56		40-140	6		40
Benzo(a)anthracene	65		70		40-140	7		40
Benzo(a)pyrene	66		70		40-140	6		40
Benzo(b)fluoranthene	65		72		40-140	10		40
Benzo(k)fluoranthene	66		67		40-140	2		40
Chrysene	65		68		40-140	5		40
Acenaphthylene	58		64		40-140	10		40
Anthracene	60		66		40-140	10		40
Benzo(ghi)perylene	70		72		40-140	3		40
Fluorene	58		64		40-140	10		40
Phenanthrene	57		63		40-140	10		40
Dibenzo(a,h)anthracene	75		78		40-140	4		40
Indeno(1,2,3-cd)pyrene	78		79		40-140	1		40
Pyrene	62		66		40-140	6		40
2-Methylnaphthalene	52		56		40-140	7		40

Project Name: NYSEG ITHACA COURT STREET Lab Number:

L2315690

Project Number: 2202159

Report Date: 03/31/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,09 Batch: WG1759424-2 WG1759424-3

Surrogate	LCS %Recovery Qua	LCSD Il %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	94	104	23-120
2-Fluorobiphenyl	54	59	15-120
4-Terphenyl-d14	60	61	41-149

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number: L2315690

Report Date: 03/31/23

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM - W	estborough Lab As	ssociated sample(s)): 05-08	Batch:	WG1759764-2	WG1759764-3			
Acenaphthene	76		84		40-140	10		40	
2-Chloronaphthalene	71		74		40-140	4		40	
Fluoranthene	98		104		40-140	6		40	
Naphthalene	66		69		40-140	4		40	
Benzo(a)anthracene	102		109		40-140	7		40	
Benzo(a)pyrene	105		111		40-140	6		40	
Benzo(b)fluoranthene	102		108		40-140	6		40	
Benzo(k)fluoranthene	104		107		40-140	3		40	
Chrysene	100		105		40-140	5		40	
Acenaphthylene	79		84		40-140	6		40	
Anthracene	91		98		40-140	7		40	
Benzo(ghi)perylene	100		108		40-140	8		40	
Fluorene	84		92		40-140	9		40	
Phenanthrene	87		95		40-140	9		40	
Dibenzo(a,h)anthracene	108		116		40-140	7		40	
Indeno(1,2,3-cd)pyrene	113		121		40-140	7		40	
Pyrene	100		105		40-140	5		40	
2-Methylnaphthalene	68		70		40-140	3		40	

03/31/23

Lab Control Sample Analysis

Project Name: NYSEG ITHACA COURT STREET

Batch Quality Control

Lab Number: L2315690

Project Number: 2202159

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 05-08 Batch: WG1759764-2 WG1759764-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Nitrobenzene-d5	121	Q	127	Q	23-120
2-Fluorobiphenyl 4-Terphenyl-d14	68 91		73 96		15-120 41-149

Matrix Spike Analysis Batch Quality Control

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by C	GC/MS-SIM - We	stborough Lab	Associate	d sample(s): 01	-04,09	QC Batch	ID: WG175942	4-6 WC	G1759424-7	QC Sa	ample: L	2315690-03
Acenaphthene	0.38	18.2	12	64		10	53		40-140	18		40
2-Chloronaphthalene	ND	18.2	11	61		10	55		40-140	10		40
Fluoranthene	ND	18.2	12	66		11	61		40-140	9		40
Naphthalene	ND	18.2	10	55		9.4	52		40-140	6		40
Benzo(a)anthracene	ND	18.2	13	72		12	66		40-140	8		40
Benzo(a)pyrene	ND	18.2	11	61		9.7	53		40-140	13		40
Benzo(b)fluoranthene	ND	18.2	11	61		9.6	53		40-140	14		40
Benzo(k)fluoranthene	ND	18.2	10	55		9.8	54		40-140	2		40
Chrysene	ND	18.2	13	72		12	66		40-140	8		40
Acenaphthylene	0.06J	18.2	12	66		11	61		40-140	9		40
Anthracene	ND	18.2	12	66		11	61		40-140	9		40
Benzo(ghi)perylene	ND	18.2	4.7	26	Q	3.6	20	Q	40-140	27		40
Fluorene	ND	18.2	12	66		11	61		40-140	9		40
Phenanthrene	ND	18.2	12	66		11	61		40-140	9		40
Dibenzo(a,h)anthracene	ND	18.2	5.0	28	Q	3.9	21	Q	40-140	25		40
Indeno(1,2,3-cd)pyrene	ND	18.2	5.4	30	Q	4.2	23	Q	40-140	25		40
Pyrene	0.02J	18.2	12	66		11	61		40-140	9		40
2-Methylnaphthalene	ND	18.2	10	55		9.6	53		40-140	4		40

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2-Fluorobiphenyl	60	56	15-120
4-Terphenyl-d14	62	58	41-149

Matrix Spike Analysis Batch Quality Control

96

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

23-120

03/31/23

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,09 QC Batch ID: WG1759424-6 WG1759424-7 QC Sample: L2315690-03 Client ID: MW-C11

MS MSD Acceptance
Surrogate % Recovery Qualifier % Recovery Qualifier Criteria

107

Nitrobenzene-d5

INORGANICS & MISCELLANEOUS

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-01 Date Collected: 03/22/23 10:20

Client ID: MW-13S Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 18:18	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

 Lab ID:
 L2315690-02
 Date Collected:
 03/22/23 12:30

 Client ID:
 MW-C16
 Date Received:
 03/24/23

Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Cyanide, Total	0.005		mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 17:11	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-03 Date Collected: 03/22/23 14:00

Client ID: MW-C11 Date Received: 03/24/23
Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Cyanide, Total	0.011		mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 18:19	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-04 Date Collected: 03/22/23 15:30

Client ID: MW-C12 Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal	b								
Cyanide, Total	0.004	J	mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 17:17	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-05 Date Collected: 03/23/23 09:35

Client ID: MW-23S Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qu	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Cyanide, Total	0.005	mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 17:18	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-06 Date Collected: 03/23/23 10:25

Client ID: MW-48S Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b								
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 17:19	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

 Lab ID:
 L2315690-07
 Date Collected:
 03/23/23 11:25

 Client ID:
 MW-22S
 Date Received:
 03/24/23

Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qu	ıalifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Cyanide, Total	0.370	mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 17:20	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-08 Date Collected: 03/23/23 12:45

Client ID: MW-46S Date Received: 03/24/23 Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 18:21	1,9010C/9012B	JER

Project Name: NYSEG ITHACA COURT STREET Lab Number: L2315690

Project Number: 2202159 Report Date: 03/31/23

SAMPLE RESULTS

Lab ID: L2315690-09 Date Collected: 03/22/23 00:00

Client ID: DUP Date Received: 03/24/23

Sample Location: ITHACA NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/31/23 04:00	03/31/23 11:40	1,9010C/9012B	JER

L2315690

Project Name: NYSEG ITHACA COURT STREET Lab Number:

Project Number: 2202159 Report Date: 03/31/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - Westborough Lab for sample(s): 01-08 Batch: WG1760565-1											
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/30/23 12:20	03/30/23 18:02	1,9010C/9012	2B JER		
General Chemistry -	Westborough Lab for sar	mple(s): 09	Batch	: WG17	61060-1						
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/31/23 04:00	03/31/23 11:25	1,9010C/9012	2B JER		

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date:

03/31/23

Parameter	LCS %Recovery C	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits			
General Chemistry - Westborough Lab A	associated sample(s): 0	01-08 Batch: WG1760)565-2 WG	1760565-3						
Cyanide, Total	91	94		85-115	3		20			
General Chemistry - Westborough Lab Associated sample(s): 09 Batch: WG1761060-2 WG1761060-3										
Cyanide, Total	102	103		85-115	1		20			

Matrix Spike Analysis Batch Quality Control

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Lab Number:

L2315690

Report Date: 03/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD C	RPD Qual Limits
General Chemistry - Westbo MW-C11	rough Lab Assoc	ciated samp	ole(s): 01-08	QC Batch II	D: WG1	760565-4	WG1760565-5	QC Sam	ple: L231	15690-03	Client ID:
Cyanide, Total	0.011	0.2	0.233	111		0.230	109		80-120	1	20
General Chemistry - Westbo Sample	rough Lab Assoc	ciated samp	ole(s): 09 C	QC Batch ID: V	VG1761	060-4 W	G1761060-5 C	C Sample	e: L23144:	37-10 (Client ID: MS
Cvanide, Total	ND	0.2	0.212	106		0.213	106		80-120	0	20

Serial_No:03312313:30 *Lab Number:* L2315690

Report Date: 03/31/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2315690-01A	Vial HCI preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-01B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-01C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-01D	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-01E	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-01F	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)
L2315690-02A	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-02B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-02C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-02D	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-02E	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-02F	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)
L2315690-03A	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03A1	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03A2	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03B1	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03B2	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03C1	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03C2	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-03D	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)

Lab Number: L2315690

Report Date: 03/31/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2315690-03D1	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-03D2	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-03E	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-03E1	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-03E2	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-03F	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)
L2315690-03F1	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)
L2315690-03F2	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)
L2315690-04A	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-04B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-04C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-04D	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-04E	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-04F	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)
L2315690-05A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-05B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-05C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-05D	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-05E	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-05F	Plastic 250ml NaOH preserved	Α	>12	>12	2.9	Υ	Absent		TCN-9010(14)
L2315690-06A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-06B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-06C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-06D	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-06E	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2315690-06F	Plastic 250ml NaOH preserved	Α	>12	>12	2.9	Υ	Absent		TCN-9010(14)
L2315690-07A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2315690-07B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)

Lab Number: L2315690

Report Date: 03/31/23

Project Name: NYSEG ITHACA COURT STREET

Project Number: 2202159

Container Information		rmation		Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L2315690-07C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-07D	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)	
	L2315690-07E	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)	
	L2315690-07F	Plastic 250ml NaOH preserved	Α	>12	>12	2.9	Υ	Absent		TCN-9010(14)	
	L2315690-08A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-08B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-08C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-08D	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)	
	L2315690-08E	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)	
	L2315690-08F	Plastic 250ml NaOH preserved	Α	>12	>12	2.9	Υ	Absent		TCN-9010(14)	
	L2315690-09A	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-09B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-09C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-BTEX(14)	
	L2315690-09D	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)	
	L2315690-09E	Amber 250ml unpreserved	В	7	7	2.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)	
	L2315690-09F	Plastic 250ml NaOH preserved	В	>12	>12	2.3	Υ	Absent		TCN-9010(14)	

Project Name: Lab Number: NYSEG ITHACA COURT STREET L2315690 **Report Date: Project Number:** 2202159 03/31/23

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

SRM

Project Name:NYSEG ITHACA COURT STREETLab Number:L2315690Project Number:2202159Report Date:03/31/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:NYSEG ITHACA COURT STREETLab Number:L2315690Project Number:2202159Report Date:03/31/23

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:NYSEG ITHACA COURT STREETLab Number:L2315690Project Number:2202159Report Date:03/31/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 1,2,4,

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	5	Pag	A		Date Rec'd in Lab	25/2	3	ALPHA Job# L23156	90
Westborough, MA 01581	Mansfield, MA 02048	Project Information	10000	N. H. S. Y.	SERVICE STATES	S Alle	Delive	rables	WARRY S	VEST OF SELECTION	Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: NYST	GT#	(at	Cota :	-		ASP-A	ASP ASP	-B	Same as Client	Info
FAX: 508-898-9193	FAX: 508-822-3288			Can	STrec	1	- =		, ,	IS (4 File)	PO#	
TANK STADISTING	The second second	117	haca NY					EQuIS (1 File)	N Edit	15 (4 File)	PO#	
Client Information	Charles Harris	Project # 2202	51					Other				
Client: GET (as	ollantInc	(Use Project name as Pr	roject #)				Regul	atory Requireme	ent		Disposal Site Informa	ition
	water ld.	Project Manager: R	50 (n)	lonbe-				NY TOGS	☐ NY P	art 375	Please identify below loc	cation of
ナサル	2	ALPHAQuote #:					Da	AWQ Standards	☐ NY C	P-51	applicable disposal facili	
Phone: 607-2	16-2959	A STATE OF THE PARTY OF THE PAR	THE RESERVE	Section 2	O STREET		=	NY Restricted Use	Other	2	Disposal Facility:	
	10,4121	Turn-Around Time	Na									2000
Fax:	77	Standard		Due Date:				NY Unrestricted Us			□ m ⊠	NY
Email: bcoulom be	elekarconultritud	Rush (only if pre approved) [# of Days:				NYC Sewer Discha	arge		Other:	
These samples have be	en previously analyze	ed by Alpha					ANAL	YSIS			Sample Filtration	T
Other project specific							12	12			Done	0
							5	7 3			Lab to do	a
1							\square		1 1	1 1	Preservation	
							1	27	1 1		Lab to do	250
Please specify Metals	or TAL.	4					B	100				В
							5	8	1 1		(Please Specify below)	ow)
ALPHA Lab ID			Colle	ction	Sample	Compler's	벌	J-			The state of the s	t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Sampler's Initials	学日	(A) (A)			Sample Specific Comm	
	ΛΛ Α.Σ.		Date			3-10	5		+-		Sample Specific Comm	
15690-01	WM-132	8	75797	10:70	GW	917	7	73				6
02	MW-C16		1317777	12:30	GW	21	2	7 3				16
03	MW-C11		17127173	14:00	GW	20	2	7 3				6
04	MW-C11		2/21/12	15,30	1	ZV	2	23				6
05	25 (- 1/1/1)		11,313	9.25		-2	5	A 3	+			- 6
	WW-933		2930	1:22	_	717	~		-			6
00	MW-485		257797	10:72		577	5	73				6
07	MM-977		13157177	11:92		211	2	13				6
D8	13/W-46S		13/23/23	12:45		TN	2	13				16
09	NID		31222			17	2	13				6
03	MW-<11_	MS /MW-C11_MSD		מריוולמיונו	V	1	2	13	+			Ğ
Proponentive Code 3 h 113	Fontainer Code			4:10/14:30	*0	211		23	-			
Preservative Code: 3 13 13 A = None	P = Plastic	Westboro: Certification N	o: MA935		_ Coo	tainer, Type	A	DIVI			Please print clearly	
B = HCl	A = Amber Glass	Mansfield: Certification N	o: MA015		Indy	23/3/18	1 1	1 V			and completely. Sa	
	V = Vial				1 100		N 1-	- 0			not be logged in an	
	G = Glass				P	reservative	A 1.	EB			turnaround time clo	
and the second of	B = Bacteria Cup C = Cube		- Т								start until any ambi	
A STATE OF THE STA	O = Other	Relinquished I	sy:	Date/	1 1	100 10	Receive	4		/Time	resolved. BY EXEC THIS COC, THE CI	
H = Na ₂ S ₂ O ₃	E = Encore	Soch Desk	color	2171197	12:56	16 Belly		na_	3/24/23	1256	HAS READ AND A	
NE - ZII ADNAON	D = BOD Bottle	Seedler See	for st ?	24/22	1613	PRACOG	in .	Susast	3/24/23	1613	TO BE BOUND BY	
O = Other		MBRU C	Seist :			Faur	5	00,000	305/2	_		
F No. 04 05 110 /	0-100101	30	200.51	10/10	1015	1	41		JOOK	000	(See reverse side.)	
Form No: 01-25 HC (rev. 30- age 59 of 59	-aept-zu13)										- standard and the standard and the	