Self-Implementing PCB Remediation Completion Report

Former Emerson Power Transmission Site Building 24 Ithaca, New York

July 16, 2015

WSP Project No. 4255

SELF-IMPLEMENTING PCB REMEDIATION COMPLETION REPORT

Former Emerson Power Transmission Site Building 24 Ithaca, New York

July 16, 2015

Client

Steve Clarke Director, Environmental Affairs Emerson 8000 West Florissant Avenue St. Louis, Missouri 63136

Consultant

WSP USA Corp. 11190 Sunrise Valley Drive Suite 300 Reston, Virginia 20191

WSP Contacts

Scott Haitz Scott.Haitz@wspgroup.com

Dave Rykaczewski Dave.Rykaczewski@wspgroup.com

Table of Contents

1		Introduction1							
2		Site	ckground	2					
	2.	1	Site	Description and History	2				
	2.	2	Inve	estigation and Delineation Activities	2				
	2.	3	Rer	nediation Objectives	3				
3		Rer	nedi	ation Activities	4				
	3.	1	Pre	-remediation Planning	4				
		3.1.	1	Health and Safety Plan	4				
		3.1.	2	Community Air Monitoring Plan	4				
	3.	2	Site	Preparation	5				
3.2			1	Utility Location	5				
	3.		2	High-Voltage Electric Line Relocation					
		3.2.	3	Erosion and Sedimentation Controls					
		3.2.	4	Asbestos Abatement	5				
	3.	3	Wa	ste Characterization Sampling	6				
	3.	4	Tra	nsformer Pad Removal and Excavation	6				
		3.4.	1	Transformer Pad Removal	6				
		3.4.	2	Excavation	7				
	3.	5	Cor	firmation Sampling	8				
	3.	6		nsportation and Disposal					
	3.	7	Site	Restoration	9				
4		Sun	nma	ry and Conclusions1	1				
5		Acro	onyr	ns1	2				

Figures

- Figure 1 Site Location
- Figure 2 Site Layout
- Figure 3 Site Characterization Results PCBs

Figure 4 – Final Limits of Excavation and Confirmation Sampling Results

Table 1 – Confirmation Sampling Results

Appendices

- Appendix A WSP Standard Operating Procedures
- Appendix B Community Air Monitoring Plan
- Appendix C Utility Location Documentation
- Appendix D Asbestos Abatement Documentation
- Appendix E Waste Characterization Analytical Data Reports
- Appendix F EPA Region 1 SOP for Sampling Porous Surfaces for PCBs
- Appendix G Confirmation Sampling Analytical Data Reports
- Appendix H Hazardous Waste Transportation and Disposal Documentation
- Appendix I Non-Hazardous Waste Transportation and Disposal Documentation
- Appendix J Decontamination Fluids Transportation and Disposal Documentation
- Appendix K Photographs

1 Introduction

WSP, on behalf of EMERSUB 15, LLC, has prepared this Self-Implementing Polychlorinated Biphenyl (PCB) Remediation Completion Report for the former Emerson Power Transmission facility (Site) located at 620 South Aurora Street in Ithaca, New York (Figure 1). This completion report describes the remedial activities completed in the area of the former transformer pad located on the west side of Building 24 (Figure 2) to address the media affected by PCBs. Remediation work was completed as detailed in the Self-Implementing PCB Remediation Work Plan (work plan) dated October 28, 2014 that was submitted with the notification and certification in accordance with the Code of Federal Regulations (CFR) Part 761.61(a)(3). The U.S. Environmental Protection Agency (EPA) Region 2 approved the work plan on November 24, 2014.

Site investigation activities were completed in compliance with 40 CFR 761.61(a)(2) which requires site characterization in accordance with 40 CFR 761 Subpart N. PCB-affected media were defined as porous surfaces per 40 CFR 761.3. The limits of the remedial activities were determined by identifying and delineating concrete and soil containing PCBs at concentrations greater than high occupancy cleanup criterion of 1 milligram per kilogram (mg/kg) defined in 40 CFR 761.61(a)(4).

Remedial activities commenced March 18, 2015 and included site preparation, removal of the former transformer pad, removal of gravel fill beneath the pad, removal of asphalt, sub-base, and soil from areas surrounding the pad, offsite disposal of impacted materials, and restoration. Confirmation samples were collected in accordance 40 CFR 761.61(a)(6) which incorporates by reference the requirements of Subpart O of this Part. Excavation and confirmation sampling continued until all samples of each type of media achieved the high occupancy cleanup criterion. The site was restored to beneficial use as a high occupancy area. Final restoration was completed May 8, 2015.

Ontario Specialty Contracting, Inc. (OSC) of Buffalo, New York completed the PCB remediation at the site. WSP provided full time oversight of all remedial activities and conducted the confirmation sampling. Site activities were performed in accordance with applicable sections of 40 CFR 761 and the approved work plan.

2 Site Background

The following section provides a brief description of the site, the site history and location, and PCB investigations completed at the site prior to implementation of remediation activities.

2.1 Site Description and History

The former Emerson Power Transmission facility is located at 620 South Aurora Street in Ithaca, New York (Figure 1). The site is approximately 100 acres. There is one main structure consisting of a series of connected buildings and two separate buildings (Buildings 21 and 24) located in the northern portion of the site (Figure 2). Undeveloped woodland borders the site to the southwest along the steep embankments of the hill. West Spencer Street, which runs parallel to the property, marks the western limit of the wooded area and the base of South Hill. Beyond Spencer Street to the west and in areas along the steep northern approach to South Hill and the Site are residential areas. These neighborhoods are bordered by Six Mile Creek, which flows north along the base of South Hill and eventually empties into Cayuga Lake, approximately 2 miles northwest of the property. The site has been vacant since 2011.

The original buildings at the site were constructed in 1906 by Morse Industrial Corporation, which manufactured steel roller chain for the automobile industry. From approximately 1928 to 1983, Borg-Warner Corporation owned the property and manufactured automotive components and power transmission equipment using similar processes, but not necessarily the same materials, as those conducted by Emerson. In 1983, Morse Industrial Corporation was purchased from Borg-Warner Corporation by Emerson and became known as Emerson Power Transmission. Emerson Power Transmission manufactured industrial roller chain, bearings, and clutching for the power transmission industry until ceasing operations in 2009.

Building 24 is located on the northeast portion of the property. An elevated concrete pad which housed one or more transformers was located on the west side of Building 24. The pad measured 22 feet long by 9 feet wide and the concrete surface was 8 inches thick. A wooden roof supported by metal fence posts covered the pad and the pad was enclosed by chain-link fencing. Steel rails were embedded in the concrete at approximately 8-inch intervals. The pad was raised above the surrounding ground approximately 3.75 feet on the south end and 5 feet on the north end (variance is due to the slope of the surrounding ground surface). A diagram of the transformer pad is illustrated in Figure 3. There are no records indicating the installation or removal dates of the transformers.

A man-door entrance to Building 24 with a concrete landing, referred to the raised concrete pad in this report, was located north of the former transformer pad. Grassed areas are located north of the raised concrete pad and south of the former transformer pad. An earthen ditch flows toward the north between the former transformer pad and asphalt-paved area. A culvert conveys the flow in the ditch beneath a concrete ramp near the raised concrete pad. Areas to the west of the transformer pad area paved with asphalt. These features are shown on Figure 3.

2.2 Investigation and Delineation Activities

Four phases of investigation and delineation sampling were conducted in 2013 and 2014 to fulfill the site characterization requirements described in 40 CFR 761.61(a)(2). Characterization samples were collected from each type of media present within or near the transformer pad including concrete in the floor and walls of the pad, gravel beneath the pad, soil north and south of the pad, asphalt sub-base west of the pad, and bedrock beneath the entire area. Sampling activities were conducted in accordance with WSP's Standard Operating Procedures (SOPs; Appendix A). A detailed description of each phase of sampling, the sampling methods, laboratory analyses, and results were provided in the work plan. The site characterization results are shown on Figure 3 and summarized below.

A total of 26 concrete chip samples, 24 soil/sub-base samples, and 5 bedrock/gravel samples were collected during the 4 phases of investigation. In summary:

- Four of 12 concrete samples from the transformer pad base contained PCBs over 50 mg/kg. The remaining 8 samples contained less than 50 mg/kg PCBs, of which 3 samples were less than 1 mg/kg.
- Two of 10 concrete samples from the sidewalls of the transformer pad contained PCBs over 50 mg/kg. The
 remaining 8 samples contained less than 50 mg/kg, of which 6 were less than 1 mg/kg.
- Four concrete samples from the raised concrete pad adjacent to the transformer pad contained less than 1 mg/kg total PCBs.
- One of 8 soil samples north of the transformer pad contained PCBs over 1 mg/kg at a concentration of 1.97 mg/kg. The remaining 7 samples were less than 1 mg/kg.
- Two of 4 soil samples south of the transformer pad contained PCBs over 1 mg/kg; the highest was 3.25 mg/kg.
- Four of 12 asphalt sub-base samples west and northwest of the transformer pad contained PCBs over 1 mg/kg; the highest was 21.2 mg/kg.
- One sample of the gravel beneath the transformer pad contained 3.54 mg/kg total PCBs.
- All four bedrock samples contained less than 1 mg/kg total PCBs.

Concrete from the transformer pad and walls was the only media investigated that contained PCBs over 50 mg/kg.

2.3 Remediation Objectives

The remedial action goal was to remediate PCB-affected areas to the high occupancy cleanup level of 1 mg/kg and to restore the site for beneficial reuse without further restrictions. The primary elements of the approved work plan implemented to achieve this goal included:

- Location and protection of active utility services within the work area.
- Removal of the concrete pad (surface and sidewalls) and gravel beneath the pad
- Removal of asphalt, sub-base material, and soil that containing PCBs greater than 1 mg/kg from areas surrounding the former transformer pad.
- Transportation and offsite disposal of materials containing PCB concentrations above 1 mg/kg. All materials were transported to licensed and permitted disposal facilities.
- Collection of confirmation samples of each type of media to verify attainment of the high occupancy cleanup level.
- Restoration of affected areas for beneficial reuse.

3 Remediation Activities

Implementation of the remediation activities commenced on March 18, 2015. Remediation activities consisted of site preparation, removal of the former transformer pad including the sidewalls and underlying gravel, remediation of soil in asphalt and grassed areas surrounding the transformer pad, confirmation sampling, waste management, and site restoration. Remediation was completed by OSC with continuous oversight conducted by WSP. Final restoration was completed May 8, 2015. The following sections describe the remediation activities.

3.1 Pre-remediation Planning

Before beginning any remediation activities at the site, WSP conducted pre-remediation planning work that included preparation of a site specific Health and Safety Plan (HASP) and a Community Air Monitoring Plan (CAMP).

3.1.1 Health and Safety Plan

The site-specific HASP was prepared in compliance with 29 CFR 1910.120 Hazardous Waste Operations and Emergency Response regulations. The HASP included the following information:

- Organization of the Health and Safety Program
- Identification of the health and safety hazards pertaining to each major site task
- Identification of the medical monitoring requirements
- Identification of the training requirements including OSHA's hazard communication requirements
- Establishment of site control procedures
- Identification of appropriate levels of personal protective equipment (PPE)
- Establishment of communication procedures
- Establishment of personnel and equipment decontamination procedures
- Identification of appropriate exposure monitoring requirements
- Establishment of emergency response procedures

The major site activities associated with WSP's responsibilities included oversight and confirmation sampling. OSC prepared their own HASP commensurate with WSP's that included site preparation activities, excavation, material staging and loading, transportation and disposal, and restoration.

3.1.2 Community Air Monitoring Plan

A site-specific CAMP was prepared and implemented to monitor ambient air during the PCB remediation as required by the New York State Department of Health (NYSDOH). The purpose of the CAMP was to ensure that any site-related constituents (airborne particulates containing PCBs or volatile organic compounds [VOCs]) that may be released during pad demolition and ground intrusive work, were detected, measured, and mitigated to protect the nearby community receptors from unnecessary exposures. The site-specific CAMP is provided in Appendix B.

Two monitoring locations were established upwind and downwind of the predominant wind direction as established daily by local weather station data. Continuous particulate monitoring and periodic VOC monitoring was completed. Continuous particulate monitoring was performed using a Thermo Andersen MIE DATARAM 4000 with audible alarm and data-logging capabilities to indicate exceedance of the action level. Periodic VOC monitoring

was completed using a MiniRAE 2000 photoionization detector (PID). No exceedances of particulates or VOC concentrations were recorded during execution of the work.

3.2 Site Preparation

Site preparation activities included public and private utility locating, electrical line relocation, installation of erosion and sedimentation controls, and asbestos abatement. These site preparation activities are described in the following sections.

3.2.1 Utility Location

The Dig Safely New York One Call (ticket # 03175-540-042-00) was submitted by OSC March 17, 2015. A private utility locating firm, New York State Lead Detection Inc., marked the locations of underground utilities within the excavation area on March 18, 2015. Two abandoned high voltage electrical service conduits, a sanitary sewer, a storm sewer, and unknown underground line were identified and marked. Utility locating documentation is provided in Appendix C. OSC used special precautions while excavated above and near the identified utility lines. A clay tile drainage pipe was damaged during the excavation work and was repaired during site restoration activities.

3.2.2 High-Voltage Electric Line Relocation

While the transformers had been previously removed from the site, an aboveground high-voltage electrical line ran through the former transformer pad enclosure. WSP contracted with Matco Electric of Ithaca, New York to deenergize and reroute the high-voltage electric service away from the transformer pad. After relocating, the high-voltage line was re-energized to provide electrical service to Building 24.

3.2.3 Erosion and Sedimentation Controls

Best Management Practices (BMPs) were implemented to minimize the potential for erosion and sedimentation in surface water runoff. The flow from the drainage ditch was temporarily rerouted during the work. A sump and gravel berm was installed south of the work area within the ditch parallel to Building 24 to intercept storm water flow from the south. Storm water collected at the sump was pumped around the work area to the northeast and discharged to a downgradient portion of the drainage ditch culvert. A drainage pipe from Building 24 within the excavation area was temporarily diverted to the downgradient portion of the ditch. The temporary controls were removed during site restoration activities.

Dust suppression measures were established before work began. Water from a nearby hydrant was used sparingly to dampen excavated materials and to minimize dust emissions resulting from the remediation activities.

3.2.4 Asbestos Abatement

Approximately 285 square feet of non-friable organically bound (NOB) asbestos material was identified in the roof of the transformer pad enclosure. An asbestos notification for removal of the asbestos was submitted by OSC (License No. 34820) to the New York State Department of Labor (NYSDOL). Roof removal was completed on April 8, 2015 in accordance with NYSDOL CR 56-11.1 In-Plant Operations regulation. The pre-removal and final visual inspection was completed by Herbert D. Thompson (Cert. No. 08-13705) of Parsons Brinckerhoff (NYSDOL License No. 28575). The NOB waste was wrapped in polyethylene sheeting, loaded to a roll-off box, and transported by Earthwatch Waste Systems, Inc. to the Chemung County Landfill, a division of Casella Waste Management NY, in Elmira, New York for disposal. Documentation of the asbestos abatement is provided in Appendix D.

3.3 Waste Characterization Sampling

Waste characterization sampling for landfill profiling and acceptance was conducted before excavation to minimize contractor downtime and material handling. OSC, under WSP supervision, collected four samples representing each type of waste expected to be generated including concrete containing PCBs greater than 50 mg/kg; concrete, soil, sub-base, and asphalt containing less than 50 mg/kg; non-porous demolition debris (fence, rails, posts); and porous demolition debris (wood). Analytical parameters for waste characterization were selected based on the disposal facilities' requirements. It is important to note that while PCB analysis of waste characterization samples was required for landfill acceptance, material segregation and disposal decisions were made based on the asfound concentrations of PCBs. Waste characterization and analyses included:

- Concrete containing greater than 50 mg/kg PCBs A discrete sample of concrete containing PCBs greater than 50 mg/kg was collected from the middle of the transformed pad. The sample was collected using a decontaminated rotary hammer drill, outfitted with chisel and auger bits. The sample was analyzed for total metals, toxicity characteristic leaching procedure (TCLP) metals, and PCBs based on the profiling requirements of the selected hazardous waste disposal facility, CWM Chemical Services, L.L.C of Model City, New York. The sample contained 77 mg/kg total PCBs.
- Materials containing less than 50 mg/kg PCBs A composite sample proportionally representative of the soil, concrete, asphalt, and sub-base containing less than 50 mg/kg of PCBs was collected from the areas delineated for removal. The sample was analyzed for PCBs and hazardous waste characteristics for toxicity (TCLP VOCs, semi-VOCs, and metals), reactivity (cyanide and sulfide), ignitability (flashpoint), and corrositivity (pH). The sample contained 12.4 mg/kg total PCBs.
- Porous demolition debris A composite sample was collected from the underside of the wooden roof of the transformer pad enclosure. Equal portions of wood from four locations were composited and analyzed for PCBs. PCBs were not detected in the sample and the roof structure was removed as a unit and disposed of as a NOB asbestos waste as described in Section 3.2.4.
- Non-porous materials A composite wipe sample of the non-porous surfaces of the transformer pad enclosure was collected in accordance with CFR 761.312(b). Three wipe samples were collected from the chain-link fencing, posts, and rails and composited into a single sample. PCBs were not detected in the sample and the non-porous materials were disposed of with the porous demolition debris.

Analytical data reports for the waste characterization samples are provided in Appendix E.

3.4 Transformer Pad Removal and Excavation

Following the completion of site preparation activities, the transformer pad removal and excavation began on April 9, 2015. Air monitoring was conducted throughout the duration of pad removal and excavation in accordance with the HASP and CAMP. A decontamination station was constructed to contain equipment decontamination water generated during the remediation activities. Decontamination wastewater was managed as described in Section 3.6.

3.4.1 Transformer Pad Removal

Concrete was the only media found to contain PCBs above 50 mg/kg during the investigation phase. As shown on Figure 3, concrete samples from two locations near the center of the pad and one location from the front wall of the pad contained PCB concentrations greater than 50 mg/kg. WSP marked out the locations of concrete to be managed as a hazardous waste (Figure 3). OSC saw cut the concrete, size-reduced the concrete with a hydraulic hammer, and loaded the concrete directly to a roll-off box. Polyethylene sheeting was placed adjacent to the transformer pad to collect debris during pad demolition. Gravel directly below the concrete was also removed and placed in the roll-off box. No free liquids were present in the gravel beneath the pad. Competent bedrock was encountered at a depth of approximately 2 feet below the top of the pad. A total of 17.73 tons of concrete and

gravel were transported to CWM Chemical Services, L.L.C of Model City, New York for disposal. Transportation and disposal details are provided in Section 3.6.

The remainder of the transformer pad materials from the northern and southern sides contained PCBs less than 50 mg/kg. In a similar manner, the concrete was reduced in size and loaded with the underlying gravel to a separate roll-off box. A total of 17.29 tons of concrete and gravel were transported to Ontario County Landfill of Stanley, New York for disposal. Transportation and disposal details are provided in Section 3.6.

After pad removal, the entire Building 24 foundation wall from the roof to the exposed bedrock was pressure washed to remove residual solids. Approximately 2 vertical feet of foundation wall was exposed as a result of the transformer pad removal. Water generated from the pressure washing was combined with equipment decontamination fluids and transferred to a 300-gallon tank for subsequent characterization and disposal as described in Section 3.6.

3.4.2 Excavation

Following removal of the transformer pad, WSP marked the initial limits of excavation in the areas north, northwest, west, and south of the former transformer pad (Figure 4). Each area was identified by the following scheme:

- Excavation area E1 Soil excavation area north of the transformer pad encompassing soil boring SB-632 that contained 1.97 mg/kg total PCBs.
- Excavation area E2 Asphalt/sub-base excavation area northwest of the transformer pad encompassing soil boring SB-645 that contained up to 21.2 mg/kg total PCBs.
- Excavation area E3 Asphalt/sub-base excavation area west of the transformer pad encompassing soil borings MW-24 and SB-630 that contained 11.3 mg/kg and 3.39 mg/kg total PCBs, respectively.
- Excavation area E4 Soil excavation are north of the transformer pad encompassing soil borings SB-639 and SB-640 that contained 3.25 mg/kg and 2.46 mg/kg total PCBs, respectively.

OSC saw cut the asphalt in excavation areas E2 and E3 and excavated soil, asphalt, and sub-base from all areas to the prescribed limits down to the competent bedrock surface which was generally encountered 1 to 2 feet below ground surface. Excavated materials were loaded directly to roll-off boxes. A total of 146.30 tons of soil, asphalt, and sub-base were transported to Ontario County Landfill for disposal. Transportation and disposal details are provided in Section 3.6.

Additional excavation was performed based on the results of the confirmation sampling results described in Section 3.5. One of 5 soil samples collected beneath the raised concrete pad (sample "BD24-RPAD-03"; Figure 4) contained PCBs greater than 1 mg/kg. Based on this result, the decision was made to remove the entire raised concrete pad, the concrete ramp, and the drainage culvert beneath the ramp. Soil and sub-base beneath these features were excavated to the top of bedrock, which was encountered at a depth of approximately 4.5 feet below the raised concrete pad. Several utility conduits, both active and abandoned, were present beneath the raised concrete pad. A clay tile drainage pipe that was damaged during excavation was repaired with polyvinyl chloride (PVC) pipe and Fernco fittings.

Additional excavation was performed in excavation areas E2 and E3 based on confirmation sample results. At locations where the perimeter confirmation samples were greater than 1 mg/kg, the excavations were extended outward one 5-foot grid node followed by additional confirmation sampling. When completed, the final excavation limits formed one contiguous area that included soil along the drainage ditch from the upgradient side of the transformer pad to the grate-covered concrete channel near the roll-up door entrance to Building 24 (Figure 4). The limits of excavation along the drainage ditch were defined by sample "BD24-E4-01" (0.988 mg/kg PCBs) on the upgradient side and "WSP-SB-637" (0.837 mg/kg PCBs) on the downgradient side. All of the areas were excavated to the top of competent bedrock. The final limits of excavation are shown on Figure 4.

3.5 Confirmation Sampling

Following excavation to the initial limits, confirmation samples were collected in accordance with 40 CFR 761 Subpart O to verify that remaining media contained less than 1 mg/kg of total PCBs. A 5-foot grid was interlaid within the original 10-foot grid and confirmation samples were collected at the base of the excavations and along the perimeters of the excavations at the nodes of the 5-foot grid. No confirmation samples were collected from the excavation perimeters that were bound by investigation samples containing PCBs less than 1 mg/kg or bound by the area of inference as defined in 40 CFR 761.283(d).

Reusable sampling equipment (drill bits, augers, and trowels) were decontaminated before each use by washing with non-phosphate detergent, rinsing with distilled water, wiping with hexane, and air drying. A total of six equipment rinsate blanks were collected by pouring distilled water over the decontaminated equipment and into sample jars. PCBs were not detected in any of the rinsate samples.

Because the excavations were advanced to the top of bedrock, confirmation samples at the base of the excavations were collected from the bedrock surface. Bedrock confirmation samples were collected in accordance with the U.S. EPA Region 1 document titled "Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (May 5, 2011; Appendix F). Bedrock confirmation samples were collected as discrete samples using a rotary impact hammer drill equipped with a decontaminated 1-inch diameter drill bit. The drill bits were advanced to a maximum of 3 inches and the powder collected and placed in laboratory-supplied sample jars.

Confirmation samples along the excavation perimeter, soil in excavation areas E1 and E4 and asphalt sub-base in excavation areas E2 and E3, were collected as discrete samples using a decontaminated hand auger or stainless steel trowel in accordance with WSP's SOPs (Appendix A). Samples were homogenized and placed in laboratory-supplied jars.

Two asphalt confirmation samples were collected as composite samples from excavation areas E2 and E3. Equal portions of asphalt from 5 grid nodes in excavation area E2 and 4 grid nodes in excavation area E3 were combined and thoroughly homogenized before placing in laboratory-supplied jars. Using procedures similar to the bedrock sampling, three confirmation samples were collected from the concrete wall of Building 24.

All samples were labeled, packed in a cooler with ice, and submitted under a chain of custody to Accutest Analytical Laboratories in Marlborough, Massachusetts for analysis of PCBs by EPA SW-846 Method 8082A.

The confirmation sample locations are shown on Figure 4 and the results provided in Table 1. The analytical data reports are provided in Appendix G. Based on the results of the initial confirmation sampling, additional excavation was required in certain areas to meet the 1 mg/kg high occupancy cleanup level. These areas included the soil beneath the raised concrete pad, the drainage ditch, additional areas adjacent to excavation areas E2 and E3, and a 50-square foot area of bedrock (described below). The excavation and confirmation sampling process continued until all confirmation samples contained less than 1 mg/kg total PCBs. The final limits of excavation and confirmation sampling results are shown on Figure 4.

The results of two bedrock confirmation samples in adjacent grid nodes contained PCBs greater than 1 mg/kg. Bedrock represented by these two samples was removed by hydraulic hammer to an approximate depth of 6 inches. Confirmation samples at the 6-inch depth contained PCBs less than 1 mg/kg.

In summary, a total of 63 confirmation samples were collected and analyzed for PCBs, of which 26 were soil or sub-base, 32 were bedrock, 3 were foundation wall samples from Building 24, and 2 were composite asphalt samples. Eleven of the 26 soil/sub-base samples exceeded the 1 mg/kg high occupancy cleanup level and resulted in additional excavation and confirmation sampling. Two of the 32 bedrock samples exceeded the 1 mg/kg cleanup level and resulted in additional bedrock removal and confirmation sampling. None of the Building 24 foundation wall and asphalt samples exceeded the 1 mg/kg cleanup level. All of the final confirmation sampling results met the 1 mg/kg cleanup level.

3.6 Transportation and Disposal

Materials generated during the transformer pad removal and PCB remediation were managed based on the asfound concentrations of PCBs and included concrete with PCBs greater than 50 mg/kg; concrete, soil, sub-base, asphalt, and bedrock with PCBs less than 50 mg/kg; non-friable NOB asbestos material, non-porous materials, and decontamination fluids. The quantities, transporters, and disposal facilities for each waste stream are presented below.

In accordance with 40 CFR 761.61(a)(5)(i)(B)(2)(iii), concrete containing PCBs greater than 50 mg/kg was disposed of in a permitted hazardous waste landfill. A total of 17.73 tons of concrete was transported under hazardous waste manifest by Tonawanda Tank Transport Service, Inc. on April 15, 2015 for disposal at CWM Chemical Services, L.L.C. of Model City, New York. Hazardous waste transportation and disposal documentation is provided in Appendix H.

In accordance with 40 CFR 761.61(a)(5)(i)(B)(2)(ii), materials containing less than 50 mg/kg PCBs were disposed of in a permitted non-hazardous waste landfill. A total of 146.3 tons of concrete, asphalt, soil, sub-base, and bedrock were transported under non-hazardous waste manifest by Riccelli Enterprises, Inc. for disposal at Ontario County Landfill, a division of Casella Waste Systems of Stanley, New York. Non-hazardous waste transportation and disposal documentation is compiled in Appendix I.

After confirming that the wood portions of the transformer pad roof did not contain detectable concentrations of PCBs, the NOB asbestos material was transported by Earthwatch Waste Systems for disposal at the Chemung County Landfill in Elmira, New York. Transportation and disposal documentation for the NOB asbestos waste is included in Appendix D. The chain-link fence, posts, and rails did not contain PCBs in wipe samples and were disposed with the NOB asbestos waste. A total of 4.01 tons of asbestos and demolition debris were disposed of at the Chemung County Landfill.

A total of 220 gallons of water were generated during decontamination of the Building 24 wall and the remediation equipment. A sample of the water was collected for characterization purposes and analyzed for hazardous waste characteristics (toxicity, reactivity, corrosivity, and ignitability) and PCBs. The water contained PCBs at a concentration of 0.83 micrograms per liter. The water was transferred from the polyethylene tank into 4 drums, then transported under bill of lading by Clean Harbors Environmental Services, Inc. for disposal at Clean Harbors Reidsville, LLC of Reidsville, North Carolina. Transportation and disposal documentation for the decontamination fluids is provided in Appendix J.

3.7 Site Restoration

The total excavation footprint encompassed an approximate area of 1,250 square feet. The excavated areas were backfilled in lifts using New York State Department of Transportation (NYSDOT) Type 4 gravel. Each lift was compacted with a minimum of three passes by a walk-behind vibratory plate compactor. Backfill in the asphalt areas was placed to a depth to accommodate 4 inches of asphalt. Other areas, with the exception of the former transformer pad, were backfilled to the original grade. Gravel backfill was placed as bedding for the culvert, which was reinstalled at its original location and grade. Flared end sections were installed at each end of the culvert to replace the concrete collars that were not replaced. Additional gravel was place above and around the culvert.

Two 2-inch layers of hot-mix asphalt were placed to restore the parking area west of the transformer pad. The asphalt was extended over the culvert to form a ramp. The raised concrete pad was not replaced; however, a small volume of concrete was placed near the man-door (Figure 4) that was slightly undermined during excavation beneath the raised concrete pad. The bedrock outcrop beneath the former transformer pad remains exposed.

Grass-seeded fibermesh with hay was installed at the north and south ends of the excavation and the restored drainage ditch adjacent to Building 24.

A drainage pipe was present within the excavation area below the former transformer pad. This pipe was extended using PVC pipe from the building to the drainage culvert to minimize the potential for erosion. The pipe was

covered with gravel for protection. Final restoration of the site was completed May 8, 2015. Photographs of the work and final conditions are provided in Appendix K.

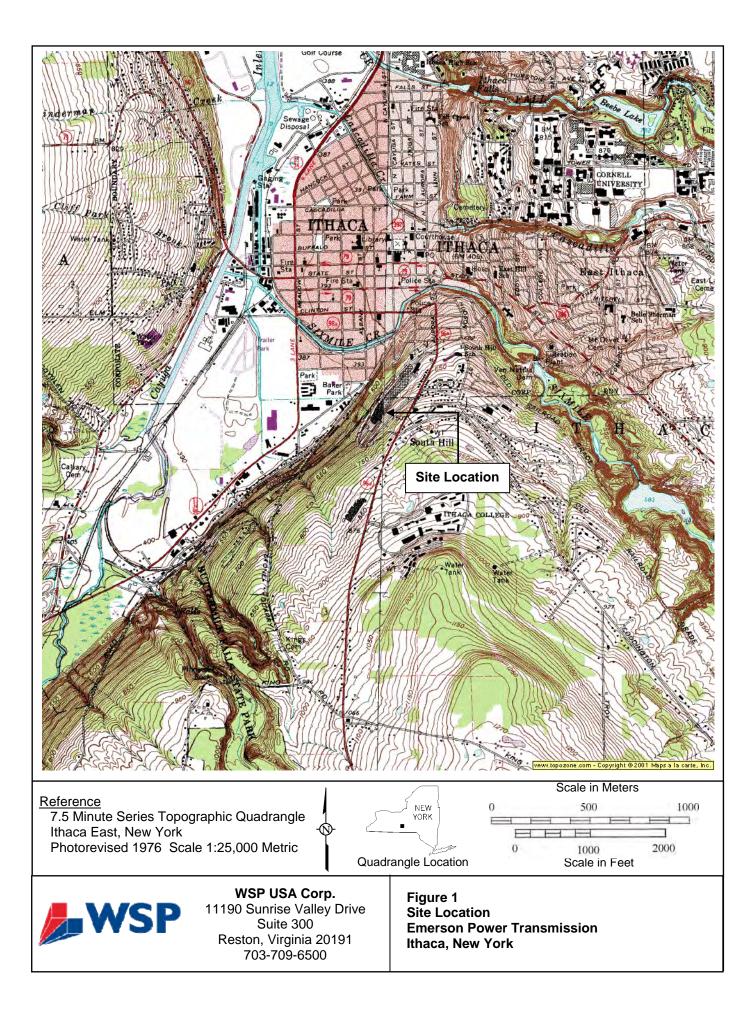
4 Summary and Conclusions

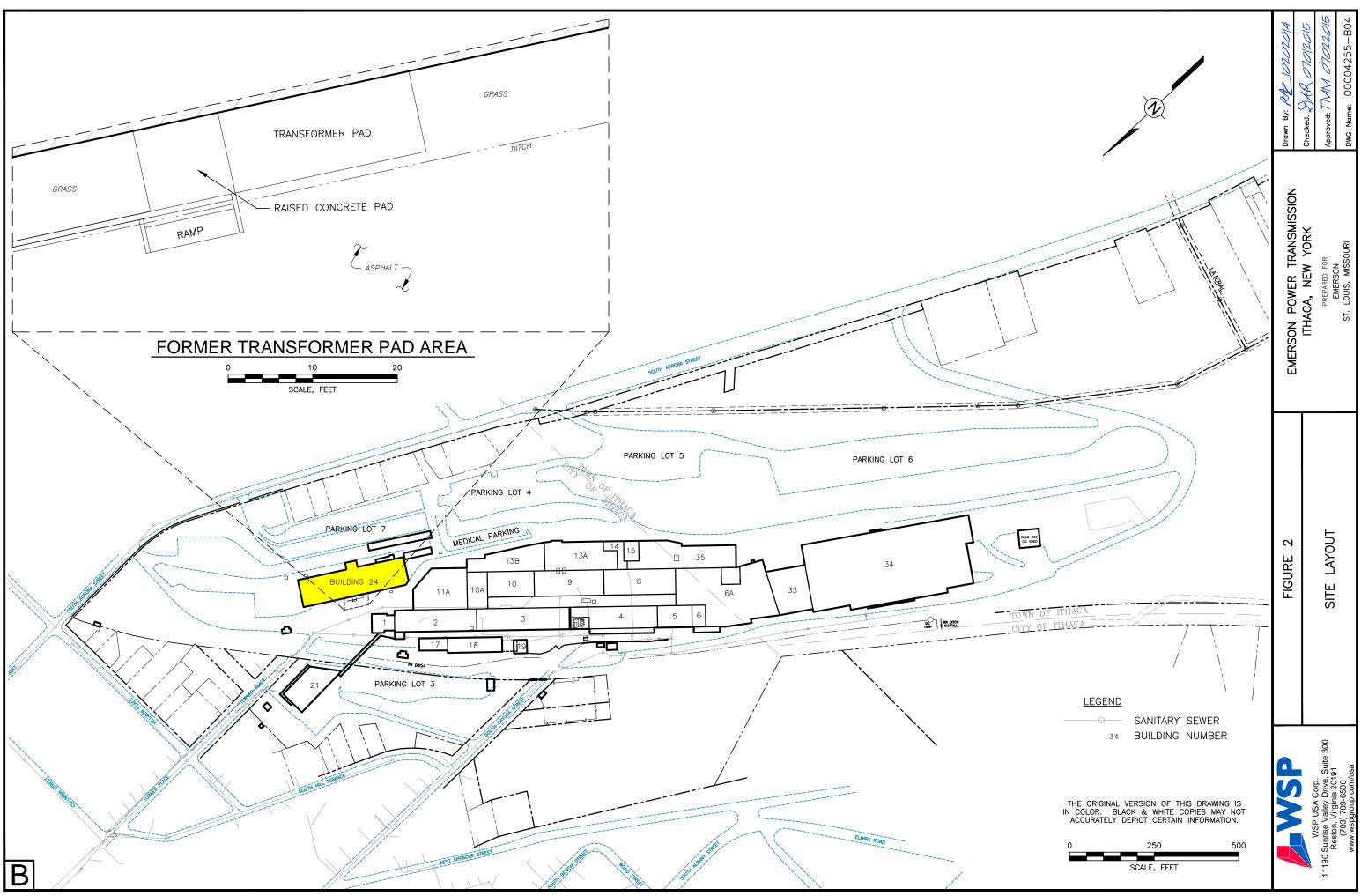
The Self-Implementing PCB Remediation was completed on May 8, 2015. The remedial objective was the removal of the former transformer pad and materials containing PCB concentrations greater than the high occupancy cleanup level of 1 mg/kg. Delineation activities were completed in compliance with CFR Part 761.61(a)(2). A site specific CAMP and HASP were implemented during the construction period and no exceedances of CAMP criteria were recorded.

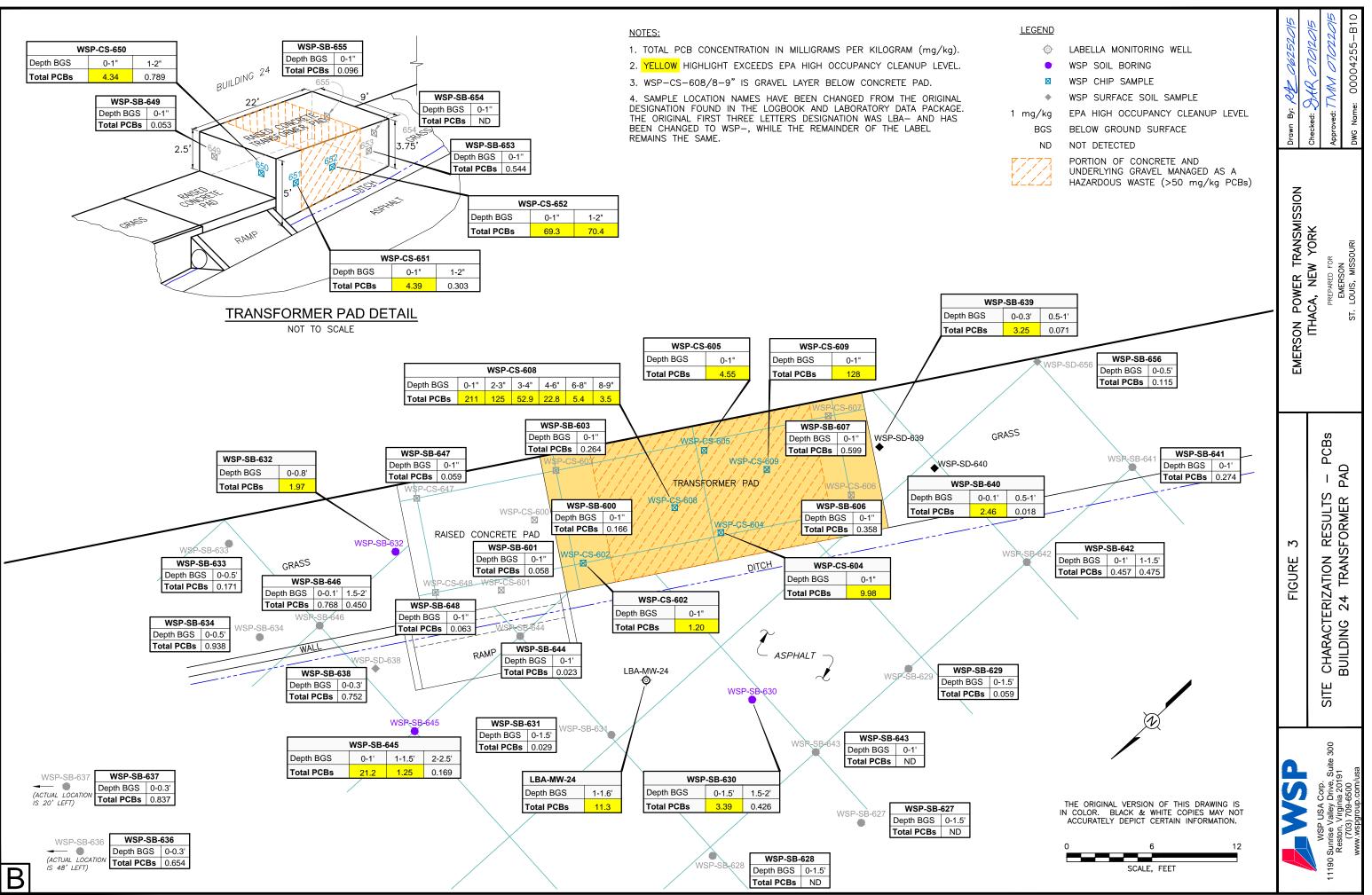
The total excavation footprint encompassed an approximate area of 1,250 square feet. Excavated materials were segregated based on PCB concentrations above and below 50 mg/kg and approximately 164 tons of PCB-affected materials were disposed of offsite at permitted disposal facilities. No excavated materials were reused on site.

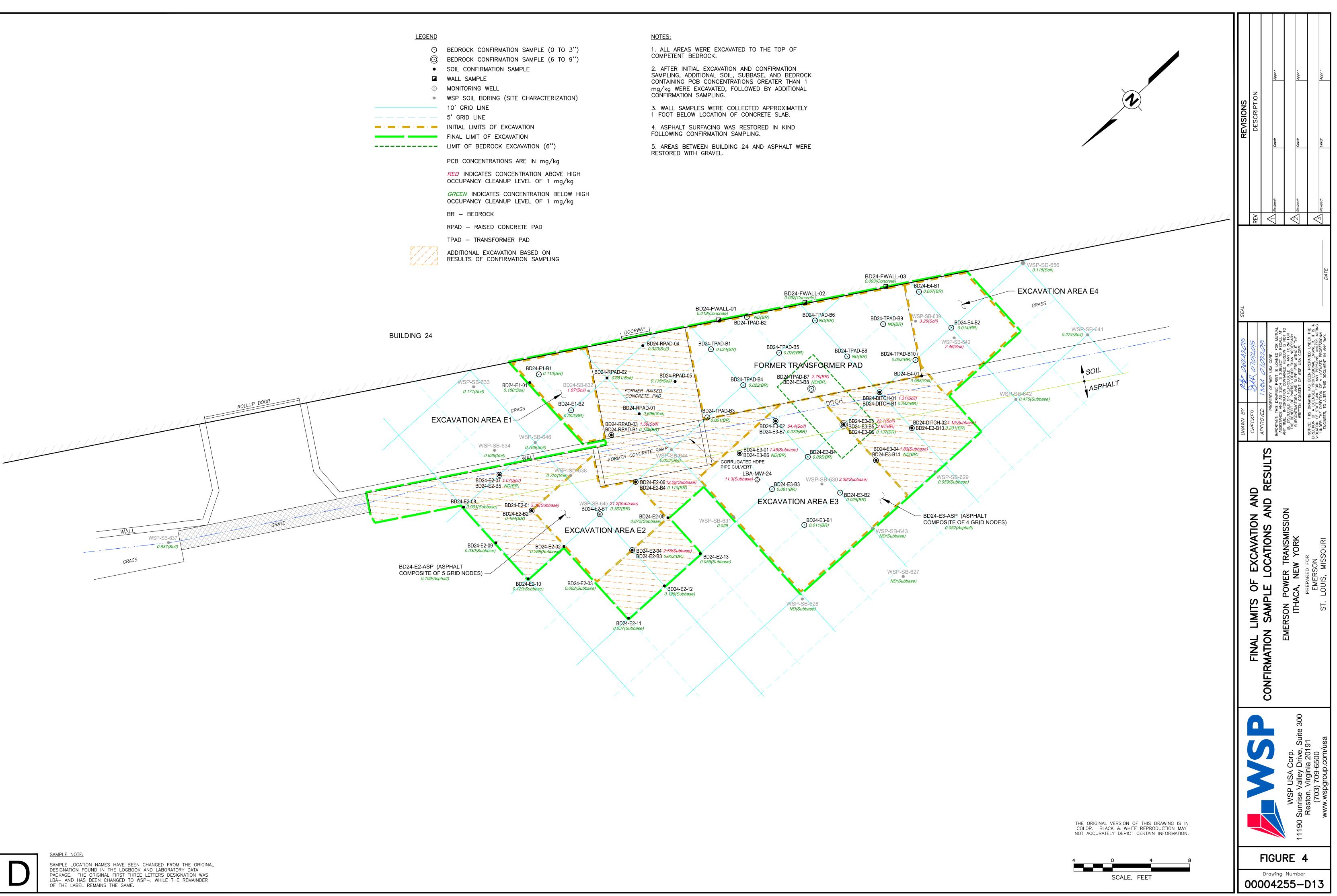
Confirmation sampling was completed in accordance with 40 CFR 761 Subpart O and included bedrock sampling at the base of all excavation areas; perimeter sampling of asphalt, soil, and sub-base in areas north, west, and south of the former transformer pad; and sampling of the Building 24 foundation wall. Confirmation samples verified the remaining media contains less than high occupancy cleanup level of 1 mg/kg of PCBs.

Following remediation and confirmation sampling, the site was restored for beneficial reuse.




5 Acronyms


BMPs	Best Management Practices
CAMP	Community Air Monitoring Plan
CFR	Code of Federal Regulations
EPA	Environmental Protection Agency
HASP	Health and Safety Plan
mg/kg	milligram per kilogram
NYSDEC	New York State Department of Environmental Conservation
NOB	Non-friable organically bound
NYSDOH	New York State Department of Health
NYSDOL	New York State Department of Labor
NYSDOT	New York State Department of Transportation
OSC	Ontario Specialty Contracting, Inc.
PCB	Polychlorinated Biphenyl
PID	Photoionization Detector
PVC	Polyvinyl Chloride
PPE	Personal Protective Equipment
SOPs	Standard Operating Procedures
TCLP	Toxicity Characteristic Leaching Procedure
VOC	Volatile Organic Compound


Figures

Confirmation Sample Results Building 24 Transformer Pad Emerson Power Transmission Ithaca, New York (a)

				Polychlorinated Biphenyls (PCBs) (µg/kg) (b)						
<u>Media</u>	Sample ID	Date	<u>Total PCBs (c)</u>	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
Soil/	BD24-E1-01	04/07/15	180	8.9 U (d)	17 U	17 U	18 U	16 U	64	116
Subbase	BD24-E4-01	04/07/15	988	8.4 U ໌	16 U	16 U	17 U	15 U	782	206
	BD24-DITCH-01	04/08/15	1,307	10 U	20 U	20 U	21 U	18 U	817	490
	BD24-RPAD-01	04/08/15	696	7.9 U	15 U	15 U	16 U	14 U	574	122
	BD24-RPAD-02	04/08/15	681	8.3 U	16 U	16 U	17 U	15 U	556	125
	BD24-RPAD-03	04/08/15	1,583	9 U	17 U	17 U	18 U	16 U	772	811
	BD24-RPAD-04	04/08/15	22.6	7.5 U	15 U	14 U	15 U	13 U	22.6 J	13 U
	BD24-RPAD-05	04/08/15	134.5	8.3 U	16 U	16 U	17 U	15 U	66.2	68.3
	BD24-E2-01	04/10/15	3,376	11 U	4.8 U	11 U	12 U	14 U	2,990	386 J
	BD24-E2-02	04/10/15	288.7	10 U	4.5 U	10 U	11 U	13 U	219	69.7
	BD24-E2-03	04/10/15	82.5	10 U	4.6 U	11 U	11 U	13 U	45.3	37.2
	BD24-E2-04	04/10/15	2,782	11 U	4.9 U	12 U	12 U	14 U	2,520	262 J
	BD24-E2-05	04/10/15	875	11 U	4.8 U	11 U	12 U	13 U	785	90 J
	BD24-E2-06	04/10/15	12,290	11 U	4.6 U	11 U	12 U	13 U	4,500	7,790
	BD24-E2-07	04/16/15	1,068	11 U	9.8 U	12 U	12 U	14 U	675	393
	BD24-E2-08	04/16/15	963	13 U	11 U	13 U	14 U	16 U	374	589
	BD24-E2-09	04/16/15	30.1	10 U	9.1 U	11 U	11 U	13 U	18.9 J	11.2 J
	BD24-E2-10	04/16/15	129.3	10 U	8.8 U	10 U	11 U	12 U	106	23.3 J
	BD24-E2-11	04/16/15	37.2	11 U	9.6 U	11 U	12 U	14 U	19.3 J	17.9 J
	BD24-E2-12	04/16/15	126.1	9.9 U	8.7 U	10 U	11 U	12 U	93.9	32.2 J
	BD24-E2-13	04/16/15	58.7	11 U	9.5 U	11 U	12 U	13 U	47.1	11.6 J
	BD24-E3-01	04/16/15	1,448	11 U	9.3 U	11 U	12 U	13 U	703	745
	BD24-E3-02	04/16/15	54,400	11 U	9.4 U	11 U	12 U	13 U	9.8 U	54,400
	BD24-E3-03	04/16/15	22,100	11 U	9.3 U	11 U	12 U	13 U	9.7 U	22,100
	BD24-E3-04	04/16/15	1,804	10 U	9 U	11 U	11 U	13 U	1,460	344
	BD24-DITCH-02	04/16/15	1,128	11 U	9.4 U	11 U	12 U	13 U	1,060	67.7
Bedrock	BD24-E1-B1	04/10/15	113	9.3 U	4.1 U	9.7 U	10 U	12 U	113	4.8 U
	BD24-E1-B2	04/10/15	301.8	9.4 U	4.1 U	9.8 U	10 U	12 U	293	8.8 J
	BD24-E4-B1	04/10/15	67	9.8 U	4.3 U	10 U	11 U	12 U	9 U	67
	BD24-E4-B2	04/10/15	14.4	9.8 U	4.3 U	10 U	11 U	12 U	9 U	14.4 J
	BD24-E2-B1	04/16/15	366.5	9.7 U	8.6 U	10 U	11 U	12 U	271	95.5
	BD24-E2-B2	04/16/15	163.9	9.6 U	8.4 U	9.9 U	11 U	12 U	140	23.9 J
	BD24-E2-B3	04/16/15	52.1	9.5 U	8.4 U	9.9 U	10 U	12 U	32.2 J	19.9 J
	BD24-E2-B4	04/16/15	109.9	9.4 U	8.3 U	9.8 U	10 U	12 U	83.4	26.5 J
	BD24-E3-B1	04/16/15	11.1	9.4 U	8.2 U	9.7 U	10 U	12 U	8.6 U	11.1 J
	BD24-E3-B2	04/16/15	28.3	9.6 U	8.5 U	10 U	11 U	12 U	20.2 J	8.1 J

Confirmation Sample Results Building 24 Transformer Pad Emerson Power Transmission Ithaca, New York (a)

						Polychlorinated	Biphenyls (PC	Bs) (µg/kg) (b)		
<u>Media</u>	Sample ID	Date	Total PCBs (c)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
	BD24-E3-B3	04/16/15	81	9.4 U	8.3 U	9.7 U	10 U	12 U	38.6	42.4
	BD24-E3-B4	04/16/15	95.2	9.6 U	8.4 U	9.9 U	11 U	12 U	26.8 J	68.4
	BD24-E3-B5	04/16/15	2,940	9.8 U	8.6 U	10 U	11 U	12 U	9 U	2,940
	BD24-DITCH-B1	04/16/15	342.5	9.6 U	8.4 U	9.9 U	11 U	12 U	248	94.5
	BD24-RPAD-B1	04/16/15	135.8	9.5 U	8.4 U	9.9 U	10 U	12 U	113	22.8 J
	BD24-TPAD-B1	04/16/15	24.3	9.2 U	8.1 U	9.5 U	10 U	11 U	8.4 U	24.3 J
	BD24-TPAD-B100 (e)	04/16/15	82.8	9.1 U	8 U	9.5 U	10 U	11 U	62.3	20.5 J
	BD24-TPAD-B2	04/16/15	12 U	9.8 U	8.7 U	10 U	11 U	12 U	9.1 U	5.1 U
	BD24-TPAD-B3	04/16/15	60.7	9.5 U	8.4 U	9.9 U	10 U	12 U	49.2	11.5 J
	BD24-TPAD-B10	04/17/15	52.8	9.6 U	8.4 U	9.9 U	11 U	12 U	8.8 U	52.8
	BD24-TPAD-B4	04/17/15	22.3	9.1 U	8.1 U	9.5 U	10 U	11 U	8.4 U	22.3 J
	BD24-TPAD-B5	04/17/15	26.2	9.6 U	8.5 U	10 U	11 U	12 U	8.8 U	26.2 J
	BD24-TPAD-B6	04/17/15	12 U	9.6 U	8.4 U	9.9 U	11 U	12 U	8.8 U	4.9 U
	BD24-TPAD-B7	04/17/15	2,790	9.3 U	8.2 U	9.7 U	10 U	12 U	8.6 U	2,790
	BD24-TPAD-B8	04/17/15	12 U	9.6 U	8.5 U	10 U	11 U	12 U	8.8 U	5 U
	BD24-TPAD-B9	04/17/15	12 U	9.6 U	8.5 U	10 U	11 U	12 U	8.9 U	5 U
	BD24-E2-B5	04/24/15	82 U	66 U	58 U	68 U	72 U	82 U	61 U	34 U
	BD24-E3-B10	04/24/15	201	50 U	44 U	51 U	54 U	61 U	201	26 U
	BD24-E3-B11	04/24/15	60 U	49 U	43 U	50 U	53 U	60 U	45 U	25 U
	BD24-E3-B6	04/24/15	73 U	59 U	52 U	61 U	65 U	73 U	54 U	31 U
	BD24-E3-B7	04/24/15	79.3	56 U	49 U	58 U	62 U	69 U	79.3 J	29 U
	BD24-E3-B8	04/24/15	74 U	60 U	52 U	62 U	65 U	74 U	55 U	31 U
	BD24-E3-B9	04/24/15	137	71 U	63 U	74 U	78 U	88 U	137 J	37 U
Wall	BD24-FWALL-01	04/17/15	18.8	9.2 U	8.1 U	9.5 U	10 U	11 U	8.4 U	18.8 J
	BD24-FWALL-02	04/17/15	92.3	9.6 U	8.4 U	9.9 U	11 U	12 U	8.8 U	92.3
	BD24-FWALL-03	04/17/15	92.5	9.4 U	8.2 U	9.7 U	10 U	12 U	8.6 U	92.5
Asphalt	BD24-E2-ASP	04/07/15	109.4	6.9 U	13 U	13 U	14 U	12 U	71	38.4
	BD24-3-ASP	04/08/15	52	7 U	14 U	13 U	14 U	12 U	17.8 J	34.2
								-= •		

Shading indicates value greater than high occupancy area cleanup level (1 ppm); additional excavation and confirmation sampling was performed

a/ µg/kg = micrograms per kilogram (ppb); ID = identification; ppm = parts per million (milligrams per kilogram [mg/kg]).

b/ Reported as individual Aroclors.

c/ Sum of the detected or estimated individual Aroclor concentrations.

d/ Data Qualifiers:

U = analyte not detected above reporting limit

J = analyte detected below the reporting limit and above the methold detection limit, estimated concentration.

e/ Duplicate of previous sample.

Appendix A – WSP Standard Operating Procedures

FIELD STANDARD OPERATING PROCEDURE #1 Note Taking and Field Book Entries Procedure

The field book is a record of the day's activities that serves as a reference for future reporting and analyses. The field book is also a legal record for projects that may become involved in litigation. It is of the utmost importance that your notes be complete and comprehensive. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities.

1.1 Acronyms and Abbreviations

HASP	health and safety plan
------	------------------------

- IDW investigation-derived waste
- SOP standard operating procedure

1.2 Materials

- Permanently-bound waterproof field book (e.g., Rite-in-the-Rain® #550, or equivalent)
- Black or blue ballpoint pen (waterproof ink recommended; do not use felt-tip pens)

1.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

The purpose of the field book is to provide a log of all of field events and conditions. The notes must include sufficient detail (i.e., who, what, when, where, why, and how) to enable others to reconstruct the day's activities for analysis, reporting, or litigation. It is important to be objective, factual, and thorough. Language must be free of personal comments or terminology that might prove inappropriate. Additional data logs or worksheets, such as low flow groundwater sampling sheets, may be used as a supplement; however, under no circumstances should the data sheets be used as a substitute for the daily record of events to be recorded in the field book.

The field book forms the foundation upon which most of the project work (reports, subsequent work plans, etc.) will be based. It is critical that field book chain of custody is maintained at all times.

1.4 Set-Up Procedures

The first step in setting up a new field book is to add the information necessary for you to identify the field book in the future and for others to return the book to WSP, should it be lost. On the first page of the field book (or, for some field books, the inside cover), place a "Return for Reward" notice. Include the following information:

- An "If Found Return for Reward" notice in bold letters
- Our company name
- Our company address (usually the office where the project is being managed)
- Our company phone number

Reserve the second page of the field book for project-specific information, such as:

- The project name and number
- The project manager's name
- The site telephone number, address, and onsite contact (if appropriate)
- The names and telephone numbers for all key (onsite) personnel
- The emergency telephone numbers including the police, fire, and ambulance (found in the HASP)

Business cards from individuals who visit the site, (including the person in charge of the field book) can be affixed to the inside back cover.

1.5 Field Book Entries

Start each day on a new page. Include the following information in the header of the first page (and all subsequent pages):

- The date
- The project name
- The page number (often pre-printed in Rite-in-the-Rain® style field books)

Precede field book entries by the time entered along the left margin of the page using a 24-hour or military clock (e.g., 1330 for 1:30 PM). The first entry of the day must include your and your subcontractor's arrival time at the site, a description of the planned activities, key onsite personnel (including subcontractors), and the weather forecast. The first entry must also detail the tailgate review of the site-specific HASP with the onsite personnel. Be sure that field book entries are LEGIBLE and contain factual, accurate, and inclusive documentation of project field activities. Do not leave blank lines between field book entries. If a mistake is made in an entry, cross out the mistake with a single line and place your initials the end of the line. Any acronyms written in the field book (including your initials) must be spelled out prior to the first use. Record your initials and date at the bottom of each page.

Subsequent log entries must document the day's activities in sequence and must be completed throughout the day as events occur (i.e., do not wait until the end of the work day to complete the notes); should out of sequence notes need to be entered, please identify using a footnote or by clearly indicating "Late Entry." Notes must be descriptive and provide location information or diagrams (if appropriate) of the work area or sample locations. Note any changes in the weather and document all deviations from the work plan. Arrival and departure times of all personnel, and operational periods of standby, decontamination, and specific activities must be recorded.

List all field equipment used (e.g., photoionization detector, water testing equipment, personal protective equipment, etc.) and equipment calibration activities, and record field measurements, including distances, monitoring and testing instrument readings. Include the following information in entries describing sampling activities:

- The equipment and materials used by subcontractors, if appropriate (e.g., drill rig type, boring sizes, well casing materials, etc.)
- The sample media and analyses to be performed

- The sampling procedures (e.g., split-spoon sampling, hand trowel, low flow, etc.)
- The equipment used to obtain the sample (e.g., bailers, pump types, geochemical monitoring equipment, etc.)
- The sizes and types of containers, preservation (if any), and any resulting reactions
- The sample identification (especially for duplicate samples)
- The sample collection time
- The shipping and handling procedures, including chain-of-custody, air bill, and seal numbers
- If supplemental data recording logs (digital or hard copy), such as low flow groundwater sheets, the above
 information must be entered in the field book and the supplemental records cross-referenced.

For most sampling activities, the log entries must also include:

- The decontamination and disposal procedures for all equipment, samples, and protective clothing
- An inventory of the investigation-derived waste (IDW) materials generated during the site activities
- A description of the IDW labeling procedures and the onsite staging information

Maintain a sequential log if the sample locations and areas of interest are photographed (strongly recommended). The photographic log must include:

- The date and time of the photograph
- The sequential number of the photograph (e.g., photograph-1, photograph-2, etc.)
- The general direction faced when the photograph was made
- A description of the subject in the image

1.6 Closing Notes

The last entry of the day must include a brief wrap up of the work accomplished, a description of how the site is being secured, and a description of any near hits, accidents, and incidents that occurred during the day's work. Draw a line through the remainder of the page from the row of text diagonally through any blank lines and initial at the end of the diagonal line.

FIELD STANDARD OPERATING PROCEDURE #2 Utility Locating Procedure

The purpose of this procedure is to ensure that all required and appropriate procedures are followed to locate and mark subsurface utilities (e.g., electrical lines, natural gas lines, communication lines) before initiating any intrusive field activities (e.g., drilling, test pits, trenching, excavation). WSP's preference, as indicated in our standard and remediation subcontractor agreement templates, is for our Contractors to be responsible for both public and private utility mark-outs; this includes contacting the public authority and obtaining a subcontractor for private utility locating services, if needed. Guidance for Contractor's to follow to conduct utility clearance is provided in our Request for Proposal (RFP) template and must be included in all RFP's for intrusive field activities. In certain extraordinary circumstances, WSP may choose to be responsible for clearing utilities, this will require a change in the template language of our subcontractor agreement and the revised agreement requires the approval and signature of a member of the Environmental Leadership Team (ELT).

For projects where WSP will be responsible for clearing utilities, compliance with this procedure is mandatory. <u>ALL</u> deviations from this standard operating procedure (SOP) <u>MUST</u> be approved by the project manager and a member of the ELT <u>BEFORE</u> beginning intrusive work.

Field personnel have the authority and responsibility to postpone intrusive activities if a Contractor has not completed utility clearances to WSP's satisfaction; if sufficient information, as stipulated in this SOP, is not available; or if onsite reconnaissance identifies inconsistencies in the findings of utility locators. In these instances, field personnel must notify the project manager or the WSP health and safety officer, or their designee, before proceeding with the proposed work; approval from a member of the ELT is required before the work commences.

The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities.

2.1 Acronyms and Abbreviations

HASP	health and safety plan
------	------------------------

- ELT Environmental Leadership Team
- RFP Request for Proposal
- SOP standard operating procedure

2.2 Materials

- Utility Locating Form (Attachment 1)
- Field book
- Wood stakes
- Spray paint
- Flagging tape
- As-built drawings for sub grade utilities (if available)
- Hand auger or post-hole digger

2.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This procedure is intended to allow the work to proceed safely and minimize the potential for damaging underground and aboveground utilities. Intrusive work includes all activities that require WSP's employees or its subcontractors to penetrate the ground surface. Examples of intrusive work include, but are not limited to, hand augering, probing, drilling, injections, test pit excavations, trenching, and remedial excavations.

This SOP assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1).

2.4 Pre-Field Mobilization Procedures

Regardless of who is responsible for completing these activities (WSP or a Contractor), public rights-of-way and private property must be cleared of potential buried utilities before any intrusive work can begin. The first step in this process is notifying the state public utility locating service of the planned work. These services provide a link between the entities performing the work and the various utility operators (e.g., the water company, the electric company, etc.). All of the public utility locating service call centers in the United States have been streamlined under a single "Call Before You Dig" phone number: 811.

<u>Please note</u>, some state laws have changed such that the person who will actually be conducting the intrusive work must be the person who places the call to the public utility locating service. This means that WSP cannot make this call on the Contractor's behalf; the Contractor must place the call in those states where required. The Common Ground Alliance has established a web site that includes state-specific information to assist in making this determination (<u>http://www.call811.com/state-specific.aspx</u>) for sites in the US and some parts of Canada. If there is any doubt about the requirements for the state where a project is located, the relevant state authority must be contacted.

When the call center is contacted, information regarding the site (e.g., location, nearest cross street, township, etc.) and work activity (e.g., drilling, excavation) will need to be provided to the operator to aid in locating the likely utilities at the work site. The information provided on WSP's Utility Locating Form (Attachment 1) must be recorded (by the Contractor or WSP) and a completed copy of this form must be maintained as part of the project file. Be aware that several states, including California, require that the proposed drilling locations be marked with white spray paint before contacting the locating services.

The following information must accompany the WSP field team at all times during the field project:

- The utility clearance ticket number
- The ticket's legal dig date
- The ticket's expiration date
- Utility providers that were contacted

The ticket number serves as a point of reference for both the utility service providers and for WSP or Contractor personnel should follow up (e.g., renewing the ticket) with the locating service be required. The legal dig and expiration dates reflect the times when it will be legal to perform the proposed work. The legal dig date reflects the

lead time necessary, typically between 48 and 72 hours <u>after</u> you call, for the utility service providers to mark the utilities in you work area. Be sure to include this delay when planning your work. Most utility clearance tickets expire about 2 weeks after the legal dig date. If your work is delayed beyond the expiration date, 811 will need to be called again and the ticket renewed. The renewed ticket will have a new legal dig date that incorporates the same lead-time as the original ticket.

The locating service will also provide the caller with a list of utility companies that will be notified. Compare this list with utilities generally expected at all sites (e.g., sewer, water, gas, communication, and electric). Some utilities (e.g., sewer, water, cable TV) may not be included. If any expected utilities are absent from the contact list, you **MUST** contact the utilities directly for clearance before the start of intrusive activities. Record all contacts on the Utility Locating Form.

2.4.1 Private Utility Locators and Other Sources

Public utility service providers will generally mark their underground lines within the public right-of-way up to the private property boundary. You can request that the utility companies locate their utilities in work areas on private property; however, be aware that most service providers will not mark their utilities on private property. If your work is to be conducted on private property, you **MUST** use a private utility locating service. These companies typically use a variety of methods (e.g., electromagnetic detectors, ground-penetrating radar, acoustic plastic pipe locator, trace wire, etc.) to locate buried utilities in both inside and outside locations (witching is not an acceptable method).

For all operating facilities and the extent possible for closed facilities, identify a site contact familiar with the utilities on the property (e.g., plant manager, facility engineer, maintenance supervisor), and provide this individual with a site plan showing the proposed locations of all soil borings, monitoring wells, test pits, and other areas where intrusive activities will be conducted. These individuals often have knowledge of buried structures or processspecific utilities that may not be identified by the private utility locator. This is particularly important for work performed inside industrial buildings where reinforced concrete and other metallic components of the structure may interfere with the scanning devices used by the private utility locator. You should ask the site contact for all drawings concerning underground utilities in the proposed work areas for future reference.

Keep in mind that no intrusive work may be done before the legal dig date provided by the state utility locating service and no digging, drilling, or other ground-breaking activities may be begin until all utilities on the list have been marked and visually verified in the work area (see below). It is **NOT ACCEPTABLE** to rely solely on as-built drawings or verbal utility clearances from the site contact (these should be used as guides only). A private locator may not be necessary in rare instances; however, nonconformity with the private locate requirement must be approved by the project manager **AND** a member of the ELT before work proceeds.

2.5 Site Mobilization Procedures

Upon arrival, the first step in determining if you are clear of buried and overhead utilities is to locate all of the proposed drilling and trenching locations and mark them with spray paint, stakes, or other appropriate markers. This will help you judge distances from marked utilities and minimizes any potential misunderstandings regarding the locations between you, the subcontractors (drillers, excavators, private utility locator), and the site contact.

Once you have the proposed work areas marked, verify that ALL utility companies listed by the state public utility locating service, and any contacted directly by WSP or the Contractor, have either marked the underground lines in the specified work areas or have responded (via telephone, facsimile, or e-mail) with "no conflict." Document on the Utility Locating Form (Attachment 1) and in the field book as each utility mark is visually confirmed. When receiving verbal clearances by telephone from utility companies, or their subcontractors, it is imperative that you verify which utilities are being cleared, particularly when dealing with subcontractors that may be marking more than one utility.

Review all available as-built utility diagrams and plans and conduct a site walk to identify potential areas where underground lines may be present; include the site contact in these activities. It is a good idea to survey your surroundings during the walk to identify any features that may indicate the presence of underground utilities, such

as linear depressions in the ground, old road cuts, catch basins, or manholes. Keep in mind that many sewer lines can be offset from catch basins. The presence of aboveground utilities, such as parking lot lights or pad-mounted transformers, is also a good indicator of buried electrical lines. Check these items against the Utility Locating Form checklist and discuss the locations with the private utility locating service.

2.5.1 Safe Working Distances and Hand Clearing

A minimum of 4 feet clearance must exist between utilities and proposed drilling locations, and a minimum of 6 feet between utilities and proposed trenching locations. Be aware that some states and localities (e.g., New York City, Long Island) may require greater minimum working distances, depending on the utility (e.g., for high pressure gas mains). A minimum distance of 15 feet must be maintained by heavy equipment (e.g., excavator buckets, drill rig towers and rods) from overhead power lines and a safe distance of 25 feet must be maintained from high-tension overhead power lines. In the event that work must be conducted within 25 feet of high tension wires, the lines must be wrapped and insulated by the local utilities. Increase these minimum distances whenever possible to offer additional assurance that buried or overhead utilities will not be encountered.

If a utility conflict is identified within the minimum safe clearance distance, adjust the proposed location(s) using the criteria given above. It is a good idea to have the private utility locator sweep a relatively large area (e.g., a 20-foot circle around a proposed drilling location) to provide room for adjustment should the proposed drilling or excavation area need to be moved to avoid a buried utility.

Uncertainty may exist in some circumstances (inside a building, for example) even after the area has been swept for utilities. In these cases, advance the first few feet of a soil boring (or probe the area for excavation) using a hand auger or post-hole digger. If hand digging is unable to penetrate the subsurface soils, soft dig or air knife equipment service providers are often retained to clear the location. This equipment applies high pressure air to penetrate, loosen, and extract subsurface soils in the borehole, thereby safely exposing any utilities. If using either hand digging or soft digging, the probe hole should be advanced a minimum of 5 feet below ground surface at each proposed drilling or excavation location. Complete a sufficient number of probe holes so that the area is cleared for the proposed intrusive activity (i.e., use several holes for a proposed excavation). The use of hand digging or soft digging methods <u>does not</u> replace the need for state and private utility locating services.

2.5.2 Expanded Work Areas and Ticket Renewal

Many projects begin with well-defined work areas only to expand quickly as the investigation or remediation progresses. If the scope of the intrusive activity locations changes, the scope of intrusion expands or includes new onsite or offsite area(s), you will need to review the existing ticket and work performed by the private utility locator to determine whether work can progress into the new area safely. It may be necessary, depending on the scope, to contact (or for the Contractor to contact) the state locating service and request another clearance for the new area(s) of investigation and retain a private locating service. Remember, the new request will provide a new legal dig date before which NO INTRUSIVE WORK CAN BEGIN. Additionally, if a clearance ticket will expire while the work is ongoing (typically after 14 days), a new clearance must be requested before the first ticket expires so that work can continue uninterrupted. Refer to the Utility Locating Form (Attachment 1) for the legal dig date time frame required by the state locating service.

2.5.3 Utility Damage

It is possible, even if you followed all of the procedures outlined in this SOP, to damage an underground or overhead utility. Assuming it can be done safely, quickly turn off the drilling or excavating equipment, or move the equipment from the damaged line. Avoid contact with escaping liquids, live wires, and open flames. Abandon the equipment, evacuate the personnel from the area, and maintain a safe perimeter if there are any concerns about safety. If a fiber optic cable is damaged, do not handle the cable or look into the end of the cable as serious eye damage may occur. Once personnel are in a secure location, immediately notify the facility operator or site contact,

811, and the WSP project manager. If the damaged utility has the potential to cause, or is causing, dangerous conditions, immediately notify the local emergency response number listed in your HASP.

** This form is mandatory for all intrusive work performed by WSP or a WSP subcontractor, regardless of who is responsible for the public and/or private locate.

Utility Locating Form Page 1 of 2

Project Name Project No. and Task				Work being done for (Company or Individual Name)				agor		
		10 1055				Project Manager				
WSP Office Address	WSP Office Phone			WSP Field Contact			WSP Field Contact Phone			
	WSF Office Fi	IONE		WOF			WSP Field Contact Phone			
Project Location: Street Address	City/Township					County		State		
Floject Location. Street Address		City/TOWIIS	anb			County		State		
Nearest Intersecting Street										
Nearest intersecting Street										
Description of Work Area (street working on, which side of street, how far in which direction from nearest intersecting street; etc.)										
Description of Work Area (street working on, wh		, now rai m	which and		ioni nearest int	erseering street, etc.)				
	Explosives	Directio	nal Boring	5						
Type of Work	(Y/N)	(Y/N)	liai Doning		Dig Locations	s Marked (Y/N)	Mark Type (e	e.g., stake)		
Scheduled Work Start (Date & Time)	Estimated Wo	rk Stop Date		One-c	all Phone Num	ber/Website Address	One-call Service Name			
Call/Web Notification Made By (Name, Title and	Company)			Date & Time of Call/Web Notification			Operator Name			
Ticket No.	Legal Dig Date	9	Ticket Expiration Date			Ticket Renewal Date				
Utilities Notified						.g., e-mail, facsimile) fr				
		Utilities P	resent (Y/N) (Onsite Meeting (Y	/N; if "Y" Date & Time)	Contact Na	ame and Phone		
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
Form Completed By (Signature)	Form Completed By (Signature)									
				l comp t Mana	leted page 1 to ger)			WSP		

** This form is mandatory for all intrusive work performed by WSP or a WSP subcontractor, regardless of who is responsible for the public and/or private locate.

Utility Locating Form Page 2 of 2

Private Utility Loca Company	ator Information	Contact Name	Phone	E	E-mail				
Who Contracted Lo	ocator?		Scheduled Start (Date & Time)		VSP Contract Executed Y/N/NA)				
Onsite Visual Conf Utilities	irmation of			Cleare	ed or				
Marking Color	Utility Type and Visual Clues			Mark (Y/N	· · · · J.				
Blue	Potable water: fire hydr bib, valve box		,						
Yellow	valve box	U	s; yellow bollards, interior connections,						
Red			lights, overhead lines (telephone poles ults, manholes, transformers/switchgear						
Green	mound, no evidence of	sanitary sewer (for sept	nholes, drain grates, leach field, sand ic system)						
Orange		or signal lines, cables or r connections; manholes	r conduits: red/orange bollards, s; conduit on buildings						
Purple	Reclaimed water, irrigat	tion, and slurry lines: spi	rinkler heads, hose bibs						
Pink	Survey markings								
White	Proposed locations for	excavation and drilling							
Project Manager N	otified of any Conflicts? (Y/N)								
Notes:									
Marks Verified By (Signature)									
			(scan and source to						
		(scan and save to client file)							

FIELD STANDARD OPERATING PROCEDURE #3 Sample Packaging and Shipment Procedure

Shipping samples is a basic but important component of field work. Nearly all of the WSP activities include the collection of environmental samples. Proper packing and preservation of those samples is critical to ensuring the integrity of WSP's work product. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

3.1 Acronyms and Abbreviations

- CFR Code of Federal Regulations
- DOT U.S. Department of Transportation
- IATA International Air Transport Association
- HASP health and safety plan
- PPE personal protective equipment
- SOP standard operating procedure

3.2 Materials

- Suitable shipping container (e.g., plastic cooler or lab-supplied styrofoam-insulated cooler)
- Chain-of-custody forms
- Custody seals
- WSP mailing labels
- Tape (Strapping, clear packing, or duct tape)
- Heavy-duty zipper-style plastic bags
- Knife or scissors
- Permanent marker
- PPE
- Large plastic garbage bag
- Wet ice (as necessary)
- Bubble wrap or other packing material
- Universal sorbent materials
- Sample container custody seals (if required)
- Shipping form (with account number)

3.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for shipping samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample collection and quality assurance procedures (SOP 4), and investigation derived waste management procedures (SOP 5), and has a current certificate for WSP's U.S. Department of Transportation (DOT) Hazardous Materials training.

NOTE: WSP employees shipping samples regulated as hazardous materials or exempt hazardous materials by air must have International Air Transport Association (IATA) training. IATA training is a separate training required in addition to DOT hazardous materials training for such shipments. Most WSP employees do not have IATA training and therefore, anyone who needs to ship by air MUST consult with a WSP IATA-trained compliance professional. The remainder of Section 3.3 covers shipments regulated by DOT only.

Environmental samples can meet the definition of DOT hazardous materials when shipped by air, ground, or rail from a project site to the laboratory. As such, field staff must work with their assigned WSP compliance professional to determine whether the sample shipment is subject to any specific requirements (e.g., packaging, marking, labeling, and documentation) under the DOT hazardous materials regulations.

Title 49 Code of Federal Regulations (CFR) Section 171.8 defines a "hazardous material" as a substance which has been determined by the Secretary of Transportation to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and which has been so designated. DOT hazardous materials are listed in the hazardous materials table at 49 CFR 172.101.

In most cases, WSP is collecting environmental samples in order to determine whether any hazardous chemicals are present in the sampled media. Therefore, we would not have the appropriate information to make a hazardous materials classification for the samples prior to shipment. 49 CFR 172.101(c)(11) allows the use of a tentative classification where the shipper is uncertain of the material's hazard class. Where WSP does not know the physical characteristics of the samples, a non-hazardous material classification may be made. Non-hazardous materials are not subject to the DOT hazardous materials regulations.

There are certain cases where the characteristics and hazard class of the samples are known (e.g., samples of free product, samples preserved with a hazardous material [TerraCore® samplers]). Contact your assigned WSP compliance professional or an internal DOT contact for guidance on shipment of these materials.

3.4 Sample Shipment Procedures

The two major concerns in shipping samples are incidental breakage during shipment and complying with applicable DOT and courier requirements for hazardous materials shipments.

NOTE: Many couriers, including Federal Express and UPS, have requirements that WSP register with them before shipping hazard materials. In most cases, it is the sampling location, not the WSP office address, which needs to be registered. Therefore, each project will likely have unique requirements. Please contact your WSP compliance

professional to determine whether or not you will be required to register for your shipment.

Protecting the samples from incidental breakage can be achieved using "common sense." Pack all samples in a manner that will not allow them to freely move about in the cooler or shipping container. Do not allow glass surfaces to contact each other. When possible, repack the sample containers in the same materials that they were originally received in from the laboratory. Cushion each sample container with plastic bubble wrap, styrofoam, or other nonreactive cushioning material. A more detailed procedure for packing environmental samples is presented below.

3.4.1 Non-Hazardous Material Environmental Samples

The first step in preparing your samples for shipment is securing an appropriate shipping container. In most cases, the analytical laboratory will supply an insulated cooler for the bottle shipment, which can be used to return the samples once they have been collected. Be sure that the container is sufficiently large to contain both your samples, cushioning material, and enough wet ice to maintain the samples at the preservation temperature (usually 4° Celsius). Do not use lunch-box sized coolers or soft-sided coolers, which do not offer sufficient insulation or protection from damage.

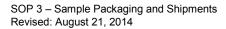
Place universal sorbent materials (e.g., sorbent pads, Pig-brand absorbent blankets) in the bottom of the shipping container. The amount of sorbent material must be sufficient to absorb any condensation from the wet ice and a reasonable volume of water from melted wet ice (if a bag were to rupture) or a damaged (aqueous) sample container. If using a plastic cooler with a drain, securely tape the inside of the drain plug with duct tape or other material to ensure that no water leaks from the cooler during shipment.

The next step is to line the shipping container with a large, heavy-duty plastic garbage bag. Place 2 to 4 inches of bubble wrap or other appropriate packing material inside the heavy-duty plastic bag in the bottom of the shipping container to form a cushion for the sample containers. Place the samples on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between the sample containers. Place large or heavy sample containers on the bottom of the cooler with lighter samples placed on top to minimize the potential for breakage. Place all sample containers in the shipping container right-side up. Do not overfill the cooler with samples; leave sufficient room for the wet ice if the samples are to be preserved during transit.

Place wet ice to be used for sample preservation inside two sealed heavy-duty zipper-style plastic bags (1 gallonsized, or less). Place the bags of ice on top of or between the samples. Place as much ice as possible into the cooler to ensure the samples arrive at the lab at the required preservation temperature, even if the shipment is delayed. Fill any remaining space with bubble wrap or other packing material to limit the airspace and minimize the in-transit melting. Securely close and seal, with tape, the top of the heavy-duty plastic bag. Place the original, white top copy chain-of-custody form into a heavy-duty zipper-style plastic bag, affix the bag to the shipping container's inside lid, and then close the shipping container. Sample shipment preparations are complete if using a laboratory courier.

If sending the sample shipment through a commercial shipping vendor, place two signed and dated chain-ofcustody seals on alternate sides of the shipping container lid so that it cannot be opened without breaking the seals. Securely fasten the top of the shipping container shut with clear packing tape; carefully tape over the custody seals to prevent damage during shipping. Once the shipping container is sealed, shake test the shipping container to make sure that there are no loose sample containers. If loose sample containers are detected, open the shipping container, repack the sample containers, and reseal the shipping container.

Using clear tape, affix a mailing label with WSP's return address to the top of the shipping container. Ship environmental samples to the contracted analytical laboratory using an appropriate delivery schedule. If applicable, check the appropriate box on the airbill for Saturday delivery (you need to verify with the laboratory that someone will be at the lab on a Saturday to receive the sample shipment). Declare the value of samples on the shipping form for insurance purposes, if applicable, and be sure to include the project billable number on the shipping form's internal billing reference section. When shipping samples to a lab, identify a declared value equal to the carrier's



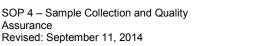
default value (\$100); additional fees will be charged based on a higher value declared. Our preferred carrier, FedEx, will only reimburse for the actual value of the cooler and its contents if a sample shipment is lost; they will not reimburse for the cost of having to re-collect the samples. [Please note: if you are shipping something other than samples, such as field equipment, declare the replacement value of the contents.]

Record the tracking numbers from the shipping company forms (i.e., the airbill number) in the field book and on the chain-of-custody form and retain a copy of the shipping airbill. On the expected delivery date, confirm sample receipt by contacting the laboratory or tracking the package using the tracking number; provide this confirmation information to the WSP project manager.

3.4.2 Hazardous Materials Samples

WSP personnel rarely ship hazardous materials due to DOT shipping requirements. If you find that your samples could be considered a DOT hazardous material, first coordinate with the assigned WSP compliance professional and project manager to make a hazardous material classification and, if necessary, establish the necessary protocols and to receive the appropriate training/certification. **Do not ship hazardous materials samples without first consulting a WSP compliance professional.**

FIELD STANDARD OPERATING PROCEDURE #4 Sample Collection and Quality Assurance Procedure


The purpose of this procedure is to assure that sample volumes and preservatives are sufficient for analytical services required under U.S. Environmental Protection Agency (EPA) or other agency approved protocols. This operating procedure describes the ways and means of selecting the appropriate sampling containers for environmental sampling. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

4.1 Acronyms and Abbreviations

°C	degrees Celsius
COC	chain-of-custody [form]
DI	deionized water
DOT	U.S. Department of Transportation
EDD	electronic data deliverable
EPA	U.S. Environmental Protection Agency
HASP	health and safety plan
MS/MSD	matrix spike and matrix spike duplicate
MSA	Master Service Agreement
PPE	personal protective equipment
QA	quality assurance
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
SOP	standard operating procedure
VOCs	volatile organic compounds

4.2 Materials

- Field book
- Indelible (waterproof) markers or pens
- PPE
- Sample containers
- Sample labels
- Clear tape
- Deionized (DI) water
- Cleaned or dedicated sampling equipment

4.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for collecting environmental and quality assurance samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), investigation derived waste management procedures (SOP 5), and equipment decontamination (SOP 6). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a site-specific work plan or a dedicated quality assurance project plan.

4.4 Sample Identification Procedures

Information on the sample labels must contain the site/project name, project/task number, unique alpha-numeric sample identification (ID) number, sample date, time of collection using the military or 24-hour clock system (e.g., 0000 to 2400 hours), analytical parameters, preservative, and sampling personnel. WSP personnel are advised to use pre-printed waterproof mailing labels (e.g., Avery® 5xxx Waterproof Address Labels) for all sample identification. WSP templates for the labels are available in each office.

The sample identification number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the WSP naming protocol. This protocol was developed to aid in determining the type of sample collected (e.g., soil, groundwater, vapor, etc.), the sample location, and, where appropriate, the sample depth. The protocol was also designed to ensure consistency across the company.

Construct sample IDs in the following format:

SB-10A (4-6)

Where, in this example:

SB = the first two or three characters will define the sample type (see list of approved prefixes below); in this case, a soil boring

10A = the next two or three alpha-numeric digits (separated by a dash from the sample type identifier) indicate the location of the boring on the site; in this case, boring number 10A

(4-6) = the depth the sample was collected, with the first number (including decimals, if necessary) indicating the top of the sample interval and the second number indicating the bottom of the sample interval; not all sample types will include depth information.

Additional label information may be added after the last character of the sample ID (e.g., sample date, underground storage tank number, area of concern number, "Area" number, Client Identifier, etc.). Separate any additional information from the required portion of the sample name by dash(es).

Sample Prefix	Permitted Use
AA -	Ambient outdoor air samples
CC -	Concrete core/chip sample
CS -	Confirmation/verification soil samples collected from an excavation
HA -	Soil samples collected with a hand auger
IAB -	Indoor air samples – basement
IAC -	Indoor air samples – crawl space
IAF -	Indoor air samples – first floor
MW -	Soil samples collected from a monitoring well borehole or a groundwater sample collected from a monitoring well
PZ -	Groundwater samples collected from a piezometer
SB -	Soil samples collected from boreholes that will not be converted to monitoring wells
SED -	Sediment samples
SG -	Soil gas samples other than sub-slab samples (e.g., samples collected from temporary or permanent PVC sample points or stainless steel screen implants)
SL -	Sludge samples
SS -	Surface soil samples collected using hand tools (e.g., trowel, spoon, etc.) and typically at depths less than 2 feet below ground surface
SSV -	Sub-slab vapor samples
SW -	Surface water samples
TC -	Tree core samples
TP -	Soil samples collected from a test pit
WC -	Waste characterization samples
WP -	Wipe samples

4.5 Sample Containers, Preservatives, and Holding Times

The first step in sample collection is to verify that the analytical laboratory has provided the correct number and type of sample containers and each contains the appropriate preservatives for the proposed project (i.e., check against the sampling plan requirements outlined in the site-specific Quality Assurance Project Plan [QAPP]). Inspect all containers and lids for flaws (cracks, chips, etc.) before use. Do not use any container with visible defects or discoloration. Report any discrepancies, or non-receipt, of specific types of sample containers to the team leader or project manager immediately. Make arrangements with the laboratory to immediately ship missing or additional sampling containers.

Take special effort to prevent cross contamination and contamination of the environment when collecting samples. Protect equipment, sample containers and supplies from accidental contamination. Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to sampling. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. Sample collection must follow all appropriate SOPs and state and federal regulations, or guidance, for the collection of environmental samples; the recommended order of sample collection is:

Geochemical measurements (e.g., temperature, pH, specific conductance)

- Volatile organic compounds (VOCs)
- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Total metals
- Dissolved metals
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Collected samples that require thermal preservation must be immediately (within 15 minutes) placed in a cooler with wet ice and maintained at a preservation temperature of 4° Celsius (C).

4.6 Field Quality Assurance/Quality Control Samples

Field quality assurance/quality control (QA/QC) samples include equipment blanks, trip blanks, duplicates, and split samples. The project manager or QAPP must specify the type and frequency of QA/QC sample collection. The QA/QC sample identification number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the WSP naming protocol as discussed in the sections below. QA/QC samples must be clearly identified on WSP's copy of the COC form and in the field book. Failure to properly collect and submit required QA/QC samples can result in invalidation of an entire sampling event.

Collect, preserve, transport and document split samples using the same protocols as the related samples.

4.6.1 Equipment Blanks

Equipment blanks are used to document contamination attributable to using non-dedicated equipment. Collect equipment blanks in the field at a rate of one per type of equipment per day, unless otherwise specified. If the site-specific work plan or QAPP indicates that an equipment blank is to be collected from dedicated sampling equipment, collect the equipment blank in the field before sampling begins. If field decontamination of sampling equipment is required, prepare the equipment blanks after the equipment has been used and field-decontaminated at least once. Prepare equipment blanks by filling or rinsing the pre-cleaned equipment with laboratory provided analyte-free water and collecting the rinsate in the appropriate sample containers. The samples must be labeled, preserved, and filtered (if required) in the same manner as the environmental samples. Record the type of sampling equipment used to prepare the blank. Have the equipment blanks analyzed for all the analytes for which the environmental samples are being analyzed, unless otherwise specified. Decontamination of the equipment following equipment blank procurement is not required. If laboratory-grade DI water is unavailable, store-grade distilled water can be used to prepare these blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book. Designate equipment blanks using "EB", followed by the date, and in the order of equipment blanks collected that day. For example, the first equipment blank collected on July 4, 2013, would be designated EB070413-1.

4.6.2 Trip Blanks

Trip blanks are used to document VOC contamination attributable to shipping and field handling procedures. Trip blanks are only required when analyzing samples for VOCs. Trip blank(s) will be prepared at the laboratory and will be sent to the facility along with sample containers. Never open trip blank sample bottles, but label them in the field and return them to the laboratory in the same shipping container in which the trip blank sample bottles arrived at the site. Keep the trip blank sample bottles in the same shipping container used to ship and store VOC sample bottles during the sampling event. To minimize the number of trip blanks needed per shipment, if possible, ship all of the VOC samples in the same shipping container with the trip blank. If laboratory-provided trip blanks are not

available, DI water, or store-grade distilled water and clean, empty VOC sample bottles can be used to prepare additional trip blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book. Identify trip blanks using "TB", followed by the date. For example, the trip blank shipped with a cooler of samples on July 4, 2013, would be designated TB070413-1. If a second trip blank is needed on that same day, the designation would be TB070413-2.

4.6.3 Temperature Blank

Temperature blanks are used to determine if proper sample thermal preservation has been maintained by measuring the temperature of the sample container upon arrival at the laboratory. A temperature blank should be included in each sample cooler used to ship and store the sample bottles during the sampling event. If laboratory-provided temperature blanks are not available, fill a clean, unpreserved sample bottle with potable, DI, or store-grade distilled water and identify the bottle as a temperature blank.

4.6.4 Duplicates

Duplicates are useful for measuring the variability and documenting the precision of the sampling process. Unless more stringent project requirements are in place, collect duplicate samples at least at a rate of 1 per 20 samples collected. Under no circumstances can equipment or trip blanks be used as duplicates. Sample locations where sufficient sample volume is available and where expected contamination is present should be selected for sample duplication.

Collect each duplicate sample at the same time, from the same sample aliquot and in the same order as the corresponding field environmental sample. When collecting aqueous duplicate samples, alternately fill sample bottle sets (i.e., the actual sample bottle and the bottle to be used for the duplicate) with aqueous samples from the same sampling device. If the sampling device does not hold enough volume to fill the sample containers, fill the first container with equal portions of the sample, and pour the remaining sample into the next sample containers. Obtain additional sample volume and pour the first portion into the last sample container, and pour the remaining portions into the first containers. Continue with these steps until all containers have been filled.

Duplicate samples will be assigned arbitrary sample ID and a false collection time so that they are not identified as duplicates by the laboratory (i.e., submit the samples blind to the lab). The blind duplicate sample "location designation" will be left up to the project manager; however, in no case will "Dup" be allowed to appear in the sample name. Have the duplicate samples analyzed for the same analytes as the original sample. Be sure to record the duplicate sample ID, the false time, and the actual time of collection in the field notebook. The duplicate should also be indicated on WSP's carbon copy of the chain-of-custody.

4.6.5 Matrix Spike and Matrix Spike Duplicates

Matrix spike and matrix spike duplicate samples, known as MS/MSD samples, are used to determine the bias (accuracy) and precision of a method for a specific sample matrix. Many of WSPs projects require the collection of MS/MSD samples; however, laboratory generated MS/MSD samples are sufficient for some projects. As required by your QAPP or site-specific work plan, collect MS/MSD samples at the required ratio; if the sampling ratio is not specified by your QAPP or site-specific work plan, collect MS/MSD samples at a rate of 1 for every 20 samples. Clearly convey the MS/MSD identity to the laboratory by adding "MS" or "MSD" after the sample name (e.g., MW-01MS) or in the comments section of the chain-of-custody. Under no circumstances can equipment or trip blanks be used as MS/MSD samples.

4.6.6 Split Samples

Split samples may be collected as a means of determining compliance or as an added measure of quality control. Unlike duplicate samples that measure the variability of both the sample collection and laboratory procedures, split

samples measure only the variability between laboratories. Therefore, the laboratory samples must be subsamples of the same parent sample and every attempt must be made to ensure sample homogeneity. Collect aqueous split samples in the same manner as a duplicate sample.

Collecting split samples of soils, sediments, wastes, and sludge is not recommended because the homogenization necessary for a true split sample in these matrices is not possible.

Spilt samples should have the same sample location (e.g., MW-01, SB-03 (4-6), but differentiated from each other by inserting the laboratory analyzing or the agency/consultant collecting the sample after the sample location (e.g., MW-01-WSP and MW-01-EPA).

4.7 Custody Documentation

Sample custody protocols are used to demonstrate that the samples and sample containers were handled and transferred in such a manner as to eliminate possible tampering. Legal chain of custody (COC) begins when the pre-cleaned sample containers are dispatched to the field from the laboratory and continues through the sample analysis and eventual disposal. Maintaining custody requires that samples must be in the actual possession or view of a person who is authorized to handle the samples (e.g., sample collector, laboratory technician), secured by the same person to prevent tampering, or stored in a designated secure area.

It is a good idea to limit, to the extent possible, the number of individuals who physically handle the samples. Samples must be placed in locked storage (e.g., locked vehicle, locked storeroom, etc.) at all times when not in the possession or view of authorized personnel. Do not leave samples in unoccupied motel or hotel rooms or other areas where access cannot be controlled by the person(s) responsible for custody without first securing samples and shipping or storage containers with tamper-indicating evidence tape or custody seals

The COC form is used to trace sample possession from the time of collection to receipt at the laboratory. Although laboratories commonly supply their own COC form, it is recommended that WSP's COC be used to ensure that all necessary data are recorded. At a minimum, the COC needs to have a unique COC number, accompany all the samples, and include the following information:

- Project number, name, and location
- Sampler's printed name(s) and signature(s)
- Sample identification number
- Date and time (military time) of collection
- Sample matrix
- Total number of containers per sample
- Parameters requested for analysis including number of containers per analyte
- Remarks (e.g., irreducible headspace, field filtered sample, expected concentration range, specific turn-around time requested, etc.)
- Signatures of all persons involved in the chain of possession in chronological order
- Requested turn-around-time
- Name and location of analytical laboratory
- Custody seal numbers
- Shipping courier name and tracking information
- Internal temperature of shipping container upon shipment to laboratory, as needed
- Internal temperature of shipping container upon delivery to laboratory

WSP contact information

Affix tamper-indicating evidence tape or seals to all storage and shipping container closures when transferring or shipping sample container kits or samples to an off-property party. Place the seal so that the closure cannot be opened without breaking the seal. Record the time, calendar date and signatures of responsible personnel affixing and breaking all seals for each sample container and shipping container. Affix new seals every time a seal is broken until continuation of evidentiary custody is no longer required.

FIELD STANDARD OPERATING PROCEDURE #5 Investigation Derived Waste Management Procedure

The purpose of this standard operating procedure (SOP) is to provide instructions for handling, storing, and managing Investigation Derived Waste (IDW) pending disposal. All IDW, which includes (but is not limited to) soil cuttings, development water, purge water, drilling fluids, decontamination fluids, personal protective equipment (PPE), and sampling equipment, must be managed in compliance with applicable or relevant and appropriate requirements. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

5.1 Acronyms and Abbreviations

- DOT U.S. Department of Transportation
- EPA U.S. Environmental Protection Agency
- HASP health and safety plan
- IDW investigation derived waste
- PCB polychlorinated biphenyl
- PPE personal protective equipment
- RCRA Resource Conservation and Recovery Act
- SOP standard operating procedure
- TSCA Toxic Substances Control Act

5.2 Materials

- Non-hazardous waste, hazardous waste, and/or polychlorinated biphenyl (PCB) labels
- Investigation derived waste (IDW) log (figure 1)
- Permanent ink marking pen, paint, stick/pen
- Sampling equipment (refer to sampling SOPs)
- Impermeable covers (e.g., tarps), as needed
- Duct tape, rope, or other material to secure tarp
- Copy of the waste manifest or bills of lading

5.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review

relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for handling, storing, and managing IDW pending disposal and assumes the user holds a current U.S. Department of Transportation (DOT) training and Resource Conservation and Recovery training (if required) certificates and is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), and equipment decontamination (SOP 6). The SOP does not cover investigation planning, DOT regulations, nor does it cover the evaluation of the analytical results. **Consult and involve WSP's compliance professionals during all phases of IDW management and disposal.**

5.4 IDW General Procedures

Nearly all intrusive field activities performed at WSP will generate solid or liquid wastes. Examples include:

Solid Wastes	Liquid Wastes
Soil Cuttings	 Decontamination water
Drilling mud	 Development water
 Plastic sheeting 	 Drilling fluids
 Spent carbon or filters (e.g., bag filters) 	Purge water
PPE (e.g., Tyvek, gloves, respirator cartridges, etc.)	 Soap or wash solutions
 Disposable or dedicated sampling equipment (e.g., bailers, hose, clamps, buckets, cartridge filters, etc.) 	 Reagents (e.g,, hexane, nitric acid, methanol, etc.)
 Field analytical waste (HACH kits, Chlor-n-Soil kits, etc.) 	

The specific procedures for dealing with these materials after the field activities have been completed will vary depending on whether the materials are considered non-hazardous, Resource Conservation and Recovery Act (RCRA) hazardous (characteristic or listed wastes), or contain PCBs at concentrations above 50 milligrams per kilogram (i.e., PCB wastes regulated under the Toxic Substances Control Act [TSCA]). The characterization of the wastes to be generated is ideally determined in conjunction with a WSP compliance professional before the field event occurs, based on previously generated data; however, in some cases, particularly for new sites, the status of the wastes may not be known. In these cases, handle IDW as hazardous waste until the status can be verified. Field personnel must consult their assigned WSP compliance professionals for assistance in proper waste characterization.

It is important to note that information contained in this SOP is based on federal regulations and interpretive guidance provided by the U.S. Environmental Protection Agency (EPA) and other federal regulatory sources; therefore, information provided in this SOP may be superseded by state or local-specific statutes or regulations. Field personnel must discuss the handling procedures with the project manager and assigned WSP compliance professional before mobilizing to the field.

5.4.1 Waste Minimization

Select investigation methods and techniques that will minimize the amount of wastes generated during field activities, particularly if the IDW is hazardous. Examples include using direct-push methods instead of hollow stem augers (to minimize soil cuttings) during a soil investigation, if appropriate, and limiting contact with the materials to reduce the amount of PPE required. Minimizing the amount of waste generated will reduce handling requirements and overall project costs, and is consistent with WSP's corporate goals for sustainability.

5.4.2 Hazardous Waste Generator Status

The hazardous waste generator requirements that pertain to a site depend on how much hazardous waste is generated at a site in a calendar month. In coordination with your assigned WSP compliance professional, determine the site's hazardous waste generator status (conditionally exempt, small, or large quantity generator) before site work begins and inform the site contact and/or client representative of the quantity of hazardous waste that will be generated as a result of its activities.

The following table provides a summary of requirements for each class of hazardous waste generator: Conditionally Exempt Small Quantity Generators (CESQGs), Small Quantity Generators (SQGs), and Large Quantity Generators (LQGs). Note that this is provided for guidance purposes only and should not substitute for close coordination with your assigned WSP compliance professional for all IDW-related activities.

	CESQGs	SQGs	LQGs
Quantity Limits	≤100 kg/month ≤1 kg/month of acute hazardous waste ≤100 kg/month of acute spill residue or soil <u>§§261.5(a) and (e)</u>	Between 100 - 1,000 kg/month <u>§262.34(d)</u>	 ≥1,000 kg/month >1 kg/month of acute hazardous waste >100 kg/month of acute spill residue or soil Part 262 and §261.5(e)
EPA ID Number	Not required <u>§261.5</u>	Required §262.12	Required §262.12
On-Site Accumulation Quantity	≤1,000 kg ≤1 kg acute ≤100 kg of acute spill residue or soil <u>§§261.5(f)(2) and (g)(2)</u>	≤6,000 kg <u>§262.34(d)(1)</u>	No limit
Accumulation Time Limits	None <u>§261.5</u>	≤180 days or ≤270 days (if greater than 200 miles) <u>§§262.34(d)(2) and (3)</u>	≤90 days <u>§262.34(a)</u>

	CESQGs	SQGs	LQGs
Storage Requirements	None <u>§261.5</u>	Basic requirements with technical standards for tanks or containers <u>§§262.34(d)(2) and (3)</u>	Full compliance for management of tanks, containers, drip pads, or containment buildings §262.34(a)
Sent To:	State approved or RCRA	RCRA permitted/interim	RCRA permitted/interim
	permitted/interim status facility	status facility	status facility
	§§261.5(f)(3) and (g)(3)	<u>§262.20(b)</u>	<u>§262.20(b)</u>
Manifest	Not required	Required	Required
	<u>§261.5</u>	§262.20	<u>§262.20</u>
Biennial Report	Not required	Not required	Required
	<u>§261.5</u>	<u>§262.44</u>	<u>§262.41</u>
Personnel Training	Not required	Basic training required	Required
	§261.5	§262.34(d)(5)(iii)	§262.34(a)(4)
Contingency Plan	Not required	Basic plan	Full plan required
	§261.5	<u>§262.34(d)(5)(i)</u>	§262.34(a)(4)
Emergency	Not required	Required	Full plan required
Procedures	<u>§261.5</u>	<u>§262.34(d)(5)(iv)</u>	<u>§262.34(a)(4)</u>
DOT Transport	Yes	Yes	Yes
Requirements	(if required by DOT)	<u>§§262.30-262.33</u>	<u>§§262.30-262.33</u>

5.5 Onsite IDW Management Procedures

Onsite handling procedures typically involve containerization of the IDW for offsite disposal at a regulated facility (RCRA hazardous waste, TSCA PCB waste, or certain non-hazardous wastes) or, in the case of certain non-hazardous wastes, onsite disposal. The procedures for each type of waste are presented below.

5.5.1 Hazardous Waste Management

If site data or generator knowledge indicates that the IDW is determined to be RCRA hazardous, the following procedures will apply:

- Place IDW in DOT-authorized containers (e.g., 55-gallon drum, roll-off container, or temporary storage tank).
 Before placing IDW in the containers, ensure that they are in good condition and will not leak.
- Containers must remain closed except when adding, sampling, or inspecting the material. The containers
 cannot be used as a work surface once waste is put in the container.
- Mark the container with an appropriate waterproof, self-adhesive RCRA hazardous waste label. The label must include the accumulation start date, a description of the contents of the container (e.g., soil cuttings, purge water, etc.), the EPA identification number, the generator name (the client or the facility, never WSP), and the

hazardous waste codes, if known. Field personnel must consult the assigned WSP compliance professional for help in properly completing the labels.

- The IDW containers must be properly closed, wiped clean, and stored in a secure onsite location (facility hazardous waste storage area if one exists) to limit access. At a minimum, place the drums on an impermeable surface (if available) in an area of limited access. If stored outside, cover the containers with a secured tarp at the end of each field day until the containers are picked up for disposal.
- Complete the IDW Logs (Figure 1) before leaving the site. Present one copy of the log to the site contact and the original to the project manager.
- Ensure that weekly inspections are conducted and the proper inspection forms for documentation are completed during the entire time the waste is stored onsite.

If the IDW is presumed to be hazardous and sampling is required to confirm its classification, it must be labeled "Hazardous Waste-Pending Analysis" and sampled for the parameters specified by the project regulatory specialist or project manager before leaving the site (see sampling SOPs). Treatment, storage, and disposal facilities will usually specify the required analysis for waste profiles (see below).

5.5.2 Polychlorinated Biphenyl Waste Management

If information exists to classify the IDW as TSCA-regulated PCB-containing IDW, the following procedures must be implemented:

- Place the PCB-containing IDW in DOT-authorized containers (55-gallon drum, roll-off container, or temporary storage tank).
- Containers must remain closed except when adding, sampling, or inspecting the material. The containers
 cannot be used as a work surface once waste is put in the container.
- Mark the container with an appropriate waterproof, self-adhesive yellow label with the words "Caution Contains PCBs", the "removed from service" date (the accumulation start date), and a description of the contents of the container (e.g., soil cuttings). Complete the label with the name and phone number of the WSP field personnel to contact in the event of an accident or spill. <u>Field personnel must consult the assigned WSP compliance professional for help in properly completing the labels</u>.
- The IDW containers must be properly closed, wiped clean, and stored in a secure PCB storage area onsite. If a PCB storage area is not available, construct a temporary PCB storage area. Cover the containers with a secured tarp at the end of each field day until the drums are picked up for disposal. Place one yellow 6" x 6" "Caution Contains PCBs" label on the outside of the tarp, and note the "Removed from service date" on the label.
- Inspect the area and the containers for leaks once every 30 days in accordance with 40 Code of Federal Regulations 761.65(c)(5) during the entire period the waste is stored onsite.
- Complete the IDW Logs (Figure 1) before leaving the site. Present one copy of the log to the site contact and the original to the project manager.

5.5.3 Onsite Non-Hazardous Waste Management

If information exists to classify the IDW as non-hazardous waste, the following procedures must be implemented only after being discussed and approved by the project manager and assigned WSP compliance professional:

Soil can be spread around the borehole or other onsite location (with the approval of the client and in accordance with any applicable regulatory requirements), placed back in the boring or excavated test pit, or containerized and disposed of offsite.

- Groundwater and decontamination fluids can be poured onto the ground next to well to allow infiltration, or discharged to either the publically-owned treatment works or onsite wastewater treatment plant with approval of the client.
- PPE can be double bagged and deposited in the site dumpster with approval of the client and facility personnel or containerized and disposed of offsite.

If the IDW is containerized and is classified as non-hazardous, the following procedures will apply:

- Place the non-hazardous IDW in DOT-authorized containers (55-gallon drum, roll-off container, or temporary storage tank).
- Containers must remain closed except when adding, sampling, or inspecting the material. The containers
 cannot be used as a work surface once waste is put in the container.
- Mark the container with an appropriate waterproof, self-adhesive non-hazardous waste label. The label must include a description of the contents of the container (e.g., soil cuttings, purge water, etc.) and the generator (the client or the facility, never WSP). Field personnel must consult the assigned WSP compliance professional for help in properly completing the labels.
- Complete the IDW Logs (Figure 1) before leaving the site. Present one copy of the log to the site contact and the original to the project manager.
- The IDW containers must be properly closed, wiped clean, and stored in a secure onsite location.

5.6 Post-Field IDW Management Activities

It is important to follow-up on the management of the IDW once the field personnel have returned from the field. RCRA Hazardous and TSCA-regulated PCB-containing wastes have time limits and periodic inspection requirements to remain in compliance with state and federal regulations. The general post-field activities are listed below.

5.6.1 Waste Classification and Waste Profiles

Waste classifications and waste profiles must be reviewed and approved by WSP's project manager, WSP compliance professional, and the client before field work begins. Waste profiles are generated based on new or existing site data (i.e., soil and groundwater results) and generator knowledge, although some disposal facilities may require additional composite or grab samples for characterization of the waste. WSP's compliance professionals must be consulted to verify that proper waste classifications have been identified. Waste profiles for the same waste stream are generally valid for one year; ensure that no additional sampling is required to update existing waste profiles before conducting field activities.

5.6.2 Waste Disposal Oversight

Although exceptions may apply, generally, disposal of RCRA hazardous must be completed within **90 days** of the accumulation start date. If the facility is a small quantity generator, up to **180 days** is allowed for shipment. Disposal of TSCA-regulated PCB-containing IDW must generally be completed within 30 days of the "removal of service" date. WSP's compliance professionals must be consulted to determine if any exemptions apply.

Before the IDW is removed, the waste disposal subcontractor must provide WSP with a copy of the waste profile and printed manifest for review and approval. Your assigned WSP compliance professional must review and approve these documents. <u>WSP must have written authorization from the client on file to act **on behalf of (never "as an agent of")** the client for waste disposal (handled on a site-by-site basis).</u>

- The transport driver will present you with a pre-printed manifest that has been reviewed and approved by WSP. Review and verify that all information is complete and correct and that the total estimated weight of the material is written on the manifest. (Note: Manifests for PCB wastes must be completed in accordance with TSCA regulations. 40 CFR 761.207 requires that the weight of the PCBs be in kilograms and the date removed from service be on the manifest.) Remember, only a DOT-trained WSP employee is allowed to review and sign the manifest.
- Sign the manifest "On behalf of [insert client name]." Do not us "as an agent of."
- Ensure that all containers are properly labeled and transferred to the transporting vehicle; ensure that the vehicle is properly placarded.
- Once the IDW has been removed from the site, the IDW log must be marked "Removed," placed in the project file, and a copy must be forwarded to WSP's DOT compliance manager.

The manifest, certificate of disposal, IDW log, and inspection reports must be maintained on file for at least 3 years.

Investigation Derived Waste Log

Date:						
Site Inf	formation					
Site Name:			Site EPA ID #:			
Site Co	ontact:				Site Address:	
Contac	t Telephone No:				-	
Waste	Identification:					
Туре о	f Waste Generated	(che	ck one of the follo	wing):		
	Soil Cuttings		PPE		Decontamination Water	
	Groundwater		Storm Water		Drilling Fluids	
	Other (Describe):					
Field A	ctivities that Generation	ated	the Waste:			
	Soil Borings					
			Excavation			
	Other (Describe):					
Conor	ation Data:			00 5	Day Deadline:	
					ay Deaunne.	
Quanti	ty of Waste Genera					
Storage	e Location:					
	Identification (Chec					
	Non Hazardous W	/aste	(based on site int	formatic	on or generator knowledge)	
	Hazardous Waste (based on site information or generator knowledge)					
If gene	rator knowledge or	site i	nformation was u	sed for i	identification, explain:	
Туре о	f Label Applied to C	Conta	iner: 🔲 Non Ha	z 🗆	Hazardous 🛛 PCB	Used Oil
WSP II	nformation (Note: O	ne co	opy to site contact	t - the o	riginal in project file)	
Person	nel/Contact:				Project No.:	
Teleph	one:					

WSP

FIELD STANDARD OPERATING PROCEDURE #6 Decontamination

The decontamination procedures outlined in this standard operating procedure (SOP) are designed to ensure that all equipment that contacts a sample during sample collection is free from the analytes that could potentially interfere with the sample results. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

6.1 Acronyms and Abbreviations

- DI deionized water
- DOT U.S. Department of Transportation
- EPA U.S. Environmental Protection Agency
- HASP health and safety plan
- IDW investigation derived waste
- PPE personal protective equipment
- SOP standard operating procedure

6.2 Materials

- Polyethylene sheeting and/or garbage bags
- Non-phosphate detergent (e.g., Luminox®, Liquinox®, or Alconox®)
- Cleaning reagents, as needed (e.g., isopropyl alcohol, methanol, hexane, etc.)
- Tap water
- Deionized (DI) water
- Containers (e.g., garbage cans, buckets, plastic tubs)
- Nylon brushes
- Aluminum foil
- Spray bottles
- Paper towels
- Duct tape
- Pressurized steam cleaner (e.g., steam jenny), as needed
- Portable wet/dry vacuum
- Shovel, funnel, and/or squeegee

6.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in

this document is mandatory for all field personnel and will ensure that the tasks are performed in safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for decontamination and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), and IDW management procedures (SOP 5).

The cleaning and decontamination procedures described below are designed to ensure that the equipment used for sample collection is free of analytes that could potentially alter the analytical results. These procedures are primarily targeted at reducing the incidence of cross-contamination (i.e., compounds of interest being transferred on the sampling equipment from one sample location or depth to another) and, when properly implemented, provide a methodology for obtaining high quality, representative results. As with all analytical sampling, the effectiveness of the cleaning procedures must be supported with the collection of equipment blanks. The sampling procedures and equipment blank collection frequency are discussed in SOP 4.

It is important for WSP personnel to evaluate the expected types of contamination prior to mobilization to a site. Some state programs (or the U.S. Environmental Protection Agency [EPA], depending on the site) may require more stringent decontamination procedures than those listed here or specify the types and grades of various cleaning detergents and reagents (e.g., acids and solvents). Many of these compounds, such as nitric acid or pesticide grade hexane, are available from a limited number of suppliers and can be difficult to obtain in short order (i.e., most solvents and acids must be shipped using a ground service and are not available for overnight delivery). These compounds may also require specialized PPE (e.g., eye protection for concentrated acids) or have other special handling or disposal procedures that must be considered before arriving onsite.

6.4 Decontamination Procedures

The decontamination procedures are based on a nine-step process, which is tailored in the field depending on the samples to be collected. Decontaminate all non-dedicated equipment that contacts the sample directly, including spools, trowels, pumps, etc., before and between each sample location or interval. Disposable, single-use items, such as bailers or tubing, do not require decontamination.

The process includes the following four basic steps^{1:}

- 1. Physical removal of debris
- 2. Bucket wash with non-phosphate soap such as Alconox®, or equivalent and scrub brush
- 3. Tap water rinse
- 4. Deionized water rinse (distilled water can be used as a substitute)
- 5. 10-percent nitric acid rinse (for metals sampling only; see below)
- 6. DI water rinse
- 7. Pesticide-grade solvent rinse (e.g., hexane or isopropyl alcohol)
- 8. Air dry (solvent must evaporate)
- 9. DI water rinse

¹ Steps 5-9 are for more critical sampling applications and are not typically performed.

The first step is to remove as much soil or other debris from the sampling device as possible near the sampling area to limit the spread of potentially-contaminated materials into clean areas of the site. If gross contamination or an oily film or residue is observed on the equipment, use a brush to remove the particulate matter or surface film. Heavy oils or grease may be removed with paper towels soaked with isopropyl alcohol.

The physical removal is followed by a wash using non-phosphate soap (mixed to the appropriate dilution in tap water) followed by a tap water rinse. The most common set-up uses 5-gallon pails or buckets for the wash and rinse, although garbage pails or plastic tubs can also be used. Place buckets on polyethylene sheeting to limit spillage of the cleaning fluids.

Be sure to scrub the equipment thoroughly and allow enough time for the non-phosphate soap to be effective and clean the surfaces (a simple dunk of the equipment in the soapy water is insufficient). If decontaminating submersible pumps, pump both the non-phosphate soap wash fluid and the tap water rinse through the pump body itself (usually done in the bucket) to ensure that the internal impeller and other components are thoroughly cleaned. Replace the soap solution and rinse water when it becomes oily or silty.

Place the DI water for the rinse in a small squirt bottle or poured over the equipment or device after the tap water rinse. In some cases, such as decontaminating a split-spoon between sample recoveries or when working with submersible pumps, this level of decontamination (i.e., steps 1 through 4) may be sufficient.

Steps 5 through 9 are for more critical sampling applications and are typically performed on non-motorized equipment. Isopropyl alcohol is the recommended solvent for organic contaminants because it is readily available (at most drug and department stores) and is not a U.S. Department of Transportation (DOT) hazardous material. However, other solvents (e.g., hexane and methanol) may be more effective in removing certain contaminants, such as oils or polychlorinated biphenyls, but any waste generated using these solvents must be managed accordingly.

Handle the solvents and acid with care and store them in their original, labeled, protective containers when not in use. It is a good idea to transfer small quantities of each solution into labeled, laboratory-grade squirt bottles, which offer a convenient and controllable way to rinse the equipment. The equipment can then be rinsed over a 5-gallon bucket or other suitable container placed on plastic sheeting as with the first part of the cleaning process. Steps 5 and 6 are for metals sampling only and must be used only for non-carbon steel sampling devices (do not spray acid into pumps) and can be skipped for projects where inorganics are not included in the sampling scheme.

6.5 Handling Decontaminated Equipment

After decontamination, handle equipment using clean gloves to prevent re-contamination. In addition, move the equipment away (preferably upwind) from the decontamination area to prevent re-contamination. As soon as the equipment is air-dried, protect decontaminated field equipment from environmental contamination by securely wrapping and sealing with aluminum foil (shiny side out) or clean, untreated, disposable plastic bags. Plastic bags may be wrapped directly around wet or dry equipment except when the expected contaminants include volatile and extractable organics; under those circumstances, allow the equipment to completely dry or wrap it in aluminum foil.

On completion of site work, decontaminate all equipment prior to departure, then label each piece of equipment with the date of decontamination, the initials of decontamination personnel, and the type of decontamination solution(s) used. Containerize all solvent rinsate, detergent wastes, and other decontamination materials for offsite or regulated disposal (see SOP 5). Dispose of all wastes in conformance with applicable regulations.

FIELD STANDARD OPERATING PROCEDURE #9 Soil Sampling Procedure

The soil sampling procedures outlined in this standard operating procedure (SOP) are designed to ensure that collected soil samples are representative of current site conditions. Soil samples can be collected for onsite screening or for offsite laboratory analysis. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

9.1 Acronyms and Abbreviations

bgs	below ground surface
F	Fahrenheit
HASP	Health and Safety Plan
IDW	investigation derived waste
PID	photoionization detector
PPE	personal protective equipment
QAPP	Quality Assurance Project Plan
QA/QC	quality assurance/quality control
SOP	standard operating procedure
VOC	volatile organic compound

9.2 Materials

- Field book
- PPE
- Air quality monitoring equipment
- Utility knife
- Mixing tray or bowl
- Heavy-duty zipper-style plastic bags (quart or snack size)
- Plastic sheeting
- Expanding ruler or tape measure
- Munsell color chart
- Sampling containers and labelling/shipping supplies
- Field test kits, as needed
- Soil sampling method specific materials:
- Stainless steel trowels, shovels, or spoons
- Bucket augers, auger extension rods, auger handle, pipe wrenches

- Split-spoon samplers, pipe wrenches
- Direct push acetate liners
- Shelby tube samplers
- Decontamination supplies

9.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for conducting soil sampling and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), utility location (SOP 2), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), investigation derived waste (IDW) management procedures (SOP 5), equipment decontamination (SOP 6), and use and calibration of all sampling and monitoring equipment (SOPs 7 and 8). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a project-specific work plan. Before soil sampling, be sure to review the project-specific work plan or Quality Assurance Project Plan (QAPP) and any applicable state and federal guidelines or sampling procedures. All sampling and monitoring references must be available for consultation in the field, including:

- WSP's SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

9.4 General Procedures

Soil samples are collected using a variety of techniques and equipment, depending on the type (e.g., surface, subsurface) and purpose (e.g., lithological logging, headspace evaluation, laboratory analysis) of the sampling, and most sampling events employ more than one equipment type or methodology. Subsurface soil sampling, for example, often includes sample collection from split-spoon, macro-core, or other dedicated sampling devices advanced into the subsurface by a drill rig. Recovered cores are often logged (using a Munsell color chart and other logging aids), screened for volatile organic compounds (VOCs) using a photoionization detector (PID), and sampled for laboratory analysis using disposable stainless steel spoons or other discrete sampling devices.

All types of soil sampling, however, regardless of the equipment used, share common handling and management procedures that are designed to ensure the integrity of the samples collected. These procedures include:

- The use of new, disposable or decontaminated sampling equipment
- The use and rotation of the appropriate PPE

Selection of a suitable sampling location and staging area

Collect all samples using either new, disposable equipment, such as polyethylene liners or single-use stainless steel spoons; or properly decontaminated sampling equipment, such as hand augers, split-spoons cutting shoes, or trowels. Select the types of equipment and decontamination procedures based on the types of sampling to be performed and decontamination may require multiple steps or differing cleaning methods, depending on the sampling goals (see SOP 6 for decontamination procedures). In no case should disposable, single use materials (e.g., macro-core liners, soil baskets, etc.) be used to collect more than one sample.

Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to collection. This limits the possibility of cross-contamination from accidental contact with gloves soiled during collection of the previous sample. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. In no case should gloved hands be used as a soil sampling device: always use the appropriate spoon, trowel, or sampler to move the soil from the sampling device to the laboratory-supplied containers.

Finding a suitable sampling location involves selecting an area that is away from any sources of crosscontamination that could compromise the integrity of the samples. This includes positioning the sample collection area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling, decontamination) that could influence the sample. This is particularly important when screening samples in the field for VOCs with a PID, but should not be limited to the active sample collection. Store samples already collected from the field for laboratory analysis in clean containers and securely stage, if possible, in uncontaminated portions of the site.

9.5 Soil Collection

Soils can be collected from surface or subsurface depths, depending on the project requirements. Surface soils are generally those within 0.5 to 1 foot of the ground surface and can be collected using trowels, soil probes, or hand augers. Be aware that some states have specific definitions of what constitutes a surface soil sample. Subsurface soils are generally deeper and require specialized equipment to recover the samples. In most cases, subsurface soils will be collected using a drill rig or excavator.

Push or drive the method-specific sampling equipment (e.g., trowel, hand auger, hollow corers, split-spoon, direct push sampler, rotosonic core barrel sampler, excavator bucket) into the soil to the desired sampling depth using cleaned equipment. Record in the field book the depth interval through which the sampler was advanced and, if appropriate, the number of blows needed to drive the sampling device (i.e., when using a cathead-equipped drill rig; record the blows for every 6 inches the split-spoon sampler is advanced). If additional soil is needed to provide sufficient sample volume, repeat this step taking care to ensure that the same depth interval is collected during the resample. Use core catchers on the leading end of the sampler (if available) for soils that lack cohesiveness and are subject to crumbling and falling out of the sampler.

Withdraw the sampling equipment from the borehole or excavation. Do not physically enter excavations to collect a sample; soil samples can be collected from a backhoe bucket. If the soil sample will be analyzed for geotechnical parameters (i.e., using a Shelby tube), the undisturbed sampler is typically capped, maintaining the sample in its relatively undisturbed state, and shipped to the appropriate geotechnical laboratory. Follow sample preparation and shipping procedures in SOPs 3 and 4. If the soil is to be logged in the field, place soil samplers/soils on plastic sheeting noting the orientation of the sample (i.e., which end is "up") and the depth interval. Measure the length of the material recovered relative to the interval the sampler was advanced (in percent), and record this information in the field book.

If field screening for organic vapors is required, break or cut the soil core every 3 to 4 inches and quickly scan the breaks in the core material with the appropriate air quality monitoring equipment (e.g., PID). Record the readings in the field book.

9.5.1 Volatile Organic Compound Sampling

If part of the sampling plan, <u>immediately collect</u> samples for VOC analysis after screening the soils with the PID to avoid loss of constituents to the atmosphere. Transfer the soil from the portion of the soil core to be sampled (usually the area where the highest PID readings were observed) directly into the sample containers; do not composite or mix soils for VOC analysis. Place the soil in the sampling container such that no headspace is present above the soil when the cover is placed on the jar. If sampling by US Environmental Protection Agency Method 5035 is required, follow manufacturer's specifications to use a closed-system sampler (e.g., Encore samplers). Collect quality assurance/quality control (QA/QC) samples in accordance with SOP 4, the project-specific work plan, and the QAPP.

9.5.2 Soil Headspace Analysis

If required as part of the project-specific work plan, collect samples for field-based headspace analysis <u>after</u> <u>obtaining the sample for VOC analysis</u>. First, examine the contents of the sample and remove coarse gravel, organic material (e.g., roots, grass, and woody material) and any other debris. Collect the sample using decontaminated spoons or trowels and place in a heavy-duty zipper-style plastic bag and seal the bag. Label the sample indicating the sampling location, depth, and date. Shake the sample vigorously for approximately 15 seconds to disaggregate the sample and expose as much surface area of the soil as possible (to release the VOCs to the atmosphere within the bag). If necessary, warm the sample to room temperature (70° Fahrenheit, F) by placing the bag in a heated room or vehicle. This step is very important when the ambient temperature is below $32^{\circ}F$.

After waiting approximately 15 minutes, carefully open the bag slightly and place the tip of the PID into the opening. Do not insert the tip of the probe into the soil and avoid the uptake of water droplets. Record the highest meter response, which typically occurs within the first 2 to 5 seconds. Erratic PID response may result from high organic vapor concentrations or elevated headspace moisture. If these conditions exist, qualify the headspace data in the field book. It is also important to record the ambient temperature, humidity, and whether moisture was present in plastic bag. Duplicate 10% of the headspace samples by collecting two samples from the same location. Generally, duplicate sample values should be consistent to plus or minus 20%. Samples collected for headspace screening cannot be retained for laboratory analysis.

9.5.3 Semi- and Non-Volatile Analytical Sample Collection

Collect remaining organic samples then inorganic samples in the following order of volatilization sensitivity:

- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Total metals
- Dissolved metals (see filtering procedures below)
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Collect soil samples for semi- and non-volatile parameters by separating clumps of soil material and mixing the soils (using stainless steel bowls and spoons, or other appropriate equipment) to a homogeneous particle size and texture. Transfer the contents to the sample container using a stainless steel spoon. Collect QA/QC samples in accordance with SOP 4, the project-specific work plan, and the QAPP.

If approved by the appropriate regulatory agency and specified in the project-specific work plan, composite soil samples can be collected to minimize the total number of analytical samples. Composite samples consist of equal aliquots (same sample size) of soil from each location being sampled (e.g., from each borehole or from multiple areas of a soil pile), by mixing the waste to a homogeneous particle size and texture using new or decontaminated

stainless steel bowls and a stainless steel spoon or trowel. Transfer the contents to the appropriate laboratorysupplied sample container using a stainless steel spoon. Collect QA/QC samples in accordance with SOP 4 and the project-specific work plan or QAPP, if required.

If necessary, conduct field tests or screening on soils in accordance with the project-specific work plan and manufacturer's specifications for field testing equipment.

9.5.4 Sample Labeling and Preparation for Shipment

Once collected, prepare the soil samples for offsite laboratory analysis:

- Cleaning the outside of the sample container
- Affixing a sample tag or label to each sample container and complete all required information (sample number, date, time, sampler's initials, analysis, preservatives, place of collection)
- Placing clear tape over the tag or label (if non-waterproof labels are used)
- Preserving samples immediately after collection by placing them into an insulated cooler filled with bagged wet ice to maintain a temperature of approximately 4°Celcius
- Recording the sample designation, date, time, and the sampler's initials in the field book and on a sample tracking form, if appropriate
- Completing the chain-of-custody forms with appropriate sampling information
- Securing the sample packing and shipping in accordance with proper procedures

Do not ship hazardous waste samples without first consulting a WSP compliance professional.

9.5.5 Soil Classification

Soil classification should be performed whenever soil samples are being collected to provide context for the analysis. WSP prefers following the Unified Soil Classification System (USCS) logging procedures as described in ATSM D2488¹. The emphasis of soil classification in the field must be on describing the soils using ALL of the required descriptors; categorization of the USCS group name or symbol alone may not provide details about the soils that could later prove useful. Avoid geologic interpretation or the use of local formation names, which are often difficult to determine in the field without the regional framework. Record ALL of the following information for each soil type:

- Depth interval
- USCS group name
- USCS group symbol
- Color, using Munsell chart (in moist condition)
- Percent of cobbles or boulders, or both (approximate; by volume)
- Percent of gravel, sand, or fines, or all three (approximate; by dry weight)
- Particle-size range:
 - Gravel—fine, medium, coarse
 - Sand—fine, medium, coarse

¹ Note that certain states/regulatory programs may require soil classification under a secondary system (e.g., US Department of Agriculture) or the use of hydrochloric acid to test the reaction with soil (none, weak, strong).

- Particle angularity: angular, subangular, subrounded, rounded
- Particle shape: (if appropriate) flat, elongated, flat and elongated
- Maximum particle size or dimension
- Hardness of coarse sand and larger particles
- Plasticity of fines: non-plastic, low, medium, high
- Dry strength: none, low, medium, high, very high
- Dilatancy: none, slow, rapid
- Toughness: low, medium, high
- Odor (mention only if organic or unusual)
- Moisture: dry, moist, wet

For intact samples also include:

- Consistency (fine-grained [clay] soils only): very soft, soft, firm, hard, very hard
- Structure: stratified, laminated, fissured, slickensided, lensed, homogeneous
- Cementation: weak, moderate, strong
- Additional comments: presence of roots or root holes, presence of mica, gypsum, etc., surface coatings on coarse-grained particles, caving or sloughing of auger hole or trench sides, difficulty in augering or excavating, etc.

Use the following standard descriptors for the textural percentages:

- Trace: 0 to 10%²
- Little: 11 to 20%
- Some: 21 to 35%
- And: 36 to 50%

Example descriptions, using the information listed above, would read as follows:

8-10' – 5YR2/6 fine- to medium-grained sand, trace medium sub-angular rounded gravel (up to 0.5" in diameter); medium dense to dense; wet with slow dilatancy; moderate solvent-like odor between 9' and 10'.

10-12' – 5YR2/6 low plasticity clay with some fine to coarse grained angular to subangular gravels (up to 0.25" in diameter) and trace fine to medium grained rounded sands, very stiff, moist with no dilatancy, no odors.

9.6 Closing Notes

Once sampling is completed, secure the boreholes/locations in accordance with the project-specific project work plan. Decontaminate all equipment prior to departure and properly manage all PPE and IDW in conformance with applicable regulations.

² The use of "Trace" for describing the fraction of clay soils is inappropriate for field-based logs as clay contents of less than 20-perent in fine-grained soils cannot be reliably determined in the field.

FIELD STANDARD OPERATING PROCEDURE #16 Surface Material Sampling Procedure

Surface material sampling procedures outlined in this Standard Operating Procedure (SOP) are designed to ensure that surface samples are representative of the surfaces from which they were collected and that they have not been altered or contaminated by the sampling and handling methods. Potential surface sample media include porous surfaces (e.g., concrete or painted surfaces) for chip samples, dust or sweep samples, and concrete core or powder samples, and non-porous surfaces (e.g., metal) for wipe samples. Surface samples may be collected for onsite screening or for offsite laboratory analysis. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

16.1 Acronyms and Abbreviations

GFCI	ground fault circuit interrupter
HASP	health and safety plan
IDW	investigation derived waste
PID	photoionization detector
PPE	personal protective equipment
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
SOP	standard operating procedure

16.2 Materials

- Field book
- PPE
- Air quality monitoring equipment
- Utility knife
- Aluminum foil or heavy-duty zipper-style plastic bags (quart size)
- Plastic sheeting
- Expanding ruler or tape measure
- Sampling containers and labeling/shipping supplies
- Chip sampling method specific materials:
 - Rubber mallet
 - Steel chisel, or equivalent
 - Dustpan
 - Clean medium-sized, bristle brush
 - Digital scale
 - Aluminum foil or weighing pans

- Stainless steel spatulas
- Wipe sampling method specific materials:
 - Sterile wrapped gauze pad (e.g., 3 inches by 3 inches)
 - Clean medium-sized, bristle brush
 - Appropriate type and grade solvent
 - Sample area template (10 centimeters [cm] by 10 cm; typical)
 - Marking chalk
 - Tweezers or forceps
- Concrete core or powder method specific materials:
 - Concrete corer and drill, or impact hammer drill, with power supply
 - Ground fault circuit interrupter (GFCI)
 - Sandpaper or grinder with power supply, as necessary
 - Steel chisel or sharp cutting knife
 - Rubber mallet
 - Brush and cloths to clean area
 - Digital scale
 - Aluminum foil and/or aluminum weigh pans
 - Stainless steel spatulas
- Water or water supply, as necessary
- Wet/dry vacuum
 - GFCI
- Decontamination supplies

16.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for conducting surface sampling and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), utility location (SOP 2), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), IDW management procedures (SOP 5), equipment decontamination (SOP 6), and use and calibration of all sampling and monitoring equipment (SOPs 7 and 8). This SOP does not cover investigation planning, nor does it cover the analysis of the

analytical results. These topics are more appropriately addressed in a project-specific work plan. Additionally, this SOP does not provide site-specific health and safety procedures that are required for each WSP site where samples are collected; refer to the site-specific HASP for these procedures and safe work practices. Before sampling, be sure to review the project-specific work plan or Quality Assurance Project Plan (QAPP) and any applicable state and federal guidelines or sampling procedures.

All sampling and monitoring references must be available for consultation in the field, including:

- WSP's SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

16.4 General Surface Sampling Procedures

The procedures and equipment that are used to accomplish surface sampling are project-specific and should be discussed by the project team before arriving onsite. All types of surface sampling, regardless of the equipment used, share common handling and management procedures that are designed to ensure the integrity of the samples collected. These procedures include:

- The use of new, disposable or decontaminated sampling equipment
- The use, changing, and disposal of the appropriate PPE
- Selection of a suitable sampling location and staging area

Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to collection. This limits the possibility of cross-contamination from accidental contact. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised.

If possible, find a suitable sampling location by selecting an area that is away from any sources of crosscontamination that could compromise the integrity of the samples. This includes positioning the sample collection area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling, decontamination) that could influence the sample.

16.4.1 Equipment Selection

Collect all samples using either new, disposable equipment, or properly decontaminated sampling equipment. The equipment should be constructed of non-reactive, non-leachable materials (e.g., stainless steel, Teflon®, Teflon®-coated steel, polyethylene, polypropylene, etc.) which are compatible with the chemical constituents at the site.

Select the decontamination procedures based on the types of sampling to be performed and decontamination may require multiple steps or differing cleaning methods, depending on the sampling goals (see SOP 6 for decontamination procedures). In no case should disposable, single use materials be used to collect more than one sample.

16.4.2 Sampling Considerations

As the following steps are completed, note all observations and measurements in the field book.

Verify sampling locations and analytes.

- Record the approximate ambient air temperature, precipitation, wind, tidal conditions, and other field conditions the field book. In addition, any site-specific conditions or situations that could potentially alter the surface samples should be recorded.
- The sampling location should be described.
- Survey the ambient air around the sampling location with a photoionization detector (PID), as necessary.
- Clear the sampling area of utilities especially if following the concrete core and powder collection procedures below.
- As necessary, follow the procedures in the HASP to monitor and mitigate fugitive dust.
- Determine sample size based on the detection limit desired and the amount of sample requested by the laboratory.
- Tailor sampling methods to suit each sample location, recognizing that surface situations vary widely. In all
 instances, the procedures employed must be documented in the field book.
- Mark sampling locations with a stake or flag them for future reference. Record locations with respect to a
 permanent feature, if available.

If approved by the appropriate regulatory agency and specified in the project-specific work plan, composite samples can be collected to minimize the number of samples to be analyzed when sampling highly contaminated areas. Using the appropriate sampling technique, collect equal aliquots (same sample size) from each location and combine the aliquots of the sample directly in the sample container with no pre-mixing. Notify the laboratory that the sample is an unmixed composite sample, and request that the sample be thoroughly mixed before sample preparation or analysis.

16.5 Surface Sample Collection Procedures

16.5.1 Chip Sample Collection Procedures

Chip sampling is conducted on porous surfaces and is generally accomplished with a hammer and a chisel. Measure the sample area. Using a clean chisel, or equivalent, chip the sample area vertically, then horizontally to achieve an even depth of approximately 1/8 inch across the measured area. Collect the chip fragments using a clean dustpan and bristle brush or spatula and transfer the sample directly into an appropriately prepared sample container. Weigh the sample using a digital scale record the sample weight in the field book.

Collect quality assurance/ quality control (QA/QC) samples in accordance with SOP 4 and the project-specific work plan. Decontaminate all non-disposable equipment before and after each use in accordance with SOP 6 and the project-specific work plan.

16.5.2 Sweep Sample Collection Procedures

Sweep sampling is used to collect dust or residue from porous or non-porous surfaces. Sweep the sample area using a dedicated brush or spatula and collect the sample with a clean dustpan or aluminum foil. Weigh the sample using a digital scale and place in an appropriately prepared sample container; record the sample weight in the field book.

Collect QA/QC samples in accordance with SOP 4 and the project-specific work plan. Decontaminate all nondisposable equipment before and after each use in accordance with SOP 6 and the project-specific work plan.

16.5.3 Concrete Core and Powder Sample Collection Procedures

Concrete core and concrete powder samples are normally collected from concrete surfaces to determine whether or not they are contaminated or to evaluate the effectiveness of decontamination procedures.

Remove any debris from the sample area with a clean brush or cloth prior to drilling. Move the concrete coring drill or impact hammer drill into position and, following the manufacturer's specifications, drill a hole to the depth specified in the project-specific work plan.

For core samples, remove the core from the hole using clean forceps (or similar). Measure the total length and width of the core and record the dimensions in the field book. Wrap the core in aluminum foil and place it in an appropriately prepared sample container.

For powder samples, remove the powder from the hole using a clean spatula and place on aluminum foil or weighing pan and homogenize the concrete powder. Weigh the sample using a digital scale and place in an appropriately prepared sample container; record the sample weight in the field book.

Collect QA/QC samples in accordance with SOP 4 and the project-specific work plan. Decontaminate all nondisposable equipment before and after each use in accordance with SOP 6 and the project-specific work plan.

16.5.4 Wipe Sample Collection Procedures

Wipe samples are normally collected from non-porous, smooth surfaces, such as unpainted metal surfaces to determine whether or not they are contaminated or to evaluate the effectiveness of decontamination procedures. Wipe sampling is accomplished by using a gauze pad (or alternate absorbent material) saturated with a solvent (e.g., hexane) then thoroughly wiping a premeasured sample area. A standard wipe test, as specified in 40 CFR 761.123, uses a 10 centimeter (cm) by 10 cm template to outline the sample area. Typically, the analytical laboratory will provide the prepared saturated gauze pad in a vial with a Teflon-lined cap.

Mark the sample area using the template or ruler and marking chalk. Remove the saturated gauze from the sample vial with forceps and immediately begin applying the gauze, with pressure, to the marked area from left to right and then top to bottom; wipe the area twice. Let the gauze air dry and return to the vial.

Collect QA/QC samples in accordance with SOP 4 and the project-specific work plan. Decontaminate all nondisposable equipment before and after each use in accordance with SOP 6 and the project-specific work plan.

16.5.5 Sample Labeling and Preparation for Shipment

Once collected, prepare the groundwater samples for offsite laboratory analysis:

- Cleaning the outside of the sample container
- Affixing a sample tag or label to each sample container and complete all required information (sample number, date, time, sampler's initials, analysis, preservatives, place of collection)
- Placing clear tape over the tag or label (if non-waterproof labels are used)
- Preserving samples immediately after collection by placing them into an insulated cooler filled with bagged wet ice to maintain a temperature of approximately 4°Celcius
- Recording the sample designation, date, time, and the sampler's initials in the field book and on a sample tracking form, if appropriate
- Completing the chain-of-custody forms with appropriate sampling information
- Securing the sample packing and shipping in accordance with proper procedures

Do not ship hazardous waste samples without first consulting a WSP compliance professional.

16.6 Closing Notes

Once sampling is completed, secure the sampling locations in accordance with the project-specific project work plan. Decontaminate all equipment prior to departure and properly manage all PPE and investigation-derived wastes in conformance with applicable regulations.

FIELD STANDARD OPERATING PROCEDURE #17 Solid Waste Sampling Procedure

Solid waste sampling procedures outlined in this standard operating procedure (SOP) are designed to ensure that solid waste samples are representative of the materials from which they were collected and that they have not been altered or contaminated by the sampling and handling methods. Solid waste materials are commonly stored or staged in open (e.g., waste piles, outfalls, surface impoundments) or closed units (e.g., drums, tanks and associated ancillary equipment, containers, sumps). Solid waste samples can be collected for onsite screening or for offsite laboratory analysis. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

17.1 Acronyms and Abbreviations

F	Fahrenheit
HASP	health and safety plan
IDW	investigation derived waste
NAPL	non-aqueous phase liquid
PID	photoionization detector
PPE	personal protective equipment
QAPP	Quality Assurance Project Plan
QA/QC	quality assurance/quality control
SOP	standard operating procedure
VOC	volatile organic compounds

17.2 Materials

- Field book
- PPE
- Air quality monitoring equipment
- Utility knife
- Mixing tray or bowl
- Hip-waders or rubber boots, as necessary
- Aluminum foil or heavy-duty zipper-style plastic bags (quart size)
- Plastic sheeting
- Expanding ruler or tape measure
- Sampling containers and labeling/shipping supplies
- Field test kits, as needed
- Waste sampling method-specific sampling equipment and materials:

- Stainless steel trowels, shovels, or spoons
- Bucket augers, auger extension rods, auger handle, pipe wrenches
- Split-spoon samplers, pipe wrenches
- Direct push acetate liners
- Shelby tube samplers
- Decontamination supplies

17.3 Preconditions and Background

This SOP has been prepared as part of the WSP USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of WSP employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. WSP employees must verify that this document is the most recent version of the WSP SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for conducting waste and wastewater sampling and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), utility location (SOP 2), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), investigation derived waste (IDW) management procedures (SOP 5), equipment decontamination (SOP 6), use and calibration of all sampling and monitoring equipment (SOPs 7 and 8), and waste water sampling (SOP 18). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a project-specific work plan. Before sampling, be sure to review the project-specific work plan or Quality Assurance Project Plan (QAPP) and any applicable state and federal guidelines or sampling procedures. All sampling and monitoring references must be available for consultation in the field, including:

- WSP's SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

17.4 General Procedures

Solid waste sampling presents a number of unique challenges for safe collection due to the potentially hazardous environment(s) where waste materials are located. Sampling of closed waste containers (e.g., drums, tanks, etc.) is considered a higher hazard risk because of the potential of exposure to toxic gases and flammable/explosive atmospheres. While opening closed waste containers for sampling purposes, monitor the breathing zone to ensure that the working environment does not contain hazardous levels of flammable/explosive gasses or toxic vapors, and follow the appropriate safety requirements stipulated in the HASP. Do not bodily enter tanks, sumps, waste containers, pipes, such as storm sewers or other drainage conveyances, during sample collection. **WSP personnel are not authorized to open closed units that are unlabeled or contain unknown contents.**

Each sampling situation will have unique set of equipment requirements and techniques. The selected procedures and equipment are project-specific and should be discussed by the project team before arriving onsite. All types of solid waste sampling, however, regardless of the equipment used, share common handling and management procedures that are designed to ensure the integrity of the samples collected. These procedures include:

- The use of new, disposable or decontaminated sampling equipment
- The use and rotation of the appropriate PPE (e.g., hip-waders or rubber boots and gloves, and Saranex or Tyvek duct-taped to nitrile gloves, etc.)
- Selection of a suitable sampling location and staging area

Collect all samples using either new, disposable equipment, or properly decontaminated sampling equipment. Solid waste sampling equipment should be selected based on the analytical requirements of the project and the project-specific conditions likely to be encountered. The equipment should be constructed of non-reactive, non-leachable materials (e.g., stainless steel, Teflon®, Teflon®-coated steel, polyethylene, polypropylene, etc.) which are compatible with the chemical constituents at the site. When choosing sampling equipment, give consideration to:

- the type and location of the waste unit
- the required depth of the sample
- the volume of sample required
- the analytes of interest

Select the decontamination procedures based on the types of sampling to be performed and media encountered; decontamination may require multiple steps or differing cleaning methods, depending on the sampling objectives and media encountered (see SOP 6 for decontamination procedures). In no case should disposable, single use materials be used to collect more than one sample.

Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to sampling. The gloves must not come in contact with the analytical samples and must be changed any time during sample collection when their cleanliness is compromised.

If possible, find a suitable sampling location by selecting an area that is away from any sources of crosscontamination that could compromise the integrity of the samples. This includes positioning the sample collection area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling, decontamination) that could influence the sample. Extension rods or other appropriate devices can be used, as necessary, to allow the sample to be collected at a distance (or through deeper water) to minimize the risk to the sampler.

Once you have arrived on site and are prepared to conduct the waste sampling, note all observations and measurements in the field book.

- Perform a quick reconnaissance of the site to identify sampling locations
- Record the approximate ambient air temperature, precipitation, wind (direction and speed), tidal, and other field conditions in the field book. In addition, any site-specific conditions or situations that could potentially affect the sampling should be recorded
- Describe the sampling location
- Position fuel powered equipment downwind and at least 10 feet from the sampling location; make sure that the exhaust faces downwind
- Record pertinent information about the waste unit (e.g., type, capacity, markings, condition, and contents)
- Evaluate the accessibility to the waste unit, including ladders or stairs, and ensure that proper grounding is
 present, if needed

- Survey around the sampling location with a photoionization detector (PID), as necessary (see HASP), to
 ensure that the level of PPE is appropriate
- Mark sampling locations with a stake or flag for future reference; if available, record locations with respect to a
 permanent feature

17.4.1 Safety Considerations

Solid waste sampling may present a number of unique challenges for safe collection. Solid waste materials are frequently heterogeneous due to the physical characteristics of the matrix (e.g., particle size, viscosity, etc.), the distribution of hazardous constituents within the matrix, or the manner in which the material was managed or disposed. Because waste often stratifies over time due to different densities of phases, settling of solids, or varying wastes constituents generated at different times, both solid and liquid waste samples may need to be collected (see SOP 18 for waste water sampling procedures). Consult and involve WSP's compliance professionals during all phases of solid waste sampling.

Caution should be exercised when sampling *in situ* wastes (e.g., soil piles) because of the potential presence of explosive/flammable gases and/or toxic vapors. Ground or sediment surface or stockpiles may not be stable and could present an engulfment hazard. Do not attempt to sample surface impoundments used to manage potentially hazardous wastes from a boat; all sampling should be conducted from the banks or piers of surface impoundments.

Caution should be exercised when sampling closed waste containers, such as sealed drums, because of the potential presence of explosive/flammable gases and/or toxic vapors. Visually inspect all waste units for the following:

- pressurization (bulging/dimples)
- crystals formed around the drum opening
- leaks, holes, stains
- labels, markings, hazardous warnings
- composition and type (steel/poly and open/bung)
- dead vegetation around drum
- condition, age, rust, potential shock sensitivity (as indicated by contents listed on waste label)
- sampling accessibility (including a determination if it qualifies as a confined space)

Waste containers showing evidence of pressurization and/or crystals should be furthered assessed to determine if remote opening is needed. If containers cannot be accessed for sampling, heavy equipment may be necessary to stage the containers before sampling. Adequate time should be allowed for the contents to stabilize after a container is handled.

A grounding strap must be used when sampling metal waste containers, such as 55-gallon steel drums, due to the potential presence of explosive/flammable gases. First attach a grounding strap, then touch the waste container opening with a gloved hand and allow an electrically conductive path to form, as appropriate. Using spark-resistant tools, slowly open the waste container (e.g., vents, pressure release valves, bung or drum ring and/or lid) to allow the unit to vent to the atmosphere. Do not attempt to use a manual bung wrench or de-header on drums that potentially contain shock-sensitive, reactive, explosive or flammable materials. Screen the breathing zone for explosive gases and toxic vapor with air monitoring instruments before commencing sampling. Once sampling is complete (re)seal the waste container in accordance with the manufacturer's instructions.

17.4.2 Sampling Considerations

When collecting solid waste samples, consider the following:

- Collect waste water samples first to avoid disturbing the bottom and suspending solid wastes or sediment in the water column
- If collecting several solid waste samples from a stream, ditch, or river, start sampling at the downstream location and progressively move upstream

17.5 Solid Waste Sample Collection Procedures

Solid waste samples should be collected in accordance with the project-specific work plan. Typical sampling equipment includes : (1) scoops or trowels, (2) corers or grab samplers (e.g., hand augers, sludge judge), (3) dredges (e.g., Ekman, Peterson, or Ponar), (4) composite liquid waste samplers, bailers, or drum thief samplers, and (5) excavating or drilling equipment (e.g., split-spoon sampler, backhoe bucket). Follow the manufacturer's operation manual for proper sampling procedures.

At the desired sampling location, clear away any accumulated surface debris. Place absorbent pads (if appropriate), sampling equipment and sample containers in a safe location near the waste that is to be sampled. If a grid system is being used to collect samples, lay out the grid according to the project-specific work plan.

Push the method-specific sampling equipment into the solid waste materials to the desired sampling depth using <u>decontaminated or dedicated</u>, <u>disposable equipment</u>. Tilt the sampling equipment at a slight angle, if necessary, to avoid losing waste materials. If a liquid sample is not required, decant liquid into a separate container or back into the vessel being sampled. If a liquid sample is required, decant any liquid directly into sample containers (see SOP 18). Record the depth interval through which the sampler was advanced in the field book. If additional sample volume is needed, repeat this step. Occasionally solid waste materials lack cohesiveness and are subject to crumbling and falling out of the sampler. The use of core catchers on the leading end of the sampler may help retain the sample until it is retrieved to the surface; core catchers must be evaluated for compatibility with the proposed analytical program before use.

Note the state, quantity, phases, and color of the solid waste in the field book. If field screening for organic vapors is required, break or cut the waste materials and quickly scan the breaks in the material with the appropriate air quality monitoring equipment (e.g., PID). Record the readings in the field book.

17.5.1 Volatile Organic Compound Sampling

If required by the project-specific sampling plan, <u>immediately collect</u> samples for analysis of volatile organic compound (VOC) after screening the sample with the PID to avoid loss of the compounds to the atmosphere. Transfer the waste materials from the center portion of the sample interval to be sampled directly into the sample containers; do not composite or mix waste materials for VOC analysis. If sampling by US Environmental Protection Agency Method 5035 is required, follow manufacturer's specifications to use a closed-system sampler (e.g., Encore samplers). Collect quality assurance/quality control (QA/QC) samples in accordance with SOP 4 and the project-specific work plan or QAPP, if required.

17.5.2 Headspace Analysis

If required by the project-specific work plan, collect samples for field-based headspace analysis <u>after obtaining the</u> <u>sample for VOC analysis</u>. First, examine the contents of the sample and remove coarse gravel, organic material (e.g., roots, grass, and woody material) and any other debris. Collect the sample using decontaminated spoons or trowels and seal it in a heavy-duty zipper-style plastic bag. Label the sample indicating the sampling location, depth, and date. Shake the sample vigorously for approximately 15 seconds to disaggregate the sample and expose as much surface area of the soil as possible (to release the VOCs to the atmosphere within the bag). If

necessary, warm the sample to room temperature (70° Fahrenheit, F) by placing the bag in a heated room or vehicle. This step is very important when the ambient temperature is below 32°F.

After waiting approximately 15 minutes, carefully open the bag slightly and place the tip of the PID into the opening. Do not insert the tip of the probe into the soil and avoid the uptake of water droplets. Record the highest meter response, which typically occurs within the first 2 to 5 seconds. Erratic PID response may result from high organic vapor concentrations or elevated headspace moisture. If these conditions exist, qualify the headspace data in the field book. It is also important to record the ambient temperature, humidity, and whether moisture was present in plastic bag. Duplicate 10% of the headspace samples by collecting two samples from the same location. Generally, duplicate sample values should be consistent to plus or minus 20%. Samples collected for headspace screening cannot be retained for laboratory analysis.

17.5.3 Semi- and Non-Volatile Analytical Sample Collection

Collect remaining organic samples then inorganic samples in the following order of volatilization sensitivity:

- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Metals
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Collect solid waste samples for non-volatile parameters by separating clumps of waste material and mixing the waste to a homogeneous particle size and texture using new or decontaminated stainless steel bowls and a stainless steel spoon or trowel. Transfer the contents to the appropriate laboratory-supplied sample container using a stainless steel spoon. Collect QA/QC samples in accordance with SOP 4 and the project-specific work plan or QAPP, if required.

If approved by the appropriate regulatory agency and/or specified in the project-specific work plan, composite waste samples can be collected to minimize the number of samples to be analyzed when sampling highly contaminated areas. Using the appropriate sampling technique, collect equal aliquots (same sample size) from each location by mixing the waste to a homogeneous particle size and texture using new or decontaminated stainless steel bowls and a stainless steel spoon or trowel. Transfer the contents to the appropriate laboratory-supplied sample container using a stainless steel spoon. Collect QA/QC samples in accordance with SOP 4 and the project-specific work plan or QAPP, if required.

Interstitial water, or pore water, is the water occupying the space between solid particles. It can be isolated to provide either a matrix for toxicity testing or an indication of the concentration and partitioning of contaminants with a solid matrix. Pore water samples may be collected in the field using any available technology that will preserve the integrity of the analytes of interest during collection (e.g., lysimeter) or extracted in the laboratory from field-collected waste. The substrate type will dictate the volume of sample needed. In all cases, consult the laboratory conducting the analyses to provide estimates of the amount of sample necessary to obtain the desired quantity of pore water.

If necessary, conduct field tests or screening of waste materials in accordance with the project-specific work plan and manufacturer's specifications for field testing equipment.

17.5.4 Non-Aqueous Phase Liquid Sampling Procedures

Non-aqueous phase liquids (NAPL) are not typically collected from solid waste units. However, if NAPL samples are required, the sampling options and techniques should be discussed with the assigned WSP compliance professional and project manager to ensure that the NAPL is not considered to be a hazardous material for the purpose of shipping to the laboratory (SOP 3). Samples of NAPL should be collected using the same procedures

as above and placed in the appropriate laboratory-supplied containers, packed on ice, and shipped to the analytical laboratory using procedures outlined in SOP 3.

17.5.5 Sample Labeling and Preparation for Shipment

Once collected, prepare the waste samples for offsite laboratory analysis by:

- Cleaning the outside of the sample container
- Affixing a sample tag or label to each sample container and complete all required information (sample number, date, time, sampler's initials, analysis, preservatives, place of collection)
- Placing clear tape over the tag or label (if non-waterproof labels are used)
- Preserving samples immediately after collection by placing them into an insulated cooler filled with bagged wet ice to maintain a temperature of approximately 4°Celcius
- Recording the sample designation, date, time, and the sampler's initials in the field book and on a sample tracking form, if appropriate
- Completing the chain-of-custody forms with appropriate sampling information
- Securing the sample packing and shipping in accordance with proper procedures

Do not ship hazardous waste samples without first consulting a WSP compliance professional.

17.6 Closing Notes

Once sampling is completed, secure the waste unit(s) in accordance with the project-specific project work plan. Decontaminate all equipment prior to departure and properly manage all PPE and IDW in conformance with applicable regulations.

Appendix B – Community Air Monitoring Plan

COMMUNITY AIR MONITORING PLAN

Self-Implementing PCB Remediation Work Plan February 14, 2015

COMMUNITY AIR MONITORING PLAN Self-Implementing PCB Remediation Work Plan

February 14, 2015

Client

Steve Clarke Vice President Environmental Affairs and Real Estate Emerson 8000 West Florissant St. Louis, MO 63136-8506

Consultant

WSP USA Corp. 11190 Sunrise Valley Drive, Suite 300 Reston, Virginia 20191

Tel: (703) 709-6500 Fax: (703) 709-8505

WSP Contacts

WSP USA Corp. Scott Haitz, Vice President 11190 Sunrise Valley Drive, Suite 300 Reston, Virginia 20191

David Rykaczewski, Senior Technical Manager 750 Holiday Drive, Suite 410 Pittsburgh, Pennsylvania 15220

Table of Contents

1	Intro	oduction	1
	1.1	Selection of CAMP Monitoring Locations	1
	1.2	Continuous Monitoring	1
	1.3	Periodic Monitoring	2
	1.4	Documentation Requirements	2
2	Acti	ion and Response Levels for Particulates	3
	2.1	Particulates	3
	2.2	Volatile Organic Compounds	3
3	Ref	erences	4

1 Introduction

On behalf of Emerson and its subsidiary, Emerson Power Transmission Corp. (EPT), WSP USA Corp (WSP) has prepared this Community Air Monitoring Plan (CAMP), which presents a scope of work for monitoring ambient air quality during former transformer pad removal and polychlorinated biphenyl (PCB) remediation work at the EPT facility located at 620 South Aurora Street in Ithaca, New York. Specifically, the CAMP is designed to ensure that any site-related constituents (airborne particulates containing PCBs) that may be released during pad demolition and ground intrusive work, are detected, measured, and mitigated, to protect the nearby community receptors from unnecessary exposures. This plan was prepared in accordance with requirements outlined in the July 13, 1987, Consent Order (Index # A7-0125-87-09) entered into by the New York State Department of Environmental Conservation (NYSDEC) and EPT.

The New York State Department of Health (NYSDOH) requires the implementation of a CAMP for sites where ground intrusive activities, including the excavation and handling of contaminated soil and media, is performed. The CAMP for the self-implementing PCB remediation work addresses particulate monitoring in accordance with NYSDOH requirements. CAMP requirements consist of periodic and continuous monitoring, based primarily on the type of intrusive work being performed. Activities to be performed for the self-implementing PCB remediation work fulfill the requisite monitoring, which is described in detail below.

The Self-Implementing PCB Remediation Work Plan approved by the U.S. Environmental Protection Agency Region 2 provides background information on the site, the work plan objectives, the scope of work for the proposed excavation and sampling activities, and information regarding scheduling and reporting.

EPT has ceased operations and only a few maintenance personnel remain at the facility. The facility personnel perform their day to day activities in the main manufacturing building which is greater than 20 feet away from the vacant Building 24 and the transformer pad. All PCB remediation work will be performed outdoors within the fenced facility. The nearest residential dwelling is more than 400 feet from the work area. Based on the PCB concentrations in affected media and the location of the nearest receptor, the potential for community exposure is considered to be low.

1.1 Selection of CAMP Monitoring Locations

Since the purpose of CAMP is to protect potential receptors from contaminants generated during the excavation and backfilling activities, monitoring locations will be positioned at project (i.e., perimeter) areas downwind of excavation area (exclusion zone). Two monitoring locations will be placed +/-30 degrees of the predominant down wind direction, as established by local weather station data. At least one of these receptors must be positioned between the work zone and nearest receptor. One upwind monitoring location will be positioned opposite the down wind direction (i.e., +/-180 degrees) to determine background particulate concentrations entering the site. Both periodic and continuous monitoring will be performed at these locations.

In the event that site conditions change or the predominant wind direction experienced during site work appears significantly different than reported locally, the monitoring locations may be moved to perimeter locations most likely to detect airborne constituents.

1.2 Continuous Monitoring

Continuous monitoring for particulate will be conducted during ground intrusive activities including transformer pad demolition, pavement removal, excavation, and backfilling activities. Appropriate monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over 15-minute periods will be employed to continuously monitor particulates, as well as data log, as necessary, for CAMP recordkeeping requirements.

Continuous particulate monitoring will be performed using a Thermo Andersen MIE DATARAM 4000 or equivalent direct sensing, real-time monitor with data logging capabilities. This device can detect airborne particulate at levels well below the CAMP particulate action level, and will also be placed at an approximate breathing zone height, estimated to be 4 to 5 feet above the ground surface. The MIE DATRAM 4000 is equipped with an audible alarm to indicate exceedance of the action level.

Volatile organic compounds (VOCs) are not expected to be encountered at significant concentrations during the PCB remediation activities. Continuous monitoring for VOCs will only be performed if sustained readings greater than 5 parts per million and detected in both the work zone and along the site perimeter as described in the following section.

1.3 Periodic Monitoring

Instantaneous particulate measurements will be collected at the initiation of work each day and continuously during ground intrusive activities (i.e. excavation and backfilling). Intermittent particulate measurements will also be collected when health-related monitoring in the work area detects particulates above the CAMP action level.

VOCs will be monitored for worker protection using a calibrated photoionization detector (PID) in the active work zone. The PID will detect VOCs at a level well below the VOC action level and can be programmed to perform data logging. If sustained readings greater than 5 parts per million (ppm) are recorded within the work zone, periodic VOC monitoring will be performed at the upwind and downwind perimeter of the site. If sustained readings greater than 5 parts per indice locations, continuous VOC monitoring will be performed at the perimeter locations, continuous VOC monitoring will be performed and the decision process described in Section 2.2 will apply. The PIDs for continuous VOC monitoring will be placed at an approximate breath zone height, estimated at 4 to 5 feet above the ground surface.

1.4 Documentation Requirements

In accordance with NYSDOH requirements, all 15-minute readings shall be recorded in the field logbook and be available for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision-making purposes, shall also be recorded in the same field log book and made available for review.

2 Action and Response Levels for Particulates

This CAMP specifies action and response levels for VOC and particulate concentrations detected during continuous monitoring. All equipment must be capable of calculating 15 minute running averages. The required action levels and responses are described below.

2.1 Particulates

Decision-making for particulate detections will be based on the 15 minute running averages, and the actions will be as follows:

- The maximum concentration of PCBs detected on site is 211 milligrams per kilogram (mg/kg). This concentration was found in concrete that is not likely to become airborne during remediation activities. The highest concentration in soil is 21.2 mg/kg. The surrogate action level for PCBs assuming a recommended exposure limit of 0.001 milligrams per cubic meter (mg/m³) is 47 mg/m³ which is greater than the National Ambient Air Quality Standard (NAAQS) for particulate pollution.
- If ambient particulate concentrations at a downwind perimeter monitor exceed 100 micrograms per cubic meter (µg/m³) above background for a 15-minute average, or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work activities may resume with dust suppression techniques provided that downwind particulate levels do not exceed 150 µg/m³ (NAAQS standard) above the upwind particulate level and provided that no visible dust is migrating from the work area.
- If after implementation of dust suppression techniques, downwind particulate levels are greater than 150 µg/m³ above background (upwind), work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures or other controls adequately reduce downwind particulate concentrations to within 150 µg/m³ of the upwind level (background) and prevent visible dust migration offsite.

All measurements must be recorded and made available for New York State personnel to review, including but not limited to, NYSDEC and NYSDOH.

2.2 Volatile Organic Compounds

If the conditions in Section 1.3 are triggered, decision-making for VOC detections at the perimeter monitoring stations will be based on the 15 minute running averages, and the actions will be as follows:

- If ambient VOC concentrations at a downwind perimeter monitor exceeds 5 ppm above background for a 15minute average, work activities must be temporarily halted and monitoring continued. If the VOC concentrations readily decrease, as demonstrated by instantaneous readings, to below 5 ppm over background, then work activities may resume with continued monitoring.
- If ambient VOC concentrations at a downwind perimeter monitor persist at levels above 5 ppm over background, but below 25 ppm, work activities must be halted, the source of VOCs identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the VOC level 200 feet down wind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less (but in no case less than 20 feet), is below 5 ppm over background for a 15 minute average.
- If VOC levels exceed 25 ppm at the perimeter of the work area, then activities must be discontinued until appropriate engineering controls can be implemented.

All 15-minute measurements must be recorded and made available for New York State personnel to review, including but not limited to, NYSDEC and NYSDOH. Any instantaneous measurements used for decision purposes should also be recorded.

3 References

New York State Department of Health. 2000. Generic Community Air Monitoring Plan. June.

WSP USA Corp. Self-Implementing PCB Remediation Work Plan – Emerson Power Transmission Site, Ithaca, New York. October 2014

Tel: (716) 691-5232 Fax:(716) 608-1387

Appendix C - Utility Location Documentation

** This form is mandatory for all intrusive work performed by WSP

or a WSP contractor, regardless of who is responsible for the

public and/or private utility locating services.

Enclosure C Utility Locating Form – Page 1 of 2

Project Name	Project No. an	d Task	1	-	one for (Company or Individual	Project Man	ager
EPT Transformer Pad & PCB Remedy			, í				0
WSP Office Address	WSP Office Ph	none	L I	WSP F	ield Contact	WSP Field C	Contact Phone
Project Location: Street Address		City/Township	р		County		State
620 S Aurora Street	Ithaca			Tompkins		NY	
Nearest Intersecting Street							
S. Cayuga Street and S. Hill Terrace							
Description of Work Area (street working on, wh							
Demolition of transformer Pad and excava		0			Emerson Transmission plant.		
Type of Work	Explosives (Y/N)	Directiona (Y/N)	I Boring	S	Dig Locations Marked (Y/N)	Mark Type (e.g., stake)
Excavation	No	No			Yes	White Pai	
Scheduled Work Start (Date & Time)	Estimated Wo	rk Stop Date		One-c	all Phone Number/Website Address	One-call Se	rvice Name
3/20/2015 8am	5/20/2015 8a	am					
Call/Web Notification Made By (Name, Title and 0					Time of Call/Web Notification	Operator Na	ime
Andrew Madden, Project Manager, Ontar	io Specialty C	ontracting, In	IC.	3/17/	2015 3pm		
Ticket No.	Legal Dig Date	te		Ticket Expiration Date		Ticket Renewal Date	
03175-540-042-01	3/20/2015			4/3/2		5/20/2015	
Utilities Notified		Complete / Utilities Pres		-	Notification (e.g., e-mail, facsimile) fi Dnsite Meeting (Y/N; if "Y" Date & Time)		Subcontractor ame and Phone
1 City of Ithaca Water and Sewer		No		/ ·	No	607-272-	
2 NYSEG / Ithaca Electric		No			No	800-262-	
3 NYSEG / Ithaca Gas		No					
5						800-262-8600	
4 Verizon / Syracuse		No			No	855-661-	6323
5							
6							
7							
8							
9							
10 Form Completed By							
(Signature)		T					
and Ma	n		(e-mai	l comp	eted page 1 to		WSP

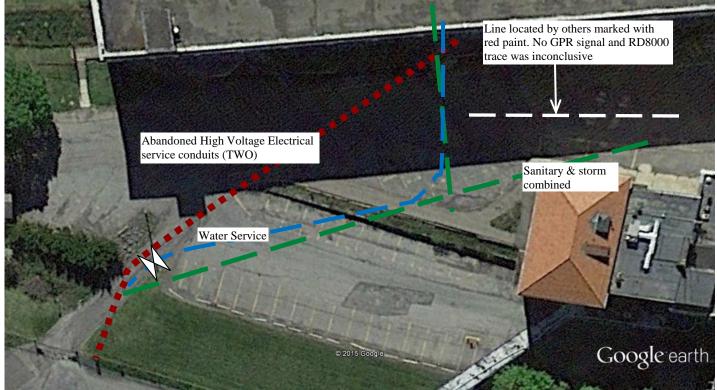
Private Utility Locator Information

(e-mail completed page 1 to Project Manager)

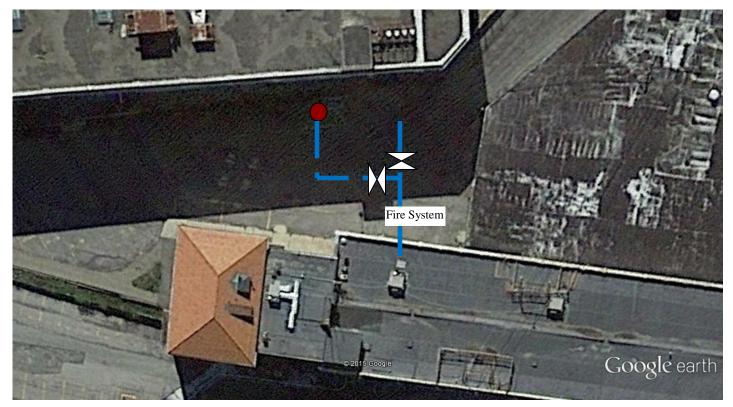
Utility Locating Form – Page 2 of 2

Company		Contact Name	Phone	E-mai		
New York State	Leak Detection Inc.	Steve Birmingham	315.424.5107			
Who Contracted Lo	vestor?		Scheduled Start (Date & Time)	WSP ((Y/N/N	Contract Executed	
	y Contracting, Inc.		3/18/2015 11am	No		
Onsite Visual Confi	irmation of					
Utilities	Utility Type and			Cleared or Marked	No Markings -	
Marking Color	Visual Clues			(Y/N)	Comments	
Blue	Potable water: fire hydr valve box	Yes	Will Hand Dig			
Yellow	Gas, oil steam, petroleu valve box					
			overhead lines (telephone poles),		Abandoned	
Red	conduit on buildings		anholes, transformers/switchgear,	Yes	Electrical Lines	
Green	Sewer and drain lines: mound, no evidence of	, drain grates, leach field, sand em)	Yes	Will Hand Dig		
Orange		uits: red/orange bollards, telephone				
Purple	Reclaimed water, irriga	ion, and slurry lines: sprinkler	heads, hose bibs			
Pink	Survey markings					
White	Proposed locations for	excavation and drilling		Yes		
Project Manager No	otified of any Conflicts? (Y/N)					
Troject manager No						
Notes:						
Private utility Ic	ocation (NYLD) report and	I public utility location ticket att	ached for reference.			
Marks Verified By (Signature)					
and	In M	h	(scan and save to client file)		WSP	

NYLD Infrastructure


NEW YORK LEAK DETECTION, INC.

Date: Wednesday 3/18/2015		Technician: <u>Steve Birmingham</u>
Customer: The OSC Group		
Site Address: Emerson Power Tr	ansmission Plant 620 S. Aurora S	St. Ithaca, NY
Contact Person: Andrew Madder	Phone: 716-655-1250 cell	
Scope of Work: Utility Location	Service	
Type of Service:		
Leak Detection	Utility Location/GPR	Video Inspection
Infrastructure Assessment	Utility Mapping/AutoCAD	
Type of Equipment Used		
Profiler EMP 400	🖂 RD4000	MetroTech Vivax vLocPro2
LC2500 Leak Correlator	🛛 Noggin 250 mHz	PosiTector UTG G3
S-30 Surveyor	🛛 Noggin 500 mHz	Video Inspection Camera
Sonde	Conquest 1000 mHz	Helium # Bottles
Leica Robotic Total Station	🗌 Leica GPS	
Marking Used		
🖂 Paint	🗌 Flags	Chalk
Updated existing maps onsite	Other:	
Instructions from Onsite Conta	<u>ict:</u>	
Size of Pipe:		
Notes/Testing Results: see atta	iched	
Information Transfer		
☑ Information relayed on site to <u>Madden</u>	e: <u>Andrew</u>	•


NYLD Infrastructure

Field Report

NEW YORK LEAK DETECTION, INC.

Key	
Blue	Water
Red	Power
Orange	Communications
Yellow	Gas/Flammable Fuel
White	Unknown
Green	Storm/Sanitary

IRTH One Call

Ticket: 03175-540-042-01 Type: Late Previous Ticket: -----State: NY County: TOMPKINS Place: ITHACA /C Addr: From: 620 To: Name: S AURORA Cross: From: To: Name: ST Offset: Locate: EXCAVATION AREA CENTERED WITHIN EMERSON POWER TRANSMISSION PLANT. : CENTER OF EXCAVATION (CIRCULAR BOUNDARY WITH 150' RADIUS) LOCATED 650' : WEST OF S.AURORA ST. / HILLVIEW PL. INTERSECTION AND 680' SOUTH OF : HILLVIEW PL. ROADWAY. NearSt: S.CAYUGA ST. AND S.HILL TERRACE Means of Excavation: BACKHOE; MINI EXCAVATOR Blasting: N Site marked with white: Y Boring/Directional Drilling: N Within 25ft of Edge of Road: N Work Type: REMEDIAL EXCAVATION TO BEDROCK (APPROX. 2 TO 3 FEET DEEP) IN SELECT LOCATIONS. Duration: 2 MONTHS Depth of excavation: 3 FEET Site dimensions: Length 250 FEET Width 250 FEET Start Date and Time: 03/20/2015 07:00 Must Start By: 04/03/2015 _____ Contact Name: ANDREW MADDEN Company: ONTARIO SPECIALTY CONTRACTING Addr1: 333 GANSON ST Addr2: City: BUFFALO State: NY Zip: 14203 Phone: 716-655-1250 Fax: Email: AMADDEN@OSCINC.COM Field Contact: ANDREW MADDEN Cell Phone: 716-655-1250 Email: AMADDEN@OSCINC.COM Working for: WSP ENGINEERING Comments: Work being performed within the Emerson Power Transmission plant. : Plant security present. If access to immediate excavation : area is required call or email site contact. Detailed map of : excavation area available upon email request to site : contact. : Lookup Type: MANUAL _____ _____ _____ Members: CITY OF ITHACA WATER & SEWER DEPARTMENT 607-272-1717 NYSEG ITHACA ELECTRIC 800-262-8600 NYSEG ITHACA GAS 800-262-8600 VERIZON | SYRACUSE B 855-661-6323 Service Service Area Emergency Contact Day Phone Alt Phone Utility Type Response Area Code Name Phone 10 CLEAR, NO CITY OF FACILITIES CIT ITHACA WITHIN 15 ITHACA WATER & GEORGE SEWER, (607) 272 - 1717 (607) 280 - 5062 FT OF THE WTR & WATER SEWER SEELEY EXCAVATOR SWR DEPARTMENT DEFINED WORK AREA 10 CLEAR, NO PREMIER FACILITIES NYSEG / NYSEG UTILS WITHIN 15 ITHACA LOCATING (800) 262 - 8600 ELECTRIC FT OF THE ITHACA ELEC ELECTRIC DISPATCHER EXCAVATOR

DEFINED WORK AREA

NYSEG / ITHACA GAS	NYSEG ITHACA GAS	PREMIER UTILS LOCATING DISPATCHER	(800) 262 - 8600		GAS	10 CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA
VERIZON / SYRACUSE B	VERIZON SYRACUSE B	VERIZON (PPM CENTER) STAKEOUT CONTACT	(855) 661 - 6323		FIBER, TELEPHONE	10 CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA

Appendix D - Asbestos Abatement Documentation

WSP – Emerson Power Transmission, Ithaca NY PCB Transformer Pad NOB Asbestos Roof Removal

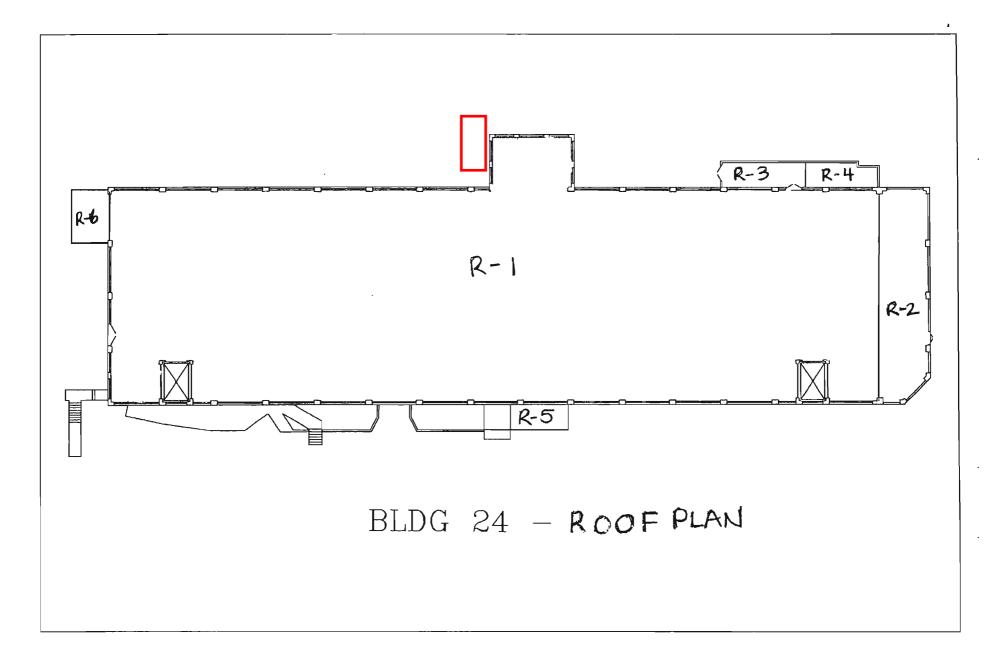
Asbestos Project Records

Abatement Contractor: Ontario Specialty Contracting, Inc.

> Client: WSP USA Corp.

Project Monitor: Parsons Brinckerhoff Asbestos Survey NOB Roof Related Sections

SECTION III - Summary of Findings (Continued)


I. <u>BUILDING #24 - EXTERIOR OF STRUCTURE:</u> (Continued)

MATERIAL	LOCATION(S)	QUANTITY
ROOF		
Flashing Roofing Material	Roof Area R-3	80 Lf
	Roof Area R-4	80 Lf
Built-Up Roofing Material &	Roof Area R-1	24,600 Ft ²
Flashing Materials	Roof Area R-2	1,600 Ft ²
	Roof Area R-5	285 Ft ²
	Roof Area R-6	160 Ft ²

II. BUILDING #24 - INTERIOR OF STRUCTURE:

MATERIAL	LOCATION(S)	QUANTITY
BASEMENT	STREET STREET STREET	
12"x12" White with Tan Streaks Floor	Basement Area B-1	200 Ft ²
Tile and Mastic	Basement Area B-4	200 Ft ²
Transite Pipe	Basement Area B-6	9 Lf
Air Cell Type Pipe Insulation Debris	Basement Area B-6 - Within Pipe Chase	Unknown
FIRST FLOOR		
Transite Pipe	1ª Floor Area 1-2 - In Floor	Unknown
Boiler Door Gasket (Note interior of boilers not inspected)	1 st Floor Area 1-1 (2 boilers with 2 doors each plus back side of boiler)	68 Lf
Pipe Insulation	1 st Floor Area 1-2 - Chase in Floor	90 Lf
	1 st Floor Area 1-3 - Above Toilets (looks like fiberglass)	4 Lf

Please note that the extent and quantity of the air cell type pipe insulation within the chase is unknown. Less than one linear foot of debris was visible at the time. The extent of the transite pipe identified in the floor of Area 1-2 is unknown and it appears to extend past the partial basement and may possibly run underground.

CI	IS		ed Envir es, Inc.	onmei		ulk Sample	Sv	401 Erie Boulevar racuse, New York 478-2374 Fax (1	x 13210
CLIENT:	Emerson Power Tr	ransmission	CONTACT:	Ilene Her	bold-Miller	INSPECTOR(S):	Ron Russo Jr	DATE: 2/0)7/05
PROJECT: 620 South Aurora Street			PHONE #:	(607) 274	1-6972	-			13243
1	Building 24 - Ithac	ca, NY	FAX #:	(607) 274	4-6197	ANALYTE:	Asbestos	REPORT T	O NIKKI
FIELD ID NUMBER	CES LOG NUMBER	SAM	PLE LOCATIO	DN		SAMPLE DESCI	RIPTION	SAMPLE TYPE	POS (+) OR NEG (-)
EP-2405-61	3899127	Roof Area	R-1 (main roo	f)	Skylight Flas	shing		NOB	POS(+)
EP-2405-62	389928	Roof Area	R-1 (main roo	f)	Silver/Black Ventilation System Flashing Coating			NOB	
EP-2405-63	384929	Roof Area	R-1 (main roo	f)	White Caulk	on Parapet Wall		NOB	NEG (-)
EP-2405-64	384930	Roof Area	R-1 (elevator	shaft ext	Exterior Wa	ll Coating		NOB	POS(+)
EP-2405-65	384931	Exterior of	Gas House, E	ast Side	Black Tar Co	oated Pipe Insulation	on	NOB	NEG(7
EP-2405-66	384932	Roof Area	R-3		Roof Core S	ample		NOB	
EP-2405-67	304933	Roof Area	R-4		Roof Core S	ample		NOB	
EP-2405-68	389934	3 rd Floor A	rea 3-20		Caulk on Ve	ntilation System		NOB	
EP-2405-69	384935	2 nd Floor A	rea 2-4		Gray Linolet	ım		NOB	
EP-2405-70	389936	Roof Area	R-5, Ext West	Side	Built-Up Ro	ofing Material		NOB	ROS(+)

SAMPLE TYPES: F = Friable

NF = Non-Friable

NOB = Non-Friable Organically Bound

CHAIN-OF-CUSTODY	PRINT NAME	SIGN NAME	DATE	TIME
Relinquished By: Received at Lab By: REPORT DUE DATE:	Ron Russo Jr Renée Paone Results Due Monday 2/14/05 Report To Nikl	Dan John Benér Paone	2107105 2/2/05	1310

Certified Environmental Services, Inc.

1401 Erie Blvd. East Syracuse, NY 13210 Phone 315-478-2374 Fax 315-478-2107

To: EMERSON POWER TRANSMISSION 620 S. AURORA STREET ITHACA, NEW YORK 14850 Date: FEBRUARY 14, 2005

Attention: MS, ILENE HERBOLD-MILLER

Page 7 of 7

PROJECT: 620 SOUTH AURORA STREET - BUILDING 24 - ITHACA, NY

ASBESTOS IN NON-FRIABLE ORGANICALLY BOUND MATERIALS (NOB) ANALYSIS REPORT

CESLOG #	CLIENT/FIELD ID	DATE COLLECTED	MATERIAL	PERCENT WEIGHT OF ORIGINAL SAMPLE REMAINING AFTER NOB PREP	PLM EXAMINATION		TEM EXAMINATION		FINAL ASBESTOS
010100		COLLOILD		NODFREF		TIPE	~	1166	
389933	EP-2405-87	02/07/05	ROOF CORE SAMPLE	1.0 、	<1.0	CHRYSOTILE	*<1.0	CHRYSOTILE	<1.0
389934	EP-2405-68	02/07/05	CAULK ON VENTILATION SYSTEM	72.1	<1.0	ND	•<1.0	ND	<1.0
389935	EP-2405-69	02/07/05	GRAY LINOLEUM	4.0	<1.0	ND	***		<1.0
389936	EP-2405-70	02/07/05	BUILT- UP ROOFING MATERIAL	15.9	67.0	CHRYSOTILE			10.6
389937	EP-2405-71	02/07/05	WINDOW SILL COATING	52.5	22.2	CHRYSOTILE			11.7
389938	EP-2405-72	02/07/05	12"x12" RED/ORANGE FLOOR TILE	1.2	<1.0	ND	•<1.0	CHRYSOTILE	<1.0
389939	EP-2405-73	02/07/05	BLACK MASTIC (TO SAMPLE #72)	6.0	<1.0	ND	•<1.0	ND	<1.0
389940	EP-2405-76	02/07/05	ROOF SHINGLES	18.2	<1.0	ND	*<1.0	CHRYSOTILE	<1.0

*TEM analysis performed by ELAP #10920. ND - None Detected

***TEM analysis not performed per client's request.

Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos containing.

ANALYSIS METHOD: ELAP Item Number 198.1 and 196.4

CES does warrant that laboratory or field services completed by its employees for this report were conducted in accordance with the environmental services and analytical industries recognized methods or standards. CES does not assume any other liabilities other than re-performance of work if completed services were determined to be deficient due to the negligence of CES. CES will not accept any liability in whole or in part as a result of data interpretation by the client.

NYSDOH LAB ID #11246

malulla APPROVED BY:

Maja J. Salvilla Asbestos Technical Director

NYSDOL Asbestos Notification

Asbestos Project Notification

Project Reference Number:	26101025	Туре:	Amended Notification
Status:	Notification Received	Notification Received:	3/25/2015
Payment Status:	Paid in full	Number of amendments:	1
Notification Entered By:	Ontario Specialty Contracting, Inc.		

Contractor Inform	nation		
FEIN:161531379			
Ontario Specialty Co	ntracting, Inc.	Mailing Address	
333 Ganson Street			
Buffalo NY 14203			
Asbestos License Nun	nber: 34820		
Duly Authorized Rep	resentative		
John Yensan, Other			
Phone Number:	716-856-3333		
E-mail Address:	jyensan@oscinc.com		

Project Information

Project Start Date: 4/6/2015 Project End Date: 4/9/2015 Project Location County: Tompkins

Worker Compensation

Worker Compensation Policy#: WC Exemption Certificate#: Number of your employees you expect to be on project: Will temporary workers be used? If yes, name of temporary agency:

Project Location

Building Name: Emerson Power Transmission Plant BLD#24 Room or Location: Small outdoor roof Bridge ID#: Address Line 1: 620 S Aurora Street Address Line 2: City Town or Village: Ithaca State: New York Zip Code: 14850

Building Information

Current Use: Vacant Prior Use: Industrial Approximate Year Built: 1950 Size(sq.ft): 285 Is this fee exempt project?: NO Reason:

Building Representative/Site Contact Name: Daniel Liwicki Phone Number: E-mail Address: Cell Phone Number: 716-866-1623

Phase Details

I HUSC DCC	ano			
Phase #	Phase Start Date	Phase End Date	Phase Location	Phase Scope

Sub-Contractor Details

Name:

Asbestos License Number:

Night/Weekend/Shift Work Details

A small crew (approximately 3 personnel) will be removing and disposing of the roof. The disposal of this small roof is part of a larger construction project. Weather and site conditions may play a roll in choosing the exact time of day for removal. The crew is authorized to work overtime at their discretion to accommodate project needs.

Party for Whom Wor	k is being Performed		
First Name:	Dave	Last Name:	Rykaczewski
Organization:	WSP Engineering of New York, P.C.		
Apt./Suite:	410	Address Line 1:	750 Holiday Drive
Address Line 2:		City Town or Village:	Pittsburgh
Province:		State:	PA
Zip Code:	15220	Country:	United States
Contract Dollar Amount:	\$1.00		

Variance Information

Procedures and Type of Equipment and Ventilation Systems Used

This task involves demolition of a concrete pad and enclosure attached to an inactive industrial facility within the Emerson Power Transmission Plant. 285 SF of non-friable organically bound (NOB) asbestos built-up roofing material has been identified atop the enclosure's wood roof decking. Removal and disposal of this roof will be managed per the NYSDOL CR 56-11.1 In-Plant Operations regulation.

The site supervisor will remove the roof by first sufficiently wetting the material then rigging the roof support framing and lowering it within a lined roll-off container; via small crane. During the process the roof materials will remain untouched in a substantially intact state. The roof decking containing the NOB asbestos materials will then be immediately encapsulated (2 layers 6 ml poly/secured air tight) within the roll-off container for transportation and disposal.

Air Monitoring Firm

Name:

Asbestos License Number:

Laboratory Performing Analysis

Name:

ELAP Registration Number:

Type of Asbestos	Work			
Pipe Related:	No	Siding:	No	
Clean up:	No	Vessel covering:	No	
Caulking/mastic:	No	Spray-on insulation:	No	
Roofing/flashing:	Yes	VAT:	No	
Demolition:	No	Demolition Ref#:		
Other-specify:				

Waste Transporter

Name:	Earthwatch Waste Systems, Inc.
NYS DEC or EPA Permit Number:	NA
Phone Number:	(716) 681-6433
Apt./Suite:	170
Address Line 1:	4950 Genesee Street
Address Line 2:	
City Town or Village:	Buffalo
Province:	
State:	NY
Zip Code:	14225
Country:	United States

Landfill

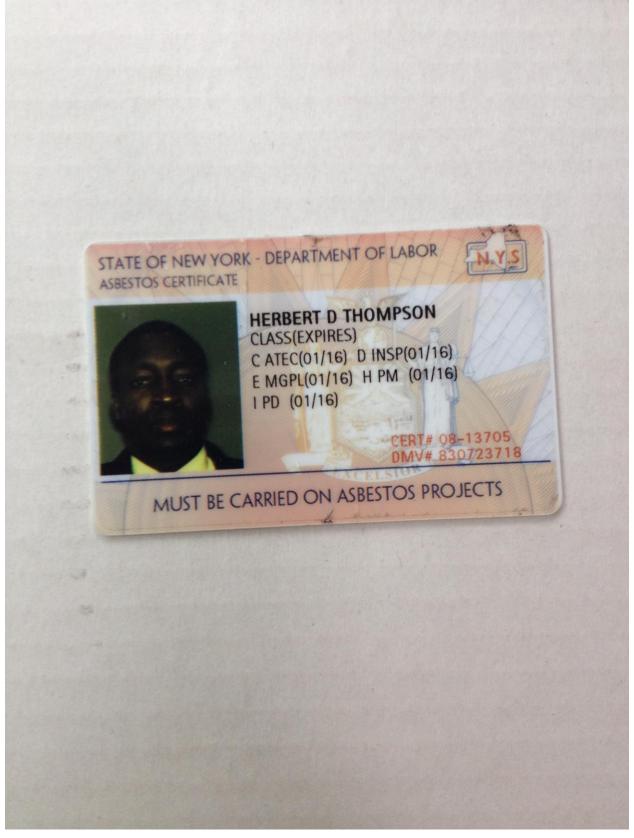
Landini	
Name	e: Casella Waste Management NY
Phone Number	r: (585) 526-4420
Apt./Suite	2
Address Line 1	: 1879 NY-5
Address Line 2	2.
City Town or Village	e: Stanley
Province	2:
State	e: NY
Zip Code	e: 14561
Country	v: United States

Type and Amount of	Asbestos Containing	Material	
Friable linear feet:	0	Friable square feet:	0
Non-friable linear feet:	0	Non-friable square feet:	285

Fee

55 C	
Total linear feet: 0.0	
Total square feet: 285.0	
Total Fee: 400.0	

Project Fee Schedule


If the notification was submitted prior to 4/7/09, the actual project fee is one half of the amount shown on the fee schedule

Linear Feet:	Fee	Square Feet:	Fee	
0 - 259 feet:	\$0	0 - 159 feet:	\$0	
260 - 429 feet:	\$200	160 - 259 feet:	\$200	
430 - 824 feet:	\$400	260 - 499 feet:	\$400	
825 - 1649 feet:	\$1000	500 - 999 feet:	\$1000	
1650 or more feet:	\$2000	1000 or more feet:	\$2000	

Remarks

Final Project Monitor Visual Inspection

WSP – Emerson Power Transmission, Ithaca NY PCB Transformer Pad NOB Asbestos Roof Removal – Final Visual Inspection (4/8/2015)

WSP – Emerson Power Transmission, Ithaca NY

PCB Transformer Pad

NOB Asbestos Roof Removal – Final Visual Inspection (4/8/2015)

Transformer Pad Removal and PCB Remediation	2. Client: WSP/ Emerson Power	3. PB Project No.: 1876424	4. Project Address: 620 Aurora Street, Ithaca, New York, 14850	5. Work Area Location: Small Outdoor Roof
6. Contractor: Ontario Specialty Contracting, Inc.		8. PB Representative: Danny Thompson	9. Date:	10. Time: //070
	Inspection:		Re-inspection	
ACCEPTED				
The condition of the job site and	the work performed is acceptable.			
Any and all critical bar	riers have been removed. All fina	Il cleaning activities h	nave been conducted. All air tests have me	clearance criteria.
NOT ACCEPTED				
The condition of the job site and the	work performed is not acceptabl	le. The following cor acceptable.	rective action(s) must be taken before the j	ob site and work will be deem
1		ucceptuble.	2	
3			4	\frown
5			6	
Representatives Present at Inspection (sign in	An last marga	1	Par - Maxim	An
PB Representative:	(Roart Name)	~	(Title),	(Signature)
	(Print Name)	<u>PC</u>	(Title)	(Signature)
Contractor Representative:				

WSP – Emerson Power Transmission, Ithaca NY PCB Transformer Pad NOB Asbestos Roof Removal – Final Visual Inspection (4/8/2015)

1. Project Name:	FINAL TEAR DOWN VISUAL INSP		le privations		5. Work Area Location:	
Transformer Pad Removal and PCB Remediation	WSP/ Emerson Power Transmission Plant	. PB Project No.: 187642A	4. Project Address: 620 Aurora Street, Ithac		Small Outdoor Roof	
6. Contractor: Ontario Specialty Contracting, Inc.		• PB Representative: Panny Thompson		9. Date: 4/8/15	10. Time: //070	
1	Inspection:	\checkmark	Re-Inspection	11		
ACCEPTED	id the work performed is acceptable.					
	rriers have been removed. All final o	cleaning activities l	have been conducted. A	ll air tests have met	clearance criteria.	
NOT ACCEPTED						
The condition of the job site and th	e work performed is not acceptable.		rrective action(s) must be	e taken before the j	b site and work will be	deemed
The condition of the job site and the	e work performed is not acceptable.	e. The following cor acceptable.	rrective action(s) must be	e taken before the je	ob site and work will be	deemed
The condition of the job site and th 1 3	e work performed is not acceptable.		rrective action(s) must be 2 4	e taken before the ju	bb site and work will be	deemed
I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	e work performed is not acceptable.		rrective action(s) must be 2 4 6	e taken before the ju	bb site and work will be	deemed
135Represent at Inspection (sign	<u> </u>		2 4 6		bb site and work will be	deemed
1 3 5	in) HAM W THOMPSON (Right Name) Madde Marcus Madde		2 4 6		Ah. Isperie	deemed
135 Representatives Present at Inspection (sign PB Representative:	in HARN W THOMPSON		rrective action(s) must be 24 6 Photocontect (http://		Ar.	deemed
135 Representatives Present at Inspection (sign PB Representative:	in) HAM W THOMPSON (Right Name) Madde Marcus Madde		2 4 6		Ah. Isperie	deemed
135 Representatives Present at Inspection (sign PB Representative:	in) HAM W THOMPSON (Right Name) Madde Marcus Madde		2 4 6		Ah. Isperie	deemed

WSP - Emerson Power Transmission, Ithaca NY

PCB Transformer Pad

NOB Asbestos Roof Removal – Final Visual Inspection (4/8/2015)

1. Project Name:	2. Client:	3. PB Project No.:	4. Project Address:		5. Work Area Location:
Transformer Pad Removal and PCB Remediation	WSP/ Emerson Power Transmission Plant	187642 A	620 Aurora Street, Itha New York, 14850	sca,	Small Outdoor Roof
6. Contractor: Ontario Specialty Contracting , Inc.	7. Contractor Foreman: Matt Reardon Andrew Madden	8. PB Representative Danny Thompson	H	9. Date: 498/15	10. Time: // 0D
Contractor's Foreman or Representative: PB Reprosentative's Certification of Visual Insp	rules, regulations and specificat ledges, walls, ceiling and floor, d The Work Area is dry and t ection	here are no visible pools of	water. <u>Nadden</u>		
Contractor's Foreman or Representative:	ledges, waits, ceiling and jiou, w The Work Area is dry and t	here are no visible pools of			
Contractor's Foreman or Representative: PB Reprosentative's Certification of Visual Insp Pass	ledges, waits, ceiling and jiou, w The Work Area is dry and t	(Print Name)			

WSP – Emerson Power Transmission, Ithaca NY PCB Transformer Pad

NOB Asbestos Roof Removal – Final Visual Inspection (4/8/2015)

PARSONS BRINCKERHOFF		PRE-CLEARANCE VIS				
1. Project Name: Transformer Pad Removal and PCB Remediation	2. Client: WSP/ Emerson Power Transmission Plant	3. PB Project No.: 187642 A	4. Project Address: 620 Aurora Street, Ithac New York, 14850	a,	5. Work Area Location: Small Outdoor Roof	A
6. Contractor: Ontario Specialty Contracting , Inc.	7. Contractor Foreman: Matt Reardon Andrew Madden	8. PB Representative: Danny Thompson		9. Date: 4/8/15	10. Time: // 0D	P
PB Reprosentative's Certification of Visual Insp Pass Comments:	Fail			0		
	HDANNY I HON CIPrint Name)	np Son	(Sigpa	the fure		
PB Representative:	(Print Name)					

Ontario Specialty Contracting, Inc. Asbestos handling License New York State – Department of Labor Division of Safety and Health License and Certificate Unit State Campus, Building 12 Albany, NY 12240

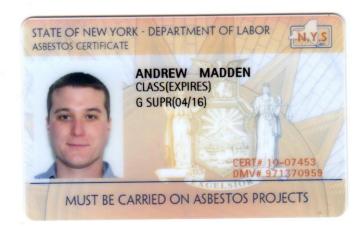
ASBESTOS HANDLING LICENSE

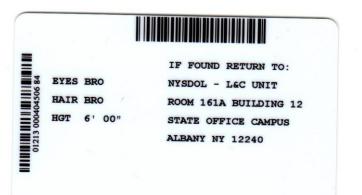
Ontario Specialty Contracting, Inc.

333 Ganson Street

Buffalo, NY 14203

FILE NUMBER: 99-0601 LICENSE NUMBER: 34820 LICENSE CLASS: FULL DATE OF ISSUE: 02/19/2015 EXPIRATION DATE: 01/31/2016

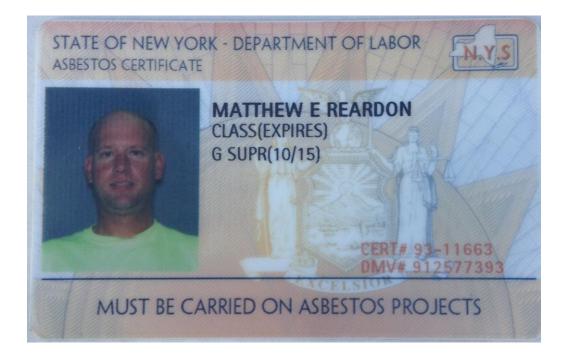

Duly Authorized Representative - John Yensan:


This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material.

This license is valid only for the contractor named above and this license or a photocopy must be prominently displayed at the asbestos project worksite. This license verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they perform, by the New York State Department of Labor.

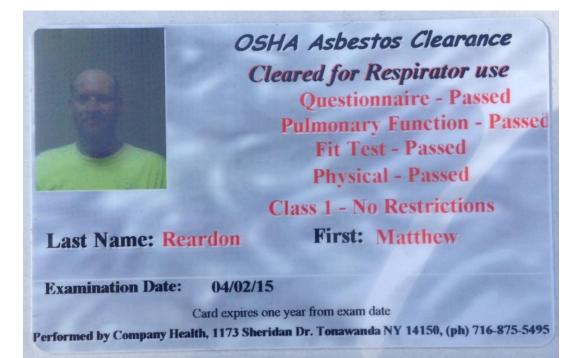
SH 432 (8/12)

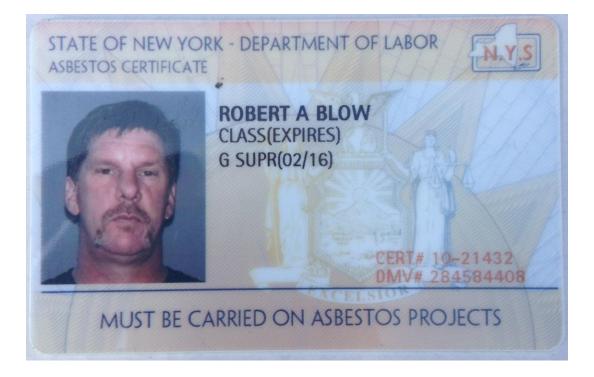

Eileen M. Franko, Director For the Commissioner of Labor **Training Certificates**



New York State Department of Health Certificate of Asbestos Safety Training

his form is the official re	cord of successful comp	letion of a New Yo	rk State accredited asbest		ng course.		
	I-	- To be comp	leted by Trainee				
Name of Trainee	(print)		NYS Depart. of M	otor Vehic	les ID (D	MV ID) ¹	
Andrew (Madden		971 370	959			
Signature of Trai	nee		Telephone Numbe	er	Date of	Birth	
aula	MAL	-	716-655-	-1250	4/1	1/1982	2
	owTerrale	orchard			141	27	
(Street or PO Box)		ity)	(State)		Code)		
	II – To	be completed	by Training Spor				
Provider's Name	and Health	Center	Telephone Numbe	(7/6)	838.	6850	
Address		11.6	Course				
2495 Mai	n St Surte	1.0	Location:	50	me		
Zip Code Bu-	GALO, NY	14214	neer van se	<u> </u>			
Course Title:	Superi	1305	Initial 🔀	Refresher		Huse only quivalency ²	
Training Langu	age: 🔛 English	Other:	Exa	m Grade/D	ate:_/C	0 90 1	115/15
Dates of Trainin	g: From:/	15/15 To:	11515E	xpires:	1 15	16	
TSCA Title II, was	consistent with the c	urriculum and i	the above date compl nstructors approved b the training course an	y the New Y	ork State I	Department of	
Training Directo	pr2: KAYMA	(Print)	Urpio -	Kel (Si	gnature)	OTHORNE	
2832 (10/03)	Optional Information	² DOH Equivale	ncy signed by NYS DOH	representative	e only	STUDENT	


New York State Department of Health Certificate of Asbestos Safety Training This form is the official record of successful completion of a New York State accredited asbestos safety training course. 708029						
Certificate No. <u>10002</u> 3						
I – To be com	pleted by Trainee					
Name of Trainee (print)	NYS Depart. of Motor Vehicles ID (DMV ID)					
Matt Reardon	912 577 393					
Signature of Trainee	Telephone Number Date of Birth					
MEK.	716 886 7767 10.19.70.					
785 BIRD AVE BUITAL	0 NY 14209.					
(Street or PO Box) (City)	(State) (Zip Code)					
II – To be complete	d by Training Sponsor					
Provider's Name	Telephone Number					
The Salatu and Heatth Center	(716) 838-6850					
Address	Course					
2495 Main St Suite 118	Location: Jame					
Zip Code Buchelo, N.Y. 14214						
Course Title: Spervisor	Initial Refresher					
Training Language: K English Other:	Exam Grade/Date: 90 9. 5/26/14					
Dates of Training: From: <u>8126/14</u> To:	Dates of Training: From: 8/26/14 To: 8/26/14 Expires: 8/26/15					
I certify that the asbestos safety training course given on the above date complied with both 10 NYCRR Part 73 and TSCA Title II, was consistent with the curriculum and instructors approved by the New York State Department of Health, and the trainee receiving this certificate completed the training course and successfully passed the examination.						
Training Director ² : <u>Kaynord</u> 2 75 (Print)	(Signature)					
DH-2832 (10/03) ¹ Optional Information ² DOH Equiva	lency signed by NYS DOH representative only					


• |

-

*5*7

.

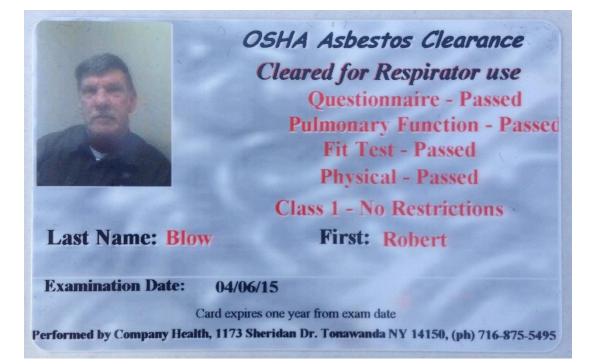
Alter a starter and a starter at	To be completed by Trainee	ertificate No. <u>[14238</u>
Name of Trainee (print)	NYS Depart. of Motor V	Vehicles ID (DMV ID)
-		· /
Robert Blow	284 584 408	
Signature of Trainee	Telephone Number	Date of Birth ¹
Robert Blaw	716-698-771	4 2-8-59
Address P.O BOX 175 A	itica Nilli	19011
	ity) (State)	(Zip Code)
II – To	be completed by Training Sponsor	
Provider's Name	Telephone Number	1) 070 107
The Safety and Health	Center (1.	16) 838-6850
Address MAIN St Suite	Course	
2495 MAIN St JUITE	Location:	same
Zip Code Bullalo, NY	14214	-
Course Title: Supervis		NYS DOH use only
Course fille: Ooper of 3	Initial X Refres	sher DOH Equivalency ²
Training Language: 🔀 English	Other: Exam Gra	ade/Date: 72 % / 1/15/1
	15/15 To: 1/15/15 Expires	s: 1115116
TSCA Title II, was consistent with the	course given on the above date complied wit curriculum and instructors approved by the l ficate completed the training course and succ	New York State Department of
Training Director2: KAymm	(Print) K	(Signature)
-2832 (10/03) ¹ Optional Information	² DOH Equivalency signed by NYS DOH represe	DEPT OF LABOR

e^{st.}

č

264365

e


r

ĉ

.....

1

а

Exposure Assessment

Project: Emerson Power Transmission Plant Transformer Pad Removal and PCB Remediation – Ithaca, NY April 6 – 8, 2015

INITIAL EXPOSURE ASSESSMENT 29 CFR 1926.1101(f)(2) and (f)(2)(iii)(A)

Class of work: Roof flashings which contain asbestos fibers encapsulated or coated by bituminous or resinous compounds [1926.1101(g)(11)]

Type of Asbestos Containing Material: Built-up Non-friable Organically Bound (NOB) Asbestos Roofing

Condition of ACM: Intact

Type and percent of asbestos: Chrysotile, 10.6%

Describe Control Methods: The work must be supervised by a Competent Person as defined in 29 CFR 1926.1101(b). The area where the removal will take place must be regulated by posting with appropriate signage and controlled for access and activities by authorized persons only. The NOB asbestos containing roof, will be supported by attached cables and immediately lowered within an adjacent roll-off container. The wood roof will be sufficiently wetted and sealed with plastic sheeting before placement within the roll-off container for disposal. Work procedures will ensure the NOB asbestos materials remains substantially intact to prevent any chance of rendering them friable. Inspect area for fallen debris and clean the immediate work area with a HEPA filtered vacuum or by wet wiping with amended water or foam.

Employee's Training: Contractor/Supervisor and Worker/Handler

Environmental Conditions: Outdoors

THIS ASSESSMENT IS NEGATIVE. Employee exposure during the operation is expected to be consistently below the PELs.

OSHA Permissible Exposure Limits:	Time Weighted Average: 0.1 f/cc
	Excursion Limit: 1.0 f/cc

Who produced the objective data?

National Roofing Contractors Association (NRCA), December 14, 1994 "Objective Data Demonstration for Certain Roofing Materials and Operations Under OSHA's 1994 Asbestos Standard"

When were the Objective Data produced?

The NRCA developed objective data relating to asbestos containing roofing materials via controlled laboratory analyses and abatement project surveys between the 1980s and up through publishing in 1994.

The planned removal methods were referenced against objective data published by the National Roofing Contractors Association (NRCA, December 1994) and were determined to be substantially less destructive and thus less likely to produce asbestos airborne fibers, than those utilized during NRCA testing. The NRCA objective data demonstrates, through controlled laboratory studies and surveyed abatement projects, that the built-up NOB asbestos roofing material will not exceed exposure limits of 0.1f/cc (TWA) and 1.0 f/cc (STEL), so long as the material remains intact and dust suppression/collection activities, worker training, and competent person supervision requirements of the OSHA standard are met.

Competent Person responsible for developing this Negative Exposure Assessment and overseeing the development of this objective data:

Andrew D. Madden OSHA / NYSDOL Certified Contractor/Supervisor CERT# 10-07453

Signature of Competent Person:

Puden Math

CHEMUNG COUNTY LANDFILL A DIVISION OF CASELLA WASTE SYSTEMS INC 1690 LAKE STREET ELMIRA, NY 14902 TICKET: 201967 DATE: 04/27/2015 TIME: 08:41 - 08:55

CUSTOMER: LKØØ288 / RICCELLI TRUCKING P. O. : WO: 0 HAULCUST: APPROVAL #: GROSS: 43700 L9S DRIGIN: TOM / TOMPKINS COUNTY TARE: 35680 LBS TRUCK: RIC32 TRAILER: NET: 8020 LBS GENERATOR: NA / NON APPLICABLE PROFILE #: NA HAULER: RICC / RICCELLI TRUCKI ROUTE: NA / NON APPLICABLE CELL/TANK: MSW --48 COMMENT: 20321 MATERIAL QLANTITY UNIT MX / MSW&CD MIXED TRASH 4.0100 ST

I Certify under penalty of perjury that I am familiar with wastes authorized at this facility and that to the best of my knowledge all waste contained in this load is authorized for disposal at this facility. Weighmaster and the second seco

IN: RUNALD PETERSON070092PCSCALE1-C OUT: RONALD PETERSON0700198CSCALE1-CLF

PROJECT MONITORING REPORT FOR THE REMOVAL OF ASBESTOS-CONTAINING MATERIALS

Related to:

ASBESTOS ABATEMENT SMALL OUTDOOR ROOF

Performed at:

EMERSON POWER TRANSMISSION PLANT BUILDING #24 620 SOUTH AURORA STREET ITHACA, NEW YORK 14850

Performed for:

WSP Engineering of NewYork, P.C. 750 Holiday Drive, Suite 410 Pittsburgh, PA 15220

Prepared by:

ENVIRONMENTAL ENGINEERING & HEALTH SERVICES ONE PENN PLAZA, 3rd FLOOR NEW YORK, NEW YORK 10119

PB PROJECT No: 187642B

April 17, 2015

Table of Contents

Page

1.0	EXECUTIVE SUMMARY 1
2.0	CONTRACTOR SCOPE OF WORK 1
3.0	AREA ISOLATION AND ENGINEERING CONTROLS 1
4.0	CONTRACTOR HEALTH AND SAFETY/ ABATEMENT WORK PRACTICES
5.0	PROJECT MONITORING AND INSPECTION PROCEDURES
6.0	CONTRACTOR EVALUATION AND INCIDENTS2
7.0	CLEARANCE
8.0	EXTENT OF ABATEMENT2
9.0	CONTRACTOR CLOSEOUT DOCUMENTATION

Appendices

- Appendix A DAILY JOB LOGS
- Appendix B COMPANY/EMPLOYEE LICENSES

PARSONS BRINCKERHOFF

1.0 EXECUTIVE SUMMARY

Parsons Brinckerhoff (PB) was retained by the WSP Global (WSP) to conduct project monitoring services during the removal of asbestos containing materials (ACMs) associated with a small outside roof at the Emerson Power Transmission Plant located at 620 South Aurora Street, Ithaca, New York 14850.

Asbestos removal was contracted to Ontario Specialty Contracting, Inc. (OSC), located at 333 Ganson Street, Buffalo, NY 14203. OSC's New York State Department of Labor Asbestos Handling License number is 34820.

The asbestos abatement activities of the contractor as well as the project monitoring and inspections performed by PB were subject to the requirements of the New York State Department of Labor (NYS DOL) Part 56 of the Title 12 of the Official Compilation of Codes, Rules and Regulations of the State of New York (12 NYCRR Part 56). The project was performed using In-Plant Operations methods.

Air quality monitoring was not performed as part of this project.

2.0 CONTRACTOR SCOPE OF WORK

The contractor's scope of work included area preparation and the removal of non-friable organically bound (NOB) asbestos built-up roofing material from Building #42. The site asbestos supervisor removed the roof by first sufficiently wetting the material then rigging the roof support framing and then lowering it within a lined roll-off container. During the process, the roof materials remained untouched in a substantially intact state. The roof decking containing the NOB asbestos materials were immediately covered with 2 layers of 6 ml poly sheeting within the roll-off container for transportation and disposal.

The following is a summary of the progress of the work:

Asbestos Abatement – Small Outdoor Roof

Work Area Mobilization:	April 6, 2015
Work Area Preparation:	April 7, 2015
Start of Removal:	April 8, 2015
Completion of Removal:	April 8, 2015
Inspection after Final Clean-Up Completion:	April 8, 2015

3.0 AREA ISOLATION AND ENGINEERING CONTROLS

Prior to commencement of abatement activities, a remote three-stage personal and waste decontamination enclosure facility was installed in compliance with 12 NYCRR-56 and maintained throughout the duration of the asbestos abatement until satisfactory visual inspection was achieved. The final visual inspection was performed by the PB Project Monitor and the Asbestos Abatement Supervisor.

Caution signs in compliance with OSHA 1926.1101 warning of asbestos dust hazards were posted at all points of access to the abatement work area.

4.0 CONTRACTOR HEALTH AND SAFETY/ABATEMENT WORK PRACTICES

A remote personal decontamination unit consisted of a serial arrangement of rooms including a clean room, shower room, and equipment room. Overlapping polyethylene sheeting formed an air lock that separated each room.

Respiratory protection was supplied to all employees during all phases of abatement activities. Respiratory protection consisted of half face Air Purifying Respirators (APRs) for all removals. All airpurifying respirators were equipped with HEPA filter cartridges.

All personnel entering the work area wore full body disposable coveralls, hoods, and boot coverings. These were discarded as asbestos containing waste upon exiting the work area.

ACM was removed after wetting with water amended with surfactant chemical to improve water penetration into asbestos materials for added mitigation of airborne fiber release. The roof was lowering into a lined roll-off container. During the process the roof materials remained untouched in a substantially intact state. The roof decking containing the NOB asbestos materials were immediately covered with 2 layers of 6 mil poly sheeting within the roll-off container for transportation and disposal. The Contractor was responsible to transport all waste to a landfill operated according to federal, state and local regulatory requirements by a licensed asbestos waste hauler.

5.0 PROJECT MONITORING AND INSPECTION PROCEDURES

The Project Monitor performed a visual inspection after asbestos abatement was completed. No visible signs of ACM were observed during this inspection.

Construction Inspection

Periodic observations were conducted for during the course of abatement activities. Refer to Appendix A for a copy of the Daily Log.

6.0 CONTRACTOR EVALUATION AND INCIDENTS

The contractor conducted all abatement in a safe and timely fashion.

7.0 CLEARANCE

Upon completion of the abatement activity, the Project Monitor and Asbestos Abatement Supervisor performed a visual inspection. No visible signs of ACM were observed.

8.0 EXTENT OF ABATEMENT

Asbestos-containing building materials were widely used in the construction industry. In addition to finding asbestos on accessible facility components and/or mechanical items, there are frequently shafts and/or other void spaces created by the structure itself (i.e. asbestos pipe insulation penetration through structural wall or deck), which will contain asbestos materials after abatement. Additionally, asbestos materials may remain in a non-friable form (i.e., vinyl asbestos tile and/or asbestos containing

mastic, finished plaster, and/or underlying brown coat or within the structural materials themselves (i.e., asbestos-containing concrete).

The intent of an asbestos abatement project is to remove those accessible asbestos-containing materials that pose a reasonable likelihood of releasing asbestos fibers into the air. It must be understood that total asbestos removal is not possible in the literal sense unless a building is carefully dismantled piece by piece. That is, additional asbestos-containing material may exist in interstitial/inaccessible spaces or beyond the scope or access of the abatement contractor.

9.0 CONTRACTOR CLOSEOUT DOCUMENTATION

PB has not requested to review the Contractor's final closeout submittal package associated with this project.

Project Monitoring Report for WSP Emerson Power Transmission Small Outdoor Roof 620 South Aurora Street, Ithaca, NY

APPENDIX A

DAILY JOB LOGS

PARSONS BRINCKERHOFF

DAILY FIELD LOG

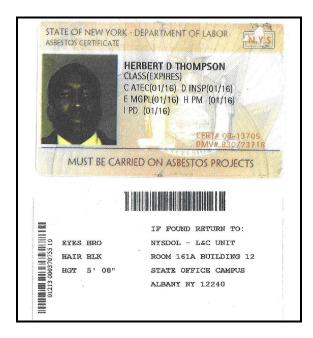
1

	1	
Client Name:	PB Project Number:	PB Project Monitor:
WSP/ Emerson Power Transmission Plant	187642A	Danny Thompson
Project Name:	Laboratory Name/Location:	PB Project Manager:
Transformer Pad Removal and PCB Remediation	N/A	Joseph Hunter / James Lumsden
Date: 4/8/15	Shift Hours: 07:30	Contractor Name: Ontario Specialty Contracting, Inc.
SUMMARY OF SHIFT ACTIVITIES		
0712 HB PND JGI	MONTON ABANNY	HOMPSON ALLINES
on SITE Ar	I attacks THROAGH SER	Mity. MEGT WITH
GC REP DA	116c Liwicki ma ALASE	many Sapta Jipol
AND GRON		
0730 Superview	AND CRAN HOTS SAFETY	THEN DON PDG
And AGINAS	E REMOTE/ Mobile A	Eron.
0800 Arra Dero	I PARTIES INSPECTION CA	en Blain To
MANunly	Remote ROOP Articito	N BEGGI. in PREPARATION
	HILA REMAIN Nº ENTIN	
	ma Art citaked MONOT	
0830 Roof shill be	ANG PROPER FOR REMOVE	:- CHAINS BEING
ATTACHED.		
0900 PRLP FOR R	Emoth is PROGNESSING	
1000 APRA MA	P PASSES INSPECTION	CREW BEGIN
Uph6 Link	BELT CRANE TO PULL	, RODE DOWN INTO
OPG CO.	NTANKA	
10.40 Kennel of	Roy and WATE OUT TO	CONTAINGN is
completor! e	Enen Mayrup Rompining	JOB Ris Mrs UNGN
WAY 24	YERS N- Roly inside con	THIN GN.
1100 PM 9 000	BOWISH Concluder Anal	Afual inspection
APPR fisme	I BALLIGN ARE BROKENZ	Wr. Situal insperse
	20 Sit Ate complying A	puntation,
Technician Signature:	Date of Sign	nature: 4/8/1

Project Monitoring Report for WSP Emerson Power Transmission Small Outdoor Roof 620 South Aurora Street, Ithaca, NY

APPENDIX B

COMPANY/EMPLOYEE LICENSES


PARSONS BRINCKERHOFF

Project Monitoring Report for WSP Emerson Power Transmission Small Outdoor Roof 620 South Aurora Street, Ithaca, NY

	New York State – Department of Labor Division of Safety and Health License and Certificate Unit State Campus, Building 12 Albany, NY 12240
	ASBESTOS HANDLING LICENSE
Parsons Brinckerhoff, Inc. 4139 Oregon Pike Ephrata, PA 17522	FILE NUMBER: 99-1197 LICENSE NUMBER: 28575 LICENSE CLASS: RESTRICTED DATE OF ISSUE: 04/30/2014 EXPIRATION DATE: 04/30/2015
the New York State Codes, Rules and Reg	with applicable provisions of Article 30 of the Labor Law of New York State and of ulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1)
This license has been issued in accordance the New York State Codes, Rules and Reg	with applicable provisions of Article 30 of the Labor Law of New York State and of ulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) aws with regard to the conduct of an asbestos project, or (2) demonstrated lack of
This license has been issued in accordance the New York State Codes, Rules and Reg serious violation of state, federal or local la responsibility in the conduct of any job inv This license is valid only for the contractor asbestos project worksite. This license ver	with applicable provisions of Article 30 of the Labor Law of New York State and of ulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) aws with regard to the conduct of an asbestos project, or (2) demonstrated lack of
This license has been issued in accordance the New York State Codes, Rules and Reg serious violation of state, federal or local la responsibility in the conduct of any job inv This license is valid only for the contractor asbestos project worksite. This license ver State have been issued an Asbestos Certific	with applicable provisions of Article 30 of the Labor Law of New York State and of ulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) aws with regard to the conduct of an asbestos project, or (2) demonstrated lack of volving asbestos or asbestos material.

PARSONS BRINCKERHOFF

Project Monitoring Report for WSP Emerson Power Transmission Small Outdoor Roof 620 South Aurora Street, Ithaca, NY

Appendix E - Waste Characterization Analytical Data Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

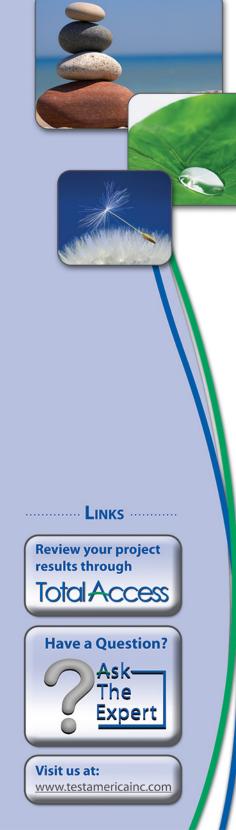
TestAmerica Job ID: 480-77097-1

Client Project/Site: TSCA Concrete Total Metals

Ontario Specialty Contracting, Inc. 333 Ganson St. Buffalo, New York 14203

Attn: Andrew Madden

Authorized for release by: 3/26/2015 5:51:56 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com


Designee for

John Schove, Project Manager II (716)504-9838 john.schove@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

3

Qualifiers

GC Semi VOA	GC S	Semi	I VC)A
-------------	------	------	------	----

GC Semi V	VOA	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	5
Metals		U III
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
		7
Glossary		

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 480-77097-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-77097-1

Comments

No additional comments.

Receipt

The sample was received on 3/24/2015 9:00 AM; the sample arrived in good condition and properly preserved. The temperature of the cooler at receipt was 7.4° C.

Except:

The following samples were received at the laboratory outside the required temperature criteria: EPT_TSCA.Concrete.Total.Metals_2015.03.18 (480-77097-1). There was no cooling media present in the cooler. The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

GC Semi VOA

Method(s) 8082A: The following samples were diluted due to the abundance of target analytes: EPT_TSCA.Concrete.Total.Metals_2015.03.18 (480-77097-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID: 480-77097-1

Client Sample ID:

EPT_TSCA.Concrete.Total.Metals_2015.03.18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	lethod	Prep Type
PCB-1260	77		4.9	2.3	mg/Kg	20	8	082A	Total/NA
Arsenic	4.6		2.1	0.42	mg/Kg	1	6	010C	Total/NA
Barium	56.0		0.52	0.11	mg/Kg	1	6	010C	Total/NA
Cadmium	0.25		0.21	0.031	mg/Kg	1	6	010C	Total/NA
Chromium	19.6		0.52	0.21	mg/Kg	1	6	010C	Total/NA
Lead	36.0		1.0	0.25	mg/Kg	1	6	010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete Total Metals

Client Sample ID:

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

EPT_TSCA.Concrete.Total.Metals_2015.03.18 Date Collected: 03/18/15 14:00 Date Received: 03/24/15 09:00

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Result Qualifier

4.9 U

4.9 U

4.9 U

4.9 U

Lab Sample ID: 480-77097-1

Analyzed

03/25/15 21:09

03/25/15 21:09

03/25/15 21:09

03/25/15 21:09

03/25/15 21:09

03/25/15 21:09

03/25/15 21:09

Analyzed

03/25/15 21:09

03/25/15 21:09

Matrix: Solid

Dil Fac

20

20

20

20

20

20

20

20

20

Dil Fac

8
9

	3

PCB-1248	4.9	U	4.9	0.95	mg/Kg	03/25/15 09:08
PCB-1254	4.9	U	4.9	2.3	mg/Kg	03/25/15 09:08
PCB-1260	77		4.9	2.3	mg/Kg	03/25/15 09:08
Surrogate	%Recovery	Qualifier	Limits			Prepared
Tetrachloro-m-xylene	103		46 - 175			03/25/15 09:08
DCB Decachlorobiphenyl	106		47 _ 176			03/25/15 09:08
Method: 6010C - Metals (ICP)						

RL

4.9

4.9

4.9

4.9

MDL Unit

0.95 mg/Kg

0.95 mg/Kg

0.95 mg/Kg

0.95 mg/Kg

D

Prepared

03/25/15 09:08

03/25/15 09:08

03/25/15 09:08

03/25/15 09:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	4.6		2.1	0.42	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
Barium	56.0		0.52	0.11	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
Cadmium	0.25		0.21	0.031	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
Chromium	19.6		0.52	0.21	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
Lead	36.0		1.0	0.25	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
Selenium	4.2	U	4.2	0.42	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
Silver	0.63	U	0.63	0.21	mg/Kg		03/24/15 14:22	03/25/15 12:48	1	
 Method: 7471A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	0.019	U	0.019	0.0077	mg/Kg		03/25/15 11:35	03/25/15 13:15	1	

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2	103	106	
LCS 480-232116/2-A	Lab Control Sample	129	146	
MB 480-232116/1-A	Method Blank	108	129	
Surrogate Legend				

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-232116/1- Matrix: Solid Analysis Batch: 232270							Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
	MB					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1221	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1232	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1242	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1248	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1254	0.24	U	0.24	0.11	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1260	0.24	U	0.24	0.11	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	108		46 - 175				03/25/15 09:08	03/25/15 19:18	1
DCB Decachlorobiphenyl	129		47 - 176				03/25/15 09:08	03/25/15 19:18	1

Lab Sample ID: LCS 480-232116/2-A
Matrix: Solid
Analysis Batch: 232270

Analysis Batch: 232270							Prep Batch: 232116
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	2.02	2.22		mg/Kg		110	51 - 185
PCB-1260	2.02	2.08		mg/Kg		103	61 - 184

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	129		46 - 175
DCB Decachlorobiphenyl	146		47 - 176

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-23	1976/1-A						Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 232202								Prep Batch:	231976
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	U	2.0	0.40	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
Barium	0.50	U	0.50	0.11	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
Cadmium	0.20	U	0.20	0.030	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
Chromium	0.50	U	0.50	0.20	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
Lead	1.0	U	1.0	0.24	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
Selenium	4.0	U	4.0	0.40	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
Silver	0.60	U	0.60	0.20	mg/Kg		03/24/15 14:22	03/25/15 12:15	1
_ Lab Sample ID: LCSSRM 4	80-231976/2-A					c	lient Sample I	D: Lab Control	Sample
Matrix: Solid								Prep Type: T	otal/NA

Analysis Batch: 232202 Prep Batch: 231976 LCSSRM LCSSRM Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 153 133.6 mg/Kg 87.5 70.9 - 129. 8 90.5 73.7 - 126. Barium 265 239.7 mg/Kg

TestAmerica Buffalo

3

8

Lab Sample ID: LCSSRM 480-231976/2-A Matrix: Solid					Client Sample ID: Lab Control Sample Prep Type: Total/NA				
Analysis Batch: 232202			LCSSRM				Prep Batch: 23197		
	Spike	LCSSRM			%Rec.				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cadmium	154	137.6		mg/Kg		89.5	73.0 - 126.		
							3		
Chromium	118	103.4		mg/Kg		87.4	69.7 - 129.		
							9		
Lead	257	245.4		mg/Kg		95.5	75.6 - 124.		
							8		
Selenium	164	151.5		mg/Kg		92.5	67.3 - 132.		
							1		
Silver	44.8	41.62		mg/Kg		92.9	66.4 - 133.		
							9		

Method: 7471A - Mercury (CVAA)

_													
Lab Sample ID: MB 480-232146/1-A Matrix: Solid							Client Sample ID: Method Blan Prep Type: Total/N						
Analysis Batch: 232210										Prep	Batch	: 232146	
	МВ	MB											
Analyte	Result	Qualifier		RL	MDL	Unit		D	Prepared	Analy	yzed	Dil Fac	
Hg	0.020	U		0.020 0	.0080	mg/Kg		0	3/25/15 11:3	5 03/25/1	5 13:10	1	
Lab Sample ID: LCSSRM 480-232146/2-A								Clie	ent Sampl	e ID: Lab (Control	Sample	
Matrix: Solid										Prep	Type: ⁻	Total/NA	
Analysis Batch: 232210										Prep	Batch	: 232146	
			Spike	LCSSRM	LCSS	SRM				%Rec.			
Analyte			Added	Result	Quali	ifier	Unit		D %Rec	Limits			
Hg			5.76	4.38			mg/Kg		76.0	51.0 - 148.			
										8			

9

Lab Sample ID

GC Semi VOA Prep Batch: 232116

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2015.03.18	Total/NA	Solid	3550C	
LCS 480-232116/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-232116/1-A	Method Blank	Total/NA	Solid	3550C	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
I ah Sample ID	Client Sample ID	Pren Tyne	Matrix	Method	Pron Batch
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2015.03.18	Total/NA	Solid	8082A	232116
LCS 480-232116/2-A	Lab Control Sample	Total/NA	Solid	8082A	232116
MB 480-232116/1-A	Method Blank	Total/NA	Solid	8082A	232116

Metals

Prep Batch: 231976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2015.03.18	Total/NA	Solid	3050B		
LCSSRM 480-231976/2-A	Lab Control Sample	Total/NA	Solid	3050B		
MB 480-231976/1-A	Method Blank	Total/NA	Solid	3050B		
Prep Batch: 232146						
_						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
Lab Sample ID 480-77097-1	Client Sample ID EPT_TSCA.Concrete.Total.Metals_2015.03.18	Prep Type Total/NA	Matrix Solid	Method 7471A	Prep Batch	
· · · · · · · · · · · · · · · · · · ·					Prep Batch	

Analysis Batch: 232202

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2015.03.18	Total/NA	Solid	6010C	231976
LCSSRM 480-231976/2-A	Lab Control Sample	Total/NA	Solid	6010C	231976
MB 480-231976/1-A	Method Blank	Total/NA	Solid	6010C	231976

Analysis Batch: 232210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2015.03.18	Total/NA	Solid	7471A	232146
LCSSRM 480-232146/2-A	Lab Control Sample	Total/NA	Solid	7471A	232146
MB 480-232146/1-A	Method Blank	Total/NA	Solid	7471A	232146

Lab Sample ID: 480-77097-1

Matrix: Solid

Client Sample ID:

EPT_TSCA.Concrete.Total.Metals_2015.03.18 Date Collected: 03/18/15 14:00 Date Received: 03/24/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			232116	03/25/15 09:08	RJS	TAL BUF
Total/NA	Analysis	8082A		20	232270	03/25/15 21:09	KS	TAL BUF
Total/NA	Prep	3050B			231976	03/24/15 14:22	TAS	TAL BUF
Total/NA	Analysis	6010C		1	232202	03/25/15 12:48	LMH	TAL BUF
Total/NA	Prep	7471A			232146	03/25/15 11:35	LRK	TAL BUF
Total/NA	Analysis	7471A		1	232210	03/25/15 13:15	LRK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete Total Metals

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-15 *
The following analytes	are included in this report, bu	t certification is not off	ered by the governing a	authority:	
The following analytes Analysis Method	are included in this report, bu Prep Method	t certification is not off Matrix	ered by the governing a Analy		

* Certification renewal pending - certification considered valid.

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete Total Metals

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471A	Mercury (CVAA)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete Total Metals

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-77097-1	EPT_TSCA.Concrete.Total.Metals_2015.03.18	Solid	03/18/15 14:00 03/24/15 09:00

Buffalo	a
umerica	wood Driv
estA	Нате
<u>ل</u>	C

Chain of Custody Record

Testamerica The leader in environmental testing

phone 716.504.9852 fax 716.691.7991													T	TestAmerica Laboratories, Inc.	tories, Inc.	
Client Contact	Project Manager: Schove, John	sr: Schov	e, John		Site	Site Contact: Andrew Madden	Andrew	Madden		Date: 3/18/2015	8/2015		0	COC No: 296983		-
Ontario Specialty Contracting Inc.	Tel/Fax: (716) 912-9926	12-9926			Lab	Lab Contact: Schove, John	Schove,	John		Carrier:			7	<u>1 of 1 COCs</u>		-
333 Ganson Street Buffaio, NY, 14203	Ana	ysis Turr	Analysis Turnaround Time	lime									ř	Job No.		
² hone: 716-856-3333	Calendar (C) or Work Days (W)	or Work	Days (W)	M											5	
]	Т		4					-				l	077	()	-
-O# 55888 Client Job# 15007 Project Name: EPT tithaca NY	3	AS	ASAP	1.8U				·			·		<u>0</u>	SDG No.		
ampling Event TSCA Concrete Total Metals Site: Emerson Power Transmission Plant	Fastest t Bill ba	urn arour sed on pe	astest turn around possible please. Bill based on performed TAT.	: please. AT.												الكردة المتساخية فعا
Sample Identification	Sample Sa Date T	e e	Sample Type	# of Matrix Cont.		TOTALS RCRA 8 Mets 8082A - TCL PCB3 - 01	<u>******</u>							Sample Specific Notes	c Notes:	**************************************
EPT_TSCA.Concrete.Total.Metals_2015.03.18		14:00	11	CONC 1	Z											-
																-
																-
													 ,			-
																-
																-
			රී	Container Volume (oz)	me (oz)	4				ļ	480-77	097 Cha	480-77097 Chain of Custody	tody		-
reservatiou: 1= Icc 2= HCI (Hydrochloric) 3= H2SO4 (Sulfuric) 4=HNO3 (Nitric) 5=NaOH	(Nitric) 5=NaOH (Sodium H	(Sodium Hydroxide) 6=Other	6=Other	and the second second	1-G					ĪĪ		1.1.			-
ossible Hazard Identification	Doison B	X Unknown	имонуи			ample D	le Disposal (A f Retum To Client	(A fee I lient	nay be	e assessed if sa Disposal By Lab	1 if samp . Sy Lab	les are re	retained lo Archive For	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)		
ipecial Instructions/QC Requirements & Comments:																
container Code: A=Amber G=Glass	a T=Tedlar V=Vi	- Te														-
celinquisheddy:		. 1		Date/Time/ 3/77/11	200	Received by:		lul 1			Company	Sel	Ω	Date/Time: J.Y.Pn.M2. (J. C	0200	
telinquished by:	Company:			Date/Tithe:	<u>, 14</u>	Received by	كأور				Company:		Δ	Date/Time:		
elinquished by:	Company:		<u> </u>	Date/Time:		Received by:					Company:			Date/Time:		
									5	J		N		R A	- 	

14

Client: Ontario Specialty Contracting, Inc.

Login Number: 77097 List Number: 1 Creator: Kinecki, Kenneth P

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	False	Sample date 3/18/15, rec'd 3/24/15
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-77097-1 SDG Number:

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-77100-1

Client Project/Site: TSCA Concrete TCLP Metals

For:

Ontario Specialty Contracting, Inc. 333 Ganson St. Buffalo, New York 14203

Attn: Andrew Madden

Authorized for release by: 3/26/2015 5:04:08 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

John Schove, Project Manager II (716)504-9838 john.schove@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

Definitions/Glossary

Qualifiers

Qualifiers		3
Metals		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	5
В	Compound was found in the blank and sample.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary

Metals		Λ
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	5
В	Compound was found in the blank and sample.	3
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	
CFL	Contains Free Liquid	9
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	10
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	11
DLC	Decision level concentration	
MDA	Minimum detectable activity	12
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	13
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	11
NC	Not Calculated	14
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-77100-1

Comments

No additional comments.

Receipt

The sample was received on 3/24/2015 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 7.4° C.

Except:

The following samples were received at the laboratory outside the required temperature criteria: . There was no cooling media present in the cooler. The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

Metals

Method(s) 6010C: The TCLP leachate blank, LB 480-231967 for batch 480-232114 contained barium above the reporting limit (RL). Associated sample(s) EPT_TSCA.Concrete.TCLP.Metals_2015.03.18 (480-77100-1) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the TCLP leachate blank.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 1311: Due to the sample matrix and associated reaction to the extraction fluid, the laboratory was unable to perform the leaching procedure with the required 100g for the following sample: EPT_TSCA.Concrete.TCLP.Metals_2015.03.18 (480-77100-1). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Lab Sample ID: 480-77100-1

Client Sample ID:

EPT_TSCA.Concrete.TCLP.Metals_2015.03.18

ſ	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Barium	0.29	В	0.0020	0.00070	mg/L	1	_	6010C	TCLP
	Chromium	0.0080		0.0040	0.0010	mg/L	1		6010C	TCLP
	Lead	0.0081	J	0.010	0.0030	mg/L	1		6010C	TCLP

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

RL

0.015

0.0020

0.0020

0.0040

0.010

0.025

0.0060

RL

0.00020

MDL Unit

0.0056 mg/L

0.00070 mg/L

0.00050 mg/L

0.0010 mg/L

0.0030 mg/L

0.0087 mg/L

0.0017 mg/L

MDL Unit

0.00012 mg/L

D

D

Prepared

03/25/15 09:22

03/25/15 09:22

03/25/15 09:22

03/25/15 09:22

03/25/15 09:22

03/25/15 09:22

03/25/15 09:22

Prepared

03/25/15 10:00

Method: 6010C - Metals (ICP) - TCLP

Method: 7470A - TCLP Mercury - TCLP

Client Sample ID:

Analyte

Arsenic

Barium

Cadmium

Selenium

Lead

Silver

Analyte

Mercury

Chromium

EPT_TSCA.Concrete.TCLP.Metals_2015.03.18 Date Collected: 03/18/15 14:00 Date Received: 03/24/15 09:00

Result Qualifier

0.015 U

0.29 B

0.0020 U

0.0081 J

0.025 U

Result Qualifier

0.0060 U

0.00020 U

0.0080

Lab Sample ID: 480-77100-1

Analyzed

03/26/15 13:04

03/26/15 13:04

03/26/15 13:04

03/26/15 13:04

03/26/15 13:04

03/26/15 13:04

03/26/15 13:04

Analyzed

03/25/15 13:27

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

6

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-232114/2-A Matrix: Solid

Analysis Batch: 232471

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.015	U	0.015	0.0056	mg/L		03/25/15 09:22	03/26/15 12:59	1
Barium	0.0020	U	0.0020	0.00070	mg/L		03/25/15 09:22	03/26/15 12:59	1
Cadmium	0.0020	U	0.0020	0.00050	mg/L		03/25/15 09:22	03/26/15 12:59	1
Chromium	0.0040	U	0.0040	0.0010	mg/L		03/25/15 09:22	03/26/15 12:59	1
Lead	0.010	U	0.010	0.0030	mg/L		03/25/15 09:22	03/26/15 12:59	1
Selenium	0.025	U	0.025	0.0087	mg/L		03/25/15 09:22	03/26/15 12:59	1
Silver	0.0060	U	0.0060	0.0017	mg/L		03/25/15 09:22	03/26/15 12:59	1

Lab Sample ID: LCS 480-232114/3-A Matrix: Solid

Analysis Batch: 232471

Prep Batch: 232114 Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit %Rec Limits D Arsenic 0.996 1.00 mg/L 100 80 - 120 Barium 1.00 0.963 mg/L 96 80 - 120 Cadmium 1.00 0.959 80 - 120 mg/L 96 Chromium 1.00 0.994 99 80 - 120 mg/L Lead 1.00 0.946 mg/L 95 80 - 120 Selenium 1.00 1.06 mg/L 106 80 - 120 Silver 80 - 120 1.00 0.962 mg/L 96

Lab Sample ID: LB 480-231967/1-B Matrix: Solid

Analysis Batch: 232471

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.015	U	0.015	0.0056	mg/L		03/25/15 09:22	03/26/15 12:56	1
Barium	0.0154		0.0020	0.00070	mg/L		03/25/15 09:22	03/26/15 12:56	1
Cadmium	0.0020	U	0.0020	0.00050	mg/L		03/25/15 09:22	03/26/15 12:56	1
Chromium	0.0040	U	0.0040	0.0010	mg/L		03/25/15 09:22	03/26/15 12:56	1
Lead	0.010	U	0.010	0.0030	mg/L		03/25/15 09:22	03/26/15 12:56	1
Selenium	0.025	U	0.025	0.0087	mg/L		03/25/15 09:22	03/26/15 12:56	1
Silver	0.0060	U	0.0060	0.0017	mg/L		03/25/15 09:22	03/26/15 12:56	1

Lab Sample ID: 480-77100-1 MS Matrix: Solid Analysis Batch: 232471

Client Sample ID: EPT_TSCA.Concrete.TCLP.Metals_2015.03.18 Prep Type: TCLP

Prep Batch: 232114

Analysis Datch. 23247 1									г ер і	Jaton. 232114
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.015	U	1.00	1.15		mg/L		115	75 _ 125	
Barium	0.29	В	1.00	1.27		mg/L		98	75 ₋ 125	
Cadmium	0.0020	U	1.00	1.07		mg/L		107	75 _ 125	
Chromium	0.0080		1.00	0.935		mg/L		93	75 _ 125	
Lead	0.0081	J	1.00	1.00		mg/L		99	75 - 125	
Selenium	0.025	U	1.00	1.20		mg/L		120	75 ₋ 125	
Silver	0.0060	U	1.00	1.11		mg/L		111	75 - 125	

TestAmerica Buffalo

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 232114

Prep Type: Total/NA Prep Batch: 232114

Prep Type: Total/NA

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-77100-1 MSD Matrix: Solid				Client	Sample I	D: EPT_T	SCA.C	oncrete.	TCLP.Meta Pre	ls_2015 p Type:	
Analysis Batch: 232471									Prep I	Batch: 2	32114
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.015	U	1.00	1.13		mg/L		113	75 - 125	1	20
Barium	0.29	В	1.00	1.27		mg/L		98	75 - 125	0	20
Cadmium	0.0020	U	1.00	1.05		mg/L		105	75 ₋ 125	2	20
Chromium	0.0080		1.00	0.929		mg/L		92	75 _ 125	1	20
Lead	0.0081	J	1.00	1.00		mg/L		99	75 - 125	0	20
Selenium	0.025	U	1.00	1.19		mg/L		119	75 _ 125	1	20
Silver	0.0060	U	1.00	1.09		mg/L		109	75 - 125	2	20

Method: 7470A - TCLP Mercury

Mercury

Lab Sample ID: MB 480-232138/2-4	\										Client Sa	ample ID:	Method	l Blank
Matrix: Solid												Prep T	ype: To	otal/NA
Analysis Batch: 232206												Prep I	Batch: 2	232138
		MB ME	3											
Analyte	R	esult Qu	alifier	R	L	MDL	Unit		D	Ρ	repared	Analyz		Dil Fac
Mercury	0.0	0020 U		0.0002	0 0.0	0012	mg/L			03/2	5/15 10:00	03/25/15	13:23	
Lab Sample ID: LCS 480-232138/3-	A								CI	lient	Sample	ID: Lab Co	ontrol S	Sample
Matrix: Solid												Prep T	ype: To	otal/NA
Analysis Batch: 232206												Prep I	Batch: 2	232138
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Mercury				0.00668	0.00567			mg/L			85	80 - 120		
_ Lab Sample ID: LB 480-231967/1-C	;										Client Sa	ample ID:	Method	l Blank
Matrix: Solid												Pre	р Туре	: TCLF
Analysis Batch: 232206												Prep I	Batch: 2	232138
		LB LB	6											
Analyte	R	esult Qu	alifier	R	L	MDL	Unit		D	Ρ	repared	Analyz	ed	Dil Fac
Mercury	0.0	0020 U		0.0002	0 0.0	0012	mg/L			03/2	5/15 10:00	03/25/15	13:22	
Lab Sample ID: 480-77100-1 MS					Client	Sam	iple IC	: EPT_	_TSC	A.Co	oncrete.1	CLP.Meta	ls_201	5.03.18
Matrix: Solid												Pre	p Type	: TCLF
Analysis Batch: 232206												Prep I	Batch: 2	232138
	Sample	Sample		Spike	MS	MS						%Rec.		
Analyte	Result	Qualifie	r	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Mercury	0.00020	U		0.00668	0.00582			mg/L			87	80 - 120		
Lab Sample ID: 480-77100-1 MSD					Client	Sam	ple IC	: EPT_	TSC	A.Co	oncrete.1	CLP.Meta	ls_201	5.03.18
Matrix: Solid												Pre	р Туре	: TCLF
Analysia Rataby 222206												Prep I	Batch: 2	232138
Analysis Batch: 232206														
Analysis Balch. 232200	Sample	Sample		Spike	MSD	MSD)					%Rec.		RPD
Analyte	•	Sample Qualifie	r	Spike Added	MSD Result			Unit		D	%Rec	%Rec. Limits	RPD	RPC Limi

TestAmerica Buffalo

1

20

86

80 - 120

0.00575

mg/L

0.00668

0.00020 U

8 9 10 11 12 13 14

Metals
Leach Batch: 231967

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
480-77100-1	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	1311	
480-77100-1 MS	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	1311	
80-77100-1 MSD	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	1311	
B 480-231967/1-B	Method Blank	TCLP	Solid	1311	
_B 480-231967/1-C	Method Blank	TCLP	Solid	1311	
rep Batch: 232114					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
480-77100-1	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	3010A	2319
480-77100-1 MS	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	3010A	2319
480-77100-1 MSD	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	3010A	2319
B 480-231967/1-B	Method Blank	TCLP	Solid	3010A	2319
_CS 480-232114/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-232114/2-A	Method Blank	Total/NA	Solid	3010A	
rep Batch: 232138					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bat
480-77100-1	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	7470A	2319
480-77100-1 MS	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	7470A	2319
480-77100-1 MSD	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	7470A	2319
_B 480-231967/1-C	Method Blank	TCLP	Solid	7470A	2319
LCS 480-232138/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-232138/2-A	Method Blank	Total/NA	Solid	7470A	
nalysis Batch: 23220	6				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bat
480-77100-1	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	7470A	2321
480-77100-1 MS	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	7470A	2321
480-77100-1 MSD	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	7470A	2321
_B 480-231967/1-C	Method Blank	TCLP	Solid	7470A	2321
LCS 480-232138/3-A	Lab Control Sample	Total/NA	Solid	7470A	2321
MB 480-232138/2-A	Method Blank	Total/NA	Solid	7470A	2321
nalysis Batch: 23247	1				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bat
480-77100-1	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	6010C	2321
480-77100-1 MS	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	6010C	2321
480-77100-1 MSD	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	TCLP	Solid	6010C	2321
_B 480-231967/1-B	Method Blank	TCLP	Solid	6010C	2321
LCS 480-232114/3-A	Lab Control Sample	Total/NA	Solid	6010C	2321
MB 480-232114/2-A	Method Blank	Total/NA	Solid	6010C	2321

Lab Sample ID: 480-77100-1

Matrix: Solid

Client Sample ID:

EPT_TSCA.Concrete.TCLP.Metals_2015.03.18 Date Collected: 03/18/15 14:00 Date Received: 03/24/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			231967	03/24/15 14:03	JLS	TAL BUF
TCLP	Prep	3010A			232114	03/25/15 09:22	KJ1	TAL BUF
TCLP	Analysis	6010C		1	232471	03/26/15 13:04	AMH	TAL BUF
TCLP	Leach	1311			231967	03/24/15 14:03	JLS	TAL BUF
TCLP	Prep	7470A			232138	03/25/15 10:00	LRK	TAL BUF
TCLP	Analysis	7470A		1	232206	03/25/15 13:27	LRK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete TCLP Metals

10

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

thority	Program		EPA Region	Certification ID	Expiration Date
w York	NELAP		2	10026	03-31-15 *
The following analytes	are included in this report bu	t certification is not off	ared by the governing :	authority:	
The following analytes	are included in this report, bu	t certification is not off	ered by the governing a	authority:	
The following analytes Analysis Method	are included in this report, bu Prep Method	t certification is not off Matrix	ered by the governing a Analy	-	

* Certification renewal	pending -	certification	considered	valid.
-------------------------	-----------	---------------	------------	--------

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete TCLP Metals

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7470A	TCLP Mercury	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: TSCA Concrete TCLP Metals

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-77100-1	EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	Solid	03/18/15 14:00	03/24/15 09:00

Buffalo	Ð
TestAmerica	10 Hazelwood Drive

Chain of Custody Record

Amherst, NY 14228 phone 716.504.9852 fax 716.691.7991					TestAmerica Laboratories, Inc.
Chient Contact	Project Manager: Schove, John	hn	Site Contact: Andrew Madden	Date: 3/18/2015	COC No: 296984
Ontario Specialty Contracting Inc.	Tel/Fax: (716) 912-9926		Lab Contact: Schove, John	Carrier:	I of I COCs
333 Ganson Street Buffalo, NY, 14203	Analysis Turnaround Time	und Time			Job No.
Phone: 716-856-3333	Calendar (C) or Work Days (W)	s (W) W			くじてた
Fax: 716-842-1630	TAT				0000
PO# 55888 Client Job# 15007	IX ASAP	261			SDG No.
Project Name: EPT Ithaca NY	1	ン > 、			
Sampling Event: TSCA Concrete TCLP Metals	Fastest turn around possible please.	ssible please.			
Site: Emerson Power Transmission Plant	Bill based on performed TAT.	ned TAT.			
Sample Identification	Sample Sample Sample Date Time Type	ple Matrix Cont.	TCLP RCRA 8 Metals		Sample Specific Notes:
EPT_TSCA.Concrete.TCLP.Metals_2015.03.18	14:00	1	N 1		
			-		
		Container Volume (oz)	8 (zo)	480-77100 Chain of Custody	ain of Custody
Preservation: 1= Ice 2= HCl (Hydrochloric) 3= H2SO4 (Sulfuric) 4=HNO3 (Nitric) 5=NaOH	03 (Nitric) 5=NaOH (Sodium Hydroxide) 6=Other	tide) 6=Other			
Possible Hazard Identification Possible Hazard Elammable Skin irritant	Poison B X Unknown	им	Sample Disposal (A fee may b	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	longer than 1 month) For
s/QC Requirements & Comme					
Container Code: A=≜ an ter G=Glass P=PótyPlastic S=Summa T=Tedlar V=Vial	ma T=Tedlar V=Vial				
Retinquished by: Call Sha	Company	Date/Time:/ 3/27//5	Received by:	Commention	Date/Time: 24/MMP45 0700
Relinquished by:	Company:	Date/Titte:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
			2. H. C	m (te	L L
			· - 1 1	- - - - - - -	
			- 2 3 4		

Client: Ontario Specialty Contracting, Inc.

Login Number: 77100 List Number: 1 Creator: Kinecki, Kenneth P

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	False	Sampled 3/18, rec'd 3/24
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-77100-1

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-77102-1 Client Project/Site: PCB Wood & Wipe

For: Ontario Specialty Contracting, Inc. 333 Ganson St. Buffalo, New York 14203

Attn: Andrew Madden

Authorized for release by: 3/26/2015 5:55:22 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

John Schove, Project Manager II (716)504-9838 john.schove@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

3

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossary

Quaimer	Quarmer Description	
U	Indicates the analyte was analyzed for but not detected.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	13
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-77102-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-77102-1

Comments

No additional comments.

Receipt

The samples were received on 3/24/2015 9:00 AM; the samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was 7.4° C.

Except:

The following samples were received at the laboratory outside the required temperature criteria: EPT_Wood_2015.03.18 (480-77102-1). There was no cooling media present in the cooler. The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following sample was composited by the laboratory on 3/25/15 as requested on the chain-of-custody: EPT_Wipe_2015.03.18 (480-77102-2).

Method(s) 3550C: Due to the matrix, the following samples could not be extracted using the final method required volume: EPT_Wood_2015.03.18 (480-77102-1). The reporting limits (RLs) are elevated proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 480-77102-1

Client: Ontario Specialty Contracting, Inc. Project/Site: PCB Wood & Wipe

Lab Sample ID: 480-77102-1

Lab Sample ID: 480-77102-2

1 2 3 4 5 6 7 8 9 10 11 12 13

Client Sample ID: EPT_Wood_2015.03.18

No Detections.

Client Sample ID: EPT_Wipe_2015.03.18

No Detections.

Client Sample ID: EPT_Wood_2015.03.18

TestAmerica Job ID: 480-77102-1

Lab Sample ID: 480-77102-1 Matrix: Solid

Date Collected: 03/18/15 14:30 Date Received: 03/24/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.36	U	0.36	0.070	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
PCB-1221	0.36	U	0.36	0.070	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
PCB-1232	0.36	U	0.36	0.070	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
PCB-1242	0.36	U	0.36	0.070	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
PCB-1248	0.36	U	0.36	0.070	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
PCB-1254	0.36	U	0.36	0.17	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
PCB-1260	0.36	U	0.36	0.17	mg/Kg		03/25/15 09:08	03/25/15 20:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	83		46 _ 175				03/25/15 09:08	03/25/15 20:37	1
DCB Decachlorobiphenyl	99		47 - 176				03/25/15 09:08	03/25/15 20:37	1

Client Sample ID: EPT_Wipe_2015.03.18

TestAmerica Job ID: 480-77102-1

Lab Sample ID: 480-77102-2 е

Date Collected: 03/18/15 15:00 Date Received: 03/24/15 09:00

Matrix: V	Ni	р
-----------	----	---

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
PCB-1221	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
PCB-1232	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
PCB-1242	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
PCB-1248	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
PCB-1254	1.0	U	1.0	0.25	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
PCB-1260	1.0	U	1.0	0.25	ug/Wipe		03/25/15 09:01	03/25/15 16:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		57 _ 173				03/25/15 09:01	03/25/15 16:41	1
DCB Decachlorobiphenyl	119		59 - 171				03/25/15 09:01	03/25/15 16:41	1

5 6 7

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Aatrix: Solid				Prep Type: Total/NA
-				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-77102-1	EPT_Wood_2015.03.18	83	99	
LCS 480-232116/2-A	Lab Control Sample	129	146	
MB 480-232116/1-A	Method Blank	108	129	
Surrogate Legend				
TCX = Tetrachloro-m-xy	ylene			

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Wipe

Matrix: Wipe				Prep Type: Total/NA	
				Percent Surrogate Recovery (Acceptance Limits)	
		TCX2	DCB2		
Lab Sample ID	Client Sample ID	(57-173)	(59-171)		
480-77102-2	EPT_Wipe_2015.03.18	92	119		
LCS 480-232115/2-A	Lab Control Sample	97	138		
LCSD 480-232115/3-A	Lab Control Sample Dup	91	132		
MB 480-232115/1-A	Method Blank	99	129		
Surrogate Legend					
TCX = Tetrachloro-m-xy	lene				
DCB = DCB Decachloro	biphenyl				

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 232116

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-2321 Matrix: Wipe Analysis Batch: 232126		MD					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<u></u> 1.0		1.0		ug/Wipe		03/25/15 09:01	03/25/15 15:57	1
PCB-1221	1.0		1.0		ug/Wipe		03/25/15 09:01	03/25/15 15:57	1
PCB-1232	1.0	U	1.0		ug/Wipe		03/25/15 09:01	03/25/15 15:57	1
PCB-1242	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 15:57	
PCB-1248	1.0	U	1.0	0.18	ug/Wipe		03/25/15 09:01	03/25/15 15:57	1
PCB-1254	1.0	U	1.0	0.25	ug/Wipe		03/25/15 09:01	03/25/15 15:57	1
PCB-1260	1.0	U	1.0	0.25	ug/Wipe		03/25/15 09:01	03/25/15 15:57	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tatrachlara myulana			E7 170				02/25/15 00:01	02/25/15 15:57	

	,,				· · · · · · · · · · · · · · · · · · ·		
Tetrachloro-m-xylene	99	5	57 - 173	03/25/15 09:01	03/25/15 15:57	1	
DCB Decachlorobiphenyl	129	5	59 - 171	03/25/15 09:01	03/25/15 15:57	1	

Lab Sample ID: LCS 480-232115/2-A Matrix: Wipe Analysis Batch: 232126

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier U	Jnit D	%Rec	Limits	
PCB-1016	20.0	22.0	u	ug/Wipe	110	54 - 182	 -
PCB-1260	20.0	24.9	u	ug/Wipe	124	53 - 187	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	97		57 - 173
DCB Decachlorobiphenyl	138		59 - 171

Lab Sample ID: LCSD 480-232115/3-A Matrix: Wipe

Ana	lvsis	Batch:	232126

Analysis Batch: 232126								Prep E	Batch: 2	32115
-		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016		20.0	20.7		ug/Wipe		103	54 _ 182	6	50
PCB-1260		20.0	23.1		ug/Wipe		116	53 - 187	7	50
	LCSD LCSD									

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	91		57 - 173
DCB Decachlorobiphenyl	132		59 - 171

Lab Sample ID: MB 480-232116/1-A Matrix: Solid Analysis Batch: 232270

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1221	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1232	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1242	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1248	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1254	0.24	U	0.24	0.11	mg/Kg		03/25/15 09:08	03/25/15 19:18	1

TestAmerica Buffalo

Prep Type: Total/NA Prep Batch: 232115

5 6 7

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid	A									Client Sa	Imple ID: Metho Prep Type: 1	
Analysis Batch: 232270											Prep Batch	
	N	IB MB										
Analyte	Res	ult Qualifier	RL	r	MDL	Unit		D	Р	repared	Analyzed	Dil Fac
PCB-1260	0.2	24 U	0.24	(0.11	mg/Kg		_	03/2	25/15 09:08	03/25/15 19:18	1
	N	IB MB										
Surrogate	%Recove	ry Qualifier	Limits						Р	repared	Analyzed	Dil Fac
Tetrachloro-m-xylene	1	08	46 - 175						03/2	25/15 09:08	03/25/15 19:18	1
DCB Decachlorobiphenyl	1.	29	47 - 176						03/2	25/15 09:08	03/25/15 19:18	1
	2-A							С	lient	Sample	ID: Lab Control	
Matrix: Solid	2-A		Spike	LCS	LCS			С	lient	t Sample	ID: Lab Control Prep Type: 1 Prep Batch %Rec.	Total/NA
Matrix: Solid Analysis Batch: 232270	2- A		Spike Added	LCS Result		ifier	Unit	С	lient D	Sample %Rec	Prep Type: 1 Prep Batch	Total/NA
Matrix: Solid Analysis Batch: 232270 Analyte	2- A		•			ifier	Unit mg/Kg	C			Prep Type: 1 Prep Batch %Rec.	Total/NA
Matrix: Solid Analysis Batch: 232270 Analyte PCB-1016	- A		Added	Result		ifier		C		%Rec	Prep Type: 7 Prep Batch %Rec. Limits	Total/NA
Matrix: Solid Analysis Batch: 232270 Analyte PCB-1016	A		Added	Result 2.22		ifier	mg/Kg	С 		%Rec	Prep Type: 1 Prep Batch %Rec. Limits 51 - 185	Total/NA
Matrix: Solid Analysis Batch: 232270 Analyte PCB-1016 PCB-1260			Added	Result 2.22		ifier	mg/Kg	С		%Rec	Prep Type: 1 Prep Batch %Rec. Limits 51 - 185	Total/NA
Lab Sample ID: LCS 480-232116/2 Matrix: Solid Analysis Batch: 232270 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene			Added 2.02 2.02	Result 2.22		ifier	mg/Kg	с 		%Rec	Prep Type: 1 Prep Batch %Rec. Limits 51 - 185	Total/NA

GC Semi VOA

Prep Batch: 232115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77102-2	EPT_Wipe_2015.03.18	Total/NA	Wipe	3550C	
_CS 480-232115/2-A	Lab Control Sample	Total/NA	Wipe	3550C	
.CSD 480-232115/3-A	Lab Control Sample Dup	Total/NA	Wipe	3550C	
MB 480-232115/1-A	Method Blank	Total/NA	Wipe	3550C	
rep Batch: 232116					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77102-1	EPT_Wood_2015.03.18	Total/NA	Solid	3550C	
LCS 480-232116/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-232116/1-A	Method Blank	Total/NA	Solid	3550C	
nalysis Batch: 232126	6				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77102-2	EPT_Wipe_2015.03.18	Total/NA	Wipe	8082A	232115
LCS 480-232115/2-A	Lab Control Sample	Total/NA	Wipe	8082A	232115
LCSD 480-232115/3-A	Lab Control Sample Dup	Total/NA	Wipe	8082A	232115
MB 480-232115/1-A	Method Blank	Total/NA	Wipe	8082A	232115
nalysis Batch: 23227(D				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77102-1	EPT_Wood_2015.03.18	Total/NA	Solid	8082A	232116
100 11 102 1					
LCS 480-232116/2-A	Lab Control Sample	Total/NA	Solid	8082A	232116

Dilution

Factor

Dilution

Factor

1

1

Run

Run

Batch

Number

232116

232270

Batch

Number

232115

232126

Prepared

or Analyzed

03/25/15 09:08

03/25/15 20:37

Prepared

or Analyzed

03/25/15 09:01

03/25/15 16:41

Analyst

Analyst

RJS

KS

RJS

KS

Lab

Lab

TAL BUF

TAL BUF

TAL BUF

TAL BUF

Date Collected: 03/18/15 14:30

Date Received: 03/24/15 09:00

Date Collected: 03/18/15 15:00

Date Received: 03/24/15 09:00

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Client Sample ID: EPT_Wood_2015.03.18

Batch

Туре

Prep

Analysis

Client Sample ID: EPT_Wipe_2015.03.18

Batch

Туре

Prep

Analysis

Batch

Method

3550C

8082A

Batch

Method

3550C

8082A

Lab Sample ID: 480-77102-1

Lab Sample ID: 480-77102-2

Matrix: Solid

Matrix: Wipe

2 3 4 5 6 7 8 9 10

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: PCB Wood & Wipe

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority Program			EPA Regior	n Certification ID	Expiration Date	
New York	NELAP		2	10026	03-31-15 *	
Analysis Method	Prep Method	Matrix	An	alyte		

* Certification renewal pending - certification considered valid.

Client: Ontario Specialty Contracting, Inc. Project/Site: PCB Wood & Wipe

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: Ontario Spe Project/Site: PCB V	cialty Contracting, Inc. Vood & Wipe		TestAmerica Job ID: 48						
				3					
Lab Sample ID 480-77102-1	Client Sample ID EPT_Wood_2015.03.18	Matrix Solid	Collected 03/18/15 14:30	Received 03/24/15 09:00					
480-77102-2	EPT_Wipe_2015.03.18	Wipe	03/18/15 15:00	03/24/15 09:00					
	pooo								
				5					
				3					
				9					
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
				1					

tAmerica Buffalo	azelwood Drive
TestA	10 Hazely

Chain of Custody Record



	fax 716.691.79
Amherst, NY 14228	phone 716.504.9852

2010 2010 2010 2010 2010 2010 2010 2010					$\left  \right $						TestAmerica Laboratories, Inc.	[
Client Contact	Project Ma		ove, John		Site	Site Contact: Andrew Madden	Irew Madder		Date: 3/18/2015		COC No: 296983099	
Ontario Specialty Contracting Inc.	Tel/Fax: (7	16) 912-9926	6		Lab	Lab Contact: Schove, John	tove, John	Cai	Carrier:		1 of 1 COCs	
333 Ganson Street Buffalo, NY, 14203		Analysis Turnaround Time	rnaround	Time	<b>操</b> 罪						Job No.	
Phone: 716-856-3333	Calendar	(C) or Work Days (W)	k Days (W	M (							21122	
⁻ ax: 716-842-1630	-		TAT									_
PO# 55888 Client Job# 15007 Project Name: EPT tthaca NY		4	ASAP	587							SDG No.	
Sampling Event: PCB Wood & Wipe Site: Emerson Power Transmission Plant	B	Fastest turn around possible please. Bill based on performed TAT.	md possibl	e please. IAT.		7'+014/						
Samole Identification	Sample Date	Sample Time	Sample Type	Matrix Co	0 # بېت ئالډىدمانكىسماق	10 - \$8034 ' 10.1 - YZ808		<u></u>			Samule Snecific Note:	
EPT_Wood_2015.03.18	3/18/15	14:30	U		1							1
EPT_Wipe_2015.03.18	3/18/15	15:00	c	Wipe	Z E	3					Please composite the 3 wipes for one resultant sample.	
							-					
					-							
							-					
									480-77102 Chain of Custoch	Chain of Cu		
			0	Container Volume (oz)		4					study	
0 reservation: 1= Ice 2= HCl (Hydrochloric) 3= H2SO4 (Sulfuric) 4=HNO3 (Nitric) 5=NaOH (Sodium Hydroxide) 6=Other	3 (Nitric) 5=Na	OH (Sodium	Hydroxide)	6=Other		ů P						
Possible Hazard Identification	Poison B	×	Unknown			ample Disp	<b>le Disposal ( A fee</b> Return To Client	may be ass	e <b>assessed if samples</b> Disposal Bv Lab	are retained lo	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	
s/QC Requirements & Comme												
Container Code: A=Amber G=द्वींबऽड्र/P=PolyPlastic S=Summa T=Tedlar V=Vial	a T=Tedlar \	/=Vial					đ					
telinquisted by Carl	Company:			Date/Time:	16 S	Received by:	1111-1		Company		Date/Time: 34 M/PC 15 09:00	
kelinquished by:	Company:			Date/Time:	<u> </u>	Received by:			Company:		Date/Time:	
celinquished by:	Company:			Date/Time:		Received by:	-		Company:		Date/Time:	T
							Ct	L'C	22	Ψ,	い井	

14

Client: Ontario Specialty Contracting, Inc.

#### Login Number: 77102 List Number: 1 Creator: Kinecki, Kenneth P

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	False	Sampled 3/18, rec'd 3/24
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-77102-1

List Source: TestAmerica Buffalo



THE LEADER IN ENVIRONMENTAL TESTING

## **ANALYTICAL REPORT**

#### TestAmerica Laboratories, Inc.

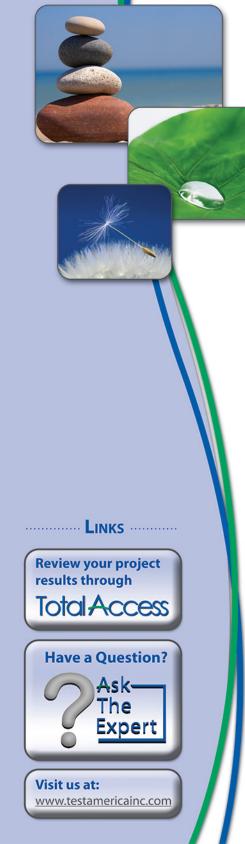
TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

#### TestAmerica Job ID: 480-77104-1 Client Project/Site: Non TSCA Waste

For: Ontario Specialty Contracting, Inc. 333 Ganson St. Buffalo, New York 14203

Attn: Andrew Madden

Authorized for release by: 4/1/2015 11:40:58 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com


Designee for

John Schove, Project Manager II (716)504-9838 john.schove@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	10
QC Association Summary	19
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

## Qualifiers

GC	/MS	VOA
----	-----	-----

GC/MS VO	A	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	 5
GC/MS Sen	ni VOA	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi V	ΟΑ	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	 8
F1	MS and/or MSD Recovery exceeds the control limits	
Metals		9
Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery exceeds the control limits	
U	Indicates the analyte was analyzed for but not detected.	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Ch	nemistry	
Qualifier	Qualifier Description	13
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	

#### Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ĩ	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
<b>NDL</b>	Method Detection Limit
ЛL	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
C	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
ſEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

#### Job ID: 480-77104-1

#### Laboratory: TestAmerica Buffalo

#### Narrative

Job Narrative 480-77104-1

#### Comments

No additional comments.

#### Receipt

The sample was received on 3/24/2015 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 7.4° C.

#### Except:

The following samples were received at the laboratory outside the required temperature criteria. There was no cooling media present in the cooler. The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

#### GC/MS VOA

Method(s) 8260C: The following samples were diluted due to the nature of the TCLP sample matrix: (480-77104-1 MS), (480-77104-1 MSD), (LB 480-232186/1-A), EPT_Non.TSCA.Waste_2015.03.18 (480-77104-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### GC Semi VOA

Method(s) 8082A: The following samples were diluted due to the abundance of target analytes: (480-77104-1 MS), (480-77104-1 MSD), EPT_Non.TSCA.Waste_2015.03.18 (480-77104-1). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The matrix spike / matrix spike duplicate (MS/MSD) PCB AR 1260 recoveries for these samples (batch 232270) were outside control limits. Sample matrix interference from high target analytes is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. (480-77104-1 MS), (480-77104-1 MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

Method(s) 6010C: The TCLP leachate blank, LB 480-232184, for batch 480-232394 contained barium above the reporting limit (RL). Associated sample EPT_Non.TSCA.Waste_2015.03.18 (480-77104-1) was not re-extracted and/or re-analyzed because results were greater than 10X the value found in the TCLP leachate blank.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **General Chemistry**

Method(s) 9045C: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample(s) has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: EPT_Non.TSCA.Waste_2015.03.18 (480-77104-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Organic Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18

#### Lab Sample ID: 480-77104-1

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	0.014		0.010	0.0046	mg/L	10	_	8260C	TCLP
PCB-1254	9.1		2.6	1.2	mg/Kg	10	₽	8082A	Total/NA
PCB-1260	3.6	F1	2.6	1.2	mg/Kg	10	₽	8082A	Total/NA
Barium	1.4	В	0.0020	0.00070	mg/L	1		6010C	TCLP
Cadmium	0.011		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.0050		0.0040	0.0010	mg/L	1		6010C	TCLP
Lead	0.28		0.010	0.0030	mg/L	1		6010C	TCLP
Selenium	0.010	J	0.025	0.0087	mg/L	1		6010C	TCLP
Silver	0.0017	J	0.0060	0.0017	mg/L	1		6010C	TCLP
Cyanide, Reactive	0.035	J	10	0.0030	mg/Kg	1		9012	Total/NA
Cyanide, Total	0.71	J	1.1	0.52	mg/Kg	1	₽	9012B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	_	1010	Total/NA
рН	10.5	HF	0.100	0.100	SU	1		9045C	Total/NA

Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18

#### Lab Sample ID: 480-77104-1 Matrix: Solid

5 6 7

Date Collected: 03/18/15 16:00 Date Received: 03/24/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	0.010	U	0.010	0.0029	mg/L			03/28/15 04:39	10
1,2-Dichloroethane	0.010	U	0.010	0.0021	mg/L			03/28/15 04:39	10
2-Butanone (MEK)	0.050	U	0.050	0.013	mg/L			03/28/15 04:39	10
Benzene	0.010	U	0.010	0.0041	mg/L			03/28/15 04:39	1(
Carbon tetrachloride	0.010	U	0.010	0.0027	mg/L			03/28/15 04:39	10
Chlorobenzene	0.010	U	0.010	0.0075	mg/L			03/28/15 04:39	10
Chloroform	0.010	U	0.010	0.0034	mg/L			03/28/15 04:39	1(
Tetrachloroethene	0.010	U	0.010	0.0036	mg/L			03/28/15 04:39	10
Trichloroethene	0.014		0.010	0.0046	mg/L			03/28/15 04:39	10
Vinyl chloride	0.010	U	0.010	0.0090	mg/L			03/28/15 04:39	1(
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96		66 - 137					03/28/15 04:39	10
4-Bromofluorobenzene (Surr)	94		73 - 120					03/28/15 04:39	10
Toluene-d8 (Surr)	95		71 - 126					03/28/15 04:39	10
Dibromofluoromethane (Surr)	97		60 - 140					03/28/15 04:39	1(
Method: 8270D - Semivolatile	Organic Compou	inde (CC/M							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	0.010	U	0.010	0.00046	mg/L		03/26/15 08:31	03/26/15 23:52	
2,4,5-Trichlorophenol	0.0050	U	0.0050	0.00048	mg/L		03/26/15 08:31	03/26/15 23:52	
2,4,6-Trichlorophenol	0.0050	U	0.0050	0.00061	mg/L		03/26/15 08:31	03/26/15 23:52	
2,4-Dinitrotoluene	0.0050	U	0.0050	0.00045	mg/L		03/26/15 08:31	03/26/15 23:52	
2-Methylphenol	0.0050	U	0.0050	0.00040	mg/L		03/26/15 08:31	03/26/15 23:52	
3-Methylphenol	0.010	U	0.010	0.00040	mg/L		03/26/15 08:31	03/26/15 23:52	
4-Methylphenol	0.010	U	0.010	0.00036	mg/L		03/26/15 08:31	03/26/15 23:52	
Hexachlorobenzene	0.0050	U	0.0050	0.00051	mg/L		03/26/15 08:31	03/26/15 23:52	
Hexachlorobutadiene	0.0050	U	0.0050	0.00068	mg/L		03/26/15 08:31	03/26/15 23:52	
Hexachloroethane	0.0050	U	0.0050	0.00059	mg/L		03/26/15 08:31	03/26/15 23:52	
Nitrobenzene	0.0050	U	0.0050	0.00029	mg/L		03/26/15 08:31	03/26/15 23:52	
Pentachlorophenol	0.010	U	0.010	0.0022	mg/L		03/26/15 08:31	03/26/15 23:52	
Pyridine	0.025	U	0.025	0.00041	mg/L		03/26/15 08:31	03/26/15 23:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	75		52 - 132				03/26/15 08:31	03/26/15 23:52	
2-Fluorobiphenyl	71		48 - 120				03/26/15 08:31	03/26/15 23:52	
	34		20 - 120				03/26/15 08:31	03/26/15 23:52	
2-Fluorophenol	72		46 - 120				03/26/15 08:31	03/26/15 23:52	
· · · · · · · · · · · · · · · · · · ·							03/26/15 08:31	02/26/15 22.52	
2-Fluorophenol Nitrobenzene-d5 Phenol-d5	29		16 - 120				03/20/15 08.31	03/26/15 23:52	

#### Analyte Result Qualifier RL MDL Unit D PCB-1016 2.6 U 2.6 0.51 mg/Kg

PCB-1016	2.6 U	2.6	0.51 mg/Kg	<u>₽</u> 0	3/25/15 09:08	03/25/15 20:21	10
PCB-1221	2.6 U	2.6	0.51 mg/Kg	<i>₽</i> 0	3/25/15 09:08	03/25/15 20:21	10
PCB-1232	2.6 U	2.6	0.51 mg/Kg	ф <b>О</b>	3/25/15 09:08	03/25/15 20:21	10
PCB-1242	2.6 U	2.6	0.51 mg/Kg	¢ 0	3/25/15 09:08	03/25/15 20:21	10
PCB-1248	2.6 U	2.6	0.51 mg/Kg	⇔ <b>0</b>	3/25/15 09:08	03/25/15 20:21	10
PCB-1254	9.1	2.6	1.2 mg/Kg	<i>\</i> ⊅ 0	3/25/15 09:08	03/25/15 20:21	10
PCB-1260	3.6 F1	2.6	1.2 mg/Kg	¢ 0	3/25/15 09:08	03/25/15 20:21	10

TestAmerica Buffalo

Dil Fac

Analyzed

Prepared

Limits

46 - 175

47 - 176

RL

0.015

0.0020

0.0020

0.0040

0.010

0.025

0.0060

RL

RL

10

1.1

10

RL

50.0

0.100

0.00020

MDL Unit

mg/L

0.0056 mg/L

0.00070 mg/L

0.0010 mg/L

0.0030 mg/L

0.0087 mg/L

0.0017 mg/L

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

Degrees F

0.0030

0.52

0.57

50.0

RL Unit

0.100 SU

0.00012 mg/L

0.00050

Method: 6010C - Metals (ICP) - TCLP

Method: 7470A - TCLP Mercury - TCLP

Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18

%Recovery Qualifier

105

58

0.015 U

1.4

0.011

0.0050

0.28

0.010 J

0.0017 J

Result Qualifier

в

Result Qualifier

Result Qualifier

J

Result Qualifier

10 U

10.5 HF

0.00020 UF1

0.035 J

0.71

>176.0

Analyzed

03/25/15 20:21

03/25/15 20:21

Analyzed

03/27/15 12:27

03/27/15 12:27

03/27/15 12:27

03/27/15 12:27

03/27/15 12:27

03/27/15 12:27

03/27/15 12:27

Analyzed

03/26/15 15:19

Analyzed

04/01/15 09:38

03/27/15 12:46

04/01/15 09:30

Analyzed

03/26/15 16:53

03/26/15 17:30

## e ID: 480-77104-1 Matrix: Solid Percent Solids: 89.0

Dil Fac

Dil Fac

10

10

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

> 9 10 11

Lab Sample ID: 480-77104-1

D

D

D

☆

D

Prepared

03/25/15 09:08

03/25/15 09:08

Prepared

03/26/15 10:05

03/26/15 10:05

03/26/15 10:05

03/26/15 10:05

03/26/15 10:05

03/26/15 10:05

03/26/15 10:05

Prepared

03/26/15 10:45

Prepared

03/31/15 23:15

03/27/15 09:29

03/31/15 23:15

Prepared

Date	Collected:	03/18/15 16:00
Date	<b>Received:</b>	03/24/15 09:00

Surrogate

Analyte

Arsenic

Barium

Lead

Silver

Analyte

Mercury

Analyte

Analyte

pН

Flashpoint

**General Chemistry** 

Cyanide, Reactive

Cyanide, Total

Sulfide, Reactive

Cadmium

Chromium

Selenium

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

TestAmerica Buffalo

Prep Type: TCLP

12 13

#### Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid						Prep Type: Total/NA
Γ				Percent Su	rrogate Recovery (Acc	ceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)	
LCS 480-232760/4	Lab Control Sample	96	95	98	95	
MB 480-232760/6	Method Blank	100	97	100	101	
Surrogate Legend						
12DCE = 1,2-Dichloro	ethane-d4 (Surr)					
BFB = 4-Bromofluorob	penzene (Surr)					
TOL = Toluene-d8 (Su	ırr)					

DBFM = Dibromofluoromethane (Surr)

#### Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

				Percent Su	rrogate Recovery	(Acceptance Limits)	
		12DCE	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)		
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	96	94	95	97		
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.0 3.18	95	94	95	96		
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.0 3.18	98	95	97	98		
LB 480-232186/1-A	Method Blank	97	96	97	99		
Surrogate Legend							
12DCE = 1,2-Dichloroet	hane-d4 (Surr)						
BFB = 4-Bromofluorobe	nzene (Surr)						
TOL = Toluene-d8 (Surr	)						

DBFM = Dibromofluoromethane (Surr)

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid								Prep Type: Total/NA
				Percent Su	rogate Reco	very (Accept	ance Limits	)
		ТВР	FBP	2FP	NBZ	PHL	ТРН	
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)	
LCS 480-232365/2-A	Lab Control Sample	76	73	37	73	32	83	
LCSD 480-232365/3-A	Lab Control Sample Dup	73	72	37	71	31	81	
MB 480-232365/1-A	Method Blank	81	84	44	89	36	101	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

atrix: Solid								Prep Type: TCI
				Percent Sur	rogate Reco	very (Accept	ance Limits)	
		ТВР	FBP	2FP	NBZ	PHL	TPH	
.ab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)	
80-77104-1	EPT_Non.TSCA.Waste_2015.03.18	75	71	34	72	29	95	
B 480-232184/1-B	Method Blank	81	75	41	74	35	101	
Surrogate Legend								
TBP = 2,4,6-Tribromophenol								
FBP = 2-Fluorobiphenyl								
2FP = 2-Fluorophenol								
NBZ = Nitrobenzene-d5								
PHL = Phenol-d5								
TPH = p-Terphenyl-d14								

#### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

Matrix: Solid				Ргер Туре: То
-				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	105	58	
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.0	136	123	
	3.18			
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.0	138	117	
	3.18			
LCS 480-232116/2-A	Lab Control Sample	129	146	
MB 480-232116/1-A	Method Blank	108	129	

#### Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

RL

0.0010

0.0010

0.0050

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

Limits

66 - 137

73 - 120

71 - 126

60 - 140

MDL Unit

0.00029 mg/L

0.00021 mg/L

0.0013 mg/L

0.00041 mg/L

0.00027 mg/L

0.00075 mg/L

0.00034 mg/L

0.00036 mg/L

0.00046 mg/L

0.00090 mg/L

Lab Sample ID: MB 480-232760/6

Analysis Batch: 232760

Matrix: Solid

1,1-Dichloroethene

1,2-Dichloroethane

2-Butanone (MEK)

Carbon tetrachloride

Chlorobenzene

Tetrachloroethene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Trichloroethene

Vinyl chloride

Surrogate

Chloroform

Analyte

Benzene

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

0.0010 U

0.0010 U

0.0050 U

0.0010 U

100 97

100

101

%Recoverv

MB MB /ery Qualifier

Result Qualifier

**Client Sample ID: Method Blank** 

Analyzed

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

03/27/15 21:34

Prepared

Prepared

D

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

## 2 3 4 5

# 6 7 8 9 10 11

Analyzed	Dil Fac	
03/27/15 21:34	1	
03/27/15 21:34	1	
03/27/15 21:34	1	
03/27/15 21:34	1	

#### Lab Sample ID: LCS 480-232760/4 Matrix: Solid Analysis Batch: 232760

Analysis Datch. 202700	Spike	LCS L	20			%Rec.	
	•			_	~-		
Analyte	Added	Result Q	ualifier Unit	D	%Rec	Limits	
1,1-Dichloroethene	0.0250	0.0213	mg/L		85	58 - 121	
1,2-Dichloroethane	0.0250	0.0225	mg/L		90	75 - 127	
Benzene	0.0250	0.0229	mg/L		92	71 - 124	
Chlorobenzene	0.0250	0.0231	mg/L		92	72 _ 120	
Tetrachloroethene	0.0250	0.0219	mg/L		88	74 - 122	
Trichloroethene	0.0250	0.0226	mg/L		90	74 - 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
4-Bromofluorobenzene (Surr)	95		73 - 120
Toluene-d8 (Surr)	98		71 - 126
Dibromofluoromethane (Surr)	95		60 - 140

#### Lab Sample ID: LB 480-232186/1-A Matrix: Solid Analysis Batch: 232760

#### LB LB Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed 1,1-Dichloroethene 0.010 U 0.010 0.0029 mg/L 03/28/15 04:16 10 1,2-Dichloroethane 0.010 U 0.010 0.0021 mg/L 03/28/15 04:16 10 2-Butanone (MEK) 0.050 U 0.050 0.013 mg/L 03/28/15 04:16 10 Benzene 0.010 U 0.010 0.0041 mg/L 03/28/15 04:16 10 Carbon tetrachloride 0.010 U 0.010 0.0027 mg/L 03/28/15 04:16 10 Chlorobenzene 0.010 U 0.010 0.0075 mg/L 03/28/15 04:16 10 0.010 U Chloroform 0.010 0.0034 mg/L 03/28/15 04:16 10

#### TestAmerica Buffalo

## Page 10 of 27

4/1/2015

Client Sample ID: Lab Control Sample Prep Type: Total/NA

**Client Sample ID: Method Blank** 

Prep Type: TCLP

03/28/15 04:16

Prep Type: TCLP

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

99

Lab Sample ID: LB 480-232180 Matrix: Solid Analysis Batch: 232760	6/1 <b>-A</b>						Client S	ample ID: Metho Prep Type	
Analysis Batch. 252700	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.010	U	0.010	0.0036	mg/L			03/28/15 04:16	10
Trichloroethene	0.010	U	0.010	0.0046	mg/L			03/28/15 04:16	10
Vinyl chloride	0.010	U	0.010	0.0090	mg/L			03/28/15 04:16	10
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137			-		03/28/15 04:16	10
4-Bromofluorobenzene (Surr)	96		73 - 120					03/28/15 04:16	10
Toluene-d8 (Surr)	97		71 - 126					03/28/15 04:16	10

60 - 140

#### Lab Sample ID: 480-77104-1 MS Matrix: Solid

Dibromofluoromethane (Surr)

#### Analysis Batch: 232760 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits 58 - 121 1,1-Dichloroethene 0.010 U 0.250 0.197 mg/L 79 1,2-Dichloroethane 0.010 U 0.250 0.218 87 mg/L 75 - 127 Benzene 0.010 U 0.250 0.207 mg/L 83 71 - 124 Chlorobenzene 0.010 U 0.250 0.205 mg/L 82 72 - 120 Tetrachloroethene 0.010 U 0.250 0.191 mg/L 76 74 - 122 Trichloroethene 0.014 0.250 0.214 mg/L 80 74 - 123

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		66 - 137
4-Bromofluorobenzene (Surr)	94		73 - 120
Toluene-d8 (Surr)	95		71 - 126
Dibromofluoromethane (Surr)	96		60 - 140

#### Lab Sample ID: 480-77104-1 MSD Matrix: Solid Analysis Batch: 232760

# Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18

Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18

Prep Type: TCLP

8

10

Analysis Datch. 202100											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	0.010	U	0.250	0.212		mg/L		85	58 _ 121	7	16
1,2-Dichloroethane	0.010	U	0.250	0.228		mg/L		91	75 - 127	5	20
Benzene	0.010	U	0.250	0.223		mg/L		89	71 - 124	7	13
Chlorobenzene	0.010	U	0.250	0.216		mg/L		87	72 - 120	5	25
Tetrachloroethene	0.010	U	0.250	0.205		mg/L		82	74 - 122	7	20
Trichloroethene	0.014		0.250	0.229		mg/L		86	74 ₋ 123	7	16
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	98		66 - 137								
4-Bromofluorobenzene (Surr)	95		73 - 120								
Toluene-d8 (Surr)	97		71 - 126								
Dibromofluoromethane (Surr)	98		60 - 140								

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-232365/	1-A					Client Sample ID: Method Blank				
Matrix: Solid								Prep Type: 1	otal/NA	_
Analysis Batch: 232505								Prep Batch:	232365	
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dichlorobenzene	0.0025	U	0.0025	0.00012	mg/L		03/26/15 08:31	03/26/15 20:19	1	
2,4,5-Trichlorophenol	0.0013	U	0.0013	0.00012	mg/L		03/26/15 08:31	03/26/15 20:19	1	
2,4,6-Trichlorophenol	0.0013	U	0.0013	0.00015	mg/L		03/26/15 08:31	03/26/15 20:19	1	
2,4-Dinitrotoluene	0.0013	U	0.0013	0.00011	mg/L		03/26/15 08:31	03/26/15 20:19	1	
2-Methylphenol	0.0013	U	0.0013	0.00010	mg/L		03/26/15 08:31	03/26/15 20:19	1	8
3-Methylphenol	0.0025	U	0.0025	0.00010	mg/L		03/26/15 08:31	03/26/15 20:19	1	
4-Methylphenol	0.0025	U	0.0025	0.000090	mg/L		03/26/15 08:31	03/26/15 20:19	1	
Hexachlorobenzene	0.0013	U	0.0013	0.00013	mg/L		03/26/15 08:31	03/26/15 20:19	1	
Hexachlorobutadiene	0.0013	U	0.0013	0.00017	mg/L		03/26/15 08:31	03/26/15 20:19	1	
Hexachloroethane	0.0013	U	0.0013	0.00015	mg/L		03/26/15 08:31	03/26/15 20:19	1	
Nitrobenzene	0.0013	U	0.0013	0.000073	mg/L		03/26/15 08:31	03/26/15 20:19	1	
Pentachlorophenol	0.0025	U	0.0025	0.00055	mg/L		03/26/15 08:31	03/26/15 20:19	1	
Pyridine	0.0063	U	0.0063	0.00010	mg/L		03/26/15 08:31	03/26/15 20:19	1	
	MB	МВ								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2,4,6-Tribromophenol	81		52 - 132				03/26/15 08:31	03/26/15 20:19	1	
2-Fluorobiphenyl	84		48 - 120				03/26/15 08:31	03/26/15 20:19	1	
2-Fluorophenol	44		20 - 120				03/26/15 08:31	03/26/15 20:19	1	
Nitrobenzene-d5	89		46 - 120				03/26/15 08:31	03/26/15 20:19	1	
Phenol-d5	36		16 - 120				03/26/15 08:31	03/26/15 20:19	1	
p-Terphenyl-d14	101		67 - 150				03/26/15 08:31	03/26/15 20:19	1	

#### Lab Sample ID: LCS 480-232365/2-A Matrix: Solid Analysis Batch: 232505

#### Client Sample ID: Lab Control Sample Prep Type: Total/NA

#### Prep Batch: 232365

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0500	0.0270		mg/L		54	32 - 120	
2,4-Dinitrotoluene	0.0500	0.0406		mg/L		81	65 - 154	
Hexachloroethane	0.0500	0.0263		mg/L		53	14 _ 101	
Pentachlorophenol	0.100	0.0721		mg/L		72	39 - 136	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	76		52 - 132
2-Fluorobiphenyl	73		48 - 120
2-Fluorophenol	37		20 - 120
Nitrobenzene-d5	73		46 - 120
Phenol-d5	32		16 - 120
p-Terphenyl-d14	83		67 - 150

#### Lab Sample ID: LCSD 480-232365/3-A Matrix: Solid Analysis Batch: 232505

#### Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 232365

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.0500	0.0277	mg/L		55	32 - 120	3	36
2,4-Dinitrotoluene	0.0500	0.0391	mg/L		78	65 _ 154	4	20

TestAmerica Buffalo

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 232365

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-232365/3-A				Clie	ent Sam	ple ID: I	Lab Contro	I Sample	e Dup
Matrix: Solid							Prep T	ype: Tot	tal/NA
Analysis Batch: 232505							Prep E	3atch: 2	32365
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachloroethane	0.0500	0.0263		mg/L		53	14 - 101	0	46
Pentachlorophenol	0.100	0.0685		mg/L		69	39 - 136	5	37

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	73		52 - 132
2-Fluorobiphenyl	72		48 - 120
2-Fluorophenol	37		20 - 120
Nitrobenzene-d5	71		46 - 120
Phenol-d5	31		16 - 120
p-Terphenyl-d14	81		67 - 150

#### Lab Sample ID: LB 480-232184/1-B Matrix: Solid

#### Analysis Batch: 232505

Analysis Datch. 252505								Fiep Datch.	232303
	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.010	U	0.010	0.00046	mg/L		03/26/15 08:31	03/26/15 23:29	1
2,4,5-Trichlorophenol	0.0050	U	0.0050	0.00048	mg/L		03/26/15 08:31	03/26/15 23:29	1
2,4,6-Trichlorophenol	0.0050	U	0.0050	0.00061	mg/L		03/26/15 08:31	03/26/15 23:29	1
2,4-Dinitrotoluene	0.0050	U	0.0050	0.00045	mg/L		03/26/15 08:31	03/26/15 23:29	1
2-Methylphenol	0.0050	U	0.0050	0.00040	mg/L		03/26/15 08:31	03/26/15 23:29	1
3-Methylphenol	0.010	U	0.010	0.00040	mg/L		03/26/15 08:31	03/26/15 23:29	1
4-Methylphenol	0.010	U	0.010	0.00036	mg/L		03/26/15 08:31	03/26/15 23:29	1
Hexachlorobenzene	0.0050	U	0.0050	0.00051	mg/L		03/26/15 08:31	03/26/15 23:29	1
Hexachlorobutadiene	0.0050	U	0.0050	0.00068	mg/L		03/26/15 08:31	03/26/15 23:29	1
Hexachloroethane	0.0050	U	0.0050	0.00059	mg/L		03/26/15 08:31	03/26/15 23:29	1
Nitrobenzene	0.0050	U	0.0050	0.00029	mg/L		03/26/15 08:31	03/26/15 23:29	1
Pentachlorophenol	0.010	U	0.010	0.0022	mg/L		03/26/15 08:31	03/26/15 23:29	1
Pyridine	0.025	U	0.025	0.00041	mg/L		03/26/15 08:31	03/26/15 23:29	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	81		52 - 132				03/26/15 08:31	03/26/15 23:29	1

2,4,6-Tribromophenol	81	52 - 132	03/26/15 08:31 03/26/15 23:29 1
2-Fluorobiphenyl	75	48 - 120	03/26/15 08:31 03/26/15 23:29 1
2-Fluorophenol	41	20 - 120	03/26/15 08:31 03/26/15 23:29 1
Nitrobenzene-d5	74	46 - 120	03/26/15 08:31 03/26/15 23:29 1
Phenol-d5	35	16 - 120	03/26/15 08:31 03/26/15 23:29 1
p-Terphenyl-d14	101	67 - 150	03/26/15 08:31 03/26/15 23:29 1

#### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-232116/1-A Matrix: Solid Analysis Batch: 232270		МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1
PCB-1221	0.24	U	0.24	0.047	mg/Kg		03/25/15 09:08	03/25/15 19:18	1

#### TestAmerica Buffalo

## Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-232	116/1-A								<b>Client Sa</b>	mple ID: Metho	od Blai
Matrix: Solid										Prep Type:	
Analysis Batch: 232270										Prep Batch	
	Μ	в мв									
Analyte	Resu	It Qualifier	RL		MDL	Unit	I	D P	repared	Analyzed	Dil F
PCB-1232	0.2	24 U	0.24	(		mg/Kg			5/15 09:08	03/25/15 19:18	
PCB-1242		24 U	0.24			mg/Kg			5/15 09:08	03/25/15 19:18	
PCB-1248		24 U	0.24			mg/Kg			25/15 09:08	03/25/15 19:18	
PCB-1254		24 U	0.24			mg/Kg			25/15 09:08	03/25/15 19:18	
PCB-1260		24 U	0.24			mg/Kg			25/15 09:08	03/25/15 19:18	
	0.2	- 0	0.24		0.11	iiig/itg		00/2	.0/10/00.00	00/20/10 10:10	
	M	B MB									
Surrogate	%Recove	ry Qualifier	Limits					P	repared	Analyzed	Dil F
Tetrachloro-m-xylene	10	08	46 _ 175					03/2	25/15 09:08	03/25/15 19:18	
DCB Decachlorobiphenyl	12	29	47 _ 176					03/2	25/15 09:08	03/25/15 19:18	
Lab Sample ID: LCS 480-23	2116/2-0							Client	Sample	ID: Lab Contro	Same
Matrix: Solid	2110/2-74							Chem	Jampie	Prep Type:	
Analysis Batch: 232270			Spike	109	LCS					Prep Batch %Rec.	. 2321
Analyte			Added	Result		lifior	Unit	D	%Rec	Limits	
PCB-1016			2.02	2.22	Qua					51 - 185	
							mg/Kg				
PCB-1260			2.02	2.08			mg/Kg		103	61 - 184	
	LCS L	cs									
Surrogate	%Recovery Q	ualifier	Limits								
Tetrachloro-m-xylene	129		46 - 175								
DCB Decachlorobiphenyl	146		47 - 176								
Leb Comula ID: 400 77404 4	MO					Client	t Comula				45.02
Lab Sample ID: 480-77104-1	IVI S					Clien	t Sample	ID: EI	PI_NON.I	SCA.Waste_20	
Matrix: Solid										Prep Type:	
Analysis Batch: 232270	Sample Sa		Calles	ме	MS					Prep Batch %Rec.	: 2321
A melu de	Result Q	•	Spike	Result		lifian	11		0/ Dee		
Analyte	2.6 U	uaimer	Added		Qua		Unit	— <u>D</u>	%Rec	Limits	
PCB-1016			2.45	3.09	-4		mg/Kg	¢	126	42 - 159	
PCB-1260	3.6 F ²		2.45	7.37	F1		mg/Kg	54F	155	47 _ 153	
	MS M	s									
Surrogate	%Recovery Q	ualifier	Limits								
Tetrachloro-m-xylene			46 - 175								
DCB Decachlorobiphenyl	123		47 - 176								
Lab Sample ID: 480-77104-1	MSD					Clien	t Sample	D: El	PT_Non.T	SCA.Waste_20	15.03.
Matrix: Solid							•		_	Prep Type:	
Analysis Batch: 232270										Prep Batch	
	Sample Sa	ample	Spike	MSD	MSD	)				%Rec.	R
Analyte	Result Q	ualifier	Added	Result	Qua	lifier	Unit	D	%Rec	Limits RP	D Lir
PCB-1016	2.6 U		2.42	3.18			mg/Kg		131	42 - 159	3
					-4			*			
PCB-1260	3.6 F		2.42	10.8	F1		mg/Kg	¢	298	47 - 153 3	8
PCB-1260			2.42	10.8	F1		mg/Kg	*	298	47 - 153 3	0
PCB-1260	3.6 F ² <b>MSD M</b>		2.42	10.8	F1		mg/Kg	3,4	298	47 - 153 3	

	INISD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	138		46 - 175
DCB Decachlorobiphenyl	117		47 - 176

)

#### Method: 6010C - Metals (ICP)

#### Lab Sample ID: MB 480-232394/2-A Matrix: Solid

#### Analysis Batch: 232678

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.015	U	0.015	0.0056	mg/L		03/26/15 10:05	03/27/15 12:21	1
Barium	0.0020	U	0.0020	0.00070	mg/L		03/26/15 10:05	03/27/15 12:21	1
Cadmium	0.0020	U	0.0020	0.00050	mg/L		03/26/15 10:05	03/27/15 12:21	1
Chromium	0.0040	U	0.0040	0.0010	mg/L		03/26/15 10:05	03/27/15 12:21	1
Lead	0.010	U	0.010	0.0030	mg/L		03/26/15 10:05	03/27/15 12:21	1
Selenium	0.025	U	0.025	0.0087	mg/L		03/26/15 10:05	03/27/15 12:21	1
Silver	0.0060	U	0.0060	0.0017	mg/L		03/26/15 10:05	03/27/15 12:21	1

#### Lab Sample ID: LCS 480-232394/3-A Matrix: Solid

Analysis Batch: 232678

#### Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit %Rec Limits D Arsenic 1.00 0.997 mg/L 100 80 - 120 Barium 1.00 1.01 mg/L 101 80 - 120 Cadmium 1.00 0.966 80 - 120 mg/L 97 Chromium 1.00 0.982 98 80 - 120 mg/L Lead 1.00 0.948 mg/L 95 80 - 120 Selenium 1.00 1.10 mg/L 110 80 - 120 Silver 80 - 120 1.00 0.982 mg/L 98

#### Lab Sample ID: LB 480-232184/1-C Matrix: Solid

#### Analysis Batch: 232678

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00575	J	0.015	0.0056	mg/L		03/26/15 10:05	03/27/15 12:18	1
Barium	0.00582		0.0020	0.00070	mg/L		03/26/15 10:05	03/27/15 12:18	1
Cadmium	0.0020	U	0.0020	0.00050	mg/L		03/26/15 10:05	03/27/15 12:18	1
Chromium	0.0040	U	0.0040	0.0010	mg/L		03/26/15 10:05	03/27/15 12:18	1
Lead	0.010	U	0.010	0.0030	mg/L		03/26/15 10:05	03/27/15 12:18	1
Selenium	0.025	U	0.025	0.0087	mg/L		03/26/15 10:05	03/27/15 12:18	1
Silver	0.0060	U	0.0060	0.0017	mg/L		03/26/15 10:05	03/27/15 12:18	1

#### Lab Sample ID: 480-77104-1 MS Matrix: Solid

#### Analysis Batch: 232678

Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18	
Prop Type: TCLP	

Prep Type: TCLF Prep Batch: 232394

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.015	U	1.00	1.11		mg/L		111	75 - 125	
Barium	1.4	В	1.00	2.30		mg/L		93	75 - 125	
Cadmium	0.011		1.00	1.05		mg/L		104	75 ₋ 125	
Chromium	0.0050		1.00	0.873		mg/L		87	75 ₋ 125	
Lead	0.28		1.00	1.29		mg/L		100	75 - 125	
Selenium	0.010	J	1.00	1.18		mg/L		117	75 ₋ 125	
Silver	0.0017	J	1.00	1.08		mg/L		108	75 - 125	

4/1/2015

**Client Sample ID: Lab Control Sample** 

**Client Sample ID: Method Blank** 

Prep Type: TCLP

Prep Batch: 232394

8

**Client Sample ID: Method Blank** 

Prep Type: Total/NA Prep Batch: 232394 Lab Sample ID: 480-77104-1 MSD

Method: 9012 - Cyanide, Reactive

Cyanide, Reactive

Analysis Batch: 232678

Matrix: Solid

Analyte

Arsenic

Method: 6010C - Metals (ICP) (Continued)

%Rec.

Limits

75 - 125

%Rec.

Prep Type: TCLP

RPD

Limit

20

Prep Batch: 232394

RPD

0

Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18

%Rec

111

D

Unit

mg/L

# 8

Lab Sample ID: LCS 4 Matrix: Solid Analysis Batch: 23249				С	ient Sample	ID: Lab Cor Prep Ty		
lethod: 1010 - Ignit	tability, Pensky-Martens (	Closed-Cup N	lethod					
Silver	0.0017 J	1.00	1.10	mg/L	109	75 - 125	1	20
Selenium	0.010 J	1.00	1.18	mg/L	117	75 ₋ 125	0	20
Lead	0.28	1.00	1.30	mg/L	101	75 - 125	1	20
Chromium	0.0050	1.00	0.892	mg/L	89	75 ₋ 125	2	20
Cadmium	0.011	1.00	1.06	mg/L	105	75 ₋ 125	0	20
Barium	1.4 B	1.00	2.33	mg/L	96	75 - 125	1	20

MSD MSD

1.11

Result Qualifier

Spike

Added

1.00

Analysis Batch: 232498						
	Spike	LCS	LCS			
Analyte	Added	Result	Qualifier	Unit	D	%Rec

Sample Sample

0.015 U

0.035 J

Result Qualifier

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Flashpoint	 81.0	80.00		Degrees F		99	97.5 - 102.	 
							5	

Lab Sample ID: MB 480-233441/1-A											Client Sa	ample ID: Metho	d Blank
Matrix: Solid												Prep Type: T	otal/NA
Analysis Batch: 233474												Prep Batch:	233441
-	MB	МВ											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Cyanide, Reactive	10.0	U		10.0	0.	0030	mg/Kg		_	03/3	1/15 23:15	04/01/15 09:38	1
Lab Sample ID: LCS 480-233441/2-A									С	lient	Sample	ID: Lab Control	Sample
Matrix: Solid												Prep Type: T	otal/NA
Analysis Batch: 233474												Prep Batch:	233441
-			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Cyanide, Reactive			1000		272.5			mg/Kg			27	10 - 100	
Lab Sample ID: 480-77104-1 DU							Clien	t Samp	ole II	D: EF	PT_Non.T	SCA.Waste_201	15.03.18
Matrix: Solid											-	Prep Type: T	
Analysis Batch: 233474												Prep Batch:	233441
	le Sam	ple			DU	DU							RPD
Analyte Resu	ılt Qua	lifier			Result	Qual	ifier	Unit		D		RPD	) Limit

0.130 J

mg/Kg

4/1/2015

NC

20

**8** 9

#### Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-23265	7/1- <b>A</b>										Client Sa	ample ID: Me		
Matrix: Solid												Prep Typ	e: To	tal/NA
Analysis Batch: 232690												Prep Bat	ch: 2	32657
		MB MB												
Analyte	R	esult Qualifier		RL		MDL	Unit		D	Pi	repared	Analyzed		Dil Fac
Cyanide, Total		0.98 U		0.98		0.47	mg/Kg		_	03/2	7/15 09:29	03/27/15 12:4	14	1
Lab Sample ID: LCS 480-2326	57/2-A ^5								С	lient	Sample	ID: Lab Cont	rol S	ample
Matrix: Solid												Prep Typ	e: To	tal/NA
Analysis Batch: 232690												Prep Bat	ch: 2	32657
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Cyanide, Total			101		109.1			mg/Kg			108	29 - 122		
Lab Sample ID: 480-77104-1 M	IS						Clier	t Samp	le II	D: EF	T_Non.T	SCA.Waste	2015	i.03.1{
Matrix: Solid												Prep Typ	e: To	tal/NA
Analysis Batch: 232690												Prep Bat	ch: 2	32657
-	Sample	Sample	Spike		MS	MS						%Rec.		
	Result	Qualifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Analyte					10.00			malla		<del>\</del>	88	85 - 115		
Cyanide, Total ethod: 9034 - Sulfide, Re _ab Sample ID: MB 480-23343		J	10.9		10.30			mg/Kg				ample ID: Me		
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid	eactive	J	10.9		10.30			iiig/kg					e: To	tal/NA
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid	eactive	J	10.9		10.30							ample ID: Me Prep Typ	e: To	tal/NA
Cyanide, Total Iethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464	eactive 6/1-A		10.9	RL		MDL	Unit		D			ample ID: Me Prep Typ	e: To	tal/NA 33436
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte	eactive 6/1-A	MB MB	10.9	<b>RL</b> 10.0			Unit mg/Kg		D	Pi	Client Sa	ample ID: Me Prep Typ Prep Bat	e: To ch: 2	tal/NA 33436 Dil Fac
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive	eactive 6/1-A 	MB MB esult Qualifier	10.9						_	Pr 03/3	Client Sa repared 1/15 23:15	ample ID: Me Prep Typ Prep Bat Analyzed	e: To ch: 2	tal/NA 33430 Dil Fa
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343	eactive 6/1-A 	MB MB esult Qualifier	10.9						_	Pr 03/3	Client Sa repared 1/15 23:15	ample ID: Me Prep Typ Prep Bat Analyzed 04/01/15 09:3	e: To ch: 2 30	tal/NA 33436 Dil Fac
Cyanide, Total Iethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid	eactive 6/1-A 	MB MB esult Qualifier	10.9						_	Pr 03/3	Client Sa repared 1/15 23:15	ample ID: Me Prep Typ Prep Bat <u>Analyzed</u> 04/01/15 09:3	e: To ch: 2 30 - rol S e: To	tal/NA 33436 Dil Fac ample tal/NA
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-2334 Matrix: Solid	eactive 6/1-A 	MB MB esult Qualifier	10.9				mg/Kg		_	Pr 03/3	Client Sa repared 1/15 23:15	Ample ID: Me Prep Typ Prep Bat Analyzed 04/01/15 09:3 ID: Lab Cont Prep Typ	e: To ch: 2 30 - rol S e: To	tal/NA 33436 Dil Fac ample tal/NA
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analysis Batch: 233464	eactive 6/1-A 	MB MB esult Qualifier				0.57	mg/Kg		_	Pr 03/3	Client Sa repared 1/15 23:15	ample ID: Me Prep Typ Prep Bat - <u>Analyzed</u> - 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat	e: To ch: 2 30 - rol S e: To	tal/NA 33436 Dil Fac ample tal/NA
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte	eactive 6/1-A 	MB MB esult Qualifier	Spike		LCS	0.57	mg/Kg		_	Pi 03/3 lient	Client Sa repared 1/15 23:15 Sample	ample ID: Me Prep Typ Prep Bat 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat %Rec.	e: To ch: 2 30 - rol S e: To	tal/NA 33430 Dil Fac ample tal/NA
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive	eactive 6/1-A 	MB MB esult Qualifier	Spike Added		LCS Result	0.57	mg/Kg	Unit mg/Kg	_ C	Pr 03/3 ilient	Client Sa repared 1/15 23:15 Sample %Rec 80	ample ID: Me Prep Typ Prep Bat 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat %Rec. Limits 10 - 100	e: To ch: 2 30 - rol S e: To ch: 2 	tal/NA 33436 Dil Fac ample tal/NA 33436
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: 480-77104-1 D	eactive 6/1-A 	MB MB esult Qualifier	Spike Added		LCS Result	0.57	mg/Kg	Unit mg/Kg	_ C	Pr 03/3 ilient	Client Sa repared 1/15 23:15 Sample %Rec 80	ample ID: Me Prep Typ Prep Bat 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat %Rec. Limits 10 - 100	e: To ch: 2 30 - rol S e: To ch: 2 	tal/NA 233436 Dil Fac ample tal/NA 33436
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: 480-77104-1 D Matrix: Solid	eactive 6/1-A 	MB MB esult Qualifier	Spike Added		LCS Result 801.5	0.57	mg/Kg	Unit mg/Kg	_ C	Pr 03/3 ilient	Client Sa repared 1/15 23:15 Sample %Rec 80	ample ID: Me Prep Typ Prep Bat 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat %Rec. Limits 10 - 100	e: To ch: 2 30 rol S e: To ch: 2  2015 e: To	tal/NA 33436 Dil Fac ample tal/NA 33436 .03.18 tal/NA
Cyanide, Total lethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analyte Sulfide, Reactive Lab Sample ID: 480-77104-1 D Matrix: Solid	eactive 6/1-A 	MB MB esult Qualifier	Spike Added		LCS Result 801.5	0.57	mg/Kg	Unit mg/Kg	_ C	Pr 03/3 ilient	Client Sa repared 1/15 23:15 Sample %Rec 80	ample ID: Me Prep Typ Prep Bat 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat %Rec. Limits 10 - 100 SCA.Waste_ Prep Typ	e: To ch: 2 30 rol S e: To ch: 2  2015 e: To	tal/NA 33436 Dil Fac ample tal/NA 33436 5.03.18 tal/NA 33436
Analyte Cyanide, Total Tethod: 9034 - Sulfide, Re Lab Sample ID: MB 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: LCS 480-23343 Matrix: Solid Analysis Batch: 233464 Analyte Sulfide, Reactive Lab Sample ID: 480-77104-1 D Matrix: Solid Analysis Batch: 233464 Analysis Batch: 233464	eactive 6/1-A 	MB MB esult Qualifier 10.0 U	Spike Added		LCS Result 801.5	0.57 LCS Qual	mg/Kg lifier Clien	Unit mg/Kg	_ C	Pr 03/3 ilient	Client Sa repared 1/15 23:15 Sample %Rec 80	ample ID: Me Prep Typ Prep Bat 04/01/15 09:3 ID: Lab Cont Prep Typ Prep Bat %Rec. Limits 10 - 100 SCA.Waste_ Prep Typ	e: To ch: 2 30 rol S e: To ch: 2  2015 e: To	tal/NA 33436 Dil Fac 1 ample tal/NA 33436 

#### Lab Sample ID: LCS 480-232527/1 **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 232527 %Rec. Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits pН 10.0 10.04 SU 100 99 - 101

TestAmerica Buffalo

## Method: 9045C - pH (Continued)

Lab Sample ID: 480-77104-1 DI Matrix: Solid	IJ			Clie	nt Samp	le ID: EPT_No	ste_2015 Fype: Tot	
Analysis Batch: 232527								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	10.5	HF	 10.42		SU		 0.4	5

TestAmerica Buffalo

13

15

GC/	MS	VOA

Leach	Batch:	232186
Louon	Duton	202100

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311	
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311	
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311	
LB 480-232186/1-A	Method Blank	TCLP	Solid	1311	
nalysis Batch: 23276	D				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	8260C	232186
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	8260C	23218
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	8260C	23218
LB 480-232186/1-A	Method Blank	TCLP	Solid	8260C	23218
LCS 480-232760/4	Lab Control Sample	Total/NA	Solid	8260C	
MB 480-232760/6	Method Blank	Total/NA	Solid	8260C	
C/MS Semi VOA					
each Batch: 232184					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311	
LB 480-232184/1-B	Method Blank	TCLP	Solid	1311	
rep Batch: 232365					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	3510C	23218
LB 480-232184/1-B	Method Blank	TCLP	Solid	3510C	23218
LCS 480-232365/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 480-232365/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	
MB 480-232365/1-A	Method Blank	Total/NA	Solid	3510C	
nalysis Batch: 23250	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	8270D	23236
LB 480-232184/1-B	Method Blank	TCLP	Solid	8270D	23236
LCS 480-232365/2-A	Lab Control Sample	Total/NA	Solid	8270D	23236
LCSD 480-232365/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	23236
MB 480-232365/1-A	Method Blank	Total/NA	Solid	8270D	23236
C Semi VOA					
rep Batch: 232116					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	3550C	
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	3550C	
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	3550C	
LCS 480-232116/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-232116/1-A	Method Blank	Total/NA	Solid	3550C	
nalysis Batch: 23227	D				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

**Client Sample ID** 

Lab Control Sample

Method Blank

EPT_Non.TSCA.Waste_2015.03.18

EPT_Non.TSCA.Waste_2015.03.18

GC Semi VOA (Continued)

Lab Sample ID

480-77104-1 MS

480-77104-1 MSD

LCS 480-232116/2-A

MB 480-232116/1-A

**Metals** 

Analysis Batch: 232270 (Continued)

Method

8082A

8082A

8082A

8082A

Prep Batch

232116

232116

232116

232116

Prep Batch

Prep Batch

232184

232184

232184

232184

Prep Batch

Prep Batch

Prep Batch

232394

232394

232394

232394

232394

232394

Prep Batch

Prep Batch

232407

232184

## 0 7 8 9 10

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	1311
LB 480-232184/1-C	Method Blank	TCLP	Solid	1311
rep Batch: 232394				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	3010A
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	3010A
480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	3010A
LB 480-232184/1-C	Method Blank	TCLP	Solid	3010A
LCS 480-232394/3-A	Lab Control Sample	Total/NA	Solid	3010A
MB 480-232394/2-A	Method Blank	Total/NA	Solid	3010A
rep Batch: 232407				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	7470A
480-77104-1 nalysis Batch: 23267	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	7470A
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
	EDT. N	TCLP	Solid	
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	TOLF	30110	6010C
	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	6010C 6010C
480-77104-1 480-77104-1 MS 480-77104-1 MSD				
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	TCLP	Solid	6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18	TCLP TCLP	Solid Solid	6010C 6010C
480-77104-1 MS 480-77104-1 MSD	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank	TCLP TCLP TCLP	Solid Solid Solid	6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank	TCLP TCLP TCLP Total/NA	Solid Solid Solid Solid	6010C 6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A MB 480-232394/2-A	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank	TCLP TCLP TCLP Total/NA	Solid Solid Solid Solid	6010C 6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A MB 480-232394/2-A General Chemistry	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank	TCLP TCLP TCLP Total/NA	Solid Solid Solid Solid	6010C 6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A MB 480-232394/2-A ieneral Chemistry nalysis Batch: 23213	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank	TCLP TCLP TCLP Total/NA Total/NA	Solid Solid Solid Solid Solid	6010C 6010C 6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A MB 480-232394/2-A ieneral Chemistry nalysis Batch: 23213 Lab Sample ID	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank Client Sample ID EPT_Non.TSCA.Waste_2015.03.18	TCLP TCLP TCLP Total/NA Total/NA Prep Type	Solid Solid Solid Solid Solid Matrix	6010C 6010C 6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A MB 480-232394/2-A <b>General Chemistry</b> nalysis Batch: 23213 Lab Sample ID 480-77104-1	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank Client Sample ID EPT_Non.TSCA.Waste_2015.03.18	TCLP TCLP TCLP Total/NA Total/NA Prep Type	Solid Solid Solid Solid Solid Matrix	6010C 6010C 6010C 6010C 6010C
480-77104-1 MS 480-77104-1 MSD LB 480-232184/1-C LCS 480-232394/3-A MB 480-232394/2-A General Chemistry nalysis Batch: 23213 Lab Sample ID 480-77104-1 nalysis Batch: 23249	EPT_Non.TSCA.Waste_2015.03.18 EPT_Non.TSCA.Waste_2015.03.18 Method Blank Lab Control Sample Method Blank Client Sample ID EPT_Non.TSCA.Waste_2015.03.18	TCLP TCLP Total/NA Total/NA Prep Type Total/NA	Solid Solid Solid Solid Solid Matrix Solid	6010C 6010C 6010C 6010C 6010C Moisture

TestAmerica Buffalo

#### **General Chemistry (Continued)**

#### Analysis Batch: 232527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9045C	
480-77104-1 DU	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9045C	
LCS 480-232527/1	Lab Control Sample	Total/NA	Solid	9045C	
rep Batch: 232657					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9012B	
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9012B	
LCS 480-232657/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	
MB 480-232657/1-A	Method Blank	Total/NA	Solid	9012B	
nalysis Batch: 23269	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9012B	23265
480-77104-1 MS	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9012B	23265
LCS 480-232657/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	23265
MB 480-232657/1-A	Method Blank	Total/NA	Solid	9012B	23265
Prep Batch: 233436					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	7.3.4	
480-77104-1 DU	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	7.3.4	
LCS 480-233436/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	
MB 480-233436/1-A	Method Blank	Total/NA	Solid	7.3.4	
Prep Batch: 233441					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	7.3.3	
480-77104-1 DU	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	7.3.3	
LCS 480-233441/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	
MB 480-233441/1-A	Method Blank	Total/NA	Solid	7.3.3	
analysis Batch: 23346	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9034	23343
480-77104-1 DU	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9034	23343
LCS 480-233436/2-A	Lab Control Sample	Total/NA	Solid	9034	23343
MB 480-233436/1-A	Method Blank	Total/NA	Solid	9034	23343
_					

**QC Association Summary** 

#### Analysis Batch: 233474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9012	233441
480-77104-1 DU	EPT_Non.TSCA.Waste_2015.03.18	Total/NA	Solid	9012	233441
LCS 480-233441/2-A	Lab Control Sample	Total/NA	Solid	9012	233441
MB 480-233441/1-A	Method Blank	Total/NA	Solid	9012	233441

TestAmerica Job ID: 480-77104-1

#### Client Sample ID: EPT_Non.TSCA.Waste_2015.03.18 Date Collected: 03/18/15 16:00 Date Received: 03/24/15 09:00

Lab Sample ID: 480-77104-1 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			232186	03/25/15 12:29	JLS	TAL BUF
TCLP	Analysis	8260C		10	232760	03/28/15 04:39	CDC	TAL BUF
TCLP	Leach	1311			232184	03/25/15 12:25	JLS	TAL BUF
TCLP	Prep	3510C			232365	03/26/15 08:31	TRG	TAL BUF
TCLP	Analysis	8270D		1	232505	03/26/15 23:52	DMR	TAL BUF
Total/NA	Prep	3550C			232116	03/25/15 09:08	RJS	TAL BUF
Total/NA	Analysis	8082A		10	232270	03/25/15 20:21	KS	TAL BUF
TCLP	Leach	1311			232184	03/25/15 12:25	JLS	TAL BUF
TCLP	Prep	3010A			232394	03/26/15 10:05	TAS	TAL BUF
TCLP	Analysis	6010C		1	232678	03/27/15 12:27	AMH	TAL BUF
TCLP	Leach	1311			232184	03/25/15 12:25	JLS	TAL BUF
TCLP	Prep	7470A			232407	03/26/15 10:45	LRK	TAL BUF
TCLP	Analysis	7470A		1	232485	03/26/15 15:19	LRK	TAL BUF
Total/NA	Analysis	1010		1	232498	03/26/15 16:53	STD	TAL BUF
Total/NA	Prep	7.3.3			233441	03/31/15 23:15	LAW	TAL BUF
Total/NA	Analysis	9012		1	233474	04/01/15 09:38	LAW	TAL BUF
Total/NA	Prep	9012B			232657	03/27/15 09:29	EKB	TAL BUF
Total/NA	Analysis	9012B		1	232690	03/27/15 12:46	KC	TAL BUF
Total/NA	Prep	7.3.4			233436	03/31/15 23:15	LAW	TAL BUF
Total/NA	Analysis	9034		1	233464	04/01/15 09:30	LAW	TAL BUF
Total/NA	Analysis	9045C		1	232527	03/26/15 17:30	MDL	TAL BUF
Total/NA	Analysis	Moisture		1	232137	03/25/15 09:51	CSW	TAL BUF

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

#### Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-15 *
The following analytes	are included in this report, bu	ut certification is not off	ered by the governing a	uthority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
1010		Solid	Flashp	point	
7470A	7470A	Solid	Mercu	ry	
9012	7.3.3	Solid	Cyanic	de, Reactive	
9034	7.3.4	Solid	Sulfide	e, Reactive	
9045C		Solid	pН		
Moisture		Solid	Percer	nt Moisture	
Moisture		Solid	Percer	nt Solids	

* Certification renewal pending - certification considered valid.

#### **Method Summary**

#### Client: Ontario Specialty Contracting, Inc. Project/Site: Non TSCA Waste

lethod	Method Description	Protocol	Laboratory
260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
470A	TCLP Mercury	SW846	TAL BUF
010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL BUF
012	Cyanide, Reactive	SW846	TAL BUF
012B	Cyanide, Total andor Amenable	SW846	TAL BUF
034	Sulfide, Reactive	SW846	TAL BUF
045C	рН	SW846	TAL BUF
loisture	Percent Moisture	EPA	TAL BUF

#### Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

## Sample Summary

Client: Ontario Specialty Contracting, Inc. Project/Site: Non TSCA Waste

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-77104-1	EPT_Non.TSCA.Waste_2015.03.18	Solid	03/18/15 16:00	03/24/15 09:00

TestAmerica Buffalo

suffal	
<b>TestAmerica</b> H	10 Hazelwood Drive

**Chain of Custody Record** 



Amherst, NY 14228 phone 716.504.9852 fax 716.691.7991						•							TestAmerica Laboratories, Inc.	tories, Inc.
Client Contact	Project Manager: Schove, John	Schove, John		Site C	ontact: /	Site Contact: Andrew Madden	Madden		Date:	Date: 3/18/2015	5		COC No: 296983098	
Ontario Specialty Contracting Inc.	Tel/Fax: (716) 912-9926	9926		Lab C	ontact:	Lab Contact: Schove, John	John		Carrier:	1			1 of 1 COCs	
333 Ganson Street Buffalo, NY, 14203	Analysis	Analysis Turnaround Time	l Time				-						Job No.	
Phone: 716-856-3333	Calendar (C) or	(C) or Work Days (W)	N M										147	7
Fax: 716-842-1630		TAT	4	2010年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011年1月 2011 2011 2011 2011 2011 2011 2011 20									1111	/
PO# 55888 Client Job# 15007	X	ASAP	2 C										SDG No.	
Project Name: EPT Ithaca NY														
Sampling Event: Non TSCA Waste	Fastest turn	Fastest turn around possible please.	ole please.			t.2								
Site: Emerson Power Transmission Plant	Bill based	Bill based on performed TAT	TAT.				-		sl					
Sample Identification	Sample Sample Date Time	le Sample Type	# of Matrix Cont.	8760C - LCFE Actualies Efficien Samples	LCLP RCRA 8 Metals \$270D - TCLP SVOC	9012 - Reactive Cyanide	9034 - Reactive Sulfide 9012B - Total Cynnide	villidaing1 - A0101 IIq - U2402	Moisture - Percent Solid				Sample Specific Notes:	c Notes:
EPT_Non.TSCA.Waste_2015.03.18	3/18/15 16:00		S 4	1 N	1			-						
				<u> </u>										
												<u> </u>		
				<u> </u>							-			
														ļ
											480-	//1040	460-77104 Chain of Custody	
		Ŭ	Container Volume (oz)	e (oz) 8	80		- 00	∞						
Preservation: 1= Ice 2= HCI (Bydrochloric) 3= H2SO4 (Sulfuric) 4=HNO3	(Nitric) 5=NaOH (Sod	ium Hydroxid	e) 6=Other	1-G	9-I		5-I	19						
Possible Hazard Identification	[] Poison B	X Unknown		Sa	mple D. □ Rett	<b>ile Disposal ( A f</b> Return To Client	( A fee lient	may be	e assessed if sal Disposal By Lab	s <b>ed if s</b> il By La	amples b □	are reta ⊐ Ard	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	
Special Instructions/QC Requirements & Comments:														
Container Code: A=Amber G=Glass P=Poly/Plastic S=Summa T=Tedlar V	a T=Tedlar V=Vial					1								
Relinquished by:	Company:		Date/Time;	2 Ree	Received by	K	Ŵ				<i>R</i>		DateTime: Zumme ICO	6700
Relinquished by:	Company:		Date/Time:	Re	Received by					Company	any:		Date/Time:	
Relinquished by:	Company:		Date/Time:	Rec	Received by:	R.				Company.	any:		Date/Time:	
								ct	r.	J	2	NO L	J # / >>	

14

Client: Ontario Specialty Contracting, Inc.

#### Login Number: 77104 List Number: 1

Creator: Kinecki, Kenneth P

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	False	Sampled 3/18, rec'd 3/24
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo



THE LEADER IN ENVIRONMENTAL TESTING

## **ANALYTICAL REPORT**

#### TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

## TestAmerica Job ID: 480-78727-1

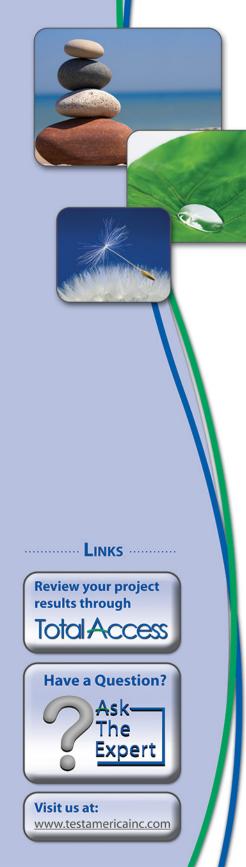
Client Project/Site: Ontario Specialty Contracting - OSC

#### For:

Ontario Specialty Contracting, Inc. 333 Ganson St. Buffalo, New York 14203

Attn: Andrew Madden

Authorized for release by: 4/29/2015 11:09:31 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com


Designee for

John Schove, Project Manager II (716)504-9838 john.schove@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	7
Surrogate Summary	12
QC Sample Results	14
QC Association Summary	25
Lab Chronicle	28
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	33

Client: Ontario Specialty Contracting, Inc. Project/Site: Ontario Specialty Contracting - OSC

3

#### Qualifiers

GC/MS VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	J
GC/MS Sem	i VOA	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
*	LCS or LCSD is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	8
GC Semi V	Α	
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
х	Surrogate is outside control limits	
*	LCS or LCSD is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		

Metals		
Qualifier	Qualifier Description	12
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	13
General Ch	nemistry	4.4
Qualifier	Qualifier Description	14
U	Indicates the analyte was analyzed for but not detected.	
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request	15

#### **General Chemistry**

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

#### Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

#### Laboratory: TestAmerica Buffalo

#### Narrative

Job Narrative 480-78727-1

#### Comments

No additional comments.

#### Receipt

The sample was received on 4/17/2015 6:10 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

#### Except:

The submitted volumes were received in four (4) mason jars with metal lids. Volume was poured off in Buffalo Sample Control into the following containers:

- 3 40 ml vials, # 631615
- 3 250 ml amber glass, # 121714
- 1 1L amber glass, # 111814
- 1 1L plastic, # 030615
- 1 250 ml plastic w/nitric acid, # 021115
- 1 250 ml plastic, # 092414

#### GC/MS VOA

Method(s) 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: EPT Liquid Waste 2015.04.17 (480-78727-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method(s) 8270D: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for 237551 recovered outside control limits for the following analytes: 4-Nitroaniline and 4-Chloroaniline in the LCS and 4-Nitroaniline in the LCSD. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.(LCS 480-237551/2-A) and (LCSD 480-237551/3-A)

Method(s) 8270D: The following samples required dilutions due to the nature of the sample matrix: EPT_Liquid Waste_2015.04.17 (480-78727-1). Because of these dilutions, the surrogate spike concentration in the samples were reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC Semi VOA

Method(s) 8081B: The following sample was diluted due to an abundance of target analytes: EPT_Liquid Waste_2015.04.17 (480-78727-1). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8081B: The laboratory control sample (LCS) recovered outside control. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported: LCS 480-237365/2-A.

Method(s) 8081B: The continuing calibration verification (CCV 480-238003/10) for Toxaphene was increased and exceeded control criteria of 20%, though all associated samples did not show any potential pattern. The data has been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### Job ID: 480-78727-1 (Continued)

#### Laboratory: TestAmerica Buffalo (Continued)

#### General Chemistry

Method(s) SM 2540D: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: EPT_Liquid Waste_2015.04.17 (480-78727-1). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 9040B, 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: EPT_Liquid Waste_2015.04.17 (480-78727-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with 237551.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with 237507.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Client: Ontario Specialty Contracting, Inc. Project/Site: Ontario Specialty Contracting - OSC

#### Client Sample ID: EPT_Liquid Waste_2015.04.17

#### Lab Sample ID: 480-78727-1

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Acetone	24	J	50	15	ug/L	5	8260C	Total/NA
Methylene Chloride	2.5	J	5.0	2.2	ug/L	5	8260C	Total/NA
Trichloroethene	4.1	J	5.0	2.3	ug/L	5	8260C	Total/NA
Endosulfan I	15		4.6	1.0	ug/L	100	8081B	Total/NA
PCB-1260	0.83		0.47	0.24	ug/L	1	8082A	Total/NA
Arsenic	0.011	J	0.015	0.0056	mg/L	1	6010C	Total/NA
Barium	0.33		0.0020	0.00070	mg/L	1	6010C	Total/NA
Cadmium	0.0026		0.0020	0.00050	mg/L	1	6010C	Total/NA
Chromium	0.040		0.0040	0.0010	mg/L	1	6010C	Total/NA
Lead	0.25		0.010	0.0030	mg/L	1	6010C	Total/NA
Mercury	0.0012		0.00020	0.00012	mg/L	1	7470A	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	1010	Total/NA
Total Suspended Solids	572		16.7	16.7	mg/L	1	SM 2540D	Total/NA
pH	7.44	HF	0.100	0.100	SU	1	SM 4500 H+ B	Total/NA

#### Client Sample ID: EPT_Liquid Waste_2015.04.17 Date Collected: 04/17/15 00:00 Date Received: 04/17/15 18:10

Lab Sample ID: 480-78727-1 Matrix: Water

1	
er	
ac	5
5	
5	6
5	
5	
5	
5	8
5	
5	9
5	
5	
5	
5	
5	
5	
5	
5	10
5	13
5	
5	
5	

Method: 8260C - Volatile Organic	Compounds I	by GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.0	U	5.0	4.1	ug/L			04/20/15 20:39	5
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1.1	ug/L			04/20/15 20:39	5
1,1,2-Trichloroethane	5.0	U	5.0	1.2	ug/L			04/20/15 20:39	5
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	5.0	1.6	ug/L			04/20/15 20:39	5
1,1-Dichloroethane	5.0	U	5.0	1.9	ug/L			04/20/15 20:39	5
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/L			04/20/15 20:39	5
1,2,4-Trichlorobenzene	5.0	U	5.0	2.1	ug/L			04/20/15 20:39	5
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.0	ug/L			04/20/15 20:39	5
1,2-Dibromoethane	5.0	U	5.0	3.7	ug/L			04/20/15 20:39	5
1,2-Dichlorobenzene	5.0	U	5.0	4.0	ug/L			04/20/15 20:39	5
1,2-Dichloroethane	5.0	U	5.0	1.1	ug/L			04/20/15 20:39	5
1,2-Dichloropropane	5.0	U	5.0	3.6	ug/L			04/20/15 20:39	5
1,3-Dichlorobenzene	5.0	U	5.0	3.9	ug/L			04/20/15 20:39	5
1,4-Dichlorobenzene	5.0	U	5.0	4.2	ug/L			04/20/15 20:39	5
2-Hexanone	25	U	25	6.2	ug/L			04/20/15 20:39	5
2-Butanone (MEK)	50	U	50	6.6	ug/L			04/20/15 20:39	5
4-Methyl-2-pentanone (MIBK)	25	U	25	11	ug/L			04/20/15 20:39	5
Acetone	24	J	50	15	ug/L			04/20/15 20:39	5
Benzene	5.0	U	5.0	2.1	ug/L			04/20/15 20:39	5
Bromodichloromethane	5.0	U	5.0	2.0	ug/L			04/20/15 20:39	5
Bromoform	5.0	U	5.0	1.3	ug/L			04/20/15 20:39	5
Bromomethane	5.0	U	5.0	3.5	ug/L			04/20/15 20:39	5
Carbon disulfide	5.0	U	5.0	0.95	ug/L			04/20/15 20:39	5
Carbon tetrachloride	5.0	U	5.0	1.4	ug/L			04/20/15 20:39	5
Chlorobenzene	5.0	U	5.0	3.8	ug/L			04/20/15 20:39	5
Dibromochloromethane	5.0	U	5.0	1.6	ug/L			04/20/15 20:39	5
Chloroethane	5.0	U	5.0		ug/L			04/20/15 20:39	5
Chloroform	5.0	U	5.0	1.7	ug/L			04/20/15 20:39	5
Chloromethane	5.0	U	5.0	1.8	ug/L			04/20/15 20:39	5
cis-1,2-Dichloroethene	5.0	U	5.0	4.1	ug/L			04/20/15 20:39	5
cis-1,3-Dichloropropene	5.0	U	5.0	1.8	ug/L			04/20/15 20:39	5
Cyclohexane	5.0	U	5.0	0.90	ug/L			04/20/15 20:39	5
Dichlorodifluoromethane	5.0	U	5.0	3.4	ug/L			04/20/15 20:39	5
Ethylbenzene	5.0		5.0	3.7	ug/L			04/20/15 20:39	5
Isopropylbenzene	5.0	U	5.0	4.0	ug/L			04/20/15 20:39	5
Methyl acetate	13		13		ug/L			04/20/15 20:39	5
Methyl tert-butyl ether	5.0	U	5.0	0.80				04/20/15 20:39	5
Methylcyclohexane	5.0	U	5.0	0.80	ug/L			04/20/15 20:39	5
Methylene Chloride	2.5	J	5.0		ug/L			04/20/15 20:39	5
Styrene	5.0	U	5.0		ug/L			04/20/15 20:39	5
Tetrachloroethene	5.0		5.0		ug/L			04/20/15 20:39	5
Toluene	5.0	U	5.0		ug/L			04/20/15 20:39	5
trans-1,2-Dichloroethene	5.0		5.0		ug/L			04/20/15 20:39	5
trans-1,3-Dichloropropene	5.0	U	5.0	1.9	ug/L			04/20/15 20:39	5
Trichloroethene	4.1	J	5.0		ug/L			04/20/15 20:39	5
Trichlorofluoromethane	5.0		5.0		ug/L			04/20/15 20:39	5
Vinyl chloride	5.0	U	5.0		ug/L			04/20/15 20:39	5
Xylenes, Total	10	U	10	3.3	ug/L			04/20/15 20:39	5

Acenaphthene

Acenaphthylene

Acetophenone

Benzaldehyde

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Bis(2-chloroethyl)ether

Butyl benzyl phthalate

Caprolactam

Carbazole

Chrysene

Bis(2-chloroethoxy)methane

Bis(2-ethylhexyl) phthalate

Anthracene

Atrazine

#### Client Sample ID: EPT_Liquid Waste_2015.04.17 Date Collected: 04/17/15 00:00 Date Received: 04/17/15 18:10

#### Lab Sample ID: 480-78727-1 Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		66 - 137					04/20/15 20:39	5
Toluene-d8 (Surr)	100		71 - 126					04/20/15 20:39	5
4-Bromofluorobenzene (Surr)	103		73 - 120					04/20/15 20:39	5
Dibromofluoromethane (Surr)	106		60 - 140					04/20/15 20:39	5
Method: 8270D - Semivolatile					-	_	_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	240		240	31	0		04/21/15 10:40	04/23/15 21:39	50
bis (2-chloroisopropyl) ether	240		240		ug/L		04/21/15 10:40	04/23/15 21:39	50
2,4,5-Trichlorophenol	240		240		ug/L		04/21/15 10:40	04/23/15 21:39	50
2,4,6-Trichlorophenol	240		240		ug/L		04/21/15 10:40	04/23/15 21:39	50
2,4-Dichlorophenol	240	-	240		ug/L		04/21/15 10:40	04/23/15 21:39	50
2,4-Dimethylphenol	240		240		ug/L		04/21/15 10:40	04/23/15 21:39	50
2,4-Dinitrophenol	480		480		ug/L		04/21/15 10:40	04/23/15 21:39	50
2,4-Dinitrotoluene	240		240	21	ug/L		04/21/15 10:40	04/23/15 21:39	50
2,6-Dinitrotoluene	240	U	240	19	ug/L		04/21/15 10:40	04/23/15 21:39	50
2-Chloronaphthalene	240	U	240	22	ug/L		04/21/15 10:40	04/23/15 21:39	50
2-Chlorophenol	240	U	240	25	ug/L		04/21/15 10:40	04/23/15 21:39	50
2-Methylphenol	240	U	240	19	ug/L		04/21/15 10:40	04/23/15 21:39	50
2-Methylnaphthalene	240	U	240	29	ug/L		04/21/15 10:40	04/23/15 21:39	50
2-Nitroaniline	480	U	480	20	ug/L		04/21/15 10:40	04/23/15 21:39	50
2-Nitrophenol	240	U	240	23	ug/L		04/21/15 10:40	04/23/15 21:39	50
3,3'-Dichlorobenzidine	240	U	240	19	ug/L		04/21/15 10:40	04/23/15 21:39	50
3-Nitroaniline	480	U	480	23	ug/L		04/21/15 10:40	04/23/15 21:39	50
4,6-Dinitro-2-methylphenol	480	U	480	110	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Bromophenyl phenyl ether	240	U	240	22	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Chloro-3-methylphenol	240	U	240	22	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Chloroaniline	240	U *	240	28	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Chlorophenyl phenyl ether	240	U	240	17	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Methylphenol	480	U	480	17	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Nitroaniline	480	U *	480	12	ug/L		04/21/15 10:40	04/23/15 21:39	50
4-Nitrophenol	480	U	480	73	ug/L		04/21/15 10:40	04/23/15 21:39	50

240

240

240

240

240

240

240

240

240

240

240

240

240

240

240

240

240

240

20 ug/L

18 ug/L

26 ug/L

17 ug/L

22 ug/L

16 ug/L

17

35 ug/L

17 ug/L

19 ug/L

86

20 ug/L

110 ug/L

14 ug/L

16 ug/L

13 ug/L

22 ug/L

13 ug/L

ug/L

ug/L

240 U

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

04/23/15 21:39

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

04/21/15 10:40

#### Client Sample ID: EPT_Liquid Waste_2015.04.17 Date Collected: 04/17/15 00:00 Date Received: 04/17/15 18:10

TestAmerica Job ID: 480-78727-1

#### Lab Sample ID: 480-78727-1 Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	240	U	240	20	ug/L		04/21/15 10:40	04/23/15 21:39	50
Di-n-butyl phthalate	240	U	240	15	ug/L		04/21/15 10:40	04/23/15 21:39	50
Di-n-octyl phthalate	240	U	240	22	ug/L		04/21/15 10:40	04/23/15 21:39	50
Dibenzofuran	480	U	480	24	ug/L		04/21/15 10:40	04/23/15 21:39	50
Diethyl phthalate	240	U	240	11	ug/L		04/21/15 10:40	04/23/15 21:39	50
Dimethyl phthalate	240	U	240	17	ug/L		04/21/15 10:40	04/23/15 21:39	50
Fluoranthene	240	U	240	19	ug/L		04/21/15 10:40	04/23/15 21:39	50
Fluorene	240	U	240	17	ug/L		04/21/15 10:40	04/23/15 21:39	50
Hexachlorobenzene	240	U	240	24	ug/L		04/21/15 10:40	04/23/15 21:39	50
Hexachlorobutadiene	240	U	240	33	ug/L		04/21/15 10:40	04/23/15 21:39	50
Hexachlorocyclopentadiene	240	U	240	28	ug/L		04/21/15 10:40	04/23/15 21:39	50
Hexachloroethane	240	U	240	28	ug/L		04/21/15 10:40	04/23/15 21:39	50
Indeno[1,2,3-cd]pyrene	240	U	240	22	ug/L		04/21/15 10:40	04/23/15 21:39	50
Isophorone	240	U	240	21	ug/L		04/21/15 10:40	04/23/15 21:39	50
N-Nitrosodi-n-propylamine	240	U	240	26	ug/L		04/21/15 10:40	04/23/15 21:39	50
N-Nitrosodiphenylamine	240	U	240	24	ug/L		04/21/15 10:40	04/23/15 21:39	50
Naphthalene	240		240	36	ug/L		04/21/15 10:40	04/23/15 21:39	50
Nitrobenzene	240		240	14			04/21/15 10:40	04/23/15 21:39	50
Pentachlorophenol	480		480	110	ug/L		04/21/15 10:40	04/23/15 21:39	50
Phenanthrene	240		240	21	ug/L		04/21/15 10:40	04/23/15 21:39	50
Phenol	240		240	19	ug/L		04/21/15 10:40	04/23/15 21:39	50
Pyrene	240		240		ug/L ug/L		04/21/15 10:40	04/23/15 21:39	50 50
, yrene	240	0	240	10	ug/L		04/21/13 10.40	04/20/10 21:00	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	76		46 - 120				04/21/15 10:40	04/23/15 21:39	50
Phenol-d5 (Surr)	34		16 - 120				04/21/15 10:40	04/23/15 21:39	50
p-Terphenyl-d14 (Surr)	73		67 _ 150				04/21/15 10:40	04/23/15 21:39	50
2,4,6-Tribromophenol (Surr)	62		52 - 132				04/21/15 10:40	04/23/15 21:39	50
2-Fluorobiphenyl	76		48 - 120				04/21/15 10:40	04/23/15 21:39	50
2-Fluorophenol (Surr)	48		20 - 120				04/21/15 10:40	04/23/15 21:39	50
-									
Method: 8081B - Organochlo						_			
Analyte		Qualifior	RL		Unit	D	Prepared	Analyzed	Dil Fac
	Result			MDL					
	4.6	U	4.6	0.85	ug/L		04/20/15 14:19	04/24/15 19:58	100
4,4'-DDE	4.6	U U	4.6	0.85 1.1	ug/L ug/L		04/20/15 14:19	04/24/15 19:58	100
4,4'-DDE 4,4'-DDT	4.6 4.6 4.6	บ บ บ	4.6 4.6 4.6	0.85 1.1 1.0	ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58	100 100
4,4'-DDE 4,4'-DDT	4.6 4.6 4.6 4.6	U U U U	4.6	0.85 1.1	ug/L ug/L ug/L		04/20/15 14:19	04/24/15 19:58	100 100 100
4,4'-DDE 4,4'-DDT Aldrin	4.6 4.6 4.6	U U U U	4.6 4.6 4.6	0.85 1.1 1.0	ug/L ug/L ug/L	<u> </u>	04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58	100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	4.6 4.6 4.6 4.6	บ บ บ บ	4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71	ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane	4.6 4.6 4.6 4.6 4.6 4.6	บ บ บ บ บ	4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4	ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC	4.6 4.6 4.6 4.6 4.6 4.6 4.6	U U U U U U U	4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4	ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	U U U U U U U U	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4 2.3	ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	U U U U U U U U	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4 2.3 0.92 0.90	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100 100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin <b>Endosulfan I</b>	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	U U U U U U U U U	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4 2.3 0.92 0.90	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100 100 100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	U U U U U U U U U U U	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4 2.3 0.92 0.90 1.0 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100 100 100 100 100
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6		4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4 2.3 0.92 0.90 1.0 1.1 1.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58 04/24/15 19:58	100 100 100 100 100 100 100 100 100
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde	4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6		4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	0.85 1.1 1.0 0.75 0.71 1.4 2.3 0.92 0.90 1.0 1.1 1.4 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19 04/20/15 14:19	04/24/15 19:58 04/24/15 19:58	100 100 100 100 100 100 100 100 100 100

TestAmerica Buffalo

100

100

100

04/24/15 19:58

04/24/15 19:58

04/24/15 19:58

04/20/15 14:19

04/20/15 14:19

04/20/15 14:19

4.6

4.6

4.6

1.1 ug/L

0.74 ug/L

1.0 ug/L

4.6 U*

4.6 U

4.6 U

Endrin ketone

gamma-BHC (Lindane)

gamma-Chlordane

#### Client Sample ID: EPT_Liquid Waste_2015.04.17 Date Collected: 04/17/15 00:00 Date Received: 04/17/15 18:10

#### Lab Sample ID: 480-78727-1 Matrix: Water

matrix. Water

Analyta	Pesticides (G	C) (Continue Qualifier		MDL	Unit	D	Bronered	Anolyzed	
Inalyte	4.6						Prepared 04/20/15 14:19	Analyzed 04/24/15 19:58	Dil Fac 100
leptachlor leptachlor epoxide	4.6 4.6		4.6				04/20/15 14:19	04/24/15 19:58	100
	4.0		4.6 4.6		ug/L ug/L		04/20/15 14:19	04/24/15 19:58	100
Methoxychlor Foxophono					-				
Toxaphene	46	U	46	11	ug/L		04/20/15 14:19	04/24/15 19:58	100
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	20 - 120				04/20/15 14:19	04/24/15 19:58	100
Tetrachloro-m-xylene	0	X	36 - 120				04/20/15 14:19	04/24/15 19:58	100
Method: 8082A - Polychlorinated E	Biphenyls (P(	CBs) by Gas	s Chromatogra	iphy					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.47	U	0.47	0.17	ug/L		04/20/15 14:33	04/21/15 17:06	1
PCB-1221	0.47	U	0.47	0.17	ug/L		04/20/15 14:33	04/21/15 17:06	1
PCB-1232	0.47	U	0.47	0.17	ug/L		04/20/15 14:33	04/21/15 17:06	1
PCB-1242	0.47	U	0.47	0.17	ug/L		04/20/15 14:33	04/21/15 17:06	1
PCB-1248	0.47	U	0.47	0.17			04/20/15 14:33	04/21/15 17:06	1
PCB-1254	0.47		0.47	0.24	-		04/20/15 14:33	04/21/15 17:06	1
PCB-1260	0.83	•	0.47	0.24			04/20/15 14:33	04/21/15 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	51		24 - 137				04/20/15 14:33	04/21/15 17:06	1
DCB Decachlorobiphenyl	19		19 - 125				04/20/15 14:33	04/21/15 17:06	1
Analyte Silvex (2,4,5-TP) 2,4-D	0.48		RL 0.48 0.48		ug/L ug/L	D 	Prepared 04/21/15 08:40 04/21/15 08:40	Analyzed 04/23/15 10:04 04/23/15 10:04	Dil Fac 1
!,4-D			U.40	0.39	ug/L		04/21/15 00.40	04/23/15 10.04	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	79		35 - 143				04/21/15 08:40	04/23/15 10:04	1
Nethod: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte	0.011		0.015	0.0056	mg/L	_ <u>D</u>	04/21/15 14:26	04/22/15 18:46	Dil Fac
Analyte	0.011 0.33		0.015	0.0056 0.00070	mg/L mg/L	_ <u>D</u>	04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46	1 1
Analyte Arsenic Barium Cadmium	0.011		0.015 0.0020 0.0020	0.0056 0.00070 0.00050	mg/L mg/L mg/L	<u>D</u>	04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1
Analyte Arsenic Barium Cadmium	0.011 0.33		0.015	0.0056 0.00070 0.00050 0.0010	mg/L mg/L mg/L mg/L	<u>D</u>	04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46	1 1
Analyte Arsenic Barium Cadmium Chromium	0.011 0.33 0.0026 0.040 0.25	J	0.015 0.0020 0.0020	0.0056 0.00070 0.00050	mg/L mg/L mg/L mg/L	_ <u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1
Analyte Arsenic Barium Cadmium Chromium Lead	0.011 0.33 0.0026 0.040	J	0.015 0.0020 0.0020 0.0040	0.0056 0.00070 0.00050 0.0010	mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1
Analyte Arsenic Barium Cadmium Chromium Lead Selenium	0.011 0.33 0.0026 0.040 0.25	U	0.015 0.0020 0.0020 0.0040 0.010	0.0056 0.00070 0.00050 0.0010 0.0030	mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver	0.011 0.33 0.0026 0.040 0.25 0.025	U	0.015 0.0020 0.0020 0.0040 0.010 0.025	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087	mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA)	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060	U	0.015 0.0020 0.0020 0.0040 0.010 0.025	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087	mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1
Method: 6010C - Metals (ICP) Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA) Analyte Mercury	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060	U U	0.015 0.0020 0.0020 0.0040 0.010 0.025 0.0060	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L Unit	 	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1 1
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA) Analyte Mercury	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060 Result	U U	0.015 0.0020 0.0020 0.0040 0.010 0.025 0.0060 RL	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087 0.0017 MDL	mg/L mg/L mg/L mg/L mg/L mg/L Unit	 	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1 2 Dil Fac
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA) Analyte Mercury General Chemistry	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060 Result 0.0012	U U	0.015 0.0020 0.0020 0.0040 0.010 0.025 0.0060 RL	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087 0.0017 <b>MDL</b> 0.00012	mg/L mg/L mg/L mg/L mg/L mg/L Unit	 	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1 1 <b>Dil Fac</b>
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA) Analyte Mercury General Chemistry Analyte	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060 Result 0.0012	J U U Qualifier	0.015 0.0020 0.0020 0.0040 0.010 0.025 0.0060 <b>RL</b> 0.00020	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087 0.0017 <b>MDL</b> 0.00012 <b>RL</b>	mg/L mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 Prepared 04/21/15 08:35	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 <b>Analyzed</b> 04/21/15 13:46	1 1 1 1 1 1 1 1 <b>Dil Fac</b> 1
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA) Analyte Mercury General Chemistry Analyte Flashpoint	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060 Result 0.0012 Result	J U U Qualifier Qualifier	0.015 0.0020 0.0020 0.0040 0.010 0.025 0.0060 <b>RL</b> 0.00020	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087 0.0017 <b>MDL</b> 0.00012 <b>RL</b> 50.0	mg/L mg/L mg/L mg/L mg/L mg/L Unit mg/L	<u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 Prepared 04/21/15 08:35	04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1 1 <b>Dil Fac</b> 1 <b>Dil Fac</b>
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - Mercury (CVAA) Analyte	0.011 0.33 0.0026 0.040 0.25 0.025 0.0060 Result 0.0012 Result >176.0	J U U Qualifier U	0.015 0.0020 0.0020 0.0040 0.010 0.025 0.0060 RL 0.00020 RL 50.0	0.0056 0.00070 0.00050 0.0010 0.0030 0.0087 0.0017 <b>MDL</b> 0.00012 <b>RL</b> 50.0 10.0	mg/L mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit Degrees F	<u>D</u>	04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 04/21/15 14:26 <b>Prepared</b> 04/21/15 08:35	04/22/15 18:46 04/22/15 18:46	1 1 1 1 1 1 1 <b>Dil Fac</b> 1 <b>Dil Fac</b> 1

Client Sample ID: EPT_Liquid V		Lab Sample ID: 480-78727-1											
Date Collected: 04/17/15 00:00	ate Collected: 04/17/15 00:00								Matrix: Water				
Date Received: 04/17/15 18:10													
General Chemistry (Continued)													
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac				
pH	7.44	HE	0.100	0.100	SU			04/25/15 13:00	1				

Prep Type: Total/NA

#### Method: 8260C - Volatile Organic Compounds by GC/MS

#### Matrix: Water

				Percent Su	rrogate Recovery	(Acceptance Lim
		12DCE	TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)	(60-140)	
480-78727-1	EPT_Liquid Waste_2015.04.17	98	100	103	106	
LCS 480-237319/4	Lab Control Sample	96	98	102	100	
MB 480-237319/6	Method Blank	100	100	103	107	
Surrogate Legend						
12DCE = 1,2-Dichloroe	thane-d4 (Surr)					
TOL = Toluene-d8 (Sur	r)					
BFB = 4-Bromofluorobe	enzene (Surr)					
DBFM = Dibromofluoro	methane (Surr)					

## Method: 8270D - Semivolatile Organic Compounds (GC/MS)

				Percent Sur	rrogate Reco	very (Accept	ance Limits)
		NBZ	PHL	TPH	TBP	FBP	2FP
ab Sample ID	Client Sample ID	(46-120)	(16-120)	(67-150)	(52-132)	(48-120)	(20-120)
80-78727-1	EPT_Liquid Waste_2015.04.17	76	34	73	62	76	48
CS 480-237551/2-A	Lab Control Sample	89	53	96	93	86	70
CSD 480-237551/3-A	Lab Control Sample Dup	93	58	98	96	86	72
IB 480-237551/1-A	Method Blank	84	43	109	76	85	62
Surrogate Legend							

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

#### Method: 8081B - Organochlorine Pesticides (GC) Matrix: Water

				Percent Surrogate Recovery (Acceptance Limits)
		DCB1	TCX1	
Lab Sample ID	Client Sample ID	(20-120)	(36-120)	
480-78727-1	EPT_Liquid Waste_2015.04.17	0 X	0 X	
LCS 480-237365/2-A	Lab Control Sample	45	103	
MB 480-237365/1-A	Method Blank	68	104	
Surrogate Legend				
DCB = DCB Decachloro	biphenyl			

TCX = Tetrachloro-m-xylene

Matrix: Water

#### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

#### Prep Type: Total/NA

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(24-137)	(19-125)	
480-78727-1	EPT_Liquid Waste_2015.04.17	51	19	

5

7

## Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Water				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(24-137)	(19-125)	
LCS 480-237367/2-A	Lab Control Sample	82	43	·
MB 480-237367/1-A	Method Blank	53	52	
Surrogate Legend				
TCX = Tetrachloro-m-xy	rlene			
DCB = DCB Decachloro	biphenyl			
Method: 8151A - He	erbicides (GC)			
Matrix: Water				Prep Type: Total/NA

#### Percent Surrogate Recovery (Acceptance Limits) DCPA1 (35-143) Lab Sample ID **Client Sample ID** EPT_Liquid Waste_2015.04.17 480-78727-1 79 LCS 480-237507/2-A Lab Control Sample 83 LCSD 480-237507/3-A Lab Control Sample Dup 74 MB 480-237507/1-A Method Blank 90 Surrogate Legend DCPA = 2,4-Dichlorophenylacetic acid

RL

1.0

MDL Unit

0.82 ug/L

D

Prepared

Lab Sample ID: MB 480-237319/6

Matrix: Water

1,1,1-Trichloroethane

Analyte

Analysis Batch: 237319

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

1.0 U

**Client Sample ID: Method Blank** 

Analyzed

04/20/15 14:15

Prep Type: Total/NA

Dil Fac

1

1,1,2,2-Tetrachloroethane 1.0 U 1.0 0.21 ug/L 04/20/15 14:15 1 1,1,2-Trichloroethane 1.0 U 1.0 0.23 ug/L 04/20/15 14:15 1 1,1,2-Trichloro-1,2,2-trifluoroethane 1.0 U 1.0 0.31 ug/L 04/20/15 14:15 1 1,1-Dichloroethane 1.0 U 1.0 0.38 ug/L 04/20/15 14:15 1 1,1-Dichloroethene 1.0 U 1.0 0.29 ug/L 04/20/15 14:15 1 1,2,4-Trichlorobenzene 1.0 U 1.0 0.41 ug/L 04/20/15 14:15 1 1,2-Dibromo-3-Chloropropane 1.0 U 1.0 0.39 ug/L 04/20/15 14:15 1 1,2-Dibromoethane 10 U 0.73 ug/L 04/20/15 14:15 1.0 1 1,2-Dichlorobenzene 1.0 U 1.0 0.79 ug/L 04/20/15 14:15 1 1.2-Dichloroethane 1.0 U 1.0 0.21 ug/L 04/20/15 14:15 1 1,2-Dichloropropane 1.0 U 1.0 0.72 ug/L 04/20/15 14:15 1 1,3-Dichlorobenzene 10 U 10 0.78 ug/L 04/20/15 14:15 1 1,4-Dichlorobenzene 1.0 U 1.0 0.84 ug/L 04/20/15 14:15 1 5.0 U 5.0 04/20/15 14:15 1 2-Hexanone 1.2 ug/L 2-Butanone (MEK) 10 U 10 1.3 ug/L 04/20/15 14:15 1 4-Methyl-2-pentanone (MIBK) 5.0 U 5.0 2.1 04/20/15 14:15 ug/L 1 Acetone 10 U 10 3.0 ug/L 04/20/15 14:15 Benzene 1.0 U 1.0 0.41 ug/L 04/20/15 14:15 Bromodichloromethane 1.0 U 1.0 0.39 ug/L 04/20/15 14:15 1 Bromoform 1.0 U 1.0 0.26 ug/L 04/20/15 14:15 1 Bromomethane 1.0 U 1.0 0.69 ug/L 04/20/15 14:15 1 Carbon disulfide 1.0 U 1.0 0.19 ug/L 04/20/15 14:15 Carbon tetrachloride 1.0 U 1.0 0.27 ug/L 04/20/15 14:15 1 Chlorobenzene 1.0 U 1.0 0.75 ug/L 04/20/15 14:15 Dibromochloromethane 10 U 10 0.32 ug/L 04/20/15 14.15 1 Chloroethane 1.0 U 1.0 0.32 ug/L 04/20/15 14:15 Chloroform 1.0 U 1.0 0.34 ug/L 04/20/15 14:15 Chloromethane 1.0 U 1.0 0.35 ug/L 04/20/15 14:15 1 cis-1,2-Dichloroethene 1.0 U 1.0 04/20/15 14:15 0.81 ug/L 1 cis-1,3-Dichloropropene 1.0 U 1.0 0.36 ug/L 04/20/15 14:15 1 Cyclohexane 1.0 U 1.0 0.18 ua/L 04/20/15 14:15 1 Dichlorodifluoromethane 1.0 U 1.0 0.68 ug/L 04/20/15 14:15 1 Ethylbenzene 1.0 U 1.0 0.74 ug/L 04/20/15 14:15 Isopropylbenzene 1.0 U 1.0 0.79 ug/L 04/20/15 14:15 1 2.5 Methyl acetate 2.5 U 0.50 ug/L 04/20/15 14:15 0.16 ug/L Methyl tert-butyl ether 10 U 1.0 04/20/15 14:15 1 Methylcyclohexane 1.0 U 04/20/15 14:15 1.0 0.16 ug/L Methylene Chloride ug/L 1.0 U 1.0 0.44 04/20/15 14:15 1 Styrene 1.0 U 1.0 0.73 ug/L 04/20/15 14:15 1 Tetrachloroethene 1.0 U 1.0 0.36 ug/L 04/20/15 14:15 1 Toluene 1.0 U 1.0 0.51 04/20/15 14:15 ug/L trans-1,2-Dichloroethene 1.0 U 1.0 0.90 04/20/15 14:15 ug/L trans-1,3-Dichloropropene 1.0 U 1.0 0.37 ug/L 04/20/15 14:15 1 Trichloroethene 1.0 U 1.0 0.46 ug/L 04/20/15 14:15 0.88 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/20/15 14:15 1 Vinyl chloride 1.0 U 1.0 0.90 ug/L 04/20/15 14:15 1 Xylenes, Total 2.0 U 04/20/15 14:15 2.0 0.66 ug/L 1

Limits

66 - 137

71 - 126

73 - 120

60 - 140

Lab Sample ID: MB 480-237319/6

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 237319

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

%Recovery Qualifier

100

100

103

107

**Client Sample ID: Method Blank** 

Analyzed

04/20/15 14:15

04/20/15 14:15

04/20/15 14:15

04/20/15 14:15

Prep Type: Total/NA

Dil Fac

1

1

1

1

# 2 3 4 5 6

#### Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prepared

#### Matrix: Water Analysis Batch: 237319

Lab Sample ID: LCS 480-237319/4

Analysis Batch: 237319							
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	26.3		ug/L		105	73 - 126
1,1,2,2-Tetrachloroethane	25.0	22.7		ug/L		91	70 - 126
1,1,2-Trichloroethane	25.0	24.1		ug/L		96	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.7		ug/L		107	52 - 148
ne 1,1-Dichloroethane	25.0	24.8		ug/L		99	71 - 129
1,1-Dichloroethene	25.0	24.0		ug/L		102	58 - 121
1,2,4-Trichlorobenzene	25.0	25.7		ug/L		102	70 - 122
1,2-Dibromo-3-Chloropropane	25.0	23.0		ug/L ug/L		92	56 - 134
1.2-Dibromoethane	25.0	25.0		-		92 100	77 - 120
1,2-Diblombenzene	25.0	25.1		ug/L		100	80 - 124
	25.0	23.1		ug/L		93	80 - 124 75 - 127
1,2-Dichloroethane				ug/L			
1,2-Dichloropropane	25.0	25.1		ug/L		100	76 - 120
1,3-Dichlorobenzene	25.0	25.7		ug/L		103	77 - 120
1,4-Dichlorobenzene	25.0	24.9		ug/L		99	75 - 120
2-Hexanone	125	107		ug/L		85	65 - 127
2-Butanone (MEK)	125	109		ug/L		87	57 - 140
4-Methyl-2-pentanone (MIBK)	125	104		ug/L		83	71 - 125
Acetone	125	113		ug/L		91	56 - 142
Benzene	25.0	24.4		ug/L		98	71 - 124
Bromodichloromethane	25.0	26.1		ug/L		104	80 - 122
Bromoform	25.0	27.2		ug/L		109	52 - 132
Bromomethane	25.0	29.0		ug/L		116	55 - 144
Carbon disulfide	25.0	25.9		ug/L		104	59 - 134
Carbon tetrachloride	25.0	27.4		ug/L		109	72 - 134
Chlorobenzene	25.0	25.7		ug/L		103	72 - 120
Dibromochloromethane	25.0	27.0		ug/L		108	75 - 125
Chloroethane	25.0	23.4		ug/L		94	69 - 136
Chloroform	25.0	24.6		ug/L		99	73 - 127
Chloromethane	25.0	23.4		ug/L		94	68 - 124
cis-1,2-Dichloroethene	25.0	25.6		ug/L		102	74 - 124
cis-1,3-Dichloropropene	25.0	26.4		ug/L		106	74 - 124
Cyclohexane	25.0	24.3		ug/L		97	59 _ 135
Dichlorodifluoromethane	25.0	24.3		ug/L		97	59 - 135
Ethylbenzene	25.0	25.5		ug/L		102	77 _ 123
Isopropylbenzene	25.0	25.3		ug/L		101	77 _ 122
Methyl acetate	125	102		ug/L		82	74 - 133
Methyl tert-butyl ether	25.0	24.7		ug/L		99	64 - 127
•							

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: LCS 480-237319/4 Matrix: Water

#### Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 237319			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylcyclohexane		<u> </u>	25.0	24.7		ug/L		99	61 - 138	
Methylene Chloride			25.0	24.8		ug/L		99	57 _ 132	
Styrene			25.0	26.0		ug/L		104	70 _ 130	
Tetrachloroethene			25.0	26.3		ug/L		105	74 - 122	
Toluene			25.0	24.3		ug/L		97	80 - 122	
trans-1,2-Dichloroethene			25.0	25.8		ug/L		103	73 - 127	
Trichloroethene			25.0	25.2		ug/L		101	74 ₋ 123	
Trichlorofluoromethane			25.0	25.8		ug/L		103	62 - 152	
Vinyl chloride			25.0	23.6		ug/L		94	65 - 133	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
10 Di 11 11 11 11 10 1			00 107							

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
Toluene-d8 (Surr)	98		71 - 126
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	100		60 - 140

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

#### Lab Sample ID: MB 480-237551/1-A Matrix: Water Analysis Batch: 238204

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	5.0	U	5.0	0.65	ug/L		04/21/15 10:40	04/23/15 20:14	1
bis (2-chloroisopropyl) ether	5.0	U	5.0	0.52	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,4,5-Trichlorophenol	5.0	U	5.0	0.48	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,4,6-Trichlorophenol	5.0	U	5.0	0.61	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,4-Dichlorophenol	5.0	U	5.0	0.51	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,4-Dimethylphenol	5.0	U	5.0	0.50	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,4-Dinitrophenol	10	U	10	2.2	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,4-Dinitrotoluene	5.0	U	5.0	0.45	ug/L		04/21/15 10:40	04/23/15 20:14	1
2,6-Dinitrotoluene	5.0	U	5.0	0.40	ug/L		04/21/15 10:40	04/23/15 20:14	1
2-Chloronaphthalene	5.0	U	5.0	0.46	ug/L		04/21/15 10:40	04/23/15 20:14	1
2-Chlorophenol	5.0	U	5.0	0.53	ug/L		04/21/15 10:40	04/23/15 20:14	1
2-Methylphenol	5.0	U	5.0	0.40	ug/L		04/21/15 10:40	04/23/15 20:14	1
2-Methylnaphthalene	5.0	U	5.0	0.60	ug/L		04/21/15 10:40	04/23/15 20:14	1
2-Nitroaniline	10	U	10	0.42	ug/L		04/21/15 10:40	04/23/15 20:14	1
2-Nitrophenol	5.0	U	5.0	0.48	ug/L		04/21/15 10:40	04/23/15 20:14	1
3,3'-Dichlorobenzidine	5.0	U	5.0	0.40	ug/L		04/21/15 10:40	04/23/15 20:14	1
3-Nitroaniline	10	U	10	0.48	ug/L		04/21/15 10:40	04/23/15 20:14	1
4,6-Dinitro-2-methylphenol	10	U	10	2.2	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Bromophenyl phenyl ether	5.0	U	5.0	0.45	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Chloro-3-methylphenol	5.0	U	5.0	0.45	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Chloroaniline	5.0	U	5.0	0.59	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Chlorophenyl phenyl ether	5.0	U	5.0	0.35	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Methylphenol	10	U	10	0.36	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Nitroaniline	10	U	10	0.25	ug/L		04/21/15 10:40	04/23/15 20:14	1
4-Nitrophenol	10	U	10	1.5	ug/L		04/21/15 10:40	04/23/15 20:14	1
A second s									

RL

MDL Unit

Lab Sample ID: MB 480-237551/1-A

Matrix: Water

Analyte

Analysis Batch: 238204

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Result Qualifier

**Client Sample ID: Method Blank** 

Analyzed

Prepared

D

Prep Type: Total/NA

Prep Batch: 237551

Dil Fac

8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		04/21/15 10:40	04/23/15 20:14	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		04/21/15 10:40	04/23/15 20:14	1
Acetophenone	5.0	U	5.0	0.54	ug/L		04/21/15 10:40	04/23/15 20:14	1
Anthracene	5.0	U	5.0	0.28	ug/L		04/21/15 10:40	04/23/15 20:14	1
Atrazine	5.0	U	5.0	0.46	ug/L		04/21/15 10:40	04/23/15 20:14	1
Benzaldehyde	0.381	J	5.0	0.27	ug/L		04/21/15 10:40	04/23/15 20:14	1
Benzo[a]anthracene	5.0	U	5.0	0.36	ug/L		04/21/15 10:40	04/23/15 20:14	1
Benzo[a]pyrene	5.0	U	5.0	0.47	ug/L		04/21/15 10:40	04/23/15 20:14	1
Benzo[b]fluoranthene	5.0	U	5.0	0.34	ug/L		04/21/15 10:40	04/23/15 20:14	1
Benzo[g,h,i]perylene	5.0	U	5.0	0.35	ug/L		04/21/15 10:40	04/23/15 20:14	1
Benzo[k]fluoranthene	5.0	U	5.0	0.73	ug/L		04/21/15 10:40	04/23/15 20:14	1
Bis(2-chloroethoxy)methane	5.0	U	5.0	0.35	ug/L		04/21/15 10:40	04/23/15 20:14	1
Bis(2-chloroethyl)ether	5.0	U	5.0	0.40	ug/L		04/21/15 10:40	04/23/15 20:14	1
Bis(2-ethylhexyl) phthalate	5.0	U	5.0	1.8	ug/L		04/21/15 10:40	04/23/15 20:14	1
Butyl benzyl phthalate	0.517	J	5.0	0.42	ug/L		04/21/15 10:40	04/23/15 20:14	1
Caprolactam	5.0	U	5.0	2.2	ug/L		04/21/15 10:40	04/23/15 20:14	1
Carbazole	5.0	U	5.0	0.30	ug/L		04/21/15 10:40	04/23/15 20:14	1
Chrysene	5.0	U	5.0	0.33	ug/L		04/21/15 10:40	04/23/15 20:14	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		04/21/15 10:40	04/23/15 20:14	1
Di-n-butyl phthalate	5.0	U	5.0	0.31	ug/L		04/21/15 10:40	04/23/15 20:14	1
Di-n-octyl phthalate	5.0	U	5.0	0.47	ug/L		04/21/15 10:40	04/23/15 20:14	1
Dibenzofuran	10	U	10	0.51	ug/L		04/21/15 10:40	04/23/15 20:14	1
Diethyl phthalate	5.0	U	5.0	0.22	ug/L		04/21/15 10:40	04/23/15 20:14	1
Dimethyl phthalate	5.0	U	5.0	0.36	ug/L		04/21/15 10:40	04/23/15 20:14	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		04/21/15 10:40	04/23/15 20:14	1
Fluorene	5.0	U	5.0	0.36	ug/L		04/21/15 10:40	04/23/15 20:14	1
Hexachlorobenzene	5.0	U	5.0	0.51	ug/L		04/21/15 10:40	04/23/15 20:14	1
Hexachlorobutadiene	5.0	U	5.0	0.68	ug/L		04/21/15 10:40	04/23/15 20:14	1
Hexachlorocyclopentadiene	5.0	U	5.0	0.59	ug/L		04/21/15 10:40	04/23/15 20:14	1
Hexachloroethane	5.0	U	5.0	0.59	ug/L		04/21/15 10:40	04/23/15 20:14	1
Indeno[1,2,3-cd]pyrene	5.0	U	5.0	0.47	ug/L		04/21/15 10:40	04/23/15 20:14	1
Isophorone	5.0	U	5.0	0.43	ug/L		04/21/15 10:40	04/23/15 20:14	1
N-Nitrosodi-n-propylamine	5.0	U	5.0	0.54	ug/L		04/21/15 10:40	04/23/15 20:14	1
N-Nitrosodiphenylamine	5.0	U	5.0	0.51	ug/L		04/21/15 10:40	04/23/15 20:14	1
Naphthalene	5.0	U	5.0	0.76	ug/L		04/21/15 10:40	04/23/15 20:14	1
Nitrobenzene	5.0	U	5.0	0.29	ug/L		04/21/15 10:40	04/23/15 20:14	1
Pentachlorophenol	10	U	10	2.2	ug/L		04/21/15 10:40	04/23/15 20:14	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		04/21/15 10:40	04/23/15 20:14	1
Phenol	5.0	U	5.0	0.39	ug/L		04/21/15 10:40	04/23/15 20:14	1
Pyrene	5.0	U	5.0	0.34	ug/L		04/21/15 10:40	04/23/15 20:14	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	84		46 - 120	04/21/15 10:40	04/23/15 20:14	1
Phenol-d5 (Surr)	43		16 - 120	04/21/15 10:40	04/23/15 20:14	1
p-Terphenyl-d14 (Surr)	109		67 - 150	04/21/15 10:40	04/23/15 20:14	1
2,4,6-Tribromophenol (Surr)	76		52 - 132	04/21/15 10:40	04/23/15 20:14	1
2-Fluorobiphenyl	85		48 - 120	04/21/15 10:40	04/23/15 20:14	1
2-Fluorophenol (Surr)	62		20 - 120	04/21/15 10:40	04/23/15 20:14	1

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-237551/2-A					Client	Sample	e ID: Lab Control Sample
Matrix: Water Analysis Batch: 238204							Prep Type: Total/NA Prep Batch: 237551
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dinitrotoluene	16.0	14.1		ug/L		88	65 - 154
2-Chlorophenol	16.0	13.4		ug/L		84	48 - 120
4-Chloro-3-methylphenol	16.0	14.3		ug/L		89	64 - 120
4-Nitrophenol	32.0	20.5		ug/L		64	16 ₋ 120
Acenaphthene	16.0	14.6		ug/L		91	60 - 120
Atrazine	32.0	31.8		ug/L		99	56 ₋ 179
Bis(2-ethylhexyl) phthalate	16.0	16.4		ug/L		102	53 - 158
Fluorene	16.0	15.2		ug/L		95	55 - 143
Hexachloroethane	16.0	13.1		ug/L		82	14 - 101
N-Nitrosodi-n-propylamine	16.0	14.3		ug/L		89	56 - 120
Pentachlorophenol	32.0	19.9		ug/L		62	39 - 136
Phenol	16.0	8.55		ug/L		53	17 _ 120
Pyrene	16.0	14.0		ug/L		87	58 - 136
LCS LCS							

%Recovery	Qualifier	Limits
89		46 - 120
53		16 - 120
96		67 - 150
93		52 - 132
86		48 - 120
70		20 - 120
	89 53 96 93 86	89 53 96 93 86

#### Lab Sample ID: LCSD 480-237551/3-A Matrix: Water

#### Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 238204							Bron	Batch: 2	37551
Analysis Daton. 230204	Spike	LCSD	LCSD				%Rec.	Daten. 2	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene		14.6		ug/L		91	65 _ 154	4	20
2-Chlorophenol	16.0	13.8		ug/L		86	48 - 120	3	25
4-Chloro-3-methylphenol	16.0	15.1		ug/L		94	64 - 120	6	27
4-Nitrophenol	32.0	23.5		ug/L		73	16 _ 120	14	48
Acenaphthene	16.0	14.8		ug/L		92	60 - 120	1	24
Atrazine	32.0	34.4		ug/L		108	56 _ 179	8	20
Bis(2-ethylhexyl) phthalate	16.0	16.0		ug/L		100	53 - 158	3	15
Fluorene	16.0	15.6		ug/L		97	55 _ 143	2	15
Hexachloroethane	16.0	13.3		ug/L		83	14 _ 101	1	46
N-Nitrosodi-n-propylamine	16.0	15.4		ug/L		96	56 - 120	8	31
Pentachlorophenol	32.0	22.9		ug/L		71	39 - 136	14	37
Phenol	16.0	9.27		ug/L		58	17 - 120	8	34
Pyrene	16.0	14.3		ug/L		89	58 ₋ 136	2	19

	LCSD	LCSD											
Surrogate	%Recovery	Qualifier	Limits										
Nitrobenzene-d5 (Surr)	93		46 - 120										
Phenol-d5 (Surr)	58		16 - 120										
p-Terphenyl-d14 (Surr)	98		67 - 150										
2,4,6-Tribromophenol (Surr)	96		52 - 132										
2-Fluorobiphenyl	86		48 - 120										

Lab Sample ID: LCSD 480-237551/3-A

Matrix: Water

Analysis Batch: 238204

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Prep Type: Total/NA

Prep Batch: 237551

**Client Sample ID: Lab Control Sample Dup** 

# 2 3 4 5 6 7 8 9 10 11 12 13 14

Surrogate	LCSD LCS %Recovery Qua		Limits						
P-Fluorophenol (Surr)	72		20 - 120						
ethod: 8081B - Organo	chlorine Pestici	des (GC	;)						
.ab Sample ID: MB 480-237			/				Client Sa	mple ID: Metho	d Blank
Aatrix: Water								Prep Type: T	
Analysis Batch: 238003								Prep Batch:	
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,4'-DDD	0.050	U	0.050	0.0092	ug/L		04/20/15 14:19	04/23/15 08:52	
.,4'-DDE	0.050	U	0.050	0.012	ug/L		04/20/15 14:19	04/23/15 08:52	
,4'-DDT	0.050	U	0.050	0.011	ug/L		04/20/15 14:19	04/23/15 08:52	
ldrin	0.050	U	0.050	0.0081	ug/L		04/20/15 14:19	04/23/15 08:52	
lpha-BHC	0.050	U	0.050	0.0077	ug/L		04/20/15 14:19	04/23/15 08:52	
lpha-Chlordane	0.050	U	0.050	0.015	ug/L		04/20/15 14:19	04/23/15 08:52	
eta-BHC	0.050	U	0.050	0.025	ug/L		04/20/15 14:19	04/23/15 08:52	
elta-BHC	0.050	U	0.050	0.010	ug/L		04/20/15 14:19	04/23/15 08:52	
Dieldrin	0.050	U	0.050	0.0098	ug/L		04/20/15 14:19	04/23/15 08:52	
ndosulfan I	0.050	U	0.050	0.011	ug/L		04/20/15 14:19	04/23/15 08:52	
Endosulfan II	0.050	U	0.050	0.012	ug/L		04/20/15 14:19	04/23/15 08:52	
Endosulfan sulfate	0.050	U	0.050	0.016	ug/L		04/20/15 14:19	04/23/15 08:52	
Endrin	0.050	U	0.050	0.014	ug/L		04/20/15 14:19	04/23/15 08:52	
Endrin aldehyde	0.0185	J	0.050	0.016	ug/L		04/20/15 14:19	04/23/15 08:52	
Endrin ketone	0.050	U	0.050	0.012	ug/L		04/20/15 14:19	04/23/15 08:52	
gamma-BHC (Lindane)	0.050	U	0.050	0.0080	ug/L		04/20/15 14:19	04/23/15 08:52	
jamma-Chlordane	0.050	U	0.050	0.011	ug/L		04/20/15 14:19	04/23/15 08:52	
Heptachlor	0.050	U	0.050	0.0085	ug/L		04/20/15 14:19	04/23/15 08:52	
leptachlor epoxide	0.050	U	0.050	0.0074	ug/L		04/20/15 14:19	04/23/15 08:52	
Nethoxychlor	0.050	U	0.050	0.014	ug/L		04/20/15 14:19	04/23/15 08:52	
oxaphene	0.50	U	0.50	0.12	ug/L		04/20/15 14:19	04/23/15 08:52	
	МВ	МВ							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	68		20 - 120				04/20/15 14:19	04/23/15 08:52	
Tetrachloro-m-xylene	104		36 - 120				04/20/15 14:19	04/23/15 08:52	

#### Matrix: Water Analysis Batch: 238003

Analysis Batch: 238003							Prep Batch: 237	365
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	0.400	0.498		ug/L		125	51 - 138	
4,4'-DDE	0.400	0.386		ug/L		96	45 - 133	
4,4'-DDT	0.400	0.468		ug/L		117	50 - 136	
Aldrin	0.400	0.249		ug/L		62	40 - 125	
alpha-BHC	0.400	0.403		ug/L		101	52 - 125	
alpha-Chlordane	0.400	0.427		ug/L		107	52 - 133	
beta-BHC	0.400	0.437		ug/L		109	51 - 135	

TestAmerica Buffalo

Prep Type: Total/NA

5

**8** 9

#### Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 480-237	365/2-A						Client	Sample	ID: Lab Control Sample
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 238003									Prep Batch: 237365
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
delta-BHC			0.400	0.448		ug/L		112	51 - 132
Dieldrin			0.400	0.510		ug/L		128	49 - 136
Endosulfan I			0.400	0.473		ug/L		118	51 ₋ 134
Endosulfan II			0.400	0.540		ug/L		135	52 - 138
Endosulfan sulfate			0.400	0.511		ug/L		128	47 - 136
Endrin			0.400	0.520		ug/L		130	52 - 143
Endrin aldehyde			0.400	0.559	*	ug/L		140	46 - 134
Endrin ketone			0.400	0.566	*	ug/L		141	51 - 138
gamma-BHC (Lindane)			0.400	0.457		ug/L		114	56 - 127
gamma-Chlordane			0.400	0.455		ug/L		114	52 - 128
Heptachlor			0.400	0.405		ug/L		101	51 - 125
Heptachlor epoxide			0.400	0.499		ug/L		125	50 - 140
Methoxychlor			0.400	0.455		ug/L		114	50 - 151
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
DCB Decachlorobiphenyl	45		20 - 120						
Tetrachloro-m-xylene	103		36 - 120						

#### Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-237367/	'1- <b>A</b>								C	lient Sa	mple ID: Metho	d Blank
Matrix: Water											Prep Type: 1	
Analysis Batch: 237508											Prep Batch:	237367
		MB										
Analyte		Qualifier	RL		MDL	Unit		D	Pre	pared	Analyzed	Dil Fac
PCB-1016	0.50	U	0.50		0.18	ug/L		04	1/20/	15 14:33	04/21/15 13:53	1
PCB-1221	0.50	U	0.50		0.18	ug/L		04	1/20/	15 14:33	04/21/15 13:53	1
PCB-1232	0.50	U	0.50		0.18	ug/L		04	4/20/	15 14:33	04/21/15 13:53	1
PCB-1242	0.50	U	0.50		0.18	ug/L		04	1/20/	15 14:33	04/21/15 13:53	1
PCB-1248	0.50	U	0.50		0.18	ug/L		04	1/20/	/15 14:33	04/21/15 13:53	1
PCB-1254	0.50	U	0.50		0.25	ug/L		04	1/20/	/15 14:33	04/21/15 13:53	1
PCB-1260	0.50	U	0.50		0.25	ug/L		04	4/20/	15 14:33	04/21/15 13:53	1
	MB	МВ										
Surrogate	%Recovery	Qualifier	Limits						Pre	epared	Analyzed	Dil Fac
Tetrachloro-m-xylene	53		24 _ 137					04	4/20/	/15 14:33	04/21/15 13:53	1
DCB Decachlorobiphenyl	52		19 - 125					04	4/20/	/15 14:33	04/21/15 13:53	1
- Lab Sample ID: LCS 480-237367	//2-A							Clie	nt S	Sample I	D: Lab Control	Sample
Matrix: Water											Prep Type: 1	otal/NA
Analysis Batch: 237508											Prep Batch	237367
-			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qua	lifier	Unit	[	5	%Rec	Limits	
PCB-1016			4.00	4.36			ug/L			109	62 - 130	
PCB-1260			4.00	3.32			ug/L			83	56 - 123	
	LCS LCS	5										
Surrogate	%Recovery Qua	alifier	Limits									
Tetrachloro-m-xylene	82		24 - 137									

Lab Sample ID: LCS 480-237	30//Z-A									Clien	t Sample	ID: Lab Co		
Matrix: Water												Prep T		
Analysis Batch: 237508												Prep I	Batch:	237367
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
DCB Decachlorobiphenyl	43			19 - 125	-									
lethod: 8151A - Herbicid	les (GC)													
Lab Sample ID: MB 480-2375	07/1-A										Client Sa	mple ID:	Method	d Blank
Matrix: Water												Prep T		
Analysis Batch: 237861													Batch:	
		МΒ	MB											
Analyte			Qualifier		RL		MDL				Prepared	Analyz		Dil Fa
Silvex (2,4,5-TP)		0.50	U		0.50			ug/L			21/15 08:40	04/22/15		
2,4-D		0.50	U		0.50		0.40	ug/L		04/2	21/15 08:40	04/22/15	17:39	
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Lim	nits					1	Prepared	Analyz	ed	Dil Fa
2,4-Dichlorophenylacetic acid		90		35 -	.143					04/	21/15 08:40	04/22/15	17:39	
Lab Sample ID: LCS 480-237	507/2-A									Clien	t Sample	ID: Lab Co	ontrol	Sample
Matrix: Water												Prep T		
Analysis Batch: 237861												Prep I	Batch:	237507
				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
Silvex (2,4,5-TP)				2.00		1.82			ug/L		91	49 - 167		
2,4-D				2.00		1.75			ug/L		87	36 - 179		
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
2,4-Dichlorophenylacetic acid	83			35 - 143	-									
Lab Sample ID: LCSD 480-23	7507/3-A								Cli	ent Sar	nple ID: L	ab Contro	I Samp	ole Dup
Matrix: Water												Prep T		
Analysis Batch: 237861												Prep I	Batch:	237507
				Spike		LCSD	LCS	D				%Rec.		RPI
Analyte	<u> </u>			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limi
Silvex (2,4,5-TP)				2.00		1.52			ug/L		76	49 - 167	18	5
2,4-D				2.00		1.48			ug/L		74	36 - 179	17	50
	LCSD	LCS	D											
	%Recovery	-		Limits										

#### Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-237616/1-A Matrix: Water Analysis Batch: 237994	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.015	U	0.015	0.0056	mg/L		04/21/15 14:26	04/22/15 17:04	1
Barium	0.0020	U	0.0020	0.00070	mg/L		04/21/15 14:26	04/22/15 17:04	1
Cadmium	0.0020	U	0.0020	0.00050	mg/L		04/21/15 14:26	04/22/15 17:04	1

RL

0.0040

0.010

0.025

0.0060

MDL Unit

0.0010 mg/L

0.0030 mg/L

0.0087 mg/L

0.0017 mg/L

MB MB

0.0040 U

0.010 U

0.025 U

0.0060 U

**Result Qualifier** 

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-237616/1-A

Lab Sample ID: LCS 480-237616/2-A

Analyzed

04/22/15 17:04

04/22/15 17:04

04/22/15 17:04

Prepared

04/21/15 14:26

04/21/15 14:26

04/21/15 14:26

D

## 04/21/15 14:26 04/22/15 17:04 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

#### Matrix: Water

Matrix: Water

Analyte

Lead

Silver

Chromium

Selenium

Analysis Batch: 237994

Analysis Batch: 237994							Prep E	Batch: 237616
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.198		mg/L		99	80 - 120	
Barium	0.200	0.205		mg/L		102	80 - 120	
Cadmium	0.200	0.206		mg/L		103	80 - 120	
Chromium	0.200	0.207		mg/L		104	80 - 120	
Lead	0.200	0.199		mg/L		100	80 - 120	
Selenium	0.200	0.197		mg/L		98	80 - 120	
Silver	0.0500	0.0517		mg/L		103	80 - 120	

#### Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-237376/1-A Matrix: Water Analysis Batch: 237629	мв	мв							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Total/NA
Analyte		Qualifier	RL		MDL U	nit	D	Р	repared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00020	0.0	0012 m	g/L		04/2	1/15 08:35	04/21/15 13:16	1
								Client	Sample I	ID: Lab Control	Sample
Matrix: Water										Prep Type: 1	rotal/NA
Analysis Batch: 237629										Prep Batch	: 237376
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifie	ər Uni	t	D	%Rec	Limits	
Mercury			0.00667	0.00678		mg	L		102	80 - 120	

#### Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 480-238232/1 Matrix: Water Analysis Batch: 238232				C	Client	Sampl		control Sample Type: Total/NA
Andrysis Balch. 230232	Spike	201	LCS				%Rec.	
	•							
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Flashpoint	81.0	82.00		Degrees F		101	97.5 - 102.	
							5	

RL

10.0

Spike

Added

1000

RL Unit

10.0 mg/L

LCS LCS

288.0

Result Qualifier

D

Unit

mg/L

Prepared

04/24/15 09:29

%Rec

29

D

MB MB Result Qualifier

10.0 U

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-238456/1-A

Lab Sample ID: LCS 480-238456/2-A

Matrix: Water

Cyanide, Reactive

Matrix: Water

Cyanide, Reactive

Analyte

Analyte

Analysis Batch: 238510

Analysis Batch: 238510

Analyzed

04/24/15 19:03

%Rec.

Limits

10 - 100

# **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 238456 Dil Fac 1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA 8 Prep Batch: 238456

#### Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 480-238457/1-A Matrix: Water Analysis Batch: 238505	МВ	мв									Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batch	Total/NA
Analyte	Result	Qualifier		RL		RL	Unit		D	Pr	epared	Analyzed	Dil Fac
Sulfide, Reactive	10.0	U		10.0		10.0	mg/L		_	04/24	/15 09:29	04/24/15 16:34	1
Lab Sample ID: LCS 480-238457/2-A Matrix: Water Analysis Batch: 238505									С	lient	Sample I	D: Lab Control Prep Type: ⁻ Prep Batch	Total/NA
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Sulfide, Reactive			1000		701.3			mg/L			70	10 - 100	

#### Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-238181/1 Matrix: Water Analysis Batch: 238181											Client S	ample ID: Metho Prep Type: "	
	МВ	МВ											
Analyte	Result	Qualifier		RL		RL	Unit		D	Pr	epared	Analyzed	Dil Fac
Total Suspended Solids	4.0	U		4.0		4.0	mg/L					04/23/15 15:19	1
Lab Sample ID: LCS 480-238181/2 Matrix: Water									Clie	ent	Sample	ID: Lab Control Prep Type:	
Analysis Batch: 238181												Fiep Type.	
Analysis Datch. 230101			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Quali	fier	Unit		D	%Rec	Limits	
Total Suspended Solids			229		222.8			mg/L			97	88 - 110	

#### Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 480-238667/ Matrix: Water Analysis Batch: 238667	1						Client	Sampl	e ID: Lab Cor Prep Ty		
· · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
pH			7.00	7.030		SU		100	99 - 101		
Lab Sample ID: 480-78727-1 DU Matrix: Water Analysis Batch: 238667						Client Sa	mple ID	): EPT_	Liquid Waste Prep Ty	_	
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
pH	7.44	HF		7.430		SU				0.1	5

Prep Type

Total/NA

Matrix

Water

Client: Ontario Specialty Contracting, Inc. Project/Site: Ontario Specialty Contracting - OSC

**Client Sample ID** 

EPT_Liquid Waste_2015.04.17

**GC/MS VOA** 

Lab Sample ID

480-78727-1

Analysis Batch: 237319

Method

8260C

Prep Batch

# 9

480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	8260C	
LCS 480-237319/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-237319/6	Method Blank	Total/NA	Water	8260C	
GC/MS Semi VOA					
Prep Batch: 237551					
_ Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	3510C	
LCS 480-237551/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-237551/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-237551/1-A	Method Blank	Total/NA	Water	3510C	
Analysis Batch: 238204	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	8270D	23755
LCS 480-237551/2-A	Lab Control Sample	Total/NA	Water	8270D	23755
LCSD 480-237551/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	23755
MB 480-237551/1-A	Method Blank	Total/NA	Water	8270D	23755
GC Semi VOA					
Prep Batch: 237365					
_ Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	3510C	
LCS 480-237365/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-237365/1-A	Method Blank	Total/NA	Water	3510C	
Prep Batch: 237367					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	3510C	
LCS 480-237367/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-237367/1-A 	Method Blank	Total/NA	Water	3510C	
Prep Batch: 237507					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	8151A	
LCS 480-237507/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 480-237507/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	
MB 480-237507/1-A 	Method Blank	Total/NA	Water	8151A	
Analysis Batch: 237508 -	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	8082A	23736
LCS 480-237367/2-A	Lab Control Sample	Total/NA	Water	8082A	23736
MB 480-237367/1-A 	Method Blank	Total/NA	Water	8082A	23736
Analysis Batch: 237861 -	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	8151A	237507
				Tes	tAmerica Buffalo
		Page 25 of 33			4/29/2015
		aye 20 01 00			4/23/2013

Prep Batch	
 237365	
237365	
	-
Prep Batch	
Frep Batch	

9

### GC Semi VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-237507/2-A	Lab Control Sample	Total/NA	Water	8151A	237507
LCSD 480-237507/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	237507
MB 480-237507/1-A	Method Blank	Total/NA	Water	8151A	237507
Analysis Batch: 238003	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-237365/2-A	Lab Control Sample	Total/NA	Water	8081B	237365
MB 480-237365/1-A	Method Blank	Total/NA	Water	8081B	237365
Analysis Batch: 238373	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	8081B	237365
Metals					
Prep Batch: 237376					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	7470A	
LCS 480-237376/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 237616

MB 480-237376/1-A

Method Blank

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	3005A	
LCS 480-237616/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-237616/1-A	Method Blank	Total/NA	Water	3005A	

Total/NA

Water

7470A

#### Analysis Batch: 237629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	7470A	237376
LCS 480-237376/2-A	Lab Control Sample	Total/NA	Water	7470A	237376
MB 480-237376/1-A	Method Blank	Total/NA	Water	7470A	237376

Analysis Batch: 237994

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	6010C	237616
LCS 480-237616/2-A	Lab Control Sample	Total/NA	Water	6010C	237616
MB 480-237616/1-A	Method Blank	Total/NA	Water	6010C	237616

#### **General Chemistry**

#### Analysis Batch: 238181

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	SM 2540D	
LCS 480-238181/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-238181/1	Method Blank	Total/NA	Water	SM 2540D	
Analysis Batch: 2382	32				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	1010	

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Matrix

Water

Water

Water

Matrix

Water

Water

Water

Matrix

Water

Water

Water

**Client Sample ID** 

**Client Sample ID** 

Lab Control Sample

Method Blank

**Client Sample ID** 

Method Blank

**Client Sample ID** 

Method Blank

Lab Control Sample

Lab Control Sample

EPT_Liquid Waste_2015.04.17

EPT Liquid Waste 2015.04.17

EPT_Liquid Waste_2015.04.17

Lab Control Sample

General Chemistry (Continued) Analysis Batch: 238232 (Continued)

Lab Sample ID

480-78727-1

LCS 480-238232/1

Prep Batch: 238456

LCS 480-238456/2-A

MB 480-238456/1-A

Prep Batch: 238457

LCS 480-238457/2-A

MB 480-238457/1-A

LCS 480-238457/2-A

MB 480-238457/1-A

Lab Sample ID

Lab Sample ID

480-78727-1

480-78727-1

Method

Method

7.3.3

7.3.3

7.3.3

Method

7.3.4

7.3.4

7.3.4

Method

9034

9034

9034

1010

Prep Batch

Prep Batch

Prep Batch

Prep Batch

238457

238457

238457

## 10 11 12 13 14

Analysis Batch: 238510

Analysis Batch: 238505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	9012	238456
LCS 480-238456/2-A	Lab Control Sample	Total/NA	Water	9012	238456
MB 480-238456/1-A	Method Blank	Total/NA	Water	9012	238456

#### Analysis Batch: 238667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78727-1	EPT_Liquid Waste_2015.04.17	Total/NA	Water	SM 4500 H+ B	
480-78727-1 DU	EPT_Liquid Waste_2015.04.17	Total/NA	Water	SM 4500 H+ B	
LCS 480-238667/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

4/29/2015

#### Client Sample ID: EPT_Liquid Waste_2015.04.17 Date Collected: 04/17/15 00:00 Date Received: 04/17/15 18:10

Lab Sample ID: 480-78727-1 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	237319	04/20/15 20:39	EDB	TAL BUF
Total/NA	Prep	3510C			237551	04/21/15 10:40	TRG	TAL BUF
Total/NA	Analysis	8270D		50	238204	04/23/15 21:39	PJQ	TAL BUF
Total/NA	Prep	3510C			237365	04/20/15 14:19	CPH	TAL BUF
Total/NA	Analysis	8081B		100	238373	04/24/15 19:58	MAN	TAL BUF
Total/NA	Prep	3510C			237367	04/20/15 14:33	CPH	TAL BUF
Total/NA	Analysis	8082A		1	237508	04/21/15 17:06	KS	TAL BUF
Total/NA	Prep	8151A			237507	04/21/15 08:40	TRG	TAL BUF
Total/NA	Analysis	8151A		1	237861	04/23/15 10:04	JRL	TAL BUF
Total/NA	Prep	3005A			237616	04/21/15 14:26	TAS	TAL BUF
Total/NA	Analysis	6010C		1	237994	04/22/15 18:46	AMH	TAL BUF
Total/NA	Prep	7470A			237376	04/21/15 08:35	LRK	TAL BUF
Total/NA	Analysis	7470A		1	237629	04/21/15 13:46	LRK	TAL BUF
Total/NA	Analysis	1010		1	238232	04/23/15 20:15	STD	TAL BUF
Total/NA	Prep	7.3.3			238456	04/24/15 09:29	KMF	TAL BUF
Total/NA	Analysis	9012		1	238510	04/24/15 19:02	KMF	TAL BUF
Total/NA	Prep	7.3.4			238457	04/24/15 09:29	KMF	TAL BUF
Total/NA	Analysis	9034		1	238505	04/24/15 16:34	KMF	TAL BUF
Total/NA	Analysis	SM 2540D		1	238181	04/23/15 15:19	КС	TAL BUF
Fotal/NA	Analysis	SM 4500 H+ B		1	238667	04/25/15 13:00	LED	TAL BUF

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

#### Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

ority	Program		EPA Region	Certification ID	Expiration Date
York	NELAP		2	10026	03-31-16
The following analytes	are included in this report, bu	ut certification is not off	ered by the governing a	authority:	
Analysis Method	Prep Method	Matrix	Analyt	te	
1010		Water	Flashp	point	
9012	7.3.3	Water	Cyanio	de, Reactive	
9034	7.3.4	Water	Sulfide	e, Reactive	
JUJ <del>1</del>			pH		

#### Client: Ontario Specialty Contracting, Inc. Project/Site: Ontario Specialty Contracting - OSC

1	
5	
8	
9	
12	

Method Method Description Protocol Laboratory 8260C Volatile Organic Compounds by GC/MS SW846 TAL BUF 8270D Semivolatile Organic Compounds (GC/MS) SW846 TAL BUF 8081B Organochlorine Pesticides (GC) SW846 TAL BUF 8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography SW846 TAL BUF 8151A Herbicides (GC) SW846 TAL BUF Metals (ICP) SW846 TAL BUF 6010C 7470A Mercury (CVAA) SW846 TAL BUF Ignitability, Pensky-Martens Closed-Cup Method SW846 TAL BUF Cyanide, Reactive SW846 TAL BUF SW846 Sulfide, Reactive TAL BUF SM 2540D Solids, Total Suspended (TSS) SM TAL BUF SM 4500 H+ B pН SM TAL BUF

#### Protocol References:

1010 9012

9034

SM = "Standard Methods For The Examination Of Water And Wastewater", SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

## Sample Summary

#### Client: Ontario Specialty Contracting, Inc. Project/Site: Ontario Specialty Contracting - OSC

TestAmerica Job ID: 480-78727-1

Lab Sample ID	Client Sample ID	Matrix	Collected Receiv	ved
480-78727-1	EPT_Liquid Waste_2015.04.17	Water	04/17/15 00:00 04/17/15	18:10

<b>TestAmerica Buffalo</b> 10 Hazelwood Drive				Ç G						TestAmerica
Amherst, NY 14228					norsn	Chain of Custouy Record	ra			THE LEADER IN ENVIRONMENTAL TESTING
phone 716.504.9852 fax 716.691.7991			ľ				ŀ			TestAm erica Laboratories, Inc.
	Project Manager: Schov	Schove, John	S I	te Contae	Site Contact: Andrew Madden	Madden		Date: 4/17/2015		COC No: 296983111
Oritatio Speciarity Contracting Inc. 333 Ganson Street Buffalo, NY 14203	Leirfax: (/10) 912-9920 Analysis Turnaraund Tima	around Time		ab Conta	Lab Contact: Schove, John	John	<u>-</u>	Carrier:		1 of 1 COCS
Phone: 716-856-3333	Calendar ( C ) or Work	Work Davs (W) W								
Fax: 716-842-1630	TAT									-
PO# 55888 Client Job# 15007	IX ASAP	٩P								SDG No.
Project Name: EPT Ithaca NY							5			,
Sampling Event: Liquid Waste	Fastest turn around possible please.	i possible please					51			
Site: Emerson Power Transmission Plant	Bill based on per	on performed TAT.					-, ศ			
Sample Identification	Sample Sample S Date Time	Sample Type Matrix	Control Contro	Fotal Volatiles	Fotal RCRA 8 Metals Fotal RCRA 8 Metals	genetivity genetivity	H¢ bilo&4n33777-94n4zioN	·····		Sarmule Sneerific Motes.
EPT_Liquid.Waste_2015.04.17	4/17/15	11	3							. Control of a second and a second at the se
									· · · · · ·	
								= ₹	30-78727 Ch	480-78727 Chain of Custody
								, , ,		
Preservation: 1= Ice2= HCl (Hydrochloric)3= H2SO4 (Sulturic) 4=HNO3 (Nitric) 5=NaOH (Sod	Nitric) 5=NaOH (Sodium H	Container lium Hvdroxide) 6=Other	Container Volume (ml) [e) 6=Other	3						
Possible Hazard Identification				Sample	Disposal	A fee m	ay be ass	essed if sam	ples are retai	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)
Non-Hazard L Flammable Special Instructions/QC Requirements & Comments:	Poison B 🛛 Unknown	сточт		]	Return To Client		Disc	Disposal By Lab	Arch	Archive ForMonths
Container Code: A≖Amber G=Glass,P⇒Poly/Plastic S=Summa T=Tedlar V=Vial	F=Tedlar V=Vial									
Reinquested m: Half of Read Madeled	Company:	Date/	17/15 180	Received by		Ŋ			À.	Determent - / KM
. ko persed oy :	Company.	Date/1me	me:	Received by	1 by:			Company	y:	Daté/Lime:
Relinquished by:	Company:	Date/Time:	ime:	Received by:	l by:			Company	y:	Date/Time:
								-	÷	

t

. 4

---

14

Í.

Client: Ontario Specialty Contracting, Inc.

#### Login Number: 78727 List Number: 1

Creator: Kinecki, Kenneth P

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	No: Improper containers received
Sample bottles are completely filled.	False	
Sample Preservation Verified	True	Yes: Preservation labels on samples match COC
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	False	No: Headspace larger than 1/4"
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	False	No: Sample splitting required
Sampling Company provided.	True	OSC
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Appendix F – EPA Region 1 SOP for Sampling Porous Surfaces for PCBs

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 Boston, MA 02109-3912



#### STANDARD OPERATING PROCEDURE FOR SAMPLING POROUS SURFACES FOR POLYCHLORINATED BIPHENYLS (PCBs)

May 2011

EIASOP_POROUSSAMPLING Revision 4 5/05/11 1 of 14

## STANDARD OPERATING PROCEDURE FOR SAMPLING POROUS SURFACES FOR POLYCHLORINATED BIPHENYLS (PCBs)

The Office of Environmental Measurement and Evaluation EPA New England - Region 1 11 Technology Dr. North Chelmsford, MA 01863

Prepared by: Granz, Environmental Engineer

Reviewed by:

Reviewed by:

Jerry Keefe - ElA Teals Leader

In A Bruches

Approved by:

Boudreau, EIA Chemistry Team Leader

55/11

03 /23 /11 Date

5/23/11

Disclaimer: The controlled version of this document is the electronic version viewed on-line only. If this is a printed copy of the document, it is an uncontrolled version and may or may not be the version.

This document contains direction developed solely to provide internal guidance to U.S. Environmental Protection Agency (EPA) personnel. EPA retains the discretion to adopt approaches that differ from these procedures on a case by case basis. The procedures set forth do not create any rights, substantive or procedural, enforceable at law by a party to litigation with EPA or the United States.

## **Revision** Page

Date	Rev#	Summary of Changes	Sections
12/97	1	Initial Approval, draft	
3/20/08	2	Major update, only for PCBs, added TSCA sampling	All sections
7/17/08	3	Disposal of dust filter and decon of vac hose	11.0 and 14.0
5/04/11	4	Vacuum Trap Design and Clean-out	9.4

•

#### Table of Contents

1.0	Scope and Application
2.0	Summary of Method
3.0	Definitions4
4.0	Health and Safety Warnings
5.0	Interferences
6.0	Personnel Qualifications
7.0	Equipment and Supplies
8.0	Sampling Design
9.0	Sample Collection
10.0	Sample Handling, Preservation, and Storage
11.0	Decontamination
12.0	Data and Record Management 11
13.0	Quality Control and Quality Assurance
14.0	Waste Management and Pollution Prevention12
15.0	References
Attach	ments: Example of Custody Seal and Sample Label Example of Chain of Custody Form

#### 1.0 Scope and Application

- 1.1 This Standard Operating Procedure (SOP) is suitable for collection of a porous matrix sample for analysis of Polychlorinated Biphenyls (PCBs).
- 1.2 This SOP describes sampling techniques for both hard and soft porous surfaces.
  - 1.2.1 Hard surfaces, and most soft surfaces, can be sampled using an impact hammer drill to generate a uniform, finely ground, powder to be extracted and analyzed for PCBs. This procedure is primarily geared at providing enough sample quantity for two analyses. Hard porous surfaces include concrete, brick, asphalt, cement, sandstone, limestone, unglazed ceramics, and other possible PCB suspected material. This procedure may also be used on other softer porous surfaces, such as wood.
  - 1.2.2 Soft surfaces can be sampled using a chisel or sharp knife to generate a representative sample to be extracted and analyzed for PCBs. Soft porous surfaces include wood, wall plasterboard, low density plastics, rubber, caulking, and other PCB suspected material.
- 1.3 This SOP provides for collection of surface samples (0 0.5 inches) and delineation of PCB contamination throughout the core of the porous surface. The procedure can be used to sample the porous surface at distinctly different depth zones.

#### 2.0 Method Summary

A one-inch or other sized diameter carbide drill bit is used in a rotary impact hammer drill to generate a fine powder, or other representative sample, suitable for extraction and analysis of PCBs from porous surfaces. This method also allows the use of chisels or knives for the collection of samples from soft porous surfaces for PCB analysis.

#### 3.0 Definitions

- 3.1 Field/Bottle Blank: A sample container of the same lot as the containers used for the environmental samples. This evaluates PCB contamination introduced from the sample container(s) from a common lot.
- 3.2 Equipment/Rinse/Rinsate Blanks: A sample that is collected by pouring hexane over the sample collection equipment after decontamination and before sample collection. The sample is collected in the appropriate sample container identical to the sample containers. This represents background contamination resulting from the field equipment, sampling procedure, sample container, and shipment.

- 3.3 Field Replicates/Duplicates: Two or more samples collected at the same sampling location. Field replicates should be samples collected side by side. Field replicates represent the precision of the whole method, site heterogeneity, field sampling, and the laboratory analysis.
- 3.4 Field Split Samples: Two or more representative subsamples taken from one environmental sample in the field. Prior to splitting, the environmental sample is homogenized to correct for sample heterogeneity that would adversely impact data comparability. Field split samples are usually analyzed by different laboratories (interlaboratory comparison) or by the same laboratory (intralaboratory comparison). Field splits are used to assess sample handling procedures from field to laboratory and laboratory comparability.
- 3.5 Laboratory Quality Samples: Additional samples that will be collected for the laboratory's quality control program: matrix spike, matrix spike duplicate, laboratory duplicates, etc.
- 3.6 Proficiency Testing (PT)/Performance Evaluation (PE) Sample: A sample, the composition of which is unknown to the laboratory or analyst, provided to the analyst or laboratory to assess the capability to produce results within acceptable criteria. This is optional depending on the data quality objectives. If possible, it is recommended that the PE sample be of similar matrix as the porous surface(s) being sampled.
- 3.7 Porous Surface: Any surface that allows PCBs to penetrate or pass into itself including, but not limited to, paint or coating on metal; corroded metal; fibrous glass or glass wool; unglazed ceramics; ceramics with porous glaze; porous building stone such as sandstone, travertine, limestone, or coral rock; low density plastics such as Styrofoam and low density polyethylene; coated (varnished or painted) or uncoated wood; painted or unpainted concrete or cement; plaster; plasterboard; wallboard; rubber; caulking; fiberboard; chipboard; asphalt; or tar paper.
- 3.8 Shipping Container Temperature Blank: A water sample that is transported to the laboratory to measure the temperature of the samples in the cooler.

#### 4.0 Health and Safety

- 4.1 Eye, respiratory, and hearing protection are required at all times during sample drilling. A properly fitted respirator is required for hard porous surface sampling. A respirator is recommended whenever there is a risk of inhalation of either particulate or volatilized PCBs during sampling.
- 4.2 All proper personal protection clothing and equipment must be worn.

- 4.3 When working with potentially hazardous materials or situations, follow EPA, OSHA, and specific health or safety procedures.
- 4.4 Care must be exercised when using an electrical drill and sharp cutting objects.
- 5.0 Interferences and Potential Problems
- 5.1 This sampling technique produces a finely ground uniform powder, which minimizes the physical matrix effects from variations in the sample consistency (i.e., particle size, uniformity, homogeneity, and surface condition). Matrix spike analysis of a sample is highly recommended to monitor for any matrix related interferences.
- 5.2 Nitrile gloves are recommended. Latex gloves must not be used due to possible phthalate contamination.
- 5.3 Interferences may result from using contaminated equipment, solvents, reagents, sample containers, or sampling in a disturbed area. The drill bit must be decontaminated between samples. (see Section 11.0.)
- 5.4 Cross contamination problems can be eliminated or minimized through the use of dedicated sampling equipment.

#### 6.0 Personnel Qualifications

- 6.1 All field samplers working at hazardous materials/waste sites are required to take a 40 hour health and safety training course prior to engaging in any field activities. Subsequently, an 8 hour refresher health and safety course is required annually.
- 6.2 The field sampler should be trained by an experienced sampler before initiating this procedure.
- 6.3 All personnel shall be responsible for complying with all quality assurance/quality control requirements that pertain to their organizational/technical function.

#### 7.0 Equipment and Supplies

7.1 This list varies with the matrix and if depth profiling is required

Rotary impact hammer variable speed drill 1-inch or other suitable (1/2, 3/4, etc.) diameter carbide tip drill bits Steel chisel or sharp cutting knife, and hammer Brush and cloths to clean area Stainless steel scoopulas Aluminum foil to collect the powder sample 1 quart Cubitainer with the top cut out to collect the powder sample Aluminum weighing pans to collect the powder sample Cleaned glass container (2 oz or 40 mL) with Teflon lined cap Decontamination supplies: hexane, two small buckets, a scrub brush, detergent, deionized water, hexane squirt bottle, and paper towels Dedicated vacuum cleaner with a disposable filter or a vacuum pump with a dust filter Polyethylene tubing and Pasteur pipettes Sample tags/labels, custody seals, and Chain-of-Custody form

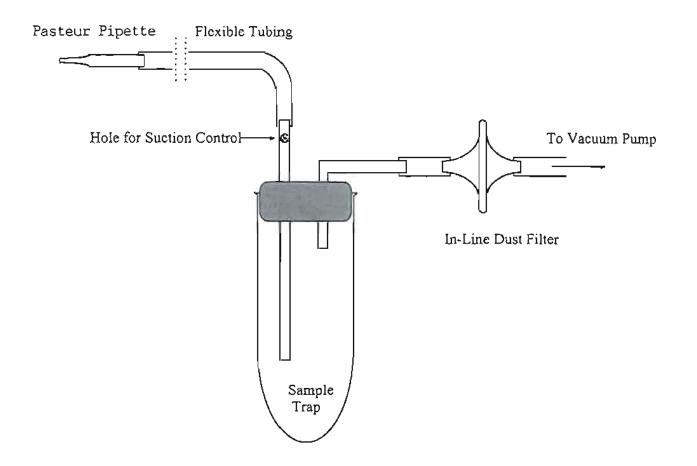
### 8.0 Sampling Design

- 8.1 A sufficient number of samples must be collected to meet the data quality objectives of the project. If the source of the PCB contamination is regulated under the federal TSCA PCB Regulations at 40 CFR Part 761, the sampler should insure that the sampling design is sufficient to meet any investigation or verification sampling requirements. At a minimum, the following is recommended:
  - 8.1.1 Suspected stained area (s) should be sampled.
  - 8.1.2 At each separate location, collect at least 3 samples of each type of porous surface, regardless of the amount of each type of porous surface present.
  - 8.1.3 In areas where PCB equipment was used or where PCBs were stored, samples should be collected at a frequency of 1 sample/100 square feet (ft²).

### 9.0 Sample Collection

- 9.1 Hard Porous Surfaces
  - 9.1.1 Lock a 1-inch or another size diameter carbide drill bit into the impact hammer drill and plug the drill into an appropriate power source. For easy identification, sample locations may be pre-marked using a marker or paint. (Note: the actual drilling point must not be marked.) Remove any debris with a clean brush or cloth prior to drilling. All sampling decisions of this nature should be noted in the sampling logbook.
  - 9.1.2 Use a Cubitainer with the top cut off or aluminum foil to contain the powdered sample. Begin drilling in the designated location. Apply steady even pressure and let the drill do the work. Applying too much pressure will generate excessive heat and dull the drill bit prematurely. The drill will provide a finely ground powder that can be easily collected.

- 9.1.3 Samples should be collected at ½-inch depth intervals. Thus, the initial surface sample should be collected from 0 0.5 inches. A ½-inch deep hole generates about 10 grams (20 mL) of powder. Multiple holes located closely adjacent to each other, may be needed to generate sufficient sample volumes for a PCB determination. It is strongly recommended that the analytical laboratory be consulted on the minimum sample size needed for PCB extraction and analysis.
- 9.1.4 Wall and Ceiling Sampling: A team of two samplers will be required for wall and ceiling sampling. The second person will hold a clean catch surface (e.g. an aluminum pan) below the drill to collect the falling powder. Alternatively, use the chuck-end of the drill bit and punch a hole through the center of the collection pan. The drill bit is then mounted through the pan and into the drill. For ceilings, the drill may be held at an angle to collect the powder. Thus the driller can be drilling at an angle while the assistant steadies the pan to catch the falling powder. As a precaution, it may be advantageous to tape a piece of plastic around the drill, just below the chuck, to avoid dust contaminating the body of the drill and entering the drill's cooling vents. Caution must be taken to prevent obstruction of the drill's cooling vents.
- 9.2 Soft Porous Surfaces
  - 9.2.1 The procedure for the hard porous surface may be used for certain soft porous surfaces, such as wood.
  - 9.2.2 Samples should be collected at no more than ½-inch depth intervals using a metal chisel or sharp cutting knife. Thus, the initial surface sample should be collected from 0 0.5 inches. It is important to collect at least 10 grams for analysis.
  - 9.2.3 For soft porous surfaces, such as caulking and rubber, a representative sample can be collected using a metal chisel or sharp cutting knife.
- 9.3 Multiple Depth Sampling
  - 9.3.1 Multiple Depth Sampling may not be applicable to certain porous surfaces, such as caulking.
  - 9.3.2 Collect the surface sample as outlined in Section 9.1 or 9.2.
  - 9.3.3 Use the vacuum pump or cleaner to clean out the hole.
  - 9.3.4 To collect multiple depths there are two options.


- 9.3.4.1 Option one: drill sequentially 1/2-inch increments with the 1 inch drill.
- 9.3.4.2 Option two: drill with the 1 inch bit and either make the hole larger or use a smaller bit to take the next ¹/₂- inch sample.
- 9.3.5 A stainless steel scoopula will make it easier to collect the sample from the bottom of the hole.

### 9.4 Vacuum Trap Design and Clean-out

The trap presented in Figure 1 is a convenient and thorough way for collecting and removing concrete powder from drilled holes. The trap system is designed to allow for control of the suction from the vacuum pump and easy trap clean-out between samples. Note, by placing a hole in the inlet tube (see Figure 1), a finger on the hand holding the trap can be used to control the suction at the sampling tip. Thus, when this hole is left completely open, there will be no suction, and the sampler can have complete control over where and what to sample. To change-out between samples the following steps should be taken: 1) the Pasteur pipette and piece of polyethylene tubing at the sample inlet should be replaced with new materials, 2) the portion of the rubber stopper and glass tubing that was in the trap should be wiped down with a clean damp paper towel (wetted with deionized water) and then dried with a fresh paper towel, 3) a clean pipe cleaner should be drawn through the glass inlet tube to remove any concrete dust present, and 4) the glass tube or flask used to collect the sample should swapped out with a clean decontaminated sample trap. Having several clean tubes or flasks on hand will facilitate change-out between samples.

EIASOP_POROUSSAMPLING Revision 4 5/05/11 10 of 14

Figure 1



Note: the holes should be vacuumed thoroughly to minimize any cross-contamination between sample depths and the bits should be decontaminated between samples. (See Section 11.0)

### 10.0 Sample Handling, Preservation, and Storage

- 10.1 Samples must be collected in glass containers for PCB analyses. In general, a 2-ounce sample container with a Teflon-lined cap (wide-mouth jars are preferred) will hold sufficient mass for most analyses. A 2-ounce jar can hold roughly 90 grams of sample.
- 10.2 Samples are to be shipped refrigerated and maintained at  $\leq$  6°C until the time of extraction and analysis.
- 10.3 The suggested holding time for PCB samples is 14 days to extraction.

### 11.0 Decontamination

- 11.1 Assemble two decontamination buckets. The first bucket contains a detergent and potable water solution, and the second bucket is for rinsate. Place all used drill bits, hose for the vacuum cleaner, and utensils in the detergent and water bucket. Scrub each piece thoroughly using the scrub brush. Note, the powder does cling to the metal surfaces, so care should be taken during this step, especially with the twists and curves of the drill bits. Next, rinse each piece with water and hexane. Place the rinsed pieces on clean paper towels and individually dry and inspect each piece. Note: all pieces should be dry prior to reuse.
- 11.2 Lightly contaminated drill bits and utensils may be wiped with a hexane soaked cloth and hexane rinsed for decontamination.

### 12.0 Data and Record Management

- 12.1 All data and information collection should follow a Field Data Management SOP or Quality Assurance Project Plan (QAPP).
- 12.2 Follow the chain of custody procedures to release the samples to the laboratory. A copy is kept with the sampling records.
- 12.3 The field data is stored for at least 3 years.

### 13.0 Quality Control and Quality Assurance

- 13.1 Representative samples are required. The sampler will evaluate the site specific conditions to assure the sample will be representative.
- 13.2 All sampling equipment must be decontaminated prior to use and between each discrete sample.
- 13.3 All field Quality Control (QC) sample requirements in a Sample and Analysis Plan (SAP) or QAPP must be followed. The SAP or QAPP may involve field blanks, equipment blanks, field duplicates and/or the collection of extra samples for the laboratory's quality control program.
- 13.4 Field duplicates should be collected at a minimum frequency of 1 per 20 samples or 1 per non-related porous matrix, whichever is greater.

### 14.0 Waste Management and Pollution Prevention

14.1 During field sampling events there may be PCB and/or hazardous waste produced from the sample collection. The waste must be handled and disposed of in accordance with federal, state, and local regulations. The dust filter, and tubing if a vacuum pump is used, is disposed after each site investigation. This waste will be treated as PCB waste if the samples are positive for PCBs. It may be possible to manage or dispose of the waste produced at the site where the work was performed. If the site does not meet regulatory requirements for these types of activities, the waste must be transported to a facility permitted to manage and/or dispose of the waste.

### 15.0 References

- 1. Guidance for the Preparation of Standard Operating Procedures for Quality-Related Operations, QA/G-6, EPA/600/R-96/027, November 1995.
- 40 CFR Part 761 Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution In Commerce, and Use Prohibitions
- 3. Sample Container and Holding Time: RCRA SW 846, Chapter 4, Table 4.1, Revision 4, February, 2007.

EIASOP_POROUSSAMPLING Revision 4 5/05/11 13 of 14

•

# Example of Sample Label and Custody Seal

arous		FRINT NAME AND TITLE	(nchinician)	All Thes	SUNC	
	OFFICIAL SAMPLE SEAL	SIGNATURE			INCORESN	1
and a start	UNITED STATES NVIRONMENTAL PROTECTION AGENCY OFFICIAL SAMPLE SEAL	SAMPLE NO.		OATE	AL I	T
	·					
CAMPLE	SAMPLING CREWIFIRST, INITIAL, LAST NAM	*es	MOUNT			
			AESERVATIVE	199		
3		1	UN NO.	12.3		
0	LEXINGTON, MASSACHUSI		AMPLE NO			
2	60 WESTVIEW STRE	T I	TATION NO			
ABEL	NAME OF UNIT AND ADDRESS	-	ME			
	U.S. ENVIRONMENTAL PROTECTIC	In Addition	TE: YRIMO/DAY			

PR01 /	40. (	MOJEC	t nA	nif.				IN OF CUS	Γ		11	1	7	11	1		
SAWA B	e se	***		_				00	1	/	11	1	/	11		PENAR	
ana' kiy	2415	ing	1	CALS		stati	in Glean Ma	Tantta	K	4	1/	4	4	/			
										-			_				
					_			E			Ē					_	
_	_							F		-	+		+		_		
_	-			-	_			-			F		+		_		
		_		-				E		-							
-	etter 1		_	T	0.e	Ter	Reading ber Garry	-	Aem	-	1		, <del> </del>	Des	Time	Received by	(* Gignational)
-	Nilley, A	+	2	t	Dave	Time	Sectord by diamo	et.	Renne	iuinte(	ly Se	platiers		Date	/Time	Received b	r (Egnenut)
فتجد	eller 1		-	t	Date -	Tes	Resided for Laboral	ary by	t	Tem /	Tera	8	emeriks	1			

AD THE PART DATE AND ADDRESS OF THE PART O

Example of Chain of Custody Form

ţ

Appendix G - Confirmation Sampling Analytical Data Reports



Appendix H - Hazardous Waste Transportation and Disposal Documentation



# Waste Management Profile

Check if there are multiple generator locations. Attach locations.	Renewal? Original Profile Number:		
A. GENERATOR INFORMATION (MATERIAL ORIGIN)	B. BILLING INFORMATION	AS GENI	ERATOR
1. Generator Name: Emerson Power Transmission	1. Billing Name: Ontario Specialty Contracting, Inc.	Contactor (1127-244)	and a straight
2. Site Address; 620 South Aurora Street	2. Billing Address: 333 Ganson Street		
(City, State, ZIP) Ilhaca, NY, 14850	(City, State, ZIP) Buffalo, NY, 14203		
3. County: Tompkins	3. Contact Name: Nancy Mazur		
4. Contact Name:	4. Email: info@oscinc.com		
5. Email:	5. Phone: 716-856-3333 6. Fax:		
6. Phone: 7. Fax:	7. WM Hauled?		□ No
8. Generator EPA ID; NY002228625	8. P.O. Number: 55890 *Note mail in invoice attention Payable D	epartmer	nt
9. State ID: 7-55-010		-	
C. MATERIAL INFORMATION	D. REGULATORY INFORMATION		
1. Common Name: PCB Contentinated Concesto	1. EPA Hazardous Waste?	🗀 Yes*	🗹 No
Describe Process Generating Material:	Code:		
The concrete correspond to a PCB contaminated transformer pad and targeted		🗹 Yes	
for removal and disposal.	Code: <u>B007</u>		
		Q Yes*	No No
		□ Yes*	
2. Material Composition and Contaminants:		🖸 Yes*	🗹 No
1. Construct 100%	•	□ Yes*	2 No
2.		□ Yes*	_
3.	8. NRC or State-regulated radioactive or NORM waste?		
4	*If Yes; see Addendum (page 2) for additional questic		
≥100%		_	
3. State Waste Codes: 8007	9. Contains PCBs? $\rightarrow$ If Yes, answer a, b and c.		
4. Color: Grey	a. Regulated by 40 CFR 761?	Ves	
5. Physical State at 70°F: 🗹 Solid 🗖 Liquid 🗖 Other:	b. Remediation under 40 CFR 761.61 (a)?	Ves 1	
6. Free Liquid Range Percentage: to V/A (Solid)	c. Were PCB imported into the US?	🗆 Yes	🗹 No
7. pH:tototN/A (Solid)	10. Regulated and/or Untreated	🗆 Yes	🗹 No
8. Strong Odor: 🗆 Yes 🗹 No Describe:	Medical/Infectious Waste?		<b>.</b>
9. Flash Point: □ <140°F □ 140°-199°F □ ≥200° ☑ N/A (Solid)	11. Contains Asbestos? 🛛 Yes: Friable 🖓 Yes: Non-	Friable	<b>≌</b> No
E. ANALYTICAL AND OTHER REPRESENTATIVE INFORMATION	F. SHIPPING AND DOT INFORMATION		
1. Analytical attached 🛛 🖬 Yes	1. 🗹 One-Time Event 🛛 🗆 Repeat Event/Ongoing Busine	:SS	
Please identify applicable samples and/or lab reports:	2. Estimated Quantity/Unit of Measure: 23		
TSCA Concrete Total Metals & PCB: Lab Report ID J77097-1	🗹 Tons 🗆 Yards 🖾 Drums 🗖 Gallons 🗖 Other:		
TSCA Concrete TCLP Metals: Lab Report ID J77100-1	3. Container Type and Size: Dump Truck or Roll Off		
	4. USDOT Proper Shipping Name:		
2. Other information attached (such as MSDS)?	Polychlonnutod trahunyls, solid UN Code: 3432		

By signing this Waste Management Profile, I hereby certify that all information submitted in this and all attached documents contain true and accurate descriptions of this material, and that all relevant information necessary for proper material characterization and to identify known and suspected hazards has been provided. Any analytical data attached was derived from a sample that is representative as defined in 40 CFR 261 - Appendix 1 or by using an equivalent method. All changes occurring in the character of the material (i.e., changes in the process or new analytical) will be identified by the Generator and be disclosed to Waste Management prior to providing the material to Waste Management.

If I am an agent signing on behalf of the Generator, I have confirmed with the	Г
Generator that Information contained in this Profile is accurate and complete.	

Name (Print): On Behalf of Emerson Daniel Liwicki	Date: April 2, 2015
---------------------------------------------------	---------------------

Title: Associate Consultant

Company: WSP

Certification Signature
ON BEHALF OF EMERSON
and much



# Waste Management Profile Addendum



Only complete this Addendum if prompted by responses on Waste Management Profile (page 1) or to provide additional information. Sections and question numbers correspond to Waste Management Profile.

Profile Number: _

#### SECTION C

Describe Process Generating Material (Continued from page 1): If more space is need

If more space is needed, please attach additional pages.

Material Composition and Contaminants (Continued from page 1):

If more space is needed, please attach additional pages.

5.	
6.	
7.	
8.	
9.	
10.	
	≥100%

#### SECTION D

Only questions with a "Yes" response on Waste Management Profile (page 1) need to be answered here.

1. EPA Hazardous Waste

a. Please list all USEPA listed and characteristic waste code numbers:

	N/A		
i	p. Is the material subject to the Alternative Debris standards (40 CFR 268.45)?	🗆 Yes	Ø No
I	c. Is the material subject to the Alternative Soil standards (40 CFR 268.49)? $ ightarrow$ If Yes, complete question 4.	🗆 Yes	🗹 No
	d. Is the material exempt from Subpart CC Controls (40 CFR 264.1083 and 265.1084)?	🗆 Yes	🛯 No
	$\rightarrow$ If Yes, please select one of the following:		
	Waste has been determined to be LDR exempt [265.1083(c)(4) and 265.1084(c)(4)] based on the fact that it meets organic treatment standards (including UHCs for D-coded characteristic wastes) or a Specified Technology has been ut		able
	Waste does not qualify for a LDR exemption, but the average VOC at the point of origination is <500 ppmw and this de was based on analytical testing (upload copy of analysis) or generator knowledge.	terminat	tion
2. :	State Hazardous Waste → Please list all state waste codes: <u>8007</u>		
3.	Excluded Waste $ ightarrow$ Please select which of the following categories apply to your material:		
I	□ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 261.4 → Specify Exclusion:		
I	□ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous Waste → If checked, complete question 4.		
4.	Jnderlying Hazardous Constituents 🄿 Please list all Underlying Hazardous Constituents:		
5.	Benzene NESHAP -> Please include benzene concentration and percent water/moisture in chemical composition.		
i	a. Are you a TSDF? 🔿 If yes, please complete Benzene NESHAP questionnaire. If not, continue.		
	p. What is your facility's current total annual benzene quantity in Megagrams? □ <1 Mg □ 1–9.99 M	1g □≥	10 Mg
1	. Is this waste soil from remediation at a closed facility?	🗆 Yes	🛛 No
1	1. Has material been treated to remove 99% of the benzene or to achieve <10 ppmw?	🗆 Yes	🗆 No
(	<ul> <li>e. Is material exempt from controls in accordance with 40 CFR 61.342?</li> <li>→ If yes, specify exemption:</li></ul>	🗆 Yes	
ł	Based on your knowledge of your waste and the BWON regulations, do you believe that this waste stream is subject to treatment and control requirements at an off-site TSDF?	🗆 Yes	🗆 No
6.	40 CFR 63 GGGGG $\rightarrow$ Does the material contain <500 ppw VOHAPs at the point of determination?	🖆 Yes	🖬 No
	CERCLA or State-Mandated clean up $\rightarrow$ Please submit the Record of Decision or other documentation to assist others in the evolution of the proper disposal.	aluation	for
	NRC or state regulated radioactive or NORM Waste $\rightarrow$ Please identify Isotopes and pCi/g:		

Ple	ase pri	int or type. (Form design	ied for use on elile (	12-pitch) typewrite	er.)						n Approved OM	B No. 2050-0039
Î		FORM HAZARDOUS	1. Generator ID Numbe NYD0 (	r ) 2 2 2 8	625	2. Page 1 of 3. Em 1 (8	ergency Respon 00) 424- !		4. Manifest		umber 32771	GBF
	5. Ge	EMERSON PO 50 LAKEFRON 80 BUFFALO NY	WER TRANS		ttn: Andre	Gener W Madden	EMERS	ION POU		ISMIS		
		rator's Phone:			(807)274	4-6170	ппаса		NY 148	5	97	
		insporter 1 Company Name	Magur	de-		ank	Ten	5		ID	97 b	5440
	8 De	signated Facility Name and CWM CHE 1550 BALM	MICAL SERV	ICES, L.L.C	2.				U.S. EPA ID N		49836	5679
ÍI	Facilit		TY NY 14107	,	(716)28	6-1550						
	9a. HM	9b. U.S. DOT Description and Packing Group (if an	and the second	ping Name, Hazard	Class, ID Number		10. Conta	ainers Type	11. Total Quantity	12. Unit Wt./Vol.	13 Waste	e Codes
ATOR		1 RQ, UN3432 SOLID MIXT	, POLYCHLO URE, 9, III	RINATED E	NPHENYL		1	cm	11.339	ĸ	8007 L	
GENERATOR		.2.				NY305554						
		3										
		4.										
	14. Sp	ecial Handling Instructions							2 6			
		1. NY305554 - CHEMTREC Er	PCB CONTAI	MINATED C	ONCRET	E PCBIOL	IT OF SE		DATE: <u>L</u>		$\frac{1}{8}$	5197
							1	Carlos Company				8197
	n E	SENERATOR'S/OFFEROR marked and labeled/placarde Exporter, I certify that the con- certify that the waste minim	ed, and are in all respect ntents of this consignment	ts in proper condition and conform to the te	n for transport ac	cording to applicable inte ed EPA Acknowledgmen	emational and na t of Consent.	tional governm	nental regulations.			
	ſ	ator's/Offeror's Printed/Type		D	1	Signature	~//	11.	ON BE	ANE C		Day Year
*		V BEHAUF OF emational Shipments		Unit			and the	up - 1			4	15 15
INT'L	· · ·	porter signature (for exports				_ Export from U.S.	Port of er Date leav					
RER	and the second second	insporter Acknowledgment o orter 1 Printed/Typed Name	· · ·			Signature ,	. A .				Month	Day Year
POF	1	- 11	Wante	-		91	1/1X				164	15/15
TR ANSPORTER	Transp	orter 2 Printed/Jyped Name	)			Signature					Month	Day Year
<u>ج</u> ≁	18. Dis	screpancy										19
	18a. Di	iscrepancy Indication Space	Ly Quanuty	<b>a</b> 1	Туре	[	Residue		🗌 Partial Reje	ction	E F1	il Rejection
 ≿	0 185 A	Hyesta Itemate Facility (or Generato		recd	1609.	SK M	anifest Referenci	e Number	U.S. EPAID N	umber		
FACILI	Facility	's Phone:							I			
DESIGNATED FACILITY		gnature of Alternate Facility	(or Generator)								Month	Day Year
ESIG	19. Haz	zardous Waste Report Mana	egement Method Codes	i (I.e., codes for haz	ardous waste trea		ycling systems)					
5 	1.	H132	2			3.		- 10-	4.			
	-	signated Facility Owner or C Typed Name	perator: Certification of	receipt of hazandou	s matenais coven	ed by the manifest exce Bignature	ot as noted in liter	m 18a ) /}			Month	Day Year
		(	MUMA	stinst	ς,	1 HA	えい「	ark	unt		141	2/1/5
↓ PA	Form 8	8700-22 (Rev. 3-05) Pre	vious editions are of	osolete	1,	,~`		<del>- ( )</del>			r	

Pea	ase pr	rint or type. (Form desig			writer.)							Approved, ON	AB No. 2	050-0039	
1								3 Emergency Response Phone 4. Manifest Tracking Number						BF	
		enerator's Name and Mailin	g Address			e Marine	Generator's	Site Address	(if different that	n mailing addre	ess)	100			
		50 LAKEFRON BUFFALO NY	IT BLVD 5		A DEST OF CALCULAR		0	20 S At	IRORA S	1					
		erator's Phone: ansporter 1 Company Nam			0071274	6170	p	HAGA		U S. EPA ID	Number	00			
		an a													
	.7 _⊂ Tra	ansporter 2 Company Nam	9							U.S EPAID	Number				
	8. De	esignated Facility Name and	t Sile Address	RVICES 1	L C					U S. EPA ID	Number				
		1550 BAL			315					54. V	0.0.4	0.83	0.0	7.10	
	Facili	ity's Phone:			一下招应的	1550									
	9a. HM	9b. U.S. DOT Descriptio and Packing Group (if a		Shipping Name, Ha	azard Class, ID Number,		_	10. Contai No.	ners Type	11. Total Quantity	12. Unit WL/Vol.	13. Wa	13. Waste Codes		
Ц Ж		1. RO. UNING			D BIPHENYLS	i.						B007 T	Í		
RATC		SOLID MIK	FURIE SE HE		9	NY30653	54				15				
GENERATOR		2.													
		3.										_			
ľ		4													
	14 5	Special Handling Instruction:	of and Additional Info	malion								I			
		1 NV305554	FCB CON	TAMINATE	D CONCRETE	PC	ROUT	OF SEF	IVICE D	ATE	_				
		CHEMTREC E	titra Negali I.	Response N	haniteer (800)4	24-8308	WMEC	ontrast	COND41	SERVIC	TE REO	UEST #			
		GENERATOR'S/OFFERO	R'S CERTIFICATIO	N: I hereby declare	e that the contents of this	s consignment	are fully and	accurately de	scribed above	by the proper s	hipping name	, and are classifi			
		Exporter, I certify that the c I certify that the waste mini	ontents of this cons	ignment conform to	the terms of the attache	d EPA Acknow	edgment of t	Consent.	č			nov on excerning the second of			
		erator's/Offeror's Printed/Typ	VAT DOTTAIN PRESENTATION		12 12 12 12 12 12 12 12 12 12 12 12 12		nature		- •			Month I	Day	Year	
INT'L 🛧	16. lr	nternational Shipments	Import to	U.S.		Export from	JS	Port of er	iry/exit						
		sporter signature (for expor	ts only)				- <u>1</u> A	Date leav							
TER		ransporter Acknowledgment		ials	1	e1.	notura					\$ \$	0 er	Ver	
TR ANSPORTER	Irans	sporter 1 Printed/Typed Nan				59	nature					Month	Day	Year	
R AN:	Trans	sporter 2 Printed/Typed Nar	ne			Sig	nature					Month	Day	Year	
<u>≓</u> ↑	18. D	hscrepancy										1	1	-	
	18a.	Discrepancy Indication Spa	ce 🗌 Quan	nity	Туре			Residue	41	🗌 Panial Re	ection		Full Rejec	ction	
È	18b. /	Alternate Facility (or Genera	alor)				Manif	est Reference	e Number	U.S. EPA ID	Number				
FACIL	Faali	ity's Phone													
DESIGNATED FACILITY		ity's Phone Signature of Alternate Facili	ty (or Generator)									Month	Day	Year	
SIGNE	19 н	lazardous Waste Repon Ma	anagement Method (	Codes (i e , codes f	or hazardous waste trea	tment, disposa	I, and recycli	ig systems)							
DE.	1.		-	2.		3.				4					
	20. D	esignaled Facility Owner or	r Operator Centificat	tion of receipt of ha	zardous materials covere	ed by the mani	ifest except a	nded in Iter	n 18a						
		ed/Typed Name					nature					Month	Day	Year	
4													1		

TONAWANDA	TANK	TRANSPORT	SERVICE,	INC.
the second s	the second se		A REAL PROPERTY OF A READ REAL PROPERTY OF A REAL P	and the second se

1140 MILITARY BOAD P.O. BOX H BUFFALO, NY 14217 (716) 873-8703

3990 U.S. ROUTE 42 MASON, OH 45040 (\$13) 398-6997

	11.11.19.11.02			and the second se			
NCK UP				ELIVENY		_	_
	III POREN			CREATCO	45. 884211	BILLEA.	
BTTNET			CO	STREET.			
			NB		_		
CITY CONTRACTOR	STATE	319 CODE	8	DITY	1221 1224	RINK.	24 00
CONTACT NAME		_	G	CONTACT NAME	_	_	_
BOHEDGLED TIME		-	E	SCHERALD THE		_	
10.100	Net 1	1.000	11		orged in		
ADDITIONAL INFORMATION			1	ADDITIONAL INFORMATIO	AL.	_	
			-				
		_	1	_	_	_	_
		_				_	_
PUTICHASE ORDER NO	WORK ORDER NUMBER	WARFEST HUNG	SER :		PHODUCTO	3006	
		_	_	the second second		_	
LOAD HUMBER	TRACTOR NUMBER	TRAILER NUMBE		121/1220	LINVOIS N	inte	
TYPE (CIRCLE ONE)		MATERIAL DI					QUANTITY
	1	MATCHINE DI	COL			and the second second	GENTITY
The Restance of the latter is a second in the					a second second second		
					1.00		
VAC							
VAC DUMP							
VAC DUMP VAN							
TANK (S/S) (R/L) VAC DUMP VAN ROLL-OFF FLATBED						3.5	
VAC DUMP VAN ROLL-OFF FLATBED			DF			1.5	
VAC DUMP VAN ROLL-OFF FLATBED			DE	LIVERT			
VAC DUMP VAN ROLL-OFF FLATBED PICK UP	M RELEASE TIME	**				DAT	
VAC DUMP VAN ROLL-OFF FLATBED PICK UP	and a second	~~	DF	LIVERY			
VAC DUMP VAN ROLL-OFF FLATBED PICK UP ABRIVAL TIME		~~	DF	LIVERY	in Reli	EASE TIME	
VAC DUMP VAN ROLL-OFF FLATBED PICK UP REALER EMPTY UPON ARB If not, explain balow)		~	DF AF	LIVERY	in Reli		
VAC DUMP VAN ROLL-OFF FLATBED PICK UF ABRIVAL TIME TRABLER EMPTY UPON ARB If not, explain below) DIF MEASUREMENT (Tanka	RVAL VES ONG	~~	DF AF	LIVERY	IN RELI	EASE TIME	
VAC DUMP VAN ROLL-OFF FLATBED PICK UF ABRIVAL TIME TRABLER EMPTY UPON ARB If not, explain below) DIF MEASUREMENT (Tanka	RVAL VES ONG	~	DF AF	LIVERY	IN RELI	EASE TIME	
VAC DUMP VAN ROLL-OFF FLATBED PICK UF NRRIVAL TIME TRABLER EMPTY UPON ARB If not, explain below) DIF MEASUREMENT (Tanka	RVAL VES ONG	~	DF AF	LIVERY	IN RELI	EASE TIME	
AC DUMP AN ROLL-OFF LATBED MCK UF RAILER EMPTY UPON AP Inct, explain below) MF MEASUREMENT (Tanke	RVAL VES ONG	~	DF AF	LIVERY	IN RELI	EASE TIME	
VAC DUMP VAN ROLL-OFF FLATBED PICK UF NRRIVAL TIME TRABLER EMPTY UPON ARB If not, explain below) DIF MEASUREMENT (Tanka	RVAL VES ONG	~	DF AF	LIVERY	IN RELI	EASE TIME	
VAC DUMP VAN ROLL-OFF FLATBED PICK UF ABRIVAL TIME TRABLER EMPTY UPON ARB IT not, explain balow) DIF MEASUREMENT (Tanka	RVAL VES ONG	~	DF AF	LIVERY	IN RELI	EASE TIME	
VAC DUMP (AN ROLL-OFF LATBED RCK UF RARLER EMPTY UPON ARB If not, explain balow) XF MEASUREMENT (Tanke COMMENTE (EXPLAIN ALL	RIVAL UYES ONG	~	DF AF TR	LIVERY	IN REU CEPARTURE ALL DELAYSI	EASE TIME	
VAC DUMP VAN ROLL-OFF FLATBED PICK UF RABLER EMPTY UPON ARB If not, explain below) DIF MEASUREMENT (Tanke COMMENTE (EXPLAIN ALL 		~	DF AF TR	LIVERY	IN RELI CORPORTURE ALL DELAYS: CORTIFY THAT T		
VAC DUMP VAN ROLL-OFF FLATBED PICK UF ABRIVAL TIME TRABLER EMPTY UPON ARB If not, explain below) DIP MEASUREMENT (Tanke COMMENTEL (EXPLAIN ALL		~	DF AF TR	LIVERY  NVER  NVER  NALER EMPTY UPON  NAMENTS. (EXFLAN  THE UNDERSIGNED.	IN RELI CORPORTURE ALL DELAYS: CORTIFY THAT T		
VAC DUMP VAN ROLL-OFF FLATBED PICK UP REALER EMPTY UPON ARB IT NO, EXPLAIN ALL IT NO, EXPLAIN ALL COMMENTE. (EXPLAIN ALL		~	DF AF TRU CC	LIVERY IVER IVER INTER I	IN RELI CORPORTURE ALL DELAYS: CORTIFY THAT T		
AC DUMP AN ROLL-OFF LATBED PICK UP REALER EMPTY UPON ARB I rick, explain below) I rick, explain below) MP MEASUREMENT (Tanke COMMENTE: (EXPLAIN ALL THE UNDERBIONED, CER ORMATION IS TRUE AND C		~	DF AF TRU CC	LIVERY  IVER IRIVAL TIME IRIVAL TIME INICER SKINED INICERSKINED INICERSKINED INICERSKINED INICERSKINED	IN RELI CORPORTURE ALL DELAYS: CORTIFY THAT T		
AC DUMP AN ROLL-OFF LATBED PICK UP REALER EMPTY UPON ARB I rick, explain below) I rick, explain below) MP MEASUREMENT (Tanke COMMENTE: (EXPLAIN ALL THE UNDERBIONED, CER ORMATION IS TRUE AND C		~	DF AF TRO CO	LIVERY IVER IVER INVER I	IN RELI CORPORTURE ALL DELAYS: CORTIFY THAT T		
AC DUMP (AN ROLL-OFF LATBED MCK UF (BRIVAL TIME (BRIVAL TIME) (BRIVAL TIME (BRIVAL TIME) (BRIVAL			DF AF TRU CC	LIVERY  NVER  NVER  NALER EMPTY UPON  NAMENTS: (EXPLAIN  NAMENTS: (EXP	IN RELI CORPORTURE ALL DELAYS: CORTIFY THAT T		
AC DUMP (AN ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED ROLL-OFF (ATBED (ATBED (ATBED ROLL-OFF (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATBED (ATB			DF AF TRU CC	LIVERY IVER IVER INVER I	IN REU I DEPARTURE ALL DELAYS: CERTIPY THAT I ND COMPLETE		
AC DUMP (AN ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF LATBED ROLL-OFF			DF AF TRU CC	LIVERY  NVER  NVER  NALER EMPTY UPON  NAMENTS: (EXPLAIN  NAMENTS: (EXP	IN REU CERNATURE ALL DELAYSI CERTIFY THAT T ND COMPLETE		
AC DUMP (AN ROLL-OFF (ATBED PICK UF (RRIVAL TIME (RRIVAL TIME) (RRIVAL TIME			DF AF TRU CC	LIVERY  NVER  NVER  NALER EMPTY UPON  NAMENTS: (EXPLAIN  NAMENTS: (EXP	IN REU CERNATURE ALL DELAYS: CERTIFY THAT T NO COMPLETE FRI TO		
VAC DUMP VAN ROLL-OFF FLATBED PICK UP ABRIVAL TIME TRADER EMPTY UPON ARB IT NOL, explain balow) OIF MEASUREMENT (Tanke COMMENTEL (EXPLAIN ALL COMMENTEL (EXPLAIN			DF AF TRU CC	LIVERY  NVER  NVER  NALER EMPTY UPON  NAMENTS: (EXPLAIN  NAMENTS: (EXP	IN REU CERNATURE ALL DELAYS: CERTIFY THAT T NO COMPLETE FRI TO		

ARRIVED DATE	PROFILE NUMBER	NET WEIGHT (LBS)	MANIFEST #	RECEIPT #
04/21/15	NY305554	35460.00	002732771GBF	081668197
	TOTAL	35460.00		
	TOTAL	35460.00		
* * * E	ND OF R	EPORT	* * *	

		<u>rter Log</u> mical Services, /, NY	inc.	163 ME 1	, Cubic Yards	<u>}</u>
B   (c) Receipt # Service Req. Transporter N	ame	0555 Perr Davik 3 Tracto	01212 or/Trailer/Roll-off .mc.Sc	ny	75130 L8   04/21/15   40700 L8	354009
Driver's Name		Genera	ator			$\langle $
Scheduled A	Date	Time 515 Time In		43	04/21/15	
Arrived duri	ng Blackout?	Y / N Noti	fied DEC? Y /	N Be	ceiving:	
Leaker	Permit Vio	lation Pla	carding/Veh. I.D. \		Initials	Comments
Other (spe	ecity					
Buik to La	ndfili 🗌 N	o wet line 🗌 Fl	atbed Sta	abilization Dru	ums 🗌 Tenker	Transformers
Laboratory	Time In	Time Out	Initials	Comments		
Stabilization	Time In	Time Out	Initials	Gross Wt.	Comments	
Landfill	Time In	Time Out	Initials	Comments		
Other		·····				· •••
	Time In	Time Out	Initials	Comments		
Aqueous Treatment	Time In	Time Out	Signature (NO	Initials)	Comments	
Facility Pe	<b>rsonnei</b> (plea	se initial)				
	Smoking o	r eating in prohibite	d areas		Leaving true	ck unattended
	Failure to c	bey instructions of	facility personnel		Failure to d	isplay overweight flag
	Failure to v	vaar appropriate PP	E		Improper ta	rping or detarpin
	Unsafe drh	ring practices			Overweight	upon arrivel
	Other (spe	city)				
					urity Guard Initials cating receipt of Was	:



#### **CWM CHEMICAL SERVICES, LLC**

1550 Balmer Road Model City, NY 14107 716 286 1550 716 286 0211 Fax

EMERSON POWER TRANSMISSION ATTN: ANDREW MADDEN NYD002228625 50 LAKEFRONT BLVD., STE 111 BUFFALO NY 14202

### CERTIFICATE OF DISPOSAL

CWM CHEMICAL SERVICES, L.L.C., EPA ID: NYD049836679, has received waste material from EMERSON POWER TRANSMISSION on 04/21/15 as described on Shipping Document number 002732771GBF Sequence number 01. CWM CHEMICAL SERVICES, L.L.C. hereby certifies that the above described material was landfilled in accordance with the 40 CFR part 761 as it pertains to the land disposal of polychlorinated biphenyl contaminated materials.

Profile Number: NY305554 CWM Tracking ID: 8166819701 CWM Unit #: 1*0 Disposal Date: 04/21/15

Under civil and criminal penalties of law for the making or submission of false or fraudulent statements or representations (18 U.S.C 1001 and 15 U.S.C. 2615) I certify that the information contained in or accompanying this document is true accurate and complete. As to the identified section(s) of this document for which I cannot personally verify truth and accuracy, I certify as the company official having supervisory responsibility for the persons who, acting under my direct instructions, made the verification that this information is true accurate and complete.

MICHAEL D MAHAR

DISTRICT MANAGER Certificate # 375296 04/22/15

For questions please call our Customer Service Dept. at (800) 843-3604 Appendix I – Non-Hazardous Waste Transportation and Disposal Documentation



		Francisco Int		TEUTRORICS
P	-	STENO	APPLACATIO	N NO.
يت المحمد الم		DEPARTMENT O Approx		DATE
	SPECIAL WASTE CHARAC	TERIZATION	PROFILE	
Disposal Facility Location (Chao	w All That Apply) - Casella reserves the r	ight to make ch	inges to this section	bused upon review
Hylzad Landfill Chemong 6653 Herdman Road Angelica, NY 15709 Lowman, Ph. 585 466 3201 Ph. 667.73 Fax: 585 466 3206 Fax:607.73	the 60 1879 Rt. 54/20 286 Si NY 14861 Stanley, NY 14561 Morri 7.2980 Ph: 585 526 4420 Tel. 5	on Cty LF and Road isonville, NY 12 18.563.5514 18.563.5598	Waste USA ( 21 Landfill I. Coventry, V Tel: 802.334.5 Fax: 802.334	ane 581 Trudeau Road C 05825 Bethlehem, NH 0357 1796 Tel: 603,869,3366
Disposal Optimi - Casella reserve	a the right to make changes to this section	based upon we	teto	
Waste Profile is destined for. DD Duill Cuttings Only: D Raw Cutti Waste Characterization Data :	sposal as waste 1800 ngs for Solidification 1 Bulked Cuttings	Continer (desc For Disposal M	A share a second s	AleyWater 🖸 Oll-based
				10 101
1) Generator of Waste Emerson Power Transmission	Address of Facility Generating Waste (St 620 South Aurora Street, Ithaca, NY,	Sec. Contraction of the second s	(21¢)	County of Origin Tompkine
2) Generator's Representative (must gutch signature on pg 2) QN BEANF of EMERSON Daniel Liwicki	Mailing Address of Representative is an WSP 50 Lakofront Bivd, Suite 111, Buffelo,		Telephone No. 716-866-1823	Fax No. and Email Address Dantel Liwicki @wspgroup .com
3) Bill To Customer	Bill To Address		Telephane No.	Fax No. and Email Address
Dritario Specialty Contracting, nc.	333 Ganson Street, Buttalo NY 14203		716-856-3333	into@oscinc.com
Disposal materials corresponding materials subject to this profile ar being disposed of as non hazard reference. 5) Description of water idebria-com Mature of soli, asphalt, concrete,	lential, Commercial, Manufacturing, WWTP g to a PCB contaminated transformer pa o the acii and pavement materials which ous waste through an EPA approved Se taining, composition, welform or mixture, at and gravel.	d and surround surrounded th it-implemention r.t	Sing anoillary materi se transformer cond	ials targeted for disposal. The rote pad. These materials are
7) Expected Annual Amount of War		pproximate Des		
<u>67</u> tons/year <u>58</u>	entric yanda/year	3.000	pounds/tubic yard	Estimated 1.5 TN/CY for pavement, gravel, and solis
8) Expected Frequency of Delivery X une-time delly	_ weekly secolarly		ther (specify, if know	-m)
9) Hauler Name Rocell Enterprises, Inc.	Address 6800 W Hennietta Rd, Rush, NY 14543	Transporter F 7A402 Exp. Date:		Felephone No. 585) 538-6550

Waste Characterization Data (Con	t'd)		
10) Method of Delivery. If other, sp X roll-off	i=10	tractor trailer	Dump Truck
11) Previous Disposal Location	Address	Phone	Contact Person
12) Is the waste classified as a "listed explain.) No	l" or "characteristic" hazardou	s waste as defined by USEPA, or	State of origin, or State where disposed? (If yes,
13) Describe all hazardous or nuisar None	ace properties associated with	the waste (i.e. odors, dust, size)	
14) Does the waste require any speci No	al handling or disposal proced	lures? If so, explain.	
15) Analytical Data Submitted (TCL) Non TSCA Waste Full TCLP: Lab	Real States and an and a second second	grab	cate # of each type in space provided) composite borings vided if test pit/boring data is provided
PCBs, Pesticide special waste su	es/Herbicides), pH, React ubmitted for landfill accept submittal of less compreh	nittal of full TCLP (Metals- ivity, Ignitibility, and % sol tance unless the applicant ca ensive data. The generator	ids testing results for any n provide an acceptable
16) Justification for not submitting f	ull TCLP data.		
GENERATOR CERTIFICATION			
supplemental materials is comprovided herein, including an the waste stream to be deliver contact the laboratory directly to based on this information, any information described herein, m	nplete and accurate to the any supplemental information red to the facility and that o discuss our attached was deviation in the source, may render the waste stream	e best of my knowledge a tion, such as laboratory a at all known or suspected te stream. I understand that composition, constituents o n unacceptable for disposal	information submitted on this form and on nd ability to determine; (3) the information malytical, MSDS, etc., accurately describes hazards have been disclosed; (4) Casella can once the waste stream is approved by Casella r characteristics of the waste stream from the at the sole discretion of Casella. I further immediate notification to the disposal facility
Generator or Authorized Representative - Signature: ON BEHALF OF F.MERSON	Print name: On behalf of Emerson Daniel Liwicki	Print Title/Company: Associate Consultan WSP	Date: April 2, 2015

### INSTRUCTIONS Special Waste Characterization Profile (SWCP) Form



A separate application is required for each special wastestream and must be approved by Casella Special Waste Technical Approval Team prior to transport and disposal to any of our facilities.

Disposal Facility Location - If known, please select the preferred disposal facility. Subject to change at Casella's discretion.

Disposal Option - If known, please select the preferred disposal option. Subject to change at Casella's discretion.

Waste Characterization Data - Please complete ALL sections on the SWCP form.

- Company Generating the Waste: Enter the GENERATOR information in section (1). The generator is the individual or entity
  that has ultimate responsibility for the waste. The generator is the person or company that created the waste or physically
  changed the waste last, typically the property owner, a municipality, a Company, a State Agency, etc. (not the engineer or
  contractor hired to do the work) include the physical address where the waste was generated, including the county (not
  country) of origin.
- 2. Representative of the Generator: The name and malling address of the generator; the individual certifying the information provided on the profile is accurate, true and representative of the waste being disposed. The 'Representative of the Generator' should be the same individual signing the Form and must be an <u>authorized</u> representative of the generator (i.e. an officer of the company, or their authorized designee). Only the generator is authorized to sign the SWCP Form. In the rare event that the generator assigns responsibility to sign on their behalf, an Authorized Agent Form must accompany the SWCP Form.
- 3. Bill To Customer: Name and mailing address of the landfill's customer
- 4. Description of Facility: Indicate the type of facility or event generating the waste Process Generating the Waste: Provide a detailed description of the process and/or manner in which the material was generated, including the source of contamination. Include as much information as possible; attach a process flow diagram, if applicable. <u>Example</u>: Site is former ABC Manufacturing Facility. The Plant manufactured plastic widgets and closed in 1970. Waste is remediation of contaminated soils from historic facility use – not the result of a spill of release.
- 5. Description of waste (debris-containing, composition, uniform or mixture, etc.): Provide a detailed description of the waste, including all known or potential contaminates, composition, whether it is uniform or a mixture, or contains debris. <u>Example</u>: The waste is contaminated soil excavated from various areas of the former ABC Manufacturing Facility site; paints and varnishes were widely used in the process. The soil contamination is due to historic use, contaminates of concern include VOCs, SVOCs and heavy metals. Waste is uniform in nature with no detectable discoloration or odors. Note: "soil" is NOT an acceptable description of waste.
- Is Waste Hazardous by Federal OR State <u>Waste</u> Regulations: It is the Generators responsibility to identify any hazardous waste; please check appropriate box.
- 7. Expected Annual Amount of Waste To Be Delivered/Approximate Density of Waste: Indicate the anticipated amount of waste to be delivered in tons or cubic yards. If waste is estimate in cubic yards, please include the estimated waste density in pounds/cubic yard. If waste generated is a one-time event (not an on-going process), indicate the total project volume (or tons). If a waste density is not provided on the Form an estimate will be made based on the information provided.

Waste Approvals will have an annual or one time tonnage limit and require renewal certification form to be completed and signed by the generator annually (anniversary date of the Approval) or if the approved tonnage limit is reached.

#### SWCP Instructions (cont'd)

- Expected Frequency of Dellvery: On-going wastes are typically manufacturing or industrial process waste. Please indicate if delivery will be daily, weekly, monthly or other. If it is not an on-going process that is generating the waste, it is considered a one-time event (even if it will be delivered over a period of time)
- Hauler: Provide name, address, hauling permit number, permit expiration date and phone number of hauler. (Most States require waste haulers to be permitted and/or registered.)
- 10. Method of Delivery: Indicate the vessel or vehicle-type used for waste delivery. If "other" please provide a description
- 11. Previous Disposal Location: Enter information about any other facilities where the material has been disposed. If it has not been disposed at another location, enter "None" (do not leave blank).
- 12. Is the waste classified as a "listed" or "characteristic" hazardous waste: Refer to 40 CFR 261.31-33 for Listed Waste and 40 CFR 261.21-24 for Characteristic Waste to make this determination.
- 13. Describe all Hazardous or Nuisance Properties associated with the waste: Indicate if there are any hazards or nuisance issues associated with the waste; such as dust, odors or size of material that may require special handling at the disposal facility.
- 14. Does the Waste Require Special Handling or Disposal Procedures: Indicate any special handling requirements at the disposal facility to address the above listed nuisance properties. <u>Example</u>: Waste is friable asbestos will be managed and packaged according to State and Federal regulations.
- 15. Analytical Data Submitted: Describe the analysis provided for evaluation; include the laboratory, report number and sample ID #s. Waste to be disposed of in NY State must be analyzed by NYS Certified lab. Indicate the type (i.e. grab samples /boring samples, composite samples), <u>AND</u> number of samples collected. Contaminated soil or remediation sites require representative composite samples collected from stockpiled material; include a brief description of how the composite sample was taken and the volume of material it represents. Test pit samples or boring samples will be evaluated case-by-case at Casella's discretion. TP or Borings MUST include a description of how the samples were collected, MUST be representative of the entire wastestream and include a site plan depicting sampling locations.
- Justification for not submitting a Full TCLP Analysis: All special wastes require Full TCLP Analysis, <u>minimum</u> testing requirements are listed on the Profile Form. If the minimum testing is not submitted, the generator MUST provide justification for reduced analytical.

<u>Example</u>: Waste is Non-friable PCB contaminated building debris with lead-based paint. Attached engineering report includes TCLP analysis for lead, totals analysis for PCBs and an asbestos survey. Applicable Report sections and analysis is highlighted for the waste included in this application. Full TCLP is not needed because the waste is not contaminated with heavy metals or volatile organic compounds. Waste is not combustible, does not contain reactive sulfides or reactive cyanides.

Minimum testing requirements for any special waste submitted for landfill acceptance. The generator is responsible for proper waste characterization.

- Full TCLP analysis for (RCRA 8 Metais, VOCs, SVOCs, and Pesticides/Herbicides),
- PCBs totals analysis,
- pH, Reactivity, Ignitibility, and % solids
- TPH is required for disposal in Vermont.
- · Paint Filter will be required for any 'wet wastes' to confirm no free liquids.

Additional testing may be required for applications seeking Beneficial Use, or at Casella's sole discretion.

Generator's Certification: Once all information is completed on the form, the authorized <u>GENERATOR REPRESENTATIVE</u> must certify the accuracy of the information. The individual signing the form must be listed in Section 2.

Casella will not accept a Special Waste Characterization Profile signed by anyone other than the generator (i.e. contractor, broker, or consultant) without express written delegation by Authorized Agent Form signed by the generator.



٠

Syracuae P.O. Box 6418 Syracuse, NY 13217 (315) 433-5115

Rochester 5800 W. Henrietta Road Rush, NY 14543 (585) 344-8410 Geneva 1210 Gifford Road Pheips, NY 14532 (315) 548-4049

\$4846

## NON-HAZARDOUS SOLID WASTE MANIFEST

DATE	TIME	IN.	/ OUT
a forms			na se est
TRAILER #			e 120
	Sterios.		Marine - Star

P.O. BOX SYRACU	SE, NY 13217	È.	SHIPPER	
PHONE #	(315) 433-5115 ARTICLE	ES OR DE	SCRIPTION	WEIGHT
	259/1-1-2010 LANNE Amerika (M. J. 2007) Amerika (M. J. 2007)	STRATING THE ST	WEIGHT IN WEIGHT OUT BILLED WEIGHT	21.06 TM
HIPPER SIGNA		/ 		ner (
SPECIAL INSTR	RUCTIONS			
DESTINATION:	Opine	- 1]		
FOR APPROVA CONSIGNEE PI CONSIGNEE SI (NO INITI/ HECEWED ABOVE WHETERAL III BOOD CONDITION	RINT NAME		Solid waste being interpreted waste or waste containing ani matter, rubbish, trash, debris, as toxic sludge and other waste ma radioactive volatile, highly fiamm or hazardous nature as listed	mal and vegetable shes and metal non- terials which is not a

White Copy - Riccelli



Syracuse PO Box 6418 Syracule, NY 13217 (315) 433-5115

Rochester 1800 W. Henrietta Road Pluan NY 14543 (588) 344-8410 Geneva 1210 Gifford Road Phelps, NY 14532 (315) 548-4049



# NON-HAZARDOUS SOLID WASTE MANIFEST

77

TRANSPORT	ER	- D/	ATE	TIME	IN	/ OUT	
P.O. BOX	LI ENTERPRISES INC. ( 6418 ISE, NY 13217	4/ 13	115			-	
RUCK	327	TRAILER #	1				
		1	27 1	Ê.,		1	
P.O. BOX	J ENTERPRISES INC.	2				Teasum	
	# (315) 433-5115						
NO, PIECES	ARTIC	LES OR DESCRIPTIÓ	N		_	WEIGH	11
1	3671 600 11- 866 Colonia Grant -	he soil/equility	w	VEIGHT IN EIGHT OU	IT		
	井 ちんパブ			LED WEIG			
	# 5607	the second	628	531	é	10.85	10a/
HIPPER SIGN	ATURE SET THE		T NAME	Dieres		CHINES THE STREET	1
RIVER SIGN/	TURE MARK 4	PRIN		heat	E	1	- 22
PECIAL INST	BUCTIONS	L.					-
ESTINATION	SATANO Co LAND	⊈a(					
	<u> </u>	- Instance		a nazvavora	2012/12/	5-142-55 (Sec.)	The second second
OR APPROVA	Second I I I	waste or	waste c	ontaining	anima	mean onl al and ver	getable
ONSIGNEE P		matter, ru				als which	

ENGINE / CONTINUES CODATE LONG ILL LETTING REALTS IN THE REAL BOOM IN THE REAL PROPERTY INTO THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL TIDET CARD fizid 18.Y.12 Serrant. 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 12047 10 CUTTORER: CERMINAL | (LICERAL) PULCIET ACT TOPPING INTERNAL SE - TOPPING FRUERA MICEST INTERNAL SP - ENERGON POLE INTERNAL SEC - RICELLI INTERNAL SEC - RICELLI INTERNAL SEC - RICELLI **HEFROVAL #**1 TRATLERS NERTER OF THEIR AVELIGABLE CELL / TRULE PE-THE PARTY AND A DRIVE ADDRESS OF THE PARTY O DUAMET IT Lingt 1. i Cartair under penalty of Derivey that I is fusiliar with matter with entry without in this facility, will that to the best of an Anneledue with the training and an anti- facility. New Explorit distribution of Pristers. RIPEOTE-OC 品。戊戌年日日 COTH LINE ! DH LTSS.



Synecuse PC: Bay 6418 Synecuse: NY 13217 (315) 435-5115

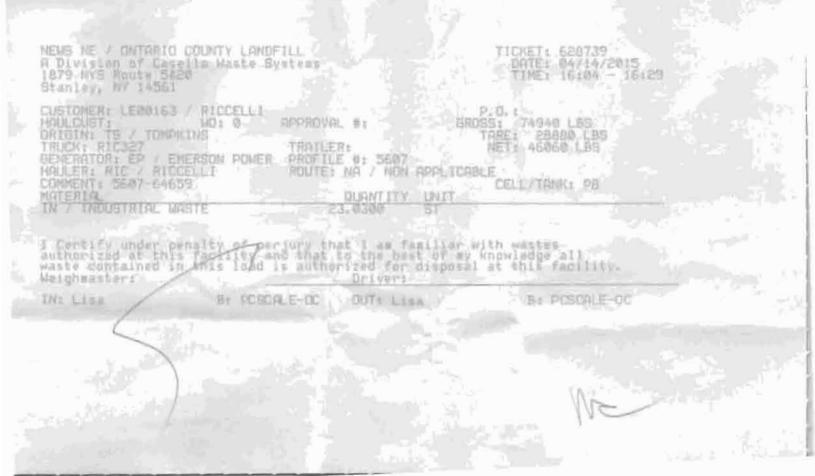
Rochester Geneva MOO V., Hernietta Road 1210 Giffeet Road Ikush, KY teba3. Phesia, NY 14532 (685) ISa4.8410 (315) 548-4049

TICKET No. 246420

#	TICKET NUMBER TICKET WEIGHT		IN OUT		UNLOAD TIME		WAITING TIME
1	628531	20.85 TOW		900	104	001	
2		the second			-		
3							
4							
5							
6	at the second						
7							
8							
9							
10							
11				-			
12							
13							

START TIME: 9 40	END TIME: TIME:	TIME: 7.00
DRIVER'S SIGNATURE	HAULER	TRUCK No. 327
CUSTOMER SIGNATURE	M.M.M.M.	OFFICE COPY 2




Syracuse P.O. Box 6418 Syracuse, NY 13217 (315) 433-5115

Rochester 6800 W. Henrietta Road Rush, NY 14543 (585) 344-8410 Geneva 1210 Gifford Road Phelps, NY 14532 (315) 548-4049

64659

# NON-HAZARDOUS SOLID WASTE MANIFEST

	R	DATE	TIME IN	/ OUT
P.O. BOX	ENTERPRISES INC. 6418 6E, NY 13217	4/14/15		
RUCK#	7	TRAILER #		
			t.	-
P.O. BOX	SE, NY 13217	Enresau Fithain	Pour TRA	13 M 55 me)
NO. PIECES	(315) 433-5115 ARTICLES O	R DESCRIPTION		WEIGHT
HIPPER SIGNAT	# 5607 THE SGOT	ыц #G287.	EIGHT OUT ED WEIGHT 39 200 BEIDET OF Drugger Drugger Maak E	23.03 Jaw Theread
	315 64 4	PRINT NAME	1 mg - C	and the second sec
RIVER SIGNAT	12		+	1 7
	12	AN.	+	1 7
PECIAL INSTRU	ONTOLIO ZAI	Solid waste being		





Synatuse Rochaster P.D. Sox 5413 9500 V/ Hervieta Road Synatuse, NY 13217 Ruch, NY 14543 (315) 435-6115 (1683) 314-8410

General 1210 G/Rod Hours Protes, NY 14532 (315) 548-6569 TICKET No. 246421

#	TICKET NUMBER	TICKET WEIGHT	LOAD	OUT	UNLOA	OTIME	WAITING TIME
1	628739	23.03 TON	1100	445			
2							
3							
4							
5	and the second					20-1-1-	
6	1.2		1				
7	+						
8							
9							
0							
1							
2		- C					12
13							
ST/	ART TIME: // Tors	END TIME: U	5	TIME:		TOTAL TIME:	5.75

CUSTOMER BIGNATURE

1

OFFICE COPY 2



Syracuse P.O. Box 6418 Syracuse, NY 13217 (315) 433-5115

Rochester 6800 W. Henrietta Road Rush, NY 14543 (585) 344-8410 Geneva 1210 Geford Road Phelps, NY 14532 (315) 548-4049

64660

# NON-HAZARDOUS SOLID WASTE MANIFEST

TRANSPORTER			DATE	TIME	IN /	OUT
RICCELLI ENTEI P.O. BOX 6418 SYRACUSE, NY	an nananan kasa. Manusi	4	1/15/15			
^{гкиск#} 327		TRA	LER#	_1		
CONSIGNEE			SHIPPER	1		1
RICCELLI ENTEI P.O. BOX 6418 SYRACUSE, NY	V0416+34			ion Por		ans Mills finds
PHONE # (315) 4	33-5115					
NO. PIECES	ART	FICLES OR DESC	RIPTION			WEIGHT
	# 5607	Friend Marine	DAR970	ON BRING	17	129 Ten
DRIVER SIGNATURE	Most 1	ater	PRINT NAME	-	Ficken	ē.
SPECIAL INSTRUCTIONS		0.001				
	TIPRIC L	Sol	ste or waste	containing	animal	ean only solid and vegetable
CONSIGNEE SIGN HERE (NO INITIALS) RECEIVED ABOVE MATERIAL W GOOD CONDITION BY		tox rad or t	ic sludge and o loactive volatile lazardous natu	ther waste e, highly fla re as listed.	material mmable	and metal non- s which is not a explosive toxic
White Copy - Riccel	V Yellow Co	ipy - Driver	Pink Copy - Lan	d Fill	Gold	Copy - Shipper

NEWS Nº / ONTABLE COUNTY LANDFILL A Division of Cosella Moste Systems 1879 NYS Route 5620 Stanley, NY 14561 This is a Negrint Tickst P.O.: P.O.: D.O.: D.O. CUSTORER: LEBRIGS / RICCELLI MAUCCOSTI: MON A ORISINI TE / TOWFRING TRUCK: RICSET REMERSTOR: EP / EMERSON POWER HALLER: RIC / RICCELLI COMMENT: 5607-64553 MATERIAL IN / INDUSTRIAC SASTE APPROVAL #1 TRAILER: M PROFILE W: 5607 ROUTE: NR / NON APPRLICABLE

5137

CELL/TRUKE PE OURNETTY UNIT

I Certify under penalty of periory that I as fasilier with wartes authorized at this facility and that is the best of ay knowledge all wasts contained in this load is suthorized for disposal at this facility. Weighwarter:

THE REPORT	101	POSCALE-DC	OUT: Lisa	.81	DESCRIE-OC
	(and the				
	1				
			41. A.L.		1+2
	1.11				



1

Syracuse HG, Box 6418 Syracuse, NY 13217 (215) 433-5116

Rochester 6800 W. Henrietta Road Rush, NY 14543 (88% 354-6410

Geneva 1210 GRord Road Phelps, NY 14632 (111) 548 4049 TICKET No. 246422

#	TICKET NUMBER	TICKET WE	IGHT	LOAD	OUT	UNLOA	OUT	WAITING TIME
1	628970	17.29	Text	12	345			
2				-				
3								
4					ļ	(		
5			-		-			
6								
7								
8								
9								
10								
11						L		
12			_	_	_			
13								
STA	RT TIME: 1/ 20	END TIME:	33	12	RAVEL TIME:		TOTAL TIME:	4.25
	R'S SIGNATURE					*	-	CK No. 327



黛

Syracuse P.O. Box 6418 Syracuse, NY 13217 (315) 433-5115

Rochester 6800 W. Henrietta Road Rush, NY 14543 (585) 344-8410 Geneva 1210 Gifford Road Phetps, NY 14532 (315) 545-4049

64649

# NON-HAZARDOUS SOLID WASTE MANIFEST

	R	DATE	TIME IN	/ OUT
P.O. BOX	ENTERPRISES INC. 6418 6E, NY 13217	4/16/15		
TRUCK # 38	27	TRAILER #		
P.O. BOX	ENTERPRISES INC. 6418 E, NY 13217	1 to SHIPPER 1/1 OSC/1 THATA	mmini Ru N.Y	ng Trais on 350W 2
	(315) 433-5115			
NO. PIECES	ARTICLES OR	DESCRIPTION		WEIGHT
1-	5011 2 ptm = 1501/7001 # 5607	ut/conse-~w		20.28-TAN
	ON BEHING OF FURCHER			
ORIVER SIGNAT	URE MAR A	PRINT NAME	Printing P	104 
SHIPPER SIGNAT DRIVER SIGNAT SPECIAL INSTRU DESTINATION:		PRINT NAME	Printer for	1
ORIVER SIGNAT	URE MARINE LA	PRINT NAME	Proversion for	

A. Weiner for and an entry has the construct attack to an and the second barries of the second secon

In New Brancher and Inter Hints Hill House in



Syrecuse P.O. Box 5418 Syrecuse, NY 13217 (315) 433-5115

Rochester 6000 W Henrietta Rout Rush, NY 14543 (585) 344-8410

.....

Geneva 1210 Giford Road Phelps, NY 14532 (315) 548-4049

64650

### NON-HAZARDOUS SOLID WASTE MANIFEST

TRANSPORTE	R	DATE	TIME IN	1 OUT
P.O. BOX	ENTERPRISES INC. 6418 6E, NY 13217	4/16/15		
RUCK# 3	27	TRAILER #		
P.O. BOX	SE, NY 13217		n 11-7	Trons nis 500
PHONE #	(315) 433-5115	S OR DESCRIPTION		WEIGHT
IPPER SIGNA	A	#621	C. Control (C. Con	19.51 Ted
RIVER SIDNAT	D1	PRINT NAME	1 10	
ESTINATION:	ortano 2	autotl -		
OR APPROVAL ONSIGNEE PR ONSIGNEE SIG		matter, rubbish,	ng interpreted to containing anima trash, debris, ashe other waste materia	and vegetable and metal non-
MATERIA, N GOOD			le, highly flammabl ure as listed.	

I Tarrista and an analysis of the training of the second s

the menty as PORCHARCO	port Ling	R & PORCHAR-OC	
		15	



Syracuse PID: Box 6418 (880 Synacuse: NY 15217 (315) 433-5115

Rochester 6800 W. Hersista Roosi Rush, NY 14543 (ME) 134-8410

Gameva 1210 Giftxes Romi Phosps, NY 14532 (315): 548-4040 TICKET ND. 246423

#	TICKET NUMBER	TICKET WEIGHT	IN	OUT	UNLOA	D TIME OUT	WAITING TIME
1	629085	20.28 Ten	Lite	_			
2	1229 199	19 51 TOUL	1.	1			
3							
4							
5							
6	the second second		in the second				and the second sec
7	1 M						
8							
9							
10							
11							
12						-	
13	1		1		L		_
ST			2 1	RAVEL TIME:		TOTAL TIME:	9.50
RIV	ER'S SIGNATURE	14. 34	HAULER	6		TRI	CK No. 327



Rochester 6000 W. Herrietta Road Hush, 107 14543 (585) 344-8410 Geneva 1210 Gifford Road Phetps, NY 14532 (315) 548-4049

84993

### NON-HAZARDOUS SOLID WASTE MANIFEST

TRANSPORTE	R	DATE	TIME IN	TUC i
P.O. BOX	ENTERPRISES INC. 5418 E, NY 13217	4/17/15		
TRUCK# 3	27	TRAILER		
P.O. BOX	ENTERPRISES INC. 6418 E, NY 13217		a 1.9	helen (20)WS
	(315) 433-5115	50000	d =	<u>с</u>
NO. PIECES	in a second s	S OR DESCRIPTION		WEIGHT
SHIPPER SIGNAT	# 5607	HE (029) PRINT NAME	NEIGHT OUT LLED WEIGHT R999 Storborg LLE SA Mare Walls Mare K. F.	
SPECIAL INSTRU				
DESTINATION	ONTRAIO-LA	Still.		
FOR APPROVAL CONSIGNEE PR CONSIGNEE SIG (NO INITIAL		waste or waste matter, rubbish, ti toxic sludge and o	containing ani rash, debris, as other waste mat	to mean only solid mal and vegetable hes and metal non- terials which is not a able explosive toxic

* White Copy - Riccelli

FIRE .

in t

۰.,

HECENED ARCIVE WYTERIAL HI GOOD CONDITION

Yellow Copy - Driver

these.

THE.

or hazardous nature as listed.





100

Byresues P.O.: Box 6418 Byresons, NY 13217 (315) 423-5116

1.0

Rochaeter 6800 W. Herviette Positi Flugh, NY 5454.) (585) 334-8410 Geneva 1210 Gifford Road Mage, NY 14532 (215) 548-4049 тіскет No. 246424

#	TICKET NUMBER	TICKET WEIGHT	IN	OUT	UNLOA	OUT OUT	WAITING TIME
1	629294	7.87 TON	630	10.00		001	
	una ma ci	1001 1010	A.F.				
1							
	- Provide Street	and the second s					
	The second se	-					
1							
I							
I							
)							
I							
Ś				1.1			
3							
τ	ART TIME: 1 30		00	TIME:		TOTAL TIME:	3.50

OFFICE COPY 2



Syracuse P.O. Box 6418 Syracuse, NY 13217 (315) 433-5115

Rochester 6800 W. Henrietta Road Rush, NY 14543 (585) 344-8410 Geneva 1210 Gifford Road Phelps, NY 14532 (315) 548-4049

- 64994

### NON-HAZARDOUS SOLID WASTE MANIFEST

ENTERPRISES INC.	11/20/15		
E, NY 13217	4/ 24/15		
37	TRAILER #		
ENTERPRISES INC. 3418 E, NY 13217			smission
(315) 433-5115			WEIGHT
Snil		WEIGHT IN	maom
#5607			16.41 Tan
JRE Mart A		WATE WINGT	emerado dest BAL
Ontario Londtill 	waste or waste matter, rubbish, tr	containing anir ash, debris, asl	nal and vegetable
	ENTERPRISES INC. 5418 E, NY 13217 315) 433-5115 ARTICLES SOI / <50 ppm/soil/concret # 5607 URE Mail 4 URE Mail 4 URE Mail 4 ICTIONS: Ontario Londfill Ontario Londfill	Shipper ENTERPRISES INC. 418 E, NY 13217 315) 433-5115 ARTICLES OR DESCRIPTION SOL C 50 ppm/soil/concrete/asphalt H 5607 WRE Mal A PRINT NAME PRINT NAME Ontario Landfill Solid waste bein waste or waste matter, rubbish, tr	Solid waste being interpreted to waste or waste containing anir matter, rubbish, trash, debris, asl

White Copy - Riccelli

Yellow Copy - Driver

NEWS NE / INTARIO COLMITY LANDFILL A Division of Casella Maste Eveties 1679 NYS Raute 1629 Stanley, NY 14551

TICHET: 638457 DATE: 04/26/2015 TIME: 18:44 - 11:13

CLUSTUNERS LEOGICS / RICCELLE P. D. 1 HALLCUST: MORENING GAGEROVAL WY GROSSI &1340 LBS 48011 12 24520 135 TARE: TELOR: AIC327 GENERATOR: ED / EMERSON POWER HAD.ER: MIC / AICCELLI COMMENT: 2507/54794 MATERIA TRATLERS NETI 32528 1.83 PREFILE #1+5697 ROUTE: NO / NON APPLICABLE CELL TANK: PO QUANT FTY + UNIT IN / INDUSTRIAL WARTE 10. NINN Erl

I Cartify under penalty of perjury that I as familiar with easters actionized at this facility and that to the best of my knowledge all wants contained in this load is authorized for dispused at this facility. Weignmasters

The WWEY BI POSCALE-OC DUT'S NEWCY BI POSCALE-OC

Appendix J – Decontamination Fluids Transportation and Disposal Documentation

New Autors - 9,70 South Amore linear

Manual NY 14000

And Annual States of States of States

DOCUMENT NO1035328	STRAIGHT BILL OF LADING	WORK ORDER NO.
TRANSPORTER 1		VEHICLE ID #
EPA ID #	12230	TRANS. 1 PHONE 17811782 5000
TRANSPORTER 2		VEHICLE ID .
EPAID #		TRANS. 2 PHONE

SE PAYS AVRIATION

DESIGNATED	FACILITY	ma yak		SHIPPER				
FACILITY EPA D					SHIPPER EPAID .			
ADORESS								
City			STATE ZIE		STATE ZIP			
CONTAINERS NO & SIZE	TYPE		DESCI	RIPTION OF MATERIALS	TOTAL UNIT QUANTITY WT/VOL			
4255	Ern		A series production	CARACTERIC CONSISTS AND CONTRACTOR	1,500 P			
			8.					
			C.					
			D.					
	and the second		E					
			F.	and the second second				
		1	G					
			H.					
SPECIAL HAN	DLING INS	THUCT	IONS	STATISTICS				

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

	PRINT CAL DE CAL	SIGN /	DATE
SHIPPER	PRINT LAL ST DE WER	SIGN UNLE	DATE
TRANSPORTER 1	PRINT	SIGN	DATE
TRANSPORTER 2	PRINT	SIGN	DATE
RECEIVED BY		1	

204.10

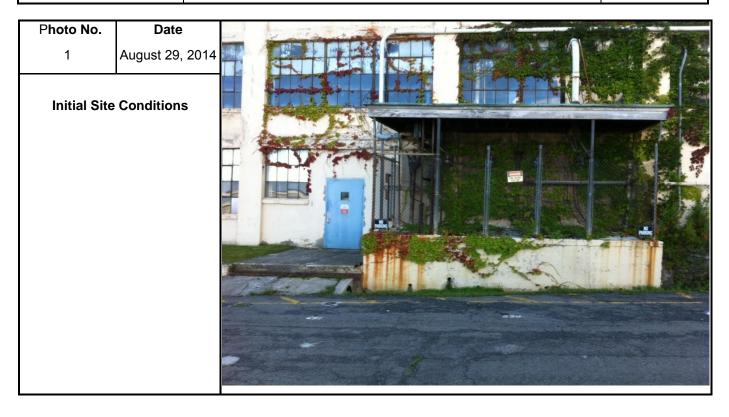
b

B

auti

**NNA**K

Appendix K - Photographs




#### PHOTOGRAPHIC LOG

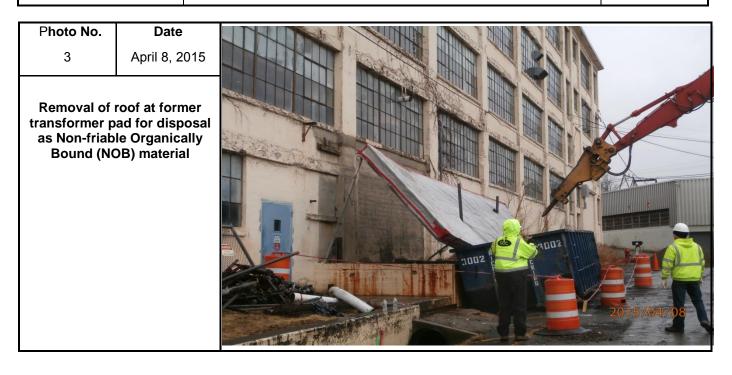
Emerson

#### Former Emerson Power Transmission Site

4255








### PHOTOGRAPHIC LOG

Emerson

#### Former Emerson Power Transmission Site

4255

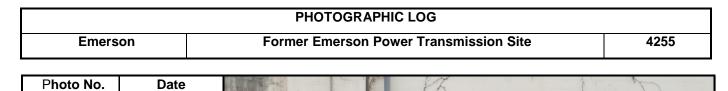



Photo No.	Date	
4	April 9, 2015	
	of the concrete reater than 50 of PCBs	



## WSP 🛛

2015/04/15



5

April 10, 2015

Completed ( Excavatio	excavation at on Area E4	
Photo No.	Date	
6	April 15, 2015	
transformer p	on at former pad, ramp, and on Area E1	

## PHOTOGRAPHIC LOG Emerson Former Emerson Power Transmission Site 4255



Photo No.	Date	The second
8	April 23, 2015	
Excavatio	on Area E3	
		2015/04/23



## PHOTOGRAPHIC LOG Emerson Former Emerson Power Transmission Site 4255



Photo No.	Date	
10	May 8, 2015	
compaction	backfill with n and culvert oration	
		2015/05/08



# PHOTOGRAPHIC LOG Emerson Former Emerson Power Transmission Site 4255



Photo No.	Date	
12	May 8, 2015	
Aerial view conc	of Final site litions	



### WSP

11190 Sunrise Valley Drive Suite 300 Reston, VA 20191 Tel: +1 703 709 6500 Fax: +1 703 709 8505 www.wspgroup.com/usa

