

VIA ELECTRONIC MAIL

March 27, 2025

Karen A. Cahill Environmental Engineer Spill Response, Division of Environmental Remediation New York State Department of Environmental Conservation R7 5786 Widewaters Parkway Syracuse, NY 13214-1867

Subject: March 2025 (Monthly and Quarterly) SPDES PEq Sampling Results

Emerson Electric Co. Site in Ithaca, New York (DER Site No. 7-55-010)

Dear Ms. Cahill:

On behalf of Emerson Electric Co. (Emerson), WSP USA Inc. (WSP) collected water discharge samples on March 10, 2025, from Outfalls 01A and 001 at the former Emerson Power Transmission site at 620 South Aurora Street in Ithaca, New York (Figure 1). The samples were collected in accordance with Emerson's Project Site Remediation Wastewater Discharge State Pollutant Discharge Elimination System (SPDES) Permit Equivalent (PEq), effective on August 1, 2022¹, and modified on October 11, 2024.

Please find enclosed the following information pertaining to this sampling event:

- Monthly and quarterly SPDES PEq results for Outfalls 01A and 001 are summarized in the enclosed Tables 1 and 2. The results for Outfall 001 also include the results of a duplicate sample, designated Outfall 001D. All samples were analyzed by methods approved under Title 40 Code of Federal Regulations Part 136. WSP measured pH, temperature, and flow of applicable discharges in the field. The remaining parameters were analyzed offsite by the following laboratories accredited under the New York State's Environmental Laboratory Approval Program (ELAP):
 - SGS North America Inc. in Dayton, New Jersey (ELAP identification number [ID] 10983)
 - Hoffman Analytic Service Inc. DBA Alloway in Marion, Ohio (ELAP ID 11071)
- Documentation of pH, temperature, and flow measurements collected in the field in March 2025, associated pH meter calibration records, and flow calculation for Outfall 001 (Enclosure A)
- Laboratory analytical data for the March 2025 SPDES PEq sampling event (Enclosure B)
- Tables summarizing all sampling results for each outfall from September 2022 to March 2025 (Enclosure C)

¹Emerson began complying with SPDES PEq on September 7, 2022, which is the date when the existing SPDES permit for the site (NY 0002933) was terminated by the New York State Department of Environmental Conservation, Division of Environmental Permits.

As indicated in Tables 1 and 2, none of the parameters detected in the March 2025 samples exceeded the SPDES PEq discharge limits.

If you have any questions regarding the enclosed information, please contact me at (315) 374-1175 or at amy.romano@wsp.com.

Sincerely yours,

Amy M. Romano

Senior Technical Manager, Environmental Science

Enclosures

cc: Stephen L. Clarke, Emerson

Lisa Kelly, WSP

FIGURE

TABLES

Table 1

SPDES Permit Equivalent Discharge Results - Outfall 01A Emerson Electric Co. Ithaca, New York (a)

Parameter	CAS No.	T I-n:40	Discharge	Result (c)
rarameter	CAS No.	Units	Limit (b)	03/10/25
Flow	NA	GPD	Monitor	1,543 (d); 11,232 (e)
pH (range)	NA	SU	6.5 - 8.5	7.9
Temperature	NA	deg F	Monitor	58.3
Tetrachloroethene	127-18-4	μg/l	1	ND (0.41)
Trichloroethene	79-01-6	μg/l	10	ND (0.43)
Sum of Dichlorobenzenes	95-50-1; 541-73-1; 106-46-7	μg/l	10	ND (1.91)
Bromoform	75-25-2	μg/l	10	ND (0.60)
Chlorobenzene	108-90-7	μg/l	5	ND (0.87)
Chlorodibromomethane	124-48-1	μg/l	10	ND (0.98)
Chloroform	67-66-3	μg/l	10	ND (0.50)
Free Cyanide	NA	μg/l	Monitor (f)	ND (0.8)
Dichlorobromomethane	75-27-4	μg/l	10	ND (0.94)
1,1-Dichloroethane	75-34-3	μg/l	10	ND (0.42)
1,1-Dichloroethene	75-35-4	μg/l	10	ND (0.45)
Methylene chloride	75-09-2	μg/l	10	ND (0.80)
1,1,2,2-Tetrachloroethane	79-34-5	μg/l	10	ND (0.73)
Toluene	108-88-3	μg/l	50	ND (0.77)
trans-1,2-Dichloroethene	156-60-5	μg/l	10	ND (0.46)
cis-1,2-Dichloroethene	156-59-2	μg/l	10	1.9
1,1,1-Trichloroethene	71-55-6	μg/l	10	ND (0.43)
Xylenes, total	1330-20-7	μg/l	10	ND (0.76)
Vinyl chloride	75-01-4	μg/l	10	ND (0.79)
Benzene	71-43-2	μg/l	1	ND (0.71)

Bold value is a detected concentration or measurement.

- a/ CAS No. = Chemical Abstracts Service registry number; GPD = gallons per day; SU = standard units; deg F = degrees Fahrenheit; μ g/1 = micrograms per liter.
- b/ Discharge limit specified in Emerson Electric Co. Project Site Remediation Wastewater Discharge SPDES Permit Equivalent, dated August 1, 2022, DER Site ID# 7-55-010.
- c/ ND = not detected above method detection limit provided in parentheses.
- d/ Estimated average flow based on totalizer readings of 1,846,908.92 gallons on February 20, 2025, and 1,874,687.96 gallons on March 10, 2025.
- e/ Estimated maximum flow rate during a batch discharge of the groundwater treatment system. Because the discharge is not continuous, the actual maximum daily flow rate would be less than this value.
- f/ Per Footnote 1 of SPDES Permit Equivalent, an interim limit of Monitor Only shall apply for free cyanide from August 1, 2022, until July 31, 2025. The water quality-based effluent limit of 5.2 μg/l Monthly Average and 22 μg/l Daily Maximum for free cyanide will become effective on August 1, 2025.

WSP USA Inc. Page 1 of 1

Table 2

SPDES Permit Equivalent Discharge Results - Outfall 001 Emerson Electric Co. Ithaca, New York (a)

				Resul	t (c)	
Parameter	CAS No.	Units	Discharge Limit (b)	Outfall 001	Outfall 001D (d)	
				03/10/25	03/10/25	
Flow	NA	GPD	Monitor	14,722 (e)	NA	
pH (range)	NA	SU	6.5 - 8.5	8.1	NA	
Barium	7440-39-3	μg/l	Monitor	138 J	133 J	
Total Lead	7439-92-1	μg/l	7.4	ND (2.4)	ND (2.4)	
Mercury	7439-97-6	ng/l	Monitor	8.3	7.3	
Tetrachloroethene	127-18-4	μg/l	1	ND (0.41)	ND (0.41)	
Trichloroethene	79-01-6	μg/l	10	ND (0.43)	ND (0.43)	
Free Cyanide	NA	μg/l	Monitor (f)	4	4	

Bold value is a detected concentration or measurement.

- a/ CAS No. = Chemical Abstracts Service registry number; NA = not applicable; GPD = gallons per day; SU = standard units; $\mu g/1 = \text{micrograms per liter}$; ng/1 = nanograms per liter.
- b/ Discharge limit specified in Emerson Electric Co. Project Site Remediation Wastewater Discharge SPDES Permit Equivalent, dated August 1, 2022, DER Site ID# 7-55-010.
- c/ ND = not detected above method detection limit provided in parentheses. NA = not analyzed for this parameter.
 - J = estimated concentration.
- d/ Outfall 001D is a duplicate sample of Outfall 001.
- e/ Estimated based on field measurement and V-notch (triangular) weir calculator (https://www.lmnoeng.com/Weirs/vweir.php).
- f/ Per Footnote 1 of SPDES Permit Equivalent, an interim limit of Monitor Only shall apply from August 1, 2022, until July 31, 2025. The water quality-based effluent limit of $5.2 \mu g/l$ Monthly Average and $22 \mu g/l$ Daily Maximum for Cyanide will become effective on August 1, 2025.

WSP USA Inc. Page 1 of 1

ENCLOSURE A – FIELD MEASUREMENTS, PH METER CALIBRATION RECORD, AND FLOW CALCULATION

Emerson Electric Co. 620 South Aurora Street Ithaca, NY (a)

	Sample	Carralanta Nama	nH Testing	pH Testing pH Meter	•	nH Result 1	Temperature		Flow Estimate	e		
Date	Location	Sampler's Name	Sample Collection	Method (b)	Calibration Date	(S.U.)	Testing	(degrees C)	(degrees F)	Average (GPD)	Maximum (GPM) (d)	Maximum (GPD)
03/10/25	Outfall 01A	Kevin Griswold	13:30	SM 4500-H+ B	03/10/25	7.9	2500 B	14.6	58.3	1,543 (c)	7.8	11,232
03/10/25	Outfall 001	Kevin Griswold	10:50	SM 4500-H+ B	03/10/25	8.1	2500 B	12.3	54.1	-	2.25 inches	14,722 (e)

a/S.U. = standard units; C = Celsius; F = Fahrenheit; GPD = gallons per day; GPM = gallons per minute.

WSP USA Inc.

b/ No sample preservation required per 40 CFR 136.3, Table II.

 $c/\ Based\ on\ totalizer\ readings\ of\ 1,846,908.92\ gallons\ on\ February\ 20,\ 2025,\ and\ 1,874,687.96\ gallons\ on\ March\ 10,\ 2025.$

d/ Estimated in the field on the day of sampling.

e/ Estimated using V-notch (triangular) weir calculator (https://www.lmnoeng.com/Weirs/vweir.php).

pH Calibration Log Emerson Electric Co. 620 South Aurora Street, Ithaca, NY

HACH PHC101 pH Meter

Serial No. 172862567034

Date	Time	Calibrated By (Initials)	Buffer Temperature (°C)	pH 4.00 Standard Result	pH 7.0 Standard Result	pH 10.00 Standard Result	Slope	Comments about meter and calibration equipment
3/10/2025	12:55	KGG	21.0	4.01	7.00	10.01	96%	Mix at 400 RPM, Cal. Passed; Calibration Solution Expiration Dates: pH 4 - 05/21/26; pH 7 - 07/17/26; pH 10 - 01/24/26.

WSP USA Inc. Page 1 of 1

3/20/25, 7:27 AM V Notch Weir Calculator

Solve for:	Click to Calculate	Initial Values
Discharge →		www.LMNOeng.com
Discharge, Q:	14721.596	gal/day (gpd)
Head, h:	2.25	inch
Notch Angle, θ:	60	degrees
Discharge Coefficient, C:	0.57667119	
Head Correction Factor, k:	0.044354092	inch
© L	MNO Engineering, Research, an	d Software, Ltd.

Units: ft³=cubic foot, gal=US gallons, m³=cubic meter, mm=millimeter, s=second

Introduction

Weirs are typically installed in open channels such as streams to determine discharge (flowrate). The basic principle is that discharge is directly related to the water depth above the crotch (bottom) of the V; this distance is called head (h). The V-notch design causes small changes in discharge to have a large change in depth allowing more accurate head measurement than with a rectangular weir.

V-Notch Weir (Triangular Weir) Equations

V-notch weir equations have become somewhat standardized. ISO (1980), ASTM (1993), and USBR (1997) all suggest using the Kindsvater-Shen equation, which is presented below from USBR (1997) for Q in cfs and heights in ft units. All of the references show similar curves for C and k vs. angle, but none of them provide equations for the curves. To produce automated calculations, LMNO Engineering used a curve fitting program to obtain the equations which best fit the C and k curves. Our equations are shown below. The graph shown is from our fits. If you compare it to the graphs shown in the references, it looks nearly identical which implies that our fits are very good.

C = 0.607165052 - 0.000874466963 θ + 6.10393334x10⁻⁶ θ ² k (ft.) = 0.0144902648 - 0.00033955535 θ + 3.29819003x10⁻⁶ θ ² - 1.06215442x10⁻⁸ θ ³ where θ is the notch angle in degrees

Installation Guidelines and Equation Applicability

USBR (1997) suggests using the V-notch weir equations for the following conditions:

Head (h) should be measured at a distance of at least 4h upstream of the weir.

It doesn't matter how thick the weir is except where water flows over the weir through the "V." The weir should be between 0.03 and 0.08 inches (0.8 to 2 mm) thick in the V. If the bulk of the weir is thicker than 0.08 inch, the downstream edge of the V can be chamfered at an angle greater than 45° (60° is recommended) to achieve the desired thickness of the edges. You want to avoid having water cling to the downstream face of the weir.

Water surface downstream of the weir should be at least 0.2 ft. (6 cm) below the bottom of the V to allow a free flowing waterfall.

Measured head (h) should be greater than 0.2 ft. (6 cm) due to potential measurement error at such small heads and the fact that the nappe (waterfall) may cling to the weir.

The equations have been developed for h<1.25 ft. (38 cm) and h/P<2.4.

The equations have been developed for fully contracted V-notch weirs which means h/B should be ≤ 0.2.

The average width of the approach channel (B) should be > 3 ft. (91 cm).

The bottom of the "V" should be at least 1.5 ft. (45 cm) above the bottom of the upstream channel.

If your weir does not achieve some of the above criteria, you may have a "partially contracted V-notch weir" where h/B needs only to be \leq 0.4, the bottom of the "V" only needs to be 4 inch (10 cm) above the bottom of the upstream channel, the approach channel only needs to be 2 ft. (61 cm) wide, and h can be up to 2 ft. (61 cm) instead of 1.25 ft. (38 cm). Partially contracted weirs use a different graph for C which is a function of h/P and P/B and is only valid for a notch angle of 90° . In the graph (not shown - see USBR, 1997), C varies from 0.576 to 0.6; whereas, for a fully contracted 90° notch, C is 0.578 from our graph shown above. Our calculation does not account for partially contracted weirs, but for most practical purposes the difference in C is inconsequential.

Error Messages

"All inputs must be positive". This is an initial check of user input.

"Angle out of range". The notch angle must be between 20° and 100° (0.35 and 1.75 radians) for the equations to be valid.

"Infeasible input". Input results in a negative head due to the compiler's machine precision. Occurs if head is being computed and a very low Q is entered (e.g. 1.0e-20).

References

ASTM. (1993). American Society for Testing and Materials. ASTM D5242. Standard method for open-channel flow measurement of water with thin-plate weirs. 1993.

ISO. (1980). International Organization of Standards. ISO 1438/1-1980(E). Water flow measurement in open channels using weirs and venturi flumes - Part 1: Thin plate weirs. 1980.

USBR. (1997). U.S. Department of the Interior, Bureau of Reclamation. Water Measurement Manual. 3ed. Available from http://www.usbr.gov/tsc/techreferences/mands/wmm/index.htm.

© 1999-2025 LMNO Engineering, Research, and Software, Ltd. All rights reserved.

LMNO Engineering, Research, and Software, Ltd.
7860 Angel Ridge Rd. Athens, Ohio 45701 USA Phone: (740) 707-2614
LMNO@LMNOeng.com https://www.LMNOeng.com

ENCLOSURE B – LABORATORY ANALYTICAL DATA

Dayton, NJ 03/17/25

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

WSP USA Environment & Infrastructure Inc

Emersub 15, LLC, Ithaca, NY

P117838US001

SGS Job Number: JE7086

Sampling Date: 03/10/25

WSP USA

7000 E. GENESEE STREET BUILDING D, 2ND FLOOR FAYETTEVILLE, NY 13066

Amy.Romano@WSPGroup.com; Jeffrey.Baker@WSP.com;

Kevin.Griswold@wsp.com

ATTN: Amy Romano

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Uga 4. agonan Olga Azarian **Technical Director**

Client Service contact: Tammy McCloskey 732-329-0200 Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV, AK (UST-103), AZ (AZ0786), PA(68-00408), RI, SC, TX (T104704234), UT, VA, WA, WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

Sections:

_

C

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	5
3.1: JE7086-1: OUTFALL 01A	6
3.2: JE7086-2: OUTFALL 001	7
3.3: JE7086-3: OUTFALL 001D	9
3.4: JE7086-4: FIELD BLANK	11
Section 4: Misc. Forms	12
4.1: Chain of Custody	13
4.2: Sample Tracking Chronicle	15
4.3: Internal Chain of Custody	

-1-

Sample Summary

WSP USA Environment & Infrastructure Inc

Job No: JE7086

Emersub 15, LLC, Ithaca, NY Project No: P117838US001

Sample Number	Collected Date Time By	Matrix Received Code Type	Client Sample ID
This report c Organics ND		l as ND = Not detected. The following the MDL	ng applies:
JE7086-1	03/10/25 13:30 KG	03/11/25 AQ Water	OUTFALL 01A
JE7086-2	03/10/25 14:00 KG	03/11/25 AQ Water	OUTFALL 001
JE7086-3	03/10/25 10:30 KG	03/11/25 AQ Water	OUTFALL 001D
JE7086-4	03/10/25 14:30 KG	03/11/25 AO Field Blank Wat	ter FIELD BLANK

Summary of Hits Job Number: JE7086

WSP USA Environment & Infrastructure Inc Account:

Project: Emersub 15, LLC, Ithaca, NY

Collected: 03/10/25

-						
Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JE7086-1	OUTFALL 01A					
cis-1,2-Dichloroe	ethene	1.9	1.0	0.51	ug/l	EPA 624.1
JE7086-2	OUTFALL 001					
Barium Mercury		138 J 8.3	200 0.50	17 0.15	ug/l ng/l	EPA 200.7 EPA 1631 REV E
JE7086-3	OUTFALL 001D					
Barium Mercury		133 J 7.3	200 0.50	17 0.15	ug/l ng/l	EPA 200.7 EPA 1631 REV E

JE7086-4 FIELD BLANK

No hits reported in this sample.

Dayton, NJ

Section 3

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: OUTFALL 01A

 Lab Sample ID:
 JE7086-1
 Date Sampled:
 03/10/25

 Matrix:
 AQ - Water
 Date Received:
 03/11/25

 Method:
 EPA 624.1
 Percent Solids:
 n/a

Project: Emersub 15, LLC, Ithaca, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4D142628.D 1 03/13/25 14:39 NW n/a n/a V4D6268
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	Units	Q	
71-43-2	Benzene	ND	1.0	0.71	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.94	ug/l	
75-25-2	Bromoform	ND	1.0	0.60	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.87	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.98	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.91	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.42	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.45	ug/l	
156-59-2	cis-1,2-Dichloroethene	1.9	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.46	ug/l	
75-09-2	Methylene chloride	ND	1.0	0.80	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.73	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.41	ug/l	
108-88-3	Toluene	ND	1.0	0.77	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.43	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.43	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
1330-20-7	Xylenes (total)	ND	1.0	0.76	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	99%		80-12	28%	
2037-26-5	Toluene-D8 (SUR)	97%		82-1	13%	
460-00-4	4-Bromofluorobenzene (SUR)	95%		79-1	17%	
1868-53-7	Dibromofluoromethane (S)	90%		84-12	21%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: OUTFALL 001

 Lab Sample ID:
 JE7086-2
 Date Sampled:
 03/10/25

 Matrix:
 AQ - Water
 Date Received:
 03/11/25

 Method:
 EPA 624.1
 Percent Solids:
 n/a

Project: Emersub 15, LLC, Ithaca, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 4D142629.D
 1
 03/13/25 15:20 NW
 n/a
 n/a
 V4D6268

 Run #2
 V4D6268
 V4D6268
 V4D6268
 V4D6268

Purge Volume Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4 79-01-6	Tetrachloroethene Trichloroethene	ND ND	1.0 1.0	0.41 0.43	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
17060-07-0 2037-26-5 460-00-4 1868-53-7	1,2-Dichloroethane-D4 (SUR) Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR) Dibromofluoromethane (S)	97% 97% 96% 90%		80-1: 82-1 79-1 84-1:	13% 17%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: OUTFALL 001 Lab Sample ID: JE7086-2 Matrix: AQ - Water

Date Sampled: 03/10/25
Date Received: 03/11/25
Percent Solids: n/a

Project: Emersub 15, LLC, Ithaca, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Barium	138 J	200	17	ug/l	1	03/12/25	03/12/25 MM	EPA 200.7 ¹	EPA 200.7 ³
Lead	2.4 U	3.0	2.4	ug/l	1	03/12/25	03/12/25 MM	EPA 200.7 ¹	EPA 200.7 ³
Mercury	8.3	0.50	0.15	ng/l	1	03/13/25	03/14/25 NV	EPA 1631 REV E	² EPA 1631 ⁴

(1) Instrument QC Batch: MA58059(2) Instrument QC Batch: MA58084(3) Prep QC Batch: MP53140(4) Prep QC Batch: MP53190

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

J = Indicates a result > = MDL but < RL

Page 1 of 1

Report of Analysis

Client Sample ID: OUTFALL 001D

 Lab Sample ID:
 JE7086-3
 Date Sampled:
 03/10/25

 Matrix:
 AQ - Water
 Date Received:
 03/11/25

 Method:
 EPA 624.1
 Percent Solids:
 n/a

Project: Emersub 15, LLC, Ithaca, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4D142639.D 1 03/13/25 20:00 NW n/a n/a V4D6268
Run #2

Purge Volume Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4 79-01-6	Tetrachloroethene Trichloroethene	ND ND	1.0 1.0	0.41 0.43	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	99%		80-1	28%	
2037-26-5	Toluene-D8 (SUR)	96%		82-1	13%	
460-00-4	4-Bromofluorobenzene (SUR)	96%		79-1	17%	
1868-53-7	Dibromofluoromethane (S)	91%		84-1	210/	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: OUTFALL 001D

Lab Sample ID:JE7086-3Date Sampled:03/10/25Matrix:AQ - WaterDate Received:03/11/25Percent Solids:n/a

Project: Emersub 15, LLC, Ithaca, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Barium	133 J	200	17	ug/l	1	03/12/25	03/12/25 MM	EPA 200.7 ¹	EPA 200.7 ³
Lead	2.4 U	3.0	2.4	ug/l	1	03/12/25	03/12/25 MM	EPA 200.7 ¹	EPA 200.7 ³
Mercury	7.3	0.50	0.15	ng/l	1	03/13/25	03/14/25 NV	EPA 1631 REV E	² EPA 1631 ⁴

Report of Analysis

(1) Instrument QC Batch: MA58059(2) Instrument QC Batch: MA58084(3) Prep QC Batch: MP53140(4) Prep QC Batch: MP53190

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

J = Indicates a result > = MDL but < RL

C

Report of Analysis

Client Sample ID: FIELD BLANK

Lab Sample ID:JE7086-4Date Sampled:03/10/25Matrix:AQ - Field Blank WaterDate Received:03/11/25Percent Solids:n/a

Project: Emersub 15, LLC, Ithaca, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	0.15 U	0.50	0.15	ng/l	1	03/13/25	03/13/25 NV	EPA 1631 REV	E ¹ EPA 1631 ²

(1) Instrument QC Batch: MA58068(2) Prep QC Batch: MP53190

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

J = Indicates a result > = MDL but < RL

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

-SGS				Chr	2	S North	th Amer	erica lr Dayton,	inc D 088 נא,ח	3810				W	W =B	-	rev€	Je go	17	<u> S</u>	114	831	a Beeter	7	ige <u>1</u>		 52*	5-65
· .						w	0200 FA			.99/3480	,					'	SGS Ou	dei	_	_	_	<u> </u>	SGS Je	- 70	<u>5</u> E	<u>: 7</u> (081	6
Client /Reporting Information	-+	Project Name		Project fr	Information			—			—						⊬	_		-	_	_		_		_		Matrix Codes
WSPUSA INC.		Street				EMERS	SON (Rhac	ca, NY)	,		_		_	_	_	'		d624		1631E							'	DW - Drinking Water GW - Ground Water WW - Water
250 W 34th St, 4th F1	62	620 South Au	arora .				differ and from	en Report		=	_	_	_	_	_	\equiv	d 624	Method	4200.7	Method							'	SW - Surface Water SO - Soil
New York NY	10119 RH	City Rhaca		State NY	Company No	Name VSPUSA Ir		_	_	_		_	_	_	_		EPA Metho	by EPA M	A Method 200.7	ĕ							'	SL-Sludge SED-Sediment OI-OII
Amy Romano amy, romano@wap.com		•	38US001	<i>i</i> '	135		les Techno	nology (Drive	_		_	_			_'	1 2	V624SL	by EPA	coury by		1.				'	'	LIQ - Other Liquid AIR - Air SOL - Other Solid
315-374-1175	Cr	Client Purchase Or	nder #		City He	lerndon			VA		Sude 20171	_		Z	Zp	\neg	V624SL1	PCE - VB	+ Leadby	rel Men						'	'	WP - Wipe FB - Field Blank E8 -
rrples(s) Nerre(s) Kevin Gr tseedd 607-351-8239		Project Manager Army Romano			Attention Em		ent Accou			_		_	_	_	_	_	VOCs V	TCE+ PC	Barlum	Low Lev	l_						'	Equipment Blank RB - Rhase Blank TB - Tip Blank
				Collec	ection	$\overline{\overline{}}$	\equiv	\neg	一	一	Nur	ımber of	П	- n		一				1	1 Chec	k (Cab	Use Onl		1	F	i de	San Francisco
sos spor F Field ID / Point of Collection	<u>_l</u> ,	MECH/OI Vial #	Date	Time	Sampled by		Chissins led (1990)	Mastx	# of boilies	P P	HINOS HINOS	H1SQ.	NONE	Me di	ENCOR					10	F		Ł		18	4	1	LAS USE CHUY
OUTFALL B1A			\$10/25			G	-	ww	4	4	士	七			士		х						- F			100 1		1/1/37
2 DUTFALL001	\Box		仜	1400		G	N ¥	ww	В	4	1	I	1		T			х	х	Х								A39
3 OUTFALLOUID	\Box			1030	_	G	N V	ww	6	4	1	I	1		I	Γ		х	х	Х								
L FELD BLANK			7	1430	KG	G	N .	FB	1	П	I	\mathbf{L}	1		I	\sum_{i}^{j}				х								
*				'	\Box	口	\Box	긔	'	Д	1	I.	Ľ	Д	I	Γ	\Box'	\Box									\Box'	
	ਤੇ ∤			<u> </u>	<u> </u>	П	$\overline{\perp}$	\Box	'	Д	1	Ľ	Ľ	Д	I	Γ	Ĺ'	\Box		L	Γ	\Box		匚	\Box	\Box	\Box	£
			=	'	igspace	\Box	\rightarrow	_	<u>'</u> ـــــٰ	11	1	Τ,	⊥′	\coprod	1	Ľ	L'	Ĺ'	L	Γ	'	Γ,	Ĺ.,	'	'	\Box'	\square'	
		\Rightarrow		<u> </u>	igspace	\sqcup	_	4	<u>'</u>	44	\perp	⊥'	⊥′	4	4	Ľ	↓ _'	҆҆҆҆҆҆҆҆҆	<u> </u>	<u> </u>	Ţ_'	Ĺ.	Ĺ_'	Ш,	'ـــــا	<u>[_'</u>	\square'	
	\rightarrow		-	'ـــــــــــــــــــــــــــــــــــــ	ليبا	1	4	\preceq	'	4	\pm	ֈ_՝	⊥′	44	4	¥	↓_ ′	<u></u>	oxdapsup	_	<u>Ļ</u>	<u> </u>	Щ,	Щ.	Щ'	ـــــــــــــــــــــــــــــــــــــ	igspace	
	\rightarrow		100	1-2			#	7		开	丰	丰	尸	仠	丰	口	\sqsubset'	Γ'	<u>[_</u> '	F	\Box	\sqsubset	ightharpoons	⇇	⊭	₽'	\vdash	
	\rightarrow	\longrightarrow		 '	\vdash	\longleftrightarrow	_	-	'	+	+	+	₩	H	+	₽	₩'	—'	Щ'	\vdash	 —'	—'	—′	 	—′	↓ ′	igspace	
Turn Arount	d Time (Business	ss Deys)		Щ'	\vdash	لـــا		$\boldsymbol{\bot}$		щ	ㅗ	Delivera		щ	丄	نــــــــــــــــــــــــــــــــــــــ		'	Ш'	丄	₩'	'ـــــــــــــــــــــــــــــــــــــ	'ـــــــــــــــــــــــــــــــــــــ			kini Instructio	ليا	
		Approved By (SGS	SPM\$/Date:		┪		orcial "A" (L					X NYA	YASP C	Calegory A							12	7	00/	le TS	<u>#15/0)</u>	di Hapaa.	<u>~</u>	
10 Business Days 6 Business Days				,	丨吕		erdal "B" (Le Scool (Level 3)					∃ ‴									1							
3 Business Days*	_			,		Full Terri	1 (Land 4				Ē	CTF	TRCP C	Criterie _	_						1							
2 Business Days* 1 Business Day*				,	ᅵ뮤	Comme	erdet*C*					Sum EDE									1							
X cew 7 Business Days				,	"	None	•	,	Commercia		Results only	nly; Camm	mercial *	1°8° - Res			ary											
nple Custody must be documented below ago! time sa	Approvel needed for avrighes change possess	session, including co	courier delivery.		<u>—</u>		_	_	Comm	mordal "C"	Resul	s • OC S	Jummery	j • Pallal	Raw data	_	_	_		_	Щ	1,5>	_		Sto //www	1305.00	menter	rms-and-conditions
en troal	3/10/05E	BKD	Received By:	<u> </u>				_		Relinquist	stud By:	_		V,	K.	\overline{z}	_	_		47/1	ma: 0"	.स्य	Receiver	1By: 1	7.7	nro,	enta	-
Relinquished by:	Date/Time:		Received By:	<u></u>					\rightarrow	Rollmatst	ished By:	\neg	\vdash	#	*	_		—	_	D=/7c	<u> [] (</u> ime:		Receive	<u>ب</u> ط8رہ	<u> ۱</u>	45	7/13	
	Date/Time:	\longrightarrow	Received By:		—			—		4 Custody S	_	_	—	—			Intact	=	. Property of	┺—		Therm	ID;		Onlos		Cooler	Tempois O
Relinquished by:										,							Not Intact	-	Absent				mpia Receipt				~	20°. 1 / V

EHSA-QAC-0023-05 Rev.Date:8/5/22

JE7086: Chain of Custody

Page 1 of 2

SGS Sample Receipt Summary

Date / Time Received: 3/11/2025 10:25:00 AM Delivery Method: fedex Airbill #'s:	Job Number: j	e7086	Clien	:: WSP USA	١			Project: EMERSUB 15,	LLC, ITH	IACA, NY	<u> </u>
Cooler Temps (Corrected) °C: Cooler 1: (2.4); Cooler 2: (3.4); Cooler Security Y or N Sample Integrity - Documentation Y or N 1. Custody Seals Present: □ 3. COC Present: □ 2. Custody Seals Intact: □ 4. Smpl Dates/Time OK □ Cooler Temperature Y or N □ 1. Temp criteria achieved: □ □ 2. Cooler temp verification: IR-50 3. Cooler media: □ □ 4. No. Coolers: □ 2 2. Mulity Control Preservatio Y or N N/A 1. Trip Blank present / cooler: □ □ 2. Trip Blank listed on COC: □ □ 2. Trip Blank listed on COC: □ □ 3. Samples preserved properly: □ □ 4. VOCs headspace free: □ □ □ □ □ Test Strip Lot #s: pH 1-12: 231619 pH 12+: 203117A Other: (Specify)	Date / Time Received: 3	3/11/2025	10:25:00 AM	Delivery I	Method:		fedex	Airbill #'s:			
Cooler Security Y or N 3. COC Present:	Cooler Temps (Raw Meas	sured) °C	: Cooler 1: (2.0); Cooler 2:	(3.0);						
1. Custody Seals Present:	Cooler Temps (Corre	ected) °C	: Cooler 1: (2.4); Cooler 2:	(3.4);						
1. Sample labels present on bottles: 2. Custody Seals Intact: 2. Custody Seals Intact: 2. Custody Seals Intact: 3. Sample labels present on bottles: 2. Container label / COC agree: 3. Sample container label / COC agree: 3. Sample container label / COC agree: 4. No. Cooler temp verification: 5. Cooler temp verification: 6. Cooler temp verification: 7. Cooler temp verification: 7. Cooler media: 7. Cooler media: 8. Sample Integrity - Condition 9. Sample Integrity - Instructions 9. Condition of sample: 9. Intact 9. Sample Integrity - Instructions 9. Vor N N/A 9. Sample Integrity - Instructions 9. Vor N N/A 9. Sample Integrity - Instructions 9. Sample Int	Cooler Security	Y or			Y or	N_	Sample Integri	ty - Documentation	<u>Y</u>	or N	_
Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Coulity Control Preservatio 7. Trip Blank present / cooler: 7. Trip Blank listed on COC: 7. Trip Blank listed on COC: 7. Sample Integrity - Condition 7. Trip Blank listed on COC: 7. Sample Integrity - Condition 7. Trip Blank listed on COC: 7. Sample Integrity - Instructions 8. Sample Integrity - Instructions 9. Analysis requested is clear: 9. Bottles received for unspecified tests 9. Sufficient volume recvd for analysis: 9. Sufficient volume recvd for analysis: 9. Settles received for unspecified tests 9. Sufficient volume recvd for analysis: 9. Settles received for unspecified tests 9. Sufficient volume recvd for analysis: 9. Settles received for unspecified tests 9. Sufficient volume recvd for analysis: 9. Settles received for unspecified tests 9. S	1. Custody Seals Present:						1. Sample labels	present on bottles:	•		
Sample Integrity - Condition Y or N	2. Custody Seals Intact:	•	4. Smpl Da	tes/Time OK	✓		2. Container labe	eling complete:	•		
2. Cooler temp verification: IR-50 3. Cooler media: lce (Bag) 4. No. Coolers: 2 Quality Control Preservatio Y or N N/A 1. Trip Blank present / cooler:	Cooler Temperature	<u> Y</u>	or N				3. Sample conta	iner label / COC agree:	•		
3. Cooler media: Ice (Bag) 2. All containers accounted for:	1. Temp criteria achieved:	•					Sample Integr	ity - Condition	<u>Y</u>	or N	_
3. Cooler media: 4. No. Coolers: 2 Quality Control Preservatio 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: PH 1-12: 231619 2. All containers accounted for: 3. Condition of sample: Intact	2. Cooler temp verification:		IR-50	_			Sample recyd	within HT:	•		
4. No. Coolers: Quality Control Preservatio Y or N N/A			Ice (Bag)	_					•		
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: Test Strip Lot #s: pH 1-12: 231619 pH 12+: 203117A Other: (Specify)	4. No. Coolers:	-	2	_			3. Condition of s	ample:		Intact	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. VOCs headspace free: 5. Filtering instructions clear: 7. Analysis requested is clear: 7. Bottles received for unspecified tests 7. Sufficient volume recvd for analysis: 8. Sufficient volume recvd for analysis: 9. Compositing instructions clear: 9. Filtering instructions clear:	Quality Control Preserva	atio Y	or N N	<u>A</u>			Sample Integr	ity - Instructions	Υ	or N	N/A
2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 5. Filtering instructions clear: Test Strip Lot #s: PH 1-12: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	1. Trip Blank present / coole	er:]				-			
4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: Test Strip Lot #s: pH 1-12: 231619 pH 12+: 203117A Other: (Specify)	2. Trip Blank listed on COC	: 🗆]						✓	
4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: D Test Strip Lot #s: PH 1-12: 231619 PH 12+: 203117A Other: (Specify)	3. Samples preserved prope	erly:					Sufficient vol	ume recvd for analysis:	•		
Test Strip Lot #s: pH 1-12: pH 12+: Other: (Specify)	4. VOCs headspace free:	✓]			4. Compositing	instructions clear:			✓
							5. Filtering instr	uctions clear:			•
	Test Strip Let #s:	nH 1-12	231610		nH 12.	<u>.</u> .	2031174	Other: (Specify)			
Comments	Tool only Lot #6.	pii i i2.	251015		pi 12	·· —	20311774			-	
	Comments										
	SM089-03										

Rev. Date 12/7/17

JE7086: Chain of Custody

Page 2 of 2

Internal Sample Tracking Chronicle

WSP USA Environment & Infrastructure Inc

Job No: JE7086

Emersub 15, LLC, Ithaca, NY Project No: P117838US001

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JE7086-1 OUTFALL		13:30 By: KG	Receiv	red: 11-MAR	-25 By	: EC
JE7086-1	EPA 624.1	13-MAR-25 14:39	NW			V624SL1
JE7086-2 OUTFALL	Collected: 10-MAR-25 001	14:00 By: KG	Receiv	ed: 11-MAR	-25 By	: EC
JE7086-2		12-MAR-25 21:02 13-MAR-25 15:20 14-MAR-25 18:15	NW	12-MAR-25		BA,PB V624SL HGLL1631
JE7086-3 OUTFALL		10:30 By: KG	Receiv	red: 11-MAR	25 By	: EC
JE7086-3		12-MAR-25 21:07 13-MAR-25 20:00 14-MAR-25 18:20	NW	12-MAR-25		BA,PB V624SL HGLL1631
JE7086-4 FIELD BLA	Collected: 10-MAR-25 ANK	14:30 By: KG	Receiv	ed: 11-MAR	-25 By	: EC
JE7086-4	EPA 1631 REV E	13-MAR-25 16:01	NV	13-MAR-25	NV	HGLL1631

SGS Internal Chain of Custody

Job Number: JE7086

Account: WSPENYC WSP USA Environment & Infrastructure Inc

Project: Emersub 15, LLC, Ithaca, NY

Received: 03/11/25

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JE7086-1.1	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-1.2	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-1.2	Nicholas Weigand	GCMS4D		Load on Instrument
Analyst chain of o	custody update error.			
JE7086-1.2	GCMS4D	Nicholas Weigand	03/14/25 11:59	Unload from Instrument
JE7086-1.2	Nicholas Weigand	Secured Storage	03/14/25 11:59	Return to Storage
JE7086-1.3	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-1.4	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-2.1	Seamus D'angiolillo	Secured Storage		Return to Storage
JE7086-2.1	Secured Storage	Aleandi Rodriguez		Retrieve from Storage
JE7086-2.1	Aleandi Rodriguez	Secured Staging Area		Return to Storage
JE7086-2.1	Secured Staging Area	Brianna Perez		Retrieve from Storage
JE7086-2.1	Brianna Perez	Secured Storage	03/12/25 11:14	Return to Storage
JE7086-2.2	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-2.3	Seamus D'angiolillo	Secured Storage		Return to Storage
JE7086-2.3	Nicholas Weigand	GCMS4D	03/12/25 13:17	Load on Instrument
	custody update error.			
JE7086-2.3	GCMS4D	Nicholas Weigand		Unload from Instrument
JE7086-2.3	Nicholas Weigand	Secured Storage	03/14/25 11:59	Return to Storage
JE7086-2.4	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-2.5	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-3.1	Seamus D'angiolillo	Secured Storage		Return to Storage
JE7086-3.1	Secured Storage	Aleandi Rodriguez		Retrieve from Storage
JE7086-3.1	Aleandi Rodriguez	Secured Staging Area		Return to Storage
JE7086-3.1	Secured Staging Area	Brianna Perez		Retrieve from Storage
JE7086-3.1	Brianna Perez	Secured Storage	03/12/25 11:14	Return to Storage
JE7086-3.2	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-3.3	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-3.4	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage
JE7086-3.5	Seamus D'angiolillo	Secured Storage	03/11/25 13:38	Return to Storage

CERTIFICATE OF ANALYSIS

Reported by Alloway - Marion

Chain of Custody attached

Lab Project # 2508362

Received: 3/11/2025

Reported: 3/18/2025

Date/Time Sampled: 03/10/2025 13:30

Sampled By: KG

Sampled Matrix: Wastewater

Containers: 1

Project Name: EMERSON (Ithaca, NY)

7000 East Genesee St BD.D 2nd Floor

Sample ID: Outfall 01A Lab Sample # 2508362-01

NY Lab ID 11071

Attn: Amy Romano

Fayetteville, NY 13066

WSP

Analyte	Results	Estimated Value	Units	PQL	MDL	Analyst	Extraction Date	Analysis Date/Time
Method of Analysis:	ASTM D7237-15A							
Cyanide, Free (pH 6)	<0.003	<0.0008	mg/L	0.003	0.0008	ВСМ	03	3/12/2025 12:31

Analysis Certified By:_____

Rhonda C Morris

CERTIFICATE OF ANALYSIS

Reported by Alloway - Marion

Chain of Custody attached

Lab Project # 2508362

Received: 3/11/2025

Reported: 3/18/2025

Date/Time Sampled: 03/10/2025 14:00

Sampled By: KG

Sampled Matrix: Wastewater

Containers: 1

Attn: Amy Romano 7000 East Genesee St BD.D 2nd Floor

WSP

Fayetteville, NY 13066

Project Name: EMERSON (Ithaca, NY)

Sample ID: Outfall 001 Lab Sample # 2508362-02

NY Lab ID 11071

Analyte	Results	Estimated Value	Units	PQL	MDL	Analyst	Extraction Date	Analysis Date/Time
Method of Analysis:	ASTM D7237-15A							
Cyanide, Free (pH 6)	0.004		mg/L	0.003	0.0008	BCM	03	3/12/2025 12:31

Analysis Certified By:_____

Rhonda C Morris

CERTIFICATE OF ANALYSIS

Reported by Alloway - Marion

Chain of Custody attached

Lab Project # 2508362

Received: 3/11/2025

Reported: 3/18/2025

Date/Time Sampled: 03/10/2025 10:30

Sampled By: KG

Sampled Matrix: Wastewater

Containers: 1

WSP

Attn: Amy Romano

7000 East Genesee St BD.D 2nd Floor

Fayetteville, NY 13066

Project Name: EMERSON (Ithaca, NY)

Sample ID: Outfall 001D Lab Sample # 2508362-03

NY Lab ID 11071

Analyte	Results	Estimated Value	Units	PQL	MDL	Analyst	Extraction Date	Analysis Date/Time
Method of Analysis:	ASTM D7237-15A							
Cyanide, Free (pH 6)	0.004		mg/L	0.003	0.0008	всм	03	3/12/2025 12:31

Rhonda C Morris

Transported to: Lima

Chain of Custody Record

This is a legal document that authorizes Alloway to perform testing on samples submitted under this agreement.

O 1101 North Cole Street, Lima, OH 45805 (P) 419-223-1362 (F) 419-227-3792

1776 Marion-Waldo Road, Marion OH 43302
 (P) 740-389-5991 (F) 740-389-1481

O 1502 W. Fourth Street, Mansfield, OH 44906 (P) 419-525-1644 (F) 419-524-5575

Time:

Rep Nam	ort To: Amy	y Romano P USA INC.		Invoice To (If	Different): EI	nvironment /SP USA Ir	al Accounts	Payable			Project:	250	8362		· · · · · · · · · · · · · · · · · · ·
		W 34th St., 4th FI v York, NY 19		Company: Address:		3530 Dulles erndon, VA	s Technolog 20171	y Drive							
	Phone #:	315-374-1175 amy.romano@wsp.com		_ Fax #:	PO#:	P11783	7US001								
Pr	oject Name	EMERSON (Iti	naca,	NY)	10#.					Next Day	1	ound: (Rus Norking Da	h Charges May A	/pply)	
	Sampler	KEVIN GRISWO	LD 607	-351-82 (Signature)	39 Kew	luisno	10		2 Work	ing Days [5 \	Norking Da	ys	R	outine 🗸
	s	Customer ample ID / Sample Location	Sample Date	Sample Time	Composite	Grab	Matrix Code	Number of Containers	Preservation Code #		An	alysis Req	uired		Alloway LIMS # For Lab Use Only
1	0	UTFALL 01A	3/10/25	i330		Х	WW	1	5	Free	Cyanide I	by AS	TM D72	37-15A	<u> </u>
2	0	UTFALL 001		1400		Х	WW	1	5	Free	Cyanide I	by AS	TM D72	37-15A	೦ 2
3	OL	JTFALL 001D	4	1030		Х	WW	1	5	Free	Cyanide I	by AS	TM D72	37-15A	03
4															
5															
6															
7															
8		Industrial Control of													
	Relinqui	shed by:	Received	by:			Date	Time	Method of De		Matrix Codes: w - wastewater		Preservation C	odes:	Sample Receiving (For Lab Use Only)
1/	(UN)	www///	UP)			3/10/25	941600	UPS		w - groundwater	1 - None	7 - Sodium Thiosulfate	13 - Zinc Acetate	(i or can one oray)
2						T			FEG EX C	G d	w - drinking water w - surface water	2 - HNO ₃	8 - Ascorbic Acid	14 - Sodium Sulfite	ce Present?
3	:	•							Client		- water il - oil	3 - H ₂ SO ₄	9 - Maleic Acid	15 - Potassium Dihydrogen Citrate	ΑγΘ N □
4				M					Alloway Pick Up		- solid g - sludge	4 - HCI	10 - EDA	16 - Sodium Sulfite/Sodium Bisulfate	Proper Preservation?
5									Alloway Samplin	h-	· leachate - acid	5 - NaOH	11 - Ammonium Chloride		y a n□
6									Other	р	- product - other	6 - NaOH & Zinc Acetate	12 - (NH₄)₂SO₄ & NH₄OH		Mart 105 Container Temperature:
	ceived for gnature)	Laboratory By: (circle one): Mansfi	ield Lir	ma (Ma	rion	ગોાોજ	935							2.4.
		Transported to: Lima	Ву:	D			Re	ceived By:				Dat	e:	Time:	

Received By:

Form 6002-2

Project # **25**08362

Analyst: TA

		Metals (HNO3) pH		(H2SO	4) pH - (EXCLUDE	S O&G)	Cyanide ((NaOH) pH	Cyanide Ch	lorine check
	Sample ID	Bottle A	Bottle B	Bottle A	Bottle B	Bottle C	Bottle A	Bottle B	Bottle A	Bottle B
1	01						712		NO	
2	೦೨								1	
3	03						1		7	
4										
5										
6										
7										
8										
9										
10									***************************************	
11										
12										
13										
14										
15										
16										
17					MANAGEMENT OF THE CONTRACT OF					
18										
19				AAULA						
20	s 45.64 W.W.									
21										
22										
23										
24										
25										
26	NIII A				······					
27										
28										
29										
30										

ENCLOSURE C – RESULTS FROM SEPTEMBER 2022 TO MARCH 2025

SPDES Permit Equivalent Discharge Results - Outfall 01A Emerson Electric Co. Ithaca, New York

n .	TT *(()	Discharge							Result (c)						
Parameter	Units (a)	Limit (b)	09/27/22	10/14/22	11/14/22	12/19/22	01/31/23	02/24/23	03/29/23	04/21/23	05/25/23	06/12/23	07/24/23	08/16/23	09/28/23
Flow	GPD	Monitor	20,880 (d)	11,520 (d)	11,520 (d); 468 (e)	10,800 (d); 633 (e)	11520 (d); 767 (e)	11,520 (d); 696 (e)	11,520 (d); 986 (e)	11,520 (d); 604 (e)	11,520 (d); 162 (e)	11,520 (d); 69 (e)	10,080 (d); 433 (e)	11,520 (d); 369 (e)	12,672 (d); 267 (e)
pH (range)	SU	6.5 - 8.5	7.4	8.1	8.1	7.9	8.0	7.9	7.9	7.6	7.6	7.7	7.7	7.8	7.8
Temperature	deg F	Monitor	72.7	64.8	64.4	64.9	59.2	59	57	70	65.8	69.4	73.0	75.9	71.8
Tetrachloroethene	μg/l	1	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)
Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)
Sum of Dichlorobenzenes	μg/l	10	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.91)	ND (1.91)	ND (1.91)
Bromoform	μg/l	10	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)
Chlorobenzene	μg/l	5	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.87)	ND (0.87)	ND (0.87)
Chlorodibromomethane	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.98)	ND (0.98)	ND (0.98)
Chloroform	μg/l	10	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	0.54 J	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Free Cyanide	μg/l	Monitor (f)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	27	ND (3)	ND (3)	ND (3) (g)	ND (3)
Dichlorobromomethane	μg/l	10	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.94)	ND (0.94)	ND (0.94)
1,1-Dichloroethane	μg/l	10	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)
1,1-Dichloroethene	μg/l	10	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)
Methylene chloride	μg/l	10	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)
1,1,2,2-Tetrachloroethane	μg/l	10	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.73)	ND (0.73)	ND (0.73)
Toluene	μg/l	50	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.77)	ND (0.77)	ND (0.77)
trans-1,2-Dichloroethene	μg/l	10	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)
cis-1,2-Dichloroethene	μg/l	10	2.9	2.9	2.7	3.2	2.7	ND (0.51)	3.8	ND (0.51)	1.3	ND (0.51)	ND (0.51)	4.8	3.4
1,1,1-Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)
Xylenes, total	μg/l	10	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.76)	ND (0.76)	ND (0.76)
Vinyl chloride	μg/l	10	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
Benzene	μg/l	1	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.71)	ND (0.71)	ND (0.71)

Bold value is a detected concentration or measurement.

WSP USA Inc.

Page 1 of 4

SPDES Permit Equivalent Discharge Results - Outfall 01A Emerson Electric Co. Ithaca, New York

Da	TI4 (-)	Discharge							Result (c)						
Parameter	Units (a)	Limit (b)	10/4/23 (h)	10/23/23 12,528 (d);	11/16/23 12,240 (d);	12/19/23 12,960 (d);	01/24/24 13,104 (d);	1/25/24 (h)	02/12/24 15,696 (d);	03/07/24 12,816 (d);	04/15/24 14,112 (d);	05/16/24 13,824 (d);	6/3/24 (h)	06/17/24 12,528 (d);	07/09/24 12,384 (d);
Flow	GPD	Monitor	-	524 (e)	524 (e)	789 (e)	855 (e)	-	948 (e)	469 (e)	761 (e)	637 (e)	-	494 (e)	465 (e)
pH (range)	SU	6.5 - 8.5	-	8.1	8.3	8.2	8.0	-	7.8	7.9	7.9	7.7	-	7.8	7.7
Temperature	deg F	Monitor	-	70.2	65.3 - 67.3	62.4	59.4	-	61.7	68.0	70.2	78.8	-	76.3	81.0
Tetrachloroethene	μg/l	1	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)
Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)
Sum of Dichlorobenzenes	μg/l	10	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)
Bromoform	μg/l	10	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)
Chlorobenzene	μg/l	5	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)
Chlorodibromomethane	μg/l	10	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)
Chloroform	μg/l	10	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Free Cyanide	μg/l	Monitor (f)	-	4 (i)	ND (3)	ND (3)	ND (3)	-	ND (3)	ND (3)	ND (3)	ND (3)		ND (3)	ND (3)
Dichlorobromomethane	μg/l	10	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)
1.1-Dichloroethane	μg/l	10	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)
1,1-Dichloroethene	μg/l	10	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)
Methylene chloride	μg/l	10	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)
1,1,2,2-Tetrachloroethane	μg/l	10	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)
Toluene	μg/l	50	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)
trans-1,2-Dichloroethene	μg/l	10	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)
cis-1,2-Dichloroethene	μg/l	10	4.6	3.4	3.5	2.4	2.4	2.8	3.1	3.1	4.1	5.3	5.4	3.5	4.7
1,1,1-Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)
Xylenes, total	μg/l	10	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)
Vinyl chloride	μg/l	10	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
Benzene	μg/l	1	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)
Acetone	μg/l	NA	4.1 J	-	- 112 (0.71)		-	ND (3.0)	-	-	-	-	ND (3.0)	-	-
Bromomethane	μg/l	NA	ND (0.87)					ND (0.87)					ND (0.87)		
2-Butanone (MEK)	μg/l	NA	ND (2.0)					ND (2.0)					ND (2.0)		
Carbon disulfide	μg/l	NA	ND (0.52)					ND (0.52)					ND (0.52)		
Carbon tetrachloride	μg/l	NA	ND (0.55)					ND (0.55)					ND (0.55)		
Chloroethane	μg/l	NA NA	ND (0.54)					ND (0.54)					ND (0.54)		
Chloromethane	μg/l	NA	ND (0.78)					ND (0.78)				 	ND (0.78)		
Cumene	μg/l	NA	ND (0.77)					ND (0.77)					ND (0.77)		
Cyclohexane	μg/l	NA NA	ND (0.66)					ND (0.66)				-	ND (0.66)		
1,2-Dibromoethane	μg/l	NA NA	ND (0.28)		 		-	ND (0.28)				-	ND (0.28)		
1,2-Dibromo-3-chloropropane	μg/l	NA NA	ND (0.26)		 		-	ND (1.1)				-	ND (1.1)		
	μg/l	NA NA	ND (0.69)					ND (0.69)				 	ND (0.69)		
Dichlorodifluoromethane 1,2-Dichloroethane	μg/l	NA NA	ND (0.96)		 			ND (0.96)				 	ND (0.96)		
1,2-Dichloropropane	μg/l	NA NA	ND (0.96)	 	 			ND (0.96)				 	ND (0.96)		
cis-1,3-Dichloropropene	μg/l	NA NA	ND (0.47)	 	 			ND (0.47)	 			 	ND (0.47)		<u>-</u>
trans-1,3-Dichloropropene	μg/l μg/l	NA NA	ND (0.47)	 	 			ND (0.47)	 			 	ND (0.47)		<u>-</u>
Ethylbenzene	μg/l	NA NA	ND (0.93)	 	 			ND (0.93)	 			 	ND (0.93)		<u>-</u>
	μg/l	NA NA	ND (0.84) ND (0.87)	-	 			ND (0.84) ND (0.87)				 	ND (0.84) ND (0.87)		
Freon 113	+		+	 	 				· 		<u>-</u>	 	ND (0.87)		<u>-</u>
2-Hexanone Methyl Tert Butyl Ether	μg/l	NA NA	ND (1.8) ND (0.94)	 	 	-	-	ND (1.8) ND (0.94)	·	-	-	 	ND (1.8) ND (0.94)	-	
4-Methyl-2-pentanone(MIBK)	μg/l	NA NA	ND (0.94) ND (3.2)	 	 		-	ND (0.94) ND (3.2)		-	-	 	ND (0.94) ND (3.2)	-	
	μg/l		ND (3.2) ND (0.64)	 	 	-	-		-	-	-	 	ND (3.2) ND (0.64)	-	
Methyl Acetate	μg/l	NA NA	+	-	 	-	-	ND (0.64)	-	-		-			
Methylcyclohexane Streens	μg/l	NA NA	ND (1.4)	 		-	-	ND (1.4)	-	-	-	-	ND (1.4)	-	
Styrene	μg/l	NA NA	ND (0.98)	 			-	ND (0.98)	-	-		 	ND (0.98)		
1,2,4-Trichlorobenzene	μg/l	NA NA	ND (1.0)			-	-	ND (1.0)		-	-	-	ND (1.0)	-	-
1,1,2-Trichloroethane	μg/l	NA	ND (0.41)	 	ļ		-	ND (0.41)		-		 	ND (0.41)		-
Trichlorofluoromethane	μg/l	NA	ND (0.33)	_	-	-	-	ND (0.33)	-	-	-	-	ND (0.33)	-	-

Bold value is a detected concentration or measurement.

SPDES Permit Equivalent Discharge Results - Outfall 01A Emerson Electric Co. Ithaca, New York

Darameter	Units (a) GPD	Discharge	Result (c)											
Parameter		Limit (b)	7/25/24 (h)	08/15/24	09/12/24	10/29/24	11/1/24 (h)	11/11/24	12/04/24	01/14/25	02/20/25	02/27/24 (h)	03/10/25	
Flow		Monitor	-	12,614 (d); 488 (e)	12,096 (d); 391 (e)	9,792 (d); 307 (e)	-	10,656 (d); 308 (e)	10,944 (d); 474 (e)	10,368 (d); 575 (e)	10,656 (d); 1,203 (e)	-	11,232 (d); 1,543 (e)	
pH (range)	SU	6.5 - 8.5	-	8.1	8.0	8.0	-	8.0	8.2	8.4	8.1	-	7.9	
Temperature	deg F	Monitor	-	85.5	73.8	70.7	-	67.1	60.8	58.3	58.2	-	58.3	
Tetrachloroethene	μg/l	1	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	
Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	
Sum of Dichlorobenzenes	μg/l	10	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	ND (1.91)	
Bromoform	μg/l	10	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	
Chlorobenzene	μg/l	5	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	
Chlorodibromomethane	μg/l	10	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	
Chloroform	μg/l	10	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Free Cyanide	μg/l	Monitor (f)	-	ND (3)	ND (3)	ND (3)	-	ND (0.8)	ND (0.8)	ND (3)	ND (0.8)	-	ND (0.8)	
Dichlorobromomethane	μg/l	10	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	ND (0.94)	
1,1-Dichloroethane	μg/l	10	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	ND (0.42)	
1,1-Dichloroethene	μg/l	10	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	
Methylene chloride	μg/l	10	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.80)	ND (0.41)	ND (0.80)	ND (0.80)	ND (0.80)	ND (0.80)	ND (0.41)	ND (0.80)	
1,1,2,2-Tetrachloroethane	μg/l	10	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	
Toluene	μg/l	50	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	
trans-1,2-Dichloroethene	μg/l	10	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	
cis-1,2-Dichloroethene	μg/l	10	3.6	2.5	4.1	4.0	4.5	3.6	2.7	2.3	1.6	1.8	1.9	
1,1,1-Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	
Xylenes, total	μg/l	10	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	
Vinyl chloride	μg/l	10	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	
Benzene	μg/l	1	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	
Acetone	μg/l	NA	ND (3.0)	-	-	-	ND (3.0)	-	-	-	-	ND (3.0)	-	
Bromomethane	μg/l	NA	ND (0.87)	-			ND (0.87)	-	-			ND (0.87)		
2-Butanone (MEK)	μg/l	NA	ND (2.0)	-			ND (2.0)	-	-		-	ND (2.0)		
Carbon disulfide	μg/l	NA	ND (0.52)				ND (0.52)	-			-	ND (0.52)		
Carbon tetrachloride	μg/l	NA	ND (0.55)	-			ND (0.55)	-	-			ND (0.55)		
Chloroethane	μg/l	NA	ND (0.54)	-			ND (0.54)	-	-		-	ND (0.54)		
Chloromethane	μg/l	NA	ND (0.78)	-			ND (0.78)				-	ND (0.78)		
Cumene	μg/l	NA	ND (0.77)				ND (0.77)	-				ND (0.77)		
Cyclohexane	μg/l	NA	ND (0.66)	-			ND (0.66)				-	ND (0.66)		
1,2-Dibromoethane	μg/l	NA	ND (0.28)				ND (0.28)					ND (0.28)		
1,2-Dibromo-3-chloropropane	μg/l	NA	ND (1.1)				ND (1.1)					ND (1.1)		
·	μg/l	NA	ND (0.69)	-			ND (0.69)	-	_	-	-	ND (0.69)		
Dichlorodifluoromethane 1,2-Dichloroethane	μg/l	NA NA	ND (0.96)				ND (0.96)	-	_			ND (0.96)		
1,2-Dichloropropane	μg/l	NA	ND (0.96)				ND (0.96)	-	_			ND (0.96)		
cis-1,3-Dichloropropene	μg/l	NA	ND (0.47)	-			ND (0.47)	-	_	-	-	ND (0.47)		
trans-1,3-Dichloropropene	μg/l	NA NA	ND (0.47)				ND (0.47)	-	-			ND (0.47)		
Ethylbenzene	μg/l	NA NA	ND (0.84)				ND (0.84)	-	_			ND (0.84)		
Freon 113	μg/l	NA NA	ND (0.87)	-			ND (0.87)	-	_	-	-	ND (0.87)		
2-Hexanone	μg/l	NA	ND (1.8)				ND (1.8)	-	_			ND (1.8)		
Methyl Tert Butyl Ether	μg/l	NA NA	ND (0.94)				ND (0.94)					ND (0.94)		
4-Methyl-2-pentanone(MIBK)	μg/l	NA NA	ND (3.2)	-			ND (3.2)			- -	-	ND (3.2)		
Methyl Acetate	μg/l	NA NA	ND (0.64)			- 	ND (0.64)			- 		ND (0.64)		
Methylcyclohexane	μg/l	NA NA	ND (0.04)	-			ND (0.04)			- -		ND (0.04)		
	μg/l	NA NA	ND (1.4) ND (0.98)	<u>-</u>			ND (1.4) ND (0.98)		-	- -	-	ND (1.4) ND (0.98)		
Styrene 1,2,4-Trichlorobenzene	-+		ND (0.98) ND (1.0)	<u>-</u> -		<u>-</u> -	ND (0.98) ND (1.0)	<u>-</u> -		<u>-</u> -		ND (0.98) ND (1.0)		
1,1,2-Trichloroethane	μg/l μg/l	NA NA	ND (1.0) ND (0.41)	<u>-</u>	-		ND (1.0) ND (0.41)		-	<u>-</u>	<u>-</u>	ND (1.0) ND (0.41)		
	1 u2/I	NA	IND (U.41)	-	-	_	11D (U.41)	_	-	_	-	1110 (0.41)	-	

Bold value is a detected concentration or measurement.

SPDES Permit Equivalent Discharge Results - Outfall 01A Emerson Electric Co. Ithaca, New York

- a/ GPD = gallons per day; SU = standard units; deg F = degrees Fahrenheit; $\mu g/l$ = micrograms per liter; NA = not applicable; "-" = parameter not analyzed for.
- b/ Discharge limit specified in Emerson Electric Co. Project Site Remediation Wastewater Discharge SPDES Permit Equivalent, dated August 1, 2022, DER Site ID# 7-55-010.
- c/ ND = not detected above method detection limit provided in parentheses; J = estimated concentration.
- d/ Estimated maximum flow rate during a batch discharge of the groundwater treatment system.
 Because the discharge is not continuous, the actual maximum daily flow rate would be less than this value.
- e/ Estimated average flow based on totalizer readings.
- f/ Per Footnote 1 of SPDES Permit Equivalent, an interim limit of Monitor Only shall apply for free cyanide from August 1, 2022, until July 31, 2025. The water quality-based effluent limit of 5.2 mg/l Monthly Average and 22 mg/l Daily Maximum for free cyanide will become effective on August 1, 2025.
- g/ Sample for free cyanide was collected on August 18, 2023.
- h/ Sample collected as part of routine operation and maintenance of groundwater treatment system.
- i/ Result is considered estimated because sample was analyzed outside of hold time requirements due to instrument failure.

WSP USA Inc.

SPDES Permit Equivalent Discharge Results - Outfall 001 Emerson Electric Co. Ithaca, New York

D	TI . 4 (a)	Discharge		Result (c)														
Parameter	Units (a)	Limit (b)	09/27/22	10/14/22	11/14/22	12/19/22	01/31/23	02/24/23	03/29/23	04/21/23	05/25/23	06/12/23	07/24/23	08/16/23	09/28/23	10/23/23	11/16/23	11/28/23
Flow (d)	GPD	Monitor	19,065	51,778	51,778	24,099	24,099	29,857	43,666	43,666	43,666	24,099	24,099	43,666	14,772	29,857	5,472	NA
pH (range)	SU	6.5 - 8.5	7.9	8.1	8.0	8.0	7.8	8.1	8.0	7.9	7.8	8.0	7.7	7.9	7.9	8.2	8.6 - 8.7	8.5
Total Barium	μg/l	Monitor	75.9 J	NA	NA	57.1 J	NA	NA	92.2 J	NA	NA	94.9 J	NA	NA	124 J	NA	NA	NA
Total Lead	μg/l	7.4	ND (2.4)	ND (2.4)	ND (2.4)	12.0	6.2	2.5 J	3.7	ND (2.4)	5.0	6.2	ND (2.4)	2.6 J	ND (2.4)	ND (2.4)	3.4	NA
Mercury	ng/l	Monitor	2.4	NA	NA	NA	3.1	NA	3.7 J	NA	NA	3.1 J	NA	NA	2.0 J	NA	NA	NA
Tetrachloroethene	μg/l	1	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	NA
Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	NA
Free Cyanide	μg/l	Monitor (e)	ND (3)	ND (3)	NA	ND (3)	NA	NA	4	NA	NA	4	NA	NA	ND (3)	NA	NA	NA

Down at an	I I -4 - (-)	Discharge Limit (b)		Result (c)														
Parameter	Units (a)		12/19/23	01/24/24	02/12/24	03/07/24	04/15/24	05/16/24	06/17/24	07/09/24	08/15/24	08/15/24	08/20/24	09/12/24	10/29/24	11/11/24	12/04/24	
Flow (d)	GPD	Monitor	24,099	36,369	32,369	24,099	29,857	14,722	19,065	11,033	11,033	NA	NA	12,096	29,857	14,722	11,033	
pH (range)	SU	6.5 - 8.5	8.3	7.9	8.1	8.3	8.3	8.1	7.9	8.2	8.7	8.2	8.3	8.1	8.2	8.1	8.1	
Total Barium	μg/l	Monitor	75.7 J	NA	NA	75.6 J	NA	NA	173 J	NA	NA	NA	NA	130 J	NA	NA	139 J	
Total Lead	μg/l	7.4	ND (2.4)	ND (2.4)	ND (2.4)	3.0	ND (2.4)	ND (1.8)	ND (2.4)	ND (2.4)	ND (2.4)	NA	NA	ND (2.4)	ND (2.4)	ND (2.4)	ND (2.4)	
Mercury	ng/l	Monitor	0.20 J	NA	NA	ND (0.15)	NA	NA	0.22 J	NA	NA	NA	NA	2.0	NA	NA	1.4	
Tetrachloroethene	μg/l	1	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	NA	NA	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	
Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	NA	NA	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	
Free Cyanide	μg/l	Monitor (e)	ND (3)	NA	NA	ND (3)	NA	NA	ND (3)	NA	NA	NA	NA	ND (3)	NA	NA	ND (0.8)	

Parameter	Ilmita (a)	Discharge	Result (c)							
Farameter	Units (a)	Limit (b)	01/14/25	02/20/25	03/10/25					
Flow (d)	GPD	Monitor	19,066	19,066	14,722					
pH (range)	SU	6.5 - 8.5	8.5	8.2	8.1					
Total Barium	μg/l	Monitor	NA	NA	138 J					
Total Lead	μg/l	7.4	ND (2.4)	ND (2.4)	ND (2.4)					
Mercury	ng/l	Monitor	NA	NA	8.3					
Tetrachloroethene	μg/l	1	ND (0.41)	ND (0.41)	ND (0.41)					
Trichloroethene	μg/l	10	ND (0.43)	ND (0.43)	ND (0.43)					
Free Cyanide	μg/l	Monitor (e)	NA	NA	4					

Bold value is a detected concentration or measurement.

Orange highlighted value exceeds discharge limit.

- a/ GPD = gallons per day; SU = standard units; $\mu g/1$ = micrograms per liter; ng/l = nanograms per liter.
- b/ Discharge limit specified in Emerson Electric Co. Project Site Remediation Wastewater Discharge SPDES Permit Equivalent, dated August 1, 2022, DER Site ID# 7-55-010.
- c/ ND = not detected above method detection limit provided in parentheses; J = estimated concentration; NA = not analyzed for this parameter. (If a duplicate sample was collected, the higher of the two concentrations is reported.)
- d/ Estimated based on field measurement and V-notch (triangular) weir calculator (https://www.lmnoeng.com/Weirs/vweir.php).
- e/ Per Footnote 1 of SPDES Permit Equivalent, an interim limit of Monitor Only shall apply for free cyanide from August 1, 2022, until July 31, 2025. The water quality-based effluent limit of 5.2 µg/l Monthly Average and 22 µg/l Daily Maximum for free cyanide will become effective on August 1, 2025.

Page 1 of 1