

February 10, 2025 Revised February 20, 2025

Karen A. Cahill Assistant Engineer Division of Environmental Remediation New York State Department of Environmental Conservation 615 Erie Blvd. W., Syracuse, New York 13204-2400 *Transmitted electronically to <u>karen.cahill@dec.ny.gov</u>*

RE: Excavation Work Notice Former Emerson Power Transmission Facility Repairing of Water Line Leak in Building 2 620 South Aurora Street Ithaca, New York 14850 NYSDEC Site No. 755010 LaBella Project No. 2241173

Dear Ms. Cahill,

LaBella Associates, D.P.C. ("LaBella") is submitting this Notice for upcoming excavation work associated with a leak from an underground water line at the Former Emerson Power Transmission Facility, located at 620 South Aurora Street, in the City of Ithaca, Tompkins County, New York; hereinafter referred to as the "Site". This letter has been prepared to notify the NYSDEC of the project background, conditions, and scope, to satisfy the requirements of the Site's Interim Site Management Plan (ISMP).

The letter has been separated into the following sections:

SEC	TION	PAGE NO.
1	PROJECT BACKGROUND	2
2	SUMMARY OF ENVIRONMENTAL CONDITIONS ANTICIPATED	2
3	EXCAVATION WORK PLAN	3
4	HEALTH AND SAFETY PLAN	6
5	MONITORING WELLS	6
6	MATERIAL PLACEMENT / DISPOSAL ACTIVITIES	6
7	IMPORTED MATERIALS	6
8	MATERIALS REUSE	7
9	FLUIDS MANAGEMENT	7
10	REPORTING	7
11	SCHEDULE	8

www.labellapc.com

1 PROJECT BACKGROUND

As you are aware, the Site is identified as NYSDEC Site No. 755010, which has a long history of environmental assessment/investigation and remedial activities. An approved ISMP prepared by WSP USA Inc. ("WSP") and dated October 2022 presently exists for the Site. The ISMP contains additional detail regarding Site history.

Notification to the NYSDEC project manager is one of the various requirements of the ISMP. This notification has been prepared to maintain compliance with the ISMP during upcoming planned activities that have the potential to disturb the site cover system, reaffirm that all activities will be in accordance with the ISMP, describe the proposed schedule, and affirm the reporting requirements.

The current owner/developer of the Site, SHIFT Capital, and their team of maintenance staff, contractors, and consultants (hereinafter referred to as the "Redevelopment Team"), have identified an apparent water leak in Building 2 at the Site. The Redevelopment Team seeks to repair the leak, which is anticipated to require limited saw cutting of the existing building foundation/floor and excavation of underlying soil/fill surrounding the damaged pipe.

These activities may disturb a limited portion of the existing site cover and involve targeted excavation activities at the Site. As a result, certain elements of the ISMP will be triggered.

The area of planned activities to be completed by the Redevelopment Team are depicted on the attached Figure 6-B which has been reproduced from the ISMP and demarcated with the estimated area of the water line leak and approximate excavation extent. This area is hereinafter referred to as the "Project Area."

2 SUMMARY OF ENVIRONMENTAL CONDITIONS ANTICIPATED

Various investigations and assessments have been completed at the Site. The following environmental reports are most notable and were used as reference herein:

- Phase II Environmental Site Assessment (ESA) prepared by LaBella and dated March 2014
- ISMP prepared by WSP and dated October 2022
- Periodic Review Report (PRR) prepared by WSP and dated August 16, 2024

Based on previous assessments and the attached Figure 6-B, the following concrete slab and soil conditions are anticipated:

(continued on next page)

I	
I	

Boring ID	Concrete Slab Thickness	Refusal (Assume top of bedrock)	Max PID Reading	Soil Conditions	Analytical Data (2013)
LBA-SB-411	9.5"	1.0'	0.5 ppm	Not recorded	None
LBA-SB-412	6"	1.2'	3.3 ppm	Silt and gravel	VOCs sample at 1.2' (below Unrestricted Use SCOs)
LBA-SB-413	5"	1.1	1.6 ppm	Silt and gravel	None
LBA-SB-521	6"	2.5'	1.79 ppm	3" of gravel subbase Silty sand, dry	VOCs sample at 2.5' (below Unrestricted Use SCOs)
LBA-SB-522	6"	3.3'	1.55 ppm	3" of gravel subbase Sandy silt	None
LBA-SB-523	8"	1.0'	No Recover	ŷ	
AVERAGE	6.75"	1.68'	1.75 ppm	Gravel subbase w/ underlying silt/sand	Below Unrestricted Use SCOs

Soil boring logs and Table 2A from the LaBella Phase II ESA was reviewed to complete the above Table. The applicable information has been excerpted from the Phase II ESA Report and included as attachment to this Notification.

Groundwater monitoring wells LBA-MW-34N and LBA-MW-34S are adjacent to the Project Area. Based on information collected from these wells during previous assessments, the following groundwater conditions are anticipated:

Well ID	Well Depth	Screened Interval	DTW (2013)	DTW (2023)	Analytical Data (2013)	Analytical Data (2023)
LBA-MW-34S	44'	34 - 44'	39.44'	Not recorded	1-4' "Clean" 34-44' BTEX, acetone, and chloroform	None
LBA-MW-34N	21'	4 - 21'	11.45'	14.30'	0-10' "Clean" 13-21' 1,2-DCE	19' 1,1,1-TCA, TCE, 1,2-DCE, trichloro- fluoromethane, and barium

Well logs and Table 3A from the LaBella Phase II ESA as well as well logs and Table 10 from the WSP 2023 PRR were reviewed to complete the above Table. The applicable information has been excerpted from the Phase II ESA Report and 2023 PRR and included as attachment to this Notification.

Based on the above information as well as the limited area of excavation planned (i.e., max excavation depth to top of bedrock, which is on average located at 1.68' below the existing concrete slab), it is not anticipated that the Project will encounter contamination.

3 EXCAVATION WORK PLAN

Applicable aspects of the existing ISMP will be followed for completing the excavation work. All project parties working at the Site are aware of and have been provided a copy of the ISMP. The following

sections outline the EWP for this project and how the work shall be conducted in general accordance with the existing ISMP.

Utility Clearance

The presence of known utilities and easements on the Site are to be provided by the Redevelopment Team and existing information included in the ISMP shall be reviewed prior performing any subsurface work. The location(s) and verification/clearing of utilities is ultimately the responsibility of the contractor(s) performing the work. A *UDig NY* stakeout shall be called-in a minimum of three (3) days prior to the commencement of subsurface activities by the contractor performing the work.

Soil Management, Characterization, and Disposal

Site soil that is excavated must be managed, characterized, and (if unable to be reused) properly disposed of in accordance with the ISMP and NYS regulations.

Soil Screening, Excavation Oversight, Soil Handling, Load Out, and Transportation

Visual, olfactory, and instrument-based soil screening will be performed by either a qualified environmental professional (QEP) as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State. For this project, instrument-based field screening shall consist of the use of a photoionization detector (PID).

The QEP or qualified person will oversee all invasive work and the excavation and handling of all excavated material.

<u>NOTE:</u> The following section in <u>blue</u> describes soil loadout procedures, if necessary; however, it is not presently anticipated that soil for off-site disposal will be generated by this project.

Loaded vehicles (i.e., dump trucks) leaving the Site will be appropriately tarped/covered, manifested, and placarded in accordance with appropriate Federal, State, Local, and NYSDOT requirements.

Trucks departing the Site must be free of soil and debris to prevent tracking of any soil off-site and into adjacent roadways. Trucks that do not remain on asphalt-covered roadways are likely to accumulate such debris and are therefore subject to washing, prior to departing the Site. If soil/debris build-up is observed on trucks departing the Site, such activities shall be halted and any future trucks shall be required to be washed, prior to departure. If washing occurs, wash waters will be collected and disposed of in an appropriate manner.

The contractor (under the supervision of the QEP or qualified person) shall be responsible for ensuring that all egress points for truck and equipment traffic from the Site is clean of soil/dirt and other debris derived from the Site during excavation activities. Cleaning of the adjacent streets shall be performed as needed, to maintain a clean condition with respect to site-derived materials.

All transport of materials will be performed by licensed haulers in accordance with appropriate Local, State, and Federal regulations (including 6 NYCRR Part 364). Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Trucks will be prohibited from stopping and idling in the neighborhood outside of the project Site.

Excavation Extents

The excavation associated with the project is anticipated to be targeted and minimal. The goal is to address the leak and to do so while impacting the smallest area and least amount of material as possible.

The Project Area (i.e., the estimated area of the water leak and approximate excavation extent) has been demarcated on the attached Figure 6-B which has been reproduced from the ISMP. The maximum excavation depth is anticipated to be top of bedrock, which is on average located at 1.68' below the existing concrete slab (as summarized in Section 2).

Soil Stockpiling Methods

Excavated soil/fill material will be placed adjacent to the excavation and/or stockpiled nearby on polyethylene sheeting (inside of the building). Since the material is anticipated to remain within the building, additional erosion controls are not necessary and will not be employed. If material is stockpiled outside of the building, the stockpile will be continuously encircled with a berm, filter sock, and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points. Alternatively, soil will be stored in a roll-off dumpster(s) lined by polyethylene sheeting.

Stockpiles will be kept covered when not in use. Covers shall consist of appropriately anchored tarps and/or polyethylene sheeting. Stockpiles and their covers shall be inspected routinely and any damaged tarps/covers shall be promptly replaced. Stockpiles will be inspected at least once per week and after every storm event (if located outside). Results of stockpile inspections shall be recorded in a logbook and maintained at the Site (available for inspection by NYSDEC).

Implementation of Community Air Monitoring Plan (CAMP)

The NYSDOH Generic CAMP (Appendix 1A of DER-10) shall be implemented during all excavation activities. Notable elements of the CAMP include:

- Two (2) monitoring stations must be maintained during applicable work activities, including one upwind station and one downwind station at the perimeter of the active work area. Each station shall include continuous monitoring with a PID for measuring VOCs and a dust meter for measuring suspended airborne particulate, each with data logging on a minimum of 15-minute intervals. <u>NOTE:</u> Since work shall primarily or entirely occur indoors, the two (2) monitoring stations may be described as follows:
 - "Project Area Perimeter" (replacing the 'downwind') located at the Perimeter of the Project Area; and,
 - "Indoor Control" (replacing the 'upwind') located elsewhere in the Building and intended to be representative of indoor air quality conditions absent the excavation activities.
- MiniRae 3000 PIDs (or equivalent) and TSI 8530 Dust Trak IIs (or equivalent) will be utilized during this project.

Exceedances of action levels listed in the CAMP will be recorded. Dust/particulate and/or vapor suppression will be completed by the responsible contractor as necessary.

All CAMP data will be included in a summary report to be prepared upon the conclusion of the repair project (refer to Section 10).

4 HEALTH AND SAFETY PLAN

Applicable elements of the Example Health and Safety Plan (HASP) included in the ISMP will be adhered to during work. LaBella and each contractor working on this project will also implement their own HASP for their personnel that includes emphasis on the hazards specific to their work/tasks (for example, excavating and screening soil, etc.). LaBella's Site-specific HASP has been included as attachment to this Notification.

LaBella personnel will possess current OSHA HAZWOPER 40-Hour training. For this specific and limited project, based on its nature and location, and based on site history and explanations provided throughout, the Redevelopment Team may not possess OSHA HAZWOPER 40-Hour training. However, should evidence of contamination be encountered work will immediately be halted, the NYSDEC shall be notified, and personnel having current OSHA HAZWOPER 40-Hour training will be retained to complete the remainder of the project.

<u>Note:</u> Even if contamination is encountered, the requirement for OSHA HAZWOPER certified personnel shall apply only to the contractors/personnel that are handling contaminated material (i.e., excavating, etc.). It is our understanding that other trades (for example, plumber making the repair of the line) are not required to possess the OSHA HAZWOPER certification.

5 MONITORING WELLS

Any groundwater monitoring wells potentially impacted by project activities shall be protected during the project to ensure future monitoring can continue. Monitoring wells LBA-MW-34N and LBA-MW-34S are located adjacent to the Project Area. These wells shall be protected to the extent feasible.

If any monitoring wells that are a part of the active monitoring program require decommissioning, the NYSDEC will be contacted prior to any decommissioning activities to discuss procedures and potential reinstallation of groundwater monitoring wells. If any such wells are to be decommissioned, they shall be decommissioned in accordance with NYSDEC Commissioner Policy (CP)-43.

6 MATERIAL PLACEMENT / DISPOSAL ACTIVITIES

Concrete removed during the Project will be re-used on-site or recycled/disposed off-site at an appropriately permitted facility (location to be determined).

Soil/fill from the limited excavation shall be reused as backfill once the water line is repaired (assuming it is acceptable based on field screening by the QEP or qualified person). Based on previous soil sampling data from the immediate area indicating no contaminants above Unrestricted Use SCOs, the limited volume of material anticipated to be encountered (i.e., less than 60 CY), and the nature of the project (utility repair inside of the building requiring quick restoration), analytical testing of the soil/fill material prior to reuse is not intended.

Wherever excavated soil/material cannot be reused on-Site, excess spoils are generated, and/or unanticipated impacts rendering material unacceptable for reuse is generated, such material will be transported and disposed of in accordance with all Local, State and Federal Regulations to an appropriately permitted facility.

7 IMPORTED MATERIALS

No imported materials are anticipated for this project.

If soil/fill material(s) are required to be imported to the Site, they shall be sampled per the ISMP and meet the soil quality standards established in 6 NYCRR 375-6.7(d) for Restricted-Residential Use SCOs.

<u>NOTE:</u> Imported backfill material may not be sampled if it meets the exemption requirements specified in DER-10 Section 5.4(e)5.

All materials proposed for import onto the Site will be reviewed and approved by LaBella and will follow provisions in the ISMP to obtain NYSDEC approval prior to receipt at the site.

A Request to Import/Reuse Fill or Soil form, which can be found at <u>http://www.dec.ny.gov/regulations/67386.html</u> (last revised April 2023), will be prepared and submitted to the NYSDEC for approval, prior to importation.

8 MATERIALS REUSE

Materials to be reused on-site will be assessed/screened by the QEP or qualified person prior to placement.

Excess material (spoils) not meeting the requirements for reuse and/or screened by the QEP or qualified person and found to be inappropriate for reuse shall be temporarily stockpiled for eventual transportation and disposal off-site (refer to Section 6).

Based on previous data and on-site assessment/screening by the QEP or qualified person, reuse of excavated material shall occur with no further analytical testing. The placement of this material will be documented by noting the area of placement and final cover type. Reuse shall only occur in similar location and condition where generated.

Even with pre-existing data immediately adjacent to the Project Area, it is reiterated that all materials will be field screened by a QEP or qualified person and in the event of evidence of impairment (staining, odors, or elevated PID readings), such materials will be segregated (temporary stockpile/staging) and appropriately managed for off-site disposal.

9 FLUIDS MANAGEMENT

Based on site history, available historical data, and the planned limits/depth of excavation activities, groundwater is not expected to be encountered during the project. The maximum excavation depth will be the top of bedrock, which is typically less than two (2) feet below the existing concrete slab. Groundwater in the adjacent LBA-MW-34N was measured at 11.45' in 2013 and 14.30' in 2023, well beyond the anticipated maximum excavation depth.

If groundwater or stormwater accumulates in excavations and needs to be removed, it will be containerized on-site. If groundwater is containerized, it will be sampled, treated if necessary, and either discharged to the publicly owned treatment works (POTW) after the POTW is notified, or properly disposed off-site.

All liquids removed from the Site (if any) will be handled, transported, and disposed in accordance with the ISMP and applicable Local, State, and Federal regulations.

10 **REPORTING**

This Notice serves to satisfy NYSDEC 15-Day notification requirements outlined in the ISMP.

The completion of all work shall be documented in a summary report, indicating that the work was completed at the Site and provide documentation that the work was performed in substantial conformance with the ISMP and NYSDEC/NYSDOH guidelines and accepted standards of practice,

including:

- A summary of all field activities and observations;
- summary of analytical results, if applicable (including comparison to applicable regulatory standards);
- mapping that depicts project location(s) and excavation extents;
- all field monitoring data (CAMP reporting);
- imported material information / analytical data, if applicable;
- off-site soil disposal information (analytical data, manifests, etc.) if applicable, and,
- documentation that the soil cover / foundation engineering control has been restored in accordance with the ISMP.

The summary report shall be prepared by person(s) working under the supervision of a New York State Professional Engineer (PE).

11 SCHEDULE

Activities are currently scheduled to occur according to the following timeline (subject to change):

Activity / Deliverable	Date			
Submission of Excavation Work Plan / Notice and Start of 15-Day Notification Period	February 10, 2025			
On-Site Field Construction Begins	Week of February 24, 2025			
On-Site Field Construction Complete	March 2025			
Summary Report Submitted to NYSDEC	Within 30 days of completion of Field Activities			

The total duration of the project is subject to the timing of the necessary approvals, contractor schedules, and extraneous factors such as materials delivery. If significant changes to the schedule are required, the NYSDEC shall be notified as soon as practically possible.

CLOSING

If you have any questions, or require additional information, please contact me at (585) 287-9089, or via e-mail at <u>dbrantner@labellapc.com</u>. Also include Robert Lewis of SHIFT Capital, via e-mail at <u>rlewis@shiftcapital.us</u>.

Respectfully submitted,

LABELLA ASSOCIATES, D.P.C.

Drew Breauter

Drew Brantner Senior Project Manager

Attachments: -Figure 6-B – Demarcated with Project Area -Historical Records --LBA-MW-34N & LBA-34S Logs from LaBella Phase II ESA --LBA-SB-411, LBA-SB-412, LBA-SB-413, LBA-SB-521, LBA-SB-522, and LBA-SB-523 from LaBella Phase II ESA

--Partial Tables 2A and 3A from LaBella Phase II ESA (VOCs in soil and groundwater) --LBA-MW-34N Well Log from WSP 2023 PRR

--Partial Table 10 from WSP 2023 PRR (VOCs and barium/cyanide in groundwater) -LaBella Site-Specific HASP

CC:

Gary Priscott, NYSDEC Robert Lewis, SHIFT Capital Gregg DiFabio, SHIFT Capital Dan Noll, LaBella

B:\GLOBAL\Projects\Shift Chainworks\2241173 - SMP Implementation\11_Reports\Notifications\2025.02 - Water Leak Bldg 2\Notice.755010.2025-02-10.Excavation_Work_to_Repair_Water_Leak.Revised-2025-02-20.docx

						ROCK	CORE LOG	BORING NO: LBA-MW-34 South		
	Δ	EL	LV.					SHEET 1	OF 2	
		Associat	tes, P.C.			PF		PROJECT NO: 213582		
						Former Eme	rson Power Facility			
300 STA	TE STREE	T, ROCHESTER	, NY		6	620 South Aur	ora Street, Ithaca, NY			
CONT		Nothnagle Kovin Bush				G LOCATION:	: Inside Bldg. 2	START DATE: 12/3/2013		
R	IG TYPE:	D25			GRD SURF	DATUM:		LABELLA REP: JMG/D. Ril	ker	
CSG T	YPE/DIAM:			CORE E	BARREL TYPE	/ DIAMETER		-		
Depth (ft.)	Drill Rate (min per ft)	Core Run No. / Depth	Recovery (in / %)	RQD ⁽¹⁾ (in / %)	Weathering	Strata Change (Depth in ft)	Visual Classification	n and Remarks	Fracture	es
4										-
- 5		4'-9'	57.5"				Siltstone, many mechanical breaks along			_
-			96%				horizontal bedding planes.	Low angle frac. (~25°) 5	5.5' <mark>-</mark>
6										-
				94%						_
- '								Numerous fracs in	ר 0.5" 7	7.5'
- 8								Horizonta	l frac.	8'
										_
9									9).3'
10			64"						-	-
		9'-14'					Siltstone, many mechanical breaks along			_
- 11			100%				horizontal bedding planes.			_
12				100%						-
										_
13										_
- 14										-
_								Horizonta	frac. 14	'5"
15		14'-10'	62"				Siltstone, mechanical breaks spaced approx.			-
16		14 10	100%					Horizonta	l frac. 16'	-
						16'4"	Siltstone, rock more competent; mechanical	Low angle frac (~10°) 16'4 '	
17				90%			breaks spaced approx. 5"-12" apart.	Horizonta	frac 17'4'	. –
- 18								Horizonta	l frac. 17 4	-
-								Horizonta	frac. 18.5	
19								Low apple frac (. 10º) 10'10	0"
20			63.5"					Low angle had (10 / 19 1	- -
Ľ		19'-24'					Siltstone, mechanical breaks spaced approx.			-
21			100%	1009/			1"-3" apart from 19'-21' bgs; 5"-10" from 21'-24'	bgs.		_
22				100%						-
Ľ		1								-
23										-
24										_
	WATE	R LEVEL DAT	ГА				OTHER REMARKS		<u> </u>	
				BOTTOMOS	DEPTH (FT)	WATED	Thru ~5" concrete floor slab	top of rock DID reading in h	orobole to t	ton
D	ATE	TIME	TIME	CASING	BORING	LEVEL	of rock was ~3 ppb, soil dry.	top of rock. PID reading in b		op
				44'	44'		3" rock socket (1'-4' bgs).			
GENEP		 s					GW sample collected from top 3" of rock prior to	installing rock socket.		
1) For r	uns with g	reater than 100)% recovery, F	RQD is compute	ed using total o	core recovered	l.			
2) Meas	ured wate	r levels may no	ot represent ac	tual groundwat	er levels.					

BORING NO: LBA-MW-34S

						ROCK	CORE LOG	BORING NO: LBA-MW-34South		
	Δ	EL	LV.					SHEET 2	OF 2	
		Associat	ces, P.C.			Supplemen	OJECT: ntal Phase II ESA	PROJECT NO: 213582	_	
						Former Eme	rson Power Facility			
300 STATE STREET, ROCHESTER, NY 620					BODIN	20 South Auro	bra Street, Ithaca, NY	CTART DATE: 40/0/0040		
CONT	DRILLER:	Kevin Bush			GRD SURF	ELEVATION:	Inside Blag. 2	FINISH DATE: 12/3/2013	3	
F	IG TYPE:	D25		_		DATUM:		LABELLA REP: JMG/D. Ri	ker	
CSG T	YPE/DIAM:			CORE E	BARREL TYPE	/ DIAMETER:		-		
Depth (ft.)	Drill Rate (min	Core Run No. / Depth	Recovery (in / %)	RQD ⁽¹⁾ (in / %)	Weathering	Strata Change	Visual Classification and I	Remarks	Other Data	
24	per n)					(Depth in ft)				
_			58.5"				Siltstone, no natural fractures, mechanical		_	
- 25		24'-29'	97.5%	100%			breaks spaced 4"-20" apart		-	
26		2.20		10070					_	
									_	
27									-	
28									-	
-										
29										
- 30			62"				Siltstone, no natural fractures, mechanical		-	
			100%	10000			breaks spaced 6"-26" apart		-	
- 31		29'-34'		100%					-	
32									-	
									-	
- 33									-	
34									-	
- 25			67 F"				Siltatona maghaniaal bracka anagad	Horizont	al frac 34'9"	
- 30			57.5 96%				0.5"-9" apart	Horizont	al frac 35'2"_	
36		34'-39'		94%						
37								Horizont	al frac 36'10"	
- 37								TIONZON		
38										
- 39									-	
40			62"				Siltstone, mechanical breaks spaced		-	
41		39'-44'	100%	100%			8°-18.5° apart		-	
									-	
42								11-2		
43								Horizoni	aurac 42.5'	
-									_	
44	WATE		TA							
	WATE				DEPTH (FT)		OTHER REMARKS			
		TIME	ELAPSED	BOTTOM OF	BOTTOM OF	WATER				
D	AIE	TIVIE	TIME			LEVEL				
GENER	AL NOTE:	S reater than 100)% recovery F	QD is compute	ed using total c	ore recovered				
2) Meas	ured wate	r levels may no	t represent ac	tual groundwat	er levels.					
								BORING NO: LBA-MW-34	s	

						BORING NO: LBA-MW-34North			
	ΔB	EL						SHEET 1	OF 1
_		Associat	tes, P.C.			PF	ROJECT:	PROJECT NO: 213582	-
						Former Eme	rson Power Facility		
300 STA	TE STREE	T, ROCHESTER	R, NY		e	620 South Aur	ora Street, Ithaca, NY		
CONT	RACTOR:	Nothnagle			BORIN	G LOCATION	Inside Bldg. 2	START DATE: 12/4/2013	
R	IG TYPE:	Levin Bush D25			GRD SURF	DATUM:		LABELLA REP: JMG	3
CSG T	YPE/DIAM:			CORE E	BARREL TYPE	/ DIAMETER			
	Drill	Core							
Depth (ft.)	Rate (min per ft)	Run No. / Depth	Recovery (in / %)	RQD ⁽¹⁾ (in / %)	Weathering	Strata Change (Depth in ft)	Visual Classification and	Remarks	Other Data
-									-
-									-
-							Based on LBA-MW-34South observations, this	well installed by	-
L							using roller bit to remove rock from bottom of ro	ck socket (~5.5'bgs)	_
_							to 21' bgs. The rock was initially removed to 10'	bgs and a grab sample	-
-							of groundwater was collected to evaluate water shallow fractures	In the upper section of	-
-		-							-
-									-
L									
_									-
-									-
-									-
-									-
									-
_									-
-									-
-									-
-									-
_									-
-									-
-									-
-									-
_									_
_									-
-		-							-
F									-
Ľ									-
L									-
-									
┣									-
-									-
									-
	14/ 4 75								
	WATE	R LEVEL DA	IA		DEPTH (ET)		Top of rock at ~12"		
			ELAPSED	BOTTOM OF	BOTTOM OF	WATER			
D/	ATE	TIME	TIME	CASING	BORING	LEVEL	Rock socket from (1'-5.5' bgs)		
				21'			4		
GENER		l S		l			1		
1) For r	uns with g	reater than 100	0% recovery, F	RQD is comput	ed using total c	core recovered	l.		
2) Meas	ured wate	r levels may no	ot represent ac	tual groundwa	er levels.				
									IN

	LIA ciates, P.C.		MONITORING WELL INSTALLATION REPORT					
Project: Location: Client: Contractor(s): Driller: Rock Coring Method:	Emerson Power Ithaca, NY Nothnagle Kevin Bush Water			LaBella LaBella Date In: Time: Type of Auger s	Project No.: Representative: stalled: Drill Rig: iize and type:	213582 J. Gillen 12/10/2013 D25	to	
Ground El.:		Location:	Bldg. 2 Interior C-Zone Well		Depth to bedroo	ck: <u>1-ft.</u>		
BOREHOLE BACK (Numbers refer to depth from gro feet)	FILL ound surface in				Top of Rock Socket		1.0	ft.
Grout					Bottom of 4"	Casing/Rock Socket	4.0	ft.
	L1		•	——— Type of F	tiser/Silt Pipe Inside diameter	Schedule 40 PVC		in.
29-ft. Bentonite 32-ft.					Outside diameter			<u>2</u> in.
					Depth of top of s	Screen	34.0	ft.
Sand Pack			<u>م</u>	——— Type of S	Diameter of bor	ehole 0.020 in. schedule	3.8 40 PVC	in.
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	
	<u> </u>		4		Depth of bottom	of Screen of borehole	44.0	ft.
34.0 Riser Length (L1)	ft. +Lengt	10.0 h of Screen (L2	ft. =) Total	44.0 Length	ft.			
NOTES:								

	LIA Diates, P.C.	MONITORING WELL INSTALLATION REPORT						ring - /-34N
Project: Location: Client: Contractor(s): Driller: Rock Coring Method:	Emerson Power Ithaca, NY Nothnagle Kevin Bush Water			LaBella LaBella Date Ins Time: Type of Auger s	Project No.: Representative: stalled: Drill Rig: ize and type:	213582 J. Gillen 12/10/2013 D25	to	
Ground El.:		Location: Bldg. 2 Interio B-Zone Well			Depth to bedroo	ck: <u>1-ft.</u>		
					Top of Rock Socket		1.0	ft.
					Bottom of 4"	Casing/Rock Socket	4.0	ft.
			4	— Type of R	tiser/Silt Pipe	<u>Open-borehole</u>		
			•		Diameter of bor	ehole	3.8	in.
_			4		Depth of bottom	n of borehole	21.0	ft.
NA Riser Length (L1)	ft. +Lengt	NA h of Screen (L2	ft. = 2) Total Le	21.0 ngth	ft.			
NOTES:								

Г		Sociate	A 15, P.C.	GROU	NDWA'	TER D	EVELO	PMENT	FORM		
300 ST/	TE STREET	, ROCHES	TER, NY	WE]	LL I.D.	LBA-I	MW-348				
PH: (585) 45	4-6110	FAX: (58	5) 454-3066								
Project Nam Location: Developme Weather:	ne: nt By:	Emerson <u>Ithaca, N</u> G. Rinale	<u>Power</u> <u>IY</u> di/A. Brinkl	eman			Project No.: Date:	<u>213582</u> 12/13/2014 - 1	.2/20/2014		
PURGE V	PURGE VOLUME CALCULATION										
Well Diameter:4.0 -InchDepth of Well:43.52 -Feet		-	Static Water Single Well	r Level: Volume:	<u> </u>	4 -Feet 5 -Gallons					
PURGE &	SAMPLIN	<mark>G METH</mark>	OD								
Bailer - Type: PVC - Dedicated Sampling Device: Dedicated Bailer			-	Pump - Type Pump Rate:							
FIELD PA	RAMETER	Reasu	REMENT	5							
Time	Gallons Purged	рН	Temp (oC)	Conductivity (mS/cm)	Turbidity (NTU)	SWL		Comments			
					!						
	<u> </u>	 /	ļ		ļ!	 					
		- -	 	 	ļ!	 					
	i		 	<u> </u>	├ ───┦						
		++		<u> </u>	ł						
	 	ļ!	 	 	ļ!	 					
	 	 /	 	 	ļ′	 					
'		P	 	 	<u> </u> /	 					
	<u> </u>	+	 	<u> </u>	├ ───┦	 					
				<u> </u>		<u> </u>					
	 	<u> </u>	 		<u> </u>	 					
	┢────	- 	┣────	 	 '	┣────					
		P	<u> </u>	<u> </u>	├ ────┦	<u> </u>					
Total	20.25	j Gallons I	Purged	Purge Start Tir	me:	L	Purge End T	Time:	_		
OBSERVA	TIONS:										
SWL = Stat	ic water lev	el									
ļ											
Well Volum	ne (1" well)	= 0.0408-	gal/ft.		Well Volun	ne (4" well)	0 = 0.65-gal/ft.	,			
Well Volum	le (2" well)	= 0.163-g	al/ft.				U				

Г		Sociate	A s, P.C.	GROU	NDWA	FER D	EVELO	PMENT FORM				
300 ST#	TE STREET	, ROCHES ⁻	TER, NY	WEI	LL I.D.	LBA-I	MW <u>-34</u> N	1				
PH: (585) 45	4-6110	FAX: (58	5) 454-3066									
Project Nam Location: Developmen Weather:	ne: nt By:	Emerson Ithaca, N G. Rinal	<u>Power</u> I <u>Y</u> di/A. Brinkl	eman			Project No.: Date:	<u>213582</u> 12/13/2014 - 12/20/2014				
PURGE V	PURGE VOLUME CALCULATION											
Well Diameter:2.0 - InchDepth of Well:21 - Feet		-Inch -Feet		Static Water Single Well	r Level: Volume:	11.45 1.5	5 -Feet 1 -Gallons					
PURGE &	SAMPLIN	<mark>G METH</mark>	OD									
Bailer - Type: PVC - Dedicated Sampling Device: Dedicated Bailer			-	Pump - Pump Rate:	- Туре							
FIELD PA	RAMETER	R MEASU	REMENTS	5								
Time	Gallons Purged	pН	Temp (oC)	Conductivity (mS/cm)	Turbidity (NTU)	SWL		Comments				
		 										
		-										
		-										
Total	20	Gallons I	Purged	Purge Start Tir	ne:		Purge End T	ime:				
OBSERVA	TIONS:	1										
SWL = Stat	ic water leve	el										
Wall Value	na (1 " 11)	- 0.0409	~		Wall Val-	A (4 " 11)	-0651/0					
Well Volum	1e (1 well) 1e (2 well)	= 0.0408-§ = 0.163-g	gai/it. al/ft.		well volum	ie (4" well)	= 0.65-gal/ft.					

					PROJECT		BORING:	LBA-SB	-411
				Former E	merson Power Ti	ransmission	SHEET		1 OF 1
					620 S. Aurora S	it.	JOB:		213582
	A	ssociates, P.C.			Ithaca, New Yo	rk	CHKD BY:		
300 STATI (585) 454-	E STREET, ROCHI 6110	ESTER, NY							
						Ithoop NV			10
DR	ILLER.	Chad		GROUND SURI	ACE ELEVATION	NA		NA	10
LAI	BELLA REPRE	SENTATIVE:	J. Jaskowiak	START DATE:	25-Sep-2013	END DATE:			
TY AU	PE OF DRILL F GER SIZE AND	RIG: D TYPE:	Track NA			DRIVE SAMPLER TYPE: Macro INSIDE DIAMETER: 1.8-inch	core		
OV	ERBURDEN S	AMPLING METHOD: Direct Push		1		OTHER: NA	1		
EET)		SAMPLE					PID / FID	EET)	
DEPTH (F	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH (FEET)	STRATA CHANGE (FEET)		VISUAL CLAS	SSIFICATION	SCREEN (PPM)	DEPTH (F	NOTE
	(== . /	((()	Concrete 9.5"					
0				3" below slab					
	80%	Sample LBA-SB-411 at 1 foot	1	Refusal			0.5		
2									
4									
6									
8									
Ū									
10									
12									
14									
16									
10				DEPTH (FT)		NOTES:			
		WATER LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER				
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	-			
	L			1.0					
GE	NERAL NOTES								
	1) STRATIFIC	CATION LINES REPRESENT APPROXIMATE BOUNDAR		NE TYPES, TRAN	ISTTIONS MAY BE (GRADUAL.			
	and = 35 to 4	50 %		A STATED, FL	C - COARSE				
	some = 20 to	o 35%	trace = 1 to 10%	6	m = medium	BGS = Below the Ground Surface			
					f = fine	NA = Not Applicable	BORIN	NG:	

					PROJECT		BORING:	LBA-SB	3-412
				Former F	merson Power T	ransmission	SHEET		1 OF 1
Ľ		LLV		I OILIOI EI	620 S. Auroro S	*			212592
	A	ssociates, P.C.			020 3. Autora 3				213382
					Ithaca, New Yo	rk	CHKD BY:		
300 STATE (585) 454-	E STREET, ROCHE 6110	ESTER, NY							
(, .									
CO	NTRACTOR:	TREC Environmental, Inc.		BORING LOCA		Ithaca,NY	TIME:		то
DR	ILLER:	Chad		GROUND SUR	FACE ELEVATION	NA	DATUM:	NA	
LA	BELLA REPRE	SENTATIVE:	J. Jaskowiak	START DATE:	25-Sep-2013	END DATE:			
		20	- .						
IYI			Irack			DRIVE SAMPLER TYPE: Macroo	ore		
AU	GER SIZE ANI	ANDUNO METHOD: Direct Duck	NA			INSIDE DIAMETER: 1.8-Inch			
00	ERBURDEN S	AMPLING METHOD: Direct Push				OTHER: NA			
ET)		SAMPLE					PID / FID	ET)	
E) F			070 474	_			FIELD	E) F	
Ę	RECOVERY		CHANGE		VISUAL CLAS	SSIFICATION	(PPM)	Ē	NOTE
DEI	(FEET)	SAMPLE NO. AND DEPTH (FEET)	(FEET)				(1111)	DE	Note
0				Concrete 6"			3.1		
	100%	Sample LBA-SB-412 at 1.2 feet	10	Silt and gravel			3.3		
			1.2	Relusal					
2									
4									
6									
									1
8									
10									
10									•
12									
14									
16									
				DEPTH (FT)		NUTES:			
		WATER LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER				
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	-			
			1	1.2	1	l			
GE						CRADUAL			
	1) STRATIFIC			UIL TYPES, TRA	NSTITUNS MAY BE	GRADUAL.			
	2) WAIER L			JNO STATED, FL	LOG TOATIONS OF	GROUNDWATER			
	and = 35 to :	50 %	little = $10 \text{ to } 20\%$	%	c - coarse	ND = Non Detect			
	somé = 20 t	0.00%	urace = 1 to 10%	/0	m = medium	NA = Not Applicable	ROPIN	IG.	
1							DOM	·	

					PROJECT		BORING:	LBA-SB	-413
300 STATE		ELLA BISOCIATES, P.C.		Former E	merson Power T 620 S. Aurora S Ithaca, New Yo	ransmission t. rk	SHEET JOB: CHKD BY:		1 OF 1 213582
(585) 454-6 CO DR LAE	NTRACTOR: ILLER: BELLA REPRE:	TREC Environmental, Inc. Chad SENTATIVE:	J. Jaskowiak	BORING LOCA GROUND SURF START DATE:	FION: FACE ELEVATION 25-Sep-2013	Ithaca,NY NA END DATE:	TIME: DATUM:	NA	то
TYF AU OV	PE OF DRILL R GER SIZE AND ERBURDEN S/	IG:) TYPE: AMPLING METHOD: Direct Push	Track NA			DRIVE SAMPLER TYPE: Macroo INSIDE DIAMETER: 1.8-inch OTHER: NA	ore		
(FEET)		SAMPLE					PID / FID FIELD	(FEET)	
DEPTH (SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH (FEET)	STRATA CHANGE (FEET)		VISUAL CLA	SSIFICATION	SCREEN (PPM)	ДЕРТН (NOTE
0	100%	Sample LBA-SB-413 at 1.1 feet		Concrete 5" Silt and gravel			1.6		
2			1.1	Refusal					
4									
6									
8									
10									
12									
14									
16							-		
				DEPTH (FT)	1	NOTES:			
DATE	TIME	WATER LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED				
				1.1					
GE	1) STRATIFIC	S ATION LINES REPRESENT APPROXIMATE BOUNDAR	Y BETWEEN SC	IL TYPES, TRAN	ISITIONS MAY BE	GRADUAL.			
	2) WATER LE	VEL READINGS HAVE BEEN MADE AT TIMES AND UN	IDER CONDITIO	NS STATED, FLU	JUTUATIONS OF G	ROUNDWATER			
	and = 35 to 5	50 % x 35%	little = $10 \text{ to } 20\%$	6	c - coarse	ND = Non Detect			
	301118 = 20 ll	0070	uace - 1 to 107	v	f = fine	NA = Not Applicable	BORIN	IG:	

			IΛ		TEST	BORING LOG	BORING:	SB-521
Ľ	\D				Suppler	nental Phase II ESA	SHEET	1 OF 1
		Associ	ates, P.(С.	620 Si	aca New York	ЈОВ: СНКД ВУ·	
300 ST	ATE STREET, I	ROCHESTER,	NY	-				
CON	FRACTOR:	LBA LLC	ONSULIANI	BORING LOCAT	ION:		TIME:	то
DRILI	ER: Rich Re	agan		GROUND SURF	ACE ELEVATION:		DATUM:	
LABE	LLA REPRES	ENTATIVE: D	D. Noll	START DATE:	12/13/2013	END DATE:		
TYPE	OF DRILL RI	G:	54LT			DRIVE SAMPLER TYPE:		
AUGE OVEF	ER SIZE AND RBURDEN SA	TYPE: MPLING MET	THOD: Direc	t Push		INSIDE DIAMETER: ~1.8-Inch OTHER:		
D		SAMPLE					PID	
P							SCREEN	
T H	SAMPLE NO AND DEPTH	. SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASS	SIFICATION	(PPB)	REMARKS
0			6"		Concrete fl	oor slab		
			9"		Rock/gravel	sud-base	1,274	XRF in PPM (2'): Pb: 14
		24"			Silty SAND, dry (reworked soil)	1,790	As: 6.0 Ba: 328
2	SB-521						1,743	Zn: 29
	2.5				Refusal	at 2.5'		
4								
6								
8								
10								
12								
14								
16								
18								
						Noteo		
DATE		ELAPSED		BORING		PID background = 800-900 ppb		
		TIME		2.5-Ft.				
GE		ES						
	1) STRATIF		ES REPRES INGS HAVE	ENT APPROXIMA	TILE BOUNDARY BETWEEN SC	DIL TYPES, TRANSITIONS MAY BE GRAD	JAL. IDWATER	
	3) Abbreviati	ons	and = 35 to	50 %	c = coarse			
			some = 20 t	o 35% 20%	m = medium f = fino	BGS = Below the Ground Surface		
			trace = 1010	10%	vf = very fine		BORING:	SB-521

/	\mathbb{R}	FI			TES Suppler	F BORING LOG mental Phase II ESA	BORING: SHEET	SB-522 1 OF 1
			iates 🗆		620 S	outh Aurora Street	JOB:	
300 ST	ATE STREET. I	ROCHESTER.	NY		lth	aca, New York	CHKD BY:	
ENVIR			ONSULTANT				TIME	TO
DRIL	LER: Rich Re	agan		GROUND SURF	ACE ELEVATION:		DATUM:	10
LABE	LLA REPRES	ENTATIVE: D). Noll	START DATE:	12/13/2013	END DATE:		
TYPE AUGE OVEF	E OF DRILL RI ER SIZE AND RBURDEN SA	g: Type: Mpling met	54LT HOD: Direc	t Push		DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~1.8-Inch OTHER:		
D E P T		SAMPLE	STRATA	-			PID FIELD SCREEN	DEMARKS
H	AND DEPTH	RECOVERY	CHANGE		VISUAL CLAS	SIFICATION	(РРВ)	REMARKS
0			6" 9"		Concrete f Gravel/rock	loor slab sub-base	1,470	XRF in PPM (3'):
		20"	-		Sandy SII T (re	worked soil)	1 547	Pb: 12 As: 6.5
2							.,	Ba: 494 Zn: 38
					Refusal	at 3.3'		
4								
6								
8								
0								
10								
12								
14								
16								
18								
	WATER LEVEL	DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	NOTES:		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	PID background = 800-900 ppb		
6		ES		3.3-Ft.				
GE	1) STRATIF	ICATION LINE	ES REPRESI	ENT APPROXIMA	TE BOUNDARY BETWEEN SO	OIL TYPES, TRANSITIONS MAY BE GRAD	UAL.	
	 WATER L Abbreviati 	EVEL READ	NGS HAVE and $= 35 \text{ to}$	BEEN MADE AT 1 50 %	TIMES AND UNDER CONDITIO	ONS STATED, FLUCTUATIONS OF GROUI	NDWATER	
	<i>c) / looi ciria</i> li	0.10	some = 20 to	o 35%	m = medium	BGS = Below the Ground Surface	[
			little = 10 to trace = 1 to	20% 10%	f = fine vf = very fine	NA = Not Applicable	BORING:	SB-522

1/					TEST	BORING LOG	BORING:	SB-523
	\D		_Ľ		Supplem	ental Phase II ESA	SHEET	1 OF 1
		Asso	ciates. F	2C.	620 So	outh Aurora Street	JOB:	
300 ST	ATE STREET, F	ROCHESTER,	NY			aca, new fork	CHKD BT:	
CONT	TRACTOR:	LBA LLC	ONSULTANT	S BORING LOCAT	I ION:		TIME:	ТО
DRILL	ER: Rich Rea	agan		GROUND SURF	ACE ELEVATION:		DATUM:	
LABE	LLA REPRES	ENTATIVE: L	J. Noli	START DATE:	12/13/2013	END DATE:		
TYPE		G:	54LT			DRIVE SAMPLER TYPE:		
OVER	RBURDEN SA	MPLING MET	THOD: Direc	t Push		OTHER:		
D		SAMPLE					PID	
E P							FIELD SCREEN	
Т	SAMPLE NO.	SAMPLE	STRATA		VISUAL CLASS	IFICATION	(PPM)	REMARKS
0		RECOVERT	8"		Concrete flo	or slab		
		0			No recov	/ery		
					Refusal at	1' bgs		
2								
4								
6								
0								
ŏ								
10								
12								
14								
16								
18								
		DATA ELAPSED	BOTTOM OF	BOTTOM OF	GROUNDWATER	NOTES:		
DATE	LIME	TIME	CASING	-Ft	ENCOUNTERED	4		
GE	NERAL NOTE	S	!	1 ru	+	+		
	 STRATIFI WATER I 		ES REPRESI	ENT APPROXIMA	TE BOUNDARY BETWEEN SO	IL TYPES, TRANSITIONS MAY BE GRADU	JAL. IDWATER	
	3) Abbreviatio		and = 35 to	50 %	c = coarse	TO UTITED, I EUCLIGATIONS OF GROUN		
			some = 20 tr	o 35% 20%	m = medium f = fine	BGS = Below the Ground Surface		
			trace = 1 to	10%	vf = very fine		BORING:	SB-523

Table 2A Summary of Detected Volatile Organic Compounds (VOCs) in Soil Samples Results in Micrograms per Kilogram (µg/Kg) or Parts Per Billion (PPB)

Emerson Power Transmission Facility Ithaca, NY

	NYCRR Subpart 375-6 Remedial Program Soil Cleanun Objectives	NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for the	NYCRR Subpart 375-6 Remedial Program	SB-250 (4')	SB-251 (1'-1.5')	SB-301 (2.5')	SB-401 (1.5')	SB-401 (2.5')	SB-404 (2.5')	SB-405 (10')	SB-412 (1.2)	SB-416 (4.5')	SB-417 (8")	SB-418 (2')	SB-420 (6")	SB-426 (6")	SB-501 (1.5')	SB-503 (2')	SB-504 (2')
	for the Protection of Groundwater	Protection of Public Health: Unrestricted Use	of Public Health: Restricted Residential Use	8/13/2013	8/14/2013	8/26/2013	9/24/2013	9/24/2013	9/24/2013	9/25/2013	9/25/2013	9/26/2013	9/26/2013	9/26/2013	9/26/2013	9/26/2013	12/4/2013	12/4/2013	12/4/2013
Volatile Organic Compounds																			
Chloromethane	Not Listed	Not Listed	Not Listed	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Vinyl chloride	20.000	20.000	900.0	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,1-Dichloroethene	330.00	330.00	100,000	<5.5	<5.6	<4.8	<5.8	20 J	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Acetone	500.00	500.00	100,000	<5.5	<5.6	<4.8	11	<6.3	<26	<25	22	<29	44	49	6.5 J	19.0 J	ND<31	ND<29	ND<28
Carbon disulfide	Not Listed	Not Listed	Not Listed	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Methylene chloride	500.00	500.00	100,000	<5.5	<5.6	2.9 BJ	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
trans-1,2-dichloroethene	190.00	190.00	100,000	<5.5	<5.6	<4.8	<5.8	1.3 J	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Methyl tert-butyl ether	930.00	930.00	100,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,1-Dichloroethane	270.00	270.00	26,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	8.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
2-Butanone	120.00	120.00	100,000	<5.5	<5.6	<4.8	<29	<32	<26	<25	<27	<29	<29	<29	<28	<25	ND<31	ND<29	ND<28
cis-1,2-dichloroethene	250.00	250.00	100,000	1.6 J	<5.6	<4.8	2.9 J	29	<5.3	<5.1	1.8 J	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	16	ND<5.5
Chloroform	370.00	370.00	49,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,2-Dichloroethane	20.00	20.00	3,100.0	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Benzene	60.00	60.00	4,800.0	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Trichloroethene	470.00	470.00	21,000	6.9 J	<5.6	<4.8	<u>1800</u> D	<u>6800</u> D	2.3 J	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	3.3 J	ND<6.2	8.2	1.9 J
Toluene	700.0	700.0	100,000	<5.5	<5.6	<4.8	<5.8	0.75 J	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,1,2-Trichloroethane	Not Listed	Not Listed	Not Listed	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Tetrachloroethene	1,300.0	1,300.0	19,000	<5.5	<5.6	<4.8	7.8	4.0 J	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Ethylbenzene	1,000	1,000	41,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
m,p-Xylene	Not Listed	Not Listed	Not Listed	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<12	ND<11	ND<11
o-Xylene	Not Listed	Not Listed	Not Listed	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<12	ND<11	ND<11
Xylene (total)	1,600.0	260.00	100,000	<5.5	<5.6	<4.8	<12	<13	<11	<10	<11	<11	<11	<12	<11	<10	ND<12	ND<11	ND<11
Isopropylbenzene	Not Listed	Not Listed	2,300.0	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
n-Propylbenzene	3,900.0	3,900.0	100,000	<5.5	<5.6	<4.8	0.95 J	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,3,5-Trimethylbenzene	8,400.0	8,400.0	52,000	<5.5	<5.6	<4.8	3.0 J	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
tert-Butylbenzene	5,900.0	5,900.0	100,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,2,4-Trimethylbenzene	3,600.0	3,600.0	52,000	<5.5	<5.6	<4.8	3.1 J	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
sec-Butylbenzene	11,000	11,000	100,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
4-Isopropyltoluene	Not Listed	Not Listed	Not Listed	<5.5	<5.6	<4.8	1.3 J	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
n-Butylbenzene	10,000	12,000	100,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
1,2-Dichlorobenzene	1,100.0	1,100.0	100,000	<5.5	<5.6	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Naphthalene	12,000	12,000	100,000	1.9 J	2.4 J	<4.8	<5.8	<6.3	<5.3	<5.1	<5.3	<5.7	<5.7	<5.7	<5.7	<5.1	ND<6.2	ND<5.7	ND<5.5
Total TCL List VOCs				14.0	2.4	2.9	1830.1	6855.05	2.3	0.0	32.1	0.0	44	49	6.5	22.3	ND	24.2	1.9
Total TICs	Not Available	Not Available	Not Available	0.0	0.0	132.1	165.1	0.0	34.6	0.0	0.0	0.0	0.0	0.0	0.0	95.1	0.0	0.0	0.0
Total VOCs				14.0	2.4	135.0	1995.2	6855.05	36.9	0.0	32.1	0.0	0.0	49.0	6.5	117.4	0.0	24.2	1.9

Legend: VOC analysis by United States Environmental Protection Agency (USEPA) Method SW846 8260B. J – Indicates that the constituent was positively identified; but the associated numerical value is the approximate concentration of the constituent in the sample. D - Indicates that the value was obtained from a secondary dilution anaylsis. < XXX Indicates constituent not detected above the laboratory detection limit shown. E - Indicates the compound concentration exceeded the calibration range. NA = Not Applicable or Not Available Highlighted type indicates that the constituent was detected at a concentration above NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for Unrestricted Use. <u>Underlined type</u> indicates that the constituent was detected at a concentration above the NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objective for Protection of Groundwater Bolded type indicates that the constituent was detected at a concentration above the NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objective for Restricted Residential Use

Table 2A Summary of Detected Volatile Organic Compounds (VOCs) in Soil Samples Results in Micrograms per Kilogram (µg/Kg) or Parts Per Billion (PPB)

Emerson Power Transmission Facility Ithaca, NY

	NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for the Protection of Groundwater	NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for the Protection of Public Health: Unrestricted Use	NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for the Protection of Public Health: Restricted Residential Use	SB-505 (2') 12/4/2013	SB-509 (3.5'-4') 12/5/2013	SB-510 (3.8'-4.8'') 12/5/2013	SB-511 (1.5'-2') 12/5/2013	SB-514 (0.5'-2.2') 12/5/2013	SB-515 (0-1.7') 12/5/2013	SB-518 (3'-4') 12/6/2013	SB-518 (8') 12/6/2013	SB-521 (2.5') 12/13/2013	LBA-MW-01 (5.5') 8/12/2013	LBA-MW-02 (6'-7.5') 8/13/2013	LBA-MW-03 (2') 8/14/2013	LBA-MW-04 (9.5'-10') 8/15/2013	LBA-MW-06 (2') 8/16/2013	LBA-MW-08 (7"-1.4') 8/19/2013
Volatile Organic Compounds	· · ·																	
Chloromethane	Not Listed	Not Listed	Not Listed	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Vinvl chloride	20.000	20.000	900.0	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,1-Dichloroethene	330.00	330.00	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Acetone	500.00	500.00	100,000	ND<28	ND<29	ND<29	ND<28	ND<270	ND<29	ND<26	ND<28	ND<28	<5.5 J	2.3 J	<5.5	<5.7	<5.4	2.6 J
Carbon disulfide	Not Listed	Not Listed	Not Listed	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Methylene chloride	500.00	500.00	100,000	ND<5.6	2.8 J	3.7 J	2.8 J	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5 J	2.7 J	5.2 J	<5.7	<5.4	1.9 J
trans-1,2-dichloroethene	190.00	190.00	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Methyl tert-butyl ether	930.00	930.00	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,1-Dichloroethane	270.00	270.00	26,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
2-Butanone	120.00	120.00	100,000	ND<28	ND<29	ND<29	ND<28	ND<270	ND<29	ND<26	ND<28	ND<28	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
cis-1,2-dichloroethene	250.00	250.00	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Chloroform	370.00	370.00	49,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,2-Dichloroethane	20.00	20.00	3,100.0	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Benzene	60.00	60.00	4,800.0	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Trichloroethene	470.00	470.00	21,000	1.4 J	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	6.6	ND<5.5	<5.5	<5.8	1.7 J	<5.7	<5.4	<5.5
Toluene	700.0	700.0	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	16 J	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,1,2-Trichloroethane	Not Listed	Not Listed	Not Listed	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Tetrachloroethene	1,300.0	1,300.0	19,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Ethylbenzene	1,000	1,000	41,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
m,p-Xylene	Not Listed	Not Listed	Not Listed	ND<11	ND<11	ND<12	ND<11	ND<110	ND<12	ND<10	ND<11	ND<11	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
o-Xylene	Not Listed	Not Listed	Not Listed	ND<11	ND<11	ND<12	ND<11	ND<110	ND<12	ND<10	ND<11	ND<11	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Xylene (total)	1,600.0	260.00	100,000	ND<11	ND<11	ND<12	ND<11	ND<110	ND<12	ND<10	ND<11	ND<11	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Isopropylbenzene	Not Listed	Not Listed	2,300.0	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
n-Propylbenzene	3,900.0	3,900.0	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,3,5-Trimethylbenzene	8,400.0	8,400.0	52,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
tert-Butylbenzene	5,900.0	5,900.0	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,2,4-Trimethylbenzene	3,600.0	3,600.0	52,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
sec-Butylbenzene	11,000	11,000	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
4-Isopropyltoluene	Not Listed	Not Listed	Not Listed	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
n-Butylbenzene	10,000	12,000	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
1,2-Dichlorobenzene	1,100.0	1,100.0	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	<5.5	<5.8	<5.5	<5.7	<5.4	<5.5
Naphthalene	12,000	12,000	100,000	ND<5.6	ND<5.7	ND<5.8	ND<5.7	ND<54	ND<5.8	ND<5.1	ND<5.6	ND<5.5	ND	<5.8	34	<5.7	<5.4	1.2 J
Total TCL List VOCs				1.4	2.8	3.7	2.8	16	ND	ND	6.6	ND	0.0	5.0	40.9	0.0	0	5.7
Total TICs	Not Available	Not Available	Not Available	0.0	0.0	6.7	0.0	1830	8.0	43.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total VOCs				1.4	2.8	10.4	2.8	1846	8.0	43.7	6.6	0.0	0.0	5.0	40.9	0.0	0.0	5.7

Legend: VOC analysis by United States Environmental Protection Agency (USEPA) Method SW846 8260B. J – Indicates that the constituent was positively identified; but the associated numerical value is the approximate concentration of the constituent in the sample. D - Indicates that the value was obtained from a secondary dilution anaylsis. < XXX Indicates constituent not detected above the laboratory detection limit shown. E - Indicates the compound concentration exceeded the calibration range. NA = Not Applicable or Not Available Highlighted type indicates that the constituent was detected at a concentration above NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for Unrestricted Use. <u>Underlined type</u> indicates that the constituent was detected at a concentration above the NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objective for Protection of Groundwater Bolded type indicates that the constituent was detected at a concentration above the NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objective for Restricted Residential Use

Table 3A Summary Of Detected Volatile Organic Compounds in Groundwater Samples Results in Micrograms per Liter (μ g/L) or About Parts Per Billion (PPB)

Emerson Power Transmission Facility

Ithaca, NY

Sample ID	NYSDEC Part 703 Groundwater	LBA-MW-27	LBA-MW-28	LBA-MW-29	LBA-MW-29 (PDB)	LBA-MW-29 010614 (PDB)	LBA-MW-29 (PDB)	LBA-MW-29 (PDB)	LBA-MW-29 (PDB)	LBA-MW-29 (PDB)	LBA-MW-29 (PDB)	LBA-MW-30	LBA-MW-31	LBA-MW-32	LBA-MW-33	LBA-MW-34 North	LBA-MW-34 North	LBA-MW-34 N (PDB)
Sample Interval*	Standards	35' - 50'	30' - 45'	20' - 50'	17'-19'	20'-22'	27'-29'	32'-34'	37'-39'	42'-44'	47'-49'	15' - 25'	4.8' - 19.8'	15'-35'	4.5' - 14.5'	0-10'	13'-21'	18'-20'
Sample Collection Date		9/14/2013	9/17/2013	9/17/2013	12/3/2013	1/6/2014	12/3/2013	12/3/2013	12/3/2013	12/3/2013	12/3/2013	9/16/2013	10/6/2013	12/9/2013	10/6/2013	12/9/2013	12/22/2013	1/7/2014
Volatile Organic Compounds					•						•	•						
1.1.1-Trichloroethane	5	<1.0	<5.0	3.3	<1.0	<1.0	1.5	2.1	2.1	0.99 J	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	1	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,1-Dichloroethane	5	0.6 J	<5.0	32.0	3.1	6.4	16	21	21	14	10	<5.0	<1.0	2.7	<20	0.54 J	2.4	1.0
1,1-Dichloroethene	5	<1.0	<5.0	4.6	0.55 J	1.4	2.1	2.8	2.8	1.1	0.8 J	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	0.5 J	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.9 J	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	3	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,2-Dichloroethane	0.6	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
2-Butanone	50	<1.0	<5.0	<1.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<5.0	<10	<10.0	<200	<10.0	<10.0	<10.0
4-Isopropyltoluene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0 J	<1.0	<1.0
Acetone	50	<1.0	<5.0	4.5 J	<10.0	<10.0	<1.00	<1.00	<1.00	<1.00	<1.00	<5.0	<10	<1.00	<200	7.9 J	4.0 J	<10.0
Benzene	1	<1.0	<5.0	<1.0	<1.0	<1.0	0.5 J	0.9 J	1.1	2.2	1.0 J	<5.0	<1.0	<1.0	<20	0.49	<1.0	<1.0
Bromoform	NA	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Carbon disulide	NA F	<1.0	<5.0	0.9 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	0.35 J
Chloroform	3	<1.0	<5.0	0.9 J	<1.0	<1.0	0.5 J	0.4 J	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	4.4	<1.0	<1.0
Chloromothano	/ E	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	5.5	<1.0	<1.0
cis-1 2-dichloroethene	5	×1.0 8 1	<5.0	1000	<1.0 80	210	<1.0 190 DI	500 DI	<1.0 610 DI	230 DI	220 DI	<5.0	<1.0	2.4	<20	<1.0	50	2.5
Cyclohexane	NA	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.8 1	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Ethylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.7 1	12	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Isopropylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
m.p-Xylene	5	<1.0	<5.0	<1.0	NA	NA	NA	NA	NA	NA	NA	<5.0	<1.0	NA	<20	NA	NA	NA
Methyl tert-butyl ether	10	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Methylcyclohexane	NA	<1.0	<5.0	<1.0	<1.0	0.34 J	0.2 J	0.4 J	0.5 J	0.6 J	0.3 J	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Methylene chloride	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3 J	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Naphthalene	10	<1.0	<5.0	<1.0	<1.0	<1.0	1.0 J	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
n-Butylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
n-Propylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
o-Xylene	5	<1.0	<5.0	<1.0	NA	NA	NA	NA	NA	NA	NA	<5.0	<1.0	NA	NA	NA	NA	NA
sec-Butylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
tert-Butylbenzene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Tetrachloroethene	5	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
Toluene	5	<1.0	<5.0	<1.0	0.74 J	0.72 J	2.4	4.6	6.2	13.0	5.0	<5.0	<1.0	<1.0	<20	0.76 J	<1.0	<1.0
trans-1,2-dichloroethene	5	<1.0	<5.0	20	2.0	4.8	9.1	11.0	11.0	6.6	4.9	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
I richloroethene	5	0.6 J	<5.0	4.6	0.7 J	1.8	1.6	1.8	2.0	0.88 J	0.62 J	<5.0	<1.0	<1.0	<20	<1.0	2.5	1.4
xyiene (mixed)	5	<2.0	<10	<2.0	<2.0	1.1 J	1.9 J	4./	6.7	11	4.60	<10	<2.0	<2.0	<40	<2.0	<2.0	<1.0
Vinyi chloride	2	2	<5.0	380 1.067 F	40	94	210 DL	250 DL	260 DL	240 DL	190 DL	<5.0	<1.0	<1.0	<20	<1.0	<1.0	<1.0
	Not Augilabl-	9.3 NT	0.0	1,007.5	130	320.6	/3/.1	889.7	924.2	523.3	437.2	2.3	0.0	5.1	0.0	19.6	14.8	5.3
	NOL AVUIIUDIE	0.2	0.0	1.067 5	126	2.9	0.03	0.0	0.45	E22 77	427.16	0.0	0.0	E 10	0.0	2.3	14.9	3.2 9.4E

Legend:

VOC analysis by United States Environmental Protection Agency (USEPA) Method SW846 8260B.

J – Indicates that the constituent was positively identified; but the associated numerical value is the approximate concentration of the constituent in the sample.

D - Indicates that the value was obtained from a secondary dilution anaylsis.

< XXX Indicates constituent not detected above the laboratory detection limit shown.

E - Indicates the compound concentration exceeded the calibration range.

NA = Not Applicable or Not Available

*Refers to depth below grade of screened interval or length of open rock, depending on well construction.

Highlighted type indicates that the constituent was detected at a concentration above the NYSDEC Part 703 Groundwater Standards.

Table 3A Summary Of Detected Volatile Organic Compounds in Groundwater Samples Results in Micrograms per Liter (μ g/L) or About Parts Per Billion (PPB)

Emerson Power Transmission Facility

Ithaca, NY

Sample ID	NYSDEC Part 703	LBA-MW-34 South	LBA-MW-34- South	LBA-MW-34 S (PDB)	**LBA-MW-35 NAPL	LBA-MW-35	LBA-MW-36	LBA-MW-37	LBA-MW-37 (PBD)	LBA-MW-38	LBA-MW-38 (PDB)	LBA-MW-39	LBA-MW-39	LBA-MW-40 South	LBA-MW-40 South	LBA-MW-40 North	LBA-MW-41	LBA-MW-41	LBA-MW-42 South
Sample Interval*	Groundwater Standards	1'-4'	34'-44'	41'-43'	5.1'-32'	5.1'-32'	7'-35'	37'-44'	41'-43'	11'-35'	32'-34'	0-14'	14'-25.5'	2.8'-6'	49'-57'	6'-18'	2'-5'	5'-25.5'	1'-4'
Sample Collection Date		12/4/2013	12/22/2013	1/7/2014	1/2/2014	1/16/2014	1/16/2014	12/22/2013	1/6/2014	12/22/2013	1/6/2014	12/9/2013	1/15/2014	12/11/2013	1/16/2014	1/16/2014	12/12/2013	1/16/2014	12/19/2013
Volatile Organic Compounds																			
1,1,1-Trichloroethane	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	500 DL	84	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	1	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	5	<1.0	<1.0	<1.0	<93	0.56 J	<1.0	<1.0	<1.0	0.67 J	0.96 J	380 DL	79	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	34	8.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	5	<1.0	3.3	1.4	<93	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	3	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	0.6	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.55 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	5	<1.0	4.0	1.8	<93	<1.0	<1.0	0.82 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Butanone	50	<10.0	7.3 J	<10.0	<470	<10.0	1.8 J	3.6 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
4-Isopropyltoluene	5	<1.0	0.35 J	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acetone	50	4.1 J	240	9.7 J	<470	<10.0	12	23.0	<10.0	10.0	<10.0	<1.00	<10.0	<10.0	<1.00	<1.00	<1.00	<1.00	11
Benzene	1	<1.0	1.0	1.8	<93	<1.0	<1.0	0.45 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	NA	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon disulfide	NA	<1.0	1.9	<1.0	<93	<1.0	<1.0	<1.0	0.65 J	<1.0	<1.0	<1.0	<1.0	<1.0	0.86 JB	<1.0	<1.0	<1.0	0.61 J
Chloroethane	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	50.0	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	7	4.2 J	<u>8.9</u>	4.6	<93	<1.0	<1.0	5.8	3.9	1.4	0.80 J	<1.0	<1.0	8.0	<1.0	0.91 J	<1.0	1.3	0.44 J
Chloromethane	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	8.5	14	20.0	3.3	22.0	<1.0	<1.0	6.2	42	<1.0
Cyclohexane	NA	<1.0	2.4	0.85 J	<93	<1.0	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	5	<1.0	2.5	2.4	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m,p-Xylene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	10	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylcyclohexane	NA	<1.0	5.8	1.4	<93	<1.0	1.1	3.3	0.33 J	1.0	0.41 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.40 J
Methylene chloride	5	<1.0	1.3	1.3	<93	<1.0	<1.0	0.97 J	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	10	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.48 J
n-Butylbenzene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	<1.0	<1.0	<1.0	16 JB	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	5	0.60 J	10.0	16	<93	0.51 J	<1.0	1.9	0.66 J	1.5	0.55 J	24.0	<1.0	0.8 J	<1.0	<1.0	4.1	<1.0	<1.0
trans-1,2-dichloroethene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	5	<1.0	<1.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0	1.2	18.0	<1.0	0.49	11	3.5	<1.0
Xylene (mixed)	5	<2.0	19.0	19	<190	<2.0	1.1 J	4.0	<2.0	1.7 J	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Vinyl chloride	2	<1.0	<2.0	<1.0	<93	<1.0	<1.0	<1.0	<1.0	1.5	2.2	7.8	<1.0	2.8	<1.0	<1.0	1.1	8.1	<1.0
Total VOCs		8.9	288.8	60.3	16	1.07	16.0	46.5	6.6	23.1	18.9	1025.0	185.5	52.9	0.9	1.4	22.4	54.9	12.9
Total VOC TICs	Not Available	0.0	26.86	14.57	4,840	0.0	12.59	0.0	0.0	32.7	0.0	23.8	2.7	0.0	NA	NA	NA	NA	73.7
Total VOCs & VOC TICs		8.90	315.61	74 82	4 856	1.07	29	47	6.6	55.8	18.9	1.048.75	188.2	52.85	0.86	1.4	22.4	54.9	87

Legend:

VOC analysis by United States Environmental Protection Agency (USEPA) Method SW846 8260B.

J – Indicates that the constituent was positively identified; but the associated numerical value is the approximate concentration of the constituent in the sample.

D - Indicates that the value was obtained from a secondary dilution anaylsis.

< XXX Indicates constituent not detected above the laboratory detection limit shown.

E - Indicates the compound concentration exceeded the calibration range.

NA = Not Applicable or Not Available

*Refers to depth below grade of screened interval or length of open rock, depending on well construction.

Highlighted type indicates that the constituent was detected at a concentration above the NYSDEC Part 703 Groundwater Standards.

Well ID	a distant	1BA-MW-T	34N	Site ID:	EPT - Ithaca, N	lew York		Sample Date:		04/19/23
Well Diam	eter	7.2	in	Sampling Event	a putterisi	Quarterly G	roundwater Sa	Impling		
Depth to W		13,91	ft	0						
TOTAL WEI	veptn	<u>a</u>	<u>tt</u>	Samplers		VHP,	KLALA			
Screen Le	ngth	N/A	ft	weather Conditi	ons and Notes:	5548,	Notary.	Indoor		
Pump Intal	KØ	19.0	ft	Sustained Flow	Rate	45 mL/	min			
Stabilizatio	n: Drawdown	< 0.3 foot (if possi	ible); Temp ± 3%;	pH ± 0.1; ORP ±	10 mV; Conductivity	/ ± 3%; Turbidity	< 5 NTU (if possible	e, otherwise ± 10%),	D.O. ± 10% if > 0.5 mg/L.	
2022445	WARDER -		的政治自己的	的复数影響的演奏。	Instrumen	t Calibration	Information			· · · · · · · · · · · · · · · · · · ·
053053	pH M	eter Calibration	LOCT SALES	Setting and the	1625-5628280	STATISTICS.	Horiba U52 v	with flow-through ca		的历史中的问题的
17.00 Stan	d.	pH 4.01 Stand.	Slope (mV/pH)	Notes on calibrat	ion:		· · · · ·			
			1	Calibrated to	manufacturer's :	specifications	using auto-calil	bration standard	solution	
Air temp =	55		۴]			-	· · · · · · · · · · · · · · · · · · ·		
Well Pur	ging Infon	mation	的影响影响的	Start purge:	13:05	End purge:	14:18	Pump Type: BI	addet	
Time	DTW (ft btoc)	Purge Volume (L)	т (°С)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l)	Appearance of Purge Water/Comments	Flow Rate (mL/min)
1308	14.3	0	15.44	7.09	2.56	1.75	12.9	0.57	Cleas	75
1313	14.55	0.375	15-42	7-19	212	1.75	7.7	0-79	(tas	75
1218	11.85	0.750	15-42	7.12	186	1.15	7.1	0413	(JPAS	75
1223	15-17	10125	15.46	1.24	167	1.4	7.7	0.33	(leas	35
13792	15-20	1.50	15-41	7.76	11.5	-76	1.8	1.30	61008	15
333	15-54	1.725	15-37	7.24	129	1.1.1	Heb	0.77	Cleas	1,5
1228	15.59	1.050	15.33	1.74	iod	1.1	8-1	0.21	Clens	45
1343	15.74	9.115	15.30	7.74	86	1-11	747	0.29	(LEAN	45
1348	15.96	2.40	15.29	7-75	67	1.74	6.0	0.78	Piers	45
1353	15.96	2,650	15.28	7.15	51	1.17	10.3	0.26 -	(lear	45
1358	16-07	2.875	15.29	2,25	31	1.74	6.8	0-75	(1003	45
14.3	16.18	3.10	15:28	7.05	24	1.12	5.8	0.04	(140%	46
1408	16.24	3.35	15.78	7.76	22	1.45	5.1	0.21	(1100	45
1612	16.30	2.60	15.78	1.11	14	1.16	4.1	Ria	(Lank	45
1610	6.60	3.85	15.70	1.71	ta	1.17	4.2	0-10	TIDAL	45
	10, 40			T LO		1 - 1 - 1			Likan	+
CALCURATE OF COMPANY	anh, Kirsty	NET CONTRACTOR	CONTRACTOR OF THE	Collection	Laborato	I ANAIYSIS !!	normation	Eltered/		
# of	Bottles	Anal	lytes	Method	Preservative	Bottle Type	Analytical Lab	Unfiltered	Comments	Sample Time
		BARIUM								4:23
		YOU CIN	MEE-							1423-
										14:23

April 2023 Groundwater Sampling Results Former Emerson Power Transmission Ithaca, New York (a)

		DDE Systom	Fffactivances					Sita Wido Monit	oring Program							n	unlicatos (d) and O	A/OC Samples			
	Well ID•	FW-11-43C	FW-12-45C	LBA-MW-08	LBA-MW-18	LBA-MW-23	LBA-MW-26	LRA-MW-30	I.RA-MW-34N	LBA-MW-35	LBA-MW-39	I BA-MW-43S	I BA-MW-43N	MW-50-160D	MW-44T	MW-32B	MW-46-72C	-		-	
	Sample ID:	EW-11-43C	EW-12-45C EW-12-45C	LBA-MW-00	LBA-MW-18	LBA-MW-23	LBA-MW-26	LBA-MW-30	LBA-MW-34N	LBA-MW-35	LBA-MW-39	LBA-MW-435	LBA-MW-43N	MW-041723A	MW-041723	MW-042123	MW-042023	EB-041723	EB-041823	EB-042023	EB-041923
	Date:	4/20/2023	4/20/2023	4/20/2023	4/19/2023	4/19/2023	4/19/2023	4/18/2023	4/19/2023	4/19/2023	4/19/2023	4/20/2023	4/20/2023	4/17/2023	4/17/2023	4/21/2023	4/20/2023	4/17/2023	4/19/2023	4/20/2023	4/20/2023
	Fyaluation						.,,					0/_0/20								1,20,2020	
VOCs (µg/l)	Criteria (c)																				
Acetone	50	- 40 U	40 U	-	-	3.7 J	-	-	10 U	-	-	-	-	100 U		10 U	100 U	10 U	10 U	-	5.3 J
Benzene	1	2.0 U	2.0 U	-	-	0.5 U	-	-	0.5 U	-	-	-	-	5.0 U		0.5 U	5.0 U	0.5 U	0.5 U	-	0.5 U
Bromodichloromethane	50	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Bromoform	50	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Bromomethane	5	8.0 U	8.0 U	-	-	2.0 U	-	-	2.0 U	-	-	-	-	20 U		2.0 U	20 U	2.0 U	2.0 U	-	2.0 U
2-Butanone (MEK)	50	40 U	40 U	-	-	10 U	-	-	10 U	-	-	-	-	100 U		10 U	100 U	10 U	10 U	-	10 U
Carbon Disulfide	60	8.0 U	8.0 U	-	-	2.0 U	-	-	2.0 U	-	-	-	-	20 U		2.0 U	20 U	2.0 U	2.0 U	-	2.0 U
Carbon Tetrachloride	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Chlorobenzene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Chloroethane	5	4.0 U	4.0 U	-	-	1.0 U	-	-	2.5	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Chloroform	7	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Chloromethane	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Cyclohexane	-	20 U	20 U	-	-	5.0 U	-	-	5.0 U	-	-	-	-	50 U		5.0 U	50 U	5.0 U	5.0 U	-	5.0 U
1,2-Dibromo-3-chloropropane	4	8.0 U	8.0 U	-	-	2.0 U	-	-	2.0 U	-	-	-	-	20 U		2.0 U	20 U	2.0 U	2.0 U	-	2.0 U
Dibromochloromethane	50	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,2-Dibromoethane	6	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,2-Dichlorobenzene	3	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,3-Dichlorobenzene	3	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,4-Dichlorobenzene	3	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Dichlorodifluoromethane	5	8.0 U	8.0 U	-	-	2.0 U	-	-	2.0 U	-	-	-	-	20 U		2.0 U	20 U	2.0 U	2.0 U	-	2.0 U
1,1-Dichloroethane	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,2-Dichloroethane	0.6	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,1-Dichloroethene	5	13.4	5.1	-	-	1.0 U	-	-	6.7	-	-	-	-	10 U		1.0 U	6.3 J	1.0 U	1.0 U	-	1.0 U
cis-1,2-Dichloroethene	5	5,500	3,140	-	-	1.9	-	-	766	-	-	-	-	1,830		8.2	3,060	1.0 U	1.0 U	-	1.0 U
trans-1,2-Dichloroethene	5	131	14	-	-	1.0 U	-	-	12.1	-	-	-	-	7.5 J		1.0 U	11.3	1.0 U	1.0 U	-	1.0 U
1,2-Dichloropropane	1	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
cis-1,3-Dichloropropene	0.4	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
trans-1,3-Dichloropropene	0.4	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Ethylbenzene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Freon 113	5	20 U	20 U	-	-	5.0 U	-	-	5.0 U	-	-	-	-	50 U		5.0 U	50 U	5.0 U	5.0 U	-	5.0 U
2-Hexanone	50	20 U	20 U	-	-	5.0 U	-	-	5.0 U	-	-	-	-	50 U		5.0 U	50 U	5.0 U	5.0 U	-	5.0 U
Isopropylbenzene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Methyl Acetate	_	20 U	20 U	-	-	5.0 U	-	-	5.0 U	-	-	-	-	50 U		5.0 U	50 U	5.0 U	5.0 U	-	5.0 U
Methylcvclohexane	-	20 U	20 U	-	-	5.0 U	-	-	5.0 U	-	-	-	-	50 U		5.0 U	50 U	5.0 U	5.0 U	-	5.0 U
Methyl Tert Butyl Ether	10	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
4-Methyl-2-pentanone (MIBK)	-	20 U	20 U	-	-	5.0 U	-	-	5.0 U	-	-	-	-	50 U		5.0 U	50 U	5.0 U	5.0 U	-	5.0 U
Methylene chloride	5	8.0 U	8.0 U	-	-	2.0 U	-	-	2.0 U	-	-	-	-	20 U		2.0 U	20 U	2.0 U	2.0 U	-	2.0 U
Styrene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,1,2,2-Tetrachloroethane	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Tetrachloroethene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Toluene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,2,4-Trichlorobenzene	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,1,1-Trichloroethane	5	4.0 U	4.0 U	-	-	1.0 U	-	-	20.4	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
1,1,2-Trichloroethane	1	4.0 U	4.0 U	-	-	1.0 U	-	-	1 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
Trichloroethene	5	3,940	2,210	-	-	1.0 U	-	-	18.1	-	-	-	-	18.5		14.6	94.6	1.0 U	1.0 U	-	1.0 U
Trichlorofluoromethane	5	8.0 U	8.0 U	-	-	2.0 U	-	-	2.0 U	-	-	-	-	20 U		2.0 U	20 U	2.0 U	2.0 U	-	2.0 U
Vinyl chloride	2	191	133	-	-	1.0 U	-	-	463	-	-	-	-	883		1.0 U	1,640	1.0 U	1.0 U	-	1.0 U
Xylene (total)	5	4.0 U	4.0 U	-	-	1.0 U	-	-	1.0 U	-	-	-	-	10 U		1.0 U	10 U	1.0 U	1.0 U	-	1.0 U
- Total VOCe		9 775	5 502	-	-	6	-	-	1 289	_	-	-	-	2 739	-	23	4 812	ND	ND	-	5
Total Site CVOCs:		9,775	5,502	-	-	2	-	-	1,266	-	-	-	-	2,739	-	23	4,812	ND	ND	-	ND
General Chemistry:																					
Barium (µg/l)	1,000	-	-	-	2,520	-	1,680	487	1,850	2,950	228	6,180	-	-	1,880	-	-	13 U	13 U	13 U	J 13 U
Cyanide (mg/l)	0.2	-	-	4.1	-	-	-	0.061	-	0.24	0.18	0.4	0.53	-	0.036	-	-	0.0041 U	0.0041 U	0.0041 U	J 0.0089 J
									1	1											

a/VOC = volatile organic compound; CVOC = chlorinated volatile organic compound; $\mu g/l =$ micrograms per liter; mg/l = milligrams per liter; U = analyte not detected above Reporting Limit; J = estimated concentration below the laboratory Reporting Limit or equal to or greater than the Method Detection Limit; - = not analyzed b/ LBA-MW-19 was found abandoned; well replaced with MW-19B

c/ Concentrations in bold text exceed evaluation criteria. Evaluation criteria are the New York State Ambient Water Quality Standards or Guidance Values for Class GA groundwater provided in the New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, and the April 2000 Addendum.

d/ The blind duplicates

Site-Specific Health and Safety Plan (HASP)

Project Title:

Former Emerson Power Transmission Facility

Location:

620 South Aurora Street, Ithaca, New York 14850

Prepared For:

SHIFT Capital

LaBella Project No. 2241173

TABLE OF CONTENTS

APPENDIX A - Directions to Medical Facility	3
APPENDIX B - Task Hazard Analysis Forms	3
APPENDIX C - Safety Data Sheets	3
APPENDIX D - Daily Tailgate Safety Meeting Form	3
APPENDIX E - Silica Exposure Plan 0.0 HASP Acknowledgment	3
1.0 Introduction	5
2.0 Responsibilities	5
3.0 Daily Pre-Job Safety Meetings	5
4.0 Site Information	5
5.0 Scope of Work	6
6.0 Emergency Information	6
7.0 Potential Health and Safety Hazards and Controls	7
Physical Hazards	8
Ergonomic Hazards	11
Chemical Hazards (General)	11
Individual Contaminant Hazards	14
8.0 Personal Protective Equipment (PPE)	15
9.0 Employee Training	16
11.0 Site Control	16
12.0 Recordkeeping	16
ATTACHMENT	26
Table 1: Specified Exposure Control Methods When Working With Materials Containing Crysta	alline Silica 26

ATTACHMENTS

APPENDICES

APPENDIX A - Directions to Medical Facility

- APPENDIX B Task Hazard Analysis Forms
- APPENDIX C Safety Data Sheets

APPENDIX D - Daily Tailgate Safety Meeting Form

APPENDIX E - Silica Exposure Plan

0.0 HASP Acknowledgment

All LaBella project personnel, contractors, and subcontractors are required to sign the following agreement prior to conducting work:

- 1. I have read and fully understand the requirements of this site-specific HASP including my individual responsibilities listed above.
- 2. I agree to abide by the provisions of the HASP and participate in any health and safety meetings or modifications to the HASP criteria during the implementation of work.

Name	Company	Date

1.0 Introduction

The purpose of this Health and Safety Plan (HASP) is to provide guidelines for responding to potential health and safety issues that may be encountered at the project site, located at 620 South Aurora Street, Ithaca, New York 14850. This HASP only reflects the policies of LaBella Associates D.P.C. and its affiliated company (LaBella Environmental, LLC) collectively referred to as "LaBella". The requirements of this HASP are applicable to all approved LaBella personnel, contractors and subcontractors at the work site. This document's project specifications are to be consulted for guidance in preventing and quickly abating any threat to human safety or the environment. The provisions of the HASP do not replace or supersede any federal, state or local regulatory requirements.

2.0 Responsibilities

This HASP presents guidelines to minimize the risk of injury to project personnel, and to provide rapid response in the event of injury. The HASP is applicable only to activities of approved LaBella personnel and their authorized visitors specific to this project. The Project Manager shall implement the provisions of this HASP for the duration of the project. It is the responsibility of LaBella employees to follow the requirements of this HASP, and all applicable company safety procedures.

3.0 Daily Pre-Job Safety Meetings

Prior to the beginning of work each day the Field Supervisor/Foreman or on-site Project Manager will review upcoming daily job requirements, anticipated hazards and hazard control measures with the project team members. At this meeting information such as personal protective equipment, site conditions, emergency procedures, and other applicable topics may be addressed. A copy of the **Daily Pre-Job Safety Tailgate/Toolbox Meeting Form** is attached to this HASP.

Project Name:	Former Emerson Power Transmission Facility
LaBella Project No.:	2241173
Project Location:	620 South Aurora Street, Ithaca, New York 14850
Current Use of Project Location:	The Site consists of a former manufacturing plant complex and surrounding access roads and parking lots. The Site is being redeveloped for mixed industrial, commercial, and restricted-residential use.

4.0 Site Information

Uses of Surrounding Areas (Res Vacant Land, Commercial, etc.):	The Site is an approximately 61.5-acre area and is bounded by residential neighborhoods to the north, undeveloped, steep woodlands to the south, South Aurora Street to the east, and undeveloped, steep woodlands and ultimately West Spencer Street to the west.
Proposed Date(s) of Field Activity - Start:	2025-01-01
Proposed Date(s) of Field Activity - End:	2027-12-31

5.0 Scope of Work

The proposed field work covered under this HASP includes the following:

• Implement the Interim Site Management Plan (ISMP) during redevelopment activities.

6.0 Emergency Information

The personnel and emergency response contacts associated with the proposed scope of work are presented below and are to be posted onsite during all field activities. The Site Safety Officer (SSO) is the primary authority for directing site operations and relaying communications under emergency conditions. During the SSO's absence, the Project Manager or Site Supervisor will lead emergency operations.

Project Personnel		
Contact Name		Phone
LaBella Project Manager	Drew Brantner	585-287-9089
LaBella Site Supervisor	la Site Supervisor TBD TBD	
Corporate Safety Manager	Catherine Monian	845-486-1557
Environmental Division Tim Ruddy Safety Program Manager		315.440.5125
Site Safety Officer	TBD	TBD
Site Contact Robert Lewis (SHIFT Capital) 423-838-3547		
Emergency Personnel including Police and Fire Dept and Ambulance – Dial 911		

Hospital- see Hospital Route Section below for directions	Cayuga Medical Center	607-274-4011
Poison Control		800-336-6997
NYSDEC Spill Response Hotline		800-457-7362

First Aid

A First Aid Kit may be located as follows:

- LaBella company vehicle
- Contractor's vehicle or field office

The injured person may be transported to a trained medical center for further examination and treatment. The preferred transport method is a professional emergency transportation service; however, if this option is not readily available or would result in excessive delay, other transport is authorized.

Under no circumstances should an injured person transport themselves to a medical facility for treatment, no matter how minor the injury may appear.

Incident Reporting

Employees shall report all incidents and injuries to their supervisor as soon as possible, including those involving employees operating vehicles and other equipment. All reporting procedures contained in LaBella Safety Policy 1.22 must be followed.

During emergencies employees should seek medical care immediately. When contacting their Supervisor/Safety Manager/HR, employees should discuss medical care options. If an employee is asked by medical personnel for a worker's compensation number they should tell them that LaBella should be billed directly.

When emergency medical care is not imminent, employees shall immediately report events to their immediate Supervisor, the Safety Manager and Human Resources, and participate in the investigation process as well as the corrective action process, as needed. An Accident-Incident-Near Miss-Hazard Form must be submitted online or by e-mail to the Supervisor, Safety Manager and HR as soon as possible but no later than 24 hours after the event. The Form can be found on LaBella's intranet under "Operations".

7.0 Potential Health and Safety Hazards and Controls

This section lists potential health and safety hazards that project personnel may encounter at the project site and actions to be implemented by approved personnel to control and reduce the associated risk to health and safety. This is not intended to be a complete listing of any and all potential health and safety hazards. New or different hazards may be encountered as site environmental and site work conditions change. The suggested actions to be taken under this plan are not to be substituted for good judgment on the part of project personnel. At all times, the Site Safety Officer has responsibility for site safety and their instructions must be followed.

Physical Hazards		
Work Action or Condition	Potential Safety Hazard	Controls (including PPE)
Blades and Sharp Objects	Injury	 Blades and Sharp objects are likely to be present on site, presenting risk of physical injury. The following hazard control measures will be applied: Only use tools designed for the task. Do not improvise. Inspect the tool before sure; do not use dull or damaged blades. Carry blades with tip sheathed or pointed down and away from the body. Cut on a stable surface with sufficient lighting. Wear appropriate PPE (gloves, safety glasses, etc.).
Excavations and Trenches	Injury from fall into or cave-in of trench/excavation. Asphyxiation, engulfment, or explosion (if pipe bursts)	An open excavation or trench may be present during site activity, or could be present during demolition or remediation activities. No Labella employees should enter a trench or excavation unless authorized to by the designated Competent Person. During heavy precipitation, excessive runoff may create slippery surfaces and also weaken the excavation sidewalls making the excavation more susceptible to collapse. The following hazard control measures will be applied: • All materials must be placed greater than 2 feet from the edge of the trench and LaBella employees should remain at least 2-feet from the edge of any excavation or trench. • LaBella employees are not to enter excavations greater than 4-feet in depth unless they have received appropriate training, stabilization measures are in place and a competent person has determined that the conditions are safe. • Any samples must be collected from the equipment bucket or from the spoils pile.

Hand Tools	Physical injury	 Do not use a tool if you have not been trained. Inspect tool before use and do not use damaged tools. Maintain tools in good condition and follow manufacturers' instructions. Wear gloves, safety glasses and and appropriate PPE /apparel, avoiding loose clothing; secure long hair. When using a cutting tool hold its handly firmly and cut away from your body, never towards it. If working on a ladder or scaffold raise and lower tools using a bucket and hand line; never carry tools in a way that prevents using both hands on a ladder (maintain three poits of contact)
Heavy Equipment - Working Near	Struck by, Caught in between, Causing an obstruction on existing roadway, Rollaway, and hearing damage.	 Working near heavy equipment presents struck-by and caught-in or in-between risks. Heavy equipment can also rollaway or obstruct roadways, limiting visibility. The following hazard control measures will be applied: Maintain 360 degrees of awareness of your surroundings. Meet the Operator, discuss work operations, and stay in line of sight. Wear high visibility clothing (outer layer), hard hat, safety glasses, work boots. Stand in safe zone away from blind areas. Never walk behind or to the side of heavy equipment without the operator's knowledge. Have an escape plan. Stay out of the swing zone of heavy equipment such as excavators or traditional auger rigs. The swing zone is defined as an entire 360 degree circle equipment may move within as measured from a central location point. Only approach drill rig after auger has stopped rotating and the operator has given the OK for you to approach to collect a sample. Wear hearing protection when working near heavy or moving equipment.
Power Tools	Injury from improper use Electrical shock and electrocution	 Unplug power tools when not in use. Do not use a tool if you have not been trained. Inspect tool and cord before use and do not use damaged tools. Maintain tools in good condition and follow manufacturers' instructions. Wear gloves, safety glasses and and appropriate PPE /apparel, avoiding loose

		clothing; secure long hair.
		• Never remove a safety guard when a tool is
		being used.
		Only plug electric tools into a grounded
		receptacle with a GFCI. Stop using tool if slight
		shock or tinalina is felt.
		Secure work with clamps to have both hands
		free to use the tool.
		Keep power tool cords away from heat, oil and
		sharp edges.
		Tag all damaged tools with "Do Not Use".
		If working in or around traffic (including in
		parking lots) workers will wear an ANSU evel 2
		high visibility clothing (vest) An ANSL evel 3
		vest (with sleeves) is required when working
		near traffic exceeding 50 mph. Additional
		reflective gear is also required for night work
		Maintain 260 degrees of awareness of your
		surroundings
		• Face traffic staving a safe zone, and have an
		escape route
		• Do not wear a boadset or talk on your coll
		phone
		• DOT approved Traffic Cones and all Traffic
Roads/Traffic -	Getting struck by	Cohtral Devices must be designed and placed
Near/On	vehicle	according to Uniform Traffic Contral Devices
		(MUTCD) standards (See 2.12 W/OPK ZONE
		SAFETV in Labolla's Safety Manual for more
		information)
		• If possible, close the entrance (evit to ensure
		the worker's safety, and use a spotter if the
		worker will not have the ability to keep their
		attention on vehicles maneuvering in the area
		• Workers should NOT sit down or turn their
		back to traffic when working. If they must do
		oither of these things to complete the work
		scope use a spotter or consider alternate ways
		or tools to do the work
		Reduce and avoid slipperv (wet icy oily
		muddy_etc) surfaces
		• Workers will watch where they step and wear
Slip-Trip-Fall	Injury	proper footwear
		Keep work areas free of obstructions and
		debris.
	Damage to utility	Utility marking is needed for this project.
Underground	infrastructure.	Prior to the commencement of around
Utilities	Electrocution.	intrusive activities, underground utilities will be
	Explosion	located by a third-party locator.

• Workers will not stand within 20-feet of any active excavations or boreholes if not actively
working in those areas.

Ergonomic Hazards		
Work Action or Condition	Potential Safety Hazard	Controls (including PPE)
Lifting Heavy Objects	Injury from Improper Lifting/Lifting weights that are too heavy	 When lifting heavy objects, keep the load close to the body and use the leg muscles instead of the back muscles to perform lifting tasks. Do not attempt to lift large, heavy (especially over 50-lbs), or awkwardly shaped objects without assistance from another employee or from a manual lifting devise.
Noise (Loud, Sustained)	Hearing Damage	 Ear protection will be worn at all times when personnel are within 20-feet of operating equipment or when noise level becomes consistently loud enough to have to raise voice to communicate with someone. Hearing protection will also be worn in the vicinity of generators, concrete cutters, and any other high noise emitting equipment.

Chemical Hazards (General)		
Work Action or Condition	Potential Safety Hazard	Controls (including PPE)
Asbestos Sampling or Abatement Monitoring	Asbestos is a common, naturally occurring group of fibrous minerals. Asbestos fibers have been used in a variety of building materials. Friable asbestos is a potential hazard because it can release fibers into the air if	Asbestos exposure is a risk factor for developing disabling and deadly lung diseases, often years after initial exposure. The following hazard control measures will be applied: • Do not collect samples or complete air project monitoring without appropriate certification and training, as defined in Section 9.0. • Use appropriate PPE as defined in Section 8.0. • Follow personnel decontamination procedures.

	damaged.	
	Long term	
	exposure to	
	airhorne ashestos	
	is necessary for	
	chronic luna	
	disease	
	Significant and	
	longtorm exposure	
	to achostos from	
	activities that	
	directly dicturb	
	achostos	
	uspesios-	
	containing	
	materials (such as	
	aspesios mining)	
	variety of	
	respiratory	
	alseases, in a lucalita a	
	incluaing	
	aspesiosis and	
	mesotnelloma	
	(cancer of the lung	
	lining). Aspestosis	
	is a non-	
	malignant,	
	irreversible	
	alsease resulting	
	in fibrosis of	
	the lung.	
	Asbestos-related	
	cancers tend also	
	to result from	
	substantial long-	
	term exposure,	
	nowever,	
	mesothelioma	
	may result from	
	lower doses.	
	Contaminants	volalle Organic Compound (VOC) gases may be
Chemical	logations at the	emilied from a number of materials and
Exposure -	Site include	be detected by their edge and by manitaring
Volatile Organic		be detected by their odor and by monitoring
Compounds	various volatile	Instrumentation and can lead to physical narm.
(VOC)	organic	voc concentrations at this site are not
	compounas	anticipated to exceed PELS. The following
	(VOCs), primarily	nazara control measures will be applied,

	VOCs associated with Site contamination. Volatile organic vapors may be encountered during subsurface activities at the project work site. Inhalation of high concentrations of volatile organic vapors can cause headache, stupor, drowsiness, confusion and other health effects. Skin contact can cause irritation, chemical burn, or dermatitis. Relevant Safety Data Sheets are included as Appendix 1.	however: • Workers should be wearing appropriate PPE, following listed decontamination procedures and be periodically screening the work zone to prevent against and evaluate for unexpected exposures. Refer to the relevant sections of this HASP for more detail regarding PPE, decontamination procedures and work zone screening.
Chemical Exposure - Heavy Metals	Contaminants identified in testing locations at the Site include low- level heavy metals, primarily associated with Site contamination. Heavy metal- impacted media including fill material may be encountered during subsurface activities at the project work site	The presence of heavy metals in site media may be difficult to ascertain in the field. Heavy metal concentrations at this site are not anticipated to exceed PELs. The following hazard control measures will be applied, however: • Workers shall wear appropriate PPE and follow listed decontamination procedures to prevent exposures. Refer to the relevant sections of this HASP for more detail regarding PPE and decontamination procedures.
Chemical Exposure - Polychlorinated Biphenyls	Contaminants identified in testing locations at the Site include PCBs. PCB-impacted media may be	The presence of PCBs in site media may be difficult to ascertain in the field. PCB concentrations at this site are not anticipated to exceed PELs. The following hazard control measures will be applied, however: • Workers should be wearing appropriate PPE

	encountered during subsurface activities at the project work site. Potential human health effects of PCB exposure include cancer as well as neurological, immunological and reproductive effects. Relevant Safety Data Sheets are	and following listed decontamination procedures to prevent exposures. Refer to the relevant sections of this HASP for more detail regarding PPE and decontamination procedures.
Chemical Exposure - Semi- Volatile Organic Compounds (SVOC)	included as Appendix 1. Contaminants identified in testing locations at the Site include SVOCs. SVOC- impacted media including fill material may be encountered during subsurface activities at the project work site.	The presence of SVOCs in site media may be detected by their odor and monitoring instrumentation. SVOC concentrations at this Site are not anticipated to exceed PELs. The following hazard control measures will be applied, however: • Workers should be wearing appropriate PPE and following listed decontamination procedures to prevent exposures. Refer to the relevant sections of this HASP for more detail regarding PPE and decontamination procedures.
Sample Collection - Soil or Groundwater	Exposure to contaminants. Hand injury from cutting, crushing, tool or glass breakage. Back strain from lifting cooler.	 When collecting samples, workers will utilize nitrile gloves, safety glasses or goggles. If material being sampled potentially contains fill or other sharp material, use a stainless steel spoon (or similar) as a tool to collect the sample. Any such tools should be dedicated or properly decontaminated between samples. When lifting sample coolers, workers will use proper lifting techniques and get assistance when possible, especially for containers heavier than 50 lbs.

Individual Contaminant Hazards				
Chemical	OSHA Permissible Exposure Limit	Routes of Exposure	Symptoms of Overexposure	

	(PEL)/ NIOSH Recommended Exposure Limit (REL) or Immediately dangerous to life or health air concentration values (IDLH)		
1,2- Dichloroethylene (VOC)	TWA 200 ppm (790 mg/m3) NIOSH REL/IDLH: TWA 200 ppm (790 mg/m3)	The substance can be absorbed into the body by inhalation of its vapour and by ingestion.	irritation eyes, respiratory system; central nervous system depression
Arsenic (Metal)	TWA 0.010 mg/m3 NIOSH REL/IDLH: REL: Ca C 0.002 mg/m3 [15- minute]	inhalation, skin absorption, skin and/or eye contact, ingestion	Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, resp irritation, hyperpigmentation of skin
Tetrachloroethane (VOC)	REL: TWA 10 ppm (60 mg/m3) ST 20 ppm (120 mg/m3)	inhalation, skin absorption, ingestion, skin and/or eye contact	nausea, vomiting, abdominal pain; tremor fingers
Trichloroethylene (VOC)	TWA: 50 ppm 270 mg/m3 Ceiling: 200 ppm STEL: 200 ppm NIOSH REL/IDLH: IDLH: 1000 ppm	The substance can be absorbed into the body by inhalation and by ingestion.	dizziness, headaches, sleepiness, confusion, nausea, unconsciousness

8.0 Personal Protective Equipment (PPE)

All site workers will have appropriate training as identified in Section 7.0. Training includes the identification of PPE necessary for various tasks; how to don, doff, adjust, and wear PPE; limitations of PPE; and proper care, inspection, testing, maintenance, useful life, storage, and disposal of the PPE. PPE will be inspected on a regular basis.

Level D: A work uniform affording minimal	 Coveralls or long-sleeves and pants Gloves 	
contamination, only.	 Nitrile sampling gloves (as needed) Boots/shoes, chemical-resistant steel toe 	

	and shank • Safety glasses or chemical splash goggles • Hard hat
--	--

9.0 Employee Training

All workers and other personnel shall receive appropriate training prior to engaging in site activities. All workers must recognize and understand the potential hazards to health and safety that are associated with the proposed scope of work and must be thoroughly familiar with programs and procedures contained in this Safety Plan.

The following training levels were determined to be needed:

• OSHA 40 Hour - HAZWOPER

11.0 Site Control

If the phase of work or project activity requires a decontamination zone or other site control zone, adhere to the HASP prepared by the applicable contractor(s) responsible for establishing and maintaining site control.

12.0 Recordkeeping

An electronic or hardcopy version of this HASP will be present at the Site during all field work activities. Copies of field logs, including daily pre-job safety meeting logs, will be filed by LaBella and available for the duration of the project.

Employees will be able to provide physical or electronic copies of required training certificates.

Incident reporting will be completed in accordance with LaBella policies.

Directions to Nearest Medical Facility

Google Maps

620 S Aurora St, Ithaca, NY 14850 to Cayuga Medical Ctr, 101 Dates Dr, Ithaca, NY 14850

Map data ©2025 Google 2000 ft L

620 S Aurora St

1

Ithaca, NY 14850

Take Morse Chain, S Aurora St and E Clinton St to S Meadow St in Ithaca

— 7 min (1.9 mi)

1. Head southwest toward Morse Chain

— 49 ft

1 2. Continue onto Morse Chain

←	3.	Turn left to stay on Morse Chain	0.3 mi
6		Turn laft anto Danhy Dd	0.2 mi
• 1	4.		0.2 mi
1	5.	Continue onto S Aurora St	0.5 mi
←	6.	Turn left onto Prospect St	0.5 m
↑	7.	Continue onto E Clinton St	—— 0.1 mi
			0.6 mi

Take Cliff St and Trumansburg Rd to Harris B Dates Dr Exn in Northwest Ithaca

		6 min (2.9 mi)
\rightarrow	8.	Turn right onto S Meadow St	·
			0.3 mi
ſ	9.	Turn left onto W Buffalo St	
			0.4 mi
1	10.	Continue onto Cliff St	
			1.0 mi
1	11.	Continue onto Trumansburg Rd	
			1.2 mi
Driv	e to (County Hospital Rd	
		1 min (D.2 mi)
\rightarrow	12.	Turn right onto Harris B Dates Dr Exn	
			256 ft
1	13.	Continue straight onto County Hospital Rd	
			217 ft
←	14.	Turn left to stay on County Hospital Rd	
-	•	Destination will be on the right	
			0.1 mi
			<u></u>

APPENDIX B

Task Hazard Analysis Forms

6.02 TASK HAZARD ANALYSIS (THA) FORM

THA Title:		THA ID #:	Date:	New Revised
Work Activity:		Risk Code (Table Page 2):	Division:	
Person Preparing THA:		Person Assisting with THA:		
Sequence of Steps or Activities	Materials, Equipment & Tools Needed	Hazards	Recommende PP	d Controls Measures / E/ Training
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				

Risk Assessment Codes (RACs)						
Likelihood & Severity Classification						
Likelihood of Harm Severity of Harm/Consequences						
(People, Environment, Facility)	(People, Environment, Facility, Supply Chain Disruption, Brand Impact)					
	Slight Harm	Moderate Harm	Extreme Harm			
Very Unlikely	Very low risk	Very low risk	High risk			
Unlikely	Very low risk	Medium risk	Very high risk			
Likely	Low risk	Medium risk	Very high risk			
Very Likely	Low risk	High risk	Very high risk			
	Definitions					
Likelihood of Harm Categories:	Likelihood of Harm Categories: Severity of Harm Categories:					
-Very Unlikely: Will not occur except in rare	-Slight harm: Only first aid re	quired				
instances under certain conditions	-Moderate harm: Injury or illness resulting in inability to work for a short period of time					
-Unlikely: Typically would not occur	nlikely: Typically would not occur -Extreme harm: Death or serious injury or illness resulting in inability to work					
-Likely: May occur on a regular basis	indefinitely					
-Very Likely: Will occur in most instances						

PREPARATION SIGN OFF				
Role	Name	Signature	Date	
Preparer				
Reviewer with Relevant Task Technical Experience or Safety Expertise				
Safety Manager – Needed for High Risk or Very High Risk THAs				

ACKNOWLEDGEMENT IF THA IS USED AS A TRAINING RESOURCE By signing I am indicating that I have read and understand the contents of this Task Hazard Assessment and the controls required to mitigate the risks from identified hazards.									
Name	Signature	Company	Date						

Safety Data Sheets

Safety Data Sheet Digital Library for Reference

APPENDIX D Daily Tailgate Safety Meeting Form

6.08 PRE'JOB SAFETY TAILGATE/TOOLBOX MEETING FORM

Date	Time			
Location or Address	Temperature			
Project Number	Humidity			
Conducted by	Conditions			
Were all workers re measures should b	Yes 🗌	No		

9	11	If 911 is unavailable at this location, please state the procedure for reporting emergencies
List	: Safet	y Topic of Discussion and/or Any Specific Hazards for the Work Being Performed Today
1		
2		
3		
4		
5		
6		
7		
List	: Contr	ol Measures for Each Specific Hazard Listed Above
1		
2		
3		
4		
5		
6		
7		

PLEASE SIGN THE BACK OF THIS SHEET

The presenter and all attendees shall print and sign in the appropriate areas on the back of this sheet

By signing, you declare that you understand the information presented in today's meeting, and that you have had the opportunity to ask questions and to clarify any uncertainty regarding such information.

Name	Signature	Company

All Visitors and Contractors Must Print Their Company Name

APPENDIX E

Silica Exposure Plan

Silica Exposure Control Plans are Required for all Tasks with Potential Exposure to Silica See LaBella Safety Manual Policy 4.09 and Attachment A - Table 1 of OSHA 1926.1153

Exposure Control Plan Project Information

Person Completing the Plan:	Date:
Location:	Division:
Project Number:	Phase:

Description of Task

Controls

OSHA requires Silica Exposure Control Plans include the following:

- Engineering Controls Work Practice Controls Respiratory Protection
- Housekeeping Measures Procedures Used to Restrict Access to Work Areas

Types of Controls:

Elimination or Substitution Controls:

- $\hfill\square$ Other means of demo
- □ Different products
- □ Other

Engineering and Work Practice Controls:

- \Box Doing work when concrete is wet
- Equipment with integrated water delivery
- □ Equipment w/ shroud/dust collection system
- □ HEPA vacuuming
- $\hfill\square$ Water or water/surfactant for dust suppression
- □ Isolation/Enclosure
- □ Heavy equip. operation from enclosed cab
- □ Ventilation*
- □ Other

*When using ventilation, draw air out and don't expose others to exhaust dusts. See Ventilation section, below.

Restricted Access to Work Areas Measures:

- □ Signage
- □ Physical Barriers
- □ Dust Barriers
- □ Other

Housekeeping Measures:

- □ Wet mopping/wet sweeping
- □ HEPA vacuuming of work area
- □ HEPA vacuuming of clothing/coveralls
- □ Other

Administrative Controls: Work schedules/coordination Inspections by competent persons Control points 	
Respiratory Protection and PPE:	
□ Half face:	Cartridge Type:
□ Full face:	Cartridge Type:
□ Supplied air units	
Coveralls:	□ Other
Gloves:	□ Other
Hygiene and Decontamination: Water or washing facilities on site	

Ventilation

□ Other

□ Vacuuming clothing/self

Ventilation Plan: Indicate number/location of fans (positive / negative), airflow direction < makeup air locations, discharge air outlets.

Area of location in building of ventilation plan:

Date Plan was posted/reviewed by workers:

Ventilation Safety Checklist:

- □ Makeup air free of contaminants
- $\hfill\square$ Exhaust fan operation has failure warning
- $\hfill\square$ Wetting of materials used to keep dust down
- □ Discharge not affecting others
- □ Dilution fans not stirring up dust
- □ Workers not placed between contaminants created and exhaust inlet ports

ATTACHMENT

Table 1: Specified Exposure Control Methods When Working

With Materials Containing Crystalline Silica

Const	ruction Task or Equipment	Engineering and Work Practice Control Re	equired Respira	atory Protection
	Operation	Methods ≤ 4	hours/shift	>4 hours/shift
1	Stationary masonry saws	 Use saw equipped with integrated water delivery system that continuously feeds water to the blade. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	None
2a	Handheld power saws (any blade diameter) when used outdoors	 Use saw equipped with integrated water delivery system that continuously feeds water to the blade. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask
2b	Handheld power saws (any blade diameter) when used indoors or in an enclosed area	 Use saw equipped with integrated water delivery system that continuously feeds water to the blade. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	5 (or Greater ency) Filtering эpiece or Half Mask	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask
3	Handheld power saws for cutting fiber-cement board (with blade diameter of 8 inches or less) for tasks performed outdoors only	 Use saw equipped with commercially available dust collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency. 	None	None
4a	Walk-behind saws when used outdoors	 Use saw equipped with integrated water delivery system that continuously feeds water to the blade. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	None
4b	Walk-behind saws when used indoors or in an enclosed area	 Use saw equipped with integrated water delivery system that continuously feeds water to the blade. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	5 (or Greater ency) Filtering ∍piece or Half Mask	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask
5	Drivable saws for tasks performed outdoors only	 Use saw equipped with integrated water delivery system that continuously feeds water to the blade. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	None
6	Rig-mounted core saws or drills	 Use tool equipped with integrated water delivery system that supplies water to cutting surface. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	None
7	Handheld and stand- mounted drills (including	Use drill equipped with commercially available shroud or cowling with dust	None	None

Const	ruction Task or Equipment	Engineering and Work Practice Control	Required Respiratory Protection				
	Operation	Methods	≤ 4 hours/shift	>4 hours/shift			
	impact and rotary hammer drills)	 collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism. Use a HEPA-filtered vacuum when cleaning holes. 					
8	Dowel drilling rigs for concrete for tasks performed outdoors only	 Use shroud around drill bit with a dust collection system. Dust collector must have a filter with 99% or greater efficiency and a filter cleaning mechanism. Use a HEPA-filtered vacuum when cleaning holes. 	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask			
9a	Vehicle-mounted drilling rigs for rock and concrete	• Use dust collection system with close capture hood or shroud around drill bit with a low-flow water spray to wet the dust at the discharge point from the dust collector.	None	None			
9b	Vehicle-mounted drilling rigs for rock and concrete	Operate from within an enclosed cab and use water for dust suppression on drill bit.	None	None			
10a	Jackhammers and handheld powered chipping tools when used outdoors	 Use tool with water delivery system that supplies a continuous stream or spray of water at the point of impact. 	None	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask			
10b	Jackhammers and handheld powered chipping tools when used indoors or in an enclosed area	 Use tool with water delivery system that supplies a continuous stream or spray of water at the point of impact. 	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask			
10c	Jackhammers and handheld powered chipping tools when used outdoors	 Use tool equipped with commercially available shroud and dust collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism. 	None	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask			
10d	Jackhammers and handheld powered chipping tools when used indoors or in an enclosed area	 Use tool equipped with commercially available shroud and dust collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism. 	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask			

Const	truction Task or Equipment	Engineering and Work Practice Control	Required Respiratory Protection					
	Operation	Methods	≤ 4 hours/shift	>4 hours/shift				
11	Handheld grinders for mortar removal (i.e., tuckpointing)	 Use grinder equipped with commercially available shroud and dust collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide 25 cubic feet per minute (cfm) or greater of airflow per inch of wheel diameter and have a filter with 99% or greater efficiency and a cyclonic pre-separator or filter-cleaning mechanism. 	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask	Powered Air- Purifying Respirator (PAPR) with P100 Filters				
12a	Handheld grinders for uses other than mortar removal for tasks performed outdoors only	 Use grinder equipped with integrated water delivery system that continuously feeds water to the grinding surface. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	None				
12b	Handheld grinders for uses other than mortar removal when used outdoors	 Use grinder equipped with commercially available shroud and dust collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide 25 cubic feet per minute (cfm) or greater of airflow per inch of wheel diameter and have a filter with 99% or greater efficiency and a cyclonic pre-separator or filter-cleaning mechanism. 	None	None				
120	Handheld grinders for uses other than mortar removal when used indoors or in an enclosed area	 Use grinder equipped with commercially available shroud and dust collection system. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide 25 cubic feet per minute (cfm) or greater of airflow per inch of wheel diameter and have a filter with 99% or greater efficiency and a cyclonic pre-separator or filter-cleaning mechanism. 	None	N95 (or Greater Efficiency) Filtering Facepiece or Half Mask				
13a	Walk-behind milling machines and floor grinders	 Use machine equipped with integrated water delivery system that continuously feeds water to the cutting surface. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. 	None	None				
13b	Walk-behind milling machines and floor grinders	 Use machine equipped with dust collection system recommended by the manufacturer. Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions. Dust collector must provide the air flow 	None	None				

Const	ruction Task or Equipment	Engineering and Work Practice Control	Required Respiratory Protection				
	Operation	Methods	≤ 4 hours/shift	>4 hours/shift			
		 recommended by the manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism. When used indoors or in an enclosed area, use a HEPA-filtered vacuum to remove loose dust in between passes. 					
14	Small drivable milling machines (less than half- lane)	 Use a machine equipped with supplemental water sprays designed to suppress dust. Water must be combined with a surfactant. Operate and maintain machine to minimize dust emissions. 	None	None			
15a	Large drivable milling machines (half-lane and larger) for cuts of any depth on asphalt only	 Use machine equipped with exhaust ventilation on drum enclosure and supplemental water sprays designed to suppress dust. Operate and maintain machine to minimize dust emissions. 	None	None			
15b	Large drivable milling machines (half-lane and larger) for cuts of four inches in depth or less on any substrate	 Use machine equipped with exhaust ventilation on drum enclosure and supplemental water sprays designed to suppress dust. Operate and maintain machine to minimize dust emissions. 	None	None			
15c	Large drivable milling machines (half-lane and larger) for cuts of four inches in depth or less on any substrate	 Use a machine equipped with supplemental water spray designed to suppress dust. Water must be combined with a surfactant. Operate and maintain machine to minimize dust emissions. 	None	None			
16	Crushing machines	 Use equipment designed to deliver water spray or mist for dust suppression at crusher and other points where dust is generated (e.g., hoppers, conveyers, sieves/sizing or vibrating components, and discharge points). Operate and maintain machine in accordance with manufacturer's instructions to minimize dust emissions. Use a ventilated booth that provides fresh, climate-controlled air to the operator, or a remote control station. 	None	None			
17a	Heavy equipment and utility vehicles used to abrade or fracture silica-containing materials (e.g., hoe- ramming, rock ripping) or used during demolition activities involving silica- containing materials	Operate equipment from within an enclosed cab.	None	None			
17b	Heavy equipment and utility vehicles used to abrade or fracture silica-containing	 When employees outside of the cab are engaged in the task, apply water and/or dust suppressants as necessary 	None	None			

Const	truction Task or Equipment	Engineering and Work Practice Control	Required Respire	atory Protection
	Operation	Methods	≤ 4 hours/shift	>4 hours/shift
	materials (e.g., hoe- ramming, rock ripping) or used during demolition activities involving silica- containing materials	to minimize dust emissions.		
18a	Heavy equipment and utility vehicles for tasks such as grading and excavating but not including demolishing, abrading, or fracturing silica- containing materials	 Apply water and/or dust suppressants as necessary to minimize dust emissions. 	None	None
18b	Heavy equipment and utility vehicles for tasks such as grading and excavating but not including demolishing, abrading, or fracturing silica- containing materials	When the equipment operator is the only employee engaged in the task, operate equipment from within an enclosed cab.	None	None

G