

Advanced GeoServices Engineering, P.C.

1055 Andrew Drive, Suite A West Chester, PA 19380-4293 (610) 840-9100 Fax (610) 840-9199 www.agcinfo.com

LETTER OF TRANSMITTAL

VIA: FedEx 1 day

то	NY Department of En	nvironmental Conser	rvation	Date: July 28, 2005		Job No. NY01-911	
	Division of Hazardou	s Waste Remediatio	n	Attention:	Timothy Schn	eider	
	6274 E Avon-Lima Road			RE:	McInerney	Farm Site	
	Avon, NY 14414-9519				ID # 8-08-005		
We are	sending you:						
X	Attached	Under separat	e cover via	the foll	owing items:		
Shop Drawings Prints			Plans	Sample:	s	Specifications	
	Copy of letter	Change order				_	
Copies Date No.			Description				
2	1 7-28-05 Revised Feasibility			Study, McInerney Farm Site, July 28, 2005			
Chese a	are transmitted as cl	hecked below:					
	For approva	u [Approved as submitted	Res	ubmit <u>copies</u>	for approval	
	X For your us	e [Approved as noted	Sub	Submit copies for distribution		
	As requester	d [Returned for corrections	s Return corrected prints		prints	
	For review	and comment		4			
REMA	FOR BIL	DS DUE	19	PRI	NTS RETURNEI	DAFTER LOAN TO US	

Copy to: Paul Brookner, Unisys (2) David Noble, Unisys Salvatore Priore, NYSDEC Joseph Crua, NYSDH File' Substrate Priore, NYSDEC JOSEPH Crua, NYSDH File' Substrate Priore, NYSDEC JOSEPH Crua, NYSDH Stephen W. Kirschner Project Consultant

REVISED FEASIBILITY STUDY McINERNEY FARM SITE NYSDEC SITE I.D. #8-08-005

F:\OFICEAGC\PROJECTS\FILES\2001-911\REPORTS\REVISED FS (7-28-05)\TEXT.DOC

REVISED FEASIBILITY STUDY McINERNEY FARM SITE NYSDEC SITE I.D. #8-08-005

Prepared for:

UNISYS CORPORATION Eagan, Minnesota

Prepared by:

ADVANCED GEOSERVICES ENGINEERING, P.C. West Chester, Pennsylvania

> Project No. 2001-911-07 July 16, 2002 Revised March 28, 2003 Revised December 22, 2004 Revised July 28, 2005

F-\OFICEAGC\PROJECT5\FILE5\2001-911\REPORT5\REVISED FS (7-28-05)\TEXT.DOC

REVISED FEASIBILITY STUDY McINERNEY FARM SITE NYSDEC SITE I.D. #8-08-005

Prepared for:

UNISYS CORPORATION Eagan, Minnesota

Prepared by:

ADVANCED GEOSERVICES ENGINEERING, P.C. West Chester, Pennsylvania

Project No. 2001-911-07 July 16, 2002 Revised March 28, 2003 Revised December 22, 2004 Revised July 28, 2005

Daniel A. Daily, P.E. New York PE License #077314

It is a violation of the New York Education Article 145 – Engineering and Land Surveying, Section 7209 (2) law for any person, unless he is acting under the direction of a licensed professional engineer or land surveyor, to alter an item in any way. If an item bearing the seal of an engineer or land surveyor is altered, the altering engineer or land surveyor shall affix to the item his seal and the notation "altered by" followed by his signature and the date of such alteration, and a specific description of the alteration. FNOFICEACCPROJECTS/FILES2001-911/REPORTS/REVISED IS (7-24-05)/TEXT.DOC

TABLE OF CONTENTS

PAGE NO.

1.0	Introduction1-1						
	1.1	Purpo	se of Study1-2				
	1.2	Invest	igation History1-3				
2.0	Environm	ental S	etting2-1				
	2.1	Topog	raphy2-1				
	2.2		te				
	2.3		e Drainage2-2				
	2.4	Hydrogeology					
	2.5		gy				
	2.6		gical Considerations				
3.0	Land Use						
4.0	Current Si	ite Con	ditions4-1				
	Analysis and Presentation						
	4.1 Data Analysis and Presentation4.2 Surface Conditions		e Conditions				
		4.2.1	PCBs				
		4.2.2	Nickel				
		4.2.3	Cadmium				
		4.2.4	Lead				
	4.3	Subsu	rface Conditions4-3				
		4.3.1	PCBs				
		4.3.2	Nickel				
		4.3.3	Cadmium				
		4.3.4	Lead				
	4.4	Groun	dwater				
	4.5	Groundwater Monitoring Plan					
	4.6	Flood Plain Characteristics4-					

REVENED

AUG 0 5 2005

NER/HAZ. VINSTE REMED REGION 8

TABLE OF CONTENTS (Continued)

PAGE NO.

5.	.1 P	otent	ially Applicable Chemical-Specific ARARs/SCGs5-2		
	5.	.1.1	PCBs		
	5.	.1.2	Lead		
	5.	.1.3	Cadmium		
	5.	.1.4	Nickel		
5.	.2 P	otent	ially Applicable Action-Specific ARARs/SCGs5-4		
	5.	.2.1	Capping		
	5.	.2.2	Excavation and Removal		
5.	.3 P	otent	ially Applicable Location-Specific ARARs/SCGs		
	5.	.3.1	Flood Plain Considerations		
	5.	.3.2	Area Affecting River of Streams		
	5.	.3.3	Groundwater		
5.	.4 Pi	rotoc	ol for Establishing Cleanup Standards		
6.0 Rem	edial A	ction	Objectives and Cleanup Criteria		
6.	.1 M	linim	ize Direct Contact Exposure		
6.	.2 R	Reduced Material Toxicity, Mobility or Volume			
6.	.3 Pi	reser	ve or Enhance Site Resources		
6.	.4 Se	oil C	leanup Criteria		
	6.	.4.1	1992 Record of Decision (ROD)		
	6.	.4.2	2003 Revised Feasibility Study (RFS)		
	6.	.4.3	2005 Revised Feasibility Study (RFS)		
7.0 Deve	elopmen	nt of l	Remedial Technologies7-1		
7.	1 R	emec	lial Response Actions		
7.	.2 Id	lentif	ication and Initial Screening of Technologies		
		2.1	Screening Process		
		.2.2	Identification of Potentially Applicable Technologies and Processes7-2		
	7.	.2.3	Technologies and Processes Eliminated from Evaluation		

Æ.

TABLE OF CONTENTS (Continued)

PAGE NO.

		7.2.4	2.4 Technologies and Processes Selected for Development of Remedial Alternatives				
	7.3	Final	inal Evaluation of Technologies7-6				
		7.3.1	Institutional Controls	7-6			
		7.3.2	Capping				
			7.3.2.1 Multiple Layer Low Permeability	7-6			
			7.3.2.2 Asphalt/Concrete Cover	7-7			
			7.3.2.3 Soil Cover	7-8			
		7.3.3	Ex-Situ Stabilization	7-8			
		7.3.4	Surface Controls	7-9			
			7.3.4.1 Erosion Control Materials	7-9			
			7.3.4.2 Revegetation	7-9			
		7.3.5	Excavation of Soil and Off-Site Disposition	7-10			
8.0 1	Develop	ment of	Remedial Alternatives Using Retained Techniques	8-1			
	8.1	Overview					
	8.2		iption of Remedial Alternatives				
		8.2.1	Alternative 1 – Original ROD				
		8.2.2	Alternative 2 – Excavation/Removal to Restricted Land Use				
			Cleanup Goals	8-4			
	8.3	Detail	8-7				
		8.3.1	Analysis Criteria	8-7			
		8.3.2	Alternative #1: Original ROD Remedy	8-7			
			8.3.2.1 Compliance with Applicable New York State Standards, Criteria and Guidelines (SCGs)	8-8			
			8.3.2.2 Overall Protection of Human Health and the				
			Environment				
			8.3.2.3 Short-Term Impacts and Effectiveness	8-9			
			8.3.2.4 Long-Term Effectiveness and Permanence				
			8.3.2.5 Reduction of Toxicity, Mobility or Volume	8-10			

TABLE OF CONTENTS (Continued)

PAGE NO.

			8.3.2.6 Implementability	
			8.3.2.7 Cost	
		8.3.3	Alternative #2: Excavation/Removal to	2005 RFS Cleanup Goals8-11
			8.3.3.1 Compliance with Applicable Ne	
				8-11
			8.3.3.2 Overall Protection of Human He	
			8.3.3.3 Short-Term Impacts and Effecti	
			8.3.3.4 Long-Term Effectiveness and P	
			8.3.3.5 Reduction of Toxicity, Mobility	
			8.3.3.6 Implementability	
			8.3.3.7 Cost	
	8.4	Comp	rative Analysis of Alternatives	8-15
		8.4.1	Compliance with Applicable New York	State Standards, Criteria and
			Guidelines (SCGs)	
		8.4.2	Overall Protection of Human Health and	the Environment8-15
		8.4.3	Short-Term Impacts and Effectiveness	
		8.4.4	Long-Term Effectiveness and Permanen	
		8.4.5	Reduction of Toxicity, Mobility or Volu	
		8.4.6	Implementability	
		8.4.7	Cost	
0.0.1	Dagamen	andod A	ternative	9-1
1.0 1	NUCUTIIII	iciliaca r		Y=

LIST OF TABLES

TABLE

- 1 Distribution of Soil Sample Results
- 2 Summary of Groundwater Analytical Data
- 3 Potential Chemical-Specific ARARs/SCGs
- 4 Potential Action-Specific ARARs/SCGs
- 5 Potential Location-Specific ARARs/SCGs
- 6 Remedial Response Actions
- 7 Initial Screening of Technologies and Process Options
- 8 Summary of Alternatives Cost Estimates
- 9 Summary of Detailed Alternatives Analysis

LIST OF FIGURES

FIGURE

- 1 Site Location
- 2 Flood Hazard Map
- 3 Soil Sample and Monitoring Well Locations
- 4 Potentiometric Surface Map and Historical Groundwater Quality Data
- 5 Unrestricted Cleanup Goal Soils Plan
- 6 Restricted Cleanup Goal Soils Plan

LIST OF APPENDICES

APPENDIX

- A Institutional Restrictions
- B Post-ROD Soil Data
- C Baseline Hydraulic Site Analysis
- D Detailed Alternative Cost Estimates

1.0 INTRODUCTION

This Revised Feasibility Study (RFS) has been developed to evaluate potentially feasible remedial alternatives at the McInerney Farm property ("the property") located in the Village of Southport, Chemung County, New York. The location of the Site is shown in Figure 1, approximately 0.5 mile southeast of the intersection of State Routes 14 and 427 (formerly 379).

On July 16, 2002 Unisys Corporation submitted the RFS to the New York State Department of Environmental Conservation (NYSDEC) to present a comprehensive assessment of suitable and applicable remedial technologies for the McInerney Farm Site. The NYSDEC approved the RFS in April 2003, which included higher cleanup goals for surface metals and subsurface PCB contamination. Unfortunately, a Record of Decision (ROD) Amendment could not be procured due to the proposed subsurface PCB cleanup goal. This goal of 25 ppm was considered to be inconsistent with a State-wide standard for similar sites.

As documented in a letter dated September 7, 2004, the NYSDEC has notified Unisys Corporation (Unisys) that it is now applying a PCB cleanup goal of 10 ppm for subsurface soil at the Site. The surface soil PCB cleanup goal of 1 ppm and the higher cleanup goals proposed in the RFS for lead, cadmium, and nickel remain acceptable to ROD amendment. This "new" Revised Feasibility Study reflects the required changes back to the original subsurface soil PCB cleanup goal of 10 ppm as agreed to by Unisys Corporation in the 1993 Order of Consent.

The property once consisted of two overlapping areas that are listed on the NYSDEC list as two sites of inactive hazardous waste disposal sites, as referenced in the March 1992 ROD developed by NYSDEC Division of Hazardous Waste Remediation. The southern area with an east-west orientation was designated the Chemung Correctional Facility Site (ID 8-08-020). Remedial actions in that area were completed between 1987 and 1989 and NYSDEC has indicated that no further action is required. The other area with a north-south orientation has also been referred to as the Remington Rand Machinery Division Sperry Rand Site (NYSDEC ID 8-08-005). Remedial activities were completed in 1993 to the satisfaction of NYSDEC on that portion south

of Seeley Creek prior to March 1992. Hereinafter, this study refers to the "Site" as that portion of the McInerney Farm property located north of Seeley Creek.

Extensive remediation activities were conducted on the parcel north of Seeley Creek between 1993 and into early 1994 by Unisys. Remediation undertaken in accordance with the ROD resulted in excavation and off-site disposition at a permitted treatment, storage, and disposal facility (TSD) of somewhat greater than 10,000 ex-situ cubic yards of waste/soils (Interim Remedial Report, March 1995) containing elevated levels of polychlorinated biphenyls (PCBs) and metals of concern. The volume of waste/soil removed was 100% more than the estimated volume in the ROD (i.e., 5,360 cy). The results of verification sampling and analysis performed subsequent to site remediation activities, however, revealed constituents of concern (COCs) at continuing elevated levels. Based upon an estimate of 6,000 - 12,000 cy of material remaining at the Site that is above the cleanup standards in the ROD. NYSDEC authorized the development of this RFS to re-evaluate and recommend a remedial alternative to address the remaining impacted material on-site. Current site conditions are summarized in Section 4 of this report.

This RFS presents the comprehensive assessment of suitable and applicable remedial technologies. As such, a wide spectrum of remedial alternatives that are considered to be potentially applicable to achieve the stated remedial action objectives of TAGM HWR-92-4030 have been examined.

1.1 PURPOSE OF STUDY

Consistent with NYSDEC's policies and guidance, the purpose of this RFS is to identify a prudent course of remedial action that meets the Remedial Action Objectives (RAOs) in the 1992 ROD. This RFS consists of 10 sections: Introduction; Environmental Setting; Land Use; Site Conditions; Identification of Applicable Relevant and Appropriate Requirements/Standards, Criteria and Guidelines (ARARs/SCGs); Remedial Action Objectives; Development of Cleanup Criteria; Development of Remedial Technologies; Development of Remedial Alternatives; and Evaluation of Remedial Alternatives.

This RFS uses current and site-specific information, while previously implemented remedial actions are considered and alternative technologies are identified and ranked based on the following criteria:

- Compliance with SCGs;
- Overall protection of human health and the environment;
- Short-term effectiveness;
- Long-term effectiveness and permanence;
- Reduction of toxicity, mobility or volume;
- Implementability; and,
- Cost.

This RFS has been developed in accordance with NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) HWR-92-4030 entitled "Selection of Remedial Actions at Inactive Hazardous Waste Sites" (NYSDEC, 1992b). The guidance provided in other NYSDEC TAGMs has also been used to guide the technology evaluation and remedial action screening process.

1.2 INVESTIGATION HISTORY

The Site has undergone numerous and extensive environmental investigations since 1987. Rather than summarize or repeat these activities in this report, a list of key activities and documents is provided to aid the reviewer in understanding what has occurred at the Site. Each report contains significant data and/or conclusions which are key to understanding the content of this document. To the extent the reviewer is unfamiliar with these documents, it is suggested that they be referenced as necessary. Please refer to the Bibliography section at the end of this report for a complete listing of relevant documents and references.

March 1987--Preliminary Assessment Report by NUS Corporation for U.S. Environmental Protection Agency (USEPA).

F:OFICEAOCVPROJECTSVFILES/2001-911/REPORTSVE VISED FS (7-28-05)/TEXT.DOC 1-3

- March 1988--Preliminary Site Assessment and RI/FS Work Plan by Dames & Moore for Unisys Corporation.
- December 1989--Remedial Investigation Report by Dames & Moore for Unisys Corporation, including Baseline Risk Assessment and Ecological Survey.
- July 1990--Round IV Sampling and Analysis Plan by Dames & Moore by Unisys Corporation.
- November 1991--*Remedial Investigation Report* by Unisys considered technically complete by NYSDEC after completion of additional sampling (Rounds 5 & 6).
- January 1992--Final Feasibility Study by Dames & Moore for Unisys Corporation.
- March 1992--Record of Decision executed by Unisys Corporation and NYSDEC.
- March 1993--Remedial Program Work Plan issued by Dames & Moore for Unisys Corporation. Addenda to this work plan include additional monitoring wells, staging/decon pad remediation tasks and soil boring program.
- Summer 1993--Unisys, with supervision by Dames & Moore, conducted a remedial program and excavated over 10,000 cubic yards of materials from the Site for off-site disposal; additional soil sampling was conducted at that time.
- February 1994--Dames & Moore, for Unisys, conducted additional boring and sampling at the Site.
- November 1994--Sampling and Analysis Boring Program Report by Dames & Moore for Unisys Corporation.

F:VOFICEAGCVPROJECTSVFILE32001-911/REPORTSVRE VISED FS (7-28-05)/TEXT.DOC 1-4

- November 1994--Draft Revised Feasibility Study by BHE and Environmental Standards for Unisys Corporation.
- March 1995--Draft Interim Remedial Report by Dames & Moore for Unisys Corporation
- November 1995--Remedial Program Work Plan, Amendment #5, Confirmatory Investigation by BHE and Environmental Standards for Unisys Corporation.
- July 1996--Draft Conceptual Remedial Approach Report by Environmental Standards for Unisys Corporation.
- November 1996--Interim Report by Environmental Standards for Unisys Corporation.
- December 1996--Confirmatory Investigation Report by Dames & Moore for Unisys Corporation.
- April 1997--Revised Feasibility Study by Environmental Standards for Unisys Corporation.
- March 2003--Revised Feasibility Study by Advanced GeoServices Engineering,
 P.C. for Unisys Corporation.
- April 2003--NYSDEC Approval of March 2003 Revised Feasibility Study.
- September 2004--NYSDEC Request for Revision of Subsurface PCB Soil Cleanup Criteria to 1992 ROD Levels.

2.0 ENVIRONMENTAL SETTING

This section provides a brief summary of the general environmental characteristics (topography, climate, hydrology, geology, soils and ecology) of the Site and surrounding area. Further details may be found in various documents previously submitted to NYSDEC and incorporated as part of the Site Administrative Record (see Bibliography).

2.1 TOPOGRAPHY

The Site is located in the southwestern plateau region of New York, characterized by a series of flat-topped hills and ridges with steep slopes. The valleys have been formed by erosion of the plateau during pre-glacial, glacial and post-glacial times. Across Chemung County, the highlands range from 1,500 to 1,800 feet elevation and the valley floors range from 775 to 900 feet elevation referenced to the national geodetic vertical datum (NGVD). Typical relief is approximately 900 feet. The Site is situated on the relatively flat, broad-bottomed valley of Seeley Creek, an easterly flowing tributary of the Chemung River. The confluence of Seeley Creek and the Chemung River is approximately 2 miles downstream from the Site (Dames & Moore, 1988).

2.2 <u>CLIMATE</u>

The region lies within the broad mid-latitude land mass where most weather systems travel from west to east. The Southport area is subject to warm, humid summers and cold winters. Mean daily temperatures during January and July are 19° F and 59° F, respectively. The distribution of precipitation shows late spring and summer to be the wettest period with total annual precipitation of approximately 34 inches. During winter, winds are predominantly west and northwesterly, and west to southwesterly during the summer. The mean seasonal snowfall is approximately 41 inches (Dames & Moore, 1988).

2.3 SURFACE DRAINAGE

Seeley Creek flows in an easterly direction and forms the southern boundary of the Site. A flood control levee was constructed by the U. S. Army Corps of Engineers in 1949 to redirect the creek which migrates within its channel. The flood control levee forms the northern boundary of the Site. The NYSDEC maintains the area within the levee as a flood control project and periodically clears areas prone to debris jams during floods.

The Site is completely within the 100-year flood plain as shown in Figure 2. Natural drainage from the Site is toward the creek and the highly permeable soils limit the amount of surface runoff that reaches the creek.

2.4 <u>HYDROGEOLOGY</u>

There are three sources of groundwater in the region: (1) the outwash deposits in the Chemung River valley, (2) glacial till on the uplands, and (3) bedrock. The outwash sand and gravel is the principal aquifer with water supply yields capable of up to 1,000 gallons per minute (gpm). The depth to groundwater typically varies from 5 to 20 feet with aquifer thicknesses in the range of 10 to 100 feet, most typically 15 to 40 feet. Seasonal fluctuations in groundwater depth at the Site are reported to be 8 to 12 feet. Water levels are highest and gradients are steeper during spring runoff relative to other times of the year. Water levels and gradients are lowest during summer and autumn. Groundwater flow beneath the Site is generally easterly toward the confluence with the Chemung River (Dames & Moore, 1988).

The glacial till aquifer in the uplands is characterized as a marginal water producer in which a large diameter well may produce 100 gallons per day. Bedrock well production is limited and dependent upon fractures in the rock; supply wells drawing from bedrock typically produce about 8 gpm (Dames & Moore, 1988).

2.5 <u>GEOLOGY</u>

The stratigraphy of the Site consists of relatively thin alluvial soils overlying thick glacial deposits on bedrock. The alluvial soils were formed by sediments derived from surface waters, and range in size from very fine sand and silt to coarse sand and gravels. The glacial deposits may be 100 feet or more in thickness and consist, in descending order, of outwash sands and gravels, lacustrine silts, and glacial till (Dames & Moore, 1988).

Surface soils are developed as a result of climate, plant and animal life, parent material, topography and time. At this Site, soils are silty and gravelly, typical of alluvial deposits which drain rapidly. As a result, surface soils are loose and permeable (Dames & Moore, 1988).

2.6 ECOLOGICAL CONSIDERATIONS

During performance of the *Remedial Investigation* (Dames & Moore, 1989), an ecological survey was completed for the Site. The survey characterized site flora and fauna which are endemic to forested flood plains in the Chemung River valley. A further review of site ecological characteristics was performed by Environmental Standards in October 1994. This review included a site visit by a wildlife biologist and wetland ecology specialist who examined the fauna and flora along five north to south, evenly spaced site transects. Soil cores were collected at four points along each transect and soil characteristics were observed and recorded. In addition, native species were identified and documented.

Results from the ecological surveys confirmed that the Site continues to maintain a viable forested flood plain ecological community that sustains numerous fauna habitats. The vegetative cover exhibits many of the functional qualities common to a flood plain region. These types of ecological communities can sometimes aid in the dissipation of erosion forces by buffering a site from flood events.

In 1999, a fish tissue sampling program was completed by Unisys for Seeley Creek at the request of the New York State Department of Health (NYSDOH) and NYSDEC. The results of the study indicated no significant difference in PCB fish tissue data and other media sampled between upstream and downstream sampling locations.

3.0 LAND USE

The Site was part of the McInerney Farm until it was acquired by the Remington Rand Corporation (a predecessor entity to Unisys Corporation) in 1952. From the 1940s to the mid-1960s, the Site was reportedly used for the disposition of industrial wastes, such as wood pallets, paint wastes, metal chips, oily waste, coal ash, and possibly some plating wastes (NYSDEC, 1992a). In 1949, a flood control levee was constructed by the Army Corps of Engineers along the northern flank of the Site, which is located within the 100-year flood plain (Dames & Moore, 1988).

After the Site was added to the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites in 1983, remedial investigation led to excavation and off-site disposal of more than 10,000 cu. yd of impacted soil to a permitted TSD facility. Post-remedial soil sampling and analysis in 1994 revealed that specific subsurface soil locations on the Site continue to exhibit elevated concentrations of PCBs and metals of concern (i.e., cadmium, lead, and nickel).

The Site is generally accessible by dirt road to vehicles or pedestrians over the flood levee from NY Route 427 and adjacent properties to the north. In addition to the Site and adjacent areas in the flood plain being subject to periodic flooding, the typical current uses of the forested and vegetated areas are hiking, biking, horseback riding, and other forms of recreation. The Site has been institutionally restricted based on its location within the flood plain defined by the aforementioned flood-control levee as indicated on specific property deeds associated with the Site (see Appendix A). Accordingly, the Site is subject to use restrictions consistent with those allowed by the State and local community. Based on this irrevocable institutional control, future industrial or commercial development of the Site is not possible, nor is future development for residential or structurally intrusive recreational use. However, there are no engineering controls in-place that restricts this Site from public pedestrian access nor restricts the current "open space" recreational use as previously described.

The village of Southport, which is adjacent to the Site on its north face, is serviced by the local water utility, the Elmira Water Board. It obtains potable water from surface water intake structures in the Chemung River upstream of Clinton Island and from groundwater well fields adjacent to the Chemung River in the vicinity of the surface water intake structures, about 2 miles northwest of the McInerney Farm Site (Dames & Moore, 1988). Supplemental potable water is available from Hoffman Creek Reservoir, which is located about 2.5 miles to the northwest of the Chemung County Court House in the City of Elmira.

4.0 CURRENT SITE CONDITIONS

Site conditions were evaluated utilizing soil characterization data collected from September 1993 to the present. A summary of the analytical results for the 541 soil samples collected for laboratory analysis of PCBs, nickel, cadmium and lead is presented in Table 1. This table is divided into surface and subsurface depths for each COC as well as chemical concentration intervals in mg/kg.

The first round of analytical data included in this RFS was collected during remedial activities beginning in September, 1993 and continuing through March, 1994. Data generated from that period included samples from work zones N1 through N4, excavation area sidewall samples, north work area perimeter samples, haul road samples, and waste staging pad samples. The 1994 72-Boring Program was the next sampling effort at the McInerney Site which was performed as a screening program. Approximately 239 samples were collected and analyzed in the field. Of the samples collected during this program, 17 were submitted for laboratory analysis and the results were evaluated for this report. The March 1996 Remedial Program produced 222 more samples collected throughout the Site and the September 1996 surface re-sampling event provided an additional 20 samples. The data from these four sampling events are presented in Appendix B.

The Site data described above is 10 years old or more depending on the particular investigation event. During this time, the surface distribution of Site COCs may have been altered due to the flooding of Seeley Creek. This flooding may have caused a re-distribution of impacted soils due to erosion, sedimentation, tree uprooting, and surface scouring from submerged floating debris. This re-distribution is not expected to alter the conceptual model for the Site but areas previously remediated will be addressed as part of a pre-design investigation (PDI). A PDI Work Plan will be submitted as part of the remedial design phase for NYSDEC review and approval prior to its implementation.

4.1 DATA ANALYSIS AND PRESENTATION

A graphic depiction of the location of soil samples collected since initiation of the remedial investigation at the Site is presented in Figure 3. A 25-foot grid system tied to an established benchmark was used to survey the sample locations, as well as the monitoring wells shown on the figure.

Figure 3 also shows the boundaries of previously completed excavation efforts that resulted in the removal of more than 10,000 yd of soil from the Site. The excavated soils were transported off-site for treatment/disposal at a permitted TSD facility. Confirmation samples collected from the sidewalls and bottom face of the excavations are designated as CS and WS, respectively. Also shown in Figure 3 is the additional 400 feet of rip rap erosion protection emplaced along the north bank of Seeley Creek on behalf of Unisys in December 1994. This rip rap abuts the approximately 1,000 feet of rip rap previously placed upstream along the north bank of the creek by the NYSDEC Division of Water, Bureau of Flood Protection several years earlier. Thus, there is a continuous, 1,400-foot erosion protection structure along the north bank of the creek which completely flanks the areas where COCs were subsequently identified.

4.2 SURFACE CONDITIONS

Surface samples were collected for PCBs, cadmium, and lead from 0 to 6 inches below ground surface (bgs). The PCB results were evaluated at two different depths: surface and subsurface. Nickel was also evaluated at two depth intervals: 0 to 4 feet and greater than 4 feet. Cadmium and lead surface samples were collected only during the March and September 1996 sampling events. Sample results are presented in Appendix B.

4.2.1 PCBs

A total of 155 surface samples were collected and laboratory analyzed for PCBs during the remedial efforts at the McInerney Farm Site. Of these, 50 samples were found to contain PCBs

at levels below the applicable detection limits. A total of 98 samples had less than 1 mg/kg while no samples contained greater than 10 mg/kg.

4.2.2 <u>Nickel</u>

There were 205 samples collected within the 0 to 4 foot depth interval and laboratory analyzed for nickel since 1993. Of these, 192 samples had less than 500 mg/kg, while 12 samples contained between 500 and 2,000 mg/kg. Only one sample exceeded 2,000 mg/kg nickel with a concentration of 5,960 mg/kg.

4.2.3 Cadmium

There were 87 surface samples collected for cadmium between March and September 1996. Of these, 14 samples contained less than the applicable detection limit for cadmium and 73 were found to have less than 10 mg/kg cadmium. No samples had greater than 10 mg/kg.

4.2.4 Lead

There were 86 surface samples collected for lead since the March 1996 remedial program at the McInerney Farm Site. Of these, 85 contained less than 350 mg/kg. The remaining one sample had 566 mg/kg.

4.3 <u>SUBSURFACE CONDITIONS</u>

Those samples considered to be subsurface data for PCBs, cadmium, and lead were collected from greater than 1 foot bgs. A depth of greater than 4 feet bgs was considered to be subsurface during nickel evaluations. Analysis of this data was subdivided into depth-specific intervals only for PCBs and nickel. Lead and cadmium were analyzed as depth independent, and the depth intervals depicted in Table 1 are only to provide a breakdown of the sampling and analysis results for these two constituents. Sample results are presented in Appendix B.

4.3.1 PCBs

Of the 378 subsurface samples collected and laboratory analyzed since 1993, 345 contained less than 10 mg/kg. Of the remaining samples, 16 were less than 25 mg/kg and 13 were less than 300 mg/kg. Only four subsurface PCB samples exceeded 300 mg/kg.

4.3.2 Nickel

There were 179 subsurface nickel samples analyzed since 1993. Of these, 171 of these had less than 1,000 mg/kg. Only six were reported to contain less than 2,000 mg/kg, while the remaining two samples were greater than 2,000 mg/kg at concentrations of 2,110 mg/kg and 3,580 mg/kg.

4.3.3 Cadmium

There were 290 subsurface cadmium samples collected during the course of the remedial programs at the McInerney Farm Site. A total of 112 were below the applicable cadmium detection limits. There were 234 samples with less than 10 mg/kg and the remaining 17 had less than 50 mg/kg cadmium.

4.3.4 Lead

There were 290 subsurface samples collected for lead. Of these, 268 contained less than 350 mg/kg, while 19 samples had less than 2,000 mg/kg lead. Only three samples exceeded 2,000 mg/kg.

4.4 <u>GROUNDWATER</u>

There are nine groundwater monitoring wells (MWs 1, 9, 12, 13, 14R, 15, 16, 17, and 18) at the Site that have been used to characterize the overburdened aquifer as shown in Figure 4. Groundwater sampling analysis results indicate no detectable volatile organics, semivolatile organics, or pesticide compounds in the groundwater. Dissolved metals have been measured in FAOFICEAOCUPROJECTS/FILES2001-911/REFORTS/REVISED FS (7-28-05)/TEXTLOCC 4-6

the groundwater at concentrations considered to be naturally occurring based on the concentration of metals in the upgradient monitoring wells, MW-1 and MW-18.

Groundwater sampling was conducted at the property during December 1990, August 1994, and June 1995. On December 28, 1990, monitoring wells MW-1 and MW-9 were sampled. Samples collected from monitoring well MW-1 were analyzed for VOCs, pesticides/PCBs and metals and a sample collected from MW-9 was analyzed for metals.

During the month of August 1994, all on-site monitoring wells were sampled and analyzed for PCBs and metals of concern (cadmium, lead, and nickel). All samples were analyzed as unfiltered and several were also analyzed as filtered. Only monitoring well MW-14 detected concentrations of PCBs which exceeded the Class GA groundwater standard. The New York State Code of Rules and Regulations (NYCRR) identifies GA waters as those "that are fresh waters found within the saturated ground of unconsolidated deposits and consolidated rock or bedrock."

A natural flood event destroyed MW-14 before a confirmatory sample could be collected. A replacement well, MW-14R, was installed adjacent to the former location of MW-14 soon thereafter. The replacement well was sampled on November 2, 1994, for analysis of PCBs (filtered and unfiltered) and cadmium, lead, and nickel. The analytical results indicate that PCBs were detected in the unfiltered sample at $0.14 \mu g/L$. However, the analytical results from the filtered sample were below laboratory detection limits (-mg/L), suggesting that the PCBs detected in the unfiltered sample were adsorbed to fine particulates entrained in the samples during the collection procedure. A piezometric surface map derived from groundwater elevations measured before sample collection in November 1994 is shown in Figure 4. In June 1995, five of the monitoring wells were presented in the response to NYSDEC's comments on the draft FS submitted November 1994, and confirmed that the quality of groundwater beneath the Site continued to be acceptable. Table 2 summarizes the data associated with the aforementioned sampling events.

4.5 GROUNDWATER MONITORING PLAN

Based on the collective groundwater assessment, no active groundwater remediation is necessary at this time, therefore, this RFS does not include any evaluations for groundwater. However, the nine groundwater monitoring wells (MWs 1, 9, 12, 13, 14R, 15, 16, 17, and 18) at the property, plus monitoring wells MW-2, 3, 8, and 10 located on the southern parcel (south of Seeley Creek), north of Chemung Correctional Facility, will be sampled three times during a 5-year period after completion of the remedial activities to confirm the soil remediation has not adversely impacted the groundwater. Sampling rounds will be scheduled for one year, two years, and five years after remedial action.

The samples collected during each sampling event will be analyzed for PCBs, lead, cadmium, and nickel. The sampling protocol will be the same as identified in the Dames & Moore remedial design/remedial action work plan. In the event that any monitoring well is damaged, a replacement well will be installed adjacent to the damaged monitoring well.

4.6 FLOOD PLAIN CHARACTERISTICS

Federal regulations require the completion of a flood plain analysis to demonstrate that any structure placed within a regulated flood plain will not cause any increase in the base flood elevation within the flood way and not more than one (1) foot within the remaining portions of the flood plain. The Town of Southport's Municipal Code 32.5.1 and 35.5.3 governing development in flood plains are consistent with the federal regulations. Therefore, to properly evaluate any on-site containment remedies, a hydraulic analysis of Seeley Creek would need to be performed.

A baseline hydraulic site analysis was performed using site-specific topographic data, the Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) for the Town of Southport (revised 1991), Seeley Creek drainage basin discharge data independently developed by the Town of Southport's Drainage Officer, and recent hydraulic modeling performed by New York State Department of Transportation on the section of Seeley Creek immediately upstream FAOFICEACCPROJECTSATEVISED FS (7-24-05)(TEXT.DOC 4-8

of the Site (see Appendix C). The results of the baseline model using the FEMA FIS discharge data indicated the following:

- The FEMA FIS 100-year base flood elevation is approximately 0.2 to 0.6 feet lower than the site-specific analysis;
- A site-specific encroachment study indicates the flood way location encompasses less of the impacted soil areas than suggested by the FEMA FIS flood way mapping (see Figure 1 in Appendix C);
- Area 1 is predominantly (approximately 85%) outside of the flood way;
- Area 1 is predominantly (approximately 75%) above the 100-year base flood elevation and not subject to inundation and therefore, potential erosion or scour during a base flood event. The base flood velocities for the portion of Area 1 within the base flood limits range between <1 ft/sec to 2 ft/sec and the average depth is less than 2 ft. as shown in the velocity profiles included in Appendix C;
- Area 2 is entirely within the limits of a 100-year base flood event and base flood velocities range between <1 ft/sec and 3 ft/sec and the average depth is 2 to 3 ft. as shown in the velocity profile included in Appendix C; and,
- Area 2 is approximately 50% within the flood way.

The results of the baseline hydraulic model show that previous descriptive terms such as "swiftly flowing" used to describe flood water velocities were potentially misleading and not entirely accurate for the majority of the Site, with the exception of some areas within the flood way and the main creek channel. The portions of Areas 1 and 2 that are within the flood way are not predicted by the model to be exposed to erosive velocities (i.e., >4 ft/sec); however, localized occurrences of eddies and turbulence are possible. Eddies and turbulence typically occur in areas of sudden constrictions or widenings in channels. Based on the surface topography, the southeastern portion of Area 1, which is within the flood way, may be susceptible to localized increases in velocity (although not predicted by the model) due to the sudden change in the flood way.

NYSDEC's Division of Water, Bureau of Flood Protection Engineer has verbally reported his observation of eddies on-site during the August 1994 flood caused by Hurricane Beryl. In addition, during this event, the flood stage was observed to be higher than the predicated flood stage during 100-year base flood (using FEMA information) and the majority of Area 1 was inundated. However, no written engineering report has been provided which could be used to support a remedial design. Area 2 is not expected to be susceptible to increases in velocity (not predicted by the model) since there are no observed sudden changes in the flood way alignment.

5.0 IDENTIFICATION OF ARARs/SCGs

Remedial actions at the Site should strive to attain New York State Standards, Criteria and Guidelines (SCGs) and Federal Applicable, Relevant and Appropriate Requirements (ARARs). These and other potentially applicable Federal ARARs fall within three general categories: chemical-specific, action-specific, and location-specific. These categories are briefly described below.

- Chemical-Specific ARARs -- technology or risk-based numerical limitations or methodologies that result in the establishment of acceptable concentrations of a chemical, when applied to site-specific conditions, that may be found in or discharged to, the ambient environment. Information regarding the use of chemical-specific ARARs in risk assessments is presented in *Risk Assessment Guidance for Superfund, Volume I -- Human Health Evaluation Manual Part A, Interim Final* (USEPA 1989a), and *Risk Assessment Guidance for Superfund, Volume II -- Environmental Evaluation Manual, Interim Final* (USEPA 1989b).
- Action-Specific ARARs -- technology or activity-based requirements or limitations on actions usually taken with respect to hazardous substances. These requirements typically define acceptable treatment, storage, and disposal procedures for hazardous substances during the implementation of the response action. The requirements generally set performance or design standards for specific activities related to managing hazardous substances or hazardous wastes.
- Location-Specific ARARs -- restrictions placed on the concentration of hazardous substances or the conduct of activity solely because the activities occur at a specific location. These requirements pertain to the geographic or physical location of the Site rather than the nature of the materials or the proposed remedial action. These requirements limit the type of remedial action that can be implemented and may impose additional constraints on a cleanup action. For

instance, the restrictions caused by flood plains are among the most common location-specific potential ARARs for municipal landfill sites (USEPA 1991b).

NYSDEC has elected to categorize its ARARs as SCGs. The list of NYSDEC SCGs examined during development of the 1994 RFS was dated August 1991, and appeared as Appendix E in NYSDEC's draft document entitled *Cleanup Policy and Guidelines* (NYSDEC, 1993a). NYSDEC has also divided SCGs into the aforementioned three categories: chemical-specific, action-specific, and location-specific. The following sections identify and review the Federal ARARs and NYSDEC SCGs for the Site.

5.1 POTENTIALLY APPLICABLE CHEMICAL-SPECIFIC ARARs/SCGs

Site related documents were used to identify the spectrum of chemical-specific ARARs potentially applicable at the Site. Table 3 lists the chemical-specific ARARs developed for this RFS. The promulgated regulatory protocol established by NYSDEC mandates that site groundwater must meet the most stringent of three standards:

- Standards for Class GA groundwaters;
- NYS maximum contaminant levels (MCLs) for public water supplies; or
- Federal MCLs promulgated under the Safe Drinking Water Act (SDWA).

5.1.1 PCBs

Potentially applicable PCB ARARs/SCGs include NYSDEC's standards for PCBs and Class GA groundwaters. NYSDEC's standards for Class GA groundwaters are applicable for those groundwaters which may be used as a potential source of drinking water. The NYSDEC Class GA SCG for PCBs is 0.1 μ g/L (6 NYCRR Part 703). This concentration is lower than the NYS MCL for public water supplies and the federally promulgated MCL (also ARAR) as 0.5 μ g/L.

There is no promulgated soil or sediment ARARs/SCGs requiring consideration for a proposed remedy; however, NYSDEC and the USEPA have to-be-considered (TBC) values for constituents in these media. The NYSDEC TBC for PCBs in soil for unrestricted land use is 1 mg/kg in surface soils and 10 mg/kg in subsurface soils (NYSDEC, 1994a). The NYSDEC stated in its September 7, 2004 letter that it is applying a general PCB cleanup goal of 10 ppm for subsurface soil at the Site. The reason for this change is to maintain State-wide consistency with the continuing discovery of PCB-contaminated sites. Therefore, the subsurface soil PCB cleanup goal for restricted land use will be 10 ppm instead of 25 ppm. NYSDEC has also published *Technical Guidance for Screening Contaminated Sediments* (NYSDEC, 1994b), which provides TBC sediment values. This document states that these values are TBCs and should by no means be considered promulgated ARARs: "These criteria do not <u>necessarily</u> represent the final concentrations that must be achieved through sediment remediation" (emphasis in original).

5.1.2 Lead

Potentially applicable lead ARARs/SCGs include NYSDEC's Standards for Lead in Class GA Groundwaters (NYSDEC, 1991a). The NYSDEC standards are applicable for groundwaters which may be used as a potential source of drinking water. The NYSDEC Class GA SCG for lead is 25 μ g/L (6 NYCRR Part 703). This concentration is greater than the Federally promulgated MCL (also an ARAR) of 15 μ g/L. There is no NYS MCL for public water supplies for lead; however, the lead action level for public water supplies is exceeded at the concentration of lead if more than 10 percent of first draft tap water samples collected during any monitoring period exceeds 15 μ g/L.

There are no promulgated soil or sediment ARARs/SCGs for lead requiring consideration for a proposed remedy; therefore, TBCs are mentioned here as possible cleanup standards which could be considered. The site-specific background concentration of lead in soil is the TBC value provided in NYSDEC TAGM WR-94-4046 (NYSDEC, 1994a). The NYSDEC sediment screening level TBC for lead is 31 mg/kg.

5.1.3 Cadmium

Potentially applicable cadmium ARARs/SCGs for groundwater include NYSDEC's Standards for Cadmium Class GA Groundwaters (NYSDEC, 1991a). The NYSDEC standards are applicable for groundwaters which may be used as potential sources of drinking water. The NYSDEC Class GA SCG for cadmium is 10 μ g/L (6 NYCRR Part 703). This concentration is greater than the NYS MCL for public water supplies in the Federally promulgated MCL (also ARARs) of 5 μ g/L.

The NYSDEC TAGM SCG soil value for cadmium is either 1 mg/kg or the site-specific background concentrations if lower than 1 mg/kg. The sediment value of 0.6 mg/kg is the TBC for cadmium.

5.1.4 Nickel

Potentially applicable nickel ARARs/SCGs include NYSDEC's *Standards for Nickel in Class GA Groundwaters* (NYSDEC, 1991a). The NYSDEC standards are applicable to those groundwaters which may be used as a potential source of drinking water. There is no NYSDEC Class GA groundwater SCG for nickel. The Federal MCL for nickel is 100 µg/L.

The NYSDEC TAGM SCG soil value for nickel is either 13 mg/kg or the site-specific background concentration if lower than 13 mg/kg. The NYSDEC sediment screening level TBC for nickel is 13 mg/kg.

5.2 POTENTIALLY APPLICABLE ACTION-SPECIFIC ARARs/SCGs

Available documents, including the 1992 ROD, were used to identify the spectrum of actionspecific ARARs potentially applicable at the Site. Table 4 lists the action-specific ARARs developed for this RFS.

5.2.1 Capping

Capping or closure with waste in place, may result in compliance with the ARARs identified in Table 4. It should be noted that while the wastes at the Site are not necessarily hazardous wastes (e.g., not a listed waste subject to land ban restrictions or not hazardous by characteristic), a Resource Conservation Recovery Act (RCRA) design criteria for a cap and the pre-treatment/stabilization of the cap material may be relevant and appropriate. Additional RCRA considerations may include providing for post-closure monitoring of the cap's integrity and run-on and run-off control (groundwater management) to minimize potential erosion.

While the Toxic Substances Control Act (TSCA) treatment requirements are applicable and relevant in some circumstances, they are TBC criteria at the Site. This is because TSCA applies only to PCB wastes generated and/or in place after 1987 (not the case for wastes at the Site). Thus, TSCA requirements do not apply to the McInerney Farm Site. However, TSCA is an ARAR for waste management and ultimate disposal/treatment, if wastes are exhumed and removed from the Site.

5.2.2 Excavation and Removal

Numerous excavation removal ARARs have been identified for this Site. The ARARs and SCGs identified were grouped into two main categories as shown in Table 4: on-site construction management and excavated waste management. On-site construction ARARs include those associated with disturbing RCRA wastes and the removal of these wastes from the Site. In addition, the fugitive dust emission requirements of the National Ambient Air Quality Standards (NAAQs) are expected to be applicable. Because excavation for remediation to date and potential future excavations have not and most likely are not expected to extend below the top of the water table, dewatering, construction permitting and purge water management ARARs/SCGs have been excluded from consideration.

Excavated materials must be managed in a manner consistent with Federal ARARs and New York State SCGs for transport, storage, and material handling protocols. These protocols will be dependent upon the specific characteristics of the materials excavated, which have previously been shown to have considerable variability. Thus, transport, storage, and disposal of excavated materials may require compliance with specific aspects of RCRA, TSCA, and NYSDEC hazard and solid waste management ARARs/SCGs.

5.3 POTENTIALLY APPLICABLE LOCATION-SPECIFIC ARARs/SCGs

Available documents, including a 1992 ROD, were reviewed to identify location-ARARs potentially available at the Site. Table 5 lists the location-specific ARARs developed for the RFS.

5.3.1 Flood Plain Considerations

Remedies for materials located within a flood plain (40 CFR 6.302 [b]) must be considered so that the integrity of the floodplain is not compromised. For example, remedial action should not be designed and constructed in a manner that destroys the usefulness of a flood plain, thereby potentially causing adjacent areas to become flooded.

Local and federal flood plain regulations prohibit residential, commercial, or industrial development in flood plains and restrict activities which could threaten the integrity of flood control structures. Specifically, this is the case at the Site where the property is institutionally restricted, limiting activities to recreational uses.

The Town of Southport Municipal Code 32.5.1-5(4) indicates some increases in the water surface elevation of the base flood may be permitted in the flood plain provided it endorses the application to FEMA. However, NYSDEC's May 22, 2002 letter stated no net increase in the base flood elevation would be allowed.

The Town of Southport Municipal Code 32.5.2 states the following regarding floodways:

"...all encroachments including fill, new construction, substantial improvements, and other development are prohibited within the limits of the floodway unless a technical evaluation demonstrates that such encroachments shall not result in <u>any</u> increase in flood levels during the occurrence of the base flood discharge."

5.3.2 Area Affecting River or Streams

Any modifications of alluvial or stream which diverts a channel or may adversely effect fish or wildlife require consultation with the U. S. Department of Interior, Fish and Wildlife Commission. Although Seeley Creek is a seasonal stream which routinely dries up during the summer months, it may be subject to this provision, and a remedial action must consider the applicability of the Fish and Wildlife Conservation Act (16 USC 661 et seq.). However, according to NYSDEC, the U.S. Fish and Wildlife Service does not comment on maintenance activities within a State-Maintained Flood Control project including work to re-establish the channel and banks of Seeley Creek.

5.3.3 Groundwater

The New York State Code of Rules and Regulations (NYCRR) identifies GA waters as those "that are fresh waters found within the saturated ground of unconsolidated deposits and consolidated rock or bedrock." Thus, groundwaters at the Site are considered to be Class GA and associated standards are considered location-specific ARARs.

5.4 PROTOCOL FOR ESTABLISHING CLEANUP STANDARDS

USEPA guidance entitled *CERCLA Compliance with Other Laws Manual* (USEPA, 1988a) points out that a requirement (e.g., cleanup standard) under Federal or State laws may be either "applicable" or "relevant and appropriate." New York State and USEPA have not promulgated soil criteria for the chemicals of concern that would apply as applicable standards. However, ENOPICEAQCPROJECTS/FILES2001-911/REPORTS/REVISED FS (7-28-09)/TEXT.DOC 5-7

there are risk-based criteria used by USEPA at Superfund Sites as guidance in determining cleanup standards for various media (USEPA, 1996a). Because no Federal or State applicable standards exist for PCBs, cadmium, lead, and nickel in soils, relevant and appropriate requirements have been determined on the basis of a number of site-specific factors. These factors include the characteristics of the remedial action, the hazardous substances present at the Site, and the physical circumstances of the Site (USEPA, 1988a). Furthermore, USEPA has issued guidance for assisting in the determination of site-specific cleanup levels in the form of soil screening levels (USEPA, 1996b). USEPA's CERCLA guidance stipulates:

"ARARs [Applicable or Relevant and Appropriate Requirements] and (TBCs necessary for protection)¹ pertaining both to constituent levels and to performance or design standards should generally be attained at all points of potential exposure, or at the point specified by the ARAR itself."

CERCLA requires, to the maximum extent practicable, to use the use of permanent solutions and alternative treatment technologies. Any waste left in place should either be brought to health-based levels or managed according to performance or design specifications. At sites where a TBC value is used to set a protective level of cleanup or where the ARAR does not specify the point of compliance, there is discretion to determine where the requirement shall be attained to ensure protectiveness. At each potential point of exposure, a <u>reasonable maximum exposure scenario</u> should be assumed, and cleanup goals set accordingly to ensure protectiveness, using best professional judgement (USEPA, 1988a)."

Subsequent to the issuance of the Site ROD in March 1992, NYSDEC published TAGM 94-4046 entitled, *Determination of Soil Cleanup Objectives and Cleanup Levels* (NYSDEC, 1994a).

¹ TBCs - To-Be-Considered Material are non-promulgated advisories or guidance issued by Federal or State agencies that are not legally binding and do not have the status of potential ARARs. However, in many circumstances, health-based TBCs are to be considered along with ARARs as part of the site risk assessment and may be used in determining the necessary level of cleanup for protection of health or the environment.

It was recognized in this document that restoration of sites to pre-disposal conditions (to the extent authorized by law) is frequently infeasible.

More recently, USEPA revised its position regarding the use of permanent solutions in the remedy selection process (FR 19448, 5-1-96). The use of treatment to address principal threats posed by a site is to be considered whenever practicable and cost-effective. The use of engineering controls, such as containment for relatively low long-term threats, is considered acceptable when treatment is impracticable. These determinations are to be made in a manner which is consistent with available, protective, risk-based media cleanup standards on a site-specific basis.

Moreover, the generic cleanup objectives developed in the technology evaluation sections of a feasibility study may be impracticable if they cannot be achieved using potentially applicable technologies to site-specific conditions, or if the implementation of the remedy results in significant adverse impacts. In such circumstances, alternative cleanup levels may be developed for final consideration during the remedy selection process.

6.0 REMEDIAL ACTION OBJECTIVES AND CLEANUP CRITERIA

Three remedial action objectives (RAOs) were identified in the *Final Feasibility Study* (Dames & Moore 1992). The following sections discuss the validity and applicability of the RAOs in this Revised Feasibility Study.

6.1 <u>MINIMIZE DIRECT CONTACT EXPOSURE</u>

The first RAO (RAO #1) is to reduce the potential for direct exposure to wastes/soils that are considered a potential risk for human exposure. Several remedial actions may potentially achieve this objective, and a key function of this RFS is to review these technologies in the context of the remedial actions completed in 1993 and subsequent sampling/analysis activities to characterize current site conditions. This RAO is still considered valid and applicable for the Site.

6.2 <u>REDUCED MATERIAL TOXICITY, MOBILITY OR VOLUME</u>

The second RAO (RAO #2) is to reduce toxicity, mobility or volume of waste constituents in soil as stipulated in the Record of Decision for the Site and National Oil and Hazardous Substance Pollution Contingency Plan (NCP), and is a general goal of waste management regulatory programs and site remediation efforts nationwide (USEPA, 1990a). Action has already been taken toward achieving this RAO through the remedial effort (excavation of over 10,000 cu. yd of material with off-site disposal) completed during 1993. Therefore, implementing one of the RFS alternatives evaluated in subsequent sections will, at a minimum, serve to augment those actions already taken. This RAO is still considered valid and applicable for the Site.

6.3 PRESERVE OR ENHANCE SITE RESOURCES

The third RAO (RAO #3) is to preserve or enhance the unique natural, environmental, ecological and recreational resource characteristics of the Site. The Site is situated in a functional flood plain and the existence of U.S. Army Corps of Engineer flood plain management structures are FAOFICEAOC/PROJECTS/FILES/2001-911/REPORTS/REVISED FS (7-28-05)/(TEXT.DOC 6-1

significant location-specific features which need to be addressed in evaluating the various remedial alternatives. Additionally, the Site has a relatively stable ecological status consistent with adjacent properties in the forested flood plain with regard to the proliferation of hardwood trees, undergrowth and grasses.

Being situated between the levee and Seeley Creek, widely considered the most flood prone creek in the region, the Site exists in an environment engineered to convey flood waters. The State of New York purchased perpetual easements on this land specifically so that it may be operated with flood protection as its primary function. The lives and property which are protected by the State's proper operation of these lands for flood control take precedence over any other land use considerations. This means that habitat concerns and interest in preserving natural, ecological or recreational resources must sometimes be sacrificed. Protection of human lives and property has been deemed the priority land use for state flood control lands such as this Site.

This RAO is thus eliminated from further consideration in this RFS based on NYSDEC's stated position (NYSDEC, 2003).

6.4 SOIL CLEANUP CRITERIA

6.4.1 1992 Record of Decision (ROD)

The site related soil cleanup goals for PCBs, lead, cadmium and nickel published in the 1992 ROD and are listed below:

PCBs:	Surface	=	1 ppm; Subsurface (> 6 inches) = 10 ppm;
Lead:	Surface and Subsurface	=	350 ppm;
Cadmium:	Surface and Subsurface	=	10 ppm; and
Nickel:	Surface (0-36 inches)	=	500 ppm; Subsurface (>36 inches) = 1,000 ppm

These values were determined to be reasonable and appropriate in protecting public health, the environment and technically feasible to achieve provided that site access was restricted and a one foot (1') clean soil cap be installed over the surface PCB contamination.

6.4.2 2003 Revised Feasibility Study (RFS)

Alternative soil cleanup goals were proposed for PCBs, lead, cadmium and nickel are listed below.

PCBs:	Surface (0-6 inches)		=	1 ppm; Subsurface (>6 inches) = 25 ppm;				
Lead:	Surface an	nd	=	1,000 ppm;				
	Subsurface							
Cadmium:	Surface an	nd	=	20 ppm; and				
	Subsurface							
Nickel:	Surface an	nd	=	1,000 ppm.				
	Subsurface							

These values were approved provided that a two foot (2') thick vegetated and clean soil cap, underlain by a geotextile be installed over the remaining in-place soils.

6.4.3 2005 Revised Feasibility Study (RFS)

Based on the inability to procure a ROD amendment from the 2003 RFS, the NYSDEC in a letter dated September 7, 2004 letter, requested the following soil cleanup goals:

PCBs:	Surface (0-6 inches)	=	1 ppm; Subsurface (>6 inches) = 10 ppm;
Lead:	Surface and	=	1,000 ppm;
	Subsurface		
Cadmium:	Surface and	=	20 ppm; and
	Subsurface		
Nickel:	Surface and	=	1,000 ppm.
	Subsurface		

These values were approved provided that a one and one half foot $(1 \frac{1}{2})$ thick vegetated and clean soil cap, underlain by a geotextile be installed over the remaining in-place soils.

7.0 DEVELOPMENT OF REMEDIAL TECHNOLOGIES

7.1 <u>REMEDIAL RESPONSE ACTIONS</u>

In Section 6, RAOs were identified and used for assessing various potential remedial actions at the Site which would result in protection of human health and the environment. To achieve these objectives, it was necessary to identify evaluate and select specific technologies (or processes) that may be applicable for implementation. To focus the evaluation of potentially applicable technologies, a limited number of remedial response actions (RRAs) were established to allow for grouping those technologies which have similar functional characteristics. The following RRA groups cover essentially all the technologies that are potentially applicable based on the site characteristics described in Sections 2, 3, and 4.

- No action;
- Institutional controls;
- Containment;
- Ex situ treatment;
- In situ treatment; and,
- Excavation and off-site disposition.

A "no action" alternative is routinely evaluated in accordance with USEPA guidelines to provide a baseline for comparison of potential technologies. The "no action" alternative is not evaluated further in this report because significant remedial actions have already been implemented toward achievement of the RAOs. The remedial actions included excavation and removal of more than 10,000 yd³ of PCB-and metals-contaminated soils, erosion control enhancement along the north bank of Seeley Creek, confirmation of institutional controls to restrict site development and use, and groundwater monitoring. Table 6 summarizes the RRAs relative to their applicability to the RAOs. As indicated, they may be applicable to more than one RAO.

7.2 IDENTIFICATION AND INITIAL SCREENING OF TECHNOLOGIES

7.2.1 Screening Process

An initial screening was carried out by expanding each RRA into a series of technologies or processes available for potential application in site remediation. Some process options were subdivided where appropriate to evaluate their applicability for achieving the Site RAOs. For instance, several cap designs were considered, each of which could effectively contain the COCs. Each cap design has a specific purpose or design feature, but such details need not be evaluated during the initial screening process.

Each of the technologies identified was screened against the RAOs, taking into account the expected effectiveness, implementability, and other relevant factors. Proven technologies received prime consideration, but innovative technologies were also considered when there was reason to believe that the innovations could improve effectiveness, ease the implementation effort, or diminish the potential adverse impacts compared to conventional remedial technologies.

7.2.2 Identification of Potentially Applicable Technologies and Processes

The following technologies and processes were evaluated relative to their ability to achieve the RAOs:

Institutional Controls

- Deed restrictions to prevent future development
- Fencing to limit access

Containment

- RCRA cap
- Modified RCRA cap (asphalt/concrete/membrane composite)
- Soil cap
- Surface controls (dust suppression, flood protection structures, erosion control)
- On-site vault (above grade containment structure)
- On-site landfill (RCRA/TSCA landfill)

Ex situ treatment

- Physical treatment (debris separation/soil washing)
- Physical/chemical treatment (solidification/stabilization)
- Chemical treatment (dehalogenation of PCBs)
 - Thermal treatment (low temperature thermal)

In situ treatment

- Chemical oxidation
- Bioremediation
- Vitrification
- Physical/chemical treatment (soil flushing, solidification/stabilization, grout injection, deep soil mixing)
- Low temperature thermal treatment (steam/hot air sparging and/or extraction)
- Excavation and removal to off-site permitted TSD facility
 - "Hot Spot" removal to off-site TSD facility and enhancement of erosion control
 - Area-wide excavation and off-site disposal to TSD facility

7.2.3 <u>Technologies and Processes Eliminated from Evaluation</u>

As a function of the screening process, many options were eliminated from further consideration because they would not be viable or because the RAO could not be attained. Additionally, all technologies that were technically infeasible due to physical limitations or technological limitations (e.g., not applicable to specific compounds involved) were also eliminated from further consideration. The following technologies and processes, which are shaded on Table 7, were eliminated.

- No action, certain RRAs have already been implemented.
- Access restrictions, which would not achieve the RAO to preserve the natural habitat and recreational resource.
- Short-term dust suspension does do not satisfy the RAO to reduce the volume, and toxicity of the COCs in the soil, and would likely be vulnerable to substantial deterioration under flood conditions.
- Flood protection by levees or headwalls is not technically feasible due to institutional restrictions on development or construction within the existing floodplain.
- Construction of an on-site containment structure or RCRA/TSCA landfill is technically infeasible due to the potential adverse effects of periodic inundation on the liner and leachate collection systems, and does not achieve the RAOs to reduce volume or toxicity or to preserve the natural habitat and recreational resource.
- Potentially applicable ex situ physical treatment using soil/debris washing, with or without chemical additives is technically unproven for PCBs and the degree of metals reduction needed for the site waste/soils matrix. Similarly, dehalogenation

of PCBs from waste/soil matrices in the concentration range found on-site is an unproven technology. Ex situ solidification serves only to contain the COCs and will result in a waste/soil volume increase of up to 40%, thereby reducing the flood plain capacity and not satisfying the RAO to reduce volume.

Potentially applicable technologies and processes for in-situ treatment of the waste/soils are essentially all technically infeasible due to the heterogenous distribution of COCs, the physical and chemical characteristics of the waste/soils that would severely impede effective mass and/or heat transfer, and/or the inability of such technologies to meet the RAOs (e.g. stabilization/solidification results in waste/soil volume increase up to 40%).

7.2.4 Technologies and Processes Selected for Development of Remedial Alternatives

The following technologies and processes passed the initial screening and will be evaluated further.

- Deed and institutional restrictions on future development of the property;
- Containment capping;
- Ex-situ stabilization for metals;
- Erosion control (e.g., rip rap, non-biodegradable erosion geotextiles) and site revegetation; and
- Excavation and removal to off-site permitted TSD facility.

7.3 FINAL EVALUATION OF TECHNOLOGIES

A number of technologies and process options were identified above that have the potential to achieve the RAOs established for the Site. These remaining potentially applicable technologies and process options are evaluated for effectiveness and implementability as required by the NYSDEC in accordance with guidelines in TAGM HWR-90-4030 for the Selection of Remedial Actions at Inactive Hazardous Waste Sites (NYSDEC, 1992b).

7.3.1 Institutional Controls

Deed restrictions are covenants incorporated into a property deed which limit the use of a property. A permanent, "in perpetuity" covenant precluding development of the Site would reduce human contact with soils at the Site and, therefore, partially meet the goal of RAO #1. However, it would not achieve RAO #2. A deed restriction that identifies the property as being located in the flood plain has been recorded in the deeds of the parcels which make up the Site. Thus, the future use of the property is institutionally limited to those activities allowed by the State and local community, such as hiking, biking and horseback-riding that are not in conflict with federal flood regulations. Furthermore, since the Site is within an existing floodplain, development of the Site is institutionally restricted without prior governmental approval.

7.3.2 Capping

7.3.2.1 Multiple Layer Low Permeability

This technology consists of an impermeable surface cover or cap which would be compliant with the requirements of RCRA and TSCA. These types of caps typically include multiple layers of low permeability materials to prevent infiltration and subsequent degradation of groundwater. The combined cross-sectional thickness is typically 3 to 5 ft. depending on the selected design. Installation of a cap would require removal of trees and other vegetation in areas of concern. Surface grading would also be necessary where a cap is emplaced.

The cap would be installed at the Site over areas where sampling and analysis have indicated concentrations greater than one or more of the cleanup standards for PCBs, cadmium, lead, or nickel. Therefore, if areas exceeding cleanup standards for PCBs would be capped, areas that also exceed the cleanup standards for cadmium, lead and/or nickel would also have been capped. The cap would potentially eliminate exposure of COCs to humans (RAO #1), minimize the amount of water infiltrating the soil, thus reducing the potential for leaching constituents of concern (even though none has been identified) in the soil and vadose zone, and reduce the mobility of the COCs (RAO #2) by providing a protective barrier against erosion. The areas to be capped are within the floodplain and floodway; therefore, detailed hydraulic modeling would be necessary, in accordance with federal regulations, to demonstrate the impact to the 100 year base flood elevation would be zero in the floodway and less than 1 ft. outside of the floodway. In addition, the cap would need to be designed to withstand potential buoyant forces due to a high water table during a flood. Caps are generally considered permanent remedies; however, long-term maintenance is necessary to maintain the effectiveness of the cap.

7.3.2.2 Asphalt/Concrete Cover

A surface cover utilizing asphalt or concrete could be substituted for the multiple layer low permeability cover discussed above to achieve the RAOs #1 and #2. This type of cover would include a 6 to 8 inch gravel subbase beneath a 4 to 6 inch asphalt or concrete surface. This type of cover would not decrease infiltration; however, groundwater data has shown no impact above regulatory levels and future impact is not anticipated since the COCs are typically not mobile at the concentrations present at the Site. As with the multiple layer cap, installation would require removal of trees and other vegetation in areas of concern. Similar to the multiple layer cap, detailed hydraulic analysis would be necessary to demonstrate the impact on the base flood elevation and floodway would not exceed the floodplain regulations. Significant surface grading, more than the multiple layer cap, would be necessary to reduce the surface topographic irregularities, otherwise, the long-term permanence could be severely compromised. Removal of existing vegetation would have the potential short-term effect of increasing the rate of erosion, unless compensated for in the cap design and installation. In addition, the cap would need to be

designed to withstand potential buoyant forces due to high water table conditions during flooding.

7.3.2.3 Soil Cover

A surface cover utilizing a soil cover only could be utilized to achieve RAO #1. This type of cap would consist of 12 inches of general soil fill and 6 inches of topsoil on top. The soil cap would be installed over designated areas of COCs that exceed the site cleanup standards. As with the two other capping options, trees and other vegetation would need to be removed to install the soil cover in a manner which would minimize topographic irregularities which cause localized high velocity conditions. The soil cap top elevation will be at or below the existing grade having positive drainage flow. Minor regrading may be necessary in areas where remedial excavation does not exceed 18 inches.

A soil cover, alone, would not be sufficient to withstand erosion within the floodway portion of the floodplain. Long-term maintenance of the cap and vegetation free of "woody" growth would be required to address potential erosion due to localized high velocity areas or eddy conditions.

7.3.3 Ex-Situ Stabilization

This technology consists of the use of proprietary reagents to stabilize leachable metals via altering the speciation of the metals, or other properties of the soil. These reagents typically result in a 1 to 5% increase in volume. The stabilization process can typically be performed in containers if the volume is small or using pugmills for larger volumes. Stabilization is a proven and permanent technology for metals but not PCBs. Therefore, the technology would be used in combination with excavation/removal technologies to perform on-site treatment and thus lower off-site disposal costs.

This technology does not eliminate direct exposure to the COCs by itself (RAO #1); however, it does reduce the mobility of the inorganic COCs.

7.3.4 Surface Controls

7.3.4.1 Erosion Control Materials

Erosion control materials are used in multiple land development application scenarios to mitigate potential soil erosion along stream banks, drainage channels, and steep slopes. Erosion control materials consist of a wide variety of material which can be used to withstand velocities up to 20 feet per second (fps). Examples include gabion blanks, rip-rap, and biodegradable and non-biodegradable mats and geosynthetics. Depending on the material selected, thin layers of topsoil (i.e., 4-6 inches) is used beneath the material or used to fill in void spaces to facilitate vegetative growth.

Based on the predicted velocities in the hydraulic model (see Section 4.6), erosion control materials would effectively prevent the erosion of the surface soils and exposure to subsurface soils (RAO #1), and therefore, also reduce the potential mobility of the COCs (RAO #2). Riprap and high-strength geosynthetics would also be able to withstand impact/damage from submerged debris carried by flood waters. Detailed hydraulic modeling would be required as part of the final design since the areas to be protected are within the floodway and floodplain. Installation of the erosion control materials would require the removal of the undergrowth and brush but not the trees. In addition, significant grading changes would not be necessary in areas that are not being disturbed for other reasons. Erosion control materials are considered permanent remedies for erosion; however, long-term maintenance is necessary to maintain the effectiveness of the material.

7.3.4.2 Revegetation

Natural vegetation is an effective means to minimize erosion in a floodplain if the velocities are less than 3 fps. During the remedial actions in 1993, it was necessary to remove stands of mature trees in areas that were excavated on the Site. Trees and ground vegetation (turf grasses) serve to dampen low velocity erosional forces but may not be effective at high velocities or for surface gouging by objects carried by floods and tree overturning. Natural vegetation may minimize the ENOPICEACCUPROJECTS/EILES2001-911/REPORTS/REVISED FS (7-28-05)/TEXTLOC 7-9

potential for erosion of surface soils and exposure to subsurface soils in non-floodway areas (i.e., low velocity and shallow depth areas); however, in higher velocity areas (i.e., floodway), trees may be uprooted and subsequently expose subsurface soils (RAO #1 and #2).

For example, when trees were removed during the 1993 excavation activity, erosion took place in some disturbed areas during subsequent flooding. Supplemental rip rap has since been emplaced and revegetation has stabilized these areas. Revegetation has included grasses, shrubs, and sapling hardwood trees in various areas previously disturbed by excavation. Gradual reforestation is expected over time as trees grow and mature to emulate the forested nature of the floodplain immediately adjacent to the Site and across the creek.

7.3.5 Excavation of Soil and Off-Site Disposition

Excavating and removing waste/soil where elevated COCs have been characterized can be completed using standard earthwork equipment. Excavation and removal will eliminate future on-site long-term exposure to the COCs; however, short-term exposure would be significantly increased due to potential airborne emissions, direct contact, and erosion if a flood event occurred (RAO #1 and #2).

Aggressive erosion control and revegetation measures would be needed following the removal to prevent sediment loading to Seeley Creek. This remedy would be considered permanent for the Site; however, the soil/waste material would be transferred to an off-site landfill.

8.0 DEVELOPMENT OF REMEDIAL ALTERNATIVES USING RETAINED TECHNIQUES

8.1 <u>OVERVIEW</u>

The original ROD evaluated six remedial alternatives and selected Alternative No. 6: Site Access Restrictions, Excavation and Off-Site Disposal. This remedy was partially implemented in 1993/94; however, due to the significant increase (>100%) in volume above the assumed ROD volumes, NYSDEC has allowed Unisys to perform a focused reassessment of remedial technologies and alternatives. The remedial technology review completed in Sections 7 and 8 did not identify any new technologies which had either: 1) been evaluated in the original ROD and screened out that were now applicable; and 2) were new technologies not evaluated in the ROD and are now applicable. Therefore, in accordance with TAGM #4030, Section 4, a preliminary screening of remedial alternatives will not be performed since the number of viable alternatives able to address site problems is limited.

8.2 DESCRIPTION OF REMEDIAL ALTERNATIVES

8.2.1 Alternative 1 - Original ROD

Alternative 1, the original ROD remedy, consists of the following:

- Site access restrictions;
- Excavation of soil/waste above the ROD cleanup goals (unrestricted land use); and
- Transportation and off-site disposal of the excavated soil/waste in an appropriately permitted TSD facility.

Alternative 1 was implemented on-site in accordance with the ROD between 1993 and into early 1994 by Unisys Corporation (Unisys). Remediation undertaken in accordance with the ROD resulted in excavation and off-site disposition at a permitted treatment, storage, and disposal facility (TSD) of somewhat greater than 10,000 cubic yards of waste/soils containing elevated levels of polychlorinated biphenyls (PCBs) and metals of concern. The volume of waste/soil removed was 100% more than the estimated volume in the ROD (i.e., 5,360 cy). The results of verification sampling and analysis performed subsequent to site remediation activities, however, revealed constituents of concern (COCs) at continuing elevated levels. Based upon an estimate of 6,000 - 12,000 cy of material remaining at the Site that is above the cleanup standards in the ROD.

Implementation of Alternative 1 will require several site preparation tasks to be completed prior to excavation of soil/waste. Initially, site management zones (i.e., exclusion, decontamination, support) will need to be established. Erosion and sediment control structures will subsequently be installed followed by the construction of vehicle haul roads. Areas 1 and 2 (approximately 1.5 acres) will be cleared and the aboveground vegetation removed from the Site. Subsequently, the removal areas will be located and marked by a New York licensed surveyor. The assumed soil/waste to be excavated totals approximately 12,280 inplace cubic yards (cy)² and has been subdivided into three categories based on chemical-specific SCGs.

Type A (TSCA/RCRA)	- Soil/waste containing PCBs above 100 ppm and heavy metals above 3000 ppm (i.e., material likely to exceed characteristic hazardous waste criteria)	(3310 insitu cy)
Type B (TSCA/Non-RCRA)	 Soil/waste containing PCBs between 50- 100 ppm and heavy metals less than 3000 ppm 	(3360 insitu cy)
Type C (Non-TSCA/Non- RCRA)	- Soil/waste containing PCBs below 50 ppm and heavy metals below 3000 ppm and above unrestricted use standards	(5610 insitu cy)

² The estimated volume of material to be excavated is based on the potential limits of excavation shown on Figure 5 and a 100% contingency. The 100% contingency is based on the 100% increase in excavated material during the 1993/1994 removal activities.

Pre-excavation waste disposal characterization sampling and landfill approval will be obtained if possible to help reduce the amount and time excavated material needs to be temporarily staged/stockpiled on-site prior to transportation to the appropriate TSD facility. The individual material types will be excavated separately and staged separately in either temporary stockpiles or directly loaded into off-site transportation vehicles if possible. Type A material would be stabilized on-site to eliminate the potential for metals to leach above RCRA characteristic toxicity criteria concentrations. Confirmation sampling would be performed to document compliance with the cleanup goals or the need for additional removal. All vehicles would be decontaminated at the existing decontamination area (from the previous removal activities) prior to leaving the Site. In addition, dust suppression techniques would be utilized as necessary to ensure compliance with OSHA and NAAQS requirements.

A detailed excavation and restoration schedule would be needed to minimize exposure of excavated (both contaminated and clean disturbed) areas to potential flood waters. Contingency erosion control measures would need to be established to ensure protective measures could be swiftly implemented to protect against cross-contamination of adjacent soils and Seeley Creek in the event of a flood event, or other significant runoff event. Typical measures utilized include:

- Extended weather and creek stage monitoring;
- Limiting the maximum amount of areas which can be excavated at a time and staging of excavated material;
- Backfill and restoration immediately following successful attainment of cleanup goals;
- Standby time due to pending severe weather; and
- On-site staging of emergency construction materials, such as geotextiles and stone, to cover exposed areas.

Final restoration of the Site would require a combination of imported soil and existing site soils to be used to grade the Site to create positive drainage. All areas would be seeded with a mixture appropriate to the region and floodplain characteristics of the Site. Areas subject to potential erosive velocities may also require additional erosion control mattings or rip-rap. Specific velocities at individual locations would dictate the need and type of erosion control measures utilized.

Long-term operation and maintenance will be limited to ensuring the ground surface is sufficiently revegetated to minimize soil erosion. The O&M period would likely last one to two years. No groundwater monitoring would be required since all of the impacted soil above the unrestricted land use cleanup goals would be removed.

8.2.2 Alternative 2 - Excavation/Removal to 2005 RFS Cleanup Goals and Soil Cap

Alternative 2 consists of the following:

- Site deed restrictions;
- Excavation of soil/waste above the 2005 RFS cleanup goals;
- Transportation and off-site disposal of the excavated soil/waste in an appropriately permitted TSD facility;
- Installation of a 18-inch soil cap, with an underlying geotextile, to prevent erosion of the surface soils and subsequent exposure of subsurface soils;
- Re-vegetation of disturbed areas; and,

Long-term maintenance and monitoring of the soil cap, including annual certification, in accordance with a NYSDEC-approved Site Management Plan (SMP).

Implementation of Alternative 2 will require the same/similar site preparation tasks to Alternative #1 to be completed prior to excavation of soil/waste, including removal of all trees in Areas 1 and 2. The assumed soil/waste totals approximately 9630 inplace cubic yards $(cy)^3$ and as been subdivided into three categories based on chemical-specific SCGs.

Type A (TSCA/RCRA)	-Soil/waste containing PCBs above 100 ppm and heavy metals above 3000 ppm (i.e., material likely to exceed characteristic hazardous waste criteria)	(2890 insitu cy)
Type B (TSCA/Non-RCRA)	-Soil/waste containing PCBs between 50-100 ppm and heavy metals less than 3000 ppm	(2890insitu cy)
Type C (Non-TSCA/Non- RCRA)	-Soil/waste containing PCBs less than 50 and Heavy Metals below 3000 ppm and above restricted use	(3850 insitu cy)

Pre-excavation waste disposal characterization sampling and landfill approval will be obtained if possible to help reduce the amount and time excavated material needs to be temporarily staged/stockpiled on-site prior to transportation to the appropriate TSD facility. The individual material types will be excavated separately and staged separately in either temporary stockpiles or directly loaded into off-site transportation vehicles if possible. Type A material would be stabilized on-site to eliminate the potential for metals to leach above RCRA characteristic toxicity criteria concentrations. Confirmation sampling would be performed to document compliance with the cleanup goals or the need for additional removal. All vehicles would be decontaminated at the existing decontamination area (from the previous removal activities) prior

³ The estimated volume of material to be excavated is based on the potential limits of excavation shown on Figure 6 and 100% contingency. The 100% contingency is based on the 100% increase in excavated material during the 1993/1994 removal activities.

to leaving the Site. In addition, dust suppression techniques would be utilized as necessary to ensure compliance with OSHA and NAAQS requirements.

A detailed excavation and restoration schedule would be needed to minimize exposure of excavated (both contaminated and clean disturbed) areas to potential flood waters. Contingency erosion control measures would need to be established to ensure protective measures could be swiftly implemented to protect against cross-contamination of adjacent soils and Seeley Creek in the event of a flood event or other significant runoff event. Typical measures utilized include:

- Extended weather and creek stage monitoring;
- Limiting the maximum amount of areas which can be excavated at a time and staging of excavated material;
- Backfill and restoration immediately following successful attainment of cleanup goals;
- Standby time due to pending severe weather; and,
- On-site staging of emergency construction materials, such as geotextiles and stone, to cover exposed areas.

Once the excavation of Areas 1 and 2 are completed the excavations will be backfilled and compacted to the approximate existing lines and grades. The top 18-inches of the backfill shall be constructed in accordance with the provisions of the soil cap. The soil cap would consist of approximately 6 inches of topsoil, underlain by 12 inches of general fill, and a geotextile. For excavations less than 18-inches in depth, additional grading will be required to achieve full cap depth and top elevation at or below existing grade. In addition, some beneficial regarding of the areas maybe performed to reduce the potential to create obstructions during flood events. This will help reduce potential direct contact exposure to humans and the environment due to erosion.

Final restoration of the Site would require a combination of imported soil and existing site soils be used to grade the Site to create positive drainage. NYSDEC has indicated borrow material may be available from the channel or overbank areas of Seeley Creek to minimize imported soil. NYSDEC routinely removes accumulated fill from these areas to maintain the floodway and floodplain. All areas would be seeded with a mixture appropriate to the region and floodplain characteristics of the Site. Restored areas subject to potential erosive velocities may also require additional erosion control mattings or rip-rap. Specific velocities at individual locations would dictate the need and type of erosion control measure utilized.

Long-term operation and maintenance (O&M) will be limited to ensuring the ground surface is sufficiently revegetated to minimize soil erosion and prevent "woody" growth. The O&M would likely be more intensive the first or second year after restoration to ensure established growth of stable vegetation; thereafter, O&M would likely be minimal. Limited post-removal groundwater monitoring will be performed as previously described in Section 4.5 of this RFS to confirm the soil remediation has not adversely impacted the groundwater. Specific O&M requirements would be developed in the SMP.

8.3 DETAILED ANALYSIS OF ALTERNATIVES

8.3.1 Analysis Criteria

This section presents the detailed analysis of the three remedial alternatives to be considered. The remedial alternatives will be individually analyzed based on the criteria described in the "Technical and Administrative Guidance Memorandum for the Selection of Remedial Action at Inactive Hazardous Waste Sites." The criteria are listed below:

 Compliance with Applicable New York State Standards, Criteria and Guidelines (SCGs);

- Overall Protection of Human Health and the Environment;
- Short-term Impacts and Effectiveness;
- Long-term Effectiveness and Permanence;
- Reduction of Toxicity, Mobility or Volume;
- Implementability; and,
- Cost (see Table 8).

8.3.2 Alternative #1: Original ROD Remedy

8.3.2.1 Compliance with Applicable New York State Standards, Criteria and Guidelines (SCGs)

This alternative's main components include site access restrictions, the removal and off-site disposal of all impacted soils in Areas 1 and 2 above the unrestricted land use cleanup goals, as well as, erosion and sedimentation control structures.

Adherence to chemical-specific SCGs will be attained by the removal of impacted soil with PCBs, lead, cadmium and nickel concentrations above the unrestricted land use cleanup goals.

Adherence with action-specific SCGs will be attained by using USEPA-approved technologies already proven to be effective such as the excavation and off-site disposal and/or incineration of the material in an applicable TSD facility.

Adherence with location-specific SCGs will be attained by maintaining or lowering the elevation of the existing grades in Areas 1 and 2 so that it will not affect the level of flood waters inherent to the site. It will also allow the existing dike to the north of the Site to continue to control the flood waters of the Seeley Creek to the south. The permits required for work in a flood plain should be readily obtainable since no increase in the base flood elevation is expected. Additionally, site restrictions placed on deed of property restrict any future development on the Site.

8.3.2.2 Overall Protection of Human Health and the Environment

This alternative will eliminate the potential for future on-site direct exposure to waste/soils that are considered a risk for human exposure by removing them from the Site; however, short-term risks during construction will be high due to the handling of the large volume of soil and potential for cross-contamination due to a flood event (RAO #1). This alternative will also lower the flood risks to the Town of Southport. The lower post-RA surface grades and clearing of the Site will allow water to more easily flow through the Site without the risk of debris dams creating backwater conditions. A portion of the material (Type A material) being disposed offsite will be treated on-site for leachable metals via stabilization prior to off-site transportation and landfilling, thus, a small reduction in toxicity and mobility will be achieved (RAO #2).

8.3.2.3 Short-Term Impacts and Effectiveness

This alternative will require the use of standard construction excavation and trucking equipment to remove the estimated 12,280 insitu cy of impacted material from the Site. The impacted soil will need to be trucked through the Town of Southport and possibly Elmira, depending on the transportation route and landfill location. Approximately 980 round trip truck trips⁴ will be necessary. Several risk studies have demonstrated the greatest site risks for environmental cleanups are associated with truck traffic both on-site and off-site. These risks can be controlled

FAOFICEAGC/PROJECTS/FILES/2001-911/REPORTS/REVISED FS (7-28-05)/TEXT.DOC 8-9

⁴ Assume 15 cubic yards per truck load and a 1.2 bulking factor.

on-site and to a limited degree off-site by using licensed drivers, inspection of vehicles and the use of mandatory routes to/from the Site through the community.

Excavation of the material will create dust which could cause short-term risks to the community and workers; however, proper use of dust suppression techniques and personal protective equipment should adequately mitigate these potential risks.

It is estimated that this alternative will require 6 to 12 months to complete, and the restoration of the ground surface vegetation will require approximately two years. During the implementation time, exposed, excavated materials will present an environmental risk to cross-contamination of both clean floodplain areas and Seeley Creek itself in the event of a significant flood. Some protective measures can be employed to reduce this environmental risk; however, it is probable that some release could occur during a flood event.

8.3.2.4 Long-Term Effectiveness and Permanence

This alternative is considered permanent based on the excavation and disposal, and stabilization of soils with COCs above the SCGs. Removal of material to unrestricted land use (i.e., residential) cleanup goals will result in the post-RA risk levels being significantly below those necessary to be protective for the actual current and future restricted land use of the Site. With the removal of the shrubbery within the excavation areas, there will be some early erosion after restoration. In time, however, the seeding will take effect, turf will be established and the erosion concerns should dissipate.

8.3.2.5 Reduction of Toxicity, Mobility or Volume

The Type A ($\approx 25\%$ of the total volume) will be permanently treated on-site for leachable metals prior to disposal to reduce the mobility of the COCs. The treatment is expected to provide a permanent order of magnitude decrease in mobility; however, due to the minimal volume of

material being treated versus the total volume which will be landfilled, it is expected the risk reduction will be significantly less. The volume of material will not be significantly reduced since the majority of the material will be direct landfilled. No change in toxicity is expected.

8.3.2.6 Implementability

This alternative uses conventional excavation equipment which should not present any implementability problems, with the exception of risks associated with cross-contamination if a flood occurs during excavation activities. Exposed soils would be susceptible to erosion of varying degrees depending on the magnitude of a flood and location of the active excavations and stockpiles. On-site stabilization for metals is a proven technology which should be implementable but startup testing to determine an appropriate treatment formula and materials handling procedures would be necessary. This alternative may result in substantial increases in the volume of material to be excavated; however, increases in volume should not affect the reliability of the individual technologies comprised in the alternative but the duration would increase proportional with the volume increase. Monitoring of this alternative's ability to meet the cleanup goals and health and safety performance requirements are readily implementable.

Administrative feasibility should be high since this alternative was partially implemented in 1993/1994.

All of the necessary services and materials should be readily available to implement this alternative.

8.3.2.7 Cost

The estimated capital costs of this alternative are \$4,330,000. The estimated present worth O&M costs after implementation are \$35,000 for 5 years. The present worth cost of this alternative based on an inflation rate of 6.8% is \$4,365,000. This information is summarized in Table 8 and Appendix D.

8.3.3 Alternative #2: Excavation/Removal to 2005 RFS Cleanup Goals and Soil Cap

8.3.3.1 Compliance with Applicable New York State Standards, Criteria and Guidelines (SCGs)

This alternative's main components include the removal and off-site disposal of impacted soils in Areas 1 and 2 above the 2005 RFS cleanup goals, and installation of a 18-inch soil cap.

Adherence to chemical-specific SCGs will be attained by the removal of impacted soil with PCBs, lead, cadmium and nickel concentrations above the 2005 RFS cleanup goals and installation, maintenance and monitoring of the soil cap to assure continued protection from the subsurface soils.

Adherence with action-specific SCGs will be attained by using USEPA-approved technologies already proven to be effective such as the excavation and off-site disposal, and stabilization of the material with leachable metals above the RCRA characteristic toxicity criteria.

Incorporating location-specific SCGs require maintaining or lowering the elevation of the existing grades in Areas 1 and 2 post-remediation so that it will not affect the level of flood waters inherent to the Site. It will also allow the existing dike to the north of the Site to continue to control the flood waters of the Seeley Creek to the south. The permits required for work in a floodplain will need to be approved by the Town of Southport since fill material will be placed in the floodplain and floodway. This remedy's implementation would be contingent upon compliance with municipal code requirements and approval by the Town of Southport. According to NYSDEC Division of Water, Bureau of Flood Protection, permitting for this type of work is routine and should not be difficult to obtain approval. Additionally, site restrictions will be placed on the property deed to restrict any future development on the Site.

8.3.3.2 Overall Protection of Human Health and the Environment

This alternative will eliminate the potential for future on-site direct exposure to waste/soils that may be considered a risk for human exposure by removing them from the Site; however, short-term risks during construction will be moderate due to the handling of the soil and potential for new impacts due to a flood event (RAO #1). This alternative will also lower the flood risks to the Town of Southport. The clearing of the Site will allow water to more easily flow through the Site without the risk of debris dams creating backwater conditions. A portion of the material (Type A material) being disposed off-site will be treated on-site for leachable metals via stabilization prior to off-site transportation and landfilling, thus, a small reduction in toxicity and mobility will be achieved (RAO #2).

8.3.3.3 Short-Term Impacts and Effectiveness

This alternative will require the use of standard construction excavation and trucking equipment to remove the estimated 9630 insitu cy of impacted material from the Site. The impacted soil will need to be trucked through the Town of Southport and possibly Elmira, depending on the transportation route and landfill location. Approximately 770 round trip truck trips⁵ will be necessary. Several risk studies have demonstrated the greatest site risks for environmental cleanups are associated with truck traffic both on-site and off-site. These risks can be controlled on-site and to a limited degree off-site by using licensed drivers, inspection of vehicles and the use of mandatory routes to/from the Site through the community.

Excavation of the material will create dust which could cause short-term risks to the community and workers; however, proper use of dust suppression techniques and personal protective equipment should adequately mitigate these potential risks.

It is estimated that this alternative will require 4 to 9 months to complete, and the restoration of the ground surface vegetation will require approximately two years. During the implementation

⁵ Assumes 15 cubic yards per truck load and a bulking factor of 1.2.

F:\OFICEAOC\PROJECTS\FILES\2001-911\REPORTS\REVISED FS (7-28-05)\TEXT.DOC 8-13

period, exposed, excavated materials will present an environmental risk to cross-contamination of both clean floodplain areas and Seeley Creek itself in the event of a significant flood. Some protective measures can be employed to reduce this environmental risk; however, it is probable that some release could occur during a flood event.

8.3.3.4 Long-Term Effectiveness and Permanence

This alternative is considered permanent based on the excavation and disposal and stabilization of soils with COCs above the SCGs. Removal of material to restricted land use (i.e., non-residential) cleanup goals will result in the post-RA risk levels being significantly below those necessary to be protective for the Site.

Long-term maintenance (i.e., erosion repair) would be necessary in the floodway portion of the Site since grass turf surfaces alone may erode due to the higher velocities and potential for gouging from debris.

8.3.3.5 Reduction of Toxicity, Mobility or Volume

The Type A material ($\approx 25\%$ of the total volume) will be permanently treated on-site for leachable metals prior to disposal to reduce the mobility of the COCs. The treatment is expected to provide a permanent order of magnitude decrease in mobility; however, due to the moderate volume of material being treated versus the total volume which will be landfilled, it is expected the risk reduction will be significantly less. Removal of the soil/waste will reduce mobility of the soils. The volume of material will not be significantly reduced since the majority of the material will be direct landfilled. No change in toxicity is expected.

8.3.3.6 Implementability

The alternative uses conventional excavation equipment which should not present any implementation problems, with the exception of risks associated with cross-contamination if a flood occurs during excavation activities. The exposed soils, although less than Alternative #1, would be susceptible to erosion of varying degrees depending on the magnitude of a flood and location of the active excavations and stockpiles. On-site stabilization for metals is a proven technology which should be implementable but startup testing to determine the appropriate treatment formula and materials handling procedures would be necessary. The potential for volume increases is possible but increases in volume would not affect the reliability of the individual technologies comprised in the alternative but the duration would increase proportional to the volume increase. Monitoring of this alternative's ability to meet the cleanup goals and health and safety requirements are readily implementable.

Administrative feasibility would be high for the excavation/removal portion of the alternative due to similarity to the work already completed in 1993/1994. The soil cap may need to be permitted locally due to municipal codes limiting fill placement in floodways and floodplains; however, NYSDEC Division of Water, Bureau of Flood Protection personnel have indicated they will assist with facilitating the review of any permit application.

All necessary services and materials should be readily available to implement this alternative.

8.3.3.7 Cost

The estimated capital costs of this alternative are \$3,500,000. The estimated present worth O&M costs after implementation are \$35,000 for 30 years. The present worth cost of this alternative based on an inflation rate of 6.8% is \$3,535,000. This information is summarized in Table 8 and Appendix D.

8.4 COMPARATIVE ANALYSIS OF ALTERNATIVES

8.4.1 Compliance with Applicable New York State Standards, Criteria and Guidelines (SCGs)

This criterion is a threshold criteria for the analysis of each alternative. Based on the detailed analysis, both alternatives are expected to adhere to applicable New York State SCGs.

8.4.2 Overall Protection of Human Health and the Environment

This criterion is also a threshold criteria for the analysis of each alternative. All of the alternatives will attain a level of human health protection necessary for the current and future land use for the Site. Previous studies have shown no impacts to the groundwater or adjacent creek above regulatory limits. However alternative 2 provides the addition of a geosynthetic demarcation and erosion control barrier in the event that the flooding of Seeley Creek displaces the 18" soil cap.

Therefore, Alternative 2 is expected to provide a significant increase in protection of the environment and the potential exposure of a contaminant pathway. The same level of long-term O&M will be required for both alternatives.

8.4.3 Short-Term Impacts and Effectiveness

All of the alternatives utilize the same basic construction equipment and materials during implementation. However, the volume of soil to be excavated for Alternative 1 is 1.5 times greater than Alternative 2; therefore, the short-term risks to the community and construction workers are expected to be increased as well.

The duration of Alternative 1 is expected to be at least 1.5 times as long as Alternative 2; therefore, the risk of cross-contamination due to flooding is the highest.

Alternative 2 has less short-term impacts than Alternative 1. The short-term effectiveness are equal for all alternatives.

8.4.4 Long-Term Effectiveness and Permanence

Both alternatives will remain effective because the impacted soil above the cleanup goals will be removed from the Site. Alternative 2 relies on capping to prevent future direct contact exposure to subsurface soils (i.e., > 6 inches below the existing ground surface) versus Alternative 1 which requires removal to an unrestricted land use scenario in addition to a 12" thick clean soil cap over surface PCB contamination. NYSDEC has identified surface erosion and gouging during flooding events to be the primary concern for future direct contact exposure. This process typically occurs only in the floodway or small localized eddies.

8.4.5 <u>Reduction of Toxicity, Mobility or Volume</u>

Alternative 1 will result in the greatest reduction in on-site volume of impacted material due to the lower cleanup goals associated with unrestricted land use. The actual volume of impacted material is not reduced by either alternative. No changes in toxicity will be achieved by the alternatives. A reduction in mobility will be achieved by all of the alternatives due to the disposal of impacted material in a secure landfill. Alternative 1 provides a higher reduction due to the lower cleanup goals.

8.4.6 Implementability

The technical implementation of both alternatives is equivalent because each alternative utilizes predominantly the same equipment and services. However, Alternative 1 has the greatest potential for an increase in volume based on previous field activities at the Site.

The administrative ease of implementation for Alternative 1 is greater than Alternative 2. Alternative 2 has a lower ease of implementation since placement of significant fill to construct the 18-inch soil cap may be prohibited by the Town of Southport. Nonetheless, NYSDEC Division of Water, Bureau of Flood Protection personnel have indicated the earthwork associated with Alternative 2 is routine and a local permit should be obtainable.

8.4.7 Cost

Alternative 1 has the highest capital and present worth cost of the alternatives due to the unrestricted land use cleanup goals. Alternative 1 also has the greatest likelihood of significantly increasing in cost based on the experience from the 1993/1994 field activities which attempted to implement this alternative.

9.0 <u>RECOMMENDED ALTERNATIVE</u>

The selection of a remedial alternative should be based on the expected current and future use of a site and sound technical analysis of the evaluation criteria that can subsequently be the basis for the remedial design of the remedy. Both alternatives meet the requirements of the two threshold criteria of:

- 1) Compliance with New York State SCGs; and
- 2) Overall protection of human health and the environment.

However, Alternative 1 is based on a future unrestricted land use of the Site which is inconsistent with the current and future institutional controls on the Site. It is extremely unlikely that the Site use will ever change from its current flood control use given the proximity of Seeley Creek. Therefore, since Alternative 2 meets the threshold criteria and is consistent with the current and future use of the Site, Alternative 1 is not the recommended alternative.

As discussed in Section 4.0, a Pre-Design Investigation (PDI) should be the first step completed for implementation of the recommended alternative. The objective of the PDI will be to characterize the extent of the soils which require excavation and removal. Characterizing the extent and volume of previously determined soil contamination as well as evaluating the potential for erosional cross contamination of previously remediated areas will allow better materials management during implementation, and reduce the risk of cross-contamination (due to flooding) associated with the exposure of excavated soils and open excavations within the floodplain of Seeley Creek. This PDI will not reduce or eliminate the required confirmatory sampling for all contaminant excavations.

TABLES

.

TABLE 1

Distribution of Soil Sample Results McInerney Farm Site Southport, New York

Surface	ND	<1 mg/kg	>1-10 mg/kg	>10-50 mg/kg	>50-300 mg/kg	>300 mg/k
0-1 ft.	50	98	7	0	0	0
Subsurface	ND	<=10 mg/kg	>10-25 mg/kg	>25-50 mg/kg	>50-300 mg/kg	>300 mg/k
>1-8 ft.	26	284	16	7	5	4
>8-12 ft.	3	29	0	0	1	0
>12 ft.	0	3	0	0	0	0
Nickel						
Surface	ND	<500 mg/kg	>500-2000 mg/kg	>2000 mg/kg		
0-4 ft.	3	189	12	1		
Subsurface	ND	<1000 mg/kg	>1000-2000 mg/kg	>2000 mg/kg		
>4-8 ft.	3	131	6	2000 mg/kg		
>8-12 ft.	3	31	0	. 2		
>12 ft.	0	3	0	0		
	ND	<10 mg/kg	>10-50 mg/kg	>50 mg/kg		
Surface						
0-1 ft.	14	73	0	0		
Subsurface	ND	<10 mg/kg	>10-50 mg/kg	>50 mg/kg		
>1-8 ft.	89	148	16	0		
>8-12 ft.	23	10	1	0		
>12 ft.	0	3	0	0		
Lead						
Surface	ND	<350 mg/kg	>350-400 mg/kg	>400-2000 mg/kg	>2000 mg/kg	
	0	85	0	1	0	
0-1 ft.						
	ND	<350 mg/kg	>350-400 mg/kg	>400-2000 mg/kg	>2000 mg/kg	
Subsurface	ND 15	<350 mg/kg 207	>350-400 mg/kg	>400-2000 mg/kg	>2000 mg/kg	
		<350 mg/kg 207 43	>350-400 mg/kg 2 0	>400-2000 mg/kg 15 2	>2000 mg/kg 1 2	

ND - Compound was not detected by the analytical method employed for sample analysis. Detection limits may vary for the same compound within the database.

	TABLE 2	
Summary	of Groundwater	Analytical Data

Sampling Event	Analyte Concentration (ppm)											
Analyte	MW-1	MW-9	MW-12	MW-13	MW-14	MW-14R	MW-15	MW-15D	MW-16	MW-17	MW-18	
1991 (a)											-	
Pesticides/PCBs	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Volatiles	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Barium	43	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Calcium	28600	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Potassium	2380	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Sodium	26200	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1992 (b)		I			1							
Cadmium - UF	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.45 B</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.45 B</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td>0.45 B</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td>0.45 B</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>0.45 B</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	0.45 B	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""></idl<></td></idl<>	<idl< td=""></idl<>	
Cadmium - F	NA	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<>	NA	NA	NA	NA	NA	NA	<idl< td=""><td>NA</td><td>NA</td></idl<>	NA	NA	
Lead - UF	NA	NA	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>NA</td><td>12.8</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>NA</td><td>12.8</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td>NA</td><td>12.8</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td>NA</td><td>12.8</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>12.8</td><td>NA</td><td><idl< td=""></idl<></td></idl<>	NA	12.8	NA	<idl< td=""></idl<>	
Lead - F	NA	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<>	NA	NA	NA	NA	NA	NA	<idl< td=""><td>NA</td><td>NA</td></idl<>	NA	NA	
Nickel - UF	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>164</td><td><idl< td=""><td>NA</td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>164</td><td><idl< td=""><td>NA</td></idl<></td></idl<>	NA	NA	NA	NA	164	<idl< td=""><td>NA</td></idl<>	NA	
Nickel - F	NA	NA	NA	NA	NA	NA	NA	NA	45	NA	NA	
Aroclor I242 - UF	NA	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.14</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td>0.14</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td>0.14</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>0.14</td><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	0.14	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""></idl<></td></idl<>	<idl< td=""></idl<>	
Aroclor 1242 - F	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<></td></idl<>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<>	NA	NA	<idl< td=""><td>NA</td><td>NA</td></idl<>	NA	NA	
Aroclor 1248 - UF	NA	0.065	0.059	<idl< td=""><td>0.41</td><td><idl< td=""><td>0.071</td><td>0.076</td><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	0.41	<idl< td=""><td>0.071</td><td>0.076</td><td><idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	0.071	0.076	<idl< td=""><td><idl< td=""><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""></idl<></td></idl<>	<idl< td=""></idl<>	
Aroclor 1248 - F	<idl< td=""><td><1DL</td><td>0.049 J</td><td>NA</td><td>0.31</td><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<>	<1DL	0.049 J	NA	0.31	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<>	NA	NA	<idl< td=""><td>NA</td><td>NA</td></idl<>	NA	NA	
Aroclor 1254 - UF	NA	0.036 J	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<></td></idl<>	<idl< td=""><td><idl< td=""><td>0.025</td></idl<></td></idl<>	<idl< td=""><td>0.025</td></idl<>	0.025	
Aroclor 1254 - F	<idl< td=""><td><idl td="" ·<=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<></td></idl></td></idl<>	<idl td="" ·<=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<></td></idl>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>NA</td><td>NA</td></idl<></td></idl<>	NA	NA	<idl< td=""><td>NA</td><td>NA</td></idl<>	NA	NA	
1995 (b)												
Aroclor 1242 - UF	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<>	NA	NA	NA	<idl< td=""></idl<>	
Aroclor 1242 - F	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<>	NA	NA	NA	<idl< td=""></idl<>	
Aroclor 1248 - UF	NA	0.14	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td>0.03 J</td><td>NA</td><td>NA</td><td>NA</td><td>0.047</td></idl<></td></idl<>	NA	NA	<idl< td=""><td>0.03 J</td><td>NA</td><td>NA</td><td>NA</td><td>0.047</td></idl<>	0.03 J	NA	NA	NA	0.047	
Aroclor 1248 - F	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<>	NA	NA	NA	<idl< td=""></idl<>	
Aroclor 1254 - UF	NA	0.063	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>0.048</td></idl<></td></idl<></td></idl<>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>0.048</td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td>0.048</td></idl<>	NA	NA	NA	0.048	
Aroclor 1254 - F	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td><idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<></td></idl<>	NA	NA	<idl< td=""><td><idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<></td></idl<>	<idl< td=""><td>NA</td><td>NA</td><td>NA</td><td><idl< td=""></idl<></td></idl<>	NA	NA	NA	<idl< td=""></idl<>	

(a) It is unknown whether or not these samples were filtered. TAL metals list analyzed. Only detected metals shown.

(b) Aroclors 1016, 1221, 1232, and 1260 analyzed for, but not detected.

ND - Not detected

NA - Not analyzed

<IDL - Compound was not detected at instrument detection level (IDL).

F - Filtered; UF - Unfiltered

F:\OFICEAGCVPROJECTSVFiles\2001-911\Reports\Revised FS (7-28-05)\Table 2.doc

Potential Chemical-Specific ARARs/SCGs McInerney Farm Site Southport, New York

Medium	Requirement	Prerequisites	Citation	Comments	
Groundwater	Site groundwater must meet NYS Class GA groundwater standards. These standards are most stringent of: Standards for Class GA Groundwaters NYS MCLs for Public Water Supplies Federal MCLs promulgated under the Safe Drinking Act	Compounds in groundwater must exceed applicable standards	6 NYCRR Part 703 6 NYCRR Part 703.5 10 NYCRR Subpart 5-1 10 NYCRR Part 170 40 CFR Part 141	Realistic evaluation of probability of ingestion as a water supply helpful in assessing relevance	
Surface Water	Surface water at the site must meet NYS Ambient Water Quality Standards for Class GA water bodies, Class D water bodies, or U.S. EPA AWQCs, whichever is most restrictive	Surface water must exceed NYS AWQS/GVs or U.S. EPA AWQCs	6 NYCRR Part 701.14 Quality Criteria for Water, 1986	·	

Potential Action-Specific ARARs/SCGs McInerney Farm Site Southport, New York

Action	Requirement	Prerequisites	Citation	Comments
Capping (Closure with Waste In- Place)	Placement of a cap over hazardous waste may require a cover with specific design characteristics	RCRA Waste in Landfill Significant Management of RCRA hazardous waste will make requirements applicable; capping without disturbance will not make requirements applicable but technical requirements may be relevant and appropriate	40 CFR 264.258(B)	RCRA capping requirements could be relevant and appropriate to capping hazardous waste in place The appropriateness of RCRA requirements is also based on each requirement=s technical merit in a given situation
	Restrict post-closure property use to prevent cover damage		40 CFR 264.117(c)	
	Prevent run-on and run-off from		40 CFR 264.228(b)	and the state of the state
	damaging cover		40 CFR 264.310(b)	
	Disposal or decontamination of equipment, structures, and soils		40 CFR 264.111	
	Stabilization of remaining waste and		40 CFR 264.228(a)(2)	
	waste residue to support cover		& 40 CFR 264.258(b)	
	Installation of final cover to provide long-term infiltration minimization		40 CFR 264.310	
	Post-closure care and groundwater monitoring		40 CFR 264.310	

Potential Action-Specific ARARs/SCGs McInerney Farm Site Southport, New York

Excavation and Removal	General performance standards require minimizing need for further maintenance and control; minimization or elimination of post-closure escape of hazardous waste, hazardous constituents, leachate contaminant runoff, or hazardous waste decomposition products	Disturbance of RCRA hazardous waste and movement outside the unit or area of contamination May apply to contaminated soil disturbed in the course of excavation and returned to land	40 CFR 264.111	Clean closure and removal may not be feasible for some landfill sites due to large waste volumes. However, removal of areas containing extraordinarily high concentrations of certain wastes may be possible
	Removal or decontamination of all waste residues, contaminated containment system components, contaminated subsoils, structures, and equipment waste	Not applicable to undisturbed material	40 CFR 264.228(a)	
	Disposal or decontamination of equipment, structures, and soils		40 CFR 264.111 & 40 CFR 264.268	
	Handling, transport, storage and material disposal complies with NYSDEC/USEPA regulations	Excavated material may be considered hazardous by NYSDEC or meet TSCA PCB Waste Criteria	6 NYCRR Part 373 & 40 CFR 761.60- 761.79	Specifically Subpart D: Storage and Disposal These regulations specify treatment, storage and disposal requirements for PCBs based on form and concentration
	Control fugitive dusts	Air quality during removal must meet National Air Quality Standard (AAQS) for particulate matter	40 CFR Part 50	
	Meet health-based action levels			

Potential Location-Specific ARARs/SCGs McInerney Farm Site Southport, New York

Location	Requirement	Prerequisites	Citation	Comments		
Within 100 yr. Flood Plain	Facility must be designed, constructed, operated and maintained to avoid washout	RCRA hazardous waste; PCB treatment, storage or disposal	40 CFR 264.18(b) 40 CFR 761.75	Applicable if part of waste is in 100 year flood plain		
Within Flood PlainAction to avoid adverse effects, minimize potential harm, restore ar preserve natural and beneficial value of the flood plain		Action that will occur in a flood plain i.e., lowlands and relatively flat areas adjoining inland and coastal waters and other flood-prone areas	Executive Order 11988 Protection of Flood Plains (40 CFR 6 Appendix A)	Applicable if part of waste is in 100 year flood plain		
Area Affecting Stream or River	Action to protect fish and/or wildlife	Diversion, channeling or other activity that modifies a stream or river and affects fish or wildlife	Fish and Wildlife Coordination Act (16 USC 661 et.seq.) 40 CFR 6.302	The Fish and Wildlife Coordination Act requires consultation with the Department of Fish and Wildlife prior to any action that would alter a body of water of the United States		

Remedial Response Actions McInerney Farm Site Southport, New York

			Remedial Respo	nse Action		
Remedial Action Objective	No Action	Institutional Controls*	Containment	Ex Situ Treatment	In Situ Treatment	Excavation and Off-Site Disposition*
Reduce direct contact exposure with waste/soils presenting localized high potential risks	Not Applicable; Some remedial actions have already been	х	X	x	x	x
Reduce toxicity, mobility or volume of waste and soil contaminants	implemented at the site		x			x
Preserve or enhance unique natural environmental, ecological and recreational resource characteristics		X	x			

* Indicates this action has already been implemented, to some extent, at the site

Initial Screening of Technologies and Process Options McInerney Farm Site Southport, New York

Remedial Response Action	Remedial Technology	Process Options	Screening Comments	
No Action	N/A	N/A	Not applicable, certain remedial actions already implemented	
Institutional	Development Restrictions	Deed restrictions to limit future property development	Potentially applicable	
	Access Restrictions	Fencing to limit site access	Not implementable due to location in flood plain	
Containment	Cap	Cap of compacted clay and soil (RCRA cap)	Potentially applicable	
		Cap of asphalt/concrete	Potentially applicable	
		Cap remediated area with soil cover	Potentially applicable	
	Erosion Controls	Flood protection levees or headwalls	Not implementable due to flood plain development restrictions	
	Geosynthetic and/or rip-rap materials		Potentially applicable	
		Sod cover only	Potentially applicable	
	On-site Vault	Above ground containment structure	Not implementable due to location in flood plain`	
	On-site Landfill	RCRA/TSCA Landfill	Not implementable due to location in flood plain	
Ex Situ Treatment	Physical Treatment	Soil/debris washing for metal removal	Not effective for PCBs; technically unreliable for metals in site soils matrix	
	Physical/Chemical Treatment	Solidification/stabilization with pozzolanic material	Not effective for PCBs, increases volume; reduces flood plain capacity	
	Chemical Treatment	Dehalogenation for PCBs removal	Technically unproven for site soils matirx; not applicable for metals	

Initial Screening of Technologies and Process Options McInerney Farm Site Southport, New York

Remedial Response Action	Remedial Technology	Process Options	Screening Comments	
In Situ Treatment	Physical/Chemical/ Biological Treatment	Chemical oxidation	Not effective for site COCs	
		Bioremediation	Not effective for PCBs; not applicable for metals	
		Vitrification	Not implementable in floodplain	
		Soil flushing with/without mobilizing chemicals	Not effective for degree of reduction required	
		Low temperature thermal treatment	Not effective for high MW PCBs; not applicable for metals	
		Grout injection	Not effective for COCs and soil media	
		High Temperature Thermal Wells	Not effective for metals, not implementable in floodplain	
	Physical/Chemical Treatment	Solidification/stabilization with pozzolanic material	Not effective for PCBs, does not reduce volume; reduces flood plain capacity	
Excavation and Removal	Excavate Soil	Transport to permitted TSD facility for treatment and disposal	Potentially applicable	

Note:

- MW molecular weight
- TSD treatment, storage, and disposal
- COCs constituents of concern
- RAO remedial action objective
- PCBs polychlorinated biphenyls

- Shaded areas do not meet RAOs or are technically not feasible

天 10 米

TABLE 8Cost Estimate Summary

Remedial Alternative	Capital Cost 2005	Annual O&M 2005	Total Cost Present Worth 2005 (a)
1	4,330,000	35,000	4,365,000
2	3,500,000	35,000	3,540,000

Description of Remedial Alternative

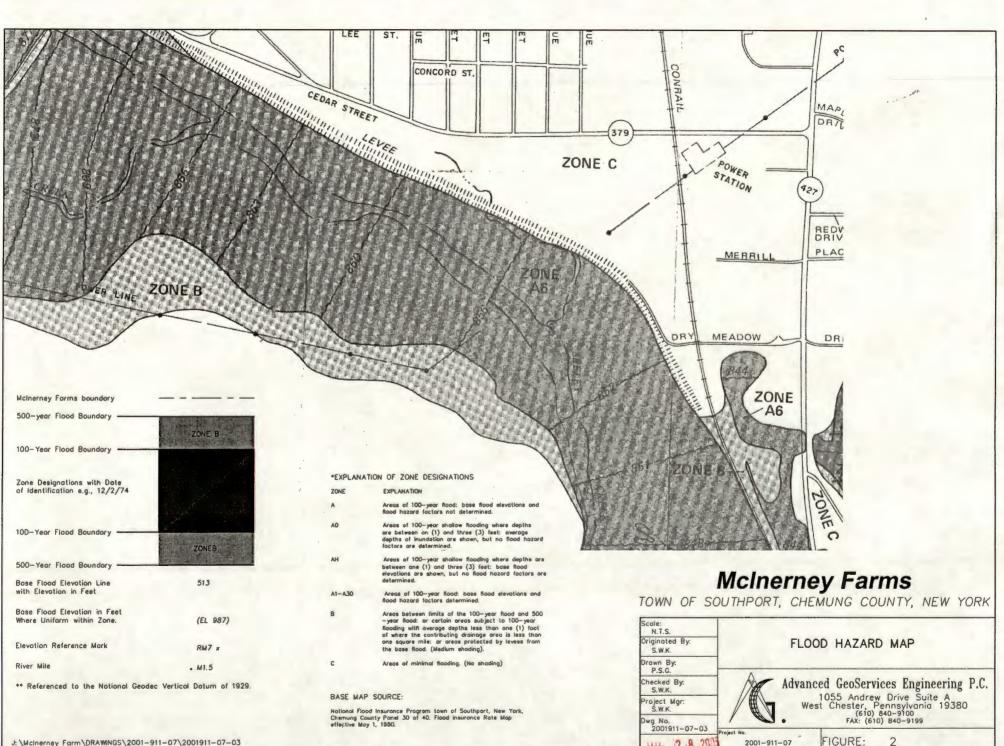
Alternative 1

Original ROD Remedy

Alternative 2 Excavation/Removal to Restricted Land Use Standards

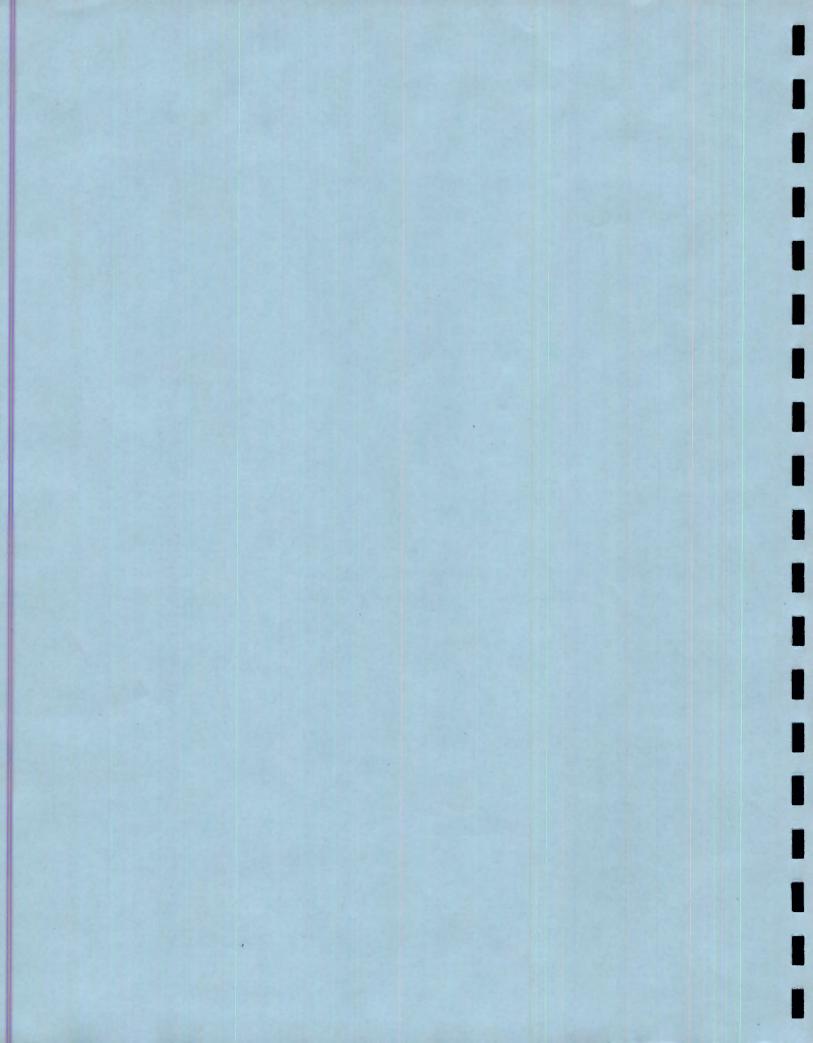
(a) All alternatives based on 3 rounds of post-remediation groundwater monitoring over 5-year period

.

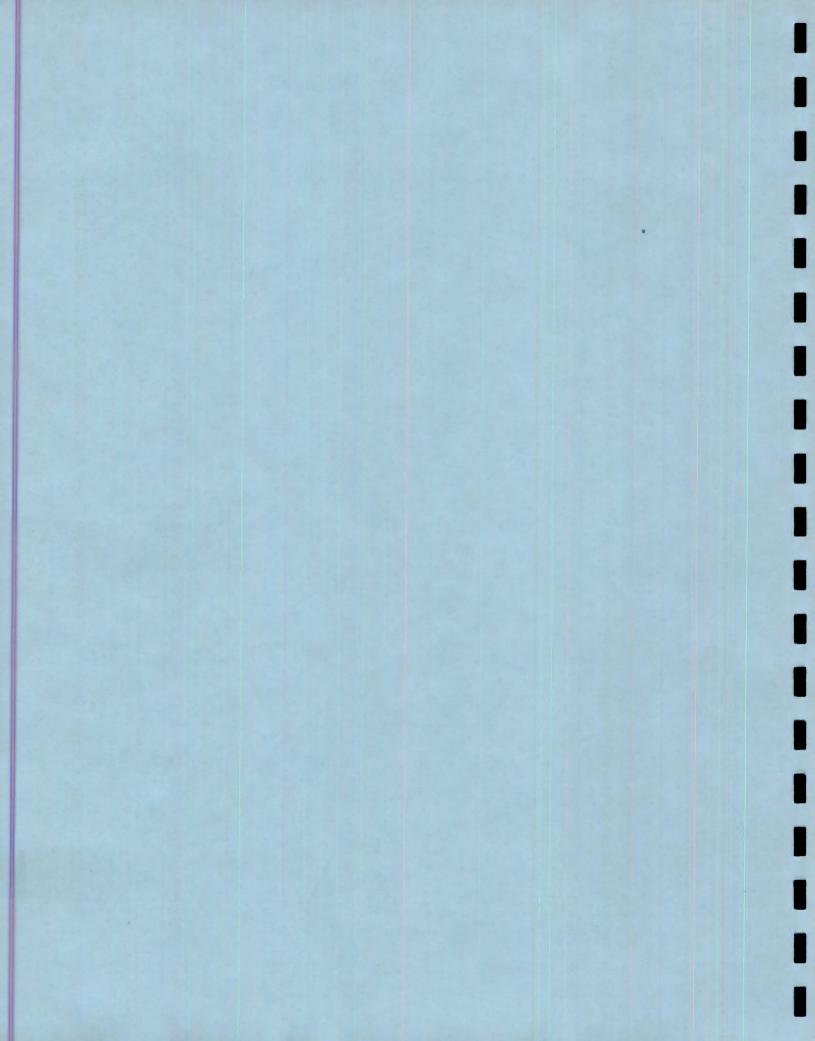

TABLE 9 Summary of Detailed Alternatives Analysis

Criteria	ALTERNATIVES				
Criteria	Alternative #1	Alternative #2			
Compliance with SCGs	Meets threshold criteria	Meets threshold criteria.			
Overall Protection of Human Health and Environment	Meets threshold criteria	Meets threshold criteria.			
Long-Term Effectiveness and Permanence	Permanent remedy. Minimal long-term O&M	Permanent remedy, minimal long-term O&M.			
Reduction of Mobility, Toxicity or Volume	Reduction in mobility, no reduction in toxicity or volume	Reduction in mobility, no reduction in toxicity or volume			
Implementability	Technical implementability high due to conventional equipment, reliability not affected by potential volume increases. Administrative implementability high based on previous 1993/1994 work	Technical implementability high due to conventional equipment and procedures, reliability not affected by potential volume increases.			
Short-Term Impacts and Effectiveness	Large excavations will have cross- contamination risks due to potential flooding, may require 6-12 months to implement	Large excavations will have cross- contamination risks due to potential flooding, may require 4 to 9 months to implement			
Cost	Capital Cost = 4,330,000 O&M = 35,000 PW Cost = 4,365,000	Capital Cost = 3,464,000 O&M = 35,000 PW Cost = 3,500,000			

FIGURES



2001-911-07 8


APPENDIX A Institutional Restrictions (previously submitted in Revised Feasibility Study, April 1997)

APPENDIX B Post-ROD Soil Data

F:\OFICEAGC\PROJECTS\FILES\2001-911\REPORTS\REVISED FS (7-28-05)\TEXT.DOC

Appendix B Database Unisys, McInerney Farm Site RFS

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
B51A/.5-2.5	Cadmium	7440439	21.9		mg/Kg	INOR	.5-2.5	3/21/96
B10A/S	Cadmium	7440439	0.36		mg/Kg	INOR	0-0.5	3/19/96
B11A/S	Cadmium	7440439	0.41		mg/Kg	INOR	0-0.5	3/19/96
B12A/S	Cadmium	7440439	1.5		mg/Kg	INOR	0-0.5	3/19/96
B13A/S	Cadmium	7440439	0.36	J	mg/Kg	INOR	0-0.5	3/19/96
B14A/S	Cadmium	7440439	0.81	J	mg/Kg	INOR	0-0.5	3/20/96
B156A/S	Cadmium	7440439	0.43	J	mg/Kg	INOR	0-0.5	3/21/96
B15A/S	Cadmium	7440439	0.71	J	mg/Kg	INOR	0-0.5	3/20/96
B166A/S	Cadmium	7440439	0.39	J	mg/Kg	INOR	0-0.5	3/22/96
B16A/S	Cadmium	7440439	0.87	J	mg/Kg	INOR	0-0.5	3/20/96
B171A/S	Cadmium	7440439	0.26	U	mg/Kg	INOR	0-0.5	3/25/96
B17A/S	Cadmium	7440439	0.53	.J	mg/Kg	INOR	0-0.5	3/20/96
B18A/S	Cadmium	7440439	0.36	J	mg/Kg	INOR	0-0.5	3/21/96
B19A/S	Cadmium	7440439	0.83	J	mg/Kg	INOR	0-0.5	3/20/96
B1A/S	Cadmium	7440439	0.58	J	mg/Kg	INOR	0-0.5	3/19/96
B20A/S	Cadmium	7440439	2.0	J	mg/Kg	INOR	0-0.5	3/20/96
B21A/S	Cadmium	7440439	0.20	U	mg/Kg	INOR	0-0.5	3/20/96
B22A/S	Cadmium	7440439	0.19	U	mg/Kg	INOR	0-0.5	3/20/96
B23A/S	Cadmium	7440439	0.21	U	mg/Kg	INOR	0-0.5	3/20/96
B24A/S	Cadmium	7440439	0.69	J	mg/Kg	INOR	0-0.5	3/20/96
B25A/S	Cadmium	7440439	0.17	U	mg/Kg	INOR	0-0.5	3/20/96
B26A/S	Cadmium	7440439	0.23	U	mg/Kg	INOR	0-0.5	3/21/96
B27A/S	Cadmium	7440439	0.22	U	mg/Kg	INOR	0-0.5	3/20/96
B28A/S	Cadmium	7440439	0.24	U	mg/Kg	INOR	0-0.5	3/21/96
B29A/S	Cadmium	7440439	0.19	U	mg/Kg	INOR	0-0.5	3/21/96
B2A/S	Cadmium	7440439	2.5	J	mg/Kg	INOR	0-0.5	3/20/96
B30A/S	Cadmium	7440439	0.22	U	mg/Kg	INOR	0-0.5	3/21/96
B31A/S	Cadmium	7440439	0.26	J	mg/Kg	INOR	0-0.5	3/21/96
B32A/S	Cadmium	7440439	0.48	J	mg/Kg	INOR	0-0.5	3/21/96
B33A/S	Cadmium	7440439	0.30	J	mg/Kg	INOR	0-0.5	3/21/96
B34A/S	Cadmium	7440439	0.15	U	mg/Kg	INOR	0-0.5	3/21/96
B35A/S	Cadmium	7440439	0.24	U	mg/Kg	INOR	0-0.5	3/21/96
B36A/S	Cadmium	7440439	0.41	J	mg/Kg	INOR	0-0.5	3/21/96
B37A/S	Cadmium	7440439	0.20	U	mg/Kg	INOR	0-0.5	3/21/96
B38A/S	Cadmium	7440439	0.32	J	mg/Kg	INOR	0-0.5	3/21/96
B39A/S	Cadmium	7440439	0.36	J	mg/Kg	INOR	0-0.5	3/21/96
B3A/S	Cadmium	7440439	0.29		mg/Kg	INOR	0-0.5	3/19/96
B40A/S	Cadmium	7440439	0.38	J	mg/Kg	INOR	0-0.5	3/21/96
B41A/S	Cadmium	7440439	0.39		mg/Kg	INOR	0-0.5	3/21/96
B42A/S	Cadmium	7440439	0.49	J	mg/Kg	INOR	0-0.5	3/21/96
B43A/S	Cadmium	7440439	0.96	J	mg/Kg	INOR	0-0.5	3/21/96
B44A/S	Cadmium	7440439	0.58		mg/Kg	INOR	0-0.5	3/21/96
B45A/S	Cadmium	7440439	0.50	J	mg/Kg	INOR	0-0.5	3/21/96
B46A/S	Cadmium	7440439	0.43	J	mg/Kg	INOR	0-0.5	3/21/96
B47A/S	Cadmium	7440439	0.31	J	mg/Kg	INOR	0-0.5	3/21/96
B48A/S	Cadmium	7440439	0.36	J	mg/Kg	INOR	0-0.5	3/21/96
B49A/S	Cadmium	7440439	0.33		mg/Kg	INOR	0-0.5	3/21/96
B4A/S	Cadmium	7440439	0.30	J	mg/Kg	INOR	0-0.5	3/19/96
B50A/S	Cadmium	7440439	0.39	1	mg/Kg	INOR	0-0.5	3/21/96

Sample # Analyte CAS # Results Qualifier Units Data Group I	Depth (feet)	Date Collected
B51A/S Cadmium 7440439 0.38 J mg/Kg INOR	0-0.5	3/21/96
B52A/S Cadmium 7440439 0.35 J mg/Kg INOR	0-0.5	3/21/96
B53A/S Cadmium 7440439 0.27 mg/Kg INOR	0-0.5	3/21/96
B54A/S Cadmium 7440439 0.50 mg/Kg INOR	0-0.5	3/21/96
B55A/S Cadmium 7440439 0.36 mg/Kg INOR	0-0.5	3/21/96
B56A/S Cadmium 7440439 0.31 mg/Kg INOR	0-0.5	3/21/96
B57A/S Cadmium 7440439 0.35 mg/Kg INOR	0-0.5	3/22/96
B57B/S Cadmium 7440439 0.33 mg/Kg INOR	0-0.5	3/22/96
B57C/S Cadmium 7440439 0.32 mg/Kg INOR	0-0.5	3/22/96
B57D/S Cadmium 7440439 0.35 mg/Kg INOR	0-0.5	3/22/96
B57E/S Cadmium 7440439 0.31 J mg/Kg INOR	0-0.5	3/22/96
B57F/S Cadmium 7440439 0.38 mg/Kg INOR	0-0.5	3/22/96
B58A/S Cadmium 7440439 0.32 mg/Kg INOR	0-0.5	3/22/96
B59A/S Cadmium 7440439 0.36 mg/Kg INOR	0-0.5	3/22/96
B5A/S Cadmium 7440439 1.8 J mg/Kg INOR	0-0.5	3/20/96
B60A/S Cadmium 7440439 0.34 mg/Kg INOR	0-0.5	3/22/96
B61A/S Cadmium 7440439 0.28 mg/Kg INOR	0-0.5	3/22/96
B62A/S Cadmium 7440439 0.29 J mg/Kg INOR	0-0.5	3/22/96
B63A/S Cadmium 7440439 0.30 mg/Kg INOR	0-0.5	3/22/96
B64A/S Cadmium 7440439 0.30 mg/Kg INOR	0-0.5	3/22/96
B65A/S Cadmium 7440439 0.63 mg/Kg INOR	0-0.5	3/22/96
B66A/S Cadmium 7440439 0.38 mg/Kg INOR	0-0.5	3/22/96
B67A/S Cadmium 7440439 0.33 mg/Kg INOR	0-0.5	3/22/96
B68A/S Cadmium 7440439 0.33 mg/Kg INOR	0-0.5	3/22/96
B69A/S Cadmium 7440439 0.34 J mg/Kg INOR	0-0.5	3/22/96
B6A/S Cadmium 7440439 0.48 J mg/Kg INOR	0-0.5	3/19/96
B70A/S Cadmium 7440439 0.16 J mg/Kg INOR	0-0.5	3/25/96
B71A/S Cadmium 7440439 0.27 U mg/Kg INOR	0-0.5	3/25/96
B72A/S Cadmium 7440439 0.33 mg/Kg INOR	0-0.5	3/25/96
B7A/S Cadmium 7440439 1.1 mg/Kg INOR	0-0.5	3/19/96
B8A/S Cadmium 7440439 0.42 mg/Kg INOR	0-0.5	3/19/96
B9A/S Cadmium 7440439 0.31 J mg/Kg INOR	0-0.5	3/21/96
BTPBA/S Cadmium 7440439 0.31 J mg/Kg INOR	0-0.5	3/20/96
BTPBB/S Cadmium 7440439 3.7 J mg/Kg INOR	0-0.5	3/20/96
BTPBC/S Cadmium 7440439 0.28 J mg/Kg INOR	0-0.5	3/20/96
BTPBD/S Cadmium 7440439 0.21 J mg/Kg INOR	0-0.5	3/20/96
N3B-WS-166 Cadmium 7440439 2.7 mg/kg INOR	0-0.5	9/23/96
N3C-WS-170 Cadmium 7440439 3.3 mg/kg INOR	0-0.5	9/23/96
N3C-WS-170D Cadmium 7440439 3.5 mg/kg INOR	0-0.5	9/23/96
B39-A Cadmium 7440439 0.56 mg/Kg INOR	0-1.3	3/1/94
N1-CS-SW-101 Cadmium 7440439 6.4 mg/Kg INOR	0-4 C	11/30/93
N2A-CS-NW-101 Cadmium 7440439 0.36 U mg/Kg INOR	0-4 C	11/30/93
N2B-CS-SW-101 Cadmium 7440439 6.1 mg/Kg INOR	0-4 C	11/30/93
N2C-CS-WW-101 Cadmium 7440439 2.5 mg/Kg INOR	0-4 C	11/30/93
N2D-CS-SW-101 Cadmium 7440439 1.2 mg/Kg INOR	0-4 C	11/30/93
N3A-WS-103 Cadmium 7440439 5.2 mg/Kg INOR	0-4 C	12/2/93
N3A-WS-150A Cadmium 7440439 0.81 mg/Kg INOR	0-4 C	12/2/93
N3A-WS-188 Cadmium 7440439 0.36 U mg/Kg INOR	0-4 C	12/2/93
N3A-WS-192A Cadmium 7440439 0.36 U mg/Kg INOR	0-4 C -	12/2/93
N3B-WS-155 Cadmium 7440439 0.96 mg/Kg INOR	0-4 C	12/2/93
N3B-WS-160 Cadmium 7440439 0.36 U mg/Kg INOR	0-4 C	12/2/93
N3B-WS-164 Cadmium 7440439 5.1 mg/Kg INOR		The second se
	0-4 C	12/2/93
N3B-WS-166 Cadmium 7440439 28.2 mg/Kg INOR	0-4 C 0-4 C	12/2/93 12/2/93

Appenix B.xls / dbas5 2 of 33

	Sample # N3C-WS-175 N3C-WS-180A	Analyte Cadmium	CAS #	Results	Qualifier	Units	Data Group	Depth (leet)	Date Collected
			7440439	2.9		malva			
	N IC -WN-IXDA	Cadmium	7440439	0.36	TT	mg/Kg	INOR	0-4 C	12/2/93
	N3C-WS-190	Cadmium	7440439		U	mg/Kg	INOR	0-4 C	12/2/93
	N3C-WS-193A	Cadmium	7440439	0.52		mg/Kg	INOR	0-4 C	12/2/93
	N3D-WS-183A	Cadmium		2.2	٠	mg/Kg	INOR	0-4 C	12/2/93
	N3D-WS-191A	Cadmium	7440439	0.86		mg/Kg	INOR	0-4 C	12/2/93
	N4A-WS-131	Cadmium	7440439	1.2		mg/Kg	INOR	0-4 C	12/2/93
	N4A-WS-131	Cadmium	7440439	0.64		mg/Kg	INOR	0-4 Ċ	12/10/93
	N4A-WS-132 N4A-WS-135	Cadmium	7440439	7		mg/Kg	INOR	0-4 C	12/10/93
	N4B-WS-115		7440439	0.36	U	mg/Kg	INOR	0-4 C	12/10/93
	N4B-WS-115	Cadmium	7440439	0.36	U	mg/Kg	INOR	0-4 C	12/10/93
		Cadmium	7440439	0.36	U	mg/Kg	INOR	0-4 C	12/10/93
	N4B-WS-150	Cadmium	7440439	0.36	U	mg/Kg	INOR	0-4 C	12/10/93
	N4B-WS-153	Cadmium	7440439	0.36	U	mg/Kg	INOR	0-4 C	12/10/93
	TPA-CS-NW-101	Cadmium	7440439	2		mg/Kg	INOR	0-4 C	11/30/93
	TPB-CS-NW-101	Cadmium	7440439	0.36	U	mg/Kg	INOR	0-4 C	11/30/93
	TPC-CS-EW-101	Cadmium	7440439	1.8		mg/Kg	INOR	0-4 C	11/30/93
	TPC-CS-EW-102	Cadmium	7440439	1.5		mg/Kg	INOR	0-4 C	11/30/93
	B11A/1-3 B12A/1-3	Cadmium	7440439	0.28		mg/Kg	INOR	1-3	3/19/96
		Cadmium	7440439	0.81		mg/Kg	INOR	1-3	3/19/96
	B14A/1-3	Cadmium	7440439	1.2	1	mg/Kg	INOR	1-3	3/20/96
	B157A/1-3	Cadmium	7440439	0.36	J	mg/Kg	INOR	1-3	3/21/96
	B158A/1-3	Cadmium	7440439	0.67		mg/Kg	INOR	1-3	3/25/96
	B15A/1-3	Cadmium	7440439	0.29	J	mg/Kg	INOR	1-3	3/20/96
	B167A/1-3	Cadmium	7440439	0.19	U	mg/Kg	INOR	1-3	3/25/96
	B21A/1-3	Cadmium	7440439	0.61	1	mg/Kg	INOR	1-3	3/20/96
	B22A/1-3	Cadmium	7440439	0.24	U	mg/Kg	INOR	1-3	3/20/96
	B23A/1-3	Cadmium	7440439	0.93	J	mg/Kg	INOR	1-3	3/20/96
	B24A/1-3	Cadmium	7440439	0.30	1	mg/Kg	INOR	1-3	3/21/96
	B25A/1-3	Cadmium	7440439	0.25	J	mg/Kg	INOR	1-3	3/21/96
	B26A/1-3	Cadmium	7440439	0.25	U	mg/Kg	INOR	1-3	3/21/96
	B27A/1-3	Cadmium	7440439	4.9	J	mg/Kg	INOR	1-3	3/21/96
	B2A/1-3	Cadmium	7440439	0.99	J	mg/Kg	INOR	1-3	3/20/96
	B31A/1-3	Cadmium	7440439	8.3		mg/Kg	INOR	1-3	3/21/96
	B32A/1-3	Cadmium	7440439	0.37	J	mg/Kg	INOR	1-3	3/21/96
	B33A/1-3	Cadmium	7440439	0.27	U	mg/Kg	INOR	1-3	3/21/96
*	B34A/1-3	Cadmium	7440439	0.27	U	mg/Kg	INOR	1-3	3/21/96
	B36A/1-3	Cadmium	7440439	1.9	J	mg/Kg	INOR	1-3	3/21/96
	B38A/1-3	Cadmium	7440439	0.27	U	mg/Kg	INOR	1-3	3/21/96
	B43A/1-3	Cadmium	7440439	18.9		mg/Kg	INOR	1-3	3/21/96
	B48A/1-3	Cadmium	7440439	0.29	1	mg/Kg	INOR	1-3	3/21/96
	B49A/1-3	Cadmium	7440439	3.2	J	mg/Kg	INOR	1-3	3/21/96
	B50A/1-3 B54A/1-3	Cadmium	7440439	9.0		mg/Kg	INOR	1-3	3/21/96
		Cadmium	7440439	2.5	J	mg/Kg	INOR	1-3	3/25/96
	B55A/1-3	Cadmium	7440439	0.32		mg/Kg	INOR	1-3	3/25/96
	B57A/1-3	Cadmium	7440439	0.35	J	mg/Kg	INOR	1-3	3/21/96
	B57B/1-3	Cadmium	7440439	0.73	J	mg/Kg	INOR	1-3	3/22/96
	B57C/1-3	Cadmium	7440439	0.50		mg/Kg	INOR	1-3	3/22/96
	B57D/1-3	Cadmium	7440439	0.77		mg/Kg	INOR	1-3	3/22/96
	B57E/1-3	Cadmium	7440439	0.67	J	mg/Kg	INOR	1-3	3/22/96
	B57F/1-3	Cadmium	7440439	0.74		mg/Kg	INOR	1-3	3/22/96
	B58A/1-3	Cadmium	7440439	0.50	J	mg/Kg	INOR	1-3	3/25/96
	B59A/1-3	Cadmium	7440439	0.20	U	mg/Kg	INOR	1-3	3/25/96
	B5A/1-3	Cadmium	7440439	0.81	J	mg/Kg	INOR	1-3	3/20/96
	B61A/1-3	Cadmium	7440439	0.17	U	mg/Kg	INOR	1-3	3/25/96

Appenix B.xls / dbas5 3 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units		Depth (feet)	Date Collected
B65A/1-3	Cadmium	7440439	0.20	U	mg/Kg	INOR	1-3	3/25/96
B66A/1-3	Cadmium	7440439	0.38	J	mg/Kg	INOR	1-3	3/25/96
B67A/1-3	Cadmium	7440439	0.20	U	mg/Kg	INOR	1-3	3/25/96
B68A/1-3	Cadmium	7440439	0.51	J	mg/Kg	INOR	1-3	3/25/96
B69A/1-3	Cadmium	7440439	0.22	U	mg/Kg	INOR	1-3	3/25/96
B6A/1-3	Cadmium	7440439	0.27	UJ	mg/Kg	INOR	1-3	3/19/96
B70A/1-3	Cadmium	7440439	0.20	U	mg/Kg	INOR	1-3	3/25/96
B71A/1-3	Cadmium	7440439	0.39	J	mg/K.g	INOR	1-3	3/25/96
B72A/1-3	Cadmium	7440439	0.36	J	mg/Kg	INOR	1-3	3/25/96
B7A/1-3	Cadmium	7440439	1.3	J	mg/Kg	INOR	1-3	3/19/96
B8A/1-3	Cadmium	7440439	0.31		mg/Kg	INOR	1-3	3/19/96
BTPBA/1-3	Cadmium	7440439	0.23	U	mg/Kg	INOR	1-3	3/20/96
BTPBB/1-3	Cadmium	7440439	0.31	U	mg/Kg	INOR	1-3	3/20/96
BTPBC/1-3	Cadmium	7440439	0.25	U	mg/Kg	INOR	1-3	3/20/96
BTPBD/1-3	Cadmium	7440439	0.20	U	mg/Kg	INOR	1-3	3/20/96
N3A-CS-048B	Cadmium	7440439	0.62	U	mg/Kg	INOR	1-4	10/18/93
N3A-CS-049A	Cadmium	7440439	0.62	U	mg/Kg	INOR	1-4	10/18/93
N3A-CS-050B	Cadmium	7440439	0.62	U	mg/Kg	INOR	1-4	10/18/93
N3A-CS-051	Cadmium	7440439	6.4		mg/Kg	INOR	1-4	10/18/93
N3B-CS-052A	Cadmium	7440439	0.57		mg/Kg	INOR	1-4	11/10/93
N3B-CS-053	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/10/93
N3B-CS-056	Cadmium	7440439	0.51		mg/Kg	INOR	1-4	11/10/93
N3B-CS-064B	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/19/93
N3B-CS-066	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/10/93
N3C-CS-034A/73A	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/18/93
N3C-CS-063B	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/19/93
N3C-CS-065	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	12/6/93
N3C-CS-069A	Cadmium	7440439	0.75		mg/Kg	INOR	1-4	11/10/93
N3C-CS-074	Cadmium	7440439	0.81		mg/Kg	INOR	1-4	11/10/93
N3C-CS-076	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/10/93
N3D-CS-087	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/19/93
N3D-CS-088	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/19/93
N3D-CS-089	Cadmium	7440439	0.36	U	mg/Kg	INOR	1-4	11/19/93
N4B-CS-006	Cadmium	7440439	1		mg/Kg	INOR	1-4	10/12/93
N4C-BE-P/M	Cadmium	7440439	1.6		mg/Kg	INOR	1-4	9/11/93
N4C-BW-P/M	Cadmium	7440439	1.2		mg/Kg	INOR	1-4	9/13/93
N4C-EW-P/M	Cadmium	7440439	. 0.54		mg/Kg	INOR	1-4	9/11/93
N4C-NW	Cadmium	7440439	1.3		mg/Kg	INOR	1-4	9/24/93
N4C-SW-P/M	Cadmium	7440439	0.79		mg/Kg	INOR	1-4	9/11/93
N4C-WW-P/M	Cadmium	7440439	0.81		mg/Kg	INOR	1-4	9/11/93
B20-A	Cadmium	7440439	0.6		mg/Kg	INOR	1-6	2/10/94
B17-C	Cadmium	7440439	0.4	U.	mg/Kg	INOR	10-11 W	2/25/94
B18-C	Cadmium	7440439	0.4	U	mg/Kg	INOR	10-11.5 W	3/3/94
В59-Е	Cadmium	7440439	0.4	U	mg/Kg	INOR	10-11.5 W	2/28/94
B62-C	Cadmium	7440439	0.4	U	mg/Kg	INOR	10-11.5 W	2/17/94
B19A/10-12	Cadmium	7440439	0.30	J	mg/Kg	INOR	10-12	3/21/96
B30-E	Cadmium	7440439	0.68		mg/Kg	INOR	10-12 W	3/1/94
B71-D	Cadmium	7440439	0.4	U	mg/Kg	INOR	10-12 W	2/17/94
B138A/12-14	Cadmium	7440439	0.54	J	mg/Kg	INOR	12-14	3/21/96
B38A/12-14	Cadmium	7440439	0.64	J	mg/Kg	INOR	12-14	3/21/96
B45-D	Cadmium	7440439	0.6	U	mg/Kg	INOR	12-16 W	3/2/94
B21-E	Cadmium	7440439	1.54		mg/Kg	INOR	13-15	2/7/94
B1A/2-4	Cadmium	7440439	1.9	J	mg/Kg	INOR	2-4	3/19/96
B33-A	Cadmium	7440439	3.95	1700	mg/Kg	INOR	2-7	2/8/94

Appenix B.xls / dbas5 4 of 33

Sample #	Analyte	CAS #	Results	Qualifier	r Units	Data Group	Depth (feet)	Date Collected
B42-A	Cadmium	7440439	0.4	U	mg/Kg	INOR	2-7	2/22/94
B32-A	Cadmium	7440439	0.4	U	mg/Kg	INOR	2.5-4.5	2/11/94
B38-H	Cadmium	7440439	0.4	U	mg/Kg	INOR	20-21 W	2/11/94
B112A/3-5	Cadmium	7440439	1.9	J	mg/Kg	INOR.	3-5	3/19/96
B115A/3-5	Cadmium	7440439	3.4	J	mg/Kg	INOR	3-5	3/20/96
B12A/3-5	Cadmium	7440439	3.0	J	mg/Kg	INOR	3-5	
B13A/3-5	Cadmium	7440439	2.2	J	mg/Kg	INOR	3-5	3/19/96
B14A/3-5	Cadmium	7440439	6.3	J	mg/Kg	INOR		3/19/96
B15A/3-5	Cadmium	7440439	3.8	Ĵ	mg/Kg		3-5	3/20/96
B16A/3-5	Cadmium	7440439	0.64	J	mg/Kg	INOR	3-5	3/20/96
B20/3-5	Cadmium	7440439	7.5	Ĵ	mg/Kg	INOR	3-5	3/20/96
B21A/3-5	Cadmium	7440439	0.27	Ŭ		INOR	3-5	3/20/96
B22A/3-5	Cadmium	7440439	8.2	J	mg/Kg	INOR	3-5	3/20/96
B23A/3-5	Cadmium	7440439	0.68	J	mg/Kg	INOR	3-5	3/20/96
B24A/3-5	Cadmium	7440439	13.3	J	mg/Kg	INOR	3-5	3/20/96
B25A/3-5	Cadmium	7440439	5.9		mg/Kg	INOR	3-5	3/21/96
B26A/3-5	Cadmium	7440439	3.7	1 1	mg/Kg	INOR	3-5	3/21/96
B31A/3-5	Cadmium	7440439	13.5	J	mg/Kg	INOR	3-5	3/21/96
B32A/3-5	Cadmium	7440439		**	mg/Kg	INOR	3-5	3/21/96
B34A/3-5	Cadmium	7440439	0.25	U	mg/Kg	INOR	3-5	3/21/96
B37A/3-5	Cadmium		5.1	J	mg/Kg	INOR	3-5	3/21/96
B48A/3-5	Cadmium	7440439	0.42		mg/Kg	INOR	3-5	3/21/96
B49A/3-5	Cadmium	7440439	1.3	J	mg/Kg	INOR	3-5	3/21/96
B50A/3-5	Cadmium	7440439	0.62	J	mg/Kg	INOR	3-5	3/21/96
B55A/3-5		7440439	14.0		mg/Kg	INOR	3-5	3/21/96
B57A/3-5	Cadmium	7440439	0.55	J	mg/Kg	INOR	3-5	3/25/96
B57B/3-5	Cadmium	7440439	0.92		mg/Kg	INOR	3-5	3/22/96
B57C/3-5	Cadmium	7440439	7.3		mg/Kg	INOR	3-5	3/22/96
B57D/3-5	Cadmium	7440439	3.0	J	mg/Kg	INOR	3-5	3/22/96
	Cadmium	7440439	0.34	J	mg/Kg	INOR	3-5	3/22/96
B57E/3-5	Cadmium	7440439	0.64	J	mg/Kg	INOR	3-5	3/22/96
B57F/3-5	Cadmium	7440439	0.43		mg/Kg	INOR	3-5	3/22/96
B5A/3-5	Cadmium	7440439	0.60	J	mg/Kg	INOR	3-5	3/20/96
B6A/3-5	Cadmium	7440439	0.29	UJ	mg/Kg	INOR	3-5	3/19/96
B8A/3-5	Cadmium	7440439	0.28		mg/Kg	INOR	3-5	3/19/96
BTPBA/3-5	Cadmium	7440439	0.23	U	mg/Kg	INOR	3-5	3/20/96
BTPBB/3-5	Cadmium	7440439	1.2	J	mg/Kg	INOR	3-5	3/20/96
BTPBC/3-5	Cadmium	7440439	0.20	U	mg/Kg	INOR	3-5	3/20/96
BTPBD/3-5	Cadmium	7440439	0.23	U	mg/Kg	INOR	3-5	3/20/96
B09-A	Cadmium	7440439	0.4	U	mg/Kg	INOR	4-5.5	2/22/94
B54A/4-6	Cadmium	7440439	0.23	J	mg/Kg	INOR	4-6	3/25/96
B64-B	Cadmium	7440439	0.4	U	mg/Kg	INOR	4-6 W	2/21/94
B72-B	Cadmium	7440439	0.4	U	mg/Kg	INOR	4-7 W	2/21/94
B02-B	Cadmium	7440439	0.4	U	mg/Kg	INOR	4-7.5	
N1-CS-001	Cadmium	7440439	2.1	-	mg/Kg	INOR	4-8	2/24/94
N2D-CS-001	Cadmium	7440439	0.41	U	mg/Kg	INOR	4-8	11/30/93
N3A-CS-011	Cadmium	7440439	0.62	U	mg/Kg	INOR	4-8	11/30/93
N3A-CS-019	Cadmium	7440439	9.5		mg/Kg	INOR		10/18/93
N3A-CS-020	Cadmium	7440439	0.62	U	mg/Kg	INOR	4-8	11/10/93
N3A-CS-021	Cadmium	7440439	0.36	Ŭ			4-8	10/18/93
N3A-CS-030	Cadmium	7440439	0.62	U	mg/Kg	INOR	4-8	12/6/93
N3A-CS-031	Cadmium	7440439	0.62		mg/Kg	INOR	4-8	10/18/93
N3A-CS-046	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	10/18/93
N3B-CS-054	Cadmium	7440439			mg/Kg	INOR	4-8	11/10/93
N3B-CS-055	Cadmium	7440439	0.36	10 March 10	mg/Kg	INOR	4-8	11/10/93
	Camillall	1440439	0.36	U	mg/Kg	INOR	4-8	11/10/93

I

I

Sample #	Analyte	CAS #	Results	Qualifier	Units			Date Collected
N3B-CS-057	Cadmium	7440439	0.88		mg/Kg	INOR	4-8	11/10/93
N3B-CS-058	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	11/10/93
N3B-CS-061	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	12/6/93
N3B-CS-062	Cadmium	7440439	0.81		mg/Kg	INOR	4-8	12/13/93
N3C-CS-067	Cadmium	7440439	0.6		mg/Kg	INOR	4-8	11/10/93
N3C-CS-068	Cadmium	7440439	1.3		mg/Kg	INOR	4-8	11/10/93
N3C-CS-070A	Cadmium	7440439	0.59		mg/Kg	INOR	4-8	11/18/93
N3C-CS-072A	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	11/18/93
N3C-CS-075	Cadmium	7440439	0.43		mg/Kg	INOR	4-8	11/10/93
N3C-CS-078A	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	11/16/93
N3C-CS-081	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	11/10/93
N3C-CS-081	Cadmium	7440439	1.65	U	mg/Kg	INOR	4-8	11/10/93
N3D-CS-083	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	12/7/93
N3D-CS-084	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	12/6/93
N3D-CS-085	Cadmium	7440439	0.36	Ŭ	mg/Kg	INOR	4-8	11/19/93
N3D-CS-086	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	11/19/93
N4A-CS-033	Cadmium	.7440439	0.36	U .	mg/Kg	INOR	4-8	12/7/93
	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	12/7/93
N4A-CS-034	Cadmium	7440439	0.36	0	mg/Kg	INOR	4-8	10/12/93
N4B-CS-001	Cadmium	7440439	1.6		mg/Kg	INOR	4-8	10/12/93
N4B-CS-002a		7440439	0.81		mg/Kg	INOR	4-8	10/12/93
N4B-CS-003	Cadmium	7440439	1.1		mg/Kg	INOR	4-8	10/12/93
N4B-CS-004	Cadmium					INOR	4-8	10/12/93
N4B-CS-005	Cadmium	7440439	0.75		mg/Kg	INOR	4-8	10/12/93
N4B-CS-014	Cadmium	7440439	1.3		mg/Kg	INOR	4-8	10/12/93
N4B-CS-020a	Cadmium	7440439	0.89	**	mg/Kg	INOR	4-8	12/7/93
N4B-CS-025	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	12/9/93
N4B-CS-026	Cadmium	7440439	3.7		mg/Kg		4-8	10/12/93
N4B-CS-028	Cadmium	7440439	1.8		mg/Kg	INOR		10/12/93
N4B-CS-039A	Cadmium	7440439	0.64	U	mg/Kg	INOR	4-8	
N4B-CS-052B	Cadmium	7440439	0.62	U	mg/Kg	INOR	4-8	10/22/93
TPA-CS-001	Cadmium	7440439	0.36	U	mg/Kg	INOR	4-8	11/30/93
N1-CS-SW-102	Cadmium	7440439	4.2		mg/Kg	INOR	4-8 C	11/30/93
N2A-CS-NW-102	Cadmium	7440439	3.2		mg/Kg	INOR	4-8 C	11/30/93
N2B-CS-SW-102	Cadmium	7440439	15.1		mg/Kg	INOR	4-8 C	11/30/93
N2C-CS-WW-102	Cadmium	7440439	4		mg/Kg	INOR	4-8 C	11/30/93
N3A-WS-192B	Cadmium	7440439	14.3		mg/Kg	INOR	4-8 C	12/2/93
N3C-WS-180B	Cadmium	7440439	2.3		mg/Kg	INOR	4-8 C	12/2/93
N3C-WS-193B	Cadmium	7440439	5.4		mg/Kg	INOR	4-8 C	12/2/93
N3D-WS-183B	Cadmium	7440439	25.9		mg/Kg	INOR	4-8 C	12/2/93
N3D-WS-191B	Cadmium	7440439	7.5		mg/Kg	INOR	4-8 C	12/2/93
TPB-CS-NW-102	Cadmium	7440439	0.87		mg/Kg	INOR	4-8 C	11/30/93
B19-C	Cadmium	7440439	0.4	U	mg/Kg	INOR	4.8-5.3	2/23/94
В57-В	Cadmium	7440439	0.4	U	mg/Kg	INOR	5-6	2/15/94
B57E/5-6	Cadmium	7440439	0.80	J	mg/Kg	INOR	5-6	3/22/96
B12A/5-7	Cadmium	7440439	3.1	J	mg/Kg	INOR	5-7	3/19/96
B132A/5-7	Cadmium	7440439	14.4		mg/Kg	INOR	5-7	3/21/96
B13A/5-7	Cadmium	7440439	0.64	J	mg/Kg	INOR	5-7	3/19/96
B14A/5-7	Cadmium	7440439	3.9	J	mg/Kg	INOR	5-7	3/20/96
B15A/5-7	Cadmium	7440439	12.5	J	mg/Kg	INOR	5-7	3/20/96
B16A/5-7	Cadmium	7440439	0.28	J	mg/Kg	INOR	5-7	3/20/96
B20A/5-7	Cadmium	7440439	3.3	J	mg/Kg	INOR	5-7	3/20/96
B21A/5-7	Cadmium	7440439	5.6	J	mg/Kg	INOR	5-7	3/20/96
B22A/5-7	Cadmium	7440439	3.4	J	mg/Kg	INOR	5-7	3/20/96
B23A/5-7	Cadmium	7440439	0.50	J	mg/Kg	INOR	5-7	3/20/96

Appenix B.xls / dbas5 6 of 33

Sample #	Analyte	CAS #	Results	Qualifie	r Units	Data Group	Denth (feat)	Date Collected
B24A/5-7	Cadmium	7440439	0.53	J	mg/Kg	INOR	5-7	
B25A/5-7	Cadmium	7440439	16.5	T	mg/Kg	INOR	5-7	3/21/96
B26A/5-7	Cadmium	7440439	12.7	J	mg/Kg	INOR	5-7	3/21/96
B32A/5-7	Cadmium	7440439	15.9		mg/Kg	INOR	5-7	3/21/96
B49A/5-7	Cadmium	7440439	2.3	J	mg/Kg	INOR	5-7	3/21/96 -
B50A/5-7	Cadmium	7440439	1.5	< J	mg/Kg	INOR		3/21/96
B55A/5-7	Cadmium	7440439	0.19	J	mg/Kg	INOR	5-7	3/21/96
B57A/5-7	Cadmium	7440439	0.94	j	mg/Kg	INOR	5-7	3/25/96
B57B/5-7	Cadmium	7440439	3.9	J	mg/Kg	INOR	5-7	3/22/96
B57C/5-7	Cadmium	7440439	6.8		mg/Kg	INOR	5-7	3/22/96
B57F/5-7	Cadmium	7440439	0.45	J	mg/Kg	INOR	5-7	3/22/96
B5A/5-7	Cadmium	7440439	1.4	J	mg/Kg	INOR	5-7	3/22/96
B6A/5-7	Cadmium	7440439	0.49	Ĵ	mg/Kg	INOR	5-7 5-7	3/20/96
BTPBA/5-7	Cadmium	7440439	0.68	J	mg/Kg	INOR	5-7	3/19/96
BTPBB/5-7	Cadmium	7440439	0.26	Ŭ	mg/Kg	INOR	5-7	3/20/96
BTPBD/5-7	Cadmium	7440439	11.7	J	mg/Kg	INOR	5-7	3/20/96
B56-C	Cadmium	7440439	0.4	U	mg/Kg	INOR	6-6.5	3/20/96 2/16/94
B57-C	Cadmium	7440439	0.4	Ŭ	mg/Kg	INOR	6-7	
B31-D	Cadmium	7440439	0.4	Ŭ	mg/Kg	INOR	6-7.5	2/15/94 2/24/94
B10A/6-8	Cadmium	7440439	0.37	J	mg/Kg	INOR	6-8	
B11A/6-8	Cadmium	7440439	0.56	J	mg/Kg	INOR	6-8	3/19/96
B13-C	Cadmium	7440439	0.4	Ū	mg/Kg	INOR	6-8	3/19/96
B25-C	Cadmium	7440439	0.4	Ŭ	mg/Kg	INOR	7-10	2/9/94 2/7/94
B120A/7-9	Cadmium	7440439	1.9	J	mg/Kg	INOR	7-10	
B20A/7-9	Cadmium	7440439	1.4	J	mg/Kg	INOR	7-9	3/20/96
B21A/7-9	Cadmium	7440439	1.1	1.	mg/Kg	INOR	7-9	3/20/96
B26A/7-9	Cadmium	7440439	0.69	J	mg/Kg	INOR	7-9	3/20/96
B33A/7-9	Cadmium	7440439	0.45	J	mg/Kg	INOR	7-9	3/21/96 3/21/96
B49-C	Cadmium	7440439	0.4	U	mg/Kg	INOR	7-9	2/15/94
B49A/7-9	Cadmium	7440439	0.57	1	mg/Kg	INOR	7-9	3/21/96
B55A/7-9	Cadmium	7440439	0.20	U	mg/Kg	INOR	7-9	3/25/96
B57A/7-9	Cadmium	7440439	0.42	J	mg/Kg	INOR	7-9	3/21/96
B57B/7-9	Cadmium	7440439	1.0	J	mg/Kg	INOR	7-9	3/22/96
BTPBC/7-9	Cadmium	7440439	0.30	U	mg/Kg	INOR	7-9	3/20/96
BTPBCC/7-9	Cadmium	7440439	0.24	U	mg/Kg	INOR	7-9	3/20/96
B21-C	Cadmium	7440439	2.6		mg/Kg	INOR	8-10	2/7/94
N2A-CS-001	Cadmium	7440439	2.9		mg/Kg	INOR	8-12	11/30/93
N2C-CS-001	Cadmium	7440439	0.51		mg/Kg	INOR	8-12	11/30/93
N3A-CS-009A	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/19/93
N3A-CS-010A	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/19/93
N3A-CS-024	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/10/93
N3A-CS-025	Cadmium	7440439	0.62	U	mg/Kg	INOR	8-12	10/18/93
N3A-CS-026	Cadmium	7440439	0.62	U	mg/Kg	INOR	8-12	10/18/93
N3A-CS-029	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/10/93
N3A-CS-035	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/10/93
N3A-CS-036	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/10/93
N3A-CS-040	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	10/26/93
N3A-CS-041	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	10/26/93
N3A-CS-042	Cadmium	7440439	1		mg/Kg	INOR	8-12	10/26/93
N3A-CS-045	Cadmium	7440439	0.62	U	mg/Kg	INOR	8-12	10/18/93
N3B-CS-059	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/10/93
N3B-CS-060	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/10/93
N3C-CS-077A	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/18/93
N3C-CS-079A	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/18/93
								4 41 4 01 7 J

Appenix B.xls / dbas5 7 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units			Date Collected	
N3C-CS-080	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	12/6/93	
N3C-CS-080	Cadmium	7440439	1.65	U	mg/Kg	INOR	8-12	12/6/93	
N3D-CS-082	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	12/13/93	
N3D-CS-082	Cadmium	7440439	1.65	U.	mg/Kg	INOR	8-12	12/13/93	
N4A-CS-040	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	12/7/93	
TPC-CS-001	Cadmium	7440439	0.36	U	mg/Kg	INOR	8-12	11/30/93	
N2B-CS-001	Cadmium	7440439	0.32	U	mg/Kg	INOR	8-12	11/30/93	
N2A-CS-NW-103	Cadmium	7446439	0.41		mg/Kg	INOR	8-12 C	11/30/93	
TPB-CS-NW-103	Cadmium	7440439	3		mg/Kg	INOR	8-12 C	11/30/93	
B46-D	Cadmium	7440439	0.4	U	mg/Kg	INOR	8-12 W	2/28/94	
B16A/9-11	Cadmium	7440439	0.37	J	mg/Kg	INOR	9-11	3/20/96	
B20A/9-11	Cadmium	7440439	12.1	J	mg/Kg	INOR	9-11	3/20/96	
B21A/9-11	Cadmium	7440439	0.25	U	mg/Kg	INOR	9-11	3/20/96	
B26A/9-11	Cadmium	7440439	0.77	J	mg/Kg	INOR	9-11	3/21/96	
B38A/9-11	Cadmium	7440439	3.6	J	mg/Kg	INOR	9-11	3/21/96	
B55-C	Cadmium	7440439	0.4	U	mg/Kg	INOR	9-12 W	2/15/94	
B51A/.5-2.5	Lead	7439921	697	J	mg/Kg	INOR	.5-2.5	3/21/96	
B10A/S	Lead	7439921	9.8		mg/Kg	INOR	0-0.5	3/19/96	
B11A/S	Lead	7439921	17.6	-	mg/Kg	INOR	0-0.5	3/19/96	
B12A/S	Lead	7439921	61.2		mg/Kg	INOR	0-0.5	3/19/96	
B13A/S	Lead	7439921	18.7		mg/Kg	INOR	0-0.5	3/19/96	
B14A/S	Lead	7439921	15.4	J	mg/Kg	INOR	0-0.5	3/20/96	
B156A/S	Lead	7439921	17.5	1	mg/Kg	INOR	0-0.5	3/21/96	
B15A/S	Lead	7439921	14.2	J	mg/Kg	INOR	0-0.5	3/20/96	
B166A/S	Lead	7439921	23.3	1	mg/Kg	INOR	0-0.5	3/22/96	
B16A/S	Lead	7439921	54.1		mg/Kg	INOR	0-0.5	3/20/96	
B171A/S	Lead	7439921	16.7	1	mg/Kg	INOR	0-0.5	3/25/96	
B17A/S	Lead	7439921	8.9	J	mg/Kg	INOR	0-0.5	3/20/96	
B18A/S	Lead	7439921	12.1	J	mg/Kg	INOR	0-0.5	3/21/96	
B19A/S	Lead	7439921	36.9	J	mg/Kg	INOR	0-0.5	3/20/96	
B1A/S	Lead	7439921	76.2		mg/Kg	INOR	0-0.5	3/19/96	
B20A/S	Lead	7439921	73.8	J	mg/Kg	INOR	0-0.5	3/20/96	
B21A/S	Lead	7439921	12.4	J	mg/Kg	INOR	0-0.5	3/20/96 3/20/96	
B22A/S	Lead	7439921	16.1	J	mg/Kg	INOR	0-0.5	3/20/96	
B23A/S	Lead	7439921	32.9		mg/Kg	INOR	0-0.5	3/20/96	
B24A/S	Lead	7439921	13.2	1	mg/Kg	INOR	0-0.5	3/20/96	
B25A/S	Lead	7439921	12.3	. J	mg/Kg	INOR	0-0.5	3/21/96	
B26A/S	Lead	7439921	40.5		mg/Kg	INOR	0-0.5	3/20/96	
B27A/S	Lead	7439921	15.6		mg/Kg		0-0.5	3/21/96	
B28A/S	Lead	7439921	16.6		mg/Kg		0-0.5	3/21/96	
B29A/S	Lead	7439921	8.0		mg/Kg	and the second second	0-0.5	3/20/96	
B2A/S	Lead	7439921	76.8	1	mg/Kg		0-0.5	3/21/96	
B30A/S	Lead	7439921	12.9		mg/Kg		0-0.5	3/21/96	
B31A/S	Lead	7439921	13.3	1	mg/Kg		0-0.5	3/21/96	
B32A/S	Lead	7439921	17.9	J	mg/Kg		0-0.5	3/21/96	
B33A/S	Lead	7439921	12.4	1	mg/Kg		0-0.5	3/21/96	
B34A/S	Lead	7439921	11.3		mg/Kg	-	0-0.5	3/21/96	
B35A/S	Lead	7439921	19.2		mg/Kg	and the second	0-0.5	- 3/21/96	
B36A/S	Lead	7439921	16.2	1	mg/Kg		0-0.5	3/21/96	
B37A/S	Lead	7439921	18.1		mg/Kg	and the second second	0-0.5	3/21/96	
B38A/S	Lead	7439921	14.5	1	mg/Kg	and the second second	0-0.5	3/21/96	
B39A/S	Lead	7439921	15.8		mg/Kg		0-0.5	3/19/96	
B3A/S	Lead	7439921	16.2		mg/Kg	and the second second	0-0.5	3/21/96	
B40A/S	Lead	7439921	9.3	1	mg/Kg	, INOR	0-0.5	5721170	

Appenix B.xis / dbas5 8 of 33

	Sample #	Analyte	CAS #	Results	Qualifier	Units			Date Collected
	B41A/S	Lead	7439921	10.3	J	mg/Kg	INOR	0-0.5	3/21/96
	B42A/S	Lead	7439921	16.2	J	mg/Kg	INOR	0-0.5	3/21/96
	B43A/S	Lead	7439921	33.1	J	mg/Kg	INOR	0-0.5	3/21/96
	B44A/S ·	Lead	7439921	29.8	J	mg/Kg	INOR	0-0.5	3/21/96
	B45A/S	Lead	7439921	10.6	J	mg/Kg	INOR	0-0.5	3/21/96
	B46A/S	Lead	7439921	9.2	J	mg/Kg	INOR	0-0.5	3/21/96
	B47A/S	Lead	7439921	15.5	J	mg/Kg	INOR	0-0.5	3/21/96
	B48A/S	Lead	7439921	14.7	J	mg/Kg	INOR	0-0.5	3/21/96
	B49A/S	Lead	7439921	13.2	J	mg/Kg	INOR	0-0.5	3/21/96
	B4A/S	Lead	7439921	11.8		mg/Kg	INOR	0-0.5	3/19/96
	B50A/S	Lead	7439921	16.9	J	mg/Kg	INOR	0-0.5	3/21/96
	B51A/S	Lead	7439921	12.8	J	mg/Kg	INOR	0-0.5	3/21/96
	B52A/S	Lead	7439921	25.5	J	mg/Kg	INOR	0-0.5	3/21/96
	B53A/S	Lead	7439921	15.7	J	mg/Kg	INOR	0-0.5	3/21/96
	B54A/S	Lead	7439921	19.6	Ĵ	mg/Kg	INOR	0-0.5	3/21/96
	B55A/S	Lead	7439921	14.0	J	mg/Kg	INOR	0-0.5	3/21/96
	B56A/S	Lead	7439921	16.5	j	mg/Kg	INOR	0-0.5	3/21/96
	B57A/S	Lead	7439921	17.7	,	mg/Kg	INOR	0-0.5	
	B57B/S	Lead	7439921	20.3		mg/Kg	INOR	0-0.5	3/22/96
	B57C/S	Lead	7439921	20.5		mg/Kg	INOR		3/22/96
	B57D/S	Lead	7439921	17.5				0-0.5	3/22/96
	B57E/S	Lead	7439921	13.7		mg/Kg	INOR	0-0.5	3/22/96
	B57F/S	Lead				mg/Kg	INOR	0-0.5	3/22/96
	B58A/S		7439921	14.1		mg/Kg	INOR	0-0.5	3/22/96
	B59A/S	Lead	7439921	16.6		mg/Kg	INOR	0-0.5	3/22/96
		Lead	7439921	10.8	-	mg/Kg	INOR	0-0.5	3/22/96
	B5A/S	Lead	7439921	566	J	mg/Kg	INOR	0-0.5	3/20/96
	B60A/S	Lead	7439921	15.8		mg/Kg	INOR	0-0.5	3/22/96
	B61A/S	Lead	7439921	13.7		mg/Kg	INOR	0-0.5	3/22/96
	B62A/S	Lead	7439921	12.1		mg/Kg	INOR	0-0.5	3/22/96
	B63A/S	Lead	7439921	15.5		mg/Kg	INOR	0-0.5	3/22/96
	B64A/S	Lead	7439921	13.7		mg/Kg	INOR	0-0.5	3/22/96
	B65A/S	Lead	7439921	38.3		mg/Kg	INOR	0-0.5	3/22/96
	B66A/S	Lead	7439921	22.6	J	mg/Kg	INOR	0-0.5	3/22/96
	B67A/S	Lead	7439921	20.7		mg/Kg	INOR	0-0.5	3/22/96
	B68A/S	Lead	7439921	19.0		mg/Kg	INOR	0-0.5	3/22/96
•	B69A/S	Lead	7439921	26.4	1 .	mg/Kg	INOR	0-0.5	3/22/96
	B6A/S	Lead	7439921	11.0		mg/Kg	INOR	0-0.5	3/19/96
	B70A/S	Lead	7439921	12.8	J	mg/Kg	INOR	0-0.5	3/25/96
	B71A/S	Lead	7439921	20.9	1	mg/Kg	INOR	0-0.5	3/25/96
	B72A/S	Lead	7439921	13.3	J	mg/Kg	INOR	0-0.5	3/25/96
	B7A/S	Lead	7439921	48.4		mg/Kg	INOR	0-0.5	3/19/96
	B8A/S	Lead	7439921	26.1		mg/Kg	INOR	0-0.5	3/19/96
	B9A/S	Lead	7439921	14.0	J	mg/Kg	INOR	0-0.5	3/21/96
	BTPBA/S	Lead	7439921	13.8		mg/Kg	INOR	0-0.5	3/20/96
	BTPBB/S	Lead	7439921	102	J	mg/Kg	INOR	0-0.5	3/20/96
	BTPBC/S	Lead	7439921	12.5		mg/Kg	INOR	0-0.5	3/20/96
	BTPBD/S	Lead	7439921	13.7		mg/Kg	INOR	0-0.5	3/20/96
	N2-CS-WW-101	Lead	7439921	12.4		mg/kg	INOR	0-0.5	9/23/96
	TPC-CS-EW-101	Lead	7439921	21.4		mg/kg	INOR	0-0.5	9/23/96
	B39-A	Lead	7439921	19.9		mg/Kg	INOR	0-1.3	3/1/94
	N1-CS-SW-101	Lead	7439921	215		mg/Kg	INOR	0-4 C	11/30/93
	N2A-CS-NW-101	Lead	7439921	38.1		mg/Kg	INOR	0-4 C	11/30/93
	N2B-CS-SW-101	Lead	7439921	170			INOR		
	N2C-CS-WW-101	Lead	7439921	566		mg/Kg		0-4 C	11/30/93
			1437341	000		mg/Kg	INOR	0-4 C	11/30/93

Appenix B.xls / dbas5 9 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units			Date Collected
N2D-CS-SW-101	Lead	7439921	158		mg/Kg	INOR	0-4 C	11/30/93
N3A-WS-103	Lead	7439921	7.12	U	mg/Kg	INOR	0-4 C	12/2/93
N3A-WS-150A	Lead	7439921	73.7		mg/Kg	INOR	0-4 C	12/2/93
N3A-WS-188	Lead .	7439921	45.9		mg/Kg	INOR	0-4 C	12/2/93
N3A-WS-192A	Lead	7439921	21		mg/Kg	INOR	0-4 C	12/2/93
N3B-WS-155	Lead	7439921	7.12	U	mg/Kg	INOR	0-4 C	12/2/93
N3B-WS-160	Lead	7439921	24.6		mg/Kg	INOR	0-4 C	12/2/93
N3B-WS-164	Lead	7439921	.7.12	U	mg/Kg	INOR	0-4 C	12/2/93
N3B-WS-166	Lead	7439921	7.12	U	mg/Kg	INOR	0-4 C	12/2/93
N3C-WS-170	Lead	7439921	261		mg/Kg	INOR	0-4 C	12/2/93
N3C-WS-175	Lead	7439921	121		mg/Kg	INOR	0-4 C	12/2/93
N3C-WS-180A	Lead	7439921	21.1		mg/Kg	INOR	0-4 C	12/2/93
N3C-WS-190	Lead	7439921	7.12	U	mg/Kg	INOR	0-4 C	12/2/93
N3C-WS-193A	Lead	7439921	186		mg/Kg	INOR	0-4 C	12/2/93
N3D-WS-183A	Lead	7439921	36		mg/Kg	INOR	0-4 C	12/2/93
N3D-WS-191A	Lead	7439921	7.12	U	mg/Kg	INOR	0-4 C	12/2/93
N4A-WS-131	Lead	7439921	62		mg/Kg	INOR	0-4 C	12/10/93
N4A-WS-132	Lead	7439921	122		mg/Kg	INOR	0-4 C	12/10/93
N4A-WS-135	Lead	7439921	14.9		mg/Kg	INOR	0-4 C	12/10/93
N4B-WS-115	Lead	7439921	44.4		mg/Kg	INOR	0-4 C	12/10/93
N4B-WS-148	Lead	7439921	54.2		mg/Kg	INOR	0-4 C	12/10/93
N4B-WS-150	Lead	7439921	23.9		mg/Kg	INOR	0-4 C	12/10/93
N4B-WS-153	Lead	7439921	27.8		mg/Kg	INOR	0-4 C	12/10/93
TPA-CS-NW-101	Lead	7439921	264		mg/Kg	INOR	0-4 C	11/30/93
TPB-CS-NW-101	Lead	7439921	23.1		mg/Kg	INOR	0-4 C	11/30/93
TPC-CS-EW-101	Lead	7439921	637		mg/Kg	INOR	0-4 C	11/30/93
TPC-CS-EW-102	Lead	7439921	145		mg/Kg	INOR	0-4 C	11/30/93
B11A/1-3	Lead	7439921	18.8		mg/Kg	INOR	1-3	3/19/96
B12A/1-3	Lead	7439921	33.0		mg/Kg	INOR	1-3	3/19/96
B14A/1-3	Lead	7439921	41.8		mg/Kg	INOR	1-3	3/20/96
B157A/1-3	Lead	7439921	17.7	J	mg/Kg	INOR	1-3	3/21/96
B158A/1-3	Lead	7439921	69.7	J	mg/Kg	INOR	1-3	3/25/96
B15A/1-3	Lead	7439921	15.6		mg/Kg	INOR	1-3	3/20/96
B167A/1-3	Lead	7439921	14.9	J	mg/Kg	INOR	1-3	3/25/96
B21A/1-3	Lead	7439921	12.8	J	mg/Kg	INOR	1-3	3/20/96
B22A/1-3	Lead	7439921	12.8	J	mg/Kg	INOR	1-3	3/20/96
B23A/1-3	Lead	7439921	120		mg/Kg	INOR	1-3	3/20/96
B24A/1-3	Lead	7439921	51.1	J	mg/Kg	INOR	1-3	3/21/96
B25A/1-3	Lead	7439921	12.0	J	mg/Kg	INOR	1-3	3/21/96
B26A/1-3	Lead	7439921	69.7		mg/Kg	INOR	1-3	3/21/96
B27A/1-3	Lead	7439921	430	J	mg/Kg	INOR	1-3	3/21/96
B2A/1-3	Lead	7439921	49.0		mg/Kg	INOR	1-3	3/20/96
B31A/1-3	Lead	7439921	181	J	mg/Kg	INOR	1-3	3/21/96
B32A/1-3	Lead	7439921	12.3	J	mg/Kg	INOR	1-3	3/21/96
B33A/1-3	Lead	7439921	10.0		mg/Kg	INOR	1-3	3/21/96
B34A/1-3	Lead	7439921	18.8	J	mg/Kg	INOR	1-3	3/21/96
B36A/1-3	Lead	7439921	118	J	mg/Kg	INOR	1-3	3/21/96
B38A/1-3	Lead	7439921	13.6	J	mg/Kg	INOR	1-3	3/21/96
B43A/1-3	Lead	7439921	739	J	mg/Kg	INOR	1-3	3/21/96
B48A/1-3	Lead	7439921	12.4	J	mg/Kg	INOR	1-3	3/21/96
B49A/1-3	Lead	7439921	117	J	mg/Kg	INOR	1-3	3/21/96
B50A/1-3	Lead	7439921	295	J	mg/Kg	INOR	1-3	3/21/96
B54A/1-3	Lead	7439921	144	J	mg/Kg	INOR	1-3	3/25/96
B55A/1-3	Lead	7439921	25.9	J	mg/Kg	INOR	1-3	3/25/96
	Louis	1453341	43.7	3	mg/ng	HUCK	1-5	5125190

1

I

Appenix B.xls / dbas5 10 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
B57A/1-3	Lead	7439921	25.9	J	mg/Kg	INOR	1-3	3/21/96
B57B/1-3	Lead	7439921	73.9	J	mg/Kg	INOR	1-3	3/22/96
B57C/1-3	Lead	7439921	38.3	J	mg/Kg	INOR	1-3	3/22/96
B57D/1-3	Lead	7439921	51.7 .		mg/Kg	INOR	1-3	3/22/96 .
B57E/1-3	Lead	7439921	40.3		mg/Kg	INOR	1-3	3/22/96
B57F/1-3	Lead	7439921	45.8	J	mg/Kg	INOR	1-3	3/22/96
B58A/1-3	Lead	7439921	91.1	J	mg/Kg	INOR	1-3	3/25/96
B59A/1-3	Lead	7439921	12.2	J	mg/Kg	INOR	1-3	3/25/96
B5A/1-3	Lead	7439921	92.5	J	mg/Kg	INOR	1-3	3/20/96
B61A/1-3	Lead	7439921	10.5	J	mg/Kg	INOR	1-3	3/25/96
B65A/1-3	Lead	7439921	9.5	J	mg/Kg	INOR	1-3	3/25/96
B66A/1-3	Lead	7439921	40.1	J	mg/Kg	INOR	1-3	3/25/96
B67A/1-3	Lead	7439921	16.2	J	mg/Kg	INOR	1-3	3/25/96
B68A/1-3	Lead	7439921	32.2	J	mg/Kg	INOR	1-3	3/25/96
B69A/1-3	Lead	7439921	15.4	J	mg/Kg	INOR	1-3	3/25/96
B6A/1-3	Lead	7439921	17.0		mg/Kg	INOR	. 1-3	3/19/96
B70A/1-3	Lead	7439921	15.6	J	mg/Kg	INOR	1-3	3/25/96
B71A/1-3	Lead	7439921	16.6	J	mg/Kg	INOR	1-3	3/25/96
B72A/1-3	Lead	7439921	16.1	J	mg/Kg	INOR	1-3	3/25/96
B7A/1-3	Lead	7439921	75.7		mg/Kg	INOR	1-3	3/19/96
B8A/1-3	Lead	7439921	14.3		mg/Kg	INOR	1-3	3/19/96
BTPBA/1-3	Lead	7439921	13.3	J	mg/Kg	INOR	1-3	3/20/96
BTPBB/1-3	Lead	7439921	15.4		mg/Kg	INOR	1-3	3/20/96
BTPBC/1-3	Lead	7439921	16.4	J	mg/Kg	INOR	1-3	3/20/96
BTPBD/1-3	Lead	7439921	12.9	J	mg/Kg	INOR	1-3	3/20/96
N3A-CS-048B	Lead	7439921	136		mg/Kg	INOR	1-4	10/18/93
N3A-CS-049A	Lead	7439921	66.2		mg/Kg	INOR	1-4	10/18/93
N3A-CS-050B	Lead	7439921	76.5		mg/Kg	INOR	1-4	10/18/93
N3A-CS-051	Lead	7439921	209		mg/Kg	INOR	1-4	10/18/93
N3B-CS-052A	Lead	7439921	40		mg/Kg	INOR	1-4	11/10/93
N3B-CS-053	Lead	7439921	54.3		mg/Kg	INOR	1-4	11/10/93
N3B-CS-056	Lead	7439921	29.2		mg/Kg	INOR	1-4	11/10/93
N3B-CS-064B	Lead	7439921	26.9		mg/Kg	INOR	1-4	11/19/93
N3B-CS-066	Lead	7439921	30.6		mg/Kg	INOR	1-4	11/10/93
N3C-CS-034A/73A	Lead	7439921	32.8		mg/Kg	INOR	1-4	11/18/93
N3C-CS-063B	Lead	7439921	16.2		mg/Kg	INOR	1-4	11/19/93
N3C-CS-065	Lead	7439921	15.9		mg/Kg	INOR	. 1-4	12/6/93
N3C-CS-069A	Lead	7439921	115		mg/Kg	INOR	1-4	11/10/93
N3C-CS-074	Lead	7439921	24.4		mg/Kg	INOR	1-4	11/10/93
N3C-CS-076	Lead	7439921	102		mg/Kg	INOR	1-4	11/10/93
N3D-CS-087	Lead	7439921	9.2		mg/Kg	INOR	1-4	11/19/93
N3D-CS-088	Lead	7439921	18.5		mg/Kg	INOR	1-4	11/19/93
N3D-CS-089	Lead	7439921	24.6		mg/Kg	INOR	1-4	11/19/93
N4B-CS-006	Lead	7439921	22.5		mg/Kg	INOR	1-4	10/12/93
N4C-BE-P/M	Lead	7439921	66.6		mg/Kg	INOR	1-4	9/11/93
N4C-BW-P/M	Lead	7439921	48.6		mg/Kg	INOR	1-4	9/13/93
N4C-EW-P/M	Lead	7439921	23.9		mg/Kg	INOR	1-4	9/11/93
N4C-NW	Lead	7439921	53.2		mg/Kg	INOR	. 1-4	9/24/93
N4C-SW-P/M	Lead	7439921	31.7		mg/Kg	INOR	1-4 -	9/11/93
N4C-WW-P/M	Lead	7439921	28.9		mg/Kg	INOR	1-4	9/11/93
B20-A	Lead	7439921	88.4		mg/Kg	INOR	1-6	2/10/94
B17-C	Lead	7439921	15.6		mg/Kg	INOR	10-11 W	2/25/94
B18-C	Lead	7439921	33.2		mg/Kg	INOR	10-11.5 W	3/3/94
B59-E	Lead	7439921	18.6		mg/Kg	INOR	10-11.5 W	2/28/94

Appenix B.xls / dbas5 11 of 33

Sample #.	Analyte	CAS #		Qualifier	Units			Date Collected
B62-C	Lead	7439921	25.4		mg/Kg	INOR	10-11.5 W	2/17/94
B19A/10-12	Lead	7439921	22.6	J	mg/Kg	INOR	10-12	3/21/96
В30-Е	Lead	7439921	11.9		mg/Kg	INOR	10-12 W	3/1/94
B71-D	Lead	7439921	20.5	14	mg/Kg	INOR	10-12 W	2/17/94
B138A/12-14	Lead	7439921	132	J	mg/Kg	INOR	12-14	3/21/96
B38A/12-14	Lead	7439921	179	J	mg/Kg	INOR	12-14	3/21/96
B45-D	Lead	7439921	12.4		mg/Kg	INOR	12-16 W	3/2/94
B21- 尼	Lead	7439921	94.8		mg/Kg	INOR	13-15	2/7/94
B1A/2-4	Lead	7439921	120		mg/Kg	INOR	2-4	3/19/96
B33-A	Lead	7439921	188		mg/Kg	INOR	2-7	2/8/94
B42-A	Lead	7439921	160		mg/Kg	INOR	2-7	2/22/94
B32-A	Lead	7439921	44		mg/Kg	INOR	2.5-4.5	2/11/94
B38-H	Lead	7439921	38.3		mg/Kg	INOR	20-21 W	2/11/94
B112A/3-5	Lead	7439921	246		mg/Kg	INOR	3-5	3/19/96
B115A/3-5	Lead	7439921	116	J	mg/Kg	INOR	3-5	3/20/96
B12A/3-5	Lead	7439921	221		mg/Kg	INOR	3-5	3/19/96
B13A/3-5	Lead	7439921	162		mg/Kg	INOR	3-5	3/19/96
B14A/3-5	Lead	7439921	229		mg/Kg	INOR	3-5	3/20/96
B15A/3-5	Lead	7439921	92.4	J	mg/Kg	INOR	3-5	3/20/96
B16A/3-5	Lead	7439921	43.1		mg/Kg	INOR	3-5	3/20/96
B20/3-5	Lead	7439921	169	J	mg/Kg	INOR	3-5	3/20/96
B21A/3-5	Lead	7439921	13.8	J	mg/Kg	INOR	3-5	3/20/96
B22A/3-5	Lead	7439921	152	J	mg/Kg	INOR	3-5	3/20/96
B23A/3-5	Lead	7439921	77.0		mg/Kg	INOR	3-5	3/20/96
B24A/3-5	Lead	7439921	392	J	mg/Kg	INOR	3-5	3/21/96
B25A/3-5	Lead	7439921	52.5	J -	mg/Kg	INOR	3-5	3/21/96
B26A/3-5	Lead	7439921	179	J	mg/Kg	INOR	3-5	3/21/96
B31A/3-5	Lead	7439921	389	J	mg/Kg	INOR	3-5	3/21/96
B32A/3-5	Lead	7439921	9.2	J	mg/Kg	INOR	3-5	3/21/96
B34A/3-5	Lead	7439921	772	J	mg/Kg	INOR	3-5	3/21/96
B37A/3-5	Lead	7439921	12.0	J	mg/Kg	INOR	3-5	3/21/96
B48A/3-5	Lead	7439921	91.9	J	mg/Kg	INOR	3-5	3/21/96
B49A/3-5	Lead	7439921	116	J	mg/Kg	INOR	3-5	3/21/96
B50A/3-5	Lead	7439921	276	J	mg/Kg	INOR	3-5	3/21/96
B55A/3-5	Lead	7439921	37.0	J	mg/Kg	INOR	3-5	3/25/96
B57A/3-5	Lead	7439921	90.7	J	mg/Kg	INOR	3-5	3/22/96
B57B/3-5	Lead	7439921	.901	J	mġ/Kg	INOR	3-5	3/22/96
B57C/3-5	Lead	7439921	159	J	mg/Kg	INOR	3-5	3/22/96
B57D/3-5	Lead	7439921	20.7		mg/Kg	INOR	3-5	3/22/96
B57E/3-5	Lead	7439921	41.1		mg/Kg	INOR	3-5	3/22/96
B57F/3-5	Lead	7439921	26.5	J	mg/Kg	INOR	3-5	3/22/96
B5A/3-5	Lead	7439921	71.2		mg/Kg	INOR	3-5	3/20/96
B6A/3-5	Lead	7439921	10.8		mg/Kg	INOR	3-5	3/19/96
B8A/3-5	Lead	7439921	14.5		mg/Kg	INOR	3-5	3/19/96
BTPBA/3-5	Lead	7439921	86.1	J	mg/Kg	INOR	3-5	3/20/96
BTPBB/3-5	Lead	7439921	145		mg/Kg	INOR	3-5	3/20/96
BTPBC/3-5	Lead	7439921	31.9	J	mg/Kg	INOR	3-5	3/20/96
BTPBD/3-5	Lead	7439921	10.1	J	mg/Kg	INOR	3-5	3/20/96
B09-A	Lead	7439921	16		mg/Kg	INOR	4-5.5	2/22/94
B54A/4-6	Lead	7439921	13.2	J	mg/Kg	INOR	4-6	3/25/96
B64-B	Lead	7439921	36.4		mg/Kg	INOR	4-6 W	2/21/94
B72-B	Lead	7439921	16.9		mg/Kg	INOR	4-7 W	2/21/94
B02-B	Lead	7439921	37.5		mg/Kg	INOR	4-7.5	2/24/94
	Lead	7439921	452		mg/Kg	INOR	4-8	11/30/93

Appenix B.xls / dbas5 12 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
N2D-CS-001	Lead	7439921	75.2		mg/Kg	INOR	4-8	11/30/93
N3A-CS-011	Lead	7439921	17.2		mg/Kg	INOR	4-8	10/18/93
N3A-CS-019	Lead	7439921	153		mg/Kg	INOR	4-8	11/10/93
N3A-CS-020	Lead	7439921	147		mg/Kg	INOR	4-8	10/18/93
N3A-CS-021	Lead	7439921	16.9		mg/Kg	INOR	4-8	12/6/93
N3A-CS-030	Lead	7439921	79.4		mg/Kg	INOR.	4-8	10/18/93
N3A-CS-031	Lead	7439921	19.9		mg/Kg	INOR	4-8	10/18/93
N3A-CS-046	Lead	7439921	17.6		mg/Kg	INOR	4-8	11/10/93
N3B-CS-054	Lead	7439921	57.6		mg/Kg	INOR	4-8	11/10/93
N3B-CS-055	Lead	7439921	96.7		mg/Kg	INOR	4-8	11/10/93
N3B-CS-057	Lead	7439921	65.5		mg/Kg	INOR	4-8	11/10/93
N3B-CS-058	Lead	7439921	54.3		mg/Kg	INOR	4-8	11/10/93
N3B-CS-061	Lead	7439921	7.12	U	mg/Kg	INOR	4-8	12/6/93
N3B-CS-062	Lead	7439921	54.1	U		INOR	4-8	12/13/93
N3C-CS-067	Lead	7439921	96.5		mg/Kg	INOR	4-8	
N3C-CS-068	Lead	7439921	90.3 75.1		mg/Kg	INOR		11/10/93
N3C-CS-070A	Lead	7439921	40.7		mg/Kg	INOR	4-8 4-8	11/10/93
N3C-CS-072A	Lead				mg/Kg			11/18/93
N3C-CS-072A N3C-CS-075		7439921	13.9		mg/Kg	INOR	4-8	11/18/93
	Lead	7439921	42		mg/Kg	INOR	4-8	11/10/93
N3C-CS-078A	Lead	7439921	42.5		mg/Kg	INOR	4-8	11/16/93
N3C-CS-081	Lead	7439921	46.6		mg/Kg	INOR	4-8	11/10/93
N3C-CS-081	Lead	7439921	73.2		mg/Kg	INOR	4-8	11/10/93
N3D-CS-083	Lead	7439921	7.12	U	mg/Kg	INOR	4-8	12/7/93
N3D-CS-084	Lead	7439921	225		mg/Kg	INOR	4-8	12/6/93
N3D-CS-085	Lead	7439921	14.6		mg/Kg	INOR	4-8	11/19/93
N3D-CS-086	Lead	7439921	21		mg/Kg	INOR	4-8	11/19/93
N4A-CS-033	Lead	7439921	19.4		mg/Kg	INOR	4-8	12/7/93
N4A-CS-034	Lead	7439921	7.12	U	mg/Kg	INOR	4-8	12/7/93
N4B-CS-001	Lead	7439921	18.4		mg/Kg	INOR	4-8	10/12/93
N4B-CS-002a	Lead	7439921	32.2		mg/Kg	INOR	4-8	10/12/93
N4B-CS-003	Lead	7439921	24.4		mg/Kg	INOR	4-8	10/12/93
N4B-CS-004	Lead	7439921	73.1		mg/Kg	INOR	4-8	10/12/93
N4B-CS-005	Lead	7439921	23.2		mg/Kg	INOR	4-8	10/12/93
N4B-CS-014	Lead	7439921	64.9		mg/Kg	INOR	4-8	10/12/93
N4B-CS-020a	Lead	7439921	14.3		mg/Kg	INOR	4-8	10/12/93
N4B-CS-025	Lead	7439921	7.12	· U ·	mg/Kg	INOR .	.4-8	12/7/93
N4B-CS-026	Lead	7439921	15.9		mg/Kg	INOR	4-8	12/9/93
N4B-CS-028	Lead	7439921	152		mg/Kg	INOR	4-8	10/12/93
N4B-CS-039A	Lead	7439921	18.9		mg/Kg	INOR	4-8	10/14/93
N4B-CS-052B	Lead	7439921	16.9		mg/Kg	INOR	4-8	10/22/93
TPA-CS-001	Lead	7439921	47.7		mg/Kg	INOR	4-8	11/30/93
N1-CS-SW-102	Lead	7439921	579		mg/Kg	INOR	4-8 C	11/30/93
N2A-CS-NW-102	Lead	7439921	333		mg/Kg	INOR	4-8 C	11/30/93
N2B-CS-SW-102	Lead	7439921	498		mg/Kg	INOR	4-8 C	11/30/93
N2C-CS-WW-102	Lead	7439921	165		mg/Kg	INOR	4-8 C	11/30/93
N3A-WS-192B	Lead	7439921	7.12	U	mg/Kg	INOR	4-8 C	12/2/93
N3C-WS-180B	Lead	7439921	7.12	U	mg/Kg	INOR	4-8 C	12/2/93
N3C-WS-193B	Lead	7439921	7.12	Ū	mg/Kg	INOR	4-8 C	12/2/93
N3D-WS-183B	Lead	7439921	7.12	Ŭ	mg/Kg	INOR	4-8 C	12/2/93
N3D-WS-191B	Lead	7439921	7.12	Ŭ	mg/Kg	INOR	4-8 C	12/2/93
TPB-CS-NW-102	Lead	7439921	101	•	mg/Kg	INOR	4-8 C	11/30/93
B19-C	Lead	7439921	30.3		mg/Kg	INOR	4.8-5.3	2/23/94
B57-B	Lead	7439921	35		mg/Kg	INOR	5-6	2/15/94
B57E/5-6	Lead	7439921	44.4	J	mg/Kg	INOR	5-6	3/22/96
	a vite	. 137721	11.7		merne	HIOR	5-0	5122170

Appenix B.xls / dbas5 13 of 33

Sample #	Analyte	CAS #		Qualifier	Units) Date Collected
B12A/5-7	Lead	7439921	176		mg/Kg	INOR	5-7	3/19/96
B132A/5-7	Lead	7439921	560	1	mg/Kg	INOR	5-7	3/21/96
B13A/5-7	Lead	7439921	49.4		mg/Kg	INOR	5-7	3/19/96
B14A/5-7	Lead	7439921	134		mg/Kg	INOR ·	5-7	3/20/96
B15A/5-7	Lead	7439921	813	J	mg/Kg	INOR	5-7	3/20/96
B16A/5-7	Lead	7439921	20.2		mg/Kg	INOR	5-7	3/20/96
B20A/5-7	Lead	7439921	89.1	J	mg/Kg	INOR	5-7	3/20/96
B21A/5-7	Lead	7439921	217	J	mg/Kg	INOR	5-7	3/20/96
B22A/5-7	Lead	7439921	624	J	mg/Kg	INOR	5-7	3/20/96
B23A/5-7	Lead	7439921	9.7		mg/Kg	INOR	5-7	3/20/96
B24A/5-7	Lead	7439921	152	J	mg/Kg	INOR	5-7	3/21/96
B25A/5-7	Lead	7439921	653	J	mg/Kg	INOR	5-7	3/21/96
B26A/5-7	Lead	7439921	452	J	mg/Kg	INOR	5-7	3/21/96
B32A/5-7	Lead	7439921	256	J	mg/Kg	INOR	5-7	3/21/96
B49A/5-7	Lead	7439921	202	J	mg/Kg	INOR	5-7	3/21/96
B50A/5-7	Lead	7439921	54.7	J	mg/Kg	INOR	5-7	3/21/96
B55A/5-7	Lead	7439921	15.2	J	mg/Kg	INOR	5-7	3/25/96
B57A/5-7	Lead	7439921	22.9	J	mg/Kg	INOR	5-7	3/22/96
B57B/5-7	Lead	7439921	194	J -	mg/Kg	INOR	5-7	3/22/96
B57C/5-7	Lead	7439921	3270	J	mg/Kg	INOR	5-7	3/22/96
B57F/5-7	Lead	7439921	57.1	J	mg/Kg	INOR	5-7	3/22/96
B5A/5-7	Lead	7439921	98.0	J	mg/Kg	INOR	5-7	3/20/96
B6A/5-7	Lead	7439921	22.0		mg/Kg	INOR	5-7	3/19/96
BTPBA/5-7	Lead	7439921	96.2	J	mg/Kg	INOR	5-7	3/20/96
BTPBB/5-7	Lead	7439921	47.9		mg/Kg	INOR	5-7	3/20/96
BTPBD/5-7	Lead	7439921	746	J	mg/Kg	INOR	5-7	3/20/96
B56-C	Lead	7439921	21.3		mg/Kg	INOR	6-6.5	2/16/94
B57-C	Lead	7439921	42.9		mg/Kg	INOR	6-7	2/15/94
B31-D	Lead	7439921	25.3		mg/Kg	INOR	6-7.5	2/24/94
B10A/6-8	Lead	7439921	13.3		mg/Kg	INOR	6-8	3/19/96
B11A/6-8	Lead	7439921	37.9		mg/Kg	INOR	6-8	3/19/96
B13-C	Lead	7439921	21		mg/Kg	INOR	6-8	2/9/94
B25-C	Lead	7439921	24.7		mg/Kg	INOR	7-10	2/7/94
B120A/7-9	Lead	7439921	59.5	J	mg/Kg	INOR	7-9	3/20/96
B20A/7-9	Lead	7439921	44.7	J	mg/Kg	INOR	7-9	3/20/96
B21A/7-9	Lead	7439921	334	J	mg/Kg	INOR	7-9	3/20/96
B26A/7-9	Lead	7439921	11400	J .	mg/Kg	INOR	7-9	3/21/96
B33A/7-9	Lead	7439921	24.9		mg/Kg	INOR	7-9	3/21/96
B49-C	Lead	7439921	26.4		mg/Kg	INOR	7-9	2/15/94
B49A/7-9	Lead	7439921	42.4	J	mg/Kg	INOR	7-9	3/21/96
B55A/7-9	Lead	7439921	13.6	J	mg/Kg	INOR	7-9	3/25/96
B57A/7-9	Lead	7439921	11.2	J	mg/Kg	INOR	7-9	3/21/96
B57B/7-9	Lead	7439921	50.1	J	mg/Kg	INOR	7-9	3/22/96
BTPBC/7-9	Lead	7439921	10.0	J	mg/Kg	INOR	7-9	3/20/96
BTPBCC/7-9	Lead	7439921	9.1	1	mg/Kg	INOR	7-9	3/20/96
B21-C	Lead	7439921	114		mg/Kg	INOR	8-10	2/7/94
N2A-CS-001	Lead	7439921	105		mg/Kg	INOR	8-12	11/30/93
N2C-CS-001	Lead	7439921	43.6		mg/Kg	INOR	8-12	11/30/93
N3A-CS-009A	Lead	7439921	44.2		mg/Kg	INOR	8-12	11/19/93
N3A-CS-010A	Lead	7439921	13.1		mg/Kg	INOR	8-12	11/19/93
N3A-CS-024	Lead	7439921	82.8		mg/Kg	INOR	8-12	11/10/93
N3A-CS-025	Lead	7439921	22.6		mg/Kg	INOR	8-12	10/18/93
N3A-CS-026	Lead	7439921	19.2		mg/Kg	INOR	8-12	10/18/93
N3A-CS-029	Lead	7439921	23.1		mg/Kg	INOR	8-12	11/10/93

Appenix B.xls / dbas5 14 of 33

	Sample # N3A-CS-035	Analyte Lead	CAS #	Results	Qualifier		Data Group	Depth (feet)	Date Collected
	N3A-CS-036		7439921	50.3		mg/Kg	INOR	8-12	11/10/93
	N3A-CS-040	Lead	7439921	21.1		mg/Kg	INOR	8-12	11/10/93
		Lead	7439921	35.5		mg/Kg	INOR	8-12	10/26/93
	N3A-CS-041	Lead	7439921	29.7		mg/Kg	INOR.	8-12	. 10/26/93
	N3A-CS-042	Lead	7439921	94.8		mg/Kg	INOR	8-12	10/26/93
ġ.	N3A-CS-045	Lead	7439921	133		mg/Kg	INOR	8-12	10/18/93
	N3B-CS-059	Lead	7439921	32.6		mg/Kg	INOR	8-12	11/10/93
	N3B-CS-060	Lead	7439921	229		mg/Kg	INOR	8-12	11/10/93
	N3C-CS-077A	Lead	7439921	125		mg/Kg	INOR	8-12	11/18/93
	N3C-CS-079A	Lead	7439921	140		mg/Kg	INOR	8-12	11/18/93
	N3C-CS-080	Lead	7439921	18.5		mg/Kg	INOR	8-12	12/6/93
	N3C-CS-080	Lead	7439921	19.4		mg/Kg	INOR	8-12	12/6/93
	N3D-CS-082	Lead	7439921	17.9		mg/Kg	INOR	8-12	12/13/93
	N3D-CS-082	Lead	7439921	24.7		mg/Kg	INOR	8-12	12/13/93
	N4A-CS-040	Lead	7439921	34.5		mg/Kg	INOR	8-12	12/7/93
	TPC-CS-001	Lead	7439921	12.5		mg/Kg	INOR	8-12	11/30/93
	N2B-CS-001	Lead	7439921	32.7		mg/Kg	INOR	8-12	11/30/93
	N2A-CS-NW-103	Lead	7439921	47.7		mg/Kg	INOR	8-12 C	11/30/93
	TPB-CS-NW-103	Lead	7439921	1130		mg/Kg	INOR	8-12 C	11/30/93
	B46-D	Lead	7439921	19.5		mg/Kg	INOR	8-12 W	2/28/94
	B16A/9-11	Lead	7439921	18.1		mg/Kg	INOR	9-11	3/20/96
	B20A/9-11	Lead	7439921	242	J	mg/Kg	INOR	9-11	3/20/96
	B21A/9-11	Lead	7439921	16.1	J	mg/Kg	INOR	9-11	3/20/96
	B26A/9-11	Lead	7439921	14900	J	mg/Kg	INOR	9-11	3/21/96
	B38A/9-11	Lead	7439921	528	J	mg/Kg	INOR	9-11	3/21/96
	B55-C	Lead	7439921	69.9		mg/Kg	INOR	9-12 W	2/15/94
	B51A/.5-2.5	Nickel	7440020	622		mg/Kg	INOR	.5-2.5	3/21/96
	B10A/S	Nickel	7440020	13.5		mg/Kg	INOR	0-0.5	3/19/96
	B11A/S	Nickel	7440020	29.4		mg/Kg	INOR	0-0.5	
	B12A/S	Nickel	7440020	38.9		mg/Kg	INOR	0-0.5	3/19/96
	B13A/S	Nickel	7440020	31.6		mg/Kg	INOR	0-0.5	3/19/96 3/19/96
	B14A/S	Nickel	7440020	26.7		mg/Kg	INOR	0-0.5	3/20/96
	B156A/S	Nickel	7440020	26.8		mg/Kg	INOR	0-0.5	
	B15A/S	Nickel	7440020	25.6		mg/Kg	INOR	0-0.5	3/21/96 3/20/96
	B166A/S	Nickel	7440020	40.5		mg/Kg	INOR	0-0.5	3/22/96
	B16A/S	Nickel	7440020	24.6	J	mg/Kg	INOR	0-0.5	3/20/96
	B171A/S	Nickel	7440020	18.8	J	mg/Kg	INOR	0-0.5	3/25/96
	B17A/S	Nickel	7440020	14.6		mg/Kg	INOR	0-0.5	3/20/96
	B18A/S	Nickel	7440020	14.9		mg/Kg	INOR	0-0.5	3/21/96
	B19A/S	Nickel	7440020	31.9		mg/Kg	INOR	0-0.5	3/20/96
	B1A/S	Nickel	7440020	170	J	mg/Kg	INOR	0-0.5	3/19/96
	B20A/S	Nickel	7440020	86.0		mg/Kg	INOR	0-0.5	3/20/96
	B21A/S	Nickel	7440020	21.7		mg/Kg	INOR	0-0.5	3/20/96
	B22A/S	Nickel	7440020	35.5		mg/Kg	INOR	0-0.5	3/20/96
	B23A/S	Nickel	7440020	39.8		mg/Kg	INOR	0-0.5	3/20/96
	B24A/S	Nickel	7440020	18.8		mg/Kg	INOR	0-0.5	3/20/96
	B25A/S	Nickel	7440020	18.9		mg/Kg	INOR	0-0.5	
	B26A/S	Nickel	7440020	55.1		mg/Kg	INOR	0-0.5	3/20/96 3/21/96
	B27A/S	Nickel	7440020	19.1		mg/Kg	INOR		
	B28A/S	Nickel	7440020	19.4		mg/Kg	INOR	0-0.5	3/20/96
	B29A/S	Nickel	7440020	13.9		mg/Kg	INOR	0-0.5	3/21/96
	B2A/S	Nickel	7440020	69.0		mg/Kg	INOR	0-0.5	3/21/96
	B30A/S	Nickel	7440020	18.0		mg/Kg		0-0.5	3/20/96
	B31A/S	Nickel	7440020	16.8		mg/Kg	INOR INOR	0-0.5	3/21/96
				10.0		mg/rg	INOR	0-0.5	3/21/96

Appenix B.xls / dbas5 15 of 33

Sumpla #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected	
Sample #	Nickel	7440020	27.7	4	mg/Kg	INOR	0-0.5	3/21/96	
B32A/S	Nickel	7440020	18.9		mg/Kg	INOR	0-0.5	3/21/96	
B33A/S	Nickel	7440020	16.1		mg/Kg	INOR	0-0.5	3/21/96	
B34A/S	Nickel	7440020	27.0		mg/Kg	INOR	0-0.5	3/21/96-	
B35A/S		7440020	30.2		mg/Kg	INOR	0-0.5	3/21/96	
B36A/S	Nickel		18.6		mg/Kg	INOR	0-0.5	3/21/96	
B37A/S	Nickel	7440020			mg/Kg	INOR	0-0.5	3/21/96	
B38A/S	Nickel	7440020	13.1			INOR	0-0.5	3/21/96	
B39A/S	Nickel	7440020	15.7		mg/Kg	INOR	0-0.5	3/19/96	
B3A/S	Nickel	7440020	21.4		mg/Kg	INOR	0-0.5	3/21/96	
B40A/S	Nickel	7440020	16.0		mg/Kg	INOR	0-0.5	3/21/96	
B41A/S	Nickel	7440020	15.6		mg/Kg	INOR	0-0.5	3/21/96	
B42A/S	Nickel	7440020	33.6		mg/Kg	INOR	0-0.5	3/21/96	
B43A/S	Nickel	7440020	47.2		mg/Kg	INOR	0-0.5	3/21/96	
B44A/S	Nickel	7440020	25.0		mg/Kg	INOR	0-0.5	3/21/96	
B45A/S	Nickel	7440020	16.0		mg/Kg		0-0.5	3/21/96	
B46A/S	Nickel	7440020	20.5		mg/Kg	INOR	0-0.5	3/21/96	
B47A/S	Nickel	7440020	19.6		mg/Kg	INOR	0-0.5	3/21/96	
B48A/S	Nickel	7440020	21.9		mg/Kg	INOR	0-0.5	3/21/96	
B49A/S	Nickel	7440020	17.8		mg/Kg	INOR	0-0.5	3/19/96	
B4A/S	Nickel	7440020	17.7		mg/Kg	INOR	0-0.5	3/21/96	
B50A/S	Nickel	7440020	22.1		mg/Kg	INOR	0-0.5	3/21/96	
B51A/S	Nickel	7440020	19.6		mg/Kg	INOR		3/21/96	
B52A/S	Nickel	7440020	20.6		mg/Kg	INOR	0-0.5	3/21/96	
B53A/S	Nickel	7440020	20.8		mg/Kg	INOR	0-0.5		
B54A/S	Nickel	7440020	25.5		mg/Kg	INOR	0-0.5	3/21/96	
B55A/S	Nickel	7440020	18.8		mg/Kg	INOR	0-0.5	3/21/96	
B56A/S	Nickel	7440020	21.9		mg/Kg	INOR	0-0.5	3/21/96	
B57A/S	Nickel	7440020	23.9		mg/Kg	INOR	0-0.5	3/22/96	
B57B/S	Nickel	7440020	24.5		mg/Kg	INOR	0-0.5	3/22/96	
B57C/S	Nickel	7440020	22.7		mg/Kg	INOR	0-0.5	3/22/96	
B57D/S	Nickel	7440020	23.7		mg/Kg	INOR	0-0.5	3/22/96	
B57E/S	Nickel	7440020	18.9		mg/Kg	INOR	0-0.5	3/22/96	
B57F/S	Nickel	7440020	22.2		mg/Kg	INOR	0-0.5	3/22/96	
B58A/S	Nickel	7440020	20.0		mg/Kg	INOR	0-0.5	3/22/96	
B59A/S	Nickel	7440020	17.4		mg/Kg		0-0.5	3/22/96	
B5A/S	Nickel	7440020	89.0		mg/Kg		0-0.5	3/20/96	
B60A/S	Nickel	7440020	23.2		mg/Kg	INOR	0-0.5	3/22/96	-
B61A/S	Nickel	7440020	20.8		mg/Kg	INOR	0-0.5	3/22/96	
B62A/S	Nickel	7440020	20.6		mg/Kg		0-0.5	3/22/96	
B63A/S	Nickel	7440020	20.0		mg/Kg		0-0.5	3/22/96	
B64A/S	Nickel	7440020	20.4		mg/Kg		0-0.5	3/22/96	
B65A/S	Nickel	7440020	49.2		mg/Kg		0-0.5	3/22/96	
B66A/S	Nickel	7440020	35.5		mg/Kg		0-0.5	3/22/96	
B67A/S	Nickel	7440020	35.6		mg/Kg		0-0.5	3/22/96	
B68A/S	Nickel	7440020	24.0		mg/Kg		0-0.5	3/22/96	
B69A/S	Nickel	7440020	21.6		mg/Kg		0-0.5	3/22/96	
B6A/S	Nickel	7440020	19.3	J	mg/Kg		0-0.5	3/19/96	
B70A/S	Nickel	7440020	19.0	J	mg/Kg	INOR	0-0.5	3/25/96	
B71A/S	Nickel	7440020	24.0	J	mg/Kg		0-0.5	3/25/96	
B72A/S	Nickel	7440020	22.3	J	mg/Kg		0-0.5	3/25/96	
B7A/S	Nickel	7440020	74.4		mg/Kg		0-0.5	3/19/96	
B8A/S	Nickel	7440020	45.9		mg/Kg	INOR	0-0.5	3/19/96	
B9A/S	Nickel	7440020	18.0		mg/Kg	and the second second	0-0.5	3/21/96	
BTPBA/S	Nickel	7440020	18.4	J	mg/Kg		0-0.5	3/20/96	

-

1

Appenix B.xls / dbas5 16 of 33

BTTPE/SNickel744020106 mg/Kg INOR0-0.5372096BTTPED/SNickel74402015.6J mg/Kg INOR0-0.5372096N1-CS-SW-101Nickel74402017.3E mg/kg INOR0-0.5972396N2-CS-WW-101Nickel744002017.3E mg/kg INOR0-0.5972396N2B-CS-W101Nickel744002015.4 mg/kg INOR0-0.5972396N3B-WS-164Nickel744002015.4 mg/kg INOR0-0.5972396N3C-WS-170Nickel744002015.6 mg/kg INOR0-0.5972396N3C-WS-170Nickel744002015.6 mg/kg INOR0-0.5972396N3C-WS-170Nickel744002018.6 mg/kg INOR0-0.5972396N3C-WS-193ANickel744002018.6 mg/kg INOR0-0.5972396B39-ANickel744002018.7 mg/kg INOR0-1.5972396N2A-CS-WI-101Nickel744002019.9 mg/kg INOR0-4C11/3093N2A-CS-WI-101Nickel744002019.9 mg/kg INOR0-4C11/3093N2A-CS-WI-101Nickel744002025.9 mg/kg INOR0-4C11/3093N2A-CS-WI-101Nickel744002025.9 mg/kg INOR0-4C11/3093N2A-CS-WI	Sample #	Analyte	CAS #	Results	Qualifier	Units	-		Date Collected
BTEDDS Nickel 7440020 16.9 J $m_{2}K_{2}$ DNOR $0-0.5$ 3720% N1-CS-SW-101 Nickel 7440020 17.3 E $mgkg$ DNOR $0-0.5$ 9723% N2-CS-W-101 Nickel 7440020 15.4 $mgkg$ DNOR $0-0.5$ 9723% N3B-WS-166 Nickel 7440020 15.4 $mgkg$ DNOR $0-0.5$ 9723% N3C-WS-170 Nickel 7440020 17.6 E $mgkg$ NOR $0-0.5$ 9723% N3C-WS-170 Nickel 7440020 18.6 $mgkg$ NOR $0-0.5$ 9723% N3C-WS-133 Nickel 7440020 18.6 $mgkg$ NOR $0-0.5$ 9723% N4-AS-SW-101 Nickel 7440020 18.6 $mgkg$ NOR $0-4.5$ 9723% N2A-CS-NW-101 Nickel 7440020 18.9 $mgkg$ NOR $0-4.5$ 1733% N2A-SS-W-101 Nickel <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
						mg/Kg			3/20/96
N2-CS-WW-101 Nickel 7440020 14.3 mg/kg INOR 0-0.5 9/23/96 N3B-WS-164 Nickel 7440020 15.4 mg/kg INOR 0-0.5 9/23/96 N3B-WS-164 Nickel 7440020 15.4 mg/kg INOR 0-0.5 9/23/96 N3C-WS-170 Nickel 7440020 17.6 E mg/kg INOR 0-0.5 9/23/96 N3C-WS-170 Nickel 7440020 17.6 E mg/kg INOR 0-0.5 9/23/96 N3C-WS-170 Nickel 7440020 18.6 mg/kg INOR 0-0.5 9/23/96 System Nickel 7440020 18.6 mg/kg INOR 0-1.5 9/23/96 System Nickel 7440020 18.9 mg/kg INOR 0-4 11/20/93 N2B-CS-SW-101 Nickel 7440020 289 mg/kg INOR 0-4 11/20/93 N2D-CS-SW-101 Nickel 7440020 289						mg/Kg	INOR		3/20/96
NBE-CS-SW-101 Nickel 7440020 14.3 mg/kg INOR 0-0.5 97(3)96 NBB-WS-164 Nickel 7440020 15.4 mg/kg INOR 0-0.5 97(3)96 NBC-WS-170 Nickel 7440020 17.6 E mg/kg INOR 0-0.5 97(2)96 NC-WS-170 Nickel 7440020 17.6 E mg/kg INOR 0-0.5 97(2)96 NAC-WS-193A Nickel 7440020 18.6 mg/kg INOR 0-0.5 97(2)96 NA-WS-12 Nickel 7440020 18.7 mg/kg INOR 0-1.5 97(2)96 DA-CS-NW-101 Nickel 7440020 19.9 mg/kg INOR 0-4 C 11/20/93 N2A-CS-NW-101 Nickel 7440020 768 mg/kg INOR 0-4 C 11/20/93 N2D-CS-SW-101 Nickel 7440020 262 mg/kg INOR 0-4 C 11/20/93 N2D-CS-SW-101			7440020			mg/kg	INOR	0-0.5	9/23/96
NBB-WS-164 Nickel 7440020 15.4 mg/kg INOR 0-0.5 9/23/96 NBE-WS-166 Nickel 7440020 14.2 mg/kg INOR 0-0.5 9/23/96 N3C-WS-170 Nickel 7440020 17.6 E mg/kg INOR 0-0.5 9/23/96 N3C-WS-170 Nickel 7440020 17.6 E mg/kg INOR 0-0.5 9/23/96 N3C-WS-133 Nickel 7440020 18.6 mg/kg INOR 0-0.5 9/23/96 B39-A Nickel 7440020 18.7 mg/kg INOR 0-1.3 3/1/94 N1-CS-SW-101 Nickel 7440020 19.9 mg/Kg INOR 0-4 C 11/30/93 N2A-CS-W-101 Nickel 7440020 539 mg/Kg INOR 0-4 C 11/30/93 N2A-CS-W-101 Nickel 7440020 162 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-103 Nickel 7440020 164				17.3	E	mg/kg	INOR	0-0.5	9/23/96
NBB-WS-166 Nickel 7440020 14.2 mg/kg INOR 0-0.5 9723/96 NIG-WS-170 Nickel 7440020 19.6 mg/kg INOR 0-0.5 9723/96 NIG-WS-170D Nickel 7440020 12.6 mg/kg INOR 0-0.5 9723/96 NIG-WS-170D Nickel 7440020 18.6 mg/kg INOR 0-0.5 9723/96 NIA-WS-122 Nickel 7440020 18.6 mg/kg INOR 0-1.5 9723/96 B39-A Nickel 7440020 18.7 mg/kg INOR 0-1.5 9723/96 N2A-CS-NW-101 Nickel 7440020 19.9 mg/kg INOR 0-4 C 11/20/93 N2A-CS-NW-101 Nickel 7440020 262 mg/kg INOR 0-4 C 11/20/93 N2D-CS-SW-101 Nickel 7440020 289 mg/kg INOR 0-4 C 12/2/93 N3A-WS-180 Nickel 7440020 18 mg/kg <t< td=""><td>N2B-CS-SW-101</td><td></td><td>7440020</td><td>14.3</td><td></td><td>mg/kg</td><td>INOR</td><td>0-0.5</td><td>9/23/96</td></t<>	N2B-CS-SW-101		7440020	14.3		mg/kg	INOR	0-0.5	9/23/96
		Nickel	7440020	15.4		mg/kg	INOR	0-0.5	9/23/96
N3C-WS-170D Nickel 7440020 19.6 mg/kg NOR $0-0.5$ 922396 N3C-WS-133A Nickel 7440020 18.6 mg/kg INOR $0-0.5$ 922396 N4A-WS-132 Nickel 7440020 18.7 mg/kg INOR $0-0.5$ 922396 B39-A Nickel 7440020 28.9 mg/Kg INOR $0-1.3$ 31/94 N12-CS-SW-101 Nickel 7440020 91.4 mg/Kg INOR $0-4.C$ 11/30/93 N2A-CS-NW-101 Nickel 7440020 768 mg/Kg INOR $0-4.C$ 11/30/93 N2D-CS-SW-101 Nickel 7440020 289 mg/Kg INOR $0-4.C$ 11/30/93 N3A-WS-103 Nickel 7440020 248 mg/Kg INOR $0-4.C$ 11/30/93 N3A-WS-103 Nickel 7440020 14.8 mg/Kg INOR $0-4.C$ 12/293 N3A-WS-130A Nickel 7440020 34.8 mg/Kg	N3B-WS-166	Nickel		14.2		mg/kg	INOR	0-0.5	9/23/96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					E	mg/kg	INOR	0-0.5	9/23/96
NAA-WS-132Nickel744002018.6 mg/kg NOR0-0.59/23/96TPA-CS-NW-101Nickel744002018.7 mg/kg NOR0-1.33/1/94N1-CS-SW-101Nickel744002028.9 mg/kg INOR0-4.13/1/94N1-CS-SW-101Nickel74400209.9 mg/kg INOR0-4.111/30/93N2A-CS-NW-101Nickel7440020768 mg/kg INOR0-4.111/30/93N2D-CS-SW-101Nickel7440020539 mg/kg INOR0-4.111/30/93N2D-CS-SW-101Nickel7440020262 mg/kg INOR0-4.111/30/93N3A-WS-103Nickel7440020289 mg/kg INOR0-4.111/30/93N3A-WS-130ANickel7440020118 mg/kg INOR0-4.112/2/93N3A-WS-135ANickel7440020143 mg/kg INOR0-4.112/2/93N3A-WS-135Nickel744002032.6 mg/kg INOR0-4.112/2/93N3B-WS-160Nickel7440020715 mg/kg INOR0-4.112/2/93N3B-WS-164Nickel7440020716 mg/kg INOR0-4.112/2/93N3C-WS-170Nickel7440020451 mg/kg INOR0-4.112/2/93N3C-WS-173Nickel74400201.2U mg/kg INOR0-4.112/2/93N3C-WS-173Nickel7440020	N3C-WS-170D		7440020	19.6		mg/kg	INOR	0-0.5	9/23/96
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7440020	27.5	E	mg/kg	INOR	0-0.5	9/23/96
B39-ANickel744002028.9 mg/Kg INOR0-1.3 $31/194$ N1-CS-SW-101Nickel7440020914 mg/Kg INOR0-4 C $11/30/93$ N2A-CS-NW-101Nickel7440020768 mg/Kg INOR0-4 C $11/30/93$ N2C-CS-SW-101Nickel7440020262 mg/Kg INOR0-4 C $11/30/93$ N2D-CS-SW-101Nickel7440020262 mg/Kg INOR0-4 C $11/30/93$ N3A-WS-103Nickel7440020289 mg/Kg INOR0-4 C $12/2/93$ N3A-WS-130ANickel7440020118 mg/Kg INOR0-4 C $12/2/93$ N3A-WS-130ANickel7440020143 mg/Kg INOR0-4 C $12/2/93$ N3B-WS-160Nickel744002032.6 mg/Kg INOR0-4 C $12/2/93$ N3B-WS-161Nickel7440020715 mg/Kg INOR0-4 C $12/2/93$ N3B-WS-166Nickel7440020715 mg/Kg INOR0-4 C $12/2/93$ N3C-WS-170Nickel7440020715 mg/Kg INOR0-4 C $12/2/93$ N3C-WS-180ANickel74400201.2U mg/Kg INOR0-4 C $12/2/93$ N3C-WS-191ANickel74400201.2U mg/Kg INOR0-4 C $12/2/93$ N3C-WS-190Nickel74400201.2U mg/Kg INOR0-4 C $12/2/93$ N3C-						mg/kg		0-0.5	9/23/96
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TPA-CS-NW-101		7440020			mg/kg	INOR	0-0.5	9/23/96
N2A-CS-NW-101 Nickel 7440020 19.9 mg/Kg NOR 0-4 C 11/30/93 N2B-CS-SW-101 Nickel 7440020 768 mg/Kg NOR 0-4 C 11/30/93 N2C-CS-SW-101 Nickel 7440020 262 mg/Kg INOR 0-4 C 11/30/93 N3A-WS-103 Nickel 7440020 289 mg/Kg INOR 0-4 C 11/30/93 N3A-WS-103 Nickel 7440020 106 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-150A Nickel 7440020 143 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-166 Nickel 7440020 32.6 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-166 Nickel 7440020 715 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-170 Nickel 7440020 715 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-180A Nickel 7440020 1.2 U m			7440020			mg/Kg	INOR	0-1.3	3/1/94
N2B-CS-SW-101 Nickel 7440020 768 mg/Kg INOR 0-4 C 11/30/93 N2D-CS-SW-101 Nickel 7440020 539 mg/Kg INOR 0-4 C 11/30/93 N3A-WS-103 Nickel 7440020 289 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-180 Nickel 7440020 289 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-188 Nickel 7440020 34.8 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-155 Nickel 7440020 34.8 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-160 Nickel 7440020 32.6 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-160 Nickel 7440020 726 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-170 Nickel 7440020 576 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-180A Nickel 7440020 1.2 mg/Kg	N1-CS-SW-101	Nickel	7440020	914		mg/Kg	INOR		11/30/93
N2C-CS-WW-101 Nickel 7440020 539 mg/Kg INOR 0-4 C 11/30/93 N2D-CS-SW-101 Nickel 7440020 289 mg/Kg INOR 0-4 C 11/30/93 N3A-WS-103 Nickel 7440020 289 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-190A Nickel 7440020 106 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-188 Nickel 7440020 143 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-155 Nickel 7440020 32.6 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-164 Nickel 7440020 726 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-170 Nickel 7440020 715 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-180A Nickel 7440020 1.2 U mg/Kg INOR 0-4 C 12/2/93 N3C-WS-190 Nickel 7440020 1.2 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11/30/93</td>									11/30/93
N2D-CS-SW-101 Nickel 7440020 262 mg/Kg NOR 0-4 C 11/30/93 N3A-WS-103 Nickel 7440020 289 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-130A Nickel 7440020 118 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-188 Nickel 7440020 143 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-192A Nickel 7440020 143 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-160 Nickel 7440020 32.6 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-160 Nickel 7440020 726 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-170 Nickel 7440020 715 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-180A Nickel 7440020 1.2 U mg/Kg INOR 0-4 C 12/2/93 N3C-WS-190 Nickel 7440020 1.2 U									11/30/93
N3A-WS-103 Nickel 7440020 289 mg/Kg NOR 0-4 C 12/2/93 N3A-WS-150A Nickel 7440020 106 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-188 Nickel 7440020 118 mg/Kg INOR 0-4 C 12/2/93 N3A-WS-192A Nickel 7440020 34.8 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-155 Nickel 7440020 32.6 mg/Kg INOR 0-4 C 12/2/93 N3B-WS-164 Nickel 7440020 726 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-170 Nickel 7440020 715 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-175 Nickel 7440020 451 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-180A Nickel 7440020 1.2 U mg/Kg INOR 0-4 C 12/2/93 N3C-WS-193A Nickel 7440020 16.2 mg/Kg									
N3A-WS-188Nickel7440020118 mg/Kg INOR0.4 C12/2/93N3A-WS-192ANickel744002034.8 mg/Kg INOR0.4 C12/2/93N3B-WS-155Nickel744002032.6 mg/Kg INOR0.4 C12/2/93N3B-WS-160Nickel744002072.6 mg/Kg INOR0.4 C12/2/93N3B-WS-164Nickel744002071.5 mg/Kg INOR0.4 C12/2/93N3B-WS-166Nickel744002071.5 mg/Kg INOR0.4 C12/2/93N3C-WS-170Nickel744002057.6 mg/Kg INOR0.4 C12/2/93N3C-WS-175Nickel74400204.1 mg/Kg INOR0.4 C12/2/93N3C-WS-180ANickel74400204.3 mg/Kg INOR0.4 C12/2/93N3C-WS-190Nickel74400204.3 mg/Kg INOR0.4 C12/2/93N3C-WS-193ANickel74400205.3 mg/Kg INOR0.4 C12/2/93N3D-WS-131ANickel74400205.3 mg/Kg INOR0.4 C12/2/93N4A-WS-131Nickel744002042.1 mg/Kg INOR0.4 C12/2/93N4A-WS-131Nickel74400205.3 mg/Kg INOR0.4 C12/2/93N4A-WS-131Nickel74400205.7 mg/Kg INOR0.4 C12/10/93N4A-WS-135Nickel74400205.7 mg/K									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
N3B-WS-160 Nickel 7440020 32.6 mg/Kg INOR 0.4 C 12/2/93 N3B-WS-164 Nickel 7440020 726 mg/Kg INOR 0.4 C 12/2/93 N3B-WS-166 Nickel 7440020 715 mg/Kg INOR 0.4 C 12/2/93 N3C-WS-170 Nickel 7440020 576 mg/Kg INOR 0.4 C 12/2/93 N3C-WS-175 Nickel 7440020 451 mg/Kg INOR 0.4 C 12/2/93 N3C-WS-180A Nickel 7440020 46.3 mg/Kg INOR 0.4 C 12/2/93 N3C-WS-193A Nickel 7440020 306 mg/Kg INOR 0.4 C 12/2/93 N3D-WS-183A Nickel 7440020 35.3 mg/Kg INOR 0.4 C 12/2/93 N3D-WS-131 Nickel 7440020 53.3 mg/Kg INOR 0.4 C 12/10/93 N4A-WS-132 Nickel 7440020 17.3 mg/Kg INO									
N3B-WS-164Nickel7440020726 mg/Kg NOR0-4 C12/2/93N3B-WS-166Nickel7440020715 mg/Kg NOR0-4 C12/2/93N3C-WS-170Nickel7440020576 mg/Kg NOR0-4 C12/2/93N3C-WS-175Nickel7440020451 mg/Kg NOR0-4 C12/2/93N3C-WS-180ANickel74400201.2U mg/Kg NOR0-4 C12/2/93N3C-WS-190Nickel744002046.3 mg/Kg NOR0-4 C12/2/93N3C-WS-191ANickel7440020120 mg/Kg NOR0-4 C12/2/93N3D-WS-183ANickel7440020306 mg/Kg NOR0-4 C12/2/93N3D-WS-191ANickel744002055.3 mg/Kg NOR0-4 C12/2/93N4A-WS-131Nickel744002088.2 mg/Kg NOR0-4 C12/10/93N4A-WS-132Nickel744002021.1 mg/Kg NOR0-4 C12/10/93N4B-WS-115Nickel744002025.7 mg/Kg NOR0-4 C12/10/93N4B-WS-153Nickel7440020120 mg/Kg NOR0-4 C12/10/93N4B-WS-153Nickel7440020126 mg/Kg NOR0-4 C12/10/93N4B-WS-153Nickel744002031.2 mg/Kg NOR0-4 C12/10/93TPA-CS-NW-101Nickel744002031.2 m									
N3B-WS-166Nickel7440020715 mg/Kg INOR 0.4 C $12/2/93$ N3C-WS-170Nickel7440020576 mg/Kg INOR 0.4 C $12/2/93$ N3C-WS-175Nickel7440020451 mg/Kg INOR 0.4 C $12/2/93$ N3C-WS-180ANickel7440020451 mg/Kg INOR 0.4 C $12/2/93$ N3C-WS-190Nickel74400201.2U mg/Kg INOR 0.4 C $12/2/93$ N3C-WS-193ANickel74400201120 mg/Kg INOR 0.4 C $12/2/93$ N3D-WS-131ANickel7440020306 mg/Kg INOR 0.4 C $12/2/93$ N3D-WS-131ANickel744002088.2 mg/Kg INOR 0.4 C $12/2/93$ N4A-WS-131Nickel744002088.2 mg/Kg INOR 0.4 C $12/10/93$ N4A-WS-132Nickel744002057.3 mg/Kg INOR 0.4 C $12/10/93$ N4A-WS-135Nickel7440020126 mg/Kg INOR 0.4 C $12/10/93$ N4B-WS-150Nickel744002025.7 mg/Kg INOR 0.4 C $12/10/93$ N4B-WS-150Nickel744002057.4 mg/Kg INOR 0.4 C $12/10/93$ N4B-WS-150Nickel744002057.4 mg/Kg INOR 0.4 C $12/10/93$ TPA-CS-NW-101Nickel744002057.4 mg/Kg INOR 0.4 C $11/30/93$									
N3C-WS-170 Nickel 7440020 576 mg/Kg NOR 0-4 C 12/2/93 N3C-WS-175 Nickel 7440020 451 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-180A Nickel 7440020 1.2 U mg/Kg INOR 0-4 C 12/2/93 N3C-WS-190 Nickel 7440020 1.2 U mg/Kg INOR 0-4 C 12/2/93 N3C-WS-193A Nickel 7440020 1120 mg/Kg INOR 0-4 C 12/2/93 N3D-WS-183A Nickel 7440020 306 mg/Kg INOR 0-4 C 12/2/93 N3D-WS-131 Nickel 7440020 55.3 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-131 Nickel 7440020 88.2 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-135 Nickel 7440020 57.3 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-148 Nickel 7440020 52.7									
N3C-WS-175Nickel7440020451 mg/Kg INOR0-4 C12/2/93N3C-WS-180ANickel74400201.2U mg/Kg INOR0-4 C12/2/93N3C-WS-190Nickel744002046.3 mg/Kg INOR0-4 C12/2/93N3C-WS-193ANickel74400201120 mg/Kg INOR0-4 C12/2/93N3D-WS-183ANickel7440020306 mg/Kg INOR0-4 C12/2/93N3D-WS-191ANickel744002055.3 mg/Kg INOR0-4 C12/2/93N4A-WS-131Nickel744002088.2 mg/Kg INOR0-4 C12/10/93N4A-WS-132Nickel744002021.1 mg/Kg INOR0-4 C12/10/93N4B-WS-135Nickel744002021.1 mg/Kg INOR0-4 C12/10/93N4B-WS-135Nickel744002025.7 mg/Kg INOR0-4 C12/10/93N4B-WS-150Nickel744002025.7 mg/Kg INOR0-4 C12/10/93N4B-WS-153Nickel744002025.7 mg/Kg INOR0-4 C12/10/93N4B-WS-153Nickel7440020492 mg/Kg INOR0-4 C11/30/93TPA-CS-NW-101Nickel744002031.2 mg/Kg INOR0-4 C11/30/93TPB-CS-NW-101Nickel744002032.9 mg/Kg INOR0-4 C11/30/93TPC-CS-EW-101Nickel74									
N3C-WS-180ANickel74400201.2Umg/KgINOR0.4 C12/2/93N3C-WS-190Nickel744002046.3mg/KgINOR0.4 C12/2/93N3C-WS-193ANickel74400201120mg/KgINOR0.4 C12/2/93N3D-WS-183ANickel7440020306mg/KgINOR0.4 C12/2/93N3D-WS-191ANickel744002055.3mg/KgINOR0.4 C12/2/93N4A-WS-131Nickel744002088.2mg/KgINOR0.4 C12/10/93N4A-WS-132Nickel74400201420mg/KgINOR0.4 C12/10/93N4A-WS-135Nickel744002021.1mg/KgINOR0.4 C12/10/93N4B-WS-150Nickel7440020126mg/KgINOR0.4 C12/10/93N4B-WS-150Nickel744002025.7mg/KgINOR0.4 C12/10/93N4B-WS-150Nickel744002057.4mg/KgINOR0.4 C11/30/93TPA-CS-NW-101Nickel744002057.4mg/KgINOR0.4 C11/30/93TPB-CS-NW-101Nickel744002031.2mg/KgINOR0.4 C11/30/93TPC-CS-EW-102Nickel7440020329mg/KgINOR0.4 C11/30/93TPC-CS-EW-101Nickel7440020329mg/KgINOR0.4 C11/30/93TPC-CS-EW-101Nickel7440020329 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
N3C-WS-190 Nickel 7440020 46.3 mg/Kg INOR 0-4 C 12/2/93 N3C-WS-193A Nickel 7440020 1120 mg/Kg INOR 0-4 C 12/2/93 N3D-WS-193A Nickel 7440020 306 mg/Kg INOR 0-4 C 12/2/93 N3D-WS-191A Nickel 7440020 306 mg/Kg INOR 0-4 C 12/2/93 N4A-WS-131 Nickel 7440020 88.2 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-132 Nickel 7440020 1420 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-135 Nickel 7440020 21.1 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 31.2 mg/Kg									
N3C-WS-193A Nickel 7440020 1120 mg/Kg INOR 0.4 C 12/2/93 N3D-WS-183A Nickel 7440020 306 mg/Kg INOR 0.4 C 12/2/93 N3D-WS-191A Nickel 7440020 55.3 mg/Kg INOR 0.4 C 12/2/93 N4A-WS-131 Nickel 7440020 88.2 mg/Kg INOR 0.4 C 12/10/93 N4A-WS-132 Nickel 7440020 1420 mg/Kg INOR 0.4 C 12/10/93 N4A-WS-135 Nickel 7440020 21.1 mg/Kg INOR 0.4 C 12/10/93 N4B-WS-155 Nickel 7440020 25.7 mg/Kg INOR 0.4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0.4 C 12/10/93 NPA-CS-NW-101 Nickel 7440020 574 mg/Kg INOR 0.4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 31.2 mg/Kg					U				
N3D-WS-183A Nickel 7440020 306 mg/Kg NOR 0.4 C 12/2/93 N3D-WS-191A Nickel 7440020 55.3 mg/Kg NOR 0.4 C 12/2/93 N4A-WS-131 Nickel 7440020 88.2 mg/Kg NOR 0.4 C 12/10/93 N4A-WS-132 Nickel 7440020 1420 mg/Kg NOR 0.4 C 12/10/93 N4A-WS-135 Nickel 7440020 21.1 mg/Kg NOR 0.4 C 12/10/93 N4B-WS-115 Nickel 7440020 57.3 mg/Kg NOR 0.4 C 12/10/93 N4B-WS-148 Nickel 7440020 57.3 mg/Kg NOR 0.4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg NOR 0.4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 574 mg/Kg NOR 0.4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 31.2 mg/Kg <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
N3D-WS-191A Nickel 7440020 55.3 mg/Kg INOR 0-4 C 12/2/93 N4A-WS-131 Nickel 7440020 88.2 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-132 Nickel 7440020 1420 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-135 Nickel 7440020 21.1 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-115 Nickel 7440020 57.3 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-148 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 492 mg/Kg INOR 0-4 C 12/10/93 NPA-CS-NW-101 Nickel 7440020 574 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-NW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 329 mg/Kg									
N4A-WS-131 Nickel 7440020 88.2 mg/Kg NOR 0-4 C 12/10/93 N4A-WS-132 Nickel 7440020 1420 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-135 Nickel 7440020 21.1 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-115 Nickel 7440020 57.3 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-115 Nickel 7440020 126 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-153 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 40.7 mg/Kg									
N4A-WS-132 Nickel 7440020 1420 mg/Kg INOR 0-4 C 12/10/93 N4A-WS-135 Nickel 7440020 21.1 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-115 Nickel 7440020 57.3 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-148 Nickel 7440020 126 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-153 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 492 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-WN-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 120 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 40.7 mg/Kg									
N4A-WS-135 Nickel 7440020 21.1 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-115 Nickel 7440020 57.3 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-148 Nickel 7440020 126 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-153 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 492 mg/Kg INOR 0-4 C 11/30/93 TPB-CS-NW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 120 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 329 mg/Kg INOR 1-3 3/19/96 B12A/1-3 Nickel 7440020 40.7 mg/Kg									
N4B-WS-115 Nickel 7440020 57.3 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-148 Nickel 7440020 126 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-153 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 492 mg/Kg INOR 0-4 C 11/30/93 TPB-CS-NW-101 Nickel 7440020 574 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-102 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 40.7 mg/Kg INOR 0-4 C 11/30/93 B14A/1-3 Nickel 7440020 40.7 mg/Kg INOR 1-3 3/19/96 B157A/1-3 Nickel 7440020					· · · ·				
N4B-WS-148 Nickel 7440020 126 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-153 Nickel 7440020 492 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 574 mg/Kg INOR 0-4 C 11/30/93 TPB-CS-NW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 120 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-102 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B12A/1-3 Nickel 7440020 40.7 mg/Kg INOR 1-3 3/19/96 B157A/1-3 Nickel 7440020 140 J									
N4B-WS-150 Nickel 7440020 25.7 mg/Kg INOR 0-4 C 12/10/93 N4B-WS-153 Nickel 7440020 492 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 574 mg/Kg INOR 0-4 C 11/30/93 TPB-CS-NW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-102 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 40.7 mg/Kg INOR 1-3 3/19/96 B12A/1-3 Nickel 7440020 62.5 mg/Kg INOR 1-3 3/20/96 B157A/1-3 Nickel 7440020 33.1 mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 7440020 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
N4B-WS-153 Nickel 7440020 492 mg/Kg INOR 0-4 C 12/10/93 TPA-CS-NW-101 Nickel 7440020 574 mg/Kg INOR 0-4 C 11/30/93 TPB-CS-NW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 31.2 mg/Kg INOR 0-4 C 11/30/93 TPC-CS-EW-101 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B11A/1-3 Nickel 7440020 329 mg/Kg INOR 0-4 C 11/30/93 B12A/1-3 Nickel 7440020 62.5 mg/Kg INOR 1-3 3/19/96 B14A/1-3 Nickel 7440020 140 J mg/Kg INOR 1-3 3/20/96 B157A/1-3 Nickel 7440020 33.1 mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 744									
TPA-CS-NW-101Nickel7440020574mg/KgINOR0-4 C11/30/93TPB-CS-NW-101Nickel744002031.2mg/KgINOR0-4 C11/30/93TPC-CS-EW-101Nickel7440020120mg/KgINOR0-4 C11/30/93TPC-CS-EW-102Nickel7440020329mg/KgINOR0-4 C11/30/93B11A/1-3Nickel744002040.7mg/KgINOR1-33/19/96B12A/1-3Nickel744002062.5mg/KgINOR1-33/20/96B14A/1-3Nickel7440020140Jmg/KgINOR1-33/20/96B157A/1-3Nickel744002033.1mg/KgINOR1-33/21/96B158A/1-3Nickel744002048.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B167A/1-3Nickel744002019.3mg/KgINOR1-33/20/96									
TPB-CS-NW-101Nickel744002031.2mg/KgINOR0-4 C11/30/93TPC-CS-EW-101Nickel7440020120mg/KgINOR0-4 C11/30/93TPC-CS-EW-102Nickel7440020329mg/KgINOR0-4 C11/30/93B11A/1-3Nickel7440020329mg/KgINOR0-4 C11/30/93B12A/1-3Nickel744002040.7mg/KgINOR1-33/19/96B12A/1-3Nickel744002062.5mg/KgINOR1-33/20/96B14A/1-3Nickel7440020140Jmg/KgINOR1-33/20/96B157A/1-3Nickel744002033.1mg/KgINOR1-33/21/96B158A/1-3Nickel744002048.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B21A/1-3Nickel744002019.3mg/KgINOR1-33/20/96									
TPC-CS-EW-101Nickel7440020120mg/KgINOR0-4 C11/30/93TPC-CS-EW-102Nickel7440020329mg/KgINOR0-4 C11/30/93B11A/1-3Nickel744002040.7mg/KgINOR1-33/19/96B12A/1-3Nickel744002062.5mg/KgINOR1-33/19/96B14A/1-3Nickel744002062.5mg/KgINOR1-33/20/96B157A/1-3Nickel7440020140Jmg/KgINOR1-33/20/96B158A/1-3Nickel744002033.1mg/KgINOR1-33/21/96B158A/1-3Nickel744002048.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B21A/1-3Nickel744002019.3mg/KgINOR1-33/20/96									
TPC-CS-EW-102Nickel7440020329mg/KgINOR0-4 C11/30/93B11A/1-3Nickel744002040.7mg/KgINOR1-33/19/96B12A/1-3Nickel744002062.5mg/KgINOR1-33/19/96B14A/1-3Nickel744002062.5mg/KgINOR1-33/20/96B157A/1-3Nickel7440020140Jmg/KgINOR1-33/20/96B157A/1-3Nickel744002033.1mg/KgINOR1-33/21/96B158A/1-3Nickel744002048.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B21A/1-3Nickel744002019.3mg/KgINOR1-33/20/96									
B11A/1-3 Nickel 7440020 40.7 mg/Kg INOR 1-3 3/19/96 B12A/1-3 Nickel 7440020 62.5 mg/Kg INOR 1-3 3/19/96 B14A/1-3 Nickel 7440020 62.5 mg/Kg INOR 1-3 3/19/96 B14A/1-3 Nickel 7440020 140 J mg/Kg INOR 1-3 3/20/96 B157A/1-3 Nickel 7440020 33.1 mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 7440020 48.0 J mg/Kg INOR 1-3 3/25/96 B15A/1-3 Nickel 7440020 20.0 J mg/Kg INOR 1-3 3/20/96 B167A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B167A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B21A/1-3 Nickel 7440020						_			
B12A/1-3 Nickel 7440020 62.5 mg/Kg INOR 1-3 3/19/96 B14A/1-3 Nickel 7440020 140 J mg/Kg INOR 1-3 3/20/96 B157A/1-3 Nickel 7440020 33.1 mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 7440020 48.0 J mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 7440020 48.0 J mg/Kg INOR 1-3 3/25/96 B15A/1-3 Nickel 7440020 20.0 J mg/Kg INOR 1-3 3/20/96 B167A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B167A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B21A/1-3 Nickel 7440020 19.3 mg/Kg INOR 1-3 3/20/96									
B14A/1-3 Nickel 7440020 140 J mg/Kg INOR 1-3 3/20/96 B157A/1-3 Nickel 7440020 33.1 mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 7440020 48.0 J mg/Kg INOR 1-3 3/21/96 B158A/1-3 Nickel 7440020 20.0 J mg/Kg INOR 1-3 3/25/96 B15A/1-3 Nickel 7440020 20.0 J mg/Kg INOR 1-3 3/20/96 B167A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B21A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B21A/1-3 Nickel 7440020 19.3 mg/Kg INOR 1-3 3/20/96									
B157A/1-3Nickel744002033.1mg/KgINOR1-33/21/96B158A/1-3Nickel744002048.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/20/96B21A/1-3Nickel744002019.3mg/KgINOR1-33/25/96									
B158A/1-3Nickel744002048.0Jmg/KgINOR1-33/25/96B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B21A/1-3Nickel744002019.3mg/KgINOR1-33/25/96					1				
B15A/1-3Nickel744002020.0Jmg/KgINOR1-33/20/96B167A/1-3Nickel744002019.9Jmg/KgINOR1-33/25/96B21A/1-3Nickel744002019.3mg/KgINOR1-33/20/96									
B167A/1-3 Nickel 7440020 19.9 J mg/Kg INOR 1-3 3/25/96 B21A/1-3 Nickel 7440020 19.3 mg/Kg INOR 1-3 3/20/96									
B21A/1-3 Nickel 7440020 19.3 mg/Kg INOR 1-3 3/20/96									
					1				
D22AVI-3 NICKEI /440020 15.6 mg/Kg INOK 1-3 3/20/96									
	D24AV [-3	MICKEI	7440020	13.0		mg/Kg	INOK	1-5	3/20/96

Appenix B.xls / dbas5 17 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
B23A/1-3	Nickel	7440020	163		mg/Kg	INOR	1-3	3/20/96
B24A/1-3	Nickel	7440020	22.9		mg/Kg	INOR	1-3	3/21/96
B25A/1-3	Nickel	7440020	18.2		mg/Kg	INOR	1-3	3/21/96
B26A/1-3	Nickel	7440020	5960		mg/Kg	INOR	1-3	3/21/96
B27A/1-3	Nickel	7440020	365		mg/Kg	INOR	1-3	3/21/96
B2A/1-3	Nickel	7440020	68.6	J	mg/Kg	INOR	1-3	3/20/96
B31A/1-3	Nickel	7440020	419		mg/Kg	INOR	1-3	3/21/96
B32A/1-3	Nickel	7440020	17.0		mg/Kg		1-3	3/21/96
B33A/1-3	Nickel	7440020	12.8		mg/Kg	INOR	1-3	3/21/96
B34A/1-3	Nickel	7440020	21.8		mg/Kg	INOR	1-3	3/21/96
B36A/1-3	Nickel	7440020	98.0		mg/Kg	INOR	1-3	3/21/96
B38A/1-3	Nickel	7440020	10.0		mg/Kg	INOR	1-3	3/21/96
B43A/1-3	Nickel	7440020	1170		mg/Kg	INOR	1-3	3/21/96
B48A/1-3	Nickel	7440020	18.1		mg/Kg	INOR	1-3	3/21/96
B49A/1-3	Nickel	7440020	178		mg/Kg	INOR	1-3	3/21/96
B50A/1-3	Nickel	7440020	252		mg/Kg	INOR	1-3	3/21/96
B54A/1-3	Nickel	7440020	166	J	mg/Kg	INOR .	1-3	3/25/96
B55A/1-3	Nickel	7440020	35.8	J	mg/Kg	INOR	1-3	3/25/96
B57A/1-3	Nickel	7440020	31.1	-	mg/Kg	INOR	1-3	3/21/96
B57B/1-3	Nickel	7440020	63.4		mg/Kg	INOR	1-3	3/22/96
B57C/1-3	Nickel	7440020	52.6		mg/Kg	INOR	1-3	3/22/96
B57D/1-3	Nickel	7440020	72.8		mg/Kg	INOR	1-3	3/22/96
B57E/1-3	Nickel	7440020	52.4		mg/Kg	INOR	1-3	3/22/96
B57F/1-3	Nickel	7440020	71.2		mg/Kg	INOR	1-3	3/22/96
B58A/1-3	Nickel	7440020	48.4	J	mg/Kg	INOR	1-3	3/25/96
B59A/1-3	Nickel	7440020	17.9	J	mg/Kg	INOR	1-3	3/25/96
B5A/1-3	Nickel	7440020	30.5	-	mg/Kg	INOR	1-3	3/20/96
B61A/1-3	Nickel	7440020	17.1	J	mg/Kg	INOR	1-3	3/25/96
B65A/1-3	Nickel	7440020	18.4	J	mg/Kg	INOR	1-3	3/25/96
B66A/1-3	Nickel	7440020	229	J	mg/Kg	INOR	1-3	3/25/96
B67A/1-3	Nickel	7440020	20.1	J	mg/Kg	INOR	1-3	3/25/96
B68A/1-3	Nickel	7440020	49.5	J	mg/Kg	INOR	1-3	3/25/96
B69A/1-3	Nickel	7440020	25.3	Ĵ	mg/Kg	INOR	1-3	3/25/96
B6A/1-3	Nickel	7440020	14.3	J	mg/Kg	INOR	1-3	3/19/96
B70A/1-3	Nickel	7440020	18.8	J	mg/Kg	INOR	1-3	3/25/96
B71A/1-3	Nickel	7440020	20.5	J	mg/Kg	INOR	1-3	3/25/96
B72A/1-3	Nickel	7440020	22.1	J	mg/Kg	INOR	1-3	3/25/96
B7A/1-3	Nickel	7440020	Ĩ12		mg/Kg	INOR	1-3	3/19/96
B8A/1-3	Nickel	7440020	18.5		mg/Kg	INOR	1-3	3/19/96
BTPBA/1-3	Nickel	7440020	25.9		mg/Kg	INOR	1-3	3/20/96
BTPBB/1-3	Nickel	7440020	16.2		mg/Kg	INOR	1-3	3/20/96
BTPBC/1-3	Nickel	7440020	20.3		mg/Kg	INOR	1-3	3/20/96
BTPBD/1-3	Nickel	7440020	18.2		mg/Kg	INOR	1-3	3/20/96
N3A-CS-048B	Nickel	7440020	104		mg/Kg	INOR	1-4	10/18/93
N3A-CS-049A	Nickel	7440020	204		mg/Kg	INOR	1-4	10/18/93
N3A-CS-050B	Nickel	7440020	85.2		mg/Kg	INOR	1-4	10/18/93
N3A-CS-051	Nickel	7440020	351		mg/Kg	INOR	1-4	10/18/93
N3B-CS-052A	Nickel	7440020	54.9		mg/Kg	INOR	1-4	11/10/93
N3B-CS-053	Nickel	7440020	1.2	U	mg/Kg	INOR	1-4	11/10/93
N3B-CS-056	Nickel	7440020	38.6	-	mg/Kg	INOR	1-4	11/10/93
N3B-CS-064B	Nickel	7440020	55.8		mg/Kg	INOR	1-4	11/19/93
N3B-CS-066	Nickel	7440020	55.1		mg/Kg	INOR	1-4	11/10/93
N3C-CS-034A/73A	Nickel	7440020	72.7		mg/Kg	INOR	1-4	11/18/93
N3C-CS-063B	Nickel	7440020	21.1		mg/Kg	INOR	1-4	11/19/93

Appenix B.xls / dbas5 18 of 33

Sample #	Analyte	CAS #		Qualifie	r Units	Data Group	Denth (feet	Date Collected
N3C-CS-065	Nickel	7440020	109		mg/Kg	INOR	1-4	12/6/93
N3C-CS-069A	Nickel	7440020	109		mg/Kg	INOR	1-4	11/10/93
N3C-CS-074	Nickel	7440020	60.3		mg/Kg	INOR	1-4	
N3C-CS-076	Nickel	· 7440020	1.2	U	mg/Kg	INOR	-1-4	11/10/93
N3D-CS-087	Nickel	7440020	16.3	-	mg/Kg	INOR	1-4	11/10/93
N3D-CS-088	Nickel	7440020	27.2		mg/Kg	INOR	1-4	11/19/93
N3D-CS-089	Nickel	7440020	34.1		mg/Kg	INOR		11/19/93
N4B-CS-006	Nickel	7440020	26.5		mg/Kg	INOR	1-4	11/19/93
N4C-BE-P/M	Nickel	7440020	53.6		mg/Kg		1-4	10/12/93
N4C-BW-P/M	Nickel	7440020	68.6		mg/Kg	INOR	1-4	9/11/93
N4C-EW-P/M	Nickel	7440020	23.4			INOR	1-4	9/13/93
N4C-NW	Nickel	7440020	63.5		mg/Kg	INOR	1-4	9/11/93
N4C-SW-P/M	Nickel	7440020	54.7		mg/Kg	INOR	1-4	9/24/93
N4C-WW-P/M	Nickel	7440020	59		mg/Kg	INOR	1-4	9/11/93
B20-A	Nickel	7440020	53.2		mg/Kg	INOR	1-4	9/11/93
B17-C	Nickel	7440020	29.8		mg/Kg	INOR	1-6	2/10/94
B18-C	Nickel	7440020	25.5		mg/Kg	INOR	10-11 W	2/25/94
B59-E	Nickel	7440020	37.3		mg/Kg	INOR	10-11.5 W	3/3/94
B62-C	Nickel	7440020	66.6		mg/Kg	INOR	10-11.5 W	2/28/94
B19A/10-12	Nickel	7440020	47.0		mg/Kg	INOR	10-11.5 W	2/17/94
B30-E	Nickel	7440020	23.2		mg/Kg	INOR	10-12	3/21/96
B71-D	Nickel	7440020	30.9		mg/Kg	INOR	10-12 W	3/1/94
B138A/12-14	Nickel	7440020			mg/Kg	INOR	10-12 W	2/17/94
B38A/12-14	Nickel	7440020	46.8		mg/Kg	INOR	12-14	3/21/96
B45-D	Nickel	7440020	41.1		mg/Kg	INOR	12-14	3/21/96
B21-E	Nickel	7440020	21.2		mg/Kg	INOR	12-16 W	3/2/94
B1A/2-4	Nickel	7440020	348		mg/Kg	INOR	13-15	2/7/94
B33-A	Nickel		818	1	mg/Kg	INOR	2-4	3/19/96
B42-A	Nickel	7440020	740		mg/Kg	INOR	2-7	2/8/94
B32-A	Nickel	7440020	36.2		mg/Kg	INOR	2-7	2/22/94
B38-H	Nickel	7440020	236		mg/Kg	INOR	2.5-4.5	2/11/94
B112A/3-5	Nickel	7440020	30.4	10.0	mg/Kg	INOR	20-21 W	2/11/94
B115A/3-5	Nickel	7440020	110	1	mg/Kg	INOR	3-5	3/19/96
B12A/3-5	Nickel	7440020	474		mg/Kg	INOR	3-5	3/20/96
B13A/3-5	Nickel	7440020	171		mg/Kg	INOR	3-5	3/19/96
B14A/3-5	Nickel	7440020	176		mg/Kg	INOR	3-5	3/19/96
B15A/3-5	Nickel	7440020	321	- 1 J	mg/Kg	INOR	3-5	3/20/96
B16A/3-5	Nickel	7440020	458		mg/Kg	INOR	3-5	3/20/96
B20/3-5	Nickel	7440020	246	J	mg/Kg	INOR	3-5	3/20/96
B21A/3-5	Nickel	7440020	185		mg/Kg	INOR	3-5	3/20/96
B22A/3-5	Nickel	7440020	34.8		mg/Kg	INOR	3-5	3/20/96
B23A/3-5		7440020	398		mg/Kg	INOR	3-5	3/20/96
B24A/3-5	Nickel	7440020	148		mg/Kg	INOR	3-5	3/20/96
B25A/3-5	Nickel	7440020	1430		mg/Kg	INOR	3-5	3/21/96
B26A/3-5	Nickel	7440020	132		mg/Kg	INOR	3-5	3/21/96
B31A/3-5	Nickel	7440020	1320		mg/Kg	INOR	3-5	3/21/96
B32A/3-5	Nickel	7440020	538		mg/Kg	INOR	3-5	3/21/96
B34A/3-5	Nickel	7440020	12.5		mg/Kg	INOR	3-5	3/21/96
B37A/3-5	Nickel	7440020	1250		mg/Kg	INOR	3-5	3/21/96
B48A/3-5	Nickel	7440020	14.7		mg/Kg	INOR	3-5	3/21/96
B49A/3-5	Nickel	7440020	112		mg/Kg	INOR	3-5	3/21/96
	Nickel	7440020	96.5	1	mg/Kg	INOR	3-5	3/21/96
B50A/3-5	Nickel	7440020	831		mg/Kg	INOR	3-5	3/21/96
B55A/3-5	Nickel	7440020	41.4	· J	mg/Kg	INOR	3-5	3/25/96
B57A/3-5	Nickel	7440020	50.0		mg/Kg	INOR	3-5	3/22/96
					0.0		5-5	5122/90

Appenix B.xls / dbas5 19 of 33

1

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group		Date Collected
B57B/3-5	Nickel	7440020	576		mg/Kg	INOR	3-5	3/22/96
B57C/3-5	Nickel	7440020	477		mg/Kg	INOR	3-5	3/22/96
B57D/3-5	Nickel	7440020	21.9		mg/Kg	INOR	3-5	3/22/96
B57E/3-5	Nickel	7440020 -	31.9		mg/Kg	INOR	3-5	3/22/96
B57F/3-5	Nickel	7440020	27.2		mg/Kg	INOR	3-5	3/22/96
B5A/3-5	Nickel	7440020	26.8	J	mg/Kg	INOR	3-5	3/20/96
B6A/3-5	Nickel	7440020	14.4	J	mg/Kg	INOR	3-5	3/19/96
B8A/3-5	Nickel	7440020	17.0		mg/Kg	INOR	3-5	3/19/96
BTPBA/3-5	Nickel	7440020	71.7		mg/Kg	INOR	3-5	3/20/96
BTPBB/3-5	Nickel	7440020	194		mg/Kg	INOR	3-5	3/20/96
	Nickel	7440020	1060		mg/Kg	INOR	3-5	3/20/96
BTPBC/3-5	Nickel	7440020	16.4		mg/Kg	INOR	3-5	3/20/96
BTPBD/3-5	Nickel	7440020	23.4		mg/Kg	INOR	4-5.5	2/22/94
B09-A	Nickel	7440020	22.6	J	mg/Kg	INOR	4-6	3/25/96
B54A/4-6	Nickel	7440020	30	•	mg/Kg	INOR	4-6 W	2/21/94
B64-B	Nickel	7440020	26.6		mg/Kg	INOR	4-7 W ·	2/21/94
B72-B	Nickel	7440020	63.1		mg/Kg	INOR	4-7.5	2/24/94
B02-B	Nickel	7440020	588		mg/Kg	INOR	4-8	11/30/93
N1-CS-001	Nickel	7440020	153		mg/Kg	INOR	4-8	11/30/93
N2D-CS-001	Nickel	7440020	116		mg/Kg	INOR	4-8	10/18/93
N3A-CS-011		7440020	112		mg/Kg	INOR	4-8	11/10/93
N3A-CS-019	Nickel	7440020	242		mg/Kg	INOR	4-8	10/18/93
N3A-CS-020	Nickel	7440020	17.5		mg/Kg	INOR	4-8	12/6/93
N3A-CS-021	Nickel	7440020	108		mg/Kg	INOR	4-8	10/18/93
N3A-CS-030	Nickel	7440020	92.2		mg/Kg	INOR	4-8	10/18/93
N3A-CS-031	Nickel	7440020	21.4		mg/Kg	INOR	4-8	11/10/93
N3A-CS-046	Nickel	7440020	1.2	U	mg/Kg	INOR	4-8	11/10/93
N3B-CS-054	Nickel	7440020	1.2	U	mg/Kg	INOR	4-8	11/10/93
N3B-CS-055	Nickel	7440020	138	U	mg/Kg	INOR	4-8	11/10/93
N3B-CS-057	Nickel		42.3		mg/Kg	INOR	4-8	11/10/93
N3B-CS-058	Nickel	7440020	42.5		mg/Kg	INOR	4-8	12/6/93
N3B-CS-061	Nickel	7440020	75.9		mg/Kg	INOR	4-8	12/13/93
N3B-CS-062	Nickel	7440020	79.9		mg/Kg	INOR	4-8	11/10/93
N3C-CS-067	Nickel	7440020	87.1		mg/Kg	INOR	4-8	11/10/93
N3C-CS-068	Nickel	7440020	236		mg/Kg	INOR	4-8	11/18/93
N3C-CS-070A	Nickel	7440020	81.8		mg/Kg	INOR	4-8	11/18/93
N3C-CS-072A	Nickel	7440020	118		mg/Kg	INOR	4-8	11/10/93
N3C-CS-075	Nickel	7440020	105		mg/Kg	INOR	4-8	11/16/93
N3C-CS-078A	Nickel		1.2	U	mg/Kg	INOR	4-8	11/10/93
N3C-CS-081	Nickel	7440020	85.8	U	mg/Kg	INOR	4-8	11/10/93
N3C-CS-081	Nickel	7440020	40.7		mg/Kg	INOR	4-8	12/7/93
N3D-CS-083	Nickel	7440020	86.9		mg/Kg	INOR	4-8	12/6/93
N3D-CS-084	Nickel	7440020	17.9		mg/Kg	INOR	4-8	11/19/93
N3D-CS-085	Nickel	7440020	41.3		mg/Kg	INOR	4-8	11/19/93
N3D-CS-086	Nickel	7440020	39.2		mg/Kg	INOR	4-8	12/7/93
N4A-CS-033	Nickel	7440020	90.1		mg/Kg	INOR	4-8	12/7/93
N4A-CS-034	Nickel	7440020	20.9		mg/Kg	INOR	4-8	10/12/93
N4B-CS-001	Nickel	7440020					4-8	10/12/93
N4B-CS-002a	Nickel	7440020	59.6		mg/Kg mg/Kg		4-8	10/12/93
N4B-CS-003	Nickel	7440020	29.4				4-8	10/12/93
N4B-CS-004	Nickel	7440020	53.3		mg/Kg	and some lines	4-8	10/12/93
N4B-CS-005	Nickel	7440020	21.6		mg/Kg		4-8	10/12/93
N4B-CS-014	Nickel	7440020	88.9		mg/Kg		4-8	10/12/93
N4B-CS-020a	Nickel	7440020	21.6		mg/Kg		4-8	12/7/93
N4B-CS-025	Nickel	7440020	110		mg/Kg	TIOK	7-0	

Appenix B.xls / dbas5 20 of 33

N.N.N.N.N.N.N.N.N.B.B.B.B.B.B.B.B.B.B.B	ample # 4B-CS-026 4B-CS-039A 4B-CS-039A 4B-CS-052B PA-CS-001 1-CS-SW-102 2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-193B 3D-WS-193B 3D-WS-191B PB-CS-NW-102	Analyte Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020	28.1 65.2 22.9 24.9 102 849 319 383 511	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	INOR INOR INOR INOR INOR	4-8 4-8 4-8 4-8 4-8 4-8 C	12/9/93 10/12/93 10/14/93 10/22/93 11/30/93
N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	4B-CS-028 4B-CS-039A 4B-CS-052B PA-CS-001 1-CS-SW-102 2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-192B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020	65.2 22.9 24.9 102 849 319 383 511		mg/Kg mg/Kg mg/Kg mg/Kg	INOR INOR INOR INOR INOR	4-8 4-8 4-8	10/14/93 10/22/93 11/30/93
N. TI N.	4B-CS-039A 4B-CS-052B PA-CS-001 1-CS-SW-102 2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020 7440020 7440020 7440020 7440020	22.9 24.9 102 849 319 383 511		mg/Kg mg/Kg mg/Kg mg/Kg	INOR INOR INOR INOR	4-8 4-8 4-8	10/14/93 10/22/93 11/30/93
NTINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	4B-CS-052B PA-CS-001 1-CS-SW-102 2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-183B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020 7440020 7440020 7440020	24.9 102 849 319 383 511		mg/Kg mg/Kg mg/Kg	INOR INOR INOR	4-8 4-8	10/22/93 11/30/93
TINNN NN	PA-CS-001 1-CS-SW-102 2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020 7440020 7440020 7440020	102 849 319 383 511		mg/Kg mg/Kg	INOR INOR	4-8	11/30/93
N N N N N N N N N N N N N N N N N N N	1-CS-SW-102 2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020 7440020	849 319 383 511		mg/Kg	INOR		
N.N.N.N.N.T.B.B.B.B.B.B.B.B.B.B.B.B.B.B.	2A-CS-NW-102 2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020 7440020	319 383 511					11/30/93
N.N.N.N.N.T.B.B.B.B.B.B.B.B.B.B.B.B.B.B.	2B-CS-SW-102 2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel Nickel	7440020 7440020 7440020	383 511		AAA Pay to be pay	INOR	4-8 C	11/30/93
N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	2C-CS-WW-102 3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel Nickel	7440020 7440020	511		mg/Kg	INOR	4-8 C	11/30/93
N. N. N. N. N. N. N. N. N. N. N. N. N. N	3A-WS-192B 3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel Nickel	7440020			mg/Kg	INOR	4-8 C	11/30/93
NI NI NI NI NI NI NI NI NI NI NI NI NI N	3C-WS-180B 3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel Nickel		645		mg/Kg	INOR	4-8 C	12/2/93
NI NI NI NI NI NI NI NI NI NI NI NI NI N	3C-WS-193B 3D-WS-183B 3D-WS-191B	Nickel	1110020	772		mg/Kg	INOR	4-8 C	12/2/93
N: N: B: B: B: B: B: B: B: B: B: B: B: B: B:	3D-WS-183B 3D-WS-191B		7440020	442		mg/Kg	INOR	4-8 C	12/2/93
N: TI B: B: B: B: B: B: B: B: B: B: B: B: B:	3D-WS-191B	T IT AREA T	7440020	636		mg/Kg	INOR	4-8 C	12/2/93
TI B: B: B: B: B: B: B: B: B: B: B: B: B:		Nickel	7440020	436		mg/Kg	INOR	4-8 C	12/2/93
B: B: B: B: B: B: B: B: B: B: B: B: B: B	LD CD LITT LOD	Nickel	7440020	292		mg/Kg	INOR	4-8 C	11/30/93
B: B: B: B: B: B: B: B: B: B: B: B: B: B	19-C	Nickel	7440020	32.5		mg/Kg	INOR	4.8-5.3	2/23/94
B: B1 B1 B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	57-B	Nickel	7440020	49.7		mg/Kg	INOR	5-6	2/15/94
B B B B B B B B B B B B B B B B B B B	57E/5-6	Nickel	7440020	43.5		mg/Kg	INOR	5-6	3/22/96
Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi	12A/5-7	Nickel	7440020	184		mg/Kg	INOR	5-7	3/19/96
B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	132A/5-7	Nickel	7440020	604		mg/Kg	INOR	5-7	3/21/96
B1 B1 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	13A/5-7	Nickel	7440020	86.0		mg/Kg	INOR	5-7	3/19/96
BI BI BI BI BI BI BI BI	14A/5-7	Nickel	7440020	749	J	mg/Kg	INOR	5-7	3/20/96
B1 B2 B2 B2 B2 B2 B2 B2	15A/5-7	Nickel	7440020	3580	-	mg/Kg	INOR	5-7	3/20/96
B2 B2 B2 B2 B2 B2 B2 B2	16A/5-7	Nickel	7440020	42.4	J	mg/Kg	INOR	5-7	3/20/96
B2 B2 B2 B2 B2 B2	20A/5-7	Nickel	7440020	102		mg/Kg	INOR	5-7	3/20/96
B2 B2 B2 B2	21A/5-7	Nickel	7440020	542		mg/Kg	INOR	5-7	3/20/96
B2 B2 B2	22A/5-7	Nickel	7440020	497		mg/Kg	INOR	5-7	3/20/96
B2 B2	23A/5-7	Nickel	7440020	65.1		mg/Kg	INOR	5-7	3/20/96
B	24A/5-7	Nickel	7440020	51.6		mg/Kg	INOR	5-7	3/21/96
	25A/5-7	Nickel	7440020	1410		mg/Kg	INOR	5-7	3/21/96
B	26A/5-7	Nickel	7440020	1520		mg/Kg	INOR	5-7	3/21/96
	32A/5-7	Nickel	7440020	684		mg/Kg	INOR	5-7	3/21/96
	49A/5-7	Nickel	7440020	157		mg/Kg	INOR	5-7	3/21/96
	50A/5-7	Nickel	7440020	104		mg/Kg	INOR	5-7	3/21/96
	55A/5-7	Nickel	7440020	20.8	J	mg/Kg	INOR	5-7	3/25/96
	57A/5-7	Nickel	7440020	31.0		mg/Kg	INOR	5-7	3/22/96
B	57B/5-7	Nickel	7440020	743		mg/Kg	INOR	5-7	3/22/96
B	57C/5-7	Nickel	7440020	2110		mg/Kg	INOR	5-7	3/22/96
B	57F/5-7	Nickel	7440020	34.4		mg/Kg	INOR	5-7	3/22/96
B	5A/5-7	Nickel	7440020	28.2		mg/Kg	INOR	5-7	3/20/96
Be	6A/5-7	Nickel	7440020	69.7	J	mg/Kg	INOR	5-7	3/19/96
B	TPBA/5-7	Nickel	7440020	50.3		mg/Kg	INOR	5-7	3/20/96
B	TPBB/5-7	Nickel	7440020	41.2		mg/Kg	INOR	5-7	3/20/96
B	TPBD/5-7	Nickel	7440020	550		mg/Kg	INOR	5-7	3/20/96
B	56-C	Nickel	7440020	33.5		mg/Kg	INOR	6-6.5	2/16/94
B	57-C	Nickel	7440020	39.8		mg/Kg	INOR	6-7	2/15/94
B	31-D	Nickel	7440020	29.9		mg/Kg	INOR	6-7.5	2/24/94
B	10A/6-8	Nickel	7440020	20.0		mg/Kg	INOR	6-8	3/19/96
B	11A/6-8	Nickel	7440020	43.1		mg/Kg	INOR	6-8	3/19/96
B	13-C	Nickel	7440020	80.5		mg/Kg	INOR	6-8	2/9/94
B	25-C	Nickel	7440020	22.5		mg/Kg	INOR	7-10	2/7/94
		Nickel	7440020	71.2		mg/Kg	INOR	7-9	3/20/96
	120A/7-9					-			
B		Nickel	7440020	62.7		mg/Kg	INOR	7-9	3/20/96

Appenix B.xls / dbas5 21 of 33

Sample # B26A/7-9	Analyte Nickel	CAS #		Qualifier				Date Collected	
B33A/7-9	Nickel	7440020	4.7		mg/Kg	INOR	7-9	3/21/96	
B49-C		7440020	162		mg/Kg	INOR	7-9	3/21/96	
B49-C B49A/7-9	Nickel	7440020	30.1		mg/Kg	INOR	7-9	2/15/94	
	Nickel	7440020	34.3		mg/Kg	INOR	7-9	3/21/96	
B55A/7-9	Nickel	7440020	22.5	J	mg/Kg	INOR	7-9	3/25/96	
B57A/7-9	Nickel	7440020	24.6		mg/Kg	INOR	7-9	3/21/96	
B57B/7-9	Nickel	7440020	115		mg/Kg	INOR	7-9	3/22/96	
BTPBC/7-9	Nickel	7440029	85.3	J	mg/Kg	INOR	. 7-9	3/20/96	
BTPBCC/7-9	Nickel	7440020	144	J	mg/Kg	INOR	7-9	3/20/96	
B21-C	Nickel	7440020	207		mg/Kg	INOR	8-10	2/7/94	
N2A-CS-001	Nickel	7440020	140		mg/Kg	INOR	8-12	11/30/93	
N2C-CS-001	Nickel	7440020	78.4		mg/Kg	INOR	8-12	11/30/93	
N3A-CS-009A	Nickel	7440020	63.5		mg/Kg	INOR	8-12	11/19/93	
N3A-CS-010A	Nickel	7440020	57.6		mg/Kg	INOR	8-12	11/19/93	
N3A-CS-024	Nickel	7440020	123		mg/Kg	INOR	8-12	11/10/93	
N3A-CS-025	Nickel	7440020	39.1		mg/Kg	INOR	8-12	10/18/93	
N3A-CS-026	Nickel	7440020	22.7		mg/Kg	INOR	8-12	10/18/93	
N3A-CS-029	Nickel	7440020	1.2	U	mg/Kg	INOR	8-12	11/10/93	
N3A-CS-035	Nickel	7440020	61		mg/Kg	INOR	8-12 .	11/10/93	
N3A-CS-036	Nickel	7440020	462		mg/Kg	INOR	8-12	11/10/93	
N3A-CS-040	Nickel	7440020	60.7		mg/Kg	INOR	8-12	10/26/93	
N3A-CS-041	Nickel	7440020	25.5		mg/Kg	INOR	8-12	10/26/93	
N3A-CS-042	Nickel	7440020	117		mg/Kg	INOR	8-12	10/26/93	
N3A-CS-045	Nickel	7440020	61.7		mg/Kg	INOR	8-12	10/18/93	
N3B-CS-059	Nickel	7440020	1.2	U	mg/Kg	INOR	8-12	11/10/93	
N3B-CS-060	Nickel	7440020	1.2	U	mg/Kg	INOR	8-12	11/10/93	
N3C-CS-077A	Nickel	7440020	200		mg/Kg	INOR	8-12	11/18/93	
N3C-CS-079A	Nickel	7440020	125		mg/Kg	INOR	8-12	11/18/93	
N3C-CS-080	Nickel	7440020	312		mg/Kg	INOR	8-12	12/6/93	
N3C-CS-080	Nickel	7440020	334		mg/Kg	INOR	8-12	12/6/93	
N3D-CS-082	Nickel	7440020	44		mg/Kg	INOR	8-12	12/13/93	
N3D-CS-082	Nickel	7440020	48.4		mg/Kg	INOR	8-12	12/13/93	
N4A-CS-040	Nickel	7440020	75.9		mg/Kg	INOR	8-12	12/7/93	
TPC-CS-001 N2B-CS-001	Nickel	7440020	173		mg/Kg	INOR	8-12	11/30/93	
N2A-CS-NW-103	Nickel	7440020	82.7		mg/Kg	INOR	8-12	11/30/93	
TPB-CS-NW-103	Nickel	7440020	48.4		mg/Kg	INOR	8-12 C	11/30/93	
B46-D	Nickel	7440020	. 914		mg/Kg	INOR	8-12 C	11/30/93	
B16A/9-11	Nickel	7440020	33.6		mg/Kg	INOR	8-12 W	2/28/94	
B10A/9-11 B20A/9-11	Nickel	7440020	28.5	1	mg/Kg	INOR	9-11	3/20/96	
B21A/9-11	Nickel	7440020	573		mg/Kg	INOR	9-11	3/20/96	
B26A/9-11	Nickel	7440020	25.9		mg/Kg	INOR	9-11	3/20/96	
B38A/9-11	Nickel Nickel	7440020	7.6		mg/Kg	INOR	9-11	3/21/96	
B55-C	Nickel	7440020	90.2		mg/Kg	INOR	9-11	3/21/96	
B51A/.5-2.5	Total PCBs	7440020	206		mg/Kg	INOR	9-12 W	2/15/94	
B10A/S	Total PCBs	999999999	2.28		mg/Kg	PEST	.5-2.5	3/21/96	
B11A/S	Total PCBs	999999999 999999999	0.039		mg/kg	PEST	0-0.5	3/19/96	
B12A/S	Total PCBs	999999999	0.0041		mg/kg	PEST	0-0.5	3/19/96	
B13A/S	Total PCBs	999999999	8		mg/kg	PEST	0-0.5	3/19/96	
B156A/S	Total PCBs		1.98		mg/kg	PEST	0-0.5	3/19/96	
B15A/S	Total PCBs	999999999	0.129		mg/Kg	PEST	0-0.5	3/21/96	
B166A/S	Total PCBs	999999999	0.016		mg/Kg	PEST	0-0.5	3/20/96	
BI6A/S	Total PCBs	999999999	0.5		mg/Kg	PEST	0-0.5	3/22/96	
B171A/S	Total PCBs	999999999 999999999	0.726 0.09		mg/kg	PEST	0-0.5	3/20/96	
	TOTAL FCDS	222222222	0.09		mg/Kg	PEST	0-0.5	3/25/96	

Appenix B.xls / dbas5 22 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units	-		Date Collected
B18A/S	Total PCBs	999999999	0.0259		mg/Kg	PEST	0-0.5	3/21/96
B19A/S	Total PCBs	99999999	0.35		mg/Kg	PEST	0-0.5	3/20/96
B1A/S	Total PCBs	999999999	0.292		mg/kg	PEST	0-0.5	3/19/96
B20A/S	Total PCBs	999999999	0.56		mg/Kg	PEST ·	0-0.5	3/20/96
B21A/S	Total PCBs	999999999	0.028		mg/Kg	PEST	0-0.5	3/20/96
B22A/S	Total PCBs	999999999	0.189		mg/Kg	PEST	0-0.5	3/20/96
	Total PCBs	999999999	0.0399		mg/Kg	PEST	0-0.5	3/20/96
B23A/S	Total PCBs	999999999	0.01		mg/Kg	PEST	0-0.5	3/20/96
B25A/S	Total PCBs	999999999	2.06		mg/Kg	PEST	0-0.5	3/21/96
B26A/S		9999999999	0.0482		mg/Kg	PEST	0-0.5	3/20/96
B27A/S	Total PCBs	9999999999	0.0036		mg/Kg	PEST	0-0.5	3/21/96
B28A/S	Total PCBs	9999999999	0.0079		mg/Kg	PEST	0-0.5	3/21/96
B29A/S	Total PCBs		1.29		mg/Kg	PEST	0-0.5	3/20/96
B2A/S	Total PCBs	999999999	0.0046		mg/Kg	PEST	0-0.5	3/21/96
B30A/S	Total PCBs	999999999		U		PEST	0-0.5	3/21/96
B31A/S	Total PCBs	999999999	0.039	U	mg/Kg	PEST	0-0.5	3/21/96
B32A/S	Total PCBs	999999999	0.133		mg/Kg	PEST	0-0.5	3/21/96
B33A/S	Total PCBs	999999999	0.0274		mg/Kg		0-0.5	3/21/96
B34A/S	Total PCBs	999999999	0.0066		mg/Kg	PEST	0-0.5	3/21/96
B35A/S	Total PCBs	999999999	0.022		mg/Kg	PEST	0-0.5	3/21/96
B36A/S	Total PCBs	999999999	0.092		mg/Kg	PEST	0-0.5	3/21/96
B37A/S	Total PCBs	999999999	0.0093		mg/Kg	PEST		3/21/96
B38A/S	Total PCBs	999999999	0.016		mg/Kg	PEST	0-0.5	3/21/96
B39A/S	Total PCBs	999999999	0.036	U	mg/Kg	PEST	0-0.5	
B3A/S	Total PCBs	999999999	0.043		mg/kg	PEST	0-0.5	3/19/96
B40A/S	Total PCBs	999999999	0.017		mg/Kg	PEST	0-0.5	3/21/96
B41A/S	Total PCBs	999999999	0.039	U	mg/Kg	PEST	0-0.5	3/21/96
B42A/S	Total PCBs	999999999	0.148		mg/Kg	PEST	0-0.5	3/21/96
B43A/S	Total PCBs	999999999	0.352		mg/Kg	PEST	0-0.5	3/21/96
B44A/S	Total PCBs	999999999	0.073		mg/Kg	PEST	0-0.5	3/21/96
B45A/S	Total PCBs	999999999	0.0263		mg/Kg	PEST	0-0.5	3/21/96
B46A/S	Total PCBs	999999999	0.04	U	mg/Kg	PEST	0-0.5	3/21/96
B47A/S	Total PCBs	999999999	0.0595		mg/Kg	PEST	0-0.5	3/21/96
B48A/S	Total PCBs	999999999	0.094		mg/Kg	PEST	0-0.5	3/21/96
B49A/S	Total PCBs	999999999	0.0448		mg/Kg	PEST	0-0.5	3/21/96
B4A/S	Total PCBs	999999999	0.037		mg/kg	PEST	0-0.5	3/19/96
B50A/S	Total PCBs	999999999	0.363		mg/Kg	PEST	0-0.5	3/21/96
B51A/S	Total PCBs	999999999	0.056		mg/Kg	PEST	0-0.5	3/21/96
B52A/S	Total PCBs	999999999	0.032		mg/Kg	PEST	0-0.5	3/21/96
B53A/S	Total PCBs	999999999	0.052	U	mg/Kg	PEST	0-0.5	3/21/96
B54A/S	Total PCBs	999999999	0.0075		mg/Kg	PEST	0-0.5	3/21/96
B55A/S	Total PCBs	99999999	0.045	U	mg/Kg	PEST	0-0.5	3/21/96
B56A/S	Total PCBs	999999999	0.256		mg/Kg	PEST	0-0.5	3/21/96
B57A/S	Total PCBs	999999999	0.052	U	mg/Kg		0-0.5	3/22/96
B57B/S	Total PCBs	999999999	0.048	U	mg/Kg		0-0.5	3/22/96
B57C/S	Total PCBs	99999999	0.047	U	mg/Kg		0-0.5	3/22/96
B57D/S	Total PCBs	999999999	0.045	U	mg/Kg	PEST	0-0.5	3/22/96
B57E/S	Total PCBs	999999999	0.045	U	mg/Kg		0-0.5	3/22/96
B57F/S	Total PCBs	99999999	0.017		mg/Kg		0-0.5	3/22/96
B58A/S	Total PCBs	99999999	0.096		mg/Kg		0-0.5	3/22/96
B59A/S	Total PCBs	99999999	0.043	U	mg/Kg		0-0.5	3/22/96
B5A/S	Total PCBs	999999999	1.35		mg/Kg		0-0.5	3/20/96
B60A/S	Total PCBs	999999999	0.044	U	mg/Kg		0-0.5	3/22/96
B61A/S	Total PCBs	999999999	0.041	Ŭ	mg/Kg		0-0.5	3/22/96
B62A/S	Total PCBs	999999999	0.041	Ŭ	mg/Kg		0-0.5	3/22/96
DULMS	I Otal I CDS		0.071	-				

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
E63A/S	Total PCBs	999999999	0.048	U	mg/Kg	PEST	0-0.5	3/22/96
B64A/S	Total PCBs	99999999	0.042	U	mg/Kg	PEST	0-0.5	3/22/96
B65A/S	Total PCBs	99999999	0.142		mg/Kg	PEST	0-0.5	3/22/96
B66A/S	Total PCBs	99999999	0.73		mg/Kg	PEST	0-0.5 .	3/22/96
B67A/S	Total PCBs	999999999	0.2		mg/Kg	PEST	0-0.5	3/22/96
B68A/S	Total PCBs	99999999	0.052		mg/Kg	PEST	0-0.5	3/22/96
B69A/S	Total PCBs	999999999	0.04		mg/Kg	PEST	0-0.5	3/22/96
B6A/S	Total PCBs	999999999	0.021		mg/kg	PEST	0-0.5	3/19/96
B70A/S	Total PCBs	999999999	0.039	U	mg/Kg	PEST	0-0.5	3/25/96
B71A/S	Total PCBs	999999999	0.057	0	mg/Kg	PEST	0-0.5	3/25/96
B72A/S	Total PCBs	999999999	0.0164		mg/Kg	PEST	0-0.5	3/25/96
B7A/S	Total PCBs	999999999	0.237		mg/kg	PEST	0-0.5	3/19/96
B8A/S	Total PCBs	999999999	0.063		mg/kg	PEST	0-0.5	3/19/96
B9A/S	Total PCBs	999999999	0.039	U	mg/Kg	PEST	0-0.5	3/21/96
BTPBA/S	Total PCBs	999999999	0.0451	U	mg/kg	PEST	0-0.5	3/20/96
BTPBB/S	Total PCBs	999999999	0.378		mg/Kg	PEST	0-0.5	3/20/96
BTPBC/S	Total PCBs	999999999	0.0132			PEST	0-0.5	3/20/96
N1-CS-SW-101	Total PCBs	9999999999	21	J	mg/kg	PEST	0-0.5	
N2C-CS-WW-101	Total PCBs	999999999	36.3	Ū.	ug/Kg	PEST	0-0.5	9/23/96 9/23/96
N3A-WS-103	Total PCBs	999999999	46	J	ug/Kg ug/Kg	PEST	0-0.5	9/23/96
N3A-WS-188	Total PCBs	999999999	36	U	ug/Kg	PEST	0-0.5	9/23/96
N3A-WS-192A	Total PCBs	999999999	555	U		PEST	0-0.5	9/23/96
N3B-WS-164	Total PCBs	999999999	37.6	U	ug/Kg	PEST	0-0.5	
N3B-WS-166	Total PCBs	999999999	39.3		ug/Kg			9/23/96
N3C-WS-170				U	ug/Kg	PEST	0-0.5	9/23/96
	Total PCBs	999999999	44	1 1	ug/Kg	PEST	0-0.5	9/23/96
N3C-WS-175	Total PCBs	999999999	23.5	J	ug/Kg	PEST	0-0.5	9/23/96
N3C-WS-193A	Total PCBs	999999999	1411		ug/Kg	PEST	0-0.5	9/23/96
N3D-WS-183A	Total PCBs	999999999	36.6	U	ug/Kg	PEST	0-0.5	9/23/96
N3D-WS-191A	Total PCBs	999999999	36		ug/Kg	PEST	0-0.5	9/23/96
N4A-WS-131	Total PCBs	999999999	45.2	U	ug/Kg	PEST	0-0.5	9/23/96
N4A-WS-132	Total PCBs	999999999	46.5	U	ug/Kg	PEST	0-0.5	9/23/96
N4B-WS-148	Total PCBs	999999999	44.6	U	ug/Kg	PEST	0-0.5	9/23/96
N4B-WS-153	Total PCBs	999999999	42.9	U	ug/Kg	PEST	0-0.5	9/23/96
NHR-05	Total PCBs	999999999	0.5		mg/Kg	PEST	0-0.5	2/4/94
NHR-05a	Total PCBs	999999999	0.28	U	mg/Kg	PEST	0-0.5	2/3/94
NHR-05b	Total PCBs	999999999	0.3	U	mg/Kg	PEST	0-0.5	2/4/94
NHR-06	Total PCBs	99999999	0.28	U	mg/Kg	PEST	0-0.5	2/4/94
NHR-06a	Total PCBs	999999999	0.48		mg/Kg	PEST	0-0.5	2/4/94
NHR-06b	Total PCBs	999999999	0.28	U	mg/Kg	PEST	0-0.5	2/4/94
NHR-07	Total PCBs	999999999	0.28	U	mg/Kg	PEST	0-0.5	2/4/94
NHR-07a	Total PCBs	999999999	0.28	U	mg/Kg	PEST	0-0.5	2/4/94
NHR-07b	Total PCBs	999999999	0.28	U	mg/Kg	PEST	0-0.5	2/4/94
NWA-P-001	Total PCBs	99999999	0.231		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-002	Total PCBs	999999999	0.128		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-003	Total PCBs	999999999	0.361		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-004	Total PCBs	999999999	0.97		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-006	Total PCBs	999999999	0.177		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-007	Total PCBs	99999999	0.094		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-008	Total PCBs	99999999	0.252		mg/Kg	PEST	0-0.5	1/12/94 -
NWA-P-009	Total PCBs	99999999	0.493		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-010	Total PCBs	999999999	0.335		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-011	Total PCBs	99999999	0.356		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-012	Total PCBs	99999999	0.344		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-013	Total PCBs	999999999	0.265		mg/Kg	PEST	0-0.5	1/12/94

Appenix B.xls / dbas5 24 of 33

		C+C #	Denslau	Ouglifian	Units	Data Croun	Dunth (feet)	Date Collected
Sample#	Analyte Total DCDa	CAS # 999999999	Results 0.239	Qualifier	mg/Kg	PEST	0-0.5	1/12/94
NWA-P-014	Total PCBs		0.239	U		PEST	0-0.5	1/12/94
NWA-P-015	Total PCBs	999999999			mg/Kg	PEST	0-0.5	1/12/94
NWA-P-016	Total PCBs	999999999	0.033	U U	mg/Kg	PEST	0-0.5	1/12/94 .
NWA-P-018	Total PCBs	999999999	0.033		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-019	Total PCBs	999999999	0.033	U	mg/Kg	PEST	0-0.5	1/12/94
NWA-P-020	Total PCBs	999999999	0.033	U	mg/Kg		0-0.5	1/12/94
NWA-P-021	Total PCBs	999999999	0.033	U	mg/Kg	PEST	0-0.5	1/12/94
NWA-P-022	Total PCBs	999999999	0.127	**	mg/Kg	PEST	0-0.5	1/12/94
NWA-P-023	Total PCBs	999999999	0.033	U	mg/Kg	PEST		1/12/94
NWA-P-024	Total PCBs	999999999	0.033	U	mg/Kg	PEST	0-0.5	
NWA-P-025	Total PCBs	999999999	0.033	U	mg/Kg	PEST	0-0.5	1/12/94
NWA-P-026	Total PCBs	999999999	0.033	U	mg/Kg	PEST	0-0.5	1/12/94
NWA-P-027	Total PCBs	999999999	0.22		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-028	Total PCBs	999999999	0.221		mg/Kg	PEST	0-0.5	1/12/94
NWA-P-029	Total PCBs	999999999	1.12		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-030	Total PCBs	999999999	0.033	· U	mg/Kg	PEST	0-0.5	1/13/94
NWA-P-031	Total PCBs	999999999	0.212		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-032	Total PCBs	999999999	0.85		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-033	Total PCBs	999999999	0.81		mg/Kg	PEST	0-0.5	1/13/94
NWA-P-053	Total PCBs	999999999	0.47		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-054	Total PCBs	999999999	0.62		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-055	Total PCBs	999999999	0.39		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-056	Total PCBs	99999999	0.48		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-057	Total PCBs	999999999	0.033	U	mg/Kg	PEST	0-0.5	1/14/94
NWA-P-061	Total PCBs	999999999	0.526		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-063	Total PCBs	999999999	0.097		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-064	Total PCBs	999999999	0.68		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-065	Total PCBs	999999999	0.191		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-066	Total PCBs	999999999	0.509		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-067	Total PCBs	999999999	0.47		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-068	Total PCBs	999999999	0.581		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-069	Total PCBs	999999999	0.213		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-070	Total PCBs	999999999	0.162		mg/Kg	PEST	0-0.5	1/14/94
NWA-P-071	Total PCBs	999999999	0.564		mg/Kg	PEST	0-0.5	1/14/94
SHR-01	Total PCBs	99999999	0.28	U	mg/Kg	PEST	0-0.5	2/7/94
SHR-02	Total PCBs	99999999	0.28	U.	mg/Kg	PEST	0-0.5	2/7/94
SHR-03	Total PCBs	999999999	0.28	U	mg/Kg	PEST	0-0.5	2/7/94
TPC-CS-EW-102	Total PCBs	999999999	15.7	J	ug/Kg	PEST	0-0.5	9/23/96
B39-A	Total PCBs	999999999	0.22		mg/Kg	PEST	0-1.3	3/1/94
N1-CS-SW-101	Total PCBs	99999999	17.1		mg/Kg	PEST	0-4 C	11/30/93
N2A-CS-NW-101	Total PCBs	999999999	0.41		mg/Kg	PEST	0-4 C	11/30/93
N2B-CS-SW-101	Total PCBs	999999999	1.41		mg/Kg	PEST	0-4 C	11/30/93
N2C-CS-WW-101	Total PCBs	999999999	24.7		mg/Kg	PEST	0-4 C	11/30/93
N2D-CS-SW-101	Total PCBs	99999999	0.05		mg/Kg	PEST	0-4 C	11/30/93
N3A-WS-103	Total PCBs	999999999	47		mg/Kg	PEST	0-4 C	12/2/93
N3A-WS-150A	Total PCBs	999999999	0.972		mg/Kg	PEST	0-4 C	12/2/93
N3A-WS-188	Total PCBs	999999999	7.1		mg/Kg		0-4 C	12/2/93
N3A-WS-192A	Total PCBs	999999999	1.58		mg/Kg		0-4 C	12/2/93
N3B-WS-155	Total PCBs	999999999	0.86		mg/Kg		0-4 C	- 12/2/93
N3B-WS-160	Total PCBs	999999999	0.36		mg/Kg		0-4 C	12/2/93
N3B-WS-164	Total PCBs	999999999	51.7		mg/Kg		0-4 C	12/2/93
N3B-WS-166	Total PCBs	999999999	11.4		mg/Kg		0-4 C	12/2/93
N3C-WS-170	Total PCBs	999999999	3.88		mg/Kg		0-4 C	12/2/93
N3C-WS-175	Total PCBs	999999999	9.8		mg/Kg		0-4 C	12/2/93
MJC-WD-1/J	TOTAL FUDS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.0		mering	1 600 1	010	

Appenix B.xls / dbas5 25 of 33

1

ľ

1

1

1

Sample #. N3C-WS-180A	Analyte	CAS #	Results	Qualifier		Data Group	Depth (feet)	Date Collected
	Total PCBs		0.82		mg/Kg	PEST	0-4 C	12/2/93
N3C-WS-190	Total PCBs		0.215		mg/Kg	PEST	0-4 C	12/2/93
N3C-WS-193A	Total PCBs		2.62		mg/Kg	PEST	0-4 C	12/2/93
N3D-WS-183A	Total PCBs		81		mg/Kg	PEST	0-4 C	12/2/93
N3D-WS-191A	Total PCBs	999999999	4.4		mg/Kg	PEST	0-4 C	12/2/93
N4A-WS-131	Total PCBs	999999999	27.4		mg/Kg	PEST	0-4 C	12/10/93
N4A-WS-132	Total PCBs	999999999	4.39		mg/Kg	PEST	0-4 C	12/10/93
N4A-WS-135	Total PCBs	999999999	0.063		mg/Kg	PEST	0-4 C	12/10/93
N4B-WS-115	Total PCBs	999999999	0.4		mg/Kg	PEST	0-4 C	12/10/93
N4B-WS-148	Total PCBs	99999999	3.3		mg/Kg	PEST	0-4 C	12/10/93
N4B-WS-150	Total PCBs	99999999	0.103		mg/Kg	PEST	0-4 C	12/10/93
N4B-WS-153	Total PCBs	99999999	1.17		mg/Kg	PEST	0-4 C	
TPA-CS-NW-101	Total PCBs	99999999	0.646		mg/Kg	PEST	0-4 C	12/10/93
TPB-CS-NW-101	Total PCBs	99999999	0.159		mg/Kg	PEST	0-4 C	11/30/93
TPC-CS-EW-101	Total PCBs	99999999	1.16		mg/Kg	PEST	0-4 C	11/30/93
TPC-CS-EW-102	Total PCBs	99999999	1		mg/Kg	PEST	0-4 C	11/30/93
NWA-P-005	Total PCBs	99999999	4.36		mg/Kg	PEST		11/30/93
NWA-P-017	Total PCBs	99999999	5.5		mg/Kg	PEST	1	1/13/94
NWA-P-034	Total PCBs	99999999	3.48		mg/Kg	PEST		1/12/94
NWA-P-035	Total PCBs	99999999	1.31		mg/Kg	PEST	1	1/13/94
NWA-P-036	Total PCBs	999999999	0.295		mg/Kg	PEST	1	1/13/94
NWA-P-037	Total PCBs	99999999	0.48		mg/Kg	PEST	1	1/13/94
NWA-P-038	Total PCBs	999999999	0.14		mg/Kg		1	1/13/94
NWA-P-039	Total PCBs	999999999	3.48			PEST	1	1/13/94
NWA-P-040	Total PCBs	999999999	5.6		mg/Kg	PEST	1	1/13/94
NWA-P-041	Total PCBs	999999999	3.3		mg/Kg	PEST	1	1/13/94
NWA-P-043	Total PCBs	999999999	0.73		mg/Kg	PEST	1	1/13/94
NWA-P-044	Total PCBs	999999999	1.1		mg/Kg	PEST	1	1/13/94
NWA-P-044	Total PCBs	999999999	1.7		mg/Kg	PEST	1	1/13/94
NWA-P-045	Total PCBs	999999999	1.9		mg/Kg	PEST	1	1/13/94
NWA-P-046	Total PCBs	999999999	5.6		mg/Kg	PEST	1	1/13/94
NWA-P-047	Total PCBs	999999999	9.2		mg/Kg	PEST	1	1/13/94
NWA-P-048	Total PCBs	999999999	1.5		mg/Kg	PEST	1 '	1/13/94
NWA-P-049	Total PCBs	999999999	3.3		mg/Kg	PEST	1	1/13/94
NWA-P-050	Total PCBs	999999999	1.6		mg/Kg	PEST	1	1/13/94
NWA-P-051	Total PCBs	999999999	2.7		mg/Kg	PEST	1	1/13/94
NWA-P-058	Total PCBs	99999999	3		mg/Kg	PEST	1	1/13/94
NWA-P-059	Total PCBs	99999999	1.8	•	mg/Kg	PEST	1	1/14/94
NWA-P-060	Total PCBs	99999999	2.2	•	mg/Kg	PEST	1	1/14/94
NWA-P-060	Total PCBs	99999999	2.8		mg/Kg	PEST	1	1/14/94
NWA-P-062	Total PCBs	99999999	0.95		mg/Kg	PEST	1	1/14/94
NWA-P-062	Total PCBs	99999999	1.51		mg/Kg	PEST	1	1/14/94
WPS 1-2	Total PCBs	99999999	2.2		mg/Kg	PEST	1	1/14/94
WPS 4-5	Total PCBs	999999999	2.8		mg/Kg	PEST	1	12/3/93
WPS 5-6	Total PCBs	99999999	2.6		mg/Kg	PEST	1	12/3/93
WPS 6-7	Total PCBs	999999999	0.29		mg/Kg	PEST	1	12/3/93
WPS01-B	Total PCBs	999999999		U	mg/Kg	PEST	1	12/27/93
WPS01-B	Total PCBs	999999999	2.4		mg/Kg	PEST	1	11/23/93
WPS01-ES	Total PCBs	999999999	8.7		mg/Kg	PEST	1	11/23/93
WPS01-NS	Total PCBs	999999999	4.5		mg/Kg	PEST	1 -	11/23/93
WPS01-SS	Total PCBs	999999999	4.1		mg/Kg	PEST	1	12/27/93
WPS02-B	Total PCBs		2.7		mg/Kg	PEST	1	11/23/93
WPS02-ES	Total PCBs	999999999 999999999	1.18		mg/Kg	PEST	1	11/23/93
WPS02-NS	Total PCBs	999999999	1.28		mg/Kg	PEST	1	11/23/93
	TOTAL FCDS	777777777	4.7		mg/Kg	PEST	1	11/23/93

ł

Appenix B.xls / dbas5 26 of 33

Sample # WPS02-SS	Analyte	CAS #	Results	Qualifier		Data Group	Depth (feet)	Date Collected
	Total PCBs		0.62		mg/Kg	PEST	1	11/23/93
WPS02-WS	Total PCBs		1.51		mg/Kg	PEST	1	11/23/93
WPS03-ES	Total PCBs		8.5		mg/Kg	PEST	1	11/22/93
WPS03-ES	· Total PCBs		0.96		mg/Kg	PEST	1	1/3/94
WPS03-NS	Total PCBs	99999999	2.4		mg/Kg	PEST	1	1/3/94
WPS03-SS	Total PCBs	99999999	2.1		mg/Kg	PEST	ī	11/29/93
WPS03-WS	Total PCBs	999999999	1.12		mg/Kg	PEST	i	11/29/93
WPS04-B	Total PCBs	99999999	8.2		mg/Kg	PEST	î	11/23/93
WPS04-ES	Total PCBs	99999999	0.67		mg/Kg	PEST	i	11/22/93
WPS04-NS	Total PCBs	999999999	0.25	U	mg/Kg	PEST	1	11/23/93
WPS05-B	Total PCBs	999999999	4.7		mg/Kg	PEST	1	11/23/93
WPS05-NS	Total PCBs	999999999	1.83		mg/Kg	PEST	1	11/23/93
WPS05-SS	Total PCBs	999999999	7.6		mg/Kg	PEST	1	
WPS06-B	Total PCBs	999999999	2		mg/Kg	PEST	1	11/23/93
WPS06-ES	Total PCBs	999999999	0.59		mg/Kg	PEST	1	12/3/93
WPS06-NS	Total PCBs	999999999	2.5		mg/Kg	PEST	1	12/3/93
WPS06-WS	Total PCBs	999999999	0.64		mg/Kg	PEST	. 1	12/3/93
WPS07-C	Total PCBs	99999999	1.06		mg/Kg	PEST		12/3/93
WPS07-ES	Total PCBs	999999999	2.26		mg/Kg	PEST	1	12/27/93
WPS07-NS	Total PCBs	99999999	0.29	U	mg/Kg	PEST	1	12/27/93
WPS07-SS	Total PCBs	999999999	0.27	Ŭ			1	12/27/93
WPS07-WS	Total PCBs	999999999	1.12		mg/Kg	PEST	1	12/27/93
WPS08-C	Total PCBs	99999999	2.97		mg/Kg	PEST	1	12/27/93
WPS08-ES	Total PCBs	999999999	0.27	U	mg/Kg	PEST	1	12/27/93
WPS08-NS	Total PCBs	999999999	0.38	U	mg/Kg	PEST	1	12/27/93
WPS08-SS	Total PCBs	999999999	0.38		mg/Kg	PEST	1	12/27/93
WPS08-WS	Total PCBs	999999999	0.3		mg/Kg	PEST	1	12/27/93
WPS09-B	Total PCBs	999999999	0.28	U U	mg/Kg	PEST	1	12/27/93
WPS09-ES	Total PCBs	999999999	1.22	U	mg/Kg	PEST	1	11/29/93
WPS09-NS	Total PCBs	999999999	0.3		mg/Kg	PEST	1	11/29/93
WPS09-SS	Total PCBs	999999999			mg/Kg	PEST	1	11/29/93
WPS09-WS	Total PCBs	999999999	1.85		mg/Kg	PEST	1	11/29/93
WPS7-8	Total PCBs	999999999	4.2		mg/Kg	PEST	1	11/29/93
WSP-10	Total PCBs	999999999	0.27	U	mg/Kg	PEST	1	12/27/93
WSP-100	Total PCBs	999999999	0.23		mg/Kg	PEST	1	5/27/94
WSP-110	Total PCBs	999999999	0.21		mg/Kg	PEST	1	5/26/94
WSP-120	Total PCBs	999999999	0.24		mg/Kg	PEST	· 1 · · ·	5/26/94
WSP-130	Total PCBs	999999999	0.25	U	mg/Kg	PEST	1	5/26/94
WSP-140	Total PCBs	999999999	1.14		mg/Kg	PEST	1	5/26/94
WSP-150	Total PCBs	999999999	1.44		mg/Kg	PEST	1	5/26/94
WSP-20	Total PCBs		9.09		mg/Kg	PEST	1	5/26/94
WSP-30	Total PCBs	999999999 999999999	0.05		mg/Kg	PEST	1	5/27/94
WSP-40	Total PCBs		0.03		mg/Kg	PEST	1	5/27/94
WSP-50	Total PCBs	999999999	13.80		mg/Kg	PEST	1	5/27/94
WSP-60	Total PCBs	999999999	0.52		mg/Kg	PEST	1	5/27/94
WSP-70		999999999	0.40		mg/Kg	PEST	1	5/27/94
WSP-80	Total PCBs	999999999	0.22		mg/Kg	PEST	1	5/27/94
WSP-90	Total PCBs	99999999	0.31		mg/Kg	PEST	1	5/27/94
WSP03-B	Total PCBs	999999999	0.42		mg/Kg	PEST	1	5/26/94
	Total PCBs	999999999	0.98		mg/Kg	PEST	1 .	1/3/94 -
WSP04-SS	Total PCBs	999999999	0.31	U	mg/Kg	PEST	1	12/27/93
WSP06-SS	Total PCBs	99999999	6.8		mg/Kg	PEST	1	12/3/93
B11A/1-3	Total PCBs	99999999	0.186		mg/kg	PEST	1-3	3/19/96
B12A/1-3	Total PCBs	999999999	2.7		mg/kg	PEST	1-3	3/19/96
B14A/1-3	Total PCBs	999999999	2.67		mg/kg	PEST	1-3	3/20/96
					-			

Appenix B.xls / dbas5 27 of 33

F

I

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
B157A/1-3	Total PCBs	999999999	0.64		mg/Kg	PEST	1-3	3/21/96
B158A/1-3	Total PCBs	999999999	0.31		mg/Kg	PEST	1-3	3/25/96
B15A/1-3	Total PCBs	999999999	0.0065		mg/kg	PEST	1-3	3/20/96
B167A/1-3	Total PCBs	999999999	0.027		mg/Kg	PEST	.1-3	3/25/96
B21A/1-3	Total PCBs	999999999	0.069		mg/Kg	PEST	1-3	3/20/96
B21A/1-3 B22A/1-3	Total PCBs	999999999	0.016		mg/Kg	PEST	1-3	3/20/96
B22A/1-3 B23A/1-3	Total PCBs	999999999	0.65		mg/Kg	PEST	1-3	3/20/96
B23A/1-3 B24A/1-3	Total PCBs	999999999	0.036		mg/Kg	PEST	1-3	3/21/96
-	Total PCBs	999999999	0.15		mg/Kg	PEST	1-3	3/21/96
B25A/1-3 B26A/1-3	Total PCBs	999999999	200		mg/Kg	PEST	1-3	3/21/96
B20A/1-3 B27A/1-3	Total PCBs	999999999	0.0141		mg/Kg	PEST	1-3	3/21/96
B2A/1-3	Total PCBs	999999999	0.531		mg/kg	PEST	1-3	3/20/96
	Total PCBs	999999999	2.63		mg/Kg	PEST	1-3	3/21/96
B31A/1-3	Total PCBs	999999999	0.0143		mg/Kg	PEST	1-3	3/21/96
B32A/1-3	Total PCBs	999999999	12		mg/Kg	PEST	1-3	3/21/96
B33A/1-3	Total PCBs	999999999	0.04		mg/Kg	PEST	1-3	3/21/96
B34A/1-3	Total PCBs	999999999	0.68		mg/Kg	PEST	1-3	3/21/96
B36A/1-3	Total PCBs	999999999	0.199		mg/Kg	PEST	1-3	3/21/96
B38A/1-3	Total PCBs	999999999	62		mg/Kg	PEST	1-3	3/21/96
B43A/1-3	Total PCBs	999999999	0.037	U	mg/Kg	PEST	1-3	3/21/96
B48A/1-3	Total PCBs	999999999	6.3	U	mg/Kg	PEST	1-3	3/21/96
B49A/1-3	Total PCBs	999999999	14.6		mg/Kg	PEST	1-3	3/21/96
B50A/1-3	Total PCBs	999999999	0.824		mg/Kg	PEST	1-3	3/25/96
B54A/1-3	Total PCBs	999999999	0.395		mg/Kg	PEST	1-3	3/25/96
B55A/1-3	Total PCBs	999999999	0.61		mg/Kg	PEST	1-3	3/21/96
B57A/1-3	Total PCBs	999999999	0.75		mg/Kg	PEST	1-3	3/22/96
B57B/1-3	Total PCBs	999999999	0.718		mg/Kg	PEST	1-3	3/22/96
B57C/1-3	Total PCBs	9999999999	0.85		mg/Kg	PEST	1-3	3/22/96
B57D/1-3	Total PCBs	999999999	0.35		mg/Kg	PEST	1-3	3/22/96
B57E/1-3	Total PCBs	999999999	0.29		mg/Kg	PEST	1-3	3/22/96
B57F/1-3	Total PCBs	999999999	0.73		mg/Kg	PEST	· 1-3	3/25/96
B58A/1-3 B59A/1-3	Total PCBs	999999999	0.037	U	mg/Kg	PEST	1-3	3/25/96
B5A/1-3	Total PCBs	999999999	2.81	0	mg/Kg	PEST	1-3	3/20/96
B61A/1-3	Total PCBs	999999999	0.037	U	mg/Kg	PEST	1-3	3/25/96
B65A/1-3	Total PCBs	999999999	0.01	0	mg/Kg	PEST	1-3	3/25/96
B66A/1-3	Total PCBs	999999999	0.221		mg/Kg	PEST	1-3	3/25/96
B67A/1-3	Total PCBs	999999999	0.025		mg/Kg	PEST	1-3	3/25/96
B68A/1-3	Total PCBs	999999999	0.54		mg/Kg	PEST	1-3	3/25/96
B69A/1-3	Total PCBs	999999999	0.436		mg/Kg	PEST	1-3	3/25/96
B6A/1-3	Total PCBs	999999999	0.49		mg/kg	PEST	1-3	3/19/96
B70A/1-3	Total PCBs	999999999	0.04	U	mg/Kg	PEST	1-3	3/25/96
B71A/1-3	Total PCBs	999999999	0.038		mg/Kg	PEST	1-3	3/25/96
B72A/1-3	Total PCBs	999999999	0.0102		mg/Kg	PEST	1-3	3/25/96
B7A/1-3	Total PCBs	999999999	8.7		mg/kg	PEST	1-3	3/19/96
B8A/1-3	Total PCBs	999999999	0.049		mg/kg	PEST	1-3	3/19/96
BTPBA/1-3	Total PCBs	999999999	7.2		mg/Kg	PEST	1-3	3/20/96
BTPBB/1-3	Total PCBs	999999999	2.6		mg/Kg	PEST	1-3	3/20/96
BTPBC/1-3	Total PCBs	999999999	1.23		mg/Kg	PEST	1-3	3/20/96
BTPBD/1-3	Total PCBs	999999999	0.021		mg/Kg	PEST	1-3	- 3/20/96 -
N3A-CS-048B	Total PCBs	999999999	1.52		mg/Kg	PEST	1-4	10/18/93
	Total PCBs	999999999	0.65		mg/Kg	PEST	1-4	10/18/93
N3A-CS-049A	Total PCBs	999999999	2.39		mg/Kg	PEST	1-4	10/18/93
N3A-CS-050B	Total PCBs	999999999	3.3		mg/Kg	PEST	1-4	10/18/93
N3A-CS-051		999999999	1.3		mg/Kg		1-4	11/10/93
N3B-CS-052A	Total PCBs	222222222	1.5		merice	1 601		

Appenix B.xls / dbas5 28 of 33

N3B-CS-055 Total PCBs N3B-CS-064B Total PCBs N3B-CS-064B Total PCBs N3B-CS-066 Total PCBs N3C-CS-034A/73A Total PCBs N3C-CS-063B Total PCBs N3C-CS-065 Total PCBs N3C-CS-065 Total PCBs N3C-CS-067 Total PCBs N3C-CS-074 Total PCBs N3C-CS-075 Total PCBs N3D-CS-087 Total PCBs N3D-CS-088 Total PCBs N3D-CS-089 Total PCBs N3D-CS-089 Total PCBs N4E-BE-P/M Total PCBs N4C-BW-P/M Total PCBs N4C-BW-P/M Total PCBs N4C-WW Total PCBs N4C-SW-P/M Total PCBs N4C-WW-P/M Total PCBs N4C-WW-P/M Total PCBs B17-C Total PCBs B17-C Total PCBs B18-C Total PCBs B19A/10-12 Total PCBs B30-E Total PCBs B198-L14	99999999 1.9		-			Date Collected
N3B-CS-056 Total PCBs S N3B-CS-064B Total PCBs S N3B-CS-066 Total PCBs S N3C-CS-034A/73A Total PCBs S N3C-CS-063B Total PCBs S N3C-CS-065 Total PCBs S N3C-CS-067 Total PCBs S N3C-CS-074 Total PCBs S N3C-CS-076 Total PCBs S N3D-CS-087 Total PCBs S N3D-CS-088 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N4C-BW-P/M Total PCBs S N4C-BW-P/M Total PCBs S N4C-SW-P/M Total PCBs S N4C-WW-P/M Total PCBs S B17-C Total PCBs S B17-C Total PCBs S B18-C Total PCBs S B19A/10-12 Total PCBs S B30-E Total PCBs S			mg/Kg	PEST	1-4	11/10/93
N3B-CS-064B Total PCBs S N3B-CS-066 Total PCBs S N3C-CS-034A/73A Total PCBs S N3C-CS-063B Total PCBs S N3C-CS-065 Total PCBs S N3C-CS-069A Total PCBs S N3C-CS-074 Total PCBs S N3C-CS-076 Total PCBs S N3D-CS-087 Total PCBs S N3D-CS-088 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N4C-BE-P/M Total PCBs S N4C-BW-P/M Total PCBs S N4C-SW-P/M Total PCBs S N4C-WW-P/M Total PCBs S N4C-WW-P/M Total PCBs S B17-C Total PCBs S B17-C Total PCBs S B18-C Total PCBs	99999999 3.1		mg/Kg	PEST	1-4	11/10/93
N3B-CS-064B Total PCBs S N3B-CS-066 Total PCBs S N3C-CS-034A/73A Total PCBs S N3C-CS-063B Total PCBs S N3C-CS-065 Total PCBs S N3C-CS-069A Total PCBs S N3C-CS-074 Total PCBs S N3C-CS-076 Total PCBs S N3D-CS-087 Total PCBs S N3D-CS-088 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N4E-CS-006 Total PCBs S N4C-BW-P/M Total PCBs S N4C-BW-P/M Total PCBs S N4C-SW-P/M Total PCBs S N4C-WW-P/M Total PCBs S N4C-WW-P/M Total PCBs S B17-C Total PCBs S B17-C Total PCBs S B18-C Total PCBs	99999999 0.39		mg/Kg	PEST	1-4	11/10/93
N3B-CS-066 Total PCBs S N3C-CS-034A/73A Total PCBs S N3C-CS-063B Total PCBs S N3C-CS-065 Total PCBs S N3C-CS-069A Total PCBs S N3C-CS-074 Total PCBs S N3C-CS-076 Total PCBs S N3D-CS-087 Total PCBs S N3D-CS-088 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N4E-CS-006 Total PCBs S N4C-BE-P/M Total PCBs S N4C-BW-P/M Total PCBs S N4C-SW-P/M Total PCBs S N4C-WW-P/M Total PCBs S N4C-WW-P/M Total PCBs S N4C-WW-P/M Total PCBs S B17-C Total PCBs S B17-C Total PCBs S B18-C Total PCBs S B18-C Total PCBs S	99999999 . 8.26		mg/Kg	PEST	1-4	11/19/93
N3C-CS-034A/73A Total PCBs 9 N3C-CS-063B Total PCBs 9 N3C-CS-065 Total PCBs 9 N3C-CS-069A Total PCBs 9 N3C-CS-074 Total PCBs 9 N3C-CS-076 Total PCBs 9 N3C-CS-076 Total PCBs 9 N3D-CS-087 Total PCBs 9 N3D-CS-088 Total PCBs 9 N3D-CS-089 Total PCBs 9 N3D-CS-089 Total PCBs 9 N4B-CS-006 Total PCBs 9 N4C-BW-P/M Total PCBs 9 N4C-BW-P/M Total PCBs 9 N4C-SW-P/M Total PCBs 9 N4C-WW-P/M Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B162-C <	99999999 0.128		mg/Kg	PEST	1-4	11/10/93
N3C-CS-063B Total PCBs S N3C-CS-065 Total PCBs S N3C-CS-069A Total PCBs S N3C-CS-074 Total PCBs S N3C-CS-076 Total PCBs S N3D-CS-087 Total PCBs S N3D-CS-088 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N3D-CS-089 Total PCBs S N4C-BW-P/M Total PCBs S N4C-BW-P/M Total PCBs S N4C-SW-P/M Total PCBs S N4C-WW-P/M Total PCBs S B17-C Total PCBs S B17-C Total PCBs S B18-C Total PCBs S B17-C Total PCBs S B18-C Total PCBs S B19A/10-12 Total PCBs S B30-E Total PCBs S	99999999 0.069		mg/Kg	PEST	1-4	11/18/93
N3C-CS-065Total PCBsTotal PCBsN3C-CS-074Total PCBsSN3C-CS-074Total PCBsSN3C-CS-076Total PCBsSN3D-CS-087Total PCBsSN3D-CS-088Total PCBsSN3D-CS-089Total PCBsSN3D-CS-089Total PCBsSN4B-CS-006Total PCBsSN4C-BE-P/MTotal PCBsSN4C-BW-P/MTotal PCBsSN4C-SW-P/MTotal PCBsSN4C-WW-P/MTotal PCBsSN4C-WW-P/MTotal PCBsSB20-ATotal PCBsSB17-CTotal PCBsSB18-CTotal PCBsSB59-ETotal PCBsSB19A/10-12Total PCBsSB30-ETotal PCBsSB30-ETotal PCBsSB30-ETotal PCBsSB30-ETotal PCBsSB38A/12-14Total PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB33-ATotal PCBsSB112A/3-5Total PCBsSB13A/3-5Total PCBsSB14A/3-5Total PCBsSB16A/3-5Total PCBsSB16	99999999 0.0458	7 U	mg/Kg	PEST	1-4	11/19/93
N3C-CS-069ATotal PCBsSN3C-CS-074Total PCBsSN3D-CS-087Total PCBsSN3D-CS-088Total PCBsSN3D-CS-089Total PCBsSN3D-CS-089Total PCBsSN4B-CS-006Total PCBsSN4C-BE-P/MTotal PCBsSN4C-BW-P/MTotal PCBsSN4C-SW-P/MTotal PCBsSN4C-NWTotal PCBsSN4C-NWTotal PCBsSN4C-WW-P/MTotal PCBsSB20-ATotal PCBsSB17-CTotal PCBsSB18-CTotal PCBsSB19A/10-12Total PCBsSB30-ETotal PCBsSB30-ETotal PCBsSB138A/12-14Total PCBsSB33-ATotal PCBsSB34-HTotal PCBsSB115A/3-5Total PCBsSB13A/3-5Total PCBsSB14A/3-5Total PCBsSB16A/3-5Total PCBsSB16A/3-5Total	99999999 0.47		mg/Kg	PEST	1-4	12/6/93
N3C-CS-074 Total PCBs 9 N3D-CS-087 Total PCBs 9 N3D-CS-088 Total PCBs 9 N3D-CS-089 Total PCBs 9 N3D-CS-089 Total PCBs 9 N3D-CS-089 Total PCBs 9 N4B-CS-006 Total PCBs 9 N4C-BE-P/M Total PCBs 9 N4C-BW-P/M Total PCBs 9 N4C-EW-P/M Total PCBs 9 N4C-SW-P/M Total PCBs 9 N4C-WW-P/M Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B18-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Tota	99999999 0.23		mg/Kg	PEST	1-4	11/10/93
N3C-CS-076Total PCBs9N3D-CS-087Total PCBs9N3D-CS-088Total PCBs9N3D-CS-089Total PCBs9N4B-CS-006Total PCBs9N4C-BE-P/MTotal PCBs9N4C-BW-P/MTotal PCBs9N4C-EW-P/MTotal PCBs9N4C-SW-P/MTotal PCBs9N4C-WW-P/MTotal PCBs9B20-ATotal PCBs9B17-CTotal PCBs9B17-CTotal PCBs9B18-CTotal PCBs9B59-ETotal PCBs9B62-CTotal PCBs9B30-ETotal PCBs9B30-ETotal PCBs9B138A/12-14Total PCBs9B138A/12-14Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B33-ATotal PCBs9B34-HTotal PCBs9B12A/3-5Total PCBs9B14A/3-5Total PCBs9B12A/3-5Total PCBs9B14A/3-5Total PCBs9B15A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9	99999999 0.11		mg/Kg	PEST	1-4	11/10/93
N3D-CS-087 Total PCBs 9 N3D-CS-088 Total PCBs 9 N3D-CS-089 Total PCBs 9 N4B-CS-006 Total PCBs 9 N4C-BE-P/M Total PCBs 9 N4C-BW-P/M Total PCBs 9 N4C-EW-P/M Total PCBs 9 N4C-EW-P/M Total PCBs 9 N4C-WW Total PCBs 9 N4C-WW-P/M Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B17-D Total PCBs 9 B30-E Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B	99999999 0.0363	U	mg/Kg	PEST	1-4	11/10/93
N3D-CS-088Total PCBs9N3D-CS-089Total PCBs9N4B-CS-006Total PCBs9N4C-BE-P/MTotal PCBs9N4C-BW-P/MTotal PCBs9N4C-EW-P/MTotal PCBs9N4C-NWTotal PCBs9N4C-SW-P/MTotal PCBs9N4C-WW-P/MTotal PCBs9B17-CTotal PCBs9B17-CTotal PCBs9B18-CTotal PCBs9B59-ETotal PCBs9B62-CTotal PCBs9B18A/10-12Total PCBs9B30-ETotal PCBs9B18A/12-14Total PCBs9B138A/12-14Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B12-ATotal PCBs9B15A/3-5Total PCBs9B15A/3-5Total PCBs9B13A/3-5Total PCBs9B14A/3-5Total PCBs9B14A/3-5Total PCBs9B15A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9<	99999999 0.072		mg/Kg	PEST	1-4	11/19/93
N3D-CS-089Total PCBs9N4B-CS-006Total PCBs9N4C-BE-P/MTotal PCBs9N4C-BW-P/MTotal PCBs9N4C-EW-P/MTotal PCBs9N4C-SW-P/MTotal PCBs9N4C-WW-P/MTotal PCBs9B17-CTotal PCBs9B17-CTotal PCBs9B17-CTotal PCBs9B18-CTotal PCBs9B59-ETotal PCBs9B62-CTotal PCBs9B19A/10-12Total PCBs9B30-ETotal PCBs9B138A/12-14Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B12-ATotal PCBs9B12-ATotal PCBs9B12-A/3-5Total PCBs9B15A/3-5Total PCBs9B15A/3-5Total PCBs9B14A/3-5Total PCBs9B15A/3-5Total PCBs9B14A/3-5Total PCBs9B15A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A	99999999 2.9		mg/Kg	PEST	14	11/19/93
N4B-CS-006Total PCBs9N4C-BE-P/MTotal PCBs9N4C-BW-P/MTotal PCBs9N4C-EW-P/MTotal PCBs9N4C-NWTotal PCBs9N4C-SW-P/MTotal PCBs9N4C-WW-P/MTotal PCBs9B17-CTotal PCBs9B18-CTotal PCBs9B59-ETotal PCBs9B62-CTotal PCBs9B19A/10-12Total PCBs9B30-ETotal PCBs9B138A/12-14Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B1A/2-4Total PCBs9B12-ATotal PCBs9B13-ATotal PCBs9B1A/2-4Total PCBs9B12-ATotal PCBs9B12-ATotal PCBs9B12-A/3-5Total PCBs9B15A/3-5Total PCBs9B13A/3-5Total PCBs9B14A/3-5Total PCBs9B13A/3-5Total PCBs9B14A/3-5Total PCBs9B15A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5Total PCBs9B16A/3-5<	9999999 1.01		mg/Kg	PEST	1-4	11/19/93
N4C-BE-P/M Total PCBs 9 N4C-BW-P/M Total PCBs 9 N4C-EW-P/M Total PCBs 9 N4C-NW Total PCBs 9 N4C-SW-P/M Total PCBs 9 N4C-WW-P/M Total PCBs 9 B20-A Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B12A/3-5 Total PCBs 9 B13A/3-5	99999999 0.041		mg/Kg	PEST	1-4	10/12/93
N4C-BW-P/M Total PCBs 9 N4C-EW-P/M Total PCBs 9 N4C-NW Total PCBs 9 N4C-SW-P/M Total PCBs 9 N4C-WW-P/M Total PCBs 9 B20-A Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B14/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B12A/3-5	9999999 0.14		mg/Kg	PEST	1-4	9/11/93
N4C-EW-P/M Total PCBs 9 N4C-NW Total PCBs 9 N4C-SW-P/M Total PCBs 9 B20-A Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B12A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 T	99999999 0.39		mg/Kg	PEST	1-4	9/13/93
N4C-NW Total PCBs 9 N4C-SW-P/M Total PCBs 9 N4C-WW-P/M Total PCBs 9 B20-A Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B17-D Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B14/2-A Total PCBs 9 B1A/2-4 Total PCBs 9 B13-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B12A/3-5 Total PCBs 9 B112A/3-5 Total PCBs 9 B14A/3-5 Total	99999999 0.03		mg/Kg	PEST	1-4	9/11/93
N4C-SW-P/M Total PCBs 9 N4C-WW-P/M Total PCBs 9 B20-A Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B138A/12-14 Total PCBs 9 B33-A Total PCBs 9 B14/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B112A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5	99999999 0.14	U	mg/Kg	PEST	1-4	9/24/93
N4C-WW-P/M Total PCBs 9 B20-A Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B33-A Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B12A/3-5 Total PCBs 9 B112A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 <	9999999 0.18		mg/Kg	PEST	1-4	9/11/93
B20-A Total PCBs 9 B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B37-D Total PCBs 9 B38A/12-14 Total PCBs 9 B37-A Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B112A/3-5 Total PCBs 9 B112A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 <td>99999999 0.14</td> <td></td> <td>mg/Kg</td> <td>PEST</td> <td>1-4</td> <td>9/11/93</td>	99999999 0.14		mg/Kg	PEST	1-4	9/11/93
B17-C Total PCBs 9 B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B45-D Total PCBs 9 B45-D Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9	9999999 22.7		mg/Kg	PEST	1-6	2/10/94
B18-C Total PCBs 9 B59-E Total PCBs 9 B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 <td>9999999 0.15</td> <td></td> <td>mg/Kg</td> <td>PEST</td> <td>10-11 W</td> <td>2/25/94</td>	9999999 0.15		mg/Kg	PEST	10-11 W	2/25/94
B59-E Total PCBs 9 B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B1A/2-4 Total PCBs 9 B1A/2-4 Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B12A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9	9999999 0.13		mg/Kg	PEST	10-11.5 W	3/3/94
B62-C Total PCBs 9 B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B14/2-4 Total PCBs 9 B33-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B12A/3-5 Total PCBs 9 B12-A Total PCBs 9 B33-A Total PCBs 9 B14/2-A Total PCBs 9 B12-A Total PCBs 9 B12-A Total PCBs 9 B112A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 <td>9999999 1.3</td> <td></td> <td>mg/Kg</td> <td>PEST</td> <td>10-11.5 W</td> <td>2/28/94</td>	9999999 1.3		mg/Kg	PEST	10-11.5 W	2/28/94
B19A/10-12 Total PCBs 9 B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B45-D Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.07		mg/Kg	PEST	10-11.5 W	2/17/94
B30-E Total PCBs 9 B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B21-E Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.6		mg/Kg	PEST	10-12	3/21/96
B71-D Total PCBs 9 B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B21-E Total PCBs 9 B13/2-4 Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B12-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.11		mg/Kg	PEST	10-12 W	3/1/94
B138A/12-14 Total PCBs 9 B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B21-E Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B10A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B10A/3-5 Total PCBs 9 B10A/3-5 Total PCBs	9999999 0.16		mg/Kg	PEST	10-12 W	2/17/94
B38A/12-14 Total PCBs 9 B45-D Total PCBs 9 B21-E Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B42-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B104/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.6		mg/Kg	PEST	12-14	3/21/96
B45-D Total PCBs 9 B21-E Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B42-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.63		mg/Kg	PEST	12-14	3/21/96
B21-E Total PCBs 9 B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B32-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B112A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.05		mg/Kg	PEST	12-16 W	3/2/94
B1A/2-4 Total PCBs 9 B33-A Total PCBs 9 B42-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 6.2		mg/Kg	PEST	13-15	2/7/94
B42-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 2.34		mg/kg	PEST	2-4	3/19/96
B42-A Total PCBs 9 B32-A Total PCBs 9 B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 12	U	mg/Kg	PEST	2-7	2/8/94
B38-H Total PCBs 9 B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.06	60° te	mg/Kg	PEST	2-7	2/22/94
B112A/3-5 Total PCBs 9 B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.06		mg/Kg	PEST	2.5-4.5	2/11/94
B115A/3-5 Total PCBs 9 B12A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.12		mg/Kg	PEST	20-21 W	2/11/94
B12A/3-5 Total PCBs 9 B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 21.1		mg/kg	PEST	3-5	3/19/96
B13A/3-5 Total PCBs 9 B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 0.614		mg/Kg	PEST	3-5	3/20/96
B14A/3-5 Total PCBs 9 B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 9.4		mg/kg	PEST	3-5	3/19/96
B15A/3-5 Total PCBs 9 B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 3.6		mg/kg	PEST	3-5	3/19/96
B16A/3-5 Total PCBs 9 B20/3-5 Total PCBs 9 B21A/3-5 Total PCBs 9	9999999 1.35		mg/kg	PEST	3-5	3/20/96
B20/3-5Total PCBs9B21A/3-5Total PCBs9	9999999 0.587		mg/Kg	PEST	3-5	3/20/96
B21A/3-5 Total PCBs 9	9999999 0.161		mg/kg	PEST	3-5	3/20/96
	9999999 81		mg/Kg	PEST	3-5	3/20/96
B224/3-5 Total DCBs 0	9999999 0.262		mg/Kg	PEST	3-5	3/20/96
DZZIUJ-J IUdi I CDS 9	9999999 37.1	,	mg/Kg	PEST	3-5	3/20/96
	9999999 0.144		mg/Kg	PEST	3-5 .	3/20/96
	9999999 6.06		mg/Kg	PEST	3-5	3/21/96
	9999999 0.323		mg/Kg	PEST	3-5	3/21/96
	9999999 29		mg/Kg	PEST	3-5	3/21/96
	99999999 0.98		mg/Kg	PEST	3-5	3/21/96
	9999999 0.045		mg/Kg	PEST	3-5	3/21/96

B3HA3-5 Total PCBs 9999999 0.039 mg/Kg PEST 3-5 37/196 B48A3-5 Total PCBs 9999999 0.054 mg/Kg PEST 3-5 37/196 B48A3-5 Total PCBs 99999999 0.53 mg/Kg PEST 3-5 37/196 B5AA3-5 Total PCBs 99999999 5.4 mg/Kg PEST 3-5 37/296 B57A3-5 Total PCBs 99999999 0.38 mg/Kg PEST 3-5 37/296 B57D/3-5 Total PCBs 99999999 0.32 mg/Kg PEST 3-5 37/296 B57D/3-5 Total PCBs 99999999 0.32 mg/Kg PEST 3-5 37/296 B57D/3-5 Total PCBs 99999999 0.224 mg/Kg PEST 3-5 37/296 B5A/3-5 Total PCBs 99999999 0.226 mg/Kg PEST 3-5 37/296 BA/3-5 Total PCBs 99999999 0.32 mg/Kg <th>Sample #</th> <th>Analyte</th> <th>CAS #</th> <th>Results</th> <th>Qualifier</th> <th>Units</th> <th></th> <th>Depth (feet</th> <th>) Date Collected</th>	Sample #	Analyte	CAS #	Results	Qualifier	Units		Depth (feet) Date Collected
Bat AA-5: Tomi PCBs 9999999 0.54 m_g/K_g PEST 3.5 3/21/96 B4/AA-5: Total PCBs 99999999 0.40 m_g/K_g PEST 3.5 3/21/96 B5/AA-5: Total PCBs 99999999 0.20 m_g/K_g PEST 3.5 3/21/96 B57/A5-5: Total PCBs 99999999 0.38 m_g/K_g PEST 3.5 3/22/96 B57/C5-5: Total PCBs 99999999 0.32 m_g/K_g PEST 3.5 3/22/96 B57/C5-5: Total PCBs 99999999 0.32 m_g/K_g PEST 3.5 3/22/96 B57/C5-5: Total PCBs 99999999 0.206 m_g/K_g PEST 3.5 3/22/96 B5A/3-5: Total PCBs 99999999 0.216 m_g/K_g PEST 3.5 3/20/96 BAA/3-5: Total PCBs 99999999 1.1 m_g/K_g PEST 3.5 3/20/96 BTPBA/3-5: Total PCBs 99999999	B34A/3-5	Total PCBs	999999999	0.439		mg/Kg	PEST	3-5	3/21/96
B30A7-5Toml PCBs999999990.53 mgK_g PEST3-5321/96B50A7-5Toml PCBs99999995.54 mgK_g PEST3-5321/96B57A7-5Toml PCBs99999990.38 mgK_g PEST3-5372/96B57B7-5Toml PCBs99999990.32 mgK_g PEST3-5372/96B57D7-5Toml PCBs99999990.32 mgK_g PEST3-5372/96B57D7-5Toml PCBs99999990.254 mgK_g PEST3-5372/96B57D7-5Toml PCBs99999990.254 mgK_g PEST3-5372/96B57D7-5Toml PCBs99999990.206 mgK_g PEST3-5372/96B6A7-5Toml PCBs99999990.206 mgK_g PEST3-5372/96B6A7-5Toml PCBs99999990.106 mgK_g PEST3-5372/96B7FBB7-5Toml PCBs99999990.206 mgK_g PEST3-5372/96B7FBB7-5Toml PCBs99999990.20 mgK_g PEST3-532/2/96B7FBB7-5Toml PCBs99999990.23 mgK_g PEST3-532/2/96B7FB7-5Toml PCBs99999990.23 mgK_g PEST4-6W2/2/94B54A/+6Toml PCBs99999990.23 mgK_g PEST4-6W2/2/94B54A/+6Toml PCBs99999991.8 mgK_g PEST4-6 <td></td> <td>Total PCBs</td> <td>999999999</td> <td>0.0064</td> <td></td> <td>mg/Kg</td> <td>PEST</td> <td>3-5</td> <td>3/21/96</td>		Total PCBs	999999999	0.0064		mg/Kg	PEST	3-5	3/21/96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B48A/3-5	Total PCBs	999999999	0.54		mg/Kg	PEST	3-5	3/21/96
B50A7-5 Total PCBs 9999999 3.40 mg/Kg PEST 3.5 312.196 B57A7-5 Total PCBs 99999999 5.54 mg/Kg PEST 3.5 312.96 B57B7-5 Total PCBs 99999999 0.38 mg/Kg PEST 3.5 312.196 B57D7-5 Total PCBs 9999999 0.352 mg/Kg PEST 3.5 312.196 B57D7-5 Total PCBs 9999999 0.352 mg/Kg PEST 3.5 312.196 B57D7-5 Total PCBs 9999999 0.152 mg/Kg PEST 3.5 312.196 B5A7-5 Total PCBs 9999999 0.1026 mg/Kg PEST 3.5 312.096 BTPBDA-5 Total PCBs 9999999 0.1026 mg/Kg PEST 3.5 312.096 BTPBDA-5 Total PCBs 9999999 0.206 mg/Kg PEST 3.5 312.096 BTPBDA-5 Total PCBs 9999999 0.23 mg	B49A/3-5	Total PCBs	99999999	0.53	٠		PEST	3-5	
B57A.5-5 Total PCBs 9999999 5.54 mg/Kg PEST 3-5 31/2596 B57A.5-5 Total PCBs 9999999 0.38 mg/Kg PEST 3-5 31/2296 B57D/3-5 Total PCBs 9999999 0.352 mg/Kg PEST 3-5 31/2296 B57D/3-5 Total PCBs 9999999 0.254 mg/Kg PEST 3-5 31/2296 B57R/3-5 Total PCBs 9999999 0.254 mg/Kg PEST 3-5 31/2196 B54A-5 Total PCBs 9999999 0.266 mg/Kg PEST 3-5 32/206 B6A3-5 Total PCBs 9999999 0.206 mg/Kg PEST 3-5 31/19/6 B7R9A-5 Total PCBs 9999999 1.81 mg/Kg PEST 3-5 32/20/6 B7R9D-5 Total PCBs 9999999 1.81 mg/Kg PEST 3-5 32/20/6 B7R9D-5 Total PCBs 9999999 0.236 mg/Kg PEST 3-5 32/20/6 B7BD/3-5 Total PCBs 9999999	B50A/3-5	Total PCBs	99999999	340					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B55A/3-5	Total PCBs	99999999						
B57D/3-5 Total PCBs 9999999 0.38 mg/Kg PEST 3-5 322/96 B37D/3-5 Total PCBs 9999999 0.352 mg/Kg PEST 3-5 322/96 B37D/3-5 Total PCBs 9999999 0.352 mg/Kg PEST 3-5 322/96 B37D/3-5 Total PCBs 9999999 0.254 mg/Kg PEST 3-5 322/96 B5A/3-5 Total PCBs 9999999 0.206 mg/Kg PEST 3-5 3210/96 BA/3-5 Total PCBs 9999999 0.216 mg/Kg PEST 3-5 320/96 BTPBD/3-5 Total PCBs 9999999 0.236 mg/Kg PEST 3-5 320/96 BTPBD/3-5 Total PCBs 99999999 0.236 mg/Kg PEST 4-5 22/296 B54/A/4-6 Total PCBs 99999999 0.236 mg/Kg PEST 4-6 32/296 B54/A/4-6 Total PCBs 99999999 0.246 mg/Kg PEST 4-6 32/296 B64-B Total PCBs	B57A/3-5	Total PCBs	999999999						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B57B/3-5								
B5TD/3-5 Total PCBs 99999999 0.352 mg/Kg PEST 3-5 3/2296 B5TE/3-5 Total PCBs 99999999 0.254 mg/Kg PEST 3-5 3/2296 B5A7/3-5 Total PCBs 99999999 2.85 mg/Kg PEST 3-5 3/2096 B6A/3-5 Total PCBs 99999999 0.0206 mg/Kg PEST 3-5 3/2096 BTBB/3-5 Total PCBs 99999999 0.18 mg/Kg PEST 3-5 3/2096 BTBB/3-5 Total PCBs 99999999 0.23 mg/Kg PEST 3-5 3/2096 B54A/4-6 Total PCBs 99999999 0.23 mg/Kg PEST 4-5 2/2194 B64-B Total PCBs 99999999 1.2 U mg/Kg PEST 4-6 3/2296 B64-B Total PCBs 99999999 1.2 U mg/Kg PEST 4-5 3/2296 B64-B Total PCBs 99999999 1.8									
B5TE/3-5 Total PCBs 99999999 0.234 mg/Kg PEST 3-5 3/22/96 B5TF/3-5 Total PCBs 99999999 1.07 mg/Kg PEST 3-5 3/22/96 B5A/3-5 Total PCBs 99999999 0.206 mg/kg PEST 3-5 3/20/96 B6A/3-5 Total PCBs 99999999 0.206 mg/kg PEST 3-5 3/20/96 BTPBD/3-5 Total PCBs 99999999 0.18 mg/Kg PEST 3-5 3/20/96 BTPBD/3-5 Total PCBs 99999999 0.236 mg/Kg PEST 4-5 3/20/96 BTPBD/3-5 Total PCBs 99999999 0.23 mg/Kg PEST 4-6 3/25/96 B09-A Total PCBs 99999999 1.2 mg/Kg PEST 4-6 3/25/96 B02-B Total PCBs 99999999 1.2 mg/Kg PEST 4-6 3/25/96 B04-B Total PCBs 999999999 1.4 mg/Kg									
B57/B-5 Total PCBs 99999999 1.07 mg/Kg PEST 3-5 3/2296 B5A/3-5 Total PCBs 99999999 2.85 mg/kg PEST 3-5 3/2096 B6A/3-5 Total PCBs 99999999 0.0206 mg/kg PEST 3-5 3/1996 B78BA/3-5 Total PCBs 99999999 9.1 mg/kg PEST 3-5 3/2096 BTPBD/3-5 Total PCBs 99999999 9.1 mg/kg PEST 3-5 3/2096 BTPBD/3-5 Total PCBs 99999999 0.236 mg/kg PEST 4-5 3/2096 B94A/4-6 Total PCBs 99999999 0.23 mg/kg PEST 4-6 3/2296 B44A/4-6 Total PCBs 99999999 0.2 mg/kg PEST 4-6 3/2296 B42A Total PCBs 99999999 1.2 U mg/kg PEST 4-7.5 2/24/94 B72-B Total PCBs 99999999 0.52 mg/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
B5A/3-5Total PCBs99999992.85 mg/kg PEST3-5 $3/L096$ B6A/3-5Total PCBs99999990.0206 mg/kg PEST3-5 $3/L096$ BA/3-5Total PCBs99999990.18 mg/kg PEST3-5 $3/2096$ BTPBB/3-5Total PCBs99999999.1 mg/kg PEST3-5 $3/2096$ BTPBD/3-5Total PCBs99999999.1 mg/kg PEST3-5 $3/2096$ BTPBD/3-5Total PCBs99999990.296 mg/kg PEST3-5 $3/2096$ B09-ATotal PCBs99999990.23 mg/kg PEST4-5 $2/2194$ B4A/4-6Total PCBs999999912U mg/kg PEST4-6 $3/2596$ B64-BTotal PCBs999999912U mg/kg PEST4-7 $2/2194$ B72-BTotal PCBs99999991.8 mg/kg PEST4-7 $2/2194$ B02-BTotal PCBs99999990.22 mg/kg PEST4-8 $11/3093$ N2A-CS-011Total PCBs99999990.22 mg/kg PEST4-8 $10/893$ N3A-CS-011Total PCBs99999992.37 mg/kg PEST4-8 $10/893$ N3A-CS-011Total PCBs99999992.37 mg/kg PEST4-8 $10/893$ N3A-CS-021Total PCBs99999990.22 mg/kg PEST4-8 $10/893$ N3A-CS-030Total PCBs									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
BTPBA/3-5Total PCBs99999994.5mg/KgPEST3.5 $3/20\%$ BTPBD/3-5Total PCBs99999999.1mg/KgPEST3.5 $3/20\%$ BTPBD/3-5Total PCBs99999990.296mg/KgPEST3.5 $3/20\%$ BTPB/3-5Total PCBs99999990.233mg/KgPEST4.5 $2/22\%$ B54A/4-6Total PCBs99999990.23mg/KgPEST4.6 $3/25\%$ B64-BTotal PCBs99999991.2Umg/KgPEST4.6 $2/21\%$ B72-BTotal PCBs99999991.2Umg/KgPEST4.6 $2/21\%$ B02-BTotal PCBs99999991.8mg/KgPEST4.7.5 $2/24\%$ N1-CS-001Total PCBs99999990.022mg/KgPEST4.8 $11/30/93$ N3A-CS-011Total PCBs99999990.133mg/KgPEST4.8 $10/18/93$ N3A-CS-019Total PCBs99999991.31mg/KgPEST4.8 $10/18/93$ N3A-CS-020Total PCBs99999990.33mg/KgPEST4.8 $10/18/93$ N3A-CS-030Total PCBs99999990.32mg/KgPEST4.8 $10/18/93$ N3A-CS-041Total PCBs99999990.32mg/KgPEST4.8 $10/18/93$ N3A-CS-054Total PCBs99999990.32mg/KgPEST4.8 $10/19/3$ N3B-CS-061Total PCBs9999999<									
BTPBB/3-5Total PCBs99999999,1mg/KgPEST3-5 $3/20\%$ BTPB/3-5Total PCBs99999991.81mg/KgPEST3-5 $3/20\%$ BTPB/3-5Total PCBs99999990.23mg/KgPEST3-5 $3/20\%$ B09-ATotal PCBs99999990.23mg/KgPEST4-5.5 $2/22/94$ B54A/4-6Total PCBs99999990.24mg/KgPEST4-6 $2/21/94$ B64-BTotal PCBs999999912Umg/KgPEST4-6 $2/21/94$ B02-BTotal PCBs99999991.8mg/KgPEST4-7 $2/24/94$ N1-CS-001Total PCBs99999990.95mg/KgPEST4-8 $1/30/93$ N2A-CS-011Total PCBs99999990.022mg/KgPEST4-8 $1/130/93$ N3A-CS-011Total PCBs99999990.13mg/KgPEST4-8 $1/130/93$ N3A-CS-020Total PCBs99999992.37mg/KgPEST4-8 $10/18/93$ N3A-CS-031Total PCBs99999990.32mg/KgPEST4-8 $10/18/93$ N3A-CS-046Total PCBs99999990.32mg/KgPEST4-8 $10/18/93$ N3A-CS-054Total PCBs99999990.32mg/KgPEST4-8 $10/10/93$ N3B-CS-057Total PCBs99999990.32mg/KgPEST4-8 $10/10/93$ N3B-CS-057Total PCBs9999999 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BTTBE/3-5Total PCBs99999991.81 mg/Kg PEST3-5 $3/20\%$ BTTBD/7-5Total PCBs99999990.236 mg/Kg PEST3-5 $3/20\%$ B9-ATotal PCBs99999990.04U mg/Kg PEST4-6 $3/25\%$ B4/A/4-6Total PCBs99999990.04U mg/Kg PEST4-6 $3/25\%$ B64-BTotal PCBs999999912U mg/Kg PEST4-6 $3/25\%$ B72-BTotal PCBs999999912U mg/Kg PEST4-7.5 $2/24/94$ B02-BTotal PCBs99999991.8 mg/Kg PEST4-8 $11/30/93$ N2D-CS-001Total PCBs99999990.022 mg/Kg PEST4-8 $11/30/93$ N3A-CS-011Total PCBs99999991.11 mg/Kg PEST4-8 $10/18/93$ N3A-CS-020Total PCBs99999992.37 mg/Kg PEST4-8 $10/18/93$ N3A-CS-031Total PCBs99999990.221 mg/Kg PEST4-8 $10/18/93$ N3A-CS-046Total PCBs99999990.221 mg/Kg PEST4-8 $10/18/93$ N3A-CS-054Total PCBs99999990.221 mg/Kg PEST4-8 $10/18/93$ N3B-CS-054Total PCBs99999990.221 mg/Kg PEST4-8 $10/18/93$ N3B-CS-054Total PCBs99999990.221 mg/Kg PEST4-8 $10/18/93$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BTFBD/3-5 Total PCBs 9999999 0.296 mg/Kg PEST 3-5 3/20/96 B09-A Total PCBs 99999999 0.23 mg/Kg PEST 4-5.5 2/22/94 B34A/4-6 Total PCBs 99999999 0.24 U mg/Kg PEST 4-6 3/25/96 B64-B Total PCBs 99999999 12 U mg/Kg PEST 4-6 3/25/96 B02-B Total PCBs 99999999 1.2 U mg/Kg PEST 4-7 W 2/21/94 B02-B Total PCBs 99999999 0.95 mg/Kg PEST 4-8 11/30/93 N2D-CS-001 Total PCBs 99999999 1.11 mg/Kg PEST 4-8 10/18/93 N3A-CS-011 Total PCBs 99999999 2.37 mg/Kg PEST 4-8 10/18/93 N3A-CS-020 Total PCBs 9999999 0.31 mg/Kg PEST 4-8 10/18/93 N3A-CS-031 Total PCBs <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
B09-ATotal PCBs99999990.23 $mgKg$ PEST4-5.52/2/94B54A4/4-6Total PCBs999999990.04U $mgKg$ PEST4-63/25/96B64-BTotal PCBs9999999912U $mgKg$ PEST4-63/25/96B72-BTotal PCBs9999999912U $mgKg$ PEST4-62/21/94B02-BTotal PCBs999999991.8 $mgKg$ PEST4-7.52/24/94N1-CS-001Total PCBs99999990.95 $mgKg$ PEST4-811/30/93N2D-CS-001Total PCBs99999990.022 $mgKg$ PEST4-811/30/93N3A-CS-019Total PCBs99999992.37 $mgKg$ PEST4-810/18/93N3A-CS-020Total PCBs99999990.221 $mgKg$ PEST4-810/18/93N3A-CS-030Total PCBs99999990.33 $mgKg$ PEST4-810/18/93N3A-CS-044Total PCBs99999990.32 $mgKg$ PEST4-810/18/93N3A-CS-054Total PCBs99999990.32 $mgKg$ PEST4-811/10/93N3B-CS-054Total PCBs99999990.32 $mgKg$ PEST4-811/10/93N3B-CS-061Total PCBs99999992 $mgKg$ PEST4-811/10/93N3B-CS-061Total PCBs99999990.055 $mgKg$ PEST4-811/10/93N3C-CS-067Total PCBs									
B54A/4-6 Total PCBs 99999999 0.04 U mg/Kg PEST 4-6 3/25/96 B64-B Total PCBs 99999999 12 U mg/Kg PEST 4-6 W 2/21/94 B02-B Total PCBs 99999999 1.8 mg/Kg PEST 4-7.5 2/24/94 N1CS-001 Total PCBs 99999999 0.95 mg/Kg PEST 4-8 11/30/93 N2D-CS-001 Total PCBs 99999999 1.11 mg/Kg PEST 4-8 11/30/93 N3A-CS-011 Total PCBs 99999999 1.31 mg/Kg PEST 4-8 10/18/93 N3A-CS-020 Total PCBs 99999999 0.313 mg/Kg PEST 4-8 10/18/93 N3A-CS-030 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 9999999 0.221 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs									
B64-B Total PCBs 9999999 12 U mg/Kg PEST 4-6 W 2/21/94 B72-B Total PCBs 99999999 12 U mg/Kg PEST 4-7 W 2/21/94 B02-B Total PCBs 99999999 1.8 mg/Kg PEST 4-7 V 2/21/94 N1-CS-001 Total PCBs 99999999 0.95 mg/Kg PEST 4-8 11/30/93 N3A-CS-011 Total PCBs 99999999 0.12 mg/Kg PEST 4-8 10/18/93 N3A-CS-019 Total PCBs 99999999 2.37 mg/Kg PEST 4-8 10/18/93 N3A-CS-020 Total PCBs 99999999 0.133 mg/Kg PEST 4-8 10/18/93 N3A-CS-030 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-054					TT				
B72-BTotal PCBs999999912U mg/Kg PEST 4.7 W $2/21/94$ B02-BTotal PCBs999999991.8 mg/Kg PEST 4.7 .5 $2/24/94$ N1-CS-001Total PCBs999999990.95 mg/Kg PEST 4.8 $11/30/93$ N2D-CS-001Total PCBs999999990.022 mg/Kg PEST 4.8 $10/30/93$ N3A-CS-011Total PCBs999999991.11 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-019Total PCBs999999992.37 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-020Total PCBs999999990.133 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-031Total PCBs999999990.221 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-046Total PCBs999999990.32 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-053Total PCBs999999992 mg/Kg PEST 4.8 $11/10/93$ N3B-CS-054Total PCBs999999991.2 mg/Kg PEST 4.8 $11/10/93$ N3B-CS-061Total PCBs999999990.055 mg/Kg PEST 4.8 $11/10/93$ N3B-CS-061Total PCBs999999990.055 mg/Kg PEST 4.8 $11/10/93$ N3C-CS-070ATotal PCBs999999990.026 mg/Kg PEST 4.8 $11/10/93$ N3C-CS-075Total PCBs999999990.16 mg/Kg <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
B02-B Total PCBs 9999999 1.8 mg/Kg PEST 4-7.5 2/24/94 N1-CS-001 Total PCBs 99999999 0.95 mg/Kg PEST 4-8 11/30/93 N2D-CS-001 Total PCBs 99999999 0.022 mg/Kg PEST 4-8 11/30/93 N3A-CS-011 Total PCBs 99999999 1.11 mg/Kg PEST 4-8 10/18/93 N3A-CS-019 Total PCBs 99999999 2.37 mg/Kg PEST 4-8 10/18/93 N3A-CS-020 Total PCBs 99999999 0.133 mg/Kg PEST 4-8 10/18/93 N3A-CS-030 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 10/18/93 N3B-CS-054 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 1.2									
N1-CS-001Total PCBs9999999 0.95 mg/Kg PEST 4.8 $11/30/33$ N2D-CS-001Total PCBs9999999 0.022 mg/Kg PEST 4.8 $11/30/33$ N3A-CS-011Total PCBs9999999 1.11 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-019Total PCBs99999999 4.6 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-020Total PCBs99999999 2.37 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-030Total PCBs99999999 2.37 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-030Total PCBs99999999 0.133 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-031Total PCBs99999999 0.221 mg/Kg PEST 4.8 $10/18/93$ N3A-CS-046Total PCBs99999999 0.22 mg/Kg PEST 4.8 $11/10/93$ N3B-CS-054Total PCBs99999999 2 mg/Kg PEST 4.8 $11/10/93$ N3B-CS-054Total PCBs99999999 2 mg/Kg PEST 4.8 $11/10/93$ N3B-CS-061Total PCBs99999999 2 mg/Kg PEST 4.8 $11/10/93$ N3C-CS-067Total PCBs99999999 2 mg/Kg PEST 4.8 $11/10/93$ N3C-CS-072ATotal PCBs99999999 0.026 mg/Kg PEST 4.8 $11/10/93$ N3C-CS-077ATotal PCBs99999999 0.16					U				
N2D-CS-001 Total PCBs 9999999 0.022 mg/Kg PEST 4-8 11/30/93 N3A-CS-011 Total PCBs 9999999 1.11 mg/Kg PEST 4-8 10/18/93 N3A-CS-019 Total PCBs 99999999 4.6 mg/Kg PEST 4-8 10/18/93 N3A-CS-020 Total PCBs 99999999 2.37 mg/Kg PEST 4-8 10/18/93 N3A-CS-021 Total PCBs 9999999 0.133 mg/Kg PEST 4-8 10/18/93 N3A-CS-030 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-031 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 99999999 1.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
N3A-CS-011Total PCBs99999991.11 mg/Kg PEST4-810/18/93N3A-CS-019Total PCBs99999994.6 mg/Kg PEST4-811/10/93N3A-CS-020Total PCBs99999992.37 mg/Kg PEST4-810/18/93N3A-CS-021Total PCBs99999992.37 mg/Kg PEST4-810/18/93N3A-CS-031Total PCBs99999990.133 mg/Kg PEST4-810/18/93N3A-CS-031Total PCBs99999990.221 mg/Kg PEST4-810/18/93N3A-CS-046Total PCBs99999990.32 mg/Kg PEST4-811/10/93N3B-CS-054Total PCBs99999992 mg/Kg PEST4-811/10/93N3B-CS-057Total PCBs99999992 mg/Kg PEST4-811/10/93N3B-CS-061Total PCBs99999992 mg/Kg PEST4-811/10/93N3C-CS-067Total PCBs99999990.055 mg/Kg PEST4-811/10/93N3C-CS-070ATotal PCBs99999990.026 mg/Kg PEST4-811/10/93N3C-CS-075Total PCBs99999990.16 mg/Kg PEST4-811/18/93N3C-CS-075ATotal PCBs99999990.26 mg/Kg PEST4-811/18/93N3C-CS-075ATotal PCBs99999990.26 mg/Kg PEST4-811/18/93N3C-CS-077ATo									
N3A-CS-019 Total PCBs 9999999 4.6 mg/Kg PEST 4-8 11/10/93 N3A-CS-020 Total PCBs 99999999 2.37 mg/Kg PEST 4-8 10/18/93 N3A-CS-021 Total PCBs 99999999 0.133 mg/Kg PEST 4-8 10/18/93 N3A-CS-030 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.22 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 9999999 2 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 0.055									
N3A-CS-020 Total PCBs 9999999 2.37 mg/Kg PEST 4-8 10/18/93 N3A-CS-021 Total PCBs 99999999 0.133 mg/Kg PEST 4-8 10/18/93 N3A-CS-030 Total PCBs 99999999 0.133 mg/Kg PEST 4-8 10/18/93 N3A-CS-031 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A To									
N3A-CS-021 Total PCBs 9999999 0.133 mg/Kg PEST 4-8 12/6/93 N3A-CS-030 Total PCBs 9999999 4.38 mg/Kg PEST 4-8 10/18/93 N3A-CS-031 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 0.55 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.026 mg/Kg PEST 4-8 11/10/93 N3C-CS-077A <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
N3A-CS-030 Total PCBs 9999999 4.38 mg/Kg PEST 4-8 10/18/93 N3A-CS-031 Total PCBs 9999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.039 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-058 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3C-CS-062 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.056 mg/Kg PEST 4-8 11/18/93 N3C-CS-072A Total PCBs 99999999 0.026 mg/Kg PEST 4-8 11/18/93 N3C-CS-077A									
N3A-CS-031 Total PCBs 99999999 0.221 mg/Kg PEST 4-8 10/18/93 N3A-CS-046 Total PCBs 99999999 0.039 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-058 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 2 mg/Kg PEST 4-8 12/13/93 N3C-CS-061 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.16 mg/Kg PEST 4-8 11/18/93 N3C-CS-077A Total PCBs 99999999 0.174									
N3A-CS-046 Total PCBs 9999999 0.039 mg/Kg PEST 4-8 11/10/93 N3B-CS-054 Total PCBs 9999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-058 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 8.4 mg/Kg PEST 4-8 11/10/93 N3C-CS-061 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.16 mg/Kg PEST 4-8 11/18/93 N3C-CS-075 Total PCBs 99999999 0.12 mg/Kg PEST 4-8 11/18/93 N3C-CS-078A Total PCBs 99999999 0.174 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
N3B-CS-054 Total PCBs 99999999 0.32 mg/Kg PEST 4-8 11/10/93 N3B-CS-057 Total PCBs 99999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-058 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 8.4 mg/Kg PEST 4-8 12/13/93 N3C-CS-062 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-067 Total PCBs 99999999 0.056 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.026 mg/Kg PEST 4-8 11/10/93 N3C-CS-075 Total PCBs 99999999 0.16 mg/Kg PEST 4-8 11/10/93 N3C-CS-077A Total PCBs 99999999 0.22 mg/Kg PEST 4-8 11/10/93 N3C-CS-078A <									
N3B-CS-057 Total PCBs 9999999 2 mg/Kg PEST 4-8 11/10/93 N3B-CS-058 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 8.4 mg/Kg PEST 4-8 12/13/93 N3B-CS-062 Total PCBs 99999999 2 mg/Kg PEST 4-8 12/13/93 N3C-CS-067 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-068 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-064 Total PCBs 99999999 0.026 mg/Kg PEST 4-8 11/10/93 N3C-CS-072A Total PCBs 99999999 0.16 mg/Kg PEST 4-8 11/18/93 N3C-CS-075 Total PCBs 99999999 0.26 mg/Kg PEST 4-8 11/16/93 N3C-CS-075 Total PCBs 99999999 0.174 mg/Kg PEST 4-8 11/16/93 N3C-CS-078A To									
N3B-CS-058 Total PCBs 99999999 1.2 mg/Kg PEST 4-8 11/10/93 N3B-CS-061 Total PCBs 99999999 8.4 mg/Kg PEST 4-8 12/6/93 N3B-CS-062 Total PCBs 99999999 2 mg/Kg PEST 4-8 12/13/93 N3C-CS-067 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-068 Total PCBs 99999999 0.055 mg/Kg PEST 4-8 11/10/93 N3C-CS-064 Total PCBs 99999999 0.098 mg/Kg PEST 4-8 11/10/93 N3C-CS-070A Total PCBs 99999999 0.16 mg/Kg PEST 4-8 11/18/93 N3C-CS-072A Total PCBs 99999999 0.026 mg/Kg PEST 4-8 11/18/93 N3C-CS-075 Total PCBs 99999999 0.16 mg/Kg PEST 4-8 11/10/93 N3C-CS-078A Total PCBs 99999999 0.174 mg/Kg PEST 4-8 11/10/93 N3C-CS-081 <									
N3B-CS-061Total PCBs999999998.4mg/KgPEST4-812/6/93N3B-CS-062Total PCBs999999992mg/KgPEST4-812/13/93N3C-CS-067Total PCBs999999990.055mg/KgPEST4-811/10/93N3C-CS-068Total PCBs999999990.098mg/KgPEST4-811/10/93N3C-CS-068Total PCBs999999990.026mg/KgPEST4-811/18/93N3C-CS-070ATotal PCBs999999990.26mg/KgPEST4-811/18/93N3C-CS-072ATotal PCBs999999990.26mg/KgPEST4-811/10/93N3C-CS-075Total PCBs999999990.174mg/KgPEST4-811/10/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3D-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-084Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-086Total PCBs999999990.22mg/KgPEST4-811/10/93N3D-CS-086Total PCBs999999990.19mg/KgPEST4-811/10/93N3D-CS-086Total PCBs999999990.62mg/KgPEST4-811/19/93N3D-CS-086To									
N3B-CS-062Total PCBs999999992mg/KgPEST4-812/13/93N3C-CS-067Total PCBs999999990.055mg/KgPEST4-811/10/93N3C-CS-068Total PCBs999999990.098mg/KgPEST4-811/10/93N3C-CS-070ATotal PCBs999999990.16mg/KgPEST4-811/18/93N3C-CS-072ATotal PCBs999999990.26mg/KgPEST4-811/18/93N3C-CS-075Total PCBs999999990.26mg/KgPEST4-811/10/93N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/16/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-084Total PCBs999999990.4125mg/KgPEST4-812/7/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.56mg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.56mg/KgPEST4-811/19/93N3D-CS-084Total PCBs999999990.56mg/KgPEST4-811/19/93N4A-CS-033 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
N3C-CS-067Total PCBs999999990.055mg/KgPEST4-811/10/93N3C-CS-068Total PCBs999999990.098mg/KgPEST4-811/10/93N3C-CS-070ATotal PCBs999999990.16mg/KgPEST4-811/18/93N3C-CS-072ATotal PCBs999999990.026mg/KgPEST4-811/18/93N3C-CS-075Total PCBs999999990.12mg/KgPEST4-811/10/93N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/16/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-084Total PCBs999999990.4125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.56mg/KgPEST4-811/19/93N4A-CS-033Total PCBs999999990.56mg/KgPEST4-812/7/93N4A-CS-034Total PCBs999999990.56mg/KgPEST4-812/7/93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
N3C-CS-068Total PCBs999999990.098mg/KgPEST4-811/10/93N3C-CS-070ATotal PCBs999999990.16mg/KgPEST4-811/18/93N3C-CS-072ATotal PCBs999999990.026mg/KgPEST4-811/18/93N3C-CS-075Total PCBs999999990.12mg/KgPEST4-811/10/93N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/18/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/16/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-084Total PCBs999999990.04125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.56mg/KgPEST4-811/19/93N4A-CS-033Total PCBs999999990.56mg/KgPEST4-812/7/93N4A-CS-034Total PCBs999999998.9mg/KgPEST4-812/7/93				_					
N3C-CS-070ATotal PCBs999999990.16mg/KgPEST4-811/18/93N3C-CS-072ATotal PCBs999999990.026mg/KgPEST4-811/18/93N3C-CS-075Total PCBs999999991.2mg/KgPEST4-811/18/93N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/18/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/16/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-084Total PCBs999999990.04125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N3D-CS-084Total PCBs999999990.18mg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.56mg/KgPEST4-811/19/93N4A-CS-033Total PCBs999999990.56mg/KgPEST4-812/7/93N4A-CS-034Total PCBs999999998.9mg/KgPEST4-812/7/93									
N3C-CS-072ATotal PCBs999999990.026mg/KgPEST4-811/18/93N3C-CS-075Total PCBs999999991.2mg/KgPEST4-811/10/93N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/18/93N3C-CS-077ATotal PCBs999999990.03762Umg/KgPEST4-811/16/93N3C-CS-078ATotal PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-083Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-084Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-086Total PCBs999999990.04125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N4A-CS-033Total PCBs99999990.56mg/KgPEST4-811/19/93N4A-CS-034Total PCBs99999998.9mg/KgPEST4-812/7/93									
N3C-CS-075Total PCBs999999991.2mg/KgPEST4-811/10/93N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/18/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/16/93N3C-CS-078ATotal PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-084Total PCBs999999996.2mg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.04125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N4A-CS-033Total PCBs999999990.56mg/KgPEST4-811/19/93N4A-CS-034Total PCBs999999998.9mg/KgPEST4-812/7/93									
N3C-CS-077ATotal PCBs999999990.174mg/KgPEST4-811/18/93N3C-CS-078ATotal PCBs999999990.03762Umg/KgPEST4-811/16/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-084Total PCBs999999996.2mg/KgPEST4-812/6/93N3D-CS-085Total PCBs999999990.04125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N4A-CS-033Total PCBs999999990.56mg/KgPEST4-812/7/93N4A-CS-034Total PCBs999999998.9mg/KgPEST4-812/7/93									
N3C-CS-078A Total PCBs 99999999 0.03762 U mg/Kg PEST 4-8 11/16/93 N3C-CS-081 Total PCBs 99999999 0.28 mg/Kg PEST 4-8 11/10/93 N3C-CS-081 Total PCBs 99999999 0.28 mg/Kg PEST 4-8 11/10/93 N3C-CS-081 Total PCBs 99999999 0.96 mg/Kg PEST 4-8 11/10/93 N3D-CS-083 Total PCBs 99999999 0.19 mg/Kg PEST 4-8 12/7/93 N3D-CS-084 Total PCBs 99999999 6.2 mg/Kg PEST 4-8 12/6/93 N3D-CS-085 Total PCBs 99999999 0.04125 U mg/Kg PEST 4-8 11/19/93 N3D-CS-086 Total PCBs 99999999 0.18 mg/Kg PEST 4-8 11/19/93 N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
N3C-CS-081Total PCBs999999990.28mg/KgPEST4-811/10/93N3C-CS-081Total PCBs999999990.96mg/KgPEST4-811/10/93N3D-CS-083Total PCBs999999990.19mg/KgPEST4-812/7/93N3D-CS-084Total PCBs999999996.2mg/KgPEST4-812/7/93N3D-CS-085Total PCBs999999990.04125Umg/KgPEST4-811/19/93N3D-CS-086Total PCBs999999990.18mg/KgPEST4-811/19/93N3D-CS-033Total PCBs999999990.56mg/KgPEST4-812/7/93N4A-CS-034Total PCBs999999998.9mg/KgPEST4-812/7/93					TT				
N3C-CS-081 Total PCBs 99999999 0.96 mg/Kg PEST 4-8 11/10/93 N3D-CS-083 Total PCBs 99999999 0.19 mg/Kg PEST 4-8 12/7/93 N3D-CS-084 Total PCBs 99999999 6.2 mg/Kg PEST 4-8 12/6/93 N3D-CS-085 Total PCBs 99999999 0.04125 U mg/Kg PEST 4-8 11/19/93 N3D-CS-086 Total PCBs 99999999 0.04125 U mg/Kg PEST 4-8 11/19/93 N3D-CS-086 Total PCBs 99999999 0.18 mg/Kg PEST 4-8 11/19/93 N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93					U				
N3D-CS-083 Total PCBs 99999999 0.19 mg/Kg PEST 4-8 12/7/93 N3D-CS-084 Total PCBs 99999999 6.2 mg/Kg PEST 4-8 12/7/93 N3D-CS-084 Total PCBs 99999999 6.2 mg/Kg PEST 4-8 12/6/93 N3D-CS-085 Total PCBs 99999999 0.04125 U mg/Kg PEST 4-8 11/19/93 N3D-CS-086 Total PCBs 99999999 0.18 mg/Kg PEST 4-8 11/19/93 N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93									
N3D-CS-084 Total PCBs 99999999 6.2 mg/Kg PEST 4-8 12/6/93 N3D-CS-085 Total PCBs 99999999 0.04125 U mg/Kg PEST 4-8 11/19/93 N3D-CS-086 Total PCBs 99999999 0.18 mg/Kg PEST 4-8 11/19/93 N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93									
N3D-CS-085 Total PCBs 99999999 0.04125 U mg/Kg PEST 4-8 11/19/93 N3D-CS-086 Total PCBs 99999999 0.18 mg/Kg PEST 4-8 11/19/93 N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93									
N3D-CS-086 Total PCBs 99999999 0.18 mg/Kg PEST 4-8 11/19/93 N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93					TT				
N4A-CS-033 Total PCBs 99999999 0.56 mg/Kg PEST 4-8 12/7/93 N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93					U				
N4A-CS-034 Total PCBs 99999999 8.9 mg/Kg PEST 4-8 12/7/93									
10/12/93 U.U.Sobo U mg/Kg PEST 4-8 10/12/93					17				
	1170-001	TOTAL PUDS	9999999999	0.02020	U	ing/Kg	PESI	4-8	10/12/93

F

Appenix B.xls / dbas5 30 of 33

	Sample #	Analyte	CAS #	Results	Qualifier	Units		Depth (feet)	Date Collected
	N4B-CS-002a	Total PCBs	999999999	0.13		mg/Kg	PEST	4-8	10/12/93
	N4B-CS-003	Total PCBs	999999999	0.088		mg/Kg	PEST	4-8	10/12/93
	N4B-CS-004	Total PCBs	999999999	0.44		mg/Kg	PEST	4-8	10/12/93
	N4B-CS-005	Total PCBs	999999999	0.36		mg/Kg	PEST	4-8	10/12/93
	N4B-CS-014	Total PCBs	999999999	6.3		mg/Kg	PEST	4-8	10/12/93
	N4B-CS-020a	Total PCBs	999999999	0.03399	U	mg/Kg	PEST	4-8	10/12/93
	N4B-CS-025	Total PCBs	999999999	1.91		mg/Kg	PEST	4-8	12/7/93
	N4B-CS-026	Total PCBs	999999999	1.7		mg/Kg	PEST	4-8	12/9/93
	N4B-CS-028	Total PCBs	999999999	5.5		mg/Kg	PEST	4-8	10/12/93
	N4B-CS-039A	Total PCBs	999999999	0.066		mg/Kg	PEST	4-8	10/14/93
	N4B-CS-052B	Total PCBs	999999999	0.03498	U	mg/Kg	PEST	4-8	10/22/93
	TPA-CS-001	Total PCBs	999999999	0.17	U U	mg/Kg	PEST	4-8	11/30/93
	N1-CS-SW-102	Total PCBs	999999999	0.201		mg/Kg	PEST	4-8 C	11/30/93
	N2A-CS-NW-102	Total PCBs	999999999	6.2		mg/Kg	PEST	4-8 C	11/30/93
	N2B-CS-SW-102	Total PCBs	999999999	0.20955	U	mg/Kg	PEST	4-8 C	
	N2C-CS-WW-102	Total PCBs	999999999	7.85	U		PEST	4-8 C	11/30/93
	N3A-WS-192B	Total PCBs	999999999	0.6		mg/Kg	PEST		11/30/93
	N3C-WS-180B	Total PCBs	999999999	1.36		mg/Kg		4-8 C	12/2/93
	N3C-WS-193B	Total PCBs	999999999	7.6		mg/Kg	PEST	4-8 C	12/2/93
	N3D-WS-183B	Total PCBs	999999999	13.8		mg/Kg	PEST	4-8 C	12/2/93
	N3D-WS-191B	Total PCBs	999999999			mg/Kg	PEST	4-8 C	12/2/93
	TPB-CS-NW-102	Total PCBs	999999999	15.8		mg/Kg	PEST	4-8 C	12/2/93
	B19-C			4600		mg/Kg	PEST	4-8 C	11/30/93
	B57-B	Total PCBs	999999999	6.1		mg/Kg	PEST	4.8-5.3	2/23/94
		Total PCBs	999999999	4114		mg/Kg	PEST	5-6	2/15/94
	B57E/5-6	Total PCBs	999999999	0.397		mg/Kg	PEST	5-6	3/22/96
	B12A/5-7	Total PCBs	999999999	1.52		mg/kg	PEST	5-7	3/19/96
	B132A/5-7	Total PCBs	999999999	2.51		mg/Kg	PEST	5-7	3/21/96
	B13A/5-7	Total PCBs	999999999	1.4		mg/kg	PEST	5-7	3/19/96
	B14A/5-7	Total PCBs	999999999	0.086		mg/kg	PEST	5-7	3/20/96
	B15A/5-7	Total PCBs	999999999	5.4		mg/Kg	PEST	5-7	3/20/96
	B16A/5-7	Total PCBs	999999999	1.52		mg/kg	PEST	5-7	3/20/96
	B20A/5-7	Total PCBs	999999999	29.2		mg/Kg	PEST	5-7	3/20/96
	B21A/5-7	Total PCBs	999999999	9.8		mg/Kg	PEST	5-7	3/20/96
	B22A/5-7	Total PCBs	99999999	1.18		mg/Kg	PEST	5-7	3/20/96
	B23A/5-7	Total PCBs	99999999	0.0084		mg/Kg	PEST	5-7	3/20/96
•	B24A/5-7	Total PCBs	999999999	. 0.073	2	mg/Kg	PEST	5-7 .	3/2.1/96
	B25A/5-7	Total PCBs	99999999	12.1		mg/Kg	PEST	5-7	3/21/96
	B26A/5-7	Total PCBs	999999999	16		mg/Kg	PEST	5-7	3/21/96
	B32A/5-7	Total PCBs	999999999	2.75		mg/Kg	PEST	5-7	3/21/96
	B49A/5-7	Total PCBs	999999999	8.1		mg/Kg	PEST	5-7	3/21/96
	B50A/5-7	Total PCBs	999999999	45		mg/Kg	PEST	5-7	3/21/96
	B55A/5-7	Total PCBs	999999999	3.43		mg/Kg	PEST	5-7	3/25/96
	B57A/5-7	Total PCBs	999999999	0.95		mg/Kg	PEST	5-7	3/22/96
	B57B/5-7	Total PCBs	999999999	0.108		mg/Kg	PEST	5-7	3/22/96
	B57C/5-7	Total PCBs	999999999	14.5		mg/Kg	PEST	5-7	3/22/96
*	B57F/5-7	Total PCBs	99999999	0.214		mg/Kg	PEST	5-7	3/22/96
	B5A/5-7	Total PCBs	999999999	5.16		mg/Kg	PEST	5-7	3/20/96
	B6A/5-7	Total PCBs	99999999	23.4		mg/kg	PEST	5-7	3/19/96
	BTPBA/5-7	Total PCBs	99999999	0.91		mg/Kg	PEST	5-7 -	3/20/96
	BTPBB/5-7	Total PCBs	999999999	2.54		mg/Kg	PEST	5-7	3/20/96
	BTPBD/5-7	Total PCBs	999999999	39.5		mg/Kg	PEST	5-7	3/20/96
	B56-C	Total PCBs	999999999	12	U	mg/Kg	PEST	6-6.5	
	B57-C	Total PCBs	999999999	2057	0	mg/Kg	PEST	6-7	2/16/94
	B31-D	Total PCBs	999999999	0.07		mg/Kg	PEST		2/15/94
				0.07		merce	res1	6-7.5	2/24/94

Appenix B.xis / dbas5 31 of 33

Sample #	Analyte	CAS #	Results	Qualifier	Units	Data Group	Depth (feet)	Date Collected
B10A/6-8	Total PCBs	999999999	0.147		mg/kg	PEST	6-8	3/19/96
B11A/6-8	Total PCBs	999999999	1.64		mg/kg	PEST	6-8	3/19/96
B13-C	Total PCBs	999999999	0.05		mg/Kg	PEST	6-8	2/9/94
B25-C	Total PCBs	999999999	0.11		mg/Kg	PEST .	7-10	2/7/94
B120A/7-9	Total PCBs	999999999	22		mg/Kg	PEST	7-9	3/20/96
B20A/7-9	Total PCBs	999999999	19.2		mg/Kg	PEST	7-9	3/20/96
B21A/7-9	Total PCBs	999999999	.3.46		mg/Kg	PEST	7-9	3/20/96
B26A/7-9	Total PCBs	99999999	0.682		mg/Kg	PEST	7-9	3/21/96
B33A/7-9	Total PCBs	999999999	0.71		mg/Kg	PEST	7-9	3/21/96
B49-C	Total PCBs	999999999	3.2		mg/Kg	PEST	7-9	2/15/94
B49A/7-9	Total PCBs	999999999	1.34		mg/Kg	PEST	7-9	3/21/96
B55A/7-9	Total PCBs	999999999	6.67		mg/Kg	PEST	7-9	3/25/96
B57A/7-9	Total PCBs	999999999	1.28		mg/Kg	PEST	7-9	3/21/96
B57B/7-9	Total PCBs	99999999	0.56		mg/Kg	PEST	7-9	3/22/96
BTPBC/7-9	Total PCBs	999999999	0.034		mg/Kg	PEST	7-9	3/20/96
BTPBCC/7-9	Total PCBs	999999999	0.076		mg/Kg	PEST	7-9	3/20/96
N2A-CS-001	Total PCBs	999999999	0.29		mg/Kg	PEST	8-12	11/30/93
N2C-CS-001	Total PCBs	999999999	0.88		mg/Kg	PEST	8-12	11/30/93
N3A-CS-009A	Total PCBs	99999999	0.06		mg/Kg	PEST	8-12	11/19/93
N3A-CS-010A	Total PCBs	99999999	0.59		mg/Kg	PEST	8-12	11/19/93
N3A-CS-024	Total PCBs	999999999	0.4		mg/Kg	PEST	8-12	11/10/93
N3A-CS-025	Total PCBs	999999999	0.84		mg/Kg	PEST	8-12	10/18/93
N3A-CS-026	Total PCBs	99999999	0.135		mg/Kg	PEST	8-12	10/18/93
N3A-CS-029	Total PCBs	999999999	0.04224	U	mg/Kg	PEST	8-12	11/10/93
N3A-CS-035	Total PCBs	999999999	0.27		mg/Kg	PEST	8-12	11/10/93
N3A-CS-036	Total PCBs	999999999	0.03729	U	mg/Kg	PEST	8-12	11/10/93
N3A-CS-040	Total PCBs	999999999	10		mg/Kg	PEST	8-12	10/26/93
N3A-CS-041	Total PCBs	99999999	0.072		mg/Kg	PEST	8-12	10/26/93
N3A-CS-042	Total PCBs	99999999	10		mg/Kg	PEST	8-12	10/26/93
N3A-CS-045	Total PCBs	999999999	1.2		mg/Kg	PEST	8-12	10/18/93
N3B-CS-059	Total PCBs	999999999	2		mg/Kg	PEST	8-12	11/10/93
N3B-CS-060	Total PCBs	999999999	0.45		mg/Kg	PEST	8-12	11/10/93
N3C-CS-079A	Total PCBs	999999999	0.093		mg/Kg	PEST	8-12	11/18/93
N3C-CS-080	Total PCBs	999999999	0.011		mg/Kg	PEST	8-12	12/6/93
N3C-CS-080	Total PCBs	999999999	0.057		mg/Kg	PEST	8-12	12/6/93
N3D-CS-082	Total PCBs	999999999	0.38		mg/Kg	PEST	8-12	12/13/93
N3D-CS-082	Total PCBs	999999999	1.2		mg/Kg	PEST	8-12	12/13/93
N4A-CS-040	Total PCBs	99999999	7.7		mg/Kg	PEST	8-12	12/7/93
TPC-CS-001	Total PCBs	99999999	0.27		mg/Kg	PEST	8-12	11/30/93
N2B-CS-001	Total PCBs	999999999	0.87		mg/Kg	PEST	8-12	11/30/93
N2A-CS-NW-103	Total PCBs	999999999	0.19965	U	mg/Kg	PEST	8-12 C	11/30/93
TPB-CS-NW-103	Total PCBs	999999999	50.4		mg/Kg	PEST	8-12 C	11/30/93
B46-D	Total PCBs	999999999	0.17		mg/Kg	PEST	8-12 W	2/28/94
B16A/9-11	Total PCBs	999999999	0.253		mg/kg	PEST	9-11	3/20/96
B20A/9-11	Total PCBs	999999999	3.88		mg/Kg	PEST	9-11	3/20/96
B21A/9-11	Total PCBs	999999999	0.011		mg/Kg	PEST	9-11	3/20/96
B26A/9-11	Total PCBs	999999999	0.99		mg/Kg	PEST	9-11	3/21/96
B38A/9-11	Total PCBs	999999999	0.78		mg/Kg	PEST	9-11	3/21/96
B55-C	Total PCBs	999999999	18.6		mg/Kg	PEST	9-12 W	- 2/15/94 -

B- samples are depth specific

C = Composite samples

N- and T- samples not indicated as composites are post remediation excavation floor samples collected within the indicated range.

W = Wet samples collected below the water table

WPS- and WSP- samples were collected in the waste staging areas and covered with one foot of soil after remediation

Appenix B.xls / dbas5 32 of 33 Sample #AnalyteCAS #ResultsQualifierUnitsData GroupDepth (feet)Date CollectedNWA-P- samples at depths of 1 foot are perimeter surface samples covered with 1 foot of soil after past remediation efforts

Appenix B.xls / dbas5 33 of 33

APPENDIX C Baseline Hydraulic Site Analysis

I

I

Advanced GeoServices Engineering, P.C.

Chadds Ford Business Campus Rts. 202 & 1, Brandywine One - Suite 202 Chadds Ford, PA 19317-9676 (610) 558-3300 Fax (610) 558-2620

FAOFICEAGCVPROIECTSVFILES/2001-911/Communications/1-23-02.wpd

January 23, 2002

2001-911-04

Mr. Scott Foti New York State Department of Environmental Conservation 276 Sing Sing.Road Horseheads, NY 14845

Reference: Existing Conditions Hydraulic Model Seeley Creek McInerney Farm Site, Town of Southport, New York

Gentlemen:

Advanced GeoServices Engineering, P.C. (AGE) has developed an existing conditions hydraulic model in order to evaluated remedial design alternatives for the impacted soil areas within the floodplain (and floodway) of Seeley Creek at the McInerney Farm Site (Site) in the Town of Southport, Chemung County, New York. The impacted soils at the Site are at two locations designated as Area 1 and Area 2. The location of these areas are shown on Figure 1. The remedial design alternatives which will be evaluated for these two areas consist of the following:

- Alternative 1 Tree removal, capping of both areas with 24 inches of cover soil (with an underlying geotextile) and revegetation with an appropriate grass mixture reinforced with an erosion mat, as necessary, in potential high velocity areas (i.e., > 3 to 4 feet per second).
- Alternative 2 Tree removal within both areas and revegetation with an appropriate grass mixture reinforced with an erosion mat, as necessary, in potential high velocity areas.

Alternative 1 has been proposed by the NYSDEC and Alternative 2 has been included as an alternative to minimize fill placement in the floodplain (and floodway).

The existing conditions hydraulic model was developed using the Hydraulic Engineering Center's River Analysis System (HEC-RAS) modeling software developed by the U.S. Army Corps. of Engineers. HEC-RAS is the Windows version of an updated and improved HEC-2 model originally developed in DOS format. The HEC-2 model was used extensively by FEMA to produce the current floodplain mapping of the river systems in the United States.

COPY

Æ.

Mr. Scott Foti 2001-911-04 January 23, 2002 Page 2 of 5

This letter describes the methodology used to develop the existing conditions hydraulic model for Seeley Creek at the Site. The remainder of this document has been formatted as follows:

- Past Hydraulic Modeling;
- Development of Existing Conditions Hydraulic Model; and,
- 100-Year Floodplain Characteristics.

PAST HYDRAULIC MODELING

AGE reviewed the FEMA Flood Insurance Study (FIS) for the Town of Southport (revised August 1991). This study included a detailed hydraulic analysis (i.e., a HEC-2 hydraulic analysis) for Seeley Creek. AGE filed an information request to FEMA to obtain the HEC-2 hydraulic analysis; however, FEMA could not locate a copy of this study.

AGE contacted Larry Tolfa of the New York State Department of Transportation (NYDOT) to determine if NYDOT performed any hydraulic studies for Seeley Creek as part of the Route 14 reconstruction. NYDOT provided AGE with a copy of the original FEMA FIS hydraulic analysis (which had been converted into HEC-RAS format) as well as a HEC-RAS analysis reflecting the floodplain characteristics anticipated following the completion of the Route 14 reconstruction (NYDOT analysis). The original FEMA FIS hydraulic analysis extends from the Corporate Limits of the Town of Southport (located approximately 3,500 feet downstream of the Site) to about 3,000 feet upstream of the Route 14 bridge (located about 6,700 feet upstream of the Site). Two cross sections used in the FEMA FIS hydraulic analysis are located within the Site. The NYDOT hydraulic analysis extends from directly upstream of the Site (at the confluence with South Creek) to about 900 feet upstream of the Route 14 bridge.

DEVELOPMENT OF EXISTING CONDITIONS HYDRAULIC MODEL

Incorporation of Past Models

The input data from the NYDOT hydraulic analysis was combined with the input data from the original FEMA FIS hydraulic analysis to create a base model. All of the NYDOT data and one FEMA FIS cross section were used for the upstream input data. The FEMA FIS input data was used for all downstream data. The two FEMA FIS cross sections located within the Site were eliminated and replaced with site-specific information as described below.

Mr. Scott Foti 2001-911-04 January 23, 2002 Page 3 of 5

Site Survey

AGE engaged Weiler Associates of Horseheads, New York to perform a cross section survey of the floodplain of Seeley Creek in the vicinity of Areas 1 and 2. This survey was initiated on December 12, 2001 and consisted of the surveying of twelve (12) cross sections. Eleven (11) of the cross sections were surveyed within the Site. These cross sections were surveyed from the existing levee to the southern bank of the main channel. The topographical information from an existing base map was used to define the limits of the southern floodplain (southern overbank area) beyond the limits of the cross section survey. The location and topographical data of these cross sections are shown on Figure 1. The remaining cross section was surveyed at the former Conrail crossing located about 2,200 feet upstream of the Site. This cross section was surveyed in order to horizontally "tie in" the Site cross sections with the cross sections used in the FEMA FIS and NYDOT hydraulic analyses.

Manning's n Values

AGE performed a site reconnaissance on December 12, 2001 to visually evaluate the floodplain of Seeley Creek within the site area in order to obtain site-specific hydraulic parameters (i.e., Manning's n values and corresponding overbank station locations). The Manning's n values used for the site overbank area range from 0.035 to 0.07. The site overbank area along the levee is a maintained grass area/gravel road and was assigned a Manning's n value of 0.035. The remainder of the overbank area contains areas of medium to tall grass, light to heavy brush, and trees. These areas were assigned Manning's n values ranging from 0.055 to 0.07. The Manning's n values assigned to the main channel and southern overbank area are 0.04 and 0.065, respectively, which are consistent with the values used in the FEMA FIS hydraulic analyses.

100-Year Peak Discharge Values

The 100-year peak discharge values for Seeley Creek listed in the FEMA FIS were used to develop the existing conditions hydraulic model. It is understood that the Town of Southport has performed studies which suggest higher peak discharge values. AGE will contact the Town of Southport to obtain copies of these studies. AGE will review and consider this data during the Feasibility Study and subsequent Remedial Design activities.

100-YEAR FLOODPLAIN CHARACTERISTICS

The 100-year base flood elevations, location of floodway, and channel and overbank velocities within the site area as calculated by the existing conditions HEC-RAS hydraulic model are described below.

Mr. Scott Foti 2001-911-04 January 23, 2002 Page 4 of 5

Base Flood Elevations

The base flood elevations at the Site range from elevation 862.89 at Cross Section A to elevation 859.48 at Cross Section K. At this range in elevation, the base flood level is generally about 2 feet below the top of the levee. Area 1 (excluding the northeastern and southeastern corners) is not inundated during a 100-year flood. Area 2 is inundated. The approximate base flood elevations throughout the Site are plotted on Figure 1. Cross sections showing the base flood elevations, as well as an output table from the HEC-RAS analysis, are provided in Attachment A.

Cross Sections B and G are located in the vicinity of the cross sections used in the FEMA FIS hydraulic model. The base flood levels at Cross Sections B and G are 0.21 feet and 0.61 feet, respectively, above the base flood levels reported at these locations by the FEMA FIS hydraulic model. The differences in the base flood elevations can be expected due to the more accurate topographical data used in the site-specific hydraulic model.

Floodway Determination

The floodway of Seeley Creek within the site area (northern overbank area) was mapped in the FEMA FIS. The FEMA FIS floodway limit is located at about the center of the overbank area. A review of the survey data and site base map indicates that the FEMA FIS floodway mapping is inconsistent with the site topography. Therefore, the floodway was recalculated via the encroachment methods provided in HEC-RAS. The calculated floodway for this analysis was defined as the limit of encroachment within the floodplain toward the main channel that produced a change in the base flood elevation of one foot. The location of the calculated site-specific floodway for the site overbank is shown on Figure 1. The southeastern portions of both Area 1 and Area 2 are within this calculated floodway. Supporting output documentation from the HEC-RAS model for the floodway determination is provided in Attachment B. The location of the encroachment stations are shown on the cross sections included in Attachment A.

Main Channel and Overbank Velocities

Main channel velocities within the site area range from about 3 to 14 feet per second (fps). The overbank velocities within the site area range from about 1 to 5 fps. The higher site overbank velocities are located along the levee where flow depths are deeper and the Manning's n values are lower. The site overbank velocities decrease toward the middle of the overbank where the flow depths are more shallow and the Manning's n values are higher. Velocity distributions are shown on the site cross sections included in Attachment A.

Mr. Scott Foti 2001-911-04 January 23, 2002 Page 5 of 5

The HEC-RAS model calculates velocities assuming steady-state flow conditions. Localized areas of higher velocities are expected to occur in some portions of the site overbank area. The potential and magnitude of these localized velocities will be evaluated during the Remedial Design.

If you have any questions concerning this matter, please contact us a (610) 558-3300.

Sincerely,

ADVANCED GEOSERVICES ENGINEERING, P.C.

Stephen W. Kirschner Project Consultant Daniel A. Daily, P/E.

President .

SWK:DAD:vm

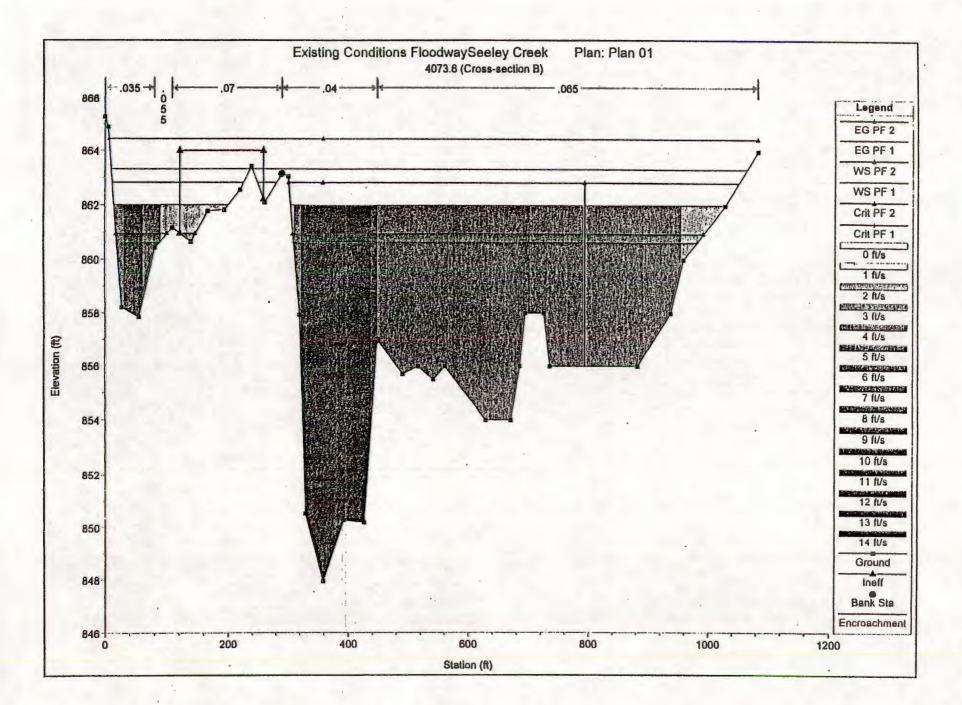
Enclosures

cc: M. D. Mehta, P.E., NYSDEC Paul Brookner, Unisys K.

FAOFICEAGCUROJECTS/FILES/2001-911/Communications/1-23-02.wpd

FIGURE

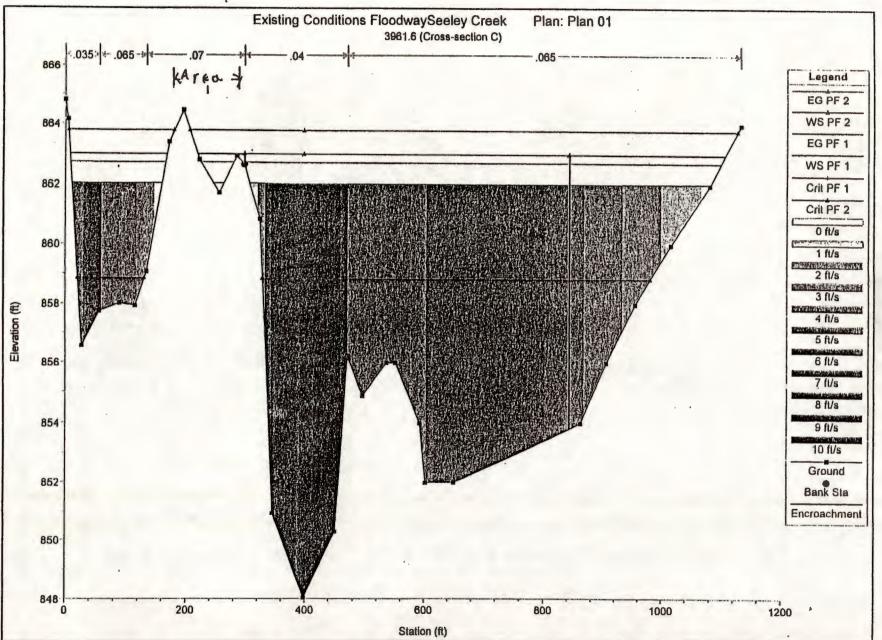
F:\OFICEAGC\PROJECTS\Files\2001-911\Reports\Revised FS (7-28-05)\Flysheets.doc

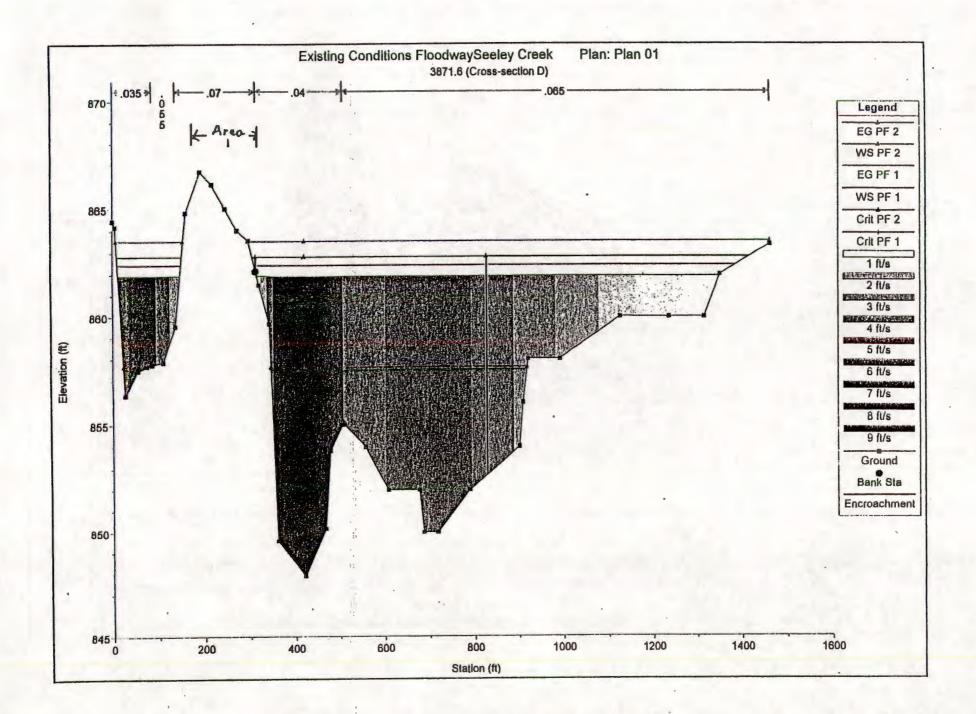

ATTACHMENT A

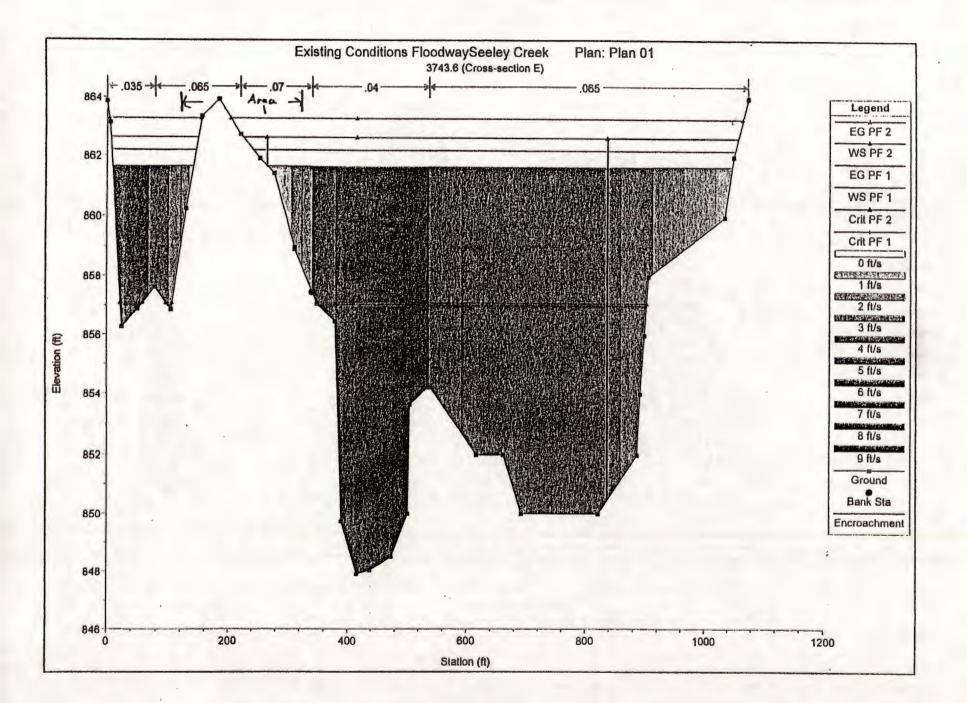
F:\OFICEAGC\PROJECTS\Files\2001-911\Reports\Revised FS (7-28-05)\Flysheets.doc

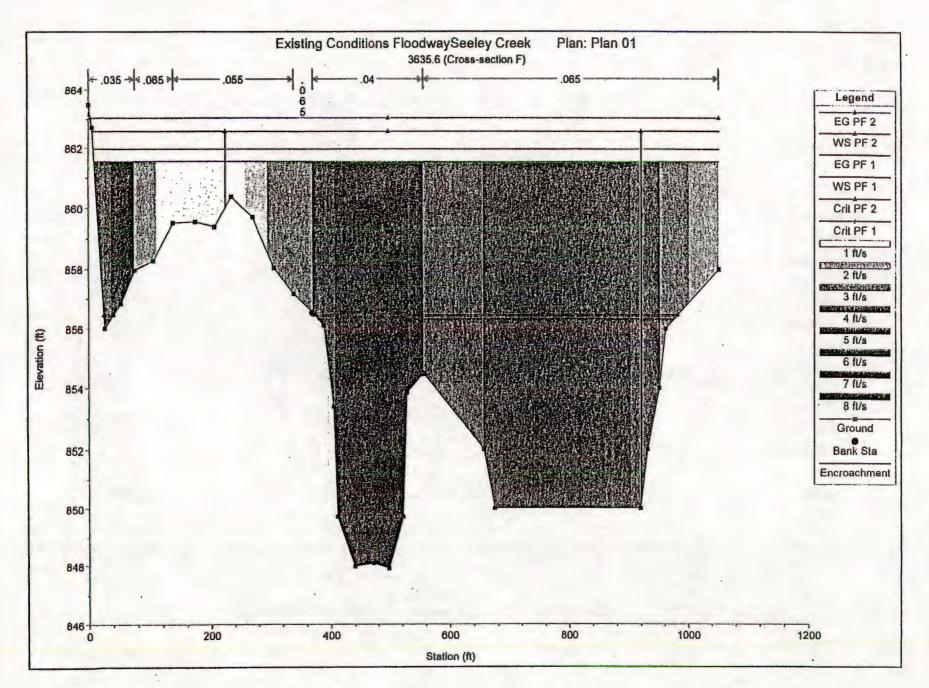
HEC-RAS Plan: Plan 01	River: Seeley Cre	ek Reach: Seeley Creek	Profile: PF 1

Reach PERCENSIE				Qinvis			THE REPORT OF A PARTY OF A	Welligent	Vel Rightly	Frouder#[Ch]
				統黨的結構				Senter all senter regener et al 1976 (11	(fXs)	
		884.81	896.68	893.67	898.83	0.003360	12.79	2.41	4.57	0.70
	27200.00	880.91	896.17	892.41	897.79	0.002024	10.34	2.31		0.54
eeley Creeks 111115181	27200.00	880.58	892.77	892.39	896.57	0.006176	15.85		4.06	0.92
eeley.Oreeke. Al 10939/11	27200.00	878.02	892.87	888.19	. 894.10	0.001589	8.89			0.48
deley/Criekt - 110899191-	Bridge	077.00								
elley Offerkara - 10860/475		877.33	892.39	887.84	893.71	0.001703	9.20			0.49
eley Greek 1, 1107/2216	27200.00	876.02	888.70	888.70	892.56	0.007580	15.78		0.35	0.99
elevicioes in 107094	27200.00	874.34	887.19	885.44	889.82	0.004145	13.01			0.75
eley Greek II Aloszá 51.		871.23	886.65	882.32	888.28	0.002025	10.25			0.54
	SER.	871.26	884.85	882.52	887.35	0.003524	12.71		0.14	0.70
ielew of the sector and the sector of the	27200.00	870.14	882.99	881.44	886.00	0.004517	13.94		0.34	0.75
ELEVATORE BATTER STREAM	A(4-3	868.87	881.84	879.77	884.54	0.003838	13.18			0.73
elevioletek ni scose hi in	27200.00	867.59	880.62	878.49	883.28	0.003763	13.09			0.72
PlayGreek A Play in	27200.00	866.24	878.67	877.38	881.83	0.004905	14.27		0.99	0.82
elley Grack Antex Del D	27200.00	864.73	877.64	875.89	880.26	0.003704	13.12		2.48	0.72
ialey/Orenke, za 807/4/97/97		863.42	876.75	874.70	879.04	0.003134	12.40		2.86	0.67
pley Quaak in 7774 (Glassin	27200.00	862.21	874.20	873.24	877.62	0.005441	14.85		1.11	0.86
	27200.00	860.76	874.03	871.77	875.77	0.002761	10.88		3.14	0.62
anay Charles I in 7090 (al - 12	27200.00	859.74	873.92	869.66	874.85	0.001350	7.96		2.64	0.44
alay Minak 🖾 (dalaa) 2; 👘	27200.00	859.06	874.03	867.78	874.62	0.000734	6.56		2.58	0.33
dev or ale in the deviate	27200.00	858.20	871.13	869.81	874.12	0.004308	14.02	2.25		0.78
eley/Qreats - Revealed	27200.00	858.20	870.79	869.81	874.03	0.004832	14.56	2.28		0.82
	27200.00	857.71	869.78	869.10	872.38	0.004448	13.26	2.34	2.63	0.78
itwojejk i terosti i i	27200.00	856.66	869.10	867.52	870.75	0.002617	11.17	2.58	3.24	0.61
ll womer - 15998 h	27200.00	856.17	868.98	867.01	870.43	0.002201	10.54	2.65	3.05	0.57
any crate statistic	27200.00	854.63	865.92	865.68	. 869.21	0.005945	14.68	2.23	1.36	0.89
CLEW CLEAR AND	34000.00	852.56	864.13	861.91	865.83	0.002738	11.00	1.90	3.96	0.62
	34000.00	851.30	864.04	859.49	864.64	0.001471	6.38	1.71	1.65	0.36
niwenne Anala	34000.00	848.12	862.89	860.42	863.80	0.003253	10.10	4.93	4.30	0.54
elevien ek et Alevieles et	34000.00	847.95	862.00	860.64	863.33	0.004683	11.91	5.42	4.78	0.65
El-W El(-1-1) - Defail (7)		848.04	862.04	858.86	862.72	0.002671	8.86	. 3.74	4.21	0.49
FIEVGELR - EVAG	34000.00	847.91	861.92	857.52	862.44	0.002166	7.84	4.26	3.46	0.44
alwaakt kwaat	34000.00	847.91	861.66	857.01	862.19	0.001906	7.59	3.23	4.01	0.42
ni yomak i siistaa (.34000.00	847.91	861.56	856.31	861.97	0.001441	6.81	2.49	3.83	0.37
ieley Greek a sid: mist		848.07	861.28	857.28	. 861.81	0.001854	7.89	2.75	4.00	0.42
	34000.00	847.98	861.14	858.24	861.68	0.001865	7.98	3.17	3.60	0.42


Cross Sedions


.


15.45

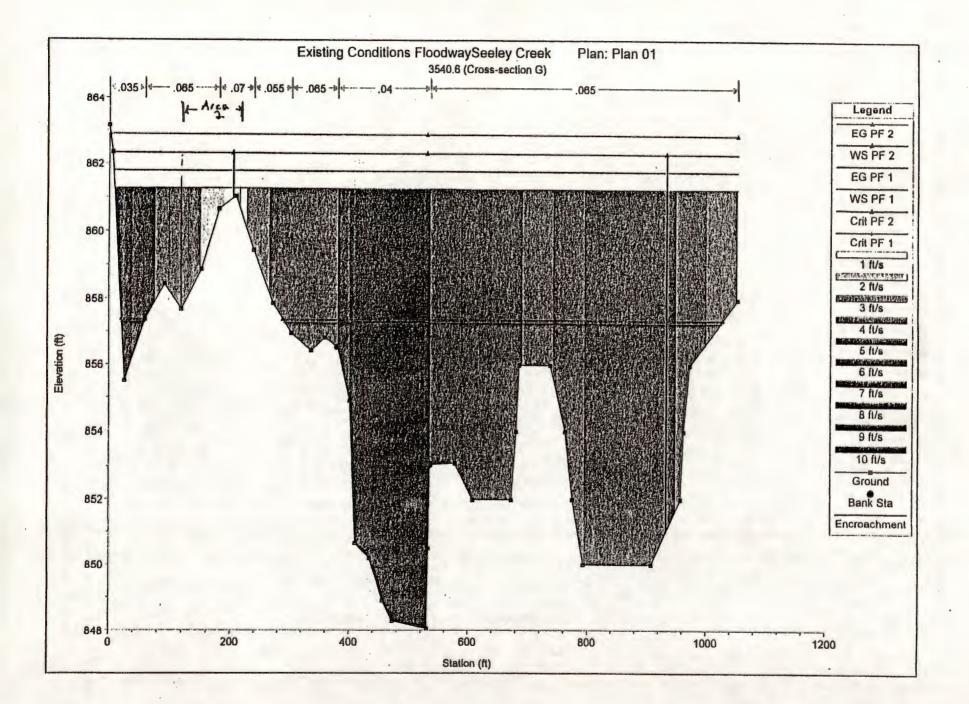


.....

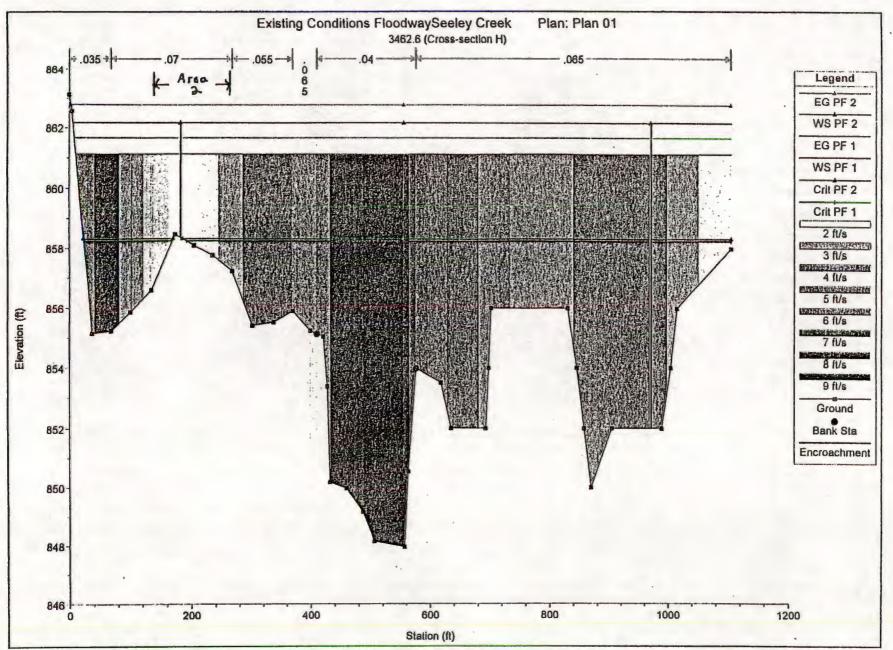
. 3

 $\mathcal{L}_{\mathcal{L}}$

1.14

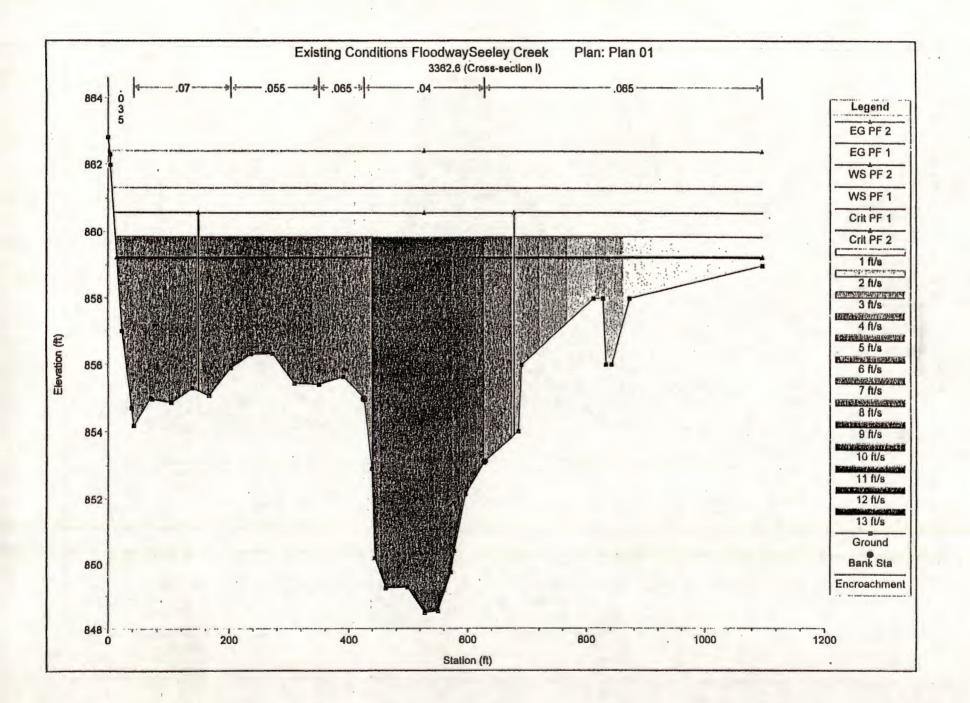

12

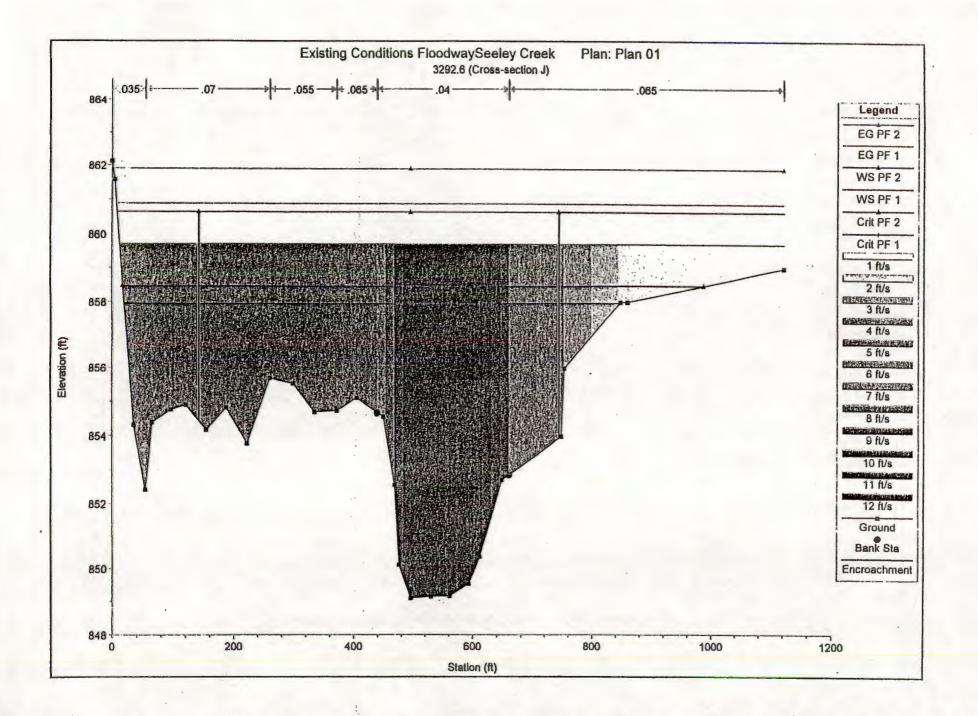
S

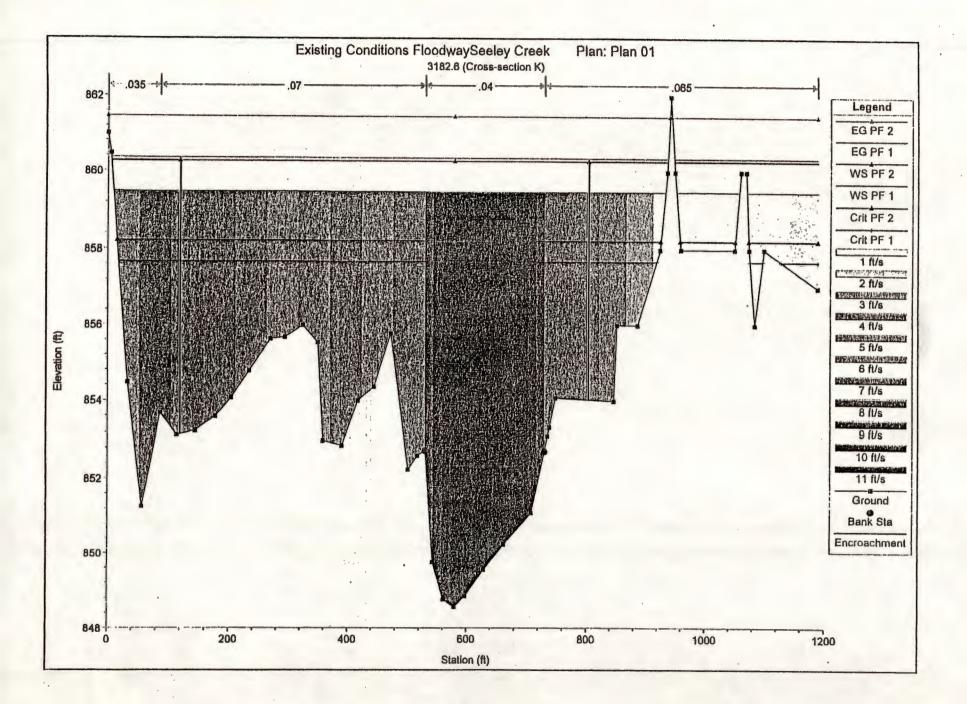

Nr - 1

1 m m

R (




S. N. W.


.

B. 1

- 55

ATTACHMENT B

HEC-RAS Plan: Plan 01 River: Seeley Creek Reach: Seeley Creek

Reach River Stat		日本在14月1日 19月1日 - 19月1日 19月1日 - 19月11日 19月11日 - 19月11日 19月11日 19月11日 - 19月11日 19月111日 19月111日 19月1111 19月11111 19月111111 19月1111111 19月11111111								
evoner in ficozio. Him	896.68	的言人以非常非常的原则是自己	898.83	368.34	314.38	22427.12	4458.50	250.33	417.65	國際(の)勞
ISY OMERSION 11802101	898.68	0.00	898.83	368.34	314.38	22427.12	4458.50	250.33	417.65	
			897.79	327.23	779.23	26420.77		250.98	486.55	
lex(cleek)	896.17	0.00	897.79	327.23	779.23	26420.77		250.98	486.55	
			896.57	234.41		00101 77				
ay creek set this for a set		0.00	896.57	234.41		26421.77	778.23	280.18	473.75	
		. 0.00	000.07	234.41		26421.77	778.23	. 280,18	473.75	
CYOREBAS - NOREA	892.87		894,10	282.34		27200.00		239.17		
hy option hopeo in the	892.87	0.00	894.10	282.34		27200.00		239.17	526.90 526.90	
								235.17	020.90	
avionake Hinospotsie Riu/	892.59		894.02	268.25		27200.00		239.17	528.90	
yorki - napoleru	892.59	0.00	894.02	268.25		27200.00		239.17	526.90	
	892.31		893.79	262.25		27200.00		179.79	467.19	
WEIDER I HODDELFIEREN		0.00	893.79	262.25		27200.00		179.79	487.19	
Yeljatka korso∡tati	892.39		893.71	275.91		27200.00			107 10	
		0.00	893.71	275.91		27200.00		179.79	467.19	
								1/8./9	467.19	
ey cfeekn2 21072218 Carto	888.70		892.58	258.69		27190.44	9.55	260.50	487.99	
Weldelsen forestation	888.70	0.00	892.56	258.69		27190.44	9.56	260.50	487,99	
的時期的原題的思想										
Meins Hinkon Minnes	887.19		889.82	. 223.26		27200.00		238.85	485.56	
Welline all Works	887.19	0.00	889.82	223.26		27200.00		238,85	485.56	
	886.65		000 000	020.07		07000.00				
97.90 K 12 199715 R 1. 9797 K 199713	886.65	0.00	888.28	238.87		27200.00		164.70	415.13	
	000.00	0.00	000.20	230.07		27200.00		164.70	415.13	
WORK HOCKEY	684.85		887.35	254.15		27199.79	0.21	242.13	489.82	
WCELK AND A CARATE	884.85	0.00	887.35	254.15		27199.79	0.21	242.13	469.82	
	882.99		888.00	250.37		27198.22	1.77	269.36	484.38	
watek Henrister		0.00	886.00	250.37		27198.22	1.77	269.36	484.38	
(weig): (weight: Freidyz = 2	881.84	0.00	884.54 884.54	204.21		27200.00		288.39	505.02	
		0.00	804.54	204.21		27200.00		288.39	505.02	
	880.62		883.28	205.00		27200.00		296,92	540 50	
ey,eeeke Three the state		0.00	883.28	205.00		27200.00		296,92	512.50 512.50	

Reach Reach	NRIVET Sta	W.S. Eleven	Prof Della WS	E.G. Elevie	Top Wdlh Act	THO Left	Q Channel	Q Right of	Enc Sta L	Ch Sta Li	代 Ch Sta R 法	Enc Sta R
時間。同時時		(a) (0) (2) (4)	建剂每00周期消耗	意味るの時間	影响同(0)和影响	(cls)[1]		(cfs)				诉消遣(ft)图常点
ev Creek	8731.0	878.67		861.83	297.34		27154.00	46.00		295.93	508.20	
	8731.0 5 1 1.	878.67	0.00	881.83	297.34		27154.00	46.00		295.93	508.20	
			0.00					10.00		200.00	000.20	
eley Creekia	8403.0	877.64		880.28	291.64		26642.63	557.37		286.42	494.75	
eley Creekiali eley Creek	8403.0	877.64	0.00	880.26	291.64		26642.63	557.37		288.42	494.75	
aley Creek	8074.9 G	876.75		879.04	318.65		26026.98	1173.02		293.31	501.38	
eley Creek	8074.9 1444	876.75	0.00	879.04	318.65		28026.98	1173.02		293.31	501.38	
ley Creak	7746.8 4444	874.20		877.62	317.03		27129.48	70.52		279.53	491.57	
eley Creek	7748.8	874.20	0.00	877.62	317.10		27129.38	70.62		279.53	491.57	
WRITER RECE	ANIMA PARAMETER											
aley Creek	7418.7 长桥副制新	874.03		875.77	357.87		25640.53	1559.47	· · ·	271.65	534.45	
aley Creek,	7418.7	874.03	0.00	875.77	357.67		25840.30	1559.70		271.65	534,45	
國國際領熱	日本社会主义会建立		*a 8		· · ·							
eley Creek		873.92		874.85	421.04		25544.68	1655.32		218.50	547.93	
elay Creek	7090.8	873.92	0.00	874.85	421.04		25544.52	1655.48		218.50	547.93	
的企业的定能	这次,并且过度。				•, •							
eley Creek		874.03		874.62	458.12		23490.40	3709.60		171.26	481.46	
eley Creek	8969.2	874.03	0.00	874.62	458.13		23490.29	3709.71		171.26	481.46	
	1.3 14年6月6日新新											
aley Creek		871.13		874.12	328.21	580.45				290.91	498.23	
eley Creek	a reported builde building the strength of the ball of board to	871.14	0.00	874.12	328.25	582.24	26617.76			290.91	498.23	
	6746.1	870.79		874.03	310.52	481.60				290.91	498.23	
eley Creek	8746.1	870.79	0.00	874.03	310.32	481.01	26718.99			290.91	498.23	
加加非地方有				070.00	177 14	517.69	25823.29	859.03		070.07	100.00	
eley Creek	6431.2	869.78	-0.01	872.38 872.38	477.41 476.90			852.86		278.87	496.39 496.39	
eley Creeks the	6431.2	869,77	-0.01	0/2.30	470.80	014.43	20032.71	052.00		210.01	490.39	
		869.10		870.75	566.76	1622.62	22864.55	2712.83		278.58	476.05	
eley Creek		869.07	-0.02	870.74	566.69					276.58	476.05	
ally creeking		000.01	-0.02								470.00	
	5998.1	868.98		870.43	589.23	1886.13	22492.06	2821.82		265.42	464.57	
AT IN AN AD ADDRESS OF A DESCRIPTION OF	5098.1	868.96	-0.02		569.23					265.42	464.57	
IN THE REAL											101.01	
	5673.3	865.92	-19	869.21	404.10	427.55	26724.43	48.02		205.38	423.23	
eeley Creek		886.30	18	. 869.27	455.67		28595.85	85.08		. 205.38	the second s	
	The second second											
eeley Creek	5004.0 101.00	664.13		865.83	601.98	760.37	30259.89	2979.74		219.49	503.94	

Neach Reach	River State	W.S. Elevis	Prof Delta WS	VIE.G. Elevie	Top Wdin Activ	Q Left	O Channel	Q Right	Enc Sta Line	Ch Sia L	Ch Sta Ru	Enc Sla R
Seeley Creeker	5004.0 C	865.11	(n)	868.43	604.77	1225.60	(cls)	Cls)k (r)	加加回過這		HERO TES	4. 动((n))产品
AN AND AN			0,90	000,43	604.77	1223.00	29641.47	3132.93		219.49	503.94	
Seeley Creek	4596.0	864.04		884.64	935.97	1246.90	32348.87	404.23		338.00	869.00	
Seeley Creek	4596.0 1416.14	865.13	1.09	865.58	942.34	1803.34	31614.13	582.54		338.00	869.00	
的人们是这种世	建筑的印度 2016页											
Seeley Creek		862.89		863.80	882.61	1839.72	18220.72	15939.58		257.03	439.79	
Seeley Creek	4188.6 1444 0	863.83	0.94	864.92	526.48		18212.34	15787.66	257.03	257.03	439.79	813.5
Seeley Creek	and a part of the second	862.00		863.33	829.61	1377.71	17850.63	14771.67		290.34	448.04	
Seeley Creek	4073.8	862.82	0.82	864.44	491.46		20099.44	13900.56	290.34	290.34	448.04	793.1
Seeley Creek	3901.0	862.04	0.95	862.72 863.79	940.93 545,45	2016.46	14737.37	17248.17		297.42	471.05	
Seciely Creeks		802.99	0.90	003.79	040,40		16287.22	17712.78	297,42	297.42	471.05	842.8
Seeley Creek		861.92		862.44	1168.48	2189.62	14748.80	17061.58		313.94	508.07	
Sealey Creek		862,82	0.90	863.54	514.49		16823.29	17178.71	313.94	313.94	508.07	828.4
和自由的意思。									0,10,04	010.04	505.07	020,4
Seeley Creek	3743.8 7	861.66		862.19	913.17	2096.10	15428.73	18477.17		340.27	537.52	·
Seeley Creek	3743.6	862.62	0.96	863.27	571.87	411.68	17358.51	16231.81	265.00	340.27	537.52	836.8
的。他们也能是	目的任何的思想											
Seeley Creek	合 3835.8 上 78 H	861.56		861.97	1041.83	2700.15	13587.05	17712.80		370.35	556.11	
Seeley Creeky	3635.6	862.58	1.02	863.05	695.48	1396.76	15032.07	17571.17	225.00	370.35	558.11	920.4
					1010.07		100000					
Seeley Creek	3540.6 B 4 43	861.28	1.05	861.81 862.90	1043.87 728.44	3169.73 2148.79	13678.73 14890.68	17153.53		380.38	535.55	
Seeley Creek		002.33	1.03	002.90	120.44	2140.79	14090.00	18960.53	205.00	380.38	535,55	933.4
Sealey Creek	3462.6	. 861.14		861.68	1093.08	5805.42	14888.66	13307.92		410.72	570 10	
Seeley Creek	3462.6	862,17	1.03	862.78	788.94	4220.51	16560.33	13219.16	183.93	410.72	576.43 576.43	970.8
			1.00		100.01	4220.01	10000.00	10210.10	100.00	110.72	070.43	010.0
Seeley Creek	3362.8	859.86		861.32	1085.27	7991.86	22453.97	3554.17		425.97	628.31	
Seeley Creeke	3362.6	860.58	0.71	862.41	528.74	6829.08	25480.45	1890.47	149.29	425.97	628.31	878.0
Seeley Creek	3292.6 1510 20	859.72		860.89	1109.35	9593.85	21178.82	3229.32		439.31	660.00	
Seeley Creaks	3292.6	860.65	0.93	861.91	601.73	7850.03	23178.08	2971.90	142.08	439.31	660.00	743.8
WALKERS I	的形式行为时间											
Seeley Creek	3182.8	859.48		860.35	1148.79	11988.47	18175.28	3858.25		529.91	730.00	
Seeley Creek	3182.8	860.28	0.80	861.47	683.16	10296.37	21621.07	2082.56	120.00	529.91	730.00	803.1
Station Crown	3071.0	858.88		859.93	1028.66	8094.98	. 26581.75	1323.29		000.00	700.05	
Seeley Creek	3071.0	859.67	0.79	861.02	533.33	2843.45	31158.54	1323.29	229.67	368.00	763.00	763.0
Clearly Clearly		1 000.07	0.78	001.02	000.00	1010.10	01100,04		220.07	300.00	703.00	703.0

Reach Reach River Star	W.S. Elev	Prof Della WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	C Right	Enc Sta L	ILCh Sta L	Ch Sta Rilla	Enc Sta R
		(T (<u>0</u>) - T (Fire (0) - 21		(CID) 4 (1)	(CIS)	(CS) - 7	(fi)	科科(ft) 和研究	。 「新聞」 「新聞 「新聞」 「新聞 「 「 「 「 「 「 「 「 「 「 「 「 「	(f)
Seeley Creek 2461.0 banking	856.43		857.26	1168.00	5592.28	22055.43	6352.30		444.00	863.00	and an and a surger of the state of the state of
Seeley Creeker 12461.0	857.23	0.81	858.32	861.29	3357.78	28670.50	3971.72	234.88	444.00	863.00	1098.17
					. 2						
Seeley Creekses 1961.0	853.63		854.62	1348.34	7651.85	23088.13	3260.03		490.00	888.00	
Seeley Creek 1961.0	854.46	0.83	855.76	782.43	5651.14	27804.77	544.09	152.63	490.00	888.00	935,06
制造装饰的制度 。											
Seeley Creeken 10.0	847.11		847.35	2376.07	20369.57	5634.59	7995.84		1406.00	1508.00	
Seeley Creek 0.0	847.11	0.00	847.55	1320.01	21317.45	6889.95	5792.61	489.40	1406.00	1508.00	1809.41

8-4-

· · · ·

Advanced GeoServices Engineering, P.C.

Chadds Ford Business Campus Rts. 202 & 1, Brandywine One - Suite 202 Chadds Ford, PA 19317-9676 (610) 558-3300 Fax (610) 558-2620

March 25, 2002

2001-911-04

Mr. Scott Foti New York State Department of Environmental Conservation 276 Sing Sing Road Horseheads, NY 14845

RE: Addendum: January 23, 2002 Existing Conditions Hydraulic Model Seeley Creek McInerney Farm Site, Town of Southport, New York

Dear Mr. Foti:

On January 23, 2002, Advanced GeoServices Engineering, P.C. (AGE) submitted an Existing Conditions Hydraulic Model for Seeley Creek in the vicinity of the McInerney Farm Site (Site) to the New York State Department of Environmental Conservation (NYSDEC). The existing conditions model was developed using HEC-RAS software as described in our January 23, 2002 submission. The discharge data used in this model for Seeley Creek and South Creek was based on information presented in the Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) for the Town of Southport (revised August 1991).

At the request of the NYSDEC, AGE contacted Mr. Richard Kankus, Drainage Officer for the Town of Southport, regarding discharge data (including both summer and winter storm discharge data) that he developed in an independent study of the Seeley Creek drainage basin. Mr. Kankus did not provide AGE with the backup data necessary to review his hydrologic analysis; therefore, we cannot specifically comment on his analysis procedures. However, it is our general opinion that his winter discharge data is very conservative. Nevertheless, AGE ran the HEC-RAS model using the winter discharge data. The purpose of this addendum is to discuss the existing conditions hydraulic model using the winter discharge data developed by Mr. Kankus.

FIS Discharge Data

AGE used the FIS discharge data in the Existing Conditions Hydraulic Model submitted on January 23, 2002. The following information regarding the development of the FIS discharge data was obtained from the August 1991 FEMA FIS study for Southport, New York.

Mr. Scott Foti 2001-911-04 March 25, 2002 Page 2 of 4

> "Discharges for Seeley and South Creeks were obtained from the regional flood frequency procedures developed by the COE (Reference 5). This method is based on the log-Pearson Type III analysis of a large number of station records in the Susquehanna River Basin, through 1972 (Reference 6). The coefficients for this method were modified in accordance with the analysis made for Newtown Creek and other smaller streams in the vicinity. The discharges for Newtown Creek were obtained from a frequency curve developed by the SCS (Reference 7). The SCS frequency curve compared closely to a frequency curve computed for the USGS stream gage on the Newtown Creek (Reference 3). All flood discharges were determined by the Susquehanna River Basin Commission (SRBC)."

The FIS study included discharge data for the 10, 50, 100 and 500-year, 24-hour storm events.

Kankus Discharge Data

Based on information provided to AGE, Mr. Kankus developed discharge data for Seeley and South Creeks using the Hydraulic Engineering Center's Hydrologic Modeling System (HEC-HMS) software developed by the Army Corps of Engineers. Input parameters for the program are based on current orthographic photographs of the contributing watersheds in both New York State and Pennsylvania. Mr. Kankus used the 100-year, 24-hour storm values presented in the TP-40 model, published by the National Technical Information Service. Mr. Kankus's analysis includes both winter and summer scenarios. The winter scenario assumes that the contributing watershed is 98% impervious (i.e., frozen ground), while the summer scenario assumes that the contributing watershed is 2% impervious.

FIS/Kankus Discharge Data Comparison

The following table presents the FIS and Kankus discharge data for Seeley and South Creeks.

	FIS 100-yr (cfs)	FIS 500-yr (cfs)	Kankus 100-yr Summer (cfs)	Kankus 100-yr Winter (cfs)
Seeley Creek	27,200	45,500	27,510	50,387
South Creek	6,800	10,000	11,162	22,736
Combined (Site Condition)	34,000	55,500	38,672	73,123

Æ.

Mr. Scott Foti 2001-911-04 March 25, 2002 Page 3 of 4

As shown in the table, the discharge data developed by Mr. Kankus for the 100-year summer storm has a strong correlation to the FIS 100-year storm discharge data. The discharge data developed by Mr. Kankus for 100-year winter storm is approximately 30% greater than the FIS 500-year storm and is 100% greater than the FIS 100-year storm.

Hydraulic Analysis Using Kankus Data

With the HEC-RAS model, AGE performed a hydraulic analysis of Seeley Creek in the vicinity of the McInerney Farm Site using the discharge data developed by Mr. Kankus for the 100-year, 24-hour winter storm event. AGE did not run the model using the summer flow data developed by Mr. Kankus because the discharge values are similar to the 100-year FIS discharge data. An output table and cross sectional profiles from the HEC-RAS analysis using the Kankus 100-year, 24-hour winter storm event are included as Attachments to this addendum.

Based on the increased flows associated with the Kankus 100-year, 24-hour winter storm event, the HEC-RAS model predicts that the levee will be over-topped in the vicinity of the McInerney Farm Site. As shown on the cross-sectional profiles, the velocities associated with the Kankus 100-year, 24-hour winter storm event for Areas 1 and 2 are between 1 and 6 feet per second (fps), as compared to the FIS 100-yr storm event velocities of 1 to 5 fps for the same areas.

Conclusions

From a velocity standpoint, the Kankus data does not show a significant increase within Areas 1 and 2, and the range in velocities are well within a range that can be managed using revegetation and/or geosynthetic erosion control products. From a base flood elevation standpoint, his assumption (i.e., 98% frozen ground) used in the determination of the discharge for the 24-hour winter storm results in overtopping the existing levee.

Mr. Kankus did not provide AGE with the backup data necessary to perform a detailed review of his hydrologic analysis; therefore, we cannot specifically comment on his analysis procedures. Furthermore, it is not our intention to dispute the validity of the winter discharge value; however, AGE believes that this value is very conservative and that the probability of its occurrence is much lower than that of the FIS data. The assumption of a 98% impervious condition essentially neglects runoff losses due to interception and storage that will occur even when the ground is frozen. As a result, the winter discharge value is very high. AGE can perform a detailed review of the backup data used in the Kankus analysis, if requested and if the data is made available.

Mr. Scott Foti 2001-911-04 March 25, 2002 Page 4 of 4

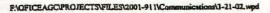
The results of using the Kankus data will not significantly effect the design (i.e., velocity considerations) of a remedy. Although these higher velocities will not significantly effect design, the selection of the appropriate remedy must consider the potential for overtopping the existing levee. The ideal goal of a remedy in terms of floodplain hydraulics is to yield a net zero change in the base flood level. A remedy that minimizes fill placement in the floodplain will minimize the potential for raising the existing base flood elevation.

Please contact us at (888-824-3992) with any questions regarding this matter.

Sincerely,

ADVANCED GEOSERVICES ENGINEERING, P.C.

Stephen W. Kirschner Project Consultant


Daniel A. Daily, P.E. President

SWK:DAD:vm

Enclosures

cc:

M. D. Mehta P. Brookner T. Trotman

ATTACHMENTS

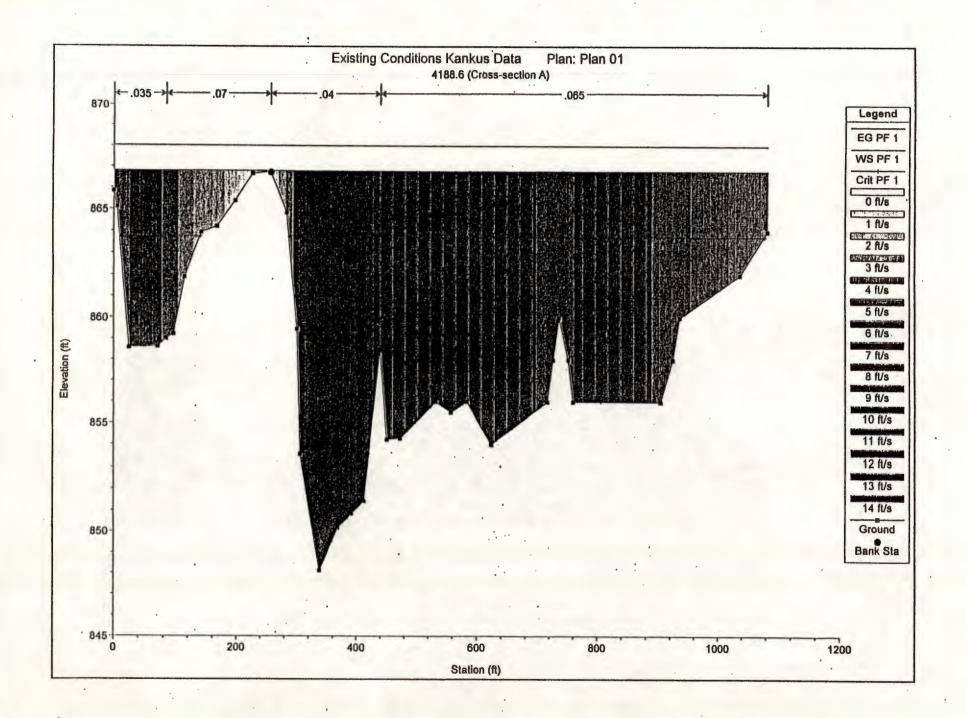
HEC-RAS Plan: Plan 01 River: Seeley Creek Reach: Seeley Creek Profile: PF 1

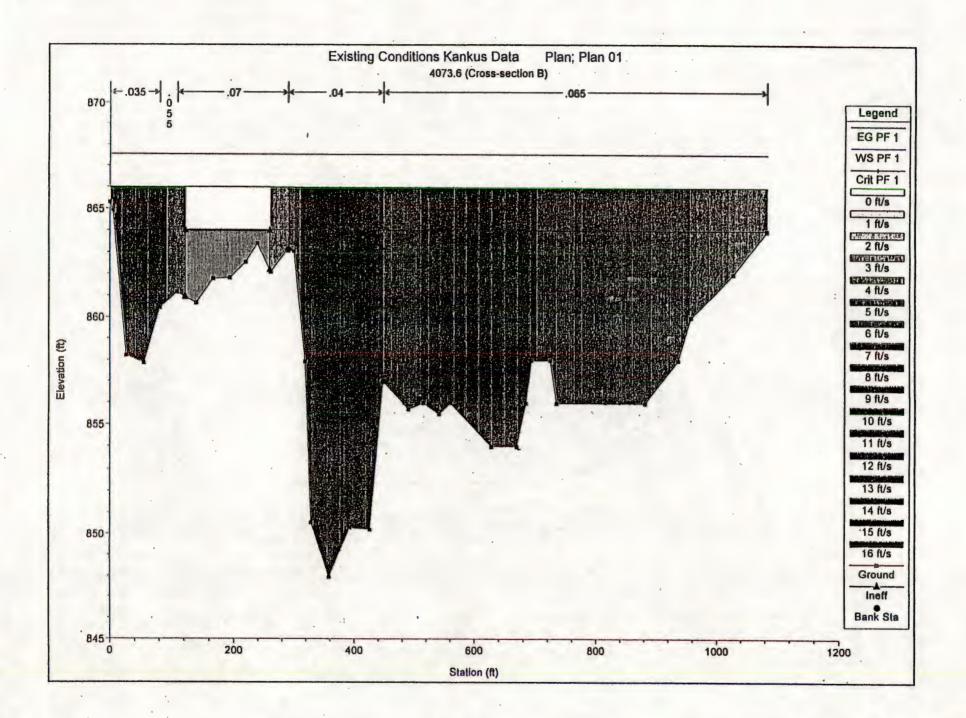
Reach	River Stat			WS Elev				VeliChni	PROPERTY AND ADDIDED. A STRATT AND ADD. TO	- Vel Right	Froude #IChi
C SPARIA		(215)	····(i)			6		(ft/s); ; ; ;	(ft/s)		9.31284.61
Seeley Creek	15802,0	50387.00	884.81	902.07	898.51	904.68	0.002482	14.50	3.57	. 5.72	0.64
Seeley Creek	1147,319	50387.00	880.91	901.77	896.59	903.84	0.001648	12.01	3.57	1.51	0.52
eeley Creek	11145.8	50387.00	880.58	898.71	896.49	902.88	0.003910	16.87	2.42	5.04	0.78
Seeley Creek	1093911	50387.00	878.02	899.12	891.93	900.62	0.001162	9.99	1.94		0.43
eeley Creek	10899.9	Bridge									
eeley Creek I	10860.4	50387.00	877.33	. 897.78	891.70	899.61	0.001516	10.99	1.91		0.49
eeley Creek	10722.6	50387.00	878.02	892.71	892.71	898.18	0.006561	18.91	1.19	4.57	0.98
Seeley Creek	10709 4	50387.00	874.34	891.46	889.62	895.60	0.004041	16.38		3.07	0.79
eeley Creek	1037115	50387.00	871.23	891.20	886.65	893.76	0.002183	13.00		2.56	0.59
Beeley Creek	State and the state of the stat	50387.00	871.26	889.50	887.49	892.84	0.003171	. 15.07	0.08	3.49	0.70
eeley Greek	TAB CORDENSES BUT	50387.00	870.14	887.20	886.40	891.53	0.004410	17.07		3.67	0.82
Seeley Creek	9387 2 4	50387.00	868.87	885.94	884.73	890.07	0.004072	16.60		3.41	0.79
eeley Creek		50387.00	867.59	884.62	883.38	.888.72	0.004089	16.58		3.62	0.79
Seeley Creek II	CAS COMENT OF STATES AND A STATES OF STATES OF STATES	50387.00	866.24	882.80	882.18	887.25	0.004706	17.37		4.05	0.85
eeley Creek	THE REPAY OF DESCRIPTION OF BUILDING OF BUILDING OF	50387.00	864.73	881.94	880.40	885.66	0.003666	16.04		4.30	0.75
	8074.9	50387.00	863.42	881.03	878.73	884.42	0.003266	15.43		5.05	0.72
eeley Creek!!		50387.00	862.21	878.55	877.97	883.04	0.004785	17.51		4.38	0.85
aeley Çreek	The second second second second second second	50387.00	860.76	878.91	875.14	881.22	0.002294	12.75		4.56	0.60
Beeley Creek		50387.00	859.74	879.06	872.69	. 880.36	0.001165	9.51		3.62	0.43
eeley Creek I	ter a the states of a state of an and the state of the state	50387.00	859.06	879.20	870.74	880.12	0.000756	8.26		3.40	0.36
eeley Creek	6762-5	50387.00	858.20	875.56	874.37	879.55	0.004053	16.72	4.62		0.79
Seeley Creek	6746.1	50387.00	858.20	874.37	874.37	879.38	0.005528	18.59	4.76		0.92
Seeley Creekil		50387.00	857.71	873.09	872.53	876.74	0.004453	16.37	4.44	4.80	0.82
Seeley Creek		50387.00	856.66	872.56	870.48	874.91	0.002756	13.92	4.16	4.74	0.66
Seeley Creek	NOR & CHOIR JO MARKING IN THE ALL HALLAGE, COM	50387.00	856.17	872.42	869.93	874.57	0.002442	13.37	4.19	4.52	0.63
Seeley Creeki	at the Second Second state of the second second second second	50387.00	854.63	870.79	869.40	873.61	0.003194	14.61	3.98	4.09	0.71
Seeley Creek	COLUMN AND AND AND AND AND AND AND AND AND AN	73123.00	852.56	867.38		871.06	0.004269	. 16.66	4.40	6.39	0.82
Beeley Creek		73123.00	. 851.30	867.90		869.05	0.001902	9.10	3.19	3.33	0.44
	4188.6	73123.00	848.12	866.83	863.77	868.04	0.003787	11.95	6.33	6.36	0.60
Seeley Creek		73123.00	847.95	866.03	864.05	867.55	0.004387	13.66	5.88	6.45	0.66
Beeley Craek	THE REPORT OF A PARTY	73123.00	848.04	865.94	862.28	867.00	0.003032	11.44	4.96	5.84	0.5
Seeley Creek H	CA. I WARDEN COM A CAME COULD BE AN ADDRESS	73123.00	847.91	865.90	the second second	866.66	0.002191	9.82	5.50	4.64	0.47
Seeley Creek		73123.00	847.91	865.28	860.65	866.33	0.002623	10.88	4.65	5.85	0.5
Seeley Creek		73123.00	847.91	865.19	859.87	. 866.00	0.002009	9.76	4.59	5.60	0.4
Seeley Creek		73123.00	848.07	864.79	860.55	865.77	0.002550	11.10	4.75	5.91	0.5
Seeley Creek		73123.00	847.96	864.63	. 860.82	. 865.59	0.002439	10.93	. 5.13	5.36	0.50

111

. .

- She Com Italius -

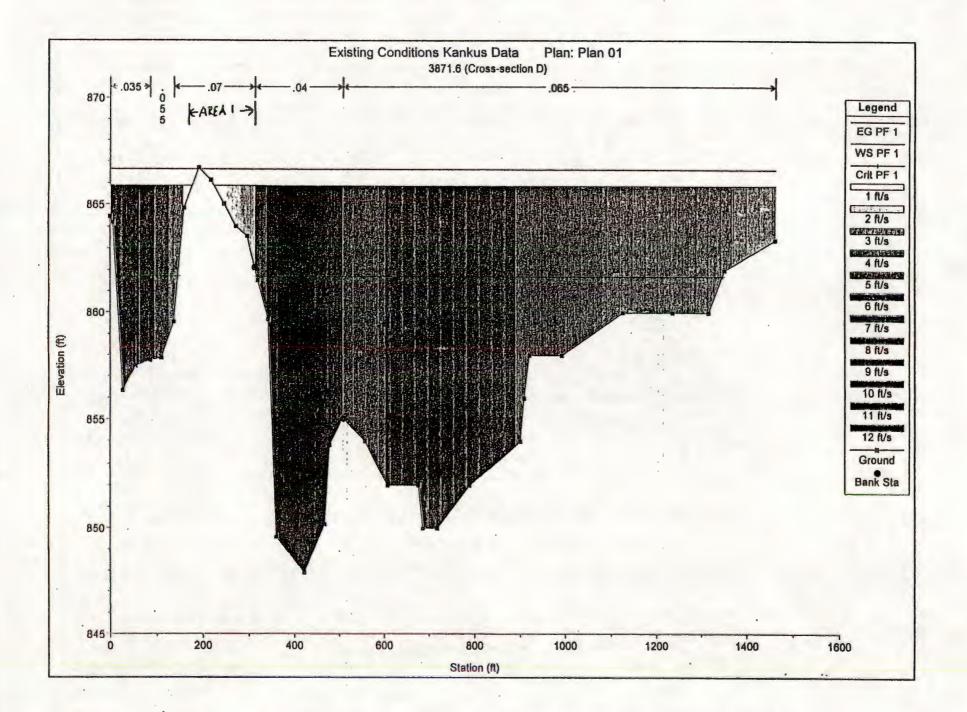

Reach River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Vel Left	Vel Right	Froude # Chi
	(cfs)	d (ft)	(ft): 215	(ft)	(0)	<u>(fvn)</u>	(ft/s)	(ft/s)	(fl/s)	
Seeley Creek 3362.6	73123.00	848.48	863.33	861.93	865.18	0.004690	14.07	6.55	5.15	0.69
Seeley Creek 3292.6	73123.00	849.10	863.18	861.31	864.76	0.004216	13.04	6.51	4.87	0.65
Seeley Creek 3182.6	73123.00	848.56	862.90	860.44	864.22	0.003647	12.33	6.18	4.58	0.60
Seeley Creek 3071.0 Paul	73123.00	850.10	861.89	860.17	863.70	0.004956	12.38	5.97	-4.60	0.68
Seeley Creek 12461.0	73123.00	847.30	859.17	857.31	860.65	0.005451	11.70	5.63	6.16	0.69
Seeley Creek 1961.0	73123.00	839.10	856.27	854.89	857.81	0.005924	12.10	6.03	5.03	0.72
Seeley Creek 0.0	73123.00	837.40	850.22	846.38	850.54	0.002001	8.10	4.02	3.16	0.43

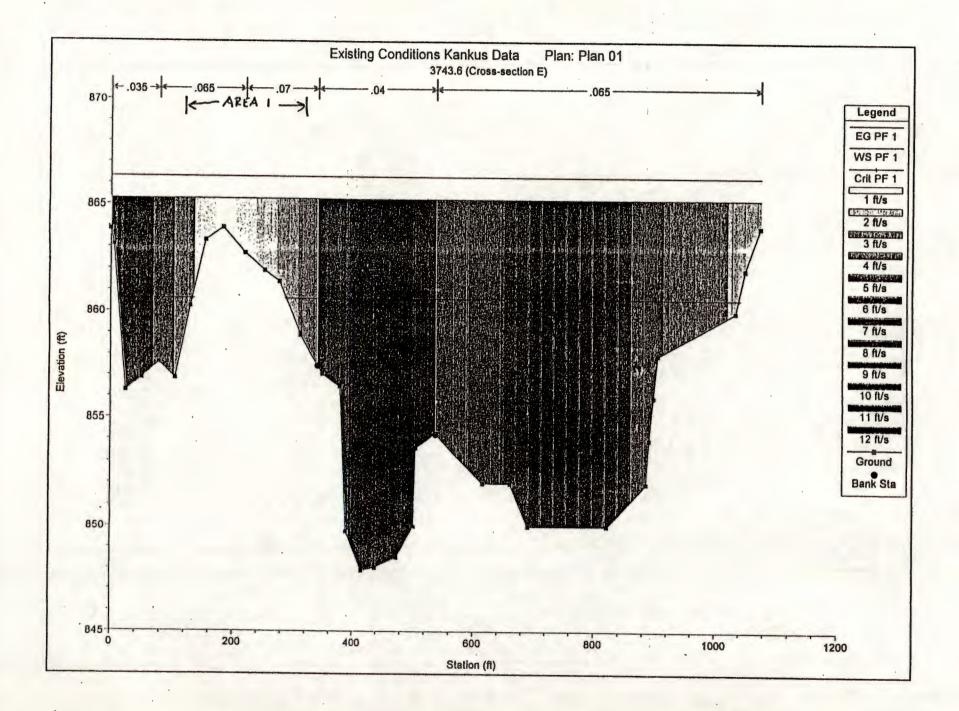

.....

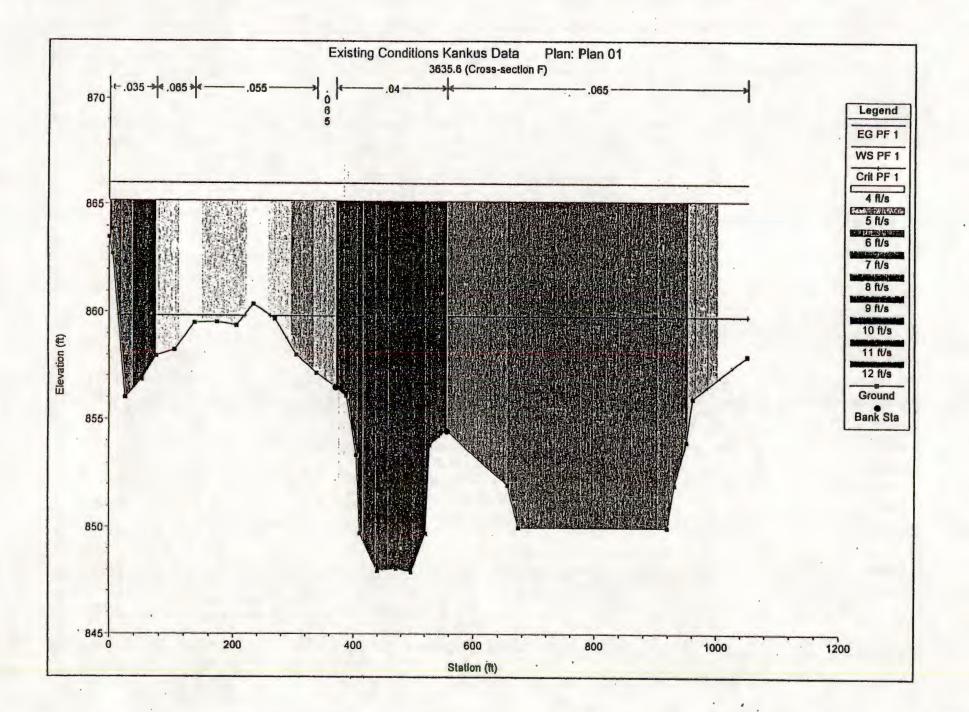
. 44

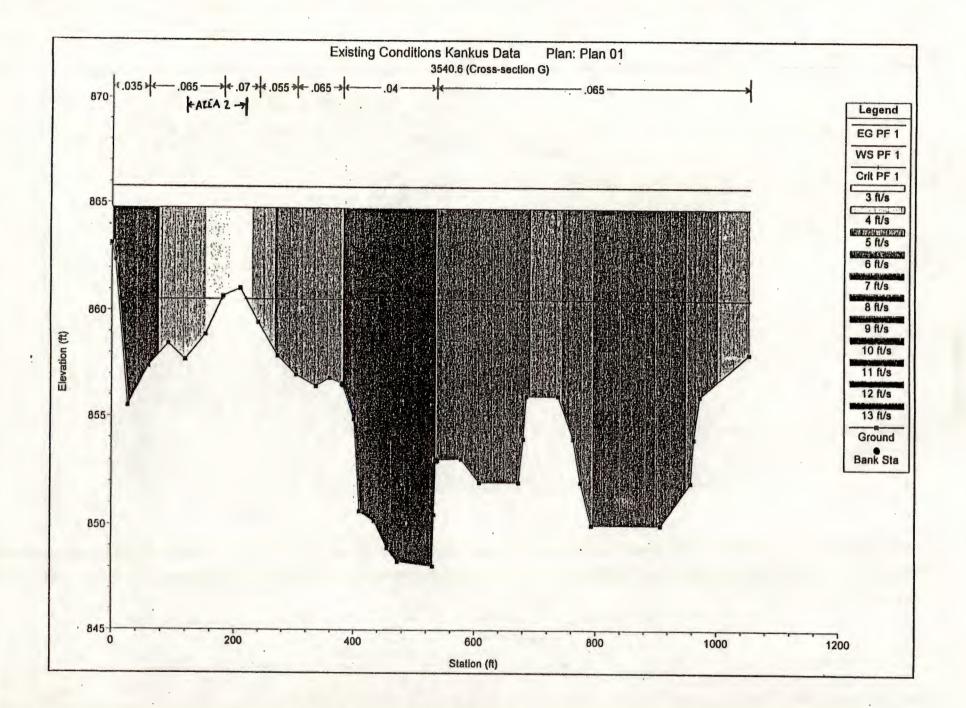
.

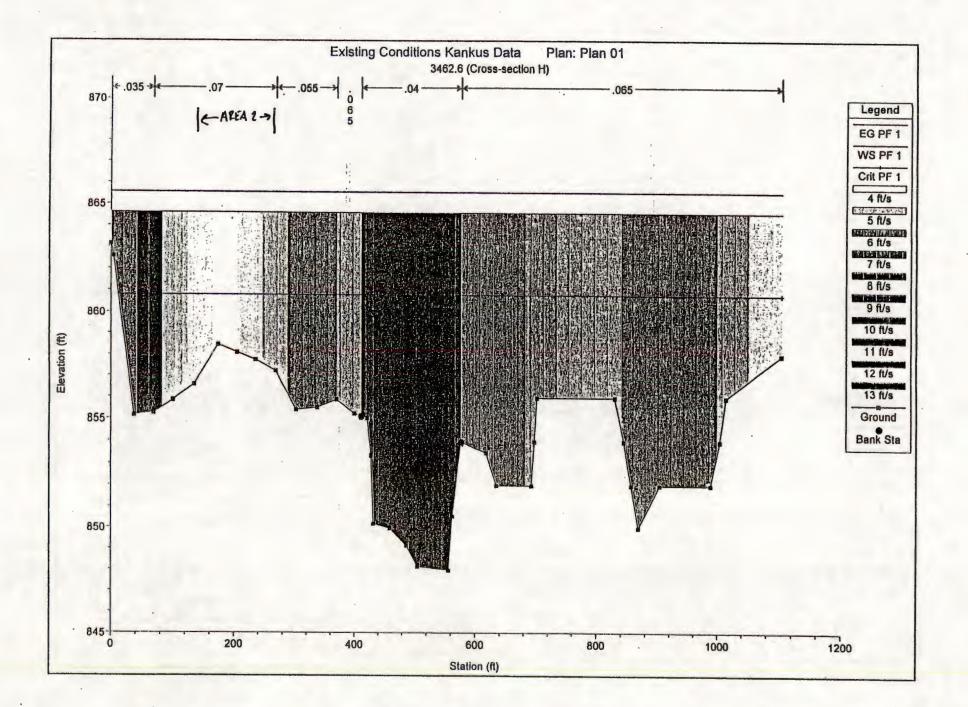
۰, ۲



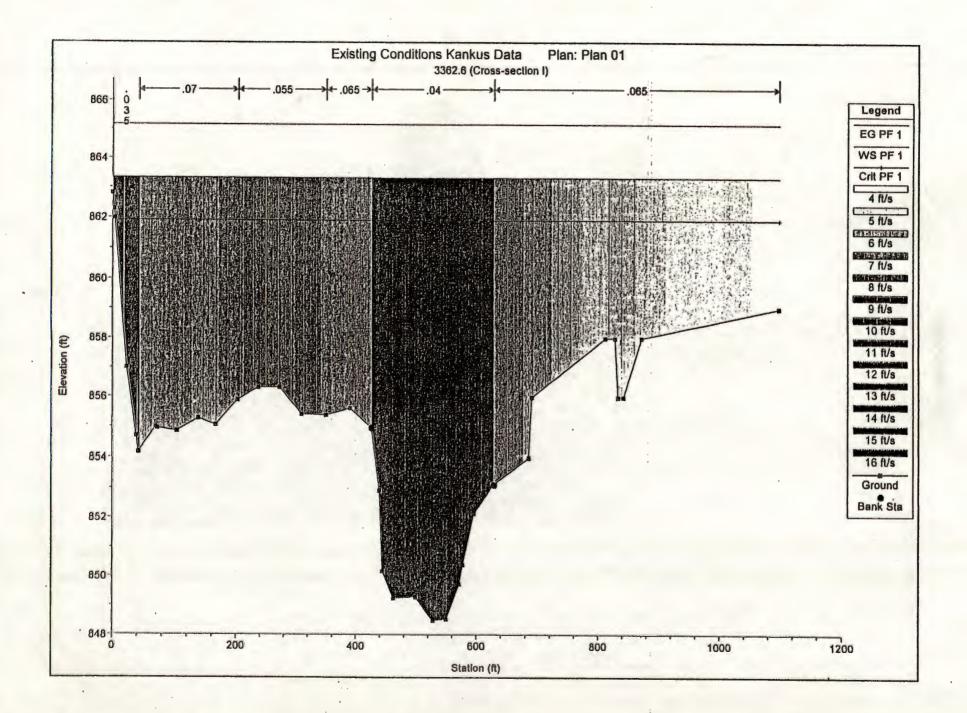



. .

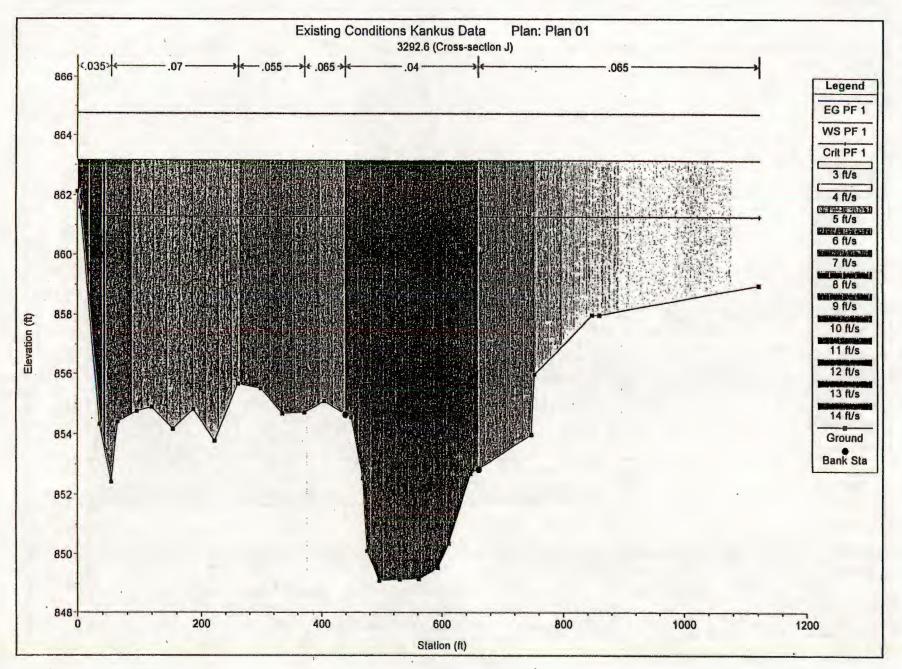



. 25.

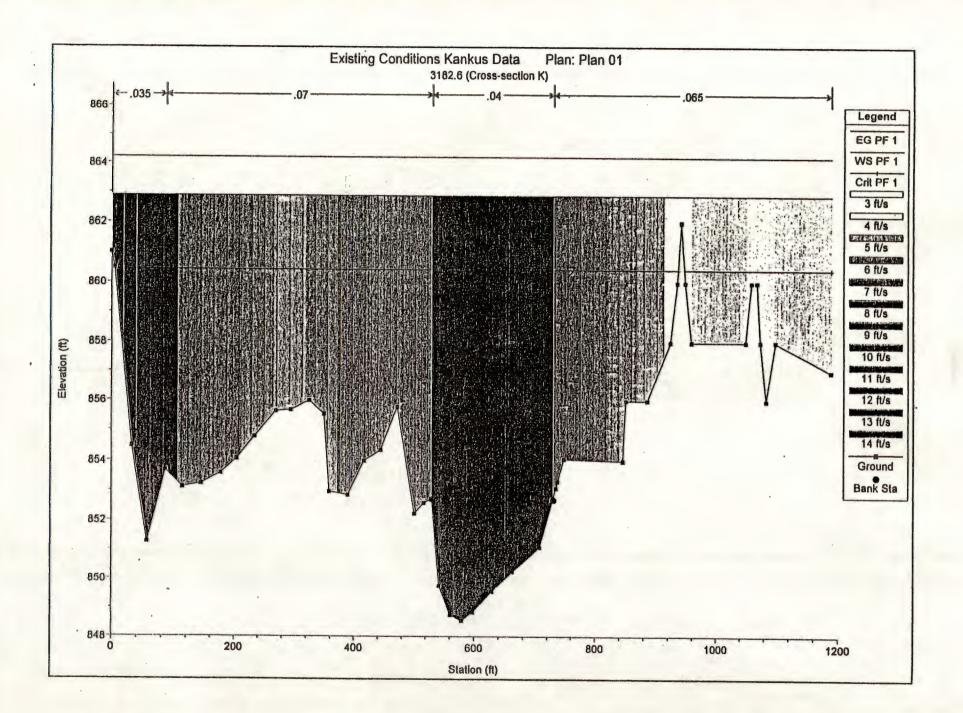
.


200

1 77 100


......

V



ų.

.

.

APPENDIX D Detailed Alternative Cost Estimates

Remington Rand (McInerney Farm) Site Revised Feasibility Study

Alternative 1 - Capital Cost Estimate

Description:

Excavation of soils to Unrestricted Land Use Standards Backfill and re-vegetation of excavated areas Installation of Erosion Mat

Component DIRECT CAPITAL COSTS	Unit	Unit Cost	Quantity	Total Cost
Mobilization	LS	\$50,000		\$50,000
Health & Safety	LS	\$10,000	1	\$50,000 \$10,000
Decontamination	LS	\$10,000	1	\$10,000
Air monitoring	LS	\$10,000	1	
Surveying	LS	\$5,000	1	\$10,000
Temporary Erosion Control (silt fence)	LF	\$5,000	1250	\$5,000 \$5,000
Temporary Haul Roads	LF	\$10	1500	
Clearing of Trees/brush	ACRE	\$4,000	1.5	\$15,000
Excavation	CY		the second s	\$6,000
	CY	\$6	12280	\$73,680
Stockpiling/Loading		\$3	14736	\$44,208
TCLP Treatment Type A	TON	\$25	4421	\$110,525
T&D Type A	TON	\$250	4421	\$1,105,250
T&D Type B	TON	\$250	4421	\$1,105,250
T&D Type C	TON	\$75	5894	\$442,050
Backfill & Compact	CY	\$15	14736	\$221,040
Proof Roll Subgrade	SY	\$0.50	7550	\$3,775
Material and Installation of Erosion Mat	SY	\$3.00	7550	\$22,650
Revegetation	ACRE	\$4,000	1.5	\$6,000
		Direc	ct Capital Costs:	\$3,245,428
INDIRECT CAPITAL COSTS				
Pre-Design Investigation				\$100,000
Engineering (5% of Direct Capital Costs)				\$162,300
Construction Oversight (10% of Direct Ca	apital Costs)			\$324,600
Field Screening Test Kit	SAMPLE	\$40	100	\$4,000
Laboratory Analysis	UNIT	\$200	50	\$10,000
Contingency (15% of Direct Capital Cost	5)			\$486,900
		Indirec	t Capital Costs:	\$1,087,800
		Total C	Capital Costs	\$4,333,228
Notes:		-		

1. Bulking factor of 1.2 applied to stockpiling/loading quantity

2. Volume estimates based on Areas shown on Figure 5. Potential excavated material outside of initial excavation areas was assumed to be 30% Type A, 30% Type B and 40% Type C based on the waste categories encountered during the 1993/1994 removal activities.

F:\OFICEAGC\PROJECTS\Files\2001-911\Reports\Revised FS (7-28-05)\Appendix D-Cost Estimates.xls

Å.

Remington Rand (McInerney Farm) Site Revised Feasibility Study

Alternative 1 - O&M Cost Estimate

Description:

Excavation of soils to Unrestricted Land Use Standards Backfill and re-vegetation of excavated areas Installation of Erosion Mat

Component	Unit	Unit Cost	Quantity	Total Cost
Revegetation	LS	4,000	1.5	\$6,000
Groundwater Monitoring				
Sampling and Analysis of 13 wells	WELL	\$525	13	\$6,825
Regulatory Reporting	LS	\$2,000	1	\$2,000
Contingency		15%		2,224

Present Worth Costs = \$35,000

Notes:

Analytical testing will include total and dissolve Pb, Cd, and Ni and PCBs
 Three sampling rounds are required over a five year period

3) Revegetation assumes one time event the year following completion of remediation

Remington Rand (McInerney Farm) Site Revised Feasibility Study

Alternative 2 - Capital Cost Estimate

Description:

Excavation of soils to Restricted Land Use Standards Backfill and re-vegetation of excavated areas Installation of Erosion Mat

Component DIRECT CAPITAL COSTS	Unit	Unit Cost	Quantity	Total Cost
Mobilization	LS	\$50,000	1	\$50,000
Health & Safety	LS	\$10,000	1	\$10,000
Decontamination	LS	\$10,000	1	\$10,000
Air monitoring	LS	\$10,000	1	
	LS	\$5,000	1	\$10,000
Surveying	LS		1250	\$5,000
Temporary Erosion Control (silt fence)	LF	\$4		\$5,000
Temporary Haul Roads		\$10	1500	\$15,000
Clearing of Trees/brush	ACRE	\$4,000	1.5	\$6,000
Excavation	CY	\$6	9630	\$57,780
Stockpiling/Loading	CY	\$3	11560	\$34,680
TCLP Treatment Type A	TON	\$25	3468	\$86,700
T&D Type A	TON	\$250	3468	\$867,000
T&D Type B	TON	\$250	3468	\$867,000
T&D Type C	TON	\$75	4624	\$346,800
Backfill & Compact	CY	\$15	11560	\$173,400
Proof Roll Subgrade	SY	\$0.50	7550	\$3,775
Material and Installation of Erosion Mat	SY	\$3.00	7550	\$22,650
Revegetation	ACRE	\$4,000	1.5	\$6,000
		Direc	ct Capital Costs:	\$2,576,785
INDIRECT CAPITAL COSTS				
Pre-Design Investigation				\$100,000
Engineering (5% of Direct Capital Costs)				\$128,900
Construction Oversight (10% of Direct Ca	inital Costs)			\$257,700
Field Screening Test Kit	SAMPLE	\$40	100	\$4,000
Laboratory Analysis	UNIT	\$200	50	\$10,000
Contingency (15% of Direct Capital Costs		4200		\$386,600
		Indirect Capital Costs:		\$887,200
Neters		Total (Capital Costs	\$3,463,985
Notes:				

1. Bulking factor of 1.2 applied to stockpiling/loading quantity

2. Volume estimates based on Areas shown on Figure 5. Potential excavated material outside of initial excavation areas was assumed to be 30% Type A, 30% Type B and 40% Type C based on the waste categories encountered during the 1993/1994 removal activities.

Æ.

Remington Rand (McInerney Farm) Site Revised Feasibility Study

Alternative 2 - O&M Cost Estimate

Description:

Excavation of soils to Restricted Land Use Standards Backfill and re-vegetation of excavated areas Installation of Erosion Mat

Component	Unit	Unit Cost	Quantity	Total Cost
Revegetation	LS	4,000	1.5	\$6,000
Groundwater Monitoring				
Sampling and Analysis of 13 wells	WELL	\$525	13	\$6,825
Regulatory Reporting	LS	\$2,000	1	\$2,000
Contingency		15%		2,224

Present Worth Costs = \$35,000

Notes:

Analytical testing will include total and dissolve Pb, Cd, and Ni and PCBs
 Three sampling rounds are required over a five year period

3) Revegetation assumes one time event the year following completion of remediation